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“Dicebat Bernardus Carnotensis nos esse quasi nanos
gigantium humeris insidentes, ut possimus plura eis
et remotiora videre, non utique proprii visus
acumine, aut eminentia corporis, sed quia in altum
subvehimur et extollimur magnitudine gigantea”

“Bernard of Chartres used to say that we were like
dwarfs seated on the shoulders of giants. If we
see more and further than they, it is not due to our
own clear eyes or tall bodies, but because we are
raised on high and upborne by their gigantic bigness.”

John of Salisbury (Metalogicon (1159) bk. 3, ch. 4)





Zusammenfassung

Die Entwicklung eines großmaßstäblichen, fehlertoleranten Quantencomputers ist ein
zentrales Ziel der Forschung im Bereich der Quanteninformation. Die Verfügbarkeit
eines solchen Gerätes könnte nicht nur eine große Zahl an Forschungsfeldern grundle-
gend beeinflussen, sondern auch die Gesellschaft insgesamt. Ein Quantencomputer
könnte quantengestützte Algorithmen anwenden, um Probleme zu lösen, die mit einem
klassischen Rechner nicht praktikabel zu bewältigen sind. Eine zentrale Herausforderung
stellt die Qualität logischer Quantengatter dar, sowie mögliche Fehler, die während-
dessen auftreten.

In dieser Arbeit werden zunächst die Untersuchung und Verbesserung der Fidelity von
Quantengattern in einem ionenfallenbasierten Quantencomputer vorgestellt. Dabei
handelt es sich um einen Quantenprozessor in kleinem Maßstab, der auf lasergekühlten
Ionen in einer makroskopischen linearen Paul-Falle basiert. Quantenbits (Qubits) wer-
den durch Pseudospins der Ionen realisiert, indem atomare Hyperfeinzustände in einem
Magnetfeldgradienten nach dem Schema Magnetfeldgradienten-induzierter Kopplung
(MAGIC) genutzt werden. Quantenzustände einzelner Ionen werden mithilfe von Ra-
diofrequenz (RF) - Feldern manipuliert, wobei die Adressierung im Frequenzraum
erfolgt.

Diese Arbeit beschreibt mehrere Aspekte der Untersuchung und Verbesserung der
Fidelity von Bell-Zuständen, die ein essentieller Bestandteil von Quantengattern ist.
(i) Wir haben Seitenbandkühlung eines einzelnen Ions bis nahe an den Bewegungs-
grundzustand mit RF-Feldern erreicht, die minimale Bewegungsanregung lag bei 0.30(12)
Phononen. Diese Technik zur Kühlung wird anschließend auf ein Zwei-Ionen-System
ausgeweitet und durch die Realisierung wird die sympathetische Kühlung eines Io-
nenkristalls mittels RF Seitenbandkühlung gezeigt. (ii) Wir haben mögliche Ursachen
für die Dephasierung der Qubits zusammengestellt und untersucht. Dies sind Lim-
itierungen bei der Steuerung der Qubits, Fluktuationen magnetischer Felder, Fluk-
tuationen elektrischer Felder und die Folgen, wenn sich Ionen in angeregten Bewe-
gungszuständen befinden. (iii) Unter Verwendung von Sequenzen zur dynamischen
Entkopplung, die Qubits vor Dephasierung schützen, haben wir die Grenzen dieser
Technik in numerischen Simulationen und mit Experimenten untersucht, bei denen
wir für einen Bell-Zustand eine Fidelity von 0.95(3) erreicht haben.

Die Umsetzung all dieser Verbesserungen erlaubte den grundsätzlichen Nachweis eines
quantengestützten Learning Agent, der den Entscheidungsprozess innerhalb des Re-
inforcement Learning Modells – ein Lernschema für maschinelles Lernen – beschle-
unigt. Die Entscheidungszeit des Quanten-Learning Agent konnte im Vergleich zum
klassischen Pendant, quadratisch verbessert werden. Wir haben gezeigt, dass der Al-
gorithmus O(ǫ−0.57(5)) Schritte benötigt, anstelle von O(ǫ−1), wobei ǫ die Wahrschein-
lichkeit darstellt, aus der Wahrscheinlichkeitsverteilung des Lernprozesses eine Aktion
zu erhalten. Diese Demonstration hebt das Potential eines Quantencomputers in den
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Bereichen maschinellen Lernens und der künstlichen Intelligenz hervor, die zu einer
grundlegenden Komponente für moderne autonome Maschinen geworden sind. Weiter-
hin haben wir einige Voraussetzungen für ein statisches Quantenregister anhand eines
Systems aus vier Ionen behandelt. Schließlich werden vorläufige Demonstrationen von
Quantenzustandstransfer vorgestellt.
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Abstract

During last decades, the development of large-scale fault-tolerant quantum computers
has been a central aim of research in quantum information processing. The availability
of such a device could fundamentally impact not only a large number of research fields
but also the whole of society. A quantum device could perform quantum-enhanced
algorithms to solve problems, which are practically inaccessible using a classical ma-
chine. A key challenge lies in qualities of quantum logic gates and any errors occurring
during their execution.

In this work, the investigation and improvements on the quantum-gate fidelity of
an ion-trap-based quantum computer are presented. This is a small-scale quantum
processor based on laser-cooled ions in a macroscopic linear Paul trap. Quantum bits
(qubits) are realized by the ions’ pseudo-spins using ionic hyperfine states in a static
magnetic field gradient following the MAgnetic Gradient Induced Coupling (MAGIC)
scheme. Quantum states of individual ions are manipulated using radio frequency
(RF) radiation and addressing in frequency space.

This work reports the investigation and improvement of the Bell-state fidelity, which
is an essential ingredient of quantum gates, in several aspects. (i) We have achieved
sideband cooling on a single ion near the motional ground state using RF radiation
with a minimum motional excitation of 0.30(12) phonons. The cooling technique is
also extended to a two-ion system. This realization shows sympathetic cooling using
RF sideband cooling of an ion crystal. (ii) We have outlined and explored possible
sources of qubit dephasing, which are limitations of qubit control, fluctuations of mag-
netic fields, fluctuations of electric fields, and consequences of ions being in motionally
excited states. (iii) Using dynamical decoupling sequences to protect from qubit de-
phasing, we have explored the limitations of this technique in numerical simulations
and experiments, in which we have achieved a Bell-state fidelity of 0.95(3).

The implementation of all these improvements allowed the proof-of-principle demon-
stration of a quantum-enhanced learning agent to speed up the deliberation process
within the reinforcement learning paradigm – a learning scheme in the field of machine
learning. The deliberation time of the quantum learning agent has been quadratically
improved with respect to its classical counterpart. We have demonstrated that the
algorithm takes O(ǫ−0.57(5)) steps instead of O(ǫ−1), where ǫ represents a probabil-
ity to sample an action in the probability distribution of the learning process. This
demonstration highlights the potential of a quantum computer in the fields of machine
learning and artificial intelligence, which have grown into fundamental components
for modern autonomous machines. Furthermore, we have discussed some prerequi-
site elements for a static quantum register using four ions. In addition, preliminary
demonstrations of quantum state transfer have been presented.
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1
Introduction

It is now a very exciting time in the field of quantum information processing: a so-called
noisy intermediate-scale quantum (NISQ) machine [1] is expected to become available
soon. These NISQ machines or quantum computers contain quantum bits (qubits)
as an information unit, in the range of 50-100 qubits with noise in quantum logic
gates. NISQ machines cannot be simulated by classical devices with the most powerful
existing digital supercomputers. This number of qubits is a significant milestone in
realizing a large-scale quantum computer. The consideration of NISQ devices concerns
not only the number of qubits but also the quality of quantum gates and the gate
operation times. The reliability of quantum gates limits the computational power.
Quantum computers are expected to be more powerful than current digital computers,
for example, in optimization problems, which might be a study of complex molecules
leading to developments of, for instance, new drugs, new types of materials, and many
more.

Quantum information processing is a field of study, which is a combination of quantum
physics, computer science, mathematics, and chemistry. Quantum mechanics, estab-
lished during the first half of the 20th century, explains the nature of objects such as
atoms, and of small amounts of energy such as photons (particles of light). The under-
standing of quantum mechanics leads to developments of, for example, laser systems,
transistors, and semiconductor devices [2]. Computing theory explores how efficiently
problems can be solved on a model of computation through the use of algorithms. The
Turing machine [3] is one of the computation models in a mathematical abstraction.
This machine serves as a mathematical model of modern digital computers.

Digital computers made possible efficiently storing data1, communication as an in-
ternet, or even performing complex mathematical computations enabling the study of
artificial intelligence as of today. Digital information is interpreted by a series of states
of switches, or logic gates, such that for each switch is either open or closed. These
states are the elementary pieces of information and they are called bits. Each bit can
be only in two possible states, referred to as logical 0 or logical 1. This assignment
makes two clearly distinct states that give a safety range for reliability when the sys-

1 Here, the efficiency means a large amount of data can be stored in a small physical space. For
example, a USB stick storage can store information of more than 2000 books.

1



1 Introduction

tem is exposed to some kind of noise, electric field fluctuations as an example. A qubit
imitates a classical bit using a two-state quantum-mechanical system. Nevertheless,
quantum systems allow the qubit to be in both states of logical 0 and 1 at the same
time, which is called quantum superposition. This property can be used to implement
quantum parallelism. Moreover, two or more qubits can exhibit a non-classical cor-
relation between them, which is called entanglement. That is, if a measurement is
performed on a particle of an entangled pair, the outcome of the measurement on the
first particle will also affect the outcome of the measurement on the second particle
and vice versa. Throughout this dissertation, a system of several qubits is called a
quantum register, for example, a quantum register of eight qubits is a quantum byte.

In 1982, Richard P. Feynman showed that any quantum-mechanical system cannot
be simulated efficiently with a classical computer, but presumably could be with a
potential quantum computer [4]. Here, efficiency means that the computational time
does not scale exponentially with the size of the simulated system. Feynman coined
the term quantum computer for a simulator governed by the laws of quantum physics
to efficiently simulate the behavior of many-body quantum systems. In 1985, David
Deutsch presented the concept of a universal quantum computer [5]. It would have
many outstanding properties which are not achievable by any classical machine such
as quantum parallelism and entanglement. A quantum computer with these proper-
ties has the potential to outperform a classical computer. In 1993, Ethan Bernstein
and Umesh Vazirani theoretically predicted the existence of quantum computers [6].
Later in 1994, Peter Shor mathematically proved that a quantum computer can out-
perform a classical computer [7, 8]. The Shor algorithm, designed to run on a future
quantum computer, can find the prime factorization of any integer efficiently, which
could rapidly crack the current cryptography schemes (such as RSA encryption) im-
plemented for banking, other sensitive transactions, and secured communications. The
speedup of the large number factorization algorithm not only showed the potential of
computational power, but also increased attention outside of academia given the nu-
merous applications. In 1996, another powerful algorithm was devised by Lov Grover
[9]. Grover algorithm can perform searching unstructured databases efficiently.

It was evident that a quantum computer would be a useful device, although the men-
tioned investigations were still theoretical. In 1996, David P. DiVincenzo outlined
five requirements for building a quantum computer [10]. These requirements are later
known as the DiVincenzo’s criteria [11]:

1. A scalable physical system with well-characterized quantum registers.

2. The ability to initialize the state of the quantum registers to a simple fiducial
state.

3. A long lifetime of the quantum-state dynamics of quantum registers, much longer
than the gate operation time.

2



4. A universal set of quantum gates, so any quantum algorithm can be constructed.

5. An individual readout of a quantum register.

In addition, if quantum computers are connected over a distance, then quantum chan-
nels for exchanging quantum information must be established and two further condi-
tions must be satisfied:

6. The ability to interconvert stationary and flying quantum registers.

7. The ability to faithfully transmit flying quantum registers between desired loca-
tions.

Since then, many physical systems have been tried to satisfy these conditions such as
trapped atomic ions [12–14], trapped neutral atoms [15, 16], superconducting circuits
[17], single photons [18], quantum dot [19], vacancy-center system [20]. However, the
quantum computer can currently overtake the classical computer only in term of the
complexity of the information size but not the calculating time.

A trapped-ion system is one of the earliest physical implementations considered to be
a candidate for a scalable quantum computer [21]. It is currently the most successful
architecture in terms of qubit connectivity and the success probabilities for the imple-
mented circuits [22]. Two electronic states of an ion can be used as 0 and 1 states of
the qubit. Several species of atomic ion have been used for trapping and quantum in-
formation processing such as calcium [23], ytterbium [24–27], magnesium [28], barium
[29, 30], strontium [31], mercury [32], beryllium [21], and cadmium [33]. Ions are elec-
trodynamically confined, and electromagnetic radiation is used to individually control
internal degrees of freedom of each ion. An interaction between ions, which is a cou-
pling within a quantum register, occurs through collective motional excitations. The
use of laser pulses could limit the quality of quantum logic gates due to two technical
challenges. The challenges are the enormous number of individually controlled and
stabilized lasers as well as beam focusing to each ion without unintended excitation to
its neighbor ions when building a large-scale quantum computer. The trapped-ion sys-
tems have certain advantages over other physical systems because they have extremely
long coherence times compared with the other mentioned architectures [34–37], abili-
ties to demonstrate entanglement of large numbers of qubits [38–40], high fidelity state
preparation and readout [41, 42], as well as highest gate fidelity for universal quantum
logic operations [21, 43–45].

In 2001, a trapped-ion system with the use of long-wavelength radiation, instead of
lasers for qubit-state manipulation, was proposed [46, 47]. Using radio-frequency (RF)
pulses instead of laser pulses, the technical challenges can be circumvented by high-
quality RF sources from commercially available devices. However, the use of long-
wavelength radiation leads to two main problems. First, the long wavelength is on
the scale of centimeters, which cannot be focused on individual ions on the scale of

3



1 Introduction

microns. Second, the momentum kick to excite motional modes is too small which
limits the coupling between ions. These problems have been solved by an introduction
of a magnetic field gradient in addition to an electrodynamical trap, enabling individ-
ual addressing of ions when they are encoded in magnetic field-sensitive states. The
magnetic field gradient then enhances the coupling between the internal and exter-
nal2 degrees of freedom of an ion and hence the coupling between ions. Alternatively,
another approach using RF radiation was proposed in 2008, which is based on oscil-
lating magnetic fields [48]. This approach can also be used in quantum information
processing with trapped ions [49].

Using long-wavelength radiation together with a magnetic field gradient, individual
addressing of a single ion in the frequency domain was experimentally demonstrated
for the first time [50, 51]. An advantage of the use of RF pulses was demonstrated by
the probabilities of unintended excitation to neighboring ions [52, 53]. The coupling
between internal and external degrees of freedom of an ion was also demonstrated [51].
To experimentally prove the coupling between ions, another setup was developed, and
it validated the long-range couplings between two and three ions [27]. This experimen-
tal setup also showed that the coupling strength can be controlled by adjusting the
trap potential [27]. Furthermore, the magnetic field gradient allows cooling a single ion
to near its motional ground state with RF radiation [54–57]. The positive and negative
couplings between ions can be further controlled by encoding a quantum register into
different Zeeman hyperfine levels [58]. The long-range interaction between ions grants
the multiple-qubit logic gates via the mutual couplings of a multi-ion system which
can speed up a quantum algorithm [58].

A key challenge to build a large-scale and fault-tolerant quantum computer, which
can become a universal quantum computer, lies in error and quality of quantum logic
gates. Quantum states are fragile as they are easily perturbed by noise. Several meth-
ods to protect information against noise have been considered, as well as methods to
retrieve information already lost. First, quantum registers could be protected against
fluctuations by making individual qubits more robust to noise by using dressed states,
which have been realized by ions [34, 59]. This technique has improved the coherence
time of a single quantum memory by two orders of magnitude. Furthermore, two-qubit
gates have been experimentally demonstrated using dressed states [60]. Second, quan-
tum registers could be topologically protected by using non-Abelian quantum phases
of matter [61], which is a theoretical concept to realize a topological quantum computer
proposed by Alexei Kitaev in 1997. Collective composite particles, known as non-
Abelian anyons, might be formulated by a group of elementary particles. Anyons are
quasiparticles confined in a three-dimensional space-time, which are possible to braid
allowing for implementation of a quantum circuit. These make qubits robust against
fluctuations that act on individual particles locally. The error threshold of a topolog-
ical qubit system has been estimated at 7.5× 10−3 per source of preparation, gate,

2The external degree of freedom is the same as the collective motional excitation.
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storage, and detection [62]. An evidence of non-Abelian anyons was experimentally
observed in a fractional quantum Hall effect system [63], however, this is not conclu-
sive [64]. Third, quantum error correction can be performed repetitively to retrieve
quantum information from errors [65, 66], which has been considered to be used in
the future when the quality of quantum gates is at the sufficient level. In practice,
if we do not want to mostly spend operation time on quantum error correction, the
error threshold must not be exceeded, which has been estimated to be 1× 10−4 [67].
Exploring ways to improve the fidelity of quantum logic gates with a view to reaching
and overcoming the fault-tolerant computation threshold is one of the topics pursued
in this work.

Over recent years, the ideas between quantum information processing and artificial
intelligence have been united as quantum artificial intelligence or quantum machine
learning [68]. Until then, artificial intelligence and machine learning have become
essential components of modern automated machines using enormous data processing
via a massive load of classical processors. This is hence of fundamental and practical
interest to determine how quantum information processing and autonomously learning
machines can mutually benefit from each other. Quantum computation grants the
advantages for quantum machine learning algorithms advancing classical methods of
machine learning [69], which will be presented later in this dissertation. In a similar
manner, applying classical methods of machine learning also grant a possibility to
improve and analyze physical implementations of quantum system [70, 71].

Now the field of quantum information processing shifts from purely scientific studies
to industrial technologies. Therefore, it demands not only physicists, but also spe-
cialists from several branches of knowledge, including computer scientists, engineers,
mathematicians, vacuum technicians, and electricians.

Even though a universal quantum computer does not exist yet, NISQ devices could still
help to perform complex simulations. Using computing power gained by a NISQ device,
we could have applications corresponding to optimization problems, for example, a
better understanding of complex materials such as high-temperature superconductors,
biomedical simulation to personalize medical treatments, optimizing logistic supply
chains for ultra-efficient solutions, or even advancing artificial intelligence and robotics.

In the coming years, if a quantum version of a conventional supercomputer could
be built, it could rapidly disrupt the nowadays digital security, which is responsi-
ble for protecting, for example, online transactions, banking information, and digital
communications. The so-called post-quantum cryptography3 [72] is studied in paral-
lel to prevent security scrambling from quantum cyberattacks. In addition, quantum
random-number generators [73] could instantaneously deliver completely unpredictable
digits by nature for enhancing encryption.

3It is also known as quantum-proof, quantum-safe, or quantum-resistant cryptographic algorithm.
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1 Introduction

It must be noted that building a hardware to realize a universal quantum computer is
only half of the story. Developments of algorithms and software to create an interface
between a physical implementation and users are other fields of study to be explored.
A comprehensive catalog of known quantum algorithms and their original references
together with short summaries can be found in Ref. [74].

In this dissertation, the experiments are described on trapped ionic atoms of ytterbium-
171 in a static magnetic field gradient to perform quantum information processing us-
ing long-wavelength radiation. Our experimental setup uses a static quantum register
as a quantum processor. This means that the linear chain of ions is trapped in a trap
with non-segmented electrodes and the quantum operations are performed without the
ion-shuttling technique. Our quantum processor has crosstalks below the fault-tolerant
threshold. It also has long-range interactions, which can be turned on/off or changed
their sign by RF pulses. In this work, several quantum algorithms have been imple-
mented, namely controlled-NOT gate, Bell-state gate, SWAP gate, quantum reflecting
projective simulation, and teleportation, where the main focus is on improving the fi-
delity of elementary quantum gates. The implementation of all these improvements
allows demonstrating a basic unit of a decision-making process using a small-scale
quantum processor paving a path to quantum artificial intelligence. After a review of
the theoretical foundations essential for understanding our system in chapter 2, the
setup and methods are explained in chapter 3 and 4, respectively. Subsequently, the
investigation results are described. Chapter 5 presents results of decreasing the mo-
tional excitation of the ion crystal to close to its motional ground state. Chapter 6
shows the investigation of noise sources limiting the lifetime of our quantum regis-
ter. The extension of the lifetime of a quantum register protected by dynamical pulse
sequences as well as the limitations of this technique are discussed in chapter 7.

All improvements lead us to chapter 8 which explains about realizing a quantum-
enhanced algorithm used in machine learning which quadratically boosts learning pro-
cess. This highlights a path of NISQ devices, which could potentially break through
the performance of conventional supercomputers in the next few years. Furthermore, a
quantum system using more than two qubits is presented in chapter 9 introducing pre-
liminary results of the quantum information transfer within the same static quantum
register.
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2
Quantum Information using Trapped

Ions

Quantum systems can store more information than a classically physical system, of-
fering additional resources for computation. They have a potential to solve problems
inaccessible to conventional computers due to the memory size and the computing time.
This chapter is a short summary of the theoretical foundations of quantum informa-
tion processing in general using trapped ions for storing and manipulating quantum
information, i.e. as a quantum processor. The detailed descriptions of ion-trap-based
realizations of a quantum information processor have been theoretically investigated
in Refs. [46, 47, 75]. The ion-trap-based approach is used in this work. The other
approaches have been mentioned in the introduction.

2.1 Quantum Information

2.1.1 Quantum Bits

In classical computing the storage and manipulation are described in terms of discrete
states. The smallest unit of classical information, represented by two possible states,
is termed binary digit or short bit. It is usually represented by 0 and 1 for any physical
two-state system. A quantum computing also operates on two possible states, called
qubit (or quantum bit). A qubit is represented by either the state |0〉 or |1〉, but allows,
in contract to classical states, for a superposition. That means the general state of a
qubit can be described by

|Ψ〉 =a|0〉+ b|1〉, (2.1)

where a and b are complex normalized coefficients such that
√

|a|2 + |b|2 = 1. The
coefficients can be phrased using angles, such that normalization is automatically
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2 Quantum Information using Trapped Ions

Figure 2.1: Bloch sphere representation of a
single qubit. The blue arrow is a superposition
state to be represented, which can be described by
a polar angle θ and an azimuthal angle φ. Black
arrows are the projections on the z-axis and the xy-
plane. In a dynamic system, the coefficients from
equation (2.1) are functions of time, as a = a(t)
and b = b(t). The state vector of a superposition
precesses around the z-axis unless it is transformed.
(All Bloch spheres are generated by QuTiP [77].)

�

�

fulfilled,

|Ψ〉 =cos

(

θ

2

)

|0〉+ eiφ sin

(

θ

2

)

|1〉. (2.2)

Here θ and φ, corresponding to real values, define a point on the surface of the unit
three-dimensional sphere, called the Bloch sphere [76], see Fig. 2.1. It can visualize
the state of a single qubit, while multiple qubits are not easily visualized.

For a system of N qubits, we can write states in the form |x1,x2,...,xN 〉 or |x1〉⊗|x2〉⊗
... ⊗ |xN 〉, where xi can be either 0 or 1. These states are called the computational
basis states, which are specified by 2N complex coefficients1.

If the state vector cannot be specified because of insufficient information, but the
probabilities pi for being in a state |ψi〉 are known, then another representation of a
state of a single qubit can be used, the so-called density matrix [76]

ρ =
∑

i

pi|ψi〉〈ψi|. (2.3)

This represents a statistical mixture of states. When pi = 1, the state becomes pure,
otherwise the system is in a mixed state.

2.1.2 Quantum Computation

The evolution time of a quantum state is governed by the time evolution operator which
is related to the Hamiltonian of the system. This can be described by the language
of quantum computation. There are elementary quantum gates to manipulate the
quantum information, which can be categorized by single-qubit gates and multi-qubit
gates.

1Complex coefficients are sometime called amplitudes.
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2.1 Quantum Information

Single-qubit Gates

A change of the quantum state of a qubit can be defined as a rotation operator, which
rotates a state vector on the Bloch sphere. The operator can be expressed by

Rn̂(θ) = exp

(

−i
θ

2
(n̂ · ~σ)

)

, (2.4)

where n̂ represents a three-dimensional unit vector of the rotation axis, θ represents
the rotation angle, and ~σ represents a vector of Pauli matrices. The well-known Pauli
matrices are

σx ≡
(

0 1
1 0

)

; σy ≡
(

0 −i
i 0

)

; σz ≡
(

1 0
0 −1

)

. (2.5)

In principle, the Pauli matrices are defined together with a basis, in this case, that
(

0
1

)

has 〈σz〉 = −1. In our experiment, the single-qubit manipulation is performed

on the ion’s carrier resonance transition at the frequency ωC , for which an intuitive
picture can be obtained in a frame co-rotating with the radio frequency (RF) field.
In the dipole approximation, and after the so called rotating wave approximation, a
single spin driven with a RF pulse at ωC with amplitude or the Rabi frequency Ω is
transformed by

R(θ,φ) = exp

[

i
ΩtRF

2
(σx cosφ− σy sinφ)

]

,

= exp

[

i
θ

2
(σx cosφ− σy sinφ)

]

, (2.6)

where tRF is the pulse duration, θ = ΩtRF, and φ is the phase of the RF pulse. In a
multi-qubit system, we have an index (j) indicating the qubit to be manipulated

R(j)(θ,φ) = exp

[

i
θ

2
(σ(j)x cosφ− σ(j)y sinφ)

]

. (2.7)

From equation (2.6), a π/2-pulse with phase φ = π will perform a π/2 rotation about
x̂, and is also denoted as Rx(90) or for short as X. A negative rotation about x̂,
denoted as Rx(−90) or X̄, is obtained by phase φ = 0. Similarly, a π/2-pulse with
phase φ = π/2 will perform a π/2 rotation about ŷ denoted as Ry(90) or Y and
rotation with phase φ = −π/2 is denoted as Ry(−90) or Ȳ . For multi-qubit systems,
an index (j) is used as subscript to indicate the qubit to be interacted with, e.g. X̄(j).

Since the rotation about ẑ is not directly achievable in our experiment, two decompo-
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2 Quantum Information using Trapped Ions

sition components are expressed as

R(j)
z (±θ) = X(j)R(j)

y (±θ)X̄(j) = X̄(j)R(j)
y (∓θ)X(j), (2.8)

= Y (j)R(j)
x (∓θ)Ȳ (j) = Ȳ (j)R(j)

x (±θ)Y (j). (2.9)

A Hadamard gate2, denoted by UH, is also a common single-qubit gate. It is repre-
sented in the circuit as

|x1〉 UH

, where the circuit is read from left to right and the state |x1〉 is an initial state and it
will be transformed by UH. The matrix representation of a Hadamard gate is expressed
as

UH =
1√
2

(

1 1
1 −1

)

. (2.10)

In our pulse scheme the Hadamard gate can be expressed as [78]

U
(j)
H = eiπ/2R(j)(

π

4
,− π

2
)
(

X(j)
)2
R(j)(

π

4
,
π

2
), (2.11)

with the global phase eiπ/2 being not measurable, and therefore irrelevant.

Multi-qubit Gates

One of the frequently used two-qubit gates is the controlled-NOT (CNOT) gate. It
flips a target qubit conditionally on the state of a control qubit. The CNOT gate
(UCNOT) can be described by

U
(C,T )
CNOT =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









, (2.12)

where the superscript first index C indicates the control qubit and the second index
T indicates the target qubit. This also comes with a basis, namely (C,T ) ordered

(00)

(01)

(10)

(11).

2The Hadamard transform is also known as the Walsh-Hadamard transform.
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2.1 Quantum Information

The physical implementation will be described later in section 7.1.2. CNOT gates and
single-qubit gates can create any arbitrary two-level gates of n qubits [76, 79], hence,
these gates are universal for quantum computation.

The CNOT gate and the Hadamard gate can generate the so-called Bell states. Bell
states are examples of entangled states. Entangled states are defined as states that
cannot be written as a product of single qubit states. These states show correlation

between qubits. The Bell states are generated by UBell = U
(C,T )
CNOTU

(C)
H in the following

circuit.
|x1〉 UH •

|x2〉
Then, the Bell states are generated by four initial states,

|00〉 UBell−−−→ |Φ+〉 = 1√
2
(|00〉+ |11〉), (2.13)

|01〉 UBell−−−→ |Ψ+〉 = 1√
2
(|01〉+ |10〉), (2.14)

|10〉 UBell−−−→ |Φ−〉 = 1√
2
(|00〉 − |11〉), (2.15)

|11〉 UBell−−−→ |Ψ−〉 = 1√
2
(|01〉 − |10〉). (2.16)

In our ion trap, the coupling between qubits does not only exist between two nearest
neighbors but also between all qubits within the same ion crystal via long range in-
teractions. This allows mutual couplings to form multi-qubit gates, in which the gate
time of a quantum algorithm can be reduced [58].

2.1.3 Quantum Measurement

To readout the populations in a local basis, the measurement performed on qubits
is a projective measurement, where each qubit is either detected in the state |0〉 or
|1〉. A projective measurement or a state selective detection is described by projection
operators Mm acting on the state |Ψ〉 with eigenvalues m = 0,1 [76]. The qubit
observable operators are given by

M0 = |0〉〈0|, M1 = |1〉〈1|. (2.17)
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2 Quantum Information using Trapped Ions

For a superposition state as in equation (2.1), the probability either to obtain the
result 0 or 1 after a projective measurement is then

p(0) =〈Ψ|0〉〈0|Ψ〉 = |a|2, (2.18)

p(1) =〈Ψ|1〉〈1|Ψ〉 = |b|2, (2.19)

respectively. After the projective measurement, the state becomes

|Ψ′〉 = Mm|Ψ〉
√

p(m)
, (2.20)

which means the measured state stays in either the state |0〉 or |1〉 without the phase
factor.

For a two-qubit system, the state is given by

|Ψ〉 =a|00〉+ b|01〉+ c|10〉+ d|11〉, (2.21)

where
√
a2 + b2 + c2 + d2 = 1. The probability of the projective measurement of the

first and the second qubit to obtain the result 0 for both qubit is given by

p(1,2)(00) =〈Ψ|(M (1)
0 ⊗M

(2)
0 )†(M (1)

0 ⊗M
(2)
0 )|Ψ〉 = |a|2. (2.22)

The other probabilities in a two-qubit system are given by

p(1,2)(01) =〈Ψ|(M (1)
0 ⊗M

(2)
1 )†(M (1)

0 ⊗M
(2)
1 )|Ψ〉 = |b|2, (2.23)

p(1,2)(10) =〈Ψ|(M (1)
1 ⊗M

(2)
0 )†(M (1)

1 ⊗M
(2)
0 )|Ψ〉 = |c|2, (2.24)

p(1,2)(11) =〈Ψ|(M (1)
1 ⊗M

(2)
1 )†(M (1)

1 ⊗M
(2)
1 )|Ψ〉 = |d|2. (2.25)

Similarly, the projective measurement can be extended to N qubits.

2.2 Trapped Ions

There are several approaches to confine charged particles. Two very common devices
in quantum optics and atomic physics are the so-called Penning trap [80, 81] and
Paul trap [82]. They are based on either static electric and magnetic fields or static
and dynamic electric fields, respectively. Originally, the Paul trap was used in the
field of mass spectrometry, however, it became widely used in the field of precision
measurement and then quantum information processing.

The experiment in this dissertation uses a linear Paul trap to confine ionized atoms [83],
shown in Fig. 2.2. The trap consists of four blade electrodes and two endcap electrodes.

12



2.2 Trapped Ions

UDC

VRF cos(   RFt)�

(a) (b)

x

y z

x

y

Side view

Figure 2.2: Our linear Paul trap. (a) The wiring of the electrodes is shown. An alternating
voltage VRF cos (ωRFt) is applied to two diagonally opposite blade electrodes. The other two
blade electrodes are connected to the electric ground. The endcap electrodes are connected to
a DC voltage. (b) The 3D model of a macroscopic Paul trap shows the ion confinement along
z-axis. On the endcap electrodes, two cylindrical permanent magnets, indicated by yellow,
generate the magnetic-field gradient along the trap axis.

An alternating voltage (AC) U0+VRF cos (ωRFt) is applied to two diagonally opposite
blade electrodes. The other two blade electrodes are connected to the electric ground.
Here the AC voltage has amplitude VRF, frequency ωRF, and offset potential U0 = 0.
Therefore, the quadrupole potential near the center of the trap, with the electrode
separation 2r0, is approximated as

Φr(x,y,t) = α
VRF cos (ωRFt)

2r20
(x2 − y2), (2.26)

with the geometry factor α specific to each trap and a charged particle of mass m
with charge e in the x- and y-direction (or radial direction). The equations of motion
have the form of the canonical Mathieu equation [82, 84]. The Mathieu equation
gives either stable or unstable solutions, depending on the values of the so-called
stability parameters a and q in the sense that unstable solutions will diverge for infinite
(absolute) times. The stability parameters are given as

a =
4eαUDC

mωRFz20
, (2.27)

q =
2eVRF

mωRFz20
. (2.28)

The first stable solution has two components, large-amplitude slow oscillation (sec-
ular motion) and small-amplitude fast oscillation (micromotion). For U0 = 0, the
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2 Quantum Information using Trapped Ions

oscillation frequency of the secular motion is at the angular frequency

ωr = ωx = ωy =
eVRF√

2ωRFmr20
, (2.29)

called the radial trap frequency.

Until this point, there is no confinement in the z-direction. The endcap electrode
are supplied with a direct current (DC) voltage source with potential UDC, thus the
potential around equilibrium can be approximated as harmonic potential as

Φz(x,y,z) =
αUDC

z20
(z2 − 1

2
(x2 + y2)), (2.30)

where z0 represents the distance between one of the endcap electrodes and the trap
center and α = 0.15 [83]. The oscillation frequency of the harmonic motion is at the
angular frequency

ωz =

√

2eαUDC

mz20
, (2.31)

which corresponds the axial trap frequency. Hence, the total effective trapping poten-
tial is described by

Φ(x,y,z,t) =
1

2
mω2

r (x
2 + y2) +

1

2
mω2

zz
2. (2.32)

When N identical ions are trapped, the ion crystal arranges so that the center-of-mass
lies at the trap center. The ion crystal stays in a linear string as long as the radial
confinement is stronger than the axial confinement with

ωr
ωz

> 0.73N0.86, (2.33)

otherwise the crystal deforms to be zigzag [85] or even a three-dimensional crystal. For
a harmonic trap, the spacing between neighboring ions increases towards the string

ends. The equilibrium positions of ions z
(0)
m can be determined by the dimensionless

equilibrium position um = z
(0)
m /l [86] as

um −
m−1
∑

n=1

1

(um − un)2
+

N
∑

n=m+1

1

(um − un)2
= 0, ∀m ∈ [1,N ] , (2.34)
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2.3 Ions and Magnetic-Field Gradient

and the length scale l with

l = 3

√

e2Z2

4πǫ0mω2
z

. (2.35)

Here Z represents the degree of ionization of ions,m represents the mass of a single ion,
and ǫ0 represents the vacuum permittivity. Because of the Coulomb interactions be-
tween ions in the harmonic trap, the displacements of ions will be coupled together and
ions’ collective oscillations can be described by normal modes. Numerical frequencies
for N = 2, . . . , 10 can be found in Ref. [86].

2.3 Ions and Magnetic-Field Gradient

To control qubits, several ion-trap experiments use lasers directly driving optical qubits
[87–89] or hyperfine qubits [21, 90, 91] via Raman transitions. In the former case, the
lasers need to be highly stable in frequency, intensity, and phase. Furthermore, in
both cases, lasers must be tightly focused for addressing or individual manipulation of
single ions, typically separated by a few microns. These requirements are extremely
demanding.

Another approach is to directly work on hyperfine qubits using RF radiation to di-
rectly manipulate the hyperfine qubit states [46, 47, 75]. RF and microwave (MW)
technologies are easier to handle than lasers. One could get RF and MW systems as
commercially-available devices. Fields of stable frequency, amplitude, and phase are
simpler to achieve. These can be stabilized on high-precision commercial atomic clocks
and commercial frequency generators providing simple and accurate control fields. Ear-
lier, RF radiation was not used for ion-trap quantum information processing because
of two main reasons. Firstly, RF radiation cannot be focused down to micron spot size
for individual addressing, due to its wavelength in the centimeter range and beyond.
Secondly, RF radiation does not carry enough momentum to couple the internal state
to the ion motion for conditional dynamics between ions. The spin-phonon coupling
is mathematically described by the Lamb-Dicke parameter (LDP) η as

η = k∆z, (2.36)

where k = 2π/λ represents the photon wave vector, ∆z =
√

~/2Nmωz represents the
spatial spread of the ground state wave function of N ions in a harmonic oscillator at
mode ωz, and ~ represents the reduced Planck constant. The Lamb-Dicke regime is
defined as η ≪ 1. In our experiment the LDP for RF radiation is 5 orders of magnitude
smaller than the LDP for a laser3 which is used for manipulating a trapped ion via an

3For optical photons, the LDP is on the order of 10−1.
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2 Quantum Information using Trapped Ions

optical transition, indicating that the RF radiation hardly excites the motional modes
unlike optical photons. However, both problems are solved by adding a magnetic-field
gradient along the trap axis, enabling the ion addressability in the frequency domain
and inducing the coupling between the internal and external dynamics of the ions
[46, 47]. This technique is called MAgnetic Gradient Induced Coupling (MAGIC).

2.3.1 Ion Addressing with MAGIC

In the MAGIC scheme, hyperfine qubits are addressable and manipulated directly via
RF radiation [51, 52]. Lasers are used only for cooling ions and readout of the states
of ions. Generally, a static magnetic field lifts the degeneracy of the Zeeman sub-levels
of ion’s hyperfine ground state with respect to magnetic field strength. In a weak
magnetic field limit, with the interaction of the external field being weaker than the
hyperfine interaction, the energy shifts are described by the Zeeman effect. In a strong
magnetic field limit, the energy shifts are described by the Paschen–Back effect, which
is the second order perturbation correction. In an inhomogeneous magnetic field, the
level shifts and therefore qubit splitting become position dependent and can thus be
made different for each ion.

The Hamiltonian of the atomic hyperfine structure is given by [92]

Hhfs = Ahfs
I · J
~2

, (2.37)

∆Ehfs =
1

2
AhfsK, (2.38)

where K = (F (F + 1)− I(I + 1)− J(J + 1)), Ahfs = −µBgIb~ is called the magnetic
dipole hyperfine constant with the magnetic field b generated by the electronic shell at
the position of the nucleus, µB represents the Bohr magneton, gI represents the nuclear
spin Landé g-factor, I represents the nuclear spin operator, and J represents the fine-
structure angular momentum. For the hyperfine ground state 2S1/2 of a

171Yb+ ion
[93], the magnetic dipole hyperfine constant is determined as

Ahfs
h

= 12 642 812 118.466(2)Hz. (2.39)

If the system is exposed to an external magnetic field B, the interaction Hamiltonian
for the Paschen–Back effect is given by [92]

H
(hfs)
B =(gJµBJ − gIµNI) ·B. (2.40)

Here gJ represents the fine-structure angular momentum Landé g-factors, and µN rep-
resents the nuclear magneton. The lifted degeneracy, corresponding to the Paschen–Back
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2.3 Ions and Magnetic-Field Gradient

hyperfine quantum number mF , can be described by the Breit-Rabi formula with a
nuclear spin of I = 1/2 for a 171Yb+ ion as [92, 94],

E
(±)
B (B,F,mF ) = −Ahfs

4
− gIµNmF |B| ± Ahfs

2

(

1 + 2mF ξ|B|+ ξ2|B|2
)1/2

, (2.41)

where ξ = (gJµB + gIµN )/Ahfs.

The addressing frequency of the state |2S1/2 (F = 0) 〉 ↔ |2S1/2 (F = 1) 〉 due to the
linear Zeeman effect in the magnetic-field gradient, B = B(z), is given by

ω(z) =
E0 +∆E(z)

~
≈ ω0 +

1

2~
(gJµB − gIµN )∆mF |B(z)|, (2.42)

=ω0 +
1

2~
(gJµB − gIµN )∆mF (B0 + ∂zB · z). (2.43)

Here ω0 = Ahfs/~ represents the atomic ground state transition without external
magnetic field. The magnetic field B(z) along the trap axis consists of an offset B0 and
a coordinate dependent part ∂zB. Thus, the resonance frequencies of the σ±-transition,
∆mF = ±1, of an ion depend on its position in the magnetic-field gradient, therefore
the ion can be addressed in frequency space. The frequency difference between ions
can be determined by

∆ω(zi,zj) =
1

2~
(gJµB − gIµN )∆mF (∂zB ·∆z). (2.44)

Using RF radiation for the qubit addressing, the crosstalk between neighboring and
non-neighboring ions in a string of eight ions has been shown with a remarkable low
level (10−5) below the fault-tolerant limit [52].

2.3.2 Spin-Spin Coupling with MAGIC

Superimposing the position dependent Zeeman splitting, the harmonic trapping poten-
tial, and the Coulomb interaction result in a dependency of the equilibrium position of
each ion on its internal state. When the internal state is changed, the ion will oscillate
around its new equilibrium position similar to receiving a momentum kick. Therefore,
the LDP is replaced by an effective LDP ηeff , described by [75]

ηeff =
∆z∂z(ωσ(z))

ωz
, (2.45)

where ωσ follows equation (2.43).

For a linear string of N ions in a static magnetic-field gradient, the Hamiltonian is
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described by [75]

H̃ =
~

2

N
∑

n=1

ω(n)(z
(n)
0 )σ(n)z +

N
∑

n=1

~ωn(a
†
nan)−

~

2

N
∑

n<l

Jnlσ
(n)
z σ(l)z . (2.46)

The first term represents the internal energy of N ions, where the qubit resonance

frequency ω(n) is at its equilibrium position z
(n)
0 . The second term shows the total

energy of N axial motional modes. The last term represents the spin-spin coupling
(or J-coupling) due to the magnetic-field gradient. Here, the coupling between qubit
i and j is the sum of the contributions from all normal modes with the vibrational
frequency ωn,

Jij ≡
N
∑

n=1

ωnεniεnj . (2.47)

The coupling strength ε, generalized as

εnl ≡ ηeffSnl =
∆zn∂zωl
ωn

Snl, (2.48)

corresponds to the coupling strength of ion l to the motional mode n and ∆zn =
√

~/2mωn characterizes the spatial extension of the wave function of the motional
ground state corresponding to the vibrational frequency ωn and the ion’s mass m.
The dimensionless matrix Snl expresses the scaled deviation of the ion l from its
equilibrium position by the motional excitation mode n.

Since the partial derivative of the internal energy of the ions always appears in pairs
in the J-coupling between two spins, see equation (2.44) and (2.47), the sign of the
coupling can be chosen by using qubits composed of different Zeeman sub-levels, ex-
perimentally demonstrated in Ref. [58]. The sign becomes negative when the magnetic
quantum numbers mF are chosen differently. The coupling can even be ‘switched off’
when a qubit is chosen to be magnetic field independent.

2.4 Coherence of Trapped-Ion Qubit

The dynamics of a qubit in contact with its environment is characterized by coherence
time, i.e. time in which the qubit must preserve its information. Therefore, the
coherence time must be much longer than any gate time. This is one of the basic
conditions for a quantum computer from DiVincenzo’s criteria [11]. The coherence
time can be described by the phase preservation of the superposition states. For a
time exceeding the coherence time, the phase relation is completely random. This is
also called the dephasing of the internal states. Hence, quantum information processing
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is reliable for any operation much shorter than the coherence time.

Since our qubit are encoded in a magnetic field-sensitive state, it is susceptible to
any magnetic field fluctuations, which randomize the relative phase between the qubit
states over time. The coherence time of a quantum system can be determined by the
Ramsey measurement [95], which will be described in section 4.3.3. In addition, the
coherence time of qubits can be extended using the dressed state, as experimentally
demonstrated in Refs. [34, 59].
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This chapter describes the experimental setup used throughout this dissertation, which
acts as a quantum processing unit. Modifications with respect to earlier work are also
explained, as completely described in Refs. [54, 83, 96]: the RF radiation control is
extended to work with multiple ions simultaneously, requiring synchronization between
RF radiation sources. The imaging system is modified to reduce the magnification.
The acousto-optic modulator (AOM) for the detection lasers is changed to reduce
unwanted light scattering. The reference optical resonator is improved as well for
locking stability. An upgrade for real-time image processing in the experimental control
is described. In addition, a technique to counteract the drift of the ambient magnetic
field is presented using active magnetic-field stabilization.

3.1 The 171Yb+ Qubit

In our quantum processor, our qubits are encoded in the magnetic field-sensitive state
of the hyperfine 2S1/2 ground state of 171Yb+ ions, whereas

|0〉 ≡ |2S1/2, F = 0 〉, (3.1)

|1〉 ≡ |2S1/2, F = 1,mF = +1 〉, (3.2)

with an ion per qubit. The energy level structure is shown in Fig. 3.1. Ions are
exposed to an offset magnetic field of approximately 0.5mT, providing the Zeeman
splitting of the state |2S1/2, F = 1 〉 large enough to distinguish between different mF -
states. By having a magnetic field gradient of approximately 19T/m, the qubits can be
individually addressed in frequency space via direct RF radiation near 2π · 12.65GHz.

The hyperfine qubit state has a long lifetime, and therefore the longitudinal coherence
time T1, which denotes the decoherence from spontaneous emission of the magnetic
dipole radiation, is negligible [97]. The main dephasing of our qubit is from the
magnetic field inhomogeneity of the transverse coherence time T ∗

2 . Typically, the
transverse coherence time is approximately 0.5ms; therefore, we need techniques for
protection of qubit states, either by using pulsed refocusing schemes or, alternatively,
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Possible decay channel 

(branching ratio)

171Yb+

Coherent control

Figure 3.1: Energy level structure of 171Yb+. The schematic, not to scale, shows optical
transitions for Doppler cooling and repumping, indicated by colored arrows. Significant decay
channels are shown by dashed lines. Numbers in round parentheses show the branching ratio
for each possible channel. The main qubit states are highlighted in orange. More information
and references can be found in appendix C.
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using a continuously dressing field [34, 59, 60]. In this dissertation, we focus on pulsed
refocusing schemes, also known as “dynamical decoupling pulses” [98, 99], which will
be explained later in section 4.3.5.

Normally, the qubits are cooled using lasers with a two-step process to near their
motional ground state, using Doppler cooling and sideband cooling (SBC). For Doppler
cooling, the laser at 369 nm is near-resonantly driven to the transition |2S1/2 (F = 1) 〉
↔ |2P1/2 (F = 0)〉 using red-detuning of 19MHz, together with RF radiation at the
transition between the state |0〉 and the state

|0′〉 ≡ |2S1/2 (F = 1,mF = 0) 〉 (3.3)

at 2π · 12.642 819 5GHz (π-transition). The lasers at 935 and 638 nm are continu-
ously driven to close the cooling process. More information and references can be
found in appendix C. For sideband cooling, the laser at 369 nm is blue-detuned by
2.1GHz, matching the transitions between |2S1/2 (F = 1) 〉 ↔ |2P1/2 (F = 1)〉. The
RF radiation frequency is red-detuned by a motional mode frequency to decrease the
motional excitation; more detailed discussion can be found in chapter 5. As a result,
the two-step cooling prepares a single qubit with an average phonon number of 0.30.

3.2 Ion Trap and Vacuum Recipient

Ions are confined in a linear Paul trap, see Fig. 3.2, in an ultra-high vacuum (UHV)
environment to isolate ions from background gas interactions. Detailed information
concerning the macroscopic ion trap with a magnetic field gradient integrated can be
found in Ref. [83]. The information also provides the vacuum recipient design as well
as the measured geometric trap parameters.

Ions are confined using two potentials, a quadrupole potential and an approximated
harmonic potential. The quadrupole potential, a radial trapping potential, is gener-
ated at a frequency of 2π · 18.882MHz with a power of approximately 16W to the
helical resonator, corresponding to a peak voltage of approximately 600V coupling
to two blades of the trap electrodes. That is, the quality factor of the RF resonator
is measured as Q′ = 114 [83]. Another two blades have no offset potential and are
connected to ground. The axial trapping potential is approximately harmonic and gen-
erated by a DC voltage applied to the endcap electrodes. The DC voltage is generated
by a linear DC power supply1 and has a potential of 24.93V.

On the endcap electrodes, there are two hollow cylindrical permanent magnets installed

1The endcap electrodes were previously supplied by two 12-V batteries. However, because of the
discharging over time, we changed to a DC power supply to provide a constant potential over a
long time period. Note that this change does not affect the coherence time of the bare state qubit.
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Figure 3.2: Ion trap and vacuum recipient. 1: RF antenna (OFHC copper). 2: Macor
mounting. 3: Compensation electrodes (stainless steel 316L), namely RF-side, under RF-side,
and under viewport windows. 4: RF electrodes (stainless steel 316L). 5: Permanent magnets
(SmCo28). 6: Endcap electrodes (Iron). 7: Atomic ovens. 8: Electrical DC feedthrough
interfaces. 9: RF feedthrough of a helical resonator.

[83]. These magnets are mounted facing each other with the same magnetic pole.
They stay on the endcap electrodes without any rigid fixing; however, the magnetic
force pushes the magnets against the endcap electrodes to keep them in place. They
provide a static magnetic-field gradient, which is the main feature of this ion trap.
The magnetic-field gradient of 19.105(5)T/m is generated along the endcap electrodes,
which is also the quantization axis or z-axis.

The endcap electrodes have passive electrical RC filters to reduce AC noise. The filters
have been optimized in Ref. [56] to achieve a heating rate reduction of two orders of
magnitude. In addition, atomic ovens are also filtered with a passive electrical RC filter
to prevent noise from the oven power supply. The heating rate is further discussed in
section 5.4.

There are three compensation electrodes in addition to the ion trap electrodes. The
electrodes are located at the RF feedthrough side, under the RF feedthrough side,
and under the viewport windows; see Fig. 3.2 and Ref. [83, sec. 4.3]. Each of these
compensation electrodes also has a passive electrical RC filter to prevent noise from the
DC power supplies [54]. The current potential setting can be found in appendix I.4.
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The ytterbium ovens are located underneath the trap perpendicularly orientated to
an ionization laser [83], which co-propagates along with the other cooling lasers from
the lower right corner of Fig. 3.2. Two ovens contain Yb I enriched with ytterbium
isotopes 171 and 172, respectively. A detailed description of the ovens can be found
in Ref. [100]. Ytterbium atoms are released from each oven by applying a current to
heat the oven.

An ion getter pump is kept running to maintain the ultra-high vacuum, with a pressure
below 1× 10−8mbar. There is no pressure gauge in our experiment; therefore, we do
not know the exact pressure.

3.3 RF Antenna

Our RF antenna is a copper2 circular waveguide designed to transmit RF radiation
at approximately 12.7GHz. The detailed design and characteristics are described in
Ref. [83, sec. 3.8]. This signal is used for a coherent control of the hyperfine ground
state of 171Yb+ ions. The RF antenna is located inside the vacuum chamber near
the trapped ion; see Fig. 3.2. Two orthogonal polarizations are possible regarding the
orientation of the waveguide with respect to the magnetic field of the quantization
axis. However, the achieved Rabi frequency of one of the two orthogonal polarizations
perceived by ions is much less than the other, which is due to the trap electrode
geometry and material acting similar to a RF polarizer. The signal generation is
described in the following section.

3.4 RF Amplification Chain

In quantum information processing, high-precision coherent control of qubits is re-
quired because it is directly proportional to the fidelity of single-qubit gates, which
has to exceed the fault-tolerant limit. In our system, the hyperfine qubit is controlled
using RF pulses. That means we have to precisely control the frequency, amplitude,
and phase of the RF pulse. The frequency source also has to maintain coherence
throughout experimental sequences, which can be achieved by a versatile frequency
generator (VFG) [101]. The VFG is capable of generating frequencies in the range
of 1 to 150MHz; however, the experiment operates at a frequency of approximately
12.6GHz. The previous setup [83] has a single VFG-150 device mixed with a stable
frequency at 12.568GHz. Now, more frequency generators are added to the RF chain
system to gain more control frequencies simultaneously. The components can be found
in appendix B.

2This copper is an OFHC (oxygen-free high conductivity) type.
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Figure 3.3: Schematic of RF qubit-control chain. Three qubit-control signals from three
VFGs are combined by a 4-way power combiner and mixed using a single-sideband double-
balanced mixer with a frequency of 12.568GHz, which is generated by a phase-locked loop
(PLL) oscillator. The PLL oscillator is also synchronized with the atomic clock reference.
To be able to completely switch off the high frequency, a MW switch is installed before the
mixer. After the mixer, the signals are in the range to manipulate the qubit transitions with
controllable frequency, amplitude, and phase. The signal is amplified by a pre-amplifier as an
option, indicated by the dashed box, and further amplified by a power amplifier (AM43). The
isolators are inserted for back-reflection protection. Finally, the RF control signals are sent
through a low-loss and phase-stable cable to the RF antenna. The components are given in
more detail in appendix I.1.

In future experiments, at least three frequencies are required simultaneously; for ex-
ample, to prepare qubits in the dressed-state basis, similar to Ref. [34]. Then, synchro-
nization between all frequency generators is necessary to obtain zero phase relation
between the generators. The synchronization procedure is performed according to
Ref. [102]. The specific setup for this experiment is characterized in Ref. [103]. The
timing synchronization to start any experiment already takes into account the 50-Hz
signal of the power grid to have the same noise characteristics as the power grid.

The complete RF control chain is shown in Fig. 3.3. After three VFGs are synchro-
nized, as described in Ref. [103], three control signals are combined by a 4-way power
combiner, mixed with the accurate and stable 12.568GHz signal generated by a dual
loop phase-locked loop (PLL) oscillator. The PLL oscillator is synchronized with the
atomic clock reference at 10MHz. The PLL signal is split into two signals by a power
splitter for future experiments, for example, preparation of dressed states, as men-
tioned in Ref. [103]. The second signal is currently terminated. The main signal can
be switched on and off by a MW switch. The 12.568GHz signal and the VFG signals
are mixed by a single-sideband double-balanced mixer3. After the mixer, the signals

3In some experiments, a double-balanced MACOM M79 mixer is used.
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are in the range of approximately 12.7GHz, which can be used to manipulate the
qubit transitions with controllable frequency, amplitude, and phase via VFGs. As
an option, the signal is amplified by a pre-amplifier, indicated by the dashed box in
Fig. 3.3. Then, the control signal is further amplified by a power amplifier (AM43)4,
which is supplied by a low-noise linear power supply (TOE 8851-16). The isolators
are inserted for back-reflection protection. The attenuators are inserted to adjust the
power to the desired level. Finally, the RF control signals are sent through a low-loss
and phase-stable cable to the RF antenna.

3.5 Lasers

In this experiment, we primarily focus on the laser and RF radiation manipulation
of 171Yb+ ions. The relevant transitions have been shown in section 3.1. There are
several lasers with respect to the ytterbium ionic transitions. The laser with emission
wavelength close to 369 nm is for cooling, preparation, and readout. The lasers with
emission wavelengths close to 638 nm and 935 nm are for repumping to close the cooling
cycle. The laser with emission wavelength close to 399 nm is for an ionization process.
Lastly, the laser with emission wavelength close to 780 nm is frequency-stabilized using
saturation spectroscopy in a rubidium cell and acts as a laser frequency reference.

Each laser is an external cavity diode laser (ECDL) using a reflective grating in the
Littrow configuration [104] to be able to fine tune their frequency with a narrow
bandwidth. More detailed designs and descriptions can be found in Refs. [105, 106].
All lasers are frequency-stabilized with optical resonators using a technique called
side-fringe locking [104–106]. The optical resonator is discussed further in the next
section.

To obtain knowledge concerning all laser wavelengths, all lasers are measured in a
movable Michelson interferometer. A detailed description can be found in Refs. [83,
107]. The simultaneous detection of interference fringes from the reference laser near
780 nm and the laser of interest allows determination of their air-wavelength ratio.
The frequency reference laser is frequency-stabilized with the crossover 2,3 transition5

of the 87Rb D2-line using saturation spectroscopy in a rubidium gas cell. This laser
is locked with a digital dual lock-in amplifier with a laser current modulation. The
feedback is achieved by a piezoelectric transducer acting on its Littrow grating angle.

The lasers at 369 nm and 935 nm have light switches using acousto-optic modula-
tors (AOMs) in a double-pass configuration [106]. This configuration allows very fast
switching in the nanosecond regime, and it also allows changing a modulated fre-

4This device is in some experiments replaced by a Globes Elisra power amplifier.
5The crossover 2,3 frequency is half the sum of the 52S1/2(F = 2) ↔ 52P3/2(F

′ = 2) and 52S1/2(F =
2) ↔ 52P3/2(F

′ = 3) transitions.
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quency without changing the beam propagation. The laser at 369 nm has two AOMs
for modulated frequencies of −90MHz and 960MHz, respectively. These provide two
overlapping UV laser beams for a shifted frequency of 2.1GHz, which is used to ini-
tialize and sideband cool ions to the ground state.

From the state 2P1/2 , the state 2D3/2 can be reached with a branching ratio of 0.5%.
Therefore, the laser at 935 nm is used to close the cooling cycle. However, with hy-
perfine splitting, the state 2D3/2 for both F = 1 and F = 2 cannot be depopulated
simultaneously. Hence, an electro-optic modulator (EOM) is installed, providing an
additional blue-detuned frequency of 3.07GHz [54]. The EOM installation is also a
key factor enabling success of the sideband cooling process. It prevents the population
from staying in the long-life metastable state; in addition, it improves the detection
fidelity of the bright state [54].

A new AOM6 at a driving 90-MHz frequency for the laser at 369 nm improves the beam
separation between the diffracted and non-diffracted beams from 4mrad to 9mrad.
This removes the previously observed overlap of the zero and first diffraction orders,
which can cause light-induced dephasing of the qubit [108], even for optimal beam
alignment and switched-off AOM. Because of the AOM change, the in-house assembly
AOM controller [106] is modified for a voltage-controlled oscillator (VCO) to drive
frequencies around 90MHz. The AOM calibration is adapted to account for the new
setup. In Fig. 3.4, the calibration curve is shown, which is measured by applying a
variable voltage to the VCO and measuring the frequency via a spectrum analyzer.
The result is fitted by a degree-7 polynomial, and the fitting coefficients are shown in
appendix I.2.

Figure 3.4: New VCO calibration of
the AOM control for the laser at
369 nm. By applying a variable voltage to
the VCO and measuring the frequency via a
spectrum analyzer, the calibration curve is
measured. The result is fitted by a degree-7
polynomial.
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Furthermore, to improve the laser alignment on a daily basis, the pointing stability is
improved by a fiber coupling. Formerly, the laser at 369 nm was guided in free-space to
overlap with the other lasers using a beam-overlapping unit before injecting them into
the vacuum chamber. This allowed for a walk-off of the 369 nm beam with respect to
the other laser beams, as daily relocking of the ECDL affects the subsequent pointing.

6ISOMET 1206C-833
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Figure 3.5: Alignment of the laser at 369 nm. The blue line shows laser beam tra-
jectories, with arrow heads indicating directions. LD: laser diode, FR: Faraday rotator, OR:
optical resonator, DPD: differential photo diode, f and a 3-digit number: plano-convex lens
with an indicated focal length in mm, HWP: half-waveplate, PBS: polarizing beam splitter,
QWP: quarter-waveplate. The laser exits the board via an optical fiber to the overlapping
unit before being injected into the vacuum chamber.

Now, the laser at 369 nm is guided through a polarization-maintaining optical fiber7

with collimators8. The current alignment for the laser at 369 nm is shown in Fig. 3.5.
Before the laser is guided to the optical fiber to the overlapping unit, the powers
of the 180MHz-diffracted beam and the 1920MHz-diffracted beam are 230 µW and
58 µW, respectively. After the overlapping unit, before being injected into the vacuum
chamber, the powers of the 180MHz-diffracted beam and the 1920MHz-diffracted
beam are 70 µW and 10 µW, respectively.

3.6 Optical Resonator

The optical resonator is based on a Fabry-Pérot interferometer with a piezo actuator,
which allows for tuning of the resonator length and therefore its resonance frequency.
It is further actively temperature-stabilized using a heating mat wrapped around an

7Thorlabs PM-S350MHP
8Schäfter+Kirchhoff 60FC-4-A11-01
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air-tight aluminum housing and utilizing thermal insulation against environmental
temperature drifts composed of styrofoam sheets and aluminum foil.

Previously, the fluorescence during detection was observed to fluctuate, even though
the reading temperature of the active feedback temperature controller for the resonator
for the laser at 369 nm is stable within ±2mK. This indicates that the laser frequency
drifts, regardless of the temperature, which suggests that the optical resonator is not
completely air-tight as intended. The main reason for this is the electrical connectors
on the housing lid, which up to now were not perfectly air-tight. Furthermore, the
housing lids also have an access window each, which is attached to the lid by epoxy
glue. Here, using a helium gas leaking test, we found that the application of epoxy
glue is not reliable and might leave some small holes, which are not possible to be
observed by the naked eye. Therefore, the housing lids of the resonator of the laser at
369 nm are redesigned. We choose a vacuum CF viewport9 with a quartz glass window
compatible with a UV laser. Each viewport is mounted to each resonator lid using
M3 screws, with a rubber O-ring and vacuum grease applied between the contact. In
addition, the electrical connectors are changed to an air-tight type10. The connectors
are mounted with their own screw and washer with vacuum grease applied. A drawing
of the new lids can be found in appendix H.1.

After changing the lids of the optical resonator for the laser at 369 nm, we have checked
the performance. A single 172Yb+ ion is trapped and Doppler cooled to observe the flu-
orescence. The Doppler cooling laser is usually red-detuned by approximately 19MHz
from the resonance. If the fluorescence is directly observed and the frequency drifts
towards lower wavelengths, the ion might not be cooled, and fluorescence cannot be
observed. Alternatively, we can indirectly observe drifts by continuously adjusting
the piezo potential of the cooling laser; therefore, the changing potential indicates
the laser frequency drift. The sensitivity of the laser frequency to adjustment of the
piezo voltage is df/dUpiezo = 0.482MHz/mV [106]. Fig. 3.6 shows the performance of
the optical resonator with the new lids. The results are analyzed using the standard
correlation function, which is given by [109]

corr(X,Y ) =

∑

i((xi − x̄)(yi − ȳ))
√

(
∑

i(xi − x̄)2) (
∑

i(yi − ȳ)2)
. (3.4)

There is no correlation between the laser frequency drift and the atmospheric pressure
P of our laboratory, indicating that the optical resonator is air-tight. However, there is
a correlation between the laser frequency drift and the relative reading temperature of
a sensor inside the optical resonator ∆TTEC , after optimizing to a better feedback PI
signal the gain parameters of the temperature controller11. This shows that the main
fluctuations of the fluorescence come from feedback oscillations of the temperature

9Kurt J. Lesker Company UV Quartz DN16CF VPZL-133Q.
10Lemo Gmbh HGG.1B.306.CLLSV and Lemo Gmbh HGP.00.250.CTLSV
11TEC setting: gain = 750000 and time constant = 50000
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Figure 3.6: Performance of the optical resonator for the laser at 369 nm with new
lids. A single 172Yb+ is trapped and Doppler cooled to observe the resonance fluorescence.
When the frequency of the Doppler cooling laser drifts, the detected fluorescence intensity
changes. The deviation of the fluorescence can be used as an error signal for the feedback
loop, which acts via the piezo voltage on the grating angle and is thus able to restore the
fluorescence level and therefore a constant detuning to the atomic resonance. The sensitivity
of the laser frequency to adjustment of the piezo voltage is df/dUpiezo = 0.482MHz/mV
[106]. (a) The adjusted piezo potential ∆Upiezo and the measured pressure P are plotted over
time. There is no correlation between the piezo potential and the atmospheric pressure in our
laboratory, in which the correlation coefficient (equation (3.4)) between the two data is given by
−0.06. This corresponds to no correlation between the detected fluorescence intensity and the
pressure, indicating the optical resonator is air-tight. (b) After optimizing the gain parameters
of the temperature controller, the adjusted piezo potential ∆Upiezo and the relative reading
temperature of a sensor inside the optical resonator ∆TTEC are plotted over time. Here,
the correlation coefficient between the two quantities is given by −0.66, with a delay time of
3.5min, showing the limit of the temperature stabilization. Now, the main source of laser drift
originates from residual temperature fluctuations of the reference cavity.

controller, which is at the limit of temperature stabilization.

3.7 Imaging System

The ion fluorescence is collected by a collimating lens system with a focal length of
f = 40mm, described in detail in Ref. [110], which combines a large numerical aperture
of NA = 0.4 with a large diffraction-limited field of view of the area of a typical ion
chain. After the collimating lens system, the imaging system is presented in detail
in Refs. [54, 83]. The collimated light is focused onto the detector using a plano-
convex lens. The focal length of the imaging lens is now reduced from f = 1000mm
to f = 500mm to reduce the magnification from 25 to 12.5 accordingly while still
keeping the light collection efficiency of 4%. Unwanted scattering light is blocked by a
mechanical structure consisting of blades and irises. The fluorescence is finally detected
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by either an electron multiplying CCD (EMCCD) camera or a photo-multiplier tube
(PMT), distributed by a mirror or beam splitter [54].

The main reason for changing the magnification to 12.5 is to reduce the electronic
noise from the EMCCD’s super pixels. The assumption is that if we have a smaller
active area on the EMCCD chip, the electronic noise of the detection processing and
therefore the detection error would decrease. Previously, the ion fluorescence had a di-
ameter of approximately 1-2 superpixels each, consisting of 8×8 pixels; this is changed
now to approximately 1-2 superpixels, consisting of 4 × 4 pixels each. The observed
detection error is not significantly different. Nevertheless, the image distortion caused
by the imaging alignment is reduced with respect to the previous setup, in which
ions appeared as a comet shape on the camera. In addition, the observation of light
scattering on trap electrodes simplifies the laser alignment and thus the reduction of
straylight, and therefore the background noise and detection error.

3.8 Experimental Control

Fig. 3.7 illustrates an overview of our experimental control during this dissertation.
There are two computers for two different tasks; the first computer is used for generat-
ing experimental sequences and controlling all hardware. The second computer is used
for recording a series of images from an electron multiplying CCD camera (EMCCD)
and analyzing experimental results. In general, the hardware control is commanded
via National Instruments LabVIEW, while the results are analyzed via self-developed
scripts in MathWorks MATLAB.

The main control programs were originally developed during the theses [54, 83, 106].
Now we have cleaned some complicated parts of several experimental sequences, putting
in sub-routines (sub-VIs) to be better able to understand program flows.

The main control hardware is a Jäger ADwin system, which is a real-time processor
capable of outputting digital and analog signals, controlling the experimental timing
precisely. The time resolution of ADwin’s sequences is 25 ns [111]. The RF pulses,
which are used for the qubit control, are controlled by an experimental sequence im-
plementing VFGs from the control computer, as mentioned earlier in section 3.4. The
time resolution of the VFG’s sequences is 5 ns [101].

Originally, the EMCCD camera records the data stream through a USB port using
the company-provided software, Andor Solis. Now, a frame grabber card, BitFlow
Neon-CLB (Andor compatible hardware), is installed [112] to parallelly access the
data stream via a Camera Link output. The data transfer from the EMCCD camera is
modified to allow for real-time processing of images, as required for drift compensation
(see section 4.4).
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Figure 3.7: Overview of the experimental control. The schematic shows connections
between experimental instruments. Solid lines represent either control or readout signals.
Dashed lines represent trigger signals. Data flows are indicated by arrow directions. Two
computers (PC) are used in our experiment; one is used for generating experimental sequences
and controlling all hardware. The other computer is used for recording series of images from
an electron multiplying CCD camera (EMCCD) and analyzing experimental results. The
other components are listed as follows: DAC – digital-to-analog converter for generating piezo
voltages of optical resonators; ADwin – real-time signal generation and data acquisition; VFG –
versatile frequency generator; PMT – photo-multiplier tube; AOM – acousto-optic modulator;
EOM – electro-optic modulator.

3.9 Active Magnetic-Field Stabilization

Because magnetic field noise is a dominant contribution to qubit coherence, an active
stabilization is designed to counteract those noise components. The active magnetic-
field stabilization is based on a feedback system consisting of a magnetic-field sensor,
an analog PI feedback control, a current driver, and a set of coils. The main idea is
to probe magnetic fields and nullify those fields by applying the appropriate current
to the coils. Therefore, a magnetic-field sensor must perceive the same fields as seen
by ions in the trap.

Here, the magnetic-field sensor was not initially integrated as a part of the trap inside
the vacuum chamber. Hence, the probing sensor is placed as close as possible to the
trap from the outside of the vacuum chamber, approximately 30 cm underneath the
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vacuum chamber, assuming the same noise contribution between the trap area and the
neighbor area. In addition, the generated field must have a homogeneous magnetic-field
area covering the probing and trapping area. Therefore, three pairs of rectangular coils
in an approximate Helmholtz configuration are designed. The Helmholtz configuration
is not fully satisfied because of the radial symmetry along the common axis.

3.9.1 Environmental Magnetic Field

Before designing a magnetic-field generation device, it is necessary to know the field
magnitude to be compensated. Fig. 3.8 shows the relative magnetic field measured
over several hours at a location approximately 30 cm underneath the vacuum chamber
along the ion trap quantization axis. The maximum and the minimum give a magni-
tude of field fluctuations of approximately 4.5 µT. The coils are designed to generate
compensation fields of 20 µT/A [113].

11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00

Aug 03, 2012   

-2

-1

0

1

2

3

Figure 3.8: Environmental magnetic field noise along the ion trap quantization
axis. A magnetic-field sensor is located approximately 30 cm underneath the vacuum chamber,
aligned along the quantization axis, denoted by z-axis. (a) The relative magnetic field is plotted
for several hours every few seconds. Two extrema show the peak-to-peak magnitude of field
fluctuations of approximately 4.5 µT. The room temperature during the measurement is stable
within ∆T = 0.2K.

3.9.2 Installation of Compensation Coils

To match the desired compensation fields to the existing noise, three rectangular
coil pairs with the approximate Helmholtz configuration are constructed, as in the
schematic shown in Fig. 3.9. The coil dimensions and separations are numerically
calculated to approximately satisfy the Helmholtz configuration, shown in Ref. [113].
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3.9 Active Magnetic-Field Stabilization

Figure 3.9: A schematic of the magnetic-field compensation coils [113]. An alu-
minum frame surrounds the optical table, using the vacuum chamber as the center. The frame
has two wall mounts as additional supports for windings of cable. The coils in the z-direction,
z-coils, have dimensions of 3.40 × 2.38m2, a separation of 1.50m, and 35 turns. The y-coils
have dimensions of 1.570 × 2.274m2, a separation of 0.95m, and 23 turns. The x-coils have
dimensions of 0.80 × 0.60m2, a separation of 0.375m, and 9 turns. The z-coils and y-coils
utilize a copper cable with a conducting cross-section of 1.5mm2. The x-coils use a copper
wire with a conducting cross-section of 0.5mm2 (a diameter of 0.8mm). The coils are designed
for approximately 20µT/A [113].

The coils in the z-direction, z-coils, have dimensions of 3.40× 2.38m2, a separation of
1.50m, and 35 turns. The y-coils have dimensions of 1.570 × 2.274m2, a separation
of 0.95m, and 23 turns. The x-coils have dimensions of 0.80 × 0.60m2, a separation
of 0.375m, and 9 turns. The z-coils and y-coils consist of a copper cable with a con-
ducting cross-section of 1.5mm2. The x-coils are composed of a copper wire with a
conducting cross-section of 0.5mm2 (a diameter of 0.8mm).

3.9.3 Signal-Locking Module

The signal-locking module is a PI controller, as described in appendix F, which takes
the error signal (the deviation from the magnetic field set point) and generates a
control signal for the current supplies. The module is designed and assembled by
Simon Spitzer. The detailed schematic can be found in appendix G.2. The summary
of the module is illustrated in Fig. 3.10. A magnetic-field signal together with the set
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Figure 3.10: The schematic of the signal-locking module. The module is based on a
PI controlled feedback loop mechanism [114]. The error signal is provided as a signal input to
the module. The signal can be adjusted with a coarse gain, a fine gain, and a voltage offset.
We can monitor the adjusted signal using a monitor output. The feedback loop is locked with
respect to this signal. After that, the signal passes a proportional gain parallel to an integral
gain. The total signal can further be amplified and adjusted by the last gain and offset before
outputting it to a regulate output. Later, this output will be connected to a current driver.

point for the magnetic field, acting as an error signal, is provided to a signal input
of the module. There are two stages of signal adjustments. The first stage is for the
locking signal of the feedback loop. The second stage is for the signal level of a current
driver. The first stage is adjusted with a coarse gain, a fine gain, and a voltage offset.
At this point, there is a monitor output to observe the locking of the feedback loop.
After that, the signal passes through a proportional gain and an integral gain unit.
The total signal can still further be amplified and adjusted in the second stage with a
gain and a voltage offset before outputting it to an output, called a regulate output.

3.9.4 Magnetic Field Feedback Loop

A three-dimensional magnetic-field sensor12 measures the magnetic-field components
along all three directions simultaneously. Three signal-locking modules (three PI con-
trollers) take the magnetic-field sensor signals as their error signals. Then, each PI
controller gives a modulation signal with respect to its proportional and integral gains
to be amplified by a current driver, supplying one of the three coil pairs described
previously. The current drivers are provided by the university electronics workshop13.
The circuit can be found in appendix G.3. The active magnetic-field stabilization
system is illustrated in Fig. 3.1114.

In Fig. 3.12, the performance of the active stabilization is characterized by applying

12Either our in-house sensor, see appendix E, or a Bartington Mag-03MS500.
13Each driver is supplied by ±25V.
14So far, there are devices to drive 2 axes. The x-direction, the perpendicular direction of the optical

table, has not been installed because of the current optics elements.
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3.9 Active Magnetic-Field Stabilization

Figure 3.11: A schematic of a single-axis magnetic field feedback loop. A magnetic-
field sensor measures the magnetic field in one direction located approximately 30 cm under-
neath the vacuum chamber. The signal is processed though a signal-locking module, as shown
in Fig. 3.10. Then, the deviation output signal is sent to the modulation input of a current
driver. The current is driven to a respective rectangular coil pair in the approximate Helmholtz
configuration to counteract the measured magnetic field deviation. Compensation along the
other 2 axes together requires another 2 feedback systems in a similar manner.
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Figure 3.12: Artificially generated magnetic spectrum and the stabilization system
[113]. As a test signal, a magnetic field is generated for a given frequency using a function
generator through a one-turn coil, which is wrapped around one of the z-coils (see Fig. 3.9).
(a) The magnetic-field sensor is placed approximately 30 cm underneath the vacuum chamber.
The blue plot shows the measured magnetic field probed by the magnetic-field sensor at a given
frequency when the signal is generated at that frequency. When the active magnetic field sta-
bilization system is switched on, the red plot shows the measured magnetic field at the applied
frequency. The errors on the measurement points are due to the average over the measuring
time of approximately 30 s. (b) By subtracting the red from the blue data, the difference in
magnetic field magnitude with and without the stabilization system is shown. The data are
fitted by an exponential decay. At the 3-dB point, the frequency limit is at 0.73(11) kHz. This
result shows the compensation limit of this active magnetic field stabilization.
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Figure 3.13: Comparison between the magnetic-field spectrum in our laboratory
when the stabilization system is switched on and off [113]. This test is only performed
in the direction of the quantization axis. The blue data show the magnetic-field spectrum in
our laboratory probed by the magnetic-field sensor, where the sensor location is approximately
30 cm underneath the vacuum chamber. The main components are at 50Hz and 150Hz.
Smaller components are found at 100Hz, 250Hz, and 350Hz. When the active stabilization
is switched on, the magnetic-field spectrum is presented by the red data. The magnetic field
magnitude is reduced as expected up to the frequency limit of approximately 0.7 kHz. Below
200Hz, the magnetic field spectrum is reduced by more than 10 dB. The components of 50Hz
and 150Hz are reduced by 27 dB and 24 dB, respectively.

an artificial noise for a given frequency and observing the compensation magnitude
[113]. At the 3-dB point, the frequency limit is at 0.73(11) kHz. A similar performance
can be seen from Fig. 3.13, showing the comparison of the magnetic-field spectrum
with and without the active stabilization. Below 200Hz, the magnetic field spectrum
is reduced by more than 10 dB. The components of 50Hz and 150Hz are reduced by
27 dB and 24 dB, respectively.

3.10 Experimental Trap Parameters

3.10.1 Trap Frequencies

The axial and radial trap frequencies of our ion trap are determined by applying an
AC voltage to a nearby electrode, which is one of the compensation electrodes, at
a given frequency. When the applied frequency is close to either the axial or radial
trap frequency, it will excite ions to oscillate in the trap. This technique is called
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Figure 3.14: Tickle excitations. (a) In a two-ion system, the frequency is applied close to
the axial trap frequency. The upper and lower sub-figures indicate the excitations observed
by two different ions. The deduced excitation frequencies fitted by a Gaussian function are
2π ·122.989(7) kHz and 2π ·122.978(10) kHz. (b) In a single-ion system, the frequency is applied
close to the radial trap frequency. The deduced excitation frequency is 2π · 524.75(8) kHz.

‘tickle’ excitation [115]. The AC voltage is applied by a function generator with a
peak voltage of 1V. The oscillation amplitude of ions can be determined using an
exposure time of 0.4 s and averaging over 10 images. The ions show their trajectories
by fluorescence from the long exposure time, which provide the oscillation amplitude
of each ion. In Fig. 3.14a, the frequency is applied close to the axial trap frequency
in a two-ion system, where the upper and lower sub-figures are excitation observed by
different ions. The results are fitted by a Gaussian function. The deduced excitation
frequencies are 2π · 122.989(7) kHz and 2π · 122.978(10) kHz. Both ions are excited
by the same frequency within 2 standard deviations. In Fig. 3.14b, the frequency is
applied close to the radial trap frequency in a single-ion system. In a similar fitting,
the deduced excitation frequency is 2π · 524.75(8) kHz.

3.10.2 Magnetic-Field Gradient

From equations (2.44), (2.35) and (2.34), the Zeeman shift of the σ+-transitions of
a four-ion system is plotted against the equilibrium position of ions, as shown in
Fig. 3.15, using the axial trap frequency of 2π · 122.984 kHz. Therefore, the magnetic-
field gradient is deduced to be 19.105(5)T/m.
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Figure 3.15: The Zeeman shift of
ions’ σ+-transitions vs. the equilib-
rium positions. The shifted frequency
is compared with the frequency of the en-
ergy without an external magnetic field,
where ω0 follows equation (2.39). The
magnetic-field gradient is deduced to be
19.105(5)T/m at the axial trap frequency
of 2π · 122.984 kHz.
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4
Experimental Methods

This chapter explains the general methods and techniques for operating the experi-
ment as carried out during this dissertation. It consists of preparing ions in the trap,
the measurement structure in general, and basic experimental schemes to measure ex-
perimental parameters and qubit operations. Additionally, a technique to keep track
of qubits’ resonance is presented.

4.1 Ion Loading

Applying a current to an atomic oven enriched by either ytterbium-171 or ytterbium-
172, Yb I (atomic ytterbium) is evaporated inside the vacuum chamber and can be
ionized by a two-color photo-ionization [116]. The ionization process includes two
steps. First, the transition 1S0 → 1P1 of Yb I is excited by the laser at 398.9 nm.
Second, the electron is further excited to the single-ionized state Yb II by another
laser at λ < 394 nm. This step can be achieved above the ionization threshold by
the laser at 369.5 nm, which is already present for ion cooling. For loading a single
171Yb+(172Yb+) ion, the typical current of 1.67A (1.53A) is applied. The mentioned
currents give a loading time of approximately 5-10 minutes per ion. The loading
process can be terminated by blocking the laser at 398.9 nm.

4.2 Measurement Structure

Any experimental sequence contains steps for ion cooling, initialization, arbitrary co-
herent manipulation, and readout, as shown in Fig. 4.1a. At the beginning, ions are
left in the Doppler cooling state. A trigger, which is synchronized with the power grid,
starts an experimental run. If desired, the ions are further cooled below the Doppler
cooling temperature by employing the SBC process. Because of sympathetic cooling,
when a part of the ion crystal is cooled, then the whole ion crystal is cooled down. A
more detailed discussion of SBC can be found in chapter 5. The qubit manipulation
consists of RF pulses and free evolution under the Hamiltonian that couples the ionic
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(a)

(b)

Figure 4.1: Schematic of the experimental structure. An experimental parameter
is varied in steps for several runs, forming a repetition of an experimental sequence. (a) The
structure of a single run, corresponding to a varying step in a repetition of a total measurement.
Initially, an ion (or ions) is loaded and Doppler cooled in the trap. Every experimental run is
synchronized with the 50-Hz signal from the power grid. If an experimental sequence requires
a motional excitation level less than the Doppler cooling temperature, then sideband cooling
(SBC) is applied with the RF signal using the red-detuned frequency with respect to motional
modes. The qubits are then initialized to the state |0〉. The qubits are coherently manipulated
using RF pulses and free evolution under the Hamiltonian that couples the ionic qubits (see
equation (2.46)). The labels “π” and “σ±” indicate that the frequency of the RF signal is set
to the corresponding transition during the process. The label “RSB” means the RF signal is
set to a red-sideband of a desired motional mode. The current setup can generate three RF
signals simultaneously. Finally, the readout is performed using state-selective detection. (b)
Complete schematic of a measurement sequence. After a few experimental runs Nrun, the
atomic resonance frequencies are updated by the frequency correction sequence, as described
in section 4.4, which is typically performed every 40 s, reducing the effects of slow drifts. Both
the frequency correction and the experimental runs are repeated for Ncorr blocks, forming the
total repetition of a measurement sequence.
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qubits according to equation (2.46). The ions can be simultaneously controlled by
three RF signals to generate RF pulses with different frequencies. Finally, the readout
is performed using state-selective detection. An experimental parameter is varied in
steps for several runs, forming a repetition of an experimental sequence. The sequence
is repeated until the desired level of statistics is obtained.

The measurement structure employs adaptive frequency correction, as will be described
in section 4.4, and thus accounts for slow drifts of the atomic resonances of ions. This
technique becomes essential when the total measurement duration reaches more than
several minutes. The total measurement sequence is split into Ncorr blocks inter-
leaved with the frequency correction sequence, to keep updating the atomic resonance
frequencies, after a few experimental runs Nrun. A frequency correction is typically
performed every 40 s. In many cases, the effect of a variation of some experimental
parameter is investigated, yielding even deeper nested sequences. An optimal rate of
frequency correction requires further investigation.

4.2.1 Doppler Cooling

From the loading sequence or from heating processes during previous experimental
runs, ions have high temperature corresponding to their kinetic energy. Laser cooling
is utilized to stabilize ions, reducing their motion in the trap. The standard tech-
nique is Doppler cooling [117–121]. In our setup, the laser at 369 nm is red-detuned
by approximately 2π · 19MHz from the optical dipole transition |2S1/2 (F = 1) 〉 ↔
|2P1/2 (F = 0)〉 together with RF resonantly driving the transition |0〉 ↔ |0′〉. The
detuned frequency takes the saturation broadening into account. When ions move
toward the laser source, the Doppler effect leads to an increased scattering rate. To-
gether with the momentum transfer during the absorption process, this establishes the
so-called Doppler cooling. The Doppler cooling limit (Doppler temperature) [122]

TD =
~Γ(2P1/2)

2kB
=

〈nD〉~ωz
kB

(4.1)

can be achieved at the optimal detuning of −Γ(2P1/2)
/2 from the resonance of the

optical transition. Here, Γ(2P1/2)
represents the linewidth of the state |2P1/2 〉, kB

represents the Boltzmann constant, and 〈nD〉 represents the average phonon number
at the Doppler temperature. Theoretically, our experiment has an average phonon
number at the Doppler temperature for a 171Yb+ion of 〈nD〉 = 19.9, where ωz =
2π · 122.984 kHz and Γ(2P1/2)

= 2π · 4.9MHz [94]. The average phonon number can
be further decreased to the motional ground state by employing sideband cooling.
The experiments described in this dissertation do not always require starting from
the motional ground state; therefore, the experiments usually are performed with ions
near the Doppler temperature, unless specified otherwise.
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4.2.2 Sideband Cooling

Figure 4.2: RF sideband cooling cycle of a 171Yb+ ion. From the state |0〉, RF radiation
red-detuned by the frequency of the ions’ harmonic motion (ωz) is applied to perform sideband
cooling. Simultaneously, the 369 nm laser, detuned by 2.1GHz, is employed to resonantly drive
the |2S1/2 (F = 1) 〉 ↔ |2P1/2 (F = 1)〉 transition, so that the ion radiates back to the state
|2S1/2 (F = 0) 〉.

To further reduce the phonon level below the Doppler temperature, the sideband cool-
ing technique is employed [117, 123]. Here, our sideband cooling is performed on
an ion of the ion crystal by RF radiation [54, 56, 57], illustrated in Fig. 4.2. Start-
ing the RF sideband cooling cycle, the ion is prepared by optical pumping into the
|2S1/2 (F = 0) 〉 state by resonantly driving the transition between the |2S1/2 (F = 1) 〉
state and |2P1/2 (F = 1)〉. Because the Lamb-Dicke parameter of this transition is
η ≪ 1, excitation and spontaneous decay usually do not change the motional state.
The RF radiation is red-detuned to a motional sideband of an ion; therefore, the
corresponding ion is excited to the |2S1/2 (F = 1,mF = +1) 〉 state while the mo-
tional quantum number is simultaneously reduced by one. At this hyperfine level,
there is no spontaneous emission; hence, optical repumping between |2S1/2 (F = 1) 〉
↔ |2P1/2 (F = 1)〉 is necessary to incoherently repump to the state |2S1/2 (F = 0) 〉.
For each sideband cooling cycle, a phonon is taken out of the ion state [124]. Further
discussion concerning SBC will be carried out in great detail in chapter 5.

4.2.3 Qubit Initialization

The qubit initialization is necessary to put a qubit state into a well-defined state.
This is one of the basic conditions for a quantum computer according to DiVincenzo’s
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criteria [11]. The initialization process is performed by optical pumping into the state
|2S1/2 (F = 0) 〉 via the state |2P1/2 (F = 1)〉 [26, 125]. The optical pumping is per-
formed on the transition |2S1/2 (F = 1) 〉 ↔ |2P1/2 (F = 1)〉 by the cooling laser
blue-detuned by 2.1GHz from the Doppler cooling transition. The laser is generated
by an AOM, as mentioned in section 3.5. Because the state |2P1/2 (F = 1)〉 can decay
to the state 2D3/2 with a branching ratio of 0.5%, see Fig. 3.1 and section 3.5, the laser
at 935 nm is necessary for the repumping process. The preparation efficiency with this
technique is achieved at the lower bound efficiency of 0.9975 [96].

4.2.4 Coherent Qubit Manipulation

After a qubit is initialized by optical pumping, the actual qubit operations can be
applied. The desired operations, either single-qubit rotations or multi-qubit gates,
are performed by a series of RF pulses and free evolution times. During an evolution
time, the qubits evolve with the σz ⊗ σz-interaction (or the ZZ-interaction) as given
by the spin-spin coupling or MAGIC Hamiltonian, see section 2.3.2. Basically, the
manipulation sequence changes for different experiments while the other sequences are
always kept the same. By varying the input parameters in a given number of steps
for each run, a measurement is constructed by the total number of runs given by the
number of steps and the number of repetitions of each step.

The standard RF pulse can be set by four parameters:

• Amplitude. The amplitude of the RF field defines the Rabi frequency.

• Duration τ . The duration specifies a time interval or pulse time of a rectangular
RF pulse. A π-pulse has a duration of τπ = π/Ω and a π/2-pulse has a duration
of τπ/2 = π/(2Ω).

• Frequency ν. The frequency of the RF pulse addresses an individual qubit, which
might have a detuning δ with respect to the atomic resonance.

• Phase φ. The phase is set relative to the current phase.

4.2.5 State-Selective Detection

The final step of every experimental sequence run is the readout of the final state of
qubits. This is the projection onto the computational basis {|0〉,|1〉} of each qubit. The
global laser beam drives the electric dipole transition |2S1/2 (F = 1) 〉 ↔ |2P1/2 (F =
0)〉, similar to the Doppler cooling but without the RF radiation, so that only ion(s)
in the state |1〉 at the end of the experimental sequence can couple to the laser. The
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near-resonance fluorescence of a single ion or multiple ions is driven, continuously ab-
sorbing and emitting photons. For ion(s) in the state |0〉, only off-resonant excitation
and background scattering photons can be measured. We use an electron multiply-
ing charged coupled device (EMCCD) camera, Andor iXon Ultra EMCCD camera,
to obtain spatially resolved fluorescence imaging of the ion crystal, which allows the
fluorescence and therefore excited-state population of all ions to be obtained simulta-
neously.

After EMCCD image acquisition, the brightness of ions is interpreted as the excitation
probability to detect the state |1〉 (the bright state). There are several steps to be
performed [112]: background correction, ion identification, post selection, labeling the
state of ions’ fluorescence, and calculation of the excitation probability.

Background correction. During an experiment, background images are taken
by preparing ions in the dark state to take the background illumination into account.
The background image correction subtracts pixel by pixel for each image taken for
data analysis.

Ion identification. Using images with the background image correction sub-
tracted, the regions of interest are identified for each individual ion. Each ion may have
fluorescence intensity distributed over multiple pixels because of the current imaging
system; see section 3.7. It has proven to be a reasonable threshold to select pixels that
range among the brightest 30% as the bright areas.

Post selection. Some images are discarded by the post selection of the analysis
of Doppler cooling images. In some events, ions do not stay in either the state |2S1/2 〉
or |2P1/2 〉, causing no detected fluorescence. In these events, we assume that ions are
not manipulated as expected; therefore, the images corresponding to these events are
discarded.

Labeling the state of ions’ fluorescence. Detecting resonance fluorescence on
a closed transition for a fixed time results in a double Poissonian distribution, in which
two average numbers correspond to the dark and the bright average numbers of the
distribution. For the current light collection efficiency, any two Poissonian distribu-
tions P(λ,n) for any λ, λ′ overlap, resulting in ambiguity of detected events in the
overlapping region. The probabilities are not inclined clearly to any of the two Pois-
sonians. The double-threshold method [126, 127] is employed to discard cases that do
not clearly distinguish between the dark and bright events, as shown in Fig. 4.3. The
double-threshold method is given in detail in Ref. [128]. A preliminary experiment
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is performed to define a lower and upper threshold by constructing two separate in-
tensity histograms of an ion prepared in the dark or bight state and discarding the
ambiguity region for 10% of each histogram. The upper limit of the dark state before
the discarded region defines the lower threshold tD. The lower limit of the bright state
before the discarded region defines the upper threshold tB. Nevertheless, there is a
finite (but now lower) probability that dark events exist that are erroneously identified
as bright, and vice versa.
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Figure 4.3: The double threshold method. An ion is prepared in the dark or bight
state. The fluorescence of each state is used to construct an intensity histogram. (a) The
histogram of the ion in the dark state. (b) The histogram of the ion in the bright state. The
ambiguity region is removed by taking 10% of each histogram. The upper limit of the blue
region in (a) defines the lower threshold. The lower limit of the red region in (b) defines the
upper threshold. Events with count numbers in between these two thresholds are discarded.
The detection error is determined by the count outside the range between two thresholds by
erroneous identification, that is, events marked in red in the dark (upper) distribution and
events marks in blue in the bright (lower) distribution.

Calculation of the excitation probability. Evaluating an experiment for all
repetitions (N) results in ND identified as dark events and NB identified as bright
events, where the dark/bright events are identified by photon counts lower/greater
than the threshold tD/tB. Therefore, the probability to measure bright events is
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described by

PB̃ =
NB

NB +ND
. (4.2)

The probability to falsely identify a dark event as a bright event is represented by dD.
Correspondingly, the probability to falsely identify a bright event as a dark event is
represented by dB. These false identification probabilities allow us to obtain the real
probability of finding the ion in the state |0〉 (PD) and |1〉 (PB) as [128]

(

PB
PD

)

=

(

1− dB dD
dB 1− dD

)−1(
PB̃
PD̃

)

. (4.3)

The probability density distribution ρ(PB|NB,N) of the probability PB for a given
number of projections to the bright state NB is given by [129]

ρ(PB|NB,N) =
PNB
B (1− PB)

N−NB

B(NB + 1,N −NB + 1)
, (4.4)

where

B(NB + 1,N −NB + 1) =

∫ 1

0
pNB (1− p)N−NBdp (4.5)

denotes the beta function. The uncertainty of the excitation probability PB following
equation (4.4) is given by the statistical error obtained by the variance of the measured
data [129],

σP =
√

Var(PB) =

√

N(NB + 1)−N2
B + 1

(N + 2)2(N + 3)
. (4.6)

It must be noted that the mentioned detection error cannot be distinguished from
the qubit initialization; see section 4.2.3. Therefore, this error is usually called state
preparation and measurement (SPAM) error.

For a M -state system, each state probability is counted by a number of event km
outcomes as m. Now, the uncertainty of each M -state probability is determined by
[129]

σPm =
√

Var(Pm) =

√

(km + 1)(N +M − (km + 1))

(N +M)2(N +M + 1)
. (4.7)
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The uncertainty of a two-qubit system (M = 4) becomes

σPm =

√

(km + 1)(N + 4− (km + 1))

(N + 4)2(N + 5)
. (4.8)

The detection fidelity when preparing a single ion in the state |0〉 or |1〉 is measured
as

PD̃ = 0.997(11) PB̃ = 0.990(12). (4.9)

The statistical errors represent one standard deviation for 1500 repetitions. For a
two-ion system, the detection fidelity of each individual ion is measured as

P
(1)

D̃
= 0.995(12), P

(1)

B̃
= 0.979(11), (4.10)

P
(2)

D̃
= 0.995(12), P

(2)

B̃
= 0.978(11). (4.11)

The statistical errors represent one standard deviation for 2000 repetitions. From
these results, our detection fidelities show asymmetric fidelity. That is, the fidelity of
detecting the state |1〉 is less than that of the state |0〉. This is due to the fact that
the cooling and detection cycle is not closed and because of the branching ratio to the
state |2D3/2〉 from the state |2P1/2 (F = 1)〉, which leaves the detection cycle, and the
far-detuned excitation to the state |2P1/2 (F = 1)〉 and |2P3/2〉; see Fig. 3.1.

4.3 General Experimental Sequences

In the following section, a collection of basic measurement schemes frequently used
throughout this dissertation is presented.

4.3.1 RF-Optical Double-Resonance Spectroscopy

The addressing frequency of individual qubits can be determined by the coherent RF-
optical double-resonance spectroscopy. A Doppler-cooled ion is initialized in the state
|0〉; see section 4.2.3. Thereafter, the qubit is manipulated by an RF pulse of a fixed
duration with a varying frequency, in which the frequency range is assumed near the
qubit resonance. Ideally, the pulse duration corresponds to the duration of a π-pulse,
which in the present state of the experiment is in the range of 10 − 20 µs. Then,
state-selective detection is observed; see section 4.2.5. The sequence is repeated for
various RF frequencies to construct a spectrum. For measurement of multiple qubits,
the sequence can take several RF pulses with various frequency ranges. Each pulse
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Figure 4.4: RF-optical double-resonance spectra of a two-ion crystal. Doppler-
cooled ions are initialized in the state |00〉. The RF manipulation is applied on each ion by
varying the frequency around the respective σ+-transition. The duration of the RF pulses
is set to 16 µs, close to the duration of a π-pulse. The x-axes show the detuning frequency
with respect to the frequency between the two resonances. The deduced resonance frequencies
are 2π · 12 646 857.9(8) kHz and 2π · 12 650 579.0(8) kHz, respectively. The error bars represent
statistical errors within one standard deviation for 70 repetitions. For each ion, the excitation
probability at its resonance frequency does not reach unity because the chosen pulse duration
does not exactly correspond to a π-pulse. These results are obtained from Doppler-cooled ions,
where the observed Rabi oscillation is damped from the motional excitation; see section 5.2.1.
Moreover, the excitation probabilities of the resonance frequencies from both ions are not
equal, indicating the difference in their Rabi frequencies. This result is probably due to a
difference in the RF radiation perceived by the two ions because of the orientation of the RF
antenna with respect to the trap quantization axis and/or the interference of the reflected RF
from the vacuum recipient. This does not matter here, as we are interested in detuning the
resonance frequency.

has a frequency range near one of the qubit resonances.

For a frequency range smaller than the axial frequency, the sideband spectra cannot
be observed. The excitation probability of a qubit can be mathematically described
by the Rabi model as [104]

P|1〉 = |〈1|R(Ω t,0)|0〉|2 = Ω2

Ω2 + δ2
sin2

(√
Ω2 + δ2

2
t

)

, (4.12)

where the unitary operator R follows equation (2.6), Ω represents the Rabi frequency of
the qubit transition, δ represents the detuning frequency of the RF pulse with respect
to the qubit resonance, and t represents the pulse duration. By taking the motional

50



4.3 General Experimental Sequences

excitations into account, the resonance spectrum is further discussed in section 5.2.2.
The acquired addressing frequencies can be used later for adaptive frequency cor-
rection to measure the frequencies more precisely, as described in section 4.4. The
experimental result of an RF-optical double-resonance spectroscopy with 2 ions is
shown in Fig. 4.4. The deduced resonance frequencies are 2π · 12 646 857.9(8) kHz and
2π · 12 650 579.0(8) kHz, respectively.

4.3.2 Rabi Oscillation Measurement

Here, the Rabi oscillation [130] is observed using the addressing carrier frequency of
the |0〉 ↔ |1〉 transition. The oscillation signal gives the Rabi frequency, which will
be used to define the pulse duration of a π/2-pulse and a π-pulse. Instead of varying
the frequency of the RF pulse as in the RF-optical double-resonance spectroscopy, the
frequency is set to the qubit resonance and the duration of the RF pulse is varied. For
measurement of multiple qubits, the sequence can also manipulate multiple resonance
frequencies to associate with each qubit resonance, resulting in a Rabi oscillation for
each ion.

Using a Doppler-cooled ion, damping of the Rabi oscillation can be observed because
of the dependence of the Rabi frequency on the motional state and the population
of various motional levels in a thermal state. We will continue to discuss the mo-
tional excitation in section 5.2.1 and 5.4. Therefore, for a better determination of the
Rabi frequency, the ion is sideband-cooled before RF manipulation. The experimental
results of the Rabi oscillation will be presented later; see Fig. 5.7.

In a case of a non-resonantly applied frequency, the contrast of the oscillation signal
is limited. The maximum excitation probability is reduced by (Ω/ΩR)

2, and the os-
cillation frequency is accelerated compared with the resonant case expressed by the
generalized Rabi frequency ΩR =

√
Ω2 + δ2.

4.3.3 Ramsey Measurement

The Ramsey method [95] was originally designed to find the resonance frequency of
an atomic transition by means of an atomic clock. Here, the Ramsey-interference ex-
periment is a straightforward method to investigate the qubit coherence time. In the
context of quantum information processing, a Ramsey experiment consists of two π/2-
pulses with a free evolution time between the pulses. A Doppler-cooled (or sideband-
cooled) ion is initialized in the state |0〉. The first π/2-pulse puts the qubit into an
equal superposition, in which it is maximally susceptible to dephasing errors. The
state evolves during an evolution according to the Hamiltonian describing the phys-
ical system; see equation (2.46). Finally, the second π/2-pulse interrogates the final
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Figure 4.5: Ramsey oscillation of a single ion. A sideband-cooled ion is initialized in
the state |0〉. The manipulation is applied to the σ+-transition. The first π/2-pulse with phase
0 brings the qubit to a superposition state. The free evolution time is varied with a detuned
frequency of 2π · 4.5 kHz. The second π/2-pulse with phase 0 brings the qubit to the state |1〉.
The deduced transverse coherence time T ∗

2 is 0.62(8)ms. The error bars represent statistical
errors within one standard deviation for 60 repetitions.

state. If there is no dephasing during the free evolution time, the second RF pulse will
bring the qubit to the state |1〉 (|0〉) when the second pulse is applied, with a relative
phase 0 (π) compared with the first RF pulse. When there is dephasing, the super-
position state randomly acquires phase shifts during the free evolution time. Then,
the population will not be perfectly transferred by the second RF pulse, resulting in
a damped oscillation for the excitation probability. The Ramsey experiment with a
sideband-cooled ion is shown in Fig. 4.5. The deduced transverse coherence time T ∗

2

is 0.62(8)ms.

4.3.4 Spin-Echo Pulse

The spin-echo pulse is a technique originally invented in the field of nuclear magnetic
resonance [131]. It can compensate detuning frequencies and fluctuations on a time
scale slower than the free evolution time τ . A spin-echo experiment is a Ramsey-type
experiment with an additional correcting π-pulse as a refocusing pulse in the middle
of the free evolution time τ . Here, we also use a spin-echo experiment as a method
to investigate the qubit coherence time. The principle can be understood by a time
reversal of the corresponding evolution caused by a π-pulse (a spin echo pulse or a
NOT gate). A spin-echo experiment is illustrated in Fig. 4.6. A qubit is initialized
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Figure 4.6: The experimental sequence of a spin-echo experiment. A superposition
state of a qubit is initialized by a π/2-pulse from the state |0〉. The phase of the superposition
state shifts because of drifts of the qubit splitting during a free evolution time of τ/2 for a
phase ξ. A spin echo pulse rotates the state, obtaining the qubit state with a reversed phase.
The qubit state evolves with another evolution time of τ/2 with the reversed phase. Another
π/2-pulse brings the qubit state to the state |1〉 if the phase ϕ = 0 is applied. The lower part
visualizes the Bloch vector at a given state, where the black arrow represents the previous
state and the blue arrow represents the current state.

in a superposition state by a π/2-pulse. The phase of the superposition state shifts
because of drifts of the qubit splitting during a free evolution time of τ/2, which can be
represented by a rotation of the Bloch vector of angle ξ on the equator. A π-pulse with
phase π/2, acting as a spin echo pulse, rotates the Bloch vector around the y-axis by
angle π. The Bloch vector evolves with another evolution time of τ/2 with a reversed
phase to compensate the phase from noise. Another π/2-pulse brings the Bloch vector
to the state |1〉 if the phase 0 is applied, and to the state |0〉 if the phase π is applied.
The experimental results of the spin-echo experiment will be presented in Fig. 6.1b.

4.3.5 Dynamical Decoupling Pulses Sequence

Dynamical decoupling (DD) [98, 99] is a dynamical control technique used to refocus
the phase of quantum states. It is also known as the bang bang method. The DD
sequence is an active technique to protect quantum states against noise. The basic
idea is to use unitary control operations that impose a time dependence interaction
with environmental noise, which can be achieved by a series of π-pulses with the same
phase for the simplest case. The main variables used to design DD sequences are the
intervals between pulses and the phase of pulses, where the phase corresponds to the
orientation of the rotation axis in the xy-plane of the Bloch sphere.

One of the most basic DD sequences is the Carr-Purcell-Meiboom-Gill (CPMG) se-
quence [132], which can be viewed as repetitions of spin-echo pulses. This sequence
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consists of N π-pulses with a total evolution time of T . The CPMG-XY sequence is
described as [133]

[τ (π)φ2 τ τ (π)φ1 τ ]
N/2 , (4.13)

where the phases φi of the decoupling pulses follow
(

0, π2
)

and τ = T/(2N). Note that
sequences are read from right to left. When the CPMG-XY sequence is repeated with
N = 4, it is called the XY-4 sequence.

Another sequence is based on a nesting of phases, called concatenated dynamic decou-
pling of the order n (CDD-n) [134]. The CDD-n sequence is described as [135]

CDD-n = Cn =
[

√

Cn−1 τ (π)φ2 τ Cn−1 τ (π)φ1 τ
√

Cn−1 τ
]2
, (4.14)

where the phases φi also follow
(

0, π2
)

and CDD-1 = XY-4 =
[

τ (π)φ2 τ
2 (π)φ1 τ

]2
.

One of the fault-tolerant sequences based on several different rotation axes is called
the Knill-DD (KDD) sequence [135].

KDDϕ =
[

τ (π)φ5+ϕ τ
2 (π)φ4+ϕ τ

2 (π)φ3+ϕ τ
2 (π)φ2+ϕ τ

2 (π)φ1+ϕ τ
]

, (4.15)

where the phases φi follow
(

π
6 , 0,

π
2 , 0,

π
6

)

. To further increase the fault tolerance, the
KDD sequence can be concatenated by

KDD =
[

KDDϕ+π/2KDDϕ

]2
. (4.16)

The last decoupling scheme discussed here is the family of so-called arbitrarily accurate
pulse sequences, which includes the universally robust (UR) DD sequence [136]. It
compensates for imperfections of experimental parameters to an arbitrary order. The
UR sequence is described as

(UR-n)N =
[

τ (π)φn τ
2 · · · τ2 (π)φ2 τ2 (π)φ1 τ

]N
, (4.17)

where n represents the number of pulses per sequence and the phases φi also follow

φ
(n)
k =

(k − 1)(k − 2)

2
Φ(n) + (k − 1)φ2, (4.18)

Φ(4m) = ± π

m
, Φ(4m+2) = ± 2mπ

2m+ 1
, (4.19)

in which φ2 and the sign ± can be chosen as desired. Some examples of phases for UR
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Figure 4.7: Ramsey experiment with DD pulses in a two-ion system. The Ramsey
experiment has a final π/2-pulse with the phase 0 to obtain the final population at the state
|1〉. It is performed on the magnetic field-sensitive transition of one of the ion crystal. During
the evolution time, the DD pulses are applied using the KDD sequence of 80 π-pulses only on
the manipulated ion. The Rabi frequency in this experiment is 2π · 30.45 kHz. The excitation
probability shows no significant decay until approximately 10ms. The other ion is left unpro-
tected in the state |0〉, and the measured excitation probability is 0.017(9). The error bars
represent statistical errors within one standard deviation for 50 repetitions.

sequences are shown as follows:

UR-10:

(

0,
4π

5
,
2π

5
,
4π

5
, 0, 0,

4π

5
,
2π

5
,
4π

5
, 0

)

, (4.20)

UR-14:

(

0,
6π

7
,
4π

7
,
8π

7
,
4π

7
,
6π

7
, 0, 0,

6π

7
,
4π

7
,
8π

7
,
4π

7
,
6π

7
, 0

)

. (4.21)

One might concatenate a UR sequence and apply for example a UR sequence with 140
π-pulses as 10 repetitions of a UR-14 sequence.

For a two-ion system, the experimental result of the Ramsey experiment with DD
pulses is shown in Fig. 4.7. The RF manipulation is performed on the magnetic
field-sensitive transition of one of the ion crystal. The DD pulses are applied using
the KDD sequence of 80 π-pulses only on the manipulated ion to protect its state
during the evolution time. The excitation probability shows no significant decay until
approximately 10ms, which means this sequence can protect the qubit longer than
the time needed for a CNOT gate. The other ion is left unprotected in the state |0〉.
The excitation probability of the unprotected ion is 0.017(9). It has a small excitation
probability, which might due to the far-detuned excitation of the readout process.
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4.4 Adaptive Frequency Correction

Our qubits are encoded in magnetic field-sensitive states, which are affected by envi-
ronmental magnetic field noise. One of the noise components is a slow drift of the qubit
transition frequency on the scale of one minute, which can be accounted for by repeat-
ably measuring atomic resonance frequencies and re-calibrating driving frequencies.
Originally, atomic resonance frequencies in our experiment were measured by RF-
optical double-resonance spectra, which will be described in section 4.3.1. The degree
of precision depends on the number of repetitions. Each measurement cycle, con-
taining a sequence to measure a single data point in the RF-optical double-resonance
spectrum, is limited to 20ms/cycle because of the 50-Hz synchronization. That means
that measurement of a resonance spectrum with an error of a few kilohertz may eas-
ily require a minute or more. This measurement time can be reduced by so-called
two-point frequency measurements, which are described in detail in Ref. [112]. The
resonance drift in the second or minute range is also a typical problem for the field
of optical atomic clocks [137]. A similar technique for atomic clocks, called the servo
loop, has been realized in Refs. [138–140]

Figure 4.8: Two-point addressing fre-
quency measurement [112]. The red curve
represents the excitation probability P of an
RF-optical double resonance spectrum for a
varying detuning frequency δ from a hyper-
fine transition. Frequency ν0 indicates the last
known resonance frequency, while frequency
ν is the instantaneous resonance. This means
that the correction to be applied is the offset
frequency ∆. A two-point measurement takes
two excitation probabilities (P+ and P−) for
a spreading frequency of 2κΩ symmetrically
around ν0 and infers ∆ from P+ and P− by
inverting equation (4.22).

P �

�

���

�� �

P+

P-

The resonance determination requires two measurement points of the excitation prob-
abilities (P+ and P−), as its name suggests. The two points are chosen with a priori
knowledge of the addressing frequency using a spreading frequency of 2κΩ, see Fig. 4.8,
where 0 < κ < 1 represents a separation parameter and Ω represents the Rabi fre-
quency of the corresponding resonance transition. To determine an offset frequency
∆, an error signal g(∆) as a function of the offset frequency is defined as

g(∆) =
P+ − P−
P+ + P−

. (4.22)

This function is calculated in advance, providing inverse mapping to the offset fre-
quency when we have a value of g(P+,P−), where P± = P±(δ = (∆± κ)Ω).
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4.4 Adaptive Frequency Correction

The offset frequency is unique within a limited mapping area of |∆| ≤ min((1 −
κ)Ω,κΩ). If the resonance frequency is not in this mapping area, then a full RF-
optical double resonance spectrum is required to provide a new guess parameter.

The typical parameters are κ = 0.7, each P± has 75 repetitions, and the two-point
measurement is repeated in 2 steps for a large and small Rabi frequency. The small
Rabi frequency can narrow down the resonance transition, obtaining a smaller error
compared with the high Rabi frequency. These 2-step measurements allow us to de-
termine a resonance frequency precisely, causing a remaining addressing error within
a few hundred Hertz of the 12.65-GHz transition within a few seconds of measuring
time. This technique can be interleaved with other experimental sequences to actively
re-calibrate the qubit transitions during a measurement. This is especially beneficial
for long experimental sequences, which are prone to the detrimental effects of slow
drifts.
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5
Near Ground-State Cooling

Cooling beyond the Doppler limit of trapped atomic ions and neutral atoms close to
their motional ground state is an essential tool and often a prerequisite in quantum
optics and quantum information experiments. To date, the best known results to my
knowledge for ground-state cooling using the sideband cooling (SBC) technique are
reported in Ref. [141] and Ref. [142] for a trapped ion and neutral atom, respectively.
These achievements are indicated by motional ground state occupation probabilities
of 99.9% and 99% for ions at an axial trap frequency of 2π · 4.51MHz and for neutral
atoms at a radial trap frequency of 2π · 100 kHz, respectively.

For a realization of (near-)ground state cooling in typical traps, atomic transitions
in the optical regime have been used, as they provide a sufficiently large Lamb-Dicke
Parameter (LDP). The coupling between the internal and motional states of a single
trapped ion [143] and an atom [144, 145] have been experimentally demonstrated.

In this chapter, our technique uses RF radiation to drive the atomic sidebands together
with a repumping laser [54]. A detailed investigation of RF sideband cooling applied
to bare ionic states of 171Yb+ in a static magnetic-field gradient is reported. The focus
is on one- and two-ion crystals. This work continues from Refs. [54, 56] and has been
published in Ref. [57].

5.1 Radio-Frequency Sideband Cooling

First, a single 171Yb+ion is considered in the Doppler-cooled state, as described in
section 4.2.1. To further reduce the phonon level below the Doppler limit, the side-
band cooling technique is employed using RF radiation, as described in section 4.2.2.
The frequency of the RF radiation is red-detuned by the angular trap frequency
ωz = 2π · 117 kHz relative to the state |1〉. When taking the AC light shift [146] into
account when applying the detuned RF field, the applied frequency for sideband cool-
ing deviates from the trap frequency, where the trap frequency is at 2π · 122.984 kHz,
as shown in section 3.10.1. For each sideband cooling cycle, a phonon is taken out of
the ion state [124]. In this model, the sideband cooling process can be described by
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rate equations.

5.1.1 The Rate Equation Model

The scattering rate limits how fast the ion is cooled. In a two-level system, the cooling
rate depends on the occupation of the excited level ρee and the decay rate of the given
level Γ. The excited level occupation can be described as [122]

ρee =
|Ω|2/4

∆2 + |Ω|2/2 + Γ2/4
, (5.1)

where Ω represents the Rabi frequency driving the ion between the ground state and
the excited state, ∆ represents the detuned frequency to the driving transition, and
Γ represents the decay rate of the excited state. In the non-linear coupling regime,
the Rabi frequencies Ωn,n+k of the transition |0,n〉 ↔ |1,n + k〉, where the first entry
indicates the atomic transition and the second entry indicates the phonon number, are
determined by [147]

Ωn,n+k = Ωn+k,n,

= e−η
2/2ηkΩ0L

k
n(η

2)

√

n!

(n+ k)!
, (5.2)

with the pure electronic Rabi frequency Ω0, non-negative integers n and k, the effective
LDP η (see equation (2.45)), and the generalized Laguerre polynomial

Lkn(x) =
n
∑

j=0

(−1)j
(

n+ k

n− j

)

xj

j!
, (5.3)

of order n. With the limit of small η, Ωn,n−1 ≈ Ω0η
√
n. From this point, we will

drop the subscript from the pure electronic Rabi frequency. The cooling rate, which
is dependent on the motional excitation, can then be expressed as

Rc = Γρee,

= Γ
(Ωη

√
n)2

2(Ωη
√
n)2 + Γ2

, (5.4)

where the first red sideband frequency is resonantly driven. When the ground state is
reached, there is no motional excitation (n = 0), as well as no fluorescence from decay of
the excited state. However, on the hyperfine level of 171Yb+ ions, the cooling process
cannot be modeled as a two-level system because there is no optical spontaneous
emission of the qubit excited state. The qubit excited state is then coupled to another
auxiliary fast decay transition to change the decay rate of the excited state (Γ → Γ′).
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Therefore, the motional ground state can be reached; see Fig. 5.1a and Fig. 5.1b. The
resulting decay rate Γ′ is in the limit of low saturation and is given by [148]

Γ′ =
Ω2
e,aux

(Γaux,e + Γaux,g)2 + 4∆2
e,aux

Γaux,e, (5.5)

=
Ω2
e,aux

4ΓP
. (5.6)

Here, Ωe,aux represents the Rabi frequency driven between the qubit excited state |1〉
and the auxiliary state |aux〉, ΓP . Γaux,e = Γaux,g represent the decay rates from
the auxiliary state to the states |1〉 and |0〉, 2P1/2 (F = 1), which have a lifetime of
8.12(2) ns, corresponding to the decay of 2π · 19.6MHz [149]. ∆e,aux represents the
detuning from the first motional sideband frequency, which is zero when the frequency
is at the resonance. Later, Ωe,aux is replaced by ΩL to denote the Rabi frequency of
the optical transition 2S1/2 (F = 1)↔ 2P1/2 (F = 1). The prominent cooling processes
are illustrated in Fig. 5.1c, which are either the red-sideband frequency of the qubit
excited state or the auxiliary state and decay to the ground state to reduce a motional
level. Thus, the prominent cooling processes are given by [121]

Rc,1 = Γ′ (Ωη
√
n)2

2(Ωη
√
n)2 + Γ′2 , (5.7)

Rc,2 = Γ′
RSB

Ω2

2Ω2 + Γ′
RSB

2 + 4ω2
z

, (5.8)

where Γ′
RSB = (ΩLη̃

√
n)2

4ΓP
, η̃ = k cos θL

√

~/2mωz represents the LDP of the optical
transition, k = 2π/λ represents the photon wave vector, and θL represents the laser
propagation direction with respect to the trap quantization axis.

Even though the motional ground state can be reached, the heating process can limit
the sideband cooling process, as illustrated in Fig. 5.1d. The prominent heating pro-
cesses are either the blue-sideband frequency of the qubit excited state or the auxiliary
state and decay to the ground state to gain a motional level. Therefore, the prominent
heating processes are given by [121]

Rh,1 = Γ′
BSB

Ω2

2Ω2 + Γ′
BSB

2 + 4ω2
z

, (5.9)

Rh,2 = Γ′ (Ωη
√
n+ 1)2

2(Ωη
√
n+ 1)2 + Γ′2 + 4(2ωz)2

, (5.10)
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(a) (b)

(c) (d)

Figure 5.1: Sideband cooling cycle to achieve the motional ground state [121, 148].
(a) The ground state can be reached by reducing the motional excitation level with red-detuned
RF radiation. After achieving the motional ground state, there is no further fluorescence
because it is not possible to drive to the (mF = +1) level of the 2S1/2 (F = 1) state indicated by
a red cross. (b) The cooling cycle is considered to be a Ξ (cascade) configuration with a strong
dipole transition of the auxiliary state |aux〉 and the state |0〉. Similarly, when reaching the
motional ground state, there is no further fluorescence. (c) Two prominent cooling processes
in a cascade configuration are either the red-sideband frequency of the qubit excited state or
the auxiliary state and decay to the ground state to reduce a motional level. (d) Similarly, two
prominent heating processes in a cascade configuration are either the blue-sideband frequency
of the qubit excited state or the auxiliary state and decay to the ground state to gain a motional
level.
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where Γ′
BSB = (ΩLη̃

√
n+1)2

4ΓP
. The steady state of the rate equation is calculated as

ṗ0 = p1(Rc,1 +Rc,2)− p0(Rh,1 +Rh,2), (5.11)

ṗ1 = −ṗ0, (5.12)

such that p0, p1 = 1 − p0 represent the phonon occupation probabilities for states
|n = 0〉 and |n = 1〉, respectively. This will give the cooling limit of the SBC process.
Generally, the rate equation is described by [148]

ṗn =(n+ 1)(Rc,1 +Rc,2)pn+1 − ((n+ 1)(Rh,1 +Rh,2) + n(Rc,1 +Rc,2))pn

+ n(Rh,1 +Rh,2)pn−1. (5.13)

Using the rate equation model, the sideband cooling process is simulated and is shown
in Fig. 5.2. The simulation scripts can be found in appendix D.1. The simulation
parameters are similar to the laboratory parameters, including an axial trap frequency
ωz of 2π ·117.5 kHz, a magnetic-field gradient of 19T/m, and an initial average phonon
〈n〉 of 100. The SBC process is applied for 60ms while changing the Rabi frequency of
the qubit transition and the repumping laser. This is shown in Fig. 5.2a by a contour
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Figure 5.2: Sideband cooling simulation using the rate equation model. (a) The
simulation makes use of the laboratory parameters, which are an axial trap frequency ωz of
2π · 117.5 kHz, a magnetic-field gradient of 19T/m, and an initial average phonon 〈n〉 of 100.
The sideband cooling process is applied for 60ms. The area for phonons smaller than 0.05
corresponds to ΩRF /2π > 16 kHz and ΩL/2π between 302 kHz - 470 kHz. (b) Some simulation
samples are shown here. The average phonon is plotted as a function of the duration of time
sideband cooling is applied, where #1 has ΩRF /2π = 40 kHz and ΩL/2π = 338 kHz, #2 has
ΩRF /2π = 40 kHz and ΩL/2π = 630 kHz, #3 has ΩRF /2π = 18 kHz and ΩL/2π = 888 kHz,
and #4 has ΩRF /2π = 20 kHz and ΩL/2π = 360 kHz. The lowest attainable phonon is at
0.018, from simulation #1 (blue line).
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plot of the motional excitation level after sideband cooling of 60ms. The lowest phonon
number area (〈n〉 < 0.05) can be found at the Rabi frequency of the qubit transition
ΩRF /2π > 16 kHz and the Rabi frequency of the repumping laser ΩL/2π in the range
of 302 kHz - 470 kHz. The contour plot shows that the sideband cooling process to
achieve the ground state requires optimal intensities of either the coherent RF control
radiation or the repumping laser. That is, the Rabi frequency of the qubit transition
cannot be too small because it will slow down the cooling process, and the same applies
to the Rabi frequency of the repumping laser. However, when the Rabi frequency of
the repumping laser is too high, the probability for off-resonant excitation becomes
higher, and the occupation probability of the motional ground state will decrease.

In Fig. 5.2b, the phonnon number is plotted against the applied sideband cooling
time from 4 different sets of Rabi frequencies. The simulation set #1 (blue) has
ΩRF /2π = 40 kHz and ΩL/2π = 338 kHz. This setting gives the lowest phonon number
of 0.018 from the simulation parameter ranges. This means that the SBC needs to
be applied for at least 60ms to achieve the lowest average phonon number. The Rabi
frequencies of the other three sets are #2 : ΩRF /2π = 40 kHz and ΩL/2π = 630 kHz,
#3 : ΩRF /2π = 18 kHz and ΩL/2π = 888 kHz, and #4 : ΩRF /2π = 20 kHz and
ΩL/2π = 360 kHz. Simulation #2 shows a better cooling rate but it cannot achieve
a lower phonon number in the end, indicating that off-resonant excitation probability
limits the occupation probability of the motional ground state; see equation (5.8) and
(5.10).

The simulation suggests that a higher cooling rate can be achieved by increasing the
intensity of the repumping laser; however, it will decrease the occupation probability
of the motional ground state. In practice, the ion will have more heating processes
that might come from electronic noise from neighboring devices. Then, we should
decide the level of the occupation probability of the motional ground state in which
the intensity of the repumping laser can be higher. That is, we can shorten the cooling
time by reducing the occupation probability of the motional ground state.

5.1.2 Experimental Procedure

To diagnose the cooling state of the ion, a generic pulse sequence is utilized, as shown
in Fig. 5.3. Each measurement point includes the following experimental sequence:
(A) Doppler cooling, (B) sideband cooling, (C) qubit preparation to the state |0〉,
(D) coherent RF manipulation, and (E) detection using an EMCCD camera. In the
diagnosis of the motional excitation state, a simple RF pulse is applied, varying either
pulse durations or frequencies that are detuned from the qubit transition. The exper-
imental sequence is repeated until reaching the desired statistical error for each data
point.

Theoretical determination of motional excitation is discussed in the next section. In
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Figure 5.3: The experimental pulse sequence of the SBC experiment. The motional
excitation is deduced from the measurements to obtain Rabi oscillations and motional side-
band spectra after cooling. These measurements consist of (A) Doppler cooling, (B) sideband
cooling, (C) preparation of qubit state |0〉, (D) coherent RF manipulation, and (E) detection.
The operation times of each sequence are indicated. The coherent RF manipulation uses the
variable time T .

this work, two different coherent experiments are considered.

5.2 Determination of Motional Excitation for a Single Ion

To verify the result of the sideband cooling process, two different coherent experiment
were performed to determine the average phonon number after sideband cooling.

(i) Rabi oscillations can be observed after applying the sideband cooling to determine
the motional excitation state. Rabi oscillations are driven directly to the resonant
transition |0〉 ↔ |1〉. The pulse duration of the RF pulse at the transition resonance
frequency is varied, forming a Rabi oscillation signal. The damping of the Rabi os-
cillation can be observed. This is due to the phonon level dependency of the Rabi
frequency, which can be used to determine the average phonon 〈n〉 [150].

(ii) An RF-optical double-resonance spectrum is observed by varying the RF pulse
frequency. This measures the excitation probability as a function of RF frequency for
a given pulse duration. The RF frequency is varied around the |0〉 ↔ |1〉 transition
after preparing an ion in state |0〉 and applying sideband cooling. The pulse duration
is selected to enhance the probability of exciting the red and blue sidebands. The
excitation of the red and blue sidebands can be used to determine the average phonon
〈n〉.

5.2.1 Determination of Motional Excitation by Damping of Rabi

Oscillation

In the Lamb-Dicke regime, the frequency of the |0〉 ↔ |1〉 transition depends on the
motional excitation state of the ion. This causes damping of Rabi oscillations, enabling
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(c) Comparing BSB and RSB

Figure 5.4: Simulated Rabi oscillations for different average phonon numbers. The
calculation of the Rabi oscillations uses average phonon numbers, as indicated by the legend.
The calculation is based on a Rabi frequency of 2π · 36 kHz and an axial trap frequency of
2π · 117.5 kHz. The excitation probability corresponds to the probability of finding the ion in
state |1〉 when the RF radiation is set on the qubit resonance, namely the carrier frequency (a)
or on the blue sideband frequency (b). The Rabi oscillations on the carrier frequency show fast
amplitude damping for high phonon levels, starting from the second oscillation period. In (b),
a small and fast oscillation is caused by non-resonant excitation from the carrier transition.
The probabilities of excitation on the blue-sideband frequency are damped very fast with high
phonon numbers. They give more clear visualization when the ion has motional excitation of
only a few phonons. (c) From the excitation probabilities using the blue sideband frequency
(as in (b)) and the red sideband frequency (not shown), the comparison probability is shown
by the blue-sideband excitation subtracted from the red-sideband excitation. The subtraction
shows that the two probabilities are approximately the same when the phonon number is high.
This result means that the motional excitation of high phonon numbers cannot be accurately
determined from the excitation probabilities of the two sidebands.
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us to map the motional state or the average phonon number 〈n〉. The Rabi oscillation
at the carrier frequency is given by [122]

P|1〉 =
1

2

(

1−
∞
∑

n=0

pn(T ) cos (Ωn,nt)

)

, (5.14)

where the excitation probability P|1〉 is the probability of finding the ion in state |1〉.
The Rabi oscillation is driven by the pulse duration t and distributed by the thermal
distribution pn(T ). The probability of thermal distribution is given by

pn(T ) =
1

〈n〉T + 1

( 〈n〉T
〈n〉T + 1

)n

, (5.15)

considering the phonon number 〈n〉T at temperature T , as mentioned in the Doppler
cooling limit in section 4.2.1. In the non-linear coupling regime, the Rabi frequencies
Ωn,n+k are shown in equation (5.2). The effective LDP is defined in equation (2.45)
using information from equation (2.44), where the magnetic-field gradient along the
quantization axis ∂zB = 19T/m, the 171Yb+ ion-mass m = 2.84× 10−25 kg, and the
axial trap frequency ωz = 2π · 117.48 kHz. Using the mentioned parameters, the LDP
in our experiment is given by ηeff = 0.036.

The average phonon number can be determined by measuring the excitation probabil-
ity and using equation (5.14) to fit the measured result. Note that the sum theoreti-
cally runs to infinite phonon numbers, but in the fitting routine runs up to ten times
the expected average phonon numbers, where the probability of finding these phonon
numbers or higher is negligible.

Some examples for different average phonon numbers are shown in Fig. 5.4. The Rabi
oscillations on the carrier frequency show fast amplitude damping for high phonon
levels, starting from the second oscillation period. By driving with the blue-sideband
frequency, the small and fast oscillations are observed together with the Rabi os-
cillations. These are due to non-resonant excitation from the carrier transition. The
probabilities of excitation on the blue-sideband frequency give more clear visualization
when the ion has a motional excitation of only a few phonons. The subtraction be-
tween the excitation from the blue-sideband to the red-sideband excitation to compare
between the two probabilities is also shown, which shows that the two probabilities are
approximately the same when the phonon number is high. This result means that the
motional excitation of high phonon numbers cannot be accurately determined from
the excitation probabilities of the two sidebands.
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5 Near Ground-State Cooling

5.2.2 Determination of Motional Excitation by Resonance Spectrum

Another method to determine the motional excitation state of an ion is to consider
the RF-optical double resonance spectrum. By keeping the duration of the RF pulse
constant, the RF frequency is varied around the sidebands of the |0〉 ↔ |1〉 transition,
after the ion is prepared in the ground state |0〉. For the carrier, the probability of
finding the ion in the excited state is given by [122]

PC(δ,T ) =
∞
∑

n

pn(T )
Ω2
n,n

Ω2
n,n + δ2

sin2





√

Ω2
n,n + δ2

2
t



, (5.16)
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Figure 5.5: Simulated resonance spectra for different average phonon numbers.
The calculation of the RF resonance spectra uses average phonon numbers, as indicated by
the legend. It is based on a Rabi frequency of 2π · 36 kHz, an RF pulse duration of 400µs, and
an axial trap frequency of 2π · 117.5 kHz. (a) The excitation probability is with respect to the
detuned RF radiation of the qubit resonance in a full spectrum. (b) As in (a), but focusing on
the first and second sidebands. There is no visible excitation on the second sidebands when
the phonon number is below 1.
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where δ is the RF pulse detuning from the |0〉 ↔ |1〉 resonance. For the blue sideband

of the kth order, the excitation probability P kB(δ,T ) is given by

P kB(δ,T ) =
∞
∑

n

pn(T )
Ω2
n+k,n

Ω2
n+k,n + (δ − kωz)2

sin2





√

Ω2
n+k,n + (δ − kωz)2

2
t



, (5.17)

where Ωn+k,n is with respect to equation (5.2). The probability of excitation through
the red sideband P kR(δ,T ) is proportional to the excitation through the blue sideband
and determined by

P kR(δ,T ) =

( 〈n〉T
1 + 〈n〉T

)k

P kB(−δ,T ). (5.18)

To determine the average phonon number by considering all excitation probabilities
up to the second-order sidebands, the excitation probability P|1〉 is given by

P|1〉(δ,T ) = PC(δ,T ) +
2
∑

k=1

(

P kR(δ,T ) + P kB(δ,T )
)

. (5.19)

Some examples of simulated P|1〉(δ,T ) for different average phonon numbers are shown
in Fig. 5.5. When more ions are considered, all motional modes also have to be taken
into account; therefore

P|1〉(δ,T ) = PC(δ,T ) +
∑

mode

2
∑

k=1

(

P kR(δ,T ) + P kB(δ,T )
)

. (5.20)

The average phonon number is determined by measuring the excitation probability of
the resonance spectrum and fitting with either equation (5.19) or equation (5.20).

5.3 Optimal Duration of the SBC process

Next, the optimal duration for applying the SBC process is discussed. This is due
to the fact that a cold system is desirable, without spending too much time on the
cooling sequence.

During the sideband cooling process, the photon can only be scattered by reaching the
state |1〉. When the motional ground state is reached, there is no excitation probability
through the red sideband; therefore, there is no fluorescence scattering. Using the
calibrated intensity of the optical repumping laser [54] and an RF frequency set to the
red sideband, the fluorescence scattering observed during the sideband cooling process
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5 Near Ground-State Cooling

Figure 5.6: Determination of the optimal time
for the sideband cooling process. By observ-
ing the fluorescence rate during the sideband cool-
ing process when the RF frequency is set at the
red sideband transition, the optimal time can be ob-
tained. The Rabi frequency at the carrier frequency
is measured at Ω = 2π · 46.0(1) kHz and an inten-
sity of 2.3(4)W/m2 for the repumping laser. The
decay constant deduced from the exponential fit is
25(8)−1 ms−1. The optimal duration of sideband
cooling is chosen as 80ms, where the scattering decay
approaches its asymptote. The error bars represent
statistical errors within one standard deviation for
1200 repetitions.
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is as shown in Fig. 5.6. The optimal duration of sideband cooling is chosen as 80ms,
where the scattering decay approaches its asymptote. Further discussion of this topic
can be found in Ref. [56].

5.4 Cooling of a Single Ion

Further discussion regarding cooling of a single ion is presented in the following section.
Two methods, a decay of Rabi oscillations and a sideband spectrum of the RF-optical
double resonance spectrum, are considered to deduce the motional excitation level.

From the Rabi oscillation measurement, the average phonon number immediately after
Doppler cooling is 91(5), as shown in Fig. 5.7a. To extract the average phonon number,
the fitting is performed with the theoretical excitation probability given in section 5.2.1.
The SBC process uses the RF radiation on the first red sideband frequency and an
intensity of 0.21(4)W/m2 of the repumping laser. At the location of the ion, the laser
is focused to a waist of 144(3) µm [106] with a power of 0.11(2) µW measured outside
the entrance viewport of the vacuum chamber. The Rabi frequency at the carrier
frequency is measured at Ω = 2π · 39.47(4) kHz. Applying the SBC for 80ms, the
phonon number is reduced to 1.71(15), as shown in Fig. 5.7b.

From the RF-optical double resonance spectrum, the blue and red sidebands are both
clearly visible when an ion is highly motionally excited. When the ion is cooled close to
the motional ground state, the resonance of the red sideband is strongly reduced [117].
After Doppler cooling, the average phonon number is 65(22), as shown in Fig. 5.8a. To
extract the average phonon number, fitting is performed with the theoretical excitation
probability given in section 5.2.2. The fit shows the measured motional frequency ωz of
2π ·117.48(11) kHz. For a Doppler-cooled ion, the motional excitation is at a high level.
This leads to a larger error for the fitting routine because the phonon number extracted
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Figure 5.7: Determination of the average phonon number by Rabi oscillations The
Rabi oscillations are driven resonantly between the |0〉 ↔ |1〉 transition. (a) Without any
SBC process, the ion is only Doppler-cooled before the measurement of the Rabi oscillation.
The deduced average phonon number is 〈n〉 = 91(5). (b) RF sideband cooling applied for a
duration of 80ms, and the Rabi oscillation sequences are carried out at two different pulse-
time windows. The windows correspond to an applied RF pulse duration of 0−50 µs (left) and
1.25−1.30ms (right). The deduced average phonon number is 〈n〉 = 1.71(15). The error bars
represent statistical errors within one standard deviation for 125 repetitions.
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Figure 5.8: RF-optical double resonance spectrum of a single ion. (a) After Doppler
cooling (red data points and red solid line), an RF pulse of 55µs is used to measure the RF-
optical double resonance spectrum. An additional RF sideband cooling of 80ms is applied on a
Doppler-cooled ion, and an RF pulse length of 400µs is used to measure the RF-optical double
resonance spectrum (blue). These measurements focus primarily on the first sidebands. The
red sideband is significantly suppressed after sideband cooling. The average phonon numbers
deduced from the fits are 〈n〉 = 65(22) (red) and 〈n〉 = 0.30(12) (blue). (b) This plot is a
zoom-in view of the sideband-cooled ion in (a). The upper plot shows error bars only for a few
selected data points for clarity. The error bars represent statistical errors within one standard
deviation for 100 repetitions.
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from the spectrum depends on the ratio between the excitation probabilities close to
unity on the red and blue sidebands; see Fig. 5.4c and Fig. 5.5a. Error reduction can
be performed for particularly large numbers of repetitions. After the SBC, the phonon
number inferred from the RF resonance spectrum is reduced to 0.30(12); see Fig. 5.8b.

From the two described approaches, there is a discrepancy in the deduced average
phonon numbers after the sideband-cooling cycle in the range of a few phonons. The
discrepancy can be understood as a change in the qubit resonance frequency over
time. In the current setup, the magnetic field-sensitive transition regularly drifts by
approximately 2−3Hz/s, which can lead to accumulation of approximately 50−100Hz
for a single measured data point. A reduction of the contrast of Rabi oscillations is then
caused by a large number of repetitions, as well as the inaccuracy of the deduction of
the motional excitation level. In contrast, even though drift causes a reduction in the
excitation probabilities of the motional sidebands, the deduction of the motional level
remains significantly unaffected, as it depends on the ratio of excitation probabilities
between the sidebands. Therefore, the phonon number deduced by observing the decay
of Rabi oscillations is considered as an upper limit for the actual average phonon
number, and the RF resonance spectrum is used for more accurate results.

To estimate the lowest attainable average phonon number from the sideband cooling
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Figure 5.9: Determination of the cooling and heating rates for a single ion. (a) After
the ion is initially Doppler-cooled, the average deduced phonon number from a Rabi oscillation
is plotted as a function of the sideband cooling time. The exponential fit shows a sideband
cooling rate of 0.47(6)ms−1 [54]. (b) After 15ms of sideband cooling, all cooling processes
were switched off and the ion was left in the trap for a given time to gain temperature from
the environment. The linear fit shows a heating rate of 0.13(2)ms−1 for a single-ion system
(square) [56]. For a two-ion system (star), sideband cooling is applied for 50ms on the COM
mode of the refrigerant ion, and the linear fit shows a heating rate of 0.30(2)ms−1. The error
bars represent statistical errors within one standard deviation of 35 repetitions.
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technique, the heating rate and the cooling rate of the ion system need to be considered.
The theoretical prediction can be determined by

〈n〉 = RH
(RSBC −RH)

, (5.21)

where RH is the heating rate and RSBC is the sideband cooling rate of a single ion
[121]. The cooling rate can be measured by observing Rabi oscillations to extract
average phonon numbers as a function of the sideband cooling time; see Fig. 5.9a.
The cooling process indicates an exponential decay of the phonon number with time
and shows a sideband cooling rate RSBC of 0.47(6)ms−1 from an exponential fit [54].
For the heating rate measurement, the ion is first cooled by the sideband cooling for
15ms; then, all cooling processes are switched off, letting the ion heat up for varying
durations before observing Rabi oscillations. The result (red plot) is shown in Fig. 5.9b.
The linear fit shows the heating rate RH of 0.13(2)ms−1 for a single-ion system [56].
According to these two rates, the theoretical limit of sideband cooling is estimated to
be 〈n〉 = 0.37(10). In Fig. 5.8, the single-ion experiment shows an average phonon
number of 〈n〉 = 0.30(12) after sideband cooling. This agrees well with the theoretical
limit calculated from the heating and cooling rates.

As one might notice, the phonon number at the Doppler-cooled state in Fig. 5.9a is
higher than the one in Fig. 5.7a. This is due to a higher heating rate, primarily caused
by electronic noise, at the time of taking the data shown in Fig. 5.9a. After applying
additional low-pass filters to suppress noise components in the DC voltages applied to
the trap electrodes, the heating rate was subsequently reduced. More information can
be found in Refs. [56, 96].

5.5 Cooling of Two Ions

In what follows, the SBC process is discussed with respect to a two-ion system. The
cooling is performed on one of the two ions. Thus far, the discussion has focused on
a single ion. Now, the sideband cooling technique is extended to a two-171Yb+ ion
Coulomb crystal; see Fig. 5.10. Thus, the effective LDPs are adjusted for multiple
harmonic-oscillator modes [86, 151].

For cooling of two or more ions, the cooling applied on one of ions can cool the
other ions through collisions. This effect is called sympathetic cooling. The cooling
ion is referred to as the coolant or refrigerant ion, and the other ion is known as
the target ion. Sympathetic cooling for a system that is larger than a single ion
has been considered and demonstrated with respect to different aspects, for example,
two identical ions employing laser radiation (e.g., [152]), or two different isotopes of
the same ion species (e.g., [153]), or two different ion species (e.g., [28, 154]). In
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Figure 5.10: Illustration of SBC in a two-ion
system. In a two-ion Coulomb crystal, the left ion
participates in the sideband cooling cycle with the
RF radiation at the red sideband (RSB) frequency of
the left ion; therefore, it is referred to as the coolant
or refrigerant ion. The right ion is sympathetically
cooled through the refrigerant ion and hence referred
to as the target ion.

this section, a complementary demonstration using RF sideband cooling to achieve
sympathetic cooling is presented.

In a two-ion crystal, there are two normal modes of vibration: a center-of-mass (COM)
mode, and a stretch (STR) mode. In the COM mode, the ions oscillate in phase; in
the STR mode, the ions oscillate 180° out of phase. The effective LDP for two ions in

our experiment is ηCOM
eff = ηeff/

√
2 = 0.0254 and ηSTR

eff = ηeff/
√

2
√
3 = 0.0193. From

the axial secular frequency of a single ion, ωz = 2π ·117.48(11) kHz, the motional mode
of the COM mode is expected to be ωz, and that of the STR mode is ωSTR =

√
3ωz

= 2π · 203.48 kHz. However, by measuring the RF-optical double resonance spectrum,
the motional frequencies of both modes are determined to be ωCOM = 2π · 117.23(5)
and ωSTR = 2π · 209.54(14) kHz1, e.g., Fig. 5.11, following the same procedure as
described in section 5.4. These deviations can be described by the AC-stark effect [146]
because RF radiation is applied during the RF-optical double resonance spectroscopy.
Furthermore, the shifted frequency may be caused by the imperfection of micromotion
compensation. Ions can be displaced from the trap center by any residual micromotion,
resulting in a coupling between the axial and radial modes [155] and leading to a shift
in the axial motional mode frequencies [28, 156].

The magnetic field-insensitive transition |0〉 and |0′〉 is used to Doppler-cool a single ion.
For a two-ion crystal, this transition for each ion is slightly shifted by a few kilohertz
because of the second-order Zeeman shift. Thus, the average frequency between the
two RF resonance frequencies for two ions is used to Doppler-cool the ions. After
Doppler cooling, the average motional excitation levels for the COM and STR modes
are measured using the RF-optical double resonance spectra of the respective modes.
The red and blue sidebands of the respective frequency modes give average phonon
numbers of 〈nCOM〉 = 64(23) and 〈nSTR〉 = 11(5), as shown in Tab. 5.1. The COM
mode, which has a higher heating rate compared with the STR mode, may experience
a larger coupling to stray electric fields [157, 158], so that 〈nCOM〉 > 〈nSTR〉.

After the ions are Doppler cooled, RF sideband cooling by tuning the red sideband
resonance RF radiation to the COM mode of one of the two ions is applied. The

1Here, the trap frequencies are obtained as the average of several results during data acquisition for
two-ion measurements.
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Figure 5.11: RF-optical double resonance spectrum of two-ion system. The RF
frequency is applied, focusing on the sidebands. These two plots are not at the ground state
to precisely measure the sideband excitation. The sideband cooling is applied for a few mil-
liseconds to affect approximately 10 phonons. (a) Center-of-mass (COM) mode. (b) Stretch
(STR) mode.
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Figure 5.12: Demonstration of sympathetic cooling using two identical isotopes
of the same ion species. The black plot and the blue plot represent the sideband spectra
of the COM mode of the refrigerant ion (circles) and the target ion (squares), respectively.
After applying the SBC process, the refrigerant ion and the target ion have average phonon
numbers of 1.1(4) and 1.0(6), respectively. The error bars represent statistical errors within
one standard deviation for 100 repetitions.

SBC is applied for 80ms using an intensity of 0.57(4)W/m2 for the repumping laser.
This corresponds to a power of 0.30(2) µW measured outside the vacuum chamber.
The sideband spectra of the refrigerant ion, indicated with circular marks in Fig. 5.12,
give an average phonon number 〈nrefrigerantCOM 〉 of 1.1(4). Conversely, by measuring
the target ion (square markers), the average phonon number of the target ion after
sideband cooling only the refrigerant ion is 〈ntargetCOM 〉 = 1.0(6). The motional excitation
between the two ions is not significantly different, as expected, because only one COM
mode exists in the oscillator.

Table 5.1: Summary of average phonon number achieved with or without sideband cooling
applied to different motional modes in a two-ion system. No experimental result is available
for a blank entry.

Cooling (on ion) Refrigerant ion Target ion

COM STR COM STR

Doppler cooling (both) 64(23) 11(5) 62(20) 15(8)
SBC on COM (Refrigerant ion) 1.1(4) - 1.0(6) -
SBC on STR (Refrigerant ion) - 3.2(1.1) - 4.2(1.7)
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In addition to considering the COM mode, the STR mode is also studied. After
Doppler cooling, the RF sideband cooling is tuned to the STR mode of the red sideband
resonance. Similar to the study of the COM mode, the SBC is also applied for 80ms,
but using an intensity of 8.16(4)W/m2 for the repumping laser. The sideband spectra

of the refrigerant ion give an average phonon number 〈nrefrigerantSTR 〉 of 3.2(11); see also
Tab. 5.1. The sideband spectra of the target ion give an average phonon number
〈ntargetSTR 〉 of 4.2(17). The phonon numbers observed from the two ions are compatible
within the error bars, demonstrating efficient sympathetic cooling.

Moreover, the heating rate for a two-ion system is measured. The heating rate study
starts with two Doppler-cooled ions, after which RF sideband cooling is applied on
the COM mode of the refrigerant ion for 50ms. After allowing the ions to heat up by
switching off all cooling processes for a given amount of time, the RF-optical double
resonance spectra for different heating times are measured. Observation of the Rabi
oscillation decay is not suitable for a multiple-ion system because it is not possible
to distinguish between different motional modes. The result (green plot) is shown in
Fig. 5.9b. A linear fit shows a heating rate R2 ions

H,COM of 0.30(2)ms−1.

5.6 Summary of Experimental Results and Outlook

In this chapter, we presented a detailed investigation of near-ground state cooling of
a single and two trapped atomic ions. This technique employs simple RF sideband
cooling using ions exposed to a static magnetic-field gradient. The current achievement
is at the theoretical limitation because of the heating rate of 0.13(2)ms−1 for a single
ion at the axial trap frequency of 2π · 117.48(11) kHz in the current setup. In this
work, there are two methods to determine the average phonon number, which are
observation of the Rabi oscillation decay and the sideband spectrum. The lowest
attainable motional excitation is at the average phonon number of 0.30(12), which
is translated to a motional ground state occupation probability of 77% using the
probability obtained by p0 of equation (5.15). With the noise present in the lab causing
a drift in the qubit resonance, the observation of the Rabi oscillation decay is more
suitable for probing a high motional excitation, and the sideband spectrum is more
suitable for probing a low motional excitation in a single-ion system. Observation of
the Rabi oscillation decay is not suitable for a multiple-ion system because it is not
possible to distinguish between different motional modes. Furthermore, this study is
the first demonstration of sympathetic sideband cooling using RF radiation in a two-ion
crystal. This complements the conventional approaches of laser cooling.

Additionally, the experimental demonstration is performed at a relatively low secular
trap frequency regime, which is also often encountered in neutral atom traps. The
method demonstrated here is expected to be useful for future experiments in the ion
and atom trapping communities, given the widespread use of hyperfine transitions in
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many neutral atom and ion experiments and the easy availability of commercial RF
tools. This method is cost-effective when compared with Raman laser techniques.

The presented demonstration makes use of a single RF frequency to perform the SBC
process. To be more efficient regarding SBC, multiple frequencies can be employed
to cool all motional modes simultaneously. This will increase the cooling rate for a
multi-ion crystal and could improve the ground state occupation. However, combining
multiple frequencies with a power combiner reduces the power of each frequency, if a
passive power combiner is used.

One of the cooling limitations in these proof-of-principle experiments is the heating
rate of an ion crystal. Because an RF power of approximately 15 to 20W is applied
to the trapping electrodes, the electrodes can heat up to more than 370K [159]. The
electrode temperature contributes to the heating rate [160, 161]. The electrode heating
can be improved by changing to a material with a better conductivity, e.g., titanium
[159] instead of stainless steel (316L) [83], and sapphire [159] instead of macor [83]
to match thermal conductivity. In a new trap design, the electrode distances can be
adjusted to provide a higher magnetic-field gradient, which will improve the cooling
efficiency by increasing the LDP [124]. Other setups using two-dimensional and three-
dimensional micro-structured traps utilizing microfabrication technology have achieved
static magnetic-field gradients of 36T/m [162] and 16.3(9)T/m [163], using integrated
permanent magnets or current wires, respectively. A dynamic magnetic-field gradient
of 35.3(4)T/m has also been demonstrated in Ref. [49]. Additionally, a proposal in
Ref. [13] is expected to achieve a magnetic-field gradient of 150T/m.

Ref. [54, Sec. 5.3] reports the results of a study of the motional excitation level when
varying the Rabi frequency of the RF radiation and intensity of an optical repump
laser during the SBC process. This suggests that an increase in the Rabi frequency
of the RF radiation will improve the achievable ground state cooling. However, the
increasing power caused by the increasing Rabi frequency can be limited by the axial
secular trap frequency. A far-detuned excitation is most likely when the Rabi frequency
becomes too high compared with the trap frequency. Therefore, one might consider
performing the SBC process in a coherent method using composite narrow-frequency
pulses [164] to prevent far-detuned excitation when utilizing higher Rabi frequencies.
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6
Investigation of Qubit Dephasing

To realize a large-scale universal quantum computer, quantum bits are required to be
very well controlled so that quantum information can be processed correctly. A trapped
ion system, which is a well-established platform, is a candidate to be a quantum
computer [76, 165–167]. However, trapped ion qubits are susceptible in particular to
dephasing from interactions with the environment. These interactions cause phase
randomization of a quantum superposition state. Qubit dephasing, an uncontrolled
and unwanted mechanism, limits the realization of high-fidelity conditional quantum
gates, e.g., a unitary controlled-NOT gate. The CNOT gate is an elementary gate for
arbitrary quantum algorithms [168]. One technique to overcome qubit dephasing is the
dynamical decoupling technique, explained in section 4.3.5, using either a continuous
or pulsed style [34, 59, 99, 169]. However, it is advantageous and preferable if noise
sources are individually identified and suppressed. This will reduce any overhead
techniques required for qubit protection. In this chapter, detailed investigations of the
qubit dephasing of trapped ion qubits exposed to a static magnetic-field gradient are
presented.

6.1 Observation of Qubit Dephasing

From the superposition state of the magnetic field-sensitive state |2S1/2 (F = 1,mF =
+1) 〉, a qubit has been observed to dephase rapidly compared with a two-qubit gate
time. The measurement used to observe the coherence time is a Ramsey-type mea-
surement, as explained in section 4.3.3. The decay of a Ramsey fringe or a Ramsey
oscillation infers the qubit coherence time T ∗

2 . Previously, our system had a qubit
coherence time of 0.2(1)ms [83, 96, 99]; see Fig. 6.1a. In addition, a Ramsey-type
measurement with a spin echo π-pulse is also performed to determine the coherence
time. In this case, at half of the free evolution time, a resonant π-pulse with a rela-
tive phase of π/2 is applied. A spin echo pulse can compensate for a small possible
detuning of the qubit transition with respect to the Rabi frequency. The spin echo
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(b) Spin echo measurement

Figure 6.1: Ramsey-type measurement to determine the coherence time. (a) A
Ramsey oscillation with respect to the free evolution time is measured on the magnetic field-
sensitive σ+-transition. The deduced coherence time T ∗

2 is 0.27(4)ms. The error bars repre-
sent statistical errors within one standard deviation for 350 repetitions. (b) A Ramsey-type
measurement with a spin echo π-pulse is measured against the free evolution time. This mea-
surement gives a longer coherence time as a result of noise correction by a spin echo pulse.
The error bars represent statistical errors within one standard deviation for 100 repetitions.

pulse can also compensate for noise components of a few hundred hertz1. Without
qubit dephasing, the last pulse of the Ramsey sequence brings the excitation proba-
bility always to one. As can be seen in Fig. 6.1b, the excitation probability drops and
spreads between 0.5ms and 3ms. A clear minimum is found at 1.4ms. This minimum
indicates a strong noise component at 0.36 kHz because the excitation probability is
less than 0.5 [170]. After some evolution time, the excitation probability stays at 0.5
because of the loss of phase information for the qubit.

Using a spin echo pulse, the qubit coherence time can be extended to a few milliseconds.
Nevertheless, this is significantly small compared with the time required to realize a
single CNOT gate, which is approximately 5ms. To neglect the effect from qubit
dephasing, the qubit coherence time is expected to be much longer than the time
needed for coherent operations. Therefore, the possible causes of fast dephasing are
investigated.

One could compare the measured coherence time to a similar setup, which has a
comparable magnetic-field gradient. A similar behavior is observed, and the dephasing
is also approximately 0.2ms [59]. On the contrary, the coherence time is approximately
5ms and significantly longer in the experiment of Ref. [171], in which there is no
magnetic-field gradient. If fluctuations of magnetic fields do exist, then a change
in the magnetic field leads to a change in the resonant frequency of the magnetic
field-sensitive σ+-transition (or σ−-transition), in which qubits are encoded. The

1The free evolution time of 2ms (1ms) corresponds to 250Hz (500Hz); see equation (7.22) and the
paragraph therein.
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Figure 6.2: Frequency drift of a Ramsey oscillation measurement. (a) The Ramsey
oscillation is measured and has no contrast after a free evolution of approximately 70µs. The
deduced oscillation frequency is 2π · 15.5(15) kHz. The error bars represent statistical errors
within one standard deviation for 200 repetitions. The total measurement takes approximately
15 min. This result is split into individual results of 50 repetitions each. The first three
sets are shown in (b), (c), and (d), respectively. (b) The first 50-repetition analysis shows
an oscillation frequency of 2π · 15.1(7) kHz. (c) The second 50-repetition analysis shows an
oscillation frequency of 2π·13.3(6) kHz. (d) The third 50-repetition analysis shows an oscillation
frequency of 2π · 8.8(11) kHz. The error bars in (b), (c), and (d) represent statistical errors
within one standard deviation for 50 repetitions. The results in (b), (c), and (d) show that the
qubit addressing frequency is shifted over the measuring time, resulting in misinterpretation of
the qubit coherence time. Adaptive frequency correction can minimize this problem by keeping
up with the drift of the addressing frequency.

magnetic-field fluctuation can be expressed as phase damping [172]. According to our
experimental parameters, the qubit transition frequency is related to the magnetic
field shift as 14 kHz/µT (or 1.4MHz/G). For fluctuations of electric fields, ions can be
spatially moved by electric forces from nearby electrodes. Ions are moved under a static
magnetic-field gradient of 19T/m; then, the qubit transition frequency is also shifted.
The qubit transition frequency with respect to the ion displacement is 263Hz nm−1.

Interpretation of the Ramsey-type measurement is required to accumulate sufficient
statistics. To achieve a precise statistic, the measurement time can be quite long,
up to 15 to 30min per measurement. By analyzing a long measurement of Ramsey
oscillation, as shown in Fig. 6.2, we find that the complete measurement gives a very
short coherence time, while the coherence time is improved when taking a fraction of
the total measurement. Furthermore, different measurement fractions provide differ-
ent Ramsey detuning frequencies, which indicates a slow drift of the qubit transition
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Figure 6.3: Mind map for the discussion of possible causes of rapid dephasing.
There are four possible causes in our consideration: Incoherence of the qubit control, qubit
localization, magnetic field fluctuation, and electric field fluctuation. These effects may be
caused by laboratory devices, for example, the source for the qubit manipulation, magnetic-
field noise caused by neighboring devices, and electric-field noise caused by the fluctuation
of the supplied signals. Furthermore, some physical processes, such as micromotion, leakage
light, ion temperature, and laser duty cycle, could be responsible for dephasing.

frequency. A slow drift of the qubit transition could lead to misinterpretation of the
qubit coherence time. In Ref. [96], a slow drift of the qubit transition frequency for a
single ion was observed. The frequency drift was significant when an ion was freshly
loaded. The frequency drift was greater than 120 kHz over 20min. Even after the
frequency reached a stable level, it still changed slowly, in the range of 50 kHz. By
employing adaptive frequency correction [112], also described in section 4.4, the exper-
imental time can be decreased to a smaller time interval before changing to a new qubit
addressing frequency. This can remove some slow drift when the frequency correction
is performed often enough.

In what follows, we discuss possible potential noise sources, which might limit the
qubit coherence time. The overview is based on a mind map, shown in Fig. 6.3. In
our consideration, there are four possible causes: (i) incoherence of the qubit control,
(ii) qubit localization, (iii) magnetic field B fluctuation, and (iv) electric field E fluc-
tuation. Our investigation is performed using Ramsey-type measurements, similar to
Fig. 6.1.
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Figure 6.4: Ramsey and Rabi oscillations on the magnetic field-insensitive π-
transition. (a) Ramsey oscillations on the magnetic field-insensitive transition. The error
bars represent statistical errors within one standard deviation for 80 repetitions. At the time
for a CNOT gate of approximately 5ms, the Ramsey oscillation contrast is above 0.99. (b) Rabi
oscillations on the magnetic field-insensitive transition, measured in two windows separated
by 15ms. The error bars represent statistical errors within one standard deviation for 65
repetitions. At the time for a CNOT gate of approximately 5ms, the Rabi oscillation contrast
is at 0.95. These results indicate that the coherent RF generation system is not the cause of
fast dephasing of the magnetic field-sensitive qubit.

Qubits are operated using RF pulses to coherently drive the hyperfine transition. The
RF source is investigated as one of the possible sources of dephasing. The RF radiation
is generated by a chain of frequency components, as described in section 3.4. When
the generating RF pulse has insufficient phase stability, fast dephasing of qubits would
result. We can test the RF generation by observing the magnetic field-insensitive π-
transition (|2S1/2 (F = 0) 〉 ↔ |2S1/2 (F = 1,mF = 0) 〉). A Ramsey measurement is
obtained with the π-transition and provides a coherence time of greater than 200ms;
see Fig. 6.4a. This coherence time is more than three orders of magnitude longer
than the 0.2(1)ms determined for the σ+-transition. Moreover, a Rabi oscillation is
observed with a contrast of greater than 87% for a duration longer than 15ms; see
Fig. 6.4b. We conclude that the RF generating source is not the cause of dephasing,
as the same RF system is employed whether qubits are encoded by the π-transition or
the σ+-transition.

Furthermore, during coherent qubit manipulation, which is normally achieved solely
with RF pulses, there is the possibility of stray laser light (or leakage light) being
present at the ions’ location because of an incompletely blocked detection laser. The
leakage light can cause light-induced decoherence [108]. However, the coherence of
the Ramsey oscillation of the π-transition is measured to be greater than 200ms, as
mentioned earlier, indicating that the leakage light is not our concern on the time scale
of a few milliseconds. Conversely, the leakage light becomes crucial when the coherent
control time reaches the second or minute scale [37]. On this time scale, the leakage
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light can be completely removed by a mechanical shutter.

6.3 Fluctuation of Magnetic Field

Here, the noise caused by the fluctuation of magnetic fields is discussed. Because of
the ions’ environment, the possible noise sources are the magnets for the magnetic-field
gradient, the coils for the magnetic field offset for the Zeeman splitting, and unknown
sources.

The total magnetic field in the area of ion confinement is produced by a pair of per-
manent magnets mounted on the end cap electrodes, see Fig. 3.2 in section 3.2; three
pairs of Helmholtz coils mounted around the vacuum recipient; and other interfering
devices in the neighborhood. In this section, the discussion is of possible causes of fast
dephasing resulting from the magnetic field noise.

The Helmholtz coils provide offset fields to lift the degeneracy of hyperfine ground state
|2S1/2 (F=1)〉 to define the quantization axis of the transitions. The magnetic field of
the Helmholtz coils also compensates for earth’s magnetic field and the magnetic field
caused by the vacuum pump (the ion getter pump). The ion getter pump generates
several hundred microteslas in the ion confinement area. The Helmholtz coils can
generate magnetic field noise when there is a fluctuation in the applied current. The
coil pair, which generates the magnetic field along the quantization axis (or z-axis), has
a field proportional to the applied current of 1788µT/A by design [83]. The coil pairs
perpendicular to the optical table (x-axis) and along the optical viewport (y-axis) have
a field proportional to the applied current of 300µT/A and 596 µT/A, respectively. To
investigate the possible influence of coils on the qubit coherence, the z-axis coil pair
were not supplied with current, while the other two coil pairs for the perpendicular
directions still received current to compensate for the perpendicular fields. In this
scenario, the magnetic field along the quantization axis at the ion confinement area
is caused by the cylindrical permanent magnets and the ion pump. Let Bz is the
magnetic field along the trap axis, and B⊥ is the magnetic field perpendicular to the
trap axis. Then, the total magnetic field can be expressed as

B =
√

B2
z +B2

⊥

=Bz

√

1 +

(

B⊥
Bz

)2

. (6.1)

The current stability is better than 0.25mA, which means that the possible influence
is on the order of a few hundred nanoteslas. Because B⊥ ≪ Bz, B⊥ is on the order of
a few hundred nanoteslas and Bz is on the order of several hundred microteslas, the
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Figure 6.5: Installation of two permanent magnets. Instead of generating a magnetic
field from the Helmholtz coils, an offset field can be generated by these magnets. They are
made of Neodymium (grade N42). Each magnet has dimensions of 40 × 40 × 20mm3. The
field magnitude is verified by the addressing frequency of a single ion. The coherence time is
again investigated, and no significant change is observed.

total magnetic field can be approximated as

B ≈ Bz

[

1 +
1

2

(

B⊥
Bz

)2
]

. (6.2)

In this configuration, the fluctuations of the perpendicular coils are several orders
of magnitude smaller; hence, the magnetic field in the ion confinement area is almost
independent of the current fluctuations of the coils. The coherence time is investigated,
as in Fig. 6.1, and no significant change is observed. Thus, it is concluded that the
Helmholtz coils are not the cause of fast dephasing. It may be noted that the current
drivers of the Helmholtz coils are also compared between the in-house-made devices
and a commercial device (Toellner TOE 8733-2)

To further discard the magnetic field along the z-axis while keeping a comparable
offset field, two permanent magnets are installed to replace the Helmholtz coils along
this direction, as shown in Fig. 6.5. The coherence time is again investigated, as in
Fig. 6.1, and no significant change is observed.

Another possibility as a source of magnetic field fluctuation is all of the neighbor-
ing laboratory electrical equipment. The existing magnetic field noise in the vicinity
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Figure 6.6: Magnetic field noise spectrum along the quantization axis [113]. The
magnetic field is probed using a compensation coil along the quantization axis. The spectra
are averaged internally using a spectrum analyzer (Advantest R9211B) for 100 repetitions. (a)
The noise spectrum is measured up to 20 kHz. (b) The noise spectrum is focused up to 1 kHz.
The harmonics of 50Hz are the main contributions.

of the vacuum recipient is investigated by probing the noise spectrum with different
magnetic-field sensors. For more details, see Ref. [113]. The significant noise compo-
nents were observed at 50 Hz and its harmonics, see Fig. 6.6, with a strength below
0.1 µT. To counteract these noise components, together with other ambient magnetic
fields, an active magnetic field stabilization system is designed and employed in this
experiment. Specific details of this system are given in section 3.9. The magnetic
field generated by the active stabilization system is homogeneous over a few tens of
centimeters because of the large dimensions of the Helmholtz configuration coils. The
dominating frequency components can be suppressed by 25 to 30 dB; see Fig. 3.13.
Using Ramsey measurements with a spin echo pulse similar to Fig. 6.1b, the coher-
ence time TSE2 , considered to be the time for the excitation probability to drop to 0.5,
is improved by a factor of approximately three, as shown in Fig. 6.7. Nevertheless, the
coherence time (without the spin echo pulse) T ∗

2 remains the same as that observed
by Ramsey oscillations, regardless of whether the active magnetic field stabilization
system is used or not. One reason for this may be that the magnetic sensor, which is
a probe of the stabilization system, may perceive different magnetic fields compared
with the ion confinement area. There are some signals that could not be compen-
sated. Currently, the magnetic sensor cannot be placed inside the vacuum chamber,
which would require opening up the vacuum chamber. For this reason, the stabiliza-
tion system cannot compensate for all magnetic fields experienced by ions. Therefore,
it can be stated that the various sources causing the 50-Hz noise component and its
harmonics are not the cause of fast dephasing when the trigger to the power grid is
appropriately applied.

Another potential cause of dephasing is the permanent magnets themselves. These
permanent magnets provide a magnetic-field gradient to induce spin-spin coupling.
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Figure 6.7: Ramsey measurement
with active magnetic field stabiliza-
tion. Ramsey measurements are observed
with a spin echo pulse, similar to Fig. 6.1b.
The measurement is performed once with
active magnetic field stabilization, denoted
‘B-Comp: ON’, and once again without
active compensation, denoted ‘B-Comp:
OFF’. The coherence time TSE2 , considered
to be the time for the excitation probabil-
ity to drop to 0.5, is improved by a factor
of approximately three. The error bars rep-
resent statistical errors within one standard
deviation for 120 repetitions.

They are located close to the trapped ions (≈ 5.7mm). The magnets are hollow
cylinders mounted on the endcap electrodes of the trap. They stay on the endcap
electrodes without any rigid fixing. It is therefore possible that the magnets vibrate
relative to the endcap electrodes. This results in the motion of ions in the magnetic-
field gradient, and the small fluctuations originating from them may not be detected
by the magnetic field sensor outside the vacuum recipient. If the two magnets oscillate
with an amplitude of 10 nm, the change in the magnetic field in the gradient is 0.19 µT,
which corresponds to an addressing frequency shift of 2.7 kHz. Therefore, vibrations
with a frequency of a few hundred hertz to a few hundred kilohertz can potentially
lead to dephasing.

Additionally, the permanent magnets can have their own noise as a possible cause of
dephasing. For a magnetic material, when the temperature is not at absolute zero,
there is fluctuation of magnetization of the domains, which can be considered magnetic
noise. As the temperature of permanent magnets increases, so does the noise, before
they become demagnetized. Because we have a power of approximately 16W applied
to the trap RF electrodes, it is likely that the magnets become hot, as mentioned
in Ref. [159]. In a vacuum recipient, black body radiation is an only way to reduce
the heat, which is why the temperature of trap electrodes can be substantially high
(>370K [159]). Obviously, this temperature can also be coupled to the permanent
magnets on the nearby endcap electrodes. Because of the rising temperature, the
magnetization of the domains could be fluctuate more, which is potentially a cause of
dephasing. So far, to my knowledge, there has been no experimental study regarding
the temperature dependency of the near-field fluctuation from magnetic materials. Re-
cently, other groups have demonstrated that changing the materials of trap electrodes
and mounting systems can reduce the trap temperature by an order of magnitude,
which is in the room-temperature regime [159]. The materials are changed from stain-
less steel and macor to titanium and sapphire, respectively. Such a change may help
reduce the noise from permanent magnets.
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6.4 Fluctuation of Electric Field

In what follows, the noise from the fluctuation of electric fields is discussed. The
possible sources include all electrodes near the ion confinement area, the shift in the
ion’s position resulting from charging by the UV laser, and the ion’s micromotion.

In a Paul trap, the ions are confined using static and dynamic electric fields; see
sections 2.2 and 3.2. Ions are charged particles experiencing a force from any electric
field E as F = qE, where q denotes the charge of the ion. Additional electric fields
will generally change the equilibrium position of an ion in the trapping potential.
Any change in position in the existing magnetic-field gradient effectively results in a
change in the magnetic field experienced by the ion, thus causing dephasing. Moreover,
noise components with frequencies near the axial and radial trap frequencies have
been demonstrated to have the greatest impact on the motion of ions [122, 150].
These frequency components can excite harmonic motion of the ions. This in turn
is counteracted by cooling. Therefore, this excitation would be evident as a change
in coherence time when changing the cooling. This means that noise components in
the frequency range of 110 to 130 kHz and 500 to 600 kHz can be a potential cause of
dephasing. This noise could come from any electrode in the trap, which includes the
endcap electrodes, trap RF electrodes, and compensation electrodes.

To characterize the electric field fluctuations that lead to a change in ion position, the
heating rate of a single ion is measured, as explained in section 5.4. Here, an ion is
cooled by RF sideband cooling and then left alone, without any cooling mechanism.
During the time without cooling, electric field fluctuations lead to random movement
of the ion. Thus, the ion becomes hot. By diagnosing the motional excitation level,
the heating rate is obtained. In a previous work [54], the heating rate was initially
determined to be 1.4(3)ms−1 at the axial trap frequency of 2π·124 kHz. Then, low pass
RC filters with a cut-off frequency of 1.25Hz were installed to passively filter the DC
potentials applied to the endcap electrodes, together with better ground connections
for neighboring power supplies, thereby reducing the heating rate to 0.13(2)ms−1 at
the axial trap frequency of 2π · 122.984 kHz for a single-ion system; see section 5.4
and Ref. [56]. The heating rate is improved by an order of magnitude; however, the
improvement does not result in an enhancement of coherence time. Therefore, this
would likely mean that on the 1

1.25Hz timescale, the electric field noise of the DC
potential electrodes could be a cause of dephasing.

Another source of time-varying electric fields is the cooling laser duty cycle, discussed
in Ref. [96, appendix G]. The cooling laser, which is a UV laser, can charge the
exposed electrodes because of the photoelectric effect. The electrostatic charge on the
electrodes results in the displacement of ions. The ions can experience a magnetic
field shift because of this movement. The drift rate was on the order of 10 kHz/min
in Ref. [96]. Recently, we found from our previous laser alignment that the lasers
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Figure 6.8: Relative addressing frequency of the magnetic field-sensitive transi-
tion of an ion of a four-ion crystal. The addressing frequencies are relative to the first
measured addressing frequency. Over two hours, several coherent experimental sequences are
measured. The sequences are (i) state preparation and detection measurement, (ii) Rabi oscil-
lation measurement on an ion of a four-ion crystal, (iii) Rabi oscillation measurement on three
ions of a four-ion crystal, (iv) two-qubit Bell-state creation, and (v) Ramsey measurement on
an ion of a four-ion crystal. There is no observed jump in the addressing frequencies between
different coherent sequences. The error bars, too small to be seen, represent statistical errors
within one standard deviation for 75 repetitions.

were hitting the trap RF electrodes, resulting in high background photon counts. The
photon count rate could be up to several thousand counts per second (sometimes up
to ten thousand counts per second), as observed with a beam splitter before a photo-
multiplier tube. Hence, after improving the alignment, the fluctuation amplitude of
the addressing frequency is less than 10 kHz over two hours, see Fig. 6.8 and Ref [112],
while it was approximately 50 kHz over an hour in the past [96, appendix G].

In a Paul trap, ions can have unwanted movement because of micromotion. This move-
ment lets ions experience a magnetic field shift because of the trapping magnetic field.
In an ideal linear Paul trap, it occurs perpendicular to the trapping axis. According
to the Gauss law of magnetism in Maxwell’s equations,

−→∇ ·B = ∂xBx + ∂yBy + ∂zBz = 0, (6.3)

the magnetic-field gradient along the trap axis (∂zBz 6= 0) also leads to a gradient
along the perpendicular axis. The gradient perpendicular to the trap axis is half of
the gradient along the trap axis because of symmetry. For this reason, the micromo-
tion effectively leads to a change in the magnetic field experienced by the ions. The
micromotion frequency corresponds to the frequency of 2π · 18.9MHz of the RF trap
drive. The changing magnitude is proportional to the amplitude of micromotion in the
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6 Investigation of Qubit Dephasing

Figure 6.9: Ramsey contrast and mi-
cromotion amplitude vs. applied volt-
age on the “RF-side” compensation
electrode. The electrode distance to the
ion position is approximately 18.4mm [83].
The contrast in the Ramsey fringe remains
unchanged over a voltage range of approx-
imately 40 V. However, a clear optimum
voltage resulting in the lowest micromotion
can be found.
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magnetic-field gradient. In addition, we do not have an ideal Paul trap, which means
there could be additional axial micromotion. The influence of micromotion on the
coherence time is also investigated. The micromotion can be measured by recording
the arrival times of photons on a photo-multiplier using a time-to-digital converter
(TDC)2. The procedure to measure the micromotion is described in Ref. [83]. By
moving the ion position using a DC potential applied to a compensation electrode
(RF-side), Ramsey-type measurement with a spin echo pulse is observed. The free
evolution time is kept fixed at 2.0ms. The contrast in a Ramsey fringe is normalized
to maximum when the micromotion is minimized, as shown in Fig. 6.9. It turns out
that the observed variation of the contrast is comparable with a constant value con-
sidering the error bars over a voltage range of 40V, while the micromotion amplitude
is exactly a clear minimum at a voltage of −120V.

To further exclude micromotion as the cause of fast dephasing, a synchronization trig-
ger circuit is developed to synchronize with the RF trap drive frequency (2π·18.9MHz);
more details can be found in Ref. [56]. This synchronization using a trigger circuit
works similar to the 50-Hz synchronization of the laboratory power grid. This synchro-
nization trigger circuit allows us to synchronize the trap drive and the laboratory power
grid, simultaneously. The synchronization diagram is shown in Fig. 6.10. Instead of
immediately starting the experimental sequence, the circuit waits for the rising edge of
a signal that is synchronized with the trap drive. Thus, each experimental sequence is
synchronized with the RF trap drive and the power grid. The 50-Hz synchronization
can be shifted by a maximum of 53 ns, in which the 50-Hz synchronization is still effec-
tive because the period of the power grid is 20ms. Observation of the coherence time
remains unchanged. For these reasons, micromotion can be discarded as the cause of
dephasing.

2Fast Com Tec GmbH P7888 PCI TDC unit
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(a)

(b)

(c)

(d)

Figure 6.10: A not-to-scale synchronization signal diagram [56]. (a) The 50-Hz signal
of the laboratory power grid is shown as a sine curve. (b) The original trigger circuit card
provides the corresponding TTL signal of the power grid signal. (c) This is a similar circuit
to (b) but for an RF trap drive frequency of 2π · 18.9MHz. The synchronization signal, as
a TTL signal, waits for the rising edge of the trap drive frequency after receiving the trigger
from the power grid. Then, the last signal is used to start the experimental sequence, allowing
both synchronizations.

6.5 Ion Localization

The spatial wave function of a trapped ion can be described by the quantum harmonic
oscillator model. The delocalization of an ion in a magnetic-field gradient leading
to a drift in the qubit resonances may explain fast dephasing. The delocalization is
measured by the expansion of the wave function, quantified by the width of the wave
function. The spatial wave function as a function of coordinate z is generally described
by [173]

ψn(z) = (2nn!)−1/2

(

mωz
π~

)1/4

exp

(

−
(
√

mωz
~

z

)2

/2

)

Hn

(
√

mωz
~

z

)

, (6.4)

where Hn(ξ) represents a Hermite polynomial of order n and n denotes the oscillator
excitation. The motional excitation of an ion in the pseudopotential can be described
by a thermal distribution,

pn(n) =
1

〈n〉+ 1

( 〈n〉
〈n〉+ 1

)n

, (6.5)

where 〈n〉 denotes the average motional excitation level. Fig. 6.11 shows the local-
ization probabilities for different average motional excitations of 0, 1, 10, and 100
phonons. The calculation uses an axial trap frequency of 2π · 122.984 kHz. It is obvi-
ous that a lower thermally excited ion is more localized than a highly thermally excited
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6 Investigation of Qubit Dephasing

Figure 6.11: Localization
probability of a thermally
excited ion in a quantum
mechanical harmonic oscil-
lator potential. An average
excitation of 0, 1, 10, or 100
phonons is shown. The potential
is characterized by an axial trap
frequency of 2π · 122.984 kHz.
The localization of cooler ions is
much narrower.
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ion. To investigate whether the temperature of trapped ions affects the coherence time,
an experiment is performed, as shown in section 5.4. A single ion is either cooled to
the Doppler limit (〈n〉 = 91) or close to the motional ground state (〈n〉 = 0.30), after
which the Ramsey experiment is performed to observe the coherence time. There is
no significant change in coherence time observed from the result of near-ground state
cooling. This result is expected because the location of the center of mass of an ion
is independent of motional excitation; therefore, there is no change in its addressing
frequency. It can be concluded as expected that the ion localization is not the cause
of fast dephasing.

6.6 Summary of Investigations and Open Questions

From the investigation of qubit dephasing, the RF generation system for qubit coherent
control, the light-induced decoherence, and the Zeeman splitting magnetic field gener-
ated by either the Helmholtz coils or the permanent magnets (N42) can be completely
ruled out as possible sources of dephasing. Furthermore, unknown sources of magnetic
noise up to 700Hz can be compensated for using active magnetic field stabilization.
However, it is not possible to place the current magnetic sensor inside the vacuum
chamber where ions are located. The active stabilization might not compensate for
the exact same field experienced by ions for this reason. Micromotion compensation
and passive filtering of DC potentials lowered the heating rate and thereby improved
the general stability of the experiment, but not as a dephasing source. The coher-
ence time is also similar when an ion is cooled close to the motional ground state.
It is important to note that a very similar experimental apparatus without a strong
magnetic-field gradient exhibits a significantly longer coherence time [171]. This indi-
cates that there might be a correlation between coherence time and the ion’s motion
in the magnetic-field gradient, which has not yet been fully explored.

The suspicion about the vibration of the permanent magnets (SmCo28), used for
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generating the magnetic-field gradient, still needs to be investigated. It is possible to
do so when we need to open the vacuum recipient. We should redesign the trap to be
able to mount the permanent magnets rigidly to avoid relative motion between trap
electrodes and magnets.

The randomness of the magnetization of magnetic material resulting from the temper-
ature is also an open question. We can study the magnetic material temperature and
its effect on the qubit coherence time. Moreover, changing the material of the trap, as
discussed in section 5.6, is likely to improve the electrodes’ temperature, which might
reduce the randomness of the magnetization and improve the qubit coherence time.

When multiple ions are manipulated to perform a quantum gate, two or more frequen-
cies are used simultaneously. The ions will be affected by the addressing frequencies of
their neighborhood, which are shifted by approximately a few megahertz. In this case,
ions would experience an AC-stark shift, resulting in a systematic error in the detuning
of the addressing frequencies. We should investigate this matter in the future. This
effect could be one of the limitations of our quantum gate fidelity.
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7
Investigation of Two-Qubit Gates

A two-qubit controlled-NOT gate is an elementary gate for quantum algorithms [168].
To perform a complex quantum algorithm, we must have good two-qubit gates because,
in general, a quantum algorithm requires a large number of high-fidelity two-qubit
gates to be able to perform real-world operations. This also applies to preparing
multi-partite entangled states. Thus, the infidelity of these quantum gates limits the
number of coherent operations. In our MAGIC scheme, the two-qubit entangled gate
between two nearest neighbors had a fidelity of 0.63(3) [83], which could be achieved
with the help of dynamical decoupling (DD) pulse sequences. However, the qubit
coherence time extended using DD sequences was still too short compared with the
two-qubit gate time, by more than an order of magnitude. The previous achievement
was just barely enough to prove the existence of quantum entanglement but not to
perform a complicated quantum algorithm. In this chapter, the improved fidelity of
the two-qubit gate is shown. The limitations associated with the use of dynamical
decoupling pulse sequences is also considered here.

7.1 Two-Ion Measurement Methods

7.1.1 J-Coupling Measurement

From the Hamiltonian in equation (2.46), the time evolution operator in a rotating
frame with an RF field is described by

Uzz(t) = eJkltσ
(k)
z σ

(l)
z /2. (7.1)

The J-coupling measurement technique is fully explained in Ref. [96], which also covers
systems with more than two qubits. For a two-ion system, J12 can be determined by a
Ramsey-type measurement, as shown in Fig. 7.1. Two Doppler-cooled ions are further
cooled by sideband cooling and then initialized in the state |0〉(1)|0〉(2). One of the
ions is prepared in a superposition state by a π/2-pulse at the respective resonance
frequency. At the same time, the other ion, acting as a control qubit, is either left in the
state |0〉 or prepared in the state |1〉 by a π-pulse. Then, the qubits evolve according
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Figure 7.1: The experimental sequence of a J-coupling experiment. A superposition
state for qubit 2 is initialized by a π/2-pulse from the state |0〉. Qubit 1 is either left in the
state |0〉 or prepared in the state |1〉 by a π-pulse. During a conditional evolution time T ,
qubit 2 evolves according to equation (7.1). Each qubit is also protected by a DD sequence
applied simultaneously. Another π/2-pulse is applied to qubit 2 with the varying phase ϕ. The
Ramsey fringe can be observed, and the J-coupling can be deduced from the obtained phase
via ∆ϕ = |Jτ |.

to equation (7.1) for an evolution time τ . That is, the ion in the superposition state
will precess, conditioned on the state of the other ion, whereas the ion in either the
|0〉 or |1〉 state will not change its state. During this evolution time, both ions can
be protected against noise using a DD sequence applied to each ion simultaneously.
Finally, a π/2-pulse with a varying phase is applied to the ion in the superposition
to acquire Ramsey fringes. The obtained phase, conditioned on the state of the other
ion for a given evolution time, can be used to deduce the J-coupling from ∆ϕ = |Jτ |.
The experimental results will be shown later; see Fig. 7.9.

7.1.2 Bell-State Generation

Before the Bell state |Φ+〉 can be realized, conditional dynamics for a two-qubit system
must be performed. This is a CNOT gate, in which a target qubit is inverted only
when the control qubit is in state |1〉. In the MAGIC scheme, the evolution operator
from equation (7.1) can be rewritten as

Uzz(ϑ) = eϑσ
(k)
z σ

(l)
z /2, (7.2)

where ϑ = |Jklt|. Therefore, a two-qubit CNOT gate must fulfill the phase shift as
[27]

ϑ = |J12τCNOT| =
π

2
⇒ τCNOT =

π

2|J12|
. (7.3)
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7.1 Two-Ion Measurement Methods

Thus, a CNOT gate (U
(1,2)
CNOT,AK), where qubit 1 is a control qubit and qubit 2 is a

target qubit, can be expressed as [27]

U
(1,2)
CNOT,AK = R(2)

(

π

2
,
3π

2

)

Uzz

(π

2

)

R(2)
(π

2
,0
)

. (7.4)

However, we cannot directly implement this expression, as the qubit coherence time
does not exceed the gate time by orders of magnitude. Hence, a DD sequence with N
π-pulses is interleaved with the CNOT gate as

U
(1,2)
CNOT,AK =R(2)

(

π

2
,
3π

2

)

DD(1,2)R(2)
(π

2
,0
)

, (7.5)

DD(1,2) =
[

Uzz

( π

4N

)

R(1,2) (π,ϕN ) · · ·R(1,2) (π,ϕ2)Uzz

( π

2N

)

R(1,2) (π,ϕ1)Uzz

( π

4N

)

]N
.

(7.6)

The CNOT gate in a two-ion system using the MAGIC scheme was first demonstrated
in Ref. [27] and is discussed in detail in Ref. [83].

Even though the result for the two-state probabilities of the mentioned CNOT gate is
correct as expected, the phase relation between two qubits is not correct, which can
be seen from equation (7.4) (with a shifted global phase) as

U
∗(1,2)
CNOT = exp

(

−i
π

4

)

U
(1,2)
CNOT,AK, (7.7)

=









1 0 0 0
0 −i 0 0
0 0 0 1
0 0 +i 0









. (7.8)

Here, the wrong phase relation between two qubits can be fixed by adding a rotation
around the z-axis. Therefore, the correct implementation follows

U
(1,2)
CNOT = e(−iπ/4)R(2)

(

π

2
,
3π

2

)

R(2)
z

(−π
2

)

R(1)
z

(

+π

2

)

Uzz

(π

2

)

R(2)
(π

2
,
π

2

)

, (7.9)

= e(−iπ/4)Ȳ (2)R(2)
z

(−π
2

)

R(1)
z

(

+π

2

)

Uzz

(π

2

)

Y (2), (7.10)

=









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









. (7.11)
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Figure 7.2: The experimental sequence to create and characterize a Bell state in a
two-qubit system. Both qubits are initialized in the state |00〉. A Hadamard gate is applied
to qubit 1, indicated by the RF pulses in the dot-dash parentheses. The rest of the sequence
is the CNOT gate, as expressed in equation (7.9). During a conditional evolution time T ,
qubit 2 evolves according to equation (7.2). Each qubit is protected by a DD sequence applied
simultaneously. Then, state-selective detection is performed. Here, the final state is expected

to be |00〉 UBell−−−→ 1/
√
2(|00〉+ |11〉). In addition, the parity oscillation signal can be measured

by adding another π/2-pulse applied to each qubit with a varying phase ϕ, denoted by gray
pulses.

Then, the two-qubit Bell gate is expressed as

UBell = U
(1,2)
CNOT U

(1)
H , (7.12)

= e(−iπ/4)Ȳ (2)R(2)
z

(−π
2

)

R(1)
z

(

+π

2

)

Uzz

(π

2

)

Y (2) U
(1)
H , (7.13)

where a Hadamard gate UH is described in equation (2.11). This correction is im-
portant when the Bell gate or CNOT gate acts as a subroutine for another quantum
algorithm.

The experimental scheme to prove the existence of a Bell state is shown in Fig. 7.2. The

routines discussed before are thought to yield the state |00〉 UBell−−−→ 1/
√
2(|00〉 + |11〉),

where state-selective detection is performed for each qubit. This results in the non-
classical correlation of two-state probabilities on a computational basis, P00, P01, P10,
and P11. The parity is given by [174]

Πz = P00 + P11 − (P01 + P10). (7.14)
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When another π/2-pulse with a varying phase ϕ is applied to each qubit (depicted in
gray in Fig. 7.2), this results in non-classical correlations on another basis. The parity
oscillates as

Π(ϕ) = V cos(2ϕ), (7.15)

where V represents the parity oscillation amplitude. Therefore, the Bell-state fidelity
is calculated as [174]

FBell =
Πz + 1

4
+
V

2
. (7.16)

The experimental result will be shown in Fig. 7.11.

7.2 Coherent Operations and Dynamical Decoupling

Pulses

When a DD pulse sequence is used in a coherent operation, the DD pulse sequence can
act as a selective frequency filter. This is due to equidistant pulses as a characteristic
of DD pulse sequences. This means if noise at certain frequencies matches at certain
evolution times, then the contrast shows a reduction; see Fig. 7.3. The experiment is
performed as a Ramsey experiment with the final π/2-pulse at the phase 0, in which
the excitation probability is expected to be unity. On the magnetic field-insensitive
transition (π-transition), the excitation probability of the Ramsey experiment, which
interleaves the free evolution time with a KDD pulse sequence of 100 π-pulses, does
not show a reduced probability. In contrast, the Ramsey experiment on the magnetic
field-sensitive transition (σ+-transition), interleaved with 10 sets of a UR-10 sequence
(100 π-pulses), shows a significant reduction at 1.2ms. In addition, the reduction
does not depend on the DD sequence. DD sequences using CPMG-XY, CDD-3, KDD,
and UR sequences have been tested, and there is always some reduction1 when the
experiment is performed on either the σ+-transition or on the σ−-transition.

To further investigate the reduced excitation probability, another Ramsey experiment
with a fixed evolution time and varying phase of the final π/2-pulse is performed, as
shown in Fig. 7.4. During the free evolution time, a DD pulse sequence is incorpo-
rated using 10 sets of a UR-10 sequence. Fig. 7.4a shows the reduction of the excitation
probability in the Ramsey experiment at approximately 0.2 and 0.4ms. Taking the
evolution time of 0.3947ms, where the excitation is reduced, to another Ramsey exper-
iment, shown in Fig. 7.4b, the Ramsey experiment is measured by varying the phase
of the final π/2-pulse. The Ramsey contrast vanishes. When an evolution time that

1The reduction is not always present at 1.2ms, depending on the number of pulses applied in a DD
sequence.
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(a) π-transition

0 1 2 3

Free evolution time (ms)

0

0.5

1

E
x

ci
ta

ti
o

n
 p

ro
b

ab
il

it
y

(b) σ+-transition

Figure 7.3: Ramsey experiment using a single ion with DD pulses. The Ramsey
experiment has a final π/2-pulse with phase 0 to obtain the final population at the state
|1〉. (a) The Ramsey experiment is performed on the magnetic field-insensitive transition
(π-transition). During the free evolution time, the DD pulses are applied using the KDD
sequence of 100 π-pulses. The Rabi frequency in this experiment is at 2π · 77.58 kHz. The
error bars represent statistical errors within one standard deviation for 150 repetitions. (b)
The Ramsey experiment is performed on the magnetic field-sensitive transition (σ+-transition)
with 10 sets of a UR-10 sequence (100 π-pulses). The Rabi frequency in this experiment is at
2π · 62.29 kHz. The error bars represent statistical errors within one standard deviation for 50
repetitions. Some magnetic field noise components cannot be compensated for, indicated by
the reduction of the excitation probability.
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Figure 7.4: Ramsey experiment focusing on the evolution time of the reduced
excitation probability. (a) The Ramsey experiment is performed using 10 sets of a UR-10
pulse sequence. The Rabi frequency of 2π · 60.22 kHz is applied. The error bars represent
statistical errors within one standard deviation for 75 repetitions. There are two significant
reductions, at approximately 0.2 and 0.4ms. The dashed line is marked at 0.3947ms, where
the excitation probability drops to 0.5. (b) The Ramsey experiment is measured using a final
π/2-pulse with varying phase. In this experiment, the free evolution time is fixed at 0.3947ms,
in which 10 sets of a UR-10 pulse sequence are interleaved. The error bars represent statistical
errors within one standard deviation for 100 repetitions. The dashed line corresponds to an
expected fringe. Thus, this result indicates that the Ramsey oscillation is completely destroyed.
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does not show a reduction is chosen, the Ramsey contrast with the varying phase is
comparable to the excitation probability in Fig. 7.4a. This indicates a magnetic noise
component corresponding to the time between π-pulses, which is responsible for the
qubit dephasing.

The interpretation of information from the reduction of the Ramsey contrast can be
described by a quantum metrology feature called a quantum lock-in amplifier. In
the context of a quantum lock-in amplifier [170], the probe phase is mixed with an
oscillating signal, assuming the probe is coupled both to a signal S(t) and noise N(t)
by

Hint =M(t)
σz
2
, (7.17)

where M(t) = S(t)+N(t) and σj represent the Pauli matrices. For a lock-in measure-
ment, the signal is modulated as

S(t) = S0 cos (2πfm + ϕ), (7.18)

where fm is a frequency in noise N(t) and ϕ is a constant phase. When the probe
phase is mixed with an oscillating signal, then

H =
1

2
(M(t)σz +Ω(t)σy) . (7.19)

When Ω(t) is applied periodically and synchronized with the signal S(t), then the phase
is accumulated to coherently add up the signal. The random phase is also accumulated,
but noise N(t) is averaged away. The probe is prepared in a superposition using a
π/2-pulse, which is characterized by the probability of finding the probe in the excited
state P|1〉 and the superposition relative phase φlock−in. The quantum lock-in signal is
measured at time T by

φlock−in =
1

~

∫ T

0
dtM(t) cos

(

1

~

∫ t

0
dt′Ω(t′)

)

, (7.20)

1− P|1〉 =
1

~

∫ T

0
dtM(t) sin

(

1

~

∫ t

0
dt′Ω(t′)

)

. (7.21)

Here, ~ represents the reduced Planck’s constant. A train of N π-pulses with equidis-
tant τarm is applied. Ideally,

Ω(t) =

N
∑

n=1

δ(t− nτ)π, (7.22)

where δ(t) denotes the Dirac delta function; hence, the cosine term in equation (7.20)
becomes a square waveform with a period of 2τarm, and the sine term in equation (7.21)
vanishes. Thus, the measured signal is modulated by a frequency fm = 1/2τarm and
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Figure 7.5: Ramsey contrast versus DD-pulse band-pass frequency. (a) A replot
of Fig. 7.3b in terms of the noise spectrum corresponding to the π-pulse interval in a DD
sequence. The significant magnetic noise components are at 12.9 and 21.5 kHz. (b) A replot
of Fig. 7.4a. The significant magnetic noise components are at 30.5 and ∼ 34 kHz. The lines
are to guide the eye.

is in phase with the ion oscillation, ϕ = 0.

Generally, our Ramsey experiments are depicted by a plot of the excitation probability
against the free evolution time, excluding the duration of RF pulses. From Fig. 7.3b,
we correct the time of RF pulses and replot to the quantum lock-in signal, as shown in
Fig. 7.5a. The Ramsey contrast reduction at 1.2ms, as mentioned before, corresponds
to the frequency component at 21.5 kHz. A replot of Fig. 7.4a is shown in Fig. 7.5b.
The Ramsey contrast reduction at 0.3947ms corresponds to the frequency component
at 30.5 kHz. One might notice that even these two plots have some overlapping of
measured frequencies, but Fig. 7.5a does not show the component of ∼ 30 kHz as in
Fig. 7.5b. These two data sets were measured on two different days, which might be a
reason for the different noise components. However, within a single day, we also obtain
different noise components. Therefore, this indicates the noise environment changes
over time.

To achieve good fidelity when realizing a two-qubit gate, we should consider the π-
pulse interval and the width of a π-pulse to avoid the noise spectrum with respect to
the two-qubit gate time. A straightforward way to accomplish this is using a two-qubit
gate time, which corresponds to the J-coupling between two ions, and changing the
number of pulses during a DD sequence. Furthermore, one might attempt to determine
and eliminate those noise components to be able to perform better experiments.
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7.3 Dynamical Decoupling Pulses and Composite Pulses

When a DD pulse sequence is applied, a single pulse infidelity can become a major
concern. This is because there are a large number of π-pulses applied in a sequence,
and errors can accumulate [99]. A practical method to improve a single pulse error for
systematic error control is to apply composite pulses [175]. In this section, MATLAB
numerical simulations are presented, assuming pulse length errors and qubit detuning
frequency errors. The MATLAB scripts can be found in appendices D.2, D.3, and
D.4.

The simulation is based on two experimental sequences: a Ramsey measurement and
a Bell-state sequence. The examined pulse length errors are presented in terms of a
relative pulse length error ∆L/L0. Similarly, the examined qubit detuning frequency
errors are presented in term of a relative detuning with respect to a Rabi frequency
δ/Ω. Here, the simulation is shown for both errors at 25%. A typical pulse length
error in the current setup is 0.15%, and a typical detuning error is 0.8%. Previously
in [96], a typical pulse length error in the experimental setup was less than 5%, and a
typical detuning error was 20%.

In a Ramsey measurement, as described in section 4.3.3, the simulation starts with a
single qubit in the state |0〉. Then, the state is brought to 1/

√
2(|0〉 + |1〉) by a π/2-

pulse. At this point, the sequence either does nothing or takes a DD pulse sequence.
Here, we provide an example of a DD pulse sequence of 10 sets of a UR-14 sequence,
as mentioned in section 4.3.5. The ending pulse is also another π/2-pulse with a phase
that can take the state population to unity. To overcome single pulse errors, composite
pulses called “Broadband-1 pulse” (BB1) [176] are employed in the simulation. The
BB1 sequence can replace an arbitrary pulse, making it less sensitive to pulse length
error and detuning error.

The BB1 sequence consists of the error-correcting sequence W as

W (φ0) = R(π,φ1 + φ0)R(2π,φ2 + φ0)R(π,φ1 + φ0). (7.23)

Here, the phases of the single qubit rotation are chosen as

φ1 = ± arccos

(

− θ

4π

)

, (7.24)

φ2 = 3φ1, (7.25)

and φ0 represents the phase of the initial rotation. Therefore, the overall sequence
follows

RBB1(θ,φ0) = R(θ/2,φ0)W (φ0)R(θ/2,φ0). (7.26)
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(a) rectangular π
2 pulse
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(b) BB1 π
2 pulse
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(c) rectangular π pulse
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(d) BB1 π pulse

Figure 7.6: Numerical simulation of a single pulse with systematic control errors.
The contour plots show the single pulse fidelity expected for either a π

2 pulse or a π pulse.
∆L/L0 denotes a relative pulse length error. δ/Ω denotes a relative detuning with respect to
the Rabi frequency. (a) A rectangular π

2 pulse. (b) A BB1 π
2 pulse. (c) A rectangular π pulse.

(d) A BB1 π pulse. BB1 pulses show a broader area of 0.99 fidelity, including the pulse length
error and the detuning error.
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(a) Without any pulse
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(b) DD pulse sequence
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(c) All BB1 pulses
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(d) BB1 pulses and a DD rectangular-pulse
sequence

Figure 7.7: Numerical simulation of a Ramsey experimental sequence with sys-
tematic control errors. The contour plots show the simulated Ramsey experiment fidelity
expected for the final state to be in the state |1〉. ∆L/L0 denotes a relative pulse length error.
δ/Ω denotes a relative detuning with respect to a Rabi frequency. Here, these simulations do
not take the qubit dephasing into account to study the error contributions of the pulse length
error and the detuning error. (a) There is no pulse during a free evolution time. (b) The UR-14
sequence is repeated 10 times as a DD pulse sequence during a free evolution time. The area
of 0.99 fidelity is the same for (a) and (b). (c) All pulses as in (b) are replaced by composite
pulses called BB1. The Ramsey experimental fidelity becomes more sensitive to the errors. (d)
BB1 pulses are applied to the pulses that are not a part of the DD sequence, and the UR-14
sequence uses rectangular pulses. Here, the area of 0.99 fidelity is broadened in both errors.
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7 Investigation of Two-Qubit Gates

The simulations of the single-pulse fidelity of either the π
2 pulse or π pulse are shown in

Fig. 7.6. When the BB1 sequence is employed, the pulse length error and the detuning
error are less sensitive to both errors, as shown by the area of 0.99 fidelity.

Now, the composite pulses are applied to a Ramsey measurement sequence. In Fig. 7.7,
the simulation results for Ramsey measurement sequences with/without a composite
pulse sequence are shown. In this consideration, the qubit dephasing is not taken into
account. Therefore, the error contributions are only the pulse length error and the
detuning error. Fig. 7.7a and Fig. 7.7b show the Ramsey sequence fidelity plots with
and without 10 sets of a UR-14 sequence, respectively. All pulses are still rectangular
pulses. The fidelity plots between these two cases show similarity because the DD
sequence does not change the error in the Ramsey sequence. In Fig. 7.7c, all pulses
are replaced by BB1 pulses. The Ramsey sequence becomes more sensitive to both
errors. The sequence fidelity can change markedly when the pulse length error is
present. In the last case, shown in Fig. 7.7d, the BB1 sequence is only applied for the
pulses that are not a part of the DD sequence, while the DD pulse sequence is still
rectangular pulses. This method provides a benefit, which we can see by the larger
area of 0.99 fidelity. Therefore, to directly apply the BB1 sequence to all coherent
control pulses, it does not help to compensate for systematic errors such as the pulse
length error and the detuning error. In contrast, the BB1 sequence can compensate
for the errors when the composite pulses are not a part of the DD pulse sequence.

A Bell-state sequence, shown in Fig. 7.2, is also studied to understand the advantage
of using composite pulses. The simulation results are shown in Fig. 7.8 for a Bell-state
sequence with/without the BB1 sequence. In a method similar to the simulation of the
Ramsey measurement, the qubit dephasing is not taken into account. Fig. 7.8a shows
the Bell-state fidelity plot without any protection pulses and using only rectangular
pulses. The fidelity is less sensitive to the pulse length error than to the detuning
error. When 10 rectangular pulse sets of a UR-14 sequence are applied to the Bell-
state sequence, shown in Fig. 7.8b, the fidelity plot does not change significantly. This
result indicates that the DD pulse sequence does not change the error in the Bell-state
sequence. In Fig. 7.8c, all pulses are replaced by BB1 pulses, which leads the Bell-state
sequence to be more sensitive to both errors. In the last case, the BB1 sequence is
removed from the DD pulse sequence; see Fig. 7.8d. The Bell-state sequence does not
have any advantage, as shown in the similar case of the Ramsey experiment.

In summary, the composite pulse sequence does not always provide better error com-
pensation in term of the systematic errors from the pulse length error and the detuning
error. In particular, when it is applied to a dynamical decoupling pulse sequence, it
can cause an experimental sequence to be more sensitive to pulse imperfections.
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(a) Without any pulse
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(b) DD pulse sequence
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(c) All BB1 pulses
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(d) BB1 pulses and a DD rectangular-pulse
sequence

Figure 7.8: Numerical simulation of a Bell-state sequence with systematic control
errors. The contour plots show the Bell-state fidelity expected for the final state to be in the
state 1√

2
(|00〉 + |11〉). ∆L/L0 denotes a relative pulse length error. δ/Ω denotes a relative

detuning with respect to the Rabi frequency. Here, these simulations do not take the qubit
dephasing into account. (a) There is no pulse during a conditional evolution time. (b) The
UR-14 sequence is repeated 10 times as a DD pulse sequence during a conditional evolution
time. The area of 0.99 fidelity is approximately the same for (a) and (b). (c) All pulses in (b)
are replaced by a BB1 sequence. The Bell-state fidelity becomes more sensitive to the errors.
There are only small high-fidelity areas. (d) BB1 pulses are applied to all pulses that are not
a part of the DD sequence, and the UR-14 sequence uses rectangular pulses. Here, the area of
0.99 fidelity is not significant compared with (a) and (b).
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7.4 Two-Ion Coherent Dynamics
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Figure 7.9: J-coupling of a two-ion system. The first ion acts as a control qubit, while
the second ion acts as a target qubit. Each ion is protected simultaneously against dephasing
by 10 sets of a UR-14 sequence. The RF powers are adjusted to have equal Rabi frequencies
for the two ions. The axial trap frequency is 2π · 122.99 kHz. The plot on the left is the
measured phase of the target qubit. The red data represent the control qubit in the state |0〉,
and the blue data are for the state |1〉. The slopes of the linear fits show a J-coupling constant

Jtwo ions/2π = 48(2)Hz corresponding to a CNOT gate time τCNOT of 4.3(9)ms. The error
bars represent statistical errors within one standard deviation for 60 repetitions. The right
figure is for visualization of the measured phase of the target qubit in a phase diagram.

From section 7.2, the qubit cannot be protected completely because a DD pulse se-
quence can act as a band-pass filter, allowing magnetic noise to destroy coherent states.
Now, the coupling constant for a two-ion system is remeasured while avoiding the
noise components. The method to measure the coupling constant is described in sec-
tion 7.1.1. Sideband cooling is also applied to keep the average phonon 〈n〉 < 10.
In Fig. 7.9, the plot shows the measured phase of the target qubit. Each ion is
protected simultaneously against dephasing by 10 sets of a UR-14 sequence. The
slopes of the linear fits show a J-coupling constant J two ions

12 /2π = 48(2)Hz corre-
sponding to a CNOT gate time τCNOT of 4.3(9)ms at an axial trap frequency of
2π · 122.99 kHz. The J-coupling constant can be theoretically calculated by equa-
tion (2.47) as JTheory

12 /2π = 44.85Hz at a magnetic-field gradient of 19.105T/m. This
means that our measurement is deviated by 1.6 standard deviations. The fit also shows
offsets of the phase shift for both control states. The offsets are due to the use of the
DD pulse sequence.

By obtaining the 2-ion J-coupling constant, the CNOT gate can be measured. The
control qubit is prepared in either the state |0〉C or |1〉C , and the target qubit is
prepared in the state |0〉T . The CNOT gate can be implemented as described in
equation (7.9), where the second ion acts as the target qubit. The conditional evolution
Uzz(

π
2 ), corresponding to the CNOT gate time τCNOT of 4.3(9)ms, is protected using
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(a) Control qubit
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(b) Target qubit

Figure 7.10: Measurement of the CNOT sequence of a two-ion system. The im-
plementation is according to equation (7.9) by preparing the control qubit in either the state
|0〉 (red) or |1〉 (blue) and the target qubit in the state |0〉. Sideband cooling is applied for
80ms in the center-of-mass mode. The conditional evolution time is 4.34ms. During this
time, both qubits are protected by 10 sets of a UR-14 sequence, simultaneously. (a) The final
excitation probability of the control qubit is at 0.04(2) and 0.95(3). (b) The target qubit is
probed by an additional π/2-pulse with a variable phase φ. The red plot shows a contrast
of 0.891(19) and a phase of (0.489(10))π. The blue plot shows a contrast of 0.900(19) and a
phase of (-0.497(10))π. The error bars represent statistical errors within one standard devia-
tion for 120 repetitions. That is, the average fidelity of a CNOT gate with a two-ion system is
FCNOT = 0.85(4), excluding SPAM errors.

10 sets of a UR-14 sequence applied to both ions simultaneously. After the CNOT gate,
the target qubit is further rotated by a probe pulse, a π/2-pulse with varying phase.
The control qubit does not undergo an additional pulse. With all considerations before
this section, the improved CNOT is measured and shown in Fig. 7.10. The excitation
probabilities of the control qubit do not reach either completely 0 or 1, possibly because
the single-qubit pulse error accumulates over 140 π-pulses. When the control stays in
the state |0〉, the measured phase of the probe pulse on the target qubit is similar to
that with no conditional evolution. When the control stays in the state |1〉, the phase
of the target qubit is flipped by a phase π. The accumulated fidelity is given by the

product of the control (F
(1)
C ) and target (F

(2)
T ) qubit fidelity,

F
(1)
C = C1, (7.27)

F
(2)
T = C2 cos (φ− ξ), (7.28)

F
(1,2)
CNOT = F

(1)
C × F

(2)
T , (7.29)

where Ci represents the contrast of the excitation probability, φ represents the mea-
sured phase of the analyzed π/2-pulse, and ξ represents the expected phase from the
analyzed pulse, which is either π

2 or −π
2 . That is, in our current experiment, the
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7 Investigation of Two-Qubit Gates

average fidelity of a CNOT gate with a two-ion system is FCNOT = 0.83(4). The av-
erage fidelity excluding SPAM errors is FCNOT = 0.85(4). The previous measurement
with a two-ion system was FCNOT,CP = 0.59(5) [96]. Using two neighboring ions in a
three-ion crystal, the fidelity was FCNOT,AK = 0.64(5) [27]. The previous two fidelities
were reported including SPAM errors. These two fidelities are comparable, considering
their errors.

Furthermore, the Bell state is also prepared and measured. The Bell state can be
prepared through a Hadamard gate and a CNOT gate, as described in section 7.1.2.
The improved Bell state is shown in Fig. 7.11. Using equation (7.16), the Bell-state
creation in a two-ion system is quantified by an average fidelity of FBell = 0.935(19).
The fidelity without SPAM error is FBell = 0.95(3). The old measurements gave
fidelities of 0.64(4) [99], 0.59(7) [96], and 0.63(3) [83]. All old results were reported
including SPAM errors. The observed Bell-state fidelity exceeds the Bell-state limit
of 0.5, proving the existence of entanglement [174]. Nevertheless, the fidelity still does
not reach unity. One might notice here that the Bell-state fidelity is slightly better
than the CNOT fidelity given in the previous paragraph. This is due to the fact that
the measurements were performed on two different days, which may have resulted in
different noise contributions. These noise contributions are not completely negated by
the DD-pulse sequence, resulting in the non-unity fidelity. In addition, the error of
π-pulses can also limit the fidelity because of the accumulation of several pulses.

Additionally, the Bell-state fidelity is also studied with respect to the motional exci-
tation of the two-ion system. The Bell state is prepared by a method similar to that
mentioned in the previous paragraph. Dynamical decoupling pulses are also applied
to prevent qubit dephasing, using 10 sets of a UR-14 sequence. To vary the motional
excitation of the two-qubit system, the SBC is applied for different times. For each
SBC time, the average motional excitation is determined by the method presented
in section 5.2. The result is shown in Fig. 7.12. This experimental result suggests
that the Bell-state fidelity does not depend on the motional excitation of the two-ion
system.

Using the achievement of the Bell-state fidelity, we have extended our results to a
SWAP gate. The SWAP gate consists of three consecutive CNOT gates, as follows.

× • •
=

× •

To demonstrate the SWAP gate, two ions are trapped and prepared in different initial
states, |0, + i〉 and |0,+〉. The state |0, + i〉 is prepared by applying a single qubit
rotation R2(π/2,0) and the state |0,+〉 is prepared by a Hadamard gate on the second
qubit, where the first qubit is left in the state |0〉. The final excitation probabili-
ties are measured by an additional π/2-pulse with varying phase on the first qubit.
The oscillation can be expected from the initially prepared state of the second qubit.
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Figure 7.11: Measurement of the Bell-state sequence of a two-ion system. This
implementation uses the previous CNOT gate and a Hadamard gate on the control qubit to
achieve a Bell state, |Φ+〉 = 1/

√
2(|00〉 + |11〉). Sideband cooling is applied on both stretch

(2π · 211.61 kHz) and center-of-mass (2π · 118.7 kHz) modes for 100ms each. The gate time is
4.24ms interleaved with 14 sets of a UR-14 sequence each for both ions, simultaneously. (a)
The final state probability. (b) Applying another π/2-pulse with varying phase, the parity
signal can be measured. The Bell-state fidelity is extracted from the final probability and the
fit of the parity signal to be F = 0.95(3). For this particular result, the parity phase is not
correct because of the lack of Rz(θ) in the experimental sequence. The error bars represent
statistical errors within one standard deviation for 84 repetitions.
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Figure 7.12: Bell-state fidelity and motional excitation. The Bell state is prepared
by a method similar to that mentioned earlier. The difference is the SBC time applied to the
SBC process. For each SBC time, the average motional excitation is determined by the method
presented in section 5.2. This result suggests that the Bell-state fidelity does not depend on
the motional excitation of the two-ion system. The horizontal and vertical error bars represent
statistical errors within one standard deviation for 60 and 160 repetitions, respectively. The
dashed line is to guide the eye by a linear fit.
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(a) Qubit 1
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(b) Qubit 2

Figure 7.13: Realization of a SWAP gate in a two-ion system. The implementation
takes three consecutive CNOT gates by preparing the qubits in either the state |0,+ i〉 (blue)
or |0,+〉 (red). The state |0, + i〉 is prepared by applying a single qubit rotation R2(π/2,0),
and the state |0,+〉 is prepared by a Hadamard gate on the second qubit, where the first qubit
is left in the state |0〉. Sideband cooling is applied in both stretch (2π · 211 kHz) and center-
of-mass (2π · 121 kHz) modes for 50ms and 100ms, respectively. The conditional evolution
time of each CNOT is 4.30ms. During this time, both qubits are protected by 10 sets of a
UR-10 sequence, simultaneously. Then, the total conditional evolution time is 12.9ms using
300 DD-pulses. (a) The final excitation probability of qubit1 with a π/2 probe pulse of the
blue data, fitted by a solid line, is a contrast of 0.83(3) with a phase of (-0.524(19))π. The
red data give a contrast of 0.74(4) with a phase of (-0.002(21))π. The dashed lines show the
expected oscillations of the given initial states. (b) The final excitation probabilities of qubit2,
where the qubit is prepared in two different superposition states, are measured (without an
additional π/2-pulse) as 0.08(3) (blue) and 0.08(4) (red). The error bars represent statistical
errors within one standard deviation for 99 repetitions.

Fig. 7.13 shows the measured results of a SWAP gate. From these two initial states,
the SWAP gate fidelities are FSWAP = 0.70(8) and 0.65(9), by taking two-qubit gate
fidelity. When the SPAM errors are removed, the SWAP gate fidelities are FSWAP =
0.72(8) and 0.67(8). These two fidelities correspond to a CNOT gate fidelity FCNOT

between 0.87(6) to 0.90(5). They are also comparable to the CNOT fidelity within the
same error shown in the previous three paragraphs.

The results for the improved Bell state and the SWAP gate lead us to more complex
quantum algorithms, which will be presented in chapter 8 and 9. Nevertheless, the
high-fidelity gate also needs to be considered further.
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7.5 Detection Error

7.5 Detection Error

A qubit is interpreted to be in either a state |0〉 or |1〉 through the state-selective flu-
orescence detection of an ion in either of the two hyperfine states. When an EMCCD
camera (or a detector) perceives fluorescence by probing the ion with a detection laser,
we interpret the ion to be in the bright state or the excited state of the qubit transition,
which means the qubit is in the state |1〉. Conversely, when an EMCCD camera does
not perceive fluorescence, we interpret the ion to be in the dark state or the ground
state. In practice, even in the dark state, an EMCCD camera can still perceive some
background scattering light, which may come from reflections of electrodes or the vac-
uum recipient. In addition, the bright state of the 171Yb+ hyperfine state is not bright
enough to confidently distinguish from the dark state with the current light collection
system. The fluorescence histograms of the dark and bright states overlap. Formerly,
in [96], the single threshold method was used to interpret experimental results. By
introducing the double threshold method, as described in section 4.2.5, the two-qubit
gate fidelity is improved by discarding the ambiguous events in the overlapping fluores-
cence histogram; see Fig. 7.14. In this example, when the single threshold method is
used, the deduced fidelity is only 0.847(16), while the double threshold method gives
a fidelity of 0.935(19) (0.95(3) excluding SPAM error). Therefore, it is important
to further improve the light collection efficiency to be able to correctly interpret the
experimental results.
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Figure 7.14: Interpretation of a Bell state using the single/double threshold
method. This result is the same as that shown in Fig. 7.11, analyzed by the single (blue) or
double (red) threshold method. The ambiguous part of the detection fluorescence can reduce
the Bell-state fidelity from 0.935(19) (red) to 0.847(16) (blue). After correcting the SPAM
error, the red plot has a Bell-state fidelity of 0.95(3).
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7.6 Summary of Results and Outlook

In this chapter, the improved two-qubit gate fidelity is shown. Because the qubit
dephasing time of the magnetic field-sensitive state, which is used for coherent opera-
tions, is shorter than as of the magnetic field-insensitive state by more than an order
of magnitude, the dynamical decoupling pulse sequence is employed to protect against
qubit dephasing. The DD pulse scheme can help against magnetic noise. However, DD
pulse sequences can act as a band-pass filter to let some frequency pass with respect to
their pulse interval. Therefore, the DD pulse sequence needs to be adjusted to avoid
frequency components of magnetic noise, which can be different for each laboratory.
In addition, the number of pulses cannot be too high because the pulse error accumu-
lates to degrade the quantum gate fidelity. The compensation of the pulse error is not
just simply employing the composite pulses in a DD sequence, as shown in the simula-
tions. Moreover, the motional excitation of the two-ion system does not significantly
affect the two-qubit gate fidelity. By implementing the double threshold method, the
data analysis shows the Bell-state fidelity improved by more than 5%. Taking all
these results into consideration, the Bell-state fidelity is improved from 0.63(3) [83] to
0.935(19). After correcting the SPAM error, our current Bell-state fidelity is 0.95(3).

Even though we have improved the two-qubit gate fidelity to the 90%-regime, this is
still not enough. We still have a great deal of room to improve toward high-fidelity
gates, which have been achieved using either laser [44, 45] or RF [35, 177] pulses.
High-fidelity gates are necessary to perform more complex tasks, such as complicated
quantum algorithms. One possibility is to employ the dressed state together with
a magnetic-field gradient, which has been demonstrated to realize a two-qubit gate
fidelity of 0.985(12) [60]. In addition, an optimum control technique can be considered
to integrate the robust pulse and the DD pulse sequence.
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Process

In the last few decades, computing power has drastically increased. The increasing
computing power resulting from hardware advancements allows us to unlock new ap-
plications that require high computing power to process massive amounts of data,
such as in the field of artificial intelligence [178]. Artificial intelligence technology is
increasing its impact on our current society. A robot or a machine can learn to asso-
ciate with some task by using massive amounts of data to train itself. By analyzing
the data, machines are able to recognize patterns or detect abnormalities. The ma-
chines can be as good as humans at, for example, predicting heart attacks [179] and
diagnosing pneumonia from a chest X-ray image [180]. A machine can also achieve
superhuman efficiency, currently demonstrated by the game of Go [181, 182]. With a
time limitation, an autonomous machine requires sufficient computing power to be able
to make a decision fast enough to respond to a new situation. One method to speed
up the decision-making algorithm underlying autonomous machines is to implement a
quantum algorithm using a quantum processor.

In this chapter, a proof-of-principle demonstration of the speeding up of the decision-
making process using a small-scale quantum processor is presented. This demonstra-
tion highlights the integration between artificial intelligence and quantum systems.
This work has been published in Ref. [69].

8.1 Artificial Intelligence

Artificial intelligence (AI) is a field of study in which machines perform similar to in-
telligent beings. These include intellectual processes such as the ability to learn from
past experience, to reason, or to discover a meaning. Machine learning is one of the
core parts of AI. Machines can learn to associate with some task under supervision
(supervised learning) [183]. Alternatively, machines can also learn without supervision
by acquiring pattern identification ability with massive input data streams (unsuper-
vised learning) [183]. Furthermore, machines can learn to interact with an arbitrary
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Figure 8.1: Reinforcement learning scheme. This is a typical model for an active learning
agent. An agent wants to navigate in an environment, e.g., a maze. The agent has to be able
to perceive what the environment looks like, so the agent must be equipped with sensors. To
react back to the environment, the agent must also be equipped with actuators. To learn how
to interact with the environment, the agent needs an internal state to process decisions to
translate the sensors’ information to actions. To learn the correct movements, a reward policy
is required.

environment on their own.

In this work, we focus on autonomous learning. Autonomous learning is also called an
active learning agent. A typical model is the reinforcement-learning (RL) model [183].
The RL model consists of perceptions, actions, and rewards (see Fig. 8.1). An agent
has to have the ability to perceive the environment in which it wants to learn. The
agent also has some actuators to take actions back into the environment. To learn
how to interact with the environment, a reward scheme is implemented. The reward
scheme, for simplicity, can be binary rewards, i.e., Λ = {0, 1}. When the agent takes
actions correctly, it will gain reward points.

A general picture of autonomous learning scenarios for an agent and its environment is
repeated in steps of a perception→action→reward sequence. For each step, the agent
is triggered by a perception from its environment. In the agent’s brain, it has a process
for internal deliberation (or decision-making process) to select actions that would be
likely to gain reward points. When an action is selected, the agent will perform that
action and inspect the reward. Therefore, the agent can update its internal deliberation
process, which means the agent “learns”.

There are a number of algorithm to realize the decision-making process, for example,
Q-Learning and state-action-reward-state-action (SARSA) [183]. In the following sec-
tion, the so-called projective-simulation (PS) model, which is proposed in Projective
simulation for artificial intelligence [184], is considered.
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Figure 8.2: An illustration model of Episodic & Compositional Memory. Clips
represent the network memory node, consisting of perception clips (yellow) and action clips
(blue). The network nodes are all connected by a directed, weighted graph. A sensor triggers a
perception clip. Then, a random walk using transition probabilities between clips is executed
until hitting an action clip. pij represents the transition probability from clip i to clip j. The
corresponding action will be performed in agent’s environment through an actuator equipped
on the agent. This figure has been adapted from Ref. [184].

8.2 Projective-Simulation Model

PS is an algorithm based on stochastic processing of past experience. This algorithm
allows an agent to internally simulate future events based on its memorized events.
The central component for a PS-based agent is a particular type of network memory
called episodic & compositional memory (ECM). ECM is the memory of a collection
of events. They consist of past personal experiences that occurred at a particular
time and place. ECM can be represented by a directed1, weighted graph, as shown in
Fig. 8.2. In this work, each node of this network will be referred to as a clip. The clips
represent the basic units of memory, consisting of not only memorized perceptions and
actions but also various combinations of memorized perceptions and actions. These
correspond to episodic experiences. In a standard PS model, we can assume that
the network clip always contains clips as either individual perceptions or individual
actions. Mathematically, the ECM is described by a connection between clip i and

1A directed graph is graph of connected nodes (or vertices) in which all links (or edges) are directed
from one vertex to another.

119
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clip j via a positive weight using a stochastic matrix

P =







p11 · · · p1j
...

. . .
...

pi1 · · · pij






, (8.1)

where 0 ≤ pij ≤ 1,
∑

i pij = 1 ∀ j, and P represents the transition matrix with
transition probabilities pij between clip ci and clip cj . The clip ci contains real non-
negative probabilities. i and j are within the number of clips N ; therefore, i,j ∈
{1,2, . . . ,N}.

Once a perception is perceived by the PS agent, the clip network memory initiates a
random walk until hitting an action clip. The corresponding action will be coupled out
to the environment, obtaining a reward or not, depending on the reward rule. These
lead to an update of the N ×N matrix P by altering the probabilities, demonstrating
the learning process. The random walk, which is the elementary process of the PS, is a
well-established theoretical concept, known in randomized algorithms [185], providing
several theoretical toolboxes for designing and analyzing the model. The random walk
can further be extended to quantum walks [186], which has reported improvements
polynomially and even exponentially with respect to hitting and mixing times [187–
189].

There are different types of PS agents, in particular, PS agents based on hitting and
mixing. For the hitting PS agent, a random walk is initiated from an initial perception
clip, namely clip c1. The first step is a random walk transition to clips cj with prob-
abilities p1j . Then, the resulting distribution {p1j}j is sampled. If a sample provides
an action, i.e., if the clip ck is “hit”, this action is selected as an output; otherwise,
the walk continues on from the clip ck. An advanced PS agent based on mixing is
reflecting projective simulation (RPS) [190]. The Markov chain is first “mixed” using
an appropriate number of steps. The mixing step or the mixing time depend on the
spectral gap δ within the Markov chain P , determined by the difference between the
two largest eigenvalues of P [190, 191]. The Markov chain is mixed until the stationary
distribution is reached before taking a sample. This is the basis for the PS framework
for learning.

In the following section, we will consider an advanced version of the PS agent, the
RPS agent, in more detail.

8.3 Reflecting-Projective-Simulation Model

In this chapter, RPS agents are focused on, which are a mixing-based model for the
deliberation process. This allows a speed-up of the quantum version of RPS agents
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with respect to their classical counterparts [190]. The central objective of the RPS is
to couple actions out according to a specific distribution. The clip network of RPS
agents is structured into several sub-networks, one for each perception clip. Each
sub-network has its own transition matrix P . These matrices, in addition to being
stochastic, specify ergodic Markov chains, which provide a unique stationary distribu-
tion. Therefore, Pααα = ααα, with eigenvector ααα and eigenvalue +1. Starting from any
initial perception state, continued application of the respective P mixes the Markov
chain, leaving the network in the stationary state.

Stationary distributions over the RPS agent clip space are generated as specified by
P , as a part of the decision-making process. The matrix P is updated as the agent
learns. To ensure a desired subset of clips to be an output, additional specifiers –
flags – are used. This ensures that a desired action will be output, while maintaining
the relative probabilities of the actions. Flags or emoticon tags are defined in [184].
The flag mechanism eliminates iterated attempts of actions that did not yield rewards
in recent time-steps, which can be thought of as short-term memory. Thus, a more
efficient exploration of correct behavior can be achieved.

In the quantum version of RPS, a basis vector |i〉 in an N -dimensional Hilbert space
H represents a clip ci. In the most general case, a diffusion process, representing the
mixing step, requires two copies of the original Hilbert space. The classical objects P
and ααα are then substituted by a quantum walk operator and a quantum state on the
doubled space H⊗H. The quantum walk operator, called the Szegedy walk operator
[191, 192], is a unitary operator W (P ). The quantum state |α′〉 has a property of
W (P )|α′〉 = |α′〉. Both W (P ) and |α′〉 depend on a set of unitaries Ui in space H.
The unitary Ui follows

Ui|0〉 =
∑

j

√
pij |j〉 (8.2)

for some reference state |0〉 ∈ H; that is,

|α′〉 =
∑

i

√
ai|i〉 ⊗ Ui|0〉. (8.3)

The quantum RPS implementation has a crucial feature, which is an amplitude ampli-
fication similar to Grover’s algorithm [9], but the amplitudes are not symmetric. The
asymmetrical amplitude amplification incorporates the mixing of the Markov chain.
In addition, this allows outputting actions after an average of O(1/

√
ǫ) calls to W (P ),

where ǫ represents the probability of sampling an action from the stationary distribu-
tion.

After an initialization stage via the set of unitaries Ui where |α′〉 is prepared, a number
of diffusion steps are applied. Each diffusion step consists of two elements. (i) First, a
reflection over the states corresponding to actions in the first copy of H is described
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by an operation

refA = 2
n
∑

i=1

|i〉〈i| ⊗ 1− 1⊗ 1, (8.4)

where A = span{|1〉, . . . ,|n〉} denotes the subspace of the clip network corresponding
to actions. (ii) Second, an approximate reflection over the state |α′〉, acting as the
mixing, is applied. An approximate reflection operation is designed, as follows in
Ref. [190],

refα′ = 2|α′〉〈α′| − 1. (8.5)

The generalized quantum walk operator is defined as

W (P ) = (refα′)(refA). (8.6)

In this second element, the operator takes O(1/
√
δ) calls toW (P ). Summing together,

the diffusion steps are repeated O(1/
√
ǫ) times before measuring the resulting state

in the basis {|i〉}i=1,...,N because the probability of sampling an action (almost) to
unity is amplified by the quantum RPS algorithm. To carry out the deliberation
procedure using a Szegedy walk hence requires an average of O(1/

√
δǫ) calls to W (P ).

Conversely, an average of O(1/δ) applications of P to mix the Markov chain would be
required by a classical RPS agent, as well as an average of O(1/ǫ) samples to find an
action. This indicates that Q-RPS agents can achieve a quadratic speed-up in reaction
time.

8.3.1 Rank-One RPS

For current quantum computational architectures, the requirement of two copies of
H is extremely demanding, in the aspect of frequently updated coherent conditional

Figure 8.3: An illustra-
tion of rank-one RPS.
Each perception-specific clip
network contains only possi-
ble actions. Flags mark the
desired actions. This is a one-
to-one correspondence with
the hitting-based basic PS
using two-layered networks.

122



8.3 Reflecting-Projective-Simulation Model

operations [193–195]. However, these requirements can be circumvented by considering
the class of rank-one Markov chains. This is a special case where the entire Markov
chain P can be represented on a single copy of H. That means a single unitary UP = Ui
with ∀i, as all columns of P are identical. This means the eigenvalues of Markov chain
P are (1,0, . . . ,0), and the spectral gap to mix the Markov chain is given by δ = 1.
Consequently, the network clip is simplified to each perception-specific clip network,
containing only possible actions, and the Markov chain is mixed in one step (δ = 1).
To achieve the desired actions, flags are used. This is a one-to-one correspondence
with the hitting-based basic PS using two-layered networks, as illustrated in Fig. 8.3.

Now, for a rank-one algorithm with the flagging mechanism, the action space A is
limited to only the flagged actions n, where n ≪ N . The corresponding probabilities
within the stationary distribution are denoted by a1,a2, . . . ,an.

First, the current memory is initialized by the state |α〉 as,

|α〉 =
N
∑

i=1

√
ai|i〉. (8.7)

Second, the diffusion steps k are applied. The optimum number [9] of diffusion steps
depends on the probability to find a flagged action within the stationary distribution.
Thus, the optimum number is achieved by

k(ǫ) = round

(

π

4
√
ǫ
− 1

2

)

, (8.8)

where ǫ =
∑

i=1,...,n ai represents the flagged action probability. In the rank-one case,
the reflections over all actions of equation (8.4) are replaced by reflections over flagged
actions,

refA = 2
n
∑

i=1

|i〉〈i| − 1. (8.9)

Third, the reflections refα over the stationary distribution α can be exact on one copy
of H [193]. Finally, the agent takes a sample and checks whether the action is flagged.
If the obtained action is marked by a flag, the action is coupled out; otherwise, the
algorithm starts over.

When the number of actions N is very large compared with the number of flagged
actions n and the environment is unfamiliar to the agent or has recently changed its
rewarding rule, the probability of retrieving the flagged action ǫ may be remarkably
small. In these cases, a quantum RPS has a huge advantage because a quantum RPS
requires only an average call of O(1/

√
ǫ) samples until obtaining a flagged action, while

a classical RPS requires O(1/ǫ).
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8.3.2 The Optimum Number of Diffusion Steps

The optimum number of diffusion steps in the quantum RPS is similar to the Grover
iteration of the Grover search algorithm. It can be described by a geometric visual-
ization. A diffusion step, which consists of two reflection operators, can be visualized
as a starting vector |ψ〉 rotated in the two-dimensional space spanned by flagged and
non-flagged solutions. Let |A〉 represent the non-flagged components and |B〉 represent
the flagged components. Then,

|A〉 =
∑

i 6=j
ci|i〉,

|B〉 =
∑

i=j

ci|i〉, (8.10)

where j represents flagged states and ci represents the state distribution within flagged
and non-flagged states. The initial state |ψ〉 can be re-expressed as

|ψ〉 =
√
1− ǫ|A〉+

√
ǫ|B〉, (8.11)

with the probability of sampling flagged actions ǫ. Using the geometric visualization
shown in Fig. 8.4, the initial state |ψ〉 can be rewritten as

|ψ〉 = cos

(

θ

2

)

|A〉+ sin

(

θ

2

)

|B〉. (8.12)

The reflection over the flagged state Uj rotates the initial state |ψ〉 by angle 2φ = π−θ.
Then, the reflection over the original state Uψ further rotates the previous state Uj |ψ〉.

Figure 8.4: Geometric visualization. The initial state |ψ〉 is spanned by non-flagged and
flagged states |A〉 and |B〉, respectively. Two reflection operators, as a diffusion step, rotate
the initial vector by the reflection over flagged states Uj and the reflection over the original
state Uψ. Using an optimum step, the state |ψ〉 will mostly overlap with the flagged state |B〉.
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Therefore,

W |ψ〉 = UψUj |ψ〉 = (−1)

(

cos

(

3θ

2

)

|A〉+ sin

(

3θ

2

)

|B〉
)

. (8.13)

It follows that continued application of diffusion steps rotates the state to

W k|ψ〉 = (−1)k
(

cos

(

2k + 1

2
θ

)

|A〉+ sin

(

2k + 1

2
θ

)

|B〉
)

. (8.14)

To have the initial state mostly overlapping with the flagged state, the state must by
rotated by angle π

2 . Thus,

π

2
=

2k + 1

2
θ, (8.15)

and

k =
π

2θ
− 1

2
. (8.16)

Because sin
(

θ
2

)

=
√
ǫ, for small θ, θ

2 ≈ √
ǫ. Hence, the diffusion step k is defined as

shown in equation (8.8).

8.3.3 General Two-Qubit Rank-One RPS

In the mentioned scheme so far, we have focused on the case of the initial flagged
probabilities in either |00〉 or |01〉, prepared by a product of two separable states
between 2 qubits. In practice, the algorithm should be able to formulate an arbitrary
state corresponding to the current network memory. According to Ref. [193], a four-clip
state can be prepared by a four-clip probability unitary U(θ1,θ2,θ3) with a probability
distribution (p1,p2,p3,p4), where

|α〉 = U(θ1,θ2,θ3)|0〉. (8.17)

As a reminder,
∑

j pj = 1. The unitary U(θ1,θ2,θ3) is applied as follows

|0〉 U(θ1) •
|0〉 U(θ2) U(θ3)

The first qubit takes a Y -rotation with a rotation angle θ1 and then makes two con-
trolled Y -rotations to the second qubit, where the controls are in state |0〉 and |1〉,
consecutively. (• represents the control state |1〉, and ◦ represents the control state
|0〉.) The two controls rotate the second qubit with rotation angles θ2 and θ3, re-
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spectively. All rotation angles with respect to the stationary distribution are defined
by

θ1 = 2arccos
(√
p1 + p2

)

, (8.18)

θ2 = 2arccos

(√

p1
p1 + p2

)

, (8.19)

θ3 = 2arccos

(√

p3
p3 + p4

)

. (8.20)

The controlled Y -rotation is given by

U
(C,T )
CY (θ) =









1 0 0 0
0 1 0 0

0 0 cos
(

θ
2

)

− sin
(

θ
2

)

0 0 sin
(

θ
2

)

cos
(

θ
2

)









, (8.21)

which is not directly achievable in this experiment. According to Ref. [79], the con-
trolled Y -rotation can be interchanged with two CNOT operators and two Y -rotation
operators, as expressed by

• • •
Y (θ) = Y (θ/2) Y (−θ/2)

and
R(π,0) • R(π,0)

Y (θ) = Y (θ)

The standard controlled-unitary is sandwiched by two π-pulses to realize a controlled-
Y operator using control state |0〉. The single-qubit rotation R(θ,φ) is defined in
equation (2.7).

Using this scheme, we can prepare an arbitrary state for a 4-clip system to have a
general two-qubit rank-one RPS.

8.3.4 Extended Space for Rank-One RPS and Higher Ranks

In this section, the clip-space is extended to an 8-clip system. To prepare this system,
three qubits are required, using a unitary U(θ1, . . . ,θ7) consisting of state probabilities
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{p1, . . . ,p8} [193]. The unitary U(θ1, . . . ,θ7) is applied as

|0〉(1) U(θ1) •
|0〉(2)

U(θ2,θ4,θ5) U(θ3,θ6,θ7)|0〉(3)

where

U(θ2,θ4,θ5)
U(θ2) •

= U(θ4) U(θ5)

and

U(θ3,θ6,θ7)
U(θ3) •

= U(θ6) U(θ7)

All rotation angles with respect to the stationary distribution are defined by

θ1 = 2arccos
(√
p1 + p2 + p3 + p4

)

, (8.22)

θ2 = 2arccos

(√

p1 + p2
p1 + p2 + p3 + p4

)

, (8.23)

θ3 = 2arccos

(√

p5 + p6
p5 + p6 + p7 + p8

)

, (8.24)

θ4 = 2arccos

(√

p1
p1 + p2

)

, (8.25)

θ5 = 2arccos

(√

p3
p3 + p4

)

, (8.26)

θ6 = 2arccos

(√

p5
p5 + p6

)

, (8.27)

θ7 = 2arccos

(√

p7
p7 + p8

)

. (8.28)

To extend to higher ranks, one would need an implementation of a quantum walk
operator and an approximate reflection operator [193]. An implementation of a quan-
tum walk operator can follow Ref. [196]. In addition, the quantum deliberation can
be achieved through an approximate reflection operator, which is implemented by
the phase detecting operator in a modification of Kitaev’s phase detection algorithm
[193, 197].
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8.4 Experimental Implementation of Rank-One RPS

To demonstrate a quantum speedup of quantum-enhanced learning agents, the follow-
ing features have to be confirmed:

1. the quadratically improved scaling of O(1/
√
ǫ),

2. the preservation of the tail of the stationary distribution.

As a reminder, the initial probability of finding a flagged action within the stationary
distribution ααα is denoted by ǫ, where ααα = (ai) and i ∈ {1, . . . , N}. Here, the tail is
defined by the first n components within ααα. Thus, the preservation means

aj
ak

=
bj
bk
, (8.29)

such that ∀j,k ∈ {1, . . . ,n}, and bj denotes the final probability after the application
of the diffusion operator, when the agent obtains the flagged action labeled j. The
central aim of the RPS is to output the actions according to a specific distribution,
which is updated, indirectly, as the ECM network is modified throughout the learning
process. To preserve the tail of the stationary distribution, the increasing probability
of the flagged actions does not destroy what an agent has updated and learned in the
ECM network. Using the quantum RPS algorithm, the overall probability of obtaining
a flagged action is therefore enhanced,

ǫ̃ ≡
n
∑

i=1

bi >
n
∑

i=1

aj = ǫ. (8.30)

The final relative probabilities of the flagged actions are preserved according to the
tail of ααα, as conceptually illustrated in Fig. 8.5.

In the rank-one RPS case, a three-dimensional Hilbert space is the simplest imple-
mentation to demonstrate the quantum advantage. For the ion-trap system, each ion
represents a qubit. Thus, at least two ions or two qubits are required to represent that
space. Two different flagged actions are represented by two states, denoted |00〉 and
|01〉. One additional state for all non-flagged actions, which are denoted by |10〉 and
|11〉, is also required2.

The stationary state, i.e., the previous knowledge the agent has learned, is prepared

2The implementation does not need to strictly follow this definition. This is an example represen-
tation. However, if one would like to use another representation, one would need to adjust the
previous knowledge (the state preparation) and the diffusion operator, accordingly.
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Figure 8.5: Illustration of quantum RPS algorithm. Quantum RPS agents enhance
the relative probability of desired actions compared with other clips within the stationary
distribution before a sampling clip is checked. The probabilities are visualized by the amplitude
of each column. The desired actions are represented by green columns, the undesired clips are
represented by gray columns, and the perception clips are represented by blue columns.

using two independent RF pulses,

|α〉 = UP (θ1,θ2)|00〉

= R(1)
(

θ1,
π

2

)

R(2)
(

θ2,
π

2

)

|00〉, (8.31)

where R(j)(θ,φ) is a single-qubit rotation on qubit j, as defined in equation (2.4). The
stationary distribution within the stationary state is defined by

θ1 = 2arccos
(√
ǫ
)

, (8.32)

θ2 = 2arccos

(
√

a00
ǫ

)

, (8.33)

where ǫ represents the total probability of the flagged action, defined by

ǫ = a00 + a01 (8.34)

and aj represents the probability of obtaining a two-qubit computational basis j.

The reflection over the flagged actions add the relative phase of −1 to all basis states
corresponding to flagged actions. Then, the reflection over the flagged actions, refA,
is a simple rotation around the z-axis with rotation angle (−π) with respect to the
first qubit,

refA = R(1)
z (−π), (8.35)

= exp
[

−i
π

2
σ(1)z

]

,

where R
(j)
z (θ) represents a Z rotation and is defined in equation (2.4).
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8 Quantum-Enhanced Deliberation Process

Another necessary reflection is the reflection over the stationary distribution, refα. It
consists of a CNOT gate and single-qubit rotations, which depend on θ1 and θ2. This
is given by

refα = R(1)
(

θ1 − π,
π

2

)

R(2)
(

θ2 +
π

2
,
π

2

)

UCNOT

×R(1)
(

−θ1 − π,
π

2

)

R(2)
(

−θ2 −
π

2
,
π

2

)

, (8.36)

The two reflections, denoted equation (8.35) and equation (8.36) presented above,
perform a diffusion operator described by

D = (refα)(refA). (8.37)

This is equivalent to performing two calls of UP and U †
P [193]. The preparation of the

stationary state and the total gate sequence for a single diffusion step is illustrated
in Fig. 8.6. The quantum RPS algorithm is performed in terms of a quadratically
smaller average number of calls to diffusion operator D (calls to UP ) until a flagged
action is sampled. A sample size of 1/ǫ̃ on average is required, which is determined by
the initial preparation of |α〉 and k diffusion steps. The average number of calls to UP

Figure 8.6: Quantum circuit for rank-one Q-RPS using two-qubit system. The sta-
tionary state is prepared using equation (8.31), (8.32), and (8.33). The diffusion step, consisting
of reflections over the flagged actions (refA) and the stationary distribution (refα) (shown once
each), is repeated k times, where refA, refα, and k are given by equation (8.35), (8.36), and
(8.8), respectively. The specific pulse sequence implementing this circuit is explained later in
equation (8.39).
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to correctly sample a flagged action is referred to as the ‘cost’ C in this work,

C =

(

2k(ǫ) + 1
)

ǫ̃
, (8.38)

where k(ǫ) is defined in equation (8.8) and the simulated probability of obtaining a
flagged action is defined in equation (8.30).

8.4.1 The Ion-Trap Setup

In this experiment, two ions are stored in a linear Paul trap. The ions are confined using
axial and radial trap frequencies of 2π ·123 kHz and 2π ·525 kHz, respectively. Each ion
is addressed using a different VFG. By exposing full RF power, ions have two different
Rabi frequencies, which means the ions perceive slightly different RF powers. The
Rabi frequencies between the two ions can be made equal by appropriately adjusting
the VFG amplitudes; see section 3.4. Hence, both ions have an equal Rabi frequency
of 2π · 20.92(3) kHz. Here, the qubit transition is the σ+-transition, as described in
equation (2.43). The experiment keeps track of the qubit transition frequencies by
using the adaptive frequency correction technique, described in section 4.4. The ions
are initially Doppler-cooled, and motional excitation is further reduced by employing
RF sideband cooling. The RF sideband cooling is as described in chapter 5. Sideband
cooling is applied on both modes, i.e., stretch mode and center-of-mass mode. This
leads to an average motional excitation of 〈n〉 6 5 for both modes.

The agent’s memory is prepared by directly applying two RF pulses respective to each
ion, as mentioned in equation (8.31). This is a coherent control using single-qubit
rotation, given a rotation angle and phase as given in equation (8.31), (8.32), and
(8.33). The reflection over the flagged actions requires a Z rotation, which is not
directly achievable in our experiment. The Z rotation can be replaced by a equa-
tion (2.9). The diffusion operator includes a CNOT gate, which can be realized using
a two-qubit ZZ-interaction from MAGIC [27]. A CNOT gate UCNOT is applied as de-
scribed in equation (7.9). When the diffusion operator is fully expanded using UCNOT

(equation (7.9)) and R
(i)
z (θ) (equation (2.9)), it can be optimized by combining ap-

propriate single-qubit rotations together. Hence, the simplified diffusion operator can
be described as,

D = (refα)(refA),

= R(2)
(

θ2,
π

2

)

R(1)
(

θ1,
π

2

)

R(2)
z

(

−π
2

)

R(1)
z

(π

2

)

UZZ

(π

2

)

R(2)
(

−θ2,
π

2

)

R(1)
(

θ1,
π

2

)

.

(8.39)

The exact experimental sequence for the quantum RPS is shown in Fig. 8.7. From the
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8 Quantum-Enhanced Deliberation Process

Figure 8.7: Experimental sequence for quantum RPS. The sequence is shown with
respect to the time-axis along the horizontal line, reading from left to right. The qubits are
first initialized to |00〉 by the preparation UV laser from the Doppler-cooled state. The qubits
are then prepared in the stationary state using two RF pulses simultaneously, indicated by RF1
and RF2. Each single-qubit rotation RF pulse, represented in blue boxes, can be coherently
controlled by the rotation angle and phase according to equation (2.7), (8.32), and (8.33). The
conditional evolution Uzz(π/2), indicated by a green box, is a part of the diffusion operator
D. The evolution of τ = 4.24ms is interleaved by dynamical decoupling pulses, shown in the
bottom of the figure and as described in the text. The Z rotation, represented by red boxes, is
a collection of single-qubit pulses, as described in equation (2.9). k iterations of the diffusion
step depending on ǫ are applied to realize the quantum RPS algorithm. Finally, the detection
UV laser is used again for state-selective detection at the end of the coherent manipulation.
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Doppler-cooled state of the ions, the qubits are first initialized to |00〉 by the UV laser
at 369 nm. The stationary state is then prepared (indicated as RF1 and RF2) using
single-qubit rotation with an RF pulse (blue boxes). Then, the conditional evolution
Uzz(π/2) between two qubits is applied for τ = 4.24ms. This interaction corresponds
to a J-coupling between the two ions of 2π · 48Hz. The evolution is protected against
decoherence by applying dynamical decoupling pulses. In this experiment, a UR pulse
scheme is used; see section 4.3.5. For each set of UR pulses, the number of pulses
can be adjusted. The UR-14 scheme with 14 π-pulses as one set is used. This pulse
scheme is repeated ten times, for a total of 140 pulses. Within the UR-14 scheme,
error correction is performed with appropriately chosen phase φ:

(

0,
6π

7
,
4π

7
,
8π

7
,
4π

7
,
6π

7
, 0,0,

6π

7
,
4π

7
,
8π

7
,
4π

7
,
6π

7
, 0

)

.

The first seven pulses are shown in the lower part of Fig. 8.7, as the phases of the π-
pulse are symmetric around the center. The pulse spacing is indicated by the arrows
under the time axis of the UR-14 pulse scheme. At the end of the coherent manipu-
lation, the UV laser is used again for state-selective detection on both qubits in the
computational basis {|0〉,|1〉}. The relative frequencies for detecting the states |00〉,
|01〉, |10〉, and |11〉 will be denoted as b00, b01, b10, b11, respectively, for discussion of
the results. The double threshold method, as described in section 4.2.5, discards 10%
of ambiguous measurement events. In summary, see Fig. 8.8, the process durations
are as follows:

1. Doppler cooling: 30ms

2. RF sideband cooling in stretch mode: 100ms

3. RF sideband cooling in center-of-mass mode: 100ms

4. Initialization to |00〉: 0.25ms

Figure 8.8: The experimental sequence of the Q-RPS experiment. The measurements
consist of (A) Doppler cooling, (B) sideband cooling in STR mode (B1) and then COM mode
(B2), (C) preparation of qubit state |0〉, (D) coherent RF manipulation, and (E) detection.
The operation times for each sequence are indicated. The coherent RF manipulation uses a
variable time T between approximately 4 and 30ms.
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8 Quantum-Enhanced Deliberation Process

5. Coherent manipulation: 4−30ms

6. State-selective detection: 2.0ms

Next, the experimental results achieved using our ion trap are presented and discussed,
together with the error analysis.

8.5 Experimental Results and Discussion

As mentioned above, to demonstrate the RPS features, two tests are performed:

1. the scaling of the average cost C with respect to the initial flagged probability ǫ,
and

2. the sampling ratio of the different flagged actions (equation (8.29)).

Furthermore, these experimental results also show that the implemented quantum RPS
can amplify the asymmetric amplitude state distribution, in contrast to the standard
Grover algorithm.

8.5.1 Scaling of Cost C

After calibrating the RF power for coherent operation, each ion has an equal Rabi
frequency of 2π · 20.92(3) kHz on the σ+-transition, which corresponds to a π-pulse
time of 23.9 µs. A series of measurements is implemented using different initial flagged
probabilities chosen from different numbers of diffusion steps, from k = 1 to k =
7. The probability ǫ is chosen to complete each diffusion step by considering the
inverse function of equation (8.8). After performing the quantum RPS algorithm, the
probabilities b00 and b01 are measured for each diffusion step to construct the cost
according to equation (8.38). The experiment is repeated 1600 times for a given ǫ.
Fig. 8.9 shows the average cost C plotted against the initial flagged probability ǫ. The
red circles represent the experimental data. The error bars on the y-axis represent the
measured statistical errors. The cost function also represents the algorithm complexity
of the quantum RPS algorithm. The algorithm complexity can be described by an
order of the number in the cost function as O(ǫ−ξ). In the ideal case, the RPS gives
ξ = 1.0 and the quantum RPS gives ξ = 0.5. The fit of the experimental data shows
the cost decreases with respect to ǫ as ξ = 0.57(5).

In the ideal case, the quantum RPS takes the complete number of diffusion steps,
which brings the simulated flagged action probability close to unity (ǫ̃ ≈ 1). Thus, one
can substitute k from equation (8.8) to equation (8.38) to achieve the ideal quantum
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Figure 8.9: Scaling characteristic of the learning agent’s cost. After preparation
of the stationary state |α〉, the quantum RPS algorithm is performed with diffusion step
k corresponding to each initial probability ǫ. The resulting probabilities ǫ̃ give the cost C.
Measurements are performed using k = 1 to k = 7 diffusion steps. The dashed black line and
the solid blue line represent the calculation expected for an ideal quantum RPS (O(ǫ−0.5))
and ideal classical RPS (O(ǫ−1.0)), respectively. The red circles represent the experimental
points averaged after 1600 repetitions. The error bars on the y-axis represent the measured
statistical errors within one standard deviation. The fit to the experimental data (dot-dashed
line) confirms the (O(ǫ−0.57(5))) scaling behavior and hence is consistent with quantum RPS.
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RPS cost,

CidealQRPS =
π

2
√
ǫ
. (8.40)

Within the classical RPS, the cost is calculated from the probability to sample a clip
until hitting the flagged action,

CidealRPS = ǫ+ 2ǫ(1− ǫ) + 3ǫ(1− ǫ)2 + . . .

=
∞
∑

j=1

jǫ(1− ǫ)j−1

=
1

ǫ
. (8.41)

The experimental data is in good agreement with the expected ideal quantum RPS.
Furthermore, the experimental data outperforms the classical RPS baseline in the
range of the chosen probabilities ǫ. Despite the experimental imperfection causing the
success probability ǫ̃ to be between 0.66 and 0.89 from k = 1 to k = 7, the experimental
result is good enough to obtain improved scaling and also to outperform the classical
algorithm.

The deviation of the experimental data from the idealized predictions is discussed in
the following section. Generally, the success probability ǫ̃ after applying diffusion steps
is not equal to unity, even in an ideal scenario without experimental imperfections;
see Fig. 8.10. The success probability depends on the specific value of the initial
probability ǫ. This behavior originates from the step-wise increase in the quantum RPS
algorithm according to the number of diffusion steps k, as defined in equation (8.8).
The success probability can be fully achieved only when the number of diffusion step is
an integer without rounding. The change in the ideal success probability with respect
to deviations of ǫ from the given values becomes the largest for small numbers of
diffusion steps (k = 1) and can drop down to 0.81. Increasing the number of diffusion
steps, the precision of ǫ does not play an important role in the success probability,
provided that the correct diffusion steps are performed. For example, the ideal success
probability can be larger than 0.99, independent of the exact value of ǫ, for a diffusion
step of k = 7. Throughout this experiment, ǫ is chosen provided the number of
diffusion steps is always close to an integer. Hence, the deviation from a unit success
probability resulting from the theoretically chosen ǫ is negligible compared with other
error sources.

In a real experiment, any state preparation can only be achieved with a certain ac-
curacy. This results also in a certainty of ǫ and can lead to a non-optimal number
of diffusion steps. Assuming an accuracy of ǫ ± 1% resulting from the preparation of
two-qubit states, the effect is less than 5% on the success probability ǫ̃ for the initial
probability ǫ≫ 0.01, corresponding to k ≤ 3. In contrast, when the initial probability
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Figure 8.10: The quantum RPS using arbitrary initial probabilities. The diffusion
step k in each plot is indicated by different colors, starting on the right side with k = 1. k
increases by one every time it changes a color to the left side. (a) The success probability
depends on the step-wise increase of the diffusion step k; see equation (8.8). The success
probability hits unity only if k is an integer without rounding. For the worst possible scenario,
the success probability can drop to approximately 0.81. (b) The cost is plotted against arbitrary
initial probabilities in magenta points. This plot can be compared with the ideal quantum RPS
cost (dotted line) in equation (8.40).

ǫ approaches ≈ 0.01 from above, which corresponds to k = 6, then the success prob-
ability decreases to ǫ̃ = 70%. This is caused by a non-optimal number of diffusion
steps.

The accuracy of the two-qubit state preparation depends on the atomic transition
frequency detuning ∆ω of the RF pulses for single-qubit rotations, similar to the
uncertainty ∆Ω in the determination of the Rabi frequency Ω. Using the adaptive
frequency correction, as mentioned in section 4.4, the calibration of this experiment
provides |∆ω/Ω| < 0.05 and |∆Ω/Ω| = 0.0015. These lead to an error in the initial
probability ǫ of ±2.5× 10−3 and a reduction of the success probability ǫ̃ by less than
0.04. The errors associated with ∆ω and ∆Ω affect not only the state preparation but
also the algorithm fidelity, as explained in the following section.

During this measurement, the bare atomic coherence T ∗
2 time is approximately 0.5ms,

but each diffusion step requires a coherent manipulation time that is longer by an order
of magnitude. To protect against qubit dephasing, a DD-pulse sequence is used during
conditional evolution, which consists of 140 error-correcting RF π-pulses per diffusion
step on each ion. Because of the high number of π-pulses, a small pulse error caused
by detuning can limit the algorithm fidelity. For instance, the accumulated pulse error
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Figure 8.11: Error affecting scaling cost C. These plots are numerical calculations when
each error contributes to the scaling cost. (a) The influence of the detuning ∆ω/Ω with respect
to the cost function in the quantum RPS is shown for various detunings. (b) The influence of
the decoherence effect γτ . (c) The influence of the interaction deviation with respect to the
correct CNOT interaction time τ/τCNOT.
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Figure 8.12: Detection error affecting scaling cost C. These plots are numerical cal-
culations when each detection error contributes to the scaling cost. (a) The influence of the
symmetric detection error with respect to the cost function in the quantum RPS. (b) The
influence of the asymmetric detection error when there is only an error for detecting bright to
be dark and there is no error for detecting dark to be bright. (c) In contrast, the influence of
the asymmetric detection error when there is only an error for detecting dark to be bright and
there is no error for detecting bright to be dark.
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Figure 8.13: Detuning affects scaling
cost C. The influence of the detuning with
respect to the cost function in the quantum
RPS is shown for various detunings, ∆ω/Ω ∈
{0,−0.04,−0.08}. Black lines indicate the nu-
merical simulations of the complete quantum
RPS algorithm, taking different values of the
relative detuning ∆ω/Ω into account. The
simulation also includes experimentally deter-
mined dephasing and detection errors. Most
of the experimental data (red circles) lie close
to the ∆ω/Ω = −0.04 line.
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can be a potential error source for the success probability ǫ̃ ≈ 0.77 when k = 6 and
∆ω/Ω = −0.04. Even though the DD-pulses are applied, qubit dephasing is still
present; however, its influence is less significant compared with the accumulated pulse
error; see Fig. 8.11. This insignificance is similar to the detection error; see Fig. 8.12.
To estimate the error caused by qubit dephasing, the success probability of a single
diffusion step is considered. Assuming an exponential decay with γτ ≈ 1/14 within a
single diffusion step (τ ≈ 4ms), the success probability would lead to ǫ̃ ≈ 0.90 for k =
6, where γ represents the experimentally diagnosed rate of dephasing and τ represents
the coherent evolution time. In Fig. 8.13, the influence of the detuning with respect to
the cost function in the quantum RPS is shown for various detunings. The algorithm,
including the experimentally determined dephasing error together with detection errors
of ∆ω/Ω ∈ {0,−0.04,−0.08}, is numerically simulated. The experimental data are
consistent with an average negative detuning of ∆ω/Ω = −0.04. Note that the limited
algorithm fidelity related to the detuning not only influences the single-qubit rotations,
but also leads to errors during the conditional evolution when DD-pulses are applied.

8.5.2 Input and Output Ratio

For the second feature of the quantum RPS, the input ratio ri = a00/a01 and the
output ratio rf = b00/b01 are studied. The studied ratio values lie between 0 and 2,
while keeping k(ǫ) at k = 1 and k = 3 diffusion steps. Hence, the preparation with ratio
values between 0.01 and 2.0 will not give probabilities that are too different from the
two prepared probabilities. To prepare the initial distribution with the probabilities
a00 and a01, single-qubit rotations are applied with rotation angles θ1 and θ2 for RF
pulses, as given by equation (8.32) and (8.33). The respective diffusion step k is applied
to perform the quantum RPS. To obtain the statistics, the experiment is repeated
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1600 times to estimate the probabilities b00 and b01. Fig. 8.14 shows the obtained
output ratio rf plotted against the input ratio ri of the quantum RPS algorithm.
The red and blue data points show the output ratio from k = 1 and k = 3 diffusion
steps, respectively. They are fitted by a linear function with an offset and a slope
as free parameters. The experimental data shows the trend as expected from the
ideal quantum RPS, rf/ri = 1. The fitting slopes are 1.00(5) and 1.07(2) for k = 1
and k = 3, respectively. However, the experimental data show a y-offset from the
expected trend line. Therefore, the ratio of the number of occurrences of the two
actions obtained at the end of the deliberation process is maintained with respect to
the relative probabilities of the initial stationary distribution. Even though there is an
offset from the ideal result, the two linear fits show no significant difference between
the two different diffusion steps (k = 1 and 3). This indicates that the offset error is
not caused by the quantum algorithm itself. The detailed error analysis is presented
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2

Figure 8.14: Output ratio distribution. The output ratio between two final flagged
probabilities, rf = b00/b01, is plotted against the input ratio between two initial flagged prob-
abilities, ri = a00/a01. The chosen probabilities take k = 1 (red square) and k = 3 (blue circle)
diffusion steps. The black dashed line represents the behavior expected for the ideal quantum
RPS. The red and blue dashed lines are the linear fits for the respective data set. Error bars
represent statistical errors within one standard deviation.
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Figure 8.15: Error affecting output ratio distribution. These plots are numerical
calculations when each error contributes to the output distribution. (a) The influence of the
detuning ∆ω/Ω with respect to the cost function in the quantum RPS. There is no influence
resulting from decoherence and interaction time error. (b) The influence of symmetric detection
error. (c) The influence of asymmetric detection error when only detecting bright as dark. (d)
The influence of asymmetric detection error when only detecting dark as bright.
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Figure 8.16: Imbalanced detection. The
experimental data for the input and output
ratios, represented by red squares and blue
circles, are compared with simulations (solid
and dash-dot black lines) of the Q-RPS algo-
rithm, assuming a possible asymmetric detec-
tion error and detuning errors. The solid line
presents the experimental data points corre-
sponding to an expected output ratio assum-
ing only an asymmetric detection error, where
dB = 0.06 for bright ions and dD = 0.03 for
dark ions, and detuning error ∆ω/Ω = −0.04.
The dash-dot line represents the same detec-
tion error, with a detuning error of −0.015.

as follows.

Each flagged probability is represented by the state |00〉 and |01〉, either in the be-
ginning or at the end of the quantum RPS algorithm. The ratio is supposed to re-
main constant at rf/ri = 1; however, the experimental result shows deviations from
rf/ri = 1, with a positive y-offset. That is, the measured probability b00 of the state
|00〉 increases with respect to the measured probability b01 of the state |01〉. This char-
acteristic is also present in the experimental result of the scaling feature in Fig. 8.9.
During the measurements for the scaling investigation, the input ratio is fixed to ri = 1;
conversely, the observed output ratios vary by 0.98 ≤ rf/ri ≤ 1.33. This is similar to
the experimental result for the ratio feature, where the output ratios are larger than
the input ratios.

The observed deviations of the output ratio are likely caused by an asymmetric de-
tection error; see Fig. 8.15. The state detection relies on projective measurements of
ions being either bright or dark, depending on the ions’ resonance fluorescence. In the
current setup, the fluorescence histograms indicating bright or dark ions are not sep-
arated well. The bright and dark states can be assigned with different errors, causing
an asymmetric detection error for two-qubit state detection. Assuming the probability
to detect a bright ion (|1〉) with a probability of dB = 0.06 as dark and a dark ion (|0〉)
with a probability of dD = 0.03 as bright, this detection error explains the observed
ratio results. This degree of detection error is possible in this experiment. Fig. 8.16
compares the measured output ratios with the calculated output ratios, assuming the
mentioned detection errors and two different detuning errors ∆ω/Ω ∈ {−0.04,−0.015}.

In Fig. 8.16, the experimental data, presented both for one and three diffusion steps,
can be seen to be fitted well by the simulation when the experimentally determined
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detection error and detuning error of −0.015 are taken into account. In contrast,
the simulation with a detuning error of −0.04 does not describe the experimental
data well for both one diffusion step and three diffusion steps. This indicates that the
detuning during these measurements remained at approximately ∆ω/Ω = −0.015. The
detuning error of −0.015, describing both results for different diffusion steps, indicates
that the main contribution error in the ratio feature is the unbalanced detection error.
Furthermore, when the input ratio is either very small or very large, these ratios lead to
either a00 or a01, close to the preparation accuracy. By comparing with the preparation
accuracy of 2.5× 10−3, the preparation error gives more significant contribution in
the extreme case. In this experiment, intermediate ratios are chosen, which lead to
insignificant error contribution to the preparation error. Similarly, because the small
number of diffusion steps requires a smaller number of dynamical decoupling pulses,
the detuning plays a less prominent role in these measurements. Considering in terms
of the success probabilities ǫ̃, the k = 1 and k = 3 cases achieve average success
probabilities of 0.87 and 0.86, respectively. The detuning during these ratio feature
measurements is indeed less than ∆ω/Ω = −0.04, compared with ǫ̃ = 0.77 for k = 3
during the measurements investigating the scaling.

8.6 Summary of Experimental Results and Outlook

In this chapter, we presented the proof-of-principle experimental investigation of a
quantum-enhanced deliberation (or decision-making) process, in which a learning agent
is implemented in a prototype ion-trap quantum processor. The deliberation process
can be further integrated with the reinforcement learning framework to realize an au-
tomated device, which is capable of learning how to interact with an environment. The
presented scheme is centered on the projective simulation model [184] using a stochas-
tic diffusion process. The diffusion process is governed by a (classical or quantum)
random walk in an agent’s memory. In this work, we focused on an advanced variant
of the PS model based on mixing, the reflecting projective simulation model [190]. The
RPS model allows the deliberation process for a quadratically sped-up quantum agent
with respect to its classical counterpart. The implementation is demonstrated by a
rank-one quantum RPS case, providing the scaling advantage of quantum speed-up
without the need for an additional copy of the calculation space. In addition, the
rank-one quantum RPS has a one-to-one correspondence with the hitting-based basic
PS using two-layered networks, which has solved standard textbook problems, e.g., the
invasion game, the grid-world problem, the mountain-car problem, and meta-learning
[198–200], in reinforcement learning and advanced problems, e.g., robotic arm object
manipulation, adaptive quantum experiments, and designing quantum experiments
[70, 201, 202].

In this proof-of-principle experiment of a rank-one quantum RPS algorithm, the two
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main features of a quantum RPS have been verified. (i) The deliberation process
of the quantum learning agent scales quadratically faster (compared with its classi-
cal counterpart), demonstrating up to 7 diffusion steps in the diffusion operator of the
quantum RPS. This corresponds to an initial probability ǫ = 0.011 to sample a desired
action marked by a flag. The experimental results show the experimental uncertainties
described by a qubit addressing error model as the main error contribution. In the
range of the studied initial probabilities ǫ, the demonstrated quantum agents always
suppress the theoretical classical agents, even though there is qubit decoherence. (ii)
The sampling ratio between the input probabilities ri = a00/a01 and the output prob-
abilities rf = b00/b01 shows the preservation of the tail of the stationary distribution,
regardless of the number of diffusion steps. The error model, describing the offset
within the ratio result, suggests the effect of the asymmetric detection error.

Note that this experiment took the longest-ever conditional evolution time in our
macroscopic linear Paul trap setup using computational qubits. During the coherent
conditional evolution of 29.68ms, the algorithm is protected by DD-pulse consisting
of 980 π-pulses. This gate time is approximately 60 times longer than the coherence
time T ∗

2 of the bare-state qubit.

This experiment highlights the potential of a quantum computer in the field of quantum
enhanced learning and artificial intelligence, enabling fast learning within a rapid-
changing environment. This would be useful in a situation where reaction time is
limited, for example, an AI-assisted emergency medical treatment, a high-frequency
auto-trading system, or a high-speed driver-less vehicle.

From the presented toy-model of the quantum RPS algorithm, a possible extended
study is complete reinforcement learning using quantum RPS agents. For a small
toy-model, we could study an invasion game as an example problem. Furthermore, a
practical use of the quantum RPS algorithm requires a larger perception space and
action space. A general N -rank quantum RPS is required. A theoretical construction
is given in detail in Ref. [193].
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One of the challenges in quantum information processing is to demonstrate a large
qubit system that is able to perform complex quantum algorithms. Real-world cal-
culations using quantum algorithms require a large number of qubits and multi-qubit
operations. Therefore, this chapter begins by working with a four-ion system.

In our ion trap, the electrodes are not segmented, which means we cannot apply
differential axial potentials to separate the ion crystal. That is, we have a static
quantum register. A functionality that enables us to transfer a quantum state within
a quantum register becomes an important element.

Here, we consider the possibility of demonstrating quantum teleportation. The spin-
spin couplings for a four-ion system are measured for the first time using the MAGIC
scheme. The techniques described in chapter 7 are applied in the experiments reported
in this chapter. This implementation can be a stepping stone for a large-scale ion trap
quantum computer in the future.

9.1 Spin-Spin Couplings of Four Ions

For a four-ion system (N = 4), the dimensionless matrix expressing the scaled devia-
tion of an ion from its equilibrium position, as described in equation (2.48), is given
by [86],

S =









0.5 0.5 0.5 0.5
−0.6742 −0.2132 0.2132 0.6742

0.5 −0.5 −0.5 0.5
−0.2132 0.6742 −0.6742 0.2132









, (9.1)

and the vibrational modes ωn =
√
mnωz, with mn = {1, 3, 5.81, 9.308}. Therefore, the

coupling strength ε, see equation (2.48), resulting from the magnetic-field gradient of
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9 Four-Ion System

19.105T/m at the axial trap frequency of 2π · 122.984 kHz is given by

ε =









0.0166 0.0166 0.0166 0.0166
−0.0098 −0.0031 0.0031 0.0098
0.0044 −0.0044 −0.0044 0.0044
−0.0013 0.0042 −0.0042 0.0013









. (9.2)

Hence, the spin-spin coupling of a four-ion system is theoretically estimated using
equation (2.47) to be

J/2π =









0 32.36 23.58 18.48
32.36 0 30.97 23.58
23.58 30.97 0 32.36
18.48 23.58 32.36 0









Hz. (9.3)

The spin-spin coupling matrix of a four-ion system is measured using a similar method
to that for a two-ion system, as reported in section 7.4. The phase shift of the tar-
get qubit is observed with respect to the conditional evolution time, as described in
section 7.4. Four ions are loaded to the trap and Doppler-cooled. Sideband cooling
is applied in the center-of-mass mode of the first ion, resulting in an average phonon
number 〈n〉 ≈ 10. The first ion is referred to as the ion that has the smallest Zeeman
shift, visually in the left-most ion in the EMCCD image; see Fig. 9.1. The distances
between ions are calculated from the ion addressing frequencies, as explained in equa-
tion (2.44). The exemplary addressing frequencies of 4 ions at a given of set trapping
parameters are given in Tab. 9.1. The Rabi frequencies between ions are different,
which is probably due to the orientation of the RF antenna with respect to the quan-
tization axis (along the endcap electrodes) and/or the interference of the reflected RF
of the vacuum recipient. The qubit resonance transitions of 4 ions are corrected si-
multaneously by directly measuring all qubit transitions using the adaptive frequency
measurement, as described in section 4.4. Then, the ions are initialized in the state
|0000〉. The spin-spin coupling matrix element Jij is measured by taking ion i as
the control qubit and ion j as the target qubit. For example, the spin-spin coupling

Figure 9.1: An EMCCD image of a
four-ion system. The Doppler cooling
image is orientated as it is seen from the
front windows. The bright areas show
Doppler cooling fluorescence of 4 ions us-
ing superpixels as 8× 8 binning. The num-
bers in the bright areas are automatically
assigned by the analysis algorithm to dis-
tinguish different ions. The numbers below
the arrows indicate the separations between
ions, estimated using equation (2.44).

11.0μm 11.0μm10.2μm
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9.1 Spin-Spin Couplings of Four Ions

Table 9.1: Addressing frequencies of 4 ions. The results are measured by coherent RF-
optical double-resonance spectroscopy. The experimental parameters are a magnetic field
offset of 0.85mT (8.5G), a magnetic-field gradient of 19.105(5)T/m, an axial trap frequency
of 2π · 122.984(10) kHz, and a radial trap frequency of 2π · 524.75(8) kHz.

#ion ωσ+/2π (kHz) Ωσ+/2π (kHz) Ωσ−/2π (kHz)

1 12 650 243.02(8) 32.2(4) 55.1(3)
2 12 653 149.15(11) 26.5(3) 56.4(4)
3 12 655 839.47(7) 22.6(6) 58.8(6)
4 12 658 748.89(7) 18.9(3) 57.7(9)
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Figure 9.2: The spin-spin coupling measurement of a four-ion system. The spin-
spin coupling element Jij is measured by taking ion i as the control qubit and ion j as the
target qubit, with i < j. The circle markers represent the control qubit in the state |0〉, and the
square markers represent the state |1〉. These two participant ions are protected simultaneously
against dephasing by 7 sets of a UR-20 sequence. The RF powers are adjusted to have equal
Rabi frequencies for the 2 ions. The error bars represent statistical errors within one standard
deviation for 75 repetitions.

149



9 Four-Ion System

Table 9.2: Result of J-coupling of 4 ions. The experimental parameters are a magnetic field
offset of 0.85mT (8.5G), a magnetic-field gradient of 19.105(5)T/m, an axial trap frequency
of 2π · 122.984(10) kHz, and a radial trap frequency of 2π · 524.75(8) kHz. The interaction time
τCNOT does not include the interval of DD pulses of 7 sets of a UR-20 sequence.

Jij/2π (Hz) Measurement Theory Error τCNOT (ms)

J12 30.8(17) 32.36 1.0σ 6.9(2)
J13 22.5(6) 23.58 1.8σ 9.8(2)
J14 17.4(5) 18.48 2.2σ 13.0(3)
J23 31.3(12) 30.97 1.0σ 6.91(15)
J24 21.9(8) 23.58 2.1σ 9.9(2)
J34 33.6(19) 32.36 1.0σ 6.5(3)

element J23 is measured by taking ion 2 as the control qubit and ion 3 as the tar-
get qubit, while ions 1 and 4 are left in the state |0〉. The measurement results are
shown in Fig. 9.2 and summarized in Tab. 9.2. The phase shift offsets are due to the
employment of the DD pulse sequence, which is 7 sets of a UR-20 sequence.

The linear fits show that the data are separated into 3 groups: J12, J23, and J34 are the
nearest neighbor couplings. J13 and J24 are the second-nearest neighbor couplings. J14
is the third nearest neighbor coupling. All experimental results are in good agreement
with the theoretical calculation within 2.2 standard deviations. The corresponding
CNOT gate times for each qubit pair are also given in Tab. 9.2.

9.2 Bell States in a Four-Qubit System

The Bell state of two different pairs within a four-ion system is studied. This is a
similar study to that for a two-ion system, discussed in section 7.4.

First, the Bell state is prepared using ions 1 and 2. Sideband cooling is applied in
the center-of-mass mode for the fourth ion at 2π · 119.39 kHz, resulting in an average
phonon number 〈n〉 ≈ 10. Then, the ions are initialized in the state |0000〉 by the
initialization laser. Thereafter, the coherent controls are applied only on ions 1 and 2.
The applied gates and pulses are shown in the following circuit.

|0〉(1) UH • R(π/2,φ)

|0〉(2) R(π/2,φ)

|0〉(3)
|0〉(4)
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Figure 9.3: Measurement of a Bell state between ions 1 and 2 of a four-ion system.
As described in section 7.1.2, the implementation uses the CNOT gate and a Hadamard gate
on the control qubit to create a Bell state, |Φ+〉(1,2) = 1/

√
2(|00〉(1,2) + |11〉(1,2)). Sideband

cooling is applied in the fourth ion’s center-of-mass mode (2π · 119.39 kHz) for 80ms. The
gate time of 7.0ms is interleaved with 4 sets of a UR-16 sequence each for both ions 1 and
2, simultaneously. (a) The final state probabilities for four possible output states. (b) By
applying another π/2-pulse with varying phase, the parity signal is measured. The Bell-
state fidelity is extracted using the final state probabilities and the fit of the parity signal as

F
(1,2)
Bell = 0.852(16), excluding SPAM error. The error bars represent statistical errors within

one standard deviation for 120 repetitions.

The dashed box indicates that the π/2-pulses are either applied or not. The π/2-

pulses are applied for the Bell-state parity measurement. The CNOT gate time τ
(1,2)
CNOT

of 7.0ms is interleaved with 4 sets of a UR-16 sequence applied to both ions simulta-
neously.

Fig. 9.3 shows the measurement result of the Bell state between ions 1 and 2. The

Bell-state fidelity is F
(1,2)
Bell = 0.852(16). This fidelity is smaller than the Bell-state

fidelity of a two-ion system, see section 7.4. Because the CNOT gate time is longer
than that for the two-ion case, the noise components may accumulate with longer
time, especially if they are not completely protected against dephasing. Therefore, the
fidelity of a four-ion system is less than that of a two-ion system.

Now, the Bell state is prepared using ions 2 and 4. The applied gates and pulses are
in the following circuit.

|0〉(1)

|0〉(2) UH • R(π/2,φ)

|0〉(3)

|0〉(4) R(π/2,φ)
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Figure 9.4: Measurement of a Bell state between ions 2 and 4 of a four-ion system.
As described in section 7.1.2, this implementation uses the CNOT gate and a Hadamard gate
on the control qubit to create a Bell state, |Φ+〉(2,4) = 1/

√
2(|00〉(2,4) + |11〉(2,4)). Sideband

cooling is applied in the fourth ion’s center-of-mass mode (2π · 119.39 kHz) for 80ms. The
gate time of 9.9ms is interleaved with 6 sets of a UR-16 sequence each for both ions 2 and
4, simultaneously. (a) The final state probabilities for four possible output states. (b) By
applying another π/2-pulse with varying phase, the parity signal is measured. The Bell-
state fidelity is extracted using the final state probabilities and the fit of the parity signal as

F
(2,4)
Bell = 0.805(14), excluding SPAM error. The error bars represent statistical errors within

one standard deviation for 150 repetitions.

Similar to the Bell state using ions 1 and 2, the CNOT gate time τ
(2,4)
CNOT is changed to

9.9ms. During the CNOT gate time, the qubits are protected using 6 sets of a UR-16
sequence applied to both ions simultaneously. The experimental result is shown in

Fig. 9.4. The Bell-state fidelity after correcting for SPAM error is F
(2,4)
Bell = 0.805(14).

This is a non-nearest neighbor interaction, which takes a longer time than the Bell
state between ions 1 and 2. Therefore, the fidelity is smaller than in the previous case.

9.3 Towards Quantum Teleportation

Quantum teleportation is not the process of an object disappearing from one place
and reappearing at some distant location, as shown in science-fiction movies. On the
contrary, quantum teleportation provides a mechanism to faithfully transfer quantum
information using previously shared quantum entanglement between the sending and
receiving node and classical communication [203]. Thus, quantum teleportation is not
a method of transportation, but of communication.

The first realization of quantum teleportation was demonstrated in a single-photon
system [204]. The polarization state of single photons was transferred from Alice to
Bob by destroying Alice’s original unknown state. In an atomic system, the first
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9.3 Towards Quantum Teleportation

two realizations were demonstrated in an ion trap experiment using three Be+ ions
[205] and three Ca+ ions [206]. Furthermore, a demonstration using two systems with
different physical natures, photons and an atom ensemble, has also been experimentally
realized [207], connecting flying and stationary qubits. The most recent recorded
distance for quantum teleportation is the space-based linked communication between
a ground observatory and a low-Earth-orbit satellite, the Micius satellite, using a single
photon over distances of up to 1400 km [208].

In our consideration, a quantum state can be transferred from one qubit to another
within a string of ions coupled with the MAGIC-based long-range interaction. This
technique can be used in a static qubit system to relocate a quantum state, which can
be useful in ion traps without segmented electrodes or vacancy-center systems.

9.3.1 Teleportation Protocol

Initially, Alice has two particles: particle 1 is initialized in an arbitrary state |Ψ〉(1),
and particle 2 is initialized as an auxiliary particle. Bob has another auxiliary particle,
particle 3. Particles 2 and 3 are entangled together in the Bell state |Φ+〉(2,3). There
is neither classical nor quantum correlation between particle 1 and the entangled pair;
therefore, measurements of the entangled pair cannot yield any information regarding
the state |Ψ〉(1). Teleportation can be essentially achieved by performing a joint Bell-
state measurement between the unknown state and that of one of the entangled pair.

The particle 1 is given by

|Ψ〉(1) =α|0〉(1) + β|1〉(1), (9.4)

in which α and β are the normalized factors. Then, the total state is expressed by

|ξ〉(1,2,3) = |Ψ〉(1)|Φ+〉(2,3), (9.5)

= (α|0〉+ β|1〉)(1) 1√
2
(|00〉+ |11〉)(2,3) , (9.6)

=
α√
2
(|0〉(1)|0〉(2)|0〉(3) + |0〉(1)|1〉(2)|1〉(3))

+
β√
2
(|1〉(1)|0〉(2)|0〉(3) + |1〉(1)|1〉(2)|1〉(3)). (9.7)

The last equation (9.7) can be rewritten using the four Bell states as

|ξ〉(1,2,3) = 1

2
|Φ+〉(1,2)(α|0〉(3) + β|1〉(3)) + 1

2
|Ψ+〉(1,2)(β|0〉(3) + α|1〉(3))

+
1

2
|Φ−〉(1,2)(α|0〉(3) − β|1〉(3)) + 1

2
|Ψ−〉(1,2)(−β|0〉(3) + α|1〉(3)). (9.8)
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9 Four-Ion System

Here, all Bell states can be measured as equally likely, with probability 0.25. To recon-
struct the unknown state |Ψ〉(1) in particle 3 after the joint Bell-state measurement,
additional unitary transformations are applied corresponding to which Bell state has
been measured. Then, the final state of particle 3 is reconstructed as

|Ψ〉(3) = α|0〉(3) + β|1〉(3). (9.9)

Hence, the quantum teleportation circuit of a four-ion system to transfer the quantum
state from ion 1 to ion 4 can be expressed as follows.

|0〉(1) R(θ0,φ0) • UH •

|0〉(2) UH • •

|0〉(3)

|0〉(4) X Z

The state to be teleported is prepared by a single qubit rotation, R(θ0,φ0). The dotted
box creates a Bell state between ions 2 and 4, |Φ+〉(2,4). The dashed box is for the
joint Bell-state measurement. The teleported state can be measured from ion 4 after
applying the Pauli X and Z conditioned by the outcome of ions 1 and 2. The double
lines represent classical wires.

According to this scheme, we have to control 3 qubits simultaneously. Moreover,
ions need to interact to create the Bell state while keeping another ion as a quantum
memory. The mentioned requirements can be fulfilled by our quantum toolbox [58, 96]
using either a recoding into a memory qubit or a selective recoupling (SR) pulse [209].

9.3.2 Recoding Qubit Transition

To switch off the qubit interaction, the magnetic field-sensitive σ+ (or σ−) qubit can
be recoded into a magnetic field-insensitive π qubit. This recoding can be achieved by
simply applying 3 RF π-pulses, consecutively [58, 96]. For a four-ion system or any
multi-ion system, the π-transition pulses are not truly global for all ions because of
the quadratic Zeeman effect for the transition 2S1/2 (F = 0)↔ 2S1/2 (F = 1,mF =
0) . The addressing frequencies of the π-transition between the first and last ion
differ by approximately 2π · 31 kHz for the current magnetic field configuration. A
rectangular RF pulse cannot resonantly address all ions, which affects the efficiency of
the qubit recoding. The BB1 sequence, consisting of composite pulses, is considered
experimentally and numerically here.

Considering that a Ramsey experiment is varied by the evolution time in a single-ion
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9.3 Towards Quantum Teleportation

experiment, the qubit is prepared in a superposition state using a π/2-pulse of the σ+-
basis. The recoding pulse sequence is applied to recode in the π-basis, as expressed
by

RBB1
π (π,0)RRecσ+ (π,0)RBB1

π (π,0). (9.10)

Here, the superscript indicates the RF pulse type, a rectangular pulse or a BB1-
pulse sequence. The subscript indicates the associated transition. Now, the qubit is
recoded in the superposition of the π-basis states; then, the qubit is evolved by the
free evolution time interleaved with 10 sets of a UR-14 sequence. At the end of the
evolution time, the qubit is recoded back to the σ+-basis and probed by a π/2-pulse of
the σ+-basis, which brings the final excitation probability to either 0 or 1. The total
experimental sequence is shown in Fig. 9.5.

Fig. 9.6 shows the result of the recoded Ramsey measurement. The recoding is per-
formed using the resonant and detuned π-transition addressing frequencies. The non-
resonant recoding is detuned by −10 kHz, imitating a multi-qubit system. The con-
trasts of the Ramsey fringes of the resonant and non-resonant recoding are 0.89(3)
and 0.74(4), respectively. The non-resonant recoding gives a smaller Ramsey contrast,
indicating insufficiency of the given composite pulses to protect the qubit memory. In
a four-ion system, the detuned frequency would be > 15 kHz, which indicates that this
method is not good enough. The limitation could be due to the current Rabi frequency;
see Fig. 9.7. The error is too large for a good error compensation. Therefore, the SR
pulse, as a qubit interaction control, will be selected in the four-ion experiment. An
optimal control technique [210] to design a recoding sequence with a larger detuning
could be considered in future experiments.

9.3.3 Bell State and Quantum Memory

Using the knowledge acquired from the investigations reported in section 9.2 and 9.3.2,
we can prepare a Bell state between ions 2 and 4 and apply the SR technique to ion
1 to realize a quantum memory. The experiment follows the quantum circuit below.

|0〉(1) R(π2 ,0) DD R(π2 ,φ)

|0〉(2) UH •

|0〉(3)

|0〉(4)

The first test is to prepare a memory using ion 1 in a superposition state with a
π/2-pulse. Then, ions 2 and 4 are entangled by a Hadamard gate and a CNOT gate.
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9 Four-Ion System

Figure 9.5: The experimental sequence of a recoded Ramsey measurement. The
qubit is initialized in the state |0〉 and prepared in the superposition state by a π/2-pulse (blue)
using the σ+-basis. The recoding sequence (green) is performed, as shown in equation (9.10),
to change to the π-basis. Thereafter, the qubit is evolved by the free evolution time T with or
without the DD-sequence, as desired. Before the probe pulse, the qubit is recoded back to the
σ+-basis. The probe π/2-pulse (gray) of the σ+-transition is applied with a phase of either 0
or π.

Figure 9.6: Measurement of a recoded
Ramsey measurement. The experimental
sequence follows the description in Fig. 9.5.
The free evolution time is varied from 0
to 40ms interleaved with 10 sets of a UR-
14 sequence. The Rabi frequencies on the
π and σ+-transition are 2π · 39.15 kHz and
2π · 33.09 kHz, respectively. The circle and
square data represent the phase 0 and π of
the probe pulse, respectively. The blue data
show that the recoding is resonantly applied
on the π-transition, while the red data is de-
tuned by −10 kHz. Dashed lines indicate the
average probabilities of the respective results.
The Ramsey contrast of the resonant and non-
resonant recoding are 0.89(3) and 0.74(4), re-
spectively. These two results exclude SPAM
errors.
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Figure 9.7: Numerical simulation of
a π-pulse using BB1 sequence with
systematic control errors. The pulse
fidelity of 0.99 is indicated by the white
area. This is based on the simulation
shown in Fig. 7.6d, considering the larger
error landscape.
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9.3 Towards Quantum Teleportation

During the CNOT gate (which takes 9.9ms), ion 1 needs to be protected against noise
and isolated from interaction with the other ions. The same DD-pulse sequence from
the CNOT between ions 2 and 4 is applied to ion 1 with an additional R(π,π/2) in the
center of the DD sequence as the SR pulse; for details, see Fig. 9.8. The probe pulse
is shown in the dashed box before performing state-selective detection. We have three
coherent control sources, which are adjusted by the VFG amplitudes to equalize the
Rabi frequencies between all ions.

Fig. 9.9 shows the experimental results for obtaining the Bell state between qubits
2 and 4 while preserving the memory in qubit 1. The Bell state is prepared by the
CNOT gate time of 9.9ms interleaved with 6 sets of a UR-14 sequence. The exact DD
sequence with a SR pulse is also applied to qubit 1 after preparing the superposition
state. The excitation probability with respect to the probe pulse phase of qubit 1 is
measured, and the result is shown by the blue plot. The blue line shows a contrast
of 0.71(5) and a phase of (-0.42(3))π, while the Bell-state fidelity prepared during the
blue data is 0.85(4), excluding SPAM error. The memory in the blue data can be
protected, but not completely. Here, the memory has a phase shift of 0.07π, which
can be removed by the red data, shown below.

The red data takes single qubit rotations into account, including the time for the
Hadamard gate and the phase correction pulses of the Bell state. Adding these times
to the DD sequence of the memory qubit, the excitation probability of qubit 1 is plotted
in the red data. The red line shows a contrast of 0.87(3) and a phase of (-0.505(13))π,
while the Bell-state fidelity prepared during the blue data is 0.79(2), excluding SPAM
error. Now, the memory phase of the red data agrees well with the expected phase of
the memory qubit within one standard deviation. Therefore, the matching sequence
time is very important when preparing the experimental sequence.

Moreover, the Bell state between ions 1 and 2, while preserving the memory of ion
4, is also demonstrated. This experiment shows how well we can analyze the joint
Bell-state measurement. The experiment follows the quantum circuit below.

|0〉(1) UH •

|0〉(2)

|0〉(3)

|0〉(4) R(π2 ,0) DD R(π2 ,φ)

The experimental result is shown in Fig. 9.10. The CNOT gate takes 6.9ms interleaved
with 4 sets of a UR-16 sequence. Similar to the previous result, the same DD sequence
with the SR pulse is applied to the quantum memory in qubit 4. Here, the sequence
time is already corrected. The Bell-state fidelity between qubits 1 and 2 is achieved at
0.91(4) , without SPAM error, while the memory of qubit 4 has a contrast of 0.88(4)
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9 Four-Ion System

Figure 9.8: The experimental sequence of preparing a Bell state and a quantum
memory. Ion 1, which serves as a quantum memory, needs to be protected during the Bell-
state evolution between ions 2 and 4. The light-blue π-pulse in the center of the DD sequence
indicates the SR pulse, R(π,π/2). The spin-spin interaction is indicated by green boxes. To
complete the Bell-state sequence, the Hadamard gate (yellow) and phase correction pulses (red
and dark blue) are applied.
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(b) Qubit 2 and 4

Figure 9.9: Results of a quantum memory in a four-qubit system. The memory
qubit, qubit 1, is prepared in a superposition state by a π/2-pulse, after which qubits 2 and 4
are prepared in a Bell state interleaved with 6 sets of a UR-14 sequence. During the CNOT
gate time of 9.9ms in the Bell-state preparation, the memory qubit is also protected by the
same DD sequence, with an additional SR pulse. (a) The excitation probability with respect
to the probe pulse phase is plotted. The black dashed line represents a perfectly protected
memory. The blue data take the same evolution time τCNOT in the DD sequence of the memory
qubit, in addition to that for the Bell state. The red data take the same evolution time and the
time spent for the Hadamard and the phase correction pulses. For the memory fidelity, solid
lines show the fit of the corresponding results. The blue plot shows a contrast of 0.71(5) and
a phase of (-0.42(3))π. The red plot shows a contrast of 0.87(3) and a phase of (-0.505(13))π.
(b) The blue and red results give Bell-state fidelities of 0.85(4) and 0.79(2) , respectively. All
results exclude SPAM errors. The error bars represent statistical errors within one standard
deviation for 50 and 120 repetitions, respectively.
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9.3 Towards Quantum Teleportation
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(b) Qubit 4

Figure 9.10: Results of a quantum memory in a four-qubit system. The memory
qubit, qubit 4, is prepared in a superposition state by a π/2-pulse, after which qubits 1 and 2
are prepared in a Bell state interleaved with 4 sets of a UR-16 sequence. The CNOT gate time
is 6.9ms. (a) The Bell-state fidelity between qubits 1 and 2 after correcting SPAM error is
0.91(4). (b) The memory of qubit 4 shows a contrast of 0.88(4) and a phase of (-0.53(2))π. The
black dashed line represents a perfectly protected memory. The error bars represent statistical
errors within one standard deviation for 50 repetitions.

and a phase of (-0.53(2))π.

In the last two experiments, the Bell-state fidelities are comparable (or slightly better)
to the ones obtained in section 9.2 within one standard deviation. With quantum
memory as a part of the quantum register, these results show no significant differences,
indicating that the SR pulse technique works well. Nevertheless, the memory qubit,
in both cases, is not fully protected, which is shown by the non-unity of the measured
contrast. One reason might be that the DD sequence cannot completely compensate
for dephasing, which requires further investigation.

9.3.4 Quantum Teleportation Preliminary Result

The previous sub-section shows that we have enough ingredients to perform the tele-
portation protocol. The implementation, following the circuit presented in section 9.3.1,
is shown below.

|0〉(1) R(π2 ,0) DD • UH •

|0〉(2) UH • •

|0〉(3)

|0〉(4) DD R(π2 ,φ) X Z
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9 Four-Ion System

Figure 9.11: The experimental prelim-
inary result for quantum teleportation.
The superposition state of ion 1 is tele-
ported to ion 4 and observed by a probe
π/2-pulse. Two CNOT gates between ions
2 and 4 and ions 1 and 2 are applied for

τ
(2,4)
CNOT = 10.95ms and τ

(1,2)
CNOT = 5.54ms, re-

spectively. During τ
(2,4)
CNOT and τ

(1,2)
CNOT, 14 sets

of a UR-26 sequence and 12 sets of a UR-22
sequence are applied to protect the qubits.
The excitation probability is measured for
qubit 4, showing a contrast of 0.56(5) and a
phase of (0.51(3))π. The error bars represent
statistical errors within one standard devia-
tion for 60 repetitions. The black dashed line
represents perfectly teleported memory. The
measured phase is shifted by the phase π,
which is due to the missing control Pauli-Z
in the analysis script.
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The dotted box indicates the probe pulse. The dashed box indicates the conditional
Pauli operators, depending on the state of qubits 1 and 2. From the measured prob-
abilities, the analysis script applies only the conditional Pauli-X to the teleported
qubit.

Three coherent control sources are adjusted by the VFG amplitudes to equalize the
Rabi frequencies between all ions at 2π ·29.33(3) kHz. The four-ion system is sideband-
cooled by the center-of-mass of the first ion for 80ms. The state |0000〉 is initialized by
the preparation laser. The memory qubit (ion 1) is prepared by a π/2-pulse. The first

CNOT between ions 2 and 4, τ
(2,4)
CNOT, takes 10.95ms interleaved by 14 sets of a UR-26

sequence. The second CNOT between ions 1 and 2, τ
(1,2)
CNOT, takes 5.54ms interleaved

by 12 sets of a UR-22 sequence. The probe pulse is applied to ion 4 by a π/2-pulse of
varying phase. The preliminary result is shown in Fig. 9.11. The excitation probability
of ion 4 shows a contrast of 0.56(5) and a phase of (0.51(3))π. Here, the contrast of
ion 4 indicates the success of the teleportation protocol. However, the measured phase
is shifted by the phase π, which is due to the missing control Pauli-Z in the analysis
script. Furthermore, the SR pulses could also influence the phase of the quantum
memory.

Currently, the superposition state is only an example to test quantum teleportation
in our system. Arbitrary states are still required to be studied. Further investigations
worth considering include (a) trying to improve the protocol fidelity by improving
each Bell-state gate, (b) starting the experiment from the ground-state cooling, and
(c) preparing an arbitrary state to be teleported.
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9.4 Summary of Experimental Results and Outlook

9.4 Summary of Experimental Results and Outlook

In this chapter, we discussed some essential ingredients for experiments with a four-ion
system in a non-segmented linear ion trap. The spin-spin couplings between all 4 ions
have been measured. They all agree with the theoretical calculation within 2.2 stan-
dard deviations. The Bell state between a pair of nearest neighbors and second-nearest
neighbors has been demonstrated. This is possible by the long-range interaction in
our MAGIC scheme. Furthermore, while creating an entangled pair, another qubit
can serve as a quantum memory. This memory qubit can be protected with the same
DD sequence as the one applied to the Bell-state operations. The memory qubit is
required to be isolated from the qubit interaction because of the always-on coupling
within the MAGIC scheme, which can be achieved by the selective recoupling pulse
technique. Here, the demonstration also indicates that we can perform experiments
with 3 qubits simultaneously using 3 coherent control sources. This control can be
achieved by a synchronization circuit, explained in Ref. [103].

To perform quantum information processing in a non-segmented linear trap, the quan-
tum state transfer within a quantum register is also an important element. This
chapter shows an example of a quantum state transfer using a quantum teleportation
scheme. A preliminary result shows that it is possible to transfer a superposition state
from one end to another end of a quantum register. There is still an open question of
whether any arbitrary state can be teleported, which requires further investigation.

To quantify the teleported memory, the quantum state tomography can be considered.
The teleportation fidelity can also be compared when the ground state cooling is ap-
plied. The qubit coherence is currently protected against dephasing by a DD-pulse
sequence, which we could try to achieve by continuous DD (or a dressed state). The
technique from this experiment can be applied to a larger system, for example, a full
quantum byte or across quantum registers. In addition, if the teleportation protocol is
performed with stronger spin-spin coupling, the operation time of the state transfer by
this method could be shorter than the ion shuttling operation. Furthermore, the tele-
portation protocol can be extended to implement a quantum gate using teleportation
[211].
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10
Summary and Outlook

Trapped ion systems are one of the promising candidates for building a large-scale,
universal quantum computer. The work presented in this dissertation has explored
several topics regarding the realization of a trapped-ion-based quantum processor using
radio-frequency-driven hyperfine qubits in a static magnetic field gradient:

• decreasing motional excitation level near the motional ground state in a one-
and two-ion system using RF radiation;

• investigation of possible sources of the qubit dephasing;

• investigation of the limitation of the fidelity of two-qubit gates;

• realization of a quantum algorithm to enhance the decision-making process for
a type of machine learning methods;

• realization of a quantum algorithm to transfer a quantum state within a static
quantum register.

The experimental techniques to study systems of spin-coupled qubits have been devel-
oped. All experimental demonstrations were performed with 171Yb+ ions detained in a
macroscopic linear Paul trap with a permanent magnet magnetic field gradient [27, 83].
Computations can be tailored by coherent RF pulses and by tuning the experimental
parameters [58]. Each qubit, represented by one physical ion, is encoded into two
hyperfine levels of the ground state 2S1/2 , which are the magnetic-field-sensitive state
|2S1/2 (F = 0) 〉 and |2S1/2 (F = 1,mF = +1) 〉, and it can be individually addressed
and controlled by RF pulses near 2π · 12.6GHz.

We have demonstrated near-ground-state cooling achieved by the sideband cooling of
a single Doppler-cooled ion with a combination of radio-frequency and a repumping
laser. The average phonon number after sideband cooling has achieved at 〈n〉 =
0.30(12) corresponding to the motional ground state occupation of 77%. This is at
the theoretical limit due to the current heating rate of our experiment. The success of
sideband cooling has accomplished by optimizing the laser intensity of the repumping
optical transition, as it has been also shown by the simulation of the rate equation
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model. This experiment used two methods to determine the average phonon number,
which were the observation of the decay of the Rabi oscillation using a manipulation
frequency on the qubit resonance and the excitation probability of the sideband of
the RF-optical double-resonance spectrum. The average phonon number of a low
motional level state was determined by observing the excitation probability of the
sideband spectrum while the average phonon number of a highly excited motional level
state was determined by observing the decay of the Rabi oscillation. For a two-ion
system, this study is the first demonstration of sympathetic sideband cooling using
RF radiation of two individually addressable identical isotopes of the same species.
We investigated the average phonon numbers of each individual ion after performing
the sideband cooling on different motional modes and ions. The cooling method was
performed at an axial trap frequency similar to a trap potential frequency of neutral
atom trap experiments, therefore the method could be applied to many neutral atom
experiments and also hyperfine state trapped ion experiments using the availability of
commercial RF devices.

During the course of improving the fidelity of our quantum gates, we have outlined four
categories of possible sources of qubit dephasing: the incoherence of qubit controls, the
fluctuation of magnetic fields, the fluctuation of electric fields, and the delocalization of
an ion in a magnetic field gradient. The incoherence of qubit controls such as RF pulses
of the qubit coherent control and the light-induced decoherence [108] were completely
ruled out as sources of dephasing. Moreover, when we used either the Helmholtz coils
or the permanent magnets to generate a magnetic field offset for the Zeeman splitting,
the qubit coherence time has not been significantly different. That means we also
ruled out the noise from the offset field. Furthermore, ambient magnetic fields were
negated by an active magnetic-field stabilization, which can compensate frequency
components up to 700Hz. However, the field-stabilization system was not operating
at full potential due to the location of the magnetic sensor. The sensor could not
be placed close to where ions are located, but it could only be placed outside the
vacuum chamber and at a distance of approximately 30 cm from where the ions are
trapped. Ions’ movement in a magnetic field gradient caused by the fluctuation of
electric fields can be interpreted as magnetic noise. Micromotion compensation and
passive filtering of DC potentials lowered the heating rate by one order of magnitude,
but they have not changed the qubit coherence time. UV lasers could charge exposing
materials such as the RF trap electrodes, the vacuum recipient, and the window of the
objective viewport. These could cause a change of the static potential which has been
counteracted by the adaptive frequency correction of the qubit addressing frequencies,
therefore, it was negligible. Additionally, the transverse coherence time of an ion near
the motional ground state was also similar to the coherence time of the Doppler cooled
state. By having considered various sources, we have come to a conclusion that the
likely important sources of dephasing are (i) vibration of magnets and (ii) fluctuations
of the magnetic field of the permanent magnets. The cylindrical permanent magnets
have been mounted on the endcap electrodes without any rigid fix, which might allow
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a small movement of the magnets. The temperature of the trap could be more than
370K, as mentioned in Ref. [159], which might induce fluctuations of magnetization.

We have improved the fidelity of our two-qubit gates, shown by a CNOT gate and a
Bell gate of a two-qubit system. However, we have not found the main source of the
qubit dephasing as summarized in the previous paragraph. In the meanwhile, we have
protected qubit states against the qubit dephasing using the dynamical decoupling
pulse sequences. However, DD pulse sequences can act as a band-pass filter to let some
frequency components of magnetic field pass with respect to their pulse interval. These
noise components can destroy the qubit coherence. Therefore, the sequence has been
required to be adjusted to avoid frequency components of magnetic noise, which can be
different for each laboratory. Additionally, the pulse error can accumulate limiting the
number of pulses used in a DD sequence. Composite pulse sequences could be employed
to improve the robustness of a simple pulse in terms of the detuning error from the
qubit resonance and the pulse rotation error, however, they cannot be applied directly
to the DD sequence as shown by our simulation. Furthermore, we have studied the
effect of the motional excitation on the Bell-state fidelity, and there was no significant
effect. Lastly, we improved the Bell-state fidelity by 5% due to the implementation
of the double threshold method to reduce the detection error. Altogether, as a result
of this work the Bell-state fidelity has been improved from 0.63(3) [83] to 0.935(19).
After correcting the SPAM error, the Bell-state fidelity has achieved at 0.95(3). This
is not at the high-fidelity level yet, we still need to improve the fidelity further. To
my knowledge, the best of two-qubit MW gate using hyperfine qubits has the fidelity
of 0.997(1), which has been achieved by an oscillating magnetic field gradient [177].

With all improvements, we have experimentally demonstrated the proof-of-principle
quantum enhanced deliberation process with a quantum learning agent implemented
by a quantum processor. This unit of the deliberation process is an essential ele-
ment in the reinforcement learning framework, which is one of the pillars of machine
learning techniques as a sub-field of artificial intelligence. The reinforcement learning
framework can realize an automated machine capable to learn how to interact with
an environment. We have implemented our deliberation process using the reflecting
projective simulation model [190] based on a stochastic diffusion process of the mem-
ory of an agent. This model allows a quadratic speed-up of the deliberation process
for quantum agents with respect to their classical counterparts. The two primary
features of a quantum reflecting projective simulation algorithm have been verified:
(i) quadratically faster scaling of the deliberation process using the quantum learning
agent compared with its classical counterpart and (ii) preservation of the tail of the
stationary distribution representing the memory of agents. Besides the experimental
demonstration, our error model has completely described the errors in our experi-
mental results, which came from the qubit decoherence, the addressing error, and the
asymmetric detection error. This demonstration highlights the potential of a quantum
processing unit in the field of quantum-enhanced learning and artificial intelligence
enabling fast learning within a rapidly changing environment.
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We have further discussed some essential ingredients for a static quantum register using
a small-scale register of four ions. We demonstrated this system to prepare tools and
techniques before extending to a large-scale quantum processor. We have measured
the spin-spin couplings in the magnetic gradient induced coupling scheme between
four ions for the first time, that they all agree well with the theoretical calculation
within 2.2 standard deviations. The Bell state between a pair of nearest-neighbor and
second-nearest-neighbor have been demonstrated together with another qubit serving
as a quantum memory, even though the MAGIC scheme has the always-on interaction
between ions. The isolation of the memory qubit has been achieved by the selective
decoupling pulse technique. Additionally, we have used the quantum teleportation
protocol to assist performing quantum information processing in a static quantum
register, which has been implemented by a non-segmented ion trap. A preliminary
result has shown that it was possible to transfer a superposition state from one end to
another end of a quantum register. The fidelity of the teleported memory has achieved
at 0.56(5) which has been mainly limited by the fidelity of a two-qubit gate. We still
need further investigations on the quantum state transfer of any arbitrary state and
as well the improvement of the protocol fidelity.

We still must keep searching for possible noise sources as well as techniques to extend
the qubit coherence time to be able to perform higher-fidelity operations in the future.
Passive magnetic field shielding can reduce magnetic noise from an environment [36].
In addition, the dressed-state qubits have been proven to obtain the fidelity of a two-
qubit gate of 0.985(12) [60] in a comparable experimental setup. We can even further
extend the level of dressed state to the double-dressed state picture [212], which has
theoretically shown the noise robustness for a phase gate and a Mølmer–Sørensen gate.
Alternatively, we could use the optimal control technique to design a two-qubit gate
integrated with a dynamical decoupling pulse scheme. In the near future, when we have
a new ion trap which could provide a much larger magnetic field gradient compared
with the current setup, then the trap parameters could be improved. The sideband
cooling will be faster. The spin-spin coupling will be larger, which will reduce the gate
time of two-qubit and multi-qubit gates. The total manipulation time of a quantum
algorithm would be reduced allowing the implementation of more complex algorithms
and more operations if we could have a comparable qubit coherence time with the
current setup. By improving the trap material, the heating rate and the magnetic
field noise caused by permanent magnets, which might come from the fluctuation of
the magnetization, could be reduced.

When we open the vacuum recipient, we could consider investigating the following:
the vibration of the permanent magnets and the temperature effect of the permanent
magnet on the qubit coherence time. Moreover, we should consider installing a pressure
gauge and a magnetic field sensor inside the vacuum recipient.

In micro-structured traps [13, 213, 214], the higher magnetic field gradient is possible
to achieve. This technique also allows ions to be placed near an RF source, which is
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advantageous for the single-qubit manipulation. This will require significantly lower
RF powers, which will reduce the amplitude fluctuation of RF pulses. Furthermore,
photodetectors could be fabricated directly to the trap chip [215], which will improve
the detection fidelity.

To achieve a fault-tolerant universal quantum computer, the number of qubits must be
increased and all errors must be lower than the error-correction threshold. Therefore,
quantum error correction or topological qubits will be applied, when a large qubit
system is achieved and the gates, preparation, and readout are at high fidelity. How-
ever, the topological qubits still need more experimental evidence to be conclusive.
The techniques implemented here throughout this work together with the techniques
mentioned above and the concept of the dressed states offer a promising future for an
ion-based fault-tolerant quantum computer.
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List of Devices

Experimental control

DSP Jäger GmbH ADwin-Pro
- Pro-CPU-T9
- Ethernet computer link
- 2x DIO 32
- AIN8/12
- AOUT8/16

Experiment sequence National Instruments LabVIEW 2015
DAC PLUG-IN Electronics USB-3112
Frame grabber card BitFlow Neon-CLB CameraLink

Paul trap

Function Generator Stanford Research Systems DS345
Power amplifier Kalmus 714FC-CE
RF Helical resonator Prague University Ivo Polak’s design
Permanent magnets Magnetic Component Engineering (UK) Ltd

SmCo tubes S2869 [83]

VFG synchronization

Atomic clock Stanford Research Systems FS725
4-way Power splitter Mini-Circuits ZCSC-3-R3+
Schmitt trigger In-house [103]
Data flip-flop In-house [102]
TTL Fan-out In-house [103]
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B List of Devices

RF control chain

RF sequence In-house VFG-150 Versatile Frequency Generator
RF power amplifier Globes 10W PA Elisra (+35dB)
RF power amplifier Microwave Amplifiers Ltd AM43-12.4-12.8-43-43 (+45dB)
RF pre-amplifier Mini-Circuits ZFL-500LN+
RF pre-amplifier Mini-Circuits ZX60-183A+
RF pre-amplifier Mini-Circuits ZX60-14012L+
Power supply (for AM43) TOELLNER TOE 8851-16
RF low-loss cable Elspec Phase Master 300 PM300-SMA11-SMA11-1500
Dual loop PLL oscillator MITEQ DLCRO-010-12568-3-15P
MW switch Narda SPST S213D
3-way Power cominer/splitter Mini-Circuits ZFRSC-183-S+
3-way Power cominer/splitter Mini-Circuits ZFRSC-2-1W+
4-way Power cominer/splitter Mini-Circuits ZCSC-3-R3+
High-pass filter Mini-Circuits SHP-50+
MW mixer (double-balanced) Macom M79
MW mixer (double-balanced) Mini-Circuits ZX05-153LH+
MW mixer (SSB) Maki SSB-0618MXW-2
MW attenuator (-10dB) Elisra MW21110
MW attenuator (-6dB) Mini-Circuits BW-S6W2+
MW attenuator (-3dB) Mini-Circuits BW-S3W2+
MW isolator AtlanTecRF ACI-20240-SF-SF (5W)
MW isolator TKI Ferrit IC 12,5 (1W)
MW isolator TKI Ferrit IC 12,5-10W (10W)
MW isolator (Unknown) MW 11218
MW isolator MSC Microwave Ltd MCSM 0616 P-0190-08 (25W)
MW isolator Raditek RADI-10-15-S3-1WR-60W Fwd-g18 (60W)
MW isolator UIY UIYCI1220A10T13SF (60W)
MW termination api technologies corp. 50W SMA termination TS180M-50W

Vacuum Components

Ion Getter Pump StarCell VacIon Varian 919-0110 20 l/s
Vacuum Controller Varian MiniVac Controller 2008 Model 929-0290

Helmholtz Coils

3-channel power supply Low residual ripple power supply Toellner TOE 8733-2
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Optical Resonator

CF Windows (369 laser) Kurt J. Lesker Company UV Quartz DN16CF VPZL-133Q
Lemo cable Lemo cable Lemo Gmbh FGG.1B.306.CLAD52
Lemo connector (6 pins) Air-tight connector Lemo Gmbh HGG.1B.306.CLLSV
Lemo connector Air-tight connector Lemo Gmbh HGP.00.250.CTLSV
Pressure measurement In-house µTrap MPX4100A [107]

AOM Components

Acousto-optic modulator AOM (old) 65MHz IntraAction ASM-702B8M
Acousto-optic modulator AOM (new) 90MHz ISOMET AOM 1206C-833
Acousto-optic modulator AOM 960MHz Brimrose TEF-1050-50-369
AOM driver (SUB-D9 port) Brimrose VFF-1050-50SPS-B1/B2-C1
Acousto-optic modulator AOM 115MHz Crystal Technology 31110-125
Voltage-controlled oscillator VCO (for old AOM 65MHz) Mini-Circuits ZX95-100-S+
Voltage-controlled oscillator VCO Mini-Circuits ZX95-200-S+
Five-Axis Kinetic mount Newport Five-Axis Aligner 9081-M
Stable mounting Radiant Dyes RD-PDT-B

Lasers

Laser diode (369 nm) Nichia NDU1113E 20mW
Laser diode (399 nm) Unknown
Laser diode (638 nm) Thorlabs Mitsubishi ML520G54-01 110mW
Laser diode (935 nm) eagleyard photonics EYP-RWE-0980-08020-1500-SOT02-0000

(serial AG-02607) 1mW
Optical fiber Polarization-maintaining type Thorlabs PM-S350MHP
Fiber collimator Schäfter+Kirchhoff 60FC-4-A11-01
Electro-optic modulator Photline NIR-MPX800 for 935 laser
(EOM)

Ion Detection

EMCCD Camera Andor iXon Ultra 890 DU-897U-CS0-EXF X-8188
EMCCD software Andor Solis 64bit 4.28.30001.0
Photo-multiplier tube Hamamatsu R5600P
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C
Ytterbium Ion

The detailed information about the energy structure of ytterbium ions is summarized
in tables C.1, C.2, and C.3. It is visualized in Fig. C.1. Our optical repumping
scheme depopulates the state |2D3/2〉 and |2F7/2〉 using the 935-nm and the 638-nm
laser. There are two known alternative repumping schemes, shown in figures C.2 and
C.3. The scheme in Fig. C.2 could be an alternative choice for our future experiments
because the natural lifetime of the state |1D[3/2]3/2〉 is much shorter than of the state
|1D[5/2]5/2〉.

Table C.1: Yb II energy levels and their lifetime. The energy levels are the calculated values
provided by the atomic database from NIST. The experimental observation of the hyperfine
splittings was performed using 171Yb+ions. N/A means the experimental data is not available.

Term Energy (cm−1) Hyperfine splitting Lifetime Ref.
[216] ∆/2π (GHz)

2S1/2 0 12.642 812 118 466(2) - [93, 217]
2P1/2 27 061.82 2.1049(13) 8.12(2) ns [149, 218]
2P3/2 30 392.23 1.7508(10) 6.15(9) ns [219, 220]
2D3/2 22 960.80 0.86(2) 52.7(24)ms [26, 221]
2D5/2 24 332.69 0.191(2) 7.2(3)ms [222, 223]
2F7/2 21 418.75 3.620(2) 5.4+9.3

−3.6 yr [224–226]
3D[3/2]1/2 33 653.86 2.2095(11) 37.7(5) ns [26, 227]
3D[1/2]1/2 33 378.89 N/A N/A
1D[3/2]3/2 34 575.37 N/A 28.6(4) ns [227]
1D[5/2]5/2 37 077.59 0.321(18) < 172ms [220, 222]
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C Ytterbium Ion

Possible decay channel 

(branching ratio)

171Yb+

Coherent control

Figure C.1: Energy level structure of 171Yb+. The schematic, not to scale, shows
optical transitions for Doppler cooling and repumping, indicated by color arrows. Significant
decay channels are shown by dashed lines. Numbers in round parentheses show the branching
ratio for each possible channel. The main qubit states are highlighted in orange. Our optical
repumping scheme depopulates the state |2D3/2〉 and |2F7/2〉 using the 935-nm and the 638-nm
laser. (Adapted from Ref. [236].)
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Table C.2: Yb II transitions. The upper shows our main transitions with the corresponding
laser wavelength in vacuum. The lower shows the other known transitions with their references.
The energy differences are provided by the atomic database from NIST.

Transition Linewidth ∆E (cm−1) Wavelength Ref.
[216] (nm)

2S1/2 ↔2P1/2 19.6MHz 27 061.82 369.5 [227, 228]
2D3/2 ↔3D[3/2]1/2 4.2MHz 10 693.06 935.2 [227, 228]
2F7/2 ↔1D[5/2]5/2 > 0.9Hz 15 658.84 638.6 [222, 225, 228]

2S1/2 ↔1D[3/2]3/2 5.4MHz 34 575.37 289.139 [216, 227, 228]
2S1/2 ↔3D[3/2]1/2 4.2MHz 33 653.86 297.056 [228, 229]
2S1/2 ↔2P3/2 25.8MHz 30 392.23 328.937 [228]
2S1/2 ↔2D5/2 22.9Hz 24 332.69 410.97 [222, 223]
2S1/2 ↔2D3/2 3.02Hz 22 960.80 435 [225, 230]
2S1/2 ↔2F7/2 0.9 nHz 21 418.75 467 [224, 225]
2D3/2 ↔3D[1/2]1/2 N/A 16 418.09 609.1 [231]
2F7/2 ↔1D[3/2]3/2 5.4MHz 13 156.62 760.072 [227, 232, 233]
2F7/2 ↔2D5/2 22.9Hz 2913.94 3.43× 103 [222, 234]

Table C.3: Yb II branching ratio.

Initial state Final state Ratio Ref.

2P1/2
2S1/2 0.994 99(15) [26]
2D3/2 0.005 01(15)

2D5/2
2F7/2 0.83(3) [222]
2S1/2 0.17(3)

2P3/2
2S1/2 0.9875(6) [220]
2D3/2 0.0017(1)
2D5/2 0.0108(5)

3D[3/2]1/2
2S1/2 0.982* [235]
2D3/2 0.018*

*Calculated values
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Figure C.2: Alternative repumping scheme 1. This scheme has been used in Japanese
National Research Laboratory of Metrology [232] and German National Metrology Institute
(PTB) [233]. This is an alternative repumping scheme from the long-lifetime state |2F7/2〉.
This method could be a better choice because the state |1D[3/2]3/2〉 has the natural lifetime
much shorter compared to the state |1D[5/2]5/2〉, which is used in our repumping scheme, see
Fig. C.1 or Fig. 3.1.
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Figure C.3: Alternative repumping scheme 2. The laser at 609 nm has been introduced
to depopulate the state |2D3/2〉 in Ref. [231] from CSIRO National Measurement Laboratory
(Australia). However, there is still a chance to be in the state |2D5/2〉, then the laser at 760 nm
is necessary. Since then there is only this research group reporting about the use of the 609-nm
laser. We still need more information on the natural lifetime of the state |3D[1/2]1/2〉.
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D
Simulation Scripts

All simulation scripts use a MATLAB package from Ref. [237]. The scripts are written
in MATLAB R2017a. The scripts are available on our shared hard drive.

D.1 Rate Equation Model for SBC

The following MATLAB scripts are used in section 5.1.1.

1 function out=RE_SBC(Omega, TrpF, Gam, tSBCmax)

2 %This programm solves the rate equations for the population of the phonon

3 %numbers. One can obtain with it the phonon population distribution at

4 %every time between the span given by the tspan variable

5 %The input parameters are

6 %Omega, the rabi Oscilation frequency in Hz. (not the angular frequency)

7 %TrpF, the trap frequency in Hz. (not the angular frequency)

8 %Gam, the decay rate in Hz. (not the angular frequency)

9 %

10 %The output out gives the average phonon number a the end of the

11 %sideband cooling process that happens at max(tspan).

12 %

13 %The initial population is given by a thermal distribution whose average

14 %population number is set by nz0.

15 %

16 % Andres F Varon May 2013

17

18 % tspan = [0, 20e-3];

19 tspan = [0, tSBCmax]; % upto tSBCmax s

20

21 % nz0=150*120e3/TrpF; %The initial ocupation Number is related to the

22 % %initial energy

23 nz0=100; %The initial ocupation Number is related to the

24 %initial energy

25

26 [nz, p0]=population_n(nz0);

27

28 Omega=2*pi*Omega;

29 TrpF=2*pi*TrpF;

181



D Simulation Scripts

30 Gam=2*pi*Gam;

31

32 OmegaTxT=num2str(Omega/(2*pi*1e3), '%.0f');

33 GammaTxT=num2str(Gam/(2*pi*1e3), '%.0f');

34 TrapTxT=num2str(TrpF/(2*pi*1e3), '%.0f');

35 tTxT=num2str(max(tspan)*1e3, '%.0f');

36

37

38 ode = @(t,p) RateEquations(t, p, Omega, TrpF, Gam);

39 [t,p] = ode45(ode, tspan, p0);

40

41 for m=1:size(p,1)

42 p(m,:)=p(m,:)/sum(p(m,:));

43 end

44

45 t=t*1e3;

46

47 n=0:size(p,2)-1;

48 X=meshgrid(n, 1:size(p,1));

49 n_av=sum(X.*p,2);

50 n_zoom=0:floor(min(n_av)*8);

51 out=n_av(size(p,1));

52

53 txt=['\Omega_{MW}=2\pi\times' OmegaTxT ' kHz '];

54 txt=[txt ' \Gamma_{369}=2\pi\times' GammaTxT ' kHz'];

55 txt=[txt ' \omega_{z}=2\pi\times' TrapTxT ' kHz'];

56 txt=[txt ' t_{max}=' tTxT ' ms'];

57

58 clf;

59 annotation('textbox', [0.06 0.95 0.9 .05], 'String', txt);

60

61 subplot('Position', [0.06 0.575 0.4 .33])

62 imagesc(t, n_zoom, transpose(p(:,n_zoom+1)));

63 set(gca,'YDir','normal')

64 title('Phonon Population');

65 xlabel('t (ms)')

66 ylabel('n');

67

68 subplot('Position', [0.56 0.575 0.4 .33])

69 plot(t,n_av, 'LineWidth',2);

70 title('Average phonon number');

71 xlabel('t (ms)')

72 ylabel('\langle n \rangle');

73

74 subplot('Position', [0.06 0.1 0.4 .33])

75 plot(n,p(1,:), 'LineWidth',2);

76 title(['Population at t=' num2str(t(1)) ' ms']);

77 legend(['\langle n \rangle=' num2str(n_av(1),'%.1f')]);

78 xlabel('n')

79 ylabel('Phonon Population');

80

81 subplot('Position', [0.56 0.1 0.4 .33])

82 [nz, p0]=population_n(n_av(size(p,1)));
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83 plot(nz,p0, 'LineWidth',2, 'Color', 'r');

84 hold on

85 plot(n_zoom,p(size(p,1),n_zoom+1), 'LineWidth',2);

86 hold off

87 title(['Population at t=' num2str(t(size(p,1))) ' ms']);

88 legend('Thermal Dist', ['\langle n \rangle=' ...

89 num2str(n_av(size(p,1)), '%.1f')])

90 xlabel('n')

91 ylabel('Phonon Population');

92

93 name_str=['Om' OmegaTxT 'kHz_G' GammaTxT ...

94 'kHz_v' TrapTxT 'kHz_t' tTxT 'ms'];

95 % cd('./Cooling_Simulation2');

96 print('-dpdf', name_str);

97 % print('-dmeta', name_str);

98 savefig([name_str '.fig'])

99 save(name_str, 'p','t', 'txt', 'OmegaTxT', 'GammaTxT', 'TrapTxT', 'tTxT');

100 % cd('../');

1 function [nz, Pnz]=population_n(avnz)

2

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 %This funcion calculates the thermal distribution for an average ocupation

5 %number naver.

6 %For a phonon number nz (given as vector) it is assigned a Probability

7 %Pnz (also given as a vestor)

8 %

9 %Andres F. Varon Sep. 2011

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

11

12 %We truncate the Thermal distribution.

13 nzmax=avnz*10;

14 nz=0:nzmax;

15

16 %calculates the thermal population probability

17 Pnz=1/(avnz+1)*(avnz/(avnz+1)).^nz;

18

19 %We force the normalization (due to the truncation):

20 Pnz=Pnz/sum(Pnz);

1 function dpdt = RateEquations(t, p, Omega, TrpF, Gam)

2 %RateEquations define the evolution of the vibrational

3 %populations in the onset of Side Band Cooling

4

5 %Trap Gradient

6 Gradient=19; %T/m

7

8 %Constants definitions

9 m=171*1.6605e-27; %kg mass of 171

10 mub=9.27400915e-24;% Bohr Magneton J/T.
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11 h=6.62606896e-34;% Planck Constant Js.

12 hbar=h/(2*pi);

13

14 %Size of the ground function

15 Dz=sqrt(hbar./(2*m*TrpF));

16

17 %Effective eta (Microwave)

18 etaeff=Dz*mub/hbar*Gradient./TrpF;

19

20 %Eta due to the laser transition

21 lambda=369.5e-9; %wavelength in m

22 % eta=2*pi*Dz/lambda;

23 eta=2*pi*Dz/lambda * cos(pi/4) ; % laser at 45 deg: eta = eta*cos(pi/4)

24

25 %p=(p+min(p));

26 p=p.*(p>0);

27 p=p/sum(p);

28 dpdt=zeros(size(p));

29

30 CR_fa = CoolRate(1, Omega, etaeff, eta, Gam, TrpF);

31 HR = HeatRate(0, Omega, etaeff, eta, Gam, TrpF);

32 dpdt(1) = p(2)*CR_fa - p(1)*HR;

33

34 for m=2:max(size(p))-1

35 CR_fa= CoolRate(m , Omega, etaeff, eta, Gam, TrpF);

36 CR= CoolRate(m-1, Omega, etaeff, eta, Gam, TrpF);

37 HR= HeatRate(m-1, Omega, etaeff, eta, Gam, TrpF);

38 HR_fb= HeatRate(m-2, Omega, etaeff, eta, Gam, TrpF);

39 dpdt(m) = p(m+1)*CR_fa - p(m)*(CR+HR) + p(m-1)*HR_fb;

40 end

41

42 m=max(size(p));

43 CR=CoolRate(m-1, Omega, etaeff, eta, Gam, TrpF);

44 HR_fb=HeatRate(m-2, Omega, etaeff, eta, Gam, TrpF);

45 dpdt(m)=-p(m)*CR+p(m-1)*HR_fb;

46

47 if sum(dpdt)>1e-3

48 sum(dpdt)

49 end

1 function out = CoolRate(n, Omega, etaeff, eta, Gam, TrpF)

2 %Gives the cooling rate for sideband cooling when the microwave

3 %is in resonance with the red side band

4

5 OmL = Gam;

6 etaL = eta;

7

8 GamP = 2*pi*19.6e6;

9 GamP = GamP*(1/4); % from to pump to |P,F=1> and fall to |S,F=0>

10

11

12 Om = OmegaRSB(Omega,n, etaeff);
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13 GamCC = OmL^2/(4*GamP);

14 out=Om^2*GamCC/(GamCC^2+2*Om^2);

15

16

17 GamRC = OmegaRSB(OmL,n, etaL)^2/(4*GamP);

18 Om=OmegaC(Omega,n, etaeff);

19 out=out+Om^2*GamRC/(GamRC^2+2*Om^2+4*(1*TrpF)^2);

20

21

22 end

1 function out=HeatRate(n, Omega, etaeff, eta, Gam, TrpF)

2

3 OmL = Gam;

4 etaL = eta;

5

6 GamP = 2*pi*19.6e6;

7 GamP = GamP*(1/4); % from to pump to |P,F=1> and fall to |S,F=0>

8

9

10 GamBC = OmegaBSB(OmL,n, etaL)^2/(4*GamP);

11 Om=OmegaC(Omega,n, etaeff);

12 out=Om^2*GamBC/(GamBC^2+2*Om^2+4*(1*TrpF)^2);

13

14

15 GamCC = OmL^2/(4*GamP);

16 Om=OmegaBSB(Omega,n, etaeff);

17 out=out+Om^2*GamCC/(GamCC^2+2*Om^2+4*(2*TrpF)^2);

18

19 end

1 function out = OmegaBSB(Omega, n, etaeff)

2 %Omega_n calculates the Rabi frequency for a system between the

3 %levels n and n+1

4 if n>=0

5 out=(n+1-(n^2+n)/2*etaeff^2+(n^3-n)/12*etaeff^4)/sqrt(n+1);

6 out=etaeff*Omega*exp(-etaeff^2/2)*out;

7

8 else

9 out=0;

10 end

11

12 end

1 function out = OmegaC(Omega, n, etaeff)

2 %OmegaC calculates the Rabi frequency for the carrier

3

4 out=Omega*(1-etaeff^2*n+1/4*etaeff^4*n*(n-1));
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5

6 end

1 function out = OmegaRSB(Omega, n, etaeff)

2 %Omega_n calculates the Rabi frequency for a system between the

3 %vibrational levels n and n-1

4 if n>=1

5 out=(n-(n^2-n)/2*etaeff^2+(n*(n-1)*(n-2))/12*etaeff^4)/sqrt(n);

6 out=etaeff*Omega*exp(-etaeff^2/2)*out;

7

8 else

9 out=0;

10 end

11

12 end

D.2 Composite Pulse Sequence

The following MATLAB scripts are used in section 7.3. This is for a study of errors
in the BB1 pulse sequence.

1 function sim_CompositePulse_v2( )

2

3 caseName = {'plain','BB1'};

4 caseID = 2;

5

6 step = 41;

7

8 inPsi = 1; % initial state |0>

9 rabiOmega = 2*pi*30e3;

10

11 % theta = pi/2;

12 theta = pi;

13 % theta = random('Uniform',0,pi,1,1);

14

15 phi = 0;

16

17 %%

18 % nOp = 5; % number of applied pulses

19 nOp = 1; % number of applied pulses

20

21 disp(['theta = ' num2str(theta*180/pi) ' deg'])

22

23

24 state_F = 1;

25 eta = 0.25;
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26 % eta = 1;

27

28 del = [-eta:2*eta/(step-1):eta]*rabiOmega;

29 l = [-eta:2*eta/(step-1):eta]+state_F;

30

31 fidelity = [];

32 for k=1:step

33 for j=1:step

34 Delta = del(j);

35 L = l(k);

36 switch caseName{caseID}

37 case 'plain'

38 fidelity(k,j) = rotation1(inPsi,rabiOmega, ...

39 theta,phi,Delta,L, nOp); % plain pulse

40 case 'BB1'

41 fidelity(k,j) = rot_BB1(inPsi,rabiOmega, ...

42 theta,phi,Delta,L, nOp); % plain pulse

43 end

44 end

45 end

46

47 % rotation1(inPsi,rabiOmega,theta,phi,0,1, nOp)

48

49 %%

50 h = figure(6787); clf;

51 hold on;

52

53 set(h,'PaperUnits','centimeters');

54 xSize=12;

55 ySize=10;

56 % scaleXY = 1.25;

57 scaleXY = 1;

58 set(h,'PaperSize', scaleXY*[xSize ySize]);

59 set(h,'PaperPosition',[0 0 scaleXY*xSize scaleXY*ySize]);

60

61 fontsize=scaleXY*16;

62 fontname='Times';

63 markSize = scaleXY*8;

64

65 %%

66 [c,hc] = contourf( del./rabiOmega, l, fidelity );

67 hc.LevelList = [0.99 0.95 0.9:-0.1:0];

68 clabel(c,hc)

69 cb = contourcbar;

70 colormap('Hot');

71 caxis([0 1]);

72 cb.FontName = fontname;

73 cb.FontSize = fontsize;

74

75 % title(['Pulse Fidelity'])

76 xlabel('\delta/\Omega')

77 ylabel('L/L_0')

78
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79 zlab = get(cb,'ylabel')';

80 set(zlab,'String',['Fidelity'],'FontSize',fontsize,'FontName',fontname);

81

82 a = gca;

83 a.Box = 'on';

84 a.FontSize = fontsize;

85 a.FontName = fontname ;

86

87 % print('-dpdf', ['simu_pi_' caseName{caseID}]) ;

88

89 end

1 function F = rotation1( inPsi, rabiOmega, theta , phi , ...

2 detuningRabi, length , nOp)

3

4 debug = 0;

5

6

7 f = length;

8 Delta = detuningRabi;

9

10 %%------------------------------

11 %%

12 %need module from [Computer Physics Communications 179 (2008) 430]

13 % addpath('D:\Users\Chronos\Documents\00_AT_Work\Research\ ...

14 % Siegen\Research\Program_scripts\MatlabModules\QUBIT4MATLAB');

15

16

17 %%------------------------------

18 %%

19

20 ident = eye(2); %define the identity

21 sigma_x=[0 1; 1 0]; %Pauli matrix X

22 sigma_y=[0 -1i; 1i 0]; %Pauli matrix Y

23 sigma_z=[1 0 ; 0 -1]; %Pauli matrix Z

24

25 if(inPsi == 1)

26 ini_ket = ket([1 0]);

27

28 elseif(inPsi == 2)

29 ini_ket = ket([0 1]);

30

31 elseif(inPsi == 3)

32 ini_ket = ket([1 1]);

33

34 end

35

36 % nOp = 100;

37

38 R_op = R(rabiOmega, theta , phi ,Delta,f);

39 R_op_ideal = R(rabiOmega, theta , phi ,0,1);

40 fin_ket_ideal = (R_op_ideal)^nOp * ini_ket;
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41

42 fin_ket = (R_op)^nOp * ini_ket;

43

44 F = abs( braket( fin_ket, fin_ket_ideal) ) ;

45

46 end

47

48 %====================================================

49 %====================================================

1 function F = rot_BB1( inPsi, rabiOmega, theta , phi , ...

2 detuningRabi, length , nOp)

3

4 debug = 0;

5

6

7 f = length;

8 Delta = detuningRabi;

9

10 %%------------------------------

11 %%

12 %need module from [Computer Physics Communications 179 (2008) 430]

13 % addpath('D:\Users\Chronos\Documents\00_AT_Work\Research\ ...

14 % Siegen\Research\Program_scripts\MatlabModules\QUBIT4MATLAB');

15

16

17 %%------------------------------

18 %%

19

20 ident = eye(2); %define the identity

21 sigma_x=[0 1; 1 0]; %Pauli matrix X

22 sigma_y=[0 -1i; 1i 0]; %Pauli matrix Y

23 sigma_z=[1 0 ; 0 -1]; %Pauli matrix Z

24

25 if(inPsi == 1)

26 ini_ket = ket([1 0]);

27

28 elseif(inPsi == 2)

29 ini_ket = ket([0 1]);

30

31 elseif(inPsi == 3)

32 ini_ket = ket([1 1]);

33

34 end

35

36 % nOp = 100;

37

38 R_op = R(rabiOmega, theta , phi ,Delta,f);

39 R_op_ideal = R(rabiOmega, theta , phi ,0,1);

40 fin_ket_ideal = (R_op_ideal)^nOp * ini_ket;

41

42 fin_ket = (R_op)^nOp * ini_ket;
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43

44 F = abs( braket( fin_ket, fin_ket_ideal) ) ;

45

46 end

47

48 %====================================================

49 %====================================================

50 function P=QRot(rabiOmega, theta,phi,Delta,f);

51 %time evolution of an arbitrary pulse with possible errors

52

53 Omega=rabiOmega;

54

55 %definition of Pauli spin operators

56 sigma_x=[0 1; 1 0];

57 sigma_y=[0 -1i; 1i 0];

58 sigma_z=[1 0 ; 0 -1];

59 ident=[1 0; 0 1];

60

61 theta=f*theta*sqrt(Omega^2+Delta^2)/Omega;

62

63 if Delta==0

64 nperp=1;

65 nz=0;

66 else

67 % nperp=sqrt(Omega^2/Delta^2/(1+Omega^2/Delta^2));

68 nperp=Omega/sqrt(Omega^2+Delta^2);

69 % nz=sqrt(1/(1+Omega^2/Delta^2));

70 nz=Delta/sqrt(Omega^2+Delta^2);

71 end;

72

73 P= cos(theta/2)*ident + ...

74 1i*sin(theta/2)*(nperp*(cos(phi)*sigma_x-sin(phi)*sigma_y)+nz*sigma_z);

75

76 end

77

78

79 %%

80 function P=R(rabiOmega, theta,phi,Delta,f)

81

82 % Use RWR BB1

83

84 Rot = QRot(rabiOmega, 0.5*theta,phi,Delta,f);

85

86 phi1 = acos(-theta/(4*pi));

87 phi2 = 3*phi1;

88

89 Rp = QRot(rabiOmega, pi , phi1 ,Delta,f);

90 R2p = QRot(rabiOmega, 2*pi , phi2 ,Delta,f);

91

92 W = Rp * R2p * Rp ;

93

94 P = Rot * W * Rot;

95
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96 end

D.3 DD Pulse Sequence

The following MATLAB scripts are used in section 7.3. This is for a study of errors
and a UR pulse sequence in a Ramsey experiment.

1 function sim_RamseyDD_fidelity_2()

2 %%

3 caseDD = 2;

4

5 % step = 15;

6 step = 41;

7

8 Omega = 2*pi*30e3;

9 state_F = 1.0;

10 eta = 0.25;

11

12 URorder = 14;

13 URsetPulse = 10;

14

15

16 inputStr = '|0>';inPsi = 1;

17 % inputStr = '|1>';inPsi = 2;

18 % inputStr = '|0>+|1>';inPsi = 3;

19 % inputStr = '|0>+i|1>';inPsi = 4;

20

21

22

23 n = URorder*URsetPulse;

24

25

26 %%

27 del = [-eta:2*eta/(step-1):eta]*Omega;

28 l = [-eta:2*eta/(step-1):eta]+state_F;

29

30 fidelity = [];

31 parfor k=1:step

32 for j=1:step

33

34 Delta = del(j);

35 L = l(k);

36

37 switch caseDD

38 case 0

39 [fidelity(k,j)] = ramsey_bare(inPsi,Delta,L,Omega);

40 % without any pulse

41 % [fidelity(k,j)] = ramsey_SE(inPsi,URorder,URsetPulse ...

191



D Simulation Scripts

42 % ,Delta,L,Omega); % with only a spin echo

43 case 1

44 [fidelity(k,j)] = ramsey_UR(inPsi,URorder,URsetPulse ...

45 ,Delta,L,Omega); % all plain pulses

46 case 2

47 [fidelity(k,j)] = ramsey_UR_BB1(inPsi,URorder ...

48 ,URsetPulse,Delta,L,Omega); % all BB1 pulses

49 case 3

50 [fidelity(k,j)] = ramsey_UR_BB1_nonDD_BB1(inPsi ...

51 ,URorder,URsetPulse,Delta,L,Omega);

52 % BB1 pulses to normal rotations and No BB1 in DD-seq

53 end

54

55 end

56 end

57

58

59 %%

60 % save(['Out_dephasedQTele_sim_KDD' num2str(n) '_IN_' ...

61 % num2str(inPsi)],'del','l','fidelity');

62

63 h = figure(6785); clf;

64 hold on;

65

66 set(h,'PaperUnits','centimeters');

67 xSize=12;

68 ySize=10;

69 % scaleXY = 1.25;

70 scaleXY = 1;

71 set(h,'PaperSize', scaleXY*[xSize ySize]);

72 set(h,'PaperPosition',[0 0 scaleXY*xSize scaleXY*ySize]);

73

74 fontsize=scaleXY*16;

75 fontname='Times';

76 markSize = scaleXY*8;

77

78

79 % contourf( del./Omega, l, fidelity )

80 % contourcbar

81 % caxis([0 1]);

82

83 [c,hc] = contourf( del./Omega, l, fidelity );

84 clabel(c,hc)

85 cb = contourcbar;

86 colormap('Hot');

87 caxis([0 1]);

88 cb.FontName = fontname;

89 cb.FontSize = fontsize;

90

91 if( caseDD ~= 2 )

92 hc.LevelList = [0.99 0.95 0.9:-0.1:0];

93 end

94
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95

96

97 % title(['Bell23: Fidelity, KDD ' num2str(n) ' pulses, IN: ' inputStr])

98 % title(['simu_Ramsey_DD_case_' num2str(caseDD)],'Interpreter','none')

99 xlabel('\delta/\Omega')

100 ylabel('L/L_0')

101

102 a = gca;

103 a.Box = 'on';

104 a.FontSize = fontsize;

105 a.FontName = fontname ;

106

107 print('-dpdf', ['simu_Ramsey2_DD_case_' num2str(caseDD)]) ;

108

109 end

1 function [fidelity_all] = ramsey_bare(inPsi,Delta,f,Omega)

2

3 err = [Delta, f];

4

5 mode_debug = 0;

6

7

8 %%------------------------------

9 %need module from [Computer Physics Communications 179 (2008) 430]

10 % addpath('D:\Users\Chronos\Documents\00_AT_Work\Research\ ...

11 % Siegen\Research\Program_scripts\MatlabModules\QUBIT4MATLAB');

12 %%------------------------------

13

14

15 ident = eye(2); %define the identity

16 sigma_x=[0 1; 1 0]; %Pauli matrix X

17 sigma_y=[0 -1i; 1i 0]; %Pauli matrix Y

18 sigma_z=[1 0 ; 0 -1]; %Pauli matrix Z

19

20

21 %%

22

23 % psi_ini = ket([1 0]); % |0>

24

25 switch inPsi

26 case 1

27 ketIn1 = ket([1 0]); % |0>

28 case 2

29 ketIn1 = ket([0 1]); % |1>

30 case 3

31 ketIn1 = ket([1 1]); % |0> + |1>

32 case 4

33 ketIn1 = ket([1 +1i]); % |0> + i|1>

34 end

35

36 psi_ini = ketIn1;
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37

38

39 R_halfpi1 = R(pi/2,0,Delta,f,Omega);

40 % R_halfpi2 = R(pi/2,pi,Delta,f,Omega); % end |0>

41 R_halfpi2 = R(pi/2,0,Delta,f,Omega); % end |1>

42

43

44

45

46 op = R_halfpi2 * R_halfpi1 ;

47 psi_fin = op * psi_ini ;

48

49 prob_0 = abs(bra([1 0]) * psi_fin )^2 ;

50 prob_1 = abs(bra([0 1]) * psi_fin )^2 ;

51

52

53 % fidelity_all = abs(bra([1 0]) * psi_fin );

54 fidelity_all = abs(bra([0 1]) * psi_fin );

55

56

57

58 end % end main

59

60

61

62 %%

63 function theta = PHI_pulse( seq_of_n_pulses )

64

65 n = seq_of_n_pulses;

66 if( mod(n,4) == 0 )

67 m = n/4;

68 theta = pi/m ; % This can be + and -. Here we just choose plus.

69 % rotation in radian

70

71 elseif( mod(n,4) == 2 )

72 m = (n-2)/4;

73 theta = (2*pi*m)/(2*m+1) ;

74 % This can be + and -. Here we just choose plus.

75 % rotation in radian

76 else

77 error('Error in calculation of the angle in UR_DD_pulse')

78 end

79

80 end

81

82 %%

83 function phase = phaseUR( seq_of_n_pulses, phi2 )

84

85 n = seq_of_n_pulses;

86

87 phase = [];

88 for k = 1:n

89 p = (k-1)*(k-2)/2*PHI_pulse(n) + (k-1)*phi2 ;
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90 phase = [phase ; p];

91 end

92

93 phase = mod(phase, 2*pi);

94

95 end

96

97 %%

98 function P=R(theta,phi,Delta,f,Omega)

99 %time evolution of an arbitrary pulse with possible errors

100

101

102

103 %definition of Pauli spin operators

104 sigma_x=[0 1; 1 0];

105 sigma_y=[0 -1i; 1i 0];

106 sigma_z=[1 0 ; 0 -1];

107 ident=[1 0; 0 1];

108

109

110 theta=f*theta*sqrt(Omega^2+Delta^2)/Omega;

111

112 if Delta==0

113 nperp=1;

114 nz=0;

115 else

116 nperp=Omega/sqrt(Omega^2+Delta^2);

117 nz=Delta/sqrt(Omega^2+Delta^2);

118 end

119

120 P=cos(theta/2)*ident+1i*sin(theta/2)* ...

121 (nperp*(cos(phi)*sigma_x-sin(phi)*sigma_y)+nz*sigma_z);

122

123 end

1 function [fidelity_all] = ramsey_UR(inPsi,URorder,URsetPulse,Delta,f,Omega)

2

3 err = [Delta, f];

4

5 mode_debug = 0;

6

7

8 %%------------------------------

9 %need module from [Computer Physics Communications 179 (2008) 430]

10 % addpath('D:\Users\Chronos\Documents\00_AT_Work\Research\ ...

11 % Siegen\Research\Program_scripts\MatlabModules\QUBIT4MATLAB');

12 %%------------------------------

13

14

15 ident = eye(2); %define the identity

16 sigma_x=[0 1; 1 0]; %Pauli matrix X

17 sigma_y=[0 -1i; 1i 0]; %Pauli matrix Y
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18 sigma_z=[1 0 ; 0 -1]; %Pauli matrix Z

19

20

21 %%

22

23 % psi_ini = ket([1 0]); % |0>

24

25 switch inPsi

26 case 1

27 ketIn1 = ket([1 0]); % |0>

28 case 2

29 ketIn1 = ket([0 1]); % |1>

30 case 3

31 ketIn1 = ket([1 1]); % |0> + |1>

32 case 4

33 ketIn1 = ket([1 +1i]); % |0> + i|1>

34 end

35

36 psi_ini = ketIn1;

37

38

39 R_halfpi1 = R(pi/2,0,Delta,f,Omega);

40 % R_halfpi2 = R(pi/2,pi,Delta,f,Omega); % end |0>

41 R_halfpi2 = R(pi/2,0,Delta,f,Omega); % end |1>

42

43

44

45 %% UR_pulse

46 seq_of_n_pulses = URorder;

47 phi_UR = PHI_pulse( seq_of_n_pulses );

48 phase = phaseUR( seq_of_n_pulses, phi_UR );

49

50 DDseq1=phase;

51

52 UR = ident;

53 for l=1:length(DDseq1)

54 UR=R(pi,DDseq1(l),Delta,f,Omega)*UR;

55 end

56

57 UR = UR^URsetPulse ; % Set of UR pulse

58

59 op = R_halfpi2 * UR * R_halfpi1 ;

60 psi_fin = op * psi_ini ;

61

62 prob_0 = abs(bra([1 0]) * psi_fin )^2 ;

63 prob_1 = abs(bra([0 1]) * psi_fin )^2 ;

64

65

66 fidelity_all = abs(bra([0 1]) * psi_fin );

67

68

69

70 end % end main
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71

72

73

74 %%

75 function theta = PHI_pulse( seq_of_n_pulses )

76

77 n = seq_of_n_pulses;

78 if( mod(n,4) == 0 )

79 m = n/4;

80 theta = pi/m ; % This can be + and -. Here we just choose plus.

81 % rotation in radian

82

83 elseif( mod(n,4) == 2 )

84 m = (n-2)/4;

85 theta = (2*pi*m)/(2*m+1) ;

86 % This can be + and -. Here we just choose plus.

87 % rotation in radian

88 else

89 error('Error in calculation of the angle in UR_DD_pulse')

90 end

91

92 end

93

94 %%

95 function phase = phaseUR( seq_of_n_pulses, phi2 )

96

97 n = seq_of_n_pulses;

98

99 phase = [];

100 for k = 1:n

101 p = (k-1)*(k-2)/2*PHI_pulse(n) + (k-1)*phi2 ;

102 phase = [phase ; p];

103 end

104

105 phase = mod(phase, 2*pi);

106

107 end

108

109 %%

110 function P=R(theta,phi,Delta,f,Omega)

111 %time evolution of an arbitrary pulse with possible errors

112

113

114

115 %definition of Pauli spin operators

116 sigma_x=[0 1; 1 0];

117 sigma_y=[0 -1i; 1i 0];

118 sigma_z=[1 0 ; 0 -1];

119 ident=[1 0; 0 1];

120

121

122 theta=f*theta*sqrt(Omega^2+Delta^2)/Omega;

123
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124 if Delta==0

125 nperp=1;

126 nz=0;

127 else

128 nperp=Omega/sqrt(Omega^2+Delta^2);

129 nz=Delta/sqrt(Omega^2+Delta^2);

130 end

131

132 P=cos(theta/2)*ident+1i*sin(theta/2)*...

133 (nperp*(cos(phi)*sigma_x-sin(phi)*sigma_y)+nz*sigma_z);

134

135 end

1 function [fidelity_all] = ...

2 ramsey_UR_BB1(inPsi,URorder,URsetPulse,Delta,f,Omega)

3

4 err = [Delta, f];

5

6 mode_debug = 0;

7

8

9 %%------------------------------

10 %need module from [Computer Physics Communications 179 (2008) 430]

11 % addpath('D:\Users\Chronos\Documents\00_AT_Work\Research\ ...

12 % Siegen\Research\Program_scripts\MatlabModules\QUBIT4MATLAB');

13 %%------------------------------

14

15

16 ident = eye(2); %define the identity

17 sigma_x=[0 1; 1 0]; %Pauli matrix X

18 sigma_y=[0 -1i; 1i 0]; %Pauli matrix Y

19 sigma_z=[1 0 ; 0 -1]; %Pauli matrix Z

20

21

22 %%

23

24 % psi_ini = ket([1 0]); % |0>

25

26 switch inPsi

27 case 1

28 ketIn1 = ket([1 0]); % |0>

29 case 2

30 ketIn1 = ket([0 1]); % |1>

31 case 3

32 ketIn1 = ket([1 1]); % |0> + |1>

33 case 4

34 ketIn1 = ket([1 +1i]); % |0> + i|1>

35 end

36

37 psi_ini = ketIn1;

38

39
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40 R_halfpi1 = R_BB1(pi/2,0,Delta,f,Omega);

41 % R_halfpi2 = R_BB1(pi/2,pi,Delta,f,Omega); % end |0>

42 R_halfpi2 = R_BB1(pi/2,0,Delta,f,Omega); % end |1>

43

44

45

46 %% UR_pulse

47 seq_of_n_pulses = URorder;

48 phi_UR = PHI_pulse( seq_of_n_pulses );

49 phase = phaseUR( seq_of_n_pulses, phi_UR );

50

51 DDseq1=phase;

52

53 UR = ident;

54 for l=1:length(DDseq1)

55 UR=R_BB1(pi,DDseq1(l),Delta,f,Omega)*UR;

56 end

57

58 UR = UR^URsetPulse ; % Set of UR pulse

59

60 op = R_halfpi2 * UR * R_halfpi1 ;

61 psi_fin = op * psi_ini ;

62

63 prob_0 = abs(bra([1 0]) * psi_fin )^2 ;

64 prob_1 = abs(bra([0 1]) * psi_fin )^2 ;

65

66

67 fidelity_all = abs(bra([0 1]) * psi_fin );

68

69

70

71 end % end main

72

73

74

75 %%

76 function theta = PHI_pulse( seq_of_n_pulses )

77

78 n = seq_of_n_pulses;

79 if( mod(n,4) == 0 )

80 m = n/4;

81 theta = pi/m ; % This can be + and -. Here we just choose plus.

82 % rotation in radian

83

84 elseif( mod(n,4) == 2 )

85 m = (n-2)/4;

86 theta = (2*pi*m)/(2*m+1) ;

87 % This can be + and -. Here we just choose plus.

88 % rotation in radian

89 else

90 error('Error in calculation of the angle in UR_DD_pulse')

91 end

92
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93 end

94

95 %%

96 function phase = phaseUR( seq_of_n_pulses, phi2 )

97

98 n = seq_of_n_pulses;

99

100 phase = [];

101 for k = 1:n

102 p = (k-1)*(k-2)/2*PHI_pulse(n) + (k-1)*phi2 ;

103 phase = [phase ; p];

104 end

105

106 phase = mod(phase, 2*pi);

107

108 end

109

110 %%

111 function P=R(theta,phi,Delta,f,Omega)

112

113

114

115 %definition of Pauli spin operators

116 sigma_x=[0 1; 1 0];

117 sigma_y=[0 -1i; 1i 0];

118 sigma_z=[1 0 ; 0 -1];

119 ident=[1 0; 0 1];

120

121

122 theta=f*theta*sqrt(Omega^2+Delta^2)/Omega;

123

124 if Delta==0

125 nperp=1;

126 nz=0;

127 else

128 nperp=Omega/sqrt(Omega^2+Delta^2);

129 nz=Delta/sqrt(Omega^2+Delta^2);

130 end

131

132 P=cos(theta/2)*ident+1i*sin(theta/2)*...

133 (nperp*(cos(phi)*sigma_x-sin(phi)*sigma_y)+nz*sigma_z);

134

135 end

136

137 function P=R_BB1(theta,phi,Delta,f,Omega)

138

139 % Use RWR BB1

140

141 Rot = R(0.5*theta,phi,Delta,f,Omega);

142

143 phi1 = acos(-theta/(4*pi));

144 phi2 = 3*phi1;

145
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146 Rp = R( pi , phi1 ,Delta,f,Omega);

147 R2p = R( 2*pi , phi2 ,Delta,f,Omega);

148

149 W = Rp * R2p * Rp ;

150

151 P = Rot * W * Rot;

152

153 end

1 function [fidelity_all] = ...

2 ramsey_UR_BB1_nonDD_BB1(inPsi,URorder,URsetPulse,Delta,f,Omega)

3

4 err = [Delta, f];

5

6 mode_debug = 0;

7

8

9 %%------------------------------

10 %need module from [Computer Physics Communications 179 (2008) 430]

11 % addpath('D:\Users\Chronos\Documents\00_AT_Work\Research\ ...

12 % Siegen\Research\Program_scripts\MatlabModules\QUBIT4MATLAB');

13 %%------------------------------

14

15

16 ident = eye(2); %define the identity

17 sigma_x=[0 1; 1 0]; %Pauli matrix X

18 sigma_y=[0 -1i; 1i 0]; %Pauli matrix Y

19 sigma_z=[1 0 ; 0 -1]; %Pauli matrix Z

20

21

22 %%

23

24 % psi_ini = ket([1 0]); % |0>

25

26 switch inPsi

27 case 1

28 ketIn1 = ket([1 0]); % |0>

29 case 2

30 ketIn1 = ket([0 1]); % |1>

31 case 3

32 ketIn1 = ket([1 1]); % |0> + |1>

33 case 4

34 ketIn1 = ket([1 +1i]); % |0> + i|1>

35 end

36

37 psi_ini = ketIn1;

38

39

40 R_halfpi1 = R_BB1(pi/2,0,Delta,f,Omega);

41 % R_halfpi2 = R_BB1(pi/2,pi,Delta,f,Omega); % end |0>

42 R_halfpi2 = R_BB1(pi/2,0,Delta,f,Omega); % end |1>

43
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44

45

46 %% UR_pulse

47 seq_of_n_pulses = URorder;

48 phi_UR = PHI_pulse( seq_of_n_pulses );

49 phase = phaseUR( seq_of_n_pulses, phi_UR );

50

51 DDseq1=phase;

52

53 UR = ident;

54 for l=1:length(DDseq1)

55 UR=R(pi,DDseq1(l),Delta,f,Omega)*UR;

56 end

57

58 UR = UR^URsetPulse ; % Set of UR pulse

59

60 op = R_halfpi2 * UR * R_halfpi1 ;

61 psi_fin = op * psi_ini ;

62

63 prob_0 = abs(bra([1 0]) * psi_fin )^2 ;

64 prob_1 = abs(bra([0 1]) * psi_fin )^2 ;

65

66

67 fidelity_all = abs(bra([0 1]) * psi_fin );

68

69

70

71 end % end main

72

73

74

75 %%

76 function theta = PHI_pulse( seq_of_n_pulses )

77

78 n = seq_of_n_pulses;

79 if( mod(n,4) == 0 )

80 m = n/4;

81 theta = pi/m ; % This can be + and -. Here we just choose plus.

82 % rotation in radian

83

84 elseif( mod(n,4) == 2 )

85 m = (n-2)/4;

86 theta = (2*pi*m)/(2*m+1) ;

87 % This can be + and -. Here we just choose plus.

88 % rotation in radian

89 else

90 error('Error in calculation of the angle in UR_DD_pulse')

91 end

92

93 end

94

95 %%

96 function phase = phaseUR( seq_of_n_pulses, phi2 )
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97

98 n = seq_of_n_pulses;

99

100 phase = [];

101 for k = 1:n

102 p = (k-1)*(k-2)/2*PHI_pulse(n) + (k-1)*phi2 ;

103 phase = [phase ; p];

104 end

105

106 phase = mod(phase, 2*pi);

107

108 end

109

110 %%

111 function P=R(theta,phi,Delta,f,Omega)

112

113

114

115 %definition of Pauli spin operators

116 sigma_x=[0 1; 1 0];

117 sigma_y=[0 -1i; 1i 0];

118 sigma_z=[1 0 ; 0 -1];

119 ident=[1 0; 0 1];

120

121

122 theta=f*theta*sqrt(Omega^2+Delta^2)/Omega;

123

124 if Delta==0

125 nperp=1;

126 nz=0;

127 else

128 nperp=Omega/sqrt(Omega^2+Delta^2);

129 nz=Delta/sqrt(Omega^2+Delta^2);

130 end

131

132 P=cos(theta/2)*ident+1i*sin(theta/2)*...

133 (nperp*(cos(phi)*sigma_x-sin(phi)*sigma_y)+nz*sigma_z);

134

135 end

136

137 function P=R_BB1(theta,phi,Delta,f,Omega)

138

139 % Use RWR BB1

140

141 Rot = R(0.5*theta,phi,Delta,f,Omega);

142

143 phi1 = acos(-theta/(4*pi));

144 phi2 = 3*phi1;

145

146 Rp = R( pi , phi1 ,Delta,f,Omega);

147 R2p = R( 2*pi , phi2 ,Delta,f,Omega);

148

149 W = Rp * R2p * Rp ;
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150

151 P = Rot * W * Rot;

152

153 end

D.4 Bell State using DD Sequence

The following MATLAB scripts are used in section 7.3. This is for a study of errors
and a UR pulse sequence in a Bell-state generation.

1 function Fidelity=Bell2qubits_Bare(Delta,f);

2 % function Fidelity=Bell2qubits_Bare();

3 %need module from [Computer Physics Communications 179 (2008) 430]

4

5

6 %perfect pulses

7 % Delta=0;

8 % f=1;

9

10 %experimental parameters

11 %---------------------------

12 J=2*pi*[0 50; 50 0];

13

14 T1=4.5e-3; % 5 ms for Bell gate

15

16

17 ident=[1 0; 0 1];

18

19 CNOTideal=U_CNOT;

20 Bell_ideal = U_CNOT * kron(U_H,ident);

21

22 %---------------------------------------------------------------

23

24

25

26 %identitiy of the two-qubit system

27 IDENT=kron(ident,ident);

28

29 %the definition of the bases are:

30 % |00> |01> |10> |11>

31

32 %prepared initial state

33 %----------------------------------------------

34

35 initial_state=kron(ket([1 0]), ket([1 0])); % |00>

36

37 %conditional evolutions

38 %--------------------------------------------
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39 E1=PHI(T1,J);

40

41

42

43 Had1 = -1i*kron(R(pi/2,3*pi/2,Delta,f),ident) * kron(R(pi,0,Delta,f),ident);

44 R1=kron(ident,R(pi/2,pi/2,Delta,f));

45

46 Yp90 = R(pi/2,pi/2,Delta,f) ;

47 Yn90 = R(pi/2,-pi/2,Delta,f) ;

48 Xp90 = R(pi/2,pi,Delta,f) ;

49 Xn90 = R(pi/2,0,Delta,f) ;

50

51 Zp90 = Yp90 * Xn90 * Yn90 ;

52 Zn90 = Yp90 * Xp90 * Yn90 ;

53

54 RZ1 = kron( Zn90, Zp90 );

55

56 R2=kron(ident,R(pi/2,3*pi/2,Delta,f));

57

58 Bellgate= exp(-1i*pi/4) * R2*RZ1*E1*R1*Had1 ; % bare Bell

59

60

61 %------------------------------------------------------

62 final_state=Bellgate*initial_state;

63

64 % printv(final_state) % When test the function!

65

66 %abs(final_state).^2

67 %bar([0:3],abs(final_state).^2);

68

69

70 %normalize the final state

71 N=sum((final_state.*conj(final_state)))* ...

72 sum((final_state.*conj(final_state)));

73 final_state=1/N*final_state;

74

75 desired_state=Bell_ideal*initial_state;

76 %desired_state=[0.5+0.5*i;0;0;-0.5+0.5*i];

77

78 Fidelity=sum((desired_state.*conj(final_state)))* ...

79 sum((final_state.*conj(desired_state)));

80

81 %end;

82

83 %====================================================

84

85

86 function P=R(theta,phi,Delta,f);

87

88 %definition of Pauli spin operators

89 sigma_x=[0 1; 1 0];

90 sigma_y=[0 -i; i 0];

91 sigma_z=[1 0 ; 0 -1];
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92 ident=[1 0; 0 1];

93

94 Omega=2*pi*30e3;

95 theta=f*theta*sqrt(Omega^2+Delta^2)/Omega;

96

97 if Delta==0

98 nperp=1;

99 nz=0;

100 else

101 nperp=Omega/sqrt(Omega^2+Delta^2);

102 nz=Delta/sqrt(Omega^2+Delta^2);

103 end;

104

105 P=cos(theta/2)*ident+1i*sin(theta/2)*...

106 (nperp*(cos(phi)*sigma_x-sin(phi)*sigma_y)+nz*sigma_z);

107

108 %end;

109 %--------------------------------------------

110

111 function U=PHI(T,J);

112

113 %definition of Pauli spin operators

114 %sigma_x=[0 1; 1 0];

115 %sigma_y=[0 -i; i 0];

116 sigma_z=[1 0 ; 0 -1];

117 %ident=[1 0; 0 1];

118

119 U=expm(1i*T/2*(J(1,2)*kron(sigma_z,sigma_z)));

1 function Fidelity=Bell2qubits_UR(Delta,f);

2 % function Fidelity=Bell2qubits_UR();

3 %need module from [Computer Physics Communications 179 (2008) 430]

4

5

6 URorder = 14;

7 URsetPulse = 10;

8

9

10 % %perfect pulses

11 % Delta=0;

12 % f=1;

13

14 %experimental parameters

15 %---------------------------

16 J=2*pi*[0 50; 50 0];

17

18 T1=5e-3; % 5 ms for Bell gate

19

20

21 ident=[1 0; 0 1];

22

23 CNOTideal=U_CNOT;
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24 Bell_ideal = U_CNOT * kron(U_H,ident);

25

26 %---------------------------------------------------------------

27

28

29

30 %identitiy of the two-qubit system

31 IDENT=kron(ident,ident);

32

33 %the definition of the bases are:

34 % |00> |01> |10> |11>

35

36 %prepared initial state

37 %----------------------------------------------

38

39 initial_state=kron(ket([1 0]), ket([1 0])); % |00>

40

41 %conditional evolutions

42 %--------------------------------------------

43

44

45 seq_of_n_pulses = URorder;

46 phi_UR = PHI_pulse( seq_of_n_pulses );

47 phase = phaseUR( seq_of_n_pulses, phi_UR );

48

49 DDseq1 = [];

50 for k = 1:URsetPulse

51 DDseq1=[DDseq1 ; phase];

52 end

53

54 tau1=T1/2/length(DDseq1);

55 E1=IDENT;

56 for l=1:length(DDseq1)

57 E1=PHI(tau1,J)*kron(R(pi,DDseq1(l),Delta,f),R(pi,DDseq1(l),Delta,f))*...

58 PHI(tau1,J)*E1;

59 end

60

61

62 if( URorder==0 )

63 E1=PHI(T1,J);

64 end

65

66

67 Had1 = -1i*kron(R(pi/2,3*pi/2,Delta,f),ident)*kron(R(pi,0,Delta,f),ident);

68 R1=kron(ident,R(pi/2,pi/2,Delta,f));

69

70 Yp90 = R(pi/2,pi/2,Delta,f) ;

71 Yn90 = R(pi/2,-pi/2,Delta,f) ;

72 Xp90 = R(pi/2,pi,Delta,f) ;

73 Xn90 = R(pi/2,0,Delta,f) ;

74

75 Zp90 = Yp90 * Xn90 * Yn90 ;

76 Zn90 = Yp90 * Xp90 * Yn90 ;
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77

78 RZ1 = kron( Zn90, Zp90 );

79

80 R2=kron(ident,R(pi/2,3*pi/2,Delta,f));

81

82 Bellgate= exp(-1i*pi/4) * R2*RZ1*E1*R1*Had1 ; % bare Bell

83

84

85 %------------------------------------------------------

86 final_state=Bellgate*initial_state;

87

88 % printv(final_state) % When test the function!

89

90 %abs(final_state).^2

91 %bar([0:3],abs(final_state).^2);

92

93

94 %normalize the final state

95 N=sum((final_state.*conj(final_state)))*...

96 sum((final_state.*conj(final_state)));

97 final_state=1/N*final_state;

98

99 desired_state=Bell_ideal*initial_state;

100 %desired_state=[0.5+0.5*i;0;0;-0.5+0.5*i];

101

102 Fidelity=sum((desired_state.*conj(final_state)))*...

103 sum((final_state.*conj(desired_state)));

104

105 end

106

107 %====================================================

108

109

110 function P=R(theta,phi,Delta,f);

111

112 %definition of Pauli spin operators

113 sigma_x=[0 1; 1 0];

114 sigma_y=[0 -i; i 0];

115 sigma_z=[1 0 ; 0 -1];

116 ident=[1 0; 0 1];

117

118 Omega=2*pi*30e3;

119 theta=f*theta*sqrt(Omega^2+Delta^2)/Omega;

120

121 if Delta==0

122 nperp=1;

123 nz=0;

124 else

125 nperp=Omega/sqrt(Omega^2+Delta^2);

126 nz=Delta/sqrt(Omega^2+Delta^2);

127 end;

128

129 P=cos(theta/2)*ident+1i*sin(theta/2)*...
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130 (nperp*(cos(phi)*sigma_x-sin(phi)*sigma_y)+nz*sigma_z);

131

132

133 end

134 %--------------------------------------------

135

136 function U=PHI(T,J);

137

138 %definition of Pauli spin operators

139 %sigma_x=[0 1; 1 0];

140 %sigma_y=[0 -i; i 0];

141 sigma_z=[1 0 ; 0 -1];

142 %ident=[1 0; 0 1];

143

144 U=expm(1i*T/2*(J(1,2)*kron(sigma_z,sigma_z)));

145 end

146

147

148

149 %%

150 function theta = PHI_pulse( seq_of_n_pulses )

151

152 n = seq_of_n_pulses;

153 if( mod(n,4) == 0 )

154 m = n/4;

155 theta = pi/m ; % This can be + and -. Here we just choose plus.

156 % rotation in radian

157

158 elseif( mod(n,4) == 2 )

159 m = (n-2)/4;

160 theta = (2*pi*m)/(2*m+1) ;

161 % This can be + and -. Here we just choose plus.

162 % rotation in radian

163 else

164 error('Error in calculation of the angle in UR_DD_pulse')

165 end

166

167 end

168

169

170 function phase = phaseUR( seq_of_n_pulses, phi2 )

171

172 n = seq_of_n_pulses;

173

174 phase = [];

175 for k = 1:n

176 p = (k-1)*(k-2)/2*PHI_pulse(n) + (k-1)*phi2 ;

177 phase = [phase ; p];

178 end

179

180 phase = mod(phase, 2*pi);

181

182 end
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1 function Fidelity=Bell2qubits_UR_BB1(Delta,f);

2 % function Fidelity=Bell2qubits_UR();

3 %need module from [Computer Physics Communications 179 (2008) 430]

4

5

6

7 URorder = 14;

8 URsetPulse = 10;

9

10

11 %perfect pulses

12 % Delta=0;

13 % f=1;

14

15 %experimental parameters

16 %---------------------------

17 J=2*pi*[0 50; 50 0];

18

19 T1=5e-3; % 5 ms for Bell gate

20

21

22 ident=[1 0; 0 1];

23

24 CNOTideal=U_CNOT;

25 Bell_ideal = U_CNOT * kron(U_H,ident);

26

27 %---------------------------------------------------------------

28

29

30

31 %identitiy of the two-qubit system

32 IDENT=kron(ident,ident);

33

34 %the definition of the bases are:

35 % |00> |01> |10> |11>

36

37 %prepared initial state

38 %----------------------------------------------

39

40 initial_state=kron(ket([1 0]), ket([1 0])); % |00>

41

42 %conditional evolutions

43 %--------------------------------------------

44

45

46 seq_of_n_pulses = URorder;

47 phi_UR = PHI_pulse( seq_of_n_pulses );

48 phase = phaseUR( seq_of_n_pulses, phi_UR );

49

50 DDseq1 = [];

51 for k = 1:URsetPulse

52 DDseq1=[DDseq1 ; phase];

53 end

210



D.4 Bell State using DD Sequence

54

55 tau1=T1/2/length(DDseq1);

56 E1=IDENT;

57 for l=1:length(DDseq1)

58 E1=PHI(tau1,J)*kron(R(pi,DDseq1(l),Delta,f),R(pi,DDseq1(l),Delta,f))*...

59 PHI(tau1,J)*E1;

60 end

61

62

63 % UR = UR^URsetPulse ; % Set of UR pulse

64

65

66 Had1 = -1i*kron(R(pi/2,3*pi/2,Delta,f),ident)*kron(R(pi,0,Delta,f),ident);

67 R1=kron(ident,R(pi/2,pi/2,Delta,f));

68

69 Yp90 = R(pi/2,pi/2,Delta,f) ;

70 Yn90 = R(pi/2,-pi/2,Delta,f) ;

71 Xp90 = R(pi/2,pi,Delta,f) ;

72 Xn90 = R(pi/2,0,Delta,f) ;

73

74 Zp90 = Yp90 * Xn90 * Yn90 ;

75 Zn90 = Yp90 * Xp90 * Yn90 ;

76

77 RZ1 = kron( Zn90, Zp90 );

78

79 R2=kron(ident,R(pi/2,3*pi/2,Delta,f));

80

81 Bellgate= exp(-1i*pi/4) * R2*RZ1*E1*R1*Had1 ; % bare Bell

82

83

84 %------------------------------------------------------

85 final_state=Bellgate*initial_state;

86

87 % printv(final_state) % When test the function!

88

89 %abs(final_state).^2

90 %bar([0:3],abs(final_state).^2);

91

92

93 %normalize the final state

94 N=sum((final_state.*conj(final_state)))*...

95 sum((final_state.*conj(final_state)));

96 final_state=1/N*final_state;

97

98 desired_state=Bell_ideal*initial_state;

99 %desired_state=[0.5+0.5*i;0;0;-0.5+0.5*i];

100

101 Fidelity=sum((desired_state.*conj(final_state)))*...

102 sum((final_state.*conj(desired_state)));

103

104 end

105

106 %====================================================
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107

108

109 function P=QRot(theta,phi,Delta,f);

110

111 %definition of Pauli spin operators

112 sigma_x=[0 1; 1 0];

113 sigma_y=[0 -i; i 0];

114 sigma_z=[1 0 ; 0 -1];

115 ident=[1 0; 0 1];

116

117 Omega=2*pi*30e3;

118 theta=f*theta*sqrt(Omega^2+Delta^2)/Omega;

119

120 if Delta==0

121 nperp=1;

122 nz=0;

123 else

124 nperp=Omega/sqrt(Omega^2+Delta^2);

125 nz=Delta/sqrt(Omega^2+Delta^2);

126 end;

127

128 P=cos(theta/2)*ident+1i*sin(theta/2)*...

129 (nperp*(cos(phi)*sigma_x-sin(phi)*sigma_y)+nz*sigma_z);

130

131 end

132 %--------------------------------------------

133

134 function U=PHI(T,J);

135

136 %definition of Pauli spin operators

137 %sigma_x=[0 1; 1 0];

138 %sigma_y=[0 -i; i 0];

139 sigma_z=[1 0 ; 0 -1];

140 %ident=[1 0; 0 1];

141

142 U=expm(1i*T/2*(J(1,2)*kron(sigma_z,sigma_z)));

143 end

144

145

146

147 %%

148 function theta = PHI_pulse( seq_of_n_pulses )

149

150 n = seq_of_n_pulses;

151 if( mod(n,4) == 0 )

152 m = n/4;

153 theta = pi/m ; % This can be + and -. Here we just choose plus.

154 % rotation in radian

155

156 elseif( mod(n,4) == 2 )

157 m = (n-2)/4;

158 theta = (2*pi*m)/(2*m+1) ;

159 % This can be + and -. Here we just choose plus.
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160 % rotation in radian

161 else

162 error('Error in calculation of the angle in UR_DD_pulse')

163 end

164

165 end

166

167

168 function phase = phaseUR( seq_of_n_pulses, phi2 )

169

170 n = seq_of_n_pulses;

171

172 phase = [];

173 for k = 1:n

174 p = (k-1)*(k-2)/2*PHI_pulse(n) + (k-1)*phi2 ;

175 phase = [phase ; p];

176 end

177

178 phase = mod(phase, 2*pi);

179

180 end

181

182

183 function P=R(theta,phi,Delta,f)

184

185 % Use RWR BB1

186

187 Rot = QRot(0.5*theta,phi,Delta,f);

188

189 phi1 = acos(-theta/(4*pi));

190 phi2 = 3*phi1;

191

192 Rp = QRot( pi , phi1 ,Delta,f);

193 R2p = QRot( 2*pi , phi2 ,Delta,f);

194

195 W = Rp * R2p * Rp ;

196

197 P = Rot * W * Rot;

198

199 end

1 function Fidelity=Bell2qubits_BB1_DDnoBB1(Delta,f);

2 % function Fidelity=Bell2qubits_Bare();

3 %need module from [Computer Physics Communications 179 (2008) 430]

4

5 %perfect pulses

6 % Delta=0;

7 % f=1;

8

9 URorder = 14;

10 URsetPulse = 10;

11
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12

13 %experimental parameters

14 %---------------------------

15 J=2*pi*[0 50; 50 0];

16

17 T1=5e-3; % 5 ms for Bell gate

18

19

20 ident=[1 0; 0 1];

21

22 CNOTideal=U_CNOT;

23 Bell_ideal = U_CNOT * kron(U_H,ident);

24

25 %---------------------------------------------------------------

26

27

28

29 %identitiy of the two-qubit system

30 IDENT=kron(ident,ident);

31

32 %the definition of the bases are:

33 % |00> |01> |10> |11>

34

35 %prepared initial state

36 %----------------------------------------------

37 initial_state=kron(ket([1 0]), ket([1 0])); % |00>

38

39 %conditional evolutions

40 %--------------------------------------------

41 seq_of_n_pulses = URorder;

42 phi_UR = PHI_pulse( seq_of_n_pulses );

43 phase = phaseUR( seq_of_n_pulses, phi_UR );

44

45 DDseq1 = [];

46 for k = 1:URsetPulse

47 DDseq1=[DDseq1 ; phase];

48 end

49

50 tau1=T1/2/length(DDseq1);

51 E1=IDENT;

52 for l=1:length(DDseq1)

53 E1=PHI(tau1,J)...

54 *kron(QRot(pi,DDseq1(l),Delta,f),QRot(pi,DDseq1(l),Delta,f))...

55 *PHI(tau1,J)*E1;

56 end

57

58

59

60 Had1 = -1i*kron(R(pi/2,3*pi/2,Delta,f),ident)*kron(R(pi,0,Delta,f),ident);

61 R1=kron(ident,R(pi/2,pi/2,Delta,f));

62

63 Yp90 = R(pi/2,pi/2,Delta,f) ;

64 Yn90 = R(pi/2,-pi/2,Delta,f) ;
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65 Xp90 = R(pi/2,pi,Delta,f) ;

66 Xn90 = R(pi/2,0,Delta,f) ;

67

68 Zp90 = Yp90 * Xn90 * Yn90 ;

69 Zn90 = Yp90 * Xp90 * Yn90 ;

70

71 RZ1 = kron( Zn90, Zp90 );

72

73 R2=kron(ident,R(pi/2,3*pi/2,Delta,f));

74

75 Bellgate= exp(-1i*pi/4) * R2*RZ1*E1*R1*Had1 ; % bare Bell

76

77

78 %------------------------------------------------------

79 final_state=Bellgate*initial_state;

80

81 % printv(final_state) % When test the function!

82

83 %abs(final_state).^2

84 %bar([0:3],abs(final_state).^2);

85

86

87 %normalize the final state

88 N=sum((final_state.*conj(final_state)))*...

89 sum((final_state.*conj(final_state)));

90 final_state=1/N*final_state;

91

92 desired_state=Bell_ideal*initial_state;

93 %desired_state=[0.5+0.5*i;0;0;-0.5+0.5*i];

94

95 Fidelity=sum((desired_state.*conj(final_state)))*...

96 sum((final_state.*conj(desired_state)));

97

98 %end;

99

100 %====================================================

101

102

103 function P=QRot(theta,phi,Delta,f);

104

105 %definition of Pauli spin operators

106 sigma_x=[0 1; 1 0];

107 sigma_y=[0 -i; i 0];

108 sigma_z=[1 0 ; 0 -1];

109 ident=[1 0; 0 1];

110

111 Omega=2*pi*30e3;

112 theta=f*theta*sqrt(Omega^2+Delta^2)/Omega;

113

114 if Delta==0

115 nperp=1;

116 nz=0;

117 else
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118 nperp=Omega/sqrt(Omega^2+Delta^2);

119 nz=Delta/sqrt(Omega^2+Delta^2);

120 end;

121

122 P=cos(theta/2)*ident+1i*sin(theta/2)*...

123 (nperp*(cos(phi)*sigma_x-sin(phi)*sigma_y)+nz*sigma_z);

124

125

126 %end;

127 %--------------------------------------------

128

129 function U=PHI(T,J);

130

131 %definition of Pauli spin operators

132 %sigma_x=[0 1; 1 0];

133 %sigma_y=[0 -i; i 0];

134 sigma_z=[1 0 ; 0 -1];

135 %ident=[1 0; 0 1];

136

137 U=expm(1i*T/2*(J(1,2)*kron(sigma_z,sigma_z)));

138

139

140 function P=R(theta,phi,Delta,f)

141

142 % Use RWR BB1

143

144 Rot = QRot(0.5*theta,phi,Delta,f);

145

146 phi1 = acos(-theta/(4*pi));

147 phi2 = 3*phi1;

148

149 Rp = QRot( pi , phi1 ,Delta,f);

150 R2p = QRot( 2*pi , phi2 ,Delta,f);

151

152 W = Rp * R2p * Rp ;

153

154 P = Rot * W * Rot;

155

156 function theta = PHI_pulse( seq_of_n_pulses )

157

158 n = seq_of_n_pulses;

159 if( mod(n,4) == 0 )

160 m = n/4;

161 theta = pi/m ; % This can be + and -. Here we just choose plus.

162 % rotation in radian

163

164 elseif( mod(n,4) == 2 )

165 m = (n-2)/4;

166 theta = (2*pi*m)/(2*m+1) ;

167 % This can be + and -. Here we just choose plus.

168 % rotation in radian

169 else

170 error('Error in calculation of the angle in UR_DD_pulse')
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171 end

172

173

174

175

176 function phase = phaseUR( seq_of_n_pulses, phi2 )

177

178 n = seq_of_n_pulses;

179

180 phase = [];

181 for k = 1:n

182 p = (k-1)*(k-2)/2*PHI_pulse(n) + (k-1)*phi2 ;

183 phase = [phase ; p];

184 end

185

186 phase = mod(phase, 2*pi);
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E
Magnetic-Field Sensor

One of our three-dimensional magnetic-field sensors is an in-house assembly device
based on a Honeywell HMC1053 sensor chip [238]. The sensing type is based on mag-
netoresistive technology. It is chosen for strong field withstanding and fast response.
The circuit is designed and assembled by Simon Spitzer. The schematic can be found
in appendix G.1.

The sensor is calibrated by placing it in the center of a circular Helmholtz coil pair.
The Helmholtz coil pair has a radius R and a separation d of 6.6 cm, see Fig. E.1a.
From the Biot-savart law, the magnetic field in the center of a circular Helmholtz coil
Bz(z) is given by [239]

Bz(z) =N
µ0IR

2

2

(

1

(R2 + (d2 − z)2)3/2
+

1

(R2 + (d2 + z)2)3/2

)

, (E.1)

where N represents the number of turns of each circular coil, µ0 represents the vacuum
permeability, and I represents the applied current. Using Helmholtz configuration, the
magnetic field is uniformly distributed in between two coils. In addition, the Helmholtz
configuration gives a broad area of a homogeneous magnetic field, which means a small

(a) (b)

Figure E.1: Calibration of a magnetic-field sensor. (a) The schematic of two circular
coils in Helmholtz configuration. (b) The schematic of the calibration. The response signal
from a sensor can be calibrated with the calculated magnetic field at a given current.
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Figure E.2: Magnetic-field sensor and the respond signal. (a) The magnetic-field
sensor on a PCB board. The black square in the left is the sensor chip (HMC1053). The
magnetic-field signal is given through 3 SMA ports with the respective direction as shown in
the label. (b) When putting the sensor with each respective direction in the calibration coils,
the respond signals U are recorded in voltage by a multimeter while changing the current
through the coils. From the slopes of linear fits, the conversion factors of port 1, 2, and 3 are
−73.4(4) µT/V, −61.3(7) µT/V, and −70.9(2) µT/V, respectively.

error for the calibration. The magnetic-field sensor is placed as shown in Fig. E.1b.

Providing the variation current I through the Helmholtz coil, the magnetic field can
be calculated and the potential respond signal U of the sensor for a given port can
also be measured. The magnetic-field components with respect to the sensor chip are
shown in Fig. E.2a. From the slopes of linear fits, shown in Fig. E.2b, the conversion
factors of port 1, 2, and 3 are

Port1 =−73.4(4) µT/V,

Port2 =−61.3(7) µT/V,

Port3 =−70.9(2) µT/V.

The frequency bandwidth of the magnetic-field sensor has also been tested. Fig. E.3
shows the frequency response. The sensor is tested using a constant amplitude of
a given frequency to a small coil aligned around the sensor. This coil has 2 turns
(N = 2) and a diameter of 5.1 cm resulting an inductance of below 20 µH. Then the
relative reading amplitude of the sensor is measured at the corresponding frequency.
At the −3-dB point, this sensor can respond up to approximately 40 kHz. However,
the reading amplitude is not a flat line after approximately 700Hz.
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Figure E.3: Frequency bandwidth of in-house magnetic-field sensor (HMC1053).
By applying a constant amplitude of a given frequency to a small coil with N = 2, the relative
reading amplitude of the sensor is measured. At the −3-dB point, this sensor can respond up to
approximately 40 kHz. However, after approximately 700Hz, the reading amplitude becomes
noticeably frequency dependent.
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F
Feedback Control

Proportional-integral (PI) controls are commonly used in industry and laboratory
equipment. They are control loop feedback mechanisms underlying all stabilization
methods used in this dissertation. A PI controller continuously evaluates an error
signal e(t) as the difference between a set point value and measured process variable.
Using the error signal, a PI controller applies a correction signal based on proportional
and integral terms, to negate external influences on a system.

The correction signal as a control function u(t) is given by [240]

u(t) =Kpe(t) +Ki

∫ t

0
e(t′)dt′, (F.1)

=Kp

(

e(t) +
1

Ti

∫ t

0
e(t′)dt′

)

, (F.2)

where Kp and Ki are the gain coefficients for the proportional and integral terms,
respectively, and Ti represents the integration time. The general scheme of a feedback
system is illustrated in Fig. F.1. The process variable (y(t)) is the system parameter
that needs to be controlled. It is provided by a sensor measuring the system such as
a temperature sensor. The process variable is compared to the set point (r(t)), which
is the desired value of the process variable such as 310K for a temperature control
system. Then, the difference (u(t)) between the process variable and the set point
is used by the compensator, realized by either hardware or software, for the control
system algorithm, to determine the actuator output, e.g. changing the temperature
of a heat source. For example, if the temperature is reading below the set point, a
heat source is driven to increase the temperature of the system and it starts over from
reading the process variable. This is a closed loop control system.

The proportional term depends only on the error signal. It is amplified by the pro-
portional gain (Kp). Generally, when the proportional gain is increased, the speed of
the control system response is increased. However, if the gain is too large, the process
variable will oscillate and the system will go out of control.
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Figure F.1: The schematic of PI control loop system. We want to stabilize the process
variable (y(t)) around the set point (r(t)), the desired value of the process variable. The value
of the process variable is provided by a sensor, measuring on a system. The process variable is
then compared to the set point giving the error signal (e(t)) as the difference between the two.
The error signal is used by the compensator for the control system algorithm, to determine
the actuator output acting on the system. The overview is shown in (a) and the proportional
and integral terms are specified in (b) as the orange and green box, respectively.

The integral term integrates the error signal over time. As a result it even a small
error will increase this term slowly. It is amplified by the integral gain (Ki). This will
compensate the steady state of the error signal to the set point.
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G
Electronics Files

The following files describe the electronics circuits and designs, which have been used
in the active magnetic field stabilization project. They are in eagle-file format which
can be opened by Eagle 5.1.0 or Autodesk Eagle 9.0.1.

G.1 Magnetic-Field Sensor

• Circuit for HMC1053
//Misc_files/b_sensor.brd

//Misc_files/b_sensor.sch

G.2 PI Feedback Control

• Power panel for PI control rack supply
//Misc_files/stromversorgung_r2_1.brd

//Misc_files/stromversorgung_r2_1.sch

• PI control
//Misc_files/pi_reg.brd

//Misc_files/pi_reg.sch

• PI control revision
//Misc_files/pi_reg_revised.brd

//Misc_files/pi_reg_revised.sch
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G.3 Current Driver

• Circuit for a current driver with modulation input
//Misc_files/LM675_submitted.brd

//Misc_files/LM675_submitted.sch
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G.3 Current Driver
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Figure G.3: b sensor. page 3
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Figure G.4: b sensor. page 4
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Figure G.5: stromversorgung r2 1.
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Figure G.6: pi reg revised. page 1
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Figure G.7: pi reg revised. page 2
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Figure G.8: pi reg revised. page 3
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Figure G.9: LM675 submitted.
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H
Mechanical Drawing

H.1 New Housing Lid of 369 Optical Resonator

The drawing for the mechanical workshop can be found in the following:

• Lid of 369 optical resonator
//Misc_files/LT-1_369_resonator.pdf
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H Mechanical Drawing

Figure H.1: Redesign of the housing lid of the 369 optical resonator.
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I
Technical Information

I.1 RF Qubit-Control Chain

Figure I.1: Schematic of RF qubit-control chain. This schematic shows detailed com-
ponents from Fig. 3.3. Three qubit-control signals from three VFGs are combined by a 4-way
power combiner and mixed using a single-sideband double-balanced mixer with the frequency
12.568GHz, which is generated by a phase-locked loop (PLL) oscillator. The PLL oscillator is
also synchronized with the atomic clock reference. To be able to completely switch off the high
frequency, a MW switch is installed before the mixer. After the mixer, the signals become the
range to manipulate the qubit transitions with controllable frequency, amplitude, and phase.
The signal is amplified by a pre-amplifier as an option, indicated by the dashed box, and
further amplified by a power amplifier (AM43). The isolators are inserted for back-reflection
protection. Finally, the RF control signals are sent through a low-loss and phase-stable cable
to the RF antenna.
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I Technical Information

I.2 VCO calibration

The calibration result from Fig. 3.4 is fitted by a degree-7 polynomial, where y =
∑7

i=0 pix
i. The fitting coefficients are (with 95% confidence bounds):

p0 =4.375× 104(4.188× 104, 4.562× 104)

p1 =−6.281× 105(−6.511× 105,−6.051× 105)

p2 =3.596× 106(3.483× 106, 3.708× 106)

p3 =−1.026× 107(−1.054× 107,−9.98× 106)

p4 =1.457× 107(1.42× 107, 1.494× 107)

p5 =−8.257× 106(−8.509× 106,−8.005× 106)

p6 =7.393× 106(7.317× 106, 7.469× 106)

p7 =8.541× 107(8.54× 107, 8.542× 107).

I.3 Helmholtz Coils Current Settings

The magnetic field offset in our experiment are set by three Helmholtz coils, as sum-
marized in Tab. I.1.

Table I.1: The setting current of the Helmholtz coils. These coils were supplied by in-house
current drivers. Now a commercial 3 channel power supply, Toellner TOE 8733-2, is using.

Coil Name I (A)

Big 1+2 -0.308
Small Up+Down -1.68
Round C+W -0.116

I.4 Compensation Electrodes Settings

The compensation electrodes are optimized with respect to the minimization micro-
motion of a single ion. The offset potentials are summarized in Tab. I.2.
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I.4 Compensation Electrodes Settings

Table I.2: The setting potential of the trap compensation electrodes.

Electrode Name Supplied Voltage (V)

RF-side -90.1
Under RF-side -65.5
Under Viewport Windows -22.65
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[141] C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-
Kaler, and R. Blatt, “Quantum State Engineering on an Optical Transition and
Decoherence in a Paul Trap,” Phys. Rev. Lett. 83, 4713 (1999).

[142] J. D. Thompson, T. G. Tiecke, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Co-
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für hochpräzise Magnetometrie,” Ph.D. thesis, Universität Siegen (2017).

257

http://dx.doi.org/10.1103/PhysRevLett.97.103007
http://dx.doi.org/10.1103/PhysRevLett.97.103007
http://dx.doi.org/10.1103/PhysRevA.89.012318
http://dx.doi.org/10.1103/PhysRevA.89.012318
http://dx.doi.org/ 10.1088/1361-6455/50/2/025501
http://dx.doi.org/ 10.1088/1361-6455/50/2/025501
http://arxiv.org/abs/arXiv:1801.03391
http://dx.doi.org/10.1103/PhysRevA.84.065404
http://dx.doi.org/10.1126/science.1177077
http://dx.doi.org/ 10.1038/nature09071
http://dx.doi.org/ 10.1126/science.1253742
http://dx.doi.org/10.1103/PhysRevLett.74.4087
http://dx.doi.org/10.1103/PhysRevLett.105.230503
http://dx.doi.org/ 10.1038/nature10010


BIBLIOGRAPHY

[172] T. Hannemann, C. Wunderlich, M. Plesch, M. Ziman, and V. Buzek, “Scruti-
nizing Single-Qubit Quantum Channels: Theory and Experiment with Trapped
Ions,” (2009), arXiv:1711.05225 .

[173] J. J. Sakurai, Modern Quantum Mechanics (Revised Edition) (Addison Wesley,
1993).

[174] C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt,
M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe,
“Experimental Entanglement of Four Particles,” Nature 404, 256 (2000).

[175] L. M. K. Vandersypen and I. L. Chuang, “NMR techniques for Quantum Control
and Computation,” Rev. Mod. Phys. 76, 1037 (2005).

[176] S. Wimperis, “Broadband and Narrowband Composite Excitation Sequences,”
Journal of Magnetic Resonance (1969) 86, 46 (1990).

[177] T. P. Harty, M. A. Sepiol, D. T. C. Allcock, C. J. Ballance, J. E. Tarlton,
and D. M. Lucas, “High-Fidelity Trapped-Ion Quantum Logic Using Near-Field
Microwaves,” Phys. Rev. Lett. 117, 140501 (2016).

[178] J. Moor, “The Dartmouth College Artificial Intelligence Conference: The Next
Fifty Years,” AI Magazine 27, 87 (2006).

[179] S. F. Weng, J. Reps, J. Kai, J. M. Garibaldi, and N. Qureshi, “Can Machine-
Learning Improve Cardiovascular Risk Prediction using Routine Clinical Data?”
PLOS ONE 12, 1 (2017).

[180] P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul,
C. Langlotz, K. Shpanskaya, M. P. Lungren, and A. Y. Ng, “CheXNet:
Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning,”
CoRR abs/1711.05225 (2017), arXiv:1711.05225 .

[181] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Diele-
man, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the Game of Go with
Deep Neural Networks and Tree Search,” Nature 529, 484 (2016).

[182] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,
G. van den Driessche, T. Graepel, and D. Hassabis, “Mastering the Game of Go
without Human Knowledge,” Nature 550, 354 (2017).

[183] S. J. Russell, P. Norvig, and E. Davis, Artificial Intelligence: A Modern Ap-
proach, 3rd ed., Prentice Hall series in artificial intelligence (Prentice Hall, Upper
Saddle River, 2010).

258

http://arxiv.org/abs/1711.05225
http://dx.doi.org/10.1038/35005011
http://dx.doi.org/ 10.1103/RevModPhys.76.1037
http://dx.doi.org/10.1016/0022-2364(90)90210-Z
http://dx.doi.org/10.1103/PhysRevLett.117.140501
http://dx.doi.org/ 10.1609/aimag.v27i4.1911
http://dx.doi.org/10.1371/journal.pone.0174944
http://arxiv.org/abs/1711.05225
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature24270


BIBLIOGRAPHY

[184] H. J. Briegel and G. D. l. Cuevas, “Projective Simulation for Artificial Intelli-
gence,” Scientific Reports 2, 400 (2012).

[185] R. Motwani and P. Raghavan, Randomized Algorithms (Cambridge University
Press, Cambridge ; New York, 1995).

[186] Y. Aharonov, L. Davidovich, and N. Zagury, “Quantum Random Walks,” Phys.
Rev. A 48, 1687 (1993).

[187] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spiel-
man, “Exponential Algorithmic Speedup by a Quantum Walk,” in Proceedings of
the Thirty-fifth Annual ACM Symposium on Theory of Computing , STOC ’03
(ACM, New York, NY, USA, 2003) pp. 59–68.

[188] J. Kempe, “Discrete Quantum Walks Hit Exponentially Faster,” in Approxima-
tion, Randomization, and Combinatorial Optimization.. Algorithms and Tech-
niques, edited by S. Arora, K. Jansen, J. D. P. Rolim, and A. Sahai (Springer
Berlin Heidelberg, Berlin, Heidelberg, 2003) pp. 354–369.

[189] H. Krovi, F. Magniez, M. Ozols, and J. Roland, “Quantum Walks can Find a
Marked Element on any Graph,” Algorithmica 74, 851 (2016).

[190] G. D. Paparo, V. Dunjko, A. Makmal, M. A. Martin-Delgado, and H. J. Briegel,
“Quantum Speedup for Active Learning Agents,”Phys. Rev. X 4, 031002 (2014).

[191] M. Szegedy, “Quantum Speed-Up of Markov Chain Based Algorithms,” in 45th
Annual IEEE Symposium on Foundations of Computer Science (IEEE, 2004).

[192] F. Magniez, A. Nayak, J. Roland, and M. Santha, “Search via Quantum Walk,”
SIAM Journal on Computing 40, 142 (2011).

[193] V. Dunjko, N. Friis, and H. J. Briegel, “Quantum-Enhanced Deliberation of
Learning Agents using Trapped Ions,”New Journal of Physics 17, 023006 (2015).

[194] N. Friis, V. Dunjko, W. Dür, and H. J. Briegel,“Implementing Quantum Control
for Unknown Subroutines,” Phys. Rev. A 89, 030303 (2014).

[195] N. Friis, A. A. Melnikov, G. Kirchmair, and H. J. Briegel, “Coherent Controliza-
tion using Superconducting Qubits,” Sci. Rep. 5, 18036 (2015).

[196] T. Loke and J. Wang,“Efficient Quantum Circuits for Szegedy Quantum Walks,”
Annals of Physics 382, 64 (2017).

[197] A. Y. Kitaev, “Quantum measurements and the Abelian Stabilizer Problem,”
Electronic Colloquium on Computational Complexity (ECCC) 3 (1996).

[198] J. Mautner, A. Makmal, D. Manzano, M. Tiersch, and H. J. Briegel, “Projective
Simulation for Classical Learning Agents: A Comprehensive Investigation,”New
Generation Computing 33, 69 (2015).

259

http://dx.doi.org/10.1038/srep00400
http://dx.doi.org/10.1103/PhysRevA.48.1687
http://dx.doi.org/10.1103/PhysRevA.48.1687
http://dx.doi.org/10.1145/780542.780552
http://dx.doi.org/10.1145/780542.780552
http://dx.doi.org/10.1007/978-3-540-45198-3_30
http://dx.doi.org/10.1007/978-3-540-45198-3_30
http://dx.doi.org/10.1007/978-3-540-45198-3_30
http://dx.doi.org/10.1007/s00453-015-9979-8
http://dx.doi.org/10.1103/PhysRevX.4.031002
http://dx.doi.org/10.1109/focs.2004.53
http://dx.doi.org/10.1109/focs.2004.53
http://dx.doi.org/10.1137/090745854
http://dx.doi.org/10.1088/1367-2630/17/2/023006
http://dx.doi.org/10.1103/PhysRevA.89.030303
http://dx.doi.org/10.1038/srep18036
http://dx.doi.org/10.1016/j.aop.2017.04.006
http://eccc.hpi-web.de/eccc-reports/1996/TR96-003/index.html
http://dx.doi.org/10.1007/s00354-015-0102-0
http://dx.doi.org/10.1007/s00354-015-0102-0


BIBLIOGRAPHY

[199] A. A. Melnikov, A. Makmal, and H. J. Briegel,“Projective Simulation Applied to
the Grid-World and the Mountain-Car Problem,”Artificial Intelligence Research
3 (2014), 10.5430/air.v3n3p24.

[200] A. Makmal, A. A. Melnikov, V. Dunjko, and H. J. Briegel, “Meta-Learning
within Projective Simulation,” IEEE Access 4, 2110 (2016).

[201] S. Hangl, E. Ugur, S. Szedmak, and J. Piater, “Robotic Playing for Hierar-
chical Complex Skill Learning,” in Proceedings 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE, 2016) p. 2799.

[202] A. A. Melnikov, H. Poulsen Nautrup, M. Krenn, V. Dunjko, M. Tiersch,
A. Zeilinger, and H. J. Briegel, “Active Learning Machine Learns to Create
New Quantum Experiments,” Proceedings of the National Academy of Sciences
115, 1221 (2018).
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