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Abstract

This thesis studies different problems in quantum information theory and the foun-
dations of quantum mechanics. These include the quantum marginal problem, the
problem of causal inference in quantum mechanics, and the problem of indefinite
causal order in quantum processes.

We start by considering an instance of the quantum marginal problem in which our
goal is to detect genuine multiparticle entanglement from the marginal information,
i.e. correlations in the subsystems. In simple words, genuine multiparticle entangle-
ment means that all particles are entangled with each other. Moreover, we consider an
exotic case where the marginals themselves are separable, i.e. do not manifest entan-
glement if considered separately. Our results show that this phenomenon, which we
call emergence of multiparticle entanglement, occurs frequently and for an arbitrary
number of particles. In particular, we present a systematic method to look for such
states and present various examples of systems up to 6 qubits (two-level systems). In-
terestingly, already for four qubits there exist a pure state with this properties which
suggests that this phenomenon can be observed in the experiment.

In the subsequent part of the thesis we define and study a particular class of genuine
entangled states, called hypergraph states, in systems of qudits (d-level systems). This
class of states is a generalization of graph states, which are used in measurement-
based quantum computing and error-correcting codes. Hypergraph states can be ob-
tained by applying certain sequence of entangling gates, associated with hyperedges,
on systems of qudits, associated with vertices. In this thesis we provide a detailed
analysis of equivalence of tripartite hypergraph states in dimension 3 and 4 under
local operations.

Then we pass on to the problem of explaining correlations observed in experiment
by classical causal models. A particular example of a causal model is a local hidden
variable model of Bell’s test. Cause-effect relations, or causal links, in causal mod-
els are given by the underlying causal structures, which often can be represented by
graphs. Given a causal structure one can derive constraints for correlations to be com-
patible with this structure, which in the case of Bell’s theorem are the famous Bell
inequalities. Alternatively, given experimental data, the task would be to determine
the underlined causal model, which is a problem of causal inference. In some exper-
iments of causal inference the correlations among all variables cannot be accessed or
are not collected. In this case one faces a type of the marginal problem where one
has to judge about possible underlined causal structures from marginal data. Clearly,
the success of the causal inference in this case depends strongly on the configuration
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of accessible marginals, which is known as the marginal scenario. In this thesis we
provide a general theory connecting marginal scenario and possible causal structures.
We derive a necessary condition on causal structures to be distinguishable from a
given marginal scenario. Among others, this result can help us to find new interesting
scenarios for nonlocality tests.

Finally, we discuss the problem of indefinite causal order in quantum mechanics.
Causal order puts restrictions on causal relations in two systems of random variables
generated by two different events. In particular, it restricts these causal links to be
directed in the same way, from one event to the other. An example of causal order is a
space-time manifold. Recently, it has been realized that physical theories do not nec-
essarily have to comply with the idea of a definite causal order. For example, one can
imagine a theory where the causal order is a dynamical element of this theory and can
be in a sort of “quantum superposition". In this thesis we derive inequalities, similar
to those of Bell, but for testing indefiniteness of causal order. In particular, inequalities
are derived for information-theoretic quantities allowing for testing information flow
in processes with indefinite causal order.
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Zusammenfassung

Diese Arbeit untersucht verschiedene Probleme in der Quanteninformationstheorie
und die Grundlagen der Quantenmechanik. Dies beinhaltet das Quantenmarginalien-
problem, das Problem der Kausalfolgerung in der Quantenmechanik und das Problem
der unbestimmten Kausalordnung in Quantenprozessen.

Wir beginnen mit einem Beispiel aus dem Bereich des Quantenmarginalienproblems.
Hierbei ist es unser Ziel, eine echte Mehrteilchen-Verschränkung aus der Marginalien-
information, d.h. aus Korrelationen in den Teilsystemen, zu erkennen. Echte Mehr-
teilchen-Verschränkung bedeutet, dass alle Teilchen miteinander verschränkt sind.
Darüber hinaus betrachten wir einen exotischen Fall, bei dem die Marginale selbst
separabel sind, d.h. keine Verschränkung beinhalten. Unsere Ergebnisse zeigen, dass
dieses Phänomen, das wir als Auftreten der Mehrteilchen-Verschränkung bezeichnen,
häufig und für eine beliebige Anzahl von Teilchen auftritt. Insbesondere stellen wir
eine systematische Methode vor, um solche Zustände zu suchen. Hierzu geben wir
verschiedene Beispiele von Systemen, die aus bis zu sechs Qubits (zweistufige Syste-
me) bestehen. Interessanterweise gibt es bereits für vier Qubits einen reinen Zustand
mit diesen Eigenschaften, was darauf hindeutet, dass dieses Phänomen im Experiment
beobachtet werden kann.

Im darauffolgenden Teil der Arbeit definieren und analysieren wir eine bestimmte
Klasse von echt verschänkten Zuständen, sogenannte Hypergraph-Zustände, in Syste-
men von Qudits (d-Level-Systeme). Diese Klasse von Zuständen ist eine Verallgemei-
nerung von Graphenzuständen, die in messbasierten Quantencomputern und fehler-
korrigierenden Codes verwendet werden. Hypergraph-Zustände können durch An-
wenden einer bestimmten Abfolge von Verschränkungsgattern, die mit Hyperkanten
assoziiert sind, auf Systeme von Qudits, die mit Knoten assoziiert sind, erzeugt wer-
den. In dieser Arbeit geben wir eine detaillierte Analyse der Äquivalenz von dreiteil-
chen Hypergraph-Zuständen unter lokalen Operationen in Dimension drei und vier.

Danach befassen wir uns mit dem Problem der Erklärung von Korrelationen, die im
Experiment durch klassische Kausalmodelle beobachtet wurden. Ein besonderes Bei-
spiel für ein Kausalmodell ist ein lokales verstecktes Variablenmodell im Bell Test.
Ursache-Wirkungs-Beziehungen, oder Kausal-Verbindungen, in Kausal-Modellen wer-
den durch die zugrunde liegenden Kausalstrukturen gegeben, die oft durch Graphen
dargestellt werden können. Für eine gegebene kausale Struktur kann man Einschrän-
kungen für Korrelationen ableiten, um mit dieser Struktur kompatibel zu sein, was im
Fall von Bell’s Theorem die berühmten Bell-Ungleichungen sind. Alternativ, bei gege-
benen experimentellen Daten, wäre die Aufgabe, das zugrundeliegende Kausalmodell
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zu bestimmen, was ein Problem der kausalen Inferenz ist. In einigen Experimenten der
kausalen Inferenz kann auf die Korrelationen zwischen allen Variablen nicht zugegrif-
fen werden oder sie werden nicht gesammelt. In diesem Fall steht man einer Art des
Marginalienproblems gegenüber, wo man über mögliche zugrundeliegende Kausal-
strukturen aus Marginaliendaten folgern muss. Offensichtlich hängt der Erfolg der
kausalen Inferenz in diesem Fall stark von der Konfiguration der zugänglichen Mar-
ginalien ab, die als das Marginalienszenario bekannt ist. In dieser Arbeit geben wir
eine allgemeine Theorie, die das marginale Szenario und mögliche Kausalstrukturen
verbindet. Wir erhalten eine notwendige Bedingung für kausale Strukturen, um diese
von einem gegebenen Marginalienszenario zu unterscheiden. Dieses Ergebnis kann
uns dabei helfen, neue interessante Szenarien für Nichtlokalitätsprüfungen zu finden.

Schließlich diskutieren wir das Problem der unbestimmten Kausalordnung in der
Quantenmechanik. Ein Beispiel für Kausalordnung ist ein Raum-Zeit-Mannigfaltigkeit.
Neure Ekentnisse zeigen, dass physikalische Theorien nicht unbedingt mit der Idee
einer bestimmten Kausalordnung übereinstimmen müssen. Zum Beispiel kann man
sich eine Theorie vorstellen, in der die Kausalordnung ein dynamisches Element die-
ser Theorie ist und in einer Art Quantenüberlagerung sein kann. In dieser Arbeit leiten
wir Ungleichheiten, ähnlich denen von Bell, aber für die Prüfung der Unbestimmtheit
von Kausalordnung her. Insbesondere werden Ungleichungen für informationstheore-
tische Größen abgeleitet, die es ermöglichen, den Informationsfluss in Prozessen mit
unbestimmter Kausalordnung zu testen.
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Chapter 1

Introduction

A central property of complex quantum systems is the possibility of being entangled,

meaning in the simplest case that the wave function of the system does not factorize.

This phenomenon was first described by Erwin Schrödinger in 1935 [1] and it has

been under extensive investigation ever since. In the early days of quantum mechanics

entanglement created a lot of confusion among scientists, including Einstein, Podolsky,

and Rosen (EPR), who criticized quantum theory in their famous argument of 1935

[2]. In 1964 John Bell showed in his famous theorem [3] that the assumptions of EPR

argument are inconsistent with predictions of quantum mechanics and thus should

be rejected. In 1971 the Bell’s theorem was tested experimentally by Franson and

in 1981 by Alan Aspect [4], however, it was not until 2015 when this argument was

indisputably proven experimentally [5–7].

One reason why quantum mechanics is so counter-intuitive is because it contradicts

our usual understanding of causality. For example, if one of the entangled particles is

being measured, it changes the quantum state of the whole system which might seem

to affect the outcomes of measurements on the other particles. This phenomenon was

described by Einstein as “spooky action at a distance", because it looked as if the parti-

cle on one side of the experiment can signal to the other particle faster than the speed

of light. Indeed, measurements on a complex quantum system cannot be explained

using classical ideas of cause and effect, which was systematically investigated by

Wood and Spekkens [8] on the example of Bell’s theorem [3].

Apart from contradicting classical models, entanglement is the central resource for

quantum information tasks. It can be used for lossless transfer of quantum informa-

tion over large distances via protocols of quantum teleportation [9] or remote state

preparation [10]. Entanglement allows for establishing of a secret key among trusted

parties where security is provided by a fundamental property of entanglement, called
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Introduction 2

monogamy [11]. Moreover, entanglement provides speed up in computations [12–15]

and gives advantages in numerous communication tasks, including dense coding [16],

random access coding [17], etc.

The resource, used in most of these applications, is the pair of entangled particles.

This is due to the fact that bipartite entanglement is well understood and is easier to

achieve experimentally. Entanglement of many-body systems, on the other hand, can

reveal many surprising phenomena, the use of which is yet to be discovered. One of

such phenomena is studied in one part of this thesis and can be regarded as emergence

of multiparticle entanglement. The idea is that in multiparticle systems entanglement

can not be present in the subsystems, or marginals, but at the same time correlations

in these marginals indicate that in the global state all particles are entangled with each

other.

The so-called graph states [18] are one of the most famous examples of multipartite

entangled states with fruitful practical applications [15]. Recently, their direct general-

ization, hyperhraph states [19], were shown [20] to display an exponential violation of

local realism, similar to graph states, with an additional property of robustness against

a particle loss. In this thesis we consider a generalization of hypergraph states, defined

for two-level systems, to d-level systems.

Analogously to entanglement, most of the studied scenarios displaying the discrep-

ancy of quantum theory from classical models are of the bipartite nature. One example

is the Bell’s theorem. However, studying more complicated scenarios and models can

lead to a better understanding of nonlocality, the property of quantum mechanics pre-

dicted by the theorem of Bell [3]. In another part of this thesis we apply the machinery

of causal structures, the graphical language to represent dependencies among random

variables, to study such complex scenarios. We derive a necessary condition on causal

structures to be distinguishable from observations in a given set of subsystems. As an

application, this result indicates which causal structures can be used to test nonlocality

under such restrictions.

An important technique, used in the aforementioned analysis of causal structures, is

the entropic approach [21, 22]. This method, which sometimes is called entropy vector

method [23], was initially introduced in Ref. [24] to calculate bounds on transmission

rates in complex communication networks. In this method an important notion is

non-Shannon-type inequalities, which when taken into consideration, help to derive

tighter information-theoretic bounds. Together with the result on indistinguishably of

causal structures in this thesis we provide an improvement to the method of entropy

vectors, which leads to the derivation of non-Shannon-type inequalities.



Introduction 3

In the last part of the thesis we consider processes for which the definite casual order

may not exist. Recently, such processes were defined in the formalism of so-called

process matrices [25]. We derive inequalities on entropy region of processes compati-

ble with a definite causal structure. These inequalities are similar to Bell inequalities

that bound the correlations compatible with the theories assuming local realism.

This thesis is based on five publications Refs. [26–30] also listed in the end of the

thesis. Three of this papers are journal publications and two are submitted to the

publication. The main content of the thesis is divided into six chapters. In the cur-

rent chapter we have given a general introduction to the fields of studies and in the

subsequent Chapter 2 a more detailed description of the preliminary results is given.

Chapter 3 describes the results of Refs. [26, 29] on which I have collaborated with

Marius Paraschiv, Tobias Moroder and Otfried Gühne. Chapter 4 gives a partial re-

port of Ref. [28], the joint work with Frank E.S. Steinhoff, Christina Ritz, and Otfried

Gühne. Chapter 5 is dedicated to the results of Ref. [27], a project in collaboration with

Costantino Budroni and Rafael Chaves. The last Chapter 6 summarizes the work done

in collaboration with Alastair Abbott, Cyril Branciard, Rafael Chaves, and Costantino

Budroni [30].



Chapter 2

Preliminaries

This chapter introduces notions and definitions, which will be used later in this thesis.

We will start with a formal definition of entanglement. After, we will discuss the

argument of Bell and its formulation in terms of classical causal models. Finally,

we give a broad description of causal models, including the framework of indefinite

causal order.

Basic notions of Hilbert spaces, quantum states, quantum transformations, and quan-

tum measurements are used in this thesis without definitions. For these definitions

please see Ref. [31]. We will use terms qubit and qudit for two- and d-level quantum

systems respectively. A qubit is the quantum analogy of a bit in classical information

theory.

2.1 Entanglement

2.1.1 Bipartite entanglement

Pure states

We begin with the notion of a pure entangled state of two systems, controlled by two

experimenters Alice and Bob. For each system we associate a Hilbert space HA and

HB of dimensions dA and dB respectively, then a pure state of the combined system

is represented by a normalized vector |ψ〉 of the product space H = HA ⊗ HB of

dimension d = dAdB. A state |ψ〉 can be written as

|ψ〉 =
dA

∑
i=1

dB

∑
j=1

cij|ai〉 ⊗ |bj〉, (2.1)

4



Preliminaries 5

where |ai〉 and |bj〉 are orthonormal basis vectors of spaces HA and HB respectively

and cij are some complex coefficients, chosen such that the state |ψ〉 is normalized. A

state which can be written as Eq. (2.1) with only one element of the sum is called a

product state. In this thesis a shorthand notation |aibj〉 is used for all product states

|ai〉 ⊗ |bj〉. If a pure state |ψ〉 is not product, it is called entangled.

Mixed states

In general, the quantum state of a system is not pure and can be described by a positive

linear Hermitian operator of a unit trace. We will call this operator a density operator, or

a density matrix1 and denote as $. We say that a matrix (or operator) is positive definite

if all its eigenvalues are positive. For a pure state |ψ〉 density matrix is defined as an

outer product of vector |ψ〉 with its Hermitian conjugate, i.e. $ = |ψ〉〈ψ|. In general,

any density matrix can be written as a convex mixture of pure states, i.e. as

$ = ∑
i

pi|ψi〉〈ψi|, (2.2)

where pi are positive coefficients, and ∑i pi = 1. Coefficients pi can be considered as

probabilities with which the quantum system is in one of the states |ψi〉.

A quantum system can be in a mixed state if it is part of a larger system, which itself is

in a pure state. For example, consider the state from Eq. (2.1). The state of the system

controlled by Alice can be written as

$A = trB(|ψ〉〈ψ|) =
dA

∑
i,k=1

dB

∑
j=1

cijc∗kj|ai〉〈ak|, (2.3)

where trB denotes a partial trace over the Bob’s system. If Alice and Bob perform

measurements on the state |ψ〉 and do not communicate, the expectation value of

Alice measurement of some observable A will be described as tr(A$A). Everywhere

throughout the thesis when speaking about expectation values we will always mean

the asymptotic limit of the statistics of measurements of the same observable on the

copies of the same state. States of the subsystems, like $A, are often called reduced states

and the state of the whole system – global state. The problem of studying relations

between global state and reduced states is known as marginal problem and is one of the

central parts of this thesis.

Let us continue with definition of entanglement for bipartite mixed states.

1More precisely, density matrix is a matrix of moments of the corresponding density operator taken
with respect to some orthonormal basis. However, in this thesis both terms are used interchangeably.
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Definition 2.1. A bipartite state $AB is called separable if there exist a decomposition

$AB = ∑
i

pi$
i
A ⊗ $i

B, (2.4)

with pi ≥ 0, ∀i and where $i
A and $i

B are mixed states of Alice’s and Bob’s systems. If

the above decomposition cannot be found, the sate is called entangled.

Separable states can be introduces in an equivalent way as states, which can be pre-

pared from product states by means of local operations and classical communication

(LOCC). LOCC are the class of operations which two parties can perform by acting lo-

cally on quantum systems in their laboratories with possible coordination by classical

communication. First, note that taking into account the definition (2.2) every separable

state can be written as

$AB = ∑
i

p̃i|ai〉〈ai|A ⊗ |bi〉〈bi|B, (2.5)

for some new distribution p̃i and |ai〉, |bi〉 which are now pure states of Alice’s and

Bob’s systems. It is then easy to see that state of the form (2.5) can be prepared

by means of LOCC. Let Alice have access to a random variable I with distribution

p̃i from (2.5) and let Alice’s and Bob’s systems to be in the initial state |00〉. After

obtaining an outcome i of the variable I, Alice sends it to Bob and then depending on

i Alice and Bob can apply local unitary transformations on their systems bringing the

sate to |aibi〉. The resulting state is exactly the one, presented in Eq. (2.5).

From the same reasoning it follows that no entanglement can be created via LOCC.

Additionally, as we mentioned in the introductory chapter, entanglement is important

for performing various tasks like quantum teleportation, quantum key distribution,

quantum computation, etc. [32]. These facts give rise to an alternative definition of

entanglement as a resource for quantum information tasks. As any resource, entan-

glement needs to be quantified which can be done by so-called entanglement measures

(see Ref. [33]).

The entanglement of pure bipartite states is fully characterized by their Schmidt decom-

position.

Definition 2.2. The Schmidt decomposition of a state |ψ〉 is a sum

|ψ〉 =
r

∑
i=1

λi|αi〉 ⊗ |βi〉, (2.6)
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with positive coefficients λi and vectors |αi〉 ∈ HA and |βi〉 ∈ HB, such that ∑r
i=1 λ2 =

1, and 〈αi|αj〉 = 〈βi|β j〉 = δij. The proof that every pure state can be written in a form

of Eq. (2.6) can be found in Ref. [32]. Schmidt coefficients λi are usually taken to be

real and positive. This can be always done by keeping the phase in one of the vectors

|αi〉 or |βi〉. Squares of λi equal to the common eigenvalues of both reduced states $A

and $B and are usually calculated in this way. It is clear that if |ψ〉 is entangled, then

$A and $B are mixed and vice-versa. Based on that fact, one can introduce a measure

of entanglement of pure states as, for instance, entropy of the reduce state.

The sum limit r in Eq. (2.6) is called the Schmidt rank and it characterizes the type of

entanglement observed in the state. We will discuss the importance of this types, or

classes, of entanglement later in Section 2.1.3.

For the case of two qubits the Schmidt decomposition (2.6) can contain either 1 or 2

terms, which corresponds to product states and entangled states respectively. Ones of

most famous two-qubit entangled states are the so-called Bell states defined as

|Φ+〉 = 1√
2
(|00〉+ |11〉), |Φ−〉 = 1√

2
(|00〉 − |11〉), (2.7)

|Ψ+〉 = 1√
2
(|01〉+ |10〉), |Ψ−〉 = 1√

2
(|01〉 − |10〉).

PPT criterion

Although the Schmidt decomposition (2.6) completely characterizes entanglement of

pure bipartite states, achieving the same in mixed states is not as straightforward.

However, some other criteria can be used to detect entanglement in the states. Here

we will mention one of the most famous one, called PPT criterion (or Peres-Horodecki

criterion). For the review on entanglement criteria see Ref. [33].

Definition 2.3. A bipartite state $ shared between two parties A and B is said to have

a positive partial transpose (PPT) if

$TA ≥ 0, (2.8)

that is, ρTA has no negative eigenvalues. $TA denotes the partial transpose of the state

$ with respect to party A and can be written as follows

$TA =
dA

∑
i,j=1

dB

∑
k,l=1

ρij,kl |j〉〈i| ⊗ |k〉〈l|, (2.9)
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for the following decomposition of the state $

$ =
dA

∑
i,j=1

dB

∑
k,l=1

ρij,kl |i〉〈j| ⊗ |k〉〈l|. (2.10)

For simplicity we will call states which have positive partial transposition PPT states

and, conversely, states for which ρTA has negative eigenvalues we will call NPT states.

From (2.4) it is easy to see that separable states are PPT, since

$TA
AB = ∑

i
pi($

i
A)

T ⊗ $i
B = ∑

i
pi($

i
A)
∗ ⊗ $i

B, (2.11)

where ($i
A)
∗ is a complex conjugate of $i

A. Clearly, (2.11) is a valid separable state, i.e.

is positive semidefinite. PPT criterion was first introduced in Ref. [34] as a necessary

condition for separability and later in Ref. [35] was proven to be sufficient for 2⊗ 2

and 2⊗ 3 systems.

This criterion gives rise to entanglement measure called negativity, which can be found

as follows:

N ($AB) = ∑
i

|λi| − λi

2
, (2.12)

where the sum is taken over all the eigenvalues of the partial transposition $TA
AB of the

state. It is easy to see that (2.12) is nothing but the absolute of the sum of negative

eigenvalues of the partial transposition.

Apart from the fact that PPT criterion is very easy to test, it gives rise to the very

important tool of decomposable entanglement witnesses.

Entanglement witness

It can be easily seen from Eq. (2.4) that the set of separable states is convex. It ensures

that in the Hilbert space of bipartite states for any entangled state there exists a hy-

perplane separating this state from the set of separable states. In entanglement theory

such hyperplanes are called entanglement witnesses [36].

Definition 2.4. An entanglement witness is an observable W that is non-negative on

all separable states and has a negative expectation value on at least one entangled

state.

IfW is an entanglement witness and tr(W$) < 0, we say that the entanglement of the

state $ is detected byW .
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For the two-party case a witness W is called decomposable if it can be written in terms

of two positive semidefinite operators P and Q, (P ≥ 0 and Q ≥ 0) as

W = P + QTA , (2.13)

where TA denotes partial transposition with respect to party A. One can easily see2

that W from Eq. (2.13) is an entanglement witness, since for any separable (and thus

PPT) state $, tr(W$) = tr(P$) + tr(QTA $) = tr(P$) + tr(Q$TA) ≥ 0 and for any NPT

state σ with an eigenstate |ψ〉 of σTA , corresponding to the negative eigenvalue of σTA ,

the witness (2.13) with P = 0, Q = |ψ〉〈ψ| detects σ.

In general, finding an entanglement witness is a hard task, on the other hand, decom-

posable witnesses can be effectively found with the help of semidefinite programing

(SDP)3. Decomposable entanglement witnesses can be generalized to efficiently detect

genuine multipartite entanglement [37] in systems of many particles.

2.1.2 Multipartite entanglement

It is clear that in multipartite quantum systems some subsystems can be entangled

among each other and some not. However, perhaps the most interesting situation is

when all particles are entangled with each other, which is often called genuine multi-

partite entanglement. To give a strict definition, we will consider three-particle case,

however, the definition can be extended to an arbitrary number of particle. Detailed

discussions can be found in Refs. [33, 37, 38]. First, a state $ABC is said to be fully

separable if it can be written as

$ = ∑
i

pi$
i
A ⊗ $i

B ⊗ $i
C, (2.14)

where the pi form a probability distribution. A less strict condition is separability of a

state $ABC with respect to some bipartition, e.g. A|BC, which in this case means that

the sate can be written as

$ = ∑
i

pi$
i
A ⊗ $i

BC, (2.15)

where, again, pi ≥ 0 and ∑i pi = 1. If the global state of the system can be written as

$bs = p1ρ
sep
A|BC + p2$

sep
B|AC + p3$

sep
C|AB, with p1 + p2 + p3 = 1, p1,2,3 ≥ 0, (2.16)

2We have used here the fact that for two Hermitian operators Q and $ from HA ⊗HB tr(QTA $) =
tr(Q$TA ). Latter can be imitatively seen after writing down decomposition of both operators into the
sum of direct products in HA and HB.

3We will review SDP later in this chapter.
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Figure 2.1: Illustration of biseparable states and PPT mixtures for a three-particle
system, see text for further details. The figure is taken from Ref. [37].

it is called biseparable. If a state is not biseparable, i.e. it cannot be written in the form

of Eq. (2.16), it is genuinely multiparticle entangled.

As in the case of bipartite systems, the biseparability of states is not easy to check.

However, as in the case of PPT criterion, we can consider a larger sets of states, which

can be written as a mixture of PPT states with respect to each bipartition. States, which

can be written in the following way

ρpmix = p̃1ρ
ppt
A|BC + p̃2ρ

ppt
B|AC + p̃3ρ

ppt
C|AB, (2.17)

where again p̃1 + p̃2 + p̃3 = 1, p̃1,2,3 ≥ 0, are called PPT mixture states [37].

Looking at Fig. 2.1, the convex hull of all states separable with respect to a fixed

bipartition is the set of biseparable states. In a similar way, the convex hull of states

which are PPT with respect to a bipartition is the set of PPT mixtures. It is clear that

every biseparable state is also a PPT mixture. Thus, if we can prove that a state is not

a PPT mixture, then it is genuinely multiparticle entangled.

Now, having a suitable criterion for entanglement, we can write down an entangle-

ment witness that can detect a state which is not a PPT mixture. A decomposable

witness for multipartite case, which can be written as

W = PM + QTM
M , (2.18)

for any bipartition M|M̄ of the system is called fully decomposable. The connection to

the notion of PPT mixtures is the following:

Observation 2.5. If ρ is not a PPT mixture, then there exists a fully decomposable

witnessW that detects it.
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The proof can be found in Ref. [37]. Similar to decomposable witnesses, fully decom-

posable witnesses can be efficiently found with the help of SDP.

2.1.3 SLOCC classification

Remarkably, not all genuine multipartite entangled states are entangled in the same

way [39]. This distinction comes from the same ideas of entanglement being a resource

in setups where operations are restricted to be local.

Let us first refine the definition of local operations which we gave in Section 2.1.1. Two

pure n-partite states |φ〉 and |ψ〉 are equivalent under local unitaries if they are related

as follows

|φ〉 =
n⊗

i=1

Ui|ψ〉, (2.19)

where the Ui are unitary matrices, acting on the i-th particle. The question whether

two multiqubit states are LU equivalent or not can be decided by bringing the states

into a normal form under LU transformations [40].

More generally, the states are equivalent under stochastic local operations and classical

communication (SLOCC) iff there exist invertible local operators (ILOs) Ai such that

|φ〉 =
n⊗

i=1

Ai|ψ〉. (2.20)

Physically, this means that |φ〉 can be reached starting from |ψ〉 by local operations

and classical communication with a non-zero probabilitiy.

LOCC equivalence of two states, which we have already mentioned before, is a partic-

ular case of SLOCC equivalence where it is possible to perform SLOCC transformation

with probability 1.

Based on pairwise SLOCC-equivalence states can be divided into classes, which we

will call SLOCC classes. SLOCC equivalence of bipartite states is governed by their

Schmidt rank, introduced in Section 2.1.1: two states are equivalent under SLOCC if

their Schmidt ranks coincides. In case of two qubits this results in just on SLOCC class

of entangled states.

Interestingly, for three qubits there exist two SLOCC classes of genuine multipartite

entangled states, so-called GHZ-class and W-class. GHZ class is the class of states
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which are equivalent under SLOCC to the following state

|GHZ〉 = 1√
2
(|000〉+ |111〉), (2.21)

which is often called GHZ state after the authors of Ref. [41]. Another class of states

are equivalent to the state, called W state [39], which can be written as

|W〉 = 1√
3
(|001〉+ |010〉+ |100〉). (2.22)

W class is of the measure zero in the space of all states, which means that number of

free parameters in characterization of a state from this class is less than the number of

parameters in the density matrix of general three-qubit state.

The situation becomes much more complicated as number of particles grows. For

instance, for four qubits one can distinguish 9 families of entangled states [42]. Family

differs from SLOCC class by the fact that, in general, one cannot assign a single state

like (2.21) or (2.22) to which all states from the family are SLOCC equivalent. Instead,

each family corresponds to a certain form of the states defined by some set of free

parameters.

Although general criteria for SLOCC (or LOCC) equivalence of multiparite states do

not exist, it is possible to find general necessary conditions for the equivalence. For

instance, SLOCC transformations can clearly not change the rank of a reduced state.

Moreover, in special cases (e.g. for special classes of states) sufficient conditions for

SLOCC-equivalence can be found. In this thesis we will introduce several tools to

determine SLOCC equivalence of multiparticle states. This tools are based on the

inductive SLOCC classification, introduced in Ref. [43].

2.1.4 Graph and hypergraph states

Some of the most notable examples of multipartite entangled states include GHZ

states, which are defined similar to (2.21), Dicke states [44], cluster states [45], graph

and hypergraph states [18, 19].

Here, we will define qudit graph states to introduce ideas, which will be used later in

this thesis to define qudit hypergraph states (see Chapter 4). For the definition of qubit

hypergraph states please see Ref. [19]. The main idea of graph and hypergraph states

is the bijection between mathematical objects of graphs and hypergraphs and a certain

class of quantum states. Such connection opens a possibility to find graphical rules
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(a) G (b) H

Figure 2.2: (A) Example of a multi-graph G = (N , E), where N = {1, 2, 3, 4}
and E = {{1, 2}, {1, 3}, {1, 3}, {1, 3}, {1, 4}, {1, 4}, {2}, {2}, {3}}; (B) Example
of a multi-hypergraph H = (N , E), with N = {1, 2, 3, 4, 5, 6} and E =

{{1, 2, 3}, {1, 2, 3}, {1, 6}, {1, 6}, {5}, {5}, {3, 4, 5, 6}}.

describing operations on the states from this class. Examples include LU equivalence,

rules for measurements in Pauli X or Z basis [46–49].

Let us first start with a definition of graphs and hypergraphs. A graph is a pair

G = (N , E), where N is the set of nodes (or vertices) and E is a set comprised of

2-element subsets of N called edges. Likewise, a hypergraph is a pair H = (N , E),
where N are the vertices and E is a set comprised of subsets of N with arbitrary

number of elements. In simple words, a hyperedge is an edge that can connect more

than two vertices. We say that an edge e ∈ E has cardinality m if it connects m

vertices. A multi-(hyper)graph is a set where the (hyper)edges are allowed to appear

repeated. An example of a multi-graph can be found in Fig. 2.2a, while one of a multi-

hypergraph can be found in Fig. 2.2b. We will say that e has multiplicity n if it appears

n times in E .

The Pauli group and its normalizer

Prior to the definition of qudit graph states, we need to review the groups of operators

known as Pauli and Clifford groups. In a d-dimensional system with computational

basis {|q〉}d−1
q=0, let us consider the unitary operators given by

Z =
d−1

∑
q=0

ωq|q〉〈q|, X =
d−1

∑
q=0
|q⊕ 1〉〈q| (2.23)

with the properties Xd = Zd = I and XmZn = ω−mnZnXm, where ω = e2πi/d is the

d-th root of unity and ⊕ denotes addition modulo d. The group generated by these

operators is known as the Pauli group and the operators XαZβ, for α, β ∈ Zd are ref-

ereed as Pauli operators. For d = 2, these operators reduce to the well-known Pauli
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matrices for qubits. In general, these operators enable a phase-space picture for finite-

dimensional systems, via the relations Z = e
2πi

d Q, X = e−
2πi

d P, where Q = ∑d−1
q=0 q|q〉〈q|

and P = ∑d−1
q=0 q|pq〉〈pq| are discrete versions of the position and momentum opera-

tors; here |pq〉 = F|q〉 and F = d−1/2 ∑d−1
q′,q=0 ωq′q|q′〉〈q| is the discrete Fourier trans-

form. Thus, X performs displacements in the computational (position) basis, while Z

performs displacements in its Fourier transformed (momentum) basis.

Another set of important operators are the so-called Clifford or symplectic operators,

defined as

S(ξ, 0, 0) =
d−1

∑
q=0
|ξq〉〈q|; (2.24)

S(1, ξ, 0) =
d−1

∑
q=0

ωξq22−1 |q〉〈q|; (2.25)

S(1, 0, ξ) =
d−1

∑
q=0

ω−ξq22−1 |pq〉〈pq|. (2.26)

These operators are unitary whenever the values of ξ and d are coprime and generate

the normalizer of the Pauli group, which is usually refereed as the Clifford group. The

interested reader can check a more broad formulation in terms of a discrete phase-

space in the Ref. [50].

Qudit graph states

Now we can briefly review the theory of the so-called qudit graph states, which is

well established in the literature [51–55]. The mathematical object used is a multi-

graph G = (N , E); we call me ∈ Zd the multiplicity of the edge e, i.e., the number of

times the edge appears. Given a multigraph G = (N , E), we associate a quantum state

|G〉 in a d-dimensional system in the following way:

• To each vertex i ∈ N we associate a local state |+〉 = |p0〉 = d−1/2 ∑d−1
q=0 |q〉.

• For each edge e = {i, j} and multiplicity me we apply the unitary

Zme
e =

d−1

∑
q=0
|qi〉〈qi| ⊗ (Zme

j )q (2.27)

on the state |+〉N =
⊗

i∈N |+〉i. Thus, the graph state is defined as

|G〉 = ∏
e∈E

Zme
e |+〉N . (2.28)
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We allow among the edges e ∈ E the presence of “loops", i.e., an edge that contains

only a single vertex. A loop of multiplicity m on vertex k means here that a local

gate (Zk)
m is applied to the graph state. An example of a qudit graph state, which

corresponds to the graph in Fig. 2.2a, is |G〉 = Z12Z3
13Z2

14Z2
2 Z3|+〉N .

An equivalent way of defining a qudit graph state is via the stabilizer formalism [51–

55]. Given a multi-graph G = (N , E), define for each vertex i ∈ N the operator

Ki = Xi ∏e∈E Ze\{i}. The set Ki generates an abelian group known as the stabilizer. The

unique +1 common eigenstate of these operators is precisely the state |G〉 associated

to the multi-graph G. Moreover, the set of common eigenstates of these operators form

a basis of the global state space, the so-called graph state basis. It is important to note

that the fully-connected graph states are LU-equivalent to the GHZ state (2.21) of the

same dimension (see Ref. [55]). Alternatively, it means that the GHZ states are also

stabilizer states.

The local action of the generalized Pauli group on a graph state is easy to picture and

clearly preserves the graph state structure. As already said, the action of Zm
l corre-

sponds to a loop of multiplicity m on the qudit l, while the action of Xm
l corresponds

to loops of multiplicity m on the qudits in the neighbourhood of the qudit l.

2.2 Nonlocality

2.2.1 Bell’s theorem

Interestingly, to prove that state is entangled one does not always need to known its

full density matrix. In some cases it is enough for parties to measure expectation

values of only few observables. One of such examples is violation of so-called Bell

inequalities. When a quantum state violates a Bell inequality it is said to be Bell-nonlocal.

However, as we will see in this section there is more to Bell inequalities and Bell’s

theorem than just entanglement detection. Let us start with formulation of Bell’s

theorem [3].

Theorem 2.6. [Bell 1964]

No local hidden variable (LHV) theory can reproduce all the predictions of quantum mechanics.

Local hidden variable (LHV) theories (or models) are an attempt to describe corre-

lations observed in nature, which includes correlations from quantum experiments,

while keeping the assumptions of local realism. Local realism is a common term for

two assumptions underlined below:
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Figure 2.3: Schematic setup of Bell’s experiment. X, Y – choices of Alice’s and Bob’s
measurements. A, B – their measurement outcomes.

(i) Signaling, i.e. sending information, is possible with at most the speed of light. It

means, in particular, that if two events of Alice’s measurement and Bob’s mea-

surement are space-like separated the probability of outcomes of Alice’s mea-

surement cannot depend on measurement settings of Bob. The same holds for

probabilities of Bob’s outcomes and Alice’s choices of operations.

(ii) The outcomes of all measurements are predefined. In other words, the ran-

domness, which we observe in the experiment, is due to lack of knowledge and

therefore there must exist a complete theory, generalizing quantum mechanics,

in which outcomes of measurements are definite.

An additional assumption, which is not listed above, is the freedom of choice. It means

that each party Alice and Bob can pick their measurement settings x and y at random.

Assumptions of local realism were introduced by Einstein, Podolsky and Rosen in

Ref. [2] and were shown to be inconsistent with predictions of quantum mechanics by

Bell [3].

Let us now look closer at the experimental setup of Bell’s experiment [3]. In this setup

a pair of correlated quantum systems (e.g. spin 1/2 particles) is distributed between

two parties, Alice and Bob as shown on Fig. 2.3. At random, the parties choose settings

for their measurements (e.g. measure the spin in z or in x direction). Let us denote

these choices of settings as random variables X and Y. We will denote as A and B the

results of the measurements. After several runs of the experiment, the parties meet

or give results to a referee and the expectation values 〈AxBy〉 for each setting x, y are

analyzed. Here Ax is a new random variable, which can be obtained from A when

conditioned on a particular context X = x. The same notation is used for B and y.

From the assumptions of local realism it follows that there exist a random variable Λ,

distributed according to some distribution P(Λ), and response functions P(a | x, λ),

P(b | y, λ) for Alice and Bob such that probability of outcomes a, b of their measure-

ments, specified by x and y, is given by

P(ab | xy) = ∑
λ

P(a | x, λ)P(b | y, λ)P(λ). (2.29)
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In Eq. (2.29) the hidden variable Λ is taken to be discrete, however, in general it can

be a continuous parameter or even a set of parameters. However, this restriction on

generality does not play any role as Λ can be removed from consideration, leaving

only constraints on observed correlations P(ab | xy), known as Bell inequalities.

2.2.2 Bell inequalities

The first Bell inequalities were obtained by Bell in Ref. [3] and Clauser, Horne, Shi-

mony, and Holt in Ref. [56]. Up to permutation of indexes the latter can be written

as

−2 ≤ 〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 ≤ 2 (2.30)

and is often called CHSH inequality. Here Ax, By ∈ {−1, 1}, X, Y ∈ {1, 2} and the

expectation values can be found as

〈AxBy〉 = ∑
a,b∈{−1,1}

abP(ab | xy). (2.31)

As realized by Pitowsky [57], the set of probability distributions compatible with the

LHV model form a convex set of correlations, the so called correlation polytope. This

polytope is characterized by finitely many extremal points, which correspond to de-

terministic response functions P(a | x, λ) and P(b | y, λ) in (2.29). Equivalently, this

polytope is characterized by finitely many linear inequalities, the non-trivial ones be-

ing exactly the Bell inequalities.

Following Pitowsky [57], it is easy to prove the LHV bound in Eq. (2.30). From con-

vexity, it follows that any linear function over the correlation polytope is maximized

by one of the extremal points. It means that all we need to do is to go through all the

deterministic assignments Ax, By = ±1, and take the maximum. In particular, from

〈A1B1〉 = 〈A1B2〉 = 〈A2B1〉 = 1 we conclude that A1 = B1, A1 = B2, and A2 = B1,

which leaves the only option A2 = B2 and thus 〈A2B2〉 = 1.

The statement of the Bell’s theorem is manifested by the violation of Bell inequalities

by measurements on entangled states. In particular, the expression in (2.30) can take

the value of 2
√

2 for optimal measurements on one of the Bell states (2.7). Interestingly,

this is the upper bound on (2.30) allowed by quantum theory independently on the

dimension of the quantum systems [58].

It is important to note that nonlocality, i.e. violation of Bell inequalities, implies entan-

glement of the state. This can be easily seen from the fact that any local measurements
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on separable states (2.4) gives the form (2.29) for conditional probabilities. However,

as first pointed out by Werner [59] not all entangled states lead to the violation of Bell

inequalities.

2.2.3 Correlation polytopes

We have already mentioned the results of Pitowsky [57], who proved that the set of

correlations, compatible with LHV models, is a polytope. However, different meth-

ods to characterize such correlation polytopes are available. Here, we will describe a

particular method obtained via Fine’s theorem [60] where the use of the concept of

marginal scenario becomes apparent.

Fine’s theorem shows that the existence of a LHV model of the form (2.29) is equiv-

alent to the existence of a joint probability distribution P(A1, . . . , Am, B1, . . . , Bm) that

marginalizes to the observed distribution P(AxBy) with X, Y = 1, . . . , m. The exis-

tence of a well-defined joint distribution over all variables implies that such distri-

bution must respect some constraints, namely, positivity and normalization. That is,

P(A1, . . . , Am, B1, . . . , Bm) must lie inside a simplex polytope [61]. From this geometric

perspective, the correlation polytope is nothing other than the projection of the sim-

plex polytope –characterizing the joint distribution– to a subspace of it that is given

by the marginal scenario4 in question, that is, a projection to the subspace spanned by

the observable components P(AxBy) with X, Y = 1, . . . , m. Such a projection can be

obtained by eliminating, from the corresponding system of linear inequalities describ-

ing the simplex, all terms that correspond to non-observables probabilities. This can

be achieved, for example, via a standard algorithm known as Fourier-Motzkin elimi-

nation [62]. Once the redundant inequalities are removed, the remaining set gives the

facets of the correlations polytope, that is, tight Bell inequalities.

For the simplest case of two measurement settings and two possible measurement

outcomes, one needs to consider the 16-dimensional vector

~p = (1, P(a1), P(a2), P(b1), P(b2), P(a1a2), P(b1b2), P(a1b1), P(a1b2), P(a2b1),

P(a2b2), P(a1a2b1), P(a1a2b2), P(a1b1b2), P(a2b1b2), P(a1a2b1b2)), (2.32)

where we used the notations P(a1a2b1) = P(A1 = −1, A2 = −1, B1 = −1) (we con-

sider here as before Ax, By = ±1). The simplex inequalities in this case are the ones

bounding each term in this vector to be in the region [0, 1] and, additionally, ones

which are implied by the positivity of probabilities, which are not represented in

4For a formal definition of marginal scenario see Sec. 2.4.
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(a) G (b) DAG

Figure 2.4: Examples of graphs. (a) A graph G containing a loop. (b) A similar DAG
with no loops.

Eq. (2.32). For example, the condition P(a1) ≥ P(a1b1) is implied by the positivity

of P(A1 = 0, B1 = 1). To obtain CHSH inequality one needs to project the poly-

tope of simplex inequalities on the subspace of {1, P(a1), P(a2), P(b1), P(b2), P(a1b1),

P(a1b2), P(a2b1), P(a2b2)} and note that the correlators 〈AxBy〉 are just linear functions

of the elements of probabilities in this subspace. For instance, 〈A1B1〉 = 1+ 4P(a1b1)−
2P(a1)− 2P(b1).

Unfortunately, such a nice linear convex picture does not hold for more complicated

scenarios (e.g. bilocality) [63–66] that now require computationally expensive and

highly intractable methods from algebraic geometry [67] in order to deal with the

non-linear constraints arising from such models. As it will be explained later, this is

one of the reasons why the entropic approach has become a more viable option in

dealing with such problems. The entropic approach plays an important role in this

thesis and will be discussed in detail in Sec. 2.5.

2.3 Causal models

We have already pointed out in the introduction that the correlations, observed in

a quantum experiments, challenge our understanding of cause and effect relations

among random variables. Finding a suitable LHV model is an attempt to explain the

Bell experiment from classical ideas of causality. Here, the hidden variable Λ is a cause

for correlations observed in A and B. In this section we will discuss causal models

beyond simple LHV model and give a background for the results of Chapters 5 and 6.

We will start by reviewing some notions of the graph theory.

2.3.1 Directed and undirected graphs

We have already considered graphs and hypergraphs in Section 2.1.4. What we did

not consider yet is a notion of directed graph, i.e., a graph which has directed edges

corresponding to ordered pairs (i, j) ∈ E , denoted by an arrow from i to j. An impor-

tant subclass of directed graphs are directed acyclic graphs (DAGs), which means that
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Figure 2.5: Three cases, considered in Reichenbach’s Principle. The dependence
among variables X, Y, Z is represented by DAGs.

there is no sequence of edges (i1, i2), (i2, i3), . . . , (in, i1) which form a closed path. For

a formal definition of paths and cycles see Sec. 5.0.1. See Fig. 2.4 for examples of a

undirected graph and a DAG.

DAGs is a widely used tool to represent cause-effect relations in complex systems of

random variables [68]. In this way the acyclicity of DAGs prevent the existence of

self-causation which results in so-called grandfather paradox.

2.3.2 Cause-effect relations

One of the central topics of this thesis is investigation of cause-effect relations in sys-

tems of random variables. These relations can be represented graphically, using the

language, introduced in the previous section. As before, we will use upper-case letters

(e.g., X) to denote random variables, and corresponding lower-case letters (e.g., x) the

specific value they take.

The idea of looking for causal explanation of observed correlations was first formal-

ized by Hans Reichenbach. In his work [69] he pointed out that for two random

variables X and Y which are correlated, meaning that P(xy) 6= P(x)P(y), one of the

following must hold:

(a) X is a cause of Y, meaning that distribution of Y can depend on the choice of X,

but not the other way around.

(b) Y is a cause of X.

(c) There exist a random variable Z, which is not influenced by any of two X or Y,

but which is a common cause for both.

All three cases can be represented pictorially as on Fig. 2.5 by directed acyclic graphs

(DAG), which were introduced in Section 5.0.1. Ideas of Reichenbach were later devel-

oped into mathematical theory of causal structures [68]. As we will see later, the LHV

model in Bell test is similar to the common cause model in Reichenbach’s principle.

In this way quantum nonlocality contradicts the principle and thus it challenges the

classical ideas of cause and effect in general.
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For a set of random variables X1, . . . , Xn two common examples of causal relations, or

dependencies, are given below:

• Deterministic dependence: The variable Xi is said to be a deterministic function of

Xj if their joint probability distribution satisfies P(xi, xj) = δxi ,F(xj)P(xj), where

the deterministic dependence is given by xi = F(xj). Such types of constraints

are usually present in network coding [70]. While not strictly necessary, deter-

ministic constraints also play an important role in the derivation of Bell inequal-

ities [60].

• Conditional or unconditional independence: The variable Xi is said to be indepen-

dent of the variable Xj if the joint probability distribution satisfies P(xi, xj) =

P(xi)P(xj). Similarly, variable Xi is said to be conditionally independent (CI)

of Xj given Xk, if P(xi, xj, xk) = P(xi|xk)P(xj|xk)P(xk); that is, Xk screens off

the correlations between the two other variables. We will denote the two situa-

tions as (Xi ⊥ Xj) and (Xi ⊥ Xj |Xk), respectively. This notation is straightfor-

wardly extendible to many random variables, e.g. (Xi ⊥ Xj ⊥ Xk) means that

P(xi, xj, xk) = P(xi)P(xj)P(xk).

Definition 2.7. We will call a causal structure a set of deterministic or conditional de-

pendencies for a given set of variables X1, . . . , Xn. Causal structure can be specified by

a set of ordered pairs (Xi, Xj) for all i and j denoting that Xi is a potential cause of Xj.

Note that in the above definition we left the possibility for bidirectional dependence,

i.e. if both (Xi, Xj) and (Xj, Xi) are contained in the causal structure. It means that Xi

and Xj are dependent, but the direction of the dependence is not known, e.g. it can

be a subject to some hidden parameter.

Definition 2.8. A causal model is a causal structure together with specified functional

dependencies (e.g. xi = F(xj)) or specified conditional probability distributions (e.g.

P(xj|xk), P(xk)).

For the case of a common cause in Reichenbach’s principle, {(Z, X), (Z, Y)} is a causal

structure, while specifying that x = z and y = z is a causal model (in this case

deterministic).

When studying causal models two central problems are considered:

(i) Given experimental data find causal models, which would explain the observed

correlations. This task is often called causal discovery or causal inference.
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(a) (b)

(c)

Figure 2.6: Examples of different Bayesian networks. (a) A DAG representing a
Markov chain X → Y → Z implying the CI (X ⊥ Z |Y). (b) A DAG where the
variable Y is a common parent of X and Z, once more implying the CI (X ⊥ Z |Y).
(c) A DAG where the variables X and Z have a common child Y. In this case (X ⊥ Z),

but (X 6⊥ Z |Y).

(ii) Given a causal structure find restrictions on correlations which this structure

imposes.

Below we will consider two types of causal models, Bayesian networks and Markov

random fields [71].

2.3.3 Bayesian networks

A Bayesian network (BN) is a probabilistic model for which conditional dependen-

cies can be represented via a directed acyclic hypergraph (DAG). More precisely, the

probability distribution factorizes as

P(x1, . . . , xn) =
n

∏
i=1

P(xi|Pai), (2.33)

where Pai denotes the parents of the node i, i.e., the nodes with arrows pointing at

i. The above factorization of the probability distribution gives rise to the local Markov

property

(Xi ⊥ Ndi|Pai), (2.34)

namely that Xi is independent of its nondescendants Ndi, i.e., nodes reachable from Xi

via a directed path, given its parents.

More generally, one has the set of conditional independence relations

I(G) = {(XA ⊥ XB|XC) | dsepG(A : B|C)}, (2.35)

where dsepG(A : B|C) refers to the d-separation properties of nodes in A and B with

respect to nodes in C, namely that every path from a ∈ A to b ∈ B, or vice versa, is

blocked by a node in C. The path is said to be blocked if it contains one of the following:

x → c → y, or x ← c ← y, or x → z ← y, for x, y, z, c in the path, c ∈ C, z /∈ C and no

descendant of z is in C (cf. Ref. [68]).
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Bayesian networks are of particular relevance to formalize causal relations. Within

this context, such causal models have been called causal Bayesian networks [68], as

opposed to traditional Bayesian networks that formalize conditional independence

relations without having necessarily a causal interpretation. To exemplify, consider

the three DAGs shown in Fig. 2.6. DAGs (a) and (b) clearly imply a different set of

causal relations between variables X, Y and Z: in both cases the correlations between

X and Z are mediated via Y but in (a) X is a parent of Y while in (b) the reverse is true.

In spite of their clear causal differences, both causal models imply the same set of CIs,

namely that (X ⊥ Z |Y). That is, every observable probability distribution p(x, y, z)

compatible with (a) is also compatible with (b), thus both models are indistinguishable

from observations alone 5. The DAG (c) in Fig. 2.6 can nonetheless be distinguished

from (a) and (b), since it implies that (X 6⊥ Z |Y) and the only CI is given by the

independence constraint (X ⊥ Z).

2.3.4 Markov random fields

Similarly to Bayesian networks, Markov random fields (MRF) correspond to prob-

abilistic models for which conditional dependencies can be represented by a graph

G. In this case, the graph is undirected and it may contain cycles. More precisely,

independence relations are given by the global Markov property

(XA ⊥ XB |XC), (2.36)

if every path from a node in A to a node in B passes through a node in C, i.e., if C

is a separator for A and B in G, a fact denoted as sepG(A : B|C). We will denote the

corresponding set of independence relations as

I(G) = {(XA ⊥ XB|XC) | sepG(A : B|C)}. (2.37)

As opposed to Bayesian networks (cf. Eq. (2.33)), MRFs do not admit a unique factor-

ization of the probability distribution. However, for the special case of a triangulated

graph, denoting with C1, . . . , Ck the set of maximal cliques with the running intersec-

tion property and Si := Ci ∩ (C1 ∪ . . . ∪ Ci−1), as in Eq. (5.1), one can write

P(x1, . . . , xn) =
k

∏
i=1

P(xCi)

P(xSi)
. (2.38)

5In such cases, in order to distinguish different causal structures, one has to rely on another crucial
concept of the mathematical theory of causality, that of an intervention [68]
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Both MRFs and Bayesian networks can be specified by a pair (G,P), where G specifies

the graph (directed or undirected) and P specifies the probabilities in Eq. (2.38) or

Eq. (2.33).

2.3.5 Hidden variables

An important element of causal models is the possibility to consider latent, or hidden,

variables. We will use the word “hidden" as it is more common in the field of quantum

foundations. Hidden variables are random variables, which are for one or the other

reason cannot be observed, or missed from consideration. Examples of hidden variable

is a common cause Z in the Reichenbach principle and local hidden variable Λ in Bell

test.

Below we introduce two central requirements to causal models. These conditions are

the most important when considering hidden variables.

Minimality: Let us consider two models (G1,P1) and (G2,P2) with which we

want to explain observed correlations P (or to model P). We say that model

with causal structure G1 can simulate another model with structure G2 if for

every (G2,P ′2) producing P′ there is a model (G1,P ′1) producing P′. If now both

(G1,P1) and (G2,P2) yield P and, additionally, G1 can simulate G2 but not the

other way around, we say that (G2,P2) is preferable to (G1,P1). The model

which is preferable to any other model producing P is called minimal.

Faithfulness: Let us denote the set of independence constraints, which is ob-

served in P, as I . A model (G,P) is called faithful if for any P ′, yielding distri-

bution P′, the set of independence constraints, observed in P′ is exactly I .

The idea of minimality is introduced to make a model more easily disprovable, since,

by the definition, the corresponding causal structure can produce less possible proba-

bility distributions than the other models. In particular, it prevents from inflating the

causal structure with redundant hidden variables.

Faithfulness requires all of the independence constraints to be associated only with

the causal structure, i.e. the graph. The models which are not faithful are said to be

fine-tuned. In Ref. [8] authors showed that correlations observed on Bell experiment

can only be explained by fine-tuned classical causal models. The results of this work

go beyond the scope of this introductory part of the thesis, however, we will briefly

discuss some of the models of Bell test below.
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(a) G1

(b) G2 (c) G3

Figure 2.7: Causal models for Bell test. (A) LHV model, (B) signaling model, (C)
superdeterministic model.

2.3.6 Causal models in Bell’s test

We can now look back at the Bell test and notice that it is an example of causal dis-

covery problem. Given experimental data, i.e. correlations 〈AxBy〉, one is interested

to find a causal model, which would explain this correlations.

Let us consider tree models, which correspond to graphs shown on Fig. 2.7. The

first causal structure G1 (Fig. 2.7a) corresponds to LHV model and it is easy to see

that for any model with G1 factorization of probability distribution (2.33) corresponds

to conditional probabilities of the type (2.29). Models with G1 do not violate any

assumptions of Bell theorem, however, they do not generate distribution which display

nonlocality. On the other hand, models, corresponding to G2 and G3 (Fig. 2.7b and

Fig. 2.7c), can reproduce correlations violating Bell inequalities. However, it can be

seen [8] that in order to satisfy the conditions of Bell experiment this models must be

fine-tuned.

2.3.7 Indefinite causal order

When describing most physical phenomena, it seems natural to assume that physical

events take place in a well-defined causal structure. For instance, earlier events can

influence later ones but not the opposite, or, if two events are distant enough (typically,

space-like separated) from each other, any correlation between them can only be due

to some common cause in their past.
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As already mentioned, quantum correlations obtained by measurements on distant

entangled parties are incompatible with Reichenbach’s principle [72, 73] or, more gen-

erally, with classical theories of causality, forcing us to generalize the notion of causal

models [22, 74–78]. In a scenario where different experimenters interact only once with

a given system that is exchanged between them, one could expect that no simultane-

ous causal influences between each other should be possible but rather only one-way

influences. However, it has been realized that physical theories do not necessarily

have to comply with the idea of a definite causal order [25, 79]. One can also imagine

theories where the causal order itself is in a sort of “quantum superposition” [25, 80],

which can be verified using so-called causal witnesses [81, 82].

As for entanglement witnesses [35, 38], the use of causal witnesses assumes that we

have a precise description of the measurement apparatus, that is, they are relevant

in a device-dependent framework. Nevertheless, by allowing physical theories that

are locally equivalent to quantum mechanics but relax the assumption of a fixed

global causal structure, it is possible to verify causal indefiniteness also in a device-

independent manner. With the aim of providing a general framework to such sce-

narios, the process matrix formalism [25] has been introduced and shown to allow for

the violation of so-called causal inequalities [25, 83–87], which are device-independent

constraints that play a similar role to that of Bell inequalities [3]. However, whether

violations of causal inequalities can be experimentally observed is still an important

open question.

Causal correlations

Causal correlations are most easily introduced in the bipartite case, where we consider

two parties, Alice (A) and Bob (B), who together conduct a joint experiment while each

having control over a separate closed laboratory. During each round of the experiment,

Alice and Bob each receive, operate on, and send out a single physical system, which

is the only means by which they may communicate. In addition, they each receive

some (external) classical inputs X and Y, for Alice and Bob respectively, and produce

some classical outputs A and B, respectively. As before we use upper-case letters

(e.g., X) to denote random variables, and corresponding lower-case letters (e.g., x) to

denote the specific values they take. Their probability distributions will generically be

denoted by P; we will also use the shorthand notations P(x) for P(X = x), P(x(,)y) for

P(X = x, Y = y), P(a|x) for P(A = a|X = x), etc.

The joint conditional probability distributions P(ab|xy) that can be produced in such

an experiment depend on the causal relation between Alice and Bob. If Bob cannot
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signal to Alice their correlations should obey P(a|xy) = P(a|xy′) for all x, y, y′, a,

where P(a|xy) = ∑b P(ab|xy). We denote this situation by A ≺ B, and write P = PA≺B.

Note that this does not necessarily imply that Alice is in the causal past of Bob since

the events could be space-like separated, but merely that the correlation is compatible

with such a causal order. Similarly, if the correlation is compatible with Bob being in

the causal past of Alice we write B ≺ A and we have PB≺A(b|xy) = PB≺A(b|x′y) for all

x, x′, y, b. The correlations that satisfy both these conditions (and are thus consistent

both with A ≺ B and B ≺ A) are precisely the nonsignaling correlations [88].

More generally, we are interested in the correlations achievable under the assumption

of a definite causal order in each round of the experiment, even if the causal relation

between Alice and Bob may be different (e.g., chosen randomly) for each individual

round. We, thus, say that a correlation P(ab|xy) is causal if it can be written as

P(ab|xy) = q0 PA≺B(ab|xy) + q1 PB≺A(ab|xy), (2.39)

with q0, q1 ∈ [0, 1] and q0 + q1 = 1, where PA≺B(ab|xy) and PB≺A(ab|xy) satisfy the

respective (one-way) no-signaling conditions defined above [25].

It was shown in Ref. [86] that the set of bipartite causal correlations forms a convex

polytope, whose vertices are simply the deterministic causal correlations (i.e., causal

correlations for which the outputs A, B are deterministic functions of the inputs X, Y).

The facets of this polytope thus specify causal inequalities, analogous to Bell inequalities

for local correlations, that any causal correlation must satisfy [25]. The situation with

binary input and output variables was characterized completely in [86], where it was

shown that there are only two nonequivalent causal inequalities (up to symmetries).

The simplest of these is perhaps the “guess your neighbor’s input” (GYNI) inequality,

which has a simple interpretation as a game (up to a relabeling of the inputs and

outputs) in which the inputs X, Y are chosen uniformly at random and the goal is for

each party to output the other party’s input. One such form of this inequality can be

written [86]
1
4 ∑

x,y,a,b
δa,y δb,x P(ab|xy) ≤ 1

2
, (2.40)

where δ is the Kronecker delta function.

The notion of causal correlations can be generalized to more parties, although one has

to take into account the fact that, in a given round of the experiment, the causal order

of some parties may depend on the inputs and outputs of previous parties [85, 87].

In this thesis we will primarily focus on applying the entropic approach to bipartite

causal correlations and derive entropic causal inequalities. After, we will describe the

generalization to the multipartite case. These results are described in Chapter 6.
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Figure 2.8: Hypergraph of the marginal scenario associated with a Bell-CHSH ex-
periment. The observed probabilities correspond to the marginal for {Ax, By}, for

x, y = 1, 2.

2.4 Marginal problem

In many relevant situations, one may have only partial information of the distribution

of the variables. This may be due to practical limitations in collecting data, e.g., hidden

variables which cannot be measured, or fundamental limitation, e.g., the impossibil-

ity of performing a joint measurement of incompatible quantum observables. This is

common in Bell experiments, where one has access only to a limited set of joint prob-

ability distributions. Also in purely classical contexts the role of partial information

can hardly be overemphasized [68, 89]. For instance, in the so called instrumentality

tests modeling randomized experiments [68, 90], the effects from a drug in the recov-

ery of patients is allowed to depend on some unobserved factors that are not under

experimental control (social or economical background, etc). Whenever one needs to

decide about properties of the system (e.g. global probability distribution) from the

data observed in its subsystems we say that one faces the marginal problem.

For this reason, we introduce the notion of a marginal scenario. Given a set of

random variables X = {X1, . . . , Xn}, a marginal scenario is a collection of subsets

M = {M1, . . . , M|M|}, Mi ⊂ X of them representing variables that can be jointly

measured, i.e., for each Mi, we have access to a probability distribution PMi(xMi).

Moreover, if a set of variables are jointly measurable, we require that the same holds

for any subset, i.e., M ∈ M and M′ ⊂ M imply M′ ∈ M. Equivalently, one can take

only the maximal subsets S ∈ M.

A marginal scenario can be naturally considered as an hypergraph, withM the set of

hyperedges and ∪i Mi the set of nodes. We will adopt the maximal subsets convention

above and assume that S ∈ M are only maximal subsets, i.e., the hypergraph is

reduced. We will call such a hypergraph the marginal scenario hypergraph, or simply

marginal scenario when it is clear we are referring to the hypergraph.

It is again instructive to consider a simple example to fix the above notions. A stan-

dard example is given by a Bell experiment [3], in particular by the CHSH scenario

[56]. The observed probabilities will then amount to the marginals for {Ax, By}. The

corresponding marginal scenario hypergraph is depicted in Fig. 2.8.
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Figure 2.9: An example of the marginal problem for three-particle states. Marginals,
denoted by blue filled ellipses are known and used to infer properties (e.g. entangle-

ment) of the global state.

The idea of marginal scenario can be extended to quantum states. In this case, we

allow arbitrary many measurements (tomography) on parts of the shared quantum

systems, which means that we can recover the density operators of the subsystems.

These density matrices are most often called reduced states, however, in this thesis we

will refer to them simply as marginals. To demonstrate, let us consider an example

of three-particle quantum system where we have access at most to the two-particle

correlations as shown on Fig. 2.9. It means that we have access to $AB, $AC, and $BC

and from that information we might wish to recover the full density matrix $ABC, or to

prove that the global state is necessarily entangled. The problem of characterizing the

global quantum states, or their properties, from marginals is called quantum marginal

problem [91] and it is another central part of this thesis.

2.5 Entropic inequalities

In this section we will review an approach to study nonlocality scenarios, and causal

structures in general, from entropic prospective. The idea of this approach is to derive

entropic inequalities for a given marginal scenario from axioms of entropy, which are

known as Shannon inequalities (or von Neumann inequalities), and a set of indepen-

dence constraints associated with the causal structure. This set of inequalities forms a

polyhedral convex cone in the space of joint entropies similar to correlation polytopes

in the space of probabilities (see Sec. 2.2.3). As in the case of probabilities the entropic

inequalities for the marginal scenario can be obtained via variable elimination (e.g.

Fourier-Motzkin method).

The first reference to the approach discussed in this section is [24], although later it

was used to study nonlocality scenarios in Ref. [21] and translated to quantum do-

main in Ref. [22]. Since then it was proven to be a powerful tool in deriving entropic

inequalities for various phenomena in quantum information and foundations of quan-

tum mechanics [27, 30, 92–96]. We will start the detailed description of the entropic

approach with the formal definition of entropic cones.
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2.5.1 Entropy cone

Given a collection of n discrete random variables X1, . . . , Xn with an associated joint

probability distribution P(x1, . . . , xn), and denoting with XS the random vector (Xi)i∈S,

for any subset S ⊂ [n] := {1, . . . , n}, the Shannon entropy H : 2[n] → R is defined as

H(S) := H(XS) = −∑
xS

P(xS) log2 P(xS). (2.41)

The above entropies can be arranged in a vector

h = (H(∅), H(X1), . . . , H(X1, X2), . . . H(X1, . . . , Xn)) ∈ R2n
(2.42)

The region

Γ∗[n] :=
{

h ∈ R2n | h = (H(S))S⊂[n] for some entropy H
}

, (2.43)

where the overline denotes the closure in R2n
, is known to be a convex cone, also

called the entropy cone and it has been studied extensively in information theory [70].

A tight and explicit description, however, has not yet been found for n > 3, but only

some outer approximations of Γ∗[n] via polyhedral cones, i.e., cones described by a

finite system of linear inequalities Ax ≥ b, where A is an m× n real matrix and b an

m-dimensional real vector. The most famous outer approximation to the entropic cone

is the so-called Shannon cone Γ[n], defined by

h([n] \ {i}) ≤ h([n]), (2.44a)

h(S) + h(S ∪ {i, j}) ≤ h(S ∪ {i}) + h(S ∪ {j}), (2.44b)

h(∅) = 0, (2.44c)

for all i, j ∈ [n], i 6= j, and S ⊂ [n] \ {i, j}. That is, the Shannon cone associated

with n variables is described by 2n−2(n
2) + n inequalities plus one equality constraint

(normalization).

The above is the minimal set of inequalities that implies monotonicity of entropy, i.e.,

H(A|B) ≥ 0, and the submodularity (or strong subadditivity), i.e., I(A : B|C) :=

H(A, C) + H(B, C)− H(A, B, C)− H(C) ≥ 0, for any disjoint subsets A, B, C ⊂ [n] (cf.

Ref. [70]).

Inequalities in Eq. (2.44) are known as Shannon-type inequalities in information theory

or polymatroidal axioms in combinatorial optimization [70]. Given a finite set N and
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real-valued function f : 2N → R, the pair (N, f ) is called a polymatroid if f satisfies

Eqs. (2.44) above for [n] = N and S, {i, j} ⊂ N.

In general we are interested in characterizing the entropy cone Γ∗M associated with a

marginal scenario M, thus obtaining constraints implied by the global entropy cone

on the marginal subspace of interest. Geometrically, this corresponds to the projection

of the original entropy cone onto the subspace corresponding to the variables in M.

Since, in practice, we work with the Shannon cone Γ[n] – possibly constrained by some

further linear constraints specifying a linear subspace LC, as described previously –

which is characterized by a finite system of inequalities, this projection corresponds

to a simple variable elimination of all the terms not contained in M [62, 92, 97].

After removing redundant inequalities, the remaining inequalities are facets (i.e., the

boundaries) of the Shannon cone, or more generally polyhedron6, in the observable

marginal subspace. Formally, the marginal Shannon polyhedron ΓM is defined as

ΓM = ΠM
(

Γ[n]
⋂

LC

)
, (2.45)

where ΠM denotes the projection onto the coordinates associated with the marginal

scenarioM.

2.5.2 Probability structures

The characterization of entropy cones and marginal problems outlined above can be

easily extended to the case where we no longer assume that there is a well-defined

global probability distribution over all the variables in the set [n]. Instead, we may

assume that only certain subsets of variables have such a joint distribution, and that

only the marginals of certain subsets of these subsets are empirically accessible. This

type of restriction may be imposed by assumptions about the underlying physical

theory being described, as will be clear in the example we discuss in Sec. 2.5.4.

We will denote the collection of subsets of [n] for which we assume joint probability

distributions exist by S = {S1, . . . , S|S|}, with each Si ⊂ [n], such that ∪iSi = [n];

we call S the probability structure. As for the marginal scenario, we will represent S
by just its maximal subsets in a slight abuse of notation; the complete representation

of S , that explicitly includes all (not necessarily maximal) subsets for which a joint

probability distribution exists, will be denoted Sc = {T | T ⊂ Si, Si ∈ S}. In such a

situation the entropies H(T) cannot be defined for all subsets T ⊂ [n], but only for

the subsets in Sc. The entropy vectors we shall consider will thus be defined here as

6Although, polyhedron is often means the polytope in dimension 3 in this thesis we use the terms
polyhedron and polytope interchangeably.
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h = (H(T))T∈Sc ∈ R|Sc|. Again, no explicit characterization is known for the set of

valid entropy vectors; we will instead rely on its outer approximation characterized via

the Shannon constraints, now restricted to each subset Si ∈ S . Namely, the Shannon

cone of interest is now

ΓS =
⋂

Si∈S
ΓSi , (2.46)

where ΓSi ⊂ R|S
c| is the cone defined by the Shannon inequalities on the variables in Si,

which, in particular, leave the other variables in [n] \ Si unconstrained. In the extremal

case where we do assume a global joint probability distribution for all variables we

have S = [n], Sc = 2[n], and we recover ΓS = Γ[n].

One can similarly consider marginal scenarios under a given probability structure S ,

with the constraint that marginals must arise from existing probability distributions,

i.e., for all Mj ∈ M there must exist an Si ∈ S such that Mj ⊂ Si. One can also add

linear constraints to the entropy vectors under consideration, as before, represented

by some subset LC. We can thus define the marginal Shannon polyhedron associated

with S ,M, and LC as

ΓSM = ΠM
(

ΓS
⋂

LC

)
. (2.47)

The choice of probability structure can generally be considered on a case-by-case basis

depending on the scenario being modeled. Unless otherwise stated we will take S =

[n] but, as we will discuss, this will not always be the most pertinent choice.

2.5.3 The entropic characterization of Bayesian networks

Let us consider now an application of the entropic approach to study causal struc-

tures. In this section we will consider Bayesian networks, although for Markov Ran-

dom Fields the approach is similar. As discussed in Section 2.3.3 causal structures of

Bayesian networks can be represented by DAGs which are associated with the set of

independence constraints, obtainable by the d-separation criterion [68]. Entropically,

these CIs correspond to simple linear relations:

Xi⊥Xj → H(XiXj) = H(Xi) + H(Xj), (2.48)

Xi⊥Xk | Xk → H(XiXj|Xk) = H(Xi|Xk) + H(Xj|Xk).

As a result, the set of entropy vectors compatible with a given DAG is the intersec-

tion of the entropy cone Γ∗[n] with the linear subspace LC defined by the set of linear

constraints that characterize the CIs associated with the DAG [94, 95]. In practice, we
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again rely on the outer approximation given by the intersection of the Shannon cone

Γ[n] with LC.

If all the variables in a DAG are observable, in order to check the compatibility of a

given entropy vector with the DAG it suffices to check whether all the entropic CIs are

satisfied. However, we are often interested in DAGs containing latent, non-observable,

variables (see Sec. 2.3.5). Splitting the n variables making up the DAG into j observable

variables O1, . . . , Oj and n− j latent variables Λ1, . . . , Λn−j we thus need to compute

the marginal Shannon cone ΠM
(

Γ[n]
⋂

LC

)
whereM =

{
{O1, . . . , Oj}

}
.

2.5.4 The entropic characterization of counterfactuals

Application of the above method to the Bell scenario (see Fig. 2.7a) fails to provide

nontrivial constraints, a result that can be extended to a larger class of “line-like”

Bayesian networks [23]. However, it has been known for some time that entropic Bell

inequalities can be derived using different methods [98]. Interestingly, these inequali-

ties can even be turned into necessary and sufficient conditions for a given probability

distribution to satisfy Bell’s local causality assumption [93].

The method that allows such inequalities to be derived is motivated by the realization

that the entropic approach can be applied to any marginal scenario for a relevant set

of random variables [92], and not only those arising from causal Bayesian networks.

In particular, when we are interested in constraints on conditional distributions of the

form P(ab|xy), where we have distinct sets of input and output variables, we may

consider the output variables conditioned on certain relevant input variables (e.g. Axy

and Bxy, where the notation Axy denotes the random variable A|(X = x, Y = y)).7 The

choice of relevant input variables to condition on, as well as the appropriate proba-

bility structure, will depend on the physical situation being considered. In general, a

global probability distribution may not exist on such “counterfactual” variables even

if one does on the unconditioned variables.

Let us illustrate how this method may be applied by considering again its application

to the Bell scenario. Instead of considering all the input and output variables as in the

DAG approach (e.g. X, Y, A, B), one can consider copies of the output variables condi-

tioned on the corresponding party’s input, i.e., Ax, By, where Ax denotes the random

variable A|(X = x). Indeed, due to the DAG constraints (no-signaling), the output

variables can only depend on the corresponding local input. Furthermore, from Fine’s

7We focus on the bipartite case for concreteness, but the method readily generalizes to multipartite
scenarios.
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Theorem [60] we know that Bell’s local causality assumption is equivalent to the exis-

tence of a well defined (although empirically inaccessible) joint probability distribution

P(a1, . . . , a|X |, b1, . . . , b|Y|) (where X = {1, . . . , |X |} and Y = {1, . . . , |Y|} denote the al-

phabets of Alice and Bob’s inputs) on these variables8 that marginalizes to the observ-

able one given by P(ab|xy) = P(axby). Hence, the appropriate probability structure for

local correlations in the Bell scenario is S = [n] with [n] = {A1 . . . , A|X |, B1, . . . , B|Y|},
and we consider the Shannon cone Γ[n] = ΓS that contains all 2|X |+|Y|-dimensional en-

tropy vectors
(

H(∅), H(A1), . . . , H(B1), . . . , H(A1 . . . A|X |B1 . . . B|Y|)
)
. The marginal

scenario in this case is simply M =
{
{Ax, By}

}
x,y and local correlations are then

characterized by the cone ΠM
(

Γ[n]

)
.

In contrast to the characterization based directly on the DAG variables, this approach

leads to nontrivial entropic inequalities (i.e., not obtainable from the elemental in-

equalities in Eqs. (2.44)) in the Bell scenario. For example, for two measurement set-

tings per party, which we take as X = Y = {0, 1}, one obtains the Braunstein-Caves

inequality [98] together with its symmetries obtained by relabeling the inputs, namely,

I(A0 : B0) + I(A0 : B1) + I(A1 : B0)− I(A1 : B1)− H(A0)− H(B0) ≤ 0, (2.49)

where I(Ax : By) := H(Ax) + H(By)− H(AxBy) is the mutual information between

the variables Ax and By. This inequality can be understood as the entropic counterpart

of the paradigmatic CHSH inequality [56].

In general (i.e., beyond the simplest Bell scenario), both methods based on the vari-

ables in a causal Bayesian network and on counterfactual variables can lead to nontriv-

ial constraints [64, 75, 94–96, 99]. To conclude this section, let us nonetheless highlight

an important difference between the two methods: while the former is valid for arbi-

trary input alphabets, the latter fixes the number of inputs to which the inequalities

apply.

Although the choice of probability structure above corresponds, via Fine’s theorem, to

the assumption of a local hidden variable theory, one can also consider other possibil-

ities. For instance, taking S =M amounts to assuming a nonsignaling theory [88]. In

this case, the entropy cone is characterized only by the Shannon inequalities and one

can obtain a characterization of the extremal rays of the cone, corresponding to the

entropic analogue of Popescu-Rohrlich (PR) boxes [96].

The approach of entropic inequalities appears in several parts of this thesis. In Chap-

ter 5 we will provide a modification to this approach. In particular, we will show

8In particular, by invoking Fine’s Theorem we do not need to explicitly include the hidden variable Λ
in this method, contrary to the DAG method outlined previously.
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that depending on the hypergraph of marginal scenario additional independence con-

straints may apply. Such additional linear constraints lead to a tighter description of

the marginal polyhedron ΓM, i.e. to non-Shannon-type inequalities.

Moreover, in Chapter 6 we will apply the entropic approach to study correlations with

indefinite causal order (see Sec. 2.3.7). We will provide analysis of both characteriza-

tions, Bayesian networks and conterfactuals, of processes compatible with a definite

causal order. We will show that both characterizations lead to nontrivial constraints,

i.e. entropic causal inequalities.

2.6 Semidefinite Programming

Finally, we will give a brief introduction to the tool of semidefinite programming,

used in many parts of this theses. A semidefinite programming SDP [61] optimization

problem can be formulated as

min
x

cTx

subject to F(x) = F0 +
m

∑
i=1

xiFi

F(x) ≥ 0.

(2.50)

The vector c ∈ Rm and the m + 1 symmetric matrices F0, ..., Fm ∈ Rn×n represent the

problem data, while the F(x) ≥ 0 constraint means that F(x) is a positive semidefinite

matrix, zT F(x)z ≥ 0, or, alternately, all eigenvalues of F(x) are non-negative.

To a given SDP one can associate the so-called dual semidefinite program, which is of

the form

max
Z
− tr(F0Z)

subject to tr(FiZ) = ci,

Z ≥ 0,

(2.51)

for all i = 1, ..., m. The weak duality theorem state that if both primal and dual SDPs

are feasible, then

min(cTx) ≥ max(− tr(F0Z)). (2.52)

This, in particular means that if the dual problem is infeasible, the primal one is

unbounded. In this way the dual SDP provides a certificate for the bound of the

primal program, namely the matrix Z from 2.51, which give the lower bound on the
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minimum of the primal problem. This turns the numerical results into analytical

proofs. An example of certificates for deciding whether the state is PPT are exactly

the decomposable witnesses (2.13). In this case SDP takes the form

max
W
− tr($W)

subject to W = P + QTA ,

P ≥ 0, Q ≥ 0,

(2.53)

where $ is an entangled state for which we wish to find a witness. Other examples

of the application of SDPs in problems in foundations of quantum mechanics are in

deriving upper bounds on violation of Bell inequalities by quantum states [58, 100],

characterization of the phenomenon called steering [1, 101].

SDPs can be solve efficiently with freely accessible tools [102–104] available for MAT-

LAB and Python.

In Section 2.4 we have introduced the quantum marginal problem where the task is

to deduce properties of the global quantum system from information contained in the

subsystems, or marginals [91]. Usually, the properties that one wants to decide upon

are existence and uniqueness of the global state. Let us consider an example where

we have access to a set of two-body marginal states $AB, $AC, and $BC. As it can be

clear from Section 2.6 one can use SDP to decide whether there exist a state $ABC for

which the given marginal states $AB, $AC, and $BC are its reduced states. This SDP

can be formulated as follows

minimize:
$

0, (2.54)

subject to: trA($) = $BC, trB($) = $AC, trC($) = $AB,

$ ≥ 0,

where as before trA denotes the partial trace of the subsystem A and so on. If a solu-

tion $ABC to SDP (2.54) is found, one might want to determine whether this solution is

unique. Unfortunately, this question cannot be answered with certainty using SDPs,

however, one can modify the above problem (2.54) to get an evidence whether this is

true or not. Indeed, if instead of 0 in the objective function in (2.54) one puts the minus

trace distance to the known solution $ABC (tr($− $ABC)), and as a result gets another

state, then, clearly, the global state for marginals $AB, $AC, and $BC is not unique. On

the other hand, if one arrives at the same state $ABC, it provides a strong evidence that

the sate $ABC is unique.
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In this thesis we will use SDPs, similar to (2.54) and (2.53), to find states for which

it is possible to detect mulitipartite entanglement in this states from their separable

two-body marginals (see Chapter 3).



Chapter 3

Multiparticle entanglement as an

emergent phenomenon

This chapter describes the results of Refs. [26, 29]. The corresponding sections from

the introduction chapter 2 are Sec. 2.1,2.4, and 2.6.

In this chapter we address a question when and under which circumstances the global

entanglement of a multiparticle quantum system can be inferred from its local prop-

erties. Such questions are of great relevance for the theory of quantum correlations

as well as for experimental implementations. In particular, we present a method to

systematically find quantum states, for which the two- or three-body marginals do not

contain any entanglement; nevertheless, the knowledge of these reduced states is suf-

ficient to prove genuine multiparticle entanglement of the global state. With this we

show that the emergence of global entanglement from separable local quantum states

occurs frequently and for an arbitrary number of particles. After, we discuss various

extensions of the phenomenon. First, we consider a problem of detecting genuine

mutliparticle entanglement from a subset of two-body marginals with an emphasis

on configurations where only nearest-neighbor correlations are known. Finally, we

present examples where global entanglement can be proven from marginals, even if

entanglement cannot be localized in the marginals with measurements on the other

parties.

3.1 Emergence of entanglement

The relations between global properties of a system and the properties of its parts are

central for many debates in science. One example, is the quantum marginal problem,

38
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Figure 3.1: Possible applications of method provided in this chapter. Left: The
method finds systematically three-particle states with no entanglement in the two-
qubit marginals $AB, $BC, and $AC, where nevertheless global genuine multiparticle
entanglement can be proven from knowing the separable marginals only. Middle,
right: Possible variations of the problem considered in this work. All two-body re-
duced states are required to be separable (shown by dashed ellipses), but only some
(denoted by blue filled ellipses) are known and sufficient to prove that all particles

are entangled.

which, although, has been extensively studied for decades, remains a key problem

in quantum mechanics [91]. Another interesting concept in these discussions is the

notion of emergence, meaning that at a global scale properties may be present, which

are not present in the parts of the system. An important requirement to the emerging

property is that it can be anticipated already from the collective data about the parts,

which do not exhibit the property themselves. In this chapter we will discuss a prob-

lem of detecting entanglement from reduced states, which are separable, i.e. do not

display entanglement. This would mean that the global entanglement appear as an

emergent phenomenon.

Emergence of entanglement has first been observed in spin models and in the context

of spin squeezing, where the task of proving entanglement from two-body marginals

arises naturally [105, 106]. The same observation has been made with the violation of

Bell inequalities: here, the marginals may be compatible with a local hidden variable

model, but such a model can be excluded for the global state by considering the

marginals only [107, 108].

In all these works, however, only the simplest form of multiparticle entanglement was

considered. Namely, it was asked whether or not the global state is fully separable

(see Eq. (2.14) for the definition). Clearly, proving genuine multiparticle entanglement

is a more demanding task than showing only non-separability and thus it is much

more difficult to infer this type of entanglement from the marginals. In fact, there has

been only one recent example of a three-qubit state, where the genuine multiparticle

entanglement can be concluded from separable marginals [109]. This state is given by

the following density matrix

$ =
2
3
|ξ〉〈ξ|+ 1

3
|111〉〈111|, (3.1)

where |ξ〉 =
1
2
|010〉+ 1

2
|100〉+ 1√

2
|001〉.
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However, this example and the underlying techniques, which were used to find it,

are tailored to a specific situation and are not straightforward to generalize in any

direction.

In this chapter, we present a systematic method to find multiparticle quantum states

where genuine multiparticle entanglement can be proven from separable marginals

(see Fig. 3.1). Implementing this method numerically we find various examples for

up to five particles. Based on these findings we provide a scheme for constructing of

states with the desired properties for any number of particles, proving the universality

of the described phenomenon. Furthermore, we consider possible extensions of the

problem. Situations where only a subset of the separable two-body marginals (for

example, nearest-neighbor marginals) is sufficient to prove entanglement, can easily

be identified, as well as the case, where additionally the separability of higher-order

marginals is given.

Finally, a direct extension of our method delivers states where no entanglement can

be generated between two arbitrary particles, even if measurements are made on the

other particles. Still, global entanglement can be proven from the marginals. This

shows that localizable entanglement is not a precondition for genuine multiparticle

entanglement.

3.2 Statement of the problem

Let us define the problem, which we want to solve, in a precise manner. For three

particles, we want to find a state $, such that:

(i) All two-body marginals (reduced states) are separable,

(ii) The state $ itself is genuine multiparticle entangled and the entanglement can be

proved from the two-body marginals.

A three-qubit GHZ state (2.21), which we mentioned in Section 2.1.2, is a genuine

multipartite entangled state and it satisfies the condition (i). However, we can see that

the reduced states of (2.21) are all the same $AB = $AC = $BC = (|00〉〈00|+ |11〉〈11|)/2

and also compatible with the global separable state $sep = (|000〉〈000|+ |111〉〈111|)/2.

This means that GHZ state does not satisfy the condition (ii) since given only $AB, $AC,

and $BC in this case we cannot guarantee that the global state is the GHZ state (2.21).

From the above reasoning it is clear that the two conditions (i) and (ii) are equivalent

to the requirement that the separable known marginals must be only compatible with
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global genuine multipartite entanglement. It is important to note that in our problem

uniqueness of the global state is not required and the only condition is that all global

states, compatible with the marginals, must be genuine multiparticle entangled.

One can extend the conditions in various ways. Concerning the first condition, one

can require for four or more particles in addition to the two-body marginals that also

the three-body marginals are fully separable. The second condition can be modified

such that only some of the two-body marginals are known, while all of them are still

separable (see Fig. 3.1). Clearly, both modifications make it more difficult to find the

desired states and it is not clear, whether states with these properties exist at all. It

is one of the main results of this work that for all reasonable modifications of the

problem the corresponding states can be found.

3.3 Construction method

Our method for constructing states with the desired properties is formulated as an

iteration process consisting of two semidefinite programs (SDPs), (see Sec. 2.6 for re-

view on SDPs). The algorithm is based on the approach to multiparticle entanglement

with PPT mixtures [37] (see as well Sec. 2.1.2). The question whether a state is a PPT

mixture can directly be decided via SDPs, most importantly, it can also be decided

when only partial information on the state is available (see also below).

Now we describe the steps of the searching algorithm. We formulate it first for qubits,

the extension to higher-dimensional systems is explained afterwards.

Step 1. In the first part we apply the criterion for PPT mixtures to a random initial

state $0 using only its marginals. For that, we have to solve the following SDP

minimize:
W ,PM ,QM

tr(W$0), (3.2)

subject to: tr(W) = 1, where

W = ∑
ij

wα,β
ij σα

i ⊗ σ
β
j ⊗ 1⊗(N−2) + perm.

and for all bipartitions M|M :

W = PM + QTM
M , QM ≥ 0, PM ≥ 0.

This optimization program means that for the state $0 we construct the optimal W
decomposable witness for all bipartitions M|M. If the expectation value tr(W$0) for

such a witness is negative, the state is genuine multipartite entangled (see Sec. 2.1.2).

The first constraint on the witness’ trace maximizes the white-noise tolerance of the
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entanglement detection. The second linear constraint requires the witness to contain

only two-body correlations, since we want to certify entanglement of our states from

their two-body marginals only. Permutations are taken for all pairs α, β of qubits.

This constraint is additional to the original PPT mixture problem and it is one of the

algorithm’s main features.

Step 2. In the second part of the iteration we determine the state that gives the most

negative value for the given witness from the first step. In line with our approach, we

require separability of the reduced two-party marginals. For the case of qubits this

part can be formulated as a simple SDP, since a two-qubit state is separable, if and

only if it is PPT. So we consider:

minimize:
$

tr(W$) (3.3)

subject to: $ ≥ 0, tr($) = 1,

and for all α, β $Tα
αβ ≥ 0,

where α, β denote pairs of qubits and $αβ is the two-qubit marginal.

Combining both steps 1 and 2 and putting the output $ of the second part as an input

into the first part one can run an iteration process. If, at some point of the iteration the

second step gives a negative value, we found already a state that has separable two-

body marginals, where the entanglement can be proven from the marginals only. In

practice, if a pure random state is taken as a seed of the algorithm, the iteration process

typically gives a state with the desired properties after the second or the third iteration.

Running the iteration further maximizes the entanglement and noise robustness of the

state, while keeping the desired properties. Besides, the output states for different

inputs $0 mainly differ only up to some local unitary transformation.

The algorithm can be extended to modifications of the problem in several ways. First,

if higher-dimensional systems are considered, one has to use the appropriate general-

izations of the Pauli matrices in the construction of the witness in Eq. (3.2). Also, in

higher dimensions the PPT criterion is not necessary for separability, so for the state

resulting in the second step separability of the marginals is not guaranteed. Never-

theless, if a state is found, the separability can later be checked with existing effective

algorithms for proving separability of quantum states [110, 111]. Second, if only some

of the marginals are known [as in Fig. (3.1)] one just has to modify the definition of

the witness in Eq. (3.2) and take only correlations from the known marginals. Finally,

in the case of more than three parties, if also the full separability of the three-body

marginals is required, one can modify the second step by changing the conditions that
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now the three-body marginals are PPT for any bipartition, and later verify the full

separability of them with existing approaches [110, 111].

3.4 Results

3.4.1 Three qubits

Although one example (3.1) of a state with the desired properties for three qubits was

already reported in Ref. [109], we start with this case, as this allows to explain our

methods.

Taking the most robust algorithm’s final state, applying local unitary operations and

searching for an analytical expression, we find the following state which has separable

two-body marginals which suffice to prove genuine multiparticle entanglement:

$
(3)
N =

2
3
|ξ〉〈ξ|+ 1

3
|W̄3〉〈W̄3|, (3.4)

|ξ〉 =

√
1
3
|Wj

3 〉+
√

2
3
|111〉,

where

|W̄3〉 =
1√
3
(|011〉+ |101〉+ |110〉)

and (3.5)

|Wj
3 〉 =

1√
3
(ei π

3 |001〉+ e−i π
3 |010〉 − |100〉).

The latter in Eq. (3.5) is just a W-state (2.22) with equally distributed phases. Note

that besides these phases the state (3.4) itself would be permutationally invariant.

However, the asymmetry is necessary, since it can be shown that for symmetric states

the studied phenomenon cannot exist [106]1. We add that one can also see the set of

marginals $AB, $BC and $AC as the output of the algorithm, we will discuss below the

extent to which the marginals determine the state completely.

To compare our result with the result from Ref. [109], we note that the phenomenon

described here is not fragile, as can be seen by the white noise tolerance. For that we

consider the following mixture of the target state and white noise

$(p) = (1− p)$(3)N + p1/8, (3.6)

1Nevertheless, we found with our algorithm permutationally invariant states with the desired prop-
erties.
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and ask for which values of p the state has still the desired properties. Clearly, the

marginals remain separable if white noise is added, so one only has to check whether

the three-qubit entanglement can be proven from the marginals. One finds that the

state in Eq. (3.4) remains this property with possible 13.7% of white-noise added,

which means that this phenomenon is quite robust and it is realistic that this phe-

nomenon can be observed experimentally. In addition, the white-noise tolerance of the

state itself is 28.6%, but then the entanglement cannot be proven from the marginals

only. For comparison, the state (3.1) keeps its properties only up to 5.2% of possible

white-noise. Note as well that such estimates are impossible with the methods from

Ref. [109], this it is another advantage of our algorithm.

3.4.2 Four and five qubits

For four qubits we find many analytical examples of states that have the desired prop-

erties. Remarkably, there are now also pure states with separable marginals, from

which entanglement can be proved. One of the simplest solutions for four qubits is a

Dicke-type [44] state without one term and with one π–phase:

|N(4)〉 = 1√
5

(
|0011〉+ |0101〉+ |0110〉+ |1001〉 − |1010〉

)
. (3.7)

After local unitaries this state may also be expressed as a cluster state [45] with an

extra term |N(4)〉 = 2/
√

5|CL4〉+ 1/
√

5|0110〉. This state has 21.2% white-noise tol-

erance (here and later we mean by white-noise tolerance the tolerance of the studied

properties). A further property is that the state |N(4)〉 is uniquely determined by its

two-body marginals, this fact has far-reaching consequences as we will see below.

There are other four-qubit states with the desired properties. For example, the most

noise-robust four-qubit state that we found contains a Dicke part and a GHZ part with

the Dicke part having asymmetric amplitudes. It is given by:

|Ψ(4)〉 = 1√
2
|η〉+ 1√

2
|GHZ4〉, (3.8)

|η〉 = 1
2
√

2

(
− i|0011〉+ |0101〉+ |0110〉 −

√
3|1001〉+ i|1010〉+ |1100〉

)
.

This state has white-noise tolerance of 22.4% and it is the closest one to the numerical

solution.

With our method we were able to go as for as to six-qubit case. The following state

is a genuine multiparticle entangled five-qubit state with separable marginals, which
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Figure 3.2: Illustration of the construction of the desired state for eight parties.
Dashed lines represent different parties, each party possesses two qubits. Blue

rounded rectangles depict the entangled four-qubit state |N(4)〉 from Eq. (3.7).

are compatible with this state only.

|Ψ(5)〉 = 1√
6
|00〉|000〉+ 1√

8
|11〉

(√2
3
|000〉 − |001〉 − |010〉 − |100〉

)
(3.9)

− 1√
48
|01〉

(√
2|001〉+

√
2ei 2π

3 |010〉+ ei π
3 |011〉+

√
2e−i 2π

3 |100〉+ e−i π
3 |101〉 − |110〉

)
− 1√

48
|10〉

(√
2|001〉+

√
2e−i 2π

3 |010〉+ ei 2π
3 |011〉+

√
2ei 2π

3 |100〉+ e−i 2π
3 |101〉+ |110〉

)
.

This state corresponds to 17.3% white-noise tolerance.

3.4.3 Generalization to more particles

Using the state in Eq. (3.7) one can construct examples of states for an arbitrary num-

ber of particles. We can formulate:

Observation 3.1. For any number of particles greater than four one can find a pure

state with separable two-body marginals, where genuine multiparticle entanglement

can be proven from these marginals only.

We illustrate the construction for eight parties, where each of the parties possesses a

four-level system, represented by two qubits, so the total system consists of 16 qubits.

We can distribute four copies of the state |N(4)〉 in Eq. (3.7) as depicted in Fig. (3.2).

Now every two-party marginal is separable since it is a direct product of two two-

qubit separable states. Furthermore, knowledge of the two-party marginals implies

knowledge on the states |N(4)〉 and their distribution among the 16 qubits, since |N(4)〉
is uniquely determined by its marginals. So the state of eight parties is uniquely

determined by its two-body marginals as well. The global state is pure and does not

factorize for any bipartition of the eight parties, so it is genuine multiparticle entangled

and the entanglement can be proven from the separable marginals.

A similar reasoning is valid for any number of parties. For five parties one takes two

copies of the state |N(4)〉 and distributes the first copy to the parties A, B, C, D and the

second copy to the parties B, C, D, E, for other numbers of qubits the construction is
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analogous. Note that the purity of the state |N(4)〉 is essential for the argument, so the

construction would not work with other states, e.g. the state from Eq. (3.1). Also, we

needed that the state is uniquely determined by its two-qubit reduced states. Below

we discuss this property for the other states we found using the method.

3.4.4 Uniqueness of the global state

The property of uniqueness of the global sate was noted before for the state from Eq. (3.1).

In fact, this is the case for both three and four-qubit states from the Eqs. (3.4, 3.7).

However, this property does not necessarily follow from the constraints and a coun-

terexample for four qubits is the following state:

|Φ(4)〉 = 1√
2
|D̃4

2〉+
1√
2
|GHZ4〉 (3.10)

with

|D̃4
2〉 =

1√
6

(
|0011〉+ |0101〉+ |0110〉+ eiϕ|1001〉+ eiϕ|1010〉+ e−iϕ|1100〉

)
, (3.11)

where ϕ = arccos(−1/3) and |GHZ4〉 = (|0000〉+ |1111〉)/
√

2 is a four-qubit GHZ

state (2.21). In this case, the two-qubit marginals are also compatible with the state

of the same form as Eq. (3.10), but with the opposite phases ϕ → −ϕ, meaning that

there is a set of states, which are convex combinations of |Φ(4)(ϕ)〉 and |Φ(4)(−ϕ)〉 and

which are compatible with the same reduced two-qubit states. This demonstrates that

in our problem the set of two-body reduced states need not be compatible with only

one global state, the only condition is that set of global states, compatible with these

marginals, must be enclosed into the set of genuine multiparticle entangled states.

3.5 Extensions of the problem

In this section we will consider several problem’s extensions, which we mentioned in

the beginning of this chapter.

3.5.1 Separability of the higher-order marginals

First, one may ask whether there is any four-qubit state with separable two and three-

body marginals, where the genuine multiparticle entanglement can be proven from

the two-qubit reduced states. To find the desired state we have used our iterative
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method, in which in the SDP of Sept 2 (3.3) we additionally require that the three-body

marginals are also PPT. Still in the SDP of Step 1 (3.2) we try to prove entanglement

from the two-body marginals. Our method results in the following state

$
(4)
N =

1
2
|ζ1〉〈ζ1|+

1
2
|ζ2〉〈ζ2|, (3.12)

|ζ1〉 =

√
4
5
|GHZ4〉+

√
1
5
|Ψ+〉AB ⊗ |Ψ+〉CD,

|ζ2〉 =

√
2
5
(
|0011〉+ |1100〉

)
+

√
1
5
|Ψ−〉AB ⊗ |Ψ−〉CD,

where |Ψ±〉 are the Bell states (2.7) with the subscript denoting the parties which

share these states. The state (3.12) has the described properties, even if up to 21.8% of

white-noise are added. However, while the PPT property of the two-body marginals

implies separability this is not the case for the three-body marginals: Even if a three-

qubit state is PPT for all bipartitions, this does not mean that it is fully separable.

Therefore, we checked whether the three-qubit marginals are fully separable with the

separability testing algorithm from Ref. [110] and found that if more than 13.5 % of

white noise is added, the marginals are indeed fully separable. This proves that the

state $(p) = (1− p)$(4)N + p1/16 for p ∈ [0.135, 0.218] has the desired properties.

3.5.2 Proving entanglement from a subset of marginals

Second extension, which we have considered, is the possibility to detect entangle-

ment from only a part of two-body correlations, while we still require all two-body

marginals to be separable. Clearly, we will only consider the situation where every

particle is at least in one of the measured marginals, otherwise, the sate where this

particle is in a product with the rest of the particles will always be consistent with the

data.

In order to look for such states with our iterative method, we modify the SDP (3.2)

of Step 1 and keep the SDP of Step 2 unchanged. In (3.2) we put a further restric-

tion on W such that it contains terms corresponding to sets {α,β} ∈ M, for some

configurationM2.

For the three-qubit case there is only one possible configuration (up to permutations

of parties), which is shown on Fig. 3.1 (middle), where M = {{AB}, {AC}}, which

means that only marginals $AB and $AC are known. Bellow is an example of a state

2ConfigurationM is very similar to the notion of the marginal scenario from Sec. 2.4, however, we will
keep it distinct since we use the notion of marginal scenario in the context of probability distributions.
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with this properties.

$
(3)
M =

1
2
|ξ1〉〈ξ1|+

1
2
|ξ2〉〈ξ2|, (3.13)

|ξ1〉 =
√

1
10
(√

5|000〉+
√

4 e−i 3
4 π|011〉+ e−i 3

4 π|101〉
)
,

|ξ2〉 =
√

1
10
(√

3
(
|001〉+ ei 2

3 π|010〉+ e−i 1
3 π|100〉

)
+ |111〉

)
.

This effect has about 5% of white-noise tolerance.

For the four-qubit case we first note that the genuine multiparticle entanglement of

the state from the Eq. (3.10) can be detected by knowing only $AB, $BC, and $CD with

possible 3% of white noise added. This configuration of marginals is shown on Fig. 3.1

(right). However, the state (3.10) was not tailored for this configuration and the fact

that genuine multiparticle entanglement of this sate can be detected from only three

out of six marginals manifests the robustness of the described phenomenon for four-

party case.

One can go further and consider various configurations M. It is, in particular, inter-

esting to look for M corresponding to acyclic graphs. Physically it means that we

have access only to the nearest-neighbor correlations which often happens in practice.

In Table 3.1 we show various configurations of marginals for qubit systems up to 6

particles. For examples of states and more details, please, see Refs. [29, 112].

Number of qubits Considered configurations

4 qubits

5 qubits

6 qubits

Table 3.1: Considered configurationsM. Interestingly, the optimal state for the first
configuration of 4 qubits, which was found by the algorithm, is mixed. However, as
we already noted, the state from Eq. (3.10) has the same properties and is pure. Thus,
for every considered configuration there is pure state with the desired properties.

More details can be found in Ref. [29].

Concerning the problem of detecting genuine multipartite entanglement from sepa-

rable nearest-neighbor marginals we can reason, similar to Observation 3.1, that it

is always possible to construct a state displaying this phenomenon for an arbitrary

number of parties and an arbitrary configuration graph. For an example see Fig. 3.3.
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A

B

C

D

E

F

G

H

I

J|ψ5〉1

|ψ5〉2

|ψ5〉3

|ψ5〉4

|θ〉

Figure 3.3: Demonstration of the construction of a state |θ〉 with desired properties
for some configuration for parties A . . . H by distributing copies of 5 qubit state |ψ5〉i

of line configuration to the parties.

3.5.3 Higher-dimensional systems

As a further extension, we found also examples for three qutrits (three-dimensional

systems). When considering higher dimensions, it is worth noting that for every exam-

ple of states, which we present in this chapter, there exist trivial extensions to higher

dimensions. For instance, if we take a three-qubit state $
(3)
N from Eq. (3.4), then, as

noted in Ref. [109], a following family of states

$
(3)
d = p1$

(3)
N +

d

∑
m=2

pm|mmm〉〈mmm|, for (p1 > 0, pm ≥ 0), (3.14)

satisfy all the conditions of the desired states. However, this extension is rather trivial

and does not give the best possible effect for qudit states. Using our algorithm for the

three-qutrit case, we have found the following state.

$
(3)
3 =

1
2
|η1〉〈η1|+

1
2
|η2〉〈η2|, (3.15)

|η1〉 =
1√
12

(|000〉 − |222〉)− i
√

5
6

(|012〉+ |021〉 − |102〉+ |120〉+ |201〉+ |210〉),

|η2〉 =
1√
6
|111〉 −

√
5

6
(|012〉 − |021〉+ |102〉+ |120〉+ |201〉 − |210〉).

for which the two-body marginals are PPT, but genuine multiparticle entanglement

can be proven from them. The white-noise tolerance of the discussed properties of

the state is 29.5%. Separability of its reduced states can be proven using the algorithm

[110] if 5.3% of white-noise is added. So, the three-qutrit state σ = (1− p)$ + p1/27
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Figure 3.4: Illustration of the emergence of multiparticle entanglement in the case of
vanishing localizable entanglement. The post-measurement state $PM

AB ∼ 〈c|$ABC|c〉
is separable after arbitrary measurements of Charlie, but knowing the reduced states
$AB, $AC, and $BC is still enough to prove genuine tripartite entanglement of the

original state $ABC.

has for p ∈ [0.053, 0.275] the property that genuine multiparticle entanglement can be

proven from separable marginals.

Judging by the simulations we made, it seems that it is possible to find a state for any

imaginable configuration of measurable correlations as soon as they contain correla-

tions between every bipartition of the system.

3.5.4 No localizable entanglement in the marginals

Finally, we demonstrate that an extension of our method can be used to find a three-

qubit state, where the marginals do not contain any entanglement, even after arbitrary

measurements on the third particle. Nevertheless, global entanglement can be proved

from the marginals only.

To start, one can ask whether the two-particle marginals are also separable, if the third

party has made a measurement, described by a projector |c〉〈c| (see Fig. 3.4). For pro-

jective measurements, the post-measurement state is described by $PM
AB ∼ 〈c|$ABC|c〉

and one can see that if this state is separable for all |c〉 then the marginal is also sepa-

rable, if Charlie makes a generalized measurement or an operation 3. So the question

arises whether there exist genuine tripartite entangled states with the property that

whatever projective measurement one party performs, the remaining two parties share

a separable state. One can think about it as a state with no creatable entanglement in

its subsystems, or a state with vanishing localizable entanglement [113]. In addition,

we want the entanglement to be provable from the two-body marginals $ij, but the

knowledge of the conditional states $PM
ij should not be required for the entanglement

proof.

3The most general marginal after an operation on C is given by $PM
AB = TrC[IA ⊗ IB ⊗ ΛC($ABC)],

where ΛC(ρ) = ∑k AkρA†
k with ∑k A†

k Ak ≤ 1 is a trace-non-increasing operation. Using the polar de-
composition Ak = U[s1|c〉〈c|+ s2|c⊥〉〈c⊥|] with si ≥ 0 we have for a single term that TrC[Ak($ABC)A†

k ] =

s1〈c|$ABC|c〉+ s2〈c⊥|$ABC|c⊥〉 is separable as a convex combination of separable states, so also $PM
AB is

separable.
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To look for such a state one should add an infinite number of additional constraints

to the semidefinite program (3.3) of the Step 2 in the algorithms, corresponding to all

possible local projective measurements. This is, of course, infeasible. However, it is

sufficient to add a finite number of constraints corresponding to some measurements

(preferably equally distributed over the Bloch sphere) and require a strict positivity

(e.g., [$PM
AB ]

TA ≥ ε1 for some ε > 0) of the partial transposition of the post-measurement

states. If a state is finally found, one can check by direct numerical evaluation whether

the post-measurement states are separable even for arbitrary measurements.

Applying this in practice, one directly finds states with the desired properties, an

example is given bellow.

$
(3)
L =

1
3
|χ1〉〈χ1|+

1
3
|χ2〉〈χ2|+

1
6
|χ3〉〈χ3|+

1
6
|χ4〉〈χ4|, (3.16)

where the eigenvectors are

|χ1〉 =
√

5
21
(
|001〉+ e−i π

6 |010〉+ e−i 3
4 π|100〉

)
+

√
2
21
(
ei π

5 |011〉+ eiπ|101〉+ ei π
9 |110〉

)
,

|χ2〉 =
1
3

ei 4
5 π|000〉+

√
3
7
|111〉+

√
1
42
(
ei 5

6 π|001〉+ e−i 2
3 π|010〉+ e−i 3

5 π|100〉
)

+

√
7
54
(
e−i 3

5 π|011〉+ e−i 5
9 π|101〉+ |110〉

)
, (3.17)

|χ3〉 =
√

18
5
|000〉+ 1

5
ei π

5 |111〉+
√

2
5
(
eiπ|001〉+ e−i π

2 |010〉+ e−i 2
5 π|100〉

)
,

|χ4〉 =
1√
3

(
|001〉+ e−i 5

6 π|010〉+ |100〉
)
.

This state keeps its properties with possible level of white noise of 2%. As discussed

above, to find this state we added a finite number of constraints, corresponding

to various projective measurements, and then required strict positivity of the post-

measurement states. In our implementation we defined ∼ 1000 constraints and re-

quired the eigenvalues of the partial transposition of the post-measurement states to

be larger than ∼ 10−4. This example proves that genuine multiparticle entanglement

can emerge, even if the localizable entanglement vanishes.

3.6 Conclusions

In conclusion, we have provided a method to study systematically the emergence of

genuine multiparticle entanglement from separable marginals. Our findings show the

rich structure of multiparticle entanglement, where essentially all possible entangle-

ment properties of the marginals can be combined. We believe that the entanglement
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properties of the resulting quantum states deserve further study, moreover, it would

be interesting to observe the here described effects experimentally.



Chapter 4

Qudit hypergraph states

This chapter describes some partial results of Ref. [28]. The corresponding preliminary

sections are 2.1,(in particular 2.1.4 and 2.1.3) and 2.6.

In Ref. [28] we generalize the class of hypergraph states to multipartite systems of

qudits. For simple hypergraphs, the different equivalence classes under local opera-

tions are shown to be governed by a greatest common divisor hierarchy. Moreover,

the special cases of three qutrits and three ququarts are analysed in detail.

4.1 Introduction

We have mentioned in the introductory chapter that the class of graph states [18]

contains as a special case the whole class of cluster states, which are the key ingredi-

ents in paradigms of quantum computing, e.g., the one-way quantum computer [45].

Apart from that, graph states are used in quantum error correcting codes [114], in

the construction of Bell-like theorems [115], entanglement witnesses [116], models of

topological quantum computing [117], and others.

Recently, there has been an interest in the generalization of graph states to a broader

class of states known as hypergraph states [19]. In a hypergraph an edge can connect

more than two vertices, so hypergraph states are associated with many-body interac-

tions beyond the usual two-body ones. Interestingly, the mathematical description of

hypergraph states is still very simple and elegant and in Ref. [47] a full classification

of the local unitary equivalence classes of hypergraphs states up to four qubits was

obtained. Also, in Refs. [20, 47] Bell and Kochen-Specker inequalities have been de-

rived and it has been shown that some hypergraph states violate local realism in a

way that is exponentially increasing with the number of qubits. Finally, recent studies

53
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in condensed matter theory showed that this class of states occur naturally in physical

systems associated with topological phases [118]. Originally, hypergraph states were

defined as members of an even broader class of states known as locally maximally

entangleable (LME) states [119], which are associated to applications such as quantum

fingerprinting protocols [120]. Hypergraph states are then known as π-LME states

and display the main important features of the general class of LME states.

Prior to Ref. [28], hypergraph states were defined only in the multi-qubit setting, while

graph states can be defined in systems with arbitrary dimensions (see Sec. 2.1.4). In

higher dimensions graph states have many interesting properties not present in the

two-dimensional setting. For example, there are considerable differences between

systems where the underlying local dimensions are a prime or non-prime [50]. An-

other difference is the construction of Bell-like arguments for higher-dimensional sys-

tems [121].

In the present work, we extend the definition of hypergraph states to multipartite

systems of arbitrary dimensions (qudits) and analyse their entanglement properties.

Especially, we focus on the equivalence relations under local unitary (LU) operations

or under stochastic local operations assisted by classical communication (SLOCC).

Note that the whole class of qudit graph states is a special case of our formulation.

4.2 Definition of qudit hypergraph states

We introduce now the class of hypergraph states in a system with underlying finite

dimension d. Given a multi-hypergraph H = (N , E) (see Fig. 2.2b for an example of

a multi-hypergraph), we associate a quantum state |H〉 in a d-dimensional system in

the following way:

• To each vertex i ∈ N we associate a local state |+〉 = d−1/2 ∑d−1
q=0 |q〉.

• For each hyperedge e ∈ E with multiplicity me we apply the controlled-unitary

Zme
e on the state |+〉N =

⊗
i∈N |+〉i. Thus, the hypergraph state is defined as

|H〉 = ∏
e

Zme
e |+〉N . (4.1)

Here, me is a multiplicity of the hyperedge e which defines how many times the

controlled Ze is applied to |+〉N . The controlled unitary operation Ze is analogous to

the controlled operation, defined in Eq. (2.27) for graphs (see Sec. 2.1.4), however, in
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this case the control system is not one qudit, but many. Explicitly, the controlled Z

gate on n particles is given by

Ze =
d

∑
q1=0

. . .
d

∑
qn−1=0

|q1 . . . qn−1〉〈q1 . . . qn−1|Zq1·...·qn−1

=
d

∑
q1=0

. . .
d

∑
qn=0
|q1 . . . qn〉〈q1 . . . qn|ωq1·...·qn (4.2)

where ω = e2πi/d as for the case of quidit graph states. For the definition of the Z

gate, please, see Eq. (2.23) from Sec. 2.1.4. It is more naturally to define controlled

operations over many qudits in a recursive way, for details see Ref. [28].

Note that in our definition we allow among the hyperedges e ∈ E the presence of

“loops", i.e., an edge that contains only a single vertex. Also empty edges are allowed,

they correspond to a global sign. A loop of multiplicity m on vertex k means here that

a local gate (Zk)
m is applied to the hypergraph state.

Equivalently, one can define a hypergraph state as the unique +1 eigenstate of a

maximal set of commuting stabilizer operators Ki = Xi ∏e∈E Z†
e\{i}; In contrast to the

case of qudit graph states, the stabilizers of hypergraph states are generally nonlocal,

for more details, please, see Ref. [28].

An important special class of hypergraph states are the so-called n-elementary hyper-

graph states, which are those constituted of a single hyperedge e between n qudits,

i.e., the state has the simple form |H〉 = Zme
e |+〉N . In Ref. [28] we provide full SLOCC

classification of n-elementary hypergraph states, which we will briefly mention in the

next section.

4.3 SLOCC and LU classes of hypergraphs

We have already discussed the importance of SLOCC classification of entangled states

in Section 2.1.3. In the beginning of this section we will only state the general result of

Ref. [28] on SLOCC-equivalence in n-elementary hypergraph states and later we will

provide in detail a complete classification of tripartite hypergraph states in dimension

3 and 4.



Qudit hypergraph states 56

4.3.1 Elementary hypergraphs

Before going to the classification of hypergraph states, we will need to mention the

following

Proposition 4.1. Let k, k′ ∈ Zd be such that gcd(d, k) = gcd(d, k′) = g. Then there exists a

Clifford operator S such that S(Ze)kS† = (Ze)k′ .

For the definition of Clifford operations see Eqs. (2.24-2.26) from Sec. 2.1.4. For the

proof of the above proposition see Ref. [122] or Ref. [28].

Using Proposition 4.1 we can prove the following

Theorem 4.2. For a d-dimensional n-partite system, two n-elementary hypergraph states

with hyperedge multiplicities k and k′ are equivalent under LU, and hence also under SLOCC

if gcd(d, k) = gcd(d, k′). For the case that gcd(d, k) 6= gcd(d, k′) the states are inequivalent

under SLOCC.

Here gcd(d, k) denotes the greatest common divisor of d and k. For the complete

proof of Theorem 4.2, please, see Ref. [28]. From the above theorem it follows that the

number of different elementary hypergraph SLOCC classes is the number of different

values (modulo d) of gcd(d, k), which is obviously the number of divisors of d. It is

remarkable that in this case SLOCC equivalence is the same as equivalence under LU

operations. For d prime, all values k ∈ Zd are obviously coprime with d and hence the

following implication is straightforward:

Corollary 4.3. For d prime, all n-elementary hypergraph states are equivalent under SLOCC.

Finally, we note that also some other hypergraphs states are LU equivalent to elemen-

tary hypergraph states. In particular, we state the following

Observation 4.4. Action of the local gate X†
i on i-th qudit of an n-elementary hyper-

graph state creates a (n− 1)-hyperedge on the neighbourhood of i with equal multi-

plicity me of the n-hyperedge e. Acting k times with this local gate, i.e., application of

(X†
i )

k, results in inducing in the neighbourhood of the qudit i a (n− 1)-hyperedge of

multiplicity kme.

For the proof see Re. [28], for a demonstration see Fig. 4.1 (case (a)).
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4.3.2 Tools for SLOCC classification

In this section we will explain some more refined criteria for proving or disproving

SLOCC equivalence in multipartite entangled states. As already mentioned in the

introductory chapter (Sec. 2.1.3), the rank of the reduced states is a simple way of

identifying inequivalences.

To find a finer distinction we employ a method based on Ref. [43] that uses a 1|23 . . . n

split of the system to identify types of inequivalent bases of the (2, 3, . . . , n)-subspace,

which results in a lower bound on the number of actual SLOCC-classes. As we want

to infer for a given state its SLOCC-class, there remains the following problem to be

solved: identifying the basis which has minimal entanglement in its basis vectors.

Accordingly, we refer to this tool as minimally entangled basis (MEB) criterion. A

major disadvantage of this method is that with growing number n of subsystems, the

entanglement structure within the bases becomes more complex, as it rises recursively

from the total number of SLOCC-classes of the (n− 1)-partite systems.

The MEB of an n-partite quantum state is defined as follows:

Definition 4.5. Consider a state

|ψ12...n〉 =
d−1,d−1,...,d−1

∑
a1,a2,...,an=0

ca1,a2,...,an |a1, a2, . . . , an〉

in a d×n system. According to Ref. [43], we define the d × (dn−1) coefficient-matrix

C1|2...n in the canonical basis {ei} as follows:

C1|2...n =
d−1,d−1,...,d−1

∑
a1,a2,...,an=0

ca1,a2,...,an e1(eT
2 ⊗ . . .⊗ eT

n )

This matrix holds all information about the total state. From the singular value de-

composition (SVD) of this matrix, C1|2...n = U1DV†
2...n, we can identify a basis {vk} of

the right subspace (2, . . . , n), where individual basis vectors |vk〉 might be entangled.

Within this framework, we define a minimally entangled basis (MEB) {vk}MEB of

|ψ12...n〉 as the one within which the number of full product vectors is maximal un-

der the condition that it spans the same subspace as {vk}.

Below we will give two lemmata without the proof. The proof can be found in

Ref. [28].

Lemma 4.6. Two n-partite quantum states |φ〉, |ψ〉 of the same subsystem-dimensionality and

equal reduced ranks are SLOCC-inequivalent, if their MEBs have a different number of product

vectors.
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In the above lemma we consider states |φ〉, |ψ〉 that have equal reduced ranks, because

otherwise these states are automatically SLOCC-inequivalent and there is no point in

calculating their MEBs.

Notice that inequivalent MEBs can exclude SLOCC equivalence, but an equivalence of

MEBs does not, in general, guarantee SLOCC-equivalence. An exception is the case

where the right subspace is spanned by a complete product basis. The reason is that

in this case they are SLOCC equivalent to a generalized GHZ state:

Lemma 4.7. Two genuine multipartite entangled states |φ〉, |ψ〉 of n particles of the same

subsystem-dimensionality and equal reduced single-particle ranks are SLOCC-equivalent, if

their MEBs are complete product bases.

Based on the lemmata presented in this subsection we wrote computer programs

which we regard as tools which we use later for classification of tripartite hypergraphs

of dimension 3 and 4.

Tool # 1

The first program checks whether there exist a state $ in the subspace spanned by a

given set of pure states |vi〉 for i = 1, . . . , K, K ≤ d that has a positive partial transpose

(PPT) with respect to any bipartition (see Sec. 2.1.1 for the definition of PPT). This

problem can be formulated as following semidefinite program (SDP)1

min
λ

0 (4.3)

subject to $ =
K

∑
ij

λij|vi〉〈vj|,

$ ≥ 0,

∀ bipartitions M|M, $TM ≥ 0,

λ† = λ, tr(λ) = 1,

where last condition means λ is a hermitian K×K matrix with trace 1, and $TM denotes

partial transpose of matrix $ with respect to the subsystem M.

This tool can be used to prove that there is no product vector in the right subspace

(2, . . . , n) of an n-partite state |φ〉, where K is the number of basis vectors in the right

subspace. If the above SDP is infeasible it implies that there is no separable state in

the subspace (2, . . . , n), which in turns implies that there is no product vector. If for

1For the basic theory of SDPs see Sec. 2.6.



Qudit hypergraph states 59

some other n-partite state |ψ〉 there is a product vector in the right subspace (2, . . . , n)

the two states |φ〉 and |ψ〉 are SLOCC-inequivalent according to Lemma 4.6.

Tool # 2

The second program is a slight modification of the first one and it checks whether

there exist a PPT state of rank K in the subspace spanned by K linearly independent

vectors |vi〉, i = 1, . . . , K, K ≤ d. If the optimal value ε of the following semidefinite

program

min
λ,ε

ε (4.4)

subject to $ = ∑
ij

λij|vi〉〈vj|,

$ ≥ 0,

∀ bipartitions M|M, $TM ≥ 0,

$ ≥ ε

(
∑

i
|vi〉〈vi|

)
,

λ† = λ, tr(λ) = 1,

is greater than 0, and if the found PPT state $ can be proven to be (fully) separable,

then by the range criterion (see Ref. [123]) it means that in the subspace spanned by

|vi〉 there are K product states which span the same subspace. This program can be

used to prove SLOCC-equivalence of states |φ〉 and |ψ〉 according to Lemma 4.7, if for

both states the above conditions are satisfied for their right subspace of at least one

bipartition.

Tool # 3

Finally, it is convenient to perform a numerical optimization in order to find product

states |vp
i 〉, i = 1, . . . , K′, K′ ≤ K in the subspace spanned by the given set of vectors

|vi〉 for i = 1, . . . , K, K ≤ d. This can be done by, let us say, maximizing the purity

of the reduced states (that is, 1− tr($2
M), where $M = trM($) is the reduced state of

the subsystem M) for each bipartition and minimizing the scalar product
∣∣∣〈vp

i |v
p
j 〉
∣∣∣2

between each pair of product vectors for each unique pair {i, j}, i, j ∈ {1, . . . , K′}.
Minimizing the scalar products makes the program to look for linearly independent

vectors which in the best case are orthogonal.

As we will see in the next section, for most of the tripartite hypergraph states of

dimension 3 and 4 numerical optimization, described above, gives explicit form of



Qudit hypergraph states 60

product states in the right subspace if they exist. Moreover, knowing the exact form

of product states for the case where a full product basis exists for both states |φ〉 and

|ψ〉 allows us to find an explicit SLOCC transformation between these states.

4.3.3 Tools for LU classification

Let us now discuss tools how LU equivalence can be characterized. In principle, this

question can be decided using the methods of Ref. [40], but for the examples in the

next section some other methods turn out to be useful.

If LU equivalence should be proven, an obvious possibility is to find directly the corre-

sponding LU tranformation. For proving non-equivalence, one can use entanglement

measures such as geometric measure [124], since such measures are invariant under

LU transformations. Another possibility is the white-noise tolerance of witnessing

genuine multipartite entanglement [37] (see as well Sec. 2.1.2). The latter method

works as follows: For an entangled state which is detected by a witness one can as-

sign an upper limit of white noise which can be added to the state, such that the state

can still be detected by that witness. Clearly, if two states are equivalent under LU,

they have the same level of white-noise tolerance of entanglement detection. In the

previous Chapter 3 we have already used the white-noise tolerance to determine the

robustness of the phenomenon of detecting genuine multipartite entanglement from

separable marginals.

Using the tools described above we present a classification in terms of SLOCC- and

LU-equivalence of tripartite hypergraph states for dimensions 3 and 4 in the next

section.

4.4 SLOCC classification of tripartite hypergraph states in di-

mensions 3 and 4.

We now consider the special cases of a tripartite system with prime dimension 3 and

a tripartite system with the smallest non-prime dimension 4 as examples. We will be

interested only in states corresponding to hypergraphs with no isolated vertices, i.e.

in genuine multipartite entangled hypergraph states2.

2Technically, the genuine multipartite entanglement of these states follows from witnessing it with
the method from Ref. [37].
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4.4.1 Classification of 3⊗ 3⊗ 3

From Proposition 4.1 it follows that in dimension 3 a (hyper)edge of multiplicity 2

can be converted to a (hyper)edge of multiplicity 1 via local symplectic operations.

It means that in dimension 3 we need to consider only edges and hyperedges of

multiplicity 1.

In the case of a tripartite system of qutrits (3-level systems), there is only one SLOCC

equivalence class of hypergraph states and two LU equivalence classes. The represen-

tatives of these two classes are the graph state and the 3-elementary hypergraph state

respectively.

Equivalence of states from the first LU class (graph states) is governed by the operation

called local complementation. For the details see Ref. [55]3. LU equivalence among

the second LU class follows from the Observation 4.4. For instance, by acting with X†

on qudit 2 of the first state in the class (see Table 4.1) we create an edge {1 3}, thus

obtaining the second state from this LU-class. By applying further a local gate X† on

the first qudit, we create and edge {2 3} and an additional local loop (a hyperedge

of one vertex) around qudit 3. This is a consequence of already existing edge {1 3},
however, clearly local loops can be removed by applying Z†. The obtained state is

equivalent to the second state of this LU class up to permutation of parties (2↔ 3).

C
la

ss Schmidt
ranks

Representatives
Geom. mea-
sure/ w-noise
tolerance

1
1|23 3

2|13 3

3|12 3

∼ 0.66

62.5%

∼ 0.53

∼ 76.0%

Table 4.1: Table of SLOCC and LU classes of 3-qutrit hypergraph multipartite entan-
gled states.

3In Ref. [55] it is shown as well that both states are LU-equivalent to the GHZ state, which for d-level
systems is given by |GHZ〉 = ∑d−1

i=0 |iii〉/
√

d.
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We can directly see that states from the two different LU classes are LU-inequivalent

due to different values of geometric measure of entanglement and white noise toler-

ance (see Table (4.1)).

Finally, in order to show the SLOCC equivalence, local invertible operations connect-

ing these two LU subclasses can be achieved by applying A1 to one of the qutrits of

the graph state and A2,3 to the other two, where

A1 =
1

4
√

3


−2
√

3− 2i 4i 4i

−4
√

3 + 4i
√

3 + i −5
√

3 + 7i

−6
√

3− 2i −
√

3− 5i −
√

3 + 7i

 (4.5)

and

A2,3 =
1
3


ei2π/3 1 1√
3eiπ/6

√
3eiπ/6

√
3eiπ/6

ei2π/3 ei2π/3 5−
√

3i
2

 . (4.6)

This local operations were found with the help of the tool# 3 (numeric optimization

program described in the previous section), which gives in this case full product basis

for right subspaces of all states from Table 4.1.

4.4.2 Classification of 4⊗ 4⊗ 4

In dimension 4 there are two types of (hyper)edges that need to be considered: ones

of multiplicity 1 and ones of multiplicity 2. The hyperedges of multiplicity 3 are

equivalent to the ones of multiplicity 1. As in the previous case this is the consequence

of Proposition 4.1 (see also Fig. 4.1, case (b)).

In the case of a tripartite system of ququarts (4-level systems), there are five SLOCC

and six LU equivalence classes of hypergraph states. All possible states with respect

to permutations and equivalence of edge multiplicities are shown in the Tables 4.2, 4.3

and the interconversion between representatives within the same class are explained

in detail in what follows.

Class 1

Class 1 contains hypergraph states with at least two edges of multiplicity 1 and with

either no hyperedges, or with hyperedge of multiplicity 2. All these states belong to

the same LU-equivalence class.
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C
la

ss Schmidt
ranks

Representatives
Geom. mea-
sure/ w-noise
tolerance

1
1|23 4

2|13 4

3|12 4

0.75

∼ 84.2%

1’
1|23 4

2|13 4

3|12 4

∼ 0.58

∼ 87.1%

Table 4.2: Table of SLOCC classes 1 and 1′ of 3-ququart hypergraph multipartite
entangled states.

LU-equivalence among first three state of class 1 (see Table 4.2) is governed by stan-

dard local complementation operations [55], which can be used to create a new edge

of multiplicity 1 in the neighborhood of qudit 2, while applying these operations once

more generates an edge of multiplicity 2 in the neighborhood of qudit 2. The same

local complementation is responsible for LU equivalence among three last states this

class.

To prove LU equivalence between these two subgroups of states (with no hyperedge

and with 2-hyperedge) we find with the Tool# 3 explicit form of their MEBs, which

appear to consist of product vectors. It can be shown then that local transformation

between these states is unitary. Here we present such local unitary for transformation
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C
la

ss Schmidt
ranks

Representatives
Geom. mea-
sure/ w-noise
tolerance

2
1|23 2

2|13 2

3|12 2

0.50

∼ 91.4%

∼ 0.32

∼ 88.7%

3
1|23 4

2|13 2

3|12 4

0.75

∼ 86.1%

4
1|23 4

2|13 2

3|12 4

0.75

∼ 88.8%

Table 4.3: Table of SLOCC classes 2 − 4 and LU classes of 3-ququart hypergraph
multipartite entangled states.

from the Figure 4.1 case (e).

U1,2,3 =
1
2


1 + i 0 1− i 0

0 0 0 −2

1− i 0 1 + i 0

0 −2 0 0

 . (4.7)

Class 1′

Class 1′ contains all hypergraph states which have 3-hyperedge of multiplicity 1. LU

equivalence of the states within this class is governed by the unitary (X†)m, which,

when allied to some qudit, generates edges of multiplicity m on the neighbourhood of

the qudit (see Observation 4.4).
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Class 2

Class 2 consists of two LU equivalence classes. The representative of the first LU-

equivalence class are the graph states composed of two and three edges of multiplicity

2, though the representatives of the second LU class are the hypergraph state with a

3-hyperedge of multiplicity 2 with possible edges of multiplicity 2.

We can perform some form of “local complementation" between two states from the

first LU class by applying the following unitaries in the basis {|p0〉, |p1〉, |p2〉, |p3〉}:

U1,3 =
1√
2


1 0 i 0

0
√

2 0 0

−i 0 −1 0

0 0 0
√

2

 ; U2 =


i 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .

Applying the local (X†)m unitary to some qudit of the states from the second LU class

generates edges of multiplicity 2m (i.e., 0 or 2) on the neighbourhood of that qudit.

Using the Tool #3 one can find the local operation corresponding to SLOCC equiva-

lence between these LU classes. For the representatives shown on the Fig. 4.1 case (d)

the corresponding LO is

A1,2,3 =
1
2


−i(1 + 3

√
4) 0 (1− 3

√
4) 0

0 2 0 0

i 0 −1 0

0 0 0 2

 . (4.8)

One can easily check that A1,2,3 is invertible, but not unitary. To show that there is no

local unitary transformation possible, one can look at the entanglement measures for

these LU classes (see Table 4.3).

Class 3

The representatives of class 3 are the elementary hypergraph states with a 3-hyperedge

of multiplicity 2, one edge of multiplicity 1 and possible edges of multiplicity 2. These

three states are in the same LU class and the local transformation between them is

(X†) applied on one of the qudits.
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a)
(X†

2)
2

−−→

b)
S3−−→

c)
X†

2−−→

d)
A⊗3

1,2,3−−−→

e)
U⊗3

1,2,3−−−→

Figure 4.1: SLOCC equivalence among representatives of the same class.

Class 4

The representatives of class 4 are graph states composed of one or two edges of multi-

plicity 2 and one edge of multiplicity 1. Applying the local unitaries U1 = (S(1, 1, 0))4,

U2 = S(1, 0, 1), U3 = S(1, 1, 0) to the first state creates an edge of multiplicity 2 be-

tween qudits 2 and 3.

SLOCC-inequivalence of Classes 1-4,1’

To prove the SLOCC-inequivalence of states of most of the classes it is sufficient to

look at their Schmidt ranks for each bipartition (see Tables 4.2, 4.3). Exceptions are

pairs of classes 1, 1′ and 3, 4.

To prove that there is no SLOCC transformation between states from classes 3 and 4

let us consider the vectors from the right subspace for bipartition 2|13 for two repre-

sentatives from each class. From the Schmidt decomposition of the state from class

3 one finds directly that there is at least one product vectors in the right subspace of

parties 13, i.e. MEB comtains at least one product vector. For the state from class 4 we

can prove that in the corresponding subspace there are no product vectors in the MEB
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using the Tool #1. Thus from Lemma 4.6 it follows that these states belong to different

SLOCC classes.

Unfortunately, we were not able to prove SLOCC-inequivalence of states from classes

1 and 1′ using the tools presented above. In fact, using the Tool #3 we found that the

states from class 1 have a full product basis in their right subspace for each bipartition

and the Tool #2 showed that for the states from class 1′ there are states with PPT and

full rank in their right subspace. However, the optimal value ε of the SDP of the Tool

#2 for the states in class 1′ was in order of 10−5. Besides, the direct numerical search

for SLOCC transformation bringing a states in class 1 to some state in class 1′ returned

states of fidelity of almost 1, though the numerical search for SLOCC transformation

in the opposite direction, from a state in 1′ to some state in 1, succeed in returning

states of fidelity of only 0.875. This difference in fidelities of local transformations in

different directions is typical for the three-qubit states of GHZ and W classes, which

suggests that classes 1 and 1′ are inequivalent.

4.5 Conclusions

In this work we generalized the class of hypergraph states to systems of arbitrary

finite dimensions. For the special class of elementary hypergraph states we obtained

the full SLOCC classification in terms of the greatest common divisor, which also

governs other properties such as the ranks of reduced states. For tripartite systems of

local dimensions 3 and 4, we obtained all SLOCC and LU classes by developing new

theoretical and numerical methods based on the original concept of MEBs.

Some open questions are worth to mention. In the multiqubit case, hypergraph states

are a special case of LME states; it would be interesting to generalize the class of LME

states to arbitrary dimensions and see if a similar relation holds. Nonlocal proper-

ties of qudit hypergraph states were not a part of this work and deserve a separate

consideration. Finally, possible applications of these states as a resource for quantum

computing should be investigated.



Chapter 5

Indistinguishability of causal

relations from limited marginals

In this chapter we will describe the results of Ref. [27]. The preliminaries for this

chapter are introduced in Sections 2.3, 2.4, and 2.5 of Chapter 2.

In this work we have investigated the possibility of distinguishing among different

causal structures starting from a limited set of marginals. The main tool used is the

notion of adhesivity, that is, the extension of probability or entropies defined only

on subsets of variables, which provides additional independence constraints among

them. Our results provide a criterion for recognizing which causal structures are in-

distinguishable when only limited marginal information is accessible. Furthermore,

the existence of such extensions greatly simplifies the characterization of a marginal

scenario, a result that facilitates the derivation of Bell inequalities both in the proba-

bilistic and entropic frameworks, and the identification of marginal scenarios where

classical, quantum, and postquantum probabilities coincide.

5.0.1 Properties of graphs and hypergraphs

We will start by giving some notions from graph theory, such as tree graph, acyclic hy-

pergraph, etc. which we will need in this chapter. As already defined in Section 2.1.4,

a hypergraph H = (N , E) is defined by a finite set of nodes N = {1, . . . , n} and a set

of (hyper)edges corresponding to subsets of N , i.e., E ⊂ 2N . A graph G is a special

case of an hypergraph where edges have cardinality 2, i.e., G = (N , E), with |E| = 2

for all E ∈ E . In this chapter we will only consider hypergraphs with multiplicity of

edges 1 (i.e. no double edges). See Fig. 5.1 for examples of graphs, directed graphs,

hypergraphs, and additional notions discussed below. As it will become clear later,

68
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(a) T (b) G

(c) DAG (d) H
Figure 5.1: Examples of graphs and hypergraphs. (a) A tree graph T where
{B, A, D} is a path. (b) A graph G where {A, C, B, A} is a loop and {A, B, C} and
{A, C, D} are cliques. B and D are separated by {A, C}. (c) A directed graph where
{A, C, B, A} is not a directed path, because direction of (A, B) is not respected. This
graph does not contain loops i.e. it is a directed acyclic graph (DAG). B and D are as
well separated by {A, C}, but {C} is a minimal separator. (d) A hypergraph H where

nodes B and D are separated by {A, C}.

we will be interested only in hypergraphs without isolated nodes, thus we will as-

sume that N = ∪E∈EE, when not stated otherwise, and we will sometimes denote the

hypergraph simply by the set of edges E .

Paths, cycles, and acyclicity are fundamental notions in graph theory. A path is a

sequence of distinct nodes v0, . . . , vn (except possibly the first and last) connected

by edges (vk, vk+1) k = 0, . . . , n, and a closed path or a loop is a path with first and

last node coinciding, i.e., v0 = vn. For directed graphs, the definition is analogous

with (vk, vk+1) representing a directed edge. Acyclic graphs, also called tree graphs, are

graphs not containing loops. A graph is connected if, for every pair of nodes, there is a

path connecting them.

A clique is a set of nodes v0, . . . , vn pairwise connected by an edge, i.e. (vi, vj) ∈ E for

all i, j = 1, . . . , n, i 6= j. Given a graph G, we can construct a hypergraph from it, called

the clique hypergraphHcl
G , with the same nodes and hyperedges inHcl

G corresponding to

cliques in G. Similarly, a hypergraph H = (N , E) can be transformed into a graph by

constructing the 2-section [H]2: we connect by edges in G all nodes that are connected

by at least one hyperedge in H. Notice that given a hypergraph H, the clique graph

of its 2-section will have, in general, extra hyperedges with respect to H (cf. Fig. 5.3).

A hypergraph H = (N , E) is a partial hypergraph of H′ = (N , E ′) if for any E ∈ E
there exist E′ ∈ E ′ such that E ⊂ E′. Equivalently, we will say that H′ extends, or is an

extension of, H (cf. Fig. 5.3).

Given two disjoint subsets of nodes A, B they are said to be separated by a subset C if

for each pair a ∈ A, b ∈ B, all the paths from a to b pass through C, i.e., if we remove
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(a) G (b) G ′

Figure 5.2: Example of a graph (a) and one of its possible triangulations (b).

C, A and B are no longer connected. In addition, C is called a minimal separator if

C�{vi} is no longer a separator for any vi ∈ C.

An important notion is also that of triangulated, or chordal graphs, namely, graphs for

which every cycle v0, . . . , vn of length n ≥ 4, contains a chord, i.e., an edge connecting

(vi, vi+2). Given any graph, G, additional edges can be added such that the obtained

graph, G ′, is triangulated, and we will refer to G ′ as the triangulation of G, see, e.g.,

Fig. 5.2.

For hypergraphs, the generalization of the notions of acyclicity and tree is not straight-

forward and several definition have been proposed (cf. Ref. [125]). For reasons that

will be clear in later in this chapter, here we will focus on the notion of α-acyclicity,

developed in the framework of database theory, which we will simply call acyclicity.

There are several equivalent characterizations of this property (cf. Refs. [71, 125]), but

we will focus on three of them: a characterization via the so-called Graham algorithm,

one via the running intersection property of hyperedges, and the characterization as a

clique hypergraph of a chordal graph.

The Graham algorithm is defined as follows. Given a hypergraph described by hyper-

edges E = {E1, . . . , En}, apply the following operations whenever they are possible

a) Delete a node i if it appears in exactly one hyperedge.

b) Delete a hyperedge E if E ⊂ E′ for some E′.

Acyclic hypergraphs are those for which the Graham algorithm returns the empty set.

Given a hypergraph H, its reduced hypergraph is the hypergraph obtained by applying

only operation b) of the Graham algorithm.

A hypergraph has the running intersection property if there exists an ordering of the

edges, E1, . . . , En such that

Si := Ei ∩ (E1 ∪ . . . ∪ Ei−1) ⊂ Ej, with j < i. (5.1)
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In addition, for a connected and reduced hypergraph, the set {Si} corresponds to the

set of minimal separators of the graph, i.e., Si separates Ri := Ei�Si from (E1 ∪ . . . ∪
Ei−1)�Si. It can be proven that the running intersection property is equivalent to

the empty set output for the Graham algorithm, so it can be used as an alternative

definition of an acyclic hypergraph (see, e.g., [71]).

The third equivalent property is defined in terms of graphs: a hypergraph is acyclic

iff its hyperedges correspond to the set of cliques of a triangulated graph (see e.g.,

Ref. [71]).

In order to clarify the above notions, it is instructive to apply them to the sim-

ple example depicted in Fig. 5.3. For instance, we can apply the Graham algo-

rithm to the hypergraph in Fig. 5.3 (a). By applying operation (a), we remove the

nodes A, D, F and we are left with the edges {{B, C}, {B, E}, {C, E}}. At this point

the algorithm stops, because we cannot remove any edge via operation (b), or any

other node with operation (a). The hypergraph H is thus not acyclic. We can ap-

ply the same procedure to H′: by removing the nodes A, D, F we are left with the

edges {{B, C, E}, {B, C}, {B, E}, {C, E}}. We can then continue and remove the edges

{B, C}, {B, E}, {C, E} via operation (b), and finally the nodes B, E, C connected by a

single edge {B, C, E}. The hypergraph H′ is thus acyclic. Equivalently, one can see

that the graph G, obtained as the 2-section [H]2 = [H′]2, has as cliques exactly the

hyperedges of H′, but not those of H. Finally, for the running intersection prop-

erty of H′, we can choose the ordering E1 = {B, C, E}, and for E2, E3, E4 any order-

ing of the remaining edges. It is clear that any intersection of edges is contained in

E1. One can also straightforwardly check that H does not have the running intersec-

tion property. Similarly, one can easily check the property of separators of the sets

Si = Ei ∩ (E1 ∪ . . . ∪ Ei−1), i = 2, 3, 4, for the hypergraph H′.

As we will see in the next sections the property of α-acyclicity in hypergraphs repre-

senting marginal scenario allows for the construction of the global probability distri-

butions from marginal distributions.

5.1 Adhesivity and independence constraints associated with

a marginal scenario

The main result of this section is that when one has only partial information about

(i.e., only some marginals of) a probability distribution, such marginals are always

consistent with a global distribution where additional independence constraints are
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(a) H (b) G

(c) H′

Figure 5.3: Example of graphs and hypergraphs. (a) A cyclic hypergraph H. (b) A
2-section graph G = [H]2 of the hypergraph. (c) A clique hypergraph H′ of G. Notice

that H′ 6= H. In fact, H′ is an extension of H.

imposed. We start by introducing the notion of adhesivity and restating in our lan-

guage a theorem by Vorob’ev [126] (Th. 5.1), then we connect this result with the notion

of marginal scenario to prove which independence constraints are always compatible

with a set of marginals (Th. 5.2).

On the one hand, such additional constraints simplify the characterization of the en-

tropy cone and correlation polytope associated with the marginal scenario. On the

other hand, this result allows us to identify which causal structures can be distin-

guished when we have access only to some restricted set of marginals.

The notion of adhesivity, albeit in different terms, was first introduced for probability

distributions [126, 127] and subsequently extended to entropies [128]. In the frame-

work of Bell and noncontextuality inequalities, similar ideas have been investigated

by several authors [94, 97, 129–131], but never in full generality.

5.1.1 Adhesivity of probabilities

Adhesivity can be explained in simple terms as follows. Given two sets of variables

XI = (Xi)i∈I and XJ = (Xj)j∈J and two probability distributions p(xI) and p′(xJ) such

that p and p′ coincide on the variables XI∩J , we can define a probability distribution

on I ∪ J as

P(xI∪J) =

 0 if p(xI∩J) = 0,
p(xI)p′(xJ)

p(xI∩J)
otherwise.

(5.2)
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One can easily check that this is a valid probability distribution on the set of variables

in I ∪ J.

The construction in Eq. (5.2) implies that every two marginals of a probability dis-

tribution are always consistent with a probability distribution conditionally indepen-

dent of their intersection, i.e., (XI�J ⊥ XJ�I | XI∩J) , since p(xI)p′(xJ)/p(xI∩J) =

p(xI |xI∩J)p′(xJ |xI∩J)p(xI∩J). We call such an extension of p and p′ an adhesive exten-

sion.

Similarly, two polymatroids (N, h) and (M, g) coinciding on N ∩M are said to adhere

or to have an adhesive extension if there exists a polymatroid (N ∪M, f ) extending h, g,

i.e., f (I) = h(I) for I ⊂ N, f (J) = h(J) for J ⊂ M, which is also modular on N and

M, that is, f (N ∪M) = f (N) + f (M)− f (N ∩M) or, equivalently, such that N and

M are conditionally independent on the intersection N ∩M. As a consequence of the

construction in Eq. (5.2) for probabilities, restrictions of entropies have an adhesive

extension, whereas general polymatroids do not (cf. Ref. [128]).

This observation is at the basis of the derivation of several non-Shannon informa-

tion inequalities, i.e., information inequalities that do not follow from Eqs. (2.44) (cf.

Ref. [128]). Starting from the first non-Shannon inequality derived by Zhang and Ye-

ung [132], infinitely many inequalities have been derived by Matúš [133], and several

others authors investigated the problem [134–136].

5.1.2 Marginal scenarios admitting a global extension

From the adhesivity property of probability distributions, one can extend probabil-

ities defined on a marginal scenario to a joint probability distribution over all vari-

ables, which satisfies extra conditional independence constraints that depends on the

marginal scenario.

The theorem below was first stated without proof by Vorob’ev in Ref. [126], and sub-

sequently explicitly proven in Ref. [127], but also independently derived by other

authors [137–139]. The original proof, however, used a quite different terminology. It

is helpful to restate it in the language of hypergraphs, and to present a sketch of it, in

order to understand the role of the adhesivity property.

Theorem 5.1. [Vorob’ev] A set of probabilities associated with an acyclic marginal scenario

hypergraph M admits a global extension to a single probability distribution. Moreover, the

extension can be chosen as a MRF described by the 2-section graph [M]2.
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Sketch of the proof.– Let M be the marginal scenario hypergraph, by definition, it

is a reduced hypergraph. If M is acyclic, we can find an ordering M1, . . . , Mn of

its hyperedges respecting the running intersection property. The construction of a

global probability distribution can then be obtained by induction on n, the num-

ber of hyperedges. For n = 1, P(M1) is a valid probability distribution (to sim-

plify the notation, we will use P(Mi) as a shorthand for P(xMi), etc). We then ap-

ply the inductive hypothesis. Let us assume that for n − 1 P(M1 ∪ . . . ∪ Mn−1) is a

valid probability distribution extending the marginals P(Mi) for 1 ≤ i ≤ n− 1. We

want to extend it to P(M1 ∪ . . . ∪Mn−1 ∪Mn). By the running intersection property,

Mn ∩ (M1 ∪ . . . ∪Mn−1) =: Sn ⊂ Mj for j < n. Denoting by PMi the marginal proba-

bility distribution on Mi, we define Rn := Mn�Sn and

P(Rn|Sn) :=
PMn(Mn)

PMj(Sn)
, (5.3)

defining 0/0 to be zero as in Eq. (5.2), and for the joint distribution

P(M1 ∪ . . . ∪Mn−1 ∪Mn) := P(Rn|Sn)

P(M1 ∪ . . . ∪Mn−1�Sn|Sn)P(Sn).
(5.4)

By the adhesivity property, this is a valid probability distribution, and its marginals

coincide with P(Mi) for 1 ≤ i ≤ n, so it is an extension of the marginal scenario. In

addition, it is modular over the intersection, i.e.

(Rn ⊥ (M1 ∪ . . . ∪Mn−1)�Sn|Sn) (5.5)

Since M is connected and reduced, the set of minimal separators precisely corre-

sponds to the set Sn above. The modularities of the constructed distribution are thus

precisely those implied by the MRF defined by [M]2. �

In the next section, we will see the application of this result to the general marginal

scenario, i.e., not necessarily acyclic.

5.1.3 Maximal set of independence conditions associated with a marginal
scenario

We will now see the implications of Vorob’ev’s theorem on general marginal scenarios.

More precisely, we will discuss which independence conditions, arising as MRF con-

ditions, are consistent with a given marginal scenario and how to compute maximal

sets of such conditions.
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The main result is the following.

Theorem 5.2. Given a joint probability distribution P on n variables X1, . . . , Xn, and a

marginal scenario M, the marginals PMi for Mi ∈ M are consistent with a probability dis-

tribution arising from a MRF associated with the 2-section graph [T ]2, where T is an acyclic

hypergraph extendingM.

Proof.– An acyclic hypergraph T extending M can always be found. It is the clique

hypergraph of a triangulation of the graph [M]2. The marginals in M are consistent

with the marginals in T extracted from the same probability distribution P. Since T is

an acyclic hypergraph, we can apply the construction in Th. 5.1 to obtain a MRF with

independence relations described by the 2-section graph [T ]2. �

For any given marginal scenario M, an acyclic hypergraph extending it corresponds

to the clique hypergraph of the triangulation of the 2-section [M]2, hence the max-

imum set of independence constraints will correspond to the triangulation with the

minimum number of edges, also called the minimum triangulation. The problem of

computing the minimum triangulation is known to be NP-hard [140]. However, it

is much easier to calculate a minimal triangulation, namely, a triangulation such that

by removing any edge the obtained graph is no longer a chordal graph. Notice that

such a minimal triangulation is not necessarily the one with the smallest number of

edges among all possible triangulations. Several algorithms have been developed to

compute a minimal triangulation, which run in O(n + m) steps, n being the number

of nodes and m the number of edges of a graph [140].

In the following, we will adopt the above terminology also for hypergraphs, namely,

we will speak about the minimum acyclic hypergraph extending M, in the sense of

the minimum triangulation, and a minimal hypergraph extendingM, in the sense of

a minimal triangulation.

5.2 Optimal characterization of the marginal scenario for prob-

abilities and entropies

As a consequence of the above results, the characterization of a given marginal sce-

nario M, in terms of inequalities for the probability vector or entropy vector, can be

computed from those associated with a minimal acyclic hypergraph extending M.

This approach offers advantages both for the probabilistic and the entropic approach.

Here, we will give a brief summary of the two results, but later we mostly discuss the

entropic approach.
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A similar approach, albeit with a different terminology, and using a less general ver-

sion of Th. 5.2, has been already used in relation with Bell and noncontextuality in-

equalities. For instance, the decomposition of the CHSH scenario in Fig. 5.4 was

used in the proof of the necessity and sufficiency of Bell inequalities for the exis-

tence of a LHV model by Fine [60]. Special cases of Th. 5.2 have been discussed in

Refs. [129–131], and their application to more general scenarios has been discussed for

probabilities [97, 141] and for entropies [94].

5.2.1 Triangulation

The first step is to compute a minimal acyclic hypergraph T extending the marginal

scenarioM. It can be done as follows:

a1) Compute the 2-section graph [M]2.

a2) Compute its minimal triangulation.

a3) Take as T the corresponding clique hypergraph.

In the following, we discuss the above procedure with a simple example. Consider the

hypergraph with edges {{Ax, By}}x,y=1,2 associated with a Bell experiment and dis-

cussed in Sec. 2.4. One starts with the marginal scenario hypergraphM of Fig. 5.4 (a)

and computes its 2-section [M]2 [cf. Fig. 5.4 (b)]. In this simple case [M]2 can be trian-

gulated by adding an extra edge connecting A1 and A2 [cf. Fig. 5.4 (c)], or equivalently,

connecting B1 and B2. Finally, one takes as T the clique hypergraph of the triangula-

tion [cf. Fig. 5.4 (d)]. The corresponding MRF independence condition consistent with

the marginals inM is (B1 ⊥ B2|A1, A2).

5.2.2 Probabilities

Once T has been obtained, the probabilistic inequalities describing the marginals con-

sistent with the given scenario M (describing a correlation polytope, see Sec. 2.2.3)

can be computed as follows:

b1) Write down the simplex inequalities associated with each maximal clique Ci,

i.e., the inequalities corresponding to a classical probability on |Ci| variables (cf.

Ref. [142] and Sec. 2.2.3 for further details on the simplex polytope).

b2) Project such inequalities onto the initial marginal scenario M (for instance, ap-

plying the Fourier-Motzkin elimination, see Sects. 2.5 and 2.2.3).
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(a)M (b) [M]2

(c) triangulation (d) T
Figure 5.4: Procedure to compute the minimal hypergraph T extending the
marginal scenario M for the CHSH scenario. (a) Initial marginal scenario hyper-
graph corresponding to the CHSH case. (b) 2-section [M]2 of the original hyper-
graph. (c) Triangulation of the 2-section graph. (d) Clique hypergraph T of the

triangulation. T extendsM.

5.2.3 Entropies

A similar approach can be applied for deriving entropic inequalities, but it only gives

an outer approximation if an exact characterization of the entropy cone is not known

[cf. Eq. (5.7) below].

An alternative approach can be summarized as follows:

c1) Compute the independence constraints I(T ) associated with the MRF graph

[T ]2,

c2) Consider the Shannon cone on n variables Γ, with the reduced set of polymatroid

axioms associated with I(T ).

c3) Use the linear constraints associated with I(T ), i.e., the vanishing of some con-

ditional mutual information terms, for a partial projection of the full cone onto

the marginal scenario. Then, complete the projection with the usual Fourier-

Motzkin algorithm.

It is clear that the above approach can be adapted to any type of linear constraints,

including those arising from some assumed causal structure, i.e., a BN or MRF, and

those arising as deterministic dependence conditions, corresponding to the vanishing

of some conditional entropy, discussed in Sec. 2.3.

In the next section, we will see in details what approaches are possible for character-

izing entropic marginals.
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5.2.4 Outer approximations of the entropy cone

The adhesivity property for restrictions of an entropic polymatroid can be used to

obtain outer approximations of the entropy cone as follows.

Theorem 5.3. Let M be the marginal scenario hypergraph and T an acyclic hypergraph

extending it. Let us denote with Γ∗T the entropy cone intersected with the linear constraints

defined by I(T ). Then, we have that

ΠM (Γ∗) = ΠM(Γ∗T ) (5.6)

where ΠM denotes the projection onto the coordinates associated with the marginal scenario

M.

Proof.— The result, basically, follows from the fact that the marginals inM are consis-

tent with the linear constraints I(T ). Given an entropic polymatroid, it is sufficient

to take the associated probability distribution and apply Th. 5.2. The obtained distri-

bution will be consistent with the MRF [T ]2, hence, the associated marginal entropies

will be identical to the original ones and inside ΠM(Γ∗T ) by construction. The same

construction can be combined with the limits necessary (see, e.g., Refs. [70, 143]) to

obtain the closure of entropic polymatroid Γ∗. �

Inspired by the notion of adhesivity, one can also consider the outer approximation

Γ∗T ⊂
⋂
k

Γ∗Ck
(5.7)

where Ck are the hyperedges of T and each Γ∗Ck
is the entropic cone associated with

the variables in Ck embedded in the space of all variables, i.e., the remaining variables

are constrained. However, except for the case of the entropic polymatroid arising as

a restriction of a single polymatroid and few other cases (cf. Ref. [128]), it is not clear

whether entropic polymatroids are adhesive; hence, the inclusion in Eq. (5.7) may be

strict.

Now if we take an outer approximation Γ (e.g., the Shannon cone) of the entropic cone

Γ∗, and intersect it with the linear subspaces defined by I(T ), we obtain the cone ΓT
which satisfies

ΠM (Γ∗) = ΠM (Γ∗T ) ⊂ ΠM (ΓT ) ⊂ ΠM

(⋂
k

ΓCk

)
. (5.8)
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In general, given a marginal scenario M there exist several minimal acyclic hyper-

graphs {Ti} extending it. The inclusion in Eq. (5.8) is valid for each ΠM (ΓTi), conse-

quently, also for the intersection

ΠM (Γ∗) ⊂
⋂

i

ΠM (ΓTi) . (5.9)

As a conclusion, for each marginal scenarioM, we have three different outer approx-

imations for ΠM (Γ∗), namely,

(i) the intersection of the projections of the full Shannon cones Γ[n] with modular-

ity conditions {I(Ti)}, namely,
⋂

i ΠM (ΓTi); {Ti} is the set of minimal acyclic

hypergraphs extendingM;

(ii) the projection of the full Shannon cone, namely, ΠM (Γ);

(iii) the projection of the intersection of Shannon cones associated with {C(i)
k }k is

the set of hyperedges of Ti, i.e.,
⋂

i ΠM

(⋂
k Γ

C(i)
k

)
, where each Γ

C(i)
k

is seen as

a cone in the space of all variables, and the variables not appearing in C(i)
k are

unconstrained [cf. Eq. 5.7].

We can then summarize the relations among the above cones as follows

Observation 5.4. The above approximations satisfy the inclusion relations

ΠM (Γ∗) ⊂
⋂

i

ΠM (ΓTi) ⊂ ΠM (Γ) ⊂
⋂

i

ΠM

(⋂
k

Γ
C(i)

k

)
. (5.10)

In general, the inclusion relations from Observation 5.4 are proper. In particular, it

means that the outer approximation
⋂

i∈{Ti}ΠM (ΓTi) is tighter than the projection of

the Shannon cone —the most widely used method in the literature; see for instance [70,

128, 132, 133]— and thus may contain nonconstrained non-Shannon-type inequalities.

We will provide some examples of this in Sec. 5.4.

5.3 Indistinguishability of causal structures

In this section, we will investigate the role of the above results for the case of probabil-

ity distributions and entropies, where some underlying causal structure is assumed,

i.e., some additional conditional independence constraints are present.
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The general goal is to characterize the region of probability distributions or entropies

compatible with a given causal structure. Via such a characterization, for instance via

Bell inequalities, one can check whether some observed data are consistent or inconsis-

tent with the assumed causal structure, thus being of fundamental importance in both

quantum information and any other field where causal discovery may play a relevant

role. Furthermore, notice that unless one is able to intervene in the physical system

under investigation [68], one can never unambiguously prove what is the underlying

causal structure. Rather, based on observations alone, one can only prove the compat-

ibility or incompatibility of a given presumed set of causal relations. As expected, the

less constraints a given causal structure implies on the distributions compatible with

it, the more correlations such models can explain and the smaller is the possibility of

falsifying it.

The ideas to be discussed next apply not only to the case of classical causal structures,

but also to the quantum [22, 64, 74, 77, 144, 145] and even post-quantum [75, 96, 146]

generalizations as well. In the following, we will focus on the classical case, that is,

all nodes in the associated Bayesian networks or MRFs represent random variables for

which a global joint probability distribution can always be assumed to exist. The case

of quantum and post-quantum theories will be briefly discussed at the end of this

section and presented in full details elsewhere.

Let us consider the causal structure defined by a graph G, which may be either a

DAG corresponding to a Bayesian network, or a graph corresponding to a MRF.

We will denote the set of independence conditions associated with G as I(G), as

in Eqs.(2.35,2.37). Let us now assume to have a fixed marginal scenario, with M the

associated hypergraph. Let {Ti}i be the set of acyclic hypergraph extending M as

in Th. 5.1. We will denote by I(Ti), the set of independence conditions of the corre-

sponding MRF defined by its 2-section [Ti]2. We have the following result

Theorem 5.5. GivenM,G and {Ti}i, we have three possible cases:

(i) ∃i such that I(G) ⊂ I(Ti).

(ii) ∀i I(Ti) ⊂ I(G).

(iii) ∀i I(G) 6⊂ I(Ti), and ∃j such that I(Tj) 6⊂ I(G).

Then:

In case (i), it is impossible to falsify the causal structure described by G. This follows since for

any probability distribution P, its marginals inM are always consistent with the causal struc-

ture described by G. Approach (c1)–(c3) of Sec. 5.2 can be used to characterize the marginals

associated withM and G.
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In case (ii), marginals associated withM can still generate correlations that are incompatible

with the causal structure associated with I(G). Approach (c1)–(c3) can be used, but the

obtained constraints are redundant with respect to I(G). It is, therefore, more convenient to

apply approach (c1)–(c3) directly with the conditional independence relations I(G).

In case (iii), the marginal correlations associated withM can again be incompatible with the

causal structure associated with I(G). However, the marginal scenario implies constraints

that cannot be combined with those of the causal structure G. Hence, the approach (c1)-(c3)

cannot be used with the constraints I(T ).

Proof.— In case (i), the independence constraints of the causal structure are just a

subset of the independence constraints consistent with the marginal scenario. As a

consequence, given the marginal probabilities {PM}M∈M, one can repeat the construc-

tion of Th. 5.1 and obtain a valid joint probability distribution P that is consistent with

the causal structure defined by G.

The above result implies that the approach of Sec. 5.2, both the constructions (b1)–

(b3) for probabilities and (c1)–(c3) for entropies, applies also to the case of a causal

structure with I(G) ⊂ I(Ti).

In case (ii), the marginal scenario implies fewer constraints than the causal structure

G, hence, it is clear that the marginals associated withM are still able to detect incon-

sistencies with the causal structure associated with I(G).

From the point of view of the characterization, one can still use the approach (c1)–(c3)

of Sec. 5.2. However, it is more convenient to use in (c3) the linear constraints implied

by I(G), since they also include those associated with I(Ti) for all i.

In case (iii), it is again clear that the marginals associated with M are still able to

detect inconsistencies with the causal structure associated with I(G). However, the

approach (c1)–(c3) of Sec. 5.2 cannot be used as it generates constraints inconsistent

with the causal structure. The situation is clarified by the following inclusion relations

among entropy cones in Eqs. (5.11)–(5.13). Let us denote by LG the subspace of entropy

vectors inR2n
where the linear constraints imposed by I(G) are satisfied, and similarly

for LTi . The entropy cone associated with a given causal structure, either G or Ti, will

be Γ∗ ∩ LG,Ti . We can write down the relation between the associated entropy cones as

ΠM (Γ∗) = ΠM(Γ∗ ∩ LTi), (5.11)

ΠM (Γ∗ ∩ LG ∩ LTi) ⊂ ΠM(Γ∗ ∩ LG), (5.12)

ΠM (Γ∗ ∩ LG) ⊂ ΠM(Γ∗) ∩ΠM(LG) (5.13)

= ΠM(Γ∗ ∩ LTi) ∩ΠM(LG)
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It is then clear that by imposing both the I(G) and I(Ti) conditions one obtains an

inner approximation of the entropy cone associated with the causal structure. Vice

versa, imposing the causal structure conditions after the projection gives an outer

approximation.�

To clarify this last part, in particular the impossibility of combining the independence

relations I(G) arising from the causal structure, with the {I(Ti)}i arising from the

marginal scenario, it is helpful to look at some specific examples. We will discuss

them in details in Sec. 5.4.2.

A natural question is, then, how to extend the above results to the case of quantum

and post-quantum causal structures. For instance, in the postquantum case if M is

an acyclic hypergraph, then by Th. 5.1 the observed marginals are always consistent

with a classical probability distribution. The same holds, in particular, in the quantum

case. However, the fact that different rules for causal inference arise in the quantum

and postquantum cases (cf. [22, 75, 77, 96, 144, 146]) together with the different charac-

terization of the associated entropy regions (cf. [22, 96]) makes the above investigation

more complex and worth a separate discussion elsewhere.

5.4 Examples and computational results

In order to clarify the results and methods presented in the previous sections, we

discuss examples of marginal scenarios and causal structures, together with some

computational results.

5.4.1 Inclusions in Obs. 5.4

In the following, we will discuss the possible cases presented in Obs. 5.4. In particular,

we will see examples of strict and non-strict inclusion for the outer approximations of

the entropy cone.

Case:
⋂

i ΠM (ΓTi) ( ΠM (Γ) (
⋂

i ΠM

(⋂
k Γ

C(i)
k

)

As already noted by Matúš [128], the proper inclusion
⋂

i ΠM (ΓTi) ( ΠM (Γ) means

existence of non-Shannon-type inequalities in ΠM (ΓTi). On the other hand, the strict

inclusion ΠM (Γ) (
⋂

i ΠM

(⋂
k Γ

C(i)
k

)
is related to the non-adhesivity of general poly-

matroids.
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(a) (b)

Figure 5.5: Marginal scenario hypergraph (a) and (b) its 2-section

To construct an example, is necessary to take at least four variables [128], and our

example will consist of five variables. Let us consider the following marginal scenario

M = {ABC, BCD, AE, BE, CE, AD}, shown on the Fig. 5.5 (a). One can easily see that

the 2-section of the hypergraph M is a triangulated graph shown in Fig. 5.5 (b) and

thus there is only one corresponding clique hypergraph T = {ABCD, ABCE}. The

independence constraint I(D : E|ABC) = 0 arising from the adhesivity property, gives

rise, after projection on the set of entropies given by {B, C, D, AD, AE, BD, BE, CD, CE,

ABC, BCD}, to the following 3 non-redundant non-Shannon-type inequalities

H(E|C) + H(C|D) + H(E|B) + H(B, D) + H(A, D)

−s1H(B, C, D)− s2H(A, E) + s3H(A, B, C) ≥ 0, (5.14)

where the coefficient triplet (s1, s2, s3) ∈ {(1, 2, 1), (2, 1, 1), (2, 2, 2)}.

Another interesting aspect of this example is the reduction in the computational time

required to compute the projection on a usual desktop computer. More precisely,

adding the linear constraint I(D : E|ABC) = 0 reduced the time of our computation

for the projection from approximately 320 to only 27 seconds.

Case:
⋂

i ΠM (ΓTi) = ΠM (Γ) =
⋂

i ΠM

(⋂
k Γ

C(i)
k

)

Consider the marginal scenario M = {AiBj}, ∀i, j ∈ {1, 2, 3}, shown in Fig. 5.6 (a),

corresponding to a bipartite Bell scenario with three measurement settings per party.

The clique hypergraph of one of the triangulations ofM is shown on Fig. 5.6 (b).

If we consider an intersection of cones Γ
C(1)

k
for cliques C(1)

k = {A1, A2, A3, Bk}, k =

1, 2, 3, which are the edges of the hypergraph shown on Fig. 5.6 (b), we find that its

projection on the marginal scenarioM differs from the projection of the full cone such

that 108 out of 217 rays of the projection ΠM

(⋂
k Γ

C(1)
k

)
are outside of ΠM (Γ). This
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(a) (b)

Figure 5.6: Marginal scenario (a) and a clique hypergraph (b)

can be checked via linear programming (cf. Ref. [96] Sec. II of the Supplemental Ma-

terial) by simply checking whether such rays are compatible with the basic Shannon

inequalities characterizing Γ.

However, if we now consider cliques of the second possible triangulation ofM, which

are C(2)
k = {Ak, B1, B2, B3}, k = 1, 2, 3 and compute the intersection

⋂
i=1,2 ΠM

(⋂
k Γ

C(i)
k

)
we find, again via linear programming, that all its extremal rays are inside, not only

ΠM (Γ), but also ΠM (ΓTi), for all i. Hence we have that all the outer approximations

coincide.

The reasons why such an equivalence is interesting is that the calculation of the in-

tersection
⋂

i=1,2 ΠM

(⋂
k Γ

C(i)
k

)
with a standard Fourier-Motzkin algorithm on a stan-

dard desktop takes few minutes, however, a direct computation of ΠM (Γ) or ΠM (ΓTi)

seems to be out of computational reach (at least on a usual desktop computer).

5.4.2 Three cases in Theorem 5.5

In this subsection, we will discuss in detail and provide examples for the different

cases presented in Theorem 5.5. Let us consider four random variables A, B, C, D.

Case (i): ∃i such that I(G) ⊂ I(Ti)

Let us consider the marginal scenario given by M1 = {AB, BD, BC} and shown in

Fig. 5.7 (b). One can easily see that the clique hypergraph T of the corresponding tri-

angulation of the 2-section graph is unique and coincides withM1. The independence

constraints implied by T are given by

(A ⊥ C | B)
(C ⊥ D | B) (5.15)

(D ⊥ A | B)
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(a) G1 (b)M1

(c) G2 (d)M2

Figure 5.7: Example of causal structures (a),(c), and marginal scenarios (b),(d).

Consider now the two causal structures G1 and G2 shown in Fig. 5.7 (a),(c). The cor-

responding independence constrains are {(A ⊥ C | B ); (C ⊥ D | B ); (D ⊥ A | B )} for

G1 and {(A ⊥ C | B ); (C ⊥ D | B )} for G2. In both cases I(G1,2) ⊂ I(T ) which means

that marginal scenarioM1 from Fig. 5.7 (b) is insufficient to distinguish causal struc-

tures G1 and G2. In turn, a marginal scenario, which would be enough to distinguish

between these two causal structures is given by M2 = {ABD, BC} and shown in

Fig. 5.7 (d).

Case (ii): ∀i I(Ti) ⊂ I(G)

Consider again the causal graph G1. As we already noted the independence constraints

associated with this graph are

(A ⊥ C | B)
(C ⊥ D | B) (5.16)

(D ⊥ A | B)

If we are now interested in the marginal scenario M2 = {ABD, BC}, then one can

see that in that case there is again only one possible triangulation of the 2-section

graph ofM2 and consequently only one corresponding clique hypergraph. The set of

independence constraints, consistent with M2 is {(A ⊥ C | B ); (C ⊥ D | B )}, which

is a subset of constraints from Eq. (5.16). In other words, constraints coming from

marginal scenarioM2 are redundant to those coming from the causal structure.
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(a) (b)

Figure 5.8: Causal structure (a) and marginal scenario (b) of classical case of infor-
mation causality. X0, X1 are random inputs for Alice, Y0, Y1 are guesses for Bob, and

M is a message which Alice sends to Bob.

Case (iii): ∀i I(G) 6⊂ I(Ti), and ∃j such that I(Tj) 6⊂ I(G)

The third one is, arguably, the most interesting case: it shows that the independence

constraints arising from the marginal scenario may be “inconsistent” with those asso-

ciated with the causal structure. An example where this problem arises is the classical

case of the information causality scenario [147]: Alice receives two independent inputs

X0, X1, she creates a message M depending on those inputs that is sent to Bob who

provide guesses Y0, Y1, respectively of X0, X1, on the basis of the message M.

The corresponding causal structure is shown in Fig. 5.8 (a) and the marginal scenario

M in Fig. 5.8 (b). Once again the clique hypergraph T coincides withM, hence, it is

unique.

We need to show that

I(G) 6⊂ I(T ), and I(T ) 6⊂ I(G). (5.17)

For showing I(G) 6⊂ I(T ), we consider the conditional independence between inputs

X0, X1 and guesses Y0, Y1. That is,

{Xi ⊥ Yj |M}i,j=0,1 6⊂ I(T ). (5.18)

An example in the other direction is an independence of message M from the rest of

the variables, which is implied by T , and is not consistent with conditional indepen-

dences I(G).

The projection ΠM(Γ ∩ LG) gives rise to the following inequalities

I(X0 : Y0) ≥ 0, I(X1 : Y1) ≥ 0, (5.19a)

H(Y0|X0) ≥ 0, H(X0|Y0) ≥ 0, (5.19b)

H(Y1|X1) ≥ 0, H(X1|Y1) ≥ 0, (5.19c)

I(X0 : Y0) + I(X1 : Y1) ≤ H(M), (5.19d)
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where inequalities (5.19a), (5.19b), and (5.19c) are simply polymatroid axioms for

the marginals {X0Y0, X1Y1} and one obtains these 6 inequalities, if one computes

ΠM (Γ ∩ LT ). The last inequality Eq. (5.19d) is the information causality inequality

and is not implied by I(T ).

As a result of the relation from Eq. (5.17), one cannot combine I(T ) and I(G). Due

to the relation from Eq. (5.12) and the fact that the Shannon cone is an outer approxi-

mation for the case of more than 3 variables, the projection of the Shannon cone with

combined constraints I(T ) and I(G) in this case provides neither an outer nor an

inner approximation of ΠM (Γ∗ ∩ LG).

5.5 Conclusions

Deciding global features of a system of interest with limited information, the so-called

marginal problem, is a task often encountered in many fundamental and practical

problems. In turn, causal discovery, the inference of causal relations underlying the

correlations between observed variables, is yet another basic goal in the most diverse

fields. In this work, we use the notion of adhesivity to investigate marginal problems

within causal inference. In particular, we show which causal relations are always com-

patible with some given marginal information. As a consequence, we are able to iden-

tify which causal structures, describing either a Bayesian network or a Markov random

field, can be distinguished when only limited marginals are available. In addition, our

results provide a method for a faster characterization (in terms of Bell inequalities)

of the marginal scenarios associated with a given causal model. This holds true for

the both the probabilistic and entropic approaches for Bell inequalities. In particular,

in the entropic case our construction allows for a more accurate characterization of

allowed regions for entropic marginals, as shown with explicit computational results.

An immediate and interesting open question is the possible generalization of these

results to the case where the causal relations between the variables are mediated via

quantum or postquantum (non-signalling) resources. Quantum generalizations of the

notion of a causal structure have attracted growing attention [22, 74, 75, 77, 144, 145]

and we believe that our results could constitute a viable option for the characteriza-

tion of such quantum structures. Partial results, such as the fact that classical and

postquantum correlations coincide for the case of acyclic marginal scenario hyper-

graphs (cf. Sec. 5.3), show that a similar approach can be extended also to the quantum

and postquantum cases. In particular, this investigation could lead to new insights on
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which causal structures can demonstrate some sort of non-locality [75, 146]. Finally,

another possibility is to try to combine the notion of adhesivity and the algebraic ge-

ometry tools [67] required to characterize the set of compatible probabilities associated

with complex causal structures [66, 148, 149].



Chapter 6

The entropic approach to causal

correlations

This chapter describes the most recent results from Ref. [30]. The preliminary sections

required for this chapter are Sec. 2.3 (in particular Sec. 2.3.7), 2.5, and partially Sec. 2.2.

The existence of a global causal order between events places constraints on the cor-

relations that parties may share. Such “causal correlations” have been the focus of

recent attention, driven by the realization that some extensions of quantum mechanics

may violate so-called causal inequalities (see Sec. 2.3.7). In Ref. [30] we study causal

correlations from an entropic perspective, and we show how to use this framework

to derive entropic causal inequalities. We consider two different ways to derive such

inequalities. Firstly, we consider a method based on the causal Bayesian networks

describing the causal relations between the parties. In contrast to the Bell-nonlocality

scenario, where this method has previously been shown to be ineffective, we show that

it leads to several interesting entropic causal inequalities. Secondly, we consider an

alternative method based on counterfactual variables that has previously been used

to derive entropic Bell inequalities. We compare the inequalities obtained via these

two methods and discuss their violation by noncausal correlations. As an application

of our approach, we derive bounds on the quantity of information – which is more

naturally expressed in the entropic framework – that parties can communicate when

operating in a definite causal order.

89
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6.1 Introduction

Our goal in this work is to introduce a new framework for the derivation of causal in-

equalities and the study of their potential violations: the entropic approach to causal

correlations. The idea of using entropies to understand sets of correlations has its

origin in the context of Bell inequalities [21, 92, 94, 98] but since then has also found

various other applications in quantum contextuality [93, 131, 150], device-independent

applications [151, 152], causal inference [75, 95, 146] and in the characterization of

nonsignaling correlations [96]. As for these previous applications, the interest in char-

acterizing the entropies compatible with causal correlations stems not only from prac-

tical and technical issues, but also from a more fundamental reason. To begin with,

causal inequalities expressed in terms of probabilities are constructed for a fixed num-

ber of inputs and outputs, and their systematic derivation becomes harder as this

number increases [86, 87]. In contrast, we will derive entropic causal inequalities that

are valid for arbitrary finite alphabets either for the input and output variables, or just

for the output variables. Furthermore, entropic inequalities can be easily combined

with extra assumptions, such as conditional independence relations or information

theoretic constraints (e.g., bounds on the amount of communication), which would be

hard to treat in the probabilistic framework [66, 95, 96]. More fundamentally, given

that entropies are a core concept in classical and quantum information theory, it is

of clear relevance to have a framework that focuses on these quantities rather than

on probabilities, and it may help connect causal inequalities with principles such as

information causality [147].

6.2 Bipartite entropic causal inequalities

With the entropic approach to characterizing sets of correlations outlined, we can

now proceed to apply this approach to causal correlations, so as to derive entropic

causal inequalities. We consider in this section the bipartite case. We first show how

the method based on causal Bayesian networks can be adapted to characterize causal

correlations, before considering also the method based on counterfactual variables.
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Figure 6.1: DAGs for bipartite causal correlations. The latent “switch” variable Q
determines which DAG, corresponding to the fixed causal order A ≺ B (for Q = 0,

top) or B ≺ A (for Q = 1, bottom), is “activated”.

6.2.1 Characterization based on causal Bayesian networks

Conditional DAGs for bipartite causal correlations

The ability to apply the entropic approach to DAGs, as outlined in Sec. 2.5.3, is a

powerful tool for characterizing the correlations obtainable within arbitrary causal

networks. However, the notion of causal correlations defined in Eq. (2.39) is some-

what more general and cannot be directly expressed within the framework of causal

Bayesian networks. In order to see why this is the case, let us first note that the ran-

dom variables of interest are X, Y, A, B, representing the inputs X, Y and outputs A, B

for Alice and Bob. Note that since we consider signaling scenarios here, unlike in the

Bell scenario, we do not need to include any latent variable Λ in our description to

account for shared randomness, since this can be established via local randomness

and communication.

If Alice and Bob share a correlation compatible with a fixed causal order (i.e. either

A ≺ B or B ≺ A, then the functional dependences between X, Y, A, B can indeed be

expressed as a DAG (specifically, the two DAGs containing these variables in Fig. 6.1).

However, a causal correlation may in general not be compatible with any fixed causal

order, but may require a mixture thereof. This has some similarities with the situation

in the Svetlichny definition of genuine multipartite nonlocality [153, 154] where a

convex mixture of different DAGs has to be considered.

To tackle this problem it is necessary to find a way to take into account the constraints

arising separately from each of the two fixed causal orders, and then to combine them

to obtain those satisfied by causal correlations. In order to do this, we exploit the fact

that any mixture of fixed-order causal correlations can be seen as arising from a latent

variable that determines the causal order for each individual experiment [85]. We thus
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introduce a new random variable Q which we call a “switch”, and which determines

univocally the appropriate causal Bayesian network for each trial. The resulting causal

model is shown in Fig. 6.1, where the DAG with A ≺ B is used for Q = 0, or the one

with B ≺ A for Q = 1. By identifying q0, q1 in Eq. (2.39) as q0 = P(Q = 0), and

q1 = P(Q = 1), one can readily see that this description is equivalent to the definition

of a causal correlation in Eq. (2.39).

Both DAGs imply the independence of the inputs, X⊥Y. The DAG for Q = 0 (i.e.,

for A ≺ B) also implies the CI A⊥Y | X (i.e. that there is no signaling from B to A),

while the DAG for Q = 1 implies B⊥X | Y instead. In addition, the switch variable

Q should be independent of Alice and Bob’s inputs X and Y, so that we have XY⊥Q,

which, together with X⊥Y, implies that X⊥Y⊥Q.

Shannon polyhedron of causal correlations

In order to use the “conditional” causal Bayesian network in Fig. 6.1 to characterize

the set of entropy vectors obtainable from causal correlations, we first note that we

can directly use the techniques of Sec. 2.5.3 to characterize the Shannon cones for

each of the two DAGs appearing in the figure conditioned on Q (i.e., for fixed-orders

correlations with A ≺ B or B ≺ A). Denoting these cones ΓA≺B and ΓB≺A, we have

ΓA≺B = ΓS ∩ LA≺B
C (6.1)

and

ΓB≺A = ΓS ∩ LB≺A
C , (6.2)

where ΓS is the Shannon cone for the four variables in S = {X, Y, A, B}, the proba-

bility structure is simply S = {S}, and LA≺B
C denotes linear subspace defined by the

CI constraints for the case A ≺ B, namely, the equations H(XY) = H(X) + H(Y) and

H(YA|X) = H(Y|X) + H(A|X), and similarly for B ≺ A. These cones are character-

ized by the systems of inequalities I0h ≤ 0 and I1h ≤ 0, where h = (H(T))T⊂S.

Recall that in the probabilistic case the polytope of causal correlations is simply the

convex hull of the polytopes of correlations for A ≺ B and B ≺ A [86], and with the

new variable Q the definition Eq. (2.39) can be rewritten as

P(ab|xy) = P(Q = 0)PA≺B(ab|xy, Q = 0) + P(Q = 1)PB≺A(ab|xy, Q = 1). (6.3)

In contrast, the convex hull of the cones ΓA≺B and ΓB≺A does not contain all entropy

vectors of causal correlations due to the concavity of the Shannon entropy. Indeed,
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in Appendix A we provide an explicit example of a causal correlation whose entropy

vector is not contained in the convex hull conv(ΓA≺B, ΓB≺A).

To see more precisely why this is the case, and how to give a correct entropic char-

acterization of causal correlations, observe that, when taking a convex mixture of

two causal correlations with different causal orders, the “conditional entropy vectors”

h0 = (H(T|Q = 0))T⊂S and h1 = (H(T|Q = 1))T⊂S must be contained in ΓA≺B and

ΓB≺A, respectively, and thus satisfy I0h0 ≤ 0 and I1h1 ≤ 0. For any causal correlation,

the convex mixture

hconv = P(Q = 0)h0 + P(Q = 1)h1 (6.4)

is thus contained in conv(ΓA≺B, ΓB≺A). Observe now that, in contrast to the convex

sum Eq. (6.3) defining causal correlations, hconv thus defined is equal to (H(T|Q))T⊂S,

rather than just (H(T))T⊂S, and hence the convex hull of the fixed-order entropy cones

characterizes the conditional entropies (conditioned on the switch variable Q) obtain-

able with causal correlations, rather than the entropy vectors of causal correlations

directly.

With the appropriate transformation, the system of inequalities Ih ≤ 0 characterizing1

conv(ΓA≺B, ΓB≺A) can be transformed into inequalities satisfied by the standard (i.e.,

non-conditional) entropy vector h̃ = (H(T))T⊂S̃ for the variables now in S̃ = S ∪ {Q}
(and the probability structure is consequently extended to S̃ = {S̃}). Specifically,

each row I of the matrix I (defining each individual inequality Ih ≤ 0) must undergo

the linear transformation TQ : R2|S| → R2|S|+1
mapping I 7→ Ĩ := TQ(I) with the

components of Ĩ given by2

( Ĩ)T∪{Q} = (I)T, ( Ĩ){Q} = − ∑
T 6=∅

(I)T, and ( Ĩ)T = 0 (6.5)

for all nonempty subsets T ⊂ S. We will denote by convQ(ΓA≺B, ΓB≺A) the cone of

vectors h̃ satisfying the resulting inequalities Ĩh̃ ≤ 0.

To complete the characterization of entropy vectors for causal correlations, we recall

that, in addition to the fact that any distribution on S̃ must give an entropy vector

in the Shannon cone ΓS̃, the conditional DAG in Fig. 6.1 gives us the CI constraints

X⊥Y⊥Q. Moreover, since Q is a binary variable (as there are only two orders to switch

between) we have H(Q) ≤ 1. A consequence of this final inequality constraint is that

the set of entropy vectors under consideration will be characterized by an inhomo-

geneous system of inequalities of the form Ĩh̃ ≤ β̃ for some β̃ ∈ R2|S|+1
and is thus

1In practice these can be obtained by taking the union of the extremal rays of the two cones
ΓA≺B and ΓB≺A and solving the facet enumeration problem to obtain the inequality representation of
conv(ΓA≺B, ΓB≺A) using standard software for convex polyhedra such as PANDA [155].

2Note that ( Ĩ)∅ multiplies H(∅) = 0 in the scalar product Ĩ h̃, so its value is irrelevant.
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no longer a cone but a polyhedron. The polyhedron characterizing entropy vectors

associated with the conditional DAG (when still including Q) is thus given by

Γ̃causal = ΓS̃ ∩ convQ(ΓA≺B, ΓB≺A) ∩ LC
(
{(X⊥Y⊥Q), H(Q) ≤ 1}

)
, (6.6)

where LC(·) denotes the subspace or polyhedron defined by the corresponding linear

constraints.

Finally, following the general approach presented in Sec. 2.5, it remains just to elim-

inate the terms containing the (unobservable) switch variable Q in order to obtain

the inequalities characterizing bipartite causal correlations. This is done by projecting

Γ̃causal onto the marginal scenario M = {S} =
{
{X, Y, A, B}

}
. We thus finally obtain

the polyhedron

Γcausal = ΠM
(
Γ̃causal), (6.7)

which we shall refer to as the causal Shannon polyhedron or simply the causal polyhedron

and is again characterized by an inhomogeneous system of inequalities I′h ≤ β for

some β ∈ R2|S| .

We emphasize that the construction given above is in fact not at all restricted to the

description of causal correlations, and can be used to characterize arbitrary convex

mixtures of different Bayesian networks. Furthermore, as we will see in Sec. 6.3, this

method can be generalized to convex combinations of more distributions, in our case

corresponding to more than two causal orders in multipartite scenarios (and even

correlations with “dynamical causal order” [85, 87, 156]).

Entropic causal inequalities and their violation

The constructive description of the causal polyhedron Γcausal from Eqs. (6.6) and (6.7)

also makes it clear how we can characterize it, in practice, as a system of linear in-

equalities. A description of Γ̃causal in terms of its facets is straightforwardly obtained

by taking the union of the inequalities describing the individual cones, linear sub-

spaces, and polyhedra appearing in Eq. (6.6). The inequalities characterizing Γcausal

can then be found by eliminating the terms not contained in the marginal scenario

M = {S}, either by Fourier-Motzkin elimination [62] or by finding its extremal rays

and projecting out the unwanted coordinates.

The corresponding system of inequalities is thus satisfied by any bipartite causal cor-

relation. However, many of these inequalities are either elemental inequalities (see

Eq. (2.44)) or can be obtained from these by using the independence constraint X⊥Y,
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and thus represent trivial constraints. After computing the polyhedron in Eq. (6.7)

and eliminating all trivial inequalities, i.e., those satisfied by any distribution P(xyab)

with X⊥Y, we find 35 novel entropic causal inequalities. Several of these inequali-

ties are equivalent under the exchange of parties (i.e., exchanging (X, A) ↔ (Y, B)),

and under this symmetry there are in fact 20 equivalence classes of entropic causal

inequalities, the full list of which is given in Appendix A. Of these, 10 have bounds

of 0 (i.e., are of the form I · h ≤ 0), while the remaining 10 have nonzero bounds

(resulting from a nontrivial dependence on H(Q) before this variable was eliminated,

see Appendix A). Simple interpretations of the entropic causal inequalities seem to be

less forthcoming than for the bipartite causal inequalities in terms of probabilities [86]

(for binary inputs and outputs – recall that the entropic inequalities given here are,

in contrast, valid for any number of possible inputs and outputs). One of the simpler

examples, which is symmetric under the exchange of parties, is

I(X : YA) + I(Y : XB)− H(AB) ≤ 0. (6.8)

Note that the fact that we find nontrivial inequalities is in stark contrast to the situation

for Bell-type inequalities (and line-like causal Bayesian networks), where the DAG-

based entropic method only leads to trivial inequalities obtainable from the elemental

inequalities and no-signaling conditions [23].

While these entropic inequalities are obeyed by any bipartite causal correlation, we

note that a priori they need not be tight. Indeed, recall that the Shannon cone is only

an outer approximation to the true entropy cone, and the method we applied to bound

convex combinations of fixed-order correlations may introduce extra slack. It is thus

interesting to study the tightness and violation of these inequalities more carefully.

Although one generally would not expect every point on the boundary of Γcausal to

be obtainable by a causal correlation, it is nonetheless desirable to be able to saturate

each inequality by some causal probability distribution for appropriate distributions

for X and Y. By looking at deterministic causal distributions with binary inputs and

outputs, which can easily be enumerated, we readily verified that all 10 families of

inequalities that are bounded by 0 (given in Eq. (A.2)) can indeed be saturated when

taking uniformly distributed inputs. However, we were unable to find causal distribu-

tions, either by mixing binary ones or by considering more outputs, that saturate the

remaining inequalities, and their tightness remains an open question.

To understand the violation by noncausal distributions of the entropic inequalities, we

consider the extremal rays of the constrained Shannon cone

ΓS ∩ LC
(
{X⊥Y}

)
(6.9)
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which violate the inequalities.3 A crucial question is whether or not these extremal

rays actually correspond to valid probability distributions (i.e., whether they support

entropy vectors), and if not, whether the inequalities can nonetheless be violated.

In order to look at this, it is instructive to first restrict our attention to distributions

satisfying H(X) ≤ 1, H(Y) ≤ 1, H(A) ≤ 1 and H(B) ≤ 1. These constraints are satis-

fied by all distributions with binary inputs and outputs, and this therefore also allows

us to compare the violation of the entropic causal inequalities to the violation of stan-

dard causal inequalities that are understood well in this scenario [86]. Imposing these

constraints on the cone in Eq. (6.9), one obtains a polytope with extremal points corre-

sponding to the extremal rays of the cone scaled to satisfy these constraints (together

with the null vertex 0). Under these constraints we found that the 10 inequalities in

Eq. (A.2) and the two Eq. (A.3) could be violated, although the latter are weaker than,

and implied by, the former and are thus redundant. The remaining 8 inequalities in

Eqs. (A.4) and (A.5) cannot be violated. All in all, the set of binary causal correlations

is entropically characterized by the 10 inequalities in Eq. (A.2) that are bounded by 0.

Amongst the extremal points violating each of these inequalities, those that give the

maximal violation all satisfy H(X) = H(Y) = 1 and H(XY) = H(XYAB) and thus, if

realizable, correspond to deterministic conditional distributions taken with uniformly

distributed inputs X and Y. In fact, all but one of these 10 inequalities are maximally

violated (by which we henceforth mean with respect to the Shannon cone augmented

with the independence constraint X⊥Y) by one of the three following deterministic

distributions taken with uniform inputs:

P(ab|xy) = δa,y δb,x⊕y

P(ab|xy) = δa,x⊕y δb,x (6.10)

P(ab|xy) = δa,x⊕y δb,x⊕y,

where x, y, a, b take the binary values 0, 1, and ⊕ denotes addition modulo 2. For

example, Eq. (6.8) is violated by the third distribution with a value for the left-hand

side of 1. The one exception not violated by the distributions in Eq. (6.10) is the second

inequality in (A.2),

I(A : B)− I(A : B|X)− I(A : B|Y)− 2H(AB|XY) ≤ 0, (6.11)

which, in turn, is violated by the deterministic distribution (again taken with uniform

inputs)

P(ab|xy) = δa,x⊕xy δb,y⊕xy. (6.12)

3Note that the nontriviality of the inequalities implies that such extremal rays indeed exist.
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However, unlike for the other inequalities, this distribution does not give the maximal

possible violation of inequality (6.11) (which is 1/2), as the corresponding extremal

point hext that does maximally violate it is not reachable by a valid probability dis-

tribution with binary inputs and outputs. This is easily verified by making use of

the previous observation that this extremal point must correspond to a deterministic

distribution taken with uniform inputs, the set of which can easily be enumerated for

binary inputs and outputs. Amongst such distributions, the one in Eq. (6.12) gives the

best violation of 1− 3
2 log2

3
2 ≈ 0.123 > 0.

The distributions in Eq. (6.10) are particularly interesting, as they all violate max-

imally some symmetries of the GYNI inequality (2.40) (i.e. under relabeling of the

parties, inputs, and outputs), but not Eq. (2.40) itself. Interestingly, it turns out that all

binary deterministic noncausal distributions, when taken with uniform inputs, violate

at least one of our entropic inequalities except the distribution PGYNI(ab|xy) = δa,yδb,x

(which violates maximally Eq. (2.40)) and its four symmetries under relabeling of out-

puts only. Note, however, that if Alice and Bob have a noncausal resource producing

the distribution PGYNI , they can produce any of the distributions in Eq. (6.10) by ap-

propriately XORing their input with their output, and thus still obtain an operational

violation of an entropic causal inequality.4 It is interesting to observe that distributions

maximally violating GYNI-type inequalities have such a crucial role in violating the

entropic causal inequalities given that the entropic inequalities superficially bear little

resemblance to these, and are valid for arbitrary numbers of inputs and outputs.

Returning to the more general situation with no upper bound imposed on H(X),

H(Y), H(A) and H(B), we see that all the remaining entropic causal inequalities

can be violated by entropy vectors that are parallel to the realizable entropy vectors

giving violations in the restricted scenario – more precisely, those obtained from the

distributions Eq. (6.10) (for all but one of the remaining inequalities) and Eq. (6.12)

(for the remaining one). This shows that, given large enough alphabets for the input

and output variables, all the entropic causal inequalities we obtained can indeed be

violated by noncausal probability distributions, since if the distribution P(xyab) has

entropy vector h then the distribution

P(xyab) = P(x1y1a1b1)× · · · × P(xnynanbn), (6.13)

4This illustrates an important difference between the probabilistic and entropic frameworks: while all
symmetries of a correlation obtained by flipping inputs and outputs (possibly conditioned on the local
inputs for the latter) are equivalent in the probabilistic case (in the sense that if one violates a causal
inequality, then all other ones violate a symmetry of that inequality) this is not the case in the entropic
approach. The entropy vectors of two different symmetries of a correlation may be inequivalent, with
one violating an entropic causal inequality while the other does not.
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where x = (x1, . . . , xn) and similarly for y, a and b, has entropy vector n · h. One

should be careful, however, to note that the operation of sharing multiple independent

correlations among the same parties is not a free operation either in the framework

of causal correlations (since, for example, two independent copies of a causal distri-

bution may give rise to a noncausal one), or in the process matrix framework (where

two independent copies of a process matrix does not, in general, produce a valid pro-

cess matrix). Nevertheless, P(ab|xy) = P(xyab)/P(xy) obtained from Eq. (6.13) still

represents a valid (possibly noncausal) distribution.

It is interesting also to ask how sensitive the entropic causal inequalities are for detect-

ing noncausality. Since it does not appear possible to saturate the inequalities (A.3)–

(A.5) with non-zero bounds using causal distributions, these inequalities are not tight

and, consequentially, unable to detect noncausal correlations that are very close to

being causal. For the other inequalities in Eq. (A.2) this is nonetheless a pertinent

question. More precisely, one may ask whether there exists a distribution Pε of the

form

Pε(ab|xy) = εPNC(ab|xy) + (1− ε)PC(ab|xy), (6.14)

where PNC is a noncausal distribution and PC is causal, that violates any of these

entropic inequalities for arbitrarily small ε > 0.

We looked in detail at this question for the case of binary inputs and outputs, where

the inequalities in Eq. (A.2) can all both be saturated by causal distributions, and

violated by noncausal ones. By trying exhaustively all deterministic distributions PNC

and PC, we found that such behaviour was exhibited (for such distributions) only by

the two inequalities

I(A : B|X)− I(Y : B)− 2H(B|XY) ≤ 0 (6.15)

and

I(XA : Y) + I(YB : X)− H(X|YA)− H(A) ≤ 0. (6.16)

Equation (6.15), for example, is violated by Pε for all ε > 0 when taking PNC(ab|xy) =

δa,x⊕y δb,x⊕y and PC(ab|xy) = δa,0 δb,x⊕y along with uniformly distributed inputs X and

Y, which also gives a violation of the GYNI-type causal inequality

1
4 ∑

x,y,a,b
δa,x⊕y δb,x⊕y P(ab|xy) ≤ 1

2
(6.17)

with a left-hand side value of 1+ε
2 > 1

2 .
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For the remaining inequalities, such mixtures that violate a standard causal inequality

for arbitrarily small ε only violate an entropic causal inequality when ε > ε0 for some

ε0 bounded away from 0. We observed identical behavior when we extended our

consideration also to various non-deterministic distributions PNC and PC, and it thus

seems that only Eqs. (6.15) and (6.16) exhibit this ability to detect the noncausality of

distributions that are arbitrarily close to being causal.

A final point worth discussing relates to the physical interpretation of the distributions

violating entropic causal inequalities. One of the motivations in introducing the notion

of causal correlations was whether nature permits more general causal structures that

might allow such correlations to be realized, for example in quantum gravity [25]. In

particular, the authors of Ref. [25] introduced the so-called process matrix formalism,

in which quantum mechanics is assumed to hold locally for each party, while no

global order is assumed between the parties. They showed that causal inequalities

can be violated within this framework, and this helped motivate further studies of

causal correlations, where it has been shown that the violation of facet-inducing causal

inequalities is ubiquitous within this framework [83, 84, 86, 87, 157, 158]. It is thus

interesting to see whether entropic causal inequalities share this property and can

also be violated within the process matrix framework.

To look for such violations, we used the optimization techniques of Refs. [86, 87] with

qubit systems to try and optimize the violation of the GYNI-type inequalities that the

distributions in Eq. (6.10) violate maximally. We also tried minimizing the distance to

other deterministic noncausal correlations such as Eq. (6.12), as well as optimizations

in random directions in probability space. Unfortunately, we were unable to find any

process matrices operating on qubits that violate entropic causal inequalities with such

techniques. We additionally attempted to reproduce (as closely as possible) distribu-

tions of the form (6.14) for small ε in order to violate inequalities (6.15) and (6.16), but

similarly found no violation. Finally, we looked at noncausal correlations obtained by

mixing noncausal correlations realizable by process matrices with causal correlations.

An analogous mixing procedure was shown to enable all nonlocal distributions to vi-

olate the entropic Bell inequalities described in Sec. 2.5.4 [93], but we were unable to

find violations of the entropic causal inequalities with this approach.

This lack of violation is perhaps unsurprising given the general lack of sensitivity

of the entropic inequalities to nearly-causal distributions, and the fact that the best-

known violations of causal inequalities for this scenario with process matrices are

relatively small [86]. Nonetheless, it remains possible that violations can be found

with higher-dimensional systems or more inputs and outputs.
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6.2.2 Characterization based on counterfactual variables

In this section we will consider counterfactual variables as outlined in Sec. 2.5.4.

Rather than considering the inputs as random variables X and Y, we take copies

of each output variable for all input combinations, i.e. Axy and Bxy. In contrast to the

method based on causal Bayesian networks, this method fixes the number of inputs

that the inequalities apply to but may lead to novel constraints, as is the case in the

Bell scenario.

Counterfactual variables for bipartite causal correlations

To keep the discussion simple, we will consider only the case of binary inputs, but the

generalization to arbitrary inputs is straightforward. We consider the variables

S = {A00, A01, A10, A11, B00, B01, B10, B11}. (6.18)

Note that, in contrast to the example of Bell inequalities discussed in Sec. 2.5.4, we

need to consider copies of each variable for each input pair (x, y). This is a conse-

quence of the fact that the correlations which we want to characterize may be signal-

ing, e.g., for the causal order A ≺ B, B00 and B10 will in general be different.

Since Axy and Bx′y′ are jointly observable only if x = x′ and y = y′, the marginal

scenario in this case is

M =
{
{A00, B00}, {A01, B01}, {A10, B10}, {A11, B11}

}
. (6.19)

In contrast to the DAG-based method, several choices of probability structure S com-

patible withM are possible, and the particular choice must be motivated on the basis

of physical assumptions. One natural possibility would be to take S = M, as one

may have no a priori reason to think that the variables Axy and Ax′y′ have simultane-

ous physical meaning for (x, y) 6= (x′, y′), and hence may not have a well-defined joint

probability distribution. On the other hand, in some cases one may imagine that such

inputs correspond to the choice of measurements of some physical properties that are

simultaneously well-defined, as in a classical theory; hence, one may alternatively take

S = {∪Mj∈MMj} = {S}. In the following, we will adopt the former approach and

take S = M, since this constitutes the minimum assumptions compatible with the

marginal scenario. The Shannon cone for S is thus

ΓS = Γ{A00,B00} ∩ Γ{A01B01} ∩ Γ{A10B10} ∩ Γ{A11B11}, (6.20)
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as in Eq. (2.46). We note however that this physically motivated choice for S implies,

for this particular scenario, that a global probability distribution does in fact exist.5

Taking S = {S} would thus provide an equivalent entropic characterization, and

moreover, an equivalent characterization also at the level of Shannon (rather than

entropic) cones (see Appendix A, for an extensive discussion).

We follow a method analogous to that used in Sec. 6.2.1. First, we characterize the

cones ΓA≺B and ΓB≺A of entropy vectors for fixed-order causal correlations, then, we

characterize the convex mixtures of such correlations.

To do this, we note that the no-signaling conditions obeyed by fixed-order correlations

(see Sec. 2.3.7) impose constraints on the counterfactual variables. For example, cor-

relations consistent with the order A ≺ B obey P(a|xy) = P(a|xy′) for all x, y, y′, a,

which implies Axy = Axy′ and thus H(Axy) = H(Axy′) also. Similarly, for B ≺ A, we

have H(Bxy) = H(Bx′y) for all x, x′, y. The cones ΓA≺B and ΓB≺A are thus given by

ΓA≺B = ΓS ∩ LC
(
{A00 = A01, A10 = A11}

)
(6.21)

and

ΓB≺A = ΓS ∩ LC
(
{B00 = B10, B01 = B11}

)
, (6.22)

where LC(·) again denotes the linear subspace defined by the corresponding con-

straints.

As in Sec. 6.2.1, we introduce the latent switch variable Q, denote the augmented set

of random variables S̃ = S ∪ {Q}, and extend the probability structure as

S̃ =
{
{Axy, Bxy, Q} | x, y ∈ {0, 1}

}
(6.23)

(in Appendix A we discuss further the implications of different choices of probability

structures). With this extra variable we note again that the convex hull conv(ΓA≺B, ΓB≺A)

contains the vectors hconv = (H(T|Q))T∈Sc for causal correlations. The system of in-

equalities Ih ≤ 0 characterizing conv(ΓA≺B, ΓB≺A) can then again be transformed in a

similar way to Eq. (6.5) into a new system Ĩh̃ ≤ 0 defining the cone of corresponding

entropy vectors h̃ = (H(T))T∈S̃c , which we again denote by convQ(ΓA≺B, ΓB≺A). In

contrast to the DAG-based method, the only constraint on Q is, now, H(Q) ≤ 1, since

Q need not be independent of the (counterfactual) output variables Axy, Bxy. Finally,

we need to project onto the marginal scenarioM in Eq. (6.19). The causal polyhedron

5 This is the result of the more general fact that different choices of S may provide equivalent descrip-
tions of marginal probabilities [159] and entropies [27].
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is thus given, in analogy to Eqs. (6.6) and (6.7), by

Γcausal = ΠM
[
ΓS̃ ∩ convQ(ΓA≺B, ΓB≺A) ∩ LC

(
{H(Q) ≤ 1}

)]
, (6.24)

where we have ΓS̃ =
⋂

x,y∈{0,1} Γ{Axy,Bxy,Q}.

Entropic causal inequalities for counterfactual variables and their violation

As in Sec. 6.2.1, the construction above allows one to obtain the full list of entropic

inequalities characterizing Γcausal. After removing the trivial inequalities directly im-

plied by Shannon constraints onM, we find that there are 6 nontrivial entropic causal

inequalities, which can be grouped into two equivalence classes of inequalities under

the relabeling of inputs:

I(A00 : B00)− H(A01)− H(B10) ≤ 1 (6.25)

and

I(A00 : B00) + I(A11 : B11)− H(A01B01)− H(A10B10) ≤ 2. (6.26)

The fact that these inequalities have nontrivial bounds is, as for the DAG-based method,

a result of the constraint H(Q) ≤ 1 which means Γcausal is a polyhedron characterized

by a set of inhomogeneous inequalities. Indeed, if one chooses not to eliminate Q

from the entropic description, one obtains a convex cone characterized by the above

equations, except that the right-hand side is multiplied by H(Q) (see the discussion

in Appendix A).

In contrast to the case for the DAG-based approach, where violation of the causal

inequalities we obtained was possible even with deterministic distributions, it is clear

that such distributions provide no interesting behavior in the counterfactual approach

since any such distribution will have a null entropy vector. By looking at equal mix-

tures of deterministic causal distributions, however, we were able to verify that the

inequalities in Eqs. (6.25)–(6.26) can indeed be saturated by such (causal) distribu-

tions and are thus tight. In order to study the potential violation of these entropic

inequalities, we again need to look at nondeterministic distributions. One can easily

see, however, that Eqs. (6.25)–(6.26) cannot be violated when restricted to distributions

satisfying H(Axy) ≤ 1 and H(Bxy) ≤ 1 for all x, y ∈ {0, 1}, as this also implies that

I(Axy : Bxy) ≤ 1. This means that the inequalities for counterfactual variables are

unable to detect noncausality when both parties are restricted to binary outputs.
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To study possible violations we again look at the extremal rays of the Shannon cone

ΓS of Eq. (6.20) which violate one of the inequalities, and examine whether these rays

can be reached by any probability distribution. Considering bounds on H(Axy) and

H(Bxy) strictly larger than 1, we find that violations are possible for any such bound.

Moreover, the entropy vectors giving maximal violation of Eqs. (6.25) and (6.26) are

generally realizable with equal mixtures of causal and noncausal distributions. For

example, given the constraints H(Axy) ≤ log2 k and H(Bxy) ≤ log2 k for some integer

k ≥ 2, the distribution

Pk(ab|xy) = δx,y
1
k

δa,b + (1−δx,y) δa,0δb,0, (6.27)

where a, b ∈ {0, . . . , k− 1}, realizes such an extremal point for all k ≥ 2, and provides

a violation of both Eqs. (6.25) and (6.26) for k > 2. For k = 2 (binary outputs), this

distribution can be written as the convex combination

P2(ab|xy) =
1
2

PNC(ab|xy) +
1
2

PC(ab|xy), (6.28)

where PNC(ab|xy) = δa⊕1,x⊕yδb⊕1,x⊕y maximally violates a GYNI-type inequality (it

is simply a symmetry of the third distribution in Eq. (6.10), obtained by flipping all

outputs), and PC(ab|xy) = δa,0δb,0 is causal. Even though it does not violate Eq. (6.25)

or (6.26), P2 is noncausal. The distribution Pk can be seen as a possible generalization

of a GYNI-violating distribution.

This link to the GYNI-type inequalities and correlations can be made more explicit by

considering the related distribution

P′k(ab|xy) = δx,y
1

k−1
δa,b(1−δa,0δb,0) + (1−δx,y) δa,0δb,0, (6.29)

with again a, b ∈ {0, . . . , k− 1}. We have P′2 = PNC, and, for k ≥ 3, P′k has the same

entropy vector as Pk−1. P′k can be clearly simulated from P′2 = PNC by making use of

shared randomness and by letting both parties replace the output 1 obtained from P′2
by a shared random value a = b ∈ {1, . . . , k − 1}. It is interesting to see, then, that

the GYNI-maximally-violating distributions also provide the best behavior entropi-

cally, when augmented with shared randomness, even though they fail to violate the

inequalities when the parties have only binary outputs.

As for the DAG-based method, it is also interesting to look at the sensitivity of the

inequalities with respect to the detection of noncausality. Unfortunately, by looking at

distributions of the form given in Eq. (6.14), but now where PNC and PC equal mix-

tures of 3-outcome deterministic noncausal and causal distributions, respectively, we
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were unable to find such distributions Pε(ab|xy) which violate the entropic inequali-

ties (6.25) and (6.26) for arbitrary small ε.

Finally, one may again ask whether one can violate any of the entropic inequalities

for counterfactuals within the process matrix formalism, or whether any noncausal

correlation can be mixed with a causal one to violate an entropic inequality, as is the

case for entropic Bell inequalities obtained from the counterfactual approach [93]. We

leave this as an open question, but note only that we were not able to find a way to

do so: for example, we were unable to find a violation (with or without the use of

shared randomness) for noncausal distributions realizable within the process matrix

framework.

6.3 Multipartite entropic causal inequalities

The notion of causal correlations can be extended to more than two parties in a recur-

sive manner [85, 87]. Consider N parties A1, . . . , AN , with inputs x = (x1, . . . , xN) and

outputs a = (a1, . . . , aN). In any given run, one party, say Ak, must act first, and none

of the other parties can signal to them, which implies P(ak|x) = P(ak|xk). The correla-

tions shared by the remaining N − 1 parties, conditioned on the input and output of

the first, must also in turn be causal. However, note that the causal order itself (and

not only the response functions) of the remaining parties may depend on the input

and output of the first, a phenomenon called dynamical causal order [85, 87, 156], and

which goes beyond the standard model of fixed causal Bayesian networks.

An N-partite correlation P(a|x) is thus called causal if it can be decomposed in the

following way [85, 87]:

P(a|x) =
N

∑
k=1

qk Pk(ak|xk) Pk,xk ,ak(a\k|x\k), (6.30)

where x\k = (x1, . . . , xk−1, xk+1, . . . , xN) and a\k = (a1, . . . , ak−1, ak+1, . . . , aN), with

qk ≥ 0, ∑k qk = 1, and where for each k, xk, ak, Pk,xk ,ak(a\k|x\k) is a causal (N−1)-

partite correlation (down to the lowest level of this recursive definition, where any

1-partite correlation is considered to be causal). Note that, for N = 2 this reduces to

Eq. (2.39). The entropic approach can be generalized to the multipartite scenario using

a similar recursive method.
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Figure 6.2: DAGs for tripartite causal correlations. The latent “switch” variable Q
determines which DAG is “activated”. Correlations among variables from shaded
rectangles are causal conditionally on the input and output of the party acting first.

6.3.1 Causal Bayesian network method

It is instructive to first look into the details of the tripartite case – in which case we

shall denote the parties Alice (A), Bob (B) and Charlie (C), as is standard – before

generalizing the method to more parties. The general method follows that used for

the bipartite case in Sec. 6.2.1, and the relevant conditional DAG is shown in Fig. 6.2.

The set of observable variables to be considered here is S = {X, Y, Z, A, B, C}.

The polytope of tripartite causal correlations (i.e., of the form Eq. (6.30)) can be written

as

Pcausal
ABC = conv(PA,PB,PC), (6.31)

where PA is the polytope of causal distributions consistent with Alice acting first and

such that the remaining conditional correlation shared by Bob and Charlie is causal,

and analogously for PB and PC. As a consequence, in order to define the polyhedron

characterizing tripartite causal correlations, which we denote Γcausal
ABC , we first need to

define the corresponding Shannon polyhedra, namely ΓA, ΓB, ΓC, associated with each

party acting first.

Let us thus consider ΓA. According to the recursive definition given in Eq. (6.30),

for any x, a, the conditional entropy vector hxa
BC = (H(T|X = x, A = a))T⊂{Y,Z,B,C}

for a correlation in PA must be contained in the bipartite causal polyhedron Γcausal
BC ,

defined for Bob and Charlie as in Eqs. (6.6)–(6.7). By convexity this also implies that



The entropic approach to causal correlations 106

hBC = (H(T|XA))T⊂{Y,Z,B,C} = ∑x,a P(x, a)hxa
BC is in Γcausal

BC . We can then use a similar

transformation to Eq. (6.5) to obtain constraints on ΓA: if entropy vectors hBC in Γcausal
BC

satisfy the inequalities IhBC ≤ β, then the corresponding (unconditional) entropy vec-

tor h = (H(T))T⊂S must satisfy the inequalities TXA(I)h ≤ β. Writing T ∗XA for the dual

transformation on the space of entropy vectors, we thus have that h ∈ T ∗XA(Γ
causal
BC ).

Together with the facts that h must lie in the Shannon cone ΓS for the relevant vari-

ables, that all the inputs must be independent from each other, and that Alice’s output

must be independent from Bob and Charlie’s inputs (conditioned on her input), we

obtain the characterization

ΓA = ΓS ∩ T ∗XA(Γ
causal
BC ) ∩ LC({X⊥Y⊥Z, A⊥YZ|X}), (6.32)

with similar expressions for ΓB and ΓC.

Following the same approach as in Sec. 6.2.1, we introduce a (now three-valued) switch

variable Q (see Fig. 6.2). Similarly to what we observed in the bipartite case, the

convex hull conv(ΓA, ΓB, ΓC) contains the conditional entropy vectors (H(T|Q))T⊂S

for tripartite causal correlations. The inequalities characterizing conv(ΓA, ΓB, ΓC) can

again be transformed into inequalities satisfied by the entropy vector h̃ = (H(T))T⊂S̃,

for variables in S̃ = S ∪ {Q}, by introducing a transformation TQ as in Eq. (6.5), thus

defining the polyhedron convQ(ΓA, ΓB, ΓC) as before. Taking into account the Shannon

constraints for all variables in S̃, the independence constraints CIQ = (X⊥Y⊥Z⊥Q)

and the bound H(Q) ≤ log2 3, and finally projecting onto the observable variables

in S, we see that the entropy vectors for tripartite causal correlations belong to the

polyhedron

(Γcausal
ABC )0 = ΠS

[
ΓS̃ ∩ convQ(ΓA, ΓB, ΓC) ∩ LC({CIQ, H(Q) ≤ log2 3}

)]
. (6.33)

While this characterization is certainly valid, some subtleties arising from the dif-

ferences between the probabilistic and entropic descriptions allow one to actually

make it tighter. Specifically, certain conditions implied by the definition (6.30) need

not be implied by the corresponding entropic definition outlined above. For exam-

ple, if P(abc|xyz) is a causal correlation, then the bipartite marginal distributions

Px(bc|yz) = ∑a P(abc|xyz) and P(bc|yz) = ∑x P(x)Px(bc|yz) are both causal (as are

the corresponding marginals for each other pair of parties) [87]. This implies that the

entropy vectors (H(T|X))T⊂{Y,Z,B,C} and (H(T))T⊂{Y,Z,B,C} corresponding to a tripar-

tite causal correlation must also satisfy all the inequalities characterizing the bipartite

causal polyhedron Γcausal
BC – which may not necessarily be implied by the characteriza-

tion of (Γcausal
ABC )0 above. We can thus tighten the previous characterization, and define
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the tripartite causal polyhedron as6

Γcausal
ABC = (Γcausal

ABC )0 ∩ Γcausal
BC ∩ T ∗X (Γcausal

BC ) ∩ [perms.], (6.34)

where [perms.] denotes the permutations of the preceding two terms for the other

parties. Note that such extra constraints do not need to be imposed in the bipartite

case since the causality of all one-party marginals is equivalent to them being valid

probability distributions, which is already assured by the elemental inequalities.

To extend the above idea to the general multipartite case of Eq. (6.30), we simply define

recursively (here the notation should be self-evident)

ΓAk = Γ{X,A} ∩ T ∗Xk Ak

(
Γcausal

A\k

)
∩ LC(CIAk), (6.35)

where CIAk denotes the set of independence constraints resulting from the assumption

that all parties’ inputs are independent, i.e. X1⊥ . . .⊥XN , and that party k acts first,

which implies Ak⊥X\k|Xk. The causal polyhedron is then defined as

Γcausal
A = ΠX,A

[
Γ{X,A,Q} ∩ convQ({ΓAk}k) ∩ LC({CIQ, H(Q) ≤ log2 N}

)]
⋂
k

[
Γcausal

A\k ∩ T ∗Xk

(
Γcausal

A\k

)]
, (6.36)

where CIQ denotes the independence relation between all input variables and Q,

i.e. X1⊥ · · · ⊥XN⊥Q.

6.3.2 Counterfactual variable method

A similar generalization is possible also for the counterfactual method. Again, it is

instructive to look first at the tripartite case. We start by defining the polyhedron for

the case in which Alice acts first,

ΓA =
⋂
xyz

[
Γ{Axyz,Bxyz,Cxyz} ∩ T ∗Axyz

(Γcausal
BC ) ∩ LC

(
{Axyz = Axy′z′}y′z′

)]
, (6.37)

which is the analogue, for the counterfactual method, of the polyhedron in Eq. (6.32).

Similar definitions hold for ΓB and ΓC. The tripartite polyhedron of causal counter-

factual inequalities can then be defined, following a similar reasoning to the previous

6In Eq. (6.34) we abuse the notation slightly and denote by Γcausal
BC the set of entropy vectors (H(T))T⊂S

– instead of (H(T))T⊂{Y,Z,B,C} – which satisfy the constraints characterizing Γcausal
BC as defined in

Eqs. (6.6)–(6.7). The transformation TX , of which T ∗X is the dual, is again defined in a similar way as
in Eq. (6.5).
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case, as

Γcausal
ABC = ΠM

[
convQ(ΓA, ΓB, ΓC) ∩

(⋂
xyz

Γ{Axyz,Bxyz,Cxyz,Q}
)
∩ LC

(
{H(Q)≤ log23}

)]
⋂
x

Γcausal
BC|x

⋂
y

Γcausal
AC|y

⋂
z

Γcausal
AB|z , (6.38)

where M =
{
{Axyz, Bxyz, Cxyz}

}
xyz and Γcausal

BC|x is defined by imposing the constraints

characterizing ΓBC (a priori defined for some variables Byz, Cyz) to the variables Bxyz, Cxyz,

and with similar definitions for Γcausal
AC|y and Γcausal

AB|z .

As for the case based on causal Bayesian networks, the construction in Eq. (6.38) can

then be generalized to an arbitrary number of parties in a recursive way.

6.4 Information bounds in causal games

One of the advantages of the entropic approach is that it allows information theoretic

constraints to be naturally imposed, derived, and interpreted [22, 147]. As an illustra-

tion, we consider a simple application of our approach to understanding the role of

bounded communication in causal games.

Consider the generalization of the GYNI game described in Sec. 2.3.7 to arbitrary

numbers of inputs and outputs, in which two parties try to maximize the winning

probability psucc = P(a = y, b = x). If the parties operate causally, then in any given

round of the game only one-way communication may occur. One may be interested in

the effect of limiting the amount communication that can occur in any such round. In

the entropic framework, this can easily be taken into account by adding an additional

constraint of the form I(X : B) ≤ H(M) to ΓA≺B in order to restrict B’s dependency on

X, and similarly imposing I(Y : A) ≤ H(M) to ΓB≺A, where the variable M represents

the message that is sent. For example, if the parties are permitted, in each round,

to exchange a classical d-dimensional system, then H(M) = log2 d. In general, the

amount of one-way communication H(M) does not need to be specified in advance,

it will appear as parameter in our inequalities. By applying the approach of Sec. 6.2.1

to this scenario one finds that causal correlations must then obey the inequality

I(X : B) + I(Y : A) ≤ H(M), (6.39)

i.e., the two-way communication is similarly bounded by H(M). Although this is

perhaps not unexpected, it shows the ease with which such bounds can be derived in

the entropic framework.
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A more subtle variant is obtained by considering a slight generalization of the causal

game proposed by Oreshkov, Costa, and Brukner (OCB) in Ref. [25]. In this game,

the goal is also for one party to guess the other party’s input; in contrast to the

GYNI game, however, an additional input random bit Y′ is given,7 which determines

whether it is Bob who should guess Alice’s input (if Y′ = 0) or vice versa (if Y′ = 1).

The parties thus now attempt to maximize the winning probability

psucc =
1
2

(
P(b = x |Y′ = 0) + P(a = y |Y′ = 1)

)
. (6.40)

An analogous entropic inequality can be obtained via a combination of the meth-

ods discussed in Sec. 6.2. Since the relevant direction of communication in each

round of this game depends on the additional input Y′, we will combine the DAG-

based method for the variables A, B, X, Y with the counterfactual approach to con-

dition on Y′. More precisely, one may take S̃ =
{
{Ay′ , By′ , X, Y, Q}

}
y′ and M ={

{Ay′ , By′ , X, Y}
}

y′ ; the relevant causal constraints for the cones ΓA≺B and ΓB≺A and

the polyhedron Γ̃causal are the same as those imposed on A, B, X, Y, Q in the DAG-

based method, except that now they are applied to each copy of the conditional vari-

ables Ay′ and By′ , and the communication bounds

I(X : By′) ≤ H(M), and I(Y : Ay′) ≤ H(M) (6.41)

are imposed on the corresponding cones. Notice that, in this way, we are assuming

that Q⊥X⊥Y⊥Y′. Combining the above constraints with the analysis in Sec. 6.2, one

finds that causal correlations must obey

I(X : B |Y′ = 0) + I(Y : A |Y′ = 1) ≤ H(M). (6.42)

This inequality, for the special case of binary inputs and outputs and with H(M) = 1,

was proposed in Ref. [160] as a potential principle to bound the set of correlations

obtainable within the process matrix formalism,8 in analogy with the celebrated in-

formation causality principle [147] that provides bounds on the strength of bipartite

quantum correlations. Our approach allowed us to show that Eq. (6.42) indeed holds

for causal processes, but it remains to be seen whether such a constraint on commu-

nication for causal correlations can be violated within the process matrix framework.

7In the original OCB game, only one party receives the input Y′, whereas in the variant we consider
here, both parties have access to it.

8Ref. [160] proposed this inequality in the framework of the original OCB game. However, one can
easily see that our derivation of Eq. (6.42) in the more general scenario implies that it must hold in that
framework too. Indeed, if only Bob receives Y′, then this implies the additional constraint H(A0) =
H(A1) when A ≺ B. The set of correlations obtainable is thus a subset of those obtainable in the more
general version of the game, and thus Eq. (6.42) must again hold true.
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This example, however, highlights the potential of the entropic approach to causal

correlations for studying information-theoretic principles.

6.5 Discussion

Since Bell first formulated his eponymous theorem, understanding the role of causality

within quantum mechanics has been a central yet thorny goal. Complicating matters

further, the very idea of a definite causal order itself has begun to be questioned. While

sophisticated frameworks have been introduced in an effort to free physical theories

from the shackles of a rigid causal framework, the issue of whether nature permits

violations of causal inequalities remains an elusive question.

Against this backdrop, our aim in this work was to introduce an entropic approach to

studying causal correlations, and to this end we presented two complementary meth-

ods: the first based on the consideration of the entropies of the variables appearing

in the causal Bayesian networks describing causal scenarios, and the second based

on a counterfactual description of the outcome variables appearing in such networks.

Focusing on bipartite causal scenarios, we described in detail the successful applica-

tion of both methods to derive nontrivial entropic causal inequalities, before showing

how the characterizations can be generalized to multipartite scenarios. In contrast

to the usual approach to causal correlations based on probability distributions, the

entropic causal inequalities we derived using both methods are valid for any finite

number of possible outcomes, as well as for any number of inputs for the first method

based on causal Bayesian networks, and thus provide a very concise description of

causal correlations. We discussed the ability for the derived entropic causal inequali-

ties to witness the noncausality of several classes of interesting noncausal correlations,

but were nonetheless unable to find violations of the inequalities by correlations ob-

tainable within the process matrix formalism [25] using qubit systems. In light of

the coarse-grained description provided by entropic inequalities and the fact that the

known violations of standard causal inequalities are in general rather small [86], that is

arguably an unsurprising negative result. The question of whether entropic causal in-

equalities can be violated within the process matrix formalism and (more importantly)

by quantum correlations thus remains open. More generally, our construction can be

used to characterize arbitrary convex combinations of different causal Bayesian net-

works, and thus provides, for example, a natural tool to investigate stronger notions

of multipartite Bell nonlocality [153, 154, 161, 162] from the entropic perspective.

In view of this new framework for the study of causal correlations we believe that sev-

eral other directions of research can naturally be pursued. Here we focused on using
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the Shannon entropies of the relevant variables, but it is known that, at least in par-

ticular scenarios, the same approach can be used to derive constraints using certain

generalized entropies [163, 164] and even with non-statistical information measures

such as the Kolmogorov complexity [95]. Can our framework be extended to these

other information measures, and if so, are they more sensitive to violations of causal-

ity? Similarly, one may wonder whether the addition of non-Shannon-type inequali-

ties to the entropic descriptions of causal correlations considered might lead to tighter

constraints [92, 132, 165]. More generally, it remains an open question whether the

definition of causal correlations implies any additional constraints within the entropic

description that might allow a tighter characterization, particularly in the multipar-

tite case, similar to the additional constraints on marginal and conditional entropies

imposed in Sec. 6.3.

Another important direction to consider would be the ability to formulate, and per-

haps violate, information-theoretical principles [22] of causality. We provided, as a

simple application, an idea at one possible approach, showing how simple bounds

on two-way communication can be derived for causal games where communication is

limited in each direction. It would be interesting to see, in particular, whether such

principles could be violated within the process matrix formalism and, if so, the con-

nection to the violation of causal inequalities. For example, does the violation of causal

inequalities imply the violation of some principle implied by quantum mechanics? We

expect our results to motivate these and many more future investigations.



Conclusions

In this thesis we have considered different problems in quantum mechanics. Although

these problems look very different there is a common idea of inferring the information

about the whole system from the data about the subsystems which connects all of

them. These problems can be all treated as parts of the larger problem, namely the

marginal problem. In this way the results of this thesis may benefit our understanding

of more general relations between the parts and the whole in physics.

In Chapter 3 we have considered a phenomenon of emergence of multiparticle entan-

glement. In this phenomenon multiparticle entanglement of the global state can be

proven from the separable marginals. We have shown that quantum states with such

properties exist for arbitrary number of particles and we have presented a method to

obtain states of few particles for which this phenomenon is likely to be the most no-

ticeable. In addition we have considered various extensions of this problem including

the situations where only some of the marginals are known, or where entanglement

cannot be localized in the marginals.

In the next Chapter 4 we have introduced a generalization of the class of hypergraph

state from the qubit register to d-level systems. In this part of the thesis we have

concentrated on the problem of distinguishing different local equivalence classes of

tripartite qudit hypergraph states for dimension 3 and 4. The main criteria, which

was used to classify these states, is based on the ranks of the reduced states, i.e. in

this case the information about the marginals is the most relevant one.

Starting from Chapter 5 we have altered our focus from problems in the entanglement

theory to the problems of causal reasoning in quantum mechanics. In Chapter 5 we

considered the problem of inferring causal relations under the restrictions on the ob-

served data. More formally, we have derived a necessary condition for general causal

structures to be distinguishable from correlations in the given marginal scenario. This

result can be applied to the analysis of scenarios for testing nonlocality or presence

of signaling in quantum experiments where we have access only to some marginal

correlations.
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Finally, in Chapter 6 we considered quantum processes for which the causal order

might be indefinite. In this framework, the order, like space-time, between events

in different laboratories is not fixed, but rather is considered to be a dynamical pa-

rameter of the the theory. Indefiniteness of the causal order is then can be proven

by violation of so-called causal inequalities, which are analogous of Bell inequalities

but for signaling correlations. In in Chapter 6 we derived entropic causal inequalities

and discussed their violation. In particular, we considered two different variations of

the entropic approach and obtained two families of nontrivial constraints on entropic

region, associated with causal processes. We concluded the chapter by discussing the

information bounds on communication in theories where the causal order is definite.



Appendix A

An Appendix to Chapter 6

Causal correlations not contained in conv(ΓA≺B, ΓB≺A)

Starting with the systems of inequalities I0h ≤ 0 and I1h ≤ 0 characterizing the

cones ΓA≺B and ΓB≺A defined in Eqs. (6.1) and (6.2), the characterization Ih ≤ 0 of

conv(ΓA≺B, ΓB≺A) can be found by first solving the extremal ray enumeration problem

for the extremal rays of ΓA≺B and ΓB≺A, taking the union of these rays and finally solv-

ing the facet enumeration problem for the inequalities characterizing conv(ΓA≺B, ΓB≺A).

We find that there are six nontrivial inequalities (i.e., non Shannon-type inequalities)

for conv(ΓA≺B, ΓB≺A), which correspond to four equivalence classes of inequalities

under exchange of parties:1

I(X : YA) + I(Y : XB)− I(XY : AB) ≤ 0

I(A : B)− I(A : B|X)− I(A : B|Y) ≤ 0

I(X : A|B)− I(XB : A|Y) ≤ 0 (A.1)

I(A : B|X)− I(A : B|XY)− I(Y : B) ≤ 0.

In order to see that there are causal bipartite correlations that have entropy vectors

not contained in conv(ΓA≺B, ΓB≺A), consider the following counterexample. Take

PA≺B(ab|xy) = δa,xδb,x and PB≺A(ab|xy) = δa,yδb,y and consider the inputs x, y to

be uniformly distributed so that PA≺B(xyab) = 1
4 PA≺B(ab|xy) and PB≺A(xyab) =

1
4 PB≺A(ab|xy). The distribution P(ab|xy) = 1

2

(
PA≺B(ab|xy) + PB≺A(ab|xy)

)
is thus

1For compactness we generically write entropic inequalities not just in terms of Shannon entropies (as
defined in Eq. (2.41)), but also in terms of conditional entropies (of the form H(A|B) := H(AB)− H(B)),
of mutual information (I(A : B) := H(A) + H(B) − H(AB)) and of conditional mutual information
(I(A : B|C) := H(AC) + H(BC)− H(ABC)− H(C)). The expressions given for the inequalities are of
course not unique.
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also causal, but one can verify that the entropy vector for the distribution P(xyab) =
1
4 P(ab|xy) violates the first and last inequalities in (A.1) with a value for the left-hand

sides of 1− 3
2 log2

3
2 ≈ 0.123 > 0.

A similar conclusion can also be reached for the method based on counterfactual

variables: starting from the definitions of ΓA≺B and ΓB≺A in Eqs. (6.21) and (6.22) one

finds that the inequalities characterizing conv(ΓA≺B, ΓB≺A) are precisely the same as

the causal inequalities in Eqs. (6.25) and Eq. (6.26) except with bounds on the right-

hand side of 0. One can easily verify that Eqs. (6.25) and Eq. (6.26) can be saturated

by causal correlations (for some equal mixtures of correlations PA≺B and PB≺A), thus

providing such a counterexample.

Bipartite entropic causal inequalities from the DAG method

The following is the full list of (equivalence classes of) inequalities from the DAG

method, up to their symmetries under the exchange of parties.

Ten (of the twenty) families of inequalities have bounds of 0 and can be violated by

binary distributions:

I(X : YA) + I(Y : XB)− H(AB) ≤ 0

I(A : B)− I(A : B|X)− I(A : B|Y)− 2H(AB|XY) ≤ 0

I(X : YA) + I(Y : AB)− H(B|X)− H(A) ≤ 0

I(A : B|X)− I(Y : B)− 2H(B|XY) ≤ 0

I(A : B|X)− I(A : B)− H(A|YB)− 2H(B|XY) ≤ 0

I(XA : Y) + I(YB : X)− H(X|YA)− H(A) ≤ 0 (A.2)

I(XA : Y) + I(YB : X)− H(B|YA)− H(A) ≤ 0

I(XA : Y) + I(YB : X)− I(A : B)− H(B|YA)− H(YA|X) ≤ 0

I(XA : Y) + I(YB : X)− I(A : B)− H(B|YA)− H(AB|X) ≤ 0

I(XA : Y) + I(YB : X)− I(A : B) + I(X : A|Y)− H(XAB) ≤ 0.

Two more have non-zero bounds but, under the constraints that H(A) ≤ 1, H(B) ≤ 1,

H(X) ≤ 1, H(Y) ≤ 1, turn out to be implied by the previous inequalities in Eq. (A.2):

H(X|B) + H(Y|A)− I(A : B|XY)− 2H(X|YB)− 2H(Y|XA) ≤ 1

I(XB : A)− 3I(X : A)− 3I(Y : B)− 4I(A : B|XY)− 2H(XB|YA) + 2H(B) ≤ 2.

(A.3)
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Four correspond to “corrected” versions of the inequalities (A.1) characterizing the

cone conv(ΓA≺B, ΓB≺A), and cannot be violated by binary distributions:

I(X : YA) + I(Y : XB)− I(XY : AB) ≤ 1

I(A : B)− I(A : B|X)− I(A : B|Y) ≤ 2

I(X : A|B)− I(XB : A|Y) ≤ 1 (A.4)

I(A : B|X)− I(A : B|XY)− I(Y : B) ≤ 1,

while a further four can also not be violated by binary distributions:

I(A : B|X)− I(A : B)− I(X : A|YB)− H(B|XY) ≤ 1

I(A : B|X)− I(A : B)− I(A : B|XY)− H(X|YB) ≤ 1

I(A : B|X)− I(A : B)− I(A : B|XY)− H(A|YB) ≤ 1 (A.5)

I(A : B|X)− I(A : B)− I(A : B|XY) + I(X : YA) + H(B|Y)− H(XB) ≤ 1.

We note that, instead of projecting Γ̃causal (as defined in Eq. (6.6)) onto the marginal sce-

narioM =
{
{X, Y, A, B}

}
to obtain these entropic causal inequalities, one could start

by projecting it onto the marginal scenario M′ =
{
{X, Y, A, B

}
, {Q}} which would

amount to eliminating all entropies H(T, Q) for all nonempty subsets T ⊂ {X, Y, A, B}
from the description while keeping H(Q). By doing so, one obtains the same inequal-

ities given in Eqs. (A.2) to (A.5), except with the right-hand side multiplied by H(Q).

The inequalities in Eq. (A.2) thus have no dependence on H(Q) (i.e., the exent to

which correlations of different causal orders are mixed), while the remaining inequal-

ities have a nontrivial dependence on it. By eliminating H(Q) using the constraint

H(Q) ≤ 1 one then obtains the entropic causal inequalities above.2

The inequalities containing H(Q) may be of interest if, for some reason, one puts

a nontrivial bound on H(Q) (e.g., if one knows that one fixed causal order is more

probable than the other). In the extreme case, if we know that H(Q) = 0, then the

inequalities we obtain (namely Eqs. (A.2)–(A.5), with all upper bounds replaced by 0)

are valid for fixed-order causal correlations. All of the inequalities in Eqs. (A.4)–(A.5)

except the second one in (A.4) can be violated by binary noncausal correlations for

any H(Q) < 1, giving novel constraints in such situations; for the second inequality

in Eq. (A.4) we were only able to find a violation for H(Q) < 1
2 (1 +

3
2 log2

3
2 ) ≈ 0.939.

2A similar procedure can also be followed for the approach with counterfactual variables, in which
case one obtains upper-bounds of H(Q) and 2H(Q) in Eqs. (6.25) and (6.26) (or 0 for fixed-order corre-
lations when H(Q) = 0), before eliminating H(Q) and obtaining Eqs. (6.25)–(6.26) again.
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Relations between different probability structures

In the application of the counterfactual method to causal correlations discussed in

Sec. 6.2.2, as a result of the structure of the marginal scenario one can prove that

different choices of probability structure S give rise to the same marginal distributions.

This is due to the fact that since all the marginals Mj ∈ M are disjoint, they are always

consistent with the global product probability distribution

P(a00, . . . , b11) = ∏
xy

P(axy, bxy). (A.6)

Hence, whichever probability structure S we choose (consistent withM), the observed

marginal probabilities can always be interpreted as arising from a global probability

distribution. Similarly, the choice of extended probability structure S̃ including the

switch variable Q in Eq. (6.23) implies also the existence of a global probability distri-

bution

P(a00, . . . , b11, q) = P(q)∏
xy

P(axy, bxy|q). (A.7)

(Such a construction is also possible in some other types of scenarios; see Ref. [159] for

more general results.) It thus follows that the probability structures S̃ that we chose

and S̃ ′ = {S̃} again give rise to the same marginal distributions on M. A similar

analysis can also be applied to the recursive method presented for the multipartite

case in Sec. 6.3.2.

At the level of entropic inequalities, however, the fact that we are considering Shannon

inequalities that provide only an outer approximation of the entropy cone means that

one may a priori obtain different constraints depending on which of these equivalent

probability structures one assumes. For the specific case of a marginal scenario with

disjoint elements, i.e., Mi ∩Mj = ∅ for all Mi, Mj ∈ M a result by Matúš (see Remark

1 in Ref. [128]) implies that an equivalent description arises also for the Shannon cone

by choosing S =M or S = {S}, with S = ∪Mi∈MMi. More precisely, we have

ΠM(ΓS) = ΠM
(
ΓS ∩ LC({XMi⊥XMj}Mi ,Mj∈M,i 6=j)

)
= ΠM(

⋂
Mi∈M

ΓMi) =
⋂

Mi∈M
ΓMi

(A.8)

where XMi denotes the joint random variable associated with the subset Mi ∈ M. The

linear constraints in Eqs. (6.21) and (6.22), can then be imposed after the projection.

Hence, the use of S = M or S ′ = {S} is irrelevant, in this case, even at the level of

Shannon cone description.

A similar analysis can be applied to compare S̃ and S̃ ′ = {S̃}, where S̃i ∩ S̃j = {Q}
for all distinct S̃i, S̃j ∈ S̃ . Even though the marginal scenario is the same as above,
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Eq. (6.24) involves extra constraints given by convQ(ΓA≺B, ΓB≺A) and H(Q) ≤ 1, so

the previous result does not directly apply. However, one can look at an intermediate

projection ΠS̃ (Γ
S̃ ′), and then impose the constraints involving Q. Hence, to prove the

equivalence of the two probability structures at the level of the Shannon description, it

would be sufficient to prove that ΓS̃ = ΠS̃ (Γ
S̃ ′). Using again the result by Matúš [128],

we have

ΠS̃ (Γ
S̃ ′) = ΠS̃

(
ΓS̃
′ ∩ LC({XS̃i\{Q}⊥XS̃j\{Q}|Q}S̃i ,S̃j∈S̃ ,i 6=j)

)
. (A.9)

However, we do not know whether the following equality

ΠS̃
(
ΓS̃
′ ∩ LC({XS̃i\{Q}⊥XS̃j\{Q}|Q}S̃i ,S̃j∈S̃ ,i 6=j) = ΠS̃ (

⋂
S̃∈S̃

ΓS̃) (A.10)

holds in general, so we were unable to prove the equivalence.

Nonetheless, we stress that any differences in tightness between the entropic inequal-

ities arising here from the choice of a particular probability structure do not arise as

a consequence of stricter physical assumptions (i.e., the existence of joint probability

distributions), but rather as a consequence of different outer approximation of the

true entropy cone via Shannon inequalities. We remark, however, that the choice of

a minimal probability structure is computationally easier to handle due to the much

lower number of variables; for example, compare the case S =M in Eq. (6.20), where

ΓS ∈ R12, with the corresponding case for S ′ = {S}, where ΓS ∈ R28
= R256. For

an extensive discussion of the role of such constraints in the computation of tighter

approximations to the entropy cone we refer the reader to Ref. [27].
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