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Abstract

Nowadays, time-of-flight (TOF) cameras have become more popular in many prac-
tical applications, e.g., robot navigation, 3D reconstruction. Typically, they produce
depth map of the entire scene through a low-cost and high-frame-rate system. Nev-
ertheless, there exist many TOF problems, e.g., linearity errors, ambiguity range,
multipath interferences (MPIs). Especially, MPIs which are usually caused by trans-
parent object imaging or broaden illumination influence negatively on depth recon-
struction results of the traditional phase-stepping method. For this reason, this the-
sis aims to resolve the MPI problem by carrying out multiple-frequency TOF (MFT)
acquisition. According to the compressed sensing (CS) theory, since the amount of
MPIs in real-life scenes is small, only a few MFT measurements are required to
estimate the sparse time profile of the MPIs. However, this CS-MFT model suffers
from hardware design limitation. To be concrete, under the Rayleigh resolution
theorem, the low-frequency modulation of a commercial TOF camera leads to poor
depth accuracy and low range resolution of the CS-MFT model. Whereas, increas-
ing the modulation frequency is a significantly complicated task. Thus, our solution
approach is to construct a super-resolution CS-MFT model with a large refine-
ment factor. From this model, super-resolution CS techniques can reduce mismatch
model errors but simultaneously cause poor sparse reconstruction performance with
a highly coherent sensing matrix. This thesis introduces a variety of CS techniques
to improve these reconstruction results as well as to maintain high-processing speed.
They include exploring new CS reconstruction algorithms and optimizing the super-
resolution CS-MFT sensing matrix structure. Besides, an alternative relaxed metric
with a tolerance offset is introduced for gauging the quality of spike recovery in a
more accurate way. The results achieved through numerical and practical experi-
ments show a significant improvement in accuracy and resolution of the MPI time
profile reconstruction.

Keywords: Compressed sensing, time-of-flight, multipath interferences, super-resolution,
reconstruction algorithm.
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Zusammenfassung

Heutzutage ist die Time-of-flight-Kamera (TOF-Kamera) in vielen praktischen
Anwendungen sehr populär geworden, z.B., bei der Roboternavigation oder der 3D-
Rekonstruktion. Sie erzeugt ein Tiefenbild der gesamten Szene ohne einen aufwendi-
gen Scanvorgang. Daher sind die meisten der kommerziell erhältlichen TOF-Kameras
kostengünstige Systeme, die mit der heute üblichen Videorate arbeiten. Dennoch gibt
es weiterhin viele TOF-spezifische Probleme, wie z.B. Linearitätsfehler, Mehrdeu-
tigkeitsbereiche und Mehrwegsinterferenzen (MPIs). Insbesondere MPIs, die durch
eine transparente Objektabbildung oder eine überlappende Beleuchtung verursacht
werden können, beeinflussen die Tiefenrekonstruktionsergebnisse des herkömmlichen
Phasenschrittverfahrens negativ. Aus diesem Grund zielt diese Arbeit darauf ab,
das MPI-Problem zu lösen, indem Mehrfrequenz-TOF (MFT)-Messungen durchge-
führt werden. Unter der Annahmen, dass die Anzahl der MPIs in realen Szenen
gering ist, sind gemäßder Theorie der komprimierten Erfassung (Compressed Sen-
sing, CS) nur wenige MFT-Messungen erforderlich, um das dünnbesetztes Zeitprofil
der MPIs abzuschätzen. Ein solches CS-MFT-Modell leidet jedoch unter Hardware-
beschränkungen. Konkret führt die Modulation bei den niedrigen Frequenzen einer
kommerziellen TOF-Kamera unter dem Rayleigh-Auflösungssatz zu einer schlechten
Tiefengenauigkeit und niedrigen Bereichsauflösung bei Anwendung des CS-MFT-
Modells. Die nötige Erhöhung der Modulationsfrequenz ist dagegen nicht einfach
möglich und ist meist nicht realisierbar. Unser Lösungsansatz besteht daher darin,
das CS-MFT-Modell durch Superresolution-Techniken mit hohen Verfeinerungsfak-
toren zu verbessern. Diese Superresolution-CS-Technik kann Fehlanpassungen des
Modellsreduzieren, liefert aber gleichzeitig aufgrund der im hohen Maße kohären-
ten Messmatrix eine sehr schlechte Rekonstruktion. Wir schlagen in dieser Arbeit
einige CS-Techniken vor, um diese Rekonstruktionsergebnisse zu verbessern und
trotzdem eine hohe Verarbeitungsgeschwindigkeit beizubehalten. Sie umfassen die
Erforschung neuer CS-Rekonstruktionsalgorithmen und die Optimierung des Desi-
gns der Superresolution-CS-MFT-Messmatrix. Außerdem wird eine alternative Me-
trik mit einem Toleranzausgleich eingeführt, um die Qualität der Rekonstruktion
besonders bei heterogenen Szenen (Absätze, Sprünge) zu verbessern. Die erzielten
Ergebnisse, die durch numerische und praktische Experimente demonstriert wur-
den, zeigen eine signifikante Verbesserung der Genauigkeit und Auflösung der MPI-
Zeitprofilrekonstruktion.

Schlagwörter: Compressed Sensing, Time-of-flight, Mehrweginterfrenzen, Super-
Resolution, Rekonstruktion-Methode.
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1 Introduction

1.1 Time-of-flight imaging camera and multipath interference
problem

In recent decades, time-of-flight (TOF) cameras have been used popularly in many var-
ious daily applications, e.g., robotics [1], computer graphics, human interaction [2, 3].
Especially, the continuous-wave TOF (CW-TOF) camera is a type of commercial sensors,
e.g., Photo Mixer Device (PMD) [4], Texas Instruments [5], which are able to generate
three-dimensional (3D) measurements with high quality and speed. From these reasons,
the thesis focuses on this type of commercial CW-TOF camera, particularly PMD 19k
imaging system [4]. Due to its operating principle, it produces the depth map of an
observing scene through calculating the phase-shift between the reflected and emitted
optical signals, as described in Fig. 1.1. This phase-shift calculation is proceeded through
phase-stepping algorithms, for instance, the four-phase method in a PMD-19k camera
[2].
However, these CW-TOF phase-stepping methods suffer from multipath interference

(MPI) problems as described in Fig. 1.2 [6, 7]. To be concrete, multiple light rays which
are scattered from complex environmental geometry (see Fig. 1.2b and Fig. 1.2c) or
transparent objects (see Fig. 1.2a), arrive at the same pixel. Each flight path possesses
different phase-shift. Therefore, the achieved TOF measurements comprising of those
various components can lead to a wrong phase-shift and subsequently depth estimation
[8, 6]. Many studies have been implemented to reduce the adverse effects of MPIs in CW-
TOF camera by many depth correction calibration techniques [8, 9, 10]. Nevertheless,
the applicability scopes of these compensation methods are highly scene-dependent. A
more effective solution approach for resolving the MPI problem is to reconstruct the
time profile of MPIs through a new TOF acquisition. In particular, many publications
[11, 12, 13] carried out multiple TOF measurements at different frequencies or phase-
offsets and then estimated the time profile through solving a sparse optimization problem
modeled from these measurements. However, they spent a long acquisition time of over
30 seconds for generating a large amount of measurements .
For a high acquisition speed, many recent studies [14, 6] acquired only a few TOF

measurements at different modulation frequencies. For instance, Dorrington et al. [14]
reconstructed the time profile of two return components through two TOF measurements
at two different modulation frequencies. However, because the number of measurements

1



1 Introduction

Figure 1.1. The operating principle of a CW-TOF camera

is tiny, the reconstruction performance of their method is sensitive to measurement noise.
Moreover, this technique cannot be extended for a complex scattering scene comprising
more than two scatterers. More interestingly, Bhandari et al. [6] estimated successfully
the depth images of a scattering scene comprising three targets. Their solution approach
is formulating a linear optimization problem based on 77 TOF frames at different modu-
lation frequencies and then using a greedy pursuit (Orthogonal matching pursuit-OMP)
method for a fast time-profile reconstruction. Nevertheless, the formulation of their
sensing matrix model relies on the assumption of an emitted sinusoidal optical signal,
that is hard to design in a commercial TOF camera. Moreover, their experimental re-
sults are only correct for a defined scenario. But, a diverse analysis of sparse recovery
performance in different scenarios has not been implemented yet.
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(a) Transparent object imaging (b) A complicated scene with severe MPI

(c) Mirror-like reflections produce MPI

Figure 1.2. Different cases of MPIs in a TOF imaging camera

1.2 Multi-frequency TOF acquisition using CS
The primary research goal of this thesis is to resolve MPI problems of a TOF camera.
Typically, we aim to reconstruct the time profile of the MPIs based on multiple TOF
measurements at different modulation frequencies (MFT), similar to the study by Bhan-
dari et al. [6]. The continuous time profile is discretized through an equi-distant grid
system and then the time profile estimation based on the MFT model is converted to a
linear optimization problem. On the contrary to the previous studies, on one hand, our
sensing model is not restricted by the assumption of an emitted sinusoidal optical signal
or sinusoidal cross-correlation function. In other words, we construct this model for any
emitted or demodulation CW signal, e.g., square or sinusoidal wave [15]. Eventually,
our MFT acquisition requires no complex illumination system or chip design for such
a sinusoidal-waveform signal generation. On the other hand, since the number of tar-
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gets is tiny, compressed sensing (CS) techniques are efficient tools to apply to the MFT
acquisition. There have been many studies [16, 17, 18] which used CS techniques in a
PMD CW-TOF camera for more advantages. Firstly, they can reduce the number of
measurements and further shorten the acquisition time. Secondly, they improve sparse
recovery performance through optimizing the MFT sensing matrix design.
A MFT sensing matrix represents the mathematical TOF response of MPIs to dif-

ferent modulation frequencies. And hence, its structure is similar to a discrete Fourier
transformation (DFT) matrix. For DFT sensing matrices, Candes et al. [19] proved that
there exists the following restricting condition on the grid length ∆t of the equi-distant
grid system in the time-profile discretization process to guarantee the perfect sparse
recovery of a basis pursuit (BP) method:

fmax∆t = 1 (1.1)

where fmax is the highest modulation frequency. According to (1.1), we have the follow-
ing properties of a CS-MFT model in numbers regarding the hardware capabilities of a
commercial TOF camera:

• If fmax = 30 MHz, then the spatial grid spacing should be configured as 5 m in
the reflection mode.

• If fmax = 100 MHz, then the spatial grid spacing should be configured as 1.5 m in
the reflection mode.

Apparently, with maximum frequency of 100 MHz, according to (1.1), a grid length
of 1.5 m would not be well-refined enough to achieve a high depth accuracy and res-
olution in a MFT model. Eventually, for the reduction of mismatch model errors as
well as the enhancement of depth resolution [20, 21], this grid spacing should be set as
small as possible but simultaneously satisfy the condition (1.1). Therefore, an increase
of modulation frequency in a TOF camera is an important task in our proposed MFT
acquisition to obtain a high stability of exact sparse recovery. However, this frequency
increase capability is highly dependent on the illumination driving and digital shuttering
systems [2, 4]. Currently, a low-cost CW-TOF camera can only modulate and demodu-
late optical signals at a low frequency of a few tens of MHz. It is significantly difficult to
design a new low-cost hardware system to acquire high-frequency TOF measurements.

1.2.1 Super-resolution CS techniques
Super-resolution CS techniques have been applied in many signal-processing applications
over the past few years, e.g., high-frequency component extraction from low-frequency
samples, target discrimination [22, 21]. The basic principle is to refine the grid spacing
with a large refinement factor (F � 1) [19, 21, 23]. In other words, a refined grid
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spacing ∆t � 1/fmax is configured for a super-resolution CS-MFT model without any
frequency increase. However, this refinement process simultaneously causes a lot of
disadvantages in the form of poor recovery performances. Through Theorem 1.2 in [22],
Candes et al. indicated a lower bound on a minimum distance (MD) (∆T ≥ 2F∆t)
of a sparse signal to guarantee an exact sparse recovery using Basis Pursuit (BP) in
a super-resolution DFT-CS model. From this theorem, many studies [22, 21] reduced
mismatch model errors successfully without any hardware updates. Nevertheless, this
restricting condition on MD limits the capability of near-target discrimination or in other
words the depth resolution. In summary, a low-cost TOF camera with low-frequency
measurements can only acquire a low-depth resolution of the time-profile reconstruction
with an acceptably high accuracy.

1.2.2 Motivation and key contribution
Unlike the previous research [22, 21], we aim to analyze the sparse reconstruction ca-
pabilities of super-resolution CS algorithms in all cases of various MDs. There is no
restricting condition on MD [15, 24] in this thesis with ∆T � 2F∆t. Therefore, we
have to face the problem of poor reconstruction performance due to a highly coherent
sensing matrix. To be concrete, super-resolution CS algorithms seem to be impossible to
reconstruct sparse signals exactly with a high probability, especially in the cases of small
MDs. For these reasons, we introduce an alternative relaxed metric to gauge the quality
of the estimated signal more accurately with a tolerance offset, similar to some previous
studies [21, 23]. This tolerance offset denotes the requirement of depth accuracy in a 3D
application. A small offset value represents a high accuracy requirement and inversely.
This thesis proposes to use a variety of CS techniques to progressively improve the

relaxed sparse reconstruction performance in a super-resolution MFT model (F � 1).
They categorize into two main parts, i.e., exploring new super-resolution CS reconstruc-
tion algorithms and optimizing a MFT sensing matrix design. Apparently, if we can
guarantee a high stability of good relaxed sparse recovery, then near-distant MPI sepa-
ration can be done successfully through a commercial TOF camera without any hardware
update for an increase of modulation frequency. Besides, such a super-resolution MFT
model aims to maintain a high frame rate of the time-profile reconstruction as well.

1.3 Outline
Firstly, the fundamental operating principle of a TOF camera is reviewed in Chapter 2.
Especially, the CW-TOF modulation and demodulation schemes are the underlying tech-
niques in this thesis. Therefore, this chapter introduces some main properties and state-
of-art problems of a currently commercial CW-TOF camera. Besides, we overview some
solution approaches for each issue as well as their technical drawbacks.
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As mentioned before, a CS model can be efficiently used for the sparse time profile
reconstruction. Chapter 3 begins with an overview of some restricting conditions, i.e.,
Null Space Property, Restricted Isometry Property, Coherence Property, on a sensing
matrix to guarantee an exact sparse recovery with high probability [25, 26]. Next,
we construct a super-resolution CS model based on MFT measurements with a large
refinement factor F � 1. There are some concerned properties of the above super-
resolution MFT model for improving the reconstruction performance of MPI time profile.
This chapter demonstrates these useful properties through numerical experiments.

In Chapter 4, we introduce several super-resolution CS greedy pursuits, e.g., Modi-
fied Cyclic OMP (OMP3), Non-negative least square optimization (POMP), and Non-
negative Magnitude Adjustment OMP (Ma-OMP3). Their achieved reconstruction re-
sults are then compared to those of the other state-of-art super-resolution CS algorithms
through numerical experiments. Furthermore, each algorithm possesses own advantages
in the cases of different MDs. Therefore, this chapter introduces a new combination
method based on pre-estimated minimum distance (CMD-OMP) to enhance the stabil-
ity of a good relaxed sparse recovery.
Chapter 5 proposes a gradient steepest descent method to optimize the frequency

and phase-offset selection in a MFT acquisition. It aims to increase the incoherence of
a MFT sensing matrix and throughout improve the sparse recovery performance of a
greedy pursuit. The results are demonstrated through numerical experiments.
Multiple Measurement Vectors (MMVs) with joint-sparsity recovery is an emerging

CS technique which can improve the sparse recovery performance in many target lo-
calization applications [27, 28]. Thus, Chapter 6 analyzes a MMV data based on a
super-resolution MFT model. For this MMV-MFT model, we introduce many modified
variants of greedy pursuits, i.e., OMP3-MMV, Ma-OMP3-MMV, POMP-MMV. All of
them aim to improve the sparse recovery performance or in other words increase the
accuracy of the time-profile reconstruction. The effectiveness of a MMV-MFT model is
proven through numerical results.
Simultaneous multiple-frequency (SMF) TOF acquisition was proposed firstly by Payne

et al. [29] to extend ambiguity range of a CW-TOF camera. In principle, each SMF
measurement comprises multiple TOF components of different frequencies. Chapter 7
applies this new type of measurement to increase the incoherence of a super-resolution
MFT sensing matrix in the configuration of a large refinement factor. In particular, we
optimize the sensing matrix structure through a gradient steepest descent method, which
was proposed in [30]. Eventually, this technique aims to guarantee a higher stability of a
good sparse recovery. Nevertheless, there are some crucial problems regarding hardware
design complexity in the acquisition of multiple real SMF measurements. Under these
hardware limitations, the gradient steepest descent method in [30] is modified to enhance
MPI reconstruction capabilities which will be shown through numerical experiments.
Chapter 8 carries out some practical experiments to prove the confidentiality and

practicality of our proposed super-resolution CS models and reconstruction algorithms
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which are mentioned in the previous chapters. Nevertheless, raw TOF images which are
needed for our reconstruction process, are not available in a commonly commercial TOF
camera. For this reason, we use our ZESS Multicam system [2] with some modification
steps for the generation of the expected raw images. Finally, Chapter 9 concludes this
thesis with some arguments and our future work.
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2 Time-of-flight principle

Range measurements play a significant role in many 3D reconstruction applications, e.g.,
object recognition, human motion tracking, human-computer interaction [2, 31]. Several
techniques, i.e., triangulation, interferometry, time-of-flight (TOF), have different ap-
proaches to depth estimation. Each one possesses its disadvantages and advantages and
hence different scopes of applicability. TOF is the underlying technology of this thesis.
It is used in a variety of commercial systems, e.g., TOF camera or Light Detection and
Ranging (LiDAR) [31]. These systems illuminate the objects with a modulated light
and then measure the time until the reflected light is incident on a photodetector [2].
Subsequently, the distance is computed through the estimated time of flight and the
light velocity in propagation medium. LIDAR is a typical system using TOF technology
for a high-resolution 3D map. However, for applications requiring an array of depth
measurements, this system uses a scanning device for capturing the entire scene and
hence consumes a long acquisition time [32]. Whereas, a TOF camera chip comprises a
two-dimensional array of CCD or CMOS photo-detectors. Due to this property, it can
generate a depth image of the entire scene without scanning. Fig. 2.1 demonstrates sev-
eral commercial TOF cameras, e.g., PMD [4], Swiss Ranger, CanestaVision [33], Texas
Instrument [5], ZCam [34]. There are currently two classes of TOF cameras with differ-
ent modulation and demodulation schemes, i.e., pulsed-wave (PW) and continuous-wave
(CW) modulation. Section 2.1 and Section 2.2 overview fundamental principles of each
one respectively. CW-TOF camera is under our concern for resolving MPIs. Thus,
Section 2.3 and Section 2.4 describe some main hardware components and subsequently
state-of-art problems of this camera type.

2.1 Pulsed modulation
Pulsed-wave (PW) TOF sensors, e.g., ZCam [34], emit an extremely short-width light
pulse of a few nanoseconds. Their operating principle is to estimate the time delay
between the reflected and emitted optical signals in a direct way. Typically as described
in Fig. 2.2, the time-delay estimation relies on two samples of the reflected energy with
two out-of-phase demodulation windows (0◦ and 180◦). These windows have the same
time duration as the emitted light. Given that the emitted light has the period T0 and
two measured samples are V1 and V2. The distance of the target point is computed
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(a) PMD (b) Swiss Ranger (c) Texas Instruments

Figure 2.1. Overview pictures of many commercial TOF cameras

Figure 2.2. Pulsed-light TOF modulation and demodulation

through:

d = 1
2cTϕ = 1

2cT0
( V2
V2 + V1

)
(2.1)

where c is the light speed in application medium.
A PW-TOF camera is used for many outdoor applications under adverse conditions,

e.g., surveying (static and mobile), autonomous driving, cultural heritage, planetary
missions. According to (2.1), this PW modulation technique does not suffer from a
phase ambiguity problem, which will be explained in Section 2.4.4. However, it requires
a high-speed shutter operating with extremely short pulses for a high depth resolution.
For instance, the receiver of a PW-TOF camera has to demodulate with picosecond (ps)
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2 Time-of-flight principle

Figure 2.3. Continuous-sinusoidal-wave modulation and demodulation scheme through fast sampling

accuracy to achieve depth resolution and precision up to a few millimeters. And appar-
ently such kind of system is a high-cost device under the current technologies. Moreover,
the pulse irradiance power should be set significantly high to ignore background noises.
From these reasons, a PW-TOF camera cannot suit for daily low-cost applications.

2.2 Continuous wave modulation
2.2.1 Basic principles
Instead of short light pulses, CW-TOF camera emits a modulated continuous light wave
to the scene. Unlike PW-TOF camera, it measures the flight time of the emitted light
indirectly through estimating the phase difference between the emitted and received CW
signals. The CW-TOF camera chip estimates the phase shift through a phase-stepping
algorithm. To be concrete, it acquires several samples of cross-correlation between the
demodulation s(t) and received signals sr(t) at different time-offsets ∆τ [2]:

C(∆τ) = (s⊗ sr)(∆τ) = lim
T→∞

1
T

∫ T/2

−T/2
s∗(t−∆τ)sr(t)dt (2.2)

where s∗ represents the conjugate of the complex signal s.
Assume that the emitted and demodulation signals are given as the same sinusoidal

function with a basic frequency f then (2.2) can be rewritten as:

C(∆τ) = C(τ) = a

2 cos(ϕ+ τ) (2.3)

where τ = 2πf∆τ is phase-offset, a is amplitude of the received signal sr(t) and ϕ is the
unknown phase-shift.
A phase-stepping algorithm acquires Nphase samples of the correlation function (2.3)

with a phase step of 2π/Nphase. Then it estimates the phase shift ϕ due to the principle
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of Discrete Fourier Transform (DFT):

ϕ = tan−1(W1
W2

) = tan−1



Nphase∑
k=1

Vk sin(2π k − 1
Nphase

)

Nphase∑
k=1

Vk cos(2π k − 1
Nphase

)

 (2.4)

where V1, V2 . . . , VNphase
are samples of the correlation function at different phase offsets

τ . Additionally, the pixel amplitude a and offset b can be calculated as follows:

a = 2
Nphase

√
W1

2 +W2
2 (2.5)

b =

Nphase∑
k=1

Vk

Nphase
(2.6)

where

W1 =
Nphase∑
k=1

Vk sin(2π k − 1
Nphase

) (2.7)

and

W2 =
Nphase∑
k=1

Vk cos(2π k − 1
Nphase

) (2.8)

Finally, the depth information of each pixel can be inferred from the estimated phase-
shift ϕ:

d = c

4πf ϕ (2.9)

Based on mathematical principles, three above unknown variables ϕ, a, b can be
estimated through at least three sampling points (Nphase = 3). From this point, a three
phase-stepping method brings some advantages upon short acquisition time and read-out
time. However, there are some drawbacks with low depth accuracy which can be solved
through acquiring more phase-measurements [35, 36]. Certainly, more measurements
consume more acquisition time.
Typically, a commercial PMD CW-TOF camera [4] uses a four-phase-stepping algo-

rithm (Nphase = 4) for higher frame rate and moderately higher depth accuracy and
precision. In particular, each TOF acquisition acquires four samples V1, V2, V3 and V4
at four phase offsets 0◦, 90◦, 180◦, 270◦ respectively. Due to (2.4), (2.5), (2.10), we have:

ϕ = tan−1
(V2 − V4
V1 − V3

)
(2.10)
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a =
√

(V1 − V3)2 + (V2 − V4)2

2 (2.11)

and
b = V1 + V2 + V3 + V4

4 (2.12)

2.2.2 TOF measurement accuracy and precision
The term accuracy refers to the closeness of a measurement or an estimate to the true
one or a bias value. A low accuracy of a CW-TOF measurement usually suffers from
system or measurement non-linearity errors.
The term precision is a measure of how similar multiple measurements or estimates

are to each other. It denotes the variability of depth measurements in a TOF camera
for the same captured scene. Its magnitude is only dependent on the estimated or
measured values and is completely independent of the true value. Conventionally, the
precision of CW-TOF measurement is dependent on photon shot noises or external
lighting conditions.

2.3 Main hardware components
A commercial CW-TOF camera conventionally comprises the following main hardware
components:

• An illumination source emits a CW signal at a modulation frequency. Unlike a
pulsed-modulation, this optical signal has no fast rise and fall time. Thus, a variety
of light sources is applicable in this system. Light emitting diodes (LED) and laser
diodes are two popular sources in many commercial TOF cameras. Each one has
own disadvantages and advantages. In particular, a LED modulation circuitry is
a low-cost and high-optical-power system. However, it can modulate only low-
frequency optical signals, e.g., 60 MHz for a PMD 19k. Whereas, a laser diode
driving system is capable of generating an optical signal with higher modulation
frequencies. Nevertheless, this type of laser system is significantly complicated
and expensive to design. For these reasons, the selection between LED and laser
systems highly depends on some application requirements.

• An imaging chip comprises a two-dimensional array of pixels or photon-detectors.
For instance, each pixel of a PMD 19k chip is a MOS capacitor with two photogates,
which are controlled by two out-of-phase modulation signals and called as channel
A and channel B. It collects photons from each distinct part of the scene during the
integration time. Subsequently, the collected photons are converted to a charge
through an electronic circuit and then read out as a TOF sample in (2.3). For

13



2 Time-of-flight principle

Figure 2.4. Continuous-squared-wave modulation and demodulation schemes through window sam-
pling

a PMD 19k chip, totally eight samples from two photo-gates are read out for
four measurements V1, V2, V3 and V4 in (2.10). The above TOF acquisition is
mentioned as window sampling and described in Fig. 2.4. Since a large number of
analog-to-digital-converters (ADCs) reads out the samples for thousands of pixels
simultaneously, a CW-TOF camera consumes a short acquisition time and hence
has a high frame rate.

2.4 State-of-art TOF problems and solutions
Some technical issues of the above hardware components cause errors to the reconstruc-
tion of a depth image using a four-phase stepping algorithm. Particularly, there are
many state-of-art problems in a commercial CW-TOF camera.

2.4.1 Measurement linearity error
As mentioned in Section 2.2, the phase-shift estimation in (2.4) is only accurate if either
demodulation signal or reflected signal is sinusoidal. Whereas, a commercial CW-TOF
system controls a light source through digital squared-wave signals. Thus, the emitted
optical output lies somewhere between square and sinusoidal waves. This waveform con-
tains some higher order harmonic components which lead to a wrong phase estimation.
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This measurement linearity error is mentioned as aliasing problem [2]. For solving this
problem, a new hardware design is required for the generation of a sinusoidal waveform
but currently acquires high cost and high complexity. Besides, the non-linearity of a
TOF measurement can also be caused by other problems, e.g., saturation, system loss.
Many studies [37, 38] proposed some correction methods to reduce these linearity errors,
e.g., using a look-up table or parametric fit. However, these methods are time-exhausting
and highly system-dependent.
Another effective solution for linearity error reduction is to diminish high-order har-

monics through synthesizing the waveform of the transmitted signal. For instance, Payne
et al. [39] transmitted multiple parts of square signals with the same modulation fre-
quency but different phase-offsets. This technique aims to eliminate two odd high-order
harmonics, i.e., 3rd and 5th components, from a TOF measurement. Meanwhile, another
study of Payne et al. [40] proposed to transmit a rectangular illumination waveform
and then explored the optimized duty cycle (29%) for minimizing measurement linearity
errors of a four-phase-stepping method. For extending this approach, we used the illumi-
nation waveform optimization into a variety of phase-stepping methods, e.g., three-phase
and five-phase stepping methods [41]. Apparently, as can be seen in Table 2.1 [35], vari-
ous phase-stepping algorithms are sensitive to different high-order harmonic components
so each one acquires different optimized duty cycle of rectangular illumination waveform.

Table 2.1. Harmonics being suppressed by various phase-stepping algorithms

Algorithms Harmonics Being Suppressed

2 3 4 5 6 7 8 9 10

3 phase (120◦) _ Y _ _ Y _ _ Y _

4 phase (90◦) Y _ Y _ Y _ Y _ Y

5 phase (72◦) Y Y _ Y _ Y Y _ Y

6 phase (60◦) Y Y Y _ Y _ Y Y Y

The numerical results which are demonstrated in Fig. 2.5, show the linearity root-
mean-square (RMS) errors of various duty cycles for three-phase and five-phase algo-
rithms. Apparently, we explore the optimum duty cycle of 37% for three-phase method
and 42% for five-phase method. Additionally, both of these methods have other small
optimum values of duty cycle for tiny RMS errors, e.g., 18% for three-phase method
and 10%, 20%, 31% for five-phase method, with some advantages upon measurement
precision. Concretely, as explained in the study of Payne et al. [40], the amplitude of
a laser optical signal is inversely proportional to the duty cycle of a rectangular illumi-
nation waveform while fixing the optical transmission power. In other words, according
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to (2.13) demonstrated in the next section, a rectangular waveform with a smaller duty
cycle results in a higher precision of a TOF measurement.

Figure 2.5. RMS linearity error: three-phase (green), four-phase(blue), five-phase(red) with different
duty cycles from 10% to 50%

Table.2.2 lists up the optimum duty cycle values as well as some related properties
of three various phase-stepping methods. It should be remembered that more measured
samples consume longer acquisition time and read-out time and hence the camera has a
low frame rate.

2.4.2 Photon shot noise
In the demodulation phase, a TOF chip acquires several samples of the cross-correlation
function in (2.3) through the photon generation and the conversion of photons to elec-
trons. Both of two these processes follow a Poisson distribution [4, 42, 2]. Eventually,
the more photons are incident on the sensor chip, the more precise these TOF measure-
ments are. Based on [29], the precision (standard deviation) of a depth measurement in
a CW-TOF camera is defined as follows:

σd = c

4πf
√

2

√
bambient + bactive

cdbactive
(2.13)

where
cd = a

bactive
(2.14)

where bambient and bactive are the offset of the ambient and the active illumination sources
respectively. More extended exposure and integration time can increase the active light
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Table 2.2. Optimized duty cycles of an emitted rectangular waveform signal for various phase
stepping algorithms

N-phase Optimized RMS Properties
duty linearity

cycle (%) error
(degree)

4-phase 29 0.9682 Moderate frame rate
and accuracy

3-phase 18 1.436 High frame rate
37 1.049 and low accuracy

5-phase 10 0.6875 Low frame rate
20 0.4914 and high accuracy
31 0.3223
42 0.2451

intensity bactive and hence improve the measurement precision, according to (2.13). How-
ever, this solution slows down the camera speed. Alternatively, there are two common
ways to enhance the TOF measurement precision, by either increasing the modulation
frequency or increasing the emitted total optical power [40]. However, these solutions
are restricted by hardware design complexity or light safety conditions.

2.4.3 Saturation
Each pixel or photo-detector has a limited storage to collect and store incident photons.
Too many incident photons may lead to the saturation problem. And hence some active
photons are inevitably lost in the external environment. Eventually, this loss causes low
measurement accuracy and precision. The saturation problems usually occur under many
outside environments with high external light power. Currently, some PMD chips have
featured methods to suppress ambient light efficiently, e.g., Suppression of Background
Illumination - SBI [4].

2.4.4 Ambiguity range
The phase-shift estimation in (2.4) contains an arctangent function. Thus, the estimated
value lies into [-π,π) and hence the reconstructed depth in (2.9) ranges from 0 to c/2f .
The maximum value c/2f is defined as ambiguity range of a CW-TOF camera. If
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objects locate beyond this range, their true locations cannot be estimated accurately by
the phase-stepping method in (2.4) and (2.9). Apparently, a lower modulation frequency
can lead to a longer ambiguity range. However, according to (2.13), a TOF measurement
at a low modulation frequency acquires a low precision. Therefore, the selection of
modulation frequency should satisfy the application requirements of both ambiguity
range and measurement precision.
Recently, many studies aim to extend ambiguity range through two TOF measure-

ments at different frequencies [43, 29]. Given two frequencies be fa and fb, then this
two-frequency acquisition can extend ambiguity range to:

Rmax = c

2|fa − fb|
(2.15)

However, this approach requires more TOF samples for each depth reconstruction,
e.g., 8 times 2 (A- and B-channel are acquired simultaneously) samples for two TOF
measurements in a PMD 19k camera. Thus, it has negative influences on the depth
reconstruction speed or frame rate of this camera. For this reason, Payne et al. [29]
introduced simultaneous multiple frequency (SMF) acquisition to reduce the number of
samples for two TOF measurements. Nevertheless, this type of acquisition causes much
more linearity errors. Based on the illumination waveform optimization method in [40],
we successfully reduced these errors of a SMF acquisition in a literature [41].

2.4.5 Multipath interferences
As described in Fig. 1.2, multipath interferences (MPIs) usually incur in real-life scenes,
e.g., transparent object imaging, broaden illumination. However, the phase-stepping
algorithms of a commercial CW-TOF camera apparently suffer from these MPI problems.
For more concreteness, the estimation of phase-shift in (2.10) becomes inaccurate since
multiple reflections from scattering environments are incident on the same pixel [14].
It seems to be impossible to resolve the MPIs and subsequently correct TOF depth
measurements through selecting an appropriate phase-stepping method or modifying
the transmitted signal waveform.
For resolving MPI problem, many studies proposed many depth correction calibration

techniques to correct the wrong TOF measurements [8, 9, 10]. However, these methods
are highly scene-dependent. For instance, the direct and global separation [9] relies on
the assumption of a spatially smooth global component and hence becomes ineffective
in some specular corner cases. Meanwhile, the computational optimization methods
depend on the radiometric assumption [10] or Lambertian radiator assumption [8].
The current approach for resolving MPI problem focuses on reconstructing the time

profile of MPIs at each observed scene point. Many publications [14, 11, 12, 44, 13]
carried out multiple TOF measurements at different frequencies or phase-offsets and then
constructed sparse models based on these measurements. Various sparse regularization
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methods are used for the target depth estimation. Although these models bring robust
reconstruction results, they consume extremely long acquisition and computation time.
For instance, Kadambi et al. [13] carried out a lot of measurements (i.e., 3000 raw
frames at different phase-shifts) to localize only two targets. Whereas, Heide et al. [11]
reconstructed the time profile of MPIs with a larger number of TOF measurements at
different phase-shifts and frequencies. Both of the above models consume an acquisition
time of over 30 seconds. Furthermore, Heide et al. [11] used a l1-optimization method
with smoothing constraints which takes a few hours for the sparse reconstruction of
the whole depth map. For more simplicity, Dorrington et al. [14] reconstructed the
time profile of two return components through two TOF measurements at two different
modulation frequencies. For the case of three or more returns, Freedman et al. [44]
proposed Sparse Reflections Analysis (SRA) for a fast real-time multipath separation
or Bhandari et al. [6] estimated successfully the depth images of a scattering scene
comprising three targets by using 77 TOF frames at different modulation frequencies
and a greedy pursuit (Orthogonal matching pursuit-OMP) method for a fast time-profile
reconstruction. Nevertheless, these fast-processing methods have not implemented a
diverse analysis of reconstruction capabilities under various scenarios, especially near-
target cases.

2.5 Summary
CW-TOF cameras are low-cost devices to produce depth images with a high frame rate.
As mentioned in this chapter, their current modulation and demodulation schemes suffer
from many state-of-art TOF problems. Thus, many studies have been implemented to
improve technical properties of a CW-TOF camera, e.g., accuracy, precision, frame rate,
ambiguity range. Nevertheless, MPIs are still severe problems which seem to be hard
to resolve through the modifications of phase-stepping modulation and demodulation
methods. Apparently, the approach of MPI time profile reconstruction based on TOF
measurements at different frequencies or phase-offsets are more practical and efficient
solutions. However, these models consume heavy acquisition time and computation
time. From these points, this thesis aims to develop them by many CS techniques to
guarantee a high frame rate of a commercial TOF camera and simultaneously resolve
MPIs successfully.
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3 Compressed sensing and TOF multipath
problem

MPI problems are inherent to the working principle of a commercial TOF camera. Typ-
ically, there is not only one light ray reflected from a complex scattering scene. Instead,
multiple optical reflections are incident simultaneously on the sensor side. Therefore,
the phase-shift estimation of the traditional phase-stepping algorithms in (2.4) contains
much errors if the contribution of the unexpected MPI components is significant. Many
previous studies [8, 9, 10] successfully reduced these adverse effects by depth correction
calibration methods. However, these compensation methods are highly scene-dependent.
For instance, the direct and global separation [9] is only applicable for specular corner
cases. Therefore, in recent years, a more efficient solution approach [6, 14, 11] has been
developed to reconstruct the time profile of MPIs through multiple TOF measurements
at various frequencies and phase-offsets. Its operating principle is similar to multi-target
localization based on the TOF imaging system. However, this approach presents a lot of
challenges, e.g., large acquisition and computation time or low depth resolution regard-
ing the hardware design limitation. Thus, this chapter aims to construct a CS model of a
general MPI problem based on CW-TOF measurements at different frequencies (MFT),
similar to the study by Bhandari et al. [6]. However, there are significant advances of
our model, compared to their research work. While their model can be only applied to
TOF cameras with the sinusoidal cross-correlation function, our model is extended to a
variety of transmitted or demodulation signal waveforms. Besides, our analysis under
CS approaches are also efficient to not only reduce the number of TOF measurements
as well as shorten the acquisition time but also explore the depth resolution problem of
a MFT acquisition.
Firstly, Section 3.1 overviews some restricting conditions on the sensing matrix, i.e.,

Null Space Property, Restricted Isometry Property (RIP), Coherence Property, to guar-
antee an exact sparse signal recovery with a high probability. Additionally, two main
classes of CS recovery algorithms, i.e., Basis Pursuit (BP) and Greedy Pursuit, are intro-
duced with their advantages and disadvantages. Secondly, we construct a linear equation
system based on multiple TOF measurements at various modulation frequencies (MFT)
for a general MPI case in Section 3.2 and Section 3.3. Finding a sparse solution of this
system can reconstruct the time profile of MPIs. Nevertheless, the structure of this MFT
acquisition introduces new challenges regarding low depth resolution and big mismatch
model errors because the modulation frequency of a commercial CW-TOF camera is
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significantly low. These problems are explained clearly in Section 3.3. A new hardware
design for the implementation of real high-frequency TOF measurements is apparently
a direct solution to develop the capabilities of a MFT acquisition. But this task requires
high cost and high complexity. Another solution approach in many studies [19, 23, 21] is
to refine the grid length without hardware updates. This refinement process leads to the
construction of a super-resolution MFT acquisition in Section 3.4, but simultaneously
a highly coherent MFT sensing matrix and consequently poor sparse recovery perfor-
mance. Subsequently, this section indicates some useful settings of a super-resolution
MFT acquisition to improve the sparse reconstruction performance and simultaneously
maintain a high frame rate of a TOF camera. These arguments are proven through nu-
merical experiments. Additionally, a relaxed metric is introduced to gauge the quality of
the estimated sparse signal more accurately. Finally, Section 3.5 concludes the primary
goals of our super-resolution MFT acquisition.

3.1 Compressed sensing (CS) and sparse recovery
Compressed sensing (CS) offers a framework for reconstructing a high-dimensional sparse
vector xxx ∈ CN that relies on linear dimensionality reduction [45, 46, 25]. Instead of
acquiring xxx directly, it carries out M < N linear measurements

yyy = ΦΦΦxxx (3.1)

using a sensing matrix ΦΦΦ ∈ CM×N where yyy ∈ CM is referred as the measurement
vector. Solving the linear equation system in (3.1) brings many different solutions when
M � N . Thus, it is hard to estimate the correct vector xxx among these solutions without
any additional conditions.

Definition 1. A complex-valued signal vector xxx ∈ CN is K-sparse if

||xxx||0 ≤ K (3.2)

meaning that the number of non-zero elements, namely atoms, of vector xxx is smaller or
equal to K (K � N). The set of non-zero indices is mentioned as the support of vector
xxx.

If vector xxx is K-sparse, then the problem (3.1) is converted to searching the sparsest
solution or solving the following l0-norm optimization problem:

(P0) : min
zzz∈CN

||zzz||0 subject to yyy = ΦΦΦzzz (3.3)

Apparently, this l0 quasi-norm optimization problem is non-convex. An intuitive ap-
proach to this optimization problem is employing exhaustive search routines through all
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possible sparse subsets for an exact decomposition. However, this search algorithm is
hugely time-consuming.

3.1.1 l1 minimization or basis pursuit
An alternative approach to solve the non-convex problem P0 is converting it to the
following convex problem, e.g., [47]

(P1) : min
zzz∈CN

||zzz||1 subject to yyy = ΦΦΦzzz (3.4)

where || · ||1 denotes l1-norm of a vector. Apparently, the l1-optimization problem P1
in (3.4) can be solved by linear programming methods or efficient convex optimization
algorithms. Besides, it can be simply extended for the noisy recovery problem yyy = ΦΦΦzzz+σσσ
to the basis pursuit inequality constraints (BPIC) problem:

(P2) : min
zzz∈CN

||zzz||1 subject to ||yyy −ΦΦΦzzz||2 ≤ ε (3.5)

where ε is an appropriately chosen upper bound on the noise variance or to basis pursuit
denoising with a Lagrangian relaxation:

(P3) : min
zzz∈CN

||zzz||1 + λ||yyy −ΦΦΦzzz||2 (3.6)

where λ is a appropriately chosen positive parameter.
However, there are some restricting conditions on the sensing matrix ΦΦΦ to ensure that

the solutions of the l0-optimization problem (P0) and the l1-optimization problem (P1,
P2, P3) coincide [46].

3.1.1.1 Null Space Property and Restricted Isometry Property

Definition 2. A matrix ΦΦΦ ∈ CM×N satisfies the null space property of order K if for
all subsets T ⊂ [N ] with |T | = K, it holds

||vvvT ||1 < ||vvvT c ||1 ∀ vvv ∈ ker (ΦΦΦ)\{0} (3.7)

where T c is complement of subset T .

Due to [46], the solutions of P0 and P1 coincide through the following restricting
condition:

Remark 1. Every K-sparse vector xxx ∈ CN is the unique solution of the l1-minimization
problem P1 if and only if ΦΦΦ satisfies the null space property of order K.
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Nevertheless, according to (3.7), it is difficult to verify the null space property of a
sensing matrix. Thus, the restricted isometry property (RIP) which was introduced by
Candes et al. [48], is used more popularly in CS theory.

Definition 3. The restricted isometry constant βK of a matrix ΦΦΦ ∈ CM×N is defined
as the smallest βK such that

(1− βK)||xxx||22 ≤ ||ΦΦΦxxx||22 ≤ (1 + βK)||xxx||22 (3.8)

for all K-sparse vector xxx ∈ CN

As proven in [49], there exists a restricting condition on sensing matrix relating to the
restricted isometry constant β2K :

Remark 2. Suppose the restricted isometry constant β2K of a matrix ΦΦΦ ∈ CM×N
satisfies

β2K <
√

2− 1, (3.9)

the solution x̂xx of the problem P1 coincides with that of the problem P0 in noiseless
recovery and obeys:

||x̂xx− xxx||2 ≤ C0K
−1/2||xxx− xxxK ||1 (3.10)

where C0 is some constant given in [49]. Moreover, the above RIP condition is also
applied for noisy recovery. Assume that β2K <

√
2 − 1 and ||yyy −ΦΦΦzzz||2 ≤ ε. Then the

solution of the problem P2 coincides with that of the problem P0 and obeys:

||x̂xx− xxx||2 ≤ C0K
−1/2||xxx− xxxK ||1 + C1ε (3.11)

where C0 and C1 are some constants given in [49].

3.1.1.2 Coherence

The estimation of RIP constant for a sensing matrix is also non-convex and time-
consuming. Eventually, the sensing matrix design based on this RIP constant seems
to be complicated. For this reason, we use a more effective way to evaluate the recon-
struction capabilities of a sensing matrix ΦΦΦ through its coherence property.

Definition 4. The normalized coherence between the pth - and qth columns of a sensing
matrix ΦΦΦ ∈ CM×N can be computed as:

cpq =
|φφφHp φφφq|

||φφφp||2||φφφq||2
(3.12)

24



3 Compressed sensing and TOF multipath problem

and the mutual coherence of ΦΦΦ is defined as the largest absolute inner product between
any two columns of ΦΦΦ:

µ(ΦΦΦ) = max
1≤p6=q≤N

cpq (3.13)

Remark 3. If the mutual coherence is significantly small, then the columns of the
sensing matrix ΦΦΦ are almost mutually orthogonal. Consequently, the signal recovery
based on the orthogonal observations is entirely exact. Thus, the primary task of CS
techniques turns into minimizing mutual coherence of the sensing matrix.

It can be shown that µ(ΦΦΦ) ∈ [
√

N−M
M(N−1) , 1], where

√
N−M
M(N−1) is known as the Welch

bound [45, 50]. This Welch bound is the optimized mutual coherence value that one
wishes to achieve for the sensing matrix design.

Remark 4. As proven in [46, 51, 52], the slightly weaker sufficient condition

K <
1
2
(
1 + 1

µ(ΦΦΦ)
)

(3.14)

ensures the perfect K-sparse noiseless recovery by l1-minimization methods and even by
greedy algorithms.

The condition (3.14), together with the Welch bound, gives an upper bound on the
sparsity that guarantees the equivalence between the solutions of P0 and P1. Neverthe-
less, it is only valid for noiseless recovery. Therefore, the following restricting condition
is used to guarantee the stability of exact noisy recovery [46, 45]. It represents the
correspondence between the mutual coherence property and RIP.

Remark 5. If ΦΦΦ has unit-norm columns and mutual coherence satisfying β ≤ (K−1)µ(ΦΦΦ),
then ΦΦΦ has RIP-condition with βK = β.

In summary, three above restricting conditions on a sensing matrix ensure an exact
recovery of theK-sparse vector xxx by using l1-minimization. Two of them, i.e., Null Space
Property and RIP are the strongest conditions for a guarantee for the high stability of a
perfect sparse reconstruction even in the noisy cases. Whereas, the condition (3.14) based
on mutual coherence is a weaker one. But it is a more efficient and fast-processing tool
to evaluate a structured sensing matrix. Many CS studies [53, 54] successfully designed
a structured sensing matrix with the minimized mutual coherence for improving the
sparse reconstruction quality.
There are two common classes of sparse reconstruction algorithms, i.e., basis pursuit

(BP) and greedy pursuit. Three above restricting conditions ensure uniqueness prop-
erties of l1 solutions of the linear equation system P1 and P2 (BP problem). However,
l1-minimization algorithms [55, 56, 57, 58] for solving the above BP problem typically
rely on the linear programming that takes a long running time, especially in noisy re-
covery, even for signals of moderate length. Many recent studies [59, 60] have proposed
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a variety of faster-processing BP methods but the computation time is still challenging.
Therefore, the current CS research aims to explore greedy algorithms [61, 62] with a
higher processing speed.

3.1.2 Greedy pursuit
Greedy pursuit algorithms estimate the support of K-sparse signal vector xxx iteratively.
Therefore, a distinct advantage of these methods is low computation time if the largest
sparsity of xxx is small (K � N). Nevertheless, they also present new challenges.

3.1.2.1 Orthogonal Matching Pursuit

Orthogonal Matching Pursuit (OMP) algorithm is a stepwise forward selection method
as described in Algorithm 1. At each iteration, a new non-zero atom is selected through
finding the column of the sensing matrix ΦΦΦ which is best-matching to the residual mea-
surement vector. Subsequently, the pseudo-inverse of the sensing matrix respect to the
selected columns ΦΦΦ†Tt

is used to estimate non-zero magnitudes. This magnitude esti-
mation follows the least mean squares minimization. Assume that the expected vector
xxx contains K non-zero atoms. If the sparsity K is known, then OMP stops after K
iterations.

Algorithm 1 Orthogonal Matching Pursuit- OMP
Input: yyy, ΦΦΦ, K
Output: xxx and T

1: Compute the normalized-column version Φ̃ΦΦ of ΦΦΦ
2: Initialization: xxx0 = ∅, T0 = ∅, rrr0= yyy
3: for t = 1 to K do
4: Choose the column φ̃φφi of Φ̃ΦΦ which satisfies

i = argmax1≤k≤N |zk| where zk = φ̃φφ
H
k rrrt−1

5: Tt = Tt−1
⋃
i

6: Compute xxxTt = ΦΦΦ†Tt
yyy where ΦΦΦ†Tt

= (ΦΦΦH
Tt

ΦΦΦTt)−1ΦΦΦH
Tt

7: Set rrrt = yyy −ΦΦΦTtxxxTt

8: end for
9: Set T = TK , xxx = 0N×1 and xxx(T ) = xxxTK

As Algorithm 1 shows, OMP is quite fast with a few iterations. Besides, the largest
sparsity must be known priorly for the stopping condition of OMP. Nevertheless, an
estimate of the largest sparsity before signal reconstruction is a difficult task in practical
applications. Another approach for stopping condition relies on the predicted noise level.
To be precise, OMP stops whenever the residual energy is smaller than the given noise
threshold [62]. In general, both approaches require the prior information for the stopping
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condition. Moreover, the sparse reconstruction performance of OMP is not good as that
of Basis Pursuit [61]. In summary, greedy methods have advantages of faster processing
speed, but disadvantages regarding poorer recovery performance. Additionally, they
require the prediction of the largest sparsity or the measurement noise variance before
each reconstruction.

3.2 Sparse time profile of TOF multipath problem
As stated in Section 3.1, CS techniques are capable of recovering a sparse signal exactly
with a few measurements. Therefore, a CS model of a general MPI problem based on
CW-TOF measurements is constructed in this section to estimate the sparse time profile
of the MPIs.
Now suppose that K targets are located on the observing line of one-pixel view and

have K different distances reference to the camera side (r1, r2, ..., rK). The reflected
signal incident on this pixel comprises K reflectance components. Each one represents
each optical light reflected from each target. In the reflection mode, the corresponding
time delays (t1, t2, ..., tK) of reflected optical components for traveling forth and back
from K targets are computed as follows:

ti = 2ri
c

, 1 ≤ i ≤ K (3.15)

where c is the light speed in application medium.
Given that s(t) is the emitted signal. And hence the return signal which is sum of K

reflections, is represented by:

sr(t) =
K∑
i=1

ai · s(t− ti) (3.16)

where ai denotes the complex-valued reflective factor of the corresponding target i.
The time profile (t1, t2, ..., tK) and the corresponding reflective properties (a1, a2, ...,

aK) of K existing targets are the expected variables. The distances of K targets in the
observed pixel can be estimated through finding the time profile (t1, t2, ..., tK).

3.2.1 Single modulation-frequency measurement
A CW-TOF camera emits a time-modulated intensity signal s(t). The discrete Fourier
series of this signal with an arbitrary waveform shape can be represented by a function
of a modulation frequency f0:

sf0(t) =
+∞∑
l=−∞

cle
j2πlf0t (3.17)
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where cl is the lth Fourier coefficient of the transmitted signal. Assume that only L first
coefficients are significant. Employing (3.16), we rewrite the reflected signal as follows:

sr,f0(t) =
K∑
i=1

ai

L∑
l=−L

cle
j2πlf0(t−ti)

=
L∑

l=−L
cle

j2πlf0t
K∑
i=1

aie
−j2πlf0ti

(3.18)

Set G(lf0) =
∑K
i=1 aie

−j2πlf0ti then:

sr,f0(t) =
L∑

l=−L
cle

j2πlf0tG(lf0) (3.19)

Assume that the demodulation signal sd,f0(t) has the following discrete Fourier series:

sd,f0(t) =
L∑

l=−L
dle

j2πlf0t (3.20)

where dl is the lth Fourier coefficient of the demodulation signal.
As described in Fig. 2.4, each TOF sample is the sampling of cross-correlation function

between the demodulation and reflected signals at a phase offset τ or equivalently a time
offset ∆τ :

gf0(∆τ) = (sd ⊗ sr)(∆τ)

= lim
T0→∞

1
T0

∫ T0

0
s∗d,f0(t−∆τ)sr,f0(t)dt

= lim
T0→∞

1
T0

∫ T0

0

L∑
l=−L

L∑
l′=−L

cld
∗
l′G(lf0)ej2πf0(l−l′)t+jl′2πf0∆τdt

(3.21)

or can be rewritten with phase offset τ = 2πf0∆τ :

gf0(τ) = lim
T0→∞

1
T0

∫ T0

0

L∑
l=−L

L∑
l′=−L

cld
∗
l′G(lf0)ej2πf0(l−l′)t+jl′τdt

=
L∑

l=−L

L∑
l′=−L

cld
∗
l′G(lf0)ejl′τ lim

T0→∞

1
T0

∫ T0

0
ej2πf0(l−l′)tdt

(3.22)

Besides, we have:

lim
T0→∞

1
T0

∫ T0

0
ej2πf0(l−l′)tdt =

{
1 if l = l′

0 if l 6= l′
(3.23)
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From (3.22) and (3.23):

gf0(τ) =
L∑

l=−L
cld
∗
lG(lf0)ejlτ

=
L∑

l=−L
cld
∗
l e
jlτ

K∑
i=1

aie
−j2πlf0ti

(3.24)

3.2.2 Discretization of time profile
In order to construct a sparse model from the TOF measurement gf0(τ) in (3.24), a
equidistant grid system is used to discretize the continuous value ti. In other words, the
viewing line of one pixel is subdivided in space by the equidistant grid. Each grid has a
length of ∆r. In the aspect of the flight time, the time grid spacing of the time profile
is defined as:

∆t = 2∆r
c

(3.25)

Given each target i locates at the nthi -grid point whose distance to TOF camera is ri,
then we have:

ri = ni∆r or ti = ni∆t (3.26)

From (3.24) and (3.26), a TOF sample gf0(τ) after discretization can be rewritten as:

gf0(τ) =
L∑

l=−L
cld
∗
l e
jlτ

K∑
i=1

aie
−j2πlf0ni∆t

=
K∑
i=1

ai

L∑
l=−L

cld
∗
l e
−j2πlf0ni∆t+jlτ

(3.27)

Set φf0,ni,τ =
∑L
l=−L cld

∗
l e
−j2πlf0ni∆t+jlτ , then (3.27) is rewritten as:

gf0(τ) =
K∑
i=1

aiφf0,ni,τ (3.28)

The term φf0,ni,τ represents the cross-correlation function response to a target at the
nthi grid point. If the discretization system comprises N grids, then the row vector
φφφf0,τ=(φf0,1,τ , φf0,2,τ , ..., φf0,N,τ ) represents N delay responses. From this representa-
tion, the TOF sample gf0(τ) can be rewritten as a linear equation:

gf0(τ) = φφφf0xxx (3.29)
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where xxx=(x1, x2, ..., xN )T with xni = ai, ∀ 1 ≤ i ≤ K. The K-sparse vector xxx has K
non-zero indices representing the grid locations of K targets, according to (3.26).

3.3 Multiple frequency TOF (MFT) measurements
Now carry out M TOF measurements at different modulation frequencies (f1, f2 · · · fM )
and formulate the measurement vector yyy with:

yyy =



gf1(τ1)

gf2(τ2)
...

gfM
(τM )


= ΦΦΦxxx (3.30)

where the sensing matrix ΦΦΦ comprises M row vectors φf,τ :

Φ =



L∑
l=−L

cld
∗
l e
−j2πlf1∆t+jlτ1

L∑
l=−L

cld
∗
l e
−j2πlf12∆t+jlτ1 · · ·

L∑
l=−L

cld
∗
l e
−j2πlf1N∆t+jlτ1

L∑
l=−L

cld
∗
l e
−j2πlf2∆t+jlτ2

L∑
l=−L

cld
∗
l e
−j2πlf22∆t+jlτ2 · · ·

L∑
l=−L

cld
∗
l e
−j2πlf2N∆t+jlτ2

...
... . . . ...

L∑
l=−L

cld
∗
l e
−j2πlfM ∆t+jlτM

L∑
l=−L

cld
∗
l e
−j2πlfM 2∆t+jlτM · · ·

L∑
l=−L

cld
∗
l e
−j2πlfMN∆t+jlτM


(3.31)

If TOF measurements are noisy then:

yyy = ΦΦΦxxx+ σσσ (3.32)

where σσσ is the noise vector. These noises can originate from external environment or
system error sources.

Unlike the traditional phase-stepping scheme in Fig. 2.3, a MFT acquisition carries
out multiple TOF measurements at different modulation frequencies. The goal of this
MFT acquisition is to estimate the signal vector xxx in the linear equation system (3.32).
Consequently, the non-zero indices and magnitudes of the estimate represent for the
time profiles ti and reflective properties ai of K targets in the observing view of one
pixel (see Fig. 3.1). Assume that the number of MPIs is small in a scattering scene,
then it is promising to apply CS techniques into the MFT acquisition to solve (3.32)
with two advantages. Firstly, only a few measurements are needed for the sparse time
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Figure 3.1. Schematic diagram of the MFT measurements for the reconstruction of two multipath
interferences using CS model

profile reconstruction. Thus, it consumes a short acquisition time. Secondly, designing
the sensing matrix ΦΦΦ efficiently leads to the improvement of sparse recovery performance
in (3.32).

It should be noted that the signal support or non-zero indices denote the time profile
of MPIs. Therefore, resolving MPIs relies on the accuracy of sparse signal support
reconstruction in (3.32).
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Figure 3.2. A visual example of mismatch model errors before and after the grid system refinement

3.3.1 Mismatch model errors
The above discretization step of time profile in MFT acquisition causes mismatch errors
as the true continuous parameters ti do not lie exactly at the grid points:

ti = ni∆t+ σti (3.33)

where σti is mismatch model error caused by discretization step.
Suppose that the non-zero indices can be estimated exactly after solving the MFT

problem (3.32) or n̂i = ni. Then the corresponding time delay is estimated as t̂i = n̂i∆t.
Despite an exact support recovery, there is a gap σti between the estimated time delay
t̂i and the actual one ti. A large grid length ∆t can easily lead to a big mismatch error
σti with a high probability, as described in Fig. 3.2. However, the reduction of this error
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cannot rely on the development of sparse reconstruction methods.
Besides, if the above model mismatch occurs, then the optical TOF measurement at

a modulation frequency f0 in (3.26) can be rewritten as:

gf0(τ) =
K∑
i=1

ai

L∑
l=−L

cld
∗
l e
−j2πlf0(ni∆t+σti )+jlτ

=
K∑
i=1

ai

L∑
l=−L

cld
∗
l e
−j2πlf0(ni∆t)+jlτe−j2πlf0σti

(3.34)

Set e−j2πlf0σti = 1− σf0,l,i, then

gf0(τ) =
K∑
i=1

ai

L∑
l=−L

cld
∗
l e
−j2πlf0(ni∆t)+jlτ (1− σf0,l,i)

=
K∑
i=1

aiφf0,ni
+ σf0

(3.35)

where σf0,l,i are non-zero mean noises. If the mismatch noise σf0 is significantly high, the
sparse estimation in (3.32) based on the much noisy measurements is no longer accurate
or n̂i 6= ni. Consequently, these big mismatch model errors can cause a poor sparse
support recovery performance.

3.3.2 Depth resolution of target discrimination
Depth resolution is mentioned as the minimum separation between two targets which
can be distinguished accurately. Suppose that two targets stay in the same grid, then
it is impossible to discriminate them. In a CS-MFT acquisition, the increase of the
depth resolution as well as the reduction of the mismatch model errors does require a
smaller length of a discretization grid. Nevertheless, according to the Rayleigh resolution
theorem [22], there exists a relationship between the length of a grid or grid spacing and
the highest modulation frequency:

∆rmin = c

2fmax
(3.36)

or
∆tmin = 1

fmax
(3.37)

where fmax is the highest modulation frequency in a MFT acquisition. Particularly, if
a grid spacing is equal to ∆rmin, a high stability of an exact signal reconstruction in
(3.32) is guaranteed. In many applications, e.g., target discrimination or radar processing
techniques [22, 63], this minimum threshold ∆rmin is considered as the minimum depth

33



3 Compressed sensing and TOF multipath problem

resolution of a target sensing system or referred as the Rayleigh length. As (3.36)
indicates, an increase of the highest modulation frequency in a MFT acquisition can
improve its minimum depth resolution.

3.3.3 TOF modulation frequency limitation problem
The highest modulation frequency of a low-cost CW-TOF camera is low (e.g, 50 MHz
for PMD 19k)[4]. The equation (3.36) indicates that the minimum target discrimination
resolution or in this thesis mentioned as minimum range resolution of this camera is
equal to:

∆rmin = c

2fmax
= 3× 108 m s−1

2× 50 MHz = 3 m (3.38)

and hence not good enough for a MFT acquisition to discriminate targets separated
under 3 m. From this result, this model cannot resolve MPIs accurately in a real-life
scattering environment. Conventionally, the distance between scatters is small, from a
few centimeters to a few meters. Therefore, the modulation frequency in a commercial
TOF camera should be increased to improve the depth resolution. Nevertheless, the
frequency increase requires the design of a new illumination driving circuit and faster
clock generator which is hugely complicated and simultaneously insufficient for a low-cost
system.

Remark 6 (Modulation Frequency Set). Theoretically, the modulation frequencies of a
MFT acquisition can be selected arbitrarily in the range (0, fmax]. However, manufac-
turers produce their CW-TOF camera which can only modulate a set of frequencies. For
instance, a PMD 19k chip that is used in this thesis has an operating range of modulation
frequencies from 1 MHz up to 60 MHz with a frequency step of 0.25 MHz. However, the
TOF measurements over 30 MHz have low confidentiality and demodulation contrast
[4, 64]. Thus, 30 MHz is considered as the maximum modulation frequency of a TOF
acquisition in this thesis. And hence from (3.36), ∆rmin = 5 m. Concisely, we select the
frequencies of a MFT acquisition from the set Ψ = {1 MHz, 1.25 MHz, ..., 29.75 MHz,
30 MHz} with totally 117 different choices.

3.4 Super-resolution MFT compressed sensing
Many super-resolution CS studies [19, 23, 21] aim to reduce the mismatch model errors
through refining the grid system with a smaller grid length ∆r � ∆rmin (see Fig. 3.2).
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3.4.1 Preliminary
3.4.1.1 Refinement factor

In a super-resolution CS-MFT acquisition, an equidistant grid length is set much smaller
than the minimum range resolution (∆r � ∆rmin). This refinement process is adjusted
through a given refinement factor:

F = ∆rmin
∆r = c

2fmax∆r (3.39)

According to (3.39), a larger refinement factor leads to a smaller grid length and
inversely. Thus, one expects to set a large refinement factor to enhance depth resolution
and reduce mismatch model errors. However, this significant refinement factor also
presents new challenges which will be discussed later.

3.4.1.2 Complex-valued and real-valued measurements

In a commercial PMD CW-TOF camera, the emitted and demodulation signals are
squared waves with the following Fourier coefficients:

cl = dl =


4
π|l| if |l| is odd
0 if |l| is even

(3.40)

In the principle of DFT transformation, the auto-correlation function of a square wave
possesses the Fourier coefficients of a triangle wave. Thus,:

cld
∗
l =


16

π2|l|2 if |l| is odd
0 if |l| is even

(3.41)

There are two kinds of TOF measurements, i.e., real-valued or complex-valued mea-
surements. The former one is a sample of cross-correlation at a particular phase-offset
τ as described in (3.24). The latter one is the composition of two TOF samples at two

35



3 Compressed sensing and TOF multipath problem

phase-offsets τ and τ + π/2:

gcomplex,f0,τ = gf0(τ) + jgf0(τ + π

2 )

=
K∑
i=1

ai

L∑
l=0

cld
∗
l cos (−j2πlf0ni∆t+ jlτ)

+ j
K∑
i=1

ai

L∑
l=0

cld
∗
l sin (−j2πlf0ni∆t+ jlτ)

=
K∑
i=1

ai

L∑
l=0

cld
∗
l e
−j2πlf0ni∆t+jlτ

(3.42)

The selection between complex-valued and real-valued measurement approaches is a
great importance when designing a super-resolution MFT system. Ordinarily, the pre-
vious super-resolution CS models [19, 23, 21] have used complex-valued DFT measure-
ments for the estimation of spike locations and complex-valued reflectivity magnitudes.
Nevertheless, as explained in Section 3.3, our MFT acquisition aims to reconstruct only
the time profile of MPIs through estimating the support of sparse signal xxx. Therefore,
the imaginary parts of xxx can be ignored in this sparse optimization problem. From
this point, both complex-valued and real-valued MFT acquisitions are applicable for
resolving MPIs. However, according to (3.42), a complex-valued TOF measurement
comprising two real-valued samples eventually consumes a doubled acquisition time in
a commercial TOF camera. For this reason, it apparently brings a clear disadvantage of
long acquisition time despite a higher measurement quality.

3.4.1.3 High order harmonics

The parameter L in (3.24) denotes the highest-order harmonic existing in the cross-
correlation function at each modulation frequency. In an ideal case, L equals to one when
the transmitted optical signal or the demodulation signal is sinusoidal. However, in a
commercial CW-TOF camera, the value of L is larger than one but finite. According to
(3.41), the value of a low-order Fourier coefficient cld∗l , e.g., l = 1, is large while a higher-
order one is extremely smaller. As a result, only a few low-order Fourier coefficients have
a significant contribution to a practical TOF measurement [2].

3.4.1.4 The ambiguity range and range of interest

As introduced in Section 2.4, ambiguity range is the maximum distance which can be
estimated accurately by a depth estimation method. This parameter of a commercial
TOF camera using the traditional phase-stepping method is c/(2f) and hence depends on
the modulation frequency. Eventually, a higher frequency leads to a smaller ambiguity
range and inversely. To extend this ambiguity range, many studies [29, 43] utilized
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multiple TOF measurements at different frequencies. Given a set of various modulation
frequencies is Ψc ⊂ Ψ, then the ambiguity range Rmax can be extended to:

Rmax = c/(2 gcd(Ψc)) (3.43)

where gcd is greatest common divisor operator.
Similarly, a complex-valued MFT acquisition possesses the same ambiguity rangeRmax

in (3.43). For instance, as mentioned in Remark 6, the available frequency pool Ψ with
gcd(Ψ) = 0.25 MHz leads to Rmax = 600 m, according to (3.43). Nevertheless, the
ambiguity range of a real-valued MFT acquisition Rmax = 300 m is only a half of that
of a complex-valued one since the values of cosine functions repeat after a half of period.
Besides, unlike the traditional phase-stepping method, the range of interest using MFT

acquisition can be configured through defining a dimension N (the number of grids in
the MFT discretization) and a grid length ∆r:

R = N∆r = N
c∆t

2 (3.44)

With a conventional grid-length configuration (F = 1), for instance ∆r = 5 m for
fmax = 30 MHz, a real-valued MFT acquisition has Rmax = Nmax∆r = 300 m or
correspondingly the largest dimension Nmax = 60. However, the value of Nmax grows
larger if the grid length is set smaller or the refinement factor is larger:

Nmax = Rmax
∆r = RmaxF

∆rmin
= RmaxF

2fmax
c

(3.45)

For instance, F = 100 leads to a higher largest dimension Nmax = 6000 to cover the
whole ambiguity range of 300 m. Obviously, the setting of a large valueN = Nmax wastes
much time for any CS algorithm [26, 65] to reconstruct a sparse signal in (3.32) with a
large sensing matrix. However, such a large range of interest R = 300 m usually overrides
the requirements of a practical TOF application. For these reasons, the dimension should
be set small enough to satisfy the application requirements as well as to speed up the
reconstruction process. In this thesis, our super-resolution CS-MFT acquisition with
F = 100 (fmax = 30 MHz and ∆r = 5 cm) selects N = 500 or RMFT = 25 m for
numerical experiments and N = 200 or RMFT = 10 m for practical experiments.

3.4.2 High coherence of super-resolution sensing matrix
If two columns of a sensing matrix are similar to each other, two corresponding entries
of a sparse vector xxx show similar observations. Consequently, it is impossible for any
reconstruction algorithm based on the observations to distinguish two these entries pre-
cisely. Eventually, a highly coherent sensing matrix leads to a low accuracy of signal
reconstruction.

37



3 Compressed sensing and TOF multipath problem

Many studies [19, 66] have indicated that the neighboring columns of a DFT sens-
ing matrix are highly coherent to each other in the configuration of a large refinement
factor. In this part, we aim to prove that a MFT sensing matrix suffers from similar
problems. For this purpose, we construct two different MFT sensing matrices at two
different refinement factors, i.e., F = 1 and F = 100 with the same setting of additional
parameters, i.e., fmax = 30 MHz, L = 5, R = 150 m. For the simplicity, both of two
sensing matrices are real-valued, and the phase offsets τ are zero for all real-valued TOF
measurements. In summary, we have two following MFT sensing matrices:

• A structured sensing matrix ΦΦΦ ∈ R40×30 with conventional grid length configura-
tion F = 1.

• A structured sensing matrix ΦΦΦ ∈ R40×3000 with super-resolution grid length con-
figuration F = 100.

3.4.2.1 Gram matrix

The Gram matrix of a sensing matrix ΦΦΦ is defined as CCC = Φ̃ΦΦHΦ̃ΦΦ, where Φ̃ΦΦ is the column-
normalized version of ΦΦΦ. Each Gram matrix element represents the similarity between
two corresponding columns of the sensing matrix ΦΦΦ. For instance, the value of c12
denotes the coherence between the 1st and 2nd columns. If this value is approximate
to zero, then two corresponding columns are nearly orthogonal. Inversely, if this value
is approximate to one, then two corresponding columns are similar or highly coherent.
Conventionally, the elements of a Gram matrix on the diagonal line are equal to one
because they denote auto-correlation of one column. However, in our Gram matrix
representation, all of these diagonal elements are set to zero to distinguish them from
the high-value elements representing the high coherence between neighboring columns
in a super-resolution configuration.
Fig. 3.3 demonstrates the coherence patterns or Gram matrices of two structured

MFT sensing matrices. Apparently, according to Fig. 3.3a, the elements of the Gram
matrix are small and hence the columns of the sensing matrix ΦΦΦ ∈ R40×30 without a grid
refinement (F = 1) are incoherent. Whereas, according to Fig. 3.3b, the sensing matrix
ΦΦΦ ∈ R40×3000 with a large refinement factor (F = 100) possesses a Gram matrix with a
high coherence, especially at the diagonal line. In other words, the refinement process
breaks out the restricting condition of mutual coherence on a sensing matrix in (3.14).
Eventually, the high stability of a good sparse recovery is no longer guaranteed in this
super-resolution configuration.

3.4.2.2 Mutual coherence

Nevertheless, only one random selection of 40 frequencies seems to be not enough for
a statistical comparison between various MFT acquisitions with different refinement
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(a) F=1 (b) F=100

Figure 3.3. Resized Gram matrix or coherence pattern of two real-valued sensing matrices with two
different refinement factors F

factors. For each case of a refinement factor, we repeat random selection 200 times to
formulate 200 real-valued MFT sensing matrix trials. All other parameters, i.e., L = 5
and R = 150 m are fixed. For each MFT sensing matrix trial, the mutual coherence or
the maximum coherence value is computed. The mean value of all mutual coherences of
200 trials is demonstrated in Fig. 3.4. There are 100 different refinement factors (from
1 to 100) which are analyzed in this part.
As can be seen in Fig. 3.4 that a refinement factor over 20 leads to a highly coherent

MFT sensing matrix with a considerable mutual coherence close to one (blue line).
According to (3.14), this large mutual coherence theoretically cannot guarantee a high
stability of an exact sparse recovery using BP or greedy pursuit algorithms.

3.4.2.3 Number of measurements

Remark 7. Due to the CS theory [45, 46, 25], a small number of TOF measurements
(M � N) is necessary for recovering a sparse signal vector xxx ∈ RN with a small sparsity
(K �M). But this number suffers from lower bound conditions [65]:

M ≥ CKNµ2(ΦΦΦ) log(N/γ) (3.46)

and
M ≥ C ′ log2(N/γ) (3.47)
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Figure 3.4. Mean mutual coherence value of 200 sensing matrix trials for different kinds of MFT
acquisitions at different refinement factors F from 1 to 100

for fixed values of γ < 1, C, C ′, to guarantee an exact signal recovery using l1-
minimization algorithm with a probability at least 1− γ.

According to (3.46), the number of measurements M is linearly proportional to the
sparsity property of the scene structure K, the dimension N and the mutual coherence
µ(ΦΦΦ) of a sensing matrix. Conventionally, the number of MPIs in a real-life scattering
scene is small. Therefore, if the MFT sensing matrix is highly incoherent (µ(ΦΦΦ) � 1),
then a few TOF measurements are needed for an exact time profile reconstruction of
(3.32). However, as can be seen in Fig. 3.4, a MFT acquisition with a large refinement
factor configuration leads to a high mutual coherence of the sensing matrix. Eventually,
the number of measurements has to be extremely large (M > N) to guarantee the high
stability of an exact K-sparse signal reconstruction in a large refinement factor config-
uration. As a result, this super-resolution MFT acquisition consumes much acquisition
and readout time and hence cannot maintain a video frame rate of a TOF camera. Thus,
in this thesis, we only carry out a few TOF measurements (M � N), e.g., M = 20, for
the K-sparse signal reconstruction, e.g., K = 3, with F = 100. According to (3.47), such
a small measurement number causes poor reconstruction performances with a higher γ
or in other words a lower detection rate of MPI.
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3.4.3 Minimum distance
Definition 5. Given T is the support set of the sparse signal vector xxx. The minimum
distance (MD) of a support T is defined as the minimum distant separation between two
arbitrary indices in T .

∆T = inf
n,n′∈T,n6=n′

|n− n′| (3.48)

This separation is given by the number of grids or namely bins. In a MFT acquisition,
MD denotes the minimum separation between scatters in a MPI case with ∆R = ∆T∆r.
In super-resolution CS-DFT problem, Theorem 1.2 of Candes et al. [22] gives a lower
bound condition on MD:

∆T ≥ 2F∆r (3.49)

to guarantee for an exact complex-valued signal recovery using l1-optimization or a looser
lower bound

∆T ≥ 1.87F∆r (3.50)

for a real-valued sparse signal recovery using l1-optimization.
According to (3.49) and (3.36), the minimum separation (∆T ) should be larger than

2F∆r = 2∆rmin. However, ∆rmin is extremely large if the maximum frequency is
low, for instance ∆rmin = 5 m with fmax = 30 MHz. Therefore, MD has to be large to
ensure a good sparse reconstruction. This condition cannot be satisfied in a real-life MPI
case as the separation between scatters is several 10 centimeters or slightly more. Most
previous research [21, 23, 19] admitted this bound as a necessary condition to guarantee a
high stability of good sparse reconstruction. They successfully reduced mismatch model
errors through the grid refinement process, but the low depth resolution problem has
not been solved yet. This thesis aims to analyze the reconstruction performance of a
super-resolution CS-MFT model in all cases of both large and small MDs (∆T � 2F∆t)
[24].

3.4.4 Relaxed sparse support evaluation
As mentioned previously, the set of non-zero indices or the support set of the sparse
signal xxx reconstructed through (3.32) is equivalent to the time profile of MPIs. Therefore,
the accuracy of time profile estimation is highly dependent on the accuracy of sparse
support estimation. In an ordinary evaluation, a non-zero index or support index of the
reconstructed sparse signal xxx is correct if it coincides with the true one. In this thesis,
each sparse signal xxx achieved by solving (3.32), is evaluated by counting how many
support indices in xxx are correct. The rate of the correctly detected support indices
or namely sparse support recovery rate denotes the target detection probability of an
analyzed MFT acquisition.
However, the neighboring columns of a MFT sensing matrix is highly coherent in a

high-refinement configuration. Additionally, a lower bound on MD to guarantee the
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high stability of an exact sparse recovery is not given in our super-resolution MFT
acquisition. From these points, the reconstructed sparse signals have a small number of
correctly detected support indices or more concisely a low support recovery rate. This
low rate denotes low reconstruction capabilities of a super-resolution CS-MFT technique.
Nonetheless, this perfect support evaluation with such a restricting detection condition
is sometimes not necessary in some applications of target localization. In some cases, the
estimation of a target location can be considered as a correct one if the offset between
the estimated and true locations is tolerated. For example, a target has the true location
of 3 m. For the regular evaluation, this target is missing if its location is estimated as
3.15 m. But for an application with the accuracy requirement of 20 cm, the estimated
location of 3.15 m is considered as accurate. Under such a relaxed evaluation metric
with a tolerance offset δ, a relaxed sparse support recovery rate is defined as follows:

Rb = 1
K

∣∣∣{n̂k:|n̂k − nk| ≤ δ,k = 1, 2 · · ·K}
∣∣∣ (3.51)

where
∣∣∣.∣∣∣ denotes the cardinality of a set, nk and n̂k represent the true and estimated

support indices respectively.
The value of the tolerance offset δ is an ordinal number. It represents how many grid

lengths between the true and estimated target locations can be accepted as a robust
detection. This value is equivalent to the accuracy requirement of some application
through δtrue = δ∆r. For instance, if F = 100 and fmax = 30 MHz, then ∆r = 5 cm.
If δ = 2, then the accuracy requirement is 2∆r = 10 cm. A higher value of δ is
corresponding to a lower accuracy requirement and inversely. This relaxed rate Rb
becomes the conventional sparse support recovery rate if δ = 0. A MFT model with a
low conventional sparse support recovery rate may bring a high relaxed sparse support
recovery rate with δ > 0. For such a model, its MPI reconstruction capabilities are
high despite its low conventional support recovery rate. Therefore, the relaxed sparse
support recovery rate is apparently useful in this thesis for evaluating the performance
of a super-resolution MFT acquisition more accurately.
However, for the localization of targets with MD smaller than 2δ + 1, the relaxed

support evaluation may be inaccurate since an estimated target location may simultane-
ously satisfy the relaxed detecting conditions of both two actual ones. From this point,
the cases of MD into [1, 2δ + 1] will be ignored in our analysis. More concretely, this
thesis sets a lower bound condition of 2δ + 1 on MD between scatters in a MPI case.
For instance, if δ = 2 then the restricting condition is ∆T ≥ 5, meaning that the sep-
aration between MPIs has to be at least 5∆r in numerical and practical experiments.
This small bound has no much negative influence on the depth resolution of our super-
resolution CS-MFT acquisition. Our goal is to develop a MFT technique with a high
relaxed sparse support recovery rate to guarantee the high stability of an accurate spare
support reconstruction with some tiny tolerance offset.
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3.4.5 Numerical analysis
3.4.5.1 Recovery performance in super-resolution MFT configuration

According to the Gram matrices in Fig. 3.3, a more significant refinement factor leads
to a higher coherence of MFT sensing matrix. In this part, a numerical experiment is
carried out to prove that such a higher coherence property causes a lower sparse support
recovery rate.
Two different real-valued MFT sensing matrices Φ1Φ1Φ1 ∈ R40×500 and Φ2Φ2Φ2 ∈ R40×500 are

constructed with two different refinement factors (F1 = 20 and F2 = 100 respectively).
Given ∆r1 and ∆r2 be the grid lengths of the sensing matrices Φ1Φ1Φ1 and Φ2Φ2Φ2, and fmax,1
and fmax,2 be the maximum frequencies of the sensing matrices Φ1Φ1Φ1 and Φ2Φ2Φ2. For the
construction of two these matrices such that F2 = 5F1, according to (3.39), there are
two different approaches, i.e., setting ∆r1 = 5∆r2 while fixing fmax,1 = fmax,2 or setting
fmax,1 = 5fmax,2 while fixing ∆r1 = ∆r2. The latter one with the same grid length is
selected in this part to guarantee a comparison in a fair manner between their relaxed
support recovery rates with δ = 2∆r. Besides, we choose H1 = 5H2 where H1 and H2
are two sets of 40 frequencies for two models of acquisition, to satisfy fmax,1 = 5fmax,2.
The phase offset τ = 0 and the largest number of Fourier coefficients L = 5 are set for
all TOF measurements.
A Monte Carlo simulation is carried out with 1000 trials for each case of signal-noise-

ratio (SNR). At each trial, a sparse signal xxx with K = 3 and consequently two noisy
measurement vectors y1y1y1 ∈ R40 (Φ1Φ1Φ1) and y2y2y2 ∈ R40 (Φ2Φ2Φ2) are randomly generated as follows:

Remark 8 (Numerical generation of K-sparse signal and noisy measurement vector
for a MFT acquisition ΦΦΦ). A non-negative K-sparse vector xxx ∈ RN is generated with
random non-zero indices and magnitudes such that ∆T ≥ 2δ + 1(see Section 3.4.4).
The non-negative magnitudes are randomly selected in the range [0.1, 10]. The noisy
measurement vector yyy = ΦΦΦxxx+σσσ is then computed based on the generated signal vector
xxx and the MFT sensing matrix ΦΦΦ. A vector of white Gaussian noises σσσ is simulated
through the Matlab function “awgn” for a specific signal-noise-ratio (SNR) case.

Based on two generated noisy measurement vectors yyy1 and yyy2 and two corresponding
sensing matrices Φ1Φ1Φ1 and Φ2Φ2Φ2, two following reconstruction methods OMP and BP are
used sequentially for recovering the sparse signal vector xxx:

• OMP assumes the availability of the known sparsity K = 3.

• For Basis Pursuit, the CVX-package is used to solve the problem P2 (3.5) or BPIC
with an assumption that the upper noise variance ε is priorly known. In these
simulations, a value of ε = 1.2||yyy− ŷ̂ŷy||2 is assumed as priorly known where ŷ̂ŷy is the
noiseless measurement vector.
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After the sparse reconstruction using OMP or BP, only K largest-magnitude atoms of
the estimated signal x̂xx are kept for calculating the relaxed sparse support recovery rates
Rb with δ = 2 as described in (3.51). These rates are averaged after 1000 trials for each
case of SNR. There are many cases of different SNRs (from 5 dB to 40 dB with a step of
5 dB) in this numerical experiment. Subsequently, the achieved relaxed support recovery
rates of OMP and BP in SNR domain for two different MFT sensing matrices ΦΦΦ1 and
ΦΦΦ2 are shown in Fig. 3.5. From these results, we conclude some following arguments:

Figure 3.5. Relaxed sparse support recovery rates (δ = 2) of OMP and BP for two MFT sensing
matrices with two different refinement factors F in the SNR domain (1000 trials for each SNR case)

• A larger refinement factor configuration of a MFT acquisition leads to a poorer re-
laxed sparse support recovery performance of CS sparse reconstruction algorithms.
As can be seen in Fig. 3.5, the relaxed support recovery rates of OMP and BP
using the MFT acquisition ΦΦΦ1 with a smaller refinement factor F = 20 (red and
green lines) are much higher than those using MFT acquisition ΦΦΦ2 with a larger
refinement factor F = 100 ( blue and cyan lines) in all cases of various noise levels.
This result coincides with the analysis of coherence properties in Fig. 3.3.

• BP (cyan or green line) outperforms OMP (blue or red line) in most cases of
different refinement factors (F = 100 or F = 20) and SNRs (from 5dB to 40 dB)
apart from the case of F = 20 and SNR ≤ 22 dB, but consumes more computation
time.
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3.4.5.2 Appropriate MFT acquisition settings

This part analyzes the properties of a CS-MFT technique through numerical experi-
ments. It aims to answer two following questions:

• As shown in Fig. 3.4, a real-valued MFT sensing matrix (green line) has a smaller
mutual coherence at a medium refinement factor (2 ≤ F ≤ 20), in comparison
to the complex-valued one (red line). However, in a large refinement factor con-
figuration (F ≥ 20), both real-valued and complex-valued MFT models possess
large mutual coherences close to one. From these results, we consider the selec-
tion between the complex-valued and real-valued TOF measurements for a higher
performance in a super-resolution MFT acquisition.

• In a commercial CW-TOF camera, high-order harmonics are the unexpected com-
ponents which cause measurement linearity errors [2, 4]. And hence many previous
studies [37, 38] tried to eliminate them from a TOF depth measurement. However,
as Fig. 3.4 illustrates, these high-order harmonics can enhance the incoherence of a
super-resolution MFT sensing matrix. To be concrete, the mean mutual coherence
value of a MFT sensing matrix with an emitted sinusoidal optical signal (L = 1,
yellow line) is higher than that of a MFT sensing matrix with the contribution
of high-order harmonics (L = 5, green line) at most different refinement factors.
From these results, a question arises whether the high-order harmonics in a TOF
measurement have positive influence on a super-resolution MFT acquisition.

For the above purposes, we construct the following four MFT acquisitions with the
same refinement factor F = 100 and maximum frequency fmax = 30 MHz:

• A complex-valued MFT sensing matrix ΦΦΦ3 ∈ C20×500 with L = 5.

• A real-valued MFT sensing matrix ΦΦΦ4 ∈ R20×500 with L = 5.

• A real-valued MFT sensing matrix ΦΦΦ5 ∈ R40×500 with L = 5

• A real-valued MFT sensing matrix ΦΦΦ6 ∈ R20×500 with L = 1.

For the construction of ΦΦΦ3, ΦΦΦ4 andΦΦΦ6, the same set of 20 frequencies with fmax = 30 MHz
is chosen to guarantee a comparison in a fair manner. Similar to the previous numerical
experiment in Fig. 3.5, a Monte Carlo simulation is carried out with 1000 trials for each
SNR case. At each trial, a 3-sparse signal xxx and four noisy measurements vectors yyy3,
yyy4, yyy5 and yyy6, corresponding to ΦΦΦ3, ΦΦΦ4, ΦΦΦ5 and ΦΦΦ6, are randomly generated, similarly as
in Remark. 8. The reconstruction results of OMP and BP based on four above different
MFT acquisitions are analyzed at different SNRs (from 5 dB to 40 dB with a step of 5
dB). The relaxed support recovery rates with δ = 2 after 1000 trials are then shown in
Fig. 3.6.
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Figure 3.6. Relaxed sparse support recovery rates (δ = 2) of OMP and BP for different types of
MFT sensing matrices with a large refinement factor F = 100 in the SNR domain (1000 trials for
each SNR case)

Complex- and real-valued measurements: are represented by two MFT acquisitions
ΦΦΦ3 and ΦΦΦ4 respectively. As can be seen in Fig. 3.6 that the relaxed support recovery rate
of OMP using the real-valued MFT acquisition ΦΦΦ4 (dashed green line) is higher than
that using the complex-valued one ΦΦΦ3 (dashed red line). However, the relaxed rate of
BP using ΦΦΦ4 (solid green line) is inversely lower than that using ΦΦΦ3 (solid red line).

Additionally, as shown in (3.43), a complex-valued TOF measurement comprises two
real-valued TOF samples at the phase offsets τ and τ + π/2. From this reason, the
complex-valued MFT acquisition ΦΦΦ3 with 20 complex-valued TOF measurements have
the same acquisition time as the real-valued one ΦΦΦ5 with 40 real-valued TOF measure-
ments. As Fig. 3.6 illustrates, there is no significant difference between the reconstruction
performances of BP using ΦΦΦ5 ∈ R40×500 (solid blue line) and ΦΦΦ3 ∈ C20×500 (solid red line)
in nearly noiseless cases (SNR ≥ 20 dB). Whereas, the real-valued MFT acquisition ΦΦΦ5
brings slightly higher relaxed support recovery rates of BP in highly noisy cases (SNR
≤ 20 dB) and higher rates of OMP (dashed blue line) in all cases of various SNRs.
An additional comparison between the reconstruction results using ΦΦΦ4 (green lines)

and ΦΦΦ5 (blue lines) in Fig. 3.6 reveals that a super-resolution MFT acquisition with more
TOF measurements brings a higher stability of a good support recovery. These results
are similar to the CS theory in (3.47). However, more measurements simultaneously
waste more acquisition time.

In summary, real-valued TOF measurements have more advantages regarding both
shorter acquisition time and better support recovery performance of OMP in a super-
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resolution MFT acquisition. Therefore, this thesis uses real-valued TOF measurements
for a MFT acquisition. Note that they possess a shorter ambiguity range in comparison
to a complex-valued MFT acquisition, as mentioned in Section 3.4.1.4.

High-order harmonics: a comparison between the results of two real-valued MFT
acquisitions ΦΦΦ4 and ΦΦΦ6 in Fig. 3.6 reveals that the high-order harmonic contribution
(L = 5) brings the higher relaxed support reconstruction rates of both OMP and BP.
These results empirically demonstrate the positive effects of high-order harmonics in a
super-resolution MFT-CS model. Thus, the linearity error compensation methods in the
previous studies [37, 38] are unnecessary in the camera calibration of a super-resolution
CS-MFT technique.

3.4.5.3 Minimum distance

Our goal in this thesis is to guarantee the high stability of a good support recovery in
both large and small MD cases. Therefore, the relaxed support recovery performance
of any CS algorithm or MFT acquisition should be analyzed in the MD domain. This
analysis can be achieved through a Monte Carlo simulation with a large amount of trials
for each MD case (from 5 to 150 bins). At each trial, a sparse signal vector xxx and a
noisy measurement vector yyy are generated as follows:

• A K-sparse signal vector xxx is generated with random non-zero indices whose MD
is equal to the analyzing MD value. Their non-zero magnitudes similarly range
from 0.1 to 10.

• The noisy measurement vector yyy is generated through yyy = ΦΦΦxxx + σσσ with a given
SNR. Conventionally, there are two cases of different SNRs, i.e., 15 dB and 30 dB,
that denote high and low noise-level cases in this analysis.

Next, a recovery algorithm reconstructs the K-sparse signal based on the generated
measurement vector and sensing matrix. The relaxed support recovery rate with a
tolerance offset δ is averaged after all trials for each MD case. Fig. 3.7 demonstrates an
example of the relaxed support performance analysis in the MD domain for the MFT
acquisition ΦΦΦ4 ∈ R20×500 with F = 100. Two algorithms OMP and BP are used for
sparse reconstruction. Then, their relaxed support recovery rates (δ = 2) after 500
trials for each MD are illustrated by the blue and red lines respectively in Fig. 3.7. As
this figure shows, both of two CS reconstruction methods bring poor support recovery
performances in the case of a small MD and inversely a better one at a larger MD [24].
Besides, it can be seen through this analysis that BP (red lines) outperforms OMP (blue
lines) in all cases of MDs and in both two various SNR cases (15 dB and 30 dB).
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Figure 3.7. Relaxed support recovery rates (δ = 2) of BP and OMP using a real-valued MFT
acquisition at different MDs (500 trials for each MD). Choose N = 500,M = 20, L = 5, fmax = 30
MHz, F = 100,K = 3

3.4.5.4 Concerned MFT properties

The support set of a sparse signal vector xxx represents the time profile of MPIs at one
pixel-view. To resolve the MPIs of the entire scene, the noisy sparse reconstruction
in (3.32) has to be carried out for thousands of pixels, e.g., 160 × 120 pixels for a
commercial PMD 19k chip [4]. Whereas, a TOF camera is expected to capture the scene
depth with a video frame rate. For these reasons, the sparse reconstruction using a
MFT acquisition has to run in a short computation time. Therefore, l1- optimization
algorithms (BP) with high run time are inappropriate sparse reconstruction methods
for a super-resolution CS-MFT acquisition although they possess high relaxed support
recovery rates in the previous numerical experiments. Our research aims to explore fast-
processing greedy pursuit methods which bring the good performance in both recovery
results and processing time.
Especially, through the above numerical results, a larger refinement factor causes

poorer sparse signal recovery performance due to the higher coherence of MFT sensing
matrix. From this result, one expects to design a MFT acquisition in the configura-
tion of a small refinement factor. However, this acquisition would possess a high depth
resolution only if the TOF camera can modulate an extremely high-frequency acqui-
sition. For a currently commercial TOF camera, such high-frequency modulation and
demodulation with a high hardware-design complexity cannot be implemented. There-
fore, super-resolution CS techniques are good solution approaches to improve the depth
resolution without hardware updates. However, according to (3.46), a huge amount of
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TOF measurements (M > N) is needed to guarantee the high stability of an exact sparse
recovery but simultaneously consume much acquisition time. Therefore, this thesis aims
to design new super-resolution MFT acquisitions comprising only a few low-frequency
TOF measurements to maintain a high frame rate but simultaneously improve the sparse
recovery performance by many different super-resolution CS techniques.
The accuracy of time profile reconstruction is highly dependent on the accuracy of the

sparse support recovery. Due to the accuracy requirements of target discrimination ap-
plication, a relaxed metric is given to gauge the recovered signal support more correctly.
A high relaxed support recovery rate is our goal for a MFT acquisition in the configura-
tion of a large refinement factor. This good result can guarantee the high stability of a
good support recovery with a tolerance offset δ. This tolerance offset is equivalent to the
accuracy requirement. And it will be given as δ = 2 in our next numerical experiments.
As shown in (3.43), the ambiguity ranges of both complex- and real-valued MFT

acquisitions are extremely large if the frequency set Ψ has a small gcd(Ψ). For instance,
the frequency set of a commercial PMD 19k chip has gcd(Ψ) = 0.25 MHz and hence
Rmax = 600 m for a complex-valued MFT acquisition and Rmax = 300 m for a real-
valued one. Unlike the traditional phase-stepping method, a TOF camera using MFT
acquisition can configure its range of interest through setting the dimension N of sensing
matrix, according to (3.45). For some short-range TOF applications, a small value of
dimension is set to cover a short range of interest. For instance, N = 500 is set to cover
the range of interest R = 25 m in most numerical experiments.

A CS reconstruction method brings a poor support recovery performance at a small
MD and inversely a better one at a larger MD. In the previous research [21, 23, 19], a
lower bound condition on MD was set to guarantee a high sparse recovery performance.
However, we have no restricting condition on MD in our analysis. This thesis aims to
improve this reconstruction performance of MFT acquisition even in the cases of a small
MD or consequently enhance the depth resolution. Note that all cases of MD smaller
than 2δ+1 are unconcerned in our numerical and practical experiments to avoid a wrong
relaxed support evaluation.

Besides, the achieved numerical results demonstrate the following important properties
of a super-resolution MFT acquisition.

• The real-valued MFT acquisition is effective with shorter acquisition time and
better recovery rate, in comparison with the complex-valued ones with the same
large refinement factor (F = 100).

• The presence of high-order harmonics in the TOF cross-correlation function seems
to improve the reconstruction performance of sparse support.
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3.5 Summary
A refinement factor F represents the ratio between the minimum range resolution (Rayleigh
threshold) and the grid spacing of a MFT sensing matrix. It should be noted that the re-
finement factor and the super-resolution factor do not always coincide. As proven in the
numerical experiments, a larger refinement factor leads to a poorer signal reconstruction
performance. If the high stability of a good signal reconstruction is not guaranteed, then
the large refinement factor cannot be considered as a super-resolution factor. Therefore,
our goal in this thesis is to improve this performance or more concisely enhance the
relaxed support recovery rate of a MFT acquisition in a large refinement factor con-
figuration, particularly F = 100. This research approach can be named shortly as the
relaxed super-resolution CS, which has not been investigated in the previous studies
of the TOF frequency diversity [6, 11, 13]. If a high relaxed support recovery rate Rb
(≈ 1) with δ = 2 can be achieved for all cases of various MDs (∆T ≥ 2δ + 1), then this
MFT acquisition possesses a high relaxed super-resolution factor. The MFT acquisition
with the above properties brings potentials to resolve MPIs successfully in a real-life
scene through only a commercial low-cost TOF camera with low-frequency measure-
ments. Besides, the time profile reconstruction consumes short acquisition time with
only a few TOF measurements. For instance, only 20 TOF measurements are used for
3-sparse reconstruction. The presence of the high-order harmonics in the TOF cross-
correlation function has some advantages regarding the better support reconstruction
results. Thus, reducing these harmonics is unnecessary in the TOF camera calibration.
Moreover, we solve (3.32) based on a real-valued MFT acquisition with some advan-
tages regarding shorter acquisition time and better recovery performance. Since the
unknown signal vector xxx is considered as real-valued and the reflective magnitudes of
targets are non-negative, this thesis can solve (3.32) with non-negative constraints. Note
that the randomly generated sparse signals in all numerical experiments in this thesis
are non-negative.
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For the sparse reconstruction in (3.32), the selection of an appropriate CS algorithm
is necessary to guarantee the high stability of accurate sparse reconstruction as well as
fast processing speed for the time profile reconstruction of thousands of observed scene
points or pixels. For these reasons, l1-optimization algorithms with massive computation
time cannot be used in a MFT acquisition although they bring good support recovery
performances as proven in Fig. 3.5. Therefore, this chapter aims to introduce some
greedy pursuit methods for a super-resolution MFT acquisition.
Section 4.1 firstly introduces a super-resolution greedy pursuit, i.e., Band Exclusion

and Local Optimization proposed by Fannjiang et al. [66]. Subsequently, we propose
three other methods, i.e., Modified Cyclic OMP (OMP3) in Section 4.2, Non-negative
Least Squares (POMP) in Section 4.3 and Modified Cyclic Non-negative Magnitude
Adjustment OMP (Ma-OMP3) in Section 4.4. Their reconstruction capabilities are
analyzed for a super-resolution MFT acquisition through numerical experiments in Sec-
tion 4.5. Each one possesses some distinct advantages and disadvantages in different
cases. From these achieved results, a new algorithm, named as Combined based on Min-
imum Distance Orthogonal Matching Pursuit (CMD-OMP) is proposed in Section 4.6
to maintain the high stability of accurate support recovery. Section 4.7 will conclude
some arguments drawn from numerical analysis.

4.1 Band exclusion and local optimization
4.1.1 Band exclusion
In a super-resolution CS problem, Theorem 1.2 of Candes et al. [19] gives a lower bound
condition on MD to guarantee the high stability of an exact sparse signal reconstruction.
Similarly, the band exclusion technique proposed by Fannjiang et al. [66] assumes that
the non-zero atoms are separated by at least an excluded band.

Definition 6. Let 0 < η < 1. Define the η-coherence band of the index element k to be
the set

Bη(k) = {i | cik ≥ η} (4.1)

where cik represents coherence element of sensing matrix ΦΦΦ and the η-coherence band of
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the index set T is the union of the above sets:

Bη(T ) =
⋃
k∈T

Bη(k) (4.2)

Apparently, the radius of the excluded band is considered as the lower bound condition
on MD. It is highly dependent on the given coherence value η. Thus, there exists a
relationship between this MD bound and the coherence value η. For a further analysis,
the mutual coherences η versus the band radius of some super-resolution MFT sensing
matrices are demonstrated by numerical experiments in Fig. 4.1, similar to the studies
by Fannjiang et al. [66]. There are four examples of different MFT acquisitions with a
large refinement factor F = 100, including:

• A real-valued MFT sensing matrix ΦΦΦ1 ∈ R20×500 with a sinusoidal cross-correlation
function or L = 1.

• A real-valued MFT sensing matrix ΦΦΦ2 ∈ R20×500 with high-order harmonic contri-
bution L = 5.

• A complex-valued MFT sensing matrix ΦΦΦ3 ∈ C20×500 with high-order harmonic
contribution L = 5.

• A real-valued MFT sensing matrix ΦΦΦ4 ∈ R40×500 with high-order harmonic contri-
bution L = 5.

For each case of different MFT acquisition and band radius, there are 200 randomly
generated sensing matrix trials. The mutual coherences shown in Fig. 4.1 are the mean
values of these 200 trials. The assumption of the band exclusion technique claims that
there are no two non-zero atoms existing in one excluded band. Therefore, the radius of
excluded band is considered as a lower bound condition on MD.
According to (4.1), the observations of any two non-zero atoms have coherence value

smaller than η. In other words, the results in Fig. 4.1 indicate the excluded band radius
and its corresponding mutual coherence between the observations of any two non-zero
atoms under the restricting condition of excluded band. It can be seen in Fig. 4.1 that
a larger band radius leads to a smaller coherence η. Whereas, if the observations are
more incoherent, then an accurate signal recovery can be achieved by any CS method
with a higher probability. In other words, a larger excluded band radius or a more
relaxed lower bound on MD can bring a higher sparse recovery performance. This fact
has been proven through the numerical studies of Fannjiang et al. [66]. They used OMP
combined with the band exclusion technique (BOMP) for improving the quality of spike
reconstruction. However, this improvement is significantly small. It seems possible that
these unexpected results are due to that the band exclusion technique is inefficient if the
selection of non-zero indices in OMP algorithm is inaccurate. Therefore, Fannjiang et al.
[66] proposed local optimization (LO) method to fix the incorrectly estimated indices.
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Figure 4.1. Mutual coherence versus the band radius for different types of MFT sensing matrices at
F = 100, N = 500

4.1.2 Local optimization
Local optimization (LO) is a residual-minimization technique with an effort to fix the in-
correctly estimated non-zero indices as described in Algorithm 2. The residual ||ΦΦΦxxx−yyy||2
is minimized by varying one index while all other ones are held fixed. The replacing in-
dex is searched among the neighbors of the replaced one. The replacing process is
implemented sequentially for all current non-zero indices.
If we search through all atom indices for a replacement, this process is quite time-

consuming. Inversely, the search with a small local range runs in a short time but cannot
fix the incorrectly estimated index which stays far away from the true one. Therefore,
the local range of searching (LO range) plays a significant role in this LO technique.

Algorithm 2 Local Optimization (LO) with a LO range ∆LO

Input: yyy, ΦΦΦ, k, T0 = {i1, i2, · · · , ik}, ∆LO

Output: Tk
1: for n = 1 to k do
2: xxxn = argminzzz ||ΦΦΦzzz − yyy||2, s.t. supp(z) = (Tn−1\{in})

⋃
{jn}),

where jn ∈ [in −∆LO, in + ∆LO]
3: Tn = supp(xxxn)
4: end for
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4.1.3 BLOOMP
Embedding LO technique into BOMP as described in Algorithm 3, named Band-excluded
Locally Optimized Orthogonal Matching Pursuit (BLOOMP), can strengthen the recon-
struction capabilities of band exclusion technique, as proven in [66]. Conventionally, LO
range ∆LO is set equal to the excluded band radius.

Algorithm 3 Band-excluded, Locally Optimized Orthogonal Matching Pursuit
(BLOOMP)
Input: yyy, ΦΦΦ, K
Output: xxx, T

1: Initialization: xxx0 = 0, rrr0 = y, T0 = ∅
2: for n:=1 to K do
3: in = arg maxi |〈rrrn−1, aaai〉|, with i /∈ Bη(Tn−1)
4: Tn = LO(Tn−1

⋃
in,∆LO)

5: xxxn = argminzzz ||ΦΦΦzzz − yyy||2 s.t. supp(zzz) = Tn
6: rrrn = yyy −ΦΦΦxxxn
7: end for

A Monte Carlo simulation is carried out to prove the reconstruction capabilities of
BLOOMP in a super-resolution MFT acquisition with 1000 trials for each SNR case. In
particular, this part analyzes four above different MFT acquisitions ΦΦΦ1, ΦΦΦ2, ΦΦΦ3 and ΦΦΦ4
with a large refinement factor configuration F = 100. Their mutual coherence values
versus band radius are shown in Fig. 4.1. Assume a lower bound condition on MD be
40 bins for this simulation. Concretely, at each trial, we generate a random 3-sparse
signal vector xxx with ∆T ≥ 40. Subsequently, a noisy measurement vector yyy = ΦΦΦxxx+σσσ is
computed through the above sparse signal and MFT sensing matrix with a specific SNR.
Two greedy pursuits OMP and BLOOMP are sequentially used for the sparse recovery
with the known sparsity K = 3. For BLOOMP, we set the band radius to 39 but the
LO range to only 20 for a high searching speed. After 1000 trials, the relaxed support
recovery rates Rb with a tolerance offset δ = 2 of both OMP and BLOOMP at various
SNRs (from 5 dB to 40 dB) are shown in Fig. 4.2.
It can be seen in Fig. 4.2 that BLOOMP (solid lines) brings higher relaxed support re-

covery performances in all four different MFT acquisitions, compared with OMP (dashed
lines). This comparison reveals the efficiency of BLOOMP in super-resolution MFT ac-
quisitions (F = 100). However, the lower bound condition on MD or more concisely the
band exclusion restricts the applicability scope of BLOOMP. For instance, in the above
simulation, BLOOMP can only be useful to discriminate targets separated by at least
40∆r. Apparently, this assumption is impractical in a real-life scene. In this thesis, we
expect to resolve MPIs successfully with even a small MD (∆T ≥ 2δ+ 1 as explained in
Section 3.4.4) to obtain a higher depth resolution. For this reason, we modify BLOOMP
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Figure 4.2. Relaxed support recovery rates (δ = 2) of OMP and BLOOMP (band radius =40 and
∆LO = 20) for four sensing matrices with a large refinement factor F = 100 at various SNRs (1000
trials for each SNR). Choose fmax = 30 MHz, K = 3, ∆T > 40∆r (bins)

with a smaller band radius and LO range. To be concrete, we repeat the above Monte
Carlo simulation with 1000 trials for each SNR, but the randomly generated 3-sparse
signals acquire a smaller MD with ∆T ≥ 2δ + 1 (choose δ = 2 bins). Subsequently, 20
TOF measurements based on the real-valued MFT acquisition ΦΦΦ2 ∈ R20×500 are gener-
ated with a specific SNR. Many variants of BLOOMP with different settings of band
radius and LO range are used for 3-sparse reconstruction. Since the lower bound on MD
is 5 bins, the largest band radius is 4 bins. These achieved results are shown in Fig. 4.3.
As can be seen in Fig. 4.3 that there is no significant difference between the recovery

results of BLOOMP with a small band radius of one bin (green line) and four bins
(red line). These results indicate that the band exclusion technique seems to be useless
with such a small band radius or more precisely a tiny lower bound condition on MD
in a super-resolution CS problem. However, the sparse support recovery performance
of a super-resolution MFT acquisition can be enhanced through LO technique with an
extended searching range. For instance, as Fig. 4.3 shows, the relaxed support recovery
rates of BLOOMP with a large LO range of 20 bins (cyan line) are significantly higher
than those of BLOOMP with smaller LO ranges, i.e., four bins (red line) and ten bins
(rose line). Note that these variants of BLOOMP have the same band radius of four
bins. Nevertheless, it should be considered that this increase of LO range simultaneously
consumes more searching time.
In summary, the band exclusion technique is only appropriate for our super-resolution
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Figure 4.3. Relaxed support recovery rates (δ = 2) of OMP and different variants of BLOOMP
(different settings of band radius and LO range) for a real-valued MFT sensing matrix Φ ∈ R20×500

with the large refinement factor F=100 at various SNRs (1000 trials for each SNR). Choose N = 500,
L = 5, fmax = 30 MHz, K = 3,∆T > 4∆r (bins)

MFT acquisition if the MD between targets is large. It becomes inefficient in the case of
small MDs. Whereas, LO technique brings the significant improvements of the quality
of the spike reconstruction in all cases of various MDs. Apparently, this atom updating
technique is useful to interact with other greedy pursuit algorithms for fixing support
estimate. However, the LO searching range should be adjusted to guarantee a balance
between the support recovery performance improvement and the consumption of com-
putation time.

4.2 Modified cyclic orthogonal matching pursuit -OMP3
4.2.1 Global optimization
The above LO technique is used to fix the incorrectly estimated indices but has some
disadvantages regarding low processing speed. Additionally, the wrongly estimated in-
dex slowly converges to the true one within a small range of searching. Another atom
updating approach, which has been introduced in Cyclic Orthogonal Matching Pursuit
method [67], is an alternative solution to overcome the above drawbacks. In this tech-
nique, the replacing index is selected to minimize the residual ||ΦΦΦTxxxT − yyy||2 similar to
LO technique, but through a different searching procedure. More precisely, it selects an
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Algorithm 4 Global Optimization (GO)

Input: yyy, ΦΦΦ, k, T = {i1, i2, · · · , ik}, column-normalized matrix Φ̃ΦΦ
Output: T , xxxT

1: Compute xxxT = argminzzzT ||ΦΦΦTzzzT − yyy||2
2: Compute rmin = ||ΦΦΦTxxxT − yyy||2
3: while true do
4: Set stopping = true
5: for n = 1 to k do
6: Ttmp = T\{in},

xxxTtmp = xxxT \{xin},
7: rrrn = yyy −ΦΦΦTtmpxxxTtmp

8: Choose the column φ̃φφimax
of Φ̃ΦΦ which satisfies

imax = argmax1≤k≤N |zk| where zk = φ̃φφ
H
k rrrn

9: Tnew = Ttmp
⋃
imax

10: Compute xxxTnew = argminzzzTnew
||ΦΦΦTnewzzzTnew − yyy||2

11: Compute rnew = ||ΦΦΦTnewxxxTnew − yyy||2
12: if rmin > rnew then
13: Update Topt = Tnew, xxxTopt = xxxTnew , rmin = rnew
14: Set stopping = false
15: end if
16: end for
17: if stopping==false then
18: Update T = Topt and xxxT = xxxTopt

19: else
20: break
21: end if
22: end while

appropriate replacing index through finding the best-matching component. This process
is similar to the atom selection module of OMP as described in Algorithm 4. According
to its operating principle, this technique has an advantage regarding high convergence
speed over LO technique. Since the replacing indices are no longer restricted to a local
range, a wrongly estimated index can quickly converge to the true one after only one
iteration. This technique is referred as global optimization (GO) in this thesis.

4.2.2 Modified cyclic OMP - OMP3
Sturm et al. [67] have proposed Cyclic OMP to improve sparse recovery performance
in a CS model. At the end of each non-zero selection iteration in OMP, they run GO
technique as described in Algorithm 5 to correct the wrongly estimated indices quickly
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without exhaustive searching.

Algorithm 5 Conventional Cyclic Orthogonal Matching Pursuit
Input: yyy, ΦΦΦ, K
Output: xxx, T

1: Initialization: xxx0 = 0, rrr0 = y, T0 = ∅
2: for n = 1 to K do
3: in = arg maxi |〈rrrn−1, aaai〉|
4: Tn = GO(Tn−1

⋃
in)

5: xxxn = argminzzz ||ΦΦΦzzz − yyy||2 s.t. supp(zzz) = Tn
6: rrrn = yyy −ΦΦΦxxxn
7: end for

Conventionally, an atom updating procedure, e.g., GO technique in Cyclic OMP or
LO technique in BLOOMP, runs after each iteration of OMP has done with a new
non-zero index. It is aimed at correcting all selected non-zero indices in each iteration
through minimizing the residual cost. As a result, the estimate of new index in the next

Algorithm 6 Modified Cyclic Orthogonal Matching Pursuit
Input: yyy, ΦΦΦ, K
Output: xxx, T

1: Initialization: xxx0 = 0, rrr0 = y, T0 = ∅
2: for n = 1 to K do
3: in = arg maxi |〈rrrn−1, aaai〉|
4: Tn = Tn−1

⋃
in

5: xxxn = argminzzz ||ΦΦΦzzz − yyy||2 s.t. supp(zzz) = Tn
6: rrrn = yyy −ΦΦΦxxxn
7: end for
8: T = GO(TK)
9: Additional step: T = LO(T,∆LO)

10: xxx = argminzzz ||ΦΦΦzzz − yyy||2 s.t. supp(zzz) = T

iteration becomes more accurate. However, this advantage cannot be guaranteed if the
sensing matrix is highly coherent. According to Algorithm 4 or Algorithm 2, GO or
LO technique corrects each index while the other ones are held fixed. If the set of all
selected non-zero indices is incomplete, then the observation of the updated index and
the residual vector may be highly coherent to each other. From this result, finding the
replacing index becomes more inaccurate. Therefore, the atom updating procedure is
only useful in a super-resolution CS problem if the estimated support set is complete.
More concretely, this procedure should run after OMP has selected K non-zero indices.
Thus, we add GO technique at the end of OMP to fix the incorrect indices efficiently
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and simultaneously reduce the computation time. This method is named as Modified
Cyclic OMP or shortly OMP3 in this thesis and described in Algorithm 6.

4.2.3 Combination between OMP3 and LO technique
GO and LO techniques are two various atom updating procedures with their disadvan-
tages and advantages:

• Theoretically, LO techniques consume more time because of an extensive searching
range. Additionally, it is only useful if the updated indices close to the actual ones.

• On the contrary, GO techniques can quickly correct the wrongly estimated indices
even if the estimated and actual non-zero indices are far away to each other. How-
ever, the accuracy of these techniques is significantly low in a super-resolution CS
problem because of a highly coherent sensing matrix. The replacing indices do not
coincide with the actual ones but stay around them locally.

From these properties, LO technique can be a supportive solution to fix the wrongly
updated results of GO technique, as described in Algorithm 6.

4.3 Non-negative least squares optimization - POMP
4.3.1 Non-negative constraints
As stated in Section 3.4.5.2, the time profile of MPIs can be reconstructed through the
non-negative sparse support estimation using a MFT acquisition. Therefore, solving the
following non-negative least squares minimization problem:

xxx = argmin
zzz
||ΦΦΦzzz − yyy||2 s.t. zzz ≥ 0 (4.3)

can also resolve MPIs successfully. Lawson [68] introduced a greedy pursuit method,
namely Non-negative Least Squares, to estimate a non-negative solution for the above
problem (4.3). In our research, it is shortly referred as POMP.

4.3.2 Negative atom removal module
POMP can be considered as a class member of greedy pursuit since it uses the same
atom selection procedure of OMP, as described in Algorithm 7. At each iteration, after
least squares minimization, the magnitude of some support indices may be negative.
This result violates the non-negative constraint of the problem (4.3). Therefore, the
Negative Atom Removal (NAR) approach aims to eliminate these negative indices from
the current support set. As a result, the achieved solution is non-negative.
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Algorithm 7 Negative Atom Removal Module (NAR)
Input: yyy, ΦΦΦ, xxx, T , xxxprev
Output: xxx, T

1: while ∃xj < 0 for j ∈ T do
2: Let α = min xprev,i

xprev,i−xi
for i ∈ T and xi ≤ 0

3: xxxprev = xxxprev + α(xxx− xxxprev)
4: Set T = supp(xxxprev)
5: xxx = argminzzz ||ΦΦΦzzz − yyy||2 s.t. supp(zzz) = T
6: end while

Algorithm 8 Non-negative least squares - POMP
Input: yyy, ΦΦΦ, tolerance ε
Output: xxxn, Tn

1: Initialization: xxx0 = 0, rrr0 = y, T0 = ∅ and n=1
2: while ||ΦΦΦxxx− yyy||2 ≥ ε do
3: in = arg maxi |〈rrrn−1, aaai〉|
4: Tn = Tn−1

⋃
in

5: xxxn = argminzzz ||ΦΦΦzzz − yyy||2 s.t. supp(zzz) = Tn
6: if ∃xj < 0 for j ∈ Tn then
7: (Tn, xxxn) = NAR(xxxn, xxxn−1, T)
8: end if
9: Set xxxn−1 = xxxn

10: rrrn = yyy −ΦΦΦxxxn
11: end while

4.3.3 Advantages and disadvantages
As described in Algorithm 8, POMP stops until finding a linear combination of observa-
tions closest to the measurement vector. Therefore, the signal reconstruction is exact if
measurements are noiseless. Additionally, POMP requires no priorly known information
of the sparsity. Nevertheless, it runs with a significant amount of iterations to obtain
the final result and hence consumes much computation time and brings non-negative
solutions with a higher sparsity (||xxx||0 ≥ K). Thus, only K largest-magnitude atoms are
kept for a relaxed support evaluation in our numerical experiments.
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4.4 Non-negative magnitude adjustment orthogonal matching
pursuit

For a fast non-negative estimation, we propose a new reconstruction algorithm, named
Non-negative magnitude adjustment orthogonal matching pursuit (Ma-OMP) in this
part.

4.4.1 Basic idea
In each atom selection iteration of the greedy pursuits, the estimate of the atom mag-
nitudes conventionally relies on least-mean-squares minimization. However, in a super-
resolution CS problem, this magnitude estimation is inaccurate if the observations of
non-zero atoms are highly coherent. Suppose that the residual is the linear combination
of two highly coherent columns φφφi1 and φφφi2 of a super-resolution CS sensing matrix:

rrr = a1φφφi1 + a2φφφi2 (4.4)

where a1 and a2 are the actual non-negative magnitudes. Then, a new non-zero index is
selected through finding the best matching between the residual vector rrr and all sensing
matrix columns φφφi:

inew = argmax
i
φφφHi rrr (4.5)

Since the coherence of columns from i1 to i2 is high and a1, a2 are non-negative, the
newly selected non-zero index stays around i1 or i2 and due to least mean square (LMS)
minimization, its estimated magnitude will be:

anew = λ1a1 + λ2a2 (4.6)

where λ1 and λ2 are weighting factors which highly depend on the coherences between
the observation of the wrongly estimated index φφφimax and two columns φφφi1 and φφφi2
respectively. Since a1 and a2 are non-negative, λ1 and λ2 are also non-negative. In the
worst case, if all three columns φφφinew , φφφi1 and φφφi2 are likely similar then λ1 = λ2 = 1 and
hence anew = a1 + a2. These wrongly estimated magnitudes may cause the inaccuracy
of atom selection in the next iterations.

4.4.2 Non-negative magnitude adjustment orthogonal matching pursuit -
Ma-OMP

Due to the above analysis, this method uses an adjustment factor (0 < ρ ≤ 1) to regulate
the wrongly estimated magnitude anew in (4.6). As described in Algorithm 9, this
adjustment process is proceeded only if the newly selected atom index is not present in
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the current support set Tk−1. The adjustment of the estimated non-negative magnitude
is expected to bring a high accuracy of atom selection in the next iterations.

Algorithm 9 Non-negative Magnitude Adjustment Orthogonal Matching Pursuit - (Ma-
OMP)
Input: yyy, ΦΦΦ, K
Output: xxx, T

1: Initialization: xxx = 0, rrr0 = y, T0 = ∅, k = 0
2: while ||Tk||0 < K do
3: k = k + 1
4: ik = arg maxi |〈rrrk−1, aaai〉|
5: Compute ak = argminak

||akφφφik − rrrk−1||2
6: if ik ∈ Tk−1 then
7: xik = xik + ak
8: else
9: Tk = Tk−1

⋃
ik

10: xik = ρak
11: end if
12: rrrk = yyy −ΦΦΦxxx
13: end while
14: Set T = TK
15: xxx = argminzzz>0 ||ΦΦΦzzz − yyy||2 s.t. supp(zzz) = T

4.4.3 Modified non-negative magnitude adjustment orthogonal matching
pursuit - Ma-OMP3

Modified Non-negative Magnitude Adjustment Orthogonal Matching Pursuit or shortly
Ma-OMP3 is the insertion of a GO step at the end of Ma-OMP to fix the wrongly
estimated indices, similar to OMP3. This method is described in Algorithm 10. Besides,
LO technique can additionally improve the quality of support recovery of Ma-OMP3.

Algorithm 10 Modified Cyclic Non-negative Magnitude Adjustment Orthogonal
Matching Pursuit - Ma-OMP3
Input: yyy, ΦΦΦ, K
Output: xxx, T

1: [xxx, T ]= Ma-OMP(yyy, ΦΦΦ, K)
2: T = GO(TK)
3: Additional step: T = LO(T,∆LO)
4: xxx = argminzzz>0 ||ΦΦΦzzz − yyy||2 s.t. supp(zzz) = T
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Both POMP and Ma-OMP3 are non-negative greedy pursuits in this thesis. The
number of running iterations in Ma-OMP is larger than that in OMP but significantly
smaller than that in POMP. As a result, Ma-OMP3 has a short processing time.

4.4.4 Optimized adjustment factor
Different positive adjustment factors ρ can bring different support recovery performances
of Ma-OMP3. For instance, if ρ ≈ 1, Ma-OMP3 is equivalent to OMP3. Whereas, if the
adjustment factor is significantly small, the atom selection module of Ma-OMP3 aims
to select simultaneously neighboring indices with highly coherent observations. There-
fore, an adjustment factor should be selected appropriately for enhancing the sparse
reconstruction capabilities of Ma-OMP3.

4.5 Numerical results
In this part, the reconstruction performance of several proposed methods, i.e., BLOOMP,
OMP3, POMP, Ma-OMP3, are analyzed for a super-resolution MFT acquisition in the
configuration of a large refinement factor (F = 100). These results are then compared
to those of some super-resolution l1-optimization algorithms, i.e., BPIC, SURE-IR [23].

4.5.1 Preliminaries
Similar to the previous numerical experiments in Section 3.4, we carry out Monte Carlo
simulations in this part to obtain the reconstruction capabilities of each CS algorithm
in the cases of various SNRs and various MDs.

• The first analysis of a CS algorithm demonstrates its relaxed support recovery
rates Rb with a tolerance offset δ in the cases of various SNRs (from 5dB to 40
dB). The results are achieved after 3000 trials for greedy pursuits or 500 trials for
basis pursuits (BP) in each case of SNR. At each trial, a non-negative K-sparse
signal is generated with a lower bound condition ∆T ≥ 2δ + 1 and subsequently a
noisy measurement vector.

• The second analysis is the relaxed support recovery rates Rb with a tolerance offset
δ at various MDs (from 2δ + 1 to 150 bins). Different from the first analysis, we
generate a non-negative K-sparse signal whose MD is equal to the analyzed MD
value. All other procedures are similar to the first one. For this analysis, there are
two cases of SNRs, i.e., 15 dB (high noise level) and 30 dB (low noise level). The
achieved results are averaged after 500 trials for greedy pursuits or 200 trials for
basis pursuits in each case of MD.
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For the comparison between CS reconstruction algorithms, the same parameters of a
MFT acquisition are set in all Monte Carlo simulations. For 3-sparse reconstruction, a set
of 20 different frequencies are selected randomly from the full set Ψ with fmax = 30 MHz.
According to (3.31), we construct a real-valued super-resolution MFT sensing matrix
ΦΦΦ ∈ R20×500 with L = 5 and a large refinement factor F = 100.

4.5.2 Optimized adjustment factor of Ma-OMP3
This part aims to indicate which adjustment factor ρ is the best choice for the proposed
recovery method Ma-OMP3. For a comparison, several variants of Ma-OMP3 with
different values of ρ ∈ {0.9, 0.8, 0.75, 0.7, 0.5, 0.3} are used for 3-sparse reconstruction
based on the same realisation of the measurement vector yyy and MFT sensing matrix ΦΦΦ.
The achieved results in the cases of various SNRs and MDs are shown in Fig. 4.4 and
Fig. 4.5 respectively.

(a) Relaxed support recovery rate with δ = 2

Figure 4.4. Comparison between support recovery performance of different Ma-OMP3 variants with
different values of ρ for the real sensing matrix Φ20×500 at different SNRs (3000 trials for each SNR).
Choose N = 500, L = 5, fmax = 30 MHz, F = 100,K = 3, ∆r = 5 cm.

Firstly, as can be seen in Fig. 4.4 that the variants of Ma-OMP3 with ρ = 0.8 (red line)
and ρ = 0.9 (blue line) bring higher relaxed support recovery rates with two different
tolerance offsets, i.e., δ = 2 and δ = 5, when SNR is high. Whereas, the lower values of ρ
(0.5 - yellow line and 0.3 - cyan line) are apparently the wrong choices with significantly
low reconstruction rates. Secondly, as Fig. 4.5 shows, the variants of Ma-OMP3 with
ρ = 0.9 (blue line) acquires the highest rate (δ = 2) at large MDs. Whereas, the variant
of Ma-OMP3 with ρ = 0.7 (green line) brings the highest rate (δ = 2) at small MDs.
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(b) Relaxed support recovery rate with δ = 5

Figure 4.4. Comparison between support recovery performance of different Ma-OMP3 variants with
different values of ρ for the real sensing matrix Φ20×500 at different SNRs (3000 trials for each SNR).
Choose N = 500, L = 5, fmax = 30 MHz, F = 100,K = 3, ∆r = 5 cm (cont).

(a) 15dB, δ = 2 (bins)

Figure 4.5. Comparison between support recovery performance of different Ma-OMP3 variants with
different values of ρ for the real sensing matrix Φ20×500 at different MDs (500 trials for each MD).
Choose N = 500, L = 5, fmax = 30 MHz, F = 100,K = 3, ∆r = 5 cm.
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(b) 30dB, δ = 2 (bins)

Figure 4.5. Comparison between support recovery performance of different Ma-OMP3 variants with
different values of ρ for the real sensing matrix Φ20×500 at different MDs (500 trials for each MD).
Choose N = 500, L = 5, fmax = 30 MHz, F = 100,K = 3, ∆r = 5 cm (cont).

For a balance between them, ρ = 0.8 (red line) is apparently an appropriate choice for
Ma-OMP3 to achieve moderate reconstruction rates in all cases of various MDs and
SNRs. Thus, we set ρ = 0.8 for Ma-OMP3 in our subsequent numerical and practical
experiments.

4.5.3 Comparison between different methods
This part aims to compare the reconstruction capabilities of many proposed greedy pur-
suit methods, i.e., BLOOMP, OMP3, POMP, and Ma-OMP3. Besides, two other super-
resolution CS methods, i.e., SURE-IR[23] and BPIC, are additionally analyzed. Before
sparse signal reconstruction, each algorithm requires some following configurations:

• OMP3, POMP and Ma-OMP3 assume the availability of the known sparsityK = 3.

• BPIC is l1 optimization method for the problem P2 in (3.5). It assumes the avail-
ability of the known noise variance ε = 1.2||yyy − ŷ̂ŷy||2 where ŷ̂ŷy is the noiseless mea-
surement vector. CVX-package is used for implementing this method in Matlab.

• BLOOMP is configured with an excluded band radius of 5 bins and a LO range of
20 bins.
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• SURE-IR is a dictionary refinement algorithm proposed by Fang et al. [23]. The
initial number of grids is set equal to K = 3 to reduce computation time.

Figure 4.6. Comparison between support recovery performance of different methods for the real
sensing matrix Φ20×500 at different SNRs (3000 trials for each SNR). Choose N = 500, L = 5, fmax

= 30 MHz, F = 100,K = 3, ∆r = 5 cm

After sparse reconstruction, the achieved results are evaluated under the relaxed de-
tecting condition with a tolerance offset δ = 2. Fig. 4.6 and Fig. 4.7 demonstrate these
relaxed support recovery rates in the cases of different SNRs and MDs respectively.
Firstly, it can be seen in Fig. 4.6 that the relaxed support rate of l1-optimization

(BPIC) (brown line) is the highest one among all analyzed methods at most cases
of SNRs. The significant strength of BPIC occurs at high SNRs (SNR ≥ 22 dB). It
seems possible that these good results are due to the extremely accurate noise variance
ε = 1.2||yyy − yyynoiseless|| in the cases of high SNRs. However, such a precise prediction of
a noise variance is usually hard in a practical application. Whereas, as Fig. 4.7 shows,
BPIC brings the highest rates at small MDs but the lower ones at large MDs. From
these results, although BPIC consumes a massive computation time, it seems to be not
the best method in all cases. For instance, OMP3 outperforms BPIC in the cases of
large MDs (∆T ≥ 45).
Secondly, SURE-IR (orange lines) can bring only a moderately good reconstruction

results, in comparison to greedy pursuit methods. As Fig. 4.6 shows, the relaxed support
rates of OMP3 and Ma-OMP3 are even higher than those of SURE-IR in the highly noisy
cases (SNR≤ 26 dB). Whereas, POMP outperforms SURE-IR in the cases of high SNRs.
In general, SURE-IR brings no impressive reconstruction results.
Thirdly, BLOOMP (turkish blue lines) outperforms OMP in all cases of various SNRs
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(a) 15dB, δ = 2 (bins)

(b) 30dB, δ = 2 (bins)

Figure 4.7. Comparison between support recovery performance of different methods for the real
sensing matrix Φ20×500 at different MDs (500 trials for each MD). Choose N = 500, L = 5, fmax =
30 MHz, F = 100,K = 3, ∆r = 5 cm

and MDs. But its relaxed support recovery rates are significantly lower than those of
the other greedy pursuit methods, i.e., OMP3, POMP, and Ma-OMP3, (green, red, rose
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lines) in most cases of SNRs and MDs. Exceptionally, in Fig. 4.7a, this method has some
advantages over BPIC and POMP (brown and red lines) at large MDs when SNR is 15
dB.
Especially, as Fig. 4.6 shows, OMP3 and Ma-OMP3 (green and rose lines) have ad-

vantages in the cases of low SNRs while POMP (red line) performs better at high SNRs.
Moreover, OMP3 and Ma-OMP3 with the support of LO technique (yellow and cyan
lines) can even bring a significant improvement of support recovery performance in the
cases of high SNRs. Additionally, as Fig. 4.7 shows, OMP3 (green lines) outperforms
POMP and Ma-OMP3 (red and rose lines) at small MDs while POMP and Ma-OMP3
outperform OMP3 at large ones. From these results, we summarize:

• OMP3 is an appropriate method at large MDs without any concern of SNR.

• POMP is an appropriate method at small MDs without any concern of SNR.
However, it consumes much computation time.

• Ma-OMP3 is an appropriate method at small MDs only in the cases of very low
SNRs (SNR =15 dB). Besides, this method brings better support recovery rates
at large MDs.

Eventually, the proposed greedy pursuits, i.e., POMP, Ma-OMP, and OMP3, have
their reconstruction strengths in some cases of MDs or SNRs for a super-resolution
MFT acquisition. More concisely, as can be seen in Fig. 4.7 that the sum of these
strengths (red lines in small-MD cases and green lines in large-MD cases) outperforms
the available super-resolution CS algorithms, e.g., BLOOMP, SURE-IR, BPIC. Besides,
these greedy pursuits run with fast-processing speed. However, they require a known
sparsity. Additionally, LO technique shows its capabilities to improve the relaxed support
recovery performance of OMP3 and Ma-OMP in the cases of small MDs and high SNRs
(see Fig. 4.7b).

4.5.4 Considered parameters
There are many different parameters which influence on the recovery performance of a
CS algorithm. Thus, in this part, we aim to analyze three factors including number of
measurements (M), dynamic range (DR) and signal sparsity (K) in a super-resolution
MFT acquisition.

4.5.4.1 Number of measurements

According to CS theory in (3.46), there exists a lower bound on the number of mea-
surements to guarantee a high stability of accurate K-sparse reconstruction. However,
if the mutual coherence of the sensing matrix is significantly large, we theoretically

69



4 Super-resolution compressed sensing methods

need a huge number of measurements for a good reconstruction quality. Although our
super-resolution MFT sensing matrix with F = 100 is highly coherent, our current ex-
periments uses only 20 TOF measurements to reconstruct a 3-sparse signal. For this
reason, the quality of the previous sparse reconstruction is certainly poor. In this part,
we analyze the variation of the recovery performance with an increase of the measure-
ment number. To be concrete, three super-resolution MFT acquisitions with M = 20,
M = 40 and M = 60 are constructed with the same parameters, i.e., L = 5, N = 500,
fmax = 30 MHz, F = 100. Similar to the previous numerical experiments, a Monte Carlo
simulation is carried out with 500 trials for each MD case to achieve the reconstruction
results in three above MFT acquisitions at various MDs. Three greedy pursuit meth-
ods, i.e., OMP3, POMP, and Ma-OMP3 are used for the 3-sparse signal reconstruction.
Their achieved relaxed support recovery rates are demonstrated with SNR = 15 dB in
Fig. 4.8a and SNR = 30 dB in Fig. 4.8b.

(a) 15dB, δ = 2 (bins)

Figure 4.8. Comparison between support recovery performance of different real sensing matrices
Φ20×500, Φ40×500 and Φ60×500 at different MDs (500 trials for each MD). Choose L = 5, fmax =
30 MHz, F = 100,K = 3, ∆r = 5 cm.

Fig. 4.8 clearly shows that more measurements can bring higher relaxed support re-
covery rates (δ = 2) of all three used methods in all cases of MDs when SNR is low
(SNR = 15 dB) or high (SNR = 30 dB). However, the first increase of 20 measurements
(from M = 20 - dot lines to M = 40 - solid lines) brings a significantly higher improve-
ment of recovery quality, compared to the second increase (from M = 40 - solid lines to
M = 60 - dashed lines). These results indicate that there may exist an upper bound on
the measurement number at which the improvement of recovery performance is signifi-
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(b) 30dB, δ = 2 (bins)

Figure 4.8. Comparison between support recovery performance of different real sensing matrices
Φ20×500, Φ40×500 and Φ60×500 at different MDs (500 trials for each MD). Choose L = 5, fmax =
30 MHz, F = 100,K = 3, ∆r = 5 cm (cont).

cantly small if increasing the number of measurements. Eventually, in a super-resolution
CS problem, more measurements consume more acquisition time but apparently do not
guarantee a highly better sparse reconstruction quality as in expectation.

4.5.4.2 Dynamic range

Let xxx be K-sparse vector. Dynamic range of xxx is defined by:

DR = xmax
xmin

(4.7)

where
xmax = max

k,xk 6=0
|xk|, xmin = min

k,xk 6=0
|xk|, (4.8)

As proven in [19, 66], dynamic range (DR) is a crucial factor which influences much
on sparse recovery performance of any CS algorithm in a super-resolution CS problem.
To be concrete, it hardly reconstructs a sparse signal support accurately in the case of
a large DR. Therefore, this part carries out a similar numerical experiment to show the
reconstruction capabilities of three concerned algorithms OMP3, POMP and Ma-OMP3
in the cases of two different DRs, i.e., DR = 1 (small) and DR = 20 (large). Their
relaxed support recovery rates are averaged after 500 trials for each case of different MD
(from 1 to 150 bins) and then demonstrated in Fig. 4.9.
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(a) 15dB, δ = 2 (bins)

(b) 30dB, δ = 2 (bins)

Figure 4.9. Comparison between support recovery performance for the cases of two different DRs
at different MDs (500 trials for each MD). Choose N = 500, M = 20, L = 5, fmax = 30 MHz,
F = 100, K = 3, ∆r = 5 cm.

As Fig. 4.9 shows, the reconstruction quality of all three methods in the case of a
small DR (solid lines) is much better than that in the case of a large DR (dash lines).
These results coincide with the theorems proven by many previous studies [19, 66].
Additionally, Ma-OMP3 (red lines) outperforms OMP3 (blue lines) at a small DR but
OMP3 inversely does at a large DR.
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4.5.4.3 Sparsity

This part evaluates the recovery performance for a super-resolution MFT acquisition in
the cases of different sparsity values (K = 3 or K = 6). For this analysis, we construct
a real-valued MFT sensing matrix ΦΦΦ ∈ R40×1200 with a large refinement factor F = 100.
Similar to the previous simulations, we use three greedy pursuit methods, i.e., OMP3,
POMP, and Ma-OMP3 forK-sparse signal reconstruction. A larger dimension N = 1200
is selected so that many cases of different MDs from 1 to 150 bins can be included in
this experiment. Besides, the maximum separation between non-zero atoms in sparse
signal xxx is maintained below 180 bins for a comparison between 6-sparse and 3-sparse
signal reconstruction in a fair manner. The achieved relaxed support recovery rates
with a tolerance offset δ = 2 are averaged after 500 trials for each MD case and then
demonstrated for the case of SNR = 15 dB in Fig. 4.10a and SNR = 30 dB in Fig. 4.10b.

(a) 15dB, δ = 2 (bins)

Figure 4.10. Comparison between support recovery performance for different sparsity K at different
MDs (500 trials for each MD). Choose N = 1200, M = 40, L = 5, fmax = 30 MHz, F = 100,
∆r = 5 cm.

The results in Fig. 4.10 indicate that the relaxed support recovery rates of all three
methods become lower in all cases of MDs for the 6-sparse reconstruction. Eventually,
we need more TOF measurements for resolving more MPIs in a real-life scene.
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(b) 30dB, δ = 2 (bins)

Figure 4.10. Comparison between support recovery performance for different sparsity K at different
MDs (500 trials for each MD). Choose N = 1200, M = 40, L = 5, fmax = 30 MHz, F = 100,
∆r = 5 cm (cont).

4.6 Combined OMP based on predicted minimum distance -
CMD-OMP

4.6.1 Basic idea
As proven earlier in Fig. 4.7, three methods, i.e., OMP3, Ma-OMP3, and POMP possess
their strengths in the cases of various MDs and SNRs. Therefore, if the minimum
distance and noise level can be predicted, then one of three above methods can be
chosen appropriately for a specific case. As a result, a higher stability of accurate sparse
recovery can be obtained through this combination. Due to this solution approach, we
introduce Combined OMP based on Predicted Minimum Distance (CMD-OMP).
Firstly, the strengths of all three methods should be explored more carefully in the

cases of various MDs and SNRs. For this purpose, a Monte Carlo simulation is car-
ried out to achieve the relaxed support recovery rates (δ = 2) of each method in a
specific case of MD and SNR. In this analysis, we construct a real-valued MFT sens-
ing matrix ΦΦΦ ∈ R20×500 with the same previous parameters L = 5, fmax = 30 MHz,
F = 100,M = 20 and N = 500. Fig. 4.11a, Fig. 4.11c and Fig. 4.11e demonstrate the
achieved results of POMP, OMP3 and Ma-OMP3 respectively for the 3-sparse recon-
struction.

A comparison between the results of POMP in Fig. 4.11a and OMP3, Ma-OMP3 in
Fig. 4.11c and Fig. 4.11e reveals that POMP outperforms at small MDs in most cases of
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(a) POMP (b) Comparison between POMP and OMP3

(c) OMP3 (d) Comparison between POMP and Ma-OMP3

(e) Ma-OMP3 (f) Comparison between OMP3 and Ma-OMP3

Figure 4.11. 3D representation of the relaxed support recovery performance (δ = 2) of OMP3,
POMP and Ma-OMP3 at different MDs and SNRs (500 trials for each pair of SNR and MD). Choose
N = 500,M = 20, L = 5, fmax = 30 MHz, F = 100,K = 3, ∆r = 5 cm

SNRs. However, these result demonstrations are apparently hard to give more arguments
about the comparison between three methods. For this reason, the reconstruction results
of each two algorithms are mapped together into the same 3D figure. Each point of the
new image represents which method possesses a higher recovery rate in a specific case
of MD and SNR. For instance, in Fig. 4.11b, the green points denote the cases of MDs
and SNRs at which POMP outperforms OMP3. Inversely, the red region indicates
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Algorithm 11 Combined based on Minimum Distance Orthogonal Matching Pursuit
(CMD-OMP)
Require: yyy, ΦΦΦ, K
Ensure: x̂xx, T

1: Estimate ∆Tpre
2: if (∆Tpre ≥ ∆Ttuning) then
3: Run OMP3 with yyy, ΦΦΦ to estimate the support T
4: else
5: Run POMP with yyy, ΦΦΦ to estimate the support T
6: end if
7: Estimate x̂xx(T ) = ΦΦΦ(:, T )\yyy

where OMP3 outperforms POMP. Similarly, Fig. 4.11d and Fig. 4.11f show the visual
comparison between POMP and Ma-OMP3 and the visual comparison between OMP3
and Ma-OMP3 respectively.
As can be seen in Fig. 4.11b and Fig. 4.11d, POMP brings better recovery perfor-

mances in most cases of small MDs. Exceptionally, Ma-OMP3 outperforms POMP in
the case of a significantly low SNR (SNR ≤ 12 dB) when MD is very small. In general, if
the measurement noise level is not high, POMP is the best method for the cases of small
MDs, compared to OMP3 and Ma-OMP3. On the contrary, as Fig. 4.11d and Fig. 4.11f
show, OMP3 is the best one at large MDs. In summary, OMP3 and POMP have some
advantages regarding reconstruction capabilities in the cases of various MDs. The newly
proposed method CMD-OMP aims to integrate these strengths of both POMP and
OMP3. Suppose that MD is priorly known in the current scenario, then a correct choice
between POMP and OMP3 can bring a good support recovery result. The new method
CMD-OMP is described in Algorithm 11. For an accurate selection of reconstruction
algorithm, the tuning parameter ∆Ttuning and the predicted MD ∆Tpre of CMD-OMP
should be estimated correctly for each specific scenario.

4.6.2 Tuning parameter estimation
Tuning parameter ∆Ttuning is the MD threshold at which CMD-OMP changes the se-
lection from OMP3 to POMP or inversely. More precisely, OMP3 is selected for sparse
recovery if the predicted MD is larger than this tuning parameter. Otherwise, POMP is
selected for the case of a smaller MD. Therefore, the choice of tuning parameter plays
a significant role in CMD-OMP. A correct choice of ∆Ttuning can promote the strengths
of OMP3 and POMP, but inversely a wrong one causes a poor support recovery perfor-
mance.
The results in Fig. 4.11b indicate the tuning region between POMP and OMP3 in

the cases of different SNRs. To be concrete, a value ∆Ttuning ∈ [50, 100] is appropriate
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for CMD-OMP in the super-resolution MFT acquisition ΦΦΦ ∈ R20×500 with F = 100.
Note that these values vary wiith different MFT system settings, e.g., refinement factor
(F ), amount of measurements (M), a range of interest or dimension (N). Therefore, for
each various MFT acquisition, a comparison analysis between OMP3 and POMP which
is similar to the results in Fig. 4.11b should be carried out again for re-identifying the
tuning border of MD in CMD-OMP.

4.6.3 Minimum distance prediction
Besides tuning parameter, a correct selection of the appropriate recovery method (POMP
or OMP3) highly depends on the predicted MD. However, the accurate estimation of the
actual MD for a specific scenario seems to be impossible in practice if the MFT sensing
matrix is highly coherent. Therefore, CMD-OMP aims to explore whether the MD is
smaller or larger than the given tuning parameter. Furthermore, this procedure should
run shortly in order not to slow down CMD-OMP.
As shown in Fig. 3.5, the support recovery performance of OMP is significantly

higher in the configuration of a smaller refinement factor. Additionally, OMP is a fast-
processing greedy pursuit. Therefore, the prediction of MD in our proposed CMD-OMP
relies on these advantages of OMP. Firstly, based on the available super-resolution MFT
sensing matrix ΦΦΦ with F = 100, we construct a MFT sensing matrix ΦΦΦ0 with the same
parameters but a smaller refinement factor F0. For the same range of interest, the
dimension N0 of ΦΦΦ0 is smaller than the dimension N of ΦΦΦ with a scaling factor:

N

N0
= F

F0
(4.9)

The measurement vector yyy = ΦΦΦxxx + σσσ is also the multiplication between the MFT
sensing matrix ΦΦΦ0 and the K-sparse signal xxx0. From this point, OMP is used to estimate
the K-sparse signal support (T0) of xxx0 based on the measurement vector yyy and the MFT
sensing matrix ΦΦΦ0. From this result, the MD ∆T0 is inferred. Since the refinement
factor F0 is small, the estimate of the support T0 is highly accurate. Besides, the
estimation using OMP runs very fast because the dimension N0 of ΦΦΦ0 is extremely
small. Subsequently, we calculate ∆Tpre by scaling ∆T0:

∆Tpre = F

F0
∆T0 (4.10)

where ∆T0 is inferred from the achieved support T0. According to (4.10), ∆Tpre is a
multiple of the factor F/F0 because ∆T0 is an integer. Note that the accuracy of this
MD prediction procedure is highly dependent on the chosen small refinement factor F0.
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4.6.4 Numerical results
4.6.4.1 Minimum distance prediction

Apparently, the recovery performance of CMD-OMP highly depends on the accuracy of
the comparison results between the predicted MD ∆Tpre and the tuning point ∆Ttuning.
Thus, the choices of F0 and ∆Ttuning play significant roles in CMD-OMP. In this part,
four variants of CMD-OMP with different settings (F0, ∆Ttuning) are analyzed to show
their disadvantages and advantages through numerical experiments.
Initially, we construct a real-valued MFT acquisition ΦΦΦ with N = 500, L = 5,M = 20,

fmax = 30 MHz and a large refinement factor F = 100, similar to the previous simula-
tions. Subsequently, based on the above sensing matrix ΦΦΦ, a MFT sensing matrix ΦΦΦ0
can be constructed with a given smaller refinement factor F0. A Monte Carlo simulation
is carried out with 500 trials for each MD case (from 5 to 150 bins). At each trial, we
generate a non-negative 3-sparse signal whose MD is equal to the analyzed MD. Next,
the noisy measurement vector yyy = ΦΦΦxxx+σσσ is generated with a fixed SNR = 30 dB. And
then we predict MD through the proposed procedure (4.9)-(4.10). Due to Fig. 4.11b,
the tuning parameter is about 65 when SNR is 30 dB. The selection between OMP3
and POMP depends on the comparison result between the predicted MD and the tuning
parameter. Fig. 4.12 illustrates the rate of giving a correct choice in 500 trials for each
case of different MD. Ideally, these rates should be equal to one in all cases of various
MDs.

Figure 4.12. Comparison rate of the selection results using different settings (F0,∆Ttuning) at
different MD cases. Choose N = 500, L = 5, M = 20, fmax = 30 MHz, F = 100,∆r = 5 cm

As can be seen in Fig. 4.12, each setting (F0, ∆Ttuning) acquires various properties:

• The setting (4, 84) (rose lines) mostly makes the correct decision at small MDs but
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the incorrect decision at large ones. These results reveal that this setting prefers
to choose POMP as the favorite recovery method.

• Inversely, the setting (10, 60) (yellow lines) selects OMP3 most frequently.

• Two other settings (4, 60) and (10, 84) balance the selection rates of OMP3 and
POMP. For instance, the setting (10, 84) (cyan lines) can guarantee the moderate
stability of correct choice in the cases of both small and large MDs.

4.6.4.2 CMD-OMP

Subsequently, four variants of CMD-OMP with above settings (F0, ∆Ttuning) are used
to reconstruct 3-sparse signal in the super-resolution MFT acquisition ΦΦΦ. Two Monte
Carlo simulations are carried out with 3000 trials for each SNR (from 5 dB to 40 dB) and
500 trials for each MD (from 5 to 150 bins). The procedures of 3-sparse signal and noisy
measurement vector generation repeat similarly as the previous numerical experiments.
The achieved relaxed support recovery rates of CMD-OMP with a tolerance offset δ = 2
are then compared to those of POMP and OMP3 in the same Fig. 4.13 for SNR domain
and Fig. 4.14 for MD domain.

Figure 4.13. Relaxed support recovery performance (δ = 2) of CMD-OMP us-
ing different settings (F0,∆Ttuning) at different SNRs (3000 trials for each SNR). Choose
N = 500, L = 5,M = 20, fmax = 30 MHz, F = 100,∆r = 5 cm

As Fig. 4.13 shows, POMP (red lines) outperforms at high SNRs while inversely OMP3
(blue lines) does at low SNRs. Whereas, the reconstruction results of many variants of
CMD-OMP with different settings can inherit from these strengths of both two methods.
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(a) 15dB, δ = 2 (bins)

(b) 30dB, δ = 2 (bins)

Figure 4.14. Relaxed support recovery performance (δ = 2) of CMD-OMP using different settings
(F0,∆Ttuning) at different MDs (500 trials for each MD). Choose N=500, L=5, M=20, fmax = 30
MHz and F=100

Besides, Fig. 4.14 indicates the following disadvantages and advantages of each setting
(F0, ∆Ttuning):
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• The variant of CMD-OMP with the setting (10, 60) (yellow lines) is the best
one among the four variants of CMD-OMP at large MDs but the worst ones at
small MDs. These results indicate that this setting uses OMP3 most frequently.
However, in a general comparison, this variant outperforms OMP3.

• Inversely, the variant of CMD-OMP with the setting (4, 84) (rose lines) has the
highest rates at small MDs but the lowest rates at high MDs, among four variants
of CMD-OMP. These results indicate that this setting uses POMP most frequently.
However, in a general comparison, this variant of CMD-OMP outperforms POMP.

Table 4.1. Average run time of different recovery methods in 3000 trials for each 3-MPI reconstruc-
tion of one pixel (N =500, M=20, fmax = 30, F=100)

Algorithms Average consuming
time (seconds)

OMP3 0.0337

POMP (lsnonneg MATLAB function) 0.2606

CMD-OMP with F0 = 4 and ∆Ttuning = 60 0.1231

CMD-OMP with F0 = 10 and ∆Ttuning = 60 0.1678

CMD-OMP with F0 = 4 and ∆Ttuning = 84 0.0904

CMD-OMP with F0 = 10 and ∆Ttuning = 84 0.1239

BPIC (cvx package) 2

• Two other settings (10, 84) and (4, 60) (cyan and green lines) bring the moderate
support recovery rates in the cases of both small and large MDs. More precisely,
the variant with the setting (10, 84) has some advantages at large MDs (∆T ≥ 85)
while the variant with the setting (4, 60) does at medium MDs (60 ≤ ∆T ≤ 85).

• CMD-OMP cannot improve the recovery performance in a specific scenario. It only
inherits from the recovery capabilities of two member methods. Therefore, if one
wishes to enhance this performance, two member methods should be replaced by
other ones with a higher sparse reconstruction performance. For instance, a new
method should replace POMP for an improvement of reconstruction performance
in the cases of small MDs.

Moreover, Table 4.1 shows the averaged computation time of all used methods, i.e.,
OMP3, POMP, four variants of CMD-OMP, for each 3-MPI reconstruction of one pixel.
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According to Table 4.1, POMP run extremely slowly while OMP3 runs in the shortest
time. In comparison with POMP, the variants of CMD-OMP have additional advantages
regarding a shorter computation time.

4.7 Summary
This chapter introduces several super-resolution CS greedy pursuits, i.e., OMP3, POMP,
Ma-OMP3, CMD-OMP. Through the numerical results, the support recovery perfor-
mances of these greedy pursuits are approximate to those of a l1-optimization algorithm,
e.g., BPIC. Whereas, they consume a very shorter computation time.
Besides, POMP and OMP3 possess other advantages regarding high recovery rates at

small and large MDs respectively. The proposed method CMD-OMP can use up their
strengths to maintain a higher stability of accurate support reconstruction in all cases of
various MDs. Moreover, the performance of CMD-OMP can be improved in the future
if we explore two new member methods for replacing POMP or OMP3.
An accurate support recovery with a tolerance offset should be guaranteed for all cases

of various MDs with a high probability, even in highly noisy environments. However, the
achieved support recovery results of OMP3, POMP, Ma-OMP3, and even CMD-OMP
seem to be not good enough to apply for a practical TOF application. Therefore, other
CS techniques regarding the design of MFT sensing matrix will be investigated in next
chapters to enhance the current reconstruction stability.
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Due to the CS theory in Section 3.1, there are some restricting conditions on the sensing
matrix ΦΦΦ to guarantee for the high stability of an exact sparse reconstruction. Therefore,
the design of the sensing matrix plays an important role in the improvement of the recon-
struction results. In the context of a MFT acquisition, the structure of the MFT sensing
matrix is highly dependent on some modulation parameters, i.e., the set of frequencies
or phase-offsets, according to (3.31). However, an efficient method for selecting these
parameters has not been introduced so far. Therefore, this chapter proposes a gradient
steepest descent method for optimizing these parameters. It aims to formulate the MFT
sensing matrix which brings a higher reconstruction performance of the greedy pursuit
algorithms, i.e., OMP3, POMP. There are three main goals of this chapter. Firstly, cyclic
difference set (CDS) is proven as the optimum set of frequencies for the DFT sensing
matrix in the conventional grid configuration (F = 1) [45, 50]. Secondly, CDS is proven
to be not the optimum selection for both the DFT and MFT models in a super-resolution
grid configuration (F > 1). Thirdly, a gradient steepest descent method is then pro-
posed for optimizing the frequency selection in Section 5.1 as well as both frequency and
phase-offset selection in Section 5.2. The improvements in the sparse reconstruction per-
formance in the super-resolution MFT acquisition (F = 100) are demonstrated through
numerical experiments in Section 5.3. The results are concluded in Section 5.4.

5.1 Frequency selection optimization
Recently, the deterministic construction of the partial Fourier CS matrices has been
received a lot of attraction from scientific community [46, 20, 65]. The work aims at
the high stability of exact signal recovery through finding the optimized set of Fourier
samples. Many publications [45, 50] proved that the CDS of frequencies formulates a
DFT sensing matrix satisfying the maximum Welch-bound equality (MWBE).

5.1.1 Cyclic difference set
Definition 7. A cyclic (N0, M, λ)-difference set H = {f1, f2, · · · , fM} is a collection of
M distinct residues modulo N0 such that for any residue b 6≡ 0 ( mod N0), there exist
precisely λ ordered pairs (fi,fj) from H such that b ≡ fi − fj( mod N0) [69], where

M(M − 1) = λ(N0 − 1) (5.1)
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For instance, the set H = {1, 3, 4, 5, 9} of residues modulo 11 is a cyclic difference set
(11, 5, 2).

5.1.2 DFT sensing matrix
After the discretization of a fine grid spacing 1/N0 (∆t = 1/N0), each element of DFT
sensing matrix AAA can be represented by:

apq = e−j2πfpq∆t = e−j2πfpq/N0 (5.2)

where fp ∈ ZN , fp 6= fl, ∀p 6= l and 1 ≤ q ≤ N0. For each signal reconstruction phase,
there are M Fourier samples H = {f1, f2, · · · , fM} which are chosen with fp ∈ ZN .

Definition 8. A M ×N0 sensing matrix AAA (N0 > M) satisfies the maximum Welch
Bound Equality (MWBE) if and only if all coherence components

cnn′ =
√

N0 −M
(N0 − 1)M ∀0 < n 6= n′ ≤ N0 (5.3)

and hence according to 3.13, the mutual coherence of the sensing matrix AAA

µ(AAA) = max
c6=c′

cnn′ =
√

N0 −M
(N0 − 1)M (5.4)

Theorem 1. As shown in [20, 50], a M × N0 DFT sensing matrix AAA satisfies the
maximum Welch Bound Equality (MWBE) if and only if the Fourier sampling set H is
a cyclic difference set (N0, M, λ).

According to 3.12, the normalized coherence between two arbitrary columns aaan and
aaa′n (1 ≤ n 6= n′ ≤ N0) of a DFT sensing matrix can be represented by:

cnn′ = |aaaHn aaa′n|
||aaan||2||aaan′ ||2

= 1
M

∣∣∣∣∣
M∑
p=1

e
j2π fp

N0
(n′−n)

∣∣∣∣∣ (5.5)

Set g = n′ − n ∈ ZN0 then

c(g) = 1
M

∣∣∣∣∣
M∑
p=1

e
j2π g

N0
fp

∣∣∣∣∣ (5.6)
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and we have:

c2(g) = 1
M2

(
M∑
p=1

e
j2π g

N0
fp

)(
M∑
k=1

e
−j2π g

N0
fk

)

= N0 −M
(N0 − 1)M + M − 1

(N0 − 1)M + 1
M2

M∑
p=1

M∑
k=1,k 6=p

e
j2π g

N0
(fp−fk)

(5.7)

If the setH is a CDS (N0,M,λ) then (fp−fk) mod N0 takes all values i = 1, 2, · · ·N0−1
with the same number of occurrences λ. Thus, (5.7) can be rewritten as:

c2(g) = N0 −M
(N0 − 1)M + M − 1

(N0 − 1)M + λ

M2

N0−1∑
i=1

e
j2π g

N0
i (5.8)

According to [50], λ = (M−1)M
(N0−1) and hence:

c2(g) = N0 −M
(N0 − 1)M + M − 1

(N0 − 1)M + M − 1
(N0 − 1)M

N0−1∑
i=1

e
j2π g

N0
i

= N0 −M
(N0 − 1)M + M − 1

(N0 − 1)M

(
1 +

N0−1∑
i=1

e
j2π g

N0
i

)

= N0 −M
(N0 − 1)M + M − 1

(N0 − 1)M

N0−1∑
i=0

e
j2π g

N0
i

(5.9)

We have
∑N0−1
i=0 e

j2π g
N0

i = 0 ∀g ∈ N∗ and
∑N0−1
i=0 e

j2π g
N0

i = N0 if g = 0. Therefore,
from (5.9):

c2(g) =


N0−M

(N0−1)M if g ∈ N∗

1 if g = 0
(5.10)

According to (5.10), the DFT sensing matrix structured by a CDS of Fourier samples
satisfies the MWBE. For instance, the red line in Fig. 5.1a denotes the coherence his-
togram of the sensing matrix structured by the CDS (31, 15, 7). It is intuitive that all
the normalized coherence elements are equal to the Welch-bound (= 0.1886). Due to
the restricting condition in (3.14), this sensing matrix with a low mutual coherence µ is
potential to bring the high stability of exact signal reconstruction, in comparison to a
random selection of frequencies [20].
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(a) F = 1

(b) F = 100

Figure 5.1. Coherence histograms of DFT and MFT sensing matrices structured by a CDS of
frequencies in the conventional (F = 1) and super-resolution (F = 100) configurations.

5.1.2.1 DFT super-resolution sensing matrix

In a super-resolution configuration, the current discretized grid is refined with a large
refinement factor (F > 1) [66, 21]

∆t = 1
N0F

(5.11)
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and hence (5.6) is rewritten to:

c(g) = 1
M

∣∣∣∣∣
M∑
p=1

e
j2π fp

N0F
g

∣∣∣∣∣ , 0 ≤ g ≤ N0F − 1 (5.12)

Now, according to (5.7), if the set H is a CDS (N0,M, λ) then
(
(fp − fk) mod N0

)
takes all values i = 1, 2, · · ·N0− 1 but

(
(fp− fk) mod N0F

)
where F > 1 cannot cover

all values i = 1, 2, · · ·N0F − 1. Hence,

M∑
p=1

M∑
k=1,k 6=p

e
j2π g

N0F
(fp−fk) 6=

N0F−1∑
i=1

e
j2π g

N0F
i (5.13)

leads to the invalidity of (5.8) and consequently breaks the MWBE in the super-resolution
configuration. Definitely, there exists at least one integer g ∈ ZN0F−1 such that
c(g) 6=

√
N0−m

(N0−1)m . The red line in Fig. 5.1b denotes the coherence histogram of the DFT
sensing matrix structured by the CDS (31, 15, 7) at F = 100. Compared to the DFT
matrix at F = 1 (red line in Fig. 5.1a), the coherence histogram of DFT matrix in a
super-resolution configuration of F = 100 no longer satisfies the MWBE.

5.1.2.2 MFT super-resolution compressed sensing

The selection of frequencies in a MFT acquisition as described in (3.31) is similar to
the selection of Fourier samples in a DFT model. In the conventional grid configuration
(F = 1), there are two different kinds of MFT sensing matrices:

• If the cross-correlation function in (3.27) is sinusoidal (L = 1) and the phase-
offset is zero (τ = 0), a complex-valued TOF measurement possesses the same
mathematical representation as a DFT measurement in (5.2). Therefore, as proven
previously, a CDS of frequencies H = {f1, f2, · · · , fM} leads to the formulation of
a MFT sensing matrix satisfying the MWBE with the minimum mutual coherence.

• If the cross-correlation function in (3.27) is not sinusoidal and contains higher-
order harmonics, i.e., L = 5, the complex- or real-valued MFT sensing matrix
(blue or green lines in Fig. 5.1a) structured by the CDS of frequencies cannot
satisfy MWBE condition.

Eventually, a CDS of frequencies leads to the optimized MFT sensing matrix in the
conventional grid configuration if the cross-correlation function between the transmitted
and demodulation signals in (3.27) is sinusoidal. Suppose that our commercial TOF
camera is capable of carrying out the high-frequency TOF measurement with an emitted
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sinusoidal signals. Then, a high depth resolution can be achieved through a conventional
MFT acquisition (F = 1) with a CDS of frequencies.
Nevertheless, in a super-resolution MFT acquisition (F = 100), the sensing matrix

constructed by the CDS of frequencies no longer possesses the optimized coherence map.
As can be seen in Fig. 5.1b that the mutual coherence values of all MFT sensing matrices
are approximate to one for all settings, e.g., L = 1 or L = 5 (red or blue line), complex-
valued or real-valued model (blue or green line). Thus, due to the restricting condition
in (3.14), an exact signal reconstruction cannot be guaranteed with high probability.
At this point, we hypothesize that there exists another frequency selection which can
construct a MFT sensing matrix with a better coherence histogram and eventually bring
a higher stability of accurate signal reconstruction in a super-resolution configuration
(F > 1).

5.1.3 Proposed optimization method
In this part, an optimization method is introduced to find out the frequency selection
which can optimize the coherence property of the sensing matrix iteratively. Addition-
ally, it simultaneously brings a better performance of signal reconstruction in a super-
resolution MFT acquisition.

5.1.3.1 Coherence cost

Many different restricting conditions on sensing matrix, e.g., Null Space Property, RIP or
Mutual Coherence for a guarantee for the high stability of an exact signal reconstruction,
are documented in the CS theory (see Section 3.1). However, these strong conditions are
no longer satisfied in a super-resolution MFT acquisition. After the discretization step
with a large refinement factor, the mutual coherence of a super-resolution MFT sensing
matrix is approximate to one (see Fig. 3.4). Therefore, we introduce an alternative
coherence cost which has been proposed in many studies [30] in order to measure the
quality of a coherence histogram of a sensing matrix more accurately:

E = ||Φ̃ΦΦHΦ̃ΦΦ− I||2F = Tr{(Φ̃ΦΦHΦ̃ΦΦ− I)(Φ̃ΦΦHΦ̃ΦΦ− I)H} (5.14)

where Tr{·} denotes the trace operator and from (3.12), (5.14) is rewritten as follows:

E =
∑

1≤n6=n′≤N
c2
nn′ (5.15)

where cnn′ is the element of the Gram matrix CCC (see Section 3.4.2.1).
The equation (5.15) shows that the above coherence cost E is the sum of square of the

Gram matrix (see Section 3.4.2.1). Theoretically, if this coherence cost E is smaller, then
the sensing matrix comprises more incoherent columns. From this result, the stability of
a good sparse recovery may become higher. At this point, minimizing the coherence cost
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E may lead to the improvement of the sparse reconstruction performance. Therefore,
our proposed method aims to find the frequency selection Hopt so that:

Hopt = arg min
H

E = arg min
H

∑
1≤n6=n′≤N

c2
nn′ (5.16)

5.1.3.2 Proposed frequency selection optimization

The frequency selection optimization method is a gradient steepest descent algorithm
[30] which is used to update the set H iteratively for minimizing the coherence cost E.
We start with a set H0 of M random frequencies to construct the initial sensing matrix
ΦΦΦinit. The coherence cost of this matrix is denoted as E0. At iteration k, the new set
Hk is achieved through updating each frequency fi of the current set Hk−1 sequentially
with the new value:

fi,k = fi,k−1 − η∇Efi
(5.17)

where η is a given step size and ∇Efi
represents the gradient of E respect to fi

∇Efi
= ∂E

∂fi |Hk−1

(5.18)

=
N∑

q1=1,q1 6=q2

N∑
q2=1

∆Eq1q2,fi
(5.19)

where
∆Eq1,q2,fi

= cq1,q2∆c∗q1,q2,fi
+ ∆cq1,q2,fi

c∗q1,q2 (5.20)

cq1,q2 = uq1,q2

vq1,q2
(5.21)

uq1,q2 =
m∑
p=1

φpq1φ
∗
pq2 (5.22)

vq1,q2 = ||φφφq1 ||2||φφφq2 ||2 (5.23)

||φφφq||2 =

√√√√ M∑
i=1

φ2
iq

(5.24)

∆cq1,q2,fi
= ∆uq1,q2,fi

vq1,q2 − uq1,q2∆vq1,q2,fi

v2
q1,q2

(5.25)
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∆uq1,q2,fi
= γq1,fi

φ∗iq2 + φiq1γ
∗
q2,fi

(5.26)

∆vq1,q2,fi
= 1

2
γq1,fi

φ∗iq1 + φiq1γ
∗
q1,fi

||φφφq1 ||2
||φφφq2 ||2+

1
2 ||φ
φφq1 ||2

γq2,fi
φ∗iq2 + φiq2γ

∗
q2,fi

||φφφq2 ||2

(5.27)

γq,fi
=

L∑
l=−L

cld
∗
l (−j2πlq∆t)e−j2πlfiq∆t+jlτi (5.28)

The proofs of (5.18) - (5.28) are presented in Appendix A.1. Suppose the step size η
is fixed. After all frequencies of Hk have been achieved through (5.18) - (5.28), a new
sensing matrix ΦΦΦnew is constructed and then its coherence cost Enew is computed. If the
coherence cost of the current matrix is larger than Enew, the current sensing matrix is
replaced by the new one. Otherwise, the step size η is reduced. We repeat this process
until smaller coherence cost of new sensing matrix cannot be obtained. Note that the
new frequency set is restricted to max(Hk) = 30 MHz, min(Hk) = 1 MHz and Hk ⊂ Ψ.

5.1.3.3 Update verification process

Although the above steepest descent method can minimize the coherence cost E, it is
unsure that the amount of the highly incoherent columns in the sensing matrix becomes
larger. Therefore, this part proposes two additional constraints to guarantee a better
coherence histogram of the new sensing matrix including:

• The mutual coherence of the new sensing matrix is smaller or at least equal to that
of the current sensing matrix.

• The new sensing matrix has the amount of large coherence elements cnn′ , referred
shortly asML(ΦnewΦnewΦnew), that is smaller or at least equal to that of the current sensing
matrix. We define cnn′ ≥ clarge as a large-coherence element where 0 ≤ clarge ≤ 1
is chosen due to the super-resolution MFT settings.

Both of two conditions are verified carefully after each iteration of the steepest descent
method. If all conditions on the new sensing matrix are satisfied, the new set of frequen-
cies Hk is updated for the iteration k. Then it is used as input for the next iteration
k + 1. This procedure repeats until no frequency is updated. Algorithm 12 describes
how to find the optimized set of frequencies Hopt.
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Algorithm 12 Gradient steepest descent method for frequency selection optimization
Input: H0, η0
Output: Hopt

1: Build the matrix ΦΦΦ with H0.
2: Calculate the coherence cost E0 of the matrix ΦΦΦ and mutual coherence µ0 = µΦΦΦ
3: Initialize k = 1
4: while TRUE do
5: Initialize Hk = Hk−1
6: for i = 1 to M do
7: Initialize η = η0
8: Compute the gradient ∇Efi

with the set Hk

9: Compute the new value fi,k = fi,k−1 − η∇Efi
with fi,k−1 ∈ Hk−1

10: Build the matrix ΦΦΦnew with the set Hk and the new value fi,k
11: Compute Enew of the matrix ΦΦΦnew

12: if Enew < E0 then
13: if µΦΦΦnew < µ0 and ML(ΦΦΦnew) < ML(ΦΦΦ) then
14: Update fi,k for the new set Hk

15: Update E0 = Enew, µ0 = µΦΦΦnew , ML(ΦΦΦ) = ML(ΦΦΦnew) and ΦΦΦ = ΦΦΦnew

16: else
17: Go forward to step 21
18: end if
19: else
20: Update the step size η = η/2
21: if η < ηmin then
22: continue;
23: end if
24: Go back to step 8
25: end if
26: end for
27: Set Hopt = Hk

28: if Hk = Hk−1 then
29: break;
30: end if
31: k = k + 1
32: end while

5.1.3.4 Initial phase-offset optimization

The equation (3.31) indicates that the structure of a MFT sensing matrix is also highly
dependent on the preset phase-offset τ of each TOF measurement. Therefore, the initial

91



5 Multi-frequency selection optimization

phase-offset selection optimization can improve the coherence histogram of a MFT sens-
ing matrix. Again, the principle of the previous part is employed. A gradient steepest
descent method is used for minimizing the coherence cost E through updating the phase-
offset iteratively. We choose a random set of initial phase-offsets J = {τ1, τ2, · · · , τM}
for M TOF measurements. The initial phase-offset τi is updated at iteration k with a
chosen step size η2 > 0:

τi,k = τi,k−1 − η2∇Eτi (5.29)

where ∇Eτi denotes the gradient of the coherence cost E with respect to an initial
phase-offset τi of the set J . The computation of ∇Eτi is carried out as follows:

∇Eτi = ∂E

∂τi
=

N∑
q1=1,q1 6=q2

N∑
q2=1

∆Eq1q2,τi (5.30)

where
∆Eq1,q2,τi = cq1,q2∆c∗q1,q2,τi

+ ∆cq1,q2,τic
∗
q1,q2 (5.31)

∆cq1,q2,τi = ∆uq1,q2,τivq1,q2 − uq1,q2∆vq1,q2,τi

v2
q1,q2

(5.32)

∆uq1,q2,τi = γq1,τiφ
∗
iq2 + φiq1γ

∗
q2,τi

(5.33)

∆vτi,q1,q2 = 1
2
γq1,τiφ

∗
iq1 + φiq1γ

∗
q1,τi

||φφφq1 ||2
||φφφq2 ||2+

1
2 ||φ
φφq1 ||2

γq2,τiφ
∗
iq2 + φiq2γ

∗
q2,τi

||φφφq2 ||2

(5.34)

γq,τi =
L∑

l=−L
cld
∗
l (jl)e−j2πlfiq∆t+jlτi (5.35)

The proofs of (5.30) - (5.35) are presented in Appendix A.1. At iteration k, the update
of phase-offset in (5.29) repeats for all element of the set Jk−1 to formulate the new set
Jk. Similar to the above frequency selection optimization, this update is only valid if all
conditions on the new sensing matrix, i.e., a smaller coherence cost, a smaller mutual
coherence, a smaller amount of large coherence elements, are satisfied. Otherwise, the
step size η2 is reduced. The initial phase-offset optimization method runs until no update
of J can be done. The final result is the optimized set of phase-offsets Jopt.

5.2 Frequency and initial phase-offset optimization
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Algorithm 13 Gradient steepest descent method for frequency and phase-offset selec-
tion optimization
Input: Initialize the random set of M frequencies and phase-offsets Γ0={H0,J0}
Output: Γopt={Hopt, Jopt}

1: Build the matrix ΦΦΦ with Γ0
2: Calculate the coherence cost E0 of the matrix ΦΦΦ and mutual coherence µ0 = µΦΦΦ
3: Initialize k = 1
4: while TRUE do
5: Initialize Γk = Γk−1
6: for i = 1 to M do
7: Initialize η1 = η1,0, η2 = η2,0
8: Compute the gradient ∇Efi

and ∇Eτi with the set Γk.
9: Calculate the new value fi,k = fi,k−1 − η1∇Efi

with fi,k−1 ∈ Hk

10: Calculate the new value τi,k = τi,k−1 − η2∇Eτi with τi,k−1 ∈ Jk
11: Build the matrix ΦΦΦnew with the set Γk and the new values fi,k, τi,k
12: Compute Enew of the matrix ΦΦΦnew

13: if Enew < E0 then
14: if µΦΦΦnew < µ0 and ML(ΦΦΦnew) < ML(ΦΦΦ) then
15: Update fi,k for the new set Hk and τi,k for the new set Jk.
16: Update E0 = Enew, µ0 = µΦΦΦnew , ML(ΦΦΦ) = ML(ΦΦΦnew) and ΦΦΦ = ΦΦΦnew

17: else
18: Go forward to step 22
19: end if
20: else
21: Update the step size η1 = η1/2 and η2 = η2/2
22: if η1 < ηmin and η2 < ηmin then
23: continue;
24: end if
25: Go back to step 8
26: end if
27: end for
28: Set Γopt = Γk
29: if Γk = Γk−1 then
30: break;
31: end if
32: k = k + 1
33: end while

In this part, we present a gradient steepest descent method that optimizes both fre-
quency and initial phase-offset for minimizing the coherence cost E. This method is
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the integration between the frequency selection optimization and the initial phase-offset
selection optimization in the previous parts. In particular, both frequency and initial
phase-offset are updated simultaneously for constructing a new sensing matrix with all
satisfying conditions, i.e., a smaller coherence cost, a lower mutual coherence, a smaller
amount of large coherence elements. Finally, the optimized sets Γopt={Hopt, Jopt} are
obtained after no update can be proceeded. This method is described in detail in Algo-
rithm .13.

5.3 Numerical results
5.3.1 CDS selection and the proposed frequency optimization method
The frequency selection optimization method described in Algorithm 12, opens an oppor-
tunity for a better MFT sensing matrix by optimizing the set of modulation frequencies
iteratively. More precisely, the optimized sensing matrix has smaller coherence cost,
simultaneously a lower mutual coherence and a smaller number of the large coherence
elements. However, we consider whether such a better coherence histogram of this MFT
sensing matrix guarantees a higher stability of good sparse support reconstruction. Nu-
merical experiments in this part aim to indicate that the frequency selection optimization
improve the relaxed support reconstruction performance for a super-resolution MFT ac-
quisition in the large-refinement configuration. These results are then compared with
those achieved by the optimization method using CDS.
Suppose that the maximum frequency of a TOF camera in this simulation is fmax =

31 MHz. We structure a MFT system with a large refinement factor F = 100 and
highest-order Fourier coefficient L = 5. From these parameters, the grid length is ∆r ≈
4.8 cm. All TOF measurements have zero phase-offsets (τ = 0). There are two types of
structured MFT acquisitions including:
• A CDS (31,15,7) of modulation frequencies is chosen for 15 TOF measurements
(M = 15). The MFT sensing matrix ΦΦΦCDS is structured through these measure-
ments, according to (3.31). Because the CDS comprises only integers with gcd
(CDS) = 1 MHz, the ambiguity range of this model is Rmax = c/(2 gcd (CDS)) =
150 m for a complex-valued MFT system or Rmax = 75 m for a real-valued one.

• Our proposed frequency selection optimization method is used for finding the op-
timized frequency set or the optimized sensing matrix ΦΦΦopt. Since this set contains
frequencies from the set Ψ where gcd (Ψ) = 0.25 MHz, the ambiguity range of
this model is Rmax = c/(2 gcd (Ψ)) = 600 m for a complex-valued MFT system
or Rmax = 300 m for a real-valued one. A large-coherence element is defined with
clarge = 0.45 for the update verification condition in Algorithm 12.

From the above analysis, the MFT acquisition structured by our proposed frequency
selection optimization method, apparently has the advantage of an extended ambiguity

94



5 Multi-frequency selection optimization

range, compared with a MFT acquisition structured by the CDS of frequencies. In
principle, our optimization method can select frequencies arbitrarily from a pool of
available modulation frequencies, e.g., set Ψ, and hence extend the ambiguity range.
Whereas, the optimization technique using CDS has a fixed ambiguity range even if the
TOF camera can modulate and demodulate an extended pool of frequencies.
As shown through the numerical experiments in Section 3.4.5, a real-valued MFT

acquisition has an advantage of better reconstruction results. Thus, in this simulation,
both ΦΦΦCDS and ΦΦΦopt are real-valued sensing matrices. To cover the same range of interest
but not override the ambiguity range, a common dimension N is set for both of them but
does not exceed Nmax = 31F/2 = 1550. For a deep analysis, the numerical experiments
are categorized into two different cases, i.e., a large range of interest (N = 1500) and a
short range of interest (N = 750).

5.3.1.1 Large range of interest

A large dimension N = 1500 is set commonly for both sensing matrices ΦΦΦCDS ∈ R15×1500

and ΦΦΦopt ∈ R15×1500 to cover the same range of interest. For an analysis of the coherence
property, the coherence histograms of two matrices are illustrated by blue and red lines
in Fig. 5.2. Apparently, there is no significant difference between two these coherence
histograms. From this result, it is difficult to explore advantages and disadvantages of
our proposed frequency selection optimization and the technique using CDS regarding
sparse recovery performance.

Figure 5.2. Coherence histogram of the sensing matrices structured by the CDS (31,15,7) and our
proposed frequency selection optimization method. Choose M = 15, F = 100, fmax = 31 MHz

Thus, two Monte Carlo simulations are subsequently carried out with 3000 trials for
each case of SNR and 500 trials for each case of MD. These experiments aim to obtain the
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analysis of the reconstructed results using ΦΦΦCDS and ΦΦΦopt in the cases of various SNRs
(from 5 dB to 40 dB) and various MDs (from 5 to 150 bins). Conventionally, for the
analysis in the MD domain, there are two different cases of SNRs, i.e., 15 dB for a noisy
case and 30 dB for a nearly noiseless case. At each iteration, the procedure of generating
3-sparse signal and noisy measurement vector is similar to the previous simulations. For
a comparison, three different greedy pursuit methods, i.e., OMP3, POMP, and Ma-
OMP3, are used for 3-sparse reconstruction. Fig. 5.3 and Fig. 5.4 demonstrate the
relaxed support recovery rates of all three above methods with a tolerance offset δ = 2
for two different MFT acquisitions ΦΦΦCDS and ΦΦΦopt in the cases of various SNRs and
various MDs respectively.

Figure 5.3. Relaxed support recovery rates (δ = 2) at different SNRs (3000 trials for each SNR) for
the CDS (31,15,7) and the proposed frequency optimization method with a large range of interest
configuration. Choose N = 1500, L = 5,M = 15, F = 100,K = 3, fmax = 31 MHz

As can be seen in Fig. 5.4 that there is no significant difference between the relaxed
support recovery performances using ΦΦΦopt (rose, cyan, and green lines) and ΦΦΦCDS (red,
yellow, and blue lines) in all cases of various MDs. However, according to the analysis in
the SNR domain in Fig. 5.3, the MFT acquisition ΦΦΦopt (rose, cyan, and green lines) brings
the slightly higher relaxed support recovery rates in all cases of various SNRs. These
results strengthen the hypothesis that our proposed frequency selection optimization is
more efficient than the optimization technique based on a CDS in a super-resolution MFT
acquisition with a large refinement factor. Nonetheless, the strengths of our proposed
frequency selection optimization are significantly low in the case of a large range-of-
interest.
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(a) 15dB

(b) 30dB

Figure 5.4. Relaxed support recovery rates (δ = 2) at different MDs (500 trials for each MD) for
the CDS (31,15,7) and the proposed frequency optimization method with a large range of interest
configuration. Choose N = 1500, L = 5,M = 15, F = 100,K = 3, fmax = 31 MHz

5.3.1.2 Short range of interest

In this part, a smaller dimension N = 750 is configured for both real-valued MFT
acquisitions with two sensing matrices ΦΦΦCDS ∈ R15×750 and ΦΦΦopt ∈ R15×750. For an
analysis of the coherence property, their coherence histograms are illustrated by cyan
and rose lines in Fig. 5.2. It can be seen apparently in this figure that the coherence
histogram of ΦΦΦopt ∈ R15×750 (rose line) comprises a smaller amount of large coherence
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components ML(ΦΦΦ), compared with the coherence histogram of ΦΦΦCDS ∈ R15×750 (cyan
line).
However, it is unsure that this property can bring a better recovery performance.

And hence, two Monte Carlo simulations whose procedures are similar to two above
simulations, are proceeded. They aim to achieve the analysis of the reconstructed results
using two these MFT acquisitions in various SNR cases (from 5 dB to 40 dB) and various
MDs (from 5 to 150 bins). Three different recovery methods, i.e., OMP3, POMP, and
Ma-OMP3, are used for the sparse reconstruction. Fig. 5.5 and Fig. 5.6 demonstrate
the relaxed support recovery rates Rb of all three above methods with a tolerance offset
δ = 2 for two MFT acquisitions ΦΦΦCDS ∈ R15×750 and ΦΦΦopt ∈ R15×750 in the cases of
various SNRs and MDs respectively.

Figure 5.5. Relaxed support recovery rates (δ = 2) at different SNRs (3000 trials for each SNR) for
the CDS (31,15,7) and the proposed frequency optimization method with a short range of interest
configuration. Choose N = 750, L = 5, M = 15, F = 100, K = 3, fmax = 31 MHz

It can be seen in Fig. 5.5 and Fig. 5.6 that the MFT acquisition ΦΦΦopt (rose, cyan and
green lines) brings some advantages. More precisely, the relaxed support recovery rates
of three algorithms using this model are much higher than those using the optimization
technique based on a CDS (red, yellow and blue lines) in most cases of various SNRs
and MDs. These results indicate that the super-resolution MFT acquisition (F = 100)
structured by our proposed frequency selection optimization method can bring the higher
stability of a good support recovery, especially in short range-of-interest applications.
Due to the previous studies [45, 50], it is unsuspected that a CDS of Fourier samples

can lead to the optimized DFT sensing matrix and hence a high recovery performance.
Extensively, it may also be applied to a MFT acquisition, but only in the case of a
conventional grid configuration (F = 1). From the above numerical results, a CDS of
frequencies is no longer the best choice for a super-resolution MFT acquisition with a
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(a) 15dB

(b) 30dB

Figure 5.6. Relaxed support recovery rates (δ = 2) at different MDs (500 trials for each MD) for
the CDS (31,15,7) and the proposed frequency optimization method with a short range of interest
configuration. Choose N = 750, L = 5,M = 15, F = 100,K = 3, fmax = 31 MHz

large refinement factor, i.e., F = 100. It seems to be possible that the poor recovery
performances of MFT acquisition structured by a CDS of frequencies are due to the
variation of MFT settings, e.g., the refinement factor and the dimension N . Whereas,
our proposed frequency selection optimization method can find an appropriate selection
of frequencies for any variation of system parameters to guarantee a higher stability of
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good support recovery.

5.3.2 Free parameter settings
As stated above, our proposed frequency selection optimization method can bring po-
tentials with any system parameters. To strengthen this argument, this part aims to
evaluate this method in a super-resolution MFT acquisition with free parameter settings.

5.3.2.1 Frequency optimization

Initially, a super-resolution MFT sensing matrix ΦΦΦinit ∈ R20×500 is structured by a
random set of 20 frequencies Hinit and the following parameters, i.e., N = 500, M = 20,
L = 5, fmax = 30 MHz, F = 100 and ∆r = 5 cm. These parameters are similar to
the numerical experiments in the previous chapters. Note that a CDS (30, 20) does not
currently exist and hence is inapplicable in this experiment. Subsequently, the set Hinit

and the sensing matrix ΦΦΦinit are input to our proposed frequency selection optimization
method (see Algorithm 12). In this part, the initial phase-offsets are set to zero for all
TOF measurements Jinit = 0. After the optimization method ends, the optimized set
of 20 frequencies Hopt,1 derived from the set Ψ, is used for the construction of the new
MFT sensing matrix ΦΦΦopt,1 ∈ R20×500.

Figure 5.7. Coherence histogram of the MFT sensing matrices structured by a random selection and
the proposed methods. Choose N = 500, L = 5, M = 20, F = 100, fmax = 30 MHz.

The coherence histograms of ΦΦΦinit and ΦΦΦopt,1 are illustrated by red and blue lines
respectively in Fig. 5.7. Apparently, the Gram matrix of ΦΦΦopt,1 contains fewer large-
coherence components (ML(ΦΦΦ)).
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Two Monte Carlo simulations (for ΦΦΦinit and ΦΦΦopt,1) are carried out with 3000 trials
for each SNR and 500 trials for each MD. They are aimed to compare the reconstructed
results of two different MFT acquisitions in various SNRs (from 5 dB to 40 dB) and
various MDs (from 5 to 150 bins). Three different recovery methods, i.e., OMP3, POMP,
and Ma-OMP3, are used for 3-sparse reconstruction. Fig. 5.8 and Fig. 5.9 demonstrate
the relaxed support recovery rates of all three above methods with a tolerance offset
δ = 2 in the cases of various SNRs and MDs respectively.

Figure 5.8. Relaxed support recovery rates (δ = 2) at different SNRs (3000 trials
for each SNR) for a random selection and the proposed optimization method. Choose
N = 500, L = 5,M = 20, F = 100,∆r = 5cm, K = 3.

It can be seen in Fig. 5.8 and Fig. 5.9 that the optimized sensing matrix ΦΦΦopt,1 (dashed
lines) has some advantages regarding higher relaxed support recovery rates. Eventually,
this MFT acquisition is more efficient than the one ΦΦΦinit (solid lines) constructed by
a random selection of frequencies. This result occurs for all three used reconstruction
algorithms in all cases of various SNRs and MDs.
In summary, our proposed frequency selection optimization method is capable of de-

signing a super-resolution MFT acquisition more efficiently with any parameter settings
(N,M) and any large refinement factor. Additionally, this method may also be useful
for optimizing a MFT acquisition in a conventional grid configuration (F=1) if a CDS
with some setting (N,M) has been not explored yet or may not exist.

5.3.2.2 Frequency and initial phase-offset optimization

In this part, both the frequency set H and the initial phase-offset set J are optimized
through our proposed method in Algorithm .13. We aim to improve the support recovery
performance of the previous super-resolution MFT acquisition ΦΦΦopt,1 ∈ R20×500.
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(a) 15dB

(b) 30dB

Figure 5.9. Relaxed support recovery rates (δ = 2) at different MDs (500 trials
for each MD) for a random selection and the proposed optimization method. Choose
N = 500, L = 5,M = 20, F = 100,∆r = 5cm, K = 3.

Firstly, the optimized frequency selection Hopt,1 and the zero initial phase-offset set
Jopt,1 = 0 are input to Algorithm .13. After the optimization process ends, the new
optimized sensing matrix ΦΦΦopt,2 ∈ R20×500 is constructed through the achieved sets
Hopt,2 and Jopt,2. For an analysis of the coherence property, the coherence histogram of
ΦΦΦopt,2 is illustrated by green line in Fig. 5.7. Apparently, the number of large coherence
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components (ML(ΦΦΦopt,2)) becomes smaller through our proposed optimization method,
in comparison with the coherence histogram of ΦΦΦopt,1 (red line).

A similar Monte Carlo simulation is carried out to analyze the reconstruction per-
formance of the new MFT sensing matrix ΦΦΦopt,2. Three methods, i.e., OMP3, POMP,
and Ma-OMP3, are used for 3-sparse reconstruction. Subsequently, the relaxed support
recovery rates of these three methods with the tolerance offset δ = 2 are averaged after
3000 trials for each SNR and 500 trials for each MD. These results are then demonstrated
at various SNRs (from 5 dB to 40 dB) in Fig. 5.8 and various MDs (from 5 to 150 bins)
in Fig. 5.9.
It can be seen in Fig. 5.8 and Fig. 5.9 that our proposed frequency and phase-offset

selection optimization ΦΦΦopt,2 (dot lines) brings higher relaxed support recovery rates of all
three reconstruction algorithms in most cases of various SNRs or MDs, compared to the
frequency selection optimization method ΦΦΦopt,1 (dashed lines) or the random frequency
selection ΦΦΦinit (solid lines).

5.4 Summary
This chapter proposed the new frequency and initial phase-offset optimization methods
for a super-resolution MFT acquisition with a large refinement factor (F � 1). From
the achieved numerical results, these methods are effective for optimizing the design
of the super-resolution MFT sensing matrix with any parameters. In other words, they
enhance the stability of accurate sparse support recovery. Besides, this chapter indicates
that a CDS of frequencies is no longer the optimized one for a super-resolution MFT
acquisition.
According to Fig. 5.9, if the strengths of both POMP and OMP3 can be integrated

successfully as in our proposed method CMD-OMP (see Section 4.6), then a high stability
of accurate support recovery can be guaranteed in the case of a high SNR. More precisely,
95% and 75% atoms are estimated accurately with an accuracy offset δ = 2 in the
cases of large and small MDs respectively if SNR is 30 dB. Apparently, the proposed
optimization methods take a significant step towards the goals of our relaxed super-
resolution CS research with F = 100. However, the accuracy of MPI reconstruction in
a super-resolution MFT acquisition is still low in the very noisy cases, e.g., SNR=15
dB. Thus, we aim to improve this quality of sparse reconstruction through other CS
techniques in next chapters.
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6 Multiple measurement vector in
super-resolution compressed sensing

Multiple measurement vector (MMV) modeling is a newly emerging CS technique. The
sparse representation of MMV has been introduced by the neuro-magnetic inverse prob-
lems that arise in Magnetoencephalography (MEG) [70]. This approach improved the
quality of the sparse recovery in several applications [71, 72, 73, 74]. Furthermore, Fang
et al. [23] have recently proposed a new reconstruction algorithm for a MMV model
to enhance support reconstruction performance of a super-resolution DFT-CS problem.
Similarly, this chapter applies this MMV technique into our super-resolution MFT-CS
acquisition with a configuration of a large refinement factor F = 100. Firstly, Section 6.1
introduces multiple polarization of a MFT acquisition in a CW-TOF camera and then
casts it to a mathematical MMV model in Section 6.2. Secondly, we introduce many
variants of OMP (OMPMMV) for solving the MMV problem in Section 6.3. Next, the
modified variants of many greedy pursuits, i.e., OMP3-MMV, Ma-OMP3-MMV, POMP-
MMV, are proposed in Section 6.4. The advantages of MMV techniques are shown
through numerical experiments in Section 6.5 and finally concluded in Section 6.6.

6.1 Multipolarization TOF signal model
6.1.1 Polarized light
Light is an electromagnetic wave traveling through space. When light goes, the electric
and magnetic fields are perpendicular to the direction of propagation. The polarization of
a light simply refers to the direction of the electric field. Sunlight or other forms of natural
and artificial illumination produce light waves whose electric field vectors vibrate in all
planes. They are unpolarized lights. If the electric field vectors are restricted to a single
plane by some polarizers, then the light is referred as plane or linearly polarized [75].
The most common source of polarized light is a laser. Eventually, the laser illumination
system of a CW-TOF camera can emit or demodulate a linearly polarized optical signal.
In particular, one TOF measurement at a modulation frequency f0 and phase-offset τ
in (3.28) can be rewritten for a polarized light q as follows:

gf0,q(τ) =
K∑
i=1

ai,qφf0,ni,τ (6.1)
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where ai,q is reflectivity factor of the target i for the polarized incident light q.

6.1.2 Multiple polarization
In a CW-TOF camera, multiple polarization measurements can be produced through
using different polarizers at either the transmitted signals or the received radiation. As-
sume that there are Q polarization channels of MFT measurements. Each measurement
vector corresponding to the qth polarization channel will be

yyyq = ΦΦΦxxxq + σσσq, q = 1, 2, · · ·Q (6.2)

where ΦΦΦ is the MFT sensing matrix, xxxq and σσσq are signal and noise vectors respectively.
Clearly, when considering only a single polarization channel (Q = 1), the above problem
reverts to the previous MFT-CS model. Assume that the transmission lines of differently
polarized optical signals are similar. Then, the sparse signal vectors xxxq contain the same
non-zero locations for all q ∈ Q. However, according to Fresnel equations [75], an object
material has different reflectivity responses to differently polarized incident lights. From
this reason, the vectors xxxq for all q ∈ Q have the same non-zero locations but different
magnitudes. This property of multi-polarization data leads to a MMV model with jointly
sparse signal vectors.

6.2 Multiple measurement vector (MMV) model
Multiple polarization data in (6.2) can be represented through the following MMV
model[71]:

YYY = ΦΦΦXXX + ΣΣΣ (6.3)

where finding the sparse solutionXXX ∈ CM×Q = (xxx(1),xxx(2), · · · ,xxx(Q)) relies on the MMVs
YYY ∈ CM×Q = (yyy(1), yyy(2), · · · , yyy(Q)) and the sensing matrix ΦΦΦ ∈ CM×N . The parameter
Q (Q < M) denotes the number of measurement vectors and ΣΣΣ is the noise matrix
comprising Q noise vectors σσσq

Similar to the single measurement vector (SMV) problem P0 in (3.3) with Q = 1, the
above equation system (6.3) can be solved through the following sparse problem:

(G0) : min
∣∣∣∣∣
( Q∑
q=1
|xxxq|

)∣∣∣∣∣
0

s.t. YYY = ΦΦΦXXX (6.4)

As stated in Section 3.1, the l0-optimization problem P0 in (3.3) is non-deterministic
polynomial time (NP)-hard because of the exhausted searching for the best matching
sparsest solution. Furthermore, the MMV model G0 in (6.4) complicates the problem.
Fortunately, the common sparse support or the joint-sparsity property of the signal
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matrixXXX, which are caused by multiple polarization in a CW-TOF camera, can simplify
the above sparse reconstruction G0.
In this thesis, we assume the availability of multiple polarization data or MMV data YYY

sharing the joint-sparse signal and a super-resolution MFT acquisition ΦΦΦ. For the MMV
sparse reconstruction, there are several variants of OMP which are introduced next, to
decompose these sparse signal vectors efficiently [76, 73].

6.3 Conventional OMPMMV
6.3.1 Basic principle
The OMPMMVmethod is a variant of OMP for MMVmodel for finding a sparse solution
XXX through solving the following optimization problem:

(Q1) : min ||ΦXΦXΦX − YYY ||F , subject to
∣∣∣∣∣
( Q∑
q=1
|xxxq|

)∣∣∣∣∣
0

≤ K (6.5)

where K is the known joint sparsity. Algorithm 14 describes in detail the operating
principle of OMPMMV.

Algorithm 14 Conventional Orthogonal Matching Pursuit for MMV (OMP-MMV)

Input: YYY , ΦΦΦ, K, Φ̃ΦΦ
Output: XXX and T

1: Initialization: XXX0 = ∅, T0 = ∅, RRR0= YYY , ΓΓΓ0 = RRR0
2: for t = 1 to K do
3: Choose the column ΦΦΦi of ΦΦΦ which satisfies

i = argmaxk ||zzzk||q where zzzTk = Φ̃ΦΦH
k ΓΓΓt−1

4: Tt = Tt−1
⋃
i

5: Compute XXXt = argminXXX ||ΦΦΦTtXXX − YYY ||F
6: Set RRRt = YYY −ΦΦΦTtXXXt, ΓΓΓt = RRRt
7: end for
8: Set T = TK and XXX = XXXK

Apparently, MMVs comprises many single measurement vectors (SMVs). Note that in
MMV, the inner product or matching component is a vector. The best-matching atom
in OMPMMV is selected at each iteration through integrating these SMV problems.
According to Algorithm 14, lq-norm of the inner product vector in step 3 is used for
this integration. There are many different lq-norms , e.g., l1-, l2-, l∞-norm, and hence
different variants of OMPMMV [73]. Note that the columns of a MFT sensing matrix ΦΦΦ
may be not normalized. Therefore, the matrix Φ̃ΦΦ which is the column-normalized version
of ΦΦΦ, is used for computing the matching components.

107



6 Multiple measurement vector in super-resolution compressed sensing

6.3.2 Recovery guarantee
The MMV problem G0 has some restricting conditions on the sensing matrix ΦΦΦ to
guarantee the stability of an exact sparse recovery [76, 73, 27].

Theorem 2. Due to [73], OMPMMV can recover the sparse signal exactly with∣∣∣∣∣
( Q∑
q=1
|xxxq|

)∣∣∣∣∣
0

≤ 1 + µ

(1 +
√
Q)µ

(6.6)

Moreover, the variant of OMPMMV with l1-norm is proven by Chen et al. [73] can ex-

tend the above upper bound in (6.6) for an exact recovery to
∣∣∣∣∣
(∑Q

q=1 |xxxq|
)∣∣∣∣∣

0

≤ (1+µ−1)/2.

This condition is similar to that of a SMV problem in (3.14) and hence cannot be sat-
isfied in the super-resolution CS (F � 1) as the mutual coherence of a super-resolution
MFT sensing matrix is approximate to one.

6.4 Modified variants of greedy pursuits for MMV model
6.4.1 Modified OMPMMV
For the conventional OMPMMV, the matching matrix ZZZ ∈ CN×Q in step 4 of Algo-
rithm 14 has its transpose represented by:

ZZZT = Φ̃ΦΦH
RRR (6.7)

and its column zzzi:
zzzi = rrrTi Φ̃ΦΦ∗ (6.8)

where rrri is the ith column of the residual matrix RRR. At an iteration, each residual
column rrri derives from the measurement vector yyyi and hence, it comprises observations
of multiple non-zero atoms. Suppose rrri be the linear combination of Kt columns of
sensing matrix ΦΦΦ:

rrri =
Kt∑
j=1

cjiφφφkj
(6.9)

where cji is reflective magnitude of atom j in the ith measurement vector.
From (6.9), (6.8) can be rewritten:

zzzi = (
Kt∑
j=1

cjiφφφkj
)T (φ̃φφ∗1 φ̃φφ

∗
2 · · · φ̃φφ

∗
N ) (6.10)
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If all columns of ΦΦΦ are normalized and orthogonal, then:

φφφkφ̃φφ
∗
h =

{
1 6= 0 if k = h

0 if k 6= h
(6.11)

From (6.10) and (6.11), if residual vector rrri contains no observation of the index k
(cki = 0), then the matching element zki is zero. Otherwise, the absolute value of
the matching element is larger than zero. From these points, non-zero atoms can be
estimated through finding the largest absolute matching components

kj = arg max
1≤h≤N

∣∣∣(Kt∑
j=1

cjiφφφkj
)T φ̃φφ∗h

∣∣∣ (6.12)

Nevertheless, in a super-resolution MFT problem, the above atom selection procedure
apparently fails due to the small incoherence of sensing matrix. Therefore, we introduce a
modified variant of OMPMMV in Algorithm 15 with some modification steps to improve
the accuracy of the atom selection in the MMV techniques when the sensing matrix is
highly coherent. They comprise two main steps:

Algorithm 15 Modified Orthogonal Matching Pursuit for MMV joint sparse recovery
- (Modified OMPMMV)

Require: YYY , ΦΦΦ, K, Φ̃ΦΦ
Ensure: XXX,T

Modified OMP-MMV - Atom Selection Module
1: Initialization: XXX0 = ∅, T0 = ∅, RRR0= YYY , ΓΓΓ0 = R̃RR0
2: for t = 1 to K do
3: Choose the column ai of matrix ΦΦΦ which satisfies

i = argmaxk ||zzzk||∞ where zzzTk = Φ̃ΦΦH
k ΓΓΓt−1

4: Insert i into set Tt = Tt−1
⋃
i

5: Compute XXXt = argminXXX ||ΦΦΦTtXXX − YYY ||F
6: Compute residual RRRt = YYY −ΦΦΦTtXXXt and ΓΓΓt = R̃RRt
7: end for
8: Set T = TK and XXX = XXXK

• The residual matrix RRR is replaced by its normalized-column version R̃RR for comput-
ing the matching components between the residual matrix and the columns of the
sensing matrix.

zzzi =
(
∑Kt
j=1 cjiφφφkj

)T

||
∑Kt
j=1 cjiφφφkj

||2
(φ̃φφ∗1 φ̃φφ

∗
2 · · · φ̃φφ

∗
N ) (6.13)
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• Use l∞-norm of the inner product for integrating MMVs.

Given km be the non-zero index of xxxi with the largest absolute magnitude
|ckmi| = maxkj

|ckji|. Suppose that |ckmi| � |ckji| ∀j 6= m, then the matching vector zzzi
in (6.13) has the kmth element:

|zkmi| =
∣∣∣ (
∑Kt
j=1 cjiφφφkj

)T

||
∑Kt
j=1 cjiφφφkj

||2
φ̃φφ
∗
km

∣∣∣ ≈ ∣∣∣ (ckmiφφφkm)T

||ckmiφφφkm ||2
φ̃φφ
∗
km

∣∣∣ = 1 (6.14)

and elements at other indices n 6= km:

|zni| =
∣∣∣ (
∑Kt
j=1 cjiφφφkj

)T

||
∑Kt
j=1 cjiφφφkj

||2
φ̃φφ
∗
n

∣∣∣ =
∣∣∣∣∣∣ (
∑Kt
j=1 cjiφφφkj

)T

||
∑Kt
j=1 cjiφφφkj

||2

∣∣∣∣∣∣
2

∣∣∣∣∣∣φ̃φφ∗n∣∣∣∣∣∣2 sin θn < 1 (6.15)

From the above results, if the dynamic range of an arbitrary column vector xxxi is large,
then the non-zero index km can be estimated accurately by using the l∞-norm of the
matching component rows. The effectiveness of our proposed Modified OMP-MMV in
Algorithm 15 will be proven through the next numerical comparison with other variants
of OMPMMV, i.e., l1-, l2- and l∞-norm.

6.4.2 Modified global optimization - GO-MMV
The thesis proposes in this part a new atom updating module GO-MMV, a variant of the
global optimization (GO) which has been introduced in Section 4.2, for a MMV model
as described in Algorithm 16. The operating principle of this method is correcting each
non-zero index while holding others fixed. It relies on finding a replacing atom which
can bring the smallest residual cost ||ΦΦΦTXXX −YYY ||F . Unlike the atom selection module in
the above Modified OMPMMV, the atom updating module of GO-MMV uses l2-norm
of matching components to integrate all MMVs for selecting the replacing atoms.

6.4.3 Cyclic orthogonal matching pursuit for MMV model - OMP3-MMV
We extend a variant of OMP3 for a MMV model, namely Cyclic OMPMMV (OMP3-
MMV), by adding the above GO-MMV at the end of the Modified OMPMMV, as de-
scribed in Algorithm 17. More precisely, GO-MMV fixes the wrongly selected indices of
Modified OMPMMV. And hence, OMP3-MMV is promising to bring a better recovery
performance. According to the operating principle of this method in Algorithm 16, our
proposed OMP3-MMV uses l∞-norm of the matching component vectors in atom selec-
tion module and l2-norm of the matching component vectors in atom updating module.
We refer this method shortly as OMP3-MMV (l∞-norm, l2-norm). Besides, there are
other variants of OMP3-MMV with other settings of (lp1-norm, lp2-norm). In next nu-
merical experiments, we aim to prove that our proposed variant OMP3-MMV (l∞-norm,
l2-norm) has advantages regarding high support recovery performances.
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Algorithm 16 Global optimization for MMV model - (GO-MMV)

Require: YYY , ΦΦΦ, XXX, T , Φ̃ΦΦ
Ensure: XXX, T

1: while true do
2: for j = 1 to length(T ) do
3: Set T2 = T and XXX2 =XXX
4: Remove the jth element from T2 and the jth row from XXX2

T2 = T2 \ T2(j)
XXX2 = XXX2 \XXX2(j, :)

5: Compute residual RRR = YYY −ΦΦΦT2XXX2
6: Choose the column i of matrix ΦΦΦ which satisfies

i = argmaxk ||zzzk||2 where zzzTk = Φ̃ΦΦH
k RRR

7: if i 6∈ T then
8: Insert i into set T2 = T2

⋃
i

9: else
10: continue
11: end if
12: Compute XXX2 = argminXXX ||ΦΦΦT2XXX − YYY ||F
13: Compute residual RRR2 = YYY −ΦΦΦT2XXX2
14: if ||RRR2||F < ||R̂RR||F then
15: Update T = T2 and R̂RR = RRR2
16: Update XXX = XXX2
17: end if
18: end for
19: if no update in step 15 and 16 then
20: break
21: end if
22: end while

Algorithm 17 Cyclic Orthogonal Matching Pursuit for MMV joint sparse recovery -
(OMP3-MMV)

Require: YYY , ΦΦΦ, K, Φ̃ΦΦ
Ensure: XXX, T

1: Initialization: XXX0 = ∅, T0 = ∅, RRR0= YYY , ΓΓΓ0 = R̃RR0
2: [XXX,T ] = Modified OMPMMV (YYY , ΦΦΦ, K)
3: [XXX,T ] = GO-MMV (YYY , ΦΦΦ, XXX, T )
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6.4.4 Cyclic magnitude adjustment orthogonal matching pursuit for MMV
model - Ma-OMP3-MMV

Magnitude-Adjustment Orthogonal Matching Pursuit (Ma-OMP) is a variant of non-
negative OMP. As proven through the numerical results in Section 4.6, this algorithm
can bring a better recovery performance at a small MD in extremely noisy cases. In this
part, this method is modified for a MMV case as described in Algorithm 18.

Algorithm 18 Modified Magnitude-Adjustment Orthogonal Matching Pursuit for
MMV joint sparse recovery - (Ma-OMPMMV)

Require: YYY , ΦΦΦ, K, Φ̃ΦΦ
Ensure: XXX, T

1: Initialization: XXX0 = ∅, T0 = ∅, RRR0= YYY , ΓΓΓ0 = R̃RR0
2: for t = 1 to K do
3: Choose the column ai of matrix ΦΦΦ which satisfies

it = argmaxk ||zzzk||∞ where zzzTk = Φ̃ΦΦH
k ΓΓΓt−1

4: Insert it into set Tt = Tt−1
⋃
it

5: Compute at = argminat ||atφφφit − rrrt−1||2
6: if it ∈ Tt−1 then
7: xit = xit + at
8: else
9: Tt = Tt−1

⋃
it

10: xit = ρat
11: end if
12: Compute XXXt = argminXXX ||ΦΦΦTtXXX − YYY ||F
13: Compute residual RRRt = YYY −ΦΦΦTtXXXt and ΓΓΓt = R̃RRt
14: end for
15: Set T = TK and XXX = XXXK

Similar to the Modified OMPMMV, Ma-OMPMMV uses l∞-norm of matching com-
ponent vectors to integrate MMVs. Besides, similar to Ma-OMP, Ma-OMPMMV selects
an adjustment factor of ρ = 0.8 for regulating the estimated non-zero magnitudes, as
proven in Section 4.5.2. Subsequently, we add the GO-MMV technique to the end of
the above Ma-OMPMMV to correct the wrongly selected indices. This method is re-
ferred as Ma-OMP3-MMV as described in Algorithm 19. Similar to OMP3-MMV, our
proposed Ma-OMP3-MMV uses l∞-norm and l2-norm in atom selection and updating
module respectively. Furthermore, there are other variants of Ma-OMP3-MMV with
various settings of (lp1-norm, lp2-norm) to integrate MMVs.
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Algorithm 19 Modified Cyclic Magnitude-Adjustment Orthogonal Matching Pursuit
for MMV joint sparse recovery - (Ma-OMP3-MMV)

Require: YYY , ΦΦΦ, K, Φ̃ΦΦ
Ensure: XXX, T

1: Initialization: XXX0 = ∅, T0 = ∅, RRR0= YYY , ΓΓΓ0 = R̃RR0
2: [XXX,T ] = Ma-OMPMMV (YYY , ΦΦΦ, K)
3: [XXX,T ] = GO-MMV (YYY , ΦΦΦ, XXX, T )

6.4.5 POMP for MMV model
As proven in Chapter 3, POMP is a potential recovery algorithm to bring a better
recovery performance in small MDs, especially in the nearly noiseless cases. In principle,
the atom selection module of POMP inherits from OMP. Our research aims to develop
a variant of POMP for a MMV model but is currently unsuccessfully. Apparently, it
becomes challenging to integrate all MMVs in its atom removal module.
In this thesis, we can only use POMP for MMV data after converting it to the averaged

measurement vector:

yyy0 = 1
Q

Q∑
q=1

yyyq = ΦΦΦ 1
Q

Q∑
q=1

xxxq = ΦΦΦxxx0 (6.16)

The above problem (6.16) is a converted SMV model. Therefore, OMP3, Ma-OMP3 or
POMP can be used for the reconstruction of the sparse signal xxx0 using (6.16). From this
result, we can estimate the joint-sparse support of the unknown matrix XXX. The above
implementation is similar to the numerical studies of Yang et al.[74]. The averaging
operator in (6.16) is considered as temporal or spatial noise filtering techniques [42].
Thus, the converted SMV model is promising to bring higher recovery performances
through the reduction of measurement noises.

6.5 Numerical results
This section carries out several numerical experiments, similar to Section 4.5. We aim
to do the reconstruction performance analysis of our proposed methods for a super-
resolution MFT acquisition using MMV techniques. A MMV model with Q = 3 is
constructed on the super-resolution MFT sensing matrix ΦΦΦopt,1 ∈ R20×500 with a large
refinement factor F = 100 and the old parameters, i.e., L = 5, fmax = 30 MHz. This
sensing matrix is the optimized result of the proposed frequency selection optimization
in Chapter. 5.
This analysis of each MMV joint-sparse reconstruction algorithm includes two main

Monte Carlo simulations:
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• The first one is analyzing the reconstruction capabilities of a method for a MMV
model in the cases of various SNRs (from 5 dB to 50 dB). Each SNR comprises
3000 trials. At each trial, a non-negative K-joint-sparse signal matrix (Q = 3)
is generated with each column containing K random non-zero indices (∆T ≥ 5
for δ = 2 or ∆T ≥ 11 for δ = 5) and magnitudes into the range [0.1,10]. Note
that three columns of this signal matrix have the common non-zero support but
different non-zero magnitudes. Subsequently, the noisy MMV data is generated
through (6.3) with an analyzed SNR. The relaxed support recovery rates with
the tolerance offsets δ = 2 and δ = 5 are averaged after 3000 trials for each
SNR. Finally, we obtain the support recovery performance of the reconstruction
algorithm in the SNR domain.

• The second one is analyzing the reconstruction capabilities of this method for a
MMV model in the cases of various MDs. The relaxed support recovery rates with
the tolerance offsets δ = 2 and δ = 5 are averaged after 500 trials for each MD. At
each trial, the procedures of signal and MMV generation are similar to the first
analysis. But the joint-sparse support of the signal matrix XXX has MD equal to
the analyzed MD value. Note that there are two cases of different SNRs for the
generation of noisy MMVs, i.e., 15 dB and 30 dB. With this analysis, we obtain
the support recovery performance of the method in the MD domain (from 5 to 150
bins) with two various noise levels.

6.5.1 Comparison between OMPMMV variants
Two Monte Carlo simulations are carried out in this part to obtain the reconstruction
performance analysis of all six different variants of OMPMMV in the SNR and MD
domains. These variants include:
• the proposed Modified OMPMMV in Algorithm 15.

• three conventional variants of OMPMMV in Algorithm 14 with different lp-norms,
i.e., l1-, l2-, and l∞-norm, without normalizing the residual vectors.

• two conventional variants of OMPMMV in Algorithm 14 with different lp-norms,
i.e., l1-, l2-norm, with normalizing the residual vectors.

According to the achieved results in Fig. 6.1 and Fig. 6.2, we have:

• The proposed Modified OMPMMV (blue lines) brings the highest relaxed support
recovery rates in all cases of different noise levels and MDs among the analyzed
OMPMMV variants.

• The support recovery performances of the conventional OMPMMV with different
lp-norms, i.e., l∞-, l2- and l1- norm, without normalizing the residual vectors (rose,
red and green lines respectively) stay in the descending order.
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Figure 6.1. Comparison between the relaxed support recovery performances of Modified OMPMMV
and the conventional variants of OMPMMV in the cases of different SNRs (3000 trials for each SNR).
Choose N = 500, L = 5, M = 20, Q = 3, fmax = 30 MHz, F = 100, K = 3, ∆r = 5 cm for a
super-resolution MMV-MFT acquisition.

• Two remaining variants (yellow and light blue lines) with normalizing the residual
vectors but other lp-norms, i.e., l2- or l1- norm, have the poorest support recon-
struction performances. These results reveal that the normalizing of the residual
vectors is only effective if OMPMMV uses l∞-norm of the matching rows.

6.5.2 Comparison between OMP3-MMV variants
In this part, the recovery performances of four different variants of OMP3-MMV are
compared to each other in the same MMV-MFT acquisition ΦΦΦopt,1. Four variants of
OMP3-MMV are constructed with different settings (lp1-norm, lp2-norm) as mentioned
in Section 6.4.3, i.e., (l∞-norm, l2-norm), (l∞-norm, l1-norm), (l∞-norm, l∞-norm), (l2-
norm, l2-norm). Fig. 6.3 and Fig. 6.4 demonstrate their relaxed support recovery rates
in the cases of various SNRs (3000 trials for each SNR) and various MDs (500 trials for
each MD).

It can be seen in Fig. 6.3 that our proposed OMP3-MMV with (l∞-norm, l2-norm)
(blue lines) brings the highest relaxed support recovery rates with both δ = 2 and δ = 5
in the cases of low SNRs (below 35 dB). Nevertheless, at a SNR of higher than 35 dB,
the recovery rates of the variant of OMP3-MMV with (l∞-norm, l∞-norm) (red lines)
are slightly higher than those of our proposed method with a small tolerance offset
δ = 2. This result can be explained through the highest reconstruction performances
of the variant of OMP3-MMV with (l∞-norm, l∞-norm) in most cases of small MDs
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(a) 15dB

(b) 30dB

Figure 6.2. Comparison between the relaxed support recovery performances of Modified OMPMMV
and the conventional variants of OMPMMV in the cases of different MDs (500 trials for each MD).
Choose N = 500, L = 5, M = 20, Q = 3, fmax = 30 MHz, F = 100, K = 3, ∆r = 5 cm for a
super-resolution MMV-MFT acquisition.

(10 ≤ ∆T ≤ 30), as can be seen in Fig. 6.4b. Nevertheless, with a large offset δ = 5,
there seems to be no significant difference between the relaxed support recovery rates
of these two variants. For an overall comparison, our proposed OMP3-MMV with (l∞-
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Figure 6.3. Comparison between the relaxed support recovery performances of our proposed OMP3-
MMV and the other variants of OMP3-MMV in the cases of different SNRs (3000 trials for each
SNR). Choose N = 500, L = 5, M = 20, Q = 3, fmax = 30 MHz, F = 100, K = 3, ∆r = 5 cm
for a super-resolution MMV-MFT acquisition.

norm, l2-norm) can be considered as the best method among the analyzed variants of
OMP3-MMV.

6.5.3 Comparison between Ma-OMP3-MMV variants
Similarly, this part aims to compare the reconstruction performances of many variants of
Ma-OMP3-MMV for the same super-resolution MFT acquisition using MMV techniques.
As mentioned in Section 6.4.4, our proposed Ma-OMP3-MMV in Algorithm 19 uses two
norm operations (l∞-norm, l2-norm).

For a diverse comparison, two other variants of Ma-OMP3-MMV with different set-
tings (lp1-norm, lp2-norm), i.e., (l∞-norm, l∞-norm) and (l∞-norm, l1-norm) are also
analyzed in the cases of various SNRs and MDs. All achieved results of three Ma-
OMP3-MMV variants are demonstrated in Fig. 6.5 and Fig. 6.6.
It can be seen in Fig. 6.5 and Fig. 6.6 that our proposed method Ma-OMP3-MMV

with (l∞-norm, l2-norm) (blue lines) brings the highest relaxed support recovery rates
(δ = 2 and δ = 5) in the cases of low SNRs below 35 dB or in the cases of large
MDs. Whereas, the variant of Ma-OMP3-MMV with (l∞-norm, l∞-norm) (red lines) is
the best choice among three variants in other cases. The above results are similar to
those of OMP3-MMV. For an overall evaluation, our proposed method Ma-OMP3-MMV
with (l∞-norm, l2-norm) is the best variant of Ma-OMP3-MMV for our super-resolution
MMV-MFT acquisition.
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(a) 15dB

(b) 30dB

Figure 6.4. Comparison between the relaxed support recovery performances of our proposed OMP3-
MMV and the other variants of OMP3-MMV in the cases of different MDs (500 trials for each MD).
Choose N = 500, L = 5, M = 20, Q = 3, fmax = 30 MHz, F = 100, K = 3, ∆r = 5 cm for a
super-resolution MMV-MFT acquisition.

6.5.4 Comparison between MMVs and SMV
A question arises whether a super-resolution MFT acquisition using MMV techniques
is actually more efficient than a SMV model. This part aims to answer this question
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Figure 6.5. Comparison between the relaxed support recovery performances of many variants of
Ma-OMP3-MMV in the cases of different SNRs (3000 trials for each SNR). Choose N = 500, L = 5,
M = 20, Q = 3, fmax = 30 MHz, F = 100, K = 3, ∆r = 5 cm for a super-resolution MMV-MFT
acquisition.

(a) 15dB

Figure 6.6. Comparison between the relaxed support recovery performances of many variants of
Ma-OMP3-MMV in the cases of different MDs (500 trials for each MD). Choose N = 500, L = 5,
M = 20, Q = 3, fmax = 30 MHz, F = 100, K = 3, ∆r = 5 cm for a super-resolution MMV-MFT
acquisition.

through numerical experiments. The above MMV model with Q = 3 can be consid-
ered as three SMV models sharing the same sensing matrix ΦΦΦopt,1 ∈ R20×500. For the
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(b) 30dB

Figure 6.6. Comparison between the relaxed support recovery performances of Ma-OMP3-MMV
and the other variants of Ma-OMP3-MMV in the cases of different MDs (500 trials for each MD).
Choose N = 500, L = 5, M = 20, Q = 3, fmax = 30 MHz, F = 100, K = 3, ∆r = 5 cm for a
super-resolution MMV-MFT acquisition (cont).

construction of such MMV data, we carry out a total of 60 TOF measurements. From
this point, we construct a SMV model with 60 real-valued TOF measurements at dif-
ferent modulation frequencies. An optimized set of 60 frequencies are found through
our proposed frequency optimization method in Algorithm 12 with the same previous
parameters, i.e., N = 500, L = 5, fmax = 30 MHz, F = 100. After the optimization
phase, we obtain the optimized super-resolution MFT sensing matrix ΦΦΦopt ∈ R60×500.
Two Monte Carlo simulations are carried out on the super-resolution MFT acquisition

ΦΦΦopt ∈ R60×500 with 3000 trials for each SNR and 500 trials for each MD. At each
trial, the procedures of signal and noisy measurement vector generation are similar
to Section. 4.5. Three reconstruction methods, i.e., OMP3, POMP, and Ma-OMP3,
reconstruct the sparse signal based on the generated noisy measurement vector. Their
relaxed support recovery rates with the tolerance offset δ = 2 are then averaged after
all trials. These results are demonstrated in the cases of various SNRs in Fig. 6.7 and
in the cases of various MDs in Fig. 6.8. Besides, the achieved results of OMP3-MMV
and Ma-OMP3-MMV collected from Fig. 6.3, Fig. 6.4 and Fig. 6.5, Fig. 6.6 are also
demonstrated in Fig. 6.7 and Fig. 6.8.
Moreover, an alternative sparse reconstruction approach for MMV data is to convert

it to a SMV data as described in (6.16). Subsequently, OMP3, Ma-OMP3, and POMP
reconstruct the common sparse support based on the converted SMV data. Their relaxed
support recovery rates with the tolerance offset δ = 2 are also demonstrated in Fig. 6.7
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Figure 6.7. Comparison between the relaxed support recovery performances (δ = 2) in MMV model
and SMV model in the cases of different SNRs (3000 trials for each SNR). Choose N = 500, L = 5,
M = 20, Q = 3, fmax = 30 MHz, F = 100, K = 3, ∆r = 5 cm for the construction of MMV and
SMV models.

and Fig. 6.8. Note that the MMV data in the previous numerical experiments (Fig. 6.3,
Fig. 6.4 and Fig. 6.5, Fig. 6.6) are reused in this simulation for a correct comparison.
A comparison between the results in Fig. 6.7 and Fig. 6.8 claims that:

• The MMV model based on the MFT acquisition ΦΦΦopt,1 ∈ R20×500 using OMP3-
MMV and Ma-OMP3-MMV (solid blue and red lines) outperforms the SMV model
ΦΦΦopt ∈ R60×500 using OMP3 and Ma-OMP3 (solid green and yellow lines) at most
cases of various SNRs and MDs. Exceptionally, according to Fig. 6.8, the relaxed
support recovery rates of OMP3-MMV (solid blue lines) are slightly lower than
those of OMP3-SMV (solid green lines) in a few cases of small MDs (∆T ≤ 20).

• The achieved reconstruction results of POMP based on the converted SMV data
(solid brown lines) are better than those of POMP for the SMVmodel ΦΦΦopt ∈ R60×500

(solid marine lines) in the cases of high SNRs (SNR ≥ 17 dB). However, they be-
come slightly poorer in the cases of low SNRs (SNR ≤ 17 dB).

• The reconstructed support results of OMP3-MMV (solid blue lines) and Ma-
OMP3-MMV (solid red lines) for the MMV model are much better than those
of OMP3 (dashed blue lines) and Ma-OMP3 (dashed red lines) based on the con-
verted SMV data (see (6.16)) in all cases of various SNRs and MDs. These results
are due to the fact that OMPMMV variants simultaneously use Q measurement
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(a) 15dB, δ = 2 for Rb evaluation

(b) 30dB, δ = 2 for Rb evaluation

Figure 6.8. Comparison between the relaxed support recovery performances (δ = 2) in MMV model
and SMV model in the cases of different MDs (500 trials for each MD). Choose N = 500, L = 5,
M = 20, Q = 3, fmax = 30 MHz, F = 100, K = 3, ∆r = 5 cm for the construction of MMV and
SMV models.

vectors for selecting non-zero indices. Therefore, more collected informations are
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apparently effective to obtain a more accurate reconstruction of the signal support.
These results have been proven similarly in the prior study of Yang et al. [74].

In summary, instead of measuring more TOF samples at different frequencies, it is
more efficient to enhance the sparse support recovery performance for a super-resolution
MFT acquisition through using MMV techniques.

6.5.5 Number of MMVs
The numerical experiment in this part aims to evaluate the benefits of an increase of
MMV number(Q > 3). For this reason, two Monte Carlo simulations with 3000 trials
for each SNR (from 5 dB to 40 dB) and 500 trials for each MD (from 5 to 150 bins) are
carried out for a new MMV model comprising six measurement vectors (Q = 6) sharing
the same MFT sensing matrix ΦΦΦopt,1 ∈ R20×500.
For the above MMV model, the procedures of signal and measurement vector gener-

ation at each trial are similar to the previous simulations. Subsequently, OMP3-MMV
and Ma-OMP3-MMV are used for 3-sparse reconstruction based on the MMV data.
Furthermore, we use POMP for the sparse support reconstruction based on the con-
verted SMV model in (6.16). The relaxed support recovery rates are averaged after all
trials and then demonstrated in the SNR domain (see Fig. 6.9) and the MD domain (see
Fig. 6.10).

Figure 6.9. Comparison between the relaxed support recovery performances (δ = 2) in two MMV
models with different settings of Q in the case of different SNRs (3000 trials for each SNR). Choose
N = 500, L = 5, M = 20, fmax = 30 MHz, F = 100, K = 3, ∆r = 5 cm for the construction of
MMV models
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(a) 15dB, δ = 2 for Rb evaluation

Figure 6.10. Comparison between the relaxed support recovery performances (δ = 2) in two MMV
models with different settings of Q in the cases of different MDs (500 trials for each MD). Choose
N = 500, L = 5, M = 20, fmax = 30 MHz, F = 100, K = 3, ∆r = 5 cm for the construction of
MMV models

It can be seen in Fig. 6.9 and Fig. 6.10 that a larger amount of MMVs (Q = 6)
brings the higher relaxed support recovery rates of three above reconstruction methods,
i.e., OMP3-MMV, Ma-OMP3-MMV and POMP-MMV (cyan, rose and yellow lines),
in all cases of various SNRs and MDs. However, a larger amount of MMVs requires
more acquisition time and higher system design complexity. Thus, the amount of MMVs
should be selected carefully to guarantee a good reconstruction performance as well as
a fast processing speed in a super-resolution MFT acquisition.

6.6 Summary
Through the above numerical results, MMV techniques bring some significant improve-
ments of sparse reconstruction performance in a super-resolution MFT acquisition. Be-
sides, our modified MMV variants of greedy pursuits, i.e., OMP3-MMV, Ma-OMP3-
MMV, POMP for the converted SMV model, are proven as the appropriate methods for
a MMV joint sparse reconstruction. Each of them possesses some various advantages at
different MDs (see Fig. 6.8). If their strengths can be integrated through our proposed
method CMD-OMP, then a high stability of accurate relaxed support recovery is guar-
anteed with an accuracy offset δ = 2∆r through 60 TOF measurements (M = 20 and
Q = 3):
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(b) 30dB, δ = 2 for Rb evaluation

Figure 6.10. Comparison between the relaxed support recovery performances (δ = 2) in two MMV
models with different settings of Q in the cases of different MDs (500 trials for each MD). Choose
N = 500, L = 5, M = 20, fmax = 30 MHz, F = 100, K = 3, ∆r = 5 cm for the construction of
MMV models (cont)

• In the cases of moderate noise levels, e.g., SNR = 30 dB, about 80% non-zero
indices can be estimated accurately by POMP when 10∆r ≤ ∆T ≤ 50∆r and
about 90% atoms can be estimated accurately by OMP3-MMV when ∆T ≥ 50∆r.

• In the cases of high noise levels, e.g., SNR = 15 dB, about 50% non-zero indices
can be estimated accurately by Ma-OMP3-MMV when 10∆r ≤ ∆T ≤ 40∆r and
over 80% atoms can be estimated accurately by OMP3-MMV when ∆T ≥ 60∆r.

As mentioned above, similar to a target-localization application [74], MMV data of a
MFT acquisition in a TOF camera can be acquired through using different polarizers at
either transmitter or receiver. However, the hardware design for such real MMV data
generation is currently complicated in a commercial TOF camera system.
So far, as the targets get closer or more precisely MD is significantly small, the MPI

localization usually fails even with the availability of MMV data. It seems to be possible
that the poor reconstruction results at small MDs are due to the low incoherence of
the super-resolution MFT sensing matrix. Thus, we will introduce a new type of TOF
measurement in next chapter to enhance this incoherence.
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7 Simultaneous multiple frequency
acquisition

Chapter 5 optimizes a super-resolution MFT acquisition in a large refinement factor con-
figuration successfully by selecting an appropriate set of frequencies and phase-offsets.
However, these achievements are significantly small because the coherence of the sens-
ing matrix is still high, especially at the diagonal line of the Gram matrix as shown in
Fig. 5.7. From this result, the neighboring indices sharing the similar observations are
hard to be estimated accurately. And hence, the support recovery performance is poor
especially in noisy cases as shown in Fig. 5.8. For these reasons, in this chapter, the
conventional TOF measurement, which is modulated and demodulated at a single fre-
quency, is replaced by simultaneous multiple frequency (SMF) measurement. This new
type of SMF measurement was firstly introduced by Payne et al. [29] for extending the
ambiguity range of a CW-TOF camera. Whereas, we use these SMF measurements for
designing a new sensing matrix with a higher incoherence. Firstly, we represent MFT ac-
quisition and multiple-SMF acquisition under a projection matrix model. Subsequently,
according to this model, we aim to design a more incoherent sensing matrix based on
multiple SMF measurements through a projection matrix optimization method in Sec-
tion 7.2. However, there are some restricting conditions on projection matrix regarding
hardware design complexity. Therefore, we modify the optimization method to obtain
the appropriate solution satisfying these conditions. The capabilities of the proposed
multiple-SMF acquisition in resolving MPIs are demonstrated through numerical exper-
iments in Section 7.3. Furthermore, it is currently challenging to carry out a real SMF
measurement in a commercial TOF camera. For this reason, we introduce joint multiple
frequency calibration in Section 7.4. The operating principle of this technique is simi-
lar to multiple-SMF models, but can be implemented easily in a commercial CW-TOF
camera.
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7 Simultaneous multiple frequency acquisition

7.1 Projection matrix model
7.1.1 Dictionary matrix
Given that a CW-TOF camera can modulate the set Ψ of M0 frequencies with zero
phase-offsets. Then, MFT dictionary matrix ΦΦΦ0 comprises M0 rows

ΦΦΦ0 =



φφφf1

φφφf2

...

φφφfM0


(7.1)

where φφφfj
denotes TOF correlation function response to scatterers locating at N grids

with modulation frequency fj , as described in (3.29).

7.1.2 MFT sensing matrix
So far, each TOF measurement in a MFT acquisition is a sample of cross-correlation
function gf0(τ) in (3.29) between the reflected and demodulation signals at a single
frequency f0 ∈ Ψ. Suppose that this measurement has a zero phase-offset τ = 0. In
principle, this TOF measurement shares a row of the above dictionary matrix ΦΦΦ0.
If a MFT acquisition carries out M TOF measurements at different frequencies from

the set Ψ, then we construct the corresponding MFT sensing matrix by pickingM < M0
rows of the dictionary matrix ΦΦΦ0. The picking relationship between the MFT sensing
matrix and the dictionary matrix can be rewritten under a mathematical projection
matrix model:

ΦΦΦ = PPPΦΦΦ0 (7.2)

where PPP ∈ RM×M0 is projection matrix. In a MFT acquisition, the projection matrix
PPP is a binary matrix whose rows each contain only one non-zero element. The non-
zero location denotes the chosen modulation frequency. For instance, if an arbitrary
frequency fm is chosen for the first measurement of a MFT acquisition, then the first
row of projection matrix contains one non-zero element p1m = 1.

7.1.3 Multiple-SMF sensing matrix
SMF measurement was introduced firstly by Payne et al. [29]. This new type of TOF
measurement comprises multiple parts of different modulation frequencies. Unlike the
conventional CW-TOF measurement, the illumination system of a SMF model does
not transmit an optical signal at one frequency, but emits a mixture of signal parts of
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Figure 7.1. Single-frequency and simultaneous multi-frequency MFT acquisition

multiple frequencies, as described in Fig. 7.1. At receiver side, a TOF chip correlates
the reflected signal parts with a similar demodulation signal mixture. In other words,
each frequency part of the reflected signal is correlated with a demodulation signal
part of the same frequency and exposure time. Eventually, a SMF measurement is
considered as the linear combination of multiple single-frequency TOF measurements.
As a result, we can represent multiple SMF measurements using the projection matrix

129



7 Simultaneous multiple frequency acquisition

model (7.2). Nevertheless, the structure of projection matrix in this multiple-SMF model
is different from that in a MFT acquisition. To be more precise, each row of the multiple-
SMF projection matrix contains more than one non-zero entry. Suppose that a SMF
measurement comprises h parts of different frequencies, then h is also the number of
non-zero elements in the corresponding projection matrix row. The non-zero elements of
this row denote the corresponding member frequencies of the SMF measurement. From
these points, the projection matrix of multiple-SMF acquisition is no longer a binary
matrix as a MFT acquisition. We aim to improve the quality of the MPI separation
by designing the structure of multiple-SMF acquisition or more precisely optimizing the
corresponding projection matrix.

7.2 Projection matrix optimization in SMF acquisition
As discussed above, the projection matrix representing for multiple-SMF acquisition
is a sparse matrix where h denotes the largest sparsity of its rows. In this part, we
introduce a projection matrix optimization method to enhance the incoherence of the
corresponding multiple-SMF matrix, similar to many previous studies [77, 78, 79, 30].

7.2.1 Projection matrix optimization method
As mentioned in Section 5.1, the coherence cost E of a sensing matrix ΦΦΦ in (5.14) is a
good measure to evaluate its coherence map or Gram matrix if the mutual coherence is
close to one. A sensing matrix with a smaller coherence cost may bring a higher sparse
reconstruction performance in a super-resolution CS problem. Therefore, we use the
projection matrix optimization method which has been proposed by Abolghasemi et al.
[30] for minimizing the coherence cost of the multiple-SMF sensing matrix

P̂PP = arg min
PPP

E s.t. ΦΦΦ = PPPΦ0Φ0Φ0 (7.3)

The optimization method uses gradient descent steepest technique to update the sens-
ing matrix iteratively through:

ΦΦΦnew = Φ̃ΦΦ− η∇E∇E∇E (7.4)

where
∇E∇E∇E = ∂E

∂Φ̃ΦΦ
= 4Φ̃ΦΦ(Φ̃ΦΦHΦ̃ΦΦ− III) (7.5)

with Φ̃ΦΦ is the normalized column version of sensing matrix ΦΦΦ and η is a given step-
size. This step-size value is reduced until the newly achieved sensing matrix ΦΦΦnew has a
smaller coherence cost E(ΦΦΦnew) < E(ΦΦΦ). Subsequently, a new projection matrix PPPnew
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can be inferred through the following inverse linear problem:

ΦΦΦnew = PPPnewΦΦΦ0 ⇒ PPPnew = ΦΦΦnewΦΦΦ−1
0 (7.6)

7.2.2 Modified projection matrix modification
Nevertheless, there are some restricting conditions on the optimized projection matrix
in multiple-SMF model. These conditions are highly dependent on the hardware design
complexity of a commercial TOF camera for real SMF measurements. Currently, the
research about such design has not been investigated yet. However, according to the
operating principle of a multiple-SMF acquisition, we hypothesize in this chapter that
there are two severe technical limitations including the largest amount of different parts
and the magnitude adjustment. From this point, we modify the above original optimiza-
tion method to avoid these problems. To be concrete, there are two modification steps
on the achieved result PPPnew.

7.2.2.1 Sparse matrix construction

So far, there have been no studies that build up a real TOF system for acquiring real
SMF measurements. Therefore, a comparison between several practical systems can
hardly be achieved. For instance, Payne et al. [29] only simulated their idea of SMF
measurements comprising two different-frequency components by two sequential TOF
measurements. The design complexity of this system is high if the emitted optical signal
contains many different-frequency parts. For such a real SMF measurement, a CW-
TOF camera requires a more complex illumination driving system and TOF modulation
chip. Definitely, the amount of different-frequency parts in a SMF measurement is a
crucial factor. Therefore, we hypothesize that a real CW-TOF system can modulate
SMF measurements comprising only a few different-frequency parts. In other words,
there is an upper bound on the number of different-frequency parts, due to hardware
design complexity. This bound is equivalent to the largest sparsity of the corresponding
multiple-SMF projection matrix row.
Given h be the largest sparsity of the projection matrix rows. In order to obtain the

optimized projection matrix PPP s which can satisfy the restricting condition on the row
sparsity, the inverse linear problem (7.6) should be converted to the following optimiza-
tion problem:

PPP s = argmin
PPP
||PPP −ΦΦΦnewΦΦΦ−1

0 ||2 s.t. ||pppq||0 ≤ h,∀q ≤M (7.7)

From (7.6), each row φφφnew,q of ΦΦΦnew is represented by:

φφφnew,q = ppps,qΦΦΦ0 ∀q ≤M (7.8)
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or
φφφTnew,q = ΦΦΦT

0 ppp
T
s,q ∀q ≤M (7.9)

According to (7.9), the optimization problem (7.7) can be solved by finding M sparse
row vectors ppps,q in (7.9) based on the available vector φφφTnew,q and matrix ΦΦΦT

0 . The largest
sparsity h is a known parameter due to hardware limitation. Since N � M0, (7.9) is
an over-determined equation system. There are many sparse reconstruction methods
for solving this problem (7.9). For a simplicity, we propose the greedy pursuit OMP3
in Algorithm 6 with a fast-processing speed and a high reconstruction quality since the
sparsity h is known. Our solution approach for finding a sparse projection matrix PPP s is
shown in Algorithm 20.

7.2.2.2 Magnitude adjustment

A SMF measurement is considered as the linear combination of multiple single-frequency
measurements. Each frequency component has various contribution in this SMF mea-
surement that is represented by the amplitude of the corresponding element in the projec-
tion row. The amplitude adjustment of the projection matrix elements can be proceeded
through setting the exposure times or the optical magnitudes of the frequency parts.
Notably, frequency components in a SMF measurement are periodical modulated

waveforms. Therefore, the exposure time of one frequency component is equivalent
to the number of periods containing in the corresponding waveform. In a SMF measure-
ment, if the numbers are integers and the optical magnitudes of all frequency parts are
equal, then the projection matrix elements representing for the frequency parts are also
integers. If a TOF camera can amend the optical magnitude of each frequency part, the
corresponding projection matrix element is float-valued. From these points, whether the
magnitudes of multiple-SMF projection matrix elements take float or integer numbers,
is highly dependent on the illumination waveform modulation capabilities of the TOF
camera system. Note that a negative value of one projection matrix element represents
a frequency part demodulated at a phase-offset τ of π (radians).

The achieved sparse projection matrix PPP s in (7.7) contains float-valued elements. If
these matrix elements are restricted to integer format, the following rounding operation
should be implemented on row vectors ppps,q in (7.9):

ppps,int,q = round(ppps,q) (7.10)

This procedure (7.10) repeats for M rows to obtain the projection matrix PPP s,int, whose
structure possesses the integer format and the largest row sparsity h. After the calcu-
lation of the projection matrix PPP s,int, the new sensing matrix ΦΦΦnew is computed again
such that ΦΦΦnew = PPP s,intΦΦΦ0. However, this new result of sensing matrix is only updated
for the next iteration if E(ΦΦΦnew) < E(ΦΦΦ). Otherwise, the step-size in (7.4) is reduced
and then the previous computation procedure of PPP s,int is repeated until the new sensing
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Algorithm 20 Gradient steepest descent method for the projection matrix optimization
in a multiple-SMF model

Input: The sensing matrix ΦΦΦ(k×N)
0 , a initial random sparse projection matrix PPP (M×k)

0
and h

Output: The optimized sparse projection matrix PPP opt
1: Compute the measurement matrix ΦΦΦ = PPP 0ΦΦΦ0 and the column-normalized Φ̃ΦΦ
2: Calculate E(ΦΦΦ) and set Emin = E(ΦΦΦ)
3: while TRUE do
4: Compute the gradient ∇E∇E∇E
5: Update the new measurement matrix ΦΦΦnew = Φ̃ΦΦ− η∇E∇E∇E
6: for q = 1 to M do
7: Set yyy = φφφTnew,q
8: Use OMP3 to find x̂xx = argminxxx ||yyy −ΦΦΦT

0 xxx||2 s.t. ||xxx||0 ≤ h
9: x̂xx = round(x̂xx) (only applied if integer-valued format is required)

10: Set ppps,int,q = x̂xx
11: end for
12: Form the matrix PPP s,int from M achieved rows (ppps,int,1, ppps,int,2 · · ·ppps,int,M )
13: Update ΦΦΦnew = PPP s,intΦΦΦ0
14: Calculate E(ΦΦΦnew)
15: if E(ΦΦΦnew) < Emin then
16: Set Emin = E(ΦΦΦnew) and PPP opt = PPP s,int
17: Update ΦΦΦ = ΦΦΦnew and compute Φ̃ΦΦ
18: else
19: Update η = η/2
20: if η < ηmin then
21: break;
22: end if
23: end if
24: end while

matrix ΦΦΦnew acquires a smaller coherence cost. Algorithm 20 describes in details this
process of optimization. The final results are the optimized projection matrix PPP opt and
the corresponding optimized multiple-SMF sensing matrix ΦΦΦopt.

7.2.3 SMF model parameters
Given ΦΦΦnew,1 and ΦΦΦnew,2 be the reconstructed sensing matrices at step 5 and step 13
respectively in Algorithm 20. At each iteration, ΦΦΦnew,2 is the optimized multiple-SMF
sensing matrix satisfying two restricting conditions, e.g., the largest amount of different-
frequency parts, integer projection matrix format. Whereas, ΦΦΦnew,1 is the optimized
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one without any restrictions. Apparently, there are some errors from the inverse sparse
reconstruction in (7.7) or the rounding operation in (7.10). Therefore, ΦΦΦnew,2 differs from
ΦΦΦnew,1. Theoretically, ΦΦΦnew,2 with two restricting conditions apparently acquires a larger
coherence cost, compared to ΦΦΦnew,1. As a result, the sparse reconstruction performance
in the multiple-SMF acquisition ΦΦΦnew,2 depends on the gap between two these matrices:

e(k) = ||ΦΦΦnew,1 −ΦΦΦnew,2||22 = ||ΦΦΦnew,1 −PPP s,intΦΦΦ0||22 (7.11)

This gap represents how closely the achieved sensing matrix ΦΦΦnew,2 converges to the
optimized one ΦΦΦnew,1. It becomes larger if the restricting conditions on multiple-SMF
projection matrix are tighter, e.g., a smaller row sparsity or an integer format require-
ment. Therefore, these conditions play major roles in the design of a multiple-SMF
sensing matrix. Moreover, the solution of the inverse problem (7.7) is also highly depen-
dent on the structure of the dictionary matrix ΦΦΦ0 or in other words the set of possible
modulation frequencies Ψ.

In both MFT and multiple-SMF model, the K-sparse reconstruction requires a few
measurements. According to (3.46), more measurements are efficient to reconstruct a
sparse signal accurately with a higher probability but consume more acquisition time.
Therefore, the number of SMF measurements (M) is a crucial factor in a multiple-SMF
model.

7.3 Numerical results
In this part, the MPI reconstruction capabilities of multiple-SMF acquisition are ana-
lyzed through several numerical experiments. We assume that SMF data is available.
This analysis aims to indicate the influence of the concerned parameters, i.e., row spar-
sity and magnitude format (integer of float) of the projection matrix, dictionary matrix
structure, the number of SMF measurements.
Initially, we construct the dictionary matrix ΦΦΦ0 with the same parameters of the

previous MFT acquisition, i.e.,N = 500, L = 5, fmax = 30 MHz, ∆r = 5cm) in the large
refinement factor configuration F = 100. Suppose that all 117 available modulation
frequencies in the set Ψ (see Remark 6) with fmax = 30 MHz and fmin = 1 MHz can be
modulated and demodulated in these simulations and hence M0 = 117.
Based on this dictionary matrix ΦΦΦ0, we run the proposed projection matrix opti-

mization method in Algorithm 20 with different restricting conditions on the projection
matrix, i.e., largest row sparsity (h), magnitude format (integer or float numbers) and
the number of SMF measurements (M). An initial random projection matrix PPP init is
input to the algorithm. Note that a gradient steepest descent method only brings a
local optimization solution for a non-convex problem. Therefore, we carry out a Monte
Carlo simulation with 100 different initial random projection matrices to find the opti-
mal projection matrix or more precisely the optimal multiple-SMF sensing matrix with
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the smallest coherence cost.
There are four optimized projection matrices PPP 1, PPP 2, PPP 3 and PPP 4 corresponding to

four different settings, as listed in Table 7.1. The construction of these matrices is based
on the dictionary matrix ΦΦΦ0 ∈ R117×500. Besides, the fifth one PPP 5 is achieved through
running the proposed projection matrix optimization method on the other dictionary
matrix ΦΦΦ0,1 ∈ R60×500 with only 60 available frequencies. Note that these frequencies
are drawn from the same set Ψ. Correspondingly, five multiple-SMF sensing matrices
ΦΦΦSMF,1, ΦΦΦSMF,2, ΦΦΦSMF,3, ΦΦΦSMF,4 and ΦΦΦSMF,5 are generated through (7.2) with five
different optimized projection matrices.

Table 7.1. Different SMF measurement matrices with different parameter settings

Projection Matrix h M M0 Format Coherence cost E

/Sensing matrix

PPP 1/ΦΦΦSMF,1 5 20 117 Integer 1.6046e+004

PPP 2/ΦΦΦSMF,2 10 20 117 Integer 1.4571e+004

PPP 3/ΦΦΦSMF,3 5 20 117 Float 1.6166e+004

PPP 4/ΦΦΦSMF,4 5 40 117 Integer 1.3881e+004

PPP 5/ΦΦΦSMF,5 5 20 60 Integer 1.6347e+004

The analysis is carried out through the comparison between the above multiple-SMF
acquisitions with different settings of projection matrix:

• An increase of the largest row sparsity in the projection matrix is evaluated through
the comparison between two multiple-SMF models sharing two integer projection
matrices PPP 1 and PPP 2 with different largest row sparsity values h = 5 and h = 10.

• The usefulness of optical intensity modulation system can be recognized through a
comparison between two models sharing the integer projection matrix PPP 1 and the
float one PPP 3 with the same largest row sparsity h = 5.

• An increase of the SMF measurement number is evaluated through the compari-
son between two models sharing two integer projection matrices PPP 1 and PPP 4 with
different amounts of SMF measurements.

• The effect of the dictionary matrix structure is explored through the comparison
between two models sharing two integer projection matrices PPP 1 and PPP 5 with the
same settings but based on two different dictionary matrices ΦΦΦ0 ∈ R117×500 and
ΦΦΦ0,1 ∈ R60×500.
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7.3.1 Coherence histogram
The coherence histograms of five multiple-SMF sensing matrices ΦΦΦSMF,1-ΦΦΦSMF,5 as well
as the dictionary matrix ΦΦΦ0 ∈ R117×500 are shown in Fig. 7.2. In this representation,
if more coherence elements move closer to zero, then the sensing matrix contains a
larger amount of highly incoherent columns. Firstly, as can be seen in Fig. 7.2 that the
coherence histogram of the dictionary matrix ΦΦΦ0 ∈ R117×500 is much worse than that of
five multiple-SMF sensing matrices although it comprises a significantly large amount
of TOF measurements (M0 = 117). These results indicate that a multiple-SMF model
leads to a highly incoherent sensing matrix.

Figure 7.2. Coherence histogram of various SMF measurement matrices

Besides, as Fig. 7.2 shows, two multiple-SMF sensing matrices ΦΦΦSMF,2 (green line) and
ΦΦΦSMF,4 (yellow line) possess better coherence histograms, in comparison to the reference
one ΦΦΦSMF,1 (red line). According to this result, an increase of the largest row sparsity in
projection matrix or a larger amount of SMF measurements can enhance the incoherence
of a multiple-SMF sensing matrix.

7.3.2 Support recovery performance
The above coherence histogram representations are hard to explore the strengths of a
multiple-SMF model in resolving MPI problem. Therefore, we carry out two Monte
Carlo simulations to analyze the reconstruction capabilities of different multiple-SMF
acquisitions with 3000 trials for each SNR and 500 trials for each MD. At each trial,
a non-negative 3-sparse signal is generated with random non-zero locations and mag-
nitudes. Subsequently, the noisy measurement vector is generated randomly through
the sparse signal and a multiple-SMF sensing matrix with the analyzed SNR. Two algo-
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rithms, i.e., POMP and OMP3, are used sequentially for 3-sparse reconstruction. The
relaxed support recovery rates with a tolerance offset δ = 2 are averaged after all trials.
These results are then demonstrated in Fig. 7.3 for various SNRs (from 5 dB to 40 dB)
and Fig. 7.4, Fig. 7.5 for various MDs (from 5 bins to 150 bins).

(a) OMP3

Figure 7.3. Comparison between the relaxed support recovery performances (δ = 2 bins) of multiple-
SMF acquisition and MFT acquisition at different SNRs (3000 trials for each SNR). Choose N = 500,
L = 5, fmax = 30 MHz, F = 100, ∆r = 5 cm, K = 3.

7.3.2.1 Different settings

It can be seen in Fig. 7.3, Fig. 7.4, Fig. 7.5 that:

• The multiple-SMF acquisitionΦΦΦSMF,2 (green lines) with a larger amount of different-
frequency parts (h = 10) brings higher relaxed support recovery rates in all cases of
various SNRs and MDs, in comparison with the multiple-SMF acquisition ΦΦΦSMF,1
(red lines) with h = 5. Definitely, a SMF measurement with a larger amount of
different frequency-parts has more advantages in the reconstruction of MPI time
profile.

• Moreover, the reconstruction performance of ΦΦΦSMF,1 (red lines) is much poorer
than that of ΦΦΦSMF,4 (yellow lines) in the cases of various SNRs and MDs. This
result indicates that a larger number of SMF measurements can enhance the quality
of MPI reconstruction in a multiple-SMF acquisition.
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(b) POMP

Figure 7.3. Comparison between the relaxed support recovery performances (δ = 2 bins) of multiple-
SMF acquisition and MFT acquisition at different SNRs (3000 trials for each SNR). Choose N = 500,
L = 5, fmax = 30 MHz, F = 100, ∆r = 5 cm, K = 3 (cont).

(a) OMP3 - 15dB

Figure 7.4. Comparison between the relaxed support recovery performances (δ = 2 bins) of multiple-
SMF acquisition and MFT acquisition at different MDs (500 trials for each MD) in the case of SNR
= 15dB. Choose N = 500, L = 5, fmax = 30 MHz, F = 100, ∆r = 5 cm, K = 3.
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(b) POMP - 15dB

Figure 7.4. Comparison between the relaxed support recovery performances (δ = 2 bins) of multiple-
SMF acquisition and MFT acquisition at different MDs (500 trials for each MD) in the case of SNR
= 15dB. Choose N = 500, L = 5, fmax = 30 MHz, F = 100, ∆r = 5 cm, K = 3 (cont).

(a) OMP3 - 30dB

Figure 7.5. Comparison between relaxed support recovery performances (δ = 2 bins) of multiple-
SMF acquisition and MFT acquisition at different MDs (500 trials for each MD) in the case of SNR
= 30dB. Choose N = 500, L = 5, fmax = 30 MHz, F = 100, ∆r = 5 cm, K = 3.
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(b) POMP - 30dB

Figure 7.5. Comparison between relaxed support recovery performances (δ = 2 bins) of multiple-
SMF acquisition and MFT acquisition at different MDs (500 trials for each MD) in the case of SNR
= 30dB. Choose N = 500, L = 5, fmax = 30 MHz, F = 100, ∆r = 5 cm, K = 3 (cont).

• Additionally, the sensing matrix ΦΦΦSMF,3 (rose lines) sharing the float-valued pro-
jection matrix PPP 3 brings slightly higher relaxed support recovery rates of OMP3
in all cases of various SNRs and MDs, in comparison with ΦΦΦSMF,1 (red lines).
However, the reconstruction performances of POMP using both two multiple-SMF
models ΦΦΦSMF,3 and ΦΦΦSMF,1 seem to be similar. From these results, the hard-
ware for optical intensity modulation seems unnecessary in the development of a
multiple-SMF acquisition.

• A comparison between the reconstruction results of ΦΦΦSMF,5 (cyan lines) andΦΦΦSMF,1
(red lines) claims that a multiple-SMF acquisition which is constructed with a
larger set of modulation frequencies, can bring the higher quality of MPI time
profile reconstruction. As a result, the pool of available modulation frequencies in
a CW-TOF camera should be extended for a multiple-SMF acquisition.

7.3.2.2 Multiple-SMF acquisition and MFT acquisition

The reconstruction results of the MFT acquisition ΦΦΦopt,1 with the same parameters
(N = 500, L = 5, fmax = 30 MHz, F = 100, ∆r = 5 cm, K = 3) are collected from
Fig. 5.8 and Fig. 5.9. Then, these results are compared to those of the multiple-SMF
models in Fig. 7.3 for various SNRs and Fig. 7.4, Fig. 7.5 for various MDs. A compari-
son between these results claims that a multiple-SMF acquisition is more efficient than
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a MFT acquisition with the same amount of measurements. Definitely, the relaxed sup-
port recovery rates of four different multiple-SMF models ΦΦΦSMF,1, ΦΦΦSMF,2, ΦΦΦSMF,3 and
ΦΦΦSMF,5 (red, green, rose, cyan lines) are much higher than those of the MFT acquisition
ΦΦΦopt,1 (brown lines).

Moreover, we analyze another MFT acquisition sharing the dictionary matrix ΦΦΦ0 with
117 TOF measurements. Two similar Monte Carlo simulations are carried out with 3000
trials for each SNR and 500 trials for each MD to obtain the reconstruction results of
this MFT acquisition in the cases of various SNRs and MDs. The generation procedures
of 3-sparse signals and measurement vectors are similar to the previous numerical ex-
periments. OMP3 and POMP are used for the 3-sparse reconstruction. The achieved
relaxed support recovery rates with a tolerance offset δ = 2 are demonstrated in Fig. 7.3
for SNR domain and Fig. 7.4, Fig. 7.5 for MD domain.
As can be seen in Fig. 7.3 and Fig. 7.4a that the reconstruction results of OMP3

using the MFT acquisition ΦΦΦ0 (blue lines) are better than those of OMP3 using four
multiple-SMF acquisitions (red, green, rose, cyan lines) in the cases of low SNRs and
large MDs. In other cases, multiple-SMF acquisitions have more advantages regarding
higher reconstruction performances. Especially, according to Fig. 7.4b and Fig. 7.5b, the
reconstruction results of POMP using four multiple-SMF acquisitions are better than
those of POMP using the MFT acquisition ΦΦΦ0 (blue lines) in most cases of different
SNRs and MDs. These numerical results indicate that a MFT acquisition is ineffective
for resolving MPI problem even if carrying out more TOF measurements. These poor
performances of a MFT acquisition are caused by the high coherence of a super-resolution
MFT sensing matrix with a large refinement factor. Whereas, the proposed multiple-
SMF acquisition can guarantee a high stability of accurate sparse support reconstruction
through only a few SMF measurements.

7.3.2.3 Different reconstruction methods

In this part, we analyze the recovery performance of three different reconstruction al-
gorithms, i.e., OMP3, POMP, and Ma-OMP3, in a typical multiple-SMF acquisition
ΦΦΦSMF,1. Similarly, two Monte Carlo simulations are carried out with 3000 trials for each
SNR (from 5 dB to 40 dB) and 500 trials for each MD (from 5 to 150 bins). At each
trial, we repeat the procedures in the previous numerical experiments for generating
randomly 3-sparse signal and noisy SMF measurement vector.
Subsequently, three above methods reconstruct 3-sparse signal based on the measure-

ment vector and the multiple-SMF sensing matrix ΦΦΦSMF,1. The relaxed support recovery
rates with δ = 2 are averaged after all trials and then demonstrated in Fig. 7.6 for various
SNRs and Fig. 7.7 for various MDs.
As can be seen in Fig. 7.6 that the relaxed support recovery rates of OMP3 (blue

lines) are higher than those of Ma-OMP3 (green lines) in the cases of various SNRs in a
super-resolution multiple-SMF acquisition ΦΦΦSMF,1. Whereas, the reconstruction results
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Figure 7.6. Comparison between the relaxed support recovery performances (δ = 2 bins) of different
reconstruction methods for the multiple-SMF model at different SNRs (3000 trials for each SNR).
Choose N = 500, L = 5, fmax = 30 MHz, F = 100, ∆r = 5 cm, K = 3.

of POMP (red lines) are the poorest ones among three analyzed methods in most cases
of different SNRs. Additionally, as Fig. 7.7 shows, POMP and Ma-OMP3 outperform in
the cases of small MDs while OMP3 inversely does in the cases of large MDs. Ma-OMP3
brings a better relaxed support recovery performance than POMP does in the cases of
large MDs. These results are similar to the numerical analysis of a MFT acquisition in
Section 4.5.
Moreover, as Fig. 7.7 shows, POMP and OMP3 possess their advantages in the cases

of different MDs. From these results, if these strengths can be integrated efficiently
in the proposed method CMD-OMP as described in Section. 4.6, then we can even
enhance the stability of accurate signal reconstruction in a multiple-SMF model. This
result is similar to that in a MFT acquisition. However, the tuning border for the
selection between POMP and OMP3 in a multiple-SMF model is different from that of
a MFT acquisition in Section. 4.6. For instance, when SNR is 15dB, the tuning point
is approximately 20 bins in Fig. 7.6 for the multiple-SMF model ΦΦΦSMF,1 while that for
the MFT acquisition ΦΦΦopt,1 is about 45 in Fig. 4.8.
In Section 4.6, the tuning border can be estimated through a numerical analysis. It

demonstrates the relaxed support recovery rates of both OMP3 and POMP with the
tolerance offset δ = 2 in two domains of SNRs (5 dB to 50 dB) and MDs (from 5 to
150 bins). Similarly, Fig. 7.8 shows the similar results for two multiple-SMF models
ΦΦΦSMF,1 and ΦΦΦSMF,4. In this figure, the red color region denotes the cases where POMP
outperforms OMP3 and inversely the green one denotes the cases where OMP3 has better
performances. As can be seen in Fig. 7.8a that the tuning MD value of the multiple-
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(a) 15dB

(b) 30dB

Figure 7.7. Comparison between the relaxed support recovery performances (δ = 2 bins) of different
reconstruction methods for the multiple SMF model at different MDs (500 trials for each MD).
Choose N = 500, L = 5, fmax = 30 MHz, F = 100, ∆r = 5 cm, K = 3.

SMF acquisition ΦΦΦSMF,1 is minimal (about 20 bins) in a highly noisy case. Whereas,
the acquisition ΦΦΦSMF,4 with more SMF measurements acquires a smaller tuning value
(approximately 15 bins in Fig. 7.8b). These results indicate that OMP3 individually
can bring a high stability of a good support recovery in most cases of various MDs for
a multiple-SMF acquisition. Therefore, in a multiple-SMF acquisition, CMD-OMP in
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(a) PPP 1

(b) PPP 4

Figure 7.8. Tuning border image of the relaxed support recovery rates (δ = 2) between POMP and
OMP3 for the multiple SMF model in the super-resolution configuration. Choose N = 500, L = 5,
fmax = 30 MHz, F = 100, ∆r = 5 cm, K = 3.

Algorithm. 11 should configure ∆tuning and F0 so that OMP3 is frequently selected for
most scenarios.
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7.3.3 Multiple-SMF acquisition using MMV techniques
As mentioned in Chapter 6, MMV data in a MFT acquisition can be generated through
multiple polarization techniques. In principle, these techniques are applicable for a
multiple-SMF acquisition system at either transmitter or receiver side. Therefore, in
this part, we resolve MPIs through a multiple-SMF acquisition using MMV techniques.
Two Monte Carlo simulations are carried out with 3000 trials for each SNR (from

5 dB to 40 dB) and 500 trials for each MD (from 5 to 150 bins). In these numerical
experiments, we assume that MMVs (Q = 3) comprising multiple-SMF measurements
sharing the sensing matrix ΦΦΦSMF,1 are available. At each trial, the procedures of a 3-
joint-sparse signal matrix and MMV generation are similar to the previous simulations
in Section 6.5. OMP3-MMV, Ma-OMP3-MMV in Chapter 6 are used to reconstruct
the joint-sparse signal based on the MMV data. Moreover, we also use POMP on the
converted SMV data as described in (6.16) for sparse support recovery. After all trials,
the relaxed support recovery rates of all three above methods are averaged and then
demonstrated for various SNRs in Fig. 7.6 and for various MDs in Fig. 7.7.
For further comparison, we construct a multiple-SMF acquisition of 60 SMF mea-

surements ΦΦΦSMF,6 without MMV techniques. This acquisition is optimized through the
proposed projection matrix optimization method in Algorithm. 20. Definitely, it has
the same amount of SMF measurements as the above multiple-SMF acquisition using
MMV techniques (M = 20, Q = 3). The previous parameters are maintained with
h = 5, N = 500, fmax = 30 MHz, F = 100, ∆r = 5 cm. The similar Monte Carlo
simulations are carried out for achieving the recovery performances of OMP3, POMP,
and Ma-OMP3 in a multiple-SMF acquisition ΦΦΦSMF,1 without MMV techniques. The
achieved results are demonstrated in various SNRs (see Fig. 7.6) and various MDs (see
Fig. 7.7).
A comparison between the results in Fig. 7.6 and Fig. 7.7 claims that a multiple-SMF

model using MMV techniques (M = 20, Q = 3) outperforms a multiple-SMF model
(M = 60) without MMV techniques in most cases of SNRs and MDs. These results
illustrate the effectiveness of MMV techniques as well as many proposed variants of
OMPMMV methods, i.e., OMP3-MMV, Ma-OMP3-MMV and even POMP based on the
converted SMV data. This multiple-SMF model using MMV techniques can guarantee
a high stability of a good relaxed support recovery (δ = 2∆r) even in highly noisy
environments with only 60 SMF measurements. For instance, at SNR of 15 dB, about
60% atoms are estimated successfully by Ma-OMP3-MMV when the MD is minimal
(∆T = 10 bins). This success rate becomes higher with 80% using Ma-OMP3-MMV
when ∆T = 20 bins and then over 90% using OMP3-MMV when ∆T ≥ 40 bins.
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7.3.4 Relaxed super-resolution problem
Our primary goal in this thesis is to guarantee the high stability of good relaxed support
recovery in all cases of various MDs in noisy cases. As proven previously, a super-
resolution multiple-SMF acquisition using MMV techniques with a large refinement fac-
tor F = 100 brings a high 3-sparse support recovery performance through 60 SMF mea-
surements. We expect that a relaxed super-resolution factor can be achieved through
this technique. Therefore, a Monte Carlo simulation is carried out in this part to obtain
the recovery performance at various MDs in a multiple-SMF acquisition ΦΦΦSMF,1 using
MMV techniques, similar to the previous numerical experiment in Fig. 7.7 but with a
fixed SNR of 20 dB. At each trial, we generate a joint-sparse signal matrix whose each
column contains only two non-zero atoms (K = 2). This simulation aims to evaluate the
capabilities of a multiple-SMF acquisition using MMV techniques in the discrimination
of two-target. The achieved relaxed support recovery rates with two tolerance offsets
δ = 2 and δ = 5 are shown in Fig. 7.9.

Figure 7.9. Relaxed support recovery performances (δ = 2) for a MMV-SMF model (Q=3) at
different MDs (500 trials for each MD) with SNR= 20dB. Choose N = 500, L = 5, fmax = 30 MHz,
F = 100, ∆r = 5 cm, K = 2, h = 5, M = 20.

It can be seen Fig. 7.9 that a multiple-SMF acquisition using MMV techniques guar-
antees a high stability of accurate target localization despite the large refinement factor
F = 100 is large. For instance, if fmax = 30 MHz, then:

• About 70% atoms separated by 10∆r = 50 cm can be localized accurately with an
accuracy offset of δ = 2∆r = 10 cm. This success rate can be increased up to 90%
for the cases of large MDs (30∆r = 150 cm).
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• If the accuracy requirement of a TOF application is low with δ = 5∆r = 25
cm, about 95% atoms can be localized accurately in all cases of various MD
∆T ≥ 2δ + 1 = 55 cm.

Furthermore, the above properties in numbers would be even improved if a new TOF
camera can carry out a SMF measurement containing higher-frequency parts.

7.3.5 Summary
The multiple-SMF acquisition is an effective solution to successfully resolve a MPI prob-
lem in a TOF camera which can modulate only a low-frequency acquisition. It brings
the highly reliable reconstruction results in a highly noisy case through only a few SMF
measurements. Thus, this accurate time profile reconstruction can be maintained with
a video frame rate. However, a SMF measurement simultaneously issues new challenges
regarding the system design complexity. Apparently, the implementation of a real SMF
measurement is currently hard for a commercial CW-TOF camera. For this purpose, we
require the following new hardware design:

• A new illumination system for emitting a mixed optical signal comprising multiple
frequency parts.

• A new chip design for measuring the cross-correlation between the reflected and
demodulation signal mixtures comprising multiple corresponding parts.

7.4 Joint multiple frequency calibration
As mentioned above, a currently commercial TOF camera hardly acquires a SMF mea-
surement. Therefore, we introduce an alternative way in this part to replace a real
multiple-SMF acquisition but still guarantee the usefulness of our proposed projection
matrix optimization. Firstly, M0 = 117 frequency TOF measurements are carried out
to generate the full measurement vector yyy0 = ΦΦΦ0xxx sharing the dictionary matrix ΦΦΦ0.
Subsequently, we formulate a calibration vector zzz through combining all measurements
of yyy0:

zzz = PPPy0y0y0 = PPPΦΦΦ0xxx+PPPσσσ = ΦΦΦxxx+nnn (7.12)

where PPP is projection matrix which can be optimized by our proposed projection matrix
optimization method in Algorithm 20. For this reason, this technique is named in this
thesis as joint multiple-frequency calibration method, similar to the previous study of
Fornaro et al. [80] in tomographic SAR. In principle, this calibration technique can
enhance the incoherence of the calibration matrix ΦΦΦ and eventually improve the sparse
reconstruction results without hardware updates. Additionally, there are no restricting
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conditions on this projection matrix since this technique is not limited by hardware
design. However, according to the calibration process in (7.12), the measurement noises
σσσ may be enhanced through scaling with the projection matrix. Therefore, this technique
only brings benefits if the enhancement of measurement noise is insignificant. From these
points, despite no restricting conditions, the structure of the projection matrix, e.g. the
row sparsity, also plays a significant role in this joint multiple-frequency calibration
method.

7.4.1 Numerical results
In this part, two Monte Carlo simulations are carried out with 3000 trials for each
SNR (from 5 dB to 60 dB) and 500 trials for each MD (from 5 to 150 bins). At each
trial, we carry out 117 TOF measurements yyy0 sharing the dictionary matrix ΦΦΦ0. The
MFT dictionary matrix is constructed with the parameters, i.e., N = 500, L = 5, fmax
= 30 MHz, F = 100 and ∆r = 5 cm. The procedures of 3-sparse signal vector and
measurement vector are similar to the previous simulations for a MFT acquisition in
Chapter 4. These numerical experiments aim to compare the reconstruction results
before and after the calibration process.
Firstly, two algorithms POMP and OMP3 are used for the sparse support reconstruc-

tion based on the measurement vector yyy0 and the dictionary matrix ΦΦΦ0. The achieved
results are shown in Fig. 7.10 and Fig. 7.11. Secondly, according to 7.12, we generate
the calibration vectors zzz with four different projection matrices PPP 1, PPP 2, PPP 3, PPP 4. These
matrices are collected from the previous multiple-SMF numerical experiments with the
setting parameters listed in Table.7.1. Similarly, POMP and OMP3 are used for the
sparse support recovery based on the calibration vectors zzz and the calibration matrix ΦΦΦ
in (7.12). The achieved results are also demonstrated in Fig. 7.10 and Fig. 7.11.
A comparison between the reconstruction results before and after calibration in Fig. 7.10

and Fig. 7.11 claims that the joint multiple-frequency calibration is only efficient for the
algorithm OMP3 in some cases. Concretely, the calibration technique brings better sup-
port recovery performance of OMP3 in the cases of high SNRs (SNR ≥ 30 dB for PPP 1-
PPP 3 and SNR ≥ 25 dB for PPP 4). Whereas, it causes negative influences on the sparse
recovery results of POMP in most cases of various SNRs and MDs (see Fig. 7.10a and
Fig. 7.11a). These results indicate that the enhancement of measurement noises in (7.12)
is challenging in the joint multiple-frequency calibration.
Besides, unlike the multiple-SMF acquisition in the previous section, a larger row

sparsity of projection matrix is inefficient to enhance the recovery quality through the
joint multiple-frequency calibration. As can be seen in Fig. 7.10 and Fig. 7.11 that the
reconstruction results of OMP3 and POMP after calibration withP2P2P2 (h = 10, green lines)
are even worse than those after calibration with P1P1P1 (h = 5, blue lines). Whereas, a larger
amount of rows in the projection matrix P4P4P4 (rose lines) can improve the reconstruction
performance, compared to the calibration with P1P1P1 (h = 5, blue lines).

148



7 Simultaneous multiple frequency acquisition

(a) POMP

(b) OMP3

Figure 7.10. Relaxed support recovery performances (δ = 2) of OMP3 and POMP after joint
multiple-frequency calibration with different projection matrices at different SNRs (3000 trials for
each SNR). Choose N = 500, L = 5, fmax = 30 MHz, F = 100, ∆r = 5 cm, K = 3.
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(a) POMP

(b) OMP3

Figure 7.11. Relaxed support recovery performances (δ = 2) of OMP3 and POMP after joint
multiple-frequency calibration with different projection matrices at different MDs (500 trials for each
MD) with SNR=30 dB. Choose N = 500, L = 5, fmax = 30 MHz, F = 100, ∆r = 5 cm, K = 3.

7.4.2 Summary
Without any hardware design for a real SMF measurement, the joint multiple-frequency
calibration is an efficient method to improve the support reconstruction results of OMP3
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in a MFT acquisition. According to the operating principle, this calibration technique
is considered as an alternative solution to prove the capabilities of a real multiple-SMF
model for resolving MPIs in Chapter 8. However, this technique requires a significant
amount of slightly noisy TOF measurements.
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8 Experimental results

This chapter carries out several practical experiments to strengthen the arguments of a
super-resolution MFT acquisition that have been inferred from the previous numerical
results.

8.1 PMD Multicam System and measurement matrix
formulation

Figure 8.1. Multicam System

The ZESS Multicam system [2] in Fig. 8.1 with a commercial PMD 19k camera chip
[4] can carry out TOF measurements at different modulation frequencies in the set Ψ
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(see Remark 6) from 1 MHz to 30 MHz with a frequency step of 0.25 MHz. This set has
been used in most previous numerical experiments. Theoretically, this PMD chip can
carry out a higher-frequency (up to 60 MHz) TOF measurement. But this measurement
is highly noisy with low confidentiality and low demodulation contrast.
As explained in Section 2.2, a TOF measurement is one sample of cross-correlation

between the reflected and demodulation signals at a phase-offset τ . In a PMD 19K
chip [4], this sample can be computed through the subtraction between two samples of
channel A and channel B:

Cτ = Cτ,A − Cτ,B (8.1)

8.1.1 PMD Multicam System
Each measurement in a MFT acquisition is a TOF sample in (8.1) at one modulation fre-
quency. This measurement is an intensity sample achieved from the integration process
of the reflected optical signal. Thus, its accuracy suffers from the saturation problem.
For restricting a huge amount of incident photons, the exposure time of each TOF mea-
surement should be set short enough. We set 100-microsecond exposure time for the
low-frequency acquisitions (1 - 10 MHz) and a longer exposure time for the higher ones
to maintain a high demodulation contrast. Eventually, a MFT acquisition comprising
M TOF measurements at different frequencies, consumes a short acquisition time for a
K-sparse reconstruction. More precisely, the acquisition time of 20 TOF measurements
only takes a few milliseconds for the reconstruction of 2 MPIs in the next practical
experiments.
Nevertheless, since the exposure time is short, the TOF measurement Cτ,f0 is relatively

noisy at a high-frequency modulation in a PMD 19k camera. Low demodulation contrast
or photon shot noises can cause errors in a TOF measurement [5]. Therefore, in our real
MFT model, two samples Cτ and Cτ+π are used for a more robust correlation sample:

gτ,f0 = Cτ,f0 − Cτ+π,f0 (8.2)

A TOF measurement in (8.5) acquires a doubled acquisition time but reduced mea-
surement noises in this thesis. For the future development of a practical MFT system,
we aim to design a TOF imaging chip to read out a robust TOF intensity sample in only
one acquisition in order not to slow down the overall system speed.

8.1.2 Dictionary matrix formulation
Each row of MFT dictionary matrix in (3.31) is the response of the cross-correlation
function to N grids at a modulation frequency. With fmax= 30 MHz, a grid system
possesses a grid length of 5 m in the conventional grid configuration to guarantee the
high stability of exact support recovery. However, this grid length is impractical with low
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depth resolution and big mismatch model errors. The reconstruction of target depths are
hence extremely inaccurate. For this reason, we configure the grid system with a smaller
grid length of ∆r = 5 cm. This setting is equivalent to a large refinement factor F = 100.
For a short-range application, a small dimension N = 200 is set for the construction of
MFT dictionary matrix to cover a range of interest of 10 m.
Besides, for the construction of a real MFT dictionary matrix, the Fourier coefficient

estimation of the cross-correlation function is necessary. In our ZESS Multicam system,
the optical output lies somewhere between a square wave and a sinusoidal one. Thus,
the high-order harmonic components vary at different modulation frequencies and are
entirely different from the theoretical equation (3.41). The high-order harmonics of the
cross-correlation function at each modulation frequency are measured through a practical
experiment [15]. Firstly, we mount the Multicam system accurately 1m ahead of a highly-
reflecting object, e.g., white paper. Next, several TOF measurements are carried out
at one frequency with different phase-shifts θ (in degrees) of the transmitted optical
signal. This phase-shift is generated by an external pulse generator (Agilent 81150A).
The achieved TOF samples at one frequency f0 can be mathematically represented by:

gθ,f0 =
L∑
l=1

cld
∗
l cos(lθπ/180) (8.3)

For our ZESS Multicam system, only five harmonics (L = 5) are concerned because
the magnitudes of higher-order ones are significantly small. Note that even-order compo-
nents are very close to zero. Eventually, only three variables or three odd-order harmonic
coefficients (1st, 3rd, 5th harmonics) are unknown in (8.3). We collect 24 samples at dif-
ferent equi-stepped phase-shifts (from 0◦ to 345◦ with a step of 15◦) for the estimation
of three odd-order coefficients through the following inverse linear equation problem:

ẑzz = argmin
zzz
||ggg −GGGzzz||2 (8.4)

where ggg is the measurement vector of 24 samples, GGG is the measurement matrix formu-
lated from (8.3) and zzz is variable vector of three expected Fourier coefficients. Appar-
ently, (8.4) is an overdetermined equation system which can be easily solved through a
least mean squares minimization method. The achieved results are Fourier coefficients
of the cross-correlation function at a modulation frequency. The above estimation pro-
cess repeats for 117 modulation frequencies in the set Ψ to construct the real-valued
dictionary matrix ΦΦΦ0 ∈ R117×200.

8.2 Transparent object imaging
MPIs are generated by transparent object imaging in our practical experiments. Partic-
ularly, several transparent objects are put between the Multicam system and one opaque
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object. A lot of transparent objects imply a lot of MPIs. These setups are similar to
the practical experiments of Bhandari et al. [6]. In our experiments, we put only one
transparent bottle between the ZESS Multicam system and a white wall to simulate two
real MPIs (one from the bottle and one from the wall as described in Fig. 8.2). More

TOF 
Imaging 
System

s(t)

(t) =  + 

 
Sensor

IR LED

Figure 8.2. Transparent object imaging with two reflecting components from a transparent bottle
and a wall.

precisely, there is more than one reflection from two sides (front and back) of the bottle.
Nevertheless, the diameter of the bottle is significantly small (approximately 10 cm =
2 Δr) and hence multiple light rays scattered from the bottle are considered as one
scatterer. And hence, the number of MPIs is only two (K = 2) in this setup. Moreover,
this transparent object imaging with such complex scattering property is common in
many real-life scenes. These errors are considered as mismatch model errors caused by
the scene structure.

Apparently, the above scattering scene with only two MPIs seems to be more simple
than that in the previous studies, e.g., [6]. Their research has reconstructed more MPIs
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but not concerned about the minimum separation between MPIs yet. Whereas, MD
between targets is the most crucial factor in our analysis. It is challenging to setup more
MPIs since most of the optical energy is distorted through multiple transparent objects.
From this point, the amplitudes of signals reflected from far objects are extremely tiny
if the number of scatters is large. Thus, the above setup comprising only two MPIs is
convenient for adjusting MD.
In our MPI setup, the bottle and the wall are positioned on different grid points to

avoid mismatch model errors caused by grid system as described in Fig. 3.2. Therefore,
their actual locations, r1 (bottle) and r2 (wall) respectively, are represented by two or-
dinal numbers of the corresponding grids, named as bins in our analysis. For instance,
the target position of 3m is equivalent to 60 bins ≡ 60∆r where ∆r = 5 cm is the grid
length in space. The locations of the bottle and the wall vary in nine scenarios E1-E9
as listed in Table 8.1. Apparently, the distance separation between the bottle and the
wall ∆R = r2 − r1 = ∆T∆r denotes minimum distance between scatterers in each sce-
nario. For the reconstruction of MPIs, we carry out 20 TOF measurements with the set
Γ0 = (H0, J0) of 20 random frequencies (H0) and zero phase-offsets (J0 = 0). Subse-
quently, we collect the achieved TOF samples C0 for the measurement vector yyy ∈ R20.
The sensing matrix ΦΦΦ ∈ R20×200 is extracted from the dictionary matrix ΦΦΦ0 ∈ R117×200

through the randomly chosen frequencies. Based on the achieved measurement vector
and sensing matrix, a variety of CS algorithms recover the 2-sparse signal with a known
sparsity K = 2. This sparse reconstruction can be implemented sequentially or simul-
taneously for all pixels. For the evaluation of the support reconstruction performance,
only two largest-magnitude atoms of the reconstructed signal are concerned.
After the sparse reconstruction of a greedy pursuit with a known K = 2, the sparse

support of the reconstructed signal comprises at most two ordinal indices (in bins).
These indices denote the estimated locations of the bottle and the wall (r̂1 and r̂2) in
the grid system. Subsequently, they are then compared with the actual ones (r1 and
r2). For both visual and numerical comparison, we demonstrate the following images
and histograms:

• The recovered depth image of the transparent bottle, e.g. Fig. 8.3, Fig. 8.5 and
Fig. 8.7, comprises all pixels where the location of the bottle is estimated accu-
rately. In this analysis, we evaluate the reconstructed sparse support under the
relaxed condition with a tolerance offset δ = 5 bins. In other words, this image
demonstrates the region of the transparent bottle that has the estimated support
index in the range r̂1 ∈ [r1 − 5∆r, r1 + 5∆r]. This result is equivalent to 25 cm
accuracy bound. This low accuracy of MPI reconstruction is due to that the expo-
sure time for each TOF measurement is significantly short in order not to override
the dynamic range of our TOF chip. We should build up a TOF camera system for
measuring the TOF correlation more accurately in the future to improve this accu-
racy bound. The pixel color denotes the estimated ordinal index r̂1. Black pixels
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Table 8.1. Nine scenarios E1-E9 with different MDs, 1 bin = ∆r = 5 cm

Experiment r1 (bins) r2 (bins) ∆R (bins)

r2 − r1

E1 1 m=20∆r 3.7 m=74∆r 54

E2 1.4 m=28∆r 4.4 m=88∆r 60

E3 1 m=20∆r 4.2 m=84∆r 64

E4 0.9 m=18∆r 4.55 m=91∆r 73

E5 1.6 m=32∆r 5.4 m=108∆r 76

E6 0.8 m=16∆r 4.8 m=96∆r 80

E7 1.1 m=22∆r 5.4 m=108∆r 86

E8 0.9 m=18∆r 5.4 m=108∆r 90

E9 0.7 m=20∆r 5.4 m=108∆r 94

denote the region of missing detection. This image is used for a visual evaluation
of the reconstruction performance of the foreground transparent object.

• The reconstruction histogram of transparent bottle region, e.g. Fig. 8.4, Fig. 8.6
and Fig. 8.8, lists the reconstructed support indices of all pixels in the transparent
imaging region. This result comprises the estimated depths of both bottle and
wall (r̂1 and r̂2). The yellow lines at r1 and r2 show the actual locations of two
objects. The reconstruction result of a CS algorithm is better if the distribution
of the histogram stays more densely around these yellow lines.

• The count of accurately estimated atoms (shortly count n), e.g. Table. 8.2, de-
notes how many locations of the wall as well as the bottle image points in the
transparent imaging region are reconstructed accurately with a tolerance offset
δ = 2∆r = 10 cm. In other words, it counts all estimated support indices satis-
fying r̂1 ∈ [r1 − 2, r1 + 2] or r̂2 ∈ [r2 − 2, r2 + 2]. The ratio n/ntotal denotes the
relaxed support recovery rate for each scenario where ntotal is the number of object
locations (both wall and bottle) in the transparent imaging region which should
be estimated. For instance, if the transparent imaging region comprises 10 pixels,
then ntotal = 10K = 20.

Besides, the reflection properties of the transparent region in each scenario have in-
fluences on the reconstruction quality. Especially, the ratio between the reflective mag-
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nitudes of the bottle and the wall (a1 and a2 respectively)

rt = a1
a2

(8.5)

represents the dynamic range through

DR = max(rt, 1
rt

) (8.6)

In our visual representation, this ratio is demonstrated additionally by a color image
for each scenario:

• red if 0.2 < rt < 5

• dark red if 0.05 ≤ rt ≤ 0.2 or 5 ≤ rt ≤ 20

• blue and yellow if rt < 0.05

• light blue if rt > 20

As a result, red pixels represent small DR cases while the other ones represent large
DR cases. Apparently, most region surrounding the bottle is colored with dark red
or yellow because there is only one reflective component from the wall in this region.
Furthermore, this reflective property image also indicates the ground-truth transparent
bottle shape.

8.3 Comparison of various reconstruction methods
8.3.1 POMP and OMP3
In this part, the reconstruction capabilities of two previously introduced greedy pursuits
OMP3 and POMP are analyzed in the cases of various MDs (E1-E9). In each scenario,
their sparse reconstruction relies on the achieved measurement vector and the available
sensing matrix ΦΦΦ ∈ R20×200 collected from 20 TOF measurements with the set Γ0 of
random frequencies and zero phase-offsets. We assume the known sparsity K = 2. The
achieved counts n are given in Table 8.2. Besides, the recovered depth images of the
transparent bottle and the reconstruction histogram of the transparent bottle region
are also demonstrated in the following figures, i.e, scenario E1 in Fig. 8.3 and Fig. 8.4,
scenario E4 in Fig. 8.5 and Fig. 8.6, scenario E8 in Fig. 8.7 and Fig. 8.8.

8.3.1.1 Scenario E1

Firstly, the scenario E1 is an example of a small MD case ∆T = 2.7 m = 54∆r. Fig. 8.3a
illustrates the inhomogeneous reflective property of the transparent bottle region in this
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Table 8.2. Numerical count n for the comparison between OMP3 and POMP in nine scenarios
E1-E9

Experiment
OMP3 POMP

Small
DR

Large
DR

Sum Small
DR

Large
DR

Sum

E1
26/702 126/378 152/1080 223/702 90/378 313/1080

0.037 0.333 0.1407 0.317 0.238 0.29

E2
40/326 78/164 118/490 28/326 55/164 83/490

0.123 0.475 0.241 0.086 0.335 0.169

E3
52/756 116/396 168/1152 157/756 70/396 227/1152

0.069 0.293 0.146 0.208 0.177 0.197

E4
414/958 130/388 544/1346 293/958 103/388 396/1346

0.432 0.335 0.404 0.306 0.265 0.294

E5
245/390 126/250 371/640 81/390 74/250 155/640

0.628 0.504 0.579 0.207 0.296 0.242

E6
463/1308 148/522 611/1830 303/1308 96/522 399/1830

0.354 0.283 0.334 0.232 0.184 0.218

E7
347/750 105/320 452/1070 148/750 69/320 217/1070

0.463 0.328 0.422 0.197 0.215 0.203

E8
341/662 177/430 518/1092 148/662 102/430 250/1092

0.515 0.411 0.474 0.223 0.237 0.229

E9
609/1642 146/742 755/2384 435/1642 153/742 588/2384

0.37 0.197 0.317 0.265 0.206 0.246

scenario. Besides, as Fig. 8.3b shows, the traditional four-phase stepping method (see
(2.10)) brings poor reconstruction performances of object locations. Apparently, the
bottle depth estimation seems to be not robust through this traditional algorithm. Only
the bottle region where the reflecting component from the wall is significantly small
(light blue or dark red pixels in Fig. 8.3a), can acquire accurate depth reconstruction.
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This result indicates the problem of MPIs in a commercial TOF camera with wrong
depth estimation of the traditional method.
Subsequently, the reconstruction results of OMP3 and POMP based on the MFT

acquisition are shown in Fig. 8.3c and Fig. 8.3d respectively. TOF measurements
are carried out at a random set of 20 frequencies H0 and zero phase-offsets J0 = 0
(Γ0 = (H0, J0)). A comparison between these results in two figures reveals that POMP
recovers the depth of the bottle accurately with a higher probability in this scenario of
a small MD. Additionally, according to the histogram in Fig. 8.4a, the object locations
in the bottle region reconstructed by POMP (red part) distributes more densely around
the yellow reference lines. Furthermore, the relaxed support recovery rate of POMP
with the count n of 313 in Table 8.2 is higher than that of OMP3 with only 152. These
results indicate the better sparse reconstruction performance of POMP in the case of
a small MD, compared to the traditional four-phase stepping method (green part) and
OMP3 (blue part)
Nevertheless, a comparison between the results in Fig. 8.4a claims that the recon-

struction results of OMP3 (blue parts ) based on the MFT measurements are poorer
than those of the traditional four-phase method (green parts). Apparently, a MFT ac-
quisition with randomly chosen frequencies and phase-offsets cannot guarantee a good
support recovery with a high probability.
Besides the scenario E1, we also have two other scenarios E2-E3 for the cases of small

MDs. Similarly, according to Table 8.2, POMP outperforms OMP3 in E3. Nevertheless,
the results of OMP3 are better than those of POMP in E2. It seems to be possible that
the poorer performance of POMP are due to that this small MD value of 60 stays in the
tunning region between OMP3 and POMP (see Fig. 4.11).

8.3.1.2 Scenario E4

Secondly, the scenario E4 represents the case of a medium MD (∆T = 73∆r). This MD
value resides in the tuning region between POMP and OMP3 (see Fig. 4.11). Due to
the comparison between the results of OMP3 and POMP in Fig. 8.5c and Fig. 8.5d, it
can be seen that OMP3 is more efficient than POMP in this scenario. Furthermore, as
Table 8.2 shows, the count n of OMP3 (544) is significantly higher than that of POMP
(396). Nevertheless, their reconstruction histograms (red and blue parts) in Fig. 8.6a
seem to be similar. Unlike the scenario E1, the reconstruction results of both methods
using the MFT acquisition are better than those of the traditional four-phase method.
When MD gets larger, OMP3 has a better recovery performance than POMP. These

results can be seen in Table 8.2 through the counts n in several scenarios E5-E7.
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(a) Reflecting property image (b) Traditional four-phase
method

(c) (Γ0) OMP3 (d) (Γ0) POMP (e) (Γ0) CMD-OMP

(f) (Γ1) OMP3 (g) (Γ1) POMP (h) (Γ1) CMD-OMP

(i) (Γ2) OMP3 (j) (Γ2) POMP (k) (Γ2) CMD-OMP

Figure 8.3. The recovered depth images of the transparent bottle using different recovery methods
(traditional four-phase method, OMP3, POMP, CMD-OMP) and different super-resolution MFT
models (random frequency selection Γ0, frequency selection optimization Γ1, frequency and phase-
offset selection optimization Γ2) at a small MD ∆T = 54∆r in scenario E1.
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(a) Comparison between reconstruction results of POMP, OMP3, traditional four-phase method and CMD-OMP
using the MFT model structured by random frequency selection and zero phase-offsets Γ0

(b) Comparison between reconstruction results of OMP3 using different MFT models structured by Γ0, Γ1 and
Γ2

(c) Comparison between reconstruction results of POMP using different MFT models structured by Γ0, Γ1 and
Γ2

Figure 8.4. Histogram of the reconstructed support results into the transparent bottle region of dif-
ferent recovery methods (traditional four-phase method, OMP3, POMP, CMD-OMP) using different
super-resolution MFT models (random frequency selection Γ0, frequency selection optimization Γ1,
frequency and phase-offset selection optimization Γ2) at a small MD ∆T = 54∆r in scenario E1.
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(a) Reflecting property image (b) Traditional four-phase
method

(c) (Γ0) OMP3 (d) (Γ0) POMP (e) (Γ0) CMD-OMP

(f) (Γ1) OMP3 (g) (Γ1) POMP (h) (Γ1) CMD-OMP

(i) (Γ2) OMP3 (j) (Γ2) POMP (k) (Γ2) CMD-OMP

Figure 8.5. The recovered depth images of the transparent bottle using different recovery methods
(traditional four-phase method, OMP3, POMP, CMD-OMP) and different super-resolution MFT
models (random frequency selection Γ0, frequency selection optimization Γ1, frequency and phase-
offset selection optimization Γ2) at a medium MD ∆T = 73∆r in scenario E4.
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(a) Comparison between reconstruction results of POMP, OMP3, traditional four-phase method and CMD-OMP
using the MFT model structured by random frequency selection and zero phase-offsets Γ0

(b) Comparison between reconstruction results of OMP3 using different MFT models structured by Γ0, Γ1 and
Γ2

(c) Comparison between reconstruction results of POMP using different MFT models structured by Γ0, Γ1 and
Γ2

Figure 8.6. Histogram of the reconstructed support results into the transparent bottle region of dif-
ferent recovery methods (traditional four-phase method, OMP3, POMP, CMD-OMP) using different
super-resolution MFT models (random frequency selection Γ0, frequency selection optimization Γ1,
frequency and phase-offset selection optimization Γ2) at a medium MD ∆T = 73∆r in scenario E4.
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(a) Reflecting property image (b) Traditional four-phase
method

(c) (Γ0) OMP3 (d) (Γ0) POMP (e) (Γ0) CMD-OMP

(f) (Γ1) OMP3 (g) (Γ1) POMP (h) (Γ1) CMD-OMP

(i) (Γ2) OMP3 (j) (Γ2) POMP (k) (Γ2) CMD-OMP

Figure 8.7. The recovered depth images of the transparent bottle using different recovery methods
(traditional four-phase method, OMP3, POMP, CMD-OMP) and different super-resolution MFT
models (random frequency selection Γ0, frequency selection optimization Γ1, frequency and phase-
offset selection optimization Γ2) at a large MD ∆T = 90∆r in scenario E8.
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(a) Comparison between reconstruction results of POMP, OMP3, traditional four-phase method and CMD-OMP
using the MFT model structured by random frequency selection and zero phase-offsets Γ0

(b) Comparison between reconstruction results of OMP3 using different MFT models structured by Γ0, Γ1 and
Γ2

(c) Comparison between reconstruction results of POMP using different MFT models structured by Γ0, Γ1 and
Γ2

Figure 8.8. Histogram of the reconstructed support results into the transparent bottle region of dif-
ferent recovery methods (traditional four-phase method, OMP3, POMP, CMD-OMP) using different
super-resolution MFT models (random frequency selection Γ0, frequency selection optimization Γ1,
frequency and phase-offset selection optimization Γ2) at a large MD ∆T = 90∆r in scenario E8.

167



8 Experimental results

8.3.1.3 Scenario E8

Thirdly, the scenario E8 is an example of large MD case. A comparison between the
results between Fig. 8.7c and Fig. 8.7d claims that OMP3 outperforms POMP in the
case of large MD. Additionally, according to Table 8.2, the count n of OMP3 (518) is
significantly higher than that of POMP (250). Furthermore, the similar results of the
scenario E9 in Table 8.2 indicate again the better reconstruction performance of OMP3
in such cases of large MDs.
Due to a high coherence of MFT sensing matrix constructed by the randomly chosen

frequencies, the reconstruction results of POMP (red part) using the MFT acquisition in
Fig. 8.8a are even poorer than those of the traditional four-phase method (green part).

8.3.1.4 Dynamic ranges

Additionally, it can be seen apparently in Table 8.2 that the reconstruction performances
of OMP3 and POMP highly depend on the dynamic range in each scenario. In general,
POMP outperforms OMP3 in the cases of a small MD. However, as Table 8.2 shows,
this strength of POMP only occurs in the cases of a small DR. Whereas, if DR is large,
then OMP3 outperforms POMP in most cases of various MDs.

8.3.2 BPIC
BPIC is a l1 optimization technique with a noise constraint as defined in (3.5). For a
further comparison, this method is used for sparse reconstruction based on the available
MFT measurement vector and the sensing matrix in nine above scenarios E1-E9. Note
that the upper bound ε on the noise variance is unknown in these real TOF measure-
ments. In this experiment, we set two different bounds:

ε = ||yyy||2
aBPIC

(8.7)

where aBPIC = 5 or aBPIC = 10 for MPI reconstruction using BPIC. The counts n
achieved by BPIC in nine scenarios are given in Table 8.3.
A comparison between the results in Table 8.2 and Table 8.3 reveals that BPIC can-

not outperform both OMP3 and POMP in all scenarios though this algorithm consumes
much computation time for the time profile reconstruction of the entire image. Appar-
ently, it is not an appropriate reconstruction method for a real MFT acquisition. In
comparison to the numerical results in Fig. 4.7, it seems possible that the poor perfor-
mances of BPIC are due to the inaccurate prediction of noise variance.
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Table 8.3. Numerical count n of BPIC in nine scenarios E1-E9

Experiment
BPIC (aBPIC = 5) BPIC (aBPIC = 10)

Small
DR

Large
DR

Sum Small
DR

Large
DR

Sum

E1 53/702 90/378 143/1080 71/702 94/378 165/1080

E2 18/326 67/164 85/490 33/326 44/164 77/490

E3 96/756 122/396 218/1152 103/756 124/396 227/1152

E4 151/958 65/388 216/1346 144/958 78/388 222/1346

E5 172/390 106/250 278/640 139/390 103/250 242/640

E6 231/1308 89/522 320/1830 252/1308 94/522 346/1830

E7 135/750 53/320 188/1070 126/750 50/320 176/1070

E8 142/662 53/430 195/1092 179/662 70/430 249/1092

E9 475/1642 94/742 569/2384 490/1642 123/742 613/2384

8.3.3 Ma-OMP3
Table 8.4 shows the relaxed support recovery rates (count n) of Ma-OMP3. A comparison
between the results achieved by OMP3, POMP, and Ma-OMP3 in Table 8.4 and Table 8.2
indicates that Ma-OMP3 outperforms OMP3 and POMP in several cases (E2, E3, E5,
E7, E8, E9). However, it cannot outperform POMP in the case a small MD, e.g., E1.
These results coincide with the numerical ones in Fig. 4.7.

8.3.4 Supportive affects of LO techniques
As proven by the numerical results in Fig. 4.6 and Fig. 4.7, LO techniques with a small
LO range can bring the improvements of reconstruction performances in most cases
of various SNRs and MDs. Therefore, in this part, this technique is used to fix the
incorrectly estimated indices of OMP3, Ma-OMP3, and POMP. Table 8.4 and Table 8.5
demonstrate the relaxed support reconstruction rates (counts n) of OMP3, Ma-OMP3,
and POMP with the support of LO technique. A small LO range of 5 bins is configured
for a short searching time.
However, unlike the numerical results, the relaxed support recovery performances

of Ma-OMP3 and OMP3 with the support of LO technique become poorer in most
scenarios. According to the comparison between the results in the cases of different DRs
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Table 8.4. Numerical count n of Ma-OMP3 in nine scenarios E1-E9

Experiment
Ma-OMP3 Ma-OMP3+ LO(5)

Small DR Large DR Sum Small DR Large DR Sum

E1 28 111 139 71 62 133

E2 137 75 212 139 23 162

E3 128 87 215 129 71 200

E4 380 137 517 409 70 479

E5 263 118 381 255 49 304

E6 384 150 534 434 98 532

E7 363 103 466 346 76 422

E8 354 174 528 336 78 424

E9 633 163 796 644 138 782

Table 8.5. Numerical count n of OMP3 and POMP with the support of LO technique in nine
scenarios E1-E9

Experiment
OMP3+ LO(5) POMP+ LO(5)

Small DR Large DR Sum Small DR Large DR Sum

E1 27 132 159 173 46 219

E2 77 75 152 27 21 48

E3 47 138 185 163 37 200

E4 413 129 542 241 36 277

E5 248 125 373 126 46 172

E6 454 147 601 272 164 336

E7 347 103 450 208 44 252

E8 348 176 524 234 57 291

E9 626 152 778 500 90 590
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in Table 8.2, Table 8.4 and Table 8.5, it seems possible that LO techniques cause bad
results in the cases of large DRs.

8.3.5 Summary
The above practical results indicate the following properties of several proposed greedy
pursuit methods in a real super-resolution MFT acquisition:

• POMP and OMP3 have their advantages in the cases of different MDs. POMP
outperforms OMP3 in the cases of small MDs while OMP3 does inversely in the
cases of large MDs. An appropriate selection between them brings potentials for
a higher stability of accurate support reconstruction in all scenarios.

• The reflective property of a real transparent object imaging is usually inhomoge-
neous. A good reconstruction method should guarantee a high performance in all
cases of various DRs.

• It is hard to predict the upper bound on noise variance in real TOF measurements
accurately. Therefore, BPIC is inefficient for time profile reconstruction with long
computation time.

• LO technique only brings a slightly small improvement of support recovery rates
in the cases of small DRs. With an inhomogeneous reflectivity property, this atom
updating technique seems to be inefficient for fixing the wrongly estimated atoms
of OMP3 and Ma-OMP3 in transparent object imaging.

8.4 CMD-OMP
As can be seen in Table.8.2 that OMP3 and POMP possess their advantages at various
MDs. In this part, we integrate their strengths through our proposed method CMD-OMP
in Algorithm 11 in the above super-resolution MFT acquisition. Similar to Section 4.6,
there are four various settings (F0, ∆tuning) for different variants of CMD-OMP in this
analysis. Table.8.6 demonstrates the counts n of four CMD-OMP variants in all 9
scenarios. As can be seen in Table.8.6 that:

• In six cases (E2, E4, E5, E6, E7, E8, E9), the CMD-OMP variant with the setting
(4, 84) brings the best recovery performances among four variants. These good
results are due to that this variant of CMD-OMP selects OMP3 as the prerequisite
reconstruction algorithm.

• Inversely, the CMD-OMP variant with the setting (10, 60) brings the best perfor-
mance among four variants in two remaining scenarios E1 and E3. This variant of
CMD-OMP uses POMP the most frequently.
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Table 8.6. Numerical count n of CMD-OMP variants with different settings

Experiment
F0 = 4 F0 = 10

∆tuning = 60 ∆tuning = 84 ∆tuning = 60 ∆tuning = 84

E1 196 148 291 156

E2 118 118 86 117

E3 226 155 224 152

E4 407 529 393 518

E5 229 371 164 373

E6 391 594 415 594

E7 226 417 218 354

E8 257 370 246 273

E9 600 736 588 595

As explained previously, CMD-OMP only uses up the strengths of POMP and OMP3.
And hence its recovery results lie somewhere between those of two these member meth-
ods. Therefore, it can be seen apparently in Fig.8.3e, Fig.8.5e and Fig.8.7e that CMD-
OMP cannot outperform POMP in the cases of small MDs or OMP3 in the cases of
large ones. Apparently, CMD-OMP is an efficient reconstruction method for a complex
scattering scene comprising many different cases of MPIs with various MDs. Whereas,
if either OMP3 or POMP is used individually for the MPI reconstruction of this scene,
the achieved results are good at some pixels but inversely poor at other ones. CMD-
OMP variants bring the balanced results to guarantee a higher stability of accurate MPI
reconstruction.

8.5 Frequency and phase-offset selection optimization
So far, the TOF measurements are carried out with the set Γ0 = (H0, J0) of 20 random
frequencies (H0) and zero phase-offsets (J0 = 0). As mentioned in Section 5.3.2, the
proposed frequency selection optimization method in Algorithm 12 explored the opti-
mized set of frequencies Hopt,1 which constructs a more highly incoherent MFT sensing
matrix ΦΦΦ1. This matrix can be inferred from the dictionary matrix through the set of
frequencies Hopt,1 and zero phase-offsets J0. Set Γ1 = (Hopt,1, J0).
Furthermore, the optimized sets of frequencies and phase-offsets Γ2 == (Hopt,2, Jopt,2)
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have been found in Section 5.3.2 through the proposed frequency and phase-offset selec-
tion optimization method in Algorithm 13. These sets are promising for constructing a
MFT sensing matrix ΦΦΦ2 ∈ R20×200 with a better coherence histogram, in comparison to
ΦΦΦ1 (Γ1). The matrix is similarly inferred from the dictionary matrix ΦΦΦ0, according to
the set Γ2.
As proven in the numerical results in Fig. 5.8 and Fig. 5.9, two MFT acquisitions ΦΦΦ1

and ΦΦΦ2 can bring better support recovery performances of a CS algorithm. Thus, this
part aims to carry out the real MFT experiments to strengthen these arguments. In
particular, we collect TOF measurements at the frequency set Hopt,1 with zero phase-
offsets as well as the frequency set Hopt,2 with non-zero phase-offsets Jopt,2 for nine
scenarios E1-E9. At each scenario, there are two available measurement vectors yyy1 (ΦΦΦ1)
and yyy2 (ΦΦΦ2). Note that for the generation of a TOF measurement with a non-zero
phase-offset, we use an external pulse generator (Agilent 81150A) to shift the phase of
the transmitted optical signal.
Based on the achieved measurement vectors and the corresponding sensing matrix

ΦΦΦ1 or ΦΦΦ2, three algorithms OMP3, POMP and CMD-OMP resolve MPIs with a known
sparsity K = 2. The achieved relaxed support recovery rates with δ = 2 or the count n
for both two MFT acquisitions are given in Table 8.7. The recovered depth images of the
transparent bottle using three methods in the scenarios E1, E4 and E8 are demonstrated
in the third and fourth rows of Fig. 8.3, Fig. 8.5 and Fig. 8.7 respectively. For a further
comparison between three MFT acquisitions, their reconstruction histograms are shown
in Fig. 8.4b, Fig. 8.6b and Fig. 8.8b for OMP3 and in Fig. 8.4c, Fig. 8.6c and Fig. 8.8c
for POMP.
As can be seen in Fig. 8.3c, Fig. 8.3f and Fig. 8.3i that the depth images of the bottle

recovered by OMP3 using the optimized sets Γ1 and Γ2 look more robust than those using
the random set Γ0 in the case E1 of a small MD. Moreover, these results are even better
than those of the traditional four-phase method in Fig. 8.3b. Besides, two these opti-
mized MFT acquisitions bring the similar improvement of reconstruction performance of
POMP in the case E8 of a large MD (see Fig. 8.7c, Fig. 8.7f and Fig. 8.7i). Apparently,
MFT acquisition with the optimized set of frequencies or phase-offsets reconstructs MPI
more efficiently, compared to the traditional phase-stepping acquisition.

In scenario E4, there is no significant difference between the recovered bottle depth
images of all three MFT acquisitions in Fig. 8.5c, Fig. 8.5f and Fig. 8.5i. Whereas, the
reconstruction histograms of OMP3 (see Fig. 8.6b) and POMP (see Fig. 8.6c) using the
optimized sets Γ1 and Γ2 stay more densely around the yellow line r2. From this result,
two MFT acquisitions ΦΦΦ1 and ΦΦΦ2 apparently bring the more accurate reconstruction of
the wall. Inversely, according to the reconstruction histograms of OMP3 and POMP
(see Fig. 8.4b and Fig. 8.4c in the scenario E1 and see Fig. 8.8b and Fig. 8.8c in the
scenario E8), two these MFT acquisitions bring the more accurate reconstruction of the
bottle in two other scenarios.
Moreover, a probabilistic comparison between the counts n in Table 8.7 and Table 8.2
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Table 8.7. Numerical count n of OMP3 and POMP using the frequency or phase-offset optimization.

Experiment
Γ1 Γ2

OMP3 POMP OMP3 POMP

E1 281 343 192 272

E2 236 134 200 194

E3 385 396 424 297

E4 647 316 520 435

E5 386 139 332 294

E6 572 403 688 590

E7 510 247 595 510

E8 448 302 573 362

E9 786 635 1172 860

indicates that both Γ1 and Γ2 can bring higher support recovery performances of both
OMP3 and POMP in all scenarios, compared to the random set Γ0. Nevertheless, there
are a few exceptional cases where the counts n of either OMP3 or POMP become lower,
e.g., E4, E5, E6 with Γ1 or E4, E5 with Γ2. It seems to be possible that these occasionally
poor results are due to the optimization errors between the simulation and practical
results. Notably, the practical and numerical dictionary matrices do not coincide since
the harmonic components of the real TOF cross-correlation function differ from those of
the numerical ones in (3.41), especially at high modulation frequencies.
In summary, both two above optimization methods show their capabilities for design-

ing the optimized super-resolution MFT acquisition. Concretely, they apparently bring
higher support recovery performances of both OMP3 and POMP in most cases of vari-
ous MDs, compared with the previous random sets of frequencies and phase-offsets Γ0.
From these results, the proposed CMD-OMP method also inherits some benefits from
these improvements. As can be seen in Fig. 8.3h, Fig. 8.5h and Fig. 8.7h using the MFT
acquisition ΦΦΦ1 or Fig. 8.3k, Fig. 8.5k and Fig. 8.7k using the MFT acquisition ΦΦΦ2 that
the recovered depth images of the transparent bottle using CMD-OMP acquire a higher
accuracy.
Besides, as proven through the numerical results in Fig. 5.9, the optimized set of

frequencies and phase-offsets Γ2 with a more highly incoherent sensing matrix ΦΦΦ2 is
promising to bring better reconstruction results, compared with the MFT acquisition
using only the frequency optimization method Γ1. However, according to Table 8.7,
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the counts n of OMP3 or POMP using the MFT acquisition ΦΦΦ2 are lower in many
cases of small and medium MDs (E1-E5). It seems to be possible that the occasionally
poorer performances of Γ2 are due to mismatch errors between the numerical and real
dictionary matrices as explained before. Whereas, in the cases of large MDs (E6-E9),
the MFT acquisition ΦΦΦ2 is apparently a more efficient measurement scheme with higher
counts n of both OMP3 and POMP. In summary, under the probabilistic evaluation,
the frequency and phase shift optimization method apparently brings a better design of
a practical super-resolution MFT acquisition. These results would become significantly
better if the real dictionary matrix coincides with the theoretical one.

8.6 SMF and joint multiple-frequency calibration
As mentioned in Chapter 7, a TOF camera system should modulate and demodulate
simultaneously multiple-frequency parts for a real SMF measurement. However, the
hardware design for such implementation, similar to the studies of Payne et al. [29], is
significantly complicated and still under our investigation. In this part, we carry out the
joint multiple-frequency calibration technique which have been proposed in Section 7.4.
Its operating principle is similar to a multiple-SMF acquisition with the optimization of
the projection matrix. Therefore, this technique is considered as a temporary way to
prove the effectiveness of a multiple-SMF acquisition in resolving MPI problem.

As proven through the numerical results in Section 7.4, this technique is only useful
if the measurement noise is considerably low. Whereas, TOF measurements of a com-
mercial PMD camera at high modulation frequencies are highly noisy and less reliable
with low demodulation contrast [4]. Therefore, only TOF measurements with frequen-
cies up to 15 MHz are carried out in this experiment to ensure low measurement noises.
Since the refinement factor remains with F = 100, decreasing the highest modulation
frequency causes no significant difference, apart from a larger grid length. Thus, the
achieved results acquire good demonstration but do not lose the generality.
In this experiment, there are five scenarios B1-B5 with different MDs as listed in

Table 8.8. According to the operating principle of joint multiple-frequency calibration
technique in Section 7.4, we carry out 57 TOF measurements from 1 MHz to 15 MHz
with a phase step of 0.5 MHz to construct the measurement vector yyy0 sharing a dic-
tionary matrix ΦΦΦ0,2 for each scenario. Note that the practical dictionary matrix ΦΦΦ0,2 is
picked from the above dictionary matrix ΦΦΦ0 with the same parameters N = 200, L = 5.
However, for maintaining F = 100 with fmax = 15 MHz, we set a grid spacing to 10 cm
(∆r = 10 cm). Note that the range [r1 − 5∆r, r1 + 5∆r] is still applied for the recov-
ered depth image of the transparent bottle and the count n comprises all estimated atom
indices in [r1−2∆r, r1 +2∆r] or [r2−2∆r, r2 +2∆r], similar to the previous experiments.
Notably, the real dictionary matrix ΦΦΦ0,2 is different from the numerical one in Sec-

tion 7.3. Therefore, we run the projection matrix optimization method in Algorithm. 20
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Table 8.8. SMF model : five scenarios with different MDs, fmax = 15 MHz, F=100, ∆r = 10 cm

Experiments r1 r2 r2 − r1

B1 1m
(10∆r)

5.5m
(55∆r)

4.5m
(45∆r)

B2 1.8m
(18∆r)

5.5m
(55∆r)

3.7m
(37∆r)

B3 1.6m
(16∆r)

4.3m
(43∆r)

2.7m
(27∆r)

B4 1.1m
(11∆r)

4.6m
(46∆r)

3.5m
(35∆r)

B5 0.8m
(8∆r)

3.7m
(37∆r)

2.9m
(29∆r)

on this real dictionary matrix ΦΦΦ0,2 to find five optimized real projection matrices P̂PP 1 - P̂PP 5
with different setting parameters as listed in Table 7.1. Additionally, an optimized inte-
ger projection matrix P̂PP 6 with the setting parametersM = 20 and h = 3 is also explored
for a further comparison. Subsequently, at each scenario, the measurement vector yyy0 is
converted to several calibration vectors zzz through the calibration process in (7.12) with
six different projection matrices P̂PP 1 - P̂PP 6. Based on these calibration vectors, the sparse
time profile of MPIs (transparent bottle and opaque wall) is then recovered by POMP
and OMP3 in five scenarios B1-B5. The achieved counts n are given in Table 8.9 and
Table 8.10 respectively.

Table 8.9. The count n of POMP with different settings of joint multiple-frequency calibration

POMP

Experiment ΦΦΦ0,2 P̂PP 1 P̂PP 2 P̂PP 3 P̂PP 4 P̂PP 5 P̂PP 6

B1 366 276 265 338 334 373 283

B2 191 94 174 158 191 207 143

B3 224 145 137 189 199 131 135

B4 506 441 407 500 365 301 437

B5 555 482 414 666 448 404 793
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Table 8.10. The count n of OMP3 with different settings of joint multiple-frequency calibration

OMP3

Experiment ΦΦΦ0,2 P̂PP 1 P̂PP 2 P̂PP 3 P̂PP 4 P̂PP 5 P̂PP 6

B1 123 376 261 416 390 276 190

B2 43 152 186 163 225 196 74

B3 31 220 161 213 207 171 45

B4 223 664 429 606 507 407 264

B5 123 736 479 881 570 985 428

According to Table 8.9, the counts n of POMP after the joint multiple-frequency cal-
ibration with different settings are lower than those based on the MFT acquisition ΦΦΦ0,2
before the calibration. The enhanced noise variance causes these poor reconstruction
results of the calibration technique. These practical results coincide with the numer-
ical ones in Fig. 7.11a. Whereas, OMP3 apparently brings a better support recovery
performance after the calibration in all scenarios.
Besides, the comparison between the reconstruction results of OMP3 after many dif-

ferent calibrations in Table 8.10 reveals that:

• Compared to P̂PP 1, the calibration with P̂PP 2 with a larger row sparsity brings poorer
reconstruction results of OMP3. It seems to be possible that these poor perfor-
mances of P̂PP 2 is due to the enhanced noise variance. Whereas, a smaller row
sparsity (h = 3) in P̂PP 6 can restrict the enhancement of the noise but not en-
hance the incoherence of the calibration matrix ΦΦΦ. As a result, the reconstruction
results after the calibration with P̂PP 6 are poorer than those with P̂PP 1 in all scenar-
ios. Eventually, an appropriate value of h should be chosen carefully for the joint
multiple-frequency calibration to bring the highest reconstruction performance of
OMP3.

• The comparison between the counts n of OMP3 after the calibrations PPP 4 and PPP 1
reveals that a larger amount of the projection matrix rows does not guarantee the
improvement of reconstruction quality in all scenarios.

• Whereas, there is no significant difference between the counts n of OMP3 after the
calibrations using the real-valued projection matrix P̂PP 3 and the integer one P̂PP 1.

Furthermore, the strengths of joint multiple-frequency calibration are also demon-
strated through the recovered depth image of the transparent bottle using OMP3 in
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(a) P̂PP 1 (b) P̂PP 2

(c) P̂PP 3 (d) P̂PP 4 (e) ΦΦΦ0,2

(f) P̂PP 5 (g) P̂PP 6

Figure 8.9. Joint multiple frequency calibration: the recovered depth images of transparent bottle
using OMP3 in scenario B1.

(a) Different row sparsity values

Figure 8.10. The joint multiple frequency calibration: the histogram of reconstruction results using
OMP3 in scenario B1.
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(b) Other settings of calibration matrix

Figure 8.10. The joint multiple frequency calibration: the histogram of reconstruction results using
OMP3 in scenario B1 (cont).

scenario B1 in Fig. 8.9. After the calibration with P̂PP 1, P̂PP 3 and P̂PP 4, the depth images
of the bottle region are reconstructed more accurately although MD in this scenario is
medium (∆T = 45∆r). Additionally, as can be seen in Fig. 8.10, the reconstruction
histograms of the reconstruction results in scenario B1 after the calibration technique
stay more densely around the yellow reference lines which represent the actual depths
of the bottle and the wall.

In summary, the joint multiple-frequency calibration technique based on multiple less
noisy TOF measurements brings higher recovery performances of OMP3. Through these
practical results and the numerical results in Section 7.3, we can insist that a SMF model
is apparently efficient to enhance the stability of a good relaxed support recovery in a
large refinement factor configuration. Therefore, if we can develop a practical TOF
camera system in the future for real SMF measurements, the time profile of near-distant
MPIs will be reconstructed successfully even though SMF measurements contain only
low-frequency parts.

8.7 Summary
This chapter carried out several practical experiments to realize a MFT acquisition
through our ZESS Multicam camera. Two MPIs are set up through the transparent
bottle imaging. However, this setup apparently causes more than two MPIs because of
the complex scattering properties of the bottle. This scenario is a good example of a
real scattering scene where the number of MPIs or the signal sparsity is hard to predict
accurately. Therefore, the practical results achieved through this transparent object
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imaging guarantee not only the confidentiality of our numerical analysis but also the
effectiveness of a MFT acquisition in real scattering scenes. Apparently, we can resolve
two largest-magnitude MPIs though the sparse reconstruction suffers from the wrong
prediction of sparsity information.
Besides, the reconstruction of MPI time profile in our practical experiments suffers

from the inappropriate hardware design. Typically, we use our Multicam system for
acquiring a depth image through the traditional four-phase algorithm. Thus, this system
cannot produce a robust TOF correlation measurement at a high frequency with a high
demodulation contrast. In our experiments, we concerned about the saturation problem
and hence cannot set a long exposure time for each TOF measurement. Moreover, the
mismatch model errors caused by the inaccurate construction of dictionary matrix also
present significant challenges. For these reasons, we only verified the reconstruction
results under the accuracy bound of 25 cm. In the future, we aim to develop a new type
of TOF camera for acquiring a TOF or SMF correlation measurement more accurately.
According to the above practical results, POMP and OMP3 have their advantages in

a super-resolution MFT acquisition in the cases of various MDs. POMP outperforms at
small MDs, but inversely OMP3 does at large ones. The proposed method CMD-OMP is
an efficient solution to guarantee the high stability of a good support recovery. Besides,
the experimental and numerical results indicated that CMD-OMP even outperforms the
l1-optimization method in a super-resolution CS problem.
Additionally, the proposed frequency and phase-offset selection optimization method

is capable of designing super-resolution MFT sensing matrices with higher incoherence.
In other words, these MFT acquisitions, i.e., ΦΦΦ1 and ΦΦΦ2 in Section. 8.5, bring better re-
construction results of many different algorithms, e.g., OMP3, POMP. Despite mismatch
model errors between the practical and numerical dictionary matrices, the advantages
of the optimization methods can be apparently demonstrated through practical results,
similar to the numerical ones in Section 5.3.
Finally, we carried out successfully the joint multiple-frequency calibration by a real

TOF camera. The achieved results coincide with the numerical results in Section 7.4.
Apparently, this calibration technique enhances the stability of a good relaxed support
recovery using OMP3. However, such high performance only occurs when the sparse
reconstruction of OMP3 relies on the less noisy measurements. Whereas, it seems to be
possible that the poor performances of POMP are due to the enhanced noise variance
after the calibration process. Apparently, this technique is only an alternative way
to demonstrate the capabilities of a multiple-SMF acquisition in resolving near-distant
MPIs. Our goal in the future is to build up a TOF camera system for acquiring real
SMF measurements. We expect to resolve MPIs with a high depth accuracy and depth
resolution through a real multiple-SMF model comprising only low-frequency parts.
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MPI is currently a crucial issue that causes inaccuracies of the depth estimation in a
commercial CW-TOF camera. This thesis introduced a MFT acquisition to resolve the
MPIs through a CS model. In a conventional grid system configuration (F = 1), the
reconstruction of MPI time profile is accurate with a high probability and requires only
a few of TOF measurements. However, this model with low-frequency measurements
leads to a large grid spacing system, e.g., 30 MHz is equivalent to a spatial grid length
of 5 m. Eventually, it cannot be applied to a real-life scene since the depth accuracy
and resolution are significantly low. More concisely, the accurate localization of near
targets seems to be impossible. Therefore, an increase of TOF modulation frequency
is an essential task in the development of a TOF camera for a real MFT acquisition.
Nevertheless, the hardware design for such frequency increase is extremely complicated
with the current technology.
Without hardware updates, the super-resolution CS technique is an efficient approach

for solving the above high-frequency problems through a grid refinement process. How-
ever, this technique causes poor sparse reconstruction performances because the super-
resolution MFT sensing matrix is highly coherent. Therefore, the high stability of a
perfect support recovery is hard to maintain in such a large-refinement-factor configura-
tion. In this thesis, we introduced a relaxed metric to gauge the reconstructed support
more accurately. From this point, we improved the relaxed support recovery performance
in a super-resolution MFT acquisition at F = 100 by optimizing the MFT sensing matrix
design and using the appropriate super-resolution CS reconstruction methods. We tried
to not only reduce mismatch model errors but also obtain a high relaxed super-resolution
factor. More concisely, the localization of near targets becomes accurate with a tolerance
offset. This offset denotes the depth accuracy requirement of a TOF application.

9.1 Super-resolution compressed sensing algorithms
In this thesis, we proposed three greedy pursuit methods, i.e., OMP3, POMP, and Ma-
OMP3. These algorithms can guarantee a moderate stability of an accurate support
recovery in a MFT acquisition with the configuration of a large refinement factor as well
as maintain a high frame-rate. But, they require a predicted sparsity of the observed
scene. Interestingly, three above methods have their various advantages in some cases of
different MDs. More precisely, POMP and Ma-OMP3 outperform at small MDs while
OMP3 inversely does at large ones. Their reconstruction capabilities have been proven
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through numerical and practical experiments. From these results, we proposed a new
method CMD-OMP to use up these strengths. In particular, CMD-OMP predicts the
MD in a scenario and then select POMP or OMP3 for a good support recovery in an
appropriate case. Under a probabilistic evaluation, this integration method outperforms
the individual ones, i.e., OMP3 and POMP and even some available super-resolution
CS algorithms, e.g., BLOOMP, BPIC, SURE-IR. On the other hand, CMD-OMP con-
sumes a short computation time and hence is potential for a high frame-rate reconstruc-
tion. In the future, the member algorithms, i.e., OMP3 and POMP can be replaced
by other methods which bring better recovery performances in some cases of specific
MDs. Therefore, our future research aims to explore such new algorithms to enhance
the reconstruction quality of CMD-OMP.
Moreover, the thesis also introduced MMV techniques and some modified variants of

OMPMMV to enhance the quality of the reconstruction results in a super-resolution
MFT acquisition. Their strengths have been demonstrated through the numerical ex-
periments in Section 6.5. However, these MMV techniques require high hardware design
complexity for acquiring multiple polarization data in a TOF acquisition. Thus, a new
TOF camera system for multi-polarized light modulation and demodulation is currently
under our investigation.

9.2 Super-resolution MFT sensing matrix design
Several various CS techniques have been applied in this thesis for optimizing the structure
of a super-resolution MFT sensing matrix with the higher incoherence.
Firstly, we proposed the frequency and phase-offset selection optimization method.

Through the numerical and practical experiments, this technique successfully explored
an optimized set of frequencies and phase-offsets which can structure a super-resolution
MFT sensing matrix with a smaller coherence cost. Through this acquisition, the support
reconstruction performances of both OMP3 and POMP are improved. Especially, this
technique is flexible to apply for any parameter settings (N , M).
Secondly, we introduced a multiple-SMF acquisition which has been proven through

the numerical experiments to enhance the incoherence of the sensing matrix through
the projection matrix optimization method. Through this property, the multiple-SMF
acquisition can bring higher support recovery performances of any reconstruction algo-
rithms. Their achieved reconstruction results are apparently better than those achieved
by the frequency and phase-offset selection optimization method. Nevertheless, a real
SMF measurement is complicated to acquire through a commercial CW-TOF camera.
Thus, we used the joint multiple-frequency calibration in the practical experiments to
demonstrate the effectiveness of a real multiple-SMF acquisition successfully. To be con-
crete, according to the results in Section. 8.6, this calibration technique can improve the
reconstruction quality of OMP3 in a super-resolution CS problem.
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9.3 Relaxed super-resolution factor
According to the numerical results of a multiple-SMF acquisition using MMV model in
Fig. 7.9, the high stability of an accurate target localization with a tolerance offset can
be guaranteed even in noisy environments (SNR = 20 dB). In particular, this type of
acquisition with a large refinement factor F = 100 has the following properties:

• About 70% atoms separated by a small MD of 10∆r are localized accurately with
an accuracy offset of 2∆r. This rate can be increased up to 90% if target separation
is larger than 30∆r.

• For a larger accuracy offset of 5∆r or a looser depth accuracy requirement, about
95% atoms are localized accurately in all cases of various MDs ∆T ≥ 2δ+1 = 11∆r.

Typically, if fmax = 30 MHz, then the depth accuracy and resolution are 5 m in
a conventional MFT acquisition. We wish to increase the modulation frequency of
a TOF camera system, but the hardware design for such an increase is significantly
complicated. Therefore, from the above results, a relaxed super-resolution factor can
be achieved through our proposed super-resolution CS techniques. More precisely, our
techniques can increase the depth resolution of MPI reconstruction up to a few tens
of cms. Whereas, these properties in numbers are still improved linearly through the
future development of a TOF camera with a higher modulation-frequency modulation
and demodulation. For instance, if fmax = 300 MHz, then the relaxed depth resolution
could reach up to a few cms. In summary, our relaxed super-resolution CS techniques in
this thesis are efficient to resolve near-distant MPIs through a low-cost CW-TOF camera
with short acquisition and computation time. On the other hand, some of these solution
approaches are also useful for many other CS applications sharing a DFT sensing matrix,
e.g., target localization through radar processing, high-frequency component extraction
from low-frequency samples.
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A.1 Derivative of E(fi) w.r.t. fi
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where φφφq is the qth column of the sensing matrix ΦΦΦ.
Then set

uq1,q2 =
m∑
p=1

φpq1φ
∗
pq2 (A.7)

and
vq1,q2 = ||φφφq1 ||2||φφφq2 ||2 (A.8)
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From (A.6):
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A.1.1 Computation of ∆ui,q1,q2

Only the element φiq contains the frequency variable fi so only its derivative respect to
fi is non-zero:
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Replace (A.13) into (A.14):
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A.2 Derivative of E(τi) w.r.t. τi
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The computation of ∆Eq1,q2,τi is similar to the computation of ∆Eq1,q2,fi
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