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Abstract

The 3D Morphable Model of faces (3DMM) is a known method for calculating
a 3D face model from a 2D input image by using an analysis-by-synthesis
approach. Surveillance or detection as well as investigation of criminal offenses
by law enforcement authorities, for instance, are common application scenarios
for the 3DMM. In the majority of these fields the reconstruction algorithm
must deal with a wide-ranging quality of input data. Since the influence of
image degradation on the 3DMM has not been studied yet, the exploration
of image artifacts and their impact on the reconstruction quality is one focus
of this thesis. Therefore, relevant degradation factors are determined and
methods for incorporating the sources in the analysis-by-synthesis algorithm
to revert the effect are presented. Especially details lost in the input images
due to blur, low resolution or occlusions, are considered in this thesis. By
leveraging class-specific knowledge, this restoration process goes beyond what
image operations such as deblurring or inpainting can achieve.

Another advantage of the 3DMM is its application to any pose and illumi-
nation, unlike image-based methods. However, only with the here presented
algorithm the 3DMM can compute realistic face models from severely degraded
images. The new method includes the blurring or downsampling operator ex-
plicitly into the analysis-by-synthesis approach. In this context, the plausibil-
ity of the added information by the 3DMM is another important factor. An
application of the model for forensic tasks can only be helpful and supportive
if it is ensured that the added data are in line with human expectation and do
not lead to wrong cues, thus misleading the investigation.

Besides the validation of added information by the 3DMM, the concept can
be used further to explore the human visual system (HVS). The Morphable
Model enables a plausible modification of faces and thus a virtual generation of
stimuli for perceptual experiments. Hence, the investigation if and how humans
use face-specific knowledge to infer non-visible information is addressed in this
thesis. In psycho-physical experiments, the inference of facial profiles from the
frontal view is examined. The results indicate that humans use the information
from the front view, and not just rely on the plausibility of the profiles per se.
All findings are consistent with the correlation-based inference of the 3SDMM.

The results also verify that the 3D reconstructions are congruous with human



expectation, since they are chosen to be the true profile as equally often as the
ground truth profiles in the experiments.

However, the correlations on which the HVS and many example-based al-
gorithms rely on are implicit and difficult to visualize. According to these
findings, the thesis explores further which facial attributes and characteristics
humans or algorithms use to infer information. This is done by identifying and
visualizing the most reliable correlations using a canonical correlation analysis
(CCA) of faces.

These correlations are used to fill in missing information, e.g. occluded
regions, in the 3D face models. Afterwards, the results are compared to the
PCA-based approach of the 3DMM by a subsequent assessment of perceived
similarity. It is shown that the PCA-based 3DMM captures correlations suf-
ficiently and is not affected by spurious random correlations in the limited
training set.

Finally, the findings and methods of this thesis are transferred to a forensic

application scenario as part of the BMBF research project INBEKI.



Zusammenfassung

Das dreidimensionale Morphable Model (3DMM) ist ein bekanntes Ver-
fahren, das 3D-Modelle von Gesichtern durch einen Analyse-durch-Synthese-
Ansatz aus 2D-Aufnahmen rekonstruiert. Diese Gesichtsrekonstruktion findet
Anwendung unter anderem in der Uberwachung und Erkennung von Gesich-
tern sowie der Ermittlung von Straftaten durch Strafverfolgungsbehoérden. Da
in diesen Anwendungsbereichen die Qualitdt der vorliegenden Bilder stark
schwankt und der Einfluss von Storfaktoren auf das 3DMM bisher noch nicht
untersucht worden ist, liegt ein Schwerpunkt der vorliegenden Arbeit auf der
Untersuchung von Bildartefakten und deren Einfluss auf die Rekonstruktions-
qualitdt des 3D-Modells. Hierzu werden zunéchst relevante Artefakte ermit-
telt und Verfahren dargestellt, um den Einfluss auf das 3DMM zu vermindern
beziehungsweise die Erzeugung der Artefakturspriinge innerhalb des Analyse-
durch-Synthese-Verfahrens zu integrieren. Ein besonderer Fokus liegt hierbei
auf der Rekonstruktion von Details, die im Eingangsbild durch Unschéarfe be-
ziehungsweise niedrige Auflésung sowie Teil-Verdeckungen im Aufnahmepro-
zess verloren gegangen sind. Durch die Einbeziehung von klassenspezifischem
Wissen geht dieser Wiederherstellungsprozess iiber das hinaus, was allgemeine
Bildoperationen wie Deblurring oder Image Inpainting erreichen kénnen.

Ein weiterer Vorteil des 3DMM gegeniiber diesen Verfahren ist die Un-
abhéngigkeit von Pose und Beleuchtung. Durch den in dieser Arbeit vorge-
stellten Algorithmus konnen realistische Gesichter aus stark verschlechterten
Bildern mittels eines erweiterten 3DMM erzeugt werden. Dabei integriert die
neue Methode den Unschéarfe- oder Downsampling-Operator explizit in den
Analyse-durch-Synthese-Algorithmus. In diesem Zusammenhang ist ein weite-
rer wichtiger Faktor die Plausibilitdt der hinzugefiigten Informationen durch
das 3DMM. Eine Anwendung des Modells, beispielsweise im kriminaltechni-
sche Bereich, kann nur hilfreich und niitzlich sein, wenn sichergestellt ist, dass
die rekonstruierten Daten sowohl korrekt sind als auch mit der menschlichen
Erwartung iibereinstimmen und so den Betrachter nicht in die Irre fiihren.

In diesem Rahmen ermdoglicht das 3SDMM nicht nur eine Validierung der hin-
zugefiigten Informationen, sondern dariiber hinaus eine geeignete Methode, das
menschliche visuelle Wahrnehmungssystem zu untersuchen, da das Modell ei-

ne einfache Modifikation von Gesichtern und damit die Erzeugung von Stimuli



fiir Wahrnehmungsexperimente erlaubt. Aus diesem Grund liegt ein weiteres
Augenmerk dieser Arbeit auf der Ermittlung, ob und in welcher Form Men-
schen gesichtsspezifisches Vorwissen verwenden, um unbekannte Informationen
zu schlussfolgern. In psychophysischen Wahrnehmungsexperimenten wird das
Erschlieffen von Gesichtsprofilen aus der Frontalansicht untersucht. Die Ergeb-
nisse zeigen, dass Menschen die Informationen aus der Frontansicht nutzen und
sich nicht nur auf die Plausibilitdt der Profile an sich verlassen. Alle gewonne-
nen Erkenntnisse stimmen mit der korrelationsbasierten Inferenz des 3DMM
iiberein. Weiterhin bestétigen die Resultate, dass die 3D-Rekonstruktionen der
Erwartung des menschlichen Wahrnehmungssystems entsprechen, da sie und
die Original-Profile gleichermafien oft in den durchgefithrten Wahrnehmungs-
versuchen gewéhlt wurden.

Die Korrelationen, auf denen sowohl das menschliche visuelle System als
auch viele Algorithmen beruhen, sind allerdings implizit und schwer zu visua-
lisieren. Entsprechend dieser Erkenntnisse wird im weiteren Verlauf der Arbeit
untersucht, welche Attribute und Merkmale von Gesichtern Menschen bezie-
hungsweise Algorithmen Schlussfolgerungen erméoglichen, indem die zuverlés-
sigsten Korrelationen anhand einer Korrelationsanalyse (CCA) von Gesichtern
bestimmt sowie intrinsische Korrelationen von zufélligen Korrelationen in den
Trainingsdaten getrennt werden.

Die so ermittelten Korrelationen werden verwendet, um fehlende Informatio-
nen in Gesichtsmodellen zu rekonstruieren. Die Ergebnisse werden anschliefsend
mit den PCA-basierten Methoden des 3DMM anhand der wahrgenommenen
Ahnlichkeit verglichen. Dabei zeigt sich, dass das 3DMM die Korrelationen
ausreichend erfasst und nicht durch falsche oder zuféllige Zusammenhénge in
den begrenzten Trainingsdaten beeinflusst wird.

Abschliefsend werden die ermittelten Erkenntnisse und Methoden dieser Ar-
beit als Teil des BMBF-Forschungsprojektes INBEKI auf ein forensisches An-

wendungsszenario iibertragen.
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Chapter 1
Introduction

The task of identifying a face in an image acquired under optimal conditions
(e.g. no image noise, no blur, good contrast, well-lit, high resolution) is easily
solved by a human observer. The viewer can specify clearly the presence of
human faces and furthermore, in case a face is pictured, recognize, at least for
familiar faces, whether the person is known or unknown. The same applies
to machine learning applications such as face detection and recognition. State
of the art approaches solve these tasks on images with ideal conditions very

reliably with high recognition rates [SBORO06].

However, the task becomes much more difficult in case of degraded image
quality. For example, if the depicted face is not illuminated sufficiently or
blurry due to a shaky camera during the acquisition process, the recognition
rates decrease noticeably. Other factors impairing the recognition rates are:
non-frontal poses, image noise, and facial occlusions caused by other objects
in the scene or shadows covering parts of the face. An accumulation of several

image degrading factors deteriorates the results even more [OADT12].

Since most application areas of face recognition software, like surveillance
or detection as well as investigation of criminal offenses by law enforcement
authorities, must deal with a wide-ranging quality of input data, it is inevitable
to cope with the difficulties resulting from image quality degradation. Hence,
machine learning approaches were extended and trained with corrupted input
data to improve the recognition rates on degraded source material. The princi-
pal idea of most methods can be interpreted as a black box principle in which

the input data is processed via a mathematical model trained to "react” on the



reduced image quality without modeling the degrading factor explicitly. These
extensions increase the recognition rates but could not reach the performance
of the human visual system, which recognizes at least familiar faces even under

very unusual viewing angles, lighting situations and facial occlusions [PO14].

In contrast to the black box principle, analysis-by-synthesis approaches sim-
ulate the image formation and include the sources of image degradation ex-
plicitly. The "synthesis” part models the generative processes of how natural
images are constructed and the "analysis” part computes the most likely expla-
nation of the underlying scene, which is in line with the synthesis part of the
model. In other words, the input data to be analyzed, in this context an image
of a face, is reconstructed by computing the face itself and (additionally) the
parameters of image generation including head pose, lighting and other sources
affecting the image quality. This strategy has an advantage over other machine
learning and classification methods since the integration of image degradation
sources into the model enables a visualization and analysis of these sources and

thereby leads to a better understanding of their impact on image classification.

The 3D Morphable Model (3DMM) introduced by Blanz and Vetter [BV99,
BVO03] is such an analysis-by-synthesis method for human faces. It is based
on a high-dimensional vector space representation of facial shapes and colors
which implies an association of each face with a shape and texture vector.
New faces can be generated by linear combinations of these vectors, with the
result that the linear span of a set of basis faces forms a continuum of realistic
and plausible 3D face models. Crucial for this property is the fact that the
basis faces were brought into dense point-to-point correspondence to always
represent the same surface structure (e.g. the tip of the nose or the canthus)

by the components of the shape and texture vectors.

The analysis-by-synthesis principle is used consistently to apply the 3D
model to 2D input images: Therefore, the linear combination of basis faces and
the pose and lighting which reproduce the input image optimally by means
of computer graphics procedures are estimated in an iterative optimization
process. As a result, a colored 3D model of the face as well as the facial pose
and the lighting conditions are obtained from a single image. Here, another
benefit of the model-based analysis-by-synthesis approach becomes apparent:

The 3DMM can be used to revert the sources of image degradation of the input



data. For instance, a badly lit face pictured in a side view can be rendered in

frontal pose with uniform lighting conditions.

Even though typical causes of image degeneration are manifold (for exam-
ple low resolution, defocus, image noise, motion blur or partial occlusions),
the analysis-by-synthesis approach of the 3DMM enables a modeling of almost
all these factors explicitly. The prerequisite for incorporating the sources into
the Morphable Model is that they are caused on the side of image acquisition.
This offers a wide range of applications in facial image analysis and classifica-
tion. Common face recognition systems are limited to frontal views; thus the

application of the 3DMM can improve the recognition rates.

For this task, the model can be used in two ways: The first option uses the
computed coefficients of the linear combination of the basis face vectors and
compares the values with stored coefficients of a face database. For the second
method, the 3DMM is used to generate well-lit frontal views from input images
showing non-frontal views of faces. Then the virtual front views are used as
input for conventional face recognition systems. With this synergy, the possible

input conditions of face recognition systems are considerably extended.

In this thesis, the versatile capabilities of the Morphable Model are carried
to an extreme and analyzed from different perspectives. One aspect is the in-
clusion and analysis of image degradation sources such as image noise, defocus,
and facial occlusions, which has been, in contrast to head poses and lighting
conditions, not or only partly considered by the 3D model yet. With this ex-
tension, both sources newly added as well as already included can be reverted.
Unknown or missing data in the input image are inferred from the visible data
and added by using the statistical information from the set of basis faces of
the face space representation. Now, for instance, defocused input images can
be deblurred by adding high spatial details computed by the 3DMM.

This property leads to another aspect analyzed in the thesis: the capability
of the 3DMM to infer information which is not actually visible in the input
data and how this property can be used to gain information of how the human
visual system models inference tasks. Consider an image showing a profile of a
face is used as input data for the 3DMM. This image contains no information
about the frontal view of the face. Nevertheless, the algorithm reconstructs

an entire 3D face model with a plausible frontal face due to the fact that the



set of basis faces consists of complete 3D face scans. Another example is facial
occlusions and blurred input images. The 3DMM can compute parts of a face,
which are not visible in the input data by inferring the hidden or blurred parts

from the visible data.

These examples are common forensic tasks from the investigation of criminal
offenses by law enforcement authorities. Often, only a limited selection of
pictures in bad image quality is available to the officers. In this context, the
3DMM can only be helpful and supportive if it is ensured that the added data
are in line with the human expectation and do not lead to wrong cues, thus

misleading the investigation.

Besides the validation of added information by the 3DMM, the concept
of inferring data is further used in this work to gain information of how the
human visual system models the inference of unknown data. Therefore, the
Morphable Model enables a plausible modification of faces and thus a virtual
generation of stimuli for perceptual experiments, which would not be possible
to create in conventional ways. Since the mechanisms of how the human visual
system solves inference tasks are (still) largely unknown, the application of the
3DMM opens the possibility to shed new light on the mental representations
and models. For this reason, the second part of this thesis concentrates on
exploring the human perception of faces by comparing it with computational

models.

The third main field of this thesis focuses on the aspect of inferring un-
known information from another perspective. In contrast to evaluating the 3D
reconstructions and the plausibility of added information by the 3DMM, the
topic relates to a more general determination of which information are reliable.
As already mentioned, the 3DMM can infer non-visible facial information from
visible parts. For example, if only the upper half of a face is depicted in an
image, the model computes the unknown lower half from the upper part. How-
ever, it has not been studied yet, on which exact correlations the inference is
based and which parts of the computed data result from trusted information.
Hence, a goal of this work is to find and specify which correlations are real and
informative and which are guessed or random. The analysis of the computed
correlations lead to a further question: Could the exploitation of these valid

correlations help to infer unknown data more reliably, if only limited or less



information are available? A method for determining such reliable correlations
between facial modalities can help to improve the reconstruction of unknown
data.

1.1 Structure of the Thesis

The work is structured as follows: In Chapter 2 the 3D Morphable Model and
its application of reconstructing 3D faces from 2D input images is described
in detail as a basis for the thesis. Another essential concept for this work are
attribute vectors. Attribute vectors are a good example of how the data to be
analyzed can be incorporated in the analysis-by-synthesis approach. Hence,
Chapter 3 gives an overview how specific facial features can be represented
by attribute vectors and how they are computed. By detecting the disease
Acromegaly in photographs of patients, a medical application for this approach
is presented as well. Furthermore, the example emphasizes the analysis-by-
synthesis concept vividly by modeling and integrating the data to be analyzed
explicitly into the model.

The next chapters illustrate the main fields studied in this thesis. Chapter
4 describes a new method for incorporating non-local image effects into the
analysis-by-synthesis approach of the 3DMM considering the example of image
blur. A second influence factor on the reconstruction quality is addressed
with face hallucination of partial occlusions. An overview of several image
deblurring and face hallucination methods are also given in Chapter 4.

The second aspect of this thesis concentrates on exploring the human per-
ception of faces by comparing it with computational models. Therefore, the
inference from frontal views of faces to profile views are explored by conduct-
ing perceptual experiments in Chapter 5 to address three questions: (1) Is
there a model used by the human visual system at all or a trivial strategy,
such as guessing or always choosing the average? (2) How good are the 3D
reconstructions that are estimated by the 3DMM from single images, and are
they in line with human expectations? (3) What inferences can be made on
human faces; which correlations between features can be found in face space?

Motivated from the results of the perceptual experiments, Chapter 6 figures

out if intrinsic correlations between several facial modalities (e.g. between



upper and lower part of the face, front and profile or shape and texture) can
be extracted and used to improve the quality of occluded and unknown facial
parts.

Since all aspects of this thesis are common problems in the investigation of
criminal offenses, the findings of the previous chapters are applied to a forensic
application scenario as part of the joint project INBEKI. Chapter 7 focuses
on getting an overall overview of the main goals and tasks of INBEKI. All
sub-projects relevant within the scope of this thesis are portrayed shortly.

Finally, Chapter 8 concludes the thesis and discusses possible aspects of

further development.



Chapter 2

The 3D Morphable Model
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Figure 2.1: Principle of 3D Morphable Model: New 3D faces are generated by

linear combinations of shape and texture vectors.

The following chapter outlines the 3D Morphable Model of 3D faces (3DMM,
[BV99, BV03|) in more detail, as the basis for this thesis. It is based on the
explanation in [BV03|.

The 3DMM is a statistical model that captures the range of natural faces in
terms of 3D shapes and textures. A (statistical) vector space representation is
derived from a dataset of 3D scans of faces. The crucial step is to establish a
dense point-to-point correspondence of all faces in the dataset with a reference
face. In this face space representation, convex combinations of face vectors are
equivalent to morphs of the dataset faces, and will therefore have a natural

face-like appearance. Figure 2.1 shows the base principle of the 3DMM.

The model can be used to reconstruct 3D face meshes from 2D input images

7
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or to generate new plausible 3D faces by linear combinations of the vector space

representation.

2.1 Setup of the 3D Morphable Model
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Figure 2.2: A database of 200 3D face scans forms the base of the 3SDMM.

The initial scans for the SDMM are recorded with a commercial laser scanner
(Cyberware™ 3030PS), rotating around the head, and acquiring the facial
shape (in cylindrical coordinates) relative to a vertical axis through the center
of the head. During the scan, radius r and color values of the surface texture
R, G and B are recorded in 512 discrete angular and 512 vertical steps. As
a result, shape and color data of each scan are combined and represented in

cylindrical coordinates by height h and rotation angle ¢

I(h,¢) = (r(h,d), R(h, ), G(h,¢), B(h,$)) h,¢ € {0, ...,511}. (2.1)

With this scan method, 3D scans of 100 females and 100 males between the
age of 18 and 45 were recorded. The dataset includes one Asian person, the

other ones are Caucasians. Figure 2.2 shows all 200 scans.



A dense point-to-point correspondence between all scans was established
by using an optical flow algorithm. With the resulting flow field, each point
I, (h, ¢) of one scan corresponds to the point Iy(h, ¢) of the other scan. There-
fore, the correspondence between each face scan and a reference scan Ig(h, ¢)
was computed. The reference face is a triangular mesh with n = 75,972
vertices. Let each vertex k € {1,...,n} be represented by the cylindrical co-
ordinates (hg, og, 7(hi, &r)), the color values (Ry, Gy, Bi), and the Cartesian
coordinates (x, Yk, zx). Then shape vectors vy are formed by the Cartesian

coordinates and texture vectors vy by red, green and blue values

Ve = (ml,yl,zl,a:g,...,xn,yn,zn)T€R3” (2.2)

Vy = (Rl,Gl,Bl,RQ,...,Rn,Gn,Bn)T€R3n. (23)

Due to the dense correspondence, each single vertex k describes the same
feature for every scan. For example, the tip of the nose is represented by the
x, y and z coordinates and R, G, B values at the same position in every vy
respectively v¢. Figure 2.3 illustrates the correspondence of shape and texture

vectors.

In this face space representation, convex combinations of face vectors are
equivalent to morphs of the database faces, and will therefore have a natural

face-like appearance:
Vg = Zc&i “ Vi csqi €10, 1] chﬂ- =1 (2.4)
i=1 =1

V¢ = thﬂ' . Vt,ia Ctﬂ' € [O, 1] thﬂ' =1. (25)
i=1 i=1

A Principal Component Analysis (PCA, Karhunen-Loeve Transformation
[Pea01, DHSO00]) is performed on the set of shape and texture vectors of all
example faces ¢ = 1...m with m = 200. The main concept of PCA is a basis
transformation of vector data by calculating the principal axis adapted the
variance in the dataset. Shape and texture were analyzed separately, ignoring
the correlation between the two modalities. To compute the PCA for shape,
the average § = % Z:ll Vs, is subtracted from each shape vector s; = vg; — 5.

Then a data matrix is defined by S = (s1, Sa, ..., S;) € R3*™. The covariance
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Figure 2.3: Example for correspondence: Each single vertex of the reference
face is mapped to the corresponding point of the example face. Thus, as an
example, the tip of the nose is represented by the z,y, z and R, G, B values at

the same position in every vg; and vy ;.

matrix Cq of the data vectors can be written as
C o 1 ST _ 1 - T 3nx3n
.= —S —EZsisi e R3S, (2.6)
i=1

To calculate the eigenvalues and eigenvectors of Cg, a Singular Value Decom-

position (SVD) is performed by factorizing S:
S = UW, V.. (2.7)
Thus, Equation (2.6) can be written as
Logqr 1 T r_ 1 277 T
C,= —SST = —U,W,V,/V,W,U,” = ~U,W,2U,”. (2.8
m m m

The columns ug; of the orthogonal matrix Ug are the principal axis of the
data and called principal components. The eigenvalues of the diagonal matrix

W, = diag(w, ;) are the squared standard deviations o, ; = \/Lﬁws,i of the data

2

along each eigenvector. Principal components are sorted by size of 02, > 02,...,



11

so the direction of the largest variance of the vector space is represented by
the first eigenvector ug . Overall, m — 1 principal components and variances
are computed.

To obtain the principal components for texture, the eigenvectors u;; and
variances o7; are computed for the data matrix T = (t1,tz,...,tm) € R

by the same method resulting in a factorized matrix for texture

T =UW, V" (2.9)
and the covariance matrix
1 T 1 2 T 3nx3n
Ct = —TT - —UtWt Ut € R . (210)
m m

Since the eigenvectors form an orthonormal basis, shape and texture vectors

can be written as

m—1 m—1
Ve =5+ Z 0s,iCsiUsi =S + Z a;us; =5+ Usax, (2.11)
i=1 i=1
m—1 m—1
vi=1t+ Z 0¢iCtiUg i = t+ Z Biug; = t+ U, (2.12)
i=1 i=1
with
Us = (us,l us,m—l) € RSHX(m?l)?
Ut - (ut’l . utym_1> c ]R3n><(m—1)’
and the coeflicient vectors
o = (Oél, g, ... ,O{m_l)T € Rm_l (213)
for shape, and
/6: (ﬂlvﬂQa"wﬁm—l)T € Rm_l (214)

for texture. With «; = 0, ,cs;, the coefficient vector a can also be written as

face space coordinates c,; weighted by oy ;:

a = diag(os,;)cs. (2.15)
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Here, ¢ = (51, vy Csm—1)’ € R™ ! is the vector form of the face space coor-

dinates. For texture, 3; = o0, ,¢,;, thus
B = diag(o,)ct (2.16)

with Cy = (Ct,17 ey Ct7m,1)T € Rm_l.

Zero-mean shape and texture vectors are defined as

m—1
S=Vg—S= Z a;ug; = Ugar (2.17)
i=1
and
m—1
t= Vi — E = Z Biut,i = Ut/B (218)
i=1

In the face space representation, convex combinations of face vectors are
equivalent to morphs of the database faces, and will therefore have a natural

face-like appearance.
In addition, PCA estimates the prior probability density within face space:
o2
po(ve) ~e T (2.19)

05y, 4
pe(ve) ~ e 7

(2.20)

The probability density function provides a distance measure in faces space,
also referred as Mahalanobis distance [DHS00]. Considering shape, this mea-
sure dyys(s1,s2) calculates the difference between two shape vectors s; and sg

by computing

dar(s1,52) = \/ (51— 52, Cs (51 — 52)). (2.21)

Applying s; = Uga; and sy = Ugas (see Equation (2.17)) results in

da,s(s1,82) = \/<Us(a1 — a3),Cs 'Us(ag — ap))

(2.22)
- \/(al - a2)TUsTCs_1US(a1 - az).

Regarding Equation (2.8), the inverse of the covariance matrix is defined as
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Co ' =m - Uy (W2)1UT with W, = /m - diag(o,,), so that
1
Cs ' =m Uy (W)U, = Ugdiag <—2) U’ (2.23)

With this definition, Equation (2.22) can be written as

dars(s1,82) = \/(a1 — o)’ diag (J%) (a1 — )

EX)
s (a1 — azi)?
p U?,i

Here, the vector space spanned by the coefficient vectors are weighted according

(2.24)

to their variance. Thereby, directions with high variance are weighted lower

than directions with low variance.

As stated in Equation (2.15), aq; = 05,651, and ag; = 0,,¢s2,;. Hence,

02 (Co1s— Cony)?
durs(S1,82) = \/Z sl 5’1’12 5.2,)
i Us,i
- \/Z(Cs,l,i - CS,Z,Z')2-
i

(2.25)

This equation shows that the Mahalanobis distance dys(s1,S2) of two zero-
mean shape vectors results in calculating the Euclidean distance between the
face space coordinates cs; and cgo of the related shape vectors s; and sg,
respectively.

The Mahalanobis distance dy¢(t1, t2) for texture can be calculated the same
way by using the texture coefficients 8, and 3, and the variances azi, or the

face space coordinates c; 1 and c o directly:

dare(ty, 2) = \/Zw

= \/Z(Ct,l,i - Ct,2,i)2-
i

(2.26)

Another application of PCA is the reduction of dimensionality of a data

space. This aspect is utilized in image compression for example. However,
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this property can be applied to the face space referred here as well. Instead
of 199 principal components, only p.. < 199 eigenvectors with the highest
variance can be used. Hence, the number of principal components p,,q. = 99

throughout this thesis if not stated otherwise.

2.2 Fitting the 3D Morphable Model to Input

Images

The 3DMM can be used to reconstruct a novel 3D face from one or more 2D
images automatically. In an analysis-by-synthesis loop, the shape and texture
vectors from the Morphable Model are computed that the pixel by pixel error
E; between the input image i, and the rendered synthetic image I,0q¢1 is
minimized. For this, the sum of squared differences over all three color channels

and all pixels,
Er =Y Mmoae(,y) = Linpus(w, 9)|, (2.27)
T,y

is calculated. (Note that the indices for the separate color channels are sup-
pressed throughout this work.) The algorithm, introduced in [BV99, BV03],
optimizes the linear model coefficients @@ = (g, ay...)T for shape and 3 =
(B1, Ba, ...)T for texture, and the rendering parameter of the scene p, includ-
ing 3D orientation and position, focal length of the camera, angle, color and
intensity of directed light, intensity and color of ambient light, color contrast,
as well as gains and offsets in each color channel.

For initialization, the optimization algorithm requires image coordinates of
at least five to seven feature points. These feature points are the correspon-
dence between the 2D image coordinates (g, ;, ¢,,;) and the vertex k; from the
reference head of the 3DMM. For example, let k., be the index, representing
the tip of the nose in the 3D mesh of the reference head, then (¢, nose, Gy.nose)
are the x and y coordinates of the tip of the nose in the input image. The
feature points could be manually selected or from automated feature detectors
as described in [BKK'08].

In addition to error function E; (Equation (2.27)), the 2D distance be-
tween the manually defined feature points (¢, j,q, ;) and the current screen

coordinates (pqk;,Pyk;) of the corresponding vertices k; of the model forms an



15

Figure 2.4: Segment masks: Linear combinations of shape and texture are
computed separately on independent facial regions. These regions are shown

on the average face.

additional cost function:

QJ:, j px,k:-
g-y () (2 ) 229
j Qy,j py,kj
To avoid overfitting, a maximum a posteriori estimator (MAP) is used as
a regularization term by computing the Mahalanobis distance (see Equation

(2.24) and (2.26)) of the current solution from the average face using the PCA
estimates (Equation (2.19) and 2.20):

_ a_? 512 (pi — ﬁi)z
Ereg—ZUQ'JrZUthZ—UQ. : (2.29)

i

Here, starting values of the rendering parameters denoted by p;, and o, ;
are the ad hoc estimate of the expected standard deviation.

The combination of the three terms forms the complete cost function is:

1 1
Erotar = ?El + U_QEF + pregEreg. (2.30)
i F

For initialization and stability reasons, the relative weights of E; and Er are
controlled by ad hoc choices of o; and op. The prior probability and Eg
are weighted high in the first iterations. During the process the weights are
reduced till the final iteration put more weight on Ej.

The optimization problem is solved iteratively using a Stochastic Newton

Descent algorithm [BV99|. The following parameters are optimized:

e shape coefficients «,
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e texture coefficients ;,

e 3D orientation and position,

e focal length of the camera,

e ambient light (RGB channels),

e direction and color of directional light (RGB channels),
e color contrast, gains and offsets in RGB channels.

To include a larger variety of faces, linear combinations of shape and texture
are computed separately on independent facial regions. These regions are the
eyes, nose, mouth and the surrounding area, which is not covered by the three
previous regions (see Figure 2.4). This enables a manipulation of one of the
specified areas without altering the other regions of the face. After calculating
shape and texture coefficients and scene parameters of the entire model (as
described above), the linear combinations of these regions are computed sepa-
rately. Finally, a complete 3D face is generated by blending the transitions of
the segments with an algorithm proposed for images by [BAS85].

2.2.1 Optimization on a Subset of Triangles

Calculating the image difference term E; (2.27) on the entire image or on all
pixels of the foreground in each iteration would be very time consuming. The
main idea of Stochastic Newton Descent is to consider only a random subset
of points in each iteration, and proceed in small steps towards the optimum.

For this approximation of Ej,

e the image could be rendered and a subset of pixels (z,y) selected, which

would bring no speedup,

e a random subset of vertices ¢ of the 3SDMM could be chosen, their image

positions (x;,y;) calculated and E; could be evaluated there, or

e a random subset of triangles k of the 3DMM could be selected, their
centers (Xg, Y, Yy) calculated in 3D, image positions (xg,y) of them

projected and E; evaluated there.



17

As in [BV99, BVO03], option 3 is chosen since the analysis-by-synthesis al-
gorithm requires surface normals and their derivatives to account for shading
effects, and these normals are simplest to compute on centers of triangles. Fur-
thermore, each triangle k£ can be assigned an area a; in the image space, and
by setting the probability of choosing k proportional to the size of a; in the
random selection procedure, the expectation value of the approximated cost
function is equal to E;.

The areas aj are calculated in the starting position and once every 1000
iterations by rendering the entire face model. Triangles that are invisible due to
self-occlusion (z-Buffer) obtain ay = 0. Then, the approximated cost function
is [BV99

EK - Z ||[input(px,k7py,k) - Imodel,k“Q (231)
keK

which involves the following calculations:

e 3D position of center of triangle k, using Equation (2.11) for all three

vertices,

e rigid transformation of triangle center, given the current estimate of pose

angles,

e perspective projection, which yields the image position (z,yx) of the

triangle center,

e surface normal of the triangle, computed from the corner positions in
3D,

e surface reflectance (i.e. RGB vertex color) using Equation (2.12),
e Phong shading, including cast shadows (see below),
e color space transformation (offset, gain, color contrast).

If the algorithm was used for rendering, the color value I,,54¢x would be
rasterized to pixel (x,yx). The texture coefficients §; and illumination pa-
rameters are only influencing the appearance of the model I,,4¢1,%, Whereas
shape coefficients «; and rigid parameters are involved in the calculation of

image coordinates (xy,yx) as well as color values Ioderr due to the effect of
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geometry on surface normals and shading [BVO03|. Thus, I,,,p4e,x represents the

appearance of the model triangle no matter where it is located in the image.

2.2.2 Fitting Parameters

In the first iterations, the optimization algorithm computes only the first pa-
rameters of o, §; with 2 € 1,...,10 and all scene parameters p. In subsequent
iterations, the number of shape and texture coefficients is stepwise increased

till the maximum of the 99 is reached.

2.2.3 Texture Extraction

The result of the model-fitting algorithm is a textured 3D model of the face.
The texture vector v is the optimal linear combination of database vectors
(Equation (2.12)) and contains one set of RGB color values per vertex since
the definition of these vectors was adapted to the resolution of the database
scans.

However, the limitation of one color value per vertex results in a relatively
low texture resolution. Thus, it is desirable to have a true u, v texture mapping
with high-resolution textures. After fitting the model to high quality photos,
details such as eyelashes, moles or scars can be captured only with a high-
resolution u, v texture.

Additionally, the linear combination (2.12) has a limited number of degrees
of freedom and so can only reproduce structures that are found in at least
one of the database faces. Details (e.g. eyelashes, birthmarks) cannot be
reproduced with the model-based approach directly. Even in blurred images,
there may be individual characteristics on a low spatial frequency domain that
are not in the degrees of freedom of the 3DMM, in particular larger blemishes
or facial hair.

The linear combination of texture vectors cannot capture these individual
details from the photo, so the following texture extraction procedure [BV99|
maps them to the model.

Let Trp(u,v) be an RGB texture for the facial mesh. The resolution of Trg
may be any value that is appropriate to capture the details seen in the image.

For each vertex j, a texture coordinate u;,v; is defined.
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(a) input (b) texture (c) without relighting (d) with relighting

Figure 2.5: Example of texture extraction: The first figure shows the input
image to reconstruct and the second (b) the extracted illumination corrected
texture. The 3D reconstruction rendered with this texture under the estimated
pose but merely with standard illumination is depicted in (c). The last figure
presents the 3D reconstruction with texture rendered both with estimated pose
and lighting condition. (a) is part of the Multi-PIE database [GMC™10).

In order to extract Trg from an image, it is relied on the fact that the
image position x;,y; of each vertex j is known after the fitting process. The
corners of a triangle k of the mesh have x, y coordinates in image space and u,
v coordinates in texture space. For each texel (integer pair u,v) in the texture
triangle, the barycentric coordinates are calculated, and the same coordinates
are used to calculate the corresponding point z,y in the triangle in image
space. Trg(u,v) is then obtained by sampling the image in the non-integer

position x,y using bilinear interpolation between four adjacent pixels.

With the procedure described so far, all illumination effects in I(x,y), in-
cluding specularities and shadows, would simply be mapped on the surface,
so new illuminations and poses could not be rendered correctly. Illumination-
corrected texture extraction [BV99] solves this problem by inverting the effects
of lighting in each texel. After fitting, the pose and the illumination of the
face are known since pose and illumination are among the parameters that are
optimized. Also, the surface normal of each point is known. Given I(z,y), the
algorithm inverts the effect of color contrast, subtracts the specular reflection
using the surface normal, and finally inverts the effect of Lambertian shading.
As a result, the algorithm outputs the reflectance values in each color channel
and stores them in Trg(u,v). Subsequent rendering will then multiply again

the reflectance with the Lambertian shading, add specularities and change the
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color contrast to obtain a realistic view in new rendering conditions. Note
that the algorithm will exactly reproduce the input image I(z,y), when the
textured face is rendered with the estimated pose and lighting of the photo.
Figure 2.5 shows an example of the illumination-corrected texture extraction
and the relighting of the 3D reconstruction.

However, texture extraction from a low-resolution input image would re-

move the details introduced by the SDMM, so a modified procedure is needed.



Chapter 3

Facial Attribute Vectors

In the everyday use of language faces can be described with attributes like thick
- thin, hooked nose - pug nose, pale skin - dark skin or masculine - feminine. To
adapt such verbal descriptions to the Morphable Model, the attribute vector
[BAHSO06] is used as a basic concept in this thesis. It is applied inter alia
in Chapter 6 to compute and visualize facial correlations. Furthermore, the
concept illustrates descriptively the analysis-by-synthesis principle and how
the data to be analyzed is modeled and used by incorporating prior knowledge
into the model. Hence, this chapter presents the fundamentals of attribute
vectors and how they are generated supervised by exploiting prior knowledge.
Afterwards, a medical application shows how the concept can be used for

classification tasks.

The model-based description of facial attributes with attribute vectors is
an easy-to-handle method for manipulating the appearance of faces in one
specifiably defined direction. Thus, it is possible to change only one facial
characteristic, such as the overall shape of a face, and retain all other charac-

teristics, such as the shape of the mouth or the eyes, entirely.

For the generation of attribute vectors, two processing steps are necessary.
First, let s; € R3 with ¢ = 1,...,m and be zero-mean sample shape vectors
of 3D faces (as introduced in Section 2.1), and b; € R be the ratings for each
face regarding one specific characteristic. The ratings b; can be either given as
an objective measure (this could be the age or any other measurable attribute
such as the width of the mouth or the distance of the eyes) or as a subjective

rating (e.g. attractiveness) selected by the user [BAHS06]. Discrete numbers

21
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can be used for rating attributes that consist of discrete cases like female/male
and continuous values can be used for rating attributes with varyingly strong
characteristics.

In a second step, an attribute vector ag for shape can be generated intuitively

by computing the weighted sum of all shape vectors s; and the related rating
bii

1 1 &
s=—Sb=—3 bs; 3.1
%= b= 2 b .0
with the data matrix S = (s;...s;,) consisting of m shape vectors and a

rating vector b = (by - - - b,,) which assigns a rating b; to every vector s;. To
calculate an attribute vector a; for texture, the same can be done with a texture
data matrix T = (t1---ty) and the rating vector for a texture attribute.
According to the correspondence, each element of an attribute vector specifies
the modification of the corresponding shape coordinates or texture values for
each vertex in the Morphable Model. If not stated otherwise, the set of shape
and texture vectors is the whole database of 200 3D laser scans from the 3DMM
(see Section 2.1) and thus m = 200.

Since attribute vectors are defined in the same face space representation as
the shape and texture vectors, both number of vertices and (more important)
the dense point-to-point correspondence of all vertices is maintained for each
attribute vector. Due to this (and the zero-mean) property, an addition or
subtraction of attribute vectors to shape or texture vectors is possible. Hence,
the manipulation process is implemented by adding or subtracting multiples

of an attribute vector to a shape or texture vector:
Vs mod = S+ s;+ d- Ag k- (32)

Here v moa is the modified result of the shape vector v =5+ s; and agy is
an attribute vector for shape describing one specific attribute k. This could
be the nasal form or the lip shape, for instance. d € R expresses how strong
the characteristic should change. An example of how the attribute vector
manipulates the appearance of a face is shown in Figure 3.1. For this instance,
As cheek 18 an attribute vector for shape, describing whether the shape of the

cheeks is skinny or puffy. Adding or subtracting multiples of ascheex to the
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A A AR

-3- As cheek -1 As cheek Mean +1- As cheek +3- As cheek

-2 As t,gender Omgmal +2 - as t,gender

Figure 3.1: Examples of attribute vectors: The first row shows the manip-
ulated mean face by adding or subtracting the attribute vector ascheex that
describes the shape of the cheeks. Subtracting multiples of this vector results
in skinny cheeks whereas adding multiples of the vector leads to puffy cheeks.
The second row shows the manipulation of an input face with an attribute
vector aggender 10T shape and an attribute vector for texture ag gender- These
vectors manipulate the facial shape or texture regarding the gender. Adding
the attribute vector alters the face towards a more female and subtracting to-
wards a male appearance. Note that all other facial characteristics (such as

eyes or lip shape) are not modified by the attribute vector.

average shape vector s alters the face regarding this attribute but keeps all
other characteristics such as the shape of the mouth or the eyes unchanged
(see first row in Figure 3.1). The second row in Figure 3.1 shows how an input
face is altered by utilizing an attribute vector for shape and one for texture. In
this case, subtracting ag gender and the attribute vector for texture, at genders
changes both facial shape and texture of the female input face towards a more
masculine appearance. On the contrary, adding both attributes alters the

input face towards a more feminine looking face.
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3.1 Classification of Facial Characteristics with

Attribute Vectors

Despite mainly using the attribute vector for manipulating the appearance of a

face, it can also be applied for a classification of a specific facial characteristic.

Assume a 3D face is given by a shape vector Ssample and a texture vector
tsample as defined in Section 2. Now, the facial shape shall be rated concerning
one specific characteristic k£ (e.g. nasal shape, eye distance or gender). The
rating li sampie € R for the sample shape should be calculated by a linear
function f, (Ssample). This rating function f,.() can be estimated from a dataset
of shape vectors s; with ¢ = 1,...,m and the corresponding labels [ ; rating
s; regarding the characteristic k. Note that Ssample 1S a new sample and not
part of the dataset. The labels are specified either by objective or subjective
measures depending on the characteristic k as described in the previous section.

Therefore, a linear regression is used minimizing the least squares error

E =Y "(fr(s:) — i) (3.3)

i=1
According to the Riesz representation theorem [Rud87, Rie09], any linear func-
tional f can be written in terms of a dot product with some vector [BAHSO06].
The simplest possible function is the canonical dot product of two vectors x,

y with (x,y) = >, z;y; related to the Lo norm.

In contrast, a scalar product weighting the dimensions in face space with
respect to their variance can be deduced from PCA (Section 2.1). This scalar
product is based on the Mahalanobis distance (Equation (2.24)) and defined

(x,y)m = (x,Cs"y) (3.4)

with the covariance matrix Cg as stated in Equation (2.8), and two zero-mean
shape vectors x, y (Equations (2.17)). In face space the minimization in terms
of the Mahalanobis distance is significantly better suited than the Euclidean
distance since it ensures a plausible manipulation along the directions with
the largest variance of the dataset of examples (distances are measured rela-

tive to the standard deviation). The a priori probability of a face (Equation
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(2.19)) is monotonously decreasing with its Mahalanobis distance from the
mean. Thus, a maximum probability of a manipulation of the mean facial
shape with a vector is reached if the alteration has a minimum Mahalanobis
distance [BAHS06].

By applying the Mahalanobis based scalar product as rating function f,(s;) =

(si,ask)m = li; to Equation (3.3), the error to be minimized is

E (<Si, as,k>M - lk,i)2

I

s
Il
—

(5i"Cs ragy — lp;)?

NE

Il
N

%

‘ STCS_laS,k — lkH2

with the attribute vector ag y for shape representing the facial characteristic k,
the data matrix S = (sq,...,8m), and a rating vector Iy = (lg1, ..., lkm). Now,
this equation can be further simplified by applying the singular value decom-
position of S = UsW, V" (Equation (2.7)) and Cs~! = m - Ug(W 31U
(Equation (2.23)):

E = [(UsW, V") (m - Ug(W,?*) 71U g — L
E=|m- VW UJSUL(W) U ag ) — 12

E = [m - VsWs(W*) 7 'Ug agy — Le|?

E=|m- VW, 'Uagy — 1%

(3.6)

Since the minimization problem is already decomposed in orthogonal and
diagonal matrices, a minimal solution for asx can be computed easily by using
the pseudoinverse of (m - VSWS*IUST):

— -1 T+
as,k = (m . VSWS US ) lk

1 T
Agk = EUSWSVS 1k (37>

1 1 &
Ask = ESlk = E ; lk,isi-

This solution is a weighted sum of the of input shape vectors s; with their

rating [, merely and in line with the intuitive approach for generating the
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attribute vector with b; = l;,; (Equation (3.1)) in the previous section.

If the canonical dot product is used as a rating function instead of the
Mahalanobis dot product in Equation (3.5), the minimization would result in
a different solution for the attribute vector and individual characteristics would
be no longer retained [BAHS06].

Hence, the Mahalanobis dot product of a shape vector ssample and an at-
tribute vector as i describing the facial characteristic k is an appropriate rating

function f,(Ssample) for rating a new sample Sgample regarding k:
lk,sample - fr(ssample) = <Ssamplea as,k>M - <Ssamp1ea Csilas,k>' (38)

Since both vectors can be transformed to a face space representation with
Ssample = UsQsample, 8sk = UsQq (Equation (2.17)), and the inverse of the
covariance matrix Cs~' = m - Ug(W,?)"'U,” as defined in Equation (2.23),

Equation (3.8) can be written as

lk,sample = <Usasamplea m - US<W52>71USTUSak>
lk,sample - (Usasample)Tm : US(WS2)_1ak (39)

lk‘,sample = asampleT(m : (WSQ)_1>aka

and with (W?)~! = diag(1/w?,) and w,; = \/m - 04, (see Section 2.1)

Pmazx

Asample,i * Oki
lk,sample = E B} —. (310)

i=1 Us,i

Here, p,n.. denotes the number of principal components used in the face space
representation. With a; = oy, - ¢;; from Equation (2.15), Equation (3.10) can
be simplified further to

Pmax

lk,sample = E Cs,sample,i * Cs ki — <cs,samp167 Cs,k>7 (311>
=1

which is the Euclidean dot product of the face space coordinates cg sample and
Cs k-
The resulting classification value lj sgmpie can be interpreted directly. The

magnitude denotes the strength of the characteristic, thus a comparison be-
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Sample 1 Sample 2

Figure 3.2: Rating with attribute vectors: three sample faces that are rated

regarding their overall shape.

tween different faces is possible.

A rating of the texture characteristic k£ can be estimated similarly by cal-
culating the Mahalanobis dot product of the texture vector tsample and an

attribute vector for texture ag k-

As an example, three faces (see Figure 3.2) shall be rated regarding their
overall facial shape. Therefore, an attribute vector ag angular—round is utilized
that alters the face towards an angular shape if added, and towards a round
shape if subtracted. The Mahalanobis related dot product between the three
shape vectors Sgample,; With ¢ = 1,..,3 and the attribute vector as angular—round
is calculated with Equation (3.8). As aforementioned, the resulting ratings
can be interpreted directly. Since adding as angular—rouna modifies the shape
towards an angular face, a classification result of longuiar—round;i > languiar—round.;
indicates that Ssampie,i has a more angular facial shape than sgample ;. Subtract-
ing alters the face towards a round shape, thus longuiar—round,i < langular—round,;

denotes that Ssamplei has a rounder facial shape than Ssample -

For the three faces in Figure 3.2, the ratings are longuiar—round,1 = —3.429 for
the first, longuiar—round,2 = —0.357 for the second, and l4pnguiar—round,s = 1.804
for the last sample. These values imply that sample face 1 and 2 have a more
round facial shape than sample face 3. In addition, the shape of sample 2 is
less round than sample 1, which has, in terms of value, a strong rounded face.
Figure 3.2 illustrates that the deduction made from the classification results

are in line with the actual data.
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l? ' [
light manifestation medium manifestation severe manifestation
Figure 3.3: Examples of acromegalic severity: The figure shows how the dif-
ferent stages of Acromegaly alter the appearance of a face. The Acromegaly
patients are categorized by a doctor regarding the degree of severity. From left
to right light, medium, and severe manifestations are depicted. The images

are provided by Ludwig-Maximilians-University Munich.

3.1.1 Application of Attribute Vectors

One application of the classification of faces with attribute vectors is to fa-
cilitate the detection of the disease Acromegaly. This topic was studied as
part of a diploma thesis [Kabl3]. Acromegaly is an adenoid disorder that
causes an increased segregation of human growth hormones. The consequence
is swelling of hands, feet and face, and eventually permanent changes to areas
such as the jaw, brow ridge and cheek bones [Fre00, Kat14|. Figure 3.3 shows
different degrees of severity and how the facial appearance is altered. It depicts
characteristic signs such as swollen nose, large jaw, protruding brow, frontal
bossing (protrusion of the forehead), prominent cheekbones, enlarged lips, and
prominent nasolabial folds (creases in the skin of the cheek) [LMLPT06]. If the
disease is diagnosed in an early stage, the chances of healing are high, but it is
often diagnosed too late. For that reason, an automatic visual scan can help to
identify Acromegaly patients in time. Nevertheless, the automatic detection
cannot surrogate a medical examination, but may provide an indication for a
first diagnosis.

For the automatic classification, an attribute vector describing the specific

changes of the face structure due to the disorder has to be generated. Thus,
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a 3D face data set of acromegalics and persons with no appreciable disease
must be acquired in a first step. This can be done by using a 3D scanner
or based on a reconstruction with the 3DMM from one or more photographs
of one person (see Section 2.2 and 7.3). For the latter, the database of the
model can be extended with facial scans of patients to cope with the unique
facial conditions, and thus improve the 3D reconstructions [Kab13|. Here, the
incorporation of scans showing facial symptoms of Acromegaly illustrates the
analysis-by-synthesis concept vividly since the data to be analyzed is explicitly

integrated and modeled.

All patients in the Acromegaly database have to be rated by an endocri-
nologist regarding the stage of the disease (Figure 3.3 shows different stages).
Based on these ratings, the weights b; are defined and an attribute vector
for shape as acro describing the Acromegaly characteristics is generated (see
Equation (3.1)). Now, different options are feasible how the medical ratings
are assigned to the weights. One straightforward solution uses two values:
b; = —1 if the shape vector s; belongs to a healthy person, and b; = 1 if the
vector belongs to an acromegalic. With this implementation, the attribute

vector classification is similar to a binary classifier.

Another solution simulates the increasing strength of the face structure
change in the progress of the disease. Thus, more than two values for b; are
used to utilize this property. Four classes can be used, for instance: b; = —1 if
the shape vector s; belongs to a person with no appreciable disease, b; = —0.3
if the shape vector belongs to an Acromegaly patient with early stage facial
swellings, b; = 0.3 if the patient has medium swellings, and b; = 1 if the patient

has strong facial changes.

To classify a new patient, the Mahalanobis dot product between the input
shape vector Ssample and the attribute vector ag acro (see Equation (3.8)) must
be calculated. The new input shape vector can be acquired with a 3D scanner
or, because of the limited availability of 3D scanners in medical practices, by
3D reconstruction from photographs with the extended 3DMM. To improve
the precision of the reconstructions, at least two pictures of the patient should

be used: One shot showing a frontal view and a second one with a profile view.

The actual classification depends on the method for generating the Acromegaly

attribute vector. If only two weights are used (b; = —1 for healthy persons,
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b; = 1 for acromegalic patients), a new facial shape sample s;, can be classified

with the function

NAD for lacro,in < thacro

fc(lacro,in) = (312)
A for laCTo,in 2 thacro

with

lacro,in - <Sin7 as,acro>M (313)

and a threshold value th,..,. Thus, a sample shape vector s;, probably belongs
to a person with no appreciable disease (NAD) if the rating value lyeroin is
below the threshold th,..,. In contrast, the class acromegalic (A) is assigned

to a sample if lyeroin > thaero. Hence, the patient could suffer from Acromegaly

and should be medically examined more precisely.

The threshold th,e, can be determined by computing the rating l,e.,, for
all shape vector samples used for estimating as acro. Since it is known to which
class each sample i belongs, an average rating value can be computed for both
classes: l_acm, ~ap for non-diseased patients and l_acm A for acromegalics. Then
the midpoint between both values can be used as threshold thy..,. Alterna-
tively, the threshold can be a user-defined value, for example, if an empirically
determined value is available or if a more conservative detection is preferred

to avoid false negatives (falsely classified as not appreciable diseased).

As stated above, the classification also enables a rating with more than
two classes. In this case, intervals for the different states have to be defined.
Therefore, the rating value l,.,; for all m shape vectors s;, with ¢ = 1,...,m, of
the data set used for estimating as acro is calculated. Afterwards, the ratings
are categorized by their class d. If four classes are used to rate the severity,
the classes are: NAD for patients with (n)o (a)ppreciable (d)isease, L for
patients with (1)ight symptoms of Acromegaly, M for patients with (m)edium
indication and S for patients with (s)trong indication. In a next step, the
means lfacmd and standard deviations 0gerocass Of all ratings in one category

are computed for each of the four classes. With these values, a new rating
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| NAD | light (L) | medium (M) | strong (S)
quantity | 60 | 24 | 22 1

Table 3.1: Classification distribution of the degrees of severity of the

Acromegaly data set used for evaluation.

lacro.in can be classified by applying the function

! _
NAD for lacro,in S lacro,NAD + Oacro,NAD
L for lacro7L — Oacro,L Z lacro,in S lacro,L + Oacro,L
fc(lacro,in) - -~ _
M for lacro,M — Oacro,M Z lacro,in S lacro,M + Oacro,M
\S for lacro,S — Oacro,S 2 lacro,in'
(3.14)

Note that an overlap of intervals is possible. As result, a new input sample
can be assigned to two classes. This is crucial only for overlaps between the
class for healthy patients (N AD) and for patients with light facial changes (L)
since it decides between a closer examination or not. Thus, if a new rating
is assigned to two classes, the priority of the Acromegaly classes should be
higher than the healthy class, to ensure that all possible patients are checked
sufficiently.

Evaluation of Attribute Vector Classification

The attribute vector classification was evaluated based on a data set of 117
patients in total, with 57 acromegalics and 60 persons with no appreciable
disease. For each person, a frontal and a profile view are provided. Further-
more, all 57 Acromegaly patients are classified by three endocrinologists into
three degrees of severity (light, medium and strong). The distribution of this
rating is shown in Table 3.1. All data was developed in collaboration with the
Ludwig-Maximilians-University Munich (LMU).

For evaluation of the attribute vector classification with two classes, the
attribute vector is calculated with two weights: b; = —1 if the reconstructed
face ¢ belongs to a non-diseased person, and b; = 1 if the 3D face is recon-
structed from images of an Acromegaly patient. The division of the acrome-

galics into three degrees of severity is ignored for this case and all acromegalics
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NAD acromegalics overall
AVC SVM | AVC SVM | AVC SVM
number 60 o7 117
falsely classified 10 13 10 19 20 32
detection rate 83.3% 78.3% | 82.4% 66.6% | 82.9% 72.6%

Table 3.2: Comparison of detection rates for attribute vector classification
(AVC) and Support Vector Machine (SVM). For AVC weights are —1 for pa-
tients with no appreciable disease (NAD) and 1 for Acromegaly patient.

are weighted with the same factor.

Due to the limited size of the Acromegaly data set, a leave-one-out classi-
fication paradigm is used. Therefore, the attribute vector is generated with
all examples except one, and then the remaining single sample is classified by
using the attribute vector.

In [Kab13] the results of the attribute vector classification with two classes
are compared with previous work [LMLP*06]. [LMLP*06| used a Support
Vector Machine (SVM, [Vap95]) to classify input photographs regarding their
shape coefficients estimated by the 3DMM (see Section 2.2) to detect possible
acromegalics. SVM is a standard method in machine learning. Given a training
set with each example mapped to one of two categories (here: healthy and
Acromegaly patients), SVM assigns a new sample to one of the two classes
[DHS00]. The leave-one-out paradigm is also used for the SVM classification.

Table 3.2 shows the results either of AVC or SVM using the data set de-
scribed above. The number of samples, the quantity of falsely classified sam-
ples and the resulting detection rates are reported for AVC and SVM. The
detection rates of SVM for both classes are lower than the detection rates
of the attribute vector classification. Besides the better performance of the
AVC compared to the SVM, another advantage of AVC is the classification
into more than two classes. For this reason, the AVC with more classes is
evaluated additionally. Since a classification of the Acromegaly patients of the
data set into three degrees of severity exists, it is obvious to use the ratings
for generating the attribute vector. Therefore, the weights for a sample ¢ are:
b; = —1 for a non-diseased patient, b, = —0.3 for patients with light symptoms,
b; = 0.3 for patients with medium symptoms, and b; = 1 for acromegalics with

strong symptoms. Then a new sample can be rated using Equation (3.14).
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H NAD ‘ light ‘ medium ‘ strong H overall

number 60 24 22 11 117
falsely classified 10 9 7 2 28
detection rate 83.3% | 62.5% | 68.1% | 81.8% 76%

Table 3.3: Detection rates for attribute vector classification with four classes:
no appreciable disease (NAD), acromegalics with light (L), medium (M) and
strong (S) symptoms. Weights for classes are NAD=-1, L=-0.3, M=0.3 and
S=1.

Note that a leave-one-out paradigm is used again to cope with the limited size
of the database. The results for the classification into four classes (no appre-
ciable disease (NAD), acromegalics with light (L), medium (M) and strong (S)
symptoms) are shown in Table 3.3. For each group the number of samples, the
quantity of falsely classified samples, and the resulting overall detection rate

are reported.

In this context, a result is marked as "falsely classified” if the AVC assigns a
sample to the wrong class (for example, if a sample input with light symptoms
is classified as a patient with medium symptoms). It does not imply automat-
ically that a sample is assigned to the non-diseased class. The number of false
classifications of reconstructions with light (L) and medium (M) symptoms
are with 62.5% respectively 68.1%, lower than the detection rates for patients
with strong (S) or no symptoms (NAD).

Since an incorrect assignment of samples with acromegalic symptoms to the
NAD class is more critical than a wrong classification within the Acromegaly
groups, a different definition of false classification is used. For this definition,
an image sample showing Acromegaly is only considered as "falsely classified”
if the AVC assigns it to the NAD group. This means, for example, that a
classification of a sample with medium symptoms as a patient with strong
symptoms is not defined as an incorrect assignment. However, a non-diseased
sample is always considered as "falsely classified” if it is assigned to any of
the acromegalic classes (as in the previous definition). Table 3.4 reports the
results of the AVC if only this second type of false classification is considered.
Thus, the detection rates for acromegalics are considerably increased. With

1 false classification, each for patients with strong and light symptoms, and 3
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H NAD ‘ light ‘ medium ‘ strong H overall

number 60 24 22 11 117
falsely classified as NAD 10 1 3 1 15
detection rate 83.3% | 95.8% | 86.3% | 90.9% | 87.1%

Table 3.4: Detection rates for attribute vector classification with four classes:
no appreciable disease (NAD), acromegalics with light (L), medium (M) and
strong (S) symptoms. Here, an acromegalic sample is only considered as
“falsely classified” if the classification assigns the sample to the NAD class.
Weights for classes are NAD=-1, L.=-0.3, M=0.3 and S=1.

for patients with medium symptoms the rates are 95.8% for light, 86.3% for

medium and 90.9% for patients with strong symptoms.

Conclusion

In this chapter, the potential of classification with attribute vectors has been
exemplified with the detection of the disease Acromegaly from facial input
images. To evaluate the AVC, the results were compared with a previous
approach [LMLP'06|, which applied a SVM classification to the task. The
comparison shows detection rates of the AVC being higher than the detection
rates of the SVM classification.

Another advantage of the AVC is the classification of more than two classes.
In a second evaluation, it has been shown that this property enables a more
flexible detection. If only false detections of Acromegaly patients classified
as not appreciably diseased are considered, the detection rates are further
increased.

Overall, the results provide a good basis for a medical application. Hence,
the approach should be analyzed further with a larger database of patients in
different stages of Acromegaly. Nevertheless, the method could be tested in
first field studies for screening purposes as well since it could indicate a medical
examination in time, thus drawing attention to the otherwise potentially not

considered disease Acromegaly.



Chapter 4

Hallucination of Facial Details

from Degraded Images

The Morphable Model enables a 3D reconstruction of faces from a single image
by estimating both the facial shape and the parameters of image generation
including head pose and the lighting conditions. Other common image degra-
dation sources such as noise, defocus, and facial occlusions have not been or
only partly considered by the 3DMM yet.

For that reason, one aspect of this thesis is the analysis and integration
of these degradation factors into the model. In a first step, the influences of
noise, blur and low image resolution are investigated to gain an insight into
how degradation factors impact the quality of the 3D reconstructions.

Furthermore, the 3DMM is extended by incorporating non-local rendering
effects into the algorithm using the example of image blur. The new method
includes the blurring or downsampling operator explicitly into the analysis-by-
synthesis approach, and thus can be used to deblur images and restore details
that are lost in the input data. For images of human faces, a model-based
restoration of facial details has become known as Hallucinating Faces [BK0O].

The image quality of the reconstructions is further improved by an addi-
tional texture enhancement algorithm that adds high-resolution details from
example faces. By leveraging class-specific knowledge, this restoration process
goes beyond what general image operations such as deblurring or image in-
painting can achieve. Figure 4.1 visualizes an example of the improved 3SDMM

and the texture enhancement algorithm.

35
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Figure 4.1: Hallucination of blurred details: (a) shows the blurred input im-
age and the result of the 3D reconstruction after applying the new approach.
The Figures (b) to (d) are magnified views to the eye and mouth regions
of the reconstructed 3D face model. While in (b) only the original texture
was extracted from the image, in (c) the deblurring described in Section 4.4.4
was applied and in (d) the high-resolution texture transfer of Section 4.5 was
added to the results of column (c). The input image (top of (a)) is taken from
[GMCT10].

In another part of this chapter the handling of facial occlusions by the
3DMM is extended for texture extraction purposes. Despite the consideration
of occluded areas by the 3DMM, the method could not fill in the unknown
regions with high resolution details using texture extraction (see Section 2.2.3).
Now, the extension enables a reconstruction of textured 3D faces with details

that are not in the input images (see Figure 4.2 for an example).

Overall, the benefit of the SDMM for image restoration is the application to
any pose and illumination, unlike image-based methods. However, only with
the new extensions of the fitting algorithm proposed in this chapter, 3DMMs
can produce realistic faces from severely degraded images, thus enhancing the

image quality by hallucination of facial details.
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(a) occluded input (b) 3D face (c) reprojection

Figure 4.2: Hallucination of occluded details: 3D reconstruction of non-frontal
input image with occluded face regions. Parts of the input image are occluded
due to glasses and facial hair. These must be marked manually. Figure (b)
shows the 3D reconstruction with compensation of occluded areas. After repro-
jection and relighting of the reconstruction, a hallucination of occluded facial

regions is possible (Figure (c)). The input image (a) is taken from [GMC™10].

4.1 Related Work

Difficult imaging conditions due to blur, low resolution, noise, partial occlu-
sions or non-uniform lighting are frequently encountered in many real-world
applications, for example in law enforcement if a suspect must be recognized
in low quality image material. Especially in such low light conditions, a longer
exposure time is required, which most likely results in blurred images due to
camera shake.Several image processing algorithms recover and enhance infor-
mation that is still present in the image, yet mostly invisible to the human

eye.

In the following chapter, one focus is set on algorithms restoring blurred im-
ages. Basically, a blurred image can be considered as a sharp image convolved
with a blur kernel, also known as point spread function (PSF). Deconvolu-
tion strives to invert the effects of the PSF and restore the sharp image by
deblurring the distorted input image. These deblurring methods can roughly
be divided into two types: Algorithms in which the PSF is known, and those
in which the function is unknown and therefore has to be estimated from the

input image.
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4.1.1 Image Deconvolution

Numerous deconvolution approaches exist, one classic approach is a Gaussian
Bayes model called Wiener deconvolution [Wie49] which uses a Wiener filter
for inverting the effects of blurring. However, it has serious drawbacks such as
artifact creation and the need of spectral noise estimation. Another classical
method is the Tikhonov Regularization [Tik43]. It is basically a regularized
least squares solution obtained directly in Fourier space [MPS07|. For more
details on the algorithms see [BK97].

An extensively used method, developed for compensating blur in optical
systems in astronomy, is the Richardson-Lucy (RL) algorithm [Ric72, Luc74].
This iterative maximum likelihood procedure for image deconvolution can be
described as an expectation maximization (EM) method [DLR77]. Since these
algorithms are simple and efficient, they are still widely used in image restora-
tion. However, they tend to generate ringing artifacts near strong edges.

Due to the ill-posed nature of non-blind deconvolution, the restoration of
high frequency image details is still very difficult even though the point spread
function is known. For this reason, image priors are incorporated in the de-
blurring process more recently. Cho et al. [CL09| propose a computationally
efficient Gaussian prior in an iterative deconvolution algorithm based on image
derivatives rather than pixel values.

Weiss et al. [WF07]| have shown that the distribution of natural image gra-
dients is heavy-tailed and that this distribution can be learned from sample
images. Since Gaussian priors are not appropriate for capturing the heavy-
tailedness, non-Gaussian priors were introduced. Hence, hyper-Laplacian pri-
ors, which model the characteristic of natural images very well, are used in
deconvolution methods [LEDF07, JZSK09, KF09|. These priors have been ap-
plied to non-blind deconvolution and an iteratively reweighted least squares
(IRLS) [Ste99] method is used to solve this non-convex optimization problem
[LEFDF07, JZSKO09]. The main idea of IRLS is to solve a series of weighted
least squares problems by using a conjugate gradient method iteratively.

Levin et al. [LFDFO07| derived the sparse hyper-Laplacian prior of image
gradients from natural image statistic and assume a piecewise smooth image,
whereas Joshi et al. [JZSKO09] model the prior as a per-pixel linear combination

of two color layers. The two-color model states that any pixel color can be
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represented as a linear combination of the two most prevalent colors within
a neighborhood of the pixel [JZSK09|. Krishnan and Fergus [KF09| adopt
an alternating minimization scheme to the hyper-Laplacian prior by using a
lookup table to be several orders of magnitude faster. However, it is not
guaranteed that the solution converges to a globally optimal solution. To
guarantee a globally optimal solution, priors including convex terms such as
total variation (TV) [DBFZ*06, HRH*13] or total curvature [GC11| can be
incorporated in the deconvolution process. Dey et.al [DBFZT06], for example,
enhanced the RL algorithm with a TV regularization.

In contrast to edge regularization methods that add strong regularization for
the smooth regions and weak regularization for the sharp edges (e.g. [DBFZ*06,
LFDFO07, JZSKO09]), algorithms that are able to reason about larger neigh-
borhoods lead to state-of-the-art performances [YSQS08, ZW11, SRNT13,
SBHS13, SCWH14]|. A patch-based algorithm, that models image patches via
a simple Gaussian mixture model, was introduced by Zoran and Weiss [ZW11].
Another method performs a residual multi-scale Lucy-Richardson deconvolu-
tion in scale space from the coarsest to the finest scale in combination with
bilateral filtering to suppress ringing artifacts [YSQSO08|. Also, discriminative
methods trained on pairs of corrupted and sharp patches, without specifically
modeling the image prior are recently applied [SRN*T13, SBHS13|. For more
details on recent methods see [SCWH14].

4.1.2 Blind Deconvolution

In the previous section, it was assumed that the blur kernel is known in ad-
vance. Thus, with the blurred input image and the known PSF, just the sharp
original image has to be restored. However, the PSF is often unknown as
well, so only the blurred input image is known and the problem is said to
be blind. This blind deconvolution is a significantly more challenging and ill-
posed problem. A survey on the extensive literature of the deblurring by blind
deconvolution problem can be found in [KH96].

Blind deconvolution methods arose from astronomical image acquisition
[JC93, TMB94, TC95|. In this context, extensions of the RL-Algorithms that
alternatively perform an iteration step on the image and then on the PSF are

applied [TMB94|, as well as an iterative method based on the minimization
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of a penalty function that uses multi-frame data [JC93| or a likelihood maxi-
mization with strict a priori constraints [TC95]. An overview of deconvolution
in this field can be found in [MPS07|. Certainly, with statistics quite different
from the natural scenes, blind deconvolution methods of astronomical images
have in common that the blur kernel can be estimated from a blurry image of

a separated star since it reveals the PSF.

Thus, other algorithms must be used for blind deconvolution of natural
scenes. These methods can be roughly divided into two basic approaches:

Utilizing multiple images and single image blind deconvolution.

One field of application for multiple image deconvolution is motion deblur-
ring in videos. The information of all frames can be merged to support the
reconstruction of a sharp image. Bascle et al. [BBZ96], for instance, track an
object of interest in a low-resolution video sequence to estimate the object’s
2D motion. Afterwards, a regularized least squares optimization is performed
to minimize the difference between the predicted and the input sequence and
so a deblurred high resolution image is reconstructed. Schultz and Steven-
son apply an observation model to compute the displacement vectors between
frames and calculate the high-resolution frame with Bayesian maximum a pos-
teriori (MAP) estimation using a discontinuity-preserving prior based on the
assumption that image data consists of smooth regions separated by edges

[SS96].

It is not necessary to use all frames of a sequence, and less images can be
sufficient for restoration if each image has a different blurring direction. When
the directions of motion blur are orthogonal, it can be reduced to two images
[RAPO5].

Besides motion deblurring of video sequences other fields of application ben-
efit from multiple image blind deconvolution. Yuan et al. [YSQS07| address
photos acquired under dim lighting conditions using a hand-held camera. A
pair of images is required, one blurry and one taken with a slow shutter speed
and low ISO setting, the other underexposed and noisy captured with a fast
shutter speed and a high ISO setting. Both images are used to estimate a
PSF with a Tikhonov regularization method [Tik43|. Then a residual decon-
volution, an extension of the RL algorithm, is applied to both images again

for deblurring. Lim et al. [LS06] propose a similar method in their patent,
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capturing two blurry images, wherein the second image is more blurred and
more exposed than the first image. The PSF is derived using a least squares
method.

Another option for utilizing multiple images in blind deconvolution is taking
advantage of additional, specialized hardware. Nayar and Ben-Ezra [NBE0O4|
propose a hybrid camera system by combing a high-resolution still camera as a
primary sensor and a low-resolution video camera as secondary sensor. Due to
the high temporal resolution of the secondary sensor, a number of sharp, low-
resolution images is captured during the exposure time. These sharp images
are used for kernel estimation. A different approach is the fluttered shutter
camera [RATO06|, which “flutters” the camera’s shutter by opening and closing it
with a binary pseudo-random sequence during exposure time. This approach
minimizes the loss of high spatial frequencies and preserves high frequency

spatial details in the blurred image consequently.

In contrast to multiple images, single-image blind deconvolution has to es-
timate both the PSF and the sharp image and thus results in a rather difficult

problem.

Although blind deconvolution methods exist, it is shown in [LWDF09] that
the best image quality is achieved by estimating the PSF first and then solving
the non-blind deconvolution with the calculated kernel. Therefore, most of

blind deconvolution algorithms follow this approach.

A commonly known method exploits the very specific distributions of im-
age gradients of natural scenes in combination with a variational Bayesian
approach to estimate the PSF [FSHT06]. The variational Bayesian solver uses
a sparsity prior on the gradients which are modeled as a mixture of zero-mean
Gaussians. Furthermore, a multi-scale approach is applied in a coarse-to-fine
manner to avoid local minima. Some parameters have to be manually specified
by the user: a small patch rich in edge structure, the size of the blur kernel
and the initial estimates of the PSF as a horizontal or vertical line [FSHT06].
With the calculated function, the image is reconstructed using the standard
RL algorithm.

Jia [Jia07| estimates the blur kernel from a perspective of alpha values by
exploiting the relation between motion blur and blurry object boundaries by

using a prior based on transparency in the MAP problem. The main idea
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assumes that the solid boundary of an opaque object is blended to the back-
ground during image capture by its motion and that way transparent object
boundaries appear. Foreground and background samples in the blurry image
must be specified by the user. After the PSF is estimated, the LR algorithm
is applied to deconvolve the blurred image.

A method from Shan et al. [STA08| computes a deblurred image applying a
unified probabilistic model to solve the MAP problem. An iterative optimiza-
tion with a smoothness constraint is used that alternates between updating
the PSF and estimating the latent image until convergence.

All previous single image blind deconvolution methods calculate one PSF
for the entire image. Other works focus on estimating several functions for
different image regions.

Thus, the spatially-varying PSF estimation has been proposed by Bardsley
[BJNPO6] and Levin [Lev07|. The former restores the latent image by using
a combination of methods including sectioning and iterative phase diversity
algorithm for approximating the PSFs. Levin addresses the problem of blind
motion deblurring from a single image, caused by a few moving objects so
that only parts of the image may be blurred [Lev07]|. Therefore, the image
is segmented into several regions with different PSFs by computing a log his-
togram of derivatives distribution. The expected distributions are modeled
under different degrees of blur, and those distributions are used to estimate
the blur kernel. Afterwards, the image is deblurred by using the basic RL
algorithm. The method assumes that each kernel is uni-directional and the
motion of constant velocity.

Recently, Hu and Yang [HY12] focus on the question which areas of a blurry
image include the most information for PSF estimation. Smooth regions, for
example, do not contribute much for estimating the blur kernel. Therefore, a
model is learned, which is able to predict good regions from an input blurred

image without any user guidance.

4.1.3 Image Inpainting

Another common problem in real world imaging are structures that are de-
graded due to (partial) occlusions. The occluded areas can be recovered to

some extent with image inpainting algorithms. Bertalmio et al. [BSCBO0O|
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firstly introduced the term image inpainting. It refers to the process of filling
in missing, damaged or occluded regions by utilizing image statistics. These
methods are based on the underlying concept that missing and non-missing re-
gions share the same statistical properties or geometrical structures [GLM14].
The idea in [BSCB00| was inspired by art restorers who refurbish paintings
by brushing the color from the surrounding neighborhood into the demolished
or missing regions. This concept is adapted algorithmically with a diffusion-
based approach, which propagates isophotes (lines of constant intensity within
an image) into the missing regions. The diffusion is performed using partial
differential equations (PDEs). Later, Bertalmio recognized the similarity to
the transport of vorticity in fluid dynamics and extended their method with the
Navier-Stokes equations [BBS01]|. Besides PDEs, variational regularization are
also applied on diffusion-based inpainting algorithms. Shen and Chan [SC02]
recover the missing information by minimizing the total variation (TV) in the
resulting image. To better cope with curved structures, the TV regularization
term was extended with curvature-driven diffusion models [CSO01|. Further-
more, the problem is approached from the context of statistical learning, based
on learning histograms of local features from natural images [LZWO03|. The
diffusion-based algorithms aim for a smooth continuation of local structures of
the image and perform accordingly well on small or non-textured regions, but

fail on textured and larger regions due to their localness.

Another more global approach to image inpainting is based on the work of
Efros and Leung |[EL99]. These exemplar-based methods perform better on
larger and textured regions, due to the propagation of image information from
known regions into the missing regions at a patch level. The texture is recon-
structed by searching the known part of the image for a patch with the most
similarity. Then the found patch (called exemplar) is copied or stitched to
the unknown region. Since natural images are composed both of textures and
structures, it is more applicable to decompose the image into structure and
texture layers. Guillemot et al. [GLM14] referred to the structured layer as
a sketchy approximation of the input image, containing only edges separating
smooth regions. Due to this, the piecewise smooth images are called cartoon
images. Bertalmio et al. used these cartoon images to combine the texture
synthesis with inpainting of structure [BVSOO03]. In [CPT04] a gradient-based
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priority term is used to define a processing order of image regions to accomplish
the separation and recover structures first. To improve the search for eligible
patches further, a multiscale approach can be applied. The patches are esti-
mated from coarse to fine and the patches found at coarser levels are used as
a priori information for inpainting the next level [DCOY03]. One drawback of
multiscale approaches is the error propagation. If an error occurs at a coarse

scale, it can be propagated across the finer scales.

Recently, sparse representations deduced from compressed sensing methods
are introduced for solving the inpainting problem. The idea of this approach
is based on the assumption the image, respectively the patch, can be repre-
sented as linear combination of a given basis (e.g. wavelets, discrete cosine
transformation (DCT) or fast Fourier transformation (FFT)), weighted by few

non-zero coefficients.

Usually the problem is solved patch wise, by approximating a sparse vec-
tor representation of the known parts of the input patch. Then the missing
pixels are inferred by applying the same estimated sparse combination of ba-
sis vectors to the unknown parts of the patch. Elad et al. [ESQDO05| use an
especially designed sparse-representation-based image decomposition method
called Morphological Component Analysis (MCA) as basis to separate the im-
age into linearly combined texture and cartoon layers. Therefore, two mutually
incoherent dictionaries are used, each representing one layer. The overall opti-
mization calculates the sparsest solution, which also have the sparsest solution
in each layer representation. Another iterative approach applies an expecta-
tion maximization (EM) algorithm by interpreting the inpainting problem as
an estimation problem with incomplete data [FSM09]. A linear sparse solution
is sought by the penalized maximum-likelihood formulation which the EM al-
gorithm is based on. The missing data is iteratively recovered with the sparse

solutions from the previous iteration of the EM algorithm.

For more details and a recent overview of inpainting algorithms, the reader

is kindly referred to the comprehensive survey in [GLM14].
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(a) (b)

Figure 4.3: Close-up of blur and deblurred details: The left image shows a
close-up of an eye in a blurred input image, whereas the right image shows
the close-up of the deblurred reconstruction with model-based enhancement

method described in this chapter.

4.2 Face Hallucination

The deblurring and inpainting methods, described in the previous sections,
can be applied to any image material because they make only very general
assumptions about the image content. However, if it is known that parts of a
human face are shown in an image, it is possible to add new information that
was not in this image to begin with. If the lower half of a face is occluded, it
can still be assumed safely that a mouth and a chin have to be added, and their
pose angle and lighting can be estimated from the upper half of the face. The
inpainting algorithms from Section 4.1.3 cannot reconstruct such information
and would fail since the data in the unknown regions cannot be inferred from
known regions in the image. The same is true for blurred regions: even if
the eye and eyebrow are only dark spots in the input image, the eyeball, iris,
eyelashes and all other details of human eyes can be filled in. Figure 4.3 shows

how this can be done with the algorithm proposed in this thesis.

Given a mathematical model of the expected content of the image, a model-
based image enhancement can be achieved by relying on the statistical descrip-
tion of the natural shapes and textures of faces. Such a description is given
by the Morphable Model (see Chapter 2). It is important to stress that the
added image detail cannot be more than an educated guess, based on the prior
information about faces on the one hand, and all the remaining information

of the image on the other hand. One solution would be to fill in the details
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from the average face, or any other random face. The algorithm proposed
here goes one step further by exploiting correlations in the set of human faces:
After fitting the 3DMM to the degraded image, a best fit is obtained, then
from this result the details are taken and rendered into the image, both in the
case of blurred and partly occluded faces. This idea is along the lines of 3D
shape reconstruction from single images using 3DMMs (Section 2.2), where the
model is fitted to colors of pixels, and gives an estimate of depth. In Chapter
5, it is shown that this inference is consistent with human expectation: when
viewers see a frontal view of a face and then a choice of profiles that are all
geometrically consistent with the front view, they tend to prefer those profiles
that were calculated by the SDMM even if the choice includes the ground truth
profiles of the face.

With this caveat, model-based inference of missing information may be a
useful tool to obtain high quality images or 3D face models from degraded

input data.

For images of human faces, the model-based fill-in of facial details has be-
come known as Hallucinating Faces [BK00]. For a recent survey, see [LLZC12,
WTGT14]. For low-resolution images, Active Appearance Models (AAMs) have
been used to fill in missing details [ECT98|. Their sophisticated model includes
shape variations, but may have difficulties in being fitted to very low-resolution
images. Soon after their initial development, AAMs were used to reconstruct
missing structures in occluded regions [LTC97]. Reconstruction of facial im-
ages both in case of partial occlusion and low resolution using a 2D Mor-
phable Face Model, which bears similarities with AAMs, has been presented
in [HLO3, LPHO5].

Using separate reconstruction modules for 2D shape and texture that ac-
count for global structure and local detailed texture, [TLO7| can reconstruct
occluded regions in images of faces. Another approach can fill in occluded

regions uses asymmetrical Principal Component Analysis [SL11].

In contrast, Baker et al. [BK00, BK02| proposed a model that does not
account for shape differences explicitly. The model uses a Gaussian pyramid of
registered images to learn a gradient-based prior. The prior is incorporated into
a Bayesian MAP approach to predict the high-resolution levels of the pyramid,

given a low-resolution input image. Another pyramid-based method exploits
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a steerable pyramid to extract multi-orientation and multi- scale information
of local low-level facial features [SZHWO05|. For face hallucination in video,
Dedeoglu et al. |[DKAO04| explored a similar idea based on spatio-temporal

consistencies and a domain-specific prior.

Besides probabilistic models, subspace learning methods are a different ap-
proach of face hallucination. The idea assumes that face images are locally
bounded, thus span a small subspace in the high dimensional image space.
This concept is similar to the idea AAMs and Morphable Models exploit.
A reduction to a low dimensional subspace is accomplished through learning
a projection from training samples via a face space model such as Principal
Component Analysis (PCA) [DHS00| or Locality Preserving Projections (LPP)
[He05]. In [WTO05] an eigentransform method based on PCA is used to repre-
sent the degraded input image as a linear combination of low-resolution bases
through projection. Assuming low and high-resolution images share the same
linear combination, the high-resolution image is hallucinated by retaining the
calculated coefficients and linearly combining them with high resolution bases.
To establish the relation between both bases, two PCA are jointly calculated
on a set of training image pairs of the same face images, one in low, the other

in high resolution.

LPP can serve as an alternative to PCA in subspace learning methods.
To obtain Locality Preserving Projections, neighborhood information of the
data set is incorporated into a graph first. The neighborhood information
can be any principle describing adjacency (for example Euclidean distance or
perceptual similarity). In a second step, the eigenfunctions of the Laplacian
of the graph are approximated and a transformation, mapping the data points
to a subspace, is calculated [He05|. Zhuang et al. [ZZWO7| proposed a locality
preserving hallucination (LPH) algorithm based on this approach to infer high-
resolution face images from the low-resolution observations. The two-step
method uses LPP to obtain an initial estimate of the face image. A radial basis
function (RBF) regression is learned from training samples to compensate the

inferred global face with high frequency facial features.

A drawback of global approaches is the loss of specific local characteristics.
Liu et al. [LSZ01, LSFO07| achieved very significant improvements in image

resolution with a two-level coarse-to-fine approach. It is a combination of sub-
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space learning to obtain an initial global face image and a probabilistic model
to refine local details. First, a smooth face image containing only low frequen-
cies is hallucinated using a global parametric model based on PCA. In a sec-
ond step, middle and high frequencies are reconstructed by compensating the
residue between the reconstructed smooth global face and the high-resolution
image using a local patch-based non-parametric Markov network. Since face
hallucination of low-resolution images is a common preprocessing step in face
recognition, Gunturk et al. [GBAT03] combined Eigenface analysis of image
sequences with a MAP framework especially for this task. In a first step, the
problem is transferred from the pixel domain to a low-dimensional face space
via PCA to estimate low-resolution feature vectors. Second, a MAP frame-
work is exploited to compute the corresponding high-resolution feature vector.
The feature vector calculated like this can be used for face hallucination by
projection onto the PCA matrix from the high-resolution training images. A
separation of global face hallucination and local feature hallucination has been
proposed in [LCS108].

Likewise, deblurring (Section 4.1.1,4.1.2) and inpainting (Section 4.1.3)
sparse approaches are applied for face hallucination as well. For example,
Yang et al. [YTMHOS| construct the base vectors via non-negative matrix fac-
torization (NMF) instead of using PCA for mapping the low-resolution input
images onto a face sub-space. The so yielded projection matrix is composed
of sparse bases. After recovering the global face structure with this method,
a patch-level method based on sparse representation further enhances local

details.

These algorithms use a statistical model of 2D faces restricted to poses that
are close to frontal. Pose-invariant hallucination has been achieved using a
Gabor wavelet decomposition of faces and a set of linear mappings between
the wavelet features in different poses [L1.04|. Another approach that is able
to handle larger variations in pose exploits large datasets of face images, recent

image matching techniques and MAP estimation [TL12].

Unlike these image-based methods, the 3D approach of this thesis is in-
trinsically invariant to changes in pose, size, illumination, and other image
parameters. The strategy is fitting a 3DMM (see Section 2.2) to the input

image with a novel fitting algorithm that is robust to the effects of blurring
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by explicitly simulating image blur in an analysis-by-synthesis approach. The
algorithm works on any blur level, and estimates the appropriate level automat-
ically. In addition to the facial details estimated by the SDMM reconstruction
(equivalent to an MAP estimate [BV03]), the algorithm adds details such as
eyelashes and pores from other faces to obtain high-resolution results.

A method for hallucinating 3D facial shapes from low-resolution 3D scans
using a radial basis function (RBF) regression that predicts curvatures and
displacement images at high resolution from their low-resolution version was
presented by [PHWO0S8|. Unlike the algorithm in this work, their input data
are 3D, and no texture is used.

A major challenge in using a 3DMM for face hallucination or 3D recon-
struction from low-resolution images is to adapt the cost function to blurred
input data. This challenge also occurs for generative face models in 2D such as
AAMs. An algorithm to make AAMs applicable to low-resolution images was
presented as Resolution Aware Fitting (RAF) [DBKO06]. Like the method in
this thesis, they include an explicit model of the downsampling or blurring in
their cost function, and they compute the image difference in terms of pixels
of the input image space and not in the shape-free texture space, as standard
AAM would do. However, besides being a 2D approach which is restricted to
frontal views, the way of treating the blur function in RAF [DBKO6| is fun-
damentally different from the approach proposed in this thesis: RAF is based
on a Taylor expansion of the effect of the degrees of freedom of the AAM on
the blurred image, so these degrees of freedom are a first order perturbation
of the blurred image. In contrast, the approach of this thesis treats the ef-
fect of blurring as a perturbation of the imaging process. This perturbation
is kept constant per model vertex for 1000 iterations, and then updated. It
is, however, not fixed to a pixel in the input image, but shifts along with the
positions of the vertices (features) as the optimization proceeds within each
block of 1000 iterations.

The basics of the 3SDMM are summarized in Chapter 2. On this technical
basis of the 3DMM (see Chapter 2), the entire Sections 4.3, 4.4, 4.5 and 4.6
describe new studies and algorithms (Figure 4.4.)

Novel contributions are:

e exploration of the influence of image degradation sources on the recon-
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Figure 4.4: A schematic overview of the processing pipeline: New contributions

are highlighted in green.

struction quality of the 3SDMM,

a 3D model-based algorithm for face hallucination at any pose and illu-

mination,
a method for handling blur in 3D analysis-by-synthesis,
a self-adapting estimate of blur levels,

an algorithm that combines low spatial frequency information from the

input image with mid-level details of the model,

transfer of high spatial frequency details across faces for face hallucina-

tion on the level of eyelashes and pores,

an algorithm that treats occlusions in the fitting process, and that pro-
duces seamless textures that combine details extracted from the image
with those inferred by the 3DMM. Note that the occluded pixels must

be marked manually, similar to image inpainting [BSCBO00].
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The input data for the algorithm are an image, 5 to 7 feature point coor-
dinates (as mentioned in Chapter 2) and, if the face is partially occluded, a
binary occlusion mask. The output is a textured 3D face reconstruction and

a rendering of this face into the input image.

4.3 Influence of Image Parameters on the Re-
construction Quality of the 3D Morphable
Model

As mentioned before, the influence of further image degradation sources, such
as noise, blurring or low resolution, on the 3DMM has not been investigated
yet. However, to ensure an accurate integration of these factors in the analysis-
by-synthesis approach, the impact on the reconstruction quality of the 3D
model has to be studied initially.

Therefore, image noise is the first explored image degradation source here.
For the purpose of evaluation, different strengths of Gaussian white noise have
been added to the color images of the Multi-PIE face database [GMC™10].
Each of the three color channels (red, green and blue) has been altered with
independent noise signals.

Then 3D reconstructions were computed on the basis of the unmodified
and the noisy images with the 3DMM. In order to evaluate the quality of
the reconstructions better, the 3D models were rendered with the estimated
and not the extracted texture. A manual inspection of the reconstructions
revealed that the quality deviates further from the original reconstruction with
increasing noise level. A simple preprocessing has been proven as a suitable
and efficient approach to counteract this effect. Therefore, the input images
are smoothed by applying a low-pass filter. Then the pre-filtered images are
used as input data for the fitting algorithm of the Morphable Model. A manual
inspection of these reconstructions has demonstrated that low-pass filtering of
noisy input images minimizes the influence of image noise also at increased
noise levels. Furthermore, a filtering of images without noise does not affect
the reconstruction adversely.

Figure 4.5 visualizes this approach for one example. The top row shows an
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image with no noise added image with PSNR 26.72dB image with PSNR 17.35dB

reconstruction of image reconstruction of noisy im- reconstruction of noisy im-
with no additional noise age with no pre-filter age with no pre-filter

reconstruction with low- reconstruction of noisy im- reconstruction of noisy im-
pass pre-filter age with low-pass pre-filter age with low-pass pre-filter

Figure 4.5: Influence of noise on the reconstruction quality of the 3SDMM: In
the top row the input images are displayed with increasing noise levels from left
to right. The noise level is denoted by the peak signal-to-noise ratio (PSNR)
|[GWO06]. In the middle row the 3D face reconstructions based on the noisy
input image are shown. The 3D results after pre-filtering the original and the

noisy images with a low-pass filter are depicted in the bottom row. The input
image is taken from |[GMC*10].
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input image before and after adding two different strengths of chrominance
noise. As an objective measure, the peak signal-to-noise ratio (PSNR) [GWO06|
is reported in Figure 4.5 as well. For a color image, the PSNR in dB is defined
as ratio between the squared maximum possible pixel value (here 255) and the
mean square error of all color channels between the original and the image

with noise added:
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where n, is the width, n, the height of the images, I, the original image
without noise, and I the image with additive noise. The resulting 3D recon-
structions are shown in the middle row of Figure 4.5. It is apparent that the
reconstruction quality deteriorates with increasing noise level. For example,
both the eyes as well as the shape of the mouth and lips are further distorted.
The reconstruction of the low-pass filtered images are shown in the bottom
row of Figure 4.5. It can be seen that this preprocessing reduces the facial
shape deviation of the reconstructions from noisy input data in comparison
to the non-noisy reconstructions considerably. Furthermore, the estimated 3D

model of the filtered original is not affected negatively.

Since the noise level has to be specified approximately for the algorithm
described above, it is necessary to rate the amount of noise in the input image
roughly. However, to avoid a manual specification of noise and to ensure an au-
tomatic preprocessing independent of the amount of noise in the input images
a preprocessing pyramid has been implemented. Therefore, the strength of the
pre-filtering by the low-pass is reduced during the fitting process of the 3DMM
step by step. Thus, a low-pass filter with a high cut-off frequency is applied
in the first iterations. In the course of the reconstruction process, the cut-off
frequency is gradually reduced in every iteration step. Due to this adjustment,
it is no longer necessary to estimate the noise level of the input image manu-
ally and to pass the approximate value to the algorithm. Furthermore, it has
turned out that a light low-pass pre-filtering increases the reconstruction qual-

ity even for non-noisy images. This property is covered by the preprocessing
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pyramid as well since both noisy and high-quality input data are progressively
filtered. To avoid a reduction of the texture quality for non-noisy input images,

no filtering is applied in texture extraction step (Section 2.2.3).

Another major factor affecting the reconstruction quality is given by the res-
olution of the input data. To determine these influences on the 3D reconstruc-
tion quality, the resolution of an input image was gradually reduced, similar to
the evaluation of noisy input data, and 3D reconstructions were computed with
the reduced input data subsequently. Figure 4.6 shows different resolutions of
an image and the corresponding 3D reconstructions. The evaluation of the
factor resolution on the reconstruction quality shows an independence of the
3DMM up to a certain resolution limit. For illustration, Figure 4.6 shows the
3D reconstruction of an image with the original resolution of 683x1024 pixels
as input data and of an input image with a via a Gaussian pyramid highly
reduced image with 42x64 pixels (4th level of the pyramid). The 3D model
of latter has visible artifacts and the shape deviates significantly from the re-
construction of the image at full resolution. An upsampling of low-resolution
images by means of interpolation minimizes the dependence of the reconstruc-
tion quality from the resolution. An example is shown in Figure 4.6. The
reduced image has been enhanced by a bicubic interpolation to the original
resolution of 683x1024 pixels and used as input data for the 3DMM recon-
struction (Note that the interpolation adds no further information). Even for
this highly downsampled image, the reconstruction quality is improved by the
interpolation. Artifacts resulting from the low-resolution input data are re-
duced significantly in the estimated 3D models after interpolation. Also, the
overall shape of the faces is considerably improved, thus the reconstructions
are closer to 3D reconstructions using high-resolution input images. However,
the reconstruction quality could be further enhanced since the missing details
compared to the original high-resolution image are not compensated. The up-
sampled images have the original size, but are blurred strongly. That implies,
an upsampled low-resolution image is technically a blurred image since both
processes result in a loss of details. Hence, an incorporation of image blur
in the 3DMM could infer the missing details and revert the blur, resulting in

improved 3D facial reconstructions of the low-resolution images.

In summary, it can be said that an upsampling of low-resolution input
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reduced image up-scaled image

3D reconstruction of large 3D reconstruction of re- 3D reconstruction of up-
image duced image scaled image

Figure 4.6: Influence of image resolution on the reconstruction quality of the
3DMM: The first column shows an image from [GMC™10] with a resolution of
683x1024 pixels (top) and the corresponding 3D reconstruction (below). The
image and the landmarks are sampled down by factor 4 to 42x64 pixels and
then reconstructed with the 3DMM. In the middle column the reduced input
image and the 3D reconstruction are shown. The right image in the top row
shows an up-scaled version of the reduced image, and the corresponding 3D

reconstruction is depicted below. The large image is taken from [GMCT*10].
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data results in improved 3D reconstructions. A further improvement could be
reached by incorporating the source of image degradation in the analysis-by-
synthesis algorithm. In addition, downsampling of very high-resolution input
images (Full HD or greater) is advantageous since no significant improvement
in reconstruction quality is achieved beyond a certain size, and only the com-
putational complexity is increased.

Two other common image parameters are partial occlusions and blurring.
Both, the problem of handling occluded facial regions as well as the deblurring
of input data and the incorporation of blurring in the reconstruction algorithm,

are addressed in the following sections.

4.4 Non-Local Rendering Effects in an Analysis-
by-Synthesis Algorithm

As explored in the previous section, an explicit integration of image blur in
the analysis-by-synthesis approach could further improve the 3D reconstruc-
tions and can be used to revert the non-local rendering effect in the input
image. Here, effects of the image formation process are called local if the ap-
pearance of a pixel depends only on one surface point of the mesh or perhaps
its neighborhood on the mesh. In contrast, non-local rendering effects occur
whenever vertices that are far apart on the mesh have influence on the same
image point. In this terminology, blurring is a non-local effect because the
color of a pixel depends not only on the shading of the 3D surface point that
is projected to that pixel, but also on its neighbors and - this is the crucial
point - also on other vertices of the mesh that happen to be rendered close
by. This is the case whenever there is a depth discontinuity in the rendered
image, for example along the ridge of the nose in a half-profile, or along the
silhouette of the face in front of a background. That implies, two vertices
can be rendered as neighbors in the image, but are far distant concerning the
mesh structure. A more mathematical formulation would be that the mapping
from image positions to a surface parametrization is not continuous. If it was
continuous, the effect of blurring could be simulated by blurring the surface
texture with a spatially varying and non-isotropic filter that accounts for the

effects of perspective distortion. However, due to its non-local nature, image
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blur is more challenging.

In the rendering pipeline described in Section 2.2 (the analysis part of the
analysis-by-synthesis), blurring would be formulated in the following way: Let
Lnoder(,y) be the synthetic image of the current 3D reconstruction. Then a

blurred image is obtained by an image-space operator

]model (IL‘, y) = ¢(]madel(x7 ?J)) (42)

Existing 3DMM fitting algorithms, such as described in Chapter 2, cannot

handle non-local, patch-wise image modifications.

The proposed strategy here is to simulate the effect of ¢ on a rendered
image Io00(, y) in the current iteration step, compare it to the un-filtered
rendered image and store the difference A; for each vertex j and each RGB
channel. This is done prior to the optimization and once every 1000 iterations.
The difference is precomputed since its value is based not only on vertex j but

rather on multiple, potentially non-adjacent vertices of the 3D face model

Aj = 0(Imodet(75,Y5)) — Imodet (T, Yj)- (4.3)

Note that A; is attached to a vertex j and not to a pixel position, because it
is computed on the model and describes the change of the model appearance
in this vertex when it is rendered and modified by ¢. The screen position z;
and y; of vertex j on the input image Iy, varies during the reconstruction

process, because of the adjustment of the shape and pose of the 3D face model.

In the cost function described in Equation (2.31) (Chapter 2), which is based
on triangle centers, Ay of the center is interpolated from the values A; of the
three vertices defining the triangle. With this A, Fx is

Ex = Z(Iinput(xk, yk) - (Imodel,k + Ak))Q (44)

keK

As mentioned above, A}, describes the color difference of triangle center k and
a non-local color value modification of the same triangle center. To verify
Equation (4.4), Equations (4.3) and (2.31) can be combined. The triangle
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version of (4.3) is

Ak == @(Imodel (xka yk)) - [model(mlm yk) (45)

Note that there is no fundamental difference between the triangle-based and
vertex-based version. The triangle-based values are only interpolations of the
vertex-based values for the corners of each triangle (average with weight 0.3).
The reason for dealing with triangles is that in each iteration the surface nor-
mal must be updated, and surface normals cannot be computed on individual

vertices without knowledge of the neighbors.

After substituting (4.5) in Equation (4.4):

EK - Z[Iinput(xh yk) - (Imodel,k + (90<]model,k) - Imodel,k:))]2 (46>
keK

EK = Z[Iznput($k7yk) - QD(Imodel,k)]Q- (47)
keK

This equation shows that the extension of the error function leads to a non-

local modification of the analysis-by-synthesis loop.

In this section, the focus lies on blurred input images. With a new variable

b specifying the blur level, let

cpblur(]model,jy b) (48)

simulate the effect of blurring the reprojected 3D face model for each vertex j
(or triangle center k). Hence, A; is the vertex difference between the rendered
and blurred model and the non-blurred rendering. (. is implemented by
filtering the rendered image I,,,4.; With a 3-tap binomial filter iteratively, and
b is the number of iterations. The filtering process is separable, so different
blur levels for horizontal and vertical directions can be treated. Other forms
of anisotropic filtering or PSFs from motion blur are easy to implement in this

approach by changing ..

To account for a diffusion of the background color into the face region along
the silhouette, the face is rendered into the input image before blurring and

computing A;.
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4.4.1 Reconstruction from Small Image Sizes

Low spatial frequency images may be found if images of reasonable size are
blurred due to defocus or motion blur. However, they occur more often if the
image size is small. In the previous section, the operator ¢ has simulated the
first case by means of a blur operation (convolution). In the algorithm, effects
of image size, sampling and aliasing are less obvious.

Unlike the cost function (Equation (2.31) in Section 2.2.1), which involves a
summation over pixels (z,y), the triangle-based functions in Equations (2.31)
and (4.4) seem to be independent of image size. For each triangle center, the
estimated color is computed and compared to the color in Liypu(zg, yr). If
Linput 1s small, many triangles will be compared to the same pixel. The novel
algorithm (Section 4.4) alleviates this problem because A, which simulates the
effect of blurring and proper down-sampling, brings the colors of model points
closer to what is found in f;,p., so the multiple triangles that are mapped to
the same pixel will also have more and more similar colors as b increases.

Still, as it has been stated in Section 4.3, the optimization algorithm works
better if small images are upsampled with a Gaussian kernel to a standard
minimum size of 400x400 pixels for the face region. The reason is that the
calculation of image gradients is more reliable if the relevant structures of
Linput are well above the pixel resolution. It is easy to determine how much the
image has to be scaled up since the positions of at least five feature points are

available for initialization of the fitting algorithm anyway (Chapter 2).

4.4.2 Input Blur Estimation

As mentioned above, it is necessary to specify the blur level in the vertex blur
function @y, which is used by the new error function (see Equation (4.4)).
To obtain the best reconstruction results, this blur level should be equal to the
blur level of the input image. Thus, an identification and measurement metric
for the blur level of a given input image is required.

In this thesis, the blur metric proposed in [MDWEO04] is used. This metric
is based on the smoothing effect of sharp edges by measuring the spread of
edges in an image. To detect the edges, a Sobel filter [GWO06] is applied

to the luminance of pixels. To separate the gradient image from noise and
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(a) (b)

Figure 4.7: Sharpened texture used for blur estimation and blur compensated
reconstruction (Figure (a)) and original texture (Figure (b)) of the average
head.

insignificant edges, a threshold is applied next. The start and end positions of
an edge are defined as the locations of the local luminance extrema closest to
the edge [MDWEO04]. In other words, the distances between the nearest local
maxima and minima to an edge are used as the local blur measure for the
current edge location. By averaging the local blur values over all edges, the
global blur metric of the image is calculated.

Given this blur metric on the input image, the appropriate blur level for the
model has still to be determined. The measured overall blur depends on the
size and the content of the images, so that two images with the same blur level
may have different overall blur measures. This could be partially avoided by
using machine learning algorithms on images with controlled blur levels. Here,
a novel self-adapting blur measurement is proposed, that has the potential to
operate on a wide variety of input images (different sizes, illuminations, blur
levels).

After the first set of iterations of the fitting algorithm, a very conservative
first estimate of head shape (estimate head) and an estimate of the rendering
parameters (e.g. camera pose, focus, lighting conditions) have been calculated.
Rendered into I,,e4e(, y), this estimated head is already roughly aligned with
the input face in f;,pu(x, y). A binomial 3-tap low-pass filter is applied subse-

quently on the rendered image I,,,4; to simulate different levels of blur. The
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3DMM makes it easy to identify where facial regions with significant edges
in I,,qe are, for example in the eye and mouth region. The blur metric is
calculated only in these regions of Ip,o4er and Iiypye-

To estimate the appropriate blur level b, the low-pass filtering is applied
sequentially b times to I,,,4¢ until the blur measures on both images are ap-
proximately equal.

Due to the limited texture resolution of the 3D scanner and residual errors
in the calculation of correspondences when the 3SDMM was built, the textures
of the 3DMM faces tend to be blurry. For the self-adapting blur calculation
described above, a sharpening operator to the texture of the estimate head
(Figure 4.7) is applied. The sharpened texture is created by using an unsharp
masking filter [Lev74|. The process subtracts a blurred version of the texture
image from the original texture. Then the so-called unsharp mask is added to
the original texture, to amplify the high-frequency components of the texture.

Still, the resolution of the estimate head is limited. If the blur measure of
the input image is equal to or even smaller than the blur measure of I,,,,4¢;, NO

blur compensation is done by the analysis-by-synthesis process: b = 0 and all
A; =0.

4.4.3 Results of Blur-Compensated Image Reconstruc-

tion

To evaluate the reconstruction quality of the proposed non-local 3DMM fitting
algorithm with the unmodified method [BV03], input images with different blur
levels are reconstructed and compared with the reconstructions from unmod-
ified input images. The Multi-PIE database [GMC*10] is used for this task
since it contains many different views of a large number of persons. For evalu-
ation, all images are blurred by filtering and downsampling using a Gaussian
image pyramid with different levels [AAB84] and expanding to the original
image size. In this way, the low-pass filter used to generate the input images
differs from the binomial filter kernel used in the analysis-by-synthesis method.

If GGy is the unfiltered image of the image pyramid, the blur intensity of
the expanded images of level G1,G5 and G3 [AAB*84] is measured with the

method described in Section 4.4.2. The average of the estimated blur levels
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(a) from original (b) from blurred (¢) from blurred
no compensation new method

Figure 4.8: Comparison of blurred and unblurred reconstruction for shape: 3D
face reconstruction from original unblurred image (left), blurred image without

compensation (middle) and blurred image with the new method (right).

for GGy is 4, for G5 is 12 and for G5 is 34. For a consistent terminology, this
metric is used to describe the blur intensity of the input images instead of the
stage of the image pyramid.

Figure 4.8 and 4.9 show examples of reconstructed 3D faces. The input
images for the first row of Figure 4.8 are shown in Figure 4.10c. The other
examples of Figure 4.8 and 4.9 are also reconstructed from an estimated average
blur level of 12.

Figure 4.8 illustrates the quality improvement with respect to 3D shape.
With no blur compensation, the reconstructions show obvious shape artifacts
compared to the original and the blur-compensated reconstructions, for ex-
ample a strong bulge above the eyebrows (first row), small chin, big lips and

missing hump on the nose (second row).
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(a) from original (b) from blurred (¢) from blurred
no compensation new method

Figure 4.9: Comparison of blurred and unblurred 3D reconstruction for tex-
ture: 3D face reconstruction from original unblurred image (left), blurred im-

age without compensation (middle) and blurred image with the new method
(right).

Also, the quality of the texture estimate is improved substantially by the
proposed method (Figure 4.9). Obvious enhancements are visible especially in
the eye region (shape and color of pupils, and eyebrows).

During a manual evaluation of about 500 3D reconstructions, no evidence
was found that the proposed method generates reconstructions with lower
quality than the unmodified algorithm. In contrast, the quality of shape and
texture was improved in most cases (as in Figures 4.8 and 4.9) and comparable
to the reconstructions from the unblurred input images.

The Mahalanobis distance is applied here for an objective evaluation of
the reconstruction quality. This distance compares 3D face reconstructions in
PCA space, considering how much the faces vary in different directions in face
space in terms of shape or texture.

As described in Chapter 2, shapes and textures of 3D face reconstructions
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Figure 4.10: Example input image with estimated blur level (by self-adapting
blur estimation) of 4 (b), 12 (c), 34 (d) and the unblurred original image (a),
which is taken from [GMC™10].

estimated blur level 4 ] 12 | 34
shape without blur compensation | 6.2164 | 9.9793 | 13.2301
shape with blur compensation 5.8823 | 8.5486 | 11.452
texture without blur compensation | 4.7536 | 8.415 11.7068
texture with blur compensation | 4.4671 | 7.8392 | 11.0694

Table 4.1: Evaluation of blur-compensated 3D reconstruction: The table illus-
trates the average Mahalanobis distance between the 3D reconstruction of the
unblurred input images and the reconstructions from blurred input images with
and without blur compensation by the 3DMM. The evaluation was done for
three levels of image blur. The data indicates that blur compensation reduces
the distance towards the reference reconstruction (from unblurred images) for

both shape and texture.

are described by linear combinations of eigenvectors (see Equation (2.11) and
(2.12)). The Mahalanobis distance calculates the difference of two reconstruc-
tions by using the shape or texture coefficients of the linear combinations and
the standard deviations. In Section 2.1, Equation (2.24) describes the Maha-
lanobis distance for shape and Equation (2.26) the distance for texture vectors.

The equations are rewritten here for convenience:

Qrefi — Olplurs 2
dM,s(SrEfv Sblur) = \/Z ( ef, 02 blu ) (49)
i 8,0

L )2
dM,t(tref7 tblur) = \/z (ﬁref,z O_Qﬂblur,z) ' (410)
i tyi
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0o and Brey are the shape and texture coefficient vectors of the reference
reconstruction (from an unblurred image) and oy and By, are the coeffi-
cients of the reconstruction from blurred images. o,; and o, ; are the standard
deviations for shape and texture from PCA calculation along each principal
component. For evaluation, all 249 images of persons in the first session of the
Multi-PIE database are reconstructed. This dataset includes faces from differ-
ent ethnic groups (Afro-American, Asian, Caucasian, Indian) with or without
glasses. All persons from the original and blurred images with three different
blur levels (average estimated blur level of 4, 12 and 34, see Section 4.4.2) are
reconstructed without and with blur compensation incorporated by the model.

Figure 4.10 shows an example of the input images.

The shape and texture coefficients of the unblurred reconstruction are used
as reference, and are compared to the coefficients of the uncompensated re-
construction and the proposed blur-compensated reconstruction using Maha-

lanobis distance.

The average Mahalanobis distance of all 249 reconstructions for the 3 dif-
ferent blur levels for texture and shape are shown in Table 4.1. In all cases the
average distance between the blurred and the ground truth image decreases
with increasing blur levels. Especially the shape reconstructions get closer to

the unblurred input image.

Even in slightly blurred input images (estimated blur level n = 4, Figure
4.10b), the Mahalanobis distance decreases in 70.28% (175 of 249 cases) of the
3D reconstruction concerning the shape coefficients and in 73.89% (184 of 249
cases) concerning the texture coefficients. For higher blur levels (estimated
blur level n = 12, Figure 4.10c) the blur compensation becomes more visible.
For shape, in 95.58% (238 of 249 cases) the blur-compensated reconstructions
are closer to the reconstruction of the unblurred input image. Also, the texture
coefficients are in 81.92% (204 of 249 cases) closer to the unblurred reconstruc-
tion. In input images with strong blur (estimated blur level n = 34, Figure
4.10d) the Mahalanobis distance is decreased concerning shape in 84.73% (211

cases) and in 71.88% (179 cases) concerning texture.
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ground truth blurred input synthetic image reprojected output

Figure 4.11: Example of deblurring: Ground truth input image Iy, blurred
input image with estimated blur level of 12, reprojected reconstruction of
@noder Without texture extraction (third) and reprojected and deblurred recon-
struction I with enhanced texture extraction (Section 4.4.4). The unblurred
ground truth image is taken from [GMCT10].

4.4.4 Model-based Texture Enhancement from

Low-Resolution Images

As mentioned in Section 2.2.3, individual characteristics can occur on a low
spatial frequency domain that are not in the degrees of freedom of the 3DMM.
A modified texture extraction is used to improve the texture estimated by the
3DMM (see Section 2.2.3) and deblur the extracted texture that way.

In the first step, an enhanced input image is calculated with

Ie(2,y) = Tnput (7, y) + (Ingodet (7, y) — @(Intoder (T, Y))) (4.11)

that contains all the image details that are in Ip;.q¢ but are washed out in
©(Inroder). These are texture details, for instance the iris or the sharp edge of
the eyebrows, but also details due to shading, for example at the nose. Both
are missing in Iy, and @(Ipoder). Examples of I are shown in Figure 4.11
and 4.12. Illumination-corrected texture extraction as described in Section

2.2.3 is performed with this enhanced input image:
Ig(z,y) = Tere(u,v). (4.12)

Note that the illumination correction inverts the effects of shading, so the color

of the nose will be constant skin color again as desired.
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(a) ground truth (b) blurred input  (c) reprojected output

Figure 4.12: Input image (left), blurred input image with estimated blur level
of 12 (middle) and enhanced image I (right), which is then used for texture
extraction (Section 4.4.4). This image pair illustrates the potential of the new
algorithm for image enhancement. To the best of our knowledge this is the
first face hallucination for side views. The unblurred ground truth images are
taken from [GMCT10].
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4.5 High-Resolution Texture Transfer

The method presented in this section (4.5) emerged in collaboration with Marcel

Piotraschke from the Media Systems group of the University of Siegen.

The deblurring approach described in the previous section (4.4) can recover
detailed structures from blurred input image. However, it is limited to the level
of detail provided by the Morphable Model. Hence, very fine details, such as

wrinkles, pores or fine facial hair cannot be reconstructed.

To recover those finely detailed structures and to exceed the limits of spa-
tial frequencies provided by the 3DMM, the deblurring algorithm is further
extended with a post-processing step. For this purpose, the Multi-PIE face
database |[GMC™10] is used since it contains both a high-resolution and a
low-resolution facial image for each included person. Overall, the database
consists of 221 individual faces (79 female and 142 male persons). Fine de-
tails are transferred to the reconstructed texture of the 3DMM by searching
for a matching face texture in the high-resolution database as a basis for the

enhancement of details.

The base principle is somewhat related to the method presented in [SRH*11],
where the makeup of one person is transferred to a different face. In the ap-
proach described here, facial details of a high-resolution texture Tj y(u,v) of
person j are applied to a low-resolution texture 7; 1 (u,v) of person i. In the

following, the transfer of facial details is denoted as T} ;—,p (u, v).

Note that the transfer of high-resolution facial details exceeds the estab-
lished face space representation. That way, details are added which are not
in the statistics of the 3DMM. In contrast, all details added by the blur com-
pensation method of Section 4.4 can be explicitly modeled with the extended
3DMM due to the integration into the analysis-by-synthesis approach. This

ensures the added details are plausible within the face space representation.

For that reason, the high-resolution texture transfer should only be applied
to problems, in which a strict limitation to the statistics of the face space are
not crucial (e.g. face animation or computer games), whereas a use for forensic
tasks is not recommended since it could lead to wrong cues, for instance if a

scar is added from the high-resolution source texture erroneously.
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4.5.1 Extraction of Skin Features

In the first step of the texture transfer, facial details have to be extracted
from the Multi-PIE face database. Therefore, every person of the database
must be reconstructed by applying the 3DMM to acquire a 3D face model
for all samples. For each person, an input image is available both in low and
high resolution, hence a low-resolution texture T 1, (u,v) and its corresponding

high-resolution texture T} y(u,v) can be computed.

Facial details can be extracted by calculating the difference between the low
and the high-resolution textures since the dense point-to-point correspondence
established by the 3DMM is valid for each texel (u,v) as well. The subtraction
equates a high-pass filtering extracting the high spatial frequencies. Results of

this filtering are stored in the difference texture T} ¢ ¢(u, v), so that
Tj,diff(uv U) = T]}H<u7 U) - Tj,L(U, U)? (413>

where T} i (u, v) is the extracted texture from a high-resolution image of person
J, and Tj 1,(u,v) the texture from the low-resolution image of the same person

j. Both images are stored in the facial database.

To compute a convincing high-resolution texture T y(u,v), the difference
texture T 4irf(u, v) can be added to the low-resolution texture 7; 1,(u, v) of any
other face. The precondition for this simple addition is the dense point-to-point
correspondence between texels of all reconstructed individuals established by

the 3DMM. The texture transfer 7T} ;. y(u,v) can be written as

Tir—su(u,v) = (Tha(u,v)—Tj(u,v)) + Tip(u,v)
= Tjairs(u,v) + T p(u, v). (4.14)

Figure 4.13 illustrates an example of a difference texture 7 4;rr(u,v). The
left image of Figure 4.13 shows the entire texture mask and the right image a
more detailed view of the eye region including the eyebrow. It is apparent that
T 4isf(u,v) includes the high frequency details of the eyelashes and brows as

well as the fine structures of the dermal texture.
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Figure 4.13: High spatial frequencies of the difference texture: The left image
shows the complete facial texture mask of a difference texture T 4; ¢ r(u, v) based
on Equation (4.13), whereas the right image shows an enlarged section of the
eye area. Note that both images are artificially intensified for demonstration

purposes.

4.5.2 Search for Matching Faces

To add the extracted high-resolution details to the low-resolution texture of
a reconstructed 3D face, it is necessary to search for the most similar pair of
textures first since it is very unlikely that the extracted information of one
face matches the missing details of another face perfectly. Thus, the texture
vector tj, from the estimated face model of the low-resolution input image
is compared to the computed texture vectors of all samples t; g in the high-
resolution facial database. To find the most similar texture, the Mahalanobis
distance das+(tin, tiap) (see Equation (2.26)) between t;,, and every sample t; ap
of the database is computed. Afterwards, the database face ¢ with minimal
distance is known and the corresponding high-resolution difference texture
T;.airs of this sample can be transferred by adding it to the low-resolution
input texture 7, .

Since the Mahalanobis distance compares measures in the facial texture
space given by PCA instead of absolute differences in texel space, it is ensured
that only the most significant features are considered for finding a pair of two
most similar textures.

All samples in the database are labeled to distinguish between female and
male faces. With this additional information, only texture coefficients from

persons of the same gender are taken into consideration during distance cal-
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()

Figure 4.14: Results of high-resolution texture transfer: The left part of the
images shows the original photo of four samples from the high-resolution facial
database, while the right part illustrates the results of high-resolution texture
transfer. The rendered texture T}, 1, g (u,v) is computed by adding the differ-
ence texture 7; 4is7(u, v) to the low-resolution texture of the input image. The
Mahalanobis distance for Figures (a) and (b) is minimal, thus plausible facial
details are added. However, (c) and (d) show examples where the difference
texture does not add correct details to the 3D reconstruction since the Ma-
halanobis distance is maximal for these examples. It can be seen that facial
hair is added where none is present and that the eyebrows do not match (see
Figure (d)). The input images are taken from [GMC™10].

culation. This is necessary since facial details of similar regions differ between
male and female faces and therefore prevent the transfer of male features, such

as beard stubbles, into female faces and vice versa.

Figure 4.14 illustrates the transfer of high-resolution texture details. The
top row shows the addition of facial details from two samples with the small-

est computed Mahalanobis distances between the low-resolution input image
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Tin.(u,v) and every face in the database. On the other hand, the bottom row
depicts the addition of two samples with the largest Mahalanobis distance. In
the left part of each image in Figure 4.14 the original high-resolution image of
each sample is shown and the right part shows the results T3, ;g (u, v) after
adding the difference texture T; 4r¢(u,v) to the low-resolution image. The
low-resolution input image is the same as in Figure 4.1 and 4.11.

The examples show that, due to the dense point-to-point correspondence of
the 3DMM, completely implausible results are avoided even if high-resolution
details from samples with large Mahalanobis distances are transferred to the
low-resolution texture and unwanted facial features are added (see Figure 4.14
(c) and (d)). Another interesting fact becomes apparent if the original images
(left) of the top row examples in Figure 4.14 are considered: Even if the
overall impression of the database samples differs a lot from the (impression
of the) input image, the Mahalanobis distance can be minimal, thus resulting

in plausible transfers of high-resolution facial details.

4.5.3 Extensions of High-Resolution Texture Transfer

The high-resolution texture transfer concept is further extended by Marcel Pi-

otraschke. The results of this extension are briefly outlined in this subsection.
For more details see [SPB15].

Search for Matching Facial Regions

In most cases, it is very unlikely to find a matching face in the database in
which all facial areas (eyes, nose, mouth, etc.) are collectively similar enough
to result in plausible overall texture transfers. Beard stubbles or strains of
hair may be visible in samples of the database but not in the low-resolution
input image. For this reason, another method is used that combines details of
several facial regions from different face samples by computing the Mahalanobis
distance independently for each region and not, as before, only for the entire
face. To avoid visible seams at the border of the different regions, texture
blending is applied.

Another advantage is given by matching facial regions instead of searching

for similar looking faces. Sometimes local differences could overrule global



73

Figure 4.15: Benefits of warping the difference texture: The upper image
shows an example of occasionally appearing artifacts in the area of the iris.
In contrast, the lower image illustrates the advantage of warping the differ-
ence texture 7; 47 7(u, v) based on the optical flow calculations between the in-
put texture T}, 1, (u, v) and the corresponding high-resolution texture T; (u,v)
from the database. Note that an artificial sharpening of T}, 1, (u, v) was applied

before estimating the optical flow to enhance the final results.

similarities if entire faces are compared (as in Section 4.5.2) resulting in errors
such as the transfer of beard stubbles into a female face. This artifact could be
avoided indeed by labeling the high-resolution samples corresponding to the
person’s gender. However, the region-based approach provides a more general
solution to this problem without the necessity of labeling the images of the
database. Furthermore, other non-gender specific artifacts such as different
shapes of eyebrows or facial hair (as shown in Figure 4.14) can be avoided

with this separation as well.

Enhancing the image quality by utilizing Optical Flow and Warping

Although the region-based approach generates better results, artifacts may

still occur. This is the case if a global similarity of two matching regions is
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(b) (©)

Figure 4.16: Results of high resolution texture transfer: The first image in the

(d)

upper row shows a blurred input image. The final results of the 3D recon-
struction with application of deblurring and high resolution texture transfer
are depicted in the first image of the bottom row. Enlarged views of the eye
and mouth areas of the 3D reconstructions are shown in the image (b) to (d).
The second column shows the results of the original texture extraction from
the blurred input image. The results of the model-based deblurring approach
presented in Section 4.4.4 are shown in the third column, whereas the last
column illustrates the results after application of the high resolution texture

transfer described in Section 4.5.

accompanied by large local differences. This behavior frequently appears at
the eyebrows and in the eye region, especially around the iris. Figure 4.15
illustrates an example of latter artifact in the upper image. Here, the added

high-resolution details evoke the impression of a misplaced contact lens.

This image artifact can be suppressed by applying an image warping to the
difference texture T} 47 ¢(u, v). Therefore, the optical flow is computed between
an artificially sharpened image of the low-resolution texture Tj, 1 (u,v) and
the associated high-resolution texture 7} j(u,v) of the database. The bottom
image in Figure 4.15 depicts the result of the warping process for the example

shown in the top image.
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4.5.4 Results of the High-Resolution Texture Transfer

A result of the high-resolution texture transfer is shown in Figure 4.16. It
is apparent from (c¢) that the model-based deblurring approach presented in
Section 4.4.4 already computes strong enhancements of blurry input images.
Nevertheless, the method is still limited by the resolution of the Morphable
Model. As illustrated in Figure 4.16 (d), the transfer of the high-resolution de-
tails can overcome the frequency limitation of the 3DMM, thus further improve
the quality of the texture.

Even if the added details do not match exactly with the low-resolution input
image (the fine hairs of the eyebrow in the top image (d) of Figure 4.16, for
instance), the approach still computes visually plausible results. As it can be
seen in the bottom image of the last column in Figure 4.16, the algorithm also
adds the fine skin structure of the lips plausibly.

However, it also needs to be mentioned that in some cases not all features
may be enhanced correctly. In the top image of Figure 4.15, for example, the
reconstruction of the iris details is worse than the results of the top image in
column (d) of Figure 4.16, even if the Mahalanobis distance of the eye region
does not significantly deviate in the two examples.

Furthermore, the application of warping on the texture images (as presented

in Section 4.5.3) provides a more visually convincing result (see Figure 4.16

(d))-
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4.6 Reconstruction of Occluded Regions

Another common problem that influences the quality of the reconstructed 3D
models are occluded facial regions, for instance due to sunglasses, hats, scarfs,
beards or hair covering parts of the face. The presence of such facial occlusions
is quite common in real-world applications and leads to visible artifacts in the
3D reconstruction (see Figure 4.17). They affect the reconstruction and the
texture extraction step.

Without explicit handling of occlusions, the fitting algorithm tries to sim-
ulate the color of occluded areas, which in most cases differ significantly from
skin-colors, by changing the lighting conditions and choosing a linear combi-
nation of textures that reproduces the appearance of the occluder as good as
possible (Figure 4.17 (c)). Since lighting estimation is a crucial step for the
3DMM, the reconstructed textures from input images with occluded facial re-
gions are of poor quality. If relevant regions like eyes or mouth are completely
or partially hidden, the estimation of the 3D shape may also be affected. In
the post-processing step of texture extraction, the occluding object is mapped
directly on the 3D shape and generates wrong texture maps as a result. In this
section, occlusions are considered, both in the fitting algorithm and in texture
extraction.

The occluded regions of the face must be detected and marked. In this the-
sis, it is done manually using a paintbrush tool. Experiments with automated
methods to detect occlusions show that, the 3DMM can partly adapt to non-
face pixels even with relatively conservative settings (regularization). However,
it remains unclear how an automated criterion could distinguish what is part
of a human face and what is not [Brel0].

The occluded pixels are stored in a binary occluder tmage mask that has
the same size as the input image. Figure 4.18 shows an example. Note that it
is no problem if pixels of the background are also marked as occluded, because

these are not considered in the cost function (Equation (2.31)).

4.6.1 Occlusion Handling

The occlusion handling algorithm must be initialized with the feature coordi-

nates of at least five feature points and with an occluder image mask. In the
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Image with occlusion Ground truth

Figure 4.17: Example of an occlusion due to hair covering parts of a face: In
Figure (a) parts of the face are occluded and (b) depicts the unoccluded face
with identical viewing angle and lighting conditions. The 3D reconstructed
shape and texture due to linear combination are shown in the second row. (c) is
reconstructed without occlusion handling and (d) with occlusion handling. For
comparison, the reconstruction from the unoccluded input image is depicted
in (e). The third row shows the result of the 3D reconstruction with texture
extraction: (f) without occlusion handling, (g) with occlusion handling, and
(h) the ground truth.

reconstruction algorithm, the binary mask image is taken into account during
the calculation of the image difference term E (see Equation (2.31)).

The pixel position of each of these triangles is calculated by rendering and
rasterizing the color value I,,oge1 t0 pixel (zx, yi) (see Section 2.2.1). Then the
visibility of a subset of triangles is tested consecutively. If the pixel position
of one of these triangles is occluded, meaning that the pixel is marked in the

occluder image mask, the current triangle is rejected and another triangle is
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(a) (b) ()

Figure 4.18: Example of an occluder image mask: Figure (b) shows an example
of an occluder image mask. The binary mask has the same size as the input
image (a). A pixel value of 0 denotes that the current pixel is occluded and
a value of 1 marks a non-occluded pixel in the input image. For comparison
Figure (¢) shows an overlay of the occluder image mask (in gray) in the input

image.

chosen randomly. This is repeated until a non-occluded triangle is found.
Since the visibility test is done for all triangles of the subset, in the end the
cost function in Equation (2.31) is determined only on visible triangles.

An explicit handling of occluded facial regions is also necessary for the
texture extraction algorithm, to prevent occluding objects from being mapped
on the reconstructed 3D shape.

As described in Section 2.2.3, the texture map assigns a 2D texture co-
ordinate to every vertex in the 3D face reconstruction. In a first step, the
occluded regions on the texture map are determined by generating an occluder
texture mask for the texture map automatically from the given occluder im-
age mask. The occluder texture mask is very similar to the occluder image
mask explained above. The only difference is that the occluder image mask
describes which pixel of an input image is occluded and the occluder texture
mask describes whether a vertex in the texture coordinate is visible or not (see
Figure 4.19 for comparison). To calculate an occluder texture mask, the ren-
dering parameters estimated by the fitting algorithm are used to reproject the
reconstructed 3D face into the original image space. Afterwards, every pixel
position (z,,y,) in the input image of each of the n = 75,972 vertices must

be calculated. With the occluder image mask the visibility of every vertex can
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(a)

Figure 4.19: Comparison between the occluder image mask and the occluder
texture mask: (a) shows a gray overlay of the occluder image mask on the
input image. Figure (b) shows the projection of the occluder texture mask of

Figure (a) into the texture map as a gray overlay.

be checked and marked in the occluder texture mask.

After classification whether a vertex in the 2D texture coordinate is visible
or not, it is necessary to fill up the missing data with plausible texture informa-
tion. For this, two methods for occluded texture hallucination are applicable.

The first algorithm uses the calculated texture from the 3DMM to fill up
the missing texture data (see Figure 4.20 (b) and (c)). One drawback of this
method is the lower resolution compared to the extracted texture from the
input image. Especially in highly textured regions, such as the eyes or the
mouth, the decreased quality of the estimated texture becomes salient. To
avoid this, the second method utilizes the high symmetry of faces by mirroring
texture from the visible half to the occluded regions if possible (Figure 4.20 (d)
and (e)). In cases when it is not possible to mirror texture, such as complete
occlusion of both eyes or the mouth, the first algorithm is used as fallback

option.

Poisson Image Editing

One remaining problem in both occluded texture reconstruction methods are
visible seams along transitions between extracted and reconstructed texture
(see Figure 4.21). These artifacts originate from slightly different color, struc-

tures and overall brightness. This is addressed by using Poisson image editing
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(d) ()

Figure 4.20: Example of occluded texture reconstruction methods: (a) shows
an input image with an artificially generated occlusion. The corresponding 3D
model with occluded texture reconstruction by using the calculated texture
from the 3DMM (first method) is depicted in (b) and the texture in (c). Figure
(d) and (e) shows the texture reconstruction with mirroring. The unoccluded
image of (a) taken from [GMC*10].

[PGBO3]| for the reconstruction of the texture. The principle of this gradient-
based stitching algorithm is fusing the derivatives of signals instead of stitching
the signals themselves. An advantage of this method is that the intensity dif-
ferences between the derivatives are relative and not absolute as in the original

signals. Thus, differences in the amplitude of the two signals have no influence



(c) (d)

Figure 4.21: Examples of visible seams along transitions between extracted and
reconstructed texture: (a) and (b) show close-ups of the 3D reconstruction in
Figure 4.20 (b) and the texture in 4.20 (c¢) (occlusions are reconstructed with
the computed texture of the 3DMM). (c¢) and (d) are the corresponding close-
ups to Figure 4.20 (d) and 4.20 (e) (occlusions are reconstructed by mirroring).

A seam around the left eye is visible in both reconstruction methods.
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in their gradient fields.

In general, Poisson image editing [PGBO03]| is a guided image interpolation
method, used to blend regions of two different images. The algorithm tries to
keep the colors of the target image (image where the region is inserted) while
preserving the details and structures from the source region (section that shall

be inserted).

For a mathematical description, the image domain I is defined as a closed
subset in R? and 2 is defined as a closed subset in I with the boundary 9.
Now, let f* be a known scalar function in I without  (representing the values
of the target image without the region that should be inserted), and f an
unknown scalar function of values in the region ) (representing the region
into which another region should be inserted). The size and form of € are
defined by the source region. Then the simplest way to merge these would be

maximizing the smoothness by minimizing

in [ [ 9117 (4.15)
Q

with the boundary constraints

f loa= " |aq, (4.16)

where 0f€) is the boundary of the closed subset and V the gradient operator.
The solution has to satisfy a Laplace equation with fixed boundary condition,

also referred as Dirichlet boundary condition:

V2 =0, [loa=f" oo, (4.17)

with V2 as the Laplacian operator. Since the solution results in over-blurring,
a guidance vector field v is introduced in Poisson image editing as an addi-
tional constraint [PGBO03|. With this extension, the minimization problem in

Equation (4.15) can be written as

i // IVF—vI? with f loa=/* on - (4.18)
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This solution is a Poisson Equation with fixed boundary conditions
Vif =divv, [ loa=f" loo, (4.19)

where divv is the divergence of the guidance field v. This formulation is the
fundamental element of Poisson image editing. In this thesis, the gradients of
the source image region are used as guidance field (called importing gradients
in [PGBO03]). Let g be the source image, then Equation (4.19) becomes

V2f = divv = divVg = V3¢, [ loa= f* |oa, (4.20)

with the gradient field v = Vg.

To adapt the continuous formulation to discrete images, the variational

problem in Equation (4.18) can directly be discretized by

min Y (fp— fy—vp)® with f, = f7,¥p € 09. (4.21)
flo
(p,q)NQF0

Here, p and ¢ are neighbor pixels in the image defined by a neighborhood N, as
a set of 4-connected pixels for p. Then (p, q) is a pixel pair of this neighborhood
with ¢ € N,, and v,, is the projection of V(’%) onto the oriented edge pg. f,
and f, are the unknown pixel values of p respectively ¢ in the target image
and f, is the known pixel value p in the target image. Figure 4.22 visualizes

the formulation.

In this definition, two cases must be considered: (1) If one or more pixels of
the neighborhood N, are on the boundary region 0f2, the solution of Equation

(4.21) satisfies the linear system of equations

VpeQ: | Ny|fp— Z fo= Z f;+zqua (4.22)

qENLNQ qENpNON gEN,

with | N, | as the number of neighboring pixels of p. In most instances | N, |=

4, but can be less than 4 in cases {2 extends to the edge of the image.

(2) If all pixels of N, are in the interior region €2, the boundary term of the
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Figure 4.22: Visualization of the discrete formulation of the Poisson Equation:
The yellow dots are pixels of the target image in I, the red dots pixels of
the insert region {2 and the orange dots pixels of the boundary 0€2. The 4-
connected pixels are the neighborhood N, and v,, is the projection of the two

neighbors p and g on their oriented edge. The illustration is based on [PGB03].

right-hand side can be omitted in Equation (4.22):

| Np | fp — qu: vaq- (4.23)

qENy qENy

As mentioned above, the gradient of the source image is used as guidance
field. In the discrete formulation, the continuous gradient v = Vg of the source

image g can be discretized by

Upg =9p — 9q  V(P,q) (4.24)

and inserted in Equation (4.22) and (4.23):

| Np | fp— Z fo = Z f;"‘Z(gp_gq) (4.25)

gEN,NQ 4EN,NOQ 4EN,
| Ny | fp = qu = Z(gp_gq)- (4.26)
qENp qENy

To use this method on color images, the discrete Equations are solved in-
dependently for all color channels.

In the texture reconstruction approach, Poisson image editing is used to
seamless stitch the extracted texture and the reconstruction of the occluded

texture (either the calculated texture from the fitting algorithm (see Chapter
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2) or the mirrored texture). Therefore, the texture map serves as target image
and the occluder texture mask defines the region (2. The discrete gradient is
calculated on the reconstruction of the occluded texture as guidance field. The
improvement in texture quality of this approach is shown in Figure 4.23 for an

example.

4.6.2 Results of Occlusion Handling

Figure 4.24 and 4.25 show typical results of 3D face reconstructions with hal-
lucination from occluded input images. The examples consist of artificially
generated occlusions and non-artificial occlusions (e.g. hair covering parts of
the face or glasses). Unoccluded input images (ground truth) are depicted in
the first row of Figure 4.24. The second row depicts the related input images
with artificially generated occlusions. 3D reconstructions of the occluded input
images are shown in the last row and the reprojected and relighted reconstruc-
tions are in the third row. Figure 4.25 illustrates reconstructions from images
with natural occlusions. Shape and texture can be reconstructed despite of oc-
clusions. The first row presents input images with occlusions and the second
row the reprojected and relighted 3D reconstruction. The 3D reconstructions

are depicted in the third row.

4.7 Conclusion

Algorithms that can reconstruct detailed 3D models of faces even from images
with substantial blur or partial occlusions have been presented in this chapter.
The approaches have the potential to enable the use of Morphable Models even
on low quality images, and provide a very robust and general way for filling in
missing details in images of faces. The technical core of the proposed approach
is an explicit treatment of image blur or other non-local image-space operators
in the analysis-by-synthesis algorithm of the Morphable Model. These prop-
erties are beneficial for computing 3D reconstructions for forensic tasks such
as the INBEKI project presented later in Chapter 7.

The results on model-based estimation of facial details and the transfer of
details on the highest level of resolution (eyelashes, pores) pave the way for

a very general tool that helps to enhance existing low-quality image material.
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(a) (b)
(c) (d)

Figure 4.23: Example of seamless texture stitching with Poisson image editing:

Figure (a) shows the 3D model after application of Poisson image editing to
the occluded example in Figure 4.20 and 4.21 using the calculated texture of
the 3DMM to fill in the occluded region and Figure (b) shows the close-up
of the reconstructed area. Figures (c) and (d) illustrate the seamless texture
reconstruction for the example in Figure 4.20 and 4.21 using texture mirroring

to compute the missing part.

However, the transfer of high-resolution facial details exceeds the established

face space representation and should only be applied to tasks in which a strict
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(a) ground truth  (b) occluded input (c) reprojection (d) 3D face

(e) ground truth (f) occluded input (g) reprojection (h) 3D face

T4

(i) ground truth (j) occluded input (k) reprojection (1) 3D face

Figure 4.24: Results of texture extraction with occlusion handling for artifi-

cially occluded regions. The ground truth images are taken from [GMC*10].

limitation to the statistics of the face space are not crucial.

As presented in Section 4.6 an extension of the 3DMM which fills in missing
texture in partial occluded regions of the face is implemented as well. Two
options are selectable to compute the unknown texture: fill in with estimated
texture of the 3DMM, and mirroring of extracted texture by exploit the prior
knowledge of faces established by the model. For this no general criteria are
applicable to decide which method computes the better result, thus it must
be decided on a case by case basis. Furthermore, the transitions between
original and reconstructed texture are smoothed by a gradient-based approach

to suppress visible seams along the boundaries.

The model-based methods cannot claim to predict the true appearance of
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(a) occluded input (b) reprojection (c) 3D face

(d) occluded input (e) reprojection (f) 3D face

Figure 4.25: Results of texture extraction with occlusion handling for occluded

regions. The unoccluded images are taken from [GMC*10].

facial details, but the algorithm makes an educated guess based on the cor-
relations between features in faces. These correlations are captured by the
3DMM since it uses global face vectors of entire faces, so constraints on some
of the vector components (vertices of the face mesh) will influence the shape
and texture of the other vertices. With this statistical inference, the algorithm
provides a useful method to reconstruct details beyond the visible structures
in the image.

A question that arises from this quality is whether correlation-based infer-
ences are plausible to human viewers if these viewers do not know the individual
person shown in the picture. Therefore, hypotheses regarding correlation-based
3D depth estimation are tested in psychological experiments in the following
Chapter 5. The motivation behind these experiments is not only to evaluate
the 3DMM generally, but also to investigate the mechanisms how the human

visual system hallucinates unknown facial information from known data.



Chapter 5

Human Expectation of Facial
Profiles

As pointed out in the previous chapters, Morphable Models can infer infor-
mation which is not actually visible in the input data caused, for instance, by
partial occlusion (Section 4.6), unfavorable lighting conditions (Chapter 2) or
other image degradation factors (Chapter 4). If an image showing a face from
a frontal perspective is used as input data, the SDMM computes an entire face
with a plausible profile view since the correlation established in face space uses
global face vectors of entire faces. This property is used in the following chap-
ter to exploit if and how the human visual system (HVS) applies class-specific

knowledge to infer depth from images of faces.

In general, beyond the information the HV'S obtains from the senses directly,
the human mind fills in missing information to help interact with the environ-
ment successfully. This can be based on memory, for example by remembering
an item that was placed in a drawer, or on assumptions and heuristics, such
as the fact that most items fall to the ground when dropped. It can also rely
on more complex mechanisms that use indirect cues, and on mental models
based on general information that may have been learned earlier.

A challenging problem of this type, which has been studied for decades now,
is how humans infer depth from retinal images of objects or scenes. In that
context, several of powerful mechanisms have been proposed which exploit
implicit information in the image data, such as stereo, structure from motion,

shape from shading, texture cues or contours (see [Mal00] and Section 5.1 for
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Figure 5.1: Visualization of stimuli: The stimuli in the experiments are images
of 3D faces that have different profiles (bottom row), but nearly identical
frontal views (top row) with equal 2D geometry and very similar shading.
From left to right: the original scan (ground truth), the average profile of
all 200 faces in the 3DMM, the profile of a randomly selected individual of
the same gender as the person in the first column, and profiles that were
estimated by two algorithms using a Morphable Model. Residual differences
in the frontal views due to shading and perspective projection are kept small
by frontal illumination and large camera distance. They do not affect the

conclusions drawn in this thesis.

an overview).

However, there are cases when all of these mechanisms are bound to fail, as
illustrated in Figure 5.1: 3D models of faces that have almost identical frontal
views, with only minute differences in shading and in perspective projection,
yet have significantly different profiles. In this example, the z coordinates
(front-back direction in the face coordinate system) of the 3D faces were re-
placed, while the x and y coordinates (left-right, top-bottom) and the texture
remained unchanged. The only way to infer the profile from such a frontal view
is to rely on general knowledge about human faces. To be more specifically, it
may be that cues such as the distance between the eyes, their shapes or the
shapes of other facial features help humans to make the right decision. The
goal of this part of the thesis is to find out if humans use such a model relying

on general knowledge and what this model could be.
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In this context, the 3SDMM is utilized to generate stimuli for the perceptual
experiments. The model enables a plausible modification of 3D faces, which
would not be possible to create in conventional ways. In an experiment, the
frontal view of a face is shown and participants are asked to choose the pro-
file that most likely belongs to this face. They have the choice between two
different manipulated profiles of the original 3D face with almost the same
appearance in frontal view (see Figure 5.1).

The 3DMM is used in the experiment since it captures the statistical cor-
relation between the layout and shape of features in the frontal view (x, y
coordinates) and the depth (z coordinates). In the model, every face can be
written as a linear combination of a set of basis faces. The face vectors are
formed by the x, y, and z coordinates of all vertices, and since x, y, z are
together in the same vectors, z can be inferred from x and y: Given the linear
combination of face vectors that reproduces the frontal view, the z coordinates
in this vector can be used to obtain a predicted profile of the face.

In addition, the reconstruction quality of the 3DMM is studied as part of the
perceptual experiments. It has not been explored yet if the inferred data are
in line with human expectation. When used for forensic tasks, the SDMM can
only be helpful and supportive if the computed faces do not lead to wrong cues.
Here, the experiments present a new quality measure for 3D reconstructions.

Summarized, the comparison between the computational model (the linear
face space of the 3DMM) and human perception addresses three problems in

this chapter:

1. Reconstruction Quality: How good are the 3D reconstructions

that are estimated by the 3DMM from single images?

A quantitative evaluation of the quality of 3D reconstructions from frontal
views could be based on geometrical or perceptual data. Geometrical similar-
ity measures have three problems: First, there are many different measures
for shape similarity, and all have their strengths and weaknesses. Second, it
is difficult to draw conclusions from geometrical measures to perceived sim-
ilarity. Previous work has presented a possible mapping between geometry
and perceived similarity [GB10]. Third, there is the fundamental problem of

where the threshold is set to say “results are reasonably close to ground truth”.
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Therefore, it is difficult to gain insights from a geometrical analysis.

Perceptual measures could be based on tasks such as a side-by-side compar-
ison of reconstructions and ground truth data. Reconstructed shapes would
be considered similar to the ground truth if both cannot be distinguished by
human observers. Again, the result would depend a lot on the threshold that
is applied. As long as the stimuli are not identical, it can be expected that
viewers would detect even the slightest differences on a single pixel scale, so -
depending on the way how the stimuli are presented - the sensitivity could be
very high.

In terms of methodology, it is difficult to decide when humans would con-
sider the results as “similar enough”. Therefore, a different approach is used
here that is a bit related to the visual Turing test paradigm that is sometimes
applied in computer graphics [EGP02]: Experiments measure whether partici-
pants accept the reconstructions to be the correct profile of the person as often

as they do for the ground truth profile.

2. Face Statistics: What inferences can be made on human faces,

which correlations between features can be found in face space?

If an algorithm based on a linear face model can predict properties of the profile
of a face from the frontal view (which does not contain this information), it
can be concluded that there is an intrinsic correlation between features in the

set of natural human faces.

3. Potential Face Models: What is the face model used by the HVS?
Is there a model at all or a trivial strategy, such as guessing or always

choosing the average?

The goal of the perceptual experiments is to test the following mutually ex-

clusive hypotheses about the HVS and the face model that it applies:

1. No Model: Humans just guess because they have no model of the

relationship between front and profile appearance.

2. Constant Model: Humans always choose the same average profile as a

safe guess. It could be considered a zero-order constant model.
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3. Linear Model: Humans make use of correlation between front and

profile appearance in a linear model (1st order approximation).

4. Sophisticated Model: Humans rely on a more sophisticated mecha-
nism that goes beyond a linear face model. This could include a very
sensitive shape from shading mechanism, but also a higher order statis-

tical model of faces.

5.1 Related Work

Research, both in biological vision and in computer vision, has investigated
several important shape and depth cues in images that help human observers
to infer depth from image data of faces. Mallot [Mal00] shows an overview of
depth cues that the HVS uses.

If only a single image is available, the pictorial depth cues used to provide
information about depth and surface slant are shape from shading and shadows
|ZTCS99|, texture gradients and perspective cues |Gib51]. Shape from shad-
ing is always related to the concave-convex inversion. The differences in an
image-based on shading are due to variations in surface orientation relative to
the light source and observer, thus shading is generated by the shaded surface
itself [Mal00|. Cast shadows in contrast are generated by an occluding object
blocking the light source and casting a shadow on a background surface. Per-
ception of depth through texture gradients and perspective is closely related
to perspective projection. Size of objects decrease and density of texture ele-
ments enlarge with increasing distance. This information is used by the HVS
to obtain orientation and curvature of surfaces [Mal00, Gib51].

If pairs of images are available, the disparity of these two images are used
to infer stereoscopic depth information. Based on differences between the
two images in each eye, the HVS can infer depth information from various

disparities:

e horizontal and vertical disparities: one point is imaged at two slightly
different positions in the two images [GPMF95],

e disparities of orientation: a line has two different slopes in each image,

these orientation of lines is used to give depth cues [CR93|,
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e shading disparity: the difference of reflections on a surface depending on
different viewing angles and lighting directions [BB91, AMB95],

e monocular disparity: points that are only visible in one image give cues

to the existence of step edges [Nak85].

All these depth cues are integrated and used simultaneously by the HVS to
infer depth information. These mechanisms are used in computer graphics
and for 3D movies to reproduce 3D impressions by showing each eye a slightly
different image.

If multiple images from different viewpoints are available, the disparities are
tracked over time, thus cues include binocular stereopsis (as used with pairs
of images), additionally motion resulting from the movement of the observer
(motion parallax), and motion from the movements of objects (structure from
motion). The description of the displacement vector fields or motion fields
are based on the concept of the optical flow [HS81] and adapted widely in
computer vision, neuroscience and psychophysics [HS81, Gib51, Mal00].

Another source of information are visual contours in images, which were
studied by Koenderink et al. [KVDKT97].

In some cases, such as the problem setting described in this thesis, the
informativeness of depth cues is limited, due to several reasons. For surfaces
with a uniform material and Lambertian shading, shape from shading is limited
by the bas-relief ambiguity [BKY99]. For non-uniform surfaces, such as faces,
where the albedo varies over the surface and is unknown, the shape from
shading problem is ill-posed since the contribution of shading and texture to
the luminance variation in the image cannot be separated.

The only way to estimate depth from single images of faces is to use prior
knowledge about shapes of faces. In computer vision 3DMMs have been ap-
plied to obtain 3D shape reconstructions from single images (2). Other algo-
rithms have used patch-based approaches and a database of shapes to recon-
struct 3D shape [HBO6| or supervised learning [SSN09|.

The hollow face illusion [Gre97, HJ07| demonstrates that the HVS has a
strong bias towards the convex interpretation of shaded face images, which is
evidence for the use of prior knowledge.

The concept of linear face space [Val91| provides a more specific model of
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how information about faces may be represented. Evidence for analogies be-
tween a linear face space and the HVS has been found in effects of caricaturing
on face recognition [OVVS97], and in after-effects in face perception [LOVBO]1]
which includes a transfer across viewpoints indicating that the after-effect is
related to a viewpoint-independent face representation [JBO06|. The recogni-
tion of faces across viewpoints (front to profile) has been studied in the context
of face typicality [OEB98| and in the context of the optimal learning view for
shaded or textured faces [TB96].

As implementations of a Linear Face Model, two different 3D shape recon-
struction algorithms based on the 3DMM are used here. Both find maximum
a posteriori estimates of the facial shape, given the frontal input data and a

PCA of training faces. For a discussion of Bayesian inference in vision, see
Yuille et al.[YKO06].

5.2 Application of the 3D Morphable Model in

Perception Experiments

The 3DMM of faces (Chapter 2) is used in this chapter both for generating the
stimulus faces and for estimating 3D shape from frontal images. In the setting
addressed here, a PCA is not strictly required to obtain a 3D reconstruction.
It is the linear nature of face space (or, more general, the low-dimensional
submanifold property) that makes the problem of 3D reconstruction tractable.
In the algorithms below, PCA is only used for regularization, which is essential
to avoid overfitting.

Two alternative algorithms are used to infer depth from frontal views:

e Linear Model with vertex information (LinVert): Given the z; and y
coordinates of all vertices k of the face, the linear coefficients «; (Equation
(2.11) in Section 2.1) are found, and then this linear combination is used

to calculate the vertex coordinates z.

e Linear Model with pixel values (LinPix): Given the image and the 2D
positions of specified feature points for initialization, the analysis-by-

synthesis algorithm from Section 2.2 is used to reconstruct the face.
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The application of both algorithms is described in detail in the following para-
graphs.

5.2.1 Depth from Vertex Information (LinVert)

Let v = (z1,y1,%2,Y2,---,25,y;)" € R, with [ = 2f, be a reduced shape
vector that describes the facial geometry of a face in a frontal view. Unlike vg
(see Equation (2.2)), r contains no z coordinates, but only the coordinates xy,
and y;, of all vertices k with k € 1,..., f. Furthermore, r is restricted to the
inner region of the face, so vertices of the neck, ears and forehead are ignored
and thus f < n with n = 75,972 vertices. Note that in a computer vision
setting, it would be difficult to obtain r from an image, because all vertices
would need to be located precisely in the image. Hence, unlike LinPix (Section
5.2.2), the LinVert method presented in this section is not a viable computer
vision approach, but more a statistical analysis of the intrinsic properties of
human faces and the correlations between features.

As described in Equation (2.11) of Section 2.1, a shape vector can be rep-

resented by a linear combination

m—1
s =S+ E (671} PR
i=1
-1
_ mz (5.1)
=s+ Cs,i05,;Usg i
i=1
=8 + Ugdiag(os;)cs,
with o; = 04,¢s,, the face space coordinates ¢s = (¢s1,Cs2,- -+, Csm—1)", the

standard deviation o, ;, and the average shape vector s.

Given r € R! for the input face and let L be any linear mapping that maps

the shape vector vg onto the reduced shape vector r
r=Lv, L:R" R (5.2)
and with the average shape vector

y=r—LsS=Ls. (5.3)
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Thus, y is the reduced version of the zero-mean shape vector s. To reduce
the number of free parameters and to ensure that s is in the object class, s is

limited to linear combinations of the sample faces s; [BMVS04].

Since there is no assumption for a linear combination that solves y = L's

exactly,
E(s) = |Ls —yl (5.4)

has to be minimized.

Therefore, let q; = L (0,;us;) € R! be the reduced principal components,

that are generated by mapping the scaled original eigenvectors us; by L, and
Q = (qi1,qs,...) = LU, diag(s,;) € R>mD, (5.5)
To calculate the coefficients cs, Equation(5.4) can be rewritten as

E(cs) = IL ) osicsiuss — ylI* = [Qes — yl* (5.6)

The optimum of this equation can be found by computing the singular value

decomposition of Q:
Q=UWw,Vv/ (5.7)

where W{ = diag(w; ;) and V'V, = V.V.T =1, 1. The pseudoinverse of
Q is

Q" =viw,ul (5.8)
with
Wt — wiih if wi #0) (5.9)
0 otherwise

To avoid numerical problems, condition wy; # 0 can be replaced by thresh-
old w’, > € [BMVS04|. Using the pseudoinverse, the minimum of E(cs) is

S0

calculated with
cs =QTy. (5.10)

Hence, ¢4 is mapped to R3" by applying

vs =S + Ugdiag(os,) Cs. (5.11)
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For the resulting vector vg, the given model information included in the SDMM
is used, so that the shape vector lies in the span of example faces vg; and ||cs||
is minimized.

An optimal solution for cg can lead to distorted faces due to the far distance

of the result to the average. To avoid this overfitting, a regularization term is

added to the cost function (5.6):

E(cs) = [|Qes — yII” + nlles . (5.12)
In the optimum
0=VE =2Q"Qcs — 2Q"y + 2ncs, (5.13)
SO
Q"Qes +nes = Q'y. (5.14)

With the SVD of Q = UW.V."
QTQ=Vv.W.UuUw.v." =vw?v" (5.15)

U, is orthogonal in all columns 7 with w}; # 0, so Equation (5.14) can be

rewritten as

VIW. V! ey 4+ nes = VIW/, ULy, (5.16)

Multiplying by V., ¢cs can be solved

diag(wfi + 77)V’STCS = W’SU'STy (5.17)
so that
. wy T
cs = Vidiag (w’z- + 77) Ul'y. (5.18)

With this term, the regularized solution for the shape vector vy of Equation
(5.11) is:

w’
s =5+ Ugdiag(o,,;)V.di s uly. 5.19
v = 5+ Uding(r, ) Viding (g ) Uy (510)

With this approach, a complete shape vector vg (with x, y and z coordinates)

can be estimated from a reduced model composed only of x and y coordinates
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ignoring neck, ears and forehead vertices.

5.2.2 Depth Reconstruction from Pixel Values (LinPix)

The LinPix approach is based on the fitting algorithm of the 3DMM to input
images as described in detail in Section 2.2 which is summarized here shortly
for reasons of comprehensibility.

The analysis-by-synthesis loop computes the shape and texture vector from
the Morphable Model that fits the image best in terms of pixel-by-pixel color

difference between the synthetic image I,,,0q¢; and the input image Iy

Er = Tinput(#,y) = Lnoae (2, 9))*. (5.20)

z7y

In the context of the perceptual experiments, the input image is a picture
of a 3D face rendered in a frontal view. For the optimization to converge,
the algorithm has to be initialized with the feature coordinates of about seven
feature points. The 2D distances between the initialization positions and the
current positions of the points in the model form an additional cost function
that is added to Ej in the first iterations.

A third contribution to the overall cost function is a regularization term that
avoids overfitting. The regularization term measures the Mahalanobis distance
of the current solution (in terms of «;, ;) from the average face, using PCA.

The optimization is achieved by an algorithm presented in Section 2.2, which
estimates the linear coefficients for shape and texture, but also 3D orientation
and position, focal length of the camera, angle, color and intensity of directed
light, intensity and color of ambient light, color contrast as well as gains and
offsets in each color channel.

Just as LinVert, the LinPix reconstruction ignores the neck, ears and fore-

head vertices.

5.2.3 Differences between LinVert and LinPix

Both algorithms are based on the correlation between coordinates that is cap-

tured by the 3SDMM, so there are no fundamental differences expected between
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the results in the specific setting addressed here. Still, the results are percep-
tually and mathematically slightly different.

Unlike LinVert, the LinPix reconstruction has the potential to consider shad-
ing effects (even though they are very small and hardly relevant in this exper-
iment). Moreover, LinPix ignores implicitly the positions of all vertices in
uniform regions (such as the cheeks) because they do not have influence on the
image-based cost function (Equation 5.20). Both facts make LinPix a more
promising reconstruction than LinVert.

On the other hand, the non-linear optimization problem of LinPix is more
difficult to solve than the linear problem in LinVert. With LinVert it is sure to
have the numerically optimal solution of a simple mathematical problem that

applies the linear model in a direct way.

5.3 Stimulus Creation

The basic principle of the stimulus creation is to apply modifications to the
z coordinates of the 3D face scans from the database and keep x, y, and the
RGB texture unchanged. In an object-centered coordinate system, x denotes
the direction left to right, y the vertical, and z the front-back direction. One 3D
face from the database of 200 samples (see Section 2.1) is selected randomly for
the substitution as a frontal head, and all z coordinates are replaced by values
from another head (referred to as source head) in the 3SDMM representation.
Different source heads are used, which will be explained below. The resulting
3D face is the stimulus head that will be rendered in a side view.

For all vertices of the stimulus head, the x and y coordinates and the RGB
texture is from the frontal head, while z is from the source head. Dense
point-to-point correspondence of all vertices in the 3D face vectors is essential
for replacing the z coordinates. As described in Section 5.2, the required
correspondence is given by the 3DMM.

To account for size differences between the source and frontal heads, the
z values are scaled by a factor that is calculated from the vertical distance

between a feature point on the chin and one on the forehead of each head:

(yfrcmml,forehead - yf'rontal,chin)

Zstimulus — Zsource
(ysource,forehead - ysource,chin)
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for all vertices.

In the experiment, the frontal view of the unchanged frontal head is always
shown, followed by side views of different stimulus heads. The following five

source heads are used for creating the profile stimuli of this experiment:

1. Ground Truth: This stimulus face is the unchanged frontal scan with

the original z coordinates.

2. Average: The arithmetic mean s of all 200 database heads in the SDMM
is used as the source head that provides the z coordinates for this stimulus type.
Since there is little difference between the male and female average profile (see
comparison in Figure 5.2), only the overall average is used. The gender-specific
average would already involve a model that uses gender information for making
an inference, while the overall average is a constant zero-order approximation

of the problem of shape estimation.

3. Random: This face is created by selecting a random database head
as source head. The random choice is restricted to the same gender as the
frontal head. Note that the profile silhouette of this manipulated stimulus face
is not the same as the source profile, because only the z coordinates are from
the source, while the y values are still from the frontal head. This procedure
makes sure that all profiles are consistent with the vertical positions of features

in the frontal view.

4. and 5. LinVert and LinPix: Given the frontal view information of the
frontal face, the algorithms described in Section 5.2 provide two different 3D
reconstructions that are used as source heads for the stimuli. For LinVert the
x and y coordinates of a sample face are used to compute the z coordinates. In
the LinPix algorithm the sample face is rendered in a frontal view perspective
and the 3DMM reconstruction is applied on the resulting image to reconstruct
an entire 3D face. For both, the 3D reconstruction is only non-trivial for
“unknown” faces, so it is important that the face to be reconstructed is not
part of the 3DMM. Therefore, the database of 200 faces is split into eight
disjoint subsets of 25 faces. A 3DMM was calculated for each subset on the
complement set (175 other faces) and used for the reconstruction.

All stimuli images are rendered in perspective projection with a viewing
distance of two meters. The illumination for all views is frontal with additional

ambient light. The skin reflection is mostly diffuse with only a mild specular
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Figure 5.2: Gender-specific average profiles of 100 female faces (left) and 100
male faces (right).

component that does not produce distinctive specular highlights. As pointed
out below, the results provide strong evidence that participants were unable
to use the subtle shading cues in the rendered images to solve the task. Note
that, strictly speaking, the shading of the frontal view is only consistent with

the ground truth profile.

5.4 Inference Experiment

After seeing a frontal view image, participants either form a mental represen-
tation of the 3D shape right away, or they use more image-based mechanisms
to anticipate the profile or compare frontal and side views. Even image-based
mechanisms are likely to involve an implicit model of 3D shape. In either case,
the following experiment helps to assess the four potential models that are

described in Section 5.

5.4.1 Procedure

In each trial, an unmodified original scan of one of the 200 faces in the database
is shown in a frontal pose for three seconds, followed by an empty screen for
500 milliseconds (Figure 5.3). Then a side view of a stimulus face appears
on the left for two seconds, followed by another profile on the right for two
seconds. The profiles always show the left side of the face, and the visual angle

of the faces on the screen is 8.66° in the vertical direction.
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3000ms

500ms

Si00 View2

2000ms

Figure 5.3: Timeline of the Inference Experiment: After 3000ms the frontal

view of the original scan is replaced by a blank screen for 500ms. Subsequently,
two modified profile views are displayed in sequential order, each for 2000ms.

The next trial starts after participants select one of the two side views.

The two side views are two out of the five different stimulus types (see
previous section) chosen at random. After this sequential presentation of two
profiles, gray rectangles replace the images to indicate the original positions.
In a two Alternative Forced Choice (2AFC) task, participants select which of
the two profiles belongs to the frontal view by pressing keys on the keyboard.

The written instructions are:

“|...]During the experiment, you will see a frontal view of a face
first. Afterward two side views are displayed. These profiles differ
in their 3D shape. Your task is to choose which of the two displayed
side views belongs to the previously shown frontal view. The or-
der (frontal view, profile on the left, profile on the right, selection
screen) and the perspective of the faces do not change throughout
the experiment. |...]

Please rely on your overall impression of the faces and your gut

feeling. We are aware of the difficulty of the task, so please don’t
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be too ambitious or frustrated - if you are unsure, choose by your

instinct.”

The purpose of the instructions is to keep participants from developing strate-
gies that differ from everyday face perception, for example by focusing on
details. For the same reason, presentation time is limited and side views are
displayed in a sequential order to prevent participants from thoroughly scru-
tinizing the images. The discriminability on a greater scale, based on more
salient differences and overall impression, is more interesting than the detailed

examination of the images.

Each of the 200 faces of the database is shown only once in one trial, so it
is unknown to the participant. The experiment consists of 200 trials per par-
ticipant, with each trial showing two different profile stimuli. As described in
Section 5.3, five stimuli are used, hence ten pairwise combinations are possible.
The 200 trials are grouped in 20 blocks. Each block contains all ten combi-
nations of stimulus types in random order, so 20 measurements per stimulus
combination from each participant are obtained, and each of the five stimulus

types is shown equally often.

It is decided randomly in each trial which stimulus is shown first (on the
left) and second (on the right). In a post hoc analysis, no evidence for a bias

towards the first or second profile stimulus was found.

Instead of a pairwise comparison, all five stimulus types (sequentially or at
the same time) could have been displayed in each trial, and the participants
could have been asked to choose from these. This experimental design would
have made it easier to obtain an overall ranking. However, it would have con-
fused participants, and it would have to be dealt with memory effects because
participants focus on one profile after the other, so the previously seen profiles
are likely to influence the perception. Moreover, the data would not allow
to draw conclusions about the preference of all those stimuli that are chosen
rarely. In the pairwise design, participants are forced to choose between each
stimulus combination, even if they feel that neither is plausible.

The experiment takes about 30 minutes. After 40 trials, a status screen is
displayed that indicates the percentage of trials completed. Participants could

take a break once every 40 trials.
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Participants

The participants were 25 volunteers: students, members of staff of the Univer-
sity of Siegen, and external persons (3 females and 22 males). They had not
seen any of the persons in the database before. Participants were compensated

with coffee and sweets.

5.5 Validation Experiment

&

2000ms o -

2000ms

Figure 5.4: Timeline of the Validation Experiment: Two modified profile views
are displayed in sequential order, each for 2000ms. The next trial starts after
participants select one of the two side views.

The purpose of this experiment is to investigate if and how participants use
the information from the frontal view image to decide between profiles. The
data will help to refute alternative explanations of the findings that would be

based on the visual appearance of the profile views only.

5.5.1 Procedure

In the Validation Experiment, the frontal view is skipped and only the two
profile stimuli are shown (Figure 5.4.) The rest of the procedure is identical
to the Inference Experiment. The task description in the written instructions

1S NOW:

“During the experiment, you will see two side views in sequence.



106

Inference Experiment Validation Experiment

Stimulus Quantity || Stimulus Quantity
Ground truth 1075 Average 797
LinPix 1064 LinPix 635
LinVert 1058 Random 588
Average 959 LinVert 493
Random 844 Ground truth 487

Table 5.1: Ranking of stimulus types for the Inference (left) and Validation
Experiment (right). The table reports the absolute numbers of how often each
stimulus type was selected, pooled over all participants. All stimulus types

were presented equally often.

One of them is changed in overall shape. Your task is to select the

unmodified original side view.”

The rest of the instructions are the same as in the Inference Experiment. The
goal is to find out which profile view is considered more natural and plausi-
ble. This plausibility is likely to contribute to the behavior in the Inference

Experiment as a bias.

Participants

The participants were 15 volunteers: students, members of staff of the Uni-
versity of Siegen, and external persons (4 females and 11 males). They are a
different set than the participants from the Inference Experiment and had not
seen any of the persons in the database before. Participants were compensated

with coffee and sweets.

5.6 Results

Prior to the detailed statistical analysis of the Inference Experiment and the
Validation Experiment, a number of observations on the pooled overall rank-
ings of the five stimulus types (Table 5.1), collected from the pairwise combi-
nations presented in all trials, can be made.

For the Inference Experiment, the table shows an equal preference for the

stimuli created by the linear model and for the ground truth, while participants
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Ground truth Average ‘ LinVert LinPix Random
Ground truth 282 - 218 x = 250 - 250 237 - 263 306 - 194«
Average 218 - 282 % 232 - 268 x| 238 - 262 271 -229  *
LinVert 250 - 250 268 - 232 % 256 - 244 284 - 216 *
LinPix 263 - 237 262 - 238 244 - 256 295 - 205 «
Random 194-306 + 229-271 x 216-284 x| 205-295 «x

Table 5.2: Inference Experiment: Absolute numbers how often each stimu-
lus type was selected in a pairwise comparison, based on the subsets of trials
that showed each particular combination. The first number refers to the row-
stimulus, the second number to the column-stimulus in the table. The data is
pooled over all 25 participants. Results marked with an asterisk are statisti-

cally significant with p < 0.05. The coloration of cells is explained in Section

5.6.

chose the average and the random profile less frequently. This observation is
consistent with the hypothesis that the HVS uses a linear model.

The Validation Experiment measures how plausible the profiles were per se.
This plausibility is likely to form a bias that contributes to the results in the
Inference Experiment. It is interesting to add that the Validation Experiment
shows an almost opposite trend: In that experiment the average profile is
the preferred stimulus, and LinVert and ground truth are discarded. The
comparison of both rankings indicates that humans do use the information
from the frontal views for their decision. Subtracting the bias measured by
the Validation Experiment makes the effects in the Inference Experiment even
more striking.

Due to the pairwise presentation paradigm, it is difficult to make state-
ments about the statistical significance of ranking differences. Therefore, the
focus lies on a direct analysis of pairwise comparisons which allows to draw
reliable and meaningful conclusions. The criterion for statistical significance
is a binomial test with p < 0.05 (see Appendix) on the results listed in Table
5.2.

In the following, the potential models and strategies of the HVS that were

described in Section 5 are surveyed.

5.6.1 Hypothesis 1: No model

“Humans cannot infer from frontal views to side views of a faces.”
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Ground truth Average LinVert LinPix Random
Ground truth 98 - 202 % | 152 - 148 111-189 % | 126-174 x
Average 202 - 98 * 218 -82 x| 187-113 % |190-110 =
LinVert 148 - 152 82-218 «x 132 -168 x| 131-169 «
LinPix 189 - 111 % | 113-187 % | 168- 132 =« 165 - 135 *
Random 174 -126 | 110-190 | 169-131 x| 135-165 «

Table 5.3: Validation Experiment: Significance Matrix for pairwise analysis of
Validation Experiment. The data is pooled over all 15 participants. Results
marked with an asterisk are statistically significant with p < 0.05. For more

details see caption of Table 5.2.

This hypothesis would imply that all stimuli are selected the same number of
times in the Inference Experiment, in contrast to the differences observed in the
ranking data. More specifically, it would expect that all pairwise comparisons
containing the random profile stimuli should show balanced preferences. In
Table 5.2 the cells marked in green show that this is not the case: There is a
significant preference in favor of the non-random profiles in all comparisons,
just as the ranking has indicated (random on last position). In a pooled test
((Nrandom > Nground truth-+average+ LinVert+LinPiz) = (844, 1156), with p < 0.0005) in
which the numbers of all four green cells in Table 5.2 is added, a significant
preference in favor of the non-random profiles is found.

An alternative explanation of this finding could be that the random profile
stimuli are perceived as implausible per se, perhaps due to shape or render-
ing artifacts. The random profile is on rank 3 in the Validation Experiment
(Table 5.1), which indicates that this explanation is unlikely. In the pairwise
data of the Validation Experiment (Table 5.3), the cells marked in green show
significant effects that are opposite to those in the Inference Experiment for
the ground truth and LinVert comparisons. Therefore, it can be concluded
that it is not the appearance of the random profiles per se that explains why
participants rarely chose it. That is why the hypothesis that human observers

use no model at all can be discarded.

5.6.2 Hypothesis 2: Constant Model

“Humans have a constant, average solution to infer from frontal

views to side views of faces.”
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The result of the Inference Experiment shows the average stimulus is ranked
very low (rank 4), even though the average profile per se was the most plausible
to participants in the Validation Experiment (Table 5.1).

In the pairwise evaluation (marked in blue in Table 5.2), ground truth and
LinVert are chosen significantly more often than the average profile, and for
LinPix there is a non-significant trend in the same direction. Pooled over all
three blue cells in Table 5.2 ((Raverage, Nground truth+LinVert+Linpiz) = (688, 812),
with p < 0.005), the finding is that the average profiles are selected signif-
icantly less often than the other three types of stimuli. Again, this cannot
be attributed to the appearance of the profiles per se, because the Validation
Experiment shows a significant effect, in the opposite direction in all three
stimulus combinations (blue cells in Table 5.3). Hence, the hypothesis of a

constant model is falsified.

5.6.3 Hypothesis 3: Linear Model

“Humans utilize a linear model for inferring depth information from

frontal views.”

The profile LinVert, which is computed with a linear model, is selected
significantly more often than the average profile (which ignores any correlation
between frontal and profile features) and the random profiles as shown by the
yellow cells in Table 5.2. In a single test of the pooled data for the LinVert
versus average and random profiles ( (Rrinvert, Naveragetrandom) = (552,448),
with p < 0.005), a significant preference of LinVert is found. The same is true
for the LinPix profiles versus average and random ((nrinpiz, Naverage-+random) =
(557,443), with p < 0.005).

If no frontal view information is available (Validation Experiment), par-
ticipants prefer the average profile to any other profile, as shown in the blue
cells in Table 5.3. In fact, with no image information, the LinVert and Lin-
Pix algorithms would also yield the average profile, because the average face
has maximum prior probability according to the multivariate Gaussian Dis-
tribution estimated by PCA. The high ranking of LinVert and LinPix in the
Inference Experiment with frontal view information indicates that human per-

ception and the linear model deviate from the average in the same direction.
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Moreover, the results provide strong evidence that participants perceive the
reconstructed face profiles LinVert and LinPix as equally good matches to the
frontal view as the ground truth profile (red cells in Table 5.2). All these
findings are consistent with the hypothesis that the HVS uses a Linear Face

Model or a mechanism that reflects such a model implicitly.

5.6.4 Hypothesis 4: Sophisticated Model

“Humans use a more sophisticated model and mechanism than the

linear model.”

This hypothesis would imply that ground truth would be the most preferred
stimulus, which has not been found in the data (red cells in Table 5.2). In fact,
the pairwise analysis shows that ground truth and LinVert are not significantly
different in the Inference Experiment, so this hypothesis can be discarded as
well.

The LinPix reconstruction is selected even more often than ground truth in
the Inference Experiment, but this could also be due to the high plausibility
of the LinPix profile that is found in the Validation Experiment. This high
plausibility of this profile can be attributed to the fact that it is closer to
the average than LinVert (LinPix is a conservative estimate), and the average
profile has rank 1 in the Validation Experiment.

As mentioned in the Introduction of this chapter, the frontal views com-
puted from the original 3D scan include shading information, which could help
participants to identify the ground truth solution. Since there is no preference
of the ground truth or LinPix, which models illumination and thus shading
in the reconstruction algorithm, in comparison with LinVert found, it can be

concluded that shading does not disturb the measured effects.

5.6.5 Reconstruction Quality

In terms of the quality of the 3D reconstructions provided by LinVert and
LinPix, the results show that they are selected as equally often by participants
as the ground truth profile (red cells in Table 5.2). Even if the provided shape
estimates of the 3SDMM may sometimes differ from the true shape (illustrated

in Figure 5.5), they are accepted by the viewers.
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Figure 5.5: Comparison between a profile view of an original 3D scan (ground
truth) on the left and a profile reconstructed by the linear model with vertex
information (LinVert) on the right. The top row shows an example where the
reconstruction is far from ground truth, while the reconstruction in the second

row is close.

5.7 Conclusion

The results of the experiments support the following statements:

For the 3DMM and its 3D reconstruction, the results make a statement
about reconstruction quality by demonstrating that the 3D shape reconstruc-
tion algorithm passes the visual test: Given the frontal view, human observers
consider the reconstructed profile as equally plausible as the ground truth pro-
file.

In terms of the intrinsic statistical properties of human faces, the results
show that participants chose the correlation-based reconstruction being the
“true” shape as often as the ground truth. Technically, this result does not
imply that they are similar - they could be different and still equally plausible.
It has been argued in the Introduction of this chapter that any assessment of

shape similarity is problematic in terms of methodology. The results demon-
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strate that the linear model captures the same properties of face space that is
also used by human observers. However, an informal assessment of the results
indicates that the reconstructed profile is hard to distinguish from the ground
truth shape in most cases, even if this is difficult to measure quantitatively
(Section 5). In this subjective assessment, 160 of the 200 reconstructed pro-
files are difficult to distinguish from ground truth shape (Figure 5.5, bottom
row), and the other 40 differ from ground truth considerably (Figure 5.5, top
row).

Nevertheless, the experiments show that the differing results are still equally
plausible for the participants and in line with human expectation. Hence, an
application of the 3DMM for forensic tasks (such as the project described in
Chapter 7) may not lead to wrong cues. Thus, the 3D reconstruction could be
helpful in identifying tasks, in which a different view of a face must generated.

Another focus of this chapter was to learn more about the HVS. The fol-

lowing conclusions can be drawn:

e Humans are able to use information from frontal views to make inferences
on the side views. Their behavior is not explained by the side view

information only.

e The decision is more than a constant safe guess, which would be the

average profile.

e The data can be explained entirely by the hypothesis that humans rely
on a linear face model, which may be represented explicitly or implicitly

in the neural structures and mechanisms.

e There is no evidence for usage of a more sophisticated model of faces or

for usage of cues such as shading in the experiments.

These findings have a number of implications for the understanding of the
HVS:

First, they provide strong evidence that the HVS uses a general model about
the geometry of human faces. More specifically, it must be a first order model
that encodes not only what a face looks like in profile, but also how this profile

depends on the frontal view. It would be difficult to explain the participants’
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behavior in the Inference Experiment if they had only the information available
provided in the front view stimulus without any additional model.

Second, it is found that the general face model combines different views,
so it cannot be a single 2D model or a set of separate 2D models. Either it
couples all three dimensions intrinsically, as the 3DMM does, or it combines
multiple view-specific models or face spaces. On the neural level, a poten-
tial mechanism could be based on the connection between view-specific and
viewpoint-invariant units, and a combination of feed-forward and feedback pro-
cessing. However, note that the experiment deals with unfamiliar faces and
previously unseen views, so the coupling between view-specific representations
is a more difficult problem here than just connecting a collection of multiple
trained views of the same individual.

Third, by the fact of the finding that the ability of the HVS makes non-
trivial inferences about faces, a powerful mechanism that may be involved well
in the recognition of unfamiliar faces across changes in viewpoint has been
identified. It could be a separate mechanism that would help the HVS to form
a viewpoint-independent representation or predict unseen views, or it could be
just a side effect of the fact that the HVS can compare faces across changes in
viewpoint (front and profile stimuli in each trial of our experiment). In either
case, it is important to note that this mechanism requires general knowledge
about the shapes of human faces as a necessary condition. This contrasts with
to other potential components in face recognition that are based on viewpoint-
invariant cues. Such invariant cues can be color, moles, scars and the relative
vertical positions of facial features which all stay unchanged when a face is
rotated from front to profile. It remains to be clarified if and how the effects
that were described in this experiment really contribute to face recognition.

However, future experiments along these lines should help to shed more light
on the mental representations and mechanisms. The findings in this thesis
have taken a step in this direction by discarding several potential models and

providing solid evidence for a linear face model.
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Chapter 6
Correlations in Faces

The previous chapters have shown the capabilities of the 3DMM to infer un-
known facial information from visible parts. In contrast, to evaluate the 3D
reconstructions and the plausibility of added information by the 3SDMM, this
chapter relates to a more general determination of which correlations are reli-
able.

Chapter 5 has shown that the HVS has the ability to infer what a face
would look like in a side view after seeing a human face in a front view image.
The same is true for the ability to “fill in“ missing regions in images of faces:
if humans see a person with sunglasses, they may guess what the person looks
like when taking off his or her glasses, or if only the eyes are seen of someone
wearing a motorbike helmet, humans form a mental image of that person’s
head shape.

From an algorithmic perspective, the latter tasks have been addressed in
Chapter 4, where the Morphable Model is used as statistical representations of
the visual appearance of faces to fill in missing and occluded areas in images
or lacking details in low quality images.

The problem of inferring depth from front view images has been investigated
in computer vision and graphics as well, and a comparison between computa-
tional methods and human expectation has been presented in Chapter 5.

While both the HVS and many example-based algorithms rely on correla-
tions, these are implicit and difficult to visualize. Computational methods,
such as the 3DMM, rely mostly on first order correlations between coordinates

and colors of facial feature points in datasets of face images or scans. As
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shown in Chapter 5, this approach is consistent with the behavior of human

participants.

However, it remains unclear what exactly these correlations of faces are
that allow humans or machines to make most reliable inferences from visible
to occluded regions of the face, or from shape to texture and vice versa. Thus,
this chapter aims to identify and visualize the most relevant correlations of
global or local attributes of faces from the dataset of 3D scans in the 3DMM.

PCA is used as a standard technique to exploit correlations in data. How-
ever, visualized principal components may mislead to false conclusions on what
exactly is correlated in faces, and what is not: Consider a set of 2D vectors
(z,)T in a symmetrical normal distribution. The principal component with
the highest variation may be any 2D vector, for example the vector (1,1)7.
From this it may be concluded that x and y are correlated, which in fact
they are not. Only by looking at the second component (which would be an
orthogonal vector (1, —1)T) it can be seen that this is not true. For high-
dimensional data, it is difficult to distinguish true correlations from false ones
just by looking at the principal components: Concerning the components of
the face dataset used by the 3DMM, the first component makes faces smaller
and rounder. But it is unknown if other components, combined, account for
the opposite effect. For an example of visualized Principal Components see
Figure 6.3.

While the calculation of correlations between attributes of faces in a dataset
is easy, the task here is more difficult: Find the pair of attributes in two
modalities (shape versus texture, front versus side view, upper versus lower half
of the face, eyes versus mouth) that have highest correlations. The background
of this question is: if we are to make inferences from one to the other, what
are the attributes we should rely on? And what are the rules that humans
may have learned and apply when they imagine new views that they have
not seen yet? Furthermore, from a computational perspective, is it possible
to utilize specific correlations to improve the quality of the 3DMM to fill in
missing regions?

For this purpose, Canonical correlation analysis (CCA) is adapted here,
to explore and visualize correlations between different parts of a face or be-
tween different modalities. CCA was introduced by Hotelling [Hot36] and is a
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common statistical method estimating linear correlations between two multidi-
mensional variables. In the last decades, it has been widely applied in several
scientific fields such as economics [HS01], medical studies [Bec96] and even in
classification of malt whiskies [LL94|. But also in computer vision and pattern
recognition, CCA has been used for solving different tasks. Borga applied CCA
for learning filters for multidimensional signal processing [Bor98|, and Kidron
et al., for example, utilized CCA to locate pixels in video frames that are cor-
related with sound of the recorded scene [KSEO05|. Since CCA only handles
linear correlations, Melzer et al. introduced a Kernel CCA that estimates non-
linear correlations [MRBO3|, and Zheng et al. used this kernel-based method

to recognize facial expressions |ZZZZ06.

6.1 Attribute Mapping Function

An exploration of correlation in facial data is one of the main goals in this
chapter. To be more precisely, the existence of statistical relations between
different facial parts (e.g. between eyes and mouth, upper and lower part of
the face) or between different modalities (e.g. between RGB color information
and 3D shape) should be figured out.

So is it possible to draw conclusions from the shape of the mouth to the
shape of the eye or from facial color to shape of facial parts or the general shape
and vice versa. In addition, it is explored if worded statements like “male people
with small eyes have probably an overall rectangular facial shape” or “people
with fair skin will probably have narrower lips than people with darker skin”
can be formulated automatically from a statistical analysis.

To solve this task, a description method, which measures global facial fea-
tures such as overall shape and even more any partial characteristics of faces
like the specific shape of nose, eyes or cheeks, is necessary first. Furthermore,
this measurement should map the strength of each characteristic to a single
value, to have a descriptive tool for comparison of different input faces con-
cerning the intensity of the related characteristic. The following notation refers

to shape first, but applies to texture in the same way. For this, let

f(s) =1 with s= (z1,y1,21,- %0, Yn, Zn) (6.1)
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be an attribute mapping function that maps the (zero-mean) shape vector
s € R*" (with n vertices) of an input face to a single value [ € R that rates the
facial shape regarding a defined facial characteristic. For a detailed description
of shape and texture vectors see Chapter 2. The attribute mapping function
f(s) should be applicable to simple characteristics such as the width of the nose
(which can be measured by a trivial distance calculation between two vertices)
as well as to more complex characteristics such as the specific shape of facial
parts like the cheeks or the eyes (which requires more complex calculations for
mapping to a single value).

Due to the small number of input heads (m = 200), the mapping is restricted
to a linear function f that can be implemented as a scalar product. Therefore,
the attribute vector concept described in Chapter 3 fits the requirements, since
it handles the demanded constraints entirely. Thus, the attribute vector asx
is used for rating the strength of a facial characteristic k£ by projecting a shape
vector s onto ag . This projection is the scalar product of agy and s, and the
attribute mapping function f(s) for a specific attribute vector can be written

as
f(s,ask) = (s, asx) = lj. (6.2)

Note that the attribute mapping function in Equation (6.2) is similar to the
rating function described in Section 3.1 of Chapter 3. The only difference is
the usage of the Euclidean dot product in contrast to the Mahalanobis related
dot product. This is done for illustrative reasons and the coherence between

the functions will be established later.

The value [, expresses the strength of the characteristic defined by asx for
an input face represented by a shape vector s. For example, let the addition
of multiples of agy to a shape vector modifies the overall shape towards an
angular shape and the subtraction towards a round facial shape. Then greater
values of [, denote an angular face and smaller values a round overall shape.
Moreover, the scale is continuous, so it is possible to rate and compare different

strengths of angularity or roundness.

By concatenating m shape vectors to a matrix, it is possible to rate several

input faces (simultaneously) for one facial attribute:

f(Sa aS,k) = STas,k - 1s,k (63)
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with
ls,l,k
and lgx = : ) (6.4)

Sm

ls,m,k

Here, S € R®>™ is a shape matrix with m shape vectors as columns. The
label vector 15 € R™ represents the strength of the shape characteristic k for
each of the m shape vectors in S.

If two different attribute vectors a1 and ag 2 are projected onto the same
shape matrix S, the relation of elements in I3 and lg 2 is consistent in the
following sense: the first entry in both label vectors is related to the first input
shape vector, the second entry in both label vectors to the second input shape
vector and so on. This property is crucial for further calculation of facial

correlation in the following section.

6.2 Exploring Facial Correlation between Shape

and Texture

To illustrate the method of exploring facial correlations between two modal-
ities, the relation between facial shape and RGB information is focused on
in this section. Therefore, the attribute mapping function f(S,asx) and the
corresponding label vector Lk (see Equation (6.3)) are utilized.

But unlike in the previous section, where a predefined attribute vector is
used, unknown attribute vectors are estimated here, describing the correlations
between shape and texture.

Let a 3D face scan be represented by a pair of shape and texture vectors
(si, t;) with ¢ € {1,...,m}, S = (s1,...,8m) be a shape matrix with m = 200
zero-mean shape vectors (as columns), and T = (tq,...,t,,) be a texture
matrix with the corresponding zero-mean texture vectors. Then f(S, asmax)
calculates the label vector ls max that rates every input shape (vector s;) re-
garding an unknown facial shape characteristic described by attribute vector
A5 max; alld f(T, at max) calculates the label vector Iy max that rates every input
texture (vector t;) regarding an unknown texture characteristic represented by

attribute vector aymax. The index maz for both attribute vectors and the
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label vector denotes that those vectors should describe the direction with the
largest correlation. Since the position of shape and texture vectors are consis-
tent in T and S (shape vector s; and texture vector t; of face i are at the same
position in S respectively T'), the relation of all entries in both label vectors

are also consistent:

ls,maa:,l <~ lt,mar,l f(sla as,max) <~ f(tla at,max)
ls,maac,Q — lt,maaﬂ,? . f(S2, as,max) <~ f(t2a at,max) (6 5)
ls,ma:v,m <~ lt,maa:,m f(sm; as,max) <~ f(tm; at,max)

Now, the goal is finding those two attribute vectors asmax and agmax that
minimize the angle 6 between the corresponding label vectors Is max and Iy max-
(In an optimal solution the angle between lg max and lg max would be zero.) The

angle 6 between two vectors u and v is defined by

(u,v) ulv

cos(0) = = .
©) Vgu)y/(v,v)  Vuluvvlv

(6.6)

Hence, the angle between the label vectors can be calculated with

<ls max; lt max>
0 = acos ’ ’ : (6.7)
( \/<ls,maX7 ls,max> \/<lt,maX7 1t,max>

Substituting the attribute mapping function (Equation (6.3)), it can be written

as:
9 — acos <ls,maX7 lt,max>
\/<ls,maX7 ls,max> \/<lt,max> lt,max>
— acos <STas,maX7 TTat,max> (68)
\/<STas,maxa STas,max> \/<TTat,maX7 TTat,max>
— acos as,maxTSTTat,max
\/as,maxTSSTas,max \/at,maxTTTTat,max

Since acos(1) = 0, the sought angle is § = 0, which leads to a maximization of

T T
r = argmax 3s max ST 2t max (6.9)
maxr — .
\/as,maxTSSTas,max \/at,maxTTTTat,max

As,max,at, max
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with a maximum value of 7,,,, = 1. Due to zero-mean shape and texture
vectors (see Chapter 2), it is similar to maximizing the Pearson correlation

coefficient and Equation (6.9) can be written as
T"maz = COTT(STas,maX7 TTat,max)a (61())

where 7,4, is the correlation coefficient with the largest correlation and as max
respectively ag max are the attribute vector representation.

The optimization problem can be solved numerically by maximizing Equa-
tion (6.9) or by utilizing CCA, which calculates the correlation explicitly. In

this thesis, CCA is used due to its advantages of the numerical solution.

6.3 Canonical Correlation Analysis (CCA)

CCA is a statistical method to calculate the linear relations between two mul-
tidimensional variables x and y by finding a basis for each variable that re-
sults in maximized correlation. Therefore, consider the projection of the two
sets of variables onto the basis vectors Wy x and Wy i as linear combinations
rp = X! Wy respectively yp = y? Wy . These projections xj and y; with
k = 1,..., kiim are called canonical variates [Bor98|. The index ki, denotes
the number of existing canonical variates within each set. It is limited to the
lowest dimension of the variables. Thus, if the dimensionality of x is k, and
of y is k,, then the number of canonical variates is ki, = min(ky, ky).

If only the pair of linear combinations with the maximum correlation r,,,, is
considered, the projection of the variables onto the basis vectors, the canonical

variates e and Ymaz, has to be maximized:

r _ E[xmazymam]
\/E [x %naac] \/E [y?nax]

E [Wz,manyTWy,max]

VBV 1o W] | EIW YY" Wy o]

W max E[XYT Wy max

(6.11)

 VWaomax? EXXT Wy maxWy max? E[YYT Wy max

With E[xx”] = cov(z,z) = Cx and E[yy’] = cov(y,y) = Cy as the covari-
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ance matrices and E[xy’] = cov(x,y) = Cxy = Cyx' as the cross-covariance

matrix, the function to be maximized is

Wx,maxTnyWy,max . (612)

T T
\/Wx,max Cxwx,maxwy,max Cywy,max

Tmaz =

This formulation can be adapted to the problem of finding the maximum
correlation between facial shape and texture as stated in Section 6.2. There-
fore, the data matrix S and T are considered as random variables, and the
attributes ag x and a x as basis vectors. Then label vectors I and I; i are the
linear combinations (canonical variates) s, = STagy and Iy, = T agy. If only
the largest correlation is considered again, Equation (6.11) to be maximized

can be written as
as,maxTE[STT]at,max
\/as,maxTE [SST]as,maxat,maxTE[TTT]at,max

T
as,max Cstat,max

\/as,maxTCsas,maxat,maxTCt at,max

Tmaz =

(6.13)

with Cg and C; as the covariance matrices of S and T, and Cg = C,s! as the
cross-covariance matrices respectively. If the definitions for Cg = %SST and
C¢ = LTT? from Section 2.1 as well as Cgy = =ST7 are applied to Equation
(6.13), the CCA problem formulation is similar to the maximization problem

(Equation (6.9)) defined in the previous section:

T
as,max Cstat,max
T T
\/as,max Csas,maxat,max Ctat,max

T1 T
as,max EST at,max

T"max =

T1ggr TLpTT (6.14)
as,max m as,max at,max m at,max
T T
- as,max ST at,max
\/as,maxTSSTas,max\/at,maxTTTTat,max
To find the maximum value for r,,,,, the partial derivatives B‘Z’"’"a“ and
y X

Ormaz
8at,lrnax

of Equation (6.13) with respect to asmax and a¢max are calculated.
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Setting both derivatives to zero results in a system of equations:

Cst at,max = Tmax )\s Csas,max

(6.15)
Ctsat,max = rmaxktctat,max
with
AT A~
a C;a
Ao = Nt = | e LA, (6.16)
4! maxCss max
A transformation of the equation system leads to
Cs_lcstct_lctsés,max = T?naxés,max (6]_7)

-1 —1 4 2 4
Ct Ctscs Cstat,max:rmaxat,maw

Computing the eigenvalues and eigenvectors for the matrix C. 1CyCy 1Cys

or C; 'CysCs 'Cyq solves the system. Since both equations are related by
Equation (6.15), only one has to be solved. For a detailed mathematical deriva-
tion of Equation (6.15) and (6.17) see [Bor98§].

The attribute vectors agx and &k are the eigenvectors of the solution and
therefore the unit length CCA basis vectors, and the corresponding eigenvalues
r? are the squared correlation coefficients. If the eigenvectors are sorted in
descending order with respect to the eigenvalues, the attribute vectors as1
and &¢ 1 describe the largest correlation with the coefficient r;, the attribute

vectors &g 2 and 4 o describe the second largest correlation with ry, and so on.

Due to the small number of input samples (m = 200 face samples) in relation
to the high dimensionality of the attribute, shape and texture vectors (3-n- with
n = 75,972), a small sample size problem [HY91, SZL*05] occurs. In this case,
CCA is unfeasible since it finds several solutions which results in maximum

correlation with a correlation coefficient of r, = 1 with k =1, .., kjjp..

By using a PCA, the small sample size problem can be avoided [SZL*05].
For this, the distribution of database faces can be described in terms of unit-
length eigenvectors and standard deviations for shape and texture as presented
in Chapter 2. Thus, S = U;W,V," (Equation (2.7)) and T = UW,;V,"
(Equation (2.9)) with Ug = (us1 ... Usm-1) and Uy = (W¢1 ... Ugm-1)-
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As the attribute vectors are zero-mean and defined in the same face space
representation as the shape and texture vectors, they can also be represented

by a linear combination of the principal components ug; and ug;:

m—1
Agk = Z O Usj = Usay (6-18)
j=1
and
m—1
Ay k = Z Bk,jut,j = UBr (6-19)
j=1

with j = 1,..,m — 1 stating the number of principal components. ay; and

Br are the vector form of the shape and texture coefficients for the attribute

vector representation of the k-th correlation.

Applying Equations (6.18) and (6.19) to the CCA function to be maximized,

Equation (6.13) can be written as

Elal .. ST & max|

o V EIAT 1xSST & ma] B[] i (Us WV T T g ]
E[(Usbimaz)"ST" (Ut Bmaz)]
V El(UsGimas)"SST(Usimae) El(UBmaz) "TT7 (UyBynas)
Omaz! E[Us" ST Uy Brmaz

\/ama:cTE [USTSSTUS] ACmax \/ﬁma:cTE [UtTTTTUt]IBmazc

With the factorized versions of S (Equation (2.7)) and T (Equation (2.9))

sT” = (U,W, V") (U W, V") = UW, V., VW, U7, (6.20)

ss” = (UW. V. (U WV, = U WV, VWU, (6.21)

and

TTT = (U, W, V.")(UW,V,")T = U W, V,"V, W, U,”, (6.22)



125

Tmaz 1S
r _ amamTE[WsVsTVtWtT]/Bmaw (6 23)
mazx T T T T T T :
\/amaa: E[WSVS VsWg }amaw\/ﬁmaw E[tht ViWe ]ﬂma:c
amamTE[(WSVST)(WtVtT)T],Bmaz (624)

- \/amamTE[(WsVsT)(WSVST)T]amam\/,BmamTE[(WtVtT)(WtVtT)T],Bmam
Now, let A = W V! and B = W, V,’, then

ama:cTE[ABT]IBmaa:
\/ama:cTE[AAT]amaw \/ﬁmawTE[BBT]Bmaw

Tmaz =

(6.25)

As described in Section 2.1, Wy = /m - diag(c, ;). Then the column vectors
of the matrix A = W, V! = /m - diag(a&j)VsT are the shape coefficients
o, ,; of the zero-mean shape vectors s; of the data matrix S = (s1,S2, ..., Sm)
and 1 =1,...,m.

With Wy = /m - diag(o;;), B = W, V" = /m - diag(o,;)Vi". The
columns of B are the texture coefficients 3;; of the zero-mean texture vec-
tors t; of T = (t1,t2,...,tm). Hence, A = (as,1,s,2,....,Q5,) and B =
(Bt,1,Bt,25 -, Btm)-

A coefficient vector e has been defined in Section 2.1 (Equation (2.15)) as
face space coordinates cg for shape weighted with the standard deviations o ,
so that a = diag(o,;)cs. To transform a shape coefficient vector into face

space coordinates, a has to be multiplied with the inverted diagonal matrix
diag(c, ;) = diag(1/os,):

cs = diag(1l/o; ;). (6.26)

Texture coefficients 3 = diag(o; j)c; (Equation (2.16)) can be transformed
to face space coordinates c; for texture as well, by multiplying 3 with the

matrix inverse of diag(o; ;)™ = diag(1/ov,):
c, = diag(1/o: ;). (6.27)

To compute the CCA with respect to the face space coordinates ¢gmax and
Ctmax instead of Qnmee and Biaes, all shape coefficient vectors in Equation

(6.25) have to be multiplied with diag(1/c;), and all texture coefficient vec-



126

tors with diag(1/0: ;). For csmax and cgmax Equation (6.26) and (6.27) can

be applied. The shape coefficient matrix A can be transformed with

diag(1/0,;)A = diag(1/0, ;)W V"
= diag(1/0, ;)diag(o,;)v/m - V4" (6.28)
= \/E : VST7

and B with
diag(1/o:;)B = diag(l/at,j)WtVtT

- \/E'VtT.

Using these definitions, the equation for maximizing r,,,, with respect to

(6.29)

Cs,max and Ct,max 1S

Cs,maxTE[VsTVt] Ct,max

Tmaz = . (6.30)
\/Cs,maxTE[VsTVs] Cs,max \/Ct,maxTE[VtTVt]Ct,max
The covariance matrices can be substituted by
T Lo 1
E[Vs' V4| =Cy,=—Vy Vo=—1 (6.31)
m m
1 1
E[V'V{=Cy, = —V/V, = —L (6.32)
m m
With
1
E[V{"V{ =Cvy.v, = — V'V, (6.33)
m
as cross covariance matrix, Equation (6.30) can be written as
cs,ma\xT%\/vsT‘/vtct,max
Tmax =
T1 Tl
\/Cs,max mICs,max\/Ct,max mICt,max (634)

T T
Cs,rnax Vs Vt Ct,max

- T T ’
\/Cs,max Cs,max\/ct,max Ct,max

Now, CCA can be computed by transforming Equation (6.30) into an eigen-
value problem similar to Equation (6.15) and (6.17). Instead of Cs, Cy Cigt,
and Cis, the covariance matrices of Equation (6.31), (6.32), and (6.33) are
used. As a result, the CCA based on this formulation estimates the correla-

tions in face space coordinates.
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The attribute vector agy for shape is represented by the face space coordi-
nates vector cgx and the correlated attribute vector agy for texture by cy .
Both vectors can be generated by applying oy, = diag(o; j)csx to Equation
(6.18) for shape and @), = diag(o; ;)cx to (6.19) for texture. Another advan-
tage of computing CCA in face space coordinates instead of attribute vectors
is the reduction of complexity because the face space coordinates, with a max-
imum dimensionality of m — 1 = 199, have fewer elements than the original
attribute vectors. However, the number of components used for CCA calcula-
tion is de facto much smaller than 199. An optimal number of components is
evaluated in the next section.

Note that the CCA problem formulation in Equation (6.34) is the same as if
the Mahalanobis related dot product defined in Section 3.1 is used as attribute
mapping function to compute the correlation between the label vectors (see
Section 6.1 and 6.2). For comparison, Appendix B illustrates this approach
by establishing the function to be maximized in the same way as presented in
Section 6.2 with the difference that fi/(s,asx) = (s, asx)n is used as attribute
mapping function instead of the Euclidean dot product.

Due to this relation, the Mahalanobis based rating function (as presented
in Section 3.1)

fu(s,asx) = (s, asx)m (6.35)

= (Cs, Cs k)
with cs as face space coordinates for the shape vector s and c; i for the attribute
vector agy, is used in the following sections instead of the Euclidean rating

function (Equation (6.2)).

6.4 Correlation Validation

As pointed out in Section 6.3, the dimensionality reduction due to PCA avoids
the small sample size problem and makes it possible to solve the CCA problem
numerically. In the following, it will be demonstrated that the number of
principal components has to be reduced further since using all m — 1 = 199
principal components would lead to correlation coefficients equal to 1 for all
solutions even on random data.

In this evaluation, the correlations between facial shape and texture were
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calculated by CCA with different numbers of PCA dimensions, starting with
five PCA components and increasing the number in steps of five. The largest
correlation coefficient r; for each number of components is plotted as a blue

line in Figure 6.1.

The graph shows that using more than 80 principal components leads to
correlation coefficients close to 1. However, it is not sure that the estimated
attribute vectors describe real and informative correlations, as opposed to ran-
dom ones. In large datasets, it will always be possible to find solutions with a
large correlation coefficient, even if these correlations describe random effects.
To eliminate this, the order of the data vectors is permuted in one of the input
data matrices. Here, the order of shape vectors s; in the shape matrix S is
altered and the order of the texture vectors t; in the texture matrix 1" is left
unchanged. Note that it is not the order of vertices in the shape and texture
vectors, but the assignment of vectors to individual faces that is altered, so
the shape vector s; of sample face i is no longer mapped to the correct texture
vector t; anymore. Afterwards the correlations between the modified shape
and the unchanged texture matrices are recalculated with CCA. Again, the
estimation is implemented with different numbers of PCA dimensions. The

result is depicted as a red line in Figure 6.1.

The result shows that the correlation coefficient of the permuted data is
lower than the coefficient of the unchanged data (see blue line in Figure 6.1). It
also reveals that in higher dimensions (higher number of principal components
used), the two curves converge: If more than 85 components are used, the
correlation coefficient r; of the largest correlation becomes 1, even for trivial

random datasets.

From these findings, the following conclusion can be drawn: The estimated
facial correlations are non-random correlations if the proper number of coef-
ficients is chosen, since the difference between the two curves is substantial
in the range of 15 to 40 components. If not stated otherwise, 35 principal
components are used in this chapter as tradeoff between the magnitude of the
correlation coefficient (blue line in Figure 6.1) and distance to the random
correlation coefficient (red line). Note that an analytical criterion for the sta-
tistical significance of correlations, along the lines of a t-Test, would be difficult

in this case for two reasons: first, very high dimensional data and a relatively
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Figure 6.1: Influence of spurious random correlations in the dataset: The blue
curve shows the largest correlation coefficient r;, depending on the dimen-
sionality of input vectors (number of principal components) between shape
and texture, since for each individual face i a shape and a texture vector is
present. By a permutation of the order of t;, the mapping between individual
shapes and textures is destroyed. The red curve illustrates that CCA still finds

(meaningless) correlations for high-dimensional data vectors.

low sample size (200 faces) is present, and second, it is inherently difficult to
separate signal from noise in this type of data. It is not referred to spatial
noise on the surface of the face, but the randomness of facial features in the
ensemble of human faces. Even if it is feasible to apply methods attempting
to separate “true” from “random” sources of variations to this problem, such
as Probabilistic PCA [TB99], these methods would make strong assumptions.
In contrast, the applied Monte-Carlo analysis with random permutations pro-
vides a valid and reliable test of the importance of correlations in paired data

vectors.

6.5 Visualization of Correlations

The combination of the 3DMM and CCA makes it easy to explore the cor-
relations in faces visually. As described in Section 6.3, CCA calculates pairs
of basis vectors, so that the correlation between the projections of the input

data onto these basis vectors is maximized (see Equation (6.17)). Since the
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Figure 6.2: Visualization of correlations between facial shape and texture in-
formation: Due to addition and subtraction of the calculated attribute vectors
for shape agy and for texture ayx to a face, it is possible to visualize the es-
timated correlation. Here, the four pairs of attribute vectors with the largest
correlation coefficients are used to illustrate this mechanism by applying on
the average facial shape and texture (with factor w = 8). (a) and (c) show
this for the first attribute vector for shape as1, and (b) respectively (d) the
related attribute vector for texture ag1. (e), (g), (f), (h) illustrate the second
largest correlation, (i), (k), (j), (1) the third largest correlation, and (m), (o),
(n), (p) the fourth largest correlation. Since only the vertices of the inner part
of the face are considered, areas such as the neck, the forehead and the ears are
rendered with the average facial shape and texture. As a result, the merge can
lead to noticeable transitions for the visualization. These artifacts originate

only from the merge and not from the computed attribute vectors.
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Figure 6.3: Visualization of PCA components: (a) to (h) visualize the first four
shape components and (i) to (p) the first texture components. Each principal
component Ug; or ug; is weighted with 3 - o, for shape or 3 - g, for texture

and added to the average facial shape and texture.
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number of non-zero solutions is limited to the dimensionality of the input data,
and p = 35 principal components are used (Section 6.4), CCA calculates 35
pairs of basis vectors csx and cyx with k£ € 1,...,35. These basis vectors are
the face space coordinates for shape and texture and can be interpreted as at-
tribute vectors for shape by applying oy, = diag(o, ;)csx to Equation (6.18),
and By = diag(oy;)cex to Equation (6.19) for texture. For both vectors,

J=1,..., Dmaz With ppee = 35, s0 o and By as well as cgx and ¢ € RPmez,

Sorted in a descending order with respect to the correlation coefficients, the
first pair of attribute vectors as; and ag; visualizes the largest correlation
between shape and texture, and the second pair agse and age with 7y <
the second largest correlation. Due to this representation, the attribute vector
concept can be used for visual inspection of correlations by adding multiples
of these vectors to any face (as described in Section 3). It is important to keep
in mind that the pairs of attribute vectors asyx and agy are related, so they
are shown as a pairwise manipulation side by side in Figure 6.2. Note that
the attribute vectors of one modality (e.g. asx) are not pairwise orthogonal,
since CCA enforces a more indirect criterion of independence of components.
Figure 6.2 shows the first four pairs of attribute vectors with the largest cor-
relation coefficient in four rows. The vectors agy with k£ = 1,2, 3,4 are added
((a),(e),(i), and (m) in Figure 6.2) to or subtracted ((c),(g),(k), and (0)) from
the average face shape while the texture remains unchanged, and in separate
images, the related attribute vectors for texture agy are added ((b),(f),(j), and
(n)) to or subtracted ((d),(h),(1), and (p)) from the average face texture (here,
the shape is not modified). The added and subtracted attribute vectors are
weighted with a factor of w = 8 in Figure 6.2 for a better visualization of
minor changes. Note that the relative sign of agx and agk is important here,
unlike the signs of principal components in standard PCA. In Figure 6.2, for
instance, (a) and (b) form a pair of attributes, and (c¢) and (d) the opposite
pair. 35 principal components are used for the correlation estimation, and the
values of the four largest correlation coefficients are: r = 0.9487, ro = 0.9322,
rs = 0.9202 and r4 = 0.9017. For the calculations, only vertices of the inner
part of the face are considered, and areas such as the neck, the forehead and
the ears are ignored. In the Figures 6.2, 6.4 and 6.5, the ignored areas are

rendered with the average facial shape and texture. Since the computed inner
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parts differ from the average shape, the merge for the visualization can lead to
noticeable transitions between these parts (e.g. in (e), (g) and (m) of Figure
6.2). These artifacts originate only from the merge and not from the computed

attribute vectors.

Figure 6.2 indicates that in terms of facial shape the shape of the nose,
the eyebrows and the eyes and the thickness of the lips correlate with the
color or brightness of the eyelashes and the lips, and a beard shadow. More
precisely, subtracting as 2 makes the shape of the nose smaller and finer, as
well as the eyebrows thinner and more curved. Also, the eyes become more
circular and the lips thicker. Regarding the related attribute vector for texture
as 2, subtraction reduces the beard shadow, darkens the color of the eyelashes
and makes the color of the eyebrows more continuous. Also, the color of the
lips is paler, which is perhaps one of the more unexpected correlations. Some
of the correlations can be explained by the typical gender specific differences
between male and female faces that were found previously in the analysis of

the differences of male and female 3D scans [BV99).

In Figure 6.3 the first four principal components for shape and texture are
shown. Each principal component ug, i and ug, i is added and subtracted to the
mean shape § respectively mean texture t and weighted with 3o, or 3 - 0y;.
In comparison with Figure 6.2, it is explicit that the principal components
capture different directions in the face space than the attribute vector pairs

for shape and texture correlation.

With the aforementioned method, correlations between any modality or sub-
region of human face scans can be investigated in the same way as described for
shape and texture. For example, the correlations between the shape of facial
front and side information, or between the upper and the lower part of the
face can be computed. Therefore, the input matrices have to be modified. In
case of correlations between front and profile information, the input matrix for
the frontal information is formed only by the x (left-right) and y coordinates

(vertical) of the shape vectors s; (see Section 2.1):
Sront.i = (L1,Y1, - Tn, Yn) € R*™  with n = 75,972, (6.36)

and the second input matrix for the side information only with the z coordi-
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nates (depth)
Ssidei = (21,---,2n) € R" with n =75,972. (6.37)
Then a PCA is computed for both data matrices

Sfront = (Sfront,b ceey Sfront,m) (638)

and
Sside = (Sside,17 sy sside,m>~ (639>

As aresult, the principal components Ugont ; Solely contain x and y coordinates
and Ugige; the z coordinates. Besides the difference in the input matrices and
the resulting matrix factorizations, all other subsequent calculations to com-
pute the CCA components with Equation (6.34) are the same as the estimation
of shape and texture correlation and the resulting attribute vectors are agjge k
and agont k- The correlation coefficients for the four largest correlations, shown
in Figure 6.4, are: r1 = 0.9883, ro = 0.9842, r3 = 0.9582 and r4 = 0.9527. For
the visualization of the results, the split attribute vectors are merged again

because it is more practical to handle entire attribute vectors.

Figure 6.4 illustrates the in this way computed correlations between facial
front (x and y) and side coordinates (z). Both attribute vectors are weighted
with w = 10. For this example, only the shape of the inner parts of the face
are considered again, and the neck, the forehead, the ears and the texture are
ignored. The average facial shape and texture are used in these areas. For
that reason, artifacts at the transitions between the computed shape and the

average face are visible.

In Figure 6.5, the correlations between upper and lower part of the face are
shown. Therefore, the input matrices for PCA calculation are composed of
shape vectors split in upper and lower part. Then CCA is computed on this
data. Figure 6.5 shows the resulting attribute vectors aupk and ajew k. In
column 1,2, 4 and 5, the corresponding counterparts (the lower part in column
1 and 4, and the upper part in column 2 and 5) are filled with the average shape,
whereas the merged shapes of the computed upper and lower half are shown

in column 3 and 6. The mean texture is used as texture in all examples. The
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+w Aside,1 * Afront,1 ( * Aside,1 —W * Afront,1
(e) tw-aside2  (f) +w - agront 2 (8) —w - aside,2 —W - Afront,2
(1) +wW - Aside,3 (J) +W - afront,3 ( - Agide,3 —W - Afront,3

¢@

(m) +W - Aside,4 (n) +W - afront,4 ( * Aside,4 —W - Afront,4

Figure 6.4: Correlations between frontal view and profile: The pairs of at-
tribute vectors with the four largest correlation coefficients are shown. (a) and
(¢) visualize the addition or subtraction of the 1st computed vector agjge 1 for
side view information, and (b) and (d) the related vector for the frontal view
agront,1- (€), (), (g), (h) illustrate the 2nd largest correlation, (i), (j), (k), (1)
the 3rd largest correlation, and (m), (n), (o), (p) the 4th largest correlation.
All examples are rendered with average texture and with w = 10. Since only
the vertices of the inner part of the face are considered, areas such as the
neck, the forehead and the ears are rendered with the average facial shape.
Noticeable artifacts originate only from the resulting merge and not from the

computed attribute vectors.
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) +w - aup,1 (b) +w-ajow,1 (¢) combined —W - Ayp,1(€) —W- Alow,1 (f) combined
) 4w - Ayp, 2(h) +w-ajow,2 (i) combined  (j) —w- Ayp, 2 (k) —w-ajow,2 (1) combined
) +w - ayp,3(n) +w- alow,3 (0) combined  (p) —w - ayp,3(q) —w - Alow,3 (r) combined
) +w - ayp 4 (t) +w - Alow 4 (1) combined (V) —w - ayp.4 (W) —w-Alow.4 (x) combined

Figure 6.5: Visualization of correlations between upper and lower part of the
face: The 1st and the 4th column show the addition or subtraction of the
attribute vectors aypp; with the four largest correlations (i = 1,2,3,4). The
2nd and 5th column illustrate the addition and subtraction of the vector for
the lower part ajow ;. The counterparts are rendered with the average shape.
A combined view of the related upper and lower part is visualized in the 3rd
and 6th column. All examples are rendered with average texture and a weight
of w = 10.
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computed correlation coefficients in this example are: r; = 0.9953, r, = 0.9792,
r3 = 0.9576 and r; = 0.9485.

The manual exploration of correlation shows that pairs of attribute vectors
do not always match only specific facial characteristics, but rather combine
several characteristics, just as principal components do. In the next section,
an automatic method for exploration of facial correlations and for generating

semantic statements is introduced.

6.6 CCA Attributes Mapped to Semantically

Meaningful Characteristics

The visualization of correlations (Section 6.5) has shown that the estimated
pairs of attribute vectors do not describe only one specific facial characteristic,
but rather several combinations of different ones. To explore which facial char-
acteristics are in the correlated attributes and to obtain verbal descriptions, a
method for automated exploration is proposed. This is achieved by project-
ing the estimated attribute vectors (for example agy and agy for correlation
between shape and texture) to predefined attribute vectors describing merely
one semantically meaningful facial characteristic each. 50 such attribute vec-
tors are generated with the method from Section 3 and manual labeling of the
database faces with respect to overall shape of the face or the cheeks, the shape
of the mouth, the eyes or the eyebrows or one specific texture characteristics,
such as the brightness of the eyes, the lips or the eyebrows.

Now, a comparison of the predefined vectors with the estimated basis vec-
tors calculated by CCA is possible. Since the correlations are calculated with
Equation (6.34) of Section 6.3, the estimated pairs of attribute vectors are
already represented by the face space coordinates cgy and cgx. The prede-
fined attribute vectors can be converted into this representation as well by
projecting the vectors onto each of the 35 principal components ug; or uy;
with j = 1,...,35, and then multiplying it with diag(1/0; ;) or diag(1/o: )
(see Section 6.3). To compare the calculated with the predefined attribute vec-
tors, the scalar product between the coefficients serves as the rating criterion.
For example, let ageyes be a predefined attribute vector describing the shape

of the eyes, Cseye the face space coordinates of ageyes, ask be an estimated



138

shape attribute vector, and ¢k the coordinates of agy. Then a rating can be

computed comparing the face space coordinates of two attribute vectors:

<Cs,k ) Cs,eye)

\/<Cs,k7 Cs,k> \/<Cs,eye7 Cs,eye> .

Since the face space coordinates are used for comparison, the ratings computed

ratingy eye = (6.40)

with this equation are the same as using the Mahalanobis related dot product
defined in Section 3.1 of the attribute vectors directly. Hence, Equation (6.40)

can be written as:

<as,k7 as,eye>M

\/<as,k7 as,k>M \/<as,eye7 as,eye)M .

Tatingy eye = (6.41)

The magnitude of the rating value denotes how strong the computed correla-
tion ag i is in line with the characteristic described by the predefined attribute
vector, and the algebraic sign shows the direction of agk regarding the prede-
fined vector.

With this method, the correlations between facial shape and texture as
well as several other combinations (e.g. between frontal and side information,
between eyes and mouth) can be compared with predefined attribute vectors.
In the following, a closer look at the correlation between shape and texture,
using a set of 50 predefined attribute vectors, is taken.

The analysis is restricted to the most reliable non-random correlations ac-
cording to the Monte-Carlo simulation in Section 6.4, so only the sets of at-
tribute vectors with a correlation coefficient r; greater than the largest cor-
relation coefficient of the permuted datasets are used. In case of correlations
between shape and texture (using 35 principal components), eleven pairs of at-
tribute vectors (asx and apy with k£ = 1,..,11) are utilized since ry; = 0.7717
is the last correlation coefficient greater than the highest correlation coefficient

71 permuted = 0.7438 of the permuted input data.

6.6.1 Results of CCA Projection

To illustrate this method, Tables 6.1 and 6.2 list the ratings for the exploration
of correlations between shape and texture. In these tables, only a selection of

the most informative predefined attribute vectors is shown, and only the pairs
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As 1 aAs 2 As 3

As,narrow/wide eyes 0.1094 | -0.0923 | 0.348

Ag convex/concave nose 0.0469 | 0.3198 | 0.0952
As,male/female -0.0719 | -0.2552 | 0.0572

A round /angular -0.2124 | -0.0738 | 0.1488
Qs small/wide nose bridge 0.0441 0.0116 -0.3363
Ag gtraight /curved eyebrows | -0-0712 | -0.1991 | 0.4021
As thin/thick eyebrows 0.2828 0.2403 -0.379

Table 6.1: Comparison between the calculated shape attributes agy with the

three highest correlations and predefined shape attributes.

ag 1 g2 at 3
At dark/bright eyes 0.162 0.0937 0.3593
ambeard shadow -0.1374 0.2143 0.0798
At Jight /dark eyebrows | 0.3364 | 0.3046 | -0.6342
At male/female -0.0012 | -0.3391 | 0.0361

Table 6.2: Comparison between the calculated texture attributes a¢ x with the

three highest correlations and predefined texture attributes.

of attribute vectors with the three largest correlations (for a visualization of

these three vector pairs see Figure 6.2).

The sign of the rating values has to be treated like the labels [; used in the
attribute mapping function (see Equation (6.2) in Section 6.1). In the follow-
ing, the first index element k; of an attribute vector aq k, /k, denotes how a face
is altered if the vector is subtracted, and the second element ko how a facial
appearance is modified if the vector is added. Consider ag round/angular s a de-
fined attribute vector, so that the addition modifies the overall shape towards
an angular shape and the subtraction towards a round facial shape, and let

as1 be the estimated attribute vector for shape with the highest correlation.

Tables 6.1 and 6.2 show that the automatic exploration of the correlation
between shape and texture is consistent with the renderings (see Section 6.5)
and further illustrates more relations. Concerning the second pair of estimated
attributes (as2 for shape and a2 for texture, second columns in Figures 6.1
and 6.2), the highest ratings are consistent with the visual appearance. The
method indicates a correlation between gender and the shape of the nose. A

beard shadow seems to be related to a concave nose as well as thick eyebrows.
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It also shows that these findings are related to a male appearance. Also, a
convex nose and thin eyebrows occur apparently more often among females.
The correlation of the third pair of attribute vectors (as g for shape and ag 3
for texture in Figure 6.1 and 6.2) suggests that the width of the eyes is related
to the brightness of the eyebrows, as well as to the brightness of the eyes. That

is also consistent with the visualization in Figure 6.2.

6.7 CCA Prediction of Occluded Areas

If predictions from visible to invisible structures of faces are based on corre-
lation, and CCA with the Monte-Carlo simulation helps to identify reliable
correlations and avoid random ones, it could be expected that the CCA com-
ponents provide better predictions than standard PCA, as used, for example
in Chapter 4 and 5.

To evaluate the CCA prediction, several correlations between facial parts are
considered in several experiments: between frontal and side, between the entire
face and eyes, between the entire face and mouth, between upper and lower
part, shape and texture. Therefore, a PCA for each facial part was calculated
and used by CCA to find pairs of correlated attribute vectors in the subspaces
spanned by 35 principal components. Like the inference technique applied
in the perception experiments in Chapter 5, a multivariate linear regression
(MLR [Ize75]) is used to infer from one facial part to the other. For example,
the linear coefficients of the upper part (with respect to its PCA basis vectors)
can be predicted from the linear coefficients of the lower part.

Here, the approach for comparing PCA with CCA is to build linear com-
binations of the estimated attribute vectors to generate new faces. Only the
sets of attribute vectors with a greater correlation coefficient than the largest
correlation coefficient of the permuted datasets (see Section 6.5) are used. The
range for CCA in the considered cases are between 8 and 13 pairs (depending
on the facial modalities used). Since the attribute vectors are not orthogonal
pairwise, a linear combination of attribute vectors is not directly possible. In-
stead, an attribute mapping function is applied to calculate the labels for all
pairs of face parts. Then MLR is trained to map the labels from one part to

those of the other. For prediction of unknown data, the mapping gives labels
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for the invisible part, and a pseudoinverse calculation defines the coefficients of
the non-orthogonal attribute vectors that reproduce these target labels up to a
minimal least squares error. To cope with the limited amount of 200 samples,
a leave-one-out strategy is applied for this comparison. Therefore, the MLR
prediction and the 3DMM are trained with 190 samples of the face dataset
and the ten omitted samples are used as input for the prediction. As a result,
20, different models are computed overall to be able to use all 200 samples as

input data for the prediction.

For the illustration of the MLR method, which utilizes estimated attribute
vectors, consider the prediction of the lower part of a face from the upper
half as an example. Two PCA (including 190 samples of the face dataset) are
calculated, one only containing the vertices of the upper part and a complement
for the lower part of the face. With aid of the 3DMM and its dense point-to-
point correspondence, a partial splitting of the input data is straightforward
and vertices of the upper respectively the lower part have to be defined only
for one reference face. Thus, a zero-mean shape vector s; of the dataset is split
into two disjoint shape vectors: s, ; € R¥ with n,, vertices for the upper and
s1; € R¥ with n; vertices for the lower part. Then a PCA is computed on the
split data resulting in the factorized matrix S, = UyW,Vy! for the upper
and S; = UyW,V,? for the lower part. As validated in Section 6.4, 35 principal
components are used for each set, SO ppa. = 35. Afterwards, CCA is applied
to compute kp,q, correlations and the related pairs of attribute vectors ayk
€ R*™ for the upper and ajj € R3 for the lower facial half respectively the
corresponding coordinate vectors ¢, € RPme and ¢, € RPme=. The attribute
vectors characterizing the eight largest correlations are used for prediction,
thus k.. = 8.

To infer the lower facial part from the upper part, the labels for the face
space representation of the training dataset are computed by projecting the 190
shape vectors of the upper part s, ; onto the attribute vectors a, x calculated
by CCA. This is done by using the Mahalanobis based attribute mapping
function fy; (Equation (6.35)):

lu,k - <Su; au,k>M - SuTCu_lau,lp (642)
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Here, Sy = (Su1 .-+ Sum) € R¥X™ is a matrix of m = 190 zero-mean shape
vectors including only the vertices of the upper facial part, as aforementioned,
and C, ! € R¥*3 the inverse of the correlation matrix for the upper part.
l,x € R™ is a vector containing the labels [, ; , with ¢ € {1, ..., m} for all upper
shape samples regarding the k-th correlation.

By applying the PCA factorized matrix S, = U,W,V,” and C, ' =
m - Ug(Wy )" 'U,T (cf. Equation (2.23)), Equation (6.42) is:

lu,k = (\/E . Vu>cu,k- (643)

A matrix with the attribute vectors as columns is formed to compute the
label vectors 1, for several correlations simultaneously, and Equation (6.42)

can be written as

Ly = (Su, Au)ir = Su’ Cu 'A, (6.44)
with Ay = (Au1 -+ Aukpe) € R¥*Fmer and
lu,l,l e lu,l,k’mam
A (e W .| ermbnes (6.45)
lu,m,l Tt lu,m,k‘max

Here, 1, is the scalar label of the attribute mapping function (see Section
6.1 and Section 6.3) for the i-th sample shape vector s,; of the upper part
regarding the k-th correlation represented by ay k. Similar to Equation (6.43),

it can be transformed to

L, = (Vm - Vu)Ky (6.46)

where Ky = (Cu1-.. Cukpnay) € RPmazXFmaz ig a matrix with the coordinate

vectors as columns.

For the lower part, the labels 1, x are computed in the same way

Lix = (S, aix)mr = (Vm - Vi)erx (6.47)

with the concatenated m shape vectors of the lower part Sy = (sy1... Sim),
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Vj from the matrix factorization of Sy, the attribute vector ajx for the k-th
correlation, and respectively its coordinates cjx. Then the matrix equivalent

for rating the k,,., largest correlations is
L] = <S], A1>M = (\/ﬁ . Vl)Kl (648)

with A] = (al,l C al,kmax) € R3mxkmaz and Kl = (Cl,l Ce. clykmax> < RPmaz X kmaz
the related coordinate vector matrix for the attribute vectors ajx of the lower

part.

Note that the position of the lower shape vectors s;; in S; and the related
upper shape vectors su; in S, are consistent. Thus, the relation between
labels in both matrices L, and L, is established as described in Section 6.2,
and m - Kpq, pairs of label values (1, ;x, (1 %) are present. This information is
used to calculate a linear regression model for each correlation. As a result,
Emae prediction functions gx(lusampie) = lipredr are computed, which map
a label [l sqmpie,r for the k-th correlation of an upper shape vector sample
to the predicted unknown lower part label [; pycqr. As prediction functions,
the regression lines calculated from the 190 pairs of label values for every

correlation are used here.

To estimate the labels of the lower part, the functions gi(ly sampie1) tO
Gheas (Lu,sample kman ) @€ applied. The result is the predicted label vector 1j prea =
(lipredt - - - Upredkme, )’ € RFmaz Afterwards, the coordinates ¢jprea of the un-
known shape vector for the lower part can be estimated by computing the

pseudoinverse of K.

Therefore, let s; be a shape vector containing only the vertices of the lower

part and c; be the coordinate vector of s;, then
11 = <A1, S]>M = Kchl (649)

computes the labels I} = (I;;...0,,,.)" € Rfmer for s regarding the Koz
correlations represented by its coordinates in Kj. In case of predicting the
lower part, the labels 1 preqa and K;j are already known and the coordinates

Ciprea are sought, the equation can be transformed to

Clpred = (KIT)Jrll,pred- (650)
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The shape vector prediction sjpreqa can be computed by weighting the coordi-
nates with o;; and then applying the result on the principal components (see
Equation (2.11) and Section 2.1):

Pmax

Slpred = Z(Cz,pred,jffz,j)ul,j = Ujdiag(01,;)c1pred- (6.51)

J=1

To summarize the MLR approach, the unknown shape vector s prea 0f the
lower facial part can be estimated from the known upper shape vector sy sample
by computing the labels ,, sampie r With the Mahalanobis dot product (see Sec-
tion 3.1). Then these labels are used to predict the corresponding lower part
labels U prear by applying the prediction functions gi(ly samplek) = lipredr With
k= 1,.. knew Afterwards, the coordinates cjprea 0Of the shape vector are
estimated by multiplying the pseudoinverse of K, with the predicted labels
(Equation (6.50)). By using the coeflicients o preq = diag(o; ;)ci prea and the
principal components Uy of the PCA for the lower part, the lower shape vector
S1,pred is predicted.

Figure 6.6 illustrates the results of the presented approach. For the CCA
prediction, the eight largest correlations (k.. = 8) are used, and the number
of principal components p,,q. is 35. Since the upper and lower facial vectors
are disjoint, they can be easily merged into one entire face for visualization.
The texture for both parts is from the original 3D scan. In addition, predic-
tions computed by the PCA-based method LinVert (see Section 5.2.1 for more

details) are also shown in Figure 6.6.

For evaluating the capabilities of the CCA prediction, several perceptual
experiments were conducted. Overall, twelve experiments with different tasks
were run. In one experimental setup, the ground truth of the whole face and
the prediction of the lower part by CCA and by the PCA-based method Lin-
Vert were shown. The task was to rate which of the predictions were closer to
the ground truth. In another setup, only two images were shown; for instance,
the upper part of the face completed with the prediction of the lower part
by CCA and by the PCA-based method. The task was here to rate which
prediction was more plausible, without knowing the ground truth. These two
tasks were run with prediction of the eye (including eyes and eyebrows) and

mouth area from the remaining face regions as well as front view to side view.
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Veve e

a) ground truth ) CCA prediction ) LinVert prediction
d) ground truth ) CCA prediction ) LinVert prediction
g) ground truth ) CCA prediction ) LinVert prediction

Figure 6.6: Prediction of lower facial part with CCA and PCA: The figure
illustrates the prediction of the lower facial part with the CCA-based method
presented in Section 6.7 as well as the PCA-based approach LinVert (Section
5.2.1). The first two columns depict the original face scan in a front and a side
view. (b), (e) and (h) show the prediction of the lower part from the upper
facial part with the CCA-based prediction. Therefore, the upper facial shape
is used as input for the prediction. The resulting lower part is merged for
visualization with the upper part into one 3D Model. As parameters, the eight
largest correlations and 35 principal components are used in this example.
The texture for both parts is the unmodified texture from the original scan.
In the last two rows, the prediction of the lower part with LinVert is presented.
Both parts are merged again into one 3D model, and the number of principal

components is 35.



146

The parameters (number of correlation k., and number of principal compo-
nents ppqq) were also adjusted and tested. Additionally, the experiments were
modified by adding the PCA-based prediction method LinVert from Chapter
5.

No trends towards preferences to any of the prediction methods were found
in the pilot studies (three to four participants each, 200 trials). Since it is diffi-
cult to establish the absence of an effect experimentally, further measurements
with more participants made little sense. Still at this point, it can be concluded
that CCA is unlikely to be superior to the PCA-based methods in this setting.
On the positive side, PCA seems to capture correlations sufficiently and is not

affected by spurious random correlations in the limited training set.

6.8 Conclusion

The results presented in this chapter shed new light on the chances and limita-
tions of inferences from visible to invisible structures in faces, both by the HVS
and by computer graphics or vision approaches. The most highly correlated
dimensions in the face space of shapes and textures built from disjoint facial
modalities are identified. The Monte-Carlo simulation (Section 6.4) helped
eliminating random correlations and finding the true ones in the dataset by
reducing the CCA problem to an appropriate, lower dimensional subspace.

A substantial improvement of the predictive power of a model-based on
CCA, as opposed to PCA, was expected and it was hoped that it was possible
to verify this in an experiment comparing the computational predictions with
the expectations of human observers. It is slightly disappointing, yet not less
instructive and worth reporting, to find that no improvement could be found:
Even though simple, a PCA-based prediction tends to rely both on true and on
spurious correlations, the result looks just as similar to the ground truth, and
just as plausible to human observers. This corroborates the findings of Chapter
5 indicating human expectation being in line with a PCA-based prediction in
the case of guessing profiles from front views of faces. Also, the PCA-based
estimation of facial data from degraded images (facial occlusion and defocus)
in Chapter 4 seems to be established on reliable assumptions.

Given random pairs of high-dimensional sample vectors (s;, t;), it is always
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possible to find directions that are correlated highly. This is what the Monte-
Carlo simulation (Section 6.4) quantified. However, it is unlikely to obtain
the same randomly correlated directions in different training sets, so it could
not be concluded that the HVS is more like PCA than CCA. Instead, the
differences between PCA-based prediction, CCA-based prediction, human ex-
pectation and ground truth seem to be equally far in different directions and

within the range of residual unpredictability of faces.
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Chapter 7

A Forensic Application: The
INBEKI-Project

A major challenge for the application of face recognition and detection algo-
rithms in forensic tasks is the strongly varying picture quality in the source
material, ranging from well-lit high-resolution digital images to noisy and shaky
video footage. To cope with these problems, the methods presented in Chapter
4 can help handling degraded facial images for this field of application.
Furthermore, with the findings of Chapter 5 and 6, which have shown that
the computed faces by the 3DMM are in line with human expectation and
based on reliable correlations, an application of the algorithms presented in
this thesis can be helpful and supportive for the work of law enforcement of-
ficers, because the reconstructions tend not to lead to wrong cues or mislead
the investigation. Especially in the investigation of criminal offenses, the ap-

proaches could help to tackle crimes faster and more efficiently.

For that reason, the algorithms are applied to a forensic application scenario
as part of the joint project Interaction-triggered image data analysis to com-
bat child pornography (German abbreviation INBEKI - Interaktionsgesteuerte
Bilddatenanalyse zur Bekdmpfung von Kinderpornografie) of the Federal Min-
istry of Education and Research (BMBF).

The following chapter presents an overview of the project and its main goals.
Additionally, the incorporation of methods proposed in the previous chapters
are outlined and algorithms that were developed further within the project are

described in this chapter.

149
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7.1 Motivation and Overview

Due to the alarming increase of registered cases of child abuse worldwide, an
improvement of child protection and safety gain in importance and show the
necessity of preventative and repressive measures. However, law enforcement
authorities such as Land and Federal Offices of Criminal Investigations or po-
lice departments are confronted with an enormous amount of seized image and
video data. As a manual and systematically investigation is nearly impossible,
automatic and supportive methods are needed to guide the investigative work

of the police and to find cross references in large databases.

The essential goal of the INBEKI project was to combat child pornography
not only as child abuse but also as an international form of well-organized
crime. Therefore, the most effective prevention is a fast investigation and an
increased pressure of tracing offenders to avoid further criminal offenses and to
reduce the production and consumption of such material. To provide a probat
framework in respect of tracing delinquents and identification of victims in
large image and video archives, the development of a holistic system solution

was the priority of the INBEKI project.

Based on this objective, the basic technical principles were created in the
project INBEKI to assist federal law enforcement authorities in the criminal
prosecution of child pornography and related abuse offenses. It was particularly
important to assign image data to individuals or crime scenes automatically.
For that purpose, algorithms were designed, developed and tested to recognize,

detect or assign individuals, objects or scenes from digital input data.

Besides the University of Siegen, another four coequal project partners were
involved in the INBEKI project: rola Security Solutions GmbH, the Ger-
man Research Center for Artificial Intelligence (German abbreviation DFKI
- Deutsches Forschungszentrum fiir Kiinstliche Intelligenz), L1 Identity Solu-
tions (now Safran Morpho), and the State Office of Criminal Investigations of
North Rhine-Westphalia. The subject areas of the DFKI were in the field of
scene recognition and detection, whereas rola Security Solutions GmbH was
responsible for designing a graphical user interface and for managing the con-
nection between the different software solutions of the project partners. Face

recognition and detection of frontal posed faces in lesser degraded input im-
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ages were addressed by L1 Identify Solutions. The important role of the State
Office of Criminal Investigations of North Rhine-Westphalia (LKA NRW) was
guidance at various stages to analyze the requirements and to specify the exact
task definition for the whole system. Furthermore, an extensive evaluation of
the software in different intermediate stages and the final solution on real cases
were in the field of duties of the State Office.

The projects of the University of Siegen with reference to this thesis were
related to handling and reconstructing degraded facial images and video se-
quences due to acquisition under unfavorable image conditions. Examples are
facial images or videos with non-frontal poses, bad lighting conditions, low res-
olution, and noisy or blurred images. To cope with these problems, the 3DMM
(Chapter 2) built the basis since its analysis-by-synthesis approach can han-
dle non-frontal head positions and uncommon lighting situations due to the
incorporation of prior knowledge about human faces. For other image degra-
dation factors, such as facial occlusions, noisy, and blurred or low-resolution
images the algorithms presented in Chapter 4 were applied. The findings of
Chapter 5 and 6 ensure that the added information and details by the 3DMM

are supportive for the officers and do unlikely lead to wrong cues.

To combine as much information as possible from image sequences, the
ability of the 3DMM to reconstruct 3D faces from multiple views was used
as well. However, the manual selection of initial feature points for the recon-
struction algorithm is a drawback because it requires a lot of time if several
image frames are present. That is why a feature tracking method was devel-
oped for the project to avoid a manual selection of facial landmarks in every
frame. The principle of multi-view reconstruction and the tracking algorithm

are presented in Section 7.3.

Furthermore, an interface was specified and implemented which connects the
methods based on the 3SDMM with the face recognition software of .1 Identity
Solution. This connection was especially crucial since the 3SDMM serves as a
preprocessing step for face recognition by rendering the 3D reconstruction in
frontal pose with consistent illumination and compensated image degrading
factors. Based on these rendered facial images, LL1’s commercial face recogni-
tion system tries to match the pictured individual with known faces from a

database of missing or otherwise for investigations relevant persons.



152

Another project of the University of Siegen dealt with the modeling of aging,
for example if pictures of one person with large age differences are present.
Children’s faces in the relevant age group (preschool and primary school age)
were not included in the original 3DMM and so an extension with new 3D data
was necessary. Note that this thesis is focused on reconstruction of degraded
input material and the age handling is not treated in detail here. For an
overview of this idea see [SSSBO7].

7.2 Model-based Estimation of Details

This section summarizes how the in this thesis presented findings fit the re-
quirements of the INBEKI project. As mentioned in the previous section, a
primary object was the estimation of details corrupted by image degradation
factors, by using the prior knowledge of the 3DMM.

Since the influences of several image parameters, such as noise, resolution,
and blur, on the reconstruction quality of the 3DMM were studied in Section
4.3, the results regarding image size and noise compensation can be applied in
the project directly: The preprocessing filter pyramid has been integrated to
handle image noise, low-resolution images are sampled up to a minimum size
of 400x400 pixels for the face region and high-resolution images are reduced to
increase the computational complexity.

Another frequently occurring problem for the 3D reconstruction of faces re-
garding the project are occluded regions. Examples are glasses, hair or other
objects covering parts of the face. Without a specific handling of such occlu-
sions the 3DMM generates erroneous or artifact-prone facial models. Here, the
extension of the 3DMM presented in Section 4.6 is used to reconstruct the not
visible regions. Therefore, occlusions must be marked manually in the image
and passed as additional information to the algorithm, so that the marked
areas can be ignored by the error function. The resulting 3D reconstruction is
a non-occluded entire face. To increase the quality of the 3D model, the vis-
ible texture of the input image is extracted as described in Section 2.2.3. To
estimate the texture, the hidden regions are restored with texture details from
the visible areas or with color information calculated by the Morphable Model.

Visible seams along the boundary between extracted and reconstructed areas
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are suppressed as presented in Section 4.6.

Blurred and low-resolution input images are another common problem within
the scope of the INBEKI project. The method developed in Chapter 4 is
used to estimate the missing details due to image blur. The face hallucina-
tion of blurred regions is implemented by modeling defocus in the analysis-
by-synthesis approach. The point spread function of the blur is estimated
and incorporated directly in the 3D reconstruction algorithm of the 3DMM.
Therefore, the difference between the artificially blurred and the non-blurred
reconstruction is computed in each step in which the algorithm calculates an
image error. This difference is used by the error minimization function to
compensate the influence of blurring on the input image. To enhance not only
the estimated texture and shape but also the extracted texture, the difference
described above is utilized as additional information for the texture extraction
algorithm (see Section 4.4.4). As a result, a 3D model is calculated in which
the input blur is compensated both for form and extracted texture. This non-
local component of the reconstruction method is portrayed in detail in Chapter
4. Note that the high-resolution texture transfer is not applied in this project
since the added details exceed the established face space representation of the
3DMM and thus do not ensure plausibility (see Section 4.5).

A requirement for the forensic project was the determination of plausibility
for the 3D reconstructions. The findings of Chapter 5 show that the results of
the 3DMM are in line with human expectations. Furthermore, it is shown that
the HVS relies on a similar mechanism as the Morphable Model. This enables
a utilization of the 3DMM for tracing perpetrators. Even if only a side view
image is present, a front view reconstruction of the 3DMM can be supportive
since it is ensured that the added data are in line with the human expectation

and do not lead to wrong cues.

7.3 Multi-view Reconstruction and Feature Track-
ing
Another goal of the INBEKI project was the 3D reconstruction of faces from

multiple views. The utilization of several images from video sequences or dif-

ferent picture series improves the reconstruction quality of the 3D face model.
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3D reconstruction of front 3D reconstruction of side
view image view image

3D reconstruction of front 3D reconstruction of side

view 1mage view 1mage
Figure 7.1: Single view reconstruction: In the top row, the figure shows two
portraits of the same person acquired from different perspectives. The 3D
reconstruction of the frontal view is presented in two perspectives in the left
column below the first picture. In contrast, the right column shows the recon-
struction of the side view portrait. The input images in the top row are taken
from [PWHR9S|.
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Therefore, the 3DMM is applied simultaneously to multiple image frames,
showing the same individual from different perspectives [BV03]. To take ad-
vantage of multiple views, feature points must be selected for each image used
for the 3D reconstruction algorithm first. Then camera and lighting param-
eters for all perspectives are estimated. In the actual 3D reconstruction, the
image error is minimized in every iteration step for each view consecutively.
This is done by rendering the current face model with the estimated camera
and lighting parameters of the first perspective. Then the image error is mini-
mized for this view. Afterwards, the resulting face model is rendered with the
estimated parameters of the second perspective and the image error is mini-
mized again. Next the information of the subsequent perspective is used and
so on, till the face model is rendered in every perspective. In the following
iteration step, the algorithm starts again with the first perspective [BV03].
Note that multi-view reconstruction can also be applied if multiple images of
the same person originate from different pictures or video sequences since the

lighting and rendering parameters are estimated independently for all views.

Figure 7.1 and 7.2 demonstrate the advantage of multi-view reconstruction
in comparison to single view reconstruction. Figure 7.1 shows portrait im-
ages of one person acquired from two different perspectives and the resulting
3D reconstructions. It is apparent that the calculated reconstruction of the
frontal view (first image in the second row) matches the portrait of the re-
lated perspective (first image in the first row). The side view of the frontal
view reconstruction (first image in the last row) is, as presented in Chapter
5, indeed plausibly for the humans, but only partly consistent with the actual
form (second image in the first row). For instance, consider the nasal shape,
which differs from the real shape. The same applies to the 3D model generated
entirely from the side view image (right column of Figure 7.1). The side view
of the reconstruction is compliant to the side view input image, and the frontal
view is closer to the real shape but not completely correct. This problem can
be significantly reduced by using both frontal and profile view in parallel for 3D
reconstruction. The result of the multi-view reconstruction is shown in Figure
7.2. Due to the simultaneous use of information from both images, the 3D
shape of the face is reconstructed more realistically and conform to all views.

With this method, it is possible to reconstruct heads from video sequences.
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Figure 7.2: Multi-view reconstruction: The first row shows two portraits of the
same person from different perspectives (taken from [PWHR98|). The bottom
row depicts the 3D face reconstruction in two views where both frontal and

side view images are used by the reconstruction algorithm simultaneously.

Another advantage is the improvement of the texture extraction. High reso-
lution texture information can be used from all perspectives to improve the

texture quality of the 3D model.

7.3.1 Tracking of Facial Feature Points

One drawback of multi-view reconstructions of video sequences as described in
the previous section is the necessity of selecting initial feature points in every
frame manually. Thus, if a video sequence with plenty of frames should be used
for the reconstruction, the user must select a lot of feature points (at least five
to seven per frame). To avoid this, boundary conditions can be exploited to
restrict the possible positions of the landmarks from frame to frame. It can be

assumed, for example, that a head moves with linear velocity on the one hand,
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m
Key-Frame 1 Frame 7 Key-Frame 25

Figure 7.3: Example of sequence to track: The figure shows three frames of
a video sequence of 25 images. The first I; and the last (25-th) frame o5 are
selected as key-frames. Only in these two frames feature points are selected
manually. Frame I; shows exemplary that both overall motion of the head and
internal facial motion (here for instance, movement of the eyelids) are present

in the video sequence.

and large jumps of positions respectively high accelerations on the other hand
can be excluded regarding a limited time-frame.

Utilizing these conditions, the selected landmarks can be tracked by the
3DMM, so that a manual selection of feature points is only necessary in key-
frames. In this context key-frames are the images of a video sequence in which
the motion reverses, or where very strong changes, such as change of camera
position or film-cuts, occur.

Figure 7.3 shows three frames of a short video sequence with 25 frames in
total. Initial landmarks have to be selected manually in the images marked as
key-frames only. Key-frames are the first and the last frame in this example.
Starting with the key-frames, the algorithm gradually increases the number
of used images. The exact procedure of the algorithm is presented in the
following:

Let frame I; and I,, be key-frames of a video sequence with n consecutive
frames and landmarks are selected for both frames manually. Then the 3D
reconstructions of frame /; and [,, are computed by the SDMM. Subsequently,
the motion curve of the facial feature points can be estimated due to the
established correspondence by the 3SDMM. Therefore, it is assumed that the
camera is stationary and only the tracked face is in motion. This assumption
does not restrict the generality of this approach since the 3DMM tracking
focuses on the face and not on the background. In sequences where the face is

stationary and the camera moves, the camera motion can be interpreted as a
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(a) linear interpolation (b) spherical linear interpolation

Figure 7.4: Comparison of linear interpolation (Lerp) and spherical linear
interpolation (Slerp, [Sho85]): Lerp interpolates along a straight line between

¢1 and ¢,, whereas Slerp interpolates along a unit-radius great circle arc.

moving object with stationary camera.

Now, all landmarks of frame I, and I,,_; can be estimated by means of
3D interpolation from the facial feature points of frame I; and I,,. Therefore,
the calculated 3D orientation of the face with respect to the camera position
of I and I, is used. The position of the face in 3D space was estimated by
the Morphable Model and is represented as translation and rotation along the
coordinate axis with the angles 7, ¢ and 6. These angles of both frames are
converted to quaternions [Zha97| ¢; and ¢, for a more efficient and precise
description of rotations. Quaternions are a number system which extends
the real numbers like complex numbers and enables a mathematically elegant
description of the 3D Euclidean space, especially in the context of rotations
|Zha97|. To estimate the quaternions, and thus the 3D rotation angles of the

face, a spherical linear interpolation (Slerp) [Sho85| for frame I, and I,,_; is

used:
92 = <S’l;lz(;(—at))a> qo + <ZZZ§(2?) dn (7 1)
d = (209 o + (220202 g, (7:2)

Here, ¢» and ¢,_; are the interpolated quaternions of frame Iy respectively
I,_1 and « is the angle between ¢; and ¢,. « can be derived easily from
the quaternions. The parameter ¢ (0 < t < 1) specifies the position of the
quaternion to be interpolated on the arc between ¢; and ¢,, with t = 0 for ¢

and t = 1 for ¢,. For interpolation of ¢ and ¢, 1, t = ﬁ
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Figure 7.4 shows the difference of linear interpolation and spherical linear
interpolation. Linear interpolation estimates intermediate quaternions along a
straight line and thus ignores the natural geometry of the quaternion rotation
space [Sho85]| resulting in non-equally spaced positions if reconverted to rota-
tion angles. In contrast, Slerp interpolates along the unit-radius great circle
arc between quaternions (right illustration in Figure 7.4) and thereby equidis-
tant rotation angles. Slerp is used only for interpolation of quaternions and
the other parameters for I, and I,,_1, such as focal length and translation are
linearly interpolated with the same weight ¢ = ﬁ Now, the 3D position and
orientation of the face in frame I, and I,,_; is estimated and the position of all
landmarks selected in I; and I,, can be transferred and rendered to calculate
the 2D locations.

To improve the position of the estimated landmarks a multi-view recon-
struction, with I; and I, and another with frame I,, and I,,_;, are computed.
Instead of using the average head of the 3SDMM, the previously calculated 3D
faces of I; and I,, are used as starting head for the 3D reconstructions. After
this step, the positions of the landmarks in I5 and I,,_; are updated. Now, all

landmarks of frame Iy, I, I,,_1 and I, are known.

In the next step, these feature points are used to estimate the landmarks
of frame I3 and I, o by using the method described above. With this ap-
proach the accuracy of the 3D model increases step by step. The calculation
is repeated till the two indices of the landmark estimation overlap. Now, the
estimation of feature points for every frame between the key- frame I; and I,
is completed and a full multi-view reconstruction including all frames can be

computed.

In Figure 7.5, a comparison between the described tracking algorithm and
the Kanade-Lucas-Tomasi (KLT-Tracker) feature tracker [TK91, ST94| is
shown. The KLT-Tracker is a widely-used tracking method based on a re-
duced calculation of the optical flow. Instead of computing the optical flow
for all pixels, the Lucas-Kanade approach uses 3x3 patches around specified
points in the image and assumes that these nine points have the same motion.
The image gradients for the sparse optical flow approach are obtained by ap-
plying a least square fit method. Since the optical flow calculation is accurate

only for small displacements between consecutive images, an image pyramid is
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- 3DMM
. Tracking

KLT

Key-Frame 15

Frame 15

Figure 7.5: Tracking results of selected landmarks: The left image depicts the
initial condition, the first key-frame with manually selected feature points. In
the second column, the results of the proposed tracker based on the Morphable
Model (above) are shown in comparison to the results of the KLT tracker
(below).

used to cope with this drawback. Thus, by increasing the pyramid levels, small

motions are removed and larger motions are represented by small motions.

As seen in the illustration (Figure 7.5), the KLT algorithm is not able to
track the manually selected feature points correctly. However, the herein de-
scribed algorithm based on the SDMM can track the chosen points accurately.
Another advantage of the method presented here is the handling of hidden
points. For example, the selected landmark of the right earlobe in the first
frame is completely occluded in frame I 5 (see Figure 7.5). Since the algo-
rithm is based on a 3D model and the estimation of movement is computed in

a 3D space, completely occluded landmarks can also be tracked.
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7.4 Demonstrator Software

A major task of the INBEKI project was the integration of the extended 3SDMM
into the demonstrator software. This could be divided into two parts: (1) def-
inition and implementation of a software interface between the 3D reconstruc-
tion part and the face recognition software from L1, and (2) implementation
of a landmark editor as graphical user interface (GUI) responsible for manual
selection of facial feature points and for marking occluded regions in the input
image.

The first task involved definition, implementation and further development
of the current interface, which based on definitions specified in a former coop-
eration with L1, and encapsulation of the developed software in modules by
using a Dynamic-link library (DLL).

The software library for the algorithms based on the SDMM was adapted in
many regards within the INBEKI project. In addition to the implementation
of the projects described in Section 7.2 and 7.3, far more profound changes
were necessary to fit the requirements of the project. A new demand was the
reconstruction of faces in a continuous service and not as individual calls to
the overall software solution as previously. Therefore, the routines for error
handling and the memory management were completely redesigned. Only with
the help of these modifications, a sequential processing of several hundred input

images as well as a parallel processing of various views are feasible at all.

Furthermore, the connection of the 3SDMM interface was adapted to fit the
needs of other modules from L1 Identity Solution and INBEKI. Again, the
novel supported features, such as sequential processing of image sequences,

were crucial for these modifications.

The information gained during the fitting algorithm are returned in addition
to the 3D reconstruction to facilitate the further processing of images in other
modules, independent from the results of the 3DMM. Inter alia, this includes
the 2D position of the mouth, eyes, nose, and other optional facial features in
the input image on request.

In addition, a visibility check based on a depth buffer test can be applied

on the results to determine if facial features are visible in the image. The

subsequent face recognition modules perform significantly better by using this
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Figure 7.6: Occlusion marking with the landmark editor: The landmark editor
provides an option to mark regions in the input image (left half of the applica-
tion), which cover facial parts and do not have any relation to the face. These
regions are excluded in the later 3D reconstruction and therefore have no effect
on the estimated shape and texture. In the right half of the application, the
user must specify a pose, which is closest to the pose in the image. Original

input image (left) taken from [Niirl7].

additional information.

The 3DMM requires for initialization at least five manually selected facial
feature points (called landmarks). Therefore, a graphical user interface was
implemented and included in the demonstrator software. For reconstruction
of occluded regions (caused by objects or body parts in front of the face), a
manual definition of non-visible face regions had to be enabled in the GUI as
well. Figures 7.6 and 7.7 show the two states of the implemented GUI.

The landmark editor was developed initially as a small, stand-alone test
environment for initializing the 3SDMM reconstruction and to provide the co-
operation partners an easy way for different tests. During the project the
application was enhanced to include new functions and integrated as an addi-

tional module into the complete system.
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Figure 7.7: Feature point selection with the landmark editor: To start the 3D
reconstruction with optimal starting parameters, the landmark editor guides
the user through the manual selection of initial facial feature points, after

choosing a matching pose. Original input image (left) taken from [Niirl7].

Since an automatic detection is still very difficult (see [Brel0]), the module
assumes the task of selecting initial feature points for the 3D reconstruction in
the final demonstrator software (Figure 7.7).

Besides the manual selection of feature points, the user can specify regions,
which should be ignored during the 3D reconstruction process. This is useful if
a face is partially occluded. Examples for such occlusions are scarfs or collars
covering parts of the neck and face, and hats covering parts of the upper
face (in Figure 7.6 parts of the face are covered by a hat and a hand). The
marked areas are treated differently than the rest of the image during the 3D
reconstruction process, e.g. no texture extraction is applied to these regions.
For more details on occlusion handling see Section 4.6. Note that it is not
necessary to declare a feature point as invisible. Even if regions are covered by
an object (for example the left labial angle in Figure 7.6), it should be possible
for a human user to determine the approximate location of the facial feature

in the input image. This additional information alone could result in improved
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3D reconstructions.

7.5 Summary of Results

In this chapter the joint project INBEKI and its goals have been presented.
Furthermore, the project has shown how the Morphable Model and the meth-
ods presented in this thesis can be applied to forensic application scenarios.

In summary, the following results were achieved in this project regarding
3D face reconstruction with the Morphable Model:

Handling of occlusions, blur, noise, and low-resolution images:
The evaluation and exploration of image parameters and their effect on the
reconstruction quality of the 3SDMM presented in Section 4.3 were applied to
the INBEKI project. For example, the influence of noise on the reconstruction
quality can be reduced by filtering the noisy input images with a low-pass
filter. To avoid specifying a rough guess of the noise level manually, a filter
which increases its cut-off frequency step by step is incorporated in the SDMM
as presented in Section 4.3. The reconstruction quality of low-resolution input
images can be optimized by upsampling the image. In addition, the findings
of Chapter 4 are integrated in the final software. Thus, partially occluded and
defocused images can be reconstructed with the algorithms presented in this
thesis. Details and results of this methods are presented explicitly in Chapter
4.

Handling of motion: Multiple frames of video sequences, showing the
same person, can be used to enhance the quality of 3D reconstructions. Since
facial feature points had to be defined for the 3SDMM manually in each frame,
an approach was developed, which tracks the defined landmarks between all
frames used for 3D reconstruction (Section 7.3). Now, feature points must
be specified only in a few key-frames, but a multi-view reconstruction of all
frames is computed nevertheless.

Integration into the demonstrator software: The algorithms are adapt-
ed to the specifications and requirements of the application scenario and inte-
grated into the software provided to the State Office of Criminal Investigations.
Furthermore, a user interface for selecting the initial feature points and mark-

ing occluded facial areas was implemented (Section 7.4).
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As a practical benefit, the evaluation by the State Office of Criminal In-
vestigations in Diisseldorf has shown that the software solution developed in
cooperation with all partners has a real added value concerning the prosecu-
tion of offenses based on child pornography. Now the State Office can work
with the standalone software to tackle these crimes faster and more efficiently.

The contributions presented in this thesis show that the 3DMM can sup-
port commercial 2D face recognition systems, such as the solution from L1, in
situations, when the input image differs from ideal pose and illumination and
thus reach their limit. The necessity of manually selected feature points as an
initialization is a drawback of this solution. However, reliable and plausible
3D reconstructions are more crucial in the context of INBEKI than an auto-
matic processing of input images. Thus, this drawback is of lesser importance.
Furthermore, there are still some situations when the extended 3DMM cannot
be applied. That is the case if images with very uncommon head poses and

with extremely poor image quality are used as input data.



166



Chapter 8
Conclusion and Future Work

In the preceding chapters of this thesis, approaches have been presented il-
lustrating the challenges of robust reconstructions of human faces based on a
3D Morphable Model regardless of the quality of the input data. Therefore,
degrading factors affecting the image quality have been explored and solutions
for compensating these influences have been developed and implemented. Be-
yond that, human expectations have been studied and models representing the
inference of unknown facial information by the HVS have been formulated and
validated with psycho-physical experiments to support the rating of quality
and plausibility of the reconstructed 3D faces. To incorporate findings gained
from these perceptual experiments, correlations between different facial modal-
ities have been exploited to improve the calculation of 3D models concerning

the inference of unknown information.

More precisely, Chapter 4 has focused on studying common image degrada-
tion parameters and their influence on the reconstruction quality of the 3SDMM
as basis for handling these factors in the reconstruction process. Their effects
on the reconstruction quality have been evaluated in this chapter first. Then
methods for suppressing the influence successfully have been presented. One
of these parameters has been image blur. Thus, this chapter has dealt with
reducing the impact of blurred input images on the reconstruction process
and in that way enhancing the calculated shape and texture. A newly devel-
oped algorithm for incorporating non-local rendering effects, such as blur, into
the analysis-by-synthesis approach of the 3SDMM has been presented. This

method enables the reversion of blur resulting in deblurred input data. Hence,
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better reconstruction quality regarding estimated shape and texture has been
achieved. In addition, a model-based deblurring of the original image can be
computed by projecting the high-resolution details from the estimated 3D face
model into the 2D image. While this approach already provides substantial
enhancements to blurred input images, the maximum level of detail for recon-
struction cannot go beyond details given by the 3DMM. To cope with this
limitation, the deblurring algorithm has been further extended by adding high

spatial frequencies learned from a high-resolution database.

A different image parameter has been investigated more specifically in Chap-
ter 4: namely partial occlusions of face regions, for instance, caused by sun-
glasses, hats, scarfs, or beards. Two options have been presented to handle
occlusions and calculate the unknown texture: fill in with estimated data of
the 3DMM, or mirroring the extracted texture by exploiting prior knowledge
established by the model. Furthermore, perceptible transitions between the
restored and extracted texture can be suppressed by applying Poisson image
editing.

Chapter 4 has shown that the 3DMM is capable of using the incorporated
class-specific knowledge successfully to infer information which is not visible in
the input data. This property can be used to gain information of how the HVS
models inference tasks and fills in missing information which goes beyond the
details humans obtain from their senses directly. Hence, Chapter 5 has focused
on modeling the way the HVS infers depth from retinal images of faces. The
findings help to understand the principles of human vision and can be used to
evaluate the plausibility and quality of 3D reconstructions. Therefore, several
theses have been validated or discarded through perceptual experiments. The
general findings regarding the 3D shape reconstruction algorithm are that,
given the frontal view, human observers consider the reconstructed profile as

equally plausible as the ground truth.

However, more interesting and informative are the conclusions which can
be drawn about the HVS: Humans are able to use information from frontal
images to make inferences on the side views and this decision is more than
a constant safe guess. Moreover, the data can be explained entirely by the
hypothesis that humans rely on a linear face model, which may be represented

explicitly or implicitly in the neural structures and mechanisms. There is no
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evidence for the usage of a more sophisticated model of faces or of cues such

as shading.

While both the HVS and the preceding algorithms rely on correlations,
these are implicit and difficult to specify. Thus, Chapter 6 has presented a
method to identify and visualize the most reliable correlations using CCA
on 3D face models. Besides the calculation of correlations between different
facial modalities, the algorithm has been evaluated and compared with PCA-
based approaches of the 3DMM in tasks of filling in missing information. No
evidence has been found that CCA is superior for this task, which means that
PCA captures correlations sufficiently and is not affected by spurious random

correlations in the limited dataset.

Since image degradation is a common problem in the investigation of crim-
inal offenses, Chapter 7 has applied the findings of this thesis to a forensic
application scenario as part of the joint project INBEKI. Furthermore, Chap-
ter 5 has shown that the reconstructions of the 3DMM are in line with human
expectation and do not lead to wrong cues. Thus, an application of the 3DMM
to scenarios like the one addressed in the INBEKI project can be helpful and
supportive. Therefore, Chapter 7 has portrayed the goals and motivation of
the project and has presented how the developed algorithms and results can
be adapted the requirements of INBEKI. Furthermore, it has been shown that
the usage of multiple images from video sequences enhances the quality of 3D
reconstructions of the 3DMM. To avoid the manual selection of initial feature
points, a new method capable of tracking the specified landmarks has been
developed within the scope of the INBEKI project. With the presented ap-
proach, features must be specified only in a few key-frames and not in every
picture of the sequence. Besides the approaches relevant for this thesis, other

sub-projects of INBEKI have been summarized briefly in Chapter 7.

The contributions presented in this thesis may open further developments.
As aforementioned, the first part has focused on improving the robustness
regarding common image degradations. However, initial parameters such as
feature points or occlusion masks must be selected manually, since an auto-
matic initialization has not been in focus. Thus, future investigations should
concentrate on how the enhancements can aid and improve algorithms to auto-

mate the initialization process even for degraded images. This addition could
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involve automatic detection of facial feature points or occlusions, for example.

The second part of this work has concentrated on correlations in faces and
how inferences of unknown regions could be modeled algorithmically as well as
mentally. However, future experiments along these lines should help to shed
more light on the representations and mechanisms of the HVS. The findings
in this work has taken a step in this direction by discarding several potential

models and providing solid evidence for a linear face model.



Appendix A

Calculation of Significance

In the pairwise selection task (presented in Chapter 5) participants make a
binary decision in each trial. Consider one of the 10 different pairs (A, B)
of stimulus types A, B € {groundtruth, average, random, LinVert, LinPix}.
For each participant, there are 20 = 200/10 trials with the mutual exclusive
stimulus pair (A, B). Pooled over all participants, let ns be the number of
trials where A was selected, and np the trials with B, so n = 20 - nparticipants =
na+ng.

The significance level of a result n 4, ng is measured with respect to the null
hypothesis Hy that each trial is a yes/no experiment (Bernoulli experiment
[Bon13|) with probabilities p4, pp = 0.5. As a consequence, the probability for

the result is given by a binomial distribution

p(na) = ( nn ) Pyt (L—pa)' ™™ = ( nn ) -0.5". (A.1)

In an one-sided binomial test, B is significantly preferred over A for all values
of na < NA critical, Where n4 criticar 18 given by the solution of the following

inequality:

NA, critical

p(Hy) = > p(i) <0.05. (A.2)

i=0
In the Inference Experiment of Section 5.4 (nparticipants = 25, 1 = 20-Nparticipants =
500), (nA, eriticals B, critical) = (232,268), and in the Validation Experiment of
Section 5.5 (nparticipants = 157 n = 300) (nA,criticalanB, critical) = (136a 164) 1s

obtained. Unless stated otherwise, the significance tests are one-sided.
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Inference | Validation

Da Power Power
0.3 1.0 1.0
0.35 1.0 0.9999

0.4 0.9984 0.9735
0.45 | 0.7501 0.5698

Table A.1: Power analysis (1 — ) of individual pairwise significance tests in

the Inference (n = 500, n4 criticar = 232) and Validation Experiment (n = 300,

N A, eritical = 136)

For a given response probability ps and fixed n4, criticar, the power of the

test is

na

power(pa) =1—=1-— Z ( " ) piA e (T—pa)" ™. (A3)

NA=NA, critical+1

Table A.1 summarizes the results of the analysis for both experiments, based
on the values 14, criticar described above.

Note that the line of reasoning never involves multiple testing, even though
this work reports many statistical significance tests, so there is no need to cor-
rect the « errors using methods such as Bonferroni correction. Section 5.6.1 to
5.6.3 report one single, pooled test for each hypothesis, plus additional partial
analyses for individual pairs, but they never rely only on one significant indi-

cator among multiple, mostly non-significant ones to reject a null hypothesis.



Appendix B

Correlation Estimation with
Mahalanobis related Attribute
Mapping

In Section 6.2, a maximization problem is deduced, which estimates the di-
rections of the largest correlation for shape and texture utilizing the attribute
vector concept from Chapter 3. The formulation is based on an attribute

mapping function using the canonical dot product.

Here, the Mahalanobis related dot product (Equation (3.4)) is used instead,
to illustrate the relation with the CCA problem formulation in Equation (6.34)
as stated in Section 6.3. Thus, let fu/(s,ask) = I’ be an attribute mapping
function, which rates a zero-mean shape vector s regarding the facial charac-
teristic k described by the attribute vector agy in terms of the Mahalanobis

related dot product:
fM(S> a-s,k) = <Sa aS,k>M = l;{; (Bl)

To rate m shape vectors s; with ¢ = 1, ..., m regarding the facial attribute

k, the shape matrix S = (s - - - 8;) can be applied:

fM(S;as,k) = <Syas,k>M
= <87 Cs_las,k> (BQ)

T —1 /
— S CS as7k — ]'S,k
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with the covariance matrix Cy = 1/m - SS” = 1/m - U;W*U," (Equation
(2.8)) as defined in Section 2.1, and I, = (I7 ... 1;, ;)" € R™. Here, the labels

l; , are the ratings of every shape s; regarding the attribute k.

The inverse of the correlation matrix is defined in Equation (2.23) as

Cs ' =(1/m-UWS2U ) !

(B.3)
=m - Uy (W)U ”.

Since the attribute vector and the shape vectors are in the same face space (see
Section 3), agx can be described as agx = Usoy, with the coeflicients oy, €
RPmaz and pyq, principal components Ug = (Ug .. . Us p,,., ) (Equation (6.18)).
Applying this, the inverse of Cg, and the factorization of S = UW.V.T
(Equation (2.7)) to Equation (B.2) results in

fu(S,ask) = STCsflas,k
= (UsW V) T'm - U (W)U Uy,
=m - VWU U (W)U U (B.4)
=m - V,W4(W?)
=m- -V, W, lay.

As stated in Section 2.1, Wy = y/m - diag(os;) and o = diag(os;)csx
(Equation (2.15)) with j = 1, ..., Pias- Substituting these definitions in Equa-
tion (B.4) leads to

fu(S,asx) = m - Ve(v/m - diag(o, ;) 'diag(o,,)csx

= — - Vi diag(o, ;) 'diag(o,)cs x B.5
\/_ J (B.5)

\/_ Vcsk k

A Mahalanobis based rating function for texture can be established alike,
with the texture vectors in matrix form T = (t1 ...t,,), its factorization T =
UtWtVtT, an attribute vector a;y for texture illustrating the facial texture

characteristic k, its face space representation ayx = Updiag(oy j)cek, and the
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inverse of the covariance matrix Cy ™! = m - Ug(W¢?) U, :

fM(T, at,k) = (T, at,k>M

(B.6)
= \/E : Vtct,k = l;;,k‘

Now, let a 3D face scan be represented by a pair of shape and texture vectors
(si, t;) with @ = 1,...;m), S respectively T the associated shape and texture

matrices accordingly, and fu/ (T, ¢ max) = 1t the attribute mapping func-

t,max

tion for shape and fu/ (T, ¢ max) = 1 for texture as defined above. Then,

t,max
similar to Section 6.2, two unknown attribute vectors agmax and ag¢max are
sought, which describe the direction with the largest correlation. Since the
position of shape and texture vectors are consistent in T and S, the relation

of all entries in both label vectors If ., and I ... are also consistent.

Thus, the goal is estimating those two attribute vectors that minimize the

angle ¢ between the corresponding label vectors I ... and I ... This leads
to maximizing the angle:
1! ) V-
9 = acos < s,max’ "t, >
V s B/ (L s )
(B.7)
I e 1
= acos s,max “t,max

/ Ty / Ty
\/ls,max ls,max\/lt,max lt,max

Substituting the attribute mapping function (Equation (B.5) and (B.6)),

the equation can be written as:

T T
m - Cs max Vs Vtct,max

T T
\/m : Cs,maxTVs Vscs,max \/m : Ct,maxTVt Vtct,max (B 8)

T T
Cs,max Vs Vt Ct,max
= acos .

T T
\/Cs,max Cs,max\/ct,max Ct,max

0 = acos

Since the acos(1) = 0, the function to be maximized with respect to the
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coordinate vectors Cs max and C¢ max 18

T T
cs,max Vs Vt ct,max

T T ’
\/cs,max Cs,max\/ct,max Ct,max

(B.9)

Tmaz =

This equation is identically to the CCA problem formulation (Equation
(6.34)) established in Section 6.3.
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