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Zusammenfassung

Greedy-Algorithmen sind oft genutzte Methoden zur Generierung von sogenannten
sparsen Approximationen. Funktionen auf diese Art zu approximieren ist aus ver-
schiedenen Griinden vorteilhaft. Deshalb entwickeln wir Greedy-Algorithmen fiir
zwei verschiedene Problemklassen, die Schdtzung von Wahrscheinlichkeitsdichten
einerseits und inverse Probleme andererseits.

Die Entwicklung eines Greedy-Algorithmus fiir die Dichteschidtzung ist motiviert
durch die Notwendigkeit, einen Simulationsalgorithmus fiir sogenannte Vliesstoffe
zu implementieren, einem speziellen Typ technischer Textilien, die oft in industri-
ellen Anwendungen verwendet werden. Wir werden solch einen Simulationsal-
gorithmus vorstellen, der eine Schatzung der Richtungsverteilung in einem Vlies-
stoff benotigt. Die Richtungen der Faden in einem echten Vliesstoff konnen mit
Computertomographen analysiert werden. Dies liefert Millionen von Datenpunk-
ten. Benutzen wir die Wahrscheinlichkeitsdichte, die durch den neu entwickelten
Greedy-Algorithmus generiert wird, so reduziert sich die Rechenzeit des Simu-
lationsalgorithmus von 80 Tagen auf 150 Minuten um einen Faktor von 750 im
Vergleich zur Verwendung von Kerndichteschitzern, einer Standardmethode fiir
die Dichteschédtzung.

Fiir inverse Probleme entwickeln wir zwei Verallgemeinerungen des Regularized
Functional Matching Pursuit (REMP)-Algorithmus, welcher ein Greedy-Algorith-
mus fiir lineare inverse Probleme ist. Fiir die erste Verallgemeinerung, die wir
RWEMP nennen, legen wir verbesserte theoretische Ergebnisse im Vergleich zum
RFMP vor. Aufierdem kann durch den RWFMP die Rechenzeit des REMP auf ein
Zehntel reduziert werden, ohne viel Genauigkeit zu verlieren. Die zweite Verallge-
meinerung ist ein REMP fiir nichtlineare inverse Probleme. Wir wenden diesen Al-
gorithmus auf das nichtlineare inverse Gravimetrieproblem an, welches sich mit der
Bestimmung von Strukturen im Innern eines Planeten aus Gravitationsdaten befasst.
Wir erhalten sehr gute numerische Resultate, betreffend sowohl die Genauigkeit und
die sparsity, als auch die Interpretierbarkeit des Ergebnisses.



Abstract

Algorithms of greedy-type are a popular tool for sparse approximation. Sparse
approximations of functions are beneficial for several reasons. Therefore, we will de-
velop greedy algorithms for two classes of problems, probability density estimation
and inverse problems.

The development of a greedy algorithm for density estimation was motivated by the
desire to implement a simulation algorithm for so-called nonwovens, a particular
type of technical textiles, which are widely used in industrial applications. We will
propose such a simulation algorithm, which needs an estimation of the probability
density of the fiber directions inside a nonwoven. Fortunately, these directions can
be obtained from real nonwovens by a CT scan, which yields millions of data points.
The incorporation of a probability density that is generated by the newly developed
greedy algorithm reduces the computation time of the simulation algorithm from 80
days to 150 minutes by a factor of 750 in comparison to the use of a standard method
for density estimation, namely kernel density estimators.

For inverse problems, we introduce two generalizations of the Regularized Func-
tional Matching Pursuit (RFMP) algorithm, which is a greedy algorithm for linear
inverse problems. For the first generalization, called RWFMP, an improved theoreti-
cal analysis is possible. Furthermore, using the RWEFMDP, it is possible to reduce the
computation time of the REMP by a factor of 10 without losing much of the accuracy.
The second generalization is an REMP for nonlinear inverse problems. We apply
the algorithm to the nonlinear inverse gravimetric problem, which is concerned
with the reconstruction of information about the interior of a planetary body from
gravitational data. We obtain very good numerical results concerning the accuracy,
the sparsity, and the interpretability of the results.
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Chapter 1.
Introduction

In this work, we will derive greedy algorithms for the problem of density estimation
in statistics and for linear and nonlinear inverse problems. Among other methods,
which we will briefly discuss below, greedy algorithms are one possibility to gen-
erate so-called sparse approximations of more complicated structures. The sparse
approximation of functions, signals, vectors, etc. has proved to be a very useful
tool in, for example, compressive sensing, image compression and reconstruction,
machine learning, medical imaging, signal processing, and statistics, in the last
decades.

It turns out that the concept of sparsity and, in particular, greedy algorithms will also
be helpful in the applications that we consider in this work. We will first describe
these applications and will afterwards introduce the concept of sparsity and greedy
algorithms in more detail.

The first problem that we are concerned with is the estimation of a probability density
function on the sphere. The development of a greedy algorithm for this problem was
motivated by a joint research project with the department Transport Processes of
the Fraunhofer ITWM in Kaiserslautern. In recent years, at the Fraunhofer institute
several models for the simulation of so-called nonwovens were developed (for an
overview see, e. g., Klar et al. [100]). We will discuss these models in more detail
and give more references in Section 5.4.2. Nonwovens are a particular type of
technical textile, which consist of a large number of fibers that are laid down on
a moving belt in the production process. As the name suggests, the filaments in
nonwovens are not weaved or knitted, they mainly stick together due to adhesive
forces. Due to the computational costs, most of the established models only yield
a two-dimensional fiber laydown. Although nonwovens are very flat structures,
which may be represented very well by a two-dimensional approximation, the fact
that the fibers are lying over and underneath each other plays a significant role
for the quality of the textile. Thus, it seems natural that the distribution of the
directions of the fibers in the three-dimensional space are an important factor for
the stability of the nonwoven and its industrial usability. Fortunately, the fiber
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Chapter 1. Introduction

directions in real nonwovens can be obtained from a CT scan, whose high resolution
gives us millions of data points. Consequently, we will propose a three-dimensional
simulation algorithm for nonwoven fabrics, which is based on an estimation of the
distribution of fiber directions from these data. We propose a greedy algorithm for
the estimation of probability densities, which reduces the computation time of the
simulation algorithm by a factor of around 750 compared to the use of kernel density
estimators, which are a standard tool for density estimation.

The second type of problem that we deal with are linear and nonlinear inverse
problems. In contrast to direct problems, where one computes the effect of a given
cause, inverse problems are concerned with the determination of causes for given
effects. Most inverse problems are ill-posed, that is,

— a solution does not exist,
— the solution is not unique, or
— the solution does not depend continuously on the data,

such that there is a need for a regularization. Several particular inverse problems are
inverse gravimetric problems. Inverse gravimetry deals with the determination of
the shape and the mass density of a body of mass, for example, the Earth, the Moon,
or any other planetary body, from gravitational data. Whereas the determination of
the mass density for a given shape is a linear inverse problem, the determination
of the shape for a given mass density model is a nonlinear inverse problem. It is
a well-known fact (see, e. g., Lauricella [107], Pizzetti [145, 146], and Weck [183])
that the solution to the linear inverse gravimetric problem is not unique due to
the infinite-dimensional null space of the corresponding operator. Furthermore,
this operator is compact and, thus, does not possess a continuous inverse. For
both reasons, the linear inverse gravimetric problem is ill-posed. For the nonlinear
problem, Isakov [88] has proved both a uniqueness and a stability result, which
we will state in Chapter 7. Therefore, the nonlinear inverse gravimetric problem is
not ill-posed as long as the existence of a solution is assumed. This is the reason
why it is also interesting to consider the more difficult nonlinear problem instead of
the seemingly easier linear one. Unfortunately, it turns out that the stability of the
inversion is, although proved theoretically, not easy to deal with numerically. Thus,
there is still a need for a regularization.

In recent years, the Geomathematics Group at the University of Siegen has developed
a greedy algorithm for linear inverse problems, such as the linear inverse gravi-
metric problem, called the Regularized Functional Matching Pursuit (RFMP) as well
as a variant called the Regqularized Orthogonal Functional Matching Pursuit (ROFMP)
(see, e.g., Fischer and Michel [46], Michel [123], and Michel and Telschow [128]).

12



In several publications, it was shown that the algorithms provide very good ap-
proximations of the solutions to the considered inverse problems concerning the
accuracy and sparsity of the result, but also the interpretability of the result from
the perspective of the application. In this work, we introduce two generalizations of
the REMP algorithm.

The first one is called the Regularized Weak Functional Matching Pursuit (RWFMP).
There, we apply a strategy to improve the iterative approximation procedure of
the algorithm. On the one hand, this strategy guarantees the existence of the
approximation in the next iteration from the theoretical perspective. On the other
hand, we will show in a numerical example that this strategy leads to a reduction
of the computation time of up to 90%. Furthermore, we can prove the convergence
of the RWFMP in arbitrary infinite-dimensional Hilbert spaces, where only finite-
dimensional spaces had been considered for the RFMP and the ROFMP. We will also
provide an a-priori parameter choice rule for the RWFMP, which yields a convergent
regularization.

The second generalization of the RFMP is an analogous algorithm for nonlinear in-
verse problems, which we call the RFMP_NL. After the derivation of the algorithm,
we will apply it to the nonlinear inverse gravimetric problem, where, as stated
above, there is a need for a regularization. The algorithm is based on an iterative
minimization of a linearized Tikhonov functional, which makes it similar to the
Levenberg-Marquardt method (see Levenberg [109] and Marquardt [115]) and the
iteratively regularized Gauf3-Newton method (see Bakushinsky [10]), and thus incor-
porates a regularization. We provide numerical results for two synthetic examples,
where we contrive a solution and compute the corresponding gravitational data.
Then, we use the RFMP_NL to obtain an approximation of the solution. A com-
parison of the proposed solution and the approximation shows that the algorithm
provides very good approximations. For a qualitative comparison of the novel algo-
rithm to existing algorithms for nonlinear inverse problems, see the considerations
in Chapter 10.

Above, we have already mentioned that greedy algorithms yield sparse approx-
imations. In the following, we provide a motivation for the term sparsity in this
context for a finite-dimensional example. Assume that the element f, for which
an approximation is sought, comes from some n-dimensional real Banach space &,
n e N.If 9 C X is spanning the space % in the sense that every element g € & has
a (not necessarily unique) representation ¢ = Y ;> ; &y d for coefficients oy € R and
dr € 9, the set 9 is commonly called a dictionary. It is clear that one can always find
such an expansion, where only 7 of the coefficients a; are nonzero, by choosing n

13



Chapter 1. Introduction

linearly independent elements from %. An expansion

f= i’xk di (1.1)
k=1

of the element f, which one wants to approximate, is called s-sparse if the number
of nonzero coefficients is s < n, s € N (cf. Foucart and Rauhut [50, Definition 2.1]).
If we speak of a sparse approximation of the element f, we usually mean that there
exists an expansion like in Eq. (1.1) that is s-sparse and s is much smaller than the
dimension n of the underlying vector space.

Sparse approximations are advantageous for several reasons. First, many signals of
the real world are sparse in some dictionary (cf. Foucart and Rauhut [50, Preface])
and often, one has too few measurements at hand to expand the signal in a suitable
basis, for example, in orthonormal polynomials up to an appropriate order, which
yields non-quadratic underdetermined systems of linear equations. In general, there
exists no unique solution to such underdetermined systems, but by imposing a
sparsity constraint (i. e., demanding that the signal is s-sparse in some prescribed
dictionary), one can achieve a unique solution. In the infinite-dimensional situation,
for example in inverse problems, a sparsity ansatz consequently acts like a regular-
ization. Secondly, sparse approximations of, for example, images, allow for efficient
compression algorithms. Whereas a full image consisting of n pixels, in principle,
needs the memory for n coefficients, an s-sparse approximation of the image only
needs the memory for s coefficients, which may be much more memory-efficient.
This is, of course, true not only for images, but also for other signals, which need
to be stored on a computer. Thirdly, a sparse representation of some element f is
beneficial if the result should be used in further computations. Since all necessary
operations need to be performed with only s instead of n basis elements, a large
reduction of computation time is possible, depending on the ratio of s and # and the
computational expensiveness of the operations. This effect will play a major role in
parts of this work.

In the following, we will introduce the idea behind greedy algorithms. Prescribing
a possibly overcomplete dictionary % C &, from which an approximation of the
element f € % should be constructed, greedy algorithms rely on the concept of local
optimality. That is, starting with an initial approximation fy € &, one iteratively
chooses coefficients a1 € R and elements dy, 1 € 9 fork =0,1,2,..., such that for
given f; the new approximation

frr1 = fi + pr1dia

fulfills the optimization problem

L(fk + Dck+1dk+1) — min! s. t. a1 €ER, dryq €9,

14



where L is a so-called loss function that fits to the problem to be solved. In
approximation theory, greedy algorithms have been pushed forward mainly by
Temlyakov [167-169]. Note that greedy algorithms are also called matching pur-
suits (Mallat and Zhang [112]) in signal processing and projection pursuit (Friedman
and Stuetzle [60]) in statistics. They have been applied to inverse problems as the
Regularized Functional Matching Pursuit algorithm in Fischer and Michel [46] and
Michel [123]. For a more detailed discussion of greedy algorithms and the existing
literature about these methods, see Chapter 3 of this work.

As already said, there are also other methods that yield sparse approximations,
namely optimization methods and thresholding-based methods (for an overview see,
e.g., Foucart and Rauhut [50, Chapter 3]). As the name suggests, the approximation
f* = YX_, aydy that is generated by optimization methods is the solution of an
optimization problem, in more detail, the problem

| (a1,...,ak)|; — min! s. t. L(f*) <y (1.2)

for a fixed dictionary 9 = {dy,...,dx } € %, which needs to form a basis of
the underlying vector space, and a parameter 7 > 0. In contrast, an example for
thresholding methods are methods that are based on the idea to rewrite the equation
L(f*) = 0 for the approximation f* = YK, a;dy as a fixed point equation and
perform the corresponding fixed point iteration, where one only keeps the s largest
coefficients ay in every iteration. Here, the dictionary 9 = {dy,...,dx } C & also
needs to form a basis.

The latter is the main reason why we stick to greedy algorithms to obtain sparse
approximations in this work. The great advantage of greedy algorithms is the
fact that the dictionary does not need to form a basis. It turns out that, in the
considered applications, it is beneficial to combine, for example, both global and
localized function, if the signal that is to approximate consists of both global and
local features. Furthermore, when using optimization methods, one needs to ap-
ply sophisticated optimization methods for the solution of the non-differentiable
optimization problem in Eq. (1.2).

Nevertheless, we want to give a brief overview of the literature, in which both
optimization methods and thresholding methods have been developed, analyzed,
and successfully applied in various fields of research. For optimization methods,
this includes the works by Berg and Friedlander [17], Candes and Tao [25], Chen
et al. [28], Donoho and Elad [37], and Tibshirani [170]. Note that in statistics, these
optimization methods are known as the LASSO (least absolute shrinkage and selection
operator) estimator. For thresholding-based methods, we mention the works by Beck
and Teboulle [16], Blumensath and Davies [22], Bredies and Lorenz [23], Daubechies
et al. [31], and Donoho [36], who have applied thresholding algorithms in various
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Chapter 1. Introduction

fields. Of course, this is only an incomplete selection from the vast amount of
literature about these two categories of algorithms.

This work consists of four parts. In Part I, we will first recall several basic results
in Chapter 2, which we will need in the course of the thesis. In Chapter 3, we will
describe greedy algorithms in more detail and we will give references for the existing
algorithms and their applications in different fields of research.

Part II will be dedicated to the derivation of a greedy algorithm for density es-
timation. We will first state some fundamental results of probability theory and
statistics in Chapter 4. Then, we will develop a new greedy algorithm for the es-
timation of a probability density function in Chapter 5. There, we will apply the
algorithm to a set of CT data of a nonwoven fabric. We will show that the greedy
strategy leads to a large improvement of the computation time of a simple simulation
algorithm.

Part III will deal with greedy algorithms for linear and nonlinear inverse problems.
We will summarize the theory of inverse problems in Chapter 6. Since the nonlinear
problem that we will deal with is the inverse gravimetric problem, Chapter 7 will be
dedicated to inverse gravimetry. We will give some already existing results about
the ill-posedness of the problem and compare the linear and nonlinear problems
of inverse gravimetry. The new algorithms that we will develop are based on the
Regularized Functional Matching Pursuit (RFMP), which we will derive in Chapter 8.
In this chapter, we will also present some of the already established convergence
results, describe properties of the algorithm, and the problems to which the REMP
and its variants have already been applied before. Then, a new algorithm for linear
inverse problems, the Regularized Weak Functional Matching Pursuit (RWFMP) will be
developed in Chapter 9. The approach, which is pursued, will enable us to prove not
only the convergence of the algorithm in arbitrary Hilbert spaces, but we will also
provide results about the rate of convergence. We will also show that there exists
an a-priori parameter choice rule for the RWFMP such that we obtain a convergent
regularization. Numerical tests will make clear that the considered weak approach
can accelerate the iteration of the RFMP to reduce the computation by more than
90%. Finally, in Chapter 10, we will apply a similar strategy as in the derivation
of the RFEMP to obtain a greedy algorithm for nonlinear inverse problems. We will
apply the algorithm to a synthetic example of the nonlinear inverse gravimetric
problem and analyze the numerical results.

The final part of this work consists of a conclusion and an outlook.
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Basics
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Chapter 2.
Notation and fundamentals of functional analysis

In this thesis, we denote by N the set of positive integers and define Ny := NU {0 }.
The set of real numbers is R, whereas the set of complex numbers is C. As usual, we
denote by R the Euclidean vector space

X1
R? = : X1,...,x4 €ER 3,

Xd

and, for the particular case d = 3, the canonical basis is given by

1 0
ed=1|o], Z=11], =10
0 1

For vectors x,y € R, we define the Euclidean inner product by

d
X-y=Y Xuln,

n=1

and the vector product or cross product by

X2Y3 — X3Y2
XAY = | X3y1 — X1Y3
X1Y2 — X2y1

The power set of a set U is given by
PU)={MCU}
and the characteristic function of M C U is

1, xe M,

xm:U—{0,1}, xm(x) = {0 cd M

19



Chapter 2. Notation and fundamentals of functional analysis

Furthermore, we denote by #M the cardinality of the set M.

For open subsets U C R?, we denote by C(U) and C)(U) the spaces of continuous
and k-times continuously differentiable functions defined on U. Analogously, these
spaces can be defined for functions on the closure of U such that all functions from
C(U) (€M (1)) are continuous (k-times continuously differentiable) in U and the
function (and its derivatives up to order k) can be continuously extended to the
boundary oU.

For f € CU(U),
4 (¥)
Vif(x) =

is the gradient of f, where the subscript stands for the variable of differentiation. The
Laplacian of a function f € C?)(U) is given by

The Lebesgue integral of a function f: RY O U — Riis

/uf(x) dx

such that dx stands for integration with respect to the Lebesgue measure. The
Lebesgue measure itself will be denoted by A such that for a measurable set U, A(U)
denotes the volume of the set.

We stick to Freeden and Michel [56, Section 3.1.1] for the definition of a regular
surface in R3.

Definition 2.1. A surface £ C R3 is called regular if it satisfies

(a) the space R?is divided into a bounded region X" and an unbounded region
>t such that

yext _ 3 \ﬁ, > — yint N Xext, yint ~ yrext _ @,

(b) Xt contains the origin,
(c) X is a closed and compact surface, which is free of double points,

(d) X has a continuously differentiable outer unit normal field v.

20



2.1. Spherical geometry

The integral of a function f: X — R over a regular surface is

[ £ deo(),
x
where w is the surface measure on X.

Among the variety of existing integral theorems, we will only use Green’s first
identity in this work.

Theorem 2.2. Let £ C R3 be a regular surface and let f, g € C(?)(Zint) 0 C()(Zint),
Then,

[F0 B dox) = [ F0) Aglx) + Tuf () - Vagla) d

Yint
where g—f (x) = v(x) - Vxg(x) is the so-called normal derivative of g on X.
Note that for Green’s identity to hold it is sufficient to demand only piecewise regu-
larity of the outer normal field instead of condition (d) in Definition 2.1.

Since most of the problems that we will consider in this work are given on spher-
ical domains, we will briefly discuss the geometry of the sphere in the following
section.

2.1. Spherical geometry

This section is mainly based on Michel [122, Section 4.1]. We first define the unit
sphere for arbitrary dimensions.

Definition 2.3 (see, e. g., Freeden and Gutting [54, Definition 6.1.5]). The unit sphere
inR?4, d € N, is denoted by

Sd*%:{gew‘|g|:1},

where |-| denotes the usual Euclidean norm in R?. Unit vectors will always be
denoted by lowercase Greek letters.

The open ball with radius R > 0 in R? is denoted by

Br:={xeR||x| <R}.

The space R3 can also be parametrized by a spherical and a radial part, which leads
to polar coordinates.

21



Chapter 2. Notation and fundamentals of functional analysis

Definition 2.4 (see, e. g., Michel [122, Definition 4.3]). The parametrization of a point
x € R3 in polar coordinates is given by

rv1—t2cos ¢
x(r,@,t) = | rv/1—#tsing |,
rt
wherer € [0,00), ¢ € [0,277),and t € [—1,1].
Analogously, every point ¢ € S? can be described by
V1—t2cos¢
(o, t)=| v1—1t2sing |,
t

where ¢ € [0,27r) and t € [-1,1].
We define a local tripod on the sphere (i. e., an orthonormal system at every point

& eS?) by

V1—t*cos¢
(g t)=|V1—1tsing |,

t

—sing
e?(¢):=| cosg |,

0

—tcos ¢
(g, t) = | —tsing

VI—#

Continuity and differentiability can also be transferred to the case of functions on
spherical domains.

Definition 2.5. The spaces of continuous and k-times continuously differentiable
functions on S? are denoted by C(S?) and C¥)(S?), respectively.

Remark. In the previous definition, continuity and differentiability of functions
on the sphere have to be considered in terms of continuity and differentiability of
functions on manifolds, cf. Lee [108, Definition 1.52].

For differentiable functions, it is possible to define certain differential operators on
the sphere.
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2.1. Spherical geometry

Theorem 2.6 (see, e. g., Michel [122, Theorems 4.5, 4.7, 4.8]). Using the surface gradient
Vv*,

V*i=¢? L +£’\/1—t22

V1—1£29¢p ot’
the gradient V in R® can be decomposed as
o 1
V=¢—-+4+-V~
or r

The surface curl gradient
LzF(¢) = E A VEE(D),

where & € S? and F € C1)(S?), has the local coordinate representation

L*:—s¢\/1—t2;+et 1 9

VI—£9¢
Furthermore, with the help of the Beltrami operator
.. 0 2, O 1 02

the Laplace operator A can be decomposed as

2 290 1

A= 20 4 CA
872+r8r+r2

The differentiation operators satisfy
V.V =L"-L"=A"
and for a function F € CV)(S?) we have

(EF@)- (ViF©) = CF@)- (LiF©) = (ViF©) - (LiF©@) = 0.

Integration on the sphere is defined as for regular surfaces such that the integral of a
function f: S* — R is written as

[ F(©) dw (@),

where w now is the surface measure on S?. We can decompose any integral over the
space R? into a radial and a spherical part such that

[ fedx= [ 7o drde)

forf:]R3—>R.
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Chapter 2. Notation and fundamentals of functional analysis

2.2. Fundamentals of functional analysis

In particular in the study of inverse problems, we will need function spaces and oper-
ators between them such that there is a need for the application of functional analysis.
We will summarize the most important results in this section.

Definition 2.7. A real vector space % is a normed space if there exists a mapping
called norm ||-||o: % — [0, 00) such that forall f,g € % and A € R, we have

(N1) ||fl]ls; = 0implies f = 0 (definiteness),
(N2) |[Afllgr = [A] || flg (absolute homogeneity),
(N3) [If +gllar < IIf

A normed space % is called a Banach space if it is complete, that is, every Cauchy
sequence is convergent.

o + |Iglls (triangle inequality).

A normed space ¥ is called a Pre-Hilbert space if there exists an inner product
() X x X — R, thatis, forall f,g,h € % and A € R, we have

(1) (f, f)y = 0implies f = 0 (definiteness),
(12) (f +Ag )y = (f, W)y + A(g, h)y (linearity),
(I3) (f,8)o; = (& f)o (symmetry).
It is called a Hilbert space if it is a Banach space with the norm

1fllgr = A/ (fr Flar

that is induced by the inner product.

The closure of a subset % C % of a Banach space % is denoted by . If there is a
norm ||-||, different from ||-||,-, with respect to which the closure is applied, we de-

note it by 2" The tinear span of a subset U C X is defined as

K
span U := { Y g

k=1

KGNo,&kGR,MkEGU}.

Given a subset U C % of a Hilbert space %, the orthogonal complement U~ is given
by

U= {feX |(fu)y =0forallucu}.

In Hilbert spaces, we distinguish two types of convergence of sequences.
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2.2. Fundamentals of functional analysis

Definition 2.8. Let (fi), .y € % be a sequence in a Hilbert space 2.

(@) The sequence is called (strongly) convergent to an element f € X if
li - =0
L [If = fillg:
and

(b) it is called weakly convergent to an element f € % if
li =
Hm (f &)y = (f, &)y

forallg € .
We abbreviate strong convergence by fy — f (k — c0) and weak convergence by
Je = f (k= o).
It is well-known that strong convergence implies weak convergence but not vice

versa (as long as & is infinite-dimensional).

Mappings between Banach and Hilbert spaces are called operators. We will use the
following convention in this thesis for Banach spaces % ,%: linear operators will
always be denoted by 7 : ¥ — %, and the image of an element f € ¥ is denoted
by 7 f or T (f). An operator, which does not need to be linear (and, in general, is
nonlinear), will be denoted by §: X — %, and the image of an element f € ¥ is
S[f] such that the different parentheses indicate the linear or nonlinear dependence
on the respective argument.

A particular linear operator is the identity operator

:% =%, f=f.

For an operator S: & — % between Banach spaces, we denote by
ranS = { SIf] | f€ % )

the range or image of the operator and by
nullS={feX |S[f]=0}

the null space or kernel of the operator. The restriction of the operator to a subset
U - XisS ‘ay

Of interest are several specific types of operators, which we will define in the
following.

25



Chapter 2. Notation and fundamentals of functional analysis

Definition 2.9. Let &, % be Banach spaces and let S: & — % be an operator. We call
this operator continuous if for all € > 0 there exists § > 0 such that forall f1, f, € X

Ifi = fally <6 implies IS[A] = Slfallly <e.

It is well-known that for linear operators 7: & — %, this is equivalent to the
existence of a constant C > 0 such that

ITfH =Thlly < Cllfi — fally
forall f1, fo € &, which is called boundedness.

The set of linear and continuous operators is denoted by £ (%€, % ). It is a Banach space
with the norm

TFlls
ITlos = sup 121w T e 2@,
rernfor Iflly

As for functions on RY, there are several concepts of differentiability of operators.
The first concept is the Gateaux derivative, which is an analogue to directional
derivatives.

Definition 2.10 (cf. Cea [26, Definition 1.1]). An operator S: % — % between
Banach spaces &, ¥ is called Gateaux differentiable at f € % in the direction g € %, if
the Gateaux derivative

exists and the limit is an element of %.

The second concept is an analogue to the total differential in the finite-dimensional
setting.

Definition 2.11 (cf. Cea [26, Definition 6.1]). An operator S: & — ¥ between
Banach spaces %, ¥ is called Fréchet differentiable at f € X if there exists a linear
operator T¢: % — % such that

L USIF 81— S11 - Tl
I 1l5 0 [F4IE%

The operator S'[f] := T: X — ¥ is called Fréchet derivative of S in f € .

26



2.2. Fundamentals of functional analysis

It is well-known that every Fréchet differentiable operator is also Gateaux differen-
tiable and that the Fréchet derivative S’[f] applied to some element g € % is equal
to the Gateaux derivative S’[f](g) in that direction. This is the reason, why we use
the same symbol for both concepts.

There exists an analogue to Taylor’s formula for differentiable operators, which is
the basis for the linearization of operators.

Theorem 2.12 (cf. Cea [26, Proposition 2.2]). Let %, % be Banach spacesand S: % —
% be twice Gateaux differentiable in f € % in the direction of g € %, that s,

S'[f +egl(g) — S'[f1(g)
e\0 €

exists in .

Then there exists € € [0,1] such that

SIf +81 = S[f1+S'If1(8) + 58"1f +¢5l(3,9)
holds.

In other words, a linearization of the operator is given by
Slf +8l = S[f1+ Sf1(9)-

Finally, we introduce the concept of the adjoint operator, since it plays an important
role in the analysis of inverse problems.

Definition 2.13. Let %, % be Hilbert spaces and 7 : & — % be a linear and bounded
operator. The uniquely determined operator 7*: % — %, which fulfills

(T 8w = £, T8y
forall f € X and g € ¥, is called the adjoint operator.
If 7:% — X fulfills T* = 7T, then the operator is called self-adjoint.

The most important Hilbert spaces for this work are function spaces, which we will
define in the following section.
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Chapter 2. Notation and fundamentals of functional analysis

2.3. Function spaces

Both on compact subsets U C R? and on S?, we have already defined spaces of
continuous functions. It is well-known that, together with the supremum norm,
these spaces are Banach spaces.

Theorem 2.14. Let M € { u,s? }, where U C R? is compact. Then

£l = Slelﬂlf(x)!z feC(M),

is a norm on C(M) and with this norm C(M) is a Banach space.

Spaces of integrable functions can also be defined both on subsets of R? and on the
sphere S2.

Definition 2.15. Let U C R? be measurable. For 1 < p < oo, the L”(U)-norm and
the L7 (S?)-norm of a measurable function f: RY — Rand g: S* — R is given by

1wy = (/U|f(x)‘1’ dx>1/Pl

and

1/p
el = ( [e@F do@)
The L? (U)-spaces and L?(S?)-spaces are consequently given as
LP(U) := {f uUu—R ’ f is measurable and | f|| ;) < ° }
LP(S?) == {g: S - R ’ g is measurable and |[g || »g2) < 0 } ,

where we, as usual, formally identify functions with each other, which are equal
almost everywhere.

Theorem 2.16. It is well-known that L?(U) and L (S?) are Banach spaces for 1 <
p < oo and L?(U) and L?(S?) are Hilbert spaces with respect to the inner products

(fi f22w) ::/ufl(x)fz(x) dx,
@18 = [, 81080 dw (@),

where f1, f» € L*(U) and g1, $2 € L*(S?).
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2.4. Spherical harmonics

We note the following relation between the L2-norm and the C-norm on both do-
mains.

Theorem 2.17 (see, e.g., Michel [122, Theorem 4.10]). Let f € C(M) for M €
{U,s?}, where U C RY is compact. Then,

12y < Cllf llcqa
where C = \/A(U) if M = Uand C = V4rif M = S2.
A well-known result is that (M)”'HLZ(M) = L%(M). The following section will

deal with a certain orthonormal system of functions on the sphere called spherical
harmonics.

2.4. Spherical harmonics

A well-known orthonormal system of functions on the sphere are the so-called spher-
ical harmonics. We will introduce them in an axiomatic way here, and give closed for-
mulas for the so-called fully normalized spherical harmonics afterwards. We begin with
the definition of homogeneous and harmonic polynomials.

Definition 2.18 (see, e.g., Michel [122, Definition 5.2]). By Hom,, (]Rd), n € Ny,
d € N, we denote the space of homogeneous polynomials of degree n on RY, that is,
P € Hom, (RY) if and only if P is a polynomial of degree n and P(A x) = A" P(x)
forall A € Rand x € RY,

If D C RY, then Hom, (D), n € Ny, denotes the set of restrictions of homogeneous
polynomials of degree n on R to the set D, that is,

Hom, (D) == { P|p ’ P € Hom, (R?) }.

Furthermore, we define for n € Ny the spaces
Harm,, (]Rd) = { P € Hom,, (]Rd) ‘ AP =0 } ,

Harmg (]Rd) = iE_T%Harmi (]Rd),

Harmgy (Rd) = G Harmy_ , (Rd)/
n=0
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Chapter 2. Notation and fundamentals of functional analysis

and for D C R? we define
Harm, (D) i= { P|p | P € Harm, (B%) },
Harmy_,(D) := {P|D ‘ P € Harmg,_ (Rd) }/

Harmg_«(D) := { Plp ‘ P € Harmgp_ (]Rd> } )

If d = 3 and D = S?, we call the elements of Harm,, (SZ), n € Ny, (scalar) spherical
harmonics.

Theorem 2.19 (see, e.g., Michel [122, Theorems 5.3, 5.6]). The dimensions of the
spaces introduced in Definition 2.18 for d = 3 are

(n+1)(n+2)
2 4
dim Harm,, (R3) = dim Harm,, (Sz) =2n+1.

dim Hom,, (R3)

We will always stick to the following convention.

Definition 2.20 (see, e. g., Michel [122, Definition 5.10]). By Y,,, we always denote a
(scalar) spherical harmonic of degree n € Ny, that is, Y, € Harm, (S?).

For a fixed degree n € Ny, { Y, |j=1,...,2n+1} will always stand for an or-
thonormal basis of Harm,, (S?).

The following result guarantees the orthogonality of spherical harmonics of different
degrees.

Theorem 2.21 (see, e. g., Miiller [134, Lemma 2]). For spherical harmonics of different
degrees, that is, Y, € Harm,(S?) and Y,, € Harm,,(S?), where n,m € Ny, but
n # m, we have

<Yn/ Ym>L2(SZ) =0.
Corollary 2.22. From Definition 2.20 and Theorem 2.21, we obtain that
{Yn,j ’ n e Ny, j= 1,...,2n-|—1}

forms an orthonormal system in L?(S?).

The following addition theorem is one of the most important and most useful result
about spherical harmonics.
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2.4. Spherical harmonics

Theorem 2.23 (Addition theorem, Miiller [134, Theorem 2]). For fixed degree n €
No, let {Y,;|j=1,...,2n+1} be an L?(S?)-orthonormal system in the space
Harm,, (S?). Then,

2n+1 2 1
Y Y (6)Yai(n) = 114; Pu(¢ 1) 2.1)
j=1

for all &, € S?, where P, denotes the Legendre polynomial of degree n, that is,
{ P, | n € Ny } is a set of orthogonal polynomials in L?([—1,1]) such that P,(1) = 1
for all n € Nj.

Using the addition theorem, one can show that the right-hand side of Eq. (2.1) is a
so-called reproducing kernel.

Definition 2.24 (Reproducing kernel, see, e. g., Michel [122, Definition 5.13]). Let 2
be a Hilbert space of functions on a domain U C R?. A functionk: U x U — Ris
called a reproducing kernel if it satisfies

1. k(x,-) € % forall x € U,
2. (k(x,-),f)g = f(x) forall f € X and x € U.

If such a kernel exists, % is called a reproducing kernel Hilbert space.

It is well-known that the reproducing kernel is uniquely determined if it exists.
Theorem 2.25 (see, e. g., Freeden and Schreiner [58, Lemma 3.29]). The function

2n+1
§2x 8% 5 (&) = = —Pal@ 1)

is the reproducing kernel of (Harm,, (S?), (-, M2s2)-

Furthermore, the addition theorem can be used to prove the following inequalities.

Theorem 2.26 (e. g., Michel [122, Theorem 5.17]). If Y, € Harm,, (S?), n € N, then

2n+1
Yulles) <\~ Yullizse)

and, in particular, we have

2n+1
,J'HC(SZ) = 47

Yo
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Chapter 2. Notation and fundamentals of functional analysis

We introduce the following kernel, which turns out to be an approximate identity
for C(S?).

Definition 2.27 (Abel-Poisson kernel). Let Q;,: [-1,1] = R, h € (0,1),

1 1—h?
t) = — .
Q)= 17 (1+ h2 — 2nt)3/2

The kernel S? x S? > (&,7) — Qy,(& - 17) is called Abel-Poisson kernel.
For fixed ¢ € S?, we also define the function Qpe: S? =R, 71— Qu(¢-n).

Note that one can show

* 2 1
Qu(t) =Y, 114:;

n=0

WPy (1). (2.2)

The Abel-Poisson kernel fulfills the following Poisson integral formula.

Theorem 2.28 (cf. Michel [122, Theorem 5.19]). Let f € C(S?). Then,

lim =0,

h 1

L, Qi) deoty) — £

C(S?)

which characterizes the kernel as an approximate identity since the arising integral
is the spherical convolution of the kernel Qj and the function f.

The Poisson integral formula can be used to show in several steps that the spherical
harmonics form a complete orthonormal system of L?(S?) such that every f € L?(S?)
can be expanded in a Fourier series

oo 2n+1
F= B s o
n=0 j=

where the convergence is in the sense of L?(S?).

The arising coefficients are called Fourier coefficients. For these and for an analogue on
the interval [—1, 1], we introduce the following abbreviations.

Definition 2.29. The Fourier coefficient of degree n € Nyoand order j € {1,...,2n+1}
of a function f € L2(S?) is defined as

f/\ (n,j) = <f/ Yn,j>L2(S2)/
and the Legendre coefficient of degree n of a function g € L?([—1,1]) is given by

8" (n) = 271(g, Pu)r2(-1,1))-

32



2.4. Spherical harmonics

Corollary 2.30 (for the second result, see Michel [122, Definition 3.15]). For f &
L2(S?), we have

+

Z

j=1

||
nM%

in the sense of L?>(S?) and for ¢ € L2([—1,1]), we have

i 2n—|—1p

n

in the sense of L?([—1,1]).

Finally, we will give an example for a closed representation of spherical harmonics,
the so-called fully normalized spherical harmonics.

Example 2.31 (cf. Michel [122, Section 5.2]). For n € Ny, j = —n...,n, the fully
normalized spherical harmonics are defined as

Y j(E(g 1)) = \/(2n+ 127(;;1]:])0( %) P (8)

. ) sin(je), =1,
cos(jg), ]:—n,...,O,

(2.3)

where forn € Ng,m =0,...,n,

Pyw(t) = (1— tz)m/zcimpn(t), te[-1,1],

are the associated Legendre functions. Note that we shifted the enumeration of the
orders from 1,...,2n 4+ 1to —n,...,n for the sake of easier readability of Eq. (2.3).
If we use spherical harmonics in numerical experiments in this thesis, these will

always be fully normalized spherical harmonics.

The Abel-Poisson kernel belongs to a type of spherical functions called zonal func-
tions, which we will discuss in the following section.
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Chapter 2. Notation and fundamentals of functional analysis

2.5. Zonal functions

The idea of zonal functions is that these functions only depend on the distance of
the variable 17 € S? from some fixed point & € S%. Since

ey = —2&-n+ [y =2-2¢-7y,

this can be realized by a function, which only depends on the inner product ¢ - #.
This results in the following definition.

Definition 2.32 (Michel [122, Definition 4.14]). Let g: [-1,1] — Rand ¢ € $%. A
function gz: S — R of the form

e 8e(n) = g8 1)
is called ¢-zonal function. We also write g(&-) = g¢.
It turns out that both differentiation and integration of zonal functions can be done
in terms of the function g on [—1,1].

Theorem 2.33 (Michel [122, Theorem 4.15]). For ¢ € C(l)([—l, 1]) and &, 77 € S?, we
have

Veg(§n) =g(C ) — (& m3),
Leg(§-n) = g&(E-mEn.
Theorem 2.34 (Michel [122, Theorem 4.16]). Let g: [—1,1] — R be integrable. Then

1
LL8@-mdwtn =2r [ gt
forall ¢ € S2.

Corollary 2.35. A direct implication of Theorem 2.34 is that g € L ([-1,1]),1 < p <
oo, if and only if g € LP(S?).

Furthermore, the same is also true for p = cc.

Another consequence of the theorem is the fact that the Fourier coefficients of a zonal
function g¢ relate to the Legendre coefficients of g as follows.

Theorem 2.36. Let gz = ¢(¢-) be a zonal function with gz € L?(S?). Then

8¢"(n, ) = g"(n) Y, (2)-
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2.5. Zonal functions

Proof. On the one hand, we have

+

§(6) = 3 g 02 R = 3T ¢ 0

j=1

by virtue of the addition theorem. On the other hand,

R

j=1
Therefore, by comparison of coefficients,
g (n,j) = 8" (n)Y,(¢)
holds true. n

Example 2.37 (Abel-Poisson kernel, Freeden et al. [53, Section 5.6.3]). We can employ
the previous theorem to analyze the Abel-Poisson kernel. Due to the representation
in Eq. (2.2), we have

Q" (n) = h"
and Theorem 2.36 yields
Qug" (n,) = h" Y, §(8).

An application of the Parseval identity and the addition theorem shows that the
inner product of two Abel-Poisson kernels is again an Abel-Poisson kernel: Let
& neS?and h,s € (0,1), then,

oo 2n+1
<Qh,§/ Qs,17>L2(Sz) = Z Q §A(n/j) QS/’/\(”/D
n=0 j=1
oo 2n+1
=) "', i(8)s" Yo (1)

=
Il
=}
-
Il
—_

"Pu(Z-1) = Qus(E - 1)

I
gk
=

=
Il
o

Consequently, we have for the L?(S?)-norm of the Abel-Poisson kernel that

HQh,CHiz(Sz) - <Qh,§/ Qh,§>Lz(SZ) = th(g : C)
1 1—n 1 (1+m)(1-K) 1 14R

TAn (11 hE 20202 dm (1-R2)P  4dn(1- 122

holds.
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Chapter 3.
Greedy algorithms and matching pursuits

Algorithms of greedy type have been developed in several subjects of research more
or less independently in the last decades, namely in approximation theory (called
greedy algorithm), signal processing (called matching pursuit), and statistics (called
projection pursuit regression). We will present the application in statistics in more
detail in Section 5.1. The signal processing approach will be shortly mentioned in
this chapter. The main part of this chapter will be based on the results that were
achieved in approximation theory, namely by V. N. Temlyakov (see, e. g., the book
Temlyakov [169]).

In all of these areas, the term greedy is always used for iterative algorithms, which
produce iterates that are locally optimal approximations to some function in a
certain sense. In computer science and discrete mathematics, this term is also used
for algorithms that are used to solve combinatorial problems like finding the shortest
path problem (e.g., the Dijkstra algorithm) and the traveling salesman problem
(e.g., the nearest neighbor algorithm). These algorithms also provide locally optimal
approximations of the solution of the combinatorial problem. For an overview, see
for example the book by Korte and Vygen [105].

The basic idea of greedy algorithms and matching pursuits is to generate a sequence
(fi)ken, of approximations of a solution f to some problem such that

frr1 = fi + k11,

and (agyq,dx11) € R X 9 are optimal in some sense. Here, % denotes a so-called
dictionary, an arbitrary set from which the approximation can be constructed. The
dictionary does not need to form a basis of the underlying space, instead it can be
overcomplete to account for different structures in the solution.

In signal processing, Mallat and Zhang [112] derived the so-called Matching Pursuit
(MP) algorithm for the approximation of signals in general Hilbert spaces. They
proved convergence of the algorithm and presented several results, which yield a
time-frequency decomposition of audio signals. It turns out that the convergence
of the algorithm is relatively slow, since, in general, several dictionary elements
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Chapter 3. Greedy algorithms and matching pursuits

will be chosen more than once, which is of course not optimal. To account for this
problem, the Orthogonal Matching Pursuit (OMP) was introduced by Pati et al. [141],
which removes this disadvantage by an orthogonalization of the chosen dictionary
elements. Another optimization of the OMP was given by Vincent and Bengio [179].
They included a so-called pre-fitting into the algorithm, which accounts for the fact
that the chosen dictionary elements of the original OMP are no longer optimal after
the orthogonalization such that this orthogonalization should have already been
incorporated in the computation of the optimum. Note that both variants of the
OMP are more expensive than the MP due to the orthogonalization steps, but the
faster convergence of the methods justifies the higher effort.

Greedy algorithms in approximation theory possess a very similar history. The prob-
lem to be solved in approximation theory is always the following: we assume that a
function f € %, where & is some separable Hilbert space of functions, should be ap-
proximated by elements from a dictionary 9 C % . That is, as described above, one
wants to find sequences (ay)reny € R, (di)ren € 9 such that

K
f ~ fK = Z“kdk-
k=1

In DeVore and Temlyakov [32], the so-called Pure Greedy Algorithm (PGA) was
introduced.

Algorithm 3.1 (Pure Greedy Algorithm, PGA). Let %X be a separable Hilbert space
and f € %. Choose a dictionary 9 C % and assume that ||d||,, = 1foralld € 9.
Generate a sequence ( fi)ren by the following iteration:

1. Set k := 0 and set fy := 0.

2. Find a dictionary element dy.; fulfilling

diy1 = argmax|(f — fr, d)o |- (3.1)
ey

3. Set

W1 = (f = fir dks1)y -

4. Set fk+1 = fk + 0(k+1dk+1.

5. If a suitable stopping criterion is fulfilled: stop.
Otherwise: increase k by 1 and return to step 2 of the algorithm.
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There is a geometrical interpretation of the maximization property in Eq. (3.1). On
the one hand, the modulus of the inner product |(f — f,d), | for f, fr € & and
d € 9 is a measure of how co-linear the dictionary element is to the approximation
error f — fi. It is maximal if the error is a multiple of the dictionary element and
minimal if f — fx and d are perpendicular.

On the other hand, to obtain | f — fi;1|l = 0, which would require the optimal
choice for the dictionary element, one had to fulfill

A 1dk+1 = f — frr

corresponding to the maximal value of the inner product above. Furthermore, it can
be proved that || f — fii1ly = ||f — filly (i e., the approximation does not get bet-
ter), if and only if the inner product above is 0, that is, minimal.

Consequently, the norm of the error improves most, if the inner product is maximal,
which is the justification for Eq. (3.1). DeVore and Temlyakov [32] also proved the
convergence of the PGA and a specific convergence rate.

Theorem 3.2 (Convergence of the PGA). Let (fi)ren, be the sequence of approxima-
tions generated by the PGA to approximate f € % and let span% = .

Then f; — f (k — o0) and

||f_fk||f% < ’f|A1(%)kil/6,

where |f] 4, () 18 a certain norm of f (for more details, see DeVore and Temlyakov [32]).

In the same paper by DeVore and Temlyakov [32], an orthogonal algorithm called
Orthogonal Greedy Algorithm (OGA), where a similar strategy as in the OMP is
applied, is introduced. The convergence and convergence rates are also proved for
this algorithm. We do not go into more detail on the OGA here, since we will not
use it in our work.

Later, Temlyakov [167] introduced so-called weak variants of the PGA and the
OGA, called Weak Greedy Algorithm (WGA) and Weak Orthogonal Greedy Algorithm
(WOGA).

The motivation for these algorithm are difficulties with the maximization in Eq. (3.1).
In fact, it is not clear if a maximizer exists if & is an infinite-dimensional Hilbert
space such that also % has to consist of infinitely many elements to span . However,
the supremum of the inner products in Eq. (3.1) always exists. The idea of the weak
greedy algorithm consequently is to no longer search for the optimal dictionary
element, but a dictionary element, which is near to the optimum in the specific way
stated in the following algorithm.
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Algorithm 3.3 (Weak Greedy Algorithm, WGA). Let 2 be a separable Hilbert space
and f € %. Choose a dictionary 9 C %, a weakness parameter ¢ € (0,1], and assume
that ||d||,, = 1foralld € 9. Generate a sequence (fi)ren by the following iteration:

1. Set k := 0 and set fy := 0.

2. Find a dictionary element dy; fulfilling

[(f = frrdka)a| = Qiug|<f — frod)y |-
e)

3. Set

w1 = (f — fro dig1) o

4. Set fk+1 = fk —+ Dék+1dk+1.

5. If a suitable stopping criterion is fulfilled: stop.
Otherwise: increase k by 1 and return to step 2 of the algorithm.

In analogy to the convergence results for the PGA, Temlyakov [167] also proves the
following result for the WGA.

Theorem 3.4 (Convergence of the WGA). Let (fi)ien, be the sequence of approx-
imations generated by the WGA to approximate f € &, let ¢ € (0,1], and let
span% = X .

Then fi — f (k — c0) and

1f = fillar < 1f] gy (1 +ke?) ¢/ 4+20), (3.2)

Note that we stated a simplified version of the algorithm here. In the original paper,
¢ did not need to be constant throughout the iteration, instead a sequence (0x)xen, of
weakness parameters can be used. Aslong as the sequence fulfills

oo%:oo
L

one can ensure convergence of the algorithm and the convergence rate in Eq. (3.2)
still holds if the term ko? is replaced by Z}‘:l Q?-.

One property of greedy algorithms that is important to notice, is that they are
nonlinear. That is, the sequence (f;)ien, Of approximations of a sum f + g of
functions that is, for example, generated by the PGA, is not the sum of the sequences

(fi)kenys (8k)ken, of approximations of f and g, respectively.
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V. N. Temlyakov and several other authors developed multiple other versions
of greedy approximation algorithms, which were all based on the general idea
presented above. This includes, for example, the (Weak) Relaxed Greedy Algorithm
(see DeVore and Temlyakov [32] and Temlyakov [167]), the Approximate Greedy
Algorithm (see Gribonval and Nielsen [67]), and the Thresholding Greedy Algorithm
(see Dilworth et al. [34]). The application of greedy algorithms to approximation
in Banach spaces was studied in Temlyakov [168] using the Chebyshev Greedy
Algorithm. Algorithms of greedy type were also applied in machine learning (see,
e.g., Barron et al. [14]).

Finally, the idea of greedy algorithms and matching pursuits was applied to lin-
ear inverse problems by Fischer [45], Fischer and Michel [46], Gutting et al. [70],
Michel [123], Michel and Orzlowski [126], Michel and Telschow [127, 128], and
Telschow [166] yielding the Regularized Functional Matching Pursuit (RFMP) and
the Regularized Orthogonal Functional Matching Pursuit (ROFMP) algorithms. The
RFMP is a version of the MP and the PGA, whereas the ROFMP is an analogy to
the OMP and the OGA. We will discuss the REMP in more detail in Chapter 8, since
in Chapters 9 and 10, we will derive new generalizations of these algorithms. In
particular, the RWFMP in Chapter 9 will be an application of the WGA to linear
inverse problems, whereas the RFMP_NL in Chapter 10 will be an MP/PGA-style
algorithm for nonlinear inverse problems.
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Part 11.

A greedy algorithm for density estimation
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Chapter 4.
Fundamentals of probability theory and statistics

In Chapter 5, we want to apply the idea of greedy algorithms to the problem of the
estimation of probability density functions (PDFs). For this purpose, we will first
summarize some basic results of probability theory in this Chapter 4. Then, we will
review standard procedures for the estimation of probability density functions and
the sampling from arbitrary probability distributions.

4.1. Basics of probability theory

We assume that the reader is familiar with the basics of measure and integration
theory (see, e.g., Bauer [15]). For the basics of probability theory, we stick to the
presentation in Pestman [144]. Note that we will mainly concentrate on Ri-valued
random variables for some d € N in this section. In the end, we will shortly comment
on how to transfer the presented concepts to S?1-valued random variables, which
are important for the application that we will present later on. We begin with the
definition of a probability space.

Definition 4.1. Let (2 be a sample set, let 2 be a c-algebra of subsets of (2, and let P
be a probability measure on 2(, where

a) a sample set (2 is the model for a set of outcomes of a probability experiment,
whose subsets are called events,

b) a o-algebra 2A C PB(Q2) of subsets of (2 fulfills the three conditions

i) Qe
ii) forall A € 2, we have 2\ A € 2, and
111) if (Ak)kENo Q Q[, then UkGNo Ak € Ql,

c) a probability measure P: A — [0, c0) on A is a measure that fulfills P(Q2) = 1.
Then the triplet (2,2, P) is called a probability space.
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Chapter 4. Fundamentals of probability theory and statistics

A particular -algebra on (2 := R is the collection B¢ of Borel sets. It is defined as the
smallest o-algebra that contains all open subsets of R?, that is,

%d = m Ql/
A is a o-algebra
O(RY)CA

where O(R?) is the family of all open sets of R?. Any element of B¢ is called a
Borel set, any measure on B is called a Borel measure, and any measurable function
f: R? — RP for p € Nis called a Borel function.

For A C (2 and an integrable function f: (2 — R, by

[, £(x) dP()

we denote the integral of f over A with respect to the measure PP as it is usually
defined in integration theory.

Often, it is not possible to observe events (i.e., subsets of the sample space) di-
rectly in the real world. Therefore, one introduces the concept of random variables,
which make it possible to describe also indirect outcomes of probability experi-
ments.

Definition 4.2. Let (2,2, P) be a probability space and let X: 2 — R be a function.
If we have X! (A) € A for every Borel set A C R?, we call X an R?-valued random
variable.

We can obtain a Borel measure on R4 by
B35 A P(X € A) = Px(A) = P(X*l(A)),
which is called the probability distribution of X.

It is easy to see that for a random variable X, the triplet (R?, B¢, Px) is a probability
space. Due to the difficulty of observing the sample space (2 itself, (Rd, B, IP’X) is
often the only space that is considered in probability theory. This is the reason, why

we often omit the argument of X and also ignore the underlying probability space
(Q,2,P).

From measure and integration theory, it is well known that there exist measures
that cannot be rewritten as a Lebesgue integral (but of course as an integral with
respect to the measure itself). In the following, we do not want to consider such
measures, since we want to estimate probability density functions. In consequence,
we introduce the notion of absolutely continuous measures.
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Definition 4.3. Let (R?, %, P) be a probability space. The probability measure P
is called absolutely continuous with respect to the Lebesgue measure A if for every set
A € B wehave A(A) = 0= P(A) = 0. We write P < A.

By the Radon-Nikodym theorem (cf. Bauer [15, Theorem 17.10]), this is equivalent to
the existence of a probability density function. For the considered case of a random
variable, we can define the latter as follows.

Definition 4.4. Let X be an R-valued random variable such that Px < A (we
say that X has an absolutely continuous probability distribution). Then a function
f: R% — [0, 00) that fulfills Px = f A is called a probability density function (PDF) of
X.

Note that the PDF is uniquely determined almost everywhere (i. e., two PDFs of the
same distribution may only differ on a null set).

We denote the relation between X and f by X ~ f.

Presuming an absolutely continuous probability distribution of X with a PDF f, a
simple application of measure and integration theory yields

P(X € A) = / F(x) dx
A
for every Borel set A € . Note that this implies
— dy _ dy _
Rdf(x)dx_IP<XER ) _IPX<R ) =1

from the fact that Px is a probability measure.

If dealing with multiple random variables, two important concepts are the identical
distribution and independence of these random variables.

Definition 4.5. Let X1, ..., Xy be R?-valued random variables with X,, ~ fn for
probability density functions f,: RY — [0,00) foralln = 1,...,N. Then,

a) Xi,...,Xy are called independent, if we have for the (Rd)n—valued random
variable X = (Xj,..., Xy) that

X~f,

where

f: (Rd)N—>[O,oo), f(xl,...,xN)::INIfn(xn), X1,...,xy €RY,

n=1

is the joint probability density function of Xj, ..., Xn.
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Chapter 4. Fundamentals of probability theory and statistics

b) X, ..., Xy are called identically distributed, if Px, = Px, holds. In other words,
if we have f,, = f,, almost everywhere foralln,m =1,...,N.

If both a) and b) are fulfilled, we call Xy, ..., Xy independent and identically distributed
(i.i.d.).
Another important term in probability theory is the expectation, which will also be

needed later on.

Definition 4.6. Let X be an R?-valued random variable and g: R? — R a Borel
function such that

13601 dPx(x) < oo
Then

E(g(X)) = [ 8(x) dPx(x)
is called the expectation of g(X).

If X ~ f, we obtain

E(g(X)) = /Rdg(x)f(x) dx.

If f € L1(RY), a sufficient condition for the existence of E(g(X)) is consequently
that ¢ € LP(R?) holds for % + % = 1, since then we have

[ gl dPx(x) = [ 1G] FG) dx < glusqey |l < o0 4.1)
by Holder’s inequality.

An important result of probability theory that we will employ in the derivation
of a greedy algorithm for the estimation of a PDF is the strong law of large num-
bers.

Theorem 4.7 (Strong law of large numbers, cf. Pestman [144, Theorem VII.2.14]). Let
(Xn),en be a sequence of i.i. d. R-valued random variables such that u = E(X;) <
[coN

Then the sequence (Sy)nen of means, that is,

1 N
Sn==) X
N N —~ n

n
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4.2. Kernel density estimators

converges strongly (or almost surely) to y, that is,

2 (im s =n) =1

which means

P({we()‘]\lliglosz\](w):y}>:1.

Thus, in a certain sense, Sy is an approximation of y.

The preceding concepts can easily be transferred to the case of S*~!-valued random
variables. Analogously to the R-valued case, the Borel algebra on S¢! is defined
as the smallest o-algebra that contains all open subsets of S*~!. Note that, in this
case, “open” has to be considered in terms of the subspace topology, that is, a subset
of S~ is open if it is the intersection of an open set in R? with S~1. Using the
so-defined Borel algebra, all definitions above can be transferred to the S9-1.valued
case directly.

4.2. Kernel density estimators

An important problem in statistics is to find the probability distribution of a given
sample of random variables Xj, ..., Xy ~ f, where the PDF f is initially unknown.
Thus, it is desirable to determine a so-called estimation f of the PDF f from the
given sample of data. Standard techniques to solve this problem are, for example,
histogram estimators and kernel density estimators (KDEs). As in the previous
section, we will first present the classical R-valued case and transfer the result to
multiple dimensions and the sphere later. For this purpose, let Xj,...,Xx ~ f bea
set of i.i.d. R-valued random variables and xi, ..., xy be the outcome of a single
probability experiment (i. e., deterministic variables) such that x,, corresponds to the
outcome of the random variable X,, forn =1,...,N.

A simple method to obtain an estimate f is the so-called empirical density function,
which is defined as

) = M2 =)

(cf. Pestman [144, Section VIL.12]). Since { x1,...,xx } is a null set, it is obvious that
this is no reasonable PDF of an absolutely continuous probability distribution, be-
cause [ f(x) dx = 0. The reason is that the empirical density function is a so-called
discrete probability density, that is, it corresponds to a linear combination of Dirac
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measures. To overcome this problem, one introduces methods that can be described
as smoothed versions of the empirical density function.

Histogram estimators are based on the eponymous method to display data graphi-
cally. For real-valued random variables, the real line is divided into arbitrary equally
sized subintervals and the resulting estimator is piecewise constant on these inter-
vals, taking the value that corresponds to the fraction of all data points that fall
into the specific interval. According to Hardle et al. [76, Chapter 3], the histogram
estimator possesses several drawbacks, including the discontinuity of the estimated
probability density function.

A continuous alternative are so-called kernel density estimators, which were first
introduced by Parzen [140]. To introduce these estimators, we first have to define
the notion of a kernel.

Definition 4.8 (cf. Pestman [144, Section VII.12]). A kernel k: R — R is a function
that fulfills

a) k(x) > 0and k(—x) = k(x) forall x € R,
b) k is continuous and limy_,« k(x) =0,
o) Jpk(x)dx=1.

Having defined a kernel, we are now able to construct kernels of different so-called
bandwidths i > 0 by

Ky (x) == %k(%)

We can prove the following results.
Theorem 4.9. The family of kernels { k;, | h > 0 } fulfills:

a) ky(x) >0forallx € Randallh > 0,
b) [z kn(x)dx =1forallh >0,
c) for every constant ¢ > 0, we have limy,\ ffc kp(x)dx = 1.

Proof. Part a) is obvious, since k(x) > 0 for all x € R by Definition 4.8a).

Part b) can be seen by a change of variables t = 7:

/IRkh(x)dx:/Z;lk(z) dx:/o;:lk(t)h dt = [ k) dr =1,

due to Definition 4.8¢).
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4.2. Kernel density estimators

Part c) can be proved as follows: we again use a change of variables, part b), and
employ the symmetry of k to obtain

/Cckh(x) dr—1-2 /;;k(t) dt.

The latter integral has to converge to 0 for i N\, 0, since k € L!(R). [

It is remarkable that these properties also arise in approximation theory and Fourier
analysis, where approximate identities are considered (cf. Grafakos [64, Section 1.2]).
The linkage is the fact that the Dirac measure in measure and probability theory
can be identified with the Dirac J-distribution, which is studied in Fourier analysis.
Actually, the idea of approximate identities is the approximation of the Dirac distri-
bution by a sequence of smooth functions, which is similar to the idea behind kernel
density estimators. Another fact that shows the similarity of KDEs and approximate
identities is the following theorem.

Lemma 4.10 (cf. Pestman [144, Lemma VIL.12.3]). Let { kj, | 1 > 0 } be a family of
kernels as defined above. If x € R is a point of continuity of g: R — R, then we
have for the convolution

(ki % 2)( / k(x — ) g(t) dt
that
fim by ) () = (2
holds.

After these preparations, we can now define kernel density estimators on R.

Definition 4.11. Let Xj,..., Xy ~ f be a set of R-valued random variables. Then
for a given bandwidth & > 0 the kernel density estimator f,(X,..., Xy) is defined as:

R 1 N
Fu(Xa, o, Xn) () = 5 ) n(x = Xa),
n=1

which strictly speaking is a random function itself (because it depends on the
random variables X7, ..., Xy).

For a specific outcome x1, ..., xy € R of the probability experiment (e. g., a given
data set), the estimator

N
fh(xll---, = Z x—xn
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is a deterministic function.

We will often omit the dependency on Xj, ..., Xy and x1, ..., xy, respectively, if no
confusion is likely to arise.

Note that fh indeed is a PDF, since
N

[Lhwae= [ 5 Shtr-sde= g ¥ [ s as

=1
1 N g 1 N 1
= — kn(x)dx=—YY 1=—-N=1
anl/_oo W de =g L 1=gN=1

by the linearity of the integral, a change of variables, and the normalization of the
kernels k;,.

We quote the following theorem, which is the main result about KDEs in statistics.

Theorem 4.12 (cf. Pestman [144, Theorem VII.12.5]). Let (X,),cn be a sequence of
R-valued random variables such that X,, ~ f for all n € N. Moreover, let (hy)nen
be a sequence of bandwidths such that

lim hy =0, lim N K% = .
Noe' N NDe N T
Then we have

Fig (X1, Xn) (%) = f(x)

for N — co in probability.

In this theorem, the convergence of a sequence (Yn)nen of random variables to a
random variable Y for N — oo in probability means that

lim P(|Yy — Y| >¢) =0
N—oco

for all ¢ > 0. Amongst other results from probability theory, the proof relies on
Lemma 4.10, which again highlights the importance of the fact that the family
{ky | h > 0} of kernels also forms an approximate identity.

Theorem 4.12 can be interpreted as follows: if the bandwidth is chosen in a proper
way in dependence of the number of data points N, then the kernel density estimator
fu(Xy,...,Xy) is a good approximation of f (in a certain sense) if the size of the
sample N is large. The conditions on the sequence of bandwidths can be motivated
from the fact that they yield asymptotic unbiasedness and an asymptotic vanishing
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variance of the estimator, which are desirable properties in estimation theory. We
do not want to go into further detail here. We refer to Pestman [144, Section VII.12]
for more details. It remains to say that Theorem 4.12 only gives an asymptotic
result. If a fixed number N of observations is given, it is not trivial to choose the
bandwidth. For that reason, we will later on choose a bandwidth more or less
arbitrarily. An overview of different methods for bandwidth selection in density
estimation can be found in Jones et al. [93]. Note that this dilemma is similar
to the choice of a regularization parameter in the solution of ill-posed inverse
problems.

On the real line, another possibility for the estimation of a probability density is to
take the empirical distribution function and use a finite difference approximation of
the PDF (cf. Rosenblatt [154]), which is reasonable since analytically the PDF is the
derivative of the distribution function. The drawback of this strategy is that it cannot
be easily transferred to the multivariate or spherical case due to the non-existence of
a distribution function. A distribution function doesn’t exist in these cases because
R4 and S?~! are not ordered sets. The same is true for the histogram estimator since
one needs a suitable partition of the space at hand, where it would be desirable that
it consists of subsets of equal area. This is of course possible in the multivariate case,
but not that simple in the spherical case (for a viable solution see Gorski et al. [63]).
In contrast, kernel density estimators can be applied more easily in these cases such
that KDEs are superior to both of the other methods.

Transferring KDEs to the sphere is pretty straight-forward and has first been done
by Hall et al. [74]. Here, the most important difference is that in the definition of
kernel density estimators the distance x — x;, for x, x, € R is replaced by the inner
product ¢ - ¢, for ¢, ¢, € S?-1. This is reasonable since the inner product of two unit
vectors measures their distance. This is due to

16— Cul> = 2P 28 Eu+|Eal> =228 &0

Consequently, motivated by Definition 4.8 and Theorem 4.9, the definition of a
kernel and the kernel density estimator on the sphere are as follows. Note that
we also let no longer tend the bandwidth parameter to zero, but to one. This is
done in preparation of the fact that we want to use the so-called Abel-Poisson
kernel later, which exactly possesses this parametrization and fulfills the following
definition.

Definition 4.13. A family {k, | h € (0,1) }, k,: [-1,1] — R is called a family of
spherical kernels if

a) ky(t) >0forallt € [-1,1],
b) de_l ky(n-&)dw(g) =1forallh € (0,1)and 5 € Sé-1
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c) for every constant c € [—1,1), we have

lim

B e g e P01 9 2000) =

for all 4 € S*1.

Also in the spherical case, one can find a connection of these families of spherical
kernels and approximate identities (see Freeden and Hesse [55, Section 2, especially
Theorem 2.3(v)]).

Based on this definition of kernels, we can now introduce spherical kernel density
estimators.

Definition 4.14 (cf. Hall et al. [74]). Given a set &y, ...,Ex ~ f ofi.i.d. S?1valued
random variables and a family of kernels { k;, | h € (0,1) }, the associated kernel
density estimator is defined as

1 N
fh(El,.‘.,EN)(C) = N Z kh(En C)
n=1

Like in the real-valued case, for a fixed observation ¢1,...,¢n of Eq,..., 2N, we
define
1 N

Ful@r - a) @) = 5 X KalGn - ©).

n=1

Hall et al. [74] have proved results similar to Theorem 4.12 for spherical KDEs.
Since this is not the focus of this work, we refer to this reference for further de-
tails.

4.3. Sampling from probability distributions on the real line
and the sphere

An important task in computational statistics is the generation of non-uniformly
distributed random variables, which is called sampling from a given distribution.
There exists a vast amount of univariate and multivariate probability distributions
that one can sample from, and for each distribution there might be several differ-
ent methods (for an overview, see the book of Devroye [33]). Unfortunately, most
methods are tailored specifically for a certain distribution and cannot be transferred
to other probability distributions. Only some methods can be applied to almost
arbitrary distributions. One of them is rejection sampling, which we will present in
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this section, since it can also be used to sample from a PDF on the sphere. Since
rejection sampling relies on the ability to sample from at least one other distri-
bution, we first consider briefly the generation of uniform random variables on
the real line and on the sphere. We will then discuss how the rejection sampling
method can be used to transform uniform random variables to non-uniform random
variables.

At first, it is to say that, in general, computers can only generate so-called pseudo-
random numbers, that is, the generated numbers pass several statistical tests for
randomness, although they are generated by a deterministic procedure (cf. Nieder-
reiter [137, Section 7.2]). For the sake of simplicity, we will use the term random
in the following, even if, technically, we should use the term pseudo-random in-
stead.

4.3.1. Sampling from the uniform distribution

A very popular method for the generation of uniform random numbers on a real
interval [a,b) is the linear congruential method (cf. Niederreiter [137, Section 7.3]).
Without going into too much detail, we pursue the idea to first generate a sequence
of discrete uniformly distributed random variables from the set { 0,..., M —1 } for
some M € N and to rescale the result to the desired interval. The discrete random se-
quence (Y, )nen, € {0,..., M — 1} is obtained by the recursion

Ynt1 = (ayn +c) mod M,

for n € Ny, starting with a so-called seed value yp € {0,..., M — 1 } and prescribing
the parameters a and c. The correct choice of these parameters is a crucial ingredient
for the quality of random numbers generated by the linear congruential method.
Since nowadays in every programming language there are random number genera-
tors available, which perform very well, we do not go into further detail here, but
rely on these well-tested implementations.

Generating uniformly distributed S?~!-valued random variables can be done in
different ways. We only present the following method for S?, which has been
derived by Marsaglia [116] and is also used in the GNU Scientific Library (cf. Galassi
et al. [62]), since we will use this library in the implementation. The method works
as follows. First, sample two random variables Y3, Y, from the uniform distribution
on the interval (—1,1) (for example, by the linear congruential method mentioned
above) until the pair (Y3, Y2) fulfills S := Y7 + Y7 < 1. This actually yields random
points that are uniformly distributed over the unit circle in R?. Consider the random
vector X = (2 Yiv/1—-S5,2Y,y/1—-5,1-2S§ ) . This random vector is then uniformly

distributed on the unit sphere in R.
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4.3.2. Rejection sampling from arbitrary distributions

As common throughout this chapter, we first present the basic idea of rejection
sampling (also called acceptance-rejection method) for the real-valued case. We base
our considerations on the presentation in Devroye [33].

Let f: R — [0, 00) be a probability density function on R from which the generation
of samples is desired. Rejection sampling in general needs the knowledge of another
PDF g that dominates f such that f < cg for some constant ¢ > 0. Since it is
the relevant case in our implementation, we restrict ourselves to the case that f
is defined on an interval [a,b] and g is the density corresponding to the uniform
distribution on this interval, that is, we assume that f is (essentially) bounded. The
following theorem provides the theoretical justification for the method of rejection
sampling.

Theorem 4.15 (cf. Devroye [33, Theorem 3.1]). Let X ~ f be an [a, b]-valued random
variable and let U be a random variable that is uniformly distributed on [0, 1]. Then,
the R?-valued random variable (X, U f(X)) is uniformly distributed on the set

Ar={(x,u)|x€cab], 0<u<f(x)}.

On the other hand, if (X, U) is an R?-valued random variable uniformly distributed
on Ay, then X ~ f.

In consequence, if we are able to obtain a sample from the random variable (X, U)
that is uniformly distributed on Ay, the first component is a sample from the distri-
bution on [a, b] with PDF f. In practice, a sample (x, u) of (X, U) can be obtained by
first generating a sample (¥, i) from a uniform distribution on

A={(wt|yelo1l, 0<t<C}

for some upper bound C > 0 of f, which can be easily done by sampling from
the uniform distribution on [0,1] and [0, C], respectively. If i < f(%), the sample
is accepted and (x, u) is taken as a sample from the uniform distribution on Ay. If,
on the other hand, 7 > f(%), the sample is rejected (hence the name of the method)
and the generated pair is not taken into account for the samples from the uniform
distribution on Ay.

Replacing the interval [0,1] by the sphere S?, the generation of samples from a
random variable = ~ f: §? — [0, 0) is based on the generation of a uniform sample
(¢, u) on the set

A={(Gu)|¢eS, 0<u<f(x)}.
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Analogously, this can be done by generating a sample (&, i) € S? x [0, C] from the
uniform distribution on

A={(n|nes, o<i<c)

first and perform the same rejection strategy as above. Since methods for generat-
ing uniform distributions both on S? and [0, C] are well-known (see Section 4.3.1)
and implemented in well-established software (like the already mentioned GNU
Scientific Library), sampling from the uniform distribution on A can easily be accom-
plished both in theory and in practice. Note that the efficiency of rejection sampling
depends heavily on the quality of the upper bound C. If C is chosen too large, a
lot of samples from A are rejected. This is the reason why the next section deals
with the determination of an upper bound in the case of a probability density that is
given by a kernel density estimator.

4.3.3. Sampling from kernel density estimators

A problem that we are concerned with is to sample from a PDF f;,: S* — [0, c0) that
is given by a kernel density estimator using the rejection sampling method. The
considerations in the previous section suggest that an upper bound C of the PDF
is needed. Again, we first look at the one-dimensional case, since we can reuse the
result for the spherical case.

Recall that the kernel density estimator for samples x1, ..., xy of real-valued random
variables Xj, ..., Xy is given by

N
frn(x1,...,xN Z (x —xn), x €R,

where kj,: R — [0, ) is a kernel function. The easiest rigorous way to achieve an
upper bound for f, is using the triangle inequality to obtain

N 1 N N
fh<x)‘: Nzkh(x_xn < = Z X—Xn
n=1 n=1
N
<5 ZHthc ’thc = Cui (4.2)

for all x € R. Itis easy to see that, in general, this upper bound is much too large,
since we have fh(x) = Cyi for some x € Rifand only if x, = xforalln =1,...,N
if we choose a kernel that attains its maximum only at 0 and this is the case for most
of the kernels that are typically used.
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Therefore, we apply a different strategy for the determination of a bound for f;,
which we could not find in the existing literature. We again restrict ourselves to the
case of [a, b]-valued random variables. The idea is the following: the optimal upper
bound of the kernel density estimator would be sup...(, ;s fu(x), which cannot be
easily determined due to the uncountability of [a, b]. What can be easily determined
by evaluation of the KDE, is the term max;cr, f,(t) for a given finite set of points
Tx == {t1,...,tx } C [a,b]. Intuitively, one would expect that under suitable
assumptions on the kernel function kj, and by using a sufficiently dense grid Tk, the
maximum of the function on T is a good approximation of the supremum on [g, b].
We will quantify this intuition in the following for real-valued functions on [a, ]
and will afterwards apply the result to the KDE. Furthermore, we will consider the
spherical case afterwards.

We denote by Ok := maxyc(p) minsey |x — | the nodal width of the point set T (cf.
the spherical setting in Freeden [51], Freeden et al. [53, Section 6.2], and Michel [122,
Section 6.3]). The following theorem gives an answer to the risen question for
Lipschitz continuous functions.

Theorem 4.16. Let g: [2,b] — R be an arbitrary Lipschitz continuous function, that
is,

lg(x) —8(y)| < L|x—yl|

for all x,y € [a,b] and some constant L > 0. Let Tx C [4, b] be a finite set of points
and let @k be its nodal width. Then,

< B+ LOx.
max [g(x)| < max|g(t)] + L Ox

Proof. Let x € [a,b]. Then by the definition of O there exists t, € Tx such that

|x — tx| < Ok. (4.3)
Thus,

8(xX)| = Ig(t)[| < 18(x) —g(tx)| < L|x — taf < LOKk

due to the reversed triangle inequality, the Lipschitz-continuity of g and Eq. (4.3).

It follows that

§(x)[ < [g(tx)[ +LOK < I}é%?lg(f)l + L Ok (4.4)

and since x € [a,b] was chosen arbitrarily and the right-hand side of Eq. (4.4) does
not depend on x, we obtain the desired result. [ |
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We can apply this result to KDEs.

Corollary 4.17. Let f}, be the kernel density estimator defined by Definition 4.11 with
respect to given observations xy, ..., xxy € [a, b] of the [, b]-valued random variables
Xi,..., XN ~ f and let the kernel kj, be Lipschitz continuous with Lipschitz constant
L > 0. Furthermore, let Tx C [a, b] be a finite set of points with nodal width O.

Then,

fu(x) < fu(t) + L Ok.
max fu(x) < max fult) + L Ok

Proof. It is well-known that the linear combination of Lipschitz continuous functions
is again Lipschitz continuous and a Lipschitz constant of the linear combination is
given by the linear combination of the Lipschitz constants (cf. Eriksson et al. [43,
Section 12.5]).

Therefore, a Lipschitz constant L. of f, is given by

i—ﬁlL—NlL—L
_nle N

A combination of this result and the non-negativity of f, with Theorem 4.16 proves
the proposed inequality. n

The following simple example shows that the upper bound that one obtains by the
application of Corollary 4.17 is much smaller than the one obtained by applying the
triangle inequality (see Eq. (4.2)).

Example 4.18. Let the kernel k: R — [0, o0) be given by
1+x, -1<x<0,

k(x)=<1—x, 0<x<1,

0, otherwise.

It is easy to see that k is actually a kernel as defined in Definition 4.8. For a visualiza-
tion of this kernel, see Figure 4.1.

In this example, we assume that the observation x; = 1,x, = 2,x3 = 3 of i.i.d.
[0,4]-valued random variables X, X», X3 ~ f is given and that we construct the
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Figure 4.1.: Visualization of the kernel used in Example 4.18.
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Figure 4.2.: Visualization of the kernel density estimator from Example 4.18.

kernel density estimator f;(x1, x2, x3) with i = 1. The KDE can be analytically
computed to be

3 0<x<1,
Al x,xs)(x) =<1, 1<x<3,
£ 3<x<4

and the optimal upper bound is thus Copt = % A visualization of the resulting KDE
can be found in Figure 4.2.

It is easy to see that [|k1[|cr) = [|k|c(r) = 1 such that by the triangle inequality, we
obtain the upper bound

Ctl‘i - 1/
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4.3. Sampling from probability distributions

which is much larger than Cpt.

To obtain an upper bound by the application of Corollary 4.17, we define an equally-
spaced grid Tx;1 = { b = % ‘ k= 0,...,K} such that O, = % If K > 2 there

always exists a point t € Tx1, where f(t) = 1 such that

R 1
) = —.
max fi(t) 3

Since it is piecewise differentiable, a Lipschitz constant of the kernel k; is given by
the maximum value of the piecewise defined derivative, that is, L = 1. Thus, we
obtain by Corollary 4.17 that

2
+ - = Ceval,K/

max fl(x) < T

x€[04]

W -

depending on the number of points K. Since the second summand tends to zero for
K — oo, we can obtain an upper bound arbitrarily close to Copt by choosing K large
enough.

For example, we have Ceyaix = % already for K = 12, which is a much better

estimate for the upper bound than Cy;.

We return to the spherical case. Analogously to the real-valued case, we call a func-
tion g: S*~1 — R Lipschitz continuous with Lipschitz constant L, if

18(¢) —g(m)| < LI —n|

forall ¢,y € S?-1 (cf. Freeden and Schreiner [58, Section 2.4]). For a given finite
point set Tx C S?-1 we define the nodal width similar to the real-valued case by
Ok = maxgcge-1 Mingery [¢ — T/

With these definitions, the proof of Theorem 4.16 can be directly transferred to the
spherical case.

Theorem 4.19. Let ¢: S*~! — R be an arbitrary Lipschitz continuous function with
Lipschitz constant L > 0. Let Tx C S?-1 be a finite set of points and let Ok be its
nodal width. Then,

grgggﬁlg(ef)! < max|g(7)[ + L Ox.

To obtain a result like Corollary 4.17 for the spherical case, we have to determine the

Lipschitz constant of a kernel function on the sphere. Let k,: [—1,1] — [0, ) be an
element of a family of spherical kernels according to Definition 4.13 that is Lipschitz
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continuous with Lipschitz constant L. Note that Lipschitz continuity is considered
on R here. For fixed { € S9-1 we obtain

k(8- 8) —kn(n-O)| < LIG-T—n-]
=L|(&—n)-Z <LIg—n[|g]=L|¢—7]

due to the Lipschitz continuity of k, and the Cauchy-Schwarz inequality. This proves
the following lemma.

Lemma 4.20. Let kj,: [—1,1] — [0, o) be an element of a family of spherical kernels
that is Lipschitz continuous with Lipschitz constant L. Then for fixed { € S971,
the spherical function ¢ — k(¢ - {) is also Lipschitz continuous with the identical
Lipschitz constant L.

Finally, we obtain the following result in analogy to Corollary 4.17 for the KDE given
by Definition 4.14.

Corollary 4.21. Let f;, be the KDE defined by Definition 4.14 with respect to given ob-
servations &1, ...,¢n € S71 of the spherical i.i. d. random variables =y, ..., Ex ~ f.
Let the kernel kj,: [—1,1] — [0, c0) be Lipschitz continuous with Lipschitz constant
L > 0. Moreover, let Tx C S?~! be a finite set of points with nodal width @k. Then,

f(F) < f L 6.
Crengadﬁfh(é) < gé%?fh(f)‘F K

The proof consists of the computation of a Lipschitz constant of f;. This can be done
exactly like in the real-valued case.

In conclusion, we see that we can determine the maximum value of a kernel density
estimator on the sphere to arbitrary precision by evaluating the KDE on a grid that
is fine enough. For this purpose, we have to determine the Lipschitz constant of the
real-valued kernel function kj, and the nodal width of the set of grid points, which
may be done easily for a given kernel and point set.

Thus, for sampling from a kernel density estimator, the upper bound used in re-
jection sampling can be determined in the way presented above. Unfortunately, it
may be the case that the number of evaluation points may be very high. However,
this is actually only a minor problem when using rejection sampling, since the
upper bound needs only to be determined once, whereas a worse upper bound
(for example, determined by the triangle inequality) affects the performance of the
sampling method in the generation of every single sample. In consequence, as long
as the number of desired samples is high, the computational costs for determining
the upper bound are worth it.
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Chapter 5.

A greedy algorithm for the estimation of
probability density functions

In this chapter, we will introduce a new greedy-type algorithm for the estimation
of probability density functions (PDFs). We will apply the algorithm to a data set
of fiber directions of a so-called nonwoven fabric. The output of the algorithm—a
sparse approximation of the distribution of fiber directions—will be used in an
elementary algorithm for the simulation of such technical textiles. Parts of this
chapter have already been published in Gramsch et al. [66].

5.1. Greedy algorithms in statistics

Before introducing the newly developed greedy algorithm for the estimation of a
probability density function, we want to give a literature review of the application
of greedy algorithms in statistics and we want to demonstrate how the proposed
algorithm will differ from established methods. Actually, in the retrospective view,
it turns out that greedy algorithms have been developed in approximation theory,
signal processing, and statistics, independently. The most widely known method
of this type in statistics is projection pursuit regression (PPR), which was developed
by Friedman and Stuetzle [60]. As the name suggests, the method deals with the
statistical problem of regression. This means that given observations x1,...,xy € R
and y € R of real-valued random variables Xj, ..., Xy and Y, respectively, one is
seeking a so-called predictor function f: RN — R such that

y=f(x1,...,xn) +¢&

where ¢ is an error-term (cf. Sen and Srivastava [162, Section 1.3]). The most widely
used technique for regression is linear regression, especially using the ordinary least
squares estimator, which is no more than assuming that f(x) = a- x for x,a € RN and,
given enough data points, solving the resulting over-determined system of linear
equations by solving the normal equation (cf. Sen and Srivastava [162, Section 2.3]).
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Chapter 5. Greedy algorithm for the estimation of PDFs

Note that this is very similar to the field of linear inverse problems and several
problems arise in both fields, for example, overfitting.

In contrast to this standard procedure, PPR does not assume a linear predictor
function f, but generates f by a method that is similar to greedy algorithms. In more
detail, one generates an approximation fjs of f by a linear combination of some
so-called real-valued ridge functions s;, such that

M
ful®) = 1 onlan ), xeRY,

where s,,: R = R, a,, € RN. Given fum, the functions sy;;1 and the vectors ap;;q
are determined such that the resulting approximation far11 = fam + sy+1(ap1-) is
optimal in a certain sense. For the determination of the optimal choice of s,, and a,
Friedman and Stuetzle [60] use numerical optimization methods. For more details
on PPR, consider the vast amount of literature about this method, for example,
Friedman and Stuetzle [60], Huber [86], and Jones [92]. Important for us is the fact
that the problem at hand, density estimation, is not a regression problem and thus,
the PPR algorithm cannot be used for this purpose.

A greedy algorithm for density estimation called projection pursuit density estimation
(PPDE) has been presented in Friedman et al. [61]. This method is different from our
approach that will be presented in the following section. In PPDE, an approximation
fum of a given density function f is constructed by

M
fm(x) = fo(x) lillsm(am - X),

where the s,, are again real-valued ridge functions. The greedy strategy in this case
consists of finding sy;+1 and apr41 given fur such that fary1 = fa syt (an+1-) is
again optimal in a certain sense (maximizing the so-called Kullback-Leibler distance)
with the restriction that fj;1 should be a probability density function. As pointed
out in Friedman et al. [61], in the case where f is unknown, which is always the case
in real-world applications, again numerical optimization methods have to be used
to compute the next iterates.

There will be no need for using sophisticated iterative numerical optimization
methods in the iterations of the newly developed algorithm, which makes it superior
to PPDE.
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5.2. The greedy algorithm

5.2. The greedy algorithm

In this section, we will develop a greedy algorithm for the estimation of a probability
density function f: # — [0, o), which is based on a sample x1, ..., xy € A of i.i.d.
At-valued random variables Xj, ..., Xy ~ f. Here, /4 can be an arbitrary set that is
equipped with a Borel measure, for example, R, [a,b] fora,b € R,a < b, or S?-1 Let
furthermore X ~ f be another .# -valued random variable such that X, Xy, ..., Xy
are independent. In the following, we assume that f € L?(/) such that due to
Eq. (4.1) we have E(g(X)) < oo for every g € L2().

We will first motivate that in certain applications it might be advantageous to ap-
ply a greedy strategy to the problem of estimating a PDF. Assume that we have
a large number N of samples. According to Section 4.2, given a family of kernels
{ky | h > 0}, we can compute the kernel density estimator. The KDE is a sum of
evaluations of the kernel on N points. Thus, for every evaluation of the KDE we
have to evaluate the kernel N times. If we now want to generate new samples
that are distributed approximately according to f we can sample from the KDE
f instead, using the techniques presented in Sections 4.3.2 and 4.3.3. Unfortu-
nately, when using rejection sampling, it is necessary to evaluate the KDE multiple
times, depending on the quality of the upper bound and on the shape of the KDE
itself. The more candidates for a sample are rejected, the worse the situation gets.
Later, we will present computation times for the use of KDEs inside a rejection
sampling algorithm and it turns out that in a realistic scenario this will lead to a
computation time of days to weeks. Thus, determining a sparse estimation of the
PDF is desirable, since, depending on the degree of sparsity, computation times
can be drastically reduced when the sparse estimation is used inside a sampling
method. Since greedy algorithms yield sparse representations of functions, it is
straight-forward to apply a greedy strategy to the problem at hand. For details on
the computation times when using KDEs and sparse PDFs in the application, see
Table 5.1 in Section 5.4.5.

We do now try to apply the Pure Greedy Algorithm (PGA) (see Algorithm 3.1) to
the problem of density estimation. For this purpose, let

9 C {g € L?() 1812 qy =1 }
be a dictionary.

Recall that in the PGA, based on an initial approximation fy € L?(./ ), a sequence of
approximations of the PDF f is generated by virtue of the recursion

fe1 = fe + a1 i, k € Ny,
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where

a1 = (f = firdir1) -

= argmax‘(f — fo 2 u) |/
de9

The difficulty in the application of the PGA to the problem at hand lies in the com-
putation of the inner products in the determination of dy 1 and ay1. The problem
is that the PDF f is typically unknown (otherwise one would not need to estimate it)
such that the inner product (f — fi, d);» () for d € 9 cannot be computed. In more
detail, we can use the bilinearity of the inner product to obtain

(f = fod) o) = Frdh oy — S d)e ) (5.1)

Since fr = fo+ Z;-‘Zl «; d;, the latter inner product can be rewritten as
k
(forrzcuy = (fordziu) + 21 ai{dj, d) 24
]:

Thus, if the inner products ( fo,d>L2( ) is known as well as the inner products
(d,d")» () for arbitrary elements d, d' € 9 from the dictionary, then we can compute
the third inner product in Eq. (5.1) easily. The problem to compute the second inner
product in this equation remains. Since we do not have any values of the function f
or the evaluation of some operator applied to f at hand, methods like the REMP (cf.
Chapter 8) cannot be applied directly. Instead, we have only given data points that
are distributed according to the PDF that is to be approximated.

The key to overcome this difficulty is the strong law of large numbers (see Theo-
rem 4.7). We observe that for d € %, we have

(f Dz = [, A(x) £(x) dx = E(@(X)
such that, given the observations xi, ..., xn, we can approximate the inner product
by
1 N
frdheuy = E(d(X) = Y d(xn). (5.2)
n=1

Inserting this approximation into the PGA yields the following algorithm.

Algorithm 5.1 (Greedy algorithm for the estimation of PDFs). Let f € L?(.() be an
unknown probability density function, let X,..., Xy ~ f be /-valued random
variables, and let x1, ..., x5 € / be the corresponding observations. Let a dictionary
% C {g € LP(ll) | gl 2) = 1} be given.

Generate a sequence (fi)ken, of approximations of f iteratively according to the
following scheme:
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1. Set k := 0 and choose an initial approximation fy € L2( ).

2. Find a dictionary element dy; € 9 fulfilling the maximization property

1 N
dy,1 = argmax N d(xn) — (fr, d)Lz(m) . (5.3)
de% n=1
3. Set
1 N
M1 = 3 Y dira(xn) = (fo dira) 2 (54)
n=1

4. Set fir1 = fi + Qg1 g

5. If a suitable stopping criterion is fulfilled: stop.
Otherwise: increase k by 1 and return to step 2 of the algorithm.

We will note multiple times in this thesis that in theory we would expect a condition
on the dictionary like span% = L?(.# ). However, from the computational point of
view, this condition can never be fulfilled, since L? (. ) is infinite-dimensional and
thus, also 9 would have to be comprised of infinitely many elements and this cannot
be realized on computers. For a finite dictionary, the maximization in Eq. (5.3) can
be carried out by evaluating the term that is to be maximized for every dictionary
element and by choosing the dictionary element with the maximal value. Note also
that the maximizer in Eq. (5.3) does not need to be unique. In this case, we choose
one arbitrary maximizer among all available maximizers.

Note furthermore that it is still a challenge to find a suitable stopping criterion for
Algorithm 5.1. A first idea is to stop the algorithm if the error does no longer exceed
a prescribed bound. In the kth iteration of the algorithm, we can compute the current
erTor as

If = fellZay = IFIR20a) — 20 fidrocay + IfelF2 -

The latter term can be computed exactly, since f is a linear combination of fy and of
dictionary elements. The penultimate term could be approximated by the strong
law of large numbers like it was done in Eq. (5.2). Unfortunately, the first term
on the right-hand side of the equation cannot be approximated in any way, since
the PDF f is typically unknown. Hence, it is not possible to use the error as a
stopping criterion. Another idea would be to use the absolute value |a| of the
coefficients as a stopping criterion. In Figure 5.8 in Section 5.4.4, we will see that it
cannot be recommended to do so. Due to the stochastic nature of the problem, these
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coefficients are also equipped with a certain amount of noise. Stopping the iteration
as soon as the absolute value of a coefficients «; falls below a certain threshold may
consequently stop the iteration too early. In conclusion, it is very difficult to find a
stopping criterion for the iteration in Algorithm 5.1. In our numerical experiments,
we will simply stop after a certain fixed number of iterations, since there is currently
no better alternative.

We return to the spherical case, that is, # = S?-1 and remember Definition 4.14 of
a kernel density estimator in Section 4.2 for a given observed data set {j,...,{n €
S4=1. An obvious choice for a dictionary, which we will also use in the upcoming
application, is to put all the kernels that arise in the kernel density estimator into
the dictionary, that is,

D ={C—kyn-C)|n=1,...,N}, (5.5)

for a given kernel k,: [—1,1] — [0, o). The output of Algorithm 5.1 will then be a
linear combination of the kernels that also arise in the KDE. Different to the KDE, the
kernels are not combined with a weight of % each, but instead, more or less arbitrary
weights « are assigned to the kernels centered at the data points. Depending on the
stopping index, several of the kernels will not be chosen for the approximation of
the PDF at all. In the following, we will call a function

N
G Z :Bn kh(é{n : C)/
n=1

which might be generated by Algorithm 5.1, and where most of the coefficients
(Bn),—1,. N are zero, a sparse kernel density estimator, although technically it is no
longer a kernel density estimator in the strict sense.

The motivation for applying greedy algorithms to estimate a PDF was that KDEs
may lead to a very high computational effort when they are used inside a sampling
method. Of course, after introducing the greedy algorithm, the question arises if
this disadvantage of KDEs can be overcome by the application of Algorithm 5.1. If
the dictionary is given as in Eq. (5.5), in a naive implementation of the algorithm
the kernel kj, has to be evaluated N? times (namely, in every inner product x; - xs,
r,s = 1,...,N) in Eq. (6.3). Performing K iterations, this leads to K N? evalua-
tions of the kernel. Due to the symmetry of the inner product, this can be easily
reduced to (N + 1) N/2 evaluations, yielding KN (N + 1) /2 evaluations in total.
But still, at first sight, we have to evaluate the kernel very often to obtain a sparse
estimation of the PDF such that there seems to be no real advantage over the use of
KDE.
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However, looking at the algorithm more thoroughly, there is much space for opti-
mization. The empirical expectation value

1 N
N n;l d(xy), (5.6)

which is present in Eq. (5.3), does not depend on the iteration index k. Thus, it can
be computed once before starting the iteration and stored to be used in every step of
the iteration. Consequently, the computational effort for K iterations of the greedy
algorithm in total reduces from K N? evaluations of the kernel to N (N +1)/2
evaluations. Note that the values computed in Eq. (5.6) can also be used in Eq. (5.4)
such that this generates no additional computational effort.

Furthermore, it is clear that the greedy algorithm has to be applied only once per
data set to obtain a sparse estimation of the PDF. The pairs (ax, dx) € R x 9 can be
stored and reused every time the estimation is needed, for example, when using a
sampling method. On the other hand, when using a KDE in the sampling method,
the kernel has to be evaluated multiple times for the generation of one single sample.
This clearly yields a higher computational effort if many samples are needed. The
fact that the greedy algorithm needs only to be applied once makes it possible to
execute this algorithm on a powerful computer system to obtain a list of chosen
coefficients and kernels, and subsequently use a slower computer, for example, an
ordinary desktop computer, for sampling.

In principle, the dictionary can consist of many more types of functions other then
kernels. For example, orthogonal polynomials or wavelet basis functions could be
used. On the real line also a spline basis could be used (on the sphere this coincides
with kernels). Since, in general, these functions are not non-negative, it cannot be
guaranteed that the approximation, which is generated by the greedy algorithm, is
a PDF, since it may attains negative values. Of course, including only non-negative
dictionary functions does not guarantee a non-negative approximation since the
algorithm can choose negative coefficients. Nevertheless, this is one of the reasons
why we restrict ourselves to kernels in the dictionary. Furthermore, one could add
kernels with different concentration parameters / to the dictionary, which would
eliminate the necessity for a parameter choice method. However, we expect that
this could lead to problems with overfitting if kernels are included in the dictionary
whose concentration parameter is too close to 0 (in the real-valued case) or 1 (in the
spherical case) are present in the dictionary. Thus, we would only shift the burden
of the choice of one bandwidth to the choice of an appropriate bound for all of the
bandwidths of the kernels that are included in the dictionary. This is why we also do
not pursue this approach. Moreover, by including other functions than kernels, we
would lose the comparability to kernel density estimators, which is also a desirable
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property since these are a very well-established method in statistics. Furthermore,
we would ignore that kernels are also approximate identities, which also affects the
interpretability of the resulting estimator. Finally, dictionaries consisting of kernels
have been successfully used in other greedy algorithms, for example, when the
Regularized Functional Matching Pursuit and the Regularized Orthogonal Functional
Matching Pursuit has been applied to spherical inverse problems in Berkel et al. [18],
Fischer [45], Fischer and Michel [46—48], Michel [123], Michel and Telschow [127,
128], and Telschow [166], as well as in the kernel matching pursuit in Vincent and
Bengio [179] in the field of machine learning.

5.3. A synthetic example

In this section, we apply Algorithm 5.1 to synthetic data, in particular, points on
the sphere S2. For the Pure Greedy Algorithm, it is well known that it converges.
We derived Algorithm 5.1 by using an approximation by the strong law of large
numbers in Eq. (5.2) instead of the exact value that is used in the PGA. Thus, the
convergence results for the PGA cannot be applied to the presented algorithm. This
is the reason why we will empirically study the convergence of the algorithm using
this synthetic example.

As a kernel on the sphere, which we put into our dictionary, we choose the Abel-
Poisson kernel, which has already been introduced in Definition 2.27, and which is
given by

® 2041 11—
- T Am (14 K2 = 2ht)3/%

(5.7)

We choose the Abel-Poisson kernel for several reasons. First, from the computational
point of view, the Abel-Poisson kernel possesses several advantages over other ker-
nels on the sphere. In Theorem 2.36, we have already seen that every zonal function
on the sphere has a representation as a Legendre series, as long as it is in L2(S?).
Since we assumed in Definition 4.13 that kernels on the sphere are zonal functions,
this is also true in this application. However, many kernels on the sphere (e. g,
the Gauf$-Weierstrafs kernel or the Shannon kernel) only possess a representation as a
Legendre series, but there is no closed representation. In consequence, when using
such kernels in practice, one always has to truncate the Legendre series and probably
has a high number of summands. This may lead to a very high computational effort
due to the high number of kernel evaluations that is needed. The Abel-Poisson
kernel, however, possesses the closed representation in Eq. (5.7), which makes it
much cheaper to evaluate in the implementation.
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Secondly, we have already mentioned the similarity between families of kernels
for KDEs and approximate identities in Section 4.2 due to the similarity of the
Dirac measure to the Dirac J-distribution. The family of Abel-Poisson kernels
indeed is a Dirac family in LZ(SZ) (cf. Freeden et al. [53, Chapter 8], Freeden and
Schreiner [57], Freeden and Schreiner [58, Chapter 7], Freeden and Windheuser [59],
and Michel [122, Chapter 7]) and thus it is also an approximate identity. This is
the actual reason why we will use the Abel-Poisson kernel in the following. As
already mentioned in Section 4.2, we do not deal with the problem of bandwidth
selection for the Abel-Poisson kernel here. We choose /1 = 0.9 for the Abel-Poisson
kernels that we put into the dictionary, since the results seemed to be reasonably
good.

To create a synthetic example to test the convergence of the greedy algorithm, we
choose the PDF

£(&) = Qos(C- &), Fes?

such that the Abel-Poisson kernel is concentrated around the North Pole. From this
PDEF, we sampled a data set §y,...,¢x of thei.i.d. random variables Xy,..., Xy ~ f
by applying the rejection sampling method, which was described in Section 4.3.2.
Here, we chose to sample N = 10° points on the sphere. The density function and
a reduced data set with 2000 points can be found in Figure 5.1. This selection was
performed by choosing the 2000 points at random to overcome the difficulty that
the data set may be sorted in some way such that simply taking the first 2000 data
points would not create a representative figure.

Starting with fo = 0, we performed 10 000 iterations of the greedy algorithm to ob-
tain an approximation of the original PDF. In this synthetic case, it is possible to com-
pute the relative L*(S?)-error || f — fill2(s2) /|| f ]| 2(s2) explicitly, since

(Qul1), Qr(Z)) ia(eay = Qualn - 0)

(see Example 2.37). A semi-logarithmic plot of this relative error in the conducted
10000 iterations can be found in Figure 5.2.

For comparison with the upcoming real-world example, where we cannot compute
the approximation error, we also provide a plot of the absolute value of coefficients
|a| during the iteration in Figure 5.3.

In both figures, we observe a convergent behavior of the algorithm in these first
10000 iterations. It is natural that the error does not tend to zero if the number
of data points is fixed. This is due to the approximation in Eq. (5.2). Multiple
performed numerical experiments show that the number of data points influences
the convergence of the algorithm. The lower the number of data points is, the
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Figure 5.1.: Left: PDF from the synthetic example, an Abel-Poisson kernel with parameter
h = 0.6, centered at the North Pole.
Right: 2000 of in total 10° data points sampled from this PDF using rejection
sampling.
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Figure 5.2.: Semi-logarithmic plot of the relative L2(S?)-error || f — f l2(s2y/ I1f ”LZ(SZ) in the
first 10 000 iterations of the greedy algorithm, when it is applied to the synthetic
example.
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Figure 5.3.: Semi-logarithmic plot of the absolute values of the chosen coefficients in the
iterations of the greedy algorithm, when it is applied to the synthetic data set.

earlier the error stops to tend to zero, but instead remains static or even rises
again. This is plausible, since, having reached a certain level of accuracy, the
approximation can only be improved with additional information on the function
to be approximated. In this case, more information means more data points. The
dependence of the convergence on the number of data points is a possible subject of
future research.

5.4. An application: analysis and simulation of nonwoven
fabrics

Finally, we will conduct the analysis and simulation of so-called nonwoven fabrics,
using the greedy algorithm for the estimation of probability density functions, which
was presented in Section 5.2.

For this purpose, we will first describe the characteristics of nonwoven fabrics
and their production process as well as the need for its simulation. Then, we will
discuss existing simulation algorithms and why there is a need for a new simulation
algorithm. The simulation algorithm, which we present, will be based on a data
set generated by a CT scanner. The data set represents fiber directions inside a real
sample of a nonwoven fabric. After we have described this data set, we will present
the novel simulation algorithm, where there is a need to estimate the PDF of the fiber
directions. Thus, we apply both the greedy algorithm and the simulation algorithm
to the given data set. Note again that parts of the following considerations have
already been published in Gramsch et al. [66].
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5.4.1. Nonwoven fabrics

A nonwoven (or nonwoven fabric) is defined as “...a sheet of fibres, continuous
filaments, or chopped yarns of any nature or origin, that have been formed into
a web by any means, and bonded together by any means, with the exception of
weaving or knitting” (cited in Mao and Russel [113]) according to EDANA, the
European Disposables and Nonwovens Association. Nonwovens are widely used in
products of daily life, since they can be absorbent, antistatic, breathable, conductive
or nonconductive, elastic, flame resistant, impermeable or permeable, smooth, and
stiff to name but a few. These very diverse properties can be achieved by combining
the right raw materials with specific production processes.

This versatility also has a drawback. Since the market of nonwovens demands
more and more customized products, the development cycles have to be shortened.
Thus, the simulation of nonwoven production processes is a mathematical key
technology for the engineers to modify the processes according to customer-specific
needs.

Therefore, we discuss some already existing simulation algorithms in the following
section.

Mainly, there are three different nonwoven production processes: dry-lay processes,
wet-lay processes, and extrusion processes. In the following, we concentrate on a
typical extrusion process, the so-called spunbond process. A sketch of this process
can be found in Figure 5.4. In the spunbond production process, a polymer melt is
extruded through spinnerets. The evolving fibers are cooled and stretched by air and
are swirled around by turbulent air streams until they are laid down on a perforated
conveyor belt. By suction, they are fixed to the belt and form a random web. Finally,
several post-processing steps like bonding and finishing are implemented to produce
a nonwoven fabric. More details on the production process can, for example, be
found in Albrecht et al. [5].

5.4.2. Existing simulation algorithms

Several papers have already dealt with the mathematical modeling of nonwoven
production processes. For example, a first principles physics model has been de-
veloped in Klar et al. [100] and Wegener et al. [184] and this model is also used
in the simulation software FIDYST (fiber dynamics simulation tool, see Gramsch
et al. [65]). In principle, the model would have to deal with a two-way coupling
problem of the aerodynamic forces and the fiber dynamics, which is not solvable
to industrial scales due to the required resolution of the mesh (cf. Marheineke and
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Figure 5.4.: Sketch of the spunbond process.
(Figure provided by S. Gramsch, Fraunhofer ITWM, Kaiserslautern)
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Wegener [114]). Therefore, the model only incorporates a one-way coupling by the
application of an air drag model. Up to now, interactions of the filaments with itself
or with other filaments, which have already been laid down on the conveyor belt,
are neglected. Consequently, the simulated laydown of the filaments on the belt is
only two-dimensional.

A two-dimensional simulated fabric represents typical nonwovens, which are very
flat, in an excellent way. However, several properties of nonwovens originate in
the fact that the fibers are lying on top of each other. Thus, a three-dimensional
simulation of the fiber laydown is desirable.

It seems to be unrealistic to simulate a real nonwoven, which consists of thousands
of fibers, in reasonable time due to the high computational effort that is needed with
the current first principles model. Hence, a different approach was developed in
Klar et al. [101]. There, the three-dimensional laydown is described by a surrogate
model based on a stochastic differential equation. The parameters for this model are
estimated by combining two-dimensional data obtained by a simulation with the
first principles model mentioned above and three-dimensional data obtained by CT
scans (cf. Grothaus et al. [68]). In contrast, we will focus on a surrogate model that
uses these three-dimensional data from CT scans, only. Therefore, in the following,
we will briefly describe the used CT data set.

5.4.3. Description of the CT data

The industrial company Oerlikon Neumag has provided real samples of nonwovens
that were produced by a spunbond process. The samples are made from polypropy-
lene fibers, which have a diameter of 1.2 x 10 °m and a density of 0.9 gm*3. The
area density of the sample is 12.8 gm 2. The samples were analyzed by the de-
partment Image Processing of the Fraunhofer ITWM with its 3D-microtomography
scanner, which delivers a real-valued third-order tensor with so-called gray values.
These gray values are mapped to local fiber orientations at each voxel using an
eigenvalue analysis of the Hessian matrix of the second partial derivatives of the
gray values. For more details, the reader is referred to Redenbach et al. [148]. The
microtomography scanner possesses a resolution of 1 pm to 70 pum while the sample
size is 1 mm? to 10mm?3. For the data set that we use, this high resolution leads
to N = 9600558 points on S?, which will be the basis for our considerations. A
reduced version of the data set with 2000 points can be found in Figure 5.5. Again,
the reduction has been performed by a random selection for the reason that we have
already given, when the synthetic data set was presented. To get an impression of
the distribution of fiber directions on the sphere, we have also computed the KDE
for the data set, where the kernel is the Abel-Poisson kernel with parameter i = 0.9.
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Figure 5.5.: 2000 out of 9 600 558 points from the CT data set of directions in a real nonwoven
fabric.

A plot of the KDE as a function on the sphere can be found in Figure 5.6. The figure
shows that there exists a dominant direction of the fibers, which corresponds to the
direction in which the belt moves in the production process.

5.4.4. Application of the greedy algorithm to the CT data

We applied the greedy algorithm (Algorithm 5.1) to the CT data set that has been
described in the previous section. We chose to perform 10000 iterations of the
algorithm and the result is a sparse kernel density estimator, which is depicted
in Figure 5.7. Since, in contrast to the synthetic example in Section 5.3, the error
cannot be explicitly calculated, in Figure 5.8 the absolute values of the chosen
coefficients |ay| are plotted to get an impression of the size of corrections that the
greedy algorithm performs throughout the 10 000 iterations. This indicator for the
size of corrections looks very similar to the plot of the coefficients of the synthetic
example in Figure 5.3 in Section 5.3.

We observe that the KDE in Figure 5.6 and the sparse KDE in Figure 5.7 show a clear
qualitative similarity. Quantitatively, one recognizes certain differences both in the
value of the estimator (see the color bars that range up to 0.18 in contrast to 0.22) and
in the structure of the estimator (the structures seem to be rougher in the result of the
greedy approximation). However, this is no contradiction, since both the KDE and
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Figure 5.6.: Plot of the KDE obtained from the CT data set where the Abel-Poisson kernel
with parameter h = 0.9 was used.

COOOO0OO000
CO0ORRERERENN
NERSIDONRNRDON

Figure 5.7.: Sparse kernel density estimation of the PDF of a real CT data set after 10 000
iterations of the greedy algorithm.
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Figure 5.8.: Absolute value of the chosen coefficients in the iterations of the greedy algorithm,
when it is applied to the real CT data set.

the sparse KDE are estimates of the same probability density function, but the greedy
approximation is not an approximation of the KDE. Thus, depending on the choice
of the kernels, the dictionary, and the corresponding parameters, both estimators
can be different although they estimate the same PDF.

5.4.5. A simple simulation algorithm and numerical results

To conclude this chapter, we will present a simple simulation algorithm for nonwo-
ven fabrics, which yields a three-dimensional simulated fiber. As already indicated,
we want to use an estimation f of the PDF f, generated by a KDE or the greedy
algorithm. The concept of the algorithm is to start at an arbitrary point in R*> and
to choose the next point of a fiber by sampling a direction from the estimated PDF
and moving into this direction by a given step width. By construction, the resulting
fiber approximately has the same distribution of fiber directions as the real non-
woven from which the data set was generated. The resulting algorithm looks as
follows.

Algorithm 5.2. Let an estimate f of the PDF f as well as a discretization parameter
s € (0,00) be given. Generate a discretization (Z;);—g1,2,.. C R3 of a fiber by the
following iteration:

1. Set j := 0 and choose an initial point Zy € R>.
2. Sample a direction 77,1 € S? from the estimated PDF f.

3. Set Z]'Jrl = Z] +s Hit1-
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4. If the desired number of points is reached: stop.
Otherwise: increase j by 1 and return to step 2.

Note that this algorithm looks similar to the stochastic time discrete approxima-
tion of stochastic differential equations, in particular the Euler-Maruyama method,
where Gauflian pseudo-random numbers are used in a similar way if the stochastic
differential equation involves Brownian motion (cf. Kloeden and Platen [102, Chap-
ter 9]). However, it is not trivial if there is an interpretation of our algorithm as an
Euler-Maruyama scheme for a certain stochastic differential equation and even if
it was such a scheme, it is completely unclear what such a stochastic equation or a
stochastic process solving this equation would look like. We further want to remark
that we do not consider the movement of the conveyor belt explicitly in this simula-
tion algorithm like the methods in Klar et al. [100] do. Instead, the belt movement
is implicitly contained in the CT data set since, of course, in the production of the
real nonwoven sample the belt moved with a certain velocity. This could already be
seen in Figure 5.6 and Figure 5.7, where we observed a dominant direction of the
fiber directions.

To perform step 2 of Algorithm 5.2, we use the method of rejection sampling that
was presented in Section 4.3.2. A discretized fiber that has been obtained by the
application of the simulation algorithm using the estimated PDF generated by the
greedy algorithm is shown in Figure 5.9.

We have already mentioned two computational aspects of sampling with the use of
kernel density estimators. First, the motivation for the development of the greedy
algorithm in Section 5.2 was that using a KDE in rejection sampling leads to a very
high number of evaluations of the kernel. This is in particular the case for the given
data set, where the number of samples is N = 9 600 558. Secondly, we discussed the
importance of a preferably low upper bound of the estimate of the PDF for rejection
sampling in Section 4.3.3.

In consequence, we performed a numerical study and the results can be found in
Table 5.1. In this table, we compare the use of the KDE and the sparse KDE as well
as the application of two different upper bounds for the PDF (using the triangle
inequality and evaluations on a grid, cf. Section 4.3.3). The following raw data are
listed in the table: the number of samples that have been generated, the number of
evaluations of the estimated PDF that were needed to generate these samples, and
the CPU time that was consumed. Note that there is a difference in the number of
samples between the four presented scenarios due to the high computational effort
that would be needed for the more inefficient methods. For that reason, to achieve a
better comparison, we add the average number of evaluations of the estimated PDF
per sample, the average CPU time per sample, and an extrapolation of the time that
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Figure 5.9.: Fiber, consisting of 100 000 points, simulated by Algorithm 5.2 in conjunction
with a greedy approximation of the PDF.

Table 5.1.: Computation times for different estimates of the PDF and different upper bounds
for the estimated PDF. For the comparison “CPU time/nonwoven”, it has been
assumed that a simulated nonwoven consists of 100 fibers with 100000 line
segments each. The presented data show an enormous saving of computation
time when using the newly developed greedy algorithm.

KDE Greedy approximation
upper bound triangle ineq. evaluation triangle ineq. evaluation
samples 500 10000 10000 100000
evaluations 91356 23639 1881041 303081
CPU time 26690s 6902.6 s 566.51s 91.517s
eval./sample 183 2.36 188 3.03
CPU time/sample 533x10's 690x107's 5.66 x1072s 9.15x 107 *s
CPU time/nonwoven 148283 h 1917 h 157h 2.50h
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would be needed to simulate a nonwoven fabric with 100 fibers with 100 000 line
segments each, to the table.

One can see that the use of the greedy approximation makes Algorithm 5.2 more
efficient by multiple orders of magnitude. In the more efficient case of determining
an upper bound by the evaluation on a fine grid, the simulation time for a nonwoven
with 100 fibers with 100 000 line segments each, is reduced from 1917 h to 2.5h, thus
from nearly 80 days to 150 minutes, a factor of around 750.

In conclusion, applying a greedy strategy to the problem of estimating a probability
density function, makes it possible to apply a simple simulation algorithm for
nonwoven fabrics much more efficiently than by using the standard approach of
kernel density estimators.
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Greedy algorithms for inverse problems
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Chapter 6.
Theory of inverse problems

According to Keller [96], two problems are called inverses of each other “if the
formulation of each involves all or part of the solution of the other”. Although this
is, consequently, a symmetric term, one of the two problems is commonly called the
direct problem and the other is called the corresponding inverse problem. The reason
for this is that the direct problem often is an established well-understood problem of
applied mathematics, which is—more or less—easy to solve. In contrast, the inverse
problem is often newer and, for example, has arisen in the development of new
measuring equipment in the applications. Moreover, the inverse problem frequently
is more difficult to solve. Characterizations of the facts, why inverse problems are a
lot more difficult to solve, will be given in this chapter.

A different characterization of the direct and the inverse problem is based on physics
(cf. Richter [152, Preface]). Here, it is assumed that there exists a set X of causes and
a set % of effects, which are connected by a mapping

S: ¥ =y,

modeling a physical law. In this context, the direct problem is
given the cause f € &, compute the effect S[f] € ¥,

whereas the inverse problem is
given the effect g € %, find a cause f € & such that S[f] = g.

This variant can easily be transferred to a functional analytic formulation, where
X, % are function spaces and S is an operator between these spaces. Note that we
stick to the convention that we have already introduced in Section 2.2, where linear
operators are denoted by 7 and general operators (including nonlinear ones) are
denoted by S. Additionally, regular or no parentheses are used for linear operators
and square brackets are used for nonlinear operators.

In this work, we will restrict ourselves to Hilbert spaces ¥ and %. The study of
inverse problems in more general spaces, in particular Banach spaces, is also an
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established approach in the analysis of inverse problems (cf. Schuster et al. [160]).
The restriction to Hilbert spaces leads to the following notion of an inverse prob-
lem.

Problem 6.1 (General inverse problem). Let %, % be Hilbert spaces and let the
operator S: & — % be continuous. Find f* € & such that

Sl =g 61

for given data g € %.

Note that we require at least some kind of stability of the direct problem, which is
characterized by the continuity of the operator S. In consequence, we exclude, for
example, chaotic systems, where the effects are very sensitive to small changes in
the causes, from our considerations.

An important term in this context is the well-posedness and ill-posedness of in-
verse problems. It goes back to Hadamard [73] and can be formulated as fol-
lows.

Definition 6.2 (Well-posedness (Hadamard), cf. Engl et al. [42, Chapter 2]). Prob-
lem 6.1 is said to be well-posed in the sense of Hadamard if the following three
conditions are fulfilled:

(W1) Eq. (6.1) possesses a solution f* € % for all data g € ¥,
(W2) the solution of Eq. (6.1) is unique for all data g € ¥,
(W3) the solution f* € & of Eq. (6.1) depends continuously on the data g € %.

If one of the conditions (W1)-(W3) is violated, Problem 6.1 is called ill-posed.

In terms of the continuous operator S, this can be rephrased as follows.

(WT’) ran S = ¥ (surjectivity),
(W2') S[f] = S[f'] implies f = f’ (injectivity),

(W3’) S~1is continuous (stability of inversion).

Note that, in general, all measured data are equipped with noise. Thus, apart
from the non-existence and the non-uniqueness of the solution, the instability
of the inversion is a crucial difficulty. Due to the discontinuity of the inverse
operator, small changes in the data (like the measurement noise) lead to large
changes in the obtained solution, which is not desirable from the physical point of
view.

The following section deals with the topic of ill-posedness for linear operators,
whereas we discuss nonlinear inverse problems in Section 6.2.
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6.1. Linear inverse problems

This section is based on Engl et al. [42, Chapter 2]. Here, 7: & — % will always
denote a linear and bounded operator between Hilbert spaces &, %. Consequently,
the problem to solve is the following one.

Problem 6.3 (Linear inverse problem). Let %, % be Hilbert spacesand 7: %X — % a
linear and bounded operator. Find f* € & such that

Tf =38 (62)

for given data g € ¥.

We remark that for linear operators boundedness and continuity are equivalent.
Furthermore, in the characterization of well-posedness, (W2’) can be replaced

by
(W2”) null7T = {0},
since injectivity of a linear operator is equivalent to having a trivial null space.

Introducing the notion of a generalized inverse, one can reduce (W1")-(W3’) to the sta-
bility of the inversion. This will be discussed in the subsequent section.

6.1.1. The Moore-Penrose generalized inverse

The motivation for the reduction to a generalized solution is that, having noisy data
at hand, one can only determine some f* € %, which is a solution to Eq. (6.2) in
some approximate way, anyway. Additionally, if f* is not unique, one may impose
additional conditions on the solution, which yields a unique generalized solution
ft € %. Inmore detail, we will define the terms of a least squares and best approximate
solution in the following definition.

Definition 6.4 (cf. Engl et al. [42, Definition 2.1]). Let 7: % — % be a bounded
linear operator. We call f* € % a least squares solution of Problem 6.3 if

1§ — T

y = infllg = Thly.

We call T € % a best approximate solution if it is a least squares solution and
pp q

If*

thatis, /T is a least squares solution whose norm is minimal among all least squares

o = inf { |[[11]|o | I is a least squares solution },

solutions.
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The term of a best approximate solution is related to the so-called Moore-Penrose
generalized inverse, which we will define in the following.

Definition 6.5 (cf. Engl et al. [42, Definition 2.2]). Let 7: % — % be a bounded
linear operator. Define

T = T a7y + (muutll T)" = ranT.

Then, the Moore-Penrose generalized inverse T+ is the unique linear extension of 7 !
to the domain

dom 7+ :=ranT @ (ranT)"
such that

null 7+ = (ran 7)".

In the following, we will cite some important features of the Moore-Penrose general-
ized inverse.

Theorem 6.6 (cf. Engl et al. [42, Proposition 2.3]). Let Py 7 and P+ be orthogonal
projections to the respective sets. Then we have ran 7+ = (null 7)" and the so-
called Moore-Penrose equations

TT T =T
T TTH=T%

TT = Ly — PnullT

TTH = Pm|dom T+
hold. Furthermore, 7 is uniquely characterized by these equations.
Theorem 6.7 (cf. Engl et al. [42, Proposition 2.4]). The Moore-Penrose generalized
inverse 7 has a closed graph and 7 is bounded if and only if ran7 = ran 7.
The relation between 7  and the best approximate solution is given by the following
theorem.

Theorem 6.8 (cf. Engl et al. [42, Theorem 2.5]). If the data fulfills g € dom 7, the
best approximate solution f* of Problem 6.3 is uniquely determined and is given by

fr=T"g

such that the set of all least squares solutions is f 4+ null T
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The preceding theorems are the reason for a different characterization of ill-posed-
ness, which was given by Nashed (cf. Rieder [153, Section 2.1]). It is based on the
observation that after introducing a generalized inverse, the only difficulty arises if
T+ is not continuous.

Definition 6.9 (Nashed [135]). Problem 6.3 is said to be well-posed in the sense of
Nashed if ran7 =ran7.

It is called ill-posed in the sense of Nashed if ran7 # ran 7.
Analogously to the finite-dimensional case of ordinary least squares regression (cf.

the considerations in Section 5.1), least squares solutions can also be characterized
by the normal equation.

Theorem 6.10 (Normal equation). Let g € dom 7 *. The element f* € % is a least
squares solution of Problem 6.3 if and only if

holds, which is called the normal equation.

Thus, f© = T " g is the solution of the normal equation that has the minimal norm.
In other words,

T = (T*T)* T

holds.

6.1.2. Compact operators and their spectral analysis

Compact linear operators play an important role in the field of inverse problems,
since it turns out that Problem 6.3 is always ill-posed if the operator 7 is compact
and the space & is not finite-dimensional. Additionally, under certain conditions,
integral operators are compact operators.

We first give the definition of compact operators.

Definition 6.11 (cf. Kirsch [99, Definition A.31]). An operator 7 : & — % is called
compact if every bounded set S C % is mapped to a relatively compact set 7(S) C %,
thatis, 7(S) is compact.

Next, we define the spectrum of an arbitrary operator.
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Definition 6.12 (cf. Kirsch [99, Definition A.49]). Let 7 : &’ — & be a linear operator.
The spectrum of T is defined as the set

o(T)={AeC|T —AZhasnobounded inverse on ¥ }.

Every A € o(7) is called an eigenvalue of T as long as T — AZ is not injective. For
every eigenvalue A, all elements f € null(7 — AZ) \ { 0 } are called eigenvectors of
T.

The basis for the spectral analysis of compact operators is the following theorem for
self-adjoint compact operators.

Theorem 6.13 (cf. Kirsch [99, Theorem A.51]). Let 7: %X — % be compact and
self-adjoint (i.e. 7" = T) and 7 # 0. Then

(a) Every A € ¢(T) is an eigenvalue or A = 0.
(b) Every A € o(T) is real.

(c) The operator 7 has at least one and up to a countable number of eigenvalues.
The only possible accumulation point of o(7) is 0.

(d) For every eigenvalue A # 0 there exist only finitely many linearly independent
eigenvectors. Eigenvectors, which correspond to different eigenvalues, are
orthogonal.

(e) If we order the eigenvalues such that
(M| 2 [A2] = [As[ = -+
and denote the projection onto the eigenspaces corresponding to the eigen-
value A; by Pj: & — null(T — A;Z) , then
J
T=) AP
j=1

if there are only finitely many eigenvalues A4, ..., A, and

T=Y AP

j=1

if there is an infinite sequence of eigenvalues, where the convergence is with
respect to the operator norm. In the following, we will use the index set J to
account for both cases, thatisJ = {1,...,] } and J = N, respectively.
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This leads to the so-called singular value decomposition (SVD) of a (possibly not
self-adjoint) compact operator.

Definition 6.14 (cf. Kirsch [99, Definition A.52]). Let %, % be Hilbert spaces, let
T : % — % be a compact linear operator, and let 7*: % — % be its adjoint operator.
Denote by A;, j € J, the eigenvalues of the self-adjoint operator 77 : & — % . Then
the numbers

7 =\ A jed
are called singular values of T .

Theorem 6.15 (cf. Kirsch [99, Theorem A.53]). Let &, % be Hilbert spaces, let the
operator 7: % — % be compact and linear, and let 7*: % — X be its adjoint
operator. Let oy > 05 > 03 > - -+ > 0 be the ordered sequence of positive singular
values of 7. Then there exist orthonormal systems (f;)jcy € % and (gj)jey S ¥
such that

Tfi= o8 T"8; = 0jfj
for all j.

The system (07, f;, §j)jey is called a singular system for T. Every element f € % can
be represented in terms of the singular system as

f=fot Y Af fi)yfi

jed
for some fy € null(7) and

Tf= Z‘Tf<fffj>9xgj/

jed
which we both call a singular value decomposition (SVD).

The SVD enables us to prove the following existence theorem for a best approximate
solution f* of Problem 6.3, which also allows for a series representation for f7.

Theorem 6.16 (cf. Engl et al. [42, Theorem 2.8]). Let %, % be Hilbert spaces, let
T : % — ¥ be a compact linear operator, and let (7, f, ) ey be its singular system.

1. We have g € dom 7 7 if and only if

1
Z;Rg/gj%y

ISR

2
< o0,

which is called the Picard criterion.
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2. If g € dom T, then

1
fr=Ttg= %;j@,gﬁqyﬁ (6.3)
jE

is a series representation of the Moore-Penrose inverse.

The central result, which shows why compact operators and ill-posed inverse prob-
lems have such a strong connection, is the following theorem.

Theorem 6.17 (cf. Rieder [153, Satz 2.2.8(e)]). Let %, %Y be Hilbert spaces, let 7: % —
% be a compact linear operator. If 7 is invertible and % is not finite-dimensional,
then 7 ! is not continuous.

The most important type of compact operators, which will also arise in Chapter 7,
are Fredholm integral operators. We cite the following result, which is based on the
theory of Hilbert-Schmidt operators.

Theorem 6.18 (cf. Heuser [81, Chapter 87] and Rieder [153, Satz 2.2.7]). Let @ # S C
R" be compact. If k € L?(S x S), then the Fredholm integral operator 7 : L?(S) —
L2(S),

Tf= [ Kx) f() dx,
is compact.

The next section will deal with the regularization of ill-posed inverse problems.

6.1.3. Regularization methods

Let Problem 6.3 be the problem to be solved, thatis, find f* € 2 such that

Tf =g

where 7: % — % is a bounded linear operator between Hilbert spaces % ,% and
g € % is the given exact data. We assume that g is not available, but only a
noisy version ¢’ € ¥ such that ||g —g°||,, < J, where § > 0 is called the noise
level. Furthermore, in this section we always assume an ill-posed problem, that is,
ran7 #ran7. As already pointed out by Engl et al. [42, Section 3.1], due to the
unboundedness of the Moore-Penrose generalized inverse, the term 7 "¢’ is not a
good approximation of 7 *g. The basic idea of regularization is to replace this bad
approximation by a better one, which we call f¢. It should depend continuously
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6.1. Linear inverse problems

on the noisy data g’ and on a so-called regularization parameter A such that the
determination of f? is a well-posed problem. In a way, one consequently replaces an
ill-posed problem by a well-posed one, which is an approximation of the original
problem in a certain manner. It is then desirable that f¢ tends to f* for § \, 0 if the
regularization parameter is chosen in a suitable way. We can formulate all of this in
the language of operators in the following way.

Definition 6.19 (cf. Engl et al. [42, Definition 3.1]). Let 7: ¥ — % be a bounded
linear operator between Hilbert spaces &, %. Let A = (0, Ag) for some Ay > O be a
set of regularization parameters such that for every A € A, a continuous (but not
necessarily linear) operator R, : % — X is given.

The family { R, | A € A} is called a regularization of T if for every g € dom 7+
there exists a so-called parameter choice rule A: R™ x % — A such that

¢, <)o

oo { [Rusol - 7], |5 <

holds. Furthermore, we require that

(lsi{(r(l)sup{)t(é,g‘s) ]gée@, @g(s}zo.

For a fixed g € dom T, the pair (R, A) is called a convergent reqularization method
for Problem 6.3 if the two limit relations above hold for this particular choice of g.

-3

If the parameter choice rule does only depend on &, but not on g%, then it is called an
a-priori parameter choice rule. Otherwise, it is called an a-posteriori parameter choice rule.

If (R, 6) is a convergent regularization method, it can be shown that

lim R =7*

51{% A(6,8) gl=T"¢g
(cf. Engl et al. [42, Remark 3.5]) such that regularizations are pointwise approxi-
mations of the Moore-Penrose generalized inverse. If we define the regularized
solution ff\( 59) = Rasg) [g], we have, consequently,

P

(151{(% f Abg) T f
such that the regularized solution converges to the best approximate solution.
We do not want to go deeper into the theory of regularization methods at this
point. For an overview over subjects like order optimality and general results about

parameter choice rules, we refer to the monographs on that matter, for example,
Engl et al. [42], Kirsch [99], and Rieder [153].

In the following section, we will discuss Tikhonov regularization, which is one of
the most popular regularization methods, in more detail.
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6.1.4. Tikhonov regularization

We will base this section on Kirsch [99, Section 2.2].

Definition 6.20 (Tikhonov functional). Let 7: % — % be a linear and bounded
operator,let g € %, and A > 0. Then A, o: ¥ — R,

Arglf]l = llg = TFI% + AllfI5

is called the Tikhonov functional.

The idea of Tikhonov regularization is based on the fact that the least squares
functional is identical to the Tikhonov functional for A = 0. Since f is a minimizer
of the least squares functional, one hopes that the minimizers of the Tikhonov
functional converge to f for A Y\, 0 (and it will be shown that this is indeed
the case). At first, we provide a theorem, which shows that the minimizer of
the Tikhonov functional is uniquely determined and fulfills a regularized normal
equation.

Theorem 6.21 (cf. Kirsch [99, Theorem 2.11]).Let 7: % — % be a linear and
bounded operator between Hilbert spaces, let g € %, and A > 0. Then the Tikhonov
functional A, ; has a unique minimizer f) € %, which is the unique solution of

(T"T+AD)fA=T"g,
which is called the regularized normal equation. Consequently,
A=(TT+AD)"'Tg (6.4)

holds.

The formulation in Eq. (6.4) can be used to define a family of regularization operators
{RA|A>0}of T by

Ra= (T*T + AZ) 1T

In the following theorem, we will state that there is a parameter choice method
such that (R, A) forms a convergent regularization method if 7 is compact. A
heuristic justification for this result can be obtained by choosing a singular system
((7]-, fir g]-) jes of the operator 7. Then we have

(o

Rag =Y. —51—(28)ufi
];U(TJ2+/\< ]>CU]
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for ¢ € dom 7. We observe that we have

0j 1
2 - =
Uj+)\ of

for A\, 0, which is exactly the term arising in the series representation of 7+
in Eq. (6.3). Additionally, the theorem provides a convergence rate of Tikhonov
regularization.

Theorem 6.22 (cf. Kirsch [99, Theorem 2.12]). Let 7: & — % be a linear compact
operator between Hilbert spaces and let ¢ € %. Then

(@) The family { Ry | A > 0} is a regularization of 7 *. Every a-priori parameter
choice method A: (0,00) — (0, 0), which fulfills
52

A(6) N\ O, A00)

N\ O (6 —0)

is feasible.

(b) If we define
f=Rag = (T"T +AL) ' T*g°

for noisy data ¢° € ¥ with ||g — ¢°||,, < 6, if we assume that f© = T*Th €
ran(7*7T) with ||h]|, < 7, and if we define the parameter choice A(J) =

m (6/7)?/3 for constants m, T > 0, then

£ =7, = <2\}E+m>71/352/3

holds.

It can be proved that this order of convergence is optimal and cannot be improved
(cf. Kirsch [99, Theorem 2.13]).

6.2. Nonlinear inverse problems

In contrast to linear inverse problems, the theory for nonlinear inverse problems is
much more difficult. In particular, there is no general regularization method, which
works for a larger class of nonlinear inverse problems, or as Kirsch [99] states it,
“every nonlinear inverse problem has its own characteristic features that should
be used for a successful solution”. Nevertheless, we will state some of the few
general theoretical results that exist about nonlinear problems. We start by defining
a nonlinear inverse problem.
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Chapter 6. Theory of inverse problems

Problem 6.23 (Nonlinear inverse problem). Let %,% be Hilbert spaces and let
S: ¥ — U be a Fréchet-differentiable and possibly nonlinear operator. For given
data g € %, find f* € & such that

S[fl =g

For simplicity, we assume that a unique solution exists. We introduce a more
sophisticated definition of well-posedness and ill-posedness for nonlinear inverse
problems.

Definition 6.24 (cf. Rieder [153, Definition 7.1.1]). We call Problem 6.23 locally well-
posed in f+ € % if there exists ¢ > 0 such that f — f for all sequences (f)cy € X
with || fy — f*]ly < 0and S[fy] = S[f*] for k — co.

Otherwise, we call the inverse problem locally ill-posed.

Note that this characterization is a proper generalization of the instability of the
inverse operator for linear inverse problems, since a linear operator is locally well-
posed either for all or for no f* € %. A similar result to Theorem 6.17 for nonlinear
inverse problems is the following.

Theorem 6.25 (cf. Rieder [153, Satz 7.3.4]). Let &, % be Hilbert spaces such that %
is infinite-dimensional and separable. Let S: % — % be continuous, compact, and
weakly sequentially closed, that is, if fy — f and S[fx] — g for k — oo implies

Slfl =g
Then, Problem 6.23 is locally ill-posed everywhere in 2.

Note that we define compact for nonlinear operators in the same way as we did for
linear operators in Definition 6.11. Moreover, note that nonlinear compact operators
are not continuous in general. This is why we need continuity as an additional
condition. Finally, the result of the previous theorem is also true if S is not defined
on the whole space %, but only on some domain domS C % . In this case, the
problem is locally ill-posed in all interior points of dom S.

In Section 2.2, we have already considered derivatives of nonlinear operators and
their linearization. Most numerical methods for nonlinear inverse problems are
based on such a linearization of the operator. Thus, it makes sense to consider
the relation of ill-posedness and well-posedness of the original nonlinear and
the linearized problem. For this purpose, we first define the linearized problem.
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Problem 6.26. The linearized problem consists of finding f € % such that

S =g
forgiven fT € %, g€ ¥.
The study of the relationship between the ill-posedness of Problem 6.23 and Prob-

lem 6.26 was carried out by Hofmann and Scherzer [82, 83]. We cite the versions as
given by Rieder [153].

Theorem 6.27 (cf. Rieder [153, Satz 7.3.5]). Let &,% be Hilbert spaces and let
S: % — % be a Fréchet differentiable operator, whose derivative fulfills a local
Lipschitz condition in f T € %, that is, there exists L, 0 > 0 such that

HS'[f] - S'[f7] LXY) =L Hf_f+H9x
forall f € % with ||[f — fT, <o.
If Problem 6.23 is locally ill-posed in f* € %, then also Problem 6.26 is ill-posed.

It is important to notice that the converse is not generally true. The equivalence of
the well-posedness of both problems can be proved under an additional assumption.

Theorem 6.28 (cf. Rieder [153, Satz 7.3.7]). Let the Fréchet differentiable operator
S: % — Y fulfill the so-called tangential cone condition, that is, there exists ¢ > 0 and
0 < 17 < 1such that

ISU1 = S[F] = S'TAI = Pl < 1llSUT = S[F

for f, f € % with [|[f — f* o, [|f = fF]|,, <o

Then, Problem 6.23 is locally well-posed (ill-posed) in f* if and only if Problem 6.26
is well-posed (ill-posed).

There exist a variety of numerical methods for the solution of nonlinear ill-posed in-
verse problems including nonlinear Tikhonov regularization and iterative methods.
We will mention several of them in Section 10.2 after we have introduced our own
new algorithm for nonlinear inverse problems.
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Chapter 7.
Inverse gravimetry

Gravimetry is the method of the determination of the gravitational field of the
Earth or other planetary bodies, whereas inverse gravimetry is concerned with the
analysis of the Earth’s interior based on these measurements of the gravitational
tield. Models of the gravitational field itself, determined by gravimetry, are useful in
several applications, for example, the computation of satellite orbits (see Savet [158]).
First and foremost, these models are used in inverse gravimetry, which yields
interesting information about the interior of the Earth used in the fields of geodesy
and geophysics as well as in industrial applications. For example, models of the
Earth’s interior can be used in the analysis of seismic waves (see, e. g., Komatitsch
and Tromp [103]), but also for oil and gas exploration (see Pawlowski [143]) and
deep geothermal systems (see Blick et al. [21]). Also information about surface
densities can be obtained by models of the gravitational field, which are interesting
for the analysis of mass transport and climate research (see, e. g., Velicogna and
Wahr [178]). The most widely used model of the Earth’s gravitational field currently
is the Earth Gravitational Model 2008 (EGM2008) [142]. It is a spherical harmonic
model, which is complete up to degree and order 2159. An established model of
the Earth’s interior is the Preliminary Reference Earth Model (PREM) (see Dziewonski
and Anderson [40]), which includes radial models of the mass density, velocities of
seismic waves, and several other parameters. Nowadays, the gravitational field of
the Earth is measured by satellite missions like CHAMP (see Reigber et al. [151]),
GRACE (see Tapley et al. [165]), GOCE (see Drinkwater et al. [38]), as well as the
upcoming GRACE follow-on mission (see Flechtner et al. [49]), which will allow for
even more precise models both of the gravitational field and the interior of the Earth
in the future. Satellite missions to the Moon (GRAIL, see Zuber et al. [187]) and
Jupiter (Juno, see Matousek [117]) also allow for the study of the interior of these
celestial bodies.

Since inverse gravimetry has a variety of applications, the theoretical analysis of the
gravitational potential and the corresponding inverse problems is of great impor-
tance. In the following sections, we will therefore first discuss the Newtonian poten-
tial and several variants of the inverse gravimetric problem.
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Chapter 7. Inverse gravimetry

7.1. Newton’s gravitational potential

The basis of modeling the gravitational field is Newton’s law of gravitation, which
was first described qualitatively in Newton [136, Proposition LXXV]. It states that
the gravitational potential U, measured at a point y € R3\ {x},ofa point mass M,
which is located at a point x € R?, is given by

GM

= =yl ye R\ {x}

U(y)

(cf., e.g., Kellogg [97, Section 1.2]), where
G:=6.67408 x 10 " m kg 1572

(see Mohr et al. [133]) is the gravitational constant. However, to simplify the no-
tation, we assume that the units of all physical quantities are chosen such that
G=1

Assuming a continuously distributed mass density inside a given body, one obtains
the following definition of the gravitational potential.

Definition 7.1 (cf. Kellogg [97, Section II1.3]). Let a body fill the region £ C R3 with
the density function ¢: £ — R. Then, the function Ug,: R3 \E — R,

Ue,o(y) :/g ’f(_x?ﬂ dx,

is called (Newton's) gravitational potential.

From now on, we assume that € is a bounded open domain in R? with a piecewise
smooth boundary and that the mass density function ¢9: £ — R is measurable and
bounded.

Note that, in theory, we allow a negative mass density, which is not reasonable
from the geophysical perspective. This is the case, because later on we will also
discuss inverse problems, where ¢ plays the role of a mass anomaly, which can attain
negative values.

It is well-known that the Newtonian potential is continuously differentiable in the
whole space, harmonic outside of the region £, and regular at infinity.

Theorem 7.2 (cf. Mikhlin [130, Theorem 11.6.1]). Under the assumptions on £ and ¢
stated above, the Newtonian potential U , defined in Definition 7.1 is continuous
and continuously differentiable in R3.
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7.1. Newton’s gravitational potential

Theorem 7.3 (cf. Mikhlin [130, Theorem 11.6.2]). Under the assumptions on £ and ¢
stated above, the Newtonian potential fulfills Ug , € C@(R3\ &) and

Ayuf,g(y> =0
forally e R3\ £.

Theorem 7.4 (cf. Freeden and Gerhards [52, Introduction]). Under the assumptions
stated above, the Newtonian potential fulfills

Ue o) =0(1x1 ), VU] =0(1x?), |2 >,
which is what we call regular at infinity.

Often, in the functional analytic approach, it is not known whether ¢ is bounded.
Instead, one assumes that ¢ € L2(€), which does not imply (essential) boundedness
of ¢. Using the theory of Fredholm integral equations, the following result can be
proved.

Theorem 7.5. Let ¢ € L?(€) and a regular surface S be given such that £ C S
Then we have Ug »|s € L%(S).

Furthermore, for fixed &, the operator T¢: L?(€) — L(S), 0 — Ug o|s is a compact
linear operator.

Proof. Since £ C S™, there exists d > 0 such that |[x —y| > dforallx € £,y € S.
The kernel k: € x S — R, k(x,y) = 1/|x — y| fulfills k € L2(€ x S), since

AAme%mww://uimuwmx
) g

d2

The fact that Ug ,|s € L?(S) and the compactness of the operator follow from the
theory of Fredholm integral equations (see Yosida [186, Example 1 in Section VII.3,
Example 2 in Section X.2], and Theorem 6.18). |

Furthermore, the Poisson equation is fulfilled inside the domain £.
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Theorem 7.6 (cf. Mikhlin [130, Theorem 11.6.3]). Under the assumptions on £ and ¢
stated above and the additional requirement that ¢ is Lipschitz continuous on &, the
Newtonian potential U fulfills

—ByUs,o(y) =4mo(y),
forally € €.
An important result of potential theory states that harmonic functions are arbitrarily
often continuously differentiable and all its derivatives are also harmonic (cf. Freeden

and Gerhards [52, Corollary 3.8]). Thus, also the Newtonian potential has this
property outside the body £.

7.2. Inverse gravimetric problems

Inverse gravimetry is concerned with the gathering of information about the shape £
and the mass density ¢ from the gravitational potential U of a body. This information
will mostly be values of U, VU, or V ® VU (the Hessian) on a regular surface S
such that £ C §int,

Indeed, concerning the inverse problem, the following theorem shows that, at least
for convex domains with analytic boundaries, there is no difference between measur-
ing the potential itself and its gradient on the regular surface S.

Theorem 7.7 (cf. Isakov [88, Lemma 2.1.1]). Let S C R3 be an analytic regular surface
such that S™ is convex. If £, X, C S$™ are regular surfaces, g;: Z}nt — (0, 00) for
j = 1,2 are positive mass density functions, and

VuZilnt,Ql (y) ‘ - )VuZiznt’QZ (y)
forall y € S, then

uZJ‘f“,gl (y) = uzijm,g2 (y)
forally € S,

Therefore, we restrict to the case of a measured potential and we formulate the
following general inverse gravimetric problem.

Problem 7.8 (General inverse gravimetric problem). Let S C R? be a regular surface
and ¢ € L?(S) be a given function. Find £ C S and ¢ € L?(€) such that

Ug,Q’S :g.
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Figure 7.1.: Sketch of the general inverse gravimetric problem: The body £ is filled with
mass of the density ¢ (purple). The gravitational potential is measured (for
example by a satellite) on a regular surface S (blue).

A sketch of the situation can be found in Figure 7.1.

Determining both £ and ¢ uniquely from gravitational data fails already in a very
elementary problem setting incorporating constant densities and simple geometries,
as the following example shows.

Example 7.9. It is well-known that the gravitational potential of a ball Bz with radius
R > 0 with the constant mass density ¢ > 0 is given by
_47nR3 o

Ugg,o(y) = 3 Tl (7.1)

fory € R3 with ly| > R.

Thus, the gravitational potentials of two balls Bg, and By, are equal in all points
y € R® with |y| > max { Ry, R, } as long as the corresponding mass densities fulfill
R:i’ 01 = R% 02, say for example, R1 =2, R, =1,01 = 1,0, = 8.

As a consequence of this severe non-uniqueness of the general inverse gravimetric
problem, in most of the literature either the domain £ or the mass density function
0 is assumed to be known and the inverse problem is to find the respective other
unknown. This is why we will deal with these two problems in the following
sections.

However, we mention the following result, which was stated in Isakov [88]. It shows
that under several technical assumptions both the domain and the mass density can
be recovered uniquely from gravitational data.
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(a) The sets intersect. (b) The sets are disjoint.

Figure 7.2.: Sketch of the two possible situations in Theorem 7.10. On the one hand, the sets
&1, &, are both bounded by the graph of the function w (black). On the other
hand they are bounded by the graphs of the functions w; (purple) and w; (blue),
respectively.

Theorem 7.10 (cf. Isakov [88, Theorem 3.2.1]). Suppose that there exist functions
w,wq,wy: R? — R such that

E={xe R3 | w(x2,x3) < x1 < wj(x2,x3) or wj(x2,x3) < x1 < w(x2,x3) },

for j = 1,2. Thus, we assume that & and &, are bounded on the one hand by
the graph of the function w and on the other hand by the graph of w; and w»,
respectively, that is, the boundaries of both sets have a common part (the so-called
contact domain). The situation is depicted in Figure 7.2. Furthermore, we assume that
there exists a regular surface S such that &, & C sint,

Additionally, we require that the density functions ¢;: $™ — R are continuous and
do not depend on the first component x;.

Then the equality
Usyo () = Uy o0 () forally € ™ (7.2)

implies that & = & and 01 = 02 on &;.

Note that, in order to be well-defined in every x € & for all possible sets £ C R?, we
have to define o(x) for all x € Sint where all feasible sets & fulfill £ C S™t. Note,
furthermore, that Eq. (7.2) is implied by

Ug, 0, (y) = Ug, 0, (y) forally € S (7.3)
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if the functions ¢; are bounded, since then S is a regular surface, the potentials Uy, ,,
are continuous on S, and the gravitational potential on S is the solution of the
exterior Dirichlet problem, which is known to be unique. Consequently, Eq. (7.2)
can be replaced by Eq. (7.3) in this case.

In the following sections, we will consider the important special cases of the linear
and nonlinear inverse gravimetric problems, where either £ or ¢ are assumed to be
known.

7.2.1. Linear inverse gravimetric problem

Since the solution to Problem 7.8 is difficult to obtain, we first restrict to the so-called
linear inverse gravimetric problem, where only the mass density is assumed to be
unknown, whereas the shape of the Earth £ is assumed to be known. This results in
the following problem.

Problem 7.11 (Linear inverse gravimetric problem). Let S C R? be a regular surface,
let £ be a bounded open domain, and let a function g € L?(S) be given.

Find ¢ € L?(&) such that

Ug,Q’s :g.

The operator that maps ¢ € L(€) to Ug s for fixed & is denoted by T¢: L*(€£) —
L2(S) and the operator equation

Te(e) =g (7.4)

is called the linear inverse gravimetric problem.

Remark. The operator T¢ is indeed linear, since for 01,0, € L?(€£) and A € R we
have

Te(014 Ag2) = /g Ql(x‘);_)t.%(x)
_ [ a® 02(x)
—/g‘x_"dx+)&/g|x_.‘dx

= Te(er) + ATe(02)

dx

due to the linearity of the Lebesgue integral.

Furthermore, in Theorem 7.5 we have already shown that the operator is bounded
and compact.
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Below, we will discuss the ill-posedness of the inverse problem in Eq. (7.4). We begin
with a well-known result about the uniqueness of the solution. It was given in the
following form by Weck [183].

Theorem 7.12 (cf. Weck [183, Lemma 1]). The null space of the operator 7¢ is given
by

null 7¢ = { Af | feHi(E) },

where H3(&) is the completion of the space of arbitrary often differentiable functions
with compact support in € with respect to the well-known H?(&)-Sobolev norm.
Furthermore, the orthogonal complement of the null space is given by

(null 7¢)* = null A == {feC(‘”)(S) ( Af:o}, (7.5)
that is, it consists of all harmonic functions.

Note that Weyl’s Lemma (cf. Freeden and Gerhards [52, Section 4.1.2]) states that
every harmonic distribution can be represented by a function, which leads to the
use of the space C(*) (£) in Eq. (7.5). Note furthermore that the result in Eq. (7.5) has
been proved before, see Lauricella [107] and Pizzetti [145, 146].

Concerning the existence and stability, we can refer to the theory of compact op-
erators, which has already been summarized in Section 6.1.2. Since 7T¢ is compact,
there exists a singular system (o7, f;, g)jen and in terms of this singular system a
necessary and sufficient condition for the existence of a solution of Eq. (7.4) for given
data g is the Picard condition

2 1
]; UJ_2‘<g/g]'>L2(s)

2
e

as already stated in Theorem 6.16. Furthermore, we have already proved in The-
orem 6.17 that, as long as the domain is infinite-dimensional, every linear com-
pact operator has an unbounded inverse such that the inverse problem is unsta-
ble.

For the special case of £ = B;, which is relevant in geoscientific applications due to
the nearly spherical structure of the Earth, we have consequently that

null 7¢ = Anharm(B,)

(cf. Michel [118, Theorem 2.2.3]), where

5 i
Anharm(B;) = <Harm0moo(IB%1)L (Bl)>
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is the set of anharmonic functions on B;. Thus,

*(B1)

L2(B,) = Harmy_o(B1) " & Anharm(B,).

Similar results for L? and Sobolev spaces have been given by Sanso [156]. Further-
more, Ballani et al. [13] and Michel [118, Section 2.3] derived bases for the spaces of
anharmonic polynomials on B;.

Additionally, Michel and Fokas [124] showed the following existence result including
a closed formula for the solution of Eq. (7.4).

Theorem 7.13 (cf. Michel and Fokas [124, Corollary 4.1]). Let V: R3\ B; — R be an
arbitrary function satisfying

- V’SZ € LZ(SZ), )

-y 27:7n<V‘Sz, Y”rf>L2(S2)n3 < 0o,

- AV =0inR3\ By and V is regular at infinity.

Then the unique solution ¢ € C?) (B;) with V = Ug, , and Ag = 0in B, is given by

> 2n+1 . X
— Y, Y, | —
Q(X) 7;) 477 (21’1—’-3)‘9(’ ]'Z_n<V|S2/ /]>L2(§2) '](|X‘>

provided that the series converges with respect to L2(B1).

Unfortunately, the harmonicity condition for ¢ lacks a physical interpretation (cf.
Michel and Fokas [124]), since the maximum principle for harmonic functions
(cf. Helms [77, Theorem 1.5.9]) states that the density ¢ would have to attain its
maximum at the Earth’s surface. This is not reasonable from the perspective of
application.

Several further conditions on the density ¢, which yield a unique solution, are
discussed in Michel and Fokas [124], but all of them share the disadvantage of
having little physical interpretation.

Not only the non-uniqueness, but also the instability of the inverse problem has
an impact on its usability in real-world applications. Since measurements are
always equipped with a certain amount of noise, induced by measurement errors,
regularization strategies have to be applied. A vast amount of literature about the
numerical solution of Problem 7.11 with the use of different regularization methods
exists. The methods, which were applied, include point mass models (Stromeyer and
Ballani [164]), using basis functions with local support (Sanso et al. [157]), a truncated
singular value decomposition (Tscherning and Strykowski [172]), and a Tikhonov
regularization approach (Weck [183]), as well as methods using spherical splines
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(Fengler et al. [44] and Michel and Wolf [129]) and spherical wavelets (Michel [118-
121] and Michel and Fokas [124]). For an extensive overview, see Section 9 of Michel
and Fokas [124]. Finally, we mention the work of Fischer [45] and Fischer and
Michel [46], where the Regularized Functional Matching Pursuit was applied to the
linear inverse gravimetric problem. For the nonlinear inverse gravimetric problem,
which will be the topic of the following section, we will present a similar algorithm
in Chapter 10.

7.2.2. Nonlinear inverse gravimetric problem

In the previous section, Problem 7.11 was derived from Problem 7.8 by assuming
that the shape of the Earth £ is known and the mass density function ¢ is unknown.
In the following, we will look at the problem the other way around: we will assume
that a model for the mass density function is available (for example, we could use
PREM [40]) and that we want to determine the shape of the Earth. Furthermore, we
will see that the resulting nonlinear integral operator equation can also be used to
determine boundary layers inside the Earth.

Problem 7.14 (Nonlinear inverse gravimetric problem). Let S C R3 be a regular
surface, let 0 € L?(S™™) be a mass density model, and let a function ¢ € L?(S) be
given. Find € such that £ C S and

Ug,Q’Lg :g.

The operator that maps & C S™ to Ug o|s for fixed ¢ is denoted by S, and the
operator equation

Sol€l =g
is called the nonlinear inverse gravimetric problem.

Since S, should formally be defined on a space of subsets of S™, which is difficult
to handle, we restrict to the case of domains that are star-shaped with respect to
the origin. This is also motivated by the following example for non-uniqueness for
Problem 7.14 with domains that are not star-shaped. It is based on Example 7.9,
which we have already given before.

Example 7.15 (cf. Isakov [88, Section 2.2]). From Eq. (7.1) we can conclude that for a
constant density ¢ > 0 and radii Ry > R, > 0, we have

47T

Upy \By, oY) = - (R} — R3) |§|
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Consequently, the gravitational potential of two spherical shells Bg, \ Bg, and
Bg, \ Bg, with identical constant mass density ¢ > 0is equal if and only if R — R3 =
R: - R,

This simple example already shows that without any restrictions on the shape of
£ there is a severe non-uniqueness associated to the nonlinear inverse gravimetric
problem.

The restriction to star-shaped domains leads to the following problem.

Problem 7.16 (Nonlinear inverse gravimetric problem, star-shaped). Let S C R3
be a regular surface, let 0 € L?(S™) be a mass density model, and let a function
¢ € L*(S) be given.

Find a function ¢: S — (0,00) such that £ = X, where the regular surface
X C Sntis given by

T={rfeR|¢eSr=0()} (7.6)
and
uZint/Q’S =9

The operator that maps the function o to Ugin ,|s for fixed ¢ is denoted by S, and
the operator equation

Selo] =g
is called the nonlinear inverse gravimetric problem (with a star-shaped domain).

Note that, using polar coordinates, the nonlinear integral operator has the expres-
sion

Solo] (y) = Usine ()
_ / o(®) 4.
Sint |x — y|

— 7@ o(rg) »
_/SZ/O ey r=drdw(g). (7.7)

A sketch of the setting for Problem 7.16 can be found in Figure 7.3.
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Figure 7.3.: Geometrical representation of the situation in Problem 7.16: the boundary X of
the star-shaped body of mass X" is parametrized by a function ¢ on S?.

Remark. In general, this operator is indeed nonlinear, since for ¢, T: S? — (0,00),
we have

&)+T(6 )
Solo+ 7] ( /SZ/ |r§ |r 2 dr dw(¢)

_/SZ/ ]réj— r dr+/ e P gr_{:)‘r drdw(§),

which is only equal to Sp[o] (v) + Sp[t] (v) if 0(¢) = 0 forall & € S

We will discuss the well-/ill-posedness of the nonlinear inverse gravimetric problem
in the following paragraphs.

It is clear that a necessary condition for the existence of a solution to Problem 7.16
is the harmonicity of the potential, that is, g needs to be a restriction of some har-
monic function to S. In more detail, Weck [183] mentions that ¢ needs to be analytic.
Isakov [88, Chapter 5] deals with a more detailed discussion of the topic of exis-
tence. In Isakov [90], the same author states that “it is not possible to obtain (even
local) existence results”, even after providing a “special local existence theorem” in
Isakov [88], which shows that the topic of existence of a solution is a very difficult
problem. We refer to the works by Isakov for further details, since we want to con-
centrate on the issues of uniqueness and stability of a solution in this section. These
properties differ most between the linear and the nonlinear inverse gravimetric
problem.
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7.2. Inverse gravimetric problems

Isakov [88] proves uniqueness results for Problem 7.16 both in the case of a constant
and a variable mass density. Below, we will state both theorems and present the
proof for a constant mass density.

First, we begin with an important lemma about harmonic functions. It is actually
the main idea for the proof of uniqueness of the nonlinear inverse gravimetric prob-
lem and was first presented by Novikov [138] for the analogous two-dimensional
problem using the logarithmic potential.

Lemma 7.17 (cf. the proof of Isakov [88, Theorem 2.2.1]). Suppose A C RR? is an open
domain. If f: A — R is harmonic, then also the function

x =1 rgj;(ré),

where r > 0 and ¢ € S? are the polar coordinates, is harmonic.

Proof. Let f: A — R be harmonic, thatis Ayf(x) = 0 for all x € A. Since % is the
directional derivative in the direction of the vector x/|x| and r = |x|, we obtain for
arbitrary x = r¢ € A that

P0E) = Il [ Vaf () = x- Vs (x)

for x # 0. For x = 0, we obtain the same result due to the continuity of both sides of
the equation. Thus,

A ( ";f) (12) = A (x - Vif(x))
(ngtw)
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Chapter 7. Inverse gravimetry

where Eq. (7.8) holds because

3 2
i o 9 _
Axxy _]; 2 = and Ay 320 anAxf(x) =0
by Schwarz’s theorem. [

The use of Green’s identity (see Theorem 2.2) for particular functions yields the
following result.

Lemma 7.18. Let A C R3 be an open domain with a sufficiently smooth boundary
and let f € C?)(A). Then,

/ x-Vf(x)+3f(x)dx = /a f(x)x-v(x)dw(x),
A A

where v: A — R3 is the outer unit normal field of A.
Proof. Letg: A — R, g(x) := |x|*/2. Then,

Vig(x) =x and Avg(x) = divyx = 3.

Therefore, we have

[ F) v do) = [ F(0) Tagla) - v(x) deo(a)
[ fx) a—g<x> dw(x)

= / £(x) Axg(x) + V£ (x) - Vg(x) dx 7.9)
=/ 3 f(x) +x- Vif(x)dx
A
by using Green’s identity in Eq. (7.9), which completes the proof. n

These lemmas will be used in the proof of the following theorem. We carry out the
proof for two reasons: first, the theorem itself highlights the usefulness of the nonlin-
ear inverse gravimetric problem due to the uniqueness of a solution in contrast to the
linear problem. Secondly, we try to give an improved and expanded presentation of
the proof such that it is easier to understand for the reader.

Theorem 7.19 (cf. Isakov [88, Theorem 2.2.1]). Let S C RS be a regular surface.
Suppose that X1, £, C S™ are regular surfaces such that X", i are star-shaped.

If
uzilntll |Sext - uZizntJ ‘Sext, (7.10)
then Xy = %.
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Proof. We rewrite Eq. (7.10) as

1 1
0 = Usint — Ugint :/ 7dx_/ T dx
b3 ,1(y) b3, ,1(3/) sin E= sint [x — y|
1 1
— in dx — / in dx
gint |x_y|XZ t( ) gint |x_y’XZ t( )
1
= o ey (e () = () )
— usint/Xzilnt _Xziznt (y)

for all y € St Thus, for g: S™ — R, o(x) = Xsint(x) = Xz (x), we have ¢ €
null 7gine such that we can apply Theorem 7.12 to obtain

smtf( x) o(x) dx
f(x) (Xzilnt(x) - xzizm(x)) dx
flx)dx— [ f(x)dx

int int
b2} b2

Smt

for every harmonic function f: St — R.

Therefore, by Lemma 7.17 we obtain

/, x-Vf(x)+3f(x)dx:/2 x-Vf(x)+3f(x)dx (7.11)
lent 12nt
for every harmonic function f, which yields
 x-Vf(x)+3 xdx:/A x-Vf(x)+3f(x)dx, (7.12)
Jrongo® VIO F3f ) dx =[x A )+ 3

observing that Xint N Xt is part of the domain of integration on both sides of
Eq. (7.11).

We now define the boundary sets
Tie =21\ 25, Toe =5\ Y,
Zli = 22 N ﬁ, ZZi = 21 N @

such that 9 (Xint\ XIt) = ¥, U X5 and 9 (X \ Zit) = X, U Xy, (see Figure 7.4 for
a sketch of the situation).

Then we obtain from Eq. (7.12) by using Lemma 7.18 that for every harmonic
function f

I(f) = /ZleUth(x) x-v(x)dw(x) — /Zzeuzﬁf(x) x-v(x)dw(x) =0, (7.13)
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where the outer normal fields v on X1, U X5 and X5, U Xp; are oriented with respect
to the sets Xint\ Xint and XM\ Xt respectively.

Suppose Zilnt z Zi2nt. An application of Lemma 1.7.4 from Isakov [88] yields that
there exists a sequence of harmonic functions (fi)ken, fr: MU Xt — R such that
0 < fy(x) < 1forall x € ¥ty Xt and fy — 1a.e. on Xy and fx — 0 almost
everywhere on 2.

On the one hand, we obtain from Eq. (7.13) that

0=1(f)
= [, o S vxdem — [ il xv() de)
= [ Al x v do + [ flx)xov(x) de)
[ A e vix) de) = [ i) x v deo(a) (7.14)

> [ S e v do) + [ filx)xov(x) del)

- I Felx) x - v(x) dw(x) (7.15)
> [ A v deol) + [ xv(x) dof)

- I felx) x - v(x) dw(x) (7.16)
o Zlex-v(x) dw(x) + th-v(x) dew(x) (7.17)
= ZleUZlix-v(x) dw(x)

where Eq. (7.14) holds since X1, N X4; and Xy N Xy have measure zero. Eq. (7.15) is
true since fy(x) > 0and x - v(x) < 0 for x € X, whereas Eq. (7.16) holds because
fr(x) <land x-v(x) <0 forall x € Xy;. Note that we used the star-shapedness of
Xint N Xt with respect to the same point here to obtain that the outer normal v(x)
and the vector x need to point into opposite half space. Finally, Eq. (7.17) is fulfilled
due to the dominated convergence theorem (the integrands are dominated by the
integrable function x — |x|).

On the other hand, Lemma 7.18 for f = 1 on A = Xint\ XM gives

x-v(x)dx = 3A(Zit\ xint) > 0
JERTC (Zit\ =Y >

Consequently,

AZP\Z) =0

114



7.2. Inverse gravimetric problems

such that Zif“ C Zizm since the sets are star-shaped. This is a contradiction to the
assumption that Xint ¢ xint,

Similarly, one shows that Zi"* C Xinf and thus " = X" and consequently, X, =
2. [ |

A generalization of this theorem, whose proof uses the same technique as the proof
of the previous theorem, is the following.

Theorem 7.20 (cf. Isakov [88, Theorem 3.1.1]). Suppose the assumptions of Theo-
rem 7.19 are fulfilled, and additionally a mass density model ¢: S™ — R is given,
for which

0 € C(S™\{0}), g‘i € C(SM\ {0}), and gaar(ﬁg) >0onS™\ {0}

hold.
If

uZilnt,Q ’Sext == uZiznt,Q |Sext,
then 21 = 22.

For several other uniqueness results with different assumptions on the shape of
the domain and on the mass density model, we refer to Isakov [88, Chapter 3] and
Isakov [89, Section 4.1].

In addition to the provided uniqueness results, Isakov [88] also gives an insight
into the stability of the nonlinear inverse gravimetric problem. It turns out that the
inversion of the operator S, is indeed stable (in theory), but that difficulties arise
from the numerical perspective in this case. We will discuss this topic further after
stating the theorem. In Theorem 7.7, we have already stated that it does not matter
if the potential itself or its gradient is given as the right-hand side of the inverse
problem. The original theorem deals with the problem, where the modulus of the
gradient of the potential is given on a certain subset of a sphere with arbitrary center
and radius. We will only present a simplified version such that the main idea of the
result gets clear.

Theorem 7.21 (cf. Isakov [88, Theorem 3.6.1]). Let S = S? and let two regular surfaces
¥, X, C Sntpe given, which are parametrized by functions oy, 07 : S? — (0,1) such
that XInt, £t are star-shaped. Additionally, it is required that there exists a constant
h > 0 such that 01 (&), 02 (&) € (h,1 —h) for all & € S? and that 01,0, € C?)(S?).
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Zilnt Ziznt
2
(a) The sets i and ZiM* are bounded by the regular surfaces X1 and X, respectively.
e 2o
2 20e

(b) The sets Xie, X1i, Xoe, 2p; are defined such that Xy = X1 U Xy, 2o = Xpe U X5
The boundaries of the difference sets are given by a(Zif‘t \ Ziznt) = X1o U X4 and
9(Zint\ Zint) = $po U Xy

Figure 7.4.: Sketch of the sets arising in the proof of Theorem 7.19. Note that in this sketch,
we choose to depict the special case of convex sets, which are star-shaped with
respect to every point inside the sets itself. The origin, which is the point with
respect to which both sets need to be star-shaped to fulfill the preconditions of
the proof, can therefore be any of the points in the intersection.

116



7.2. Inverse gravimetric problems

Then there is a constant C > 0 such that if
HVuZilntll (y)’ — ’Vllzizm,l (y)H <eg forally € S,
then,
|01.(&) — 02(&)| < Clloge| €, forall ¢ € S%. (7.18)

Clearly, this is a stability estimate for the nonlinear inverse gravimetric problem,
since it shows that the solution depends continuously on the data.

Unfortunately, the stability of the inverse problem can be described as being weak (cf.
Isakov [89, Section 1.1]) due to the logarithmic nature of the estimate, which leads
to “numerical difficulties” (Isakov [89]). The reason for these difficulties is the fact
that the right-hand side of Eq. (7.18) changes dramatically near ¢ = 0. This can be
quantified by the derivative of the function fc(¢) := C [loge| /€

by

, which is given

9fc (—loge)—(1+C)/C —c/a+o)\ 1ro/e
——(e) = _
o € —loge

if 0 < ¢ < 1. Since both the numerator and the denominator of the fraction
on the right-hand side tend to infinity for ¢ — 0, we obtain by L'Hospital’s rule
that

—C/(14+C) _C_—C/(1+0)-1
lim £ lim 1£€ I
a0 —loge e\0 £~
C
—1i —-C/(14C) _
c014+Ct m

where the last equality is true since the power —C/(1 + C) is negative. Conse-
quently,

This shows that if one restricts the image space of the operator in such a way that
it is surjective (and thus bijective by the uniqueness theorem), the inverse prob-
lem is no longer ill-posed, but still ill-conditioned from the numerical perspective
(cf. Isakov [90, Section 2]). In consequence, a regularization of the inverse prob-
lem is unavoidable to obtain a stable solution. In consequence, in Section 10.3 we
will apply the newly developed Regularized Functional Matching Pursuit algo-
rithm for nonlinear inverse problems to the nonlinear inverse gravimetric prob-
lem.
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In conclusion, by addressing the nonlinear inverse gravimetric problem instead of
the linear inverse gravimetric problem, the problem gets more difficult because of
the nonlinearity. On the other hand, the solution of the nonlinear problem is both
unique and stable (at least in theory), which is advantageous and beneficial for the
numerical solution of the inverse problem.

Note that one can also formulate the nonlinear inverse gravimetric problem as
an inverse source problem for a partial differential equation, namely the Poisson
equation. This was, for example, done by Hettlich and Rundell [78]. Other inverse
source problems of this type are related to the heat equation (see, e. g., Hettlich and
Rundell [79]) and the Helmholtz equation (see, e. g., Elschner and Yamamoto [41]
and Hettlich and Rundell [80]).

7.2.3. Gateaux and Fréchet differentiability of the nonlinear operator

Many algorithms for nonlinear inverse problems use either the Fréchet or the Ga-
teaux derivative of the involved operator. In this section, we will compute the
Gateaux derivative of S,, which was defined in Problem 7.16.

4

To compute the Gateaux derivative, we will use the following special case of Leibniz
rule for differentiation of integrals (cf. Holmes [84, Theorem 6.2]).

Lemma 7.22. Let f, g: R — R be sufficiently smooth. Then

d s

S e =re)g .
The Gateaux derivative S;[c](7): C(S$?) — C(S) at ¢ € C(S?) in the direction
7 € C(S?) can now be obtained by an application of the preceding lemma to the

expression in Eq. (7.7):

Sylel(T)(y) = c‘fs o +et] )]

&)tet(¢ ) 5
~ e de/ y’r dr )

[ e >+er< >> ). (o(g) + v

_ M
= JeTe@e—y "¢ ))?7(8) dew(@) (7.19)

for all y € S. The symbol ~ in the second line should indicate that we assumed

dw(¢)

e=0

that the interchanging of differentiation and integration is possible. Of course, this
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would have to be proved. Since we prove in the following that the term in Eq. (7.19)
is not only the Gateaux, but also the Fréchet derivative under certain assumptions,
we can omit this proof, since the Fréchet derivative is always also the Gateaux
derivative.

Theorem 7.23.Let ¢ € C()(S™). Then the Fréchet derivative of the operator
So: C(S?) — C(S) is given as

Sl = [, S (@) () dwd)

forallg, T € C(S?) and y € S, assuming there exists C > 0 such that |o(¢)& —y| > C
forall¢ € S?andy € S (i.e., X C S'™).

Proof. For the sake of brevity, we define

o(x)

kxy) = =¥ x[*
such that
/SZ/ k(ré,y) drdw(E).
Note that

2 —
Vek(ry) = V() +2.85) y g(aap XY

[x =y [x =y \x—y|3

and

Vb0 < 5 ol + 20 SR g+ gy R oy < 0

(7.20)

forall x € S"tand y € S, where

Sihti={xeS™||x—y|>Cforally €S}
and Rgint := maxycs|y|. Consequently,

1€ y) Ml (simy < 00
and since the last term in Eq. (7.20) does not depend on y, we even have

sup|[k(-, y)[lcoy sy < o°. (7.21)

yeSs
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Let y € S be fixed. Then, if we consider the term from the definition of the Fréchet
derivative, we obtain for sufficiently small T € C(S?) that

/SZ/ e k(r¢,y) drdw(¢ / / k(r¢,y) drdw($)

- [Ke@s y) () dw ) 72)

-1/ / Tkt araaie) - [ HE(@),) T0) dw(d)
=L Ko = ke @8 70 de)

< LI kot ar - ke@e ) 7| awie 72
- LI/ T@k« (©)+1)E9) dr — Ko@) 70)| dw(d 72
= / K(0() + P2 y)T(@) ~ k(e (©)Ey) T(0)] dw(?) 7.25)
= [ (@) +PEy) — k(@2 v)IT(@)] dw(?)

= r[ik((a@)w)a,y)h (@) deo() (7.26)
< Gl s T e 727)
< 47|k, ) llcon sy | TliE s (7.28)

where we used the triangle inequality in Eq. (7.23), a substitution in Eq. (7.24), the
existence of 7 € [0, 7(¢)] such that the equality holds due to the intermediate value
theorem for integrals in Eq. (7.25), and the existence of 7 € [0,7], such that the
identity holds due to the intermediate value theorem for differentiation in Eq. (7.26).
Furthermore, we employed 7 < |7(¢)| and Eq. (7.20) in Eq. (7.27) and Theorem 2.17
in Eq. (7.28). Note that we have to require T to be sufficiently small such that
|(0(&) + 7(&))& — y| > C holds, implying a finite C(1) (S")-norm of k.

It follows that

/Sz/ O+t(E k(r¢,y) drdw(¢ /SZ/ k(rg,y) drdw()

- [ Ke0E ) @) dw (o)

< 47rsup||k(~,y)Hc<1>(sint)HTHé(SZ)I
yeSs

sup
yEeS
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which proves the assertion since the latter term tends to 0 even if it is divided by
|7llc(s2) and the term in Eq. (7.22) is exactly the term arising in the definition of the
Fréchet derivative. n

Often, one would like to apply Hilbert space techniques in the analysis and numeri-
cal solution of inverse problems. Up to now, we have only considered the operator
S, as an operator C(S?) — C(S). To consider it as an operator L?(S?) — L?(S),
we have to ensure the existence of the integrals in the definition of the operator.
Furthermore, we can prove that the image is an L?(S)-function.

Theorem 7.24. Let ¢ € L®(S™) and let ¢ € L?(S?) such that |o(&)& —y| > C for
almost all & € S?, almost all y € S, and some constant C > 0. Then, we have for
almost all y € S that

7@ o(rg) ,
/S2/0 \ré—y|r drdw(g) < oo
Furthermore, S, (0] € L2(S).

Proof. Letk, S™, and Rgin be defined as in the proof of the previous theorem. Then,
we have

e@ 2 o Nellimgsm o

|k(x’y)|_ ‘X | C Smt

(7.29)

for almost all (x,y) € S x S such that

||k(/y) ||L°°(S%‘nt) < 00,

L[ e arao@] < [l [ 4
Sz Ty i’w Loosmt 0 r

< kG )i (smy 1ol se)

< \/EHk(’I]/)HLW(Si{“)||0||L2(SZ) < oo,

Thus,

dew(¢)

for almost all y € S, which proves the first assertion.

Since the penultimate term in Eq. (7.29) does not depend on y, we observe that

2 o Fe(sin
/S(|‘k<'/y)||Lw(sLnt)) dw(y) S/S%Réim dw(y)

2
= w(S) ”QHLCf"’Z(S““)R‘éim < 00

such that S, (0] € L*(S). |
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Using the same technique as in Theorem 7.23, we can prove the Fréchet differentia-
bility of the operator S,: L*(S?) — L*(S).

Theorem 7.25.Let ¢ € C1)(S™). Then, the Fréchet derivative of the operator
S,: L?(S?) — L?(S) is given as

Sl = [ 252 0@ 10 dw@

forall o, T € L2(S?) and y € S, assuming there exists C > 0 such that |¢(&)¢ — y| >
C for almostall ¢ € S?and y € S.

Proof. Define k, S, and Rgint as in the proof of Theorem 7.23. From Eq. (7.21), we
obtain that

SV sy de(9) < () supIkC ) oo s < o (7.30)
ye

The inequalities in Eqs. (7.22)—(7.27) are still true such that

/gz/ ) k(ré,y) drdw(¢ / / k(rg,y) drdw(g)

- [ Ke@E T(E) dale)

< ||k(’fy)||c<1)(s§§‘t)HTHiZ(SZ)

for almost all y € S. An application of Eq. (7.30) proves the assertion. u

7.2.4. The determination of boundary layers and topographies

We will briefly discuss two problems that are related to the nonlinear inverse gravi-
metric problem, namely the determination of boundary layers and the determination
of topographies (i. e., the boundary of a body of mass deviates from a prescribed
model). It will be shown that, under certain assumptions, both problems can be
reduced to a modified version of Problem 7.16.

The first problem to solve is the determination of boundary layers inside a body of
mass.

Problem 7.26. Let S C R3 be a regular surface and let X; C S™ be a given star-
shaped regular surface such that " is a body of mass (e. g., the Earth). Assume
that there exists a boundary layer inside X" that is described by a regular surface
Y, C Xint guch that XM is star-shaped and a mass density model inside X' is given
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21

Figure 7.5.: Sketch of the situation in Problem 7.26: There is a boundary layer X (purple)
inside a body of mass, whose boundary is given by X; (blue). The mass density
in the purple region is given by g, whereas the mass density in the blue region
is given by 05.

by a function g2: S™ — R and a mass density model inside X"t \ @ is given by a
function g : S™™ — R (see also the sketch in Figure 7.5).

Given a function ¢ € L2(S), find 0»: S* — (0,00) that parametrizes X, like in
Eq. (7.6) such that

uzilntrglxzilnt\@_‘—@x}:izm ‘S = g.

To obtain a formulation equivalent to Problem 7.16, we take a look at the (almost
everywhere) pointwise formulation of the problem. For almost every y € S, we
have

g(y) = uzﬁnt/QlXZilm\@*QZXzizﬂf (y>

Ql (X)Xzilnt\ﬁ(x) + QZ(x)Xziznt (x)

= /. dx
i |x -y
01(0) (s ()~ X () + 02(0) x50 (1)
= | : dx (7.31)
= [x =yl
=/ CCORP + [ () —al) dx,
= =yl s Jx—yl

where in Eq. (7.31) we used x 4\p = x4 — xp if B C A. From these considerations,
we obtain that by introducing the density difference function

oaite: S™ — R, 04itf(X) = 02(x) — 01(x) for x € S™,
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and a modified right-hand side

ger’s),  g=sw)- [ 2 e foryes,

sint [x — y|

Problem 7.26 is equivalent to the problem of finding o7 such that

uZizm,Qdiff ‘ s=&

which is exactly Problem 7.16 for a particular choice of the body and the mass
density.

The nonlinear inverse gravimetric problem has indeed often been used in the lit-
erature to determine boundary layers inside the Earth, in particular, the so-called
Mohorovici¢ discontinuity, which is the boundary between the crust and the mantle
(see Clauser [29, Section 1.5]). The corresponding publications are mostly written
from the geoscientific point of view, for example, see Aitken [2], Chappell and
Kusznir [27], Guimera et al. [69], Hsieh and Yen [85], and Reguzzoni and Sampi-
etro [149, 150].

The second problem that we want to discuss is the following one, where we assume
that it is known that the body of mass is already well approximated by a ball of
radius R > 0. The topography of the surface can thus be described by the deviation
from the sphere with radius R, that is, by a function ¢: §> — R, #(¢) = ¢(¢) — R
for & € S?, where ¢ is the parametrization always used above.

Problem 7.27.Let S C R? be a regular surface, let ¢ € L?(S) be a mass density
model, and let a function ¢ € L?(S™™) be given. Assume that the boundary of the
unknown body of mass is given by a regular surface & C S, which is parametrized
by a function &: S — R such that

E={rgeR|eS’,r=R+5(0)}
for some radius R > 0.
Find & such that

Usint o|s = §-

First, it is obvious that the preceding problem is equivalent to Problem 7.16 if the
relation o(¢) = R + &(¢) for & € S? is used. Using polar coordinates this can be
further simplified to obtain

8(y) = / olx)

g Jr = y]
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[ D)
_/SZ/O ey dr dew ()
L[ A g
=L rrg y\’d”/

R + r)¢ ) 2
= R+7r) drdw
/IBR \x—y| /SZ/ R+r§— \( ) 9
for y € S. Thus, by introducing the modified right-hand side

r2 drdw(¢)

7 e L2(S), 3(1)) = _/ o(x) 4, fory €S,
geL(s) 8W)=8W) = | y
Problem 7.27 is equivalent to the nonlinear integral equation
((R+71)¢) ) .
/sz/ R TR ey R T 1) drdw(©) =2y (7.32)

forally € S. ThlS is not exactly a reduction of the problem to Problem 7.16, but the
only difference in the integral operators in Eq. (7.7) and in Eq. (7.32) are the terms
r (in Eq. (7.7)) and R + r (in Eq. (7.32)). Thus, if an implementation of the operator
in Eq. (7.7) is already available, it is easy to modify it to represent the operator in
Eq. (7.32).

7.2.5. Euclidean formulation of the nonlinear inverse gravimetric
problem

In this section, we will give a short overview over a different formulation of the
inverse gravimetric problem, which we call Euclidean formulation in contrast to the
spherical formulation given in Problem 7.16. We call the latter a spherical formulation,
since the boundary of the star-shaped body of mass is given by a function on the
sphere. In the Euclidean setting, one assumes that the unknown body £ can be
described in Euclidean coordinates by

E={(xyz)eR|-H<z<o(x,y)—H, xye},

where H > 0 is a constant representing a depth, (2 C R? is a bounded domain, and
the function o fulfills

0<o(x,y)<H for all (x,y) € Q2 and
o(x,y)=0 for all (x,y) € 002
such that £ can be described as a body of matter that is bounded in the (x,y)-
directions by a given domain (2. In the z-direction it is bounded by a plane that is par-

allel to the x-y-plane with the depth —H on the bottom, and the graph of the function
—H + o at the top. For a sketch of the situation, see Figure 7.6.
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—1 +1

0

Figure 7.6.: Two-dimensional slice of the situation in the Euclidean formulation for (2 =
-1, 1]2: the function ¢ describes the deviation of the body of mass from the
plane at the depth —H.

The corresponding inverse problem is based on the assumption that the gradient of
the gravitational potential is measured at height 0 in the set (2, which for a constant
density ¢ = 1 results in the nonlinear integral equation

1
/Q V=) + (y =y + (e y) — HY

where f: (2 — R is related to the derivative of the gravitational potential in the
z-direction (cf. Ang et al. [7]). Due to the included derivative in this formula-
tion, the integral in the z-direction can be eliminated by using the fundamental
theorem of calculus, such that Eq. (7.33) contains only a two-dimensional inte-
gral. In Ang et al. [7], a uniqueness result for the inverse problem in Eq. (7.33) is
proved.

dx'dy’ = f(x,y), (7.33)

This problem, also in a lower-dimensional version using the logarithmic poten-
tial, has been used as a prototype for a nonlinear integral equation extensively
both in mathematics and the applications, for example by Airapetyan et al. [1],
Akimova et al. [3], Akimova and Vasin [4], Ang et al. [7-9], Bakushinsky and
Kokurin [11], Bakushinsky et al. [12], Bertete-Aguirre et al. [20], Diniz-Ehrhardt
et al. [35], Haber and Oldenburg [72], Imomnazarov et al. [87], Korolev [104],
Loukianov [111], Misici and Zirilli [131], Ramm and Smirnova [147], Reguzzoni
and Sampietro [149], Richter [152], Seidman and Vogel [161], Shubha et al. [163],
Tikhonov and Glasko [171], Vasin [173-175], Vasin and Perestoronina [176], Vasin
and Skorik [177], and Wang and Yuan [182].

We mentioned this problem in this context here, because it is often called the in-
verse gravimetric problem in the literature mentioned above and we want to make
clear what the connection is between both formulations of the nonlinear inverse
gravimetric problem.
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Regularized Functional Matching Pursuit (RFMP)

In Berkel et al. [18], Fischer [45], Fischer and Michel [46-48], Michel [123], Michel
and Telschow [127, 128], and Telschow [166] several variants of a novel algorithm
for the regularization of linear inverse problems, the Regularized Functional Matching
Pursuit (RFMP), have been developed.

In this chapter, we will present the basic form of this algorithm as it is described in
Michel [123] and give previously achieved theoretical results concerning the conver-
gence of the algorithm. This will be the basis for the considerations in the following
chapters, where we develop new modifications of this algorithm.

8.1. Problem setting

The algorithm deals with the solution of Problem 6.3, where % = Rf for ¢ € N,
corresponding to the most common setting in practical applications, where only a
finite amount of (possibly noisy) measurements is available. We do not assume that
all measurements are of the same physical quantity and thereby related to the same
specific operator. Instead, the operator 7: % — R’ can be comprised of distinct
functionals 7q,...,7;: % — R such that

Ti (f)
T(f) = : € R’ fex.

Te (f)

It is therefore possible to perform a joint inversion of different data types with this
algorithm, which has been a challenge in the field of applied inverse problems
and, in particular, in geophysics since the 1970s (see, for example, Haber and
Oldenburg [71], Vozoff and Jupp [180], and Yokota et al. [185]).

Note that if 7 is a bounded functional for every k = 1,..., ¢, then 7 is a linear and
bounded operator.
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Chapter 8. Regularized Functional Matching Pursuit (RFMP)

In the following section we will first derive the so-called Functional Matching Pursuit
(FMP), followed by the Regularized Functional Matching Pursuit (RFMP), which
incorporates a regularization term, which is needed due to the possibility of ill-
posedness of Problem 6.3. Although the FMP is a particular case of the RFMP, we
introduce both algorithms separately, since similarities of the FMP to the greedy
algorithm from Chapter 3 can be drawn. For both algorithms, we prescribe a
dictionary % C % and iteratively generate a sequence

K
(fK =fo+ ), “kdk>
k KeNp

=1

of approximations to a solution f € %, where ay € Rand diy € 9 for all k € Ny. An
initial approximation is given by fo € .

8.2. Functional Matching Pursuit

In Fischer [45] and Fischer and Michel [46], the FMP was derived by explicitly carry-
ing out the iterative minimization of the least squares functional

Aog [fic + ad) = ||g = T (fic + o) ||

fora € Randd € 9, given f;r € & and data ¢ € %¥. The same strategy will be
used in Chapter 10 to obtain a related algorithm for nonlinear inverse problems, the
RFMP_NL.

Here, we present a different approach based on the results of Chapter 3, which
yields the same algorithm. The idea is to apply Algorithm 3.1 (the Pure Greedy
Algorithm, PGA) in the range % of the operator 7.

The function to approximate by the PGA is consequently the data ¢ € %. The
dictionary for the PGA needs to be normalized and the elements need to be from
the image space, so we choose { 74/|7d||,, | d € 9 } as the dictionary, such that we
need to assume d & null 7.

If we then apply the PGA, we obtain a sequence (gx)x C % of approximations of g,
which have the form
K Ty
k=Tfo+ )ty
se=Tht Loal,

k=1

where the dictionary elements d; € 9 fulfill

(=841 )
§ 8T dll, /

dy = argmax
ae9
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8.2. Functional Matching Pursuit

and the coefficients &; € R are given by

. :< T >
NS T NT A /.

fork =1,...,K. If we include the normalization of 7 d; in the coefficient such that
K = H’fuéiil\y’ this yields the following algorithm, which is identical to the FMP in
Fischer [45], Fischer and Michel [46], and Michel [123].

Algorithm 8.1 (Functional Matching Pursuit, FMP). Let 7 and g be given as in
Problem 6.3. Choose a dictionary 9 C % \ {0} and an initial approximation
fo eEX.

1. Set k := 0, define the residual rg := ¢ — T fo and choose a stopping criterion.

2. Find
<rk, Td>oy
dpyq = argmax|—————= (8.1)
Tl
and set
Ry (ks Tdi41)ay
1= =y
| T disally

aswell as fry1 = fr + ax1dirr and 11 = 9 — T (frew1) = 16 — @1 T (dis1)-

3. If the stopping criterion is fulfilled, then f is the output. Otherwise, increase
k by 1 and return to step 2.

As a direct consequence of Theorem 3.2, we obtain the following theorem.

Theorem 8.2 (Convergence of the residuals). Let 7 and g be given as in Problem 6.3
and choose a dictionary 9 C % such that

spanT (%) = R and null7 N9 = .
Then the sequence (7)., Of residuals converges and

lim Ty = 0.
k—oc0

The convergence of the sequence of iterates (fi)ren, cannot be proved using the
results from Chapter 3. Nevertheless, a proof for this fact is given in Fischer [45],
this proof has been extended to the regularized setting in Michel [123] and it has
been improved further by Michel and Orzlowski [126]. Since the result for the
FMP is just a particular case of the result for the REMP, we refer to the following
section.
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Chapter 8. Regularized Functional Matching Pursuit (RFMP)

8.3. Regularized Functional Matching Pursuit

Analogously to the FMP, the REMP was derived in Fischer [45] and Fischer and
Michel [46] by iteratively minimizing the Tikhonov functional

Ang lfi +ad) = ||g — T (fic + ad) | + AL fi + ad ||

fora € Rand d € 9, given fr € & and data g € %. Here, A > 0 is a regularization
parameter. Since we will use the same technique for the REFMP_NL in Chapter 10,
we again omit the derivation of the algorithm here.

Algorithm 8.3 (Regularized Functional Matching Pursuit, REMP). Let 7 and g be
given as in Problem 6.3. Choose a dictionary 9 C % \ { 0 }, an initial approximation
fo € ¥ and a regularization parameter A > 0.

1. Set k := 0, define the residual o := ¢ — T fo and choose a stopping criterion.

2. Find

_ 2
dy,1 = argmax ({ri Td)y = Al d)y)

(8.2)
dca I7dl5 + Aldl5

and set

(i, Tdrs1)ay — A fror A1) o
T dicsa |l + M ks |l

e

4

aswellas fr1 = fr + axp1drrr and rig = ¢ — T fror = 1k — a1 T digr-
3. If the stopping criterion is fulfilled, then f; is the output. Otherwise, increase
k by 1 and return to step 2.
For the Tikhonov functional of the iterates, the following property could be derived

in Fischer [45] and Michel [123].

Theorem 8.4. The sequence

2 2
Al fells
<||Vk||Ré i ,)c)keNO

is monotonically decreasing and convergent.

As already mentioned in the previous section, in Michel [123] and Michel and
Orzlowski [126], a convergence result for the sequence ( fi)ren, of approximation
was given. We state this result in the following.
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Theorem 8.5. Let the regularization parameter fulfill A > 0 and let the dictionary
9 C X fulfill the following properties:

1. “semi-frame-condition”: There exists a constant c > 0 and an integer M € N
such that, for all expansions H = ) ;2 ; Bxdy with B € R and dy € 9, where
the dj are not necessarily pairwise distinct but |{j € N | d; = dj }| < M for
each k € N, the following inequality is valid:

el Hlly: <} Bi-
k=1

2. Cpi= infge (I Tdlfs + Aldlly ).

If the sequence (fi)ken, is produced by the REMP and no dictionary element is
chosen more than M times, then ( fi)ken, converges in & to foo = fo + Yo axdy €
%. Moreover, if span% = % and C; = sup,, [|d|l,, < oo, then fo solves the
Tikhonov-regularized normal equation

(T"T +AL)fo =T"g,

see Section 6.1.4.

We omit the proof of this result here, since we will present it in a more general
setting in Chapter 9. Note that we included the case A = 0 here, such that this
theorem also covers the convergence of the FMP algorithm, which was described in
Section 8.2.

Combining Theorem 8.4 and Theorem 8.5 with Theorem 6.21, we obtain that the
sequence in Eq. (8.3) converges monotonically decreasing to the minimum value of
the Tikhonov functional.

8.4. Properties of the algorithm and applications

In this section, we want to briefly summarize several properties of the RFMP and
the inverse problems to which they were applied to in the past.

A big advantage of the RFMP is its ability to construct an approximation of the
solution that is adapted to the structure of the signal. This is due to the fact that
the dictionary may be any set of functions, in particular, it does not need to be a
basis. Many other methods for linear inverse problems, when implemented on a
computer, need to expand the solution in a basis, which may be a restriction if the
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Chapter 8. Regularized Functional Matching Pursuit (RFMP)

solution consists of several different features. For example, on the sphere, one could
use global basis functions like spherical harmonics in a Tikhonov regularization to
obtain an approximation of the solution. If one tries to approximate highly localized
features with this basis, one will see that the solution will not be sparse, but instead
has a lot of non-zero coefficients in the expansion. On the other hand, one could use
a spline method using radial basis functions, which will yield the same problems if
one tries to capture the global trend of the solution. The RFMP makes it possible
to—in a sense—interpolate between both extremes.

Furthermore, after choosing a basis, one needs to solve a (possibly large and ill-
conditioned) system of linear equations in many other methods. For example,
for a spline method like in Berkel and Michel [19], a system of linear equations
with a dense matrix has to be solved. Also, when applying a Tikhonov regular-
ization, the regularized normal equation in general includes a dense matrix. In
the RFMP, there is no need for the solution of a linear system of equations. In a
way, the RFMP is an iterative optimization algorithm for the Tikhonov functional,
which avoids the explicit solution of these linear systems. Several other methods
(Tikhonov regularization, Landweber iteration) need the knowledge of the adjoint
operator 7*, which is not necessary in the REMP. The only thing that needs to be
provided for the algorithm is an implementation of the operator 7 and the desired
dictionary.

From the algorithmic point of view, the REMP can be implemented very efficiently.
Since the approximations fj are only linear combinations of dictionary elements,
most of the terms that arise in the algorithm can be computed in a preprocessing
step. For instance, if one computes the inner products <di, d ]>9, and <7'd,', ’de>Rg for
di,d;j € 9 in advance, one can speed up the iteration by several orders of magnitude.
Since these inner products only depend on the operator and the dictionary, one can
reuse them if the algorithm is applied to different data sets belonging to the same
inverse problem using the same dictionary.

One could certainly argue that the RFMP is an iterative method instead of a direct
one, like for example Tikhonov regularization (in its pure form), and that using an
iterative method for a linear inverse problem is inefficient. However, on the one
hand, this is also true for the well-established Landweber iteration method. On the
other hand, the solution of linear systems with a large and possibly ill-conditioned
matrix can only efficiently and accurately been done with iterative solvers such that
this argument is not feasible.

Theorem 8.5 shows that the approximations generated by the REMP converge to the
solution of the Tikhonov regularized normal equation, which is also the minimizer of
the Tikhonov functional. For that reason one could also simply use a steepest descent
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method or comparable optimization methods for the determination of the minimizer.
However, in this case, one is again restricted to a representation of the minimizer in
a certain basis, that is, in general this will not lead to a sparse representation of the
function. Using the RFMP, it is possible to put very diverse types of functions into
the dictionary, which makes a sparser representation possible. Note that it is not
necessary to know in which basis the solution has a sparse representation (otherwise
one could indeed use a steepest descent method or the like with this basis). Instead,
one can put all the functions that come to one’s mind into the dictionary and the
algorithm will choose those functions, which fit best to the solution. This does not
only provide a sparse solution from the mathematical perspective, but it also makes
the solution more interpretable from the practitioner’s point of view. For example, a
geophysicist may be able to distinguish global from local features in the provided
approximate solution, which often is of particular interest.

The RFMP (and a variant called the ROFMP) has already been applied to various
inverse problems since its development. This includes inverse gravimetry (Fischer
and Michel [46—48]), the approximation of functions on the sphere such as gravita-
tional field modelling (Michel and Telschow [127]), downward continuation (Michel
and Telschow [128] and Telschow [166]), and a joint inversion of gravimetry and
normal mode data (Fischer [45]). As already mentioned in the conclusions of Michel
and Orzlowski [125], work in progress is an application to medical imaging data
(Leweke [110]). In all of these applications, the RFMP proved to provide very good
results concerning not only the sparsity and the interpretability of the result, but also
concerning the accuracy of the approximate solutions. Additionally, it turned out
that the algorithm, in particular the orthogonalized variant ROFMP, can also deal
with very scattered data points, which is where “classical methods” are stretched to
their limits due to the arising ill-conditioned matrices.
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Chapter 9.

Regularized Weak Functional Matching Pursuit
(RWFMP)

In this chapter, we deal with a generalization of the RFMP algorithm, which has
already been presented in Chapter 8.

Consequently, the problem to solve is a linear inverse problem

Tf=g 9.1)

as defined in Problem 6.3. So far, the theoretical analysis of the REMP was restricted
to a finite-dimensional data space %. This is a reasonable assumption in practical
cases where the data are, for example, samples of an observable. However, there are
also applications where the right-hand side is given as a function (e. g., derived as a
model of some data). Furthermore, from a theoretical point of view, the range of a
linear operator is closed if it is finite-dimensional (cf. Engl et al. [42], Chapter 2.2).
In consequence, the problems which were handled by the REMP are actually well-
posed in the sense of Nashed (but probably ill-conditioned).

Here, we will present the Reqularized Weak Functional Matching Pursuit (RWFMP),
which can handle data from arbitrary (possibly infinite-dimensional) Hilbert spaces.

When considering infinite-dimensional Hilbert spaces & and %, another difficulty
arises in the analysis of the algorithm. Unfortunately, it is not clear if there exists
a minimizing dictionary element in Egs. (8.1) and (8.2). The novel RWFMP algo-
rithm instead adds a dictionary element to the approximation that is near to the
optimum in a certain sense such that this difficulty is surmounted. This is exactly
the same motivation that was given for the Weak Greedy Algorithm (WGA) in
Chapter 3.

In the following, we will first introduce the non-regularized version of the algorithm,
called WEMP, which is a greedy algorithm for well-posed linear inverse problems.
For this algorithm, we will prove the convergence to a solution, as well as conver-
gence rates. Subsequently, we will derive the regularized variant of the algorithm
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for ill-posed inverse problems, the RWFMP, and transfer the convergence results
to this case. It turns out that, using the proved convergence rate, we can also
prove that there exists an a-priori parameter choice rule for the RWFMP such that
we obtain a convergent regularization method (in the sense as presented in Sec-
tion 6.1.3).

9.1. Weak Functional Matching Pursuit (WFMP)

In this section, we will present the Weak Functional Matching Pursuit (WFMP),
which we obtain by applying the idea of the Weak Greedy Algorithm (WGA) (see
Algorithm 3.3) to the Functional Matching Pursuit (see Section 8.2). We will derive
the convergence of the algorithm in the weak and the strong sense both in the range
% and the domain & of the operator 7. As for the FMP, it will be shown that, for
given data ¢ € %, the algorithm converges to a solution f* of the normal equation

TTfH =T

In this section, we will assume the well-posedness of the inverse problem in
Eq. (9.1) in the sense of Nashed, that is, ran7 = ran7. We will drop this con-
straint in Section 9.2 when a regularization is applied to the ill-posed inverse prob-
lem.

9.1.1. The algorithm

Remember that the Functional Matching Pursuit (FMP) as presented in Section 8.2
is based on the following concept: let a dictionary % C % be given. Beginning with
an initial approximation fo € %, we iteratively define

fr1 = fr + A1t

where dy1 € 9 is chosen such that

<rk/ Tdk+1>f£y — <Tk, Td>?y (92)
(T A1l o | || Tdly |
and
A Tdis1)gy
Wt 7= —————5—

2 7
1T disally
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where 7, := ¢ — T f denotes the residual in step kand ¥ = R for £ € N.
The FMP possesses several drawbacks both in theory and in practice.

First, the range of the operator is assumed to be finite-dimensional. On the one hand,
this is no problem in practice, since an infinite-dimensional range is not realizable on
computers and there is always only a finite amount of measured data. On the other
hand, this is not the usual setting in the theoretical analysis of inverse problems
(see Chapter 6), since often the infinite-dimensionality of the range causes the ill-
posedness of the problem and makes it therefore more interesting. Also, as already
mentioned in the introduction to this chapter, one might be interested in data that
are given by a model function.

Secondly, similar to the considerations for the PGA in Chapter 3, in Eq. (9.2) one
assumes that the maximum exists. It is trivial that this holds true if #% < oo, which
is the only case that can be realized on a computer in practice. However, if # = oo,
which is necessary in theory to span the infinite-dimensional Hilbert space %, it is
not clear that the supremum is attained and the maximum exists. Nevertheless, if the
dictionary is finite but very large, it may also be computationally expensive to find
the maximum in practice, even if one can be sure that it exists.

Both drawbacks are fixed by applying the basic concept of the Weak Greedy Algo-
rithm (WGA, see Algorithm 3.3) to the FMP, which yields the following algorithm.
In contrast to the FMP, we use a normalization of the dictionary elements in the
codomain here, that is, we require that || 7d||, = 1for all d € 9. This implies that
null 7 N% = @. In the theoretical analysis of the algorithm, it will turn out that this
is no restriction at all.

Algorithm 9.1 (Weak Functional Matching Pursuit, WEMP). Let %, %, T be given
as in Problem 6.3. Furthermore, let data ¢ € %, a weakness parameter ¢ € (0, 1],

and the initial approximation fp = 0 € & be given. Choose a dictionary % C
{deX |||Td|ly =1} CX.

1. Set k := 0, define the residual ro := ¢ — 7 fo = g and choose a stopping
criterion.

2. Find an element dy;; € 9 which fulfills

| (i, Tdiy1)ay| = @sup|(rx, Td) oyl 9.3)
dea
Set
W1 = (T, Tdig1) oy (9.4)

aswell as fiy1 = fr + akp1dkr1 and 151 = g — T fip1 = 1k — &1 7T dii1-
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3. If the stopping criterion is fulfilled, then fy 1 is the output. Otherwise, increase
k by 1 and return to step 2.

Remark. If ¢ = 1, then the WEMP is equivalent to the FMP (up to the normalization
of the dictionary). Thus, all the following results also apply to the FMP, even with
an infinite-dimensional range space %. Additionally, if o < 1, the existence of dj4
in Eq. (9.3) is guaranteed.

In the following sections, we will prove the convergence of the WFMP both in the
data space as well as in the domain of the operator 7. This is done in several steps:
first, we prove weak convergence of the residuals in the data space. Secondly, strong
convergence in the data space is shown. Finally, we prove the convergence of the
iteration also in the domain.

9.1.2. Weak convergence of the residuals

To prove that the residuals converge to zero in the weak sense, we first prove
convergence of the norm of residuals. Note that this section is similar to the proofs
for the FMP in Fischer [45] and Fischer and Michel [46].

Lemma 9.2. Let (7x);cy, be the sequence of residuals arising in Algorithm 9.1. Then
the following holds true:

(a) The sequence (||7k[q )iy, is monotonically decreasing.

(b) The sequence (|7k||o);cy, converges.

Proof. To prove part (a), we observe that

||rk+1|‘0?y = ||Irx — “k+l7-dk+1||3y
= |lrelly + afyq — 201 (ri Telicsn )y
= |Irelly + (ri Teia)sy — 2(r, Teks)y
= el — (re T3 (9.5)

< ||l

Part (b) follows from the fact that the sequence is bounded from below by 0. n

Note that we do not know yet that the limit of the sequence of norms of residuals is
0, we only know that it exists. To prove weak convergence of the residuals to 0, we
need the following lemma.
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Lemma 9.3. The sequence
(“k+1)keN0 = ({r, Tdk+l>fey)keNo
is square-summable.

Proof. The following equations hold by expressing ||rg|| as a telescoping sum for
an arbitrary m € N and using the relation in Eq. (9.5):

m—1

2 2 2 2
Irolly, = X (sl el ) + il
k=0
! 2 2
= ) (e Tdri1)y + [|7mlla-
k=0

Thus, by Lemma 9.2, we obtain

00 0o m—1
Lok = Lire Tdia)y = lim Lt Tdia)y
=0 =0 =0

2 . 2
= ol ~ Lim [[ru}3, < .
Thus, the sequence is square-summable. n

Lemma 9.3 gives rise to the two following additional results.

Corollary 9.4. Since every square-summable sequence converges to zero, we have
lim ayyq = lim (g, Tdig1)g = 0.
k—oc0 k—oc0 ’

Corollary 9.5. We have

k—o00
foralld € 9.
Proof. Because of Eq. (9.3), we obtain for every d € 9 that

1
0 < [(re, Td)oy| < éwb Tdii1)ayl-

Since ¢ € (0, 1] is fixed and the right-hand side tends to 0 for k — co by the preceding
corollary, this proves our claim. n

Finally, we obtain weak convergence of the WFMP in the following theorems. For the
sake of readability, we define ¥ :=span{7Td |d € D } C ¥.
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Theorem 9.6. We have weak convergence of () keN, to zero in the space ¥, that is,

k—c0 ‘

forallz € V.

Proof. By Corollary 9.5, we have

1. 7 oy — O
L (e, 0),

forall v € ¥ due to the bilinearity of the inner product. Since (), is a bounded
sequence, we obtain

li /7 oy — 0
Jim {71, 0

forallw € ¥, too. |
Theorem 9.7. Let the given data fulfill g € V. Then r, — 0in % for k — co.
Proof. Let z € % be arbitrary. Since ¥ is a closed subspace of %, we obtain the

decomposition % =V @ T Thus, there exist uniquely defined z| € Y,z € 7
such that z = z)+z,. It follows that

kli_glokazﬁy = kli_)rg((rk,z”h + (rx, ZL>@)'
Sincery =y — T fx € ¥ and z, L ¥, the latter term vanishes and
li ,Z)gy = i , =0
kl—>rilo<rk 2y kl—>r1<;lo<rk 2 )y
by Theorem 9.6, since z| € . [ |

Note that in the case ¢ € 'V, we have proved so far that the sequence (||7¢[|o ), €N
is convergent and that r, — 0 (k — o0) in %. Unfortunately, we cannot conclude
convergence 1, — 0 in % in the strong sense from these facts, since % may be
infinite-dimensional. This is different in the considerations in Fischer [45] and
Fischer and Michel [46], where it was assumed that dim% = ¢ € N. The next
section is dedicated to the proof of strong convergence of the residuals, which
requires a more complicated technique.

140



9.1. Weak Functional Matching Pursuit (WFMP)

9.1.3. Strong convergence of the residuals

The following proofs are based on the technique introduced in Jones [92] for pro-
jection pursuit regression (see also Section 5.1), a variant of the WGA in statistics.

Lemma 9.8. Let (ay);cy, be a square-summable sequence, where a; > 0 for all
k € Ny. Then the identity

k
lim inf <ak Z llj) =0.

k—oc0 i=1

holds.
Proof. Lete > 0. Since (ax)ken, is square-summable, there exists K € Ny such that

(o)
Za]2<

(9.6)

N ™

k
€

Finally, let p = p(k) € Ny be an index with k < p < p, which fulfills
ap < aj (9.8)

forallje {k+1,...,p}.

Then,
m |4 k p
inf (0030 ) <o, Y0 =0y Va0, 3 6
mzk = =1 =1 j=k+1

where the first inequality is due to the properties of the infimum, the second in-
equality follows from Eq. (9.8) and the non-negativity of the sequence, and the last
inequality is true due to Eq. (9.6) and Eq. (9.7). n
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Corollary 9.9. We have

k
]iginﬂ(rk, Tdrs1) | Z‘<’jr Td]'+1>@/‘ =0.
) j=1

Proof. This follows from Lemma 9.3 in conjunction with Lemma 9.8. u

The preceding corollary is a crucial ingredient in the proof of the following the-
orem, where it is shown that the sequence of residuals converges strongly in
Y.

Theorem 9.10. The sequence (rx),cy, is a Cauchy sequence in % and thus conver-
gent.
Proof. This proof is an extended version of a similar proof in Jones [92, Section 2].

Assume that the sequence is not a Cauchy sequence in %. Then we have
Je > 0: VK € No: Im, k > K: |1y, — riljg > & 9.9)

Let v > 0 be an arbitrary constant.

From Lemma 9.2(b), we obtain the existence of R := lim;_, Hrj H o- Thus, there exists
2 2 .
K € Ny such that ||rg||5 < R*+ 7. Since (H"]’ qy)jeNo

due to Lemma 9.2(a) and by Eq. (9.9), we obtain that there exist m,k > K which
fulfill

is monotonically decreasing

7m —1llay > &
rmll3 < R% 41, (9.10)
2
I7ellay < R*+1.

Furthermore, by Corollary 9.9 there exists p > max{m, k} such that

p
‘<rl"7-dp+1>qy‘ Z‘@jr de+1>@‘ <7. (9.11)
j=1
Since
e < Hrm - rquy < Hrm —Tplly + Hrp — Tk‘ oy

we have Hrm —rpH@ > 5 or Hrp — 1kl > 5
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9.1. Weak Functional Matching Pursuit (WFMP)

Without loss of generality, let Hrm — rquy > % We obtain
o = Il 715 = 2Crm )y

p—1
= |lrmll3y + Hrpry - 2<VP +) ”‘J’+1de+1frp>
o

j=m

Hrm_rp

p—1
< rally = 13, +2 1l | [(Tdja1,mp)g,

j=m

p—1
2 Y[ Tdi),
j=m

= rullfy = Iy (o Tdji),

2
< Jrully = ol +5 [(rp Tpia)y,
~———— 0

SR+y <R

p—1
Y| (15, i),
j=m

<y

2 2
§R2+7—R2+57: <1+Q>%

where Eq. (9.4), Eq. (9.3), Eq. (9.10), Lemma 9.2(a), and Eq. (9.11) have been used in
this order.

Since vy > 0 was chosen arbitrarily, one can choose < small enough such that

<1 + %)’y < %, which yields a contradiction to Hrm = Tplly > £ [ |

Since % is a Hilbert space, the sequence (rx);cy, converges in % in the strong
sense. In the following, we will prove several properties of the limit of this se-
quence.

Theorem 9.11. For 7 := limy_,, 7, we have

feo L V.

Proof. LetT € V. Since the inner product is a continuous function of its arguments
due to the Cauchy-Schwarz inequality, we may interchange the limit and the inner
product to obtain

oty = (Jmno) =i (2l =0

by Theorem 9.6. n
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Corollary 9.12.If ¢ € ¥, we have r, = 0 due to the fact that the weak limit is 0
according to Theorem 9.7, the strong limit has been proved to exist in Theorem 9.10,
and the latter has to coincide with the weak limit.

In the next section, we will prove convergence of the algorithm also in the domain
% of the operator 7.

9.1.4. Convergence in the domain

So far, we have only considered convergence of the WFMP in the image space % of
the operator 7. To achieve convergence also in the domain % of the operator, we
can adopt the proof of the analogous statement for the FMP, which has first been
stated in Fischer [45]. We will adhere to the improved version of the proof that
has recently been given in Michel and Orzlowski [126]. Due to the normalization
of the dictionary, we can omit the second condition that is required in the latter
reference.

Theorem 9.13. Let the assumptions of Algorithm 9.1 be fulfilled. Furthermore, let
the dictionary % C & fulfill the following condition:

(SEC) The semi-frame condition:

There exists a constant ¢ > 0 and an integer M € N such that for all expan-
sions H = Y 7 ; Brdy with B € Rand dy, € 9, where the dj are not necessarily
pairwise distinct, but # { jeEN } dj = dy } < M for all k € N, the inequality

c||H

(o)
2 2
x <Y Bk
k=1
is valid.

If the sequence (fi)ken, is produced by the WEMP and no dictionary element is
chosen more than M times, then ( fi)reny, converges in X to foo == Y 12 1 aydy.

Proof. From Lemma 9.3, we obtain that (ay)ey is square-summable. The latter
and the semi-frame condition (SFC) give rise to the fact that the series ) ;2 ; axdy
converges in the strong sense in % and hence, f, € % as defined above exists. It is
also clear that

feo = lim fk
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9.1. Weak Functional Matching Pursuit (WFMP)

holds in the sense of &, since

2
00 [e9)

. 2 . 1 . 2

I}Lmoonm ficll 1}520 k:1<+1akdk % CI}Im)OOk:K+1DCk >

due to the square-summability of the sequence of coefficients (see Lemma 9.3). W

Corollary 9.14. Now that we know that (fi)ren, converges, it follows from Theo-
rem 9.11 that

where Py denotes the orthogonal projection in % onto V. In other words, 7 fe is

the best approximation of g in V.

After showing that the sequence of iterates ( fi)ren, converges, we will prove that
the limit satisfies the associated normal equation.

Theorem 9.15. If the assumptions of Theorem 9.13 are fulfilled and additionally
span% = (null 7)* holds, then the limit f., satisfies the normal equation

T Tfe=T'g. (9.12)

Proof. Since the sequences (7x)ken, = (§ — 7 fi)ken, and (fx)ken, both converge and
T is continuous, we have 7o = § — 7 feo.

By Theorem 9.11, we have o L V. Hence,

§—Tfo Lspan{Td|dec D}
such that for all d € % we have
0=(8=Tfoo, Td)oy = (T (& =T fe), )y
Furthermore, for all d € null 7 we also obtain
(T8 =Tfe)d)y = (& =T foo, Td)ay = (§ = T foo,0)gy = 0.

Since span® @ null 7 is dense in & and the inner product is a non-degenerate
bilinear form, we obtain

T Tfe=T"g
as desired. ]

Remark. We make the following three observations:
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(a) We have ¥ = ran7 = ran7 due to the condition span% = (null 7)" and
the well-posedness of the inverse problem.

(b) Thus, as remarked earlier, 7o, = 0if ¢ € ran 7. From Theorem 9.13, we obtain
that the limit f, € % exists and in the preceding proof, we have already
employed that r.o = g — 7 foo due to the continuity of 7. Thus, f. is a solution
of the inverse problem Eq. (9.1), since 7 foo = .

(c) It is well-known that the solution of the normal equation Eq. (9.12) is also a
least squares solution of the inverse problem (see Theorem 6.10). That is in our
case

I8 =T feolly = minllg = 7 flla-

This means that the WFMP (as well as the FMP) has an interpretation as a
minimization algorithm for the optimization problem

lg =T fllay = min! subjectto f e X.

In fact, the FMP was originally motivated as an iterative minimization of

exactly the functional f || — 7 f||3, and so things have come full circle.

9.1.5. Convergence rates

In analogy to the convergence result for the WGA in Temlyakov [167, Theorem 5.1],
see also Chapter 3, we can prove a convergence rate of the WFMP in the data space
in the following.

We first state the following lemma, which is an analogy to DeVore and Temlyakov [32,
Lemma 3.4] and Temlyakov [167, Lemma 3.1].

Lemma 9.16. Let ¢ € (0,1] and let (ax)ken, be a sequence of non-negative numbers,
which satisfies

ap <1, ar1 < ax(1— o%ax) forall k > 0.

1
< —— . .
U < 7 e for all k € Ny (9.13)

Proof. We proof the claim by induction on k. For k = 0 the statement is obvious.
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Assuming that the inequality in Eq. (9.13) is true for some k € Ny, we have to show
that

1
< ——F—.
TR e

The latter is clearly true, if a;1 = 0. If a1 > 0 then also a; > 0 and we obtain

1 1
< ap(1 = %a;) < =
Ay1 < ag( Qﬂk)_”k1+gzak ;7+Q2
1 1

< —
“(1+ke?)+0* 14 (k+1)e?

since (1 —x) < (14 x)~! for x > 0. |

Next, we define the following norm on Y.

Definition 9.17. Given a linear and bounded operator 7 : % — % and a dictionary
9, for z € ¥ we define

wm:m{mw
k=1

z=Y BTdi, Br€R, d €D } , (9.14)
k=1

where the limit of the second series is considered in the sense of ¥.

Furthermore, we define the set

@:z{zev‘|z|fr@<oo}.

In general, an element z € "/ may be represented as a linear combination of images
of dictionary elements in several different ways, since the dictionary itself and its
image do not need to form a basis of %' and %, respectively. Thus, the quantity |z|
can be read as a measure of how sparse the element z can be expressed as a linear
combination of images of dictionary elements.

However, note that |z|,, does not need to be finite. Even if 7% was an orthonormal
basis in %, it is not natural that the Fourier coefficients of some element z are
absolutely summable.

Lemma 9.18. Let z € /. Then we have

z]loy < |Z’T@~
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Proof. Ifz €V \ %, then the inequality is clear, since the right-hand side is infinite.

Ifz € ¥V, then for all ¢ > 0 there exist Br € Rand d; € 9 such thatz = Y3, BT dx
and Y121 |Bx| < |z|7¢ + ¢ Thus,

Izl = || Y BT dk|| < Y |Bell|Tdkl|ly = Y_|Be| < |zl +e&
k=1 wy k=1 k=1
Since € was chosen arbitrarily, this proves the inequality. [

Theorem 9.19. The mapping

Z ‘Z|7—@

isanormon V.

Proof. We show the axioms for a norm one by one.

Definiteness On the one hand, it is obvious that |0|,, = 0, since the zero sequence

Absolute homogeneity We have to prove that [Az|;, = |A||z

is a feasible choice in Eq. (9.14).

Assume on the other hand that |z|+, = 0forz € V. Then by Lemma 9.18, we
obtain 0 < ||z||y < |z|7¢ =0, thus z = 0.

9 for z G%and
A e R

For A = 0, the absolute homogeneity follows from the definiteness of the
norm.

LetA #0andz = Yo, BT dy € Y, Thus, we have Az = Y5> (ABy) T dy such
that [Az|+, < |Al|z|q is guaranteed.

It remains to show that there are no Bk, dy such that Az = Y BdeAk and
Y21|Bk| < Azl Assume the contrary, then consequently z = Y%7 4 %Td}
and )2,
of ||

Bk
A

= ‘i—| Yo ‘3;(‘ < |z|4¢, which is a contradiction to the definition

Triangle inequality Letz,w € ¥ and ¢ > 0. Due to the definition of the norm, there
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€
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™

z=Y_ BkTdy, k| < |zl7q + 5
k=1 k=1
o . o €
w=Y BxTdy, Yo |Bk| < [wlrg + 5.
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9.1. Weak Functional Matching Pursuit (WFMP)

Set

N

B(kt1)/2, else,

~

Br/2, for even k, dy/2 for even k,
/)/k = fk =

diky1)/2  else.

Note that there is no problem with rearranging the series, since the series is
absolutely convergent (see the proof of Lemma 9.18) and, thus, unconditionally
convergent, since ¥ is complete with respect to ||-||, (cf. Kadets and Kadets [94,
Chapter 1, §3]).

Consequently, z +w = Y 37 ; 77 fr and

Yol < Yo 1Bkl + )
k=1 k k=1

=1

Br

< |zlyg + |wlrg + &

Thus,
oo
2+ wlrg < Y [l < |2l7g + [wlrg,
k=1
by the definition of the norm and the fact that ¢ was chosen arbitrarily.

Theorem 9.20. Let (7y)ken, be the sequence of residuals generated by the WFMP
and let g € V. Then

1rklley < 1817 (1+Ke?) /429, 9.15)

Proof. If g €V \ %, then the inequality is clear, since the right-hand side is infinite.
If furthermore |g| = 0 then both sides of the inequality are zero, since ||7x||o =

|l = 0 for all k € Ny, because for all coefficients we have a; = 0.

Letg € ¥ and 8|74 > 0. For k € Ny, define the sequence

k
by = [8l7g + ) _|ajl.
=1

Then, we obtain

k
tl7g =18 = T fklre = ‘g— E"‘]’Tdi
=1

T9
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K k
< I8l7g + 2|4 Tdj| 1o < 18l7g + ) |aj] = b
=1 =1

by using the triangle inequality, the absolute homogeneity of the norm, and the fact
that |Td;| -, <1.

For arbitrary ¢ > 0, there exist ; € R and d; € 9 such that r, = Yita BiTd; and
Y21|Bj| < by + e Thus,

oo
Irlly = (i )| = <m2 >
Y

=1

(b + &) sup|(rr, Td)y|
de%

< Z!ﬁ]\\m,m by <

and since € was arbitrary this yields

2

Tk lla

supl(ri, Td)| > 1"
dey k

and

2
ollrilly
by

by the definition of aj 1 in Eq. (9.4).

|| >

Since ||ri41]15 = |I7cll3 — laxs1|* (see Eq. (9.5)), we obtain on the one hand that

2 4 2 2

2 2 0 Il 2 o° || l5
e llay < llrellay — = b27fy = |Irlly [ 1— I i (9.16)

p %
and, on the other hand,
2

Tk 1

L R T C 017

Since (bx)nen, is monotonically increasing, Eq. (9.16) gives

2
Il relly (1 @lirells
b? - b v? '

k+1
2 2 2
The application of Lemma 9.16 with a; = Hrl’;# (note that ay = ”r;;'z'“y = Hgb‘z‘“y <
k 0 0
EI;@ = 1) yields
2
||k||ﬁy<(1+k2_1 9.18
k
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From the inequality in Eq. (9.17) and the fact that by1 = by (1 + %) combined
with the generalized Bernoulli inequality

(14+x)* <1+ax, 0<a<l, x>0,
(cf. Mitrinovic [132, Section 2.4]) we obtain
2 T — 2 b2 (1 ‘“k+1| ¢
ks by = s llabp (14 b
2 Xkr1
< el 1+ 1))
k
< 2 (1 _ |01 (1 |01
< el (1 - o g (14
2 2 "’¢k+1|2 0
< rellz {1—e T o

2
< [l B

Thus, by induction, the following sequence of inequalities holds true for all k € Ny

2 2
ki1l by < llrillybg < ---
2 2 2 2+
< lralla i < lrollybs = lglly 1817 < 18174
where the last inequality is true due to Lemma 9.18.

Thus, using Eq. (9.18), we obtain

442 2 4 20,20 4+2 4+2 -0
Irillay™ = lirellg el < il 1817 < Igl7e " (14 ke?) ™,
which implies Eq. (9.15). u

As already mentioned, the constant |g| /-, in the rate of convergence is connected to
how good the dictionary matches the data, which is plausible. Also, it has already
been laid out that the constant does not need to be finite such that the inequality
Eq. (9.15) is meaningless if it is infinite. Nevertheless, the proof of convergence of the
algorithm did not need the finiteness of |g|-;, such that only the rate of convergence
depends on that property.

Corollary 9.21. If it is not known whether g € ¥/, one still obtains

-0/
17 = roollay = || P& = T filloy < | P58l 7 (1 +ko?)~° (4+2¢).
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Proof. First, notice that
rk—roo:g_Tfk_(g_Tfoo) :Tfoo_Tszpvg_Tfk

holds, where the last equality is true due to Corollary 9.14. Thus, for arbitrary d € 9,
we have

<rk — Vo, Td>5y - <PWg - Tfk, Td>6y‘
Application of Theorem 9.11 yields (ro, T d)s = 0 such that

(§ =T fi Td)y = (Pyg — T fr, Td)y- (9.19)

We will now prove that the iterates ( fi)xen,, which are provided by the WFMP when
it is applied to the inverse problem

Tf=¢8 (9.20)
may also be generated by the WFMP, when it is applied to the inverse problem

Tf =Py 9.21)

For this purpose, consider the characterization of dj; in Eq. (9.3) for both inverse
problems. It turns out that due to Eq. (9.19) every choice of di, for the inverse
problem Eq. (9.20) is also a valid choice for the inverse problem Eq. (9.21) and vice
versa. Furthermore, the definition of a1 in Eq. (9.4) yields the same result in both
settings if the same element dy_; from the dictionary is chosen.

Thus, the sequence ( fi)ren, could also be generated by the WFMP, when it is applied
to Eq. (9.21). Since Py¢ € V, we can apply Theorem 9.20 and obtain the desired
result. [

Remark. Note that, in general, the iterates of the WFMP for the inverse problems
Eq. (9.20) and Eq. (9.21) are not identical due to the non-uniqueness of the choice of
di+1. Nevertheless, the proof shows that the convergence rate is the same for both
problems.

In consequence, for the FMP, that is, the case ¢ = 1, we obtain the following
convergence rate.

Corollary 9.22. For the sequence (7¢)ren, generated by the FMP and its limit 7., we
have

Iric=reslly = [Py = Tfelly < |Pyglg (14807 ©.2)
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In Fischer [45] and Fischer and Michel [46], the convergence rate
k/2
Ikl < llglly (1= 1(2)?)
is proved, where % = R and

[(9) = inf sup|(v, Td)g|-

veS yeg

(9.23)

If we compare Eq. (9.23) to Eq. (9.22) for g € ¥/, that is,
I7llay < (817 (1K) 718, (9.24)

where

mw:M{DM
k=1

we can make a few observations. Concerning the dependence of the convergence
rate on the iteration index k, both inequalities are qualitatively different. Eq. (9.23) is
exponential in k, whereas Eq. (9.24) is rational in k such that the first convergence
rate seems to be preferable at the first sight. On the other hand, the basis of the
exponential term in Eq. (9.23) depends on the dictionary and can be arbitrarily close
to 1 (note that it has been shown in Fischer [45] and Fischer and Michel [46], that
it is not equal to 1). Furthermore, the term (%) is difficult to compute for a given
operator 7 and a dictionary %. Although this is also true for the term |g| in
Eq. (9.24), in the latter inequality the dependence on 9 is at least only contained
in the constant, whereas the asymptotic convergence rate depends on the iteration

§=)Y BTdi,BreR,dr €D }
k=1

index only. From these considerations we conclude that none of the two inequalities
should be preferred over the other one, since both of them have their advantages
and disadvantages.

A similarity of both inequalities is that the convergence rate gets better if the dic-
tionary is better adapted to the data, which is characterized by a large value of
I(%) and a small value of |g|;,. Fischer [45, Section 3.3] has already concluded
from Eq. (9.23) that one should consequently choose a dictionary, which is adapted
to the data, at least if some information about the signal structure is known. The
newly proved convergence rate in Eq. (9.24) thus supports this argument, which has
already been given when the FMP was developed. The topic of the PhD thesis by
Schneider [159] (work in progress) in the Geomathematics Group at the University
of Siegen will be exactly the problem of finding an optimal dictionary for classes
of inverse problems, which relates to the concept of dictionary learning that is often
applied in machine learning.

In this section we only considered inverse problems that are well-posed in the sense
of Nashed. In the following section, we will deduce a regularized version of the
WEFMP, which can be applied to ill-posed inverse problems.
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9.2. The Regularized Weak Functional Matching Pursuit
(RWFMP)

As already mentioned in Chapter 6, many inverse problems are ill-posed, a term
which we paraphrase according to Nashed as ran7 # ran7. In consequence,
the WEMP cannot be applied to the inverse problem, since the convergence could
only be proved for well-posed inverse problems in the previous section. Thus, a
regularization technique has to be applied.

9.2.1. The algorithm

As already mentioned in Section 8.3, Fischer [45], Fischer and Michel [46], and
Michel [123] realized a regularization of the inverse problem by adding a penalty
term, which is equivalent to the application of a Tikhonov regularization, yielding
the so-called Regularized Functional Matching Pursuit (REMP) algorithm. As for
the FMP, we apply the strategy of the WGA to the RFMP to obtain the following
algorithm.

Algorithm 9.23 (Regularized Weak Functional Matching Pursuit, RWFMP). Let
X,%,T be given as in Problem 6.3. Furthermore, let data ¢ € %, a weakness
parameter ¢ € (0,1], a regularization parameter A > 0, and the initial approximation
fo =0 € X be given. Choose a dictionary 9 C &, whose elements d € 9 satisfy
I Td|[5 + Alld]5 = 1.

1. Set k := 0, define the residual ryp := ¢ — 7 fo = g and choose a stopping
criterion.

2. Find an element dy, € 9, which fulfills

(ks T k1) — A fior k1) o | = @ sup|(ri, Td)gy — Afi, d) o |- (9.25)
€9
Set
Kf41 = <7"k, Tdk+1>oy - A<fk/ dk+1>gx, (926)

aswell as fyi1 = fr + ap1dipr and req == ¢ — T fro1 = 1k — Qg1 T dir1-

3. If the stopping criterion is fulfilled, then fy 1 is the output. Otherwise, increase
k by 1 and return to step 2.
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Similarly to the non-regularized case, the RWFMP algorithm coincides with the orig-
inal RFMP if ¢ = 1, up to the normalization of the dictionary.

It now comes into play that we were able to show convergence of the WFMP for
arbitrary (especially infinite-dimensional) Hilbert spaces %Y. The following strategy
could not be pursued in the previous setting, where % = RY, or at least dim ¥ < oo,
was required. We will give an interpretation of the RWFMP as WFEMP for a modified
well-posed inverse problem

T.f =& (9.27)

where T, : % — % x %. Let us first equip the space % x & with an inner product
to obtain a Hilbert space.

Lemma 9.24. Let (%, (-, )y ) and (%, (-, -) ) be Hilbert spaces. Then

)
v

31 &2 o g1 ¢}
<<f) ’ (f) > = 2yt e (f) ’ (f) S

defines an inner product on % x % and this space is complete with respect to the
given inner product.

Furthermore, the associated norm is given by
8 — S el 2 4
= y , ceW xX.
H <f> 18l + 111l (f)

Using this topology on the space ¥ x %, we obtain the following lemma.

Y XX

Lemma 9.25. When using the same data, initial approximation, and weakness pa-
rameter, the RWFMP in Algorithm 9.23 produces iterates (fi)ken,, which are also
valid iterates generated by the WEMP in Algorithm 9.1 if the latter is applied to the
inverse problem

T.f =3
where Ty: %X — Y x X, Tif = (}-{f),andg:: (‘g) cWY xX.

Proof. Since all of the input parameters are the same, it remains to show that one
obtains Eq. (9.25) and Eq. (9.26) if one inserts T, and 7 into Eq. (9.3) and Eq. (9.4),
respectively.
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Fortunately, this can easily be seen, since for d € 9, we have

<7k’7~;‘d>@><9€ = <§ - ﬁfk'ﬁ@@/x.@c

_ /[ 8 Th Td
CANO-VASR)\VAd) )
= (8= Tfio Td)y + (~VAfi, VAd)
= (1, Td)oy = A frod)y

x

and
2

= 12 Td
il = | i)

2
= | Tdll}, + | VA4

X
= ||74d|3 + Ald]5-

W XX

Note that in accordance to the other definitions, we used the notation 7 := § — 7, fi
and ry := g — T fi in the considerations above. n

Note that the remark that was stated after Corollary 9.21 is also true in this case.
We cannot expect that the RWFMP for the original problem and the WEMP for the
modified problem produce identical iterates. The important result is that the iterates
of one algorithm fulfill the selection criterion of the other algorithm and could thus
be chosen there.

In Section 9.1, we assumed well-posedness of the inverse problem. Since the idea
of a regularization is to substitute an ill-posed problem by a related well-posed
problem, it is well-known that the minimization of the Tikhonov functional is
well-posed. This can also been characterized in terms of the modified operator 7.

Lemma 9.26. For the operator
Tot % ¥ x %, ﬁf:<\/TXff>,

we have ran 7, = ran 7, such that the inverse problem in Eq. (9.27) is well-posed in
the sense of Nashed.

Proof. Neglecting a permutation of the components, for A > 0 the set ran 7, is
the graph of the operator A~1/2T". The assertion follows, since every continuous
operator has a closed graph (cf. Rudin [155], Proposition 2.14). n
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9.2.2. Convergence results

By the application of Lemma 9.25, the following results about the convergence of

the RWFMP are direct consequences of the corresponding results for the WFEMP.

In the following, we always assume that the sequence (fi)ken, is generated by the

RWEMP.

Lemma 9.27. The sequence (||rk ||§y + Al kagC) N is monotonically decreasing and
0

ke
convergent.

Proof. Since

2
%

_ 02 2
1Pellay o = el + Allfx

this is a consequence of Lemma 9.2. n

Animmediate consequence of Theorem 9.13 is the following result.

Theorem 9.28. Under the condition (SFC) of Theorem 9.13, the sequence (fi)ken,
that is generated by the RWFMP converges to foo = Y 5o q xdyx € X.

Theorem 9.29. If span% = %, the limit f., fulfills the Tikhonov-regularized normal
equation

(T"T +AD)fo =T7g.
Proof. First, observe that 7y: % — ¥ x % is injective due to the identity operator in

the second component (and since A > 0). Hence, null 7, = {0} and (null 7,)+ = %.
Thus, since span® = % = (null 7, )+, from Theorem 9.15 we obtain that f., fulfills

TiTafo =TY§ (9.28)

The adjoint operator of T, is given by

TE Y XX %, Tiz=T2+VAw, wherez= (;) EWY XX,

since for Z = (;) €Y x% and f € &, we obtain

. T
(Z TS )y = <<§]> , (\/%f> >ny% =(z,Tf)y + <w, \/Xf>%
= (T2, fly + (VAw, f) = (T'z+VAw,f)

oy
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Finally, elaborating both sides of Eq. (9.28) as

T+ T T * T 00 * * :
7?\7;\](00:7;\ (\//\;ffoo>:TTfoo+/\foo:(T T"‘/\ld)fow
and
Tie =7 (§) =7
we have proved the assertion. n

Remark. From the theory of Tikhonov regularization, it is well-known that a solution
of the regularized normal equation is also the unique minimizer of the Tikhonov
functional

f=llg=TFI5 +AFIS (9.29)

(see Section 6.1.4). Thus, by Theorem 9.29, the limit f., of the RWFMP iteration is
the unique minimizer of Eq. (9.29). The RWFMP, consequently, has an interpretation
of an iterative minimization algorithm for the Tikhonov functional. Actually, the
REMP was derived as such an algorithm in Fischer [45] such that this interpretation
again fits well.

From Theorem 9.20 and Corollary 9.21, we can also derive a convergence rate of
the algorithm, measured in the Tikhonov functional. The following lemma states
that the constant }7}\ foo ‘77 ¢ Which arises consequently, can be rewritten to represent
how sparse the solution f., can be expressed as a linear combination of dictionary
elements.

Lemma 9.30. Let f € %, then

k=1

Tiflro = Ifly = mf{:il\gk\ F=Y Bidi € R €@ }
Proof. We have
‘ﬁf‘ﬁ@:inf{zwk‘ ~)\f:i5k7j\d_k/BkGR/d_ke%}
=
. . T\ &5 [ Tde\ ; .
_11’1f{k:Z;“Bk‘ (\/Xf) —k:Z‘i,Bk (\/Xd_k>’ﬁk€R/dk€@}
{ <7}f> = iﬁk <7£;—Jk>,BkGIR{,Jke@}
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[o°]
= inf { Z ‘ ‘B k ‘ a7
k=1
where the second to last equality is true since the equation in the second component
implies the equation in the first component due to the linearity and continuity of
the operator 7. |

f= iﬁkd_kr.gk eERd € } =|f
P

Consequently, we obtain the following convergence rate result.

Theorem 9.31. For the sequence (fi)ken, generated by the RWFMP, we have
2 2 2 2\ —¢/(2+0)
Irie = reolliy + Allfie = foollyy < |feolg (1 +ke) :

For the RFMP, we obtain the following convergence rate by setting ¢ = 1.

Corollary 9.32. For the sequences (7 )ren, and ( fi)ren, generated by the REMP and
their limits 7., and fo, we have

2 2 2 _
7 = ool + Al fic = foollz < [foolg (1K) 2.

Note that the right-hand side does not seem to depend on the operator 7 and the
regularization parameter A. However, this is not true, since f« is the minimizer of
the Tikhonov functional corresponding to 7 and A such that there is an implicit
dependence on both of them.

In Section 9.1 we presented a different convergence rate for the FMP that was given
by Fischer [45] and Fischer and Michel [46]. This result could not be transferred to
the RFMP. Thus, the previous theorem and the corollary are the first convergence
rates that were ever proved for the regularized versions of the greedy algorithms
for linear inverse problems.

Moreover, it is now possible to estimate the approximation error || fx — feol|5, which
could not be done before.

It turns out that the results of this section enable us to prove that the RWFMP is a
convergent regularization method as defined in Section 6.1.3.
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9.2.3. The RWFMP as a convergent regularization method

This section is dedicated to the analysis of the RWFMP as an iterative regularization
algorithm. We will present an a-priori parameter choice for the Tikhonov regulariza-
tion parameter A and the number of iterations K after which the RWEMP is stopped
in dependence on the noise level J of the data. For optimal choices of A and K, we
obtain a convergence rate of 6*/3 for § — 0, which is the optimal rate for Tikhonov
regularization, on which the RWFMP is based.

For this purpose, by ( fik) keN, we denote the sequence of iterates of the RWFMP,
when the algorithm is applied to the inverse problem 7 f = g¢° using the reg-
ularization parameter A > 0. Here, ¢° € % denotes noisy data, which fulfill

18> — gl <O

Let 2  be the minimizer of the Tikhonov functional and f* = T g be the best
approximate solution of 7 f = g as already defined in Section 6.1. We will again
state a version of part (b) of Theorem 6.22, since we will apply it in our analy-
sis.

Theorem 9.33.1If f* = T*Th for some h € % with ||k, < T and if A(d) =
my (6/7)?/3 for constants m, T > 0, then

Hfﬁ((s),oo _f+H95 < > 113 §2/3 _ ¢, §2/3

St
(2
for all § > 0, where C; := (21% + ml) /3,

Furthermore, from Theorem 9.31, we immediately obtain the following corol-
lary.

Corollary 9.34. Let ( f)‘f,k) ken, be the sequence of iterates of the RWFMP with weak-
ness parameter ¢ € (0,1], when the algorithm is applied to the inverse prob-
lem 7 f = ¢’ using the regularization parameter A > 0. Furthermore, assume

‘f;{,w‘@ < o0. Then, for all k € Ny, we have

1/2 Q*@/(H@) 0o/ (4+20) — Ca(A) A~1/2 e/ (4+20)

Y <‘ 5 A
£ fA,wH% <|fial,
where Cp (A ‘fA ’ 0 ¢/ (2te),

The preceding theorem and the corollary enable us to prove the following result.
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Theorem 9.35. Let ( ff,k) ken, be the sequence of iterations of the RWFMP with weak-
ness parameter ¢ € (0,1], when the algorithm is applied to the inverse problem
T f = ¢° using the regularization parameter A > 0.

Furthermore, we assume that there exists C3 > 0 such that C;(A) < Cs forall A > 0.

Additionally, let f* = T*Th for some h € % with ||hl|,, < T and let A(J) =
my (6/7)%/% as well as K(8) = my 6~ (4t20)/2 for some constants my, n, > 0. Then
there exists C > 0 such that

Hfi(é),K(a) —f+H% < Co¥/3

forallé > 0.

Proof. Let 6 > 0 be chosen arbitrarily. Since all conditions of Theorem 9.33 are
fulfilled, we obtain

S o |l <823
| = £, <18,
where f;f( 5),00 18 the minimizer of the Tikhonov functional with regularization pa-
rameter A(J).

Corollary 9.34 and the assumption C;(A) < C3 yield

Hfﬁ(&),]((&) - fﬁ(g),ooH% < Co(A(8)) (A(6)) V2 (K(8)) o/ (4+20)
< Cz- (A(8)) V2 (K(8)) ™/ 4+20),

The insertion of the definition of A(J) and K(¢) gives

5 _ _ —0/(4+20)

=Cy6 135 =Cy 83,

where Cy 1= C3m; '/ m;g/(4+2g) /3,

In conclusion, we have by the triangle inequality that

” < Hf)(\s(é),K(é) —fﬂs((s),oo o 1 Hfj(é)m —
< C P+ oY = (Cy+ Cy) 023,

Hffi(&),K(a) —f' o

which proves the claim for C := C4 + C;. [ |
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The preceding theorem is important, since in the implementation of the RWFMP
algorithm only a finite number of iterations can be realized, but results about the
convergence of Tikhonov regularization can only be applied directly if we allow for
an infinite number of iterations. The theorem shows that by stopping the RWFMP
iteration after K(8) ~ 6~ (4+22)/2 steps, one is able to conserve the convergence
rate 6*/3 for 6 — 0 of Tikhonov regularization even with only a finite number of
iterations.

9.3. Numerical Example

In this section, we will present a proof of concept that the weak approach is not only
advantageous from the theoretical perspective as already mentioned, but also offers
the opportunity to speed up the iteration of the REMP.

The main difference of the REMP and the RWFMP is the selection criterion for the
next dictionary element dj 1. For the REMP, it is given by

|(r, Tdk+1>qy — Mfr dk+1>95| = sup|(ry, Td>qy - /\<fk/d>s%| (9.30)
de9y
and for the RWFMP the criterion is

|, Tlir1)ay — M frodir1)g | = @sup|(re, Td)ay — Al fr, d)or |- (9.31)
dey

Here, we adopted the normalization ||7d||5 + Al|d[|5 = 1 for the dictionary ele-
ments d € 9 from the RWFMP also for the REMP. On a computer, we can only realize
a finite dictionary, that is, #9 = | < oo, ] € N. At the first sight, it seems that the
implementation of the RWFMP has no advantage over the RFMP, since for the deter-
mination of a dy 1 that fulfills Eq. (9.31), the supremum has to be known. That is, one
would have to go through all of the finitely many dictionary elements to determine
the maximum. The maximizer, which can of course be stored, fulfills Eq. (9.30) such
that an application of the RWFMP would have no advantage.

For this reason, we pursue a different approach. We observe that

Tk Td
. _\/ka ’ \/Xd Y<K

sup[(r, Td)y — A{fi,d)y | = sup
de9wp
( / ) < i )
—VAf VAd Wy

de9y
—/ Iy -+ ANfl sup VIR + Al
6(/

<

sup
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2
= Inell3 + MU

by the Cauchy-Schwarz inequality and the normalization of the dictionary.

In consequence, if we choose di1 € 9 such that

(e Tdesa )y — Afiordisady | = 0/ Il + AlLfell3, 9.32)

then it also fulfills Eq. (9.31) and, thus, can be chosen by the RWFMP. Since the term
on the right-hand side does no longer depend on d € 9, it can be computed without

going through the whole dictionary.

This enables us to improve the search procedure for a next dictionary element.
Instead of going through all of the dictionary elements and storing the index of the
maximizer, we can abort this search as soon as a dictionary element fulfills Eq. (9.32).
Since, in most of the cases, this will not be the last element in the dictionary, there
arises an improvement in computation time from this procedure. This will, in
particular, be of importance if an a-posteriori parameter choice method is applied,
where the algorithm has to be applied several times for a sequence of regularization
parameters. Of course, it is possible that there exists no dictionary element that
fulfills Eq. (9.32). In this case, one would simply store the dictionary element for
which the term on the left-hand side of Eq. (9.32) is maximal and thus perform an
RFMP iteration.

In the following section, we will present a one-dimensional model problem, for
which we will present numerical results later on.

9.3.1. A one-dimensional model problem

To give a proof of concept for the improved computation time that the RWFMP
offers, we restrict to a simple one-dimensional model problem, which we adopt
from Rieder [153, Beispiel 3.2.2].

Consider the boundary-value problem

—¢"(x) = f(x) forall x € (0,1), (9.33)

for given f € C((0,1)), where Eq. (9.33) is the one-dimensional Poisson equa-
tion. By applying the concept of a Green’s function and switching to spaces of
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square-integrable functions, we can deduce the integral operator 7 : L?((0,1)) —
L2((0,1)),

1
THx) = [ kxy) f4) dy,

where

k(x’y):{x(l_y)’ xSy’

y(1—x), x>y,

such that 7 f = g if and only if f fulfills the weak formulation of the given boundary
value problem.

In our implementation, we assume that we are given evaluations (7 f(x;));=1,...; for
X=(x1,...,x7) € [0,1]], which are denoted by (gj)i=1,..; € R/. We assume that
x1 < xp < - -+ < x;. We denote the corresponding operator by Tx: L?([0,1]) — R/.
Note that it is only well-defined if the evaluation is well-defined for all points
in the vector X, which is not clear in the space L?([0,1]), but we will ignore this
difficulty, since we will only use continuous dictionary elements in the follow-
ing.

We will consider two different dictionaries %1, %, C L2([0,1]).

The first dictionary is motivated by the singular-value decomposition of the operator.
Rieder [153] states that a singular system is given by (1/(7t1)?, ty, 1ty ) nen, where
un(x) = /2 sin(7r n x). We, therefore, first define

9= {sin(mrn-)|n=1,...,N}
@{\ = 5 d > de @1
Vel + Al 0

if the regularization parameter is A > 0 to obtain the correct normalization of the

for some N € N to obtain the dictionary

elements from the dictionary.

The second dictionary is motivated by one-dimensional finite element methods
(see, for example, Johnson [91, Section 1.2]). For this purpose, given a vector
Y = (y1,...,ys) € [0,1]° of nodes, which fulfill y; < y» < --- < ys, we define the
functions

0’ y S ]/sfll
YYs1 <
() (y) — Ys—Ys—1’ Ys—1 < VASURY
’ Y=y ey <
Ys+1—Ys’ ys y — y5+1/
0/ y5+1 < y/
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fors =1,...,Sand y € [0,1]. These functions are hat functions, that is, they are
piecewise linear between the nodes in Y, and they fulfill ¢s(y;) = Js;. Using these
functions we first define

9, ={¢s|s5=1,...,5},

and obtain, for the regularization parameter A > 0, the dictionary

B d
VT2 + Ml 201,

by normalization.

Qs dec 9,

9.3.2. Numerical results

To test the improvement of the computation time, when applying the search strategy
presented above, we prescribed the solution f(y) = 1 for all y € [0,1] such that
T f(x) = 3x (1 — x) = g(x), which can be easily checked using the boundary value
problem or by integration.

We set ] = 1000 to sample g at 1000 evenly distributed data points in [0, 1] and
apply 1% of deterministic noise. Furthermore, we chose N = S = 400 to obtain 400
elements in both of the dictionaries QD{\, @Q.

We implemented a simple a-posteriori parameter choice method, where we applied
100 iterations of the RWFMP using 100 different regularization parameters and
chose the regularized solution where the approximation error is the smallest. The
regularization parameters were chosen equally spaced on a logarithmic scale be-
tween 1 and 1014, Of course, a different parameter choice method must be used if
the solution to the problem is not known. For the REMP, several of these methods
were compared by Gutting et al. [70]. For all of them, one needs to execute the
algorithm for many regularization parameters such that the saving in computation
time will also apply for other parameter choice methods.

Moreover, to show the power of the algorithm for arbitrary dictionaries, we did not
use the dictionaries in the order in which they were defined, but instead used 20
random permutations of the dictionary elements to eliminate the bias of dictionaries
whose order is by chance very well suited or very badly suited to the problem
at hand. Finally, we tested the algorithm for 10 different values of the weakness
parameter o.
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Table 9.1.: Results for the dictionary % of sine functions. The columns are: the weakness parameter g, the mean optimal regularization
parameter A and its standard deviation, the average RMSE and its standard deviation, the mean and standard deviation of the
computation time for one execution of the RWFMP, and the percentage of the computation time with respect to the first line.
The minimal RMSE and computation time are set in a bold font.

0 A RMSE Computation time/s /% of first line
1.000000 149 x 107*4+540x107* 633 x 1071 £3.84 x 107! 229 x 102 + 1.24 x 10! 100.0%
0.464159 454 x10774+291x1077 202x10°1+3.65x1072 2.25x 10?2 +1.18 x 10! 98.2%
0215443 4.32x 10774206 x1077 1.94x10°1+240x 1072 2.25x 10% + 1.04 x 10! 98.0%
0.100000 270 x 1077 +1.39x 1077 1.74x 1071 +1.07 x 1072 2.22 x 10> £ 1.23 x 10! 97.1%
0.046416 220 x1077+1.08x 1077 170 x 1071 4+9.34 x 1073 2.01 x 10% £ 8.57 87.6%
0.021544 270 x 1077 +941 x10°% 1.62x 10 145.28 x 103 1.72 x 10% + 8.58 75.2%
0.010000 2.70 x 1077 4+9.41 x 108 1.63x10°1+1.60 x 1073 159 x 10> +7.74 69.6%
0.004642 298 x 1077+956 x 1078  1.62x 1071 +1.03x 1073 147 x10>+7.70 64.2%
0.002154 3.83x1077+543x 1073 1.63x 1071 4+490x10~* 1.39 x 102 £5.97 60.9%
0.001000 3.83x1077+543x 1073 1.63x10°1+1.70x107* 1.33 x 10?> £ 5.98 58.2%
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%89 ETEF 0L X €6T ; OL XGETF [ 0L X058 ¢ 0T X80FF 0L X9I'T 0001000
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The results for the dictionary %7 consisting of sine functions are given in Ta-
ble 9.1. For the dictionary @5‘ of hat functions, the results can be found in Ta-
ble 9.2.

In these tables, the first column corresponds to the chosen weakness parameter
0. We chose 10 values of ¢, which are logarithmically distributed between 1 and
0.001. The second column shows the regularization parameter A, which had been
chosen from the 100 prescribed parameters to minimize the approximation error.
The values shown are the mean value of A over all 20 random permutations of the
dictionary and the corresponding standard deviation. The mean and the standard
deviation are also shown in the third column for the approximation error, which we
computed in the form of the root mean squared error (RMSE) by the evaluation on
a grid in this case. For the fourth column, we computed the average computation
time for 100 iterations of the RWFMP and its standard deviation. Finally, the last
column shows the ratio of the average computation time to the time needed in the
case ¢ = 1, that is, the RFMP.

We will first discuss the results for the dictionary consisting of sine functions %7
Concerning the regularization parameter A, we observe that the chosen optimal
parameter—apart from the case ¢ = 1—always has the same order of magnitude.
This is what we would expect, since all of the algorithms converge to the minimizer
of the same Tikhonov functional such that in theory the same parameter should be
chosen for all ¢. The choice of the parameter might be affected by the fixed number
of iterations, which explains the differences in the chosen parameters. The results for
the RMSE are surprising. From the proved convergence rate we would expect that
the approximation error for a fixed number of iterations is worse for smaller values
of 0. From the given data, this is obviously not the case. Looking at the subsequent
decimal places, we obtain the minimal approximation error for ¢ = 0.021 544, but
the RMSE values are nearly all the same for ¢ < 0.1. Concerning the computation
time, we observe that lower values of ¢ result in a lower computation time, as one
would expect due to the optimization of the search strategy.

For the dictionary 92, we can conclude: on average, we can save over 40% of
computation time by applying the RWFMP with the parameter ¢ = 0.001 instead of
the RFMP. We even obtain a smaller RMSE value if we do so. We have to admit that
this example is special, since we are using an orthogonal basis as dictionary and
additionally, the sine functions are arising in the singular system of the considered
operator. Furthermore, we try to approximate a constant function by sine functions,
which might lead to additional errors induced by Gibb’s phenomenon. We conjecture
that the results are affected by these facts. Therefore, we will also discuss the results
that we achieved by using the dictionary %3, which is not specifically connected to
the inverse problem at hand.
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The results for the chosen regularization parameter when using %4 are similar to
the results presented above. In this case, even all of the average chosen parameters
are nearly the same, as we would expect. Additionally, also the RMSE values are
nearly the same for all values of ¢. In this case, the optimal approximation error
is achieved for ¢ = 0.046 416, but all of the errors are not larger than 2.7% of this
minimal error. In comparison to the numbers presented for ?Df, the trend in the
computation times is very different. For large values of ¢ the times are very similar
to the first example. Starting with ¢ = 0.1, the weak approach shows its potential
for improving the performance of the algorithm. Although the approximation error
does not change dramatically, the computation times drops from 225s for ¢ = 1
down to 15.3 s for ¢ = 0.001.

We can, thus, conclude for the dictionary @é‘ of hat functions that the RWFMP has
the potential to outperform the RFMP drastically if the presented search strategy for
the next dictionary element is used. For a fixed number of iterations, saving over 90%
of computation time is possible leading to nearly no change in the approximation
error.

As a general conclusion for both of the given dictionaries, we can say that the im-
plementation of a weak greedy algorithm for inverse problems may give a large
improvement in the efficiency of the algorithm. As already stated above, one can
save up to 90% of computation time without losing the accuracy of the approxima-
tion. For problems from the geoscientific applications, where one may have more
than 10000 data points and a dictionary consisting of thousands of functions, this
speed-up is very promising. The improvement of computation time makes it possi-
ble to even put more different kinds of functions into the dictionary, which might by
better adapted to the solution. This may lead to an improved approximation quality,
while one can obtain the same overall computation time as one has for the RFMP
with a smaller dictionary.
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Chapter 10.

RFMP for nonlinear inverse problems (RFMP_NL)

The RFMP as presented in Chapter 8 is an algorithm for solving linear inverse
and ill-posed problems. In this chapter, we will develop a similar algorithm for
nonlinear inverse problems, such as the nonlinear inverse gravimetric problem (see
Problem 7.16). In general, the problem to be solved is consequently Problem 6.23.
Similar to the REMP, we will consider the case % = R! for ¢/ € N. As already
mentioned in Chapter 8, this would allow for the joint inversion of different types
of data.

10.1. Derivation of the algorithm

Gaufi-Newton methods are popular methods for the solution of Problem 6.23. Ex-
amples include the Levenberg-Marquardt method and the iteratively regularized
Gaufi-Newton method (cf. Kaltenbacher et al. [95, Chapter 4]). The basic idea of
these methods is the iterative minimization of the linearized Tikhonov functional

g = SUfe] = S'[fi) (fra _fk)H]lzy + M|l ferr — foll (10.1)

for fri1 € %, given g € R and f;, f¢ € %. For the linearization of operators, see
Theorem 2.12.

Note that by choosing f; = 0 and bearing in mind that 7'[f](h) = T (h) for a
linear operator 7 one obtains the same Tikhonov functional that has been used in
the derivation of the FMP and the RFMP in Chapter 8. For nonlinear problems,
incorporating the term f_ takes into account that the zero element in % plays
no special role, in contrast to linear inverse problems, where 7(0) = 0 if 7 is
linear.

Gaufi-Newton methods solve the minimization of Eq. (10.1) by finding a solution
of the corresponding normal equation, since Eq. (10.1) can be interpreted as a least
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squares problem. By applying Theorem 6.10 this leads to iteration formulas of the
form

(S'IA)S'Ifi] + AZ) (fira — fx) = S'IA) (8 — SIf]) + Aesa (ff — fr)-

In this setting, the Levenberg-Marquardt method and the iteratively regularized
Gaufs-Newton method correspond to f¢ = frand f. = fo, respectively.

In the following, we adapt the idea of iteratively minimizing Eq. (10.1) to obtain a
greedy algorithm for nonlinear inverse problems. In analogy to Chapter 8, we choose
a dictionary 9 C %, a fixed regularization parameter A > 0, and an initial approxi-
mation fy € &. We then iteratively define a sequence ( i)y, of approximations to

f* by
frr1 = fe + ap1disa.

It is the aim of the following considerations to determine how ;1 € Rand di1 € ¥
have to be chosen to minimize the linearized Tikhonov functional

Ax [ fo f2rd 0] = ||g = SLA) — aS L (@) || e + Al (Fi — £2) + a5,

for given ¢ € W and fy, f; € % . Using the technique from Fischer [45], Fischer and
Michel [46], and Michel [123], we first observe that

A (8, feo fiod,0] = [Irelly = 20(rio ') (@) + @[S TAI@) 5
+ A (L= FENG +20fe— 2 )y +@2)d]5,)
= (llreliy +Afe = £215)
= 20((ri, Uil (d) )y — M = f2 )y )
+ o (|| SR @[ + Al ), (102)

where r := g — S|fx]. For fixed d € 9, a necessary condition for the minimization
of JTA is

J + o
0= 5 Arl8 fu fi,d 4]

— 2((re, S'U (@) )y — A fi — £, )y
—|—2(x<HS/[fk](d) gy + Alld ’2):)'

which is for the minimizer « = wy; equivalent to

(o S' U (@) = Afe = f )y
IS [ ()13, + Alld]5

A1 =
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Inserting the latter into Eq. (10.2) yields

A8 feo feodaei] = (Irelly + Ml fic— £215)
i S )y = A = £ )y )
IS £ (d) 15 + Alldl5;
L (e STy = Mfe— f d)y)’
IS [fel ()15, + Alldll5;
= (Il + Allf = £215:)
WSy = A= ford)y)*
IS ()13 + Alldl5

Thus, the pair (ax;1,dkr1) € R X 9 is a minimizer of A, [g, fir fir s } if and only
if

s = argama (TS = M) )
e IS [fe (@) |5 + Alld]]5
(1, S'[fil (dig1))oy — Ak = [ dig1 )y

IS el (dis) 13 + Aliall5

which will be the key ingredient in the following algorithm.

7

K41 =

Algorithm 10.1 (REMP for Nonlinear Problems, RFMP_NL). Let S and g be given
as in Problem 6.23. Choose a dictionary 9 C % \ {0}, an initial approximation
fo € &, and a regularization parameter A > 0. Furthermore specify the type of
regularization by choosing the sequence f; € %, for example, as one of the options
stated above.

1. Set k := 0, define the residual ry := g — S[fo] and choose a stopping criterion.

2. Find
/Sl d 0 _)\ - O/d 2
di1 = argmax (<”k [fk]( )><y . <fk fg >9f)
e IS [fxl(d) [l + Alld]l5
and set
_ e S (A1) — Afe = f ki1 )y
Rt+1 =

IS il (i)l + Al Iy
aswell as fry1 = fx + axi1diyr and 1541 == § — S|fxr1)-

3. If the stopping criterion is fulfilled, then f is the output. Otherwise, increase
k by 1 and return to step 2.
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First, we want to discuss the differences in the implementation of the RFMP and
the REFMP_NL. In Chapter 8, we highlighted that one can make extensive use of a
preprocessing procedure when implementing the REMP. This was due to the fact
that all terms in the maximization step are a combination of several inner products,
which do not change throughout the iteration. Unfortunately, this is no longer the
case for the RFMP_NL. In particular, the Gateaux derivative S’[fi](d) depends on
the current approximation f; and, consequently, has to be computed anew in every
iteration. Since, in general, the Gateaux derivative does not depend linearly on
the approximation, it is also not possible to update this term in any way. The com-
putation of the Gateaux derivative can be very expensive from the computational
point of view. For example, when applying the algorithm to the nonlinear inverse
gravimetric problem (see Problem 7.16), where the Gateaux derivative is given by
Eq. (7.19), a numerical integration formula on the sphere has to be used in every
iteration. Furthermore, also the residual 7, can no longer be obtained by simply up-
dating the residual from the previous iteration with a precomputed value, but also
has to be computed again in every iteration. This makes the algorithm much more
expensive. However, this is also true for most of the other established algorithms
for nonlinear inverse problems. Since most of them are also based on a linearization
of the operator, there is a need of a new computation of the Gateaux or Fréchet
derivative. Furthermore, several of these methods use the adjoint operator of the
Fréchet derivative, which then also changes in every iteration. In the REFMP_NL,
there is no need to know and compute the adjoint operator.

Secondly, there are also several similarities in the implementation of the RFMP and
the RFMP_NL, as one would expect. Both algorithms require a dictionary, which
should ideally be suitable to approximate the solution of the given inverse problem.
Furthermore, both algorithms incorporate a Tikhonov regularization and there is a
need to choose the regularization parameter in a proper way. Finally, the choice of a
stopping criterion is a crucial ingredient of the algorithm.

10.2. Comparison to other methods

In general, methods for nonlinear inverse problems are iterative (for an overview,
see the book by Kaltenbacher et al. [95]). This includes the already mentioned Gaufs-
Newton methods, where a linearized Tikhonov functional (therefore Newton) is
minimized by solving a normal equation (therefore Gaufs). The linearized Tikhonov
functional itself is obtained by applying a Tikhonov regularization to the linearized
equation that would be solved by a pure Newton method. Representatives of this
category of methods are the Levenberg-Marquardt method (see Levenberg [109]
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and Marquardt [115]) and the iteratively regularized Gaufi-Newton method (see
Bakushinsky [10]). Another classical category of methods are gradient type methods,
in particular, the Landweber method (see, for linear problems, Landweber [106] and
Engl et al. [42, Section 6.1]; for nonlinear problems, Hanke et al. [75]). Additionally,
(direct) Tikhonov regularization methods (see Tikhonov and Glasko [171]), mul-
tilevel methods (see Kaltenbacher et al. [95, Chapter 5]), and sequential subspace
optimization methods (see Wald and Schuster [181]) have been developed for non-
linear inverse problems. Especially, we want to mention level set methods (see the
survey by Burger and Osher [24]), since these are methods that are often used for
problems like the nonlinear inverse gravimetric problem, where a domain is the
unknown. Although the latter possess several advantageous properties, for example,
one is able to recover domains that are not star-shaped or even unconnected, one
does not directly get an explicit representation of the surface of the unknown domain
(although one can try to obtain such a representation in a post-processing step). In
contrast, we directly obtain such a representation in spherical coordinates, which is
desirable from the geophysical perspective. Furthermore, the assumptions that the
Earth’s interior (and also the part of the Earth that is inside a boundary layer like
the Mohorovi¢i¢ discontinuity) is connected or even star-shaped is a good model of
the reality.

In the following, we want to compare the newly developed RFMP_NL with existing
methods for nonlinear problems from the algorithmic point of view. First, there
are several similarities to other methods. The method is iterative, like most of
the established methods. Even if these are not iterative by themselves, like the
application of a Tikhonov regularization, often iterative optimization algorithms
have to be used inside these algorithms. The derivation of the algorithm was actually
motivated by Gauf-Newton methods, which shows the clear similarity to these
methods.

Secondly, there are also several differences to other methods, both advantages and
disadvantages. A disadvantage of the RFMP_NL is the fact that we currently do
not have an accurate theoretical analysis of the method, that is, no convergence or
regularization result. These results have already been very elaborate to obtain in the
case of linear inverse problems (see Chapter 9), and we expect it to be much more
difficult in the nonlinear case. Moreover, as in the linear case, since the dictionary
does not need to form a basis of the underlying Hilbert space, the solution provided
by the REMP_NL might not be unique. It may be represented by a different linear
combination of dictionary elements (in a certain sense) in a better way. However,
the REMP_NL also has several advantages in comparison to the existing methods.
Most of these are given in a pure, infinite-dimensional, Hilbert (or Banach) space
formulation. In consequence, it is not possible to implement these methods directly
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on a computer. Of course, at the first sight, this is also the case for the REFMP_NL.
The difference is that in most of the other methods one has to choose a specific basis
system in order to implement the method. This is necessary to ensure the regularity
of the arising systems of linear equations, for example, in the Levenberg-Marquardt
method. Using ansatz functions for the solution that are linearly dependent may
lead to singular matrices. In contrast, the RFMP_NL can handle very diverse types
of basis functions (for example, global and localized functions) and will choose those
functions that are best adapted to the structure of the solution. This is especially
important in the applications, for example, in geophysics, where global structures
like the Earth’s ellipticity must be distinguished from local structures like mountains.
Furthermore, there even is no need at all to solve linear systems of equations, like
in most of the other methods. Thus, one does not need to care about the condition
of arising matrices, which may require a stabilization, and there is also no need to
apply iterative solvers, which is often the most efficient way when implementing
the other methods. Another advantage of the REFMP_NL is that there is no need to
know the adjoint operator of the Fréchet derivative. The operator itself even does
not need to be Fréchet differentiable. Gateaux differentiability is enough in this
context.

10.3. Application to the nonlinear inverse gravimetric
problem

In this section, we will apply the REFMP_NL to the nonlinear inverse gravimetric
problem from Section 7.2.2.

For this purpose, we will first discuss several topics concerning the implementation
of the method and the chosen dictionaries. Then, we will present numerical re-
sults for several synthetic scenarios with different dictionaries, different prescribed
solutions, and different levels of noise.

10.3.1. Implementation details of the algorithm

The algorithm was implemented in C (Kerningham and Ritchie [98]) using the GNU
Scientific Library (Galassi et al. [62]), and a parallelization with OpenMP (Dagum
and Menon [30] and OpenMP Architecture Review Board [139]).

Besides the implementation of the algorithm itself, which we will discuss later in this
section, we need an implementation of the nonlinear operator that is associated to the
nonlinear inverse gravimetric problem, as well as its derivative.
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Remember that the operator S, of the nonlinear inverse gravimetric problem is
given as

— 7@ o(rg) ,
y)_/SZ/o ’rc_y’r drdw(¢é), yes

and its Fréchet and Gateaux derivatives possess the form

sidw = [, 28 @@ @ awe,  ves

In all of the numerical examples, we restrict ourselves to a constant density ¢ = 1.
For the sake of readability, as in Section 7.2.3, we define the function k: S™ x S —
R,

k(x,9) = o P
such that
0=/ / K(r,y) dr dw(€), (103)
Sl D) = [ ke(@)2y)T(E) dwe). (10.4

We first deal with a numerical integration method on S?, since it is needed in both
Eq. (10.3) and Eq. (10.4). The method, which we will use, was developed by Driscoll
and Healy [39] and is based on the following point grid.

Definition 10.2 (cf. Michel [122, Theorem 7.33]). Let m € N. Let the points 77, =
1(@q,tp) € S? be defined by the polar coordinates

27q
frd , :0/~"/ 7
P11 1 "
p
tp:COSm, pIO,...,m.

Then { 17,4 | p,q =0,...,m } is called the Driscoll-Healy grid.

For spherical harmonics up to degree m, there exists an exact integration formula
using the Driscoll-Healy grid.

Theorem 10.3 (cf. Michel [122, Theorem 7.33]). Let f € Harmy_,, (S?) for an odd
number m € Nand let { 7,4 | p,g =0,...,m } be the Driscoll-Healy grid. Let the
weights ay, ..., a, € Rbe defined as

. 4 . p (m+1)/2—-1 1 ) np
”P‘_m+1sm<m+1> s;) T R N e
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forp=0,...,m
Then,

2 m m
[ flp) deoy) = =5 X L4 Fltpa)

For all of the arising integrals over the sphere, we use exactly this method with
the parameter m = 99. It remains to choose an integration method for the radial
integral in Eq. (10.3). We apply a simple partitioned trapezoidal rule with 100
points.

An alternative for the integral in Eq. (10.3) is to transform the integral to the ball B;
such that

L[ ke aran@) = [ [ keo@z e arde)

= h (el ) (e

and apply an integration method for the ball, as for example derived by Amna
and Michel [6], but for the simplicity of the implementation, we do not pursue this
approach.

The general procedure for the presented numerical experiments will be as fol-
lows.

1. Prescribe a solution oy,;: S> — (0,00) and use numerical integration to com-
pute synthetic data g; = S1[0w0l] (v), j = 1,...,], where (y;)j-1,..; C S are
points on a sphere with radius R, $ := S} := { x € R? | |[x| = R }. Ensure that
R > supzcq 0(G)-

2. Apply 1% of noise.
3. Choose a function space % (S?) C L2(S?) and a dictionary 9 C % (S?) \ {0 }.

4. Define a set (As)s—1,.. s of regularization parameters and define the sequence
(f2)x of functions, which determines the type of regularization.

5. For each regularization parameter, run the REMP_NL using the noisy data
and the predefined dictionary.

6. Choose the regularization parameter, which yields the lowest approximation
error.
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Figure 10.1.: Prescribed solution in Example 1: describes an ellipsoid of revolution with
aspect ratio 0.8

In general, we will look at two scenarios. The first one will use a contrived solution
with purely global structures and a dictionary of spherical harmonics for a specific
combination of the regularization term and the function space. The second one
will combine both global and local features in the prescribed solution and corre-
spondingly, the dictionary will consist of spherical harmonics and Abel-Poisson
kernels. For the second scenario, we will compare the different alternatives for
the regularization term and the function space. For the combination that yields
the lowest approximation error we will present concrete results for two different
prescribed solutions.

10.3.2. Example 1: ellipsoid of revolution

The prescribed solution is given by

f('g) = asol(g) =

1
Jara+ (i)

such that 5" = {rf € R? | ¢ € %, < 0() } is an ellipsoid of revolution with the
aspect ratio 0.8. The solution is depicted in Figure 10.1 in spherical coordinates. We
measured the gravitational potential in 10 000 points on a Driscoll-Healy grid on a
sphere of radius 1.1.

Since the solution describes a global structure, we used a dictionary that con-
sists only of global functions, namely, spherical harmonics. We defined the dic-
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tionary
P :={Y,j|n=0,...,25 j=-n..n}

of spherical harmonics up to degree 25 such that #2 = 676. We chose the function
space & (S?) = L?(S?), and set f := fo for all k € Ny such that the regularization
term corresponds to the term that is also used in the iteratively regularized Gaufs-
Newton method. As the initial approximation, we chose fy = 0.8, corresponding to
the sphere with radius 0.8. The best regularization parameter that we found using
the strategy presented above, is A = 1.585 x 10~2. We performed 200 iterations of
the REMP_NL. The development of the relative residual, thatis, ||g — S[fi]|la /|| ]la
and the relative approximation error, that is, || f — fi||o /|| |4, during the iteration
can be found in Figure 10.2a. The approximation after 200 iterations is depicted
in Figure 10.2b. Moreover, the pointwise difference of the approximation after 200
iterations and the solution is shown in Figure 10.2c.

In Figure 10.2a, we first consider the residual. We observe that the relative residual
drops rapidly in the first few iterations below 1%. Since we used a noise level of 1%
in the data space, this is what we would expect. This also shows that the algorithm
works as it should, since (ignoring the regularization) it was derived as a minimiza-
tion algorithm for the (linearized) residual. Considering the relative approximation
error, we observe that the final value after 200 iterations is approximately 1.4%. Due
to the ill-posedness and the nonlinearity of the inverse problem, it is not surprising
that the approximation error is larger than the residual and the noise level. Indeed,
a factor of 1.4 between the approximation error and the noise level is a good result
for an algorithm for ill-posed inverse problems. Unfortunately, we also observe that
the error is even lower in several of the earlier iterations. It would, consequently,
be even more efficient to stop the algorithm, when the error is minimal. Since, in
general, we do not know the solution, this cannot be achieved. Looking at the
results that the RFMP_NL yields for all of the other regularization parameters, we
can say that for these parameters the difference between the minimal error and the
error after 200 iterations is even larger such that, currently, the results presented in
Figure 10.2 are the best we could achieve. Of course, one could also think about
stopping the iteration earlier, for example, using a discrepancy principle, which is
a common procedure for iterative regularization methods. From methods like the
Levenberg-Marquardt algorithm, it is known that one would have to choose a differ-
ent regularization parameter in every iteration, which is even more difficult. This is
why we postpone this subject to our research in the future.

The approximation itself and the approximation error as a function in spherical
coordinates are shown in Figure 10.2b and Figure 10.2¢, respectively. In addition
to the plot of the approximation error in spherical coordinates in Figure 10.2c, we
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(a) Development of the relative residual (purple) and the relative approximation error (blue)
during the iteration of the RFMP_NL.
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(b) Approximation generated by the RFMP_NL.
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(c) Difference of the solution and the approximation generated by the RFMP_NL.

Figure 10.2.: Results from the application of the RFMP_NL in Example 1.
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Figure 10.3.: Three-dimensional plot of the approximation error after 200 iterations of the
REMP_NL in Example 1 as a function on the sphere.

also provide a three-dimensional plot on the sphere in Figure 10.3 to account for the
misperception of structures around the poles that might arise due to the cartographic
projection. It can be seen that the error is very small everywhere on the sphere. Its
absolute value is nowhere larger than 0.01, where the surface of the body of mass
is between 0.8 and 1 units away from the center. We find that there are several
small artifacts in the approximation error distributed over the whole sphere. From
the application of the REMP (and other regularization methods) to linear inverse
problems, we know that such artifacts normally arise if the regularization parameter
is chosen too low. As already said, we observed larger approximation errors for
larger values of the regularization parameter such that we do not believe that the
artifacts arise from under-regularization.

Nevertheless, we can say that, for this example, the approximations generated by
the REMP_NL after 200 iterations are very good, since the relative approximation
error is only 1.4% for a noise level of 1%.

10.3.3. Example 2: ellipsoid and added Abel-Poisson kernels

In the derivation of every greedy algorithm that arises in this work, we have stress-
ed that these algorithms are able to combine different types of basis functions.
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Figure 10.4.: Prescribed solution in Example 2: the sum of an ellipsoid of revolution and
two Abel-Poisson kernels.

Therefore, in this section we will discuss an example, which will show that this is
also true in practice for the REMP_NL.

We will first compare different possibilities for the chosen function spaces and the
regularization term.

For this purpose, we chose a dictionary % that consists of spherical harmonics up
to degree 9 and Abel-Poisson kernels with parameter 1 = 0.7, which are centered
on a Driscoll-Healy grid with parameter m = 25, yielding 100 spherical harmonics
and 652 Abel-Poisson kernels to obtain #% = 752 in total. The prescribed solu-
tion consisted of a sum of the function used in the first example corresponding to
an ellipsoid of revolution and two Abel-Poisson kernels with parameter 1 = 0.7,
which are centered at 41°N, 96°W and 41°S, 96°E. The solution is depicted in Fig-
ure 10.4.

In this case, we measured the gravitational potential at 10 000 points on a Driscoll-
Healy grid on the sphere with radius 1.2.

In Table 10.1, we gather the approximation errors for two different types of regu-
larization terms and three different function spaces % (S?). For every combination,
we executed 200 iterations of the RFMP_NL with several regularization parameters.
The values in the table are the lowest approximation errors that we obtained among
all of the regularization parameters. As already mentioned before, choosing f; = fo
in the REMP_NL is analogous to the iteratively regularized Gauf3-Newton method,
and f{ = f is analogous to the Levenberg-Marquardt method. This is the reason
why we compare these two choices for the regularization term. Apart from the space
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Table 10.1.: Approximation errors for different types of regularization and different function
spaces in Example 2. The minimum approximation error is set in a bold font.

Function space f = fo f¢ = fk

L2(S?) 3.10%  3.20%
H'(S?) 326%  3.23%
H?(S?) 3.30%  3.22%

L2(S?), we also considered the inverse problem in the Sobolev spaces H!(S?) and
H?(S?) (for a definition see, e. g., Freeden et al. [53, Section 5.1]).

We observe that the combination of f{ = f and the space L?(S?) yields the best
results, although all of the other results have the same order of magnitude. We,
thus, stick to this combination in the further analysis of the results. This also has
the advantage that L?(S?)-norms of the functions in the dictionary can be easily
computed (see Example 2.37 for the Abel-Poisson kernel), which is not the case for
the Sobolev spaces. There, one has to compute a truncated Legendre series, which is
much more expensive from the computational point of view.

In Figure 10.5, we present the results after 200 iterations of the RFMP_NL for this
combination for the optimal regularization parameter.

Considering the approximation error and the residual in Figure 10.5a, we observe
again that the relative residual drops rapidly in the first few iterations to a value
of 0.7%, which is below the noise level. The relative approximation error attains a
value of 3.10% after 200 iterations. This is again a very good result for the applied
noise level of 1%.

The approximation in Figure 10.5b and the approximation error in Figure 10.5c are
larger, where the local structures of the solution can be found. In particular, the
maximal error is located in the centers of the Abel-Poisson kernels that are present
in the prescribed solution. Interestingly, in contrast to the first example, we do not
see such a big amount of artifacts in the error. A look at the absolute values of the
approximation error again shows that the obtained results are very good, since it
never exceeds 0.02, whereas the surface of the body of mass is between 0.8 and 1.1
units away from the center.

If one considers the chosen dictionary elements, we observe that the algorithm chose
spherical harmonics in 187 of the iterations and Abel-Poisson kernels in 13 iterations.
Since the algorithm can choose functions from the dictionary multiple times, the
solution consisted of 89 distinct spherical harmonics and 13 distinct Abel-Poisson
kernels. We have displayed the centers of these Abel-Poisson kernels in Figure 10.6
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(a) Development of the relative residual (purple) and the relative approximation error (blue)
during the iteration of the RFMP_NL.
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(b) Approximation generated by the REFMP_NL.
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(c) Difference of the solution and the approximation generated by the RFMP_NL.

Figure 10.5.: Results from the application of the RFMP_NL in Example 2.
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Figure 10.6.: Plot of the centers of the Abel-Poisson kernels that are present in the solution
(blue) and the approximation (purple).

alongside the centers of the kernels that are present in the solution. We observe
that 8 of the 13 chosen kernels have their centers near to the kernels of the solution.
One of the two kernels in the solution is even chosen itself. Due to the use of noisy
data, also some kernels are chosen that are centered where there is no kernel in the
solution.

In conclusion, we can say that also in this example, the REMP_NL produces very
good approximations of the prescribed solution. In the derivation of the algorithm,
we stated that it will be possible to combine different types of basis functions. The
presented example shows that this is indeed true in practice and the results are very
promising due to the low approximation errors.

Thus, the REMP_NL seems to be a suitable algorithm for the solution of the nonlinear
inverse gravimetric problem. Unfortunately, for practical applications, the computer
power that is needed is still a bit too high. In the second example, the computation
time was 9.37 h on a node of the HorUS cluster of the University of Siegen, where a
parallelization of the code to the 12 kernels of the node was used whenever possible.
To invert the gravitational potential, for example, for the topography of the Earth,
one would need to use a much larger integration grid in the implementation of
the operator due to the finer structures that arise in the solution. Therefore, the
examples presented before can currently only serve as a proof of concept that the
algorithm successfully solves the nonlinear inverse gravimetric problem. On the
one hand, with rising computer power in the future, it is not unrealistic that the
RFMP_NL will some day be applied in a more realistic scenario or even to real-
world data. On the other hand, one could also think about other optimizations of
the algorithm to obtain lower computation times. For example, the strategy that
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we have applied to obtain the RWFMP in Chapter 9 could also be applied to the
RFMP_NL. The most expensive part of the algorithm is the re-computation of the
Fréchet derivatives in step 2. If it would be possible to compute these derivatives
analytically instead by using numerical integration, this could also speed up the
algorithm.

187






Part IV.

Final remarks

189






Chapter 11.
Conclusions and outlook

In this work we presented novel greedy algorithms for two classes of problems.

The first problem was the estimation of a probability density function on the sphere,
which was considered in Part II. For this purpose, we derived a greedy algorithm
based on the Pure Greedy Algorithm (PGA) from approximation theory. We applied
the greedy algorithm to a data set that represents the directions of fibers inside a
so-called nonwoven fabric, which is a technical textile that is often used in industrial
applications. Since these data were generated by a CT scanner with a very high
resolution, we had to deal with nearly 10 million data points. By the application
of the greedy algorithm for density estimation, we were able to improve the com-
putation time of a simple simulation algorithm for nonwoven fabrics by a factor
of 750 in comparison to the standard non-parametric approach of a kernel density
estimator.

Furthermore, we dealt with linear and nonlinear inverse problems in Part III. Here,
we generalized the REMP algorithm that has been developed for the solution of
linear inverse problems by the Geomathematics Group of the University of Siegen
in recent years in two manners.

First, we applied the idea of the Weak Greedy Algorithm (WGA) to the REMP
to obtain the Regularized Weak Functional Matching Pursuit (RWFMP). By this
approach, we could prove convergence of the RWFMP for linear inverse problems
between arbitrary (possibly) infinite-dimensional Hilbert spaces, whereas conver-
gence was only proved for the REMP if the image space is finite-dimensional. Up to
now, convergence rates were only known for the unregularized FMP. We provided
convergence rates both for the WFMP and the RWFMP, which therefore includes
the rate of convergence of the RFMP. It has been stated in the outlooks of the PhD
theses by Fischer [45] and Telschow [166] that such a convergence rate would be
desirable, which is thus achieved in the work at hand. We were also able to provide
an a-priori parameter choice rule for the RWFMP, which yields a convergent regular-
ization. Furthermore, a numerical example in L?([0,1]) showed that the approach
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of the RWFMP can be used to reduce the computation time of the REMP by up to
90%.

Secondly, we presented a greedy algorithm for nonlinear inverse problems, which
we called REFMP_NL. We applied the algorithm to the nonlinear inverse gravimetric
problem, where one inverts gravitational data for the surface of or boundary layers
inside a body of mass like the Earth or any other planetary body. We tested the
algorithm using two synthetic examples: on the one hand we proposed a purely
global solution and on the other hand, we proposed a solution that is a combination
of global and localized functions. For both of these examples, the REMP_NL yielded
very good results: for a noise level of 1%, the approximation error is 1.4% and 3.1%,
respectively. Also pointwise, the approximation error attains very low values, which
highlights the quality of the approximation. In the introduction, we have already
mentioned that we decided to use greedy algorithms to obtain a sparse solution due
to the possibility of choosing an overcomplete dictionary. In the second example,
we could observe that the approximation that was generated by the REMP_NL is
comprised both of the global functions and the localized functions that we put into
the dictionary. We also saw that the localized functions that the algorithm chose
are mainly concentrated in those regions where local structures were present in the
solution. This supports our view that greedy algorithms possess this property and
that they are advantageous for that reason in comparison to other methods that
yield sparse approximations.

Of course, there is also much more research to be done.

Concerning the problem of density estimation, we were not able to prove the con-
vergence of the algorithm (or at least asymptotic unbiasedness of the resulting
estimator or similar statistical properties). It is desirable that this is done in future
research. Furthermore, the simulation algorithm for nonwoven fabrics should be
checked for its quality. Unfortunately, this is not so easy to accomplish. We could,
of course, compare the distribution of fiber directions in the real nonwoven and
the simulated nonwoven. Due to the concept behind the simulation algorithm
this is not sensible since the algorithm is designed such that these distributions
coincide (at least approximately). For that reason, one needs to find a different
method to determine the approximation quality. Moreover, a comparison to the
(mainly two-dimensional) mathematical models that already exist would be inter-
esting both from our perspective as developers of the model and the industrial
application.

The idea of the RWFMP was to apply the idea of the WGA to the REMP. Since
there exists also a Weak Orthogonal Greedy Algorithm (WOGA) in approximation
theory, it would be interesting to see if we can also transfer the idea of the WOGA
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to the REMP to yield a Regularized Weak Orthogonal Functional Matching Pursuit
(RWOFMP). Since both the ROFMP and the RWFMP possess several advantages
over the REMP, a combination of both approaches could provide even better approx-
imations of the solutions to linear inverse problems. One could also try to apply the
idea of greedy algorithms for the approximation of functions in Banach spaces to
the setting of inverse problems.

Finally, the good numerical results suggest that the algorithm converges. This con-
vergence should also be proved theoretically. As already stated in Section 10.2, the
convergence analysis has already been complicated for linear inverse problems, since
greedy algorithms are nonlinear algorithms. We apprehend that, consequently, the
analysis for nonlinear problems is even more complicated (and may be impossible).
Of course, this subject should be studied further to provide a rigorous mathematical
basis for the application of the algorithm. Furthermore, one could try to apply the
strategy of the WGA also to the RFMP_NL. This might be a promising approach to
reduce the computation time, which is currently the major issue why we are not able
to apply the RFMP_NL to more realistic scenarios or even real data. Of course, the
REMP_NL could also be applied to other nonlinear inverse problems, not necessarily
from geophysics and not necessarily on a spherical domain. Areas of application
may include medical imaging and industrial applications.

For all of the greedy algorithms, one should deal with the problem of finding
an optimal dictionary. As already mentioned, for the RFMP and the ROFMP for
linear inverse problems this is the subject of the work-in-progress PhD thesis by
Schneider [159]. Also for all of the other methods presented in this thesis, this subject
is crucial for the efficiency of the algorithms as, for example, the proved rate of
convergence of the RWFMP shows.
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