
ISBN 978-3-936533-82-8

H
ar

al
d

K
lim

ac
h

|
Pa

ra
ll

el
 M

ul
ti

-S
ca

le
-S

im
ul

at
io

ns Harald Klimach

Parallel Multi-Scale-Simulations

with Octrees and Coupled Applications

This issue presents the development of scalable simulation tools for fluid flows
and especially methods to compute direct aeroacoustic simulations.
Aero-acoustic phenomena pose a multi-scale problem. To tackle this class of
problems, a general coupling tool for structured and unstructured meshes is
first parallelized to scale on thousands of processes. However, as there remains
a principle bottleneck in the treatment of meshes with this approach, an entirely
new framework on the basis of octrees is then developed.
This restriction in the mesh representation allows for fully parallel simulations of
arbitrary large setups.

Harald Klimach studied aerospace engineering at the University of Stuttgart;
worked at the HLRS on porting and optimization of user applications on a wide
range of supercomputers and started the development of the APES framework at
the GRS in Aachen. Since 2013 he is working in research and teaching at the chair
for Simulation Techniques and Scientific Computing of the University of Siegen.

Simulation Techniques in Siegen

Vol. 1

Simulation Techniques in Siegen

Vol. 1

The series Simulation Techniques in Siegen presents contributions to the field
of scientific computing with a focus on the utilization of large-scale computing
systems for highly resolved simulations. Applications, as well as numerical
methods and their efficient implementation on modern supercomputers, are
investigated and described.

1

Parallel Multi-Scale Simulations with Octrees
and Coupled Applications

Harald Klimach

Simulation Techniques in Siegen / STS

Edited by Sabine Roller and Harald Klimach

Vol. 1 (2016)

Parallel Multi-Scale Simulations with
Octrees and Coupled Applications

Parallele Multi-Skalen Simulationen mit
Octrees und gekoppelte Anwendungen

Von der Fakultät für Maschinenwesen der
Rheinisch-Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften

genehmigte Dissertation

vorgelegt von

Harald Klimach

Berichter: Univ.-Prof. Dr.-Ing. Sabine Roller
Univ.-Prof. Marek Behr Ph.D.
Univ.-Prof. Dr.-Ing. Dr. h.c. Dr. h.c. Prof. E.h. Michael Resch

Tag der mündlichen Prüfung: 28.01.2016

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online ver-
fügbar.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

D 82 (Diss. RWTH Aachen University, 2016)

Simulation Techniques in Siegen Vol. 1 / STS Vol. 1 (2016)
Editors: Sabine Roller and Harald Klimach

This work is licensed under the Creative Commons Attribution 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

1st edition universi – Universitätsverlag Siegen 2016

Printing: UniPrint, Universität Siegen
printed on wood- and acid-free paper

universi – Universitätsverlag Siegen
Am Eichenhang 50
57076 Siegen
Germany
info@universi.uni-siegen.de
www.uni-siegen.de/universi

ISBN: 978-3-936533-82-8

Meinen lieben Eltern Barbara und Kurt.

“Wenn ein Mensch ein Loch sieht, hat er das Bestreben, es
auszufüllen. Dabei fällt er meistens hinein.”

Kurt Tucholsky

v

Danksagung

Die vorliegende Dissertation ist über einen langen Zeitraum entstanden
und im Laufe dieser Zeit durfte ich vielen Menschen begegnen, die mir
auf die eine oder andere Weise beim Erstellen dieser Arbeit weitergeholfen
haben.

An erster Stelle danke ich meiner geliebten Frau Astrid, die mir immer
den Rücken frei gehalten hat. Ohne sie hätte ich nicht die Kraft gefunden
diese Arbeit zu meistern. Auch meiner Betreuerin Frau Prof. Sabine
Roller danke ich aufs herzlichste, sie hat immer daran geglaubt, dass ich
diese Arbeit tatsächlich fertigstellen kann. Sie hat mich den ganzen Weg
begleitet und es mir so ermöglicht diese Dissertation zu verfassen. Ich
bedanke mich auch besonders bei Herrn Prof. Claus-Dieter Munz, durch
den ich mit dem Gebiet der Numerik in Kontakt gekommen bin und der
mir die ersten Schritte auf diesem Gebiet ermöglicht hat. Herrn Prof.
Michael Resch habe ich meine erste Anstellung und eine wunderbare Zeit
am Höchstleistungsrechenzentrum in Stuttgart zu verdanken. Deshalb
freue ich mich sehr, dass er sich auch der Berichterstattung zu dieser Arbeit
angenommen hat. Am HLRS konnte ich wertvolle Erfahrungen im High-
Performance Computing erwerben, und ich möchte mich bei allen Kollegen
aus dieser Zeit für die herzliche und offene Zusammenarbeit bedanken.
Ganz besonders möchte ich mich bei Herrn Uwe Küster bedanken, der
stets ein offenes Ohr und einen guten Rat für mich zur Hand hatte und
von dem man alles lernen kann, insbesondere über Fortran. Herzlicher
Dank auch an Rolf Rabenseifner, dessen Büro ich lange teilen durfte und
mir oft bei Fragen rund um MPI behilflich war und ist. Ebenso danke
ich Thomas Bönisch für die Gelegenheit mit Partnern aus ganz Europa so
eng zusammenarbeiten zu können. Ich danke auch Jens Utzmann, der die
Grundlage für diese Arbeit gelegt hat und mit dem ich mich intensiv und
lange austauschen durfte.

Ebenso danke ich meinen Kollegen an der German Research School for
Simulation Sciences in Aachen, mit denen ich in neue Gebiete aufbrechen
durfte und neue Ideen ausprobieren konnte. Ich danke Herrn Prof. Marek
Behr für seine Leitung der Einrichtung, und dass er die Berichterstattung
für diese Arbeit angenommen hat. Manuel Hasert möchte ich danken,
dass er uns allen in der Arbeitsgruppe mit seinem hohen Einsatz und
viel Verständnis zur Seite gestanden hat und wir so auch gemeinsam
schwierige Phasen, die wohl jede Softwareentwicklung mit sich bringt,
überstehen konnten. Auch für seine Kommentare und Korrekturen zu

vii

dieser Arbeit bin ich ihm zu tiefem Dank verpflichtet. Bei Christian Siebert
bedanke ich mich für die vielen anregenden Gespräche und die wertvollen
Ratschläge zur parallelen Programmierung. Ihm habe ich viele gute Ideen
zu verdanken. Er hat immer völlig uneigennützig seine scharfsichtigen
Einsichten mit mir geteilt. Jens Zudrop gilt mein ganz besonderer Dank.
Durch sein enormes Arbeitspensum und seine tiefen Einsichten, die er in
seine Arbeit mitgebracht hat, haben sich uns ganz neue Möglichkeiten und
Wege eröffnet. Nur dank aller meiner Kollegen an der German Research
School konnte der zweite Teil dieser Dissertation so entstehen wie sie heute
vorliegt.

Auch meinen Kollegen an der Universität Siegen gilt natürlich mein ganz
herzlicher Dank, insbesondere Kannan Masilamani und Daniel Harlacher,
die wesentlich die Erstellung unseres Gittergenerators betrieben haben.
Ich hatte das unendliche Glück, stets in einer wohlwollenden Atmosphäre
mit freundlichen und kompetenten Kollegen an dieser Dissertation arbeiten
zu dürfen.

Ich danke meinen Eltern Barbara und Kurt, die es mir ermöglicht haben
dieses Studium zu absolvieren und mich seit jeher auf meinem Weg unter-
stützt haben. Ebenfalls danke ich meinen Schwiegereltern Erika und Heinz
Fandel, die uns in vielem das Leben einfacher gemacht haben. Meinen
Schwestern und Brüdern danke ich für ihre vielen Anregungen und ins-
besondere meinem Bruder Martin für das Korrekturlesen der Dissertation.

Harald Klimach

viii

Zusammenfassung

Simulationen physikalischer Gegebenheiten müssen oft das Zusammenspiel
vieler Phänomene und Skalen berücksichtigen. Bei aeroakustischen Proble-
men zum Beispiel, muss beides berücksichtigt werden, sowohl die Strömung,
die den Lärm erzeugt, als auch der Transport der Schallwellen. In dieser Ar-
beit werden numerische Ansätze für solche Probleme auf großen, verteilt par-
allelen Rechensystemen untersucht. Das Kopplungsframework KOP wird,
soweit wie möglich, parallelisiert und ein neues Framework (APES) wird
entwickelt um fundamentale Beschränkungen der Skalierbarkeit zu über-
winden. In beiden Implementierungen werden Verfahren hoher Ordnung
eingesetzt, da diese eine hochauflösende Simulation mit weniger Freiheits-
graden ermöglichen, als Verfahren niedrigerer Ordnung. Diese Eigenschaft
von Verfahren hoher Ordnung ist ein wichtiger Vorteil auf modernen Super-
computersystemen, da der Speicher, der benötigt wird um die Freiheitsgrade
abzubilden eine knappe Ressource darstellt. Die vorgestellten Methoden er-
möglichen die transiente Simulation von Mehrskalenproblemen, allerdings
werden für detaillierte Simulationen noch immer große Mengen an Rechen-
ressourcen benötigt. Im Rahmen dieser Arbeit wird deshalb ein Fokus auf
die effiziente Nutzung moderner Rechensysteme gelegt.

KOP verwendet diskrete Punkte um die Kopplung zu realisieren. Dies
erlaubt die Interaktion zwischen Gebieten mit unterschiedlicher Diskreti-
sierung aber auch verschiedenen Gleichungen. Beide Implementierungen
verwenden eine explizite Zeitintegration um die zeitabhängigen Simulatio-
nen aufzulösen. Das Kopplungsframework erlaubt von Gebiet zu Gebiet
variierende Zeitschritte. Diverse Erhaltungsgleichungen, von linearisierten
Euler Gleichungen und den Maxwell Gleichung, bis hin zu den Navier-Stokes
Gleichungen, können mit den vorgestellten Verfahren gelöst werden. Ein
vollständig verteilter Kopplungsmechanismus wird im Rahmen der Arbeit
entwickelt, der es ermöglicht, diese Gleichungen in großen Simulationen
gekoppelt zu verwenden.

APES erlaubt die Verwendung spektraler Diskretisierungen. Dazu bringt
es eine eigene Toolchain mit, die eine skalierbare Ausführung der gesamten
Simulation sicherstellt. Insbesondere, umfasst dies auch einen Gittergener-
ator, der Geometrien mit Polynomen hoher Ordnung darstellen kann. Das
robuste Verfahren, das hier zum Einsatz kommt ermöglicht es, ingenieurtech-
nische Fragestellungen auch mit solchen Verfahren hoher Ordnung in Angriff
zu nehmen.

ix

Abstract

Physical simulations often require the consideration of many phenomena
and scales. For example in aeroacoustic problems, both, the flow generating
the noise and the sound wave propagation needs to be considered. This work
investigates numerical approaches to such problems on large distributed and
parallel computing systems. The coupling framework KOP is parallelized
as far as possible and to overcome fundamental scalability limits a new
framework APES is developed. Both implementations utilize high-order
discretizations, as these allow for accurate simulations with less degrees of
freedoms than lower order methods. This property of high-order methods
is an important feature for modern supercomputing systems, as memory
to represent degrees of freedom in a simulation is a scarce resource. The
presented methods enable the transient simulation of multi-scale setups but
detailed resolutions still require large amounts of computational resources.
A focus is put on the efficient utilization of modern computing systems
to address this need. Besides the scalability of the implementations, the
importance of single core optimization and vectorization is illustrated.

KOP uses discrete points to realize the coupling and allows for the inter-
action between domains with differing discretizations and solved equation
systems. Arbitrary mesh configurations are supported and both, structured
and unstructured mesh solvers are available in the framework. In both fram-
works explicit time integration methods are deployed to resolve the time
dependent simulations. The coupling allows for a varying time step width
over the participating domains by a sub-cycling method. Various conserva-
tion laws can be solved by the presented frameworks ranging from Maxwell’s
equations and linearized Euler equations to full compressible Navier-Stokes
equations. A fully distributed coupling approach is developed that allows
for coupling of those in a large-scale simulation to solve, for example, aeroa-
coustic problems.

APES enables high-order discretizations in the spectral regime. It in-
volves a fully scalable toolchain for mesh-based simulations featuring a mesh
generation and a post-processing tool to support the solvers. The common
foundation of these tools is an Octree representation for the mesh, and
this work specifically covers the generation of high-order geometry approx-
imations in the developed mesh generator Seeder . This robust mechanism
works for arbitrarily complex surfaces and offers a practical way to tackle
engineering tasks with spectral element discretizations.

x

Contents

Zusammenfassung ix

Abstract x

Nomenclature xv

1 Introduction 1
1.1 State of the Art in Coupling Techniques 2
1.2 Approach to the Coupling Scheme 4

1.2.1 Serial coupling method for heterogeneous 3D static
meshes . 5

1.3 Parallel Processing . 6

2 Considered Equation Systems 9
2.1 Navier-Stokes Equations . 9
2.2 Euler Equations . 12
2.3 Linearized Euler Equations 12
2.4 Maxwell’s Equations . 14
2.5 Review and Relevance of the Considered Equations 14

3 Deployed Numerical Methods and Their Parallelization 17
3.1 Time Integration . 17
3.2 Cartesian Structured Meshes 18
3.3 Method of Finite Volumes 19
3.4 Discontinuous Galerkin Finite Element Method 22
3.5 The PNPM Scheme . 23

4 Scalable Unstructured Solver 25
4.1 Requirements by the Numerical Scheme 26
4.2 Distributed Mesh Handling 27

4.2.1 GEUM format description 29
4.2.2 Parallel processing of GEUM data 35

4.3 Distributed WENO Stencil Search 37
4.3.1 Sequential WENO stencil construction 38
4.3.2 Parallel stencil search strategy 39

xi

Contents

4.3.3 Parallel distributed WENO stencil construction . . . 44
4.4 Tracking Changes for Parallel Debugging 46

5 Single Core Optimization Strategies 49
5.1 Vectorization . 49
5.2 Importance of Visibility of Data Independence 51
5.3 Exploiting the Memory Hierarchy 53
5.4 Vectorization of the Cauchy-Kowalevsky Procedure 56
5.5 Machine Comparison With APES 62

6 Scalable Distributed Coupling Method 67
6.1 Point Localization in Arbitrary Polyhedrons 68

6.1.1 Approach based on the Jordan curve theorem 68
6.1.2 Approach based on the Gauss-Bonnet theorem . . . 72
6.1.3 Point containment summary 75

6.2 Distributed Coupling Scheme 76
6.2.1 Coupling interface identification 76
6.2.2 General coupling properties 79
6.2.3 Spatial coupling . 80
6.2.4 Parallelization . 83
6.2.5 Balancing and synchronisation 86
6.2.6 Summary coupling 88

6.3 Coupling Across Different Machines with PACX-MPI 88
6.3.1 Structure of the application 88
6.3.2 PACX-MPI . 89
6.3.3 Communication layout 89
6.3.4 Heterogeneous environment 90
6.3.5 Starting an application using PACX-MPI 90
6.3.6 Heterogeneous computations 92

6.4 Concluding Remarks on the Coupling Mechanism 94

7 Distributed Octree Mesh Infrastructure 97
7.1 General Relevance of the Approach for Complex Geometries 98
7.2 Octree Meshes in the Solvers 98
7.3 Introduction of the Common TreElM Library 101

7.3.1 Spatial ordering by space-filling curves 103
7.3.2 Node identification in the tree 107
7.3.3 Connectivity search in the Octree 109
7.3.4 The sparse Octree . 112

7.4 Distributed Octree . 116
7.4.1 Distributed connectivity search 118

xii

Contents

7.4.2 Scalability measurement 120
7.4.3 Strong scaling . 120
7.4.4 Weak scaling . 121

7.5 TreElM File Format . 122
7.5.1 Additional elemental properties 123

7.6 Overview to the Implementation of the APES Framework . 124
7.6.1 Usability . 127

8 Generating the Octree Mesh 129
8.1 Related Work . 130
8.2 The Seeder Mesh Generator 131

8.2.1 Basic mesh generation procedure 132
8.3 Generation of Polynomial Geometry Approximations 133

8.3.1 Coloring . 135
8.3.2 Sub-resolution . 135

8.4 Numerical Properties . 140
8.5 Mesh Generation Summary and Future Work 145

9 Results with Ateles 149
9.1 High-Order Efficiency . 150
9.2 Scalability of Ateles . 151
9.3 Seeder Generated Material for Electrodynamics 157

10 Future Work and Summary 163
10.1 Summary . 163
10.2 Future Work . 164

Bibliography 167

List of Figures 177

List of Tables 185

xiii

Nomenclature
Symbols

e Energy density

` Subresolution levels

L Octree level

I Identity matrix

S Stress tensor

p Pressure

s Level Offset in Octree

T Temperature

t Tree ID in Octree

~v Velocity
~F Fluxes
~P Primitive variables
~U State variables
~W Viscous flux
~B Magnetic field
~D Displacement field
~E Electric field
~j Current density

z Z curve value in Octree

Greek Symbols

ε Permittivity

γ Isentropic expansion coeffi-
cient

κ Heat conductivity

λ Bulk viscosity

µ Permeability

µv Dynamic viscosity

ρ Density

ρe Charge density

Other Symbols

⊗ Dyadic product

Acronyms

ADER Arbitrary high order using
DERivatives

Aotus Advanced options and tables
in universal scripting

APES Adaptable Poly-Engineering
Simulator

Ateles Adaptive tree based efficient
and eithe equation solver

DG Discontinuous Galerkin

Dof Degree of freedom

EE Euler Equations

FDM Finite Difference Method

FVM Finite Volume Method

GEUM General Elemental Unstruc-
tured Mesh

HPC High Performance Computing

IO Input/Output

KOP Kopplungs-Framework

LEE Linearized Euler Equations

MpCCI Mesh-based parallel Code
Coupling Interface

MPI Message Passing Interface

NSE Navier-Stokes Equations

PACX PArallel Computer eXtension

PreCICE Precise Code Interaction
Coupling Environment

TreElM Tree based Elemental Mesh

WENO Weighted Essentially Non-
Oscillatory

xv

1 Introduction

Advancing the tools available in engineering design requires increasingly
the consideration of a multitude of interacting phenomena. While many
problems are quite well understood when investigated in isolation, their
interactions are often only coming into reach of investigation with the
increasing computational power of supercomputing facilities. One of the
most demanding computational tasks in engineering is the simulation of
fluids in motion. Fluids play a significant role in many technical devices,
and the prediction of their behavior is therefore crucial for a functional
design of such devices. Phenomena occurring in flows of interest can span
a wide range of scales in space and time. This is especially the case for
aero-acoustic problems, where the sound is generated by a highly energetic
flow on a small turbulent scale, but the sound waves are propagated
over large distances, carrying only a small amount of energy. Figure 1.1
illustrates the setup. The figure shows a tiny sphere in the middle of
the domain and the passing flow generates a Kármán vortex street in its
wake. Those vortices produce sound waves, which we see in the shown
cut through the instantaneous pressure field. They are propagated over
large distances, and the far-field needs to cover this vast space. Different
domains are indicated by black lines separating them from each other.
In the presented work, direct numerical simulations are considered, and
the specific target application is a direct aero-acoustic simulation. A
uniform resolution of such problems, involving several scales is out of
reach for today’s numerical methods and available computing devices.
Instead, the traditional approach to solving such problem classes is the
separation and isolated computation of the various scales. However, this
has the negative effect of neglecting tightly coupled interactions between
the different simulated parts. Usually, there is just a flow of information
in one direction without any feedback. For direct simulations, the goal is a
minimization of modelling assumptions. While simplifications are needed
and a separation into separately treated domains seems to be inevitable,
the coupling considered in this work is bidirectional and well suited for
direct simulations. The domain boundaries, drawn in the fluid domain are
somewhat arbitrary, but in the studied field, they usually can be estimated
fairly well.

1

1 Introduction

The goal of this work is to develop a parallel coupling scheme for
fluid domains which enables tightly coupled interactions between different
scales. This scheme is designed to be as general as possible and allows the
computation of multi-scale problems without much more computational
effort than the separated approach. As the solution of each fluid domain in
itself poses a major computational effort, the scheme has to be employable
on using modern supercomputing facilities. Computational resources are
increasingly diverse and distributed. Any numerical method, aiming for
aggregation of those resources in a single simulation, therefore, has to be
capable of dealing with this trend. Thus, the underlying principle of the
coupling scheme is driven by the two issues mentioned above: Increasing
complexity and distributivity of computational resources, on the one hand,
the complexity of the simulations with a proper resolution of all scales by
various numerical methods on the other hand.

The presented work started out with the existing serial coupling tool
KOP and resulted in the completely new designed simulation framework
APES that overcomes several scalability bottlenecks.

1.1 State of the Art in Coupling Techniques

There is a wide range of coupling concepts and implementations available
with different goals, requirements and features. This work treats the
coupling of domains where compressible flows are to be solved. For these,
only explicit time integration solvers are considered here in the various
domains. Thus, the focus in this short overview on contemporary coupling
methods is put on the ones relevant to this kind of application.

Meshes and interfaces can take different forms, the easiest meshes to
couple are those with matching nodes at the interfaces. Such setups might
for example arise where different equations are to be solved in the separated
spatial domains. More complicated are those configurations, where the the
nodes are not matching at the mesh interfaces. This type of interfaces is
typical for separations of different scales, where one spatial region needs to
be better resolved than the other (Chen et al. [7]). A special case in this
category are meshes with a fixed element relation. There, one mesh has an
integer number of elements for each of the elements in the adjacent domain.
One important mesh type with such fixed relations between individual
parts are hierarchical meshes like octrees. These are also of interest for
parallel processing and will be discussed in the latter part of this thesis.
Various implementations to solve partial differential equations on this kind
of mesh exist. Some examples of these include proposals by Flaherty et

2

1.1 State of the Art in Coupling Techniques

Figure 1.1: Image of an instanteneous pressure field for a sound emitting
Kármán vortex street behind a sphere. A large domain is
covered to capture the propagation of soundwaves, and around
the sphere there are smaller domains, as indicated by the black
lines.

3

1 Introduction

al. [17] and Tu et al. [80], application frameworks like Peano [58] and
dedicated libraries like Dendro [69].

The Chimera method is a different approach, using overlapping meshes
to allow the combination of body-fitted structured meshes with cartesian
background grids [76]. An overview on the meshing strategies for this
approach is given by Meakin [50]. This coupling method is often used
in combination with moving geometries, where the body-fitted meshes
can move along with the structures, while the background grid is fixed.
The Overture framework [32] implements this kind of coupling for moving
geometries and various equation systems.

One step further in the direction of coupling arbitrary domains is taken
by tools like MpCCI (Mesh-based parallel Code Coupling Interface [37])
developed by Fraunhofer SCAI, where different domains are mostly treated
as black boxes with arbitrary surface data that is to be used for the coupling.
The MpCCI library manages the interpolation and communication between
the individual parts and takes care of steering them. A similar tool is
offered by PreCICE [24], which is also used in APES to enable the coupling
with third-party solvers. This approach allows specifically the coupling of
commercial closed codes to cover different physical aspects in a simulation.
However, it is limited to a low order interpolation and often requires a
single server to provide the interpolating coupling. Such a single server
concept for the coupling interfaces restricts the scalability of the approach
as it imposes a bottleneck in the communication between the interacting
simulations. Another restriction is the time integration method offered by
these tools, which lacks the ability to deal with high-order extrapolations
as for example offered by the ADER time integration method [79].

1.2 Approach to the Coupling Scheme

The coupling approach deployed in this thesis relies on the observation that
all numerical discretizations can be mapped to point values. By taking
advantage of this point representation, a coupling at domain interfaces
was designed, to allow different domains in arbitrary configurations to
exchange values with a high accuracy. Each domain can be discretized
independently from the other domains and might make use of unstructured
or structured meshes, Finite Volume (FVM), Finite Difference (FDM)
or Discontinuous Galerkin (DG) methods. Those numerical schemes will
be briefly discussed in Chapter 3. It allows for different equations to be
solved in each domain. Thus, the computational effort can be reduced
by minimizing the physical phenomena to consider in each domain. This

4

1.2 Approach to the Coupling Scheme

approach allows us in aero-acoustic simulations to restrict the computation
of the full compressible Navier-Stokes equations to a small, highly resolved
domain, as viscuous effects are often negligble far away from obstacles.
Similarly, nonlinearities can be neglected in the far field region, where only
acoustic waves are propagated any further. With a proper decomposition
of the physical domain, the equations can therefore be reduced from
full Navier-Stokes equations over inviscid, nonlinear Euler equations to
linearized Euler equations. These equation systems are briefly introduced
in Chapter 2. As the area of application are time resolved phenomena,
explicit time integration schemes are used in this work and the individual
domains are allowed to advance with their own time-steps. Again, this
variance in the time integration allows a minimization of the computational
effort.

1.2.1 Serial coupling method for heterogeneous 3D static
meshes

In Chapter 3 we will see that boundary conditions for FVM can be
implemented by using a set of extra elements outside the actual domain.
The coupling method exploits these extra elements to implement the
interface between adjacent domains. These elements, also called ghost
cells, are set to state, such that the numerical scheme fulfills the boundary
condition on the surface when using this neighboring information. In the
coupling scheme they are filled with neighbor information instead. By this,
the ghost cells provide an adapter for the interpolation from one mesh to
the other. Thus, the coupling is achieved at the interfaces by exchanging
the state on both sides as boundary conditions to the mutual neighbor.

A general coupling method based on this principle for three-dimensional
problems was developed in [82] by Jens Utzmann. It was specifically de-
signed for multi-scale problems such as aero-acoustics and extends the ideas
from Schwartzkopff [73] from two dimensions to three dimensions. While
the previous scheme in [73] uses cell intersections to obtain the state in the
ghost cells, the new approach in [82] deploys discrete points to establish the
state within ghost cells. The method based on cell intersections computes
exact volume fractions of overlapping cells to integrate the corresponding
integral mean value in the ghost cells. While this is complicated but achiev-
able in two dimensions, the cost for the computation of arbitrary volumina
integration becomes prohibitively large in three dimensions. The concept
of integral means is also not easily transferable to higher order schemes
like the PNPM , where a more sophisticated internal representation is used
in each element, including the ghost cells. High-order methods will also be

5

1 Introduction

described in Chapter 3. They usually make use of nodal values, which are
chosen at suitable integration points, like the ones for the Gauss-Legendre
[48] or Gauss-Chebyshev [8] numerical integration. This nodal basis to
construct the state representation in elements, is now also used for the
construction of ghost cells. Only the state values at those integration points
are needed to construct a ghost cell with the required accuracy. With this
concept it is no longer necessary to deal with complicated volumina and
their integration, and it is possible to describe the state in ghost cells with
arbitrarily high precision. Although the numerical integration with data
exclusively from discrete points poses the theoretical risk of aliasing errors,
these interfaces proved to work reasonably fine in real world settings.

To account for different scales in time, a subcycling method is used,
allowing one domain to perform multiple time step updates during a
single time step of another domain. Overall we have a flexible coupling
environment that allows the interaction of vastly different solvers. In this
work this concept is developed further and adapted to the parallel and
distributed computing infrastructure of modern supercomputing facilities.

1.3 Parallel Processing

As the computational effort is drastically increased by the transition from
two dimensions to three, a parallelization of the code became necessary.
Utzmann [82] used a preliminary parallel implementation, which allowed
only relatively small meshes on large numbers of processes. The biggest
simulation achieved with that implementation was conducted on 1024
processes and limited to 2 million elements in the unstructured mesh, due
to memory constrains. A major issue of the preliminary implementation
was also the lacking parallel restart functionality, which did not allow
arbitrary restarts from given computed intervals on parallel machines.
With the rising frequency of hardware failures in massively scaled super
computing facilities and therefore decreasing possible running times for the
simulation in a single time block, a parallel restarting facility is an essential
feature for future large scale simulations. To enable the restarting with
arbitrary number of processes a new file format based on a space-filling
curve is introduced for the unstructured solver.

While a major focus of this work is put on the parallelization of the
coupling between the fluid domains, the scalable deployment requires the
consideration of all involved parts, as any non-scaling step in the simula-
tion will eventually break the simulation. The scalable treatment of the
structured solver proved to be not so much of an issue. However, with

6

1.3 Parallel Processing

the unstructured mesh solver some major bottlenecks are encountered and
are overcome in this work as described in Chapter 4. FVM and PNPM

schemes deployed in the unstructured solver, require the construction of a
neighborhood for each element. This so called stencil can span multiple
elements for high-orders and overlaps into partitions of neighboring pro-
cesses. The need for an efficient, parallel construction of this neighborhood
led to the development of a dedicated mesh data format, and a suitable
preprocessing tool. The tool is designed as a separate application, called
GEUM, and enables the unstructured solver to run arbitrary large problems
on massively parallel systems with little memory per core. While this
shifts a scalability bottleneck out of the solver itself, there still remains
one in the generation of the unstructured meshes. Those can be generated
on special machines with large memory, but eventually this is a point of
limited scalability. Therefore, the completely new developed approach in
APES with a dedicated mesh format and infrastructure involves also the
mesh generation itself.

Large scale computations not only require the reduction of the com-
putational effort where possible, but also an efficient exploitation of the
computing infrastructure. Especially, when run on massively parallel
systems it is important to maximize the serial execution of the applica-
tion, as any inefficiency gets multiplied with the number of executing
processes. Therefore, some strategies on the serial optimization will be
briefly discussed in Chapter 5.

The parallel implementation of the coupling scheme itself is discussed
in Chapter 6. Limits of the highly general coupling approach of KOP
in terms of parallel scalability are explored and a concept to overcome
such limitations by the design of a new scheme is presented. This new
concept builds a framework on its own and is described in the later part
of the thesis. It makes use of a unified mesh data structure that will be
introduced in Chapter 7 and covers all necessary tools from mesh generation
to post-processing. To overcome scalability limits this concept requires a
restriction on the mesh data structure. Thus, instead of the completely
general approach with arbitrary structured or unstructured meshes, this
new framework relies on the known topology of Octrees to enable the
distributed and parallel processing. One of the goals by moving to Octree
meshes is the aim for runtime adaptations, another is the applicability to
a wide range of engineering problems. Therefore, the framework is called
APES as in Adaptable Poly-Engineering Simulations.

As this work is mostly concerned with the parallelization of the dis-
cussed coupling mechanism, the question arises how the parallelism is
achieved. Large scale parallel systems use distributed memory and the

7

1 Introduction

parallelism has to account for this setup. The de-facto standard for parallel
programming on distributed memory systems in high performance com-
puting (HPC) is the Message Passing Interface (MPI) [19]. MPI provides
a standardized method to realize communication between processes on
independent computing nodes connected by a network. It abstracts the
underlying communication mechanisms and exposes interfaces for common
communication tasks to the application. The functionality ranges from
point to point communications between pairs of processes over collective
operations like reductions, involving several or all processes to parallel
input and output (IO).

MPI was revised and extended several times and the current version
3 of the standard introduced some interesting new features, especially
non-blocking collectives are of interest for this work here. Non-blocking
barriers enable the resolution of the termination problem, where it is
unclear when to finish a certain task. This arises, when all processes serve
some information to all other processes but it is not known in advance who
will request information from whom. We will utilize this in the scalable
implementation of the coupling exchange.

Another step that can be taken for the coupling of heterogeneous domains
is the deployment of specialized hardware for the different domains. Such
an interaction between different domains is enabled by PACX-MPI [22].
This special approach is covered in Section 6.3. It enables the mapping of
a heterogeneous application to a heterogeneous computing environment,
which might get even more relevant in the future, when a diversification
of computing architectures is expected [6].

Besides the minimization of computational effort by adapted equation
systems, discretizations and time integration, an important factor on
modern computing architecture is the memory consumption and access.
High-order methods allow for accurate solutions with few degrees of free-
dom and, therefore, little memory consumption. For this reason we will
concentrate in this thesis on high-order numerical schemes. Especially,
in the new APES framework the high-order representation will be the
focus after a proper introduction of the mesh infrastructure. In Chapter
8 we investigate how high-order geometries can be represented in the
Octree mesh representation of TreElM . The method developed in this
work to construct these high-order representations is robust and suitable
for any complex surface. This is followed by some numerical and scaling
considerations in Chapter 9.

Finally, not all the ideas that arose in the course of this work have been
realized yet. Therefore, Chapter 10 provides, besides a summary, a glimpse
on future work that is still left to be done to advance the presented topic.

8

2 Considered Equation Systems

The governing equations for the direct aero-acoustic simulation are a
set of conservation laws, that allow the description of compressible fluid
mechanics in general and simplifications thereof. These equations are briefly
revisited in this chapter. The most general description for compressible,
viscous flows is provided by the Navier-Stokes equations (NSE). In aero-
acoustic simulations the following simplifications of this general set of
equations, that is expensive to compute can be made for large parts of
the computational domain. First, away from obstacles and strong velocity
gradients, it usually is legitimate to neglect the viscous terms in the Navier-
Stokes equations. This results in the Euler equations (EE). Finally, in
the propagation of acoustic waves, there are only small deviations from a
constant mean flow, that are relevant and the non-linear Euler equations
can be linearized around this mean flow in this part of the domain. The
linearized Euler equations (LEE) offer the largest savings in computational
effort, and can be used to cover vast domains for the wave propagation.

Another linear equation system that will be used in this work are
Maxwell’s equations that govern electrodynamic waves. Electrodynamics
is an important application area and in some settings like for example
electrodialysis its influence needs to be coupled with fluid dynamic simula-
tions.

2.1 Navier-Stokes Equations

The first conservation law is the conservation of mass and with density
denoted as ρ and velocity as ~v it reads:

∂ρ

∂t
+ ∇ · (ρ~v) = 0. (2.1)

The second considered quantity is the momentum ρ~v and its conservation
leads to:

∂(ρ~v)
∂t

+ ∇ · (ρ~v ⊗ ~v) + ∇p = ∇ · S. (2.2)

External forces are omitted in the notations here for brevity. The stress
tensor is denoted by S and the pressure by p. A dyadic product is indicated
by ⊗.

9

2 Considered Equation Systems

Conservation of energy finally results in

∂e

∂t
+ ∇ · ((e+ p)~v) = ∇ · (S~v + κ∇T), (2.3)

where the energy density e summarizes the kinetic and inner energy of
the fluid. Thermal conductivity of the fluid is denoted by κ and the
temperature by T .

To close the system a description of the fluid material has to be made.
The assumption of an ideal gas yields the following relation of p and e:

p = (γ − 1)
(
e− ρ~v · ~v

2

)
.

When assuming a Newtonian fluid, the stress tensor S can be expressed
in terms of the velocity gradient by

S = µv(∇ ⊗ ~v + (∇ ⊗ ~v)T) + (λ∇ · ~v)I,

where the material parameters dynamic viscosity µv and bulk viscosity λ
are used to describe the viscosity of the fluid and I is the identity matrix.
Often, the bulk viscosity is neglected in numerical models. In this work it
is chosen to be λ = 2µv

3 , which is a typical assumption in literature [46].
This set of equations are referred to as the Navier-Stokes equations

(NSE) in the remainder of this work. They can also be written in vector
form by collecting the conservative variables into one vector

~U =

ρ
ρvx

ρvy

ρvz

e

and defining the flux functions ~Fx(~U), ~Fy(~U) and ~Fz(~U) as follows:

~Fx(~U) =

ρvx

ρv2
x + p
ρvxvy

ρvxvz

vx(e+ p)

 , ~Fy(~U) =

ρvy

ρvyvx

ρv2
y + p
ρvyvz

vy(e+ p)

 , ~Fz(~U) =

ρvz

ρvzvx

ρvzvy

ρv2
z + p

vz(e+ p)

 .

10

2.1 Navier-Stokes Equations

The viscous right hand side in its vectorial form can be written with the
following vectors ~Wx, ~Wy and ~Wz:

~Wx(~U,∇ ⊗ ~v,
∂T

∂x
) =

0

(2µv + λ) ∂vx
∂x

+ λ
(

∂vy

∂y
+ ∂vz

∂z

)
µv

(
∂vy

∂x
+ ∂vx

∂y

)
µv

(
∂vz
∂x

+ ∂vx
∂z

)
Φx + κ ∂T

∂x

~Wy(~U,∇ ⊗ ~v,
∂T

∂y
) =

0
µv

(
∂vx
∂y

+ ∂vy

∂x

)
(2µv + λ) ∂vy

∂y
+ λ

(
∂vx
∂x

+ ∂vz
∂z

)
µv

(
∂vz
∂y

+ ∂vy

∂z

)
Φy + κ ∂T

∂y

~Wz(~U,∇ ⊗ ~v,
∂T

∂z
) =

0

µv

(
∂vx
∂z

+ ∂vz
∂x

)
µv

(
∂vy

∂z
+ ∂vz

∂y

)
(2µv + λ) ∂vz

∂z
+ λ

(
∂vx
∂x

+ ∂vy

∂y

)
Φz + κ ∂T

∂z

The vector ~Φ is used as an abbreviation for the terms originating from the
stress tensor S in the energy conservation law and fully read

Φx = (2µv + λ)∂vx

∂x
+ λ

(
∂vy

∂y
+ ∂vz

∂z

)
+ µv

[
vy

(
∂vx

∂y
+ ∂vy

∂x

)
+ vz

(
∂vx

∂z
+ ∂vz

∂x

)]

Φy = (2µv + λ)∂vy

∂y
+ λ

(
∂vx

∂x
+ ∂vz

∂z

)
+ µv

[
vx

(
∂vy

∂x
+ ∂vx

∂y

)
+ vz

(
∂vy

∂z
+ ∂vz

∂y

)]

11

2 Considered Equation Systems

Φz = (2µv + λ)∂vz

∂z
+ λ

(
∂vx

∂x
+ ∂vy

∂y

)
+ µv

[
vx

(
∂vz

∂x
+ ∂vx

∂z

)
+ vy

(
∂vz

∂y
+ ∂vy

∂z

)]
.

With these vectors the Navier-Stokes equations for Newtonian fluids and
ideal gas can be written as

∂~U

∂t
+ ∂ ~Fx(~U)

∂x
+ ∂ ~Fy(~U)

∂y
+ ∂ ~Fz(~U)

∂z
= ∂ ~Wx(~U)

∂x
+ ∂ ~Wy(~U)

∂y
+ ∂ ~Wz(~U)

∂z
.

(2.4)
Note, that the dependence of the viscous fluxes on the derivatives have
been omitted for brevity. Due to the dissipative terms in the Navier-
Stokes equations, they contain hyperbolic and parabolic parts that require
different numerical treatments and make the computation complicated for
these equations.

2.2 Euler Equations

A simplification of the NSE can be obtained by neglecting the dissipative
terms on the right hand side of Equations (2.2) and (2.3). The compressible
inviscid equations obtained thereby are denoted as Euler equations (EE)
in this work. They can be obtained in vectorial form from Equation (2.4)
by omitting the right hand side, which results in

∂~U

∂t
+ ∂ ~Fx(~U)

∂x
+ ∂ ~Fy(~U)

∂y
+ ∂ ~Fz(~U)

∂z
= 0. (2.5)

They are applicable where dissipation can be neglected, e.g. in regions far
away from walls and without turbulence. The Euler equations are easier
to treat numerically, as they are purely hyperbolic. Solving them instead
of the full compressible NSE reduces the computational effort considerably.
However, their nonlinearity still imposes a relatively high computational
cost that is unnecessary for pure wave propagations.

2.3 Linearized Euler Equations

If there are only small changes in the state variables and the nonlinearity
in the EE can be neglected, the linearized Euler equations (LEE) can be
used in the numerical model. This is for example the case for sound wave
propagation away from the sound generating flow [3].

12

2.3 Linearized Euler Equations

For the linearization of the Euler equations, their non-conservative
formulation

∂ ~P

∂t
+ Nx(~P)∂

~P

∂x
+ Ny(~P)∂

~P

∂y
+ Nz(~P)∂

~P

∂z
= 0 (2.6)

can be used, and the matrices Nx, Ny and Nz, can be directly evaluated
with a fixed mean state. The primitive variables ~P are given by:

~P =

ρ
vx

vy

vz

p

and the matrices are defined accordingly as:

Nx(~P) =

vx ρ 0 0 0
0 vx 0 0 1

ρ

0 0 vx 0 0
0 0 0 vx 0
0 γp 0 0 vx

 ,

Ny(~P) =

vy 0 ρ 0 0
0 vy 0 0 0
0 0 vy 0 1

ρ

0 0 0 vy 0
0 0 γp 0 vy

 ,

Nz(~P) =

vz 0 0 ρ 0
0 vz 0 0 0
0 0 vz 0 0
0 0 0 vz

1
ρ

0 0 0 γp vz

 .

In the linearization a fixed state ~P0 is chosen and only perturbations ~Pδ of
this state are considered as variables in the equation system. Neglecting
quadratic terms of the perturbations, we obtain the linear system with
constant matrices Nx, Ny and Nz as

∂ ~Pδ

∂t
+ Nx(~P0)∂(~Pδ)

∂x
+ Ny(~P0)∂(~Pδ)

∂y
+ Nz(~P0)∂(~Pδ)

∂z
= 0. (2.7)

Note that for the linearized Euler equations the notation in (2.7) is also
the conservative form, due to the constant matrices.

13

2 Considered Equation Systems

2.4 Maxwell’s Equations

Electrodynamics is governed by Maxwell’s equations and with an isotropic,
linear material they read:

∇ · (ε ~E) = ρe (2.8)

∇ · ~B = 0 (2.9)

∂ ~B

∂t
+ ∇ × ~E = 0 (2.10)

∂ε ~E

∂t
− ∇ × (~B/µ) = −~j (2.11)

Gauss’s law (2.8) states a direct relation between the divergence of
the electrical field ~E and the electrical charge density ρe. Similarly, the
magnetic field ~B has to be divergence free as there are no magnetic charges,
which is expressed in (2.9). The two fields evolve in time according
to Faraday’s (2.10) and Ampère’s law (2.11). In these equations, the
environment is described by permittivity ε and permeability µ of present
materials. Note that there is no time-dependency in (2.9) and, if there
is no variation in ρe over time also not in (2.8). They express a purely
spatial relation and should be satisfied for all times if they are satisfied at
one point in time. However, this is numerically not necessarily true and it
might be necessary to apply some convergence correction in the numerical
simulation [57].

2.5 Review and Relevance of the Considered Equations

The presented equations (NSE, EE and LEE) implement different models
for fluid motion. They show that even if only fluid motion is considered,
vastly different equations can be applied. Their solution requires adapted
numerical schemes, resulting in a heterogeneous simulation domain with
very different computational properties. A coupling framework as presented
here, allows the combination of the different models and thereby the
reduction of computational costs where possible.

The Navier-Stokes equations involve parabolic parts, which are noto-
riously expensive to handle in explicit time integration schemes, due to
their strong stability constraints on the time step. With high order ap-
proximations, this limitation gets even more severe. Together with their
nonlinearity, this results in expensive computations for domains solving

14

2.5 Review and Relevance of the Considered Equations

the NSE. Therefore, it is desirable to switch the equations to solve for as
soon as possible to the EE and minimize the area in which the NSE are
deployed. While the EE are still nonlinear, they are purely hyperbolic and
can be treated more easily by according numerical schemes. Linearization
finally, offers the largest savings in computational effort, but is sufficient
to model the propagation of acoustic waves. Thus, the LEE are suitable
to cover the large domains of acoustic wave propagation.

In addition to fluid dynamics, also electrodynamics are considered. A
coupling of electrodynamics and fluid flows is necessary in applications like
electrodialysis. Maxwell’s equations covering electrodynamics are linear
equations for linear, homogeneous, isotrop materials. However, we will
use them in a setting with discontinuities in the material distribution to
illustrate the high-order handling of such geometries.

All considered equations are conservation laws and the numerical schemes
presented in the next chapter are especially designed for this kind of
equations.

15

3 Deployed Numerical Methods and Their
Parallelization

After introducing the fundamental equations in the previous chapter, we
now briefly discuss the numerical methods that will be used throughout
this work to solve them. All previously described equation systems are
time dependent, and a direct simulation requires their time resolved com-
putation. To solve them, Rothe’s method [38] can be used to treat time
and space discretizations seperately from each other. We will first briefly
discuss the deployed time integration methods and then move on to spatial
discretization schemes in this chapter.

3.1 Time Integration

By Rothe’s method, the partial differential equation can be split into an
ordinary differential equation in time and a partial differential equation in
space. Therefore, an ordinary differential equation integrator is required to
solve the time evolution. A vast variety of numerical ordinary differential
equation solvers are available today [5] and the most appropriate one can
be chosen for each purpose. One important classification that can be made
for numerical ordinary differential equation solvers is the division into
implicit and explicit schemes. Implicit schemes require the solution of a
linear equation system in each iteration but are usually unconditionally
stable. Explicit schemes on the other hand are only conditionally stable
and generally require a restriction on the step size but do not require the
solution of a linear equation system [9]. However, in transient simulations,
a high temporal resolution is anyway required and this limitation is not as
severe, as it might appear at first. In explicit time integration each time
step solely depends on the previous one. This is also highly attractive for
the coupling scheme, where data from neighboring domains needs only
to be retrieved for older time steps. Therefore, we will use explicit time
integration methods in the numerical frameworks here.

A popular explicit time integration method is offered by the family of ex-
plicit Runge-Kutta methods [45], which make use of multiple stages within
each time step to achieve a high-order time integration [86]. The classical

17

3 Deployed Numerical Methods and Their Parallelization

fourth-order Runge-Kutta method is used in APES . Each computation of
the individual stages require the evaluation of the spatial discretization
scheme but otherwise no additional computational costs are attached to
this method. Thus, it provides an efficient and straight-forward method
for the time integration.

The coupling method, however, requires the state values at arbitrary
pionts in time, not just at discrete stages as offered by the classical Runge-
Kutta method. This could be overcome by using a so-called continuous
Runge-Kutta method, however they still suffer from another drawback of
the Runge-Kutta family of methods. For high-order schemes in time, the
Runge-Kutta methods are exhibiting an increasingly high cost beyond the
fifth order [61]. The phenomenon, commonly referred to as Butcher barrier,
requires the method to deploy an more than proportional growing number
of stages to achieve a given error convergence order. Due to this effect,
Runge-Kutta methods become overly expensive for very high orders. Thus,
instead of a continuous Runge-Kutta method, another approach is chosen in
the coupling application KOP to obtain a high-order time integration. This
approach, the ADER (Arbitrary high-order using DERivatives) method
[74] makes use of a Taylor expansion to represent the time-evolution of
the state. The Taylor expansion adds the need for the computation of
temporal derivatives to the numerical scheme but overcomes the order
barrier in a one-step method. Temporal derivatives can be obtained from
spatial derivatives via the Cauchy-Kowalevsky procedure [44]. Spatial
derivatives on the other hand become available by a high-order spatial
discretization. Therefore, the ADER strategy provides a method to arrive
at a high-order numerical method in space and time.

3.2 Cartesian Structured Meshes

Cartesian structured meshes are the simplest meshes to descritize a given
volume. They offer also the most efficient access to neighboring elements in
stencil based methods like those discussed in this chapter. However, they
are very restrictive and do not allow an adaptation to geometrical con-
straints of the computational domain. An option to allow for maintaining
the structured nature in solvers but simulating more complex geometries is
offered by body-fitted meshes [78]. The generation of body-fitted meshes
is much more complicated in three dimensions than in two. They also
have the additional cost of transformations between reference coordinates
and physical coordinates attached to them. In an aero-acoustic simula-
tion however, we are facing large volumes of space without any obstacles.

18

3.3 Method of Finite Volumes

For these domains cartesian structured meshes are well suited and their
advantages can be fully exploited. The KOP approach enables the com-
bination of structured and unstructured domains in a single simulation
and a dedicated, parallel solver is available in this context. All numerical
schemes presented in the following sections are also suitable for unstruc-
tured meshes but specialized implementations for structured meshes allow
for a reduction in the computational effort. Thus, one of the goals in the
coupling strategy is the maximization of the area that is computed with
the structured grid. The structured solver is an important building block
in the coupled simulation but its parallelization is straight-forward. In
contrast to the processing of unstructured meshes, there are no scalability
limits imposed by this part of the application. This is due to the globally
known topology of the mesh.

3.3 Method of Finite Volumes

To treat the equations numerical in space, there are various numerical
methods available. With compressible flows, shocks might appear in the
solution, resulting in local discontinuities. Specifically to this end, Finite
Volume Methods (FVM) have been developed. They exploit the fact that
conservation laws are solved and discretizes the domain into small volumes
that interact with each other. Due to the nature of conservation laws,
the integral mean of conserved quantities in each volume changes only as
much over time, as there are quantities flowing over the surface of the
volume. This can be seen by considering the integral form of conservation
equations like (2.4). By integrating over a finite time interval from tn to
tn+1 and a finite volume Ωi, we obtain the weak formulation

∫ tn+1

tn

∫
Ωi

∂~U

∂t
+ ∂ ~Fx(~U)

∂x
+ ∂ ~Fy(~U)

∂y
+ ∂ ~Fz(~U)

∂z
dV dt

=
∫ tn+1

tn

∫
Ωi

∂ ~Dx(~U)
∂x

+ ∂ ~Dy(~U)
∂y

+ ∂ ~Dz(~U)
∂z

dV dt. (3.1)

Let us shorten the notation of (3.1) and use ∇· to express the scalar
product with the gradient. Assume also some generic flux ~f , covering all
conservation laws, and combining ~F and ~D in the case of the NSE. With
these abbreviations the following general weak form for a conservation law

19

3 Deployed Numerical Methods and Their Parallelization

can be written as: ∫ tn+1

tn

∫
Ωi

∂~U

∂t
+ ∇ · ~f(~U)dV dt = 0. (3.2)

We now introduce the integral mean value in each cell i

~Ui = 1
|Ωi|

∫
Ωi

~UdV. (3.3)

The idea of FVM is now to describe the evolution of the overall solution
by the evolution of these integral mean values ~Ui. By employing the
divergence theorem and plugging the definition of the integral mean (3.3)
into (3.2), we obtain the semi-discrete evolution equation

~Ui

n+1
= ~Ui

n

− 1
|Ωi|

∫ tn+1

tn

∫
∂Ωi

~f(~U)~ndSdt. (3.4)

Here, ∂Ωi denotes the surface of the volume Ωi, and ~n the normal vector on
this surface. Equation 3.4 is an exact evolution for the integral mean ~Ui but
it requires the exact state ~U at the surface ∂Ωi. Only the time evolution
for the integral means are available. Thus, the exact distribution ~U(~x, t)
is not known in the numerical solution. Instead, we need to introduce an
approximation for the flux on the surface that only depends on the integral
mean values. As this is the main approximation in the FVM the choice of
a numerical flux is important for the overall quality of the solution.

With an appropriate numerical flux ~g that only depends on the state
left and right of the face, we then get the approximated time evolution for
the integral mean values

~Ui

n+1
= ~Ui

n

− 1
|Ωi|

∫ tn+1

tn

∫
∂Ωi

~g(~Ui, ~Uj)dSdt. (3.5)

Where ~Uj is the integral mean value in the cell adjacent to the surface of
cell i. The time integration in (3.5) can now be solved by a time integration
method from the previous section.

The integral mean offers only a rough estimation of the state within
the cells and only a first order error convergence is obtained with this
approximation. A first order FVM scheme in space and time is obtained
by using a simple forward Euler time discretization with constant fluxes on
the interfaces for (3.5). Though, such a first order FVM solver is straight

20

3.3 Method of Finite Volumes

forward to implement and highly stable, it introduces a strong numerical
damping and an extremely large number of cells time-steps is required to
obtain sufficiently small errors for time resolved wave phenomena. This is
especially a severe problem in multi-scale settings, where the time period
that needs to be covered for the most resolved domain is likely to be so
long, that the damping effects of the numerical scheme will dominate the
solution.

More accurate approximations can be obtained by a so-called recon-
struction. For a reconstruction, multiple cells are considered and an
interpolating polynomial is computed that recovers the integral mean in
each cell. All cells considered in this reconstruction compose the stencil
of the scheme. The higher the degree of the polynomial, and the order of
the numerical scheme, the more cells are required for the stencil. With
the reconstruction, the value at the cell surface can be more accurately
approximated. The reconstructed state representation also enables the
computation of derivatives for the ADER time integration and therefore a
scheme with the same order in space and time. As the direct neighbors
are anyway required to compute the fluxes, it is quite natural to deploy at
least those for the reconstruction of states within cells. Further cells will in-
crease the communication effort, as an increased neighborhood is required.
Another point to consider is the tendency of higher order representations
to oscillate near discontinuities, which might destroy the solution. To alle-
viate this shock-capturing schemes can be deployed. The method of choice
in this work is the usage of Weighted Essentially Non-Oscillatory (WENO)
reconstruction proposed by Osher et al. [60]. For this reconstruction,
multiple stencils need to be evaluated and in smooth regions, their result
can be combined to form a larger high order stencil approximation, but in
the proximity of discontinuities, those stencils containing the oscillations
are discarded.

The stencil cells also lead to a simple idea for the implementation of
boundary conditions. At the border of the computational domain boundary
conditions can be prescribed by filling virtual cells outside the domain
with values such, that exactly on the boundaries, the boundary conditions
hold true, when those cells are used as regular neighboring cells during the
usual computation. Such cells are not considered for time step updates
in the computation and are referred to as ghost cells. The ghost cells are
filled according to the boundary condition and the state in the adjacent
cell before each time step. By deploying this concept, no cell inside the
domain needs to be treated specially.

A similar concept can be deployed for the parallelization, where the
overall mesh is partitioned into as many parts as there are processes. To

21

3 Deployed Numerical Methods and Their Parallelization

allow the usual computation, a set of halo cells surronds those partitions
to hold the data from the remote cells. These halo cells need to be
communicated in each time step and are not considered in the computation.

3.4 Discontinuous Galerkin Finite Element Method

The Discontinuous Galerkin Finite Element Method (DG) extends the
concept of the FVM method by replacing the integral mean value (3.3)
by function series to represent the state within the element with greater
detail. Thus, the state in a given element i is approximated by

~Ui(~x) =
m−1∑
j=0

~ajφj(~x). (3.6)

The functions φj might be chosen freely but a common choice is a poly-
nomial basis. With this approach, the single degree of freedom in each
element is replaced by m degrees of freedom ~aj , resulting in a high-order
approximation of the state for large m. Similarly to FVM we now con-
sider the integral over the volume of the element and apply the Galerkin
approach with the multiplication by a test function ψk(~x), which yields∫

Ωi

∂~Ui

∂t
· ψk + ∇ · ~f(~Ui) · ψkdV = 0. (3.7)

Integration by parts then results in∫
Ωi

∂~Ui

∂t
·ψkdV +

∮
∂Ωi

+
(
~f(~Ui) · ~n

)
ψkdS−

∫
Ωi

~f(~Ui) ·∇ψkdV = 0. (3.8)

As in the FVM the state on the interface ∂Ωi is allowed to jump, and the
exact state on the interface is not known. Thus, a numerical approximation
for this flux has to be taken, and we replace the exact flux by a numerical
flux ~g. We need m test functions ψk to obtain a fully determined system
of equations in this approach. Usually, the test functions are chosen from
the same function space as the ansatz functions φ. Though, the choice of
function spaces is mathematically not relevant for the method to work, it
numerically has a huge impact. We will use polynomial functions here for
both, the representation of the solution ~Ui and the test functions ψk.

22

3.5 The PNPM Scheme

3.5 The PN PM Scheme

The PNPM scheme with WENO reconstruction was introduced by Dumb-
ser et al. for compressible flows [13]. It offers a generalized discretization,
combining the element local representation of the DG with the recon-
struction from FVM. This scheme uses a polynomial representation inside
elements with a polynomial degree of N , just like the DG outlined above.
Note that we used m to denote the number of degrees of freedom in
(3.6). In one dimension the polynomial degree is given by N = m− 1, for
multiple dimensions the number of degrees of freedom depend on how the
polynomial space is constructed but the same logic applies and we have
a certain given maximal polynomial degree in our state representation.
However, in PNPM we now extend the representation by a reconstruction
mechanism like WENO. Thus, the scheme yields an increased accuracy
with a representation of the state by a polynomial of degree M ≥ N . The
reconstructed polynomial basis Φ is orthogonal and chosen to coincide
with the DG basis φ. This results in the higher order basis functions Φi

for i > N all being orthogonal to all φ. The PNPM scheme unifies the
FVM and the DG in the sense that either one is just a special case of the
PNPM . Choosing N = 0 results in the classical FVM, where high-order
approximations are purely achieved by reconstruction. While choosing
N = M yields a DG solver, where no reconstruction is applied at all. A
main advantage of the PNPM scheme is its flexibility to apply reconstruc-
tions in addition to the DG representation and thereby gain the ability to
deal with shocks efficiently. However, a drawback of the reconstruction is
the need to communicate larger stencils and we, therefore, generally want
to keep the reconstruction at a minimum.

23

4 Scalable Unstructured Solver

For general applications of the flow solver it is important to allow the
discretization of arbitrarily shaped geometries like a nozzle as indicated
in Figure 4.1. This is generally achieved by unstructured meshes, where
the complete geometrical information is explicitly available for each el-
ement. Obviously such a mesh description imposes a severe overhead
and introduces additional implementation complexity when compared to
structured meshes, where the topology is implicitly known. This addi-
tional complexity decreases the achievable by introduced overheads like
indirect memory accesses and additional book-keeping. A benefit of the
coupled approach is the possibility to minimize the space that needs to be
covered by unstructured meshes. However, the spatial resolution usually
has to be quite high in the proximity of obstacles to resolve small scale
phenomena close to the walls. Thus there are typically many elements in
the unstructured domain, even with a restricted volume. Due to the high
resolution, the induced time steps to fulfill the stability criterion are usually
small compared to other domains in the simulation. Therefore the domain
might easily have to do an order of magnitude more iterations in time
than its neighboring domains. Given these factors, the unstructured part
contributes a large share to the overall computational costs of a typical
aero-acoustic coupled simulation. This part should thus be the one, which
has to be distributed across the largest share of computing resources. For
this reason, its scalability is a major concern in the overall design of the
coupled parallel solver.

This chapter discusses this crucial component of the overall simulation.
Its main focus is the scalable implementation of the deployed numerical
scheme on unstructured meshes. As modern supercomputing systems are all
built up by more and more distributed resources, the scalability, especially
with respect to memory consumption is outlined. Most parallelization
concepts described here are generally applicable to discretizations based
on unstructured meshes and not limited to the specific numerical scheme.

25

4 Scalable Unstructured Solver

XY

Z

rh
o 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Figure 4.1: Illustration of a complex geometry, represented by an unstruc-
tured mesh. Shown is the cut through a supersonic nozzle,
with an instanteneous density field. The mesh is indicated by
the brighter lines.

4.1 Requirements by the Numerical Scheme

The unstructured solver utilizes the PNPM method. As described in
Section 3.5, this method is a generalization of the Finite Volume method
and inherits many of its properties. There are little requirements by the
scheme on the mesh itself and it is well suited for the deployment on
unstructured meshes. However, one major task needs to be solved. Namely
the stencil for each element needs to be generated. Though the stencil can
be greatly reduced by the internal polynomial representation, a proper
treatment of shocks with the WENO reconstruction requires a sufficiently
large stencil. This implies the need for neighbors of neighbors, which can
not be easily found in the distributed unstructured mesh.

In the following we discuss, how the stencil identification can be im-
plemented on massively parallel computing systems, where the mesh is
distributed across many partitions. We will see that a special mesh format
is required for a fully distributed handling of the mesh by the solver and
we develop a parallel method to find arbitrary stencils in unstructured,
partitioned meshes.

26

4.2 Distributed Mesh Handling

4.2 Distributed Mesh Handling

While the global data required to describe structured meshes is minimal
and is easily stored for each process, this is not true for unstructured meshes.
Unstructured meshes have to be described explicitly in their geometrical
and topological properties. The required memory to represent the mesh is
therefore not negligible, and the storage of the complete mesh data on each
and every process is not feasible for large-scale simulations. Prior to the new
concept introduced here, the non-trivial tasks of neighbor definition and
partitioning were achieved by the duplication of the complete mesh data
on each process, limiting the scalability drastically. Figure 4.9 illustrates
the limiting memory consumption by the global mesh information in each
process. Instead, the mesh has to be distributed across all processes,
but the mesh operations, which might require arbitrary data throughout
the domains then have to be done on the distributed mesh. The format
described in the following sections addresses this problem and provides a
definition of the mesh, which allows for the efficient lookup of mesh data
on remote partitions.

The need for a completely distributed computation to avoid memory
bottlenecks dictates a scalable mesh handling right from reading it from
disk onwards. To achieve this scalable reading, we introduce a mesh format
that allows simple, distributed reading of the mesh in parallel simulations
with an arbitrary number of processes. This mesh format uses a space-
filling curve ordering [2] for its elements, which provides a serialization for
the elements while preserving locality to the largest part. That is, elements
close by in the serialized one-dimensional list are also close to each other
in the three-dimensional space. Figure 4.2 illustrates the Z-curve ordering
in two dimensions. Please observe in this figure how points that are close
to each other in the two dimensional mesh, generally are also close to
each other in the one-dimensional ordering. The locality of the higher
dimensional space is thus kept to some extent. Other space-filling curves
offer an even better locality. The Hilbert space-filling curve for example
avoids the jumps that can be seen in the Z-curve ordering [53]. Due to
these properties of the space-filling curve, a reasonable partitioning is
achieved by cutting the list of elements into chunks of equal size, allowing
each process to read its part without additional communication or data.
An analysis on the quality of partitions based on space-filling curves is
given in [93]. A comparison to graph partitioning methods that allow for
an optimization with respect to the communication surfaces is provided in
[70].

Figure 4.3 illustrates an unstructured mesh on top of a spatial ordering

27

4 Scalable Unstructured Solver

x

y

0 64 128 192 255

Figure 4.2: Illustration of Z-ordering space-filling curve. The ordering
along the (red) curve is given by the coloring. A finite iteration
of the space-filling curve with an ordering from 0 to 255 is
shown.

28

4.2 Distributed Mesh Handling

by a space-filling curve. To assign an ordering value for each element, its
barycenter can be mapped to a space-filling curve that covers at least the
complete mesh. All elements then are ordered accordingly and the resulting
mesh can then easily be partitioned by cutting the linear element list into
equally sized contiguous chunks. The resulting ordering of elements in
the unstructured mesh is shown in Figure 4.4. Here the color from the
barycenter is taken for the complete element and the position of each
element in the overall mesh is indicated by the numbering from 1 to 23.

For simplicity, this format is abbreviated as GEUM for General Elem-
entwise Unstructured Mesh in the following text [40]. After the description
of the mesh format and its parallel processing, a distributed algorithm is
presented for the neighborhood search. This neighborhood search was the
major obstacle for the fully distributed simulation of unstructured meshes
up to this new implementation. With these two strategies, large-scale sim-
ulations on unstructured meshes are enabled, and the unstructured solver
can utilize highly distributed computing systems in parallel executions.

4.2.1 GEUM format description
The main goal of the GEUM format is to efficiently process the mesh data
stored on disk in a parallel simulation run. To achieve this, the format
uses a plain, easily accessible structure. A mesh is constructed by a set of
vertices in space, a set of elements, describing the connections between the
different vertices and a set of boundary conditions. While the boundary
conditions are not strictly necessary to describe the mesh itself, they are
usually required to run any meaningful simulation on it. An element is
described by the vertices it is connected to and a set of sides, describing
the surface of the element with an ordered subset from the vertices of
the element. General header data is stored in an ASCII-formatted file,
mainly describing the layout of the actual mesh data, stored in binary
format. This header file starts with a summary block, where some overall
specifications are declared:

1. total number of elements

2. total number of vertices

3. number of different element types

As the format is supposed to be as general as possible and capable to
describe arbitrary polyhedral elements, each element type has also to be de-
scribed in the header. For each type of element the following specifications
are made:

29

4 Scalable Unstructured Solver

0 64 128 192 255

Figure 4.3: An unstructured triangle mesh shimmed with the space-filling
curve from Figure 4.2. Each element is assigned its ordering
value according to its barycenter location. The unstructured
mesh and the barycenters of elements are drawn in red, while
the coloring in the background indicates the ordering by the
Z-ordering.

30

4.2 Distributed Mesh Handling

1 2

13 15

16

4

3

9

1918

22 23

10

87

2120

12
17

14

6 11

5

Figure 4.4: Resulting ordering of elements in the unstructured mesh of
Figure 4.3 after applying the space-filling curve sorting. The
colors indicate the space-filling curve value for each element, as
obtained by the barycenter. The numbers indicate the ranking
of the elements.

31

4 Scalable Unstructured Solver

1. number of elements of this type

2. number of vertices, the element is connected to, for tetrahedrons this
would for example be 4.

3. number of sides describing the surface of the element, for hexahedrons
this would be for example 6.

4. A list of offsets, with as many entries, as there are sides for the
element. These describe the start of each side in the following list of
element vertices.

5. A list of element vertices, with a length given by the last entry in
the list of offsets above.

6. number of binary files

7. for each binary file:
• name of the binary file
• offset, if more than one file is used.

The element sides are described in compressed sparse row (CSR) format,
where an offset list provides the starting point for each side in the serialized
array of element vertices.

Consider for example a tetrahedron as shown in Figure 4.5. A tetrahe-
dron has four vertices and four triangle sides, each side connected to three
vertices. In the example the vertices are numbered 1 to 4. The vertices
within each side definition are ordered such, that the normals all point
outwards when following the right hand rule. We describe the tetrahedron
now by storing the vertex indices for each side. For the four triangles of
the tetrahedron in the example these are:

• Side A: 1, 2, 3

• Side B: 1, 4, 2

• Side C: 1, 3, 4

• Side D: 2, 4, 3

A single one-dimensional array, as illustrated in Figure 4.6 stores the
vertices for all sides. Now we need a list of offsets to distinguish individual
sides. That is, we need a list with the length given by the number of sides
of the element to point to the index of the last vertex for that side. In the

32

4.2 Distributed Mesh Handling

41

3

2

A

C

D

Figure 4.5: Example tetrahedron with the vertices 1 to 4. Sides are indi-
cated by colors and labeled with letters at their barycenters.
Only sides A and D are in the foreground. Labeling for side
B is left out, to avoid confusion.

1 2 3 1 4 2 1 3 4 2 4 3
1 2 3 4 5 6 7 8 9 10 11 12

Figure 4.6: Linear array of vertices for all sides of the tetrahedron in
Figure 4.5. The numbers above the array elements indicate
their respective indices.

example of the tetrahedron, this list for the four sides results in the offset
list ω = 3 6 9 12 where each entry refers to the index in Figure
4.6. The offset for the first side is always 0 and does not have to be stored,
while the last entry immediately provides the length of the array for the
side vertices. Vertex positions for a given side σ are now found at the
indices ω(σ − 1) + 1 to ω(σ) with the not stored ω(0) = 0. For example,
the third side (C) in Figure 4.5 has, according to the offset list, the indices
from 7 to 9 in the list of vertices in Figure 4.6.

With this layout of the header it is simple to parse the information
in the application and create data structures during runtime as they are
required. After reading the overall header, an array for all element types
can be allocated. Then we can proceed to read the data for each element
type. First, the number of sides for the current element type, which allows
us to allocate the list of offsets is read. Then, after filling this list of offsets,

33

4 Scalable Unstructured Solver

we know how long the vertex list for all sides has to be, and we can allocate
it accordingly. Finally, we can fill this list and read the vertex indices for
all sides into that list. The actual data for each element type is stored in
a file of its own, resulting in files, which are completely uniform within
themselves. Additionally, the data might be distributed across several files
to ease parallel processing. With this strategy it is for example possible to
have one data output file for each available IO node. To allow the reading
of the data of such data spread across multiple files, the offset of each
block of data in the overall data set is stored along with the filenames in
the header file. In most cases a single data file for each element type is
sufficient, though. In this case, the offset can be omitted, as it is known to
be 0. Finally the header is completed with information on the vertex data.
Again multiple files might be used to store the physical coordinates of the
vertices. The first data about the vertices is the number of files used to
store them. This number is followed by a list of filenames, and if there is
more than one, a list of offsets indicating the position of each of them in
the global set of vertices.

In addition to this header file, there is an additional ASCII file describing
the boundary conditions. Boundary conditions are simply identified by a
describing label and their order. The boundary description file therefore
contains first the number of boundary conditions, followed by a list of
labels. A connection of the boundary conditions to the appropiate surfaces
in the mesh is directly stored in the elementwise data structure as described
below.

The binary data file for a given element type contains the global vertex
positions to which each element is connected, followed by the neighbor
identification on each side. A description of the relation between vertices
and sides for the element type is given in the header above. This results
in a block of signed 8 byte integers with a length of the number of vertices
and the number of sides in this element type. That means, a tetrahedral
element is represented by (4 + 4) · 8 = 64 bytes. As all elements of the
same type possess the same number of vertices and sides, the position of
data to be read for a given element can be computed independently of
all other elements. Furthermore, the uniform shape of the data stored in
the files, allows for straight forward conversions from big-endian to little-
endian ensuring the portability of mesh data across different computing
architectures. The global numbering of elements and vertices starts with
1. The complete non-positive range of the signed integer can therefore be
used to indicate not existing elements at domain boundaries. With this
representation it is possible to address 1018 elements and as many vertices
and different boundary conditions.

34

4.2 Distributed Mesh Handling

If there are multiple element types in the mesh, an additional file is used
to achieve an overall sorting of all elements. This mapping file contains
for each global element the element type and the position of the element
within the elements of this type. These are two signed integers with 8
bytes for each element. For uniform meshes with just one type of elements,
this file is not required. The data describing the mesh is completed by
the file containing the vertices in the mesh. These vertex coordinates
provide the full geometrical description of the mesh, while all the other
data describe the topology of the mesh. Only in this file there are double
precision numbers to be found, however each number occupies again 8
bytes, allowing the same endianness conversion as for the rest of the binary
data. Each vertex is described by a consecutive block of three values, thus
a given vertex is easily found in the file.

The described format purely relies on files in a given directory for largest
portability and highest utilization of the efficiency provided by the MPI
implementation. However, at the cost of an additional layer in the IO, the
described format can also be put into a container like HDF5 [77].

All mesh data in GEUM is available in a form that enables completely
distributed reading by independent processes. In other available mesh
formats this is usually not possible, due to the lack of explicit neighbor
information. The presented mesh format shifts the burden of the neigh-
borhood search from the solver to the pre-processing step, removing one
obstacle to scalability from the solver. Note however, that only direct
adjacency information is stored, stencil neighborhoods with non-direct
neighbors still need to be constructed at runtime by the solver. This
construction will be discussed in Section 4.3.

4.2.2 Parallel processing of GEUM data
As outlined in the format, all the connectivity information is stored in the
file on a per element basis. Thus, for a given element all the neighboring
elements are known, after reading its record. In combination with a space-
filling curve partitioning this allows for an efficient parallel handling of
meshes [28]. The space-filling curve provides a meaningful sorting criteria
for all elements, allowing a regular distribution of elements along the curve
into locally computable partitions. Figure 4.4 gives an example of the or-
dering of an unstructured mesh with the help of a space-filling curve. Since
each partition can compute not only the splitting positions for its own set
of elements as well as those for all other partitions. Because each partition
receives a contiguous chunk of elements, the hosting partition for all global
element indices are always known without any further communication.

35

4 Scalable Unstructured Solver

If the basic partitioning by the space-filling curve is deemed insufficient
for the actual computation, it is still possible to redistribute the elements
with a better approach after the initial distributed reading from disk.
However, with this proposed concept it is possible to read the mesh
completely in parallel, where each task only needs to store the data of its
own local part, resulting in a fully scalable mechanism to load unstructured
meshes.

The address of an element in parallel computations is built by a tuple of
integers given by the rank of the task processing it, and the local position
in the list of elements within that partition. With the simple rule for
the partitioning along the space-filling curve, these adresses can be found
without communication, as the global position of an element in the mesh
can be directly translated. What remains to be defined is the method
to describe the splitting positions for all partitions along the space-filling
curve. For a balanced work on the mesh, each process should get the same
number of elements. Thus, we can compute the local number of elements
m for each partition by with an overall number of processes p for a global
number of elements N by

m =
⌊
N

p

⌋
. (4.1)

If there is a remainder r in this integer division, this remainder can be
equally distributed to the first r partitions, resulting in one additional
element for all those partitions. This is only a slight complication, and as
N and p are known by all processes anyway, there is no communication
needed to build the address of each global element.

After the actual adresses of all local elements in the parallel run-time
configuration are known, the adjacent neighboring partitions are also
known. At this point each process is aware of the remote elements it will
need for the computation. The communication setup itself can then be set
up without any further communication by just collecting all elements that
need to be obtained from a given process into a single list. With such a
list of elements for each neighboring partition, it is known with whom how
much data needs to be exchanged. As the adjacency is symmetric, the
exchange is also symmetric and each partner will receive as many elements
as it receives. Thus, even so all processes just hold their own mesh partition
and just minimal information about the global setup (total number of
elements and total number of processes), each process can determine its
communication partner completely local with the information provided by
GEUM . To encapsulate the solver with the actual numerical scheme from
the parallel implementation, we make use of additional layers of elements

36

4.3 Distributed WENO Stencil Search

that locally on each partition represent the remote elements. These
elements are not computed by the local solver, but filled by communication
and used in the stencils. This is a similar approach as the ghost cells,
used for the implementation of boundary conditions, and we refer to
them in the parallel context as halo elements. The information about
these halo elements can now be directly exchanged with peer-to-peer
communication. As will be described later on, this initial information
on the immediate neighborhood will be used as a basis to find extended
neighbor connections for higher order reconstructions. It is remarkable that
the pre-processed mesh information by GEUM allows for such a scalable
treatment of completely unstructured meshes with arbitrary polyhedral
elements. Nevertheless, the non-scaling neighborhood identification now
merely is shifted from the solver to a pre-processing tool, which itself
can pose a bottleneck now. This might not be a severe restriction in
many setups, but will pose a problem at some point, when the overall
problem size that supercomputing systems could solve, are getting too
large. At this inevitable point the mesh pre-processing becomes the limiting
factor and larger systems can not be exploited anymore for more detailed
simulations. We will address this bottleneck in Chapter 7 with a scalable
mesh representation. However, this requires us to implement our own
mesh generator.

A final remark on the IO of GEUM : Due to the very regular layout in the
data files of the mesh it is not only possible to read the data with MPI-IO
functions but also by direct access in Fortran. This is the main motivation
to use different files for the various element types, which otherwise would
also require variable record lengths within the files. Due to the well defined
independent blocks of elements in the file, there is no overlap in the parallel
reading of element data. Read conflicts might arise but only when the same
vertex is read simultaneously by multiple processes. Such conflicts can
only appear for vertices shared by multiple partitions and the reading via
Fortrans direct IO usually works even for massively parallel computations.

4.3 Distributed WENO Stencil Search

As already mentioned, WENO schemes of order 3 and higher, require
reconstruction data not only from direct neighbors that have a common
face with the current element but also neighbors of neighbors. In the
PNPM scheme, the number of required neighbors might be arbitrary large
for a given reconstructed order M . While direct neighbors are immediately
available from the GEUM format, these extended stencils are not stored

37

4 Scalable Unstructured Solver

explicitly anywhere. Thus, they need to be constructed at runtime. This is
expensive in serial informations, where the complete mesh information is
available but finding the arbitrarily large neighborhood in the distributed
mesh poses a non-trivial problem, as the neighboring elements might be
arbitrarily distributed across various processes. As no mesh information
beyond directly adjacent elements at the interfaces is available on each
process, a mechanism is required to request additional data from remote
mesh parts during the search for required neighbor elements. In MPI
this can be achieved by one-sided communication or with the help of a
communication procedure enabled by the newly introduced non-blocking
barrier in the MPI-3 standard [20].

4.3.1 Sequential WENO stencil construction
Before moving on to the parallel treatment, we briefly discuss the serial
stencil construction here. A more detailed description of the stencil con-
struction can be found in [12]. For the WENO reconstruction, there are 9
stencils considered to cover the different spatial directions. The illustra-
tions stick to the two-dimensional case to avoid confusion but the algorithm
works in three dimensions in the same way. First, there is a stencil for
the central reconstruction that uses layered rings of elements around the
element to reconstruct. This stencil is depicted for two dimensions in
Figure 4.7a, where the different colors indicate the individual layers around
the element to reconstruct in red. Then there are eight additional stencils,
one for each sector of the three-dimensional coordinate system with its
origin in the barycenter of the element to reconstruct. In two dimensions,
there are four sectors, which are shown in Figure 4.7b. For each of the
sectors a non-central stencil is searched.

The algorithm to find all elements in the stencils follows an iterative
search starting from the central element to reconstruct. Each iteration
relates to one layer in Figure 4.7a. In each iteration all direct neighbors
of the current layer are considered and added to the next layer, if they
are not already part of an older layer. Additionally, each new element in
the stencil is categorized to belong to one of the sectors, depending on
the location of its barycenter. Thus, the first layer contains the direct
neighbors of the central element, the second layer contains the neighbors
of the neighbors and so on. All elements are added to the central stencil
until a sufficient number of elements for the reconstruction has been added
to it. Each element also is added to the respective sectorial stencil until
a sufficient number of elements has been added to that stencil to allow a
reconstruction with the desired polynomial degree. The iterations in this

38

4.3 Distributed WENO Stencil Search

(a) Layers of searched elements for the
stencil determination

(b) Quadrants of stencils to search

Figure 4.7: Illustration of searched elements to identify stencils in 2D.

process are repeated until either all stencils are filled with the required
number of elements, or a user defined maximum number of considered
elements is reached. If the maximum is reached, some stencils will not
contain the required number of elements and these stencils are deactivated
for the computation. This case of deactivated stencils is only expected
in the proximity of boundaries, where an insufficent number of neighbors
might be available in the direction towards the boundary.

Figure 4.8 illustrates the resulting stencils for the example in Figure 4.7.
In this two-dimensional example there are four sectorial stencils, which are
indicated by the different colors (according to the sector colors in Figure
4.7b). Here, we were looking for a reconstruction by four elements, and
each stencil contains the central element plus three sectorial elements. The
central stencil in this example consists just of the central element and its
three direct neighbors.

4.3.2 Parallel stencil search strategy

As indicated in Section 4.2, the parallel search for stencil elements in
the higher order WENO schemes was previously done by providing the
complete mesh data to each process. While this enabled the parallel
search for stencil elements by all processes on their respective partitions,
this requires the duplication of the complete mesh data on each process.
The data duplication provides the simplest approach by not adapting

39

4 Scalable Unstructured Solver

Figure 4.8: Elements of the non-central stencils.

the search strategy at all and instead using the serial algorithm on each
process. However, the required memory to describe unstructured meshes
is not negligble as each element needs to be explicitly specified with its
sides, vertices for each side, neighbors of each side and coordinates of the
vertices. With some additional book-keeping data the implementation uses
around 593 bytes per element. Therefore, this previous strategy severely
restricts the size of computable meshes on systems with locally limited
available memory, i.e. all distributed memory systems.

An estimation of the required data to fully describe a tetrahedral mesh
can be done as follows. For each element at least four vertices and four
neighbors need to be stored. The neighbors are represented either by a
global identification number with 8 bytes or a tuple of a local identification
number on a given partition and the partition number with four Bytes
each. For the representation of boundary conditions an integer needs to be
stored for each side and for each side an indicator for the orientation of the
neighboring side has to be provided. Finally the barycenter of each element
has to be stored in three 8 Byte reals. Thus, in total a minimum of 104
Bytes is required to represent each element in the unstructured mesh. In the
solver implementation some more data is stored, to avoid recomputations.
The vertex coordinates also use some non-negligble memory, though it can
not so easily be expressed on a per element basis, as the relation between
number of elements and number of vertices depends on the mesh itself. The
estimation of 104 Bytes, therefore, represents the bare minimum of required
data and only allows the approximation of theoretical maximal problem
sizes that could be computed with a given amount of memory per process.
Commonly available memory per core on modern supercomputing systems

40

4.3 Distributed WENO Stencil Search

is around 2 GB, limiting the computable problem size to a theoretical
maximum of 20 million elements in total. This maximum also neglects
all other memory consumption besides the mesh, like the actual solution
that we are interested in. While this theoretical limit already imposes a
severe restriction for any simulation on the unstructured mesh, the actual
implementation showed a much larger overhead per element of around
593 Bytes per element to represent a tetrahedral mesh. This tremenduos
overhead is partly due to variables for a mesh description that allows
various element types and allocated communication buffers. Due to this
large, non-scalable memory consumption the totally solvable problem size
is limited by this old parallelization strategy to a maximum of roughly 3
million elements on a system with 2 GB of main memory per core.

Figure 4.9 illustrates the memory consumption for a weak scaling, where
the problem size grows with the number of processes (constant problem
size per process). The measured memory per process is categorized into:

• local, the memory that is required by each process locally for dis-
tributed data, like the solution in the local partition.

• misc., memory overheads that are considered minor and can not be
directly attributed to local distributed data.

• MPI, memory that is consumed by the MPI library itself.

• global, the memory that is consumed by the global mesh information.

The figure clearly shows for a single process that the required memory
for the mesh representation is negligble in comparison to the rest of the
data in the local partition. With a growing number of processes and the
accordingly growing total problem size in this weak scaling, the required
memory on each process for the mesh quickly dominates the memory
consumption. In this scenario, a problem that would only consume around
200 MB per process, fails already due to the memory consumed by the
mesh with only 100 processes.

Since the memory per core is rather to decrease than to increase in the
future [16], the change to the new distributed mesh handling as described
in the following is essential to enable large scale simulations on massively
parallel systems. The pre-processing of mesh data with GEUM enables
the completely distributed loading of the mesh, without explicit global
mesh information on each process. However, after loading the mesh it is
still necessary to construct stencils for the numerical scheme. This stencil
construction now also has to be done in parallel and on the distributed
mesh.

41

4 Scalable Unstructured Solver

20 21 22 23 24 25 26 27 28 29 210 211
0

200

400

600

800

1,000

1,200

Number of processes

P
ro

ce
ss

lo
ca

lm
em

or
y

co
ns

um
pt

io
n

in
M

B

local
misc.
MPI

global

Figure 4.9: Memory consumption with global mesh information on each
process.

42

4.3 Distributed WENO Stencil Search

While the previous approach with locally available global mesh data
allowed for an easy deployment of the sequential algorithm in each partition,
the new distributed approach adds the complexity to obtain remote data
during the stencil search. The algorithm of the stencil search itself still is
the same as described above but in the distributed setup we are now facing
the problem that there is no local information on non-direct neighbors.
Thus, when the stencil search encounters a partition boundary it needs
to obtain information from another process. In MPI this is generally
achieved by actively sending a message with this information. However,
all processes are performing this search simultaneously, and the process
holding the information in question does not know in advance, which other
processes will ask it for which data. A possibility to deal with this is
the usage of one-sided communication, which was introduced in MPI-2
[19]. This feature allows the access of any process to a defined window
in the memory of another process, without the accessed process actively
participating in the communication. However, it requires the exposure of
all the mesh data in a raw chunk of memory, which is not always easily
achievable with involved data structures as needed for unstructured meshes.
Furthermore the communication concept, where one of the partners is
completely passive, does not fit nicely into the usual MPI design. Under
the hood the MPI implementation has to take care of these communications
on the passive side. Thus, the activity on this end is still present, but just
hidden from the application, which might result in bad performance. The
MPI standard [19] elaborates on the need for an asynchronous daemon in
the MPI layer on page 358. As can be seen there, the one-sided approach
is rather involved and has potential portability issues attached.

Due to these implications of the one-sided communication in MPI, it
seems to be attractive to use point-to-point communications instead, which
fits better into the design of MPI. This can be achieved by implementing
requesting and serving code: Each process requests remote elements during
the course of its search for WENO stencils, while at the same time it listens
for such requests from other processes. However, this strategy leads to a
new problem, as no process can determine if the global task of finding all
stencil elements is finished and it can stop listening and serving its mesh
information. This termination of the stencil search task also has to be
done, when using one-sided communications, but in this case a traditional
barrier can be used to find the global completion of the task. With an
approach based on point-to-point communications and some serving code
on each process, this is no longer possible, as the serving has to continue,
even after the local search has been finished. Thus this part in the code
would have to be executed even after entering the barrier. In the recent

43

4 Scalable Unstructured Solver

MPI-3 standard, non-blocking collectives have been introduced. For earlier
MPI implementations the libNBC library offers the same functionality [34].
This part of the new MPI-3 standard offers a solution for the termination
problem in the concept without one-sided communications, as it also
introduces a non-blocking barrier. With the help of this non-blocking
barrier it is now possible to signal the local termination of the stencil
search, while continuing the serving of mesh data requested by remote
processes. The global termination of the search task then can be tested,
as the non-blocking barrier will be marked as finished, after all processes
have called it and thus all local searches have been terminated.

4.3.3 Parallel distributed WENO stencil construction
With the communication strategy relying on actively passed messages,
the implementation of the search for stencil elements gets a little bit
more complicated. The cost attached to the avoidance of some automatic
treatment by one-sided communication features under the hood is that
these communications have to be taken care of in the application itself.
A serving part needs to be introduced as well as a requesting part, those
parts have to be intermixed with the sequential search algorithm itself.

As can be seen in the state diagram of the required program in Figure
4.10, the central state is the search for stencil elements. In addition to
this a waiting state is introduced by the need to wait for requested remote
data. Finally incoming requests from remote processes need to be satisfied.
This is achieved by the three serving states, which all perform the same
actions within, but appear in different contexts. The parallel search for
all required stencil elements is done as follows: Each process iterates over
its local elements and looks up all its direct neighbors to add them to
the list of stencil elements. If the stencils are not all completely filled by
this yet, a new layer of elements is considered, by looking up all direct
neighbors of the elements in the list constructed so far. Whenever a new
direct neighbor is encountered on a remote partition, a request is sent to
the according process, and the process enters the waiting state to retrieve
the data. To avoid deadlocks, this wait is not realized by a busy wait,
but instead incoming requests are served until the data from the remote
partition is finally received. After the requested data has been stored
locally, the search can continue as usual. In order to prevent overly long
waiting times on requesting processes the serving state is also entered
everytime an element has completed all its required layers, and all stencils
are known. When the local search for stencil elements is finished and
all stencils are filled, the non-blocking barrier is initiated, and a serving

44

4.3 Distributed WENO Stencil Search

Search Serve

Wait Serve

Finish
all stencils filled barrier completed

Nothing returned yet

Returned pending requests

Need remote

element

Received data

Serve

Com
ple

ted
 La

ye
rsReturned pending requests

Figure 4.10: State diagram for the distributed WENO stencil search.

45

4 Scalable Unstructured Solver

only mode is entered. At this point only incoming requests are served
and periodically the completion of the non-blocking barrier is tested. As
each process reaches this state only after all its local stencils have been
fully defined, the non-blocking barrier can only complete when all stencils
globally have been found. Thus the global search for stencil elements is
completed when the non-blocking barrier is completed, and the serving
state can be left by all processes.

Received elements from remote partitions are not only stored in the
stencil information for each element, but in a global list. This avoids
elements being requested twice by the same process and thus minimizes
the communication effort. The list is organized in a dynamic data structure,
which provides fast lookups for elements already in the list. Each element
is uniquely identified by its global position in the mesh, represented by
an eight byte integer. This provides a key for the array to search, and
each element is put only once into the array. An efficient implementation
providing these features is the Judy array library [75], which is accessed via
Fortrans ISO-C-Binding module. These dynamic sparse arrays are actually
not only required for the maintenance of received remote elements, but
also for the construction of searched element layers. In the construction of
these layers, each element should be present only once, however multiple
elements will have the same neighbor, thus any element to be added has
to be checked for existence in the list of already found stencil elements.

With GEUM and the distributed stencil search, a completely scalable
method for unstructured mesh handling is now available. As can be seen
in Figure 4.11, the memory consumption now remains fairly constant in
the same weak scaling scenario as in Figure 4.9. The distributed stencil
search together with the newly introduced mesh format enable thereby
the usage of large meshes on several thousand processes. An important
prerequisite to solve large problems.

4.4 Tracking Changes for Parallel Debugging

When developing parallel applications it is important to ensure the correct-
ness of the parallel computations. Usually the parallel execution should
produce exactly the same results, as the serial execution, if no order depen-
dent computations, like summations across multiple processes, have to be
done. However, debugging parallel applications is often non-trivial, espe-
cially when large amounts of data are involved. Some problems also occur
only when many processes are used in the computation, as rare corner
cases might only become apparent in this situation. While several tools

46

4.4 Tracking Changes for Parallel Debugging

20 21 22 23 24 25 26 27 28 29 210 211
0

200

400

600

800

1,000

1,200

Number of processes

P
ro

ce
ss

lo
ca

lm
em

or
y

co
ns

um
pt

io
n

in
M

B

local
misc.
MPI

Figure 4.11: Memory consumption with distributed mesh information.

exist that allow for parallel debugging and program analysis, they are often
limited to a usage with some few MPI processes. Debuggers like Totalview
and DDT enable the introspection of data during the runtime on each
process, but they do not provide an easy overview to globally distributed
arrays. Yet, it often is useful to compare the content of such arrays with
varying process counts, whenever it is expected to be independent of the
parallelism in the computation.

With the global, partition independent, ordering of elements prescribed
by the previously presented GEUM format, it is possible to compare data
bitwise between various partitions. This includes the comparison of a
serial run on a single partition and runs with multiple partitions. Thus,
the chosen data layout provides the means to assess the consistency of
simulation results in parallel executions. Checking for this consistency is
of great help to identify potential problems. It also proofs to be a useful
tool to validate restart functionality with varying process counts, as the
results from the simulation should not be affected by restarting.

For overall assessments it is sufficient to compare the binary GEUM
formatted output written to disk. A bitwise identity can be easily checked
in a separate step after the runs. Usually, a checksum algorithm is used

47

4 Scalable Unstructured Solver

to compare files with each other. For example the widespread cyclic
redundancy check (CRC) with a polynomial length of 33 bits (CRC-32)
[27] can be used for this task. Its implementation is for example available
in the compression library zlib [23].

Luckily, the checksum computation in zlib is capable of working with
partial sums. This allows its usage in parallel and is suitable for a concise
check of distributed data at runtime. The parallel fast check for changes in
distributed data sets allows for a better debugging of large scale simulations
by inserting calls to the check into the application, as it enables the
detection of code sections causing erroneous data even in runs on large
numbers of cores. Besides this manual debugging work, the parallel
computation of checksums also allows automatic checks for correctness,
for example after communication. The CRC-32 implementation of the zlib
library is used to compute partial checksums on each process, completely
independent of each other and in parallel. Then its functionality to combine
partial checksums (crc32_combine) is exploited in an MPI reduction with
a user defined operation.

With this approach a scalable method is available to provide a concise
analysis of distributed data. In a hexadecimal representation of the
checksum, 8 digits are used to describe the state of the data. This, along
with some context information can be printed to a log during the execution
of the application. The developer is thereby able to track, if a code
block changes the given data on any process or if a block of code behaves
differently for varying process counts. This mechanism provides a first hint
for a more detailed analysis, and thus, provides a great help in narrowing
down problems in massively parallel runs.

48

5 Single Core Optimization Strategies

Though this work is mostly concerned with distributed parallel processing,
the main goal is to lower the overall time to solution. For this goal, it
is also important to utilize the available hardware as good as possible.
Such single core optimizations are detailed and explained in this chapter.
A few important features of modern processors are briefly discussed and
some strategies in the implementation to utilize them are shown. For
a general overview on this topic refer to the introduction by Hager and
Wellein [26]. The main focus here is put on vectorization, as this is a
mechanism of increasing importance for single core performance. Vector
lengths on the x86 architecture, for example, has steadily increased with
various revisions of SSE instructions, AVX instructions and then AVX2
instructions. Instead of investigating these short vector instructions that
are only slowly growing as the architectures evolve. We will take a look
in the future and utilize a full vector system as offered by the NEC SX
systems. Vectorization strategies enabling the utilization of these systems
are generally also beneficial on commodity scalar architectures.

5.1 Vectorization

Simple performance improvement of computations where each single in-
struction is performed sequentially for each single data (SISD) by reduced
cycle times has come to an end [66]. However, Moore’s law [54] of ex-
ponentially growing number of transistors in CPUs still applies. Those
transistors are now used to build more cores and functional units, that can
work in parallel within a single CPU [49]. Computing algorithms therefore
have to exploit this parallelism in order to experience any speed-up on
future hardware. In a rough categorization, following Flynn’s taxonomy
[18], the parallelization can be sorted into a single instruction stream acting
on multiple data streams (SIMD), multiple instruction streams acting on
a single data stream (MISD) and multiple instruction streams acting on
multiple data streams (MIMD). All modern processors provide several
levels of different parallelism out of those categories. As instructions are
demanding in terms of electric power consumption, SIMD parallelism is
an effective method to save energy. This chapter concentrates on this

49

5 Single Core Optimization Strategies

SIMD parallelism and uses for it the common term vectorization. It is a
fundamental concept in GPU programming, but is also found in general
CPUs in form of SSE instructions in the x86 architecture or the Double
Hummer of the BlueGene/P Power processor for example. Specific details
on how these instructions can be efficiently used, can be found in [21]. Not
surprisingly, the utilization of vector units is most important on dedicated
vector systems like the NEC SX systems, with its latest incarnation be-
ing the NEC SX-ACE. The key requirement for vectorized processing of
multiple data streams is their independence and this section is meant to
briefly highlight its importance.

Another important property of modern hardware is the access to memory.
Though this resource is also growing exponentially, the growth rate in
bandwidth and latency of the memory access is lower than that of the
instruction execution. This problem is commonly referred to as memory
gap [31]. A development to counter this issue and leverage a higher data
rate to the instruction streams is the usage of transistors on the CPU
as cache, which allows fast access to frequently used data. With the
growth of the memory gap, the cache infrastructure got deeper, larger
and more complex. The result of this development is a memory hierarchy
in all modern computing systems. To feed the vector instruction stream
properly an implementation has to take into account this memory access
hierarchy and the data layout has to be designed accordingly. Sustaining
high performance on a given system, the software has to be aware of the
access times and sizes of memory on the various levels in the hierarchy of
the hardware. On some systems like the IBM Cell processors the transfer
from one memory region to another has to be explicitly programmed by
the application. The design of programs for this kind of architecture thus,
has to take the memory hierarchy explicitly into account. Caches to the
contrary try to provide a view on the complete accessible main memory
and implement a lot of logic in the hardware to achieve this transparancy
to the user. Though, this provides for the applications a convenient single
level access to the main memory, it obscures the means to keep often used
data close to the processing units. Applications are not forced to take
care of the memory hierarchy in this case. However, to fully exploit the
computing power and achieve a high sustained performance, applications
have to be written with these mechanisms in mind. Thus, the application
needs to be aware of the locality of its data and aim for many operations
on close by data. We will discuss this in a little more detail in Section 5.3.

From these two guiding principals, data independence and data locality,
some basic concepts for single core optimizations can be derived. They
are important for all modern processors, and increasingly so with growing

50

5.2 Importance of Visibility of Data Independence

vector lengths in the processing units, as for example exposed by the new
AVX instructions for the x86 architecture, the integration of GPUs into
CPUs or Intels Xeon Phi.

5.2 Importance of Visibility of Data Independence

A necessity for any parallel execution on multiple data streams is their
independence. This independence needs to be visible to the system. Other-
wise, it can not take advantage of it. As vectorization is usually performed
by the compiler, the independence needs to be clearly recognizable for the
compiler in the code. If the independence can not be sufficiently expressed
in the programming language, compiler directives might be used to help
the compiler. To show some basic concepts for the vectorization and the
impact on the sustained performance, a simple but widely used kernel,
a dense matrix-matrix multiplication is used here. This is an important
kernel in linear algebra and heavily optimized implementations of them
usually exist in vendor-provided libraries on HPC systems. A reference
for the upper bound of achievable performance can be stated with the
help of these implementations. To highlight the necessity of the detectable
independence of operations on the multiple data, a Fortran and a C imple-
mentation of this matrix-matrix product are used and compiled with their
respective compilers.

In Listing 5.1 a naive implementation of a matrix-matrix product with
dynamic data is shown. Even in this simple case, vectorization is prohibited,
as the arrays are all defined as pointers and may overlap according to
the C semantics. The NEC SX-9 has a theoretical peak performance
of 102.4 GFLOPs, the C code from Listing 5.1 shows a performance of
only 0.088 GFLOPs for 1024 × 1024 matrices. As the compiler can not
deploy vectorization, in this case, the code can not take advantage of the
vector processing units and, therefore, runs only with 0.086 percent of the
theoretical peak performance.

The very same algorithm, but in Fortran as shown in Listing 5.2, is
running with roughly 16 GFLOPs without any tunings. Please note, that
the index ordering is reversed in the Fortran implementation in comparison
to the C implementation, to achieve the same physical memory ordering.
Though it might be, that the multidimensional arrays in C result in
distributed memory sections, the impact of this factor was found to be
relatively low on this system in comparison to the vectorization effects. Still
to reduce the differences between the two implementations, the C-code uses
a single allocated block with a sufficient length to store the complete matrix

51

5 Single Core Optimization Strategies

Listing 5.1: Simple Matrix product in C
void mxm(int lda, int m, int l, int n,

double a[][lda],

double b[][n],

double c[][n])

{

int i, j, k;

for(i = 0 ; i < m; i++) {

for(k = 0; k < n; k++) {

c[i][k] = 0.0;

}

}

for(i = 0 ; i < m; i++) {

for(j = 0; j < l; j++) {

for(k = 0; k < n; k++) {

c[i][k] = c[i][k] + a[i][j]*b[j][k];

}

}

}

}

52

5.3 Exploiting the Memory Hierarchy

and just interprets it as a two dimensional array in the subroutine. In
Fortran the pointer attribute is not as flexible as in C and those restrictions
allow the compiler to assume data independence here. However, it is more
natural in Fortran to avoid the usage of pointer attributes and instead use
the allocatable attribute where possible. In subroutines these arguments
can even be completely hidden from the compiler, giving it the greatest
flexibility for optimization. This is indicated in the commented declaration
of the array arguments, which is the typical form for array arguments in
Fortran 77. To which degree the compiler can exploit this information
is of course depending on the compiler itself. The NEC compiler for
the SX system is already providing a fairly vectorized code even with
the pointer attribute attached to the arrays. As can be seen, on this
system with the NEC compilers the recognition of data independence
results in a performance difference of three orders of magnitude. The C
implementation could of course also be enhanced by directives to explicitly
inform the compiler of data independencies. However, this comparison
also nicely highlights the convenience offered by the Fortran semantics for
vectorized computations. In fact, this very naive approach can be heavily
enhanced and a tuned version for this algorithm from the BLAS library
provided by the vendor, gains over 80 GFLOPs on the NEC SX9.

It should be emphasized, that the main difference here is indeed the
visibility of data independence to the compiler. Only if the compiler can
detect, that the three used arrays are independent, it can vectorize the
operations. If existing data dependencies are not apparent to the compiler,
it is necessary to either change the code or provide hints to the compiler
in the form of some directives. Otherwise the compiler will not be able to
automatically generate vectorized code. Though this impact is seen most
drastically on a vector system like the NEC SX, this effect can also be
observed on more common architectures with much shorter vector registers.

5.3 Exploiting the Memory Hierarchy

Usually, computations are executed in a pipelined fashion, which results
in some starting and closing time intervals of each execution block, where
the functional units are not fully used. From this point of view it would
be beneficial to make the innermost loops as long as possible in order to
minimize the effect of those dead times. However, it is often necessary
to transfer data from one execution block to the next. In this case it is
necessary to keep this data as close to the processing units as possible. As
the available memory space gets smaller the closer it is to the functional

53

5 Single Core Optimization Strategies

Listing 5.2: Simple Matrix product in Fortran
module mxm_module

contains

subroutine mxm(lda, m, l, n, a, b, c)

implicit none

integer :: lda, m, l, n

!! real(kind=8) :: a(lda,m), b(n,l), c(n,m)

real(kind=8),pointer :: a(:,:), b(:,:), c(:,:)

integer :: i,j,k

c = 0.0_8

do i=1,m

do j=1,l

do k=1,n

c(k,i) = c(k,i) + a(j,i)*b(k,j)

end do

end do

end do

end subroutine mxm

end module mxm_module

54

5.3 Exploiting the Memory Hierarchy

units, it is necessary to build suitable chunks of data, which fit into those
smaller storages.

Data exchange with the main memory is bound by limited bandwidth
and high latencies, in comparison to the floating point operations speed.
Due to this growing memory gap [16], it is a key strategy to avoid memory
accesses for optimized codes. By keeping a chunk of data nearby for several
execution blocks increases the number of operations per byte loaded from
main memory. Exploiting the memory hierarchy provided by the hardware
yields dramatic benefits for some algorithms and is more important than
very long vectors on most architectures. Thus, locality of data should
be exploited wherever possible. Yet, the available storage close to the
processors should be filled as much as possible, that is, with as long vectors
as fit into the limited storage. Each chunk of data should follow the rule
of visibility of independent data. Also the longer each chunk itself is, the
more efficient it can be executed. Therefore any implementation has to
be a compromise between maximizing chunk sizes but minimizing the
necessary data transfers to and from the main memory.

The NEC SX series provides very fast storages, directly addressable
by the programmer, in the form of vector data registers. Their size is
obviously limited by the vector length and there is only a limited number
of registers available. As these data registers are almost equivalent to
the actual arithmetic registers, it is beneficial to keep vectors in them,
which are frequently accessed. If the vector data registers can be used, the
block size for innermost loops is naturally given by the vector length of
the hardware (256 words in case of the NEC SX9).

Newly introduced with the NEC SX9 is an addressable data buffer
(ADB), which acts as a kind of cache and sits between the main memory
and the processing units. Its size of 256 KB is very limited, yet already
large when compared to the available vector data registers, as it translates
to 128 vectors against 32 vector data registers. It also provides greater
flexibility for the arrays, that may be put on it. However, it is also much
slower than the vector data registers. Explicit compiler directives need
to be provided for each data that should be kept on the ADB. Any other
data bypasses it.

Other systems usually provide fully associative caches, where it is gen-
erally sufficient to keep the data chunks in reasonable size. The hardware
automatically keeps fitting data in its caches. This approach yields less
control, but is potentially easier to use. In any case the effects for the
programmer are similar, leading to the same strategies to take advantage
of the available memory closer to the processors.

55

5 Single Core Optimization Strategies

5.4 Vectorization of the Cauchy-Kowalevsky Procedure

The Cauchy-Kowalevsky (CK) procedure [44] is a core component in both,
the numerical scheme of the solvers and the coupling mechanism. It is
used by by the ADER scheme to achieve a high-order time integration and
by the coupling to arrive at an extrapolation for intermediate time step
values that are not provided by a neighbor with a coarser time resolution.
In this section we will highlight, how this crucial part of the code can be
improved from an original version that works reasonably fine on a scalar
system to one that also provides high performance on a vector system.

The implementation of the CK procedure utilizes the approach by Dyson,
described in [14] for two Euler equations in two dimensions. It relies on
repeatedly applying the generalization of Leibniz’s rule [59] in multiple
dimensions. With two space dimensions and one in time Leibniz’s rule
yields

∂a+b+c(f(x, y, t)g(x, y, t)
∂xaybtc

=
c∑

k=0

b∑
j=0

a∑
i=0[(

a

i

)(
b

j

)(
c

k

)
∂(a−i)+(b−j)+(c−k)f(x, y, t)

∂xa−i∂yb−j∂tc−k

∂i+j+kg(x, y, t)
∂xi∂yj∂tk

]
. (5.1)

Listing 5.3 shows the original code implementation of this method. There
are several nested loops to be seen. The outermost loop with the loop
counter variable iGP iterates through all Gaussian integration points. For
each of these integration points, the CK procedure has to be done, resulting
in the six nested loops. Those loops reflect the underlying structure, found
in (5.1). All derivatives for a+ b+ c < m need to be computed for a given
representation order m in time. For each of the derivatives, the three
nested summations have to be computed. Refer to [14] for more details on
the algorithm for the Euler equations. In Listing 5.3 only a first block of
the innermost three loops is shown. This block computes an intermediate
result for the algorithm to find the derivatives for the Euler equations and
is followed by several more of these blocks. All within the outer three
loops for a single derivative. Each following block utilizes the results from
previous summation blocks. To illustrate the vectorization strategies it is
sufficient to look at this first code block here. There are two large arrays
V that holds intermediate results and avoids recomputations and W that
contains the actual derivatives. The tuple (a,b,c) identifies a derivative
and i,j,k are summation indices. There are many Gaussian integration

56

5.4 Vectorization of the Cauchy-Kowalevsky Procedure

Listing 5.3: Original CK implementation excert
REAL :: V(1:6, 0:Ord-1, &

& 0:Ord-1, &

& 0:Ord-1, nGPs) ! temp.

REAL :: W(1:4, 0:Ord-1, &

& 0:Ord-1, &

& 0:Ord-1, nGPs) ! deriv.

REAL :: d, V11, V21

! Ord around 10; nGPs around 10^6

do iGP=1,nGPs

do c=0,Ord-2

do b=0,Ord-1-c

do a=0,Ord-1-c-b

do k=0,c

do j=0,b

do i=0,a-1

V11 = V11 &

& + d * W(1, a-i, b-j, c-k, iGP) &

& * V(1, i, j, k, iGP) ! scalar

V21 = V21 &

& + d * W(1, a-i, b-j, c-k, iGP) &

& * V(2, i, j, k, iGP) ! scalar

end do

end do

end do

! Several blocks of this kind,

! each using the results of previous blocks!

57

5 Single Core Optimization Strategies

points (nGPs), for which this operation has to be performed. Typically, in
the order of millions. The other dimensioning variable Ord, refers to the
order of the scheme and has mostly an order of magnitude around 10.

With this initial version of the code a poor performance of only 436
MFLOPs on the NEC SX-8 can be observed because the deeply nested loops
in the end just perform a scalar operation. Due to this low performance,
this operation consumed around 60 % of the overall computing time on
the vector system. However, the computation for the various Gaussian
integration points are all independent from each other, and we can change
the order of executions. By performing each instruction to all Gaussian
integration point and only then moving on to the next instruction, each
operation can be vectorized and we achieve a higher performance.

This change is illustrated in Listing 5.4. Note that we not only changed
the ordering of the loops but also the indices of the large arrays V and
W to allow for an efficient memory access. With these changes, the im-
plementation achieves 2.6 GFLOPs on the NEC SX-8 machine. However,
we now increased the memory consumption by requiring the intermediate
variables V11 and V21 to be arrays of size nGPs. In the actual algorithm
there are some more of those intermediate variables that get inflated to
arrays by the vectorization. Thus, this implication is more severe than it
might appear at first. Furthermore, the change affects the execution on
scalar systems badly because of the increased memory bandwidth demands
and reduced data locality.

To overcome these drawbacks, let us introduce a strategy called strip-
mining or loop-sectioning [87]. Strip-mining splits the long loop over all
nGPs Gaussian integration points into shorter loops and the only executes
one ”strip” at a time. We thereby get one additional loop over all strips.
Listing 5.5 shows the resulting code. The newly introduced parameter vrl
describes the length of our strips. It is chosen to be 256, which is the vector
register length of the NEC SX-8. Using this strip-length enables us also to
use the vector data registers on this architecture for the temporal variables
V11 and V21. Those intermediate arrays now only need to have the strip
length of vrl. To put them into vector data registers, we use the compiler
directive !cdir VREG. The vector data registers provide us with fast access
to the stored data and eases the memory bandwidth requirements.

Now have a look at Listing 5.5 to see the newly introduced outer
loop with the loop counter variable strip. This is the loop over all our
shortenend loops, which are chunks of Gaussian integration points. It is
the outermost loop here, so we perform the complete CK procedure for
each strip of integration points, before continuing with the next strip. The
strip length vrl might not divide the overall number of integration points

58

5.4 Vectorization of the Cauchy-Kowalevsky Procedure

Listing 5.4: Vectorized CK implementation
REAL :: V(nGPs, 1:6, 0:Ord-1, &

& 0:Ord-1, &

& 0:Ord-1) ! temp.

REAL :: W(nGPs, 1:4, 0:Ord-1, &

& 0:Ord-1, &

& 0:Ord-1) ! deriv.

REAL :: d

REAL :: V11(nGPs), V21(nGPS)

! Ord around 10; nGPs around 10^6

do c=0,Ord-2

do b=0,Ord-1-c

do a=0,Ord-1-c-b

do k=0,c

do j=0,b

do i=0,a-1

V11 = V11 &

& + d * W(:, 1, a-i, b-j, c-k) &

& * V(:, 1, i, j, k) ! vector

V21 = V21 &

& + d * W(:, 1, a-i, b-j, c-k) &

& * V(:, 2, i, j, k) ! vector

end do

end do

end do

! Several blocks of this kind,

! each using the results of previous blocks!

59

5 Single Core Optimization Strategies

by an integer number, and we take care of that by computing an actual
loop length est ≤ vrl to ensure the last strip has the correct length. We
then replace the innermost loop, that is the array assignment in Listing
5.4, by the shortened loop with length est. Moreover, we realize that the
temporary array V was overly large in the previous implementation and
can also be reduced to the length of the strip instead of the total nGPs.
That is, the temporary array is required for the overall CK-procedure,
but only for each integration point and we can reuse the memory of the
temporary variable in all strips. We now have two different indices for
the large arrays, once the global one across all integration points in W,
and once the index within the strip, used in V. The global index in W is
obtained by adding the offste strip to the strip local index iGP.

With these changes, a performance of 3 GFLOPs is achieved, which is
only a slight improvement over the previous variant with 2.6 GFLOPs.
However, we now have the possibility to adjust the inner loop length to the
machine instead of requiring a large bunch of memory in dependency of the
problem size. This makes this variant now equally well suited for vector
and scalar architectures, providing us with a kind of portable performance.
The strip-mining length parameter even provides us now with an option
to tweak according to the cache size of the scalar processors.

The strip-mined version of the code in Listing 5.5 provides a much better
execution performance on the NEC SX-8, then the original version in 5.3
but in comparison to the actually available theoretical peak performance
on the vector system, it still is not quite satisfactory. A single processor
of the SX-8 has a theoretical peak performance of 16 GFLOPs, so the
achieved performance so far is less then 20 % of that. In the next and last
Listing 5.6 one more step is shown, which boosts the performance beyond
30 % of the peak performance.

In Listing 5.6 a change is made, that might appear minor but yields a
rather large increase in the achieved performance. With the strip-mining
step, we also reduced the size of the temporal array V to the strip-mining
length. This reduction enabled us, not only to reduce the required memory
but also to improve the locality of the required data. Can we achieve
the same for the working array itself? At first it might not appear like
this should be possible, after all it contains the resulting data we want to
compute. Yet, on second thought, we are utilizing too much data here.
We actually are only interested in the time series in the end. All those
mixed derivatives are only needed as intermediate values and not used
anymore after the time series has been obtained. Thus, we can restrict
the input data W to just the spatial derivatives and the output to just the
derivatives in time. This newly introduced output array is called TimeDer

60

5.4 Vectorization of the Cauchy-Kowalevsky Procedure

Listing 5.5: Strip-mined CK implementation
INTEGER, parameter :: vrl = 256

REAL :: V(vrl, 1:6, 0:Ord-1, &

& 0:Ord-1, &

& 0:Ord-1) ! temp.

REAL :: W(nGPs, 1:4, 0:Ord-1, &

& 0:Ord-1, &

& 0:Ord-1) ! deriv.

REAL :: d

!cdir VREG(V11, V21)

REAL :: V11(vrl), V21(vrl)

! Ord around 10; nGPs around 10^6

do strip=0,nGPs-1,vrl

est=min(nGPs-strip,vrl)

do c=0,Ord-2

do b=0,Ord-1-c

do a=0,Ord-1-c-b

do k=0,c

do j=0,b

do i=0,a-1

do iGP=1,est

V11 = V11 &

& + d * W(iGP+strip, &

& 1, a-i, b-j, c-k) &

& * V(iGP, 1, i, j, k)

V21 = V21 &

& + d * W(iGP+strip, &

& 1, a-i, b-j, c-k) &

& * V(iGP, 2, i, j, k)

end do

end do

end do

end do

! Several blocks of this kind,

! each using the results of previous blocks!

61

5 Single Core Optimization Strategies

in Listing 5.6. We then make use of a local working array LW that only
needs to have the strip length but provides space for all mixed space-time
derivatives. The spatial derivatives now need to be copied into this local
working array. However, this copy can be done outside the six times nested
loop construct. Thus, we spent an one-time memory copying but gain then
a stride-one memory access in our repeatedly executed vector operations
in the inner most loop. Actually, we need to do a two copies, once in the
beginning and once at the end to copy the data into the TimeDer result
array. Nevertheless, the gain by the better memory access within the
deeply nested loops is dramatic and we can achieve a performance of 5.2
GFLOPs with the code version from Listing 5.6.

It is remarkable that this change also enables the vectorization on scalar
processors and by utilization of SSE instruction the performance is also
nearly doubled on scalar systems in the last code version in comparison
to the original one. For the vector system NEC SX-8, we achieved a
speed-up of more than a factor of ten from 436 MFLOPs to 5.2 GFLOPs.
In other words, without this serial optimization, the parallel execution of
the application would waste 90 % of the computational resources in each
process. This highlights the importance of single core optimizations along
with the scalability.

5.5 Machine Comparison With APES

This chapter, so far, should have highlighted the importance of single core
performance for large simulations. Let us now in conclusion have a look at
the performance, as observed on different systems with distinct properties.
Three different processor architectures will be considered here, the NEC
SX-ACE vector processor, Intels x86 architecture and IBMs BlueGene Q
Power processors. For Intels x86 processors we also consider two different
interconnect systems. Once an Infinband based cluster and once a Cray
Aries torus network.

The machines for this scalability analysis are the three German national
supercomputing systems and a small installation of a SX-ACE system at
the HLRS in Stuttgart:

• Hornet: Cray XC40 system with Intel Haswell E5-2680v3 2,5 GHz
and 12 cores per processor. This system provides a fast torus inter-
connect via Cray’s Aries network. It is offered by HLRS in Stuttgart.

• Juqueen: IBM BlueGene Q with IBM PowerPC 1.6 GHz and 4 cores
per processor (16 per node). The BlueGene offers a fast 5D torus

62

5.5 Machine Comparison With APES

Listing 5.6: CK implementation with reduced memory
INTEGER, parameter :: vrl = 256

REAL :: V(vrl, 6, Ord, Ord, Ord) ! temp.

REAL :: W(nGPs, 4, Ord, Ord) ! spat. deriv.

REAL :: TimeDer(nGPs, 4, Ord) ! time deriv.

REAL :: LW(vrl, 4, Ord, Ord, Ord) ! local work

REAL :: d

!cdir VREG(V11, V21)

REAL :: V11(vrl), V21(vrl)

! Ord around 10; nGPs around 10^6

do strip=0,nGPs-1,vrl

est=min(nGPs-strip,vrl)

do iGP=1,est

LW(iGP,:,:,:,1) = W(iGP+strip,:,:,:)

end do

do c=0,Ord-2

do b=0,Ord-1-c

do a=0,Ord-1-c-b

do k=0,c

do j=0,b

do i=0,a-1

do iGP=1,est

V11 = V11 &

& + d * LW(iGP, 1, a-i, b-j, c-k) &

& * V(iGP, 1, i, j, k)

V21 = V21 &

& + d * LW(iGP, 1, a-i, b-j, c-k) &

& * V(iGP, 2, i, j, k)

end do

end do

end do

end do

! Several blocks of this kind,

! each using the results of previous blocks!

63

5 Single Core Optimization Strategies

interconnect with special support for collectives. It is provided by
the Forschungszentrum Jülich.

• SuperMUC : Lenovo NeXtScale nx360M5 WCT system with Haswell
E5-2697v3 2.6 GHz and 14 cores per processor. The nodes in this
system are connected by a non-blocking tree with Infiniband FDR14.
It is operated by LRZ in Garching.

• Kabuki: NEC SX-ACE testing installation with 64 nodes in total.
The vector processors have 4 cores and the nodes are connected by
an IXS crossbar.

For the scaling analysis we will use the Lattice Boltzmann (LBM) solver
Musubi [30] from the APES suite. The LBM kernel is relatively small and
can be highly optimized. Thus, it as an attractive code for benchmarking of
machines. Note however that it is strongly memory bandwidth dependent.
As simulation setup we use a simple cubical domain with periodic boundary
conditions in all directions. For the initial condition a small Gaussian
pulse is used.

Figure 5.1 shows a strong scaling analysis for Musubi on the four
introduced systems. The x-axis represents the theoretical peak performance
of the machine fraction used for the simulation run. The y-axis represents
the obtained performance by the LBM solver in terms of floating point
operations per second. We can observe that the three scalar systems all
exhibit a very similar behaviour with nearly ideal scaling over a large
fraction of the machine. Even a short period of superlinear speed-up can
be observed in the Intel processor systems. These are due to caching
effects, where the problem per process has been reduced so far that it
completely fits into the cache. The NEC SX-ACE system Kabuki stands
out in this analysis. It is only a small system with a total of 64 nodes
and is, therefore, limited in the theoretical peak performance but as far
as it scales it outperforms all other systems significantly. Even so, the
scaling is worse than on the large Petascale systems. The advantage in the
high sustained serial performance is sufficiently high to compensate the
relatively bad scaling. The bad scaling behavior arises in this case from the
decreasing problem size per process and a thereby decreased vectorization.

The comparison in Figure 5.1 highlights that a simple concentration on
scalability does not suffice and we always need to keep the serial basis in
mind. It also shows that number of floating point iterations are just one
measure to assess a computing system and we need to also consider other
factors, like memory access.

64

5.5 Machine Comparison With APES

10−1 100 101 102 103 104

10−1

100

101

Peak performance in TFLOPs

A
ch

ie
ve

d
T

FL
O

P
s

Kabuki
Hornet

SuperMUC
Juqueen

Figure 5.1: Sustained performance scaling on german supercomputing sys-
tems. Kabuki is a small NEC SX-ACE system. Hornet is a Cray
XC 40 Petascale system. SuperMUC is a Lenovo NeXtScale
Petascale system, and Juqueen is a BlueGene Q Petascale
system.

65

6 Scalable Distributed Coupling Method

This chapter describes the coupling method in general and the specific
features that enable a parallel distributed computation. The serial version
of the coupling developed in [82] does not face some of the issues discussed
here. Section 1.2.1 described the fundamental idea of the coupling to be
based on point values that are exchanged between domains. A prerequisite
to enable such a coupling is the identification of points in a given set
of domains. In serial all mesh information is available, and points are
identified by simply checking all mesh elements for their containment.
Checking the complete volume might be legitimate in serial, as the exact
element containing the point needs to be determined anyway. However,
in parallel, such a search is not an option anymore. In the distributed
computation we try to keep the information on remote partitions as small
as possible, as explained in Chapter 4. Thus, remote elements are not
available. Instead, we only check point containment against surfaces of the
partitions. With the partitioning of unstructured domains, these surfaces
take the form of arbitrary polyhedra. Thus, while the serial strategy was
only concerned with the containment in simple geometries like tetrahedra
or hexahedra, we now need to deal with the containment of points in
arbitrary polyhedra.

The search for the points itself is done in parallel and distributed,
avoiding large peaks in memory consumption. After the strategy for the
initial point identification has been discussed, we will look into the data
exchange at those points during the simulation. The space-time expansion
of the numerical scheme is exploited to allow updates on the coupling
information without a prescribed ordering that would impose a serialization.
Synchronization problems that arise from the two different tasks coupling
and actual solving on each process are explained and eliminated.

With parallelization and multiple discretization domains, we have two
different kinds of splittings of the overall computational domain. First
there are the individual domains, and these are then split into multiple
partitions. Let us introduce the term section for these parts. Each section
is identified by the process that is computing it, and the domain it resides
in. The coupling now happens between individual sections without any
intermediate layers. It is possible that multiple domains are computed

67

6 Scalable Distributed Coupling Method

by the same process but in most setups there is each process dedicated
to a single partition of a single domain. However, the concept of sections
allows for the most general distribution of the heterogeneous domain setup
on parallel computing systems.

6.1 Point Localization in Arbitrary Polyhedrons

The coupling method relies on ghost elements at the coupling interfaces. As
explained in Section 1.2, the status in these ghost elements is constructed by
values at discrete points. The discrete points are chosen at the integration
nodes of numerical integration schemes and provide and abstraction from
the underlying meshes. Values at points can easily be obtained in the
deployed numerical schemes, as there are either reconstructed polynomials
or state representation in form of polynomials within each element available.
A remaining problem is the localization of these points. The partitioning
of unstructured domains for parallel computations results in arbitrary
polyhedral volumes for individual domains. Figure 6.1 illustrates this in
three dimensions with transparent partitions of different color. For the
coupling, we need to identify points within such polyhedra. This section
discusses options for this task and explains the algorithm chosen for the
implementation.

The problem that needs to be solved here is the point containment
decision for arbitrary polyhedra. There are two classes of algorithms that
are typically used to solve this problem. One is based on the Jordan
curve theorem and relies on the computation of intersections. The other is
based on the Gauss-Bonnet theorem [90] and requires the computation of
oriented solid angles. Both approaches are applicable in three dimensions
and for arbitrary polyhedrons.

In the following, we will investigate both approaches. First the popular
method based on the Jordan curve theorem is investigated, then we move
on to its alternative based on the Gauss-Bonnet theorem. For the coupling
we will use the latter one and the reasoning for this choice will also be
discussed.

6.1.1 Approach based on the Jordan curve theorem
The Jordan curve theorem states that a simple closed curve in the plane
divides the plane into an interior and an exterior region, and a point in
either part can only be connected to the other by a line, that intersects the
curve. This has been extended to higher dimensions by the Jordan-Brouwer
separation theorem. Due to the fact, that the interior region is limited, the

68

6.1 Point Localization in Arbitrary Polyhedrons

Figure 6.1: An example for the partitioning of a three dimensional mesh
with arbitrary surfaces.

69

6 Scalable Distributed Coupling Method

(a) Point inside the polygon. Here we
observe an odd number of inter-
sections (one for green, three for
yellow).

(b) Point outside the polygon. For
this point outside the polygon we
observe either no intersection (yel-
low) or an even number of inter-
sections (green).

Figure 6.2: 2D-Illustration of the Jordan algorithm to decide point contain-
ment. Two rays are cast from a single point into two different
directions.

containment of a given point in the interior can be tested by connecting
the point with a point infinitely far away that has to be in the exterior
part. In other words, we cast a ray from the point in an arbitrary direction.
This ray from an internal point has to intersect the surface. Thus, the
check to be computed in this algorithm is the ray surface intersection.

As outlined above, the ray has to intersect the surface at least once if
the point is inside the polyhedron. When there is no intersection at all,
the point has to be in the exterior part. For multiple intersections it can
be seen, that always two intersections would cancel each other out, as one
of them has to be an entering into the interior, while the other one has to
be an exit from it. With this pairwise canceling of intersections, the point
containment can be decided upon counting the intersections. For an even
number of intersections, the point has to be in the exterior, while for an
odd number of intersections, the point has to be in the interior. Because
of this behavior, this method is also referred to as parity check. Figure
6.2a shows the situation for points inside the polygon. The situation for
points outside the polygon is shown in Figure 6.2b.

The attractive feature of this method is the fact, that the ray surface

70

6.1 Point Localization in Arbitrary Polyhedrons

Figure 6.3: Illustration of a corner case for the Jordan algorithm, where
the ray intersects a vertex of a partition interface.

intersection can be computed efficiently. All meshes considered here will
have surfaces, which can be represented by a union of plane triangles.
Intersection tests are, therefore, only necessary for ray-triangle intersec-
tions and further the intersections themselves do not have to be actually
computed, instead tests for their existence are sufficient. The computa-
tional effort can be reduced when using a specific ray, like the positive x
axis. However, a drawback arising in this approach is the occurence of
degenerate cases in the ray surface intersection. For example the ray might
be coinciding in a line section, or the intersection might be exactly on a
vertex. The question that arises here is how many intersections have to
be accounted in such degenerate cases? Whenever the ray runs through a
vertex, there are potentially two line segments of the polygon that might
count this as an intersection. While this is solvable in two dimensions, the
degenerated cases get much more troublesome in three dimensions, this is
for example nicely explained by Kalay in [39]. Figure 6.3 illustrates the
intersection of the ray with a vertex in the surface of a three-dimensional
mesh partition. There are four triangles indicated by the white lines with
a common vertex in the yellow sphere. The ray is shown in red and runs
through this common vertex. To actually decide the intersection type in
such a case, all adjacent surface triangles have to be taken into account as
illustrated in Figure 6.4 by the green lines and spheres. In this example
the triangles are coplanar. However, in general this might not be the case
and an enclosing surface may not be found.

A common solution to overcome such degenerate cases is a slight rotation
of the ray. However, this looses the advantage of exploiting special ray

71

6 Scalable Distributed Coupling Method

Figure 6.4: Required faces to be checked to correctly identify the corner
case in the Jordan algorithm.

directions like the positive x axis. Another approach is offered by the
simulation of simplicity [15], where vertices are slightly perturbated to
always obtain a non-degenerated case. In any case the parity check requires
some additional effort in implementation and computation to decide the
containment of the point. For some cases there might not even be a
satisfactory answer from the algorithm. This gives reason to investigate
an alternative, that is based on the Gauss-Bonnet theorem.

6.1.2 Approach based on the Gauss-Bonnet theorem

The Gauss-Bonnet theorem states that the total curvature of a well-behaved
closed surface, as those of the partition boundaries in the considered meshes,
will always be 4π three dimensions, regardless of the shape of the surface.
Correspondingly, in two dimensions the total curvature of closed surfaces is
2π. The sign, under which a given surface part will be seen from a certain
point of view depends on the orientation of the surface normal. This can
be exploited to decide the containment of a point within an arbitrary
polyhedron as described by Lane et al. [47] With proper orientation of
all surface elements (all normals pointing outwards), any point inside a
polyhedron will see a total solid angle of 4π, while those on the outside
will see a total solid angle of zero. Figures 6.5a and 6.5b illustrate this idea
in two dimensions for some arbitrary polygon. Points inside a polygon add
the angles with each polygon side up to a total of 2π, as illustrated with
an example in Figure 6.5a. Figure 6.5b on the other hand shows, how the
angles cancel each other out for points outside the polygon.

72

6.1 Point Localization in Arbitrary Polyhedrons

(a) Point inside the polygon. The
summed angle of all surfaces is 2π
for points inside the polygon.

(b) Point outside the polygon. The
summed angle of all surfaces is
0 for points outside the polygon.
Angles counted positive are shown
in red, and those counted negative
in blue.

Figure 6.5: 2D-Illustration of the Gauss-Bonnet algorithm to decide point
containment in polygons.

73

6 Scalable Distributed Coupling Method

Figure 6.6: Illustration of the situation for a point on a vertex of the poly-
gon. The resulting angle from the algorithm can be interpreted
as the fraction of the point that belongs to the polygon (red).
A potential neighboring domain is indicated in yellow.

However, also this approach suffers from degenerate cases. These arise,
when the point is exactly on the surface of the polyhedron. In this case,
the integrated solid angle seen from that point might be any value between
0 and 4π. Such a case with the point on one of the vertices of a polygon in
two dimensions is shown in Figure Figure 6.6. The red angle indicates the
summed total angle as seen from the vertex of the polygon. Unfortunately,
such corner cases can not be excluded in the scenario of the coupling
interfaces. Interpolation points might very well happen to coincide with
partition boundaries of arbitrary mesh configurations.

The corner cases highlight a common issue in both approaches: There
is always a final binary decision that needs to be taken. A point either
belongs to a partition or not. However, if a point is indeed exactly on a
partition boundary, there is no real preference for which partition it should
be accounted to. There just needs to be a consistent decision, and the
point needs to be accounted for exactly one of the adjacent partititons.

The method based on the Gauss-Bonnet theorem allows an elegant
solution to this problem. Instead of trying to take a binary decision, a
point can simply be accounted for the domain for which it has the largest

74

6.1 Point Localization in Arbitrary Polyhedrons

total solid angle. This covers the common case as well as the degenerated
ones and even offers some geometrical meaning. Such a geometrical
interpretation can be most easily understood when looking at a vertex
that is shared by several partitions. Figure 6.6 offers an illustration of
this scenario in two dimensions. Imagine a neighboring partition to the
depicted polygon on the lower left. Both polygons are adjacent to the
vertex, for which the angles are shown. In the shown polygon, the angle
sums to the red angle, while for the outside polygon the angle shown in
yellow is obtained. As can be seen, the integrated solid angle of each
partititon describes the opening angle under which the point is reached
from within the partition. This angle can also be understood as the share
of the vertex for this partition. Thus, attributing such a point to the
partition with the greatest solid angle is the most natural approach to deal
with this degenerated case.

An implementation issue, that arises by this algorithm free of binary
decisions is that all points will be accounted as being part of one domain,
even if they are actually in none of them. Though this case should never
happen, it might occur due to wrongly defined mesh configurations by the
user. It therefore is necessary to inform the user about points which can
not be put into any domain. A solution to this issue is the generation of
some warning or error if the maximal solid angle for a point is close to
zero. For a maximal solid angle close to numerical accuracy it is likely that
no domain actually contains the point. Millions of partitions would have
to be adjacent to the point to legitimately reach such a small maximal
fraction and we safely can discard this scenario.

Other deficits in this approach are the need for oriented surfaces and
the need for trigonometric functions to compute the solid angle of each
surface part. Both are only minor, as the orientation of the mesh surface
can always be ensured and efficient methods to compute the solid angle
are known especially for plane triangles [84]. The benefits on the other
hand make this strategy very attractive to the use case in this work. Due
to the avoided binary decision it is extremely robust and every point will
be accounted for exactly one partition that has to take the responsibility
for it. A decision on the maximum of the solid angle can be done with a
parallel reduction operation and the workload for each point is exactly the
same.

6.1.3 Point containment summary
We investigated two options to decide the point containment in arbitrary
polyhedrons. The ray casting method based on the Jordan curve theorem

75

6 Scalable Distributed Coupling Method

has the advantage that it works independently of the surface orienta-
tions. Theoretically this method can be computed fast with specialized
ray-triangle intersections. However, due to corner cases in many binary
intersection decisions, it usually is necessary to perform several ray castings,
which diminishes the computational efficiency. The greatest disadvantage
for the coupling scenario is the bad treatment of points on interfaces, which
requires careful treatment.

For the second approach, based on the Gauss-Bonnet theorem, the sur-
faces need to have properly defined normals. This is not a severe restriction
in our scenario, as the surfaces are obtained from mesh definitions, and we
always can ensure a correct definition of the surface elements. With this
restriction it becomes possible to avoid binary decisions and corner cases
altogether. All points, also those on interfaces between partitions, can be
attributed to one partition by a simple maximum decision.

6.2 Distributed Coupling Scheme

The described method to localize any given point in an arbitrary polyhedron
can now be used to find the actual coupling relation between the various
domains. This coupling is to be done in a distributed parallel algorithm
to allow its deployment on large scale supercomputing systems. As the
coupling scheme is purely based on discrete points, it works equally fine
on 2D and 3D domains and with arbitrary domain layouts.

Arbitrary domain layouts are important to avoid too limited applicability
of the coupling method for engineering simulations, that might have a
complex geometrical setup. However, this generality of the geometrical
configuration turns the identification of neighbor relations into a quite
expensive operation, as each coupling point needs to be tested against all
partitions. This can only be sped up by deploying some spatial sorting that
would allow a faster identification of spatial regions to test for containment.
In this section the strategies to deal with the full problem of any point in
any domain and the simulation steering based upon this are described.

6.2.1 Coupling interface identification

Two strategies to deal with the coupling interface identification in parallel
and distributed are suggested and their scalability potential is discussed
in this section. As already described, the coupling is done on the basis
of the partitioned domains. These are referred to as sections and are
uniquely identified by the domain number and the rank of the process

76

6.2 Distributed Coupling Scheme

that is computing it. Coupling points that will be used to exchange values
between the domains therefore have to be located in these sections.

For a total number of N coupling points and s sections, the number of
tests that have to be performed are therefore T = N · s, where N is fixed
for a given problem, while s(p) will grow with the number of processes p.
In the parallel identification of the coupling neighborhood, these T tests
are distributed on p processors, resulting in an overall ideally achievable
running time of T/p. However, this neglects that each containment test
itself gets cheaper with shrinking number of surface elements of each
section.

The first considered parallelization strategy is the exchange of surface
descriptions between all sections. Each section then tests its local coupling
points against all other section surfaces and decides upon this with which
sections a communication will be needed. With this strategy all surfaces
of all sections need to be stored in each section, which is not desirable for
large numbers of sections, that is large scale simulations with many small
sections. However, it avoids the distribution of all points to all sections
and identifies all local coupling points in parallel. A further limitation of
this approach is the uneven distribution of coupling interfaces across all
processes, resulting in load imbalances.

In the second parallelization strategy the coupling points are broad-
casted to all processes, and each section just needs to test these points
against its local surface. While in this approach the identification of point
containments is serialized, the work load is better balanced as domain
descriptions are kept local. This avoids the increased memory consump-
tion for large numbers of sections, while at the same time the memory
requirement due to the coupling points can be kept constant by using a
maximum package size for the exchange of points. As the containment
testing of points is essentially serialized with respect to the point set, such
a limiting into packages does not affect the time complexity.

While in the first approach the coupling neighbors are identified by
the requesting domain and afterwards an all to all operation informs the
source domains about the requests, the second approach uses allreduce
operations to identify the winning domain that will provide data at given
points. This has also the benefit that a vectorized testing of all points
against the local surface description can be performed to speed up the
containment identification.

The second algorithm to test point containment in parallel and with
distributed sections in summary has the following steps:

• MPI_Allgather is used to gather the number of coupling points on

77

6 Scalable Distributed Coupling Method

each process (sum of all coupling points in all domain partitions
on that process). Obviously this requires memory in the order of
numbers of processes on each process. However, the amount of
required memory is just a single 4 Byte integer.

• After all processes are aware of the number of coupling points that
will be requested by each process, the processes broadcast their
actual point coordinates one after another. The number of points
broadcasted in a single message by any given process is limited by
an user defined upper limit on the package size.

• Upon each broadcast, each process computes the maximal share for
each of its domain partitions at each of the requested points, using
the Gauss-Bonnet based method.

• The global maximal share for each point is then found with the
help of an MPI_Allreduce with the MPI_MAXLOC operation. The
allreduce operation is used to notify all processes of the actual
coupling partners, such that subsequent communications can be
made on a peer to peer basis.

• After all points have been localized, the interacting processes ex-
change their domain information and set up the actual communica-
tion between sections.

This approach scales nicely due to the allreduce operation that has only
a running time of O(log p). No memory bottleneck is introduced as the
usage of point packages allows for a limitation of memory consumption in
the global exchange. However, it remains the problem, that all coupling
points have to be tested essentially in serial by all processes. Though, the
testing typically gets cheaper with smaller domain partitions per process,
this is an intrinsic obstacle to a highly distributed simulation. Even in the
static setup considered here, it might inhibit large simulations by overly
long initialization times. In more dynamic settings with dynamic load
balancing or mesh adaptation, where the exchange partners have to be
recomputed, the costs for this non-scaling approach would quickly get
prohibitive high. It can only be overcome by a restriction in the domain
topology, such that the localization of points can be done without explicit
testing on all processes. This will be highlighted in more detail in the
development of the octree based mesh framework TreElM .

78

6.2 Distributed Coupling Scheme

6.2.2 General coupling properties
To the solvers in each domain, the coupling interfaces completely look
like ordinary boundary conditions. Boundary conditions are prescribed by
ghost elements outside the computational domain. In the case of coupling
interfaces, these ghost elements are provided by the coupling framework.
These ghost elements therefore build a sort of adapter between adjacent
domains. This scheme was introduced by Utzmann et al. in [83]. With
the construction of these cells by point values it is possible to couple
arbitrary domains together in three dimensions. Due to the concept of a
coupling via boundary conditions, the solvers in each domain are mostly
independent of the other domains. Therefore, it is possible to use the best
adapted implementation and equation system in each of the domains. The
previous section described, how the coupling points required to build the
ghost elements can be located in parallel. Now the actual parallel coupling
between the various domains in the simulation is described.

For the coupling four orthogonal classifications of domain properties
can be made:

• Equations. The domains might solve for nonlinear Navier-Stokes,
nonlinear inviscid Euler or even linearized Euler equations.

• Schemes. Discretization can be based on Finite Volume, Discontinu-
ous Galerkin or Finite Differences.

• Time. Explicit schemes adopt the time step proportional to the
spatial step size. Coarse meshes therefore can go for larger time
steps than fine meshes. A sub-cycling has to be implemented.

• Meshes. Coarse and fine as well as structured-unstructured meshes
are used.

The most important domain property that affects the parallel execution,
is the mesh representation. Parallelization of each domain is achieved
by partitioning the mesh in the domains. This results in the arbitrary
polyhedral sections described above. At the same time it partitions the
coupling interfaces in the same way as the domains are subdivided. This
aspect will be highlighted with greater detail in Section 6.2.3.

The other classes are now briefly presented to provide a full overview.
A detailed description for the coupling in the serial scheme is given by
Utzmann in [82]. Coupling of different equation systems can be achieved
by defining proper interface conditions. Such interface conditions need
to translate one state into another as required by the adjacent domains.

79

6 Scalable Distributed Coupling Method

The schemes of interest in in this work are the Discontinuous Galerkin
(DG), the Finite Volume (FV) and the Finite Differences (FD) scheme.
None of them causes problems, as they all can make use of ghost cells to
prescribe boundary conditions. As the state in each cell can be obtained
from discrete point values for all of them, it is no problem to construct
conforming ghost cells. The ghost cells are constructed as for boundary
conditions completely independent of the adjacent coupling domain. Then
the set of discrete points are employed to obtain state values from the
other domain. Again the other domain does not need to care about the
actual cells of the requesting domain, instead it just needs to determine a
state at all requested points and return them. By the usage of points in
between, we obtain a coupling scheme that abstracts from the meshes on
either side but still allows for high-order representations as an arbitrary
number of points can be used to construct the state in the ghost cells.

Different time-steps in adjacent domains are obtained by a sub-cycling
scheme, where larger time-steps are defined as multiples of the smallest
time-step and interaction only happens at common time levels. In between
the common time levels, the ghost cells for the domain with a smaller time
step are updated by the Cauchy-Kowalevsky (CK) procedure [44]. The CK
procedure allows a conversion of spatial derivatives into temporal deriva-
tives in the partial differential equation. Thus, it enables the construction
of a Taylor expansion to extrapolate the current state in time.

6.2.3 Spatial coupling
The spatial coupling is based on interpolation points in the ghost cells
at the interface between two adjacent domains. For Finite Differences,
the interpolation points are the actual ghost point coordinates. In Finite
Volume and Discontinuous Galerkin schemes a volume integration rule
is required for the cell to construct the intra-cell representation of the
state. This is achieved by Gauss quadrature, and its integration points are
used as the interpolation coordinates for these schemes. Restricting the
method to discrete points simplifies the coupling, as it turns it essentially
independent of the actual domain configuration and spatial dimension of
the domains. That is an important feature to allow simulations of complex
settings and apply the method in a wide range of applications. In Figure
6.7, an example of a ghost cell with some interpolation points is shown.
The ghost cell is overlapping two domains and the discrete points used for
the construction of the cell can be uniquely assigned to the appropriate
one.

The state in the providing domains needs to be evaluated by that

80

6.2 Distributed Coupling Scheme

CB

A

Figure 6.7: A coupling ghost cell of structured domain A, overlapping both,
domain B (green) and C (red). Ghost cells are shown in blue,
for the cell overlapping both neighbors, the Chebyshev-Gauss
integration points for fourth order are indicated by blue dots.

domain for all these points. Domains providing data at the interpolation
points are called source domains, whereas the ones with the ghost cells
are referred to as target domains. The evaluation is done with the state
representation used by the numerical scheme in that domain. However, if
this evaluation is deemed too expensive and not necessary for the required
accuracy in the target domain, the evaluation might be limited to fewer
degrees of freedom. A nice effect of this coupling approach is the fact
that the coupling works independently of the numerical discretization
in the domains. Domains that are solved with DG can simply evaluate
the polynomials at required point coordinates, while FVM schemes will
employ their reconstruction to obtain the polynomial interpolation for all
coordinates. In any case, the coupling mechanism does not need to care
about how the values are obtained but can rely on the fact, that values
are provided with the accuracy available in the discretization of the source
domain.

On the other side, the number of interpolation points to construct
the ghost cell is given by the order of the scheme in the target domain.
Now, with a polynomial degree dS in the representation of the source
domain, and a number of coupling points dT , dictated by the scheme
order in the target domain, the computational effort for the coupling is

81

6 Scalable Distributed Coupling Method

given by C = dT · dS . With high-order schemes on both sides, this quickly
gets expensive. Therefore, there is an option to limit dS deliberatly. A
limitation of the interpolation order is especially desirable for a finer source
domain coupling with a coarser target domain. In this case the accuracy of
the coupling method is not affected too much by a reduced interpolation
order, as the higher spatial resolution itself already provides accurate data
to the coarser domain. This can be illustrated with an error approximation
on the basis of a Richardson extrapolation [64], as given in (6.1).

The idea in the Richardson expansion is to approximate the error E by
a monomial series of the step size h:

E = c0h
0 + c1h

1 + c2h
2 + c3h

3 + . . . for h < 1. (6.1)

If the interpolation order is assumed to be the same as the one of the
numerical scheme, only higher order terms remain in the error estimation.
Neglecting all but the then dominant term offers a simple error approx-
imation of the interpolation. Requiring equality of errors on both sides
results in (6.2).

O(cAh
pA
A) = O(cBh

pB
B) with constants cA, cB (6.2)

Let hB be the step size of the finer resolved mesh and pB its order of
interpolation accuracy. After rearranging (6.2) and solving for pB, the
relation in (6.3) is found to approximate the necessary interpolation order
in the higher resolved domain.

pB = O(ln(hA)
ln(hB) ·pA−k) with k = fracln

(
cB

cA

)
ln(hB) and hB < hA < 1

(6.3)
As the ln function is strictly increasing, and < 0 for the given spatial
intervals, the absolute value of ln(hB) is always larger than the one of
ln(hA) under the given assumptions. If the coefficients in the Richardson
expansion were equal, the constant k diminishes. Neglecting k we then
obtain a lower required polynomial order pB on the finer resolved mesh
to maintain the same accuracy as required by the coarser mesh. Thus,
when coupling a highly resolved source domain with a coarser resolved
target domain, it is appropriate to limit the polynomial terms for the
computation of state values at the integration points of the target domain.

In structured Finite Volume or Finite Difference source domains we
use Lagrangian polynomials in each dimension to find the state at the
requested interpolation points. In unstructured source domains with DG
the numerical solution within the cells themselves are directly used. For

82

6.2 Distributed Coupling Scheme

unstructured source domains using the PNPM scheme [11] as described
in Section 3.5, the reconstruction is performed and the reconstructed
polynomials are evaluated.

A complication arises where the stencil for the polynomial around the
integration point itself includes ghost cells again. In such a configuration a
circular data dependency appears for the coupling interface. To resolve this
problem exactly, it would be necessary to solve an equation system across
all influenced coupling points. However, such an iterative solution for the
coupling interface would further increase the already high computational
costs for the interfaces. Another option instead of solving the cirular
dependency, is given by using an approximation for the ghost cells needed in
the interpolation. The data dependency is broken by using an extrapolation
of the state in ghost cells with the Cauchy-Kowalevsky (CK) procedure [44].
As this extrapolation needs to be done for intermediate time-steps anyway,
this fits nicely into the rest of the framework. The CK procedure converts
spatial derivatives into temporal derivatives, which allows the extrapolation
by a Taylor series. It therefore, allows us to maintain the high-order spatial
accuracy also in the temporal extrapolation and maintains the accuracy
across the coupling interfaces.

With the state values at the interpolation points, the state in the ghost
cells of the target domain have to be constructed. As the interpolation
points are chosen such, that they are conforming to the numerical scheme
of the target domain, this results in simply applying the element local
treatment as in regular fluid elements of that domain. Usually, this
treatment is a numerical integration of the state values.

In the described coupling mechanism a natural separation appears
between the interpolation step and the construction of the ghost cells. The
interpolation has to be performed in the source domain and no information
other than the coordinates of the integration points are required from the
neighbors. Whereas the construction of states in ghost cells just needs the
state values in its integration points, and no further information about
the source domain is needed. This separation ensures the generality of
the approach to couple arbitrary domains, and provides a natural path for
parallelization which will be elaborated in the following section.

6.2.4 Parallelization
The parallel identification of the coupling points needed to build the ghost
elements at the interfaces has already been described. In the following,
the parallel strategy for the coupling itself is explained. Indeed the paral-
lelization is very straight forward, as there is an inherent separation in the

83

6 Scalable Distributed Coupling Method

coupling method. Yet, the parallelization on the level of physical domains
is not sufficient. Each domain usually is very demanding in itself and
needs to be parallelized also internally. Such a parallelization is achieved
by partitioning the domain into smaller parts. Then each part can be
computed independent from the other ones with communication on the
interfaces.

As described in the introduction of this chapter, we will use the term
section, to address the interacting parts in the parallel, heterogeneous
simulation. The need for this new term arises from the two different
subdivisions in the overall simulation domain we are facing in the parallel
execution. In the multi-scale setup we have various physical domains with
different discretizations and equations to solve that need to be coupled.
In a parallel execution, we now subdivide each physical domain again
into smaller partitions. This subdivision results in two indices for each
individual part. First, there is the index of the physical domain and
secondly there is the rank of the process, which will process this part
within the physical domain. Such a processing unit is referred to as a
section in this work to distinguish it from (physical) domains and (parallel)
partitions. With this concept it is possible to distribute the computational
domain arbitrarily on the available processes. Especially, a process might
participate in the computation of multiple domains. Thus, a single process
might compute several physical domains but each domain might also
be computed by multiple processes. With the unique identification of
each section by rank and domain index, any distribution is just equally
handled by communication between the various sections. This yields the
greatest potential for scaling, as no central processing is required. All
communication happens between equal peers in a local neighborhood, so
the total number of processes used in the simulation is not limited by any
many-to-one communication patterns, that would be imposed by dedicated
processes taking care of the coupling itself.

However, there are two levels present in the parallel scheme, as there is
a difference in the communication within each physical domain and the
communication between adjacent domains. To separate these levels in the
communication layout, MPI communicators are used to group the processes
within each physical domain together. The individual communicators allow
the solvers in each physical domain to act within this communicator just as
it would act if run without any coupling. Thus, a homogeneous structure is
maintained within each solver, and all heterogeneity is left to the coupling
itself. The achieved modularity allows easier integration of existing solvers
and helps to separate the different algorithms. Despite this division into
two levels all the communications for the coupling are nevertheless done

84

6.2 Distributed Coupling Scheme

Figure 6.8: Illustration of a decomposed and partitioned three-dimensional
coupling setup with unstructured and structured partitions.
Only one row of structured partitions are shown to allow the
view on the unstructured domain beneath. The color indicates
the instanteneous pressure field of the coupled flow simulation.

between individual sections. Processes just happen to rely on different
communicators for the coupling via ghost cells (MPI_COMM_WORLD) and the
exchange within the physical domain (local communicator). This layout is
sketched in Figure 6.8, where 2 different domains are shown, one structured
and one unstructured. The image is a cut through a 3D computation, and
the sections are shown along with the containing meshes.

Domain calculations Coupling calculations

Figure 6.9: Separation of the overall computing time into two different
tasks. These blocks of tasks repeat every iteration.

85

6 Scalable Distributed Coupling Method

Str. Calc.

Unstruct. Calc.

Coupling Calc.reducible

unavoidable

Figure 6.10: Illustration of a setup with strongly imbalanced code blocks
and two points of synchronization. There appear two idle
times. Different ones in each execution thread. The one
(in grey labeled reducible) between domain calculation and
coupling can be minimized by using more processes for the
unstructured part (lower row). However, the other (shown in
red as unavoidable) can not not be diminished by the same
means, it would even get worse with more processes for the
unstructured part.

6.2.5 Balancing and synchronisation

The coupling mechanism adds another task to the solver. Each section
with a coupling interface not only needs to compute the elements of the
computational domain, but also has to perform the evaluations for the
ghost-cells. As outlined above, this task might be expensive and far from
negligble. It is also a task that might consume dramatically different
amounts of time in the two coupling partners. The two time blocks of
different tasks are depicted in Figure 6.9. In the parallel simulation there
obviously needs to be a synchronization, as at some point in time the data
at the coupling points needs to be exchanged. However, as it happens, the
serial and initial parallelization performed the computation of the time
step width after the domain calculations but before the coupling point
computations. Thus, there where two synchronization points active in the
setup, separating both parts from each other. This causes large waiting
times if not both blocks in themselve are balanced, as illustrated in Figure
6.10. In that figure the simulation is split into two processes, one with an
unstructured part and the other with a structured part. Both are coupled
with each other. Imagine the structured solver is much faster than the
unstructured one, but calculating the coupling data is much slower. With
the two synchronization points, one after the domain calculation and one
after the coupling calculation, we are stuck with the situation in Figure
6.10.

On each side there is large idling time gap, due to the massive imbalances
in each code part. The structured solver has to wait until the unstructured

86

6.2 Distributed Coupling Scheme

Str. Calc.

Unstruct. Calc.

Coupling Calc.

Figure 6.11: Moved middle synchronization point after the second synchro-
nization, to combine both code execution blocks and allow for
a balancing of the overall computing time. Though there are
two synchronizations required here, they are now immediately
following each other, resulting essentially in a single point of
synchronization.

solver has computed its domain, only then it can start to compute the
coupling data. The unstructured solver on the other hand is quickly done
with the computation of the coupling and has to wait on the structured
solver to complete this step, before advancing to the next iteration. Only
one of these gaps might be reduced by using more processes for the part that
consumes more time. The other gap will inevitably remain or even grow.
In Figure 6.10 this is indicated by the reducible gap between structured
calculation and the coupling calculation on that side. By putting more
processes on the unstructured side of the execution, the unstructured
calculation will shrink and this reducible gap diminishes. However, the
gap in the coupling imbalance on the unstructured solver will remain, and
even grow.

Luckily, the synchronization between both code parts is merely the
agreement on the time-step size and subcycling, which is easily moved.
The only reason for it to be at this point in the code execution is because
this happens to be the point, where it has been in the serial code version.
Moving the synchronization for the timestep after the coupling point
exchange yields the timing blocks shown in Figure 6.11. With this change
it now is possible to achieve a balancing between the two solvers, as there
is only a single point of synchronization per iteration remaining. The
single task block allows us to distribute processes according to the required
computing time in both sides.

The lesson to learn from this example is the importance of few syn-
chronizations and the gathering of all synchronizations at a single point if
possible. If it is not possible to reduce the points of synchronizations to a
single point during execution, we will likely face imbalances that can not
be cured by any tuning of process distributions.

87

6 Scalable Distributed Coupling Method

6.2.6 Summary coupling
In summary the distributed parallel coupling scheme has the following
design. The coupling mechanism is purely based on the exchange of
data at discrete points in space. All required interpolation points are
localized on a per section basis and communication structures for the
data exchange at these points are creaated accordingly. As described in
Section 6.2.1, two strategies for this parallel localization of the coupling
points are available. After this initial setup only peer to peer exchanges
are required between adjacent sections. This exchange is done in the
coupling framework and causes some overhead on both sides. The source
domain needs to perform the interpolation to all requested points and
the target domain has to construct its ghost cells from the received data.
These additional computing times need to be considered when partitioning
the domains. Especially, it is necessary to avoid synchronization points
between the solver computation and the coupling computations. Though,
they might sum up to the same time on either side, they can vary drastically
in their parts and intermediate synchronization between them would lead
to large idle times. Synchronization between the domains are necessary to
determine, if the time-steps and the sub cycles need to be adjusted.

6.3 Coupling Across Different Machines with PACX-MPI

The domains used in simulations might vastly differ in terms of the numer-
ical requirements. Therefore, it might be beneficial to also use different
hardware for the individual domains within the coupled simulation.

6.3.1 Structure of the application
While the individual solvers in the KOP framework can be run as stand
alone and independent of each other, the coupling framework itself is built
on the basis of an MPI environment enclosing all parts. The coupling
part acts as the main program, which calls the solvers and controls the
complete setup. There may be any number of different physical domains
coupled together, each with its appropriate solver. Those are steered by
the coupling framework by imposing the subcycling and communication
on common iteration cycles. As outlined above, the coupling is realized by
taking care of the boundary conditions at the interfaces between domains.
The taken approach of discrete points for the coupling between differ-
ent physical domains enables arbitrary discretizations, numerical schemes
and even equations in adjacent domains and retains the high order of

88

6.3 Coupling Across Different Machines with PACX-MPI

0
(L2)

1
(L3)

2
(L4)

3
(L5)

Application

Cluster A

S
(L0)

R
(L1)

4
(L2)

5
(L3)

6
(L4)

7
(L5)

Application

R
(L1)

S
(L0)

Cluster B

Figure 6.12: Layout of the PACX-MPI communication across distinct clus-
ters. The MPI ranks as seen by the application are shown in
large bold letters from 0 to 7. Below them the local process
numbers are noted in brackets.

involved schemes across domain boundaries. Typically, there is more data
to exchange more often within a physical domain than between different
domains, resulting in a relatively weak interaction between domains. Nev-
ertheless, all components are tied together into a single program in order
to fully eploit the possibilities offered by an MPI environment.

6.3.2 PACX-MPI

PACX-MPI [10] is an MPI layer developed at HLRS which enables an
MPI parallel application to be spread across several clusters [22], hence its
name PACX as in Parallel Computer extension. For the application this
distribution is hidden by PACX-MPI, which acts as an intermediate layer
between the application and the actual MPI libraries on each involved
cluster.

6.3.3 Communication layout

PACX-MPI takes care of the communication between different clusters by
using one sending and one receiving daemon on each of them. Communica-
tion requests between processes residing on different machines is intercepted

89

6 Scalable Distributed Coupling Method

by PACX-MPI and tunneled through the daemons to the corresponding
machine. Communication between processes within the same cluster is
handed over to the local MPI implementation. With this approach the
optimal usage of the networking infrastructure on each side is available
to the application and PACX-MPI is free to use any different appropriate
network protocol to establish the inter-cluster link. This layout of the
process distribution within PACX-MPI with the communication daemons
and the mapping of local MPI ranks to global MPI ranks is shown in
Figure 6.12. In the figure two clusters with six processes each are depicted.
On each cluster two processes need to be reserved for PACX-MPI, they will
take care of the communication between clusters. One acts as a sender (S)
and one as a receiver (R), these are colored in red and green respectively.
The remaining eight processes across both clusters are numbered according
to the MPI rank visible to the application. In addition, each process is
labeled with the cluster-local process number in brackets.

6.3.4 Heterogeneous environment

The PACX-MPI library may be used to link smaller, similar clusters
together to gain more computational power for a single simulation, than
on each of them may be available. But it is also capable to couple different
kinds of machines together. For example, it transparently takes care of
necessary data conversions from little to big endian. In the following
sections, we will cover how this combination of different architectures
can reduce overall computation times in the heterogeneous simulation by
exploiting the best fitting system for each numerical scheme. As PACX-
MPI is providing the usual MPI interface to the application transparently,
it provides a homogeneous setting on top of the heterogeneous hardware.
This yields the advantage to have the possibility to distribute any MPI
application across a heterogeneous environment, however it should be kept
in mind that, in order to use the hardware efficiently, the application
should be aware of the weak links between different clusters nevertheless.

6.3.5 Starting an application using PACX-MPI

There are two possibilities to start an application using PACX-MPI. One
option is to define the complete setup by hand in configuration files on
each site. This approach is a very static and strict one, but the complete
setup can be defined in every detail, which might be necessary in some
configurations. A more dynamic approach is offered by the separate startup
server provided by PACX-MPI. The startup server has to be started before

90

6.3 Coupling Across Different Machines with PACX-MPI

the application instances. It then listens on a configurable TCP port for
incoming connections. When the application processes are started, they
send their setup informations to the startup server that collects them
and sends all informations back to each cluster after the last instance is
connected. With this the startup phase is complete and the startup server
terminates. This approach is much more flexible, as the application just
has to have the information where the server is listening and only needs to
be informed about the number of intended application instances, which is
a command line argument. At the same time, the PACX-MPI clients only
need to be aware of the common interchange point given by the startup
server.

A problem in the startup of the application that is not addressed by
PACX-MPI is the need for a simultaneous execution on systems, where
the execution is determined by a scheduler. As the involved clusters might
each run their own, independent scheduler, the time slots assigned to the
application might not overlap each other. This need for a co-scheduling
in such an environment is an open issue and currently only overcome by
manually adjusting the execution slots on all involved sites. For integrated
heterogeneous systems managed by a single scheduler this problem does
not exist and a simultaneous execution block can be found. However, such
machine configurations are not very common.

Regardless of which of the two startup methods is used, the PACX-
MPI clients read their information from a configuration file, that either
describes the startup server to use, or provides detailed information on the
other instances of the application. This configuration file has to be named
.hostname. For a setup with a startup server this file has to contain just
a single line:

Server <startupservername.startupserverdomain> <Rank>

Where the rank denotes the ordering of the client. The counting of
clients starts with 0 and also defines the ordering of MPI ranks across
all machines. Each client will hold a contiguous block of MPI ranks
according to the number of processes used on that machine. The address
<startupservername.startupserverdomain> describes the location of
the startup server to connect to. Finally, the first term Server is a keyword
indicating the usage of a startup server.

For a manual configuration without a startup server the configuration on
all machines has to contain the definition of all participating PACX-MPI
clients. This is achieved by the following line for each machine:

<hostname> <number of processes> (startup-command)

Here <hostname> denotes the hostname of the client and <number of

processes> the number of processes on that machine. Finally, there

91

6 Scalable Distributed Coupling Method

Figure 6.13: Domain setup for the scattering at a sphere. In blue the
surrounding structured mesh is indicated. The black dot
represents the sphere, and the yellow domain represents the
unstructured mesh embedding the spherical geometry.

might be an optional (startup-command) given, that is to be used on
the machine to start the MPI application. The ordering of MPI processes
across the distributed system is given by the ordering of host definition
lines.

6.3.6 Heterogeneous computations
To investigate the possibilities of a heterogeneous simulation on a hetero-
geneous supercomputing environment with the help of PACX-MPI, the
NEC SX-8 vector machine at HLRS is used in combination with an IA-64
cluster. A 3D test case where a sinusoidal wave is scattered at a perfectly
reflecting sphere of one meter radius is used to analyze the behaviour of
the KOP framework in this setting. The exact solution for this problem is
known and was proposed as an aero-acoustic benchmark by Morris for the
Second CAA Workshop on Benchmark Problems [55]. The space around
the sphere is discretized with an unstructured mesh and the Discontinous
Galerkin scheme is used to solve the equations in this domain. This domain
is embedded in a structured mesh where a Finite Differences scheme is
deployed.

The unstructured mesh consists of 9874 elements, while the much larger
space, covered by the structured mesh, is composed by around 42 million
elements. In total, a volume of 102.2 × 57 × 57 meters is covered in the
simulation embedding the sphere with one meter radius. This configuration
of domains is shown in Figure 6.13.

92

6.3 Coupling Across Different Machines with PACX-MPI

Table 6.1: Running times for the possible setups
Itanium II NEC-SX8 Both coupled

Elapsed time 27925 s 10966 s 3207 s
Unstructured 2994 s 7746 s 3019 s
Structured 23887 s 2871 s 2869 s
Coupling 1012 s 321 s 554 s
Waiting 0 s 0 s 164 s

The complete simulation was done on each architecture for comparison
and then each domain was run on the appropriate machine in a coupled
run. Due to the nature of the coupling a simultaneous execution of both
domains is required. Ideally this would be ensured by the scheduler,
however this feature is not available in the infrastructure of this setup.
The simultaneous execution on both parts, therefore, has to be ensured
manually. This can be done by starting the computation on the cluster
interactively and submitting a job for the part on the vector machine to
the scheduler. For the initialization of the PACX-Setup, a startup server
running on the cluster is used.

The running times on each architecture and in the coupled run are
shown in Table 6.1. Note, that the coupling of both systems involves a
combination of resources and the elapsed time is lower than the sum of all
parts because of this parallelization. By looking at the total elapsed time
on each architecture, we see an advantage of almost a factor of three (10,966
s instead of 27,925 s) if the computation is done on the vector architecture
instead of the scalar cluster. Thus, we could conclude that the vector
machine is better suited for this simulation setup, that utilizes a large
structured domain around the smaller unstructured domain embedding
the sphere. But the table also highlights that the unstructured part of the
simulation is consuming most of the time on the vector machine. We also
observe that it is more than two times slower than the execution of the
unstructured part on the scalar architecture, due to the bad vectorization of
the highly irregular execution patterns in the unstructured part. Obviously,
executing this part of the simulation on the vector system is not optimal,
and the total running time could be improved by putting this part on
the scalar system. The KOP framework with PACX-MPI allows us now
to do this and the result is shown in the third column of Table 6.1. We
see that for both the unstructured and the structured part, executed

93

6 Scalable Distributed Coupling Method

on the respective best fitting architecture, the fast execution is almost
achieved. Only small overheads, due to balancing are added in the solver
parts, and each one roughly takes 3,000 s. The coupling is dominated
by the unstructured domain. However, as the scalar system now does
not have to compute the coupling parts of the structured part anymore.
Thus, in comparison to the run on the scalar machine alone, the overall
coupling time is also cut down. Due to the imbalances between both
machines in terms of exection times for this setup, there is an additional
waiting time that has to be spent in the coupling. This imbalance can
be minimized by an appropriate balancing between the two machines.
Unfortunately, such a balancing has to be done manually in current cluster
environments, as an adaptation to the observed running times on either
machine would require an increase or decrease of the node counts. Such a
dynamic change of resources is generally not supported by the scheduling
system. Nevertheless, the manual setup for a static coupling as considered
here is still feasible and as can be seen, the benefits can be large. By
offloading the unsuitable part of the simulation from the vector system
NEC SX-8, we were able to cut the time to solution to one third of the
execution on the vector system alone. It is remarkable, that this speed-up
is larger than the addition of another vector processor, which would only
be capable of cutting the overall running time into half.

The heterogeneous execution of the heterogeneous simulation enabled us
to perform a simulation with 42 million elements in the structured domain
faster than on either homogeneous system. This mesh size is large for
the scalar system, and the coupled simulation achieved a reduction of the
overall computing time by almost a factor of ten. The large reduction in
computing time is due to the high efficiency of the structured mesh on the
vector system. Direct addressing and highly regular execution patterns in
this solver result in a full exploitation of the vector instructions. In the
unstructured solver on the other hand this vectorization is not so easily
achieved, and its execution is better left to the scalar system. However,
in the aero-acoustic setup like the considered one with a large far-field in
comparison to the flow field around obstacles, the computing resources
nicely fit the numerical requirements.

6.4 Concluding Remarks on the Coupling Mechanism

In this chapter the implementation of the scalable distributed coupling
mechanism and its advantages and deployment were highlighted. The
coupling is designed to work with arbitrary domain configurations. While

94

6.4 Concluding Remarks on the Coupling Mechanism

this allows a large flexibility in the setup of domains, we also encountered a
major scaling bottleneck in this approach. This scalability limit is imposed
by the fact that nothing can be assumed about remote partitions and
everything has to be communicated. Thus, an all-to-all communication
pattern is inevitable. We discussed, how this can be solved on a distributed
system and that the simulation can still scale to thousands of processes but
the computation of coupling point locations across all processes remains
expensive and even increases in costs with growing process numbers. In the
end, we are always stuck with the need for such an all-to-all communication
pattern if no further restrictions are imposed. From a broader point of view
this scalability wall highlights the general observation that a flexibility in
the execution introduces costs that will limit the computational efficiency.
It might be argued, that scalability is not everything and a few thousand
processes might suffice forever if the individual processors increase their
capability. Unfortunately, the hardware development rather seems to
trend towards the opposite direction and we will deal with smaller local
resources in larger distributed systems. In the future we might need to deal
with hundreds of thousands or even millions of interconnected relatively
small and slow processor cores, similar to IBM’s BlueGene system. The
sketched coupling system enables already large multi-scale simulations
on various systems and also the exploitation of distributed computing
resources without major bottlenecks but it might not be well prepared for
future computing developments.

Therefore, we move on in the following chapters and introduce a restric-
tion on the meshes that will allow us to overcome not only the scalability
limitation by the coupling but also the inherent problem in the mesh
generation for unstructured meshes as discussed in Section 4.2. However,
this major change necessitates a general redesign of all parts, involved in
the simulation. A dedicated mesh format that enables not only its scalable
handling in distributed solvers but also its scalable generation, requires
a new mesh generation tool as well as a fundamentally adapted solver
infrastructure. The basis of this infrastructure is implemented in a suite
of tools that we refer to as APES .

95

7 Distributed Octree Mesh Infrastructure

The approach in this work so far has been to drive the distributed paral-
lelization of the general coupling scheme for arbitrary geometrical setups
as far as possible. However, it lead to the conclusion, that the approach
is ultimately limited in its scaling, due to the necessary identification of
coupling interfaces in the unknown partitioned space. While this might be
tolerable in static setups, it will be a limiting factor in dynamic simulations
with varying meshes. At this point, a data structure that supports fast
spatial searches becomes necessary. One suitable data structure for this
task is offered by the octree. The octree is given by the recursive binary
subdivision of a given domain in each spatial dimension. It therefore allows
for spatial lookups in logarithmic time complexity.

Though, the introduction of such a search structure for the coupling
interface eliminates the scalability bottleneck in the connectivity identifi-
cation of the coupling, we still face the limitation of unstructured meshes.
In Chapter 4 the connectivity search for general unstructured meshes
was moved from the solver into a pre-processing step. This results in
a scalable solver, but it merely shifts the bottleneck. It helps to com-
pute tremendeously larger problems, but still is ultimately limited in its
scalability by the pre-processing.

The necessity for a fast spatial search to support the distributed coupling,
raised the idea to turn this need into a primary foundation and use the data
structure as underlying mesh in all coupled solvers as well. This eliminates
the distinction between structured and unstructured domains, as there
is just a single kind of domain, representable in the octree. Thereby the
preprocessing step for unstructured meshes is replaced by the need for the
generation of octree meshes. Due to the known topology of the tree, this
generation can be achieved in parallel with a scalable distributed memory
approach. However, this fundamental change in the concept, requires a
redesign of the involved solvers and their implementation on top of the
octree mesh concept. The implementation thus is done in a completely
new framework. In the following the basic concept and design of this new
framework, called APES (Adaptable Poly-Engineering Simulator) [65], will
be outlined.

97

7 Distributed Octree Mesh Infrastructure

7.1 General Relevance of the Approach for Complex
Geometries

Mesh-based algorithms build one of the most important discretization
schemes for the numerical modeling of field problems. They are also well
suited for parallel computations, as the meshes can be partitioned and the
smaller problems solved concurrently. Their basic idea is the discretization
of the computational domain by covering it fully with smaller, well defined
elements. For complex geometries, it is in general necessary to use an
unstructured mesh to discretize the computational domain. In unstructured
meshes each element has typically a different size and form. Therefore,
all information of element geometry and neighbor relations have to be
described explicitly. This fully explicit description however, poses a severe
hurdle for parallel processing, as potentially any part of the mesh might be
required in the neighborhood of any process. Due to the limited memory,
providing the complete mesh information locally to each partition is not
an option, as the ability to process larger meshes is often the motivation
to switch from one to many computing units in the first place. Although
this limitation can be moved out of the solver itself, as shown in Chapter
4 with a preprocessing as offered by GEUM [40], the scalability bottleneck
just gets shifted and ultimately limits the overall problem size. Tu et al.
[81] pointed out the importance to avoid such bottlenecks throughout the
complete chain of steps in a simulation.

Thus, not only the main computational loop, but the entire simula-
tion process, has to be considered, including mesh generation and post-
processing. Let us now look at a strategy to parallel mesh handling by
stepping back from the most general unstructured mesh form to a little
more restricted topology. As pointed out above, the octree offers such a
topology. It builds a frame for global adressing but allows for a sparse mesh
representation and greater flexibility than a structured, Cartesian mesh.
In this sense, a mesh based on an octree is a middle ground between the
rigid topology of structured meshes and the complete freedom of general
unstructured meshes.

7.2 Octree Meshes in the Solvers

The octree is obtained by recursively bisecting a cubical domain in each
dimension, such that it is subdivided into 8 smaller (child) cubes. This
is then recursively applied to each (child) cube, resulting in an ever finer
loalization. Choosing a cube as root element ensures a mostly isotropic

98

7.2 Octree Meshes in the Solvers

Mesh

Level 0

Level 1

Level 2

Full tree

Figure 7.1: Illustration of the spatial bisection with the help of a quadtree.
On the left, the mesh is shown for 2 refinements of the universe
square at level 0. Right to it the full tree shows the relation of
the mesh elements to each other as obtained by the repeated
bisection.

99

7 Distributed Octree Mesh Infrastructure

behavior of the discretization. Note however, not the full cube of this root
element will usually be used in the simulation. Instead we use a sparse
mesh and explicitly store all elements that are to be included. The mesh,
therefore, is treated like an unstructured mesh with explicit elements and
their dependencies. As it is hard to follow 3D illustrations, we will instead
mostly plot two-dimensional quadtrees, where the same concept applies.
At the root of the quadtree there is a square, that is subsequently divided
into four squares by a bisection of the root in each dimension. Figure 7.1
illustrates this concept with the actual mesh elements on the left, and the
tree showing the topological relation on the right. Thus, this is exactly the
same as for the octree, only that there are four instead of eight children.

Because this will appear commonly in the description, let us introduce
the term level L for the refinement steps. We start at the universe cube or
square and refer to it as level 0. Each bisection step increases the level
by one, such that in 3D we will have 8L nodes on level L in the full tree.
Similarly for the 2D quadtrees we obtain 4L. Note, how the localization
rapidly narrows down within few iterations. This also enables the fast
narrowing down of the neighborhood for any element in the mesh.

The usage of octree meshes for flow simulations has long been proposed,
for example by Flaherty et al. [17]. However, the emphasis in this work
is its special suitability for highly parallel distributed simulations. By
using octree meshes the main bottleneck of unstructured meshes can
be avoided, while the flexibility of local refinement and resolution of
arbitrary complex geometries is maintained. Octree meshes offer, therefore,
a compromise between easily distributed structured meshes and highly
flexible unstructured meshes. The known topology in the octree keeps
required global information low, and the connectivity between elements can
mostly be computed locally. Though, it would be possible to deform the
actual mesh elements and still benefit from the octree topology information,
only cubic elements will be considered here. Cubic elements yield the
advantage, that they usually can be computed efficiently in numerical
schemes, or are even required, as for example in the Lattice Boltzmann
Method. In the high order Discontinuous Galerkin solver, designed on top
of this kind of mesh in APES this is exploited with an efficient dimension
by dimension computation of integrals. Chapter 8 will present a possibility
to describe high order geometry information within the cubical elements,
reducing the need for deformed elements. The cubical elements also have
the advantage, that they avoid issues with bad mesh conditions due to
unfortunately formed elements. For these reasons, only cubical elements
are pursued further in the following.

Figure 7.2 shows an example for a mesh, that is obtained by the described

100

7.3 Introduction of the Common TreElM Library

Figure 7.2: Illustration of a mesh obtained by the described octree dis-
cretization.

octree discretization. It shows the filling of a channel with many small
cylindric obstacles, indicated by transparent objects. The complete space
covered by the octree is outlined by the blue grid lines and shows the
refinement towards the channel with obstacles. Inside the channel, there
is the actual computational domain, shown by the green cubical elements.
Only these elements are stored in the mesh and processed by the solver.
The other elements indicated by the wireframe are only there to illustrate
the refinement in the octree towards the geometry.

The basic concept in the APES framework is to exploit the known
hierarchical topology, provided by the octree. Another concept that is
supported by the octree and beneficial for the parallel operation is the
strictly elemental view on the mesh data. As each elemental will be
uniquely associated with a certain partition during the computation, such
a view enables the parallel treatment right from reading or creating the
mesh onward. The elemental view on the mesh data is therefore maintained
in the data layout and the operations on the data.

7.3 Introduction of the Common TreElM Library

The octree handling is implemented as a common library, used by all tools
in the processing chain of the simulation. Describing its main features,

101

7 Distributed Octree Mesh Infrastructure

Seeder
Geometry
Generation

Aotus
Library

Aotus
Configuration

APES
Adaptable Poly-Engineering Simulator

Harvester
Post-Processing
Analysis

Ateles
Discontinuous
Galerkin(DG)

Muriqui
Space-Time DG

Musubi
Lattice Boltzmann

TreElM
Library

Library access

File access

Configuration
Lua Scripts

Geometry
STL Files

Results
VTK Files

Figure 7.3: Schematic organization of the APES framework.

the tree-based elemental mesh is abbreviated as TreElM . It is used it as
the central common component in the APES framework. The TreElM
library is available online as open source [42]. This library enables a fully
distributed tool-chain and opens the possibility of a highly scalable coupled
simulation.

The tools in the framework range from the mesh generator Seeder
[29], which is capable to produce meshes in the TreElM format, over the
Discontinuous Galerkin solver Ateles for compressible and the Lattice
Boltzmann solver Musubi for incompressible flows to the post-processing
tool Harvester. Their interaction is sketched in Figure 7.3. The mesh
generator not only produces elements in the octree, but also offers dedicated
boundary descriptions for the solvers. In Chapter 8 we will have a look
at the generation of high order geometry descriptions within the cubical
elements of the mesh for Ateles. Along the same lines Harvester provides
a dedicated post-processing that allows the visualization of high order
simulation results by sampling coarse elements and showing fine details in
the final visualization files.

Though, an integrated chain of tools is pursued, there is still the need to
output large amounts of data from the applications point of view. Frequent

102

7.3 Introduction of the Common TreElM Library

output of results is for example necessary in transient problems, but it is
also required for restarts of long running simulations. Since neither input
nor output (I/O) can be avoided to the largest part, even with an integrated
workflow, the data structures are designed to be suitable for efficient parallel
reading and writing. Another advantage of writing intermediate steps to
the disk is the possibility to deploy each step in the chain of tools on the
most suitable machine. This is especially useful for the visualization of
the final output, that possibly depends on many libraries and benefits
from special graphics hardware. Finally, reusing already generated meshes
in multiple simulations minimizes the initialization effort. The format of
the serialized sparse octree achieves this goal by using an element-wise
organization of the mesh data. Before we turn to the implementation of this
idea for distributed, parallel executions in Section 7.4, let us first introduce
the fundamental concepts of the mesh representation. For illustration
purposes a 2D quadtree will be used, but note that the concepts directly
apply in the very same way in 3D for octrees.

7.3.1 Spatial ordering by space-filling curves

Figure 7.1 shows three refinement iterations for a quadtree, what is missing
is the relation of the nodes in the tree (on the right) to the actual mesh
elements (on the left). Namely, we need to find a rule to order the 4
children obtained by a bisection step. Depending on which rule is chosen,
a specific ordering of the elements in the mesh arises. The curve obtained
by traversing the elements in this order is a space-filling curve, providing
a one-to-one mapping between multidimensional element coordinates and
a onedimensional element rank. There are many space-filling curves [68]
available to choose from, but the most relevant ones for octrees or quadtrees,
are the Hilbert curve and the Z or Morton curve. The Hilbert curve has
the nice property that a high locality can be preserved, as at most one
dimension increases by one in the multidimensional coordinates, when
increasing the rank by one according to the curve. A problem for this
curve however, is raised by the need for a rotation of the element ordering
depending on the refinement step or level in the tree. A less locality
preserving but more efficient ordering is offered by the Z curve [56], where
the spatial orientation of the curve does not depend on the level, and a
transformation from multidimensional coordinates to a onedimensional
ranking can simply be achieved by interleaving bits. Refer to Figure 4.2
for an illustration of this space-filling curve. The binary representation,
as required for bit interleaving, is a direct consequence of the bisection
mechanism that generates the tree. The bit interleaving technique for the

103

7 Distributed Octree Mesh Infrastructure

0

1

0 1 x

y

0 1

2 3

Parent

0 1 2 3

(0, 0) (1, 0) (0, 1) (1, 1)

Figure 7.4: Relation of a parent to its four children in a 2D quadtree. The
mesh elements are shown on the left, and the tree nodes on the
right. The spatial arrangement of the four chilren is defined
by the Z curve indicated by the blue line. Note, how the (x, y)
coordinate pairs can be interpreted as binary representation of
the rank along the Z curve by concatenating them like yx.

Z curve will be explained later in this section.
Let us have a look at this relation between a parent node and its four

children in a quadtree in Figure 7.4, where the spatial arrangement of
elements is defined by the Z curve. The rank of each element along the
space filling curve starts with 0 and can be easily constructed from the
integer coordinate pair (x, y), where the elements in each dimension are
also counted from 0 onwards, as indicated by the axes in Figure 7.4. Note,
that this mechanism works for arbitrary dimensions, and especially in 3D
we obtain for the octree relations shown in Table 7.1.

Now that we have this rule in place, it is applied in each bisection step,
such that on each level of the full tree we obtain a mapping between mesh
element coordinates and the onedimensional rank along the space filling
curve. For this, let us have a look at level 2 of the quadtree in Figure 7.1.
Level 1 is just one refinement and is arranged as shown in Figure 7.4, now
the same operation is performed for each of the elements from level 1 to
obtain the 16 elements on level 2, and we obtain a mesh as depicted in
Figure 7.5. The image provides three axes for each direction.

• A black axis to indicate the straight forward numbering of elements

104

7.3 Introduction of the Common TreElM Library

Table 7.1: Construction of the space filling curve rank in a 3D octree.

(x, y, z) zyx2 rank
(0,0,0) 0002 0
(1,0,0) 0012 1
(0,1,0) 0102 2
(1,1,0) 0112 3
(0,0,1) 1002 4
(1,0,1) 1012 5
(0,1,1) 1102 6
(1,1,1) 1112 7

in each dimension along with the binary representation of this integer
coordinate value

• A blue axis labeled L1, indicating the coordinates in the first refine-
ment of the universe square in level 1.

• A red axis labeled L2, indicating the child coordinates within the the
elements of the first refinement, following the rule set out in Figure
7.4.

Note, how the coordinate value can be constructed by concatenating the
bisection steps as bits, starting with the first refinement for the most
significant bit. Thus, the coordinate x(L) on a given level L > 0 can
be interpreted as the traversal of the bisection tree and with the child
coordinate ξl in each iteration, we obtain

x(L) =
L∑

l=1

ξl · 2L−l (7.1)

Where l iterates over the levels from the root node to the leaf on level
L. For example, we arrive at coordinate 2 by starting with ξ1 = 1 and
moving to ξ2 = 0, resulting in 102 = 2. Now we can find the Z curve
rank in a multidimensional mesh by interleaving the bits of the individual
coordinates, i. e. grouping the bits of same significance from all coordinates
together and building a single value by concatenating these bit sequences.
In d dimensions we get d coordinate components xi, which each can be

105

7 Distributed Octree Mesh Infrastructure

x

y

0 1 2 3
(002) (012) (102) (112)

0

1

2

3

(002)

(012)

(102)

(112)

L2

L2

0 1 0 1

0

1

0

1

L1

L1

0 1

0

1

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

Figure 7.5: Coordinates and rank along the Z curve after two refinements
of the universe square, compare to the second level in Figure
7.1. Note, how the coordinates in binary can be obtained
by concatenating the bisection position in each refinement,
starting with the first level (here in blue L1) for the most
significant bit. The refinement of the first refinement is here
drawn in red and labeled L2 to indicate the second level. The
rank of each element within the Z curve than can be found by
interleaving the bits of the coordinates in each direction.

represented as in equation (7.1) resulting for a given level L in

xi(L) =
L∑

l=1

ξi,l · 2L−l for i = 1, .., d. (7.2)

The Z curve rank z(L) on this level L can then easily be computed by

z(L) =
L∑

l=1

(
d∑

i=1

ξi,l · 2(L−l)d+i−1

)
. (7.3)

106

7.3 Introduction of the Common TreElM Library

As an example consider the quadtree of Figure 7.5. Applying (7.3) for
the element at coordinate (x1, x2) = (x, y) = (2, 1) = (102, 012) in this
L = 2 mesh is equivalent to the following procedure: Group the most
significant bit from the y coordinate and the most significant bit from the
x coordinate together, yielding 01. Then concatenate this group with the
grouping of the next significant bits, which in this example are already
the least signficant bits (10). This procedure results in a rank z(L) of
01102 = 610 along the Z curve on level L = 2. For the octree in 3D,
there will always be d = 3 bits grouped together (inner sum in (7.3)), but
otherwise the same mechanism applies.

The reverse operation can be found by matching coefficients. Writing
z(L) from equation (7.3) as

z(L) =
L·d−1∑

k=0

ζk · 2k,

we find matching coefficients for

k = (L− l)d+ i− 1. (7.4)

Thus, the l, i pair with l as bit position in a coordinate component xi

from (7.2) matching a given bit position k in the Z curve rank z(L) on
level L can be found by

l = L−
⌊
k

d

⌋
, (7.5)

and
i = (k mod d) + 1. (7.6)

In equation (7.5) b·c denotes the integer floor rounding to the nearest
smaller integer number. Note, that i − 1 < d for all i in (7.4), and can
therefore be neglected in (7.5), due to the integer division by d. With
equations (7.4), (7.5) and (7.6), it is now possible to match values at the
respective bit positions in Z curve rank and the coordinate component
ζk = ξi,l in both directions. Though, for the actual implementation some
bit shifting operations can be used instead of multiplications and divisions
to achieve the bit interleaving and sieving, respectively.

7.3.2 Node identification in the tree
The space filling curve provides us now with a method to map the multiple
dimensions on a given level into a single number with a well defined
ordering. However, the identification of an arbitrary element in the full

107

7 Distributed Octree Mesh Infrastructure

Mesh

Level 0

Level 1

Level 2

0

Full tree

1

5 6 7 8

2

9 10 11 12

3

13 14 15 16

4

17 18 19 20

Figure 7.6: Illustration of the TreeID to identify each element in the full
quadtree with a single integer.

tree still requires two information, the level, the element is found on and
its Z curve rank on that level. To avoid this need for two numbers to
fully describe an element, we introduce a breadth first counting through
the complete tree. This counting follows the space filling curve on each
level, but keeps adding adding up all elements from level to level. This
reduces the address of an element to a single integer value, out of which
the position and size can be computed completely. The numbering starts
with 0 for the root node, representing the universe square or cube and
then follows the space filling curve on each level, but keeps adding up
the respective ranks. As this number provides an identification for each
element in the tree, it is referred to as TreeID in this work. Figure 7.6
shows the quadtree from Figure 7.1, but now with the respective TreeIDs
added to the elements and nodes. With this method it is possible to fit 20
levels of a 3D octree into a signed 64 bit integer.

The breadth first numbering of the full tree results in a straight forward
method to move vertically through the tree. Consider a given node with
the TreeID tn. Its children can be found by

tcj = 2d · tn + j, (7.7)

108

7.3 Introduction of the Common TreElM Library

where j indicates the child ranging from 1 to 2d, and d is the dimensionality
of the mesh (3 for the octree, 2 for the quadtree). As explained in the
previous section, the spatial arrangement of the children tc1..2d , follows
the Z curve. Refer to Figure 7.4 and Table 7.1 for an illustration of this
ranking in a quadtree and an octree. The ordering for arbitrary dimensions
can be found by using L = 1 in equation (7.3). Conversely, the parent tp
of a given node tn can simply be found by

tp =
⌊
tn − 1

2d

⌋
. (7.8)

The horizontal movement within a single level of the tree can be achieved
by transforming the Z curve rank to the multidimensional coordinates via
equations (7.5) and (7.6). Then, after applying some arbitrary offsets to
obtain a relative neighbor in multiple dimensions, convert the modified
coordinates back to its Z curve ranking via equation (7.3). What is left to
do is the transformation from the TreeID to the Z curve rank on the level
of the element. This is achieved by subtracting the number of elements in
the full tree on all coarser levels:

s(L) =
L−1∑
i=0

2d·i (7.9)

The offset s given in equation (7.9) yields the connection between TreeID
t of a given element and its ranking in the Z curve on its level L as

z(L) = t− s(L). (7.10)

Now we have all the tools at hand to navigate around in a mesh defined on
the octree basis. Let us now put this into action for the connectivity search,
as it is needed for stencil schemes like finite volume or the Discontinuous
Galerkin.

7.3.3 Connectivity search in the Octree
With the node identification at our hands, we can perform lookups of
arbitrary elements in the full tree. That is, for any given TreeID, the
adjacent elements with their respective TreeID can be computed. This can
be used to compute the stencil as required by the numerical scheme, by
exploiting the fully structured Cartesian nature of the mesh on each level.
To find neighboring elements in the required stencil, we need to convert
the TreeID of the element, for which the stencil is to be constructed, to

109

7 Distributed Octree Mesh Infrastructure

x

y

21 22

23 24

25 26

27 28

29 30

31 32

33 34

35 36

37 38

39 40

41 42

43 44

45 46

47 48

49 50

51 52

53 54

55 56

57 58

59 60

61 62

63 64

65 66

67 68

69 70

71 72

73 74

75 76

77 78

79 80

81 82

83 84

Figure 7.7: Looking up the right neighbor of a given TreeID (31), high-
lighted in blue. The neighbor is indicated in yellow and has a
TreeID of 47. These elements are on the third level of the full
quadtree and the first TreeID on this level is 21, all following
elements on this level are counted according to the space filling
Z curve.

110

7.3 Introduction of the Common TreElM Library

its coordinates on its level. Then we can add desired offsets and convert
the obtained coordinates back to a TreeID.

Let us illustrate this with an example for the two-dimensional quadtree.
Assume, we need to find the right (in positive x direction) neighbor to
the element with TreeID t = 36, shown in blue in Figure 7.7. First, we
need to identify its coordinates xi(L), which includes the level and the
respective coordinates in the two dimensions. The level L can be found
with the help of equation (7.9) by subtracting the level offsets successively
from the given TreeID. Thus, in this case for t = 36, we obtain:

• Level 0: 36 − 40 = 35

• Level 1: 35 − 41 = 31

• Level 2: 31 − 42 = 15

• Level 3: 43 > 15

• TreeID 36 is located on level 3 and has a Z curve rank of z(3) = 15
on this level.

The binary representation of z(3) = 15 is 0011112 and with the bit
sieving from equations (7.5) and (7.6) we obtain the coordinates for both
dimensions as x1 = 0112 = 3 and x2 = 0112 = 3:

z(3) = 15 0 0 1 1 1 1
x2 = 3 0 1 1
x1 = 3 0 1 1

To find the right neigbhor, we simply need to add one to x1, which yields
4. The coordinate, for which a TreeID has to be found, therefore is (4, 3)
on level 3. To convert this back into a TreeID, we revert the steps taken
above, but now for the new coordinate. First, we convert the coordinates
x1 = 4 and x2 = 3 into a Z curve rank z(3), by interleaving their bits,
according to equation (7.3):

x2 = 3 0 1 1
x1 = 4 1 0 0
z(3) = 26 0 1 1 0 1 0

From this interleaving we obtain z(3) = 26 as shown above. Finally, we
need to add the offset s(L) from (7.9) for level L = 3 to obtain the TreeID:
t = z(3) + 21 = 47. Note, that to find this neighbor with TreeID 47 to
the element with TreeID 36, we did not need any more information about

111

7 Distributed Octree Mesh Infrastructure

the mesh then the dimensionality of the mesh and the original TreeID
itself. All topological information is encoded in the TreeID. This ability to
identify the neighborhood purely based on a given TreeID is important
for the parallel treatment, which will be discussed later on. One question
remains, before we move on to discuss the sparse tree in the next section.
When looking at neighbors, it might happen, that we try to access elements
outside the universe cube, for example the right neigbhors to elements at
the right edge of the mesh shown in Figure 7.7, that is to elements with an
x1 coordinate of 7. To avoid special treatments and always ensure a well
defined behavior, a periodic boundary is assumed in each direction of the
root element. This is achieved by using a modulo operation around the
offset addition for the neighborhood identification, such that we get for the
right neigbhor x1 = (7 + 1) mod 8 = 0. With this definition, we obtain a
closed system, where any movements through the tree remain within the
tree and result in well-defined element locations. Please note, that this
periodicity is merely assumed to assure a well defined neighborhood in
the topology of the tree. We will treat boundary conditions in the mesh
differently allowing for their arbitrary definition.

7.3.4 The sparse Octree
So far, only the full tree was considered, and the description of the topology,
as given by the recursive multidimensional bisection, has been described.
The topology allows the identification of each element without a fully
explicit description. However, in the meshes we only want to maintain
the elements that build the computational domain. These are always leaf
nodes in the tree without children. Also not all areas of the universe cube
need to be covered by the computational domain. Instead boundaries and
obstacles might limit it. Different resolutions in the computational domain
itself also give rise to missing nodes on given levels. In this mesh definition
which is sparse in contrast to the full tree of the topology description we
need to maintain a list of all elements and need to deal with neighbors
that are possibly missing.

What we are looking for, are tessalations of arbitrarily shaped domains
with non-overlapping elements of variable size. That is, for any element in
the mesh, we will have neither its parent nor its children from the tree,
as those would overlap the same space. Further, to allow for domains of
arbitrary shape, we restrict the elements to those, that actually form the
computational domain. Figure 7.8 shows such a mesh, which is refined
towards a cubical obstacle in the middle of the domain. The discussion
above provided us with a unique identifier for each element in the domain.

112

7.3 Introduction of the Common TreElM Library

x

y

5 6

7
33 34

35

9 10

45 46

48
12

13
57

59 60

15 16

70

71 72
18

19 20

Figure 7.8: Quadtree mesh refined towards an obstacle in the center (in-
dicated in grey). The numbers indicate the TreeID for each
element.

To describe a mesh, it therefore is sufficient to simply list the identifiers
of all the elements, which should assemble the mesh. Thus, a sparse
mesh for a complicated computational domain can be obtained noting the
TreeID for each non-overlapping element that should be part of the mesh
discretization.

The mesh in Figure 7.8 might not be complicated, but serves as a basic
example, showing elements of different sizes and areas in the universe
square, that are not to be part of the computational domain. Shown is a
quadtree mesh refined towards an obstacle, along with the TreeID of each
element. Sorting of the elements is indicated by the red line, though some
parts of the resulting curve overlap with each other, like the connection

113

7 Distributed Octree Mesh Infrastructure

0

1

5 6 7 8

33 34 35

2

9 10 11

45 46 48

12

3

13 14

57 59 60

15 16

4

17

70 71 72

18 19 20

Figure 7.9: Tree to the mesh from Figure 7.8. Red nodes are actual
elements in the mesh, while the grey nodes are virtual parents
that only exist topologically. The black dots indicate missing
elements, where an obstacle is found and no elements are
present. The thick red line indicates the space filling curve and
the ordering of the elements.

from 12 to 13 overlaps with the connection from 48 to 57. This mesh can
be completely described by the list of the shown TreeIDs and a geometrical
definition of the universe square. The corresponding tree is shown in Figure
7.9. In the tree representation of the mesh in Figure 7.9, the connecting
curve from element to element gets a little clearer, without the overlapping
of the spatial domain.

Figures 7.8 and 7.9 are closely related. While Figure 7.8 shows the
spatial arrangement of the elements, Figure 7.9 illustrates the topological
arrangement in the quadtree. The relation between these two is defined
by the space filling curve. Thus, a sparse mesh is represented by listing
all TreeIDs for the mesh, sorted according to the space filling curve,
in the case of Figure 7.9 all numbers in red nodes, following the thick
red line of the space filling curve. The obtained list in this example is
(5,6,7,33,34,35,9,10,45,46,48,12,13,57,59, 60,15,16,70,71,72,18,19,20).

Finding neighbors in this sparse mesh works basically by the same
mechanism as described in Section 7.3.3 for the full tree. Namely, the
TreeID is converted to coordinates, an offset for the neighbor is added,
and the resulting coordinate converted back to a TreeID. There is only

114

7.3 Introduction of the Common TreElM Library

one additional step involved, which is the look up of the TreeID identified
as neighbor in the list of elements of the mesh. For this search, we have
two possible approaches at our hand, both resulting in logarithmic time
complexity for the lookup of a given element. One approach is to create
the virtual structure of the upper part (all parents of actual leaf nodes) of
the tree with pointers to the children. The tree could then be traversed
accordingly to fastly identify the element in question. An alternative is the
usage of a binary search in the list of elements, which is possible, as the
elements are sorted according to the space filling curve. The comparison
operator, required for a binary search, is given by comparing to elements
on their greatest common level. Both approaches offer a fast lookup of
actually existing elements. Though the actual storage of the upper part of
the tree might be faster, it also requires the mainteanance of a large part
of the full tree. The binary search on the other side converges somewhat
slower, but has the appeal to work for arbitrary dimensions in the same
way and without the need to maintain an explicit tree structure. In the
mesh shown in Figure 7.8, the lookup of the upper neighbor of the element
with TreeID 48, for example requires the identification of the neighboring
TreeID 70 as described in Section 7.3.3 and then the lookup of the position
of this element in the list of all elements in the mesh, which in this case is
19.

One complication in the sparse mesh in comparison to the full tree is
the possibility of neighboring elements not existing on the same level as
the original element. For example the right neighbor of the element with
TreeID 70, would be TreeID 73. However, this element does not exist,
instead only the element with TreeID 18 exists. The left neighbor does not
exist at all, due to the obstacle in this direction. Finally, the left neighbor
of TreeID 18, would be 17, which also does not exist. These are the three
possible cases, that can occur in the same level neighbor lookup in the
sparse tree.

1. The element does not exist (outside the computational domain).

2. Only children of the element exist.

3. Only a parent of the element exists.

The first case does not pose a problem, because there are usually boundary
conditions associated with the surface of the computational domain, and
therefore no need for elements in this direction. The last two cases need
to be treated by interpolation. For this, intermediate elements are created,
which only serve as placeholders for the interpolation results, such that

115

7 Distributed Octree Mesh Infrastructure

the stencil algorithm can easily access them on each level. In contrast to
the mesh elements, the intermediate elements overlap other elements, and
they are created as needed. The actual interpolation mechanism needs
to be provided by the solver, but the required infrastructure and spatial
information is given by the octree layout. Let us refer to these intermediate,
newly created elements as ghost elements.

Depending on the origin of the interpolated data, we may call these
ghost elements more specifically ghosts from finer, for elements where the
actual mesh elements are children of the element, or ghosts from coarser,
for elements where only coarser elements exist in the actual mesh.

7.4 Distributed Octree

With the previous tools at our hand, we now have the means to describe
complex meshes on the basis of an octree topology. In this section, we
will uncover how this strategy can be exploited on parallel systems with
distributed memory. The space-filling curve used to serialize the mesh
provides an ordering that preserves the multidimensional locality in the
onedimensional list to some extend. A partitioning, therefore, can be
simply achieved by splitting the list of elements into chunks of equal size.
Due to the locality preserving property of the space-filling curve, these
chunks build partitions of reasonable shape. While the surface might not
be as small as with a graph partitioning approach, it yields a sufficiently
small surface, especially for high order methods.

For the illustration of the mechanism in parallel, we will use the quadtree
mesh from Figure 7.8 and distribute its N = 24 elements to P = 5
partitions. Each partition has to contain at least

n =
⌊
N

P

⌋
= 4

elements. The remaining 4 elements are distributed to the first 4 partitions,
such that the first four partitions each consist of 5 elements, while the fifth
partition only has to compute 4 elements. With this distribution, there is
always at most a difference of one in the number of elements between any
two partitions.

An important property of this partitioning approach is the fact that each
process locally can decide which part of the mesh it should compute. The
only required information is the total number of elements in the mesh N
and the total number of processes P . As the mesh is stored in the described
linear array, each process can read just its part from it independently from
the other processes.

116

7.4 Distributed Octree

0

1

5 6 7 8

33 34 35

2

9 10 11

45 46 48

12

3

13 14

57 59 60

15 16

4

17

70 71 72

18 19 20

5 6 7 33 34 35 9 10 45 46 48 12 13 57 59 60 15 16 70 71 72 18 19 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Part 1 Part 2 Part 3 Part 4 Part 5

Figure 7.10: Partitioning with 5 parts of the mesh from Figure 7.9. Colors
indicate the partition, each element belongs to. Below the tree,
the serialized list of elements and their split into partitions is
shown.

117

7 Distributed Octree Mesh Infrastructure

7.4.1 Distributed connectivity search
The connectivity search in parallel works basically as described in Section
7.3.3. There is only one major complication compared to the serial sparse
octree. In addition to the three cases for neighbors outlined above (not
existing, on a coarser or a finer level), it is possible in the distributed
mesh, that an element is found on a remote partition. As a searched
element might be refined further, and only its children exist in the actual
mesh, it may also be that the element is spread across multiple partitions.
Consider for example the element with TreeID 59 in Figure 7.8 with the
partitioning outlined in Figure 7.10. The right neighboring element would
be the one with TreeID 60, which is found on a different partition. For
an example, where the searched element is distributed across multiple
partitions, consider the right neighbor to TreeID 13, which is the not
existing, but refined element 14. Element 14 has three children (57, 59, 60),
of which the first two are located in partition 3 and the last one is located
on partition 4, as can be seen in Figure 7.10.

Thus, there is one additional step involved in the creation of the con-
nectivity in the distributed tree: locating the elements in the partitions.
To allow this, the first and last element of each partition is acquired on
each process. The identification of the partition for a given TreeID can
then be done by a binary search across those partition boundaries. With
the partition bounds known to each process, this can be done completely
independent by all processes concurrently. As a result of this identification,
the following three cases can arise:

1. The searched element is found locally and the serial method outlined
in the previous section can be applied.

2. The searched element is found on a remote process and has to be
communicated.

3. The searched element is found on multiple processes that is, it does
not actually exist, but is further refined.

Elements that do not exist at all because they are outside the computational
domain are not taken into account here. Usually this is not an issue as there
are boundary conditions at the surface of the domain and no neighbors
are searched in this direction. In other words, we never expect to look for
elements outside the computational domain. The first and second case
from the partition identification are straight forward. If the element is
local, the algorithm described before for the serial identification of the
element position in the sparse mesh can be followed. In the second case,

118

7.4 Distributed Octree

when the element is on a remote partition, a request has to be sent to
the corresponding process and a halo element is created for the solver
locally. The remote process itself simply performs the serial lookup of a
given TreeID in its part of the mesh and establishes a connection of the
corresponding mesh element and the communicated element.

Only in the third step it might not be obvious, how the situation should
be dealt with. However, by relying on the recursive topology of the octree,
this case also can be resolved with little extra work. First, it should
be noted, that this case can only happen if the requested element is
further refined and only its children exist in the sparse, non-overlapping
mesh. For these, a virtual element, serving as a placeholder, needs to
be created as in the serial algoritm. When the children are all on a
single partition, this virtual element obviously should reside on the same
partition itself. However, in the case where the children are spread across
multiple partitions, it is not obvious anymore where the virtual element
should reside. Instead any process encountering this situation creates the
virtual ghost element itself. While this might result in multiple processes
executing the interpolation and filling of the ghost element, it avoids the
need for some agreement algorithm with additional communication to
find a suitable process for this task. Thus, if the third case above is
encountered, the process looking for the distributed element, creates this
element locally as a placeholder and then looks instead for its children.
This is done recursively until none of the children is distributed across
more than a single process anymore. It should be noted, that this case is
rather rare for most mesh configurations, and children of an element can
only be distributed across more than two partitions if some are enclosed
completely within the searched coarse element. Usually, there are only
two partitions involved and the recursion above has only to be done once.
Yet, by employing this algorithm, it is possible to deal with any mesh and
partitioning configuration without any special cases.

The most important features of the presented approach are (i) the little
information, that is needed to describe remote partitions, and (ii) the
mostly independent local computation of relations between elements in
the mesh. In terms of MPI operations the complete communication in the
neighborhood search algorithm is composed of the following steps:

• An allgather to collect the first and last treeIDs from all partitions.

• An all-to-all with a single integer to indicate the number of elements
to be exchanged between all processes.

• Point-to-Point communications for the actual exchange of elemental

119

7 Distributed Octree Mesh Infrastructure

data.

7.4.2 Scalability measurement
For the assessment of the presented approach, the time consumption of the
initialization in the solver is measured. To stress the applicability for large
stencils, a neighborhood of 18 elements in 3D is searched, as for example
required in many Lattice Boltzmann methods. The computational domain
is a cube, periodic in all directions, and allows for an ideal weak scaling,
as each partition has exactly the same workload, both in computation and
communication, for a suitable number of processes.

These measurements where done on the Cray XE6 system Hermit located
at the High Performance Computing Center HLRS in Stuttgart (Germany).
It is equipped with AMD Interlagos processors, which are grouped in shared
memory nodes with 32 cores each. A pure MPI parallelization with one
process per core is used, resulting in 32 processes per node. The analysis
ranges from a single node up to 1024 nodes. Thus, covering a range of up to
32768 processes. Due to the full cubes (uniformely refined universe cubes
to a certain level), deployed in this assessment, the total element counts of
all conducted runs are powers of 8. The largest evaluated problem had
roughly 8.5 billion elements.

Due to the described binary search across partition boundaries, a running
time scaling, that asymptotically behaves like O(N

P
· log(P)) is expected,

where N denotes the overall number of elements and P the number of
processes. To see how well this is achieved, two measurement series are
performed. The first is a strong scaling, with fixed overall problem size
N , which should scale up to the point, where the log(P) term or some
constant overheads dominate the N

P
term. Whereas in the second series, a

weak scaling with a fixed problem size per process N
P

is investigated.

7.4.3 Strong scaling
In the strong scaling analysis, the largest cube, that fits onto a single
node is used and the measurement is run for this mesh on more and more
processes. The problem has 88 or roughly 16 million elements. In Figure
7.11 the resulting running times for the identification of all neighbors are
plotted in seconds with logarithmic axes. This initialization step scales
quite fine up to 8192 processes. Beyond this process count, the the running
times get larger again. Yet, even for these small problem sizes per process
of less than 2000 elements, the parallelization overhead is not large and
the running time remains below one second. The observed peak at 214

120

7.4 Distributed Octree

Number of processes

R
un

ni
ng

ti
m

e
[s

]

32 64 512 4096 32768
0.1

1

10

0.2

0.5

2

5

20

n = 88

Figure 7.11: Strong scaling of neighbor identification on Hermit.

processes might be due to the less optimal partitioning and therefore an
increased number of halo elements. However, these times still remain on
a low level at less than one second. The strong scaling shows that it is
possible to speed up the neighbor identification by a factor of at most
roughly 100. As we will see from the weak scaling, this translates also
to higher node counts and any given problem size can be speed up by
parallelization by this factor of roughly 100.

7.4.4 Weak scaling

For the weak scaling, about 8 million elements per node are used. To
ensure exactly replicated problems on each process, only powers of eight
are used for the process counts. Thus, the smallest machine partition in
this analysis are two nodes or 64 processes. The measured running times
are plotted in Figure 7.12 over the same axis for the process counts as
the strong scaling. Note, that the timings here are not plotted with a
logarithmic scale, the linear increasing running time therefore indicates a
O(log(P)) behavior. This corresponds to the expected behavior for the
binary search over all partition boundaries.

The initialization thus does not build a bottleneck for the overall sim-
ulation and enables the computation of large problems. This scalable

121

7 Distributed Octree Mesh Infrastructure

Number of processes

R
un

ni
ng

ti
m

e
[s

]

64 512 4096 32368
0

2

4

6

8

10

n
p

= 86

Figure 7.12: Weak scaling of neighbor identification on Hermit.

behavior of our new initialization enabled the connectivity creation for
8.5 billion elements in less than 10 seconds with 32768 processes on the
Hermit system.

7.5 TreElM File Format

As already introduced in the previous sections, the octree mesh is rep-
resented by the serialized leaf nodes building the computational domain
without overlap. The storage of the mesh on disk is basically the sequence
of TreeIDs building the computational domain. However, this is in gen-
eral insufficient to fully describe the mesh and an additional elemental
information is introduced to attach further data to the elements. 64-bit
signed integers are used to encode the TreeIDs, which ensures a great
portability, but could be extended to 128-bit signed integers, when needed.
In addition to the TreeID, a second 64-bit signed integer is used to build a
bit-mask for properties like boundary conditions, that might be attached
to each element. Each bit in this second integer indicates, whether the
corresponding element possesses a certain property or not. For example
one bit indicates, wether the element is adjacent to boundaries and further
information on boundary conditions are attached to it. This data is written

122

7.5 TreElM File Format

in native binary format to disk, resulting in a file with just 16 bytes per
element. Due to this straightforward format, the data might be accessed
on an elemental basis with Fortran’s direct IO, it can be easily converted
between big and little endian representations and allows fast reading and
writing.

This binary data is accompanied by a header file with descriptive
information about the mesh, like the total number of elements, the physical
extent and origin of the universal cube and descriptions for the attached
properties. The data in this header is provided in the form of a Lua [35]
script, to allow for a flexible handling of additional data and the future
evolution of the format. With the help of the Aotus library [41] data can
be easily retrieved from and written to such Lua scripts.

7.5.1 Additional elemental properties
As 64 bits are available to describe additional properties, there could be 64
different kinds of data attached to each element and each one combinable
with all other properties. The most important data that has to be attached
to elements in nearly every mesh are the boundary conditions, others are for
example material information. As the boundary conditions are such a basic
part of the general mesh description, let us use their implementation as
example with greater detail. But keep in mind, that the described method
is also suitable to attach other information to the elements. In Chapter
8 for example colors and subresolution information for the elements are
introduced. Their attachment to the mesh follows the same principles as
described in this section for the boundary elements.

Each property is indicated by a bit in the property bit-mask. Which bit
is attached to what kind of property is defined in the header file of the
mesh. The property might then be linked to further information stored
in additional files. To attach boundary conditions to an element, a bit is
set for an element to indicate that at least one of its sides has a boundary
condition attached to it. For all elements with this property and only those
elements, boundary conditions in all directions are stored. This data is put
into a separate file. The information on boundary conditions can therefore
be found in this additional binary file for all directions of every element
with any boundary condition attached to it. The binary file has the same
number of integer entries for all elements and can be easily accessed by
distributed processes, as element locations in the file can be computed
solely by the position of the boundary element. In this list of boundary
elements, the ordering from the complete mesh is preserved. That is, while
only elements with the boundary property are stored in the file, they are

123

7 Distributed Octree Mesh Infrastructure

still sorted according to the space filling curve.
A boundary condition is indicated by a positive integer number. But

to ease the handling of boundaries, there is a header file provided with a
list of labels corresponding to the integers. These labels can be used in
the configuration of the solver to assert actual properties to the boundary
conditions. Only positive integers are considered as boundary entries,
zeros indicate no boundary in the corresponding direction, and negative
numbers are reserved for references to TreeIDs as neighboring elements.
Directly referencing a certain TreeID instead of a boundary condition on
one of the sides of an element is used to implement periodic interfaces
within the universe cube. A zero on the other hand indicates no boundary
condition in that direction. Due to this layout of the boundary description,
the boundaries can be read in parallel with the following procedure:

• Count the local number of elements with boundary conditions (given
by the property bits defined for all elements).

• Build a prefix summation across all partitions to find the offset of the
local set of boundary conditions in the sparse set of global boundary
conditions.

• Read this set of elemental boundary conditions from the file ac-
cordingly from the offset up to the number of local elements with
boundary conditions.

With the strict ordering and uniform elemental treatment of data, the
sparse property information can be accessed efficiently in parallel. Just a
single collective prefix operation is required in the parallel system, while
the consumed disk storage is kept at a minimum.

The amount and kind of additional data that might be attached to the
elements by the properties is arbitrary and could involve several more in-
directions. For example, in the representation of colors and subresolutions,
there needs to be a file with subresolution data for each color.

7.6 Overview to the Implementation of the APES
Framework

With the methods described in this chapter, we now have the utilities at
hand to efficiently describe meshes on the basis of the octree topology.
The algorithms are implemented in the TreElM library [42], but of course
this is only one building block towards a simulation tool that allows the
computation of large scale problems on highly distributed parallel systems.

124

7.6 Overview to the Implementation of the APES Framework

The layout of the overall framework with the central TreElM library is
shown in Figure 7.3. Following components build the APES framework:

• Seeder, the mesh generator. This application creates mesh files in
the TreElM format from geometry description. A discussion on the
generation of high order representations within this mesh generator
is provided in Chapter 8.

• Ateles, a Discontinuous Galerkin solver, dedicated to cubical ele-
ments.

• Harvester, a post-processing tool to visualize high order data from
Ateles.

In this section, we will now have a brief glimpse at these other parts of
the APES framework and how they interact with each other. The goal is
to provide parallel tools for each necessary step of the overall simulation.
Tu et al. refer to this as an end-to-end parallel simulation [81]. It should
be noted, that the TreElM library not only provides the means to identify
the halos to be exchanged between partitions but also provides various
communication patterns that can be used for the actual exchange. Due to
this encapsulation of the communication, the communication layout can
be easily exchanged. It is even possible to replace the complete parallel
paradigm and for example employ Fortran Coarrays instead of MPI with
only few changes to the code.

The first tool in the chain, covered by APES, is the mesh generation
tool Seeder . It generates meshes in the TreElM format, as described above.
Input for the mesh generator are geometrical descriptions of the domain
boundaries in the form of STL files. An octree mesh approximation of this
geometry is found by iterative bisections towards the geometry, up to a user
defined refinement level. For the identification of the computational parts,
the user has to define seeding points from which the domain will be flooded.
Only flooded elements are considered to be part of the computational
domain and will be written to the mesh file. We will look into mesh
generation in some more detail in Chapter 8, though with a focus on the
high order representation of geometries. A more general description is
given in [29].

Ateles then takes up the generated mesh and uses it to perform simula-
tions of partial differential equations. Several equation systems have been
implemented in this solver, including linearized Euler equations, Euler
equations and compressible Navier-Stokes equations but also Maxwell’s
equations. The solver implements the Discontinuous Galerkin scheme and

125

7 Distributed Octree Mesh Infrastructure

is specifically tailored towards cubical elements with hanging nodes, as
they appear in octree meshes. By relying on simple cubical elements, it is
possible to represent the solution by the tensor product of onedimensional
polynomials, yielding a dimension by dimension approach for the integra-
tion. Legendre polynomials are chosen as basis functions, which allows for
evaluation of the mass matrix. Moreover, due to the three-term recursion
of the basis it is also possible to achieve a fast integration of the stiffness
matrix. These properties result in an efficient scheme for arbitrary high
orders. High order methods open the path to highly scalable and efficient
solutions on modern, distributed systems. They achieve the same accuracy
with less degrees of freedom, thereby reducing the required memory, which
is a scarce and expensive resource. At the same time, a Discontinuous
Galerkin scheme requires only the exchange of surface information between
elements, and as this is one dimension less then the volume of the elements,
this communication diminishes relatively to the computational effort for
sufficiently high scheme orders. The solver writes restart files to disk,
which follow the same principles as the TreElM mesh format. That is,
the polynomial solution of each element is written to disk according to
the ordering of the mesh and the identification of the respective element
location is given by the position of the element.

Finally, the post-processing tool Harvester is used to generate files
for visualization tools like Paraview out of the high order results of the
simulation. Since Harvester is a stand alone tool, it can be deployed on
specialized machines, that are more suited for visualization. The post-
processing enables the computation of derived quantities and the generation
of visualization files for high order polynomial data. This is achieved by
a voxelization of the polynomial data up to the required resolution. An
advantage here is the possibility to use an adaptive method and stop
the voxelization as early as possible, reducing the amount of data in the
visualization file.

Further it is also possible to write only subsets of the mesh with the
attached simulation data to disk. With the help of tracking objects this
restriction of the considered data can be achieved in the solver as well as
in Harvester. In the solver such writes can be configured for arbitrary
intervals that can be chosen independent of the restart data.

We now have run through all the necessary tools for the simulation
setup and all parts are capable of dealing with large amounts of data. This
is achieved by the common infrastructure built around the octree mesh
representation with its simple, yet sufficiently flexible, topology. Only one
more block in Figure 7.3 has not been covered so much so far. The Aotus
library provides an interface to the Lua scripting language and enables

126

7.6 Overview to the Implementation of the APES Framework

its deployment as a configuration tool in Fortran applications. It is used
exensively throughout APES , not only as configuration of the individual
tools, but also as meta data to describe binary files. This part is described
in a little more detail in the following section.

7.6.1 Usability
All features become void, if they can not be used. Therefore all devel-
opments ultimately should serve the usability of the system. To make
massively parallel computing architectures usable for simulations, we need
to deploy scalable algorithms, and to make these algorithms usable we
have to embed them in appropriate programs. A main criteria for usability
of programs is their user interface. The user interface is the part of the
application that by definition becomes most apparent to the user and
defines the interaction between the user and the application. To ensure a
good usability, the user interface has to be accessible and understandable
to the user. It has to provide all features of the software, but should
not overwhelm the user by too many details. The target audience of the
APES tools are users of HPC systems who are familiar with command
line interfaces and scripting. Scripts are an expressive method to describe
settings and actions, they provide a flexible option to configure and run
simulations. Therefore, they are a natural choice for the user interface in
the APES framework.

Usage of Scripts for the configuration of simulations yields readable
input files, as it might be augmented with comments, and mathematical
expressions can be directly used to describe given settings. There is a
wide range of scripting languages available, that might serve this purpose.
However, one of the most important aspects of the scripting implementation
in this case is its ease of interoperation with the hosting language. For
the wide variety of specialized HPC platforms another necessety is high
portability. These driving criteria led to the choice of Lua, which is
specifically designed to work well with a hosting language and is provided
in a highly portable ANSI-C library. To provide a full featured Fortran
interface to Lua, the Aotus wrapper library has been written around the Lua
C-API. It encapsulates the Lua functionality and exposes it in interfaces,
that are compatible with Fortran semantics. Throughout the APES tools
it is used to provide the bridge between the application developer and the
user. However, this description method is so convenient, that it is also
used in header files to provide meta data in the file formats consumed and
produced by the simulations.

The scriptable input enables the grouping of parameters into logical

127

7 Distributed Octree Mesh Infrastructure

blocks, such that each application feature can provide its own self-contained
set of parameters to be set. With this organization, a flexible development is
possible, where each feature introduces its own settings independent of the
other ones. Together with sane defaults this provides a smooth evolution
for the application without disrupting its usage by newly introduced
configuration parameters. Furthermore, the scripted configuration also
allows the definition of functions to be used in the simulation. This is
especially useful to describe boundary and initial conditions, without
relying on pre-defined functions offered by the application itself. By
the definition of space-time functions it is therefore possible to describe
arbitrary initial conditions and transient boundary conditions.

Besides the user interface an accurate documentation is essential to
ensure usability. The need for up to date documentation has soon be
realized in software engineering and various tools to help in this aspect have
been developed. A main point is here to keep documentation and actual
code tightly entangled, ideally within the same files. Code documentation
systems like Doxygen extract interface information from the source code
and augment it with explanations provided by the programmer in comments
to the code. This minimizes the risk for outdated documentation.

128

8 Generating the Octree Mesh

While the previous chapter introduced a mesh description that is suitable
for scalable parallel processing on distributed systems, it still leaves the
question on how such a mesh should be generated. Let us now turn to
this subject and especially consider the generation of mesh information
for high-order schemes. The high-order Discontinuous Galerkin Finite
Element Method (DG) has many advantages on modern distributed and
parallel supercomputing systems but one drawback is the need for an
appropriate representation of the geometrical setup.

One path towards high order boundary representation is the deformation
of elements and their superparametric description. A method specifically
designed for Discontinuous Galerkin discretizations is offered for example
in [33]. This way of describing higher order geometries provides the
greatest flexibility in the kind of boundary conditions to apply. But it
also introduces additional costs, as the numerical scheme in those elements
needs to incorporate the necessary transformations. Furthermore, such
deformed elements are subject to varying mesh quality and prone to issues
with geometrical constraints.

Instead we will have a look at another option to represent boundaries
within elements by some penalization and how this internal representation is
obtained in the mesh generation step for the octree. An implementation of
this approach is available as open source in the mesh generator Seeder [43].
It takes surface triangulations in form of STL [88] files and produces
Octree based meshes with cubical elements and the high order polynomial
geometry description. This polynomial geometry information is then
attached to the elements in the TreElM formatted file. The solver than
can use it as a description of materials, for example for the permittivity
ε(x, y, z) and permeability µ(x, y, z) in Maxwell’s equations (2.8) - (2.11).
Ateles, the DG solver in APES uses polynomial basis functions. Therefore,
Seeder will also generate polynomial representations of the geometry locally
in each element.

The fundamental idea to obtain high-order polynomial representations
is the use of a simple first-order voxelization within the coarse elements
of the mesh for our DG solver Ateles. This volume information can then
be translated into polynomials by a suitable transformation method. A

129

8 Generating the Octree Mesh

major feature of the first-order method is its robustness that allows the
treatment of complex setups. A drawback is its low accuracy and need for
a large number of voxels. However, this is alleviated by using the Octree
strategy of recursive refinement.

8.1 Related Work

Our approach is most closely related to embedded boundaries, as used
in spectral discretizations. Examples of such approaches are the Spectral
Smoothed Boundary Method [4] and the Fourier Spectral Embedded Bound-
aries [67]. These methods rely on a representation of the irregular domain
by a function. This function, also referred to as phase-field, is usually
constructed with the help of a global rectangular Cartesian grid. We
extend this concept with an Octree mesh, where we apply this method in
each of the elements of the mesh. The constructed geometry representation
is then defined locally within each mesh cell. This matches the function
space of the DG and can be directly used by DG solvers. Within the
elements, we also make use of the Octree bisection algorithm to achieve a
fast voxelization of surfaces. In comparison to a global rectangular domain
in spectral methods, the composition of multiple elements in a mesh allows
for a greater flexibility in the definition of the embedding domain. By
fitting the embedding domain to the actual computational domain of
interest, the computational effort can be minimized in this approach.

Other methods, where irregular meshes are deployed with an internal
geometry representation are typically referred to as Immersed Boundary
Methods. Introduced by [63] for elastic walls in incompressible flows, this
approach has been improved and extended since by various authors. An
overview of these methods is for example provided by [52]. Similarly to
the strategy we follow here, these methods make use of meshes for the
computational domain. However, they rely on surface representations to
describe objects within the meshes and directly enforce boundary conditions
on these. They are popular for flows with moving geometries but do not
provide a direct method to describe varying materials, like the change
in permeability and permittivity in electrodynamics. In contrast to the
embedded boundaries in spectral methods, the immersed boundaries are
usually employed in lower order schemes.

Our goal is the generation of material representations for high-order
DG solvers. As such, we need a mesh like in the immersed boundary
methods, but a high-order functional representation of the geometry as in
the embedded boundary methods. This method enables the exploitation of

130

8.2 The Seeder Mesh Generator

the fast convergence of spectral approximations but still allows for complex
computational domains.

The traditional approach to boundaries in unstructured, irregular meshes
is the fitting of the mesh to the geometry. Here, a high-order can be
obtained by deforming the elements with curved surfaces. [33] offers a
method in this direction specifically designed for discontinuous Galerkin
discretizations. However, the identification of such curved boundaries
is much more complex and usually not used for internal interfaces like
material changes, as both sides of the interface need to be considered. Such
deformed, unstructured elements are also subject to varying mesh quality
and prone to issues with geometrical constraints. As we will show, the
embedding description of materials provides a viable and robust approach
to the body fitting of meshes. It comes at the cost of volumetric information
that needs to be stored but avoids the need for expensive transformations
during the simulation.

8.2 The Seeder Mesh Generator

Seeder [29] is an Octree mesh generator. It produces voxelizations of
complex geometries defined by surface triangulations in the form of STL
files. Some geometric primitives, like spheres and cylinders, are also
available, and we will make use of them in the examples considered here.
By voxelization, we refer to the process of subdividing a given volume
into smaller cubical elements (voxels) in three-dimensional space. With
the Octree approach, these cubical elements are successively split into 8
smaller cubes, where needed. The use of Octree representations in mesh
generations is not new [71] but as explained in Chapter 7, we extend
the usage of the Octree to our solvers, and need to provide a mesh that
preserves the Octree topology instead of discarding it in favor of a general
unstructured representation. An example for the voxelization of a sphere
is shown in Figure 8.1. The yellow surface indicates the sphere and the red
color indicates the voxels completely inside the sphere. Note, how the voxels
build a staircase that approximates the smooth surface. Also, the Octree
refinement is visible in Figure 8.1. Our concept of voxels does not imply
equally sized voxels. Instead, as outlined by the white lines, different voxel
sizes arise from the bisection rule of the Octree approach. Thus, we only
need to create a large number of small voxels close to the smooth surface
while covering the rest of the volume with just a few large ones. The mesh
format generated by Seeder exploits the topology information from the
Octree and is designed for the parallel processing on distributed, parallel

131

8 Generating the Octree Mesh

Figure 8.1: Illustration of the voxelization of a sphere within coarse mesh
elements. The sphere is indicated by the yellow surface while
the thick black lines outline the elements of the actual mesh.
The voxelization within elements follows the Octree refinement
towards the sphere and is indicated by the thinner white lines.
Inside the sphere, voxels have been colorized by the flood-fill
mechanism with a seed in the center. Flooded elements are
shown in red; other elements are blue.

systems. Seeder is freely available online [43] under a permissive BSD
license and has been successfully compiled and run on many computing
architectures. In the following section, the general voxelization method is
briefly outlined. Afterward, we explain the extensions to enable high-order
material definitions within the mesh elements.

8.2.1 Basic mesh generation procedure

To produce the voxelization, Seeder deploys an approach similar to the
building cube method described in [36]. The basic idea is an iterative
refinement towards geometry surfaces, followed by a flooding of the compu-
tational domain starting from a user defined seed. This flooding is limited
by elements intersected by boundary objects and all flooded elements
finally constitute the actual computational domain. For the refinement,
a bisection in each direction is used in each step, resulting in an Octree
mesh. Such tree structures are well established and widespread in mesh

132

8.3 Generation of Polynomial Geometry Approximations

generators to identify and sort geometrical objects fast, see for example
[91] for an early adoption.

In Seeder , each geometry has some refinement level, defined by the user,
attached to it. This level describes how many bisection steps should be
done to resolve the surface. The higher this level, the smaller the voxels to
approximate the surface. Elements are refined iteratively if they intersect
a geometry, until the desired resolution is reached. After this step of
boundary identification, the actual computational domain is identified by
a 3D flood filling algorithm. All elements intersected by a geometry bound
this flooding. To avoid unintentional spills, the flooding only considers
the six face neighbors (von Neumann neighborhood). This mechanism,
even though it requires the definition of seeds by the user, is chosen
as it provides a high robustness and indifference towards the triangle
definitions in STL files. Small inaccuracies in the geometry definition
are automatically healed, as long as they are below the resolution of the
voxelization. This approach has proven to be robust and applicable to a
wide range of complex geometries.

8.3 Generation of Polynomial Geometry Approximations

The cubical elements obtained by the mesh generation procedure described
in the previous section, provide the frame wherein we now can construct
the high-order surface representation. We want this representation in the
function space of the DG solver, which often are polynomials and in our
solver specifically Legendre polynomials. Legendre polynomials build an
orthogonal basis with respect to a weight of one on the interval [−1, 1],
and they adhere to the three-term recurrence relation

Li(x) = 2i− 1
i

xLi−1(x) − i− 1
i

Li−2(x). (8.1)

With L0(x) = 1 and L1(x) = x the higher order polynomials can be
recursively computed by (8.1). The first Legendre polynomial L0(x) = 1
is the only one with an integral mean, all higher ones are mean free on the
interval [−1, 1].

For material interfaces we usually need to deal with discontinuities as
the material property jumps at the interfaces. Thus, we need to project a
step function

Ξ(x) =
{

0 if x ≤ ξ

1 if x > ξ
(8.2)

133

8 Generating the Octree Mesh

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.5

1

1.5

x

C
ol

or
va

lu
e

Color distribution
Degree 0
Degree 1
Degree 2
Degree 3
Degree 7
Degree 15

Figure 8.2: Projection of a step function (8.2), jumping at x = 2
3 onto the

space of Legendre polynomials. Shown is the step function
along with its approximation by more and more Legendre basis
functions obtained by analytical integration.

to our polynomial space and find a suitable expansion

Pn(x) =
n∑

i=0

aiLi(x) (8.3)

that approximates (8.2).
In Figure 8.2 such a discontinuity with ξ = 2

3 in (8.2) is shown along
with its approximation Pn(x) from (8.3) with various maximal degrees
up to n = 15. While in this simple 1D example, the projection can be
computed analytically, this is not possible anymore for higher dimensions
with arbitrary jump definitions. We, therefore, introduce an algorithm in
this section to find approximations of the projection numerically.

134

8.3 Generation of Polynomial Geometry Approximations

However, before polynomials can be computed, the material distribution
itself needs to be identified. Namely, we need to find regions of the
domain where a specific material should be present. We achieve this by
selectively attaching attributes to elements in the mesh. To define, which
elements should be attributed and which not, we can exploit the flood
filling algorithm explained above by enabling multiple fillings instead of
just a single one. Individual surface descriptions confine each flooding,
which allows the identification of distinct regions in the mesh. By ascribing
a particular material definition to each of these regions, the voxelized
spatial material distribution can be obtained. This approach is similar
to coloring an image, and we refer to those floodings as colors. In the
following, we briefly discuss the coloring concept and then move on to the
generation of high-order surface representations within the Octree mesh.

8.3.1 Coloring

Seeder takes a surface triangulation along with a seed definition to construct
the computational domain with non-overlapping cubical elements. The
seeds are usually points, but might also be other geometrical objects and
are used as the starting point for the flood-filling algorithm. The surface
description builds the confinement for the flood-filling. These two parts
together are therefore building the volumetric geometry definition in the
mesh. By using multiple of such pairs, it gets possible to describe different
regions within the same mesh. We refer to this as coloring, and each seed
and surface needs to have a color attached to it.

The flooding spreads from the seeds and is limited by surfaces of the
same color. Boundaries of other colors do not affect the flooding and it is
possible to have elements flooded by multiple colors. Differently colored
regions might, therefore, overlap. The color information is then attached
to the elements and provide a method to distinguish specific areas in the
mesh. Afterward, the solver can associate individual material properties
to given colors.

8.3.2 Sub-resolution

With the coloring principle described above, we are now able to define
arbitrary material areas, but we still need to obtain high-order surface
approximations inside the elements of the Octree. As this provides in-
formation beyond the resolution of the actual mesh, we refer to this as
sub-resolution. Figure 8.3 sketches the overall workflow of the algorithm
to construct this information.

135

8 Generating the Octree Mesh

Colored
surfaces

Iterative Refine-
ment until mesh

resolution reached.
(Thick black

lines in Fig. 8.1)

Voxelization inside
elements. (White
lines in Fig. 8.1)

Flood filling with
colors. (Red

color in Fig. 8.1)

Evaluating
color values

at integration
points. (Black

dots in Fig. 8.4)

Transformation
of point values

to Legendre
Modes. (Black
line in Fig. 8.4)

Legendre
expansion
of colors

Colored
seeds

Figure 8.3: Chart of the overall workflow. Required inputs are the surface
descriptions and seeding points to start the flooding. The
resulting output is the expansion of the color distribution in
Legendre modes for each element.

136

8.3 Generation of Polynomial Geometry Approximations

To obtain the sub-resolution as an expansion in Legendre polynomials
in each element, we need to perform the following three steps:

• Voxelization (and flooding) within elements of the final mesh to
identify color distributions

• Evaluation of color values at integration points

• Transformation of point data to polynomial modes

These three steps are indicated by a darker orange color in Figure 8.3. The
other two processes are already described above. A first step creates the
coarse mesh with the desired resolution, and after resolving the surfaces
within the elements by the voxelization process, all elements and voxels
are flood filled with colors.

The first additional step we introduce is the identification of color
boundaries inside the coarse mesh elements. Luckily, we already have a
robust and fast method to identify color boundaries in volumes by the
voxelization method described above for the mesh. We can deploy this
mechanism also inside elements and recursively refine the voxels towards
surfaces. The final mesh will not contain the voxels within the coarse
elements but rather the polynomial approximation of the color distribution.
We limit the refinement inside elements by setting the number of additional
levels `. This number can be freely chosen in the configuration and all
elements intersecting a boundary will be refined accordingly, independent
of the size of the coarse element.

We observe that even though the voxelization is only a first order
approximation, it is feasible to represent the surface accurately due to
the exponential nature of the bisection approach in the Octree. After all
voxels are known, the mesh generation algorithm proceeds with flooding
as described in the previous section. The flood filling does not heed the
intersected coarse elements of the final mesh. Instead, all voxels are flooded
down to the finest level. With this approach, we do not require a separate
algorithm for the flooding of voxels inside intersected elements.

Figure 8.1 illustrates the mesh status after refinement and flooding for
eight coarse elements intersected by a sphere. The sphere is indicated by
the yellow surface and cut open to reveal the voxelization within. Thick
black lines indicate the coarse mesh elements and the fine white lines show
the sub-resolution voxels within them. As described above, elements in the
interior of the sphere are flooded, which is indicated by the red coloring.
The flooding is limited by the sphere and all voxels outside the geometry
are not flooded with this color.

137

8 Generating the Octree Mesh

-1 0 1
2

5
8

3
4

1.0

−0.1
0

0.25

0.5

0.75

1
1.1

x

C
ol

or
va

lu
e

Color distribution
Approximant

Chebyshev nodes
Analytical projection

Figure 8.4: Illustration of the approximation method in 1D. For a single
element and one discontinuity. The color value jumps from 0
to 1 at x = 2

3 and is indicated by the red line. The grid lines
indicate the bisection sequence and the yellow area highlights
the region, where the color value is identified to be 1 by the
bisecting approximation. An approximant polynomial of degree
15 is constructed from the 16 shown Chebyshev nodes (black
dots). The orange polynomial shows the analytical projection
with degree 15, also depicted in Figure 8.2.

138

8.3 Generation of Polynomial Geometry Approximations

Two processes remain to be done at this stage, the evaluation of color
values and their transformation to Legendre modes. These two are hard
to illustrate in three dimensions, and we will instead make use of the
one-dimensional setup in Figure 8.4. It makes use of the same target step
function Ξ with ξ = 2

3 , as the one in Figure 8.2, but outlines the individual
numerical steps we take to arrive at an approximation of the analytical
projection. Vertical grid lines indicate the recursive voxelization towards
the surface point. We assume the flooding to happen right of the surface,
that is, the seed is at some location x > 1. This flooding is indicated by
the yellow shaded area in Figure 8.4. Thus, the numerical method has to
approximate a step function (8.2) with ξ = 2

3 , illustrated in the figure by
the thick red line. With eight bisections in the voxelization, this results
in an approximation of the jump location at ξ̂ = 0.671875. This state
corresponds to the three-dimensional case outlined in Figure 8.1.

The number of additional refinement levels ` determines the spatial
accuracy of the surface approximation. However, they only build one half
of the numerical approximation; the other half is governed by the quality of
the polynomial representation that we construct in the final two steps. The
accuracy of our polynomial approximation is determined by the number
of Chebyshev nodes N at which the color distribution is evaluated. For a
given N , Chebyshev nodes are given by

xc = cos
(2c− 1

2N π
)
, c = 1, ..., N. (8.4)

Both factors, ` and N , can be set independently by the user. However,
they both limit the accuracy of the overall approximation, and for optimal
results, they need to be correlated. The minimal distance between the
first Chebyshev node and the element boundary is proportional to N−2,
and the length of the smallest voxel within the element is proportional to
2−`. To resolve all node distances, it is, therefore, necessary to choose the
number of additional levels ` according to

` ≥ d2 log2(N)e. (8.5)

Once the flooding situation of all voxels is known, we can evaluate
the color at each Chebyshev node. For this, numerical values need to be
associated with the flooding status for each color. Usually, we assume a
value of 1 for flooded voxels and a value of 0 for non-flooded voxels. Due to
the spatial discretization by an Octree, the color value at each Chebyshev
node xc can be found fast with logarithmic computational complexity. In
Figure 8.4 the Chebyshev nodes (8.4) for N = 16 are indicated by black

139

8 Generating the Octree Mesh

dots and their color value by the elevation of the dots. The approximated
step function provides the color values, and we obtain

fc = Ξ(xc) with ξ̂, c = 1, ..., N (8.6)

for the polynomial values at the Chebyshev nodes xc. It is notable that the
position of the surface is only significant up to the interval between two
neighboring nodes. A variation of the jump location within the interval
between two neighboring nodes does not change the final approximation.
The only option to increase the accuracy of the approximation is to use a
larger number of integration points N .

Finally, the transformation of the nodal information (8.6) to a suit-
able function space for the solver has to be done. A typical choice for
discontinuous Galerkin methods is the orthogonal Legendre basis. To
obtain the Legendre modes ai in (8.3) from the values at the Chebyshev
nodes fc in (8.6), we apply the fast polynomial transformation proposed in
[1]. However, other target functions with different point sets could also be
plugged into the described machinery. The obtained polynomial recovers
the function values fc at the nodes exactly and is drawn in Figure 8.4
by the black line running through all dots. Due to the discontinuity of
the step function, the representation in polynomial space is an infinite
series. The finite approximation suffers from the Gibbs phenomenon [89].
However, besides this fundamental problem, also inaccuracies due to the
numerical integration can be seen as the numerical (black) and the analyt-
ical (orange) projections do not coincide in Figure 8.4. These result in a
distorted location of the jump. In the next section, we will have a closer
look at these numerical issues.

With this step, we now have a volumetric description that yields a
high-order approximation of the surface. Note that only intersected coarse
mesh elements need to get this information added, all other elements have
constant colors. Thus, the need for volume information is limited to a
small area at the surface.

8.4 Numerical Properties

In this section, we investigate the numerical properties of the described
approximation method. Though, the one-dimensional problem with a
single jump is much simpler than a real three-dimensional geometry; it is
still instructive for the fundamental properties of the algorithm. Let us
recall that the goal is an appropriate representation of the geometry in a
high-order discontinuous Galerkin solver. Typically, the deployed functions

140

8.4 Numerical Properties

in the solver are smooth within elements. Here we consider specifically
Legendre polynomials, which are attractive due to their orthogonality. The
representation of a non-smooth material distribution in the finite smooth
function space, therefore, can only be approximate.

Degree L2-Error
0 0.527046
1 0.402538
3 0.226028
7 0.167786

Degree L2-Error
15 0.122322
31 0.086937
63 0.060674

127 0.043065

Degree L2-Error
255 0.030481
511 0.021513

1023 0.015218
2047 0.010763

Table 8.1: The convergence of the series of Legendre polynomials towards
the step function with the jump at x = 2

3 .

Table 8.1 shows the convergence behavior for the series of Legendre
polynomials, obtained by L2 projections of the step function at x = 2

3 in
the interval [−1, 1]. A slow convergence can be observed, which is well
known for high-order approximations of discontinuous functions. However,
the error outside a small band around the discontinuity can be improved
later on by a post-processing step, as shown in [25]. The error is bound to
this band around the discontinuity, and the width of that band decreases
with the number of degrees of freedom. While we can compute this analytic
projection for the simple setup with a single discontinuity in one dimension,
this is not possible anymore for multiple dimensions and more complex
geometries. Thus, we need the previously described numerical approach to
approximate the projection. In the following, we first analyze how well the
numerical scheme recovers the optimal solution given by the L2 projection
for the simple one-dimensional discontinuity.

Figure 8.5 shows the convergence of the numerical procedure towards
the analytical projection onto a polynomial space with a maximal degree
of 15. Plotted is the error over the spatial resolution, where the spatial
resolution is given by the number of Chebyshev nodes used for the numerical
integration. The difference in terms of the L2 norm to the analytical
projection is represented by the blue line and covers all modes of the
polynomial. With the red line, the absolute difference in the volume is
provided. Note that the volume equals to the first mode of the Legendre
polynomial and thus, is easily obtained. Nevertheless, the two curves
show a similar behavior, and the volume error can be used as a good
indicator of the qualitative behavior of this numerical approximation.
Apparently, the error does not converge uniformly, but on average we
observe a convergence rate of roughly 1. This error is comparable to the

141

8 Generating the Octree Mesh

one due to the voxelization, and so these two resolutions (number of voxels
and number of integration points) should be in the same range.

To investigate the mechanism in 3D, we look at three different geomet-
rical objects: a sphere, a cube, and a tetrahedron. In each case the overall
domain is a cubical box [−1, 1] × [−1, 1] × [−1, 1] subdivided by 8 cubical
elements. The sphere is put in the middle of the domain, with its center
at (0, 0, 0) and has a radius of 1

3 . Similarly, the cube has an edge length of
2
3 , and its barycenter is placed at the center of the domain at (0, 0, 0). As
a third basic geometry, the tetrahedron again is similarly defined with its
barycenter in the center of the domain and an edge length of 1.

The error in the volume approximation is used to assess the quality of
the polynomial representation. Figure 8.6 plots this measure for the sphere
over the two available parameters voxelization resolution and numerical
integration points. It can be observed, that the error is mostly bounded
by either one of the parameters and for a minimal computational effort it
indeed is necessary to change them according to the relation (8.5).

Figure 8.7 illustrates the projection of the sphere on a 3D polynomial
representation in the eight elements of the mesh. From left to right it
shows improved accuracies. In yellow the isosurface of a color value of 0.5
is shown and in comparison the half of the reference sphere is shown in
blue. The leftmost image shows the sphere embedded in the eight elements,
indicated by the black wireframe. In this, a very rough estimation of the
sphere is shown with a polynomial of degree 15 and a low voxelization
resolution. Clearly, the staircases from the voxelization are visible in the
polynomial representation here. The next image shows a zoom in for
finer voxelization, but still a polynomial degree of 15, in the left half the
reference sphere is again depicted in blue. While the finer resolution in the
voxelization yields a better approximation now, there are relatively strong
oscillations visible, especially close to the element boundaries. To allow
for a better representation of the sphere we move to a polynomial degree
of 31 in the third image. The voxelization is chosen with an appropriate
resolution, in this case, but the numerical integration results in aliasing
issues, exhibiting a staircase-like effect for the isosurface of the polynomial.
Finally, in the rightmost image, we see the impact of a higher number
of points for the numerical integration, resulting in a much smoother
geometry for the shown polynomial of degree 31.

Figure 8.8 illustrates the approximation of a cube. All images show the
isosurface for polynomial representation of degree 15, but the accuracy of
the numerical approximation increases from left to right. The number of
integration points increases from 16 in the leftmost image over 32 and 48
to 64 in the rightmost image and the voxelization is chosen according to

142

8.4 Numerical Properties

101 102 103 104 105

10−5

10−4

10−3

10−2

10−1

Spatial resolution

E
rr

or

L2

Volume difference
Linear convergence

Figure 8.5: Error convergence of the numerical approximation towards the
analytical projection for a polynomial of degree 15. The blue
line shows the L2-error over all 16 modes while the red line
shows the absolute error in the first mode, which represents the
volume. On average, a convergence rate of 0.973 is achieved.
Keep in mind that in comparison to the actual step function,
the error from Table 8.1 always remains.

143

8 Generating the Octree Mesh

102

103

101

102

10−3

10−2

10−1

Voxels
Integration Nodes

V
ol

um
e

er
ro

r

Figure 8.6: Error in the volume approximation for a sphere with a radius
of 1

3 . The mesh consists of 8 elements with a common vertex
in the center of the sphere.

Figure 8.7: Illustration of sphere approximations, with increasing accuracy.
The sphere is blue, and the isosurface of the color value at 0.5
is yellow. On the left, the sphere is shown in the embedding
domain with the 8 elements. Voxelization and integration
points increase from left to right.

144

8.5 Mesh Generation Summary and Future Work

Figure 8.8: Representation of the cube in 8 elements with polynomials
of degree 15. From left to right an increasing number of
integration points is used. The leftmost image shows the cube
with the 8 elements of the mesh. The reference geometry is
drawn in blue, and the isosurface of the color value 0.5 in
yellow. We cut the reference in the middle to enable a better
view for the comparison, except for the second image, where it
is the other way around, and the isosurface is cut.

Equation 8.5. Edges and corners get smoothed out, but we observe only
little oscillations for this simple, axis aligned, geometry.

Finally, Figure 8.9 depicts a study on the 3D polynomial approximation
of a tetrahedron. The maximal polynomial degree increases from 7 up to
63, and twice as many integration points as polynomial modes are used
in each approximation. We observe that the sharp edges and corners are
smoothed out at low orders but are increasingly well recovered in the higher
resolved polynomials. Also, oscillations in the planes of the tetrahedron
get smaller in amplitude. With a polynomial of degree 63, the original
shape is well captured. This shows that a high-order polynomial can nicely
be constructed, even for objects with sharp corners and edges.

Figure 8.10 shows the application of the described method to a more
complex geometry. Depicted is in yellow the isosurface of a polynomial
approximating a porous medium, described by a triangulation in an STL
file shown in dark blue. This geometry features small bridges and holes.
Those are well recovered by the polynomial approximation; only the edges
get a little bit smoothed out. Keep in mind, that we are only using cubical
elements, which can be exploited by the numerical scheme. Also, no bad
elements arise resulting in an extremely robust mesh generation.

8.5 Mesh Generation Summary and Future Work

Seeder implements a robust first order method to obtain polynomial
representations of geometrical objects to describe nonsmooth material

145

8 Generating the Octree Mesh

Figure 8.9: Approximation of the tetrahedron with an increasing poly-
nomial degree from left to right. Starting on the left with a
polynomial degree of 7 and increasing over 15 and 31 to 63 in
the rightmost image. Shown is the isosurface of the polynomial
at a value of 0.5 in yellow and for comparison the reference
geometry cut in half with a blue coloring.

Figure 8.10: Isosurface of a porous medium (yellow) in comparison to the
original STL data (blue). The geometry is well recovered;
only edges are smoothed out a little.

146

8.5 Mesh Generation Summary and Future Work

distributions. The robustness is due to the low order geometry approx-
imation and the usage of a flood filling algorithm, eliminating the need
for high requirements on the quality of the geometry representation. By
employing the bisection strategy of the octree, the generation is also fast
and allows the detailed discretization of complex geometries. It has been
shown, that the numerical approximation indeed converges towards the
optimal L2 projection of the nonsmooth distribution onto the polynomial
function space, used in high order discontinuous Galerkin solvers. A possi-
ble improvement over the current staircase representation of the surface
could for example be achieved by computing an approximate plane for
the geometry within intersected voxels. While such a computation would
introduce additional complexity and potentially expensive computations,
it would reduce the number of voxels required to resolve the shortest
distances between integration nodes. Nevertheless, the pure voxelization
scheme currently deployed is already capable to discretize large an complex
settings and has been successfully used for highly detailed simulations.
Though the errors from the Table 8.1 remain, it is proven in [92] that
high order information can be recovered for such nonsmooth setups by an
appropriate post-processing.

147

9 Results with Ateles

Ateles implements the DG scheme on the Octree provided by TreElM .
It specifically exploits the fact, that all elements are simple cubes and
uses a modal or nodal representation as needed. This results in the need
for polynomial transformations but allows for fast integrations with the
appropriate polynomial basis. Methods that combine high-order approxi-
mations with the concept of finite elements are also commonly referred to
as spectral element methods [62]. They provide the flexibility of mesh dis-
cretizations and combine them with the fast error convergence of high-order
approximations.

Ateles uses Legendre polynomials as basis functions. It relies on cubical
elements and exploits them with a dimension-by-dimension approach.
This basis yields a fast application of the mass matrix in the DG scheme.
Because of its three-term recurrence relation it also yields a fast application
of the stiffness matrix. In a purely modal setting that can be used for linear
equations with constant material, we obtain a numerical complexity that
scales only linearly with the number of degrees in freedom. Thus, increasing
the resolution by increasing the polynomial degree or refining the mesh
has the same computational complexity attached to it. Only, the time
step size restriction for the explicit time integration is more severe for the
high-order approximation. For nonlinear equations or varying materials, a
nodal approximation is required, and Ateles has to perform the conversion

Figure 9.1: Coarse mesh configuration for a eleventh order simulation of an
aerodynamic lens. The colors show an instanteneous pressure
field on a scale from 1

2 bar to 2 bar.

149

9 Results with Ateles

Figure 9.2: Schlieren-like visualization of the flow in the aerodynamic lens.
This plot of the magnitude of the density gradient illustrates
how well small scale structures and contact discontinuities are
preserved by the high-order discretization (maximal polynomial
degree of 10 was used in this simulation).

between modal and nodal representations. This is an expensive operation,
but fast transformations exist that bound the computational complexity
by O(m log(m)). With these Ateles is well equipped to solve a broad range
of setups with high-order approximations.

Figures 9.1 and 9.2 illustrate a flow simulation with Ateles for an
aerodynamic lens [72] setup. The simulation was done with an eleventh
order discretization and the mesh resolution illustrated in Figure 9.1. By
plotting the magnitude of the density gradient, a Schlieren-like visualization
of the flow is obtained in Figure 9.2. It can be nicely seen, how small scale
structures are still well resolved in this relatively coarse resolution. An
remarkable feature is the conservation of contact discontinuities in the
numerical solution.

9.1 High-Order Efficiency

As outlined earlier, high-order approximations yield a small error with
few degrees of freedom. Fewer degrees of freedom are equal to smaller
amounts of required memory. Ateles is built to deal exceptionally well with
high-order approximations, because of this insight. The modal approach
used in Ateles is especially well suited for linear equations like Maxwell’s
equations or the linearized Euler equations, as the modal space never has
to be left. However, the high-order polynomial representation in the DG
scheme leads to a tight stability restriction on the time step size in explicit
time integration schemes. To ensure stability, the time step size has to be

150

9.2 Scalability of Ateles

proportional to the inverse of the maximal polynomial degree squared:

∆t h

m2 . (9.1)

Thus, a high-order discretization results in a larger number of time steps
and, therefore, also in an increased computational effort. We have to ask
whether, this increased cost actually pays off, or if a lower order scheme
with a smaller element size would be the better option.

Let us have a look at Figure 9.3. This graph shows the error convergences
for different discretization schemes with the error on the y-axis and the
computational effort on the x-axis. We are simulating a simple sinusodial
wave in a periodic domain, that gets transported as an acoustic wave from
left to right. A full period of the wave is simulated, and the numerical
solution is compared against the analytical solution at that point in
time. The same physical time is simulated by all schemes and high-order
simulations suffer from the small time step.

Now the error is shown in Figure 9.3, for the orders 2, 4, 8 and 12.
For each order a grid-refinement study is done, where the computational
effort obviously grows with the number of elements. This is visible in the
monotoneously increasing computing time in each of the series. Each series
starts off with a single element and the doubles the number of elements
from data point to data point. Clearly the error convergence order can be
observed in the gradient of the curves in this double logarithmic plot. And
even with the increased number of time steps, the highest order obtains
the most accurate result with the smallest amount of computational effort.

9.2 Scalability of Ateles

To assess the parallel performance of our solvers, we use a performance
measure that allows us to intuitively recognize the quality of the execution.
For Ateles we use million degree of freedom updates per second, as this is
what we are interested in. Thus, the faster the execution the more updates
per second we will obtain and the larger our performance measure will
be. In short we refer to this number as MDUPs. This section shows some
scaling results on the HLRS system Hermit in Stuttgart.

The performance not only depends on the machine but usually also
on the problem size. There might be a large variation in performance
over the problem size due to effects like caching, overheads in calls or
communication to computation ratios. To captures this behavior, we
employ plot that shows the MDUPs per parallel execution unit over the
problemsize for various counts of parallel execution units. Because this

151

9 Results with Ateles

10−1 100 101 102 103 104 105

10−15

10−12

10−9

10−6

10−3

Compute time in seconds

L
2
-E

rr
or

2nd order
4nd order
8th order
12th order

Figure 9.3: Convergence plot in terms of computing time for a single
acoustic sine wave in a periodic domain.

152

9.2 Scalability of Ateles

105 106 107 108
0

10

20

30

40

50

60

Dofs/node

M
D

U
P

S/
no

de

1 node
8 nodes

64 nodes
512 nodes

Figure 9.4: Performance map for Ateles solving Maxwell’s equations with
7th order spatial discretization on up to 512 nodes of Hermit.

153

9 Results with Ateles

kind of plot provides a global overview on the parallel execution behavior,
we refer to this as a performance map. Figure 9.4 shows such a performance
map for Ateles and a seventh order spatial discretization. The single node
performance provides something like a reference line for the achievable
performance. More nodes result in network communication and, therefore,
in reduced performance per node. We observe a cache effect in Figure
9.4, which results in a peak performance at around one million degrees of
freedom per node. This problem size fits completely into the cache of the
processors in the node. For too small problems left of the peak we observe
a smaller performance, due to various overheads that weigh in at these
tiny problems. For larger problems, right of the peak, we observe also a
decrease performance, which is due to the required memory accesses in
this region. The performance map also highlights, that there is a large
difference in performance in the cache region for different node counts but
for larger problems per core, they converge and provide nearly the same
performance per node as the single node execution. By neatly summarizing
parallel executions with problem size dependent behavior, the performance
map also explains weak and strong scaling figures. Weak scaling is simply
obtained by the vertical distance between the data series for different node
counts. In the example of Figure 9.4, the performance map reveals that
the weak scaling will be bad for problems per node ins the cache region.
However, it will be pretty fine in the memory region for sufficiently large
problem sizes per node. This weak scaling for different problem sizes per
node is shown in Figure 9.5. Observe the bad scaling in the region of small
problems per process but the nearly ideal scalability for sufficiently large
problem sizes.

The weak scaling behavior gets better with increasing scheme order
because the relation between required computation within the elements
and the communication with other elements becomes smaller. Figure 9.6
shows the corresponding parallel efficiency for a weak scaling of Ateles
with a 31st order discretization. Note that there are only two different
problem sizes per node are present in that plot. This is due to the minimal
problem size imposed by a single element. While the 7th order incurs 343
degrees of freedom per element, the 31st order already requires 29, 791.
With this imposed minimal problem size we can not observe the badly
scaling small problem sizes anymore.

The strong scaling is a little harder to derive from the performance
map, as it not only involves the jump from data set to data set as in the
weak scaling but also movement along the x axis to adjust for the changed
problem size per node. Thus, to obtain the strong scaling with a fixed
overall problem size, we start with a large problem and a small node count

154

9.2 Scalability of Ateles

100 101 102
0

0.2

0.4

0.6

0.8

1

1.2

Nodes

E
ffi

ci
en

cy

64 elements
512 elements

4,096 elements
32,768 elements

Figure 9.5: Weak scaling for 7th order Ateles on up to 512 nodes of Hermit.
This plot provides a different view on the data from Figure 9.4.
It shows the parallel efficiency for different number of elements
per node over increasing node counts.

155

9 Results with Ateles

100 101 102
0

0.2

0.4

0.6

0.8

1

1.2

Nodes

E
ffi

ci
en

cy

64 elements
512 elements

Figure 9.6: Weak scaling for 31st order Ateles on up to 512 nodes of Hermit.

156

9.3 Seeder Generated Material for Electrodynamics

100 101 102 103
0

0.2

0.4

0.6

0.8

1

1.2

Nodes

E
ffi

ci
en

cy

512 elements
4,096 elements

32,768 elements
262,133 elements

2,097,152 elements

Figure 9.7: Strong scaling for 7th order Ateles on up to 512 nodes of Hermit.
This plot provides a different view on the data from Figure 9.4.
It shows the parallel efficiency for different numbers of total
element counts.

on the right. Then we move to larger and larger node counts but at the
same time move along the x axis to the left. Figure 9.7 shows the strong
scaling behavior for the seventh order discretization from the performance
map for various fixed total problem sizes.

9.3 Seeder Generated Material for Electrodynamics

To show the behavior of the obtained geometry, we look at an electrody-
namic setting, governed by equations 2.8 - 2.11, and solve it with Ateles.
For time integration, a classical explicit fourth order Runge-Kutta integra-
tion is deployed. The simulation setup is an infinite cylinder, impinged by
a planar wave. In this setting, the scattering of the wave can be described

157

9 Results with Ateles

by a Mie series [51], which we use as the reference solution. Our simulation
setup has the following dimensionless parameters:

• Permittivity and permeability in the surrounding: εS = µS = 1

• Permittivity and permeability in the cylinder: εC = µC = 2

• Simulated domain: [−1, 1] × [−1, 1] × [0, 0.125]

• Radius of the cylinder r = 0.21

• Center of the cylinder: (0.0009765625, 0.0009765625)

• The impinging planar wave has a wave length of λ = 0.25

The domain is discretized with 16×16×1 = 256 elements, and polynomials
with a maximal polynomial degree of 15 are used to represent the solution
in each element. For the initial condition of the numerical simulation,
we also employ the Mie series. We compare the numerical result with
the reference solution after the impinging wave has traveled once by the
diameter of the cylinder (∆t = 0.42).

In Figure 9.8 the instanteneous exact solution for the Z-component of
the displacement field D = εE is shown on the left. Right to this reference
solution, the difference between the numerical solution and this reference
after a simulation time of 0.42 is depicted. We use a range in ±10 % of
the maximal amplitude in the exact solution for the scale of the difference.
Figure 9.9 shows the numerical result itself. A de-aliasing is applied in
the numerical scheme here. Thus, while the scheme uses 16 modes per
direction to represent the solution, we use twice as many modes (32) to
compute the multiplication of the material distribution with the solution.
In this numerical simulation, no voxelization is employed. Instead, the
exact definition of the cylinder is used to determine the material values
at the 32 Chebyshev nodes per direction that are used to construct the
polynomials with a maximal polynomial degree of 31. This corresponds to
` = ∞ with aa = 1 in Table 9.1. As can be seen, the reference solution
is recovered quite accurately in the largest part of the domain. Only
close to the actual interface, there are larger deviations observed. Please
note that no smoothening post-processing was applied here, and all Gibbs
oscillations are visible in the deviations.

We now replace the exact definition of the cylindrical geometry by the
polynomial representation obtained by the method described in Chapter
8. All other parameters of the numerical setup remain the same. For all
simulations, the cylinder geometry is approximated by polynomials with a

158

9.3 Seeder Generated Material for Electrodynamics

Figure 9.8: Scattering of a planar wave at a cylindrical object. The grid
lines indicate the mesh of the DG solver. For the numerical
solution, a basis with a maximal polynomial degree of 15 is
used. On the left, the reference solution is shown. On the
right, the difference between the numerical solution and the
reference can be seen for a de-aliasing by 32 points. The color
scale for the difference is chosen with a range of ±10 % of the
maximal amplitude in the reference.

159

9 Results with Ateles

Figure 9.9: Numerical result of the Mie scattering experiment. While
Figure 9.8 shows the reference solution along with the error of
the numerical approximation, this image now shows the actual
numerical solution. It shows how the numerical solution gets a
little distorted at the material discontinuity but otherwise the
solution is well approximated.

maximal polynomial degree of 31 in each element. Similarly to Figure 8.6,
we can vary the number of integration points and the size of the smallest
voxels in each element for the construction of these polynomials.

To judge the quality of the thereby obtained cylinder approximations for
the DG scheme, we build the L2-error across the 8 × 8 elements enclosing
the cylinder. For the comparison, we consider the instantaneous solution
after simulating a time interval of 0.42 (the time it takes the impinging wave
to move once by the diameter of the cylinder). The errors are measured in
the Z component of the displacement field D and are shown in Table 9.1.
We increase the voxel resolution (`) from row to row in Table 9.1. In the
columns we increase the anti-aliasing, that is the number of Chebyshev
nodes to construct the polynomials of degree 31. The aa factor is to be
understood as a multiplicator, such that with aa = 1 we use 32 points per
direction to construct the polynomials and with aa = 4 we use 128.

As can be seen in Table 9.1, the error always improves with the voxel
resolution `. A higher anti-aliasing, however, does not always improve the
solution quality. This behavior matches the observations in Figure 8.6 and
emphasizes the necessity for voxel resolutions that resolve the smallest

160

9.3 Seeder Generated Material for Electrodynamics

` aa = 1 aa = 2 aa = 4
5 3.452e-03 3.345e-03 2.973e-03
6 1.949e-03 2.066e-03 1.944e-03
8 1.491e-03 1.329e-03 1.318e-03
10 1.401e-03 1.235e-03 1.241e-03
∞ 1.339e-03

Table 9.1: L2-error in the Mie scattering simulation after a simulation time
of 0.42 for different geometry approximations. Simulations were
done with a spatial order of 16. The polynomial representation
of the geometry uses a maximal polynomial degree of 31. For the
time integration, a classical explicit fourth order Runge-Kutta
scheme is used.

distances between Chebyshev nodes.

161

10 Future Work and Summary

In this final chapter, some outlines for further work are provided, and
a short summary of the presented work is provided. This work set out
to enable heterogeneous, coupled simulations for multi-scale problems on
large, distributed and parallel computing systems. Over the course of this
challenging task it become obvious that some fundamental changes had
to be implemented to overcome scalability issues, not only in the solver,
but also in the supporting tools like mesh generation and post-processing.
The complete scope of this huge task could not be covered in this single
thesis, so a lot of work remains open and further paths will be followed
from here on.

10.1 Summary

This work is concerned with the simulation of multi-scale problems like
aero-acoustics on large parallel and distributed computing systems. Major
bottlenecks, inhibiting scalability, were overcome and a completely new
approach has been implemented. The focus in the numerical methods
is put on high-order schemes, as they can provide the required accuracy
for detailed simulations with less degrees of freedoms. We covered the
challenge to bring heterogeneous, coupled simulations to massively parallel
systems with distributed memory. By utilizing PACX-MPI, we even were
able to run this kind of setup on heterogeneous computing infrastructure.
It was shown that matching the heterogeneity of the software to the
heterogeneity of the hardware is advantageous and yield lower times to
solution than either system alone. An ultimately non-scaling and therefore
limiting factor was identified in the mesh generation and adjacency search.
This bottleneck can only be overcome by more dramatic changes, and
sacrifices in the generality of the mesh representation. A new framework
revolving around this idea has been established and opened the path to
truely scalable simulations on distributed systems. The work on this new
framework is ongoing and not only involves the solvers themself but also
pre- and post-processing tools.

Especially the mesh generation with high-order geometry representation
in this new framework has been elaborated. The assembled tools and

163

10 Future Work and Summary

methods constitute a new environment to address multi-scale problems
on massively parallel systems of the future. The advantages of high-
order methods for modern computing systems were discussed and a brief
discussion on the efficient implementation has been conducted. The new
framework offers already great usability and enables the utilization of
large scale computing systems for a broad range of simulation setups.
Developments that still need to be done are those related to dynamic
adaptations of the discretization. Such dynamic adaptations will advance
the new implementation beyond the scope of the original coupling idea
and enable the addressing of new questions.

10.2 Future Work

With the status of this thesis, the APES framework is not as adaptable
as it should be. It is still lacking dynamic mesh adaptation, though the
Octree representation would be highly suitable for this feature. Work is
ongoing to enable the dynamic mesh adaptation in TreElM and the solvers
and will allow a further limitation of the numerical effort to those regions,
where it is actually needed. However, Ateles provides an implementation of
a high-order method, which allows the consideration of individual elements
as spectral domains in themselves. Such high-order schemes in combination
with mesh discretizations are also referred to as spectral element methods
[62]. By viewing each element as a single spectral domain, we can think of
the overall DG mesh as a coupling of individual spectral domains. A vision
for further developments is to allow here adaptations in the equations
to solve, the spatial resolution in terms of element size and polynomial
degrees and the temporal resolution in terms of time steps. This would
combine the KOP concept with h/p-Refinement and utilize the Octree
infrastructure for high scalability. Instead of a static setup that needs
to be defined a-priori, the dynamic setup could develop an appropriate
discretization in the course of the simulation itself and thereby not only
reduce the computational effort for a given problem, but also increase
the usability. In this concept, the individual elements are less parts of
a mesh but more independent agents that solve the partial differential
equations in the space, they are covering. The high dynamics of such a
setup and the detailed interaction between such element agents pose a
challenging problem. However, the Octree infrastructure and high-order
DG discretization provide a solid basis to tackle it.

The concept of independent agents interacting with each other, matches
well with modern computing systems, where resources are more and more

164

10.2 Future Work

distributed and most operations need to be local. Thus, even so the
dynamics of the system might be hard to handle and decrease the sus-
tained performance, such a concept may well be feasible on modern high
performance computing systems and can allow us to solve larger problems
in a more automated way. That is, we could shift the work of finding a
proper domain decomposition from the user to the computer. This only
becomes possible by employing spectral discretizations in the DG elements,
as only in this case the effort in each element is sufficiently large and the
communication between elements is negligble small.

An important building block on the way to such a highly adaptive
simulation, is a more advanced time integration scheme, like for example
the local space-time discontinuous Galerkin method by Dumbser et al. [13].
These time integrators also have the additional benefit that they might
yield a parallelization in time. They would therefore allow the utilization of
large parallel systems for long running transient simulations. By employing
a global space-time discontinuous Galerkin method, as proposed by van
der Vegt and van der Ven [85], it might even become possible to parallelize
multiple small time steps that might be adjacent to an element with a
larger time step. This strategy would result in a time slice that needs
to be solved across all elements but with the possibility to adapt the
discretization locally in space and time. Therefore, the implementation in
APES now provides both, a more integrated and a more flexible framework
to achieve multi-scale simulations like aero-acoustic problems.

165

Bibliography

[1] Bradley K. Alpert and Vladimir Rokhlin. “A Fast Algorithm for
the Evaluation of Legendre Expansions”. en. In: SIAM Journal on
Scientific and Statistical Computing 12.1 (Jan. 1991), pp. 158–179.
issn: 0196-5204, 2168-3417.

[2] Michael Bader. Space-Filling Curves: An Introduction with Applica-
tions in Scientific Computing. 2012th ed. Springer Berlin Heidelberg,
Sept. 2012. isbn: 3642310451.

[3] David Blackstock. Fundamentals of Physical Acoustics. English. 1 edi-
tion. New York: Wiley-Interscience, Feb. 2000. isbn: 978-0-471-31979-5.

[4] Alfonso Bueno-Orovio, Víctor M. Pérez-García, and Flavio H. Fenton.
“Spectral Methods for Partial Differential Equations in Irregular
Domains: The Spectral Smoothed Boundary Method”. In: SIAM J.
Sci. Comput. 28.3 (Mar. 2006), pp. 886–900. issn: 1064-8275. doi:
10.1137/040607575.

[5] John Butcher. Numerical Methods for Ordinary Differential Equa-
tions. Englisch. 2. Auflage. Chichester, England ; Hoboken, NJ: John
Wiley & Sons, Mar. 2008. isbn: 978-0-470-72335-7.

[6] R.K. Cavin, P. Lugli, and V.V. Zhirnov. “Science and Engineering
Beyond Moore’s Law”. In: Proceedings of the IEEE 100.Special
Centennial Issue (May 2012), pp. 1720–1749. issn: 0018-9219. doi:
10.1109/JPROC.2012.2190155.

[7] W.L. Chen, F.S. Lien, and M.A. Leschziner. “Local mesh refinement
within a multi-block structured-grid scheme for general flows”. In:
Computer Methods in Applied Mechanics and Engineering 144.3–4
(1997), pp. 327–369. issn: 0045-7825. doi: 10.1016/S0045-7825(96)
01187-5.

[8] C. W. Clenshaw and A. R. Curtis. “A method for numerical in-
tegration on an automatic computer”. en. In: Numerische Mathe-
matik 2.1 (Dec. 1960), pp. 197–205. issn: 0029-599X, 0945-3245. doi:
10.1007/BF01386223.

167

Bibliography

[9] R. Courant, K. Friedrichs, and H. Lewy. “Über die partiellen Differen-
zengleichungen der mathematischen Physik”. de. In: Mathematische
Annalen 100.1 (Dec. 1928), pp. 32–74. issn: 0025-5831, 1432-1807.
doi: 10.1007/BF01448839.

[10] Kiril Dichev. PACX-MPI | hlrs.de. Mar. 2009. url: http://www.
hlrs.de/organization/av/amt/research/pacx-mpi/ (visited
on 17/16/2015).

[11] Michael Dumbser. “Arbitrary high order PNPM schemes on un-
structured meshes for the compressible Navier-Stokes equations”. In:
Computers & Fluids 39.1 (Jan. 2010), pp. 60–76. issn: 0045-7930.
doi: 10.1016/j.compfluid.2009.07.003.

[12] Michael Dumbser and Martin Käser. “Arbitrary high order non-
oscillatory finite volume schemes on u nstructured meshes for linear
hyperbolic systems”. In: Journal of Computational Physics 221.2
(Feb. 2007), pp. 693–723. issn: 0021-9991. doi: 10.1016/j.jcp.
2006.06.043.

[13] Michael Dumbser et al. “A unified framework for the construction
of one-step finite volume and discontinuous Galerkin schemes on
unstructured meshes”. In: Journal of Computational Physics 227.18
(Sept. 2008), pp. 8209–8253. issn: 0021-9991. doi: 10.1016/j.jcp.
2008.05.025.

[14] Rodger W Dyson. “Technique for very high order nonlinear simula-
tion and validation”. In: Journal of Computational Acoustics 10.02
(2002), pp. 211–229.

[15] Herbert Edelsbrunner and Ernst Peter Mücke. “Simulation of Sim-
plicity: A Technique to Cope with Degenerate Cases in Geometric
Algorithms”. In: ACM TRANS. GRAPH 9 (1990), pp. 66–104.

[16] E.S.T. Fernandes, V.C. Barbosa, and F. Ramos. “Instruction usage
and the memory gap problem”. In: Computer Architecture and High
Performance Computing, 2002. Proceedings. 14th Symposium on.
2002, pp. 169–175.

[17] J. E. Flaherty et al. “Adaptive Local Refinement with Octree Load
Balancing for the Parallel Solution of Three-Dimensional Conserva-
tion Laws”. In: Journal of Parallel and Distributed Computing 47.2
(1997), pp. 139–152. issn: 0743-7315. doi: 10.1006/jpdc.1997.
1412.

[18] M.J. Flynn. “Very high-speed computing systems”. In: Proceedings
of the IEEE 54.12 (1966), pp. 1901–1909. issn: 0018-9219.

168

Bibliography

[19] Message Passing Interface Forum. MPI: A Message-Passing Inter-
face Standard, Version 2.2. English. Stuttgart: High-Performance
Computing Center Stuttgart, Sept. 2009.

[20] Message Passing Interface Forum. MPI: A Message-Passing Inter-
face Standard, Version 3.0. English. Stuttgart: High-Performance
Computing Center Stuttgart, Sept. 2012. url: http://mpi-forum.
org/docs/docs.html.

[21] F. Franchetti et al. “Efficient Utilization of SIMD Extensions”. In:
Proceedings of the IEEE 93.2 (2005), pp. 409–425. issn: 0018-9219.
doi: 10.1109/JPROC.2004.840491.

[22] Edgar Gabriel et al. “Distributed Computing in a Heterogeneous
Computing Environment”. In: Recent Advances in Parallel Vir-
tual Machine and Message Passing Interface. Springer-Verlag, 1998,
p. 494.

[23] Jean-Loup Gailly and Mark Adler. zlib. May 2012. url: http://
zlib.net/ (visited on 07/15/2012).

[24] Bernhard Gatzhammer. Efficient and Flexible Partitioned Simulation
of Fluid-Structure Interactions. Englisch. Dr. Hut, Feb. 2015. isbn:
978-3-8439-1990-6.

[25] D. Gottlieb and J.S. Hesthaven. “Spectral methods for hyperbolic
problems”. In: Journal of Computational and Applied Mathematics
128.1–2 (2001). Numerical Analysis 2000. Vol. VII: Partial Differential
Equations, pp. 83–131. issn: 0377-0427. doi: http://dx.doi.org/
10.1016/S0377-0427(00)00510-0.

[26] Georg Hager and Gerhard Wellein. Introduction to High Performance
Computing for Scientists and Engineers. en. CRC Press, Dec. 2010.
isbn: 9781439811931.

[27] John Lawrence Hammond, J. E. Brown, and S. S. Liu. Development
of a transmission error model and an error control model. en. Rome
Air Development Center, Air Force Systems Command, 1975.

[28] Daniel F. Harlacher et al. “Dynamic Load Balancing for Unstruc-
tured Meshes on Space-Filling Curves”. In: Parallel and Distributed
Processing Symposium Workshops PhD Forum (IPDPSW), 2012
IEEE 26th International. May 2012, pp. 1661–1669. doi: 10.1109/
IPDPSW.2012.207.

[29] Daniel F. Harlacher et al. “Tree Based Voxelization of STL Data”.
In: High Performance Computing on Vector Systems 2011. Ed. by
Michael Resch et al. Springer Berlin Heidelberg, 2012, pp. 81–92.

169

Bibliography

[30] Manuel Hasert et al. “Complex fluid simulations with the parallel
tree-based Lattice Boltzmann solver Musubi”. In: Journal of Compu-
tational Science 5.5 (Sept. 2014), pp. 784–794. issn: 1877-7503. doi:
10.1016/j.jocs.2013.11.001.

[31] John Hennessy et al. Computer Architecture: A Quantitative Ap-
proach. 1st. Morgan Kaufmann Publishers, Jan. 1996.

[32] William D. Henshaw and Donald W. Schwendeman. “Parallel com-
putation of three-dimensional flows using overlapping grids with
adaptive mesh refinement”. In: J. Comput. Phys. 227.16 (Aug. 2008),
pp. 7469–7502. issn: 0021-9991. doi: 10.1016/j.jcp.2008.04.033.

[33] F. Hindenlang, T. Bolemann, and C-D. Munz. “Mesh Curving Tech-
niques for High Order Discontinuous Galerkin Simulations”. In: IDI-
HOM: Industrialization of High-Order Methods-A Top-Down Ap-
proach. Springer, 2015, pp. 133–152.

[34] T. Hoefler, A. Lumsdaine, and W. Rehm. “Implementation and
Performance Analysis of Non-Blocking Collective Operations for
MPI”. In: Proceedings of the 2007 International Conference on High
Performance Computing, Networking, Storage and Analysis, SC07.
Reno, USA: IEEE Computer Society/ACM, Nov. 2007.

[35] Roberto Ierusalimschy, Luiz Henrique De Figueiredo, and Waldemar
Celes. Lua 5.1 Reference Manual. Roberto Ierusalimschy, Aug. 2006.
isbn: 8590379833.

[36] Takashi Ishida, Shun Takahashi, and Kazuhiro Nakahashi. “Efficient
and Robust Cartesian Mesh Generation for Building-Cube Method”.
In: Journal of Computational Science and Technology 2.4 (2008),
pp. 435–446.

[37] W. Joppich and M. Kürschner. “MpCCI tool for the simulation of
coupled applications”. en. In: Concurrency and Computation: Practice
and Experience 18.2 (Feb. 2006), pp. 183–192. issn: 1532-0634. doi:
10.1002/cpe.913.

[38] J. Kačur. “Method of Rothe in evolution equations”. en. In: Equadiff
6. Ed. by Jaromı́r Vosmanskỳ and Miloš Zlámal. Lecture Notes in
Mathematics 1192. DOI: 10.1007/BFb0076049. Springer Berlin Hei-
delberg, 1986, pp. 23–34. isbn: 978-3-540-16469-2 978-3-540-39807-3.

[39] Yehuda E. Kalay. “Determining the spatial containment of a point
in general polyhedra”. In: Computer Graphics and Image Processing
19.4 (Aug. 1982), pp. 303–334. issn: 0146-664X. doi: 10.1016/0146-
664X(82)90019-3.

170

Bibliography

[40] H. Klimach and S. Roller. “Distributed Coupling for Multi-Scale
Simulations”. In: Proceedings of the Second International Conference
on Parallel, Distributed, Grid and Cloud Computing for Engineering.
Ed. by P. Ivanyi and B.H.V. Topping. Civil-Comp Ltd., 2011. isbn:
978-1-905088-44-7.

[41] Harald Klimach. Aotus. 2011. url: https://bitbucket.org/

apesteam/aotus/ (visited on 10/17/2015).
[42] Harald Klimach et al. Treelm. 2012. url: https://bitbucket.org/

apesteam/treelm (visited on 10/17/2015).
[43] H. Klimach et al. Seeder. https://bitbucket.org/apesteam/seeder.

Last accessed on 2015-06-04. 2015.
[44] Sophie von Kowalevsky. “Zur Theorie der partiellen Differential-

gleichung.” In: Journal für die reine und angewandte Mathematik
(Crelles Journal) 80 (Jan. 1875), pp. 1–32. issn: 0075-4102. doi:
10.1515/crll.1875.80.1.

[45] Wilhelm Kutta. Beitrag zur näherungsweisen Integration totaler
Differentialgleichungen. Leipzig: B. G. Teubner, 1901.

[46] Lew Landau and Evgeny Lifshitz. Fluid Mechanics, Second Edition:
Volume 6. English. 2 edition. Butterworth-Heinemann, Jan. 1987.
isbn: 978-0-7506-2767-2.

[47] Jeff Lane, Bob Magedson, and Mike Rarick. “An efficient point in
polyhedron algorithm”. In: Computer Vision, Graphics, and Image
Processing 26.1 (Apr. 1984), pp. 118–125. issn: 0734-189X. doi:
10.1016/0734-189X(84)90133-6.

[48] Frank G. Lether. “On the construction of Gauss-Legendre quadrature
rules”. In: Journal of Computational and Applied Mathematics 4.1
(1978), pp. 47–52. issn: 0377-0427. doi: 10.1016/0771-050X(78)
90019-0.

[49] Z. Lu and A. Jantsch. “Trends of terascale computing Chips in the
next ten years”. English. In: IEEE 8th International Conference
on ASIC, 2009. ASICON ’09. IEEE, Oct. 2009, pp. 62–66. isbn:
978-1-4244-3868-6. doi: 10.1109/ASICON.2009.5351607.

[50] Robert L. Meakin. “Composite Overset Structured Grids”. In: Hand-
book of Grid Generation. CRC Press, Dec. 1998. isbn: 978-0-8493-2687-5.

[51] Gustav Mie. “Beiträge zur Optik trüber Medien, speziell kolloidaler
Metallösungen”. en. In: Annalen der Physik 330.3 (Jan. 1908), pp. 377–
445. issn: 1521-3889. doi: 10.1002/andp.19083300302.

171

Bibliography

[52] Rajat Mittal and Gianluca Iaccarino. “Immersed boundary methods”.
In: Annu. Rev. Fluid Mech. 37 (2005), pp. 239–261.

[53] B. Moon et al. “Analysis of the clustering properties of the Hilbert
space-filling curve”. In: Knowledge and Data Engineering, IEEE
Transactions on 13.1 (2001), pp. 124–141. issn: 1041-4347. doi:
10.1109/69.908985.

[54] Gordon E. Moore. “Cramming More Components onto Integrated
Circuits”. In: Electronics 38.8 (Apr. 1965), pp. 114–117. issn: 0018-
9219. doi: 10.1109/jproc.1998.658762.

[55] Philip J. Morris. “Scattering of Sound by a Sphere: Category 1, Prob-
lems 3 and 4”. In: Proceedings of Second Computational Aeroacoustics
(CAA) Workshop on Benchmark Problems. Oct. 1997, pp. 15–17.

[56] Morton. A computer oriented geodetic data base and a new technique
in file sequencing. Tech. rep. IBM Ltd., 1966.

[57] C. -D. Munz et al. “Divergence Correction Techniques for Maxwell
Solvers Based on a Hyperbolic Model”. In: Journal of Computational
Physics 161.2 (July 2000), pp. 484–511. issn: 0021-9991. doi: 10.
1006/jcph.2000.6507.

[58] Tobias Neckel. “The PDE Framework Peano: An Environment for
Efficient Flow Simulations”. Dissertation. Institut für Informatik,
Technische Universität München, June 2009. isbn: 978-3-86853-147-3.

[59] Peter J. Olver. Applications of Lie Groups to Differential Equa-
tions. en. Springer Science & Business Media, Jan. 2000. isbn: 978-
0-387-95000-6.

[60] Stanley Osher, Tony Chan, and Xu-dong Liu. “Weighted Essentially
Non-oscillatory Schemes”. In: Journal of Computational Physics 115.1
(Nov. 1994), pp. 200–212. issn: 00219991.

[61] Brynjulf Owren and Marino Zennaro. “Order barriers for continuous
explicit Runge-Kutta methods”. In: Mathematics of Computation
56.194 (1991), pp. 645–661. issn: 0025-5718, 1088-6842. doi: 10.
1090/S0025-5718-1991-1068811-2.

[62] Anthony T Patera. “A spectral element method for fluid dynamics:
laminar flow in a channel expansion”. In: Journal of computational
Physics 54.3 (1984), pp. 468–488.

[63] Charles S. Peskin. “The immersed boundary method”. In: Acta
Numerica 11 (Jan. 2002), pp. 479–517. issn: 1474-0508.

172

Bibliography

[64] L. F. Richardson. “The Approximate Arithmetical Solution by Finite
Differences of Physical Problems Involving Differential Equations,
with an Application to the Stresses in a Masonry Dam”. In: Philo-
sophical Transactions of the Royal Society of London. Series A,
Containing Papers of a Mathematical or Physical Character 210.459-
470 (Jan. 1911), pp. 307–357. doi: 10.1098/rsta.1911.0009.

[65] Sabine Roller et al. “An Adaptable Simulation Framework Based on a
Linearized Octree”. In: High Performance Computing on Vector Sys-
tems 2011. Ed. by Michael Resch et al. 10.1007/978-3-642-22244-3_7.
Springer Berlin Heidelberg, 2012, pp. 93–105. isbn: 978-3-642-22244-3.

[66] P.E. Ross. “Why CPU Frequency Stalled”. In: Spectrum, IEEE 45.4
(2008), p. 72. issn: 0018-9235.

[67] Feriedoun Sabetghadam, Shervin Sharafatmandjoor, and Farhang
Norouzi. “Fourier Spectral Embedded Boundary Solution of the Pois-
son’s and Laplace Equations with Dirichlet Boundary Conditions”.
In: J. Comput. Phys. 228.1 (Jan. 2009), pp. 55–74. issn: 0021-9991.

[68] Hans Sagan. Space-Filling Curves. 1st ed. Springer New York, Sept.
1994. isbn: 0387942653.

[69] Rahul S. Sampath et al. Dendro: Parallel algorithms for multigrid
and AMR methods on 2:1 balanced octrees. 2009.

[70] Stefan Schamberger and Jens-Michael Wierum. “Graph partition-
ing in scientific simulations: Multilevel schemes versus space-filling
curves”. In: Parallel Computing Technologies. Springer, 2003, pp. 165–
179.

[71] R. Schneiders, R. Schindler, and F. Weiler. “Octree-based Gener-
ation of Hexahedral Element Meshes”. In: Proceedings of the 5th
International Meshing Roundtable (1996), pp. 205–215.

[72] J Schreiner et al. “Aerodynamic lens system for producing particle
beams at stratospheric pressures”. In: Aerosol science and technology
29.1 (1998), pp. 50–56.

[73] T. Schwartzkopff. “Finite-Volumen Verfahren hoher Ordnung und
heterogene Gebietszerlegung für die numerische Aeroakustik”. In:
(2005).

[74] T. Schwartzkopff, C. D. Munz, and E. F. Toro. “ADER: A High-Order
Approach for Linear Hyperbolic Systems in 2D”. en. In: Journal of
Scientific Computing 17.1-4 (Dec. 2002), pp. 231–240. issn: 0885-
7474, 1573-7691. doi: 10.1023/A:1015160900410.

173

Bibliography

[75] Alan Silverstein. Judy IV Shop Manual. 2002. url: http://judy.
sourceforge.net/application/shop_interm.pdf (visited on
10/17/2015).

[76] Joseph L. Steger and John A. Benek. “On the use of composite grid
schemes in computational aerodynamics”. In: Computer Methods in
Applied Mechanics and Engineering 64.1 (Oct. 1987), pp. 301–320.
issn: 0045-7825. doi: 10.1016/0045-7825(87)90045-4.

[77] The HDF Group. Hierarchical data format version 5. 2000. url:
http://www.hdfgroup.org/HDF5 (visited on 03/16/2013).

[78] Joe F. Thompson, Frank C. Thames, and C. Wayne Mastin. “Au-
tomatic numerical generation of body-fitted curvilinear coordinate
system for field containing any number of arbitrary two-dimensional
bodies”. In: Journal of Computational Physics 15.3 (July 1974),
pp. 299–319. issn: 0021-9991. doi: 10.1016/0021-9991(74)90114-
4.

[79] V. A. Titarev and E. F. Toro. “ADER schemes for three-dimensional
non-linear hyperbolic systems”. In: Journal of Computational Physics
204.2 (Apr. 2005), pp. 715–736. issn: 0021-9991. doi: 10.1016/j.
jcp.2004.10.028.

[80] Tiankai Tu, David R. O’Hallaron, and Omar Ghattas. “Scalable
Parallel Octree Meshing for TeraScale Applications”. In: Proceed-
ings of the 2005 ACM/IEEE conference on Supercomputing. SC
’05. Washington, DC, USA: IEEE Computer Society, 2005. isbn:
1-59593-061-2. doi: http://dx.doi.org/10.1109/SC.2005.61.

[81] Tiankai Tu et al. “From mesh generation to scientific visualization:
an end-to-end approach to parallel supercomputing”. In: Proceedings
of the 2006 ACM/IEEE conference on Supercomputing. SC ’06. New
York, NY, USA: ACM, 2006. isbn: 0-7695-2700-0. doi: 10.1145/
1188455.1188551.

[82] Jens Utzmann. “A domain decomposition method for the efficient
direct simulation of aeroacoustic problems”. PhD thesis. Universität
Stuttgart, 2008.

[83] J. Utzmann et al. “Heterogeneous domain decomposition for com-
putational aeroacoustics”. In: AIAA journal 44.10 (2006), pp. 2231–
2250. issn: 0001-1452. doi: 10.2514/1.18144.

[84] A. Van Oosterom and J. Strackee. “The Solid Angle of a Plane Tri-
angle”. In: Biomedical Engineering, IEEE Transactions on BME-30.2
(1983), pp. 125–126. issn: 0018-9294.

174

Bibliography

[85] J.J.W. van der Vegt and H. van der Ven. “Space–Time Discontinuous
Galerkin Finite Element Method with Dynamic Grid Motion for
Inviscid Compressible Flows: I. General Formulation”. In: Journal
of Computational Physics 182.2 (Nov. 2002), pp. 546–585. issn:
0021-9991. doi: 10.1006/jcph.2002.7185.

[86] J. H. Verner. “On deriving explicit Runge-Kutta methods”. en. In:
Conference on Applications of Numerical Analysis. Ed. by John Ll
Morris. Lecture Notes in Mathematics 228. Springer Berlin Heidel-
berg, Jan. 1971, pp. 340–347. isbn: 978-3-540-05656-0, 978-3-540-36976-9.

[87] Michael Weiss. “Strip mining on SIMD architectures”. In: Proceedings
of the 5th international conference on Supercomputing. ACM. 1991,
pp. 234–243.

[88] Elizabeth White. What Is An STL File? Text. Nov. 2013. url: http:
//www.3dsystems.com/quickparts/learning-center/what-is-

stl-file (visited on 06/04/2015).
[89] H. Wilbraham. “On a Certain Periodic Function”. In: The Cambridge

and Dublin Mathematical Journal 3 (1848), pp. 198–201.
[90] Hung-Hsi Wu. “Historical development of the Gauss-Bonnet theorem”.

In: Science in China Series A: Mathematics 51.4 (Apr. 2008), pp. 777–
784. doi: 10.1007/s11425-008-0029-8.

[91] Mark A. Yerry and Mark S. Shephard. “Automatic three-dimensional
mesh generation by the modified-octree technique”. en. In: Interna-
tional Journal for Numerical Methods in Engineering 20.11 (Nov.
1984), pp. 1965–1990. issn: 1097-0207.

[92] Jens Zudrop and Jan S. Hesthaven. “Accuracy of high order and
spectral methods for hyperbolic conservation laws with discontinuous
solutions”. In: SIAM Journal on Numerical Analysis 53.4 (2015),
pp. 1857–1875.

[93] Gerhard Zumbusch. “On the quality of space-filling curve induced
partitions”. In: Sonderforschungsbereich 256 (2000), pp. 25–28.

175

List of Figures

1.1 Image of an instanteneous pressure field for a sound emitting
Kármán vortex street behind a sphere. A large domain is
covered to capture the propagation of soundwaves, and
around the sphere there are smaller domains, as indicated
by the black lines. 3

4.1 Illustration of a complex geometry, represented by an un-
structured mesh. Shown is the cut through a supersonic
nozzle, with an instanteneous density field. The mesh is
indicated by the brighter lines. 26

4.2 Illustration of Z-ordering space-filling curve. The ordering
along the (red) curve is given by the coloring. A finite
iteration of the space-filling curve with an ordering from 0
to 255 is shown. 28

4.3 An unstructured triangle mesh shimmed with the space-
filling curve from Figure 4.2. Each element is assigned its
ordering value according to its barycenter location. The un-
structured mesh and the barycenters of elements are drawn
in red, while the coloring in the background indicates the
ordering by the Z-ordering. 30

4.4 Resulting ordering of elements in the unstructured mesh of
Figure 4.3 after applying the space-filling curve sorting. The
colors indicate the space-filling curve value for each element,
as obtained by the barycenter. The numbers indicate the
ranking of the elements. 31

4.5 Example tetrahedron with the vertices 1 to 4. Sides are indi-
cated by colors and labeled with letters at their barycenters.
Only sides A and D are in the foreground. Labeling for side
B is left out, to avoid confusion. 33

4.6 Linear array of vertices for all sides of the tetrahedron in
Figure 4.5. The numbers above the array elements indicate
their respective indices. 33

4.7 Illustration of searched elements to identify stencils in 2D. . 39

177

List of Figures

4.8 Elements of the non-central stencils. 40
4.9 Memory consumption with global mesh information on each

process. 42
4.10 State diagram for the distributed WENO stencil search. . . 45
4.11 Memory consumption with distributed mesh information. . 47

5.1 Sustained performance scaling on german supercomputing
systems. Kabuki is a small NEC SX-ACE system. Hornet
is a Cray XC 40 Petascale system. SuperMUC is a Lenovo
NeXtScale Petascale system, and Juqueen is a BlueGene Q
Petascale system. 65

6.1 An example for the partitioning of a three dimensional mesh
with arbitrary surfaces. 69

6.2 2D-Illustration of the Jordan algorithm to decide point
containment. Two rays are cast from a single point into two
different directions. 70

6.3 Illustration of a corner case for the Jordan algorithm, where
the ray intersects a vertex of a partition interface. 71

6.4 Required faces to be checked to correctly identify the corner
case in the Jordan algorithm. 72

6.5 2D-Illustration of the Gauss-Bonnet algorithm to decide
point containment in polygons. 73

6.6 Illustration of the situation for a point on a vertex of the
polygon. The resulting angle from the algorithm can be
interpreted as the fraction of the point that belongs to the
polygon (red). A potential neighboring domain is indicated
in yellow. 74

6.7 A coupling ghost cell of structured domain A, overlapping
both, domain B (green) and C (red). Ghost cells are shown in
blue, for the cell overlapping both neighbors, the Chebyshev-
Gauss integration points for fourth order are indicated by
blue dots. 81

6.8 Illustration of a decomposed and partitioned three-dimen-
sional coupling setup with unstructured and structured par-
titions. Only one row of structured partitions are shown to
allow the view on the unstructured domain beneath. The
color indicates the instanteneous pressure field of the coupled
flow simulation. 85

6.9 Separation of the overall computing time into two different
tasks. These blocks of tasks repeat every iteration. 85

178

List of Figures

6.10 Illustration of a setup with strongly imbalanced code blocks
and two points of synchronization. There appear two idle
times. Different ones in each execution thread. The one
(in grey labeled reducible) between domain calculation and
coupling can be minimized by using more processes for the
unstructured part (lower row). However, the other (shown
in red as unavoidable) can not not be diminished by the
same means, it would even get worse with more processes
for the unstructured part. 86

6.11 Moved middle synchronization point after the second syn-
chronization, to combine both code execution blocks and
allow for a balancing of the overall computing time. Though
there are two synchronizations required here, they are now
immediately following each other, resulting essentially in a
single point of synchronization. 87

6.12 Layout of the PACX-MPI communication across distinct
clusters. The MPI ranks as seen by the application are
shown in large bold letters from 0 to 7. Below them the
local process numbers are noted in brackets. 89

6.13 Domain setup for the scattering at a sphere. In blue the
surrounding structured mesh is indicated. The black dot
represents the sphere, and the yellow domain represents the
unstructured mesh embedding the spherical geometry. . . . 92

7.1 Illustration of the spatial bisection with the help of a quadtree.
On the left, the mesh is shown for 2 refinements of the uni-
verse square at level 0. Right to it the full tree shows the
relation of the mesh elements to each other as obtained by
the repeated bisection. 99

7.2 Illustration of a mesh obtained by the described octree
discretization. 101

7.3 Schematic organization of the APES framework. 102
7.4 Relation of a parent to its four children in a 2D quadtree.

The mesh elements are shown on the left, and the tree
nodes on the right. The spatial arrangement of the four
chilren is defined by the Z curve indicated by the blue line.
Note, how the (x, y) coordinate pairs can be interpreted
as binary representation of the rank along the Z curve by
concatenating them like yx. 104

179

List of Figures

7.5 Coordinates and rank along the Z curve after two refinements
of the universe square, compare to the second level in Figure
7.1. Note, how the coordinates in binary can be obtained
by concatenating the bisection position in each refinement,
starting with the first level (here in blue L1) for the most
significant bit. The refinement of the first refinement is here
drawn in red and labeled L2 to indicate the second level.
The rank of each element within the Z curve than can be
found by interleaving the bits of the coordinates in each
direction. 106

7.6 Illustration of the TreeID to identify each element in the
full quadtree with a single integer. 108

7.7 Looking up the right neighbor of a given TreeID (31), high-
lighted in blue. The neighbor is indicated in yellow and has
a TreeID of 47. These elements are on the third level of
the full quadtree and the first TreeID on this level is 21, all
following elements on this level are counted according to the
space filling Z curve. 110

7.8 Quadtree mesh refined towards an obstacle in the center
(indicated in grey). The numbers indicate the TreeID for
each element. 113

7.9 Tree to the mesh from Figure 7.8. Red nodes are actual
elements in the mesh, while the grey nodes are virtual parents
that only exist topologically. The black dots indicate missing
elements, where an obstacle is found and no elements are
present. The thick red line indicates the space filling curve
and the ordering of the elements. 114

7.10 Partitioning with 5 parts of the mesh from Figure 7.9. Col-
ors indicate the partition, each element belongs to. Below
the tree, the serialized list of elements and their split into
partitions is shown. 117

7.11 Strong scaling of neighbor identification on Hermit. 121

7.12 Weak scaling of neighbor identification on Hermit. 122

180

List of Figures

8.1 Illustration of the voxelization of a sphere within coarse
mesh elements. The sphere is indicated by the yellow surface
while the thick black lines outline the elements of the actual
mesh. The voxelization within elements follows the Octree
refinement towards the sphere and is indicated by the thinner
white lines. Inside the sphere, voxels have been colorized by
the flood-fill mechanism with a seed in the center. Flooded
elements are shown in red; other elements are blue. 132

8.2 Projection of a step function (8.2), jumping at x = 2
3 onto the

space of Legendre polynomials. Shown is the step function
along with its approximation by more and more Legendre
basis functions obtained by analytical integration. 134

8.3 Chart of the overall workflow. Required inputs are the
surface descriptions and seeding points to start the flood-
ing. The resulting output is the expansion of the color
distribution in Legendre modes for each element. 136

8.4 Illustration of the approximation method in 1D. For a single
element and one discontinuity. The color value jumps from 0
to 1 at x = 2

3 and is indicated by the red line. The grid lines
indicate the bisection sequence and the yellow area highlights
the region, where the color value is identified to be 1 by the
bisecting approximation. An approximant polynomial of
degree 15 is constructed from the 16 shown Chebyshev nodes
(black dots). The orange polynomial shows the analytical
projection with degree 15, also depicted in Figure 8.2. . . . 138

8.5 Error convergence of the numerical approximation towards
the analytical projection for a polynomial of degree 15. The
blue line shows the L2-error over all 16 modes while the
red line shows the absolute error in the first mode, which
represents the volume. On average, a convergence rate of
0.973 is achieved. Keep in mind that in comparison to the
actual step function, the error from Table 8.1 always remains. 143

8.6 Error in the volume approximation for a sphere with a radius
of 1

3 . The mesh consists of 8 elements with a common vertex
in the center of the sphere. 144

8.7 Illustration of sphere approximations, with increasing ac-
curacy. The sphere is blue, and the isosurface of the color
value at 0.5 is yellow. On the left, the sphere is shown in
the embedding domain with the 8 elements. Voxelization
and integration points increase from left to right. 144

181

List of Figures

8.8 Representation of the cube in 8 elements with polynomials
of degree 15. From left to right an increasing number of in-
tegration points is used. The leftmost image shows the cube
with the 8 elements of the mesh. The reference geometry
is drawn in blue, and the isosurface of the color value 0.5
in yellow. We cut the reference in the middle to enable a
better view for the comparison, except for the second image,
where it is the other way around, and the isosurface is cut. 145

8.9 Approximation of the tetrahedron with an increasing poly-
nomial degree from left to right. Starting on the left with
a polynomial degree of 7 and increasing over 15 and 31 to
63 in the rightmost image. Shown is the isosurface of the
polynomial at a value of 0.5 in yellow and for comparison
the reference geometry cut in half with a blue coloring. . . 146

8.10 Isosurface of a porous medium (yellow) in comparison to the
original STL data (blue). The geometry is well recovered;
only edges are smoothed out a little. 146

9.1 Coarse mesh configuration for a eleventh order simulation
of an aerodynamic lens. The colors show an instanteneous
pressure field on a scale from 1

2 bar to 2 bar. 149
9.2 Schlieren-like visualization of the flow in the aerodynamic

lens. This plot of the magnitude of the density gradient
illustrates how well small scale structures and contact dis-
continuities are preserved by the high-order discretization
(maximal polynomial degree of 10 was used in this simula-
tion). 150

9.3 Convergence plot in terms of computing time for a single
acoustic sine wave in a periodic domain. 152

9.4 Performance map for Ateles solving Maxwell’s equations
with 7th order spatial discretization on up to 512 nodes of
Hermit. 153

9.5 Weak scaling for 7th order Ateles on up to 512 nodes of
Hermit. This plot provides a different view on the data
from Figure 9.4. It shows the parallel efficiency for different
number of elements per node over increasing node counts. . 155

9.6 Weak scaling for 31st order Ateles on up to 512 nodes of
Hermit. 156

182

List of Figures

9.7 Strong scaling for 7th order Ateles on up to 512 nodes of
Hermit. This plot provides a different view on the data
from Figure 9.4. It shows the parallel efficiency for different
numbers of total element counts. 157

9.8 Scattering of a planar wave at a cylindrical object. The grid
lines indicate the mesh of the DG solver. For the numerical
solution, a basis with a maximal polynomial degree of 15 is
used. On the left, the reference solution is shown. On the
right, the difference between the numerical solution and the
reference can be seen for a de-aliasing by 32 points. The
color scale for the difference is chosen with a range of ±10
% of the maximal amplitude in the reference. 159

9.9 Numerical result of the Mie scattering experiment. While
Figure 9.8 shows the reference solution along with the error
of the numerical approximation, this image now shows the
actual numerical solution. It shows how the numerical solu-
tion gets a little distorted at the material discontinuity but
otherwise the solution is well approximated. 160

183

List of Tables

6.1 Running times for the possible setups 93

7.1 Construction of the space filling curve rank in a 3D octree. . 105

8.1 The convergence of the series of Legendre polynomials to-
wards the step function with the jump at x = 2

3 141

9.1 L2-error in the Mie scattering simulation after a simulation
time of 0.42 for different geometry approximations. Simula-
tions were done with a spatial order of 16. The polynomial
representation of the geometry uses a maximal polynomial
degree of 31. For the time integration, a classical explicit
fourth order Runge-Kutta scheme is used. 161

185

ISBN 978-3-936533-82-8

H
ar

al
d

K
lim

ac
h

|
Pa

ra
ll

el
 M

ul
ti

-S
ca

le
-S

im
ul

at
io

ns Harald Klimach

Parallel Multi-Scale-Simulations

with Octrees and Coupled Applications

This issue presents the development of scalable simulation tools for fluid flows
and especially methods to compute direct aeroacoustic simulations.
Aero-acoustic phenomena pose a multi-scale problem. To tackle this class of
problems, a general coupling tool for structured and unstructured meshes is
first parallelized to scale on thousands of processes. However, as there remains
a principle bottleneck in the treatment of meshes with this approach, an entirely
new framework on the basis of octrees is then developed.
This restriction in the mesh representation allows for fully parallel simulations of
arbitrary large setups.

Harald Klimach studied aerospace engineering at the University of Stuttgart;
worked at the HLRS on porting and optimization of user applications on a wide
range of supercomputers and started the development of the APES framework at
the GRS in Aachen. Since 2013 he is working in research and teaching at the chair
for Simulation Techniques and Scientific Computing of the University of Siegen.

Simulation Techniques in Siegen

Vol. 1

Simulation Techniques in Siegen

Vol. 1

The series Simulation Techniques in Siegen presents contributions to the field
of scientific computing with a focus on the utilization of large-scale computing
systems for highly resolved simulations. Applications, as well as numerical
methods and their efficient implementation on modern supercomputers, are
investigated and described.

1

	Cover
	Title
	Zusammenfassung
	Abstract
	Contents
	Nomenclature
	1 Introduction
	1.1 State of the Art in Coupling Techniques
	1.2 Approach to the Coupling Scheme
	1.3 Parallel Processing

	2 Considered Equation Systems
	2.1 Navier-Stokes Equations
	2.2 Euler Equations
	2.3 Linearized Euler Equations
	2.4 Maxwell’s Equations
	2.5 Review and Relevance of the Considered Equations

	3 Deployed Numerical Methods and Their Parallelization
	3.1 Time Integration
	3.2 Cartesian Structured Meshes
	3.3 Method of Finite Volumes
	3.4 Discontinuous Galerkin Finite Element Method
	3.5 The PNPM Scheme

	4 Scalable Unstructured Solver
	4.1 Requirements by the Numerical Scheme
	4.2 Distributed Mesh Handling
	4.3 Distributed WENO Stencil Search
	4.4 Tracking Changes for Parallel Debugging

	5 Single Core Optimization Strategies
	5.1 Vectorization
	5.2 Importance of Visibility of Data Independence
	5.3 Exploiting the Memory Hierarchy
	5.4 Vectorization of the Cauchy-Kowalevsky Procedure
	5.5 Machine Comparison With APES

	6 Scalable Distributed Coupling Method
	6.1 Point Localization in Arbitrary Polyhedrons
	6.2 Distributed Coupling Scheme
	6.3 Coupling Across Different Machines with PACX-MPI
	6.4 Concluding Remarks on the Coupling Mechanism

	7 Distributed Octree Mesh Infrastructure
	7.1 General Relevance of the Approach for ComplexGeometries
	7.2 Octree Meshes in the Solvers
	7.3 Introduction of the Common TreElM Library
	7.4 Distributed Octree
	7.5 TreElM File Format
	7.6 Overview to the Implementation of the APESFramework

	8 Generating the Octree Mesh
	8.1 Related Work
	8.2 The Seeder Mesh Generator
	8.3 Generation of Polynomial Geometry Approximations
	8.4 Numerical Properties
	8.5 Mesh Generation Summary and Future Work

	9 Results with Ateles
	9.1 High-Order Efficiency
	9.2 Scalability of Ateles
	9.3 Seeder Generated Material for Electrodynamics

	10 Future Work and Summary
	10.1 Summary
	10.2 Future Work

	Bibliography
	List of Figures
	List of Tables

