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bei unserer ersten Begegnung übergab er mir das Manuskript zu seinem Buch ”The Compressed
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auszuüben vermochte.

Mein Dank gilt ebenso allen Menschen, die mich durch mein Studium begleitet haben. Hier ins-
besondere meinen KomilitonInnen Julia Müller, Natalie Schmücker und Christian Jung. Ebenso
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Abstract

The circuit evaluation problem for various finitely generated algebraic structures is studied. More
precisely, for various rings, finite and infinite semirings, groups, and polynomial rings the com-
plexity of circuit evaluation is investigated. The focus is on parallel complexity classes like NC or
DET resp., the randomized parallel complexity class coRNC.

For the ring (Z,+, ·) it is known that circuit evaluation is in the randomized complexity class
coRP. We show that under the assumption that the circuit has a constant bound for its multipli-
cation depth circuit evaluation for (Z,+, ·) is complete for the class C=L. If instead, we assume
that the formal degree of the circuit is polynomially bounded, then circuit evaluation for (Z,+, ·)
is complete for the class C=LogCFL.

For circuits over the polynomial ring (Z[x1, ..., xk],+, ·), where k is part of the input, circuit
evaluation is also known as polynomial identity testing and again the best known upper bound for
this problem is coRP. Under the assumption that the circuit is skew, it is known that the problem
is in coRNC. For skew circuits over (Z[x1, ..., xk],+, ·) with fixed k we show that circuit evaluation
is in C=L. The more general powerful skew circuits are introduced. These are skew circuits with
variables where input gates can be labeled by powers xn for binary encoded numbers n. It is shown
that polynomial identity testing for powerful skew circuits belongs to coRNC2 which generalizes
the corresponding result for skew circuits. Two applications of this result are presented:
(i) Equivalence of higher-dimensional straight-line programs can be tested in coRNC2; this result
is even new in the one-dimensional case, where the straight-line programs produce strings.
(ii) The circuit evaluation problem for certain wreath products of finitely generated abelian groups
belongs to coRNC2.

For finitely generated linear groups, the best upper bound for circuit evaluation is again coRP,
which was shown by a reduction to polynomial identity testing. Conversely, circuit evaluation
for the linear group SL3(Z) is equivalent to polynomial identity testing. In this work, it is shown
that circuit evaluation for every finitely generated nilpotent group is in DET ⊆ NC2. Within the
larger class of polycyclic groups we find examples where circuit evaluation is at least as hard as
polynomial identity testing for powerful skew circuits.

For finite semirings where semirings are not assumed to have an additive or multiplicative
identity, the following dichotomy is shown: if a finite semiring is such that (i) the multiplicative
semigroup is not solvable or (ii) it does contain a subsemiring with an additive identity 0 and a
multiplicative identity 1 6= 0, then the circuit evaluation problem for the semiring is P-complete.
In all other cases, the circuit evaluation problem is in DET.

An extension of the circuit evaluation problem to circuits over power sets is the circuit in-
tersection problem where circuits with additional union gates over the power set of a structure
are considered. We show that for a finite semiring S circuit intersection is in DET if S is a solv-
able local group. Otherwise it is P-complete. It is known that circuit intersection for the ring
(Z,+, ·) is NEXPTIME-complete. We use this to show that also for the linear group SL5(Z) circuit
intersection is NEXPTIME-complete.

At the beginning of this thesis we show for the more classical word problem that this problem for
an infinite finitely generated linear group G is DLOGTIME-uniform TC0-complete if G is solvable
and that it is in DLOGTIME-uniform NC1 if G is virtually solvable.
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Chapter 1

Introduction

Algebraic structures are the central objects of interest in the mathematical field of abstract alge-
bra. But not only inside mathematics, also in other disciplines like quantum physics, chemistry
and computer-science (especially in cryptography) these structures are of great interest. Given
a formula over an algebraic structure, there are various ways to encode this formula into data.
The most obvious way is to just ”write down” the formula in the common way. Another idea is
to encode formulas as tree graphs with labeled nodes. One can easily transform these encodings
into each other. The encoding of our interest is a more succinct one: In this work so-called cir-
cuits over algebraic structures are investigated. This means the formula is encoded by a directed
acyclic graph. This encoding can be seen as a kind of compression of the formula with a possibly
exponential large compression ratio. In this thesis, the task to evaluate these circuits (without
decompressing them) is investigated. The study of circuit evaluation problems has a long tradition
in theoretical computer science and is tightly connected to many aspects in computational com-
plexity theory. In its most general formulation, one has an algebraic structure A = (A, f1, . . . , fk)
where the fi are mappings fi : Ani → A. A circuit over the structure A is a directed acyclic
graph (dag) where every inner node is labeled with one of the operations fi and has exactly ni
incoming edges that are linearly ordered. For the structures considered here, the leaf nodes of
the dag are labeled with elements from a finite generating set of A, and there is a distinguished
output node. The task is for two given circuits to test, whether the output nodes evaluate to the
same element. Ladner [52] proved that the circuit evaluation problem for the Boolean semiring
B2 = ({0, 1},∨,∧) is P-complete. This result marks a cornerstone in the theory of P-completeness
[40], and motivated the investigation of circuit evaluation problems for other algebraic structures.

Another of the most important circuit evaluation problems is polynomial identity testing. Here,
for some unitary ring R the input is a circuit over the structure (R[x1, . . . , xk],+, ·) whose internal
gates are labeled with either addition or multiplication, its input gates are labeled with variables
(x1, x2, . . . , xk) or constants (−1, 0, 1), and it is asked whether the output gate evaluates to the
zero polynomial. Based on the Schwartz-Zippel-DeMillo-Lipton Lemma ([33], [78], [93]), Ibarra
and Moran [45] proved that polynomial identity testing for R = Z belongs to the class coRP (the
complements of problems that can be solved in randomized polynomial time). Whether there is a
deterministic polynomial time algorithm for polynomial identity testing is an important problem
that has implication for some major open problems in complexity theory. Although it is quite
plausible that polynomial identity testing belongs to P (by [46]), it will be probably very hard to
prove (by [48]).

It is known that for algebraic formulas (where the circuit is a tree) and for skew algebraic
circuits (where for every multiplication gate, one of its two input gates is a constant or a variable),
polynomial identity testing for R = Z belongs to coRNC (the complements of problems that can
be solved randomized in polylogarithmic time by polynomially many processors in parallel), but it
is still not known to be in P, see [48, Corollary 2.1]. This holds, since algebraic formulas and skew
algebraic circuits can be evaluated in NC if the variables are substituted by concrete (binary coded)
numbers. Then, as for general polynomial identity testing, the Schwartz-Zippel-DeMillo-Lipton
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Lemma yields a coRNC-algorithm.
In Chapter 6 we identify a larger class of algebraic circuits, for which polynomial identity

testing for R = Z or R = Zp for a prime p is in coRNC; we call these circuits powerful skew
circuits. In such a circuit, we require that for every multiplication gate, one of its two input gates
is either a constant or a power xN of a variable x where the exponent N is given in binary notation.
One can replace this power xN by a subcircuit of size dlogNe using iterated squaring, but the
resulting circuit is no longer skew. As mentioned above, the main result of Chapter 6 states that
polynomial identity testing for powerful skew circuits over the rings Z and Zp for p prime is still
in coRNC. To show this, we use an identity testing algorithm of Agrawal and Biswas [4], which
computes the output polynomial of the circuit modulo a polynomial p(x) of polynomially bounded
degree, which is randomly chosen from a certain sample space. Moreover, in our application, all
computations can be done in the ring Fp[x] for a prime number p of polynomial size. This allows
us to compute the big powers xN modulo p(x) in NC2 using an algorithm of Fich and Tompa
[38]. It should be noted that the application of the Agrawal-Biswas algorithm is crucial in our
situation. If, instead we would use the Schwartz-Zippel-DeMillo-Lipton Lemma, then we would
be forced to compute aN mod m for randomly chosen numbers a and m with polynomially many
bits. Whether this problem (modular powering) belongs to NC is a famous open problem [40,
Problem B.5.6].

In Section 6.3 we present an application of our coRNC identity testing algorithm. It concerns
the equivalence problem for straight-line programs. Here, a straight-line program (SLP) is a
context-free grammar G that computes a single word val(G). In this context, SLPs are extensively
used in data compression and algorithmics on compressed data, see [55] for an overview. It is
known that equivalence for SLPs, i.e., the question whether val(G) = val(H) for two given SLPs,
can be decided in polynomial time. This result was independently discovered by Hirshfeld, Jerrum,
and Moller [44], Mehlhorn, Sundar, and Uhrig [63], and Plandowski [72]. All known algorithms
for the equivalence test are sequential and it is not clear how to parallelize them. Here, we exhibit
an NC2-reduction from the equivalence problem for SLPs to identity testing for powerful skew
circuits. Hence, equivalence for SLPs belongs to coRNC. Moreover, our reduction immediately
generalizes to higher dimensional pictures for which SLPs can be defined in a fashion similar to
the one-dimensional (string) case, using one concatenation operation in each dimension. For two-
dimensional SLPs, Berman et al. [21] proved that equivalence belongs to coRP using a reduction to
polynomial identity testing over Z2. We can improve this result to coRNC. Whether equivalence
of two-dimensional (resp., one-dimensional) SLPs belongs to P (resp., NC) is open.

Starting with [54] the circuit evaluation problem has been also studied for infinite finitely
generated (f.g) monoids, in particular infinite f.g. groups. In this context, the input gates of the
circuit are labeled with generators of the monoid and the internal gates compute the product of
the two input gates. There and in subsequent work, the circuit evaluation problem is also called
compressed word problem.

The classical word problem for a f.g. monoid M asks whether two given words over the alphabet
of monoid generators evaluate to the same element of M . In case M is a group, this problem is
equivalent to the question whether a given word over the generators evaluates to the identity
element of the group. In Chapter 4 we show that the classical word problem for finitely generated
linear solvable groups is in DLOGTIME-uniform TC0.

If we consider a multiplicative circuit over a f.g. monoid M , then one can evaluate the circuit
also in the free monoid Γ∗ where Γ is the set of monoid generators that appear at the input gates
of the circuit. The result will be a word over Γ, whose length can be exponential in the number
of circuit gates. Hence, the circuit can be seen as a compressed representation of the word it
produces. Formally, the compressed word problem for the monoid M asks for two given circuits
whether the words they produce evaluate to the same element (or, in case of a group, whether a
single circuit produces a word that evaluates to the group identity).

To avoid confusion, we will maintain the terminology circuit evaluation problem even in the
case that the circuit is evaluated over a monoid resp. a group. One of the main motivations for
the circuit evaluation problem for groups is the fact that the classical word problem for certain
groups (automorphism groups, group extensions) can be reduced to the circuit evaluation problem

10



CHAPTER 1. INTRODUCTION 11

for simpler groups [57, Section 4.2]. For infinite groups the circuit evaluation problem was studied
for the first time in [54]. Subsequently, several important classes of f.g. groups with polynomial
time circuit evaluation problems were found: f.g. nilpotent groups, f.g. free groups, graph groups
(also known as right-angled Artin groups or partially commutative groups), and virtually special
groups. The latter contain all Coxeter groups, one-relator groups with torsion, fully residually
free groups, and fundamental groups of hyperbolic 3-manifolds; see [57] for details. For the
important class of f.g. linear groups, i.e., f.g. groups of matrices over a field, one can show that
the circuit evaluation problem reduces to polynomial identity testing over Z or Zp (depending on
the characteristic of the field), and hence belongs to coRP [57, Theorem 4.15]. Vice versa, it was
shown that polynomial identity testing over Z can be reduced to circuit evaluation for the linear
group SL3(Z) [57, Theorem 4.16]. The proof is based on a construction of Ben-Or and Cleve [20].
This result indicates that derandomizing the circuit evaluation problem for a f.g. linear group will
be in general very difficult.

As a second application of the result that polynomial identity testing over Z for powerful
skew circuits is in coRNC we consider in Section 7.2 the circuit evaluation problem for wreath
products. If G is a f.g. non-abelian group, then circuit evaluation for the wreath product G o Z is
coNP-hard [57, Theorem 4.21]. On the other hand, we prove that CEP(Z o Z) is equivalent w.r.t.
NC2-reductions to polynomial identity testing for powerful skew circuits over Z. In particular,
CEP(Z o Z) belongs to coRNC. The latter result generalizes to any wreath product G o H where
H = Zn for some n and G is a finite direct product of copies of Z and Zp for primes p.

Subsequently we further investigate the tight correspondence between circuits over commuta-
tive rings and circuits over non-commutative linear groups. In Section 7.3 we study the complexity
of the circuit evaluation problem for f.g. nilpotent groups. For these groups, circuit evaluation can
be solved in polynomial time [57]. Here, we show that for every f.g. nilpotent group the circuit
evaluation problem belongs to the parallel complexity class DET ⊆ NC2, which is the class of all
problems that are AC0-reducible to the computation of the determinant of an integer matrix, see
[28, 30]. To the knowledge of the author, f.g. nilpotent groups are the only examples of infinite
groups for which the circuit evaluation problem belongs to NC. Even for free groups, circuit evalu-
ation is P-complete [54]. The main step of our proof is to show that for a torsion-free f.g. nilpotent
group G the circuit evaluation problem belongs to the logspace counting class C=L (and is in fact
C=L-complete if G is nontrivial). To show this, we use the well-known fact that a f.g. torsion-free
nilpotent group can be embedded into the group UTd(Z) of d-dimensional unitriangular matrices
over Z for some fixed d. Then, circuit evaluation for UTd(Z) is reduced to the question whether two
additive circuits over the natural numbers evaluate to the same number, which is C=L-complete.
There are several C=L-complete problems related to linear algebra [5].

We also study the circuit evaluation problem for the matrix group UTd(Z) for the case that
the dimension d is not fixed, i.e., part of the input (Section 7.4). In this case, circuit evaluation
turns out to be complete for the counting class C=LogCFL, which is the LogCFL-analogue of C=L.

In Section 7.6 we move from nilpotent groups to polycyclic groups. These are solvable groups
where every subgroup is finitely generated. By results of Auslander and Swan [16, 81] these are
exactly the solvable subgroups of GLd(Z) for some d. We prove that polynomial identity testing
over Z for powerful skew circuits reduces to the circuit evaluation problem for a specific 2-generator
polycyclic group of Hirsch length three. As mentioned above even for skew circuits, no polynomial
time algorithm is currently known (although the problem belongs to coRNC2), see for instance
[13, p. 6].

A large part of the literature about circuit evaluation is focused on arithmetic (semi)rings like
(Z,+, ·), (N,+, ·) or the max-plus semiring (Z ∪ {−∞},max,+) [7, 51, 68, 69, 85]. These papers
mainly consider semirings of polynomial formal degree. For commutative semirings, circuits of
polynomial formal degree can be restructured into an equivalent (unbounded fan-in) circuit of
polynomial size and logarithmic depth [85]. This result leads to NC-algorithms for evaluating
polynomial degree circuits over commutative semirings [68, 69]. Over non-commutative semir-
ings, circuits of polynomial formal degree do in general not allow a restructuring into circuits of
logarithmic depth [51].

In [69] it was shown that also for finite non-commutative semirings circuit evaluation is in NC

11



12

for circuits of polynomial formal degree. On the other hand, the author is not aware of any NC-
algorithms for evaluating general (exponential degree) circuits over semirings. The lack of such
algorithms is probably due to Ladner’s P-completeness result, which seems to exclude any efficient
parallel algorithm (unless P = NC). On the other hand, in the context of semigroups, there exist
NC-algorithms for circuit evaluation. In [19], the following dichotomy result was shown for finite
semigroups: If the finite semigroup is solvable (meaning that every subgroup is a solvable group),
then circuit evaluation is in NC (in fact, in DET), otherwise circuit evaluation is P-complete.

In Chapter 8, we extend the work of [19] from finite semigroups to finite semirings. On first
sight, it seems that again Ladner’s result excludes efficient parallel algorithms: It is not hard to
show that if the finite semiring has an additive identity 0 and a multiplicative identity 1 6= 0
(where 0 is not necessarily absorbing with respect to multiplication), then circuit evaluation is
P-complete. Therefore, we take the most general reasonable definition of semirings: A semiring
is a structure (R,+, ·) where (R,+) is a commutative semigroup, (R, ·) is a semigroup, and ·
distributes (on the left and right) over +. In particular, we neither require the existence of a 0
nor a 1. Our main result states that in this general setting there are only two obstacles to efficient
parallel circuit evaluation: Non-solvability of the multiplicative structure and the existence of a
zero and a one (different from the zero) in a subsemiring. More precisely, we show the following
two results, where a semiring is called {0, 1}-free if there exists no subsemiring in which an additive
identity 0 and a multiplicative identity 1 6= 0 exist:

(1) If a finite semiring is not {0, 1}-free, then the circuit evaluation problem is P-complete.

(2) If a finite semiring (R,+, ·) is {0, 1}-free, then the circuit evaluation problem for (R,+, ·) can
be solved with AC0-circuits that are equipped with oracle gates for (a) graph reachability,
(b) the circuit evaluation problem for the commutative semigroup (R,+) and (c) the circuit
evaluation problem for the semigroup (R, ·).

Together with the dichotomy result from [19] (and the fact that commutative semigroups are
solvable) we get the following result: For every finite semiring (R,+, ·), the circuit evaluation
problem is in NC (in fact, in DET) if (R, ·) is solvable and R is {0, 1}-free. Moreover, if one of
these conditions fails, then circuit evaluation is P-complete.

The hard part of the proof is to show the above statement (2). To show this statement,
we proceed in two steps. First we show that circuit evaluation for {0, 1}-free semirings can be
reduced to so-called type-admitting circuits defined in Section 8.2 . We then come up with a
parallel algorithm that evaluates such type-admitting circuits. The algorithm uses a rank-function
on the semiring (the definition of a rank-function is given in Section 8.2.2). This algorithm
reduces the type-admitting circuit by iteratively evaluating purely additive subcircuits and purely
multiplicative subcircuits. The existence of the rank-function ensures that after a constant number
of iterations, the whole circuit is evaluated. We then construct a rank-function with the required
conditions for every finite {0, 1}-free semiring.

The above observation leads also to results about circuits over power structures of a finite
semigroup (S, ·), i.e., circuits with union gates and semigroup operation gates where the operation
is evaluated on sets via A ·B = {a · b | a ∈ A, b ∈ B}. We see in Chapter 9 that in the case S is a
finite local group, the question whether the intersection of the represented sets of two circuits over
the power semiring P(S) := (2S \∅,∪, ·) is non-empty (we call this the circuit intersection problem
for S) can be reduced to circuit evaluation for S. In the case S is not a local group it is P-complete.
In contrast to that fact, in [62] was shown that the circuit intersection problem for (Z,+) is NP-
complete, while we know that circuit evaluation for (Z,+) is C=L-complete. Finally in Section 9.4
a related result is shown. By [57] we know that circuit evaluation for SL5(Z) is equivalent to
polynomial identity testing over Z and so in coRP. We show that the circuit intersection problem
for SL5(Z) is NEXPTIME-complete. So here again, in contrast to the finite case, we get a massive
raise of complexity.

In the following section the required complexity classes are defined and useful properties are
shown. After that we present some facts about algebraic structures. We define the structures
that will be investigated (semigroups, monoids, (finitely generated) groups and semirings) and
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CHAPTER 1. INTRODUCTION 13

show some important properties of these structures. As mentioned above we then show a new
result about the word problem for finitely generated linear solvable groups. After that the circuit
evaluation problem is defined and we start to show the new results for this problem.
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Chapter 2

Computational complexity

For a deeper background in complexity theory the reader might consult [11]. We assume that
the reader is familiar with the standard complexity classes L (deterministic logarithmic space),
NL (nondeterministic logarithmic space), P (deterministic polynomial time), NP (nondeterminis-
tic polynomial time), PSPACE (polynomial space) and NEXPTIME (nondeterministic exponential
time). P-hardness will refer to logspace-reductions.

2.1 Circuit complexity classes

We use standard definitions concerning circuit complexity, see e.g. [87]. We only consider polyno-
mially bounded families (Cn)n≥0 of Boolean circuits where the number of gates of Cn is bounded
by a polynomial p(n). For such a family, gates of Cn can be encoded with bit strings of length
O(log n). We will consider the class TC0 of all problems that can be recognized by a polynomial
size circuit family of constant depth built up from NOT-gates (which have fan-in one) and AND-
gates, OR-gates and MAJORITY-gates (i.e., gates that return 1 if and only if more than the half
of its inputs are 1) of unbounded fan-in. If MAJORITY-gates are not allowed, we obtain the class
AC0. The class NCk (k ≥ 1) is defined by polynomial size circuit families of depth O(logk n) that
use NOT-gates, and AND- and OR-gates of fan-in two. One defines NC =

⋃
k≥1 NC

k. A family of

AC0- resp. TC0-circuits (Cn)n≥0 is DLOGTIME-uniform, if for given binary coded gates u, v of Cn,
one can (i) compute the type of gate u in time O(log n) and (ii) check in time O(log n) whether u
is an input gate for v. Note that the time bound O(log n) is linear in the input length |u| + |v|.
To define DLOGTIME-uniformity for NC1-circuits one needs the so-called extended connection
language. We will not define this in detail, since we will not work with uniformity explicitly (for
details consider e.g. [29]). For k ≥ 2 DLOGTIME-uniformity for NCk-circuits is equivalent to
logspace-uniformity, which means that the n-th circuit in the family can be computed in logarith-
mic space from the unary encoding of n. All circuit families in this paper are implicitly assumed
to be DLOGTIME-uniform. The above language classes can be easily generalized to classes of
functions by allowing circuits with several output gates. Of course, this only allows to compute
functions f : {0, 1}∗ → {0, 1}∗ such that |f(x)| = |f(y)| whenever |x| = |y|. If this condition is
not satisfied, one has to consider a suitably padded version of f .

The following result was shown in [35, 43]:1

Theorem 2.1. The following problems belong to DLOGTIME-uniform TC0 for R = Z with binary
encoded coefficients and R = Fp:

Input: Polynomials p1(x), . . . , pn(x) ∈ R[x].

Task: Compute
∏n
i=1 pi(x).

1Explicitly, the result is stated in [43, Corollary 6.5], where the authors note that Eberly’s reduction [35] from
iterated polynomial multiplication to iterated integer multiplication is actually an AC0-reduction, which yields a
DLOGTIME-uniform TC0 bound with the main result from [43].
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16 2.2. COUNTING COMPLEXITY CLASSES

Input: Two polynomials p(x), q(x) ∈ R[x].

Task: Compute r(x) and s(x) with deg(r) < deg(q) such that p(x) = q(x) · s(x) + r(x).

We use the standard notion of constant depth Turing-reducibility: for functions f1, . . . , fk let
AC0(f1, . . . , fk) be the class of all functions that can be computed with a polynomial size circuit
family of constant depth that uses NOT-gates, unbounded fan-in AND-gates and OR-gates, and
fi-oracle gates (1 ≤ i ≤ k). Here, an fi-oracle gate receives an ordered tuple of inputs x1, x2, . . . , xn
and outputs the bits of fi(x1x2 · · ·xn). By taking the characteristic function of a language, we can
also allow a language Li ⊆ {0, 1}∗ in place of fi. Note that the function class AC0(f1, . . . , fk) is
closed under composition (since the composition of two AC0-circuits is again an AC0-circuit). We
write AC0(NL, f1, . . . , fk) for AC0(GAP, f1, . . . , fk) where GAP is the NL-complete graph accessibil-
ity problem. The class AC0(NL) is studied in [9]. It has several alternative characterizations and
can be viewed as a nondeterministic version of functional logspace. As remarked in [9], the restric-
tion of AC0(NL) to 0-1 functions is NL. Clearly, every logspace-computable function belongs to
AC0(NL): the NL-oracle can be used to directly compute the output bits of a logspace-computable
function.

2.2 Counting complexity classes

Let Σ be a finite alphabet. The counting class #L consists of all functions f : Σ∗ → N for which
there is a logarithmic space bounded nondeterministic Turing machine M such that for every
w ∈ Σ∗, f(w) is the number of accepting computation paths of M on input w. The class C=L
contains all languages A for which there are two functions f1, f2 ∈ #L such that for every w ∈ Σ∗,
w ∈ A if and only if f1(w) = f2(w). The class C=L is closed under logspace many-one reductions.
One canonical C=L-complete problem is the following: the input consists of two dags G1 and G2

and vertices s1, t1 (in G1) and s2, t2 (in G2), and it is asked whether the number of different paths
from s1 to t1 in G1 is equal to the number of different paths from s2 to t2 in G2. An important
C=L-complete problem is the question whether the determinant of a given integer matrix is zero
[83, 86].

An NAuxPDA is a nondeterministic Turing machine with an additional pushdown store. The
class LogCFL ⊆ NC2 is the class of all languages that can be accepted by a polynomial time
bounded NAuxPDA whose work tape is logarithmically bounded (but the pushdown store is
unbounded). If we assign to the input the number of accepting computation paths of such an
NAuxPDA, we obtain the counting class #LogCFL. The class C=LogCFL contains all languages
A for which there are two functions f1, f2 ∈ #LogCFL such that for every w ∈ Σ∗, w ∈ A if and
only if f1(w) = f2(w).

Let DET = AC0(det) where det is the function that maps a binary encoded integer matrix to
the binary encoding of its determinant, see [28]. Actually, Cook defined DET as NC1(det) [28],
but the above definition via AC0-circuits seems to be more natural. For instance, it implies that
DET is equal to the #L-hierarchy, see also the discussion in [30].

We defined DET as a function class, but the definition can be extended to languages by con-
sidering their characteristic functions. It is well known that NL ⊆ DET ⊆ NC2, see e.g. [10]. From
NL ⊆ DET, it follows easily that AC0(NL, f1, . . . , fk) ⊆ DET whenever f1, . . . , fk ∈ DET.

2.3 Randomized complexity classes

The class RP is the set of all problems A for which there exists a polynomial time bounded
randomized Turing machine R such that: (i) if x ∈ A then R accepts x with probability at least
1/2, and (ii) if x 6∈ A then R accepts x with probability 0. The class coRP is the class of all
complements of problems from RP.

To define a randomized version of NCi, one uses circuit families with additional inputs. So, let
the n-th circuit Cn in the family have n normal input gates plus m random input gates where m
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NEXPTIME

PSPACE

NP coNP

RP coRP

RNC coRNCP

NC

NC2

DETC=LogCFL

C=L

NL

L

NC1

TC0

AC0

Figure 2.1: Illustration of the inclusions of the considered complexity classes for decision problems.

is polynomially bounded in n. For an input x ∈ {0, 1}n one defines the acceptance probability as

Prob[Cn accepts x] =
|{y ∈ {0, 1}m | Cn(x, y) = 1}|

2m

Here, Cn(x, y) = 1 means that the circuit Cn evaluates to 1 if the i-th normal input gate gets the
i-th bit of the input string x, and the i-th random input gate gets the i-th bit of the random
string y. Then, the class RNCi is the class of all problems A for which there exists a polynomial
size circuit family (Cn)n≥0 of depth O(logi n) with random input gates that uses NOT-gates and
AND-gates and OR-gates of fan-in two such that for all inputs x ∈ {0, 1}∗ of length n: (i) if
x ∈ A, then Prob[Cn accepts x] ≥ 1/2, and (ii) if x 6∈ A, then Prob[Cn accepts x] = 0. As usual,
coRNCi is the class of all complements of problems from RNCi. Section B.9 in [40] contains several
problems that are known to be in RNC, but which are not known to be in NC; the most prominent
example is the existence of a perfect matching in a graph. The diagram in Figure 2.1 illustrates
the inclusion properties of the mentioned complexity classes for decision problems.
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Chapter 3

Algebraic structures

3.1 General algebraic structures

An algebraic structure A = (D, f1, . . . , fk) consists of a non-empty domain D and operations
fi : Dni → D for some ni ∈ N and 1 ≤ i ≤ k. We often identify the domain with the structure,
if it is clear from the context. A substructure of A is a subset B ⊆ D that is closed under each
of the operations fi. We identify B with the structure (B, g1, . . . , gk) where gi : Bni → B is the
restriction of fi to Bni for all 1 ≤ i ≤ k. In this work we only consider finitely generated (f.g.)
structures, i.e., structures A where there is a finite set I ⊆ D such that every a ∈ D can be
generated by iterative application of functions fi on elements of I.

We mainly deal with f.g. semigroups and semirings. In the following we present the necessary
background about these structures. For further details on semigroup theory (resp., semiring
theory) see [74] (resp., [39]).

3.2 (Semi-)groups and monoids

Definition 3.1 (semigroup, monoid, group).

• A semigroup S = (S, ·) is a non-empty set with an associative operation · : S × S → S.

• If there exists an identity element e ∈ S in a semigroup S, i.e., e · s = s · e = s for all s ∈ S,
then S is a monoid. We usually denote the identity element of a monoid with 1.

• A group G is a monoid where for every s ∈ G there is a t ∈ G such that s · t = t · s = 1. In
this case t is unique and denoted by s−1.

In the following we write st for s · t. With S1 we denote the monoid that is obtained from the
semigroup S by adding a fresh element 1, which becomes the identity element of S1. Thus, we
extend the multiplication to S1 = S ∪ {1} by setting s1 = 1s = s for all s ∈ S ∪ {1}.

Definition 3.2 (commutative, abelian, commutator). Let S be a semigroup. If st = ts for all
s, t ∈ S, we call S commutative. A commutative group is called abelian group. For elements s, t
in a group G we denote with [s, t] = s−1t−1st the commutator of s and t.

Definition 3.3 (idempotent). Let S be a semigroup. An element s ∈ S is called idempotent if
ss = s. The set of all idempotents of S is denoted by E(S) or simply E in the case that the
semigroup S is clear from the context.

It is well-known that for every finite semigroup S and every s ∈ S there exists an n ≥ 1 such
that sn is idempotent. By taking the smallest common multiple of all these n, one obtains an
ω ≥ 1 such that sω is idempotent for all s ∈ S. In particular, every finite semigroup contains at
least one idempotent element.
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20 3.2. (SEMI-)GROUPS AND MONOIDS

Lemma 3.4. Every monoid that is not a group contains at least two distinct idempotents.

Proof. Let M be a monoid and ω ∈ N such that sω is idempotent for all s ∈ S. Of course, the
identity 1 is idempotent. Assume that 1 is the unique idempotent in M . Then for all s ∈ M
sω = 1, wich implies that s−1 = sω−1 and M is a group.

Definition 3.5 (direct product). For two semigroups (S, ·S) and (T, ·T ) the direct product of
S and T is the semigroup (S × T, ·) where S × T = {(s, t) | s ∈ S, t ∈ T} with the operation
(s1, t1) · (s2, t2) = (s1 ·S s2, t1 ·T t2). For the n-fold direct product S × S · · · × S we write Sn.

By the fundamental theorem of finitely generated abelian groups we know that every finitely
generated abelian group is a finite direct product of copies of Z and Zn [76].

Definition 3.6 (subsemigroup, submonoid, subgroup). A subsemigroup (resp.,submonoid; sub-
group) of a semigroup (S, ·) is a subset T ⊆ S such that (T, ·) is a semigroup (resp., monoid;
group).

Note that in case S is a monoid and T is a submonoid of S, we do not require that the
identity element of (T, ·) is 1 (the identity element of S). But, clearly, the identity element of the
submonoid T must be an idempotent element of S. In fact, for every idempotent e ∈ E(S), the
set eSe = {ese | s ∈ S} is a submonoid of S with identity e. The submonoid eSe is the maximal
submonoid of S whose identity element is e.

Definition 3.7 (ideal). For a semigroup S a subset I ⊆ S is called semigroup ideal if for all
s ∈ S, a ∈ I we have sa, as ∈ I.

A minimal ideal is a non-empty ideal that contains no other non-empty ideal. If S is a finite
semigroup, then SES = Sn where n = |S|. Moreover, Sn = Sm for all m ≥ n.

Definition 3.8 (trivial, aperiodic). A group G is trivial, if |G|=1. A semigroup S is aperiodic if
every subgroup of S is trivial.

Definition 3.9 (homomorphism, embedding, isomorphism). For two semigroups (S1, ·1), (S2, ·2)
a mapping f : S1 → S2 is a homomorphism if for all s, t ∈ S1 f(s ·1 t) = f(s) ·2 f(t). S1 embeds
into S2 if there is an injective homomorphism f : S1 → S2. In this case we call f an embedding.
A bijective homomorphism is called isomorphism. If there is an isomorphism f : S1 → S2, then
S1 and S2 are called isomorphic. We denote this by S1

∼= S2.

For a semigroup (resp. group) S and a non-empty subset T ⊆ S we denote by 〈T 〉 the
subsemigroup of S that is generated by T . It consists of all finite non-empty products of elements
from T (resp. T ∪ T−1).

Definition 3.10 (cyclic). Let G be a group. If there is a singleton t such that G is generated by
{t}, then G is called cyclic.

Definition 3.11 (free monoid). For a set Σ, the free monoid generated by Σ is the set Σ∗ of all
finite words over Σ together with the operation of concatenation.

Definition 3.12 (free group). The free group of rank k, denoted by Fk, is the group that is
generated by the set {a1, . . . , ak} such that two elements are different unless they are equal by the
group axiom aia

−1
i = 1.

Definition 3.13 (coset, normal subgroup, quotient). For a group G and a subgroup U of G the
left (resp. right) cosets of U are the sets aU = {a ·b | b ∈ U} (resp. Ua = {b ·a | b ∈ U}) for a ∈ G.
If the right and left cosets of U coincide, U is a normal subgroup of G and the set of cosets of U
is called quotient of G and is denoted by G/U . It is a group with the operation aU · bU = abU . A
normal subgroup U is called of finite index if G/U is finite.

Definition 3.14 (commutator subgroup). Let G be a group. The commutator subgroup of G is
the group [G,G] := 〈{[s, t] | s, t ∈ G}〉.
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CHAPTER 3. ALGEBRAIC STRUCTURES 21

The commutator subgroup [G,G] of a group G is the smallest normal subgroup of G such that
the quotient is abelian (i.e., if U is a normal subgroup of G and G/U is abelian, then [G,G] is a
subgroup of U) [76].

Definition 3.15 (presentation, finitely presented). The group G has the presentation
〈a1, . . . , ak | R〉 with R ⊆ Fk if it is isomorphic to Fk/〈R〉. G is finitely presented if there is
a finite presentation of G.

Definition 3.16 (solvable, (strongly) polycyclic).

• A (n-step) solvable group G is a group which has a subnormal series G = Gn B Gn−1 B
Gn−2 B · · ·BG1 BG0 = 1 (i.e., Gi is a normal subgroup of Gi+1 for all 0 ≤ i ≤ n− 1) such
that every quotient Gi+1/Gi is abelian (0 ≤ i ≤ n− 1).

• A semigroup S is solvable if every subgroup of S is a solvable group.

• If G is a solvable group and every quotient Gi+1/Gi is cyclic, then G is called polycyclic.

• If G is a solvable group and Gi+1/Gi ∼= Z for all 0 ≤ i ≤ n − 1, then G is called strongly
polycyclic.

The number of 0 ≤ i ≤ n− 1 such that Gi+1/Gi ∼= Z is called the Hirsch length of G; it does
not depend on the chosen subnormal series.

Since abelian groups are solvable, every commutative semigroup is solvable. A group is poly-
cyclic if and only if it is solvable and every abelian subgroup is finitely generated [50].

Definition 3.17 (lower central series, nilpotent group). For a group G its lower central series
is the series G = G1 B G2 B G3 B · · · of subgroups where Gi+1 = [Gi, G] which is the subgroup
generated by all commutators [g, h] with g ∈ Gi and h ∈ G. Indeed, Gi+1 is a normal subgroup of
Gi. The group G is nilpotent if its lower central series terminates after finitely many steps in the
trivial group 1.

Definition 3.18 (virtually abelian, virtually abelian, metabelian). A group G is

• virtually abelian if there is a normal abelian subgroup U of G of finite index.

• virtually nilpotent if there is a normal nilpotent subgroup U of G of finite index.

• called metabelian if the commutator subgroup [G,G] is abelian. In other words, the metabelian
groups are the 2-step solvable groups.

Notice that even if G is f.g. metabelian, this does not imply that G is polycyclic, since [G,G]
is not necessarily finitely generated.

Definition 3.19 (torsion-group). A group G is a torsion-group if for every a ∈ G there is an
n ∈ N such that an = 1. If there is no element in G with that property, then we call G torsion-free.

We need the following results about nilpotent and solvable groups:

Theorem 3.20 ([76, Chapter 5]). Every subgroup and every quotient of a solvable (resp., nilpo-
tent) group G is solvable (resp., nilpotent) again.

Theorem 3.21 ([50, Theorem 17.2.2]). Every f.g. nilpotent group G has a torsion-free normal
subgroup H of finite index (which is also f.g. nilpotent).
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3.3 (Semi-)rings and fields

Definition 3.22 (semiring). A semiring R = (R,+, ·) consists of a non-empty set R with two
operations + and · such that

• (R,+) is a commutative semigroup,

• (R, ·) is a semigroup and

• · left- and right-distributes over +, i.e., a · (b+ c) = ab+ ac and (b+ c) · a = ba+ ca.

Note that we neither require the existence of an additive identity 0 nor the existence of a
multiplicative identity 1. We denote with R+ = (R,+) the additive semigroup of R and with
R• = (R, ·) the multiplicative semigroup of R. If (R, ·) is commutative, we call R commutative.
For n ≥ 1 and r ∈ R we write n · r or just nr for r + · · ·+ r where r is added n times.

With R0 we denote the semiring that is obtained from the semiring R by adding a fresh element
0, which becomes the identity element of (R0)+ and is absorbing w.r.t. the multiplication. Thus,
we extend the multiplication and addition to R0 = R ∪ {0} by setting a0 = 0a = 0 and 0 + a = a
for all a ∈ R ∪ {0}.

Definition 3.23 (unitary, ring, {0, 1}-free). A semiring R is

• unitary if (R, ·) is a monoid.

• a ring if (R,+) is a group.

• {0, 1}-free if R does not contain a subsemiring T with an additive identity 0 and a multi-
plicative identity 1 6= 0.

Definition 3.24 (homomorphism, isomorphism, ideal). For two semirings (R1,+1, ·1), (R2,+2, ·2)
a mapping f : S1 → S2 is a (ring-)homomorphism (resp., isomorphism) if it is a homomorphism
(resp. isomorphism) for the additive and multiplicative semigroups of R1 and R2. For a semiring
(R,+, ·) a non-empty subset I ⊆ R is an ideal, if it is closed under addition and an ideal for the
multiplicative semigroup.

For a unitary semiring R we identify a natural number n ≥ 1 with the n-fold sum of 1, i.e.,
n = n ·1. Note that in the last definition for the semiring T we do not require that a ·0 = 0 ·a = 0
for all a ∈ T . The class of {0, 1}-free finite semirings has several characterizations:

Lemma 3.25. For a finite semiring R, the following are equivalent:

1. R is not {0, 1}-free.

2. R contains the Boolean semiring B2 or the ring Zq for some q ≥ 2 as a subsemiring.

3. R is divided by B2 or Zq for some q ≥ 2 (i.e., B2 or Zq is the image of a homomorphism in
a subsemiring of R).

4. There exist elements 0, 1 ∈ R such that 0 6= 1, 0 + 0 = 0, 0 + 1 = 1, 0 · 1 = 1 · 0 = 0 · 0 = 0,
and 1 · 1 = 1 (but 1 + 1 6= 1 is possible).

Proof. (1⇒ 2): Let T be a subsemiring of R which has a zero element 0 and a one element 1 6= 0.
Note that 0 · 0 = 0 · 0 + 0 = 0 · 0 + 1 · 0 = (0 + 1) · 0 = 1 · 0 = 0. Let T ′ = {0} ∪ {k · 1 | k ∈ N},
which is the subsemiring generated by 0 and 1. It is isomorphic to some semiring B(t, q) (t ≥ 0,
q ≥ 1), which is the semiring (N,+, ·) modulo the congruence relation θt,q defined by

i θt,q j ⇐⇒ i = j or [i, j ≥ t and i ≡ j (mod q)].

Since 0 6= 1, we have (t, q) 6= (0, 1). If t = 0, then B(0, q) is isomorphic to Zq for q ≥ 2. If t ≥ 1,
then choose a ≥ t such that q divides a, for example a = qt. Then {0, a · 1} is a subsemiring
isomorphic to the Boolean semiring B2. (See Figure 3.1 for an illustration.)
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0

1q − 1

(a) Zq is embedded

0 1 t

tqt+ q − 1

(b) B2 is embedded

Figure 3.1: Semirings generated by 0 and 1.

(2⇒ 3): This implication is trivial.
(3⇒ 4): Assume that ϕ : T → T ′ is a homomorphism from a subsemiring T of R to T ′ where

the latter is B2 or Zq with q ≥ 2. Let n ≥ 1 be such that n · x is additively idempotent and
xn is multiplicatively idempotent for all x ∈ R. Then n · xn is is additively and multiplicatively
idempotent for all x ∈ R. Let a, e ∈ T be such that ϕ(a) = 0 and ϕ(e) = 1. We can replace a
by n · an and e by en. Then, a + a = aa = a and ee = e. For a′ = n · (eae)n we have ϕ(a′) = 0
and a′e = ea′ = a′ + a′ = a′a′ = a′. For e′ = a′ + e we have ϕ(e′) = 1 (hence, a′ 6= e′) and
e′e′ = a′a′ + a′e + ea′ + ee = a′ + e = e′, a′ + e′ = a′ + a′ + e = e′. Furthermore, we have
a′e′ = a′(a′+ e) = a′+ a′e = a′ and similarly e′a′ = a′. Hence, a′ and e′ satisfy all equations from
point 4.

(4 ⇒ 1): Assume that there exist elements 0, 1 ∈ R such that 0 6= 1, 0 + 0 = 0, 0 + 1 = 1,
0 · 1 = 1 · 0 = 0 · 0 = 0, and 1 · 1 = 1. Consider the subsemiring generated by {0, 1}, which is
{0} ∪ {n · 1 | n ≥ 1}. By the above identities 0 (resp., 1) is an additive (resp., multiplicative)
identity in this subsemiring.

As a consequence of Lemma 3.25 (point 4), one can check in time O(n2) for a semiring of size
n whether it is {0, 1}-free. We will not need this fact, since in our setting the finite semirings
will be always fixed, i.e., not part of the input. Moreover, the class of all {0, 1}-free semirings is
closed under taking subsemirings (this is trivial) and taking homomorphic images (by point 3).
Finally, the class of {0, 1}-free semirings is also closed under direct products. To see this, assume
that R × R′ is not {0, 1}-free. Hence, there exists a subsemiring T of R × R′ with an additive
zero (0, 0′) and a multiplicative one (1, 1′) 6= (0, 0′). W.l.o.g. assume that 0 6= 1. Then the
projection π1(T ) onto the first component is a subsemiring of R, where 0 is an additive identity
and 1 6= 0 is a multiplicative identity. By these remarks, the class of {0, 1}-free finite semirings
forms a pseudo-variety of finite semirings. Again, this fact will not be used, but it might be of
independent interest. (For a background about pseudo-varieties consider e.g. [36].)

Figure 3.1 illustrates the possible semirings generated by the elements 0 and 1. In picture (b)
the two elements that form the Boolean semiring are marked gray.

For a unitary ring R we denote by R[x1, . . . , xn] the polynomial ring over R which consists of
all polynomials with coefficients from R and variables x1, . . . , xn. Polynomials that contain more
than one variable are called multivariate. Polynomials in R[x] are called univariate.

Definition 3.26 (degree). For a univariate polynomial p(x) let deg(p) be the degree of p. It is
the largest number d such that xd appears in a monomial of p. For a multivariate polynomial
p(x1, . . . , xk) ∈ R[x1, . . . , xk] let deg(p, xi) := deg(p(1, . . . , 1, xi, 1, . . . , 1)) be the degree of p in the
variable xi.

With E(R) we denote the set of multiplicative idempotents of R, i.e., those e ∈ R with e2 = e.
Note that for every multiplicative idempotent e ∈ E(R), eRe is a unitary subsemiring of R.

Definition 3.27 (free semiring). For a given non-empty set Σ, the free semiring N[Σ] generated by
Σ consists of all mappings f : Σ+ → N such that the support of f defined by
supp(f) := {w ∈ Σ+ | f(w) 6= 0} is finite and non-empty. Addition is defined pointwise,
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i.e., (f + g)(w) = f(w) + g(w), and multiplication is defined by the convolution: (f · g)(w) =∑
w=uv f(u) · g(v) where the sum is taken over all factorizations w = uv with u, v ∈ Σ+.

We treat an element f ∈ N[Σ] as a non-commutative polynomial
∑
w∈supp(f) f(w) · w. Then

addition (resp. multiplication) in N[Σ] corresponds to addition (resp. multiplication) of non-
commutative polynomials. Words w ∈ supp(f) are also called monomials of f . A word w ∈ Σ+

is identified with the non-commutative polynomial 1 · w, i.e., the mapping f with supp(f) = {w}
and f(w) = 1. For every semiring R which is generated by Σ there exists a canonical surjective
homomorphism from N[Σ] to R which evaluates non-commutative polynomials over Σ. Since a
semiring is not assumed to have a multiplicative identity (resp., additive identity), we have to
exclude the empty word from supp(f) for every f ∈ N[Σ] (resp., exclude the mapping f with
supp(f) = ∅ from N[Σ]).

Definition 3.28 (field, subfield).

• A field (F,+, ·) is a ring where (F \ {0}, ·) is an abelian group.

• A subfield of (F,+, ·) is a subset K ⊆ F such that (K,+, ·) is also a field.

If K is a subfield of a field F , we call F an extension field of K. To make clear that F is an
extension of K we will denote the extension by [F : K]. The smallest subfield of a field F is called
prime field. It is always isomorphic to the field of rational numbers or to a finite field Fp for some
prime p. For a field K, an extension [F : K] of K and a subset S ⊆ F , we define by K(S) the
smallest subfield of [F : K] which contains K and S. For a single element s ∈ [F : K], instead of
K({s}) we write K(s). In this case we call K(s) a simple extension and s a primitive element of
the extension. A field-extension [F : K] can be considered as a vector space where the scalars are
elements of K. The degree of this vector space is called degree of the extension. An extension of
finite degree is called finite extension. For a field F and a subfield K we call a ∈ F algebraic over
K, if there is a non-zero polynomial g(x) with coefficients in K such that g(a) = 0. If there is
no other such polynomial with lesser degree, we call g minimal polynomial of a over F . If every
a ∈ F is algebraic over K we call [F : K] an algebraic extension of K.

Definition 3.29 (algebraic closure, separable extension).

• A field F is algebraically closed, if F contains a root for every non-constant polynomial in
F [x]. An algebraic closure of a field F is an algebraic extension of F that is algebraically
closed.

• A polynomial g(x) over a field F is called separable, if its roots are distinct in an algebraic
closure of F . An extension [F : K] is called separable extension, if it is an algebraic extension
and for every a ∈ F the minimal polynomial of a over K is separable.

Theorem 3.30 (primitive element theorem [92]). For every finite separable extension [F : K]
there is some a in F such that [F : K] = K(a).

Notice that in this case a is algebraic over K, since [F : K] is an algebraic extension.

Definition 3.31 (characteristic). The characteristic of a field F is the smallest number d ≥ 1
such that d · 1 = 0 in R. If no such d exists we set d = 0.

The characteristic of a field F is either a prime number or 0.

3.4 Matrix groups

In this thesis we are concerned with certain subclasses of matrix groups, which are defined in the
following:

Definition 3.32 (linear group). A group G is linear if it is isomorphic to a subgroup of GLd(F )
(the group of all invertible (d× d)-matrices over the field F ) for some field F .
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Let A be a square matrix of dimension d over some commutative unitary ring R. With A[i, j]
we denote the entry of A in row i and column j. The matrix A is called triangular if A[i, j] = 0
whenever i > j, i.e., all entries below the main diagonal are 0. A unitriangular matrix is a
triangular matrix A such that A[i, i] = 1 for all 1 ≤ i ≤ d, i.e., all entries on the main diagonal
are 1. The set of unitriangular matrices of dimension d over R is denoted by UTd(R). It is well
known that for every commutative unitary ring R, the set UTd(R) is a group (with respect to
matrix multiplication).

Definition 3.33 (unitriangular group). A group is unitriangular if it is isomorphic to UTd(R)
for some commutative unitary ring R.

Let 1 ≤ i, j ≤ d. With Ti,j we denote the matrix such that all entries in the main diagonal
are 1, Ti,j [i, j] = 1 and all other entries are 0. The notation Ti,j does not specify the dimension
d of the matrix, but the dimension will be always clear from the context. The group UTd(Z) is
generated by the finite set Γd = {Ti,i+1 | 1 ≤ i < d}, see e.g. [22].

We need the following result:

Theorem 3.34 ([50, Theorem 17.2.5]). For every torsion-free f.g nilpotent group G there exists
d ≥ 1 such that G can be embedded into UTd(Z).

Together with Theorem 3.21 this leads immediately to the following result:

Corollary 3.35. Every f.g. nilpotent group G has a normal subgroup H that can be embedded
into UTd(Z) for some d ∈ N.

We will make use of the following lemma, which shows how to encode multiplication of integers
by unitriangular matrices. See [58] for a proof.

Lemma 3.36. For all a, b ∈ Z and 1 ≤ i < j < k ≤ d we have [T ai,j , T
b
j,k] = T abi,k.

The special linear group SLd(Z) is the group of d× d-matrices over Z with determinant equal
to 1. In SL3(Z) the multiplication of integers can be encoded in the following way, where a proof
can be found for instance in [57].

Lemma 3.37. Let Ti,j for i, j ∈ {1, 2, 3} and i 6= j be as defined above. Then for all a, b ∈ Z and
k ∈ {1, 2, 3} \ {i, j} we have [T ak,j , T

−b
i,k ] = T abi,j .

Auslander and Swan [16, 81] proved that the polycyclic groups are exactly the solvable groups
of integer matrices, so every polycyclic group is linear.

3.5 Wreath products

Definition 3.38. Let G and H be groups. The restricted wreath product H o G is defined as
follows:

• Elements of H o G are pairs (f, g) where g ∈ G and f : G → H is a mapping such that
f(a) 6= 1H for only finitely many a ∈ G (1H is the identity element of H).

• The multiplication in H o G is defined as follows: let (f1, g1), (f2, g2) ∈ H o G. Then
(f1, g1)(f2, g2) = (f, g1g2) where f(a) = f1(a)f2(g−11 a).

For readers, who have not seen this definition before, the following intuition might be helpful:
an element (f, g) ∈ H o G can be seen as a finite collection of elements of H that are sitting in
certain elements of G (the mapping f) together with a distinguished element of G (the element g),
which can be seen as a cursor moving around G. If we want to compute the product (f1, g1)(f2, g2),
we do this as follows: first, we shift the finite collection of H-elements that corresponds to the
mapping f2 by g1: if the element h ∈ H \ {1H} is sitting in a ∈ G (i.e., f(a) = h), then we remove
h from a and put it to the new location g1a ∈ G. This new collection corresponds to the mapping
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(e) w = ataatata−1t−1

Figure 3.2: The element in Z o Z corresponding to w = ataatata−1t−1.

f ′2 : a 7→ f2(g−11 a). After this shift, we multiply the two collections of H-elements pointwise: if
in a ∈ G the elements h1 and h2 are sitting (i.e., f1(a) = h1 and f ′2(a) = h2), then we put the
product h1h2 into the G-location a. Finally, the new distinguished G-element (the new cursor
position) becomes g1g2.

Example 3.39. The wreath product Z o Z is generated by {a, t, a−1, t−1} and can be seen as the
number line where on every position sits an integer (only on finite many positions not equal to
zero) and a cursor is moving to the right (by a) or left (by a−1) on the number line and increases
(by t), resp., decreases (by t−1) the integer sitting on the cursers position. At the beginning every
integer is 0 and the curser is at position 0. In this setting the word w = ataatata−1t−1 evaluates
to the element in Figure3.2, where the position of the curser is marked grey.

Lemma 3.40. The group (A×B) oG embeds into (A oG)× (B oG).

Proof. Let πA : A×B → A be the natural projection morphism and similarly let πB : A×B → B.
We define an embedding ϕ : (A×B) oG→ (A oG)× (B oG) by

ϕ(f, g) =

(
(πA ◦ f, g), (πB ◦ f, g)

)
.

Clearly, ϕ is injective. Moreover, it is easy to see that ϕ is a group homomorphism.

A proof of the following lemma can be found for instance in [56].

Lemma 3.41. Let K be a subgroup of H of finite index m and let G be a group. Then Gm oK is
isomorphic to a subgroup of index m of G oH.
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Chapter 4

The classical word problem

4.1 Introduction

Before we consider the circuit evaluation problem, we first have a look at a more classical problem
of computational group theory that can be seen as the origin of the circuit evaluation problem
for groups, the so-called (classical) word problem. Already in 1911 Dehn stated three algebraic
problems for finitely presented groups [31]: the word problem (given a word over the generators,
does the word evaluate to the group identity?), the conjugacy problem (given two words w1, w2

over the generators, are they conjugate, i.e., is there an x ∈ G such that w1 = xw2x
−1?) and

the isomorphism problem (given two finite representations of groups, are the generated groups
isomorphic?). Dehn himself found the first algorithms to solve the word problem for fundamental
groups of orientable closed 2-dimensional manifolds [32]. But on the other hand he also suggested
that it could be very hard for some groups to solve these problems. About 45 years later, after a
formal concept of computability had been found, his suggestions were proved: Novikov [71] and
Boone [23] independently showed that there are finitely presented groups with an undecidable
word problem. But fortunately for many groups the word problem is decidable. Along the years
many results about decidability and the complexity of the word problem for several groups were
shown. For an extensive overview one might consult [12], [24], [25], [26], [37], [41], [49], [59], [73],
resp. [77].

Formally the word problem for finitely generated groups can be stated as follows: let G be a
finitely generated group and Σ the corresponding generating set. Then, as a monoid G is finitely
generated by Σ ∪ Σ−1 (where Σ−1 = {a−1 | a ∈ Σ} is a disjoint copy of Σ and a−1 stands for the
inverse of the generator a ∈ Σ). The word problem for G is the following computational problem:
given a string w ∈ (Σ ∪ Σ−1)∗, does w evaluate to the identity of G.

In the following we consider the word problem for solvable linear groups. In this context
it is interesting that Kharlampovich [42] proved that there exist 3-step solvable groups with an
undecidable word problem. On the other hand, for every f.g. linear group Lipton and Zalcstein
[53] and Simon [79] proved the following important result:

Theorem 4.1. For every f.g. linear group the word problem can be solved in deterministic loga-
rithmic space.

Lipton and Zalcstein [53] proved this result for a linear group over a field of characteristic
zero, whereas Simon [79] considered fields of prime characteristic. Theorem 4.1 implies that the
word problem for every polycyclic group can be solved in logarithmic space. Robinson proved in
his thesis that the word problem for a polycyclic group belongs to TC0 [75], but his circuits are
not uniform. For f.g. nilpotent groups, Robinson [75] proved that the word problem belongs to
DLOGTIME-uniform TC0. Waack considered in [89] arbitrary f.g. solvable linear groups (which
include the polycyclic groups) and proved that their word problems belong to logspace-uniform
NC1. In the next section, we combine Waack’s technique with the famous division breakthrough
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results by Hesse, Allender, and Barrington [43] to show that for every f.g. solvable linear group the
word problem belongs to DLOGTIME-uniform TC0. For the Baumslag-Solitar group BS1,2, which
is solvable and linear, Diekert, Miasnikov and Weiß proved that also the conjugacy problem can
be solved in DLOGTIME-uniform TC0 [34], Miasnikov, Vassileva and Weiß proved that also the
conjugacy problem for free solvable groups and wreath products of abelian groups is in DLOGTIME-
uniform TC0 [65], see also [91] for related results. The results of this chapter have appeared in
[1].

4.2 The complexity of the classical word problem for finitely
generated linear groups

We prove the aforementioned result on the classical word problem for f.g. solvable linear groups:

Theorem 4.2. Let G be a f.g. linear group.

• If G is infinite solvable, then the word problem for G is complete for DLOGTIME-uniform
TC0.

• If G is virtually solvable (i.e., G has a solvable subgroup of finite index), then the word
problem for G belongs to DLOGTIME-uniform NC1.

For the proof, we first have to consider the complexity of iterated multiplication and division
with remainder for polynomials in Z[x1, . . . , xk] given in standard representation (i.e., coefficients
are given in binary encoding and exponents are given in unary encoding). Iterated multiplication
of polynomials in the ring Z[x1, . . . , xk] is the task of computing from a given list of polynomials
p1, p2, . . . , pn ∈ Z[x1, . . . , xk] the product polynomial p1p2 · · · pn. Division with remainder in the
ring Z[x] (later, we will generalize this to several variables) is the task of computing for given
polynomials s, t ∈ Z[x] such that t 6= 0 and the leading coefficient of t is 1 the unique polynomials
s mod t and s div t such that s = (s div t) · t+ s mod t and deg(s mod t) < deg(t).

We need generalizations of Theorem 2.1 to multivariate polynomials. In the following proofs
we always use the fact that iterated addition, iterated multiplication and division with remainder
of binary encoded integers can be done in DLOGTIME-uniform TC0 [43].

Lemma 4.3. Iterated multiplication of polynomials in the ring Z[x1, . . . , xk] (resp., Fp[x1, . . . , xk])
belongs to DLOGTIME-uniform TC0.

Proof. We only prove the result for Z[x1, . . . , xk]; exactly the same proof also works for Fp[x1, . . . , xk].
For d ≥ 1 let Z[x1, . . . , xk]d ⊆ Z[x1, . . . , xk] be the set of all polynomials p ∈ Z[x1, . . . , xk] such
that deg(p, xi) ≤ d for all 1 ≤ i ≤ k. The mapping Ud : Z[x1, . . . , xk]→ Z[z] is defined by

Ud(p(x1, x2, . . . , xk)) = p(z1, zd
1

, . . . , zd
k

).

The mapping Ud+1 restricted to Z[x1, . . . , xk]d is injective, since for a polynomial p ∈ Z[x1, . . . , xk]d
we obtain the polynomial Ud+1(p) by replacing every monomial a · xn1

1 · · ·x
nk
k by the monomial

a · zN where N is the number with base-(d + 1) expansion (n1 · · ·nk) (with the most significant
digit on the right). Moreover, for all polynomials p, q ∈ Z[x1, . . . , xk] and all d ≥ 2 we have

Ud(p+ q) = Ud(p) + Ud(q) and Ud(pq) = Ud(p)Ud(q). (4.1)

We can calculate Ud(p) for a given polynomial p ∈ Z[x1, . . . , xk] and a given number d ≥ 2 in
unary representation, in DLOGTIME-uniform TC0: for a monomial axn1

1 · · ·x
nk
k (which is rep-

resented by the tuple (a, n1, . . . , nk)) we have to compute the pair (a,
∑k−1
i=0 ni+1d

i), which is
possible in DLOGTIME-uniform TC0. Similarly, we can compute U−1d+1(p) for a polynomial p ∈
Ud+1(Z[x1, . . . , xk]d) in DLOGTIME-uniform TC0: from a given monomial azN (represented by the
pair (a,N)) we have to compute the tuple (a, n1, . . . , nk) where ni = (N div (d+1)i−1) mod (d+1),
which can be done in DLOGTIME-uniform TC0.

We now multiply given polynomials p1, . . . , pn ∈ Z[x1, . . . , xk] in the following way, where all
steps can be carried out in DLOGTIME-uniform TC0 by the above remarks:
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• Compute the number d = max{
∑n
i=1 deg(pi, xj) | 1 ≤ j ≤ k}. This number bounds

the degree of the product polynomial p1p2 · · · pn in any of the variables x1, . . . , xn, i.e.,
p1p2 · · · pn ∈ Z[x1, . . . , xk]d.

• Compute in parallel si(z) := Ud+1(pi) for 1 ≤ i ≤ n.

• Using Theorem 2.1, compute the product S(z) = s1(z)s2(z) · · · sn(z), which is
Ud+1(p1p2 · · · pn) by (4.1).

• Finally, compute U−1d+1(S), which is p1p2 · · · pn.

For polynomial division in several variables, we need a new distinguished variable. Therefore,
we consider the polynomial ring Z[x1, . . . , xk, y]. We treat polynomials from this ring as polynomi-
als in the variable y where coefficients are polynomials from Z[x1, . . . , xk]. We will only divide by a
polynomial t for which the leading monomial p(x1, . . . , xn)ym of t satisfies p(x1, . . . , xn) = 1. This
ensures that the coefficients of the quotient and remainder polynomial are again in Z[x1, . . . , xk].

Lemma 4.4. Division with remainder of polynomials in the ring Z[x1, . . . , xk, y] (respectively,
Fp[x1, . . . , xk, y]) belongs to DLOGTIME-uniform TC0.

Proof. Again, we only prove the result for Z[x1, . . . , xk, y]; exactly the same proof works for
Fp[x1, . . . , xk, y] as well. As in the proof of Lemma 4.3 consider the set Z[x1, . . . , xk, y]d ⊆
Z[x1, . . . , xk, y] of all polynomials in Z[x1, . . . , xk, y] such that for every monomial a ·xn1

1 · · ·x
nk
k yn

we have n1, . . . , nk, n < d, and the mapping Ud : Z[x1, . . . , xk, y]→ Z[z] with

Ud(p(x1, x2, . . . , xk, y)) = p(z1, zd
1

, . . . , zd
k−1

, zd
k

).

Note that for polynomials p, q ∈ Z[x1, . . . , xk, y]d with deg(p, y) < deg(q, y) we have deg(Ud+1(p)) <
deg(Ud+1(q)), since the exponent of y becomes the most significant digit in the base-(d + 1) rep-
resentation. Then, for all polynomials s, t ∈ Z[x1, . . . , xk, y]d (where the leading coefficient of t is
1) we have

Ud2+1(s mod t) = Ud2+1(s) mod Ud2+1(t).

To see this, assume that s = qt + r with deg(r, y) < deg(t, y) so that r = s mod t. We have
q, r ∈ Z[x1, . . . , xk, y]d2 , which can be checked by tracing the polynomial division algorithm. By
(4.1) we have

Ud2+1(s) = Ud2+1(q)Ud2+1(t) + Ud2+1(r).

Moreover, deg(Ud2+1(r)) < deg(Ud2+1(t)). Hence

Ud2+1(r) = Ud2+1(s) mod Ud2+1(t).

Now we can compute the remainder s mod t for given polynomials s, t ∈ Z[x1, . . . , xk, y] (where
the leading coefficient of t is 1) in DLOGTIME-uniform TC0 as follows:

• compute the number d = max{deg(p, z) | p ∈ {s, t}, z ∈ {x1, . . . , xk, y}}, so that s, t ∈
Z[x1, . . . , xk, y]d.

• Compute in parallel u(z) = Ud2+1(s) and v(z) = Ud2+1(t).

• Compute, using Theorem 2.1, R(z) = u(z) mod v(z), which is Ud2+1(s mod t).

• Finally, compute U−1d2+1(R) which is s mod t.

In the same way we can also compute the quotient, but we only will need the remainder s mod t
in the following.

Finally, we will need the following result from [75]:
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Theorem 4.5 ([75, Theorem 5.2]). Let G be a f.g. group with a normal subgroup H of finite
index. Then, the word problem for G is AC0-reducible to the word problems for H and G/H.

Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. Let us first assume that G is f.g. solvable and linear over a field F . By a
theorem of Mal’cev (see e.g. [90, Theorem 3.6]), G contains a normal subgroup H of finite index,
which is triangularizable over a finite extension of F (i.e., H is isomorphic to a group of triangular
matrices over a finite extension of F ). Using Theorem 4.5 we know that the word problem for G
is AC0-reducible to the word problems for H and G/H. The latter is a finite solvable group, see
Theorem 3.20. Hence, its word problem belongs to DLOGTIME-uniform TC0 by [18].

By the previous discussion, it suffices to show that the word problem for a f.g. triangular
matrix group G over some field F belongs to DLOGTIME-uniform TC0. Let P be the prime field
of F . We can replace F by the finite extension of P that is generated by all matrix entries in
generators of G. It is known that the field extension [F : P ] has a separating transcendence base
{x1, . . . , xk}, which means that [F : P (x1, . . . , xk)] is a finite separable extension; see e.g. [92,
Theorem 31].1 Hence, the theorem of the primitive element applies, which says that F is generated
over P (x1, . . . , xk) by a single element α ∈ F , which is algebraic over P (x1, . . . , xk).

Assume now that P = Q (in case P = Fp for a prime p we have to replace in all arguments
below Z (resp. Q) by Fp). Consider the minimal polynomial p(y) ∈ Q(x1, . . . , xk)[y] of α. We can
write it as

p(y) = ym +
p1
q
ym−1 +

p2
q
ym−2 + · · ·+ pm

q
(4.2)

for some m ∈ N and p1, . . . , pm, q ∈ Z[x1, . . . , xk], q 6= 0. The element β = α · q ∈ F also generates
F over P (x1, . . . , xk), and its minimal polynomial is

r(y) = ym + p1 · ym−1 + p2q · ym−2 + · · ·+ pmq
m−1 ∈ Z[x1, . . . , xk, y]

(multiply (4.2) by qm). We have

F = Q(x1, . . . , xk)[y]/〈r(y)〉

where 〈r(y)〉 = {a · r | a ∈ Q(x1, . . . , xk)[y]} is the ideal generated by r.
Each of the finitely many generators of the group G is a matrix, whose entries are polynomials

in the variable y with coefficients from the fraction field Q(x1, . . . , xk). Every such coefficient
is a fraction a(x1, . . . , xk)/b(x1, . . . , xk) with a(x1, . . . , xk), b(x1, . . . , xk) ∈ Z[x1, . . . , xk]. Let
g(x1, . . . , xk) be the least common multiple of all denominators b(x1, . . . , xk), which is a fixed
polynomial. Instead of asking whether A1 · · ·An ≡ Id mod q(y) (for group generators A1, . . . , An
of G) we can ask whether gA1 · · · gAn ≡ gnId mod q(y).2 So far, the proof has been following
more or less closely Waack’s arguments from [89].

Let Mi = gAi, which is a triangular matrix of dimension d for some fixed d ∈ N with entries
from Z[x1, . . . , xk, y]. Let us write Mi = Di+Ui where Di is a diagonal matrix and Ui is triangular
with all diagonal entries equal to zero. We get

M1 · · ·Mn =
n∏
i=1

(Di + Ui) =
∑

X1∈{D1,U1}

· · ·
∑

Xn∈{Dn,Un}

n∏
j=1

Xj . (4.3)

If there are more than d− 1 factors Ui in a product
∏n
j=1Xj , then the product is the zero matrix.

So there are at most
∑d−1
i=0

(
n
i

)
≤ d

(
n
d

)
≤ dnd summands (for n > 2d) in the sum (4.3) that are

not equal to zero. When we look at one of the products
∏n
j=1Xj with at most d− 1 many factors

Ui, we can write it as(∏m1−1
i=1 Di

)
Um1

(∏m2−1
i=m1+1Di

)
· · ·Uml

(∏n
i=ml+1Di

)
= D1,m1−1Um1

Dm1+1,m2−1 · · ·UmlDml+1,n

1Every finitely generated extension field of a perfect field has a separating transcendence base and every prime
field is perfect.

2Here, for two (d×d)-matrices A and B, A ≡ B mod q(x) means that A[i, j] ≡ B[i, j] mod q(x) for all 1 ≤ i, j ≤ d.
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for some 0 ≤ l ≤ d − 1 and 1 ≤ m1 < · · · < ml ≤ n where Du,v =
∏v
i=uDi (1 ≤ u ≤ v + 1,

0 ≤ v ≤ n) is a product of at most n diagonal matrices. Each of these products can be calculated
by calculating d products of at most n polynomials from Z[x1, . . . , xk, y], which can be done in
DLOGTIME-uniform TC0 by Lemma 4.3. Moreover, all products Du,v for 1 ≤ u < v ≤ n can be
computed in parallel. Once these products are computed, we can, in parallel, compute for all 0 ≤
l ≤ d−1 and 1 ≤ m1 < · · · < ml ≤ n the matrix product D1,m1−1Um1

Dm1+1,m2−1 · · ·UmlDml+1,n.
Note that these products have constant length and hence involve a constant number of polynomial
multiplications and additions. So, all the above matrix products can be computed in DLOGTIME-
uniform TC0 as well. Next, we have to compute the sum of all polynomially many matrices
computed in the previous step. For this we have to compute d2 many sums of polynomially
many polynomials, which is again possible in DLOGTIME-uniform TC0. The resulting matrix is
M1 · · ·Mn = gnA1 · · ·An. Finally we have to reduce all entries of the matrices M1 · · ·Mn and
gnId modulo the minimal polynomial q(y) which can also be done in DLOGTIME-uniform TC0 by
Lemma 4.4. Note that we divide by the polynomial q(y), whose leading coefficient is indeed 1.

We have shown that the word problem for a f.g. solvable linear group G belongs to DLOGTIME-
uniform TC0. If G is in addition infinite, then it cannot be a torsion-group, since every f.g. linear
torsion group is finite by a result of Schur, see [90, Corollary 4.9]. Therefore Z is a subgroup of G.
Since the word problem for Z is already complete for DLOGTIME-uniform TC0 (it corresponds to
the problem of counting the number of ones in a string) we obtain the lower bound in the theorem.

Finally, let G be a f.g. virtually solvable linear group G. Then G contains a normal solvable
subgroup H, for which we know that the word problem can be solved in DLOGTIME-uniform
TC0. Moreover, the quotient G/H is a finite group, for which the word problem belongs to
DLOGTIME-uniform NC1. Hence, Theorem 4.5 implies that the word problem for G belongs to
DLOGTIME-uniform NC1.

By Tits alternative [82], every linear group is either virtually solvable or contains a free group of
rank two. Since by [75, Theorem 6.3], the word problem for a free group of rank two is hard for
DLOGTIME-uniform NC1, one gets the following result:

Theorem 4.6. For every f.g. linear group that is not virtually solvable, the word problem is hard
for DLOGTIME-uniform NC1.

Theorem 4.2 and Theorem 4.6 leave open the case of a f.g. linear group G that is not solvable
but a finite extension of a solvable group H. If the quotient G/H is solvable too, then G is solvable
and we can apply Theorem 4.2. So, we can assume that the finite quotient G/H is not solvable.
It seems plausible that in this case, the word problem for G is hard for DLOGTIME-uniform NC1,
since the word problem for every finite non-solvable group is hard for DLOGTIME-uniform NC1

[17]. But it is not clear, whether the word problem for the finite quotient G/H reduces to the
word problem for G.
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Chapter 5

The circuit evaluation problem

5.1 Introduction

There is a natural generalization from the word problem to general algebraic structures: let A
be an algebraic structure with a generating set I. Given two expressions e1, e2 built up from the
elements of I using the operations fi, do e1 and e2 evaluate to the same element of A. In this
chapter we will consider this problem for a more succinct representation of elements: algebraic
circuits. An algebraic circuit can be seen as a compressed algebraic expression with a possibly
exponential compression ratio. E.g. for a binary function f and an input value a we define the
expression en via e1 = f(a, a) and ei = f(ei−1, ei−1) for 2 ≤ i ≤ n. Then the expression en has
length 2n but can be represented by a circuit if size n. One of the first decision problems for
circuits, whose complexity has been studied, is the circuit evaluation problem for Boolean circuits,
which was shown to be P-complete by Ladner [52]. In this chapter the circuit evaluation problem
will be defined for general algebraic structures, based on the word problem, as the problem to
decide for two given circuits whether they evaluate to the same element. For various algebraic
structures many results are already known about this problem. First we will formally define the
problem and give an overview over various formulations of this problem. Then we take a closer
look on the circuit evaluation problem for various structures, namely the ring (Z,+, ·), polynomial
rings, finite structures and groups. The results for the ring (Z,+, ·) can mainly be seen as auxiliary
results, since for many more complex structures circuit evaluation can be reduced to a circuit over
this ring. Then for the other structures known results are considered and brought into context
with the results that are shown in this thesis.

5.2 Algebraic circuits

Definition 5.1 (circuit). A circuit over a f.g. algebraic structure A = (D, f1, . . . , fk) where the
fi (1 ≤ i ≤ k) are mappings fi : Dni → D and I is a finite generating set of A, is a triple
C = (V, S, rhs) where

• V is a finite set of gates,

• S ∈ V is the output gate and

• rhs (which stands for right-hand side) is a function that assigns to each gate A ∈ V an
element a ∈ I or an expression of the form fi(A1, . . . , Ani) such that the binary relation
{(A,B) ∈ V × V | A occurs in rhs(B)} is acyclic.

For a gate A ∈ V with rhs(A) = fi(A1, . . . , Ani), the gates A1, . . . Ani ∈ V are called the input
gates for A. The reflexive and transitive closure of the relation

{(A,B) ∈ V × V | A is an input gate for B}

33



34 5.2. ALGEBRAIC CIRCUITS

is a partial order on V that we denote by ≤C .

Definition 5.2 (value of a circuit). Let C = (V, S, rhs) be a circuit over A = (D, f1, . . . , fk)
and I be a finite generating set of A . Every gate A ∈ V evaluates to an element [A]C ∈ D
in the natural way: if rhs(A) = a ∈ I, then [A]C = a and if rhs(A) = fi(A1, . . . , Ani), then
[A]C = fi([A1]C , . . . , [Ani ]C). Moreover, we define [C] = [S]C (the value computed by C). If the
circuit C is clear from the context, we write [A] instead of [A]C.

We say that two circuits C1, C2 over the same algebraic structure are equivalent if [C1] = [C2].
Sometimes we also use circuits without an output gate; such a circuit is just a pair (V, rhs). A
subcircuit of C is the restriction of C to a downwards closed (w.r.t. ≤C) subset of V . A gate A
with rhs(A) = fi(A1, . . . , Ani) is called an inner gate, otherwise it is an input gate of C. Quite
often, we view a circuit as a directed acyclic graph (dag) where the inner nodes are labeled with
some fi(1 ≤ i ≤ k) , and the leaf nodes are labeled with elements of I.

The circuit evaluation problem for the finitely generated algebraic structure A (CEP(A)) is the
following decision problem:

Input: Two circuits C1 = (V1, S1, rhs1) and C2 = (V2, S2, rhs2) over A .

Question: Does [C1] = [C2] hold?

The input size is |V1|+ |V2|. Since there is a fixed finite generating set I ⊆ D, we can assume
that every input value of the circuit has constant size. Note that the complexity of the problem
does not depend on the chosen input set I, since for two generating input sets I1 and I2 one can
transform every element in I1 into a fixed sized expression with elements from I2 and vice versa.

For most algebraic structures investigated in the following chapters a slightly different but
equivalent version of the circuit evaluation problem is used:

• For a unitary ring (R,+, ·) we consider the following problem:

Input: A circuit C = (V, S, rhs) over (R,+, ·).
Question: Does [C] = 0 hold?

• For a group (G, ·) we consider the following problem:

Input: A circuit C = (V, S, rhs) over (G, ·).
Question: Does [C] = 1 hold?

• For a finite algebraic structure A we consider the following problem:

Input: A circuit C = (V, S, rhs) over A and an element a ∈ D from its domain.

Question: Does [C] = a hold?

Note that the problems above are AC0-equivalent to the circuit evaluation problem: on the one
hand we can consider 0, 1 resp. a ∈ D as a circuit C2. On the other hand assume there are two
circuits C1 = (V1, S1, rhs1) and C2 = (V2, S2, rhs2) over A.

• In the case A is a unitary ring (R,+, ·) define a new circuit C = (V, S, rhs) via V = V1 ∪
V2 ∪ {S, S′} and rhs(S) = S1 + S′, rhs(S′) = (−1) · S2, and rhs(A) = rhsi(A) for A ∈ Vi
(i ∈ {1, 2}). Then [C1] = [C2] if and only if [C] = 0.

• In the case A is a group define a new circuit C = (V, S, rhs) via V = V1 ∪ V2 ∪ {S} and
rhs(S) = S1 · S2 and

rhs(A) =


rhs1(A) if A ∈ V1
C ·B if A ∈ V2 and rhs2(A) = B · C
a−1 if A ∈ V2 and rhs2(A) = a ∈ I (where I is a finite generating set)

.

Then [S2]C = ([S2]C2)−1 and [C1] = [C2] if and only if [C] = 1.
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CHAPTER 5. THE CIRCUIT EVALUATION PROBLEM 35

• In the case A is a finite structure we can test in parallel for all elements a ∈ D whether
[C1] = a and [C2] = a. This is true for an a ∈ D if and only if [C1] = [C2].

Clearly, for every finite structure the circuit evaluation problem can be solved in polynomial
time by evaluating all gates along the partial order ≤C . For the sake of convenience we sometimes
call the circuit evaluation problem for A simply ”circuit evaluation for A”.

From now on we consider mostly circuits over a semiring (R,+, ·) or a semigroup (S, ·) with
a generating set I. In our proofs it is sometimes convenient to allow arbitrary terms built from
V ∪ I using + and · in right-hand sides and gates of the form rhs(A) = B where B is a gate again
(so-called copy gates). For instance, we might have rhs(A) = s · B · t + C + s for s, t ∈ I and
B,C ∈ V . We also say that circuits where all right-hand sides are of the form A + B, A · B, or
a ∈ I, are in normal form. We will make use of the following fact:

Lemma 5.3. A given circuit over a semiring (R,+, ·) can be transformed in logarithmic space
into an equivalent normal form circuit.

Proof. The only non-trivial part is the elimination of copy gates A with rhs(A) = B for a gate B;
all other right-hand sides that violate the normal form have to be split up using fresh gates. This
is easily done in logarithmic space. For copy gates consider the directed graph G that contains for
every copy gate A the gate A as well as the gate rhs(A). Moreover, there is a directed edge from A
to B = rhs(A). This is a directed forest where the edges are oriented towards the roots since every
node has at most one outgoing edge (and the graph is acyclic). By traversing all (deterministic)
paths, we can compute the reflexive transitive closure G∗ of G in logarithmic space. Using G∗ it is
straightforward to eliminate copy gates: for every copy gate A we redefine rhs(A) = rhs(B) where
B is the unique node in G∗ of outdegree zero such that (A,B) is an edge of G∗.

A gate A where rhs(A) has the form B + C (resp., B · C) is called an addition gate (resp.,
multiplication gate). The depth depth(A) (resp., multiplication depth mdepth(A)) of the gate A
is the maximal number of gates (resp., multiplication gates) along a path from an input gate to
A. So, input gates have depth one and multiplication depth zero. The depth (resp., multiplication
depth) of C is depth(C) = depth(S) (resp., mdepth(C) = mdepth(S)). The formal degree deg(A) of
a gate A is 1 if A is an input gate, max{deg(B), deg(C)} if rhs(A) = B +C, and deg(B) + deg(C)
if rhs(A) = B · C. The formal degree of C is deg(C) = deg(S).

5.3 Circuit evaluation for (Z,+, ·): some auxiliary results

It is known that in general circuit evaluation for the ring (Z,+, ·) is in coRP but it is still not known
if there exists a polynomial time algorithm for this problem, see e.g. [6]. We will consider this
problem in detail later in Section 5.6 . In this section we mainly investigate circuits with bounded
multiplication depth resp., bounded formal degree. The results of this section have appeared in
[1]. The main results are the following:

• If the multiplication depth is bounded by a constant, then the multiplication gates can be
eliminated and the circuit can be evaluated in C=L.

• If the formal degree is polynomially bounded, then circuit evaluation is in C=LogCFL.

From now on for circuits over (Z,+, ·) we fix {−1, 0, 1} as the input set.

Definition 5.4 (positive circuit, addition circuit).

• A positive circuit is a circuit over (Z,+, ·) without input gates labeled by the constant −1.

• An addition circuit is a positive circuit without multiplication gates.

Lemma 5.5. Given a circuit C over (Z,+, ·) one can compute in logarithmic space two positive
circuits C1 and C2 such that [C] = [C1] − [C2]. Moreover, for i ∈ {1, 2} we have deg(Ci) ≤ deg(C),
depth(Ci) ≤ 2 · depth(C), and mdepth(Ci) ≤ mdepth(C).
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36 5.3. CIRCUIT EVALUATION FOR (Z,+, ·): SOME AUXILIARY RESULTS

Proof. Let C = (V, S, rhs) be a circuit over (Z,+, ·). We define the positive circuits C1 =
(V ′, S1, rhs

′) and C2 = (V ′, S2, rhs
′) as follows:

• V ′ = {Ai | A ∈ V, i ∈ {1, 2}},

• rhs′(Ai) = Bi + Ci if rhs(A) = B + C for i ∈ {1, 2},

• rhs′(A1) = B1C1 +B2C2 if rhs(A) = B · C,

• rhs′(A2) = B1C2 +B2C1 if rhs(A) = B · C,

• rhs′(A1) = rhs(A) if rhs(A) ∈ {0, 1},

• rhs′(A2) = 0 if rhs(A) ∈ {0, 1},

• rhs′(A1) = 0 if rhs(A) = −1,

• rhs′(A2) = 1 if rhs(A) = −1.

Now we show by induction that for every gate A ∈ V we have [A] = [A1]− [A2]: the case that A
is an input gate is trivial. Now let A be an addition gate with rhs(A) = B +C and the statement
be true for B and C. Then

[A] = [B] + [C]

= [B1]− [B2] + [C1]− [C2]

= ([B1] + [C1])− ([B2] + [C2])

= [A1]− [A2]

Finally, let A be a multiplication gate with rhs(A) = B · C and the statement be true for B and
C. Then

[A] = [B][C]

= ([B1]− [B2])([C1]− [C2])

= [B1][C1] + [B2][C2]− [B1][C2]− [B2][C1]

= [A1]− [A2].

So the claim holds. The construction of C1 and C2 can be done in logarithmic space. By induction,
it can be shown that for every gate A ∈ V and every i ∈ {1, 2}, one has deg(Ai) = deg(A),
depth(Ai) ≤ 2 · depth(A), and mdepth(Ai) = mdepth(A).

Example 5.6. Figure 5.1 illustrates the proof of Lemma 5.5. The circuit C evaluates to (1 + 1) ·
(1− 1) = 1 + 1− 1− 1 = 2− 2 = 0. The two circuits C1 and C2 that are constructed as described
in the proof evaluate to the positive part ([C1] = 2 + 0 = 2) and negative part ([C2] = 0 + 2 = 2) of
this sum.

Definition 5.7 (structure-preserving partition). A partition
⊎m
i=1 Vi of the set of all multiplication

gates of C is called structure-preserving if for all multiplication gates u, v of C the following holds: if
there is a non-empty path from u to v in (the dag corresponding to) C then there exist 1 ≤ i < j ≤ d
such that u ∈ Vi and v ∈ Vj.

Lemma 5.8. Let d be constant. From a given positive circuit C of multiplication depth d together
with a structure-preserving partition

⊎d
i=1 Vi, we can compute in logarithmic space an addition

circuit D such that [C] = [D].
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· A

+ B + C

1 1 −1

(a) Circuit C over (Z,+, ·).

+ A

· ·
+ B1 + C1 + B2 + C2

1 1 0

(b) Circuit C1

+ A

· ·
+ B1 + C2 + B2 + C1

0 0 1

(c) Circuit C2

Figure 5.1: Transformation of a circuit [C] into two positive circuits [C1] and [C2] such that [C1]−
[C2] = [C].

Proof. Let C = (V, S, rhs) together with a structure-preserving partition
⊎d
i=1 Vi. W.l.o.g. we can

assume that there are two unique input gates whose right-hand sides are 0, resp. 1 and we denote
these gates simply by 0, resp., 1.

Since d is a constant, it suffices to construct in logarithmic space a positive circuit C′ =
(V ′, S, rhs′) of multiplication depth d−1 together with a structure-preserving partition

⊎d−1
i=1 V

′
i of

the set of all multiplication gates of C′ such that [C] = [C′] (the composition of a constant number
of logspace computations is again a logspace computation).

To achieve the above goal, we eliminate in C all multiplication gates from V1. Note that
below these gates there are no other multiplication gates. Then, we define the set V ′i as Vi+1 for
1 ≤ i ≤ d− 1.

Let V1 = {A1, . . . , Am} and assume that rhsC(Ai) = Bi · Ci. The set of gates of C′ is

V ′ = V ∪ {A(i) | A ∈ V, 1 ≤ i ≤ m},

i.e., we add m copies of each gate to the circuit. We define the right-hand side mapping as follows:

rhs′(A) = rhs(A) if A ∈ V \ V1 (5.1)

rhs′(Ai) = B
(i)
i for 1 ≤ i ≤ m (5.2)

rhs′(A(i)) = B(i) + C(i) if A ∈ V and rhs(A) = B + C (5.3)

rhs′(A(i)) = 0 if A ∈ V and rhs(A) = B · C (5.4)

rhs′(0(i)) = 0 (5.5)

rhs′(1(i)) = Ci (5.6)

The idea of the above construction is the following: basically, we add m copies of the circuit C.
In these copies, we do not need the multiplication gates1 and since we do not want to introduce
new multiplication gates, we set the right-hand side of a copy of a multiplication gate to 0, see

1Actually, we only need in the i-th copy those nodes that belong to a path from the unique 1-gate to Bi. But
we cannot compute the set of these nodes in logarithmic space unless L = NL. Hence, we put all nodes into the
copy.
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· A

· B · C

+ E+ D

1 0

(a) Circuit C

· A

B C

+ D(1) + D(2)

1(1) 1(2)

+ E+ D

1 0

(b) Circuit C′

· A

+ B + C

+ E+ D

1 0

(c) C′ in normal form

A

+ B(1)

+ C

+ E

+ D(1)

1(1)

1 0

(d) Circuit C′′

+ A

+ B

+ C

+ E

1 0

(e) C′′ in normal form

Figure 5.2: Illustration of the proof of Lemma 5.8 with the structure-preserving partition V1 =
{B,C} and V2 = {A}.

(5.4).2 Also notice that strictly below Ai we only find addition gates and constants in the circuit
C. In particular, the value [Bi]C is equal to the number of paths from the unique 1-gate 1 to Bi
and similarly for Ci. We want to assign to the gate Ai the product of these path numbers. For
this, we redirect the edges (Bi, Ai) and (Ci, Ai) of the multiplication gate for every 1 ≤ i ≤ m
as follows: the edge (Ci, Ai) is replaced by the edge (Ci, 1

(i)), see (5.6). Moreover, the edge

(Bi, Ai) is replaced by the edge (B
(i)
i , Ai) (which is the unique incoming edge to Ai), see (5.2).

So, basically, we serially connect the circuit part between 1 and Ci with the circuit part between
1 and Bi. Thereby we multiply the number of paths. The above construction can be clearly done
in logarithmic space.

Example 5.9. Figure 5.2 is an example for the construction of an addition circuit from a positive
circuit with multiplication depth 2. On picture (a) the circuit is shown and the set V1 = {B,C}

2This is an arbitrary choice; instead of 0 we could have also taken 1.
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is marked grey. In the first step we construct C′ as described in the proof. Copy-gates are left
unlabeled. On picture (b) is shown the part of C′ that is connected to the inputs. Recall that we
do not know this part during the construction, but for reasons of clarity we do not show the other
part in the illustration. In picture (c) C′ is transformed into normal form, the gates are renamed
and V2 = {A} is marked grey. Then we repeat the previous two steps to reach the final addition
circuit that is shown in picture (e).

Recall that the following problem is C=L-complete: the input consists of two dags G1 and G2

and vertices s1, t1 (in G1) and s2, t2 (in G2), and it is asked whether the number of different paths
from s1 to t1 in G1 is equal to the number of different paths from s2 to t2 in G2. This problem
is easily seen [84] to be equivalent to the following problem: given two addition circuits C1 and
C2, does [C1] = [C2] hold? Combining this with Lemma 5.5 and Lemma 5.8 leads to the following
result:

Lemma 5.10. Let d be a constant. For a given circuit C over (Z,+, ·) of multiplication depth d

together with a structure-preserving partition
⊎d
i=1 Vi of the set of all multiplication gates of C, the

question whether [C] = 0 is C=L-complete.

With the same argumentation as for circuits over (Z,+) one gets the following result:

Lemma 5.11. Given a circuit C over (N,+) one can compute the value of C in #L ⊆ DET.

In [86] it is shown that #LogCFL is the class of all functions f : {0, 1}∗ → N (a non-binary
input alphabet Σ has to be encoded into {0, 1}∗) for which there exists a logspace-uniform family
(Cn)n≥1 of circuits over (N[x1, . . . , xn],+, ·) such that Cn computes the mapping f restricted to
{0, 1}n and there is a polynomial p(n) such that the formal degree of Cn is bounded by p(n).
So, in particular, for two given such circuit families (C1,n)n≥1, (C2,n)n≥1 the question whether
[C1,n] = [C2,n] for every n ≥ 1 is C=LogCFL-complete. We need the following lemma:

Lemma 5.12. There is an NAuxPDA P that gets as input a positive circuit C = (V, S, rhs) over
(Z,+, ·) and such that the number of accepting computations of P on input C is [C]. Moreover,
the running time is bounded polynomially in depth(C) · deg(C).

Proof. The NAuxPDA P stores a sequence of gates on its pushdown (every gate can be encoded
using log(|V |) many bits). In the first step it pushes the output gate S on the initially empty
pushdown. If A is on top of the pushdown and rhs(A) = B+C, then P replaces A on the pushdown
by B or C, where the choice is made nondeterministically. If rhs(A) = B · C, then P replaces A
on the pushdown by BC. If rhs(A) = 0, then P terminates and rejects. Finally, if rhs(A) = 1,
then P pops A from the pushdown. If thereby the pushdown becomes empty then P terminates
and accepts. In addition to its pushdown, P only needs a logarithmic space bounded work tape
to store a single gate. Moreover, if we start P with only the gate A on the pushdown, then (i) the
number of accepting computation paths from that configuration is exactly [A]C (ii) the number of
pushdown operations along a computation path is bounded by depth(A) ·deg(A). Both statements
follow by induction.

Together with Lemma 5.5 this leads immediately to the following result:

Lemma 5.13. Let p be a fixed polynomial. For a given circuit C = (V, S, rhs) over (Z,+, ·) with
formal degree bounded by p(|V |) the question whether [C] = 0 is in C=LogCFL.

5.4 Circuit evaluation for finite structures

As mentioned above for every finite algebraic structure the circuit evaluation problem can be
solved in polynomial time. One of the most famous results about circuit evaluation is Ladner’s
classical P-completeness result for the Boolean circuit value problem [52] that can be stated as
follows:
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Theorem 5.14 ([52]). For the Boolean semiring B2 = ({0, 1},∨,∧), the problem CEP(B2) is
P-complete.

For semigroups, the following fundamental dichotomy was shown in [19]:

Theorem 5.15 ([19]). Let S be a finite semigroup.

• If S is aperiodic, then CEP(S) is in NL.

• If S is solvable, then CEP(S) belongs to DET.

• If S is not solvable, then CEP(S) is P-complete.

Some remarks should be made:

• In [19], Theorem 5.15 is only shown for monoids, but the extension to semigroups is straight-
forward: if the finite semigroup S has a non-solvable subgroup, then CEP(S) is P-complete,
since the circuit evaluation problem for a non-solvable finite group is P-complete. On the
other hand, if S is solvable (resp., aperiodic), then also the monoid S1 is solvable (resp.,
aperiodic). This holds, since the subgroups of S1 are exactly the subgroups of S together
with {1}. Hence, CEP(S1) is in DET (resp., NL), which implies that CEP(S) is in DET (resp.,
NL).

• In [19], the authors use the original definition DET = NC1(det) of Cook. But the arguments
in [19] actually show that for a finite solvable semigroup, CEP(S) belongs to AC0(det) (which
is our definition of DET).

• In [19], the authors study two versions of the circuit evaluation problem for a semigroup
S: what we call CEP(S) is called UCEP(S) (for “unrestricted circuit evaluation problem”)
in [19]. The problem CEP(S) is defined in [19] as the circuit evaluation problem where in
addition the input circuit must have the property that the output gate has no outgoing edges
and all gates are connected to the output gate. These conditions can be enforced with an
AC0(NL)-precomputation. Hence, the difference between the two variants is only relevant
for classes below NL. We only consider the unrestricted version of the circuit evaluation
problem (where the input circuit is arbitrary).

In Chapter 8 we extend this dichotomy to finite semirings and show that if a finite semiring R
is {0, 1}-free and R• is solvable, then CEP(R) is in DET. Otherwise it is P-complete.

5.5 Skew circuits over semirings

Definition 5.16 (skew circuit). A circuit C = (V, S, rhs) over a semiring (R,+, ·) is a skew circuit,
if for every multiplication gate A at least one of its inputs is an input gate of the circuit.

For skew circuits C = (V, S, rhs) over R with a generating set I we will use a quite simplified
notation: we assume that the right-hand side of a multiplication gate A is of the form b ·C (resp.,
C · b) with b ∈ I and C ∈ V . Notice that this differs slightly from the definition, since formally
rhs(A) = B · C (resp., rhs(A) = C ·B) with rhs(B) ∈ I and C ∈ V .

Definition 5.17 (branching program). A branching program over the semiring (R,+, ·) with
a finite generating set I is a tuple B = (V,E, λ, s, t) where (V,E) is a directed acyclic graph,
λ : E → I assigns to each edge a generating element, and s, t ∈ V . Let P be the set of all paths
from s to t. For a path p = (v0, v1, . . . , vn) ∈ P (v0 = s, vn = t) we define λ(p) =

∏n
i=1 λ(vi−1, vi)

as the product of all edge labels along the path. Finally, the value defined by B is

[B] =
∑
p∈P

λ(p).
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It is well known that for commutative unitary semirings skew circuits and branching programs
are basically the same objects. It is also well known that the value defined by a branching program
B over a unitary semiring can be computed using matrix powers over the semiring R0 (the 0 is
needed to fill the matrix with an absorbing identity element in the case that R does not contain an
absorbing 0). W.l.o.g. assume that B = ({1, . . . , n}, E, λ, 1, n) and consider the adjacency matrix
M of the edge-labeled graph ({1, . . . , n}, E, λ), i.e., the (n × n)-matrix M with M [i, j] = λ(i, j)
for (i, j) ∈ E and all other entries are equal to 0. Then

[B] =

( n∑
i=0

M i

)
[1, n].

For many commutative unitary semirings R, this simple fact can be used to get an NC2-algorithm
for computing [B]. The n + 1 matrix powers M i (0 ≤ i ≤ n) can be computed in parallel, and
every power can be computed by a balanced tree of height log i ≤ log n, where every tree node
computes a matrix product. Hence, we obtain an NC2-algorithm, if

(i) the number of bits needed to represent a matrix entry in Mn is polynomially bounded in n
and in the size of the entries of M .

(ii) the product of two matrices over the semiring R can be computed in NC1.

Point (ii) holds if products of two elements and iterated sums in R can be computed in NC1.
Notice that the adding of a new additive identity does not change these properties. For instance
these facts are well known for the semirings (Z∪ {∞},min,+) and (Z∪ {−∞},max,+) where we
assume that integers are given in binary representation.

We have defined circuits in such a way that input gates are labeled by generators from a finite
set I, but later we will need to evaluate skew circuits over (Z ∪ {−∞},max,+) where the input
gates are labeled with binary encoded integers. Notice that this does not violate the finiteness
property essentially, since by iterated doubling one can construct an equivalent (standard) circuit
over (Z ∪ {−∞},max,+) with inputs from {−1, 1,−∞}. With the argumentation above these
circuits can be evaluated in NC2.

Summing up this discussion leads to the following lemma:

Lemma 5.18. The circuit evaluation problem for skew circuits (or branching programs) over the
semiring (Z∪{∞},min,+) resp. (Z∪{−∞},max,+) where the inputs are binary encoded integers
can be solved in NC2.

For skew circuits over the polynomial ring (Z[x1, . . . , xk],+, ·) (resp. (Zn[x1, . . . , xk],+, ·) for
some n ∈ N) for some fixed k ∈ N we can even do better and show the following result:

Lemma 5.19. The circuit evaluation problem for a skew circuit (or branching program) over the
polynomial ring (Z[x1, . . . , xk],+, ·) (resp. (Zn[x1, . . . , xk],+, ·) for some n ∈ N) for some fixed
k ∈ N can be solved in C=L (resp. DET).

Proof. Let C = (V, S, rhs) be a skew circuit over the polynomial ring (Z[x1, . . . , xk],+, ·)
(resp. (Zn[x1, . . . , xk],+, ·) for some n ∈ N) for some fixed k ∈ N with inputs from {−1, 1, x1, . . . xk}.
W.l.o.g assume that every multiplication gate M is of the form rhs(M) = I · A with I ∈
{−1, 1, x1, . . . , xk}. Furthermore, we can assume that every input gate is either an input of addition
gates or an input of multiplication gates (otherwise we copy the gate). With the same argumen-
tation as in the proof of Proposition 2.1 in [6] we know that the polynomial [C] = p(x1, . . . , xk) is

the zero polynomial if and only if p(α1, . . . , αk) = 0 for αi = 2n
2iki . The idea is to replace every

occurrence of some xi by αi: there are two situations where a variable xi can appear in C:

1. If xi is an input of a multiplication gate M , i.e., rhs(M) = xi · A for some A ∈ V we use

n2iki gates and iterated doubling to add 2n
2iki times the gate A to itself.

2. If xi is an input of an addition gate, then by iterated doubling we can use n2iki gates to add
2n

2iki times the input gate 1 to itself.
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Figure 5.3: A skew circuit over some unitary semiring R and the corresponding branching program.

Furthermore we eliminate multiplication gates with input −1 be introducing a gate A′ for every
gate A ∈ V such that [A′] = −[A].

Formally we define the purely additive circuit D = (VD, S, rhsD) as follows: let b = n2kkk. We
set

VD := V ∪ {A′ | A ∈ V } ∪ {Ai | A ∈ V, 1 ≤ i ≤ b} ∪ {A′i | A ∈ V, 1 ≤ i ≤ b} ∪ {Xi | 1 ≤ i ≤ b}.

• rhsD(A) = B + C and rhsD(A′) = B′ + C ′ if rhs(A) = B + C

• rhsD(A) = B and rhsD(A′) = B′ if rhs(A) = 1 ·B

• rhsD(A) = B′ and rhsD(A′) = B if rhs(A) = −1 ·B

• rhsD(A) = Bn2iki if rhs(A) = xi ·B

• rhsD(Aj) = Aj−1 +Aj−1 and rhsD(A′j) = A′j−1 +A′j−1 for 2 ≤ j ≤ b

• rhsD(A1) = A+A and rhsD(A′1) = A′ +A′

• rhsD(A) = Xn2iki if rhs(A) = xi

• rhsD(Xj) = Xj−1 +Xj−1 for 2 ≤ j ≤ b

• rhsD(X1) = 1 + 1

• rhsD(A) = 1 and rhsD(A′) = −1 if rhs(A) = 1

• rhsD(A) = −1 and rhsD(A′) = 1 if rhs(A) = −1

The resulting circuit is purely additive, can be constructed in logarithmic space and it can be
shown by induction that if rhs(A) = xi, then [A]D = αi and if rhs(A) = xi ·B, then [A]D = αi · [B].
Overall, if [C] = p(x1, · · · , xk), then [D] = p(α1, . . . , αk) and as remarked above [C] = 0 if and only
if [D] = 0. By Lemma 5.10 circuit evaluation for D is in C=L. In case C is a circuit over Zn[x] we
replace in D every input −1 by n− 1 and get a circuit over Zn which can be evaluated in DET by
Theorem 5.15.

Example 5.20. First consider the skew circuit C over some unitary commutative semiring R with
some a ∈ R in Figure 5.3 to illustrate the algorithm that leads to Lemme 5.18 . At the first step
this circuit is transformed into the branching program B in the same figure. This can be done in
the following way:

1. First take a new node s and connect s to every input gate with edges that are labeled with
the value of the input gate.
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2. For every gate A with rhs(A) = B+C, label the edges from A to B and from A to C with 1.

3. For every gate with rhs(A) = i · B where i is an input gate delete the edge from A to i and
label the edge from A to B with the value of i.

4. The output gate of the circuit becomes the node f of the branching program.

After these steps we get [C] = [B]. The adjacency matrix of B is

M =


0 1 1 0 0 0
0 0 a 0 0 0
0 0 0 1 1 0
0 0 0 0 0 a
0 0 0 0 0 1
0 0 0 0 0 0

 .

Since M5 and M6 are the zero matrix we obtain

[C] = [B] = (M0 +M1 +M2 +M3 +M4)[1, 6] = 0 + 0 + 0 + (a+ 1) + (a2 + a) = a2 + 2a+ 1.

To illustrate the proof of Lemma 5.19 we replace the element a in the circuit above by x and
consider C as a circuit over Z[x]. This circuit is shown in Figure 5.4 in picture (a). Since |V | = 5

we know that for α = 25
2

= 225 we get [C] = p(x) = 0 if and only if p(α) = 0. In a first
step in picture (b) we replace the input x of the +-gate C by the gate X25 that evaluates to 225

by 25 doubling steps (starting with 1). In the end in picture (c) we replace the input x of the
multiplication gate B ([B] = x · [C]) by the gate C25 that evaluates to α · [C] by 25 doubling steps
(starting with C). The resulting circuit is purely additive and evaluates to p(α).

Finally, we show that in skew circuits over Z[x] we can assume that the inputs are given as

polynomials of the form
∑k
i=1 aix

i where the ai are given in binary encoding. We will need this
is the following chapter.

Lemma 5.21. Let C be a skew circuit over Z[x] such that every input of the circuit is a polynomial

of the form
∑k
i=1 aix

i where the ai are given in binary encoding. Then we can construct in
logarithmic space a skew circuit D with inputs from {−1, 1, x} such that [C] = [D].

Proof. Let C be a a skew circuit over Z[x] such that every input of the circuit is a polynomial

of the form
∑k
i=1 aix

i where the ai are given in binary encoding. In a first step we split up

every input sum into k addition gates: if A is a multiplication gate with rhs(A) = (
∑k
i=1 aix

i) ·B
we set rhs(A) =

∑k
i=1(aix

i · B) where now the multiplication in every summand is meant as a
multiplication gate and the sum is meant as a chain of addition gates in the circuit. For inputs
of addition gates just split the sum directly. Now we can assume that every input is of the form
axn where a is encoded binary and n is encoded unary. With iterated doubling as in the proof of
Lemma 5.19 we can assume that a = 1 or a = −1. In a last step for inputs of the form xn we can
build multiplication chains of length n with input x to finally get the circuit D.

5.6 Circuit evaluation for polynomial rings

We have defined the circuit evaluation problem over a fixed algebraic structure A, but sometimes
we assume that a part of the algebraic structure is part of the input. For a unitary ring R and
a set of variables {x1, . . . , xk} we consider circuit evaluation over the unitary polynomial ring
R[x1, . . . , xk] where k is also part of the input. This problem is also known as polynomial identity
testing over R (PIT(R)). Recall that coRP is the class of complements of problems that can be
solved in randomized polynomial time and coRNC is the class of complements of problems that
are solvable by a randomized NC-circuit. For the rings Z and Zp (p prime) the following result
was shown in [45]; for Zn with n composite, it was shown in [4].
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Figure 5.4: The transformation of a skew circuit over (Z[x],+, ·) into a purely additive circuit.

Theorem 5.22. For each of the rings Z and Zn (n ≥ 2), PIT belongs to the class coRP.

In [48] for PIT restricted to skew circuits the following result was shown:

Theorem 5.23. For each of the rings Z and Zn (n ≥ 2), PIT restricted to skew circuits belongs
to the class coRNC.

Another important result in this context is the following:

Theorem 5.24 ([6]). Polynomial identity testing for Z can be reduced to circuit evaluation for
(Z,+.·).

The proof of this theorem is based on the idea that we can replace the variables xi by sufficient
large integers αi. This idea will be also used several times in this thesis.

We now define a class of circuits over unitary rings that in some sense lies between the class
of standard circuits and the class of skew circuits:
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Definition 5.25 (powerful skew circuit). Let R be a unitary ring. A circuit over the polynomial
ring R[x1, . . . , xk] is powerful skew, if for every multiplication gate A one of its input is an input
gate of the circuit and the input values are elements of the set {−1, 1} ∪ {xni | n ∈ N, 1 ≤ i ≤ k}
where n is given in binary encoding.

Notice that in the above definition the input set is not finite, but as for the max-plus semiring
with binary encoded integers one could interpret the inputs of the form xni as purely multiplicative
subcircuits of size dlog ne with inputs from {xi | 1 ≤ i ≤ k}. We assume that powerful skew circuits
are given in the form of the definition, since this simplifies the corresponding proofs and reductions
a lot.

Note that the transformation of a powerful skew circuit over R[x1, . . . , xk] into an equivalent
standard skew circuit requires an exponentially large blow-up. For instance, the smallest standard
skew circuit for the polynomial xn has size n, whereas xn can be obtained by a powerful skew
circuit as one gate of size dlog ne.

Recall that if k is a constant then skew circuits over the polynomial rings Z[x1, . . . , xk] and
Zn[x1, . . . , xk] can be evaluated in C=L (resp. DET), whereas for a non-fixed k the best upper
bound is coRNC and no polynomial time algorithm is known. This is due to the fact that in the
second case the number of monomials can be exponentially large in the size of the circuit. We will
now show that this difference gets lost for powerful skew circuits.

A circuit over R[x] is called a univariate circuit. Let p(x1, . . . , xk) be a polynomial and let
d ∈ N such that deg(p, xi) < d for all 1 ≤ i ≤ k. Recall the definition of the univariate polynomial
Ud(p) from Chapter 4:

Ud(p) = p(y1, yd, . . . , yd
k−1

).

The following lemma can be shown for arbitrary circuits, but we will only need it for powerful
skew circuits.

Lemma 5.26. Given a powerful skew circuit C for the polynomial p(x1, . . . , xk), the following can
be computed in NC2:

(i) The binary encoding of a number d such that deg(p, xi) < d for all 1 ≤ i ≤ k and

(ii) a powerful skew circuit C′ that evaluates to Ud(p).

Proof. Let C be a powerful skew circuit for the polynomial p(x1, . . . , xk). In order to compute
an upper bound on the degree deg(p, xi), we construct a circuit over the max-plus semiring as
follows: take the circuit C. If A is an input gate that is labeled with xni , then relabel A with the
binary coded number n. Otherwise relabel A with 0. Moreover, for a gate A with rhs(A) = B+C
(resp., rhs(A) = B · C) we set rhs(A) = max(B,C) (resp., rhs(A) = B + C). The resulting circuit
is clearly skew. Therefore it can be evaluated in NC2 by Lemma 5.18 and we can compute an
upper bound for deg(p, xi) for all 1 ≤ i ≤ k in parallel.

Once the number d is computed we simply replace every monomial xni in the circuit C by yN

where N = ndi−1.

Note that the above reduction from multivariate to univariate circuits does not work for stan-
dard skew circuits: the output circuit will be powerful skew even if the input circuit is standard
skew. For instance, the polynomial

∏k
i=1 xi (which can be produced by a standard skew circuit

of size k) is transformed into the polynomial y2
k−1, for which the smallest standard skew circuit

has size 2k − 1.
In the following table the expressivenesses of the different types of circuits over Z[x] are shown.

One can see that while the coefficients of polynomials generated by skew and powerful skew circuits
with n gates are bounded by 2n, standard circuit can generate polynomials with coefficients of
size 22

n

. On the other hand while powerful skew circuits can express polynomials of degree 2n

(as standard circuits can do), the degree of polynomials generated by skew circuits with n gates
is bounded by n.
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bounds standard powerful skew skew
degree 2n 2n n

coefficients 22
n

2n 2n

Definition 5.27 (powerful branching program). A powerful branching program is a branching
program (V,E, λ, s, t) over a polynomial ring R[x1, . . . , xk] where every edge label λ(e) is 1,−1 or
of the form xn for some binary represented n ≥ 1.

As for skew circuits and branching programs over commutative unitary rings also the powerful
versions are basically the same objects and can be transformed into each other in the same way.
In Chapter 6 we show that polynomial identity testing for powerful skew circuits over the rings Z
and Zp for a prime p can be solved in coRNC.

5.7 Circuit evaluation for groups

A very well-studied setting of the circuit evaluation problem is circuit evaluation for finitely gener-
ated groups. Recall that the word problem was originally defined for groups. Since as mentioned
above circuits can be seen as a compressed form of algebraic expressions, it makes sense that
circuit evaluation for groups is also known as the compressed word problem. One might consider
[57] for an extensive overview about this problem. For instance, it is shown there that for the
following groups the circuit evaluation problem can be solved in polynomial time: finite groups,
f.g. nilpotent groups, f.g. free groups, graph groups (also known as right-angled Artin groups or
partially commutative groups), and virtually special groups, which are groups that have a finite
index subgroup that embeds into a graph group. The latter groups form a rather large class that
include for instance Coxeter groups, one-relator groups with torsion, fully residually free groups,
and fundamental groups of hyperbolic 3-manifolds. For the exact definition of these groups one
might also consider [57]. Some other exciting results are the following:

Theorem 5.28 ([57, Theorem 4.15]). For every f.g. linear group the circuit evaluation problem
belongs to the class coRP.

This result is shown by reducing circuit evaluation for a f.g. linear group to PIT(Z) (in case
the group consists of matrices over a field with characteristic 0) or PIT(Zn) (in case the group
consists of matrices over a field with characteristic n) . Also a kind of converse of Theorem 5.28
is shown:

Theorem 5.29 ([57, Theorem 4.16]). The problem CEP(SL3(Z)) and polynomial identity testing
over Z are polynomial time reducible to each other.

This result is shown by using a construction of Ben-Or and Cleve [20] for simulating arithmetic
operations by matrix products.

In Chapter 7 we further investigate the relation between certain groups and some special cases
of polynomial identity testing. We improve the polynomial time result for nilpotent groups to DET
and show that for polycyclic groups circuit evaluation is as least as hard as PIT(Z) for powerful
skew circuits w.r.t an NC2-reduction. Furthermore we show the NC2-equivalence between PIT(Z)
(resp. PIT(Zn)) for powerful skew circuits and circuit evaluation for the wreath product Z o Z
(resp. Zn o Z). Subsequently we use these results to construct some more groups with a circuit
evaluation problem in coRNC2.
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Chapter 6

Circuit evaluation for powerful
skew circuits and equality testing
for multi-dimensional SLPs

6.1 Introduction

Recall that for general circuits polynomial identity testing over Z and Zn for n ∈ N is in coRP,
while for skew circuits these problems are in coRNC. In this chapter we show that also for the more
expressive powerful skew circuits polynomial identity testing over Z and Zp (= Fp where Fp is the
field of characteristic p) for a prime p can be solved in coRNC. The proof of this result has two
main ingredients: the randomized identity testing algorithm of Agrawal and Biswas [4] and the
modular polynomial powering algorithm of Fitch and Tompa [38]. After we have proved this result
we show an application of it: a straight-line program is a context-free grammar that evaluates to
a single word. A well-known problem is the question whether two straight-line programs evaluate
to the same word. It is known that this problem can be solved in polynomial time, which was
first shown independently in [44], [63] and [72]. The fastest known algorithm needs quadratic
time under some assumptions on the machine model [47], but no efficient parallel algorithm is
known yet. One can extent the concept of straight-line programs to the multi-dimensional case,
where a straight-line program evaluates to a multi-dimensional picture. We show that the question
whether two multi-dimensional straight-line programs evaluate to the same picture is equivalent
to polynomial identity testing for powerful skew circuits over Z2. The results of this chapter have
appeared in [2].

6.2 PIT for powerful skew circuits in coRNC

The main result of this section is the following:

Theorem 6.1. For each of the rings Z and Zp where p is a prime that can be part of the input
in unary encoding, PIT for powerful skew circuits belongs to the class coRNC2.

Let us start with the identity testing algorithm of Agrawal and Biswas. We will only need the
version for the polynomial ring Zp[x] where p is a prime number.

Consider a polynomial P (x) ∈ Zp[x] of degree d. The algorithm of Agrawal and Biswas consists
of the following steps (later we will apply this algorithm to the polynomial defined by a powerful
skew circuit), where 0 < ε < 1 is an error parameter:

1. Let ` be a number with ` ≥ log d and t = max{`, 1ε }
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2. Find the smallest prime number r such that r 6= p and r does not divide any of p − 1,
p2 − 1, . . . , p`−1 − 1. It is argued in [4] that r ∈ O(`2 log p).

3. Randomly choose a tuple b = (b0, . . . , b`−1) ∈ {0, 1}` and compute the polynomial Tr,b,t(x) =

Qr(Ab,t(x)) where Qr(x) =
∑r−1
i=0 x

i is the rth cyclotomic polynomial and Ab,t = xt +∑`−1
i=0 bi · xi.

4. Accept, if P (x) mod Tr,b,t = 0, otherwise reject.

Clearly, if P (x) = 0, then the above algorithm accepts with probability 1. For a non-zero polyno-
mial P (x), Agrawal and Biswas proved the following theorem:

Theorem 6.2 ([4]). Let P (x) ∈ Zp[x] be a non-zero polynomial of degree d. The above algorithm
rejects P (x) with probability at least 1− ε.

The second result we are using was shown by Fich and Tompa:

Theorem 6.3 ([38]). The following computation can be done in NC2:

Input: A unary encoded prime number p, polynomials a(x), q(x) ∈ Fp[x] such that deg(a(x)) <
deg(q(x)) = d, and a binary encoded number m.

Output: The polynomial a(x)m mod q(x).

In [38], it is stated that the problem can be solved using circuits of depth (logn)2 log logn for
the more general case that the underlying field is Fp` where p and ` are given in unary represen-
tation. The main bottleneck is the computation of an iterated matrix product A1A2 · · ·Ak (for k
polynomial in n) of (d× d)-matrices over the field Fp` . In our situation (where the field is Fp) we

easily obtain an NC2-algorithm for this step: two (d × d)-matrices over Fp can be multiplied in
DLOGTIME-uniform TC0. Then we compute the product A1A2 · · ·Ak by a balanced binary tree
of depth log k.

Proof of Theorem 6.1. We first prove the theorem for the case of a powerful skew circuit C
over the ring Zp where the prime number p is part of the input but specified in unary notation.

Let p be a unary encoded prime number and A = ({1, . . . , n}, 1, n, λ) be a powerful branching
program that is equivalent to C. Let P (x) = [A] ∈ Zp[x]. Fix an error probability 0 < ε < 1. Our
randomized NC2-algorithm is based on the identity testing algorithm of Agrawal and Biswas. It
accepts with probability 1 if P (x) = 0 and accepts with probability at most ε if P (x) 6= 0. Let us
go through the four steps of the Agrawal-Biswas algorithm to see that they can be implemented
in NC2.

Step 1. An upper bound on the degree of P (x) can be computed by a skew circuit over the max-
+-semiring with binary encoded inputs in NC2 as in the proof of Lemma 5.26. For the number `
we can take the number of bits of this degree bound, which is polynomial in the input size.

Step 2. For the prime number r we know that r ∈ O(`2 log p), which is a polynomial bound.
Hence, we can test in parallel all possible candidates for r. For a certain candidate r, we check in
parallel whether it is prime (recall that r is of polynomial size) and whether it divides any of the
numbers p− 1, p2 − 1, . . . , p`−1 − 1. The whole computation is possible in NC1.

Step 3. Let b = (b0, . . . , b`−1) ∈ {0, 1}` be the chosen tuple. We have to compute the polynomial

Tr,b,t(x) = Qr(Ab,t(x)) where Qr(x) =
∑r−1
i=0 x

i and Ab,t = xt +
∑`−1
i=0 bi · xi. This is an instance

of iterated multiplication (for the powers Ab,t(x)i) and iterated addition of polynomials. Hence,
by Theorem 2.1 this step can be carried out in DLOGTIME-uniform TC0. Note that the degree of
Tr,b,t(x) is ` · (r − 1) ∈ O(`3 log p), i.e., polynomial in the input size.

Step 4. For the last step, we have to compute P (x) mod Tr,b,t(x). For this, we consider in parallel
all monomials xk that occur in an edge label of our powerful algebraic branching program A.
Recall that k is given in binary notation. Using the Fich-Tompa algorithm we compute xk mod

48



CHAPTER 6. CIRCUIT EVALUATION FOR POWERFUL SKEW CIRCUITS AND
EQUALITY TESTING FOR MULTI-DIMENSIONAL SLPS 49

Tr,b,t(x) (with a(x) = x) in NC2. We then replace the edge label xk by (xk mod Tr,b,t(x)). Let
B be the resulting algebraic branching program. Every polynomial that appears as an edge label
in B is now given in the form of Lemma 5.21 for skew circuits. Hence, by Lemma 5.19 we can
compute in DET the output polynomial [B]. Clearly, P (x) mod Tr,b,t(x) = [B] mod Tr,b,t(x). The
latter polynomial can be computed in TC0 by Theorem 2.1.

Let us now prove Theorem 6.1 for the ring Z. Let A = ({1, . . . , n}, 1, n, λ) be a powerful
branching program over Z with n nodes and let P (x) = [A]. Let us first look at the coefficients of
P (x). Since there are at most 2n many paths from s to t in A, every coefficient of the polynomial
P (x) belongs to the interval [−2n, 2n], so P (x) = 0 if and only if P (x) ≡ 0 mod a for an a ≥ 2n+1

. Let p1, . . . , pn+1 be the first n + 1 prime numbers. Then
∏n+1
i=1 pi > 2n+1. Each prime pi is

polynomially bounded in n and the list of primes can be computed in logarithmic space, see e.g.
[27].

The Chinese remainder theorem (see e.g. [92]) implies that P (x) ≡ 0 mod pi for all 1 ≤ i ≤ n+1

if and only if P (x) ≡ 0 mod
∏n+1
i=1 what is equivalent to P (x) = 0. We can carry out the former tests

in parallel using the above algorithm for a unary encoded prime number. The overall algorithm
accepts if we accept for every prime pi. If P (x) = 0, then we will accept for every 1 ≤ i ≤ n + 1
with probability 1, hence the overall algorithm accepts with probability 1. On the other hand,
if P (x) 6= 0, then there exists a prime pi (1 ≤ i ≤ n + 1) such that the algorithm rejects with
probability at least 1 − ε. Hence, the overall algorithm will reject with probability at least 1 − ε
as well.

6.3 Multi-dimensional straight-line programs

In this section we use Theorem 6.1 to show that the equivalence of two straight-line programs
(SLPs) can be decided in coRNC. An SLP is a context-free grammar that generates exactly one
word over the alphabet Γ. It can also be seen as a circuit over the free monoid generated by Γ,
but the first point of view seems to be more natural. On the other hand every circuit C over a
monoid generated by some set Γ corresponds to an SLP G(C) by interpreting multiplication gates
as concatenation of words over the alphabet Γ. To proof our result in a slight extended setting,
we first extend the concept of SLPs to multi-dimensional straight-line programs:

Definition 6.4 (n-dimensional picture). Let Γ be a finite alphabet. For l ∈ N let [0, l] =
{0, 1, . . . , l}. An n-dimensional picture over Γ is a mapping p :

∏n
j=1[0, lj − 1] → Γ for some

lj ≥ 1.

Let dom(p) =
∏n
j=1[0, lj − 1]. For 1 ≤ j ≤ n we define |p|j = lj as the length of p in the

j-th dimension. Note that one-dimensional pictures are simply finite words. Let Γ∗n denote the
set of n-dimensional pictures over Γ. On this set we can define partially defined concatenation
operations ◦i (1 ≤ i ≤ n) as follows: for pictures p, q ∈ Γ∗n, the picture p ◦i q is defined if and only
if |p|j = |q|j for all 1 ≤ j ≤ n with i 6= j. In this case, we have |p ◦i q|j = |p|j (= |q|j) for j 6= i
and |p ◦i q|i = |p|i + |q|i. Let lj = |p ◦i q|j . For a tuple (k1, . . . , kn) ∈

∏n
j=1[0, lj − 1] we finally set

(p ◦i q)(k1, . . . , kn) =

{
p(k1, . . . , kn) if ki < |p|i
q(k1, . . . , ki−1, ki − |p|i, ki+1, . . . , kn) if ki ≥ |p|i

.

These operations generalize the concatenation of finite words.
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6.4. EQUALITY TESTING FOR COMPRESSED STRINGS AND N-DIMENSIONAL

PICTURES

Example 6.5. 1 (
1 0 0
0 1 1

◦2 1 0 1

)
◦1

(
1 0
0 1

◦2 1 1

)

=
1 0 1
1 0 0
0 1 1

◦1
1 1
1 0
0 1

=
1 0 1 1 1
1 0 0 1 0
0 1 1 0 1

Definition 6.6 (n-dimensional straight-line program). An n-dimensional straight-line program
over the terminal alphabet Γ is a triple A = (V, S, rhs) where V is a finite set of variables, S ∈ V
is the start variable, and rhs maps each variable A to its right-hand side rhs(A), which is either a
terminal symbol a ∈ Γ or an expression of the form B ◦i C where B,C ∈ V and 1 ≤ i ≤ n such
that the following additional conditions are satisfied:

• The relation {(A,B) ∈ V × V | A occurs in rhs(B)} is acyclic.

• Define |A|i for A ∈ V and 1 ≤ i ≤ n as follows: if rhs(A) ∈ Γ then |A|i = 1 for all i. If
rhs(A) = B ◦i C then |A|i = |B|i + |C|i. We require that |B|j = |Cj | for j 6= i and set
|A|j = |B|j.

These conditions ensure that every variable A evaluates to a unique n-dimensional picture
valA(A) such that |valA(A)|i = |A|i for all 1 ≤ i ≤ n. Finally, val(A) = valA(S) is the picture
defined by A. We omit the index A if the underlying SLP is clear from the context. We define the
size of the SLP A = (V, S, rhs) as |A| = |V |.

For all dimensions i it is straightforward to define an SLP A of size m such that |val(A)|i = 2m.
Hence, an SLP can be seen as a compressed representation of the picture it generates, and an
exponential compression ratio can be achieved in this way.

6.4 Equality testing for compressed strings and n-dimensional
pictures

Given two n-dimensional SLPs we want to know whether they evaluate to the same picture. In [21]
it was shown that this problem belongs to coRP by translating it to polynomial identity testing
for Z2. For a given n-dimensional picture p : dom(p)→ {0, 1} we define the polynomial

fp(x1, ..., xn) =
∑

(e1,...,en)∈dom(p)

p(e1, ..., en)
n∏
i=1

xeii .

We consider fp as a polynomial from Z2[x1, . . . , xn]. For two n-dimensional pictures p and q such
that |p|i = |q|i for all 1 ≤ i ≤ n we clearly have p = q if and only if fp + fq = 0 (recall that
coefficients are from Z2). In [21], it was observed that from an SLP A for a picture P , one can easily
construct a circuit over Z2[x1, . . . , xn] for the polynomial fp, which leads to a coRP-algorithm for
equality testing. Since the circuit for fp is actually powerful skew, we get the following result:

Theorem 6.7. The question whether two n-dimensional SLPs A and B evaluate to the same
n-dimensional picture is in coRNC2 (here, n is part of the input given in unary encoding).

Proof. Let A1 = (V1, rhs1, S1) and A2 = (V2, rhs2, S2) be n-dimensional SLPs over the alphabet Γ.
We can assume that V1 ∩V2 = ∅ and Γ = {0, 1} (if Γ = {a1, . . . , ak} then we encode ai by 0i1k−i).

First we calculate |A|i for every 1 ≤ i ≤ n and every A ∈ V1 ∪ V2 in DET by evaluating
additive circuits over N (by Lemma 5.11). If |S1|i 6= |S2|i for at least one 1 ≤ i ≤ n, then we have
val(A1) 6= val(A2). Otherwise, we construct the circuit

C = (V1 ∪ V2 ∪ {S}, rhs, S)

1Notice that in contrast to matrices, the coordinates of a picture increase from bottom to top
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over Z2[x1, . . . , xn] with:

rhs(A) = B + x
|B|k
k · C if rhs1(A) = B ◦k C or rhs2(A) = B ◦k C,

rhs(A) = a if rhs1(A) = a ∈ {0, 1} or rhs2(A) = a ∈ {0, 1}, and

rhs(S) = S1 + S2

Then [C] = fval(A1) + fval(A2) and so [C] = 0 if and only if val(A1) = val(A2). After replacing 0 by
1− 1 and splitting right-hand sides of the form B + xn ·C the circuit C becomes a powerful skew
circuit. Hence, Theorem 6.1 allows to check in coRNC2 whether [C] = 0.

It should be noted that even in the one-dimensional case (where equality testing for SLPs can
be done in polynomial time [44, 63, 72]), no randomized NC-algorithm was known before.

Example 6.8. The SLP A in Figure 6.1 in part (a) evaluates to the picture
1 0 0
0 1 1

where

dimension 1 is interpreted as the width and dimension 2 is interpreted as the height of the picture.
The corresponding polynomial is p = x1+x21+x2. In picture (b) and (c) there are the corresponding
additive circuits that evaluate to the lengths of the picture in dimension 1 and dimension 2. The
first one evaluates to 3 and the second one to 2. Finally in picture (d) the corresponding powerful
skew circuit C is constructed as described in the proof of Theorem 6.7. Notice that C evaluates in
fact to x1 + x21 + x2.

51



52
6.4. EQUALITY TESTING FOR COMPRESSED STRINGS AND N-DIMENSIONAL

PICTURES

◦1 S

◦2 A

◦1 B

◦2 C

0 1 0

(a) SLP A

+ S

+

1 1 1

(b) Additive circuit that calcu-
lates the length in dimension 1

S

+ +

1 1 1

(c) Additive circuit that calcu-
lates the length in dimension 2

+ S

·
+ B

·
+ C

+ A

·
·

+

x1

x1

x2

x2

−1

+

1 −1
1

1

(d) Corresponding Circuit C

Figure 6.1: The transformation of a 2-dimensional SLP A into the corresponding powerful skew
circuit C.
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Chapter 7

Circuit evaluation for groups

7.1 Introduction

As mentioned above the circuit evaluation problem for groups is also known as the compressed
word problem. This is due to the fact that every circuit C over a group G with generating set Σ
corresponds to an SLP A over the alphabet Σ ∪ Σ−1 such that the word val(A) evaluates to the
element [C] in G. We will denote the corresponding SLP to the circuit C by G(C). In some of the
following proofs we will make use of this SLP, since sometimes we need properties as the length
of a word. We will consider the circuit evaluation problem in the following form: given a circuit C
over a group G, decide whether C evaluates to the group identity. In the following section we show
that circuit evaluation for the wreath product Z oZ (resp., Zn oZ) is NC2-equivalent to polynomial
identity testing over Z (resp., Zn) for powerful skew circuits. The idea behind this is to interpret
the right part of the wreath product as exponents of variables and the left part as coefficients. It
follows that circuit evaluation over Z o Z and Zp o Z for a prime p can be solved in coRNC. After
this we consider nilpotent groups. As mentioned in Section 3.4 every finitely generated nilpotent
group has a subgroup of finite index that can be embedded in UTd(Z) for some d ∈ N. Then we
use the idea from [57] that a circuit over a matrix group can be transformed into a circuit over
the corresponding ring. This leads to a circuit over (Z,+, ·) with constant multiplication depth
d for which circuit evaluation is in C=L by Lemma 5.10. A related result was recently shown by
Miasnikov and Weiß in [66], where they showed that the word problem for nilpotent groups where
in the input word subwords of the form an for a generator a and a binary encoded n are allowed,
is in DLOGTIME-uniform TC0. After this we take a closer look at circuit evaluation for the groups
UTd(Z) where d is part of the input. With the same techniques as before we construct a circuit
over (Z,+, ·) with polynomially bounded formal degree. By Lemma 5.13 circuit evaluation for
such circuits is in C=LogCFL. In the fourth section we mix up some of the previous results to
show for wreath products of some certain groups that their circuit evaluation problem is in coRNC
resp. in DET. In the last section we consider circuit evaluation for polycyclic groups. Recall
that polycyclic groups are linear, and hence their circuit evaluation problem is in coRP. We show
that there is a polycyclic group G such that polynomial identity testing over Z for powerful skew
circuits is NC2-reducible to its circuit evaluation problem. Again we use the idea to interpret the
circuit over a matrix group as a circuit over the corresponding ring. It is still an open problem if
there is a non-nilpotent polycyclic group with a circuit evaluation problem in coRNC. For a more
extensive background about circuit evaluation for groups one might consult [54], [55], resp.[57].
The results of this chapter have appeared in [1] and [2].

7.2 Circuit evaluation for wreath products

As a second application of polynomial identity testing for powerful skew circuits we will consider
the circuit evaluation problem for wreath products of finitely generated abelian groups.
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54 7.2. CIRCUIT EVALUATION FOR WREATH PRODUCTS

In this section, we explore the relationship between circuit evaluation for the wreath product
Z oZ and PIT(Z) for powerful skew circuits. We show that these two problems are equivalent w.r.t.
NC2-reductions:

let G = Z o Z. Let Γ = {a, t, a−1, t−1} be the generating set of G as described in Section 3.5.
So, with a (resp., a−1) we move the cursor to the right (resp., left) and with t (resp., t−1) we add
1 (resp., subtract 1) from the value at the current cursor position.

For a word w ∈ Γ∗ we define |w|a as the number of occurrences of a in w and ∆(w) =
|w|a − |w|a−1 ∈ Z. The word w is positive if ∆(u) ≥ 0 for every prefix u of w that ends with t
or t−1. The word w is well-formed, if it is positive and ∆(w) = 0. If w is positive and (f, g) ∈ G
is a group element represented by the word w, then f(x) 6= 0 implies that x ∈ N (intuitively,
the Z-generator t or its inverse is never added to a position outside of N). If in addition w is
well-formed then g = 0. For a given positive word w ∈ Γ∗ we define a polynomial pw(x) ∈ Z[x]
inductively as follows:

• pε(x) = 0.

• If w = ua or w = ua−1, then pw(x) = pu(x).

• If w = utδ with δ ∈ {1,−1}, then pw(x) = pu(x) + δ · xd where d = ∆(w) = ∆(u).

If the positive word w represents the group element (f, g) ∈ G, then the polynomial pw(x) encodes
the mapping f in the following sense: the coefficient of the monomial xe in pw(x) is exactly f(e).
In particular, the following equivalence holds for every positive word w ∈ Γ∗:

w = (0, 0) in G ⇔ (pw(x) = 0 and ∆(w) = 0)

where (0, 0) is the group identity of G.

Lemma 7.1. From a given circuit C over Z o Z with inputs from the generating set Γ one can
compute in NC2 a powerful skew circuit D over Z[x] such that [D] = pw(x) where w = ak [C] a−k
and k = |val(G(C))|. In particular, [C] = (0, 0) in G if and only if ([D] = 0 and ∆(val(G(C))) = 0).

Proof. Let k = |val(G(C))|. Our construction is divided into the following two steps:

Step 1. Using iterated squaring, we add further gates Ak and A−1k to C such that [Ak] = ak

and [A−1k ] = a−k. Then, we define the circuit C′ by defining rhsC′(A) = Akt
δA−1k for every gate

A with rhsC(A) = tδ (δ ∈ {−1, 1}). All other right-hand sides of C are left unchanged. Then,
[C′] = ak [C] a−k.

Let C′ = (V, S, rhsC′) for the further consideration. Note that for every A ∈ V , the word
valG(C′)(A) is positive. Hence, for everyA ∈ V we can define the polynomial pA(x) := pvalG(C′)(A)(x).

Moreover, let dA = ∆(valG(C′)(A)) ∈ Z; these numbers dA can be computed by an additive circuit

in DET(⊆ NC2).
For every A ∈ V let

mA = min({∆(u) | u is a prefix of valG(C′)(A) that ends with t or t−1})

where we set min(∅) = 0. Since valG(C′)(A) is positive, we have mA ≥ 0. The polynomial pA(x)
can be uniquely written as

pA(x) = xmA · qA(x),

for a polynomial qA(x). The numbers mA can be computed in NC2, using the following identity
where α(A) denotes the set of symbols occurring in valG(C′)(A).

mA =



0 if rhsC′(A) = aδ

k if rhsC′(A) = Akt
δA−1k

min{mB , dB +mC} if rhsC′(A) = BC and α(C) ∩ {t, t−1} 6= ∅ 6= α(B) ∩ {t, t−1}
mB if rhsC′(A) = BC and α(C) ∩ {t, t−1} = ∅
dB +mC if rhsC′(A) = BC and α(B) ∩ {t, t−1} = ∅
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CHAPTER 7. CIRCUIT EVALUATION FOR GROUPS 55

Note that these rules define a skew circuit with binary encoded inputs over the semiring (Z ∪
{∞},min,+). Hence, by Lemma 5.18 the circuit can be evaluated in NC2.

Step 2. We now construct a circuit D such that for every A ∈ V we have:

[A]D = qA(x).

We define the rules of the circuit D as follows:

• If rhsC′(A) = aδ for δ ∈ {−1, 1}, then we set rhsD(A) = −1 + 1 1.

• If rhsC′(A) = Akt
δA−1k for δ ∈ {−1, 1}, then we set rhsD(A) = δ.

• If rhsC′(A) = BC and α(C) ∩ {t, t−1} = ∅, then we set rhsD(A) = B.

• If rhsC′(A) = BC and α(B) ∩ {t, t−1} = ∅, then we set rhsD(A) = C.

• If rhsC′(A) = BC and α(B)∩{t, t−1} 6= ∅ 6= α(C)∩{t, t−1}, then mA = min{mB , dB +mC}
and we set rhsD(A) = (MB ·B) + (MC · C) where

MB =

{
1 if mB ≤ dB +mC

xmB−dB−mC if mB > dB +mC

MC =

{
1 if mB ≥ dB +mC

xdB+mC−mB if mB < dB +mC .

Note that the resulting circuit is powerful skew and one can show by induction that D generates
the desired polynomial.

Corollary 7.2. The circuit evaluation problem for Z o Z is NC2-reducible to PIT(Z) for powerful
skew circuits.

Example 7.3. Figure 7.1 illustrates an example for the transformation of a circuit over Z oZ that
evaluates to the element w = ataatata−1t−1 from example 3.39 into a powerful skew circuit over
(Z[x],+, ·). Since |w| = 9, in a first step we replace every input gate t (resp., t−1) by the gate
A9tA

−1
9 (resp., A9t

−1A−19 ). The gates A9 and A−19 evaluate to a9 and a−9 by iterated squaring
in picture (b). To construct the final circuit D we first need to calculate the values dA and mA

for every gate A ∈ V . This is done by the additive circuit in picture (c) and the skew circuit over
(Z∪ {∞},min,+) in picture (d) that already uses the values dA from the additive circuit. Finally
in picture (e) we construct the powerful skew circuit over (Z[x],+, ·). Copy-gates are left unlabeled
in the pictures. Notice that pataatata−1t−1(x) = x+x4, the polynomial that corresponds to the word
generated by C′ is x10 + x13 and D evaluates to this polynomial divided by xmS = x10, therefore
[D] = 1 + x3.

In the rest of this section we show that PIT(Z) for powerful skew circuits can be reduced in NC2

to CEP(Z o Z). We need the following two lemmata which follow immediately from the definition
of the polynomial pw(x):

Lemma 7.4. Let u, v ∈ Γ∗ be well-formed. Then w = uv is well-formed too and pw(x) =
pu(x) + pv(x).

Lemma 7.5. Let u ∈ Γ∗ be well-formed, n ∈ N and let w = anua−n. Then w is well-formed too
and pw(x) = xn · pu(x).

1Note that we excluded 0 from the input set of a powerful skew circuit for technical reasons.

55



56 7.2. CIRCUIT EVALUATION FOR WREATH PRODUCTS
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(e) Powerful skew circuit with [D]= 1 + x3

Figure 7.1: An illustration of the proof of Lemma 7.1.

Now we can show the following result:

Lemma 7.6. From a given powerful skew circuit D over the ring Z[x], one can compute in
logarithmic space a circuit C with inputs from the generating set Γ such that the following holds:

• val(G(C)) is well-formed and

• pval(G(C))(x) = [D].

Proof. Let D = (V, rhsD, S) be a powerful skew circuit over Z[x]. The set of gates of C contains V ,
a disjoint copy V ′ = {A′ | A ∈ V } of V , and some auxiliary gates. The output gate is S. For every
gate A ∈ V we will have pA(x) = [A]D and for every gate A′ ∈ V ′ we will have pA′(x) = −[A]D.
We define the right-hand sides of the gates of C as follows:

• If rhsD(A) = xn then we set rhsC(A) = anta−n and rhsC(A
′) = ant−1a−n.

• If rhsD(A) = b with b ∈ {−1, 1}, then we set rhsC(A) = tb and rhsC(A
′) = t−b.

• If rhsD(A) = B + C, then we set rhsC(A) = BC and rhsC(A
′) = B′C ′. The correctness of

this step follows from Lemma 7.4.
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(b) Corresponding circuit over Z o Z

Figure 7.2: An illustration of the proof of Lemma 7.6.

• If rhsD(A) = B · 1, then we set rhsC(A) = B and rhsC(A
′) = B′.

• If rhsD(A) = B · −1, then we set rhsC(A) = B′ and rhsC(A
′) = B.

• If rhsD(A) = B·xn, then we set rhsC(A) = anBa−n and rhsC(A
′) = anB′a−n. The correctness

of this step follows from Lemma 7.5.

It follows by a straightforward induction that for every A ∈ V , the strings valG(C)(A) and
valG(C)(A

′) are well-formed and that PS(x) = [D].

Example 7.7. Figure 7.2 is an example for the transformation of a powerful skew circuit D into
a circuit over Z oZ from Lemma 7.6. The circuit D evaluates to the polynomial (−2−2x5) · (x2) =
−2x2 − 2x7. The right-hand side of A in the circuit C is set to a2Ba−2, where the left and the
right part of this expression is generated by (iterated) squaring. The small gates in the figure are
those that are only needed to generate exponential gates like a5. Gate C evaluates to t−1a5t−1a−5

and the whole circuit C evaluates to a2(t−1a5t−1a−5)2a−2. So first the curser moves to position 2
and then repeats two time decreasing the values at position 2 and position 7. Then it goes back to
position 0. So this element is indeed the one that corresponds to the polynomial [D].

From Lemma 7.1 and Lemma 7.6 we directly obtain the following result:

Corollary 7.8. The circuit evaluation problem for Z o Z is equivalent w.r.t. NC2-reductions to
PIT(Z) for powerful skew circuits.

In exactly the same way we can show this result for Zn instead of Z:

Corollary 7.9. The circuit evaluation problem for Zn o Z (n ≥ 2) is equivalent w.r.t. NC2-
reductions to PIT(Zn) for powerful skew circuits.
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7.3 Circuit evaluation for nilpotent groups

To consider circuit evaluation for finitely generated nilpotent groups we use two main properties
of these groups: recall that every f.g. nilpotent group has a normal torsion-free f.g. nilpotent
subgroup of finite index (Theorem 3.21) and that every torsion-free f.g. nilpotent group embeds
into UTd(Z) for some d ∈ N (Theorem 3.34). We use the latter fact to show the main result of
this section:

Theorem 7.10. Let G 6= 1 be a f.g. torsion-free nilpotent group. Then CEP(G) is complete for
the class C=L.

For the lower bound let G be a non-trivial f.g. torsion-free nilpotent group. Since G 6= 1, G
contains Z. Since, as remarked in Section 5.3, CEP(Z) is hard for C=L, the lower bound is clear.
For the upper bound in Theorem 7.10, we show the following result:

Lemma 7.11. For every d ≥ 1, CEP(UTd(Z)) belongs to C=L.

For the rest of this section let us fix a number d ≥ 1 and consider the unitriangular matrix group
UTd(Z). Consider a circuit C = (V, S, rhs) with inputs from Γd ∪ Γ−1d where
Γd = {Ti,i+1 | 1 ≤ i < d} is the finite generating set of UTd(Z) from Section 3.4.

We transform our circuit C in logarithmic space into a circuit D over (Z,+, ·) of multiplication
depth at most d such that C evaluates to the identity matrix if and only if D evaluates to 0.
Moreover, we also compute a structure-preserving partition of the multiplication gates of D.

The degree bound in the following lemma will be only needed in Section 7.4.

Lemma 7.12. From the circuit C = (V, S, rhs) over UTd(Z) we can compute in logarithmic space
a circuit D over (Z,+, ·) with mdepth(D) ≤ d and deg(D) ≤ 2(d − 1) such that [C] = Id if and
only if [D] = 0. In addition we can compute in logarithmic space a structure-preserving partition⊎d
i=1 Vi of the set of all multiplication gates of D.

Proof. The set of gates of the circuit D is

W = {Ai,j | A ∈ V, 1 ≤ i < j ≤ d} ∪ {T}

where T is the output gate. The idea is simple: gate Ai,j will evaluate to the matrix entry [A]C [i, j].
To achieve this, we define the right-hand side mapping of the circuit D (which we denote again
with rhs) as follows:

rhs(Ai,j) =

{
M [i, j] if rhs(A) = M ∈ Γd ∪ Γ−1d
Bi,j + Ci,j +

∑
i<k<j Bi,k · Ck,j if rhs(A) = BC

In the first line one has to notice that M [i, j] is one of the numbers −1, 0, 1. The second line

is simply the rule for matrix multiplication (Ai,j =
∑d
k=1Bi,kCk,j) taking into account that all

matrices are unitriangular.
Now, [C] is the identity matrix if and only if all matrix entries [S]C [i, j] (1 ≤ i < j ≤ d) are

zero. But this is the case if and only if the sum of squares
∑

1≤i<j≤d[S]C [i, j]
2 is zero. Hence, we

finally define

rhs(T ) =
∑

1≤i<j≤d

S2
i,j .

Concerning the multiplication depth, note that the multiplication depth of the gate Ai,j is bounded
by j−i: the only multiplications in rhs(Ai,j) are of the form Bi,kCk,j (and these multiplications are
not nested). Hence, by induction, the multiplication depth ofAi,j is bounded by 1+max{k−i, j−k |
i < k < j} = j − i. It follows that every gate Si,j has multiplication depth at most d − 1, which
implies that the output gate T has multiplication depth at most d.

Similarly, it can be shown by induction that deg(Ai,j) ≤ j− i. Hence, deg(Ai,j) ≤ d− 1 for all
1 ≤ i < j ≤ d, which implies that the formal degree of the circuit is bounded by 2(d− 1).
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(b) Circuit D of multiplication depth 2

Figure 7.3: Transformation of a circuit over UT3(Z) into a circuit over (Z,+, ·).

The structure-preserving partition
⊎d
i=1 Vi of the set of all multiplication gates of C can be

defined as follows: all gates corresponding to multiplications Bi,k · Ck,j in rhs(Ai,j) are put into
the set Vj−i. Finally, all gates corresponding to multiplications S2

i,j in rhs(T ) are put into Vd. It
is obvious that this partition is structure-preserving.

Now Lemma 5.10 concludes the proof that CWP(UTd(Z)) belongs to C=L.

Example 7.13. Figure 7.3 illustrates the transformation from a circuit C over UT3(Z) into a
circuit over (Z,+, ·) of multiplication depth 2. The three multiplication gates B,C and D are used
to square (and subsequently add) the values of E,F and G that represent the matrix entries of [C].
The rest of the circuit can be split in three parts. The left part beneath E that evaluates to [C][1, 2],
the right part beneath G that evaluates to [C][2, 3] and the middle part that evaluates to [C][1, 3].
Notice that multiplication gates only appear in the middle part and their inputs are always from
the left or the right part or input gates. This property illustrates why the multiplication depth of
the circuit is 2 and (more general) why the transformation of circuits over UTd(Z) leads to circuits
with multiplication depth at most d− 1.

So far, we have restricted to torsion-free f.g. nilpotent groups. For general f.g. nilpotent
groups, we use the fact that every f.g. nilpotent group contains a torsion-free normal f.g. nilpotent
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subgroup of finite index (Theorem 3.21) in order to show that the circuit evaluation problem for
every f.g. nilpotent group belongs to the complexity class DET. To do this, we need the following
result:

Theorem 7.14. Let G be a finitely generated group. For every normal subgroup H of G with a
finite index, CEP(G) is AC0-reducible to CEP(H) and CEP(G/H).

Proof. To show the theorem, we adopt the proof of [57, Theorem 4.4], where the statement is
shown for polynomial time many-one reducibility instead of AC0-reducibility. Let G be a finitely
generated group with the finite generating set Σ and let H be a normal subgroup of G of finite
index. Let {Hg1, . . . ,Hgn} be the set of cosets ofH inG where g1 = 1. Moreover, let φ : G→ G/H
be the canonical homomorphism. Now let C = (V, S, rhs) be a circuit with inputs from Σ ∪ Σ−1.
We have to construct an AC0-circuit with oracle gates for CEP(H) and CEP(G/H) that checks
whether [C] = 1 in G.

Consider the set of triples

W =
{

(gi, A, g
−1
j ) | A ∈ V, 1 ≤ i, j ≤ n, gi[A]Cg

−1
j ∈ H

}
.

In a first step, we construct the set of all these triples using n2|V | parallel CEP(G/H)-oracle gates.
More precisely, we construct for all A ∈ V, 1 ≤ i, j ≤ n a circuit CA,i,j that evaluates to the group
element φ(gi[A]Cg

−1
j ) ∈ G/H. For this, we take the circuit C, replace every input gate by the

corresponding coset and add a new output gate SA,i,j with the right-hand side φ(gi)Aφ(gj)
−1.

The circuit CA,i,j can be constructed in AC0, and we have [CA,i,j ] = 1 in G/H if and only if
gi[A]Cg

−1
j ∈ H.

Note that [CS,1,1] = 1 in G/H if and only if [C] represents an element of the subgroup H. Thus,
if it turns out that [CS,1,1] 6= 1 in G/H, then the whole circuit does not evaluate to the group
identity. Otherwise (i.e., in case [C] ∈ H), we construct a circuit D with inputs from the set

{giag−1j | a ∈ Σ ∪ Σ−1, 1 ≤ i, j ≤ n, giag−1j ∈ H}

that can be precomputed. D will evaluate to the same group element as C.
The set of gates of D is W , the output gate is (g1, S, g

−1
1 ) and the right-hand sides are defined

as follows: if rhsC(A) = a ∈ Σ ∪ Σ−1, we set rhsD((gi, A, g
−1
j )) = giag

−1
j . If rhsC(A) = BC and

(gi, A, g
−1
j ) ∈ W , then we determine the unique k so that gi[B]Cg

−1
k ∈ H. To do this, we have

to go through the set W and look for the unique k such that (gi, B, g
−1
k ) ∈ W . Now we define

rhsD((gi, A, g
−1
j )) = (gi, B, g

−1
k )(gk, C, g

−1
j ). This construction can be carried out by an AC0-

circuit. Finally, it is straightforward to show that [(gi, A, g
−1
j )]D represents the group element

gi[A]Cg
−1
j ∈ H. Hence, we have [C] = 1 in G, if and only if [D] = 1 in H. This finishes our

reduction. Note that the overall circuit consists of n2|V | parallel CWP(G/H)-oracle gates followed
by a single CWP(H)-oracle gate.

Example 7.15. Figure 7.4 illustrates the proof of Lemma 7.14 with the group G = (Z,+), the
normal subgroup H = (3Z,+) and the finite quotient G/H ∼= (Z3,+). As usual the representing
elements of the cosets are chosen as g1 = 0, g2 = 1 and g3 = 2. In picture (a) there is a circuit C
over Z that evaluates to 3, so in particular, [C] ∈ H which is tested by the circuit CA,1,1 in picture
(b) over Z3. Finally in picture (c) there is the circuit D over H (notice that all inputs evaluate
to elements of H) that evaluates to the same element as C does. For the construction of D we
calculate the set W = {(a,A, b−1) | A ∈ V, a, b,∈ {0, 1, 2}, a[A]b−1 mod 3 = 0} by the circuits
CA,i,j and take the needed gates from this set as described in the proof. The inverse of an element
a ∈ Z3 is denoted by −a.

We can now show the following main result of this section:

Theorem 7.16. For every f.g. nilpotent group, the circuit evaluation problem is in DET.
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+ A

+ B

+ C

1 −1

(a) Circuit C over Z

+

+

+ A

+ B

+ C

1 2

0

0

(b) Circuit CA,1,1 over Z3

+ (0, A, 0)

+ (0, B,−1)

+ (0, C,−2) + (2, C,−1)

0 + 1 + (−1) 1 + 1 + (−2) 2 + 1 + 0 0 + 1 + (−1)

1 + (−1) + 0

(c) Circuit D over 3Z

Figure 7.4: Illustration of the proof of Lemma 7.14.

Proof. Let G be a f.g. nilpotent group. If G is finite, then the result follows from Theorem 5.15
(every nilpotent group is solvable). If G is infinite, then by Theorem 3.21, G has a torsion-free
normal subgroup H of finite index. By Theorem 3.20, H and G/H are nilpotent too; moreover H is
finitely generated. By Theorem 7.10, CEP(H) belongs to C=L ⊆ DET. Moreover, by Theorem 5.15,
CEP(G/H) belongs to DET as well. Finally, Theorem 7.14 implies that CEP(G) belongs to DET.

Actually, Theorem 7.16 can be slightly extended to groups that are (f.g. nilpotent)-by-(finite
solvable) (i.e., groups that have a normal subgroup, which is f.g. nilpotent, and where the quotient
is finite solvable). This follows from Theorem 7.14 and the fact that circuit evaluation for a finite
solvable group belongs to DET (Theorem 5.15).

7.4 The uniform circuit evaluation problem for unitriangu-
lar groups

For Lemma 7.11 it is crucial that the dimension d is a constant. In this section, we consider
a uniform variant of the circuit evaluation problem for UTd(Z). We denote this problem by
CEP(UT∗(Z)). The input consists of a unary encoded number d and a circuit, whose inputs are
generators of UTd(Z) or their inverses. The question is whether the circuit evaluates to the identity
matrix. We show that this problem is complete for the complexity class C=LogCFL.

Theorem 7.17. The problem CEP(UT∗(Z)) is complete for C=LogCFL.
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Proof. We start with the upper bound. Consider a circuit C, whose inputs are generators of
UTd(Z) or their inverses. The dimension d is clearly bounded by the input size. Take the circuit
D over (Z,+, ·) constructed from C in Lemma 7.12. The formal degree deg(D) is bounded by
2(d− 1), i.e., polynomially bounded in the input length. So by Lemma 5.13 the problem to decide
whether [D] = 0 is in C=LogCFL.

Let us now show that CEP(UT∗(Z)) is hard for C=LogCFL. Let (C1,n)n≥0 and (C2,n)n≥0 be
two logspace-uniform families of positive circuits of polynomially bounded size and formal degree
over (N[x1, . . . , xn],+, ·). Let w = a1a2 · · · an ∈ {0, 1}n be an input for the circuits C1,n and
C2,n. Let Ci be the positive circuit obtained from Ci,n by replacing every xj-labeled input gate by
aj ∈ {0, 1}. As remarked in Section 5.3 the question whether [C1] = [C2] is hard for C=LogCFL. By
[7, Lemma 3.2] we can assume that every gate of Ci is labeled by its formal degree. By adding (if
necessary) additional multiplication gates where one input is set to 1, we can assume that C1 and
C2 have the same formal degree d ≤ p(n) for a polynomial p. Analogously, we can assume that if
A is an addition gate in C1 or C2 with right-hand side B + C, then deg(B) = deg(C) = deg(A).
All these preprocessing steps can be carried out in logarithmic space.

We will construct in logarithmic space a circuit D with inputs from Γd+1∪Γ−1d+1 where Γd+1 =
{Ti,i+1 | 1 ≤ i < d+ 1} is our canonical generating set for the matrix group UTd+1(Z), such that
D evaluates to the identity matrix if and only if C1 and C2 evaluate to the same number. Let vi
be the output value of Ci. We first construct in logarithmic space a circuit D1 that evaluates to
the matrix T v11,d. In the same way we can construct in logarithmic space a second circuit D2 that

evaluates to T−v21,d . Then, by concatenating the two circuits D1 and D2 in a new output gate we
obtain the desired circuit.

The gates of D1 are Abi,j where A is a gate of C1, b ∈ {−1, 1}, and 1 ≤ i < j ≤ d such
that j − i is the formal degree of A. The circuit D1 will be constructed in such a way that
[Abi,j ]D1

= T b·vi,j where v = [A]C1 . If rhsC1(A) = 0, then we set rhsD1
(Abi,j) = Id and if rhsC1(A) = 1,

then we set rhsD1(Abi,j) = T bi,j . Correctness is obvious in these cases. If rhsC1(A) = B + C,

then we set rhsD1(Abi,j) = Bbi,jC
b
i,j . Correctness follows immediately by induction. Note that

deg(B) = deg(C) = deg(A) = j − i, which ensures that the gates Bbi,j and Cbi,j exist. Finally, if

rhsC1(A) = B ·C, then we set rhsD1
(A1

i,j) = B−1i,kC
−1
k,jB

1
i,kC

1
k,j and rhsD1

(A−1i,j ) = C−1k,jB
−1
i,kC

1
k,jB

1
i,k

where k is such that deg(B) = k − i and deg(C) = j − k. Such a k must exist since j − i =
deg(A) = deg(B) + deg(C). Correctness follows from Lemma 3.36 and induction.

7.5 Some wreath products with circuit evaluation in coRNC2

and DET

In this section, we apply the results from the previous sections in this chapter to find groups for
which the circuit evaluation problem belongs to coRNC2 resp. to DET. For wreath products we
use the following lemma:

Lemma 7.18. For every k ≥ 1 and every finitely generated group G, CEP(G oZk) is NC2-reducible
to CEP(G o Z).

Proof. The idea is similar to the proof of Lemma 5.26. Let G be generated by the finite set Σ.
Fix the generating set {a1, a2, . . . , ak} for Zk where every ai generates a Z-copy. Then G o Zk is
generated by the set Γ = Σ ∪ {a1, a2, . . . , ak}. Let C be a circuit with inputs from Γ ∪ Γ−1. First,
by an addition circuit we compute in DET the number d = 2(|val(G(C))| + 1). Note that for all
ai, bi ∈ Z (1 ≤ i ≤ k) with |ai|, |bi| ≤ |val(G(C))| we have: (a1, . . . , ak) = (b1, . . . , bk) if and only if∑k
i=1 ai · di−1 =

∑k
i=1 bi · di−1.

From our circuit C we construct a new circuit D by replacing every occurrence of ai (resp.,

a−1i ) in a right-hand side by a new gate that evaluates to ad
i−1

(resp., a−d
i−1

). This implies

the following: if (f, (z1, . . . , zk)) = [C] (resp., (h, z) = [D]), then z =
∑k
i=1 zi · di−1 and for all
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(x1, . . . , xk) ∈ Zk, f(x1, . . . , xk) = h(x) where x =
∑k
i=1 xi · di−1. It follows that [C] = 1 in G o Zk

if and only if [D] = 1 in G o Z.

By Lemma 3.40 and Lemma 7.18 the circuit evaluation problem for a group (G×H) o Zn can
be reduced in NC2 to the circuit evaluation problem for the groups G oZ and H oZ. Together with
Theorem 6.1, Corollary 7.8 and Corollary 7.9 we obtain the following result:

Corollary 7.19. Let G be a finite direct product of copies of Z and Zp for primes p. Then, for
every n ≥ 1, CEP(G o Zn) belongs to coRNC2.

Theorem 7.20. Let G be a finite direct product of copies of Z and Zp for primes p and let H
be f.g. virtually abelian. Then CEP(G o H) belongs to coRNC2. If H is furthermore finite, then
CEP(G oH) belongs to DET.

Proof. Let K ≤ H be a f.g. abelian subgroup of finite index m in H. Moreover, let either K = 1
(in the case that H is finite) or K ∼= Zk for some k ≥ 1. By Lemma 3.41, Gm oK is isomorphic
to a subgroup of index m in G oH. Hence by Theorem 7.14, it suffices to show that CEP(Gm oK)
belongs to coRNC2 (resp. DET). In the case K = Zn this follows by Corollary 7.19, since Gm is a
finite direct product of copies of Z and Zp for primes p. In the case K = 1 the group (Gm o 1) is
isomorphic to Gm, which is finitely generated nilpotent. So by Theorem 7.16 CEP(G oH) belongs
to DET.

Recall that every finitely generated abelian group is a direct product of copies of Z and Zn.
It is not clear, whether in Corollary 7.20 we can replace G by an arbitrary finitely generated
abelian group. On the other hand, if we apply Theorem 5.22 instead of Theorem 6.1 we obtain
the following result:

Corollary 7.21. Let G be f.g. abelian and let H be f.g. virtually abelian. Then CEP(G o H)
belongs to coRP. If H is furthermore finite, then CEP(G oH) belongs to DET.

Recall that for a subgroup H of a group G, [H,H] denotes the commutator subgroup of G. It
is the subgroup of G generated by all elements h1h2h

−1
1 h−12 with h1, h2 ∈ H. It is well known

that if N is a normal subgroup of G, then also [N,N ] is a normal subgroup of G. Hence, one can
consider the quotient group G/[N,N ]. The following result of Magnus [60] has many applications
in combinatorial group theory.

Theorem 7.22 (Magnus embedding theorem). Let Fk be a free group of rank k and let N be a
normal subgroup of Fk. Then Fk/[N,N ] ≤ Zk o Fk/N .

Theorem 7.23. Let Fk be a free group of rank k and let N be a normal subgroup of Fk such that
Fk/N is f.g. virtually abelian. Then CWP(Fk/[N,N ]) belongs to coRNC2.

Proof. By the Magnus embedding theorem, the group Fk/[N,N ] embeds into the wreath product
Zk o (Fk/N). For the latter group, the circuit evaluation problem belongs to coRNC2 by Corol-
lary 7.20.

7.6 Circuit evaluation for polycyclic groups

In this section we consider the circuit evaluation problem for polycyclic groups. Since every poly-
cyclic group is f.g. linear, circuit evaluation for a polycyclic group can be reduced to polynomial
identity testing over Z or Zn and hence it can be solved in coRP. In this section, we show a lower
bound: there exists a strongly polycyclic group G (which is also metabelian) such that PIT(Z) for
powerful skew circuits can be reduced to CEP(G).

Let us start with a specific example of a polycyclic group. Consider the two matrices

ga =

(
a 0
0 1

)
and h =

(
1 1
0 1

)
, (7.1)
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where a ∈ R, a ≥ 2. Let Ga = 〈ga, h〉 ≤ GL2(R). Let us remark that, for instance, the group G2

is not polycyclic, see e.g. [90, p. 56]. On the other hand, we show the following:

Theorem 7.24. The group G = G1+
√
2 is polycyclic and metabelian.

Proof. We show that the commutator subgroup of G is isomorphic to Z × Z, which implies the
theorem. First we calculate the commutator subgroup of G. It is known that the commutator
subgroup of a group generated by two elements g1, g2 is generated by all commutators gs1g

t
2g
−s
1 g−t2

for s, t ∈ Z [67]. Hence,
[G,G] = 〈Ms,t | s, t ∈ Z〉

where for s, t ∈ Z we set

Ms,t =

(
1 +
√

2 0
0 1

)s(
1 1
0 1

)t(
1 +
√

2 0
0 1

)−s(
1 1
0 1

)−t
=

(
(1 +

√
2)s 0

0 1

)(
1 t
0 1

)(
(1 +

√
2)−s 0

0 1

)(
1 −t
0 1

)
=

(
(1 +

√
2)s t(1 +

√
2)s

0 1

)(
(1 +

√
2)−s −t(1 +

√
2)−s

0 1

)
=

(
1 −t+ t(1 +

√
2)s

0 1

)
=

(
1 t((1 +

√
2)s − 1)

0 1

)
.

With the setting

u =

(
1
√

2
0 1

)
and v =

(
1 2
0 1

)
we show that 〈Ms,t | s, t ∈ Z〉 = 〈u, v〉. Moreover, it is easy to see that u and v generate a copy of
Z× Z.

We have M1,1 = u and

M2,1M
−2
1,1 =

(
1 2 + 2

√
2

0 1

)(
1 −2

√
2

0 1

)
=

(
1 2
0 1

)
= v.

This shows that 〈u, v〉 ⊆ 〈Ms,t | s, t ∈ Z〉. For the other inclusion assume first that s ≥ 0. Then

t
((

1 +
√

2
)s
− 1
)

= t

((
s∑
i=0

(
s

i

)√
2
i

)
− 1

)

= t

(
s∑
i=1

(
s

i

)√
2
i

)

= t

b s2 c∑
i=1

(
s

2i

)√
2
2i

+

d s2 e∑
i=1

(
s

2i− 1

)√
2
2i−1


= 2

b s2 c∑
i=1

t

(
s

2i

)
2i−1

+
√

2

d s2 e∑
i=1

t

(
s

2i− 1

)
2i−1

 .

So with

c1 =

b s2 c∑
i=1

t

(
s

2i

)
2i−1 ∈ Z and c2 =

d s2 e∑
i=1

t

(
s

2i− 1

)
2i−1 ∈ Z

we get

Ms,t =

(
1 t((1 +

√
2)s − 1)

0 1

)
=

(
1 2c1 +

√
2c2

0 1

)
= vc1uc2 .
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For s < 0 we get with a = (−s) mod 2:

t
((

1 +
√

2
)s
− 1
)

= t

((√
2− 1

)−s
− 1

)
= t

(( −s∑
i=0

(
−s
i

)
(
√

2)i(−1)−s−i

)
− 1

)

= t

(
−2a+

−s∑
i=1

(
−s
i

)
(
√

2)i(−1)−s−i

)

= t

−2a+

b−s2 c∑
i=1

(
−s
2i

)
(
√

2)2i(−1)−s−2i

+

t

d−s2 e∑
i=1

(
−s

2i− 1

)
(
√

2)2i−1(−1)−s−(2i−1)

= 2

−at+

b−s2 c∑
i=1

t

(
−s
2i

)
2i−1(−1)−s−2i

+

√
2

d−s2 e∑
i=1

t

(
−s

2i− 1

)
2i−1(−1)−s−(2i−1)

 .

So with

c1 = −at+

b−s2 c∑
i=1

t

(
−s
2i

)
2i−1(−1)−s−2i ∈ Z

and

c2 =

d−s2 e∑
i=1

t

(
−s

2i− 1

)
2i−1(−1)−s−(2i−1) ∈ Z

we get

Ms,t =

(
1 t((1 +

√
2)s − 1)

0 1

)
= vc1uc2 .

This shows that 〈Ms,t | s, t ∈ Z〉 ⊆ 〈u, v〉.

The main result of this section is the following:

Theorem 7.25. Let a ≥ 2. PIT(Z) for powerful skew circuits is logspace-reducible to circuit
evaluation for the group Ga.

In particular, there exist polycyclic groups for which the circuit evaluation problem is at least
as hard as PIT(Z) for powerful skew circuits. Recall that it is not known, whether there exists
a polynomial time algorithm for PIT(Z) restricted to powerful skew circuits. Furthermore the
theorem shows that circuit evaluation for the Baumslag-Solitar group BS1,2 := 〈a, t | t−1at = a2〉
is as least as hard as PIT(Z) for powerful skew circuits, since BS1,2 is exactly the group G2.

For the proof of Theorem 7.25, we will make use of the following two lemmata. The first one
is a result from [6] (see the proof of Proposition 2.2 in [6], where the result is shown for a = 2, but
the proof immediately generalizes to any a ≥ 2):

Lemma 7.26. Let C be a circuit of size n over Z[x1, . . . , xm] and p(x1, . . . , xm) = [C]. Let a ≥ 2
be a real number. Then p(x1, . . . , xm) is the zero-polynomial if and only if p(α1, . . . , αm) = 0 where

αi = a2
i·n2

for 1 ≤ i ≤ m.
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In the second lemma we eliminate every multiplication gate with a negative input gate:

Lemma 7.27. Let C = (V, S, rhs) be a powerful skew circuit over (Z[x],+, ·). We can transform
C in logarithmic space into an equivalent powerful skew circuit D = (V ′, S, rhs′) such that every
multiplication gate A ∈ V ′ is of the form rhs′(A) = xn ·B for some gate B ∈ V ′ and n ∈ N.

Proof. As for skew circuits we can assume that every input gate is either an input of addition gates
or an input of multiplication gates. With a similar construction as in the proof of Lemma 5.19 we
introduce for every gate A ∈ V a gate A′ such that [A′] = −[A]. In detail we set V ′ = V ∪ {A′ |
A ∈ V } and define rhs′ in the following way:

rhs′(A) =

{
xn ·B′ if rhs(A) = −xn ·B for B ∈ V
rhs(A) in every other case

and

rhs′(A′) =


B′ + C ′ if rhs(A) = B + C

−rhs(A) if A is an input-gate of addition gates

xn ·B′ if rhs(A) = xn ·B
xn ·B if rhs(A) = −xn ·B for B ∈ V

By induction one gets for every A ∈ V that [A] = −[A′] and so [C] = [D]. By the definition of rhs′

every multiplication gate is of the form xn ·B for some n ∈ N and B ∈ V ′.

Proof of Theorem 7.25. Let us fix a powerful skew circuit C = (V, S, rhs) over Z[x],+, ·) of size
n. By Lemma 7.27 we can assume that every multiplication gate is of the form xm · A for some

A ∈ V . By Lemma 7.26 we know that [C] = p(x) = 0 if and only if p(α) = 0 for α = a2
n2

. We
will define a circuit D with inputs from {ga, g−1a , h, h−1} such that [D] = Id in Ga if and only if
[C] = 0. First of all, using iterated squaring, we can construct for every input of the form xm a
circuit D′ with gates A1, A

−1
1 , . . . , Am, A

−1
m (and some other auxiliary gates) such that

[Ai]D′ = gi·2
n2

a =

(
ai·2

n2

0
0 1

)
=

(
αi 0
0 1

)
and

[A−1i ]D′ = g−i·2
n2

a =

(
a−i·2

n2

0
0 1

)
=

(
α−i 0

0 1

)
.

We now construct the circuit D as follows: the set of gates of D consists of the gates of C and the
gates of D′. We copy the right-hand sides from D′ and define the right-hand side for a gate A of
C as follows:

rhsD(A) =



h if rhsC(A) = 1

h−1 if rhsC(A) = −1

Amh
bA−1m if rhsC(A) = bxm for b ∈ {−1, 1}

BC if rhsC(A) = B + C

AmBA
−1
m if rhsC(A) = xm ·B

We claim that for every gate A of C we have the following, where we denote for better readability
the polynomial [A]C to which gate A evaluates by pA:

[A]D =

(
1 pA(α)
0 1

)
The case rhsC(A) ∈ {−1, 1} is obvious.
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If rhsC(A) = xm, then we obtain

[A]D =

(
αm 0

0 1

)
h

(
α−m 0

0 1

)
=

(
αm 0

0 1

)(
1 1
0 1

)(
α−m 0

0 1

)
=

(
αm αm

0 1

)(
α−m 0

0 1

)
=

(
1 αm

0 1

)
=

(
1 pA(α)
0 1

)
.

If rhsC(A) = B + C, then we obtain by induction

[A]D = [B]D[C]D

=

(
1 pB(α1, . . . , αm)
0 1

)(
1 pC(α1, . . . , αm)
0 1

)
=

(
1 pB(α1, . . . , αm) + pC(α1, . . . , αm)
0 1

)
=

(
1 pA(α1, . . . , αm)
0 1

)
.

Finally, if rhsC(A) = xm ·B then we obtain by induction

[A]D =

(
αm 0

0 1

)
[B]D

(
α−m 0

0 1

)
=

(
αm 0

0 1

)(
1 pB(α)
0 1

)(
α−m 0

0 1

)
=

(
αm αm · pB(α1, . . . , αm)
0 1

)(
α−m 0

0 1

)
=

(
1 αm · pB(α1, . . . , αm)
0 1

)
=

(
1 pA(α)
0 1

)
.

We finally take the output gate S of the circuit C as the output gate of D. Then, [D] yields the
identity matrix in the group Ga if and only if pS(α) = 0.

Example 7.28. In Figure 7.5 the proof of Theorem 7.25 is illustrated. For the sake of convenience
we consider a skew circuit (instead of a powerful skew one) C with |C| = 8. This circuit is

transformed into a circuit D over G1+
√
2. Here α = (1+

√
2)2

64

, so we need 64 multiplication gates

plus one input gate to generate the gate A1 (resp. A−11 ) with [A1] = g2
64

1+
√
2

(resp. [A−11 ] = g−2
64

1+
√
2
).

For this reason we split the circuit in two parts: on the left there is the circuit D, where A1 and
A−11 are left as inputs and on the right there are the two circuits that generate these gates.

Let us look again at the group G = G1+
√
2 from Theorem 7.24. Its commutator subgroup is

isomorphic to Z × Z. Moreover, the quotient G/[G,G] is isomorphic to Z × Z2: the G-generator
h from (7.1) satisfies h2 ∈ [G,G], whereas the generator g1+

√
2 has infinite order in the quotient.

Hence, G has a subnormal series of the form G B H B Z × Z B Z B 1, where H has index two
in G and H/(Z × Z) ∼= Z. The group H is strongly polycyclic and has Hirsch length three. By
Theorem 7.14 we obtain the following result:
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· C
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· D

·

·

A1

A−11
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A1

(
1 −1
0 1

)
A1

(
1 1
0 1

)
A−11

(b) Circuit over G1+
√
2

· A1

·

·

(
1 +
√

2 0
0 1

)

}

· A−1
1

·

·

(
−1 +

√
2 0

0 1

)

61 times {

(c) Circuits to generate A1 and A−1
1

Figure 7.5: Transformation of a skew circuit into a circuit over G1+
√
2.

Corollary 7.29. There is a strongly polycyclic group H of Hirsch length 3 such that PIT(Z) for
powerful skew circuits is logspace-reducible to CEP(H).
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Chapter 8

Circuit evaluation for finite
semirings

8.1 Introduction

Recall that for finite semigroups, the following result was shown in [19]:
Let S be a finite semigroup.

• If S is aperiodic, then CEP(S) is in NL.

• If S is solvable, then CEP(S) belongs to DET.

• If S is not solvable, then CEP(S) is P-complete.

One way to extend this result was shown in [70], where the authors considered circuit evaluation
for finite groupoids, i.e., the operation · does not need to be associative. They showed that for
so-called polyabelian groupoids circuit evaluation is in DET, but there are also non-polyabelian
groupoids with a circuit evaluation problem in DET. It is still an open problem, whether one
can reach a similar dichotomy result as for semigroups for this setting. In this section we extend
the semigroup result to finite semirings. This means we split the class of semirings in two types:
one type where circuit evaluation is P-complete and one where circuit evaluation is in DET. The
results of this chapter have appeared in [3]. Note that CEP(R+) (resp., CEP(R•)) is the restriction
of CEP(R) to circuits without multiplication (resp., addition) gates. Since every commutative
semigroup is solvable, the result above implies that for a finite semiring R circuit evaluation for
R+ belongs to DET. Obviously, if R• is not solvable, then CEP(R) is P-complete, but there are
also semirings with a solvable multiplicative semigroup with P-complete circuit evaluation problem
as the following two examples show:

one example is Ladner’s classical P-completeness result for the Boolean circuit value problem
stated in Theorem 5.14.

The other example is circuit evaluation for the finite semiring (Zn,+, ·):

Lemma 8.1. Let n ≥ 2 and R = (Zn,+, ·). Then CEP(R) is P-complete.

Proof. We can reduce the Boolean circuit value problem over {0, 1,∧,¬} (which is also known to
be P-complete) to CEP(R): a gate z = x∧ y is replaced by z = x · y and a gate y = ¬x is replaced
by y = 1 + (n− 1) · x.

In this section we show that these are in fact the only essential examples for semirings with a
solvable multiplicative semigroup and a P-complete circuit evaluation problem and that circuits
over every finite semiring with a solvable multiplicative semigroup that does not contain B2 or Zn
as a subsemiring can be evaluated in DET.

By Lemma 3.25 we know that the last property is equivalent to the case R is {0, 1}-free. This
leads to the following main result of this section:
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70 8.2. CIRCUITS OVER {0, 1}-FREE SEMIRINGS

Theorem 8.2. If the finite semiring R is {0, 1}-free, then circuit evaluation for R belongs to
AC0(NL,CEP(R+),CEP(R•)). Otherwise CEP(R) is P-complete.

By the previously mentioned lemmata the P-completeness part is clear. In the rest of this
section we prove the reduction part.

Theorem 5.15 and Theorem 8.2 yield the following corollary:

Corollary 8.3. Let R be a finite semiring.

• If R is {0, 1}-free and R• is solvable, then CEP(R) belongs to DET.

• If R is not {0, 1}-free or R• is not solvable, then CEP(R) is P-complete.

8.2 Circuits over {0, 1}-free semirings

The proof of the reduction part of Theorem 8.2 will proceed in two steps. In the first step we
reduce the problem to the evaluation of circuits in which the computation admits a type-function
defined in the following. In the second step, we show how to evaluate such circuits. Throughout
this section we fix a finite semiring (R,+, ·) of size n = |R|.

Definition 8.4 (type-function). Let E = E(R) be the set of multiplicative idempotents. Let
C = (V, rhs) be a circuit over R such that [A]C ∈ ERE for all A ∈ V . A type-function for C is a
mapping type : V → E × E such that for all gates A ∈ V :

• If type(A) = (e, f), then [A]C ∈ eRf .

• If A is an addition gate with rhs(A) = B + C, then type(A) = type(B) = type(C).

• If A is a multiplication gate with rhs(A) = B · C, type(B) = (e, e′), and type(C) = (f ′, f),
then type(A) = (e, f).

A circuit is called type admitting if it admits a type-function.

Note that we do not need an output gate in a type admitting circuit.

Definition 8.5 (affine function). A function α : Rm → R (m ≥ 0) is called affine if there are
a1, b1, . . . , am, bm, c ∈ R such that for all x1, . . . , xm ∈ R:

α(x1, . . . , xm) =

m∑
i=1

aixibi + c or α(x1, . . . , xm) =

m∑
i=1

aixibi.

We represent this affine function by the tuple (a1, b1, . . . , am, bm, c) or (a1, b1, . . . , am, bm). The
two main lemmata we prove in Section 8.2.1 and in Section 8.2.2 are the following:

Lemma 8.6. Given a circuit C over the finite semiring R, one can compute in AC0(NL,CEP(R+))

• an affine function α : Rm → R for some 0 ≤ m ≤ |R|4,

• a type admitting circuit C′ = (V ′, rhs′), and

• a list of gates A1, . . . , Am ∈ V ′ such that [C] = α([A1]C′ , . . . , [Am]C′).

Lemma 8.7. If R is {0, 1}-free, then the restriction of CEP(R) to type admitting circuits is in
AC0(NL,CEP(R+),CEP(R•)).

Theorem 8.2 is an immediate corollary of the two lemmata above and the obvious fact that an
affine function with a constant number of inputs can be evaluated in AC0.

It is not clear how to test efficiently whether a circuit is type admitting. But this is not a
problem for us, since we will apply Lemma 8.7 only to circuits resulting from Lemma 8.6, which
are type admitting by construction. Notice that in the case R• is a monoid every circuit over R
is already type admitting for the type-function type(A) = (1, 1) for every gate A. So Lemma 8.6
is only needed in the case R• is a semigroup without an identity element.

70
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8.2.1 Step 1: reduction to type admitting circuits

In this section, we prove Lemma 8.6. Let C be a circuit over our fixed finite semiring R = (R,+, ·)
of size n = |R|. We assume that n ≥ 2 (the case n = 1 is trivial). Throughout this section we will
use E = E(R). Note that Rn = RER is closed under multiplication with elements from R. Thus,
〈Rn〉 is an ideal (〈Rn〉 denotes the subsemiring that is additively generated by elements from Rn).

Every element a ∈ 〈Rn〉 can be written as a finite sum a =
∑k
i=1 ai with ai ∈ Rn. Moreover, since

R is a fixed finite semiring, the number k of summands can be bounded by a constant that only
depends on R.

The reduction to type admitting circuits is done in two steps:

circuit over R
Lemma 8.10−−−−−−−−→ circuit over 〈Rn〉 = 〈RER〉 Lemma 8.11−−−−−−−−→ type admitting circuit

Before we state and prove Lemma 8.10 and Lemma 8.11, we show a lemma that allows to eliminate
certain input values from a circuit:

Lemma 8.8. Assume that I ⊆ R is a non-empty ideal of R. Let C = (V, S, rhs) be a circuit over
R. Consider the set U = {A ∈ V | A is an inner gate or rhs(A) ∈ I} and assume that S ∈ U and
for all A,B,C ∈ V the following holds:

• If rhs(A) = B · C then B ∈ U or C ∈ U .

• If rhs(A) = B + C then B,C ∈ U .

Then there is a logspace-computable function that returns for a given circuit C with the above
properties an equivalent circuit D over the ideal (and hence subsemiring) I.

Proof. Let U ⊆ V be defined as in the lemma. We first compute in logarithmic space a circuit
C′ = (V ′, (S)1,1, rhs

′) which contains a gate A`,r for every gate A ∈ U and `, r ∈ R1 (recall that R1

is R together with a fresh multiplicative identity 1) such that [A`,r]C′ = ` · [A]C · r. Note that V ′ is
non-empty since S ∈ U . The gates of C′ are indexed by elements of R1 instead of R to simplify the
notation in the following. To define the right-hand sides let us take a gate A ∈ U and `, r ∈ R1.

Case 1. rhs(A) = a ∈ I. We set rhs′(A`,r) = `ar. Note that `ar ∈ I, since I is an ideal in R.

Case 2. rhs(A) = B + C. Then we must have B,C ∈ U and we set rhs′(A`,r) = B`,r + C`,r.

Case 3. rhs(A) = B · C. Then B ∈ U or C ∈ U . If both B and C belong to U , then we set
rhs′(A`,r) = B`,1 · C1,r. If C 6∈ U then B ∈ U and rhs(C) = c ∈ R \ I. We set rhs′(A`,r) = B`,cr.
The case B 6∈ U is symmetric.

The correctness of the above construction can be easily shown by induction along the partial order
≤C .

Figure 8.1 illustrates the construction for R = {a, b, c} and the ideal I = {c} (the concrete
semiring structure is not important). Note that a2cb ∈ I. The circuit on the right-hand side is
only the part of the constructed circuit that is connected to the gate A1,1. Copy gates are left
unlabeled.

For the following proofs, it is sometimes more convenient to consider a circuit C = (V, S, rhs)
over the free semiring N[R] generated by the set R.1 Recall that this semiring consists of all
mappings f : R+ → N with finite and non-empty support where R+ consists of all finite non-
empty words over the alphabet R. So, there are two ways to evaluate C: we can evaluate C over R
(and this is our main interest) and we can evaluate C over N[R]. In order to distinguish these two
ways of evaluation, we write JAKC ∈ N[R] for the value of gate A ∈ V in C, when C is evaluated
in N[R]. Again we omit the index C if it is clear from the context. Moreover, JCK = JSKC . Note

1Of course, there is no chance of efficiently evaluating a circuit over the free semiring N[R], since this might
produce a doubly exponential number of monomials of exponential length. Circuit evaluation over N[R] is only
used as a tool in our proofs.
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a2cb Ea2,b

Figure 8.1: Illustration of the proof of Lemma 8.8 with the ideal I = {c} in R = {a, b, c}.

that JAKC is a mapping from R+ to N; hence for a word w ∈ R+, JAKC(w) is a natural number.
Let h be the canonical semiring homomorphism from N[R] to R that evaluates a non-commutative
polynomial in the semiring R. Thus, we have [A]C = h(JAKC) for every gate A and [C] = h(JCK).
An example of a free evaluation of a circuit is shown in Figure 8.2 on the left.

Recall that |R| = n ≥ 2. We define

R<n = {w ∈ R+ | |w| < n} and R≥n = {w ∈ R+ | |w| ≥ n}.

Note that these are sets of finite words over the alphabet R. So, these notations should not be
confused with the notation Rn, which is a subset of R (the set of all n-fold products). In fact,
we have h(R≥n) = Rn = RER. For every non-commutative polynomial f ∈ N[R] we define
fσ, fλ ∈ N[R] ∪ {⊥} (the short part and the long part of f where ⊥ is a new symbol that stands
for “undefined”) as follows:

1. If supp(f) ⊆ R<n, then fσ = f and fλ = ⊥.

2. If supp(f) ⊆ R≥n, then fσ = ⊥ and fλ = f .

3. Otherwise let fσ, fλ ∈ N[R] such that f = fσ + fλ, supp(fσ) ⊆ R<n and supp(fλ) ⊆ R≥n.

Note that fσ 6= ⊥ or fλ 6= ⊥, and that the decomposition in 3 is unique. Moreover, if fσ 6= ⊥ 6= fλ,
then f = fσ + fλ.

Example 8.9. Let R = {a, b, c} and thus n = 3. Let f = 2abbca + 3caab + bab + 4ac + 7b ∈
N[{a, b, c}]. We have fσ = 4ac+ 7b and fλ = 2abbca+ 3caab+ bab.

Lemma 8.10. There is a function in AC0(NL,CEP(R+)) that returns for a given circuit C =
(V, S, rhs) over R either

• the semiring element [C] ∈ R (namely if JCKλ = ⊥), or

• a circuit D over the subsemiring 〈Rn〉 = 〈RER〉 such that [C] = [D] (namely if JCKσ = ⊥),
or

• a circuit D over the subsemiring 〈Rn〉 = 〈RER〉 and a semiring element σ ∈ R such that

[C] = [D] + σ (namely if JCKσ 6= ⊥ 6= JCKλ).

Proof. In the following, we omit the index C in [A]C and JAKC where A ∈ V is a gate of the circuit
C.

Step 1. We first compute in AC0(NL) the set of all gates A ∈ V such that JAKσ 6= ⊥. For this, we
construct in logarithmic space a circuit A over the semiring (N,+, ·) with gates Aw where A ∈ V
and w ∈ R<n such that [Aw]A = JAK(w) as follows:
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• If rhs(A) = a ∈ R, then rhs(Aw) =

{
1 if w = a

0 otherwise
.

• If rhs(A) = B + C, then rhs(Aw) = Bw + Cw.

• If rhs(A) = B · C, then rhs(Aw) =
∑
w=uv Bu · Cv where the sum goes over all u, v ∈ R<n

with w = uv.

Note that the empty sum is interpreted as 0 and that A has constant multiplication depth. More-
over, the multiplication depth of a gate Aw is |w|−1. By Lemma 5.8 with the structure-preserving
partition Vi = {Aw | |w| = i} we can transform in logarithmic space A into an equivalent addition
circuit, which we still denote by A. The circuit A contains all gates Aw (A ∈ V , w ∈ R<n) and
possibly some additional gates.

We can assume that A has a unique input gate Z with right-hand side 1. Let Uσ be the set
of all gates X of A such that Z ≤A X. These are exactly those gates of A that evaluate to a
number larger than zero. Hence, for all A ∈ V and w ∈ R<n, we have Aw ∈ Uσ if and only if
JAK(w) > 0. Moreover, JAKσ 6= ⊥ if and only if Aw ∈ Uσ for at least one w ∈ R<n. The set Uσ can
be computed in AC0(NL). Hence, we can also compute for every A ∈ V the information whether
JAKσ 6= ⊥ and, in case JAKσ 6= ⊥, the set supp(JAKσ) = supp(JAK) ∩R<n.

Step 2. For each gate A ∈ V with JAKσ 6= ⊥ we now compute the semiring element h(JAKσ) ∈ R.
For this we construct in logarithmic space a circuit over R+ that evaluates to h(JAKσ). Hence,
h(JAKσ) can be computed using oracle access to CEP(R+).

We first remove from the addition circuit A all gates that are not in Uσ. Moreover, gate Z is
now the only input gate of A. For a semiring element a ∈ R we define the circuit Ca (over R+) by
taking the addition circuit A and redefining rhsσ(Z) = a. Then, for every gate Aw ∈ Uσ (A ∈ V ,
w ∈ R<n) we have [Aw]Ca = JAK(w) · a. In particular, if JAKσ 6= ⊥, then

h(JAKσ) =
∑

w∈supp(JAK)∩R<n
JAK(w) · h(w) =

∑
w∈supp(JAK)∩R<n

[Aw]Ch(w)
.

From the circuits Ch(w) we can construct in logarithmic space a circuit over R+ for this semiring
element. Evaluating this circuit using oracle access to CEP(R+) yields the element h(JAKσ).

Step 3. Next, we compute in AC0(NL) the set of all gates A ∈ V such that JAKλ 6= ⊥. Since n ≥ 2

(our initial assumption on the semiring R), we have JAKλ 6= ⊥ if and only if there exist a gate
A′ ≤C A with rhs(A′) = B · C and words w1, w2 ∈ R<n such that |w1w2| ≥ n, JBK(w1) > 0 (i.e.,
Bw1

∈ Uσ) and JCK(w2) > 0 (i.e., Cw2
∈ Uσ). This condition can be tested in NL. Hence, we can

assume that the set of all A ∈ V with JAKλ 6= ⊥ is computed. If JSKλ = ⊥, then we must have
JSKσ 6= ⊥ and we return the previously computed semiring element h(JSKσ), which is [C] in this

case. Let us now assume that JSKλ 6= ⊥.

Step 4. We then construct a circuit Cλ = (Vλ, (S)λ, rhsλ), which contains for every gate A ∈ V
with JAKλ 6= ⊥ a gate Aλ such that [Aλ]Cλ = h(JAKλ). In particular, [Cλ] = h(JCKλ).

In a first step, we compute in AC0 the set Mλ that consists of of all multiplication gates A ∈ V
such that the following conditions hold: JAKλ 6= ⊥, rhs(A) = B ·C for B,C ∈ V , JBKσ 6= ⊥ 6= JCKσ,
and there exist u ∈ supp(JBKσ), v ∈ supp(JCKσ) with |uv| ≥ n. This means that in the product
JBK · JCK a monomial of length at least n arises from monomials u ∈ supp(JBK), v ∈ supp(JCK),
both of which have length smaller than n.

Next, for every multiplication gate A ∈Mλ where rhs(A) = B·C we compute in AC0(CEP(R+))
the semiring element

mA :=
∑
u,v

(JBK(u)JCK(v)) · h(uv) ∈ 〈Rn〉

where the sum is taken over all words u ∈ supp(JBKσ), v ∈ supp(JCKσ) with |uv| ≥ n. Let us
take the addition circuit A constructed in Step 1 and Step 2 above. We add to A a single layer
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of multiplication gates Au,v where Bu, Cv ∈ Uσ. The right-hand side of Au,v is Bu · Cv. Using
Lemma 5.8, we can transform this circuit in logarithmic space into an equivalent addition circuit;
let us denote this circuit by A2. Clearly, gate Au,v evaluates to the number JBK(u)JCK(v) ∈ N.
This number is larger than zero, since Bu, Cv ∈ Uσ. Hence, by replacing in the addition circuit
A2 the input value 1 by the semigroup element h(uv), we obtain a circuit over the semigroup R+,
which we can evaluate using oracle access to CEP(R+). The value of gate Au,v yields the semiring
element (JBK(u)JCK(v)) · h(uv). Finally, the sum of all these values (for all u ∈ supp(JBKσ),
v ∈ supp(JCKσ) with |uv| ≥ n) can be computed by another AC0-computation (it is a sum of a
constant number of semiring elements).

It remains to define the right-hand sides of the gates Aλ in Cλ. We distinguish the following
cases (note that A must be an inner gate of C since n ≥ 2).

Case 1: rhs(A) = B + C. Then we must have JBKλ 6= ⊥ or JCKλ 6= ⊥ (otherwise JAKλ = ⊥) and
we set

rhsλ(Aλ) =


Bλ, if JCKλ = ⊥,
Cλ, if JBKλ = ⊥,
Bλ + Cλ, otherwise.

Case 2: rhs(A) = B · C, A ∈Mλ, and ⊥ /∈ {JBKσ, JBKλ, JCKσ, JCKλ}. Then we set

rhsλ(Aλ) = Bλ · Cλ + h(JBKσ) · Cλ +Bλ · h(JCKσ) +mA. (8.1)

If A 6∈ Mλ but ⊥ /∈ {JBKσ, JBKλ, JCKσ, JCKλ} then we take the same definition but omit the
summand mA.

Let us explain the definition (8.1): we have

JAKσ + JAKλ = JAK

= JBK · JCK = (JBKσ + JBKλ) · (JCKσ + JCKλ)

= JBKλ · JCKλ + JBKσ · JCKλ + JBKλ · JCKσ + JBKσ · JCKσ.

By selecting from the last line all monomials of length at least n, we get

JAKλ = JBKλ · JCKλ + JBKσ · JCKλ + JBKλ · JCKσ +mA.

Applying to this equality the morphism h shows that (8.1) is indeed the right definition for
rhsλ(Aλ).

Case 3: rhs(A) = B · C and ⊥ ∈ {JBKσ, JBKλ, JCKσ, JCKλ}. Then the corresponding terms on
the right-hand side of (8.1) are omitted. More precisely if JXKσ = ⊥ (X ∈ {B,C}), then we

omit in (8.1) the product involving h(JXKσ) as well as the semiring element mA and if JXKλ = ⊥
(X ∈ {B,C}), then we omit in (8.1) the two products involving Xλ. The reader may also interpret
⊥ as zero and then do the obvious simplifications in (8.1) (but note that the semiring N[R] has

no additive zero element). For example, if JBKλ = JCKσ = ⊥ and JBKσ 6= ⊥ 6= JCKλ, then

rhsλ(Aλ) = h(JBKσ)Cλ. Since JAKλ 6= ⊥, at least one of the summands in (8.1) remains.

Figure 8.2 shows an example of the above construction of the circuit Cλ, where n = 2. The shaded
parts are those parts that are removed because they would yield zero terms. These are exactly
those parts of the right-hand sides that are removed in the above Case 3. To the right of each gate
X, the value JXKσ is written. Note that the output gate evaluates to 2aab+ 2ab which is indeed
(2aab+ 2ab+ 2a)λ.

Step 5. We now apply Lemma 5.3 and transform in logarithmic space Cλ into a circuit C′ in normal
form. To eliminate the remaining inputs from R\〈Rn〉 we have to argue that the circuit C′ satisfies
the conditions from Lemma 8.8 for the ideal I = 〈Rn〉. The input values of the circuit Cλ are
elements from 〈Rn〉 (they occur as the mA in (8.1)) and the h(JXKσ) for X ∈ V . Only the input
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Figure 8.2: The construction of the circuit Cλ in the proof of Lemma 8.10.

values h(JXKσ) can belong to R \ 〈Rn〉 (they can also belong to 〈Rn〉). The circuit C′ is obtained
from Cλ by (i) eliminating copy gates (that may arise from the above Case 1) and (ii) splitting up
right-hand sides of the form (8.1) (or a simpler form, see Case 3). Note that in the circuit C′ an
input gate Z with rhsC′(Z) ∈ R \ 〈Rn〉 can only occur in right-hand sides of multiplication gates.
Such a right-hand side must be of the form Bλ ·Z or Z ·Cλ (which is obtained from splitting up the
expression in (8.1)). Here, Bλ and Cλ are gates from the circuit Cλ. But a gate Aλ of the circuit
Cλ cannot be transformed into an input gate of C′ with a right-hand side from R \ 〈Rn〉 (note that
the values h(JXKσ) are “guarded” in (8.1) by multiplications with gates Yλ). This shows that the
conditions for Lemma 8.8 are satisfied.

Finally, Lemma 8.8 allows us to transform in logarithmic space the circuit C′ into an equivalent
circuit D over the subsemiring 〈Rn〉 = 〈RER〉. This circuit D satisfies [D] = h(JCKλ). We output
this circuit together with the previously computed value h(JCKσ) (if this value is not ⊥). Then
the output specification from the lemma is satisfied.

The next lemma transforms a circuit over 〈RER〉 into a type admitting circuit.

Lemma 8.11. Given a circuit C = (V, S, rhs) over 〈RER〉, one can compute in AC0(NL):

• a type admitting circuit C′ = (V ′, rhs′) (without output gate),

• a non-empty list of distinguished gates A1, . . . , Am ∈ V ′, where m ≤ |R|4, and

• elements `1, r1, . . . , `m, rm ∈ R such that [C] =
∑m
i=1 `i[Ai]C′ri.

Proof. Let us interpret the circuit C = (V, S, rhs) over the free semiring N[R] again. For each

input gate A we can write [A] as
∑k
i=1 sie

3
i ti for a constant k (that only depends on R), si, ti ∈ R,

ei ∈ E and redefine rhs(A) =
∑k
i=1 sie

3
i ti (a sum of k monomials of length 5). Thus for all A ∈ V

we have supp(JAKC) ⊆ (RE3R)+ ⊆ RER∗ER.
Let us define for every inner gate A of C the set

PA = {(s, e, f, t) ∈ R× E × E ×R | supp(JAKC) ∩ seR
∗ft 6= ∅}.

Hence, |PA| ≤ |R|4. We claim that the sets PA can be computed in AC0(NL). For this, note that
(s, e, f, t) ∈ PA if and only if

1. e = f and there exists an input gate C of C such that the following conditions hold:

• rhs(C) contains the monomial se3t.
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76 8.2. CIRCUITS OVER {0, 1}-FREE SEMIRINGS

• There is a path from C to A (possibly the empty path) where all gates are addition
gates.

or

2. There exist input gates C1, C2 of C, and a multiplication gate B such that the following
conditions hold:

• rhs(C1) contains the monomial se3t′ for some t′ ∈ R.

• rhs(C2) contains the monomial s′f3t for some s′ ∈ R.

• There is a path from C1 to B such that for every edge (X,Y ) along this path where Y
is a multiplication gate, rhs(Y ) = X · Z for some gate Z.

• There is a path from C2 to B such that for every edge (X,Y ) along this path where Y
is a multiplication gate, rhs(Y ) = Z ·X for some gate Z.

• There is a path from B to A (possibly the empty path) where except for B all gates
are addition gates.

These conditions can be checked in NL.
We next compute in logarithmic space a new circuit D that contains for every gate A of C

and every tuple (s, e, f, t) ∈ PA a gate As,e,f,t such that the following holds, where as usual
JAs,e,f,tKD denotes the evaluation of the gate As,e,f,t in the free semiring N[R] and L(A, s, e, f, t) :=
supp(JAKC) ∩ seR∗ft (which is non-empty since (s, e, f, t) ∈ PA):

JAs,e,f,tKD =
∑

w∈L(A,s,e,f,t)

JAKC(w) · w (8.2)

Intuitively, we decompose the polynomial JAKC into several summands according to the first two
and last two symbols in every monomial. We define the rules of D as follows, where A is a gate of
C:

Case 1. rhs(A) =
∑k
i=1 sie

3
i ti. Then, we have PA = {(si, ei, ei, ti) | 1 ≤ i ≤ k} and we set

rhs(Asi,ei,ei,ti) = sie
3
i ti.

Case 2. rhs(A) = B · C and (s, e, f, t) ∈ PA. We set

rhs(As,e,f,t) =
∑

(s,e,f ′,t′)∈PB

∑
(s′,e′,f,t)∈PC

Bs,e,f ′,t′ · Cs′,e′,f,t.

Case 3. rhs(A) = B + C and (s, e, f, t) ∈ PA. We set

rhs(As,e,f,t) = Bs,e,f,t + Cs,e,f,t.

With these right-hand sides, property (8.2) is easy to verify.
The idea of the last step is the following: let u = (s, e, f, t) ∈ PA. Every non-commutative

polynomial JAuKD has the property that each of its monomials starts with see and ends with fft.
By factoring out the common prefix se and suffix ft, respectively, we can write JAuKD = segft
where g ∈ eN[R]f or g = e (the latter case occurs if A is an input gate with right-hand side se3t,
in which case we have e = f). We now construct in logarithmic space a circuit C′, which contains
gates A′s,e,f,t (where As,e,f,t is a gate of D as above) such that in the free semiring N[R], A′s,e,f,t
evaluates to the above polynomial g. We define the right-hand side of A′s,e,f,t again by a case
distinction, where we use the right-hand sides for D that we defined in the Cases 1-3 above.

Case 1. e = f and rhs(As,e,e,t) = se3t. Then, we set rhs(A′s,e,e,t) = e.

Case 2. rhs(As,e,f,t) =
∑

(s,e,f ′,t′)∈PB
∑

(s′,e′,f,t)∈PC Bs,e,f ′,t′ · Cs′,e′,f,t. We set

rhs(A′s,e,f,t) =
∑

(s,e,f ′,t′)∈PB

∑
(s′,e′,f,t)∈PC

B′s,e,f ′,t′(f
′t′s′e′)Cs′,e′,f,t. (8.3)
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Case 3. rhs(As,e,f,t) = Bs,e,f,t + Cs,e,f,t. We set

rhs(A′s,e,f,t) = B′s,e,f,t + C ′s,e,f,t.

It is now straightforward to verify that for every gate A of C we have:

JAKC =
∑

(s,e,f,t)∈PA

JAs,e,f,tKD =
∑

(s,e,f,t)∈PA

seJA′s,e,f,tKC′ft.

Hence, if we evaluate the circuits C, D, and C′ in the semiring R we get

[A]C =
∑

(s,e,f,t)∈PA

[As,e,f,t]D =
∑

(s,e,f,t)∈PA

se[A′s,e,f,t]C′ft.

Note that [A′s,e,f,t]C′ ∈ eRf , which holds, since [A′s,e,f,t]C′ = h(JA′s,e,f,tKC′) and every monomial

of JA′s,e,f,tKC′ starts with e and ends with f . Moreover, every input value of the circuit C′ is from

ERE: these are the elements e (in Case 1) and f ′t′s′e′ (in Case 2).
Note that C′ admits a type function: we set type(A′s,e,f,t) = (e, f). Moreover, using Lemma 5.3

we transform C′ in logarithmic space into normal form by splitting up right-hand sides of the form
(8.3). Thereby we extend the type-mapping to the new gates that are introduced. For instance, if
we introduce a gate with right-hand side B′s,e,f ′,t′(f

′t′s′e′) (which occurs in (8.3)), then this gate
gets the type (e, e′), and the gate that computes (in two steps) B′s,e,f ′,t′(f

′t′s′e′)Cs′,e′,f,t gets the
type (e, f). This ensures that the three conditions from Definition 8.4 are satisfied.

Combining Lemma 8.10 and 8.11 immediately yields Lemma 8.6.

8.2.2 Step 2: a parallel evaluation algorithm for type admitting circuits

In this section we prove Lemma 8.7 by presenting a parallel evaluation algorithm for type admitting
circuits. This algorithm terminates after at most |R| rounds, if R has a so-called rank-function,
which we define first. As before, let E = E(R).

Definition 8.12 (rank-function). We call a function rank : R→ N \ {0} a rank-function for R if
it satisfies the following conditions for all a, b ∈ R:

1. rank(a) ≤ rank(a+ b)

2. rank(a), rank(b) ≤ rank(a · b)

3. If a, b ∈ eRf for some e, f ∈ E and rank(a) = rank(a+ b), then a = a+ b.

Note that if R• is a monoid, then one can choose e = 1 = f in the third condition in Defini-
tion 8.12, which is therefore equivalent to: if rank(a) = rank(a+ b) for a, b ∈ R, then a = a+ b.

Example 8.13. Let (G, ·) be a finite group and consider the semiring P(G) := (2G \ ∅,∪, ·) with
A · B := {a · b | a ∈ A, b ∈ B} (In the next chapter we take a closer look at these so-called power
semiring of G). One can verify that the function A 7→ |A| where ∅ 6= A ⊆ G, is a rank-function
for P(G). On the other hand, if S is a finite semigroup, which is not a group, then S cannot be
cancellative. Assume that ab = ac for a, b, c ∈ S with b 6= c. Then {a} · {b, c} = {ab}. This shows
that the function A 7→ |A| is not a rank-function for P(S).

Theorem 8.14. If the finite semiring R has a rank-function rank, then the restriction of CEP(R)
to type admitting circuits belongs to AC0(NL,CEP(R+),CEP(R•)).

Proof. Let C = (V, S, rhs) be a type admitting circuit with the rank-function rank. We present an
algorithm which partially evaluates the circuit in a constant number of phases, where each phase
can be carried out in AC0(NL,CEP(R+),CEP(R•)) and the following invariant is preserved:
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78 8.2. CIRCUITS OVER {0, 1}-FREE SEMIRINGS

Invariant: after phase k all gates A with rank([A]C) ≤ k are evaluated, i.e., are input gates in
phase k + 1 onwards.

Initially, i.e., for k = 0, the invariant holds, since 0 is not in the range of the rank-function. After
max{rank(a) | a ∈ R} (which is a constant) many phases, the output gate S is evaluated. We
present phase k of the algorithm, assuming that the invariant holds after phase k − 1. Thus, all
gates A with rank([A]C) < k of the current circuit C are input gates. In phase k we evaluate all
gates A with rank([A]C) = k. For this, we proceed in two steps:

Step 1. As a first step the algorithm evaluates all subcircuits that only contain addition and input
gates. This maintains the invariant and is possible in AC0(NL,CEP(R+)). After this step, every
addition-gate A has at least one inner input gate, which we denote by inner(A) (if both input gates
are inner gates, then choose one arbitrarily). The NL-oracle access is needed to compute the set
of all gates A for which no multiplication gate B ≤C A exists.

Step 2. Define the multiplicative circuit C′ = (V, S, rhs′) by

rhs′(A) =

{
inner(A) if A is an addition-gate,

rhs(A) if A is a multiplication gate or an input gate.
(8.4)

The circuit C′ can be brought in logarithmic space into normal form by Lemma 5.3 and then
evaluated in AC0(CEP(R•)). A gate A ∈ V is called locally correct if (i) A is an input gate or
multiplication gate of C, or (ii) A is an addition gate of C with rhs(A) = B + C and [A]C′ =
[B]C′ + [C]C′ . We compute the set W := {A ∈ V | all gates B with B ≤C A are locally correct}
in AC0(NL). A simple induction shows that for all A ∈W we have [A]C = [A]C′ . Hence we can set
rhs(A) = [A]C′ for all A ∈W . This concludes phase k of the algorithm.

To prove that the invariant holds after phase k, we show that for each gate A ∈ V with
rank([A]C) ≤ k we have A ∈W . This is shown by induction: assume that rank([A]C) ≤ k. By the
first condition from Definition 8.12, all gates B <C A satisfy rank([B]C) ≤ k. Thus, the induction
hypothesis yields B ∈ W and hence [B]C = [B]C′ for all gates B <C A. It remains to show
that A is locally correct, which is clear if A is an input gate or a multiplication gate. So assume
that rhs(A) = B + C where B = inner(A), which implies [A]C′ = [B]C′ by (8.4). Since B is an
inner gate, which is not evaluated after phase k − 1, it holds that rank([B]C) ≥ k and therefore
rank([B + C]C) = rank([A]C) = rank([B]C) = k. Since C is type admitting, by Definition 8.4
there exist a type-function and idempotents e, f ∈ E with type(B) = type(C) = (e, f) and thus
[B]C , [C]C ∈ eRf . The second condition from Definition 8.12 implies that [A]C = [B]C + [C]C =
[B]C . We finally get [A]C′ = [B]C′ = [B]C = [A]C = [B]C + [C]C = [B]C′ + [C]C′ . Therefore A is
locally correct.

Example 8.15 (Example 8.13 continued). Figure 8.3 shows a circuit C over the power semiring
P(G) of the group G = (Z5,+). Recall from Example 8.13 that the function A 7→ |A| is a rank
function for P(G). We illustrate one phase of the algorithm. All gates A with rank([A]) < 3 are
evaluated in the circuit C shown in (a). The goal is to evaluate all gates A with rank([A]) = 3.
The circuit C′ (shown in (b)) from the proof of Theorem 8.14 is computed and evaluated using the
oracle for CEP(Z5,+). The dotted wires do not belong to the circuit C′. All locally correct gates
are shaded. Note that the output gate is locally correct but its right child is not locally correct.
All other shaded gates form a downwards closed set, which is the set W from the proof. These
gates can be evaluated such that in the resulting circuit (shown in (c)) all gates which evaluate to
elements of rank 3 are evaluated.

For the proof of Lemma 8.7, it remains to show that every finite {0, 1}-free semiring has a
rank-function.

Lemma 8.16. Let R be {0, 1}-free. If e, f ∈ E and f = ef = fe = f + f , then e+ f = f .

Proof. With f = 0 and e+ f = 1 all equations from Lemma 3.25 (point 4) hold. Hence, we must
have e+ f = f .
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Figure 8.3: The parallel evaluation algorithm over the power semiring P(Z5).

Lemma 8.17. If the finite semiring R is {0, 1}-free, then R has a rank-function.

Proof. For a, b ∈ R we define a � b if b can be obtained from a by iterated additions and left- and
right-multiplications of elements from R. This is equivalent to the following condition:

there are `, r, c ∈ R such that b = `ar+c (where each of the elements `, r, c can be also missing).

Since � is a preorder on R, there is a function rank : R → N \ {0} such that for all a, b ∈ R we
have

• rank(a) = rank(b) exactly if a � b and b � a,

• rank(a) ≤ rank(b) if a � b.

We claim that rank satisfies the conditions of Definition 8.12. The first two conditions are clear,
since a � a + b and a, b � ab. For the third condition, let e, f ∈ E and a, b ∈ eRf such that
rank(a+b) = rank(a), which is equivalent to a+b � a. Assume that a = `(a+b)r+c = `ar+`br+c
for some `, r, c ∈ R (the case without c can be handled in the same way). Since a = eaf and
b = ebf , we have a = `e(a+ b)fr + c and hence we can assume that ` and r are not missing. By
multiplying with e from the left and f from the right we get a = (e`e)(a + b)(frf) + (ecf), so
we can assume that ` = e`e and r = frf . After m repeated applications of a = `ar + `br + c we
obtain

a = `marm +
m∑
i=1

`ibri +
m−1∑
i=0

`icri. (8.5)

Let n ≥ 1 such that nx is additively idempotent and xn is multiplicatively idempotent for all
x ∈ R. Hence nxn is both additively and multiplicatively idempotent for all x ∈ R. If we
choose m = n2, the right-hand side of (8.5) contains the partial sum

∑n
i=1 `

inbrin. Furthermore,
e(n`n) = (n`n)e = n`n and f(nrn) = (nrn)f = nrn. Therefore, Lemma 8.16 implies that
n`n = n`n + e and nrn = nrn + f , and hence:

n∑
i=1

`inbrin = n(`nbrn) = n2(`nbrn) = (n`n)b(nrn) = (n`n + e)b(nrn)

= (n`n)b(nrn) + eb(nrn) = (n`n)b(nrn) + eb(nrn + f)

= (n`n)b(nrn) + eb(nrn) + ebf =

(
n∑
i=1

`inbrin

)
+ b.

Thus, we can replace in (8.5) the partial sum
∑n
i=1 `

inbrin by
∑n
i=1 `

inbrin + b, which proves that
a = a+ b.
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Chapter 9

The circuit intersection problem
for semigroups

9.1 Introduction

In 1973 Stockmeyer and Meyer [80] extended the word problem for some algebraic structures to
the following problem over the power set of these structures where the operations on sets are
evaluated via A ·B = {a · b | a ∈ A, b ∈ B} and the union is added as an additional operation: for
a given expression over this structure and an element a, decide whether a is an element of the set
to which the expression evaluates. For instance, Stockmeyer and Meyer showed that this problem
over (2Z,+,∪) is NP-complete. In this chapter we will extend the circuit value problem in a similar
way. We consider the power set of the domain of an algebraic structure without the empty set
with the operations as defined above and the union. For two circuits over this power structure we
ask whether the intersection of the represented sets is non-empty. We call this problem the circuit
intersection problem, or short ”circuit intersection”. In [62] resp. [84] the authors include even
more operations and consider circuits over reducts (i.e., structures where some of the operations
are omitted) of the power set structures (2N,+, ·,∪,∩, ) resp., (2Z,+, ·,∪,∩, ) (here stands
for the complement of a set). In particular, they considered the circuit intersection problem
for circuits over (2Z,+, ·,∪) (NEXPTIME-complete), over (2N,+, ·,∪) (PSPACE-complete), and
over (2Z,+,∪) (resp. (2N,+,∪)) (both NP-complete). Notice that they did not exclude the
empty set explicitly, but since their inputs are restricted to singletons, gates from circuits over
(2N,+, ·,∪) resp. (2Z,+, ·,∪) can never evaluate to the empty set. In the following we consider the
circuit intersection problem for two structures: first we use the results about the circuit evaluation
problem for finite semirings to show a dichotomy for the circuit intersection problem for finite
semigroups: in the case S is a finite local group the circuit intersection problem for S can be
reduced to circuit evaluation for S. In all other cases the power structure contains a {0, 1}-
subsemiring and the circuit intersection problem is P-complete. Then we show that for the group
SL5(Z) circuit intersection is NEXPTIME-complete. The result for finite semigroups was shown in
[3].

9.2 The circuit intersection problem

Definition 9.1 (power structure). Let A = (D, f1, . . . , fk) be an algebraic structure. Then
P(A) = (2D \ ∅, f1, . . . , fk) is the power structure of A where fi : (2D \ ∅)ni → (2D \ ∅) is
defined by fi(M1, . . . ,Mni) = {fi(m1, . . . ,mni) | mj ∈Mj for 1 ≤ j ≤ ni}.

Notice that it makes sense to exclude the empty set in the definition above, since if I is a
generating set of A, then the one-element subsets of I form a generating set of P(A). So the
operations of the power structure of A can be seen as simultaneously acting on the elements
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of A. If we allowed the empty set in the domain of P(A), this would lead to the fact that
fi(M1, . . . , ∅, . . . ,Mni) = ∅ for all M1, . . . ,Mni ∈ 2D which would in some sense destroy the
natural structure given by A.

In this chapter we extend our considerations to circuits over power structures. For these circuits
we investigate the following problem. The circuit intersection problem for the algebraic structure
A (short CIP(A)) is the following:

Input: Two circuits C and D over P(A)

Question: Is [C] ∩ [D] 6= ∅?
As for the circuit evaluation problem for unitary rings, groups and finite structures a slightly

different but equivalent version of the problem is used:

• For a unitary ring (R,+, ·) we consider the following problem:

Input: A circuit C over P(R).

Question: Is 0 ∈ [C]?

• For a group (G, ·) we consider the following problem:

Input: A circuit C over P(G).

Question: Is 1 ∈ [C]?

• For a finite algebraic structure A = (D, f1, . . . , fk) we consider the following problem:

Input: A circuit C = (V, S, rhs) over P(A) and an element a ∈ D.

Question: Is a ∈ [C]?

Note that the problems above are AC0-equivalent to the circuit intersection problem and that
the equivalence can be shown in the same way as it was done for the circuit evaluation problem
in Section 5.2.

9.3 The circuit intersection problem for finite semigroups

Definition 9.2 (local group). A semigroup S is called local group if for all e ∈ E(S) the local
monoid eSe is a group.

It is known that in every finite local group S of size n the minimal ideal of S is Sn = SE(S)S,
see [8, Proposition 2.3].

Notice that the power structure of a finite semigroup is a finite semiring. So we can use
Corollary 8.3 to show the following result:

Theorem 9.3. Let S be a finite semigroup. If S is a local group and solvable, then CIP(S) belongs
to DET. Otherwise CIP(S) is P-complete.

Proof. First let S be a finite local group which is solvable, a ∈ S and D a circuit over P(S). By [15,
Corollary 2.7] the multiplicative semigroup P(S)• is solvable as well. We show that the semiring
P(S) is {0, 1}-free: towards a contradiction assume that P(S) is not {0, 1}-free. By Lemma 3.25,
there exist non-empty sets A ( B ⊆ S such that AB = BA = A2 = A and B2 = B. Hence, B is
a subsemigroup of S, which is also a local group, and A is an ideal in B. Since the minimal ideal
of B is Bn for n = |B| and Bn = B, we obtain A = B, which is a contradiction. So we can test
in parallel for every subset A ⊆ S that contains a whether A = [D] in DET (notice that |S| is a
constant). So CIP(S) belongs to DET in this case. Now assume that S is not a local group, i.e.,
there exists a local monoid M = eSe which is not a group for some idempotent e ∈ S. Since any
finite monoid which is not a group contains two distinct idempotents (Lemma 3.4), there is an
idempotent f ∈M such that f 6= e and P(S) is not {0, 1}-free: {f} and {e, f} form a copy of B2.
It follows that the question whether e ∈ [D] is P-complete. So CIP(S) is P-complete. Finally, if S
is not solvable, then also P(S)• is not solvable and CIP(S) is P-complete by Theorem 5.15.
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9.4 The circuit intersection problem for SL5(Z)
The circuit intersection problem for groups can be seen as a nondeterministic version of the
compressed word problem [57]. In the previous section it was shown that for finite groups the
circuit intersection problem is as hard as circuit evaluation for G. In contrast to this result,
considering the power-semiring over an infinite group G we get a massive increase of complexity
when we compare circuit intersection for G to CEP(G). For instance, in Section 5.3 we have seen
that CEP(Z) is C=L-complete, while in [62] and [84] it was shown that CIP(Z) is NP-complete.
Using results from [54], one can show that the circuit intersection problem for F2 where F2 is the
free group of rank 2, is PSPACE-complete, while CEP(F2) can be solved in polynomial time [57].
Here we show a similar result for linear groups. From [57] we know that for every f.g. linear group
G circuit evaluation can be reduced to polynomial identity testing over Z or Zp for a prime p and
hence is in coRP. For the linear group SL5(Z) we show the following:

Theorem 9.4. Circuit intersection for SL5(Z) is NEXPTIME-complete.

First we show that CIP(SL5(Z)) is in NEXPTIME similarly to the proof in [84], where it was
shown that the circuit intersection problem for (Z,+, ·) is in NEXPTIME: we can unfold a given
circuit C in exponential time into a formula F (i.e., a circuit where the corresponding graph is
a tree) that is possibly exponentially larger than C. Then we replace nondeterministically every
subexpression A ∪ B by either A or B and obtain a tree F ′ where only multiplication gates are
left. Now we can check in polynomial time (in |F ′|) whether Id = [F ′] ∈ [C]. The harder part
is to show that CIP(SL5(Z)) is NEXPTIME-hard: to do this, we consider CIP(Z,+, ·) where the
input sets are restricted to {−1} and {1} which is known to be NEXPTIME-complete [84]. We
show in two steps that this problem can be reduced to CIP(SL5(Z)): first we show a reduction
to CIP(SL5(Z[x1, . . . , xk])) where k is part of the input and then we show that the variables can
be replaced by large integers with an idea from [6]. The transformation from a circuit C over
P(Z,+, ·) into a circuit D over P(SL5(Z[x1, . . . , xk])) is done as follows: let C = (V, S, rhs) be a
circuit over P(Z,+, ·) and X = {xA,i | A ∈ V, 1 ≤ i ≤ 10} be a set of variables. We define a circuit
D = (V ′, S1,2,1, rhs

′) with multiplication and union gates over P(SL5(Z[X])) as follows: the set of
the new gates V ′ is defined as:

V ′ = {Ai,j,d | A ∈ V, 1 ≤ i, j ≤ 3 with i 6= j, d ∈ {−1, 1}}∪
{TA,k,d | A ∈ V, 1 ≤ k ≤ 3, d ∈ {−1, 1}}∪
{T (A)i,j,d,l | A ∈ V, 1 ≤ i, j ≤ 3 with i 6= j, d ∈ {−1, 1}, 1 ≤ l ≤ 4} .

Recall that with Ti,j we denote the matrix such that all entries in the main diagonal are
1, Ti,j [i, j] = 1 and all other entries are 0. The meaning of the gates in V ′ is the following:
Ai,j,d-gates evaluate to the set {T dai,j | a ∈ [A]C} ∪ IA where IA is a (possibly empty) set of
some invalid matrices, that are explained in detail later. We can basically use the methods of
the reduction from CEP(Z,+, ·) to CEP(SL3(Z)) [57] to obtain this property. More exactly, by
Lemma 3.37 we can simulate the multiplication of integers by a product of four matrices. Here
the following problem arises: for instance, let A1 = {1, 2} and A2 = {3}. Then A3 := A1 · A2 =
{3, 6}. A corresponding set of matrices would be A′1 = {T 1

2,3, T
2
2,3} and A′2 = {T 3

1,2}. Assigning

the formula from Lemma 3.37 to this case leads to {T−12,3 , T
−2
2,3 } · {T 3

1,2} · {T 1
2,3, T

2
2,3} · {T−31,2 } =

{T 3
1,3, T

6
1,3, T

3
1,3T

−1
2,3 , T

6
1,3T

1
2,3}. Since the latter two matrices do not correspond to a value in A3 we

want to mark them as invalid. This will be done by a gate of the form TA,k,d that multiplies the
values at position (2, 3) (that are equal to zero in our example if the matrix corresponds to a value
in A3) with a variable and add these product to column 4 of the matrix. To ensure that matrices
that were once marked as invalid by some variable stay invalid we will multiply the 4th and 5th
rows and columns with some unique new variable before multiplying them once more. This is
done by gates of the form T (A)i,j,d,l. In detail we define the right-hand side of D as follows:
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•
rhs′(TA,k,1) =

{
T
xA,9
4,k T

−xA,10
k,4

}
and

rhs′(TA,k,−1) =
{
T
xA,10
k,4 T

−xA,9
4,k

}
.

• If rhs(A) = B + C or rhs(A) = B · C, then

rhs′(T (B)i,j,d,l) = T
xA,l
4,5 T

xA,l+4

5,4 Bi,j,dT
−xA,l+4

5,4 T
−xA,l
4,5

and
rhs′(T (C)i,j,d,l) = T

xA,l
4,5 T

xA,l+4

5,4 Ci,j,dT
−xA,l+4

5,4 T
−xA,l
4,5 .

(That means e.g. for l = 1 that for every matrix M ∈ Bi,j,d (resp. M ∈ Ci,j,d) we add
xA,5 times the 4th row to the 5th row and −xA,5 times the 5th column to the 4th column.
Afterwards we add xA,1 times the 5th row to the 4th row and −xA,1 times the 4th column
to the 5th column.)

• If rhs(A) = {e} with e ∈ {−1, 1}, then

rhs′(Ai,j,d) =
{
T edi,j
}
.

• If rhs(A) = B ∪ C, then
rhs′(Ai,j,d) = Bi,j,d ∪ Ci,j,d.

• If rhs(A) = B + C, then

rhs′(Ai,j,d) = T (B)i,j,d,1 · T (C)i,j,d,2.

• If rhs(A) = B · C, then let {k} = {1, 2, 3} \ {i, j} and set

rhs′(Ai,j,1) = TA,k,1 · T (B)k,j,−1,1 · T (C)i,k,1,2 · T (B)k,j,1,3 · T (C)i,k,−1,4 · TA,k,−1

and

rhs′(Ai,j,−1) = TA,k,1 · T (B)k,j,−1,1 · T (C)i,k,−1,2 · T (B)k,j,1,3 · T (C)i,k,1,4 · TA,k,−1.

(IfM is a matrix in T (B)k,j,−1,1·T (C)i,k,−1,2·T (B)k,j,1,3·T (C)i,k,1,4, the two outer operations
add −xA,10 times the 4th row to the kth row and xA,10 times the kth column to the 4th
column. Afterwards they add xA,9 times the kth row to the 4th row and −xA,9 times the
4th column to the kth column.)

Finally let S1,2,1 be the output gate of D.

The definitions of rhs′(T (A)i,j,d,l) and rhs′(TA,k,d) lead immediately to the following result:

Lemma 9.5. Let i, j ∈ {1, 2, 3} and i 6= j.

1. If T ei,j ∈ [Ai,j,d]D for some e ∈ Z and rhs′(T (A)i,j,d,l) is defined, then T ei,j ∈ [T (A)i,j,d,l]D for
every 1 ≤ l ≤ 4.

2. For k ∈ {1, 2, 3} \ {i, j} and e ∈ Z holds [TA,k,1]D{T ei,j}[TA,k,−1]D = {T ei,j}.

Lemma 9.6. For the defined circuits C and D the following holds:

Id ∈ [D] exactly if 0 ∈ [C].
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Proof. We first show by induction that for every gate A ∈ V and for every a ∈ [A]C we get
T dai,j ∈ [Ai,j,d]D for every 1 ≤ i, j ≤ 3 with i 6= j. So if 0 ∈ [C], then T 0

1,2 = Id ∈ [S1,2,1]D = [D].
We only show the case d = 1, since for d = −1 exactly the same arguments hold. From now on
fix a pair (i, j) with 1 ≤ i, j ≤ 3 and i 6= j.

1. If A is an input-gate, the assumption holds by definition.

2. If the assumption holds for B and C and rhs(A) = B ∪ C, then a ∈ [A]C implies a ∈ [B]C
or a ∈ [C]C . So T ai,j ∈ [Bi,j,1]D or T ai,j ∈ [Ci,j,1]D. That means T ai,j ∈ [Bi,j,1]D ∪ [Ci,j,1]D =
[Ai,j,1]D.

3. If the assumption holds for B and C and rhs(A) = B +C, then for every a ∈ [A]C there are
b ∈ [B]C and c ∈ [C]C with a = b+ c. We know that T bi,j ∈ [Bi,j,1]D and T ci,j ∈ [Ci,j,1]D. By

Lemma 9.5 we know that also T bi,j ∈ [T (B)i,j,1,1]D and T ci,j ∈ [T (C)i,j,1,2]D. So T bi,jT
c
i,j =

T b+ci,j = T ai,j ∈ [T (B)i,j,1,1]D · [T (C)i,j,1,2]D = [Ai,j,1]D.

4. If the assumption holds for B and C and rhs(A) = B · C, then for every a ∈ [A]C there
are b ∈ [B]C and c ∈ [C]C with a = b · c and we know for k ∈ {1, 2, 3} \ {i, j} that
T dbk,j ∈ [Bk,j,d]D and T dci,k ∈ [Ci,k,d]D. By Lemma 9.5 we know that also T−bk,j ∈ [T (B)k,j,−1,1]D,

T ci,k ∈ [T (C)i,k,1,2]D, T bk,j ∈ [T (B)k,j,1,3]D and T−ci,k ∈ [T (C)i,k,−1,4]D. So

(
T
xA,9
4,k T

−xA,10
k,4

)(
T−bk,jT

c
i,k,T

b
k,jT

−c
i,k

)(
T
xA,10
k,4 T

−xA,9
4,k

)
=
(
T
xA,9
4,k T

−xA,10
k,4

)
T bci,j

(
T
xA,10
k,4 T

−xA,9
4,k

)
=
(
T
xA,9
4,k T

−xA,10
k,4

)
T ai,j

(
T
xA,10
k,4 T

−xA,9
4,k

)
∈ [TA,k,1]D[T (B)k,j,−1,1]D[T (C)i,k,1,2]D[T (B)k,j,1,3]D[T (C)i,k,−1,4]D[TA,k,−1]D

= [Ai,j,1]D.

By Lemma 9.5 we finally get that T
xA,9
4,k T

−xA,10
k,4 T ai,jT

xA,10
k,4 T

−xA,9
4,k = T ai,j ∈ [Ai,j,1]D.

So by induction this direction of the lemma holds.
Let O = ({1, 2, 3} × {4, 5}) ∪ ({4, 5} × {1, 2, 3}) be the set of coordinates of the outer region of a
matrix. To show the other direction of Lemma 9.6 we will show the following claim by induction: if
M ∈ [Ai,j,1]D and M [x, y] = 0 for every (x, y) ∈ O, then M = T ci,j for some c ∈ Z and 1 ≤ i, j ≤ 3

with i 6= j, and c ∈ [A]C . This especially implies that if Id = T 0
i,j ∈ [Ai,j,1]D, then 0 ∈ [A]C . Again

the same arguments hold for d = −1.

1. If Ai,j,1 is an input gate, then the claim holds by definition.

2. If rhs′(Ai,j,1) = Bi,j,1 ∪ Ci,j,1 and M ∈ [Ai,j,1]D with M [x, y] = 0 for (x, y) ∈ O, then
M ∈ [Bi,j,1]D or M ∈ [Ci,j,1]D and so by our assumption M = T ci,j for some c ∈ Z and
c ∈ [B]C or c ∈ [C]C . Hence c ∈ [B]C ∪ [C]C = [A]C and the claim holds.

3. If rhs′(Ai,j,1) = T (B)i,j,1,1 · T (C)i,j,1,2 and M ∈ [Ai,j,1]D with M [x, y] = 0 for (x, y) ∈ O,
then there are matrices M1 ∈ [Bi,j,1]D and M2 ∈ [Ci,j,1]D such that

M =
(
T
xA,1
4,5 T

xA,5
5,4

)
M1

(
T
−xA,5
5,4 T

−xA,1
4,5

) (
T
xA,2
4,5 T

xA,6
5,4

)
M2

(
T
−xA,6
5,4 T

−xA,2
4,5

)
When we assume that M1[x, y] = p 6= 0 for some (x, y) ∈ O, then by multiplication with
the transformation matrices p is multiplied with xA,1 or xA,5 and added to another position
(x′, y′) ∈ O. Since the variables xA,1 and xA,5 are used nowhere else, the value of M [x′, y′]
would not be equal to zero, which contradicts the assumption that M [x, y] = 0 for all
(x, y) ∈ O. So we can assume that M1[x, y] = 0 for all (x, y) ∈ O and since the same
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argumentation works for M2 we can also assume that M2[x, y] = 0 for all (x, y) ∈ O. So by
our induction assumption M1 = T bi,j for some b ∈ Z, M2 = T ci,j for some c ∈ Z, b ∈ [B]C and
c ∈ [C]C . So

M =
(
T
xA,1
4,5 T

xA,5
5,4

)
T bi,j

(
T
−xA,5
5,4 T

−xA,1
4,5

) (
T
xA,2
4,5 T

xA,6
5,4

)
T ci,j

(
T
−xA,6
5,4 T

−xA,2
4,5

)
= T bi,jT

c
i,j = T b+ci,j

and b+ c ∈ [B]C + [C]C = [A]C .

4. If

rhs′(Ai,j,1) = TA,k,1 · T (B)k,j,−1,1 · T (C)i,k,1,2 · T (B)k,j,1,3 · T (C)i,k,−1,4 · TA,k,−1

with k ∈ {1, 2, 3} \ {i, j} and M ∈ [Ai,j,1]D with M [x, y] = 0 for (x, y) ∈ O, then there are
matrices M1 ∈ [Bk,j,−1]D, M2 ∈ [Ci,k,1]D, M3 ∈ [Bk,j,1]D and M4 ∈ [Ci,k,−1]D such that

M =
(
T
xA,9
4,k T

−xA,10
k,4

) (
T
xA,1
4,5 T

xA,5
5,4

)
M1

(
T
−xA,5
5,4 T

−xA,1
4,5

) (
T
xA,2
4,5 T

xA,6
5,4

)
M2

(
T
−xA,6
5,4 T

−xA,2
4,5

)
(
T
xA,3
4,5 T

xA,7
5,4

)
M3

(
T
−xA,7
5,4 T

−xA,3
4,5

) (
T
xA,4
4,5 T

xA,8
5,4

)
M4

(
T
−xA,8
5,4 T

−xA,4
4,5

)(
T
xA,10
k,4 T

−xA,9
4,k

)
.

As argued in the previous case, if w.l.o.g. the matrix M1 has an entry unequal 0 in O, then
by the transformation matrices next to M1 we get a multiple of the unique variable xA,1 or
xA,5 on a position (x′, y′) ∈ O. Again this would imply that M [x′, y′] 6= 0 in contradiction
to our assumption. The same holds for M2,M3 and M4. So we can assume that Mi[x, y] = 0
for 1 ≤ i ≤ 4 and all (x, y) ∈ O. By the induction assumption this means that M1 = T ak,j ,

M2 = T bi,k, M3 = T ck,j and M4 = T di,k and that −a, c ∈ [B]C and b,−d ∈ [C]C . By Lemma 9.5
we get

M =
(
T
xA,9
4,k T

−xA,10
k,4

)
T ak,jT

b
i,kT

c
k,jT

d
i,k

(
T
xA,10
k,4 T

−xA,9
4,k

)
.

Now assume a+ c 6= 0. Then (
∏4
i=1Mi)[k, j] = a+ c 6= 0 and((

T
xA,9
4,k T

−xA,10
k,4

) 4∏
i=1

Mi

(
T
xA,10
k,4 T

−xA,9
4,k

))
[4, j] = M [4, j] = xA,9(a+ c) 6= 0,

which again contradicts our assumption. So we get −a = c. With the same argumentation
we get b = −d and with Lemma 9.5

M =
(
T
xA,9
4,k T

−xA,10
k,4

)
T−ck,jT

b
i,kT

c
k,jT

−b
i,k

(
T
xA,10
k,4 T

−xA,9
4,k

)
=
(
T
xA,9
4,k T

−xA,10
k,4

)
T bci,j

(
T
xA,10
k,4 T

−xA,9
4,k

)
= T bci,j .

Finally, since b ∈ [B]C and c ∈ [C]C , it holds bc ∈ [B]C · [C]C = [A]C .

So Lemma 9.6 holds and we get that CIP(SL5(Z[x1, . . . , xk])) is NEXPTIME-hard. Now we
show that we can reduce CIP for SL5(Z[x1, . . . , xk]) to CIP for SL5(Z): Let D be a circuit over
P(SL5(Z[x1, . . . xk])). By induction we see that for n = |D| the entries of the matrices in [D] are
polynomials with the following properties:

• The number of monomials in every polynomial is bounded by 52
2n

.

• The coefficients are bounded by 52
2n

.

• The degrees are bounded by 2n.
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Since the proof of Proposition 2.1 in [6] essentially also works for these bounds, we know that

for Bn,i = 22
in2

for every of the polynomials P (x1, . . . , xk) that occurs in a matrix in [D] holds
P (x1, ..., xk) = 0 exactly if P (Bn,1, . . . , Bn,k) = 0.

Now we define a circuit D′ over P(SL5(Z)) in the following way: starting with the circuit D,
we add gates Xi,j,d,m for 1 ≤ i, j,≤ 5, d ∈ {−1, 1} and 0 ≤ m ≤ kn2. Then we replace every input

gate that evaluates to T dxli,j with 1 ≤ l ≤ k by the gate Xi,j,d,ln2 . With some h ∈ {1, . . . , 5} \ {i, j}
and for 1 ≤ m ≤ kn2 we set

rhs′(Xi,j,1,m) = Xh,j,−1,m−1Xi,h,1,m−1Xh,j,1,m−1Xi,h,−1,m−1,

rhs′(Xi,j,−1,m) = Xh,j,−1,m−1Xi,h,−1,m−1Xh,j,1,m−1Xi,h,1,m−1,

and rhs′(Xi,j,0) = T 2
i,j . Then [Xi,j,d,m]D′ = T d2

2m

i,j , [Xi,j,d,ln2 ]D′ = T
Bn,l
i,j and we get that Id ∈ [D]

exactly if Id ∈ [D′]. This finishes the proof of Theorem 9.4.
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Chapter 10

Overview and outlook

In Chapter 4 it was shown that the classical word problem for a f.g. linear group G is DLOGTIME-
uniform TC0-complete, if G is infinite solvable and in DLOGTIME-uniform NC1 if G is virtually
solvable (Theorem 4.2).

The following tables give a summarizing overview about the results for the circuit evaluation
problem in this thesis and the results that were used.

If not marked differently we assume that in the following table k is part of the input.

Unitary rings Additional properties Complexity Reference
(Z,+, ·) constant multiplicative depth C=L-complete Lemma 5.10
(Z,+, ·) poly. bounded formal degree C=LogCFL-complete Lemma 5.13
(Z,+, ·) - coRP [6]

(Z[x1, . . . , xk],+, ·) skew, k constant C=L Lemma 5.19
(Z[x1, . . . , xk],+, ·) skew coRNC [48]
(Z[x1, . . . , xk],+, ·) powerful skew coRNC Theorem 6.1
(Z[x1, . . . , xk],+, ·) - coRP [45]
(Zn[x1, . . . , xk],+, ·) skew, k constant DET Lemma 5.19
(Zn[x1, . . . , xk],+, ·) skew coRNC [48]
(Zp[x1, . . . , xk],+, ·) powerful skew p prime coRNC Theorem 6.1
(Zn[x1, . . . , xk],+, ·) - coRP [45]

In the following table let

• G1 be a direct product of finitely many copies of Z and Zp for p prime,

• G2 be f.g. abelian,

• H be f.g. virtually abelian,

• Fk be the free group of rank k with a normal subset N such that Fk/[N,N ] is f.g. virtually
abelian, and

• G1+
√
2 be the polycyclic group defined in section 7.6.
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F.g. group Additional properties Complexity Reference
(Z,+) - C=L-complete [84]

nilpotent torsion-free, non-trivial C=L-complete Theorem 7.10
nilpotent - DET Theorem 7.16

linear − coRP [57]
G1 oH - coRNC Corollary 7.20
G2 oH - coRP Corollary 7.21
G2 oH H is finite DET Corollary 7.21

Fk/[N,N ] - coRNC Theorem 7.23
G1+

√
2 - ≥L PIT(Z) for powerful Theorem 7.25

skew circuits

Finite semigroup Additional properties Complexity Reference
non-solvable finite semigroup - P-complete [19]

solvable finite semigroup - DET [19]

acyclic semigroup - AC0(NL) [19]

Finite semiring Additional properties Complexity Reference
B2 - P-complete [52]

(Zn,+, ·) - P-complete Lemma 8.1
R R• non-solvable P-complete [19]
R R not {0, 1}-free P-complete Theorem 8.2
R R• solvable, R {0, 1}-free DET Theorem 8.2

The last table summarizes the results about the circuit intersection problem:

Structure Additional properties Complexity Reference
finite semigroup S S is a solvable local group DET Theorem 9.3
finite semigroup S S contains a monoid P-complete Theorem 9.3

(Z,+) - NP-complete [62]
F2 - PSPACE-complete [54]

SL5(Z) - NEXPTIME-complete Theorem 9.4
(Z,+, ·) - NEXPTIME-complete [84]

Additionally it was shown that equality-testing for n-dimensional SLPs is in coRNC (Theo-
rem 6.7).

There are still many open questions concerning circuit evaluation for various algebraic struc-
tures: in the context of groups it would be interesting to know a better upper complexity bound
for circuit evaluation for polycyclic groups. Of course we know that the problem is in coRP, since
polycyclic groups are linear, but there is some evidence that this problem could be in coRNC: since
polycyclic groups are triangularizable over some ring R, the corresponding circuit looks similarly
to the one for torsion-free nilpotent groups, but since the diagonal elements are not equal to 1, one
can get large powers of elements. So these circuits can be seen as some kind of powerful circuits,
where on the inputs there are elements with large powers. But since it is a famous open problem,
whether modular powering is in NC, it is not clear even for R = Z, whether those circuits can be
evaluated in coRNC. On the other hand Nikolaev presented recently a joint work with Ushakov,
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where it was shown that for polycyclic groups that are not virtually nilpotent the subset sum
problem (for further information see e.g.[64]) is NP-complete. It seems possible that with their
techniques one can show that for every polycyclic group that is not virtually nilpotent circuit
evaluation is as least as hard as polynomial identity testing for powerful skew circuits over Z.

In [70] the authors considered circuit evaluation for finite groupoids (a groupoid is a set S with
an operation · that, in contrast to semigroups, need not to be associative). They found a subclass
of groupoids (so-called polyabelian groupoids) where circuit evaluation is in DET. Two questions
arise: on the one hand it could be possible to enlarge this subclass, since they give an example for
a groupoid S that is not polyabelian, but one can see with the ideas from Chapter 8, that circuit
evaluation for this groupoid is in DET. On the other hand, one could try to extend the result to
some algebraic structure (S,+, ·) where (S, ·) is a groupoid and (S,+) is a commutative semigroup
as it was done in Chapter 8 for semigroups. Picking up on this idea one could also extend the
setting from finite semirings to a structure where + is not commutative anymore. The final goal
in the setting of finite structures would be to show that for every finite algebraic structure, circuit
evaluation is either in DET or P-complete, i.e., that there are no P-intermediate circuit evaluation
problems for finite structures. This can be seen analogously to the famous conjecture of Feder and
Vardi, that every constraint-satisfaction problem is either in P or NP-complete. See e.g. [88] for
more information about this.

It would be also interesting to see, whether our techniques from Chapter 8 can be extended to
get some results for the circuit intersection problem for infinite semigroups. As we have seen in
Chapter 9 one should not hope for efficient algorithms in that setting. Here it would be interesting
to determine the exact complexity of the circuit intersection problem for unitriangular groups. We
know that this problem is in PSPACE and NP-hard, but even for the so-called discrete Heisenberg
group UT3(Z) no better bounds are known.

Our coRNC2 identity testing algorithm for powerful skew circuits only works for the coefficient
rings Z and Zp with p prime. It is not clear how to extend it to Zn with n composite. The
Agrawal-Biswas identity testing algorithm also works for Zn with n composite. But the problem
is that the Fich-Tompa algorithm only works for polynomial rings over Zp with p prime. For a
f.g. abelian group G and a f.g. virtually abelian group H it remains open whether CEP(G oH) is
in coRNC. In the context of polynomial identity testing Arvind, Mukhopadhyay and Raja showed
recently [14] that circuits over non-commutative polynomials can be evaluated in coRP, if the
number of monomials in the represented polynomials is bounded by 2n. This could lead to results
for circuit evaluation for wreath products over free groups.

For equality testing for multi-dimensional straight-line programs it remains open whether a
polynomial time algorithm exists. For the one-dimensional (string) case, a polynomial time algo-
rithm exists. Here, it remains open, whether equality testing is in NC.
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[18] D. A. M. Barrington and D. Thérien. Finite monoids and the fine structure of NC1. Journal
of the Association for Computing Machinery, 35(4):941–952, 1988.

95



96 BIBLIOGRAPHY

[19] M. Beaudry, P. McKenzie, P. Péladeau, and D. Thérien. Finite monoids: From word to circuit
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72:413–421, 1912. In German.

[33] R. A. DeMillo and R. J. Lipton. A probabilistic remark on algebraic program testing. Infor-
mation Processing Letters, 7(4): 193–195, 1978.

[34] V. Diekert, A. G. Myasnikov, and A. Weiß. Conjugacy in Baumslag’s group, generic case
complexity, and division in power circuits. In Proceedings of the 11th Symposium on Latin
American Theoretical Informatics, LATIN 2014, volume 8392 of Lecture Notes in Computer
Science, 1–12. Springer, 2014.

[35] W. Eberly. Very fast parallel polynomial arithmetic. SIAM Journal on Computing, 18(5):955–
976, 1989.

[36] S. Eilenberg, and M. P. Schützenberger. On pseudovarieties. Advances in Mathematics, Vol.
19, No.3, Academic Press, New York and London, 1976.

[37] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, and W. P.
Thurston. Word Processing in Groups. Jones and Bartlett, Boston, 1992.

96



BIBLIOGRAPHY 97

[38] F. E. Fich and M. Tompa. The parallel complexity of exponentiating polynomials over finite
fields. In Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing,
STOC ’85, pages 38–47. ACM, 1985.

[39] J. S. Golan. Semirings and their Applications. Springer, 1999.

[40] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation: P -
Completeness Theory. Oxford University Press, 1995.

[41] M. Gromov. Hyperbolic groups. In S. M. Gersten, editor, Essays in Group Theory, number
8 in MSRI Publ., 75–263. Springer, 1987.
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[47] A. Jeż. Faster fully compressed pattern matching by recompression. Proceedings of the 39th
International Colloquium on Automata, Languages and Programming, ICALP 2012, volume
7391 of Lecture Notes in Computer Science, 533 –544. Springer, 2012.

[48] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving
circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

[49] I. Kapovich, A. Miasnikov, P. Schupp, and V. Shpilrain. Generic-case complexity, decision
problems in group theory, and random walks. Journal of Algebra, 264(2):665–694, 2003.

[50] M. I. Kargapolov and J. I. Merzljakov. Fundamentals of the Theory of Groups, volume 62 of
Graduate Texts in Mathematics. Springer, New York, 1979.

[51] S. R. Kosaraju. On parallel evaluation of classes of circuits. In Proceedings of the 10th Con-
ference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS
1990, volume 472 of Lecture Notes in Computer Science, 232–237. Springer, 1990.

[52] R. E. Ladner. The circuit value problem is log space complete for P. SIGACT News, 7(1):18–
20, 1975.

[53] R. J. Lipton and Y. Zalcstein. Word problems solvable in logspace. Journal of the Association
for Computing Machinery, 24(3):522–526, 1977.

[54] M. Lohrey. Word problems and membership problems on compressed words. SIAM Journal
on Computing, 35(5):1210 – 1240, 2006.

[55] M. Lohrey. Algorithmics on SLP-compressed strings: A survey. Groups Complexity Cryptol-
ogy, 4(2):241–299, 2012.

[56] M. Lohrey, B. Steinberg, and G. Zetzsche. Rational subsets and submonoids of wreath prod-
ucts. Information and Computation, 2014.

97



98 BIBLIOGRAPHY

[57] M. Lohrey. The Compressed Word Problem for Groups. SpringerBriefs in Mathematics.
Springer, 2014.

[58] M. Lohrey. Rational subsets of unitriangluar groups. International Journal of Algebra and
Computation, 25(1-2):113–121, 2015.
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