
Multi-Layer Conditional Random Fields

for Revealing Unobserved Entities

DISSERTATION
zur Erlangung des Grades eines Doktors

der Ingenieurwissenschaften

vorgelegt von
M.Sc. Sergey G. Kosov

eingereicht bei der Naturwissenschaftlich-Technischen Fakultät
der Universität Siegen

Siegen 2018





iii

Gutachter der Dissertation

Prof. Dr. Marcin Grzegorzek
Siegen Universität Siegen

Prof. Dr. Klaus-Dieter Kuhnert
Siegen Universität Siegen

Tag der mündlichen Prüfung

19.07.2018





Acknowledgements

First of all, I would like to thank Prof. Dr. Marcin Grzegorzek for supervising my dissertation
and giving me the opportunity to work in his group. The fruitful atmosphere there supported
and motivated me during the preparation of this thesis. In particular, I would like to thank
Prof. Dr. Marcin Grzegorzek for giving me a helping hand in critical moments and thus
saving my soul from becoming a hardware engineer. Secondly, I want to thank Prof. Dr.
Roman Obermaisser and Prof. Dr. Markus Lohrey who agreed to review this thesis.

Moreover, I want to thank all former and current members of our group: Kimiaki Shira-
hama, Chen Li, Hassan Khan and all others. They created such a friendly and nice atmosphere
that working with them was really a pleasure. Each of them contributed in his way to the
success of this thesis. In particular, I want to thank Kimiaki Shirahama and Chen Li, for our
fruitful cooperation on conditional random fields. In this context, I also want to explicitly
thank Hassan Khan for doing a work that is often underestimated. Also I would like to thank
my colleagues of the firm Reality 7 Max Konrad and Daniel Rembold for proofreading parts
of my thesis and supporting me with the system administration.

Furthermore, I want to thank my friends Sergey Pushkarev, Eugenij Krjukov, and Juri
Hanimann as well as Ulan Degenbaev and Pavel Emiljanenko for their long time friendship.
They accompanied me through most parts of my life and always believed in me.

Finally, I want to thank my mother Irina for giving me always the support I need and my
girlfriend Alexandra for her love and for showing me that there is more in life than science.

Siegen, August 10, 2018 Sergey Kosov

v





Abstract

Understanding the role of each pixel in the image – the so-called semantic image segmentation
– is one of the central problems in computer vision and pattern recognition. Allowing a
mathematical sound integration of different image labeling concepts into a single framework,
conditional random fields belong to the best performing and best understood techniques for
solving this task. They belong to the class of undirected graphical models, where the scene
is represented by a graph whose nodes are the random variables involved in the classification
process and whose edges model dependencies between the random variables corresponding
to the nodes. However, they are often considered as a statistical model of context, which
has a smoothing effect on the classification results. In this thesis I show that the conditional
random fields technique is a much more powerful tool for semantic image segmentation by
making two important scientific contributions, described in Chapters 2 and 3.

The first part of this thesis is dedicated to construction of conditional random fields meth-
ods (Chapter 2). I first discuss some classical probabilistic models, used for initializing the
graph nodes and edges, and then propose new more accurate and efficient models, which are
based on classical ones. Thereby, I demonstrate that this toolkit allows for incredible flexibil-
ity in modeling the graph structure and thus binding various kinds of observations together.
Here I also investigate the influence of different data-features, extracted from the observa-
tions on he entire labeling process. Finally, I construct a local-global classification engine
– conditional random field, incorporating not only classical local nodes, but also additional
global nodes, which correspond to the global features that describe the whole image in toto.
Extensive qualitative and quantitative benchmarks for eight different node models and five
edge models show the accuracy and the efficiency of the proposed implementations. At the
current status quo this provides the most precise random fields approaches in the literature
and allows me to make the second scientific contribution.

The second part of this thesis extends the previous scientific contributions to a novelMulti-
Layer-CRF framework (Chapter 3) that allows for the integration of sophisticated occlusion
potentials into the model and enables the automatic inference of the layer decomposition. I
use a special message-passing algorithm to perform maximum a posterior inference on mixed
graphs and demonstrate the ability to infer the correct labels of occluded regions in both
the aerial near-vertical dataset and urban street-view dataset. A major innovation of the
proposed framework is that the 3D structure of the scene is considered in the classification
process. This is necessary to be able to deal with occlusions in a systematic way. In order
to do so, multi-layer conditional random fields are built that use multiple nodes for the class
labels at a certain position in object space, namely one corresponding to the base layer of the
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scene (containing background objects that do not occlude other objects but may be occluded)
and others, corresponding to the occlusion layers (containing objects that may occlude other
objects). Quality and efficiency benchmarks show the success of this layered framework: the
accuracy of classification on occluded areas becomes considerably higher in comparison to the
classical random fields techniques.



Zusammenfassung

Die Rolle jedes einzelnen Pixels im Bild zu verstehen – die so genannte semantische Bildseg-
mentierung – ist eines der zentralen Probleme der Computer-Vision und Mustererkennung.
Conditional Random Fields gehören zu den leistungsstärksten und am besten verstandenen
Techniken zur Lösung dieser Aufgabe, da sie eine mathematische überzeugene Integration ver-
schiedener Bildbeschriftungskonzepte in einem einzigen Framework ermöglichen. Sie gehören
zur Klasse der ungerichteten Graphen, bei denen die Szene durch einen Graphen repräsen-
tiert wird, dessen Knoten die Zufallsvariablen sind, die am Klassifizierungsprozess beteiligt
sind, und deren Kanten die Abhängigkeiten zwischen den Zufallsvariablen, die den Knoten
entsprechen, modellieren. Sie werden jedoch oft als statistisches Kontextmodell betrachtet,
was auf die Klassifikationsergebnisse einen Glättungseffekt hat. In dieser Arbeit zeigen wir,
dass die Technik der bedingten Zufallsfelder ein viel mächtigeres Werkzeug für die semantis-
che Bildsegmentierung ist, indem wir zwei wichtige Beiträge leisten, die in den Kapiteln 2
und 3 beschrieben werden.

Der erste Teil dieser Arbeit widmet sich der Konstruktion von Methoden mit Conditional
Random Fields (Kapitel 2). Wir besprechen zunächst einige klassische probabilistische Mod-
elle, die für die Initialisierung der Graphenknoten und -kanten verwendet werden, und schla-
gen dann neue, genauere und effizientere Modelle vor, die auf klassischen Modellen basieren.
Dabei zeigen wir, dass dieses Werkzeug eine unglaubliche Flexibilität bei der Modellierung
der Graphenstruktur ermöglicht und somit verschiedene Arten von Beobachtungen miteinan-
der verbindet. Hier untersuchen wir auch den Einfluss verschiedener Datenmerkmale, die aus
den Beobachtungen extrahiert wurden, auf den gesamten Beschriftungsprozess. Schließlich
konstruieren wir eine lokal-globale Klassifizierungsmethode, basieren auf Conditional Ran-
dom Fields, das nicht nur klassische lokale Knoten enthält, sondern auch zusätzliche globale
Knoten, die den globalen Merkmalen entsprechen, die das ganze Bild beschreiben in toto.
Umfangreiche qualitative und quantitative Benchmarks für acht verschiedene Knotenmodelle
und fünf Kantenmodelle zeigen die Genauigkeit und Effizienz der vorgeschlagenen Implemen-
tierungen. Beim aktuellen Status quo liefert uns dies die präzisesten Random Fields in der
Literatur und erlaubt es uns, unseren zweiten Beitrag zu leisten.

Der zweite Teil dieser Arbeit erweitert unsere bisherigen Beiträge zu einem neuartigen
Multi-Layer-CRF Framework (Kapitel 3), das die Integration anspruchsvoller Okklusionspo-
tentiale in das Modell ermöglicht und die automatische Ableitung der Schichtzerlegung er-
möglicht. Wir verwenden einen speziellen Message-Passing-Algorithmus, um eine Maximum a
posteriori Inferenz auf gemischte Graphen durchzuführen und die Fähigkeit zu demonstrieren,
die korrekten Bezeichnungen von verdeckten Regionen sowohl im Datensatz von Senkrechtauf-
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nahmen als auch im urbanen Street-View-Datensatz herzuleiten. Eine wesentliche Neuerung
des vorgeschlagenen Rahmens besteht darin, dass die 3D-Struktur der Szene bei der Klassi-
fizierung berücksichtigt wird. Dies ist notwendig, um Okklusionen systematisch behandeln zu
können. Dazu werden mehrschichtige bedingte Zufallsfelder aufgebaut, die mehrere Knoten
für die Klassenbeschriftungen an einer bestimmten Position im Objektraum verwenden, näm-
lich einen, der der Basisebene der Szene entspricht (mit Hintergrundobjekten, die andere
Objekte nicht verdecken, sondern verdecken können) und andere, die den Okklusionsebenen
entsprechen (mit Objekten, die andere Objekte verdecken können). Qualitäts- und Effizienz-
Benchmarks zeigen den Erfolg dieses mehrschichtigen Frameworks: Die Genauigkeit der Klas-
sifikation auf den verdeckten Flächen wird im Vergleich zu den klassischen Random Fields
deutlich erhöht.
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1 Introduction

“This work contains many things which are new and interesting. Unfor-
tunately, everything that is new is not interesting, and everything which is
interesting, is not new.”

- Lev Davidovich Landau

1.1 Motivation

The two fundamental questions in Philosophy are “what does reality consist of?” and “how
does it originate?”. Generally, all the philosophers in their attempts to answer these questions
can be split in two primary categories, namely idealism, and materialism, which are both
defined in contrast to each other. From the idealistic point of view the spirit, mind or the
objects of mind (ideas) are primary, and matter is secondary. To materialists, it is the opposite
so that matter is primary and the spirit, mind or ideas are secondary, which results in the
product of matter acting upon matter. However, by itself materialism says nothing about
how material substance should be characterized.

In this thesis I do not answer the fundamental questions in Philosophy, but address the
problem of automatically revealing ideas, hidden behind the material substance. As we know,
an idea may be reflected in a large variety of substances, which could be only perceived via
definite organa sensuum. Thus, ideas appear to be hidden from us beyond the information

Fig. 1.1: Example of the classification problem. Left: A variety of non-material ideas; Center:
Input data: the ideas in form of physical entities perceived via a digital camera sensor; Right: Wanted
classification result: a mapping of the input image to categories. The color indicates the position of
different categories in the image. How can we classify the input data in a fast and accurate manner?

1



2 Introduction

Fig. 1.2: Possible fields of application. Left: Classification of an optical satellite image; Center:
Segmentation of a medical image of a human eye; Right: Handwritten text recognition. The color in
first two images indicates different categories of interest.

provided by some “sensors”. This information is limited, often incomplete and sometimes
ambiguous. Only our experiences gained through growing up teach us to interpret, recognize
and understand ideas.

In machine learning the problem of identifying to which category (idea) a new observation
belongs is called classification. The main focus of this thesis is developing and studying a
class of mathematical functions called classifiers, which are capable of mapping input data
from organa sensuum to a category. Such a classifier can be taught with the help of vivid
examples such as a training set of data containing observations (or instances) whose category
membership is known. Figure 1.1 illustrates the described classification problem. In the
visual data in a form of a digital image, we are interested in determining which objects were
in front of the camera, where were they situated and how do they interact with each other?

Fields of Application. Although classification is only an ordered set of related categories
used to group data according to its similarities, it proves to be useful for a variety of different
tasks (see Figure 1.2). For example, in remote sensing, classification has been used for the
detection of buildings in synthetic aperture radar (SAR) images, for the classification of
optical satellite images, and for the reconstruction of a terrain surface from airborne laser
scanner data [LOL09].

In pattern recognition, classification is used for image labeling [HZC04] and object recogni-
tion [QCD04]. Both are in great demand especially in medical image analysis for processing
and classifying images, obtained by different types of image acquisition methods, like com-
puter tomography (CT) and magnetic resonance imaging (MRI). In this example classifica-
tion allows to distinguish diseases, detect and localize tumors [Bau+13]. In pharmacology
and biology, classification is used for drug discovery, development [SHR10] and for gene pre-
diction [DeC+07].

Due to industrialization we have a growing number of pollutants in recent decades, like
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waste water entering the human environment. This increases the risks of serious diseases,
such as cancer. Instead of using chemicals to eliminate such pollutants, a more harmless
approach would be taking advantage of the natural consumption of Environmental Microor-
ganisms (EM) [PGG15]. EMs are microscopic organisms living in natural and artificial en-
vironments (e.g., forests and farmlands), which are useful for cleaning environments. For
example, Actinophrys can digest the organic waste in sludge and increase the quality of fresh
water and Rotifera can decompose rubbish in water and reduce the level of eutrophication.
In order to achieve the environmental treatments, EM classification is necessary.

Additionally, classification has found applications in many other domains which deal with
structured data. Especially in natural language processing, classification is currently a state
of the art technique for many of its sub-tasks including basic text segmentation [TWH07],
part-of-speech tagging [LMP01] and shallow parsing [SP03]. These techniques serve as an
important step towards human - machine interfaces. This interaction with the environment
goes far beyond a pure text and speech understanding. In combination with approaches from
computer vision, motion patterns can be trained in such a way that the obtained algorithms
even allow for the classification of human activities and gestures [KSG18a].

Furthermore, classification is also applied in telecommunications and networking for intru-
sion detection [GNK10] and distributed sensor networks management [ZAV07]. Classification
allows not only for recognition of existing entities, but also the prediction of future events.
A good example is the use in economics for credit scoring [BM12] and stock–price predic-
tion [Che+09]. Classification may also be used for motion prediction, where it allows to track
objects on their way through the scene, to keep them in focus and to follow them if desired.
As a result computer vision allows us to detect and avoid obstacles. This makes it particu-
larly useful for tasks where vehicles must be guided safely through an unknown environment.
In this context one can either think of a robot navigation where one is interested in a fully
autonomous behavior [DK02] or the design of drivers assistance systems where support is
only required in certain situations [LMB02].

The direct relation to other machine learning problems and the previously discussed prac-
tical applications are only a few examples that demonstrate the usefulness of classification.
This clearly shows why in the last few decades so much research has been carried out to
develop accurate models and fast numerical schemes for its calculation.

1.2 Overview

The goal of the present work is to contribute to the field of classification. In order to do
this I will start the overview with a formal definition of classification as the association of an
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observation y ∈ Y with a category l ∈ L, where Y is a set of all observations, which may be
infinite and L is a pre-defined finite set of all the categories of interest. The categories are
often called ideas, classes or labels, and thus classification is also known as labeling in the
literature. The function F : Y→ L, which maps a space of observations into a space of class
labels is called classifier.

Figure 1.3 illustrates the underlying classification concept. An idea finds itself in a “one-to-
many” relationship to physical objects, i.e. one idea may potentially reference several objects,
whereas each object may be referenced by only one idea. In the real world, almost each
physical object is unique and its observation also depends on the observer. Thus, the task of
classification is to learn how ideas are related to observations and finding similarities in the
observed data to answer “what is the underlying idea l behind this observation y?”

idea data

obj1

obj2

obj3l y

What is the idea?

Fig. 1.3: A schematic representation of the classification concept: one idea may (category) cause
numerous physical objects: obj1, obj2, obj3, . . . . The task of classification is to reveal the idea, hidden
under these objects, having only observed data about them: l = F(y).

As an example of classification let us consider a patient diagnostication: each inspected
patient y ∈Y= {Ivanov, Petrov, . . .} falls under one of the categories L= {healthy, infected,
ill, convalescent}. In order to assign a patient to one of the categories, doctors should consider
symptoms, take and inspect analysis. Mathematically saying, doctors extract those features,
which they believe are most descriptive and useful for giving the right diagnosis. So a patient
y is described by a set of features such as fleucocytes(y), which returns an integer number of
white blood cells from a blood test, or a floating point ftemperature(y) which returns the body
temperature, or even a binary fheadache(y), which is equal to one when the patient has a head
ache or zero if not. To this end, any patient y could be substituted by a corresponding feature
vector f(y) thus y ≡ f(y). Analyzing all features f(y), doctors, based on their knowledge and
experience, diagnose the patient and assign a course of medical treatment if needed.

Usually, doctors are taught in universities and during practice. If patient diagnostication
will be committed by a machine, it must be taught as well. This teaching process is a machine
learning concept called training. We distinguish between supervised (learning with a teacher)
and unsupervised training. When learning with a teacher, the fully labeled training dataset is
provided, as if a teacher points out the correct category for a concrete data sample; whereas
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the problem of unsupervised learning is that of trying to find a hidden structure in unlabeled
data, so there is no error or reward signal to evaluate a potential solution. Henceforth this
thesis will refer to the term “training” as supervised training, if not stated otherwise.

A special thing to note is that in the example of patient diagnostication, all the patients
are considered separately, i.e. the diagnosis of one patient is completely independent from the
diagnosis of another patient. Let us consider another example from natural language process-
ing called text segmentation, which means the classification of words y of a textual sequence
Y. Here, words are not an arbitrary accumulation, but interdependent entities. Especially
the order is important and grammatical constraints hold. The linguistically motivated cate-
gories here include part-of-speech tags and proper names: L = {verb, noun, name, 0}, where
0 represents any other word in which we are not interested. Let us consider the text snippet:

... Mister Vladimir Vladimirovich Putin visited Hanover together with ...

Here, the task is to assign a fitting label sequence such as:

... noun name name name verb name 0 0 ...

where each label represents an entity class. In this example we deal with a linear sequence
structure and multiple interdependent observations are considered. Now, classification can be
approached with probability theory by specifying a probability distribution to select the most
likely class l for a given observation y. One approach for modeling linear sequence structures,
as can be found in natural language text, are hidden Markov models (HMM, [Rab89]). For
the sake of simplicity, we assume strong independence between the observation, what impairs
the accuracy of the model.

This thesis addresses the most difficult class of classification problems - image classification
(visual data categorization). In this case, the data Y is given in a form of a digital image,
and the complexity of the probability distribution becomes even higher. To this end, the
current work is focused on the class of statistical classification approaches that currently
gives the best results in the literature – so-called conditional random fields (CRF, [LMP01]).
Conditional random fields are developed exactly to fill the gap, that HMM has: While CRFs
make similar assumptions on the dependencies among the class variables, no assumptions on
the dependencies among observations need to be made (Section 1.2.1).

Within this thesis, I am interested in improving the qualitative performance of current clas-
sification techniques. By discussing existing and novel concepts for designing such methods,
a systematic toolkit for the construction of novel highly accurate CRF techniques is provided.
Additionally, I am also interested in studying the possibility of the CRFs application to the
problem of implicit data classification, where a solid probabilistic framework to handle such
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kind of problems is presented. They arise when some part of data to be classified, due to some
reasons, is not observed directly, but still might be “guessed” by observed neighboring data.
This allows for making conditional random fields more robust for real-world problems where
one faces incomplete, occluded or distorted input data. Furthermore, I am also interested in a
fast computation of the results. Thus, a general numerical framework for CRF modeling that
is based on efficient computational schemes is also presented. By addressing these aspects of
the modeling and the numerics of conditional random fields, this thesis provides a common
basis for the design of fast and accurate classification techniques.

To specify my scientific contributions in detail, let me give a short introduction to con-
ditional random fields and to the use of multiple layers in the context of CRF modeling. In
addition, the relevant work that is related to both fields of research will be discussed.

1.2.1 Classification with Conditional Random Fields

Since the prototypical approach of Lafferty et al. [LMP01] in 2001, conditional random fields
are among the best performing and understood probabilistic techniques for classification. All
the underlying probabilistic models in CRF technique could be solved purely by algebraic
manipulation. However, it makes sense to use the advantage of augmenting the analysis
using diagrammatic representations of probability distributions, called probabilistic graphical
models. These give two major benefits:

1. Representation. Probabilistic graphical models provide a simple way to represent the
structure of a probabilistic models and can be used to design and motivate new models.

2. Simplification. Complex computations, required to be performed in sophisticated mod-
els, can be expressed in terms of graphical manipulations, in which underlying mathe-
matical expressions are carried along implicitly.

A graph G = (V,E) comprises nodes V (also called vertexes) connected by links E (also
known as edges). In a probabilistic graphical model, each node vi, i ∈ V represents a random
variable (or group of random variables) and the links express probabilistic relationships be-
tween these variables. A complete graph, which has every pair of distinct nodes connected
by a unique link, can represent any probability distribution. Such a construction reflects the
fact, that all ideas find themselves in equilibrium and referenced physical objects are more or
less related.

Despite universality of complete graphs, they, being computationally intractable, are
hardly applicable to real-world problems. The major simplification to be made here is to
neglect weak relations and corresponding graph edges. Thus, an absence of a link between
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two nodes, will mean that the corresponding random variables, represented by these nodes,
are conditionally independent (Appendix B). Conditional independence properties play an
important role in using probabilistic models for pattern recognition by simplifying both the
structure of a model and the computations needed to perform inference and learning under
that model.

By introducing the conditional independence to the probabilistic model, the corresponding
joint probability can be decomposed (factorized) into a number of less complex factors. The
graph then captures the way in which the joint distribution over all of the random variables
can be decomposed into a product of factors, each depending only on a subset of the variables.
This leads to a graphical concept called clique, which is as a subset of the nodes in a graph,
such that there exists a link between all pairs of nodes in this subset. In other words, the
set of nodes in a clique is a complete sub-graph. Here, probabilistic graphical models give an
insight into the properties of the model, including conditional independence properties, which
can be obtained by inspection of the graph.

According to the CRF technique, the desired class map could be determined as the max-
imizer of a suitable probability distribution, where deviations from model assumptions are
penalized. In general, this probability distribution consists of two terms: a data term that
estimates probabilities of being distinct categories, for each observation, independently on all
other observations; and a smoothness term that regularizes the often non-unique solution of
the data term by an additional smoothness constraint by considering probabilistic relations
between observations. Thus, the smoothness term stands for the assumption that neighboring
observations probably belong to the same category and thus undergo same classes.

How Do Conditional Random Fields Work? Let me demonstrate this rather general strategy
by a concrete example: the classical conditional random fields of Lafferty et al. [LMP01]. This
method is based on the relaxation of two most frequently used assumptions in the classification
literature:

• assumption of conditional independence of the observed data given the labels, commonly
used in the Markov random field (MRF, [Li09]) framework and;

• homogeneous regularization which assumes that the resulting categories map is smooth
everywhere, except the classifying objects’ borders.

In order to formulate these two assumptions mathematically, let us consider a scalar-valued
image y ∈ Y, that consists of n image sites (usually pixels or small segments). Each distinct
image site yi ∈ y, i ∈ V = {1,2, . . . ,n} will be treated as a single observation, where V corre-
sponds to the array of all sites. With each site i one graph node vi is associated; it represents
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a random variable, which takes value l from a given set of classes L = {l1, l2, . . . , lk}.

A probability distribution over variables v can be represented by an undirected graphical
model using a product of non-negative functions of the maximal cliques of graph G. The
factorization is performed in a way that conditionally independent nodes do not appear within
the same factor, that means that they belong to different cliques C ⊂G. Collecting the random
variables vi in a vector v = (v1,v2, . . . ,vn)>, one can write the joint probability formula over
these variables:

p(v) = 1
Z

∏
c∈C

ϕc(vc) (1.1)

Here the factors ϕc ≥ 0 are called potential functions of the random variables vc within a
clique c ∈ C and Z is a normalization constant.

The potential functions may be any arbitrary functions. Due to this generality the poten-
tial functions do not necessarily have to be probability functions. Thus, normalization of the
product of potential functions is necessary to achieve a proper probability measure. This is
yielded by a normalization constant Z, sometimes called the partition function and given by:

Z =
∑

v

∏
c∈C

ϕc(vc) (1.2)

which ensures that the distribution p(v) given by Equation 1.1 is correctly normalized. Calcu-
lating Z is one of the main challenges during parameter learning as summing over all possible
variables is necessary. By considering only potential functions which satisfy ϕc(vc)≥ 0 it is en-
sured that p(v)≥ 0. Thus, CRF are discriminative models that directly model the probability
p(v).

To simplify the model in 1.1, we can restrict ourselves to pairwise graphs – graphs, where
the maximal clique is consisted of maximal two nodes [KH06]:

p(v) = 1
Z

∏
i∈V

ϕi(vi)
∏

(i,j)∈E
ψij(vi,vj). (1.3)

Here ϕi(vi) are the unary potential functions, which return a one-dimensional vector of po-
tentials for the node vi of being each of the classes l ∈ L. Thus the length of the returning
vector is equal to |L|. Terms ψij(vi,vj) are the pairwise potential functions, returning a square
matrix |L|× |L| of potentials for the nodes vi and vj to be at the same time classes l1 and l2.
Thus, the pairwise potential functions model the dependencies between those graph nodes,
which are connected with an edge. Thus, the product of unary potential functions substitutes
the data term of the equation, and the product of the pairwise potentials – the smoothness
term.
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The definition of the unary and pairwise potential functions depends on the underlying
probabilistic models, on the graph structure, and how their parameters could be estimated
during the training phase. All these nuances are described more deeply in Sections 2.3 and 2.4
for unary and pairwise potential functions respectively.

The first main goal in this thesis is to provide a general toolkit for the systematic
construction of conditional random fields methods based on the general probability
distribution in Equation 1.3. In order to achieve it, various established concepts for
the design of both the data and the smoothness term will be discussed. Apart from
investigating existing strategies, several novel ideas that address typical problems in
classification such as noise, over-smoothing and outliers will be also presented.

Inference and Decoding. Finally, determination of the probability distribution p(v) from
Equation 1.3 with help of a set of training data is an inference problem. Its solution provides
|L| probabilities of being each of the classes l ∈ L for each variable vi, i ∈ V. Thus, the joint
distribution p(v) gives the most complete probabilistic description of the model. Inference
typically a very difficult problem, whose solution forms the subject of much of the Chapter 2
of this thesis.

Although p(v) can be a very useful and informative quantity, in the end we are interested
in a categories map ṽ - a sequence of concrete class values for each node. This is the subject
of the decision problem to answer the question how to make an optimal choice of a class l,
for variable vi, given the appropriate probability vector p(vi).

Both inference and decision problems form the decoding problem – finding the most proba-
ble configuration of labels ṽ over the underlying graph. Thus, the decoding problem could be
split into two separate stages: the inference stage, in which the training data is used to learn
a model for p(v), and the subsequent decision stage in which these posterior probabilities are
used to make optimal class assignment. Once the inference problem is solved, the decision
problem may be very simple, even, trivial if to choose ṽ to be the classes with the highest
probabilities, i.e.:

ṽ = argmax
v

p(v). (1.4)

This an intuitively correct decision approach in case, when the aim is to minimize the chance
of assigning vi to a wrong class.

From the other hand one’s objective may be more complex than simply minimizing the
number of misclassifications. Mistakes of classifying different classes may cause different
consequences, thus one might be interested of making fewer mistakes in the classification of
one class in cost of more mistakes of other classes. This issue may be formalized through
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the introduction of a loss function (also called a cost function), which is a single, overall
measure of loss incurred in taking any of the available decisions or actions. The goal then is
to minimize the total loss incurred. Suppose that, the true class for a variable vi is lt and
that it is labeled as a class lq (where q may or may not be equal to t). In so doing, some level
of loss denoted by Lq,t is incurred, which can be viewed as the q, t element of a loss matrix.
At Figure 1.4 a loss matrix is depicted. It is a zero-diagonal quadratic |L|×|L| matrix, where
each non-diagonal value Lq,t > 0.1 Such matrix says that here is no loss incurred if the correct
decision is made, and there is a loss of Lq,t if a class lt was classified as class lq.

L=

true class



as
sig

ne
d
cl
as
s 0 L1,2 · · · L1,k

L2,1 0 · · · L2,k
...

... . . . ...
Lk,1 Lk,2 · · · 0

Fig. 1.4: A loss matrix with elements Lq,t. The rows correspond to the true class, whereas the
columns correspond to the assignment of class made by a decision criterion.

Thus, the optimal solution to the decision problem is the one which minimizes the loss
function. However, the loss function depends on the true class, which is unknown. Neverthe-
less, the expectation of the loss (its average) can be still estimated. Thus the decision rule
that minimizes the expected loss is the one that assigns class l to each new vi for which the
multiplication is a minimum:

ṽ = argmin
v

(L×p(v)) (1.5)

It is possible to show that for the case zero-one loss matrix, (i.e. when all the non-diagonal
values Lq,t = 1, ∀q 6= t), the problem 1.5 is equivalent to the problem 1.4.

Why Conditional Random Fields? Although the basic idea of conditional random fields
has been already explained, it was only briefly motivated so far why exactly this class of
classification techniques has been chosen. This is in particular important with respect to the
fact that there are also numerous other strategies in the literature to solve the underlying
classification problem:

• such as linear models that seek the corresponding class based on the value of a linear
combination of features, which represent an observation [MN89; MP00; CG01; LD05];

1Cases where Lq,t = 0 for q 6= t can be dealt with, but lead to additional technical overhead, which is chosen
to be avoided for the sake of clarity.
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• also non-probabilistic approaches, like decision trees [FM99], support vector machines
(SVM, [CS99]) or neural networks [Bis95], that try to assign an observation to a class
without estimating the probabilities of being this class (further within this work it will
be shown, how these models and approaches could be utilized in the CRF framework);

• and the most related techniques, which are also based on graphical models: Bayesian
networks and Markov random fields that use very strong independence assumptions on
conditioning the random variables upon observations [Jen96; Cow+07; Li09].

All of the mentioned methods, just like conditional random fields, may be employed for a
raster-based classification in many labeling tasks in computer vision and pattern recogni-
tion. Let us now discuss the four main advantages that conditional random fields offer when
compared to the aforementioned classes of classification techniques:

+ Transparent Modeling. CRFs allow for a transparent modeling by construction: All
assumptions on the observations and corresponding random variables are explicitly for-
mulated in the underlying probability distribution. The use of a joint probabilistic
framework allows thereby a mathematical sound integration of all desired assumptions.
Moreover, modeling with help of a graph, gives insights into the fundamental properties
of the model, including conditional independence properties.

+ Processing of Sequential Data. CRFs allow to consider and model dependencies between
different observations and corresponding random variables within a solid probabilistic
model. Graphs, in its turn, provide a simple way to visualize the structure of these
inter-dependencies and can be used to design and motivate new models. This ability
makes CRF the most preferable tool for classifying sequential and structured sets of
inter-dependent observations, like digital images.

+ Discriminative Classifier. In contrast to MRF, in CRF each random variable vi is
conditioned not only upon a single corresponding observation yi, but may also be con-
ditioned upon a set of observations y, i.e. each clique potential function ϕc(vc) is a
mapping from all assignments to both the clique c and the observations y to the non-
negative real numbers. Thus CRF belongs to the class of discriminative classifier, but
capable of integrating strong points of both generative and discriminative classification
approaches.

+ Better Qualitative Performance. As shown in different performance evaluations [RFF06;
Sch12] and in the recent literature on CRFs [LMP01; KH03; SP03; HZC04], CRFs
are those techniques that currently offer the highest precision in terms of error mea-
sures [Faw06].
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These advantages make the superiority of conditional random fields explicit. However, all
known classification techniques by construction are extremely dependent on the observation
data. In those cases when a reliable observation is not available or some ambiguities in its
interpretation exist, most classification algorithms fail to deliver the proper label for this
observation. Such a situation is common e.g. when the classifying object is partially occluded
by another object. Model-based techniques have tried to overcome this problem by treating
such objects as context objects in an ad-hoc manner [HB03], but a systematic statistical
model for dealing with occlusions is still missing.

The same problem arises if the object of interest (e.g. EM) is semi-transparent. Neverthe-
less a good feature makes it easier to assign the appropriate label to the pixel. With respect
to this, features extracted with a Deep Convolutional Neural Network (DCNN) were chosen
to be used in this work because of DCNN’s impressive performance in many computer vi-
sion problems, including classification, segmentation and captioning of images/videos, object
detection and action recognition [Gu+17].

Another problem which is common to probabilistic models of context, used to model
dependencies between random variables at neighboring image sites, is the over-smoothing in
the objects’ boundaries [Sch12]. Although smooth boundaries improve results in most cases
they also introduce an undesirable side effect – smoothed label images compared to local
classifiers. This creates a problem of extracting the fine contours of certain object classes
such as trees and bushes. However CRFs have been shown to produce reliable results, they
often tend to the over-smoothing in areas where the image content changes abruptly and quite
often do not match the actual object contour.

The second main goal in this thesis is to develop a probabilistic framework for
the efficient classification of the occluded image regions with objects’ boundaries
preservation. In order to achieve it my framework will be based on the conditional
random fields technique, since it provides the flexibility of modeling the graph in
such way, that the information from neighboring non-occluded objects will be shared
in order to support the decision on the occluded objects. In particular, the novel
concepts for CRF-based classification as global nodes, multiple layers and mixed
graphs will be presented. This development will be supported with an investigation
on better models for unary and pairwise potentials and features.

Small Dataset Problem. In respect to the task of EM classification, environmental investi-
gations are always operated in outdoor environments, where conditions like temperature and
salinity are changing continuously. Because EMs are very sensitive to these conditions, their
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quantity is easily influenced. So, one faces the small training dataset problem [SGU14], where
it is difficult to collect sufficient EM images for training a DCNN with numerous parameters
to be optimized.

In this thesis the proposed solution for this is inspired by the “pre-training and fine-tuning”
approach that pre-trains a DCNN on a large auxiliary dataset, followed by domain-specific
fine-tuning on a small dataset [Gir+14; Cha+14]. However, DCNNs usually used in this
approach target at extracting image-level or region-level features, and cannot be used for
the pixel-level feature extraction. Hence, a DCNN pre-trained on a large image dataset is
re-purposed by replacing fully connected layers with convolutional layers with upsampled
(dilated) filters [Che+16]. Then, EM images are used to fine-tune this DCNN to produce
dense pixel-level feature maps for an image. Here, each pixel is represented as a feature
vector consisting of values in these maps. It should be noted that the feature implicitly
includes spatial relations between the pixel and surrounding ones, because the field of view
of units in the DCNN are gradually enlarged by passing layers. In order to explicitly handle
spatial characteristics of EMs, on top of such pixel-level features, the two extensions described
below are implemented [Kos+18].

In addition, global features are useful in applications where a rough segmentation of the
object of interest is available. Whereas pixel-level features are extracted in a ‘bottom-up’
fashion that only exploits physical pixel values in an image, the global features are utilized as
a ‘top-down’ prior knowledge about contours, shapes and textures of EMs. Global features
provide such different kinds of information and it is expected that classifiers that use both of
them will outperform classifiers based only on pixel-level features. CRFs offer great flexibility
in modeling dependencies between random variables, providing a principled way to bind
random variables not only for handling spatial relations among pixel-level features, but also
for integrating them with global features [Kos+18].

1.2.2 Multi-Layered Conditional Random Fields

After the main goals of this thesis were clarified, let me indicate how they will be reached.
First, let us concentrate on two main problems of the image classification with conditional
random fields: occlusions and over-smoothing.

Occlusion Problem. Usually classification techniques determine a class label for each pixel
of an image. The problem arises when an object to be classified is partially occluded, i.e. the
observation, corresponding to the occluded object describes an occluding one. For instance,
the appearance of streets, sidewalks and buildings may not be clear for a computer if they are
largely occluded by objects such as cars or trees. In remote sensing images, characterized by
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near-vertical views, this has been known to be a problem for a long time, in particular in the
context of automated road extraction [May+06]. I propose to associate with each observation
several random variables, corresponding to the occluded and occluding objects. Since there
is no prior knowledge weather occlusion took place, the interaction between these variables
will be driven by the ambiguity, arising when interpreting the observation.

In order to integrate this idea into a solid probabilistic framework I take the classical
CRF framework as a base and develop upon it a generalization, which is called multi-layered
conditional random fields (ML-CRF). The CRF technique is chosen to be the base technique
because it allows for a flexible modeling of various inter-dependencies between random vari-
ables, and thus lets information to propagate from non-occluded regions to occluded. Classical
CRFs are based on undirected graphical models and are useful for expressing soft constraints
between random variables, whereas directed graphs are better suited for expressing casual
relationships between random variables. When dealing with occlusions, it is important to
model the graph in such a way, that the information propagates from the ‘non-occluded’
and ‘occluding’ nodes in the direction of the ‘occluded’ nodes and no ambiguity leaves them.
Concerning inference, since at the end there remains a fixed joint probability distribution,
the differences between directed and undirected graphical models are less important.

With respect to the design of conditional random fields both undirected and directed
graph links will be discussed. In the latter case a suitable probabilistic framework,
based on mixed graphs will be also presented. This framework will allow to increase
the classification ratio for images with vast occlusions.

A prior knowledge about the three-dimensional structure of the classifying scene may
greatly simplify the application of the multi-layered CRFs. In the case, when multiple images
of the scene are available, it is possible to apply an optical flow technique to reconstruct a
depth map of the scene [Kos08]. In aerial imagery, in much the same way, multiple overlap
images could be used to derive a digital surface model (DSM). Variational methods are among
the best performing techniques for the dense optical flow estimation, and allow for a real-time
performance [KTS09]. Together with an input image, a corresponding depth map (or a DSM)
might be used for forming the feature vector that, in its turn, is used in the classification.

Over-Smoothing Problem. In order to handle this problem, a number of different strategies
were proposed by me. First of all, to support the classes, which suffer from over-smoothing
the most, additional confidence features were proposed by me [Kos+13b]. These features
are supposed to have a high response on image segments, covered by target objects, and
low response on the rest of image area. Such a response could be generated with help of
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an object detector and a confidence feature may be reconstructed directly from its output.
Within current work, for generating a confidence features, object detectors, which are based
on rotation invariant features and support vector machines were used.

Another two strategies aim the improvement of the unary and pairwise potentials. For
unary potentials, generative Gaussian mixture model (GMM, [Rey09]) and discriminative
K-nearest neighbors (KNN, [Alt92]) are among the most accurate approaches [MB88; MP00].
However, the application of such approaches to the real-world tasks is problematic, due to high
memory and processor time demands of training algorithms. In order to reduce the memory
consumption and to speed up training, a new sequential learning scheme for the GMM is
proposed by me [KRH13]. This scheme is considerably faster than widely used expectation
maximization [DLR77; MK08]. For the KNN a new high-efficient neighbors search algorithm
is proposed. Moreover, I propose to define pairwise potentials on image segments, generated
using unsupervised segmentation algorithms. These potentials enforce label consistency in
image regions and can be seen as a strict generalization of the commonly used for objects’
border preservation pairwise contrast sensitive smoothness potentials.

The last strategy for increasing the classification rate for classes, which suffer from over-
smoothing deals with the loss matrix. Till now many researchers have used only simplistic
loss functions such as the Hamming loss, to enable efficient inference. The higher order loss
functions, [PK12] can be incorporated in the learning process. Such loss functions ensure
that the resulting label map does not deviate much from the ground truth in terms of certain
higher order statistics.

1.3 Related Work

After the main goals of the thesis were clarified and the paths for reaching them were indi-
cated, let us now discuss some relevant work that is related to the most important scientific
contributions: the modeling of the local-global and multi-layer conditional random fields; the
usage of improved techniques, as global, confidence and DCNN features, sequential GMM
learning, efficient KNN classification and concatenated pairwise potentials for the ML-CRF
efficient application.

1.3.1 Modeling of Conditional Random Fields

The modeling of conditional random fields for classification goes back to the prototypical
approach of Lafferty et al. in 2001 [LMP01]. Since then, a lot of different CRF structures
have been proposed by [SM04; FGM05; SGU15; SM07] to improve the performance of such
techniques. Due to the vast amount of literature, concepts for the design of features, unary
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and pairwise potentials are discussed separately. Moreover, only to the most relevant work is
considered. More detailed references are given throughout the Chapter 2, where the design
of conditional random fields is studied.

Features. According to the main scientific contributions to the feature extraction techniques
in this thesis, the following fields of interest in the literature are considered: confidence fea-
tures that use an additional object detector in order to improve the classification accuracy for
particular classes [QCD04; Sch+09; Yan+10] and DCNN features, where deep learning builds
a DCNN representing feature hierarchies with higher-level features formed by the composi-
tion of lower-level ones [NSJ15]. DCNN features are extremely helpful when the objects of
interest are hard to describe with features, commonly used in classification problems: for ex-
ample microscopic organisms, which are semi-transparent and are hardly distinguished even
by humans.

In the task of EM detection and segmentation there are two basic categories of feature
extraction techniques: hand-crafting and feature learning [BCV13]. Hand-crafted features
are manually designed based on prior knowledge and investigation, including shape [NHB03;
Li+13; Ver+15], texture [TIS06; KS09; PWS14], color [Kru+16; KS08; KS10], etc. However,
hand-crafted features are insufficient for representing diverse appearances of EMs, because
all those appearances cannot be assumed in advance. Compared to this, feature learning
aims to extract useful features from a large amount of images. For example, Bag of Visual
Words (BoVW) performs clustering of numerous local features (e.g., SIFT) to find statistically
characteristic ones called visual words [LSG15a]. A deep learning approach is adopted because
of its superior expressive power over BoVW [BCV13; SG16].

• Confidence Features. The idea of utilizing an object detector to support multi-class
classification is not new in the computer vision world: for example, in order to increase
the classification accuracy of specific classes additional motorbike or pedestrian detectors
were used [Sch+09; Yan+10]. However, these models approached object detection and
classification as separate problems. Extracted features were not affected by the object
detectors.

In contrast to these works, in [Kos+13b] the output of a vehicle detector was used di-
rectly to generate the car confidence feature. In its turn, the car detection may also
be integrated in to the classification framework as an intermediate stage, which is also
based on further specific features, like rotational invariant histogram of oriented gradi-
ents (HOG), local binary pattern and Haar-like features [Gra+08]. Another interesting
approach was shown in [KHD11], where new types of features for vehicle detection were
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introduced: color probability maps and pairs of pixel. The latter were used to extract
symmetric properties of image objects. An extensive overview of related work on vehicle
detection can be found in [HBS06].

One original approach for object detection was described in [QCD04], where the objects
were modeled as flexible constellations of parts, conditioned on local observations, found
by an interest operator. Thus, the input image was split into smaller patches and for
each class the probability of a given assignment of patches to local features was modeled.
However, this approach implies that there is always one object of interest in the scene.

• DCNN Features. DCNN is a model that mimics the process of the visual cortex in a
human brain. The effectiveness of features extracted from such a biologically inspired
model has been validated in many works [ST10]. In [NSJ15], deep learning has been
used for EM classification and segmentation tasks. First, a convolutional deep belief
network and an SVM classifier is used to segment possible object regions, then a DCNN
consisting of six layers is applied to predict the class of each possible region. In contrast,
deep learning is adopted to jointly address EM classification and segmentation problems
in a CRF framework. Because of this single integrated framework, my method is more
copositive and effective. Furthermore, in [NSJ15] the authors train the DCNN for the
EM classification task from scratch, so a data augmentation approach is applied to solve
the small dataset problem. In contrast, an existing pre-trained DCNN is transferred to
manage the small dataset problem.

Recently researchers have proposed several DCNN-based image segmentation approaches
that produce dense (high resolution) feature maps and can be extended to the pixel-
level feature extraction [Che+16; BKC15; LSD15]. One approach for obtaining dense
feature maps is to up sample feature maps using a deconvolution layer [LSD15] or using
a decoder based on the down sampling record that represents value locations selected by
a max-pooling layer [BKC15]. However, this requires to learn filter weights used in the
deconvolution or decoder, and causes a significant increase of parameters. Hence, up-
sampling feature maps is not suitable for EM classification involving the small dataset
problem. Thus, another approach that upsamples ‘filters’ by inserting zeros (holes)
between filter weights is adopted [Che+16]. By utilizing these upsampled filters with
the stride of size 1, the resolution of feature maps can be efficiently maintained by
suppressing the increase of parameters.

Unary Potentials. With respect to the design of unary potentials, there are three main fields
of interest in the literature, namely: Features that were described above, generative approaches
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that allow for an accurate mapping of observations to categories by reconstructing the un-
known underlying probability distributions from training data [Fea04; LD05; MK08] and
discriminative approaches that model posterior probabilities directly [FM99; Pla99; LLW07].

• Generative Approaches. Talking about the generative approaches in classification, it
is impossible to avoid the naïve Bayes classifier [LD05]. Bayes model uses very strong
independence assumptions and, therefore, it is among the most simple and understood
methods, but from another hand it is very far from accurate approximation of proba-
bility distributions met in praxis. Nevertheless, it is surprisingly well applicable to a
broad bunch of machine learning problems. It was shown that naïve Bayes inference is
orders of magnitude faster than Bayesian network inference, when using belief propaga-
tion. This makes naïve Bayes models a very attractive approach for general probability
estimation, particularly in large or real-time domains.

In the case when a problem requires higher accuracy, one may consider the Gaussian
mixture models – one of the most accurate methods among generative linear approaches.
Training of GMMmay be performed by maximizing the likelihood function with the help
of some iterative numerical optimization techniques [Fle87; NW06] or by expectation
maximization, which is also due to its iterative nature, relatively slow and requires all
the training data to be held in the memory [MK08]. Another alternative method for
estimation GMM parameters could be the sequential Monte Carlo method, also known
as particle filters (PF, [Fea04]), which are usually used to estimate Bayesian models.
Even though the PFs have sequential nature, they are still based on the simulation
model and, therefore, are very memory demanding.

• Discriminative Approaches. Discriminative algorithms are compared in Table 1.1. Cur-
rently in the literature the most popular classifiers are: Support Vector Machines (SVM),
K-Nearest Neighbors (KNN), Artificial Neural Network (ANN), Random Forest (RF)
and Convolutional Neural Network (CNN). Besides these general classification methods,
many algorithms are specially designed to solve some highly specialized classification
problem. However, it is difficult to represent the spatial relations among local image
regions (pixels) using the classifiers described above. In contrast, CRF is used to explic-
itly model such spatial relations as well as the relations between pixel-level and global
features.

One of the most popular among the discriminative approaches is the support vector ma-
chines. Standard SVM, being a non-probabilistic approach, does not provide calibrated
posterior probabilities, needed to be utilized within the CRF framework. One method
to achieve probabilities from SVM is to directly train a kernel classifier with a logic link
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function and a regularized maximum likelihood score. However, training with a maxi-
mum likelihood score will produce non-sparse kernel machines. Instead, Platt proposed
first to train an SVM, then train the parameters of an additional sigmoid function to
map the SVM outputs into probabilities [Pla99], what gave a comparable quality to the
regularized maximum likelihood kernel method, while retaining the sparseness of the
SVM. More recently Lin et al. proposed an improved algorithm to the Platt’s method,
that converges in theory and avoids numerical difficulties [LLW07].

Another discriminative approach, that needs to be mentioned is the random forest
classifier, which is based on boosting procedures to decision tree algorithms. It became
extremely popular with a generalization of Freund and Llew [FM99], which describes
new rules yielding a natural measure of classification confidence, that can be used to
improve the accuracy at the cost of abstaining from predicting examples that are hard to
classify. Being very accurate, this approach also belongs to the class of non-probabilistic
classifiers and thus, cannot be used within a CRF framework directly. It is described
in Section 2.3.2.3 how to overcome this problem.

Classifier Related work Classifier Related work
KNN [TIS06; Yu+11] RF [Kru+16]
ANN [KS10; AE14] CNN [NSJ15]
SVM [Fil+15; Ver+15] Other methods [Zou+16; Gut+14; PWS14]

Tab. 1.1: Overview of microorganism classification methods grouped by utilized classifiers. Near-
est Neighbor (NN), K-nearest Neighbor (KNN), Artificial Neural Network (ANN), Support Vector
Machine (SVM), Random Forest (RF), Convolutional Neural Network (CNN).

Pairwise Potentials. In the case of the pairwise potentials the literature mainly focuses
on three aspects: The data independent potentials, that require no training procedure and
observed data [Bla+04; Wer+11; CSK13], the contrast sensitive potentials, that still require
no training, but takes in account the similarity between corresponding observations [SM00;
BJ01; FH04; Pra+06; KLT08] and the data dependent potentials, that should be trained in
a similar manner to the unary potentials [BSC08; GZT11; KRH12].

• Data Independent. The most naïve approaches to model pairwise potentials are the
Ising model [Bla+04], suited for binary classification problems and its generalization for
multi-class classification – Potts model [Wer+11]. Both approaches guarantee smooth
label maps, require no training and due to these reasons are very popular in unsupervised
classification, but also find application within CRFs [CSK13].
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• Contrast Sensitive. Contrast sensitive approaches are usually based on Ising or Potts
models, but take the similarity of adjacent observations in account [BJ01]. This allows
to preserve objects’ borders in a label map. As the similarity metric, one can use
e.g. the Euclidean distance between the colors of adjacent pixels [FH04], or between
multidimensional features in a feature space [SM00].

Above mentioned approaches are very sensitive to edges, treating them equally and
ignoring the fact that classifying objects may also contain edges, which do not indicate
the objects’ borders. Prasad et al. made use of small regions around edges in order to
distinguish edges, belonging to the objects’ borders and to the object itself for pruning
the latter [Pra+06]. Such an approach allows to preserve detail in low-variability image
regions while ignoring detail in high-variability regions.

More recently, Kohli et al. proposed a method, which is based on higher order CRFs and
uses potentials defined on image segments, generated by an unsupervised segmentation
algorithm [KLT08]. These potentials enforce label consistency in image regions and can
be seen as a generalization of the commonly used contrast sensitive pairwise potentials.

• Data Dependent. Data dependent pairwise potentials incorporate a trained function,
whose parameters are estimated from the training data. Usually, the first thing to be
estimated is the prior probability of labels co-occurrence at neighboring nodes. One
method for this is to generate a 2D histogram of such co-occurrences [KRH12]. In order
to make the potential also contrast sensitive, the diagonal elements of this histogram
are multiplied by a weight, depending on a similarity metric, which is calculated from
corresponding test observations in a way similar to [SM00].

Alternatively, as an extension of [Pra+06], an algorithm to learn class-specific contrast
sensitive pairwise potentials was presented in [BSC08]. These pairwise potentials are
learned during the learning stage as a function of two feature vectors and the classes
to which the corresponding pair of nodes may belong. This allows to learn specific
sensitivity to contrast, for each object class, to increase the accuracy of its border
preservation. Authors of [GZT11] suggested a generalization of the pairwise potentials
design, which concatenates a pair of classifiers for two nodes and thus, depends on both
label differences and their observed data.

Local-Global CRF. The flexibility of modeling dependencies between random variables in
CRFs gave birth to many classification models, based on CRFs. Particularly, the dense
CRF model in [KK11] can handle a variety of dependencies for all possible pairs of random
variables (pixels). Although the exact probabilistic inference of such a model is infeasible,
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the researchers use a mean field approximation and high-dimensional filtering to make the
inference sublinear in the number of pairwise dependencies. Also, instead of popular l2 norm,
the CRF model in [Son+15] leverages the l1 norm to regularize model parameters, to enhance
the robustness to outliers and the effectiveness for high-dimensional features. Among existing
CRF models, there is one that combines local and global features [Lis+05]. In the local-
global CRF, the former characterizes objects in a bottom-up fashion, while the latter reflects
top-down prior knowledge about their overall characteristics. The usefulness of CRFs for
incorporating local and global random variables within a solid graphical model can scarcely
be overestimated.

Model Control Parameters and Loss Functions. Despite all the advantages of conditional
random fields, they have limited expressive power and often cannot represent the posterior
distribution correctly. While learning such models, which have insufficient expressivity, one
may use loss functions to penalize certain misrepresentations of the solution space. In previous
work on this topic were used simple choices of the loss function, such as the Hamming loss
or squared loss, which lead to tractable learning algorithms [DP97]. However, many real
world applications require more general loss functions, training of which, until recently, was
an intractable problem.

In order to solve this problem, Joachims used an SVM for the loss function optimiza-
tion [Joa05], while Szummer et al. utilized fast inference algorithms to learn control parameters
of random fields with high efficiency [SKH08]. This learning was formulated as minimizing
a loss function on the training set. More recently Pletscher and Kohli incorporated higher-
order loss functions in the learning process and proposed an efficient learning algorithm for
them [PK12]. These loss functions ensure that the maximum posterior(MAP) solution does
not deviate much from the ground truth in terms of certain higher-order statistics. The above
mentioned methods were developed for the binary classification problems only.

The detailed discussion of the preceding seven concepts – three for the unary-, three
for the pairwise potentials and one for the loss functions – forms the basis of the
systematic toolkit for the design of accurate CRF methods in this thesis. Their
combination with novel own ideas will allow the construction of the currently most
precise classification techniques in the literature.

1.3.2 Modeling of Multi-Layer Conditional Random Fields

In contrast to the modeling of conditional random fields approaches that is a fruitful field of
research since decades, only a few works exist in the literature that deal with the occlusions
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in classification and construction of multi-layered approaches for conditional random fields
techniques.

Additional Layers. In the literature exist a few attempts to include multiple layers of class
labels in CRFs. In [KH05] and [Sch+09], multiple layers represent a hierarchical object struc-
ture, i.e. each object on higher level interacts with its smaller parts on lower level. In [WS06],
the part-based model is motivated by the method’s potential to incorporate information about
the relative alignment of object parts and to model long-range interactions. Such a part-based
approach has no universality: it is not applicable e.g. to a class of objects such as roads in
near-vertical views. Roads do not consist of parts having a specific appearance and appearing
in a fixed spatial structure. Besides, the spatial structure of such part-based models is not
rotation-invariant and, thus, requires the availability of a reference direction (the vertical in
images with a horizontal viewing direction), which is not available in remote sensing imagery.
As a consequence, methods relying on such a reference direction are not applicable to this
class of images.

In [LOL09] authors apply CRF to a given DSM data in order to estimate the digital ter-
rain model (DTM), which, in contrast to a DSM, represents the bare ground surface without
any objects like plants and buildings. For this purpose, authors associate each DSM point
with two random variables: one discreet and one continues. These variables form two lay-
ers, representing a binary map, to distinguish ground from non-ground points and continues
elevation of the bare ground surface in the DTM. In [YC07], MRF is also expanded by ad-
ditional layers in the temporal domain, related to the previous and subsequent frames in a
video sequence. The interactions between these temporal layers are designed for the detection
of moving objects.

In [HZC04] the additional two layers are modeled implicitly, such that resulting three
layers correspond to individual classification models, providing information from different
aspects of the image: one for standard local image classification, one for local label patterns
and one for large, coarse label patterns. Since one additional layer focuses on fine resolution
patterns while the second on global structures, the spatial relationships between objects are
taken in account. This model represents the large-scale interactions directly and devotes
resources for modeling the label space, but not the image space. However, in all these papers
the additional layers do not explicitly refer to occlusions, but encode another label structure.
Occlusions are not dealt within these publication.

On the other hand, some layered models were developed for revealing occluded areas
[Yan+12; CLY15; TNL14]: in [Yan+12] the layers of a generative model are associated with
the different outcomes from an object detector; in [CLY15; TNL14] the task of object segmen-
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tation with occlusion handling is solved with help of a compound pipeline of object detectors
and segmentation algorithms.

Occlusions. Previous work on the recognition of partially occluded objects may be separated
into two domains by the applied methods. To the first domain one ascribes depth-driven
methods, and to the second – part-based methods.

To the domain of the depth-driven methods belongs [HG10; KKS13; Nur+16] and [LKF16].
In [HG10] a method to separate semi-transparent objects in X-Ray images is proposed. This
method mostly relies on the disparity maps, estimated from multi-view images. In [KKS13]
and [LKF16] authors present Voxel-CRF and Occlusion-CRF models, respectively and in
[Nur+16] classification is based on SVMs. The data terms of these models are based on the
depth information, encoded in RGB-D images. The depth-driven methods domain is very
categorical and requires special hardware as stereo cameras or laser depth measurement in-
struments. The evaluation of the methods, described in the above-mentioned works is done
only for the indoor scenes. For dynamic outdoor scenes the depth estimation is often inac-
curate or even impossible. Additional depth information may still be useful for the proposed
approach, but it will be shown that it is not a necessity.

Domain of the part-based methods includes [LLS08], where the objects in the scene are
represented as an assembly of parts. The method is robust to the cases where some parts
are occluded and, thus, can predict labels for occluded parts from neighboring unoccluded
sites. However, it can only handle small occlusions, and it does not consider the relations
between the occluded and the occlusion objects. In [GH12], occluded areas are recovered
by fitting geometrical primitives to large background objects using their visible parts, so
the whole classification process is supported with additional frameworks, namely contextual
prediction [TB10], and non-parametric label transfer [LYT11]. It is worth noting that none
of these publications use depth information as an additional cue to deal with occlusions.

Mixed Graphs. In the literature, there are almost no publications incorporating mixed
graphs in the CRF framework. However, the graphical model, used by CRFs can be ex-
tended in a consistent way to graphs that include both directed and undirected links. These
are called chain graphs [LW89; Fry90] or ancestral graphs [RS02], and contain the directed
and undirected edges. Such graphs can represent a broader class of distributions that are
either directed or undirected alone.

In this thesis I will develop suitable multi-layer graphical model for the conditional
random fields methods that will be capable of modeling occlusions explicitly via
layers, corresponding to objects in the scene, depending on their position to the
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observer. In the case when the depth map of the scene is not available, certain
ambiguities arising when relating scene objects to the layers, are resolved via utilizing
the mixed graphs. This representation forms the basis of my general framework
for the construction of efficient multi-layer methods for conditional random fields
techniques.

1.4 Organization and Contributions

This thesis makes a significant scientific contribution to the theory of conditional random
fields and illustrates how these may motivate new probabilistic models. Different parts
of the work presented in this thesis have been published at conferences [Kos08; Kos+09;
KTS09; KTS10; KTS11; Kos+12; KRH12; Kos+13a; KRH13; Kos+13b] or journals [Kos+18;
KSG18b; Bra+14]. The presented algorithms have been implemented in the direct graphical
models (DGM) C++ library [Kos15] and some of them were also contributed to the OpenCV
library [BK08]. With respect to a better readability the main scientific contributions are
split into two chapters – one chapter on standard conditional random fields and one on the
multi-layer model for its application to occlusion problems.

Conditional Random Fields

In Chapter 2, a brief overview of pairwise graphical models is given. The building blocks of
such models are unary and pairwise potential functions. These functions are trained and oper-
ate, using real-world data, represented via extracted features. The problem of over-smoothing
the classes, especially those which represent a relative small amount of pixels in an image are
considered by studying a special DCNN and confidence features. The DCNN features are
achieved using deep learning techniques and the confidence feature is reconstructed directly
from the output of an object detector.

Further, the classical and well-established probabilistic models like Bayes [LD05], Gaussian
Mixture [Rey09], Random Forest [Bre01], K-Nearest Neighbors [Alt92], etc. are considered
for unary potentials. In order to reduce the memory consumption and to speed up training, a
new sequential learning scheme of the parameters of Gaussian mixture models was proposed
by me [KRH13]. This sequential scheme is proved to be considerably faster than expectation
maximization. In addition a new efficient implementation of the K-Nearest Neighbors algo-
rithm, which significantly speeds up the classification was also proposed. For the pairwise
potentials, based on contrast-sensitive Potts model and histogram matrices [KRH12], a new
data-dependent approach was developed. This approach is constructed by concatenation of
two classifiers similar to those, which are used for unary potentials.
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The methods for inference (Section 2.5) and random model training (Section 2.6) lie
also in focus of this chapter. In scope of these methods the possibility of loss functions
training is investigated. Finally, the Chapter is concluded with the experiments section,
where extensive experimental evaluation with various synthetic and real-world scenarios was
performed in order to investigate the advantages and shortcomings of the proposed prototypes.
These experiments will accompany the reader through the detailed discussion and visualize
the impact of all concepts on the overall result in both a quantitative and a qualitative
ways. Thereby in particular the novel approaches yield excellent results. In particular the
challenging task of EM classification is considered, where a full-automatic EM classification
system is proposed. This system incorporates pixel-level features and auxiliary global features
into a CRF framework.

In order to handle the small dataset problem one of the most successful DCNNs, called
VGG-16 [SZ14] was re-purposed by training on 1.3×106 images in ImageNet dataset [Den+09],
and fine-tuning using EM images (see Figure 1.5) [Kos+18]. For an image, feature maps out-
put by the second last layer of the re-purposed VGG-16 are used to generate pixel-level
features. Then extracted features together with the ground truth data are used to train
unary classifiers by analyzing pixel-level and global features in training images. The trained
unary classifiers are used as the unary potentials by the CRF model. Finally, together with
the pairwise potentials, the CRF model is applied to localize and label into the classes the
objects of interest in the test EM images. The proposed framework significantly improves the
classification rate by combining global and pixel-level features.

The following list sums up all scientific contributions from Chapter 2:

• The study of application new types of features to the classification with CRFs (Sec-
tion 2.2): 1. Global features; 2. DCNN features; 3. confidence features.

• The development of new highly-efficient and accurate algorithms for unary and pairwise
CRF potentials: 1. sequential GMM algorithm (Section 2.3.1.3); 2. efficient KNN
algorithm (Section 2.3.2.1); 3. data-dependent interaction models for pairwise potentials
(Section 2.4.2).

• The introduction of the local-global CRF framework and demonstrating it on the chal-
lenging problem of EM classification. (Section 2.1.4).

Multi-Layer Conditional Random Fields

In Chapter 3 in order to increase the classification performance in the occluded areas, my
framework of Chapter 2 is exploited and a multi-layer approach of constructing conditional
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Fig. 1.5: An overview of the proposed CRF-based EM classification and segmentation framework.
As an unary classifier the Random Forest (RF) is shown.

random fields is presented. The chapter starts with a description of my occlusion model.
After that, in Section 3.5, as a transitional step, the two-layer conditional random field is
introduced. Two-layer CRF explicitly models two class labels for each image site: one for the
occluded object and one for the occluding one. The relations between the two class labels per
site and the mutual dependencies between class labels at neighboring sites in each of the two
layers are explicitly modeled. Thus, the information from neighboring unoccluded objects
as well as information from the occluding layer will contribute to an improved labeling of
occluded objects.

Two layers are sufficient for many applications, nevertheless, this approach is generalized
to an n-layer model in Section 3.3. In order to make my multi-layer model self-consistent, I
resort to the help of mixed graphs, so that the interactions between layers are modeled with
the help of directed links. My model does not need additional foreground object detectors
to separate the foreground from the background level. The information from neighboring
unoccluded objects as well as from the occluding layer will contribute to an improved labeling
of occluded objects, t least under the assumption that occluded objects show some spatial
continuity. Classification might also be supported by depth information obtained from image
matching.

The proposed methods are demonstrated on the task of labeling urban scenes (street-view
as well as vertical-view images). Not surprisingly, this theoretically sound modeling leads
to excellent qualitative results. Various quantitative and qualitative experiments show that
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the proposed multi-layer approach does not only outperform classical one-layer conditional
random fields from Chapter 2 in most cases, it currently even produces the most accurate
label maps in the literature, particularly for the occluded areas.

The two main scientific contributions of Chapter 3 are:

• The introduction of multi-layer graphical models, based on mixed graphs and capable
to label unobserved data (Section 3.3).

• The introduction of the two-layer CRF framework as a common case of the multi-layer
CRF, but based on the classical undirected graphical models (Section 3.5).





2 Conditional Random Fields

“The theory of probability as a mathematical discipline can and should be
developed from axioms in exactly the same way as geometry and algebra.”

- Andrey Nikolaevich Kolmogorov

This chapter discusses the modeling of conditional random fields, using graphical mod-
els. As indicated in the introduction, such methods are very useful for estimating posterior
distribution over the labellings because of its flexibility in modeling dependencies between
the labels and the image data. These dependencies are commonly described by potential
functions, which form a joint probability function. We compute the desired label map as a
maximizer of this probability function.

The potential functions, in general, may consider any number of nodes included in a
clique, but in this thesis for the sake of simplicity only the cliques with maximal two nodes
are considered. This results in only two types of potentials: unary potentials, which describe
dependency of a label on image features, without considering other labels; and pairwise
potentials, which describe the relationship between labels with considering corresponding to
these labels image features. Thus, unary potentials substitute the data-term of the joint
probability function and the pairwise potentials - the smoothness term.

In the first part of this chapter the design of data and smoothness terms for this partic-
ular family of random fields are investigated. Starting from the general formulation of the
probabilistic graphical models in Section 2.1 I describe and analyze in detail data features in
Section 2.2, unary potentials in Section 2.3 and pairwise potentials in Section 2.4. I believe
that the features, describing the observed data, play a crucial role for a successful application
of the unary potentials. Thus criteria for feature importance are investigated. By discussing
the unary potentials, I address in particular the meaning of graph nodes and show how these
potential functions can be modified in such a way that they become faster in training and
more accurate. In this context, different concepts such as generative and discriminative classi-
fication are discussed. Application of pairwise potentials is the key idea of conditional random
fields, so I start from naïve Potts model for pairwise potentials, which requires no training
procedure and is independent from observations. Then I exploit pairwise potentials to be
first contrast sensitive and finally also trained on the train data. Thereby in particular the
meaning of graph edges is addressed.

29
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The scientific contributions to the field of conditional random fields all belong to the first
part of this chapter and they are:

• Global features which support state-of-the-art local features when a rough segmentation
of the object of interest is available;

• DCNN features extracted using deep learning techniques and extremely helpful when
the objects of interest is hard to describe with state-of-the-art features;

• Confidence features generated with the help of an object detector and useful for pre-
serving small-classes from over-smoothing effect of CRFs;

• Sequential algorithm for Gaussian mixture learning. Being a powerful tool, Gaussian
mixture model is very inconvenient for a real-world application because of its training
complexity, which takes a lot of computational efforts. Here, a novel sequential algo-
rithm for training Gaussian mixture model, which allows fast and accurate estimation
of the its parameters is proposed;

• Efficient algorithm for K-Nearest Neighbors implementation. Being extremely simple
and accurate, the KNN model is also very inconvenient for a real-world application
because the time required for the nearest neighbor search increases exponentially with
the number of dimensions in the feature space. In this thesis a more efficient search
algorithm based on binary trees is proposed;

• Concatenated pairwise potentials are general data-dependent interaction models that
can use unary potential functions as underlying models;

• Local-global CRFs which can combine state-of-the-art local features with global features
in a solid classification framework which is proposed in this thesis. Thus local-global
CRFs may benefit from additional top-down prior knowledge about objects overall char-
acteristics.

In the second part of this chapter inference (decoding) and parameter estimation for the
built probabilistic model are described. Inference, i.e. computing exact posterior distribution
of the labels is computationally intractable, so approximate methods ought to be applied. In
Section 2.5 approximate inference methods, which are capable of computing both marginal
and posterior probabilities are described. All the considered methods belong to the family
of the message passing algorithms, which are possible to apply to graphs with cycles. Fur-
thermore it is described how to assign proper class labels from the estimated probabilities of
all observations being particular classes. This leads to the consideration of the decision the-
ory, which describes how to minimize the number of wrong labels, considering the posterior
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distribution of the labels. The use of a loss function may increase the classification accuracy
for particular classes at the price of decreasing the classification accuracy for the rest of the
classes.

The influence of data and smoothness terms on the energy functional is regularized by
model parameters. Learning the parameters is usually done by maximum likelihood learning.
It is possible to show that under certain circumstances this optimization is convex [SM12].
This in turn means, that only one (unique) solution exists which can be found by any globally
convergent algorithm. Moreover, well-posed results can be established that show the contin-
uous dependency of the solution on both the input data and the model parameters. To this
end, in Section 2.6, the model control parameter estimation techniques, which are an impor-
tant part of the whole conditional random fields approach were used. It is shown in detail
how the different parameter estimation techniques can be derived and applied. Moreover, it
is discussed how the weighted information of unary and pairwise potentials can be used to
improve the quality of labeling with the conditional random fields.

The chapter is concluded with the evaluation part in Section 2.7, where the performance of
the described state-of-the-art and novel approaches are compared. Recommendations, which
are the most suited cases for different approaches to be applied are also made.

2.1 Graphical Models

In this section, we shall focus on the key aspects of graphical models as needed for applications
in pattern recognition and machine learning. More general treatment of graphical models can
be found in the books of [Lau96; Jen96; CGH97; Jor99; Cow+07; Whi09].

The underlying probability distributions of probabilistic models for sake of simplicity
and flexibility of modeling are usually represented in a graphical form, this is why they are
often called probabilistic graphical models. A probabilistic graphical model is a diagrammatic
representation of a probability distribution. In such a graph there is a node for each random
variable and relations between these variables are represented via graph links.

Representation of probability distributions as a complete graph, i.e. when each node is
linked with all other nodes, is applicable to any choice of distribution. However, it is the
absence of links in the graph that conveys interesting information about the properties of the
class of distributions that the graph represents. The absence of an edge between two nodes
represents conditional independence between corresponding variables (refer to Appendix B.2).
From such graphs, one can read the conditional independence properties of the underlying
distribution. Thus a fully connected graph does not contain any information about the
probability distribution, only the absence of edges is informative.
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Conditional independence is an important concept as it can be used to decompose complex
probability distributions into a product of factors, each consisting of the subset of correspond-
ing random variables. This concept makes complex computations (which are for example
necessary for learning or inference) much more efficient.

In Section 1.2.1 we have defined a graph G = (V,E) as the structure, build upon nodes V,
which represent random variables and edges E , that defines relations between them. In the
sequel, we will distinguish two types of nodes: first, corresponding to the observed variables
y ∈ Y ⊂ V, that stay for input observations, and second – to the latent variables x ∈ X ⊂ V,
that stay for output class variables; arrays X and Y are non-intersecting. Hence observed
and latent variables are also often called data and class random variables, respectively. Also
a graph can have directed or undirected edges, depending on the kind of graphical model it
represents. At graphical representations (e.g. the one shown in Figure 2.1), we will sketch
observed and latent variables via blue squares and red circles correspondingly, while directed
edges will be sketched via arrows, pointing to the independent variables. When the difference
between x and y is not important, we will reference both types of variables through v.

x

y1 y2

Fig. 2.1: Example directed graphical model, comprising three random variables.

In order to illustrate how the graphical models are bind to the probability distributions,
let us consider a model, which is common in data fusion domain and which represents the
distribution p(x,y1,y2). Figure 2.1 shows one possible factorization of this distribution as
p(x,y1,y2) = p(x |y1,y2) ·p(y1) ·p(y2). Here, y1 and y2 are conditionally independent given x1,
so we can write p(x,y1,y2) = p(y1 |x) ·p(y2 |x) ·p(x). Thus, the distribution has the following
factors: p(y1 |x) ∝ ϕ(y1) ·ψ(y1,x), p(y2 |x) ∝ ϕ(y2) ·ψ(y2,x), and p(x) ∝ ϕ(x). Please note,
that this factorization is identical to the factorization of the same undirected graph structure
(Appendix B.5), the difference play role only for inference.

Let us now briefly discuss some nuances of utilizing two major classes of graphical models,
namely directed and undirected graphical models. The application of mixed graphs will be
discussed later in Section 3.2.

1Because of the absence of an edge between variables y1 and y2.
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2.1.1 Directed Graphical Models | Bayesian Networks

A joint distribution p(v) can be factorized into the product of conditional distributions for
each node vi, so that each such conditional distribution is conditioned on its set of parent
nodes vpi :

p(v) =
∏
i∈V

p(vi |vpi ) (2.1)

This is the same kind of factorization as shown in Figure 2.1 for the example distribution
p(x,y1,y2), where node x acts as the parent node for y1, y2.

This key equation expresses the factorization properties of the joint distribution for a
directed graphical model. It is easy to show that the representation on the right-hand side of
Equation 2.1 is always correctly normalized provided the individual conditional distributions
are normalized. However this family of graphical models has an important restriction – it
should not contain any directed cycles, i.e. there is no such way that we can move from node
to node along links following the direction of the arrows and end up back at the starting node.
Such graphs are also called directed acyclic graphs (DAGs).

2.1.2 Undirected Graphical Models | Markov Random Fields

In directed graphical models a factorization of the joint distribution over a set of variables into
a product of local conditional distributions was specified and a set of conditional independence
properties was defined. In contrast to them, in undirected graphical models, factorization of
a probability distribution is defined as the product of its factors ϕc, with vc – the subset of
the respective random variables constituting such a factor (Equation 1.1):

p(v) = 1
Z

∏
c∈C

ϕc(vc)

where Z is a normalization constant, which id defined by Equation 1.2.

In contrast to directed graphs where the joint distribution is factorized into a product
of conditional distributions, in undirected graphs factors ϕc do not necessarily have to be
probability functions. This generalization causes one important consequence – the explicit
introduction of the partition function Z, which presence is the major limitation of undirected
graphs. If we have model with n nodes and |L| classes, then the evaluation of the partition
function involves summing over n|L| states so is exponential in the size of the model. The par-
tition function is needed for parameter learning, however we can work with the unnormalized
joint distribution and then normalize the marginals explicitly at the end of decision process.



34 Conditional Random Fields

It is possible to generalize this construction, so that we can convert any distribution spec-
ified by a factorization over a directed graph into one specified by the factorization over an
undirected graph. This can be achieved if the clique potentials of the undirected graph given
by the conditional distributions of the directed graph [Bis06].

2.1.3 Conditional Random Fields

We have already discussed some well-known probabilistic models from a mathematical per-
spective. Moreover, we have shown the graphical representation, which characterizes the
underlying probability distribution of these models. In the following, the idea and theoretical
foundation of conditional random fields is illustrated. First, a general formulation of random
fields is given followed by an in-depth discussion of the conditional random fields. A main
focus is aspects of modeling.

We address the general problem of learning a mapping from input observations y ∈ Y to
discrete response variables x ∈ X, based on a training sample of input-output pairs (x1,y1),
. . . , (xn,yn) ∈ X×Y drawn from some fixed but unknown probability distribution. As we
address image classification, let us assume an image y to consist of n image sites (pixels or
segments) i ∈ V = {1,2, . . . ,n} with observed data yi, i.e., y = (y1,y2, . . . ,yn)>, where V is the
array of all sites, corresponding to the nodes of an associated graph G = (V,E), whose edges E
model interactions between adjacent sites. With each site i we associate also a discrete class
variable xi ∈ X which takes values from a given set of classes L = {l1, l2, . . . , lk}. 2

According to [LMP01] conditional random fields are probabilistic models for computing
the posterior probability p(x |y) of a possible output x = (x1, . . . ,xn)> ∈ Xn given the input
y = (y1, . . . ,yn)> ∈ Yn. A CRF in general can be derived from Bayes Law and Equation 1.1,
so the conditional probability p(x |y) can be written as

p(x |y) = p(x,y)
p(y)

= p(x,y)∑
x′ p(x′,y) (2.2)

=
1
Z′
∏
c∈Cϕc(xc; y)

1
Z′
∑

x′
∏
c∈Cϕc(x′c; y)

Again ϕc are the different potential functions, which correspond to maximal cliques in the

2Please note that we use the same symbols for designating both graph nodes yi ∈ Y ⊂ V and random
variables yi ∈ Y; i ∈ V. We do this intentionally in order to accentuate the interconnection between these two
concepts. However, one should be aware that a graph node yi is usually associated with a site i, what does
not lead to yi ≡ i.
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graph (see [KFL06]). From this, the general model formulation of CRFs is derived:

p(x |y) = 1
Z

∏
c∈C

ϕc(xc; y) (2.3)

The normalization follows from the denominator of equation 2.2

Z =
∑

x

∏
c∈C

ϕc(xc; y) (2.4)

Restricting ourselves to pairwise interactions, we can rewrite the Equation 2.3 in the
following form:

p(x |y) = 1
Z

∏
i∈Y

ϕi(xi; y)
∏

(i,j)∈E
ψij(xi,xj ; y). (2.5)

In Equation 2.5 unary potentials ϕi(xi; y) associate the observations with the label vari-
ables at site i, and thus are often called association potentials; pairwise potentials ψij(xi,xj ; y)
model the interaction of the label variables at two adjacent sites i and j and the data y, and
thus are also called interaction potentials; and Z is the partition function, given by Equa-
tion 2.4.

Finally, we can formulate the problem of image classification as finding the label con-
figuration x̃ that maximizes the posterior probability of the labels given the observations
p(x |y):

x̃ = argmax
x

p(x |y). (2.6)

Applications of the CRF model differ in the way they define the graph structure and in
the models used for the potential functions. The main aim of such models is to emulate the
probabilistic dependencies between observations and classes. Usually, each of the models has
a certain set of parameters, estimated from fully labeled training images during the training
phase. As soon as the parameters of a model are estimated, we call the potential function
to be trained. We discuss various approaches for modeling and training unary and pairwise
potentials in Sections 2.3 and 2.4 correspondingly.

In many practical applications, CRFs have lack of expressivity and a groundtruth label
map may not be the solution of the Equation 2.6. In order to handle this problem and get
more control over the classification process with CRFs, we may introduce additional control
parameters θ to the model 2.5:

p(x |y,θ) = 1
Z

∏
i∈Y
〈ϕi(xi; y),θϕ〉

∏
(i,j)∈E

〈ψij(xi,xj ; y),θψ〉 . (2.7)

Here, we gathered parameters, related to the data and smoothness terms separately in vectors
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θϕ and θψ, correspondingly.
In contrast to the internal parameters of the potential functions, parameters θ are es-

timated separately, after the potentials are trained. This results in an additional second
training phase. We discuss parameter θ estimation in detail in Section 2.6.

2.1.4 Local-Global CRFs

In order to incorporate the global features to our model, we add one more extra graph node,
initialized with the potentials, trained on the global features [Kos+18]. This ‘global’ node
is connected with all other ‘local’ nodes via graph edges, initialized with the interaction
potentials, represented by a data-independent model (see Section 2.4.1). We describe the
global features in more detail in Section 2.2.1. We can rewrite Equation 2.5 in form:

p(x |y) = 1
Z
ϕg(xg; y)

∏
i∈Y

ϕi(xi; y)ψ(xg,xi)
∏

(i,j)∈E
ψij(xi,xj ; y). (2.8)

The structure of our graphical model is depicted in Figure 2.2. The first unary potential
ϕg(xg; y) in Equation 2.8 corresponds to the global node xg (shown with magenta color in
Figure 2.2) and provides the CRF model with a single prediction about the object depicted
at the image y. The second term ϕi(xi; y) corresponds to the ‘local’ nodes xi (red nodes in
Figure 2.2), providing per-pixel predictions for every image site i ∈ Y. This term corresponds
to the unary potentials in Equation 2.5. The pairwise potentials ψ(xg,xi) correspond to
connections between the global node xg and all local nodes xi, thus every two local nodes
xi and xj are also bound through the global node xg: xi↔ xg ↔ xj , ∀i, j ∈ Y. Finally, the
last term ψij(xi,xj ; y) corresponds to the pairwise potentials in Equation 2.5. The partition
function Z in Equation 2.8 is represented in the similar way to Equation 2.4.

2.2 Features

For the practical application, the original input data is preprocessed to transform it into some
new space of descriptors (features) where, it is hoped, the classification problem will be easier
to solve. The main idea of this preprocessing is to reduce the variability of input data for each
class, and thus to make it much easier for a subsequent classification algorithm to distinguish
between the different classes. This preprocessing stage is also called feature extraction. Note
that new test data must be preprocessed using the same steps as the training data.

The second goal of performing feature extraction is to speed up computation. For example,
if the goal is a real-time face detection in a high-resolution video stream, the computer
must handle huge numbers of pixels per second, and presenting these directly to a complex
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Fig. 2.2: The structure of our graphical model. Blue, red and the magenta nodes correspond to the
observation yi ∈ y, the labels xi ∈ x and the global node xg, respectively. Each label xi is connected
with the corresponding observation yi (unary potentials); and also with four nearest neighbors and
with the global node xg (pairwise potentials). Please note that the global node xg is also connected
with every observation, building the whole image y.

classification algorithm may be computationally infeasible. Instead, the aim is to find useful
features that are fast to compute, and yet that also preserve useful discriminatory information
enabling faces to be distinguished from non-faces [Kos+09]. These features are then used as
the input to the classification algorithm. For instance, the average value of the image intensity
over a rectangular sub-region can be evaluated extremely efficiently [VJ04], and a set of such
features can rove very effective in fast face detection. Care must be taken during feature
extraction because often information is discarded, and if this information is important to the
solution of the problem then the overall accuracy of the system can suffer.

Most algorithms describe an individual observation, which category is to be predicted
with a feature vector of distinct, measurable properties of the observation. Each property is
termed a feature, also known in statistics as an explanatory variable (or independent variable,
although in general different features may or may not be statistically independent). Features
may variously be binary (e.g. weather a patient has headache or not); categorical (e.g.”A”,
”B”, ”AB” or ”O”, for blood type); integer (e.g. the number of leucocytes in a blood test);
or floating point (e.g. a measurement of body temperature).

In our case, when observations are the image sites, the feature values might correspond
to the channels of a site, variance of pixel values, etc. We derive a feature vector f i(y) =
(fi1,fi,2, . . . ,fim)> for each image site i that consists of m features, derived from the original
data y, where fij ≡ fij(y). In order to express the feature dependency on the whole data, but
not only on a corresponding data site, we make use of multi-scale features, thus the derivation
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of each feature implies contributes from more data sites (see Figure 2.3). Within this thesis,
we consider two types of observations: local (y) - a single pixel and global (y)- the whole image
in toto. The excessive description of the local features derived from the datasets, used in this
thesis, is given in Appendix D.3 and the description of the global features – in Section 2.2.1.

The vector space associated with these vectors is often called the feature space. In or-
der to reduce the dimensionality of the feature space, a number of dimensionality reduction
techniques can be employed.

x2 x3

f2(y) f3(y)

y1 y2 y3 y4

Fig. 2.3: Usage of the multi-scale features for two latent variables, where each corresponding feature
vector depends from three neighboring image sites. The second dimension and additional links between
data and labels are omitted for simplicity.

2.2.1 Global Features

Many object recognition systems make use of the global features that represent an entire image
with a single point in a high-dimensional feature space. Such a representation is sensitive to
clutter and occlusion, but for the tasks as EM classification where the most of scenes contains a
single microorganism, and only in a few scenes several microorganism or particles are present.

We use 7 global features: three shape-driven features perimeter, area and compactness
(perimeter squared over area); two Hough-transform-driven features number of lines and num-
ber of circles; and also we make use of variance and opacity [Kos+18]. In order to extract the
shape-driven features we first separate an object of interest from the background by applying
a simple global bimodal segmentation. We use expectation maximization to fit a mixture
of two Gaussian functions to the histogram of gray values for a given image [DLR77]. The
Bayesian decision boundary defines the cut point between the foreground and background.
After that, morphological hole filling [Soi03] is used to capture the stray bright pixels inside
the object. Next, we apply a Hough transform [DH72] to detect lines and circles in the origi-
nal images and use the number of corresponding detections as two more features. Finally, we
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calculate the variance of image gray-values, and object opacity that is evaluated as

1
m

m∑
i=1

(1−Ei) · |µ−yi|, (2.9)

where Ei is the normalized Euclidean distance between a spacial position of pixel yi and the
image center and µ is the image mean value.

Finally we describe the global observation with one feature vector f g(y) consisting of seven
global features described above. Thus we can rewrite the unary potential corresponding to
the global node xg in Equation 2.8 as:

ϕg(xg; y)≡ ϕg(xg; f g(y)). (2.10)

2.2.2 DCNN Features

Figure 2.4 illustrates an overview of our DCNN features extractor [Kos+18] that is an exten-
sion of the DCNN-based image segmentation approach, calledDeepLab, introduced in [Che+16].
First, a pre-trained DCNN VGG-16 for image classification is adapted to a segmentation
model DeepLab-VGG-16 by re-using/modifying the bottom and middle layers, as depicted
by the dashed arrows in Figure 2.4. In addition, three fully connected layers at the top of
VGG-16 are replaced with one average-pooling, three convolution and one (bilinear) inter-
polation layers. The right side of Figure 2.4 provides a more detailed view of these three
convolution layers. While the bottom one computes region-wise convolution in 512 feature
maps obtained at the average-pooling layer, the other two layers perform 1× 1 pixel-wise
convolution to enhance the non-linearity of pixel classification. Finally, letting k ≡ |L| be the
number of classes assigned to pixels, k feature maps at the top convolution layer are resized
to the original image size using the interpolation layer. These resized feature maps represent
a dense segmentation result where every pixel is associated with k scores, expressing how
likely the pixel belongs to each class. We consider that, rather than pixel-wise convolution
at the top layer, a better segmentation could be accomplished if 1024 feature maps at the
penultimate layer would be resized to the original image size and used as pixel-level features
for a more sophisticated classifier (e.g., CRF), as shown in the rightmost part of Figure 2.4.
This feature extraction is detailed below.

VGG-16 is a DCNN consisting of 16 weight layers (i.e., convolution and fully connected
layers) [SZ14]. While a depth is one very important factor for accurate recognition, a deep
architecture involves a huge number of parameters, and its appropriate optimization is difficult
even using large-scale training data. Compared to this, VGG-16 adopts a very small field of
view (3×3) for each convolution filter (see Figure 2.4), so that its deep architecture contains



40 Conditional Random Fields

Fig. 2.4: An overview of our pixel-level feature extraction where the pre-trained VGG-16 is re-
purposed to DeepLab-VGG-16, and feature maps at the penultimate convolution layer are drawn out
as pixel-level features. ‘Conv.’ indicates a convolution layer where the number in brackets represents
the size of the filter. If one more number is included, it represents the rate parameter for atrous
convolution. The number in brackets of ‘Max pool’ or ‘Avr. pool’ presents the stride size, and the
number in brackets of of ‘Interp’ denotes a zoom factor for bilinear interpolation.

a much smaller number of parameters. This property of VGG-16 is suitable for the small
training dataset problem in EM classification. Actually VGG-16 trained on 1.3 million images
in ImageNet dataset [Den+09] demonstrated excellent performances in many tasks [SZ14;
Che+16; LSD15; Mat+16].

VGG-16 is re-purposed to DeepLab-VGG-16 that aims to effectively maintain the spatial
resolution of feature maps. In VGG-16, five max-pooling layers with stride 2 reduce the
resolution of feature maps by a factor of 32 compared to the original image (see Figure 2.4),
so a lot of detailed information is lost. To take a good trade-off between the accuracy and
efficiency, in DeepLab-VGG-16, the stride of the top two max-pooling layers is set to 1,
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and feature maps with one-eighth of the original resolution are processed. In addition, the
following atrous convolution is utilized to efficiently widen the field of view of a convolution
filter:

fl(x,y) =
k∑

i=−k

k∑
j=−k

fl−1(x+ r · i, y+ r · j) w(i, j). (2.11)

For simplicity, we assume that the lth and (l−1)th layers have single feature maps fl and fl−1,
respectively (it is straightforward to extend this to multiple feature maps). In Equation 2.11, a
convolution filter of size (2k+1)2 is represented by w(i, j). But, based on the ‘rate’ parameter
r, the convolution is done for every r values in fl−1 as depicted by the set of small dots in the
right side of Figure 2.4. In other words, the filter is dilated by introducing zeros (i.e., holes)
for values in fl−1 that are excluded from the convolution. This way, the field of view of the
convolution filter is enlarged without requiring any extra parameters.

We train DeepLab-VGG-16 using 200 training EM images containing k = 21 classes (refer
to Appendix D). Then, each EM image is fed into the trained DeepLab-VGG-16, and 1024
feature maps at the penultimate convolution layer are extracted and bilinearly interpolated
to the original image size. As a result, each pixel is now represented by a 1024-dimensional
feature vector. Figure 2.5 visualizes pixel-level features extracted for three example images
in a very simple way, where each pixel is characterized by the index of the dimension having
the highest value among 1024 dimensions. Such indexes are then scaled and visualized as
an image. As can be seen from Figure 2.5, even with this simple visualization, the region
of each EM is outlined, which implies the effectiveness of extracted pixel-level features. It
is worth noting that we tested to train DeepLab-VGG-16 using natural images in PASCAL
VOC 2012 dataset [Eve+15], but pixel-level features extracted from it were not so useful. It is
considered that a general-purpose feature extractor trained on natural images is not suitable
for a special type of EM images. Finally, it could be possible to extract further useful features
by re-purposing a more advanced DCNN than VGG-16 like ResNet [He+16]. We leave this
as a future work because its re-purposing needs much RAM and cannot be performed on our
current GPUs.

Fig. 2.5: Simple visualization of pixel-level features for three example images.
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2.2.3 Confidence Features

As we stated before, the problem of over-smoothing, which is common to the CRF techniques,
may considerably affect the resulting label map. In some cases in may even lead to complete
vanishing of classes, represented by small objects, like cars in aerial imagery. As a countermea-
sure we introduce confidence features to support the data term of our CRF model [Kos+13b].
These features are supposed to have a high response on image segments, covered by target
objects, and low response on the rest of the image area. We generate such response with help
of an object detector, what leads to incorporating a part-based models.

Within this thesis we demonstrate the advantage of incorporating the confidence features
on example of the class car at airborne images. Our car detector makes use of the histogram of
oriented gradients features, which can be efficiently calculated with help of integral histograms
[Por05]. Training and classification is performed using nonlinear SVMs with radial basis
functions as kernel. The kernel parameter and error weight of slack variables are estimated
on the training data. The membership of each pixel i to target object class given its feature
vector f i(y), is calculated by:

δ(f i(y)) = sign
(
w>η(f i(y)) +d

)
(2.12)

where w is the normal vector and d the vertical distance to feature space origin of the separat-
ing hyperplane in the transformed feature space. Transformation of feature vectors is given
by the transform function η(f i(y)). As we cab see from Equation 2.12 the function δ(f i(y))
gives only a binary decision and, in order to transform it into a probability distribution over
classes, we apply Platt scaling (refer to Section 2.3.2.2 for more details).

2.3 Association Potentials

The association potential functions ϕi(xi; y) from Equation 2.5 are related to the probability
of a random variables xi taking a label l ∈ L given the data y by [KH06]3:

ϕi(xi; y)∝ p(xi = l | f i(y)), (2.13)

where the image data are represented by site-wise feature vectors f i(y) that may depend on
all the observed data y. Both the definition of the features and the dimension of the feature
vectors f i(y) may vary with the dataset.

3A∝B indicates that A is proportional to B, i.e. equal till some constant factor.
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2.3.1 Generative Approaches

In practical applications, the most complex approaches to solving decision problems are gen-
erative approaches. The core idea, underlying these approaches is to estimate (or generate)
i.e. using the training data, the class-conditional densities p(f(y) |x = l) for each class l ∈ L
as well as the prior class probability p(x= l) and then use Bayes theorem:

p(x= l | f(y)) = p(f(y) |x= l) ·p(x= l)
p(f(y)) (2.14)

to find the posterior class probabilities p(x = l | f(y)). The denominator in Bayes’ theorem
can be expressed as

p(f(y)) =
∑
l∈L

p(f(y) |x= l) ·p(x= l) (2.15)

Having found the posterior probabilities, we use decision theory to determine class mem-
bership for each new input y. Approaches that explicitly or implicitly model the distribution
of inputs as well as outputs are known as generative models, because by sampling from them
it is possible to generate synthetic data points in the input space.

Estimating the probability density functions p(f(y) |x = l) from a set of training data is
typically a very difficult problem whose solution forms the subject of much of this section.
Further in this section, some well-known generative probabilistic models are discussed. Con-
ditional random fields are founded on the underlying ideas and concepts of these approaches.

2.3.1.1 Naïve Bayes Model

Modeling all dependencies in a probability distribution is typically very complex due to inter-
dependencies between features. The naïve Bayes assumption of all features f ∈ f(y) being
conditionally independent is an approach to address this problem [DP97]. In order to make
necessary computations manageable nearly all probabilistic models have similar independence
assumptions for some variables.

Let us consider a probability distribution p(x | f(y)) with an input feature vector f(y) =
(f1, . . . ,fm)>, where fj , j ∈ [1;m] are particular features and x is the latent random variable
to be classified (predicted). This probability distribution can be reformulated with Bayes law
from Equation 2.14. The denominator p(f(y)), given by Equation 2.15 is not important for
classification as it can be understood as a normalization constant which can be computed by
considering all possible values for x. The numerator can also be written as a joint probability

p(f(y) |x) ·p(x) = p(x, f(y)) (2.16)
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which can be too complex to compute directly (especially when the number of features m is
high). A general decomposition of the joint probability 2.16 can be formulated applying the
chain rule (refer to Appendix B.3)4:

p(x, f(y)) B.3.2= p(x)
m∏
j=1

p(fj |fj−1, . . . ,f1,x) (2.17)

In order to simplify Equation 2.17, we make use of the naïve Bayes assumption, that
all features fj are conditionally independent of each other, given x. In other words, we
assume that p(fj |fk,x) = p(fj |x) holds for all j 6= k (refer to Appendix B.2). Based on this
simplification, a model known as the naïve Bayes model is formulated as

p(x | f(y))∝ p(x, f(y)) = p(x)
m∏
j=1

p(fj |x). (2.18)

This probability distribution is less complex than the one, formulated in Equation 2.17.
Dependencies between the input features fj are not modeled, and that may lead to rather poor
representations of the class-conditional densities. Nevertheless, its advantage is that the naïve
Bayes assumption is helpful when the dimensionality m of the feature space is high, making
density estimation in the full m-dimensional space more challenging. It is also very fast to
determine in training and the naïve Bayes model also performs surprisingly well in many
real world applications, e.g. email classification [KM01]. Figure 2.6 graphically represents
the naïve Bayes model for three input features. The corresponding probability distribution
factorizes as p(x, f(y)) = p(x) ·p(f1 |x) ·p(f2 |x) ·p(f3 |x).

x

f1 f2 f3

y

Fig. 2.6: Example graphical representation of the naïve Bayes model for one observation y, which is
represented via three features f1, f2 and f3, connected to the class variable x.

Now let us consider the association potential ϕi(xi; y) from Equation 2.5. Having in mind

4The initial probability distribution is assumed to be included as p(f1 |f0,f1,x) = p(f1 |x).
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the Equations 2.13 and 2.18, we can model it as the naïve Bayes model:

ϕi(xi; y) = p(xi)
m∏
j=1

p(fij |xi), (2.19)

where fij is the jth component of f i(y).
During the training phase, using feature cooccurrences for different classes, we can es-

timate one-dimensional probability density functions (histograms) Hjl(f) for all features
j ∈ [1;m] and for all classes l ∈ L. After normalization and smoothing, which results in a
vector hjl(f), we can use it directly to model the likelyhood: p(fij |xi = l)≡ hjl(fij).

Assuming the uniform prior on the class labels and neglecting terms that are constant
over the classes we achieve:

ϕ(xi = l,y) =
m∏
j=1

hjl(fij). (2.20)

2.3.1.2 Gaussian Models and Gaussian Mixture Models

Gaussian mixture model is one of the most well performing and studied generative model. It
is widely used in data mining, pattern recognition, machine learning, and statistical analy-
sis. In many applications, their parameters are determined from training data by maximum
likelihood, typically using the expectation maximization algorithm. However, as we will see
shortly there are some significant limitations to the maximum likelihood approach, and in
Section 2.3.1.3 we will show that a sequential estimation of the GMM’s parameters can be
given. This requires less computation and memory consumption compared with expectation
maximization [KRH13].

Gaussian Distribution. The Gaussian, also known as the normal distribution, is a widely
used model for the distribution of continuous variables. In a case of a single variable y, the
Gaussian distribution can be written in form:

N (y; µ,σ2) = 1
(2πσ2)1/2 exp

(
− 1

2σ2 (y−µ)2
)

(2.21)

where µ is the mean and σ2 is the variance. For a m-dimensional vector y, the multivariate
Gaussian distribution takes the following form:

N (y; µ,Σ) = 1
(2π)m/2

1
|Σ|1/2 exp

(
−1

2(y−µ)>Σ−1(y−µ)
)

(2.22)

where µ is an m-dimensional mean vector, Σ is an m×m covariance matrix, and |Σ| denotes
the determinant of Σ.



46 Conditional Random Fields

Let us also consider the geometrical form of the Gaussian distribution. The functional
dependence of the Gaussian on y is through the quadratic form

∆2(y) = (y−µ)>Σ−1(y−µ) (2.23)

which appears in the exponent in Equation 2.22. The quantity ∆ is called the Mahalanobis
distance from µ to y and reduces to the Euclidean distance when Σ is the identity matrix.
The Gaussian distribution will be constant on surfaces in y-space for which this quadratic
form is constant.

If the Mahalanobis distance serves as a distance metric between a Gaussian and a point,
the Kullback-Leibler divergence (or relative entropy) could serve as a similarity measure be-
tween two Gaussians. The Kullback-Leibler divergence between two probabilita distributions
N1(y; µ1,Σ1) and N2(y; µ2,Σ2) is calculated by the formula:

DKL(N1 ||N2) = 1
2

(
tr(Σ−1

2 Σ1) + ∆2
2(µ1)−m− ln

( |Σ1|
|Σ2|

))
(2.24)

and expressed in nats5. Here ∆2
2(µ1) is the Mahalanobis distance between the centers of

multivariate normal distributions µ1 and µ2 with respect to N2. Please note, that it is not a
symmetrical quantity, that is to say DKL(N1 ||N2) 6= D5KL(N2 ||N1) and so could be hardly
used as a ”distance”.

The Gaussian distribution arises in many different contexts and can be motivated from a
variety of different perspectives. For example, according to the central limit theorem, the sum
of the a set of random variables, which is of course itself a random variable, has a distribution
that becomes increasingly Gaussian as the number of terms in the sum increases [Wal69].
We can illustrate this by considering k variables y1,y2, . . . ,yk each of which has a uniform
distribution over the interval [0, 1] and then considering the distribution of the mean (y1 +
y2 + · · ·+yk)/k. For large k, this distribution tends to Gaussian. In practical applications, as
it was shown in [YS08] it is already sufficient k = 12 variables for approximating a reliable for
our tasks Gaussian.

Now suppose that we have n observations, drawn independently from an unknown dis-
tribution. We will assume that this distribution is a Gaussian, with unknown mean µ and
covariance Σ. In order to estimate these parameters we first write the likelihood function for

5The natural unit of information is a unit of information or entropy, based on natural logarithms and powers
of e, rather than the powers of 2 and base 2 logarithms which define the bit.
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the Gaussian in form of the dataset probability:

p(f(y) |µ,Σ) =
n∏
i=1
N (f i(y); µ,Σ) (2.25)

One common criterion for determining the parameters µ and Σ in a probability distri-
bution using training dataset is to find the parameter values that maximize the likelihood
function from Equation 2.25. In practice it is more convenient to maximize the log of the
likelihood function. Because the logarithm is a monotonically increasing function of its ar-
gument, maximization of the log of a function is equivalent to maximization of the function
itself. Taking the log not only simplifies the subsequent mathematical analysis, but it also
helps numerically because the product of a large number of small probabilities can easily
underflow the numerical precision of the computer, and this is resolved by computing instead
the sum of the log probabilities. From Equations 2.22 and 2.25, the log likelihood function
can be written in form

logp(f(y) |µ,Σ) =−nm2 log(2π)− n2 log |Σ|− 1
2

n∑
i=1

(f i(y)−µ)>Σ−1(f i(y)−µ) (2.26)

Maximizing 2.26 with respect to µ, we obtain the maximum likelihood solution given by

µML = 1
n

n∑
i=1

f i(y) (2.27)

which is the mean of the feature vectors from training data. Similarly, maximizing 2.26
with respect to Σ, we obtain the maximum likelihood solution for the covariance in the
form [MN99]:

ΣML = 1
n

n∑
i=1

(f i(y)−µML)(f i(y)−µML)> (2.28)

which involves µML because this is the result of a joint maximization with respect to µ and
Σ. Note, that the solution 2.27 for µML does not depend on ΣML, ans so it is possible to
evaluate µML first and use it to evaluate ΣML.

If we evaluate the the expectations of the maximum likelihood solutions under the true
distribution, we obtain the following results:

E[µML] = µ, (2.29)

E[ΣML] = n−1
n

Σ. (2.30)

We see that the expectation of the maximum likelihood estimate for the mean is equal
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to the true mean. However, the maximum likelihood estimate for the covariance has an
expectation that is less than the true value, and hence it is biased. Note, that the bias of
the maximum likelihood solution becomes less significant as the number n of training sample
points increases, and in the limit n→∞ the maximum likelihood solution for the covariance
equals the true variance of the distribution that generated the data. In practice, for anything
other than small n, this bias will not prove to be a serious problem. We will use the maximum
likelihood estimations for the expectation and covariance in Section 2.3.1.3 for deriving the
sequential estimation algorithm for the Gaussian mixture model.

Mixture of Gaussians Nevertheless the Gaussian distribution is the most commonly found
in nature, it suffers from the lack of generality; i.e. it has obvious limitations when it comes to
approximating complex distributions. Whereas a linear superposition of number of Gaussians
is free from these limitations and in most cases can give us a better characterization of a data
set.

Such superpositions, formed by taking linear combinations of more basic distributions
such as Gaussians, can be formulated as probabilistic models known as mixture distribu-
tions [MB88; MP00]. By using a sufficient number of Gaussians, and by adjusting their
means and covariances as well as the coefficients in the linear combination, almost any con-
tinuous density can be approximated to arbitrary accuracy.

We therefore consider a superposition of G Gaussian densities of the form:

p(y) =
G∑
k=1

ωk Nk(y; µk,Σk) (2.31)

wich is called a mixture of Gaussians. Each Gaussian density Nk(y; µk,Σk) is called a com-
ponent of the mixture and has its own mean µk and covariance Σk. The weights ωk are called
mixture coefficients. If we integrate both sides of Equation 2.31 with respect to y, and note
that both p(y) and the individual Gaussian components are normalized, we obtain

G∑
k=1

ωk = 1. (2.32)

Also, given that Nk(y; µk,Σk) ≥ 0, a sufficient condition for the requirement p(y) ≥ 0 is
that ωk ≥ 0, ∀k ∈ [1;G]. Combining this with the condition 2.32 we obtain

0≤ ωk ≤ 1. (2.33)

We therefore see that the mixture coefficients satisfy the requirements to be probabilities,
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and so, could be considered as as the prior probabilities of picking the kth component. The
densitiesNk(y; µk,Σk), in its turn, could be be considered as the probabilities of y conditioned
on k: p(y |k). From Bayes’ theorem we can write

p(k |y)∝ p(y) ·p(y |k) = ωk ·Nk(y; µk,Σk). (2.34)

Estimation of the parameters of the mixture components with the mixture weights is not
a trivial problem. In some extent, this problem could be simplified to a problem of finding
clusters in a set of training data points, which could be solved, for example, by using a non-
probabilistic technique called the K-means algorithm [Llo82]. The goal of this algorithm is
to partition the training data set into some number K of clusters. Intuitively, we might think
of a cluster as a comprising a group of data points whose inter-point distances are small
compared with the distances to points outside of the cluster.

But a more general probabilistic technique for finding maximum likelihood estimators is
the expectation maximization algorithm.

2.3.1.3 Sequential Gaussian Mixture Model

As we discussed in Section 2.3.1.2, a generative approach, called Gaussian mixture model
allows us to approximate almost any continuous probability density function to arbitrary ac-
curacy. In order to utilize it for multi-class classification problems within the CRF framework,
we start with the rewriting Equation 2.31 in the form [Rey09]:

p(x= l | f(y)) =
Gl∑
k=1

ωlk Nlk(f(y); µlk,Σlk). (2.35)

In Equation 2.35, Nlk(f(y); µlk,Σlk) are the mixture components, i.e. Gaussian proba-
bility density functions with expectations µlk and covariance matrices Σlk, and ωlk are the
mixture coefficients measuring the contribution of component Nlk to the joint probability
density of class l. For each class l ∈ L there are Gl sets of parameters ωlk, µlk, Σlk, k ∈ [1;Gl]
which define the form of the Gaussian mixture distribution.

One way to estimate the values of these parameters from the training data is to use
expectation maximization algorithm [DLR77; MK08]. It alternates between performing an
expectation (E) step, which, based on the current estimate for the parameters, determines an
estimate for the posterior probability that a specific cluster was responsible for creating each
sample point, and a maximization (M) step based on a maximum likelihood estimation of the
parameters, using the results of the E step as weights for the contribution of each observation
to the determination of the parameters of a specific cluster. Expectation maximization algo-
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rithm takes a number of iterations in order to reach (approximate) convergence and each cycle
requires heavy computation. Moreover, expectation maximization requires the simultaneous
storage and processing of all the training samples and the prior definition of the number G
of Gaussians in the mixture model [MK08].

In order to overcome these limitations of the expectation maximization algorithm we
propose a sequential training method for estimating the GMM parameters [KRH13] (cf .
Algorithm 1). It is based on two assumptions about incoming sample points6: first – that the
maximum possible distance between them in feature space is known and second – that the
sequence of input sample points has a random order, since our algorithm is sensible to the
ordering of incoming samples. The second assumption guaranties us a uniform distribution
of the mixture components’ centers (µlk) in feature space.

Our discussion of the maximum likelihood solutions for the parameters of the Gaussian
distribution in Section 2.3.1.2 provides a convenient opportunity to give a more general dis-
cussion of the topic of sequential estimation for maximum likelihood. Sequential methods
allow data points to be processed one at a time and then discarded and are important for
online applications, and also where large data sets are involved so that batch processing of
all data points an once is infeasible.

Consider the Equation 2.27 for the maximum likelihood estimator of the mean µML, which
we will denote by µ

(n)
ML when it is based on n observations. If we dissect out the contribution

from the final sample point fn(y), we obtain

µ
(n+1)
ML = 1

n+ 1

n+1∑
i=1

f i(y)

= 1
n+ 1 fn+1(y) + 1

n+ 1

n∑
i=1

f i(y)

= 1
n+ 1 fn+1(y) + n

n+ 1µ
(n)
ML

= µ
(n)
ML+ 1

n+ 1(fn+1(y)−µ
(n)
ML). (2.36)

This result has a nice interpretation, as follows. After observing n data points we have
estimated µ by µ

(n)
ML. We now observe data point fn+1(y), and we obtain our revised estimate

µ
(n+1)
ML by moving the old estimate a small amount, proportional to 1

n+1 , in the direction of the
’error signal’ (fn+1(y)−µ

(n)
ML). Note that, as n increases, so the contribution from successive

data points gets smaller.

In the same manner, using the Equation 2.28, we can derive the sequential updating rule

6In our case, sample points are given by feature vectors f(y).
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for the covariance:

Σ(n+1)
ML = Σ(n)

ML+ 1
n+ 1

(
(fn+1(y)−µ

(n+1)
ML )(fn+1(y)−µ

(n+1)
ML )>−Σ(n)

ML

)
. (2.37)

The function AddPoint, described in the Algorithm 5, Appendix C is based on these two
Equations 2.36 and 2.37. For the very first data point we use µ

(1)
ML = f1(y) for initializing the

expectation and zero matrix for initializing the covariance: Σ(1)
ML = 0.

Our algorithm requires a number of parameters, which we would like to describe. The first
of them is the dstθ, defining the threshold for distance between a sample point and a Gaussian.
This parameter helps to define if a new sample point should support an existing Gaussian or
give birth to a new one. The algorithm can use either Euclidean or Mahalanobis distance for
this purpose and a user may decide which of them to use. The second parameter divθ defines
the threshold for Kullback-Leibler divergence between two Gaussians. This parameter is used
for defining if any two components in the mixture during updating its coefficients became
too similar to be merged together into one. Unlike expectation maximization or K-Mean
algorithms, our algorithm does not need the predefined number of mixture components to be
given (or predefined number of segments), but we make use of the parameter Gmax, limiting
the maximum number of Gaussians in the mixture model.

The last two parameters are numbers N̂min, Ňmin, such that N̂min ≥ Ňmin, which describe
the minimal number of sample points (updates) needed for sequential estimation of a reliable
Gaussian function. Though the parameter Ňmin describes the lower boundary of samples,
below which a Gaussian is considered to be a ”noise”; Gaussians which were estimated with
help of number of sample points lying between N̂min and Ňmin are to be merged with the
most similar Gaussian, estimated on the large enough number of sample points.

Let us now consider Algorithm 1 where for each class l ∈L one Gaussian mixture is trained
more closely. We consider each training sample point as an evidence for parameters µlk and
Σlk of one of the Gaussians in Equation 2.35. The sample points are processed sequentially
in the order which they are collected. For each new sample point we check whether it belongs
to an existing mixture component by evaluating the distances dstk between the new sample
point f and existing components Nk, k ∈ [1;G]. If the smallest distance dstmin is shorter than
dstθ, the sample point is assigned to the component Nkmin corresponding to dstmin, and the
parameters µkmin and Σkmin of that component are updated. If the training sample point
does not fit to any existing component (which is, of course, the case for the first sample point
to be processed), we generate a new Gaussian and initialize its center µ by that sample point
(refer to Algorithm 5). However, this is only done if the number of components in a Gaussian
mixture is lower than the limit Gmax, otherwise we update the nearest component of that
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Algorithm 1: Sequential GMM training | Part I
Data: distance threshold dstθ = {Euclidian_dstθ OR Mahalanobis_dstθ};

divergence threshold divθ; maximal number of Gaussians Gmax; minimal
number of sample points N̂min; train sample points f with given groundtruth
label l

Result: GaussianMixture
1 while sample points do
2 (f , l)←GetNextPoint();
3 if GaussianMixturel.numGaussians= 0 then
4 N ← new Gaussian();
5 N .AddPoint(f);
6 GaussMixturel.Append(N );
7 else
8 forall Nk ∈GaussianMixturel do
9 dstk = distance(Nk, f);

10 (dstmin,kmin)←MINk(dst);
11 if (dstmin > dstθ) AND (GaussianMixturel.numGaussians < Gmax) then
12 N ← new Gaussian();
13 N .AddPoint(f);
14 GaussMixturel.Append(N );
15 else
16 Nkmin .AddPoint(f);
17 if (divθ) AND (Nkmin .numPoints≥ N̂min) then
18 forall Nm ∈GaussianMixture\Nkmin do
19 divm = divergence(Nm,Nkmin);
20 (divmin,mmin)←MINm(div);
21 if divmin < divθ then
22 Nmmin .MergeWith(Nkmin);
23 GaussianMixturel.Erase(Nkmin);

mixture.
For evaluating distances dstk the algorithm uses the Euclidean distance E(f ,µ) by de-

fault. But it also allows to specify weather the Mahalanobis distance ∆(f ,N (µ,Σ)) should
be used instead. This is done by defining the parameter Mahalanobis_dstθ to be non-zero
(cf . Algorithm 6). The Euclidean distance is defined between two points, whereas the Maha-
lanobis distance – between a point and a Gaussian function (cf . Equation 2.23). In our case,
we calculate the Euclidean distance between a sample point f and the center of a mixture
component µ and for calculating the Mahalanobis distance, additionally the covariance Σ is
needed.

In case when the Mahalanobis distance is in use, we take care for a mixture component,
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to which we want to estimate the distance, to be reliable, i.e. weather it was estimated on a
set of sample points large enough for estimating reliable covariance Σ. If this component was
estimated with help of less than N̂min sample points, the Euclidean distance takes over. This
is done, because parameter Σ needs much more sample points to be estimated than parameter
µ. In order to make the Euclidean distance comparable with the Mahalanobis distance, we
perform scaling of the Euclidean distance by the factor Mahalanobis_dstθ/Euclidean_dstθ.

Each update of a Gaussian affects its position and form trough parameters µlk and Σlk;
so consequently we may check if it is possible to merge the updated Gaussian with any of
the others, this time by comparing the Kulback-Leibler divergence DKL(N||N ) from Equa-
tion 2.24 of the mixture components to the threshold divθ in Algorithm 7. This is done to
avoid having too many components in a mixture and correct possible mistakes of the very
first stage of training. This step is optional and performed in case when parameter divθ is
set.

The Kullback-Leibler divergence is defined for two Gaussians. So, we check weather they
were estimated on large enough set of sample points, in the same way as described above.

Algorithm 2: Sequential GMM training | Part II
Data: GaussianMixture; minimal number of sample points

{N̂min, Ňmin : N̂min > Ňmin}
Result: GaussianMixture; minimal mixture coefficient ωmin

1 ωmin←∞;
2 forall l ∈ L do
3 forall Nk ∈GaussianMixturel do
4 if Nk.numPoints < N̂min then
5 if Nk.numPoints≥ Ňmin then
6 forall Nm ∈GaussianMixturel \Nk do
7 divm = divergence(Nm,Nk);
8 mmin←MINm(div);
9 Nmmin .MergeWith(Nk);

10 GaussianMixturel.Erase(Nk);

11 forall Nk ∈GaussianMixturel do
12 if Nk.ω→∞ then
13 GaussianMixturel.Erase(Nk);
14 ωmin←MIN(ωmin,Nk.ω);

After all the training sample points have been process, we perform the post-training
procedure (Algorithm 2), which aims to reduce the number of outliers, i.e. those mixture
components, which were estimated on too few training sample points, or became unbounded.
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The second aim of the post-training procedure is to find the smallest mixture coefficient ωmin
among all Gaussians and all mixtures. This coefficient will be needed for the classification in
order to normalize resulting potential values.

In order to reduce number of outliers, we compare the number of sample points, used
for estimating each Gaussian in a mixture with thresholds N̂min and Ňmin. If the mixture
component was estimated with too small number of sample points, i.e. which is less than
threshold Ňmin, then this component will be discarded; otherwise, if the number of used
sample points greater or equal to Ňmin, but still less than N̂min, such mixture component will
be merged with another, the most similar in terms of Kullback-Leibler divergence component.
All components in a Gaussian mixture, having the unbounded mixture coefficient ω are also
to be discarded.

Algorithm 3: Sequential GMM prediction
Data: GaussianMixture; test sample point f
Result: Potential vector ϕ(x= l | f(y))≡ ϕl, ∀l ∈ L

1 forall l ∈ L do
2 numAllPoints← 0;
3 forall Nk ∈GaussianMixturel do
4 numAllPoints← numAllPoints+Nk.numPoints;
5 if numAllPoints 6= 0 then
6 forall Nk ∈GaussianMixturel do
7 ω← Nk.numPoints

numAllPoints ;
8 ϕl← ϕl+ω ·Nk(x)/ωmin;
9 else

10 ϕl← 0;

In the classification phase, when our Gaussian mixture model is trained, our task is to
estimate potential of a sample point to belong to one of predefined classes l ∈ L. Algorithm 3
performs this by utilizing the base Equation 2.35. Please note, that we calculate mixture
coefficients ωlk based on the number of sample points, used for estimating each component:
ωlk = numPointslk∑G

j=1numPointslj
; thus a mixture coefficient ωlk for the kth component of the mixture is

given by the average responsibility (also knows as posterior probability) which that component
takes for explaining the data points. We also normalize all the potentials by factor 1/ωmin,
calculated in Algorithm 2. In practice, mixture coefficients may be very small, and the
normalization is performed in order to keep the potentials ϕ(x= l | f(y)>> 0.

Our method is fast because no iterations are required, and it does not require much mem-
ory due to its sequential nature. Moreover, we do not need to define the strict number of
Gaussians in the GMM, but this number is adjusted to the training data. Our algorithm
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does not guarantee the unique maximum likelihood solution, neither does expectation max-
imization algorithm. The solution might also differ under different order of training sample
points.

The proposed algorithm is evaluated in Section 2.7.2.1, where we compare it with the
expectation maximization training and report the timings, memory consumption as well as
the achieved classification accuracy.

2.3.2 Discriminative Approaches

Another approaches to solve the decision problem are discriminative approaches. The core
idea, underlying these approaches is to solve first the inference problem of determining the
posterior class probabilities p(x= l | f(y)), and then subsequently use decision theory to assign
each new f(y) to one of the classes. Approaches that model the posterior probabilities directly
are called discriminative models.

The most of the discriminative models determine the posterior class probabilities and
use decision theory implicitly, producing as an output the class label l. This prevents us
from smooth incorporation of the discriminative models into the Conditional Random Fields
framework in the same way as we incorporated generative approaches. In order to achieve the
potentials p(x= l | f(y)) using a discriminative model we have to develop individual strategies,
which will be based on the specific characteristics of that model. In this section we will
describe some of these strategies.

2.3.2.1 K-Nearest Neighbors

The K-nearest neighbors classifier (KNN, [Alt92]) is a type of instance-based learning, or lazy
learning, where the function is only approximated locally and all computation is deferred
until classification. Thus, the KNN approach is among the simplest of all discriminative
approaches, but this classifier is still especially effective for low-dimensional feature spaces.

The input for the KNN algorithm consists of the K closest training samples in the feature
space and the output is a class label l. An observation (or testing sample) f(y) is classified by
a majority vote of its neighbors, with the observation being labeled by the class most common
among its K nearest neighbors. In case of K = 1 the class of that single nearest neighbor is
simply assigned to the observation f(y).

In order to estimate the potentials we consider the class of every neighbor as a vote for
the most likely class of the observation. If the number of neighbors, having class l is Kl we
can define the probability of the association potentials as: (see Figure 2.7)

p(x= l | f(y)) = Kl

K
. (2.38)
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Fig. 2.7: Conversion of the KNN decision output to the potentials. Left: The original distributions
of 160’000 samples from the Green Fields dataset; Center: Resulting KNN decision map; Right:
Achieved potential map.

It can be useful to assign weight to the contributions of the neighbors, so that the nearer
neighbors contribute more to the average than the more distant ones. For example, a common
weighting scheme consists in giving each neighbor a weight of 1/r, where r is the distance
to the neighbor. For our weighting scheme we modify this idea as follows: let r will be the
Euclidean distance from the test sample to the nearest training sample in feature space and
ri – Euclidean distance to every found neighbor. Then we can rewrite Equation 2.38 with
weighting coefficient:

p(x= l | f(y)) = 1
K

∑
i

1l
(1 + ri− r)2 , (2.39)

where 1l means 1 if the class of the training sample is l and 0 otherwise.
The search algorithm aims usually to find exactly K nearest neighbors. However it may

happen, that distant neighbors do not affect probability from Equation 2.39 much. For
example, the nearest neighbor with ri = r contributes value of 1/K to the probability. And a
neighbor, twice as distant from the testing sample (ri = 2r) will contribute only 1/K(1+r)2.
For the optimization purpose we stop the search once the distance from the test sample to
the next nearest neighbor exceeds 2r. Thus, only K ′ ≤K neighbors in area enclosed between
two spheroids of radii r and 2r are considered (see Figure 2.8) and weighted according to the
Equation 2.38: p(x= l | f(y)) =Kl/K

′.
The neighbors are taken from a set of objects for which the class is known. This can be

thought of as the training set for the algorithm, though no explicit training step is required.
A peculiarity of the KNN algorithm is that it is sensitive to the local structure of the data.

2.3.2.2 Support Vector Machine

Support vector machines (SVMs, [CS99]) belong to the class of binary classifiers that represent
the training samples f(y) as multi-dimensional points in feature space, mapped so that the
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r

2r

Fig. 2.8: Illustration of the nearest neighbors screening: if the distance to the nearest neighbor is r,
we take into consideration only those neighbors that lie closer then 2r distance.

samples of two different classes are separated by a clear gap that is as wide as possible. The
testing samples are then mapped into that same feature space and classified based on which
side of the gap they fall. SVMs can efficiently perform a non-linear classification by implicitly
mapping their inputs into high-dimensional feature spaces.

In order to use SVMs for the multi-class classification we use the one-against-the-rest tech-
nique [HL02], where we unite |L| SVN classifiers ηl(f(y)), l ∈ L, where ηl are real-valued score
functions. The resulting class is then chosen by the highest score. Hence, the SVMs do not
provide posterior probabilities p(x | f(y)) directly. In order to represent SVN classifier decision
in form of the posterior probability, a sigmoid function, proposed by John Platt [Pla99], is
used:

p(x= l | f(y)) = 1
1 + exp(Alηl(f(y)) +Bl)

, (2.40)

where Al and Bl are scalar parameters that are learned by the algorithm given in [LLW07].
This approach has got the the name Platt Scaling (see Figure 2.9).

Fig. 2.9: Conversion of the SVM decision output to the potentials. Left: The original distributions
of 160’000 samples from the Green Fields dataset; Center: Resulting SVM decision map; Right:
Achieved with the Platts scaling potential map.
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2.3.2.3 Random Forests

Random forest classifier (RF, [Bre01]) is an ensemble learning method, that operate by con-
structing a multitude of decision trees [Qui86] at training time and outputting the class l that
is the mode of the classes of the individual trees. Random forests correct for decision trees’
habit of overfitting to their training set.

For the RF discriminative approach we achieve potentials by accounting the votes for
the most likely class cast by every decision tree (see Figure 2.10). If the RF consists of NT

decision trees and the number of votes cast for a class l is Nl, the probability underlying our
definition of the association potentials is

p(x= l | f(y)) =Nl/NT . (2.41)

Fig. 2.10: Conversion of the RF decision output to the potentials. Left: The original distributions of
160’000 samples from the Green Fields dataset; Center: Resulting RF decision map; Right: Achieved
potential map.

Feature Importance Criteria. The random forest approach allows us to estimate the impact
of each feature fj ∈ f(y) on classification and consequently provides us with a feature impor-
tance criteria. This is done by estimating how often the decisions in the nodes of random
trees are based on certain features. These numbers are accumulated for each feature, then
normalized and united in a single feature importance vector.

2.3.2.4 Artificial Neural Network

Artificial neural networks classifier (ANNs, [RB93]) is inspired by the biological neural net-
works that constitute mammal brains. The original goal of such approaches was to solve
problems in the same way that a human brain would. Hence, ANN classifiers learn (or
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progressively improve performance) by considering training samples, generally without class-
specific features. In image recognition, for example, they might learn to identify image patches
containing cars by analyzing sample image patches manually labeled as true positive or true
negative and using the analytic results to identify cars in other images.

An ANN is based on a collection of connected units (neurons). Each connection (synapse)
between neurons can transmit a signal to another neuron. The receiving neuron can process
the signals and then signal downstream neurons connected to it. Neurons and synapses have
a weight represented by a real number between 0 and 1 that varies as learning proceeds, which
can increase or decrease the strength of the signal that it sends downstream. Further, they
have a threshold such that only if the aggregate signal is above that level is the downstream
signal sent. Typically, neurons are organized in layers. Different layers may perform different
kinds of transformations on their inputs. Signals travel from the first (input), to the last
(output) layer, possibly after traversing the layers multiple times.

We initialize the number of neurons in the input layer to be equal to the number of
features |f(y)| and the number of neurons in the output layer to be equal to the number of
labels |L| ≡ k. In order to represent the ANN decision on the correct label into the form of
the posterior probability, we take the k scaled signals leaving the neurons from the output
layer and use these signals’ strength directly for filling the needed potentials p(xi = l | f i(y))
(see Figure 2.11).

Fig. 2.11: Conversion of the ANN decision output to the potentials. Left: The original distributions
of 160’000 samples from the Green Fields dataset; Center: Resulting ANN decision map; Right:
Achieved potential map.

2.4 Interaction Potentials

The interaction potential functions ψij(xi,xj ; y) in Equation 2.5 are related to the probability
of the random variables xi, xj taking a pair of labels l, l′ given the data y [KH06]. Since
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many models for interaction potential functions include control parameters, we will now refer
to Equation 2.7 and model 〈ψij(xi,xj ; y),θψ〉 in general case directly by:

〈ψij(xi,xj ; y),θψ〉 ∝ p(xi = l,xj = l′ | f i(y), f j(y),θ) (2.42)

where the image data are represented by site-wise feature vectors f i(y), f j(y) that may depend
on all the observed data y and parameters θ ∈ θψ.

There are exist many strategies of constructing the interaction potential functions, and
for convenience we can split them into three groups of approaches, namely data independent,
contrast sensitive and data dependent approaches (see Table 2.1). We start this section with
providing brief introduction to the data independent and contrast sensitive approaches, and
continue with our data dependent models.

Approach potential function train data test data
data independent ψij(xi,xj) – –
contrast sensitive ψij(xi,xj ; dij) – X
data dependent ψij(xi,xj ; y) X X

Tab. 2.1: The test- / train-data dependencies of the interaction potential function modeling ap-
proaches. The term dij in the contrast sensitve potential functions corresponds to the difference
metric between observations yi and yj and may be given e.g. by Equation 2.44.

2.4.1 Data Independent and Contrast Sensitive Approaches

Data Independent. The most naïve approach to model pairwise potentials in multi-class
CRF classifiers is the Potts model [Wer+11]. It guarantees smooth label maps and ignores
both training and test data, i.e. 〈ψij(xi,xj ; y),θψ〉 ∝ p(xi,xj |θ).

p(xi = l,xj = l′ |θ) =

 θl if l = l′

1 otherwise
(2.43)

In Equation 2.43, the parameters θl ∈ θ, l∈Lmodulate the degree to which the interaction
potential favors identical classes at neighboring sites. They could be considered as smoothness
weight coefficients for all classes and usually are larger then 1.

Contrast Sensitive. The contrast sensitive Potts model [BJ01] could be considered as an
”upgrade” version of the naïve Potts model 2.43. It is still independent from the training
data, but takes into account the difference (contrast) between observations on adjacent sites.
This difference may be expressed in terms of Euclidean distance between corresponding feature
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vectors [SM00]:
dij = E(f i(y), f j(y)) (2.44)

thus Equation 2.42 could be simplified to: 〈ψij(xi,xj ,y),θψ〉 ∝ p(xi,xj |dij ,θ).

Having defined the difference measure dij , that is supposed to be high on segments’ borders
and low at homogenous regions of classifying images, one chooses a regularization function
P(dij), which ought to penalize smoothness term on regions, corresponding to abrupt changes
of observed data:

p(xi = l,xj = l′ |dij ,θ) =

 θl ·P(dij) if l = l′

1 otherwise
(2.45)

The function P(dij) : R→ R may be any arbitrary penalization function, e.g. well-known
Charbonnier [Cha+94] or Perrona-Malik [PM90] regularizers and also may depend on addi-
tional control parameters. In this thesis we use an exponential regularizrer in the form:

P(dij) = e−θP ·d2
ij (2.46)

here parameter θP modulates the contrast-sensitive term.

The Potts model without the data dependent term in Equation 2.43 would favor identical
class labels at neighboring image sites and, thus, result in a smoothed label image. In the
contrast sensitive Potts model in Equation 2.45 this will still be the case if the feature vectors
f i(y), f j(y) are identical, but large differences between the features will reduce the impact of
this smoothness assumption and make a class change between neighboring image sites more
likely. This results in smooth label maps covering homogenous image regions, while preserving
edges, where the classifying objects’ borders are more probable.

2.4.2 Data Dependent Approaches

Data dependent interaction potentials incorporate a trained function, whose parameters are
estimated from the training data. We start with estimation of the prior probability of labels
co-occurrence at adjacent sites, which results in a simple and fast approach, producing reliable
results. After that we continue with concatenating a pair of classifiers, similar to those,
described in Section 2.3 and designing the interaction model, based on outputs of these two
classifiers.
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2.4.2.1 Histogram Matrix

For our first interaction model we introduce a training data dependent term, which considers
the relative frequency of class transitions [Pra+06]. In classification this term represents the
prior probability of two adjacent random variables xi and xj taking a pair of labels (l, l′). For
this purpose we generate a 2D histogram H(l, l′) of the co-occurrence of labels at adjacent
image sites in the training data, i.e. H(l, l′) – is the number of occurrences of the classes (l, l′)
at adjacent sites. After the training phase, in order to avoid a bias for classes covering a
large area in the training data, we normalize the histogram H(l, l′), which results in a matrix
h(l, l′). We distinguish two types of normalization: symmetric and asymmetric, which have
own pros and cons. Let us describe them in more detail.

Symmetric Approach. Symmetric normalization approach guaranties that resulting matrix
h is symmetric, i.e. h(l, l′) = h(l′, l) and that the diagonal elements are equal to one: h(l, l) = 1,
∀l, l′ ∈ L. In case of H(l, l)>H(l, l′), ∀l, l′ ∈ L, the largest value in matrix h will be equal to
one; and in case of H(l, l′)2 ≥H(l, l) ·H(l′, l′), the largest value in matrix h may exceed one.
The latter case is possible to model for academic purpose, but it is almost improbable in real
life applications.

Asymmetric Approach. Asymmetric normalization approach takes into account the differ-
ence in number of occurrences of classes in the training data (i.e. prior probabilities p(x= l)
and p(x= l′)). It guaranties that the largest value in matrix h does not exceed one. The case
of the diagonal values of the matrix are not the largest is probable (i.e. h(l, l)≤ h(l, l′) = 1).
This may lead to erosion of areas with small class occurrence rate. Please note, that the
results of the asymmetric approach could be approximated from the results of symmetric
approach, by multiplying the columns of the matrix h with the corresponding to the base
columns class, the prior class probability.

Having estimated the training data dependent matrix h(l, l′), we combine it with the
contrast sensitive Potts model from the Equation 2.45 to achieve our data dependent definition
of interaction potential 〈ψij(xi,xj ; y),θψ〉 ∝ p(xi,xj |dij ,θ) ·h(l, l′) = p(xi,xj |y,θ):

p(xi = l,xj = l′ |y,θ) =

 θl ·P(dij) ·h(l, l′) if l = l′

h(l, l′) otherwise
(2.47)

This model differs from the contrast-sensitive Potts model in Equation 2.45 by the use
of the normalized histograms h(l, l′), which are estimated from the training data. As a
consequence, class transitions become more likely, depending on the frequency with which
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they occur in the training data.

2.4.2.2 Concatenated Edge Potentials

Our second interaction model is based on an idea of uniting all possible combinations of class
transitions together and classify these combinations in a similar was as it was done for unary
potentials. For this purpose we introduce a new concatenated set of class labels

C = L×L, (2.48)

which encodes all possible combinations of two labels l, l′ ∈ L with one label l′′ ∈C. If we also
concatenate the corresponding feature vectors f i(y), f j(y) together, into the vector f ij(y) =
{fi1,fi2, . . . ,fim,fj1,fj2, . . . ,fjm} we can write the potential function in form:

p(xi = l,xj = l′ | f i(y), f j(y),θ)≡ p({xi;xj}= l′′ | f ij(y),θ), (2.49)

which can be modeled in the same way as unary potentials, from Equation 2.13.
Please note, that our model data dependent interaction model 2.49 allows asymmetricity:

p(xi,xj | f i(y), f j(y),θ) 6= p(xj ,xi | f j(y), f i(y),θ).

2.5 Inference and Decoding

There are efficient and exact solutions to inference problem in DAGs and tree-structured
graphical models. However, in CRFs which generally allow loops in underlying graphs, ex-
act inference is computationally intractable [Vis+06; KH06] and thus approximate methods
should be used. Among such approximations one can select variational methods [Jor+99],
belonging to the class of deterministic approaches and sampling (also called Monte Carlo)
methods [And+03], belonging to the class of stochastic approaches.

In the scope of this thesis, we will concentrate on the class of iterative message-passing
algorithms [Pea88]. They were designed to provide efficient and exact solutions to inference
problem in tree-structured graphs. But when the message-passing rules are purely local, they
may be also applied to the graphs with loops, even though there is no guarantee that they
will yield good results. Due to the cycles, information can flow many times around the graph
and for some models, the algorithm will converge, whereas for others it will not.

Among message-passing algorithms we will distinguish sum-product and max-product al-
gorithms, which are closely related. The sum-product algorithm allows us to take a joint
distribution and efficiently find marginals over the component variables. The max-product
algorithm allows for finding a setting of the variables that has the largest probability and to
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find the value of that probability. The max-sum algorithm can be viewed as an application
of dynamic programming in the context of graphical models [Cor+01].

2.5.1 Sum-Product Message Passing Algorithm

The sum-product message passing algorithm is also known as loopy belief propagation (LBP,
[FM98; YFW03]). This algorithm works by passing real valued functions called messages
along with the graph edges. More precisely, if xi and xj are two variable nodes, the messages
from xi to xj , (denoted by µi→j(xj) ∈Rk) and from xj to xi (µj→i(xi) ∈Rk), are real-valued
functions – the set of values that can be taken by the random variable associated with node
x. These messages say about which value the recipient node should have.

The belief bi(xi) ∈ Rk at a variable node xi is proportional to the product of the local
evidences (ϕi(xi)) at the node i, and all the messages coming into node i:

bi(xi) = k ϕi(xi)
∏

(i,j)∈E
µj→i(xi), (2.50)

where k is a normalization constant (the beliefs must sum to 1) and i and j are adjacent
nodes.

A message from a variable node xi to a node xj is the product of the messages from all
neighboring to xi nodes, except the recipient. The messages are determined self-consistency
by the message update rule:

µi→j(xj) = ψi,j(xi,xj)ϕi(xi)
∏

(i,k)∈E
k 6=j

µk→i(xi). (2.51)

In some applications, the loopy belief propagation algorithm can give poor results, whereas
in other applications it has proven to be very effective. In particular, state-of-the-art algo-
rithms for decoding certain kinds of error-correcting codes are equivalent to loopy belief
propagation [Mac06].

2.5.2 Max-Product Message Passing Algorithm

In Section 2.5.1 we described a simple approach to find latent variable values having high
probability. The sum-product algorithm can obtain the marginals p(xi) for every single vari-
able, and then, for each marginal in turn, find the value x∗i that maximizes that marginal.
However, this gives the set of values that are individually the most probable. In order to
find the set of values that jointly have the largest probability we can use the max-product
algorithm, wich is a generalization of the Viterbi algorithm. It allows us to find the vector x̃,
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that maximizes the joint distribution, so that

x̃ = argmax
x

p(x) (2.52)

for which the corresponding value of the joint probability will be given by

p(x̃) = max
x
p(x). (2.53)

x= 0 x= 1
y = 0 0,3 0,4
y = 1 0,3 0,0

Tab. 2.2: Example of a joint distribution over two binary variables for which the maximum of the
joint distribution occurs for different variable values compared to the maxima of the two marginals.

In general, x̃ is not the same as the set of x∗i values, as we can easily show using a simple
example. Consider the joint distribution p(x,y) over two binary variables x,y ∈ 0,1 given in
Table 2.2. The joint distribution is maximized by setting x = 1 and y = 0, corresponding
the value 0,4. However, the marginal for p(x), obtained by summing over both values f y,
is given by p(x = 0) = 0,6 and p(x = 1) = 0,4, and similarly the marginal for y is given by
p(y = 0) = 0,7 and p(y = 1) = 0,3, and so the marginals are maximized by x = 0 and y = 0,
which corresponds to value of 0,3 for the joint distribution. In fact, it is not difficult to
construct examples for which the set of individually most probable values has probability
zero under the joint distribution.

We therefore seek an efficient algorithm for finding the value of x that maximizes the
joint distribution p(x) and that will allow us to obtain the value of the joint distributions at
its maximum. To address the second of these problems, we will simply write out the max
operator in terms of its components

max
x
p(x) = max

x1
. . .max

xM
p(x) (2.54)

whereM is the total number of variables, and then substitute for p(x) using its expansion. In
deriving the sum-product algorithm, we made use of the distributive law for the max operator

max(ab,ac) = a max(b,c) (2.55)

which holds if a≥ 0. This allows us to exchange products in Equation 2.51 with maximization.
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Tree-Reweighted Message Passing Algorithm One generalization of the max-product mes-
sage passing algorithm to higher order clique updates is the tree-reweighted max-product
(TRW) algorithm [WJW05] and sequential, monotone update sequence of Kolmogorov [Kol06].
This method can be understood within the dual decomposition framework, in which the dual
formulation of the optimization problem can be decomposed into smaller sub-problems that
are tied together via Lagrange multipliers.

The TRW dual decomposition method operates by creating a collection of trees which
span the full graph, and associating with each tree t a set of parameters τ t such that the
sum ∑

t τ
t = τ . Each tree is solved separately, providing an upper bound on the MAP, and

the algorithm then minimizes this upper bound over the allocation of τ to each tree. Dual
decomposition provides a monotone update by sequentially visiting each node and edge and
“merging” its copies [Fou+11].

2.6 Parameter Estimation

The control parameters θ = {θϕ,θψ} from Equation 2.7 are learned separately from the asso-
ciation (ϕi) and interaction (ψij) potentials and may be obtained using the cross validation
technique [Sho+09] or the Powell search method [Pow64; Kra10]. Both methods make use
of a real-valued objective function Ω of n arguments Ω(θ) : Rn → R, where n = |θ| is the
number of parameters θ. The problem of control parameters estimation is then turned into
the optimization problem, of finding maximum of the objective function:

θ̃ = argmax
θ

Ω(θ). (2.56)

The objective function is typically the mean squared prediction error, but within this work
we define Ω as the normalized sum of the diagonal elements of the confusion matrix [Ste97],
obtained by classifying the part of the training data that was not used for training the
potentials. A confusion matrix is a specific table layout that allows visualization of the
performance of an algorithm. Each row of the matrix represents the instances in a predicted
class while each column represents the instances in an actual class (or vice versa). The
diagonal elements represent the rate of correctly classified instances, thus our definition of
the objective function is equally sensitive to the large and small classes and is not biased by
the amount of entities in a class.
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2.6.1 Cross Validation Technique

In a typical K-fold cross-validation procedure the data set is randomly and evenly split into
K parts (if possible). A candidate model is built based on K−1 parts of the data set, called
a training set. Prediction accuracy of this candidate model is then evaluated on a test set
containing the data in the hold-out part. By respectively using each of the K parts as the test
set and repeating the model building and evaluation procedure, we choose the model with
the largest value of the objective function Ω(θ) as the ‘optimal’ model. Given n independent
variables, there are in total of 2n−1 possible models. In theK-fold cross-validation procedure,
each model is in fact evaluated K times. Therefore, a single ‘optimal’ model is selected via
K(2n−1) times of model evaluation.

The main advantage of the cross-validation technique for the parameter estimation is that
it usually produces a reliable results even on small training datasets. The problem of small
dataset becomes even more daunting if we recall that for parameter estimation we need to use
a separate subset of the training data, different from the raining data, used for the potentials
training. From another hand, the cross-validation technique demands an exponential to the
number of variables n time for estimating parameters. That prevents us using this technique
for problems with large number of parameters.

2.6.2 Powell Search Method

The Powell search method [Pow64] is an iterative optimization algorithm that does not require
taking the derivative of the objective function and thus it is especially useful for the functions
without an underlying mathematical definition. We initialize the algorithm with the initial
approximation (search point) θ(0) and n initial search vectors {∆(0)

1 , . . . ,∆(0)
n }, which are

simply the normals aligned to each axis [Kos15].
The method maximizes the objective function by a bi-directional search along each search

vector, in turn. The bi-directional line search along each search vector can be done by
Golden-section search [AW66] or Brent’s method [Atk89]. Let the maximum found during
each bi-directional line search be:

θ(0) +α1∆(0)
1 ,

θ(0) +∑2
i=1αi∆

(0)
i ,

. . . ,

θ(0) +∑n
i=1αi∆

(0)
i ,

(2.57)

where αi is the scalar determined during bi-directional search along ∆i. Then the new
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approximation θ(1) can then be expressed as a linear combination of the search vectors:

θ(1) = θ(0) +
n∑
i=1

αi∆(0)
i . (2.58)

The new displacement vector ∑n
i=1αi∆

(0)
i becomes a new search vector, and is added to

the end of the search vector list. Meanwhile, the search vector which contributed most to the
new direction, i.e. the one which was most successful (̃i= argmaxiαi‖∆

(0)
i ‖), is deleted from

the search vector list. The new set of n search vectors is:

∆(1)
1 = ∆(0)

1

. . .

∆(1)
ĩ−1 = ∆(0)

ĩ−1

∆(1)
ĩ

= ∆(0)
ĩ+1

. . .

∆(1)
n−1 = ∆(0)

n

∆(1)
n =∑n

i=1αi∆
(0)
i

(2.59)

In such a way the algorithm iterates an arbitrary number of times until no significant im-
provement is made [Mat17].

The method is useful for calculating the local maximum of a continuous but complex
functions for which estimation of the gradient is problematic or impossible. The basic algo-
rithm is simple; the complexity is in the linear searches along the search vectors, which can
be achieved via Brent’s method.

2.7 Experiments

In this section we evaluate and compare the techniques, that were presented and described
in this chapter. For the evaluation we use three datasets: synthetic Green Field dataset,
represented via a set of sample points in 2-dimensional feature space and describing 3 classes;
and two real-world datasets: EMDS and Vaihingen. For further information about these
datasets, as well as for the total list of extracted features, please refer to the Appendix D. For
numerical reasons, all features were scaled linearly into the range [0;255] and then quantized
by 8 bit. Our CRF-classification is based on the direct graphical models C++ library [Kos15].

During the evaluation we used different models for the association and interaction po-
tentials. For the association potentials we used the following abbreviations: Bayes - naïve
Bayes model, described in Section 2.3.1.1; emGMM - Gaussian mixture model, estimated
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with help of Expectation-Maximization algorithm and seqGMM - our sequential Gaussian
mixture model, presented in Section 2.3.1.3; KNN - K-nearest neighbors model from Sec-
tion 2.3.2.1; SVM - support vector machines model from Section 2.3.2.2; RF - random forests
model, described in Section 2.3.2.3, using NT = 100 trees (Equation 2.41) of maximum depth
15; ANN - artificial neural networks model from Section 2.3.2.4.

For the interaction potentials we used the following abbreviations: Potts - the naïve Potts
model, given by Equation 2.43 and using θl = 23/5, ∀l ∈ L; PottsCS - Potts model, enhanced
with the contrast-sensitive term defined in Equation 2.45, with the same θl and θP = 1; hMat
- our data-dependent interaction model, described in Equation 2.47 with the same parameters
θ and Concat - our advanced data-dependent model, described in Section 2.4.2.2 and based
on concatenating two unary Bayesian models. In order to assess also the CRF technique
we considered additionally NoEdge experiment – where the interaction potentials were not
implied, i.e. interaction potentials were set to ψij(xi,xj ; y)≡ 1.

Finally, the classification results are compared with the reference. For evaluation of pixel-
level segmentation we report the recall and the precision of pixel classification (labeling) as
well as the overall accuracy. Additionally, we use Average Precision (AP) [AY06] as an
evaluation measure of pixel-level classification. An AP is calculated by considering pixel
classification results in each image separately. For each EM class, pixels in the image are
sorted based on the potentials for being that class. Then, an AP is computed as the average
of precisions each of which is computed at the position of a pixel belonging to the class. A
larger AP means a better result where pixels for the class are ranked at higher positions. Such
APs are computed for test images containing EMs for the class, and averaged to indicate an
abstracted pixel-level classification performance. Finally, we take the ‘Mean of such averaged
APs’ (Mean AP) over all the 20 classes to obtain an overall performance.

2.7.1 Impact of The Features on Classification

2.7.1.1 DCNN Features

We start with demonstrating the effectiveness of DCNN features presented in Section 2.2.2
on the task of EM classification. We use 50% of the EMDS dataset images to train DeepLab-
VGG-16 for pixel-level feature extraction and unary potentials ϕi. DeepLab-VGG-16 is
trained by following the network structure and hyper parameters provided as DeepLab-
LargeFOV 7, except that the mini-batch size is changed from 30 to 20 due to the RAM
size of our GPU. With respect to RF training on 1024-dimensional pixel-level features, most
regions in EM images are backgrounds. This causes the imbalanced problem that pixel-level

7http://liangchiehchen.com/projects/DeepLab-LargeFOV.html

http://liangchiehchen.com/projects/DeepLab-LargeFOV.html
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features for backgrounds (majority class) significantly outnumbers features for 20 EM classes
(minority classes) [HG09]. As a result, a meaningless RF that classifies almost all pixels into
the background class is favored, because its classification accuracy on training images is high.
To overcome this, for each of 21 classes (20 EM classes and the background class), an RF is
trained by randomly sampling the same number of pixels. Here, this number is chosen as the
minimum number of pixels among 21 classes (specifically, 19063 pixels for Epistilis (ω6)).

We compare DCNN features to the following two sets of features:

SIFT: A Scale-Invariant Feature Transform (SIFT) feature is one of the most popular local
feature, and represents the shape in a local region, reasonably irrespective of changes in
illumination, rotation, scaling and viewpoint [Low99]. We densely extract SIFT features by
locating interesting points at all pixels. As a result, f i(y) for each pixel is characterized by a
128-dimensional SIFT descriptor.

Simple: Here we have gathered 16 common features, which are usually used in image clas-
sification: the intensity, calculated as the average of the red, blue and green channels; the
saturation component in HSL color space (please see Appendix D.3 for extensive description
of the simple features).

We carry out two sets of experiments for every feature: RF :NoEdge and RF :Potts. This
comparison should show the impact of different features on the classification with RF and
CRF.

SIFT Simple DCNN
CRF local +global local +global local +global
RF :NoEdge 2.21 % 10.77 % 18.04 % 35.03 % 54.78 % 62.19 %
RF :Potts 3.80 % 10.99 % 19.60 % 31.40 % 53.69 % 61.77 %

Tab. 2.3: Mean APs of the results for 3 sets of local features: SIFT, Simple, DCNN; and 2 types
of CRFs: local and local-global. The impact of the local features and addition the global features
is compared for two classification models: per-pixel RF (RF :NoEdge) and CRF with Potts pairwise
potentials (RF :Potts).

The Mean AP for local CRF over 20 EM classes in these two experiments are shown in
Table 2.3. SIFT features show very poor results, and in spite of they might be useful for
solving correspondence problems, they lead to a low classification rate, when used to support
CRFs. Finally, we can observe that DCNN features deliver us more than ‘twice-as-better’
results than Simple features: 54.78%. This validates that DCNN features work more robustly
than SIFT and Simple features for classification [Kos+18].
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2.7.1.2 Global Features

In this section we demonstrate the effectiveness of the additional global features. As in
the previous experiment, we compare three sets of features: SIFT, Simple and DCNN fea-
tures. Again we carry out two different experiments for every feature set: RF :NoEdge and
RF :Potts (see Section 2.7.1.1 for more details). For the global node, we also train a RF using
global features in the 200 training images. Finally, a local-global CRF is implemented in the
framework of Direct Graphical Models C++ library [Kos15].

The Mean AP over 20 EM classes in the two experiments are shown in Table 2.3. As we
can see from Table 2.3, the combination of Simple features with the global features increases
the classification rate for them for all experiments near by factor of two. This is done because
the additional global node connected to all the local nodes provides a long-range interaction
between the local nodes and thus reduces the number of different EM classes present in the
image. In other words, the global node supports the decision on the correct EM class and
helps to reduce the segments, labeled as wrong EM classes. We can observe it in Figure 2.12,
where the incorporation of the global features leads to significant clearance of the resulting
label maps from the allogenic segments. We consider this as the consequence of the global
smoothness effect infused by the addition of the global node. This validates that the com-
bination of pixel-level features with the global features works more robustly than pixel-level
features alone [Kos+18].

The impact of the global features on the classification with the local DCNN features is not
so huge: in average they increase already high MAP values by additional 8%. We explain that
by the fact, that the DCNN features in comparison to the Simple features are very powerful
for EM classification itself, and thus the introduction of the additional global constraints
make less effect as for other more weak features.

2.7.1.3 Confidence Features

The proper labeling of classes which are represented by small or even tiny regions in images is
a common problem for CRFs because the incorporation of the interaction potentials usually
leads to over-smoothing in label maps. This experiment addresses exactly this problem and
studies the impact of underlying features on its solution. In the Vaihingen dataset of aerial
images, class car suffers the most from the over-smoothing effect, because an image region,
representing car object is about 0,09 % of the whole image region.

For extracting our car confidence feature we apply first the vehicle detector, described in
Section 2.2, which is based on the SVM approach, which in its turn is based on histograms
of oriented gradients [Kos+13b]. For calculating HOG, we make use of a sliding window with
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original image local local + global groundtruth

Fig. 2.12: Segmentation results for two EMs: Stentor (top row) and Stylonychia (bottom row),
achieved in RF :Potts experiment. Red-colored pixels indicate that they are classified (labeled) as
background while other colors represent pixels classified into different EM classes.

Fig. 2.13: Posterior probability achieved with the SVM approach. Left: Input image; right: Re-
sulting car confidence image.

size of 80×80 pixels. This window consists of 100 non-overlapping blocks with size of 8×8
pixels each. For each block the gradient vectors are gathered in 9 bins an resulting HOG is
achieved.

Platt scaling technique, described in the Section 2.3.2.2 allows us to convert binary output
of the SVM-based vehicle detector into posterior probabilities p(xi = car |y) for each site i.
Our car confidence feature is calculated directly from these probabilities. An example feature
map for one scene is illustrated in the Figure 2.13.

In the Figure 2.14 the recall and precision for different thresholds for the estimated vehicle
probabilities are shown. For this evaluation, the center point of the connected sites, which have
probabilities of being a vehicle larger than the threshold, is compared to the corresponding
site in the groundtruth label map (the second column of the Figure 2.15). Connected regions,
which cover multiple vehicles (as on the last column of the Figure 2.15) are counted only
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Fig. 2.14: Receiver operating characteristics for varying thresholds of probability.

once, what leads to a significant reduction of recall.

RF :NoEdge RF :NoEdgecar RF :hMat RF :hMatcar
Category Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec.
asphalt 79,8 % 85,5 % 79,8 % 85,5 % 80,8 % 86,5 % 80,7 % 86,4 %
building 83,8 % 77,8 % 83,7 % 77,6 % 84,6 % 79,0 % 84,5 % 78,9 %
grass 82,9 % 79,0 % 82,9 % 79,4 % 84,9 % 79,1 % 84,7 % 79,6 %
agriculture 52,9 % 61,1 % 54,9 % 62,0 % 52,5 % 68,5 % 54,7 % 68,8 %
tree 86,3 % 56,2 % 85,6 % 56,3 % 87,8 % 56,8 % 87,2 % 57,1 %
car 75,1 % 8,9 % 77,6 % 10,8 % 31,7 % 32,9 % 34,2 % 41,6 %
overall accuracy 77,9 % 79,0 % 83,8 % 84,1 %

Tab. 2.4: Incorporation of the car confidence feature. Recall (Rec.) and Precision (Prec.) of the
experimental results.

Here for the evaluation we used two experimental setups: RF :NoEdge and RF :hMat

models for association and interaction potentials. In order to estimate the impact of our
car confidence feature, we carried out 2 different experiments for both experimental setups:
RF :NoEdge, RF :NoEdgecar and RF :hMat, RF :hMatcar. All the experiments were per-
formed with the use of the same set of features, described in Appendix D, but with one
exception: experiments, whose name has the subscription ∗car, incorporate additional car
confidence feature. The recall and the precision of the results achieved in these experiments
are shown in the Table 2.4. Figure 2.15 presents resulting label maps for two example scenes.

As we can see from the Table 2.4 the overall accuracy of all experiments differs within
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five – seven percents, what is explained by strong hit ratio of the random forest classifier.
There is also a minor difference between overall accuracies of the experiments RF :hMatcar

and RF :hMat. This is expected, since there are very few regions, covered by cars, and so, the
car confidence feature, which has monotonically low response on the major part of images,
does not affect the overall accuracy much [Kos+13b].

The main improvement in the Table 2.4 we can observe for the class car. The precision
for it in the RF :NoEdgecar experiment was only 10,8 %, while the use interactions in the
RF :hMat experiment improves this number till 41,6 %. In comparison with the results, which
were achieved with experiment RF :hMat, i.e. without car confidence feature, we achieve
about 10 % precision improvement: 41,6 % for RF :hMatcar versus 32,9 % for RF :hMat.
Here we get also improvement ratio for the recall: 34,2 % for RF :hMatcar versus 31,7 % for
RF :hMat. The RF :NoEdge experiments (with use of car confidence feature and without)
produce both better results for the aim class car in terms of recall, while producing very poor
precision ration. This is explained by too many false positives, produced by random forest
model. These false positives are eliminated by the CRF smoothness term in the RF :hMat

experiments.

Fig. 2.15: Classification results of the scenes 23 (top row) and 36 (bottom row) of Vaihingen dataset.
First column: Original images; Second column: Groundtruth; Third column: RF :hMat;
Fourth column: RF :hMatcar powered with car confidence features. White: void; dark-green: tree;
red: car.

Figure 2.15 illustrates two scenes, which are rich of cars. Its third column presents the
results of the RF :hMat experiment, while the fourth column - results of the RF :hMatcar
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experiment. We can see, that the use of the car confidence feature greatly improves the clas-
sification rate for cars. In comparison to the groundtruth (second column of the Figure 2.15)
cars are over-smoothed and hardly recognizable in the results of the RF :hMat experiment.
The RF :hMatcar experiment delivers us the results with the distinct car regions on the right
places (almost no false positives).

2.7.1.4 Feature Importance Evaluation

In many classification problems it is important to compare contributions of distinct features
to the final result. One way to do so is to build the feature importance vector as described in
Section 2.3.2.3. Here, we evaluate the importance of the 16 features, used in the experiments
of the Section 2.7.1.3, including the car confidence feature: car. Figure 2.16 depicts rela-
tive importance of these features. As we can see, our random forest classifier finds features
nDSM1, sat1 and NDV I21 as well as varsat most useful, while features NDV I1, gradient
and vargrad less useful.
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Fig. 2.16: Normalized feature importance vector [%].

2.7.2 Robust Association Potentials

In Section 2.3 we have discussed a variety of possible models for the association potentials.
Let us now illustrate their impact on the computation of the label maps. For this purpose we
use synthetic Green Field data-set, with 3 classes, described by two features. Since all the
features are quantized by 8 bit, we can map the whole dataset to the 2-dimensional 256×256
feature space. If we accumulate the sample points in such representation, it will correspond
to the probability densities. For the visualization we will mark these densities, belonging to
different classes, with three different colors: red, green and blue (see Figure 2.17).
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Fig. 2.17: The Green Field dataset, defined on a 2-dimensional feature space f(y)∈R2 with 3 classes,
depicted by red, green and blue colors. Top row, left: The original distributions of 160’000 samples
from the dataset; center: Bayes model; right: Gaussian Model: the distribution is approximated
with a single Gaussian per class; Middle row, left: seqGMM model; center: emGMM model;
right: k-NN model; Bottom row, left: SVM model; center: RF model; right: ANN model.

As we can observe from the Figure 2.17 the generative models try to reproduce the original
distributions. In order to do this precisely, a method needs to remember all the 1,6× 106

samples from the Green Field dataset. Or, in general, restricting ourself to the 8-bit features,
a method needs to remember k · 256m values, where k is the number of categories and m is
the number of features. The main idea of the generative models is to rebuild the original
distribution using much less parameters and therefore generalize the model for samples, that
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were not observed during training. Bayes model approximates the distribution using only
k ·256 ·m parameters, and the Gaussian mixture model – k ·G · (m2 +m) parameters, where
G is the number of Gaussians in the mixture.

As opposed to the generative models, the discriminative models do not approximate
the original distributions, but provide direct predictions for all testing samples (in the Sec-
tion 2.3.2 we described a number of methods for converting these direct predictions into the
potentials). This grants the discriminative models more generalization power: In the areas,
where hardly any training sample was met (left bottom and right top corners of the initial
distribution image on Figure 2.17) all the generative models show black areas with almost
zero potentials, while all the discriminative models show a high confidence about the class
labels for these areas.

2.7.2.1 Sequential GMM Model

In the second part of evaluation of the association potentials we compare performance of CRFs
with different models in the data term. For the interaction model we took the data-dependent
approach hMat. Altogether we carried out 3 experiments. In the first experiment, we used
the naïve Bayes model 2.20 (Bayes:hMat), whereas in the second and third experiments we
used the GMM model 2.35. The difference between latter two is that in the second experiment
(emGMM :hMat) GMM training is based on the OpenCV implementation of EM [BK08],
and in the third – on our sequential GMM model (seqGMM :hMat) [KRH13]. The precision
and the recall of the results achieved in these experiments are shown in Table 2.5.

Bayes:hMat emGMM :hMat seqGMM :hMat
Category Rec. Prec. Rec. Prec. Rec. Prec.
asphalt 83,7 % 77,1 % 93,8 % 58,0 % 93,7 % 58,2 %
building 65,7 % 92,2 % 72,2 % 92,0 % 72,0 % 92,2 %
grass 51,6 % 75,9 % 58,5 % 81,0 % 58,6 % 81,0 %
agriculture 36,2 % 96,9 % 47,5 % 97,4 % 47,5 % 97,9 %
tree 82,9 % 58,5 % 71,6 % 64,2 % 71,8 % 64,3 %
car 0,5 % 17,8 % 1,2 % 40,5 % 1,3 % 40,7 %
overall accuracy 84,5 % 86,1 % 86,0 %

Tab. 2.5: Comparison of impact of different association potential models on classification. Recall
(Rec.) and Precision (Prec.) of the experimental results.

As we can see, the results achieved with seqGMM :hMat are very similar to those achieved
for the emGMM :hMat and in the same time are better than the Bayes:hMat model. In the
presented results, GMM outperforms Bayes for all the classes except class tree, where it loses
in average 10% of recall, result in a small difference in overall accuracies of the methods. The
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advantage of our seqGMM :hMat method will be more clear if we look at the Table 2.6.

Time Bayes:hMat seqGMM :hMat emGMM :hMat

training: 173 sec 1602 sec 9740 sec
classification: 6,4 sec 12,5 sec 64,0 sec
RAM 1,2 MB 1,5 MB 43500 MB

Tab. 2.6: Timings for Intel® Core™ i7-4820K CPU with 3.70 GHz required for training on 1016
scenes from Vaihingen dataset and classification on 1 scene, and memory consumption (RAM).

The computation times for training our CRF model on 1016 images were 173 and 1602
seconds for the Bayes:hMat and seqGMM :hMat models, respectively; the time for classi-
fication was 6,4 and 12,5 seconds, respectively, per image. The memory consumption was
slightly above 1 MB in both cases. For the emGMM :hMat experiment the computation
times were 9740 seconds for training and 64 seconds for classification one image, with a mem-
ory consumption of 42.5 GB. Thus seqGMM :hMat is much closer to the Bayes:hMat in
terms of calculation time and memory requirements, while being close to emGMM :hMat in
terms of classification accuracy.

2.7.2.2 Efficient KNN Model

The K-nearest neighbors model is the most simple and naïve discriminative model, which
provides extremely accurate classification results especially for low-dimensional feature spaces.
However, the application of the KNN model in practical applications is problematic because
of its low-speed performance for large datasets represented in high-dimensional feature spaces
and for the large number of neighbors -K. In this experiment we address exactly this problem
of the KNN model.

Our implementation of the KNN model [Kos15] is based on the KD-tree data structure,
which is used to store points in k-dimensional space. Leafs of the KD-tree store feature
vectors with corresponding groundtruth and every such feature vector is stored in one and
only one leaf. Tree nodes correspond to axis-oriented splits of the space. Each split divides
space and dataset into two distinct parts. Subsequent splits from the root node to one of the
leafs remove parts of the dataset until only small part of the dataset (a single feature vector)
is left.

KD-trees allow to efficiently perform searches “K nearest neighbors of N”. Considering
number of dimensions k fixed, and dataset size N training samples, the time complexity for
building a KD-tree is O(N · logN) and for finding K nearest neighbors – close to O(K · logN).
However, its efficiency decreases as dimensionality k grows, and in high-dimensional spaces
KD-trees give no performance over naive O(N) linear search.
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In order to evaluate the performance of our KNN model, described in Section 2.3.2.1 we
perform a number of experiments: 2r-KNN , 4r-KNN , 8r-KNN , 16r-KNN and 32r-KNN
– models, where the nearest neighbors enclosed between two spheroids of radii r and 2r (4r,
8r, 16r and 32r respectively) are only taken into account (refer to Figure 2.8 for details).
In the ∞r-KNN experiment all the K neighbors were considered. And finally the KNN
experiment is the OpenCV implementation of KNN [BK08] based on linear search. The overall
accuracies for experiments 2r-KNN and KNN on Vahingen dataset are given in Table 2.8
and the timings for all 7 experiments are given in Table 2.7.

Time 2r-KNN 4r-KNN 8r-KNN 16r-KNN 32r-KNN ∞r-KNN KNN
training: 4659 sec 4659 sec 4659 sec 4659 sec 4659 sec 4659 sec 102 sec
classification: 8,3 sec 22,2 sec 52,8 sec 97,2 sec 134,9 sec 216,1 sec 45,3 sec

Tab. 2.7: Timings for Intel® Core™ i7-4820K CPU with 3.70 GHz required for training on 1016
scenes from Vaihingen dataset and classification of 1 scene.

As we can observe from Tables 2.7 and 2.8 our 2r-KNN model gives almost the same
overall accuracies as the reference KNN model, but needs almost 5.5 times less time. The
training time of the xr-KNN models, which includes the building of the KD-tree, takes
78 minutes, what is much more slower then 1,7 minutes for KNN training. However, the
training in practical applications is performed only once and could be done offline, when the
classification time is more critical for the whole classification engine performance. In Table 2.7
we can also observe almost linear increase of the classification time with increasing the outer
spheroid radius to 4r, 8r, etc. Figure 2.18 shows the classification results on the Green Field
dataset for the experiments 2r-KNN – ∞r-KNN . The classification result of the KNN
experiment is depicted at Figure 2.17 middle row, right.

2.7.3 Spatial Regularization

In this section we evaluate and compare 5 interactions models: NoEdge, Potts, PottsCS, hMat
and Concat. For versatile comparison we perform evaluation of these models in combination
with all 8 association potentials from Sections 2.7 and 2.7.2. Thus altogether we have per-
formed 40 experiments. The resulting comparison should show the impact of the respective
formulation of the interaction terms. Figure 2.19 shows the results for one crossroad [KRH12].

The overall accuracies of the results achieved in the 40 experiments are shown in Table 2.8.
In the experiments for the NoEdge model, where CRFs were not in use, the average overall
accuracy of the classification was 76,78 %. Figure 2.19 also shows the local variation of the
class labels, caused by a similar appearance of the classes in the labels that is not compen-
sated by a smoothness term [KRH12]. For the experiments with Potts interaction model,
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Fig. 2.18: Comparison of different xr-KNN models on Green Field dataset. Top row: from left to
right: 2r-KNN , 4r-KNN and 8r-KNN models; Bottom row: from left to right: 16r-KNN and
32r-KNN and ∞r-KNN models.

the average overall accuracy was 83,4 %, a value that could be increased to 85,4 % in the
experiments hMat.

Obviously, the smoothing achieved with the Potts models (in Potts and PottsCS experi-
ments) already had a positive impact on the classification accuracy. Considering the data in
the interaction terms in hMat improves the overall accuracy even further by avoiding over-
smoothing at region boundaries having sufficient contrast. In particular, the classification
rate for class asphalt is improved considerably by avoiding confusions with class car (See
Figure 2.19). The main error source was a confusion of buildings with asphalt and of trees
with grass due to errors in the DSM caused by areas with hardly any texture (buildings) or
abrupt height changes (trees).

Note that the PottsCS model gives in average only 81,68 % of overall accuracy. However,
its highest rate (over 85,43 % – 85,59 %) fall on KNN models, making the contrast-sensitive
Potts model more preferable to use in couple with K-nearest neighbors model. The Concat
model in its turn is more suitable for the random forest association potentials. Experiment
RF :Concat gave 85,76 % overall accuracy, what is 1,66 % better than RF :hMat experiment.

Finally, Table 2.9 shows the time required for training on 1016 scenes and classification 1
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Fig. 2.19: Classification result for scene 23 of Vaihingen dataset. Left to right: Reference;
Bayes:NoEdge; Bayes:Potts; Bayes:hMat. Grey: asphalt; orange: building; green: grass; beige:
agriculture; dark-green: tree; red: car.

pairwise potentials
NoEdge Potts PottsCS hMat Concat
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Bayes 73,98 % 83,34 % 79,12 % 84,50 % 83,59 %
emGMM 67,71 % 78,71 % 76,77 % 86,10 % 83,33 %
seqGMM 67,64 % 81,47 % 77,40 % 86,00 % 83,72 %
KNN 82,36 % 85,21 % 85,43 % 86,18 % 85,76 %
2r-KNN 81,39 % 85,80 % 85,59 % 86,28 % 86,01 %
SVM 79,20 % 83,15 % 81,12 % 83,59 % 83,83 %
RF 79,00 % 83,37 % 83,10 % 84,10 % 85,76 %
ANN 82,93 % 86,12 % 84,89 % 86,43 % 86,01 %
average 76,78 % 83,40 % 81,68 % 85,40 % 84,75 %

Tab. 2.8: Comparison of impact of different interaction and association potential models on classifi-
cation. Overall accuracies of the experimental results, performed on Vaihingen dataset.

scene on an Intel® Core™ i7-4820K CPU with 3.70 GHz. For sake of clarity, here we compared
between all the interaction potentials models in couple with the Bayes model, which is the
fastest association potential model (See Table 2.6).

2.7.3.1 Local-Global CRF

In Sections 2.7.1.1 and 2.7.1.2 we concentrated on evaluation of pixel-level EM classification
results using global features. Here, in addition to the experiments RF :NoEdge and RF :Potts
(Section 2.7.1.1), we carry out an experiment RF :PottsCS. Furthermore, to examine the

Time NoEdge Potts PottsCS hMat Concat

training: 113 sec 113 sec 113 sec 173 sec 695 sec
classification: 0,3 sec 5,9 sec 6,2 sec 6,4 sec 6,6 sec

Tab. 2.9: Timings for Intel® Core™ i7-4820K CPU with 3.70 GHz required for training on 1016
scenes from Vaihingen dataset and classification on 1 scene.
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effectiveness of our local-global CRF [KRH12], it is compared to an advanced CRF model,
denseCRF , where pairwise potentials are defined by fully connecting all possible pairs of
pixels, in order to capture a variety of spatial relations and especially recover detailed local
structures [KK11]. In particular, the original DeepLab approach uses denseCRF in the post-
processing phrase [Che+16]. Here, DeepLab-VGG-16 is not used as a feature extractor, but
used to obtain an initial segmentation result that is then refined by denseCRF . We name this
approach as denseCRForg and examine its performance, in order to check the effectiveness of
our approach that distills outputs at the penultimate layer of DeepLab-VGG-16 as pixel-level
features and uses them in other CRFs.

Moreover, our approach is compared to a currently popular DCNN-based image segmenta-
tion model, Fully Convolutional Network (FCN) [LSD15]. In FCN, a pre-trained DCNN for
image classification is re-purposed to segmentation using deconvolution layers, which upsam-
ple low-resolution feature maps into the ones that has the original image size and represent
pixel-level classification. A version of FCN based on VGG-16 is selected for fair comparison
to our approach. In particular, we choose FCN-32s where feature maps after (two customized
convolution layers following) the top max-pooling layer in VGG-16 (see the left side in Fig-
ure 2.4) are enlarged into image-size feature maps based on a deconvolution layer with a stride
size 328. FCN-32s is trained on EM images by following the network structure and hyper
parameters defined for voc-fcn32s9.

Regarding evaluation measures for segmentation results, Mean AP served as a good mea-
sure for justifying our choice of features, but it left mainly unclear the impact of applying
CRFs. Also, a precision is not considered suitable for the following reason: Figure 2.20
show segmentation results by our local-global CRF (using Potts pairwise potentials) and
denseCRForg for three EM images. As can be seen from ground truth images, each EM has a
fine-grained structure such as radial lines of ω1 or thin tails of ω4 and ω9. One method like our
local-global CRF roughly covers the whole region of the EM, while another like denseCRForg
only captures its main part. The latter essentially gets a higher precision than the former.
However, in practice, the whole region of an EM is more meaningful for a user than its partial
region, so as to avoid missing its appearance or misunderstanding its structural characteristic.
Hence, a recall is used as our main evaluation measure for segmentation results, and an overall
accuracy (OA) is used as an auxiliary measure to check how similar extracted EM regions are
to the ground truth. OA is computed only for the case considering all classes. If one tries to

8FCN-32s only analyzes coarse-level feature maps. Some versions of FCN (FCN-16s and FCN-8s) support
a ‘skip’ architecture to fuse coarse- and fine-level feature maps. However, our preliminary experiments showed
that this yields no performance improvement (FCN-16s and FCN-8s get (63.63% (average recall), 95.31% (OA))
and (64.34%, 95.48%), respectively), and often causes over-segmentation of EM regions into small meaningless
ones.

9https://github.com/shelhamer/fcn.berkeleyvision.org/tree/master/voc-fcn32s

https://github.com/shelhamer/fcn.berkeleyvision.org/tree/master/voc-fcn32s
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compute an OA for each class, it is equal to a recall.

ω

ω

ω

Fig. 2.20: Examples of segmentation results for EMs that have fine-grained structures.

In order to evaluate the segmentation quality in more detail, let us consider the recall
for 21 classes as well as the OA values in Table 2.10. We see that the use of only unary
potentials in RF :NoEdge experiment gives poor OAs, whereas the application of local edge
potentials increases the segmentation accuracy more than by 10%. Such a great improvement
is conditioned by the fact that the major part of the EM images is covered by the background
class (which is not considered in Mean AP evaluation), and exactly the improvement on that
class leads to the leap in OA values in Table 2.10. This may be more clear by looking at the
recall values for the background class. In its turn, the average recall values for the local-global
CRF models outperform both denseCRF models: 74.76% – 79.40% for local-global CRF
versus 67.87% – 68.85% for denseCRF .

The example segmentations are shown in Figure 2.21, which indicates some difficult cases
with semi-transparent EMs, e.g., Arcella (ω2), Codosiga (ω4), Ceratium (ω12) and Synchaeta
(ω20), where it is hard for our method to find their invisible body parts. For example, ω4 has
class-specific antennas, which are labeled correctly, while the semi-transparent inner body is
labeled wrongly. The same we observe for ω20 where transparent body parts have very similar
features as the background and other EMs, so they are labeled wrongly. For the difficult cases
RF labels only a particular part of an EM as the relevant object, where the classification result
may be still correct, but segmentation is incomplete. Because this particular part contains
very specific characteristics, only using this part is regarded as leading the most accurate
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Class local-global CRF denseCRF denseCRForg FCN
RF :NoEdges RF :Potts RF :PottsCS Gaussian Gaussian

background 83.02 % 96.24 % 96.28 % 97.13 % 98.94 % 99.22 %
ω1 91.43 % 81.47 % 79.22 % 75.00 % 53.86 % 45.78 %
ω2 88.70 % 90.25 % 86.59 % 85.57 % 87.45 % 89.19 %
ω3 94.13 % 88.86 % 93.11 % 84.49 % 83.50 % 85.10 %
ω4 87.04 % 64.61 % 62.73 % 46.19 % 41.57 % 37.08 %
ω5 75.48 % 72.75 % 72.17 % 68.30 % 74.59 % 80.88 %
ω6 54.77 % 13.80 % 21.09 % 7.36 % 0.50 % 15.80 %
ω7 79.93 % 81.07 % 76.12 % 71.36 % 80.22 % 83.11 %
ω8 83.93 % 86.37 % 79.96 % 75.50 % 84.49 % 77.32 %
ω9 45.82 % 42.93 % 45.74 % 33.08 % 35.64 % 44.22 %
ω10 87.96 % 86.56 % 84.03 % 75.29 % 86.25 % 69.83 %
ω11 92.57 % 93.57 % 91.92 % 90.63 % 90.19 % 83.44 %
ω12 83.82 % 77.28 % 77.16 % 69.57 % 56.87 % 37.13 %
ω13 75.19 % 81.62 % 74.05 % 62.78 % 68.10 % 55.76 %
ω14 93.23 % 86.41 % 87.31 % 85.18 % 82.54 % 59.08 %
ω15 79.20 % 81.39 % 76.07 % 67.46 % 68.45 % 68.06 %
ω16 71.29 % 73.66 % 73.81 % 60.28 % 69.64 % 82.21 %
ω17 65.35 % 64.52 % 65.20 % 60.95 % 65.12 % 65.87 %
ω18 82.65 % 86.98 % 83.76 % 74.63 % 84.53 % 57.59 %
ω19 65.77 % 64.39 % 61.05 % 53.63 % 62.82 % 27.88 %
ω20 86.02 % 82.65 % 82.67 % 80.89 % 70.95 % 71.57 %
average: 79.40 % 76.07 % 74.76 % 67.87 % 68.85 % 63.62 %
OA: 82.63 % 94.19 % 93.98 % 94.05 % 95.85 % 95.48 %

Tab. 2.10: Recall and Overall Accuracy (OA) of the experimental results with DCNN features.
Comparison between six classification models: per-pixel RF (RF :NoEdges), CRF with Potts pairwise
potentials (RF :Potts), CRF with contrast-sensitive Potts model (RF :PottsCS), fully connected CRF
with Gaussian pairwise potentials (denseCRF ), fully connected CRF on segmentation results by the
original DeepLab method [Che+16] (denseCRForg), fully convolutional network (FCN).
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Fig. 2.21: Segmentation results for 4 EMs (ω2, ω4, ω12, ω20) with DCNN features. 1st row: input
image; 2nd row: local-global CRF RF :NoEdges; 3rd row: local-global CRF RF :Potts; 4th row: local-
global CRF RF :PottsCS; 5th row: denseCRF ; 6th row: denseCRForg; 7th row: FCN; 8th row:
groundtruth.
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classification. Table 2.10 and Figure 2.21 show that our local-global CRF is better than
FCN [Kos+18]. The confusion matrix of the result achieved in the experiment RF :Potts is
shown in Figure 2.22.

Fig. 2.22: Confusion matrix for the experiment RF :Potts with use of DCNN features. All values are
given in [%]. Overall accuracy: 94.2%.

Comparison to Existing Methods In this section we compare our CRF approach with the
Region-Based Support Vector Machine (RBSVM) [LSG15b], which can also localize EMs with
bounding boxes. The results for RBSVM are available only for the first 15 classes of EMDS
dataset and only in terms of Mean AP. We compare the performance of 3 methods: 1.
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RBSVM : RBSVM based on SIFT-BoVW features is trained on 15 classes. Bag-of-Visual-
Words (BoVW) involves two steps: The first step is to obtain a set of visual words by clustering
a large number of SIFT features. Each cluster center represents a characteristic SIFT feature
and is regarded as a visual word. Given a region in an image, RBSVM creates a histogram
of visual words by assigning each SIFT feature in this region to the most similar visual word.
RBSVM localizes an EM to the region from which the histogram maximizing the SVM score
is obtained [LSG15b]. 2. denseCRF : denseCRF based on DCNN features is trained on 20
classes; 3. local-global CRF : our CRF approach based on DCNN features which is also trained
on 20 classes. Please note, that the CRF-based approaches are trained not on 15, but on 20
classes. Nevertheless, the comparison is fair, because usually the additional classes lead to
additional miss-classification, and thus to the reduction of the overall classification accuracy.
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Fig. 2.23: APs and Mean APs of the EM classification results. Comparison between the RBSVM-
and CRF-based approaches.

Figure 2.23 represents the AP values for every EM class as well as the Mean AP value.
First, we explain how to obtain image-level classification results based on pixel-level segmen-
tation results by our CRF approach. We consider every label xi = l, l ∈ L\{background} of
a pixel yi of the segmented scene as a vote that the scene represents EM class l. Normalizing
all the votes for a scene we achieve a probability of the scene to represent l. We sort all the
test scenes in terms of these probabilities and calculate the AP value for l.

As seen from Figure 2.23, the CRF-based classifiers (denseCRF and local-global CRF)
significantly outperform the RBSVM classifier. The Mean AP value of RBSVM is 25.06%.
Compared to these, the Mean AP of denseCRF reached 79.22% and Mean AP of local-
global CRF – 91.40%. Such leap becomes possible because CRFs do not treat image patches
independently as in RBSVM. The Mean AP value for local-global CRF is considerably higher
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than the Mean AP value for the denseCRF, this is due to the fact that the DCNN features
in our model are supported by the global ones.

Discussion about Computation Times Finally, we briefly describe computational times of our
EM classification method. Pixel-level feature extraction based on a DCNN were conducted
on a workstation equipped with Intel® Core™ i7-7700 CPU with 3.60 GHz, 32GB RAM and
GeForce GTX 1080 8GB. By following the original implementation of DeepLab [Che+16],
the feature extraction phase was run in the Caffe framework [Jia+14]. The re-purposing and
fine-tuning step of a pre-trained DCNN (VGG-16) took 8417 seconds, and pixel-level features
for all the 400 EM images were extracted in 3370 seconds by accessing the penultimate layer
of the DCNN with the python interface (pycaffe).

Regarding the training our RF-based unary potentials on the DCNN features, building
CRF and conducting inference we used another workstation equipped with Intel® Core™ i7-
4820K CPU with 4.50 GHz, 64GB RAM and dual SLI GeForce GTX 780 3GB. Training
and classification with our local-global CRF was implemented with the DGM library [Kos15].
Training of our DGM-based classifier on 200 EM images (approx. 4.2×105 training samples)
took 8.9 seconds, building and initializing the graphical model for one scene – 1.9 seconds
and inference for one scene took in average 3.7 seconds.

2.8 Summary

In this chapter, a detailed overview of conditional random fields and the theory behind and
related to it is given. I started with a short recapitulation of well-known probabilistic models
used for single-position classification. CRF in its turn can be considered as an extension to
a structured learning model from the single-position classification model. From the architec-
tural perspective, my formulation consists of three main parts: feature extraction, pixel-level
classification and graph modeling.

In this chapter a considerable scientific contribution to the field of feature engineering is
made. The introduction of global features and application them to the challenging problem of
EM classification increased the classification rate by 7% – 17% (depending on the used local
features) in terms of mean APs (see Table 2.3). The global features are used to support the
classification and improve the segmentation quality by providing a long-range consistency be-
tween pixel labels. Considering the small training dataset problem, an approach was adopted
where a DCNN pre-trained on large auxiliary image data is re-purposed and fine-tuned to a
pixel-level feature extractor using EM images. In comparison to the state-of-the-art features,
used for EM classification, DCNN features allow to increase the classification accuracy from
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18% up to 54% in terms of mean APs (see Table 2.3). Finally, the introduced confidence
features allow for incorporating of external object detectors into the CRF framework. Hav-
ing high response on the objects of interest and low response on all other areas, confidence
features preserve these objects from over-smoothing. This is extremely useful if the objects
of interest have small size. The usage of a car confidence feature allows to rise the precision
for class car from 32% up to 41% (see Table 2.4).

The next scientific contributions belong to the field of pixel-level classification. Efficient
unary and pairwise potentials are essential building blocks of the CRF technique. In this
thesis new efficient and high-accurate algorithms for modeling these potential functions are
proposed. The sequential Gaussian mixture algorithm is approximately 6 times faster both
in training and classification and needs 30000 times less memory than state-of-the-art expec-
tation maximization algorithm, while being slightly more accurate (see Tables 2.5 and 2.6).
The efficient 2r-KNN algorithm, based on KD-tree data structure and takes into consideration
only those neighbors, which lie in a small neighborhood of the nearest found neighbor. The
2r-KNN algorithm is approximately 5 times faster in classification then its popular implemen-
tation from the OpenCV library [Ope14] (see Table 2.7). The histogram-based matrix and
concatenated edge potentials models for data-dependent interaction potentials outperform all
existing pairwise models for CRFs (see Table 2.8).

The last but the most significant contribution of this Chapter is made to the field of graph
modeling. Adding one global graph node to the classical CRF structure binds all the local
graph nodes together with the longest path, consisting of only two edges. Such construction,
called local-global CRF and presented in Section 2.1.4 of this thesis allows to outperform
some modern classification frameworks as dense CRF [KK11] and fully convolutional net-
work [LSD15] in terms of average recall values (see Table 2.10). Thus, experimental results
validate the effectiveness of each of above mentioned scientific contributions.

However, this chapter does not only provide further insights into the design of conditional
random fields, it also serves as a useful tool-kit for the construction of new approaches. By
introducing a modular notation based on unary and pairwise potentials I set up a general
framework that allows for both a simple development and a straightforward implementation
of such techniques. The actual generality of the framework becomes obvious in the Chapter 3.
There, it is extended to the development of multi-layer conditional random fields for handling
occlusions in classification.





3 Multi-Layer Conditional Random Fields

“You will never solve a problem if you think the same way as those who
created it.”

- Albert Einstein

So far in this thesis only design of single-layer conditional random fields was considered.
This technique determines a single class label for each observation, what causes problems if
the objects to be classified are partially occluded. For instance, the appearance of streets,
sidewalks and buildings may not be clear to a computer if they are largely occluded by objects
such as cars or trees. In these cases it may even prevent the approach from estimating the
correct classes not only in the occluded regions but also in the non-occluded neighborhood
of these regions. Thus single-layer conditional random fields turn from a restriction into a
limitation.

In this chapter I introduce the multi-layer conditional random field technique, which can
handle this limitation by explicitly modeling several class labels for each observation, building
a hierarchy of occluding and occluded objects; in this way, the 3D structure of the scene is
explicitly considered. Thereby all steps – the modeling, the conditioning and marginalization,
the inference and the discretization – are discussed in detail.

Section 3.1 starts with describing the occlusion model which serves as a base for the
scientific contributions made in this Chapter. In order to describe occluded objects, the 3D
structure of the scene is explicitly represented with a number of depth layers, on which all
the objects are arranged. Thus, the probabilistic graphical model from Chapter 2 is extended
by adding an extra dimension to it. This results in that for each image site there exist a set
of class labels, corresponding to different depth layers of the observed scene. The layers are
ordered in the direction of view, such that the lowest layer corresponds to the background (the
most distant object), and higher layers – to the occluding objects. A specific class label is used
to encode that no occlusion occurs. Labeling might also be supported by depth information
obtained from stereo vision.

In Section 3.2 the basic theoretical background of the mixed graphs is given. Mixed
graphical models are essential for implementing the described above occlusion model within
the multi-layer CRF architecture. They comprise both undirected and directed links, the
latter are the main reason why the robust to occlusions CRF model is based on the mixed
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graphs. Directed links are better suited for expressing casual relationships between random
variables and thus allow for expressing conditional dependencies of the random variables,
corresponding to the occluded regions on the random variables, which correspond to the
observed objects in the same way as latent variables are conditioned on observed variables in
the state-of-the-art random fields. This allows the information from neighboring unoccluded
objects as well as information from the occluding layers to contribute to an improved labeling
of occluded objects.

The main challenge in using casual relationships between random variables in the multi-
layer CRF model is that there is no prior knowledge where occlusion took place. Thus, the
mixed graph, corresponding to the proposed model, should have very general and in the same
time very flexible structure. In the following the main scientific contributions of this Chapter
are listed:

• Definition of the conditioning and marginalization operations for layered graphs. In
Section 3.2.2 I define operations of conditioning on– and marginalization out a subset
of graph nodes, and show that these operators do not contradict the corresponding
operations for probability distributions. These graph transformation operators allow
to modify the graph on-the-fly during the inference process, while keeping the corre-
sponding probability distribution consistent. Finally, such a mixed graphical model is
achieved, which could be smoothly changed in sense of the cliques and its number as
understanding the scene and gathering hints about occlusions. The transition from one
graph state to the another is put into effect between iterations of inference.

• Introduction of the multi-layer CRF. In Section 3.3.1 I introduce the multi-layer graph-
ical model, which is a subclass of the mixed graphs. It is modeled in a such way that
latent variables from distant depth layers are conditioned on the latent variable from
the near depth layers and all latent variables from different depth layers are directly or
indirectly conditioned upon the corresponding data variables. The graph structure ad-
justs to the scene during the classification process, where certain hints about occlusions
are reviled. Using the conditioning and marginalization operations, first I define inter-
relation between two consequent states of the graph (Theorem 3.2) and then extend it
to any two graph states (Theorem 3.3), i.e. I describe graph sequential change.

• Introduction of the inter-layer interaction potentials. Concerning multi-layer CRF, the
relations between any two neighboring class variables per site and the mutual dependen-
cies between class variables at neighboring sites in each of the layers will be explicitly
modeled. To this end, a number of prototypes for association potentials was described
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in Section 2.3. These prototypes form the data term of the multi-layer conditional ran-
dom fields. The potential functions which correspond to the graph edges connecting
nodes from the same layer will be called as within-layer interaction potentials. These
are described in Section 2.4. And, since the new graphical model has now 3D struc-
ture, one more kind of interaction potentials is needed. These new potential functions
which correspond to graph edges, connecting nodes from different layers will be called as
inter-layer interaction potentials. They as well as the general ideas, used for inter-layer
interaction, are described in Section 3.3.2 in detail.

• Development of the inference algorithm suited for mixed graphs and introduction of the
double marginalization technique. In Section 3.4 I research the application of message-
passing algorithms for inference to the mixed graphical models. To the best knowledge
of the author, the use of classical sum– and max-product inference algorithms for mixed
graphs was not reported in the literature before. Hence, using Theorem 3.4, I represent
the mixed graph in a form of a directed graph, keeping the probability distribution
unchanged. After that any max-product message-passing algorithm from Section 2.5.2
may be used. In order to decode the occluded regions, the double marginalization
method is proposed in Section 3.4.1.

• Introduction of the two-layer CRF. It is worth to mention, that in many applications
two layers are sufficient. In Section 3.5 a special case of multi-layer CRF, with only one
extra layer is described. This results in a two-layer CRF model.

After a brief discussion of the two-layer model current Chapter continues with a detailed
evaluation of the multi-layer CRF approach in Section 3.6. In order to allow for a direct com-
parison to the single-layer CRF technique, the same test scenarios are used as in Chapter 2.
This qualitative evaluation is followed by an conclusion, where I conclude my second main
scientific contribution in Section 3.7.

3.1 Occlusion Model

We approach the problem of handling occlusions within the CRF framework first by splitting
the set of all labels of interest L into two non-interesting sets: one, containing labels, which
correspond to background, i.e. to the objects that cannot occlude other objects but could be
occluded, and another, containing labels, which correspond to foreground, i.e. all remaining
labels. We will call these sets base and occlusion label sets respectively and designate them
through Lx and Lz, thus L = Lx ∪̇Lz.1 All the following reasoning is based on the following

1Lx ∪̇Lz denotes the disjoint union of Lx and Lz .
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three assumptions [KSG18b]:

• For each observation there exists one and only one object from the base label set Lx;

• Every object from the occlusion label set Lz directly or indirectly occludes an object
from the base label set Lx;

• Objects from the occlusion label set Lz may occlude each other.

For absence any of any other assumptions, we design our occlusion model, to handle even
complex inter-occlusions as those, depicted in Figure 3.1.

α

β

γ

δ
ε

ζ

(a) (b) Input scene (c) 1st layer

(d) 2nd layer (e) 3rd layer (f) estimated depth

Fig. 3.1: (a) Example of superposable occlusions. Here objects {α,β} ∈ Lx and {γ,δ,ε,ζ} ∈ Lz. (b)
Synthetic scene. (c) - (e) ML-CRF classification results for 1 base layer and 2 occlusion layers. (f)
Coarsely estimated depth from the scene layer decomposition.

Naturally, all the objects in scene may be ordered along the viewing axis, which is orthog-
onal to the image plane. For convenience, we can split the space between observer and scene
background into a number r+ 1 of depth layers, parallel to the image plane. These layers
will contain scene objects which are differently distant from the observer. Thus, the most
distant background will form the bottom layer of objects, which we will call base layer; while
the foreground objects will be situated on the top layers, called occlusion layers.

Second, we associate with each observation yi several latent random variables, which
correspond to different depth layers of the scene. Variable xi will correspond to the base
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layer, i.e. will represent a background object and will take labels from the base label set L
x;

variable z1
i will correspond to the top layer, i.e. to the actually observed data yi; all other

variables z2
i ,z3

i , . . . ,zr
i will correspond to the rest of the depth layers in the direction from top

to bottom, i.e. will represent objects, occluded by z1
i . All variables zk

i , k ∈ [1; r] will have
labels from the occlusion label set L

z ∪ {void}, where additional class void is used to model
situations where the background is visible. The hierarchy of these variables forms multiple
layers of graph nodes for the whole scene y as depicted at Figure 3.2.

y1 y2 y3 y4 y5 y6 y7

γ γ α α α α α

void τ κ κ void π void

void τ τ void void void void

occlusion
layers

base layer

data

z1

z2

x

y

Fig. 3.2: A vertical slice of a scene, observed from a near-vertical direction: classes
grass and asphalt belong to the scene background: L

x = {asphalt(α), grass(γ)} and L
z =

{tree(τ), car (κ), pedestrian(π)}. The imposed graph with 3 layers (base layer x and 2 occlusion
layers z1,z2) illustrates our occlusion model: square and round nodes correspond to observations y
and labels x,z1,z2, respectively. The dark blue nodes correspond to the regions with occlusion, while
dark red nodes – to the actually observed objects. Blue and red links correspond to unary and pairwise
potentials, respectively.

At the Figure 3.2 occluded label nodes are depicted with bright red circles, while the
actually observed label nodes are depicted with dark red circles. The proposed interaction
model is also depicted with directed and undirected links. Note that the information in the
depicted graph propagates in reverse direction of the arrows. As we can see, resulting occlusion
model implies one base layer x and r ∈ [1; ∞) occlusion layers z1, . . . ,zr, such that labels are
distributed among two mutually exclusive label sets: x = l ∈ L

x, z1, . . . ,zr = l ∈ L
z ∪ {void},

where L
x ∪̇L

z = L. Such an architecture is capable to handle superposable occlusions, such
as depicted at Figure 3.1.

Finally we have to define the interrelation between random variables from different layers
of our occlusion model. Here it is important to model the graph links in such a way, that the
useful information propagates from the ’non-occluded’ and ’occluding’ nodes in the direction
of the ’occluded’ nodes and no ambiguity leaves them. Thus, first we connect the ’non-
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occluded’ and ’occluding’ nodes with the corresponding data sites, whereas ’occluded’ nodes
will not be linked with data nodes directly but will draw information about correct label
from neighborhood, by referring to the actually observed nodes. For this purpose, we will use
directed links with arrowheads pointing to the reference nodes. This implies usage of mixed
graphs, that will be described further in this Chapter in Sections 3.2 and 3.3 in details.

Since there are no prior knowledge weather occlusion took place, the interaction between
random variables will be driven by the ambiguity, arising when interpreting the observa-
tion citeKosovMTAP2018. In case of a ’simple’ occlusion, like at site 6 at Figure 3.2 this
problem is well-posed, because nodes x6 and z2

6 (marked with α and π respectively) take
labels from different non-intersecting label sets Lx and Lz. In case of a ’complex’ occlusion
like at site 3, we meet an ambiguity of interpreting the observation y3 for variables z1

3 and z2
3 :

in particular it is not clear weather tree occludes car, car occludes tree or there is no occlusion
at all and car and tree are neighbors at the same depth layer. We solve such arising ambigu-
ities by applying technique, which we call double marginalization and which is described in
Section 3.4.1 in detail.

3.1.1 Depth Map Estimation

A prior knowledge about the three dimensional structure of the classifying scene may greatly
simplify the application of the multi-layered CRFs. In case, when multiple images of the scene
are available, we propose an application of optical flow techniques for reconstructing a depth
map of the scene [Kos08]. Variational methods are among the best performing techniques for
the dense optical flow estimation, and allow for a real-time performance [KTS09]. Together
with an input image, a corresponding depth map might be used for forming the feature vector
that, in its turn, is used in the classification.

3.2 Mixed Graphical Models

A mixed graph Gm = (V,E ,A) is a graph containing two kinds of links: undirected edges
(− ∈ E) and directed arcs (→ ∈A). The nodes of such mixed graph are related as follows:

If


v1− v2

v1 → v2

v1 ← v2

 in G
m then v1 is a


neighbor

follower

leader

of v2.

Link Sequences and Paths. A sequence of links between vertices v1 and vn in Gm is an
ordered set of links {l1, l2, . . . , ln−1}, such that there exists a sequence of vertexes (not necessary
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distinct) {v1,v2, . . . ,vn}, where link li has endpoints vi,vi+1. A sequence of links for which
the corresponding sequence of vertexes contains no repetitions is called a path.

We will denote paths trough bold Greek (π) and its parts – subpathes – through π(vi,vj+1)≡
{li, . . . , lj}. Note that the result of concatenating two paths with a common endpoint is not
necessarily a path, though it is always a sequence. Paths consisting of a single vertex, corre-
sponding to a sequence of no links, are permitted for the purpose of simplifying proofs; such
paths will be called empty as the set of associated links is empty.

We define a path as a sequence of links rather than vertexes because the latter does not
specify a unique path when there may be two links between a given pair of vertexes. A path
of the form v1 → ·· · → vn, on which every links is arc of the form → with the arrowheads
pointing towards vn is a directed path from v1 to vn.

Leading and Driven Vertexes. A vertex v1 is said to be driven by a vertex vn if there is a
path on which every link li is either of the form vi−vi+1, or vi → vi+1 with 1 ≤ i < n, or
n= 1; i.e. there are no arcs vi← vi+1 pointing towards v1. Such a path is said to be a driven
path from v1 to vn. In its turn, vertex vn is said to be leading for the vertex v1.

We apply this definition distinctively to arrays:

drv
(
V
)
=
{
vi : vi is driven by vj for some vj ∈ V

}
, and

−→drv
(
V
)
=
{
vi : ∃ a directed path from vi to some vj ∈ V

}
.

From this definition directly follow four properties of mixed graphs:

Proposition 3.1. V ⊆
−→drv

(
V
)
⊆ drv

(
V
)
.

drv
(
V
)−→drv

(
V
)
V

Fig. 3.3: Illustration of Proposition 3.1: an array of leading vertecies V is included into the array−→drv
(
V
)
, which is in its turn included into the array drv

(
V
)
.

Proposition 3.2. drv
(
V
)
≡ drv

(
drv

(
V
))
.

Proposition 3.3. ∀U ⊆ V : drv
(
U
)
⊆ drv

(
V
)
.
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Proposition 3.4. ∀U ,∀V; U ∩V = ∅ : drv
(
drv

(
V
)
\U
)

= drv
(
V
)
.

Proof. Since V∩U = ∅, we can write V ⊆drv
(
V
)
\U . By Proposition 3.3, drv

(
V
)
⊆drv

(
drv

(
V
)
\

U
)
. Vice-versa, drv

(
V
)
\U ⊆ drv

(
V
)
so drv

(
drv

(
V
)
\U
)
⊆ drv

(
drv

(
V
))

= drv
(
V
)
, by Proposi-

tions 3.2 and 3.3.

The Propositions 3.2 – 3.4 are also valid for −→drv
(
·
)
.

3.2.1 The m-separation Criterion

Now let us extend Pearl’s d-separation property [Pea88], defined originally for directed graphs,
to the class of mixed graphs.

A non-endpoint vertex u on a path is a follower on the path if u is a follower for its
predecessor or successor, or both of them on the path. A non-endpoint vertex u on a path
is a neighbor on the path if u is a neighbor for its predecessor and successor on the path. A
non-endpoint vertex u, which is neither a follower nor a neighbor on the path is manager
on the path, i.e. the links at a manager u have one of the following form: → u←, → u− ,
−u←. These definitions are also listed in Table B.1 in Appendix B.

A path between vertices v1 and vn in a mixed graph Gm is said to be m-connecting given
a set U (possibly empty), with v1,vn /∈ U , if

(a) every follower on the path is not in U ;
(b) every neighbor on the path is in U ;
(c) every manager on the path is in −→drv

(
U
)
.

If there is no path m-connecting v1 and vn given U , then v1 and vn are said to m-separated
by U . Sets V1 and V2 are m-separated given U , if for every pair v1, vn with v1 ∈V1 and vn ∈V2,
v1 and vn are m-separated given U (V1, V2, U are disjoint sets; V1, V2 are non-empty). If
V1 is m-separated from V2 by U , the joint distribution over all variables in graph will satisfy
conditional independence property V1 ⊥⊥ V2

∣∣ U .
This is an extension of Pearl’s d-separation criterion to mixed graphs in that in a DAG

D, a path is d-connected if and only if it is m-connecting. Here letter ‘d’ stays for ‘directed’
and ‘m’ – for ‘mixed’.

3.2.1.1 Properties of m-connecting paths

We now prove two lemmas giving properties of m-connecting paths that we will exploit in
Section 3.2.2. Here we follow the reasoning presented first for ancestral graphs in [RS02].

Lemma 3.1. If π is a path m-connecting v1 and vn given U in a mixed graph Gm then every
vertex on π is in −→drv

(
U ∪{v1,vn}

)
.
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Proof. Suppose that a vertex u, laying on the path π is not connected with v1 or vn via a
directed path. In this case in order to prove the Theorem it is necessary and sufficient to
show that u ∈ −→drv

(
U
)
.

According to our assumption that u is not in −→drv
(
v1
)
nor in −→drv

(
v2
)
, there must exist

undirected edges or arcs pointing towards u on π. Let vertexes u1 ∈π(v1,u) and un ∈π(u,vn)
be the closest vertexes to u, where such situations occur. Subpaths π(u1,u) and π(u,un)
contain no edges and no arcs pointing towards u, which means that they are directed paths
from u to u1 and un; and that vertexes u1, un are also managers on π. Since π is m-connecting
given U , both vertexes u1,un ∈

−→drv
(
U
)
, and subsequently u ∈ −→drv

(
U
)
.

Lemma 3.2. Let Gm be a mixed graph containing disjoint sets of vertices V1,V2 and U (U
may be empty). If there are vertices v1 ∈ V1 and vn ∈ V2 joined by a path π on which no
followers is in U , all neighbors are in U , and every manager is in −→drv

(
V1∪V2∪U

)
then there

exist vertices v′1 ∈ V1, v′n ∈ V2 such that v′1 and v′n are m-connected given U in Gm.

Proof. Let π′ be a path which contains the minimum number of managers of any path between
some vertex v′1 ∈ V1 and some vertex v′n ∈ V2 on which no followers but all neighbors are in
U and every manager is in −→drv

(
V1∪V2∪U

)
. Path π′ is guaranteed to exist since the path π

described in the Lemma has this form. In order to show that π′ m-connects v′1 and v′n given
U it is sufficient to show that every manager on π′ is in −→drv

(
U
)
.

Suppose for a contradiction that there is a manager u on π′ and u /∈
−→drv

(
U
)
. Then

u∈
−→drv

(
V1∪V2∪U

)
\
−→drv

(
U
)
. So either u∈−→drv

(
V1
)
\
−→drv

(
U
)
or u∈−→drv

(
V2
)
\
−→drv

(
U
)
. Suppose

the former, then there is a directed path π′′ from u to some vertex v′′1 ∈ V1. Let u′ be the
vertex closest to v′n on π′ which is also on π′′. By construction the paths π′(u′,v′n) and
π′′(u′,v′1) do not intersect except at u′. Hence concatenating these subpaths forms a path
which satisfies the conditions on π′ but, since u′ is a follower on the concatenated path, it
has fewer managers than π′, which is a contradiction. The case where u ∈ −→drv

(
V2
)
\
−→drv

(
U
)

is symmetric.

Corollary 3.1. In a mixed graph Gm, there is a path π between v1 and vn on which no
follower and all neighbors are in U (v1,vn /∈ U) and every manager is in −→drv

(
{v1,vn}∪U

)
if

and only if there is a path m-connecting v1 and vn given U in Gm.

Proof. One direction is immediate and the other is a special case of Lemma 3.2 with V1 =
{v1},V2 = {vn}.

This corollary shows that condition (c) in the definition of m-separation can be weakened
to:

(c)’ every manager on the path is in −→drv
(
{v1,v2}∪U

)
.
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v3

v2 v4

v1 v5

u1 u2

Fig. 3.4: Illustration of Lemma 3.2: a mixed graph Gm, where every vertex is in −→drv
(
{v1,v2}

)
. Path

π, passing through vertices v1,v2,v3,v4 and v5 m-connects v1 and v5 given ∅.

3.2.2 Marginalization and Conditioning

Independence Model. An independence model J over a set V is a set of triples V1 ⊥⊥V2 | U
where V1,V2 and U are disjoint subsets of V; V1 and V2 are non-empty. The triple V1⊥⊥V2 | U
is interpreted as saying that V1 is independent of V2 given U .

An independence model J with vertex set V after conditioning out a subset Y, is simply
the subset of triplets which do not involve any vertices in Y. More formally we define:

J
[Y ≡ {(V1 ⊥⊥ V2 | U) : (V1 ⊥⊥ V2 | U ∪Y) ∈ J ; (V1∪V2∪U)∩Y = ∅

}
. (3.1)

An independence model J with vertex set V after marginalizing out a subset Z, is the
set of triplets, defined as follows:

J
[
Z ≡

{
(V1 ⊥⊥ V2 | U) : (V1 ⊥⊥ V2 | U) ∈ J ; (V1∪V2∪U)∩Z = ∅

}
. (3.2)

Combining these two definitions, we obtain:

J
[Y
Z ≡

{
(V1 ⊥⊥ V2 | U) : (V1 ⊥⊥ V2 | U ∪Y) ∈ J ; (V1∪V2∪U)∩ (Y ∪Z) = ∅

}
. (3.3)

3.2.2.1 Graph Transformation

Graph Gm
[Y
Z has vertex set V \ (Y ∪̇Z) and edges specified as follows:

If two vertices v1 and v2 are conditionally dependent given U ∪Y, were U ⊆ V \
(
Y ∪Z ∪

{v1,v2}
)
:

{v1} 6⊥⊥ {v2}
∣∣ U ∪Y,
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and



v1 ∈ drv
(
v2
)
∪
−→drv

(
Y
)
; v2 ∈ drv

(
v1
)
∪
−→drv

(
Y
)

v1 ∈ drv
(
v2
)
∪
−→drv

(
Y
)
; v2 /∈ drv

(
v1
)
∪
−→drv

(
Y
)

v1 /∈ drv
(
v2
)
∪
−→drv

(
Y
)
; v2 ∈ drv

(
v1
)
∪
−→drv

(
Y
)

v1 /∈ drv
(
v2
)
∪
−→drv

(
Y
)
; v2 /∈ drv

(
v1
)
∪
−→drv

(
Y
)


in Gm then



v1− v2

v1 → v2

v1 ← v2

v1− v2


in Gm

[Y
Z .

In words, Gm
[Y
Z is a graph containing the vertices that are not in Y or Z. Two vertices

v1 and v2 are adjacent in Gm
[Y
Z if they are m-connected in Gm given any subset that contains

all vertices in Y and no vertices in Z. If vertices v1 and v2 are adjacent in G
[Y
Z then they are

linked with an edge if they are driven by each other or both lie on the directed paths to some
vertices in Y; or if these two conditions are violated. Otherwise they are linked with an arc,
pointing towards v1 if and only if v1 is a leading vertex for v2, or v2 is linked via a directed
path with a vertex from Y, whereas v1 is not; and an arc pointing towards v2 otherwise.

A path π between vertices v1 and vn on which every follower is in Z, every neighbor is
in −→drv

(
Y ∪{v1,vn}

)
\Z and every manager is in −→drv

(
Y ∪{v1,vn}

)
, is called an inducing path

with respect to Y and Z. This is a generalization of the definition introduced in [VP91].

Theorem 3.1. If Gm = (V,E ,A) is an mixed graph, and Y ∪̇Z ⊂ V then

J (G)
[Y
Z = J (G

[Y
Z).

The proof of this theorem for mixed graphical models may be found in [RS02].

3.3 Multi-Layer Graphical Models

In Section 3.2 we have defined the mixed graph Gm = (V,E ,A) as a structure, build upon
nodes V, undirected edges E and directed arks A. In probabilistic graphical models, graph
nodes represent random variables while edges and arcs designate conditional dependencies
between them. In contrast to the classical CRFs, where no arcs were supported, in the multi-
layer approach, directed arcs designate ’one-way’, casual dependencies. The class of mixed
graphs is much larger than required for our purposes, hence we introduce now the subclass
of multi-layer graphs.

The multi-layer graph Gml = (X ,Y,Z,E ,A) is a mixed graph Gm = (V,E ,A) in which the
array of nodes consists of the data nodes y ∈ Y, base layer class nodes x ∈ X and occlusion
layers class nodes z ∈ Z: V = X ∪̇Y ∪̇Z; and the following conditions hold for all vertexes y,
x and z in Gml:

(a) ∀v ∈ V, ∃y ∈ Y : v ∈ −→drv
(
y
)
;

(b) ∀v ∈ V, ∀y ∈ Y : v ∈ drv
(
y
)
;
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In words, condition (a) states that every vertex in a multi-layer graph is linked via directed
path with at least one data vertex, i.e. every latent random variable, represented with multi-
layer graph and no matter from which layer, is conditioned on corresponding observation.
Condition (b) states that every graph vertex is driven by every data vertex, what guaranties
that the information from all observations affects every single latent random variable. In
addition, according to our occlusion model, we condition the base and the top occlusion
layers directly on the data, i.e. X ⊂ −→drv

(
Y
)
, Z ⊇ z1 ⊂

−→drv
(
Y
)
. This is the motivation for

terming such graphs ’multi-layer’.
From this definition directly follow two important properties of multi-layer graphs:

Proposition 3.5. In a multi-layer graph all the vertexes are driven by every data site:

V ⊆ drv
(
y
)
, ∀y ∈ Y.

Proposition 3.6. In a multi-layer graph all vertexes x ∈ X are not neighbors.

In order to keep our model computationally light, we also restrict the number of links in
an inducing path to 2.

Theorem 3.2. If Gm = (V,E ,A) is a multi-layer graph, with vertex set V = X ∪̇Y ∪̇Z, and
x1,x2 ∈ X then the following five conditions are equivalent:

1. There is an edge or arc between x1 and x2 in Gm
[Y
Z .

2. There is an inducing path between x1 and x2 with respect to Y and Z in Gm.

3. The verticies in drv
(
Y ∪{x1,x2}

)
that are not in Z∪{x1,x2} do not m-separate x1 and

x2 in Gm:

{x1} 6⊥⊥ {x2}
∣∣ drv

(
Y ∪{x1,x2}

)
\ (Z ∪{x1,x2}).

4. ∀U , U ⊆ V \ (Y ∪Z ∪{x1,x2}), ({x1} 6⊥⊥ {x2} | U ∪Y) in J (Gm).

5. ∀U , U ⊆ V \ (Y ∪Z ∪{x1,x2}), ({x1} 6⊥⊥ {x2} | U) in J (Gm)
[Y
Z .

Proof. In order to simplify the proof, let us designate through U ′ the right-hand side of the
expression in (3):

U ′ = drv
(
Y ∪{x1,x2}

)
\ (Z ∪{x1,x2}).
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By Proposition 3.4:

−→drv
(
U ′∪{x1,x2}

)
= −→drv

(
(drv

(
Y ∪{x1,x2}

)
\ (Z ∪{x1,x2}))∪{x1,x2}

)
= −→drv

(
drv

(
Y ∪{x1,x2}

)
\Z
)

= −→drv
(
Y ∪{x1,x2}

)
.

(3.4)

Now let us proceed to the proof point by point:

(2)⇒(3) If there is an inducing path π in Gm with respect to Y and Z, then

• every follower on π is in Z, and since U ′∩Z = ∅ none of the followers is in U ′;

• every neighbor on π is in −→drv
(
Y ∪{x1,x2}

)
\Z ⊆ drv

(
Y ∪{x1,x2}

)
\Z by Propo-

sition 3.1. Since x1,x2 ∈ drv
(
Y ∪ {x1,x2}

)
and x1,x2 /∈ Z we can write that

drv
(
Y ∪{x1,x2}

)
\Z = U ′ ∪{x1,x2} and consequently every neighbor on π is in

U ′; and

• every manager on π is in −→drv
(
Y ∪{x1,x2}

)
=−→drv

(
U ′∪{x1,x2}

)
by Equation 3.4.

Hence by Corollary 3.1 there exists a path π′ which m-connects x1 and x2 given U ′ in
Gm, which means that {x1} 6⊥⊥ {x2}

∣∣ U ′.
(3)⇒(2) Let π be a path which m-connects x1 and x2 given U ′. By Lemma 3.1 and Equa-

tion 3.4, every vertex on π is in −→drv
(
Y ∪{x1,x2}

)
, thus:

• every follower is in −→drv
(
Y ∪{x1,x2}

)
\U ′ ⊆ drv

(
Y ∪{x1,x2}

)
\U ′ =Z ∪{x1,x2} by

Proposition 3.1, so every follower is in Z;

• every neighbor is in −→drv
(
Y ∪ {x1,x2}

)
∩U ′ = −→drv

(
Y ∪ {x1,x2}

)
\ (Z ∪ {x1,x2}) ⊆

−→drv
(
Y ∪{x1,x2}

)
\Z by Proposition 3.1; and

• every manager is in −→drv
(
Y ∪{x1,x2}

)
∩
−→drv

(
U ′
)
⊆
−→drv

(
Y ∪{x1,x2}

)
.

Hence π is an inducing path with respect to Y and Z in Gm.

(3)⇒(4) Again, by Lemma 3.1 and Equation 3.4, every vertex on π is in −→drv
(
Y ∪{x1,x2}

)
,

thus:

• every follower is in −→drv
(
Y ∪{x1,x2}

)
\U ′ ⊆ drv

(
Y ∪{x1,x2}

)
\U ′ = Z ∪{x1,x2} by

Proposition 3.1. Since (Z ∪{x1,x2})∩ (U ∪Y) = ∅, every follower is not in U or Y;

• every neighbor is in −→drv
(
Y ∪ {x1,x2}

)
∩U ′ ⊆ drv

(
Y ∪ {x1,x2}

)
\ (Z ∪ {x1,x2}) =

V \ (Z∪{x1,x2}) by Propositions 3.1 and 3.5. Thus, for every possible choice of U
the union U ∪Y will lie inside V \ (Z ∪{x1,x2}); and
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• every manager is in−→drv
(
Y∪{x1,x2}

)
∩
−→drv

(
U ′
)
⊆
−→drv

(
drv

(
Y∪{x1,x2}

)
\(Z∪{x1,x2})

)
=

−→drv
(
V \ (Z ∪{x1,x2})

)
by Proposition 3.5. As we have shown above (U ∪Y) ⊆

V \(Z∪{x1,x2}), by Propsition 3.3 follows that for every choice of U holds −→drv
(
U ∪

Y
)
⊆
−→drv

(
V \ (Z ∪{x1,x2})

)
.

Hence, if none of the vertices from V \ (Z ∪{x1,x2}) separate x1 and x2, then there is
no such U ⊆ V \ (Y ∪Z ∪{x1,x2}) that fulfills ({x1} ⊥⊥ {x2} | U ∪Y) in J (Gm).

(4)⇒(3) This follows trivially taking U = U ′ \Y.

(4)⇔(1) Definition of Gm
[Y
Z .

(4)⇔(5) Definition of J (Gm)
[Y
Z .

An important consequence of condition (3) in Theorem 3.2 is that a single test of m-
separation in Gm is sufficient to determine whether or not a given adjacency is present in
Gm
[Y
Z ; it is not necessary to test every subset of V \ (Y ∪Z ∪{x1,x2}).

3.3.1 Multi-Layer CRFs

Multi-layer conditional random fields are based on classical conditional random fields, de-
scribed in Chapter 2 with one main difference: rather than having one class variable xi per
image site yi, now we determine r+ 1 such class variables: xi and z1

i , . . . ,z
r
i (thus r is the

number of occlusion layers), corresponding to the base and occlusion layers of our occlusion
model, respectively. Consequently, the multiple class variables form a multi-layer conditional
random field [KSG18b].

According to our reasoning from Section 3.1, we split the label set into two subsets L =
Lx ∪̇Lz, where Lx corresponds to objects at the base layer and Lz corresponds to objects at
the occlusion layer, hence xi takes values l ∈ Lx and zki , k ∈ [1; r] – values l ∈ Lz ∪{void}.
Sets Lx and Lz are mutually exclusive and the special class void is added in order to model
situations where the base layer is not occluded (refer to Figure 3.2).

More formally, we address the general problem of learning a mapping from input obser-
vations y ∈ Y to a number of discrete response variables (x,z1, . . . ,zr)> ∈ Xr+1, based on a
training sample of input-output pairs

(
(x1,z1

1)>,y1
)
, . . . ,

(
(xn,z1

n)>,yn
)
∈ X2×Y drawn from

some fixed but unknown probability distribution. We assume an input image y to consist of
n data sites i ∈ Y = {1,2, . . . ,n} with observed data yi, i.e., y = (y1,y2, . . . ,yn)>, where Y is
the array of all sites, corresponding to the data nodes of an associated graph Gml. With each
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site i we associate r+1 discrete class variables (xi,z1
i , . . . ,z

r
i )> ∈Xr+1, which take values from

a given sets of classes Lx ∪̇Lz ∪{void}.
The goal of classification is to determine the most probable values for xi,z1

i , . . . ,z
r
i given

the data y. Thus, our aim is to compute the posterior probability p(x,z1, . . . ,zr |y) of a
possible output x = ((x1,z1

1 , . . . ,z
r
1)>, . . . ,(xn,z1

n, . . . ,z
r
n)>)> ∈ X(r+1)·n given the input y =

(y1, . . . ,yn)> ∈Yn. Finally, according to [KSG18b] we model the posterior probability p(x,z1, . . . ,zr |y)
directly, expanding the model in Equation 2.5:

p(x,z1, . . . ,zr |y) = 1
Z
·Pdata ·Psmooth ·Poccl. (3.5)

Here, the data and smoothness terms correspond to the CRF model, given in Equation 2.5;
Poccl is the new occlusion term, which brings the causal properties to the model and correspond
to the directed graph arcsA. Our definitions of these terms and underlying potential functions
are described below.

Figure 3.5 shows the structure of our multi-layer graphical model. Squares and circles
correspond to observations and labels, respectively. The dark blue nodes (data sites 2, 3, 4
and 6) correspond to the regions with occlusion, i.e. where only the occluding object is visible;
and thus, the dark red nodes – to the labels, corresponding to actually visible objects. The
graph edges represent dependencies between the nodes.

The reason why we have split the layers is to increase the accuracy of the labeling of oc-
cluded regions: to reveal the labels of the bright label nodes, where the association potentials
could not provide the corresponding base layer nodes with reliable information because the
data is not observable.

Data term. The data term has three components:

Pdata =
∏
i∈Y

ϕxi (xi; y)ϕz(z1
i ; y)

r∏
k=2

ϕai (zki ), (3.6)

where the association potentials ϕxi ∈R|L
x| and ϕzi ∈R|L

z
+|2 associate the data y with the class

variables xi, z1
i of image site i (blue links in Figure 3.5). Omitting the superscript indicating

the layer, the association potentials ϕi are related to the probability of a label xi (or z1
i )

taking a value l given the data y by ϕi(xi; y) = p(xi=l | f i(y)), where the image data are
represented by site-wise feature vectors f i(y) that may depend on all observations y.

The auxiliary data-independent potential ϕa ∈ R|L
z
+| is used to initialize the variables

zki ,k ∈ [2;r] with a uniformly distributed constant values: ϕa(zki )≡ 1/|Lz|. That makes these

2We designate Lz+ ≡ Lz ∪{void}.
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variables to agree with the corresponding z1
i variables after inference. We will describe the

role of these variables in Section 3.4.1.

Smoothness term. The smoothness term is the product of interaction pairwise potentials
over neighboring pixels, defined by graph edges E (red links in Figure 3.5). In order to
preserve the geometrical boundaries between classes and prolongate these boundaries into
the occluded regions we split the set of edges E into a number of non-overlapping edge groups
Eg,g ∈ G. According to contour completion CRF [Sil+14] we can write the smoothness term
from Equation 2.5 in form:

∏
(i,j)∈E

ψij(xi,xj ; y)≡
∏
g∈G

∏
(i,j)∈Eg

ψgij(xi,xj ; y). (3.7)

Initially, we assign all graph edges to one group g=0. We use Hough transform [DH72]
to detect objects’ boundaries in the scene, specifically we detect lines and 2nd-order curves.
For each detected line and curve we add one group g ∈ G and define a group-specific class-
transition matrix Tg (T0 is a unit matrix). All graph edges, intersecting the line we re-assign to
the group Eg. Finally, we can write down our smoothness term with group-specific interaction
potentials:

Psmooth =
∏
i∈Y

∏
g∈G

∏
(i,j)∈Eg

ψgij(xi,xj ; y)
r∏

k=1
ψgij(zki ,zkj ; y), (3.8)

here the potentials ψgij ∈ R|L|×|L| describe how likely a pair of adjacent sites i and j is to
take the labels (xi,xj) = (l, l′) given the data y: ψgij(xi,xj ; y) = p(xi=l,xj=l′ | f i(y), f j(y),g).
Since Lx∩Lz+=∅ we may use the same potential ψgij at all layers. The main difference between
the model in Equation 3.8 and [Sil+14] is that the we use non-overlapping groups Eg and
group-specific potentials ψgij .

In order to model our interaction potentials, we first initialize all matrices Tg(l, l′) with a
unit matrix and add them to the contrast-sensitive data-dependent model, defined in Equa-
tion 2.47:

p(xi=l, xj=l′ |y,g) =

θl ·P(di,j) ·h(l, l′) if l=l′

Tg(l, l′) ·h(l, l′) if l 6=l′
(3.9)

where the regularization function P(di,j) is defined in Equation 2.46. Matrices Tg bring
specific class transition behavior for sites, connected with edges, which belong to groups Eg.
We consider this on more detail in Section 3.4.1. This model differs from the contrast-sensitive
data-dependent model from Section 2.4.2 by the use of the prior probabilities P and class-
transition matrices Tg. As a consequence, class transitions become more likely, depending on
the frequency with which they occur in the training data and belonging to a specific edge
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group.

Occlusion term. The occlusion term consists of two inter-layer pairwise potentials, which
bind all layers of our model:

Poccl =
∏
i∈Y

∏
(i,t)∈A

ξxi (xi,z1
i ; y)

r∏
k=2

ξzi (zk−1
i ,zkt ). (3.10)

The first component ξxi ∈ R|L
x|×|Lz+| is the innovative occlusion potentials, which is the key

to successful layer decomposition (purple links in Figure 3.6). It represents a measure of
how likely one object at visible layer occludes other object from base layer and binds random
variables xi and z1

i from different domains and consequently the potentials are represented
by non-square and non-symmetric matrices of |Lx| × |Lz+| entries. They learn how likely a
base class variable xi is to take value l ∈ Lx given the data y and being ‘occluded’ by an
occlusion class variable z1

i , which takes value l′ ∈ Lz+: ξxi (xi,z1
i ;y) = p(xi=l |z1

i =l′, f i(y)).
Since Lx∩Lz+=∅ we can not model the occlusion potential using classical CRF techniques.
In Section 3.3.2 we overcome this problem by proposing a novel model for these pairwise
potentials.

The second component ξzi ∈R|L
z
+|×|L

z
+| is the inter-layer smoothness potentials correspond-

ing to the directed graph arcs (green links in Figures 3.5 and 3.6), which connect occlusion
variables zki at neighboring layers. Since these variables take values from the set Lz+, we
can model potentials ξzi with a data-independent model from Section 2.4.1. This component
allows for directing the reliable information from the visible layer into the occlusion area and
prevents any ambiguity to leave it. The inter-layer smoothness potentials are also described
in more details in Section 3.3.2.

We derive the parametric version of Equations 3.5, 3.6, 3.8 and 3.10 as expansion of the
model in Equation 2.7:

p(x,z1, . . . ,zr |y,θ) = 1
Z

∏
i∈Y

〈
ϕxi (xi; y),θxϕ

〉〈
ϕzi (z1

i ; y),θzϕ
〉 r∏
k=2

〈
ϕai (zki ),θaϕ

〉
·

∏
i∈Y

∏
(i,j)∈E

〈
ψxij(xi,xj ; y),θxψ

〉 r∏
k=1

〈
ψzij(zki ,zkj ; y),θzψ

〉
·

∏
i∈Y

〈
ξxi (xi,z1

i ; y),θxξ
〉 r∏
k=2

〈
ξzi (zk−1

i ,zki ),θzξ
〉
.

(3.11)

In Equation 3.11, θ =
{

θxϕ,θ
z
ϕ,θ

a
ϕ,θ

x
ψ,θ

z
ψ,θ

x
ξ ,θ

z
ξ

}
are model control parameters, including

weights, which modulate the influence of the individual terms in the classification and those,
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base layer

z1
1 z1

2 z1
3 z1

4 z1
5 z1

6 z1
7 z1

z2
1 z2

2 z2
3 z2

4 z2
5 z2

6 z2
7 z2

zr1 zr2 zr3 zr4 zr5 zr6 zr7 zr

x1 x2 x3 x4 x5 x6 x7 x

y1 y2 y3 y4 y5 y6 y7 y

...
...

...
...

...
...

...
...

occlusion
layers

base layer

data

Fig. 3.5: Structure of the multi-layer graph Gml. Squares and circles correspond to observations
y and labels x,z1, . . .zr, respectively; dark blue nodes represent occluded regions, corresponding to
the Figure 3.2, while dark red nodes – to the actually observed objects. The second dimension and
additional links between data and labels are omitted for simplicity.

which are included into the potential functions.
Figure 3.6 shows the structure of our multi-layer CRF model, which corresponds to the

graph Gml, depicted at Figure 3.5 after conditioning on the data Y. At the figure, we designate
the association potentials with blue color, within-layer pairwise potentials with red color,
inter-layer pairwise potentials with the green color and occlusion potentials – with purple
color. The reason why we have split the layers is to increase the accuracy of classification for
occluded regions, e.g. to reveal the labels x2,x3,x4 and x6, where the association potentials
could not provide the corresponding base layer nodes with reliable information because the
data corresponding to the base layer are not observable.

Theorem 3.3. If Gm = (V,E ,A) is a multi-layer graph, and Y,Z are disjoint subsets of V,
then (

Gm
[Y)[

Z = Gm
[Y
Z .

Proof. We prove this theorem in 3 steps: 1. we show that the set of vertexes in the left-hand
side and the right-hand side of the theorem’s statement are the same; 2. then we prove that
the adjacencies are the same; 3. and finally – that the type of adjacencies (edges and arcs)
are the same.

1. From the definition of the graph transformation operator in Section 3.2.2.1 and from the
properties of the sets 3 directly follows that the graphs

(
Gm
[Y)[

Z ≡
(
Gm
[Y
∅
)[∅
Z and Gm

[Y
Z have

3V \∅= V
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base layer

z1
1 z1

2 z1
3 z1

4 z1
5 z1

6 z1
7 z1

z2
1 z2

2 z2
3 z2

4 z2
5 z2

6 z2
7 z2

zr
1 zr

2 zr
3 zr

4 zr
5 zr

6 zr
7 zr

x1 x2 x3 x4 x5 x6 x7 x

y1 y2 y3 y4 y5 y6 y7 y

...
...

...
...
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...
...

occlusion
layers

base layer

data

Fig. 3.6: Graph Gml[{Y}: structure of the multi-layer CRF model. Squares and circles correspond to
observations y and labels x,z1, . . .zr, respectively; blue edges - unary (association) potentials; red and
green edges - within-layer and inter-layer pairwise (interaction) potentials respectively; purple edges -
occlusion potentials. In spite of the data nodes y are not included in the graph Gml[{Y}, they are still
present at the Figure in order to visualize the dependencies, corresponding to the unary potentials;
dark blue nodes represent occluded regions, corresponding to the Figure 3.2, while dark red nodes -
to the actually observed objects. The second dimension and additional links between data and labels
are omitted for simplicity.

the same sets of vertexes.

2. Let x1 and x2 be two vertexes in V \(Y ∪Z). There is an edge or arc between x1 and x2 in
Gm

[Y
Z if and only if ∀U ⊆ V \(Y ∪Z ∪{x1,x2}) : (x1 ⊥⊥ x2 | U ∪Y) /∈ J (Gm) 4. Using definition

of independence model in Equation 3.3 and Theorem 3.1 we can rewrite this condition in
form: ∀U ⊆ (V \ Y) \ (Z ∪ {x1,x2}) : (x1 ⊥⊥ x2 | U) /∈ J (Gm)

[Y T hm. 3.1≡ J (Gm
[Y). From the

latter follows that the vertexes x1 and x2 are adjacent in
(
Gm

[Y)[
Z .

3. Here we assume that vertexes x1,x2 ∈ V \ (Y ∪ Z) are adjacent in both
(
Gm

[Y)[
Z and

Gm
[Y
Z . Let x1 ∈ drv

(
x2
)

in Gm
[Y
Z , what means that x1 ∈ drv

(
x2 ∪ Y

)
in Gm. If we perform

conditioning out Y from graph Gm we can write that x1 is either in drv
(
x2
)

or x1 is a neighbor
in Gm

[Y . If we subsequently marginalize out Z from graph Gm
[Y we can still write that x1 is

either in drv
(
x2
)

or x1 is a neighbor but in
(
Gm

[Y)[
Z . Since we assumed that x1 and x2 are

also adjacent in
(
Gm

[Y)[
Z , x1 will not be a neighbor by Proposition 3.6 and thus x1 ∈ drv

(
x2
)

in
(
Gm

[Y)[
Z .

We have shown that if x1 ∈ drv
(
x2
)

in Gm
[Y
Z then x1 ∈ drv

(
x2
)

in
(
Gm

[Y)[
Z . Now in order to

4A paraphrasing of the definition of graph transformation in Section 3.2.2.1
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finish the proof we need to show that if x1 /∈ drv
(
x2
)
in Gm

[Y
Z then x1 /∈ drv

(
x2
)
in
(
Gm
[Y)[

Z .
If x1 /∈ drv

(
x2
)
in Gm

[Y
Z then x1 /∈ drv

(
x2
)
or x1 ∈ Y in Gm by Proposition 3.5. By our

assumption that x1 ∈ V \ (Y ∪Z) and by subsequent application of the conditioning and
marginalization operation to graph Gm in the same way as in the first part of the proof, we
derive that x1 /∈ drv

(
x2
)
in
(
Gm
[Y)[

Z .

3.3.2 Inter-Layer Pairwise Potential

The inter-layer pairwise potential ξxi (xi,z1
i ; y) in Equation 3.10 describes how likely class

variables xi and zi from base and occlusion layers and corresponding to the same data site i are
to take values l and l′ given the data y, while the inter-layer pairwise potential ξzi (zki ,zk−1

i ; y)
in Equation 3.10 describes how likely class variables zki and zk−1

i , k ∈ [2; r] from occlusion
layers and corresponding to the same data site i are to take values l′ and l′′ given the data y:

ξxi (xi,z1
i ,y)∝ p(xi = l,z1

i = l′ | f i(y)) (3.12)

ξzi (zki ,zk−1
i )∝ p(zki = l′,zk−1

i = l′′) (3.13)

where l ∈ Lx, l′, l′′ ∈ Lz and k ∈ [2; r].
In order to model the posterior probability from the right-hand side of Equations 3.12

and 3.13 we obviously cant use the contrast-sensitive approaches, which is relatively simple
and gives reliable results, when using for the within-layer potentials. Nevertheless, we can
model the posterior probability from right hand side of Equation 3.13 with the naïve Potts
models from Equation 2.43, what reflects the independence of function ξzi (zki ,zk−1

i ) from
the data. The only possibility to model the posterior probability from right hand side of
Equation 3.12 is to apply one of the data dependent approaches, proposed in the Section 2.4.2.
Let us consider both of them more closely.

Histogram Matrix. The data dependent approach to model within-layer pairwise potential,
described in the Section 2.4.2.1 may be adapted also for modeling an inter-layer pairwise
potential. For this purpose, from the training data we also generate a 2D histogram Hξ :
Lx×Lz→ N of the co-occurrence of labels at different layers but the same image site. Thus,
Hξ(l, l′) is the number of image sites in the training data with xi = l and z1

i = l′. Then the
matrix Hξ(l, l′) is normalized, using either symmetric, or asymmetric approaches, resulting in
a matrix hξ(l, l′) that is the basis for the potential ξxi (xi,z1

i ; y):

p(xi = l,z1
i = l′ | f i(y)) = hξ(l, l′) (3.14)
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Note that for the inter-layer pairwise potential function in Equation 3.14, we do not
multiply the histogram matrix hξ(l, l′) with a contrast-sensitive term, as it was done in the
original model in Equation 2.47.

Concatenated Edge Potentials. In contrast to the concatenated edge potentials described in
Section 2.4.2.2, which were used for the within-layer pairwise potentials, here we redefine the
concatenated set of class labels from Equation 2.48 as

Cξ = Lx×Lz (3.15)

and the potential function becomes

p(xi = l,z1
i = l′ | f i(y))≡ p(

{
xi;z1

i

}
= l′′ | f i(y)), (3.16)

where l ∈ Lx, l′ ∈ Lz and l′′ ∈ Cξ. This data dependent model differs from the original
one 2.49 in the usage of non-concatenated feature vector f i(y). One more important difference
concerning the training procedure: for the association potentials ϕx and ϕz we use training
pairs (xi,yi), (zi,yi) respectively and for the occlusion potentials ξxi – (xi,zi,yi), thus the
training data must have two separate layers of labels: one for the base and one for the
occlusion layers.

3.4 Inference in Multi-Layer Graphs

In Section 2.5 we gave a short introduction to inference methods. The considered ‘classical’
message-passing inference methods (e.g. LBP, Viterbi) were originally developed for directed
graphical models and afterward were adopted for undirected graphical models as well. The
application of message-passing algorithms to mixed graphical models was not studied yet.

We start this section with rewriting the message update rule, defined by Equation 2.51 in
a matrix form5:

µi→j(vj) = ψ2
ij(vi,vj)>×

ϕi(vi) · ∏
(i,k)∈E
k 6=j

µk→i(vi)

 . (3.17)

A diagrammatic representation of Equation 3.17 on example of an undirected graph with 8
nodes is depicted in Figure 3.7:

As we can see from Figure 3.7 every two graph nodes vi and vj bound with an undirected

5In this thesis, without loss of generality, we will model the undirected edges via two directed arcs associated
with the same potential

√
ψ( · , ·), what will affect only the inference stage.
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v3

v5

v4 v1 v2

v8

v6

v7

µ1→2

µ2→1

µ4→1

µ1→4

µ3→1µ1→3

µ5→1 µ1→5

µ2→7

µ7→2

µ8→2µ2→8

µ6→2 µ2→6

Fig. 3.7: Diagrammatic representation of the message update rule: µ1→2(v2) = ψ2
12(v1,v2)> ×

[ϕ1(v1) ·µ3→1(v1) ·µ4→1(v1) ·µ5→1(v1)]. Red color represents the message to be updated and the
blue color - messages needed for the update.

edge (i, j)∈ E (we still consider a message-passing algorithm for undirected graphical models)
induce sending two opposite-directed messages µi→j and µj→i. Before proceeding any further
we prove one theorem:

Theorem 3.4. For a message-passing inference algorithm and for any two graph nodes
v1,v2 ∈ V, the following linking is equivalent till the power of the corresponding pairwise
potential function:

v1−v2 ≡ v1� v2.

Proof. According to the graph construction rules B.5 given in Appendix B the left-hand side
clique represents the joint probability p(v1,v2), whereas the right-hand side clique represents
two conditional probabilities: p(v1 |v2) · p(v2 |v1). Taking into account the approximation of
these probabilities with the potential functions as given in Section B.4 we can rewrite the
statement of the theorem in the following form:

ϕ(v1) ·ψ(v1,v2) ·ϕ(v2)=ϕ(v1) ·ψ(v1,v2) ·ϕ(v2) ·ψ(v1,v2)
ϕ(v1) ·ψ(v1,v2) ·ϕ(v2)=ϕ(v1) ·ψ(v1,v2)2 ·ϕ(v2)

Thus, we have shown that when using the set of rules from Section B.4 for decomposing the
probabilities into the potential functions, the statement of the theorem holds till the power
of pairwise potential function ψ(v1,v2).

From Theorem 3.4 follows a very important property of the pairwise potential functions:

Proposition 3.7. A pairwise potential function, associated with an edge must be a symmetric
function, whereas a pairwise potential function, associated with an arc may be an arbitrary
function.
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v1→ v2 Asymmetry between leader and follower
v1−v2 Symmetry

Please, refer also to Appendix B for more details.
Finally, we use modified tree-reweighted message-passing algorithm from Section 2.5.2.

According to the Theorem 3.4 in order to apply it to the mixed graphs, we represent each
undirected graph edge as two opposite-directed arcs. This results in a graph having directed
arcs only. We allow the messages to be passed only in opposite arc directions. This algorithm
works by formulating the energy minimization problem as an integer programming problem
and then solving its linear relaxation. Our inference algorithm is briefly summed up in
Algorithm 4.

Algorithm 4: Message-passing inference
Data: Unary and pairwise potentials: ϕi(vi), ψi,j(vi,vj), ∀i, j ∈ V,(i, j) ∈ A.
Result: Marginal probabilities pi(vi),∀i ∈ V.

1 repeat
2 forall i ∈ V do // for all graph vertices vi
3 forall j : (i, j) ∈ A do // for all outgoing arcs
4 tmp← ϕi(vi);
5 forall k : (k,i) ∈ A\ (j, i) do // for all incoming arcs, except (j, i)
6 tmp← tmp ·µk→i;
7 µ̂i→j ← ψ2

i,j(vi,vj)>× tmp;
8 Normalize(µi→j);

9 forall i, j : (i, j) ∈ A do // for all graph arcs
10 µi→j ← µ̂i→j ;
11 until converged;
12 forall i ∈ V do // for all graph vertices vi
13 forall k : (k, i) ∈ A do // for all incoming arcs
14 pi(vi)← ϕi(vi) ·µk→i;
15 Normalize(pi(vi));

3.4.1 Double Marginalization

As we have stated in Section 3.1, the main challenge of successful application of the ML-CRF
model to the problem of handling occlusions is that we do not know beforehand where the
occlusions are. We approach this challenge by splitting the inference process into 3 distinct
phases [KSG18b]:

1. ‘Simple’ occlusion phase. First we classify visible regions and analyze the visible layer z1

in order to determine which image sites are likely to be occluded. The layers z2, . . . ,zr and the
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base layer

z1
2 z1

3 z1
4 z1

6 z1
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4 z2

6 z2

x1 x2 x3 x4 x5 x6 x7 x

y1 y2 y3 y4 y5 y6 y7 y

occlusion
layers

base layer

data

Fig. 3.8: Graph Gml[{Y}
{z1

1 ,z2
1 ,z1

5 ,z2
5 ,z2

6 ,z1
7 ,z2

7} with two occlusion layers: y – data; x,z1,z2 – labels; blue
edges - unary (association) potentials; red and green edges - within-layer and inter-layer pairwise
(interaction) potentials respectively; purple edges - occlusion potentials; dark blue nodes represent
occluded regions, corresponding to the Figure 3.2, while dark red nodes - to the actually observed
objects. The ambiguous section of the graph is marked out with dashed rectangle.

potentials ξz
i are data-independent, hence for the first phase the equality zk = z1,∀k ∈ [2;r]

holds by construction. If a variable z1
i of the image site i does not take label void, we determine

an occlusion for this site. Thus, we can estimate position and form of occluded regions in the
scene. After that, we marginalize out the graph nodes, corresponding to the random variables,
having class void. Hence we may end up with a graph structure, depicted in Figure 3.8. This
graph corresponds to one, which depicted at the Figure 3.2.

Having decoded the labels for visible regions, we can now modify the matrices Tg from
Equation 3.9 in such a way, that they make the desired class transitions on the boundary
line or curve more likely. For that we read class labels l and l′ of the regions, separated by
that line and set the positions Tg(l; l′) and Tg(l′; l) to some large parameter. The performance
of this approach is illustrated in Figure 3.9, where we see, that among other methods, our
ML-CRF preserved the inherent region structure for all scenes.

2. ‘Complex’ occlusion phase. In order to detect complex occlusions (as those depicted in
Figure 3.1) we continue analyzing the remaining random variables in z1. If a distinct group
O ⊂ z1 of random variables z1

i , i ∈ O ⊂ Z has the same class, we assume that this is a simple
occlusion and all the underlying occlusion random variables zk

i = z1
i , k ∈ [2; r], i ∈ Y ′ ⊂ Y. In

case if, the group O has variables with different labels, we meet the problem of ambiguity.

For example, let us consider Figure 3.8 in respect to the Figure 3.2, thus the variables z1
3

and z1
4 have values z1

3 = τ and z1
4 = κ. Both τ and κ labels belong to L

z and appear together
at the visible layer. If the scene depth information is not available, it is not clear whether
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Input image Detected lines RF CRF Nearest ML-CRF Occlusion area

Fig. 3.9: Classification error on our synthetic dataset: red Frisbee disc occludes the structures at the
base layer. Examples showing the classification results for occluded pixels using four methods.

Input image 1st layer 2nd layer 3rd layer estimated depth

Fig. 3.10: Our synthetic dataset, illustrating a superposable occlusions. From left to right: Syn-
thetic scene; ML-CRF classification results for the base layer, occlusion layer and visible layer; coarsely
estimated depth from the scene layer decomposition.

object τ occludes κ or vice versa – object κ occludes object τ , i.e. there is not enough proof
to make decision about which labels should take variables in z2. Both scenarios are possible
(the third possible scenario when objects τ and κ are neighbors, i.e. not occlude each other,
is trivial). The problematic section of the graph in Figure 3.8 is marked out with a dashed
rectangle and considered more deeply in the Figure 3.11.

3. Layer decomposition phase. We overcome this problem by using two probe inference
steps: In the first we marginalize out variables z2

i , that stay behind variables z1
i with a class

label κ, so the neighboring to z2
i variables z2

j , (i, j) ∈ E are more likely to take label κ (mind
the new directed arcs in Figure 3.11 (left)); In the second we marginalize out variables z2

k,
that stay behind those visible z1

k having class label τ . Note, that after marginalizing occlusion
nodes out from the graph, the equality zk = z1,k ∈ [2;r] may not hold anymore.
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Fig. 3.11: Problem of ambiguity and its solution: double marginalization method. Neighboring sites
have two different objects from occlusion layer τ,κ ∈ L

z – two scenarios are possible: Left: object τ
occludes object κ scenario: variables z2

1 and z2
2 are marginalized out; Right: object κ occludes object

τ scenario: variables z2
3 and z2

4 are marginalized out.

After each marginalization we estimate the label confidences for the random variables of
occlusion layers, using the formula:

conf(z) = 1− max(ϕa(z)\max(ϕa(z)))
max(ϕa(z))

, (3.18)

where ϕa(z) are from Equation 3.6. Then we chose the most probable variant, which random
variables z2

i or z2
k should be marginalized out. We call this procedure double marginalization

and apply it for each region of the graph with complex occlusions. Additionally, after the
inference process, the scene depth for patch i may be coarsely estimated from the number of
remaining nodes z·

i (please see Figure 3.10, which depict a synthetic scene, corresponding to
the Figure 3.1).

3.5 Two-Layer Conditional Random Fields

Here we describe a special case of multi-layer CRF, with only one occlusion layer, i.e. r = 1,
what results in a two-layer CRF model (tCRF, [Kos+13a]). It is worth to mention, that in
many applications two layers are sufficient. In general, one occlusion layer is sufficient for
separating foreground from background.

We model the posterior probability p(x,z |y) directly, simplifying the model in Equa-
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tion 3.5:
p(x,z |y) = 1

Z

∏
i∈Y

ϕxi (xi; y) ϕzi (zi; y)·

∏
i∈Y

∏
(i,j)∈E

ψxij(xi,xj ; y) ψzij(zi,zj ; y)·

∏
i∈Y

ξxi (xi,zi; y).

(3.19)

its parametric version as simplification of the model in Equation 3.11:

p(x,z |y,θ) = 1
Z

∏
i∈Y

〈
ϕxi (xi; y),θxϕ

〉〈
ϕzi (zi; y),θzϕ

〉
·

∏
i∈Y

∏
(i,j)∈E

〈
ψxij(xi,xj ; y),θxψ

〉〈
ψzij(zi,zj ; y),θzψ

〉
·

∏
i∈Y
〈ξxi (xi,zi; y),θξ〉 .

(3.20)

In Equation 3.20, θ =
{

θxϕ,θ
z
ϕ,θ

x
ψ,θ

z
ψ,θξ

}
are model control parameters, including weights,

which modulate the influence of the individual terms in the classification and those, which
are included into the potential functions.

z1 z2 z3 z4 z5 z6 z7

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

occlusion
layer

base layer

data

base layer

z

x

y

Fig. 3.12: Structure of the two-layer CRF model. The second dimension and additional links between
data and labels are omitted for simplicity. Squares and circles correspond to observations y and labels
x,z, respectively. The dark blue nodes correspond to a region with occlusion. The red and green edges
– within-layer and inter-layer pairwise potentials respectively.

Figure 3.12 shows the structure of our two-layer CRF model. Squares and circles cor-
respond to observations and labels, respectively. Figure 3.12 corresponds to the example,
depicted at Figure 3.2, so the dark blue nodes (data sites 2 – 4 and 6) correspond to a region
with occlusion, i.e. where only the occluding object is visible; and thus, the dark red nodes –
to the labels, corresponding to actually visible objects. The graph edges represent dependen-
cies between the nodes. At such figures, we will also designate the association potentials with
blue color, within-layer pairwise potentials with red color and inter-layer pairwise potentials
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– with the green color. Note that after conditioning on observed data Y the graph Gtl[{Y} is
undirected.

3.6 Experiments

In this section the presented in this chapter two-layer and multi-layer CRF models are eval-
uated and compared with the classical single-layer CRF technique. In particular, the experi-
ments cover the following methods developed by me:

• Two-layer conditional random field model (tCRF, [Kos+13a], Section 3.5), based on
undirected graphs;

• Multi-layer conditional random field model (ML-CRF, Section 3.3.1), based on mixed
graphs with underlying methods:

– Concatenated model for inter-layer pairwise potentials which correspond to the
new directed graph arcs in ML-CRF (Section 3.3.2);

– Double marginalization technique for decoding occluded regions (Section 3.4).

It is a prerequisite of the proposed methods that the training data also have two separate
layers of labels: one for the base and one for the occlusion layers. Hence only the datasets
providing such information may be used. For the evaluation two suitable data-sets with two
layers of references were selected: Vaihingen and StreetScenes. For further information about
these data-sets, please refer to the Appendix D.

The lists of extracted features are also given in Appendix D. Here all of them except the
car confidence feature are used. In spite of the fact that in Chapter 2 the car confidence
feature was proven to be a very useful feature, in the following experiments I want to show
that the ML-CRF model can reveal the occluded regions without application of any object
detectors. For numerical reasons, all features are scaled linearly into the range [0;255] and
then quantized by 8 bit. The CRF-classification is based on the direct graphical models C++

library [Kos15]. Each image site i in Equations 3.5 and 3.19 to be connected to its four nearest
neighbors j in the data grid, thus the red edges of the graphical model in Figures 3.5 and 3.12
are defined.

In each experiment, 62,5 % of the available samples were used for training (50 % for
potential functions and 12,5 % for control parameters θ); the remaining 37,5 % of samples
were used for evaluation. For the association potentials the random forest model, described in
the Section 2.3.2.3 and consisting of NT=100 trees of maximal depth 15 was used, whereas for
the within-layer interaction potentials – the data dependent model, based on the histogram
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matrix from Equation 2.47. This combination of unary and pairwise models recommended
itself as one of the most reliable in Section 2.7.3. Finally, the inter-layer interaction potentials
were modeled with concatenated edge potentials from Equation 3.16. The control parameters
θ were estimated with the help of Powell search method described in Section 2.6.2. The
resulting label maps were compared with the ground-truth; hence the precision and recall of
the results per class as well as the overall classification accuracy [Lew90] are reported.

Baselines. The following baselines were chosen to be compared with the proposed ML-CRF
and tCRF models:

• boosted decision trees-based classifier of Guo & Hoiem [GH12].6

Other general-purpose methods to infer labels of occluded regions do not exist in the literature,
so I provide several baselines. Each method attempts to predict the labels of the underlying
surfaces, given the label confidences for the visible surfaces:

• Most confident background assigns each foreground pixel to the most confident back-
ground label (what corresponds to the classical CRFs);

• Nearest method assigns occluded background pixels to the nearest (in image location)
visible background pixel;

3.6.1 Two-Layer Conditional Random Fields

Existing road extraction methods are far from being practically relevant in challenging en-
vironments, like in suburban regions, where model assumptions about roads are violated
[May+06]. The main reasons for failure of existing methods were occlusion of the road sur-
face by cars, trees and a complex 3D geometry, e.g. at motorway interchanges. This was
the main motivation for the two-layer CRF model. Thus, our evaluation will be especially
concentrated on the labeling of the occluded areas.

To assess our two-layer CRF model we carried out a number of different experiments. At
the first stage we used the Vaihingen data-set and performed two experiments: in the first
experiment CRF , each layer was processed independently, thus the inter-layer interaction
potentials ξ were not considered. In the second experiment tCRF we use the two-layer CRF
model with the inter-layer interaction potentials. For all the experiments in this section, we
used the same models for association and interaction potentials.

Figure 3.13 shows the convergence behavior of the Powell method for training the pa-
rameters θ in Equation 3.20 for both cases. It shows that originally the procedure converges

6Accuracies and figures for this baseline are taken from the corresponding publication.
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Fig. 3.13: Convergence of the Powell search method: Red curve: CRF ; blue curve: tCRF .

more slowly for the tCRF method, probably due to a relatively poor initialization of some
parameters, but in the end-iterated state, a larger value of the objective function Ω from
Equation 2.56 can be achieved. For the Vaihingen dataset the parameters were: θd=0,5,
θs=0,3, θo=18,5, θ1=1086, θ2=0,01 and θg3=100, ∀g ∈ G.

CRF tCRF
Category Rec. Prec. Rec. Prec.

ba
se

la
ye
r asphalt 80,2 % 90,3 % 85,0 % 87,7 %

building 86,5 % 78,3 % 85,9 % 82,5 %
grass 82,7 % 85,5 % 88,3 % 87,8 %
agriculture 84,1 % 64,4 % 85,4 % 84,2 %
overall accuracy 82,6 % 86,6 %

oc
cl
.
la
ye
r void 78,1 % 96,9 % 86,8 % 95,7 %

tree 90,4 % 58,0 % 86,3 % 65,4 %
car 72,7 % 11,5 % 47,7 % 19,4 %
overall accuracy 80,4 % 86,3 %

Tab. 3.1: Comparison between two-layer (tCRF ) and single-layer CRF (CRF ) models on Vaihingen
dataset. Recall (Rec.) and Precision (Prec.) of the experimental results for Vaihingen dataset.

Figure 3.14 shows the results of the experiments for two Vaihingen scenes (22 and 43). In
the figure we can observe that our two-layer model considerably improves the road classifica-
tion in comparison to the state-of-the-art single-layer model. For example, in the right part
of the scene 22, the tCRF model successfully extracts a road part that is completely occluded
with a tree, while CRF wrongly labels this area as grass. This improvement is possible be-
cause the tCRF models explicitly considers occlusion, the results of the base layer receiving
information from spatially neighboring image sites, multi-scale features, and the second layer
of labels. The scene 43 also shows how an occluded road can be correctly classified by the
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Fig. 3.14: Comparison between classical CRF and two-layer CRF approach. Left to Right: scene 22
base and occlusion layers, scene 43 base and occlusion layers. Top to Bottom: groundtruth, CRF ,
tCRF . Gray: asphalt; orange: building; green: grass; beige: agriculture; white: void; dark-green:
tree; red: car.

tCRF . In addition, the grass area in the right lower part of the scene is labeled as agricul-
tural by the CRF model, in spite of the occlusion layer saying that this region is covered
by trees. Agricultural regions are rarely covered by a forest, and the tCRF model can use
this knowledge (derived from the training data) in order to classify this area correctly. For
both scenes we can observe many false positives for the class car. Their number is reduced
considerably by the tCRF model, though at the cost of a few false negative cars. This is also
reflected in the quality numbers in Table 3.1.

The recall and precision as well as the overall accuracy of the results achieved in these
two experiments are shown in Table 3.1. Using the CRF model, the overall accuracy of the
classification was 82,6% for the base layer and 80,4% for the occlusion layer. In the second
(tCRF ) experiment the overall accuracy for the base layer was 86,6%. The improvement
can be attributed by more accurate classification in the occlusion areas (Figure 3.14). From
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CRF MC GH tCRF

road 90,9 % 92,5 % 93,0 % 94,5 %
sidewalk 0,5 % 28,5 % 52,5 % 0,3 %
building 54,3 % 90,5 % 90,0 % 46,6 %
store 0,0 % 0,5 % 11,0 % 0,1 %
tree 92,3 % 69,5 % 73,5 % 92,9 %
sky 77,6 % 68,0 % 79,0 % 80,4 %

Tab. 3.2: Completeness of the classification results for StreetScene dataset. CRF : single-layer CRF;
MC: Most confident background method and GH: method of Guo & Hoiem; tCRF : our method.

the Table 3.1, we can also observe that both the recall and precision of class car are still
very low. This is due to the fact that cars are relatively small regions and so are described
with our features not well enough. The outcome of additional car-detector may correct this
situation: please refer to Section 2.7.1.3. Nevertheless our tCRF model has almost double
precision value for cars, than CRF model, while having smaller recall value. As far as recall
and precision are concerned, the major improvement is an increased precision for asphalt and
an improved recall for grass. The class agriculture has a rather low correctness in the model
CRF. For the occlusion layer, we observe the best performance when using tCRF .

Fig. 3.15: StreetScenes: examples of base layer classification. Top row: Reference; Bottom row:
tCRF classification result. Gray: road; blue: sidewalk; orange: building; green: tree; cyan: sky.

At the second stage of experiments we used the StreetScene data-set and also performed
two experiments: CRF and tCRF but this time we also compare our method with Most
confident background (MC) and Guo & Hoiem (GH) baseline methods. The results are
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presented in Table 3.2 and some classification examples are depicted at Figure 3.15. Table 3.3
depicts a confusion matrix for the base layer, achieved in the tCRF experiment.

as
ph

al
t

bu
ild

in
g

gr
as
s

ag
ri
cu
ltu

re

asphalt 27,50 1,13 4,10 0,07
building 2,03 13,47 1,12 0,02

grass 2,17 0,81 36,38 0,98
agriculture 0,10 0,11 1,73 8,26

Tab. 3.3: Confusion matrix for the base layer, achieved on Vaihingen dataset [%].

As we can see from Table 3.2 neither CRF nor tCRF can distinguish sidewalk and store
classes. Nevertheless, our tCRF method beats the baseline GH method in terms of classifi-
cation accuracy for 3 of 6 classes: road, tree, sky.

3.6.2 Multi-Layer Conditional Random Fields

To assess our multi-layer model we carried out a number of experiments. First we used Vai-
hingen dataset to compare our ML-CRF approach with the Most confident background (MC)
baseline method. Figure 3.16 shows the classification results for 3 scenes with massive occlu-
sions, caused by trees. We can observe that our model (5th row) considerably improves the
road classification in comparison to the baseline model (4th row). ML-CRF model successfully
extracts road parts that are completely occluded with trees, while MC wrongly labels this
area as grass. This improvement is possible because the ML-CRF models explicitly considers
occlusion, the results of the base layer receiving information from spatially neighboring image
sites, multi-scale features, and the additional layers of labels. Additionally the label-maps,
achieved with the ML-CRF appeared to be more “smooth”, which is caused by additional
links connecting the base layer with the occlusion layers.

Figure 3.18 (c) present the percentage of correctly labeled pixels for different classes of the
base layer. Note that improvements of 4-5% over the baselines do not fully convey the large
qualitative improvement that can be seen in Figure 3.18 (d), where only occluded pixels were
evaluated. We can observe that the layered models definitely outperform baseline methods
for classes road and grass. We explain low rates for classes house and agro by the fact that
buildings and agricultural areas are very seldom occluded and such cases may be related to
the reference mistakes.
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Fig. 3.16: Classification results on Vaihingen dataset: Top to Bottom: Original image; Reference for
occlusion layer; Reference for base layer; Most Confident; ML-CRF. Gray: asphalt; orange: building;
green: grass; white: void; dark-green: tree; red: car.
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At the second stage of experiments we used StreetScene dataset and compared our ML-
CRF approach with baselines, including the classifier of Guo & Hoiem. The results are
presented at Figure 3.18 (a,b) the classification examples are depicted at Figure 3.17.

Fig. 3.17: Classification results on StreetScenes dataset: Left to right: Original image; Reference for
base layer; Guo & Hoiem method with polygon fitting; ML-CRF. Green: road; yellow: sidewalk; red:
building; orange: tree; blue: sky; gray: unknown.

As we can see from Figure 3.18 (a) none of the methods can distinguish store class. This
is because the stores are indistinguishable from usual buildings in sense of the used features.
Additional shop advertisement detector may fix that. Class sky in Figure 3.18 (b) has zero
values, because in the dataset sky was never occluded. We can observe that our approach
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produces comparable results to the baseline methods and even significantly outperforms them
for some classes e.g. class (tree) up to 23%.
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Fig. 3.18: Per-class pixel accuracy on both datasets we experimented with.

3.7 Summary

In this chapter a solid image classification framework for handling occlusions with Markov- and
conditional random fields was presented. This framework especially targets the challenging
problem of classifying the occluded parts of the 3D scene depicted in a 2D image. Due to
the layered structure the presented approach is capable to improve the classification rate for
partially occluded objects without applying object detectors or polygon fitting techniques.

Specifically, I proposed a novel “Multi-Layer-CRF” framework that allows for the integra-
tion of sophisticated occlusion potentials into the model and enables the automatic inference
of the layer decomposition. Unlike other image labeling techniques where a single label is
determined for each pixel, layered model assigns multiple labels to pixels: one for the visible
object and others – for occluded objects, if they exist. The presented framework is based on
the mixed graphical models, which explicitly encode causal relationship between the visible
and occluded regions.

In order to decode the complex occlusions with the presented model I proposed the dou-
ble marginalization method, which is capable to reveal 3D structure of the scene from a 2D
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image only. For the double marginalization method the operations of conditioning on– and
marginalization out a subset of nodes in a mixed graph were re-defined. By proving Theo-
rem 3.1 it was shown that these operations do not contradict the corresponding operations
for probability distributions. These graph transformation operators make possible to modify
the graph on-the-fly during the inference process, while keeping the corresponding probability
distribution consistent.

Finally a special message-passing algorithm to perform maximum a posterior inference
on mixed graphs was used and it’s ability to infer the correct labels of occluded regions in
real-world scenes was proven. Thus, I demonstrated the generality and performance of my
method on the problem of occlusions arising in airborne- and street-view images. It is shown
to increase the classification accuracy in occluded areas by up to 23%.
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4 Conclusion and Outlook

4.1 Conclusion

The main topic of this thesis was to introduce a systematic approach for the accurate design
and the efficient implementation of layered conditional random fields methods, that could
handle occlusions. This was done successively in two steps:

Efficient CRF. The scientific contributions in Chapter 2 start with the investigation of how
different features affect the classifier performance. With help of the car detector, which uses
SVM and rotation-invariant features, car confidence values were achieved. The car confidence
feature, which is based on the output of the car detector and has a minor number of false
positives is shown to increase the accuracy of classification especially for aiming class car.

The important conclusion made from the successful application of the confidence feature
is that the feature responses on different categories should bring maximum inter-category
separability while keeping low variabilities within distinct categories. A similar requirement
is also set for the potentials, produced by classifiers. This encourages trying DCNN features
which can be extracted with help of an auxiliary classifier, based on convolutional neural
networks. These features were tested on a challenging EMDS dataset from a microbiology
domain and showed both outstanding accuracy and efficiency.

Next, I concentrated on more efficient classification models used for the potential func-
tions. For the unary potentials the sequential algorithm for GMM training was presented.
This sequential approach is 6 times faster and needs far less memory than classical GMM
implementation that is based on a Expectation Maximization algorithm. The method was
evaluated on a set of airborne images and also showed overall classification accuracy improve-
ment in comparison to the classical GMM approach.

An optimization scheme for the KNN classifier was also proposed. My KNN implemen-
tation is based on KD-tree data structure and takes into consideration only those neighbors,
which lie in a small neighborhood of the nearest found neighbor. The experimental results
showed that the introduced algorithm is more than 5 times faster than the original KNN im-
plementation from the OpenCV library [Ope14] and produces nearly the same classification
accuracy.

For modeling the pairwise potential functions, the novel concatenated model was pre-
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sented. This model in fact a general data-dependent interaction model that uses unary po-
tential functions as underlying models. Experimental results showed that together with the
histogram-based matrix model the concatenated model outperformed all previously existing
pairwise models for CRFs.

Multi-Layer CRF. In Chapter 3 a novel approach, called multi-layer CRF for considering
occlusions in classification was presented. This approach is inspired by an idea of CRFs, but
it is based on mixed graphical models, thus the operation of marginalization and conditioning
for mixed graphs must be re-defined and a suitable message-passing algorithm for inference
must be offered.

Due to the layered structure of the ML-CRF model, it is capable to improve the accuracy
of area classification for partially occluded objects. The method was evaluated on the set
of airborne- as well as on street-view images and showed a considerable improvement of the
overall accuracy in comparison to the classical CRF approach.

With the work that was done in this thesis I have demonstrated that conditional random
fields are not only a method for structured prediction, which considers ‘neighboring’ samples:
with the freedom of modeling the interactions, which CRF provides, it becomes a powerful
tool, which allows to ‘see’ unobserved entities.

4.2 Future Work

Although the proposed framework allows the construction of very fast and highly accurate
conditional random fields techniques, there remain a lot of things that can be done. Moreover,
the introduced and proposed approaches in this thesis gave birth to new questions and ideas.
In the following some of the most promising of these ideas are sketched:

CRF Modeling Ideas Let me start with four aspects that concern an improved modeling or
the integration of additional concepts in the existing framework.

• Deep Learning. Currently the deep learning techniques for semantic image segmentation
tasks became extremely popular because of their high accuracy. DCNNs, for example,
substitute classical CRFs in many areas of computer vision and pattern recognition.
Despite the DCNNs’ main disadvantages (e.g. low learning speed and high demands to
the volumes of training data), they outperform the models that use classical classifiers,
which were considered in Chapter 2. However, the combination of layered CRF and
deep learning techniques may produce more efficient and accurate results.
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There were already works to represent a CRF as recurrent neural network [Zhe+15],
and within this thesis the DCNN features were used as underlying features for the RF
model (Section 2.2.2). In Section 2.3.2.4 it was shown that the ANN model may be
successfully used as the association potential for CRF. Nevertheless, the use of deep
learning techniques as specific association or interaction potentials was not studied and
in the future, I would investigate the combination of CRF and DCNN more in detail.

• Problem-Specific potentials. In this thesis I have compared 8 models for the association
potentials and 5 models for the interaction potentials. For some specific problems, or
even for some specific categories the best results were achieved by one model, for another
problem – by another model. The proposed within this thesis idea of association several
graph nodes with the single observation, makes it possible to classify observations using
several association potentials, built upon different models, simultaneously. This fits
the ideas of ensemble learning [OM99] and boosting [Bre96]. Consequently, the new
data-dependent pairwise potentials, connecting these several graph nodes, should be
developed. These pairwise potentials should manage the contribution of every potential
depending on the observed data and neighboring nodes.

• Data Fusion. Probabilistic methods used for modeling the association potentials of
CRFs are also commonly used for data fusion. However, incorporating multiple layers
into the CRF technique allows for combining data from completely different domains,
which is impossible to project to one unified calculation grid. For example, in geodesy a
higher order CRF model may be used for simultaneous classification of land cover and
land use; in photogrammetry – for multitemporal and multiscale classification of optical
satellite imagery; in non-destructive testing – for detection and localization of flaws in
metals by classification of ultrasonic and X-Ray data.

• Optical Flow Estimation. Another interesting aspect that exceeds the current modeling
framework is the use of CRFs for estimation of the optical flow (and subsequently stereo).
For this task, the nodes’ association potentials should be given in form of the ‘energy
functionals’ getting high when pixels of both images match. The interaction potentials
should take the role of the ‘smoothness’ term, regularizing the optical flow field. This
idea is not completely new in computer vision: [KZ01; SP07; Kos15], however the use
of multiple layers, representing the 3D scene structure will allow to handle occlusion –
the main problem in accurate stereo estimation, in a more natural way.

Numerical Ideas. The main efficiency questions to the framework are related to three pro-
cesses: training, classification and inference. Since the training may be performed offline,



132 Conclusion and Outlook

classification and inference remain the most acute efficiency questions. Apart from the de-
velopment of new and more efficient classification and inference methods, there are also one
general numerical idea that may be worth being investigated.

• Direct Parallelization. In order to improve the performance of the ML-CRF method
even further, one may think of a direct parallelisation of the proposed inference and
decoding schemes. In contrast to domain decomposition techniques that tackle the
problem indirectly by decomposing the graph, such a direct strategy only distributes
the computation itself and thus requires a much lesser computational overhead. This
in turn allows for higher speedups with similar numbers of CPUs. Recent results for
a direct parallelisation of the message-passing algorithms presented in [ASP11] confirm
the usefulness of the latter approach.

Semantic 3D from 2D. The proposed multi-layer approach has much more broader specter
of applications if thinking about its capacity to classify occluded areas as the ability to assign
correct labels to the data, which is not directly observed. In domains as RGB-D imagery,
spatio-temporal reconstruction, etc. this ability is even more important since the labels must
be assigned to the graph nodes, for which no data is available. My multi-layer approach
drains necessary information for such ‘no data’ regions from its surrounding in 3D. However,
additional temporal or depth information, supporting the introduced ML-CRF technique may
increase the classification rate of the occluded regions heavily.

• Features Based on Motion Analysis. When in addition to the scene image, a short
temporal sequence of images (a few seconds before and after the scene image) is available,
it should be possible to extract special features for the association potentials. Without
considering ‘structure-from-motion’ techniques, the features based on motion analysis
may be extremely useful for assigning the moving objects to the foreground layer and,
thus, for separating foreground from the background. Such temporal data supporting
the presented ML-CRF model might increase the classification accuracy significantly.
It is worth mentioning, that the groundtruth for a single frame of the sequence should
be enough for the model to train.

• Features Based on Stereo and Laser Scanning. Secondly, the additional depth informa-
tion, achieved from stereo or laser scanning might be extremely useful. As it was shown
in Chapter 3, depth information may be consistently incorporated into the presented
framework as an additional feature. In combination with the Data Fusion idea from
above, the depth information can be encoded not only as the features and graph struc-
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ture, but also into the additional CRF layer, where the depth would be estimated in
the same stochastic way as categories.

All these ideas give just a small impression on the realm of things that can still be done.
However, one thing is for sure: There will always be a need for fast and accurate algorithms
in computer vision.





A Notations

p probability (formally an array of probabilities)

J independence model

V = {1,2, . . . ,n} array of vertexes in a graph (indexes)

Y ⊂ V array of data vertexes

X ⊂ V array of base layer class vertexes

Z ⊂ V array of occlusion layer class vertexes

E = {(1,2),(1,3), . . . ,( · , ·)} array of edges, i.e. undirected links (pairs of indexes);
here (i, j)≡ (j, i)

A= {(1,2),(1,3), . . . ,( · , ·)} array of arcs (directed links) (pairs of indexes);
here (i, j) 6= (j, i)

G = (V,E) (undirected) graph

D = (V,A) directed graph

Gm = (V,E ,A) mixed graph

Gml = (X ,Y,Z,E ,A) multi-layer graph

C ⊂ G array of cliques

π = {l1, l2, . . . , ln−1} path
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π(vi,vj+1) = {li, . . . , lj} subpath

X = {x1,x1, . . .} set of latent random variables (all possible classifications)

Y = {y1,y2, . . .} set of observed random variables (all possible observations)

L = {l1, l2, . . . , lk} set of categories

Lx ∪̇Lz = L sets of base layer– and occlusion layer categories, respectively

|L| ≡ k number of categories

f(y) = (f1,f2, . . . ,fm)> feature vector

|f(y)| ≡m number of features

ϕ(x) unary potential function

ψ(x1,x2) (within-layer) pairwise potential function

ξ(x1,x2) inter-layer pairwise potential function

N (y)≡N (y; µ,Σ) Gaussian function

G number of Gaussian functions in a Gaussian mixture model

E(y1,y2) Euclidean distance

∆(y,N ) Mahalanobis distance

DKL(N1 ||N2) Kullback-Leibler divergence

0 zero matrix, i.e. a matrix with all elemets equal to zero

I ≡ diag(1,1, . . . ,1) identity matrix
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L loss matrix

θ control parameters vector

P( ·) penalization function
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B Graphical Models

B.1 Statistical Independence

Two random variables v1 and v2 are statistically independent (also unconditional independent)
if and only if p(v1 |v2) = p(v1). As consequence we have:

p(v1,v2) = p(v1 |v2) ·p(v2) = p(v1) ·p(v2). (B.1.1)

B.2 Conditional Independence

Two random variables v1 and v2 are conditional independent given a third random variable
v3 if and only if p(v1 |v2,v3) = p(v1 |v3)1 [Daw80]. As consequence we have:

p(v1,v2 |v3) = p(v1 |v2,v3) ·p(v2 |v3) = p(v1 |v3) ·p(v2 |v3), (B.2.1)

which must be hold for every possible value of v3, and not just for some values.

B.3 General Product Rule

By application of the product rule of probability p(vi,vj) = p(vi |vj) ·p(vj), we can write the
joint distribution for an arbitrary number n of random variables v = (v1, . . . ,vn)>, in the
form:

p(v) =
n−1∏
i=1

p(vi |vi+1, . . . ,vn) ·p(vn); or (B.3.1)

p(v) = p(v1)
n∏
i=2

p(vi |vi−1, . . . ,v1). (B.3.2)

Note, that this decomposition holds for any choice of the joint distribution.

1This notion is equivalent to v1 ⊥⊥ v2 |v3
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B.4 Potential Approximation

unary potentials
p(vi) ∝ ϕ(vi)
p(v) ∝

∏n
i=1ϕ(vi)

pairwise potentials
p(vi |vj) ∝ ϕ(vi) ·ψ(vi,vj) 2

p(vi |vj , . . . ,vm) ∝ ϕ(vi) ·
∏m
t=j ψ(vi,vt)

p(vi,vj) ∝ ϕ(vi) ·ψ(vi,vj) ·ϕ(vj) 3

p(v) ∝
∏n−1
i=1 ϕ(vi)

∏n
j=i+1ψ(vi,vj) ·ϕ(vn)

2Here we assume the pairwise potential function ψ(vi,vj) to be an arbitrary (also non-symmetric) function.
3Since the probability distribution p(vi,vj) is symmetric, we assume here, that the pairwise potential

function ψ(vi,vj) holds the same property, i.e.: ψ(vi,vj)≡ ψ(vj ,vi), ∀i, j.
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B.5 Graph Construction Rules

v1 v2 p(v1,v2) B.1.1∝ ϕ(v1) ·ϕ(v2)

v1 v2 p(v1 |v2)∝ ϕ(v1) ·ψ(v1,v2)

v1 v2...
1

2

n

p(v1 |v2)∝ ϕ(v1) ·ψ(v1,v2)n

v1 v2
p(v1 |v2) ·p(v2 |v1)∝ ϕ(v1) ·ψ(v1,v2) ·ϕ(v2) ·ψ(v2,v1)

= ϕ(v1) ·ψ(v1,v2) ·ψ(v1,v2)> ·ϕ(v2)

v1 v2
p(v1,v2) ∝ ϕ(v1) · ψ(v1,v2) ·
ϕ(v2)

v1 v2

v3

p(v1,v2,v3) = p(v3 |v2,v1) ·p(v2,v3)

= p(v1,v2 |v3) ·p(v3)
p(v2,v3) ·p(v2,v3)

B.2.1= p(v1 |v3) ·p(v2 |v3) ·p(v3)

∝ ϕ(v1) ·ψ(v1,v3) ·ϕ(v2) ·ψ(v2,v3) ·ϕ(v3)

v1 v2

v3
p(v1,v2,v3) B.3.1= p(v1 |v2,v3) ·p(v2 |v3) ·p(v3)

∝ ϕ(v1) ·ψ(v1,v2) ·ψ(v1,v3) ·ϕ(v2) ·ψ(v2,v3) ·ϕ(v3)
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B.6 Mixed Graphs

Gm u is a Gm
[{u}
∅ Gm

[∅
{u}

v1− u− v2 neighbor on the path v1− v2 v1 v2

v1 → u← v2 manager on the path v1− v2 v1 v2

v1− u← v2 manager on the path v1 ← v2 v1 v2

v1 → u− v2 manager on the path v1 → v2 v1 v2

v1− u→ v2 follower on the path v1 v2 v1 → v2

v1 → u→ v2 follower on the path v1 v2 v1 → v2

v1 ← u− v2 follower on the path v1 v2 v1 ← v2

v1 ← u← v2 follower on the path v1 v2 v1 ← v2

v1 ← u→ v2 follower on the path v1 v2 v1− v2

Tab. B.1: The set of examples of mixed graphs over three variables v1, v2 and u used to discuss
conditional independence properties as well as marginalizing and conditioning for multi-layer graphs.
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C.1 Function addPoint

Algorithm 5: addPoint(f)
Data: Sample point f
Result: Updated Gaussian function Ṅ

1 if numPoints= 0 then
2 µ̇← f ;
3 Σ̇← 0;
4 else
5 µ̇← numPoints·µ+f

numPoints+1 ;

6 Σ̇← numPoints·(Σ+µµ>)+ff>

numPoints+1 − µ̇µ̇>;

7 numPoints← numPoints+ 1;

C.2 Function distance

Algorithm 6: distance(N , f)
Data: Sample point f ; Gaussian function N ; minimal number of samples N̂min
Result: Distance dst

1 if Mahalanobis_dstθ then
2 if N .numPoints≥ N̂min then
3 dst←∆(f ,N );
4 else
5 dst← Mahalanobis_dstθ

Euclidian_dstθ ·E(f ,N .µ);

6 else
7 dst← E(f ,N .µ);
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C.3 Function divergence

Algorithm 7: divergence(N1, N2)
Data: Gaussian functions N1 and N2; minimal number of samples N̂min
Result: Divergence div

1 if N1.numPoints≥ N̂min then
2 div← DKL(N1,N2);
3 else
4 div←∞;



D Datasets and Experimental Setup

D.1 Datasets

The methods, presented in this thesis were evaluated using 3 datasets from different ar-
eas of pattern recognition. The first dataset is the Environmental Microorganism Data Set
(EMDS) [Zou+16], containing microscopic images from microbiology and used intensively in
Chapter 2. Our novel method, presented in Chapter 3 requires test data to consist of two
separate layers of class labels: one for the base and one for the occlusion layer. Thus we are
limited by using only those datasets, which provide such information. So for evaluation we
have chosen the following datasets: Vaihingen [Cra10] and the StreetScene [Bil06].

Environmental Microorganism Dataset The EMDS dataset consists of 400 microscopic im-
ages of size 445×304 and contains 20 classes of environmental organisms (plus 1 background
class) and each microorganism class is represented by 20 scenes. Here, we chose the nodes of
the graphical model to correspond to single pixels. Thus, the graphical model for one layer
and one scene consists of 445×304 nodes.

Vaihingen Dataset The Vaihingen dataset consists of 2032 scenes with resolution of 250×250
pixels and Ground Sampling Distance (GSD) of 8 cm. Each scene is represented by a Color
Infra-Red (CIR) image (orthophoto) and a height-map image (Digital Surface Model; DSM)
generated with the variational stereo matching algorithm [KTS09] from wide baseline multiple
overlapping airborne images. Both the CIR and the DSM images are defined on the same
grid. Here, we also chose the nodes of the graphical model to correspond to single pixels.

StreetScene Dataset The StreetScene dataset consists of 3544 color images with resolution
of 1280×960 pixels. In this case data sites are represented by image patches of 5×5 pixels.
So, the graphical model for one layer and one scene consists of 256×192 nodes.

D.2 Reference Data

The reference data for the EMDS dataset is given as a single layer map of labels, achieved by
manually labeling the microorganism images. And the two-layer reference for the Vaihingen
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EMDS Vaihingen StreetScenes
number of scenes: 400 2032 3544
scene resolution [pixels]: 445×304 250×250 1280×960
downscale ratio: 1 : 1 1 : 1 1 : 5
layer resolution [nodes]: 445×304 250×250 256×192
red channel: X X X
green channel: X – X
blue channel: X X X
infra-red channel: – X –
height map: – X –

Tab. D.1: Datasets overview.

and SteetScenes datasets is generated by labeling the images, using the assumption about the
continuity of objects’ shapes in occluded areas, to define the reference of the base layer.

EMDS Dataset The reference of the EMDS dataset contains 20 classes of environmental
microorganisms {ω1, . . . ,ω20}. In the thesis, for simplicity, a microorganism name is sometimes
represented by the symbol ωi (1≤ i≤ 20), as depicted in Fig. D.1. The background constitutes
the 21-st class and covers 87,99 % of the whole amount of samples, which is 55314923. The
percentages of the samples belonging to the microorganism classes varies from 0,06 % for
Epistylis till 1,56 % for Arcella.

Vaihingen Dataset The reference of the Vaihingen dataset has 6 classes: asphalt, building,
grass, agriculture, tree and car, so that Lb = {asphalt,building,grass,agriculture} and Lo =
{tree,car,void}, where special class void represents the situation when there is no occlusions.

StreetScene Dataset The reference of the StreetScenes dataset contains a reference in the
form of polygons that also consider parts of hidden objects and hence could be used to de-
fine the two-layered reference. It has 9 classes: road, sidewalk, building, store, tree, sky,
car, pedestrian and bicycle. The reference for this dataset is given by polygons, and it oc-
curs that some image areas are not covered by any polygon. In order to keep our model
consistent, we introduce here class unknown and mark with it all the uncovered areas at
the base layer; at the occlusion layer, such areas are marked as void. During the evalua-
tion class unknown was ignored. Moreover, in order to assess the presented methods more
impartial, we merge classes road and sidewalk together into more general class asphalt and
include class store into the class building, so that Lb = {asphalt,building,sky,unknown} and
Lo = {tree,car,bicycle,pedestrian,void}.
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ω1 Actinophrys ω2 Arcella ω3 Aspidisca ω4 Codosiga ω5 Colpoda

ω6 Epistylis ω7 Euglypha ω8 Paramecium ω9 Rotifera ω10 Vorticella

ω11 Noctiluca ω12 Ceratium ω13 Stentor ω14 Siprostomum ω15 K. Quadrala

ω16 Euglena ω17 Gonyaulax ω18 Phacus ω19 Stylonychia ω20 Synchaeta

Fig. D.1: Examples of images in EMDS.

D.3 Features

From input data, we derive the site-wise feature vectors fi(y), each consisting of m features.
Particular site-wise feature vectors fi(y), which represent the data in the association potentials
and inter-layer interaction potentials, depend on the dataset. For numerical reasons, all
features are scaled linearly into the range [0; 255] and then quantized by 8 bit.

For the EMDS dataset we make use of pixel-level features extracted from DeepLab-VGG-
16. For short, we call these ‘DCNN’ features and compare them to the following set of features:
the intensity, calculated as the average of the red, blue and green channels; the saturation

Fig. D.2: Example of a scene in Vaihingen dataset. Left: original color-infra-red image; Center:
groundtruth for base layer; Right: groundtruth for occlusion layer.



148 Datasets and Experimental Setup

Category Vaihingen StreetScenes

ba
se

la
ye
r

asphalt 34,86 % 37,98 %
building 17,51 % 25,75 %
grass 38,76 % –
agriculture 8,87 % –
tree – 11,32 %
sky – 4,57 %
unknown – 20,37 %

oc
cl
.
la
ye
r tree 18,07 % –

car 0,86 % 8,36 %
bicycle – 0,13 %
pedestrian – 0,51 %
void 81,07 % 91,00 %

# of samples: 127000000 4354867200

Tab. D.2: Categories overview. The percentage of samples belonging to different categories as well
as the overall number of samples are given.

component in HSL color space. These two features are derived at 3 different scales: for the
individual pixels and as the average in a local neighborhood of 15× 15 and 25× 25 pixels.
Next we determine the variances of intensity, saturation and the gradient determined in local
neighborhoods of 7×7, 15×15 and 25×25 pixels of each site. The last feature is the spacial
coordinate feature, which describes the normalized distance of every pixel from the image
center. This results in 16 features.

The Vaihingen data, based on aerial views, are available in a reference frame aligned with
the North direction, which is not helpful to structure the scene because roads and buildings
(the dominant objects in these data) are not necessarily aligned in North-South or East-West
directions. As the original images were taken at the same flying height, all objects appear at
a similar scale. On the other hand, for the StreetScenes data, the vertical (y coordinate axis)
provides a physically defined reference direction that is clearly related to the scene structure.
Furthermore, the distances at which objects are observed vary considerably, so that the scale
of objects varies both within and between different scenes.

The features used for both Vaihingen and StreetScenes datasets comprise the image inten-
sity (int), calculated as the average of non-infrared channels, the saturation (sat) component
after transforming the image to the Hue-Saturation-Lightness (HSL) color space and the gra-
dient (grad), achieved by applying to the image Sobel operator. We also make use of the
variance of intensity (varint), the variance of saturation (varsat) and the variance of gradient
(vargrad) determined from a local neighborhood of each site i (7×7 pixels for varint, 13×13
pixels for varsat and vargrad, in both cased evaluated at the original resolution).
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For the Vaihingen dataset, we make use of the Normalized Difference Vegetation Index
(NDVI), derived from the near infrared and the red band of the CIR orthophoto [Myn+95].
We also determine a Digital Terrain Model (DTM) by applying a morphological opening filter
to the DSM with a structural element size corresponding to the size of the largest off-terrain
structure in the scene, followed by a median filter with the same kernel size. The DTM is used
to derive a normalized DSM (nDSM) [WF95], i.e. a model of the height differences between
the DSM and DTM. The nDSM describes the relative elevation of objects above ground and
its value at image site i is directly used as a feature. Finally, the feature dist models the
fact that road pixels are usually found in a certain distance either from road edges or road
markings. We generate an edge image by thresholding the intensity gradient of the input
image. The dist feature is the distance of an image site to its nearest edge pixel. The last
two features used for the Vaihingen data are the gradient strength of the DSM (||∇DSM ||)
and the car confidence feature (car).

The StreetScenes dataset has no infra-red channel and no height map. Nevertheless the
classes in images of this dataset have a strong dependency on the image y-coordinate (ordi-
nate) that reflects the vertical structure of the scenes. For instance, the sky is usually above
road and buildings have vertical structure [YF11]. Consequently, we use the ordinate of a
node as a feature. We make use of Histogram of Oriented Gradients (HOG) features [DT05]
for the StreetScenes dataset. We calculate the HOG descriptors for cells consisting of 7× 7
pixels, using blocks of 2×2 cells for normalization. Each histogram consists of 9 orientation
bins (20◦ per bin). The gradient directions are determined relative to the vertical image axis.
We extract nine features from the HOG descriptor, namely the value corresponding to each
direction bin (HOG0,HOG1, . . . ,HOG9).

For both datasets we make use of multiscale features. That is, the features described
above are derived at three different scales. The first scale corresponds to the individual sites,
the second and the third are calculated as the average in a local neighborhoods. For int, sat,
NDVI and nDSM, these neighborhoods were chosen to be 21×21 and 49×49 pixels for the
second and the third scales, respectively. For varint, varsat, vargrad, dist, ||∇DSM || and the
HOG features the neighborhoods were chosen to be 10× 10 and 100× 100 pixels for scales
two and three, respectively. In order to designate the scale at which a feature was extracted
we use subscripts after the feature name with the scale (e.g. NDV I21,nDSM49,etc.).
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Feature EMDS Vaihingen StreetScenes
intensity X X X
saturation X X X
gradient – X X
variance of intensity X X X
variance of saturation X X X
variance of gradient X X X
NDVI – X –
nDSM – X –
dist – X –
||∇DSM || – X –
car confidence – X –
coordinate X – X
HOG – – X
DCNN X – –

Tab. D.3: Features overview.
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unconditional independence, see statistical
independence

VGG-16, 25
Viterbi algorithm, 64
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