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Abstract

The problem of distributing points on a domain, like ball, plays a special
role in the fields like geosciences and medical imaging. Therefore, we present
an equidistribution theory with a focus on obtaining low-discrepancy point
grids on a 3-dimensional ball.
The connection of the discrepancy method and the quadrature points on a
given domain is quite well known. We approximate the integral of a function
given on a bounded domain by the sum of function values at a specific set of
points together with some weights. The idea is to get the best approximation
with the fewest possible function values. The ansatz is logical, if the chosen
data set is well distributed on the whole domain. This perspective, with the
ball as a domain, enables us to get nice configurations as well as suitable
approximations to the integrals of functions on the ball.
It is, for instance, important for choosing the centres of the radial basis
functions as they are needed for regularization methods such as the RFMP
algorithm and the ROFMP algorithm, developed by the Geomathematics
Group at the University of Siegen for ill-posed inverse problems with partic-
ular focus on the sphere and the ball as domains of the unknown functions.
Additionally, it is also important for computational purposes. For instance,
for the wavelet methods with data given on the ball, where one needs to have
an appropriate quadrature rule.





Zusammenfassung

Das Problem, Punkte auf einem Bereich, wie einer Kugel, zu verteilen, spielt
eine wichtige Rolle in den Geowissenschaften und der medizinischen Bildge-
bung. Deshalb präsentieren wir eine Gleichverteilungstheorie auf der 3D-
Kugel in Bezug auf Minimum-Diskrepanz-Gitter. Der Zusammenhang zwis-
chen Diskrepanz und Punktgittern für gegebene Bereiche ist wohlbekannt.
Hierbei wird das Integral einer Funktion durch eine gewichtete Summe von
Funktionswerten approximiert. Die Idee besteht darin, die beste Annäherung
mit möglichst wenigen Funktionswerten zu erzielen. Der Ansatz ist klar,
wenn die gewählten Punkte in dem gesamten Bereich gut verteilt sind. Diese
Perspektive, mit dem Ball als Bereich, ermöglicht es uns, ”schöne” Struk-
turen sowie geeignete Näherungen an die Integrale von Funktionen auf der
Kugel zu erhalten. Zum Beispiel ist es wichtig, die Mittelpunkte der radi-
alen Basisfunktionen auszuwählen, weil diese für Regularisierungsmethoden
wie den RFMP-Algorithmus und den ROFMP-Algorithmus benötigt wer-
den. Diese Algorithmen wurden von der AG Geomathematik der Universität
Siegen für schlecht gestellte inverse Probleme mit besonderem Fokus auf die
Sphäre und die Kugel als Definitionsbereiche entwickelt. Darüber hinaus
sind solche Gitter auch für andere numerische Zwecke hilfreich, wie z.B. für
Wavelet-Verfahren auf der Kugel, die ein Quadraturgitter brauchen.





Introduction

The domain of a ball, because of its similarity with the Earth and the human
brain, has always been an interesting domain for the scientists both in the
fields of Earth sciences and the medical sciences. This resemblance allows
and motivates us to develop more and more specific mathematical tools and
techniques on the 3-dimensional ball in order to study the Earth’s interior
and the human brain.
At present, tomographic inverse problems have become interesting challenges
for the mathematicians. For example, unprecedented data accuracies in the
geosciences enable us to find out more about the Earth’s interior. Long term
processes in the mantle and the core of our planet can be revealed by in-
vestigating, for example, seismographic and geomagnetic data. Short-term
processes at the surface which are caused, for instance, by climate change
can be identified and quantified much better due to recent satellite missions.
Moreover, new technologies for medical imaging open new problems of diag-
nostics and fundamental research. All problems of these kinds are ill-posed
due to unstable solutions, i.e. small noise contained in the data usually de-
stroys the credibility of the calculated solution, if no particular mathematical
techniques such as regularization methods, are used to overcome this unsta-
bility of the data. Due to large sizes of the data sets, in particular in the
geosciences and due to new requirements on the resolution of the obtained
models, novel mathematical methods had to be developed. New approaches
use localized basis functions —hat-like trial functions which concentrate on
arbitrarily chosen regions.
For some of these new methods, the location of the hats is limited due to
some traits of the methods. However, a different approach developed by
the Geomathematics Group in Siegen, Germany removes this restriction and
is able to deal with arbitrarily located hat functions. This method, called
the RFMP algorithm has been introduced in [22, 23, 48]. This algorithm has
been further dealt through different approaches and advanced versions of this
algorithm that are: Regularized Orthogonal Functional Matching Pursuit
(ROFMP) and Regularized Weak Functional Matching Pursuit (RWFMP)
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have been developed by the Geomathematics Group Siegen. We refer the
reader to [36, 37, 51, 71] for the details.
The RFMP algorithm was developed for ill-posed inverse problems with par-
ticular focus on the sphere and the ball as domains of the unknown functions.
One feature of the algorithm is that it constructs a best basis out of an over-
complete selection of trial functions including, in particular, hat functions.
The preprocessing of this algorithm requires that a large set of centres for the
hat functions is chosen – among them a selection is made later for the best
basis. In order not to impose a certain structure on the solution, it would be
good to have a uniformly distributed grid for the initial large grid. Also since
the interior of the Earth is composed of layers with approximately spherical
boundaries, we consider the use of a cartesian grid (i.e. a tensor product grid
from a 1D equidistant grid) not as an ideal choice for such applications. This
arose the need for the construction of appropriate point grids together with
a novel theory for the quantification of their distribution on the ball.

In this thesis, we concentrate on the construction and analysis of well dis-
tributed point grids on the ball, which includes the study of underlying
Sobolev spaces as well as the construction of particular operators (pseudo-
differential operators) for these spaces. In particular, we focus on the con-
struction of low discrepancy point grids and for this we develop, implement
and analyse different algorithms. The approach we used in this work is mo-
tivated by the concept given on the surface of the ball by Cui and Freeden
[14]. In this thesis, we use particular orthonormal basis systems for the con-
struction of reproducing kernel Hilbert spaces on the ball. With the help of
these particular function spaces and the pseudodifferential operators, we lay
down the theory of the discrepancy method. Some parts of these results have
already been published in [34].
An important application of uniformly distributed grids is the use of a
quadrature formula with equal weights. Since one can expect that equal
quadrature weights work particularly well for equidistributed point grids,
the generalized discrepancy originating from the error estimate of a quadra-
ture formula can be used as the uniformity measure of the point grids on the
ball. This perspective enables us to get nice configurations as well as suitable
approximations for the integral of functions on the ball. This is useful for
computational purposes, for instance, for the wavelet methods, where one
needs to have an appropriate quadrature rule. We devoted a chapter (Chap-
ter 7) in this work for this particular application of the distribution theory.
The problem of distributing points uniformly on a geomathematical sur-
face or a domain arises, for example, in tomographic problems or as men-
tioned above, for approximate integration. For the case of a sphere, a lot
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of research has been done in this regard. To name a few, we mention
[13, 14, 31, 43, 57, 60] and the references therein. The concept of gener-
alized discrepancy and its properties on spheres, hyperspheres and Rd+1 are
investigated in, for example, [3, 7, 11, 12, 13, 14, 66]. Moreover, several
discrepancies are known in numerical analysis as testing tools for the distri-
bution of a sample of points on a unit hypercube [0, 1]d (see, for e.g. [10]).
However, such a theory of the discrepancy method and the quadrature points
on the domain of a ball is currently not known.
It should be noted that there can be different perspectives for approaching
this distribution problem, as different problems may require distinct unifor-
mity measures for the distributions which are suitable for the problem to
be handled. Also, the construction of the point grids depends on the way
the uniformity is measured and on the purpose for which it is required. For
example, in [7] the author generates a point set on the space Rd+1 with the
help of Sobol points in [0, 1[d and defines reproducing kernel Hilbert spaces
on Rd+1 as the tensor product of a reproducing kernel defined on the unit
sphere Ωd in Rd+1 and a reproducing kernel defined on [0, 1[. However, this
thesis approaches the distribution problem with a different methodology and
as mentioned above for handling a different problem, i.e. the regularization
of ill-posed tomographic problems in the geosciences and medical imaging.

The outline of the thesis is as follows:

In Chapter 1, we lay down the mathematical foundation required for the
understanding of this work. We present some basic notations and results.
Specifically, we introduce classical orthogonal polynomials along with a brief
summary of their properties. Moreover, complete orthonormal systems on
the sphere and on the ball are introduced. We also introduce Sobolev spaces
on the ball along with a smoothness condition, which tells us that these
spaces possess a reproducing kernel. Since, in Chapter 5, we deal with statis-
tical aspects of discrepancy, some statistical premilinaries are also presented
in this chapter.

In Chapter 2, we present the theory of equidistribution on the ball. This
idea is actually the generalization of the analogous concept on the surface of
the ball given in [14].
First, we introduce the idea of pseudodifferential operators on a ball and also
construct a class of such operators with the help of operators functioning on
the angular and radial parts of a function. Some properties of these operators
are also presented in this chapter. For example, we show that these operators
are well defined and isometric. We also show that they form pseudodiffer-
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ential operators with specific radial and angular orders. Further, we define
particular Sobolev spaces based on the eigenvalues of these operators. These
sequences of eigenvalues depend on two parameters that are related to the
angular and radial parts of the function. We consider that these eigenvalues
satisfy a condition due to which every function from our Sobolev space has
a convergent Fourier series. This in return allows us to consider quadra-
ture formulae with uniform and non-uniform weights and to derive estimates
for the quadrature errors with some restrictions on the considered Sobolev
spaces and the pseudodifferential operators in both cases. This gives us the
generalized and weighted discrepancy formulae. In the end of the chapter,
some representations of the discrepancy along with different operators and
eigenvalues are discussed.

Chapter 3 deals with the construction of the quadrature points on the 3-
dimensional ball. We consider the distribution of points on the ball out of
different spherical grids via different approaches. We show how these point
grids can be further modified. Moreover, we analyse these resulting configu-
rations on the ball using the discrepancy formulae formulated in Chapter 2.
The outcomes are presented in the form of plots followed by analyses about
the results.

After the initial construction and modification of the point grids, we de-
velop and investigate some algorithms for the construction of optimal or
near-optimal point grids in Chapter 4. For example, we experimented with
the grids by changing the maximum distance between the points or by com-
bining a grid on the ball with a grid on the sphere. We computed the dis-
crepancies of the resulting grids to see the effects of the algorithms. For this
purpose, we also consider the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method ([29, 54]). We examine different BFGS updates and line search meth-
ods ([28, 54]) and discuss their effects on the outcomes.

In Chapter 5, some statistical aspects of discrepancy are discussed. The
asymptotic properties of the generalized discrepancy for the case of a sphere
are investigated by Choirat and Seri in [11]. With the help of the same
concepts, we derive the properties of the generalized discrepancy on the ball.
An interesting question of whether the discrepancy actually converges to zero
for a uniform grid is statistically approached in this chapter. Moreover, an
asymptotic distribution of the generalized discrepancy is derived.

In addition to the equidistribution theory on the 3-dimensional ball, Chapter
6 gives the generalized results for the d-dimensional case with d ≥ 3. At first,
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spherical harmonics in d dimensions ([19, 53]) are briefly introduced in this
chapter. Then, we construct complete orthonormal systems for higher dimen-
sions. Further, the differential operators for these systems are derived and
Sobolev spaces on a ball of d dimensions are constructed. We also present the
theory of the discrepancy method and quadrature points for higher dimen-
sions. This includes the construction of pseudodifferential operators, Sobolev
spaces and the derivation of the discrepancy formula. After all this theory,
the results of numerical tests for the 4-dimensional case are presented. For
this purpose, we use the generalized form of a grid from Chapter 3 and the
algorithms defined in Chapter 4. For the sake of brevity, two of the best al-
gorithms are tested for the case d = 4. At the end of this chapter, we present
some numerical properties of the generalized discrepancy. We show that the
worst case error for a cubature rule is exactly the discrepancy. Further, we
discuss the tractability of multivariate integration (see [55]) for our defined
Sobolev spaces. A different notion of uniformity (see [3]) is discussed in the
end of the chapter. Also, the convergence of the generalized discrepancy with
respect to this concept is examined.

Chapter 7 presents some numerical tests in order to investigate the appli-
cability of the equidistribution theory. Here, we deal with the numerical
integration on the ball using one of the grids constructed in Chapter 3. We
compute the approximate error and also the error bounds for a considered
function on the ball and use the results to observe how well our grid approx-
imates the integrals on the ball.

Finally, the outcomes of this work are summarized in Chapter 8 with some
conclusions and an outlook for further research.
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Chapter 1

Preliminaries

This chapter gives the basic definitions, known results and concepts for the
understanding of the further work. In the first section, we introduce some
general settings and the notations which we will require in this thesis. Also,
we define certain function spaces on a domain D ⊂ Rn and state some
established theorems (see [5, 15, 20, 38, 59, 75]). In the further sections of
this chapter, we introduce briefly the orthogonal polynomials ([25, 53, 70]).
Also, complete orthonormal systems on the sphere as well as on the ball
are discussed along with their properties ([2, 24, 47, 50]). Furthermore, a
statistical background is laid down in the last section.

1.1 Notations

In the following work, the letters N, N0, R+, R+
0 and C denote the set of all

positive integers, the set of all nonnegative integers, the set of all positive real
numbers, the set of all nonnegative real numbers and the set of all complex
numbers, respectively. The elements in the space Rd of dimension d are
denoted by x, y, such that

x = rξ,

where r = |x|=
√
x2

1 + x2
2 + . . .+ x2

d and ξ = x
|x| ∈ Ωd−1 := {η ∈ Rd : |η|= 1},

Ωd−1 denoting the (d − 1)-sphere of radius 1. In what follows, a 2-sphere is
denoted by Ω, i.e. Ω := Ω2. A ball of radius R ∈ R+ in Rd is denoted and
defined as

BdR := {(x1, x2, . . . , xd) ∈ Rd : |x|≤ R}, R ∈ R+. (1.1)

Specifically, a 3D unit ball and a 3D-ball of radius R are represented by B
and BR, respectively.

1



2 CHAPTER 1. PRELIMINARIES

Definition 1.1.1 The Laplace operator in R3 is given by

∆x :=
3∑
i=1

∂2

∂x2
i

. (1.2)

The polar coordinate representation of the Laplace operator is given as

∆x =

(
∂

∂r

)2

+
2

r

∂

∂r
+

1

r2
∆∗ξ , (1.3)

where ∆∗ is known as the Beltrami operator and is given by

∆∗ξ =
∂

∂t

(
1− t2

) ∂
∂t

+
1

1− t2

(
∂

∂φ

)2

. (1.4)

For ξ ∈ Ω, we use the following notation:

ξ(φ, t) =

√1− t2 cosφ√
1− t2 sinφ

t

 ,

where t ∈ [−1, 1] is the polar distance and φ ∈ [0, 2π[ is the longitude.

Theorem 1.1.2 The gradient ∇ in R3 can be written as the sum of a radial
and an angular part, i.e.

∇ = εr
∂

∂r
+

1

r
∇∗, (1.5)

where ∇∗ is the surface gradient given by

∇∗ := εφ
1√

1− t2
∂

∂φ
+ εt
√

1− t2 ∂
∂t
, (1.6)

with orthonormal vectors

εr(φ, t) := ξ, ξ ∈ Ω

εφ(φ) :=

− sinφ
cosφ

0

 ,

εt(φ, t) :=

 t cosφ
t sinφ√
1− t2

 .
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Definition 1.1.3 For any x > 0, the gamma function of x is denoted by
Γ(x) and is defined as

Γ(x) :=

∫ ∞
0

e−ttx−1dt,

with
Γ(x+ 1) = xΓ(x), x > 0 (1.7)

and
Γ(n+ 1) = n! , n ∈ N0. (1.8)

Lemma 1.1.4 (Duplication Formula). For x > 0, we have

2x−1Γ
(x

2

)
Γ

(
x+ 1

2

)
=
√
π Γ(x). (1.9)

Definition 1.1.5 For all x, y > 0, the beta function (x, y) 7→ B(x, y) is
defined as

B(x, y) :=

∫ 1

0

tx−1(1− t)y−1dt =

∫ ∞
0

tx−1

(1 + t)x+y
dt. (1.10)

Theorem 1.1.6 Let B and Γ be the functions as defined above, then

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)

for all x, y > 0.

Definition 1.1.7 For r, k ∈ N0 with k ≤ r, the binomial coefficients in
terms of gamma functions are defined by(

r

k

)
:=

Γ(r + 1)

Γ(k + 1)Γ(r − k + 1)
. (1.11)

We mention here some of the properties of binomial coefficients from [30].

Theorem 1.1.8 The binomial coefficients have the following properties:

1. Binomial products: For r ≥ n ≥ k ≥ 0,(
r

n

)(
n

k

)
=

(
r

k

)(
r − k
n− k

)
. (1.12)
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2. Sum of binomial products (also known as Vandermonde’s identity): For
X, Y > 0 and n ∈ N0,

n∑
k=0

(
X

k

)(
Y

n− k

)
=

(
X + Y

n

)
. (1.13)

3. Negating the upper index of a binomial coefficient: For r, k ∈ N0 with
k − r − 1 > 0, (

r

k

)
= (−1)k

(
k − r − 1

k

)
. (1.14)

Remark 1.1.9 ([30]). The above identities are also valid for all r ∈ R.

Definition 1.1.10 The symbol δij represents the Kronecker delta and is
given as

δij :=

{
1, i = j,

0, i 6= j.

Definition 1.1.11 Let F and G be two univariate functions and x0 ∈ R ∪
{−∞,+∞}, then the Landau symbol O is defined as

F (x) = O (G(x)) as x→ x0 if and only if
F (x)

G(x)
is bounded as x→ x0

and the symbol o is defined as

F (x) = o (G(x)) as x→ x0 if and only if lim
x→x0

F (x)

G(x)
= 0.

Definition 1.1.12 A Pre-Hilbert space X is a nonempty real vector space
together with an inner product

〈·, ·〉 : X ×X → R,

satisfying the following properties for all x, y, z ∈ X and λ, µ ∈ R:

(i) 〈x, x〉 ≥ 0.

(ii) 〈x, x〉 = 0 if and only if x = 0.

(iii) 〈x, y〉 = 〈y, x〉.

(iv) 〈λx+ µy, z〉 = λ〈x, z〉+ µ〈y, z〉.
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Remark 1.1.13 A complete Pre-Hilbert space is called a Hilbert space.

Definition 1.1.14 A Hilbert space H of functions on a domain D ⊂ Rn is
said to be a reproducing kernel Hilbert space if there exists a kernel KH :
D ×D → R satisfying the following properties:

1. KH(x, ·) ∈ H for all x ∈ D.

2. 〈KH(x, ·), F 〉 = F (x) for all x ∈ D and for all F ∈ H.

Definition 1.1.15 Let H be a Hilbert space of real valued functions F on a
domain D. For a fixed x ∈ D, the map

Lx :H → R
F 7→ F (x)

is called the evaluation functional at x.

Theorem 1.1.16 (Aronszajn’s Theorem). The Hilbert space H of func-
tions on D ⊂ Rn is a reproducing kernel Hilbert space if and only if the
evaluation functional Lx is continuous for each x ∈ D.

Theorem 1.1.17 For a reproducing kernel Hilbert space H of functions on
D ⊂ Rn the corresponding reproducing kernel KH is uniquely represented by

KH(x, y) =
∞∑
k=0

Uk(x)Uk(y) for all x, y ∈ D, (1.15)

given that {Uk}k∈N0 is a complete orthonormal system in H satisfying

∞∑
k=0

Uk(x)2 < +∞ for all x ∈ D. (1.16)

Theorem 1.1.18 ([15]). Let H be a Hilbert space of functions on a domain
D ⊂ Rn and L : H → R be a bounded linear functional on the Hilbert space
H. Then,

1. the function D 3 y 7→ LxKH(x, y) is an element of H.

2. L(F ) = 〈F,LxKH(x, ·)〉H for all F ∈ H.

Definition 1.1.19 A vector space X together with a mapping (called norm)

‖·‖: X → R,

is named as a normed space if for all x, y ∈ X, the following holds:
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(i) ‖x‖≥ 0.

(ii) ‖x‖= 0 if and only if x = 0.

(iii) ‖λx‖= |λ|‖x‖ for all λ ∈ R.

(iv) ‖x+ y‖≤ ‖x‖+‖y‖.

Remark 1.1.20 Every pre-Hilbert space X is a normed space with norm

‖x‖=
√
〈x, x〉 for all x ∈ X.

It is called the induced norm.

Theorem 1.1.21 (Cauchy-Schwarz Inequality). An inner product with
the corresponding induced norm on the space X satisfies the Cauchy-Schwarz
inequality, i.e. for all x, y ∈ X

|〈x, y〉| ≤ ‖x‖‖y‖. (1.17)

Definition 1.1.22 Let D ⊂ Rn be compact. Then Ck(D) denotes the space
of all functions F : D → Rm on D possessing k continuous derivatives. In
particular, C0(D) := C(D) is a complete normed space with the norm

‖F‖C(D):= max
x∈D
|F (x)|.

Definition 1.1.23 Let D ⊂ Rn be a Lebesgue measurable space with 1 ≤
p < +∞. Let Lp(D) be the space of all measurable functions F : D → R that
satisfy ∫

D

|F (x)|p dx < +∞

and N p(D) denote the space of all measurable functions F : D → R with∫
D

|F (x)|p dx = 0.

Then the normed space (Lp(D), ‖·‖p) is defined by

Lp(D) := Lp(D)/N p(D)

with the norm

‖F‖Lp(D) :=

(∫
D

|F (x)|p dx

) 1
p

. (1.18)

In particular, for the case of p = 2, L2(D) forms a Hilbert space with the
inner product

〈F,G〉L2(D) :=

∫
D

F (x)G(x)dx. (1.19)
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Definition 1.1.24 Let w ∈ C[a, b] with w > 0 in (a, b). Further, let L2
w[a, b]

be the space of all measurable functions F : [a, b]→ R that satisfy∫ b

a

F (x)2w(x) dx < +∞

and N 2
w[a, b] denote the space of all measurable functions F : [a, b]→ R with∫ b

a

F (x)2w(x) dx = 0.

Then the Hilbert space
(

L2
w[a, b], 〈·, ·〉L2

w[a,b]

)
is defined by

L2
w[a, b] := L2

w[a, b]/N 2
w[a, b]

with the inner product

〈F,G〉L2
w[a,b] :=

∫ b

a

F (x)G(x)w(x) dx. (1.20)

The substitution rule for volume integrals leads us to the following theorem.

Theorem 1.1.25 Let 0 ≤ a < b < +∞ and D := {x ∈ R3 | a ≤ |x|≤ b},
then ∫

D

F (x)dx =

∫ b

a

r2

∫
Ω

F (rξ) dω(ξ) dr (1.21)

for all F ∈ C(D), provided that the integrals exist.

Theorem 1.1.26 (Uniform Convergence Theorem). If {fn}n∈N0 is a
sequence of continuous functions defined on a domain D that converges uni-
formly to the function f on D, then f is also continuous on D.

Theorem 1.1.27 (Dini’s Theorem). Let D ⊂ Rn be compact, and

(i) {fn}n∈N0 be a sequence of continuous functions on D,

(ii) {fn}n∈N0 converge pointwise to a continuous function f on D,

(iii) {fn}n∈N0 be monotonic.

Then, {fn}n∈N0 converges uniformly to f on D.

Definition 1.1.28 A subset S of a pre-Hilbert space X is called an orthog-
onal set if all its elements are pairwise orthogonal, i.e. for all x, y ∈ S

〈x, y〉 = 0, if x 6= y.
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Definition 1.1.29 A subset S of a pre-Hilbert space X is known as an or-
thonormal set if for all x, y ∈ S,

〈x, y〉 =

{
0, if x 6= y,

1, if x = y.

In the case of a countable system {xn}n∈N0, we can say that it is orthonormal
if

〈xn, xm〉 = δnm, n,m ∈ N0. (1.22)

Theorem 1.1.30 For an orthonormal system {xn}n∈N0 in a Hilbert space
H, the following properties are equivalent:

1. {xn}n∈N0 is complete, i.e. for F ∈ H

if 〈F, xn〉H = 0 for all n ∈ N, then F = 0. (1.23)

2. H = span{xn |n ∈ N0}
‖·‖

.

3. Every element F ∈ H can be expanded as a Fourier series, i.e.

F =
∑
n∈N0

〈F, xn〉H xn. (1.24)

4. The Parseval identities hold:

‖F‖2
H =

∑
n∈N0

〈F, xn〉2H , (1.25)

〈F,G〉H =
∑
n∈N0

〈F, xn〉H 〈G, xn〉H (1.26)

for all F,G ∈ H.

1.2 Orthogonal Polynomials

This section gives the details about the classical orthogonal polynomials,
known as Jacobi polynomials, and some particular cases of these polynomials.
We also state their properties that will be required later. For details, the
reader is referred to [1, 9, 44, 70].

Definition 1.2.1 For n ∈ N0, α, β > −1, the functions P
(α,β)
n defined on

the interval [−1, 1], are named as Jacobi polynomials, if they satisfy the
following properties:
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1. degP
(α,β)
n = n.

2. For weights w(x) = (1− x)α(1 + x)β,∫ 1

−1

w(x)P (α,β)
m (x)P (α,β)

n (x)dx = 0 for n 6= m. (1.27)

3. P
(α,β)
n (1) = Γ(n+α+1)

Γ(n+1)Γ(α+1)
.

Theorem 1.2.2 For w ∈ C[−1, 1] with w(x) = (1−x)α(1+x)β, where w > 0
in (−1, 1) and a sequence

(
n+α
n

)
with n ∈ N0, Jacobi polynomials are the only

polynomials that are determined by the properties in Definition 1.2.1.

Theorem 1.2.3 The Jacobi polynomials y = P
(α,β)
n satisfy the following sec-

ond order, linear, homogeneous differential equation:(
1− x2

) d2y

dx2
+ (β − α− (α + β + 2)x)

dy

dx
+ n(n+ α + β + 1)y = 0. (1.28)

Theorem 1.2.4 (Rodriguez Formula). For α, β > −1, n ∈ N0 and for

all x ∈ [−1, 1], the Jacobi polynomials P
(α,β)
n satisfy

(1− x)α(1 + x)βP (α,β)
n (x) =

(−1)n

2nn!

(
d

dx

)n (
(1− x)n+α(1 + x)n+β

)
. (1.29)

We mention here another representation of Jacobi polynomials (see [70]). For
α, β > −1 and n ∈ N0, we have

P (α,β)
n (x)

=
1

n!

n∑
ν=0

(
n

ν

)
(n+α+β+1) . . . (n+α+β+ν)(α+ν+1) . . . (α+n)

(
x− 1

2

)ν
,

which can be rewritten as

P (α,β)
n (x) =

n∑
ν=0

(
n+ α + β + ν

ν

)(
n+ α

n− ν

)(
x− 1

2

)ν
. (1.30)

Now, we state the following result from [27] (Proposition 2.6) for our required
settings.

Theorem 1.2.5 Let x = 2r2 − 1 with r ∈ [0, 1], then

(
r2 − 1

)α
P (α,β)
n

(
2r2 − 1

)
=

α+n∑
k=0

(−1)α+n−k
(
α + n

k

)(
β + k + n

n

)
r2k (1.31)

for all α ∈ N0 and β > −1.
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Proof: Substituting x = 2r2 − 1 in equation (1.30), we get

P (α,β)
n

(
2r2 − 1

)
=

n∑
ν=0

(
n+ α + β + ν

ν

)(
n+ α

n− ν

)(
r2 − 1

)ν
.

Further, multiplying both sides by the term (r2 − 1)
α

and using the binomial
expansion, the above equation takes the form(

r2 − 1
)α
P (α,β)
n

(
2r2 − 1

)
=

n∑
ν=0

(
n+ α + β + ν

ν

)(
n+ α

n− ν

)(
r2 − 1

)α+ν

=
n∑
ν=0

(
n+ α + β + ν

ν

)(
n+ α

n− ν

) α+ν∑
k=0

(−1)α+ν−k
(
α + ν

k

)
(r2)k

=
n∑
ν=0

(
n+ α + β + ν

ν

)(
n+ α

α + ν

) α+ν∑
k=0

(−1)α+ν−k
(
α + ν

k

)
r2k. (1.32)

With the help of property (1.12), we can write(
n+ α

α + ν

)(
α + ν

k

)
=

(
n+ α

k

)(
n+ α− k
α + ν − k

)
=

(
n+ α

k

)(
n+ α− k
n− ν

)
. (1.33)

Inserting (1.33) in (1.32), we arrive at(
r2 − 1

)α
P (α,β)
n

(
2r2 − 1

)
=

n∑
ν=0

(
n+ α + β + ν

ν

) α+ν∑
k=0

(−1)α+ν−k
(
n+ α

k

)(
n+ α− k
n− ν

)
r2k.

Now, changing the order of summation and using (1.14), i.e.

(−1)ν
(
n+ α + β + ν

ν

)
=

(
−n− α− β − 1

ν

)
,

we get(
r2 − 1

)α
P (α,β)
n

(
2r2 − 1

)
=

α+n∑
k=0

(−1)α−k
(
α + n

k

)
r2k

n∑
ν=0

(
−n− α− β − 1

ν

)(
n+ α− k
n− ν

)
.
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From Vandermonde’s identity (1.13), we know that

n∑
ν=0

(
−n− α− β − 1

ν

)(
n+ α− k
n− ν

)
=

(
−β − k − 1

n

)
.

Again using (1.14), we get(
−β − k − 1

n

)
= (−1)n

(
β + k + n

n

)
.

By virtue of the above considerations, we finally get

(
r2 − 1

)α
P (α,β)
n

(
2r2 − 1

)
=

α+n∑
k=0

(−1)α+n−k
(
α + n

k

)(
β + k + n

n

)
r2k,

as required.

Remark 1.2.6 For α = 0, (1.31) becomes

P (0,β)
n

(
2r2 − 1

)
=

n∑
k=0

(−1)n−k
(
n

k

)(
β + k + n

n

)
r2k. (1.34)

The Jacobi polynomials can be easily calculated using the following three-
term recurrence relation.

Theorem 1.2.7 (Recurrence Formula). For every α, β > −1 and x ∈
[−1, 1], the Jacobi polynomials are given by

P
(α,β)
0 (x) = 1,

P
(α,β)
1 (x) =

1

2
(α + β + 2)x+

1

2
(α− β),

P (α,β)
n (x)

=
(2n+ α + β − 1)[(2n+ α + β)(2n+ α + β − 2)x+ α2 − β2]

2n(n+ α + β)(2n+ α + β − 2)
P

(α,β)
n−1 (x)

− 2(n+ α− 1)(n+ β − 1)(2n+ α + β)

2n(n+ α + β)(2n+ α + β − 2)
P

(α,β)
n−2 (x), n ≥ 2.

Theorem 1.2.8 For n ∈ N0, α, β > −1, the k-th derivative of P
(α,β)
n is

given as

dk

dxk
P (α,β)
n (x) =

Γ(α + β + n+ k + 1)

2kΓ(α + β + n+ 1)
P

(α+k,β+k)
n−k (x). (1.35)
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The Jacobi polynomials are reduced to some particular cases for different
values of α and β. Here, we will discuss two of the cases, which will be used
later in the work.

1. For α = β, Jacobi polynomials are reduced to Gegenbauer polyno-
mials, also known as ultraspherical polynomials. They are related
to the general Jacobi polynomials by the following equation:

Cλ
n(x) =

Γ(α + 1)Γ(n+ 2α + 1)

Γ(2α + 1)Γ(n+ α + 1)
P (α,α)
n (x)

=
Γ(λ+ 1

2
)Γ(n+ 2λ)

Γ(2λ)Γ(n+ λ+ 1
2
)
P

(λ− 1
2
,λ− 1

2
)

n (x), (1.36)

where λ 6= 0 and α = β = λ − 1
2
, λ > −1

2
. Using Theorem 1.2.4, we

can derive the Rodriguez formula for the Gegenbauer polynomials as
follows: For α = β = λ− 1

2
, equation (1.29) gives

(
1− x2

)λ− 1
2 P

(λ− 1
2
,λ− 1

2)
n (x) =

(−1)n

2nn!

(
d

dx

)n (
1− x2

)n+λ− 1
2 .

Next, multiplying both sides by the term
Γ(λ+ 1

2
)Γ(n+2λ)

Γ(2λ)Γ(n+λ+ 1
2

)
and using the

relation (1.36), we get

(
1− x2

)λ− 1
2 Cλ

n(x) =
(−1)n

2nn!

Γ(λ+ 1
2
)Γ(n+ 2λ)

Γ(2λ)Γ(n+ λ+ 1
2
)

(
d

dx

)n (
1− x2

)n+λ− 1
2 .

This gives us the following representation for the Gegenbauer polyno-
mials:

Cλ
n(x) =

(−1)nΓ(λ+ 1
2
)Γ(n+ 2λ)

2nn! Γ(2λ)Γ(n+ λ+ 1
2
)

(
1− x2

) 1
2
−λ
(

d

dx

)n (
1− x2

)n+λ− 1
2 .

Further, we formulate the corresponding three-term recurrence relation
using Theorem 1.2.7 with α = β = λ− 1

2
and the relation (1.36). It is

easy to see that for n = 0 and n = 1 with

P
(λ− 1

2
,λ− 1

2)
0 (x) = 1 and P

(λ− 1
2
,λ− 1

2)
1 (x) =

(
λ+

1

2

)
x,

we have
Cλ

0 (x) = 1 and Cλ
1 (x) = 2λx.
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For n ≥ 2, we multiply the recurrence formula for Jacobi polynomials

by the term
Γ(λ+ 1

2
)Γ(n+2λ)

Γ(2λ)Γ(n+λ+ 1
2

)
and use the relation (1.36) to get

Cλ
n(x) =

(n+ λ− 1)(2n+ 2λ− 1)(2n+ 2λ− 3)x

n(2n+ 2λ− 3)(n+ λ− 1
2
)

×
Γ(λ+ 1

2
)Γ(n+ 2λ− 1)

Γ(2λ)Γ(n+ λ− 1
2
)

P
(λ− 1

2
,λ− 1

2)
n−1 (x)

−
(n+ λ− 3

2
)(2n+ 2λ− 1)(n+ 2λ− 2)

n(2n+ 2λ− 3)(n+ λ− 1
2
)

×
Γ(λ+ 1

2
)Γ(n+ 2λ− 2)

Γ(2λ)Γ(n+ λ− 3
2
)

P
(λ− 1

2
,λ− 1

2)
n−2 (x)

=
(n+ λ− 1)(2n+ 2λ− 1)(2n+ 2λ− 3)x

n(2n+ 2λ− 3)(n+ λ− 1
2
)

Cλ
n−1(x)

−
(n+ λ− 3

2
)(2n+ 2λ− 1)(n+ 2λ− 2)

n(2n+ 2λ− 3)(n+ λ− 1
2
)

Cλ
n−2(x).

Some easy simplifications gives us the following relation for Gegenbauer
polynomials:

nCλ
n(x) = 2(n+λ−1)xCλ

n−1(x)−(n+2λ−2)Cλ
n−2(x), n ≥ 2, (1.37)

with Cλ
0 (x) = 1 and Cλ

1 (x) = 2λx.

2. For α = β = 0, we get the Legendre polynomials Pn := P
(0,0)
n .

Using Theorem 1.2.4, the Rodriguez representation for the Legendre
polynomials is given by

Pn(x) =
(−1)n

2nn!

(
d

dx

)n (
1− x2

)n
.

And by virtue of Theorem 1.2.7, the corresponding three-term recur-
rence relation is given as

Pn(x) =
2n− 1

n
xPn−1(x)− n− 1

n
Pn−2(x), n ≥ 2,

with P0(x) = 1 and P1(x) = x.

Theorem 1.2.9 For n ∈ N and λ 6= 0, the k-th derivative of Gegenbauer
polynomials is given as

dk

dxk
Cλ
n(x) = 2kλkCλ+k

n−k (x). (1.38)
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Theorem 1.2.10 For α, β > −1, we have

max
−1≤x≤1

∣∣P (α,β)
n (x)

∣∣ =

(
n+ q

n

)
,

where q = max(α, β) ≥ −1
2
. In particular, for α = β = λ− 1

2
, λ > 0

max
−1≤x≤1

∣∣Cλ
n(x)

∣∣ =

(
n+ 2λ− 1

n

)
and for α = β = 0

max
−1≤x≤1

|Pn(x)| = 1.

Theorem 1.2.11 For every α, β > −1 and n ∈ N0, the norm of P
(α,β)
n is

given by∥∥P (α,β)
n

∥∥2

L2
w[−1,1]

=
2α+β+1

2n+ α + β + 1
· Γ(n+ α + 1)Γ(n+ β + 1)

n! Γ(n+ α + β + 1)
. (1.39)

We can also determine the norm for the Gegenbauer polynomials, i.e. for
α = β = λ− 1

2
, (1.39) yields

∥∥Cλ
n

∥∥2

L2
w[−1,1]

=

∥∥∥∥Γ(λ+ 1
2
)Γ(n+ 2λ)

Γ(2λ)Γ(n+ λ+ 1
2
)
P

(λ− 1
2
,λ− 1

2)
n

∥∥∥∥2

L2
w[−1,1]

=

(
Γ(λ+ 1

2
)Γ(n+ 2λ)

Γ(2λ)Γ(n+ λ+ 1
2
)

)2 ∥∥∥∥P (λ− 1
2
,λ− 1

2)
n

∥∥∥∥2

L2
w[−1,1]

=

(
Γ(λ+ 1

2
)Γ(n+ 2λ)

Γ(2λ)Γ(n+ λ+ 1
2
)

)2
22λ
(
Γ(n+ λ+ 1

2
)
)2

(2n+ 2λ)Γ(n+ 1)Γ(n+ 2λ)

=
22λ

2n+ 2λ

Γ(n+ 2λ)

Γ(n+ 1)

(
Γ(λ+ 1

2
)

Γ(2λ)

)2

.

Using the duplication formula (see Lemma 1.1.4) for x = 2λ, we get∥∥Cλ
n

∥∥2

L2
w[−1,1]

=
Γ(n+ 2λ)

(n+ λ)n!
22λ−1

( √
π

22λ−1Γ(λ)

)2

.

Further simplification yields the norm of Cλ
n as∥∥Cλ

n

∥∥2

L2
w[−1,1]

=
Γ(n+ 2λ)

(n+ λ)n!

21−2λ

(Γ(λ))2π. (1.40)

Also, for α = β = 0, (1.39) reduces to the norm of Legendre polynomials Pn,
i.e.

‖Pn‖2
L2[−1,1] =

2

2n+ 1
. (1.41)
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1.3 Spherical Harmonics

This section briefly introduces spherical harmonics and some of their notable
results (see for details [19, 53]). These functions, defined on the surface of a
ball, are well known in the field of geosciences.

Definition 1.3.1 Let D ⊂ R3 be open and connected. A function F ∈ C2(D)
is called harmonic if and only if

∆xF (x) = 0 for all x ∈ D.

The set of all harmonic functions in C2(D) is denoted by Harm(D).

Definition 1.3.2 A polynomial P in R3 is called a homogeneous polynomial
of degree n, if

P (λx) = λnP (x)

for all λ ∈ R and x ∈ R3. Homn(R3) denotes the class of all homogeneous
polynomials of degree n.

Theorem 1.3.3 For n ∈ N0, the dimension of Homn(R3) is given as

dim
(
Homn(R3)

)
=

(n+ 1)(n+ 2)

2
.

Definition 1.3.4 The set of all homogeneous harmonic polynomials on R3

with degree n ∈ N0 is denoted by Harmn(R3), i.e.

Harmn(R3) := {P ∈ Homn(R3) |∆P = 0}, n ∈ N0.

Definition 1.3.5 Spherical harmonics Yn are the restrictions of the polyno-
mials Pn ∈ Harmn(R3) to the sphere Ω, i.e.

Harmn(Ω) := {Yn : Yn = Pn|Ω, Pn ∈ Harmn(R3)}.

Definition 1.3.6 For degree n and order j, the spherical harmonic Yn,j de-
notes a member of an orthonormal system {Yn,j |n ∈ N0, j = 1, 2, . . . , 2n+1}
with respect to 〈·, ·〉L2(Ω).

Theorem 1.3.7 The space Harmn(Ω) and its elements Yn have the following
properties:

1. The dimension of the space Harmn(Ω) is given as

dim(Harmn(Ω)) = 2n+ 1, n ∈ N0.
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2. Yn is an eigenfunction of the Beltrami operator ∆∗ corresponding to the
eigenvalues −n(n+ 1), i.e.

∆∗ξYn(ξ) = −n(n+ 1)Yn(ξ), n ∈ N0, ξ ∈ Ω. (1.42)

3. For every Yn ∈ Harmn(Ω), Ym ∈ Harmm(Ω) and n,m ∈ N0

〈Yn, Ym〉L2(Ω) = 0, if n 6= m.

4. For every Yn ∈ Harmn(Ω),

‖Yn‖C(Ω)≤
√

2n+ 1

4π
‖Yn‖L2(Ω), n ∈ N0. (1.43)

In particular,

‖Yn,j‖C(Ω)≤
√

2n+ 1

4π
. (1.44)

Theorem 1.3.8 The operator
(
−∆∗ + 1

4

)
: C2(Ω) → C(Ω) is an injective

differentiable operator with Yn,j as eigenfunctions corresponding to the eigen-
values ([24]) (

−∆∗ +
1

4

)∧
(n) =

(
n+

1

2

)2

, n ∈ N0. (1.45)

Theorem 1.3.9 For n ∈ N0 and j ∈ {1, 2, . . . , 2n + 1}, the system {Yn,j}
fulfils the following attributes:

1. For all j, k ∈ {1, 2, . . . , 2n+ 1} and n,m ∈ N0

〈Yn,j, Ym,k〉L2(Ω) = δnmδjk. (1.46)

2. For F ∈ Harmn(Ω) and for all j ∈ {1, 2, . . . , 2n+ 1}

〈F, Yn,j〉L2(Ω) = 0 =⇒ F = 0.

Hence, for each n ∈ N0, {Yn,j}j=1,2,...,2n+1 forms a complete orthonor-
mal basis for Harmn(Ω). In addition, {Yn,j}n∈N0;j=1,2,...,2n+1 forms a
complete orthonormal system in the Hilbert space (L2(Ω), 〈·, ·〉L2(Ω)).

By virtue of the above result, every F ∈ L2(Ω) can be expanded in a Fourier
series, i.e.

F =
∞∑
n=0

2n+1∑
j=1

F∧(n, j)Yn,j (1.47)

converges in the L2(Ω)-sense, where F∧(n, j) = 〈F, Yn,j〉L2(Ω) are the Fourier
coefficients.
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Theorem 1.3.10 (Parseval Identity). For every F , G ∈ L2(Ω), the Par-
seval identity holds, i.e.

〈F,G〉L2(Ω) =
∞∑
n=0

2n+1∑
j=1

〈F, Yn,j〉L2(Ω) 〈G, Yn,j〉L2(Ω) . (1.48)

Theorem 1.3.11 (Addition Theorem for Spherical Harmonics). Let
{Yn,j}n∈N0;j=1,2,...,2n+1 be as defined above and Pn be the Legendre polynomial
of degree n, then

2n+1∑
j=1

Yn,j(ξ)Yn,j(η) =
2n+ 1

4π
Pn(ξ · η), ξ, η ∈ Ω. (1.49)

1.4 Orthonormal Systems on the Ball

At present, inverse problems and approximation methods have important
applications in various fields. In particular, these methods play a vital role
in the field of geosciences. Primarily, an approach for inverse problems and
likewise for constructive approximation is the expansion of the solution in
an orthonormal basis and mostly orthogonal polynomials are favourable as
such basis. For example, Legendre polynomials serve as an orthogonal basis
system on [−1, 1] and spherical harmonics establish an orthonormal basis for
the sphere. Likewise two such systems, denoted by GX

m,n,j for X ∈ {I, II}, are
constructed on the 3-dimensional ball BR (see [4, 26, 45, 46, 47, 72]). These
systems are denoted and defined as follows.

Theorem 1.4.1 For m,n ∈ N0; j ∈ {1, 2, . . . , 2n+ 1}, the systems of func-
tions GI

m,n,j and GII
m,n,j defined on BR as

GI
m,n,j(x) :=

√
4m+ 2ln + 3

R3
P

(0,ln+ 1
2

)
m

(
2
|x|2

R2
− 1

)(
|x|
R

)ln
Yn,j

(
x

|x|

)
,

x ∈ BR \ {0}, (1.50)

where ln ≥ −1 and

GII
m,n,j(x) :=

√
2m+ 3

R3
P (0,2)
m

(
2
|x|
R
− 1

)
Yn,j

(
x

|x|

)
, x ∈ BR \ {0}, (1.51)

form orthonormal systems in L2(BR).
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These basis systems are comprised of spherical harmonics (angular part) and
Jacobi polynomials (radial part) and differ in the choice of the radial part.
The exponent ln in the type I system depends on n for all n ∈ N0. Two
particular cases for this exponent are known, that are: ln = n, that relates
to the inverse gravimetric problem and ln = n − 1, that corresponds to the
inverse magnetic problem (see, for example [61, 68] for a description of these
problems). Some of the properties of these systems are investigated, for
example, in [2, 47, 50].

Theorem 1.4.2 The orthonormal basis system of type I has the following
properties:

1. For n ∈ N0; j ∈ {1, 2, . . . , 2n + 1}, GI
m,n,j is harmonic if and only if

m = 0 and ln = n or l0 = −1.

2. For m,n ∈ N0; j ∈ {1, 2, . . . , 2n+ 1} and ln = n, GI
m,n,j is an algebraic

polynomial with degree 2m+ n.

Proof:

1. It is clear that for m = 0 and ln = n ∈ N0 or l0 = −1, GI
m,n,j is

harmonic. Conversely, we assume that GI
m,n,j is harmonic, then

∆rξ

(
GI
m,n,j(rξ)

)
= 0

∆rξ (Fm(r)Yn,j(ξ)) = 0,

where Fm(r) =
(
r
R

)ln
P

(0,ln+ 1
2

)
m

(
2 r2

R2 − 1
)

. Using the Laplace operator

(1.3), we have(
F ′′m(r) +

2

r
F ′m(r)− n(n+ 1)

r2
Fm(r)

)
Yn,j(ξ) = 0 for all r > 0, ξ ∈ Ω

⇔ F ′′m(r) +
2

r
F ′m(r)− n(n+ 1)

r2
Fm(r) = 0 for all r > 0

⇔ r2F ′′m(r) + 2rF ′m(r)− n(n+ 1)Fm(r) = 0 for all r > 0.

Here, we have a second order ordinary differential equation having so-
lutions

Fm(r) = const · rn and Fm(r) = const · r−n−1.

For Fm(r) = const · rn, we have( r
R

)ln
P

(0,ln+ 1
2

)
m

(
2
r2

R2
− 1

)
= const · rn

⇔
(

1

R

)ln
P

(0,ln+ 1
2

)
m

(
2
r2

R2
− 1

)
= const · rn−ln .
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By the use of equation (1.34) for β = ln + 1
2
, the above equation yields(

1

R

)ln m∑
k=0

(−1)m−k
(
m

k

)(
ln + 1

2
+ k +m

m

)( r
R

)2k

= const · rn−ln .

Since on the right hand side we have a monomial, the above equality
exists only if m = 0, which implies n = ln. Similar calculations can
be done for the other solution which gives ln = −(n + 1). Due to our
restriction on ln, i.e. ln ≥ −1, this solution is only possible if n = 0.

2. We already know that
(
r
R

)n
Yn,j (ξ) is a polynomial with degree n and

P
(0,n+ 1

2
)

m

(
2 r2

R2 − 1
)

is a polynomial with degree 2m. Hence, for m,n ∈
N0 and ln = n, the construction of GI

m,n,j allows us to state that it is
an algebraic polynomial with degree 2m+ n.

Theorem 1.4.3 For m,n ∈ N0, ln ≥ 0; j ∈ {1, 2, . . . , 2n + 1}, an upper
bound for the maximum norm of the basis systems (1.50) and (1.51) respec-
tively, is given by

∥∥GI
m,n,j

∥∥
C(BR)

≤
√

(4m+ 2ln + 3)(2n+ 1)

4πR3

(
m+ ln + 1

2

m

)
(1.52)

and ∥∥GII
m,n,j

∥∥
C(BR)

≤
√

(2m+ 3)(2n+ 1)

4πR3

(m+ 2)(m+ 1)

2
. (1.53)

Proof: From Theorem 1.2.10 for Jacobi polynomials, we know that

max
−1≤x≤1

∣∣P (α,β)
m (x)

∣∣ =

(
m+ q

m

)
,

where q = max(α, β). For system II, it is clear that q = 2, which implies

max
−1≤x≤1

∣∣∣∣P (0,2)
m

(
2
|x|
R
− 1

)∣∣∣∣ =
(m+ 2)(m+ 1)

2
.

The above equation together with the maximum norm of spherical harmonics
(1.44) gives us the required inequality (1.53).
The system of type I (1.50) depends on the term ln, where ln ≥ −1. Since
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the term
(
|x|
R

)ln
≥ 1 for negative values of ln, we restrict ln only to positive

values, i.e. ln ≥ 0. This implies ln + 1
2
> 0 and, as a consequence, we obtain

max
−1≤x≤1

∣∣∣∣P (0,ln+ 1
2

)
m

(
2
|x|2

R2
− 1

)∣∣∣∣ =

(
m+ ln + 1

2

m

)
, ln > −

1

2
. (1.54)

Further,
(
|x|
R

)ln
≤ 1 for ln ≥ 0. This gives us the desired result (1.52) and

completes the proof.
The composition of two (particular) invertible differential operators results
in an invertible differential operator for the systems (1.50) and (1.51) (for
details and proofs, see [2, 50]).

Theorem 1.4.4 For m,n ∈ N0; j ∈ {1, 2, . . . , 2n + 1}, GI
m,n,j forms an

eigenfunction of the invertible differential operator

∆I
x =

(
−DI

|x| +
9

4

)
◦
(
−∆∗x

|x|
+

1

4

)
, (1.55)

corresponding to the eigenvalues
(

(4m+2ln+3)(2n+1)
4

)2

and GII
m,n,j is an eigen-

function of

∆II
x =

(
−DII

|x| +
9

4

)
◦
(
−∆∗x

|x|
+

1

4

)
, (1.56)

corresponding to the eigenvalues
(

(2m+3)(2n+1)
4

)2

.

In the above result, ∆∗ denotes the Beltrami operator from Equation (1.42)
and DX

r , for r := |x|, represents a differential operator given as

DX
r =

{
(R2 − r2) d2

dr2
+ 2

(
1− 2 r2

R2

)
R2

r
d
dr
− n(n+ 1)R

2

r2
, X = I,

rR
(
1− r

R

)
d2

dr2
+ (3R− 4r) d

dr
, X = II.

(1.57)

Now based on the basis systems (1.50) and (1.51), we give the concept of
Sobolev spaces on BR, which follows from [26, 46, 47].

Definition 1.4.5 For X ∈ {I, II}, a Sobolev space on BR depending on a
sequence {Am,n}m,n∈N0 and an orthonormal system {GX

m,n,j}m,n∈N0; j=1,...,2n+1

is the space
H(BR) := H({Am,n},X,BR)

containing all functions F ∈ L2(BR) such that〈
F,GX

m,n,j

〉
L2(BR)

= 0
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for all (m,n, j) with Am,n = 0 or ln < 0 and

∞∑
m,n=0

2n+1∑
j=1

A2
m,n

〈
F,GX

m,n,j

〉2

L2(BR)
< +∞.

The inner product in H is defined as

〈F1, F2〉H :=
∞∑

m,n=0

2n+1∑
j=1

A2
m,n

〈
F1, G

X
m,n,j

〉
L2(BR)

〈
F2, G

X
m,n,j

〉
L2(BR)

.

For further results, we simplify the following double summation for a sequence
{Am,n}m,n∈N0 :

∞∑
m,n=0
Am,n 6=0

2n+1∑
j=1

A−2
m,n

(
GX
m,n,j(x)

)2
=

∞∑
m,n=0
Am,n 6=0

2n+1∑
j=1

A−2
m,n

(
FX
m,n(|x|)Yn,j

(
x

|x|

))2

,

(1.58)
where

FX
m,n(|x|) :=


√

4m+2ln+3
R3 P

(0,ln+ 1
2

)
m

(
2 |x|

2

R2 − 1
)(

|x|
R

)ln
, X = I,√

2m+3
R3 P

(0,2)
m

(
2 |x|
R
− 1
)
, X = II.

(1.59)

By means of the addition theorem 1.3.11, (1.58) takes the subsequent form

∞∑
m,n=0
Am,n 6=0

2n+1∑
j=1

A−2
m,n

(
FX
m,n(|x|)Yn,j

(
x

|x|

))2

=
∞∑

m,n=0
Am,n 6=0

A−2
m,n

2n+ 1

4π

(
FX
m,n(|x|)

)2
.

Due to the same reasoning in Theorem 1.4.3, we have to restrict again the
values of ln to positive real numbers so that(

|x|
R

)ln
≤ 1.

Hence, using Theorem 1.2.10, we have

∞∑
m,n=0
Am,n 6=0

2n+1∑
j=1

A−2
m,n

(
FX
m,n(|x|)Yn,j

(
x

|x|

))2

≤



∞∑
m,n=0
Am,n 6=0

A−2
m,n

(4m+2ln+3)(2n+1)
4πR3

(
m+ln+ 1

2
m

)2
, X = I,

∞∑
m,n=0
Am,n 6=0

A−2
m,n

(2m+3)(2n+1)
4πR3

(
m+2
m

)2
, X = II.
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For the case of type I, the above inequality can be simplified further as
follows: For ln > −1

2
,(

m+ ln + 1
2

m

)
=

Γ(m+ ln + 3
2
)

Γ(m+ 1)Γ(ln + 3
2
)

=
Γ(ln + 3

2
)

Γ(m+ 1)Γ(ln + 3
2
)

m+ 1
2∏

k= 3
2

(ln + k)

=
1

Γ(m+ 1)

m+ 1
2∏

k= 3
2

(ln + k),

(
m+ ln + 1

2

m

)
≤

(ln +m+ 1
2
)m

m!
. (1.60)

Similarly, for type II, we have(
m+ 2

m

)
=

Γ(m+ 3)

Γ(m+ 1)Γ(3)

=
(m+ 2)(m+ 1)

2

≤ (2m+ 3)(2m+ 3)

2
,(

m+ 2

m

)
≤ (2m+ 3)2

2
. (1.61)

Hence, we get the refined form of (1.58) as

∞∑
m,n=0
Am,n 6=0

2n+1∑
j=1

A−2
m,n

(
GX
m,n,j(x)

)2

≤



∞∑
m,n=0
Am,n 6=0

A−2
m,n

(4m+2ln+3)(2n+1)
4πR3

(ln+m+ 1
2

)2m

(m!)2
, X = I,

∞∑
m,n=0
Am,n 6=0

A−2
m,n

(2m+3)5(2n+1)
16πR3 , X = II.

(1.62)

We now define a condition on the sequence {Am,n}m,n∈N0 , that promises the
continuity of the function F ∈ H(BR) with a uniformly convergent Fourier
series on BR.
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Definition 1.4.6 (Summability Condition). A sequence {Am,n}m,n∈N0

is said to satisfy the summability condition of type I if

∞∑
m,n=0; ln≥− 1

2
Am,n 6=0

A−2
m,n (2n+ 1)(4m+ 2ln + 3)

(ln +m+ 1
2
)2m

(m! )2
< +∞, (1.63)

and the summability condition of type II is given as

∞∑
m,n=0
Am,n 6=0

A−2
m,n (2n+ 1)(2m+ 3)5 < +∞. (1.64)

If a sequence fulfils the summability condition of type I or II, we say that the
sequence is I- or II-summable, respectively.

The summability condition allows us to state the following result.

Lemma 1.4.7 (Sobolev Lemma). Let {Am,n}m,n∈N0 be a summable se-
quence, then for every F ∈ H(BR), the Fourier series

F (x) =
∞∑

m,n=0

2n+1∑
j=1

〈
F,GX

m,nj

〉
L2(BR)

GX
m,n,j(x), X ∈ {I, II}, (1.65)

is uniformly convergent on BR. Also, every function F ∈ H(BR) is continu-
ous on BR \ {0}.

Proof: In order to prove the uniform convergence of (1.65), we consider∣∣∣∣∣
∞∑

m=M

∞∑
n=N

2n+1∑
j=1

〈
F,GX

m,n,j

〉
L2(BR)

GX
m,n,j(x)

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∞∑

m=M

∞∑
n=N

Am,n 6=0

2n+1∑
j=1

Am,n
〈
F,GX

m,n,j

〉
L2(BR)

A−1
m,nG

X
m,n,j(x)

∣∣∣∣∣∣∣∣ .
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Using the Cauchy-Schwarz Inequality (1.17), we get∣∣∣∣∣
∞∑

m=M

∞∑
n=N

2n+1∑
j=1

〈
F,GX

m,n,j

〉
L2(BR)

GX
m,n,j(x)

∣∣∣∣∣
≤

(
∞∑

m=M

∞∑
n=N

2n+1∑
j=1

A2
m,n

〈
F,GX

m,n,j

〉2

L2(BR)

) 1
2

 ∞∑
m=M

∞∑
n=N

Am,n 6=0

2n+1∑
j=1

A−2
m,n

(
GX
m,n,j(x)

)2


1
2

≤ ‖F‖H(BR)

 ∞∑
m=M

∞∑
n=N

Am,n 6=0

2n+1∑
j=1

A−2
m,n

(
GX
m,n,j(x)

)2


1
2

.

Due to the summability conditions (1.63) and (1.64), the second term on the
right hand side of the inequality is finite and converges to zero forM,N →∞.
This implies the convergence of the series in (1.65). Further, as GX

m,n,j is
continuous on BR\{0} and (1.65) converges uniformly, so from the uniform
convergence theorem 1.1.26, F is continuous on BR\{0}.

Remark 1.4.8 For the particular case X = I with ln = n, F is also contin-
uous on BR.

It is also clear from the above result, that the evaluation functional Lx

Lx : H → R
F 7→ F (x)

for every fixed x ∈ BR, is bounded and hence continuous. Thus, from Aron-
szajn’s theorem 1.1.16, the Sobolev space H on BR is a reproducing kernel
Hilbert space equipped with the kernel KH (see [46], Theorem 25) defined as

KH(x, y) =
∞∑
m=0

∞∑
n=0

Am,n 6=0, ln≥0

2n+1∑
j=1

A−2
m,nG

X
m,n,j(x)GX

m,n,j(y), x, y ∈ BR. (1.66)

Theorem 1.4.9 Let {Am,n}m,n∈N0 be a summable sequence, then H has a
unique reproducing kernel defined by (1.66).
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1.5 Statistical Preliminaries

In this section, we give some basic definitions, results and properties from
stochastics and statistics which are used in our work (for details, see [16, 67,
69, 74]).
A function that assigns a random numerical (real) value to every outcome
of an experiment is known as a random variable. We state here some of the
properties of random variables.

Definition 1.5.1 The function f is a probability density function (pdf) for
the continuous random variable X, defined over R, if

1. f(x) ≥ 0 for all x ∈ R.

2.
∫∞
−∞ f(x) dx = 1.

3. P(a < X < b) =
∫ b
a
f(x) dx.

Definition 1.5.2 The distribution function FX of a random variable X with
density function f is the probability that X will be less or equal to a given
value x ∈ R, i.e.

FX(x) = P(X ≤ x).

Definition 1.5.3 A collection of random variables is known as independent
and identically distributed (i.i.d.) random variables, if each variable has the
same probability distribution and the variables are independent of each other.

Definition 1.5.4 For a continuous random variable X, the expectation of
g(X) on a measurable space V along with a probability measure P is defined
as

E[g(X)] =

∫
V
g(X)dP(X). (1.67)

The probability measure P is given by

P(A) :=

∫
A

f(x)dµ(x), A ∈ V ,

where f = dP
dµ

is the density of P with respect to the measure µ of space V.

Hence, in terms of the density function f , the expectation of g(X) is given
by

E[g(X)] =

∫ ∞
infty

g(x)f(x)dµ(x) (1.68)

and the variance of g(X) is

V[g(X)] = E
[
(g(X)− E(g(X)))2]

= E[g(X)]2 − (E[g(X)])2 .
(1.69)
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We state below some basic and important properties for expectation and
variance of random variables.

Theorem 1.5.5 Let X and Y be any random variables.

• If X and Y are independent, then g(X) and h(Y ) are also independent
for any functions g and h. Also

E(XY ) = E(X)E(Y ). (1.70)

More generally, the following holds for any functions g and h:

E(g(X)h(Y )) = E(g(X))E(h(Y )). (1.71)

• For any constants a and b,

E(aX + b) = aE(X) + b (1.72)

and since V(b) = 0, we have

V(aX + b) = a2V(X). (1.73)

• In general, for any finite collection of random variables X1, X2, . . . , Xn

with finite expectations, the following holds:

E

[
n∑
k=1

Xk

]
=

n∑
k=1

E[Xk]. (1.74)

This property is known as the linearity of expectation ([52]), i.e. the
expectation of the sum of random variables is equal to the sum of their
expectations. Also, linearity of expectations holds for countably infinite
summations, i.e.

E

[
∞∑
k=1

Xk

]
=
∞∑
k=1

E[Xk], (1.75)

whenever
∑∞

k=1 E[Xk] converges.

• Monotonicity of expectation: If X ≤ Y , then the inequality

E(X) ≤ E(Y ) (1.76)

holds, given the expectations exist. Additionally, if |X|≤ C, C being
constant, then E|X|≤ C.
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• Cauchy-Schwarz inequality for expectation: For any random variables
X and Y , we have

E|XY |≤
√

E(X2)
√
E(Y 2). (1.77)

• Minkowski’s inequality for expectation: Let {Xk}k≥1 be a collection of
random variables. If p ≥ 1, then[

E

∣∣∣∣∣
∞∑
k=1

Xk

∣∣∣∣∣
p] 1

p

≤
∞∑
k=1

[E |Xk|p]
1
p . (1.78)

Theorem 1.5.6 If {Xk}k≥1 is a collection of independent random variables
with finite expectations, then

V

[
∞∑
k=1

Xk

]
=
∞∑
k=1

V[Xk]. (1.79)

A specific and widely used type of random variables is known as the normal
random variable.

Definition 1.5.7 For any real numbers µ and σ > 0, the Gaussian or nor-
mal probability density function with mean µ and variance σ2 is defined by

f(x) =
1√

2πσ2
e−

1
2(x−µσ )

2

.

A random variable X having the density function f is said to be a normally
distributed random variable X ∼ N (µ, σ2) with µ and σ2 being the mean and
variance, respectively.

Definition 1.5.8 A normal random variable X with expectation 0 and vari-
ance 1 is named as a standard normal random variable. The sum of n squared
standard normal variables is a χ2-random variable with n degrees of freedom,
i.e.

χ2(n) =
n∑
k=1

X2
k .

Definition 1.5.9 For a random variable X, the function φX : R → C de-
fined by

φX(t) = E
(
eitX

)
, t ∈ R,

is called a characteristic function of X. Here, i denotes the complex number
with i2 = −1.
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Theorem 1.5.10 For independent random variables X1 and X2, the char-
acteristic function of X1 +X2 is given by

φX1+X2 = φX1φX2 .

Theorem 1.5.11 The expectation, variance and characteristic function of
a χ2-random variable with n degrees of freedom, respectively are

E
(
χ2(n)

)
= n, (1.80)

V
(
χ2(n)

)
= 2n, (1.81)

φχ2(n)(t) = (1− 2it)−
n
2 . (1.82)

Theorem 1.5.12 (Inversion Formula). For an integrable characteristic
function φX , the probability density function of a random variable X is given
as

P{X ≤ x} =
1

2π

∫ x

0

∫ ∞
−∞

e−itsφX(t) dt ds.

Lemma 1.5.13 For all t ∈ R and n ∈ N,∣∣∣∣∣eit −
n−1∑
k=0

(it)k

k!

∣∣∣∣∣ ≤ |t|nn!
. (1.83)

For the next results, we need to describe the concept of convergence for the
sequences of random variables.

Definition 1.5.14 A sequence {Xn}n∈N of random variables

• converges in probability to a random variable X, i.e. Xn
P−→ X, if

lim
n→∞

P[|Xn −X|> ε] = 0 for all ε > 0. (1.84)

• converges almost everywhere or almost surely to a random vari-
able X, i.e. Xn

as−→ X, if

P[Xn → X] = 1. (1.85)

• converges in distribution to a random variable X, i.e. Xn
D−→ X, if

lim
n→∞

FXn(t) = FX(t) (1.86)

for all points t at which the distribution function FX is continuous.



1.5. STATISTICAL PRELIMINARIES 29

Remark 1.5.15 For a sequence of random variables {Xn}n∈N, almost sure
convergence implies convergence in probability and convergence in probability
implies convergence in distribution.

Theorem 1.5.16 (Slutsky’s Theorem). If {Xn}n∈N and {Yn}n∈N are two
sequences of random variables such that Xn converges in distribution to X
and Yn converges in probability to a constant C, then

Xn + Yn
D−→ X + C

and
XnYn

D−→ XC,

provided that their sums and products are well defined.

Definition 1.5.17 Let {X1, X2, . . . , XN} be a sample of N random vari-
ables. Then a U-statistic, stands for unbiased statistics, is defined as

UN :=
1(
N
a

) ∑ . . .
∑

1≤i1<...ia≤N

h(Xi1 , . . . , Xia), N ≥ a, (1.87)

where h : Ra → R, a ∈ N is a measurable function which is symmetric in
its arguments. The unbiasedness of UN follows from the fact that it is the
average of

(
N
a

)
terms.

Remark 1.5.18 The function h in Definition 1.5.17 is called j-degenerate,
if for each x1, x2, . . . , xj

E[h(x1, x2, . . . , xj, Xj+1, . . . , XN)] = 0, (1.88)

where x1, x2, . . . , xj are arbitrary fixed vectors and the expectation is taken
with respect to the random variables Xk.

Definition 1.5.19 A U-statistics with a 1-degenerate function h is called a
degenerate U-statistics.

Theorem 1.5.20 (Strong Law of Large Numbers). Let X1, X2, . . . be
pairwise i.i.d. random variables with E|Xi|<∞. Further, suppose E(Xi) = µ
and Sn := X1 +X2 + . . .+Xn, then Sn/n→ µ almost surely as n→∞.

Theorem 1.5.21 (Central Limit Theorem). Let X1, X2, . . . be pairwise
i.i.d. random variables with E|X2

i |< ∞ and E(Xi) = 0. Suppose Sn :=
X1 +X2 + . . .+Xn, σ2 be the variance and Z be a standard normal variable.
Then Sn/σ

√
n converges in distribution to Z.
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Chapter 2

Quadrature Points on the Ball

The theory of equidistribution is a widely discussed and numerically explored
topic. The problem of distributing points on a domain has a long history.
Apart from the domains like circle, sphere and cube, the distribution of points
on a ball has also found many applications in various fields with a focus on
the applications in geosciences and medicine. There are many configura-
tions of points available specifically on the surface of the ball (see, for e.g.
[14, 31, 57, 60]), but only a few work has been done for the whole ball (see
[7, 34]). In [7], the random distribution of points is discussed by defining a
reproducing kernel Hilbert space on Rd+1 as the tensor product of two repro-
ducing kernels defined on the unit sphere Ωd and on [0,∞[, respectively. This
approach follows similar objectives with, however, differences in the consid-
ered problem and the methodology.
Specifically, the equidistribution problem on the ball BR is to find ωN =
{x1, x2, . . . , xN}, a set of points on BR, such that they are uniformly dis-
tributed in BR. The way how uniformity can be defined is certainly not
unique. We will introduce here an approach which is suitable for the case
where the orthonormal basis functions {GX

m,n,j}m,n∈N0; j=1,...,2n+1 play a role
in the application. Mainly, this chapter focuses on the derivation of a quan-
tifying criterion, based on a pseudodifferential operator, for the comparison
of grids.

2.1 Pseudodifferential Operators on the Ball

In this section, we introduce the concept of pseudodifferential operators on
the ball BR. We also construct a pseudodifferential operator for the functions
on the ball BR and then we study its properties.
For the construction of a pseudodifferential operator on the ball, we use two

31
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differential operators, where one acts on the angular part and the other one
acts on the radial part. For the angular part, we start as in [14], with the

operator B̃. This operator is comprised of the Beltrami operator (1.4) and is
defined as follows

B̃ :=

(
(−2∆∗)

(
−∆∗ +

1

4

)1/2
)
. (2.1)

For n ∈ N0, j = 1, 2, . . . , 2n+1 each spherical harmonic is an eigenfunction of
the operator B̃ corresponding to the eigenvalues (2n+ 1)n(n+ 1). Moreover,

we define B̃`, an operator with the symbol(
B̃`
)∧

(n) :=

(
2n(n+ 1)

(
n+

1

2

))`
, ` ∈ N,

for the angular part. For p ∈ R and a Sobolev space Hs on the sphere Ω
(see, for e.g. [13, 24, 47]), we give the following definition.

Definition 2.1.1 For s, p ∈ R with s ≥ 3p, we define an operator

B̃p : Hs(Ω)→ Hs−3p(Ω)

by its eigenvalues (
B̃p
)∧

(n) := ((2n+ 1)n(n+ 1))p (2.2)

corresponding to the spherical harmonics Yn,j.

An advantage of using this specific operator is: this operator with particular
values of p gives closed representations for the angular part and is, conse-
quently, helpful for the computational purpose.
Since B̃p is not invertible, we use a modified operator Bp, defined by its
eigenvalues

(Bp)∧ (n) :=

{
1, n = 0

[(2n+ 1)n(n+ 1)]p, n = 1, 2, . . .
(2.3)

In other words, Bp acts on the angular part of a function F on BR in the
sense that

BpF (r·) =
∞∑
n=0

2n+1∑
j=1

(Bp)∧ (n) 〈F (r·), Yn,j〉L2(Ω) Yn,j
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with respect to L2(Ω) and for (almost) every r ∈ [0, R]. Next, we proceed
to the operators acting on the radial dependence. We already know from
[2, 47, 50] that the operator

DX :=

(
−DX +

9

4

)
, (2.4)

corresponding to the eigenvalues(
−DI +

9

4

)∧
(m,n) =

(
ln + 2m+

3

2

)2

, X = I (2.5)(
−DII +

9

4

)∧
(m,n) =

(
m+

3

2

)2

, X = II (2.6)

is the differential operator of

P
(0,ln+ 1

2
)

m

(
2
( r
R

)2

− 1

)( r
R

)ln
for X = I and

P (0,2)
m

(
2
r

R
− 1
)

for X = II, respectively. This means, for X = I(
−DI +

9

4

)
P

(0,ln+ 1
2

)
m

(
2
( r
R

)2

− 1

)( r
R

)ln
=

(
ln + 2m+

3

2

)2

P
(0,ln+ 1

2
)

m

(
2
( r
R

)2

− 1

)( r
R

)ln
,

where
(
−DI + 9

4

)∧
(m,n) =

(
ln + 2m+ 3

2

)2 6= 0 for all m,n ∈ N0. In addi-
tion, using induction, we get((

−DI +
9

4

)`)∧
(m,n) =

(
ln + 2m+

3

2

)2`

, ` ∈ N.

Likewise, for X = II, we have((
−DII +

9

4

)`)∧
(m,n) =

(
m+

3

2

)2`

, ` ∈ N.

This allows us to state the following definition for the operator functioning
on the radial part.
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Definition 2.1.2 For any q ∈ R, we define an operator
(
DX
)q

:=
(
−DX + 9

4

)q
by its eigenvalues((

−DI +
9

4

)q)∧
(m,n) =

(
ln + 2m+

3

2

)2q

, X = I (2.7)

and ((
−DII +

9

4

)q)∧
(m) =

(
m+

3

2

)2q

, X = II. (2.8)

It is easy to see that the composition of the operators Bp and
(
DX
)q

for X = I
and X = II, respectively, is again an invertible differential operator, and the
following result holds true.

Theorem 2.1.3 The operators defined by Ap,q
X := Bp ◦

(
DX
)q

are invertible
differential operators with eigenvalues

(Ap,q
I )∧(m,n) =

{(
l0 + 2m+ 3

2

)2q
, n = 0, m ∈ N0(

ln + 2m+ 3
2

)2q
[(2n+ 1)n(n+ 1)]p, n ∈ N, m ∈ N0

(2.9)
corresponding to the orthonormal system

GI
m,n,j(x) =

√
4m+ 2ln + 3

R3
P

(0,ln+ 1
2

)
m

(
2
|x|2

R2
− 1

)(
|x|
R

)ln
Yn,j

(
x

|x|

)
,

x ∈ BR \ {0}, m, n ∈ N0; j = 1, 2, ..., 2n+ 1, and

(Ap,q
II )∧(m,n) =

{(
m+ 3

2

)2q
, n = 0, m ∈ N0(

m+ 3
2

)2q
[(2n+ 1)n(n+ 1)]p, n ∈ N, m ∈ N0

(2.10)

corresponding to the orthonormal system

GII
m,n,j(x) =

√
2m+ 3

R3
P (0,2)
m

(
2
|x|
R
− 1

)
Yn,j

(
x

|x|

)
,

x ∈ BR \ {0}, m, n ∈ N0; j = 1, 2, ..., 2n + 1, where Bp is defined by (2.3)
and

(
DX
)q

is defined by (2.7) and (2.8) for X = I and X = II, respectively.

Proof: By the definition of the operators Ap,q
X , we have

(Ap,q
X )∧ (m,n) =

(
Bp ◦

(
DX
)q)∧

(m,n)

= (Bp)∧ (n)
((
DX
)q)∧

(m,n).

Now, the result is an immediate consequence of Definition 2.1.2 and Equation
(2.3).
Based on the sequences (2.9) and (2.10), we now define particular Sobolev
spaces.
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Definition 2.1.4 For s, t ∈ R+
0 , consider the sequences defined in (2.9) and

(2.10) for p = s and q = t/2, then we define a Sobolev space depending on
them as

HX
s,t(BR) := H

({(
As, t

2
X

)∧
(m,n)

}
,X,BR

)
. (2.11)

Proposition 2.1.5 For all s1, s2, t1, t2 ∈ R+
0 with s1 ≥ s2 and t1 ≥ t2, we

have
HX
s1,t1

(BR) ⊂ HX
s2,t2

(BR).

The above sequences are X-summable if they satisfy (1.63) and (1.64) for
types I and II, respectively, i.e.

∞∑
m,n=0

((
As, t

2
I

)∧
(m,n)

)−2

(2n+ 1)(4m+ 2ln + 3)
(ln +m+ 1

2
)2m

(m! )2
< +∞,

and
∞∑

m,n=0

((
As, t

2
II

)∧
(m,n)

)−2

(2n+ 1)(2m+ 3)5 < +∞.

Hence, due to the Sobolev lemma (see Lemma 1.4.7), every function F ∈
HX
s,t(BR), for a summable sequence, has a uniformly convergent Fourier se-

ries on BR and is continuous on BR\{0}. With the use of Remark 1.4.8, F
is also continuous on BR for type I with ln = n. Since HX

s,t(BR) is a repro-
ducing kernel Hilbert space (see Chapter 1), we denote the corresponding
reproducing kernel here by KHX

s,t
.

Theorem 2.1.6 The sequence {(As, t
2

II )∧(m,n)}m,n∈N0 defined in (2.10) is a
II-summable sequence for s > 1

3
and t > 3.

Proof: Because of its decoupling (of radial and angular parts) property, it
is easy to see that the sequence (2.10) is of the order of O(n3smt) and is,
therefore, II-summable for s > 1

3
and t > 3.

This structure of Sobolev spaces helps us to introduce a general notation for
the pseudodifferential operators on BR in analogy to the spherical concept in
[24].

Definition 2.1.7 For s, t ∈ R+
0 with s ≥ p

3
and t ≥ q, the operator

A : HX
s,t(BR)→ HX

s− p
3
,t−q(BR)

defined as

AF =
∞∑

m,n=0

2n+1∑
j=1

Am,n
〈
F,GX

m,n,j

〉
L2(BR)

GX
m,n,j
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is called a pseudodifferential operator of type I with respect to the orthonor-
mal system of type I, if, for all m,n ∈ N0, the corresponding eigenvalues
{Am,n}m,n∈N0 satisfy

c1(n+ c2)p(ln + 2m+ c3)q ≤ |Am,n|≤ c4(n+ c5)p(ln + 2m+ c6)q, (2.12)

where the Fourier coefficients
〈
F,GX

m,n,j

〉
L2(BR)

vanish for all ln < 0 (see

Definition 1.4.5). Also, A is named as a pseudodifferential operator of type
II, if, for all m,n ∈ N0, {Am,n}m,n∈N0 satisfy

c1(n+ c2)p(m+ c3)q ≤ |Am,n|≤ c4(n+ c5)p(m+ c6)q, (2.13)

where ci > 0 are fixed and p, q ∈ R+
0 are respectively called the angular and

radial orders of the operator.

We will now derive the properties of the pseudodifferential operators.

Lemma 2.1.8 Let P and Q be polynomials of degree d1 and d2, respectively,
with d1 and d2 ∈ N. Further, let P (n) > 0 and Q(n) > 0 for all n ∈ I =
[c,+∞[ with fixed c ∈ R. Then the following holds true: For a sequence
{P (n)i}n∈I with an arbitrary but fixed i ∈ R+, there exists a constant bi,
which depends on i, such that

P (n)i ≤ biQ(n)
i
d1
d2

for all n ∈ I.

Proof: Let an := P (n)d2

Q(n)d1
for all n ∈ I and let γ and γ̃ be the leading

coefficients of P and Q, respectively, that is

P (x) = γ xd1 +O(xd1−1), Q(x) = γ̃ xd2 +O(xd2−1), as x→∞.

The conditions on P and Q imply that γ, γ̃ ∈ R+. Furthermore,

lim
n→∞

an =
γd2

γ̃d1
> 0.

Thus, there exists n0 ∈ I such that, for all n ≥ n0, an ≤ 2γ
d2

γ̃d1
. Now let

b := max

{
max
n∈[c,n0]

an, 2
γd2

γ̃d1

}
. Then, we have

an ≤ b
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and, consequently,

P (n)i ≤ b
i
d2 Q(n)

i
d1
d2 (2.14)

for all n ∈ I. With bi := b
i
d2 , we have the desired result.

In order to see that AF , indeed, maps into the Sobolev space HI
s− p

3
,t−q(BR),

we consider

‖AF‖2
HI
s− p3 ,t−q

(BR) =
∞∑

m,n=0

2n+1∑
j=1

[(
As− p

3
, t−q

2
I

)∧
(m,n)

〈
AF,GI

m,n,j

〉
L2(BR)

]2

=
∞∑

m,n=0

2n+1∑
j=1

[(
As− p

3
, t−q

2
I

)∧
(m,n)Am,n

〈
F,GI

m,n,j

〉
L2(BR)

]2

.

We use (2.9) and (2.12) in the above equation and arrive at

‖AF‖2
HI
s− p3 ,t−q

(BR)

=
∞∑
m=0

[(
As− p

3
, t−q

2
I

)∧
(m, 0)Am,0

〈
F,GI

m,0,1

〉
L2(BR)

]2

+
∞∑
m=0

∞∑
n=1

2n+1∑
j=1

[(
As− p

3
, t−q

2
I

)∧
(m,n)Am,n

〈
F,GI

m,n,j

〉
L2(BR)

]2

≤
∞∑
m=0

[(
l0 + 2m+

3

2

)t−q
c4 c

p
5 (l0 + 2m+ c6)q

〈
F,GI

m,0,1

〉
L2(BR)

]2

+
∞∑
m=0

∞∑
n=1

2n+1∑
j=1

[(
ln + 2m+

3

2

)t−q
[(2n+ 1)n(n+ 1)]s−

p
3

×c4(n+ c5)p(ln + 2m+ c6)q
〈
F,GI

m,n,j

〉
L2(BR)

]2

.

It should be noted here that for the case ln < 0, the Fourier coefficients〈
F,GI

m,n,j

〉
L2(BR)

vanish for all corresponding (m,n, j) (see Definition 1.4.5).

Now, using Lemma 2.1.8, we can find constants a and b depending on q and
p, such that

(n+ c5)p ≤ a ((2n+ 1)n(n+ 1))
p
3

and

(ln + 2m+ c6)q ≤ b

(
ln + 2m+

3

2

)q
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for all m,n ≥ 0. Note that the second inequality is obtained, if k := ln + 2m
is used as an index of the sequence. So, there exist positive constants C∗ and
C∗∗ such that

‖AF‖2
HI
s− p3 ,t−q

(BR) ≤ C∗
∞∑
m=0

[(
l0 + 2m+

3

2

)t 〈
F,GI

m,0,1

〉
L2(BR)

]2

+ C∗∗
∞∑
m=0

∞∑
n=1

2n+1∑
j=1

[(
ln + 2m+

3

2

)t
((2n+ 1)n(n+ 1))s

×
〈
F,GI

m,n,j

〉
L2(BR)

]2

≤ C
∞∑
m=0

∞∑
n=0

2n+1∑
j=1

[(
As, t

2
I

)∧
(m,n)

〈
F,GI

m,n,j

〉
L2(BR)

]2

< +∞,

where C = max(C∗, C∗∗). Similarly, we have

‖AF‖2
HII
s− p3 ,t−q

(BR) < +∞.

This proves the following result.

Theorem 2.1.9 The operator A defined in Definition 2.1.7, indeed, has the
property that

A
(
HX
s,t(BR)

)
⊂ HX

s− p
3
,t−q(BR).

In particular, we also get a result for the domain and the order of the oper-
ators in Theorem 2.1.3.

Theorem 2.1.10 For s, t, p, q ∈ R+
0 with s ≥ p and t ≥ 2q, the operator

Ap,q
X : HX

s,t(BR)→ HX
s−p,t−2q(BR)

defined in Theorem 2.1.3 is a pseudodifferential operator with the angular
order 3p and radial order 2q. Moreover, the operator is isometric, that is

‖Ap,q
X (F )‖HX

s−p,t−2q(BR) = ‖F‖HX
s,t(BR) , F ∈ HX

s,t(BR).

In particular, for the case s = p and t = 2q∥∥∥As, t
2

X (F )
∥∥∥

L2(BR)
= ‖F‖HX

s,t(BR) , F ∈ HX
s,t(BR).
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Proof: The statement of Ap,q
X being a pseudodifferential operator with given

radial and angular orders is guaranteed by Lemma 2.1.8. Further, in order
to prove the isometry of the operator, we consider the norm of F ∈ HX

s,t(BR)
for s ≥ p, t ≥ 2q and get

‖Ap,q
X (F )‖2

HX
s−p,t−2q(BR)

=
∞∑

m,n=0

2n+1∑
j=1

[(
As−p, t

2
−q

X

)∧
(m,n)

〈
Ap,q

X (F ), GX
m,n,j

〉
L2(BR)

]2

=
∞∑

m,n=0

2n+1∑
j=1

[(
As−p, t

2
−q

X

)∧
(m,n) (Ap,q

X )∧ (m,n)
〈
F,GX

m,n,j

〉
L2(BR)

]2

=
∞∑

m,n=0

2n+1∑
j=1

[(
As, t

2
X

)∧
(m,n)

〈
F,GX

m,n,j

〉
L2(BR)

]2

= ‖F‖2
HX
s,t(BR) .

This completes the proof.

2.2 Generalized Discrepancy

Principally, a quadrature formula depends on two quantities that are: the
weights and the grid points. First, we consider a quadrature formula with
fixed equal weights and search for a set ωN = {x1, x2, . . . , xN} ⊂ BR, such
that ∫

BR
F (x) dx ≈ 4πR3

3N

N∑
k=1

F (xk) (2.15)

for any function F ∈ H(BR). We now derive an estimate for the quadrature
error.

Theorem 2.2.1 For any function F ∈ H({Bm,n},X,BR), we have∣∣∣∣∣ 3

4πR3

∫
BR
F (x) dx− 1

N

N∑
k=1

F (xk)

∣∣∣∣∣
≤ ‖AF‖L2(BR)

1

N

 ∑
(m,n)6=(0,0)
Am,n 6=0

2n+1∑
j=1

N∑
i=1

N∑
k=1

GX
m,n,j(xi)G

X
m,n,j(xk)

A2
m,n


1
2

,

(2.16)



40 CHAPTER 2. QUADRATURE POINTS ON THE BALL

where the Sobolev space H({Bm,n},X,BR) depends on a summable sequence
{Bm,n}m,n∈N0 and A : H({Bm,n},X,BR) → L2(BR) is an operator with
summable eigenvalues {Am,n}m,n∈N0 such that Am,n = 0 if and only if Bm,n =
0 and A0,0 6= 0.

Proof: Let us consider F ∈ H({Bm,n},X,BR), then we can write

F (y) =
∞∑
n=0

∞∑
m=0

2n+1∑
j=1

〈
F,GX

m,n,j

〉
L2(BR)

GX
m,n,j(y)

=
∞∑
n=0

∞∑
m=0

2n+1∑
j=1

∫
BR
F (x)GX

m,n,j(x) dxGX
m,n,j(y)

for all y ∈ BR, since for a summable sequence this expansion is uniformly
convergent (see Lemma 1.4.7). Separating the term for (m,n) = (0, 0), we
get

F (y) =
3

4πR3

∫
BR
F (x) dx+

∑
(m,n)6=(0,0)

2n+1∑
j=1

∫
BR
F (x)GX

m,n,j(x) dxGX
m,n,j(y).

For any operator A with eigenvalues {Am,n}m,n∈N0 , the equation above be-
comes

F (y) =
3

4πR3

∫
BR
F (x) dx+

∑
(m,n)6=(0,0)
Am,n 6=0

2n+1∑
j=1

∫
BR

AF (x)GX
m,n,j(x)

Am,n
dxGX

m,n,j(y).

Next, putting y = xk and taking a sum over all indices k ∈ {1, 2, . . . , N}, we
obtain

1

N

N∑
k=1

F (xk)

=
3

4πR3

∫
BR
F (x) dx+

∑
(m,n)6=(0,0)
Am,n 6=0

2n+1∑
j=1

∫
BR

AF (x)GX
m,n,j(x)

Am,n
dx

1

N

N∑
k=1

GX
m,n,j(xk).

Now the error estimate is calculated as:∣∣∣∣∣ 3

4πR3

∫
BR
F (x) dx− 1

N

N∑
k=1

F (xk)

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑

(m,n)6=(0,0)
Am,n 6=0

2n+1∑
j=1

∫
BR

AF (x)GX
m,n,j(x)

Am,n
dx

1

N

N∑
k=1

GX
m,n,j(xk)

∣∣∣∣∣∣∣∣ .
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Considering the uniform convergence of the series, we can interchange the
integral and summation and get∣∣∣∣∣ 3

4πR3

∫
BR
F (x) dx− 1

N

N∑
k=1

F (xk)

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1

N

∫
BR
AF (x)

∑
(m,n)6=(0,0)
Am,n 6=0

2n+1∑
j=1

GX
m,n,j(x)

Am,n

N∑
k=1

GX
m,n,j(xk) dx

∣∣∣∣∣∣∣∣ .
Furthermore, using the Cauchy-Schwarz inequality (1.17), we obtain∣∣∣∣∣ 3

4πR3

∫
BR
F (x) dx− 1

N

N∑
k=1

F (xk)

∣∣∣∣∣
≤ 1

N

(∫
BR

(AF (x))2 dx

) 1
2

∫
BR

∑
(m,n)
6=(0,0)

2n+1∑
j=1

N∑
k=1

Am,n 6=0

GX
m,n,j(x)GX

m,n,j(xk)

Am,n


2

dx


1
2

.

We know that, from Sobolev lemma 1.4.7, the second term in the above
inequality, i.e. KH(·, xk) ∈ C(BR) and, consequently, is in L2(BR). This
yields∣∣∣∣∣ 3

4πR3

∫
BR
F (x) dx− 1

N

N∑
k=1

F (xk)

∣∣∣∣∣
=

1

N
‖AF‖L2(BR)

 ∑
(m,n)6=(0,0)
Am,n 6=0

2n+1∑
j=1

(
N∑
k=1

GX
m,n,j(xk)

Am,n

)2


1
2

=
1

N
‖AF‖L2(BR)

 ∑
(m,n)6=(0,0)
Am,n 6=0

2n+1∑
j=1

N∑
i=1

N∑
k=1

GX
m,n,j(xi)G

X
m,n,j(xk)

A2
m,n


1
2

,

which is the required quadrature error estimate.
This error estimate allows us to describe the generalized discrepancy for the
ball.
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Definition 2.2.2 The generalized discrepancy D(ωN ,A) for the ball depend-
ing on the operator A with the symbol {Am,n}m,n∈N0 and a point grid ωN =
{x1, x2, . . . , xN} is defined as

D(ωN ,A) :=
1

N

 ∑
(m,n)6=(0,0)
Am,n 6=0

2n+1∑
j=1

N∑
i=1

N∑
k=1

GX
m,n,j(xi)G

X
m,n,j(xk)

A2
m,n


1
2

. (2.17)

The generalized discrepancy acts as a uniformity measure for the points dis-
tributed on the ball. The lower the discrepancy is, the more the points are
equidistributed.

Definition 2.2.3 If the generalized discrepancy converges to zero for large
N, i.e. limN→∞D(ωN ,A) = 0 for a sequence of point sets {ωN}N∈N, then
{ωN}N∈N is named as A-equidistributed in the Sobolev space H(BR).

2.3 Weighted Grid Point Approximation

Unlike the concept given in the previous section, the weighted grid point
approximation estimates the integral of the functions on the given domain
using nonuniform weights. In this section, we analyse the integral of the
functions on the ball using variable weights instead of the constant ones. We
can reframe the problem in the following way: taking a set of points ωN on
the ball BR, we need to search for the weights αk such that∫

BR
F (x) dx ≈ 4πR3

3

N∑
k=1

αkF (xk),

for any function F ∈ H(BR). For any operator A on H(BR) with summable
eigenvalues {Am,n}m,n∈N0 , we can conclude the following:

Theorem 2.3.1 Let ωN = {x1, x2, . . . , xN} be a fixed point set on BR and
{α1, α2, . . . , αN} be weights such that

N∑
k=1

αk = 1.
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Then for any function F ∈ H({Bm,n},X,BR), we have∣∣∣∣∣ 3

4πR3

∫
BR
F (x) dx−

N∑
k=1

αkF (xk)

∣∣∣∣∣
≤ ‖AF‖L2(BR)

 ∑
(m,n)6=(0,0)
Am,n 6=0

2n+1∑
j=1

N∑
i=1

N∑
k=1

αiαkG
X
m,n,j(xi)G

X
m,n,j(xk)

A2
m,n


1
2

,

(2.18)
where the Sobolev space H({Bm,n},X,BR) depends on a summable sequence
{Bm,n}m,n∈N0 and A : H({Bm,n},X,BR) → L2(BR) is an operator with
summable eigenvalues {Am,n}m,n∈N0 such that Am,n = 0 if and only if Bm,n =
0 and A0,0 6= 0.

Proof: The result can be proved using the same procedure as in Theorem
2.2.1.
Based on this result, we now define the weighted discrepancy.

Definition 2.3.2 The weighted discrepancy Dw(ωN ,A) depending on the op-
erator A with the symbol {Am,n}m,n∈N0 and N weights α1, α2, . . . , αN satis-
fying

N∑
k=1

αk = 1 (2.19)

is defined as

Dw(ωN ,A) :=

 ∑
(m,n)6=(0,0)
Am,n 6=0

2n+1∑
j=1

N∑
i=1

N∑
k=1

αiαkG
X
m,n,j(xi)G

X
m,n,j(xk)

A2
m,n


1
2

. (2.20)

Now we have to find the weights in order to have a minimum discrepancy for
a specific set of points on the ball. This gives rise to an optimization problem
in which the function to be minimized is Dw(ωN ,A). The problem is stated
as: we minimize the term

QA(α1, α2, . . . , αN) =
N∑
i=1

N∑
k=1

αiαkh(A;xi, xk),

where

h(A;xi, xk) =
∑

(m,n)6=(0,0)
Am,n 6=0

2n+1∑
j=1

GX
m,n,j(xi)G

X
m,n,j(xk)

A2
m,n
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subject to the constraints
N∑
k=1

αk = 1.

To minimize our objective function QA subject to the given constraints, we
use the Lagrange method of multipliers with Lagrange multiplier λ. The
Lagrange function in this case is given as

L(α1, α2, . . . , αN , λ) = QA(α1, α2, . . . , αN)− λ

(
N∑
k=1

αk − 1

)
. (2.21)

Next, taking the partial derivatives of (2.21) with respect to the variables
αt, t = 1, 2, . . . , N and the new variable λ, we get the following system of
equations to be solved:

h(A;x1, x1)α1 + h(A;x2, x1)α2 + . . . + h(A;xN , x1)αN −
λ

2
= 0

h(A;x1, x2)α1 + h(A;x2, x2)α2 + . . . + h(A;xN , x2)αN −
λ

2
= 0

...

h(A;x1, xN)α1 + h(A;x2, xN)α2 + . . . + h(A;xN , xN)αN −
λ

2
= 0

α1 + α2 + . . . + αN − 1 = 0.

(2.22)

Now multiplying the first N equations by αt for t = 1, 2, . . . , N and taking
sum over indices t, we have

N∑
t=1

N∑
i=1

h(A;xi, xt)αiαt −
λ

2

N∑
t=1

αt︸ ︷︷ ︸
=1

= 0.

Consequently, we get

N∑
t=1

N∑
i=1

h(A;xi, xt)αiαt =
λ

2
. (2.23)

This leads us to the following result.

Theorem 2.3.3 If λ is the Lagrange multiplier and Dw(ωN ,A) is the weighted
discrepancy with optimum weights αk satisfying (2.19), then we have

Dw(ωN ,A) =

(
λ

2

) 1
2

. (2.24)
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2.4 Operators and Eigenvalues

The choice of the sequence {Bm,n}m,n∈N0 and the operator A with its eigen-
values Am,n satisfying the conditions of Theorem 2.2.1, in the generalized dis-
crepancy (2.17) and the weighted discrepancy (2.20) is not restricted. Here,
we work with the Sobolev spaces HX

s,t(BR) (see Definition 2.1.4) and further
experiment with different sequences {Am,n}m,n∈N0 in order to get a convenient
representation of the discrepancy formula. With the use of the orthonormal
system of type I given by (1.50) for R = 1 and the addition theorem for
spherical harmonics 1.3.11, (2.20) yields

Dw(ωN ,A) =

 ∑
(m,n)6=(0,0)
Am,n 6=0

N∑
i=1

N∑
k=1

αiαk
4π

(2n+ 1)(4m+ 2ln + 3)

A2
m,n

(|xi||xk|)ln

×P (0,ln+ 1
2

)
m (2|xi|2−1)P

(0,ln+ 1
2

)
m (2|xk|2−1)Pn (ξi · ξk)

 1
2

, (2.25)

where ξi := xi
|xi| . Similarly, for the orthonormal system of type II (1.51) with

R = 1, we have

Dw(ωN ,A) =

 ∑
(m,n)6=(0,0)
Am,n 6=0

N∑
i=1

N∑
k=1

αiαk
4π

(2n+ 1)(2m+ 3)

A2
m,n

P (0,2)
m (2|xi|−1)

×P (0,2)
m (2|xk|−1)Pn (ξi · ξk)

 1
2

. (2.26)

Note that for αi = αk = 1
N

, Dw(ωN ,A) = D(ωN ,A). In the following,
we discuss some examples of the sequences {Am,n}m,n∈N0 together with the
representations of the discrepancy formula in these particular cases. The
most convenient choice for eigenvalues is, of course, the sequences (2.9) and
(2.10) which we have also chosen for the Sobolev spaces HX

s,t(BR). Note
that the summability condition for sequences (see Definition 1.4.6) is only
sufficient and there are more cases where the Sobolev lemma 1.4.7 holds. In
what follows, we consider the cases with suitable values of p and q.

• A := Ap,q
I and Am,n := (Ap,q

I )∧ (m,n)
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For the sequence (2.9) with sufficiently large p and q, (2.25) becomes

Dw (ωN ,Ap,q
I ) =

[
∞∑
m=1

N∑
i,k=1

αiαk
2π

2m+ l0 + 3
2

(2m+ l0 + 3
2
)4q

× P
(0,l0+ 1

2
)

m (2|xi|2−1)P
(0,l0+ 1

2
)

m (2|xk|2−1) (|xi||xk|)l0 P0 (ξi · ξk)

+
∞∑
m=0

∞∑
n=1

N∑
i,k=1

αiαk
2π

(2n+ 1)(2m+ ln + 3
2
)

(2m+ ln + 3
2
)4q[(2n+ 1)n(n+ 1)]2p

× P
(0,ln+ 1

2
)

m (2|xi|2−1)P
(0,ln+ 1

2
)

m (2|xk|2−1) (|xi||xk|)ln Pn (ξi · ξk)

] 1
2

.

Writing it down in a compact form, we arrive at

Dw (ωN ,Ap,q
I ) =

 ∞∑
m=1

N∑
i,k=1

αiαk
2π

1(
A2p,2q− 1

2
I

)∧
(m, 0)

P
(0,l0+ 1

2
)

m (2|xi|2−1)

× P
(0,l0+ 1

2
)

m (2|xk|2−1) (|xi||xk|)l0 P0 (ξi · ξk)

+
∞∑
m=0

∞∑
n=1

N∑
i,k=1

αiαk
2π

2n+ 1(
A2p,2q− 1

2
I

)∧
(m,n)

P
(0,ln+ 1

2
)

m (2|xi|2−1)

× P
(0,ln+ 1

2
)

m (2|xk|2−1) (|xi||xk|)ln Pn (ξi · ξk)


1
2

.

This leads us to the following equation:

Dw (ωN ,Ap,q
I ) =

 ∞∑
m=0

∞∑
n=0

(m,n)6=(0,0)

N∑
i,k=1

αiαk
2π

2n+ 1(
A2p,2q− 1

2
I

)∧
(m,n)

×P (0,ln+ 1
2

)
m (2|xi|2−1)P

(0,ln+ 1
2

)
m (2|xk|2−1) (|xi||xk|)ln Pn (ξi · ξk)


1
2

.

Furthermore, subtracting the term with indices (m,n) = (0, 0), we
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obtain

Dw (ωN ,Ap,q
I ) =

 ∞∑
m,n=0

N∑
i,k=1

αiαk
2π

2n+ 1(
A2p,2q− 1

2
I

)∧
(m,n)

P
(0,ln+ 1

2
)

m (2|xi|2−1)

×P (0,ln+ 1
2

)
m (2|xk|2−1) (|xi||xk|)ln Pn (ξi · ξk)−

αiαk
2π

(|xi||xk|)l0(
A2p,2q− 1

2
I

)∧
(0, 0)


1
2

.

(2.27)

• A := Ap,q
II and Am,n := (Ap,q

II )∧ (m,n)
Like before, for the sequence (2.10) with sufficiently large p and q,
equation (2.26) becomes

Dw (ωN ,Ap,q
II ) =

 ∞∑
m,n=0

N∑
i,k=1

αiαk
2π

2n+ 1(
A2p,2q− 1

2
II

)∧
(m,n)

×P (0,2)
m (2|xi|−1)P (0,2)

m (2|xk|−1)Pn (ξi · ξk)−
αiαk
2π

1(
A2p,2q− 1

2
II

)∧
(0, 0)


1
2

.

(2.28)

In particular, for p = 1
2

and q = 3
4
, the above equation takes the form

Dw

(
ωN ,A

1
2
, 3
4

II

)
=

1√
π

[
N∑
i=1

N∑
k=1

∞∑
m=0

2αiαk
(2m+ 3)2

P (0,2)
m (2|xi|−1)

× P (0,2)
m (2|xk|−1)

(
1 +

∞∑
n=1

1

n(n+ 1)
Pn (ξi · ξk)

)
− 2

9
αiαk

] 1
2

. (2.29)

For this sequence, we get a closed representation for the angular part
as (see [44])

∞∑
n=1

1

n(n+ 1)
Pn (ξi · ξk) = 1− 2 ln

(
1 +

√
1− ξi · ξk

2

)
,

which is actually the reason behind choosing these particular values of
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p and q. Hence, the discrepancy in this case takes the form

Dw

(
ωN ,A

1
2
, 3
4

II

)
=

√
2

π

 N∑
i=1

N∑
k=1

∞∑
m=0

2αiαk
(2m+ 3)2

P (0,2)
m (2|xi|−1)

× P (0,2)
m (2|xk|−1)

(
1− ln

(
1 +

√
1− ξi · ξk

2

))
− 1

9
αiαk

] 1
2

. (2.30)

Note that the sequence (2.10) with p = 1
2

and q = 3
4

is not summable,
however, the summability is a sufficient and not necessary condition for
our considerations. The conditions in Theorem 2.2.1 allow us to choose
this particular operator, where we can take a truncation of series over
m for the numerical relevance.

Apart from selecting these specific differential operators together with their
eigenvalues, we can also choose other (summable) sequences. Specifically,
we can find different representations for the discrepancy Dw in (2.26) corre-
sponding to a specific sequence, as it completely decouples the m and n parts
which are related to the angular and radial parts of the orthonormal basis
system of type II. Obviously, this cannot be done for the discrepancy Dw in
(2.25) which depends on the orthonormal system of type I. Fortunately, we
have some closed representations for the angular part which helps us in the
numerical calculations. The following sequences can be chosen according to
some representations for the angular part.

• Am,n :=
√

(2m+3
2tm

2n+1
2tn

), 0 < t < 1

For the above sequence, (2.26) takes the form

Dw (ωN ,A) =

[
N∑

i,k=1

αiαk
π

(
∞∑
m=0

tmP (0,2)
m (2|xi|−1)P (0,2)

m (2|xk|−1)

)

×

(
∞∑
n=0

tnPn (ξi · ξk)

)
− αiαk

π

] 1
2

.

With
∞∑
n=0

tnPn(ξi · ξk) =
1√

1 + t2 − 2tξi · ξk
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(see [53]), the above equation yields

Dw (ωN ,A) =

[
N∑

i,k=1

αiαk
π

(
∞∑
m=0

tmP (0,2)
m (2|xi|−1)P (0,2)

m (2|xk|−1)

)

× 1√
1 + t2 − 2tξi · ξk

− αiαk
π

] 1
2

. (2.31)

• Am,n :=
√

2m+3
4tmtn

, 0 < t < 1

For the above sequence, (2.26) takes the form

Dw (ωN ,A) =

[
N∑

i,k=1

αiαk
π

(
∞∑
m=0

tmP (0,2)
m (2|xi|−1)P (0,2)

m (2|xk|−1)

)

×

(
∞∑
n=0

(2n+ 1)tnPn (ξi · ξk)

)
− αiαk

π

] 1
2

.

With the representation

∞∑
n=0

(2n+ 1)tnPn(ξi · ξk) =
1− t2

(1 + t2 − 2tξi · ξk)
3
2

for the n part (see [53]), the discrepancy is given as

Dw (ωN ,A) =

[
N∑

i,k=1

αiαk
π

(
∞∑
m=0

tmP (0,2)
m (2|xi|−1)P (0,2)

m (2|xk|−1)

)

× 1− t2

(1 + t2 − 2tξi · ξk)
3
2

− αiαk
π

] 1
2

. (2.32)

• Am,n :=
√

2m+3
2tm

(2n+1)(n+1)
2tn

, 0 < t < 1

In analogy to above, using the representation

∞∑
n=0

tn

n+ 1
Pn(ξi · ξk) =

1

t
ln

[
t− ξi · ξk +

√
1− 2tξi · ξk + t2

1− ξi · ξk

]
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for the n part (see [44]) and the given sequence Am,n, we have

Dw (ωN ,A) =

[
N∑

i,k=1

αiαk
π

(
∞∑
m=0

tmP (0,2)
m (2|xi|−1)P (0,2)

m (2|xk|−1)

)

× 1

t
ln

(
t− ξi · ξk +

√
1− 2tξ · ξk + t2

1− ξi · ξk

)
− αiαk

π

] 1
2

. (2.33)

Note that the operators A corresponding to all sequences Am,n are pseudo-
differential operators and are defined as

AF = Am,nF for all F ∈ HX
s,t(BR).

It is easy to see that the last three sequences are II-summable for all t ∈]0, 1[.



Chapter 3

Construction of Point Grids
and Discrepancy Estimates

This chapter deals with the construction of the grids on a 3-dimensional ball
and the computation of their discrepancies. We acquire grids on the ball with
the help of known configurations on the surface of the ball. For this, we use
the simple approach of plotting equidistributed spherical grids for different
but equidistant radii r. Therefore, we get distribution of points not only on
the surface but also inside the ball. We test four different spherical grids, that
are: the simple lattice, the improved lattice, the Freeden grid and the Reuter
grid. Each point grid is generated by a division of latitude and longitude. A
grid on the ball is generated by using a spherical grid of different radii r. In
our examples, the radius r varies from 0 to 1 with a distance of 0.1 between
each spherical grid. Figures 3.1 to 3.3 show plots of the resulting grids.

1. Simple Lattice [14]: This is the
most famous as well as simple
point grid known on the sphere,
which gives an equal division of
longitude φ and latitude θ. It de-
pends on two parameters P and Q,
where P, Q ∈ N, and

θi =
iπ

P
, 1 ≤ i ≤ P − 1,

φj =
2jπ

Q
, 1 ≤ j ≤ Q− 1.

(3.1)

-0.5

0.5

0

0.5

0.5

0
0

-0.5 -0.5
-1

Figure 3.1: simple lattice of
1690 points on a 3D-ball.

When we plot this grid on the ball for parameters P = Q using the

51
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criterion stated above, we get (P − 1)2 distinct points on the sphere.

2. Improved Lattice [14]: The im-
proved lattice is actually an im-
proved version of the simple lat-
tice. Here, the value of the longi-
tude φ is dependent on θ due to
which the points do not show a
concentration near the poles.

θi =
iπ

P
, 1 ≤ i ≤ P − 1,

j(i) = b2πP sin(θi)c,

φj =
2jπ

j(i)
, 1 ≤ j ≤ j(i),
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Figure 3.2: Improved lattice with
1900 points on the 3D-ball.

where b.c represents the Gaussian bracket. For a given parameter P ,

the total number of distinct points we get in this case is
(∑P−1

i=1 j(i)
)
.

3. Reuter Grid [58]: For P ∈ N, we
have

θi =
iπ

P
, 0 ≤ i ≤ P,

γ0 = 1, γP = 1,

γi =

 2π

arccos

(
cos( πP )−cos2(θi)

sin2(θi)

)
 ,

1 ≤ i ≤ P − 1,

φ01 = 0, φP1 = 0,

φij =

(
j − 1

2

)(
2π

γi

)
, 1 ≤ j ≤ γi,

1 ≤ i ≤ P − 1.
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Figure 3.3: Reuter grid with 2080
points on the 3D-ball.

The grid is named after the author of PhD thesis [58]. This spherical
grid, when plotted on the unit ball, gives a nice distribution of points
in comparison to other examples. For P ∈ N, the number of points N
on the surface of the ball in this case can be estimated by

N ≤ 2 +
4

π
P 2.
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4. Freeden Grid [47]: For P ∈ N, we
have

θ0 = 0, φ01 = 0,

θi =
iπ

P
, 1 ≤ i ≤ P − 1,

i ≤ P/2 : γi = 4i,

i > P/2 : γi = 4(P − i),

φij =

(
j − 1

2

)(
2π

γi

)
, 1 ≤ j ≤ γi,

1 ≤ i ≤ P − 1,

θP = π, φP1 = 0.
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Figure 3.4: Freeden grid with
1980 points on the 3D-ball.

The number of points N on the surface of the ball in this case is deter-
mined by

N = 2 + 4

⌊
P + 1

2

⌋⌊
P

2

⌋
.

One major drawback of this construction, as it can be seen in all the examples
above, is the aggregation of points at the centre of the ball. The reason is
that, while plotting the grids, the same number of points is used on the
spheres of different radii. As a consequence, we do not get a nice distribution
of points on the ball. In the next section, we discuss a way to improve these
grids in order to get comparatively finer distributions.

3.1 Modified Point Grids

In this section, we modify the originally constructed grids in order to solve
the problem of accumulation of points near the origin. We know from the
previous section that every spherical grid depends on a paramter P , which
gives the division of points. We replace this parameter P in the original grids
by the term brP c, b.c representing the Gaussian bracket. This term depends
on the radius r of the sphere so that with the increasing radii of the spheres,
the number of points on each sphere also increases. Figures 3.5a to 3.5d show
the behaviour of the point grids after the modification. A comparison to the
plots obtained from the first attempt of constructing point grids on the ball
shows that the modified point grids lead to better results. We can see that
the points are now no more accumulated at the centre of the ball. They are
also visually more equidistributed.



54 CHAPTER 3. GRID POINTS AND DISCREPANCY

-0.5

0.5

0

0.5

0.5

0
0

-0.5 -0.5
-1

(a) A plot of the modified simple
lattice with 1545 grid points and a

discrepancy value of 0.0684.
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(b) A plot of the modified improved
lattice with 1566 grid points and a

discrepancy value of 0.0565.
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(c) A plot of the modified Reuter
grid with 1638 grid points and a

discrepancy value of 0.0604.
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(d) A plot of the modified Freeden
grid with 1600 grid points and a

discrepancy value of 0.0590.

Figure 3.5: Plots of modified point grids on the 3D-ball.

Furthermore, one can calculate the discrepancies of these constructed
grids using any of the discrepancy formulae derived in Chapter 2. In order to
be brief, we use only equation (2.27) for type I and equation (2.30) for type
II to compute the discrepancies with weights αi = 1

N
. Since the parameters

m and n in (2.27) and the parameter m in (2.30) sum up to infinite values,
we truncate them to degreesM and N of Jacobi and Legendre polynomials,
respectively. In the following computations, we take M = 50 and N = 50
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for the case of type I and for type II, we choose M = 100.
Similar to the case of type II, we take the operator with values p = 1

2
and

q = 3
4

for the type I also. With these particular values of p, q and ln = n,
(2.27) yields

Dw

(
ωN ,A

1
2
, 3
4

I

)
=

[
M∑
m=0

N∑
n=0

N∑
i,k=1

αiαk
2π

2n+ 1(
A1,1

I

)∧
(m,n)

P
(0,n+ 1

2
)

m (2|xi|2−1)

× P
(0,n+ 1

2
)

m (2|xk|2−1) (|xi||xk|)n Pn (ξi · ξk)−
αiαk
2π

1(
A1,1

I

)∧
(0, 0)

] 1
2

, (3.2)

and for αi = 1
N

, we obtain

D
(
ωN ,A

1
2
, 3
4

I

)
=

[
M∑
m=0

N∑
n=0

N∑
i,k=1

1

2πN2

2n+ 1(
A1,1

I

)∧
(m,n)

P
(0,n+ 1

2
)

m (2|xi|2−1)

× P
(0,n+ 1

2
)

m (2|xk|2−1) (|xi||xk|)n Pn (ξi · ξk)−
1

2πN2

1(
A1,1

I

)∧
(0, 0)

] 1
2

. (3.3)

It is easy to see that for these values of p and q with ln = n, the series in
(3.3) is convergent.
From this point onwards, all the computations are done with ln = n for the
case of type I. We again mention here that the value ln = n plays a par-
ticular role. For this specific value, the basis system I forms an algebraic
polynomial. Moreover, it is relevant for the singular value decomposition of
the inverse gravimetric problem (see, for e.g. [4, 49]).
The plots in figures 3.6 to 3.9 show the dependence of the discrepancy esti-
mates computed for the basis systems of types I and II with respect to the
number of points.
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Figure 3.6: The behaviour of the generalized discrepancies with increasing
number of points for the modified simple lattice corresponding to the or-
thonormal basis system of type I is presented in (a) and for the orthonormal
basis system of type II in (b). The colourbar represents the values of the
discrepancies.
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Figure 3.7: The behaviour of the generalized discrepancies with increasing
number of points for the modified improved lattice corresponding to the
orthonormal basis system of type I is presented in (a) and for the orthonormal
basis system of type II in (b). The colourbar represents the values of the
discrepancies.
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Figure 3.8: The behaviour of the generalized discrepancies with increasing
number of points for the modified Reuter grid corresponding to the orthonor-
mal basis system of type I is presented in (a) and for the orthonormal basis
system of type II in (b). The colourbar represents the values of the discrep-
ancies.
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Figure 3.9: The behaviour of the generalized discrepancies with increasing
number of points for the modified Freeden grid corresponding to the or-
thonormal basis system of type I is presented in (a) and for type II in (b).
The colourbar represents the values of the discrepancies.

Note that the discrepancy in all the above examples appears to stagnate
for large numbers of grids and the rate of convergence is not very good but
it is noticeable that the general trend of discrepancy estimates with respect
to the number of points is decreasing. It can also be seen that the rate of
convergence for type II is faster in comparison to type I. As mentioned above,
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it is also evident from the plots that Reuter grid has better outcomes among
other grids for both the cases of type I and II.

3.2 Weighted Discrepancy Estimates

In what follows, we present the results for the weighted discrepancies in
Figures 3.10 to 3.13. These discrepancies are calculated for the modified
point grids from the previous section. As mentioned in Section 2.3, we choose
a particular grid on the ball and search for the weights that minimize the
discrepancy of that grid. In order to solve this optimization problem, we use
the Lagrange method of multipliers with Lagrange multiplier λ. We solve
the linear system of equations (2.22) for the variables αk and the Lagrange
multiplier λ. Firstly, for a chosen point grid {x1, x2, . . . , xN}, we calculate
the value of the kernel

h(A;xi, xk) =
M∑
m=0

N∑
n=0

(m,n)6=(0,0)

2n+1∑
j=1

GX
m,n,j(xi)G

X
m,n,j(xk)

A2
m,n

(3.4)

for i, k ∈ {1, 2, . . . , N} and ln ≥ 0, with the pseudodifferential operator

A = A
1
2
, 3
4

X and corresponding eigenvalues

Am,n =
(
A

1
2
, 3
4

X

)∧
(m,n).

For type I, we use the representation (3.2) and representation (2.30) for type
II to compute the kernel h. Note that we truncate the infinite sums in (3.4)
up to degrees M and N . Similar to the previous section, we take M = 50,
N = 50 and ln = n for the case of type I and for type II, we chooseM = 100.
Next, we use the linsolve command of matlab to solve the system (2.22) and
consequently, find the unknowns αi and λ. Having the value of λ, with the
help of Theorem 2.3.3, we compute the weighted discrepancies with optimum
weights αi.
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Figure 3.10: The behaviour of the weighted discrepancies with increasing
number of points for the modified simple lattice corresponding to the or-
thonormal basis system of type I is shown in (a) and for type II in (b). The
colourbar represents the values of the discrepancies.
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Figure 3.11: The behaviour of the weighted discrepancies with increasing
number of points for the modified improved lattice corresponding to the
orthonormal basis system of type I is shown in (a) and for type II in (b).
The colourbar represents the values of the discrepancies.
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Figure 3.12: The behaviour of the weighted discrepancies with increasing
number of points for the modified Reuter grid corresponding to the orthonor-
mal basis system of type I is shown in (a) and for type II in (b). The colourbar
represents the values of the discrepancies.
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Figure 3.13: The behaviour of the weighted discrepancies with increasing
number of points for the modified Freeden grid corresponding to the or-
thonormal basis system of type I is shown in (a) and for type II in (b). The
colourbar represents the values of the discrepancies.

It appears from the plots that although the discrepancy estimates stag-
nate for large grids, the results are better than the previous case. The dis-
crepancies behave more decently in this case and as the weights are chosen in
order to minimize the discrepancy, the weighted case gives lower discrepancies
(especially, for the case of type I) in comparison to the previous scenario.



Chapter 4

Lower Discrepancy Point Grids

In this chapter, we focus on finding lower discrepancy point grids along with
the methods that minimize the discrepancy. We try different methods in
order to find the algorithms which are further able to improve the existing
grids from the previous chapter. In the following, the discrepancies are com-
puted using equation (3.3) for the system of type I and (2.30) for type II with
p = 1

2
, q = 3

4
and weights αi = αk = 1

N
. Also, we truncate the infinite sums

in these equations, as in Chapter 3. In the following, we denote a point grid
by X := (x1, x2, . . . , xN) and its ı-th iteration by Xı := (x

(ı)
1 , x

(ı)
2 , . . . , x

(ı)
N ).

4.1 Algorithms for the Point Grids

In order to have the point grids with lower value of discrepancies, we de-
velop some algorithms. These methods require a starting grid which is then
improved through a process. The algorithm stops after a given number of
iterations or after satisfying a predefined stopping criterion. It is obvious
that a good starting grid ensures a better resulting grid. This section gives
a description of these methods and a graphical comparison between the dis-
crepancies for the starting grid and the grid obtained after applying the
algorithm.

1. Algorithm 1

• Take a point grid X on the ball as a starting grid.

• Calculate the neighbourhood distances of all the points.

• Find the maximum neighbourhood distance M .

• Take average of every two points having distance M .

65
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• Create a new grid by excluding the points with distance M and
including the average values.

As an example, we take the modified Reuter grid (see Section 3.1) as
a starting grid in the algorithm. As mentioned above, it is an iterative
process. The process stops, when the new maximum neighbourhood
distance, say M1 between the points on the ball is less than or equal to
half of the previous distance M . We can deduce from the comparsion
in Figure 4.1 that this method improves the initial grid and yields a
grid with finer discrepancy estimates.
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Figure 4.1: The plot shows the comparison of the discrepancy estimates
computed for the modified Reuter grid with the estimates computed for the
grid obtained from Algorithm 1.

2. Algorithm 2

• Take a point grid X on the ball as a starting grid and a uniform
grid {ηn}n=1,2,...,N on the sphere as a helping grid.

• Generate a random permutation {ηP (n)}n=1,2,...,N of the grid on
the sphere.

• Generate random values ε1, ε2, . . . , εN for new lengths.

• Create a new grid by setting x
(ı+1)
n = x

(ı)
n + εn · ηP (n).

We experiment with two grids in this case. We again choose the mod-
ified Reuter grid as the starting grid. In addition, we choose the Ham-
mersley system ([24]) as a helping grid in the Figure 4.2a and the
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Reuter grid on the sphere in Figure 4.2b. We generate the random per-
mutations ηP (n) of the helping grid by using the randperm command of
Matlab and the lengths εn using the rand command of Matlab. Fur-
ther, we exclude the points of the resulting grid that are outside the
ball, i.e. points having norm greater than 1. This iterative method is
stopped, when D(Xı+1,A) < 0.6 · D(X1,A). The plots in Figure 4.2
present the results obtained from the algorithm.
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Figure 4.2: The plots show the comparisons of the discrepancy estimates
between the starting grid and the resulting grid obtained from Algorithm
2 for two cases, that are: the modified Reuter grid with the Hammersley
system in Subfigure (a) and the modified Reuter grid with the Reuter grid
in Subfigure (b).

3. Algorithm 3

• Take a point grid X on the ball as a starting grid.

• Generate random angles of the size of the point grid.

• Create a rotation matrix with these angles.

• Create a new grid by rotating the starting grid using the rotation
matrix.

In this algorithm, we took again the modified Reuter grid as the start-
ing point. We choose the random angles with the randn command of
matlab. For creating the rotation matrix, we use the command make-
hgtform from matlab. Algorithm 3 stops, when it attains a predefined
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number of iterations. In this example, we choose a maximum number
of iterations ı = 1000. Figure 4.3 shows the behaviour of the point
grid obtained from this algorithm as compared to the initial grid. As
we can see from the graphical presentation, apart from some initial
discrepancy values, the method does not improve the results.
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Figure 4.3: The plot shows a comparison of the results computed for the
modified Reuter grid and the grid obtained from Algorithm 3.

4.2 BFGS Method

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is a commonly used
Quasi-Newton optimization procedure. In a general Quasi-Newton optimiza-
tion technique, one requires the gradient ∇fı := ∇f(Xı) of the objective
function f , a suitable point Xı to start with and the Hessian matrix Bı.
Then one obtains a search direction pı, such that

Bıpı = −∇fı, ı ∈ N0. (4.1)

This search direction is then followed to get a new point, i.e.

Xı+1 = Xı + γıpı, (4.2)

where γı is the suitable step size which is obtained by using a line search
technique. Among other Quasi-Newton optimization procedures, the BFGS
technique is very effective in the sense that it requires the approximation to
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the Hessian matrix and updates it through each iteration instead of comput-
ing the exact Hessian each time.
Since our interest lies in acquiring low-discrepancy point grids, we use this
method to minimize the nonlinear function (i.e. the discrepancy formula)

fobj,X = D2
(
ωN ,A

1
2
, 3
4

X

)
, (4.3)

where for X = I with ln = n, we have

fobj,I =
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4πN2

[
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(see (3.3)) with
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, n ∈ N, m ∈ N0,

and for X = II (see (2.30)),

fobj,II =
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πN2
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In addition, we require the gradient of our objective function fobj,X. We note
that for X = II, the objective function fobj,II is not differentiable for all the
points in the grid. Consequently, we are unable to use the BFGS method for
type II with this particular representation. For this reason, we choose new
values for the parameters p and q with αi = 1

N
in (2.28). We use operator

Ap,q
II with p = 1 and q = 1 in (2.28) to get the objective function fobj,II as

fobj,II =
4

πN2

[
N∑

i,k=1

M∑
m=0

1

(2m+ 3)3
P (0,2)
m (2|xi|−1)P (0,2)

m (2|xk|−1)

×

(
1 +

N∑
n=1

1

(2n+ 1)n2(n+ 1)2
Pn

(
xi
|xi|
· xk
|xk|

))]
− 4

27π
. (4.6)
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Now, for finding the gradients of our objective functions, we need the gradi-
ents for Jacobi and Legendre polynomials. According to Theorem 1.2.8, we
have

∇xtP
(0,n+ 1

2
)

m (2|xi|2−1) =
Γ(n+m+ 5/2)

2 Γ(n+m+ 3/2)
P

(1,n+ 3
2

)

m−1 (2|xi|2−1) 4xT
i ∇xtxi

= 2

(
n+m+

3

2

)
P

(1,n+ 3
2

)

m−1 (2|xi|2−1)xT
i ∇xtxi, (4.7)

where ∇xtxi = δitI and t = 1, 2, . . . , N and

∇xtP
(0,2)
m (2|xi|−1) =

Γ(m+ 4)

2 Γ(m+ 3)
P

(1,3)
m−1(2|xi|−1) 2

(
xi
|xi|

)T

∇xtxi

= (m+ 3)P
(1,3)
m−1(2|xi|−1)

(
xi
|xi|

)T

∇xtxi. (4.8)

For the Legendre polynomials, (1.36) yields

Pn

(
xi
|xi|
· xk
|xk|

)
= C1/2

n

(
xi
|xi|
· xk
|xk|

)
.

Now, with the help of Theorem 1.1.2, Theorem 1.2.9 and the formula for
surface gradient

∇∗ξF (ξ · η) = F ′(ξ · η)[η − (ξ · η)ξ] (4.9)

from [47], we obtain

∇xtPn

(
xi
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· xk
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(
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(
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)]
. (4.10)

Furthermore, for the term (|xi||xk|)n, we get

∇xt (|xi||xk|)n = n (|xi||xk|)n−1

(
|xi|
(
xk
|xk|

)T

∇xtxk +

(
xi
|xi|

)T

∇xtxi|xk|

)
.

(4.11)



4.2. BFGS METHOD 71

Hence, all the above calculations and the product rule for gradients yield
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Consequently, we get
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for X = I. Analogously, for X = II, we obtain
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which finally yields
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(4.14)

Having the gradient of our objective functions, we further need a method
to update the Hessian and a line search algorithm. We experimented with
different methods in order to find out the one which works best in our case.
We tested two other updates, the damped BFGS update and the LDLT

factors ([28, 29, 54]) for updating the Hessian approximation matrix, along
with the usual BFGS update. Both of these updates are closely related to



4.2. BFGS METHOD 73

the BFGS update. Furthermore, we use different line search methods (see,
for example [29, 54]). That are:

1. γı = 9
ı
,

2. γı = 9√
ı
,

3. Wolfe line search condition, i.e. γı has to satisfy the following condi-
tions:

f(Xı + γıpı) ≤ f(Xı) + c1γı∇fT
ı pı,

∇f(Xı + γıpı)
Tpı ≥ c2∇fT

ı pı,

with 0 < c1 < c2 < 1. For our tests, we choose c1 = 10−4 and c2 = 0.9.

4. Backtracking line search, i.e. γı has to satisfy the following condition:

f(xı + γıpı) ≤ f(xı) + cγı∇fT
ı pı,

with 0 < c < 1. We choose c = 0.01 for our experiments. This con-
dition also appears in the Wolfe line search and is known as sufficient
decrease condition. Wolfe line search together with the additional sec-
ond condition is considered to be stronger than the backtracking line
search ([54]).

It is observed that the difference in the line search methods also affects the
outcomes and the rate of convergence. We use the modified Reuter grid of
616 points as a starting grid in the following tests. The stopping criteria for
the algorithm is set as follows

‖∇fı‖< ε, ε > 0.

We choose ε = 10−8 for fobj,I and ε = 10−4 for fobj,II. If the algorithm does
not satisfy the tolerance level ε, it is stopped after reaching the predetermined
number of iterations. In our tests, we take the maximum number of iterations
ı = 500 and for the computation of fobj,X and its gradient, we chooseM = 10
and N = 10. Figures 4.4 to 4.9 show the plots of the results obtained, using
the above mentioned techniques.

1. BFGS Update.
The updating formula for the Hessian approximation Bı is given as

Bı+1 := Bı −
Bısıs

T
ı Bı

sT
ı Bısı

+
yıy

T
ı

yT
ı sı

, (4.15)
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where
sı := Xı+1 −Xı = γıpı

and
yı := ∇fı+1 −∇fı.

Note that the curvature condition

sT
ı yı > 0 (4.16)

guarantees that the Hessian approximation update at each iteration is
positive definite, which is an important prospect for the convergence
of the function to a minimum value ([54]). The update (4.15) along
with only an appropriate line search method can assure the attainment
of this condition. Figures 4.4 and 4.5 show the results of the BFGS
method using the BFGS update, i.e. (4.15).
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Figure 4.4: The plots show the behaviour of the discrepancies for the or-
thonormal system of type I using the BFGS update (4.15) corresponding to
the number of iterations. The red point represents the minimum value of
discrepancy.
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(c) Backtracking line search
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Figure 4.5: The plots show the behaviour of the discrepancies for the or-
thonormal system of type II using the BFGS update (4.15) corresponding
to the number of iterations. The red point represents the minimum value of
discrepancy.

2. Damped BFGS Update.
For sı := Xı+1 − Xı := γıpı and rı := θıyı + (1 − θı)Bısı, the damped
BFGS updating formula for the Hessian approximation Bi is given as:

Bı+1 := Bı −
Bısıs

T
ı Bı

sT
ı Bısı

+
rır

T
ı

rT
ı sı

, (4.17)
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where yı := ∇fı+1 −∇fı and

θı :=

{
1, sT

ı yı ≥ 0.2sT
ı Bısı,

0.8sTı Bısı
sTı Bısı−sTı yı

, sT
ı yı < 0.2sT

ı Bısı.
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(c) Backtracking line search
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Figure 4.6: The plots show the behaviour of the discrepancies for the or-
thonormal basis system of type I using the damped BFGS update (4.17)
corresponding to the number of iterations. The red point represents the
minimum value of discrepancy.

Note that (4.17) is the same as (4.15) for rı = yı. This update ensures
that the curvature condition (4.16) holds, which consequently guaran-
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tees the positive definiteness of the Hessian approximation matrix Bı.
The results for the BFGS method using the damped BFGS update are
shown in Figures 4.6 and 4.7.
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(c) Backtracking line search
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Figure 4.7: The plots show the behaviour of the discrepancies for the or-
thonormal basis system of type II using the damped BFGS update (4.17)
corresponding to the number of iterations. The red point represents the
minimum value of discrepancy.

3. LDLT factors update.
Another effective method to update Bi, is to use the Cholesky factor-
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ization LDLT of the Hessian instead of the Hessian itself. With

B0 = LDLT,

the update is given as

Bı+1 := Bı + βzzT,

where z is a vector such that zzT is a one rank matrix and β is a
constant. For p = L−1z we have

Bı+1 = LıDıL
T
ı + βzzT = LıDıL

T
ı + β(LıL

−1
ı )zzT(L−T

ı LT
ı )

= LıDıL
T
ı + βLıpp

TLT
ı

= Lı(Dı + βppT)LT
ı . (4.18)

For the following tests, we choose β = 1 and z = (0, . . . , 0, 1) ∈ RN , N
being the length of the grid X. The plots in Figures 4.8 and 4.9 show
the results computed using the BFGS method with the LDLT factors
update.

The Tables 4.1 and 4.2 combine the results for the orthonormal basis systems
of type I and type II. The tables show a comparison between the applied
methods. It is evident from the results that the convergence rate for the
discrepancy of type I is very slow, while the BFGS method yields good results
for type II. The different BFGS updates and line search techniques used here
give different convergence rates and estimates of discrepancies. For example,
for type I, the backtracking line search method gives better estimates both
for the BFGS update and the damped BFGS update, whereas the Wolfe
conditions require less number of iterations for the damped BFGS update and
the LDLT factors update. For type II, the Wolfe conditions as a line search
technique give better results for a lower number of iterations in comparison
to other methods for the case of the BFGS update, while for the case of the
damped BFGS update the line search technique γı = 9√

ı
gives better results.

When we look at the results for the LDLT factors update, Wolfe conditions
give the best outcome. Also, the overall comparison of the results show that
the combination of LDLT factors update with the Wolfe conditions gives
better results for a lower number of iterations in comparison to the other
methods.
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(c) Backtracking line search
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Figure 4.8: The plots show the behaviour of the discrepancies for the or-
thonormal basis system of type I using the LDLT factors update (4.18)
corresponding to the number of iterations. The red point represents the
minimum value of discrepancy.
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(c) Backtracking line search

0 2 4 6 8 10 12 14 16 18 20
No. of iterations

0.005

0.01

0.015

0.02

0.025

D
is

cr
ep

an
ci

es

  0.0057492

(d) Wolfe line search

Figure 4.9: The plots show the behaviour of the discrepancies for the or-
thonormal basis system of type II using the LDLT factors update (4.18)
corresponding to the number of iterations. The red point represents the
minimum value of discrepancy.
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Table 4.1

γı 9
ı

9√
ı

Wolfe line
search

Backtracking
line search

BFGS
update

0.26817 0.26812 0.26805 0.26795

damped
BFGS
update

0.26817 0.26796 0.2682 0.26796

LDLT

factors
update

0.2682 0.2682 0.2682 0.2682

The table shows the minimum values of discrepancies (type I), using the
BFGS method with different updates and line search techniques.

Table 4.2

γı 9
ı

9√
ı

Wolfe line
search

Backtracking
line search

BFGS
update

0.007262 0.006701 0.006692 0.007338

damped
BFGS
update

0.007296 0.006762 0.007023 0.007316

LDLT

factors
update

0.028964 0.013779 0.005492 0.012549

The table shows the minimum values of discrepancies (type II), using the
BFGS method with different updates and line search techniques.



Chapter 5

Statistical Computation

The generalized discrepancy (2.17), due to its structure, has some interesting
statistical aspects depending on the specific point grid. In this chapter, we
discuss some characteristics for the discrepancy using a sample PN of N
independent and identically distributed grid points on the ball BR.

5.1 Asymptotic Properties of Generalized Dis-

crepancy

We assume that σ(·) is the measure defined on the ball BR of radius R and

σ∗(·) is the uniform probability measure, then σ∗(·) = σ(·)
σ(BR)

= 3
4πR3σ(·),

since σ(BR) = 4π
3
R3. Then we have the variance and expectation of the

orthonormal systems GX
m,n,j as follows

V
(
GX
m,n,j(x)

)
:=

∫
BR

(
GX
m,n,j(x)

)2
dσ∗(x) =

3

4πR3
for (m,n, j) 6= (0, 0, 1);

l0 = 0 (5.1)

and

E
(
GX
m,n,j(x)

)
:=

∫
BR
GX
m,n,j(x)dσ∗(x) = 0 for (m,n, j) 6= (0, 0, 1); l0 = 0.

(5.2)

Note that we are working in a Sobolev space where
〈
F,GX

m,n,j

〉
L2(BR)

= 0

whenever Am,n = 0 or ln < 0 (see Definition 1.4.5). Hence, throughout this
chapter Am,n is a non-vanishing sequence and ln ∈ R+

0 .

83
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Theorem 5.1.1 Let the sequence {Am,n}(m,n)6=(0,0) satisfy the summability
conditions (1.63) and (1.64) for X = I and X = II, respectively. Then the
series

∑
1≤i6=k≤N

∑
(m,n)6=(0,0)

ln≥0

2n+1∑
j=1

1

N2

GX
m,n,j(xi)G

X
m,n,j(xk)

A2
m,n

, m, n ∈ N0 (5.3)

converges uniformly with respect to xi, xk and N .

Proof: Considering first the orthonormal basis system GI
m,n,j given by

(1.50), we have

∑
1≤i6=k≤N

∑
(m,n)6=(0,0)

ln≥0

∣∣∣∣∣
2n+1∑
j=1

1

N2

GI
m,n,j(xi)G

I
m,n,j(xk)

A2
m,n

∣∣∣∣∣
=
∑
i6=k

∑
(m,n)6=(0,0)

ln≥0

∣∣∣∣ 1

N2

(2n+ 1)(4m+ 2ln + 3)

4πR3A2
m,n

P
(0,ln+ 1

2
)

m

(
2
|xi|2

R2
− 1

)

× P
(0,ln+ 1

2
)

m

(
2
|xk|2

R2
− 1

)(
|xi||xk|
R2

)ln
Pn

(
xi
|xi|
· xk
|xk|

)∣∣∣∣∣
=
∑
i6=k

∑
(m,n)6=(0,0)

ln≥0

1

N2

(2n+ 1)(4m+ 2ln + 3)

4πR3A2
m,n

∣∣∣∣P (0,ln+ 1
2

)
m

(
2
|xi|2

R2
− 1

)∣∣∣∣
×
∣∣∣∣P (0,ln+ 1

2
)

m

(
2
|xk|2

R2
− 1

)∣∣∣∣
∣∣∣∣∣
(
|xi||xk|
R2

)ln∣∣∣∣∣
∣∣∣∣Pn( xi

|xi|
· xk
|xk|

)∣∣∣∣
The fact

|xi||xk|
R2

≤ 1 (5.4)

and Theorem 1.2.10 for the absolute maximum of the Jacobi and the Legen-
dre polynomials enable us to deduce the following:

∑
1≤i6=k≤N

∑
(m,n)6=(0,0)

ln≥0

∣∣∣∣∣
2n+1∑
j=1

1

N2

GI
m,n,j(xi)G

I
m,n,j(xk)

A2
m,n

∣∣∣∣∣
≤
∑
i6=k

∑
(m,n)6=(0,0)

ln≥0

1

N2

(2n+ 1)(4m+ 2ln + 3)

4πR3A2
m,n

(
m+ ln + 1

2

m

)2

. (5.5)
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Further, using the estimate (1.60) and the summability condition (1.63), we
get

∑
1≤i6=k≤N

∑
(m,n)6=(0,0)

ln≥0

∣∣∣∣∣
2n+1∑
j=1

1

N2

GI
m,n,j(xi)G

I
m,n,j(xk)

A2
m,n

∣∣∣∣∣
≤ N(N − 1)

4πR3N2

 ∑
(m,n)6=(0,0)

ln≥0

(2n+ 1)(4m+ 2ln + 3)

A2
m,n

(m+ ln + 1
2
)2m

(m! )2



≤
(

1− 1

N

)
︸ ︷︷ ︸

≤1

(
1

4πR3

) ∑
(m,n)6=(0,0)

ln≥0

(2n+ 1)(4m+ 2ln + 3)

A2
m,n

(m+ ln + 1
2
)2m

(m! )2


︸ ︷︷ ︸

<∞

.

(5.6)

It follows that∑
1≤i6=k≤N

∑
(m,n)6=(0,0)

ln≥0

∣∣∣∣∣
2n+1∑
j=1

1

N2

GI
m,n,j(xi)G

I
m,n,j(xk)

A2
m,n

∣∣∣∣∣ < +∞, (5.7)

where this convergence is uniform with respect to N , since we find in (5.6)
a convergent majorant independent of N . Analogously, computing for the
orthonormal basis system of type X = II with the help of estimate (1.61) and
the summability condition (1.64), we have

∑
1≤i6=k≤N

∑
(m,n)6=(0,0)

ln≥0

∣∣∣∣∣
2n+1∑
j=1

1

N2

GII
m,n,j(xi)G

II
m,n,j(xk)

A2
m,n

∣∣∣∣∣
≤ N(N − 1)

16πR3N2

 ∑
(m,n)6=(0,0)

ln≥0

(2n+ 1)(2m+ 3)5

A2
m,n



≤
(

1− 1

N

)(
1

16πR3

) ∑
(m,n)6=(0,0)

ln≥0

(2n+ 1)(2m+ 3)5

A2
m,n


< +∞. (5.8)
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This completes the proof.
Using the previous result, we can now show that the generalized discrepancy
actually converges to zero for identically independent random variables. Also
the squared discrepancy converges in distribution to the sum of a sequence
of random variables.

Theorem 5.1.2 Let PN = {x1, x2, . . . , xN} be a sample of independent and
identically distributed uniform random variables on BR and {Am,n} be the
symbol of a pseudodifferential operator A for any m and n. Further, let the
conditions in Theorem 2.2.1 be satisfied. Then the following holds, if {Am,n}
is summable.

(i) D2(PN ,A)
as−→ 0.

(ii) N ·D2(PN ,A)
D−→
∑

(m,n)6=(0,0)
ln≥0

3
4πR3

χ2
m,n(2n+1)

A2
m,n

,

as N → ∞, where χ2
m,n(Z(d, n)) are χ2-random variables with Z(d, n) de-

grees of freedom. The convergence ’as’ and ’D’ are defined by (1.85) and
(1.86), respectively.

Proof: We know by Definition 2.2.2 of the generalized discrepancy that

D2(PN ,A) =
1

N2

N∑
i=1

N∑
k=1

∑
(m,n)6=(0,0)

ln≥0

2n+1∑
j=1

GX
m,n,j(xi)G

X
m,n,j(xk)

A2
m,n

.

We set

h(xi, xk) :=
∑

(m,n)6=(0,0)
ln≥0

2n+1∑
j=1

GX
m,n,j(xi)G

X
m,n,j(xk)

A2
m,n

,

where h(xi, xk) is symmetric. Now, Theorem 1.5.20 tells us that if E|h(xi, xk)|
is finite, then the strong law of large numbers holds for D2(PN ,A) and

D2(PN ,A) =
1

N2

N∑
i=1

N∑
k=1

h(xi, xk)
as−→
∫
BR

∫
BR
h(x, y)dσ∗(x)dσ∗(y). (5.9)
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In order to show that E|h(xi, xk)|<∞, we treat the two cases of types X = I
and X = II separately. First, for the type I, we consider the sum

∑
(m,n)6=(0,0)

ln≥0

E

∣∣∣∣∣
2n+1∑
j=1

GI
m,n,j(xi)G

I
m,n,j(xk)

A2
m,n

∣∣∣∣∣
=

∑
(m,n)6=(0,0)

ln≥0

E
∣∣∣∣(2n+ 1)(4m+ 2ln + 3)

4πR3A2
m,n

P
(0,ln+ 1

2
)

m

(
2
|xi|2

R2
− 1

)

× P
(0,ln+ 1

2
)

m

(
2
|xk|2

R2
− 1

)(
|xi||xk|
R2

)ln
Pn

(
xi
|xi|
· xk
|xk|

)∣∣∣∣∣ .
With the use of expectation property (1.71), we can write

∑
(m,n)6=(0,0)

ln≥0

E

∣∣∣∣∣
2n+1∑
j=1

GI
m,n,j(xi)G

I
m,n,j(xk)

A2
m,n

∣∣∣∣∣
=

∑
(m,n)6=(0,0)

ln≥0

(2n+ 1)(4m+ 2ln + 3)

4πR3A2
m,n

E
∣∣∣∣P (0,ln+ 1

2
)

m

(
2
|xi|2

R2
− 1

)∣∣∣∣
× E

∣∣∣∣P (0,ln+ 1
2

)
m

(
2
|xk|2

R2
− 1

)∣∣∣∣E
∣∣∣∣∣
(
|xi||xk|
R2

)ln∣∣∣∣∣E
∣∣∣∣Pn( xi

|xi|
· xk
|xk|

)∣∣∣∣ .
Furthermore, in combination with the monotonicity of expectation (see The-
orem 1.5.5), Theorem 1.2.10, the estimate (1.60) and the summability con-
dition (1.63), we deduce

∑
(m,n)6=(0,0)

ln≥0

E

∣∣∣∣∣
2n+1∑
j=1

GI
m,n,j(xi)G

I
m,n,j(xk)

A2
m,n

∣∣∣∣∣
≤

∑
(m,n)6=(0,0)

ln≥0

(2n+ 1)(4m+ 2ln + 3)

4πR3A2
m,n

(
m+ ln + 1

2

)2m

(m! )2

< +∞.
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Similarly, for the system of type X = II with the estimate (1.61) and the
summability condition (1.64), we have

∑
(m,n)6=(0,0)

E

∣∣∣∣∣
2n+1∑
j=1

GII
m,n,j(xi)G

II
m,n,j(xk)

A2
m,n

∣∣∣∣∣
=

∑
(m,n)6=(0,0)

E
∣∣∣∣(2n+ 1)(2m+ 3)

4πR3A2
m,n

P (0,2)
m

(
2
|xi|
R
− 1

)
P (0,2)
m

(
2
|xk|
R
− 1

)

× Pn

(
xi
|xi|
· xk
|xk|

)∣∣∣∣
=

∑
(m,n)6=(0,0)

(2n+ 1)(2m+ 3)

4πR3A2
m,n

E
∣∣∣∣P (0,2)

m

(
2
|xi|
R
− 1

)∣∣∣∣E ∣∣∣∣P (0,2)
m

(
2
|xk|
R
− 1

)∣∣∣∣
× E

∣∣∣∣Pn( xi
|xi|
· xk
|xk|

)∣∣∣∣
≤

∑
(m,n)6=(0,0)

(2n+ 1)(2m+ 3)5

16πR3A2
m,n

< +∞.

Since the infinite sum of expectations converges in both cases and

∑
(m,n)6=(0,0)

ln≥0

2n+1∑
j=1

GX
m,n,j(xi)G

X
m,n,j(xk)

A2
m,n

< +∞, (5.10)

from the Minkowski’s inequality for expectation (1.78), we can infer

E|h(xi, xk)| = E

∣∣∣∣∣∣∣∣
∑

(m,n)6=(0,0)
ln≥0

2n+1∑
j=1

GX
m,n,j(xi)G

X
m,n,j(xk)

A2
m,n

∣∣∣∣∣∣∣∣
≤

∑
(m,n)6=(0,0)

ln≥0

E

∣∣∣∣∣
2n+1∑
j=1

GX
m,n,j(xi)G

X
m,n,j(xk)

A2
m,n

∣∣∣∣∣ . (5.11)

This shows us that the condition for applying Theorem 1.5.20 is fulfilled. We
now come back to equation (5.9) and use the orthonormality of the systems
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GX
m,n,j to get∫

BR

∫
BR
h(x, y)dσ∗(x)dσ∗(y)

=

∫
BR

∫
BR

∑
(m,n)6=(0,0)

ln≥0

2n+1∑
j=1

GX
m,n,j(x)GX

m,n,j(y)

A2
m,n

dσ∗(x)dσ∗(y)

= 0,

(5.12)

which implies that

D2(PN ,A) =
1

N2

N∑
i=1

N∑
k=1

h(xi, xk)
as−→ 0. (5.13)

This proves the first part. Now for the second part, we consider again the
discrepancy

D2(PN ,A) =
1

N2

N∑
i=1

N∑
k=1

h(xi, xk).

Since h(xi, xk) is symmetric, we can rewrite it as

D2(PN ,A) =
1

N2

∑
i6=k

h(xi, xk) +
1

N2

N∑
i=1

h(xi, xi). (5.14)

We will now consider the first sum on the right hand side in (5.14), which is
a U-statistics by Definition 1.5.17, i.e.

NUN =
1

N

∑
i6=k

h(xi, xk).

For all i < k, the symmetric property of h allows us to rewrite the above
equation as

N

N − 1
UN =

2

N(N − 1)

∑
i<k

h(xi, xk),

Since E[h(x, y)] =
∫
BR
h(x, y)dσ∗(y) = 0 (where x is kept fixed and the expec-

tation is taken with respect to random variable y), according to Definition
1.5.19 we can say that h is a 1-degenerate kernel and UN is a degenerate
U-statistics. Now, using the idea of asymptotic distribution of degenerate
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U-statistics from [41, 62], we can find the limit distribution of UN . We ap-
proximate UN

N

N − 1
UN =

2

N(N − 1)

∑
i<k

∑
(m,n)6=(0,0)

ln≥0

A−2
m,n

2n+1∑
j=1

GX
m,n,j(xi)G

X
m,n,j(xk)

by UM
N , such that

N

N − 1
UM
N =

2

N(N − 1)

∑
i<k

∑
(m,n)6=(0,0)
m+n≤M, ln≥0

A−2
m,n

2n+1∑
j=1

GX
m,n,j(xi)G

X
m,n,j(xk).

Rewriting the equation above, we have

NUM
N

=
∑

(m,n)6=(0,0)
m+n≤M, ln≥0

2n+1∑
j=1

A−2
m,n

( 1√
N

N∑
i=1

GX
m,n,j(xi)

)2

− 1

N

N∑
i=1

(
GX
m,n,j(xi)

)2

 .
(5.15)

Since the xi’s are independent and identically distributed on BR and in ac-
cordance with equations (5.1) and (5.2) the conditions on function GX

m,n,j are
satisfied, we can use the central limit theorem 1.5.21 for the first term in
(5.15)

1√
N

N∑
i=1

GX
m,n,j(xi)

D−→
√

3

4πR3
Z,

where Z is a standard normal random variable and 3
4πR3 is the variance of

function GX
m,n,j (see equation (5.1)). Further, by the strong law of large

numbers 1.5.20, the second term in (5.15) converges ’almost surely ’ to the
variance of GX

m,n,j(x), i.e.

1

N

N∑
i=1

(
GX
m,n,j(xi)

)2 as−→ 3

4πR3
. (5.16)

From Remark 1.5.15, we already know that almost sure convergence implies
convergence in probability for (5.16). Hence, Slutsky’s theorem 1.5.16 shows
that UM

N also converges ’in distribution’ as follows

NUM
N

D−→ 3

4πR3

∑
(m,n)6=(0,0)
m+n≤M, ln≥0

2n+1∑
j=1

A−2
m,n

(
Z2
m,n,j − 1

)
.
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As M →∞, we finally get

NUN
D−→ 3

4πR3

∑
(m,n)6=(0,0)

ln≥0

2n+1∑
j=1

A−2
m,n

(
Z2
m,n,j − 1

)

(see [41, 62]). Here, the presence of the term 3
4πR3 is due to the orthonormality

of the systems {GX
m,n,j} with respect to the measure σ∗. Now, from Definition

1.5.8, a single squared standard normal variable can be written as a χ2-
random variable of degree of freedom one (Note that, the degree of freedom
denotes here the number of ’independent’ normal random variables) i.e. Z2 =
χ2(1), so we have

∑2n+1
j=1 Z2

m,n,j = χ2
m,n(2n+ 1), where χ2

m,n(Z(d, n)) is a χ2-
random variable with indices m, n and degrees of freedom Z(d, n). This
gives us

NUN
D−→ 3

4πR3

∑
(m,n)6=(0,0)

ln≥0

A−2
m,n

(
χ2
m,n(2n+ 1)− (2n+ 1)

)
. (5.17)

Now, we come to the second term in (5.15), which converges ’almost surely’
to E [h(x, x)] by the strong law of large numbers 1.5.20. The expectation of
h(x, x) can be calculated as

E [h(x, x)] =

∫
BR

∑
(m,n)6=(0,0)

ln≥0

2n+1∑
j=1

1

A2
m,n

(
GX
m,n,j(x)

)2
dσ∗(x)

=
3

4πR3

∑
(m,n)6=(0,0)

ln≥0

2n+ 1

A2
m,n

. (5.18)

By combining equations (5.17) and (5.18), we immediately get

N ·D2(PN ,A)
D−→ 3

4πR3

∑
(m,n)6=(0,0)

ln≥0

A−2
m,n

(
χ2
m,n(2n+ 1)

)
,

as required.
From the previous theorem, it is also easy to deduce the expectation of the
generalized discrepancy. By using equations (5.12), (5.18) and the linearity
of expectation (1.74) in (5.14) for xi’s ∈ PN , we obtain

E
[
D2(PN ,A)

]
=

3

4πNR3

∑
(m,n)6=(0,0)

ln≥0

2n+ 1

A2
m,n

. (5.19)
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5.2 Computation of Asymptotic Distribution

In the succeeding results, we denote the asymptotic distribution of N ·
D2(ωN ,A), calculated in the previous section, by

Y =
∑

(m,n)6=(0,0)
ln≥0

3

4πR3

χ2
m,n(2n+ 1)

A2
m,n

. (5.20)

In this section, we consider two methods, in analogy to the spherical case [11],
for approximating this asymptotic distribution. The first approximation of
Y is the truncated version Yν , which is obtained simply by taking finite sums
in Y , i.e.

Yν =
∑

m+n≤ν, ln≥0

(m,n)6=(0,0)

3

4πR3

χ2
m,n(2n+ 1)

A2
m,n

. (5.21)

The other approximation, named as the centred version, of the distribution
Y is obtained by shifting the truncated version Yν by adding a constant term
Cν , i.e.

Y∗ν =
∑

m+n≤ν, ln≥0

(m,n)6=(0,0)

3

4πR3

χ2
m,n(2n+ 1)

A2
m,n

+ Cν ,

= Yν + Cν , (5.22)

where

Cν =
∑

m+n>ν
ln≥0

3

4πR3

2n+ 1

A2
m,n

. (5.23)

In particular, for the case where Am,n = (Ap,q
X )∧ (m,n) (defined in (2.9) and

(2.10) for X = I and X = II, respectively) with p = 1
2
, q = 3

4
and for X = I,

we have the following representation of Cν :

3

4πR3

∑
m+n>ν
ln≥0

2n+ 1(
(Ap,q

I )∧ (m,n)
)2 =

3

4πR3

∑
m+n>ν
ln≥0

8

(4m+ 2ln + 3)3 n(n+ 1)

(5.24)
and for X = II, we have

3

4πR3

∑
m+n>ν

2n+ 1(
(Ap,q

II )∧ (m,n)
)2 =

3

4πR3

∑
m+n>ν

8

(2m+ 3)3n(n+ 1)
.

Now, we state the following result related to the approximations of Y for the
later use.
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Theorem 5.2.1 Let Y, Yν and Y∗ν be as defined by (5.20), (5.21) and (5.22),
respectively, then the following holds true:

1. E(Y) = E(Y∗ν ).

2. V (Y − Y∗ν ) = V (Y − Yν).

3. |φYν (t)| =
∣∣φY∗ν (t)

∣∣.
Proof:

1. In accordance with (5.20), (1.75) and Theorem 1.5.11, the expectation
of Y is computed as

E(Y) = E

 ∑
(m,n)6=(0,0)

ln≥0

3

4πR3

χ2
m,n(2n+ 1)

A2
m,n


=

∑
(m,n)6=(0,0)

ln≥0

3

4πR3

1

A2
m,n

E
(
χ2
m,n(2n+ 1)

)
=

∑
(m,n)6=(0,0)

ln≥0

3

4πR3

2n+ 1

A2
m,n

.

Next, calculating the expectation of Y∗ν , we get

E(Y∗ν ) = E

 ∑
m+n≤ν, ln≥0
(m,n)6=(0,0)

3

4πR3

χ2
m,n(2n+ 1)

A2
m,n

+
∑

m+n>ν
ln≥0

3

4πR3

2n+ 1

A2
m,n

 .

Let us now use the linearity of expectation (1.75) for the above sum.
Then the above equation yields

E(Y∗ν ) =
∑

m+n≤ν, ln≥0
(m,n)6=(0,0)

3

4πR3

2n+ 1

A2
m,n

+
∑

m+n>ν
ln≥0

3

4πR3

2n+ 1

A2
m,n

=
∑

(m,n)6=(0,0)
ln≥0

3

4πR3

2n+ 1

A2
m,n

.

This gives us the required result.
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2. From (5.22), we already know that Y −Y∗ν = Y −Yν −Cν . Hence, the
variance of term Y − Y∗ν is given by

V (Y − Y∗ν ) = V (Y − Yν − Cν) .

Since Cν is a constant term, using (1.73), we get

V (Y − Y∗ν ) = V (Y − Yν) . (5.25)

3. According to the Definition 1.5.9, the characteristic function of Y∗ν is
given as

φY∗ν (t) = E
(
eitY

∗
ν
)
.

With the use of equation (5.22), we obtain

φY∗ν (t) = E
(
eit(Yν+Cν)

)
= eitCνE

(
eitYν

)
,

where Cν =
∑

m+n>ν
ln≥0

3
4πR3

2n+1
A2
m,n

and since |eitCν |= 1, we obtain

∣∣φY∗ν (t)
∣∣ =

∣∣eitCν ∣∣ |φYν (t)|
= |φYν (t)| ,

as required.

The following result calculates the error bound between Y and its approxi-
mations.

Theorem 5.2.2 For m,n ∈ N0 with (m,n) 6= (0, 0) and ln ≥ 0, the following
holds:

|P{Y ≤ y} − P{Yν ≤ y}|

≤

√√√√√√√√
2
∑

m+n>ν

2n+1
A4
m,n

+

( ∑
m+n>ν

2n+1
A2
m,n

)2

∑
m+n≤ν
n6=0

2n+1
A4
m,n

·
√

3

2π
· B
(

1

2
,
1

4

)
, (5.26)

where B is the Beta function and

|P{Y ≤ y} − P{Y∗ν ≤ y}| ≤

∑
m+n>ν

2n+1
A4
m,n∑

m+n≤ν
n6∈{0,1}

2n+1
A4
m,n

· 5

π
. (5.27)
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Proof: By the inversion formula (see Theorem 1.5.12), we have

|P{Y ≤ y} − P{Yν ≤ y}| = 1

2π

∣∣∣∣∫ x

0

∫ ∞
−∞

[φY(t)− φYν (t)] e−its dt ds

∣∣∣∣ (5.28)

Since ∫ x

0

e−its ds =
1

it
(1− e−itx),

then with |1− e−itx|≤ 2, equation (5.28) yields

|P{Y ≤ y} − P{Yν ≤ y}| ≤ 1

2π

∫ ∞
−∞

1

|t|
|φY(t)− φYν (t)|

∣∣1− e−itx∣∣ dt
≤ 1

π

∫ ∞
−∞

1

|t|
|φY(t)− φYν (t)| dt

=
1

π

∫ ∞
−∞

1

|t|
|φYν (t)|

∣∣∣∣φYν+Y−Yν (t)

φYν (t)
− 1

∣∣∣∣ dt (5.29)

Since Yν and Y − Yν are independent, so due to Theorem 1.5.10, the char-
acteristic function of the random variable Yν + Y − Yν is the product of
characteristic functions of Yν and Y − Yν . So we can write as follows

φYν+Y−Yν (t)

φYν (t)
=
φYν (t) · φY−Yν (t)

φYν (t)
= φY−Yν (t) = E

(
eit(Y−Yν)

)
This reduces (5.29) to the following inequality:

|P{Y ≤ y} − P{Yν ≤ y}| ≤ 1

π

∫ ∞
−∞

1

|t|
|φYν (t)|

∣∣E (eit(Y−Yν)
)
− 1
∣∣ dt

≤ 1

π

∫ ∞
−∞

1

|t|
|φYν (t)|E|eit(Y−Yν) − 1|dt.

Since

∣∣eit(Y−Yν) − 1
∣∣ =

∣∣∣∣∣
∫ t(Y−Yν)

0

ieisds

∣∣∣∣∣ ≤
∫ t(Y−Yν)

0

ds = |t||Y − Yν |

(see [62, 63]) and from Cauchy-Schwarz inequality (1.77)

E |Y − Yν | ≤
√

E(Y − Yν)2,

hence, we have

|P{Y ≤ y} − P{Yν ≤ y}| ≤ 1

π

√
E(Y − Yν)2

∫ ∞
−∞
|φYν (t)| dt. (5.30)
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The above inequality requires further the computation of two terms, that
are: the expectation of the random variable (Y −Yν)2 and the characteristic
function of the variable Yν . Firstly, we compute the expectation of (Y−Yν)2.

E(Y − Yν)2 = E

( ∑
m+n>ν

3

4πR3

χ2
m,n(2n+ 1)

A2
m,n

)2

=

(
E

( ∑
m+n>ν

3

4πR3

χ2
m,n(2n+ 1)

A2
m,n

))2

+ V

( ∑
m+n>ν

3

4πR3

χ2
m,n(2n+ 1)

A2
m,n

)
. (5.31)

We use first the linearity of expectation (1.75) and the property (1.73) of the
variance to get

E(Y − Yν)2 =

( ∑
m+n>ν

3

4πR3

1

A2
m,n

E(χ2
m,n(2n+ 1))

)2

+
∑

m+n>ν

9

16π2R6

1

A4
m,n

V(χ2
m,n(2n+ 1)).

Furthermore, Theorem 1.5.11 for χ2- random variables implies that

E(Y − Yν)2 =

( ∑
m+n>ν

3

4πR3

2n+ 1

A2
m,n

)2

+
∑

m+n>ν

9

16π2R6

2(2n+ 1)

A4
m,n

. (5.32)

Next, we calculate the characteristic function of Yν =
∑

m+n≤ν

3
4πR3

χ2
m,n(2n+1)

A2
m,n

.

By virtue of Theorem 1.5.10, the characteristic function of Yν is as follows

φYν (t) =
∏

m+n≤ν
(m,n)6=(0,0)

φχ2
m,n(2n+1)

(
3

4πR3A2
m,n

t

)
.
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We apply equation (1.82) for the characteristic functions of χ2-random vari-
ables with n degrees of freedom and obtain

φYν (t) =
∏

m+n≤ν
(m,n)6=(0,0)

(
1− 3

2πR3A2
m,n

it

)− 2n+1
2

= exp

− ∑
m+n≤ν

(m,n)6=(0,0)

2n+ 1

2
ln

(
1− 3

2πR3A2
m,n

it

) .

Further, we use the identity ln(x+ iy) = ln
√
x2 + y2 + i arctan

(
y
x

)
, x, y ∈ R

such that −π < arctan
(
y
x

)
≤ π, from [1] and get

φYν (t) = exp

− ∑
m+n≤ν

(m,n)6=(0,0)

2n+ 1

2
ln

√
1 +

9

4π2R6A4
m,n

t2

−i
∑

m+n≤ν
(m,n)6=(0,0)

2n+ 1

2
arctan

(
−3t

2πR3A2
m,n

) .

The imaginary part in the above equation vanishes after taking the absolute
value of the characteristic function, which yields

|φYν (t)| = exp

− ∑
m+n≤ν

(m,n)6=(0,0)

2n+ 1

2
ln

√
1 +

9

4π2R6A4
m,n

t2


=

∏
m+n≤ν

(m,n)6=(0,0)

(
1 +

9

4π2R6A4
m,n

t2
)− 2n+1

4

.
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Additionally, we exclude all the factors with n = 0 in order to get the fol-
lowing form:

|φYν (t)| ≤
1∏

m+n≤ν
n6=0

(
1 + 9

4π2R6A4
m,n
t2
) 2n+1

4

=
1∏

m+n≤ν
n6=0

((
1 + 9

4π2R6A4
m,n
t2
) 2n+1

3

) 3
4

. (5.33)

Using Bernoulli’s inequality, we get the following inequality for the charac-
teristic function of Yν .

|φYν (t)| ≤
11 +

∑
m+n≤ν
n6=0

3
4π2R6

2n+1
A4
m,n

t2


3
4

. (5.34)

In accordance with equation (5.32) and inequality (5.34), (5.30) becomes

|P{Y ≤ y} − P{Yν ≤ y}| ≤

√( ∑
m+n>ν

3
4πR3

2n+1
A2
m,n

)2

+

( ∑
m+n>ν

9
16π2R6

2(2n+1)
A4
m,n

)
π

×
∞∫

−∞

dt1 +
∑

m+n≤ν
n6=0

3
4π2R6

2n+1
A4
m,n

t2


3
4

.

For simplifying the integral in the above inequality, we substitute

z =
∑

m+n≤ν
n6=0

3

4π2R6

2n+ 1

A4
m,n

t2

with

dt =
dz

2
√
z

1√ ∑
m+n≤ν
n6=0

3
4π2R6

2n+1
A4
m,n

,
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and get the following inequality:

|P{Y ≤ y} − P{Yν ≤ y}|

≤ 1

π

√√√√√√√√
( ∑
m+n>ν

3
4πR3

2n+1
A2
m,n

)2

+

( ∑
m+n>ν

9
16π2R6

2(2n+1)
A4
m,n

)
∑

m+n≤ν
n6=0

3
4π2R6

2n+1
A4
m,n

∞∫
0

dz

z
1
2 (1 + z)

3
4

≤

√√√√√√√√
( ∑
m+n>ν

2n+1
A2
m,n

)2

+ 2
∑

m+n>ν

2n+1
A4
m,n∑

m+n≤ν
n6=0

2n+1
A4
m,n

·
√

3

2π
· B
(

1

2
,
1

4

)
,

where the beta function B is given by Definition 1.1.5. Next, we have to
derive the error bound for the centred version Y∗ν . From Theorem 5.2.1, it is
clear that |φY∗ν |= |φYν |. So, the inequality (5.33) implies that∣∣φY∗ν (t)

∣∣ ≤ 1∏
m+n≤ν
n6=0

(
1 + 9

4π2R6A4
m,n
t2
) 2n+1

4

=
1

ν−1∏
m=0

(
1 + 9

4π2R6A4
m,1
t2
) 3

4 ·
∏

m+n≤ν
n/∈{0,1}

(
1 + 9

4π2R6A4
m,n
t2
) 2n+1

4

.

Ignoring the factors with n = 1, we obtain∣∣φY∗ν (t)
∣∣ ≤ 1∏

m+n≤ν
n/∈{0,1}

(
1 + 9

4π2R6A4
m,n
t2
) 2n+1

4

=
1∏

m+n≤ν
n/∈{0,1}

((
1 + 9

4π2R6A4
m,n
t2
) 2n+1

5

) 5
4

.

Finally, with the use of Bernoulli’s inequality as above, we get∣∣φY∗ν (t)
∣∣ ≤ 11 + t2

∑
m+n≤ν
n/∈{0,1}

9
20π2R6

2n+1
A4
m,n


5
4

. (5.35)
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Now using Lemma 1.5.13 and the fact that E(Y) = E(Y∗ν ), |Eeit(Y−Y∗ν ) − 1|
becomes ∣∣Eeit(Y−Y∗ν ) − 1

∣∣ =
∣∣Eeit(Y−Y∗ν ) − 1− Eit(Y − Y∗ν )

∣∣
≤ E

∣∣eit(Y−Y∗ν ) − 1− it(Y − Y∗ν )
∣∣

≤ 1

2
|t|2 E (Y − Y∗ν )2

=
1

2
|t|2 V (Y − Y∗ν ) .

From (5.25), we know that V (Y − Y∗ν ) = V (Y − Yν), where the variance of
Y − Yν has already been calculated in (5.32). This implies∣∣Eeit(Y−Y∗ν ) − 1

∣∣ =
1

2
|t|2

∑
m+n>ν

9

16π2R6

2(2n+ 1)

A4
m,n

. (5.36)

Combining the calculations from equations (5.35) and (5.36), we arrive at

|P{Y ≤ y} − P{Y∗ν ≤ y}|

≤ 1

π

∫ ∞
−∞

1

|t|
∣∣φY∗ν (t)

∣∣ ∣∣Eeit(Y−Y∗ν ) − 1
∣∣ dt

≤ 2

π

∑
m+n>ν

9

16π2R6

2n+ 1

A4
m,n

∫ ∞
0

t dt1 + t2
∑

m+n≤ν
n/∈{0,1}

9
20π2R6

2n+1
A4
m,n


5
4

.

We substitute z = t2
∑

m+n≤ν
n/∈{0,1}

9
20π2R6

2n+1
A4
m,n

, with t dt = dz
2

1∑
m+n≤ν
n/∈{0,1}

9
20π2R6

2n+1

A4
m,n

and

consequently get

|P{Y ≤ y} − P{Y∗ν ≤ y}| ≤

∑
m+n>ν

9
16π2R6

2n+1
A4
m,n∑

m+n≤ν
n/∈{0,1}

9
20π2R6

2n+1
A4
m,n

1

π

∫ ∞
0

dz

(1 + z)
5
4

≤

∑
m+n>ν

2n+1
A4
m,n∑

m+n≤ν
n/∈{0,1}

2n+1
A4
m,n

· 5

4π
· B
(

1,
1

4

)
.

Observing that

B

(
1,

1

4

)
=

Γ(1)Γ(1/4)

Γ(5/4)
=

Γ(1/4)

(1/4)Γ(1/4)
= 4
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(see Theorem 1.1.6), we get the desired result.
e
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Chapter 6

Generalization to Higher
Dimensions

The equidistribution theory on the 3-dimensional ball can be generalized to
higher dimensions d ≥ 3, i.e. to the d-dimensional ball BdR ⊂ Rd. For this
purpose, we need to construct orthonormal systems and Sobolev spaces for
d dimensions. Some of the papers that discuss Sobolev spaces and their
characterizations in arbitrary dimensions on the sphere are [6, 8, 40]. A
generalization of classical orthogonal polynomials and a construction of or-
thonormal bases for Sobolev spaces in higher dimensions can be found, for
example, in [17], however, in this chapter, we construct new orthonormal
basis systems for L2(BdR). This chapter also includes the generalization of
spherical harmonics and the related results ([19, 53]), a derivation of differ-
ential operators for the constructed orthonormal systems and a formulation
of Sobolev spaces defined on BdR. We start the chapter with some basics.

6.1 Basic Notations

Definition 6.1.1 For radius R and dimension d ≥ 3, the volume of the ball
BdR is given by

σd :=

∫ R

0

rd−1

∫
Ωd−1

dω(ξ) dr =
π
d
2Rd

Γ
(
1 + d

2

) (6.1)

and the surface area of Ωd−1 is

ωd :=
dσd
dR

∣∣∣∣
R=1

=
2π

d
2

Γ
(
d
2

) . (6.2)

103
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Theorem 6.1.2 Let

x1 = r sin θd−2 sin θd−3 . . . sin θ2 sin θ1 sinφ,

x2 = r sin θd−2 sin θd−3 . . . sin θ2 sin θ1 cosφ,

x3 = r sin θd−2 sin θd−3 . . . sin θ2 cos θ1,

...

xd−1 = r sin θd−2 cos θd−3,

xd = r cos θd−2,

be the spherical coordinates in d dimensions with r =
√
x2

1 + x2
2 + . . .+ x2

d,
0 ≤ θi ≤ π, for all i = 1, 2, . . . , d − 2 and 0 ≤ φ ≤ 2π, then the Jacobian is
given by

det

(
∂(x1, x2, . . . , xd)

∂(r, θ1, . . . , θd−2, φ)

)
= rd−1 sind−2(θ1) sind−3(θ2) . . . sin2(θd−3) sin(θd−2).

(6.3)

Definition 6.1.3 The Laplace operator ∆d in Rd is given as

∆d :=
∂2

∂x2
1

+
∂2

∂x2
2

+ . . .+
∂2

∂x2
d

.

In terms of spherical coordinates, it takes the following representation:

∆d := r1−d ∂

∂r
rd−1 ∂

∂r
+

1

r2
∆∗ξd , (6.4)

where ∆∗ξd denotes the Laplace-Beltrami operator of the unit sphere Ωd−1 and
is defined as

∆∗ξd = (1− t2)
∂2

∂t2
− (d− 1)t

∂

∂t
+

1

1− t2
∆∗ξd−1

, d ≥ 3,

∆∗ξ2 =
∂2

∂φ2
.

Definition 6.1.4 The function P d
n(·) : t 7→ P d

n(t) for t ∈ [−1, 1] and n ∈
N0 is called the Legendre polynomial of degree n and dimension d and is
determined by the following properties:

(i) P d
n is a polynomial with degree n.
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(ii) For n, m ∈ N0,∫ 1

−1

P d
n(t)P d

m(t)(1− t2)
d−3
2 dt = 0, if n 6= m.

(iii) P d
n(1) = 1.

Remark 6.1.5 The Legendre polynomials P d
n(t) can be defined in terms of

Gegenbauer polynomials, i.e.

P d
n(t) =

Γ(d− 2)Γ(n+ 1)

Γ(d− 2 + n)
C

d
2
−1

n (t), t ∈ [−1, 1]. (6.5)

The recurrence relation for the Legendre polynomials P d
n(t) directly follows

from the recurrence relation of Gegenbauer polynomials. With λ = d
2
− 1,

(1.37) yields

nC
d
2
−1

n (t) = 2

(
n+

d

2
− 2

)
t C

d
2
−1

n−1 (t)− (n+ d− 4)C
d
2
−1

n−2 (t). (6.6)

With the help of (6.5), we obtain

Γ(d− 2 + n)

Γ(d− 2)Γ(n+ 1)
nP d

n(t)

= 2

(
n+

d

2
− 2

)
Γ(d− 3 + n)

Γ(d− 2)Γ(n)
t P d

n−1(t)−(n+ d− 4)Γ(d− 4 + n)

Γ(d− 2)Γ(n− 1)
P d
n−2(t).

Further, an easy simplification gives

(n+ d− 3)P d
n(t) = (2n+ d− 4)t P d

n−1(t)− (n− 1)P d
n−2(t), n ≥ 2, (6.7)

where P d
0 (t) = 1 and P d

1 (t) = t.

6.2 Spherical Harmonics in d Dimensions

In this section, we introduce the spherical harmonics in d dimensions and also
provide their properties that will be required later. For details the reader is
referred to [19] and [53].

Definition 6.2.1 A polynomial Hn in Rd is called a harmonic homogeneous
polynomial of degree n in d variables if the following two conditions hold:

Hn(tx1, tx2, . . . , txd) = tnHn(x1, x2, . . . , xd), t ∈ R,

and
∆dHn(x1, x2, . . . , xd) = 0.
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Theorem 6.2.2 Let Z(d, n) represent the maximum number of linearly in-
dependent homogeneous harmonic polynomials in Rd of degree n, then

Z(d, n) =
(2n+ d− 2)(n+ d− 3)!

(d− 2)!n!
. (6.8)

Following Definition 1.3.5, spherical harmonics Y d
n of degree n in d variables

are harmonic homogeneous polynomials Hn, restricted to the (d− 1)-sphere,
i.e. Y d

n = Hn|Ωd−1 . The space of all spherical harmonics of degree n in d
variables is denoted by Harmn(Ωd−1).

Theorem 6.2.3 For all d ≥ 3 and n ∈ N0, the dimension of the space
Harmn(Ωd−1) is given by

dim
(
Harmn(Ωd−1)

)
= Z(d, n). (6.9)

Theorem 6.2.4 Spherical harmonics are the eigenfunctions of the Laplace-
Beltrami operator ∆∗ξd corresponding to the eigenvalues −n(n+ d− 2), i.e.

∆∗ξdY
d
n (ξ) = −n(n+ d− 2)Y d

n (ξ). (6.10)

Proof: The decomposition of Hn into its radial and angular parts is given
as

Hn(rξ) = rnY d
n (ξ).

Calculating the Laplacian of the above equation with the help of (6.4), we
obtain

∆dHn(rξ) = ∆d

(
rnY d

n (ξ)
)
, r > 0, ξ ∈ Ω

⇔ 0 =

(
∂2

∂r2
+
d− 1

r

∂

∂r
+

1

r2
∆∗ξd

)
rnY d

n (ξ) r > 0, ξ ∈ Ω

⇔ 0 =
(
n(n− 1) + n(d− 1) + ∆∗ξd

)
rn−2Y d

n (ξ) r > 0, ξ ∈ Ω

⇔ 0 =
(
n(n− 1) + n(d− 1) + ∆∗ξd

)
Y d
n (ξ), ξ ∈ Ω

⇔∆∗ξdY
d
n (ξ) = −n(n+ d− 2)Y d

n (ξ), ξ ∈ Ω.

Theorem 6.2.5 Spherical harmonics Y d
n satisfy the following property:

∣∣Y d
n (ξ)

∣∣ ≤√Z(d, n)

ωd

∫
Ωd−1

(Y d
n (η))2 dω(η) for all ξ ∈ Ω. (6.11)
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Theorem 6.2.6 Spherical harmonics Y d
n and Y d

m of degrees n,m ∈ N0, with
n 6= m, are orthogonal with respect to the L2(Ωd−1)-inner product, i.e.∫

Ωd−1

Y d
n (ξ)Y d

m(ξ) dω(ξ) = 0. (6.12)

Definition 6.2.7 The system {Y d
n,j}j=1,2,...,Z(d,n) for every fixed n ∈ N0 rep-

resents an orthonormal system in Harmn(Ωd−1), i.e.∫
Ωd−1

Y d
n,j(ξ)Y

d
n,k(ξ) dω(ξ) = δjk, j, k ∈ {1, 2, . . . ,Z(d, n)}. (6.13)

In accordance with Theorem 6.2.3, the set {Y d
n,j} for j = 1, 2, . . . ,Z(d, n) is a

maximal linearly independent set of spherical harmonics and hence configures
a complete orthonormal system in

(
Harmn(Ωd−1), 〈·, ·〉L2(Ωd−1)

)
, i.e. for F ∈

Harmn

(
Ωd−1

)
,〈

F, Y d
n,j

〉
L2(Ωd−1)

= 0 for all j ∈ {1, 2, . . . ,Z(d, n)} implies F = 0 (6.14)

and∫
Ωd−1

Y d
n,j(ξ)Y

d
m,k(ξ) dω(ξ) = δnmδjk, j, k ∈ {1, 2, . . . ,Z(d, n)}. (6.15)

The succeeding theorem is an immediate consequence of previous considera-
tions, that are: Theorem 6.2.6, Definition 6.2.7 and equation (6.9).

Theorem 6.2.8 For n, m ∈ N0, the system {Y d
n,j}j=1,2,...,Z(d,n) denotes an

orthonormal basis in
(
Harmn(Ωd−1), 〈·, ·〉L2(Ωd−1)

)
.

Moreover, the system {Y d
n,j}n∈N0;j=1,2,...,Z(d,n) represents a complete orthonor-

mal system in the Hilbert space (L2(Ωd−1), 〈·, ·〉L2(Ωd−1)). Further, we state
the addition theorem for higher dimensions (see [53]).

Theorem 6.2.9 For an orthonormal basis system {Y d
n,j}n∈N0;j=1,2,...,Z(d,n) and

the Legendre polynomials P d
n in d dimensions, the following relation exists:

Z(d,n)∑
j=1

Y d
n,j(ξ)Y

d
n,j(η) =

Z(d, n)

ωd
P d
n(ξ · η), ξ, η ∈ Ωd−1, (6.16)

where ωd is the surface area of the sphere Ωd−1.
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6.3 Orthonormal Systems in d Dimensions

In this section, we construct a complete orthonormal system for the space
L2(BdR). In order to achieve this objective, we follow the separation approach.
A similar approach for the 3-dimensional case can be found in [47].
We consider a function Gd ∈ L2(BdR) with a representation of the form such
that the radial and the angular parts of the function can be separated, i.e.

Gd(x) = F d (|x|)Y d

(
x

|x|

)
, x ∈ BdR \ {0}.

Then, for G̃d ∈ L2(BdR) with

G̃d(x) = F̃ d (|x|) Ỹ d

(
x

|x|

)
, x ∈ BdR \ {0},

the inner product of Gd with G̃d in L2(BdR) is given by〈
Gd, G̃d

〉
L2(BdR)

=

∫
BdR
Gd(x)G̃d(x) dx

=

∫ R

0

rd−1F d(r)F̃ d(r) dr

∫
Ωd−1

Y d(ξ)Ỹ d(ξ) dω(ξ).

Now, we have to choose the radial part F d and the angular part Y d of the
function such that they are orthonormal in the L2-space. From the above
integral equation, it is easy to see that we can choose Y d(ξ) = Y d

n,j(ξ), which

forms an orthonormal system in L2
(
Ωd−1

)
(see Section 6.2). Now, we denote

the function Gd by Gd
α,n,j, with an unknown index α for the radial part F d

and the indices n, j representing the angular part, i.e. the degree and the
order of the d-dimensional spherical harmonics, respectively as follows:

Gd
α,n,j(x) = F d

α (|x|)Y d
n,j

(
x

|x|

)
, x ∈ BdR \ {0},

where n ∈ N0 and j = 1, 2, . . . ,Z(d, n). Now, we are left with the unknown
function F d with index α. Next, in order to have a complete system Gd

α,n,j

in L2(BdR), we consider for a function f ∈ L2
(
BdR
)
,〈

f,Gd
α,n,j

〉
L2(BdR)

= 0 for all α, n, j.

Then,

0 =

∫
BdR
f(x)Gd

α,n,j(x)dx

=

∫
Ωd−1

Y d
n,j(ξ)

∫ R

0

rd−1F d
α(r)f(rξ) dr dω(ξ).
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Since
{
Y d
n,j

}
n∈N0;j=1,2,...,Z(d,n)

is complete in the space L2(Ωd−1), we are left

with the following equation:∫ R

0

rd−1F d
α(r)f(rξ)dr = 0

for almost every ξ ∈ Ωd−1. This shows that the system Gd
α,n,j can be complete

in L2(BdR) only if F d
α is complete in the space L2

w[0, R] with weights w(r) =
rd−1. As proposed in [4, 47, 72] for the 3-dimensional case, we can either
choose F d

α such that apart from its radial dependence, it also depends on the
degree n of the angular part, i.e. for r ∈ R+

0

F I,d
α (r) := rlnF̃ I,d

m,n(r2), n,m ∈ N0. (6.17)

Here, we also consider the case from [50], i.e. rln , where ln ≥ −1 for all
n ∈ N0. Then we have,

GI,d
m,n,j(rξ) = rlnF̃ I,d

m,n(r2)Y d
n,j(ξ) (6.18)

or we can set F d
α such that it only has the radial dependency, i.e. for r ∈ R+

0

F II,d
α (r) = F II,d

m (r), m ∈ N0. (6.19)

So, the system of functions in this case is given by

GII,d
m,n,j(rξ) = F II,d

m (r)Y d
n,j(ξ). (6.20)

These systems have their advantages and disadvantages. The system of type
I with ln = n yields an algebraic polynomial in x1, x2, . . . , xd. The second
choice of system has an advantage over the first one, as it completely decou-
ples the angular and radial parts of the system but also has a disadvantage
of being discontinuous in x = 0.

We now consider the inner product of our first choice of function F d
α given

by (6.17) in L2
w[0, R] with weights rd−1 as follows

δm1,m2 =

∫ R

0

rd−1rlnF̃ I,d
m1,n

(r2)rlnF̃ I,d
m2,n

(r2) dr

=

∫ R

0

r2ln+d−1F̃ I,d
m1,n

(r2)F̃ I,d
m2,n

(r2) dr.

Substituting

r = R

√
t+ 1

2
,
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we get

δm1,m2

=

∫ 1

−1

(
R2 t+ 1

2

)ln+ d−1
2

F̃ I,d
m1,n

(
R2 t+ 1

2

)
F̃ I,d
m2,n

(
R2 t+ 1

2

)
Rdt√

8(t+ 1)

=
R2ln+d

2ln+ d
2

+1

∫ 1

−1

(1 + t)ln+ d
2
−1F̃ I,d

m1,n

(
R2 t+ 1

2

)
F̃ I,d
m2,n

(
R2 t+ 1

2

)
dt.

The above equation implies that our required functions are the Jacobi poly-
nomials (Definition 1.2.1) orthogonal in the space L2

w[−1, 1] with weights

(1− t)0(1 + t)ln+ d
2
−1 and t = 2 r2

R2 − 1. Thus, we obtain

F̃ I,d
m,n(r2) = am,nP

(0,ln+ d
2
−1)

m

(
2
r2

R2
− 1

)
, r ∈ R+

0 .

Since the polynomials F̃ I,d
m,n should be orthonormal, using the requirement of

having norm 1, we can determine the constant am,n, i.e.

1 =
R2ln+d

2ln+ d
2

+1
a2
m,n

∫ 1

−1

(1 + t)ln+ d
2
−1
(
P

(0,ln+ d
2
−1)

m (t)
)2

dt.

Using Theorem 1.2.11 and simplifying, we arrive at

1 =
R2ln+d

2ln+ d
2

+1
a2
m,n

2ln+ d
2

2m+ ln + d
2

·
Γ(m+ 1)Γ(m+ ln + d

2
)

m! Γ(m+ ln + d
2
)

4m+ 2ln + d

R2ln+d
= a2

m,n.

This results in the following choice of a complete orthonormal system:

GI,d
m,n,j(rξ) =

√
4m+ 2ln + d

Rd

( r
R

)ln
P

(0,ln+ d
2
−1)

m

(
2
r2

R2
− 1

)
Y d
n,j(ξ). (6.21)

Constructing the second system in the same way, we now take the second
function given by (6.19). In order to have an orthogonal function F II,d

m , we
need to proceed (similarly as above) in the following way:

δm1,m2 =

∫ R

0

rd−1F II,d
m1

(r)F II,d
m2

(r) dr.

We substitute

r = R
t+ 1

2
,
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in the above equation and get

δm1,m2 =

∫ 1

−1

(
R
t+ 1

2

)d−1

F II,d
m1

(
R
t+ 1

2

)
F II,d
m2

(
R
t+ 1

2

)
R

2
dt

=

(
R

2

)d ∫ 1

−1

(1 + t)d−1F II,d
m1

(
R
t+ 1

2

)
F II,d
m2

(
R
t+ 1

2

)
dt.

Our required functions in this case are the Jacobi polynomials with weights
(1− t)0(1 + t)d−1, hence, we have

F II,d
m (r) = bmP

(0,d−1)
m

(
2
r

R
− 1
)
.

In order to find the constant bm, we proceed likewise as before. Using Theo-
rem 1.2.11, we have

1 =

(
R

2

)d
b2
m

∫ 1

−1

(1 + t)d−1
(
P (0,d−1)
m (t)

)2
dt

1 =
Rd

2m+ d
b2
m,

which finally gives us a choice of second complete orthonormal system in
L2
(
BdR
)
, i.e.

GII,d
m,n,j(rξ) =

√
2m+ d

Rd
P (0,d−1)
m

(
2
r

R
− 1
)
Y d
n,j(ξ). (6.22)

This helps us to formulate the following result.

Theorem 6.3.1 The systems of functions {GX,d
m,n,j}m,n∈N0;j=1,...,Z(d,n) defined

by (6.21) for X = I and by (6.22) for X = II respectively, form complete
orthonormal systems in L2(BdR).

6.4 Differential Operators for Orthonormal

Systems on BdR
This section introduces a class of differential operators for the orthonormal
systems of types I and II given by (6.21) and (6.22) respectively, such that
these orthonormal systems form eigenfunctions for these operators. Analo-
gous calculations have been done for the dimension d = 3 in [2] and [50].
From (6.21) and (6.22), we can see that our orthonormal systems of types
I and II are comprised of Jacobi polynomials and spherical harmonics. So,
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in order to calculate their differential operators, we begin with calculating
the operators for Jacobi polynomials and spherical harmonics. The following
result, for the spherical harmonics in d variables, is borrowed from [32].

Theorem 6.4.1 Spherical harmonics Y d
n,j, for n ∈ N0, j ∈ {1, 2, . . . ,Z(d, n)}

form the eigenfunctions of the invertible differential operator
(
−∆∗ξd + (d−2

2
)2
)
,

i.e. (
−∆∗ξd +

(
d− 2

2

)2
)
Y d
n,j =

(
n+

d− 2

2

)2

Y d
n,j, (6.23)

where ∆∗ξd is the Beltrami operator. In general, for ` ∈ N(
−∆∗ξd +

(
d− 2

2

)2
)`

Y d
n,j =

(
n+

d− 2

2

)2`

Y d
n,j. (6.24)

Proof: From equation (6.10), we have

−∆∗ξdY
d
n (ξ) = n(n+ d− 2)Y d

n (ξ).

Thus, for the operator
(
−∆∗ξd + (d−2

2
)2
)
, we obtain(

−∆∗ξd +

(
d− 2

2

)2
)
Y d
n,j = −∆∗ξdY

d
n,j +

(
d− 2

2

)2

Y d
n,j

= n(n+ d− 2)Y d
n,j +

(
d− 2

2

)2

Y d
n,j

=

(
n2 + (d− 2)n+

(d− 2)2

4

)
Y d
n,j

=

(
n+

d− 2

2

)2

Y d
n,j.

By induction, we obtain the general case for ` ∈ N.
Next, we derive the differential operator for Jacobi polynomials with partic-
ular value of parameters. From Theorem 1.2.3, the differential equation for

P
(0,ln+ d

2
−1)

m with parameters α = 0 and β = ln + d
2
− 1 is given by

(
1− y2

) d2

dy2
P

(0,ln+ d
2
−1)

m (y)+

(
ln +

d

2
− 1−

(
ln +

d

2
+ 1

)
y

)
d

dy
P

(0,ln+ d
2
−1)

m (y)

+m

(
m+ ln +

d

2

)
P

(0,ln+ d
2
−1)

m (y) = 0.
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Substituting y = 2 r2

R2 − 1, i.e. r = R
√

y+1
2

with dr
dy

= R2

4r
, we get(

1−
(

2
r2

R2
− 1

)2
)

d2

dy2
P

(0,ln+ d
2
−1)

m

(
2
r2

R2
− 1

)
+

(
ln +

d

2
− 1−

(
ln +

d

2
+ 1

)(
2
r2

R2
− 1

))
d

dy
P

(0,ln+ d
2
−1)

m

(
2
r2

R2
− 1

)
+m

(
m+ ln +

d

2

)
P

(0,ln+ d
2
−1)

m

(
2
r2

R2
− 1

)
= 0. (6.25)

Now, differentiating P
(0,ln+ d

2
−1)

m

(
2 r2

R2 − 1
)

with respect to y using the chain

rule, we have

d

dy
P

(0,ln+ d
2
−1)

m

(
2
r2

R2
− 1

)
=

d

dr
P

(0,ln+ d
2
−1)

m

(
2
r2

R2
− 1

)
dr

dy

=
d

dr
P

(0,ln+ d
2
−1)

m

(
2
r2

R2
− 1

)
R2

4r
. (6.26)

Again differentiating with respect to y, we obtain

d2

dy2
P

(0,ln+ d
2
−1)

m

(
2
r2

R2
− 1

)
=

d2

dr2
P

(0,ln+ d
2
−1)

m

(
2
r2

R2
− 1

)
R4

16r2
− d

dr
P

(0,ln+ d
2
−1)

m

(
2
r2

R2
− 1

)
R4

16r3
.

(6.27)

In order to avoid any confusion in calculations, we simplify equation (6.25)
in parts. At first, we consider the first term in (6.25). Inserting the second

derivative of P
(0,ln+ d

2
−1)

m

(
2 r2

R2 − 1
)

from (6.27), we get(
1−

(
2
r2

R2
− 1

)2
)

d2

dy2
P

(0,ln+ d
2
−1)

m

(
2
r2

R2
− 1

)
=

(
4r2

R2
− 4r4

R4

)
R4

16r2

d2

dr2
P

(0,ln+ d
2
−1)

m

(
2
r2

R2
− 1

)
−
(

4r2

R2
− 4r4

R4

)
R4

16r3

d

dr
P

(0,ln+ d
2
−1)

m

(
2
r2

R2
− 1

)
=

(
R2 − r2

4

)
d2

dr2
P

(0,ln+ d
2
−1)

m

(
2
r2

R2
− 1

)
−
(
R2 − r2

4r

)
d

dr
P

(0,ln+ d
2
−1)

m

(
2
r2

R2
− 1

)
. (6.28)
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Next, simplifying the second term of (6.25) with the help of equation (6.26),
we have(
ln +

d

2
− 1−

(
ln +

d

2
+ 1

)(
2
r2

R2
− 1

))
d

dy
P

(0,ln+ d
2
−1)

m

(
2
r2

R2
− 1

)
=

(
ln +

d

2
− 1−

(
ln +

d

2
+ 1

)(
2
r2

R2
− 1

))
R2

4r

d

dr
P

(0,ln+ d
2
−1)

m

(
2
r2

R2
− 1

)
=

(
2ln + d−

(
ln +

d

2
+ 1

)
2
r2

R2

)
R2

4r

d

dr
P

(0,ln+ d
2
−1)

m

(
2
r2

R2
− 1

)
. (6.29)

If we use the values from equations (6.28) and (6.29), (6.25) yields

(
R2 − r2

) d2

dr2
P

(0,ln+ d
2
−1)

m

(
2
r2

R2
− 1

)
+

(
(2ln + d− 1)− (2ln + d+ 1)

r2

R2

)
R2

r

× d

dr
P

(0,ln+ d
2
−1)

m

(
2
r2

R2
− 1

)
+4m

(
m+ ln +

d

2

)
P

(0,ln+ d
2
−1)

m

(
2
r2

R2
− 1

)
= 0,

which results in the following equation:((
R2 − r2

) d2

dr2
+

(
(2ln + d− 1)− (2ln + d+ 1)

r2

R2

)
R2

r

d

dr

)
× P (0,ln+ d

2
−1)

m

(
2
r2

R2
− 1

)
= −4m

(
m+ ln +

d

2

)
P

(0,ln+ d
2
−1)

m

(
2
r2

R2
− 1

)
.

(6.30)

Now, we define new functions p(r) := P
(0,ln+ d

2
−1)

m

(
2 r2

R2 − 1
)

and g(r) :=

p(r)
(
r
R

)ln
. The first and second derivatives of the function g are

g′(r) =p′(r)
( r
R

)ln
+ p(r)

ln
R

( r
R

)ln−1

=p′(r)
( r
R

)ln
+ g(r)

ln
r

and

g′′(r) =p′′(r)
( r
R

)ln
+ p′(r)

ln
R

( r
R

)ln−1

+ g′(r)
ln
r
− g(r)

ln
r2

=p′′(r)
( r
R

)ln
+ 2g′(r)

ln
r
− g(r)

ln(ln + 1)

r2
,
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respectively. Multiplying the above equation by the term (R2 − r2) and
substituting the value of (R2 − r2)p′′ from equation (6.30), we get(

R2 − r2
)
g′′ = −

(
(2ln + d− 1)− (2ln + d+ 1)

r2

R2

)
R2

r

( r
R

)ln
p′

− 4m

(
m+ ln +

d

2

)( r
R

)ln
p+ 2(R2 − r2)g′

ln
r
− (R2 − r2)g

ln(ln + 1)

r2
.

Further, simplifying the equation using the values of p and p′, we get(
R2 − r2

)
g′′ = −

(
(2ln + d− 1)− (2ln + d+ 1)

r2

R2

)
R2

r

(
g′ − ln

r
g

)
− 4m

(
m+ ln +

d

2

)
g + 2

(
R2 − r2

)
g′
ln
r
−
(
R2 − r2

)
g
ln(ln + 1)

r2

=

(
2
ln
r

(
R2 − r2

)
− (2ln + d− 1)

R2

r
+ (2ln + d+ 1)r

)
g′

+

(
(2ln + d− 1)

R2ln
r2
− (2ln + d+ 1)ln −

(R2 − r2)

r2
ln(ln + 1)

− 4m

(
m+ ln +

d

2

)
g

)
.

Consequently, we have(
R2 − r2

)
g′′ −

(
(d+ 1)r − (d− 1)

R2

r

)
g′ −

(
(ln + d− 2)ln

R2

r2

)
g

= −
(
ln(ln + d) + 4m

(
m+ ln +

d

2

))
g.

This gives us the differential operator for g(r) =
(
r
R

)ln
P

(0,ln+ d
2
−1)

m

(
2 r2

R2 − 1
)

corresponding to the eigenvalues
(
−ln(ln + d)− 4m(m+ ln + d

2
)
)
. A similar

procedure can be followed to find the differential operator of Jacobi polyno-
mials P

(0,d−1)
m

(
2 r
R
− 1
)

with parameters α = 0 and β = d−1. The differential
equation corresponding to the given parameters is given by(
1− y2

) d2

dy2
P (0,d−1)
m (y)+(d−1−(d+1)y)

d

dy
P (0,d−1)
m (y)+m(m+d)P (0,d−1)

m (y) = 0.

Further, substituting y = 2 r
R
− 1 and simplifying, we get

r(R−r) d2

dr2
P (0,d−1)
m

(
2
r

R
− 1
)

+
(

2d− 2(d+ 1)
r

R

) R
2

d

dr
P (0,d−1)
m

(
2
r

R
− 1
)

+m(m+ d)P (0,d−1)
m

(
2
r

R
− 1
)

= 0.
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This results in the following equation:(
r(R− r) d2

dr2
+
(

2d− 2(d+ 1)
r

R

) R
2

d

dr

)
P (0,d−1)
m

(
2
r

R
− 1
)

= −m(m+ d)P (0,d−1)
m

(
2
r

R
− 1
)
.

This enables us to state the next theorem.

Theorem 6.4.2 For n,m ∈ N0 and ln ≥ −1, P
(0,ln+ d

2
−1)

m

(
2 r2

R2 − 1
) (

r
R

)ln
forms an eigenfunction of the differential operator

DId =
(
R2 − r2

) d2

dr2
−
(

(d+ 1)r − (d− 1)
R2

r

)
d

dr
−
(

(ln + d− 2)ln
R2

r2

)
,

corresponding to the eigenvalues(
DId
)∧

(m,n) = −
(
ln(ln + d) + 4m

(
m+ ln +

d

2

))
and P

(0,d−1)
m

(
2 r
R
− 1
)

are eigenfunctions for the differential operator

DIId = r(R− r) d2

dr2
+
(

2d− 2(d+ 1)
r

R

) R
2

d

dr
,

corresponding to the eigenvalues(
DIId

)∧
(m) = −m(m+ d).

In addition to this, we can now derive the invertible differential operators for

P
(0,ln+ d

2
−1)

m

(
2 r2

R2 − 1
) (

r
R

)ln
and P

(0,d−1)
m

(
2 r
R
− 1
)
.

Theorem 6.4.3 For X ∈ {I, II}, the differential operators
(
−DXd + d2

4

)`
,

` ∈ N are invertible differential operators and their eigenvalues correspond-

ing to the eigenfunctions P
(0,ln+ d

2
−1)

m

(
2 r2

R2 − 1
) (

r
R

)ln
and P

(0,d−1)
m

(
2 r
R
− 1
)

respectively, are
(
ln + 2m+ d

2

)2`
and

(
m+ d

2

)2`
.

Proof: We begin the proof with the type I operator.(
−DId +

d2

4

)(
P

(0,ln+ d
2
−1)

m

(
2r2

R2
− 1

)( r
R

)ln)
= −DId

(
P

(0,ln+ d
2
−1)

m

(
2r2

R2
− 1

)( r
R

)ln)
+
d2

4

(
P

(0,ln+ d
2
−1)

m

(
2r2

R2
− 1

)( r
R

)ln)
.
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According to Theorem 6.4.2, for ` = 1, we have(
−DId +

d2

4

)(
P

(0,ln+ d
2
−1)

m

(
2r2

R2
− 1

)( r
R

)ln)
=

(
ln(ln + d) + 4m

(
m+ ln +

d

2

)
+
d2

4

)(
P

(0,ln+ d
2
−1)

m

(
2r2

R2
− 1

)( r
R

)ln)
=

(
ln + 2m+

d

2

)2(
P

(0,ln+ d
2
−1)

m

(
2r2

R2
− 1

)( r
R

)ln)
.

Analogous calculations give us the required results for type II. Further, by
applying induction, we get(
−DId +

d2

4

)`(
P

(0,ln+ d
2
−1)

m

(
2r2

R2
− 1

)( r
R

)ln)
=

(
ln + 2m+

d

2

)2`(
P

(0,ln+ d
2
−1)

m

(
2r2

R2
− 1

)( r
R

)ln)
and(
−DIId +

d2

4

)`(
P (0,d−1)
m

(
2r

R
− 1

))
=

(
m+

d

2

)2`(
P (0,d−1)
m

(
2r

R
− 1

))
.

Definition 6.4.4 For q ∈ R+
0 , we define the operators

Dq
Xd

:=

(
−DXd +

d2

4

)q
,

by their eigenvalues((
−DId +

d2

4

)q)∧
(m,n) :=

(
ln + 2m+

d

2

)2q

, X = I, β = ln +
d

2
− 1

(6.31)((
−DIId +

d2

4

)q)∧
(m,n) :=

(
m+

d

2

)2q

, X = II, β = d− 1,

(6.32)

corresponding to the eigenfunctions

P
(0,ln+ d

2
−1)

m

(
2r2

R2
− 1

)( r
R

)ln
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and

P (0,d−1)
m

(
2r

R
− 1

)
,

respectively.

Next, we define a class of invertible differential operators for the functions
on BdR, analogously to the operators in the 3-dimensional case defined in
Theorem 2.1.3 (see Section 2.1). These operators are the composition of two
differential operators, one acting on the angular part and the other on the
radial part of the function.

Definition 6.4.5 We define the operators

Ap,q
X,d := Bpd ◦ D

q
Xd
, p, q ∈ R+

0 , (6.33)

for the orthonormal systems (6.21) and (6.22) corresponding to the eigenval-
ues

(
Ap,q

I,d

)∧
(m,n) =


(
l0 + 2m+ d

2

)2q
, n = 0,

m ∈ N0,(
ln + 2m+ d

2

)2q
((2n+ d− 2)n(n+ d− 2))p , n ∈ N,

m ∈ N0,

(6.34)

and(
Ap,q

II,d

)∧
(m,n) =

{(
m+ d

2

)2q
, n = 0,m ∈ N0,(

m+ d
2

)2q
((2n+ d− 2)n(n+ d− 2))p , n ∈ N,m ∈ N0.

(6.35)

where Bpd, defined by the eigenvalues

Bpd
∧(n) =

{
1, n = 0,

((2n+ d− 2)n(n+ d− 2))p , n ∈ N,
(6.36)

is the generalization of the operator defined by (2.3) and Dq
Xd

are given by
Definition 6.4.4.

6.5 Sobolev Space on BdR
A Sobolev space on BdR, depending on a real sequence {Am,n}m,n∈N0 and a

system of functions {GX,d
m,n,j}m,n∈N0;j=1,...,Z(d,n), can be defined in the same

manner as defined in Definition 1.4.5.
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Definition 6.5.1 A Sobolev space H({Am,n},X,BdR) on BdR is a space of all
functions F ∈ L2(BdR) satisfying for all (m,n, j)〈

F,GX,d
m,n,j

〉
L2(BdR)

= 0

with Am,n = 0 or ln < 0 and

∞∑
m,n=0

Z(d,n)∑
j=1

A2
m,n

〈
F,GX,d

m,n,j

〉2

L2(BdR)
< +∞.

We denote this space byHd := H({Am,n},X,BdR). We now define the summa-
bility conditions in higher dimensions, in analogy to Definition 1.4.6, corre-
sponding to the orthonormal basis of type I and II.

Definition 6.5.2 A real sequence {Am,n}m,n∈N0 is said to fulfil the summa-
bility condition of type I if

∞∑
m,n=0; ln>1− d

2
Am,n 6=0

A−2
m,n(4m+ 2ln + d)(2n+ d− 2)d−2 (m+ ln + d

2
− 1)2m

(m! )2
< +∞

(6.37)
and of type II if

∞∑
m,n=0
Am,n 6=0

A−2
m,n(2m+ d)2d−1(2n+ d− 2)d−2 < +∞. (6.38)

The summability condition helps us to prove an important result concerning
the functions from the Sobolev space Hd.

Lemma 6.5.3 (Sobolev Lemma for d Dimensions). For a summable
sequence {Am,n}m,n∈N0 and a function F ∈ Hd, the Fourier series

F (x) =
∞∑

m,n=0

Z(d,n)∑
j=1

〈
F,GX,d

m,n,j

〉
L2(BdR)

GX,d
m,n,j(x), x ∈ BdR \ {0},

is continuous and uniformly convergent on BdR \ {0}.
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Proof: For F ∈ Hd, using the Cauchy-Schwarz inequality (1.17), we get∣∣∣∣∣∣
∑

m+n≥M

Z(d,n)∑
j=1

〈
F,GX,d

m,n,j

〉
L2(BdR)

GX,d
m,n,j(x)

∣∣∣∣∣∣
≤

 ∑
m+n≥M

Z(d,n)∑
j=1

A2
m,n

〈
F,GX,d

m,n,j

〉2

L2(BdR)

 1
2

 ∑
m+n≥M
Am,n 6=0

Z(d,n)∑
j=1

A−2
m,n

(
GX,d
m,n,j(x)

)2


1
2

≤ ‖F‖Hd(BdR)

 ∑
m+n≥M
Am,n 6=0

Z(d,n)∑
j=1

A−2
m,n

(
GX,d
m,n,j(x)

)2


1
2

.

Since the norm of F in the Sobolev space Hd is finite, we are left with
the second term in the above inequality. For a sequence {Am,n}m,n∈N0 , we
consider the following summation:∑
m+n≥M
Am,n 6=0

Z(d,n)∑
j=1

A−2
m,n

(
GX,d
m,n,j(x)

)2

=
∑

m+n≥M
Am,n 6=0

Z(d,n)∑
j=1

A−2
m,n

(
FX,d
m,n(|x|)Y d

n,j

(
x

|x|

))2

.

Using (6.16), we have

∑
m+n≥M
Am,n 6=0

Z(d,n)∑
j=1

A−2
m,n

(
GX,d
m,n,j(x)

)2

=
∑

m+n≥M
Am,n 6=0

A−2
m,n

(
FX,d
m,n(|x|)

)2 Z(d, n)

ωd
P d
n(ξ · ξ),

where ξ := x
|x| . Using the fact

P d
n(ξ · ξ) = P d

n(1) = 1

and applying Theorem 1.2.10 for Jacobi polynomials, we arrive at the follow-
ing inequality:

∑
m+n≥M
Am,n 6=0

Z(d,n)∑
j=1

A−2
m,n

(
GX,d
m,n,j(x)

)2

≤


∑

m+n≥M
Am,n 6=0

A−2
m,n

4m+2ln+d
Rd

(
m+ln+ d

2
−1

m

)2Z(d,n)
ωd

, X = I,

∑
m+n≥M
Am,n 6=0

A−2
m,n

2m+d
Rd

(
m+d−1
m

)2Z(d,n)
ωd

, X = II.
(6.39)
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Now, we can further simplify the terms in the above inequality as follows:
for X = I, we have(
m+ ln + d

2
− 1

m

)
=

Γ(ln + d
2
)

m! Γ(ln + d
2
)
·
m+ d

2
−1∏

k= d
2

(ln + k)

≤
(m+ ln + d

2
− 1) . . . (m+ ln + d

2
− 1)(m+ ln + d

2
− 1)

m!

=
(m+ ln + d

2
− 1)m

m!

and for X = II,(
m+ d− 1

m

)
=

(m+ d− 1) . . . (m+ 2)(m+ 1)

(d− 1)!

≤ (2m+ d) . . . (2m+ d)(2m+ d)

(d− 1)!

=
(2m+ d)d−1

(d− 1)!
.

Simplifying the term Z(d, n) given by equation (6.8), we get

Z(d, n) =
(2n+ d− 2)(n+ d− 3)!

n! (d− 2)!

=
(2n+ d− 2)

(d− 2)!

d−3∏
k=1

(n+ k)

≤ (2n+ d− 2)(2n+ d− 2)d−3

(d− 2)!

=
(2n+ d− 2)d−2

(d− 2)!
.

Using these simplifications, equation (6.39) takes the following form:

∑
m+n≥M
Am,n 6=0

Z(d,n)∑
j=1

A−2
m,n

(
GX,d
m,n,j(x)

)2

≤


∑

m+n≥M
Am,n 6=0

A−2
m,n

4m+2ln+d
Rd

(m+ln+ d
2
−1)2m

(m!)2
(2n+d−2)d−2

(d−2)!ωd
, X = I,

∑
m+n≥M
Am,n 6=0

A−2
m,n

2m+d
Rd

(2m+d)2(d−1)

((d−1)!)2
(2n+d−2)d−2

(d−2)!ωd
, X = II.

(6.40)
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Since {Am,n}m,n∈N0 satisfies the summability conditions I and II, the term

∑
m+n≥M
Am,n 6=0

Z(d,n)∑
j=1

A−2
m,n

(
GX,d
m,n,j(x)

)2

is convergent for M,N →∞. This gives us the required result.
The Sobolev lemma for d dimensions allows us to state that for every arbi-
trary but fixed x ∈ BdR, the evaluation functional Lx : Hd → R is bounded
and, consequently, continuous. This statement together with Aronszajn’s
theorem 1.1.16 infers that the Sobolev space Hd is a reproducing kernel
Hilbert space. Further, Sobolev lemma 6.5.3 and Definition 6.5.1 show that

∞∑
m,n=0
Am,n 6=0

Z(d,n)∑
j=1

(
GX,d
m,n,j(x)

Am,n

)2

< +∞ (6.41)

and {A−1
m,nG

X,d
m,n,j}m,n∈N0,Am,n 6=0;j=1,2,...,2n+1 is a complete system in Hd. Hence,

from Theorem 1.1.17, we get the following formula for the reproducing kernel
KHd :

KHd(x, y) =
∞∑

m,n=0, ln≥0
Am,n 6=0

Z(d,n)∑
j=1

GX,d
m,n,j(x)GX,d

m,n,j(y)

A2
m,n

. (6.42)

In connection with Definition 2.1.4, we now give the following definition of a
Sobolev space on BdR depending on particular sequences:

Definition 6.5.4 For p = s and q = t
2

with s, t ∈ R+
0 , we define a Sobolev

space on BdR depending on the sequences (6.34) and (6.35) as follows

HX,d
s,t (BdR) := H

({(
As, t

2
X,d

)∧
(m,n)

}
,X,BdR

)
. (6.43)

We denote the corresponding reproducing kernel of the Sobolev spaceHX,d
s,t (BdR)

by K := KHX,ds,t
. Based on the Sobolev space (6.43), we now give the definition

of the pseudodifferential operators in d dimensions.

Definition 6.5.5 The operator A : HX,d
s,t (BdR)→ HX,d

s− p
3
,t−q(B

d
R) for s, t ∈ R+

and s ≥ p
3
, t ≥ q, defined by

AF =
∞∑

m,n=0

Z(d,n)∑
j=1

Am,n

〈
F,GX,d

m,n,j

〉
L2(BdR)

GX,d
m,n,j
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is said to be a pseudodifferential operator of type (X, d) with respect to the
orthonormal basis system of type (X, d), if for all m,n ∈ N0 its eigenvalues
satisfy

c1(n+ c2)p(ln +m+ c3)q ≤ |Am,n|≤ c4(n+ c5)p(ln +m+ c6)q, X = I,

where
〈
F,GX,d

m,n,j

〉
L2(BdR)

= 0 for all ln < 0 (see Definition 6.5.1) and

c1(n+ c2)p(m+ c3)q ≤ |Am,n|≤ c4(n+ c5)p(m+ c6)q, X = II.

Here, all ci are constants and p, q ∈ R+ are called the angular and radial
orders of the operator, respectively.

While generalizing the idea of Sobolev space and pseudodifferential operators
to d dimensions, we realized that working in higher dimensions does not
effect the properties (be it isometry or the radial and angular orders of the
differential operators (see Theorem 2.1.10)) of the operators. Hence, all the
properties from Section 2.1 can be extended for the operators defined by
Definition 6.4.5 to any dimension d.

6.6 Discrepancy in Higher Dimensions

The concept of discrepancy (generalized and weighted) and the related result
in d dimension is an easy extension of the results in Sections 2.2 and 2.3.
Suppose we have a function F on the ball BdR. Then, its integral value can
be approximated as ∫

BdR
F (x)dx ≈ σd

N∑
k=1

αkF (xk), (6.44)

where σd denotes the volume of BdR and αk are the weights with
∑N

k=1 αk = 1.
The following theorem gives an estimate of the quadrature error for (6.44).
This result is analogous to Theorem 2.3.1, limited to the case d = 3.

Theorem 6.6.1 Let HX,d
s,t (BdR) be a Sobolev space defined by Definition 6.5.4

with s ≥ p
3

, t ≥ q and a summable sequence {(As, t
2

X,d)
∧(m,n)}m,n∈N0. Further,

let A be a pseudodifferential operator (see Definition 6.5.5) on HX,d
s,t (BdR)

with summable eigenvalues {Am,n}m,n∈N0, which are zero if and only if the

sequence {(As, t
2

X,d)
∧(m,n)}m,n∈N0 is zero and A0,0 6= 0. Then, for any function
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F ∈ HX,d
s,t (BdR), we have∣∣∣∣∣ 1

σd

∫
BdR
F (x)dx−

N∑
k=1

αkF (xk)

∣∣∣∣∣
≤ ‖AF‖L2(BdR)

 ∑
(m,n)6=(0,0)

ln≥0

1

A2
m,n

Z(d,n)∑
j=1

N∑
i,k=1

αiαkG
X,d
m,n,j(xi)G

X,d
m,n,j(xk)


1
2

.

(6.45)

Proof: The result can be proved on similar lines as in Theorem 2.2.1.
Now, similar to the idea defined in Definition 2.2.2, we give the following
definition of a discrepancy in d dimensions.

Definition 6.6.2 Let {Am,n}m,n∈N0 be a real summable sequence such that
Am,n 6= 0 represents the eigenvalues for a pseudodifferential operator A, then
the discrepancy of a set of N points PN = {x1, x2, . . . , xN} ⊂ BdR together
with weights {α1, α2, . . . , αN} ⊂ R, is defined as

Dw(PN ,X,A) :=

 ∑
(m,n)6=(0,0)

ln≥0

1

A2
m,n

Z(d,n)∑
j=1

N∑
i,k=1

αiαkG
X,d
m,n,j(xi)G

X,d
m,n,j(xk)


1
2

.

(6.46)

Remark 6.6.3 1. For the weights αi = αk = 1
N

, the discrepancy in (6.46)
takes the following form:

D(PN ,X,A) :=

 ∑
(m,n)6=(0,0)

ln≥0

1

A2
m,n

Z(d,n)∑
j=1

N∑
i,k=1

GX,d
m,n,j(xi)G

X,d
m,n,j(xk)

N2


1
2

.

(6.47)

2. If we apply the addition theorem (6.16), equation (6.47) yields

D(PN ,X,A) =

 ∑
(m,n)6=(0,0)

ln≥0

N∑
i,k=1

FX,d
m,n(|xi|)FX,d

m,n(|xk|)
A2
m,nN

2

Z(d, n)

ωd
P d
n (ξi · ξk)


1
2

,

(6.48)
with ξi = xi

|xi| .
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These formulae for discrepancies with constant or variable weights enable us
to take our theory of equidistribution to any dimension d ≥ 3. In order to
have some numerical tests, we take the simple lattice (equation (3.1)). It is
easy to generalize the simple lattice to higher dimensions, which is actually
the justification for taking this particular grid for the numerical tests. For
dimension d ≥ 3, the simple lattice is given by

θi,d−2 :=
iπ

P
, 0 ≤ i ≤ P,

φj :=
2jπ

P
, 0 ≤ j ≤ P.

We distribute the points on the unit ball B4 by replacing the value P with
brP c, where r ∈ [0, 1] (for details see Section 3.1) and we calculate the dis-
crepancies for the resulting grid using equation (6.47). For the orthonormal
system I with the particular value ln = n in dimension d = 4, (6.48) takes
the form

D(PN , I,A) =
1

πN

[
N∑

i,k=1

(
∞∑

m,n=0

(n+ 2m+ 2)(n+ 1)2

A2
m,n

(|xi||xk|)n

×P (0,n+1)
m (2|xi|2−1)P (0,n+1)

m (2|xk|2−1)P 4
n

(
xi
|xi|
· xk
|xk|

)
− 2

A2
0,0

)] 1
2

(6.49)

and for type II,

D(PN , II,A) =
1

πN

[
N∑

i,k=1

(
∞∑

m,n=0

(m+ 2)(n+ 1)2

A2
m,n

P (0,3)
m (2|xi|−1)

×P (0,3)
m (2|xk|−1)P 4

n

(
xi
|xi|
· xk
|xk|

)
− 2

A2
0,0

)] 1
2

. (6.50)

For the numerical tests, we have to truncate (as in Chapter 2) the infinite
series in the above mentioned discrepancy formulae up to certain degrees
M and N of Jacobi and Legendre polynomials, respectively. In our calcu-
lations, we take M = 10 and N = 10 for both the types I and II. Also,
we have to choose a particular pseudodifferential operator. Here, we use the
pseudodifferential operator A = Ap,q

X,4 (see Definition 6.4.5) with p = 1 and
q = 1 and the corresponding eigenvalues. The values of p and q are chosen
in such a way, that the series in (6.49) and (6.50) are convergent in m and
n. Substituting

Am,n :=
(
A1,1

I,4

)∧
(m,n)
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in equation (6.49), we get

D(PN , I,A) =
1

2πN

[
N∑

i,k=1

(
M∑
m=0

1

(m+ 1)3
P (0,1)
m (2|xi|2−1)P (0,1)

m (2|xk|2−1)

+
M∑
m=0

N∑
n=1

2

(n+ 2m+ 2)3n2(n+ 2)2
(|xi||xk|)n P (0,n+1)

m (2|xi|2−1)

×P (0,n+1)
m (2|xk|2−1)P 4

n

(
xi
|xi|
· xk
|xk|

)
− 1

)] 1
2

, (6.51)

and for
Am,n :=

(
A1,1

II,4

)∧
(m,n)

equation (6.50) yields

D(PN , II,A) =
1

πN

[
N∑

i,k=1

((
M∑
m=0

1

(m+ 2)3
P (0,3)
m (2|xi|−1)P (0,3)

m (2|xk|−1)

)

×

(
1 +

N∑
n=1

1

2n2(n+ 2)2
P 4
n

(
xi
|xi|
· xk
|xk|

))
− 1

4

)] 1
2

. (6.52)

Figure 6.1 shows the calculated discrepancies for an increasing number of
grid points on a 4-dimensional unit ball.
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Figure 6.1: The behaviour of the generalized discrepancies for the simple
lattice in dimension d = 4 corresponding to the orthonormal basis system
of type I represented in (a) and for the orthonormal basis system of type II
shown in (b). The colourbar represents the values of the discrepancies.

We have already discussed different algorithms in Chapter 3 that work
for minimizing the discrepancies of the grids on the ball. We choose here
Algorithm 1 (see Section 4.1) for numerical computation as it gives better
results in comparison to other methods. We then compared the discrepancies
of the resulting grids with the modified simple lattice. Figure 6.2 shows the
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comparisons of the discrepancies calculated for types I and II.
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Figure 6.2: The plots show the comparison between the discrepancy estimates
of the simple lattice and the grid obtained from Algorithm 1 for dimension
d = 4. The results corresponding to the orthonormal basis system of type I
are shown in (a) and for the orthonormal basis system of type II in (b).

Furthermore, we tested the BFGS method for the 4-dimensional case. Us-
ing this method, we minimize our objective function fobj,X := D2

(
PN ,A1,1

X,4

)
with the help of its gradient. For the computation of the gradient, we pro-
ceed as follows: as our objective function comprised of Jacobi and Legendre
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polynomials, which can be written in terms of Gegenbauer polynomials (see
(6.5)), we use equations (1.35) and (1.38) to find their gradients. The gradi-
ents for Jacobi polynomials of type I and II, respectively are

∇xtP
(0,n+1)
m (2|xi|2−1) =

Γ(n+m+ 3)

2 Γ(n+m+ 2)
P

(1,n+2)
m−1 (2|xi|2−1) 4xT

i ∇xtxi

= 2(n+m+ 2)P
(1,n+2)
m−1 (2|xi|2−1)xT

i ∇xtxi, (6.53)

where ∇xtxi = δti I and t = 1, 2, . . . , N and

∇xtP
(0,3)
m (2|xi|−1) =

Γ(m+ 5)

2 Γ(m+ 4)
P

(1,4)
m−1(2|xi|−1) 2

(
xi
|xi|

)T

∇xtxi

= (m+ 4)P
(1,4)
m−1(2|xi|−1)

(
xi
|xi|

)T

∇xtxi. (6.54)

From (6.5), we can write

P 4
n

(
xi
|xi|
· xk
|xk|

)
=

1

n+ 1
C1
n

(
xi
|xi|
· xk
|xk|

)
.

Further, we use Theorem 1.1.2 and the formula for the surface gradient of a
zonal function

∇∗ξF (ξ · η) = F ′(ξ · η)[η − (ξ · η)ξ] (6.55)

from [47] and get the gradient of the Gegenbauer polynomials as

∇xtC
1
n

(
xi
|xi|
· xk
|xk|

)
=

2

|xt|
C2
n−1

(
xi
|xi|
· xk
|xk|

)
∇∗xt
|xt|

(
xi
|xi|
· xk
|xk|

)
=

2

|xt|
C2
n−1

(
xi
|xi|
· xk
|xk|

)[
δit

(
xk
|xk|
−
(
xi
|xi|
· xk
|xk|

)
xi
|xi|

)
+ δkt

(
xi
|xi|
−
(
xi
|xi|
· xk
|xk|

)
xk
|xk|

)]
. (6.56)

Moreover, we use equation (4.11) for the gradient of term (|xi||xk|)n in the
objective function fobj,I. In combination with the above calculations, the
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gradient of fobj,I is given by

1

4π2N2

N∑
i=1

[
M∑
m=1

4(m+ 2)

(m+ 1)3
P (0,1)
m (2|xi|2−1)P

(1,2)
m−1(2|xt|2−1)xt

+
M∑
m=0

N∑
n=1

4n

(n+ 2m+ 2)3n2(n+ 2)2

(|xi||xt|)n−1

n+ 1
|xi|

xt
|xt|

P (0,n+1)
m (2|xi|2−1)

× P (0,n+1)
m (2|xt|2−1)C1

n

(
xi
|xi|
· xt
|xt|

)
+
M∑
m=1

N∑
n=1

8(n+m+ 2)

(n+ 2m+ 2)3n2(n+ 2)2

× (|xi||xt|)n

n+ 1
P (0,n+1)
m (2|xi|2−1)P

(1,n+2)
m−1 (2|xt|2−1)xtC

1
n

(
xi
|xi|
· xt
|xt|

)
+

M∑
m=0

N∑
n=1

4

(n+ 2m+ 2)3n2(n+ 2)2
P (0,n+1)
m (2|xi|2−1)P (0,n+1)

m (2|xt|2−1)

× (|xi||xt|)n

|xt|

(
xi
|xi|
−
(
xi
|xi|
· xt
|xt|

)
xt
|xt|

)
1

n+ 1
C2
n−1

(
xi
|xi|
· xt
|xt|

)]
and the gradient of fobj,II is

2

π2N2

N∑
i=1

[
M∑
m=1

m+ 4

(m+ 2)3
P (0,3)
m (2|xi|−1)P

(1,4)
m−1(2|xt|−1)

xt
|xt|(

1 +
N∑
n=1

1

2n2(n+ 2)2(n+ 1)
C1
n

(
xi
|xi|
· xt
|xt|

))

+
M∑
m=0

N∑
n=1

1

(m+ 2)32n2(n+ 2)2(n+ 1)
P (0,3)
m (2|xi|−1)P (0,3)

m (2|xt|−1)

×
(
xi
|xi|
−
(
xi
|xi|
· xt
|xt|

)
xt
|xt|

)
1

|xt|
C2
n−1

(
xi
|xi|
· xt
|xt|

)]
,

for t = 1, 2, . . . , N . We use the BFGS method to minimize the objective
functions along with the LDLT method to update the Hessian and Wolfe
weak conditions for computing the line search, which is virtually the best
combination according to our previous results (for details see Chapter 4).
As an example, we have taken here a starting grid of 811 points on a 4-
dimensional unit ball. Figures 6.3 and 6.4 show the results for the objective
functions fobj,I and fobj,II.
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Figure 6.3: The plot shows the behaviour of fobj,I corresponding to the num-
ber of iterations. The red point represents the minimum value of fobj,I after
satisfying the stopping criterion with tolerance level 10−11.
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Figure 6.4: The plot shows the behaviour of fobj,II corresponding to the
number of iterations. The red point represents the minimum value of fobj,II

after satisfying the stopping criterion with tolerance level 10−5.
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From the above tests, it is evident that these methods show favourable
results also in higher dimensions.

6.7 Numerical Properties of the Generalized

Discrepancy

As we extend the equidistribution theory and related results to a d-dimensional
ball, we also investigate some interesting numerical properties of the gener-
alized discrepancy in d dimensions. The analysis of these properties and the
construction of the following results are similar to those used for the spherical
case in [12].

6.7.1 Worst-Case Cubature Error

We consider a weighted cubature rule QN,d on the ball BdR defined as

QN,d(F ) :=
N∑
i=1

αiF (xi), F ∈ HX,d
s,t (BdR), (6.57)

with weights αi ∈ R such that
∑N

i=1 αi = 1 and points xi ∈ BdR. Further, we

choose QN,d as an approximation to the integral of a function F ∈ HX,d
s,t (BdR)

given by

I(F ) :=

∫
BdR
F (x) dσ∗d(x), (6.58)

σ∗d being the probability measure (σ∗d(·) = 1
σd
σd(·) (see Chapter 5)). Note

that this approximation is exact for a constant function F .

Definition 6.7.1 Let QN,d and I be as defined above, then the worst case

error of a function F in the Sobolev space HX,d
s,t (BdR) is defined as

E(QN,d) := sup
{
|(I − QN,d)F | : F ∈ HX,d

s,t , ‖F‖HX,d
s,t (BdR)≤ 1

}
.

Definition 6.7.2 Let {xi}i≥1 be i.i.d. random points on the ball BdR. For
each sample of N points PN ⊂ {xi}i≥1, let QN,d be the corresponding weighted
quadrature rule as defined by (6.57) and E be the worst case error from Def-
inition 6.7.1. Then we define

Eavg(QN,d) :=
[
E (E(QN,d))2] 1

2 . (6.59)
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Following the results in [12, 47, 66] for the case of a sphere, we derive the
corresponding result for the domain of a ball.

Theorem 6.7.3 Let PN = {x1, x2, . . . , xN} be a set of points in BdR and A
be a pseudodifferential operator on HX,d

s,t (BdR) satisfying the conditions stated
in Theorem 6.6.1, then the worst case error E for the cubature rule QN,d is
exactly the discrepancy, i.e.

E(QN,d) = Dw(PN ,A). (6.60)

For the type X = I, we require a sufficient condition of l0 = 0.

Proof: Using the equations (6.57) and (6.58), we can write

I(F )−QN,d(F ) =

∫
BdR
F (x) dσ∗d(x)−

N∑
i=1

αiF (xi).

Now, in connection with Theorem 1.1.18, we can write

(I − QN,d)(F ) = 〈F, (I − QN,d)xK(x, ·)〉HX,d
s,t (BdR)

=

〈
F,

∫
BdR
K(x, ·) dσ∗d(x)−

N∑
i=1

αiK(·, xi)

〉
HX,d
s,t (BdR)

= 〈F, ℘〉HX,d
s,t (BdR) ,

where ℘ :=
∫
BdR
K(x, ·) dσ∗d(x) −

∑N
i=1 αiK(·, xi). Hence, by Definition 6.7.1,

we get

E(QN,d) = sup
{∣∣∣〈F, ℘〉HX,d

s,t (BdR)

∣∣∣ : F ∈ HX,d
s,t , ‖F‖HX,d

s,t
≤ 1
}

= ‖℘‖HX,d
s,t (BdR)

= 〈℘, ℘〉
1
2

HX,d
s,t (BdR)

= 〈(I − QN,d)xK(x, ·), (I − QN,d)y K(y, ·)〉
1
2

HX,d
s,t (BdR)

. (6.61)

Again using Theorem 1.1.18, for the continuous functional (I − QN,d) and

the function (I − QN,d)xK(x, ·) ∈ HX,d
s,t (BdR), we obtain

(I − QN,d)y [(I − QN,d)xK(x, y)]

= 〈(I − QN,d)xK(x, ·), (I − QN,d)y K(y, ·)〉HX,d
s,t (BdR) . (6.62)
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This results in the following equation:

E(QN,d) = [(I − QN,d)y(I − QN,d)xK(x, y)]
1
2

=

[∫
BdR

(∫
BdR
K(x, y) dσ∗d(x)

)
dσ∗d(y)− 2

N∑
i=1

αi

∫
BdR
K(x, y) dσ∗d(y)

+
N∑
i=1

N∑
k=1

αiαkK(xi, xk)

] 1
2

. (6.63)

Next, we require to evaluate the integral of the reproducing kernel K as the
first two terms in the above equation depend on it. Using equation (6.42),
we proceed as follows∫
BdR
K(x, y) dσ∗d(x) =

∫
BdR

∞∑
m,n=0
ln≥0

Z(d,n)∑
j=1

1

A2
m,n

GX,d
m,n,j(x)GX,d

m,n,j(y) dσ∗d(x). (6.64)

We have here two cases, depending on the two types of orthonormal systems
I and II. We consider first the case for X = II. Using equation (6.22) and

the fact that GII,d
0,0,1 =

√
d

ωdRd
, we further calculate the integral and obtain∫

BdR
K(x, y) dσ∗d(x)

=

√
ωdRd

d

∫
BdR

∞∑
m,n=0

Z(d,n)∑
j=1

1

A2
m,n

GII,d
m,n,j(x)GII,d

0,0,1(x)GII,d
m,n,j(y) dσ∗d(x).

Now the uniform convergence of the series (see Theorem 6.5.3) allows us to
interchange the order of summation and the integral.∫

BdR
K(x, y) dσ∗d(x)

=

√
ωdRd

d

∞∑
m,n=0

Z(d,n)∑
j=1

1

A2
m,n

GII,d
m,n,j(y)

∫
BdR
GII,d
m,n,j(x)GII,d

0,0,1(x) dσ∗d(x)

=

√
ωdRd

d

1

A2
0,0

GII,d
0,0,1(y)

∫
BdR

(
GII,d

0,0,1(x)
)2

dσ∗d(x)

=
d

ωdRd

1

A2
0,0

∫
BdR

dσ∗d(x)

=
d

ωdRd

1

A2
0,0

. (6.65)
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As a result, equation (6.63) yields

E(QN,d) =

[
d

ωdRd

1

A2
0,0

− 2 · d

ωdRd

1

A2
0,0

+
N∑
i=1

N∑
k=1

αiαkK(xi, xk)

] 1
2

=

[
− d

ωdRd

1

A2
0,0

+
N∑
i=1

N∑
k=1

αiαkK(xi, xk)

] 1
2

= Dw(PN , II,A).

Similarly, we proceed for the case X = I. With the help of equation (6.21), the

value of GI,d
m,n,j at (m,n, j) = (0, 0, 1) is given by GI,d

0,0,1(x) =
√

2l0+d
ωdRd

(
|x|
R

)l0
.

The condition l0 = 0 yields GI,d
0,0,1 =

√
d

ωdRd
. Using this value to calculate the

integral in (6.64), we obtain∫
BdR
K(x, y)dσ∗d(x)

=

√
ωdRd

d

∫
BdR

∞∑
m,n=0
ln≥0

Z(d,n)∑
j=1

1

A2
m,n

GI,d
m,n,j(x)GI,d

0,0,1(x)GI,d
m,n,j(y) dσ∗d(x)

=

√
ωdRd

d

∞∑
m,n=0
ln≥0

Z(d,n)∑
j=1

1

A2
m,n

∫
BdR
GI,d
m,n,j(x)GI,d

0,0,1(x) dσ∗d(x)GI,d
m,n,j(y).

This leads us to the following equation∫
BdR
K(x, y) dσ∗d(x) =

d

ωdRd

1

A2
0,0

. (6.66)

Consequently, we obtain

E(QN,d) = Dw(PN , I,A).

This completes the proof.

Remark 6.7.4 If αi = 1
N

for all i, then

E(QN,d) = D(PN ,X,A).

For N = 0, we formally set Q0,d(F ) = 0, so the initial error is given as norm
of the integral I

E(Q0,d) = sup
{
|I(F )| : F ∈ HX,d

s,t , ‖F‖HX,d
s,t (BdR)≤ 1

}
.
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Theorem 1.1.18 tells us that I(F ) = 〈F, IxK(x, ·)〉HX,d
s,t

. Thus, using that

F ∈ HX,d
s,t (BdR) and equations (6.65) and (6.66), we obtain

E(Q0,d) = ‖IxK(x, ·)‖HX,d
s,t (BdR)

=

[∫
BdR

∫
BdR
K(x, y) dσ∗d(x)dσ∗d(y)

] 1
2

=

√
d

ωdRd

1

A0,0

. (6.67)

6.7.2 Tractability of Multivariate Integration

While dealing with higher dimensional problems, a predictable issue is the
increase of cost with the increase of dimension d, which is actually the curse
of dimensionality. The same issue arises for multivariate integration. Hence,
it is reasonable to investigate the tractability of integration in higher di-
mensions for our particular Sobolev space. Many authors have investigated
the tractability of multivariate integration with different function spaces.
For further information the reader is referred to [33, 55, 56, 65]. Formally,
tractability is interpreted as the existence of a method that approximates
the solution with an error using N samples of a function, where N depends
on the error and dimension d and is bounded. Based on the worst case error
calculated in the previous section, we now define the term tractability.

Definition 6.7.5 Tractability is the minimal number of function evaluations
required to reduce the initial integration error by a factor ε, i.e.

N
(ε,d)
min := min {N : ∃QN,d | E(QN,d) ≤ ε · E(Q0,d)} . (6.68)

In addition, we define the tractability for average sample points as follows

N (ε,d)
avg := min {N : ∃QN,d | Eavg(QN,d) ≤ ε · Eavg(Q0,d)} , (6.69)

where Eavg(Q0,d) = E(Q0,d) by Definition 6.7.2.

Remark 6.7.6 Tractability of multivariate integration indicates the exis-
tence of at least one cubature rule that is tractable, while tractability of av-
erage sample points implies that there exist many cubature rules that are
tractable.
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Definition 6.7.7 The multivariate integration in the Sobolev spaceHX,d
s,t (BdR)

is said to be tractable if there exist constants C, α, β ∈ R+ such that the in-
equality

N
(ε,d)
min ≤ C dαε−β (6.70)

holds for all the dimensions d ≥ 3 and for all ε ∈ (0, 1). Multivariate inte-
gration in the space HX,d

s,t (BdR) is said to be strongly tractable if (6.70) holds
for α = 0. Furthermore, the multivariate integration is said to be tractable
for average sample points (see [64]) if and only if there exist C, α, β ∈ R+

such that
N (ε,d)

avg ≤ C dαε−β. (6.71)

The minimal values of α and β are called the d-exponent and the ε-exponent
of the (strong) tractability, respectively.

Remark 6.7.8 [64]

1. If the multivariate integration is tractable for average sample points
then it is also tractable.

2. The ε- and d-exponents of tractability do not exceed the corresponding
exponents of tractability for average sample points.

Theorem 6.7.9 For d ≥ 3 and (m,n, j) 6= (0, 0, 1), we have

E
[
GX,d
m,n,j(xi)G

X,d
m,n,j(xk)

]
=

{
0, i 6= k
d

ωdRd
i = k.

(6.72)

Proof: Using Definition 1.5.4 and Theorem 6.3.1, we calculate the expec-
tation of the orthonormal systems GX,d

m,n,j as follows. For the case i 6= k, we
obtain

E
[
GX,d
m,n,j(xi)G

X,d
m,n,j(xk)

]
=

∫
BdR

∫
BdR
GX,d
m,n,j(xi)G

X,d
m,n,j(xk)dσ

∗
d(xi)dσ

∗
d(xk)

=

∫
BdR
GX,d
m,n,j(xi)dσ

∗
d(xi)

∫
BdR
GX,d
m,n,j(xk)dσ

∗
d(xk)

= 0.

For i = k, we get

E
[(
GX,d
m,n,j(xi)

)2
]

=

∫
BdR

(
GX,d
m,n,j(xi)

)2

dσ∗d(xi)

=
d

ωdRd
.
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This completes the proof.
In what follows, we discuss the conditions on the d-exponent and ε-exponent
that allows the integration to be tractable and strongly tractable in the
Sobolev space HX,d

s,t (BdR). In this result, we only consider the case of equal

weight quadrature rules. The reason is: the termN
(ε,d)
min is smaller for weighted

quadrature rules than the one with equal weights, as the quadrature rules
with equal weights is a subclass of the weighted quadature rules. And even-
tually, we also get a bound for the weighted case. As in Theorem 6.7.3, we
again use the condition l0 = 0 for the case of type I in the following result.

Theorem 6.7.10 Integration in the Sobolev spaceHX,d
s,t (BdR) is strongly tract-

able with the ε-exponent of strong tractability at most equal to 2, if the se-
quences {Am,n(d)}, briefly {Am,n} satisfy

lim sup
d

∑
(m,n)6=(0,0)

ln≥0

A−2
m,nZ(d, n) < +∞. (6.73)

Let

α = lim sup
d

ln

 ∑
(m,n)6=(0,0)

ln≥0

A−2
m,nZ(d, n)


ln d

, (6.74)

if α < +∞, integration in the space HX,d
s,t (BdR) is tractable with ε-exponent

and d-exponent of tractability at most equal to 2 and α, respectively.

Proof: In order to prove tractability, we only need to prove the tractability
of average sample points, since from Remark 6.7.8 the ε- and d-exponents
for tractability are not greater than the corresponding ones of tractability for
average sample points. First, we calculate the expectation of the worst case
error, using Theorem 6.7.3, as

E
[
E(QN,d)2

]
= E

 1

N2

N∑
i,k=1

∑
(m,n)6=(0,0)

ln≥0

Z(d,n)∑
j=1

GX,d
m,n,j(xi)G

X,d
m,n,j(xk)

A2
m,n


=

1

N2

N∑
i,k=1

∑
(m,n)6=(0,0)

ln≥0

Z(d,n)∑
j=1

1

A2
m,n

E
[
GX,d
m,n,j(xi)G

X,d
m,n,j(xk)

]
.



6.7. NUMERICAL PROPERTIES 139

Now, using the expectation of the orthonormal basis systems GX,d
m,n,j from

Theorem 6.7.9, we obtain

E
[
E(QN,d)2

]
=

1

N2

∑
(m,n)6=(0,0)

ln≥0

Z(d,n)∑
j=1

1

A2
m,n

·N · d

ωdRd
.

Having the expectation of E(QN,d)2, we can now calculate the value of Eavg.
In accordance with Definition 6.7.2, we get

Eavg(QN,d) =

 1

N

d

ωdRd

∑
(m,n)6=(0,0)

ln≥0

Z(d, n)

A2
m,n


1
2

. (6.75)

Now, using the definition of tractability for average sample points and equa-
tion (6.67), we proceed as follows

N (ε,d)
avg = min{N : Eavg(QN,d) ≤ ε · E(Q0,d)}

= min

N :

 1

N

d

ωdRd

∑
(m,n)6=(0,0)

ln≥0

Z(d, n)

A2
m,n


1
2

≤ ε · 1

A0,0

√
d

ωdRd


= min

N :
1

N

∑
(m,n)6=(0,0)

ln≥0

Z(d, n)

A2
m,n

≤ ε2 · 1

A2
0,0


= min

N : ε−2A2
0,0

∑
(m,n)6=(0,0)

ln≥0

Z(d, n)

A2
m,n

≤ N

 .

According to the definition of Gaussian bracket, it is easy to see that the
above equation represents the ceiling function for N . Hence, we get

N (ε,d)
avg =

ε
−2A2

0,0

∑
(m,n)6=(0,0)

ln≥0

Z(d, n)

A2
m,n

 .
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By the mean value theorem of integration, we can find a sample of N points
for which E(QN,d) ≤ Eavg(QN,d) and consequently, we get

N
(ε,d)
min ≤

ε
−2A2

0,0

∑
(m,n)6=(0,0)

ln≥0

Z(d, n)

A2
m,n

 ,
which implies

N
(ε,d)
min ≤ ε−2A2

0,0

∑
(m,n)6=(0,0)

ln≥0

Z(d, n)

A2
m,n

. (6.76)

As stated in Definition 6.7.7, this indicates that the strong tractability of
integration in HX,d

s,t (BdR) holds for β = 2 and C = A2
0,0

∑
(m,n)6=(0,0)

ln≥0

Z(d,n)
A2
m,n

, if

lim sup
d

∑
(m,n)6=(0,0)

ln≥0

A−2
m,nZ(d, n) < +∞.

Furthermore, we suppose u :=
∑

(m,n)6=(0,0)
ln≥0

A−2
m,nZ(d, n), which implies

lnu =

ln

 ∑
(m,n)6=(0,0)

ln≥0

A−2
m,nZ(d, n)


ln d

· ln d

= ln d

ln


∑

(m,n)6=(0,0)
ln≥0

A−2
m,nZ(d,n)


ln d .

Consequently, we get

u = d

ln


∑

(m,n)6=(0,0)
ln≥0

A−2
m,nZ(d,n)


ln d .

This in turn suggests that (6.76) can be rewritten as follows

N
(ε,d)
min ≤ ε−2A2

0,0 d

ln


∑

(m,n)6=(0,0)
ln≥0

A−2
m,nZ(d,n)


ln d , (6.77)
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indicating tractability of integration in HX,d
s,t (BdR) for β = 2, C = A2

0,0 and

α = lim sup
d

ln

 ∑
(m,n)6=(0,0)

ln≥0

A−2
m,nZ(d, n)


ln d

,

with α < +∞.

6.7.3 Diaphony

The convergence of the generalized discrepancy (2.17) is already discussed
in Chapter 5 for uniformly distributed i.i.d. random variables. In this sec-
tion, we will discuss the convergence of the generalized discrepancy using a
different approach. Since, in general the generalized discrepancy depends on
the reproducing kernel and then consequently on the Sobolev space HX,d

s,t ,

we need to find the assumptions or conditions on HX,d
s,t or the reproducing

kernel K such that the generalized discrepancy converges for a uniformly dis-
tributed set of points as N → ∞. Firstly, we present briefly the concepts
of G-uniform distribution and G-diaphony. These notions and the corre-
sponding definitions were introduced in [3] and were applied for the spherical
settings in [12]. In the following results, we apply these concepts to the case
of a d-dimensional ball for our specific settings.

Definition 6.7.11 Let HX,d
s,t be the Sobolev space on BdR defined by Definition

6.5.4, with the reproducing kernel K := KHX,d
s,t

. A sequence of points {xi}i≥1

on BdR is said to be G-uniformly distributed if

lim
N→∞

1

N

N∑
i=1

F (xi) = 〈F,G〉HX,d
s,t (BdR) for every F ∈ HX,d

s,t (BdR), (6.78)

where G is a fixed element of HX,d
s,t (BdR).

Definition 6.7.12 For every N ≥ 1, let

rN :=
1

N

N∑
i=1

K(·, xi)−G. (6.79)

Then ‖rN‖HX,d
s,t (BdR) is called the G-diaphony of {xi}i≥1 and ‖rN‖∞:= sup

x∈BdR

|rN(x)|

is called the G-discrepancy of {xi}i≥1.
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Remark 6.7.13 For all F ∈ HX,d
s,t (BdR),∣∣∣∣∣ 1

N

N∑
i=1

F (xi)− 〈F,G〉HX,d
s,t (BdR)

∣∣∣∣∣ ≤ ‖F‖HX,d
s,t (BdR) ‖rN‖HX,d

s,t (BdR) . (6.80)

Proof: Using the property (2) of a reproducing kernel K from Definition
1.1.14, we get the following equation:∣∣∣∣∣ 1

N

N∑
i=1

F (xi)− 〈F,G〉HX,d
s,t (BdR)

∣∣∣∣∣ =

∣∣∣∣∣ 1

N

N∑
i=1

〈F,K(·, xi)〉HX,d
s,t (BdR) − 〈F,G〉HX,d

s,t (BdR)

∣∣∣∣∣ .
Further, in accordance with equation (6.79) and the bilinearity of the inner
product, we get∣∣∣∣∣ 1

N

N∑
i=1

F (xi)− 〈F,G〉HX,d
s,t (BdR)

∣∣∣∣∣ =

∣∣∣∣∣∣
〈
F,

1

N

N∑
i=1

K(·, xi)−G

〉
HX,d
s,t (BdR)

∣∣∣∣∣∣
=
∣∣∣〈F, rN〉HX,d

s,t (BdR)

∣∣∣ . (6.81)

Finally, the Cauchy-Schwarz inequality (1.17) allows us to arrive at the result∣∣∣∣∣ 1

N

N∑
i=1

F (xi)− 〈F,G〉HX,d
s,t (BdR)

∣∣∣∣∣ ≤ ‖F‖HX,d
s,t (BdR) ‖rN‖HX,d

s,t (BdR) .

A result similar to the following theorem for G-uniformly distributed se-
quences on a compact set E = [0, 1[s and its proof are stated in [3].

Theorem 6.7.14 A sequence of points {xi}i≥1 on BdR is G-uniformly dis-
tributed if and only if

lim
N→∞

‖rN‖HX,d
s,t (BdR)= 0. (6.82)

Proof: First, we consider that {xi}i≥1 is G-uniformly distributed, then by
Definition 6.7.11, for F ∈ HX,d

s,t (BdR), we have

lim
N→∞

1

N

N∑
i=1

F (xi) = 〈F,G〉HX,d
s,t (BdR).

Since K is a reproducing kernel, then for K(x, ·) ∈ HX,d
s,t (BdR) and for all

x ∈ BdR, we can write

lim
N→∞

〈
F,

1

N

N∑
i=1

K(·, xi)−G

〉
HX,d
s,t (BdR)

= 0.



6.7. NUMERICAL PROPERTIES 143

This yields
lim
N→∞

〈F, rN〉HX,d
s,t (BdR) = 0.

This gives us the weak convergence of rN as N → ∞, where {rN}N≥1 is
a sequence of continuous functions (see Lemma 6.5.3). Since every weakly
convergent sequence on a compact set converges uniformly ([3]), we obtain
the uniform convergence of rN , i.e.

‖rN‖∞ = sup
x∈BdR

|rN(x)| −−−→
N→∞

0. (6.83)

Now consider the norm of rN in HX,d
s,t (BdR)

0 ≤ ‖rN‖2

HX,d
s,t (BdR)

=

〈
1

N

N∑
i=1

K(xi, ·)−G,
1

N

N∑
k=1

K(xk, ·)−G

〉
HX,d
s,t (BdR)

=
1

N

N∑
i=1

1

N

N∑
k=1

〈K(xi, ·),K(xk, ·)〉HX,d
s,t (BdR) −

1

N

N∑
i=1

〈K(xi, ·), G〉HX,d
s,t (BdR)

− 1

N

N∑
k=1

〈G,K(xk, ·)〉HX,d
s,t (BdR) + 〈G,G〉HX,d

s,t (BdR) .

Using Definition 1.1.14, the above equation takes the following form:

‖rN‖2

HX,d
s,t (BdR)

=

∣∣∣∣∣ 1

N

N∑
i=1

1

N

N∑
k=1

K(xi, xk)−
1

N

N∑
i=1

〈G,K(xi, ·)〉HX,d
s,t (BdR) −

1

N

N∑
k=1

G(xk)

+ 〈G,G〉HX,d
s,t (BdR)

∣∣∣
≤ 1

N

N∑
k=1

∣∣∣∣∣ 1

N

N∑
i=1

K(xi, xk)−G(xk)

∣∣∣∣∣+

∣∣∣∣∣ 1

N

N∑
i=1

G(xi)− ‖G‖2

HX,d
s,t (BdR)

∣∣∣∣∣
=

1

N

N∑
k=1

|rN(xk)|+

∣∣∣∣∣ 1

N

N∑
i=1

G(xi)− ‖G‖2

HX,d
s,t (BdR)

∣∣∣∣∣
≤ sup

x∈BdR

|rN(x)|+

∣∣∣∣∣ 1

N

N∑
i=1

G(xi)− ‖G‖2

HX,d
s,t (BdR)

∣∣∣∣∣ . (6.84)

Now from equation (6.83), the first part of (6.84) converges uniformly to zero
as N approaches infinity. Also by our assumption, {xi}i≥1 is G-uniformly dis-
tributed so the second part of (6.84) also converges to zero as N approaches
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infinity. This implies
‖rN‖HX,d

s,t (BdR) −−−→N→∞
0.

Conversely, suppose that (6.82) holds true. Now using the Cauchy-Schwarz
inequality (1.17), the convergence of ‖rN‖ in HX,d

s,t (BdR) guarantees the weak

convergence of rN and hence, for all F ∈ HX,d
s,t (BdR), we get

lim
N→∞

〈rN , F 〉HX,d
s,t (BdR) = 0.

The above equation, together with the equation (6.81), leads us to the re-
quired result.

Theorem 6.7.15 Let PN be a sequence of N points on BdR, i.e. PN =
{x1, x2, . . . , xN} ⊂ BdR, then for a pseudodifferential operator A on HX,d

s,t (BdR)
satisfying the conditions stated in Theorem 6.6.1 and a fixed function G ∈
HX,d
s,t (BdR), the following equality holds

‖rN‖2

HX,d
s,t (BdR)

= D2(PN ,A). (6.85)

For the type X = I, we require a sufficient condition of l0 = 0.

Proof: We first consider the case for type X = II. We choose a constant
function G = d

ωdRd
1

A2
0,0

. Since the eigenvalues A0,0 are non-vanishing, G ∈
HII,d
s,t (BdR). From Definition 6.7.12, we have

rN(x) =
1

N

N∑
k=1

 ∞∑
m,n=0
Am,n 6=0

Z(d,n)∑
j=1

1

A2
m,n

GII,d
m,n,j(xk)G

II,d
m,n,j(x)

− d

ωdRd

1

A2
0,0

.

The convergence of the infinite summation in the above equation allows us
to interchange the summations.

rN(x) =
∞∑

m,n=0
Am,n 6=0

Z(d,n)∑
j=1

1

A2
m,n

[
1

N

N∑
k=1

GII,d
m,n,j(xk)

]
GII,d
m,n,j(x)− d

ωdRd

1

A2
0,0

=
∑

(m,n)6=(0,0)
Am,n 6=0

Z(d,n)∑
j=1

1

A2
m,n

[
1

N

N∑
k=1

GII,d
m,n,j(xk)

]
GII,d
m,n,j(x).
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This gives us the inner product of rN with GII,d
m,n,j as follows

〈
rN , G

II,d
m,n,j

〉
L2(BdR)

=
1

A2
m,n

[
1

N

N∑
k=1

GII,d
m,n,j(xk)

]

for all (m,n) 6= (0, 0). Also, the norm of rN in HII,d
s,t (BdR) from the definition

of the Sobolev space (see Definition 6.5.1) is given by

‖rN‖2

HII,d
s,t (BdR)

=
∞∑

m,n=0

Z(d,n)∑
j=1

A2
m,n

〈
rN , G

II,d
m,n,j

〉2

L2(BdR)
.

Further, separating the (m,n) = (0, 0)-term and using the fact that for our
chosen G 〈

rN , G
II,d
m,n,j

〉2

L2(BdR)
= 0 for m = n = 0,

we see that

‖rN‖2

HII,d
s,t (BdR)

= A2
0,0

〈
rN , G

II,d
0,0,1

〉2

L2(BdR)
+

∑
(m,n)6=(0,0)

Z(d,n)∑
j=1

A2
m,n

〈
rN , G

II,d
m,n,j

〉2

L2(BdR)

=
1

N2

∑
(m,n)6=(0,0)
Am,n 6=0

Z(d,n)∑
j=1

N∑
i,k=1

1

A2
m,n

GII,d
m,n,j(xk)G

II,d
m,n,j(xi)

= D2(PN , II,A).

Next, for the type X = I, we use the condition on ln, i.e. l0 = 0 for n = 0 and
ln ≥ 0 for all n ∈ N. We again choose G = d

ωdRd
1

A2
0,0
∈ HI,d

s,t(BdR). Analogous

calculations enable us to conclude

‖rN‖2

HI,d
s,t(BdR)

= D2(PN , I,A).

This proves the result.

Remark 6.7.16 Note that for ln = n, we do not have to restrict the value of
l0 in the proof of Theorem 6.7.15, as the choice of the function G ∈ HX,d

s,t (BdR)
is the same for the type I and the II cases.
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Chapter 7

Numerical Tests: Numerical
Integration

In practical applications, we often come across with the problems in geo-
sciences, where the integral of the function has to be evaluated on the do-
main of a ball. However, usually either the integral is difficult or impossible
to evaluate or the integrand is not known continuously over the domain but
only at specific points. These situations lead to approximate integration. In
this chapter, we consider particular examples for the theory of approximate
integration on a ball and its application. In addition, we discuss the out-
comes.
We know that the discrepancy formula (2.17) originates from the error bound
of the cubature rule (2.15). Hence, minimal-discrepancy point grids guaran-
tee a good approximation for the integration of functions on the ball. For
the numerical implementation of this concept and in order to observe how
good our grids approximate the integrals on the ball, we proceed as follows:
we choose the product of orthonormal system II

x 7→
(
GII
m,n,jG

II
m1,n1,j1

)
(x), x ∈ B

as our function for m,n,m1, n1 ∈ N0 and j ∈ {1, 2, . . . , 2n + 1}, j1 ∈
{1, 2, . . . , 2n1 + 1}, whose integral has to be evaluated on a 3-dimensional
unit ball B. Then, Theorem 1.4.1 implies that∫

B
GII
m,n,j(x)GII

m1,n1,j1
(x) dx = δmm1δnn1δjj1 . (7.1)

Having an exact value of the integral, we can now check the performance of
our grids generated on the ball. With the help of quadrature formula (2.15),

147
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we approximate the integral in (7.1) as∫
B

(
GII
m,n,jG

II
m1,n1,j1

)
(x) dx ≈ 4π

3N

N∑
k=1

(
GII
m,n,jG

II
m1,n1,j1

)
(xk). (7.2)

Using (2.16) for our chosen function, we get the following inequality for the
error estimate of the quadrature rule (7.2):∣∣∣∣∣ 3

4π

∫
B
GII
m,n,j(x)GII

m1,n1,j1
(x) dx− 1

N

N∑
k=1

GII
m,n,j(xk)G

II
m1,n1,j1

(xk)

∣∣∣∣∣
≤
∥∥A (GII

m,n,jG
II
m1,n1,j1

)∥∥
L2(B)

×D (ωN ,A) , (7.3)

where A is pseudodifferential operator satisfying the conditions in Theorem
2.2.1 with summable eigenvalues {Am,n}m,n∈N0 and ωN is a set of points on
B. In order to calculate the upper bound of this cubature error, apart from
the discrepancy estimate D (ωN ,A), we also require to compute the norm∥∥A (GII

m,n,jG
II
m1,n1,j1

)∥∥ in the L2(B)-space. The Parseval’s identity (1.25) and
the self-adjoint property of the operator A allow us to write∥∥A (GII

m,n,jG
II
m1,n1,j1

)∥∥2

L2(B)
=

∞∑
m2,n2=0

2n2+1∑
j2=1

〈
A
(
GII
m,n,jG

II
m1,n1,j1

)
, GII

m2,n2,j2

〉2

L2(B)

=
∞∑

m2,n2=0

2n2+1∑
j2=1

〈
GII
m,n,jG

II
m1,n1,j1

,AGII
m2,n2,j2

〉2

L2(B)
.

(7.4)

Next, we consider the inner product in the above sum〈
GII
m,n,jG

II
m1,n1,j1

,AGII
m2,n2,j2

〉
L2(B)

=

∫
B
GII
m,n,j(x)GII

m1,n1,j1
(x)AGII

m2,n2,j2
(x)dx.

With AGII
m2,n2,j2

= Am2,n2G
II
m2,n2,j2

, we arrive at〈
GII
m,n,jG

II
m1,n1,j1

,AGII
m2,n2,j2

〉
L2(B)

= Am2,n2

∫
B
GII
m,n,j(x)GII

m1,n1,j1
(x)GII

m2,n2,j2
(x)dx. (7.5)

Using the definition of the orthonormal system II given by (1.51) and Theo-
rem 1.1.25, we obtain〈

GII
m,n,jG

II
m1,n1,j1

,AGII
m2,n2,j2

〉
L2(B)

= Am2,n2

√
(2m+ 3)(2m1 + 3)(2m2 + 3)

∫ 1

0

∫
Ω

P (0,2)
m (2r − 1)P (0,2)

m1
(2r − 1)

× P (0,2)
m2

(2r − 1)Yn,j(ξ)Yn1,j1(ξ)Yn2,j2(ξ) r
2 dω(ξ) dr. (7.6)
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This left us to solve two integrals, that are:∫ 1

0

r2P (0,2)
m (2r − 1)P (0,2)

m1
(2r − 1)P (0,2)

m2
(2r − 1) dr (7.7)

and ∫
Ω

Yn,j(ξ)Yn1,j1(ξ)Yn2,j2(ξ) dω(ξ). (7.8)

For calculating the first integral, we substitute

t = 2r − 1

with dr = dt
2

in (7.7) and obtain

1

8

∫ 1

−1

(1 + t)2P (0,2)
m (t)P (0,2)

m1
(t)P (0,2)

m2
(t) dt. (7.9)

Now, we use the Gauss-Jacobi quadrature (see [39]) on the interval [−1, 1],
i.e. ∫ 1

−1

(1− t)α(1 + t)βg(t) dt ≈
M∑
i=1

wig(ti) (7.10)

for a function g : [−1, 1]→ R, to obtain an approximation of the integral in
(7.9) with the parameters α = 0 and β = 2 as∫ 1

−1

(1− t)0(1 + t)2P (0,2)
m (t)P (0,2)

m1
(t)P (0,2)

m2
(t) dt

≈
M∑
i=1

wiP
(0,2)
m (ti)P

(0,2)
m1

(ti)P
(0,2)
m2

(ti). (7.11)

The weights wi in (7.10) are given as

wi =
2M + α + β + 2

M + α + β + 1

Γ(M + α + 1)

Γ(M + α + β + 1)

Γ(M + β + 1)

(M + 1)!

2α+β

P
(α,β)
M

′
(ti)P

(α,β)
M+1 (ti)

,

(7.12)

where P
(α,β)
M

′
denotes the first order derivative of P

(α,β)
M and ti’s are the zeros

of Jacobi polynomials of degree M , i.e. P
(α,β)
M . Using equation (1.35) with

the parameters α = 0, β = 2, we have

P
(0,2)
M

′
(t) =

d

dt
P

(0,2)
M (t) =

M + 3

2
P

(1,3)
M−1(t). (7.13)
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As a result, (7.12) yields the weights for the approximation in (7.11), that
are:

wi =
M + 2

(M + 1)(M + 3)2

16

P
(1,3)
M−1(ti)P

(0,2)
M+1(ti)

. (7.14)

Thus, (7.9) yields

1

8

∫ 1

−1

(1 + t)2P (0,2)
m (t)P (0,2)

m1
(t)P (0,2)

m2
(t) dt

≈
M∑
i=1

2(M + 2)

(M + 1)(M + 3)2

P
(0,2)
m (ti)P

(0,2)
m1 (ti)P

(0,2)
m2 (ti)

P
(1,3)
M−1(ti)P

(0,2)
M+1(ti)

, (7.15)

where the roots ti of the Jacobi polynomials are computed using the Newton-
Raphson Method.
We note that the integral in (7.15), as a result of the orthogonality property
of the Jacobi polynomials, vanishes for all degrees m2 > m + m1. Hence, if
we choose ti zeros of P

(0,2)
m2 for i = 1, 2, . . . ,m2, then there exist weights wi

for i = 1, 2, . . . ,m2 which make the Gaussian quadrature (7.15) exact for all
polynomials of degree less or equal 2m2 − 1.
Next, we consider the integral in (7.8). We have a nice expression for the
integral over a product of three spherical harmonics (see [18]), i.e.∫

Ω

Yn,j(ξ)Yn1,j1(ξ)Yn2,j2(ξ)dω(ξ)

=

[
(2n+ 1)(2n1 + 1)(2n2 + 1)

4π

] 1
2
(
n n1 n2

0 0 0

)(
n n1 n2

j j1 j2

)
, (7.16)

where

(
n n1 n2

j j1 j2

)
denotes the Wigner 3j-symbol.

Remark 7.0.1 For the computation of the Wigner 3j-symbol, we use the
result from [73].

(i) The Wigner 3j-symbol

(
n n1 n2

j j1 j2

)
vanishes unless it satisfies the fol-

lowing conditions:

(a) j ∈ {−|n|, . . . , |n|}, j1 ∈ {−|n1|, . . . , |n1|} and j2 ∈ {−|n2|, . . . , |n2|},
(b) j + j1 + j2 = 0,

(c) |n1 − n2|≤ n ≤ |n1 + n2|,
(d) n+ n1 + n2 ∈ Z.
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(ii) The Wigner 3j-symbol is calculated as(
n n1 n2

j j1 j2

)
= ∆(n, n1, n2) δj+j1+j2,0 (−1)n−n1−j2

×
√

(n+ j)! (n− j)! (n1 + j1)! (n1 − j1)! (n2 + j2)! (n2 − j2)!

×
kmax∑
k=kmin

(−1)k

k! (n+ n1 − n2 − k)! (n− j − k)! (n1 + j1 − k)!

× 1

(n2 − n1 + j + k)! (n2 − n− j1 + k)!
,

where

∆(n, n1, n2) =

√
(n+ n1 − n2)! (n− n1 + n2)! (−n+ n1 + n2)!

(n+ n1 + n2 + 1)!
,

and

kmin = max{−n2 + n1 − j;−n2 + n+ j1; 0},
kmax = min{n+ n1 − n2;n− j;n1 + j1}.

As a result of the above considerations, we can now calculate the inner prod-
uct in (7.6). Using (7.15) and (7.16), equation (7.6) yields〈

GII
m,n,jG

II
m1,n1,j1

,AGII
m2,n2,j2

〉
L2(B)

= Am2,n2

√
(2m+ 3)(2m1 + 3)(2m2 + 3)

×
M∑
i=1

[
2(M + 2)

(M + 1)(M + 3)2

P
(0,2)
m (ti)P

(0,2)
m1 (ti)P

(0,2)
m2 (ti)

P
(1,3)
M−1(ti)P

(0,2)
M+1(ti)

]

×
[

(2n+ 1)(2n1 + 1)(2n2 + 1)

4π

] 1
2
(
n n1 n2

0 0 0

)(
n n1 n2

j j1 j2

)
.

The exactness of Gauss-Jacobi quadrature (7.15) and the computation con-
ditions for Wigner 3j-symbol (see Remark 7.0.1) give us a finite sum over m2



152 CHAPTER 7. NUMERICAL TESTS

and n2 in (7.4). As a consequence, we get∥∥A (GII
m,n,jG

II
m1,n1,j1

)∥∥2

L2(B)

=

m+m1∑
m2=0

n+n1∑
n2=0

2n2+1∑
j2=1

(2m+ 3)(2m1 + 3)(2m2 + 3)(2n+ 1)(2n1 + 1)(2n2 + 1)

π

× A2
m2,n2

[
M∑
i=1

M + 2

(M + 1)(M + 3)2

P
(0,2)
m (ti)P

(0,2)
m1 (ti)P

(0,2)
m2 (ti)

P
(1,3)
M−1(ti)P

(0,2)
M+1(ti)

]2

×
[(
n n1 n2

0 0 0

)(
n n1 n2

j j1 j2

)]2

.

(7.17)

We use here the pseudodifferential operator A = Ap,q
II with eigenvalues

Am2,n2 =

{(
m2 + 3

2

)2q
, n = 0, m ∈ N0(

m2 + 3
2

)2q
[(2n2 + 1)n2(n2 + 1)]p, n ∈ N, m ∈ N0.

(7.18)

from Theorem 2.1.3. Note that we used these eigenvalues in Chapter 3 for
calculating the discrepancies with parameters p = 1

2
and q = 3

4
. For numeri-

cal calculations, we use here again the same values of p and q.
Moreover, in order to calculate the quadrature error we take a grid of 12, 104
points with a discrepancy estimate 0.0546 on the ball and calculate the ap-
proximation error for our chosen function up to degrees m = m1 = 3 and
n = n1 = 1. Since the Gauss-Jacobi quadrature is exact and hence vanishes
for m2 > m+m1, we can take M = 8. As a consequence, the sum in (7.17)
also vanishes for m2 > m+m1. Using these considerations, we calculate the
norm in (7.17).
The calculated approximation errors, i.e.∣∣∣∣∣ 3

4π

∫
B
GII
m,n,j(x)GII

m1,n1,j1
(x) dx− 1

N

N∑
k=1

GII
m,n,j(xk)G

II
m1,n1,j1

(xk)

∣∣∣∣∣
for the selected degrees, are shown in Table 7.1 and the corresponding bounds∥∥Ap,q

II

(
GII
m,n,jG

II
m1,n1,j1

)∥∥
L2(B)

D (ωN ,Ap,q
II )

are given in Table 7.2. We can see from these computations that the chosen
grid gives a good approximation of the integral on the ball. On the other
hand, the error bounds for these approximations are increasing with the
increasing degree of our chosen function. It stems from the fact that the
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error bound is not only dependent on the discrepancy of the point grid but
also on the norm of the function in the Sobolev space HII

s,t(BR). This, as
a consequence gives a dependence on the eigenvalues Am,n and the degree
of the orthonormal system {Gm,n,j}m,n∈N0;j=1,2,...,2n+1. Hence, the use of an
orthonormal system having higher degree will increase the value of error
upper bound.



Chapter 8

Conclusions and Outlook

8.1 Summary

The main objective of this work was to develop an equidistribution theory for
a 3-dimensional ball together with the construction of the grids on the ball.
In particular, our focus was to obtain low-discrepancy point grids. Since such
a theory is known for the surface of the ball, it provided the foundation for
our work.
We formulated a class of pseudodifferential operators on the ball and used
specific Sobolev spaces based on these operators and known orthonormal
systems on the ball. These orthonormal systems have their advantages and
disadvantages, which were then observed and discussed during the numerical
computations. Also, we discussed some properties of these operators. All
this theory enabled us then to devise a theory of the discrepancy method for
the domain of a ball.
In order to get some nice configurations on the ball, we began with known
spherical point grids, i.e. the grids on the surface of the ball. As a first
trial, we took these point grids and constructed with them a grid on the ball.
At first, we checked the uniformity of these points using their 3-dimensional
image on a ball. We also derived a formula, as another quantifying measure,
called the generalized discrepancy. This formula depends on the point grids
and its value gives us an idea about the equidistribution of the grids on the
ball. The point grid with a lower value of discrepancy is considered better
than others. With the help of these two techniques, we observed that our
initial constructions are not so nicely distributed and have an accumulation
of points at the centre of the ball. Aiming to overcome this drawback, we
modified these grids by adding an arrangement dependent on the radius.
This resulted in better distributions on the ball.
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In order to get optimal point grids on the ball, we also tried different al-
gorithms, for example by changing the maximum and minimum distances
between the points on the ball or by changing the angles between the points,
to find out which of these modifications lead us to an equidistribution crite-
rion. Some of these methods gave good results and faster convergence to a
lower value of the discrepancy. Since our focus was to obtain low-discrepancy
configurations, this idea led us to another aspect of this problem, which is
the implementation of an optimization method, i.e. given a starting grid, we
tried to find a grid which minimizes the generalized discrepancy. We used
the BFGS optimization technique together with different updates and line
search methods for this problem and got some nice grids as a consequence
of its application. We observed that the change in the line search or update
methods has an effect on the convergence and on the number of iterations.
It is evident from the outcomes that the LDLT update in combination with
the Wolfe conditions give us the grids with the best discrepancy estimates
and for a lower number of iterations in comparison to the other results.
We observed that the generalized discrepancy has some nice statistical and
numerical properties. We proved with the help of statistical procedures that
the generalized discrepancy actually converges to zero for large enough uni-
formly distributed grids. This result, indeed, coincides with our numerical
results, where the discrepancy estimates decrease with the increase in num-
ber of points. We also discovered that the generalized discrepancy is actually
the worst case error for our case.
These concepts and numerical results motivated us to generalize the equidis-
tribution theory for the d-dimensional case. For this purpose, we first formu-
lated orthonormal systems for dimension d and then constructed the function
spaces and differential operators based on them. Moreover, we derived the
discrepancy formula and did some tests for the case d = 4. These results
showed that the techniques we constructed for the 3-dimensional case work
also well for the higher dimensions. Since a common problem that we en-
counter in higher dimensions is the increase of cost, we also discussed the
tractability of integration in our Sobolev spaces and found out the condi-
tions under which the integration is tractable in our settings.
We also tested our grids using some examples for the numerical integration
on the ball. Although these results can prove to be a good starting point
for such experiments on the ball, there is room for further research and im-
provements in this regard.
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8.2 Outlook for Future Investigations

This work raises some new questions and opens the route for further inves-
tigations.
We formulated the theory of equidistribution for the domain of a ball but
were restricted to some cases. For example, the choice of function spaces and
the differential operators is confined. We worked with Sobolev spaces that are
dependent on a specific class of pseudodifferential operators. Thus, further
experiments can be done in this regard, as a different class of operators may
improve the estimates. Moreover, the BFGS method examined in Chapter 4,
can also be considered for higher degrees of the orthonormal basis systems,
i.e. by truncating the sum in the discrepancy formulae and their gradients
for larger degrees m and n. Also, further tests with the BFGS method can
be done by considering the grids with the weighted discrepancies. From the
results for the numerical integration on the ball (Chapter 7), we assume that
the specific pseudodifferential operator we used and, consequently, its eigen-
values affect the results. This opens up the question for finding a different
operator or the construction of a new Sobolev space which can improve the
results.
Further, other equidistributed spherical grids, for example the spiral grid
([25]), can also be considered for the construction of the grids on the ball. A
further concept that needs to be investigated is: a quadrature-independent
approach in order to find a tool as another quantifying measure of the points.
This approach will be helpful in the sense that it will not be dependent on
the differential operators.
Another question of interest is: how can one extend this theory of equidis-
tribution to the subdomains of a ball. If we want to observe how well the
grid points are distributed on an arbitrary subdomain of a ball, we require
an analysis theory that works particularly for this case. This can be investi-
gated, for example, by using an ansatz motivated by the spherical approach
in [21, 35] .
The implementation of the theory of this thesis and the constructed grids to
a real problem, for example, in the algorithms like RFMP and ROFMP or
to the regularization and approximation problems is also a future work. The
implementation of this theory to the inverse MEG/EEG problems is realized
in [42].



158 CHAPTER 8. CONCLUSIONS AND OUTLOOK



Bibliography

[1] M Abramowitz and I. A Stegun. Handbook of Mathematical Functions:
With Formulas, Graphs and Mathematical Tables. Courier Corporation,
Washington D. C., 1964.

[2] M Akram, I Amna, and V Michel. A study of differential operators
for particular complete orthonormal systems on a 3d ball. International
Journal of Pure and Applied Mathematics, 73:489–506, 2011.

[3] C Amstler and P Zinterhof. Uniform distribution, discrepancy and re-
producing kernel Hilbert spaces. Journal of Complexity, 17:497–515,
2001.

[4] L Ballani, J Engels, and E W Grafarend. Global base functions for the
mass density in the interior of a massive body (Earth). Manuscripta
Geodaetica, 18:99–114, 1993.

[5] R. G. Bartle and D. R. Sherbet. Introduction to Real Analysis. Wiley,
New York, 2000.

[6] J S Brauchart and J Dick. A characterization of Sobolev spaces on
the sphere and extension of Stolarsky’s invariance principle to arbitrary
smoothness. Constructive Approximation, 38:397–445, 2013.

[7] J S Brauchart, J Dick, and L Fang. Spatial low-discrepancy sequences,
spherical cone discrepancy, and applications in financial modeling. Jour-
nal of Computational and Applied Mathematics, 286:28–53, 2015.

[8] J S Brauchart and K Hesse. Numerical integration over spheres of arbi-
trary dimensions. Constructive Approximation, 25:41–71, 2007.

[9] T S Chihara. An Introduction to Orthogonal Polynomials. Gordon and
Breach, Science Publishers, Inc., New York, 1978.

159



160 BIBLIOGRAPHY

[10] C Choirat and R Seri. The asymptotic distribution of quadratic dis-
crepancies. In H Niederreiter and D Talay, editors, Monte Carlo and
quasi-Monte Carlo Methods 2004, pages 61–76. Springer Verlag, Berlin,
2006.

[11] C Choirat and R Seri. Computational aspects of Cui-Freeden statis-
tics for equidistribution on the sphere. Mathematics of Computation,
82:2137–2156, 2013.

[12] C Choirat and R Seri. Numerical properties of generalized discrepancies
on spheres of arbitrary dimensions. Journal of Complexity, 29:216–235,
2013.

[13] J Cui. Finite Pointset Methods on the Sphere and Their Application in
Physical Geodesy. PhD thesis, Department of Mathematics, University
of Kaiserslautern, 1995.

[14] J Cui and W Freeden. Equidistribution on the sphere. SIAM Journal
of Scientific Computing, 18:595–609, 1997.

[15] P Davis. Interpolation and Approximation. Blaisdell Publishing Com-
pany, Waltham, 1963.

[16] R M Dudley. Real Analysis and Probability. Chapman and Hall, New
York, 1989.

[17] C F Dunkl and Y Xu. Orthogonal Polynomials of Several Variables.
Cambridge University Press, Cambridge, 2014.

[18] A R Edmonds. Angular Momentum in Quantum Mechanics. Princeton
University Press, New Jersey, 1960.

[19] C Efthimiou and C Frye. Spherical Harmonics in p Dimensions. World
Scientific Publishing, Singapore, 2014.

[20] Y Eidelman, V D Milman, and A Tsolomitis. Functional Analysis: An
Introduction. American Mathematical Soc., Providence, R. I., 2004.

[21] T Fehlinger. Multiscale Formulations for the Disturbing Potential and
the Deflections of the Vertical in Locally Reflected Physical Geodesy.
PhD thesis, Geomathematics Group, Department of Mathematics, Uni-
versity of Kaiserslautern, Munich, 2009.



BIBLIOGRAPHY 161

[22] D Fischer. Sparse Regularization of a Joint Inversion of Gravita-
tional Data and Normal Mode Anomalies. PhD thesis, Geomathematics
Group, Department of Mathematics, University of Siegen, Verlag Dr.
Hut, Munich, 2011.

[23] D Fischer and V Michel. Sparse regularization of inverse gravimetry—
case study: spatial and temporal mass variations in South America.
Inverse Problems, 28:065012 (34pp), 2012.

[24] W Freeden, T Gervens, and M Schreiner. Constructive Approximation
on the Sphere with Applications to Geomathematics. Oxford University
Press, Oxford, 1998.

[25] W Freeden and M Gutting. Special Functions of Mathematical (Geo-)
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