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Real-Time Processing of Range Data
Focusing on Environment Reconstruction

ABSTRACT

With the availability of affordable range imaging sensors, providing real-time three-dimensional in-

formation of the captured scene, new types ofComputerVision applications arise. Such applications

range from designing new Human-Computer interfaces (known as Natural User Interfaces) to the

generation of highly detailed reconstructions of complex scenes (for example to keep track of cul-

tural heritage or crime scenes), to autonomous driving and augmented reality.

These depth sensors are mostly based on two efficient technologies: the structured-light principle

(such as the Xbox 360 version of the Kinect camera) and the time-of-flight (ToF) principle (as cam-

eras implemented by pmdtechonologies). WhenToF camerasmeasure the time until the light emit-

ted by their illumination unit is backscattered to their smart detectors, the structured-light cameras

project a known light pattern onto the scene and measure the amount of distortion between the

emitted light pattern and its image. Both technologies have their own advantages and weak points.

This dissertation is composed of 4 contributions. First, an efficient approach is proposed to compen-

sate motion artifact of ToF raw images. Thereafter, a work on online three-dimensional reconstruc-

tion applicationhas been investigated to improve the robustness of the camera tracker by segmenting

moving objects. The second major contribution lies on a robust handling of noise on raw data, dur-

ing the full reconstruction pipeline, proposing a new type of information fusion which considered

the anisotropic nature of noise present on depth data, leading to faster convergence of high-quality

reconstructions. Finally, a newmethod has been designed which uses surface curvature information

to robustly reconstruct fine structures of small objects, as well as limiting the total error of camera

drift.



M.Sc. Damien Lefloch

ZUSAMMENFASSUNG

Durch die Verfügbarkeit von kostengünstigen Nahfeldsensoren, die 3D daten der aufgenommenen

Szene in Echtzeit erstellen, entstehen neue Anwendungen im Bereich Computer Vision. Diese An-

wendungen reichen von der Erstellung neuerMensch-Maschine-Schnittstellen (bekannt alsNatural

User Interfaces) über die Erstellung von sehr detailliertenRekonstruktionen komplexer Szenen (z.B.

in der Spuren an Tatorten oder Kulturstätten) bis hin zu Autonomem Fahren und Erweiterter Real-

ität.

Diese Tiefensensoren basieren hauptsächlich auf zwei effizienten Technologien, dem: Structured-

Light (SL) Prinzip (wie in der Xbox 360 Kinect Kamera) and Time-of-Flight (ToF) Prinzip (wie

Kameras der Firmapmdtechnologies). WährendToF-Kameras die Zeit zwischenLichtemission der

Beleuchtungseinheit und Empfang der Rückstreuung auf dem ”smart detectors”messen, projizieren

SL Kameras ein bekanntes Lichtmuster in die Szene und messen die Verzerrung zwischen ausge-

sendetem Muster und dem resultierenden Bild. Beide Technologien haben ihre Vor- und Nachteile.

Diese Dissertation besteht aus vier Beiträgen. Wir schlagen einen effizienten Ansatz vor,

um Bewegungsartefakte von ToF-Rohbildern zu kompensieren. Danach arbeiten wir an 3D-

Rekonstruktionsanwendungen und verbessern die Robustheit des Kameratrackings durch die Seg-

mentierung von bewegten Objekten.

Der zweite Beitrag liegt in der robustenHandhabung vonRauschen in den Rohdaten über die ganze

Verarbeitungskette der Rekonstruktion. Hier wird eine neue Art der Informationsfusion verwen-

det, welche die anisotropischen Eigenschaften vonRauschen in denTiefendaten berücksichtigt und

damit eine schnellere Konvergenz für hochqualitative Rekonstruktionen erzielt.

Abschließend wird eine Methode entworfen welche die Information über die Oberflächenkrüm-

mung verwendet um auch feine Strukturen von kleinen Objekten robust zu rekonstruieren. Zusät-

zlich wird der Gesamtfehler des Kameradrifts eingeschränkt.
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It is paradoxical, yet true, to say, that the more we know, the more ig-
norant we become in the absolute sense, for it is only through enlight-
enment that we become conscious of our limitations. Precisely one of
the most gratifying results of intellectual evolution is the continuous
opening up of new and greater prospects.

Nikola Tesla (∗1856 – †1943)
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Introduction

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Goals and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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ℋUMANS (or animals in general) perceive their environment with both eyes (binocular im-
ages) and mostly understand the surrounding world using the single vision sense. One
could argue that the perception of the surrounding world required only a 2-D colour im-

age to be solved. However, what would be the difference between a photograph of a person’s face and a
photograph of a high-resolution A4 printed image of the same face? The sole use of 2-D information is not
enough to perceive differently regarding both of these cases. Thus 3-D information is a key point for proper
perception. Still recently, several news reported that the face identification of Samsung’s Galaxy S8 smart-
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phone can easily be bypassed by a single photograph¹.
For this reason, a wide range of applications is now relying not solely on the 2-D image information, but

use additional inputs such as depth information in order to either be more robust (e.g. face identification
problem) or solve problems that were not possible via 2-D images only. Many applications are now using
depth sensors to capture environments in high quality. With the availability of affordable range imaging sen-
sors, providing real time 3-D information of the captured scene, new types of Computer Vision applications
arise. Such applications range from designing newHuman-Computer interfaces (known as Natural User In-
terfaces) to the generation of high detailed reconstructions of complex scenes (for example to keep track of
cultural heritage or crime scenes), to autonomous driving and augmented/virtual reality. These depth sen-
sors are mostly based on two different types of technology: the structured-light (SL) principle (such as the
Xbox 360 version of the Kinect camera) and the time-of-flight (ToF) principle (as cameras implemented by
pmdtechonologies).

Nowadays, the 3-D camera technology is matured enough to be directly integrated into mobile devices
(e.g. the Asus Zenfone AR², the Lenovo Phab 2 Pro³, and the iPhone X⁴). In this dissertation, frameworks
for dense reconstruction applications using depth sensors are described based on new 3-D algorithms and
high-quality surface rendering. Challenges such as the real time constraint and the sensor uncertainty are
addressed and solutions are presented for capturing large scale or low-feature environments.

1.1 Context

This study was conducted as part of the research training group GRK 1564 Imaging New Modalities com-
bining experts in different domains such as electronics, physics, nanotechnology and material science, and
computer science. This graduate school located at the University of Siegen is focusing on developing new
long range ToF cameras, as well as graphene-based devices or Terahertz sensors, and computer graphics and
vision algorithms. These algorithms are used to visualise and process raw data coming from these different
sensors. That is where this thesis is contributing. New algorithms for raw depth data should be implemented
to solve different problems or improve current state-of-the-art methods. Online dense 3-D reconstruction
using depth sensors was the main application that drives this work. Solving such general problem leads to a
variety of applications as robots explorations, security, augmented/virtual reality, entertainments, etc.

Collaborations withMicrosoftResearch in Cambridge, and theUniversity College London led to various

¹source : http://www.businessinsider.fr/us/samsung-galaxy-s8-facial-recognition-tricked-with-a-photo-2017-3/
²Asus Zenfone AR: https://www.asus.com/us/Phone/ZenFone-AR-ZS571KL/
³Lenovo Phab 2 Pro: http://www3.lenovo.com/us/en/virtual-reality-and-smart-devices/

augmented-reality/-phab-2-pro/Lenovo-Phab-2-Pro/p/WMD00000220
⁴iPhone X: https://www.apple.com/iphone-xr/
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publications as well as fruitful discussions during this full study.

1.2 Goals and Challenges

In this dissertation the topic of 3-D range imaging is investigated in a twofoldway: depthmap preprocessing,
improving the overall quality of the input data as well as the accumulation of range images into a consistent
3-Dmodel, is introduced. Concerning the depthmap preprocessing topic, themain challenge lies in the fact
that depth maps given by range sensors have usually lower image resolution compared to the ones provided
by standard colour cameras, making the calibration process more difficult, and that depth cameras suffer
from intrinsic and extrinsic error characteristics which highly increase the measurement uncertainty.

Apart of thiswork focuseson reducing the sensoruncertaintyofToFsensorsbyfirst calibrating the camera
system to retrieve its intrinsic characteristics (see Chapter 2) and second, by tackling a common extrinsic
problem that occurs in dynamic environments known as ToF motion artifacts. Chapter 3 introduces this
problem and describes a solution to improve the quality of depth maps given by ToF sensor. Decreasing
the noise uncertainty of depth data is a valid step for any application that uses as input depth data. Further
contributions of this work are related to the 3-D reconstruction application.

Themain challenges of online dense3-D reconstruction can be split into two categories. Thefirst category
describes practical challenges which are summarized as being able to densely reconstruct large scenes in
real-time using as small as possiblememory footprint. The second category describes challenges that are
directly linked to the final output of themethod: How to achieve high quality 3-D reconstruction? This also
relates to the quality (or the signal-to-noise) of the input data. This work gives different solutions to those
problems.

Chapter 5 focuses on the robustness of 3-D reconstruction methods for different types of scenes (large
environments, low-depthfeature scenes) using two different depth cameras with their unique sensor uncer-
tainty. Low-depth feature scenes are composed of objects with small depth variations (such as a brick wall).
This chapter shows how measurement uncertainty has a huge impact on the final output of 3-D reconstruc-
tion systems. The standard algorithmused to track the egomotionof the camera is not robust enough against
noise leading to poor quality reconstruction for low-depthfeature scenes. This chapter shows how difficult
it is for real-time 3-D reconstruction systems to properly handle high sensor uncertainty in the case of low-
depthfeature scenes. Chapter 5 gives solutions to tackle this problem.

Measurement uncertainty is also a valid information for3-D reconstructionmethods if properlymodelled
and used. Chapter 6 describes a method that uses measurement uncertainty to better fuse data together.
Data accumulation is an important step for online dense 3-D reconstruction methods. The main challenge
of the data accumulation is that the full informationmust be shrunk into a common representation that uses
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a small memory footprint without deteriorating the original information (i.e., without losing detail). This
chapter focuses on methods to improve the fusion of depth data using the anisotropic nature of the noise
characteristic of range sensors.

In addition, methods presented in this dissertation were essentially driven by the achievements of the
following general goals:

• real-time constraint as mentioned previously this constraint is an important feature which pro-
vides direct feedback to the user, allowing them to automatically adapt themselves to the current
results. The real-time constraint is always achieved in this work by the implementation of several
GPU-based processing pipelines (using both OpenGL and CUDA frameworks).

• high quality results the real-time constraint shouldnot have the counter effect to lower the quality
of the result provided by any of these methods. Concerning the online 3-D reconstruction topic, the
presented methods achieve high-quality results in term of fine and detailed reconstruction for large-
scale sequence, but also high quality in term of drift reduction and robust camera tracking.

• modularity each of the GPU-based pipelines usually offers the possibility to be extended easily.

1.3 Contributions

This dissertation is composed of four results (R1,R2,R3 andR4).
In Lefloch et al. [LHK13], a new approach to compensate motion artifacts of ToF raw phase images has

beenproposed (seeChapter 3). Extending theoriginalworkbyLindner andKolb [LK09], the contributions
in the first resultR1 are:

R1.1 improve the computation speed of the method by limiting the number of Optical Flows required,

R1.2 evaluation of the correction using both simulated and real data showing the robustness of the ap-
proach.

Collaborating with Maik Keller, a new online 3-D reconstruction framework [KLL+13] was proposed
using augmented points (or surface elements) as model representation. This thesis will present the work
that has been achieved regarding online3-D reconstruction in dynamic environments (see Section 4.2). The
following contributions are part of the second resultR2:

R2.1 a fast and robust algorithm to segment dynamic objects in the scene,
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R2.2 improve the robustness of the camera tracker by rapidly updating and reflecting the current recon-
struction model via the information of segmented dynamic objects.

The third and fourth resultsR3 andR4 are still in the direction of online 3-D reconstructions and are based
on our original work proposed by Keller et al. [KLL+13] without being necessarly bound to it. Both ap-
proaches could be used with a different model representation such as the original Kinect-Fusion method
proposed by Newcombe et al. [NDI+11].

Based on the original work of Keller et al. [KLL+13], these two last results focus on high quality dense 3-
D reconstruction using low-cost depth sensors that are subject to strong input noise. Both approaches were
implemented using the original point-based fusion due to its simplicity, but are not restricted to this model
representation. For example, the volumetric grid proposed in the original Kinect-Fusion by Newcombe
et al. [NDI+11] is also a valid candidate for both methods.

To improve the overall quality of dense reconstruction of low-depth feature scenes, more impacted by
the noise uncertainty of the sensor, a new method [LKS+17] has been developed (see Chapter 5) that uses
surface curvature information. The contributions of the third resultR3 are:

R3.1 the first online reconstruction design to systematically incorporate curvature as an independent sur-
face attribute,

R3.2 an iterative closest point (ICP)variant that considers curvature forbothdense correspondences search-
ing and weighting for increased stability,

R3.3 a method to efficiently blend curvatures in the fusion stage,

R3.4 fast and high quality, curvature-aware local surface reconstruction using a local and lightweight rep-
resentation of the model representation (called index map).

The last result took an orthogonal approach to robustly tackle the noise in raw depth data. A new dense
reconstruction framework [LWK15] has been proposed which stores permodel point a reliability matrix di-
rectly given by the noise uncertainty of the correspondingmeasurement (seeChapter 6). The contributions
of the last resultR4 are:

R4.1 a novel symmetric anisotropic distance measure that is applied to establish more robust correspon-
dences between input and model points in the fusion step,

R4.2 a novel anisotropy-aware fusion technique for accumulation of anisotropic input data into the model
which leads to a better convergence and high quality of reconstruction,
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Figure 1.3.1: Teaser images of the publication that will be presented in this thesis.

R4.3 a data compression scheme for point-based model representation implying efficient storage of at-
tributes per point without loss of quality.

Figure 1.3.1 shows a teaser image for all the works accomplished during this study. This thesis will present
most of those publications.

The following list is referring all publications, in chronological order, that were achieved during this study:

P.1 Damien Lefloch, Thomas Högg, and Andreas Kolb. Real-time motion artifacts compensation of
tof sensors data on gpu. SPIE, May 2013.

P.2 Maik Keller, Damien Lefloch, Martin Lambers, Shahram Izadi, Tim Weyrich, and Andreas Kolb.
Real-time 3d reconstruction in dynamic scenes using point-based fusion. In Proceedings of IEEE
International Conference on 3D Vision, June 2013.

P.3 Damien Lefloch, Rahul Nair, Frank Lenzen, Henrik Schäfer, Lee Streeter, Michael J Cree, Reinhard
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Koch, and Andreas Kolb. Technical foundation and calibrationmethods for time-of-flight cam-
eras. In Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications, September 2013.

P.4 Thomas Högg, Damien Lefloch, and Andreas Kolb. Real-time motion artifact compensation for
pmd-tof images. In Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications, Septem-
ber 2013.

P.5 Thomas Högg, Damien Lefloch, and Andreas Kolb. Time-of-flight camera based 3d point cloud
reconstruction of a car. Computers in Industry, December 2013.

P.6 DamienLefloch, TimWeyrich, andAndreasKolb. Anisotropic point-based fusion. In International
Conference on Information Fusion, July 2015.

P.7 Hamed Sarbolandi, Damien Lefloch, and Andreas Kolb. Kinect range sensing: Structured-Light
versus Time-of-Flight Kinect. Computer Vision and Image Understanding, October 2015.

P.8 Damien Lefloch, Markus Kluge, Hamed Sarbolandi, Tim Weyrich, and Andreas Kolb. Comprehen-
sive use of curvature for robust and accurate online surface reconstruction. IEEE Trans. Pattern
Analysis and Machine Intelligence, January 2017.

This thesis mainly relates to the publications P.1, P.2, P.3, P.6, P.7 and P.8, while the other publications
relate to collaborative work .

1.4 Thesis Outline

This dissertation is a product of several works that have been published in various publications during the
time spent in the Computer Graphics and Multimedia Systems Group at the University of Siegen. Therefore,
this thesis directly reflects all contributions of those publications. This thesis is decomposed into five main
parts:

• Chapter 2 introduces basic concept of camera geometry and different range camera principles with a
focus on the ToF technology and the resulting characteristic errors. It also describes both works re-
garding depth sensors foundation [LNL+13] and evaluation [SLK15]. Thefirst onewas published as
a chapter in the “Time-of-Flight andDepth Imaging. Sensors, Algorithms, andApplications” Springer
book and the second one in the “Computer vision and image understanding” journal.
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• Chapter 3 presents an efficient method to compensate motion blur on depth data given by ToF cam-
eras. Motion blur on ToF data is a well-known problem and is intrinsically linked to the ToF acqui-
sition principle. This work was published in the proceedings of “Three-Dimensional Imaging, Visual-
ization, and Display” (SPIE).

• Chapter 4 gives a detailed introduction to online 3-D reconstruction pipelines by first describing the
relatedworks andpresenting all different steps required to solve this challengingproblem. The last sec-
tions of this chapter (see Section 4.2) is describing the contribution of this work on the online dense
reconstruction in dynamic environments, presented in the “Proceedings of the Joint 3DIM/3DPVT
Conference” (3DV).

• Chapter 5 is presenting a new online 3-D reconstruction framework that uses curvature information
to improve the overall quality of reconstruction. This work was published in the prestigious “IEEE
Transactions on Pattern Analysis and Machine Intelligence” (PAMI).

• Finally, Chapter 6 describes another contribution to the topic of online 3-D reconstruction that uses
the anisotropic behaviour of depth measurement uncertainties to improve the data fusion process.
This work was presented in the “International Conference on Information Fusion” (FUSION).

• Throughout this thesis, the reader will be referred to the Appendix A, located at the end of this disser-
tation, for more details on specific methods or algorithms.

The last chapter concludes the thesis giving a summary of the main presented contributions and discussing
about future works and improvements.
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Tell me and I forget. Teach me and I remember. Involve me and I
learn.

Benjamin Franklin (∗1706 – †1790)
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Fundamentals

2.1 Perspective Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Non-contact Range Imaging Principles . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Time-of-Flight cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Depth Map Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

𝒯heoretical background is essential to clearly understand this thesis. The basics of camera ge-
ometry will be first introducedwith the corresponding notations whichwill be used alongwith
the thesis. This is followed by the presentation of two different range camera principles used

during this work: the Time-of-Flight (ToF) and the Structured-light (SL) camera principles.

2.1 Perspective Camera Model

The following section is separated into two parts describing a simple camera model known as the pinhole
model. First, all camera parameters which belong intrinsically to the camerawill be described; for a complete
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overview of the notations used in this work, refer to the list of symbols. Since these parameters are intrinsic
to the camera they are usually fixed, and thus required a single processing step to be determined known
as calibration. They describe how 3-D points, expressed in camera-centred coordinate, are projected to the
camera image plane. The second part focuses on the scene related parameters that are extrinsic to the camera
and which relates 3-D scene coordinates (also known as world coordinates) to the camera coordinates.

2.1.1 Intrinsic Parameters

The pinholemodel is the simplest cameramodel thatmathematically describes how cameras are composing
images. 3-D points expressed in the camera-centred coordinates are linearly projected to the image plane of
the camera, i.e., the imaging chip. The camera chip is based either on theComplementaryMetalOxide Semi-
conductor (CMOS) technology, or on the Charge-CoupledDevice (CCD) technology. Both technologies
have advantages and drawbacks and are widely used in the market. The CMOS technology is less power
demanding than the CCD technology. However, due to its principle, each individual pixel line of the chip is
acquired at a different time frame leading to problem for high-speed horizontal motion (a problem known
as the Rolling Shutter).

Typically, the intrinsic parameters are definedby the linear calibrationmatrixK which internally holds the
camera focal length 𝑓 , the pixel size 𝑠𝑥, 𝑠𝑦, and the optical image centre {𝑐𝑥, 𝑐𝑦} of the imaging chip. The
focal length 𝑓 (usually expressed in mm) corresponds to the distance between the pinhole centre (camera
centre) and the image plane. The pixel size, usually expressed in 𝜇m px−1, refers to the length of each
dimension of the pixel. And the optical image centre, also known as principal point, is the 2-D projection of
the optical centre to the image plane.

The intrinsic camera matrixK is defined as:

K = ⎛⎜⎜⎜
⎝

𝑓𝑥 𝑎 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

⎞⎟⎟⎟
⎠

(2.1)

where 𝑓𝑥 = 𝑓
𝑠𝑥

, 𝑓𝑦 = 𝑓
𝑠𝑦

, and 𝑎 refers to the axis skew that causes shear distortion. The axis skew 𝑎 is
generally set to zero for most cameras since the angle of pixel axes is very near of 𝜋

2 radians. From now on,
𝑎 is set to zero since all cameras used in this thesis have a zero-skew value. Furthermore, the inverse of the
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intrinsic matrix can be explicitly computed by:

K−1 =
⎛⎜⎜⎜
⎝

1
𝑓𝑥

0 − 𝑐𝑥
𝑓𝑥

0 1
𝑓𝑦

− 𝑐𝑦
𝑓𝑦

0 0 1

⎞⎟⎟⎟
⎠

(2.2)

It is a transformation that first translates a 2-D pixel point to the image coordinates centred at the principal
point and then normalises it by both focal dimensions. Applying the inverse of the intrinsic matrix to an
homogeneous pixel point u = (𝑥 𝑦 1)⊤ leads to a normalised image point coordinate ̄u = ( ̄𝑥 ̄𝑦 1)⊤.
Additionally, if the distance 𝒟(u)at pixel u is known, then the corresponding 3-D vertex point 𝒱(u) can be
computed by simply scaling it by 𝒟(u):

𝒱(u) = ⎛⎜⎜⎜
⎝

𝑋
𝑌

𝑍 = 𝒟(u)

⎞⎟⎟⎟
⎠

= ̄u 𝒟(u) = K−1 u𝒟(u). (2.3)

This is known as a back-projection transform.
Figure 2.1.1 shows the perspective projection principle via the pinhole model. In practical use, it is com-

mon to assume that the image plane is in front of the camera centre at the reflected focal-length distance.
Note also, how 3-D points belonging to a surface object (blue and green circles) are projected to the image
plane composing the final captured image. To generate this figure, theTotemPole data set raw images were
usedwhichwas originally presented in thework of Zhou andKoltun [ZK13]. The 3-D reconstructedmodel
was extracted by processing all input depths using the contribution presented in Chapter 5 and converted
to a mesh via Poisson surface reconstruction [KH13]. Frame 166 refers to the visualisation of the virtual
captured image.

The pinhole model, or perspective projection, ensures that a straight line in 3-D world coordinates is pro-
jected to a straight line in the captured image. However, in practice this linear assumption does not apply.

Lens distortion Non-linear distortion of the image is caused by the camera lens. The most common
distortion is called the radial distortion that manifests itself in distorting a square into a barrel. A second
kind of distortion, known as tangential distortion, occurs when the lens is not perfectly aligned with the
camera’s optical centre. Nonetheless, the tangential distortion was almost non-existent for the cameras used
in this thesis. Thus, we use the simple radial distortion model proposed by Zhang [Zha00] which retrieves
a normalised distorted pixel coordinate ̃̄u = ( ̃̄𝑥 ̃̄𝑦)⊤ from a normalised corrected pixel (distortion-free)
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Figure 2.1.1: Visualisation of the surface point projections using a pinhole model. Green and blue circles
represent surface points of one object of the scene. The green and blue squares are the projection of
3-D points (circles) into the image (virtual view of the camera). Image generated using the Totem-Pole
data set given by Zhou and Koltun [ZK13] (rgb-frame 166).

̄u = ( ̄𝑥 ̄𝑦)⊤. Here the radial distortion is modelled using two radial parameters 𝑘1 and 𝑘2 as:

̃̄𝑥 = ̄𝑥 (1 + 𝑘1 ‖𝜌‖ + 𝑘2 ‖𝜌‖2)
̃̄𝑦 = ̄𝑦 (1 + 𝑘1 ‖𝜌‖ + 𝑘2 ‖𝜌‖2) (2.4)

where ‖𝜌‖ = ̄𝑥2 + ̄𝑦2.
For any undistorted pixel u, one can retrieve easily the corresponding distorted pixel in the image by ap-

plying first ̄u = K−1 u, the distortion scheme on Equation 2.4, and finally ̃u = K ̃̄u.
Note that for efficiency reason, one could pre-computed a look-up table (or undistorted map) that stores

for each undistorted pixel ̃u, the coordinates of its distorted version u. With u ∈ ℝ2, bilinear interpolation
is usually used to compute the proper pixel value. Special care must be taken at edges during interpolation
(with strong attention on depth data).

From now on, distortion will not be discussed in the following, assuming that a correction was already
applied. In this way, the pinhole model can be correctly used.

From pixel to world unit It is possible todeduce someproperties of the acquired sceneusing the intrinsic

12



CHAPTER 2. FUNDAMENTALS

parameters of the camera and the composed image of the scene. However, since there are an infinite number
of camera parameters capturing the exact same image (e.g. scaling the focal length and the pixel size by the
same number), an additional information of the scene should be known. For example, if the 𝑌𝑖-Cartesian
distance between the camera centre and the centre of an object 𝑖 is known, then the distance between the
camera and this object (also called object’s depth 𝑑𝑖) can be retrieved using the intercept theorem:

𝑑𝑖 = 𝑓𝑦
𝑌𝑖

(𝑦𝑖 − 𝑐𝑦) , (2.5)

where 𝑦𝑖 represents the y-dimension pixel coordinate of the top object point in the captured image (ex-
pressed in px unit).

2.1.2 Extrinsic Parameters

As stated in Section 2.1.1, the exact projection position on the imaging chip of a 3-D point in the field of view
of the camera can be calculated using the pinhole model. However, in order to apply the camera projection,
the 3-D points should be expressed in the camera coordinate {𝑂𝑐𝑋𝑐𝑌𝑐𝑍𝑐} where 𝑂𝑐 is the centre of the
camera, 𝑋𝑐 and 𝑌𝑐 are collinear to both axes of the image plane x and y respectively, and 𝑍𝑐 has the same
direction than the one given by the camera’s optical axis. A transformation composed by a rotation and a
translation is enough to transform the world coordinates to the camera frame. This transformationmatrix is
called extrinsic camera parameters and is describing the coordinates of the scene. Applying any change to
the position or orientation of the camera will directly affect the extrinsic parameters.

Let {𝑂𝑤𝑋𝑤𝑌𝑤𝑍𝑤} be theworld coordinates andT𝑤→𝑐 the extrinsicmatrix that transforms theworld
coordinates to the camera frame {𝑂𝑐𝑋𝑐𝑌𝑐𝑍𝑐}. In homogeneous coordinates, T𝑤→𝑐 is a 4 × 4 matrix:

T𝑤→𝑐 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑡𝑥
𝑅 𝑤→𝑐 𝑡𝑦

𝑡𝑧
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

, (2.6)

where𝑅 𝑤→𝑐 is a rotationmatrix∈ ℝ3×3. A rotationmatrix has only 3 degrees of freedom(3-DoF) known
as the3Euler angles. Since the translation component has also3parameters 𝑡𝑥, 𝑡𝑦 and 𝑡𝑧, thematrixT𝑤→𝑐

is a linear transformation with 6-DoF.
Additionally, it is useful to determine the inverse transformation T 𝑐→𝑤 = (T𝑤→𝑐)−1

that transforms
any point expressed in the camera frame to the world coordinates. For example, if one wants to know the
3-D line equation in world coordinates of a camera pixel ray (computed by back-projection), such an inverse
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transform is required. Due to linearity of this transform, the inverse is simply computed as:

(T𝑤→𝑐)−1 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0
𝑅 𝑐→𝑤 = 𝑅⊤𝑤→𝑐 0

0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

−𝑡𝑥
𝐼3×3 −𝑡𝑦

−𝑡𝑧
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

(2.7)

A homogeneous 3-D point P = (𝑋𝑤
𝑝 𝑌 𝑤

𝑝 𝑍𝑤
𝑝 1)⊤expressed in world coordinates is transformed to the

camera frame by simply applying the extrinsic matrix T𝑤→𝑐:

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑋𝑐
𝑝

𝑌 𝑐
𝑝

𝑍𝑐
𝑝

1

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑡𝑥
𝑅 𝑤→𝑐 𝑡𝑦

𝑡𝑧
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑋𝑤
𝑝

𝑌 𝑤
𝑝

𝑍𝑤
𝑝
1

⎞⎟⎟⎟⎟⎟⎟
⎠

. (2.8)

with:

𝑋𝑐
𝑝 = 𝑟11𝑋𝑤

𝑝 + 𝑟12𝑌 𝑤
𝑝 + 𝑟13𝑍𝑤

𝑝 + 𝑡𝑥
𝑌 𝑐

𝑝 = 𝑟21𝑋𝑤
𝑝 + 𝑟22𝑌 𝑤

𝑝 + 𝑟23𝑍𝑤
𝑝 + 𝑡𝑦

𝑍𝑐
𝑝 = 𝑟31𝑋𝑤

𝑝 + 𝑟32𝑌 𝑤
𝑝 + 𝑟33𝑍𝑤

𝑝 + 𝑡𝑧

(2.9)

where 𝑟𝑖𝑗, (𝑖, 𝑗) ∈ [1, 2, 3]2 refers to the element of the matrix 𝑅 𝑤→𝑐 located at the 𝑖-th line and 𝑗-th
column.

Finally, P can be projected to the image plane of the camera as follows:

𝑍𝑐
𝑝

⎛⎜⎜⎜
⎝

𝑥𝑝
𝑦𝑝
1

⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

⎞⎟⎟⎟
⎠

⎡⎢⎢
⎣

𝑡𝑥
𝑅 𝑤→𝑐 𝑡𝑦

𝑡𝑧

⎤⎥⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

perspective transformation

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑋𝑤
𝑝

𝑌 𝑤
𝑝

𝑍𝑤
𝑝
1

⎞⎟⎟⎟⎟⎟⎟
⎠

. (2.10)

Calibration The process to retrieve all camera parameters is called calibration. However, since it is not
the focus of this thesis, the reader is invited to check the method proposed by Zhang [Zha00] for more
details on photometric calibration of rgb or monochrome cameras. The basic idea is to use, as input, several
images (taken from different positions and orientations) of a known-size planar object (a checker-board).
Corners of the checker-board are automatically detected and retrieved with sub-pixel resolution. The world
coordinate system is placed on one of the 4 extreme corners of the checker-board so that all corners have
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a simplified 3-D position (taking 𝑍 = 0) and a non-linear optimization (such as Levenberg-Marquadt
optimisation) is used to precisely retrieve all camera parameters for each individual image. The objective
function is basically the sum of all reprojection errors (for all images and all corners of the checker-board).

2.2 Non-contact Range Imaging Principles

This section briefly explains most of the techniques that are commonly implemented on range sensors in
order to estimate depth information. Range imaging devices usually provide depth information as a single
channel image (knownas range imageordepthmap). Whereas pixel values of an intensity image are indirectly
related to the surface geometry, the ones from range images encode the position of the surface directly.

Range images are usually represented in two basic forms. One is a list of 3-D coordinates (point cloud)
expressed in the reference frame of the range device, for which no specific order is required. The other is
a matrix of depth values along the directions of the (𝑥, 𝑦) image axes, which makes spatial organisation
explicit.

Depth maps are also referred to as 2.5-D images since they encode only the surface profile information.
Non-contact techniques can be organized in two sub categories, i.e. passive and active methods. Note

that the focus will be further given to the active methods since this work is based on the processing of range
data given by active depth sensors.

2.2.1 Passive methods

Passive methods are techniques that rely purely on 2-D imaging without “altering” the observed scenery.
They are commonly known as shape from 𝑥 techniques, where 𝑥 ∈ {stereo, motion, (de)focus, ...}. The
following will shortly introduce the stereovision principle.

Stereovision Stereovision or passive stereoscopy uses two cameras, similar to the human vision. The
problem is the following: Given two different views, can we obtain a depth map? A sub-problem is: Given two
different views, can we obtain the camera pose of each view? Both cameras generate images of the same scene at
different viewpoints. Themain problem of stereovision systems is to find reliable correspondences (relating
left and right cameras) to retrieve the disparity (see the following section Section 2.2.2-i formore details). A
stereovision system is ruled by several constraints. The best known andmost used constraint is the epipolar
geometry. The fundamental matrix (or essential matrix for calibrated systems) is expressing this constraint
and can be computed via a set of features (see [HZ03]) for more details).

Figure 2.2.1 illustrates theMulti-view stereovision. The epipolar geometry constrains the correspondence
search to a single line on the image plane (green line). Note that this constraint is only valid for static scenes.
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Figure 2.2.1: Visualisation of the stereovision principle. Red lines indicate the pixel ray projections. The
green line is the pixel ray of the right image projected into the left camera image. Note that the green
line passes through the projection of the surface point (blue circle projected into the left camera as blue
square). This principle demonstrates the basic epipolar lines geometry. Image generated using the input
Totem-Pole data set given by Zhou and Koltun [ZK13] (frame 166 for the left camera and frame 1984
for the right camera).

A surface point (blue circle) is projected to the camera focal plane through the pinhole model (blue square
corresponds to the pixel where the surface point is projected). This pixel ray is projected to the left camera
as the epipolar line (green line) which passes through the projection of the same surface point into the left
camera focal plane. This simple principle called the epipolar geometry greatly limits the correspondence
search and is used to compute efficiently pixel disparities (inversely proportional to the depth). To speed
up the correspondence search, images are usually rectified. Both images are projected into a common plane.
This has the effect to simplify the correspondence search to a single dimension (the baseline direction).

2.2.2 Active methods

In contrast to passive methods, active methods are techniques that are using an additional device “altering”
the scenery. This additional device is usually a light emitter (laser, diodes, etc.) but not restricted to. For
example, Radio Detection And Ranging (RADAR) is emitting electromagnetic waves. The following will
briefly introduce the Structured-Light (SL) and the Time-of-Flight (ToF) principles.
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Figure 2.2.2: Structured-Light principle.

2.2.2-i Structured-Light

Even though the principle of the SL-based range sensing is comparatively old, the launch of the Microsoft
Kinect™ (KinectSL) in 2010 as an interaction device for the XBox 360 clearly demonstrates the maturity of
the underlying principle.

The SL approach is categorised as an active stereovision technique. One or several known patterns is
sequentially projected onto an object, which gets deformed by the object shape. The object is then observed
by a camera from a different viewpoint. Analysing the distortion of the observed pattern, i.e., the disparity
from the source pattern, one can extract depth information (Figure 2.2.2). Knowing the intrinsic parameters
of the camera and additionally the baseline 𝑏 (distance between the observing camera and the projector), the
depth of pixel u can be computed using the corresponding disparity value𝒟ℐ(u) as𝒟(u) = 𝑏 𝑓

𝒟ℐ(u) . As the
disparity 𝒟ℐ is usually given in pixel-units, the focal length 𝑓 is also converted to pixel units via 𝑓𝑥 = 𝑓

𝑠px
.

In most cases, the camera and the projector are only horizontally displaced, thus the disparity values are all
given as horizontal distances. In this case 𝑠px resembles the horizontal pixel size 𝑠𝑥. Both depth range and
accuracy relate to the baseline, i.e. longer baselines allow for robust depth measurements at far distances.

There are different options to design the projection patterns for a SL range sensor. Several approaches
were proposed based on the SL principle to estimate the disparity resulting from the deformation of the
projected light patterns. In the simplest case the stripe-pattern sequence realises a binary code which is used
to decode the direction from an object point is illuminated by the beamer.

SL cameras, such as the KinectSL, use a low number of patterns (only one for the KinectSL), to obtain a
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Figure 2.2.3: Components of the KinectSL camera. Original picture provided by iFixit available at
http://www.ifixit.com/Teardown/Microsoft-Kinect-Teardown/4066/1

depth estimation of the scenery at a “high” frame rate (30 Hz). Typically, it is composed of a Near Infra-
red (NIR) laser projector combinedwith amonochromeCMOS camera which captures depth variations of
object surfaces in the scene.

TheKinectSL camera is based on the standard SL principle. The device is composed of two cameras, i.e. a
colour RGB, amonochromeNIR camera, and aNIR projector including a 850 nm laser diode. The baseline
between the projector and the camera is approximately 7.5 cm (see Figure 2.2.3). The NIR projector uses
a known and fixed dot pattern to illuminate the scenery. See the ROS.org community website [KM12], for
a detailed description of the most probable algorithm (deduced by several experimentations) used by the
KinectSL camera to compute the final depth map (disparity map and calibrated system).

2.2.2-ii Time-of-Flight

Time-of-Flight (ToF) is thenamegiven to a varietyofmethods thatmeasure the time that a specimen(object,
light, particle, sound, etc.) takes to travel a certain distance through a specific medium.

In the 17th century, Galileo Galilei (1564–1642) made a first attempt to measure the speed of light since
he was convinced that there was no such thing as infinite speed; unfortunately, his experiment fails to show
that the speedof lightwas finite due to relatively small distances between the light “emitter” and the “receiver”
(two different persons were alternatively lighting a torch at a distance of one mile apart). In fact, due to the
colossal speed of light (299, 792 km ⋅ s−1), about 5𝜇s only is needed for the light to travel one single mile.
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This simple fact explains why he was not able to find a proper finite value for the speed of light.
Twocenturies later, ArmandHippolyteFizeau (1819–1896)was thefirst scientist to successfullymeasure

the speed of light on Earth in 1849. Even if his experiment leads to a 5% error from light velocity ground-
truth (he measured a velocity of 315, 300 km ⋅ s−1) and was worse than the deduction from astronomic
observation based on light aberration, that was the first concrete experiment that measured the speed of
light. Concerning astronomic observation, Ole Christensen Rømer (1644–1710) calculated a a velocity of
300, 000 km ⋅ s−1 from the revolution of Io, one of the Jupiter satellites by collecting the precise dates of the
eclipses of Io over many years. From his data, he realised that when the Earth was nearest to Jupiter, eclipses
of Io would occur about 11 minutes earlier than predicted, and conversely, 11 minutes later than predicted
when the Earth was farthest from Jupiter.

2.3 Time-of-Flight cameras

ToF cameras provide an elegant and efficient way to capture 3-D geometric information of real environ-
ments in real time. However, due to their operational principle, ToF cameras are subject to a large variety of
measurement error sources. Over the last decade, an important number of investigations concerning these
error sources were reported and have shown that they were caused by factors such as camera parameters
and properties (sensor temperature, chip design, etc.), environment configuration and the sensor hardware
principle. ToF sensors usually provide twomeasurement frames at the same time from data acquired by the
same pixel array; the depth and amplitude images. The latter image corresponds to the amount of returning
active light signal and is also considered a strong indicator of quality/reliability of measurements. For ToF
cameras, the on-board technology is more complicated than “standard” camera, and leads to different errors
which strongly reduces the quality of the measurements.

The section is organized as follows: Part 2.3.1 gives an overview of the basic technological foundation of
twodifferentToFcameraprinciples. AndPart 2.3.2 ends this sectionbypresenting all differentmeasurement
errors of ToF sensors.

2.3.1 Signal Theory

Continuous Modulation Approach

Most of the ToF manufacturers built-in the following principle in their cameras such as pmdtechnologies¹,
Mesa Imaging² or Soft Kinetic³ (cf. Figure 2.3.1); or more recently, the second version of Microsoft Kinect

¹http://www.pmdtec.com/
²http://www.mesa-imaging.ch/
³http://www.softkinetic.com/
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Figure 2.3.1: Different ToF phase-based camera models available on the market. A PMD CamCube
2.0 (left), a swissranger SR 400 (middle), a DepthSense DS325 (right) and the second version of the
Microsoft Kinect (bottom)

based on ToF technology (KinectToF) originally designed for the Xbox One⁴. These cameras are able to
retrieve range images at a frame rate of 30 Hz; pmdtechnologies has already designed faster device (the
Camboard pico flexx) which operates at 90 Hz and has successfully integrated 3-D technology on Phablets
(e.g. the ASUSZenfone AR). Note that commonToF cameras usually modulate light at high frequency (e.g.
≈20 MHz) providing depth data smaller than 8 mand thus are highly suitable for middle range applications.

The continuous modulation principle, also known as a continuous wave intensity modulation [Lan00]
(CWIM), is based on the correlation of the emitted signal 𝑜𝜏 shifted by an offset phase 𝜏 and the incident
signal 𝑟 resulting from the reflection of themodulated active illumination (NIR light) by the observed scene.
CWIM is used to estimate the distance between the target (i.e., observedobjects) and the source of the active
illumination (i.e., the camera). CWIMToF sensors directly implement the correlation function on the chip,
composed of what is known in the literature as smart pixels [Lan00].

The correlation function 𝑐(𝑡) at a specific phase offset sample 𝜏 = 0, 𝜋
2 , 𝜋, 3𝜋

2 is defined as

𝑐𝜏(𝑡) = 𝑟(𝑡) ∗ 𝑜𝜏 (𝑡) = lim
𝑇→∞

∫
𝑇/2

−𝑇/2
𝑟(𝑡) ⋅ 𝑜𝜏 (𝑡) 𝑑𝑡. (2.11)

⁴http://www.xbox.com/fr-FR/xbox-one/accessories/kinect
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Both emitted and incident signals can be expressed as a cosinusoidal function:

𝑜𝜏(𝑡) = cos ((𝜔 + 𝑓𝑚𝜏) ⋅ 𝑡) , 𝑟(𝑡) = 𝐼 + 𝐴 cos (𝜔𝑡 + 𝜙) (2.12)

where 𝜔 = 2𝜋𝑓𝑚 represents the angular frequency of 𝑓𝑚, 𝐼 is the signal’s offset due to DC background
light, 𝐴 the amplitude of the reflected signal and 𝜙 is the phase shift directly relating to the object distance.
Using trigonometric relations [Lan00], one can simplify the correlation function as:

𝑐𝜏 = 𝐴
2 cos (𝜏 + 𝜙) + 𝐼. (2.13)

There are three unknowns in Equation 2.13 so at least three measurements are required to perform a sin-
gle estimation of distance, amplitude and offset. Typically, four samples of the correlation function 𝑐 are
sequentially acquired at specific discrete phase offsets 𝒜𝑖 = 𝑐𝜏, 𝜏 = 𝑖 ⋅ 𝜋

2 , 𝑖 = 0, 1, 2, 3. More measure-
ments improve the precision but also incorporates additional errors due to the sequential sampling such as
motion blur (see Section 3.2 to correct this problem). The measured amplitude 𝐴, phase 𝜙 and intensity 𝐼
are given by:

𝜙 = arctan2 (𝒜3 − 𝒜1, 𝒜0 − 𝒜2), (2.14)

𝐼 = 1
4 ⋅

3
∑
𝑖=0

𝒜𝑖, (2.15)

𝐴 = 1
2 ⋅ √(𝒜3 − 𝒜1)2 + (𝒜0 − 𝒜2)2. (2.16)

Once the phase 𝜙 is reconstructed, the object distance 𝑑 is easily computed using the speed of light in the
dominating medium 𝑐 ≈ 3 ⋅ 108𝑚 ⋅ 𝑠−1 and the modulation frequency of the active illumination 𝑓𝑚:

𝑑 = 𝑐
4𝜋𝑓𝑚

𝜙. (2.17)

Since the described principle is mainly based on phase shift calculation, only a range of distances within
one unambiguous range [0, 2𝜋] can be retrieved. This range depends on themodulation frequency 𝑓𝑚 used
during the acquisition giving a maximum distance of 𝑑𝑚𝑎𝑥 = 𝑐

2𝑓𝑚
that can be computed. The factor 2

relates to the fact that the active illumination needs to travel back and forth between the observed object and
the camera. It is understood that in this simple depth retrieval calculation from the phase shift 𝜙, simplifica-
tions are made which leads to possible measurement errors, e.g. the assumption that the active illumination
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module and the ToF sensors are placed in the same position in space; which is physically impossible.

Pulse Based Approach

Conversely, pulsemodulation is an alternativeToFprinciplewhich generates a pulseof light, of knownwidth,
coupledwith a fast shutter observation. The3DVSystem camera is using this class of technology also known
as shuttered light-pulse (SLP) sensor to retrieve depth information. The basic concept lies on the fact that
the camera projects a NIR pulse of light with a known duration and discretised the front of the reflected
illumination. This discretisation is realised before the returning of the entire light pulse using a fast camera
shutter. The portion of the reflected pulse signal describes the distance to the observed object. Conversely
to the unambiguous range seen in CWIM approach, the depth of interest is directly linked to the duration
of the light pulse and the duration of the shutter (𝑡pulse+𝛿s

). This phenomenon is known as light wall. The
intensity signal captured by the sensor during the shutter time is strongly correlated with the depth of the
observed object, since nearer object will appear brighter. This statement is not fully exact, since the intensity
signal also depends on the observed object reflectivity property. As Davis stated [DGB03], double pulse
shuttering hardware provide a better depth measurement precision than the ones based on a single shutter.

For an in-depth evaluation of a pulse-based range sensing device (Hamamatsu prototype), please refer to
the recent work of Sarbolandi et al. [SPK18].

The following section will describe the main error sources and characteristics of ToF range devices. Due
to the lack of availability of pulse based range cameras (mainly all ToF range suppliers implement theCWIM
principle), the presented error sources and characteristics will refer to CWIM-based ToF sensors but can be
directly applied to the pulse-based principle for most of it.

2.3.2 Error Sources and Characteristics

In this section, a full understanding of ToF camera error sources is developed (errors identification and ex-
planation). Methods to correct errors that are only related to extrinsic influences (e.g., the measured scene)
will be discussed thoroughly in Chapter 3.

Besides integration time, that directly influences the Signal-to-Noise Ratio (SNR) of the measurement
and consequently, the variance of the measured distance, the user can influence the quality of the measure-
ments made by setting the 𝑓𝑚 value to fit the application. As stated by Lange [Lan00], as 𝑓𝑚 increases the
depth resolution increases and conversely the maximum depth value of the unambiguous range decreases.
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Figure 2.3.2: Left: Measured modulation of the PMD light source: Right: Mean depth deviation as a
function of the real distance. Images courtesy of Schmidt et al. [SJ09]

Systematic Distance Error

Systematic errors occur when the formulas used for the reconstruction do notmodel all aspects of the actual
physical imager. In CWIM cameras a prominent error is caused by differences between the actual mod-
ulation and correlation functions and the idealised versions used for calculations. In case of a sinusoidal
modulation Section 2.3.1 , higher-order harmonics in the modulating light source (Figure 2.3.2) induce de-
viations from a perfect sine function. Applying the formula in part 2.3.1 to model the correlation of a real
world physical light source leads to a periodic ”wiggling” error which causes the calculated depth to oscillate
around the actual depth. The actual form of this oscillation depends on the strength and frequencies of the
higher order harmonics [Lan00, Rap07]. There are two approaches for solving this problem. The first ap-
proach is to sample the correlation function with more phase shifts and extend the formulas to incorporate
higher order harmonics [DCC+08]. With current two-tap sensor this approach induces more errors when
observing dynamic scenes. The second approach is to keep the formulas as they are and estimate the residual
error between true and calculated depth [LK06, SBK08]. The residual can then be used in a calibration step
to eliminate the error. Alternatively, Payne et al. [PDCC10] employ a phase modulation of the amplitude
signal to attenuate the higher harmonics in the emitted amplitude.

Intensity-related Distance Error

In addition to the systematic wiggling error, the measured distance is greatly altered by an error dependent
of the total amount of incident light received by the sensor. Measured distances of lower reflectivity objects
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Figure 2.3.3: Impact of the intensity-related distance error on the depth measurement: The left image
shows the intensity image given by a ToF camera. The right image shows the surface rendering obtained
from the depth map, coloured by its corresponding intensity map. These images were generated using
input images acquired by the PMD CamCube 2.0.

appear closer to the camera (up to 3 cm drift for the darkest objects for the PMD CamCube 2.0 camera).
Figure 2.3.3 highlights this error effect using a simple black-and-white checkerboard pattern. This error is
usually known as Intensity-related distance error and the causes are not fully understood yet [Lin10].

Nevertheless, Schmidt [Sch11] shows that ToF sensor has a nonlinear response during the conversion of
photons to electrons. Lindner et al. [Lin10] claims that the origin of the intensity-related error is assumed
to be caused by non-linearities of the semiconductor hardware.

A different point of view would be to consider the effect of multiple returns caused by inter-reflections
in the sensor itself (scattering between the chip and the lens). Since the signal strength of low reflectivity
objects is considerably weak, they will be more affected by this behaviour than for higher signal strength
given by brighter objects. For more information about multi-path problems in ToF cameras, please refer to
Section 2.3.2.

Depth Inhomogeneity

An important type of errors in ToF imaging, the so-called flying pixels, occurs along depth inhomogeneities.
To illustrate these errors, a depth boundary is considered with one foreground and one background object.
If the solid angle extent of a sensor pixel falls on the boundary of the foreground and the background, the
recorded signal is a mixture of the light returns from both areas. Due to the nonlinearity of depth measure-
ment errors and the phase ambiguity, the resulting depth is not restricted to the range between foreground
and background depth but can attain any value of the camera’s depth range. The fact that today’ ToF sensors

24



CHAPTER 2. FUNDAMENTALS

provide only a low resolution promotes the occurrence of flying pixels of both kinds (resulted from depth
boundaries and resulted from phase ambiguity).

The problem of depth inhomogeneities can be considered as a multipath problem, since also here light
from different paths is mixed in one sensor cell. In the case of flying pixels, however, local information from
neighbouring pixels can be used to detect them since they only occur at boundaries.

Motion Artifacts

As stated in Section 2.3.1, CWIMToF imagers need to sample the correlation between the incident and the
reference signals at least using 3 different phase shifts. Ideally, these raw images would be acquired simulta-
neously. Current two-tap sensors allow for two of thesemeasurements to bemade simultaneously, such that
at least one more phase sample is needed. Usually, further raw images are acquired to counteract noise and
compensate for different electronic characteristics of the individual taps, such as different gain factors. Since
these (pairs) of additional exposures must bemade sequentially, dynamic scenes lead to erroneous distance
values at depth and reflectivity boundaries.

Methods for compensating motion artifacts will be discussed in the following chapter Section 3.1.

Multipath Interference

The standard CWIM model for range imaging assumes that the light return to each pixel of the sensor is
from a single position in the scene. This assumption, unfortunately, is violated in most scenes of practical
interest, thus multiple returns of light do arrive at a pixel and generally lead to erroneous reconstruction of
range at that pixel. In fact, the light can travel multiple paths to intersect the viewed part of the scene and the
imaging pixel—the multipath interference problem. Godbaz [God12] provides a thorough treatment of the
multiple return problem, including a review covering full-field ToF and other ranging systems with relevant
issues, such as point scanners (refer to Godbaz [God12] or Lefloch et al. [LNL+13] for more details).

Multipath interference can also occur intra-camera due to the light refraction and reflection of an imag-
ing lens and aperture [Sha56, Bar64, ST91]. Such light scattering leads to distorted reconstructed ranges
throughout the scene with larger influence on low reflective objects.

Other Error Sources

ToF sensors suffer from the same errors as standard camera sensors. Themost important error source in the
sensor is a result of the photon counting process in the sensor. Since photons are detected only by a certain
probability, Poisson noise is introduced. See Seitz [Sei08] and the thesis by Schmidt [Sch11, Sec. 3.1] for
detailed studies on the Poisson noise. An experimental evaluation of noise characteristics of different ToF
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cameras has been performed in by Erz & Jähne [EJ09]. Besides from that other kind of noise, e.g. dark
(fixed-pattern) noise and read-out noise, occur.

In ToF cameras, however, noise has a strong influence on the estimated scene depth, due to the following
two issues

• The recorded light intensity in the raw channels is stemming from both active and background illumi-
nation. Isolating the active part of the signal reduces theSNR. Such a reduction couldbe compensated
by increasing the integration time, which on the other hand increases the risk of an over-saturation
of the cells, leading to false depth estimation. Therefore, a trade-off in the integration time must be
made, often leading to a low SNR in the raw data, which occurs especially in areas with extremely low
reflectivity or objects far away from the sensor.

• Since the estimated scene depth depends non-linearly on the raw channels (cf. Eqs. 2.14 and 2.17),
the noise is amplified in this process. This amplification is typically modelled ([Lan00, FPR+09])
by assuming Gaussian noise in the raw data and performing a sensitivity analysis. By this simplified
approach, it turnsout that thenoise variance in thefinal depthdependsquadratically on the amplitude
of the active illumination signal. In particular, the variance can change drastically within the different
regions of the scene depending on the reflectivity and the distance of the objects.

2.4 Depth Map Pre-processing

Depthmap pre-processing is an important step to improve the accuracy of applications that use depthmaps
as input. Firstly, methods to properly calibrate range cameras in order to improve the precision of the depth
measurement will be introduced, followed by a presentation of filters that reduce the amount of noise in the
depth map.

2.4.1 Range Camera Calibration

The focus of this section is the calibration of ToF depth cameras from image data. Due to the small image
resolution of ToF cameras and the limited field of view, it is clear that the calibration process is challenging.
ToF cameras also suffer fromnon-negligible lens distortions,making the calibration process harder since the
image resolution of ToF devices is typically much lower than with modern optical cameras. Additionally,
ToF cameras use their built-inNIR illumination to light the observable region, making far objects and image
borders appearmore darker since less light are collected on those regions. Early results show that the quality
of the calibration using the approaches as described above is poor [LK06, KRI06].
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However, there is also an advantage of using depth cameras, since the camera distance z can be estimated
with high accuracy from the depth data, eliminating the 𝑓/𝑧 ambiguity. The calibration plane can be aligned
with all depth measurements from the camera by plane fitting. Hence, all measurements are utilized si-
multaneously in a model-based approach that compares the estimated plane fit with the real calibration
plane. More generally, a virtual model of the calibration plane is built, including not only geometry, but
also surface colour, and is synthesised for comparison with the observed data. This model-driven analysis-
by-synthesis approach exploits all camera data simultaneously, and allows furthermore to combine the ToF
camera with additional colour cameras, which are rigidly coupled in a camera rig. The coupling of colour
cameras with depth cameras is the key to high-quality calibration, since it combines the advantages of colour
and depth data. High-resolution colour cameras with large field of view allow a stable and accurate pose
estimation of the rig, while the depth data disambiguates 𝑧 from 𝑓 . The synthesis part is easily ported to
GPU-hardware, allowing for fast calibration even with many input images⁵. For details about this approach,
refer to [BK08, SBK08]. The approach allows further to include nonlinear depth effects, like the wiggling
error, and reflectance-dependent depth bias estimates into the calibration [LK07].

However, the calibration is only valid at a specific camera temperature, since the behaviour changes with
the temperature ([SFW08, Sch11]). Figure 2.4.1 shows the drift of depthmeasurement in function of acqui-
sition time (linked with temperature drift) for both Kinect versions. To compensate depth temporal noise,
200 frames are averaged each 15 seconds over two hours of acquisition. Cameras are static and the acquired
scene is a single white-wall in a constant-temperature black room (temperature variance of the room is be-
low 0.1∘C). SDA refers to the standard deviation average that is the average of all standard deviation given by
all valid pixels in the image. This experiment is given by the recent work of Sarbolandi et al. [SLK15] that
compares and evaluates both versions of the Kinect cameras.

2.4.2 Outlier Removal

The following describes the problem of flying pixels and the different methods for correcting it. These meth-
ods can be separated into two groups; methods that directly process the 2-D raw image of the ToF cameras
or methods that work with the 3-D point clouds.

Median filtering is a simple and efficient means for a rough correction of flying pixels, which are outside
the objects’ depth range (refer to [SBSS08] for a more involved filtering pipeline). Denoising methods to a
certain extent are capable of dealing with flying pixels. The reason is that regions of depth inhomogeneities
are typically one-dimensional structures and flying pixels appear only in a narrow band along these regions.
Therefore, out-of-range flying pixels can be regarded as outliers in the depth measurement. Denoising meth-

⁵Software is available at http://www.mip.informatik.uni-kiel.de/tiki-index.php?page=Calibration
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Figure 2.4.1: Box plot error mean and temperature versus warm-up time for KinectSL (left) and KinectToF

(right). The last row shows the depth error (mm) after 1 hour of acquisition. (Image courtesy of [SLK15]).

ods in general are robust against such outliers, and produces reconstructions with a certain spatial regularity.
Standard approaches identify such pixels, e.g., by confidence measures [RDP+11], and discard them.

Since each ToF devices has its own set of inaccuracies, Reynolds et al. [RDP+11] proposed to train a
random forest that takes as input the measured point of the ToF camera and output its corresponding con-
fidence measure. Confidence measures were computed by simply looking at the difference of the ground-
truth depth and the camera output. More straightforward methods consist of computing the confidence
measure based on the amplitude of the signal output (basically low and high amplitude values lead to unre-
liable distance measure). However, those direct methods are not able to filter out unreliable measurement
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such as flying pixels. The depth value of the discarded pixel is reconstructed using information from the
surrounding pixels. The pixel has to be assigned to either background or foreground. Super-resolution ap-
proaches [LLK08, PBP08] allow to assign parts the pixel area to each of the objects.

Furthermore, when 3-D data (point clouds) is considered, geometrical information can be used to cor-
rect for flying pixels. For example, one can cluster the 3-D data to determine the underlying object surface
([MBE+08, SMD+08]).

Finally, another approach [STDT09, CSC+10] consists of fusing point clouds from different sources with
sub-pixel accuracy. Here, it is substantial to reliably identify flying pixels, so that they can be removed before
the actual fusion process. Missing depth data then is replaced by input from other sources.

2.4.2-i Bilateral Filter

Since depth maps given by range cameras suffer from noise of variable magnitude (depending on object
distance and the amplitude of the received signal), different denoising strategies could be applied. The sim-
plest approach to smooth data would be to apply a mean filter. The mean filter is computing a local average
within a kernel window (square kernel) centred at the pixel of interest. The weights of all kernel pixels are
uniform. This process is also known as a 2-D convolution between the input image data and themean kernel.
The mean filter has been already a good filter to remove noise on data. However, since all kernel pixels con-
tribute by the same strength to the filtered value, the mean filter is strongly deteriorating feature regions by
roundingoff sharp features. This is not acceptable if themethod shouldpreserve finedetails on theprocessed
data. The mean filter applied on pixel depth data 𝒟𝑡(u) is defined as:

𝒟𝑡
mean(u) = 1

|N(u)| ∑
u′∈N(u)

𝒟𝑡(u′),

whereN(u) represents the kernel window centred in u.
A better filtering approach uses a Gaussian based convolution. TheGaussian filter is weighing each kernel

pixel based on their Euclidean distance to the centre pixel. The weight is computed directly with a Gaussian
function defined by a Euclidean distance parameter 𝜎𝑑 that regulated the width-radius size of the Gaussian.
Note that 𝜎𝑑 is usually computed as the half-radius of the kernel window size. The Gaussian operates more
robustly on edges compared to the mean filter, however, since this filter has no a priori knowledges of edges,
it does not preserve fine details properly. Similarly to Equation 2.4.2-i, the Gaussian filter is defined as:

𝒟𝑡
gauss(u) = 1

𝑊gauss
∑

u′∈N(u)
𝒟𝑡(u′) 𝐺𝑑(∥u − u′∥),
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Figure 2.4.2: The mean and Gaussian kernel shapes used to smooth data by 2-D convolution.

where 𝑊gauss = ∑
u′∈N(u)

𝐺𝑑(∥u − u′∥) and 𝐺𝑑(‖𝑑‖) = exp (− ‖𝑑‖2

2𝜎2
𝑑
).

Figure 2.4.2 demonstrates the different kernel shapes of both mean and Gaussian filters. As discussed
previously, the mean filter uses a constant function as kernel, whereas the Gaussian filter uses a Gaussian
surface.

Since the filtering approach should smooth noisy data by keeping local fine structures, the denoising filter
must have either incorporated an edge-aware smoothing (by previously detecting edges on the data) or ei-
ther have an intrinsic formulation that preserves edges. Thebilateral filter is still considered as one of the best
choices for edge-preserving smoothing since it is easy to understand and quite efficient. The bilateral filter
was first introduced by Tomasi et al. [TM98] and it consists of mixing two Gaussians to compute a proper
weight for each kernel pixel. As the Gaussian filter, the weight is dependent on the Euclidean distance of the
kernel pixel to the centre pixel. However, this weight is mixed with a second Gaussian weight based on the
radiometric distance between the kernel pixel and the centre pixel. In this way, if the kernel pixel has a radio-
metric value which is too far from the centre pixel, the mixture weight will be low enough to not contribute
to the filtered value. Using this simple combination ofGaussian functions, the bilateral filter becomes a really
good candidate for smoothing data with edge-preserving feature. Similarly to Equation 2.4.2-i, the bilateral
filter is defined as a product of two Gaussian functions by:

𝒟𝑡
bilat(u) = 1

𝑊bilat
∑

u′∈N(u)
𝒟𝑡(u′) 𝐺𝑑(∥u − u′∥) 𝐺𝑟(∥𝒟𝑡(u′) − 𝒟𝑡(u)∥),

where:
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Figure 2.4.3: Comparison of different smoothing filters applied to M-shaped surface data. Two kinds
of surface data are provided, one surface without noise and the other with uniformly distributed noise.
The first and last columns show the difference between the ideal M-shaped data with the processed ideal
data and the processed noisy data respectively.

• 𝑊bilat = ∑
u′∈N(u)

𝐺𝑑(∥u − u′∥) 𝐺𝑟(∥𝒟𝑡(u′) − 𝒟𝑡(u)∥),

• 𝐺𝑑(‖𝑑𝑒‖) = exp (− ‖𝑑𝑒‖2

2𝜎2
𝑑

),

• and 𝐺𝑟(‖𝑑𝑟‖) = exp (− ‖𝑑𝑟‖2

2𝜎2𝑟
).

Figure 2.4.3 shows a direct comparison between different smoothing filters applied on M-shaped surface.
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The first row indicates the input data, left columns refer to the ideal surface data without any noise and the
right columns represent the same surfacedatawhereuniformlydistributednoisewas added along the surface
normal direction. The first and last columns show the colour-coded distance error between the ideal data
with the processed ideal and processed noisy data respectively (minimum and maximum distances are in
black and white colour respectively). The other rows represent three different filters (mean, Gaussian and
bilateral). For each of the filters, the same kernel window size was used (7 × 7). The bilateral filter uses the
same sigma as the Gaussian filter for the Euclidean distance 𝜎𝑑 = 1.5, whereas the radiometric sigma is set
to𝜎𝑟 = 0.1, which is applied to the depth value in the case of range data. This comparison clearly highlights
the benefit of the bilateral filter against other filters. Even if the bilateral filter does not perform as well as the
other filters on noisy data with homogeneous regions (such as the slopes of the M-shaped surface), all the
edges are mostly preserved in comparison with the other filters that have tendencies to strongly smooth
edges.
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It is easier to perceive error than to find truth, for the former lies on
the surface and is easily seen, while the latter lies in the depth, where
few are willing to search for it.

Johann Wolfgang Goethe (∗1782 – †1832)
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ℐmproving the accuracy of the input data used by algorithms is positively influencing the quality
of their outputs. Due to their intrinsic principle, ToF data are subject to strong motion blur in
dynamic environments. This chapter describes a new and fast method to compensate motion

artifacts in ToF depth data.
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3.1 Related Works

As stated in the previous chapter Section 2.3.2, motion artifacts occur in dynamic scenes at depth and reflec-
tivity boundaries due to the sequential sampling of the correlation function. There are three (or arguably
two) different approaches to reduce such artifacts. One way is by decreasing the number of frames obtained
sequentially and needed to produce a valid depth reconstruction. As current two-tap sensors have different
electronic characteristics for each tap, the rawvalues belonging to different taps cannot be combinedwithout
further calibration. In 3.1.1, a method proposed by Schmidt [Sch11] will be presented where each of these
set of taps is dynamically calibrated, such that a valid measurement can be obtained with the bare minimum
of 2 consecutive frames. Another approach commonly employed is composed of a detection step, where
erroneous regions due to motion are found, followed by a correction step.

Themethods presented in 3.1.2 differ in how these two steps are undertaken and in howmuch knowledge
of the working principles is put into the system. The final approach proposed by Lindner and Kolb [LK09]
is directly based on the estimation of scene motion between sub-frames using optical flow. This approach
can be seen as an extension of the detect and repair approach, but as the detection is not only binary and the
correction not only local it will be presented separately in 3.1.3.

3.1.1 Framerate enhancement

Current correlating pixels used in ToF cameras can acquire 𝑄 = 2 phase images simultaneously, shifted by
180∘ (i.e. 𝜋 radians). 𝑁 of these simultaneous measurements are made sequentially to obtain a sufficient
sampling of the correlation function.

time 𝜏0 𝜏 𝜋
2

𝜏𝜋 𝜏 3𝜋
2

tap 0 𝒯0
0 𝒯1

0 𝒯2
0 𝒯3

0

tap 1 𝒯2
1 𝒯3

1 𝒯0
1 𝒯1

1

Table 3.1.1: Illustration of raw frame 𝒯phase index
tap index for 𝑄 = 2 taps and 𝑁 = 4 acquisitions.

As shown by Erz et al. [EJ09, Erz11] these taps have different amplification characteristics, such that the
raw values obtained from the taps cannot directly be used. Instead 𝑁 must be chosen as 4 and the 𝒜𝑖 used
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in Equation 2.13 are calculated as:

𝒜𝑖 =
𝑄−1
∑
𝑘=0

(−1)𝑘 𝒯𝑖
𝑘 (3.1)

For different intensity and depth, static sequences are obtained, and a linear model is fitted between 𝒯𝑖
0

and 𝒯𝑖
1. This model is then used to transform a phase image acquired by the first tap to the second one. In

this way, the number of required phase acquisition is limited to 2. The full model with further extensions
such as interleaved calibration can be found in [Sch11]. Note that this only reduces, but does not eliminate
motion artifacts.

3.1.2 Detect and Repair Methods

Detect and repair approaches can be further categorised in methods that operate directly on the depth im-
age [GYB04, LSHW07] and the methods that harness the relation between the raw data channels [Sch11,
HHE11, HLCH12].

Filter-based methods
Gokturk et al. [GYB04] applied morphological filters on a foreground/background-segmented depth im-
age to obtain motion artifact regions. These pixels are replaced by synthetic values using a spatial filtering
process. Lottner et al. [LSHW07] proposed to employ data of an additional high-resolution 2-D sensor be-
ing monocularly combined with the 3-D sensor, effectively suggesting a joint filtering approach which uses
the edges of the 2-D sensor to guide the filter.

Methods operating on raw data
Detection Schmidt [Sch11] calculates the temporal derivatives of the individual raw frames. Motion arti-
facts occur if the first raw frame derivative is near 0 (no change) whereas one of the other raw frames has a
large derivative. This means that movement occurred between raw sub-frames. Lee et al. [LSKK12] oper-
ates on a similar principle evaluating the sums of two sub-frames.
Correction Finally, once regions with artifacts are detected, they need to be repaired. Here Schmidt uses
the last pixel values with valid raw images, whereas Lee uses the spatially nearest pixel with valid data.

3.1.3 Flow-based Correction

So far, the detection step gave a binary output whether motion was present in a pixel. Subsequently some
heuristic was applied to inpaint the regions with detected motion. Lindner and Kolb [LK09] took a some-
what different approach by loosening the requirement that the4measurements used for reconstruction need
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to originate from the same pixel. Instead, the “detection” is done over the whole scene by estimating the
optical flow between sub-frames. The application of optical flow to the raw data and the subsequent demod-
ulation at different pixel positions require the following two points to be considered:

• Brightness constancy. Corresponding surface points in subsequent sub-frames should have the same
brightness to be matched. This is not the case for the raw channels due to the internal phase shift be-
tween modulated and reference signal. Fortunately, in multi-tap sensors, the intensity (total amount
ofmodulated light) canbeobtainedby addingup themeasurements in different taps. Thus, the bright-
ness constancy is given between the intensity of sub-frames:

𝒴𝑖 =
𝑄−1
∑
𝑘=0

𝒯𝑖
𝑘. (3.2)

Note that recent ToF devices implement the two taps phase images subtraction directly in hardware,
making the different tap measurements impossible to obtain.

• Pixel Homogeneity. The application of the demodulation at different pixel locations requires a ho-
mogeneous sensor behaviour over all locations. Otherwise artifacts will be observed, which usually
cancel out by using the same pixel for all four measurements. Again, this is not the case for the raw
channels due to pixel gain differences and a radial light attenuation toward the image border. To cir-
cumvent this, Lindner and Kolb [LK09] proposed a raw value calibration based on work by Stürmer
et al. [SPH08].

Once the flow is known, it can be used to correct the raw image before applying the standard reconstruc-
tion formulas. The strength andweakness of thismethod are strongly coupledwith the flowmethod used. It
is important toobtain the correct flow, especially at occlusionboundaries, such that discontinuity-preserving
flowmethods should be preserved. Lindner and Kolb [LK09] reported a rate of 10 frames per second using
the GPU implemented version TV-L1 flow proposed by Zach et al. [ZPB07] on a 2009 machine.

The following section describes a faster approach, proposed byLefloch et al. [LHK13], based on thework
of Lindner and Kolb [LK09].

3.2 The Fast Flow-based Correction Approach

Similar to Lindner and Kolb [LK09], a state-of-the art optical flow method is used to solve the image warp-
ing problem. The optical flow methods yield 2 displacement maps ℱ𝑥 and ℱ𝑦. It is a multi-level iterative
minimisation process that leads to gradient consistencies and flow smoothness. The method computes op-
tical flow on the normalised intermediate raw intensity phases 𝒴𝑖 = 𝒯𝑖

0 + 𝒯𝑖
1 as Equation 3.2. Since
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channels 𝒯𝑖
0 and 𝒯𝑖

1 are measured with two different taps that have specific amplification characteristics,
the normalisation is important to ensure reliable optical flow estimation.

This method needs to estimate two optical flows {ℱ0→2
𝑥 , ℱ0→2

𝑦 } and {ℱ1→3
𝑥 , ℱ1→3

𝑦 } between two
different sets of normalised raw intensities { ̂𝒴0, ̂𝒴2} and { ̂𝒴1, ̂𝒴3}, respectively; see Figure 3.2.1. This
contrasts with the method proposed by Lindner and Kolb [LK09] that requires three optical flows. How-
ever, to achieve the final phase warping which expresses all raw images {𝒯𝑗

0, 𝒯𝑗
1}, 𝑗 = 1, 2, 3 into the

same temporal reference as the acquisition time of the pair of frames {𝒯0
0, 𝒯0

1}, a 3𝑟𝑑 optical flow needs
to be derived from the two computed ones, i.e. from {ℱ0→2

𝑥 , ℱ0→2
𝑦 } and {ℱ1→3

𝑥 , ℱ1→3
𝑦 }. Note that

ℱ𝑖→𝑗
𝑥 = −ℱ𝑖←𝑗

𝑥 . To solve this final step, the optical flow {ℱ0→2
𝑥 , ℱ0→2

𝑦 } is assumed to be robustly
computed and initialised by the following. Let u0

𝑝 = (𝑥0
𝑝 𝑦0

𝑝)⊤ be the 2-D coordinates of a pixel 𝑝 in
the channel pair {𝒯0

0, 𝒯0
1} and { ̂𝑥𝑖

𝑝, ̂𝑦𝑖
𝑝}, 𝑖 = 1, 2, 3 the corrected 2-D coordinates of the same pixel in

{𝒯𝑖
0, 𝒯𝑖

1}. The correction of a pixel𝑝 is achieved through the application of a temporal polynomial function
{𝑇 𝑥

𝑝 (𝑡), 𝑇 𝑦
𝑝 (𝑡)}, 𝑡 ∈ [0, 3] which describes the final 2-D trajectory of 𝑝 during the complete acquisition.

This function is fitted to pixel coordinates {𝑥𝑖
𝑝, 𝑦𝑖

𝑝} that are corrected using interpolation between both
computed optical flows. We define those coordinates as:

𝑥2
𝑝 = 𝑥0

𝑝 + ℱ0→2
𝑥 (u0

𝑝),

𝑥1
𝑝 = 1

2 ⋅ ((𝑥0
𝑝 + ℱ0→2

𝑥 (u0
𝑝)

2 ) + (𝑥2
𝑝 − ℱ1→3

𝑥 (u0
𝑝)

2 )),

𝑥3
𝑝 = 𝑥1

𝑝 + ℱ1→3
𝑥 (u0

𝑝),

(3.3)

note that the y-axis coordinate is computed using the same reasoning. From Equation 3.3, the temporal
function 𝑇 𝑥

𝑝 (𝑡) = 𝑎𝑥𝑡2 + 𝑏𝑥𝑡 + 𝑥0
𝑝 is fitted by solving the following system of equations:

⎡⎢⎢
⎣

12 1 1
22 2 1
32 3 1

⎤⎥⎥
⎦

⎡⎢⎢
⎣

𝑎
𝑏

𝑥0
𝑝

⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

𝑥1
𝑝

𝑥2
𝑝

𝑥3
𝑝

⎤⎥⎥
⎦

This fitting function makes our correction more stable and compensate possible noise in the optical flow
estimation.

The corrected coordinates are then used for the final warping of each raw image pair and are defined as:

̂𝑥𝑖
𝑝 = 𝑇 𝑥

𝑝 (𝑖),
̂𝑦𝑖
𝑝 = 𝑇 𝑦

𝑝 (𝑖)
(3.4)

where 𝑖 ∈ {0, 1, 2, 3}.
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Figure 3.2.1: Representation of a constant-speed trajectory based on rotational motion.

To illustrate Equation 3.3, a simple circular trajectory at constant speed is shown in Figure 3.2.1. The four
dots (0, 1, 2, 3) represent the sampling position of the trajectory. Blue and green arrows represent the flow
{ℱ0→2

𝑥 , ℱ0→2
𝑦 } and {ℱ1→3

𝑥 , ℱ1→3
𝑦 }, respectively. The orange square is the estimation of the position

at 𝑡 = 1 using both flow vectors (see the second equality of Equation 3.3).
Note that computing only one motion flow (for better performance) leads to an unsatisfactory quality of

the motion correction in the case of complex motion. For this, the optical flow was only computed once
using one pair of images { ̂𝒴0, ̂𝒴2} leading to {ℱ0→2

𝑥 , ℱ0→2
𝑦 }, and a linear relation was assumed to yield

{ℱ1→3
𝑥 , ℱ1→3

𝑦 }.

3.3 Results

Thismethod was tested in a variety of scenes. To evaluate the robustness of the approach, two different data
sets were generated and processed (see Figure 3.3.1). The middle column shows the polar depth images
calculated by a ToF simulator [KK09] for the corresponding model at a specific camera position (4 phases
sampled without anymotion). The closer the distance, the darker the grey colour map is. Note that the ToF
simulatorwas configured to generate depth datawithout any presence of noise to only evaluate the quality of
themotion blur correction of the proposedmethod. Bothmodels (left column) are approximately 3 meters
away from the camera with a plane wall at 4 meters. For ground-truth purposes, a distance error is shown in
the right column of the figure between the point cloud generated by the polar depth image and the original
mesh. Since no motion is present in this data, the principal distance error is minimal.

Note thehighdistance errors on edges betweenbackgroundand foregroundobjects. The reason for this ef-
fect is common for allToFcameras and is knownas depth inhomogeneities orflying pixels (see previous chap-
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rendered ground-truth static depth static distance error

Figure 3.3.1: Two simulated depth data sets used for evaluation (the Buddha scene and the Dragon
scene). The left column shows the rendered model; middle column represents the polar depth image gen-
erated by a ToF simulator camera in a static environment; and the right column shows the corresponding
mesh-to-pointcloud distance.

ter Section 2.3.2). Like the error due to motion artifacts, this specific ToF sensor error is scene-dependent
and occurs only on depth edges between foreground and background objects. In this experiment, the error
is due to phase informationmixing between themodel and thewall leading to an error greater than 50 cm. It
explains why high standard deviation errors are present in the following evaluations. Several methods have
been already proposed to process these outliers (Section 2.4.2) but are not considered in the evaluation.

The evaluation of the static simulated data leads to mean distance errors of 1.0 cm (± 5.3 cm) and 2.4
cm (± 8.4 cm) for the Buddha andDragon scenes, respectively.

Figure 3.3.2 shows the results applied to both simulated data sets. Each of the scenes was generated with
a specificmotion. The depth information of theBuddha scene was computed using a lateral cameramotion
during the complete phase acquisition. A cameradriftof1 cmwasused for eachof thephase sampling, which
approximately leads to a 2 m.s−1 motion speed for a real camera setup (regarding a common acquisition time
of 5 ms per raw phase); in contrast to theDragon scene which was generated using a yaw rotation motion.
A rotation angle drift of 1 degree was applied during the sampling of each phase and leads to a 200 𝑑𝑒𝑔.𝑠−1

angular velocity for a real camera setup. The depth data of the dynamic simulated scenes leads to a mean
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Error from ground-truth (cm)
(𝜇 ± 𝜎)

Static Dynamic Corrected
Buddha 1.0 ± 5.3 5.3 ± 7.5 2.1 ± 5.2
Dragon 2.4 ± 8.4 5.6 ± 10.1 3.1 ± 8.6

Error from static acquisition (cm)
(𝜇 ± 𝜎)

Static Dynamic Corrected
Buddha 0 ± 0 1.4 ± 1.0 0.8 ± 0.7
Dragon 0 ± 0 1.4 ± 1.0 1.0 ± 0.9

Table 3.3.1: Statistics evaluation of the different scenes.

distance error of 5.3 cm (± 7.5 cm) for the Buddha scene and 5.6 cm (± 10.1 cm) for theDragon scene.
Whereas our raw phase warpingmethod leads tomean distance errors of 2.1 cm (± 5.2 cm) and 3.1 cm (±
8.6 cm). Note the errors are significantly reduced (see the last two columns of Figure 3.3.2).

Table 3.3.1 provides a complete statistic of all our evaluations for simulated scenes. An additional piece
of information is shown in this table (on the last column) which describes the mean and standard deviation
distance errors of the dynamic acquisition (input depth in the presence of motion blur + the same depth
corrected) in comparison to the static acquisition. This better highlights the robustness of themethod since
errors due to flying pixels are significantly reduced.

Finally, the robustness of the method on live sensor data is demonstrated using a moving Person scene.
This last scene describes a meaningful application where a person is moving his hand rapidly in front of
the depth camera. The PMD CamCube 3.0 is used which provides depth data at a rate of 30 Hz and the
frame shown in Figure 3.3.3 corresponds to a rotational movement. Note how correct the moving region
(i.e. hand) is reconstructed in both intensity and depth images.

All these results were obtained on a PC equipped with an Intel 8-core CPU and an NVidia GeForce GTX
480 GPU. For real time purpose, the entire correction was designed using the GPU CUDA development
Toolkit. Regardingoptical flowcomputation, aGPU implementationof a standard imageprocessing library¹
was used.

¹OpenCV: http://opencv.willowgarage.com/wiki/
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Figure 3.3.2: Evaluation of the proposed motion artifacts correction. The Buddha scene (2 first rows)
and the Dragon scene (2 last rows) were generated with a lateral camera motion and a yaw camera
motion, respectively. The odd rows represent the polar depth image computed in a dynamic environment
and the even rows correspond to mesh-to-pointcloud distance.
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Figure 3.3.3: Motion artifacts compensation on the Person scene where the user rotates his right hand
rapidly. The even rows are a close-up of the hand being mostly the dynamic region. The moving hand
is well reconstructed in both intensity and depth ToF camera images.
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3.4 Discussion

This chapter demonstrates the benefit of compensatingmotion artifacts. The robustness of this method was
shown in the case of fastmotion. This approach improved the quality of the phase-basedToFmeasurements.
Such a system could be used to improve tracking or recognition of object of interest. For example, a hand
gesture application would benefit from such a data correction system. However, the heavy computation of
Optical Flow can still cause some performance issues.

Shortly after, Högg et al. [HLK13] proposed an approach to reduce the performance issue of optical flow
computation by first segmenting region of images where motion occurs and, afterwards, to correct motion
artifact using block-matching motion estimation method. This method reduces the total computation by at
least half and provide even better results in terms of total distance error.

The presented algorithm can also be used to improve the accuracy of depth measurements which are di-
rectly given as input to 3-D reconstruction pipelines. The following chapters are focusing on online 3-D
reconstruction applications.
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There’s something that 3-D gives to the picture that takes you into
another land and you stay there and it’s a good place to be...

Martin Scorcese (∗1942)

4
Introduction toOnline 3-D ReconstructionMethods using

RangeData

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
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𝒪nline 3-D reconstruction applications have attracted a lot of attention since the last half decade
because of the availability of consumer range cameras. This chapter will introduce most of the
state-of-the-art methods that enable high quality 3-D reconstruction in real time using range

cameras focusingon thePoint-BasedFusionapproach(PBF)originally introducedbyKeller et al. [KLL+13].
Note that methods that are designed for a single monocular camera will not be reviewed here since they are
usually basedon intensity-feature tracking, leading to very sparse reconstruction. Even if they share common
principles with dense 3-D reconstructionmethods, they belong to another branch of research namedVisual
Simultaneous LocalizationAndMapping (Visual SLAM) thatmainly focuses on precise camera localisation
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for huge environments. However, if this topic is any of interests, the reader is referred to the recent work of
Engel et al. [EKC18] which is one of the best open-source approaches solving the complex Visual SLAM
problem.

Furthermore, this chapter is meant to focus only on real time methods for reconstructing static scenes
which was a basic constraint that drives this work. For a short description on methods solving 3-D recon-
struction of non-rigid objects, refers to Section 4.1.2.

4.1 Overview

Given a stream of depth maps captured in real time by a commodity range sensor, an efficient scene repre-
sentation is required to reconstruct in real time arbitrary scenes at different scales. Various interactive appli-
cations could benefit from obtaining reconstructions of arbitrary scenes in real time. A non-exhaustive list
of such applications includes augmented reality (AR) where rendered graphic objects are realistically pro-
jected into the real world, autonomous guidance of robots, virtual reality where the motion of the person is
directlymapped to the virtual world and direct feedback to the user once he is getting close to obstacles such
as walls or tables, etc.

Online 3-D reconstruction systems use an incremental method to solve this challenging problem in real
time. First, an alignment of consecutive input depth maps is done by estimating the camera ego-motion.
Second, the overlapping data is fused into a single 3-D model/representation that is refined over time. The
fusion is necessary for two reasons: one aspect is that the total amount of input data is big since such systems
operate in real time; the other aspect lies in the intrinsic principle of range cameras which provide noisy data.
The fusion phase allows a better handling of noise (usingmeasurement redundancies) to deliver high quality
reconstruction (super-resolution).

4.1.1 Related Works

There is a long history of research on 3-D reconstruction that started over more than three decades ago.
However, systems that can densely reconstruct environments at a real time rate are available since less than
one decade. Online methods require an incremental fusion of many overlapping depth maps into a single
model representation that is continuously refined. To do so, methods track the ego-motion of the camera in
order to align all depth maps to the same coordinate system. Figure 4.1.1 shows the common pipeline used
by such methods.
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Figure 4.1.1: Main system pipeline of 3-D reconstruction methods.

Volumetric Fusion

With the availability of consumer range cameras (such as KinectSL the Xbox 360 version of the Kinect cam-
era), online 3-D reconstruction methods providing high quality results arise (Newcombe et al. [NDI+11]
and Izadi [IKH+11]). Their methods use a volumetric data structure to store samples of a continuous 3-D
function (or implicit surface) [CL96]. Depth maps are first converted into signed distance functions and
convexly averaged into a regular voxel grid. The extraction of the final surface is directly computed by the
zero-level crossing of the implicit surface using raycasting or marching cubes polygonisation [LC87]. Both
methods demonstrate real time high-quality reconstruction using a complete GPU implementations.

Themajor drawback of approaches based on the volumetric grid fusion is thememory overhead imposed
by using such a regular voxel grid. Indeed, since depth data provides only the depth information of the
surfaceof objects, accumulating this information to a volumetric gridwill result in ahuge amountof unusable
empty voxels. The volumetric grid requires an initialisation of the volume space with its voxel resolution
in a way that the bigger the volume space to reconstruct, the larger the voxel dimensions will be (lower
resolution). In summary, these approaches fail to reconstruct large scale scenes without compromising
quality.

To overcome this major problem, several strategies have been proposed. [RV12] and [WJK+12] avoid
the volume space limitation by simply adopting a moving volume strategy. The volumetric grid is kept as the
original Kinect-Fusion approach, but allows the volumetric data to move in the grid as soon as the distance
between the camera centre and the origin of the volumetric grid is above a certain threshold. Once themov-
ing volume operation is finished, implicit surface that is outside the volumetric grid is extracted as a dense
point cloud and stream out on the CPU. Another strategy which avoids the waste of memory due to empty
voxels has been proposed by Zeng et al. [ZZZL13] where a GPU-based octree is implemented (9- to 10-
level octree) extending the original KinectFusion to larger reconstruction (an office reconstruction of 8 m×

47



CHAPTER 4. INTRODUCTION TO ONLINE 3-D RECONSTRUCTION METHODS USING RANGE
DATA

8 m× 2 m is demonstrated) at the cost of computational complexity and pointer overhead. Whereas Chen
et al. [CBI13] use an efficient ℕ3 hierarchical and sparse data structure that enables interactive reconstruc-
tion of large volumes (e.g. volume of 8m3 with 8mm3 voxel resolution) and decouple the physical volume
from the working set (similar to the moving volume approach). Even if the complexity is reduced in com-
parison to the GPU-based octree approach, this method still suffers from computational overheads due to
the GPU-hierarchical data structure.

Niessner et al. [NZIS13] adopt a different strategy to avoid the problem of storage of empty voxels being
still themost efficient approach. Theyuse a voxel-basedhashingdata structurewith customhashing function.
In this way, they avoid the need for a regular or hierarchical grid data structure leading to a very efficient
accessing method of voxel data with large scale capabilities. Voxels far away from the camera centre are
streamed out to CPU memory and conversely, voxels that get closer to camera centre are streamed back to
GPUmemory. This bidirectional streaming of voxels blocks occurs every frame at the pipeline starting point.

Height-map

The height-map representation is a compact and simple data structure which enables scalability and was
first introduced by Gallup et al. [GPF10]. It is more suitable for modelling large planar regions such as
buildings with floors and walls, since these appear as clear discontinuities in the height-map. More complex
scenes canbe supported such as balconies or arches byusingmulti-layeredheight-maps. However, this2.5-D
representation failed to represent more complex environments efficiently.

Point Fusion

Thesemethods reconstruct their environmentby simplymergingoverlappingdata points. Points are defined
as surface element (or surfel) that is basically similar to oriented discs. Thesemethods are natural since they
use a similar representation as the one directly given by the input depth data. Another positive point is that
they enable an adaptive resolution compared to the traditional volumetric methods. The resolution of discs
(disc radius) is directly linked with the perspective principle of the depth camera, meaning that the closer
the camera is to an object the more points with smaller radius size the camera will provide for this object.
Conversely, an object far from the camera will contribute to few surfels with big radii values. This contrasts
with volumetric methods where noisy far objects are still reconstruct with a huge number of voxels.

Point fusion was first introduced by Weise et al. [WWLVG09] demonstrating high quality reconstruc-
tion of small-scale objects with sensor drift correction. Earlier, Rusinkiewicz et al. [RHHL02] introduced a
point-based method to demonstrate in-hand online 3D scanning of small objects. However, an offline vol-
umetric approach (from [CL96]) was used to improve their reconstruction quality indicating than point
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based method were still far behind from volumetric approaches in term of reconstruction quality. Henry
et al. [HKH+12] has introduced a point-based method for large scale reconstruction (e.g. entire indoor
buildings) with camera drift correction (using loop closure detection and bundle adjustment). However,
their method suffers drastically from overhead computations and their frame-rate was limited to 3 Hz. This
is a huge trade-off between scale versus efficiency.

Thepoint-based fusionmethodgains recentlymore interests due to theworkproposedbyKeller et al. [KLL+13]
that demonstrates high quality reconstruction of large scale environments using a simple unsorted vector of
augmented points without the need for any spatial data structure. This method will be explained in detail in
Section 4.1.6. While achieving efficient performance and scalability for large scenes, the reconstruction qual-
ity is not exactly as good as the quality achieved by volumetric methods. See Chapter 5, for a new method
that drastically reduces this gap.

Salas-Moereno et al. [SMGKD14] improved the original PBF approach fromKeller et al. [KLL+13] and
reduced the total amount of surfels by detecting large planar regions. This method is specially designed for
the reconstructions of an office composed of several large planar sections.

4.1.2 Beyond “Basic” 3-D Reconstructions

Recently, different approaches focussed on high quality 3-D reconstruction of non-rigid objects. Even this
challenging problem is out of the scope of this dissertation, a short discussion and related works on this
recent topic will be given. To achieve high quality reconstruction of non-rigid objects, most of the proposed
approaches are using either a skeleton or a template model. This model is then used to directly warp and
fuse it to the pose reference of the input frame. Zollhöfer et al. [ZNI+14] use a reference model of the non-
rigid object at a static pose. WhereasNewcombe et al. [NFS15] uses a volumetricmodel that is continuously
refinedwith new input depth. Bothmethods use a referencemodel that is fitted to themodel pose of the new
incoming data. There are two major drawbacks for both these approaches. First, due to the use of a model
reference, they cannot properly handlemajor changes in shape and topology. Secondly, these systemsmatch
correspondences between the current pose of the model reference and the new incoming pose by assuming
small frame-to-frame motion.

Similarly, Innman et al. [IZN+16] introduced very recently an approach that creates the model reference
directly from the scanningprocess anddoes not require any static acquisition [ZNI+14]. A volumetric repre-
sentation is chosen to encode the surface geometry aswell as the non-rigid space deformation. Tomaintain a
reliable alignment, thismethod uses a volumetric regularisation based on the “AsRigid As Possible” (ARAP)
surface modelling [SA07] coupled with a sparse colour feature tracking. They demonstrate better real time
quality reconstruction than the method proposed by Newcombe et al. [NFS15].
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Dou et al. [DKD+16] achieves outstanding result using multiple RGBD-live views which differs from
previous approaches. They introduced a new real time pipeline for live performance capture that generates
temporally coherent high-quality reconstruction. The huge advantages of this approach are that no prior
assumption is made regarding the capture scene and it does not require the use of a skeleton or template
model. This is by far the real time method that produces the highest reconstruction quality of non-rigid
object at this time, however, it requires multiple sensors and thus, multiple GPUs to handle the extreme
processing demands.

4.1.3 Estimation of Surface Attributes

Since range cameras provide as input a noisy depth map, different pre-processing steps are required to prop-
erly solve the online 3-D reconstruction problem. A 2-D pixel is denoted as u = (𝑥, 𝑦)⊤ ∈ ℝ2. 𝒟𝑡 ∈
ℝ𝑤×ℎ×1 is the raw depth map at time frame 𝑡, 𝑤 and ℎ being the width and height of the map respectively.
For the following, 𝑤 and ℎ will be omitted to simplify themap notations. First, a complete 3-D information
is extracted from the depth map using the intrinsic matrix K of the camera. From the resulting 3-D point-
cloud (or vertex map 𝒱𝑡 ∈ ℝ3), surface normals 𝒩𝑡 ∈ ℝ3 can be easily extracted. Normals are crucial
surface attributes for 3-D reconstruction methods. They are mainly used to build reliable correspondences
between input and model data and enable realistic rendering using the phong illumination for example. Re-
fer to the appendix Section A.1 for more details on the estimation of surface attributes from an input depth
and toChapter 5 for additional surface attributes extraction that leads to better 3-D reconstructionmethods
if used appropriately.

4.1.4 Camera Pose Estimation

To solve the complex problem of 3-D reconstruction, all input range data must be expressed in the same co-
ordinate system (known as world coordinates, usually initialised by the first camera coordinates of the input
sequence). Thus, for each input range, the system tracks the position and orientation of the camera. Note
that this thesis will only describe the estimation of the 6-DoF rigid homogeneous transformation T4×4.

Most real time 3-D reconstruction systems solve the camera tracking problem using the well-known ICP
algorithm [BM92, CM92] that was originally designed to register two arbitrary sets of point clouds (source
and target). However, due to the data structure of depth images (organised as a grid), these systems use a
variation of the original ICP algorithm called the perspective ICP. Clearly, if the camera motion between
two consecutive frames is small, the intensive computation of correspondence finding can be reduced to a
simple projection of the input point expressed in the model coordinates. Analogously, the correspondence
between the source vertexmap𝒱𝑡 (transformed into themodel frame𝒱𝑡→(𝑡−1)) and themodel vertexmap
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𝒱ℳ is located at similar 2-D image coordinates. Any source point 𝒱𝑡(u) finds its model correspondence
𝒱ℳ(u∗) by a simple projection given by the intrinsic matrixK where u∗ = K T𝑡→(𝑡−1) 𝒱𝑡(u).

The ICP output is the 3-D rigid transformation that transforms the source points in such a way that the
total error between the correspondences set is minimal. In [BM92, CM92], the point-to-point error metric
was chosen to introduce the concept of the ICP algorithm. This error metric is defined as the Euclidean dis-
tance between each pair of points (built by a transformed source point and its corresponding target point):

𝑒point(u) = ∥T𝑡→(𝑡−1)𝒱𝑡(u) − 𝒱ℳ(u∗)∥2. (4.1)

The same year, Chen et al. [CM92] plugged to the ICP algorithm another error metric called the point-to-
plane error metric. It is defined as the distance between each pair of points projected to the tangent plane
described by the target point:

𝑒plane(u) = ⟨T𝑡→(𝑡−1)
𝑙 𝒱𝑡(u) − 𝒱ℳ(u∗) , 𝒩ℳ(u∗)⟩2. (4.2)

Otherhybrid errormetrics canbe found in the literature suchas theonefirstly introducedbyKerl et al. [KSC15]
which consists of couplingpoint-to-point errormetricwith colour errormetric (havingbothdifferent scales).
Concerning the colour based ICP algorithm, most of the methods have been focusing only on building
the set of correspondences based on colour (or intensity) information but do not purely integrate colour
on the objective function. The first colour based correspondences search was introduced by Johnson and
Kang [JK99].

Recent methods use the approach introduced by Newcombe et al. [NDI+11] to estimate the camera ego
motion. Newcombe et al. [NDI+11] demonstrates that a frame-to-model based registration is more accu-
rate than the direct frame-to-frame based registration. The frame-to-frame based registration, simply finds
the best transformation between two input frames (that are both noisy), whereas the frame-to-model based
registration is computing the best transformation between the current reconstructed model and the new
input frame (see Section 4.1.5 for more details on the model reconstruction). To speedup the process of re-
trieving the best transformation between two consecutive frames, Newcombe et al. [NDI+11] uses a coarse-
to-fine approach where different scales of each requiredmaps is computed (𝒱𝑡

𝑙 and 𝒩𝑡
𝑙 where 𝑙 ∈ {0, 1, 2}

and 𝑙 = 0 denotes the original input resolution). This approach is known as the hierarchical ICP and is
implemented in many KinectFusion-like methods [KLL+13, NZIS13, LWK15, LKS+17].

Several variants of the ICP are available in the literature but thesemethods are generally decomposed into
twomain steps, the correspondence search and an errorminimisation. For a detailed explanation of the ICP
algorithm, please refer to the appendix Section A.2
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4.1.5 Depth Map Fusion

Online 3-D reconstruction systems fuse the new incoming input depth map to their respective global rep-
resentation. The global fusion of all depth maps seen from different viewpoints acts as a de-noising filter.
Another reason of applying a global fusion is simply due to memory efficiency; low-cost range cameras usu-
ally operate (at least) at 30 Hz and giving, for the best of them, an image resolution of 640 × 480 (VGA)
leading to over 9 million points per second. It is a huge amount of data and if such systems want tomaintain
interactive processing, they require to have a global fusion phase.

Even if different representations imply different approaches on how to find correspondences between
input point and model data, all techniques use a simple convex averaging that is converging to the mean
measurement. For each singular particle of the global model representation, a weight (also known as confi-
dence counter) is stored. Practically, this weight encodes a function of howmany times this singular particle
is seen from the camera. The bigger the weight the higher the precision of the local surface reconstruction.
Using the convex averaging approach for fusion, the bigger the weight, the lower the influence of the new
input point on the merged result. It is also common to give different weights for different input data. For
clarity, let’s assume that the current model data ℱ𝑡−1

ℳ (p) is merged with the new incoming measurement
ℱ𝑡(p) both having a respective weight of 𝒲𝑡−1

ℳ (p) and 𝒲𝑡(p). Then, the convex averaging that occurs
during one iteration of the depth fusion is defined as:

ℱ𝑡
ℳ(p) = 𝒲𝑡−1

ℳ (p) ℱ𝑡−1
ℳ (p)+𝒲𝑡(p) ℱ𝑡(p)

𝒲𝑡−1
ℳ (p)+𝒲𝑡(p)

𝒲𝑡
ℳ(p) = 𝒲𝑡−1

ℳ (p) + 𝒲𝑡(p).
(4.3)

Figure 4.1.2 shows the advantage of applying the convex averaging during the depth fusion stage over
the single input data using the StoneWall dataset from [ZK13]. The first row shows both normal maps
(input andmodel from the same viewpoint). Note how the surface normalmap of the global model is much
smoother and provide a lot of fine structures compared to the single noisy normal map given by the input
depth.

4.1.6 The Point-Based Fusion Approach

PBF approaches use as model an unsorted vector of oriented points and are implementing the following
steps:

DepthMap Pre-processing From the input vertex and normal maps, a radius map (ℛ𝑡 ∈ ℝ) is com-
puted as proposed by Weise et al. [WWLVG09]. Large radii given by points seen from an oblique view are

52



CHAPTER 4. INTRODUCTION TO ONLINE 3-D RECONSTRUCTION METHODS USING RANGE
DATA

 

 

 

 

Input normal map Model normal map

 

 

Phong illumination

Figure 4.1.2: Depth map fusion in action using the StoneWall dataset at frame 473 (provided by the
approach of Zhou et al. [ZK13]). The missing model data (region top-right) is due to the small amount
of merged data (confidence counter is not yet high enough to be rendered).

clamped (exceeding 75∘). The radius is simply a function of the z-distance of the point and the orientation
of its surface normal. It is the back-projected length of the half-pixel diagonal weighted by the angle between
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the local surface normal and the viewing direction of the camera.

DepthMap Fusion Given a valid camera pose, input points are fused into the global model. The global

 

 

 

 

 

 

 

 

Figure 4.1.3: Visualisation of the index map originally proposed by Keller et al. [KLL+13]. The first row
represents an overview of the lounge data set given by [ZK13]. The second row represents both input
and model normal maps (𝒩𝑡 and 𝒩ℳ) at frame 𝑡 = 1441. The last row is the index map where each
coloured pixel represents an index in the vertex buffer for the corresponding model points. Blue colour
represents indices of stable model points, whereas green and red colours represent indices of unstable or
removal model points respectively. A cyan colour means that both stable and unstable model points are
projected into the image plane on the same pixel.

model is an unsorted vertex buffer of 3-D points with associated attributes. Points evolve from unstable to
stable status based on their confidence. Data fusion first projectively associates each point in the input depth
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Figure 4.1.4: Still images extracted from the video results of the original point-based fusion presented
by Keller et al. [KLL+13].

mapwith the set of points in the globalmodel, by rendering themodel as an indexmap. Figure 4.1.3 shows an
example of such index map for the lounge data set given by Zhou and Koltun [ZK13] at frame 1441. Note
that this index map is slightly different than the one proposed originally by the PBF approach [KLL+13]. It
is a deep index map where different layers of indices are rendered depending on the intrinsic nature of the
correspondingmodel points (see the following chapter Section 5.7). If corresponding points are found, the
most reliable point is merged with the new incoming point using a weighted average. If no reliable corre-
spondence pair exists, the new input point is added to the global model as an unstable point. The global
model is cleaned up over time to remove outliers due to visibility and temporal constraints.

The reader is invited to check the following link¹ presenting the original PBF method [KLL+13]. This
video (see Figure 4.1.4 for a thumbnail) shows the advantages of using the PBF approach which maintains
high quality reconstruction even at a larger scale, and continuously adds new local surface reconstruction as
long as GPU memory is available. It provides adaptive resolution (further objects are modelled with fewer
surfels with bigger radius size than the ones given by closer objects). The adaptive resolution is intrinsically
handled due to the perspective principle of depth cameras.

¹Video results of Keller et al. [KLL+13]: https://www.youtube.com/watch?v=2BdwMdh5M7Q&t=11s.
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Figure 4.2.1: Updated 3-D reconstruction pipeline with dynamic environment support.

4.2 Dynamic Environments

Most of the online 3-D reconstruction approaches have limited support for dynamic objects. Due to the
continuous convex averaging during the data fusion stage, dynamic objects do not gain enough confidence
to strongly contribute to the global representation. However, this limited support of dynamics could cause
camera tracking failure on specific scenes which was a focus of this work.

This thesis extends the original KinectFusion approach [NDI+11] by automatically segmenting dynamic
subjects in the scene, in order to clear-up the global representation rapidly and support robust camera track-
ing. Initially, moving objects are classified as outliers during the ICP correspondences search. Given these
initial dynamic areas, amulti-scale region growing procedure is applied to properly segmentmoving objects.
Moving regions are excluded from the camera pose estimate, and their corresponding points in the global
model are reset to unstable status, leading to a natural propagation of scene changes into our depth map
fusion.

Figure 4.2.1 shows the updated 3-D reconstruction pipeline that properly handles dynamic environments.
The washed colour refers to the original pipeline modules. The dynamic estimation is first initialised by the
output of the camera pose estimation module and later on used to update the model representation accord-
ingly.
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4.2.1 Segmentation

Izadi et al. [IKH+11] observe that failure of data association during the ICP phase is a strong indication
that these input points may belong to dynamic objects. We build our dynamic segmentation upon that ob-
servation and retrieve this information via the ICP status map 𝒮 that encodes a status flag for each input
depth samples directly resulting from the ICP correspondences search. Four different status flags are given:

no_input: 𝒱𝑡(u) is invalid or missing.
no_cand: No stable model points 𝒱ℳ(u∗) in the proximity of 𝒱𝑡(u).
no_corr: Stable model points in proximity of, but no valid ICP correspondence

for 𝒱𝑡(u) (the model points did not pass both conditions composed
of a Euclidean distance and a normal angle divergence).

corr: Otherwise ICP found a correspondence.

Input pointsmarked asno_corr are used as an initialisation of the proposed segmentationmethodbased
on a hierarchical region growing algorithm. The use of region growing is justified by the necessity to seg-
ments complete moving objects as dynamic even if only some parts of them move (like a static person that
only moves his arms). This high-level view on dynamics drastically improves the limited handling in previ-
ous approaches as the one proposed in [IKH+11]. As output, the proposed algorithm segments the current
input frame into two classes (static and dynamic points) stored in a dynamics map 𝒳𝑡.

The current system renders two sets of augmented points: the global model points representing the high
resolution reconstruction of the background (static) environment; and the set of input points marked as
dynamic representing the segmented moving object of 𝒳 (see Figure 4.2.2-bottom-centre).

Hierarchical RegionGrowing The goal is essentially to find connected components in 𝒱𝑡. To do so, a
region growing based on the similarity of point attributes is performed. More precisely, data consistency of
point position (𝒱𝑡) and local surface normal (𝒩𝑡) are compared using a 4-connected component neigh-
bourhood. Seed points are extracted and marked as dynamic in 𝒳𝑡 and points, whose position and normal
are within given thresholds, are iteratively added. For more details refer to Algorithm 1.

Since the speed of region growing is directly linked to the input data resolution and the size of the objects
to grow, the algorithm starts with a down-sampledmap 𝒳𝑡

2, and repeatedly up-sample until reaching 𝒳𝑡
0 =

𝒳𝑡. Note that the pyramidal hierarchy of the input maps is already built during the camera pose estimation
phase (maps 𝒱𝑡

𝑙 and 𝒩𝑡
𝑙 with 𝑙 ∈ [0, 1, 2]).

The robustness against camera noise and occlusions is improved applying a morphological erosion with
a circle-shape structured element of 1-pixel size radius at the coarsest pyramid level 𝒳𝑡

2. The erosion is
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Figure 4.2.2: Segmentation of moving objects. A: global model coloured with surface normals; B: raw
input data of the previously static ball being picked up; C: segmentation of dynamic parts; Bottom row:
reconstructed result (model points + dynamic parts).

applied after the initialization of the dynamicmap 𝒳𝑡
2. This ensures that 𝒳𝑡

2 covers only the inner region of
dynamic objects (see Figure 4.2.2-C for an example of the dynamic object segmentation). The drawback of
thismethod is that it only detects dynamic objects in regions where globalmodel points are present. Indeed,
model points must be in proximity of the input point in order to be flagged as no_corr by the ICP phase.
Another drawback of this method is that it may classify fine structure objects (e.g., a pen) as dynamic if it
lies in front of a dynamic region. In fact, during the creation of the next level dynamic segmentation, the
coarse level is assumed to be fully correct which is a strong assumption that can be wrong if a fine structure
was not visible at this resolution. However, this problem is rare and could be fully avoided by introducing a
consistency checkwhen creating the next level of the segmentationmap. Figure 4.2.2-C shows an example of
dynamic segmentation where region growing does not apply (blue-purple colour) due to the lack of model
points in this region.

4.2.2 Dynamic-aware Model Updates

Previously, the proposed method demonstrates that dynamic objects can be fully segmented and used as a
direct feedback to the user during the rendering stage. In addition, the segmentation of moving objects can
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Algorithm 1:Dynamics segmentation via a hierarchical region growing approach (𝐿 refers to the high-
est level of the pyramid).

1

Input: 𝒮𝑡, 𝒱𝑡
0…𝐿, 𝒩𝑡

0…𝐿, 𝛿dist, 𝛿norm
Output: 𝒳𝑖

0
2 // Initialise Segmentation in lowest resolution
3 foreach pixel u in level L inparallel do
4 u′ ← 2𝐿 (u)
5 𝒳𝑡

𝐿(u) ← 𝒮𝑡(u′) == no_corr
6 𝒳𝑡

𝐿 ← morphErosion(𝒳𝑡
𝐿)

7 // Multi-scale region growing approach
8 for 𝑙 = 𝐿 to 0 do
9 repeat

10 foreach pixel u in scale level l inparallel do
11 // If dynamic
12 if 𝒳𝑡

𝑙(u) ≠ 0 then
13 // 4-Neighbour connectivity
14 foreach pixel u𝑛 ∈ 𝒩(u) do
15 if 𝒳𝑡

𝑙(u𝑛) = 0 then
16 if ‖𝒱𝑡

𝑙(u𝑛) − 𝒱𝑡
𝑙(u)‖ ≤ 𝛿depth ∧ ∠(𝒩𝑡

𝑙(u𝑛), 𝒩𝑡
𝑙(u)) ≤ 𝛿norm then

17 𝒳𝑡
𝑙(u𝑛) ← 𝒳𝑡

𝑙(u)

18 untilNo region to grow
19 if 𝑙 ≥ 1 then
20 𝒳𝑡

𝑙−1 ← buildNextPyrLevel(𝒳𝑡
𝑙 , 𝑙 − 1)

also be used to update the current model rapidly. For example, if a user wants to reconstruct several objects
on a desk and if he is later changing the configuration of someobjects on the desk, then, previous approaches
(such as [IKH+11]) will only handle this case via the convex averaging. Meaning that a certain amount of
time is required for the convex averaging to update the “ghost” regionwhere themovedobjectwas previously
located. Having a high-level notion of dynamics enables to better handle these scenario and directly remove
the moving objects of the model.

During the depth map fusion stage, a model point 𝒱ℳ(u∗) (with a certain confidence value 𝒲ℳ(u∗))
that is averaged with a dynamic input point 𝒱𝑡(u) is demoted to an unstable point using the following rule:

if 𝒳𝑡(u) ∧ 𝒲ℳ(u∗) ≥ 𝑐stable + 1 then 𝒲ℳ(u∗) ← 1 (4.4)

In this way, the model is immediately updated due to the state change from static to dynamic. The offset
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of +1 in Eq. (4.4) is only ensuring that any dynamic point that sufficiently gained enough confidence (po-
tentially because it is again static) can be rendered as stable globalmodel for at least one iteration; otherwise,
an object that has once been classified as dynamic would never be able to be stable again, as it would always
be inconsistent with the model.

To highlight the benefit of immediate clearing up the global model from complete segments of moving
objects, the Moving Person scene is shown. In this scene, Figure 4.2.3, the person first sits in front of the
camera and is reconstructed before moving out of view. Since the moving person occupies much of the
field of view, leaving only few reliable points for the ICP algorithm, the camera tracking fails with previous
approaches. However, the presented system fully segments themovingperson (Figure 4.2.3-A) and removes
it from the model (Figure 4.2.3-B) leading to a robust camera tracker in dynamic environments.

 

 

Figure 4.2.3: The Moving Person scene. A person sits on a chair, is reconstructed, and then moves.
Dynamic parts occupy much of the field-of-view and cause ICP errors with previous approaches (top row).
Segmenting the dynamics (A) and ignoring them during pose estimation (B) allows increased robustness
(bottom row).
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4.3 Discussion

This chapter focusedon giving a complete introductionof online3-D reconstruction systems. Severalmodel
representation methods have been proposed since the first release of the original Kinect-Fusion [NDI+11],
however, they all share common modules. The method proposed by Keller et al. [KLL+13] is a good can-
didate to solve the challenging problem of online 3-D reconstruction due to its simplicity, its adaptive res-
olution and its scalability. Additionally, this chapter demonstrates the importance of segmenting dynamic
objects to achieve a robust ego motion estimation.

The two following chapters (Chapter 5 and Chapter 6) will present the remaining contributions of this
thesis to the online 3-D reconstruction topic.
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It’s a brilliant surface in that sunlight. The horizon seems quite close
to you because the curvature is so much more pronounced than here
on earth. It’s an interesting place to be. I recommend it.

Neil Armstrong (∗1930 – †2012)
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ℐn this chapter, a method that drastically improves the full 3-D reconstruction pipeline using an ad-
ditional surface characteristic will be presented. This surface characteristic, i.e. curvature, stored
as a point attribute, helps to build robust correspondences during the camera tracking phases
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leading to better camera tracking on low-depth feature scenes and reducing the overall camera drift. Fur-
thermore, this chapter will show that the curvature can be used to improve the rendering quality of point
based approaches to be more on par with the quality given by volumetric approaches.

5.1 Introduction and Related Works

Despite various improvements in real timeperformance [WWLVG09], scalability [RV12,WJK+12,KLL+13,
CBI13, NZIS13], a key challenge to online 3-D reconstruction remains instabilities in the reconstructed
camera trajectory due to imprecision in the range scan alignments of the underlying ICP algorithm [BM92,
CM92], which are particularly severewhere the acquiredobjectmisses sufficiently salient geometric features
to latch on to [GIRL03]. These errors accumulate over time, leading to distortions across larger scales in the
final reconstruction.

While such drift may partially be mitigated through global offline relaxation [Pul99, RHHL02, ZK13],
the need for a global post-process defeats many of the benefits of an online acquisition system. However,
recentworks [WLSM+15, SSP18] are able to reduce drift in real time by continuously correcting the current
reconstruction through loop closure principle.

Various strategies have hence been proposed to minimize registration error already during the online reg-
istration stage, including colour feature-based pre-alignment [HKH+12], colour-based weighting of ICP
pairs [GRB94, Wei97], stronger weighting of edge features [ZK15], and so on.

This chapter aims at the minimisation of registration errors, by focusing on surface curvature as a reli-
able feature that is detectable on range scans alone and hence does not depend on accurate multi-sensor
alignment. Unlike previous work that took curvature or related measures into consideration, however, cur-
vature is treated as an independent quantity that is consistently incorporated into every stage of the real
time reconstruction pipeline, including densely curvature-weighted ICP, range image fusion, local surface
reconstruction, and rendering, while maintaining real time rates even for very large scenes.

This work comprises the following features and contributions:

• first online reconstruction design to systematically incorporate curvature as an independent surface
attribute into the end-to-end reconstruction pipeline; key innovations are:

– an ICP variant that considers curvature for both dense correspondence finding and weighting
for increased stability,

– a method to efficiently blend curvatures in the fusion stage,

and, with respect to the underlying PBF framework [KLL+13] (previously presented in Section 4.1.6),
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• fast andhigh-quality, curvature-aware local surface reconstructiondirectly froman indexmap [KLL+13],

• extension of the index-map approach to mitigate the impact of point collisions and to significantly
speed up operations on the model point cloud.

Using multiple benchmark sequences, and in direct comparison to other state-of-the-art online acquisi-
tion systems, this approach is shown to significantly reduce drift, both when analysing individual pipeline
stages in isolation, as well as seen across the reconstruction pipeline as a whole. All data sets, camera poses,
ground-truth geometries, and reconstructions of this method are provided under the following link¹.

5.2 Online Surface Reconstruction

As seen previously in Chapter 4, the design of the current method follows the established overall structure
for online reconstruction systems shown in Figure 4.1.1. This general structure is equally shared by the first
in-hand scanners [RHHL02, WWLVG09], Newcombe et al.’s KinectFusion [NDI+11], and various later
improved systems for online3-D reconstruction fromrange images ([NZIS13,KLL+13,WLSM+15,ZK15],
amongst others),withdifferences in algorithmicdetails and indata representationsunderlying the individual
pipeline stages.

In this section, a brief overviewover the system structure is providedwhilemotivating its design decisions
in the context of previous work.

Previous work showed continual improvement in accuracy, through algorithmic improvements, but also
through improved camera technology and processing speed. One problem, however, remains common to
such systems: drift in the recovered camera trajectory, due to geometry-dependent instabilities in the cam-
era pose estimation. This problem is addressed by systematically incorporating curvature as an additional
surface attribute into the reconstruction pipeline.

Benefits of including curvature may not be immediately obvious, as one might argue that curvature was
simply a function of surface shape, which is already being reconstructed. Also, derivatives of (noisy) real
worldmeasurements are generally considered amplifying noise, which would render curvature a potentially
unreliable quantity. As it will be shown, however, consistently incorporating curvature throughout the end-
to-end reconstruction pipeline leads to significant reduction of drift. The remainder of this section outlines
the respective extensions of this method to the online reconstruction pipeline.

Other enhancementsorthogonal to theproposedapproach, suchas incorporationof sensoruncertainty [JU04,
SYS07,MAB08,MHFdS+12], use of additional data sources beyond range images [GRB94,Wei97, KSC13,

¹Full data sets of the method proposed by Lefloch et al. [LKS+17]: http://www.cg.informatik.uni-siegen.
de/3d-reconstruction/low-feature-benchmark
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KM07], simplifying assumptions on structures in the scene [SMGKD14], or non-rigid alignment [BR07,
ZMK13], could generally be of additional use but are outside the scope of this thesis.

DepthMap Pre-processing In contrast toKeller et al. [KLL+13] andothersKinectFusion like approaches
(see Chapter 4 for an introduction of these approaches), a second-order surface property is used (called
principal curvatures) that is directly derived from the range image and additionally stored with position and
normal information. See Section 5.3 for more details.

Camera Pose Estimation is at the core of what makes hand-held online scanning possible. Incoming
depth maps are continuously registered with the partial reconstruction of the object, the model acquired so
far, to determine the camera’s relative position to all previous observations. Any potential drift will occur at
this stage, through inaccuracies in the depthmap alignment. This chapterwill show, however, improvements
of the other pipeline stages indirectly reduce drift as well.

Previous work has analysed convergence rates and robustness of ICP, exploring alternative pairing strate-
gies anderrormetrics [GRB94,Pul99,RL01,GIRL03]. Godinet al. [GRB94] introduce the closest-compatible
point strategy that takes surface properties beyond simple point proximity into account during data associ-
ation. They focus on surface colour but stress generality of the approach; Pulli [Pul99] demonstrates the
benefits of considering compatibility of normals. Others report improved convergence when considering
compatibility of image intensity and their gradients for pairing [Wei97, SG14].

Extending this strategy to incorporate compatibility of local curvature improves results even further. The
systemmaintains in itsmodel representation a continuously updated account of surface curvatures extracted
from the input depth maps.

Beyond this simple compatibility criterion, (implicitly) paying attention to high-curvature regions has
proved valuable in previous work: Gelfand et al. [GIRL03] show that normal-space sampling [RL01], i.e.,
sub-sampling of the surface so that the corresponding normal directions are distributed as evenly as possible,
creates point pairs that lead to a much-improved numerical condition of the ICP minimisation.

While neither Gelfand et al. [GIRL03] nor Rusinkiewicz and Levoy [RL01] look at curvature itself, re-
gions of higher curvature generally correspond to a larger spread of normal directions. Therefore, putting
more emphasis on high-curvature regions should similarly improve condition. Zhou and Koltun [ZK15]
recently presented a system that extracts contour cues from range images to stabilise alignment and thus to
reduce drift. While generally characterised by high principal curvature, these contours, however, are treated
as a discrete feature that can be present or not, resulting in a bi-level weighting scheme. In contrast, this chap-
ter describes a system that uses continuous weights and is still able to exploit curved features that would not
be classified as contour.

A purely feature-based approach has been presented by Johnson and Hebert [JH97], who compute local
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spin images across depth maps, using their signatures to match corresponding features in different depth
maps. As any feature-based approach [LS09], this hasmerits if the geometry exhibits a sufficiently dense set
of unique surface characteristics. In contrast, this method is based on ICP, which does not rely on unique
local features and still converges even in few presence of high-curvature regions, as long as sufficient large-
scale characteristics of the surface shapes exist.

Local Surface Reconstruction Data Association requires identifying individual (corresponding) points
on the surface of the so-far accumulated model. While early works explored various strategies to construct
correspondences between incoming and partially reconstructed model surfaces, the ICP community even-
tually identified “projective” pairing of incoming and model points as leading to far superior convergence
times [RL01]. For each point on the incoming range map, this involves casting a ray along the depth sen-
sor’s lines of sight onto the model, and taking the intersection point as a candidate for pairing. Regardless
of the underlying model representation, such ray-surface intersections require local surface reconstruction in
the vicinity of that ray, e.g., ray-surface intersection if the model is explicitly represented as a triangle mesh,
ray-casting of an (implicit) volumetric model representation [NDI+11], or some form of “point-based ren-
dering” of surface information into the camera plane [RHHL02, WWLVG09, KLL+13, WLSM+15]. In
general, these operations borrow from surface rendering in computer graphics. However, the quantities
being sampled (or rendered) depend on the attributes required for data association, typically comprising
position, normal, and sometimes colour.

In thiswork, the local surface reconstruction is expandedupon theoneproposedbyKeller et al. [KLL+13],
which in its original formulation leads to a piecewise-linear local reconstruction, not unlike the approxima-
tions by other previous works [WWLVG09]. In contrast, full curvature information is considered when
determining local ray-surface intersections, and the following sections will show how the resulting higher-
quality surface reconstruction noticeably contributes to the overall drift reduction.

DepthMap Fusion While early online reconstruction systems displaymore or less raw input data during
the online phase ([RHHL02, WWLVG09]), leaving data fusion into a single model to a post-process of
global alignment [Pul99] and volumetric fusion [CL96], Newcombe et al. [NDI+11] showed that a real
time implementation of Curless and Levoy’s volumetric fusion approach [CL96] is possible.

As seen previously in Chapter 4, volumetric fusion approaches require continual conversion between
range-mapandvolumetric representations, andoperateswith afixed spatial resolution. Keller et al. [KLL+13]
present a purely point-based framework that allows for real time fusion including adaptive resolution, with-
out the need for frequent data conversion.

Thismethod follows thePBF framework, as it allows for themost natural extension to support and analyse
the use of curvature throughout the reconstruction pipeline. Similar to their depthmap fusion that accumu-
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lates normal information independent from positional information, another independent information chan-
nel is introduced to accumulate curvature and a method to efficiently blend curvature information during
fusion is presented (Section 5.6).

In order tomaintain real time rates, the intermediate, screen-space, index map representation is extended.
While [KLL+13] uses indexmaps for data association only, the deep indexmap supports incremental screen-
space updates during fusion, enabling online rendering directly off that representation.

Rendering Many previous systems either offer lower-quality visual feedback, sufficient to guide the user
toward regions where sensor data is missing [RHHL02], or perform comparatively expensive ray-casting
on a volumetric representation [NDI+11, NZIS13]. Weise et al. [WWLVG09] use a local surface recon-
struction approach for data association that is equally suitable for (point-based) rendering. Section 5.5 de-
scribes a local surface reconstruction approach that works directly on the internal model representation and
can equally be used for high-fidelity, curvature-aware, rendering. A simple Phong illumination model is
used, coupled with a fast approximation of ambient occlusion known as Screen-Space Ambient Occlusion
(SSAO) [Mit07] for added realism in the visual feedback.

5.3 Depth Map Pre-processing

During the preprocessing stage, point attribute maps are extracted from the range image data, following and
extending conventions used by Newcombe et al. [NDI+11] and Keller et al. [KLL+13].

5.3.1 Point-Based Fusion Surface Attributes

After outlier removal, depth map values 𝒟𝑡(u) are transformed into 3-D positions in camera coordinates,
using the inverse intrinsic camera matrix K−1, and stored in a vertex map 𝒱𝑡(u), with 𝑡 the input frame
index and pixel coordinates u = (𝑥, 𝑦)⊤within the camera image. The normal map 𝒩𝑡 is extracted from
bilateral filtered depths, a point-radius map ℛ𝑡 is obtained from local point neighbourhood sizes, and, new
in this system, a curvature map 𝒦𝑡 is derived from 𝒩𝑡 (see Section 5.3.2). Furthermore, following again
previous work, a confidence value 𝒲𝑡(u) is assigned for each input frame pixel u. This value accounts for
the radially decreasing quality of range image values (with fall-offs specific to each Kinect model) and for
the reduction of depth quality due to motion blur. The latter is estimated from the relative transformation
T𝑡→(𝑡−1) between adjacent camera poses at times 𝑡 − 1 and 𝑡 (see also Section 5.4.2). For more details on
the estimation of surface attributes, refer to the appendix Section A.1.
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5.3.2 Curvature Estimation

The curvature map encodes directions and values of principal curvature at each surface point:
𝒦𝑡 = { ̂e1, 𝜅1, 𝜅2} stores the first principal direction ̂e1 and both curvature values 𝜅1, 𝜅2; the second
principal direction ̂e2 is implicitly given as ̂e2 = ̂n × ̂e1.

While surface curvature is well defined on 𝐺2-continuous surfaces, various competing approximations
exist for discretised surface representations [MSR07, NA13], and many of them are applicable to point-
sampled geometry. Several approaches were tested for their robustness in different application scenario, i.e.,
on Kinect depth maps.

The eigen decomposition proposed by Pauly et al. [PGK02] not only yields normal estimates, but also a
notion of curvature. Even though a rather robust estimate, the approach, however, is not scale-invariant if
applied to projectively unevenly sampled geometry.

An alternative class of approximations performs a local surface fit and uses the curvature of the fitted sur-
face as an estimate for the input vertex. Goldfeather and Interrante’s adjacent-normal cubic approximation
method [GI04], amongst the most robust curvature estimators in literature, uses a polynomial surface fit
(typically order 3) that takes into account the normal information of adjacent vertices in its formulation;
the method, however, involves a larger (7 × 7) linear-least squares fit that, even when performed on the
GPU, does not meet the real time constraint.

This system uses the chord-and-normal-vectors (CAN) approach of Zhang et al. [ZLC08], which is com-
paratively robust also in the case of projectively unevenly sampled geometry and still computationally ef-
ficient. The CAN estimation initially fits circles to the current oriented vertex (𝒱𝑡(u), 𝒩𝑡(u)) and each
oriented vertex (𝒱𝑡(u′), 𝒩𝑡(u′)) in the selected neighbourhood [ZLC08]. A principal curvature compat-
iblewith the fitted circles is then determined as an approximate,minimum least-squares solution that only re-
quires solving a 3×3 linear system and is thus predestined for aGPU implementation. Theunknowns of the
3×3 linear system is a combination of trigonometric operation of both principal curvatures values (𝜅1 and
𝜅1) with the angle between the first unit vector of the reference frame (tangent plane described by 𝒩𝑡(u))
with the first principal curvature direction. Amore robust curvature estimator by Chen et al. [CZ09] would
still require solving a 6 × 6 system, which for current GPUmodels would no longer be possible in real time.

Figure 5.3.1 compares the quality of Zhang et al. [ZLC08] with Goldfeather and Interrante [GI04] for
both an input depth map and an accumulated model. It can be seen, that Zhang’s method delivers stable
results that are only slightly worse than Goldfeather and Interrante’s, mainly for the second main curvature
𝜅2. Note that under ideal conditions, 𝜅2 = 0 along straight edges and 𝜅2 ≠ 0 for parabolic and saddle
points should be expected.

69



CHAPTER 5. CURVATURE-AWARE POINT-BASED FUSION

 

 

 

 

 

 

Zh
an
g

et
al
.[
ZL

C
08

]

 

 

 

 

 

 

G
ol
df
ea
th
er

an
d

In
te
rr
an
te
[G

I0
4]

 

 

 

 

 

 

Zh
an
g

et
al
.[
ZL

C
08

]

 

 

 

 

 

 

G
ol
df
ea
th
er

an
d

In
te
rr
an
te
[G

I0
4]

 

-200 0 200

 

 
-200 0 200

 

 
-100 0 100

 

Normal map Curvature map for 𝜅1 Curvature map for 𝜅2

Figure 5.3.1: Example curvature estimation for frame 361 of the legoPAMI𝑆𝐿 data set [LKS+17],
using the methods by Zhang et al. [ZLC08], and Goldfeather and Interrante [GI04], respectively. first two
rows: using the input frame given by the range camera; last two rows: using the current reconstructed
surface model. Curvature maps on the middle and right show 𝜅1, and 𝜅2, respectively; corresponding
input normal maps convey noise level.

5.4 Camera Pose Estimation

Similar to the pose estimation proposed by Newcombe et al. [NDI+11], this method uses a hierarchical
model-to-framevariantof the ICPregistration [BM92]and is basedon thepoint-to-planeerrormetric [Pul99].

This common iterative framework alternates between data association (i.e., establishing correspondences
between frame 𝑡’s input points p𝑡

𝑖 = 𝒱𝑡(u𝑖) and corresponding points p∗
ℳ = 𝒱ℳ(u∗) of the model ac-

70



CHAPTER 5. CURVATURE-AWARE POINT-BASED FUSION

quireduntil frame 𝑡−1), andminimisationof an error term𝐸(T𝑡→(𝑡−1)) that expresses the level ofmismatch
within point pairs under the estimated relative transformation T𝑡→(𝑡−1).

The main enhancements of this framework are twofold: the correspondence-finding stage additionally
considers curvature (onboth the inputmapand themodel); furthermore, introducinga curvature-dependent
weighting scheme into the error term 𝐸(T𝑡→(𝑡−1)), which significantly increases the robustness of the con-
vergence, and thus minimises drift. In the following, a description of these extensions is given in detail.

5.4.1 Data Association

At the beginning of each iteration 𝑙, and given the latest estimate of the relative transformation T𝑡→(𝑡−1)
(𝑙)

with 𝑇 𝑘→(𝑘−1)
(0) ∶= [I3×3|0], selection and matching are performed simultaneously, starting with the full

set of input points.
Each input point p𝑡

𝑖 = 𝒱𝑡(u𝑖), including its geometric entities { ̂n𝑡
𝑖, ̂e𝑡

1,𝑖, ̂e𝑡
2,𝑖, 𝜅𝑡

1,𝑖, 𝜅𝑡
2,𝑖}, is trans-

formed into the model reference p𝑡−1
𝑗 = T𝑡→(𝑡−1)

(𝑙) p𝑡
𝑖 (and analogously for vectors ̂n𝑡

𝑖, ̂e𝑡
1,𝑖 and ̂e𝑡

2,𝑖).
Then, the set of neighbouring model points ℋ(p𝑡−1

𝑗 ) is built from a 5 × 5 pixel window of a local sur-

face reconstruction around the projection of p(𝑡−1)
𝑗 under T𝑡→(𝑡−1)

(𝑙) . Following general practice in point

correspondence search [GRB94], points in ℋ(p(𝑡−1)
𝑗 ) whose position and normal significantly differ from

p(𝑡−1)
𝑗 arediscarded. Moreprecisely, potential correspondences are rejected if ‖T𝑡→(𝑡−1)

(𝑙) 𝒱𝑡(u)−𝒱ℳ(u∗)‖ ≥
𝜃dist or ∠(R𝑡→(𝑡−1)

(𝑙) 𝒩𝑡(u), 𝒩ℳ(u∗)) ≥ 𝜃angle, like Newcombe et al. [NDI+11].

Themethod is looking for the model point p∗
ℳ ∈ ℋ(p(𝑡−1)

𝑗 ) that best matches position, Darboux frame
{ ̂e1, ̂e2, ̂n}, and the respective curvature values 𝜅1, 𝜅2, by minimizing a weighted sum of dissimilarity mea-
sures of positions (𝐷𝑝), normals (𝐷𝑛), and curvature (𝐷𝑐),

p∗
ℳ = argmin

pℳ∈ℋ(p(𝑡−1)
𝑗 )

𝜆𝑝𝐷𝑝 + 𝜆𝑛𝐷𝑛 + 𝜆𝑐𝐷𝑐 , (5.1)

with

𝐷𝑝 =
∥pℳ − p(𝑡−1)

𝑗 ∥
2

𝑅 , 𝐷𝑛 = 1 − ⟨ ̂nℳ, ̂n(𝑡−1)
𝑗 ⟩ , and

𝐷𝑐 =
⎧{{
⎨{{⎩

∣𝜅1,ℳ−𝜅𝑡
1,𝑖∣+∣𝜅2,ℳ−𝜅𝑡

2,𝑖∣
𝜅max

ℳ
, if ∣𝜅𝑡

1,𝑖 − 𝜅𝑡
2,𝑖∣ < 𝜃𝜅 ,

∥𝒬ℳ−𝒬(𝑡−1)
𝑗 ∥

2
𝜅max

ℳ
, otherwise , (5.2)

where 𝑅 is the maximum radius of the neighbourhood search ℋ(p(𝑡−1)
𝑗 ), 𝜅max

ℳ = max{|𝜅1,ℳ|, |𝜅2,ℳ|}
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and 𝒬 = C diag(𝜅1, 𝜅2, 0)C⊤with C = ( ̂e1, ̂e2, ̂n) representing the transformation of the model’s Dar-
boux frame into the tangent space, scaled by the principal curvatures. The division of 𝐷𝑝 and 𝐷𝑐, by 𝑅
and 𝜅max

ℳ , respectively, normalises the components, leading to a relative error measure; all of the following
results use 𝜆{𝑝,𝑛,𝑐} = 1

3 .
As the principal curvature directions are formally undefined for 𝜅1 = 𝜅2 (e.g., for planes or spheres)

and numerically unstable for 𝜅1 ≈ 𝜅2 (particularly in the presence of noise), 𝐷𝑐 determines curvature
dissimilarity independent from curvature directions when 𝜅1 and 𝜅2 are similar, i.e., within a threshold 𝜃𝜅;
we used 𝜃𝜅 = 15 m−1 for all experiments.

Furthermore, in the case of 𝜅1 ≠ 𝜅2, the Darboux frame is unique up to inversion around ̂n, thus we
rotate 𝒬(𝑡−1)

𝑗 by π around ̂n if ⟨ ̂e1,ℳ, ̂e(𝑡−1)
1,𝑗 ⟩ < 0 to ensure compatible alignment before applying Equa-

tion 5.2. ∥𝒬ℳ − 𝒬(𝑡−1)
𝑗 ∥

2
is evaluated via SVD, exploiting the matrix 2-norm equality ‖A‖2 = 𝜎max(A).

5.4.2 Minimisation

The point-to-plane error metric can be expressed as

𝐸(T𝑡→(𝑡−1)) = ∑
u∈𝒮

⟨T𝑡→(𝑡−1)
𝑙 𝒱𝑡(u) − 𝒱ℳ(u∗) , 𝒩ℳ(u∗)⟩2

, (5.3)

with𝒮 the subset of all inputmappoints forwhich a valid correspondence has been found, andwithu∗ being,
again, each p∗

ℳ’s projection into the previous frame. Some previous ICP works extend this least-squares
minimisation by a set of per-correspondence weights 𝑤(u∗), yielding

𝐸(T𝑡→(𝑡−1)) = ∑
u∈𝒮

𝑤(u∗)⟨T𝑡→(𝑡−1)
𝑙 𝒱𝑡(u) − 𝒱ℳ(u∗) , 𝒩ℳ(u∗)⟩2

. (5.4)

Zhou and Koltun [ZK15] choose 𝑤(u∗) depending on whether a point is a contour point. In contrast, in-
stead of using bi-level weights only, the present method defines 𝑤(u∗) as a continuous function of the cur-
vature information, thus leading to an adaptive, curvature-related weight.

The following curvature weight scheme is implemented which is based on the maximum absolute princi-
pal curvature 𝜅max

ℳ :

𝑤(u∗) = 1
[p∗

ℳ]2𝑧
(𝑤′

𝑀(u∗) + exp (−1
2 [ 𝜆

𝜅∗,max
ℳ (u∗)]

2
)) , (5.5)

with 𝑤′
𝑀(u∗) = 𝑐ℳ(u∗)/256 derived from the model point’s confidence counter 𝑐ℳ (see [KLL+13]).
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The denominator [p∗
ℳ]2𝑧 regularizes against noise (correlated with distance) since curvature computation

is not reliable enough on data with low signal-to-noise ratio and at far distance, with [p∗
ℳ]𝑧 the 𝑧-Cartesian

distance of the model point in meters. 𝜆 is a control parameter of the curvature-based weight 𝑤(u∗) and
regulates its influence; for larger 𝜆, the weight increasingly depends on the point’s depth and confidence
counter only.
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Figure 5.4.1: ICP weight map through curvature estimation. The first row shows the fountain data set
reconstructed by Zhou and Koltun [ZK14]. The last row shows the normal map 𝒩𝑡 and the ICP weight
map (Equation 5.5) used for the minimization at input frame 𝑡 = 478.

All weights will contribute differently for the ICPminimisation increasing the point-to-plane errormetric
for pair of correspondence points with high curvature. This type of curvature-aware minimisation greatly
improves the camera tracking module [LKS+17]. Figure 5.4.1 shows the computation of this weight for
each pair of correspondences for the last iteration of the ICP algorithm. Note, how well the weight is given
to small curvature structures, even if the input data is quite noisy referred to the normal map. Both maps
were generated by the current approach from the Fountain data set provided by Zhou and Koltun [ZK14]
who were focusing on the computation of high quality colour texture information. For details on the ICP
principle, refer to the appendix Section A.2.
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5.5 Local Surface Reconstruction

A key ingredient toward improved tracking robustness is paying particular attention to a high accuracy of
the local, real time surface reconstruction , which is essential for data association and, finally, pose error
minimisation. To that end, the viewing ray is intersected with the second-order surface patches defined by
the model point’s orientation and curvature (see Section 5.5.1) and apply an elliptically-weighted blending
scheme for all patch intersections resulting in the finally reconstructed surface point (see Section 5.5.2).
Algorithm 2 summarizes the local surface reconstruction procedure used in the current framework.

Algorithm 2:Model maps generation using the updated index map (see Section 5.5.2).
Input: ℳ (model), ℐ𝑡 (index map), 𝜀𝑑 (surface thickness)
Output: 𝒱ℳ (model vertex map), 𝒩ℳ (model normal map), 𝒦ℳ (model curvature map)

1 foreach pixel u in model map inparallel do
2 r = generate ray for u
3 𝒫 = stable points in the vicinity of r using index map ℐ𝑡

4 𝑧front = − inf
5

6 // Identify intersection points of closed surface
7 ℒ ← ∅ // ℒ𝑖.v: vertex, ℒ𝑖. ̂n: normal, ℒ𝑖.𝑤: weight
8 foreach q ∈ 𝒫 do
9 (v𝑞, ̂n𝑞, 𝒦𝑞) = r ⋂ surface patch at q // see Section 5.5.1

10 if 𝑧front − 𝜀𝑑 < v𝑞.𝑧 then
11 𝑤𝑞 = exp(− 1

2 (∣q − v𝑞∣ /ℛ𝑡(u))2) // blend weight
12 ℒ.append(v𝑞, ̂n𝑞, 𝑤𝑞)

13 // Identify closest stable intersection point
14 if 𝑧front < v𝑞.𝑧 then
15 𝑧front = v𝑞.𝑧
16 𝒦ℳ(u) ← 𝒦ℳ(q)

17

18 // Model map output w.r.t. points on closest surface
19 𝒱ℳ(u) ← 0 // initialise model map vertex position
20 𝒩ℳ(u) ← 0 // initialise model map normal
21 𝑤valid = 0 // initialise sum of blend weights
22 foreach (v, n̂, 𝑤) ∈ ℒ do
23 if 𝑧front − 𝜀𝑑 < v.𝑧 then
24 𝑤valid ← 𝑤valid + 𝑤
25 𝒱ℳ(u) ← 𝒱ℳ(u) + 𝑤v
26 𝒩ℳ(u) ← 𝒩ℳ(u) + 𝑤 ̂n

27 // Normalise result
28 𝒱ℳ(u) ← 𝒱ℳ(u)/𝑤valid
29 𝒩ℳ(u) ← normalize(𝒩ℳ(u))
30 return
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5.5.1 Quadratic Surface Patch Intersection

The main idea to incorporate the curvature information into the local surface reconstruction is to replace
the standard ray-plane intersection used by previous works [WWLVG09, KLL+13] by an intersection with
a higher-order surface with the same curvature as the one stored in the model point under consideration.

Knowing the Darboux frame { ̂e1, ̂e2, ̂n} and the curvature amplitudes {𝜅1, 𝜅2} for a givenmodel point
p, we define an explicit quadratic surface parameterised over the ̂e1- ̂e2 tangent plane in local coordinates as:

𝐹(𝑥, 𝑦) = 1
2𝜅1𝑥2 + 1

2𝜅2𝑦2. (5.6)

The local coordinate of the quadratic surface is represented by the Darboux frame centred at the current
point position. The intersection is computed in the local coordinate frame, therefore the ray r(𝛼) = q+𝛼d
is transformed into local coordinates of the Darboux frame r′(𝛼) = (𝑞′

𝑥, 𝑞′
𝑦, 𝑞′

𝑧)⊤+ 𝛼(𝑑′
𝑥, 𝑑′

𝑦, 𝑑′
𝑧)⊤. The

intersection of r(𝛼) with the quadratic surface patch from Equation 5.6 can be computed as follows:

{
1
2𝜅1𝑥2 + 1

2𝜅2𝑦2 − 𝑧 = 0
q′ + 𝛼d′ = (𝑥, 𝑦, 𝑡)𝑇

⇔ 1
2𝜅1(𝛼𝑑′

𝑥 + 𝑞′
𝑥)2 + 1

2𝜅2(𝛼𝑑′
𝑦 + 𝑞′

𝑦)2 − 𝛼𝑑′
𝑧 + 𝑞′

𝑧 = 0,

⇔ 1
2𝛼2(𝜅1𝑑′2

𝑥 + 𝜅2𝑑′2
𝑦 ) + 𝛼(𝜅1𝑑′

𝑥𝑞′
𝑥 + 𝜅2𝑑′

𝑦𝑞′
𝑦 − 𝑑′

𝑧) + 1
2(𝜅1𝑞′2

𝑥 + 𝜅2𝑞′2
𝑦 ) − 𝑞′

𝑧 = 0.

Leading to the following quadratic equation:

1
2𝛼2𝐴 + 𝛼𝐵 + 𝐶 = 0 ,

where 𝐴 = 𝜅1𝑑′2
𝑥 + 𝜅2𝑑′2

𝑦 , 𝐵 = 𝜅1𝑑′
𝑥𝑞′

𝑥 + 𝜅2𝑑′
𝑦𝑞′

𝑦 − 𝑑′
𝑧 ,

and 𝐶 = 1
2(𝜅1𝑞′2

𝑥 + 𝜅2𝑞′2
𝑦 ) − 𝑞′

𝑧 .

The resulting intersection point s′ = (𝑠′
𝑥, 𝑠′

𝑦, 𝑠′
𝑧)⊤ is expressed in the local Darboux frame coordinates.
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Figure 5.5.1: Synthetic visualisation of ray intersection with two different types of quadratic surface
patches (spherical [𝜅1 = −300, 𝜅2 = −300] and saddle [𝜅1 = −300, 𝜅2 = 150]). The blue disc rep-
resents the current surfel data with its associate Darboux frame, the red surface refers to the quadratic
surface patch according to Equation 5.6.

Additionally, the associated surface normal is given by:

̂n𝑞 = n
‖n‖ with n = ⎛⎜⎜⎜

⎝

𝜅1𝑠′
𝑥

𝜅2𝑠′
𝑦

−1

⎞⎟⎟⎟
⎠

, (5.7)

using Equation A.1.
The intersection point and its normal are finally back-transformed into camera coordinates.
Figure 5.5.1 shows twodifferent types of quadratic surface patches (spherical and saddle) and their respec-

tive ray intersection. Solving this intersection equation usually leads to two solutions. The closest one to the
related model point p is chosen as the most appropriate intersection. The weight for this intersection point
is calculated using a (non-normalised) Gaussian distribution, scaled by themodel point’s radius ℛ𝑡(u) (see
Alg. 2).

The resulting intersection point s′ = (𝑠′
𝑥, 𝑠′

𝑦, 𝑠′
𝑧)⊤ is expressed in the local Darboux frame coordinates.

Additionally, the associated surface normal is corrected using Equation 5.7. The intersection point and its
normal are finally back-transformed to camera coordinates.

5.5.2 Blending of Quadratic Surface Intersection Points

Since a set of local surface intersections for each model-map pixel u is computed, a fast weighted average of
all intersection points can be deduced belonging to the first surface shell in the current point-based model
representation. As model points and their respective quadratic surface patches are not perfectly aligned in
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depth, due to noise and quantisation, points whose depth values fall into a depth tolerance threshold 𝜀𝑑 are
blended in order to identify all model points contributing to the model map at u.

The current approach shows strong similarity to point-based rendering techniques, especially to differen-
tial point rendering [KV01], aswell as ellipticalweighted average (EWA) splatting [ZPBG02], ofwhich even
curvature-rendering variants exist [BSK04]. A key difference to previous works in that field is the order in
which surface samples are collected, which eliminates the costly need for a dedicated normalisation render
step: rather than accumulating splat contributions for all pixels by each model point individually before di-
viding each pixel by the sumof relativeweights accumulated so far, the enhanced indexmap (see Section 5.7)
provides direct access to all model points contributing² to each pixel, allowing for local (and trivially paral-
lel) evaluation of each surface intersection, rather than employing the costly distribute-and-gather process
of traditional EWA splatting.

For each pixel of the current input frame, the proposed parallel implementation identifies the intersection
point at distance 𝑧front closest to the camera, selects all intersection points lying within the given surface
thickness 𝜀𝑑, and blends the intersection points including their normals in order to get the final model map
entries 𝒱ℳ(u), 𝒩ℳ(u). As blending curvature information is computationally more complex (see Sec-
tion 5.6), the final curvature information is taken from the closest intersection point. Algorithm 2 describes
this procedure in detail.

Figure 5.5.2 shows a comparison of the model map quality for two different representations for two se-
quences, applying the splatting from Keller et al. [KLL+13] (left column), replacing the ray-plane intersec-
tion in the splatting with the intersection scheme for quadratic surfaces described in Section 5.5.1 (middle
column), and the blending scheme for intersections with the quadratic surface explained in Section 5.5.2
(right column). It can be seen, that the model map quality already increases when curvature information
is used, but the blending further mitigates discontinuities at splat boundaries. For all the presented experi-
ments, the depth tolerance 𝜀𝑑 is set to 5mm.

5.6 Depth Map Fusion

Conceptually, point-based data fusion follows Keller et al. [KLL+13] by accumulating geometric point at-
tributes independently, thus, avoiding costly re-computation of normals and curvature from a local neigh-
bourhood of points.

A simple convex combination is used to accumulate an input point’s position p𝑖 into the position pℳ of

²Screen-space size of model points is artificially bound, as in a real time acquisition setting, such cases would mean that
the current camera data is of much higher quality than the coarse model points in question. This allows to collect all points
contributing to a pixel within a fixed-size window.
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[KLL+13] Quadr. ∩ [LKS+17] [KLL+13] Quadr. ∩ [LKS+17]

Figure 5.5.2: Comparing model map quality for two different scenes. The first sub-column refers to
the simple splatting proposed in [KLL+13]), the second to the quadratic surface intersection based on
curvature information (see Section 5.5.1) and the third one is the proposed blending scheme using the
quadratic surface intersection (see Section 5.5.2).

its associated model point:

pℳ ← 𝑐𝑖p𝑖 + 𝑐ℳpℳ
𝑐𝑖 + 𝑐ℳ

, 𝑐ℳ ← 𝑐𝑖 + 𝑐ℳ , (5.8)
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where 𝑐𝑖 and 𝑐ℳ are the input weight of the point, and the confidence counter of the model point (the
accumulated weight of the input points), respectively.

Darboux frames are fused using a fractional rotation (slerp) of the model Darboux frame towards the
input frame using the unique 3-D rotation matrix R( ̂a, 𝜙) described by a rotation axis ̂a and an angle 𝜙,
transforming between the frame Cℳ = ( ̂e1,ℳ, ̂e2,ℳ, ̂nℳ) and C𝑖 = ( ̂e1,𝑖, ̂e2,𝑖, ̂n𝑖):

Cℳ ← R( ̂a, 𝛼𝜙)Cℳ (5.9)

with R( ̂a, 𝜙) = C𝑖Cℳ
⊤ and 𝛼 = 𝑐𝑖

𝑐𝑖 + 𝑐ℳ
.

As described in Section 5.4.1, the Darboux frame is unique up to inversion around ̂n, thus input frames
are suitably inverted in order to ensure fractional rotation along the shorter path. Finally, the curvature am-
plitudes are accumulated analogously to Equation 5.8.

5.7 Deep Index Map

Theprevious sections primarily focusedonquality improvements that lead to drift reduction. Equally impor-
tant, however, is real time processing that operates at the camera’s native frame rate. This is not the least as
there is a direct relationship between throughput of range images and reduction of drift: aligningmore range
maps yields more data per surface area and thus less measurement uncertainty; it also implies shorter base-
lines between consecutive frames, which in many scenarios translates to higher stability of the range-map
alignment, that is, camera pose estimation.

In order to efficiently handle models of up to several million points including their associated attributes,
the entire reconstruction pipeline is implemented on the GPU using CUDA. Such an implementation has
to support various operations at once, including efficient spatial addressing for data association, local surface
reconstruction, point attribute manipulation during fusion, and efficient removal of outliers and invalid model
points due to moving objects in the scene.

Keller et al. [KLL+13] enable efficient spatial access to the unordered point cloud by introducing a simple
screen-space data structure, the index map, in the data association and fusion stages. Rather than rendering
a dense surface reconstruction from the camera’s perspective to determine all camera viewing ray-surface in-
tersections, only pixel-sized points are rendered that encode vertex indices rather than colours in the output
map. Thus, model points that project close to a given camera pixel u∗ can easily be identified by looking up
the index map in the vicinity of u∗. The remainder describes the extensions of the current method to their
index map that improve performance at all pipeline stages.
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5.7.1 Point Collisions

Depending on viewing distance and model resolution, multiple model points may map to the same pixel in
the indexmap. In order tomore reliably determine a suitable match, Keller et al. reduce the risk of collisions
by 4×4-upsampling their index map.

In different experiments, however, we often found thatmuchof the16-fold increased pixel space of the up-
sampled indexmap remains unusedwhile collisions are still frequent. Theeffect is similar towhat is observed
in memory cache design: even with uniformly random-distributed data, collisions are extremely likely.

Borrowing from cache design, which addresses this problem through the set associative cache that trades
cache address space for additional storage to resolve collisions, the amount of upsampling is reduced and
(partially) resolve collisions by storing multiple point indices per pixel.

Concretely, the deep index map stores indices for up to two stable and one unstable points at each pixel
position, which allows to reduce the upsampling to 2×2 while still losing fewer points to collisions than
Keller et al.’s approach at 4×4. Furthermore, by allocating separate capacity for storing stable and unstable
points we effectively eliminate situations where unstable points occlude stable model points, a case that can
hamper depthmap fusion, for instance in the presence of dense outliers due to amisregistered camera frame
or moving object.

Note that parts of the model seen from a far distance, or under an oblique angle, create more collisions
than can be held by the deep index map. In practice, however, such cases tend to occur in spatial regions
where the camera data is deemed too unreliable to be fused into the model.

5.7.2 Screen-Space Updates

Any point update in the fusion stage, be it merging of an input point (which could have a point change its
position in screen-space) or removal due to point expiration or free-space violation, triggers removal of one
of the original model points. In Keller et al.’s implementation this removal required a copy-intensive model
point cloud array compaction in every frame.

In contrast, we eliminate the need for a costly point copy operations by firstmarking all required deletions
within the deep index map itself, in a dedicated per-pixel “removal index” field. New, incoming points are
eithermergedwith existingmodel points or held in a queue for later insertion. Once all removals are known,
the index buffer’s removal index plane is sorted (in parallel) to obtain a list of freed positions in the model
point list, which is where new model points from the insertion queue are inserted. Further insertion points
are appended to the model list, unused freed positions remain tagged as free for future use.

Furthermore, by logging newly created vertex indices in the deep index map, the map is kept fully up to
date during fusion, which allows the final rendering stage to retrieve the latest model version directly from
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that map, without the need to one more time iterate over millions of points for rendering.
In summary, the proposed deep index map improves and speeds up critical operations throughout the

pipeline, which helps maintain real time rates with the curvature-enhanced online reconstruction pipeline.

5.8 Results

Since inception of the ICP algorithm [BM92, CM92], copious design variants have been implemented. In-
terplay of the different design decisions is non trivial, and the best holistic analysis of the ICP design space
available [RL01] predates real time, dense ICP implementations. This section will present a meaningful set
of comparisons and evaluations that expose the inherent benefits of the proposed approach.

This approachwill be compared to the following state-of-the-art techniques in the context ofKinectFusion-
like surface reconstruction, due to a combination of their availability, their proven high quality, and their
input-output compatibility.
Kell13: Thepoint-based approach given by Keller et al. [KLL+13]. The authors’ implementation has been

used.
Nies13: Niessner et al. [NZIS13] voxel-based hashing technique. The authors’ implementation has been

used³ with the finest grid resolution of 4 mm.
Sera15: Serafin and Grisetti introduce Dense Normal Based Point Cloud Registration (NICP) [SG14,

SG15]. Like the proposed approach, their method builds upon derivatives for improved reconstruc-
tion. Their publicly available implementation has been used⁴. Note that amodified version of Sera15
is also shown here where pre-bilateral filtered depth maps are used to compute the surface normals.
These filtered depth maps are the same as the ones used by the proposed method.
To have their computationally costly CPU implementation of NICP run in real time, Serafin and
Grisetti suggest to work on images of one quarter of the original size. However, to provide a fairer
quality comparison, NICPwas run offline, at full resolution (640×480, or 512×424, respectively);
consequently, the presented results would currently not be achievable within an online system.

Lefl17: the approach described in this chapter and proposed by Lefloch et al. [LKS+17] that uses curva-
ture information throughout the overall reconstruction pipeline. For further analysis, some innova-
tion of the proposed method were partially disable, to observe their effect on tracking quality (see
Section 5.8.3.

Various other approaches for online fusionhave beenproposed, using conceptually orthogonalways to ad-
dressdrift, includingoffline andonlineoptimiationof cameraposes and surface reconstruction [WWLVG09,

³Open-source code of [NZIS13]: http://graphics.stanford.edu/~niessner/niessner2013hashing.html
⁴Open-source code of [SG15]: http://jacoposerafin.com/nicp/
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WLSM+15, FTF+15]. In this work, however, the merits of comprehensive use of curvature information
throughout the reconstruction pipeline will be specifically shown.

 

 

(a) LEGO™ small scale

 

 

(b) LEGO™ big scale

 

 

(c) Brick wall

Figure 5.8.1: Objects used to create all sceneries. A 1€ coin ( = 2.325 cm) is used to visualise the
object scale.

The results will be presented using several reference data sets with and without geometric and/or camera
pose ground-truth:
Lego-PAMI-TT: The letter sequence “IEEE PAMI” constructed out of LEGO™ pieces on a 80 × 80 cm2
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ground plate is acquired using a range camera. The camera is fixed at about 80 cm height above the
scene, which resides on a precisely controllable turntable. The scene’s controlled rotation—one 360∘

revolution in the course of 1601 frames—yields ground-truth (relative) camera poses where the first
and the last positions coincide.
Twodifferent scalesof the “IEEEPAMI” scenehavebeenused: Lego-PAMI-TT×1 andLego-PAMI-TT×2

with a single and a double block width (uniform scale factor of 2), respectively (see Figure 5.8.1).
Geometry ground-truth with high precision is also provided using the LEGO™ Designer software
(http://ldd.lego.com/en-us/). However, the LEGO™ knobs (cylindrical connectors) are at
or below the depth resolution limit of current Kinect range cameras.

Lego-PAMI-Free: The two “IEEE PAMI” scenes are acquired with a free-hand uncontrolled camera mo-
tion at about 50 − 100 cm distance from the target and acquiring some 1,100 frames. Here, ground-
truth is available for geometry only, not for camera pose.

Stone-Wall: This data set by Zhou and Koltun [ZK13] comprises some 2,700 input frames of a wall with
approx. 5.8 m × 2.8 m × 0.7 m size, acquired with Asus Xtion Pro Live range camera and including
a prominent loop closure (www.stanford.edu/~qianyizh/projects/scenedata.html).

Brick-Wall: This scene comprises of a nearly planar wall with very thin depth features (≤ 4 mm) only
present at the wall’s brick interstices (see Figure 5.8.1). The wall was acquired using a hand guided
Kinect camera at a distance of approx. 50 − 100 cm, yielding some 800 depth frames. The scenery
covers approximately 1.80 × 1.70m.
Neither ground-truth of camera poses nor geometry are available.

Racing-Car-R3: Wasenmüller et al.’s time-of-flight sequence [WMS16] comeswith a high-quality ground-
truth mesh that allows for direct evaluation of reconstruction error.

mit_76-417b: The dataset by Xiao et al. [XOT13] offers a long-distance structured-light sweep of a large-
scale open office space, which is suitable to demonstrate performance for very large datasets, in terms
of both memory efficiency and camera drift over time.

Thethree scenesLego-PAMI-TT,Lego-PAMI-Free, andBrick-Wall havebeenacquiredusing theKinectSLand
theKinectToFcameras. Subscripts areused todistinguishbetween the twoKinect types, e.g.,Lego-PAMI-TT𝑆𝐿
andLego-PAMI-TT𝑇𝑜𝐹 . TheKinectSLand theKinectToFhave quite different quality levels for depth, noise,
and other error sources; see Sarbolandi et al. [SLK15] for a detailed discussion.

5.8.1 Qualitative Evaluation

We first demonstrate the robustness of the proposed method in a qualitative way by visually comparing its
reconstruction results to state-of-the-art methods.
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Kell13 [KLL+13] Nies13 [NZIS13] Lefl17 [LKS+17]

Figure 5.8.2: Comparison of reconstructions for the Lego-PAMI-Free sequences.
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Brick-Wall𝑇𝑜𝐹 Brick-Wall𝑆𝐿

Figure 5.8.3: Comparison of reconstructions for the Brick-Wall sequences.

Figure 5.8.2 shows a reconstruction comparison using allLego-PAMI-Free data sets. Even for the double
sized LEGO™ scene (rows 1 and 2) some of the state-of-the-art methods, like Nies13 have severe difficul-
ties in tracking the cameramotion. In general, the tracking ismore robust for KinectToFdata sets than for the
KinectSLones, which is most likely due to its better quality in depth resolution and noise [SLK15]. Rows 3
and 4 in Figure 5.8.2 demonstrates the robustness of the curvature-enhanced tracking method. Virtually all
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state-of-the-art methods completely fail to retrieve a valid cameramotion and/or an appropriate reconstruc-
tion for the small scale scenery Lego-PAMI-Free×1

𝑆𝐿/𝑇𝑜𝐹 , whereas the proposed method yields robust
reconstruction even for the KinectSLwith its lower depth quality.

Figure 5.8.3, top row, shows the reconstruction of the Brick-Wall𝑇𝑜𝐹 . Note how well the proposed
method is able to robustly reconstruct the subtle wall structure. Nevertheless, this method is still not able to
properly reconstruct the KinectSLacquired scenery Brick-Wall𝑆𝐿 (see Section 5.9).
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Figure 5.8.4: Comparison of reconstructions for the Stone-Wall𝑆𝐿 sequence, reconstructed using the
offline global optimiser from Zhou and Koltun [ZK13] (top row) and the proposed method (bottom row).
The two first columns refer to the right pillar of the stonewall and the two last columns to the left pillar
of the stonewall, where the acquisition starts and ends.

For completeness, Figure5.8.4 compares theproposedapproachagainst theofflineglobal optimiserZhou13.
The proposed approach shows no apparent drift, i.e., when returning to the initial camera pose, and seam-
lessly completes the model. Be aware that the proposed method leads to an artifact-free reconstruction due
to a valid egomotion. However, a one-to-one comparisonof visual results is not possible since bothmethods
use different model representation (TSDF over a uniform voxel grid and point-based).

5.8.2 Quantitative Ground-truth Evaluations

The following series of experiments considers scenarios in which a reliable ground-truth exists for compari-
son.
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A)CameraTracking Camera tracking accuracy is evaluatedusing the turntabledatasetLego-PAMI-TT,
which provides a measure of the robustness of the compared methods. Due to the rigid acquisition setup,
the camera pose estimated in the ICP should ideally result in an equidistantly sampled, perfect circle, with
a constantly rotated optical axis. Therefore, reference poses are generated in order to evaluate the estimated
camera poses as follows:

1. RANSAC fit of camera poses to a plane, removing the influence of outliers,
2. RANSAC fit of a circle in the plane to the projected camera centres, and
3. projection of the initial camera pose to the circle as starting point for regularly sample the circle.

Using these reference camera poses, the camera centre error is calculated as the Euclidean distance between
the estimated ICP-pose and the corresponding reference point. In order to compute the rotation angle error
the angular argument of the rotational transformation matrix is extracted between the initial pose 0 and the
current pose at 𝑡 and is compared against the ideal angular offsetΔ𝑝 = (360/1600)∘ betweenneighbouring
frames: ∣ angle(R𝑡R0

⊤) − 𝑡Δ𝑝 ∣.
The reconstructed geometry is quantitatively evaluated for all Lego-PAMI-TT data sets by extracting the

relevant scenery from reconstructed geometry, registering the reconstructed geometry to the ground-truth
LEGO™ model and, finally, computing distance errors using CloudCompare [GM13].

Tab. 5.8.1 and Tab. 5.8.2 present plots of the camera centre and the camera rotation angle errors, images
of the geometric reconstruction error, and error statistics (mean, standard deviation, min and max) for the
Lego-PAMI-TT𝑆𝐿/𝑇𝑜𝐹 data sets. (For Lego-PAMI-TT×1

𝑇𝑜𝐹 , Sera15 was unable to lock onto the geome-
try, producing an invalid trajectory of an almost static camera position; these results are hence excluded.)

As expected, the worse signal-to-noise ratio for smaller geometric features of the small scale datasets
Lego-PAMI-TT×1 decreases the stability of the ICP-based camera tracker, leading to larger camera cen-
tre and rotation angle errors for all methods. Apparently, the proposed method is much more robust than
the state-of-the-art methods, which have severe difficulties to retrieve the correct ego motion.

Comparing the small scalewith the large-scale data setLego-PAMI-TT×2
𝑇𝑜𝐹 , two facts seem tobe counter-

intuitive. Firstly, the geometric error for the small scene is smaller than for the large scene, even though the
tracking is less robust, and, secondly, the proposedmethod yields slightly larger camera centre and rotational
angle errors for the large-scale data set Lego-PAMI-TT×2

𝑇𝑜𝐹 than state-the-art methods. The first aspect is
explained by comparing a single input frame to the ground-truth geometry. This results in less geometric er-
ror for the small scale (mean=0.590, SD=0.557, min=0, max=5.943) than for the big scale (mean=0.745,
SD=0.766, min=0, max=6.659). This is most likely due to different camera error effects such as multi-path,
flying pixel, etc. [SLK15]. Furthermore, the averaging applied within any KinectFusion-like approach erases
geometric errors due to erroneous tracking after some frames. We have no consistent explanation for the
second aspect, i.e., the smaller rotation angle error in conjunction with an extreme camera centre error for
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Figure 5.8.5: Mean error (top row) and SD (bottom row) for estimated camera centres (left) and
rotational angles (right) with increasing noise for the Lego-PAMI-TT×2

𝑇𝑜𝐹 scene. Data points where the
camera tracking completely failed are omitted. In order to make the results comparable, the results for
a modified version of Sera15 is included using bilaterally pre-filtered depth images.

Kell13. However, the proposed approach is the only one robust according to both, camera centre and rota-
tion angle error.

B) Impact of Noise As the proposed method is based on second-order derivatives, and because deriva-
tives are known to be sensitive to noise, a systematic study on the influence of noise on the camera tracking
accuracy was conducted.

The following noise evaluation is based on the large-scale turntable data setLego-PAMI-TT×2
ToF. As in the

previous section, circle fitting is used to create reference poses.
The estimated camera trajectories at different levels of (Gaussian) noise is evaluated. Starting from a

noise level typical for ToF cameras, we successively increase the noise’s standard deviation by integer fac-
tors, through addition of normal-distributed noise to the original (noisy) depth values; for the principal
point of the KinectToF, the SD for measured depth values at 80 cm distance (Lego-PAMI-TT×2

ToF) is about
1.1 mm, see Sarbolandi et al. [SLK15].

A complete comparison between Kell13 [KLL+13], Nies13 [NZIS13] and Sera15 [SG14, SG15] is
given. Kell13,Nies13, and the proposed method [LKS+17] have in common that they use a bilateral pre-
filter tomitigate noise. Sera15does not pre-filter and hence ismore susceptible to noise. In order to ensure a
meaningful comparison even toward higher noise levels, we additionally evaluate a version where bilaterally
pre-filtered images are given to NICP (Sera15 (modified)).
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Error Type
Methods
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Table 5.8.1: Comparison of the ego-motion robustness for three different methods based on small (top
row) and large (bottom row) scales of Lego-PAMI-TTSL data sets. Bold numbers refer to the smallest
error for each given error statistic.

89



CHAPTER 5. CURVATURE-AWARE POINT-BASED FUSION

Error Type
Methods
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Table 5.8.2: Comparison of the ego-motion robustness for three different methods based on small
(top row) and large (bottom row) scales of Lego-PAMI-TTToF data sets. Bold numbers refer to the
smallest error for each given error statistic. Reconstruction runs where a method’s camera tracking failed
completely are left out from the comparison (and marked as ∅).
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Kell13 Nies13 Lefl17
Mean, SD 10.405, 12.757 25.371, 24.093 9.250, 9.743
Min, Max 0.000, 155.180 0.000, 200.466 0.000, 153.895

Table 5.8.3: Absolute distance error [mm] for the Racing-Car-R3𝑇𝑜𝐹 sequence [WMS16]. For every
model point, the absolute distance error to the ground-truth mesh is calculated.

In all of these experiments, the bilateral filter with the same values: 𝜎D = 2.5, 𝜎R = 0.03, 𝑟filter = 5. For
Kell13, we further enabled the use of positions from the bilaterally filtered map in their fusion stage,which
otherwise would use positions from unfiltered data.

Figure 5.8.5 shows the resultingmean error (top row) and SD (bottom row) for estimated camera centres
(left) and rotational angles (right).

Wegenerally observe that the proposedmethod reliably produces lowest error at first, while it suffersmore
than others as noise levels become very high. Depending on the error quantity considered, the cross-over
point lies between five to twelve times of the natural noise level (SD 5.5–13.2 mm in our experiment); for
a reference of scale, consider that the Lego-PAMI-TT×2

𝑇𝑜𝐹 data set consists of LEGO™ double blocks with
a height of 19.2 mm, without knobs.

We hence argue that under realistic imaging conditions, the benefits of incorporation of curvature tend to
prevail; only in particularly high-noise scenarios, alternative approaches should be preferred.

C)SurfaceReconstructionError TheRacing-Car-R3𝑇𝑜𝐹 sequencebyWasenmüller et al. [WMS16]
provides a high-quality ground-truth geometry for a complex object. The reconstructions computed with
Kell13, Nies13, and the proposed approach are compared to the ground-truth geometry. The floor was
removed manually so that only the relevant scenery remains, the reconstructed geometry was registered to
the ground-truth mesh and the distance error was computed using CloudCompare [GM13].

For Nies13, the voxel size was changed from 4 mm (default) to 6 mm; with the default settings, their
method stopped adding depth data and produced a corrupted output mesh. For Kell13, the removal of
dynamic parts of the scene was disabled. All other parameters were kept unchanged (default values).

Figure 5.8.6 shows the absolute distance error [m] to the ground-truthmesh. See Tab. 5.8.3 for mean and
standard-deviation of the corresponding reconstruction errors.

The proposed method generally provides significantly lower reconstruction error thanNies13, while of-
fering amore complete reconstruction (featuring fewer holes) thanKell13, which otherwise shows compet-
itive reconstruction error.
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Figure 5.8.6: Comparison of reconstructions for the Racing-Car-R3𝑇𝑜𝐹 sequence by Wasenmüller
et al. [WMS16]. For every model point, the absolute distance error [m] to the ground-truth mesh is
visualised using the CloudCompare tool [GM13].

5.8.3 Contributors to Robustness

An experiment was conducted in order to evaluate and justify the use of curvature in the individual stages of
the proposed reconstruction pipeline. The following variants of the proposed algorithm are compared.
Base: Theproposed reconstruction pipeline with deactivated curvaturemethods for ICP correspondences

finding, ICP optimisation, and local surface reconstruction, yielding reconstructions equivalent to
Keller et al. [KLL+13].

ICPWeight: Base plus activated curvature based ICP weighting scheme (see Section 5.4.2).
Correspondence Finding: Base plus activated curvature based ICP correspondences finding (see Sec-

tion 5.4.1).
Local Reconstruction: Base plus activated enhanced local surface reconstruction using curvature infor-

mation and blending (see Section 5.5).
The small-scale turntable data set Lego-PAMI-TT×1

𝑆𝐿 is used, which consists of 1600 frames for a com-
plete 360∘ turn (0.225∘ frame-to-frame rotation) and provides a camera pose reference. This data set is
most challenging, as it has little depth variation. Furthermore, the frame-to-frame motion is increased by
taking one every 𝑛th frame, 𝑛 ∈ {5, 15, 25, 35, 45, 55, 65}, resulting in a total of seven experiments and
five variants of the reconstruction pipeline.

Tab. 5.8.4 shows the camera centre error statistics for all methods and experiments. Results are only
evaluated, if the camera tracking stage of the variant does not completely fail. More precisely, each of the
methods that process the full frames of the turntable sequence Lego-PAMI-TT×1

𝑆𝐿 give a radius of the fit-
ted circle equals to 26 ± 0.5 cm. Thus, experiment trajectories are rejected from the evaluation if their
radius is not close enough to this radius. As can be seen from the results, weighting has a strong impact
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and for inter-frame rotation up to 45 × 0.225∘ = 10.125∘ weighting alone has very similar results com-
pared to the fully curvature equipped method. Furthermore, curvature-based correspondences finding as
well as local surface reconstruction improve on the base algorithm, failing beyond an inter-frame rotation of
15 × 0.225∘ = 3.375∘. Weighting alone exhibits strongly decreased robustness at an inter-frame rotation
of 55 × 0.225∘ = 12.375∘ and fails afterwards.

For completeness, the proposed approach starts degenerating beyond an inter-frame rotation up to 66 ×
0.225∘ = 14.85∘, thus applying all curvature-based components clearly leads to improved robustness of
the overall reconstruction system compared to an isolated curvature component based application.
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𝜇 ± 𝜎 𝜇 ± 𝜎 𝜇 ± 𝜎 𝜇 ± 𝜎 𝜇 ± 𝜎
Min-Max Min-Max Min-Max Min-Max Min-Max

1 ∶ 5 3.25 ± 0.59 0.62 ± 0.23 2.97 ± 0.55 2.97 ± 0.53 0.45 ± 0.13
0.06 − 4.00 0.09 − 0.95 0.02 − 3.68 0.05 − 3.65 0.09 − 0.72

1 ∶ 15 2.78 ± 0.55 0.55 ± 0.17 2.43 ± 0.48 2.35 ± 0.47 0.43 ± 0.14
0.07 − 3.31 0.01 − 1.00 0.06 − 2.91 0.01 − 2.86 0.12 − 0.85

1 ∶ 25 ∅ 0.55 ± 0.15 2.00 ± 0.48 1.91 ± 0.46 0.46 ± 0.15
0.05 − 0.83 0.05 − 2.51 0.02 − 2.42 0.12 − 0.76

1 ∶ 35 ∅ 0.57 ± 0.17 2.07 ± 0.50 ∅ 0.49 ± 0.13
0.12 − 0.83 0.03 − 2.58 0.16 − 0.81

1 ∶ 45 ∅ 0.59 ± 0.21 ∅ ∅ 0.51 ± 0.15
0.13 − 0.91 0.20 − 0.84

1 ∶ 55 ∅ 7.86 ± 1.36 ∅ ∅ 0.52 ± 0.15
0.97 − 8.56 0.20 − 0.86

1 ∶ 65 ∅ ∅ ∅ ∅ 0.56 ± 0.18
0.18 − 0.90

Table 5.8.4: Camera centre error statistics in cm for the robustness experiment based on the
Lego-PAMI-TT×1

SL and applied to Kell13, improved version of Kell13 and the fully curvature enhanced
pipeline [LKS+17]. 1 ∶ 𝑛 indicates that every 𝑛th frame is used for reconstruction. Bold numbers
indicate the lowest error in its category and ∅ refers to a complete failure of the camera tracker.

5.8.4 Scalability

The proposed approach is compared to Keller et al. [KLL+13] and Niessner et al. [NZIS13] on the large
scenemit_76-417bSL by Xiao et al. [XOT13].

ForNies13, the voxel size was changed from 4 mm to 10 mm. With 4 mm,Nies13 stopped adding depth
data in the beginning of the scene. ForKell13, the removal of dynamic parts of the scene is disabled.

Figure 5.8.7 shows the reconstructions for themit_76-417b𝑆𝐿 sequence by Xiao et al. [XOT13]. Using
CloudCompare [GM13], the reconstructions are aligned and rendered using EDL (Eye-Dome Lighting).
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Still frame of an ElasticFu-
sion [WLSM+15] demonstration.

Figure 5.8.7: Comparison of reconstructions for the mit_76-417b𝑆𝐿 sequence by Xiao et al. [XOT13].

Kell13 lost ICP tracking and could not recover. See the inset for a reconstruction with ElasticFusion, as
shown in their video available at the following link⁵.

On this challengingdataset that is prone todriftover large scales, the proposedmethodgenerally performs
as well as, or better than, Nies13. As far as visible in the video, ElasticFusion, which employs non-rigid
surface deformation, preserves rectilinearity of the office isles better; we note that their deformation scheme
is a design decision orthogonal to the incorporation of curvature, and it is conceivable that both could be
combined.

Lastly, note that the proposed reconstruction consists of 24,630,119 surfels, while themit_76-417b𝑆𝐿
sequenceconsists of11,158 frames. Thisdemonstrates the space-efficiencyof thepoint-based-fusion scheme,

⁵Video results of ElasticFusion [WLSM+15]: https://youtu.be/-dz_VauPjEU?t=3m52s.
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where each input frame on average contributes only 2,207 points to the final model.

5.8.5 Live Results

The reader is referred to the following link⁶ presenting the advantages of using curvature information for on-
line 3-D reconstruction application. The video (see Figure 5.8.8 for a thumbnail) shows the improvements
of stability and robustness of the camera tracking module compared to state-of-the-art approaches.

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8.8: Still images extracted from the video results of this work [LKS+17].

5.9 Discussion

This chapter presents a novel real time, point-based reconstruction framework for robust surface extraction
using curvature as an independent quantity. The proposed approach significantly reduces drift, thus im-
proving camera tracking and reconstruction quality. Particularly, this method is able to robustly reconstruct
scenes with very low depth-feature information, not possible with state-of-the-art methods. Finally, a new
benchmark data set was built that provides ground-truth camera poses and geometry using bothKinect cam-
eras, supporting further research in the field.

The proposed approach is still limited in not being able to successfully reconstruct scenes with few depth
features, when the input depth maps have a high noise level. Fig. 5.8.3, bottom row, shows such a failure
case for theBrick-Wall𝑆𝐿 sequence, for which the brick structure is still discernible in the individual input
frame of the KinectSLcamera.

⁶Video results of Curvature-Based Fusion [LKS+17]: https://www.youtube.com/watch?v=o6-GN7DbynA.
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Finally, this method does not solve explicitly loop closure, only reduce the overall camera drift, thus prob-
lems could still occur for large-scale scenarios.
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One person’s data is another person’s noise.

K.C. Cole (∗1946)
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𝒯his chapter describes a new 3-D reconstruction framework that takes into account the intrin-
sic camera noise model to better fuse data into a single model. To do so, new information is
stored into the global representation that describes the anisotropic behaviour of depth sensor

noise. Since this information is using memory storage per model points, a new compression scheme has
been proposed to reduce drastically the total memory footprint of the global model.
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6.1 Introduction and Prior Work

As already seen inChapter 4,many online3-D reconstruction systems share a three-stage process, consisting
of the following components:

1. Depth Map Pre-processing: The range map delivered by the Kinect camera is pre-processed, e.g.,
using bilateral filtering, and additional data such as normals are estimated for each range map pixel.

2. Camera Pose Estimation: Based on the current observation and the so far accumulated model, the
camera pose is estimated using an ICP approach [BM92].

3. Depth Map Fusion: In this step the registered input range map is accumulated into the existing
model representation.

One aspect that has insufficiently been addressed so far is the anisotropic nature of the input data. The
spatial uncertainty of an individual pixel of the input range map is determined by two factors:
a) the lateral pixel extendwhich is given by the lateral resolution of the camera chip and the intrinsic param-

eters of the camera, i.e, focal length, principal point and lens distortion, in combination with the depth
value, i.e. the distance from the camera, and

b) the depth noise of the sensor, which itself strongly depends on the underlying range measurement princi-
ple.

There are already someworks onnoisemodels for range devices, e.g., forToF cameras such as the newgen-
eration of the Kinect camera. Falie et al. [FB07] present a noise model based on phenomenological consid-
erations, which predicts a range error as a function of the amplitude and the distance value of a specific pixel.
For an overview of denoising approaches for ToF cameras, refers to the survey of Lenzen et al. [LKS+13]]
(see also Section 2.4). Often simple Gaussian noise models are assumed, e.g., in the context of motion cap-
turing [GPKT10].

So far, the anisotropyof the input datahasnot been considered in the context of real time scene acquisition.
However, Maier-Hein et al. [MHFdS+12] introduce a method in order to improve ICP-based registration
of ToF range maps with respect to a given polygonal model in the context of medical applications.

This chapter presents a new real time framework, for efficient reconstruction of large-scale scenery incor-
porating the anisotropyof the input data. Theproposed systemuses an enhancedpoint-based representation
similar to Keller et al. [KLL+13], but not bound to it, which is capable in handling anisotropy in the depth
map fusion step. The main contributions of this chapter are

• a novel symmetric anisotropic distancemeasure that is applied to establishmore robust correspondences
between input and model points in the fusion step, and

• a novel anisotropy-aware fusion technique for accumulation of anisotropic input data into the model,
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• a data compression scheme for point-based model representation implying an efficient storage of at-
tributes per-point.

Furthermore, a solid evaluation of both, the data compression scheme and the anisotropic accumulation
approach, and their impact on the reconstruction quality is presented.

6.2 Anisotropic Point-based Fusion

In contrast to the work presented inChapter 5 where curvature information is stored as a point attribute, the
following section introduces a new reconstruction framework that stores additional per-point properties:
the symmetric, 3 × 3, anisotropic noise covariance matrix Σ(u), represented as 6 floats per point.

6.2.1 Anisotropy

So far, real time reconstruction methods with range maps have ignored the anisotropic nature of the range
data. The anisotropy results from the fact, that the reliability of a 3-D point in a range map is much higher
in lateral direction than in axial direction, as the lateral uncertainty is only limited by the pixel size and, due
to the perspective mapping, by the distance. The axial uncertainty is defined by the noise of the acquisition
device, i.e. the Kinect camera, which, for example, increases for larger object-to-camera distances. Maier-
Hein et al. [MHFdS+12]model the standard deviation as a function over distance. Themodel for theKinect
camera proposed by Nguyen et al. [NIL12] is used in order to compute the variance of the noise based on
the 𝑧-distance.

Given a covariancematrix Σp for a point p ∈ ℝ3, theMahalanobis distance of any other point q ∈ ℝ3 can
be calculated based on the inverse of the covariance matrix Σ−1

p , which is also called reliability matrix:

𝑑p,Σ(q) = √(q − p)⊤Σ−1
p (q − p) .

the symmetric 3 × 3 reliability matrix Σ−1
p is directly stored leading to 6 additional values per point.

Similar to Maier-Hein et al. [MHFdS+12], the data association is built before data fusion using the fol-
lowing anisotropic model. Whereas [MHFdS+12] uses the Malahanobis distance based on the inverse of
the sum of the covariance matrix (Σp + Σq)−1, the presented method minimises the sum of both Mala-
hanobis distances 𝑑p,Σ(p − q) + 𝑑q,Σ(p − q) in order to choose the best associated corresponding pair
for registration. The main reason of this approach is performance. As the reliability matrix Σ−1

p is stored,
applying Maier-Hein et al. [MHFdS+12] would require three additional matrix inversions per point-pair
comparison. Note that several experiments have been done in order to compare this simple minimisation
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to the one proposed in [MHFdS+12]. All experiments were leading to the same result, i.e, same point pair.
This validates the choice to keep the proposed data association for a better efficiency.

6.2.2 Anisotropic Fusion

The accumulation of range data in the anisotropic case has to consider the non-uniformity of distance mea-
surements given by the depth sensor. Similar to the geometric fusion, the anisotropic noise model should
be refined over time. Therefore, the geometric and anisotropic fusion procedures have to be reformulated
by convex combinations for accumulating of the point’s mean and the accumulation of the reliability matrix.

Considering two different points p𝑖 with covariancematrices Σp𝑖
, 𝑖 = 1, 2, and point q lying on the line

segment between p1 and p2, ameaningful definition of an anisotropic split ratio𝛽 of qwith respect to p1 and
p2 is given by

q =
𝑑p2,Σ2

(q)
𝑑p1,Σ1

(q) + 𝑑p2,Σ2
(q) p1 +

𝑑p1,Σ1
(q)

𝑑p1,Σ1
(q) + 𝑑p2,Σ2

(q) p2

= (1 − 𝛽)p1 + 𝛽p2, with 𝛽 =
𝑑p1,Σ1

(q)
𝑑p1,Σ1

(q) + 𝑑p2,Σ2
(q) . (6.1)

To create an analogy to PBF, the points p1, p2 and q are referring to the model point, the corresponding
input point and the resulting merged point respectively.

Since q is the resulting merged point, the anisotropic split ratio 𝛽 needs to be reformulated as given in
Eq. (6.1). Defining q as affine combination q = (1 − 𝛼)p1 + 𝛼p2 for some 𝛼 ∈ [0, 1] and exploiting, that
theMahalanobis distance simply scales the isotropic distance values for a given direction, fromEq. (6.1) the
anisotropic split ratio becomes

𝛽 =
𝑑p1,Σ1

((1 − 𝛼)p1 + 𝛼p2)
𝑑p1,Σ1

((1 − 𝛼)p1 + 𝛼p2) + 𝑑p2,Σ2
((1 − 𝛼)p1 + 𝛼p2)

=
𝛼𝑑p1,Σ1

(p2)
(1 − 𝛼)𝑑p2,Σ2

(p1) + 𝛼𝑑p1,Σ1
(p2) . (6.2)

Inverting Eq. (6.2), the proper affine weight 𝛼 has to be applied to achieve the desired anisotropic split ratio
𝛽

𝛼 =
𝛽𝑑p1,Σ1

(p2)
(1 − 𝛽)𝑑p2,Σ2

(p1) + 𝛽𝑑p1,Σ1
(p2) .

Additionally, the anisotropic split ratio 𝛽 is used to accumulate the point normals.
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Regarding the model accumulation of the covariance represented in the same coordinate system, the ap-
proach proposed byKerl et al. [KSSC14] is applied. They define the covariance accumulation by adding the
reliability, i.e. given an input and a model covariance matrices Σin

𝑖 and Σmod
𝑖 for a corresponding input and

model point for frame 𝑖, respectively, the fused covariance matrix reads

(Σ̂mod
𝑖 )−1 = (Σmod

𝑖 )−1 + (Σin
𝑖 )−1 . (6.3)

Note that in order to transform the covariancematrixΣmod
𝑖mod

to the same coordinate systemof the input frame
Σmod

𝑖 , the following transformation is required:

Σmod
𝑖 = (R⊤

𝑖→WC ⋅ R𝑖mod→WC)Σmod
𝑖mod

(R⊤
𝑖→WC ⋅ R𝑖mod→WC)⊤ ,

withR𝑖mod→WC andR𝑖→WC referring to the rotational part of the transformationsT𝑖mod→WC andT𝑖→WC to
pass from local to world coordinates (WC), respectively.

6.3 Implementation

Notation: In the following, the data type nomenclature given by [CDE+14] is adopted where uint𝑏 refers
to a positive integer with 𝑏 bits representing integers on [0, 2𝑏−1] and float𝑏 is the floating-point represen-
tation with 𝑏 bits in total describing sign, mantissa and exponent.

In order to store the symmetric reliability matrix (Σ𝑚𝑜𝑑
𝑖 )−1 for each point inside the proposed model

representation, an efficient reduction of memory footprint for the point properties is required to preserve
the scalability of the overall acquisition system. Salas-Moreno et al. [SMGKD14] propose a point-based
accumulation model which directly reduces the total number of points by efficiently encoding points be-
longing to the same planar surface using a new planar representation. The method was shown to be robust
and efficient, but it is mainly designed for indoor scenes, which comprise many planar regions.

Since the storage cost of the point-based fusion framework must be reduced for any type of data set, e.g.,
see Fig. 6.3.1 a scene from Zhou et al. [ZK13], a direct compression of point properties is applied. A naive
way to store all required point properties such as, position, normal, radius, confidence counter and times-
tamp, would require 9 float32 scalars leading to a total of 288 bits per point.

To reduce thememory footprintof the surfacenormalproperty, themethodproposedbyPraunet al. [PH03]
designed to compress unit vectors is used efficiently. Thismethod first maps the unit sphere to a unit octahe-
dron that is later on unfolded to the 𝑧 = 0 plane. This method is known as one of the best approaches
to compress unit vectors rapidly and robustly. Recently a survey of unit vector compression by Cigolle
et al. [CDE+14] shows that the simple octahedron compression (non-numerically optimised) using 16 bits

101



CHAPTER 6. ANISOTROPIC POINT-BASED FUSION

 

 

Figure 6.3.1: Advanced rendering of the extracted surface mesh given by the proposed point-based
reconstruction framework (Totempole scene).

encoding (i.e. enc16) for both texture coordinates leads to a mean error angle of 0.37709∘ whereas the one
using 32 bits (i.e. enc32) leads to a mean error of 0.00131∘. At a first glance, a mean error of less than half
a degree might appear negligible, it is shown in the following that the impact of the 8 bits encoding on the
accumulation significantly coarsens the final reconstructed model. Fig. 6.3.2 gives a visual comparison of
different encoding schemes applied to theTotempole data set.

The point position is also compressed by partially adopting the same method. First, all model points are
expressed in their local coordinate referring to the camera position fromwhich they were last observed. The
original point based fusionmethod [KLL+13] represents themodel points inworld coordinates. Practically,
once a fusion of an input point and model point occurs, the new average model point will be represented
in the camera coordinate system of the current input frame 𝑖. This representation enables us to encode the
vertices using their viewing direction and their polar distance. The same procedure can be used to encode
the viewing ray as applied to the normal vector. Assuming that consumer depth cameras only provide range
measurements up to a maximum radial distance of 10 meters with millimetre precision. Thus, the polar
distance 𝜌 expressed in meter can be stored on one uint16 scalar applying the following encoding 𝜌𝑒 =
⌊6553.5 × 𝜌⌉¹. This vertex position encoding requires only 32 + 16 = 48 bits per model point in contrast
to the usual 3 × 32 = 96 bit storage.

The drawback of this method is that it requires to save all camera pose transformations T𝑖→WC in order

¹⌊∗⌉ refers to the closest integer rounding operation.
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Figure 6.3.2: Comparison of three different compression schemes at frame 380 of the Totempole scene
using the proposed SSAO surfel splatting. The compression enc16 (top) leads to a coarser model
compared to the original, uncompressed version (centre). However, enc32 (bottom) shows
negligible visual difference. The second column refers to the colour coded normal maps.

to transform all model points to a common world coordinates. Nevertheless, in Section 6.4 this additional
data is shown to have little influence on the achieved compression ratio.

The remaining properties, i.e., radius, timestamp and confidence counter, are also encoded using a simple
quantisation. For the timestamp 𝑡, auint16 scalar is chosen leading to amaximumframe idof 65535. Using
a30Hzcamera, it representsmore than30minutes acquisition time,which is sufficient formost applications.
The confidence counter is described as a uint8 scalar since it is usually clamped with a maximum value of
255 in order to adapt to changes in the scene [NDI+11]. Similar to Weise et al. [WWLVG09], the radius
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property is computed by using the following formula

ℛ(u) = 𝛿pix × max(𝑠𝑥, 𝑠𝑦)
𝑓 × 𝒟(u)

𝒩(u) ⋅ [0, 0, 1]⊤ , (6.4)

where 𝑓 , 𝑠𝑥 and 𝑠𝑦 are given by the intrinsic parameters of the camera. 𝛿pix represents the half of the pixel’s
diagonal

√
2

2 . As seen previously, the z-distance cannot exceed 10 meters and a valid range measurement
of depth camera usually occurs when the surface normal describes an oblique angle smaller than 80∘ with
the camera direction [KLL+13]). Thus, a maximum radius size of an input point is defined by 𝑟max =

5
√

2
cos(80∘) × max(𝑠𝑥,𝑠𝑦)

𝑓 . Additionally, the intrinsic parameter’s ratio max(𝑠𝑥,𝑠𝑦)
𝑓 can be considered to be in

any case smaller than 1
200 which leads to a maximum radius size of 𝑟max ≈ 0.2 meters, which is a quite

conservative upper bound for real world applications. Thus, the radius is encoded as a uint16 scalar giving
𝑟𝑒 = ⌊327.675 × 𝑟⌉.

In summary, the proposed encoding results in a storage of 2 float32, 3 uint16 and 1 uint8 scalars (120
bits + 8 bits alignment cut-off) for the set of point properties, in contrast to the naive storage of 9 float32
scalars (288 bits), which leads to a compression ratio of 1 ∶ 2.25. This compression scheme leads to a
negligible difference in contrast to the original point-based fusion method (see Section 6.4 for a detailed
evaluation).

6.4 Results

In order to evaluate the proposed method, four different data sets are used. Two real world data sets are
used to evaluate the proposed compression method without storing or processing the anisotropy. Two sim-
ulated data sets are used to obtain a quantitative comparison of the isotropic reconstruction with the novel
anisotropic accumulation scheme (with compression enabled in both instances).
Totempole: This data set is provided byZhou et al. [ZK13] and consists of 8853RGB-D frames (≈ 5min-

utes of acquisition time) given by a Kinect-like camera. Figure 6.3.1 shows the reconstructed scene
given by the proposed framework. Note that for this data set only pseudo-ground-truth of camera
pose and geometry is given, based on the approach by Zhou².

Office: This data set is provided by Kerl et al. [KSC13] and contains 2509 RGB-D frames (≈ 1.4 minutes
of acquisition time) given by a Kinect-like camera, see Figure 6.4.1. The data set includes the camera
path ground-truth acquired by an infrared tracking system and was designed for SLAM benchmark
applications³.

²Available at http://qianyi.info/scenedata.html
³Available at http://vision.in.tum.de/data/datasets/rgbd-dataset
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Buddha: This data set is generated using a ToF simulator, which is an enhanced version of Keller and
Kolb [KK09], applied to the Stanford Buddha model scaled to 3 meters height. It is composed of
237 depth frames disturbed with Gaussian noise on the computed polar distance using the formula-
tionofNguyen et al. [NIL12] for theKinectSLcamera. This formulation relates the standarddeviation
of the 𝑧-distance noise to the measured distance via a second-degree polynomial and was modelled
using images of planar regions located at different distances.

Statue: This second simulated data set is generated in the same way as the Buddha scene and consists of
286 frames.

 

 

Figure 6.4.1: Overview of the Office scene data set from [KSC13].

6.4.1 Encoding Evaluation

Inorder to evaluate theproposedcompression representation, twodata sets areusedgivenby theTotempole
and theOffice scenes. The following three representations are compared to each other:
naive storage: refers to the original PBF framework proposed by [KLL+13] (uncompressed model).
enc16: compresses normals and viewing rays in low-resolution, 16-bit representation.
enc32: compresses normals and viewing rays in high-resolution, 32-bit representation.

The Totempole data set is used to highlight the visual quality and the storage ratio. The proposed com-
pression scheme retains the visual reconstruction quality if the enc32 compression is used for unit vector
representations; see Fig. 6.3.2. Concerning the storage gain, the final Totempole reconstructed model is
composed of 7,822,519 oriented points. The naive storage method (9 float32 scalars) will lead to a mem-
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ory usage of 269 MB where the proposed compression scheme leads to a memory usage of 104.4 MB (+
7.5MBalignment cut-off). However, this method requires the storage of all the camera poses (8853 × 12
float32 scalars) which enlarges the memory footprint by 415 KB, i.e. by 0.4%.

TheOffice data set is used in order to quantitatively evaluate the compression scheme against the camera
tracking and the reconstructed geometry quality. Fig. 6.4.2 shows the camera centre position errors com-
puted by the ICP algorithm for the naive storage, the enc16 and enc32 encoding schemes. Whereas the
enc16 encoding leads to a higher error in terms of the camera pose estimation, the enc32 encoding gives
camera pose errors very close to the uncompressed method. Additionally, we evaluate the quality of the
geometry model reconstructed by each compression scheme. Since no geometry ground-truth is given, a
pseudo-ground-truth is generatedby applying the reconstruction frameworkwithout compressionusing the
ground-truth camera poses. This generated geometry pseudo-ground-truth is compared to three different
reconstruction methods that all use the ICP algorithm to track the camera motion. Fig. 6.4.3 shows the Eu-
clidean distance errors of the enc16, enc32 and uncompressed storage. Note how negligible the difference
is between the enc32 and the naive storage. For a better view on the distance error statistics comparison,
refer to Tab. 6.4.1.

 

frameId

C
am

er
a 

ce
nt

er
 e

rr
or

s 
(m

)

0.1

0.2

1000 2000

naive

enc16

enc32

 

Figure 6.4.2: Camera position errors using the pose ground-truth with the naive representation and the
two different compression schemes for the Office data set.

6.4.2 Anisotropic Fusion Evaluation

In order to evaluate the benefit of the anisotropic fusion, it is important to have proper ground-truth of
the scene geometry. Therefore, simulated data sets are used, i.e., the Buddha and the Statue scenes. The
proposed approach is applied on two different scenarios processing the full depth sequences with known
ground-truth camera poses. Since only the anisotropic fusion is evaluated, the ground-truth camera poses
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Figure 6.4.3: Colour-coding of the geometry distance errors of the Office scene for different compression
schemes. The reconstruction using the enc16 (left), the uncompressed (centre) and the enc32
encoding (right). The images are generated using the CloudCompare software [GM13].

Methods enc16 naive enc32

Error Distances 24.0±18.3 12.2±10.31 13.0±10.6
mean±std (mm)

Table 6.4.1: Distance error statistics for the Office scene experiment.

given by theToF simulator is used in order to avoid any external error introduced by the ICP algorithm. First,
thedata is processedusing a simple isotropic fusion as it is commonlydone forKinectFusion-like approaches.
Whereas the other scenario consists of processing the data sequence with anisotropic fusion. Both resulted
point clouds are compared to the ground-truthmesh. For each point, theminimal distance error to all mesh
faces is computed.

Fig. 6.4.5 (left) shows a close view of the point distance errors in the isotropic case, and (right) concerns
the anisotropic fusion for the Buddha scene. One can clearly see that the anisotropic fusion noticeably
reduces the overall point distance errors. Fig. 6.4.4 (left) shows the statistic of the errors depending on the
confidence counter attribute, i.e. the number of point merges. For the isotropic case, the distance error of
model points with a confidence counter greater than 30 is increasing. Fig. 6.4.6 visualises these points and
their distance errors, which are mainly located around the lower part of the Buddha. Due to the specific
camera path, this region of the scene has been observed bymany frameswith a comparably large range noise.
Apparently, the isotropic accumulation has more difficulties with this strong anisotropy than the proposed
anisotropic approach. The total mean distance errors is 1.67±1.4249 mm for the isotropic fusion, whereas
the anisotropic fusion leads to a total mean of 1.4856 ± 1.3452 mm.
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Figure 6.4.4: Comparison of distance error statistics of the Buddha scene (left) and the Statue (right)
for the isotropic and anisotropic accumulation. The mean and the standard deviation are plotted. The
confidence counter is related to the number of merges for the model points.

The simulated Statue scene confirms this observation, even though the increase of quality is less signifi-
cant as for the Buddha scene. The error statistics in Fig. 6.4.4 (right) show a comparable error statistics for
points up to 30 merges and again an improvement beyond 30 merges. The points with a confidence counter
greater than 30 are shown in Fig. 6.4.7.

6.4.3 Performance

The efficiency of the method has been demonstrated by evaluating the performance of the different com-
pression schemes and the anisotropy in isolation. Tab. 6.4.2 shows a detailed summary of the timings. Note
how the compressed encoding is faster than the original method for the generation of model maps. This is
easily explained by the fact that loading the compressed point attributes into a vertex buffer requires 4 floats,
whereas the naive storage requires 9 floats per point. Furthermore, the anisotropy is not used during this
processing which explains the similar timing with the one from the compression alone.

6.5 Conclusion

In summary, a new efficient point-based reconstruction framework was proposed that allows a better han-
dling of anisotropic noise of range camera. A new compression scheme was introduced that allows large-
scale reconstruction, reducing the final storage by half with the same performance. It is shown that this
encoding does not disturb neither the camera tracking algorithm nor the quality of the reconstructed ge-
ometry. Furthermore, this chapter demonstrates that anisotropic fusion improves the overall quality of the
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Figure 6.4.5: Colour coded error distances of the Buddha scene. The point distance errors to the
ground-truth mesh for the isotropic fusion (left) and for the anisotropic fusion (right), The images are
generated using the CloudCompare software [GM13].
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Figure 6.4.6: Colour coded error distances of the Buddha scene in a region with high anisotropy. Here
only points that have a confidence counter greater than 30 are shown. The anisotropic accumulation
(right) better handles this region with strong distance noise compared to the isotropic fusion (left). The
images are generated using the CloudCompare software [GM13].
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Figure 6.4.7: Colour coded error distances of the Statue scene in a region with high anisotropy. Here
only points that have a confidence counter greater than 30 are shown. The anisotropic accumulation
(right) better handles this region with strong distance noise compared to the isotropic fusion (left). The
images are generated using the CloudCompare software [GM13].
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Methods MapComp IdxMap Accum GenModelMaps
(all times min, max min, max min, max min, max
in msec) mean±std mean±std mean±std mean±std

Naive 1.9, 6.1 0.7, 2.6 3.2, 6.7 2.1, 6.7
3.1±0.5 1.6±0.5 5.1±0.3 5.0±1.2

Encoding 1.9, 6.1 0.6, 2.6 3.4, 7.9 1.6, 4.4
3.1±0.5 1.4±0.4 5.2±0.4 3.4±0.5

Encoding + 1.9, 6.7 0.6, 2.6 3.5, 8.0 1.6, 4.4
Anisotropy 3.1±0.6 1.8±0.4 5.6±0.4 3.4±0.5

Table 6.4.2: Timings given by three methods using the Buddha scene for four processing modules.
MapComp (Depth map pre-processing), IdxMap (index map generation), Accum (Depth map fusion),
GenModelMaps (Rendering). Red colours refer to the modules where the anisotropic information is
used.

reconstruction.
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In the planning stage of a book, don’t plan the ending. It has to be
earned by all that will go before it.

Rose Tremain (∗1943)
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ℛange imaging systems have gainedmore attractions these recent years. Originally coming from
theKinectSL, new generation of depth sensors has just entered the consumermarket. Cleaning
or security robots, autonomous cars or virtual and augmented reality devices use range image

information to better drive their algorithm. Devices such as the recent Microsoft Hololens contains sev-
eral camera sensors, including a ToF-based depth camera, to capture the environment and improveHuman-
Computer Interface. It is essentially a fully mobile wearable device (glasses-like) that mixes real world with
synthetic holograms. Recent iPhones implement Face recognition application (FaceID) using a SL-based
range camera, creating a high-resolution 3-D map of the user’s face. ToF depth sensors are now mature
enough to be directly implemented on Phablets operating at low frame rate. However, to reduce the power
consumption is still a huge challenge formobile devices implementingToF-based technology since themod-
ulated illumination should be strong enough to capture reliable depth information. In this thesis, a fast
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method for improving the quality of ToF-based depth sensors has been presented as well as techniques that
improves environment modelling taking into account sensor noise.

7.1 Summary

Chapter 2 presented the perspective camera model and an overview of current range imaging technologies,
focusing on the SL and ToF principles. A comprehensive description of error sources of ToF sensors has
been given, with still open problems that are not yet fully understood, such as the intensity-related error. The
chapter concluded with the importance of denoising methods for range data and a comparison of common
denoising 2-D convolution filters and their influence on the surface features of the input depth data.

In Chapter 3, a real time method for reducing motion artifacts of ToF depth data has been proposed.
The method was evaluated with simulated data given by a realistic ToF camera simulation and shows the
importance of such algorithm in real use case, such as hand gesture recognition.

Chapter 4 introduced online and dense real time 3-D reconstruction methods with a focus on the point-
based fusion representation since it drives the main work of this thesis. Individual modules used in the 3-D
reconstruction pipeline were described in detail. Advantages and drawbacks of these different representa-
tions have been discussed. The chapter concluded with a newmethod to handle the reconstruction of static
environments with dynamic objects and showed how it drastically improves the camera egomotion estima-
tion, compared to the original KinectFusion framework.

BothChapter 5 andChapter 6presentednew3-D reconstructionmethods, whichbetter handle the strong
noise of depth sensors. Chapter 5 described a 3-D reconstruction framework that computes complete sur-
face curvature information to build better point correspondences used in the tracking and fusion processes.
To reduce performance losses of point-based representation [KLL+13], in the case of reconstructing large-
scale environments withmillions of points, a deep index mapwas introduced to efficiently fusemodel points
with new incoming points and to clean up outdated model points. This chapter shows how noise is a real
challenge for low feature scenes (such as brick walls) and also can influence drastically the quality of the re-
construction output. Additionally, the proposedmethodwas comparedwithmultiple recent state-of-the-art
approaches and the chapter showed that integrating surface curvature informationover time for the complete
3-D reconstruction leads to performance improvements for all main pipelinemodules. Finally, in Chapter 6,
another path to improve 3-D reconstruction methods was followed by considering the noise uncertainty of
the depth sensor. A new compression scheme has been proposed to drastically reduce the memory usage
of point-based fusion methods without decreasing the quality of the overall reconstruction pipeline. Using
the compression scheme, new information has been accumulated to the model representation, such as the
reliability matrix of individual measurements. In this way, better point correspondences are found, which is
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a direct benefit for the tracking andmergingmodules. This chapter showed that using the anisotropic nature
of the sensor noise led to a better overall quality of the reconstruction and avoid intrinsically to coarse the
current reconstructed model by merging with less reliable data (noisier input data).

7.2 Outlook

A number of exciting research questions and engineering directions are still not fully solved, and a glimpse
of those topics is now outlined.

Thepresentedwork on dense reconstruction does not tackle the challenging problemof the accumulation
of sensordriftdue to error on the camera egomotion estimation. InChapter 5, theproposedmethod showed
that improving the camera ego motion estimation could limit the drift on some special use cases (like the
stonewalldata set fromZhouandKoltun[ZK13]), but does not correct it for larger scenes. Drift in large-scale
environments is an interesting topic for improvement. The point-based representation better suits the loop
closure correction due to its intrinsic representation rather than resampling a dense voxel grid. As seen in
Chapter 6, eachmodel points canbe expressed in camera coordinates (either theoriginal camera coordinates
where the point was firstly seen or conversely the newest camera coordinates where the point was lastly
fused). Applying loop closure correction directly on the camera path itself, would result in correcting all
model points. A post processing is required to properly close the 3-D model, but should be applied locally
on faulty regions and does not require to correct the complete model representation composed of millions
of points. Whelan et al. [WLSM+15] have proposed an approach, named ElasticFusion, which extends the
point-based fusion method by applying online loop closure.

Chapter 5 focuses on the difficulty to properly reconstruct a low feature scenewith noise in the input data.
But the method did not tackle the noise uncertainty of the sensor. However, Chapter 6 incorporates the
anisotropic nature of sensor noise to the camera tracking and fusion processes. It demonstrates that more
precise reconstruction can be achieved using noise uncertainty on synthetic data. It is of big interest to com-
bine both methods and evaluate the overall quality. Unfortunately this combination is not straightforward
due to the required additional information per model point which increase the memory footprint usage;
thus a new compression scheme needs to be introduced. Recently, Cao et al. [CKH18] show that assign-
ing a probabilistic uncertainty model to each depth measurement, which then guides the scan alignment
and depth fusion, allows high accuracy 3-D reconstruction of real data sequences. An additional focus on
improving the overall quality of the reconstruction is to consider the colour information as a useful informa-
tion. Zhou et al. [ZK14] proposed a method to reconstruct the environment with high-resolution texture
colour, improving the final rendering quality of the reconstructed model.

Finally, dense reconstructionof very large scale environments such as the indoor of several buildings is still
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not solvedmainly due to thememory usage and the real-time performance constraint. To increase the usabil-
ity of the voxel grid-based fusion, Nießner et al. [NZIS13] introduced a bi-directional CPU-GPU streaming
combined with a hash voxel function to bypass the limited GPU memory. However, this method is still
not suitable for high-resolution reconstruction of very large scenes. Approaches that understand better the
semantics of the current environments are of a huge interest. With the availability of NVidia GPUs contain-
ing newTensorCores specially designed for convolutional neural network, using deep learning for real-time
dense 3-D reconstruction is a valid direction. Recent works have been proposed to first create huge data set
of 3D objects with semantic labels [DCS+17] to facilitate the training process of neural nets. Very recently,
Dai et al. [DRB+18] use this data set to create a complete reconstruction froma sparse volumetric grid input.
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A.1 Additional details on Surface Attributes Estimation

A.1.1 Surface Position

Given the intrinsic camera matrix K, the depth map 𝒟𝑡 is transformed into a corresponding vertex map
𝒱𝑡, by converting each depth sample 𝒟𝑡(u) into a vertex position 𝒱𝑡(u) = 𝒟𝑡(u)K−1(u⊤, 1)⊤ ∈ ℝ3 in
camera space. This is derived from the Pinhole camera model which is a strong simplification of the optical
lens properties. For a better point cloud estimation, the map 𝒟𝑡 is previously un-distorted if required.

FigureA.1.1 shows the3-Dpoint cloud computation given by the rawdepthmap and the smootheddepth
map applying a bilateral filter. A kernel radius of 5 is used here to set the bilateral filter with a spatial sigma
of 𝜎𝑠 = 2.5 px and the range sigma 𝜎𝑟 = 0.05 m.
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Figure A.1.1: An example of vertex map estimation for one of our data set at frame 361 (acquired with
a KinectSL camera). The first column refers to the Raw depth (where outliers were filtered out), and the
second column to the same depth map smoothed via a bilateral filter.

A.1.2 Surface Normal

The surface normal vector n𝑖, also simply known as normal, is the vector which is perpendicular to the sur-
face at a given point v𝑖 = (𝑋𝑖, 𝑌𝑖, 𝑍𝑖)⊤. Let ̂n𝑖 = n𝑖

||n𝑖|| be the unit normal vector. The normal at a point
(𝑋0, 𝑌0) of a surface 𝑍 = 𝒮(𝑋, 𝑌 ) is given by:

n0 = ⎛⎜⎜⎜
⎝

1
0

𝒮𝑋(𝑋0)

⎞⎟⎟⎟
⎠

× ⎛⎜⎜⎜
⎝

0
1

𝒮𝑌 (𝑌0)

⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

−𝒮𝑋(𝑋0)
−𝒮𝑌 (𝑌0)

1

⎞⎟⎟⎟
⎠

, (A.1)

where 𝒮𝑋 = 𝜕𝒮
𝜕𝑋 and 𝒮𝑌 = 𝜕𝒮

𝜕𝑌 .
Many techniques exist to compute surface normals from noisy range data (see [KAWB09] for a recent

survey). However, as described by Newcombe et al. [NDI+11], depth sensors measure and discretise the
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Figure A.1.2: An example of normal map estimation using a raw vertex map and a filtered one via the
central difference.

surface on a regular grid, thus a simple cross product between the 4-connected vertices
{𝒱𝑡(ul), 𝒱𝑡(ur), 𝒱𝑡(ut), 𝒱𝑡(ub)} (left, right, top, bottom) is used to estimate the surface normal:

𝒩𝑡(u) = ̂nu, where

nu = (𝒱𝑡(ur) − 𝒱𝑡(ul)) × (𝒱𝑡(ub) − 𝒱𝑡(ut)) .

Sincedepthmaps givenby range cameras are usually noisy, special care needs tobe taken inorder to compute
robustly surface normal. In fact, as seen previously, normal vectors are computed from the first derivative of
the surface, it is by definition sensible to noise. Newcombe et al. [NDI+11] show that applying on the raw
depth maps, an edge-preserving smoothing filter such as the well-known bilateral filter [TM98], lead to a
proper normal map estimation.

FigureA.1.2 shows an example of surface normal computation using the simple central differencemethod.
The normal map is visualised using the following colour mapping:

⎛⎜⎜⎜
⎝

𝑟u
𝑔u
𝑏u

⎞⎟⎟⎟
⎠

= 0.5 [ ̂nu + 2] .

The central difference algorithm leads to unreliable surface normal estimation if noisy depth data is used
(see Figure A.1.2-Raw). In fact, high frequency noise is present on the normal map causing false surface
properties.

Pauly et al. [PGK02] present another method to estimate the surface normal which leads to a notion of
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surface curvature. It is based on the analysis of eigenvalues and eigenvectors of the covariance matrix of a
local neighbourhood as introduced by Hoppe et al. [HDD+92]. Pauly et al. [PGK02] define the surface
variation 𝜎, closely related to curvature, using the eigenvalues of the covariance matrix:

𝜎 = 𝜆0
𝜆0 + 𝜆1 + 𝜆2

Since 0 ≤ 𝜆0 ≤ 𝜆1 ≤ 𝜆2, the maximum surface variation 𝜎 is 1
3 for the isotropic case where all 𝜆𝑖

are equals and not null. Figure A.1.3 (second row) shows the surface variation 𝜎 of two depth maps of
a specific data set. Note how surface variation is sensitive to noise (Raw column) and leads to unreliable
surface variation. It is also clear that the surface variation does not provide all the information of the local
surface. For example, the surface variation𝜎 is a positive entity only and does not robustly differentiate cases
such as edges and corners (whereas curvature information does [see Section 5.3.2]).

A.2 Additional details on ICP

This section described in detail the camera tracking principle based on the ICP algorithm.
ICP estimates the rigid homogeneous transformation T consisting of a rotation matrix R(𝛼, 𝛽, 𝛾) =

R𝑧(𝛾) R𝑦(𝛽) R𝑥(𝛼) and a translation matrix t(𝑡𝑥, 𝑡𝑦, 𝑡𝑧) that transforms the input (or source) data to
the model (or target) data coordinates. The rigid-body transformation T is expressed by:

T = t(𝑡𝑥, 𝑡𝑦, 𝑡𝑧) R(𝛼, 𝛽, 𝛾)

=
⎡
⎢
⎢
⎢
⎣

𝑟00 𝑟01 𝑟02 𝑡𝑥
𝑟10 𝑟11 𝑟12 𝑡𝑦
𝑟20 𝑟21 𝑟22 𝑡𝑧
0 0 0 1

⎤
⎥
⎥
⎥
⎦

(A.2)
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Figure A.1.3: An example of normal map estimation using a raw vertex map and a filtered one via an
eigen decomposition of the covariance matrix. The second row refers to surface variation in the surface
normal direction as proposed by Pauly et al. [PGK02].

with

𝑟00 = cos 𝛽 cos 𝛾
𝑟01 = − cos 𝛼 sin 𝛾 + sin 𝛼 sin 𝛽 cos 𝛾
𝑟02 = sin 𝛼 sin 𝛾 + cos 𝛼 sin 𝛽 cos 𝛾
𝑟10 = cos 𝛽 sin 𝛾
𝑟11 = cos 𝛼 cos 𝛾 + sin 𝛼 sin 𝛽 sin 𝛾
𝑟12 = cos 𝛼 sin 𝛽 sin 𝛾 − sin 𝛼 cos 𝛾
𝑟20 = − sin 𝛽
𝑟21 = sin 𝛼 cos 𝛽
𝑟22 = cos 𝛼 cos 𝛽

(A.3)
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Figure A.2.1: Example of the brute-force ICP correspondences search (closest points) between the model
curve (red) and the noisy input curve (blue). Note that here the correspondence set is trimmed using a
maximum distance threshold.

Section 4.1.4, two main steps of the ICP algorithm were presented:

• Correspondence search between input points and model points using the current iteration of the
transformation (see Figure A.2.1).

• Compute the best transformation from the trimmed set of correspondences (see Figure A.2.2).

These steps are repeated until convergence (incremental refinement of the correspondences set and the best
transformation) or the number of iterations reaches a maximum (see Figure A.2.3). In practice, the conver-
gence is detected once the variations of the 6 DoF are small between two consecutive iterations. Note that,
in the original work of Besl and McKay [BM92], the ICP algorithm was shown to terminate in a minimum.
However the proof was designed only when complete sets of source and target data were used for each it-
eration. Having different trimmed sets at each iteration could cause an unexpected behaviour for specific
configurations where this proof will no longer hold.

A.2.1 Correspondences Search

The most important step of the ICP algorithm is to extract the set of correspondences between the input
and the model sets of points. The idea is to build a set of correspondences as the closest points (ℒ2-norm)
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Figure A.2.2: Computation of the best transformation from the set of correspondences during the
first iteration (Figure A.2.1). Green curve indicated the input curve transformed by the current best
transformation.

 

 

Figure A.2.3: Example of ICP convergence after 15 iterations. Note how close the green and red curves
are.

between input andmodel points. Thus, for each input point, the algorithmwill search its closestmodel point.
This process is known to be the costliest in term of computation. In fact, the brute force method requires

121



APPENDIX A. APPENDIX

to compute all possible pair combinations in order to retrieve the closest ones. Fortunately, data structures
(such as kd-tree [FBF77]) allows to decrease the number of computed distances drastically compared to the
brute-force approach as proposed by Zhang [Zha94].

Input data from depth cameras is intrinsically organised as a grid structure. Thus, the costly task of cor-
respondences search can be reduced to a simple perspective search, also known as projective data associa-
tion [BL95] (projected input point and corresponding model point should lie on similar 2-D pixel coordi-
nates). Having online 3-D reconstruction using handheldmotion, it is reasonable to assume that themotion
between two consecutive frames is small. This assumption is crucial to allow the use of projective data as-
sociation. The reason is that ICP algorithm initialised the transformation as an identity matrix, leading to
the same pixel coordinate for the input and model (u = u∗). If the camera motion was too high, the pro-
jective data association will result on completely wrong surface correspondences leading to a failure of the
algorithm or a localised minimal solution.

In order to avoid as most as possible influence of outliers during the minimisation process, pairs that do
notmatch to the same part of the surface are rejected. A first condition checks the simple Euclidean distance
between the source point and its corresponding model point. Practically, if the distance between the pair of
points is greater than a threshold𝑅, i.e. ||T𝑡→(𝑡−1) 𝒱𝑡(u)−𝒱ℳ(u∗)|| > 𝑅, then the pair of points will be
marked as outlier. Analogously, a pair of points is considered as an outlier if their respective surface normals
are not similar. If the dot product between both normals is smaller than the cosine of the angle threshold
𝜃𝑛, i.e. ⟨R𝑡→(𝑡−1) 𝒩𝑡(u), 𝒩ℳ(u∗)⟩ >= cos 𝜃𝑛, the pair is rejected.

If the exact set of correspondences is known a priori, the correct transformation can be directly retrieved
(in one iteration). But since they are usually not known, an iterative method must be applied to refine the
correspondences set resulting in a better transformation solution. Note that thisminimum is not guaranteed
to be optimal since the objective function has no reason to be convex.

A.2.2 Minimisation

Having the current set of correspondences, the optimal current transformation thatminimises a certain error
metric can be retrieved. The following describes two different error metrics (the point-to-point error met-
ric and the point-to-plane error metric) and how to find the optimal transformation in a fast and practical
manner.

A.2.2-i Point-to-Point

Point-to-point errormetric simply describes theℒ2-normbetween eachpair of input andmodel points. The
following cost energy describes the point-to-point error metric:
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𝐸𝑝𝑜𝑖𝑛𝑡(T𝑡→(𝑡−1)) = ∑
u∈𝒮

∥T𝑡→(𝑡−1)
𝑙 𝒱𝑡(u) − 𝒱ℳ(u∗)∥2, (A.4)

where 𝒮 refers to the subset of all source points 𝒱𝑡(u) for which a valid correspondence has been found in
the target set as point 𝒱ℳ(u∗), and 𝑙 refers to the current iteration of the minimisation process.

A.2.2-ii Point-to-Plane

The following cost energy describes the point-to-point error metric:

𝐸𝑝𝑙𝑎𝑛𝑒(T𝑡→(𝑡−1)) = ∑
u∈𝒮

⟨T𝑡→(𝑡−1)
𝑙 𝒱𝑡(u) − 𝒱ℳ(u∗) , 𝒩ℳ(u∗)⟩2

(A.5)

Analogously to Equation A.4, 𝒮 refers to the subset of all source points 𝒱𝑡(u) for which a valid corre-
spondence has been found in the target set as point 𝒱ℳ(u∗), and 𝑙 refers to the current iteration of the
minimisation process.

Minimising the cost energy 𝐸𝑝𝑙𝑎𝑛𝑒 would also require a non-linear optimisation approach due to the
non-linearity of the rotation matrix (see Equation A.2). However, some techniques have already been pro-
posed to accelerate the computation of the optimal transformation for one iteration 𝑙 via valid assump-
tions. A linear approximation of the rotation matrix is possible if the rotation angles 𝛼, 𝛽 and 𝛾 are smalls
(which is already assumed since most of the methods use the fast-projective data association described in
Section A.2.1). The following describes this approximation, leading to a direct least square closed-form so-
lution.

Linear approximation Using the first-order Taylor series approximation of both sine and cosine func-
tions for small angles

sin 𝜃𝜖 = 𝜃𝜖 − 𝜃3
𝜖

3 + 𝜃5
𝜖

5 + …

cos 𝜃𝜖 = 1 − 𝜃2
𝜖

2 + 𝜃4
𝜖

4 + …
(A.6)
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The rotation matrix from Equation A.2 becomes:

R(𝛼, 𝛽, 𝛾) ≈
⎡
⎢
⎢
⎢
⎣

1 −𝛾 + 𝛼𝛽 𝛽 + 𝛼𝛾 0
𝛾 1 + 𝛼𝛽𝛾 −𝛼 + 𝛾𝛽 0

−𝛽 𝛼 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

(A.7)

This first-order approximation of the rotation matrix is still not enough for a complete linearised solution,
a second approximation step is applied by simply omitting the product of small angles (i.e. 𝜃1

𝜖 ⋅ 𝜃2
𝜖 ≈ 0),

leading to:

R(𝛼, 𝛽, 𝛾) ≈
⎡
⎢
⎢
⎢
⎣

1 −𝛾 𝛽 0
𝛾 1 −𝛼 0

−𝛽 𝛼 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

= R̂(𝛼, 𝛽, 𝛾) (A.8)

Substituting R̂(𝛼, 𝛽, 𝛾) to the point-to-plane energy function 𝐸𝑝𝑙𝑎𝑛𝑒, and after simple calculations, the
cost function becomes:

𝐸𝑝𝑙𝑎𝑛𝑒(T𝑡→(𝑡−1)) ≈ ∑
u∈𝒮

( 𝒩ℳ(u∗) ⋅ [𝒱𝑡(u) − 𝒱ℳ(u∗)]

+ (𝛼, 𝛽, 𝛾)⊤ ⋅ (𝒱𝑡(u) × 𝒩ℳ(u∗))
+ (𝑡𝑥, 𝑡𝑦, 𝑡𝑧)⊤ ⋅ 𝒩ℳ(u∗) )2.

(A.9)

The cost function is now fully linear and is composed of 6 parameters𝛼, 𝛽, 𝛾 and 𝑡𝑥, 𝑡𝑦, 𝑡𝑧. A linear system
of the form A x = b can be extracted from each pair of correspondences [𝒱𝑡(u), 𝒱ℳ(u∗)] which built a
single line of the linear system. The unknown vector x is a 6-D vector and equals (𝛼 𝛽 𝛾 𝑡𝑥 𝑡𝑦 𝑡𝑧)⊤. The
|𝒮|-D vector b is built from the constant values of Equation A.9 (first term):

b =
⎛⎜⎜⎜⎜⎜⎜
⎝

−𝒩ℳ(u∗
1) ⋅ [𝒱𝑡(u1) − 𝒱ℳ(u∗

1)]
−𝒩ℳ(u∗

2) ⋅ [𝒱𝑡(u2) − 𝒱ℳ(u∗
2)]

⋮
−𝒩ℳ(u∗

|𝒮|) ⋅ [𝒱𝑡(u|𝒮|) − 𝒱ℳ(u∗
|𝒮|)]

⎞⎟⎟⎟⎟⎟⎟
⎠

(A.10)
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And finally, the matrix A is a |𝒮| × 6 is:

A =
⎛⎜⎜⎜⎜⎜⎜
⎝

( 𝒱𝑡(u1) × 𝒩ℳ(u∗
1) )⊤ ( 𝒩ℳ(u∗

1) )⊤
( 𝒱𝑡(u2) × 𝒩ℳ(u∗

2) )⊤ ( 𝒩ℳ(u∗
2) )⊤

⋮ ⋮
( 𝒱𝑡(u|𝒮|) × 𝒩ℳ(u∗

|𝒮|) )⊤ ( 𝒩ℳ(u∗
|𝒮|) )⊤

⎞⎟⎟⎟⎟⎟⎟
⎠

. (A.11)

x is retrieved using the usual least-squares approach via x = (A⊤A)−1
A⊤b. One important remark needs to

be considered regarding the incremental transformation Tinc
𝑙 that is retrieved directly from the correspond-

ing least-square solution vector xinc𝑙 . Since the ICP algorithm is an iterative process, the current optimal
transformation T𝑡→(𝑡−1)

𝑙 is continuously refined by the incremental transformation as follows:

T𝑡→(𝑡−1)
𝑙 = Tinc

𝑙 T𝑡→(𝑡−1)
𝑙−1 , ∀ 𝑙 ∈ [1, 2, ⋯ , 𝐿], (A.12)

where T𝑡→(𝑡−1)
0 being a 4 × 4 identity matrix. Note that the incremental rotation Rinc

𝑙 matrix given by the
solution xinc𝑙 should be computed using Equation A.2 and not by R̂

inc
𝑙 from Equation A.8 since the transfor-

mation should have all the properties of a rotation matrix.
The computation of the positive symmetric matrix A⊤A (21 unique values) and the vector A⊤b (6 addi-

tional values) is perfectly suitable for a modern GPU where efficient reduction techniques are available.
Finally, an additional advantage to use the least-square closed-form is that specific weight could be easily

plugged into the least-square system without increasing the complexity. Each correspondence pair is asso-
ciated to one weight building a single line of the least-square system. Note that fixing a weight of 0 for an
outlier pair is an elegant way of rejecting it.
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