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Zusammenfassung
Zur Berechnung von Prozessen im Standardmodell der Elementarteilchenphysik
(SM) werden sogenannte Effektive Feldtheorien (EFT) verwendet. Somit ist es mög-
lich Korrekturen systematisch zu behandeln. Eine EFT ist die Heavy Quark Effec-
tive Theory (HQET), welche ausnutzt, dass im Grenzwert der schweren Quarkmasse
mQ → ∞ eine Spin- sowie Flavor-Symmetrie auftritt. In dieser Arbeit werden drei
Anwendungen von HQET präsentiert.

Zuerst wird das ‘1/2 vs. 3/2’-Puzzle behandelt. Hier wird eine Spannung zwischen
den Vorhersagen in der Theorie und den experimentellen Messungen von semilep-
tonischen Zerfällen von B-Mesonen in orbital angeregte D-Mesonen beobachtet. Für
letztere existieren vier verschiedene Zustände, die in zwei Spin-Symmetrie-Doublets
angeordnet werden können, welche durch den Gesamtdrehimpuls ihrer leichten Frei-
heitsgrade j = 1/2 und j = 3/2 klassifiziert werden können. Zieht man den Spin
des schweren Quarks in Betracht, so können die Zustände im j = 1/2 Doublet einen
Gesamtdrehimpuls von 0 und 1 erhalten und die Zustände im j = 3/2 Doublet 1
und 2. Von Seiten der Theorie erwartet man, dass die Zerfallsraten der Zustände mit
j = 3/2 signifikant größer sind als die für j = 1/2. Im Experiment werden jedoch
Zerfallsraten gemessen die ungefähr gleich groß sind. In dieser Arbeit wird unter-
sucht, ob eine Mischung der beiden Zustände mit einem Gesamtdrehimpuls von 1
diese Spannung auflösen kann.

Ein anderer Aspekt von Mischung kann im B-B̄-System beobachtet werden. Hier
wird die Massendifferenz zwischen den B- und B̄-Zuständen durch das Matrix-
element des effektiven lokalen Vier-Quark-Operators bestimmt. Für die Berech-
nung dieses Matrixelements wird ein ‘Bag-Parameter’ eingeführt der in naiver Fak-
torisierung Eins ist. Jede Abweichung von Eins rührt von nicht-faktorisierenden
Beiträgen her. Der Bag-Parameter kann mit Hilfe der etablierten Methode der Sum-
menregeln im Kontext von HQET bestimmt werden. Im Falle der nicht-faktorisieren-
den Beiträge erfordert dies die Berechnung von Drei-Schleifen-Diagrammen. Die
präsentierte Rechnung komplettiert das Next-to-Leading-Order-Resultat für den
Bag-Parameter.

Eine weitere Anwendung von HQET ist QCD-Faktorisierung, welche kürzlich auf
Dreikörper-Zerfälle erweitert wurde. In dieser Arbeit wird CP-Verletzung im Zerfall
B → πππ in diesem Rahmen untersucht. In experimentellen Daten wird eine kom-
plexe Struktur von großen lokalen CP-Asymmetrien beobachtet. Es wird ermittelt,
ob diese Struktur mit der Methode der QCD-Faktorisierung erklärt werden kann.
Auch wenn ein paar Verfeinerungen nötig sind, können die groben Merkmale der
gemessenen CP Asymmetrie innerhalb des Models reproduziert werden.
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Abstract
For the computation of processes in the Standard Model of Elementary Particle
Physics (SM), so-called effective field theories (EFTs) are used. In this way, it is
possible to treat corrections systematically. One EFT is the Heavy Quark Effec-
tive Theory (HQET), which exploits the fact that in the heavy quark mass limit
mQ →∞, a spin as well as a flavor symmetry appears. In this thesis, three applica-
tions of HQET are presented.

First, the ‘1/2 vs. 3/2’ puzzle is addressed. Here, a tension between the theory
prediction and the experimental measurement of semileptonic decays of B mesons
into orbitally excited D mesons is observed. For the latter, four different states exist
that can be arranged into two spin-symmetry doublets, which are classified by the
total angular momentum of their light degrees of freedom j = 1/2 and j = 3/2, re-
spectively. Taking into account the spin of the heavy quark, the states in the j = 1/2
doublet can have a total angular momentum of 0 and 1 and the states in the j = 3/2
doublet 1 and 2. From theory, it is expected that the rates for the decays into the
states with j = 3/2 are significantly larger than the ones for j = 1/2. In experi-
ments, however, the measured decay rates are roughly the same. In this thesis, it is
investigated if a mixing of the two states with a total angular momentum of 1 can
ease this tension.

Another aspect of mixing can be observed in the B-B̄ system. Here, the mass dif-
ference between the B and B̄ states is determined by the matrix element of the
effective local four-quark operator. For the computation of this matrix element a
‘bag parameter’ is introduced which is unity in naive factorization. Any deviation
from unity stems from non-factorizable contributions. The bag parameter can be
obtained using the established method of sum rules in the context of HQET, which
requires the calculation of three-loop diagrams in the case of the non-factorizable
contributions. The presented computation completes the next-to-leading order re-
sult for the bag parameter.

A further application of HQET is QCD factorization, which has recently been ex-
tended to three-body decays. In this thesis, CP violation in the decay B → πππ is
studied in that framework. In experimental data, a rich structure of large local CP
asymmetries has been observed. It is investigated if this structure can be explained
within the QCD factorization approach. Even though some refinement is required,
the rough features of the observed CP asymmetry can be reproduced within this
model.
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1. Introduction
Already the ancient Greek engaged with the question what we are made of and why
we are here. Nowadays, we have come a long way to answer these questions. We have
a much more profound understanding what matter is made of, namely a small num-
ber of fundamental particles. The beginning of elementary particle physics can be
dated back to 1897 when Thomson discovered the electron [1]. A further milestone
was the realization by Gell-Mann and Zweig in 1964 that hadrons are composed of
quarks [2, 3]. Today, a whole zoo of particles is known that are composed of these
fundamental building blocks.

Not only the composition of matter is of interest, but also the way the fundamen-
tal particles interact. In the 1960s, the Glashow-Salam-Weinberg model [4–6] was
established which unifies electromagnetic and weak interactions. From this model,
together with the quantum-field-theoretical description of strong interactions, the
Standard Model of Particle Physics (SM) emerged. It became widely accepted after
the discovery of the W and Z bosons at CERN in 1983. Predictions for decays and
scattering processes can be made using the SM which can be investigated by experi-
ments. In turn, experimental observations are subject to be explained by theory.

Some of the parameters in the SM cannot be predicted by theory, though. Ne-
glecting neutrino masses and thus mixing in the lepton sector, there are 18 free
parameters that need to be determined experimentally: 6 quark masses, 3 charged-
lepton masses, 3 gauge couplings, 2 parameters from the Higgs potential and finally
4 Cabibbo-Kobayashi-Maskawa (CKM) quark flavor mixing parameters. The latter
only occur in weak transitions of quarks and can be over-constrained by different
independent processes. This is necessary to test the SM. Discrepancies would be a
sign for physics beyond the SM (BSM), so-called “new physics” (NP).

The SM admittedly has some limitations. Even though there are four fundamen-
tal interactions, only three of them are implemented. Gravity is missing, which is
due to the lack of an adequate description of general relativity as a quantum field
theory (QFT). Moreover, neutrinos are massless in the SM. This is in contradiction
with the observation of neutrino oscillation, which is only possible when neutrinos
have a non-zero mass. Furthermore, from cosmological studies we assume that our
universe consists only to about 5% of our known matter. The SM cannot explain the
remaining 95%, namely dark matter and dark energy. In addition, the amount of
matter in the universe greatly exceeds the one of anti-matter, the so-called baryon
asymmetry. They should have been produced in equal amounts at the big bang,
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though. Sakharov [7] formulated three conditions for an asymmetry to occur: ther-
mal disequilibrium, violation of Baryon number and the violation of invariance under
charge conjugation (C) as well as combined with parity (P) transformations. The SM
does provide an explanation for the latter. However, the only established source of
CP violation in the SM, the phase of the CKM matrix, cannot predict the required
size of this asymmetry. This issue could be solved by possible additional sources
of CP violation in BSM models. Another essential question is, why we particularly
observe three generations of leptons and quarks and why their masses span so many
orders of magnitude. Moreover, the origin of the hierarchy problem, that the elec-
troweak scale is much smaller that the Planck scale, is unexplained.

After the discovery of the b quark in 1977, the CKM mixing matrix became an
established component of the SM. The B mesons, which consist of one b quark,
turned out to be quite heavy compared to the quarks which were already known.
They have a long lifetime and in 1987 a substantial B− B̄ mixing rate was found by
ARGUS at DESY. The mixing induces a CP asymmetry which is about two orders of
magnitudes higher than in the K system. To observe CP violation in B decays much
larger data samples on B mesons were required which called for B factories such as
BaBar and Belle. Until then, experiments concentrated on the gauge sector of the
SM. The greatest achievement of the LEP collider at CERN was the measurement
of the Z-line shape and the consequential number of 3 neutrinos with vanishingly
small masses. Nowadays, a great focus lies on the Yukawa sector and, with the LHC
put into operation, high pT and the search for new physics.

In this thesis we will present three different projects with a technical, phenomeno-
logical or conceptual focus. The former is related to the fact that we have reached an
era of high experimental precision, especially with LHC Run II and Belle II starting
soon. Therefore, also precise SM predictions are required. In this context, we will
compute the missing non-factorizable next-to-leading order results for the bag factor
for B − B̄ mixing. This requires the computation of three-loop diagrams. These are
computed in Heavy Quark Effective Theory (HQET) which simplifies the calcula-
tion a lot.

In the SM there are a couple of more soft spots where tensions between experi-
mental measurements and theoretical predictions are observed, all of them in the
quark and lepton flavor sector. One example is the ‘1/2 vs. 3/2‘ puzzle. Here, we
would expect a significant difference of the branching fraction for semileptonic de-
cays of a B meson into the respective orbitally excited D mesons with total angular
momentum of 1+. This is in contradiction to experimental results, where the two
branching fractions are roughly equal. This does not necessarily need to be a sign
for new physcis. In this thesis we attempt to explain the data by investigating the
impact of the mixing of these two states on the branching fraction.

Another puzzling experimental observation which requires theoretical attention are
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large local CP asymmetries especially in the decayB → πππ. Theoretical approaches
are still in their infancy. We use a recently developed approach in the framework
of QCD (Quantum Chromodynamics) factorization in order to obtain a data-driven
model. From this we obtain a Dalitz distribution for the CP asymmetry to see if we
can reproduce the rough features that were observed by the experiment.

The thesis is organized as follows. First, we will give a brief introduction to the
Standard Model of Particle Physics in Chapter 2. Then, we will roughly outline the
aspects of Heavy Quark Effective Theory in Chapter 3. Chapter 4 will deal with the
1/m corrections for orbitally excited D mesons, the resulting mixing of the states
with total angular momentum 1+ and its effect on the semileptonic branching frac-
tions and their widths. Non-factorizable contributions to the bag parameter, which
are of interest when dealing with B − B̄ mixing are computed in the next Chapter
5. In the following Chapter 6, we investigate the local CP asymmetries in the de-
cay B → πππ within the QCD factorization framework. In the last Chapter 7 we
summarize and draw our conclusions.





2. Standard Model of Particle
Physics

The elementary particles and their electromagnetic, strong and weak interactions
are described within the Standard Model of Particle Physics. Here, we distinguish
between fundamental fermions and bosons. For the former we differentiate between
leptons and quarks whose different types we call flavor. There are six of them, re-
spectively, which are assigned to three different generations (or families) as shown
in Table 2.1. For the quarks we have the flavors up (u), down (d), strange (s), charm
(c), bottom (b) and top (t). The six leptons are the electron (e), muon (µ) and tau
(τ) with the corresponding massless neutrinos νe, νµ and ντ . In additon, there exist
anti-particles to the fundamental fermions with equal mass but opposite internal
quantum numbers compared to the respective particle.

The interactions are described through local gauge symmetries and are mediated
by gauge bosons which are vector particles. The weak interaction is mediated by the
Z0 and the W± bosons. All fermions in the SM are subject to the weak interaction.
Electromagnetic interactions are mediated by photons γ which couple only to the
electrically charged particles. Solely the quarks interact strongly since they are the
only fundamental fermions that carry color charge. Strong interactions are mediated
by 8 gluons g. As a consequence of spontaneous symmetry breaking we also obtain
the Higgs boson H. It was the last missing piece of the SM for quite some time un-
til its discovery in 2012 and to date it is the only known fundamental scalar particle.

A general overview of quantum field theory and the standard model can be found in
the pertinent literature [8–12]. For further details on the group theoretical approach
we refer to [13]. A nice overview of the historic development of particle physics
and an introduction to the SM from the experimental point of view can be found
in [14, 15]. In the following we will give a rough overview over some of the aspects
of the SM based on [8,10,16].

2.1. Gauge Group of the Standard Model
The SM is a gauge theory which means that it has a local gauge symmetry. It can
be constructed as the direct product of the local gauge symmetry groups of the
fundamental interactions

SU(3)C ⊗ SU(2)L ⊗ U(1)Y . (2.1)
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Generations
1 2 3 Charge Q [e] Spin s

Quarks(
u

d

) (
c

s

) (
t

b

)
+2

3
−1

3

1
2
1
2

Leptons(
νe

e

) (
νµ

µ

) (
ντ

τ

)
0
−1

1
2
1
2

Gauge Bosons
Photon γ 0 1

8 Gluons g 0 1
Z0, W± 0, ±1 1
Higgs H 0 0

Table 2.1.: Particles of the Standard Model and their charge and spin.

Here, SU(3)C is the symmetry group of Quantum Chromodynamics (QCD) and de-
scribes strong interactions. The corresponding internal quantum number is the color
charge. SU(2)L is the gauge group associated with the weak isospin I. The quantum
number linked to the unitary group U(1)Y is the hypercharge Y .

The number of generators of a gauge group determines the number of gauge bosons
that mediate the corresponding interaction. For special unitary groups SU(N) we
obtain N2− 1 generators. This means, that in QCD we get 8 gauge bosons, namely
the gluons g, and for the weak interaction there are three generators T a, a = 1, 2, 3.
For the unitary group U(1) we only obtain one generator Y . Since a mass-term is
not allowed by gauge invariance, the gauge fields are massless which is in contra-
diction to phenomenological observations. Since the weak force is short-ranged, the
corresponding mediators ought to be quite massive.

Masses for gauge bosons require the breaking of gauge symmetry, which is achieved
by the Higgs mechanism [17, 18] through spontaneous symmetry breaking (SSB).
Here, the electroweak gauge group is broken down to a single U(1) symmetry

SU(3)C ⊗ SU(2)L ⊗ U(1)Y SSB−→ SU(3)C ⊗ U(1)Q . (2.2)

The SSB is induced by the scalar Higgs field and its vacuum expectation value (vev)

φ =
(
φ+

φ0

)
, 〈φ〉 = 1√

2

(
0
v

)
, (2.3)
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where the Higgs field transforms under SU(2)L⊗U(1)Y . The vev leads to the break-
ing of the generators which do not leave the ground state invariant. In this case these
are the generators T 1, T 2 and the combination T 3−Y/2 which eventually lead to the
massive weak gauge bosons W± and Z0. The unbroken combination Q = T 3 + Y/2
leads to the U(1)Q gauge group of the Quantum Electrodynamics (QED) where the
conserved quantity is now the electromagnetic charge Q. The massless gauge boson
field is then the photon γ. In 2012, the Higgs boson was found at CERN [19,20] and
since the Higgs mechanism seems to be realized in nature, Englert and Higgs were
awarded the Nobel Prize in Physics in 2013.

For the fermions we have different chiralities, namely left-handed and right-handed
fields where we have the projection

ψL/R = 1
2(1∓ γ5)ψ . (2.4)

Under the weak symmetry group SU(2)L the left-handed fields transform as dou-
blets, whereas the right-handed fields transform as singlets. Thus, the W± bosons
solely couple to fields with a left-handed chirality. This has been confirmed experi-
mentally in [21].

Schematically, the Lagrangian of the Standard Model is given by

LSM = LYukawa + Lkin + LHiggs . (2.5)

Here, the fundamental fermions acquire their mass through the LYukawa term. This
will be subject to the next section. The kinetic terms are encoded in Lkin and LHiggs
denotes the Lagrangian for the Higgs potential.

2.2. The CKM Matrix
As already mentioned, we obtain the masses of the quarks via a Yukawa interaction
term which is gauge invariant

LYukawa = −Q̄ ′L Yu φc u ′R − Q̄ ′L Yd φ d ′R . (2.6)

Here, the quark fields are coupled to the Higgs field φ and its charged conjugated
field φc via the Yukawas Yu,d. The left-handed quarks are denoted by Q ′L = (u ′L, d ′L)T
and u ′R, d ′R are right-handed up- and down-type quarks. The Yukawa couplings are
actually matrices in flavor space. We drop flavor indices for transparency, though.

Via the Higgs meachanism we find a mass term proportional to the Higgs vev and
the Yukawa couplings

LYukawa = − v√
2
ū ′L Yu u

′
R −

v√
2
d̄ ′L Yd d

′
R

= −ū ′LMu u
′
R − d̄ ′LMd d

′
R , (2.7)
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which acts as a coupling between the left- and right-handed components of the
quarks. In order to obtain the physical states we ought to diagonalize the quark
mass matrices Mu,d

LYukawa = −ū ′L V L
u

†
Mdiag

u V R
u u ′R − d̄ ′L V L

d

†
Mdiag

d V R
d d ′R

= −ūLMdiag
u uR − d̄LMdiag

d dR , (2.8)

where the matrices V L
u , V L

d , V R
u and V R

d are unitary. In the last step we redefined
the quark fields

uL/R = V L/R
u u ′L/R , dL/R = V

L/R
d d ′L/R (2.9)

Technically, this is a transition of the weak eigenstates, which are denoted with a
prime, to their mass eigenstates. We can now apply the redefinition to all terms of
the weak Lagrangian. The unitary matrices cancel in almost every term. Only in
the weak interaction charged current term

Lint ⊃ LCC = g2√
2
(
ū ′L γ

µW+
µ d

′
L + d̄ ′L γ

µW−
µ u

′
L

)
= g2√

2
(
ūL γ

µ VCKMW+
µ dL + d̄L V

†
CKM γµW−

µ uL
)

(2.10)

the combination

VCKM ≡ V L
u V

L
d

† (2.11)

survives. This is the so-called Cabibbo-Kobayashi-Maskawa (CKM) matrix [22,23].
It can be chosen such that the weak and mass eigenstates of the up-type quarks
are identical. This on the other hand results in a direct connection between the
eigenstates of the down-type quarks via the CKM matrixd

′

s ′

b ′

 = VCKM

ds
b

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


ds
b

 . (2.12)

As a consequence, interactions that involve a charged weak vector boson can change
the quark flavor even among different generations. Transitions of down-type quarks
into up-type quarks and vice versa are then proportional to the corresponding ma-
trix element of the respective VCKM or V †CKM matrix.

In the case of n generations the unitary CKM matrix would have n2 real parame-
ters. However, we are free to choose the relative phases between the individual
quark fields whereas a global phase would not be observed. This leaves us with
n2−2n+1 = (n−1)2 free parameters. These parameters are split up into n(n−1)/2
angles and (n−1)(n−2)/2 phases. Hence, our CKM matrix can be expressed through
three real angles and one phase which induces CP violation.
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Figure 2.1.: Unitarity Triangle.

It has been observed that the entries of the CKM matrix follow a certain hierarchy.
Being almost a unit matrix, the matrix elements decrease in size with increasing
distance to the diagonal. In the Wolfenstein parameterization [24]

VCKM =

 1− λ2

2 λ Aλ3(ρ− iη)
−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) , (2.13)

with the free Wolfenstein parameters λ, A, ρ and η, this is expressed in an expansion
in the parameter λ ≈ 0.22.

A further advantage of the unitarity of the CKM matrix is, that it can be displayed
as a triangle. The commonly used unitarity relation is

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 ⇒ 1 + VudV

∗
ub

VcdV ∗cb
+ VtdV

∗
tb

VcdV ∗cb
= 0 . (2.14)

which is schematically pictured in Figure 2.1. One goal is to more and more constrain
the apex of this triangle, which is given by

ρ̄+ iη̄ = VudV
∗
ub

VcdV ∗cb
, (2.15)

using several independent channels and approaches. Here, the notation from [25] is
used with the relation

ρ+ iη =
√

1− A2λ4ρ̄+ iη̄√
1− λ2[1− A2λ4ρ̄+ iη̄]

. (2.16)

In Figure 2.2 we see that a tremendous progress has been made within the last decade
constraining the apex of the unitary triangle. Here, the most recent constraints are
displayed compared to those in 2004.
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Figure 2.2.: In (a) one of the first CKM fitter [26] results from 2004 is shown while
in (b) the most recent result from 2016 is displayed.
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2.3. CP Violation
A parity (P) transformation reverses the sign of the spatial coordinates. We have
already seen that parity is violated in the weak interaction which distinguishes be-
tween left-handed and right-handed particles. In 1964 Cronin and Fitch [27] found
that it is also violated in combination with charge-conjugation transformation (C).
They observed the decays of long lived kaons KL. If the KL coincided with the CP
eigenstate CP|K2〉 = −|K2〉 it would be supposed to decay only into three pions.
On the other hand its short lived partner KS would only decay into two pions if it
was identical to |K1〉 with CP|K1〉 = +|K1〉. This is also the reason for the great
difference in lifetime since the phase space of the long lived kaon is much smaller.
Observing the decay of the KL they found a small amount of decays into two pions.
This circumstance can be explained by a small admixture of the CP even K1 eigen-
state which is referred to as indirect CP violation. Later in the 1990s it was found
that CP is also violated in the decay itself in the form of direct CP violation. Here,
we find A(i→ f) 6= A(̄i→ f̄). The decay ī→ f̄ is the CP conjugated decay of the
initial state i into the final state f . Further reading on CP violation can be found
in [25,28–30].

In the SM the phase of the CKM matrix is the only established source of CP viola-
tion. The phases of the matrix elements

Vtd = |Vtd|e−iβ

Vub = |Vub|e−iγ
(2.17)

can be directly identified with the angles of the unitarity triangle. The phase from
the CKM matrix is a weak phase which changes sign under CP conjugation. Strong
phases on the other hand do not change sign. This is essential when it comes to the
computation of CP asymmetries. The expression

Ai→fCP = Γ(i→ f)− Γ(̄i→ f̄)
Γ(i→ f) + Γ(̄i→ f̄)

(2.18)

is only non-zero when we encounter weak as well as strong phase differences. This
will be relevant later in Chapter 6.

2.4. Quantum Chromodynamics
The symmetry group of QCD is SU(3). This is a non-abelian group which entails
some interesting properties. The quarks carry a color charge that can adopt three
different colors. Thus, they transform as triplets under SU(3). Since leptons are not
color charged they are not subject to strong interactions. Literature giving more
details on QCD can be found in [31,32].
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The local gauge transformation of the fields in QCD is

ψ(x)→ eiθa(x)taψ(x) , (2.19)

where θa(x) are some arbitrary functions and ta denotes the generators of the gauge
group.

The QCD Lagrangian

LQCD = −1
4G

µν
a G

a
µν +

∑
q=u,d,...

q̄ (i /D −mq) q . (2.20)

is gauge invariant once we replace the partial derivative by the covariant derivative

Dµ = ∂µ − igsAµ = ∂µ − igstaAaµ , (2.21)

which is expressed through the strong coupling gs, the gluon field Aµ and most
importantly the generators ta of the symmetry group, where a = 1, . . . , 8. The latter
follow the commutation relation

[ta, tb] ≡ ifabctc , (2.22)

where fabc are the so-called structure constants of the SU(3) which can be chosen
to be fully anti-symmetric in a, b and c. The gluon field strength tensor is defined
by

Gµν = Ga
µνt

a = i

gs
[Dµ, Dν ] . (2.23)

Thus, we find that

Ga
µν = ∂µA

a
ν − ∂νAaµ + gsf

abcAbµA
c
ν . (2.24)

This is different than for abelian symmetry groups. Due to the last term we en-
counter terms including three or four gluon fields when we insert this into the QCD
Lagrangian in Equation (2.20). Thus, gluons can couple to themselves and we find
vertices with three or four gluons.

Another interesting feature of QCD is the dependence of the coupling on the renor-
malization scale. The running of the coupling at first order is given by

α(µ) = α(M)
1 + β0α(M)

2π ln
(
M
µ

) , (2.25)

where α ≡ g2

4π . Here, α(M) is known at a reference scale M . The β function depends
on the number of active flavors and on the number of colors NC . The latter depends



2.4. Quantum Chromodynamics 13

Landau
  pole

(a)

confinement

asymptotic
  freedom

(b)

Figure 2.3.: Here, we schematically illustrate the running of the coupling in QED
and QCD. (a) The electromagnetic coupling increases with the energy
until it diverges (“Landau pole”). This corresponds to an increase of the
coupling at small distances. (b) For the strong coupling we observe the
exact opposite. For small energies and large distances the coupling in-
creases rapidly (“quark confinement”) and for large energies it becomes
very small (“asymptotic freedom”). The scale where αs diverges and
quarks hadronize is denoted as ΛQCD.

on the gauge group SU(NC), where we assume NC = 3. The difference between an
abelian theory such as e.g. QED and the non-abelian QCD is, that in the latter case
this β function is negative [33,34]. In particular, we have

βQCD
0 = −

(11
3 NC −

2
3nf

)
, (2.26)

where nf is the number of active quark flavors, and [35]

βQED
0 = 4

3
((
nuQ

2
u + ndQ

2
d

)
NC + n`Q

2
`

)
, (2.27)

where nu,d is the number of active up- and down-type quark flavors, n` is the number
of charged lepton flavors and Qu,d,` are their respective electromagnetic charges.

As a consequence, the strong coupling decreases when the energy increases. This
is referred to as asymptotic freedom which allows us to perform perturbative com-
putations. In Figure 2.3 the difference between the running of the electromagnetic
and strong coupling is displayed schematically. Here, we see that for low energies the
strong coupling becomes large, rendering perturbation theory useless. In this region
confinement sets in, which is responsible for the constitution of hadrons. This cir-
cumstance makes it quite complicated to compute hadronic quantities in full QCD.
Therefore, we rely on effective field theories such as e.g. HQET which is described
in the following chapter.





3. Heavy Quark Expansion
In many physical problems there are two or more fundamental scales involved which
are disparate. In such cases we can benefit from effective theories in which we con-
centrate on the degrees of freedom that are relevant for the physical system at hand.
In accordance with the decoupling theorem [36] we can separate the scales into a
low-energy and high-energy contribution, where the latter can be computed per-
turbatively in QCD. Then the effective theory does not explicitly depend on the
non-relevant degrees of freedom anymore. Their effects are suppressed by the in-
verse power of the respective scale. One of the advantages of effective theories is
that computations can simplify drastically. Another benefit is the manifestation of
symmetries that are not present in the full theory.

A well-known example for an effective theory is for instance classical mechanics
as an effective theory of quantum mechanics (~ → 0) and relativistic mechanics
(c → ∞). Quantum mechanics is also an effective theory of quantum field theory
(c → ∞). Other examples for effective field theories are the weak effective theory,
chiral perturbation theory (ChPT) and soft-collinear effective theory (or SCET). It
is commonly claimed that even the Standard Model is only an effective theory of a
hitherto unknown full theory.

An effective field theory (EFT) was first used in 1933 when Fermi expressed the
β decay with an effective coupling [37, 38]. We can use the Operator Product Ex-
pansion (OPE) to express the effective Hamiltonian as an expansion in a series of
local operators [39]

Heff =
∑
i

Ci(µ)Oi(µ) . (3.1)

The short-distance effects are contained by the effective couplings Ci(µ), which are
the so-called Wilson coefficients. They contain the physics above the renormaliza-
tion scale µ. Long-distance contributions below the scale µ are enclosed in the local
operators Oi(µ). The Hamiltonian has mass dimension four. Therefore, higher di-
mensions need to be compensated by inverse powers of the large scale.

In the following section we aim to give a brief introduction to Heavy Quark Effective
Theory (HQET) which is defined within the Heavy Quark Expansion (HQE). It can
be used to describe processes with heavy hadrons which contain one heavy and one
light quark, respectively. Hadronic interactions take place at the scale ΛQCD � mQ,
where quarks and gluons hadronize. This allows for perturbative computations in
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αs at the scale of the heavy quark mass mQ, which is the high-energy scale in this
case.

We can roughly compare the framework of HQET to a hydrogen atom. Analo-
gous to the atomic nucleus, or rather the proton, the heavy quark acts as a static
source of color in the B meson rest frame [40]. In contradiction to the electron, the
light degrees of freedom such as the light quarks and gluons are now of relativistic
nature. In analogy to the energy levels in the hydrogen atom we can even perform
some spectroscopy for heavy hadrons. We will take a closer look at this in Chapter 4.

This chapter is leaned on the reviews on this subject in [41–44].

3.1. Heavy Quark Limit
3.1.1. Derivation of the Effective Lagrangian
First we can derive the effective Lagrangian in the heavy quark limit, which has
been used since the 1930s [45]. For this purpose we start with the Lagrangian for a
heavy quark field Q(x) in QCD (cf. Equation (2.20))

L Q
QCD = Q̄(i /D −mQ)Q , (3.2)

where mQ denotes the mass of the heavy quark.

In other effective field theories, such as e.g. the weak effective theory, the degrees
of freedom which are only relevant at high energies do not appear explicitly any
more. In this case it is quite easy to perform the OPE. In the case of HQET the
heavy quark is still present at scales below the heavy quark mass mQ acting as a
static source of color. Thus, we need to take a short detour before constructing the
effective Lagrangian.

We now consider a heavy meson containing a heavy quark Q and a light quark
q with momentum pH = mH · v. Here, mH is the mass of the heavy meson and v its
velocity, which satisfies v2 = 1. The heavy quark has almost the same momentum
as the meson. We can decompose it into

pµQ ≡ mQv
µ + kk , (3.3)

where k is a small residual momentum with |k| ∼ O(ΛQCD)� mQ. The heavy quark
is almost on-shell and k indicates the amount of its off-shellness.

In the heavy quark limit the velocity is not a dynamical degree of freedom any-
more and is now a conserved quantity [46]. We can redefine the heavy quark field
extracting the static part of the momentum into a phase

Q(x) ≡ e−imQv·x [hv(x) +Hv(x)] , (3.4)



3.1. Heavy Quark Limit 17

where the fields

hv(x) = eimQv·xP+Q(x) ,
Hv(x) = eimQv·xP−Q(x) (3.5)

now only carry the residual momentum k.

With the projectors

P± = 1± /v
2

these fields satisfy the relations

P+hv(x) = hv(x) , P−Hv(x) = Hv(x) ,
P−hv(x) = P+Hv(x) = 0 .

(3.6)

Inserting Equation (3.4) in Equation (3.2) and using Equation (3.6) we can now
rewrite the QCD-Lagrangian for the heavy quark in terms of the fields hv and Hv

L Q
QCD = (h̄v + H̄v)

(
i /D − 2mQP−

)
(hv +Hv)

= h̄viv ·Dhv − H̄v (iv ·D + 2mQ)Hv + h̄vi /D⊥Hv + H̄vi /D⊥hv , (3.7)

where D⊥ is defined through Dµ = Dµ
⊥ + (v ·D)vµ.

Here, we see that the effective heavy quark field hv is actually massless, whereas
Hv has the twice the mass of the heavy quark 2mQ. The latter can be identified
with the heavy degrees of freedom that we want to get rid of.

A formal derivation with path integrals can be found in [47] and we will briefly
describe the procedure in the following.

We start with the generating functional related to the heavy field Hv

Z[J, J̄ ] =
∫
DHvDH̄v e−i

∫
d4x [H̄vAHv−J̄Hv−H̄vJ] , (3.8)

where A = iv ·D+ 2mQ, J̄ = h̄vi /D⊥ and J = i /D⊥hv. Here, J and J̄ act as external
sources. We can then rewrite the expression by completing the square

H̄vAHv + J̄Hv + H̄vJ = (H̄v − J̄A−1)A(Hv − A−1J)− J̄A−1J

and shifting the field Hv and H̄v. Then the Gaussian integration can be performed
and we can identify the expression with the effective Lagrangian

Z[J, J̄ ] =
∫
DHvDH̄v e−i

∫
d4x H̄vAHvei

∫
d4x J̄A−1J

= π n/2√
i det(A)

ei
∫

d4x J̄A−1J ∼ ei
∫

d4xLHv
eff .
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The determinant is constant and does not have an effect on the physics. Our effective
Lagrangian corresponding to the heavy field Hv can be then identified with

L Hv
eff = J̄A−1J = h̄vi /D⊥

1
iv ·D + 2mQ

i /D⊥hv . (3.9)

This term includes a derivative in the denominator which means that the Lagrangian
is not local.

The same result can be obtained by replacing

Hv =
(

1
iv ·D + 2mQ

)
i /D⊥hv , (3.10)

which can be obtained using the equations of motion from Equation (3.7). Here we
can see why the fields hv and Hv are usually referred to as the “large” and “small”
component fields. The covariant derivative acting on hv corresponds to k in momen-
tum space which is much smaller than the quark mass mQ. Hence, Hv is suppressed
by ΛQCD

2mQ compared to hv.

We can now perform a Taylor expansion in
(
v·D
2mQ

)
. As a consequence, we achieve an

expansion in local opearators

L eff
HQET = h̄viv ·Dhv + 1

2mQ

∞∑
n=0

h̄v(i /D⊥)
(
−v ·D2mQ

)n
(i /D⊥)hv

= h̄viv ·Dhv + 1
2mQ

h̄v(i /D⊥)(i /D⊥)hv +O
(

1
2mQ

)
. (3.11)

The second term can be rewritten using [Dµ, Dν ] = −igsGµν = −igsGa
µνt

a

L eff
1/mQ = h̄viv ·Dhv + 1

2mQ

h̄v(iD⊥)2hv + 1
2mQ

h̄v
gs
2 σ

µνGµνhv

+O
(

1
2mQ

)
, (3.12)

where σµν = i
2 [γµ, γν ]. In the first term a flavor and spin symmetry manifest which

are described in more detail in the next subsection. The second and third term
obviously break flavor symmetry due to the mass mQ. In addition, the third term
violates spin symmetry which becomes more clear when we rewrite it

1
2mQ

h̄v
gs
2 σ

µνGµνhv = − gs
mQ

h̄v ~S · ~Bhv = − gs
2mQ

h̄v~σ · ~Bhv , (3.13)

where Bi = −1
2ε
ijkGjk are the components of the chromo-magnetic field and

Si = 1
2

(
σi 0
0 σi

)
= 1

2γ5γ0γi (3.14)
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are the ones of the spin operator which satisfy [Si, Sj] = iεijkSk. Here, σi are the
Pauli matrices. We see that this term couples the heavy quark spin to the light
degrees of freedom. This means that this is the first term allowing the heavy quark
spin to flip which will be essential in the next Chapter 4.

3.1.2. Feynman Rules in HQET
In the heavy quark limit also the Feynman rules for the heavy quark simplify. The
propagator for the heavy quark becomes

/p+mQ

p2 −m2
Q

= mQ/v + /k +mQ

2mQv · k + k2 →
1 + /v

2v · k ,

where we used k � mQ in the last step. Hence, our propagator for the heavy quark
in HQET is given by

1 + /v

2
i

v · k + iε
δab . (3.15)

We see, that the projector P+ arises which satisfies P+hv = hv. Here, k is the residual
momentum and a and b denote color indices in the adjoint representation of SU(3)
which run from 1-8.

The vertex is sandwiched between two propagators that are proportional to the
projector. Hence, we find

γµ → 1 + /v

2 γµ
1 + /v

2 = vµ
1 + /v

2 → vµ ,

so that the heavy-quark-gluon vertex in the heavy quark limit is given by

−igsvµT aij . (3.16)

Here, µ denotes a Lorentz index and i, j are color indices in the fundamental repre-
sentation in SU(3) which run from 1-3.

The Feynman rules for the light quarks, the gluon self-interactions and the interac-
tions of the gluons with the light quarks remain the same as in full QCD.

3.2. Heavy Quark Symmetry
The Lagrangian in the heavy mass limit mQ →∞

L eff = h̄viv ·Dhv (3.17)
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now contains a heavy quark flavor and spin symmetry. In this subsection we will
present them and their consequent advantages when it comes to computing processes
in HQET.

Heavy Quark Flavor Symmetry

The heavy quark flavor symmetry is rather simple to see from Equation (3.17). The
leading order of the Lagrangian does not depend on the mass any more. In QCD,
flavor is only distinguished by the mass of the quark, though. Thus, we encounter a
flavor symmetry that relates heavy quarks which move at the same velocity.

Heavy Quark Spin Symmetry

In the previous section we saw that the heavy quark spin couples to the light degrees
of freedom only at order 1/mQ. Hence, at leading order the Lagrangian is symmetric
under a heavy quark spin rotation. As a consequence, we can arrange mesons in spin-
symmetry doublets with degenerate masses. At order 1/mQ a hyperfine splitting is
induced. This will be a major feature in Chapter 4.

3.2.1. Form Factors in Weak Decays
Normalization of States

The conventional relativistic normalization for a mesonic state M is
〈M(p′)|M(p)〉 = 2E~p(2π)3δ3(~p− ~p ′) . (3.18)

The normalization for a state in HQET
〈M(v′)|M(v)〉 = 2v0δvv′(2π)3δ3(~k − ~k ′) (3.19)

on the other hand is defined in a mass-independent way. By comparing these two
normalizations we find a relation between QCD and HQET states

|M(p)〉 = √mH |M(v)〉+O(1/mQ) . (3.20)

Heavy Meson Decay Constants

The aforementioned normalization difference has also impact on the decay constants
of the heavy meson. For a pseudoscalar meson P we obtain in QCD

〈0|q̄γµγ5Q|P (p)〉 = ifPpµ , (3.21)
whereas in HQET we find

〈0|q̄γµγ5Q|P (v)〉 = iFvµ , (3.22)
with some unknown constant F . We can now compare the two definitions and find
the relation

F = √mPfP , (3.23)
using pµ = mPvµ.
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Heavy Meson Form Factors

The matrix element for two heavy mesons can be described by one single form
factor in HQET. This emerges from the heavy quark spin symmetry. As already
mentioned, mesons fall into spin-symmetry doublets with degenerate masses in the
heavy quark limit. We can define a covariant tensor representation H(v) for the
two states in the doublet. The wave function for our mesonic states are not known.
What we do know, though, is that they transform bilinearly like a tensor under
Lorentz transformation. From this we can construct the representation matrices for
the members of the doublet. For the lowest lying states we find

H(v) = −γ5
1− /v

2 for the pseudoscalar meson, and

H∗(v, ε) = /ε
1− /v

2 for the vector meson,
(3.24)

where εµ is the polarization vector.

The covariant tensor representation also transforms linearly under a heavy quark
spin rotation

H(v)→ D(R)H(v) . (3.25)

Here, D(R) denotes the rotation matrix for the rotation of the heavy quark. We
require the Dirac structure to transform as Γ → D(R)ΓD−1(R) in order for the
current to be invariant under heavy quark spin transformations. Thus, it only occurs
as a product to which the matrix element is proportional to. Since the amplitude
must be scalar we need to contract this product with some matrix M(v, v′)1. This
leaves us with a trace

〈H′(v′)|h̄v′Γhv|H(v)〉 = Tr[M(v, v′)H′(v′)ΓH(v)] , (3.26)

where M(v, v′) describes the dynamics of the light degrees of freedom. We can
decompose the matrix into all possible combinations of the velocities v and v′

M(v, v′) = M11 +M2/v +M2/v
′ + +M2/v/v

′ . (3.27)

The covariant representations satisfy the projection properties P+H = H andHP− =
H. Hence, we find that M(v, v′) reduces to

M(v, v′)→M1 −M2 −M3 +M4 ≡ −ξ(ω) , (3.28)

where ξ(ω) only depends on the combination ω = v · v′ due to Lorentz invariance.
We can then write the matrix element as [48]

〈H′(v′)|h̄v′Γhv|H(v)〉 = −ξ(ω)Tr[H′(v′)ΓH(v)] . (3.29)
1We omit the renormalization scale in M(v, v′, µ).
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Note, that this relation is independent of the heavy quark flavor and the Dirac
structure Γ. The function ξ(ω) is chosen such that it coincides with the Isgur-Wise
function [49,50] that emerges describing the scattering of a pseudoscalar into another
pseudoscalar

〈P ′(v′)|h̄v′γµhv|P (v)〉 = ξ(ω)(v + v′)µ . (3.30)

The Isgur-Wise function is a non-perturbative universal object. Physically it des-
cribes the overlap of the light degrees of freedom, which results in a suppression of
the form factor.

Due to normalization of the meson states we find that the Isgur-Wise form fac-
tor is normalized to

ξ(ω = 1) = 1 (3.31)

at the zero recoil point.

3.2.2. Further Features in HQET
Reparameterization Invariance

The full QCD Lagrangian is invariant under Lorentz transformation. If we truncate
the 1/mQ heavy quark expansion we end up with a dependence on the four-velocity
v. Then, the HQET Lagrangian does not exhibit Lorentz invariance any more, since
we chose v in the rest frame of the heavy meson. Nevertheless, when we take the
Lagrangian to all ordes in 1/mQ it is independent of the four-velocity and there-
fore Lorentz invariant. Thus, infinitesimal changes of v should leave the Lagrangian
invariant, which is called reparameterization invariance [51,52]. A shift in the four-
velocity results in corresponding shifts of the fields and the covariant derivative.

v → v + δv , v · δv = 0 ,

hv → hv + δ/v

2 (1 + P−
1

2mQ + iv ·D
i /D)hv , (3.32)

iD → iD −mQδv .

Up to higher orders the HQET Lagrangian is invariant under those shifts. This leads
to a connection between coefficients of different orders in 1/mQ.

Luke’s Theorem

Luke’s theorem states that the contributions at order 1/mQ of the matrix elements
〈D(∗)(v′)|Vµ|B(v)〉 and 〈D(∗)(v′)|Aµ|B(v)〉 vanish at zero recoil v = v′ [53]. It is true
to all orders in αs since this statement does not concern the perturbative part of the
OPE [54,55]. It is a consequence of the Ademollo-Gatto theorem [56].
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3.3. Renormalization
3.3.1. On-Shell Renormalization
Higher-order QCD corrections to a given process result in loop diagrams. Every
loop implies an integration over the enclosed momentum which diverges in many
cases. To get a handle on these divergencies we use dimensional regularization [57].
Here, we perform the loop integration in D = 4 − 2ε dimensions by replacing the
integration measure∫ d4k

(2π)4 → µ4−D
∫ dDk

(2π)D , (3.33)

where µ is the renormalization scale. Then, the divergencies manifest in poles of
the parameter ε of the dimensional regularization. Along with the poles we also
encounter the term −γE + 4π, where γE is the Euler-Mascheroni constant. In the
modified minimal subtraction scheme (MS) those characteristic constants are re-
moved by redefining the renormalization scale µ via

µ→ µ̃ ≡ µ
e
γE
2

√
4π

. (3.34)

Since QCD is a renormalizable theory we can introduce a finite number of parameters
to absorb these divergencies. This can be achieved using different renormalization
schemes. In this section we will introduce the on-shell renormalization scheme also
described in [9, 42,58]

We begin with the propagator of one free Dirac field ψ0 which is given by the
two-point correlation function

S0(p) =
∫

d4x eipx〈0|T
{
ψ0(x)ψ̄0(0)

}
|0〉 = i

/p−m0 + i0 , (3.35)

where T is the time-ordered product and p and m0 denote the momentum and the
bare mass of the quark, respectively.

Since we are rather dealing with an interactive theory, the Green function in Equa-
tion (3.35) is actually of the form

S(p) =
∫

d4x eipx〈Ω|T
{
ψ(x)ψ̄(0)

}
|Ω〉 = iR

/p−m+ i0 + analytic terms
for p2 = m2 .

(3.36)

Here, we see that the pole of the propagator is now shifted and the residue is R 6= 1.

This propagator can also be visualized as a sum of the self-energy diagrams as
shown in Figure 3.1, which leads to the expression
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+ + + ...

Figure 3.1.: Propagator self-energy

S(p) =
∫

d4x eipx〈Ω|T
{
ψ(x)ψ̄(0)

}
|Ω〉

= i

/p−m0
+ i

/p−m0

Σ(/p)
/p−m0

+ i

/p−m0

(
Σ(/p)
/p−m0

)2

+ . . .

= i

/p−m0 − Σ(/p)
(3.37)

where

Σ(/p) = (igs)2CF µ̃2ε
∫ dDk

(2π)4 γµ
i

/p− /k −m+ i0 γ
µ i

k2 + i0 (3.38)

is the quark self-energy to first non-trivial order. In the on-shell renormalization
scheme the physical quark mass m is given by the position of the pole of the propa-
gator in Equation (3.37).

For Σ(/p) we can make the ansatz Σ(/p) = Am0 + B/p = m0Σ1(p2) + (/p−m0)Σ2(p2)
based on Lorentz invariance and mass dimension. Hence, we have

S(p) = i

/p−m0

[
1 + Σ(/p)

1
/p−m0

+ . . .

]

= i

/p−m0

[
1 + Σ2(p2) + (/p+m0)m0Σ1(p2)

p2 −m2
0

+ . . .

]
, (3.39)

which is divergent for p2 = m2
0. We can define the on-shell scheme renormalization

constant for the mass m0 = Zos
m m and replace the bare mass in the Lagrangian

L = ψ̄(iD −m0)ψ = ψ̄(iD −m)ψ + δmψ̄ψ , (3.40)

which yields the counterterm δm = m(1− Zos
m ) = m−m0.

Hence, we find that Equation (3.39) now takes the form

S(p) = i

/p−m

[
1 + Σ2(p2) + (/p+m)mΣ1(p2)− δm

p2 −m2 + . . .

]
. (3.41)

In order for the Green function to be finite for p2 = m2 we can choose δm =
mΣ1(m2). This means the renormalization constant for the mass is given by Zos

m =
1− Σ1(m2). We then find

S(p) = i

/p−m

[
1 + Σ2(p2) + (/p+m)mΣ1(p2)−mΣ1(m2)

p2 −m2 + . . .

]
. (3.42)
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We can expand Σ1(p2) at p2 = m2 using a Taylor expansion and find

S(p) = i

/p−m
[
1 + Σ2(p2) +m(/p+m)Σ′1(m2) + . . .

]
= mΣ′1(m2) + i

/p−m
[
1 + Σ2(p2) + 2m2Σ′1(m2) + . . .

]
!=
iZos

ψ

/p−m
+ analytic terms

for p2 = m2 , (3.43)

where Σ′1(m2) = dΣ1
dp2

∣∣∣
p2=m2

. Here, we used that the renormalized quark field is given
by

ψ0 =
(
Zos
ψ

)1/2
ψ . (3.44)

and hence the propagator is renormalized by

S(p) = Zos
ψ Sos(p) . (3.45)

Hence, the renormalization constant for the quark field must be

Zos
ψ = 1 + Σ2(m2) + 2m2Σ′1(m2) +O(α2) , (3.46)

which can be explicitly computed. We find

Zos
QCD ≡ Zos

ψ = 1 + g2
s

(4π)2CF

[
3
ε
− 3 ln

(
m2

µ2

)
+ 4

]
, (3.47)

where CF = N2
C−1

2NC and NC is the number of colors.

Analogously we can perform the same approach to the propagator in HQET

S(v) = 1
v · k

+
[
1 + ∂Σ

∂v · k
∣∣∣
v·k=0

+ . . .

]
(3.48)

and find for the heavy quark field h that

Zos
HQET ≡ Zos

h = 1 + ∂Σ
∂v · k

∣∣∣
v·k=0

= 1 . (3.49)

For the loop calculations we make use of Appendix C.1.

3.3.2. Quark Self-Energy
We can now calculate the renormalization constant for the heavy quark field hv in
HQET. We define

h0
v =

√
Zhhv , (3.50)
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(a) (b)

Figure 3.2.: (a) Heavy quark self-energy and (b) the corresponding counterterm.

where h0
v is the bare heavy quark and hv is the renormalized field. We start with the

bare HQET Lagrangian and insert Equation (3.50)

LQHET = ih̄0
vv · ∂h0

v

= iZhh̄vv · ∂hv
= ih̄vv · ∂hv + i(Zh − 1)h̄vv · ∂hv . (3.51)

We find the contribution of the counterterm in Figure 3.2(b) to be

δh = iv · k(Zh − 1) , (3.52)

where k is the external residual momentum. The heavy quark self-energy is depicted
in Figure 3.2(a). We find it to be

∫ dD`
(2π)D (−igsµ̃εTA)vα

i

v · (`+ k)(−igsµ̃εTA)vα (−i)
`2

= −g2
sCF µ̃

2ε
∫ dD`

(2π)D
1

[v · (`+ k)][`2]

= −i g
2
s

8π2CFv · k
1
ε
. (3.53)

The contribution of the counterterm should cancel the divergent part of the self-
energy. Thus, we find in the MS scheme

− i g
2
s

8π2CFv · k
1
ε

+ iv · k(Zh − 1) != 0

⇒ ZMS
h = 1 + g2

s

8π2CF
1
ε
. (3.54)

The renormalization constant of the quark in QCD can be found analogously using
the QCD Lagrangian

Zq ≡ ZMS
ψ = 1− g2

s

(4π)2CF
1
ε
. (3.55)
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(a) Vertex correction. (b) Heavy quark self-energy (c) Light quark self-energy

Figure 3.3.: One-loop corrections to the heavy-light composite operator.

3.3.3. Composite Operators
Perturbative Corrections

Composite operators behave differently from the individual fields that they consist
of. Hence, we need another, additional, renormalization constant. The bare operator
can be written as

O(0)
Γ = ZOOΓ = h̄(0)

v Γq(0) =
√
ZqZhh̄v Γq (3.56)

for some arbitrary structure of Dirac matrices Γ and hence we find

OΓ = 1
ZO
O(0)

Γ =

√
ZqZh

ZO
h̄v Γq

= h̄v Γq +

√
ZqZh

ZO
− 1

 h̄v Γq . (3.57)

Thus, our counterterm for the composite heavy-light-operator is
√
ZqZh

ZO
− 1

 Γ . (3.58)

The self-energy diagrams in 3.3(b) and (c) are taken care of by the renormalization
constants Zh and Zq from the previous subsection. The vertex correction in Figure
3.3(a) is∫ dD`

(2π)D (−igsT avµ) i

v · (`+ k)Γi
/̀

`2 (−igsT aγν)
−igµν

`2 (3.59)

= −ig2
sCF

∫ dD`
(2π)D

/̀/v

[v · (`+ k)][`2]2 Γ .
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We can now write

`µ = (v · `)vµ + `⊥µ (3.60)

and hence

/̀ = (v · `)/v + /̀⊥ . (3.61)

The only possible vector-like Lorentz structure to parameterize this is the four-
velocity v, since the residual momentum k only appears as the projection ω = v · k.
Since `⊥ is perpendicular to v the corresponding integral becomes zero because of
the projection v · `⊥ = 0. With the other term we get

− ig2
sCF

∫ dD`
(2π)D

/̀/v

[`2]2v · (`+ k)Γ

= −ig2
sCF

∫ dD`
(2π)D

(v · `)/v/v
[`2]2v · (`+ k)Γ

= −ig2
sCF

∫ dD`
(2π)D

v · `
[`2]2v · (`+ k)Γ

= −ig2
sCF

∫ dD`
(2π)D

v · (`+ k)− v · k
[`2]2v · (`+ k) Γ

= −ig2
sCF

∫ dD`
(2π)D

(
1

[`2]2 −
ω

[`2]2v · (`+ k)

)
Γ . (3.62)

The first integral is zero since it is scaleless. The second can be evaluated as in [58]
and yields

ig2
sωCF

∫ dD`
(2π)D

1
[`2]2v · (`+ k)Γ

= ig2
sωCF

(
− i

(4π)2
1
ω

1
ε

)
Γ

= g2
s

(4π)2CF
1
ε
Γ . (3.63)

Hence, we find that the sum of the counterterm and the result of the correction to
the operator must be finite

√
ZqZh

ZO
− 1

 Γ + g2
s

(4π)2ε
Γ != 0 . (3.64)

Inserting Zh and Zq from above, expanding in gs and solving for ZO yields in the
MS scheme

ZHQET
O = 1 + 3

2
g2
s

(4π)2CF
1
ε
, (3.65)
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which is independent of the structure of the Γ. In QCD, this is not as easy and the
currents for the different Dirac structures need to be considered separately. Since
the current q̄γµQ is conserved we find in this case

ZQCD
O = 1 . (3.66)

Matching

We can find a connection between the heavy quark field Q in QCD and hv in
HQET through a matching procedure. Coupling the full and the effective side with
renormalized fields through

Q̄RQR = Ch̄v,Rhv,R (3.67)

and with
1

Zos
QCD

Q̄Q = C
1

Zos
HQET

h̄vhv (3.68)

we find that C = 1/Zos
QCD and therefore

Q = 1
[Zos

QCD]1/2hv . (3.69)

The QCD composite operator can now be related to the HQET operator. Thus, we
can perform a matching calculation for the heavy-light vector current. Therefore, we
compute perturbative corrections to the operator in the full and the effective theory,
namely QCD and HQET, and compare the renormalized currents

OQCDR =
∑
i

CiOHQETi,R . (3.70)

The quantities are much easier to calculate when they are bare, where we have
OB = ZOOR. Thus we have

1
ZQCD
O

q̄γµQ = C1
1

ZHQET
1,O

q̄γµhv + C2
1

ZHQET
2,O

q̄vµhv . (3.71)

Since ZHQET
1,O = ZHQET

2,O = ZHQET
O we find using Equation (3.69)

ZHQET
O

ZQCD
O [Zos

QCD]1/2
q̄γµhv = C1q̄γµhv + C2q̄vµhv . (3.72)

The Wilson coefficients C1,2 contain the short-distance effects. This means that they
are not sensitive to the infrared properties of the amplitude. This allows us to freely
choose the properties of the external states. We set the external momentum of the
light quark to be zero. Further, we choose the momentum of the heavy quark to be
p = mv. Thus, the external residual momentum is k = 0 which results in scaleless
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one-loop integrals in HQET. Therefore, higher orders in HQET are zero and we
solely need to compute diagrams in the full theory which we find to be

− ig2
sCF

∫ dD`
(2π)D

γµ/̀γ
λ(/p+ /̀+m)γµ

[(p+ `)2 −m2][`2]2

= g2
s

(4π)2CF2
(
vλ − γλ

)
. (3.73)

Since ZQCD
O = 1 we find that

ZHQET
O

[Zos
QCD]1/2 q̄

(
γµ + 2 g

2
sCf

(4π)2 (γµ − vµ)
)
Q = C1q̄γµhv + C2q̄vµhv (3.74)

⇒ q̄

[
γµ
g2
sCF

(4π)2

(
4vµ +

[
3 ln

(
m2

µ2

)
− 8

])]
hv = C1q̄γµhv + C2q̄vµhv (3.75)

and as a result

C1 = 1 + g2
s(µ)

(4π)2CF

[
3
2 ln

(
m2

µ2

)
− 4

]
, (3.76)

C2 = 2g
2
s(µ)

(4π)2CF . (3.77)

3.4. Matching of the Four-Quark Operator

3.4.1. Four-Quark Operator
The ∆B = 2 four-quark operator in QCD is given by

O∆B=2 = b̄γµ
1
2(1− γ5)qb̄γµ1

2(1− γ5)q , (3.78)

and the corresponding effective operators in HQET are

Oeff
L = 2h̄+γµ

1
2(1− γ5)qh̄−γµ1

2(1− γ5)q , (3.79)

Oeff
S = 2h̄+ 1

2(1− γ5)qh̄−1
2(1− γ5)q . (3.80)

Here, the field h̄+ creates a heavy quark and h̄− annihilates a heavy antiquark. The
four-quark operator in QCD contains two b fields which can represent both, a quark
or an antiquark field. One of them eventually becomes the h+ field an the other one
the h− field. Thus, we find an additional factor of 2 in Equations (3.79) and (3.80).
The tree level Feynman diagram is displayed in Figure 3.4.
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Figure 3.4.: Here, the ∆B = 2 four-quark operator is depicted. The heavy quark
has the momentum p and the light quark 0. Here, h+ denotes the heavy
quark and h− denotes the heavy anti-quark.

Computing the perturbative corrections to the QCD four-quark operator we even-
tually end up with two different operator structures

OL = b̄γµ(1− γ5)qb̄γµ(1− γ5)q , (3.81)
OS = b̄(1− γ5)qb̄(1− γ5)q . (3.82)

We write the partonic matrix element of an operator as

〈O〉 = 〈bq̄|O|b̄q〉 , (3.83)

where b, b̄, q and q̄ are the external quark states.

For the matrix elements of the two operator structues in Equation (3.81) and (3.82)
we find

〈OL〉0 = 〈bq̄|b̄γµ(1− γ5)qb̄γµ(1− γ5)q|b̄q〉 (3.84)
= 2ūαb γµ(1− γ5)uαq v̄

β
b γ

µ(1− γ5)vβq − 2ūαb γµ(1− γ5)vαq v̄
β
b γ

µ(1− γ5)uβq ,

where α and β are color factors, and analogously

〈OS〉0 = 〈bq̄|b̄(1− γ5)qb̄(1− γ5)q|b̄q〉 (3.85)
= 2ūαb (1− γ5)uαq v̄

β
b (1− γ5)vβq − 2ūαb (1− γ5)vαq v̄

β
b (1− γ5)uβq .



32 3. Heavy Quark Expansion

3.4.2. Perturbative Corrections
During the calculation of the partonic matrix elements of the diagrams in Figure
3.5 we encounter matrix elements with the following color structures

〈b̄γµ(1− γ5)TAqb̄γµ(1− γ5)TAq〉 = NC − 1
2NC

〈OL〉 ,

〈b̄(1− γ5)TAqb̄(1− γ5)TAq〉 = − NC + 1
2NC

〈OS〉 −
1
4〈OL〉 ,

where we used the Fierz transformations (see Appendix A)
ū1γµ(1− γ5)u2ū3γ

µ(1− γ5)u4

= −ū1γν(1− γ5)u4ū3γ
ν(1− γ5)u2 (3.86)

and
ū1(1− γ5)u2ū3(1− γ5)u4

= ū1(1− γ5)u4ū3(1− γ5)u2 + 1
2 ū1γµ(1− γ5)u4ū3γ

µ(1− γ5)u2 .

We also encounter structures including several γ matrices which we can simplify
using the following relations

b̄γαγβγµ(1− γ5)qb̄γαγβγµ(1− γ5)q = 4(4− ε)OL + E ,

b̄γαγβ(1− γ5)qb̄γαγβ(1− γ5)q = −4OL ,
where the evanescent operator E vanishes in D = 4 dimensions.

We can now compute the diagrams in Figure 3.5. The diagrams (a) and (b) factorize
and are already known from the calculation of the heavy-light two-quark current.
Their result is the same, namely

D(a) = D(b) = −2CF
αs(µ)

4π (〈OL〉0 + 〈OS〉0) .

The diagrams (c) and (d) also yield the same result which is

D(c) = D(d) = −2NC − 1
2NC

αs(µ)
4π 〈OL〉0 −

NC + 1
NC

αs(µ)
4π 〈OS〉0

and for diagram (e) we find

D(e) = −5(NC − 1)
2NC

αs(µ)
4π 〈OL〉0 −

3(NC − 1)
NC

αs(µ)
4π

1
ε
〈OL〉0 .

The diagram (f) is scaleless and therefore does not not contribute
D(f) = 0 .

The final result for the operator including radiative corrections in QCD is then
〈OL〉 = 〈OL〉0 + 2D(a) + 2D(c) +D(e) .

As above, the perturbative corrections vanish in HQET by choosing the external
residual momentum to be zero.
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(a) (b) (c)

(d) (e) (f)

Figure 3.5.: Four-Quark Operator Loop Corrections

3.4.3. Matching

We can now perform the matching analogously to the one for the heavy-light current
above

〈ORL 〉 = CL〈Oeff,RL 〉+ CS〈Oeff,RS 〉 (3.87)

⇒ Zeff
ZfullZos

QCD
〈OL〉 = CL〈OeffL 〉+ CS〈OeffS 〉 . (3.88)

Here, obtain for the renormalization constants of the operators in the full and the
effective theory

Zfull = 1− αs(µ)
4π

3(NC − 1)
NC

1
ε
, (3.89)

Zeff = 1 + 3CF
αs(µ)

4π
1
ε
. (3.90)
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We perform the matching at the scale µ = mb. This way the Wilson coefficients do
not include large logarithms. As a final result we find

CL(mb) = 1− 8N2
C + 9NC − 15

2NC

g2
s

(4π)2 (3.91)

CS(mb) = −2(NC + 1) g2
s

(4π)2 , (3.92)

which coincides with the result in [59–61].

3.4.4. Running of the Four-Quark Operator
The dependence of the four-quark operator on the renormalization scale is known
up to two loops [62] and is given by

O∆B=2(µ) = O∆B=2(µ0)
 α

(nf )
s (µ)

α
(nf )
s (µ0)

γ0/(2β
(nf )
0 )

(3.93)

×

1 + γ0

2β(nf )
0

γ1

γ0
− β

(nf )
1

β
(nf )
0

 α
(nf )
s (µ)− α(nf )

s (µ0)
4π +O(α3

s)
 ,

where µ0 is a reference scale where α(µ0) is known. Here, the anomalous dimension
of the operator O∆B=2(µ) is given by

γ(αs) = d logZ(αs(µ))
d log µ = γ0

αs
4π + γ1

(
αs
4π

)2
+O(α3

s) , (3.94)

with

γ0 = 6Nc − 1
Nc

, γ1 = −Nc − 1
2Nc

(19
3 Nc + 21− 57

Nc

− 4
3nf

)
. (3.95)

In this case the number of flavors includes the b quark and is given by nf = 5. The
coefficients of the β-function are given by

β0 = 11
3 Nc −

2
3nf , β1 = 34

3 N
2
c −

(13
3 Nc −

1
Nc

)
nf . (3.96)
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Within the last years there has been a great experimental progress concerning
semileptonic B decays at the B-factories. Several decays into excited charm mesons
have been seen such as B → D∗∗`ν, where D∗∗ denotes the first four orbital ex-
citations of the mesonic ground states. Experimentally, only the product of the
branching ratios B(B → D∗∗`ν)× B(D∗∗ → D(∗)π) can be extracted from data.

We consider these orbitally excited D mesons to be heavy, which means that we
treat the contained c quark as a heavy quark within HQET. Then, the four states
can be classified by their total angular momentum of the light degrees of freedom, in
particular j = 1/2 and j = 3/2. Preceding theoretical approaches predict that the
rates B(B → D∗∗`ν)×B(D∗∗ → D(∗)π) for the j = 3/2 states are significantly larger
than the ones for the j = 1/2 states. This is in contradiction with the experimental
findings, where the sums of the rates of the respective j = 1/2 and j = 3/2 states
are roughly the same. In the literature this tension is referred to as the ‘1/2 vs. 3/2
puzzle’ [63].

This puzzle has been addressed by experimentalists and theorists in the past. Ex-
perimentalists have tried to resolve the issue by improving their understanding of
the data and by optimizing the analyses. A theoretical approach to relief the tension
was to include radially excited states as a background that may also contribute to
the rate of the j = 1/2 states and thus enhance it [64].

The two states with total angular momentum k = 1 have the same quantum num-
bers. Those states can mix due to higher order terms in HQET that couple the light
degrees of freedom to the the heavy quark spin. Here, we will investigate if this mix-
ing can ease the tension between the values extracted from theory and data. This
mixing is a subleading effect in HQET but has the potential to produce a substantial
effect [65]. Previous investigations claim that the mixing is too small and omit it [66]
or that it is not favored by present data [67]. Other studies have determined a small
mixing angle [68,69].

We re-investigate the aspect of mixing in [70], which this chapter is based on.1
First, we will briefly summarize the spectroscopy of heavy mesons. Then, we will
investigate the mixing of the orbitally excited states and extract the mixing an-
gle from data. We then study the effect on semileptonic decays and finally we will
examine the impact of mixing on the total widths.

1The numerical values are slightly updated compared to the ones in the paper.
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4.1. Spectroscopy
Heavy mesons contain one heavy quark Q and a light quark q. In the heavy quark
limit, where mQ →∞, we encounter a heavy quark spin symmetry (see Chapter 3).
This means that the heavy quark spin decouples from the light degrees of freedom
(namely the light quarks and gluons) and that they are both separately conserved
by strong interactions [71].

Due to this symmetry we can arrange all heavy hadrons into spin-symmetry dou-
blets in which their masses and widths are degenerate in the heavy quark limit. They
can be classified by the total angular momentum of their light degrees of freedom j,
which is a conserved quantum number in the heavy quark limit. The ground states
of the heavy mesons consisting of the 0− pseudoscalar meson and the 1− vector
meson then emerge in one doublet, such as (D,D∗) or (B,B∗).

Orbitally excited mesons in which the light degrees of freedom have an additional
orbital angular moment of ` = 1, can be arranged in two doublets with j = 1/2 and
j = 3/2, respectively. If we couple j to the spin of the heavy quark and consider
a parity factor (−1)`+1 we obtain for j = 1/2 a doublet with quantum numbers
(0+, 1+), and for j = 3/2 we obtain (1+, 2+). Here, the total angular momentum ~K
is

~K = ~J + ~σ = ~L+ ~s+ ~σ ,

where ~L is the orbital angular momentum and ~J the angular momentum of the light
degrees of freedom. The spin of the light quark is denoted by ~s and ~σ is the spin of
the heavy quark.

For higher orbital excitations we can proceed in the same way and get doublets
with the quantum numbers [71](

(`− 1)(−1)`+1
, `(−1)`+1) for j = `− 1/2

and (
`(−1)`+1

, (`+ 1)(−1)`+1) for j = `+ 1/2 .

Possible higher orbitally excited states listed in the PDG book [72] do not give con-
clusive quantum numbers, though.

We are interested in the first set of four orbitally excited D mesons and use the
notation(

|D(0+)〉
|D(1+)〉

)
with j = 1/2 ,(

|D∗(1+)〉
|D∗(2+)〉

)
with j = 3/2 .

(4.1)
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State Masse [MeV] Width [MeV] j
D(0+) 2318±29 267±40 1/2
D(1+) 2427±40 380±120 1/2
D∗(1+) 2421.4±0.6 27.4±2.5 3/2
D∗(2+) 2462.6±0.15 49.0±1.3 3/2

Table 4.1.: Averages of the existing mass and width measurements for the D∗∗ states
taken from the PDG [72]. We assign them to the different j according to
the size of their total decay widths.

As already mentioned, in the limit mc → ∞ we have degenerate masses for the
states in the respective spin symmetry doublets, which can be expressed by [41]

M(D(0+)) = M(D(1+)) = mc + Λ̄1/2 ,

M∗(D(1+)) = M(D∗(2+)) = mc + Λ̄3/2 ,
(4.2)

where Λ̄j is the binding energy of the mesons in this exact limit. From Equation
(4.2) it is obvious, that the splitting between the two doublets is independent of the
mass of the heavy quark. In fact, it does not even depend on the quark flavor. It is
related to the excitations of the light degrees of freedom and therefore of order ΛQCD.

In Table 4.1, we show the averages of the existing mass and width measurements
for the D∗∗ states taken from the PDG [72]. We have assigned the 1+ states to the
respective j doublets according to their total decay widths. The strong decays of the
j = 3/2 states correspond to D wave transitions. These are suppressed by angular
momentum compared to the j = 1/2 states which only decay through an S wave
transition. Hence, we classify the j = 1/2 states to be broad and the j = 1/2 states
to be narrow.

Assigning the 1+ states to the doublets on the basis of their widths results in the
mass hierarchy as shown in Figure 4.1. Here weobserve a “level inversion” of the
states if we disregard mixing.

4.2. Power Corrections to the HQET Hamiltonian
We now switch on power corrections. The Hamiltonian density at order 1/m is

H1/m = 1
2mc

c̄(iD⊥)2c+ gs
2mc

c̄(~σ · ~B)c . (4.3)

Here, the first term is the kinetic operator and the second term is the chromomag-
netic operator. The latter couples the heavy quark spin ~σ to the chromomagnetic
field ~B and thus to the light degrees of freedom. This eventually leads to the break-
ing of heavy-quark spin-symmetry. Then j is not an invariant quantity any more.
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Figure 4.1.: Schematical depiction of the mass hierarchy of the orbitally excited D
mesons in the heavy quark limit and for a finite mass of the c quark.

Nevertheless, we still consider j to be a conserved quantum number since its change
is 1/m suppressed.

The first term in Equation (4.3) only affects the doublets in a spin-independent
way

Mj = mc + Λ̄j + 1
2mc

µ2
π(j) , (4.4)

where µ2
π(j) is related to the kinetic operator. We see that this contribution solely

leads to a mass shift of the entire doublet and for further treatments we will simply
absorb this shift into the doublet masses Mj.

The second term in Equation (4.3) is of much more interest since it is responsi-
ble for the mixing that we want to investigate. We do not know much about the
dynamics of the chromomagnetic field for the D∗∗ mesons. Hence, we will make some
assumptions based on the fact that it is generated by the angular momentum of the
light degrees of freedom, namely ~L and ~s, at the location of the heavy quark spin.
Our conjecture is that we have two different gyro-chromomagnetic factors α′ and β′
for the orbital momentum and the spin of the light quark, and therefore

~B ∼ α′~L+ β′~s = α~J + β~s . (4.5)

The second term we obtain using that ~J = ~L + ~s and by redefining the gyro-
chromomagnetic factors.

We can now re-write the second term in Equation (4.3)

HG
1/m =

∫
d3~x

gs
2mc

c̄(~σ · ~B)c ≡ P1( ~J · ~σ) + P2(~s · ~σ) (4.6)
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introducing operators P1 and P2 which only act on the radial wave functions of the
light degrees of freedom. Here, the last term is eventually responsible for the mixing
between our 1+ states allowing j to change. The mixing of the two states is possibe
because they have the same external quantum numbers, such as the total angular
momentum and parity.

We can now let our Hamiltonian

H =
∫

d3~x (H0 +H1/m)

act on the states in the spin symmetry doublets. The states |D(0+)〉 and |D∗(2+)〉
remain eigenstates of the Hamiltonian

H|D(0+)〉 =
(
M1/2 −

3
4g + 1

4g
′
)
|D(0+)〉 , (4.7)

H|D∗(2+)〉 =
(
M3/2 + 3

4g + 1
4g
′
)
|D∗(2+)〉 , (4.8)

where the masses M1/2 and M3/2 are defined in Equation (4.4). For simplicity, we
assume that the constants g ∼ 〈P1〉 and g′ ∼ 〈P2〉, which are obtained from the
radial wave functions, are equal for both spin symmetry doublets.

Applying the Hamiltonian to the two 1+ states yields that they are not eigenstates
of the Hamiltonian any more when we conside 1/m corrections

H|D(1+)〉 =
(
M1/2 + 1

4g −
1
12g

′
)
|D(1+) +

√
2

3 g′|D∗(1+)〉 , (4.9)

H|D∗(1+)〉 =
(
M3/2 −

5
4g −

5
12g

′
)
|D∗(1+) +

√
2

3 g′|D(1+)〉 . (4.10)

We observe that the respective other 1+ state mixes in there. All spin wave functions
used to compute the impact of the Hamiltonian on the states above are given in the
Appendix B.1.

4.3. Extracting the Mixing Angle

In order to compute the size of the mixing we consider the 2× 2 sub matrix of the
Hamiltonian

H =
(
M a
a M∗

)
, (4.11)
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where we define

M ≡M1/2 + 1
4g −

1
12g

′ , (4.12)

M∗ ≡M3/2 −
5
4g −

5
12g

′ , (4.13)

∆ ≡M∗ −M = M3/2 −M1/2 −
3
2g −

1
3g
′ , (4.14)

a ≡
√

2
3 g′ . (4.15)

We can diagonalize the Hamiltonian and find the physical 1+ states which are linear
combinations of the states which we defined in the heavy quark limit

|DL(1+)〉 = cos θ|D(1+)〉+ sin θ|D∗(1+)〉 , (4.16)
|DH(1+)〉 = − sin θ|D(1+)〉+ cos θ|D∗(1+)〉 . (4.17)

Here, DL is the eigenstate with the lower and DH is the one with the higher eigen-
value. The corresponding eigenvalues are given by

ML/H = 1
2
[
(M +M∗)±

√
∆2 + 4a2

]
. (4.18)

In Figure 4.2, all eigenvalues of the Hamiltonian are displayed. We notice, that we
always have MH > ML which means that we actually observe a “level repulsion”,
which is typical for two-state systems. We see that the splitting within each doublet
is identical when we put g′ = −g, which we regard as a benchmark point. In this
case we obtain from Equation (4.5)

~B ∼ g ~J + g′~s = g( ~J − ~s) = g~L , (4.19)

which would imply that the spectrum does not depend on the light quark spin any-
more.

The mixing angle can be determined by (see Appendix B.2)

tan 2θ = −2a
∆ = −4

√
2g′

6(M3/2 −M1/2)− 9g + 2g′ . (4.20)

At a mixing angle of |θ| = 45◦ we find maximal mixing of the two 1+ states. A value
for our mixing angle of 45◦ ≤ |θ| ≤ 90◦ is beyond the crossing point of equal mixing.
Then, we find that the j = 3/2 state now becomes the dominant contribution in
the |DL(1+)〉 eigenstate. This way we can justify both, the “level inversion” shown
in Figure 4.1 as well as the “level repulsion” observed in Figure 4.2. Looking at
Equation (4.20) we see that a mixing angle of |θ| = 45◦ corresponds to a value of
∆ = 0. A mixing angle beyond the crossing point results in a negative ∆ < 0.

The mixing angle θ is shown in Figure 4.3 as a function of g′ with the constraint
g = −g′. The horizontal line corresponds to the angle of maximum mixing and the
vertical line indicates the best-fit value of g′ of the fit we will discuss next.



4.3. Extracting the Mixing Angle 41

0 5 10 15 20 25 30 35

2390

2400

2410

2420

2430

2440

2450

2460

2470

Figure 4.2.: In the heavy quark limit mc → ∞, corresponding to g = g′ = 0, we
observe that the orbitally excited states in the j = 1/2 and j = 3/2
doublet have degenerate masses. When we pass over to a finite mass
mc we find a splitting of the states within the doublets. We plot the
masses of the orbitally excited states D(0+) (light-blue, long-dashed),
DL(1+) (green, short-dashed), DH(1+) (red, solid) and D∗(2+) (dark
blue, dotted) as a function of the parameter g. We fix the parameter
g′ by the condition g′ = −g, where the splitting within each doublet is
equal. The vertical lines indicate the best fit value g∗ for g and the root
of ∆(g, g′ = −g) = 0.
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Figure 4.3.: The mixing angle θ plotted as a function of g′, where g = −g′. The
vertical line corresponds to the best-fit point for g′. The horizontal line
indicates the angle θ = 45◦ of maximal mixing.
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4.4. Fitting the Mixing Angle
Current measurements of the masses and widths of the orbitally excited D mesons
do not give conclusive results. The fact that the errors on the average values pub-
lished by the PDG [72] include statistical scale factors indicates that the individual
measurements are not in good agreement with the averages. However, we still use
these results to fit the parameters of our simple model. A more detailed description
on how the fit is performed can be found in Appendix B.3.

Overall, there are four model parameters that we have to fit: M1/2, M3/2, g and
g′. In the following, we will account for the mass hierarchy observed before by de-
manding ∆ < 0 for all fits. We also require a p-value ≥ 3% to declare the fit as good.

First, we will confront our model with the PDG averages shown in Table 4.1. We ob-
served before that we have equal splitting within our doublets when we set g′ = −g.
Here, we will use this constraint in order to reduce our model parameters to three,
namely M1/2, M3/2 and g. With four PDG averages for the masses and three fit pa-
rameters this fit has 1 degree of freedom (d.o.f.). The fit yields the following best-fit
point and parameter intervals at 68% confidence level (CL)

M∗
1/2 = (2425± 2) MeV , M∗

3/2 = (2451.2± 1.0) MeV ,

g∗ = (22.9± 1.3) MeV .
(4.21)

However, computing the goodness of the fit we obtain χ2 = 8.48 which results in a
p-value of 0.36% and thus we reject this fit. Nevertheless, we observe that the χ2

is mainly driven by the 0+ mass which corresponds to a deviation a little less than 3σ.

To study the large deviation further, we now extend our fit and use the 11 most
precise individual measurements that also enter the PDG averages. Thus, we can
now perform a fit including all our model parameters. We reject the fit again, since
we obtain χ2/d.o.f. = 35.9/7 which corresponds to a p-value of less than 10−4. How-
ever, we find that the χ2 is mainly driven by the BaBar and Belle measurements for
the 0+ mass.

Assuming that the BaBar and Belle measurements of the 0+ mass are inconsistent
with the ZEUS measurement, we repeat our second fit without them and obtain
χ2/d.o.f = 7.1/5 with a corresponding p-value of 23%, which we consider as a good
fit. For the best-fit point and the 68% CL intervals we find

M∗
1/2 = (2430± 8) MeV , M∗

3/2 = (2448.5± 1.2) MeV ,

g∗ = (24.5± 1.3) MeV , g′∗ = (−18± 6) MeV .
(4.22)

At the best-fit point the individual pull values are given by

pulli ≡
Mi −Mi(M∗

1/2,M
∗
3/2, g

∗, g′∗)
σi

(4.23)
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Mass [MeV] Pull [σ] Collaboration Reference
D(0+)

2297±22 -5.00 BaBar [73] ×
2308±36 -2.75 Belle [74] ×
2407±41 0.0 FOCUS [75]

DL(1+)
2423.1±1.7 +1.27 ZEUS [76]
2420.1±0.8 -1.05 BaBar [77]
2426.0±3.2 +1.69 Belle [78]

DH(1+)
2427±36 -0.41 Belle [74]
2477±56 +0.63 BaBar [79] †

D∗(2+)
2462.5±2.7 +0.01 ZEUS [76]
2462.2±0.8 -0.34 BaBar [77]
2464.5±2.2 +0.92 FOCUS [75]

Table 4.2.: Here, we display the most precise values of the masses for the various
measurements of D∗∗. We also show the pull values as defined in Equa-
tion (4.23) at the best-fit point given in Equation (4.22). We omit the
measurements marked with a × in the fit. The measurements marked
with † lack an estimate for their systematic uncertainty. Therefore we
have doubled their statistical uncertainty.

for every measurement i. They are listed in Table 4.2.

For our best-fit values in Equation (4.22) we find g′ ' −g < 0 which is in ac-
cordance with equal splitting within the spin symmetry doublets. We also obtain a
value of ∆ ' −12 MeV wich yields a large mixing angle of

θ =
(
63+11
−13

)◦
at 68% CL. In previous studies (e.g. in [68,69]) a mixing angle between 16◦ and 20◦
has been determined. In our case the interchange of the 1+ states corresponds to a
replacement θ → 90◦− θ, though. This leads to an effective mixing of pure states of
27◦, which is still larger than observed in preceding analyses.

4.5. Effects on Semileptonic Decays B → D∗∗`ν

Exclusive semileptonic B decays to orbitally excited charmed mesons have already
been studied in [66]. They included 1/m corrections to the heavy quark limit but
neglected the effect of mixing, which we aim to study here.
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We consider both quarks that are involved in the exclusive semileptonic b → c
transitions to be heavy. This means they follow the heavy quark symmetry and we
can write the momenta as pB = MBv and pD∗∗ = MD∗∗v

′, respectively, and we define
ω = v · v′. The differential decay rate can be computed via

d2Γ
dωd cos θ∗ = V 2

cbG
2
FM

2
D∗∗

256π3MB

√
ω2 − 1|M|2 , (4.24)

where θ∗ is the helicity angle of the lepton, more specifically the polar angle of ` in
the `ν rest frame. The matrix element can be split up into a hadronic and a leptonic
part

|M|2 = |〈D∗∗`ν|c̄γµ(1− γ5)b¯̀γµ(1− γ5)ν|B〉|2 = LµνWµν , (4.25)

where the leptonic tensor is given by

Lµν =
∑
spins
〈`ν|¯̀γµ(1− γ5)ν|0〉〈0|ν̄γν(1− γ5)`|`ν〉

= Tr
[
/k
′
γµ(1− γ5)/kγν(1− γ5)

]
= 8

(
kµk′ν − (k · k′)gµν + kνk′µ − iεµναβkαk′β

)
. (4.26)

Here, k denotes the momentum of the charged lepton and k′ the momentum of the
neutrino.

The hadronic tensor

Wµν = 〈D∗∗|c̄γµ(1− γ5)b|B〉〈B|b̄γν(1− γ5)c|D∗∗〉 (4.27)

can be treated in the infinite mass limit. Then, for each multiplet, we can describe the
hadronic weak transition currents by a single form factor which can be generalized
from the initial Isgur Wise function for the ground states

〈B(v)|b̄Γc|D(1+; v′, ε)〉 = 2τ1/2(vv′)Tr
[
B̄(v)ΓD(1+; v′, ε)

]
, (4.28)

〈B(v)|b̄Γc|D∗(1+; v′, ε)〉 =
√

3τ3/2(vv′)vµTr
[
B̄(v)ΓD∗µ(1+; v′, ε)

]
, (4.29)

where ε is the polarization of the axialvector 1+ states. The convention we use for
the Isgur Wise functions is the same as in [66] and [80]. The spin representations
for the states involved can be found e.g. in [81]

B̄(v) =
√
MBγ5

1 + /v

2 , (4.30)

D(1+; v, ε) =
√
MD

1 + /v

2 γ5/ε , (4.31)

D∗µ(1+; v, ε) =
√
MD∗

3
2

1 + /v

2 γ5

[
εµ −

1
3/ε(γµ − vµ)

]
. (4.32)
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Model τ1/2(1) ρ2
1/2 τ3/2(1) ρ2

3/2
GI [83] 0.22 0.83 0.54 1.50
VD [84] 0.13 0.57 0.43 1.39

CCCN [85,86] 0.06 0.73 0.51 1.45
ISGW [87] 0.34 1.08 0.59 1.76

Table 4.3.: Fit results for the two form factors parameterized in Equation (4.34) to
four different quark models as taken from [82].

For our physical states we then find

〈B|b̄Γc|DL〉 = cos θ〈B|b̄Γc|D(1+)〉+ sin θ〈B|b̄Γc|D∗(1+)〉 ,
〈B|b̄Γc|DH〉 = − sin θ〈B|b̄Γc|D(1+)〉+ cos θ〈B|b̄Γc|D∗(1+)〉 ,

(4.33)

where they now depend on both form factors τ1/2(ω) and τ3/2(ω) as well as the mix-
ing angle.

The usual Isgur Wise functions are normalized to unity at ω = 1. This is not
the case for the form factors τj(ω). They can be parameterized through [82]

τj(ω) = τj(1)
[ 2
1 + ω

]2ρ2
j

, j = 1/2 or j = 3/2 , (4.34)

where values for τj(1) and ρ2
j are given in different quark models in Table 4.3 as

taken from [82]. These quark models are most reliable near the zero recoil point
ωmin = 1, where the momentum transfer to the lepton-neutrino pair is maximal and
the excited D meson is at rest in the rest frame of the B meson. For ωmax this
momentum transfer is minimal. Since our kinematic region for ω is quite limited

1 ≤ ω ≤ M2
B +MD∗∗

2MBMD∗∗
' 1.3 ,

the parameterization in Equation (4.34) is a good approximation.

We can constrain the form factors τj(ω) by sum rules [88], where we have in partic-
ular

µ2
π − µ2

G ≥ 9ε21/2|τ1/2(1)|2 . (4.35)

Here, ε1/2 is the excitation energy of the j = 1/2 doublet compared to the doublet of
the ground states. The kinetic energy and chromomagnetic moment parameters µπ
and µG are related to the kinetic and chromomagnetic operators in the 1/m Hamil-
tonian. It has been observed that the difference on the left-hand side is numerically
small µ2

π−µ2
G � µ2

π which leads to the Bogomolnyi-Prasad-Sommerfield limit where
we obtain µ2

π − µ2
G = 0. This would result in τ1/2(1) = 0 which implies

τ1/2(ω)� τ3/2(ω) (4.36)
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Channel GI VD CCCN ISGW
mc →∞

B(B− → D(0+)`ν̄) 4.7 · 10−4 1.8 · 10−4 3.7 · 10−5 1.0 · 10−3

B(B− → D(1+)`ν̄) 6.4 · 10−4 2.5 · 10−4 4.9 · 10−5 1.4 · 10−3

B(B− → D∗(1+)`ν̄) 4.4 · 10−3 2.9 · 10−3 4.0 · 10−3 4.7 · 10−3

B(B− → D∗(2+)`ν̄) 7.4 · 10−3 4.9 · 10−3 6.7 · 10−3 8.0 · 10−3

B(B− → D∗∗`ν̄) 1.3% 0.82% 1.1% 1.5%
B(B− → D∗(1+)`ν̄)
B(B− → D(1+)`ν̄) 6.9 12 81 3.4

mc finite
B(B− → DL`ν̄) 3.3 · 10−3 2.3 · 10−3 3.3 · 10−3 3.5 · 10−3

B(B− → DH`ν̄) 2.0 · 10−3 1.1 · 10−3 1.0 · 10−3 2.8 · 10−3

B(B− → DL`ν̄)
B(B− → DH`ν̄) 1.7 2.1 3.2 1.2

Table 4.4.: Our predictions for the branching fractions within various models from
Table 4.3 for the channel B− → D∗∗`ν̄. The first 6 rows are computed
in the infinite mass limit mc → ∞, where we use the doublet masses
M1/2 and M3/2 from our fit as input. Here, B(B− → D∗∗`ν̄) represents
the sum of the four branching fractions above. The last three rows are
obtained for a finite mass mc where mixing between the two 1+ states is
allowed. We use the PDG averages from Table 4.1 for the masses.

and indicates that decays into the 1+ state of the j = 1/2 doublet are substantially
suppressed in comparison to the one in the j = 3/2 doublet. The values obtained in
the models in Table 4.3 roughly show this behavior. However, this is currently not
seen by data which gives rise to the ‘1/2− 3/2‘ puzzle in semileptonic decays.

Now, we can compute the differential decay rates for the two 1+ eigenstates for
B → DL/H`ν. We get

dΓL
dω = GFV

2
cbM

5
B

24π3 r3
L(ω − 1)

√
ω2 − 1 (4.37)[

sin2 θ(ω + 1)2 [2(ω − rL)(1− rLω)− (1− r2
L − 2rLω)] |τ3/2(ω)|2

+ 2 cos2 θ [2rL(ω2 − 1) + (5ω − 1)(1 + r2
L − 2rLω)] |τ1/2(ω)|2

+2
√

2 sin θ cos θ(ω + 1)2 [(1 + rL)2 − 4rLω] Re(τ1/2(ω)τ ∗1/2(ω))
]

and
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dΓH
dω = GFV

2
cbM

5
B

24π3 r3
H(ω − 1)

√
ω2 − 1 (4.38)[

cos2 θ(ω + 1)2 [2(ω − rH)(1− rHω)− (1− r2
H − 2rHω)] |τ3/2(ω)|2

+ 2 sin2 θ [2rH(ω2 − 1) + (5ω − 1)(1 + r2
H − 2rHω)] |τ1/2(ω)|2

−2
√

2 sin θ cos θ(ω + 1)2 [(1 + rH)2 − 4rHω] Re(τ1/2(ω)τ ∗1/2(ω))
]
,

where rL/H denotes the ratio rL/H = MDL/H/MB. We see that the differential decay
rates are now dependent on both form factors τj(ω) as well as the mixing angle. In
the limit of no mixing θ = 0 we find the result from [80].

We can now calculate the branching fractions for the semileptonic B decay into
the orbitally excited D mesons via

B(B → D∗∗`ν) = Γ(B → D∗∗`ν)
Γtot(B) = τBΓ(B → D∗∗`ν) , (4.39)

where we take the result cos θ ' 0.45 at the best-fit point. We also use the experi-
mental result for the lifetime of the B meson τB. Our predictions for the branching
fractions are shown in Table 4.4. The first six rows are determined in the infinite
mass limit, while we consider mixing between the two 1+ states for a finite mc in
the last three rows. We do not consider the experimental uncertainties, which are
quite large, since this is merely a qualitative study of the mixing to see if this could
have the potential to solve the ‘1/2− 3/2‘ puzzle.

In order to answer this question we need to confront our predictions with the data
shown in Table 4.5. Unfortunately, at the moment we only have data on the product
of the branching fractions B(B → D∗∗`ν) × B(D∗∗ → D∗π). For now, we therefore
assume that the subsequent strong decays D∗∗ → D∗π have roughly the same size
and obtain

B(B− → DL(1+)`ν̄)
B(B− → DH(1+)`ν̄) ≈ 2.2 (4.40)

for the ratio of the decays into the two 1+ states. Comparing this with our predictions
in Table 4.4 we see that our estimates including the mixing (row 9) are in reasonable
agreement with the measurements while we observe a deviation from our results if
we neglect mixing (row 6).
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Decay Mode B (%)
B(B− → D(0+)`ν̄)× B(D(0+)→ D+π−) 0.29±0.05
B(B− → DL(1+)`ν̄)× B(DL(1+)→ D∗+π−) 0.285±0.018
B(B− → DH(1+)`ν̄)× B(DH(1+)→ D∗+π−) 0.13±0.04
B(B− → D∗(2+)`ν̄)× B(D∗(2+)→ D∗+π−) 0.078±0.008

Table 4.5.: HFAG averages for the products of the branching fractions for B− →
D∗∗`ν̄ and D∗∗ → D(∗)+

π− [89]. The errors are obtained by taking the
squared sum of the statistical and the systematical uncertainties

4.6. Effects on the Widths of the Orbitally Excited
States

Due to heavy quark spin symmetry the strong decays follow a specific pattern in
the infinite mass limit [65, 71]

A(D∗(2+)→ Dπ) ∝
√

2
5aD , (4.41)

A(D∗(2+)→ D∗π) ∝
√

3
5aD , (4.42)

A(D∗(1+)→ D∗π) ∝ aD , (4.43)
A(D∗(1+)→ Dπ) = 0 , (4.44)
A(D(1+)→ D∗π) ∝ aS , (4.45)
A(D(1+)→ Dπ) = 0 , (4.46)
A(D(0+)→ Dπ) ∝ aS , (4.47)
A(D(0+)→ D∗π) = 0 . (4.48)

Here, aS and aD are the respective amplitudes for S-wave and D-wave transitions.
We assume that the total decay widths are dominated by these decay modes, i.e.

Γtot(D∗∗) = Γ(D∗∗ → Dπ) + Γ(D∗∗ → D∗π) . (4.49)

Since we are only interested in the qualitative picture we will ignore phase space
differences in the following, well knowing that they are of the order of twenty percent.
We find in the heavy quark limit that

Γtot(D∗(2+)) = |aD|2 = Γtot(D∗(1+)) ,
Γtot(D∗(0+)) = |aS|2 = Γtot(D(1+)) .

(4.50)

As already mentioned, we expect the states within the j = 1/2 spin symmetry doub-
let to be much broader than the members of the j = 3/2 one, which are suppressed
by angular momentum.
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Switching on the mixing we find

A(DL(1+)→ Dπ) = A(DH(1+)→ Dπ) = 0 , (4.51)
A(DL(1+)→ D∗π) = aS cos θ + aD sin θ , (4.52)
A(DH(1+)→ D∗π) = aD cos θ − aS sin θ . (4.53)

We can now compute the total decay widths. While the differential decay widths
still include interference terms of the S and D amplitudes they do not appear in
the total decay width anymore. This is due to the fact that the integration over the
helicity angle in the D∗π system yields zero in this case. Therefore, we obtain

Γtot(DL) = ΓL ∼ Γ(DL → D∗π) = |aS|2 cos2 θ + |aD|2 sin2 θ , (4.54)
Γtot(DH) = ΓH ∼ Γ(DH → D∗π) = |aD|2 cos2 θ + |aS|2 sin2 θ . (4.55)

We can now use the total widths of the 0+ and 2+ states in Table 4.1 and Equation
(4.50) to extract values for |aS| and |aD|. Inserting these into Equations (4.54) and
(4.55) we obtain

ΓL ∼ 92 MeV ,

ΓH ∼ 223 MeV .
(4.56)

Again, we do not provide errors since we are only interested in the qualitative picture.

We find that the heavy 1+ state is much broader than the light one. This coin-
cides with the observed pattern in Table 4.1 as found by experiments.

4.7. Discussion
We have constructed a simple model for the first orbitally excited D mesons based
on HQET at next-to-leading (NLO) in 1/mQ. Here, we made the strong assumption
that the gyromagnetic factors and the radial wave functions are identical for the two
doublets. At order 1/mQ the two 1+ states mix. We have investigated the effects of
this mixing. In our simple model we obtain a rather large mixing angle above the
point of maximal mixing which results in an interchanging role of the two states.
This has quite a large influence on the semileptonic B decays to the D∗∗ states as
well as the total decay widths.

The main aspect of our analysis was to investigate if the observed mixing has the
potential to solve, or at least ease, the ‘1/2− 3/2‘ puzzle. We find that it indeed
reduces the difference of the two rates at least for the 1+ states.

We also examined the impact of the mixing on the total decay widths of the axial-
vector states. We see that the resulting decay widths are not in contradiction to the
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pattern observed in data.

The experimental results for the masses and widths are presently not in good agree-
ment with each other and do not yield a good fit for our model. Only after removing
some of the individual measurements we could obtain a fit which is sufficiently good.
We are interested in data from simultaneous analyses for the masses and the widths
of all orbitally excited states in the future. Hopefully, we will get more experimental
insight with LHC Run II and Belle II coming up.

In order to really be able to draw some conclusions from this analysis we require
more data on the masses and widths of the orbitally excited D mesons as well as on
semileptonic decays. We do find that the inclusion of mixing does have the potential
to ease the ‘1/2− 3/2‘ puzzle.



5. B − B̄-Mixing
The mixing of quark flavors was first described by Cabbibo in 1963 [22]. This al-
lows the mixing of neutral mesons. It was first observed in the K-K̄ system which
was predicted by Gell-Mann and Pais in 1955 [91]. The size of the observed mixing
required the presence of a charm quark that was predicted by the GIM mechanism
in 1970 [92]. In 1977 the b quark was discovered [93] and the mixing of neutral B
mesons was first observed in 1987 by UA1 and ARGUS in the Bd-B̄d system [94,95].
This discovery gave the first direct hint that the mass of the top quark was much
higher than presumed at that time. Since then, analyses on oscillations in the Bd sys-
tem have been published by many collaborations as ALEPH, DELPHI, L3, OPAL,
BaBar, Belle, CDF, D/0 and LHCb. It was not until 2006 that Bs-B̄s oscillations
were observed for the first time by CDF at the Tevatron [96]. A more recent result
by LHCb from 2013 is shown in Figure 5.1.

Weak decays have been proven useful to gain information concerning elementary
particle physics. Especially processes including heavy quarks, particularly b quarks,
are experimentally and theoretically well accessible. One phenomenological applica-
tion of weak decays including a heavy quark is the test of the Standard Model and
the determination of its parameters. Here, the mixing of neutral B mesons helps to
explore CP violation. The mass difference of the two eigenstates can be determined
and gives information about the CKM matrix elements ∆ms/∆md = |Vts/Vtd|. Since
Flavor Changing Neutral Currents (FCNC) are required for B0-B̄0 mixing it only
arises at the loop level which makes the process sensitive to New Phyics beyond the
Standard Model. Another interesting feature of weak hadronic interactions is that
they can shed some light on strong interactions and confinement of quarks inside
hadrons.

For mixing studies we have reached an era of precision measurements which calls
for some effort on the theoretical side. In this chapter we will compute the non-
factorizable perturbative corrections to the matrix element of the ∆B = 2 operator
at order αs. In order to obtain these corrections we need to compute three-loop di-
agrams. With these contributions to the matrix element we end up with a complete
next-to-leading order result which increases the theoretical precisicion.

We give a brief overview of B0-B̄0 mixing and introduce the bag parameter. The
latter will be determined using HQET sum rules. Here, non-factorizable contribu-
tions of the three-point correlation function need to be computed, which requires
the calculation of three-loop diagrams. This chapter is based on [97].



52 5. B − B̄-Mixing

decay time [ps]
0 1 2 3 4

ca
n

d
id

at
es

 /
 (

0
.1

 p
s)

0

200

400

Tagged mixed

Tagged unmixed

Fit mixed

Fit unmixed

LHCb

Figure 5.1.: Oscillation in the B0
s -B̄0

s system as analyzed by the LHCb experiment.
The plot displays the time distribution for the sum of the decay modes
of B0

s → D−s π
+. The candidates are either tagged as unmixed, where

the same flavor as produced is detected (blue), or mixed with different
flavors at detection and production (red). [90]

5.1. Overview
In this section we will briefly summarize the most relevant aspects of the B0-B̄0

mixing. A more detailed description can be found in [16,28–30,98–102].

The quark mixing CKM matrix has non-vanishing off-diagonal entries. This results
in weak interactions mediated by W bosons which lead to flavor changes. To obtain
B0-B̄0 mixing we need an overall flavor transition of ∆B = 2 which we can be
mediated by Flavor Changing Neutral Currents (FCNC) only at loop level in the
Standard Model. Diagrammatically, the process is depicted in Figure 5.2 as a box
diagram involving two W bosons and two up-type quarks. These diagrams represent
some non-local object. At this point we make use of the weak effective theory by
integrating out the top quark t and the W boson. This results in two different types
of diagrams depicted in Figure 5.3. The process (a) is a ∆B = 2 transition which
can be described by one local four-quark operator

O∆B=2 = b̄γµ
1
2(1− γ5)qb̄γµ1

2(1− γ5)q , (5.1)

while process (b) consists of two ∆B = 1 transitions.
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(a) (b)

Figure 5.2.: At lowest order in the Standard Model B-B̄ mixing can be described by
these box diagrams. The loop includes W bosons and up-type quarks.

(a) (b)

Figure 5.3.: After integrating out the heavy degrees of freedom t and W we obtain
two types of diagrams. The ∆B = 2 process in (a) can be described by
one local four-quark operator while the process in (b) consists of two
∆B = 1 transitions.

The time evolution of the oscillation in the B0-B̄0 system can be described by a
Schrödinger equation

i
d
dt

(
|B0

q (t)〉
|B̄0

q(t)〉

)
= H

(
|B0

q (t)〉
|B̄0

q (t)〉

)
. (5.2)

Here, the effective Hamilton operator H consists of the Hermitian 2× 2 matrices M
and Γ describing the mass matrix and the decay matrix

H = M − i

2Γ , where M =
(
M11 M12
M21 M22

)
, Γ =

(
Γ11 Γ12
Γ21 Γ22

)
. (5.3)

By diagonalizing H we can find the physical eigenstates MH and ML as well as ΓH
and ΓL. Two observables in the B0-B̄0 system are the mass difference and the decay
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width difference. We can relate these quantities to the off-diagonal entries of the
mass and decay matrix such as

∆Γ = ΓL − ΓH = 2|Γ12| cosφ , (5.4)
∆M = MH −ML = 2|M12| , (5.5)

where φ = arg(−M12/Γ12) is the CP phase.

The short-distance contributions, i.e. top-quark contributions, are predominant for
the magnitude of ∆M . Therefore, it is dominated by ∆B = 2 transitions depicted
in Figure 5.3(a) while ∆Γ relates to the ∆B = 1 transitions in Figure 5.3(b).

In the following we are only interested in the ∆B = 2 transitions, namely ∆M .
Thus, we need to compute the hadronic matrix element M12, which can be com-
puted using the effective weak Hamiltonian. We then find

M12 = G2
F

(4π)2 (V ∗tdVtb)2F (xt)m2
tηQCD(µ)〈B̄0|O∆B=2(µ)|B0〉 (5.6)

with the operator O∆B=2 from Equation (5.1) and the ratio xt = m2
t/m

2
W . Here, we

have the so-called Fermi constant GF =
√

2
8

g2
2

M2
W

with the weak coupling g2 and the
mass of the W boson MW . In the OPE we find a short-distance Wilson coefficient
which contains the large scales that were intergrated out. Here, it can be split up
into the Inami-Lim function [103]

F (x) = 1
4

[
1 + 9

1− x −
6

(1− x)2 −
6x2

(1− x)3 ln x
]

(5.7)

which includes the electroweak loop contributions and the coefficient ηQCD(µ). The
latter accounts for the short-distance QCD contributions and its µ-dependence com-
pensates the one of the matrix element.

There are different methods to extract information on the hadronic matrix element.
One way of doing this are e.g. explicit quark models like the bag model [104,105] or
naive factorization. Here, we need to rely on assumptions and cannot controll the
accuracy. More profound are non-perturbative methods such as lattice QCD or QCD
sum rules. The former entails a numerical evaluation while in the latter method the
matrix element is computed analytically.

We can write the matrix element of the local four-quark operator such that

〈B̄0|O∆B=2(µ)|B0〉 = 2
(

1 + 1
NC

)
〈B̄0|Jµ|0〉〈0|Jµ|B0〉B(µ)

= 2
(

1 + 1
NC

)
f 2
BM

2
B B(µ) , (5.8)
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where NC = 3 is the number of colors. Here, O∆B=2 = JµJ
µ with Jµ = b̄γµ

1
2(1−γ5)q

and

〈0|Jµ|B(p)〉 = i

2fBpµ , (5.9)

where fB is the decay constant of the B meson.

In Equation (5.8) we encounter the so-called bag parameter B(µ) which contains
the entire µ dependence of the four-quark operator. It can be seen as a measure
for the deviation of the matrix element from the naive factorization prescription,
which would yield B = 1, or rather as a parameterization of the violation of this
approximation. Therefore, the bag parameter can be written as

B = 1 + ∆B . (5.10)

The bag factor is a hadronic object which requires the application of non-perturbative
methods such as lattice simulations [106–111] or QCD sum rules [112–115]. Us-
ing the latter we are able to analytically distinguish between factorizable and non-
factorizable contributions. Thus, we solely need to compute ∆B. Since the B meson
contains a heavy quark we may use a HQET sum rule. Subleading terms of order
ΛQCD/mb have already been considered in this framework [115]. The computation
of perturbative contributions of order αs are subject of this chapter. Among other
things, this requires the computation of three-loop diagrams in HQET where the
required master integrals have been computed in [116].

5.2. Bag Parameter
5.2.1. Matching of the Bag Parameter
In Section 3.4.3 we performed the matching calculation for the ∆B = 2 four-quark
operator

O∆B=2(mb) = 2CLOeff
L (mb) + 2CSOeff

S (mb) (5.11)

with the HQET operators

Oeff
L = h̄+γµ

1
2(1− γ5)qh̄−γµ1

2(1− γ5)q , (5.12)

Oeff
S = h̄+ 1

2(1− γ5)qh̄−1
2(1− γ5)q (5.13)

and the Wilson coefficients

CL(mb) = 1− 8N2
C + 9NC − 15

2NC

g2
s

(4π)2 (5.14)

CS(mb) = −2(NC + 1) g2
s

(4π)2 . (5.15)
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Analogous to the definition of the bag parameter for the operator O∆B=2(mb) we
can write

〈B̄0(v)|Oeff
L (µ)|B0(v)〉 =

(
1 + 1

NC

)
〈B̄0(v)|J+µ|0〉〈0|Jµ−|B0(v)〉Beff

L (µ) , (5.16)

〈B̄0(v)|Oeff
S (µ)|B0(v)〉 =

(
1− 1

2NC

)
〈B̄0(v)|J+|0〉〈0|J−|B0(v)〉Beff

S (µ) , (5.17)

where

J±µ = h̄±γµ
1
2(1− γ5)d , (5.18)

J± = h̄±
1
2(1− γ5)d . (5.19)

We can then define

〈0|J±µ|B(v)〉 = i

2F (µ)vµ , (5.20)

〈B̄(v′)|J±|0〉 = i

2F (µ) (5.21)

and find with Equation (3.23) that√
MBfB = C(µ)F (µ) +O

( 1
mb

)
(5.22)

where [117]

C(mb) = 1− 2CF
αs(mb)

4π +O(α2
s) (5.23)

is the coefficient for the matching of the current b̄γµγ5d onto h̄±γµγ5d. Thus, we find

F (mb) =
√
MB

C(mb)
fB . (5.24)

We can now take Equation (5.8) and insert Equation (5.11). Then we can use Equa-
tions (5.16) and (5.17) and replace F (mb) by Equation (5.24). This way we obtain

B(mb) = CL(mb)
C2(mb)

Beff
L (mb)−

NC − 1
2

NC + 1
CS(mb)
C2(mb)

Beff
S (mb) (5.25)

and inserting Equations (5.14), (5.15) and (5.23) we find

B(mb) =
1− 4N2

C + 9NC − 11
2NC

α
(nf )
s (mb)

4π

Beff
L (mb)

+ (2NC − 1) α
(nf )
s (mb)

4π Beff
S (mb) +O

(
α2
s,

1
mb

)
. (5.26)



5.2. Bag Parameter 57

We are only interested in the NLO computation of the bag parameter. In par-
ticular, the non-factorizable contributions to the bag parameter, namely the de-
viation from unity, include αs corrections. Thus, in Equation (5.26) we can set
Beff
L (mb) = Beff

S (mb) = 1 in all terms that are already suppressed by αs. We then
find

B(mb) = Beff
L (mb)−

11
2

(
1− 1

NC

)
αs(mb)

4π . (5.27)

5.2.2. Running of the Bag Parameter
The anomalous dimension of the effective currents in Equations (5.18) and (5.19) is
the same (cf. Equation (3.65)) and is given by [118–120]

γeff
j (αs) = −3CF

αs
4π + CF

[2
3π

2 (CA − 4CF ) + 1
2

(
5CF −

49
3 CA

)
+ 5

3nl
] (

αs
4π

)2

+O(α3
s) . (5.28)

Here, the b quark is not included and nl = nf − 1 = 4 denotes the number of light
flavors. We also have CA = Nc = 3.

The anomalous dimension of the bag factor defined in Equation (5.16) reflects the
fact that the four-quark operator can be expressed as a product of two two-quark
currents

γeff
1 − 2γeff

j = δ11

(
α2
s

4π

)2

+O(α3
s) ,

δ11 = NC − 1
3NC

[
2π2

(
3NC − 2− 6

NC

)
− 11N2

C − 15NC − 12 + 18
NC

+ 2(NC + 3)nl
]

(5.29)

in naive factorization. At one loop this is scale independent which means in particular
that γeff

1 = 2γeff
j [121, 122]. Here, γeff

1 is the anomalous dimension of the four-quark
operator in Equation (5.12) [123]. Then the running of the bag factor Beff

L is given
by

Beff
L (µ) = Beff

L (µ0)
[
1 + δ11

2β(nl)
0

α(nl)
s (µ)− α(nl)

s (µ0)
4π +O(α2

s)
]
. (5.30)

In the required accuracy we can assume that α(nf )
s = α(nl)

s = αs.

The µ dependence of the bag factor in full QCD is the same as the one of the
four-quark operator which is given in (3.94).
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(a) (b)

Figure 5.4.: Diagrammatical depiction of the three-point correlation function at
leading order. Here, (a) shows the color-enhanced and (b) the color-
suppressed contribution to the four-quark operator.

5.3. Calculation
As already mentioned, the computation of the bag parameter is quite difficult due to
hadronic effects. Thus, we rely on the method of QCD sum rules. Here, we need to
compute a three-point correlation function which was first introduced to study kaon
mixing [124]. When it comes to the calculation of the non-factorizable NLO pertur-
bative contributions, which are necessary to determine ∆B, we encounter three-loop
diagrams. In QCD, their computation is very challenging compared to the two-point
correlator [125]. Therefore, we perform the calculation in HQET where the required
master integrals have been evaluated in [116]. The application of the sum rule also in-
volves the computation of the corresponding quark-condensate contributions, which
are also considered in this section.

5.3.1. Perturbative Contribution
In order to determine the hadronic matrix element in Equation (5.8) we can choose
a suitable correlation function

K(ω1, ω1) =
∫

dDx1dDx2 eip1x1−ip2x2〈0|T
{
j+(x2)Oeff

L (0)j−(x1)
}
|0〉 (5.31)

with the operator Oeff
L = J+µJ

µ
− from Equation (5.12). The B meson states are

interpolated by the current

j± = d̄γ5h
± . (5.32)

The correlator only depends on the projections of the momenta onto the velocity of
the heavy quark ω1,2 = v · p1,2, which are scalar. The HQET quark and antiquark
only move forward in time such that the time-ordered product only yields a result
when v · x1 < 0 and v · x2 > 0. It is therefore sufficient to merely use the simple
product of operators.

The leading contribution of the correlator K is shown in Figure 5.4. Here, we see that
the four-quark operator results in two different structures. The diagram on the right
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(a) (b)

Figure 5.5.: Factorizable perturbative contributions at O(αs) to the correlator. The
four-quark operator is denoted by ⊗ and represents both, the color-
enhanced and -suppressed contributions.

(a) (b)

(c) (d)

Figure 5.6.: Non-factorizable perturbative contributions at O(αs) to the correlator.
Even though ⊗ represents the color-enhanced and -suppressed contri-
butions, the former does not contribute since it leads to traces of single
generators of SU(3) which vanish.



60 5. B − B̄-Mixing

is color-suppressed compared to the left one with a factor of (D − 2)/(2NC), where
D = 4− 2ε. Altogether, we consider the diagrams as factorizable which means that
we can treat both loops separately. The same assumption applies for the diagrams
in Figure 5.5, where we encounter a gluon exchange within one loop. In additon we
find corrections that are not restricted to one loop as shown in Figure 5.6. These
non-factorizable contributions result in three-loop diagrams.

With the separation of the two types of diagrams we find for the correlation function

K(ω1, ω1) =
(

1 + D − 1
2NC

)
Π(ω1)Π(ω2) + ∆K(ω1, ω1) , (5.33)

where

Π(ω) = NC(−2ω)2−2ε

(4π)D/2

[
I1 − 2CF

g2
s(−2ω)−2ε

(4π)D/2
D − 2
D − 4

(
I2

1 −
D(2D − 5)
D − 4 I2

)]
(5.34)

is the correlation function for j+ and J+µ [117,119,126]. Further, we have the ‘sunset’
diagrams in HQET which are given by

In = Γ(2n+ 1− nD)Γn
(
D

2 − 1
)
. (5.35)

The factorizable contribution yields

∆K(ω1, ω2) = NCCF
g2
s

(4π)3D/2R(ω1, ω2) , (5.36)

where

R(ω1, ω2) = −(D − 2)(3D − 7)(D2 − 16D + 40)(ω1 − 2ω2)
2(D − 4)(3D − 8)ω1(ω1 − ω2) I3(−2ω1)3D−5

+ (ω1 ↔ ω2)

+ (D − 2) [(D − 4)(3D − 8)ω1 − (D − 2)(2D − 5)ω2]
(D − 3)(D − 4)ω1

× I1I2(−2ω1)2D−4(−2ω2)D−3 + (ω1 ↔ ω2)

− (D − 2) [(3D − 8)(5D − 14)ω1 − 2(D − 4)(D2 − 7D + 11)ω2]
(D − 4)(3D − 8)(ω1 − ω2)

×M1(ω1, ω2) + (ω1 ↔ ω2)

+ (D − 2)(2D2 − 15D + 26)
2(D − 3) M2(ω1, ω2) + (D − 2)2ω1ω2

(D − 3)2 M ′
2(ω1, ω2)

+ 4(D − 2)(D − 3)(D2 − 16D + 40)ω1ω2

(D − 4)(3D − 8) M3(ω1, ω2)

− 2(D − 2)2ω1

D − 4 M4(ω1, ω2) + (ω1 ↔ ω2) . (5.37)
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Here, we used the integration-by-parts program LiteRed [127, 128] to reduce the
three-loop diagrams to the master integrals shown in Appendix C.2.1. They have
been computed in [116]. The master integrals can then be expanded in ε = 0, where
details can be found in [97,116]. We obtain

∆K(ω1, ω2) = NCCF
g2
s

(4π)3D/2 [Γ(1 + 2ε)Γ(1− ε)]3 (−2ω1)2−3ε(−2ω2)2−3εS(x) ,

(5.38)
where we have

S(x) =
[

1
48(x2 + x−2)− π2

3 + 5
4

]
1

3ε2

+
[
− 1

16(x2 − x−2) ln x+ 61
288(x2 + x−2) + x+ x−1 − 4ζ3 −

4
3π

2 + 41
4

] 1
3ε

+ 1
2

(
1
16(x2 + x−2) + π2

3 −
5
4

)
ln2 x−

( 61
288(x+ x−1) + 1

)
(x− x−1) ln x

+ 1
216

(
π2 + 2519

24

)
(x2 + x−2)− 1

3

(4
9π

2 − 67
4

)
(x+ x−1)

− 1
3

(
16ζ3 + 4

45π
4 + 25

6 π
2 − 193

4

)
(5.39)

and S(x) = S(x−1), where x = ω2/ω1. Here, ζ3 = ∑∞
n=1

1
n3 = 1.20206 is the Riemann

zeta function.

For ω1,2 < 0 the correlator K(ω1, ω2) is analytic and it has a cut in ω1,2 from 0
to +∞ on which the physical states lie. Keeping ω2 < 0, the correlation function
has a discontinuity

ρ1(ω1, ω2) = 1
2πi [K(ω1 + i0, ω2)−K(ω1 − i0, ω2)] (5.40)

regarding the cut in ω1. For the discontinuity in ω2 we find for ω1 > 0

ρ(ω1, ω2) = 1
2πi [ρ1(ω1, ω2 + i0)− ρ1(ω1, ω2 − i0)] . (5.41)

The three-point correlation function is of the form

K(ω1, ω2) = (−2ω1)2−3ε(−2ω2)2−3εf(x) , (5.42)

where f(x) can be derived from Equations (5.33), (5.34) and (5.38).

We can find the discontinuity by setting ω1,2 = −ν1,2 e−iα with ν1,2 > 0 and varying
α from 0 to π−0 or −(π−0). This way we rotate ω1,2 such that we approach the cut
either from above or below. We first rotate ω1 in Equation (5.40), keeping ω2 < 0,
and get

ρ1(ν1, ω2) = (2ν1)2−3ε(−2ω2)2−3ε

2πi

[
e3πiεf

(
−ω2

ν1
eπi
)
− e−3πiεf

(
−ω2

ν1
e−πi

)]
.

(5.43)
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We repeat the procedure for Equation (5.41) and find

ρ(ν1, ν2) = (2ν1)2−3ε(2ν2)2−3ε

(2πi)2

[(
e6πiε + e−6πiε

)
f(x)− f

(
xe2πi

)
− f

(
xe−2πi

)]
,

(5.44)

where x = ν2
ν1

. Analogous to Equation (5.33) the double spectral density is of the
form

ρ(ω1, ω2) =
(

1 + 1− ε
NC

)
ρ(ω1)ρ(ω2) + ∆ρ(ω1, ω2) , (5.45)

which is a bare quantity that still includes poles. The single spectral densities are
given in [117,119,126]

ρ(ω) = NC(2ω)2−2ε

(4π)D/2
Γ(1 + 2ε)Γ(1− ε)

1− 2ε

×
[
1 + CF

g2
s(2ω)−2ε

(4π)D/2 Γ(1 + 2ε)Γ(1− ε)
(3
ε

+ 4
3π

2 + 17
)]

, (5.46)

whereas the non-factorizable part of the double spectral density is found to be

∆ρ(ω1, ω2) = NCCF
g2
s

(4π)3D/2 [Γ(1 + 2ε)Γ(1− ε)]3 (2ω1)2−3ε(2ω2)2−3εr(x) ,

(5.47)

where r(x) = r(x−1). Here, the function

r(x) = −
(4

3π
2 − 5

)
(5.48)

is independent of x

We can now renormalize the spectral density, which is finite for

ρr(ω1, ω2) = Z−1
L Z−2

j ρ(ω1, ω2) , (5.49)

where Z−1
L is the renormalization constant for the four-quark operator Oeff

L and Z−2
j

is the one for the two-quark operator which is given to one loop in Equation (3.65).
From the relation found in Equation (5.29) we can infer that ZL = Z2

j . Thus, we
find a finite result for ρr(ω1, ω2) = Z−4

j ρ(ω1, ω2) and obtain

ρr(ω1, ω2) =
(

1 + 1
NC

)
ρr(ω1)ρr(ω2) + ∆ρr(ω1, ω2) (5.50)

with [117,119,126]

ρr(ω) = NC(2ω)2

(4π)2

[
1 + CF

αs
4π

(
−6 ln

(
2ω
µ

)
+ 4

3π
2 + 17

)]
(5.51)
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and

∆ρr(ω1, ω2) = −NCCF
αs

(4π)5 (2ω1)2(2ω2)2
(4

3π
2 − 5

)
. (5.52)

We can rewrite the expression by rearranging the leading order contribution in
Equation (5.51) and inserting it. We find

∆ρr(ω1, ω2) = −CF
NC

αs
4πρr(ω1)ρr(ω2)

(4
3π

2 − 5
)
, (5.53)

which we can insert in the double spectral density and finally obtain the form

∆ρr(ω1, ω2) = − 1
NC

CF
αs
4πρr(ω1)ρr(ω2)

(4
3π

2 − 5
)

=
(

1 + 1
NC

)
ρr(ω1)ρr(ω2)

(
1− αs

4π
NC − 1

2NC

(4
3π

2 − 5
))

. (5.54)

Here, we can directly read off the non-factorizable contribution which is already
correctly normalized.

5.3.2. Quark Condensates

For the sum rule we also obtain power corrections. Here, they manifest in quark
and gluon condensates. The leading contribution for our correlator K is the quark
condensate and the leading order diagrams are shown in Figure 5.7. Factorizable
corrections are depicted in Figure 5.8 and the non-factorizable ones in Figure 5.9.
We only consider condensate contributions for the light quarks here, since the ones
for the heavy quarks are strongly suppressed due to their large mass.

The diagrams in Figures 5.7 and 5.8 factorize. Thus, we can add the quark con-
densate contribution [129]

Πq(ω) = 1
2
〈q̄q〉
−2ω

[
1 + 2CF

g2
s(−2ω)−2ε

(4π)D/2 (D − 1)(D − 4)I1

]
(5.55)

to the two-point correlator function Π in Equation (5.34).

The non-factorizable αs corrections to the quark condensate contributions already
occur at two loops as shown in Figure 5.9. They are given by

∆Kq(ω1, ω2) = CF
g2
s〈q̄q〉

(4π)D Rq(ω1, ω2) , (5.56)
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(a) (b)

Figure 5.7.: Here, the leading contributions to the quark condensate are depicted.
Again, the ⊗ denotes both color-enhanced and color-suppressed contri-
butions.

(a) (b)

Figure 5.8.: A few of the factorizable contributions to the quark condensate. The
diagrams which are symmetrically identical also contribute.

(a) (b) (c)

(d) (e) (f)

Figure 5.9.: Illustration of the non-factorizable contributions to the quark conden-
sate. Again, also symmetrically identical diagrams exist.



5.3. Calculation 65

where

Rq = 4(ω1 + ω2) [(D − 2)(D − 5)(ω2
1 + ω2

2)− (D3 − 10D2 + 30D − 30)ω1ω2]
(D − 4)(−2ω1)5−D(−2ω2)5−D I2

1

+ 2D − 5
2(D − 3)(D − 4)(D − 5)ω2

2(ω1 − ω2)
×
[
(D − 2)(D − 5)2ω3

1 + 2(D − 2)(D − 5)(2D − 5)ω2
1ω2

−(D − 3)(D2 − 11D + 6)ω1ω
2
2 − 4(D − 2)(D − 3)ω3

2

]
I2(−2ω1)2D−7

+ (ω1 ↔ ω2)

+ −(D − 2)(D − 5)ω3
1 −Dω2

1ω2 + (D − 3)(D − 8)ω1ω
2
2 + (D − 2)ω3

2
4(D − 4)ω1ω2

2(ω1 − ω2)
×M(ω1, ω2) + (ω1 ↔ ω2) . (5.57)

Here, the master integral M(ω1, ω2) is shown in Appendix C.2.2 and defined in the
appendix of [97]. The expansion in ε = 0 can be found to be

∆Kq(ω1, ω2) = CF
g2
s〈q̄q〉

(4π)D [Γ(1 + 2ε)Γ(1− ε)]2 (−2ω1) 1
2−2ε(−2ω2) 1

2−2εSq(x) ,

(5.58)

where

Sq(x) = − 7
16
x1/2 + x−1/2

ε2

+
[

7
2(x1/2 − x−1/2) ln x+ (x1/2 + x−1/2)(x+ x−1 − 3)π

2

3

−1
4(x1/2 + x−1/2)(5x+ 5x−1 + 14)

] 1
4ε

+ (x1/2 + x−1/2)(x+ x−1 − 3)
×
[
3Li3(1− x) + 3Li3(1− x−1)− 2L(x) ln x− 2ζ3

]
+ (x1/2 − x−1/2)(x+ x−1)L(x) + 1

8(x1/2 + x−1/2)(2x+ 2x−1 − 7) ln2 x

+ (x1/2 + x−1/2)(10x+ 10x−1 − 27)π
2

24
+ 1

8(x1/2 − x−1/2)(5x+ 5x−1 + 32) ln x

− 1
4(x1/2 + x−1/2)(9x+ 9x−1 + 11) , (5.59)

which is also symmetric in Sq(x) = Sq(x−1). The special function L(x) is given by

L(x) = −L(x−1) = Li2(1− x) + 1
4 ln2 x , (5.60)
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where the dilogarithm is defined as

Li2(x) = −
∫ x

0
dt ln(1− t)

t
. (5.61)

The polylogarithms also fulfil the recursive relation

Lin(x) =
∫ x

0
dt Lin−1(t)

t
, n > 2 (5.62)

and with this the Riemann zeta function from above can also be written as

ζn = Lin(1) , n ≥ 2 . (5.63)

Further details and relations can be found in [97].

As before for the double spectral density ρ(ω1, ω2), we can determine the double
discontinuity for Rq(ω1, ω2)

discRq(ω1, ω2) = 2
[(
π2

3 −
5
4

)
ω2

2δ(ω1)

−(ω2 + ω1)
(
ω2

ω1
+ ω1

ω2
− 3

)
ln
(

1− ω1

ω2

)]
θ(ω2 − ω1)

+ (ω2 ↔ ω1) . (5.64)

Therefore, the non-factorizable contribution to the quark condensate part of the
spectral density is

∆ρq(ω1, ω2) = CF
αs〈q̄q〉

4π
2

16π2

{[(
π2

3 −
5
4

)
ω2

2δ(ω1)

−(ω2 + ω1)
(
ω2

ω1
+ ω1

ω2
− 3

)
ln
(

1− ω1

ω2

)]
θ(ω2 − ω1)

+(ω2 ↔ ω1)
}
. (5.65)

5.3.3. Sum Rule
In the previous subsections we have computed the OPE representation of the cor-
relation function which we can determine perturbatively. It does not reflect the
physical picture, though, since the quarks only appear in bound states. Thus, we
also need to introduce the hadronic representation of the correlator. Here, we insert
a complete set of mesonic states with quantum numbers that are compatible with
the interpolating current. The lightest state is stable in QCD, while higher states
decay strongly and form a continuum described by the spectral function ρcont. The
hadronic double spectral density is then given by

ρH(ω1, ω2) = 〈0|j+|B̄〉〈B̄|Oeff
L |B〉〈B|j−|0〉δ(ω1 − Λ̄)δ(ω2 − Λ̄) + ρcont(ω1, ω2)

= F 2〈B̄|Oeff
L |B〉δ(ω1 − Λ̄)δ(ω2 − Λ̄) + ρcont(ω1, ω2) , (5.66)
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where we used that 〈0|j+|B̄〉 = iF and F is given in Equation (5.24). Here, Λ̄ =
MB −mb is the residual energy of the B meson. The hadronic spectral density now
includes the matrix element which we are interested in. We can now use Equations
(5.16) and (5.20) and find

〈B̄(v)|Oeff
L (µ)|B(v)〉 =

(
1 + 1

NC

) 1
4F

2(µ)Beff
L (µ)

=
(

1 + 1
NC

) 1
4F

2(µ)
(
1 + ∆Beff

L (µ)
)
. (5.67)

The spectral density for the continuum states is not known. However, it can be
equated to the perturbative OPE result by the assumption of quark hadron duality.
We find that

ρcont(ω1, ω2) = ρr(ω1, ω2)[1− θ(ωc − ω1)θ(ωc − ω2)] , (5.68)

where ωc is the threshold for the continuum.

We can get a first estimate for the size of ∆Beff
L by using the finite energy sum

rule (FESR). Here, we only consider the square in the ω1-ω2 plane up to the con-
tinuum threshold 0 < ω1,2 < ωc and equate the integrals over the perturbative and
hadronic spectra. The square of the decay constant F can be related to the spec-
tral density for the two-point correlator by a sum rule. Inserting this into Equation
(5.67) and using Equation (5.52) the integrals cancel and we find the expression

∆Beff
L = −NC − 1

2NC

(4
3π

2 − 5
)
α(nl)
s (µ)
4π ≈ −2.72 α

(nl)
s (µ)
4π . (5.69)

A more profound way is to consider the complete energy range 0 < ω1,2 <∞, where
we also include the continuum states. In this case a Borel transformation is applied
for QCD sum rules to suppress higher-energy states. In HQET the control of power
corrections can be achieved by using Eukledian times τ1,2 with τ = it. Here, 1/τ1,2
are the Borel parameters for the double Borel transformation in ω1,2. We then find
the renormalized perturbative correlator to be

Kr(τ1, τ2) =
∫ ∞

0
dω1dω2 e−ω1τ1−ω2τ2ρr(ω1, ω2) + vacuum

condensates . (5.70)

Analogously we obtain for the hadronic representation

KH(τ1, τ2) =
∫ ∞

0
dω1dω2 e−ω1τ1−ω2τ2ρH(ω1, ω2) (5.71)

with the spectral density from Equation (5.66). We then equate the two representa-
tions and find

F 2(µ)〈B̄0(v)|Oeff
L (µ)|B0(v)〉 e−Λ̄(τ1+τ2) =

∫ ωc

0
dω1

∫ ωc

0
dω2 e−ω1τ1−ω2τ2ρr(ω1, ω2)

+ vacuum
condensates , (5.72)
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where we used the semilocal quark hadron duality (cf. Equation (5.68)).

We infer the continuum threshold ωc from the two-point sum rule [117,119,126]

1
2F

2(µ)e−Λ̄τ =
∫ ωc

0
dω e−ωτρr(ω) + vacuum

condensates . (5.73)

Then, we can devide Equation (5.72) by the product of two copies of Equation
(5.73). This yields the bag parameter

Beff
L = 1− NC − 1

2NC

(4
3π

2 − 5
)
α(nl)
s (µ)
4π + vacuum

condensates

≈ 1− 2.72 α
(nl)
s (µ)
4π + vacuum

condensates , (5.74)

which coincides with Equation (5.69). Here, the same continuum threshold is as-
sumed for the two- and three-point correlator such that the bag parameter is inde-
pendent of ωc. The result is valid at a low renormalization scale or µ ∼ ωc.

The result in Equation (5.74) is the HQET result. We can now use the matching
relation from Equation (5.27) and obtain the QCD result

∆B = −NC − 1
2NC

[
11 αs(mb)

4π +
(4

3π
2 − 5

)
αs(µ)

4π

]

≈ −(3.67 + 2.72)αs4π . (5.75)

Note, that αs is given at two different scales which appear in the matching and the
sum rule procedure, respectively. We are free to choose the scale involved in the sum
rule calculation near ωc with µ > ωc. However, in the following numerical analysis
µ = mb is used. The difference is of order αs(mb)2 ln(mb/ωc) and we account for it
in the uncertainty.

Now that we have computed the perturbative contribution to the bag parameter
we can take care of the power corrections such as the quark condensate contribu-
tion. Using FESR (at τ = 0) we find for the spectral density given in Equation
(5.65)

∫ ωc

0
dω1dω2 ∆ρq(ω1, ω2) = CF

αs〈q̄q〉
4π

2
3

ω3
c

(4π)2

(
π2 − 149

18

)
. (5.76)

The FESR for the two-point correlator yields

mBf
2
B = 2F 2 = NC

ω3
c

3π2 − 〈q̄q〉 . (5.77)
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We can then insert the term with the lowest lying state in Equation (5.66) as well
as Equation (5.67) into Equation (5.76). Using Equation (5.77) we finally obtain

∆Beff
L |q = NC − 1

NC

〈q̄q〉
mBf 2

B

αs
4π

[
1 + 〈q̄q〉

mBf 2
B

] (
π2 − 149

18

)
. (5.78)

With typical numerical values of

〈q̄q〉 = −(0.25 GeV)3 , mB = 5.3 GeV , fB = 200 MeV

we find that

〈q̄q〉
mBf 2

B

≈ −0.07 .

Thus, we neglect the contribution of the quark condensate in the squared brackets
in Equation (5.78) and find

∆Beff
L |q = −0.08 αs(mb)

4π . (5.79)

We use rough values for the phenomenological parameters and therefore generously
estimate an uncertainty for the result

∆Beff
L |q = −(0.10± 0.05) αs(mb)

4π . (5.80)

The power corrections have already been studied in [115] as an extension and update
to [112]. The former provides a value for the contribution of the gluon as well as the
mixed quark-gluon condensate extracted from FESRs

∆Beff
L |cond = −3π2

64

(
1
ω4
c

〈αs
π
GG〉 − 1

ω5
c

〈q̄Gq〉
)
≈ −0.008 . (5.81)

Here, the standard numerical values for 〈αs
π
GG〉 [130] and 〈q̄Gq〉 [131,132] were used.

A proper sum rule analysis in HQET yields

∆Beff
L |cond = −0.006± 0.005 , (5.82)

which is actually the result for a Bs meson. We will use it as an estimate for the Bd

meson.

In addition to the perturbative corrections also non-factorizable 1/mb power cor-
rections can emerge. However, they only arise at order αs/mb and are one order of
magnitude smaller than the other corrections considered here. Therefore, we account
for them in the uncertainties.
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5.4. Result
In this section we now gather the results of the calculations outlined above. We
have found the perturbative contribution via a sum rule and performed a matching
onto QCD. Taking into account the running in Equation (5.30) for Equation (5.75)
and evaluating it at µ = mb as mentioned above, we find that the perturbative
contribution to the violation of factorization is given by

∆Bpert ≈ −
(4

9π
2 + 2

)
αs(mb)

4π . (5.83)

The difference of order αs(mb)2 ln(mb/ωc) to the computation at µ ≈ ωc as well as
higher order terms are absorbed into the uncertainty, which we estimate with

∆Bpert = −6.4αs(mb)
4π ±

(
X
αs(mb)

4π

)
αs(mb)

4π . (5.84)

Here, we generously choose the factor X to be as large as X = 20 and αs(mb) =
0.20± 0.02. Thus, we obtain

∆Bpert = −(6.4± 0.3)αs(mb)
4π . (5.85)

Then, the bag parameter in Equation (5.85) yields

∆Bpert = −0.10± 0.02± 0.03 , (5.86)

where we assume a systematic error of 30%.

Next, we can determine the contribution of the non-perturbative power corrections,
namely the condensates. With Equation (5.80) we obtain for the quark condensate
contribution

∆Bq = −(0.10± 0.05) αs(mb)
4π = −0.002± 0.001 . (5.87)

The remaining condensate contribution taken from [115] was already mentioned
earlier in Equation (5.82). We repeat it here for completeness

∆Bnon-pert = −0.006± 0.005 .

This leaves us with a total violation of factorization of

∆B = −0.11± 0.04 , (5.88)

where the errors were added in quadrature.
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In particular, lattice results are given in terms of the renormalization group in-
variant (RGI) parameter B̂ = ẐB(mb), where [111]

Ẑ = αs(mb)−
γ0
2β0

(
1 + αs(mb)

4π

(
β1γ0 − β0γ1

2β2
0

))
. (5.89)

With Equations (3.95) and (3.96) and

γ0 = 4 , γ1 = −7 + 4
9nf , nf = 5

as well as αs(mb) = 0.2 we find a numerical value of

Ẑ = 1.51 . (5.90)

For our result

B = 1 + ∆B = 1− (0.11± 0.04) (5.91)

we can then explicitly compute the renormalization group invariant bag parameter

B̂RGI = 1.34± 0.06 . (5.92)

A recent lattice result [111] is

B̂latt = 1.38(12)(6)

and in a recent review [110] an average of

B̂latt = 1.26(9)

was given for nf = 2 + 1 flavors. We see, that our result agrees within the un-
certainties. In fact, we even obtain a smaller uncertainty as the current lattice
estimates which is due to our capability to distinguish between factorizable and
non-factorizable contributions.

Here, we have computed the result for Bd − B̄d mixing. For the consideration of
Bs mesons SU(3) breaking effects need to be taken into account due to the mass ms

of the strange quark. From experience this effect can be quite large. However, the
factorizable contributions to the bag parameter still yield unity as for the Bd − B̄d

system. Therefore, the difference only emerges at NLO and is quite small. An esti-
mate for the ratio of the two bag parameters is given by BBs/BBd = 1± 0.02 [133].

5.5. Discussion
In this chapter non-factorizable contributions to the bag parameter for B0

d − B̄0
d

mixing was computed via HQET sum rules. For αs corrections to the correlation
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function this required the computation of three-loop-diagrams. Together with the
non-perturbative condensate contributions we computed the violation of naive fac-
torization which is quite small. As a final result we obtained a complete NLO result

∆B = B − 1 = −(0.11± 0.04) (5.93)

for the Bd meson bag paramter.

The uncertainty for ∆B mainly stems from the scale µ ∼ mb that we used rather
than ωc as well as higher orders in αs and the value for αs(mb). These uncertain-
ties have been generously estimated within the numerical discussion. Other uncer-
tainties due to e.g. systematics of the sum rule computation or matching proce-
dures at NNLO were estimated on the basis of experiences with similar analyses
(e.g. [117, 126]). An analysis of uncertainties within sum rules has also been per-
formed in [115,134].

The uncertainty for our obtained value of ∆B is quite high which is typical for
sum rule computations. However, this uncertainty is solely related to the deviation
of the bag parameter from unity. Together with the factorizable contribution of the
bag factor, which is unity and free of errors, we obtain a result for the complete bag
parameter

B̂RGI = 1.34± 0.06 , (5.94)

which is very precise. Our advantage is that we are able to identify the contributing
diagrams of the correlation function that factorize. They merely result in a bag
parameter which is unity and therefore do not need to be computed. This ability
to analytically distinguish between factorizable and non-factorizable contributions
allows us to compete with the lattice results.



6. CP Violation in Three-Body
Decays

In the past decades non-leptonic two-body decays have been studied extensively. Es-
pecially the framework of QCD factorization (QCDF), which has been developed by
Beneke, Buchalla, Neubert and Sachrajda (BBNS) in 1999 [135,136], has proven to
render quite promising results. However, hadronic multi-body decays actually make
up a significant part of the branching fraction of non-leptonic B mesons. Unlike
two-body decays, they do not have fixed kinematics but populate a Dalitz plot and
therefore contain more information. Thus, they are quite interesting to study, but
also more difficult to treat theoretically.

Non-leptonic multi-body decays are also quite attractive when it comes to investi-
gate CP violation. It has been studied by LHCb, BaBar and Belle [137–142] within
the past years and we hope to get even more information from LHC Run 2 and Belle
II. Especially three-body decays such as B → KKK, B → KKπ, B → Kππ and
B → πππ were analyzed. Even though the integrated CP asymmetries have been
found to be quite small, huge local CP asymmetries in some kinematic regions were
found. We especially expect a rich structure of CP violation in the decay B → πππ
as found by LHCb and shown in Figure 6.1.

In this chapter we will concentrate specifically on the decay B− → π−π+π−. There
have been some attempts modeling hadronic three-body decays in the past such as
the Isobar model [143, 144] and the K-matrix formalism [145, 146]. More recently
there have been some studies based on Flavor Symmetries [147, 148], perturbative
QCD (pQCD) [149] or QCDF [150]. We will use the latter formalism to develop a
more profound data-driven model based on QCDF and study CP violation.

First, we will give a short introduction to QCDF in two-body decays. We then
give a short description of the generalization to three-body decays and recapitulate
the findings of [150]. Next, the non-perturbative quantities that we need to compute
the amplitude are introduced. After showing the results for our amplitude we eval-
uate it by fitting and comparing it to data by the LHCb Collaboration. Finally, we
will compute the CP asymmetry within our model and include a charm resonance
model to investigate the possible impact of subleading effects. This chapter is based
on [151].
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Figure 6.1.: Large local CP asymmetries in B− → π−π+π− as measured by the
LHCb Collaboration [137].

6.1. QCD Factorization
6.1.1. Two-Body Decays
Non-leptonic decays are quite difficult to deal with theoretically. Due to the all-
hadronic final state non-trivial QCD dynamics are involved. BBNS address this
problem in [135,136] for two-body decays and offer a solution in terms of QCD fac-
torization. We will briefly describe this framework.

We will start from a B meson decaying into two light mesons
M1 and M2, which means that we have a weak decay of a heavy
meson. In this case, three fundamental scales MW � mb � ΛQCD
are involved. The weak interaction scale MW , the mass of the
heavy quark mb as well as the QCD scale ΛQCD, where quarks
hadronize. Nowadays, the primal weak decay has been studied
intensively and can be computed using weak effective field theory
[152]. Here we integrate out the heavy degrees of freedom which
are much larger than the mass of the b quark. This results in a
seperation of the decay amplitude

A(B →M1M2) = GF√
2
∑
i

λiCi(µ)〈M1M2|Oi|B〉(µ) (6.1)

into a high-energy contribution Ci, which comprises effects above the renomaliza-
tion scale µ, and the low-energy effects, which are described by the effective local
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(a) (b)

Figure 6.2.: Schematical depiction of the factorization formula in Equation (6.2).
Here, (a) corresponds to the first term and (b) to the last term.

four-quark operators Oi. The latter are non-perturbative objects, while the Wilson
coefficients Ci can be computed perturbatively. The λi denote CKM factors.

As a first step we reduced the task at hand to the computation of the hadronic
matrix elements of the effective local four-quark operator. In the heavy quark limit,
BBNS [135, 136] find that the matrix element can be factorized into short-distance
contributions, namely the hard scattering kernel, and long-distance quantities like
form factors and light-cone distribution amplitudes (LCDAs). The latter they uti-
lized similar to the factorization of exclusive processes at large momentum transfer in
QCD as first proposed in [153,154]. Thus, the hadronic matrix element can be boiled
down to even simpler non-perturbative objects, which are universal and known.

For the weak effective operators Oi we find the transition matrix element up to
power corrections of order ΛQCD/mb to be

〈M1M2|Oi|B〉 =
∑
j

FB→M1
j (m2

2)
∫ 1

0
duT Iij(u)ΦM2(u) + (M1 ↔M2)

+
∫ 1

0
dξ du dv T IIi (ξ, u, v)ΦB(ξ)ΦM1(u)ΦM2(v) . (6.2)

Here, the amplitude is expressed through convolutions of the hard scattering func-
tions T I and T II , which are process-dependent and perturbatively calculable at the
scale mb, and LCDAs ΦX of the meson X. The latter are of non-perturbative nature
as well as FB→M1,2

j , which denotes the form factor for the process B → M1,2. Both
are universal objects and can be determined from semileptonic decays using lattice
QCD or sum rules. The momentum fractions of the constituents of the mesons in
the LCDAs are are denoted by ξ, u and v. The masses of the light mesons M1,2
are finite in the heavy quark limit and of order ΛQCD. A schematical picture of the
factorization formula is shown in Figure 6.2.

The third term in Equation (6.2) describes hard interactions with the spectator
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quark, which do not arise at leading order in αs. Annihilation topologies are also
power suppressed by ΛQCD/mb.

At leading order in αs and leading power in ΛQCD/mb we find that QCDF reproduces
naive factorization. This is consistent with the fact that the hard scattering kernel
is independent of the momemtum fraction u at leading order. Thus, the convolution
integral at the local limit merely gives us a meson decay constant and the matrix
element factorized into this and a form factor.

6.1.2. Three-Body Decays
We will now apply the QCDF approach to three-body decays and use the formalism
which was set up in [150]. In the following, we will concentrate on charmless decays
and focus on the process of B− → π−π+π−. The external momenta are defined as

B−(pB)→ π−(k1)π+(k2)π−(k3) , (6.3)

where momentum conservation pB = k1 + k2 + k3 holds. We consider the pions to
be massless which leaves us with

p2
B = m2

B , k2
i = 0 , sij ≡

(ki + kj)2

m2
B

= 2ki · kj
m2
B

(i 6= j) . (6.4)

Here, we defined the invariant mass sij for the pion pairs, respectively, which are
normalized to the square of the B meson mass m2

B. Due to momentum conservation
our kinematic variables satisfy

s12 + s13 + s23 = 1 ,with 0 ≤ sij ≤ 1 . (6.5)

As a consequence of this kinematic constraint we end up with two independent in-
variant masses. Another restriction that we encounter is the fact that there are two
identical particles involved. Therefore, we choose ECM

1 < ECM
3 , where ECM

1,3 is the
center-of-mass energy of the respective π− in the B meson restframe. Considering
our normalized invariant masses from above this results in s12 < s23 and we redefine
s12 ≡ slow

+−, s23 ≡ shigh
+− and s13 ≡ s−−.

The partial decay rate for the three-body decay is given by [16]

dΓ = 1
(2π)3

mB

32 |A(slow
+−, s

high
+− )|2dslow

+−dshigh
+− , (6.6)

whereA is the transition amplitude, which we will determine later. The partial decay
rate dΓ/dslow

+−dshigh
+− can be displayed as a Daltiz distribution as shown in Figure 6.3

and explained in more detail in Appendix D.1. For the case of B− → π−π+π− we
obtain a symmetric Dalitz plot in slow

+− and shigh
+− which is cut in half due to the

identical π−. The Dalitz plot can be divided into three regions [150] with different
kinematic configurations. The respective regions correspond to the center, edges and
corners of the Dalitz plot.
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Figure 6.3.: In the Dalitz plot we can distinguish three regions with different kine-
matic configurations. The central region I, the collinear regions IIa, IIb
and the soft regions IIIa, IIIb with different kinematic configurations,
respectively.

I. Central Region: All three pions distribute uniformly in space and their in-
variant masses are roughly the same and of order mB:

s−− ∼ slow
+− ∼ shigh

+− ∼ 1/3 . (6.7)

II. Collinear Region: Two pions move collinear and recoil against the third pion.
The collinear pions generate a small invariant mass while the other two are
large:

IIa : s−− ∼ 0 , slow
+− ∼ shigh

+− ∼ 1/2 (6.8)
IIb : slow

+− ∼ 0 , s−− ∼ shigh
+− ∼ 1/2 . (6.9)

III. Soft Region: One pion is soft and the other two pions move back-to-back
with large energy. Here, two invariant masses are small and one is large:

IIIa : s−− ∼ slow
+− ∼ 0 , shigh

+− ∼ 1 , (6.10)
IIIb : slow

+− ∼ shigh
+− ∼ 0 , s−− ∼ 1 . (6.11)

These various regions require different QCDF approaches of which two are given for
the central and the collinear region in [150]. In the following, we will focus on the
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(a) (b)

Figure 6.4.: Schematical depiction of the factorization formula in Equation (6.12).
Here, (a) corresponds to the first term and (b) to the second term.

edges of the Dalitz plot, which are described by the QCDF approach for slow
+− � 1. We

favor this collinear region since the interesting resonances emerge there. The central
region, on the other hand, is rather empty. This is in accordance with quasi-two-
body decays and implies that in this case our three-body decay resembles a two-body
decay but with different final states. We can use the same effective Hamiltonian as
for the two-body decay and adjust the QCDF approach such that we replace one of
the final state mesons by a system of two mesons. Now, we can set up the QCDF
formula for the three-body decay amplitude in the heavy quark limit

〈πππ|O|B〉s+−�1 = T I1 ⊗ FB→ππ ⊗ Φπ + T I2 ⊗ FB→π ⊗ Φππ , (6.12)

where ⊗ represents a convolution. Here, T I1,2 denote the hard scattering kernels and
O is the operator in the weak effective Hamiltonian. We also have the LCDA for the
pion and the form factor for the B → π transition. In the formula we see that there
is the necessity to introduce new non-perturbative quantities such as the 2π-LCDA,
which were first introduced by [155–157], and the B → ππ form factor, which has
been examined in [158]. In the formula, we omit the term with the spectator inter-
action since it vanishes at leading order. Schematically, this factorization formula is
depicted in Figure 6.4.

We will only consider the transition amplitude at leading order. Then the hard scat-
tering kernel is independent of the momentum fraction of the constituent quarks.
This means that the convolution integrals are trivial and we eventually only have
to deal with decay constants and form factors since we only have local operators
at hand. Practically, this means that we only need to cope with naive factorization
(see also [159])

〈π−(k1)π+(k2)π−(k3)|j1 ⊗ j2|B−(pB)〉 = 〈π−(k1)π+(k2)|j1|B−〉〈π−(k3)|j2|0〉
+ 〈π−(k3)|j1|B−〉〈π−(k1)π+(k2)|j2|0〉 .

(6.13)
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6.2. QCD-factorized Effective Hamiltonian
As already mentioned, we will use the same effective Hamiltonian as for the B → ππ
decay. We will merely end up with different final states for which we will introduce
new non-perturbative input later. Hence, we can simply take the effective Hamilto-
nian from [135] which we derive in Appendix D.2

Heff = GF√
2

(λuTu + λcTc) , (6.14)

where

Tu = au1
[
(ūb)V−A ⊗ (d̄u)V−A

]
+ au2

[
(d̄b)V−A ⊗ (ūu)V−A

]
+ a3

∑
q

[
(d̄b)V−A ⊗ (q̄q)V−A

]
+ au4

∑
q

[
(q̄b)V−A ⊗ (d̄q)V−A

]
+ a5

∑
q

[
(d̄b)V−A ⊗ (q̄q)V+A

]
− 2au6

∑
q

[
(q̄b)S−P ⊗ (d̄q)S+P

]
and

Tc = a3
∑
q

[
(d̄b)V−A ⊗ (q̄q)V−A

]
+ ac4

∑
q

[
(q̄b)V−A ⊗ (d̄q)V−A

]
+ a5

∑
q

[
(d̄b)V−A ⊗ (q̄q)V+A

]
− 2ac6

∑
q

[
(q̄b)S−P ⊗ (d̄q)S+P

]
.

Here, q = u, c and λq = V ∗qdVqb. Further, our currents are abbreviated by (ūb)V±A =
ūγµ(1 ± γ5)b as well as (ūb)S±P = ū(1 ± γ5)b. The Hamiltonian is obtained by
applying the QCD factorization formula to the weak effective Hamiltonian in [152].
The coefficients ai are combinations of the Wilson coefficients Ci [152]. For B → πππ
we find at tree level ac1 = ac2 = 0, since no c quarks are involved, as well as au4 = ac4.
We have

a1,2,4 = C1,2,4 + C2,1,3

NC

, (6.15)

where NC = 3 is the number of colors. We will later see that the operators multiplied
by a3,5,6 will not contribute at leading order and leading twist1. Note, that the
definition of C1 and C2 differs from the one in [152], where 1 and 2 reversed. The
values for the Wilson coefficients at µ = mb can be taken from [160].

6.3. Non-Perturbative Input
We now need to introduce several non-perturbative quantities to finally obtain the
amplitude for our decay B− → π−π+π−. In the following, we will define the particu-
lar decay constants and form factors needed in the further course of this calculation.

1Twist is the difference between the canonical dimension of the matrix element and its spin. Here,
the fields u and d each have dimension 3/2 and the operator ūγµγ5d has spin 1.
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Figure 6.5.: Time-like pion vector form factor F em
π = |F em

π |eiθV .

6.3.1. Pion Decay Constant and Pion Form Factor
The pion decay constant is well known and defined as

〈π−(k3)|(d̄u)V−A|0〉 = ifπk3µ , (6.16)

where fπ ≈ 130 MeV [16].

The time-like vector form factor in the two-pion channel is defined as

〈π−(k1)π+(k2)|(ūu)V−A|0〉 = −〈π−(k1)π+(k2)|(d̄d)V−A|0〉
= (k1 − k2)µF em

π = k̄µF
em
π (6.17)

and can be directly obtained from τ decays and from e+e−-annihilation. Unfortu-
nately, there is no suitable experimental data on the phase available. Hence, we are
obliged to use a parameterization as in [161] (see also [162]), which is fitted to the
results of the BaBar Collaboration for e+e− → π+π−(γ) [163]. In addition, we in-
clude ρ − ω mixing to take into account isospin violation by adjusting the leading
term of the pion vector form factor such that [164]

F em
π,ρ → F em

π,ρ

(
1 + Θρω

3m2
ρ

s

s−m2
ω + imωΓω

)
. (6.18)

This modification results in the small kink close to the mass of the ρ meson at about
0.78 GeV seen in Figure 6.5.

In the course of introducing the B → ππ form factor we will later also require
the associated scalar form factor. It is defined as [165]

〈π−(k1)π+(k2)|muūu+mdd̄d|0〉 = m2
πF

S
π (k2) , (6.19)

such that it vanishes in the chiral limit for massless quarks. This form factor can
be extracted using chiral perturbation theory and we will use the results from [165],
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Figure 6.6.: Time-like pion scalar form factor F S
π = |F S

π |eiθS .

which are valid up to k2 ' 3 GeV2. For higher k2 we used an interpolation. Similar
studies have been performed in [166]. In Figure 6.6 we see that it does not exhibit
the usual Breit-Wigner shape of a resonance.

6.3.2. B → π Form Factors
The B → π form factor is well known and defined as [167]

〈π−(k3)|d̄γµb|B−(pB)〉 = f+(q2)
[
pµB + kµ3 −

m2
B −m2

π

k2 kµ
]

+ f0(q2)m
2
B −m2

π

k2 kµ ,

(6.20)

where k = pB − k3 = k1 + k2. We find that we eventually only need the contraction
of Equation (6.20) with Equation (6.17) and thus with the momentum k̄ = k1 − k2.
This means that we only need

〈π−(k3)|d̄(/k1 − /k2)b|B−(pB)〉 = 2k3 · k̄f+(q2) , (6.21)

since k · k̄ = 0. As a consequence, we only need the form factor f+(q2) for which we
use the result in [168].

6.3.3. B → ππ Form Factors
Following [158] (using the phase convention of [169, 170]), the hadronic matrix ele-
ment of the B → ππ decay can be parameterized by four independent form factors,
one vector form factor F⊥ and three axial-vector form factors Ft, F0 and F‖

i〈π−(k1)π+(k2)|ūγµ(1− γ5)b|B−(pB)〉 = iF⊥k̄
µ
3(⊥) + Ft

kµ3√
k2

3

+ F0k
µ
(0) + F µ

‖ k̄
µ
(‖)

(6.22)



82 6. CP Violation in Three-Body Decays

with the orthogonal basis k3, k(0), k̄(‖) and k̄3(⊥), which spans the Minkowski space.
Here, k3 is the momentum of the unpaired pion with k2

3 = m2
π and the basis vectors

satisfy k3 · k(0) = k3 · k̄(‖) = k3 · k̄3(⊥) = 0.

For the calculation of our transition amplitude we merely need the contraction of
Equation (6.22) with Equation (6.16) and therefore simply the contraction with the
momentum of the unpaired pion k3. This yields

〈π−(k1)π+(k2)|ū/k3γ5b|B−(pB)〉 = iFt
k2

3√
k2

3

= iFt
m2
π√
m2
π

= imπFt(k2, k3 · k̄) ,

(6.23)

where k = k1 + k2 and k̄ = k1 − k2. Hence, we find that only the time-like form
factor Ft is relevant. In the case at hand, the two pions can have isospin I = 0 or
I = 1 such that we can decompose Ft into an isoscalar and isovector part

Ft = F I=0
t + F I=1

t (6.24)

as shown in Appendix D.3.1. Our next challenge will be to find an expression for Ft.

Time Like Isovector B → ππ Form Factors

We will first start with the isovector form factor F I=1
t since much more is known

about it. Isovector contributions to the B → ππ form factor have been investigated
using light-cone sum rules (LCSR) [169–171]. However, similar studies have not
been done for F I=0

t . Here, we will take advantage of the fact that the isovector
contribution is dominated by the resonance of the ρ meson [170]. For now, we will
assume that the B → ππ decay solely proceeds via a ρ resonance. We therefore
insert an intermediate ρ state

〈π−(k1)π+(k2)|ūγµ(1− γ5)b|B−(pB)〉
=
∑
ε

〈π−(k1)π+(k2)|ρ0(k, ε)〉Bρ(k)〈ρ0(k, ε)|ūγµ(1− γ5)b|B−(pB)〉 , (6.25)

where ε is the polarization vector for the ρ resonance with momentum k. The Breit-
Wigner

BP (k) = 1
k2 −m2

P + i
√
k2ΓP

(6.26)

accounts for the propagation of the intermediate state. Here, ΓP is the total decay
width of the particle P .
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The B → ρ form factors have been studied in [170] and can be written as
√

2〈ρ0(k, ε)|ūγµ(1− γ5)b|B−(pB)〉 = εµαβγε
∗αqβkγ

2V Bρ(q2)
mB +mρ

− iε∗µ(mB +mρ)ABρ1 (q2)

+ i(2k + q)µ(ε∗ · q) A
Bρ
2 (q2)

mB +mρ

+ iqµ(ε∗ · q)2mρ

q2

(
ABρ3 (q2)− ABρ0 (q2)

)
,

(6.27)

where 2mρA
Bρ
3 (q2) = (mB + mρ)ABρ1 (q2) − (mB −mρ)ABρ2 (q2). Since ρ0 represents

a superposition ρ0 ∼ (d̄d − ūu)/
√

2 we get the extra factor of
√

2 compared to the
form factor for a charged ρ.

We find, that merely one form factor for the axial vector current is relevant when
contracting with the momentum q

〈ρ0(k, ε)|ū/qγ5b|B−(pB)〉 = i√
2

(ε∗ · q)2mρA0(q2) , (6.28)

where q = pB − k = k3 is the momentun transfer.

The ρ→ ππ transition matrix element can be parameterized using a strong coupling
gρππ

〈π−(k1)π+(k2)|ρ0(k, ε)〉 = gρππ(k1 − k2)µεµ = gρππk̄
µεµ . (6.29)

Inserting Equations (6.28) and (6.29) into Equation (6.25) and contracting the result
with q = k3 yields

〈π−(k1)π+(k2)|ū/k3γ5b|B−(pB)〉 =
∑
ε

gρππε · k̄Bρ(k) i√
2

(ε∗ · k3)2mρA0(m2
π)

= −gρππBρ(k)2imρ√
2
A0(m2

π)k3 · k̄

= imπF
I=1
t , (6.30)

where we used the polarization sum∑
ε

εµε
∗
ν = −gµν + kµkν

k2 . (6.31)

We can now replace the simple Breit-Wigner shape, which describes our ρ resonance,
by applying the same approximation to the matrix element for the time-like pion
form factor

〈π−(k1)π+(k2)|ūγµ(1− γ5)b|0〉 = (k1 − k2)µF em
π (k2)

=
∑
ε

〈π−(k1)π+(k2)|ρ0(k, ε)〉Bρ(k)〈ρ0(k, ε)|ūγµ(1− γ5)b|0〉 . (6.32)
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For the decay constant of the ρ resonance we find that

〈ρ0(k, ε)|ūγµ(1− γ5)b|0〉 = 1√
2
fρmρε

∗
µ . (6.33)

Then, we can contract again with k3 and find with Equations (6.33) and (6.29),
using the polarization sum, that

〈π−(k1)π+(k2)|ū/k3(1− γ5)b|0〉 = k3 · k̄F em
π (k2)

=
∑
ε

〈π−(k1)π+(k2)|ρ0(k, ε)〉Bρ(k)〈ρ0(k, ε)|ū/k3(1− γ5)b|0〉

= −gρππBρ(k) 1√
2
fρmρk3 · k̄ . (6.34)

We can now solve this for

gρππBρ(k) = −
√

2F em
π (k2)

fρmρ

, (6.35)

which allows us to replace the Breit-Wigner shape in (6.30). We can then extract a
data-driven expression for

F I=1
t = 2k3 · k̄

F em
π (k2)
fρmπ

A0(m2
π) , (6.36)

where fρ = 0.209 GeV [172] and A0(m2
π) ' A0(0) = 0.36 [173] (following up [174]).

Time Like Isoscalar B → ππ Form Factors

For the scalar resonance we use an analogous method. We now assume that the
scalar contribution to the B → ππ form factor predominantly enters via the process
B → S0 → ππ, where S0 is a light scalar resonance. We can now treat S0 in the
same manner as the ρ resonance above. Thus, we can write

〈π−(k1)π+(k2)|ūγµ(1− γ5)b|B−(pB)〉
= 〈π−(k1)π+(k2)|S0〉BS(k)〈S0|ūγµ(1− γ5)b|B−(pB)〉 . (6.37)

The B → S0 form factor is defined in [175]

〈S0(k)|ūγµ(1− γ5)b|B−(pB)〉 = −i
[(

(pB + k)µ −
m2
B −m2

S

q2 qµ

)
FBS

1 (q2)

+ m2
B −m2

S

q2 qµF
BS
0 (q2)

]
.

Here, again, we will later only need the contraction with q = k3. Hence, we find that
only the following form factor is needed

〈S0(k)|ūγµ(1− γ5)b|B−(pB)〉 = −i(m2
B −m2

S)FBS
0 (q2) .



6.3. Non-Perturbative Input 85

Analogous to above we parameterize the S0 → ππ transition matrix element via a
coupling gSππ

〈π−(k1)π+(k2)|S0〉 = gSππmS . (6.38)

We now find

〈π−(k1)π+(k2)|ū/k3γ5b|B−〉 = 〈π−(k1)π+(k2)|S0〉BS(k)〈S0|ū/k3γ5b|B−〉
= −igSππBS(k)mS(m2

B −m2
S)FBS

0

= imπF
I=0
t .

Then, we can replace the product of the coupling and the Breit-Wigner gSππBS(k)
using the time-like scalar pion form factor from Equation (6.19) and applying the
same procedure as above defining

〈S0(k)|q̄q|0〉 = fSmS . (6.39)

We then find

〈π−(k1)π+(k2)|muūu+mdd̄d|B−(pB)〉 = m2
πF

S
π

= 〈π−(k1)π+(k2)|S0(k)〉BS(k)〈S0(k)|muūu+mdd̄d|B−(pB)〉
= gSππmSBS(k)

[
mu〈S0(k)|ūu|B−〉+md〈S0(k)|d̄d|B−(pB)〉

]
= gSππmSBS(k)(mu +md)fSmS .

Hence, we can now replace

gSππBS(k) = m2
πF

S
π

(mu +md)fSm2
S

(6.40)

in Equation (6.39) and find

F 0
t = −mπ(m2

B −m2
S)

mS(mu +md)
FBS

0
fS

F S
π . (6.41)

Not much is known about the scalar matrix elements. In particular, we do not have
information on the size of the form factor FBS

0 and the decay constant fS. We do
not even know which scalar is dominant at low energies. Thus, we will model the
time-like isoscalar form factor via

F 0
t = m2

B

fπmπ

βeiφF S
π (k2) , (6.42)

where β and the strong phase φ are constant model parameters. The factorm2
B/fπmπ

is chosen arbitrary to fit nicely into our final expression of our B → πππ amplitude.
Due to the lack of any other data on the isoscalar form factor we will later fit β and
φ to the data.
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6.4. Calculation of the Amplitude
Now we can compute the amplitude at leading order in αs, leading power in ΛQCD/mb

and leading twist. A detailed calculation of the individual matrix elements in naive
factorization can be found in Appendix D.4. Using that

2k3 · k̄ = m2
B(1− slow

+− − 2shigh
+− ) , (6.43)

we find the following expression for the transition amplitude

A(slow
+−, s

high
+− ) = GF√

2
{

[λu(a2 − au4)− λcac4]m2
B(1− slow

+− − 2shigh
+− )f+(slow

+−)F em
π (slow

+−)

+ [λu(a1 + au4) + λca
c
4] fπmπFt(slow

+−, s
high
+− )

}
. (6.44)

Here, Ft(slow
+−, s

high
+− ) = F I=1

t (slow
+−, s

high
+− ) + F I=0

t (slow
+−).

The LHCb Collaboration [137] presents their measurements in terms of the helicity
angle, which is defined as (see Appendix D.5)

k3 · k̄ = βπ
2
√
λ cos θπ , (6.45)

where θπ is the polar angle of the paired π− in the dipion rest frame. This coincides
with the definition of the LHCb Collaboration, where they define the angle between
the momentum of the unpaired and the paired pion with the same charge in the
dipion rest frame. Here, βπ = (k2 − m2

π)/k2 and λ = λ(m2
B,m

2
π, k

2) is the Kallén
function with λ(a, b, c) = a2 + b2 + c2− 2(ab+ bc+ ac). Hence, for massless pions we
find

2k3 · k̄ = m2
B(1− slow

+−) cos θπ . (6.46)

We do not have access to the efficiency- and background-corrected full Dalitz distri-
bution from the LHCb Collaboration. Therefore, we will use their projections of the
number of B− and B+ signal events in bins of the variable m12 =

√
m2
Bs

low
+− [137].

They distinguish between projections for cos θπ > 0 and cos θπ < 0. Using Equations
(6.43) and (6.46) we find that in our notation cos θπ > 0 corresponds to shigh

+− <
1−slow

+−
2 .

In Figure 6.7, the LHCb results for the projections are displayed for B− → π−π+π−

in bins of 0.05 GeV.

Using this piece of data we can now fit our free model parameters β and φ. We
calculate the decay rate for each bin in our model in order to use it for a χ2 mini-
mization. Therefore, we perform an integration over shigh

+− for the two cases cos θπ > 0
and cos θπ < 0. We then need to integrate over slow

+− for each bin of 0.05 GeV, where
we approximate the integration by a Riemann sum. The obtained values can now be
used to fit to the data. Since we do not know the time of measurement, we will also
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Figure 6.7.: The projections for (a),(b) B+ and (c),(d) B− decays with cos θ > 0
and cos θ < 0 as a function of m12 =

√
m2
Bs

low
+−. The blue line represents

the best fit for our model. The red data points are the results from the
LHCb Collaboration [137].

include a fit parameter to take care of the normalization. We obtain the following
best fit parameters

β = 0.18 and φ = 18◦ . (6.47)

Since the value for χ2 is fairly large we do not give any errors. In Figure 6.7, we
show our yield predictions for our best fit result in Equation (6.47) compared to the
LHCb data.
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6.5. CP Violation
We are now prepared to investigate CP violation within our model. The CP asym-
metry is defined as

ACP(slow
+−, s

high
+− ) = |A(slow

+−, s
high
+− )|2 − |Ā(slow

+−, s
high
+− )|2

|A(slow
+−, s

high
+− )|2 + |Ā(slow

+−, s
high
+− )|2

, (6.48)

where Ā is the CP conjugated of the amplitude A, which means that all weak
phases are conjugated. In order to obtain a value for ACP that is non-zero we re-
quire a strong as well as a weak phase difference. The latter stems from the CKM
matrix elements and the corresponding weak phase γ of the Unitarity Triangle. Here,
λu = VubV

∗
ud = |VubV ∗ud|e−iγ and λc = VcbV

∗
cd = |VcbV ∗cd| is real. We use the Wolfen-

stein parameterization and the values given in [176]. The pion decay constant fπ
and B → π form factor f+ are real. At leading order the coefficients ai are real.
Beyond leading order they do have perturbative strong phases [172] which we will
not consider here. Including these O(αs) effects would require a great effort to com-
pute the convolution of the hard scattering kernel with the two-pion distribution
amplitude [155–157].

In Figure 6.1, we see large local CP asymmetries. These can only be induced by
kinematic-dependent strong phases. In the previous sections we observed that the
time-like pion form factor Fπ and the time-like B → ππ form factor Ft contain
non-perturbative strong phases θS and θV , which are actually depending on the
kinematics

F S
π (slow

+−) = |F S
π (slow

+−)|eiθS(slow
+−) , F em

π (slow
+−) = |F em

π (slow
+−)|eiθV (slow

+−) . (6.49)

Only the product k3 · k̄ contains the variable shigh
+− which we replace by cos θπ using

Equation (6.46). We can now compute the CP asymmetry in terms of slow
+− and cos θπ

which is proportional to

ACP(slow
+−, cos θπ) ∼ β sin γ sin(θS + φ− θV ) cos θπ|F S

π (slow
+−)||F em

π (slow
+−)|g(slow

+−) ,
(6.50)

where

g(slow
+−) = −2G2

F (a1 + a2)ac4m4
B(1− slow

+−)|λu||λc|f+(slow
+−) (6.51)

is real.

In Equation (6.50), we observe that in fact only the interference of terms includ-
ing the pion vector form factor F em

π and the isoscalar B → ππ form factor F I=0
t

contribute to the CP asymmetry. This is due to the fact that F I=1
t has the same

strong phase as F em
π such that their interference leads to a vanishing CP asymmetry.
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Figure 6.8.: The difference between the B− and the B+ yield for cos θ > 0 and
cos θ > 0 as a function of m12. Again, the blue line denotes our model’s
best fit while the red points represent LHCb data points [137].

The LHCb Collaboration also provides plots for the difference B− −B+ of the pro-
jected yield for cos θπ > 0 and cos θπ < 0, which is a measure for the CP asymmetry.
We display our fit results in Figure 6.8 together with those that were measured. We
observe that up to 1.1 GeV our result roughly reproduces the shape of the LHCb
data even though the outcome of our model is much smaller. Further, we observe
that the second part of our plot does not show the same behavior. This can be
explained by the fact that we solely examine a scalar-vector wave interference which
is proportional to cos θπ. This always gives a sign switch for cos θπ > 0 compared to
cos θπ < 0.

6.6. Charm Resonance Model

Our model is based on the conjecture that our three-body decay is dominated by
resonances in the π−π+ system. This effect is only predominant at the edges of the
phase space. As a matter of fact, we see in Figure 6.9(a) that most of the events can
be found in that region. In Figure 6.1, we see that large local CP asymmetries were
measured at high slow

+−. We presume that this effect might emerge due to subleading
effects. In Equation (6.14) we already distinguished between the amplitudes Tu and
Tc, where the latter is sensitive to charm-quarks and can thus be influenced by
charmed penguins. This might have the potential to create large CP asymmetries in
the region around the charm threshold of 2mc. In order to get a qualitative picture
of this effect we modify our model by adding a Breit-Wigner, which describes a
propagating resonance with mass 2mc, to Tc
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Figure 6.9.: (a) Measured Dalitz distribution with logarithmic intensity for B− →
π−π+π− by the LHCb Collaboration [137]. The red line denotes the
cos θπ = 0 line, where the region below the red line is equivalent to
cos θπ > 0. (b) corresponding Dalitz distribution in our model including
the charm resonance.

Tu = T (0)
u

Tc = T (0)
c + g

4m2
c

m2
12 − 4m2

c + imcΓ
, (6.52)

where the leading order amplitude given by the term proportional to λq in Equation
(6.44) is denoted by T (0)

q . Here, g is a coupling constant that we use to tune the
strength of this subleading effect. We set it to g = 0.02 and assume mc = 1.6 GeV
as well as Γ = 0.15 GeV.

Including the charm loop leads to the Dalitz distribution with logarithmic inten-
sity as shown in Figure 6.9(b). Here, we see that the Dalitz plot is still dominated
by the ρ resonance, as it is the case for the data, and the effect of the charm penguin
is not noticeable at this level of precision. This cannot be said about the resulting
local CP asymmetry distibution which is displayed in Figure 6.10(b). Here, we ob-
serve significant local CP asymmetries in the region of the charm threshold.

The LHCb data is given in specific bins that all include the same number of events
resulting in different bin sizes. In order to plot our results in the same bins we com-
puted a value for the CP asymmetry for every bin by integrating the numerator
and denominator of the CP violation given in Equation (6.48) seperately within the
boundaries of each bin. The result is shown in Figure 6.10(c). Here, we expanded our
model up to higher values for slow

+−. Note, that we use a different scale for the legend
of our plot compared to the one by the LHCb Collaboration in Figure 6.10(a). Re-
garding our method to obtain the CP distribution in the binned plot it seems very
difficult to obtain such a large CP violation in one bin as the LHCb Collaboration
does.
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Figure 6.10.: (a) The CP asymmetry distribution as measured by the LHCb Collab-
oration [137], (b) the results of our model including the charm penguin
and (c) the same result shown in a binned plot.
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6.7. Discussion

We studied CP violation in charmless three-body B decays, in particular for B− →
π−π+π−, using a data-driven model which is based on QCD factorization [151].
Due to the non-trivial kinematics and the resulting phase space distributions, three-
body decays have the potential to give away much more information than two-body
decays. Unfortunately, their theoretical treatment is also more difficult due to the
occurring hadronic matrix elements. In order to get a hold on these, we used a
‘partial factorization’ as proposed in [150] to describe the edges of the Dalitz plot.
Here, non-perturbative input is required such as generalized form factors, which we
introduced. We came up with a model for the transition amplitude which depends
on the parameter β and a strong phase φ. We then computed the CP asymmetry
which is mostly driven by the non-perturbative strong phases of the scalar and vec-
tor time-like pion form factors. Finally, we included a charm resonance model to
investigate the effect of subleading contributions.

We have seen that our simple model is able to reproduce some of the features that
can be observed in the experimental results by the LHCb Collaboration [137]. In
the following, we will discuss some of the challenges that need to be addressed in
the future to improve our model.

At this point, we were interested to see if the QCDF framework at hand offers
the possibility to qualitatively generate some of the features seen in the Dalitz dis-
tribution and local CP asymmetry as observed by experiments. Therefore, we simply
investigated the process at leading order, where naive factorization applies. To in-
clude higher orders we would additionally need to introduce two-pion light-cone dis-
tribution amplitudes. The hard scattering kernels which are involved in the QCDF
approach are already known from studies with two-body decays up to next-to-next-
to-leading order (NNLO). The convolutions with the aforementioned 2π LCDAs still
need to be computed, though.

Currently, we use a rather crude model to describe our B → ππ form factors in
terms of the time-like pion form factors. In the past, there were already attempts
to address this problem using light-cone sum rules with pion distribution ampli-
tudes [169,171] and B meson distribution amplitudes [170]. From this we know that
F I=1
t is related to F em

π . For F I=0
t the relation to F S

π is much less certain. Since not
much is known about this we are forced to introduce some model parameters. In the
future, futher LCSR studies on this matter might help avoiding the modeling that
we applied above.

We have observed that the CP violation is primarily driven by the interference
of F em

π and F S
π , more specific by their phases. Therefore, it is of great importance to

gain more precise information on those. At the moment, we got access to accurate
measurements up to k2 ∼ 3.5 GeV2 for |F em

π |. Not much is known about the phase
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on experimental side, though, which forces us to fall back on another model. The
pion scalar form factor F S

π is much less studied. To improve the situation in the
future we need more data on these form factors.

The data on B → πππ and especially on the CP asymmetries is not yet very
precise. Right now, we only have access to data projections for small momenta. In
the future it would be beneficial to have at least some information on the projections
for higher momenta. Since information about the shigh

+− variable is lost performing
that projection it would be preferable to gain access to the full information on the
Dalitz and CP distributions. Further, we do not have access to the full efficiency-
and background-corrected Dalitz distribution which makes it difficult to compare
our results with the ones from the LHCb Collaboration.

At the moment, our results for the difference between the B− and B+ yield do
not show the same behavior as the LHCb results at ∼ 1.3 GeV, where we observe
a sign flip whereas they do not. We only have a scalar-vector interference which is
proportional to cos θπ and therefore obviously switches sign when comparing regions
with cos θπ > 0 and cos θπ < 0. The absence of a sign-change could be explained by
the interference of pure scalar contributions.

Our model is a first step towards describing three-body decays using a data-driven
approach. In order to improve our model we will need to include higher orders in
the future. Obtaining both B → ππ form factors from LCSR would also enhance
the quality of our model. Furthermore, it will be beneficial to gain more data on the
time-like form factor as well as on the Dalitz and CP distribution. Altogether, this
will reduce the model-dependence of our approach.





7. Summary and Conclusion
Within the last decades, a tremendous progress has been made in high energy
physics. With the discovery of the Higgs boson, all particles which the Standard
Model predicted have been verified by experiments. Nevertheless, there are still
many open questions to be answered in the future. Some of them are related to
tensions between theory and experiment, which concern the quark and lepton flavor
sector. Here, especially B mesons open up a rich field for flavor studies. Their large
mass and long lifetime make them easy to access experimentally, which led to the
construction of the big B factories. On theory side, the large mass of the b quark
allows the application of Heavy Quark Effective Theory (HQET). We have shown
three applications of HQET in this thesis.

One advantage of HQET is the emergence of a heavy flavor and spin symmetry.
The latter leads to the formation of spin-symmetry doublets. Particularly, for the
orbitally excited D mesons two doublets with the total angular momentum of the
light degrees of freedom of j = 1/2 and j = 3/2 are obtained. Contributions of the
HQET Lagrangian at order 1/m allowed us to investigate the mixing of the two
meson states with the same total angular momentum of 1+. We developed a model
to extract the mixing angle and fitted the model parameters to data on the masses
of the orbitally excited states. The main goal was to investigate if the mixing can re-
solve the ‘1/2 vs. 3/2 puzzle’. Here, the observed semileptonic B decay rate into the
orbitally excited D meson states with j = 1/2 is roughly equal to the one into states
with j = 3/2. The latter are predicted to be much more dominant, though. With our
model we obtained an effective mixing angle of 27◦ and observed that this indeed
eases the tension between experiment and theory. Nevertheless, our model aimed
for a rather qualitative picture and the current experimental situation is not very
conclusive. For the future, a simultaneous analysis for the masses and the widths of
the orbitally excited states would be interesting and we are hoping for more precise
data on this matter.

Another benefit of HQET is the tremendous simplification of loop calculations.
During the computation of the ∆B = 2 matrix element for B-B̄ mixing the bag
parameter arises. It is a measure for the deviation from the naive factorization.
We computed the non-factorizable O(αs) corrections to the bag parameter, which
required the evaluation of tree-loop diagrams. This calculation was performed in
HQET. The bag parameter was then extracted from sum rules. Due to the fact
that our result was computed analytically we were able to distinguish between fac-
torizable and non-factorizable contributions to the bag parameter. The former are



96 7. Summary and Conclusion

predominant and yield unity. Thus, they did not need to be computed and we only
had to determine the deviation from factorization, which is rather small. This way,
we were able to determine the result for the complete bag parameter with high
accuracy. Therefore, we are able to compete with the results obtained by lattice
QCD. With B̂ = 1.34± 0.06, our result is in good agreement with the lattice result
B̂latt = 1.38(12)(6).

When it comes to flavor physics the violation of CP symmetry is an interesting field
to study. In the last years there was much experimental progress concerning CP
violation in three-body decays. Those decays are quite interesting since, in contrary
to two-body decays, their kinematics are not fixed. This allows us to study local CP
asymmetries, which can be displayed in Dalitz plots. For the decay B → πππ, large
local CP asymmetries have been found. We made a first preliminary study of this
decay in a new data-driven and QCD based approach. Therefore, we used a QCD
factorization framework for three-body decays which was recently established. Here,
we needed to introduce new non-perturbative input quantities such as generalized
form factors and at higher orders also the two-pion light-cone distribution ampli-
tude. In order to obtain a non-zero CP asymmetry, we used the weak CKM phase
and strong phases coming from the time-like B → ππ form factors. The latter can
be related to the time-like pion form factor which is known quite well. Nonetheless,
there are some parts of our theory that needed to be modeled, especially the isoscalar
contribution, since not much is known about it. The model parameters were fit to
data that is provided by the LHCb Collaboration. We were able to reproduce some
of the rough features of the patterns of local CP asymmetries observed by experi-
ments. However, we used a rather crude model. For future studies, we can use sum
rules to connect the B → ππ form factor and the pion form factor, which would yield
a more profound model. Further, more experimental data on this subject would be
useful, especially on scalar resonances. We also only considered leading order here.
Subleading effects will also be important for future considerations. This can also be
seen in our naive model for a charm penguin contribution.

Despite the tremendous progress in high energy physics especially flavor physics
remains a very interesting field to study. With Belle II coming up and LHC experi-
ments collecting more and more data, a enormous amount of measurements will be
available. This will enable us to gain an even better insight into many decay chan-
nels and processes. Especially the flavor sector, where most of the deviations from
theory are observed, requires a better understanding in the future. Here, B physics
will continue to play a major role to resolve these tensions.
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A. Fierz Transformations

Here, we calculate some Fierz transformations. For the Dirac matrices we use the
basis

Γ = {1, γµ, γ5, iγµγ5, σµν} . (A.0.1)

We can decompose a matrix M into this basis using Tr[ΓAΓB] = 4δAB such that

M =
∑
A

MAΓA | · ΓB

⇒MΓB =
∑
A

MAΓAΓB | Tr

⇒ Tr[MΓB] =
∑
A

Tr[MAΓAΓB] =
∑
A

MATr[ΓAΓB] = 4
∑
A

MAδ
AB = 4MB

⇒MB = 1
4Tr[MΓB]

⇒M =
∑
A

MAΓA = 1
4
∑
A

Tr[MΓA]ΓA (A.0.2)

and with

M = 1
4
∑
A

Tr[MΓA]ΓA = 1
4
∑
A

MlkΓAklΓA

⇒Mij = 1
4
∑
A

MlkΓAklΓAij

⇒Mlkδilδkj = 1
4
∑
A

MlkΓAklΓAij

⇒ δilδkj = 1
4
∑
A

ΓAklΓAij (A.0.3)

we find for fermion fields that

ψ1,iψ̄2,j = ψ1,lψ̄2,kδilδjk = ψ1,lψ̄2,k
1
4ΓAklΓAij = −ψ̄2,kψ1,l

1
4ΓAklΓAij

= −1
4ΓAij(ψ̄2ΓAψ1) . (A.0.4)
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Hence, we have

ψ̄1ΓAψ2ψ̄3ΓBψ4 = ΓAijΓBklψ̄1,iψ2,jψ̄3,kψ4,l = ΓAijΓBklψ̄1,i ψ2,jψ̄3,k︸ ︷︷ ︸
=− 1

4 ΓCjk(ψ̄3ΓCψ2)

ψ4,l

= −1
4ΓAijΓBklψ̄1,iΓCjk(ψ̄3ΓCψ2)ψ4,l

= −1
4
∑
C

ψ̄1ΓAΓCΓBψ4ψ̄3ΓCψ2 (A.0.5)

or in the case of spinors

ū1ΓAu2ū3ΓBu4 = 1
4
∑
C

ū1ΓAΓCΓBu4ū3ΓCu2 .

We can then find a couple of Fierz identities such as

ū1γµ(1− γ5)u2ū3γ
µ(1− γ5)u4

= −ū1γµ(1− γ5)u4ū3γ
µ(1− γ5)u2 (A.0.6)

and

ū1(1− γ5)u2ū3(1− γ5)u4

= ū1(1− γ5)u4ū3(1− γ5)u2 + 1
2 ū1γµ(1− γ5)u4ū3γ

µ(1− γ5)u2 (A.0.7)

or

ψ̄1γµ(1− γ5)ψ2ψ̄3γ
µ(1− γ5)ψ4

= −1
4 ψ̄1γµ(1− γ5)γνγµ(1− γ5)ψ4ψ̄3γ

νψ2

+ 1
4 ψ̄1γµ(1− γ5)γνγ5γ

µ(1− γ5)ψ4ψ̄3γ
νγ5ψ2

= ψ̄1γµ(1− γ5)ψ4ψ̄3γ
µ(1− γ5)ψ2 (A.0.8)

as well as

ψ̄1γµ(1− γ5)ψ2ψ̄3γ
µ(1 + γ5)ψ4

= −1
4 ψ̄1γµ(1− γ5)γµ(1 + γ5)ψ4ψ̄3ψ2

− 1
4 ψ̄1γµ(1− γ5)γ5γ

µ(1 + γ5)ψ4ψ̄3γ5ψ2

= −2ψ̄1(1 + γ5)ψ4ψ̄3(1− γ5)ψ2 . (A.0.9)



B. Details on D∗∗ Spectroscopy and
B → D∗∗`ν

B.1. Spin Wave Functions
Here, we give the explicit coupling of the angular momentum L = 1 and the light
quark spin s = 1/2. With the table for the Clebsch-Gordan coefficients we find that
the spin wave functions for j = 1/2 are

|j = 1/2,+1/2〉 =
√

2
3 |+ 1〉| − 1/2〉l −

√
1
3 |0〉|+ 1/2〉l

|j = 1/2,−1/2〉 =
√

1
3 |0〉| − 1/2〉l −

√
2
3 | − 1〉|+ 1/2〉l (B.1.1)

and for j = 3/2

|j = 3/2,+3/2〉 = |+ 1〉|+ 1/2〉l

|j = 3/2,+1/2〉 =
√

1
3 |+ 1〉| − 1/2〉l +

√
2
3 |0〉|+ 1/2〉l

|j = 3/2,−1/2〉 =
√

2
3 |0〉| − 1/2〉l +

√
1
3 | − 1〉|+ 1/2〉l

|j = 3/2,−3/2〉 = | − 1〉| − 1/2〉l , (B.1.2)

where |·〉l denotes the spin of the light quark. The first ket vector is for the angular
momentum. In order to obtain the spin wave functions for the D∗∗ mesons we need
to combine theses states with the spin of the heavy quark. We get

|D(0+),M = 0〉 =
√

1
2
(
|jlight = 1/2, 1/2〉| − 1/2〉H − |jlight = 1/2,−1/2〉|1/2〉H

)
(B.1.3)

and

|D(1+),M = 1〉 = |j = 1/2, 1/2〉|1/2〉H

|D(1+),M = 0〉 =
√

1
2
(
|j = 1/2, 1/2〉| − 1/2〉H + |j = 1/2,−1/2〉|1/2〉H

)
|D(1+),M = −1〉 = |j = 1/2,−1/2〉| − 1/2〉H (B.1.4)
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as well as

|D∗(1+),M = 1〉 =
√

3
4 |j = 3/2, 3/2〉| − 1/2〉H −

√
1
4 |j = 3/2, 1/2〉|1/2〉H

|D∗(1+),M = 0〉 =
√

1
2
(
|j = 3/2, 1/2〉| − 1/2〉H − |j = 3/2,−1/2〉|1/2〉H

)
|D∗(1+),M = −1〉 =

√
1
4 |j = 3/2,−1/2〉| − 1/2〉H −

√
3
4 |j = 3/2,−3/2〉|1/2〉H

(B.1.5)
and

|D∗(2+),M = 2〉 = |jlight = 3/2, 3/2〉|1/2〉H

|D∗(2+),M = 1〉 =
√

1
4 |jlight = 3/2, 3/2〉| − 1/2〉H +

√
3
4 |jlight = 3/2, 1/2〉|1/2〉H

|D∗(2+),M = 0〉 =
√

1
2
(
|jlight = 3/2, 1/2〉| − 1/2〉H + |jlight = 3/2,−1/2〉|1/2〉H

)
|D∗(2+),M = −1〉 =

√
3
4 |jlight = 3/2,−1/2〉| − 1/2〉H +

√
1
4 |jlight = 3/2,−3/2〉|1/2〉H

|D∗(2+),M = −2〉 = |jlight = 3/2,−3/2〉| − 1/2〉H , (B.1.6)

where |·〉H denotes the spin of the heavy quark. We can then combine these with
Equations (B.1.1) and (B.1.2).

The coupling of the angular momentum with the heavy quark spin can be com-
puted using

( ~J · ~σ) = 1
2
(
~K2 − ~J2 − ~σ2

)
(B.1.7)

and the spin-spin coupling using

(~s · ~σ) = 1
2 (s+σ− + s−σ+) + s3σ3 . (B.1.8)

The operators act on the states in the following manner
~J 2|j,m〉 = j(j + 1)|j,m〉 ,
Jz|j,m〉 = m|j,m〉 , (B.1.9)

J±|j,m〉 =
√
j(j + 1)−m(m± 1)|j,m± 1〉 .

This yields the result

(~s · ~σ)|D(1+)〉 = − 1
12 |D(1+)〉+

√
2

3 |D
∗(1+)〉 (B.1.10)

(~s · ~σ)|D∗(1+)〉 = − 5
12 |D

∗(1+)〉+
√

2
3 |D(1+)〉 (B.1.11)

for any M.
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B.2. Mixing of the 1+ States
For the Hamiltonian we have

H =
(
M a
a M∗

)
=
(
M a
a M + ∆

)
(B.2.1)

with

M ≡M(D(1+)) + 1
4g −

1
12g

′ ,

M∗ ≡M(D∗(1+))− 5
4g −

5
12g

′ ,

∆ ≡M(D∗(1+))−M(D(1+))− 3
2g −

1
3g
′ ,

a ≡
√

2
3 g′ .

We find a heavy and a light eigenvalue for this Hamiltonian

MH/L = 1
2
[
(M +M∗)±

√
∆2 + 4a2

]
(B.2.2)

The Hamiltonian can be rewritten

H =
(
M(D(1+)) a

a∗ M(D∗(1+))

)

=
(
〈D(1+)|H1/m|D(1+)〉 〈D(1+)|H1/m|D∗(1+)〉
〈D∗(1+)|H1/m|D(1+)〉 〈D∗(1+)|H1/m|D∗(1+)〉

)

=
(
〈D(1+)|
〈D∗(1+)|

)
H1/m

(
|D(1+)〉
|D∗(1+)〉

)T
(B.2.3)

and diagonalized with the orthogonal transformation matrix S

Hdiag = S−1HS = STHS .

So in the diagonal basis we have

Hdiag = STHS = ST
(
〈D(1+)|
〈D∗(1+)|

)
H1/m

(
|D(1+)〉
|D∗(1+)〉

)T
S (B.2.4)

=
(
〈DL|
〈DH |

)
H1/m

(
|DL〉
|DH〉

)T
, (B.2.5)

where in the last step we redefined the states(
|D(1+)〉
|D∗(1+)〉

)T
S =

(
|DL〉
|DH〉

)T
⇒

(
|DL〉
|DH〉

)
= ST

(
|D(1+)〉
|D∗(1+)〉

)
. (B.2.6)
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We want S to be a rotation matrix

S =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

Then, we have(
|DL〉
|DH〉

)
= ST

(
|D(1+)〉
|D∗(1+)〉

)
=
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
|D(1+)〉
|D∗(1+)〉

)
(B.2.7)

and we find that the physical states |DH〉 and |DL〉 are given by

|DL(1+)〉 = cos(θ)|D(1+)〉+ sin(θ)|D∗(1+) , (B.2.8)
|DH(1+)〉 = − sin(θ)|D(1+)〉+ cos(θ)|D∗(1+)〉 . (B.2.9)

We then get

Hdiag = STHS =
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
M a
a M + ∆

)(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)

=
(

M cos2 θ +M∗ sin2 θ + 2a sin θ cos θ (M∗ −M) sin θ cos θ + a(cos2 θ − sin2 θ)
(M∗ −M) sin θ cos θ + a(cos2 θ − sin2 θ) M sin2 θ +M∗ cos2 θ − 2a sin θ cos θ

)
,

(B.2.10)

where the off-diagonal entries must be zero since it is a diagonal matrix. Hence, we
find with M∗ −M = ∆

∆ sin θ cos θ + a(cos2 θ − sin2 θ) != 0 , (B.2.11)

∆ sin θ cos θ != a(sin2 θ − cos2 θ) , (B.2.12)

and with the addition theorem

sin(x± y) = sin x cos y ± cosx sin y , (B.2.13)
cos(x± y) = cos x cos y ∓ sin x sin y (B.2.14)

we find that

sin(2θ) = 2 sin θ cos θ , (B.2.15)
cos(2θ) = cos2 θ − sin2 θ , (B.2.16)

and therefore

1
2∆ sin 2θ != −a cos 2θ , (B.2.17)

tan 2θ != −2a
∆ = − 2a

M −M∗ . (B.2.18)
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B.3. Details On The Fit
A likelihood is the probability density for the data given a hypothesis or a model. It is
not a probability density function (PDF), which means that the sum of all likelihoods
generally is not unity. Here, we have a likelihood expressed through the observables
M0,ML,MH ,M2, which are modelled via the parameters ~Θ = M1/2,M3/2, g, g

′.

The likelihoods for the individual masses will be multiplied. We therefore take the
log-likelihood, so that the product emerges as a sum

ln L = lnP (ME
0 , σ

E
M0 ;M0(M1/2,M3/2, g, g

′))
+ lnP (ME

L , σ
E
ML

;ML(M1/2,M3/2, g, g
′))

+ lnP (ME
H , σ

E
MH

;MH(M1/2,M3/2, g, g
′))

+ lnP (ME
2 , σ

E
M2 ;M2(M1/2,M3/2, g, g

′)) , (B.3.1)

where P (ME
i , σ

E
Mi

;Mi) is Gaussian distributed. We can then maximize this sum and
obtain values at the best-fit point

~Θ∗ = arg max L . (B.3.2)

To find the goodness of the fit we can now determine the pull value which gives a
measure for how good the measurement fits the model

pulli = ME
i −Mi(~Θ∗)

σEMi

. (B.3.3)

Due to the Gaussian distribution of the measurement the pull value follows a Gaus-
sian as well. We now define the χ2 of the various masses at the best-fit point

χ2
i = (ME

i −Mi(~Θ∗))2

(σEMi
)2 ,

and compute the total deviation of the data from the model prediction

χ2 ≡
∑

i=0,L,H,2
χ2
i . (B.3.4)

Here, χ2 is the minimal value given at the best-fit point.

From the range ∆χ2 around the minimal value of χ2 we can infer the confidence
level interval. For one degree of freedom in the fit we find that the following ranges
correspond to certain significances

∆χ2 = 1 → 1σ ∼ 68.3% ,

∆χ2 = 4 → 2σ ∼ 95.4% ,

∆χ2 = 9 → 3σ ∼ 99.7% .

(B.3.5)
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Figure B.3.1.: χ2 distribution for 5 degrees of freedom. The p-value is the integral
over the gray shaded area.

For the value of χ2 we can obtain the p-value. It gives the probability of receiving
such a result or an extremer one (higher value for χ2) assuming that the initial
model is true. As a threshold we demand the p-value to be ≥ 3% to consider the fit
as good. It can be computed using the cumulative distribution function (CDF)

p-value = 1− CDFχ2(#d.o.f., χ2) . (B.3.6)

Here, the number of degrees of freedom is given by the difference of the number of
measurements and fit parameters

#d.o.f. = #measurements−#parameters

The p-value is the integral over the gray shaded area shown in Figure B.3.1.

For the likelihood we have a Gaussian distribution

L ∼ e
− 1

2
∑

i

(
ME
i
−Mi(~Θ

∗)

σE
Mi

)2

= e− 1
2χ

2
, (B.3.7)

which means that we get

− 2 ln L = χ2 + const. . (B.3.8)

We can now compute the uncertainties within the 1σ range, e.g. for M1/2. Therefore
we take the difference between χ2(M1/2) at the best-fit point which still depends on
the variable whose uncertainty we are interested in and χ2

− 2[ln L (M1/2)− ln L ∗] = χ2(M1/2)− χ2 ≡ ∆χ2(M1/2) . (B.3.9)
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Figure B.3.2.: Histogram for mixing angle θ.

Here, ln L ∗ is the sum of the log-likelihoods at the best-fit point. The constant
in Equation (B.3.8) cancels. We can now set this to the inverse CDF of the χ2

distribution depending on the number of parameters in the fit and on the value for
the 1σ level 68.3%

∆χ2(M1/2) != CDF−1
χ2 (#parameters, 0.683) . (B.3.10)

We can then solve for M1/2 and get an upper and a lower bound. From this we can
infer the error

1σ =
Mupper

1/2 −M lower
1/2

2 (B.3.11)

With the obtained values for the fit parameters and their errors we can compute the
mixing angle. It is distributed asymmetric since the tangent is not a linear function.
Therefore, we determine the error using a histogram for the mixing angle (see Figure
B.3.2).





C. Details on B-B̄ Mixing

C.1. Loop Integrals
Following [58,177], we can easily find for the massless propagator diagram in QCD∫ dDk

[−(k + p)2]n1 [−k2]n2
= iπ

D
2 (−p2)D2 −n1−n2G(n1, n2) ,

where

G(n1, n2) =
Γ
(
n1 + n2 − D

2

)
Γ
(
D
2 − n1

)
Γ
(
D
2 − n2

)
Γ(n1)Γ(n2)Γ (D − n1 − n2) (C.1.1)

and in the massive case∫ dDk
[m2 − (k + p)2]n1 [−k2]n2

= iπ
D
2 mD−2(n1+n2)M(n1, n2) ,

where

M(n1, n2) =
Γ
(
n1 + n2 − D

2

)
Γ (D − n1 − 2n2)

Γ(n1)Γ (D − n1 − n2) . (C.1.2)

For the HQET propagator diagram we find∫ dDk
[−v(k + p)− iε]n1 [−k2 − iε]n2

= iπ
D
2 2D−2n2(−v · p)D−n1−2n2I(n1, n2) ,

where

I(n1, n2) =
Γ(n1 + 2n2 −D)Γ(D2 − n2)

Γ(n1)Γ(n2) .

C.2. Master Integrals
C.2.1. Perturbative Contribution
For the non-factorizable perturbative three-loop contributions in Figure 5.6 we find
the topologies shown in Figure C.2.1. Using an integration by parts method [178,179]
(a review can be found e.g. in [180]) the topologies can be reduced to simpler dia-
grams. There are several packages available for Mathematica that can automatically
do this for a given basis. The program LiteRed [127, 128] is one of them and was
used here. The required master integrals in Equation (5.37) were computed in [116]
and correspond to the diagrams in Table C.2.1. Here, In corresponds to the sunset
diagram in Equation (5.35).
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(a)

(b)

(c)

(d)

Figure C.2.1.: Topologies of the three-loop diagrams.



C.2. Master Integrals 111

Diagram Corresponding Master Integrals [116]

I3(−2ω1)3D−7

I3(−2ω2)3D−7

I1I2(−2ω1)2D−5(−2ω2)D−3

I1I2(−2ω2)2D−5(−2ω1)D−3

M1(ω1, ω2)

M1(ω2, ω1)

M2(ω1, ω2) = M2(ω2, ω1)

M ′
2(ω1, ω2) = M ′

2(ω2, ω1)

M3(ω1, ω2) = M3(ω2, ω1)

M4(ω1, ω2) = M4(ω2, ω1)

Table C.2.1.: Corresponding master diagrams for the three-loop topologies.
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C.2.2. Quark Condensate Contribution
For the quark condensate contribution there is only one relevant topology shown in
Figure C.2.2. This corresponds to the master integrals given in Table C.2.2.

Figure C.2.2.: Topology of the two-loop diagram.

Diagram Corresponding Master Integrals [97]

M(ω1, ω2)

M(ω2, ω1)

Table C.2.2.: Corresponding master diagrams for the two-loop topology.



D. Details on CP Violation in
Three-Body-Decays

D.1. Dalitz Distribution
This section will give a brief introduction to Dalitz plots based on [16,30]. The partial
decay rate for a three-body decay can be written in terms of the invariants m2

ij =
p2
ij, where pij = pi + pj and the variables are defined in Figure D.1.1. Momentum

conservation requires m2
12 +m2

23 +m2
13 = M2 +m2

1 +m2
2 +m2

3, such that the decay
rate only depends on two variables [16]

dΓ = 1
(2π)3

1
32M2 |A(m2

12,m
2
23)|2dm2

12dm2
23 . (D.1.1)

Usually, this form is used to make a scatter plot in m2
12 and m2

23, which we call a
Dalitz plot [181]. Usually it adopts a triagular shape as seen in Figure D.1.2, where
we display the shape of a Dalitz plot for the decay B0 → π+π0π−. The gray area
shows the phase space to which the events are restricted. The boundaries for this
shape are given by the range of the variable m2

23 depending on m2
12. We have

(m2
23)min = (E∗2 + E∗3)2 − (~p ∗2 − ~p ∗3 )2

= (E∗2 + E∗3)2 −
(√

E∗2
2 −m∗22 +

√
E∗3

2 −m∗32
)2

, (D.1.2)

(m2
23)max = (E∗2 + E∗3)2 −

(√
E∗2

2 −m∗22 −
√
E∗3

2 −m∗32
)2

, (D.1.3)

where

E∗2 = m2
12 −m2

1 +m2
2

2m12
, E∗3 = M2 −m2

12 −m2
3

2m12
(D.1.4)

are the energies of particle 2 and 3 in the rest frame of particles 1 and 2.

The Dalitz plot directly provides insight into the dynamics of the transition ampli-
tude A. A squared amplitude which is constant would result in a uniform population
of the Dalitz plot as seen in Figure D.1.3(a). This, on the other hand, implicates
that the amplitude is not constant if we observe some structures in the Dalitz plot.
Three-body decays predominantly proceed through resonant two-body decays, where
one of the final states decays once again. These resonances manifest themselves as
bands in the Dalitz plot as shown in Figure D.1.3. From the shape of the band we
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Figure D.1.1.: Definition of the variables for the decay of one particle into three
particles.
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Figure D.1.2.: Shape of the Dalitz Plot for B0 → π+π0π−.

can infer the type of the resonance, namely if it is a scalar (b), vector (c) or ten-
sor (d) resonance. This is due to the fact that the amplitude is proportional to the
corresponding Legendre polynomial. The number of gaps is then directly linked to
the number of respective zeros in the Legendre polynomials

P0(x) = 1 ,
P1(x) = x , (D.1.5)

P2(x) = 1
2(3x2 − 1) .

Another advantage of Dalitz plots is that we can obtain some information on the
phase differences when studying overlapping resonances, which is also schematically
shown in Figure D.1.3(e) and (f). This allows for studies of CP violation as e.g.
in [137].
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(a) (b)

(c) (d)

(e) (f)

Figure D.1.3.: Examples for Dalitz plots for a (a) phase-space decay, (b) scalar res-
onance, (c) vector resonance and (d) tensor resonance as well as (e)
constructive interference and (f) destructive interference.
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D.2. Calculation of the QCD-Factorized Effective
Hamiltonian

From [152] we have the effective Hamiltonian

Heff = GF√
2
∑
p=u,c

λp

C1Q
p
1 + C2Q

p
2 +

∑
i=3,...,6

CiQi

 (D.2.1)

with

Qp
1 = (p̄ibj)V−A(d̄jpi)V−A ,

Qp
2 = (p̄b)V−A(d̄p)V−A ,

Q3 = (d̄b)V−A
∑
q=u,c

(q̄q)V−A ,

Q4 = (d̄ibj)V−A
∑
q=u,c

(q̄jqi)V−A ,

Q5 = (d̄b)V−A
∑
q=u,c

(q̄q)V+A ,

Q6 = (d̄ibj)V−A
∑
q=u,c

(q̄jqi)V+A , (D.2.2)

where (q̄q)V±A = q̄γµ(1± γ5)q.

We can now find the factorized Hamiltonian. For naive factorization we have

〈ππ|j1 ⊗ j2|B〉 = 〈π|j1|B〉〈π|j2|0〉+ 〈π|j1|0〉〈π|j2|B〉 . (D.2.3)

So we need to find the factorized operators Q = j1 ⊗ j2. We start with Qu
1 and

Qp
2. To get all different possibilities we sum the operator and the Fierz transformed

operator (see Appendix A)

(p̄ibj)V−A(d̄jpi)V−A = (p̄ipi)V−A(d̄jbj)V−A .

In addition, note that

〈π|ūu|B〉 = 〈π|d̄d|B〉 = 〈π|d̄u|B〉 = 0 . (D.2.4)
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We then find

C1〈ππ|(ūibj)V−A(d̄jui)V−A|B〉+ C1〈ππ|(ūiui)V−A(d̄jbj)V−A|B〉
+ C2〈ππ|(ūibi)V−A(d̄juj)V−A|B〉+ C2〈ππ|(ūiuj)V−A(d̄jbi)V−A|B〉
= C1〈π| (ūibj)V−A︸ ︷︷ ︸

=
δij
NC

(ūb)V−A

|B〉〈π|(d̄jui)V−A|0〉+ C1〈π|(d̄jbj)V−A|B〉〈π|(ūiui)V−A|0〉

+ C2〈π|(ūibi)V−A|B〉〈π|(d̄juj)V−A|0〉+ C2〈π|(d̄jbi)V−A|B〉〈π| (ūiuj)V−A︸ ︷︷ ︸
=
δij
NC

(ūu)V−A

|0〉

= C1

NC

〈π|(ūb)V−A|B〉〈π|(d̄u)V−A|0〉+ C1〈π|(d̄b)V−A|B〉〈π|(ūu)V−A|0〉

+ C2〈π|(ūb)V−A|B〉〈π|(d̄u)V−A|0〉+ C2

NC

〈π|(d̄b)V−A|B〉〈π|(ūu)V−A|0〉

= au1〈π|(ūb)V−A|B〉〈π|(d̄u)V−A|0〉+ au2〈π|(d̄b)V−A|B〉〈π|(ūu)V−A|0〉 , (D.2.5)

where au1 = C2 + C1
NC

and au2 = C1 + C2
NC

.

Analogously, we find for C3 and C4 with q = u, c

C3〈ππ|(d̄ibi)V−A(q̄jqj)V−A|B〉+ C3〈ππ|(d̄iqj)V−A(q̄jbi)V−A|B〉
+ C4〈ππ|(d̄ibj)V−A(q̄jqi)V−A|B〉+ C4〈ππ|(d̄iqi)V−A(q̄jbj)V−A|B〉
= C3〈π|(d̄ibi)V−A|B〉〈π|(q̄jqj)V−A|0〉+ C3〈π|(q̄jbi)V−A|B〉〈π| (d̄iqj)V−A︸ ︷︷ ︸

=
δij
NC

(d̄q)V−A

|0〉

+ C4〈π| (d̄ibj)V−A︸ ︷︷ ︸
=
δij
NC

(d̄b)V−A

|B〉〈π|(q̄jqi)V−A|0〉+ C4〈π|(q̄jbj)V−A|B〉〈π|(d̄iqi)V−A|0〉

= C3〈π|(d̄b)V−A|B〉〈π|(q̄q)V−A|0〉+ C3

NC

〈π|(q̄b)V−A|B〉〈π|(d̄q)V−A|0〉

= a3〈π|(d̄b)V−A|B〉〈π|(q̄q)V−A|0〉+ a4〈π|(q̄b)V−A|B〉〈π|(d̄q)V−A|0〉 , (D.2.6)

with a3 = C3 + C4
NC

and a4 = C4 + C3
NC

.

For C5 and C6 we need to apply the Fierz transformation (see Appendix A)

(d̄b)V−A(q̄q)V+A = −2(d̄q)S+P (q̄b)S−P ,
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where (q̄q)V±A = q̄(1± γ5)q and obtain
C5〈ππ|(d̄ibi)V−A(q̄jqj)V+A|B〉 − 2C5〈ππ|(d̄iqj)S+P (q̄jbi)S−P |B〉
+ C6〈ππ|(d̄ibj)V−A(q̄jqi)V−A|B〉 − 2C6〈ππ|(d̄iqi)S+P (q̄jbj)S−P |B〉
= C5〈π|(d̄ibi)V−A|B〉〈π|(q̄jqj)V−A|0〉+ C5 〈π|(q̄jqj)V−A|B〉︸ ︷︷ ︸

=0

〈π|(d̄ibi)V−A|0〉

− 2C5〈π|(q̄jbi)S−P |B〉〈π| (d̄iqj)S−P︸ ︷︷ ︸
=
δij
NC

(d̄q)S+P

|0〉+ C6〈π| (d̄ibj)V−A︸ ︷︷ ︸
=
δij
NC

(d̄b)V−A

|B〉〈π|(q̄jqi)V−A|0〉

− 2C6〈π|(q̄jbj)S−P |B〉〈π|(d̄iqi)S+P |0〉
= C5〈π|(d̄ibi)V−A|B〉〈π|(q̄jqj)V−A|0〉 − 2C5〈π|(q̄jbi)S−P |B〉〈π| (d̄iqj)S+P︸ ︷︷ ︸

=
δij
NC

(d̄q)S+P

|0〉

+ C6〈π| (d̄ibj)V−A︸ ︷︷ ︸
=
δij
NC

(d̄b)V−A

|B〉〈π|(q̄jqi)V−A|0〉 − 2C6〈π|(q̄jbj)S−P |B〉〈π|(d̄iqi)S+P |0〉

= C5〈π|(d̄b)V−A|B〉〈π|(q̄q)V−A|0〉 − 2C5〈π|(q̄b)S−P |B〉〈π|(d̄q)S+P |0〉
+ C6〈π|(d̄b)V−A|B〉〈π|(q̄q)V−A|0〉 − 2C6〈π|(q̄b)S−P |B〉〈π|(d̄q)S+P |0〉

= a5〈π|(d̄b)V−A|B〉〈π|(q̄q)V−A|0〉 − 2a6〈π|(q̄b)S−P |B〉〈π|(d̄q)S+P |0〉 , (D.2.7)

where a5 = C5 + C6
NC

and a6 = C6 + C5
NC

.

Finally, this gives us the QCD factorized Hamiltonian for B → ππ from Equation
(6.14)

Heff = GF√
2

(λuTu + λcTc) , (D.2.8)

with
Tu = au1

[
(ūb)V−A ⊗ (d̄u)V−A

]
+ au2

[
(d̄b)V−A ⊗ (ūu)V−A

]
+ a3

∑
q

[
(d̄b)V−A ⊗ (q̄q)V−A

]
+ au4

∑
q

[
(q̄b)V−A ⊗ (d̄q)V−A

]
+ a5

∑
q

[
(d̄b)V−A ⊗ (q̄q)V+A

]
− 2au6

∑
q

[
(q̄b)S−P ⊗ (d̄q)S+P

]
and

Tc = a3
∑
q

[
(d̄b)V−A ⊗ (q̄q)V−A

]
+ ac4

∑
q

[
(q̄b)V−A ⊗ (d̄q)V−A

]
+ a5

∑
q

[
(d̄b)V−A ⊗ (q̄q)V+A

]
− 2ac6

∑
q

[
(q̄b)S−P ⊗ (d̄q)S+P

]
.

D.3. New Non-Perturbative Input
Here, we discuss in more detail the new non-perturbative input that we use in
Chapter 6 for our QCDF approach for three-body decays.
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D.3.1. Generalized Form Factor
For the generalized form factor in Equation (6.24) we can make a decomposition
into an isospin singlet and triplet

F ab
t,ij = 〈πaπb|q̄jb|Bi〉 = F I=0

t δijδ
ab + F I=1

t iεabcσcij ,

where a, b = 1, . . . , 3 are isospin indices and i, j = 1, 2 are SU(2) flavor indices,
where q1 = u and q2 = d. Here, εabc is the antisymmetric Levi-Civita tensor and σc

are the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (D.3.1)

Focussing on B− → π−π+π− we have i = j = 1 and using that the physical pions
are superpositions of the flavor eigenstates

⇒ π+ = 1√
2
(
π1 − iπ2

)
, π− = 1√

2
(
π1 + iπ2

)
, π0 = π3 (D.3.2)

we find that

Ft = 〈π−π+|ūb|B−〉 = 1
2〈(π

1 + iπ2)(π1 − iπ2)|ūb|B−〉

= 1
2
[
〈π1π1|ūb|B−〉 − i〈π1π2|ūb|B−〉+ i〈π2π1|ūb|B−〉+ 〈π2π2|ūb|B−〉

]
= 1

2

(F I=0
t δ11︸︷︷︸

=1

+F I=1
t i ε12c︸︷︷︸

=1 if c = 3

σc11) + F I=1
t i ε21c︸︷︷︸

=−1 if c = 3

σc11) + (F I=0
t δ22︸︷︷︸

=1



= 1
2

F I=0
t − iF I=1

t i σ3
11︸︷︷︸

=1

−iF I=1
t i σ3

11︸︷︷︸
=1

+F I=0
t


= 1

2
[
2F I=0

t + 2F I=1
t

]
= F I=0

t + F I=1
t .

D.3.2. Two-Pion Generalized Distribution Amplitude (GDA)
The two-pion distribution amplitude can be locally defined as

〈πa(k1)πb(k2)|q̄i,βqj,α|0〉 = 1
4(/k)αβ

∫ 1

0
du Φab

||ij(u, ζ, k2) , (D.3.3)

where k = k1 + k2 and α, β are Dirac indices. For the 2π LCDA, we can also make
a flavor decomposition into an isosinglet and isovector component

Φab
||ij = ΦI=0

|| δijδ
ab + ΦI=1

|| iεabcσcij . (D.3.4)
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From C-parity it follows that ΦI=0
|| is antisymmetric with respect to the interchange

of u and ū = (1− u). Thus we have∫ 1

0
du ΦI=0

|| (u, ζ, k2
12) = 0 . (D.3.5)

The isovector contribution is normalized as follows [155]∫ 1

0
du ΦI=1

|| (u, ζ, k2
12) = (2ζ − 1)Fπ(k2

12) , (D.3.6)

where ζ is the light-cone momentum fraction of the two pions in the final state
ζ = k+

1
k+ = k2

13
m2
B−k

2
12

[155,156].

We then find that

〈π−π+|ūu|0〉 = 1
2〈
(
π1 + iπ2

) (
π1 − iπ2

)
|ūu|0〉

= 1
2
[
〈π1π1|ūu|0〉 − i〈π1π2|ūu|0〉+ i〈π2π1|ūu|0〉+ 〈π2π2|ūu|0〉

]
= 1

2
/k

4

∫ 1

0
du
[
ΦI=0
|| + ΦI=1

|| + ΦI=1
|| + ΦI=0

||

]
=
/k

4

∫ 1

0
du
[
ΦI=0
|| + ΦI=1

||

]
=
/k

4(2ζ − 1)Fπ(k2
12) (D.3.7)

and analogously

〈π−π+|d̄d|0〉 = −
/k

4(2ζ − 1)Fπ(k2
12) ,

where we omitted the Dirac indices for simplicity.

At leading order we do not have an isoscalar contribution to the matrix element
〈ππ|q̄iqi|0〉 since the pions need to have the same angular momentum to form I = 0
and this is forbidden by Bose symmetry.

D.4. Calculation of the Amplitude for B → πππ

Using the effective Hamiltonian from Equation (6.14) we now discuss in detail how
to obtain the amplitude in Equation (6.44).

We define

〈π−(k3)|(d̄u)V−A|0〉 = ifπk3µ ,

〈π−(k3)|(ūu)V−A|0〉 = π−(k3)|(d̄d)V−A|0〉 = 0 , (D.4.1)
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where the latter is zero because of charge conservation, and following Appendix
D.3.2

〈π−(k1)π+(k2)|(ūu)V−A|0〉 = −〈π−(k1)π+(k2)|(d̄d)V−A|0〉 = (k1 − k2)µF em
π

= k̄µF
em
π ,

〈π−(k1)π+(k2)|(d̄u)V−A|0〉 = 0 . (D.4.2)
Further, we obtain for the B → π and B → ππ form factors

〈π−(k3)|k̄ · (d̄b)V−A|B−〉 = 〈π−(k3)|d̄ /̄kb|B−〉 = 2k3 · k̄f+(k2) ,
〈π−(k3)|(ūb)V−A|B−〉 = 0 (D.4.3)

as well as
〈π−(k1)π+(k2)|k3 · (ūb)V−A|B−〉 = −imπFt(k2, k3 · k̄) ,
〈π−(k1)π+(k2)|(d̄b)V−A|B−〉 = 0 . (D.4.4)

We can then calculate our amplitude
a1〈π−(k1)π+(k2)π−(k3)|(ūb)V−A ⊗ (d̄u)V−A|B−〉
= a1〈π−(k1)π+(k2)|(ūb)V−A|B−〉 〈π−(k3)|(d̄u)V−A|0〉︸ ︷︷ ︸

=ifπk3µ

= a1ifπ〈π−(k1)π+(k2)|k3 · (ūb)V−A|B−〉
= a1fπmπFt ,

a2〈π−(k1)π+(k2)π−(k3)|(d̄b)V−A ⊗ (ūu)V−A|B−〉
= a2〈π−(k3)|(d̄b)V−A|B−〉 〈π−(k1)π+(k2)|(ūu)V−A|0〉︸ ︷︷ ︸

=k̄µF em
π

= a2F
em
π 〈π−(k3)|k̄ · (d̄b)V−A|B−〉

= a22k3 · k̄f+F
em
π ,

a4〈π−(k1)π+(k2)π−(k3)|(ūb)V−A ⊗ (d̄u)V−A|B−〉
+ a4〈π−(k1)π+(k2)π−(k3)|(d̄b)V−A ⊗ (d̄d)V−A|B−〉

= a4〈π−(k1)π+(k2)|(ūb)V−A|B−〉 〈π−(k3)|(d̄u)V−A|0〉︸ ︷︷ ︸
=ifπk3µ

+ a4〈π−(k3)|(d̄b)V−A|B−〉 〈π−(k1)π+(k2)|(d̄d)V−A|0〉︸ ︷︷ ︸
=−k̄F emπ

= a4ifπ 〈π−(k1)π+(k2)|k3 · (ūb)V−A|B−〉︸ ︷︷ ︸
−imπFt

− a4F
em
π 〈π−(k3)|k̄ · (d̄b)V−A|B−〉︸ ︷︷ ︸

=2k3·k̄f+

= a4
(
fπmπFt − 2k3 · k̄f+F

em
π

)
.
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Due to charge conservation and Equation (D.4.2) the matrix elements of a3, a5 and
a6 vanish and only contribute at higher orders.

Finally end up with

A = GF√
2
[
(λu(au2 − au4)− λcac4)m2

B(1− slow
+− − 2shigh

+− )f+(slow
+−)F em

π (slow
+−)

+(λu(au1 + au4) + λca
c
4)fπmπ(F I=0

t (slow
+−, s

high
+− ) + F I=1

t (slow
+−, s

high
+− ))

]
,

where 2k3 · k̄ = m2
B(1− slow

+− − 2shigh
+− ) (cf. Equation (6.44)).

D.5. Computation of the Helicity Angle θπ

We want to transform the momenta in the B meson rest frame into the helicity
angle θπ defined in Figure D.5.1.

In the B meson rest frame we have

~pB = 0 = ~k + ~k3 ⇒ ~k = −~k3 ⇒ |~k | = |~k3 | , (D.5.1)

where k = k1 + k2 and in the dipion rest frame we have

~k
∗ = 0 = ~k

∗

1 + ~k
∗

2 ⇒ ~k
∗

1 = −~k ∗2 ⇒ |~k ∗1 | = |~k
∗

2 | . (D.5.2)

Hence, we find in the B rest frame

pB =


mB

0
0
0

 , k =


k0
0
0
|~k |

 , k3 =


k3,0
0
0
−|~k3 |

 =


mB − k0

0
0
−|~k|

 (D.5.3)

and in the dipion rest frame

k1
∗ =


k
∗
1,0
k
∗
1,1
0
k
∗
1,3

 =



√
m2
π + |~k ∗1 |2

−|~k ∗1 | sin θ
0

|~k ∗1 | cos θ

 , (D.5.4)

k2
∗ =


k
∗
2,0
k
∗
2,1
0
k
∗
2,3

 =



√
m2
π + |~k ∗2 |2

+|~k ∗2 | sin θ
0

− |~k ∗2 | cos θ

 =



√
m2
π + |~k ∗1 |2

+|~k ∗1 | sin θ
0

− |~k ∗1 | cos θ

 , (D.5.5)
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Figure D.5.1.: Definition of the helicity angle as the polar angle θπ of the π− in the
dipion rest frame.

where we used p2 = m2 = p2
0 − ~p 2 ⇒ p0 =

√
m2 + ~p 2.

Using k2 = k
∗2 we can express

k∗ = ~k
∗

1 + ~k
∗

2 =


2
√
m2
π + |~k ∗1 |2
0
0
0

 =


√
k2

0
0
0

 . (D.5.6)

With

k0 = m2
B −m2

π + k2

2mB

(D.5.7)

(D.5.8)

and k2 = k2
0 − |~k |2 we find that

|~k | =
√
λ

2mB

, (D.5.9)

where λ(a, b, c) = a2 + b2 + c2 − 2(ab + bc + ac) is the Kallén function and λ ≡
λ(m2

B,m
2
π, k

2).

We can then find the Lorentz transformation to boost from the dipion rest frame
into the B meson rest frame

Λk∗ = k ⇒


γ 0 0 −βγ
0 1 0 0
0 0 1 0
−βγ 0 0 γ



√
k2

0
0
0

 =


k0
0
0
−|~k |


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leading to

γ = k0√
k2

and − βγ = |~k |√
k2
, (D.5.10)

and finally

Λ = 1√
k2


k0 0 0 |~k |
0
√
k2 0 0

0 0
√
k2 0

|~k | 0 0 k0

 . (D.5.11)

In the dipion rest frame we find that

k̄
∗ = ~k

∗

1 − ~k
∗

2 = 2


0

−|~k ∗1 | sin θ
0

|~k ∗1 | cos θ

 = βπ
√
k2


0

− sin θ
0

cos θ

 , (D.5.12)

where we used

|~k ∗1 | =
1
2
√
k2 − 4m2

π = 1
2βπ
√
k2 , (D.5.13)

with

β2
π = k2 − 4m2

π

k2 . (D.5.14)

Using Equation (D.5.11) we then find

k̄ = k1 − k2 = Λk̄∗

= βπ


k0 0 0 |~k|
0
√
k2 0 0

0 0
√
k2 0

|~k| 0 0 k0




0
− sin θ

0
cos θ

 = βπ


|~k| cos θ
−
√
k2 sin θ
0

k0 cos θ

 (D.5.15)

and

k3 · k̄ = βπ


mB − k0

0
0
−|~k|

 ·

|~k| cos θ
−
√
k2 sin θ
0

k0 cos θ

 = βπ [(mB − k0) + k0] |~k| cos θ

= βπmB|~k| cos θ

= βπ
2
√
λ cos θ , (D.5.16)

which is the relation from Equation (6.45) and from [158].
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Ich möchte mich außerdem bei Michael J. Bowman, Ed.D., bedanken, der vor langer
Zeit mein Interesse an Physik geweckt hat. Ohne ihn wäre ich womögliche einen an-
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