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Zweitgutachter: Prof. Dr. Ulf Lorenz

Datum der Disputation: 19. Dezember 2018

Dekan der Fakultät III: Prof. Dr. Volker Wulf



ii



Abstract

Traditionally, an election consists of a candidate set and a voter set, and each voter completely ranks
all candidates from first to last. Depending on the voters’ rankings, a voting rule determines the
winner or the winners of the election. Apart from winner determination, there are further problems
related to voting which are usually formulated as decision problems. For instance, in bribery we
ask whether an external agent can make a candidate a winner of the given election by changing at
most a certain number of voters’ votes.

In this thesis, we generalize the assumption of complete information and regard nine different
partial information models in total (some of them are already known). We study the complexity
of the problems necessary winner [117], possible winner [117], necessary bribery, and possible
bribery in the voting rules k-Approval and k-Veto.

Moreover, we consider another model of incomplete information. In contrast to the models
previously mentioned, lottery-based voting is based on the assumption that the votes are given as
complete rankings, but a lottery draws at random a voter subset of fixed and predetermined size to
which a voting rule is applied afterward. Once more, we investigate the complexity for variants
of necessary and possible winner as well as necessary and possible bribery. Besides, we consider
a counting problem asking how many subelections of a certain size exist such that a designated
candidate wins the election.

We further regard two voting rules frequently used in practice—Plurality with Runoff and
Veto with Runoff. We explore the complexity of bribery and several control problems such as con-
trol by adding, deleting, and replacing candidates and/or voters. For several problems, we assume
that there is full information.

Last but not least, we attend to group identification. On the one hand, we determine the com-
plexity for group bribery as well as three different destructive group control variants in group identi-
fication. On the other hand, we consider partial information in group identification and, in particular,
we study the problems possibly qualified individuals and necessarily qualified individuals as well
as variations of these problems where each individual must qualify exactly k individuals.
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Zusammenfassung

Gewöhnlich besteht eine Wahl aus einer Kandidatenmenge sowie einer Wählermenge, wobei jeder
Wähler alle Kandidaten vom ersten bis zum letzten Rang einreiht. Abhängig von den Rankings der
Wähler bestimmt eine Wahlregel den oder die Gewinner der Wahl. Neben der Gewinnerbestim-
mung gibt es weitere Probleme bezüglich Wahlen, welche traditionell als Entscheidungsprobleme
formuliert werden. Im Bestechungsproblem stellt sich beispielsweise die Frage, ob ein externer
Agent einen Kandidaten zum Gewinner der Wahl machen kann, wenn höchstens eine gewisse An-
zahl an Wählerstimmen geändert wird.

In dieser Arbeit verallgemeinern wir die Annahme vollständiger Information und betrachten
insgesamt neun verschiedene Modelle partieller Information (manche dieser Modelle sind schon
bekannt). Wir untersuchen die Komplexität für die Probleme Necessary Winner, [117], Possible
Winner [117], Necessary Bribery und Possible Bribery für die Wahlregeln k-Approval und k-Veto.

Wir betrachten außerdem ein weiteres Modell unvollständiger Information. Im Gegen-
satz zu den vorher genannten Modellen basiert lotteriebasiertes Wählen auf der Annahme,
dass die Wählerstimmen zwar als vollständige Rankings gegeben sind, aber ein Lotterie eine
Wählerteilmenge fester vorgegebener Größe zufällig auslost, auf welche anschließend eine
Wahlregel angewandt wird. Erneut untersuchen wir unter anderem die Komplexität für Vari-
anten der Probleme Necessary und Possible Winner sowie Necessary und Possible Bribery.
Überdies betrachten wir ein Zählproblem, bei dem sich die Frage stellt, auf wie viele verschiedene
Möglichkeiten die Lotterie eine feste Anzahl an Wählern auslosen kann, so dass ein designierter
Kandidat ein Wahlgewinner ist.

Ferner betrachten wir zwei häufig in der Praxis verwendete Wahlregeln, Pluralität und Veto
jeweils mit Stichwahl. Wir erforschen die Komplexität von Bestechung sowie mehrerer Kon-
trollprobleme wie Kontrolle durch Hinzufügen, Löschen und Ersetzen von Kandidaten und/oder
Wählern. Für sämtliche Probleme nehmen wir an, dass volle Information vorliegt.

Schließlich widmen wir uns der Gruppenidentifikation. Wir bestimmen einerseits die Kom-
plexität für Gruppenbestechung sowie drei verschiedene Arten destruktiver Gruppenkontrolle. An-
dererseits betrachten wir Gruppenidentifikation unter partieller Information und untersuchen ins-
besondere die Probleme Possibly Qualified Individuals und Necessarily Qualified Individuals sowie
Varianten dieser Probleme, bei denen jedes Individuum genau k Individuen qualifizieren muss.
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Y. Yang. Proceedings of the 16th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2017), Sao Paulo, Brazil. International Foundation of Autonomous
Agents and Multiagent Systems (IFAAMAS), pages 1142-1150, May 2017.

3. Possible Bribery in k-Approval and k-Veto Under Partial Information. G. Erdélyi and C.
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Chapter 1

Introduction

Voting applies to many situations in everyday life whensoever individual preferences are aggregated
in order to reach a collective decision. This embraces decisions such as which restaurant to go to,
which film to watch, or which holiday destination to choose. All these examples share the common
goal that a ranking over the possible alternatives should be determined or at least a consensus should
be reached. The actual group decision depends on the underlying voting rule or social choice func-
tion. Consider further a setting where a group tries to determine which group members are qualified
for a given task and which ones not. The actual decision frequently depends on the way the group
members evaluate each other. Voting also turns out to be a useful tool in the design of recommender
systems [93], planning [62], mechanism design [61], ranking algorithms [51], collaborative filter-
ing [137], similarity search [75], location planning [10], or machine learning [166], just to name a
few. Of course, voting applies to political elections as well, e.g., when a president or a coalition of
different governing parties is elected, or when voters vote for a bill.

Voting theory itself, but also similar streams of research—such as fair division [153], group
identification [110], or judgment aggregation [17]—are unified under the more and more upcoming
area of research called Computational Social Choice or COMSOC, for short. COMSOC is an in-
terdisciplinary and heterogeneous field somewhere located between political sciences, economics,
computer science, mathematics, game theory, and philosophy. This list makes no claim to be com-
plete.

In computer science applications, we deal with huge data volumes. Therefore, it makes sense to
study the computational properties and especially the computational complexity of various problems
related to voting.

Without going further into detail, an election (C,V ) consists of a set C of candidates, a set V
of voters, and each voter canonically ranks the candidates from first to last. Given an election, a
voting rule determines the winner or the winners, depending on the context. One of the most basic
problems in voting theory is the Winner problem [15] which asks whether or not a distinguished
candidate is a winner of a given election. In practice, computing the winners of an election should
be a computationally easy task, even for large elections. This actually seems to be the case for most
voting rules used in practice. Unfortunately, there exist some different ways to tamper with the out-
come of an election. One such problem is Bribery [79] where an external agent—the briber—alters
some voters’ votes in order to make a certain candidate win the election or to prevent a despised can-
didate from winning. Another way to influence an election is given by Electoral Control [16]. This
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2 CHAPTER 1. INTRODUCTION

diction covers many different problems. By way of example, in Control by Adding Voters an external
agent—the chair—adds some new voters to a given election in order to reach his goal. In Control
by Deleting Voters, the chair deletes some voters from the election. One can define Control by
Adding Candidates and Control by Deleting Candidates analogously to control by adding/deleting
voters in a sense that the chair adds and deletes candidates (instead of voters), respectively. Control
and bribery have many real-world applications. So control by adding or deleting voters applies to
decreasing or increasing the voting age, voter encouragement, organizing get-out-the-vote drives,
voter suppression, or withdrawing the voting right from some voters or voter groups. By contrast,
candidate control models scenarios such as introducing spoiler candidates, candidate suppression, or
representing new candidates. Bribery is self-explanatory and displays scenarios where a malicious
agent pays money to some voters in order to change their votes. Variations of bribery and some
related problems also apply to lobbying or campaign management [25, 35, 77, 150]. The standard
bribery model (with unit prices) is further tailored to situations where an external agent tries to find
out how many voters have to be bribed or convinced to change their votes. A third class of strategic
behavior in elections is given by Manipulation [14, 38] which is not subject of this thesis. Loosely
speaking, in manipulation one or more voters—the manipulators—coordinate their votes and sub-
mit possibly dishonest ballots in order to make a given candidate win or to prevent that candidate
from winning an election. As an example, consider two-party systems in political elections where
there are two big parties and several small parties without any chance of winning. Although many
voters actually favor a small party, they give their votes to one of the two big parties.

Such strategic attacks on elections are undesirable and consequently should be impossible or at
least improbable. Unfortunately, control or bribery are possible for many voting rules (cf. [146, 28]).
Moreover, the famous theorem by Gibbard and Satterthwaite [94, 149] states that manipulation is
possible for almost all common voting rules when there are at least three candidates. The seminal
papers by Bartholdi et al. [13, 14, 16] suggest that NP-completeness of such problems, formulated
as decision problems, provides a (worst-case) barrier against manipulative attacks. For instance, in
case it is computationally hard to decide whether or not bribery of a given voting rule is possible at
all, the voting rule offers a certain protection against bribery. Conversely, if the bribery problem is
computationally easy, the voting rule is far from being bribery-proof. Many problems for frequently
used voting rules have been shown to be easy so far [146, 28]. However, this holds for the canonical
assumption that all voters provide complete rankings over all candidates. This in turn does not
appear to be realistic in practice. Intuitively, a briber or a chair faces a more difficult problem when
the votes are incomplete.

Accordingly, we focus on partial information models in voting. In particular, we study bribery
under partial information and examine which impact partial information has on the complexity of
bribery, compared to the standard model of full information. We merely consider the constructive
variants of bribery asking whether the briber can make a distinguished candidate win the election.
Note that the destructive versions are similarly defined, but the briber’s goal is to prevent a given
candidate from winning. Our analysis is further restricted to two families of voting rules, namely
k-Approval and k-Veto (k ∈N). These voting rules belong to the family of scoring rules defined in a
way that voters assign points to candidates according to a fixed scheme—a scoring vector—and the
candidates with the highest score are the winners (there may be one or more winning candidates).
In k-Approval, each voter assigns one point to his k most favorite candidates and zero points to the
remaining ones. Similarly, in k-Veto each voter gives zero points to his k least favorite candidates,



3

and one point to the remaining ones. These voting rules possibly belong to the most important
and prominent voting rules and have many applications in practice. Especially the rule 1-Approval
(aka Plurality) is a basic rule often used when some people try to reach a decision, based on their
favorite alternatives, and the alternative with the most first places wins. Moreover, both classes are
closed families and enable us to achieve dichotomy results, that is, we can partition N into two
subsets N1 and N2 containing all k with easy and hard bribery problem, respectively. We do not
study manipulation for several reasons. Firstly, bribery and control belong to external influences on
elections, whereas manipulation corresponds to internal influences. Note that a briber and a chair
actually influence and modify an election, whereas in manipulation some voters just misreport their
preferences and vote strategically, but submit feasible ballots. Hence, in manipulation there is no
illegal or illegitimate behavior in a strong sense although a good voting rule should impede or even
preclude reporting dishonest preferences. Last but not least, recently after us, Dey et al. [46] studied
manipulation under a setting of partial information where each vote is given as a partial order over
the candidates.

This partial orders model—we refer to this model as Pairwise Comparisons or PC, for short, in
this thesis—is one of the nine models studied by us. Intuitively, each voter specifies his preferences
over some pairs of distinct candidates, for other pairs of different candidates it is unknown whether
a voter prefers the one or the other. PC can be regarded as the standard partial information model in
voting so far. Konczak and Lang [117] were the first who allowed votes to be partial orders instead
of complete rankings. They defined the possible/necessary winner problems which ask whether
the incomplete votes in an election can be extended to complete rankings such that a distinguished
candidate wins for at least one (possible winner) or for all (necessary winner) extensions, respec-
tively. According to [20, 21, 167], necessary winner under partial orders is computationally easy
for all scoring rules, whereas possible winner is only easy for 1-Veto (aka Veto), 1-Approval (aka
Plurality), some equivalent scoring rules reachable by positive-affine transformations (cf. Chapter 3
for more details), and constant scoring rules (where each candidate is trivially a winner receiving
the same score from each voter). For all other non-constant scoring rules, possible winner under
partial orders is hard.

In this thesis, we study necessary bribery and possible bribery, defined as combinations of stan-
dard bribery with necessary/possible winner. These problems hence generalize bribery under full
information as well as necessary/possible winner. As pointed out, we study these problems (1) in a
constructive setting, (2) for nine different partial information models, and (3) for the voting rules k-
Approval and k-Veto by either showing that a problem formulated as a decision problem is NP-hard
(that is, computationally hard in the worst-case) or belongs to P (that is, the problem can be decided
in polynomial time).

Different questions encouraged us to perform an extensive complexity study. Firstly, we check
whether partial information increases the complexity of some/all/most problems. For example,
since possible winner is only easy for Plurality and Veto under partial orders, we know that possi-
ble bribery under partial orders can be easy at all merely for these two rules and is computationally
hard for k-Approval and k-Veto, k ≥ 2. Accordingly, we check whether possible bribery becomes
hard for Plurality and Veto, too. Secondly, partial orders has been the standard model up to now,
but this structure seems to be very general and possibly too general in some contexts. Therefore,
Conitzer et al. [39] proposed a general partial information model allowing any structure of partial
information. In their setting, votes are given as partial profiles and the information set of a partial
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profile contains all complete voter profiles that do not contradict the given partial profile. Opposed
to the partial orders model, their model in turn is hold as general as possible. In contrast to Conitzer
et al. [39], we regard the partial orders model as well as other and more special ways to display
partial information, revisiting some other structures that have been proposed or studied in literature
meanwhile. For instance, voters may rank only their favorite candidates, only their least favorite
candidates, or both. Such votes are known under the name top-truncated orders, bottom-truncated
orders, and doubly-truncated orders, respectively [18]. Likewise, one may consider an election with
complete information (or with almost complete information), and suddenly new voters or candidates
join the election about whom nothing is known. Such structures have been proposed in [117]. Be-
sides, Chevaleyre et al. [33] studied the possible winner problem for the case where new candidates
join a given election. Moreover, voters may be indifferent between some candidates or some alter-
natives may be just incomparable to each other. All in all, we define three new models and regard
and formalize six other models already proposed or studied in literature. We provide a complete
picture over these nine structures, point out their interrelationships (some models are special cases
of other models, other models are incomparable to each other), and examine whether the complex-
ity for a given problem differs between the models, that is, there are models for which a problem
is easy, and for the remaining models, the same problem is hard. Another intriguing question is
whether the two families k-Approval and k-Veto offer the same or similar protection against bribery
under partial information, that is, whether for both voting rule families about the same amount of
additional hardness arises when the votes are partial. We further provide the complexities for the
possible and necessary winner problem for k-Approval and k-Veto under all models, except for two
cases which are still open. Studying problems related to possible/necessary winner appeared to us
as a natural first step towards examining strategic behavior in voting under uncertainty the more so
as we follow the largest part of literature as well as these two approaches can be interpreted as opti-
mistic and pessimistic approaches. Nevertheless, considering more refined ways to deal with partial
information seems to be promising. So one could study probabilistic approaches (see e.g., [7]),
perform quantitative analyses (under given statistical data, is a candidate rather a winner or rather
not?), or define other, more fine-grained criteria to estimate the winner(s) of an incomplete election
(one such approach is preference elicitation, cf. [159]).

There is yet another way to model incompleteness in voting. In lot-based voting [160], the
votes are given as complete rankings, but there is a lottery that arbitrarily draws a fixed number of
votes. To this random selection of votes, a voting rule is applied to determine the winner of the
subelection. Such randomized voting rules have already had a long tradition. By way of example,
the doge in Venice was elected by such a voting protocol. Accordingly, there also exists the name
Venetian Elections. In huge political elections as well as in small polls within institutions, it may
occur that the number of voters showing up at the election is more or less known, but not which
voters. Secondly, lot-based voting applies to elections where a fixed number of representatives
are drawn at random who submit their votes. For example, consider a commission of fixed size
that shall vote upon a given proposal, but the commission’s members are not known in advance.
Lot-based voting further applies to elections where only a small sample is actually accounted for.
We again study variations of possible/necessary winner for k-Approval and k-Veto asking whether
a distinguished candidate wins for at least one/all subelections consisting of K voters. Besides,
we consider the problem Evaluation (proposed in [160] for lot-based voting rules and studied for
some other voting rules). In evaluation, we ask whether or not a candidate wins with a probability
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greater than a certain threshold. Additionally, we investigate a counting version of possible winner
(how many subelections do exist such that a candidate c wins?), necessary bribery, and possible
bribery (can the briber bribe some voters such that c wins with probability one/greater than zero?).
Once again, we provide a complexity study and check whether the additional step—drawing some
voters at random—increases the computational complexity compared to the standard setting and
thus impedes strategic behavior.

Where we introduce strategic behavior in elections under incomplete information on the one
hand, there have yet been various open problems under full information for some voting rules on
the other hand. Such unsolved questions have existed in bribery, Replacement Control [17, 123],
Multimode Control by Adding/Deleting Voters [81], and Multimode Control by Adding/Deleting
Candidates [81] for Plurality with Runoff and Veto with Runoff (for formal definitions, we refer
to Chapter 2). Once again, our focus lies on the constructive variants of these problems. In multi-
mode control by adding/deleting voters, the chair adds some new voters and deletes some previous
voters. Likewise, multimode control by adding/deleting candidates is defined. In replacement con-
trol, the chair either replaces some voters with other voters (Control by Replacing Voters) or some
candidates with other candidates (Control by Replacing Candidates). These two problems are de-
fined in a similar manner to multimode control, but in replacement control the number of deleted
voters/candidates must be equal to the number of added voters/candidates.

Basically, both voting rules are defined analougsly to their counterparts without a runoff stage—
Plurality and Veto. In a first step, the candidates’ scores are determined. After this, the two best
candidates compete against each other in the runoff (possibly, there may be ties and a tie-breaking
rule must decide which candidates move to runoff). The runoff stage offers a certain additional
quality check. Note that in Plurality or Veto, a candidate less preferred to each other candidate by
a majority of voters may still be the unique winner. Such a candidate is also called the Condorcet
loser. E.g., consider a Plurality election where two voters rank candidate c first and 20 other voters
rank c last, while each of twenty other candidates is ranked first by exactly one of these voters.
Verify that c is the unique Plurality winner with two points, but 20 of 22 voters regard c as the
worst possible outcome of the election. The Plurality with Runoff rule never selects c as a winner,
as c reaches the runoff, but loses against the other candidate in the runoff, regardless of which other
candidate follows c to the runoff.

Variants of the voting rule Plurality with Runoff are often used in political elections (such as the
presidential election in France), sometimes in multistage versions. Veto with Runoff and slightly
modified variants of this rule are known from competitions of any kind (e.g. sports competitions)
over several rounds where in each round one or more candidates are ruled out. Or consider a
situation where a group tries to reach a decision and the group members agree to restrict themselves
to the two best alternatives in a sense that they make as few voters as possible totally dissatisfied,
that is, the two alternatives worth considering have the fewest vetoes among all alternatives.

We consider yet another setting related to voting, called group identification. Recall the example
with a situation where a group of individuals try to determine which group members are qualified
for a given task and which ones not. In a sense, group identification is a model related to voting
where the sets of voters and candidates coincide (and are called individuals) and none of them
provides a ranking over the other individuals, but has a binary opinion about all individuals including
himself. Besides, the model of group identification premises that each individual is honest and has
no incentive to misrepresent his opinion about all individuals (nevertheless, such settings would be
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interesting for future research). Formally, N is a set of n individuals, and for each two individuals
a and a′ it holds that either a qualifies or disqualifies a′. A profile ϕ is a mapping describing for
each pair (a,a′) of individuals whether a qualifies or disqualifies a′. Last but not least, a social
rule determines a subset of N which we refer to as socially qualified individuals. Depending on the
evaluations of the individuals in N, the number of socially qualified individuals may be arbitrary.

The model of group identification has been studied in economics [47, 48, 134, 147]. The social
rules considered in this thesis are consent rules and the two procedural rules denoted by consensus-
start-respecting rule and liberal-start-respecting rule. These rules have been extensively investi-
gated in the literature [47, 130, 147]. The question whether or not an individual is socially qualified
depends on his self-evaluation as well as on the evaluation of other individuals. For some social
rules, a negative self-evaluation of an individual may even lead to his social disqualification. Like-
wise, a possible self-evaluation may directly imply or at least facilitate the social qualification of an
individual.

Group identification applies to many different contexts. It is suitable in situations where a group
of individuals shall decide who in this group has a certain identity and who not [111]. Moreover,
the model applies to scenarios where a group of people try to find out who in this group is suitable
for a given task. Assume for instance that in a university department a group of faculty members
elect who in this group should become the dean for the next period of time. Or consider a set of
automated agents or robots that must collaborate to perform a given task. For some economical
reasons, merely few agents should execute the task. In such cases, a joint decision must be reached
of which agents should perform the job. Note that such settings where automated agents collaborate
become more and more important in times of Industry 4.0.

Finally, group identification can reflect group-dynamic behavior or group structures. In this con-
text, campaign management, lobbying, or strategic behavior in general appear to be worth studying.
While group identification had been studied concerning some axiomatic properties or from the soci-
ological point out view, Yang and Dimitrov [171] initiated the study on the complexity of strategic
influences in form of constructive control by adding, deleting, and partitioning individuals. This
inspired us to continue this emerging research and study destructive control as well as constructive
and destructive bribery.

Furthermore, we deviate from the canonical setting with complete information. Previous works
on group identification premise that an external agent knows for each pair (a,a′) of individuals
whether a qualifies or disqualifies a′. Or, equivalently speaking, a complete profile is given. In
practice, this does not appear to be realistic. Suppose for example that an agent or a company
wishes to forecast the outcome of a social rule, but not all the information is accessible, which
seems a reasonable assumption especially when the group is large. Therefore, we study the effect of
partial profiles and investigate the complexity of the two problems Necessarily Qualified Individuals
and Possibly Qualified Individuals (NQI and PQI, for short). Intuitively, a partial profile over the
individuals in N is defined in a way that an individual a qualifies an individual a′, disqualifies a′, or
it is unknown whether a qualifies or disqualifies a′. Analogously to partial preferences in elections,
a profile φ extends a partial profile ϕ when φ is a complete profile not contradicting the partial
profile. The NQI (PQI) problem asks whether or not a subset S of individuals is qualified under
social rule f for every complete profile φ (at least one profile φ ) extending the partial profile ϕ . We
examine the complexity for both problems and various social rules under two assumptions. Under
the first assumption, each individual may qualify an arbitrary number of individuals, whereas under
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the second assumption, every individual qualifies exactly k individuals (with k ∈ N).

Organization

This thesis is organized as follows. While Part I deals with voting with a focus on partial informa-
tion, Part II is about group identification.

In Chapter 2, we provide some preliminaries in mathematics, complexity theory, and graph
theory. Finally, we give a short introduction to voting theory.

Chapter 3 is about voting under partial information. In a first step, we define nine partial in-
formation models. We further point out the interconnections of these structures. In the remainder
of this chapter, we investigate the complexity of the problems possible/necessary winner and possi-
ble/necessary bribery.

The subsequent chapter—Chapter 4—presents yet another way to study elections under incom-
plete information. Analogously to the standard setting, all voters completely rank the candidates
from first to last, but a lottery selects at random a voter subset of fixed size. We study possible
and necessary winner, a counting problem where we count the number of winning subelections of a
given candidate, evaluation, and two bribery variants.

Chapter 5 is about voter control, candidate control, and bribery in the rules Plurality with Runoff
and Veto with Runoff. In contrast to the previous two chapters, we merely study several problems
under complete information.

As pointed out, Part II, is about group identification. Chapter 6 gives an introduction to group
identification, whereas in Chapter 7 we study strategic behavior in group identification for various
social rules. Chapter 8 deals with group identification under incomplete information.

Last but not least, the Appendix provides some omitted calculations, proofs, and examples.
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Voting
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Chapter 2

Preliminaries

In this chapter, in Section 2.1, 2.2, and 2.3, we provide some basics in complexity theory, graph
theory, and voting theory, respectively.

First of all, we recall some basics in mathematics. Although we assume the reader to be familiar
with the most important notions in mathematics, we subsequently present some of them, especially
those for which there exist different dictions in literature. By way of example, to avoid confusion,
we let N = {1,2,3, . . .} denote the set of natural numbers. Besides, N0 := N∪{0} = {0,1,2, . . .}
contains all nonnegative integers. We further assume the reader to be familiar with the sets Z, Q,
and R. For two rational numbers a and b, we let [a,b] denote the rational interval throughout this
thesis, that is [a,b] := {x ∈Q : a≤ x≤ b}. Analogously, we define (a,b] := {x ∈Q : a < x≤ b}.
Likewise, we obtain [a,b) and (a,b). Note that intervals can be empty, e.g., when a > b holds. We
restrict ourselves to rational numbers as irrational or transcendent numbers only play a minor role in
informatics. Rational numbers/intervals suffice for our purposes since numbers in R\Q can merely
be approximated by computer programs.

We premise that the most basic set-theoretic notions are known to the reader. To avoid confu-
sion, we denote the case where A is a subset of B by A ⊆ B or A ⊂ B. Although many computer
scientists write A⊂ B meaning that A⊆ B and A 6= B, we adapt the traditional notation known from
mathematics where both notions are identical. We write A ( B which is equivalent to A ⊆ B and
A 6= B. In this case, we say that A is a proper subset of B. Finally, |A| := |{a : a ∈ A}| denotes the
number of elements in A or, equivalently, the cardinality or size of A. In literature, one can also find
expressions such as ||A||, #A, or card(A). The power set P(A) := {B : B ⊆ A} of A is defined as
the set containing all subsets of A. Note that if A is finite, P(A) contains 2|A| elements, including

A itself and /0 (the empty set). Finally, A
·
∪ B denotes the disjoint set union of two sets A and B,

implicitly assuming that A∩B = /0 holds. Notice that this notion can be easily extended to more
than two sets.

We briefly describe some sets of integers as follows. For two integers k and l, the set {k, . . . , l}
is equivalent to the set { j ∈ Z : k ≤ j ≤ l}. E.g., {4, . . . ,9} is an abbreviated representation of
{4,5,6,7,8,9}. We sometimes write expressions like 4≤ j ≤ 9 containing all integers from 4 to 9.
For the sake of convenience, we further let [l] := {1, . . . , l} for a natural number l.

Last but not least, we assume the reader to familiar with the Landau symbol O( f ) for a given
function f . We say that a function ”g is in O( f )” or ”g = O( f )” when g asymptotically grows no
faster than f . Throughout this thesis, we often use expressions such as ”a problem is in O(n2)”

11
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meaning that the running time of an algorithm solving or deciding the problem is bounded from
above by a polynomial quadratic in the problem’s input size (cf. Section 2.1).

2.1 Complexity Theory

This section provides some basic complexity theoretic notions and is widely based on the books [89,
145]. Generally, studying the complexity of a problem aims at determining how much amount of
time or space is required in the worst-case until a solution of the problem is found or until we find out
that a solution does not exist. Basically, we distinguish between algorithms having a polynomial-
time running time in the worst-case and between algorithms that require exponentially many steps
until a solution is computed, detected, or until we find out that a solution does not exist. In both
cases, polynomial or exponential time refers to the input size of the studied problem. For example,
when the input of a problem has size n ∈ N and the algorithm to solve the problem has worst-case
running time 2n, the number of steps a computer program has to perform exponentially grows in
n. For small instances, this provides no difficulty for current computers, but huge input data might
considerably increase even a modern computer’s running time, compared to algorithms that run in
polynomial time.

In the following, we present a formal model that describes problem instances and solutions in
terms of languages over a fixed and finite alphabet Σ. Typically, we have Σ = {0,1}. Let us start by
defining some fundamental notions.

Definition 2.1. Let Σ be a finite alphabet.

(a) By Σn, we denote the set of all finite strings or words of length n ∈ N0 over alphabet Σ.

(b) Σ∗ :=
⋃

n∈N0
Σn contains all strings over Σ with arbitrary length.

(c) A language L is defined as a subset of Σ∗.

Let us specify now what is meant by a problem [89].

Definition 2.2. A problem Π consists of a list of input parameters and a statement or question
describing the properties and shape a solution or answer to the problem must have.

The statement can be given as a statement in the classical meaning as well as a question of which
the answer is either YES or NO. Assume for example that our input consists of two rational numbers
x and y, and the statement is ”Compute x+ y”. Another example might have x,y ∈ Q as its input
and the statement/question might be ”Maximize xy under the constraint 0≤ x,y≤ 1”. Besides, the
input could be identical to the one of the previous example, but contains a nonnegative integer B, in
addition. The statement might then be a question such as ”Do there exist any x,y with 0≤ x,y≤ 1
such that xy≥ B?”

Most problems in this thesis are defined in the style of this latter example and are called decision
problems. In order to formally define decision problems, we first introduce the notion instance.

Definition 2.3. An instance of a problem is a concrete and feasible assignment of values for the
given input parameters [89].
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E.g., when a problem’s input is ”A set M with M⊆ {1, . . . ,10}”, possible instances are {1,2,5},
{10}, {1, . . . ,10}, or /0.

Decision problems [89] are defined as follows.

Definition 2.4. Let DΠ denote the set of all possible instances of a decision problem Π and let
I ∈ DΠ be any instance. Then an algorithm deciding Π either outputs I ∈ YΠ ⊆ DΠ (”I is a YES-
instance”) or I ∈ NΠ := DΠ \YΠ (”I is a NO-instance”).

There is a connection between decision problems and languages over an alphabet Σ in a way that
each YES-instance—and in particular the input parameters of any given instance—can be expressed
by a finite string over a given language L. Strings in Σ∗ either (1) belong to YΠ (the YES-instances),
(2) belong to NΠ (the NO-instances), or (3) do not correspond to instances of Π (one might refer to
them as the infeasible instances) and consequently, the latter kind of instances formally belong to
Σ∗ \DΠ [89].

Next, we specify what we mean by an algorithm [89].

Definition 2.5. An algorithm is a well-defined procedure that step by step solves (or tries to solve)
a given problem.

There are many different and yet similar definitions of algorithms in literature. One can also
consider an algorithm as a function mapping a given instance (a language DΠ ⊆ Σ∗) to a solution
or to YES/NO (when the underlying problem is a decision problem; we generally suppose that each
instance yields the answer YES or NO although one can define algorithms that do not come to a
halt).

As already mentioned, complexity theory aims at classifying a problem Π in terms of its running
time. Intuitively, problem instances with larger input size tend to require more running time than
instances with smaller input size. We define the input size of a problem as follows.

Definition 2.6.

(a) The input size or input length of an instance I of a problem Π is defined as the number of
symbols encoding I by some particular encoding scheme.

(b) The time complexity function of an algorithm deciding a problem Π maps a nonnegative
integer n to a natural number n′, where n′ is the largest possible running time or, equivalently
speaking, the highest possible number of computational steps that our algorithm requires
over all instances encoded by a string of length n.

The time complexity of an algorithm intuitively provides a worst-case measure measuring the
number of computational steps (sometimes also called elementary operations) of an algorithm de-
ciding our problem until we obtain an answer to our problem. There exist other notions such as
space complexity, but these are widely irrelevant for our purposes the more so as a polynomial run-
ning time implies that the amount of space required to find a solution for a problem is polynomially
restricted as well (although the back direction does not hold in general) [89].

The following definition literally follows from [145] and formalizes the concept of a complexity
class.
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Definition 2.7. A complexity class is defined as a set of problems that can be solved by means of
algorithms according to a computational model. These algorithms require no more than a certain
amount of the respective complexity resource.

As pointed out, the ”complexity resource” relevant for our purposes is running time. The two
basic complexity classes considered are given by P and NP.

Definition 2.8. The class P is defined as the set of problems that can be decided in polynomial time
by a deterministic Turing machine (DTM, for short).

A Turing machine is an abstract model which simulates an algorithm or a computer program
and is—loosely speaking—defined via an input tape (containing the string encoding the input of a
problem), a set of states, and some working tape(s) [89]. The latter two simulate the processing of
an algorithm solving problem Π on the given input string, initially placed on the input tape. DTMs
can model any algorithm or computer program. Or, in other words, any algorithm can be modeled
by an equivalent Turing machine [89].

Definition 2.9. The class NP is defined as the set of problems which can be computed in polynomial
time by a non-deterministic Turing machine (NDTM, for short).

For formal definitions of Turing machines and some examples, we refer to [89, 145]. Recall
that an algorithm is deterministic if in each stage of the algorithm, the next computational step is
uniquely defined. Otherwise, an algorithm is said to be non-deterministic. A NDTM is a general-
ization of a DTM in a sense that it additionally possesses a guessing stage. Or, informally, a NDTM
can verify in polynomial time whether or not a guessed candidate for a solution actually corresponds
to a solution.

The intuitions behind these two concepts are as follows. Where programs modeled in terms
of a DTM require polynomially many steps and the ”computation path” (that is, the sequence of
computational steps) is uniquely determined, there may be different computation paths for NDTM.
Or, equivalently speaking, for each configuration in a NDTM, there may exist different successive
configurations.

In general, Turing machines either halt in an accepting state, in a rejecting state, or never halt.
We denote Turing machines that always halt on an accepting or rejecting state with acceptors as they
accept or reject depending on the input. We will observe that all algorithms in this thesis, tailored
to decision problems, halt.

Aside from deciding problems, Turing machines can also be used to compute functions, such as
the sum of two integers or functions outputting all solutions of a given problem.

Definition 2.10. The class of functions that can be calculated in polynomial time by a DTM algo-
rithm is called FP [157].

The class P contains problems that can be efficiently decided, whereas NP includes polynomial-
time decidable problems as well as intractable problems with exponential running time or problems
for which no deterministic polynomial-time algorithm has been discovered yet. Most of such prob-
lems are intuitively regarded as intractable or hard. Formally, it holds P ⊆ NP. The question
”P = NP or P 6= NP” is still open. Although many researchers believe that P 6= NP holds, a formal
proof is still missing. Observe that under the assumption P 6= NP, each DTM can be written as a
NDTM as well, the back direction does not hold.
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All these concepts are defined in an encoding-independent manner. We may do so although
there may be different possibilities how to encode the input a given problem (we say encoding
scheme), either over the same alphabet or over different alphabets. By way of example, in case our
input is a natural number, possible encodings of the number 13 are 13 (in the decimal system), D
(in the hexadecimal system), 15 (in the octal system), and 1000 (in the binary system). Observe
that the input size is varying between the different encoding schemes. At first sight, it hence ap-
pears a little astonishing that we may argue independently from any particular encoding scheme
since the complexity of a problem is defined dependent on the input size which in turn depends on
the particular encoding scheme used. Coming back to our example, the input—the natural number
13—is larger in the binary system than in the decimal or hexadecimal system and likewise the run-
ning times for the decimal or hexadecimal system are smaller than under the binary system. The
language L(Π,e) of a problem—that is, the YES-instances YΠ encoded by e—actually refers to a
special encoding scheme e [89]. We may yet overlook the particular encoding scheme as all ”rea-
sonable” encoding schemes differ from each other in polynomial time. More precisely, the length
of any input x encoded by encoding scheme e differs from the lengths of all other encodings of this
input in polynomial time. Although Garey and Johnson [89] stated that there is no formal definition
of a ”reasonable encoding”, inputs traditionally (1) should be consise (i.e., not padded with unnec-
essary information), (2) input numbers should be encoded in binary or by any larger fixed base,
but not in unary, and (3) any algorithm solving a problem Π should be able to extract the informa-
tion encoded by a particular encoding scheme in polynomial time [89]. These three requirements
seem rational and not really limiting. In case the first condition is hurt, it may be possible that the
input itself artificially has exponential size and thus problems requiring exponentially many steps
wrongfully become polynomial-time solvable. The same holds for many problems when encoded in
unary. Verify that all inputs in our problems studied are given by a ”reasonable” encoding scheme.
We therefore will not mention this anymore and provide all complexity results in an encoding-
independent manner. By way of example, when our input is an election (C,V ) together with a
designated candidate, we describe this input via listing m candidates in candidate set C, n voters in
voter set V (m ∈N, n ∈N0), c ∈C, and the voters’ complete rankings over C, by default. Hence, the
input size has around O(m)+O(n)+O(1)+O(mn) = O(mn) symbols (ignoring commas, dots, or
parentheses helping us to uniquely define our input). We point out that there is a stream of research
assuming that a voting problem’s input is succinctly represented (cf. [86]). E.g., to evaluate the
Plurality rule, it suffices that each voter and the candidate ranked first by this voter are given in the
input. In contrast, the canonical setting requires each voter to provide a complete ranking over all
candidates.

As a next step, we provide a tool for showing that one problem is at least as hard as another
problem. Compare [145] for the following definitions.

Definition 2.11. Let C be a complexity class, Π1 and Π2 be two problems (or, in terms of languages,
two subsets of Σ∗ over the same alphabet Σ). We say that Π1 many-one reduces to Π2 (formally
Π1 ≤p

m Π2) if and only if there exists a function f ∈ FP (that is, the computation of the function can
be modeled by a DTM program) such that the condition [x ∈ Π1 ⇐⇒ f (x) ∈ Π2] holds for each
x ∈ Σ∗. Informally, Π2 is at least as hard as Π1. We further say that we reduce Π2 from Π1.

The following definition specifies hardness of a given problem.
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Definition 2.12. Let Π1 and Π2 be two problems.

(a) Π1 is said to be C -hard if Π2 ≤p
m Π1 holds for each Π2 ∈ C .

(b) Π is called C -complete if and only if Π is C -hard and Π ∈ C .

Given C = NP, we obtain the definitions of NP-hardness and NP-completeness. Definition 2.12
will turn out useful for the following reason. Suppose that a problem Π1 is NP-complete and
Π1 ≤p

m Π2 holds. Then we know that Π2 is NP-hard.
One problem known to be NP-complete is EXACT COVER BY 3-SETS (X3C, for short) [89].

EXACT COVER BY 3-SETS

Given: A set B = {b1, . . . ,b3m} and a collection S = {S1, . . . ,Sn} with Si ⊆ B, |Si| = 3 for every
i ∈ [n].

Question: Does S contain an exact cover for B, or, equivalently, is there a subcollection S ′ ⊆S such
that each element of B occurs in exactly one member of S ′)?

We point out that X3C is still NP-complete when each element in B occurs in exactly three
sets in S [97]. We refer to this problem as RESTRICTED EXACT COVER BY 3-SETS (RX3C, for
short). Note that it holds n = 3m, that is, S and B both have 3m elements.

Another problem known to be NP-complete is THREE-DIMENSIONAL MATCHING (3DM, for
short) [89].

THREE-DIMENSIONAL MATCHING

Given: Three disjoint sets X = {x1, . . . ,xn}, Y = {y1, . . . ,yn}, and Z = {z1, . . . ,zn}, and a set of triples
E ⊆ X×Y ×Z.

Question: Does E contain a subset E ′ such that each element in X ∪Y ∪Z belongs to exactly one triple
in E ′?

We call E ′ a three-dimensional matching. This problem generalizes the famous marriage prob-
lem [102] for which two genders are given, some of them find each other acceptable, and we try
to compute an assignment of women and men finding each other acceptable such that each man
(woman) is assigned to exactly one woman (man). Hence, we can interpret a three-dimensional
matching as a situation with three genders (X , Y , and Z) and each triple in E corresponds to a
combination of one representative of each gender accepting each other.

3DM remains NP-complete under the restriction that each element a ∈ X ∪Y ∪Z occurs in at
most three triples in E [89]. We denote this instance by (≤ 3)-3DM. Observe that this instance
is still hard when each element a belongs to either two or three triples in E. We may argue like
this for the following reason. If some element a ∈ X ∪Y ∪Z does not occur in any triple in E, we
immediately discard our instance. In case a belongs to exactly one triple, this triple necessarily
belongs to a three-dimensional matching (if existing). Step by step, we may therefore fix all triples
including such elements until we either arrive at a matching and accept, or reject (as some element
does not belong to any triple anymore), or until all elements belong to either two or three triples. A
more detailed description of this simplification rule can be found in the Appendix.
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This instance has already been used in [32, 33]. We denote the variant of 3DM, where each ele-
ment is contained in two or three triples in E, by RESTRICTED THREE-DIMENSIONAL MATCHING

(R3DM, for short).
Another problem known to be NP-complete is the HAMILTONIAN PATH problem [89] defined

in Section 2.2.
While problems in P are easy in a sense that there is further insight into the structure of the prob-

lem [89], NP-complete problems can only be verified by guess- and check algorithms in polynomial
time (that is, we can check in polynomial time whether a guessed solution yields the answer YES
or NO), but an exhaustive search or complete enumeration is necessary in the worst-case. We point
out that a problem is also hard when even the solution itself can merely be described in exponential
time depending on the input size. One such problem is listing all subsets of a set with n elements
(n ∈ N). Our model of P/NP-hardness does not capture this. One way to deal with this is given by
counting hardness defined in the following.

In case a problem is NP-complete, counting the number of solutions is intuitively hard as well (as
it is even hard to ”count” whether or not the number of solutions in greater than zero). Conversely,
whenever counting the number of solutions of the a decision problem is easy, the decision problem
itself is easy as well. Valiant [157] introduced a formal concept in order to define the counting
complexity of a given problem:

Definition 2.13. A counting Turing machine (CTM, for short) is a NDTM with an auxiliary output
device which prints on an additional tape the number of YES-instances according to the input string.

Analogously to DTM and NDTM, the time complexity function of this CTM maps a nonnega-
tive integer n to the largest possible running time over all inputs of size n. Loosely speaking, one
can imagine a program that exhaustively guesses all feasible inputs, checks whether the answer to
the given problem is YES or NO, and increases the counter on an extra tape counting the number
of solutions by one. Similarly to the class NP, Valiant defined the class #P tailored to counting
problems [157]:

Definition 2.14. The class #P (pronounced ”sharp P”) contains all functions for which there is a
CTM with a polynomial time complexity function.

The class # P includes all counting problems solvable by calculating the number of accepting
computation paths of a NDTM.

Analogously to decision problems, Valiant defined a hardness notion specific to counting prob-
lems. To describe this concept, we first have to present another class of Turing machines, so-called
oracle Turing machines (OTMs, for short). An OTM is a NDTM that consists of a query tape, an
answer tape, and some additional working tapes. The NDTM sends some queries to the oracle by
writing a string on the query tape, goes to an oracle-state, and then outputs the answer in a single
step. This answer is printed on the answer tape. The Turing machine moves to an answer state then.
One can consider an oracle as a black box that answers in one step a query sent by the NDTM.

Hardness for counting problems is defined as follows.

Definition 2.15. A problem Π is # P-hard if and only if #P⊆ FPΠ, where FPΠ is defined as the class
of functions that can be calculated by OTMs from FP with oracles for Π.

Similarly to the definition of completeness specific to decision problems, we can define com-
pleteness for counting problems:
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Definition 2.16. A counting problem Π is # P-complete if and only if Π ∈ # P and Π is # P-hard.

When reducing from hard-to-count problems, we make use of parsimonious reductions, i.e.,
polynomial time reductions that preserve the number of solutions (for details, cf. [89]). Notice that
parsimonious reductions generalize many-one reductions for decision problems, that is, they hold
for decision problems as well.

One problem known to be hard to count is #PERFECT MATCHINGS FOR BIPARTITE GRAPHS

defined in Section 2.2.
Throughout this thesis, we only show hardness. Membership in NP or # P immediately follows

as in each hardness proof, a simple guess & check algorithm verifies whether or not a guessed
solution is a solution to our problem. We do not state this explicitly in our proofs.

Whenever we indicate the worst-case complexity of a problem by means of the Landau symbol,
e.g., we state that a given problem is in O(m2n), this only provides an upper bound on the running
time of a given algorithm. Although many of our algorithms yield instances actually requiring this
running time, there may exist proofs for which O(m2n) is a rough upper bound on the complexity
of the given problem and can possibly be improved. Nevertheless, since we merely want to show
membership in P, we abstain from providing the best possible worst-case running time for a given
algorithm.

When showing membership in P for a given problem related to voting or group identification,
we follow the largest part of the literature in COMSOC and provide polynomial-time algorithms
in a scarce and economic manner. Accordingly, all numbers in our proofs can be represented by a
polynomial-time binary presentation; we frequently renounce of determining the exact complexity,
such as O(mn). In Part II, we go a little more into detail as we often distinguish whether or not
some given parameters are constant. We further do so in order to stay consistent with the underlying
papers.

2.2 Graph Theory

In this section, we introduce some concepts known from graph theory. For the interested reader, we
refer to the books [11, 101, 162]. First of all, let us start with some basic notions:

Definition 2.17. A graph is defined as a pair G = (V ,E ), where V and E are the vertex set and
edge set, respectively. Both V and E are finite.

• If E ⊆ (V ×V ) \ {(x,x) : x ∈ V }, the graph is called directed. We say digraph or directed
graph.

• If E ⊆ {V ′ ⊆ V : |V ′|= 2}, the graph is said to be undirected.

Given a digraph, we denote edges by (x,y) and the direction matters. We say that the edge starts
in x and ends in y or the edge goes from x to y. In particular, the edge (x,y) is different from the
edge (y,x) in digraphs. In contrast, in undirected graphs we denote edges by {x,y} and the edges
{x,y} and {y,x} are identical. Note that our definition does not allow edges {x,x} or (x,x). Such
edges are called loops. We will assume that graphs do not contain loops.

We can generalize the setting in Definition 2.17 by allowing E to be a multiset. In other words,
each edge (x,y) or {x,y} may appear more than once in E .
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Figure 2.1: The left graph is a digraph, whereas the right graph is undirected. Both graphs contain
multiple edges and therefore are not simple.

Definition 2.18. Let G = (V ,E ) be a directed or undirected graph.

(a) A multiple edge e is an edge that occurs at least twice and finitely many times in E .

(b) A multigraph G is a graph for which multiple edges are allowed.

(c) G is said to be simple when it contains no multiple edges. 1

We will often make use of the dictions ”graph” and ”multigraph” interchangeably as many
definitions hold for multigraphs and simple graphs. In order to emphasize that a graph must not be
a multigraph, we use the diction ”simple graph”.

Notice that each simple graph is a multigraph as well, but not the other way around, in general.
Graphs according to Definition 2.17 are simple. Figure 2.1 presents examples of a digraph and an
undirected graph.

In fact, there are two ways to define multigraphs. Firstly, one can define multigraphs as graphs
according to Definition 2.17 and each e is additionally assigned a nonnegative integer capacity
cap(e) denoting the multiplicity of e (i.e., the number of parallel edges between the two vertices
connected by e). We also say that the graph is capacitated. E.g., for an edge e = {x,y} in an
undirected graph we set cap(e) = 3 when there are three parallel edges between the two vertices x
and y. If the graph is directed, e = (x,y), and cap(e) = 3, there are three edges from x to y in G.

Secondly, one can define multigraphs as uncapacitated graphs according to Definition 2.17,
but E is a multiset. By way of example, consider the graph G = (V ,E ) with V = {x,y,z} and
E = {{x,y},{x,z},{x,z},{y,z}}. Notice that the edge {x,z} appears twice in E , being listed twice.

The following definition introduces a special kind of graphs.

Definition 2.19. An undirected graph G = (V ,E ) is called bipartite when V can be partitioned
into two subsets X and Y such that (e∩X) 6= /0 6= (e∩Y ) holds for each edge e ∈ E .

Next, we present some relations between two vertices and between edges and vertices.

Definition 2.20. Let G = (V ,E ) be a multigraph.

1In literature, a simple graph is usually defined without loops and multiple edges. Since we require that there are no
loops in a given graph, we can simplify the definition of a simple graph.
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(a) Let G be undirected. Two distinct vertices x and y are said to be adjacent if {x,y} ⊆ E . 2 The
neighborhood of x is defined by N(x) := {y ∈ V : {x,y} ∈ E } contains all vertices adjacent
with x (the neighbors of x).

(b) Suppose that G is a digraph. Then two distinct vertices x and y are adjacent if (x,y) or (y,x)
is in E . Let N+(x) := {y ∈ V : (x,y) ∈ E } and N−(x) := {y ∈ V : (y,x) ∈ E }. We call the
vertices in these sets outneighbors and inneighbors, respectively.

Note that—even though G might be a graph with multiple edges—N(x) is a set and no multiset
(although the neighborhood is sometimes defined as a multiset in literature). E.g., when an edge
{x,y} occurs four times in G, y appears only once in N(x).

We can also define a relation between vertices and edges.

Definition 2.21. Let G = (V ,E ) be a multigraph.

(a) Let G be undirected. We say that an edge e and a vertex x are incident if x ∈ e. The multiset
of edges incident to x is defined by δ (x) := {e ∈ E : e incident to x}.

(b) Given that G is a digraph, x and e are incident if e starts or ends in x, i.e., we define δ (x) :=
{e ∈ E : ∃y ∈ V \{x} : e = (x,y) ∨ e = (y,x)}.

(c) The degree d(x) of a vertex x ∈ V is defined as the number of edges incident to x, i.e., d(x) :=
|δ (x)|.

(d) For digraphs, we can define the indegree ind(x) and outdegree outd(x) of a vertex x as fol-
lows:

ind(x) := |N−(x)|, outd(x) := |N+(x)|

In some applications, edges in a graph are equipped with edge weights.

Definition 2.22. A multigraph is called weighted if each edge e ∈ E is assigned an integer weight
w(e).

Whenever it holds w(e) = 1 for each edge e, we could actually consider an unweighted
graph instead. Weights have different applications and may measure the importance or—when
nonpositive—the cost of an edge.

Our next definition presents an operation over a vertex subset in digraphs.

Definition 2.23. Let G = (V ,E ) be a digraph. Given a set of vertices A ⊆ V , merging vertices in
A is defined as the following operation:

1. This operation creates a new vertex denoted by u(A);

2. for each w ∈ V \A such that there is an edge from w to some vertex in A, it creates an edge
from w to u(A);

2We point out that E is a collection of 2-subsets of V . E.g., for E = {{x,a},{y,b}} (for x,y,a,b ∈ V , all pairwise
different) the edge {x,y} does not belong to E although both the vertices x and y occur in some edge in E .
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3. for each w ∈ V \A such that there is an edge from some vertex in A to w, it creates an edge
from u(A) to w; and

4. it removes all vertices in A and edges incident to them.

Next, we specify what a directed path in a digraph G is.

Definition 2.24. Let G = (V ,E ) be a digraph.

(a) A directed path in G is a vertex sequence (u1,u2, . . . ,ut) (t ∈ N) such that (ui,ui+1) ∈ E for
every i = 1,2, . . . , t−1.

(b) A Hamiltonian path is a directed path with the additional property that every vertex in the
digraph appears exactly once in the path.

As mentioned in Section 2.1, deciding whether a given graph yields a Hamiltonian path is NP-
complete [89].

HAMILTONIAN PATH

Given: A simple digraph G = (V ,E ).
Question: Does G contain a Hamiltonian path?

We could also allow the graph to be a multigraph. Nonetheless, we may assume that G is simple
since each vertex, and thus each edge, can occur at most once in a Hamiltonian path. We further
presume that in a given instance of HAMILTONIAN PATH, each vertex has at least one in- and one
outneighbor, i.e., it holds min(|N+(u)|, |N−(u)|)> 0 for each vertex u. This is no restriction to our
problem because vertices with neither out- nor inneighbor cannot belong to any Hamiltonian path
and thus our instance is a NO instance. Provided that a vertex has no outneighbor, this vertex must
be the last vertex in a Hamiltonian path (if any) and our instance transforms to a smaller instance
with fewer vertices. If there are two or more vertices without any outneighbors, there cannot exist
any Hamiltonian path. Likewise, we may argue that vertices without any inneighbor must be placed
at the beginning of a Hamiltonian path, provided that one exists.

Another problem tailored to digraphs is the MINIMUM (u,u′)-SEPARATOR problem [152] which
belongs to P. First of all, let us define a separator.

Definition 2.25. Let G = (V ,E ) be a digraph. For V ′ ⊆ V , let ΓG(V ′) be the set of all vertices
reachable via edges from a vertex in V ′, i.e., for every u ∈ ΓG(V ′) there is a directed path from a
vertex in V ′ to vertex u. For two distinct vertices u,u′ ∈ V , a (u,u′)-separator is a subset of vertices
in V \{u,u′} whose removal destroys all directed paths from u to u′. A minimum (u,u′)-separator
is a (u,u′)-separator with minimum cardinality.

With these preconsiderations, we define the following problem.

MINIMUM (u,u′)-SEPARATOR

Given: A digraph G = (V ,E ), two designated vertices u,u′ ∈ V (with u 6= u′), and a nonnegative
integer `.

Question: Is it possible to find a (u,u′)-separator with cardinality of at most `?
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Notice that the definition allows that (u,u′) ∈ E . In this case, there cannot exist any separator
since neither u nor u′ may be deleted.

Next we regard two other problems related to digraphs which belong to P. The first problem is
INTEGRAL FLOW MAXIMIZATION. Our input of this problem is a flow network, defined as follows.

Definition 2.26. A flow network is defined by the tuple (G,cap,x,y), where G = (V ,E ) is a simple
digraph, cap : E → N0

3 a capacity function, and x and y are two distinguished vertices. x is called
the source of the network, whereas y is called the sink. The vertices x and y further satisfy the
condition ind(x) = 0 = outd(y).

The following definition specifies what a flow is.

Definition 2.27. Let (G,cap,x,y) be a flow network defined as in Definition 2.26. An integral flow
F is defined as a mapping F : E → N0 with the following properties:

1. ∑e∈δ (x) F(e) = ∑e∈δ (y) F(e) =: ŝ.

2. ∑z∈N−(w) F((z,w)) = ∑z∈N+(w) F((w,z))(= ŝ) holds for each w ∈ V \{x,y}.

3. F(e)≤ cap(e) holds for each e ∈ E .

We refer to the first two conditions as flow conservation conditions, the third constraint is to
ensure that capacities are met by all edges in E . An integral flow F satisfying all three conditions
is said to be feasible. ŝ is called the flow size or flow value of F . Now we are equipped to define the
integral flow maximization problem which is known to be in P [1].

INTEGRAL FLOW MAXIMIZATION

Given: A flow network defined as in Definition 2.26 and a nonnegative integer ŝ.
Question: Can we find a feasible integral flow F (that is, a mapping F : E → N0 satisfying the three

conditions in Definition 2.27) such that the flow size of F is at least ŝ?

Flow networks apply to many problems, such as assignment problems (cf. [1]). Intuitively, a
flow network with a flow of size ŝ corresponds to a pipeline system flown through by water volume
ŝ. An example of a flow network is given in Figure 2.2.

There is yet another problem about flow networks that is in P [1]:

INTEGRAL MIN-COST FLOW

Given: A flow network defined as in Definition 2.26, a nonnegative integer c(e) ∈N0 for each e ∈ E
(edge costs), and two nonnegative integers ĉ, ŝ.

Question: Can we find a feasible integral flow F with flow size ŝ such that ∑e∈E c(e)F(e)≤ ĉ?

In other words, we ask whether there is a flow of fixed size ŝ such that the total cost of the flow
does not exceed a certain threshold ĉ.

A class of problems tailored to undirected graphs is defined next. The most general of these
problems can be found in [9, 101] and is known to be tractable (for membership in P, see also [88]).

3A common flow network has a real-valued capacity function cap, but in our applications the edge capacities are
always nonnegative integers.
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Figure 2.2: An example of a flow network with source x and sink y. Each edge is labeled with two
numbers. The left number corresponds to the number of units assigned by the feasible flow F to
this edge, whereas the right number represents the capacity of the edge. Observe that the flow is
integral, feasible, and has value ŝ = 6. Nonetheless, the flow is not maximum as one could shoot
one further flow unit through the edges (x,a) and (a,y).

GENERALIZED b-EDGE MATCHING

Given: An undirected capacitated simple graph G= (V ,E ), capacity functions (or ”degree bounds”)
bl ,bu : V → N0∪{∞}, edge capacity function cap : E → N0, and a nonnegative integer µ .

Question: Can we find a function ν : E → N0 with ∑e∈E ν(e) ≥ µ such that (∗) bl(y) ≤
∑e∈E∩δ (y) ν(e) ≤ bu(y) holds for each vertex y ∈ V and (∗∗) ν(e) ≤ cap(e) holds for each
e ∈ E ?

A collection of edges or, more precisely, a mapping ν satisfying (∗) and (∗∗) is called a feasible
matching (or matching, for short). In particular, feasibility means that no vertex or edge capacity
constraint is hurt. The mapping ν assigns to each edge e the number of times e occurs in the
matching. E.g., given ν(e) = 3, edge e occurs thrice is the matching. ν(e) = 0 means that edge
e is not in the matching. Observe that the underlying graph G is formally simple and E and δ (y)
(y∈ V ) are proper sets and no multisets. Since G is endowed with an edge capacity function, in fact
we are dealing with a multigraph.

The problem is sometimes also called GENERAL b-MATCHING or GENERAL b-EDGE MATCH-
ING in literature. Note that the original definitions in [9] and [101] are even held more general in a
sense that the graph may contain loops, general lower edge constraints, the edges may be equipped
with weights, the capacities and weights may be arbitrarily real-valued, or the matching itself may
contain negative numbers. In our setting, it suffices to focus on the unweighted version (or, more
precisely, the weights are constant), nonnegative capacities, and hence (due to conditions (∗) and
(∗∗)) on a nonnegative matching mapping. This makes sense as each edge cannot be selected a
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negative number of times in practice. Moreover, we do not need non-zero lower edge capacities.
We obtain the definition of GENERALIZED b-EDGE COVER by replacing the expression

∑e∈E ν(e)≥ µ with ∑e∈E ν(e)≤ µ . In the former case, we want to maximize the number of edges,
while in the latter case we try to minimize the number of edges.

Important special cases of GENERALIZED b-EDGE MATCHING and GENERALIZED b-EDGE

COVER are b-EDGE MATCHING and b-EDGE COVER, respectively. For the matching problem, we
have bl(y) = 0 for each y ∈ V . In contrast, we let bu(y) = ∞ for the cover problem.

For practical reasons, we denote the lower capacity restrictions with b(y) (y ∈ V ) instead of
bl(y) when dealing with (standard) b-edge cover (that is, there are no upper capacity restrictions).
Likewise, for (standard) b-edge matching, we denote the upper capacities with b(y) instead of bu(y).

For the sake of simplicity, we say generalized b-edge matching and generalized b-edge cover
and use these notions interchangeably with (b-)edge matching and (b-)edge cover, respectively,
when there is no way of confusion.

One of the most special matching problems in this thesis is the problem of finding a perfect
matching in a simple bipartite graph.

PERFECT MATCHING FOR BIPARTITE GRAPHS

Given: A simple bipartite graph G = (V = X
·
∪ Y,E ).

Question: Can we find a perfect matching, that is, a subset E ′ ⊆ E such that every vertex in V occurs
in exactly one edge in E ′?

Note that a perfect matching can only exist for |X | = |Y |. While PERFECT MATCHING FOR

BIPARTITE GRAPHS is in P, counting the number of perfect matchings for simple bipartite graphs
is #P-complete [157]. In other words, PERFECT MATCHING FOR BIPARTITE GRAPHS is easy to
decide, but hard to count. The counting version is defined as follows:

#PERFECT MATCHINGS FOR BIPARTITE GRAPHS

Given: A simple bipartite graph G = (V = X
·
∪ Y,E ).

Question: How many perfect matchings does G have?

For practical reasons, we also say #PERFECT MATCHINGS instead of #PERFECT MATCHINGS

FOR BIPARTITE GRAPHS. Note that counting the number of perfect matchings is also hard for
general simple graphs (i.e., not bipartite) as a bipartite graph is a special case of a general graph.

We finally point out that the definition of generalized matching is tailored to capacitated graphs
(or, more precisely, to uncapacitated simple graphs that become capacitated due to the capacity
constraints cap(e)). In our proofs, we follow the arguing in the largest part of the COMSOC litera-
ture and argue by means of uncapacitated multigraphs. In other words, parallel edges between the
same two vertices are considered as separate, distinct edges with upper ”capacity” one each. 4 The
matching mapping ν maps from E to {0,1} instead of N0 and both E and δ (y) (y∈ V ) are multisets
in this variant. We can further do without edge capacities cap(e), when the underlying graph is a
multigraph, as these capacities would be trivially met by each matching, due to ν(e) ∈ {0,1} and

4We use the quotation marks as the multigraph representation actually gets along without edge capacities.
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cap(e) = 1 for each e in the edge multiset E . It holds ν(e) = 1 or ν(e) = 0, depending on whether
or not an edge e is in the matching.

Working with multigraphs in our proofs makes things easier when edges one-to-one correspond
to voters the more so as arguing with multiplicities of edges is more cumbersome than arguing with
single voters/edges. Nevertheless, whensoever we define a multigraph in a proof, we immediately
obtain a corresponding unique capacitated simple graph as in the definition of generalized b-edge
matching: for each pair of distinct vertices x and y, we simply define cap({x,y}) as the number of
edges between x and y in the multiset E . Moreover, all parallel edges in a multigraph between the
same two vertices x and y can be unified by one edge representing these edges (a similar arguing can
be found in [119]; for capacitated graphs, we also refer to [151]). Loosely speaking, in our proofs
we define an uncapacitated multigraph and actually compute a matching/cover for the corresponding
capacitated graph.

2.3 Introduction to Voting Theory

In this section, we give a short introduction to voting theory. For the interested reader, we also refer
to the textbooks [28] and [146] for further reading. Let us begin with the most basic notions.

2.3.1 Formal Background

Formally, an election is a pair (C,V ), where C is a set of m candidates and V is a multiset of n voters,
where m ∈ N and n ∈ N0, unless stated otherwise. 5 We will use the notions candidate and alterna-
tive interchangeably. In canonical settings, we have C = {c,c1, . . . ,cm−1} and V = {v1, . . . ,vn}. c is
also called distinguished candidate or designated candidate. When studying a destructive problem,
c is also denoted by despised candidate. We refer to all other candidates—canonically the c j—as
non-distinguished candidates. In some applications, we rename candidates and/or voters depending
on the context. For example, we sometimes write small letters such as a, b, d, or e to denote general
candidates (possibly c is among them) or non-distinguished candidates. At times, we also denote
voters by v or even by u or w.

Each voter vi ∈ V (i = 1, . . . ,n) is represented via his preference order �i (or �vi) over the
candidates in C which is a strict linear order in the standard setting. When the voter is clear from
the context, we also say a� b instead of a�i b or a�vi b for two given candidates a and b. A strict
linear order is a binary relation, that is total, asymmetric and transitive. We use the terms ranking
and preference order interchangeably. Likewise, a complete ranking is the same as a strict linear
order. We often drop the word ”strict” as voters are canonically defined as linear orders without
ties. Intuitively, a linear order ranks the candidates from first to last. For example, a �i b �i c
means that voter vi prefers a to b, b to c, and—due to transitivity—a to c. For disjoint candidate
subsets A and B with a /∈ A∪B, A �v a �v B means that voter v prefers all candidates in A to a, a
to all candidates in B, and—due to transitivity—all candidates in A to all candidates in B. Whether

5One could also set m as a nonnegative integer, but we consider only elections containing at least a distinguished
candidate c. By contrast, elections without any voters may make sense. For instance, it may occur that a candidate is only
a (necessary) winner when there are no voters or that a chair can only make his favorite candidate a winner by deleting
all voters. In Chapter 5, we provide some polynomial-time algorithms where—depending on the chair’s resources—an
election with empty voter set may be the result.
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and how the candidates in A or B are ranked among themselves, respectively, does not matter. When
we write a�v A for a candidate subset A and candidate a and we know that v is a complete vote, we
implicitly assume that the candidates in A are ranked according to an arbitrary, but fixed ordering.

By pos(d,v), we denote the position of a candidate d in a voter v’s ranking (when the candidate
set C is clear from the context). Likewise, posC̃(d,v) indicates the position of candidate d in vote v
when referring to the candidates in C̃.

We refer to {v1, . . . ,vn} as an n-voter profile P. A profile P is said to be a complete profile when
all votes vi are complete. Note that we can restrict preference profiles to all subsets and supersets
of C or V . Intuitively, we may assume a maximal (in the sense of non-extendable) and universal
election (Ĉ,V̂ ) where each voter v ∈ V̂ declares a complete ranking over all candidates in Ĉ. As
V ⊆ V̂ and C ⊆ Ĉ, the ”universal” rankings can be restricted only to the voters in V and merely to
the candidates in C, by erasing all irrelevant voters and candidates. Formally, an election (C,V ) is a
projection of the election (Ĉ,V̂ ) onto the restricted election (C,V ). Analogously, we can extend or
restrict the rankings of election (C,V ) to arbitrary (other) elections (C′′,V ′′), where C′′ and V ′′ are
any subsets of Ĉ and V̂ , respectively. This assumption will turn out useful when considering control
by adding, deleting, or replacing candidates and/or voters. As an example, let Ĉ = {c1, . . . ,c8}
and V̂ = {v1,v2,v3}, where v1,v2 : c1 � c2 � . . . � c7 � c8 and v3 : c8 � c7 � . . . � c2 � c1. Let
C = {c1,c4,c6} and V = {v1,v3}. Then the election (C,V ) is defined by the candidate set C, voter
set V , and the rankings v1 : c1 � c4 � c6 and v3 : c6 � c4 � c1.

A voting rule F maps an election to a subset of candidates we refer to as the winners of the
election. More precisely, a voting rule is defined as a set-valued function F : (C,V )→P(C) and
the candidates in F (C,V ) are the winners of the election. We point out that in literature a voting
rule frequently requires that |F (C,V )| = 1 for each input election (C,V ). Hence, we say voting
rule while actually regarding voting correspondences mapping an election to P(C). Note that one
can also define social welfare functions that output—given an election—a complete social ranking
over all alternatives. Social welfare functions are not studied in this thesis.

As the different definitions suggest, a voting rule may yield an arbitrary number of winners,
depending on which voting rule and which winner model we regard. According to the co-winner
model, a given candidate c is a winner of a given election if and only if c is either one among several
winners or the only winner of the election. Formally, it holds c∈F (C,V ). Under the unique-winner
model, c is a winner of the election if and only if c is the only winner, or formally, F (C,V ) = {c}.
We will find that sometimes the co-winner model and the unique-winner model lead to different
complexities for one and the same problem. In the following, we will merely study so-called single-
winner voting rules where one winner is sought (although there may be several winners under the
co-winner model). In particular, we will not consider multi-winner voting rules where a committee
of fixed size s (s > 1) has to be found (see i.a. [53]).

There are different ways to define the winners of an election as we will see in Section 2.3.2. For
example, several voting rules assign a score to each candidate. According to the co-winner model,
all candidates with the maximum score (i.e., there is no candidate with a higher score) are the
winners. In the unique-winner model, either a unique candidate has the maximum score and wins
or there is no winner at all. There are many other ways to determine the winners of an election.
Once again, we refer to the textbooks [146, 28]. Both winner models make sense in practice. For
example, in political elections only one president can be elected. In other applications, the number
of winners may be arbitrary. Suppose for instance that in a (simplified) political election each voter
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votes for his favorite party and all parties reaching at least a certain threshold of votes make it to the
parliament (for example, a party’s vote must exceed the five-percent threshold). All parties in the
parliament are declared as the winners. Although this example also applies to multi-winner voting
rules, there might be one winner or even no winner at all (and revoting in practice). Since there is no
restriction 6 on the number of parties in the parliament, the co-winner model is more suitable than
the unique-winner model in this context. Another example arises from rankings of whatever kind,
such as the best goal scorers ever in football world championships. All best goal scorers are the
”winners” of this ranking (one can interpret each shot goal as a voter and the players as candidates;
the candidates with the highest score are the winners). 7 Note that in case a candidate is a winner
under the unique-winner model (we say the winner of the election), the candidate is a winner under
the co-winner model as well. The opposite direction does not hold in general.

We point out that in some settings a tie-breaking rule is used whenever at least two candidates
are tied for the victory. Various tie-breaking rules are thinkable and known from literature. For
example, a tie-breaking rule can always select the smallest or largest candidate depending on a pre-
determined lexicographical order (e.g., the alphabetical order of the candidates’ names or the age
of the candidates). Note that such tie-breaking schemes are not neutral. Loosely speaking, a voting
rule (together with a tie-breaking rule) is neutral when all candidates are treated equally and per-
muting the candidates’ names changes the winner(s) of the election accordingly. Other tie-breaking
rules may draw a voter (predetermined or at random, cf. [5]) and the tying winner ranked best pos-
sible by this voter is declared as the election winner. Such tie-breaking rules—or, more precisely,
voting rules equipped with such tie-breaking rules—are neutral, but not anonymous in general, in a
sense that permuting the names of the voters and leaving their rankings unchanged may yet change
the winner. Other tie-breaking rules satisfying both fairness conditions might take some qualitative
properties of the candidates into account. As an example, a tie-breaking rule selects the candidate
with the largest number of voters ranking this candidate first or with the smallest number of voters
ranking him last. Note that such tie-breaking rules must still be refined as there may be still ties after
applying the tie-breaking rule. We refrain from using tie-breaking rules by and large. One exception
is in Chapter 5 where we study the two voting rules Plurality with Runoff and Veto with Runoff.
For these rules, we do not assume any particular tie-breaking method, but apply a generalization of
the co-winner model to the original election in a sense that we ask whether there is at least one way
to break ties such that the distinguished candidate c and another candidate reach the runoff and c is
a winner in the runoff. This model is called parallel-universe tie-breaking in literature. In summary,
tie-breaking rules are often reasonable in practice because in many applications (such as electing a
committee of fized size, the dean of a faculty, or the president of a football club) it is a desirable
property of a voting rule to determine a unique winner. Such voting rules are also called resolute.

In the following section, we present a variety of voting rules.

2.3.2 Voting Rules

There are various voting rules known from literature. Our main focus lies on scoring rules. Each
scoring rule is defined by a vector σ = (σ1, . . . ,σm) (with m = |C|) for which σ ∈ Nm

0 and σi ≥ σ j

for each 1 ≤ i ≤ j ≤ m. Each voter assigns σ1 points to his favorite candidate, σ2 to his second

6Effectively, there can be at most twenty parties reaching or exceeding the five-percent threshold.
7The voting rule used in this example is the Plurality rule defined in the next section.
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most preferred candidate etc., and σm points to his least preferred alternative. The candidates with
the highest score are the winners under the co-winner model. The scoring rules introduced in the
following belong to the most prominent scoring rules.

• k-Approval (k ∈ N) is defined by the scoring vector σ = (1, . . . ,1︸ ︷︷ ︸
k

,0, . . . ,0). In k-Approval,

each voter gives one point to his k most favorite candidates and zero points to all remaining
candidates. Formally, it holds σi = 1 (i ∈ [k]) and σi = 0 (i > k). 1-Approval is also known as
the Plurality rule.

• k-Veto (k ∈ N) is defined by the scoring vector σ = (1, . . . ,1,0, . . . ,0︸ ︷︷ ︸
k

). In k-Veto, each voter

assigns zero points to his k least preferred alternatives and one point to all other candidates.
We say Veto instead of 1-Veto. For a fixed number m of candidates, k-Approval is equivalent
to (m− k)-Veto. Note that the voting rules do not coincide for variable m as we assume k to
be a constant, unless stated otherwise.

In several proofs, we argue with veto numbers instead of approval scores. We say that a
voter vetoes candidate d if and only if he assigns zero points to d. Otherwise, the voter does
not veto d. It always holds vetoes(d)+ score(d) = |V |, where score(d) denotes the score of
d according to the scoring vector of the k-Veto rule and vetoes(d) is the number of voters
assigning zero points to d.

• The Borda rule is defined by the scoring vector (σ1, . . . ,σm) where σi = m− i (1 ≤ i ≤ m).
In other words, a voter’s top candidate gets m−1 points, his second most preferred candidate
m− 2 points, and so on. 8 Accordingly, a voter’s least preferred candidate receives no point
from this voter. We point out that a voting rule, using a scoring vector similar to the one
defining the Borda rule, is used at the Eurovision Song Contest. This adaption however
assigns slightly different scores to the candidates and is a truncated version, in a sense that
about half of all candidates do not receive any point.

Note that there are infinitely many scoring vectors. Our focus lies on k-Approval and k-Veto.
Aside from scoring rules, there are voting rules based on pairwise comparisons. For two distinct

candidates a and b, we introduce N(a,b) as the number of voters preferring a to b. Formally, for an
election (C,V ) and a,b ∈C, a 6= b (which requires that |C|> 1), we define

N(a,b) := |{v ∈V : a�v b}|.

We say that a wins the pairwise comparison (similar expressions are pairwise election, pairwise
contest, or head-to-head contest) against b if and only if N(a,b) > |V |

2 . Moreover, a loses the
pairwise comparison against b if and only if N(a,b) < |V |

2 . We further say that a ties with b if

8In literature, the Borda rule is often defined by the scoring vector σ = (m,m− 1,m− 2, . . . ,2,1). We follow the
predominant convention that a voter’s least preferred candidate should get zero points from this voter. Nevertheless,
both rules are equivalent in a sense that they output the same winner sets for all input instances. This can be verified as
follows: Each candidate d has score(d) points according to the Borda variant presented in this section and score(d)+ |V |
points according to the other variant. Hence, score(d) is maximum among all candidates if and only if score(d)+ |V | is
maximum among all candidates.
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and only if N(a,b) = |V |
2 (= N(b,a)). Besides, a does not lose the pairwise comparison against

b or, equivalently, at least ties with b if and only if N(a,b) ≥ |V |
2 . Note that for odd numbers

of voters two candidates never tie with each other. One of the most prominent rules based on
pairwise comparisons is the Condorcet rule. A candidate a ∈C is a Condorcet winner if and only
if N(a,b) > |V |

2 holds for each candidate b ∈ C \ {a}. In other words, a Condorcet winner (if one
exists) wins the head-to-head contests against all other candidates. In case such a candidate does
not exist, the Condorcet rule outputs an empty winner set. Similarly, all candidates not losing any
pairwise comparison are the winners according to the Weak Condorcet rule. Formally, a is a weak
Condorcet winner if and only if it holds N(a,b) ≥ |V |2 for each b ∈ C \ {a}. While each election
yields at most one Condorcet winner, there can exist an arbitrary number of winners according to
the Weak Condorcet rule. Note that for odd numbers of voters the two voting rules coincide.

There are further, more or less constructed rules based on pairwise comparisons, such as
Maximin, Copeland, Ranked Pairs, Cup, or Dodgson. Since they are immaterial to our analysis,
we refer the interested reader to [156] (for Ranked Pairs) and [146].

We say that a voting rule F is Condorcet consistent if the Condorcet winner—provided that one
exists—is always a winner according to F . Like neutrality and anonymity, Condorcet consistency
may be considered as a desirable property of a voting rule. We point out that scoring rules are
not Condorcet consistent as the Condorcet winner need not be among the winners in general. As
an example, the Plurality rule may have the Condorcet loser (the candidate losing all pairwise
comparisons) as its unique winner (e.g., suppose that two voters favor c and three voters favor a,
b, and d, respectively, and all of them rank c last) 9 or the Condorcet winner is the Plurality loser
(assume that there are five voters, each voter ranks c second, the candidates a, b, d, e, and f are
ranked first by exactly one voter each, and we have C = {a,b,c,d,e, f}). The Borda rule guarantees
at least that the Condorcet loser is not a Borda winner although the Condorcet winner is not a Borda
winner in general [146].

We consider two further voting rules: Plurality with Runoff and Veto with Runoff which can
be regarded as hybridizations of scoring rules and voting rules based on pairwise comparisons. The
Plurality with Runoff rule is defined as follows.

1. In the preround, we compute the Plurality scores score(d) for every candidate d ∈C.

2. The two candidates with the highest scores move to the runoff stage. In case of ties, a tie-
breaking rule must be applied to uniquely determine the candidates moving to the runoff.
Assume that a and b are the two runoff candidates. Both under the co- and unique-winner
model, a runoff winner is a candidate in {a,b} preferred by a majority of voters over the
other candidate in the runoff. If N(a,b) = N(b,a) holds, both candidates are the winners in
the co-winner model, whereas there is no winner under the unique-winner model. Formally,
we apply the Weak Condorcet (Condorcet) rule to the original election restricted to the two
runoff candidates when the underlying winner model is the co-winner model (unique-winner
model). As mentioned above, we will sometimes assume that ties are broken in favor of the
distinguished candidate, both in the preround and in the final runoff. We point out that there
are variants of Plurality with Runoff in literature where each voter may revote in the runoff
election. This is often the case in political elections. Accordingly, it might be possible that

9This paradox is also known under the name Borda Paradox
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Voting rule a b c d e
Plurality 2 1 0 2 1
2-Approval 2 1 1 3 5
3-Approval 3 1 5 4 5
Veto 3 0 1 1 1
Borda 10 9 11 14 16

Table 2.1: Scores of the election (C,V ) in Example 2.28 for different scoring rules.

a voter prefers a to b in his initial ballot, but in the runoff election, he suddenly changes his
opinion to b� a. Our version of Plurality with Runoff forbids such revoting.

The Veto with Runoff rule is defined analogously, but with the difference that the two candidates
with the fewest veto numbers move to runoff. Again, it may be necessary that a tie-breaking rule
determines the two candidates moving to the runoff stage.

Observe that both rules require two rounds until a decision is reached.
Last but not least, we introduce the Approval rule. Where all voting rules mentioned up to

now require that all voters specify complete rankings over the set of candidates, given the Approval
rule each voter provides a {0,1}-vector with m = |C| components. In the vector representing voter
v’s preferences, the j-th component is one (zero) if and only if v approves of (disapproves of) the
jth candidate. The candidate(s) with the highest score is (are) the winner(s). Note that, although
we count the approval scores for all candidates, the Approval rule does not belong to the classical
scoring rules since each voter may approve of arbitrary numbers of candidates and therefore the
scoring vector is not unique in general and may differ from voter to voter. We refrain from studying
the Approval rule, but have a closer look at the related voting rule k-Approval requiring each voter
to approve of exactly k candidates.

The following example shall illustrate how the different voting rules described so far work.

Example 2.28. Let (C,V ) be an election with candidate set C = {a,b,c,d,e}, voter set V =
{v1, . . . ,v6}, and the following voters’ rankings:

v1 : a� e� d � b� c
v2 : a� e� c� b� d
v3 : d � c� a� b� e
v4 : d � e� c� b� a
v5 : e� d � c� b� a
v6 : b� e� c� d � a

We next determine the winners of election (C,V ) for various voting rules. Let us start with
scoring rules. Table 2.1 presents the scores according to the different scoring rules. The winners (in
the co-winner model) are marked red. For Veto, we compute the veto numbers instead of scores.
Note that vetoes(c′) + score(c′) = |V | = 6 for each candidate c′ ∈ C, where score(c′) counts the
number of voters not vetoing c′ (i.e., giving one point to c′).

For Borda, each voter’s top choice is awarded four points, the second preferred candidate of
a voter gets three points, and so on, and each voter’s least preferred alternative receives no point.
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Candidate pair (c′,c′′) (a,b) (a,c) (a,d) (a,e) (b,c) (b,d) (b,e) (c,d) (c,e) (d,e)
N(c′,c′′) : N(c′′,c′) 3:3 2:4 2:4 3:3 2:4 2:4 2:4 2:4 1:5 2:4
Winner(s) of comparison tie c d tie c d e d e e

Table 2.2: Head-to-head contests for the election (C,V ) in Example 2.28.

By way of example, we compute score(a) = 4+ 4+ 2+ 0+ 0+ 0 = 10 as the Borda score for
candidate a.

For scoring rules, we point out that all five candidates are winners for at least one rule studied.
Hence, the selection of the appropriate voting rule may turn out to be a difficult task in practice.
For example, the Plurality rule selects a as a winner (together with d) although half of all voters
consider a as their worst choice. Moreover, d and a are treated equally by the Plurality rule although
d seems to be by far a more balanced candidate than a, for d is ranked first by two voters and ranks
once on all other positions each. In contrast, five out of six voters rank e on first or second place, but
the Plurality rule yet considers a as a better candidate than e. Observe that the Plurality rule might
tend to select polarizing candidates.

In contrast, the 3-Approval rule selects c and e (in the co-winner model); both candidates are
ranked third or better by five of six voters.

In opposition, the Veto rule uniquely decides that b is the winner, being the only candidate
without any vetoes. Hence, the Veto rule seems appropriate when an election designer wants to
minimize the number of totally unsatisfied voters (when we assume a voter to be ”totally unsatisfied”
in case his least preferred alternative is elected by the voting rule).

The Borda rule appears to be the most ”honest” rule due to the fact that it awards points accord-
ing to each position in a voter’s vote and therefore reflects all information provided by the voters.
Note that this is true only to a certain extent: Possibly, a voter perceives the distance between his
favorite candidate and his second most preferred candidate as much greater than the distance be-
tween any other two adjacent candidates in his ranking. Such preferences could be better modeled
by giving the voters the possibilities to assign individual scores to every candidate. What we can
say is that the Borda rule better approximates the voters’ preferences than k-Approval or k-Veto by
exploiting more information given by the voters’ rankings. In contrast, Plurality and Veto treat all
candidates not ranked first or last equally. Despite all the advantages of the Borda rule compared to
k-Approval or k-Veto, the Borda rule seems impracticable for large elections with many candidates
as voters might be unwilling to provide complete rankings over dozens of candidates (Emerson [59]
made several suggestions how the Borda rule can be applied to partial ballots in a sense that voters
need not rank all candidates).

Next let us focus on Condorcet and Weak Condorcet. Table 2.2 provides an overview of the
head-to-head contests between all pairs of distinct candidates.

Observe that there is no Condorcet winner as no candidate wins all pairwise comparisons. How-
ever, e is a weak Condorcet winner since e wins the head-to-head contest against b, c, and d, and ties
with a. All other candidates lose at least one pairwise election and are thus no winners according to
the Weak Condorcet rule.

Under the Plurality with Runoff rule, a and d move to the runoff with two points each and
d finally beats a in their head-to-head contest. Given the Veto with Runoff rule, b and one of the
candidates c, d, and e reach the runoff and b loses against the other candidate in the runoff, regardless
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of which candidate in {c,d,e} actually makes it to the runoff.
All in all, we realize that the selection of the best voting rule to reach a decision may induce

various discussions and each voting rule itself has advantages as well as disadvantages.

2.3.3 Problem Settings

In this section, we define several problems in and around elections. Many of these problems and
some variants of them are studied in Chapter 3 and the subsequent chapters. In most of our problem
definitions throughout this section, our input contains an election (C,V ). If not mentioned other, we
implicitly assume that C is a set of m ∈ N candidates and V is a multiset of n ∈ N0 complete votes.
For multimode control, our input is an election (C∪D,V ∪W ) with a set C of registered candidates,
a set D of unregistered candidates, a set V of registered voters, a set W of unregistered voters (all
four sets are finite), and each voter in V ∪W specifies a strict linear order over all candidates in
C∪D. We do not specify the underlying winner model since all definitions can be easily adapted
to the co-winner model, unique-winner model, or to the unique-winner model combined with some
tie-breaking rule.

We start with the definition of the Winner problem which possibly belongs to the most basic
problems in voting theory. This problem goes back to [15].

F -WINNER

Given: An election (C,V ) and a designated candidate c ∈C.
Question: Is c a winner of the election (C,V ) under voting rule F ?

We point out that the winner problem is easy for most voting rules, especially those studied
by us. Given a scoring rule, we just have to compute the scores and compare afterwards which
candidates have the highest score. Similarly, we can easily check whether a candidate is a Condorcet
or a weak Condorcet winner as for each pair (a,b) of distinct candidates, we compute the values
N(a,b). Note that we actually have to calculate m(m−1)

2 values since we can exploit the condition
N(b,a) = |V |−N(a,b).

Some few somewhat constructed voting rules have a hard winner problem, such as Dodgson or
Kemeny [15].

Unfortunately, there are different ways how an external agent can influence the outcome of an
election. By way of example, a briber can alter some voters’ votes in order to make a given candidate
win the election. Bribery was introduced in [78, 79] and is defined as follows:

F -BRIBERY

Given: An election (C,V ), a designated candidate c ∈ C, and a nonnegative integer ` (the bribery
limit).

Question: Is it possible to make c a winner of the election (C,V ) under F by changing at most ` votes?

We also say F -CONSTRUCTIVE BRIBERY as the briber has a ”constructive” goal. The problem
F -DESTRUCTIVE BRIBERY was introduced by Xia [165] and asks whether or not a despised can-
didate can be prevented from winning. More precisely, Xia studied the problem Margin of Victory
which asks how many voters must change their rankings such that the current winner changes.
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We often denote the final election with (C,V̄ ). Note that the voters’ names remain unchanged
when a briber bribes some voters, but the rankings of the bribed voters differ from their original
rankings in general. Observe that (C,V̄ ) and (C,V ) are identical concerning the votes not bribed.

Faliszewski et al. [78, 79] also studied more general models where for each voter vi a weight wi

and a price tag pi are given. The value pi indicates the amount the briber has to pay to voter vi in
order that vi changes his vote according to the briber’s wishes. In case pi = ∞, voter vi is unbribable.
Moreover, wi represents the weight of voter vi’s vote. E.g., when wi = 3, the vote of vi counts as
three votes (of weight one). In the priced variant, the briber must not exceed the bribery budget `.
The problem variation in the definition of F -BRIBERY is a special case of weighted bribery with
price tags where pi =wi = 1 holds for each voter vi. We restrict ourselves to this standard variant the
more so as many problems in the weighted and/or priced variant are hard even under full information
(cf. [79, 119]). This standard variant has been studied by many researchers since the original papers
by Faliszewski et al. [78, 79]. Moreover, the standard case is suitable when we do not know the
voters’ price tags in advance, when the voters have nearly identical prices, or when we just want to
know how many voters have to be bribed.

Another way to tamper with the outcome of an election is given by Electoral Control. Our focus
lies on these control variants where an external agent—the chair—may add or delete some voters
or candidates to change the outcome of the election. One of the most general of these problems is
Multimode Control [81], defined as follows.

F -MULTIMODE CONTROL

Given: An election (C
·
∪ D,V

·
∪W ) with registered candidate set C, unregistered candidate set D,

registered voter set V , unregistered voter set W , a designated candidate c ∈C, and four non-
negative integers `AV , `DV , `AC, `DC, with `AV ≤ |W |, `DV ≤ |V |, `AC ≤ |D|, and `DC ≤ |C|.

Question: Are there subsets V ′ ⊆V , W ′ ⊆W , C′ ⊆C, and D′ ⊆ D, with |V ′| ≤ `DV , |W ′| ≤ `AV , |C′| ≤
`DC, and |D′| ≤ `AC, such that c is a winner of the election ((C\C′)∪D′,(V \V ′)∪W ′) under
voting rule F ?

We obtain the definition of F -DESTRUCTIVE MULTIMODE CONTROL by asking whether c can
be prevented from being a winner. In order that the problem does not become trivial, we have to add
the constraint that c /∈C′ in the destructive version. Otherwise, the chair reaches his goal simply by
deleting the despised candidate c. We could also require that `DC < |C| in the constructive version
as a reasonable chair never deletes his favorite candidate. Moreover, we point out that in the original
definition of multimode control in [81] the chair may additionally bribe some voters. By contrast,
we study control and bribery separately from each other. The reasons are as follows. On the one
hand, we follow the largest part of research strictly differentiating between bribery and control. On
the other hand, combining multimode control and bribery would entail various additional technical
requirements. So it is unclear whether the briber may bribe deleted or added voters. Similar other
technical questions must still be clarified. Nevertheless, we will keep this combination of bribery
and control in mind for future research.

We consider several special cases of multimode control, such as adding [16], deleting [16], or
replacing [123] either candidates or voters. The following list gives an overview of the restrictions
compared to the general multimode control problem:

We use a four-letter code for our problems. The first two characters CC/DC stand for construc-
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Problem Restrictions

Adding Voters `AC = `DC = `DV = 0 and D = /0
Deleting Voters `AC = `DC = `AV = 0 and D =W = /0
Adding Candidates `DC = `AV = `DV = 0 and W = /0
Deleting Candidates `AC = `AV = `DV = 0 and D =W = /0

Replacing Voters
|V ′|= |W ′|, `AV = `DV ,
`AC = `DC = 0, and D = /0

Replacing Candidates
|C′|= |D′|, `AC = `DC,
`AV = `DV = 0, and W = /0

Table 2.3: Overview of several special cases of multimode control

tive/destructive control 10, the third character A/D/R means adding/deleting/replacing, and the last
one C/V represents voters/candidates (for example, CCRV stands for constructive control by replac-
ing voters). For simplicity, in each problem in the above table, we use ` to denote the integers in the
input that are not necessarily required to be equal to zero. For example, when considering CCRV,
we let ` denote the number of voters who may be replaced, that is, ` = `AV = `DV . Similarly to
bribery, we sometimes denote the final election by (C,V̄ ) when studying control by adding and/or
deleting voters or control by replacing voters. In contrast to bribery, the voters themselves in V and
V̄ may differ from each other, not only their rankings (as the chair deletes and/or adds some voters
from/to the election). Note that we could use a similar notation for candidate control, but all our
proofs get along without such a notation.

Sometimes, we place the letter ”E” in front of the four-letter code, standing for the exact variant
of control. For example, PLURALITY-ECCRV denotes the problem where the chair tries to make
c a winner according to the Plurality rule by replacing exactly ` voters. Similar examples can be
easily constructed.

In Chapter 1, several real-world applications of control by adding/deleting voters/candidates
have been provided. In addition, multimode control models scenarios where an external agent tries
several different attacks on a given election in order to reach his goal. Accordingly, a chair need not
be content with only one attack (such as adding some voters), but might delete some voters and add
some candidates as well, depending on his resources and influence. So multimode control appears
to be a more flexible model than its special cases listed above. Nevertheless, both multimode control
and ”single” control attacks have their right to exist.

Replacement control models situations where the list of submitted ballots or the list of candi-
dates must have a fixed size. Note that replacement control is no mere special case of multimode
control as replacement control requires the additional restrictions [`AV = `DV and |V ′|= |W ′|] (when
voters are replaced) and [`AC = `DC and |C′|= |D′|] (when candidates are exchanged).

We point out that there exist many more control types, such as control by partitioning voters
or candidates [16], but these are not subject in this thesis (except for one partitioning problem, but
only in Part II in a variant tailored to group identification). Nonetheless, these other control types

10We do not study destructive control or bribery in Part I. Nonetheless, we use the canonical four-letter code known
from literature distinguishing between constructive and destructive problem variants.
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are interesting for future research.
Let X be any type of control (we may argue analogously for bribery). A voting rule F is said

to be resistant against X if the corresponding decision problem is NP-hard. For example, Plurality
is known to be resistant against CCAC since PLURALITY-CCAC is NP-hard [16]. We further say
that a voting rule F is vulnerable to X if F -X is in P. A voting rule F is immune against X if
the chair cannot make a candidate c a winner (when X is a constructive problem) or not a winner
(when X is a destructive problem) unless c is already a winner of the election or not a winner of the
election, respectively. For example, we know from [105] that Approval is immune to constructive
control by adding candidates. Either c is already a winner with the highest approval score among all
candidates or there is another candidate d with more points than c. This cannot by changed by the
chair by adding arbitrary new candidates to the election since d remains in the election nonetheless
and beats c in the final election, too. We further say that a voting rule F is susceptible to attack of
type X if and only if F is not immune against X .
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Chapter 3

Partial Information

As mentioned in Chapter 1, Konczak and Lang [117] generalized the canonical assumption with
votes as complete rankings by allowing votes to be partial orders. With a slight abuse of notation,
each voter’s vote is given as a partial order when he specifies some pairwise comparisons for some
pairs of distinct candidates (d,e). In other words, it is known whether a voter prefers d to e or the
other way around. As a natural restriction, the voters’ preferences satisfy the transitivity condition.
Each partial order can be completed to a linear order without any contradiction [155].

The partial orders model is very flexible and captures several other, more concrete structures of
partial information as we will see below in this chapter. It is no wonder that most research on partial
information in voting has been dealing with partial orders since then.

One even more general partial information model was suggested in [39] wherein the authors
regarded arbitrary partial profiles P (votes can be written in terms of any partial structure) and all
complete profiles P′ not contradicting P belong to the information set I(P).

We adapt the notation with information sets the more so as this concept is known from game
theory (cf. [96, 158]). We say that a profile P′ ∈ I(P) extends or completes P. Accordingly, we call
P′ an extension or completion of P. Likewise, we say that a vote v′ extends or completes a partial
vote v. We point out that, strictly speaking, an extension of a partial order may still be a partial
order, but contains a little more information. In some applications, such as preference elicitation,
the difference between ”completion” (=an extension of a partial vote that is a complete ranking)
and ”extension” may play a crucial role. We do not make any difference between these two notions
and use them interchangeably. Note that when we say ”partial profile”, this allows the profile to be
complete as well, if not mentioned other. If we require a profile to be properly partial, we specify
this aspect. A reason for this slight abuse of notation is that in case there is only one candidate, each
vote can be regarded as partial and complete at the same time. Moreover, there are cases where votes
are formally incomplete, but have only one possible completion and are thus complete in a sense.
For example, we introduce a model according to which for each vote we know some positions and
the candidates assigned to them. If there are two candidates in total and a voter assigns only position
one to one of the two candidates, the vote is formally partial, but there exists merely one feasible
completion of this vote.

As mentioned before, in case P is a complete profile (that is, each vote is given as a complete
ranking), we have I(P) = {P}. In other words, the only way to feasibly extend a complete profile is
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given by the profile itself. By contrast, if there is no information at all, I(P) contains all thinkable
profiles (cf. [39]).

Amongst others, the model in [39]—held very general—inspired us to have a closer look at the
exact structure of partial information we are given in an election. Since under partial orders, many
problems about winner determination (such as possible winner) or strategic behavior in elections
might become hard, compared to the standard (and evidently unrealistic) model of full information,
there may be yet further substructures with votes lying somewhere between partial orders and linear
orders such that attacking the given election is yet an easy task for a malicious agent. Our goal is
to determine the complexity both for partial orders and for other—to some extent—more concrete
ways to display incomplete information.

Many such other structures of fractional information are thinkable or apply to some real-world
situations. By way of example, suppose that each voter’s four or five favorite alternatives are known,
e.g., because of surveys, polls, or former elections. Assume further that Plurality is the voting rule
used. Then a briber has enough knowledge and knows whom he has to bribe, in order to make a
distinguished candidate a winner or prevent this candidate from winning, respectively.

The remainder of this chapter is organized as follows. First, Section 3.1 gives an overview of
the most important literature concerning voting with partial information and strategic influences
on elections. In Section 3.2, we introduce and recall nine different structures of partial informa-
tion. Afterward, in Section 3.3, we present their interrelationships. Section 3.4 lays the focus on
possible/necessary winner and solves some problems open up to now. In Section 3.5 and 3.6, we
study the complexity of bribery under nine different partial information models. Finally, Section 3.7
concludes the chapter about partial votes.

3.1 Related Work

First of all, we have to mention the seminal papers by Bartholdi et al. [13, 14, 16] suggesting that
NP-hardness of a voting problem (formulated as a decision problem) provides a certain protection
against manipulative attacks—at least in the worst-case. These works encouraged many researchers
to study the computational aspects of several problems related to voting.

Our works [30, 69] (as well as our works about necessary and possible voter control under in-
complete information [143, 70] which are not subject in this thesis) fit into the line of research on the
complexity analysis of winner determination, bribery, and control under some setting with incom-
plete information. Concerning voting under partial information, we point out the work by Konczak
and Lang [117]. In their setting, votes are given as partial orders instead of linear orders. In their
work, they introduced the possible/necessary winner problems. On the one hand, we complemented
their work about the possible/necessary winner problems by establishing the complexity for several
open problems concerning necessary/possible winner; on the other hand, we studied bribery and
voter control in the style of the possible and necessary winner problems.

In the mean time, many other researchers have attended to the possible and necessary winner
problem. Xia and Conitzer [167] studied these problems under partial orders for several voting rules,
e.g., Plurality with Runoff, Maximin, k-Approval, and Bucklin. By contrast, Betzler and Dorn [21]
laid their main focus on scoring rules and showed that, given partial orders, the possible winner
problem is easy only for Plurality, Veto, constant scoring rules, and positive-affine transformations
of these. Moreover, they revealed that possible winner is hard for almost all other scoring rules.
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They left open the complexity for the scoring vector (2,1, . . . ,1,0) which can be regarded as a
hybridization of Plurality and Veto. Baumeister et al. [20] closed this gap and proved that possible
winner for this scoring vector is hard given partial orders.

The possible winner problem was studied under different settings or restrictions to the par-
tial orders model. Baumeister et al. [18] regarded a variant of possible winner where votes are
top-truncated, bottom-truncated, or doubly-truncated orders. Note that these three models are con-
sidered in this thesis. Moreover, Chevaleyre et al. [32, 33] presented a setting where an election
under complete information is given and new candidates join this election. Their model can be
considered as a special case of our model 1TOS. They studied the possible winner problem for k-
Approval, Borda, and some other scoring rules, and left open the complexity for the k-Veto family
(k > 1). Additionally, other voting rules such as Bucklin and Maximin were considered under this
setting [169]. The possible winner problem is further related to coalitional manipulation in a sense
that possible winner given the CEV structure, defined in this chapter, is equivalent to coalitional
manipulation. The coalitional manipulation problem is a generalization of single manipulation [14]
and was introduced by [38] and further investigated in [36, 168, 170], to name a few. Remind that
manipulation itself is not studied by us.

A probabilistic variant of possible winner was regarded in [7, 103]. The possible winner problem
was further studied in [3, 12, 43, 44, 91] in various settings, more or less related to voting, but
different from our setting.

Especially the work [39] inspired us as the authors did not commit themselves to the partial or-
ders model, but regarded a general partial information model instead, admitting any kind of partial
information. In their setting, a partial profile is given and the information set of this partial profile
contains all complete profiles not contradicting the partial profile given. Although a problem related
to voting can be hard under their general partial information model or given partial orders, we inves-
tigate whether the same problem is still hard under more concrete structures of partial information.

We have to mention some other papers dealing with some kind of uncertainty in voting. By
way of example, in [19, 52, 64] a setting is given where there is uncertainty about the voting rule
itself. The authors examined possible winner, manipulation, and bribery and control, respectively.
Other works are about cp-nets [26, 50, 124], preference elicitation [42, 159], or incompleteness and
incomparability in preferences [138] (the list is far from being complete). We further point out that
Dey et al. studied manipulation under partial orders [46]. There is also a stream of research about
voting rules directly applied to partial votes [59, 85, 127, 132] which differs from our setting.

Another line of research our works are based on is about strategic behavior in elections. The
bribery problem was introduced in [78, 79]. The authors studied bribery for some voting rules such
as Plurality, Veto, and Approval, and introduced some further concepts and generalizations of stan-
dard bribery, e.g., weighted, priced, or negative bribery. We further point out the work by Lin [119]
who considered bribery in k-Approval and k-Veto. While both works are about bribery under com-
plete information, we regarded bribery given incomplete votes. For bribery in other voting rules
(under full information), we refer to the overview article ”Control and Bribery in Voting” in [28]
and the references therein. A dichotomy result for bribery in scoring rules can be found in [104].
The destructive bribery problem (or, more precisely, the related problem margin of victory) dates
back to [165] where it was shown that destructive bribery is easy for all scoring rules. In contrast to
Xia who considered the standard case with complete votes, we mainly consider constructive variants
of bribery under incomplete information.
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The bribery problem was studied in many variations and settings. In this context, we have to
mention swap bribery [54] (where a briber cannot freely change a vote, but perform some pair-
wise swaps of adjacently ranked candidates in a voter’s preference ranking), lobbying [25, 35],
microbribery [80] (a bribery model tailored to intransitive preferences), bribery in party-based elec-
tions [174], or a protection model where an agent pays money to some voters to prevent them from
being bribed [31]. To arbitrarily select some out off the multitude of works about bribery, we further
refer to [17, 45, 50, 76, 99, 112, 144] for other works and settings more or less related to bribery,

Bartholdi et al. [16] initiated the research about many different types of electoral control.
Amongst others, they studied control by adding voters and control by deleting voters. They consid-
ered and compared the voting rules Plurality and Condorcet. Hemaspaandra et al. [105] extended
their research to destructive control. While they considered candidate control or control by parti-
tioning voters as well, we merely regarded control by adding and deleting voters in our two works
about control under partial information [143, 70] (which are widely irrelevant in this thesis, but fit
in the scope of our work about strategic influences on elections under partial information).

Lin [119] studied control by adding voters, deleting voters, adding candidates, and deleting
candidates for the voting rules k-Approval and k-Veto. Both Lin and Bartholdi et al., however,
studied all problems under full information, whereas our focus lies on partial votes. Electoral control
was investigated for many other voting rules. Once again, we refer to the overview article ”Control
and Bribery in Voting” in [28] and the references therein. Meanwhile, dichotomy results for scoring
rules have been settled for constructive control by adding voters [107] and by deleting voters [104].

We point out that there are many other forms of control. By way of example, weighted con-
trol [82] and priced control [129] were studied. In these models, voters are equipped with weights
and price-tags, respectively (similarly to bribery, cf. Section 2.3.3). Besides, there are some works
about online control [108, 133]. A flexible model giving the chair the possibility to perform dif-
ferent control actions is given by multimode control [81]. Results about other control forms, such
as control by equipartition of voters, runoff equipartition of candidates, multipartition of voters, or
partition of voter groups, can be found in [65]. A recent paper generalizes destructive control in
a way that a chair tries to prevent several candidates from winning an election [175]. Other forms
of control exist, such as gerrymandering [109], voter deterrence [49], strategic candidacy [118],
cloning [55], or control in the presence of manipulators [87]. Control was also investigated in dif-
ferent settings more or less related to voting, such as for multi-winner voting rules [141], in group
identification [171], in judgment aggregation [17], or in fair division [6]. A recent model is about
control through social influence [163]. All these settings are different from ours. Once more, we
point out that the list makes no claim to be complete.

Our work also fits in the line of research characterizing voting rules by means of their
complexity-theoretic behavior for different problems in voting. According to [128] and [63], the
voting rules Normalized Range Voting and Fallback Voting are the best two voting rules known up
to now in a sense that these two rules are vulnerable to only two out of 22 types of control. Up
to now, to the best of our knowledge, no natural voting rule is known that yields only immunity or
hardness results. We study in this chapter whether a setting with partial votes makes more problems
hard or even impossible to the briber for the two classes of voting rules k-Approval and k-Veto.

Last but not least, we have to mention that—although in the main part of literature about win-
ner determination and strategic influences in voting, the worst-case complexity is studied—several
authors have recently investigated the parameterized complexity of possible winner, bribery, or con-
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trol. See also [22, 24, 121, 161, 172, 173]. The list is not exhaustive.

3.2 Partial Information Models

In this section, we introduce nine models of partial information. Three models—Gaps, FP, and
TOS—were introduced by us in [30] and further studied in [69, 70, 143]. The models PC, BTO,
1Gap (under the name doubly-truncated orders), TTO, and a variation of 1TOS had already been
investigated in literature, whereas the CEV structure had been suggested in [117].

In the following, let (C,V ) be an election with m candidates and n voters, and let the votes
in V be incomplete according to the model X currently regarded. For each model presented in
this section, the information set of a given partial vote or profile contains exactly the profiles not
contradicting the given partial profile. Furthermore, we assume that all information provided by a
model is the only information given.

3.2.1 Gaps

Our first partial information model handles the case where the briber only knows fractions of each
ranking, i.e., there are some blocks in each vote that are completely ranked and there are some blocks
for which it is known which candidates belong to them, but it is unknown how the candidates in such
a block are ordered among themselves. By way of example, this model represents the cases where
a voter is indifferent between alternatives or some alternatives are just incomparable to each other.
In particular, the Gaps model can represent voters with weakly ordered preferences. We formally
introduce this structure as follows (cf. [30]):

For each vote v, there is a partition Cv
1, . . . ,C

v
2m+2 of the candidate set and a linear order (no

information at all) for each Cv
j with j even (odd). Moreover, it holds c j �v ci for each j, i ∈ N

(1≤ j < i≤ 2m+2) and all c j ∈Cv
j , ci ∈Cv

i . 1

Note that possibly Cv
j = /0 for some j. If Cv

j = Cv
j+1 = /0, we can drop both partite sets without

changing the information set. 2 Therefore, we can restrict ourselves to at most 2m+ 2 partite sets
(an explanation will follow in Section 3.2.4).

Example 3.1.

(a) Complete votes v can be displayed by the Gaps model via Cv
2 = C, Cv

j = /0 (1 ≤ j ≤ 2m+ 2,
j 6= 2), and the given ranking for Cv

2 is equivalent to the complete ranking over the candidates
in C.

(b) Empty votes v yield Cv
1 =C, Cv

j = /0 (2≤ j ≤ 2m+2) in the Gaps model.

The following example shows that the Gaps model allows some flexibility concerning the rep-
resentation of a given vote:

1We point out here that, independently from our Gaps model, a somewhat similar notation for weak orders has
occurred in [85]. In their setting, a weak preference order is written by Gv

1 � Gv
2 � . . . � Gv

r for a given vote v, where
in each Gv

i , 1 ≤ i ≤ r, all candidates are tied. Our model is held more general as it allows several representations of the
same vote, cf. the remainder of this section.

2For example, if a voter v yields the Gaps representation Cv
1 =Cv

2 =Cv
j = /0, for each j∈ [2m+2]\{3}, and Cv

3 = {a,b},
we may also display the vote by means of the sets Cv

1 = {a,b} and Cv
j = /0 for all j, 2≤ j ≤ 2m+2.
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Example 3.2. Let voter v have the preferences a �v b?c?d �v e? f �v g �v h over the candidates
in C = {a,b,c,d,e, f ,g,h}. (a?b means that the voter is indifferent between a and b.) There are
different ways to write v according to the Gaps model:

(a) Cv
2 = {a}, Cv

3 = {b,c,d}, Cv
5 = {e, f}, Cv

6 = {g,h}. All other sets Cv
j (1 ≤ j ≤ 2m+ 2 = 18)

are empty. We obtain the rankings [a] and [g� h] in the non-empty sets Cv
j with even indices.

(b) Cv
1 = {a}, Cv

3 = {b,c,d}, Cv
9 = {e, f}, Cv

10 = {g}, Cv
13 = {h}. All other Cv

j (1 ≤ j ≤ 18) are
empty. Voter v has the subranking [g] according to the only non-empty partite set with even
index (Cv

10).

Two possible completions of vote v are a � b � d � c � e � f � g � h and a � c � b � d �
f � e� g� h.

The first version in (a) can be regarded as a minimum representation with as few partite sets
as possible. This minimum representation guarantees that totally ordered partite sets are as large
as possible. We could require such a minimum representation for each vote. 3 There are several
reasons why we decided to define a more flexible version of Gaps.

One main reason is that we formally introduce the three following models as special cases of
Gaps and this would not be possible in case we require a minimum representation (cf. the following
sections).

There are further advantages of a flexible Gaps version. The second representation of voter
v’s ranking exploits that singleton sets (such as Cv

1 and Cv
13) can be considered as candidate blocks

representing full as well as no information at all: when there is only one candidate, on the one hand,
we know all rankings concerning this candidate (because there is no ranking with other candidates);
on the other hand, we do not know any pairwise comparisons and thus have no information. Our
Gaps notation admits both interpretations.

The reason why g and h are further away from each other than in the first variant (where both be-
long to the same, totally ordered, partite set) may be that v perceives a larger distance between g and
h than between the two candidates e and f on the one side and g on the other side. Thus, our flex-
ible model could be used to display cardinal preferences (how large is the distance that v perceives
between two candidates, see [139] as an example with cardinal preferences in voting) or polarities
(e.g., v divides the candidates between very good, good, acceptable, and unacceptable candidates;
even when v specifies a complete ranking, the distances between the candidate subgroups can be
displayed by the Gaps structure). Polarities play a role, e.g., in sentiment analysis (cf. [98]). By
way of example, as for the voting rule Approval, each voter has binary preferences. As each voter
approves of some candidates and disapproves of all other candidates, the only given information is
that each voter prefers an approved candidate to a disapproved candidate (this assumption has been
suggested in various papers up to now). Formally, each voter approves of the candidates in Cv

1 and
disapproves of the candidates in Cv

3. Note that both partite sets are totally unordered. Also notice
that the Approval rule can be directly applied under partial information according to this, i.e., we do
not have to complete each voter’s ranking and may immediately check which candidate is a winner.

3We presented an earlier version of Gaps at the workshops QBWL’14 and CASC’14. This original version required
a minimum representation. However, since then, we have found some reasons why we decided to redefine Gaps by
providing a more flexible model. Compare the following arguing.
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We point out that the restriction to 2m+2 has computational reasons. One can show that 2m+2
partite sets suffice to exactly represent each possible ranking and to display some special substruc-
tures of Gaps (defined in the following sections). This minimizes the input size of an instance of
Gaps. However, e.g., in order to display cardinal utilities, one may easily adjust the definiton of
Gaps by defining the number of partite sets to be a sufficiently large constant r ∈ N. For our sub-
sequent complexity analysis, 2m+ 2 partite sets suffice, for we are only interested in the voters’
preference rankings.

3.2.2 One Gap

One special substructure of Gaps was introduced by Baumeister et al. [18] as doubly-truncated
preferences, where in each vote there are subsets of candidates ranked at the top and at the bottom
of the votes, and there is a gap between the top and bottom ranked candidates. 1Gap refers to the
special case of Gaps with Cv

j = /0 for each j ∈ {1}∪{5, . . . ,2m+2}, for each voter v. For the sake
of simplicity, we assume that a voter v declares his top set Cv

T , middle set Cv
M (the gap), and bottom

set Cv
B (i.e., we have Cv

2 =: Cv
T , Cv

3 =: Cv
M, and Cv

4 =: Cv
B), plus complete rankings over Cv

T and Cv
B.

Votes submitted as doubly-truncated orders apply to situations where voters rank some of their
most popular and some of their most unpopular candidates. In (political) elections, doubly-truncated
orders make things easier for voters as they have the possibility to rank only few of their favorite
and few of their most disliked candidates. Moreover, the 1Gap model applies to online rankings.
For example, consider a film database where each voter ranks some of his favorite and some of his
least favorite films, but due to the magnitude of films, the voter ranks only a tiny subsets of films.

Observe that 1Gap can display full information (|Cv
M| ≤ 1 4), no information (Cv

M = C), and
anything in between. For instance, regard a voter v with preferences a �v b �v c?d?e? f �v g. In
terms of 1Gap, we have Cv

T = {a,b}, Cv
M = {c,d,e, f}, and Cv

B = {g}, plus the rankings [a�v b] and
[g] for the sets Cv

T and Cv
B, respectively.

Note that we decided to keep the Gaps notion as well as the 1Gap structure flexible (by allowing
singleton or empty partite sets not containing any information) in order to catch such situations with
exactly one candidate in the middle set or with empty middle set and both top and bottom sets being
non-empty. This will later turn out useful to reduce hardness results from 1Gap to the more general
Gaps model. Similar ”degenerate” cases exist for the next two models as well.

3.2.3 Top-truncated Orders

The model Top-truncated Orders (TTO, for short) was introduced by Baumeister et al. [18]. We
equivalently define TTO as a special case of Gaps with Cv

j = /0 for each j ∈ {1,4, . . . ,2m+ 2} and
each voter v.

Top-truncated votes apply to political or arbitrary other elections where each voter has to rank
only an individual number of his favorite candidates, and all other candidates are assumed to be less

4Actually, full information refers only to the voter’s ranking. Note that depending on the context, the cases Cv
M = /0

and |Cv
M |= 1 can be interpreted differently. Moreover, the case Cv

M = /0, Cv
T 6= /0 6=Cv

B is not equivalent to the case where
Cv

T =C or Cv
B =C. The latter two cases may model situations where a voter’s complete ranking is known, but the voter

is satisfied or dissatisfied with all candidates in Cv
T and Cv

B, respectively. Instances with precisely one candidate in the
middle set can describe a voter unwilling or unable to utter his opinion about the middle set candidate.
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preferred by the voter. The film example from the previous section can still be applied in a way that
voters (=users) merely provide rankings over their top films instead of least favorite films.

For practical reasons, we assume that a given voter v specifies a top set Cv
T :=Cv

2 and a bottom
set Cv

B := Cv
3. Similarly to 1Gap and Gaps, top-truncated votes may be complete rankings (for

|Cv
T | ≥ |C|− 1). Again the word ”complete” refers only to the voter’s ranking, but not to the vote

itself. Voters with one candidate in the bottom set can be interpreted differently (cf. the reasoning
for the Gaps and 1Gap models).

Top-truncated votes can also be empty (Cv
B =C) or anything else. As an example, regard a voter

v with the ranking a �v b �v c �v d?e? f . In terms of the TTO model, we can rewrite this vote by
Cv

T = {a,b,c} and Cv
B = {d,e, f}, plus the ranking for Cv

T .

3.2.4 Bottom-truncated Orders

The structure Bottom-truncated Orders (BTO, for short) was also introduced by Baumeister et
al. [18]. Similarly to TTO, we formally define BTO as a special case of Gaps with Cv

j = /0 for
each voter v and each 3 ≤ j ≤ 2m+2. For convenience, we assume that a voter v specifies his top
set Cv

T :=Cv
1, his bottom set Cv

B :=Cv
2, and a total order over the candidates in Cv

B.

Bottom-truncated votes apply to the context of online evaluations or sentiment analysis, where
each user evaluates only negative contents of some items (alternatives) and their extent. In some
of these applications, indifferences or ties between two evaluated alternatives are not allowed. All
alternatives in a voter’s top set can be regarded as immaculate and as preferred over all bottom set
alternatives. Bottom-truncated votes further occur in some real-world voting processes or elections
where each voter provides a ranking over his least favorite candidates. By way of example, consider
a sports competition where some jury members—the voters in this context—vote against some of
their least favorite candidates, and the candidate(s) with the largest number of vetoes are ruled out.

Analogously to the previous models, bottom-truncated orders can represent complete rankings
(|Cv

T | ≤ 1), empty votes (Cv
T = C), or anything between these two extremes. Suppose for instance

that a voter v has the preferences a?b?c�v d �v e. These preferences can be expressed by the BTO
model setting Cv

T = {a,b,c} and Cv
B = {d,e}, plus the linear order [d � e] in the bottom set.

Before we present the next partial information model, we give a short explanation why 2m+2
partite sets suffice in the Gaps notation for any given number m of candidates. For the Gaps model,
the most ”wasteful” partition assigns exactly one candidate to Cv

2, Cv
4, . . . ,C

v
2m each and all sets with

odd index are empty. We therefore need no more than 2m sets as otherwise there are two adjacent
empty sets and we can drop both of them and thus achieve yet a smaller partition (that is, the largest
index j over all non-empty partite sets Cv

j becomes smaller, cf. the example in Section 3.2.1).

Our Gaps notation shall also be able to formally define the more special models 1Gap, TTO and
BTO. We further require the first four partite sets Cv

1, . . . ,C
v
4 for any number of candidates as 1Gap

requires the first four, TTO the first three, and BTO the first two partite sets. Thus, for any candidate
number m, the smallest upper bound on the number of partite sets such that Gaps can capture all
cases m ∈ N, is max(4,3,2,2m). To obtain a compact expression valid for all natural numbers m,
we fix 2m+2 as the upper bound for all partite sets.
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3.2.5 Complete or Empty Votes

There is a fourth substructure of Gaps. This model was suggested (but not further studied) by
Konczak and Lang [117]. Formally, we may introduce CEV as a special case of TTO or BTO such
that for each voter v the top set Cv

T or the bottom set Cv
B is empty. This structure is a generalization

of the standard model of full information in a sense that new voters join the previous election.
Absolutely nothing is known about these new voters, whereas we have (approximately) full (or
enough 5) information about the previous voters (due to former elections or surveys).

We assume that for a CEV instance the set of voters V can be divided into two partite sets Vc

and Ve such that each vote in Vc is complete and each vote in Ve is empty.
Observe that this partition is unique for |C| ≥ 2, whereas we can regard an arbitrary partition of

V for |C|= 1 (for one candidate, we formally have full and no information at the same time). Note
that, in contrast to the previous models, every vote is empty or complete, but nothing in between.

3.2.6 Pairwise Comparisons

PC, aka partial orders, is probably the most natural way to display partial preferences. For the first
time, partial orders occurred in the context of voting in [117] and have been studied in many other
papers since.

Formally, for each vote v we are given a subset Πv ⊆C×C such that the relation described by
the pairs in Πv is asymmetric and transitive.

By convention, (a,b) ∈ Πv means that voter v prefers a over b. As the title of this section
suggests, we use the expressions partial orders and PC (or pairwise comparisons) interchangeably.
Since the PC structure can also model intransitive preferences (in contrast to partial orders) by
dropping the transitivity assumption, we decided to rename this canonical model. As intransitive
preferences are not subject in this thesis, though raising intriguing questions for future research, we
need not make any difference between these two notions.

As an example, let C = {a,b,c,d} and assume that a voter v has the preferences a �v b and
c�v d. The information set of this vote contains the rankings a�v b�v c�v d as well as a�v c�v

d �v b, c�v a�v d �v b, and three other rankings.
Note that the PC model can display no information (Πv = /0) or full information: suppose that

voter v’s preferences are c1�v c2�v . . .�v cm, then an arbitrary Πv⊇{(c j,c j+1) : j = 1, . . . ,m−1},
for which transitivity and asymmetry holds, represents v’s preferences.

3.2.7 Fixed Positions

FP is another model introduced by us in [30]. Formally, for each vote v there is a subset of candidates
Cv with distinct positions Posv in range between 1 and m assigned, i.e., there is a bijection β v :
Posv→Cv such that β v(p) is the candidate ranked to position p by voter v.

An example of this model is the case where there are three candidates c1, c2, and c3. Candidates
c1 and c3 have clearly opposing properties such that each voter prefers c1 most and c3 least or the
other way round. Candidate c2 is fixed to position 2, then. FP also captures situations where, by

5By way of example, when dealing with the Plurality rule, it suffices to know each voter’s top candidate. It does not
matter how the voters rank the candidates ranked on the positions 2,3, . . . ,m.
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way of example, the first three positions and their candidates are known for each voter, but not the
candidates behind them (note that such examples can be displayed by the 1Gap model, too).

Observe that FP can display full information (|Posv| = |Cv| ≥ |C|−1), no information (Posv =
Cv = /0), and anything in between. We point out once more that the information given under the FP
model refers merely to the positions of the candidates in a given vote, but not to pairwise compar-
isons, polarities, or cardinal utilities.

As we will see later, the model has some interesting theoretical properties. So, FP is the only
partial information model considered by us which is not a special case of the partial orders model.
From the complexity-theoretic point of view, it is completely independent from PC as PC is not a
special case of FP either. Verify that for the above example, with three candidates and c2 fixed to
position two, we do not know any pairwise comparison, but yet have some information—namely
that c2 is ranked second. As the information set contains only votes with c2 ranked second, the
information set of the given partial vote is a proper subset of the information set of an empty vote
which obtains all potential rankings. Conversely, suppose that there are hundred candidates, a voter
completely ranks 99 of them, and we do not know any pairwise comparison including the 100th
candidate. Written in terms of FP, we have Posv = /0 although we are far from dealing with a total
lack of information.

3.2.8 Totally Ordered Subset of Candidates

In this section, we present yet another structure defined and introduced by us in [30]. In this model,
for each voter we have information in form of a total order over an individual candidate subset.
These subsets may differ from voter to voter.

Formally, for each vote v we have a subset Cv of candidates and a total order for Cv.
By way of example, such information can emerge in sentiment analysis (we refer the interested

reader to [98] for an overview of sentiment analysis combined with voting) where a briber or a chair
can extract information from each voter’s previous comments or behavior (for example at giving
scores for products bought on eBay). Or TOS may just reflect the case where we know for each
voter an election this voter has participated in, and the voter’s ranking over the candidates in this
election. The example with the film database also applies to the TOS model when we assume that
each voter (=user) specifies a ranking over an individual (tiny) subset of films and we do not know
anything about the voter’s preferences concerning the other films. These other films can be more or
less preferred. There may be different reasons why the voter does not rank these other films. He
could just forget to rank them, does not know them, or has no opinion about them. To even better
capture such settings, we could generalize this model by admitting ties within the ranking.

Observe that we can display complete votes (Cv = C), empty votes (|Cv| ≤ 1), or anything
in between in terms of TOS. We point out that in both cases—Cv = /0 and Cv = {d} for some
candidate d ∈ C—we do not know any pairwise comparison. In the latter case, it is yet known
that v ranks the candidate d (but only compares d with himself); in the former case, v does not
rank any candidates. Compared to analogous situations for other models, one could try to describe
the differences between these two cases. One explanation could be that the ”empty” voter has not
participated yet in any election, whereas the ”singleton” voter has already taken part in an election
with just one candidate. Such differences, however, are immaterial to us since we merely study the
computational complexity of a given problem.
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Example 3.3. Let (C,V ) be an election with C = {a,b,c,d,e, f}, V = {v1,v2}, and a partial profile
P such that v1 votes a �v1 b �v1 c (we have Cv1 = {a,b,c}) and v2 has the ranking c �v2 e �v2 f
(and thus v2’s totally ordered subset is Cv2 = {c,e, f}).

In Example 3.3, the partial rankings can be extended to the complete rankings (a �v1 d �v1

e �v1 b �v1 c �v1 f and c �v2 e �v2 f �v2 d �v2 a �v2 b as well as to many other completions not
contradicting the two subrankings.

3.2.9 Unique Totally Ordered Subset of Candidates

A model similar to 1TOS was first suggested by Konczak and Lang [117] and further studied by
Chevaleyre et al. [32, 33]. Chevaleyre et al. studied the possible winner problem for a variant of
our 1TOS model with the restriction that the distinguished candidate must not be a new candidate
in their setting. Hence, we could regard our model as a superstructure of theirs. Formally, 1TOS
refers to the special case of TOS where Cv = C̃ ⊆C for each voter v. A natural example here would
be the addition of candidates to an election. An external agent might know the voters’ preferences
over the previous candidates, but has no information on how the voters would rank the new ones.

We point out that the 1TOS model generalizes full information and no information, but it is the
only model regarded in this thesis for which either all votes are complete or empty or anything in
between (provided that |C| > 1, otherwise each vote is empty and complete at the same time). In
other words, given |C| ≥ 2, an election (C,V ) contains some complete (empty) votes if and only if all
votes in V are complete (empty). Likewise, an election contains some neither empty nor complete
votes if and only if all votes of the election are neither empty nor complete.

3.3 Hierarchy

In this section, we check which models are special cases of which other models, and which pairs of
distinct models are independent from each other in a sense that we can find instances according to
the first model but not the other model, and the other way round. Henceforth, we let

PIM := {PC,Gaps,1Gap,FP,TOS,BTO,1TOS,CEV,TTO}

be the set of all nine partial information models considered by us. Besides, we let PIM := PIM∪
{FI} where FI is the standard model of full information. Theorem 3.4 shows the relations between
the partial information models discussed in this chapter.

Theorem 3.4. The following relations hold:

(1) 1TOS ( TOS. (6) BTO ( 1Gap.
(2) CEV ( TOS. (7) 1Gap ( Gaps.
(3) CEV ( TTO. (8) 1Gap ( FP.
(4) CEV ( BTO. (9) TOS ( PC.
(5) TTO ( 1Gap. (10) Gaps ( PC.

This list is complete in the following sense: Relations that are not listed here and that do not
follow from transitivity do not hold in general. The relationship of the partial information models is
displayed in Figure 3.1 as a Hasse diagram.
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Figure 3.1: Hasse diagram

Proof. We first prove the ten relations, followed by points 11-15 showing incomparability for the
remaining cases. Results following immediately from transitivity are not mentioned explicitly.

1. 1TOS ( TOS. 1TOS⊆TOS holds due to the definition of the 1TOS model. We have 1TOS
6⊇ TOS because every voter ranks an individual subset of candidates under the TOS model in
general.

2. CEV ( TOS. Partial information according to CEV can be represented by partial information
according to TOS with Cv =C or Cv = /0 for each voter v.

The reverse direction is not true in general since for |C| ≥ 3, 2≤ |Cv|< |C|, vote v cannot be
represented in CEV. (Observe that for |C| ≤ 2, the two models coincide as each vote is empty
and complete at the same time (for |C|= 1) or either empty or complete (if |C|= 2) according
to the TOS model.)

3. CEV ( TTO. It holds CEV ⊆ TTO since empty votes v may be written as Cv
T = /0, Cv

B = C
in terms of the TTO model and we may set Cv

T = C, Cv
B = /0 in the TTO model for complete
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votes v. We have CEV 6⊇ TTO since voters v with both Cv
T 6= /0 and |Cv

B| ≥ 2 cannot be
represented in CEV.

4. CEV ( BTO. We have CEV ⊆ BTO as follows. Empty (complete) votes v yield Cv
T = C

(Cv
B =C) in the BTO model. Moreover, it holds CEV 6⊇ BTO since |Cv

T | ≥ 2, Cv
B 6= /0 cannot

be represented in CEV.

5. TTO ( 1Gap. Any instance of TTO can be written as an instance of 1Gap with empty bottom
set. We have TTO 6⊇ 1Gap since any 1Gap vote of the form Cv

T 6= /0 6=Cv
B, |Cv

M| ≥ 2 cannot be
represented in TTO.

6. BTO ( 1Gap. Any instance of BTO can be written as an instance of 1Gap with empty top
set. The example proving TTO 6⊇ 1Gap also demonstrates that BTO 6⊇ 1Gap.

7. 1Gap ( Gaps. Each instance of 1Gap is an instance of Gaps as 1Gap is defined as a special
case of Gaps. We further have 1Gap 6⊇ Gaps since voters with |Cv

1| ≥ 2, |Cv
3| ≥ 2 written in

terms of the Gaps structure (i.e., there are at least two ”proper” gaps) cannot be represented
in 1Gap.

8. 1Gap ( FP. Let v be a vote according to the 1Gap model, i.e., v specifies a top set Cv
T , middle

set Cv
M, and bottom set Cv

B, and C = Cv
B
·
∪ Cv

T
·
∪ Cv

M holds. We obtain an instance of FP as
follows. Set Cv :=Cv

T ∪Cv
B as the set of candidates assigned to a fixed position. Then Posv :=

(β v)−1(Cv) contains all positions that voter v assigns to the candidates in Cv. In particular,
β v(p) denotes the p-most preferred candidate in Cv

T (1≤ p≤ |Cv
T |), while β v(|Cv

T |+ |Cv
M|+ p′)

represents the p′-most preferred bottom set candidate (1≤ p′ ≤ |Cv
B|).

The reverse direction is not true in general since partial information with only position 2
assigned to a candidate in a given vote cannot be represented in 1Gap if we have more than
two candidates.

9. TOS ( PC. Let cv(i) denote the i-most preferred candidate within Cv according to
the partial information of type TOS. We can represent the information set by Πv =
{(cv(i),cv( j)) : 1≤ i < j ≤ |Cv|} as partial information according to type PC.

The reverse direction is not true in general since partial information Πv = {(c1,c2) ,(c3,c4)}
cannot be represented in TOS when c1, . . . ,c4 are four pairwise different candidates.

10. Gaps ( PC. According to the Gaps model, we denote the l-most preferred candi-
date within Cv

i by cv
i (l) for each even i (remind that for odd i, we do not know

any pairwise comparisons within Cv
i ). We can represent the information set by

Πv = Πv
1 ∪ Πv

2 where Πv
1 =

{
(ci,c j) : ci ∈Cv

i ,c j ∈Cv
j ,1≤ i < j ≤ 2m+2

}
and Πv

2 =

{(cv
i (l),c

v
i (l
′)) : 1≤ l < l′ ≤ |Cv

i |, i even} as partial information according to type PC.

The reverse direction is not true in general since voters v specifying the pairwise comparison
c1 �v c2 (that is, Πv = {(c1,c2)}) cannot be represented in the Gaps model if we have more
than two candidates: Let c3 ∈C\{c1,c2}. Since c3 can be ranked above, between, and below
c1 and c2, we cannot find a unique block Cv

i containing c3.
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11. FP is incomparable to Gaps, PC, TOS, 1TOS. Let us start with FP 6⊆ Gaps. Consider a FP
instance with five candidates c j (1 ≤ j ≤ 5). Suppose that a voter assigns candidate c3 to
position 3 in the FP model. This example cannot be displayed by the Gaps model since
we cannot decide for any other candidate c j 6= c3 whether c3 is more or less preferred than
c j. Fixing c3 and c j in the same block with odd index in the Gaps model (i.e., without any
information) is not possible either as then c3’s position is not fixed anymore.

We further have Gaps 6⊆ FP since a Gaps instance with Cv
1 = {c1,c2}, Cv

2 = {c3}, Cv
3 = {c4,c5}

cannot be represented in FP. Only c3’s position is fixed in our Gaps instance. Where for Gaps
the positions of c1 and c2 are among the first two places in v and c4 and c5 are ranked last
and second to last by v, the FP model cannot ensure this anymore as all open positions can be
arbitrarily assigned to candidates not fixed to any position.

It futher holds FP 6⊆ PC since partial information with only position 2 assigned to a candidate
cannot be represented in PC if we have more than two candidates. We further have PC 6⊆ FP.
Let C = {c1,c2,c3} and Πv = {(c1,c2)}. Then we do not know any fixed position and would
obtain a FP instance with Posv =Cv = /0. This in turn ignores the information c1 � c2 given
in the partial orders model.

(1)TOS 6⊆ FP since partial information with 2 ≤ |Cv(C̃)| < |C| and the associated order over
Cv (C̃) cannot be represented in FP (since no position is fixed and v is neither empty nor
complete). Conversely, we show (1)TOS 6⊇ FP as follows. Let C = {c1,c2,c3}, Posv = {2},
and Cv = {c2} for a given vote v according to the FP structure. We do not know any pairwise
comparison. Thus, Cv (C̃) has to be at most singleton in a (1)TOS instance. This, in turn,
contradicts to our assumption that c2 is fixed to rank 2 in vote v.

12. Gaps is incomparable to TOS, 1TOS. Gaps 6⊆ (1)TOS since Gaps instances with |Cv
1| > 1,

Cv
2 6= /0, and Cv

l = /0 for each l > 2 cannot be represented in (1)TOS. (1)TOS 6⊆ Gaps since
partial information 2≤ |Cv|(|C̃|)< |C| and the associated order cannot be represented in Gaps.

13. (1)TOS is incomparable to 1Gap, BTO, TTO. (1)TOS 6⊆ 1Gap (BTO,TTO) since (1)TOS 6⊆
Gaps. Moreover, 1Gap 6⊆ (1)TOS, as 1Gap instances with 1 ≤ |Cv

T | and |Cv
M| ≥ 2 cannot be

displayed by the (1)TOS model. Analogously, we show X 6⊆ (1)TOS for X ∈ {BTO,TTO}
via making use of the counterexample 2 ≤ |Cv

T | ≤ |C|− 2. (The exemplary votes according
to 1Gap, BTO, and TTO are neither empty nor complete, but at least one position is fixed in
each case. Hence, the TOS model cannot represent this information given under the models
1Gap, BTO, and TTO, respectively.)

14. 1TOS is incomparable to CEV. 1TOS 6⊆ CEV as the case 2 ≤ |C̃| < |C| (every voter ranks a
subset neither complete nor empty) cannot be displayed by the CEV model. CEV 6⊆ 1TOS
since elections containing both empty and complete votes (and |C|> 1) cannot be represented
in the 1TOS model (since each voter has to rank the same subset of candidates under the 1TOS
structure).

15. TTO and BTO are incomparable. TTO 6⊆ BTO since 2≤ |Cv
T | ≤ |C|−2 cannot be represented

under the BTO structure. BTO 6⊆ TTO holds because of the same example.

Observe that 3.-6. also follow from [18]. We listed them here for the sake of completeness. The
remaining relations follow from transitivity. q
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Theorem 3.4 gives us a complete picture which models can be displayed by which other models,
and which ones are incomparable to each other. This result will turn out useful when determining the
complexity of a given problem. For example, since we know that possible winner for the Plurality
rule is easy under the PC structure [21], the easiness result immediately follows for all substructures
of PC. Since these substructures include all models in PIM\{PC,FP} and our problem is easy for
PC, we achieve a P result for eight of nine models (all but FP).

Our next result reveals that and how for all votes v we can determine the candidates definitely,
possible and not definitely, and not at all approved (vetoed) by v in polynomial time. For our
purposes, we exploit Theorem 3.4 which shows as a byproduct that all special cases of FP or PC
can be transformed in polynomial time to FP or PC, respectively.

Theorem 3.5. Let X ∈ PIM. Then determining the candidates definitely approved, possibly and not
definitely approved, and definitely disapproved in each vote takes polynomial time. The same holds
if we exchange ”approved” with ”vetoed”.

Proof. Let (C,V ) be an election with a set C of m candidates, a set V of n voters, each of them
being partial according to the same model X ∈ PIM. W.l.o.g., we let m,n ∈ N. We further let m > k
because otherwise all candidates are approved when studying the k-Approval rule. Thus, we even
have m > k ≥ 1.

It suffices to regard X ∈ {PC,FP} as these two models are generalizations of every other model.
By using Theorem 3.4, we can transform each other model into one of these two models. Ob-
serve that every transformation is polynomially bounded. We restrict ourselves to k-Approval as the
arguing for k-Veto works nearly identically, by considering (m− k)-Approval instead of k-Veto.

Let us start with the FP model. Let Posv denote the set of fixed positions of voter v, Cv gathers
all candidates assigned to fixed positions, and β v is a bijective mapping β v : Posv → Cv such that
β v(p) is the candidate in Cv assigned to position p ∈ Posv by voter v. First of all, we apply the
following preprocessing.

First we check whether [m] \Posv ⊆ [k] or [m] \Posv ⊆ [m] \ [k]. In other words, in such votes
all open positions (if any) are either among the k approval positions or among the m−k disapproval
positions. Note that for a given vote v we can determine all candidates in C\Cv (that is, not assigned
to any positions) in polynomial time. We simply fix all unassigned candidates arbitrarily to the
open positions and obtain a complete vote according to this. As there are n votes in total, this
preprocessing takes O(m2n) time.

After performing this subroutine, each vote is either complete or has open positions both among
the approval and disapproval positions, that is, (C \Cv)∩ [k] 6= /0 and (C \Cv)∩ ([m]\ [k]) 6= /0. For
each vote, we can now partition the candidate set C into three partite sets:

• Cv
A := {d ∈C : pos(d,v)≤ k} (definitely approved candidates),

• Cv
? := {d ∈C : d /∈Cv} (possibly but not definitely approved candidates), and

• Cv
D := {d ∈C : pos(d,v)> k} (definitely disapproved candidates).

Observe that the subroutine and the determination of the partite sets Cv
i (i ∈ {A,D,?}) take

O(m2 ·n) time in total.
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For PC, determining the three subsets Cv
i is a little more involved. W.l.o.g., we assume

that for each vote v, the set Πv of pairwise comparisons is maximal in a sense that it is non-
extendable and contains all pairwise comparisons required to exactly describe voter v’s rank-
ing. In contrast, we can also represent Πv in a compact manner. To illustrate what we have
meant by this, suppose that a voter votes a � b � c � d. The economical representation Πv =
{(a,b),(b,c),(c,d)} suffices to uniquely describe the voter’s preferences since the remaining pair-
wise comparisons (a,c), (a,d), and (b,d) follow from transitivity. In our setting, we presume that
Πv = {(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)} represents voter v’s preferences. Note that both nota-
tions may coincide. For example, let voter v prefer a over b and c over d, and this is all information
given. Then Πv = {(a,b),(c,d)} is the unique way to describe voter v’s preferences.

To determine the three partite sets Cv
A, Cv

? , and Cv
D for each vote v, the following finding helps

us:

• d ∈C is definitely approved of by v if there are at least m− k candidates e such that d �v e. 6

• d is definitely disapproved by v if there are k or more candidates e with e�v d.

• d is possibly but not definitely approved by v if v prefers d over at most m− k−1 candidates
and there are at most k−1 candidates that voter v prefers to d (in other words, neither of the
previous two cases hold).

Notice that this subroutine takes O(m3n) as there are n voters, at most m(m−1)
2 pairwise compar-

isons to check for each vote, and we count the number of won and lost pairwise comparisons for
each candidate in a given vote. q

Henceforth, we will follow the common practice in COMSOC literature and assume that The-
orem 3.5 holds, especially when showing membership in P. In other words, we will implicitly
assume that for any model in PIM, for each vote we can determine in polynomial time the can-
didates definitely approved, possibly and not definitely approved, and definitely disapproved. The
same holds when we replace ”approvals” by ”vetoes”. Note that we often transform instances of
other models such as Gaps or TOS into equivalent instances of PC or FP for which we additionally
use Theorem 3.4. In other words, the studied model itself is in {FP,PC} or can be transformed in
polynomial time into one of these two models. In this context, Theorem 3.4 does not only show
that such a transformation is in P, but also how to construct such a transformation. Note that the
complexity for a problem under a model X ∈ PIM\{FP,PC} may be slightly easier than for FP or
PC, by directly exploiting the special structure of X instead of transforming the information to an
equivalent instance under FP or PC. Since we only wish to check whether or not a problem can be
decided in polynomial time, we do not care about the best possible complexity of a problem as long
as the problem turns out to be easy.

3.4 Necessary and Possible Winner

In this section, we examine two of the most basic problems dealing with partial information
in voting—Possible Winner and Necessary Winner—which were introduced by Konczak and

6To count the number of these candidates, we need the maximal representation of Πv.
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Lang [117]. In their pioneering work, votes are given as partial orders instead of linear orders
which had been the canonical assumption up to then. While votes given as strict linear orders rank
all candidates from first to last without any ties, votes given as partial orders reveal only some partial
information in terms of some known pairwise comparisons between pairs of distinct candidates. The
possible and necessary winner problems are defined as follows (cf. [117]), we adapt this definition
to any arbitrary partial information model.

F -X -POSSIBLE/NECESSARY WINNER

Given: An election (C,V ) with a set C of m candidates, a set V of n voters according to X ∈ PIM,
and a designated candidate c ∈C.

Question: Is c a winner of the election under F for at least one/for every completion of the votes in V ?

Both problems can be regarded as two sides of the same coin. The necessary winner problem
requires a candidate to win regardless of how we extend the partial profile to a complete profile,
while the possible winner problem requests that this candidate wins for at least one extension. One
could also speak of the pessimistic or optimistic approach, or of the ”for all” and ”there exists”
variant. Notice that necessary winners are possible winners, but the opposite direction does not
hold in general.

The necessary winner problem comprehends some kind of robustness property. Since some kind
of uncertainty occurs in most real-world settings, the question arises whether a candidate c wins a
given election, independently of the way we resolve the existing incompleteness.

Possible winner can be interpreted as a best-case scenario or, equivalently, a minimum criterion
that a given candidate must satisfy. Moreover (cf. [146]), there is another interpretation of the
possible winner problem: voters may have partial rankings because of some kind of indecisiveness
or indifference towards some alternatives. Accordingly, possible winner asks whether there is a way
to convince the voters to decide for one complete vote, not contradicting to their partial rankings.

In this remainder of this chapter, we will consider possible/necessary winner under all nine
models in PIM and solve almost all open problems. Table 3.1 gives an overview of the state-of-the-
art:

Voting rule PC CEV 1TOS 1Gap TTO BTO
Plurality P [21] P P P P P
2-Approval NPC [167] P [36] P [33] P [18] P [18] P [18]
k-Approval (k ≥ 3) NPC [167] P NPC [33] P [18] P [18] P [18]
Veto P [21] P P P P P
k-Veto (k ≥ 2) NPC [21] P [36]

Table 3.1: Complexity results for the possible winner problem under the co-winner model known so
far. Key: P stands for ”polynomial-time solvable”, whereas NPC means ”NP-complete”. For some
polynomial-time results following from more general results, we merely indicate the sources of the
most general polynomial-time results. So, e.g., PLURALITY-CEV-POSSIBLE WINNER is known to
be easy from [14], but the complexity of this problem also follows from the more general problem
PLURALITY-PC-POSSIBLE WINNER.

Observe that Table 3.1 includes only six of nine models in PIM. Furthermore, the table itself
contains several open problems.
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In opposition to possible winner, we know that the necessary winner problem is easy for every
scoring rule under partial orders. As all models in PIM \ {FP,PC} are special cases of PC, they
all inherit the polynomial-time upper bound. Hence, necessary winner is open only under the FP
structure.

In this section, we solve almost all these open problems under the co-winner model and con-
tribute the following results:

• We close the gaps for the FP model, regarding necessary and possible winner. Both possible
and necessary winner are easy for both families of voting rules given FP. Moreover, we find
that the P result for necessary winner under the FP model can even be extended to all scoring
rules.

• For 1TOS, we provide a dichotomy for the possible winner problem for the k-Veto family.
In particular, we show that the problem is easy for k ≤ 3 and hard for k ≥ 4 under the co-
winner model. In addition, we show that 3-VETO-1TOS-POSSIBLE WINNER is hard under
the unique winner model. According to this, ties matter for 3-Veto.

• We settle the complexity for some open problems under the TOS model.

• We close the gaps in Table 3.1 by pointing out that possible winner in k-Veto is easy under
the models 1GAP, BTO, and TTO.

All these new results have been presented by us at my talk held at the Doctoral Consortium in
October 2017 (within the scope of the conference ADT 2017 in Luxembourg).

For the remainder of this section, if not mentioned other, our input is always an election (C,V )
with m candidates in candidate set C = {c1, . . . ,cm−1,c}, n voters in voter set V = {v1, . . . ,vn} (where
m ∈ N and n ∈ N0), and a designated candidate c ∈C. Moreover, all votes are partial according to
the same model X ∈ PIM. We assume that m > k when regarding k-Approval or k-Veto. Otherwise,
the problem would be trivial. If m = 1, c—the only candidate—is always a possible and necessary
winner under both winner models. For m > 1 and m≤ k, c is a possible and necessary winner under
the co-winner model, whereas c is neither possible nor necessary winner under the unique-winner
model. We never consider such trivial cases. At this place, we must also point out that in literature
k-Approval/Veto is sometimes not even defined for m < k. Unless stated otherwise, all proofs and
results are presented under the co-winner model.

At times, we write c j, small letters a, d, e, or similar symbols to denote general candidates or
general non-distinguished candidates or to adapt our notation to the special structure of a partial
information model, such as 1TOS with two partite candidate sets C̃ and C \ C̃. Throughout this
chapter, we further let score(d) and vetoes(d) denote the (definite) score and veto number of a
candidate d ∈C, respectively. These numbers refer to the case where the set of voters is clear from
the context. The more precise expressions score(C,V )(d) and vetoes(C,V )(d) indicate the score and
veto number of d in election (C,V ), respectively. Moreover, score(C̃,V )(d) provides us the score of
candidate d restricted to subelection (C̃,V ). Likewise, we can define similar expressions for the veto
number or for larger or smaller sets of voters. pscore(d) denotes the maximum number of points
candidate d can reach for any (best-case) extensions of a given partial profile, pvetoes(d) in turn
counts all definite and uncertain vetoes for candidate d. We can similarly define expressions such
as pvetoes(C,V ′)(d) or pscore(C̃,V )(d) (with V ′ ⊆ V , C̃ ⊆C). The expression score(a,b) denotes the
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number of voters (definitely) approving of both candidates a and b. Likewise, we define vetoes(a,b).
Besides, we sometimes write expressions such as vetoes(c,¬c j) or score(¬ci,¬c j). The former
expression denotes the number of voters vetoing c and not vetoing c j, while the latter expression
returns the number of voters neither approving of ci nor c j. Once again, we can construct similar
expressions, such as score(C,V )(¬c,c j).

We say that a voter v definitely approves of a candidate d in a partial profile P if and only if v
approves of d under all extensions of P. In a similar manner, v potentially approves of d if and only
if v approves of d for at least one complete profile in I(P) if and only if v either definitely approves
of d or possibly but not definitely approves of d. Last but not least, v (definitely) disapproves of d
in a partial profile P if and only if v does not potentially approve of d. We obtain analogous notions
by replacing ”approve of” by ”veto”.

Voting rule FI Gaps FP TOS PC CEV 1TOS 1Gap TTO BTO
Plurality P P P P P [21] P P P P P
2-Approval P P P NPC [167] P P [33] P [18] P [18] P [18]
k-Approval (k ≥ 3) P P P NPC NPC [167] P NPC [33] P[18] P[18] P [18]
Veto P P P P P [21] P P P P P
2-Veto P P P NPC [21] P P P P P
3-Veto P P P NPC NPC [21] P P P P P
k-Veto (k ≥ 4) P P P NPC NPC [21] P NPC P P P

Table 3.2: Complexity results for the possible winner problem under the co-winner model. Results
in boldface are new. We point out that the results for k-VETO-X -POSSIBLE WINNER, k ∈ N, X ∈
{BTO,TTO,1Gap}, immediately follow from the corresponding algorithm for k-Approval in [18],
albeit not pointed out in that work. That’s why the results are written in italic. The same holds
for Gaps and FP under both the k-Approval and k-Veto families. To show these results, one may
apply the algorithm in [18], too. Generally, results written in italic, albeit new, follow from known
existing results via reductions (e.g., PLURALITY-TOS-POSSIBLE WINNER). All other results are
known from literature.

Now we are equipped to provide the first complexity results. Let us start with necessary winner
which is open merely for the FP model. Remind that necessary winner asks whether a candidate c
is a winner for every way to complete a partial profile to a complete profile. We do not only provide
a result for k-Approval and -Veto but for all scoring rules.

Theorem 3.6. F -FP-NECESSARY WINNER is in P for every scoring rule F .

Proof. Our algorithm breaks our instance down into m− 1 subinstances I j (1 ≤ j ≤ m− 1), one
for each c j, and checks for each subinstance whether c j beats c for an extension where c j ranks
on the best possible position and c performs as badly as possible in every vote. Observe that those
completions maximize the score difference between c j and c. If c ties with or beats c j in such
extreme extensions, c ties with or beats c j in all other extensions. It follows from the arguing up to
now that our instance of necessary winner is a YES instance if and only if each subinstance I j is a
NO instance, that is, for each c j, the worst-case score of c is still at least as high as the best-case
score of c j.

For subinstance I j, we apply the following subroutine for each vote vi (i ∈ [n]):

• If vi does not assign any fixed position to c j, that is, c j /∈Cvi , we fix c j on the best possible
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open position min{p : p ∈ [m]\Posvi}. If c /∈Cvi , reset c on the worst possible open position
max{p : p ∈ [m]\Posvi}.

After performing this algorithm for every vote, we obtain unique positions both for c j and c
and it remains to check whether ∑

n
i=1(score(C,{vi})(c j)− score(C,{vi})(c))> 0 holds. Then (and only

then) c j beats c in an extension where c j is ranked best possible by each voter and c ranks on the
worst possible position in each vote (only relevant when the positions of c j and c are open in a given
vote, respectively).

Our algorithm regards at most m− 1 non-distinguished candidates and checks whether one of
them beats c for any extension. For every pivotal candidate, the algorithm determines for every vote
which positions are open, if c and/or c j are assigned to any fixed position, and adjusts their positions
if necessary (in case one or both of them is/are not assigned to any position). Finally, the total score
difference is calculated. Since there are n votes and each vote has m positions, our procedure takes
O(mn) time for each pivotal candidate, that is, subinstance I j. As there are O(m) pivotal candidates
to check, our entire algorithm takes O(m2n) time. q

When facing a problem related to necessary winner (such as necessary bribery), we basically try
to make the worst-case of c at least as good as the best-cases of all other candidates. (This arguing
meets limits as we will see next and in several later proofs.) Referring to necessary winner under
the FP model, we may do so as there are extreme extensions of our partial profile where c is ranked
on the worst possible open position in each vote not assigning a fixed position to c, and each other
candidate c j performs as well as possible in a sense that a voter either assigns a unique position to
c j or, in case c j is not assigned to any position, we assume that c j is ranked on the best possible
open position by the given voter. This can be done for all non-distinguished candidates at the same
time. For example, when a voter possibly but not definitely ranks the non-distinguished candidates
a, b, and d first, given a partial profile, and our underlying voting rule is Plurality, we may assume
that all three candidates simultaneously get the point as for each candidate e in {a,b,d} there are
extensions of the partial profile where e receives all potential points.

Observe that, under the FP model, it is a necessary and sufficient condition for c to be a nec-
essary winner that the worst-case of c is at least as good as the best-cases of all non-distinguished
candidates. This condition is necessary since such extreme extensions may actually occur for every
c j. It is sufficient as well because in case c’s worst-case is at least as good as all other candidates’
best-cases, c is strong enough in all other extensions since all other completions are not worse for c.
In other completions, c has at least as many points and/or some c j has no more points. This arguing
also takes into account that each scoring rule is weakly monotonic. (Weak monotonicity of a voting
rule is defined as follows [146]. Suppose that c is a winner of a given election. Then c remains
a winner if a voter raises c higher in his ranking and leaves the rankings according to the other
candidates unchanged, e.g., when the voter initially has the ranking a� b� c� d � e and changes
his preferences into c � a � b � d � e.) For Gaps and all its substructures, the same condition is
equivalent to c being a necessary winner.

As we could observe for partial orders and as we will see for (1)TOS in some proofs, this holds
only to some extent for these models. Nonetheless, necessary winner is easy for all three models
for all scoring rules, due to [167] and the fact that 1TOS and TOS are special cases of PC.

We point out that the proof for necessary winner under the PC structure can be found in [167]
and is a little more involved. If a voter prefers c to a non-distinguished candidate c j (that is the
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pivotal candidate), we cannot rank c as bad as possible as this worst-case for c may be actually good
for c. Consider the following example:

Example 3.7. Let (C,V ) be an election with C = {c,c1, . . . ,c4}, V = {v1, . . . ,v5}, distinguished
candidate c, and let F = Veto. The partial votes are defined as follows, according to the PC
model:

• The voters v1, . . . ,v4 are complete and veto c, c2, c3, and c4, respectively.

• Voter v5 prefers c over c1. No more information is given for voter v5.

Observe that all candidates but c1 are definitely vetoed by exactly one voter each. Moreover, v5
possibly but not definitely vetoes all non-distinguished candidates. When fixing c as bad as possible
in v5, this voter ranks c on position four and c1 on position five (in this case, c loses all pairwise
comparisons in doubt). In c’s ”worst-case”, c is a winner because all candidates are vetoed exactly
once. In all ”better” cases where c and c1 are ranked better than on position four and five by voter
v5, respectively, c1 is the only winner with zero vetoes. This example describes a paradox for partial
orders in a sense. One explanation for this paradox is that v5 must rank c on a better position than
c1 although no position in v5 is fixed. According to this, the proof in [167] tailored to partial orders
checks where to rank the candidates c and c j (and potentially some alternatives definitely lying in
between) such that the score difference score(C,{v})(c)− score(C,{v})(c j) is as small as possible for a
given vote v. In our example, this difference between c and c1 in v5 is zero, fixing c on position four
leads to a difference of one.

By contrast, for the FP model we can simply assign c to the worst possible position and c j to
the best possible position in each vote (in case c’s or c j’s position is open, respectively)—regardless
of the other candidate’s position.

Note that, not least because of Theorem 3.6, we can decide in polynomial time for all nine
models and all scoring rules F whether a given candidate is a necessary winner or not.

Unfortunately, we cannot argue for possible winner that the best-case for c beats or ties with
all worst-cases of the c j. This condition is surely necessary for c to be a possible winner, but far
from being sufficient as the worst case of some c j often excludes the worst case of some other
non-distinguished candidate and vice versa. Given partial orders, regard the following example of
Plurality with C = {a,b,c} and one voter voting a� c and b� c. Either a or b is ranked first. c gets
zero points in his best-case and both a and b have no single point in their worst-cases. However,
the worst-case of a excludes the worst-case of b and the other way around. To determine if c is a
possible winner or not hence requires some more involved approaches and due to [21] we know that
possible winner under partial orders is only in P for the most basic scoring rules such as the constant
rule, Plurality, and Veto (and all positive-affine transformations) and NP-complete for each other
scoring rule [21, 20].

In the following, we restrict ourselves to two important subclasses of scoring rules—k-Approval
and k-Veto—for which we want to provide dichotomy results, i.e., the values k for which possible
winner is easy and for which this problem is hard. Our next result manifests that for six models—
Gaps, FP, 1Gap, BTO, TTO, and CEV—possible winner is easy for k-Approval and k-Veto for each
value of k. Especially for Gaps and FP, very general models for themselves (cf. the Hasse diagram
in Figure 3.1), this result appears to be rather astonishing at first sight as under partial orders the
possible winner problem is hard even for 2-Approval [167] and 2-Veto [21].
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Theorem 3.8. k-APPROVAL-X -POSSIBLE WINNER and k-VETO-X -POSSIBLE WINNER are in P
for each k ∈ N and each model X ∈ {Gaps,FP,1Gap,BTO,TTO,CEV}.

Proof. It suffices to argue only for Gaps and FP. Showing membership in P for these two models,
the easiness result immediately follows for all four other models due to Theorem 3.4. Let X ∈
{FP,Gaps} be an arbitrary but fixed model. Let us begin with k-Approval. We can directly exploit
the flow algorithm by Baumeister et al. [18] tailored to doubly-truncated orders (aka 1Gap) as, both
for Gaps and FP, we only have to distinguish between definite approvals, unsure approvals, and
definite disapprovals in each vote v. Moreover, in case there are k1 definite approval positions and
k2 unsure approval positions in a given vote, and the voter possibly but not definitely approves of k′

candidates (observe that it holds k2 < k′), the voter can approve of arbitrary k2-combinations over
these k′ candidates for some extensions. For instance, when k2 = 2, k′ = 4, and the candidates
c1, . . . ,c4 are possibly but not definitely approved in a given vote, each 2-subset of {c1, . . . ,c4} can
be approved by this voter for some extensions. We will see below that this does not hold for all
models in PIM.

According to this, we obtain the same setting as under the 1Gap model for which the proof was
shown in [18]. The proof by Baumeister et al. [18] can be directly tailored to k-Veto by considering
(m− k)-Approval instead.

In the Appendix, we will provide a proof sketch with bipartite matching (instead of flow maxi-
mization), strongly based on the proof idea in [18]. q

Now let us turn to the three remaining models—PC, TOS, and 1TOS. We cannot adapt the proof
of Theorem 3.8 to any of these models as they inhere additional structure in general. What is meant
by this, is explained by means of the following example:

Example 3.9.

1. Let C = {a, . . . ,d}, F =2-Approval, X ∈ {1TOS,TOS}, and suppose that a voter v ranks the
candidates in C̃ := {a,b} by a�v b. (We w.l.o.g. argue for the 1TOS structure in the first and
second example, the reasoning under the TOS model works analogously.)

2. Let C = {a, . . . ,e}, F =3-Approval, X ∈ {1TOS,TOS}, and assume that a voter v ranks the
candidates in C̃ := {a,b,c} via a�v b�v c.

3. Let C = {a, . . . ,g}, F =4-Approval, X =PC, and a voter v specifies the pairwise comparisons
Πv = {(a,b),(a,c),(a,d),(b, f ),(c,e),(c,g),(d,g)}.

In the first example, all candidates are possibly but not definitely approved by v. Note that in case
v approves of b for a given extension, v approves of a, too. The following four pairs of candidates
can be approved for some extensions: (a,b), (a,c), (a,d), and (c,d); the other two combinations,
(b,c) and (b,d), would hurt the condition a� b.

In the second example, the following triples of approved candidates may occur for some com-
pletions: (a,b,c), (a,b,∗) (∗ ∈ {d,e}), and (a,d,e). Candidate a is definitely approved, all other
candidates are possibly but not definitely approved by v. For a given extension, an approval for c
implies approvals for both a and b, and once again, an approval for b implicates an approval for a.
Such interdependencies and the inherent additional structure intuitively make the possible winner
problem harder for the models 1TOS and TOS. Nevertheless, keeping the first and second example
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in mind, these dependencies move only in ”one and the same direction” under the TOS and 1TOS
structures.

For PC, the structure may be much more complex as the third example suggests. Verify that a
is preferred to all other candidates and is hence definitely approved (as a wins all pairwise compar-
isons). All other candidates are possibly but not definitely approved by v. Table A.1 in the Appendix
will give an overview of all feasible 4-combinations of approved candidates for this example.

We point out that for Plurality and Veto such interdependencies do not occur either. If a �v b
holds in a vote v, this excludes b from being approved and a from being vetoed. It is hence no
surprise that these two voting rules are the only non-trivial scoring rules for which possible winner
is easy under partial orders [21]. For 2-Approval (or higher values of k), b can yet be approved by
voter v although it is known that a�v b.

As possible winner under partial orders has been studied even for all scoring rules and in partic-
ular for k-Approval/-Veto, it remains to have a closer look at the models 1TOS and TOS. The fol-
lowing results reveal that under the 1TOS structure there are additional polynomial-time results for
possible winner in k-Approval and k-Veto, but nevertheless almost all problems are hard. From [33],
we know that the possible winner problem is in P for Plurality and Veto (also follows from [21] as
PC is a generalization of 1TOS) and 2-Approval and NP-complete for k-Approval (k ≥ 3). For k-
Veto, we do not know the complexity of k-VETO-1TOS-POSSIBLE WINNER for k≥ 2. We provide
the missing results next. Let us start with k = 2.

Theorem 3.10. 2-VETO-1TOS-POSSIBLE WINNER is in P.

We omit the proof at this point because we will later show that the more general problem pos-
sible bribery is in P (cf. Theorem 3.41 in Section 3.6). This result implicates membership in P for
2-VETO-1TOS-POSSIBLE WINNER.

Theorem 3.11. 3-VETO-1TOS-POSSIBLE WINNER is in P under the co-winner model.

Proof. Let C̃ ⊆C denote the subset completely ranked by every voter in V . W.l.o.g., we assume
that |C| > 5. The case |C| ≤ 3 cannot occur (as we have premised that k-Veto requires at least
k+ 1 candidates in C), for |C| ∈ {4,5} our voting rule is either Plurality or 2-Approval for which
the results can be found in [21] (for Plurality since 1TOS is a special case of PC) and [33] (for
2-Approval). To show membership in P, our algorithm distinguishes the following cases:

• c ∈ C \ C̃ or |C̃| ≤ |C| − 3. In either case, there are extensions for which c is not vetoed
by any voter. We accept since no other candidate can achieve fewer vetoes than c for these
extensions.

• C = C̃. In this case, each vote is complete. As possible winner and the winner problem
coincide under full information, membership in P follows from [15].

• c∈ C̃, C\C̃ = {p}. In this case, each voter definitely vetoes his two least preferred candidates
in C̃, and possibly but not definitely vetoes p and his third to least preferred candidate in C̃.
If c is a voter’s third to least preferred candidate in C̃, we assume that the voter does not veto
c, but certainly vetoes his two least preferred C̃ candidates and p. With this setting, we may
apply the flow algorithm defined by Baumeister et al. in the context of doubly-, bottom-, and
top-truncated votes (cf. the proof of Theorem 3.8 and [18]).
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• c ∈ C̃, C \C̃ = {p,q}. Now there are two candidates in C \C̃. To show membership in P for
this subcase, there are two possibilities. On the one hand, one can adapt the proof in [33]
(more precisely, Lemma 1 and Proposition 5) showing that k-APPROVAL-1TOS-POSSIBLE

WINNER is in P for each k ∈ N when there are two new candidates different from c, that is,
c ∈ C̃, C \C̃ = {p,q}, and p 6= q holds.

A second proof, directly tailored to this subcase of 3-VETO-1TOS-POSSIBLE WINNER, will
be given in the Appendix. In contrast to the proof in [33] specific to k-Approval, we will
provide a completely different approach arguing by means of generalized b-edge cover. The
argument of correctness follows similarly to the proof of Theorem 3.34 in this thesis.

q

We have emphasized that the result holds for the co-winner model because our problem turns
out to be hard when deciding whether or not c is the unique winner for at least one extension:

Theorem 3.12. k-VETO-1TOS-POSSIBLE WINNER is NP-complete for every k ≥ 3 under the
unique-winner model.

Proof. Our proof uses a reduction from 3DM. Let (X ,Y,Z,E) be such an instance with |X | =
|Y |= |Z|= n and |E|= m. W.l.o.g., we assume that m≥ n as otherwise a three-dimensional match-
ing cannot exist. We show our result for 3-Veto and argue at the end of the proof how to adjust it
for higher values k. Based on our 3DM instance (X ,Y,Z,E), we construct the following instance of

possible winner. Our candidate set is C = {c}
·
∪ (X

·
∪Y

·
∪ Z)

·
∪ F , where F := { f1, . . . , f3m−3n} 7 and

c is our distinguished candidate. We further have C̃ :=C \F as the totally ordered subset. Finally,
there are m voters v1, . . . ,vm. Voter vi vetoes the candidates according to triple ei = (xi,yi,zi) such
that xi � yi � zi holds, i.e., xi ∈ X is ranked third to last, yi ∈Y second to last, and zi ∈ Z last among
the candidates in C̃.

Note that vetoes(C̃,V )(c) = 0 and vetoes(C̃,V )(a) = l(a) for each a∈ X∪Y ∪Z, where l(a) denotes
the number of triples in E containing a. Moreover, the candidates in F are not definitely vetoed by
any voter. We show that there is a three-dimensional matching if and only if c is a possible unique
winner.

(⇒): Assume that there is a three-dimensional matching, i.e., there exists a subset of triples
E ′ ⊆ E such that each element in X ∪Y ∪Z belongs to exactly one triple in E ′. We construct the
following completion of the partial profile:

• If ei ∈ E ′, voter vi vetoes the candidates in ei in our constructed extension. All candidates in
F are ranked on better positions in vi’s complete ranking.

• For each ei ∈ E \E ′, three vetoes go to candidates in F so that each of them is vetoed by
exactly one voter. This is possible as there are m−n voters not according to any triple in E ′

and these voters assign 3m− 3n vetoes in total. Thus, the 3m− 3n candidates f1, . . . , f3m−3n

can be assigned one veto each.

7To avoid confusion, we point out that in many proofs, we follow the convention in the largest part of the COMSOC
literature and assume that the symbols X , Y , and Z and the elements in these sets correspond to the original 3DM instance
and at the same time stand for candidate sets and candidates in our possible winner instance. In some later proofs, e.g.,
both candidates in an election and vertices in a graph are denoted by the same symbol.
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It follows that c is a unique winner with zero vetoes as each other candidate has one veto in our
constructed profile completion.

(⇐): Now presume that c is a possible unique winner. Since c has no vetoes for any extension,
this requires that every non-distinguished candidate is vetoed at least once for our constructed exten-
sion. As m voters veto 3m candidates in total, and since there are 3n+(3m−3n) = 3m candidates
other than c, each of them must receive exactly one veto.

It remains to show that each voter either vetoes three or zero candidates in F in an extension c is
the only winner with zero vetoes. To do so, we first regard candidates in Z. A necessary condition
is that n vetoes (one for each candidate in Z) are left unchanged, i.e., are not replaced by some
veto for any f j. Thus, m− n potential vetoes for candidates in Z must be replaced by vetoes for
candidates in F . The same arguing can be applied—due to symmetry—for Y and X . However, as
soon as one f j ∈ F is vetoed instead of some z ∈ Z in a given vote vi, this necessarily implies that
vi does not veto the other two candidates in the triple ei either, that is, all three potential vetoes for
candidates in X ∪Y ∪Z go to candidates in F . This holds since voter vi prefers xi over yi and yi over
zi, and consequently zi’s veto can only fall away in case the other two vetoes fall away as well. As
both for X , Y , and Z exactly m− n vetoes are replaced and therefore n vetoes remain unchanged,
there are n voters in total in our extension which assign 3n vetoes to candidates in X ∪Y ∪Z. Let
V = {vi1 , . . . ,vin} denote this set. Since each candidate in X ∪Y ∪Z is vetoed by exactly one voter
vih (1≤ h≤ n), the sets ei1 , . . . ,ein form are three-dimensional matching.

The proof can be adjusted for k ≥ 4 as follows. We introduce (k− 3) · |V | = (k− 3)m dummy
candidates into the set C̃, each of them vetoed exactly once in subelection (C̃,V ), and each voter
ranks exactly k− 3 of them behind the candidates in X ∪Y ∪ Z in subelection (C̃,V ). The proof
for 3-Veto can thus be directly applied as only the candidates in X ∪Y ∪Z may lose some veto to
some f j, whereas all dummy candidates ranked behind must keep their vetoes in order to not tie
with c. q

Theorem 3.11 and 3.12 present an instance of a problem where ties matter. Notice that in the co-
winner model, c is trivially a possible winner whenever c is not vetoed in some extensions. Under
the unique-winner model, zero vetoes for some extension suffice for c to be among the winners, but
this does not mean that c is the only winner. Theorem 3.12 implicates that under the unique-winner
model, possible winner for k-Veto, k≥ 3, is hard for the more general TOS model as well. Our next
result shows that the TOS model does not make a difference between the unique- and co-winner
model for the 3-Veto rule. Actually, both models lead to a hard possible winner problem.

Theorem 3.13. 3-VETO-TOS-POSSIBLE WINNER is NP-complete under the co-winner model.

Proof. In order to prove our result in the co-winner case, we reduce from 3DM. Based on a 3DM
instance (X ,Y,Z,E) with |X | = |Y | = |Z| = n, |E| = m, and m ≥ n (otherwise, a matching does
not exist), our 3-VETO-TOS-POSSIBLE WINNER instance is defined as follows. Our candidate set
is defined by C = {c,g1,g2}

·
∪ X

·
∪ Y

·
∪ Z

·
∪ F , where F := { f1, . . . , f3m−3n}. Moreover, c is our

designated candidate. The voter set contains |E|+1 voters defined as follows.

1. Voter vi votes (Cvi \ {xi,yi,zi}) � xi � yi � zi, where Cvi = C \F and ei = (xi,yi,zi) (with
xi ∈ X , yi ∈Y , zi ∈ Z, and 1≤ i≤m). All candidates in Cvi not vetoed are ranked in arbitrary,
but fixed order.
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2. Voter vm+1 definitely vetoes c, g1, and g2, in arbitrary order. We have Cvm+1 = C. All candi-
dates not vetoed are ranked arbitrarily.

We show that there is a three-dimensional matching if and only if c is a possible winner.
(⇒): Let E ′ ⊆ E be a three-dimensional matching. We construct the following profile comple-

tion:

• If ei ∈ E ′, voter vi in the first group is meant to veto the candidates in ei, i.e., xi, yi, and zi.

• If ei ∈ E \E ′, voter vi vetoes three candidates in F such that each f j (1 ≤ j ≤ 3m− 3n) is
vetoed exactly once.

It follows that all candidates in C, including c, are winners with one veto each.
(⇐): Assume that c is a winner for at least one extension. Since c has one definite veto, each

other candidate must have at least one veto. For g1 and g2, this holds as both are definitely vetoed
by voter vm+1. The voters v1, . . . ,vm assign precisely 3m vetoes to all candidates in F ∪X ∪Y ∪Z.
Since the cardinality of this set is exactly 3m, in our extension of the partial profile all candidates in
F ∪X ∪Y ∪Z have exactly one veto each.

It remains to show that the only way to ensure this is the existence of a three-dimensional
matching. Since the candidates in X , Y , and Z receive the same numbers of potential vetoes, and
since exactly n vetoes must be considered for each of the three candidate groups, we find that
exactly m−|X |= m−|Y |= m−|Z|= m−n vetoes for each of the three groups X , Y , and Z must be
replaced with vetoes for candidates in F . Analogously to the arguing in the proof of Theorem 3.12,
it follows that in an extension with co-winner c, the candidates vetoed by the first m voters must
be either three candidates in F or three candidates in X ∪Y ∪ Z for our constructed completion.
Let vi1 , . . . ,vin (1 ≤ i1 < .. . < in ≤ m) be the n voters vetoing three candidates in X ∪Y ∪Z in our
extension. Similarly to the arguing in the proof of Theorem 3.12, it follows that ei1 , . . . ,ein form a
three-dimensional matching of X ∪Y ∪Z. q

So far we have seen that 1TOS yields three easiness results for k-Veto (k ≤ 3) in the co-winner
model. Next we prove that our problem is hard for k ≥ 4 in the co-winner case.

Theorem 3.14. k-VETO-1TOS-POSSIBLE WINNER is NP-complete for k≥ 4 under the co-winner
model.

Proof. First we prove hardness for 4-Veto. At the end of the proof, we point out how to adjust
the construction for higher values of k. We show hardness by reducing from R3DM. Remember
that in a R3DM instance (X ,Y,Z,E) with |X | = |Y | = |Z| = n and E = {e1, . . . ,em}, each element
in X ∪Y ∪Z occurs in exactly two or three triples in E. In particular, it holds 2n≤m≤ 3n. The two
extremes correspond to the cases where every a belongs to exactly two and three triples, respectively.
Additionally, we assume that n> 1 which is no actual restriction to R3DM as otherwise the problem
is trivial. In summary, we have 3n≥ m≥ 2n > n > 1. We create the following election (C,V ). The

candidate set is C = {c, f}
·
∪ X

·
∪ Y

·
∪ Z

·
∪ D

·
∪ B

·
∪ G, where D := {d1, . . . ,d5},B := {b1,b2,b3},

G := {g1, . . . ,gb 3n(m−n−1)
m−n c}, and c is the designated candidate. Each voter’s totally ordered subset C̃

is defined as C̃ :=C \B. There are the following three voter groups in V :
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1. There are m−n voters ui (i = 1, . . . ,m−n) voting C̃ \{d1,d2,d3,c} � d1 � d2 � d3 � c.

2. There are m voters vi (1 ≤ i ≤ m), where voter vi votes C̃ \ {xi,yi,zi,d4} � xi � yi � zi � d4
(we have xi ∈ X , yi ∈ Y , zi ∈ Z, and ei = (xi,yi,zi) denotes the ith triple in E).

3. The third group contains exactly 3n(m−n−1) voters with the following properties:

• For each j ∈ {1, . . . ,b3n(m−n−1)
m−n c}, there are m− n voters wi in this group who rank g j

fourth-to-last among the candidates in C̃.

• The remaining 3n(m−n−1)− (m−n) · b3n(m−n−1)
m−n c= 3n(m−n−1) mod (m−n)(∈

{0,1, . . . ,m−n−1}) voters rank f fourth-to-last. (This number is equal to zero in case
m−n divides 3n(m−n−1).) W.l.o.g., these are the voters wi with largest index.

• For each a ∈ X ∪Y ∪Z there are exactly m− n− 1 voters wi ranking a third-to-last in
(C̃,V ).

• Exactly (m− n)− ((3n(m− n− 1)) mod (m− n))(≤ m− n) voters rank f on second-
to-last position in subelection (C̃,V ). W.l.o.g., these are the first voters ranking g1 on
the fourth-to-last position restricted to the candidates in C̃. 8

• All remaining voters rank d4 second to last in subelection (C̃,V ).

• Each voter wi ranks d5 last in subelection (C̃,V ).

The construction is built in a way that b1, b2, and b3 may only be vetoed in votes from the
second voter group, i.e., the only unsure vetoes that may fall away in favor of these three candidates
are vetoes for candidates in X ∪Y ∪ Z in the second voter group. The first voter block fixes the
number of definite vetoes for c. There are three other candidates in C̃ possibly but not definitely
vetoed by these voters, but these vetoes must remain unchanged for extensions c is supposed to
win. The third voter group assigns the required vetoes to all candidates in X ∪Y ∪Z. Note that f
and candidates in G all have the same number of potential vetoes as c. Hence, none of their vetoes
may fall away. Although candidates in X ∪Y ∪Z get further vetoes from voters in the third group,
these vetoes must not be replaced as otherwise f or candidates in G lose their vetoes as well and
thus one of them beats c. One might regard the vetoes for the candidates in G and f (i.e., the fourth
to last positions in subelection (C̃,V ) in the third voter group) as a wall of vetoes that must not be
substituted, and candidates in X ∪Y ∪Z therefore must not lose their vetoes from this group either.
Tables 3.4 and 3.3 visualize two concrete instances with n= 2, m= 5 and n= 2, m= 6, respectively.

In subelection (C̃,V ), the veto numbers are as follows:
vetoes(C̃,V )(c) = vetoes(C̃,V )(c

′) = m − n for each c′ ∈ {d1,d2,d3,g1, . . . ,gb 3n(m−n−1)
m−n c, f},

vetoes(C̃,V )(a) = m− n− 1+ l(a) for a ∈ X ∪Y ∪ Z (where l(a) denotes the number of triples in
E containing a), vetoes(C̃,V )(d4)≥m > m−n (this holds due to vetoes from the second voter group)
and vetoes(C̃,V )(d5) = 3n(m−n−1)≥ m−n. 9 Thus, c is a winner in subelection (C̃,V ).

8Hence, there are no overlap in a sense that the same voter ranks f fourth-to-last and second-to-last in subelection
(C̃,V ).

9We can transform this inequality into the equivalent inequality m≥ n(2+3n)/(3n−1). As m≥ 2n holds (recall from
above that there are at least 2n triples in E for a given instance of R3DM), it follows that n(2+3n)/(3n−1)≤ 2n(≤ m)
which holds for n≥ 4/3 or, as n ∈ N, for n > 1.
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We claim that a three-dimensional matching exists if and only if c is a possible winner.
(⇒): Suppose that a matching exists. We construct an extension as follows. b1, b2, and b3

are ranked last, second-to last and third-to-last in each vote vi of the second group for which the
corresponding triple (xi,yi,zi) is not in the matching. By this, we obtain the final veto numbers
vetoes(c′) = m− n for each c′ ∈ B∪G∪X ∪Y ∪Z ∪{c,d1,d2,d3, f}. The reason is that l(a)− 1
vetoes for a∈ X ∪Y ∪Z in the second voter group are replaced by vetoes for candidates in B and one
veto in the second group is left unchanged for each a). Moreover, we have vetoes(d4)> m > m−n
(because of m definite vetoes from the second voter group and some more vetoes from the third
voter group) and vetoes(d5) = 3n(m−n−1) ≥ m−n. Since no candidate has fewer vetoes than c
in our constructed extension, c is a winner for this extension and thus possible winner.

(⇐): Presume that c is a possible winner. As mentioned above, c is a winner in the partial
election (C̃,V ) with m−n definite vetoes from the first voter group. Unfortunately, the candidates
in B require m− n vetoes each in the overall election for some extension c is supposed to win.
Thus, for this extension, they must be enqueued into the partial election (C̃,V ) in a way that some
other candidate being vetoed in the subelection is not vetoed in the entire election (C,V ). Our proof
exploits the fact that in case a candidate on fourth-to-last position in a vote (among the candidates
in C̃) must not be replaced by a veto for some candidate in B, no other veto can be replaced in the
same vote since replacing the candidate on the third- or second-to-last position (restricted to the
candidates in C̃) requires that the veto on the fourth-to-last position is replaced as well. Moreover,
last positions in subelection (C̃,V ) never fall away.

Observe that for an extension with co-winner c, all vetoes in the first group must remain un-
changed: d1, d2, and d3 have the same veto number as c and according to this must not lose any
veto. The same holds for group three: Neither any g j nor f may lose any veto since they all are tied
with c when we account for all their potential vetoes. Unfortunately, in the third voter group each
voter must veto his fourth-to-least preferred candidate in C̃ as these vetoes either go to f or some
g j. Hence, in an extension with winner c, voters in the third group veto four candidates in C̃ each.

This implies that each candidate in B receives n−m vetoes from voters in the second group.
Thus, b1, b2, and b3 must replace 3m−3n vetoes for candidates in X ∪Y ∪Z in total.

Voters in the second group assign 3m unsure vetoes to non-distinguished candidates. As each
candidate in X ∪Y ∪ Z is potentially vetoed by m− n− 1 voters in the third group, each of them
needs at least one additional veto from voters in the second group. Otherwise, at least one of them
beats c. Moreover, the three candidates in B need 3m−3n vetoes in total from voters of group two.
Hence, the candidates in B∪X ∪Y ∪Z require at least 3m additional vetoes in total. As a combined
result, voters from the second group assign one veto to each candidate in X ∪Y ∪Z provided that c
is a winner for our constructed extension.

Arguing similarly to the proof of Theorem 3.12, it follows that in our constructed completion
with winner c each voter in the second group either vetoes three candidates in X ∪Y ∪Z or three
candidates in B. According to this, m−n of these voters assign 3m−3n vetoes to the candidates in B
and n of these voters assign 3n vetoes to candidates in X ∪Y ∪Z. Assuming that each of the n voters
vi1 , . . . ,vin vetoes three candidates in X ∪Y ∪Z, and since each a ∈ X ∪Y ∪Z is vetoed by exactly
one such voter (otherwise, some candidate in X ∪Y ∪Z beats c), the sets ei1 , . . . ,ein necessarily form
a three-dimensional matching.

For higher values k, we simply add k− 4 dummy candidates ranked on the last k− 4 positions
in subelection (C̃,V ) by every voter. The vetoes of these padding candidates are fixed. q
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First voter group
Voter 4 3 2 1
u1 d1 d2 d3 c
u2 d1 d2 d3 c
u3 d1 d2 d3 c
u4 d1 d2 d3 c

Second voter group
Voter 4 3 2 1
v1 x1 y1 z1 d4
v2 x1 y2 z2 d4
v3 x1 y1 z2 d4
v4 x2 y2 z1 d4
v5 x2 y1 z1 d4
v6 x2 y2 z2 d4

Third voter group
Voter 4 3 2 1
w1 g1 x1 f d5
w2 g1 x1 f d5
w3 g1 x1 d4 d5
w4 g1 x2 d4 d5
w5 g2 x2 d4 d5
w6 g2 x2 d4 d5
w7 g2 y1 d4 d5
w8 g2 y1 d4 d5
w9 g3 y1 d4 d5
w10 g3 y2 d4 d5
w11 g3 y2 d4 d5
w12 g3 y2 d4 d5
w13 g4 z1 d4 d5
w14 g4 z1 d4 d5
w15 g4 z1 d4 d5
w16 g4 z2 d4 d5
w17 f z2 d4 d5
w18 f z2 d4 d5

Table 3.3: Example of the instance in the proof of Theorem 3.14 for n = 2, m = 6. The column
labeled with ”h” presents each voter’s candidate ranked on position |C̃|+1−h in subelection (C̃,V )
(h = 1, . . . ,4). The R3DM instance (X ,Y,Z,E) we reduce from is defined by X = {x1,x2}, Y =
{y1,y2}, Z = {z1,z2}, and E = {e1, . . . ,e6} with e1 = (x1,y1,z1), e2 = (x1,y2,z2), e3 = (x1,y1,z2),
e4 = (x2,y2,z1), e5 = (x2,y1,z1), and e6 = (x2,y2,z2). Notice that, for instance, e1 and e6 form a
three-dimensional matching.

First voter group
Voter 4 3 2 1
u1 d1 d2 d3 c
u2 d1 d2 d3 c
u3 d1 d2 d3 c

Second voter group
Voter 4 3 2 1
v1 x1 y2 z1 d4
v2 x1 y1 z1 d4
v3 x2 y2 z2 d4
v4 x2 y1 z2 d4
v5 x2 y1 z1 d4

Third voter group
Voter 4 3 2 1
w1 g1 x1 f d5
w2 g1 x1 f d5
w3 g1 x2 f d5
w4 g2 x2 d4 d5
w5 g2 y1 d4 d5
w6 g2 y1 d4 d5
w7 g3 y2 d4 d5
w8 g3 y2 d4 d5
w9 g3 z1 d4 d5
w10 g4 z1 d4 d5
w11 g4 z2 d4 d5
w12 g4 z2 d4 d5

Table 3.4: Example of the instance in the proof of Theorem 3.14 for n = 2, m = 5. The col-
umn labeled with h presents each voter’s candidate ranked on position |C̃|+ 1− h in subelec-
tion (C̃,V ) (h = 1, . . . ,4). By way of example, the column labeled with ”1” contains all voters’
least preferred candidates in C̃. The R3DM instance (X ,Y,Z,E) we reduce from is defined by
X = {x1,x2}, Y = {y1,y2}, Z = {z1,z2}, and E = {e1, . . . ,e5} with e1 = (x1,y2,z1), e2 = (x1,y1,z1),
e3 = (x2,y2,z2), e4 = (x2,y1,z2), and e5 = (x2,y1,z1). Observe that, e.g., e1 and e4 form a three-
dimensional matching.
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Finally, we mention that the complexity of 2-APPROVAL-TOS-POSSIBLE WINNER and 2-
VETO-TOS-POSSIBLE WINNER is still open.

3.5 Necessary Bribery

In this section, we investigate the impact of partial information on the complexity of bribery. More
precisely, we consider a hybridization of standard bribery and necessary winner. Unless stated
otherwise, the results in this section can be found in [30]. The necessary bribery problem is defined
as follows.

F -X -NECESSARY BRIBERY

Given: An election (C,V ) with a set C of m candidates, a set V of n voters according to X ∈ PIM, a
designated candidate c ∈C, and a nonnegative integer `.

Question: Is it possible to change up to ` votes such that c is a winner of the election under F no matter
how we complete the votes in V ?

In other words, we ask whether the briber can make c a necessary winner by changing at most
` votes in V . Note that each bribed vote is complete after the bribery, i.e., the briber can determine
the complete ranking of every bribed voter according to his wishes. Nevertheless it would be an
interesting task for future research to investigate what happens when bribed voters are irresolute
in a way that their rankings after the bribery are—to a certain extent—incomplete. This applies to
real-word applications where the briber’s effort to convince some of the voters does not necessarily
result in a complete change of the voters’ opinions (rankings in this context), and the preferences of
the bribed voters are still undetermined in a sense (cf. [54, 150] for some restricted bribery variants
where, loosely speaking, the briber can only alter parts of a voter’s ranking in general) In other
words, the briber could achieve a certain change in a voter’s opinion, but he cannot be secure that
the voter will actually vote in accordance with the briber’s preferences. In our setting, however, we
premise that the briber can entirely alter a voter’s ranking.

To avoid confusion, we point out that we dropped the word ”necessary” in the original problem
definition in [30] as the necessary winner variant appeared to us as the standard way to define
bribery under partial information the more so as the briber wants to be sure to reach his goal and
make c a winner for every completion of the unbribed voters’ votes. In this thesis, we make use
of the term ”necessary bribery” in order to emphasize that necessary bribery is a combination of
necessary winner and standard bribery. Likewise, possible bribery, studied in Section 3.6, is defined
as a hybridization of possible winner and standard bribery. By saying ”necessary bribery” instead
of ”bribery”, we keep our notation consistent. Table 3.5 indicates the results on the complexity of
necessary bribery under partial information in k-Approval and k-Veto.

In this and the following section (about possible bribery), if not mentioned other, our input is
an election (C,V ) with m candidates in candidate set C = {c1, . . . ,cm−1,c}, n voters in voter set
V = {v1, . . . ,vn} (with m ∈ N, n ∈ N0), a designated candidate c ∈C, and a nonnegative integer `,
the bribery limit. We assume that all votes in V are partial according to a given model X in PIM.
Besides, (C,V̄ ) denotes the final election after the bribery, that is, V̄ is identical to V in the votes not
bribed, but instead contains the bribed voters’ new complete rankings. Again, we sometimes make
use of the symbol d to denote an arbitrary (non-distinguished) candidate. When studying the 1TOS
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Voting rule FI Gaps FP TOS PC CEV 1TOS 1Gap TTO BTO
Plurality P NPC NPC NPC NPC P P NPC P NPC
2-Approval P NPC NPC NPC NPC P P NPC P NPC
k-Approval (k ≥ 3) NPC NPC NPC NPC NPC NPC NPC NPC NPC NPC
Veto P P P P P P P P P P
2-Veto P P P P P P P P P P
3-Veto P P P P P P P P P P
k-Veto (k ≥ 4) NPC NPC NPC NPC NPC NPC NPC NPC NPC NPC

Table 3.5: Summary of the complexity results for necessary bribery under the co-winner model.
Key: NPC stands for ”NP-complete”, P stands for ”membership in P”. Column FI displays the
results for the case with full information due to Faliszewski et al. [79] and Lin [119]. Results in
italic are hardness results that follow from already existing hardness results for full information.
Results in boldface are new.

model, we denote candidates in C̃ by c′ and candidates in C \C̃ by p1, p2, . . ., by p (if C \C̃ = {p}),
or by p and q (if |C \ C̃| = 2). Analogously to the previous section, we assume that k < m when
studying k-Approval or k-Veto. Last but not least, unless stated otherwise, we show our results
under the co-winner model.

Our first theorem states that necessary bribery for a model X is at least as hard as bribery under
full information and necessary winner for model X .

Theorem 3.15. F -FI-BRIBERY and F -X -NECESSARY WINNER many-one reduce to F -X -
NECESSARY BRIBERY for any model X ∈ PIM and voting rule F .

Proof. The first reduction holds since every model in PIM is a generalization of FI, i.e., there are
instances where each vote is complete. The other reduction follows because necessary bribery with
bribery limit `= 0 coincides with necessary winner given partial model X . q

Theorem 3.15 can be applied to derive some hardness results either from necessary winner or
from bribery under full information. According to Section 3.4, necessary winner is easy even for
every scoring rule.

Our first complexity result says that, although bribery in Plurality and 2-Approval is easy under
full information, there are some partial information models for which the complexity of bribery
increases.

Theorem 3.16. k-APPROVAL-X -NECESSARY BRIBERY is NP-complete for k ≤ 2 and X ∈
{Gaps,1Gap,FP,TOS,PC,BTO}.

Proof. It suffices to show our result for TOS and BTO since all the remaining structures in X
inherit the NP-hardness lower bound from TOS or BTO. We first show our result for Plurality and
argue at the end of the proof how to adjust the proof for 2-Approval. In order to show hardness, we
reduce from X3C. Based on an X3C instance (B,S ), with B = {b1, . . . ,b3m} and S = {S1, . . . ,Sn}
(with Si ⊂ B and |Si|= 3 for each i ∈ [n], and w.l.o.g. n ≥ m as otherwise an exact cover is impos-
sible), we construct our necessary bribery instance as follows. There are 3m + 1 candidates in
candidate set C = B

·
∪ {c} where c is our designated candidate. Moreover, the briber may bribe up
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to ` = m voters. The set of voters V consists of 3mn− n+ 2m voters. 10 The partial profile P is
defined as follows.

1. For each i, 1≤ i≤ n, there is one voter vi possibly but not definitely approving of the candi-
dates in Si. Given the BTO model, we have Cvi

T = Si, Cvi
B =C \Si, and vi arbitrarily ranks the

candidates in the bottom set. For the TOS model, we construct the votes vi as follows. Sup-
pose that Si = {bi

1,b
i
2,b

i
3} contains the candidates potentially ranked first by voter vi, and let

the remaining candidates be certainly disapproved by this voter. We set Cvi =C \{bi
2,b

i
3} as

the totally ordered subset of candidates ranked by voter vi and assume that bi
1 � (C\Si) holds

in voter vi’s ranking of the candidates in Cvi . This makes sure that exactly the candidates in Si

are the potential scorers of the vote vi.

2. For each j, 1≤ j ≤ 3m, there are n+1− l j complete votes ranking b j first, where l j = |{Si ∈
S : b j ∈ Si}|.

3. There are n−m complete votes favoring c.

Recall that complete votes can be displayed by every model in PIM, in particular by TOS and
BTO.

Note that score(c) = n−m and pscore(b j) = n+1, for all j ∈ [3m]. We claim that there exists
an exact cover of three-sets if and only if c can be made a winner of the election in all completions.

(⇒): Assume there is an exact cover S ′ ⊆S , i.e., for every b j ∈ B exists exactly one Si ∈S ′

such that b j ∈ Si. Suppose that S ′ := {Si1 , . . . ,Sim}, where Sih ∈S for every h ∈ [m] and the Sih
are pairwise different. By changing the votes vih in the first voter group (with the candidates in
Sih as possible scorers) and by setting c on the first place in each of these votes, the briber ensures
that score(C,V̄ )(c) = n≥ pscore(C,V̄ )(b j) = n for each b j ∈ B which implies that c is a winner of the
election under all possible complete profiles after the bribery. Thus, c is a necessary winner.

(⇐): Suppose that the briber can make c a winner of the election in all possible completions
by bribing at most m voters. Since c cannot reach a score of n+ 1, each b j has to lose at least
one potential point. This is only possible if these m votes cover 3m candidates, and thus possible
points. This in turn requires that the briber bribes m voters vi1 , . . . ,vim of the first voter group and the
sets Si1 , . . . ,Sim exactly cover B. Otherwise, there is some b j ∈ B not belonging to any Sih (h ∈ [m])
and thus we obtain pscore(C,V̄ )(b j) = n+ 1 > score(C,V̄ )(c) = n. As there are extensions where b j

receives his maximum possible score, c does not win in these extensions and is hence not a necessary
winner after the bribery.

As pointed out above, the proof for 2-Approval makes use of a similar construction. First of
all, there are 3mn+ 3m− 2n additional dummy candidates d1, . . . ,d3mn+3m−2n such that the first
3mn+2m−2n dummy candidates (i.e., the ones with the smallest index) are potentially approved
of by exactly one voter each and the remaining dummy candidates do not score at all in the initial
election. Again, there are 3mn−n+2m voters, divided into three groups. The votes in the first voter
group are defined as follows:

10This number is always nonnegative: 3mn−n+2m ≥ 0 if and only if m(3n+2)≥ n if and only if m ≥ n
3n+2 . Since

n
3n+2 < 1 is equivalent to n > −1, we can deduce m ≥ 1 > n

3n+2 . Thus, the inequality holds for all m,n ∈ N and in
particular for n≥ m.
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• Given the BTO model, we again have Cvi
T = Si and Cvi

B =C \Si. The candidates in the bottom
set are arbitrarily ranked.

• In the TOS model, the voters vi, 1≤ i≤ n are defined as follows. We set Si = {bi
1,b

i
2,b

i
3} and

the vote vi is represented by the totally ordered subset Cvi =C \{bi
3}. We set posCvi (bi

j,vi) =

j for j = 1,2. The other candidates in Cvi are arbitrarily ranked behind bi
1 and bi

2. This
way, exactly the candidates from Si are the potentially but not necessarily definitely approved
candidates in this vote. 11 The remaining candidates are certainly disapproved by vi.

Once again, all voters from the second and third group are complete and approve of the same
candidates in B∪{c} as before plus one of the 3mn+ 2m− 2n first dummy candidates such that
each of them is potentially approved exactly once. The remainder of the proof works analogously to
the proof for the Plurality rule: the briber bribes the voters according to the exact cover and makes
each voter approve of c and the m dummy candidates not scoring in the original election, that is, the
ones with the largest index. q

Observe that the proof uses a somewhat similar construction to the proof in [79] showing that
APPROVAL-BRIBERY (that is, under complete information) is NP-complete.

The subsequent results reveal that necessary bribery under the remaining structures is easy in
Plurality.

Theorem 3.17. PLURALITY-TTO-NECESSARY BRIBERY and PLURALITY-CEV-NECESSARY

BRIBERY are in P.

Proof. We only have to show our result for TTO as CEV is a special case of TTO. Roughly, we
can divide the votes V into the following subsets:

1. V0 := {v ∈V : Cv
T = /0} as the votes with empty top set and

2. V1 :=V \V0 = {v ∈V : Cv
T 6= /0}.

Voters in V1 have a unique top candidate and thus—albeit possibly incomplete—assign a unique
score to each candidate in C. We may therefore w.l.o.g. assume that these voters completely
rank the candidates in C, by arbitrarily ranking the bottom set candidates. In contrast, votes in
V0 may have each candidate in C as their top choice. Since the briber wants to make c a winner
for each extension of these votes, we presume that none of them likes c most (which is possible
for some completions of V0). From this arguing, we obtain the scores score(c) = score(C,V1)(c) and
pscore(c j) = score(C,V1)(c j)+ |V0| ( j ∈ [m−1]).

A rational briber bribes only voters not definitely voting for c and each bribed voter favors c
after the bribery. Observe also that the briber should bribe as many V0 voters as possible. Bribing
a voter in V0, the briber decreases the potential score of each non-distinguished candidate by one,
whereas bribing a voter definitely favoring some c j only decreases this value for c j, but not for the
other candidates different from c. (Note that for |C|= 2, there is no need to distinguish between V1

11We point out that voter vi certainly approves of bi
1 and possibly but not definitely approves of one of the candidates bi

2
and bi

3. Since each non-distinguished candidate may obtain all potential approvals for some completions, it is immaterial
to our analysis whether or not a potential approval for a candidate in C \{c} is certain for a given vote.
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and V0. Every voter in V1 either votes c � c1 or c1 � c (where C = {c,c1}), while every voter in
V0 votes c1 � c, at least in c’s worst-case. According to this, for two candidates the votes in V0 are
complete in c’s worst-case in a sense).

Our algorithm checks the following three cases:

• score(c)+ `≥ n
2 . Our instance is a YES instance as for every extension the briber can ensure

that at least half of all voters in V definitely prefer c to all other candidates. Since all other
candidates can reach at most half of all points, c is surely a necessary winner in the final
election, no matter how we complete the partial, unchanged votes.

• score(c)+ ` < n
2 and |V0| ≥ `. Then the briber bribes ` voters in V0 and makes every bribed

voter rank c first. We accept if and only if the following condition holds:

score(c)+ `≥ pscore(c j)− ` ∀ j ∈ [m−1].

According to this inequality, c has at least score(c)+ ` (definite) points in the final election
(C,V̄ ) and there is not any c j whose potential score (including all definite and uncertain points
that c j can reach in the final election for any extension) exceeds the final score of c.

• score(c)+ ` < n
2 and |V0|< `. Then the briber bribes all voters in V0 and `−|V0| voters in V1.

Note that the changed votes in V0 are complete after the bribery (with top candidate c) and—by
completing arbitrarily all votes in V1 (which does not change the score of any candidate)—we
obtain an equivalent bribery problem under full information with bribery limit ˜̀ := `− |V0|
and new voter set Ṽ := V1∪ Ṽ0 (where Ṽ0 contains |V0| voters ranking c first and V1 contains
all voters with non-empty top set from the original election (C,V )). From [79], we know that
bribery under full information is easy. Thus, this subcase is in P as well.

Observe that determining the scores and the first two cases can be done in O(n ·m) time. In the
third subcase, we can regard an equivalent bribery instance under full information with candidate
set C, voter set Ṽ , distinguished candidate c, and bribery limit ˜̀. As already mentioned, bribery
under complete information is easy. q

We now turn to the 1TOS model.

Theorem 3.18. PLURALITY-1TOS-NECESSARY BRIBERY is in P.

Proof. We let C̃ ⊆ C denote the candidates who are completely ranked from first to last by all
voters. Our algorithm distinguishes the following cases:

• C̃ = C. This case corresponds to bribery under full information which is known to be in
P [79].

• (C \C̃)\{c} 6= /0. In other words, there is at least one non-distinguished candidate p in C \C̃.
Since there are extensions where p is ranked first by every voter, we have score(C,V )(c) = 0
(the definite score of c before the bribery) and score(C,V̄ )(c) = ` (the number of definite points
for c after the bribery). As pscore(C,V )(p) = n and pscore(C,V̄ )(p) = n− ` holds for each
p ∈C \C̃, a necessary condition for c to catch all other candidates p /∈ C̃ is `≥ n

2 . Otherwise,
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there are extensions of the final election where p has more points than c. Observe that `≥ n
2

is also sufficient since no other candidate d 6= c can have pscore(C,V̄ )(d) > ` ≥ n
2 potential

points after the bribery.

• C \ C̃ = {c}. In this subcase, there are extensions where c is ranked last by every voter, that
is, we have score(C,V )(c) = 0 and pscore(C,V )(d) = score(C̃,V )(d) (d ∈C \{c}) in the original
election. Loosely speaking, we regard an election under full information where each voter
ranks c last (or at least not on first place). We again refer to the polynomial-time algorithm
for bribery in Plurality in [79].

It follows that our problem is in P as the scores can be computed in O(mn) time, the first and
third subcase can be easily reduced to bribery under full information (which is known to be easy),
and the second subcase requires the validation of one polynomially bounded inequality. q

In a nutshell, although bribery in Plurality is easy under complete information, six out of nine
models of partial information raise the complexity. Only under the models CEV, TTO, and 1TOS
we can decide our problem in polynomial time. This is somewhat astonishing since Plurality has a
very simple inherent structure. Notice that BTO and TTO yield—although very similar structures—
different complexities. Also note that our problem is easy for 1TOS, but hard for BTO, Gaps, 1Gap,
and FP—four models for which possible winner turned out to be much easier than for the 1TOS
structure, applied to the k-Approval/-Veto families.

Next we show that necessary bribery in 2-Approval is easy for the same three models as
Plurality. Let us first regard the TTO and CEV structures.

Theorem 3.19. Both 2-APPROVAL-TTO-NECESSARY BRIBERY and 2-APPROVAL-CEV-
NECESSARY BRIBERY are in P.

Proof. We only give the proof for the TTO structure, this immediately implies that 2-APPROVAL-
CEV-NECESSARY BRIBERY is in P too.

Let V0 denote the set of voters with an empty top set, that is V0 := {v ∈V : Cv
T = /0}.

Furthermore, let V c
1 := {v ∈V : Cv

T = {c}}, V¬c
1 := {v ∈ V : |Cv

T | = 1,c 6∈ Cv
T}, V c

2 :=
{v ∈V : |Cv

T | ≥ 2,c ∈Cv
T , pos(c,v)≤ 2}, and V¬c

2 := {v ∈V : |Cv
T | ≥ 2, pos(c,v)> 2}. In a simi-

lar manner, we define Vi :=V c
i ∪V¬c

i (i = 1,2). In other words, V1 embraces all voters with singleton
top set, whereas V2 includes all voters with two or more candidates in their top set. Moreover, V c

i
(V¬c

i ) includes all voters in Vi (not) definitely approving of c (i = 1,2).
By means of these sets, we are equipped to determine the score of c and the potential scores of

each c j ( j ∈ [m−1]):

score(C,V )(c) = |V c
1 ∪V c

2 |, pscore(C,V )(c j) = |V0∪V1|+ score(C,V2)(c j).

Note that all votes with at least two candidates in their top set give us all the information we
need, i.e., we can uniquely determine the scores these voters assign to each candidate—no matter
how we actually complete these votes. Votes with only c in the top set give a definite approval to c,
while each c j is potentially approved by these voters. The votes in V0∪V¬c

1 give a potential point to
each c j, but surely no point to c (in the worst-case of c).

Observe that a reasonable briber makes each bribed voter approve of c after the bribery. The
question arises which voters should be bribed, which ones not, and which ones with highest priority.
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To find an answer to this question, we next check what c gains compared to the other candidates
when a certain vote is bribed:

1. Bribing a voter in V0∪V¬c
1 makes c gain two relative points with respect to all but one can-

didate (the candidate approved aside from c after the bribery; with respect to this candidate,
the relative gain is one). The reason is that all but one non-distinguished candidates lose one
point and c simultaneously wins one point, while the candidate approved aside from c after
the bribery does not lose a point by the bribery, but c wins a point.

2. When the briber bribes a voter in V¬c
2 , there are two possibilities. Firstly, the briber can make

c win one point against m−2 other candidates and two points against one candidate, namely
if the voter initially approves of ci and c j before the bribery and c and c j after the bribery
(where 1 ≤ i, j ≤ m−1, i 6= j). Secondly, the briber can make c gain two points against two
candidates, zero points against one candidate, and one point against all remaining candidates,
if any. This holds for the case where the bribed voter initially approves of ci and c j before the
bribery and c and ch after the bribery (it holds 1≤ i, j,h≤ m−1, |{i, j,h}|= 3).

3. Bribing a voter in V c
1 makes c win one point against m−2 candidates and zero points against

one candidate (the one who is approved aside from c after the bribery).

4. Bribing a voter in V c
2 either does not increase c’s gain against any other candidate (namely

when the bribed voter approves of c and the same c j before and after the bribery) or c wins and
loses one point against one candidate, respectively, and gains no point against the remaining
candidates.

Note that the briber bribes only voters from the first two groups. According to our argument
with relative gains, the first class of votes should be bribed with highest priority. We point out that
in case merely voters from the latter two groups are left to be bribed, c already has a full approval
score and is thus a necessary winner. Our algorithm checks the following cases:

• score(C,V )(c)+ ` ≥ n. In this case, the answer to our problem is YES since the briber can
ensure that each voter in the final election (C,V̄ ) approves of c, no matter how the unchanged,
partial votes are actually completed.

• score(C,V )(c)+ ` < n and ` > |V0∪V¬c
1 |. In this case, the briber bribes all voters in V0∪V¬c

1
and further `′ := `−|V0∪V¬c

1 | voters in V¬c
2 . Before we continue, we point out the following

aspects. Firstly, we accept if and only if it is possible to find |V¬c
2 | − `′ voters in V¬c

2 who
are left unchanged by the briber, and each c j has at most score(C,V̄ )(c) = score(C,V )(c)+ `
potential points which are assigned to c j by (1) bribed voters after the bribery, (2) voters in
V c

1 ∪V c
2 who surely are not bribed (as c definitely scores), and (3) voters in V¬c

2 being left
unchanged by the briber. Moreover, all voters in V0 ∪V¬c

1 are bribed by the briber (with
highest priority). Thus, they do not contribute to any candidate’s pscore (although each of
these voters approves of c and one c j after the bribery; these points, however, are assigned by
voters from the first group).

With these preconsiderations in mind, we define the following b-edge matching problem. We
are given a multigraph G= (V ,E ) with V =C\{c} (each non-distinguished candidate yields
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a vertex in G). Each voter in V¬c
2 approving of ci and c j (1 ≤ i < j ≤ m− 1) yields an edge

{ci,c j} in E . The capacities are b(c j) = score(C,V̄ )(c)−pscore(C,V c
1∪V c

2 )
(c j) (1≤ j ≤ m−1).

We claim that the briber can make c a necessary winner by bribing ` voters if and only if G
yields a matching with |V¬c

2 |− `′ edges (recall that `′ = `−|V0∪V¬c
1 | denotes the number of

voters in V¬c
2 who are bribed by the briber, and that the briber bribes all `− `′ = |V0 ∪V¬c

1 |
voters in V0∪V¬c

1 with highest priority) and the following inequality holds:

(
m−1

∑
j=1

(score(C,V̄ )(c)−pscore(C,V c
1∪V c

2 )
(c j)))−2(|V¬c

2 |− `′)− `≥ 0 (∗).

(⇒): Suppose that the briber can make c a necessary winner by bribing ` voters. As
c has score(C,V̄ )(c) = score(C,V )(c) + ` points in the final election (C,V̄ ), each c j has
pscore(C,V̄ )(c j) = pscore(C,V c

1∪V c
2 )
(c j)+ ι(c j)+β (c j) points after the bribery and this number

is at most score(C,V̄ )(c). In this context, β (c j) denotes the number of bribed voters approving
of c j after the bribery. Moreover, we suppose that c j is approved by ι(c j) voters in V¬c

2 who
are left unchanged by the briber.

First assume for contradiction that G does not yield any matching of size |V¬c
2 |− `′ (nor any

larger matching). Then selecting any |V¬c
2 | − `′ edges in E implicates that it holds ι(c j) >

b(c j) for at least one c j (1≤ j ≤ m−1), where ι(c j) is the number of edges incident to c j in
our edge collection.12 This in turn implies pscore(C,V̄ )(c j) = pscore(C,V c

1∪V c
2 )
(c j) + ι(c j) +

β (c j) ≥ pscore(C,V c
1∪V c

2 )
(c j) + ι(c j) > pscore(C,V c

1∪V c
2 )
(c j) + b(c j) = pscore(C,V c

1∪V c
2 )
(c j) +

score(C,V̄ )(c)− pscore(C,V c
1∪V c

2 )
(c j) = score(C,V̄ )(c), and thus c j beats c for at least one ex-

tension of the final election, even though the points that bribed voters assign to c j are not
accounted for.

Thus, a feasible matching of cardinality |V¬c
2 | − `′ exists. It remains to show that

the inequality holds. Since score(C,V̄ )(c) − pscore(C,V̄ )(c j) ≥ 0 holds for each j ∈
[m − 1], it follows that ∑

m−1
j=1 (score(C,V̄ )(c) − pscore(C,V̄ )(c j)) ≥ 0. This in turn is

equivalent to ∑
m−1
j=1 (score(C,V̄ )(c)− pscore(C,V c

1∪V c
2 )
(c j)− ι(c j)− β (c j)) ≥ 0 which can be

rewritten by (∑m−1
j=1 (score(C,V̄ )(c)− pscore(C,V c

1∪V c
2 )
(c j)))− (∑m−1

j=1 ι(c j))− (∑m−1
j=1 β (c j)) =

(∑m−1
j=1 (score(C,V̄ )(c)− pscore(C,V c

1∪V c
2 )
(c j)))− 2(|V¬c

2 | − `′)− ` ≥ 0, and we are done. This
condition holds because of ∑

m−1
j=1 β (c j) = ` (bribed voters assign ` approvals to non-

distinguished candidates after the bribery) and since ∑
m−1
j=1 ι(c j) equals the total number of

approvals that non-distinguished candidates receive from unbribed voters in V¬c
2 after the

bribery. Observe further that this number is identical to twice the number of voters in V¬c
2

being left unchanged by the briber as each of them approves of two candidates other than
c. According to this, the inequality (∗) can be rewritten by (∑m−1

j=1 (b(c j)− ι(c j)))− ` ≥ 0,
provided that a matching with |V¬c

2 | − `′ edges exists and ι(c j) edges in this matching are
incident to c j. As a combined result, the existence of a large enough matching means that c is
a necessary winner in the final election when we account for all definite points for c after the
bribery and all potential points for non-distinguished candidates except for the ` approvals

12We again use the expression ι(c j) since voters in V¬c
2 left unchanged one-to-one correspond to edges in our edge

selection.
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that bribed voters assign to non-distinguished candidates after the bribery. In case the in-
equality holds in addition, c stays a necessary winner when these ` approvals are taken into
account as well.

We finally point out that—in case there are several matchings of maximum cardinality—it
does not matter according to which maximum matching the briber leaves unchanged |V¬c

2 |−`′
voters and bribes the remaining `′ voters in V¬c

2 (the inequality does not change when the
briber bribes according to another matching).

(⇐): Suppose that there is a matching with |V¬c
2 | − `′ edges and the inequality (∗) holds.

In case the maximum matching has larger cardinality, we may pick arbitrary |V¬c
2 | − `′

edges from the maximum matching and obtain a feasible matching of the desired cardinal-
ity. We construct a final election (C,V̄ ) for which c is a necessary winner. First of all, c has
score(C,V̄ )(c) = score(C,V )(c)+ ` points after the bribery. It remains to show that each other
candidate has at most score(C,V̄ )(c) potential points. Our constructed final election looks as
follows. (1) All voters in V c

2 ∪V c
1 remain unchanged. (2) All |V¬c

2 | − `′ voters one-to-one
corresponding to the same number of edges in the given matching remain unchanged. (3) The
briber bribes all `′ voters not one-to-one corresponding to edges in the matching and all `−`′

voters in V0∪V¬c
1 (the latter bribes are fixed in advance, the former ones depend on the edges

in the matching).

Observe that due to the capacity constraints it holds pscore(C,V c
1∪V c

2 )
(c j) + ι(c j) ≤

pscore(C,V c
1∪V c

2 )
(c j) + b(c j) = pscore(C,V c

1∪V c
2 )
(c j) + score(C,V̄ )(c) − pscore(C,V c

1∪V c
2 )
(c j) =

score(C,V̄ )(c) for each j ∈ [m− 1], that is, the potential score of each c j is at most as high
as the definite final score of c when we consider all potential approvals for c j in the final
election except the approvals that bribed voters assign to c j after the bribery. Again, ι(c j)
denotes the number of edges in the matching incident to c j.

It remains to argue that bribed voters may assign ` approvals to non-distinguished
candidates and c is still a necessary winner. Since it holds ι(c j) ≤ b(c j),
candidate c j may still receive at most B(c j) := b(c j) − ι(c j)(≥ 0) potential ap-
provals from the bribed voters after the bribery. Aggregating over all candidates
c j, we obtain (∑m−1

j=1 B(c j)) − ` = ∑
m−1
j=1 (b(c j) − ι(c j)) − ` = ∑

m−1
j=1 (score(C,V̄ )(c) −

pscore(C,V c
1∪V c

2 )
(c j)− ι(c j))− ` = ∑

m−1
j=1 (score(C,V̄ )(c)− pscore(C,V c

1∪V c
2 )
(c j))−∑

m−1
j=1 ι(c j)−

`=∑
m−1
j=1 (score(C,V̄ )(c)−pscore(C,V c

1∪V c
2 )
(c j))−2(|V¬c

2 |−`′)−`. As our inequality (∗) holds,
we obtain (∑m−1

j=1 B(c j))−`≥ 0. In other words, bribed voters may assign ` approvals to non-
distinguished candidates and c is (still) a necessary winner when accounting for these ` points.
These approvals can be greedily allocated:

– The first β (c1) := min(B(c1), `) bribed voters approve of c and c1 (w.l.o.g. the lexico-
graphically smallest min(B(c1), `) voters who are bribed).

– The next β (c2) := min(B(c2), `−β (c1)) bribed voters approve of c and c2.

–
...

– The remaining β (cm−1) :=min(B(cm−1), `−β (c1)−β (c2)− . . .−β (cm−2)) bribed vot-
ers approve of c and cm−1.
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These numbers β (c j)—the numbers of additional approvals—are restricted from above by
B(c j) (more approvals would imply that c j beats c for some completions) and `−∑

j−1
i=1 β (ci)

(otherwise, the total number of additional approvals for non-distinguished candidates would
exceed `). As ∑

m−1
j=1 B(c j)≥ ` and our greedy algorithm assigns as many approvals as possible

to each presently regarded c j, this greedy procedure surely leads to a feasible bribing strategy.
Suppose for contradiction that this greedy procedure does not assign ` approvals to non-
distinguished candidates. Then, for each c j, it holds min(B(c j), `−∑

j−1
i=1 β (ci)) = B(c j) <

`−∑
j−1
i=1 β (ci) = `−∑

j−1
i=1 B(ci) for each j ∈ [m− 1] (as fewer than ` approvals are assigned

due to our assumption; otherwise, the sum over all β (c j) is ` according to our construction).
In particular, it holds B(cm−1)< `−B(c1)− . . .−B(cm−2). This in turn equals B(c1)+ . . .+
B(cm−1)< ` which is a contradiction to our assumption.

• `≤ |V0∪V¬c
1 | and score(C,V )(c)+ ` < n. Under these conditions, c cannot necessarily reach a

full approval score after the bribery. Moreover, the briber bribes ` arbitrary voters in V0∪V¬c
1

and makes each bribed voter approve of c after the bribery. Note that all c j (temporarily)
lose ` potential approvals given to them by the bribed voters before the bribery, but again the
bribed voters assign ` approvals to non-distinguished candidates after the bribery. It follows
that the briber can make c a necessary winner by bribing ` voters if and only if the following
two conditions hold:

score(C,V )(c)+ `≥ pscore(C,V )(c j)− ` ∀ j ∈ [m−1]

and

`≤
m−1

∑
j=1

(score(C,V )(c)+2`−pscore(C,V )(c j)).

The argument of correctness follows similarly to the previous subcase, without arguing with
matching. The first condition must hold as otherwise c is beaten by some c j for some exten-
sion even without considering any approvals that c j might receive from bribed voters after the
bribery. The second inequality states that ` additional points from the bribed voters may go
to the other candidates without c being beaten by any c j. These approvals can be assigned by
a similar greedy algorithm to the one in the previous subcase.

Notice that the first and third subcase are in P because our problem widely reduces to comput-
ing the (p)scores (which is possible in O(mn) time), checking inequalities, and applying a greedy
algorithm. The second subcase polynomially reduces our problem to computing a maximum b-edge
matching and verifying an inequality. q

Observe that for V0∪V1 = /0 our problem coincides with bribery under full information in a sense
that votes with two or more candidates in their top set assign a unique score to every candidate in
C. While the original proof tailored to complete votes works with b-edge cover [119], we provide
an alternative proof with b-edge matching.

The following example shall illustrate the matching algorithm in the proof of Theorem 3.19.
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Example 3.20. Let (C,V ) be an election with C = {c,c1,c2,c3}, V = {v1, . . . ,v7}, distinguished
candidate c, and bribery limit ` = 2. The underlying partial information model is TTO. V can be
partitioned into V0 = {v1}, V c

2 = {v2}, and V¬c
2 = {v3, . . . ,v7}. The voters in V2 =V¬c

2 ∪V c
2 vote as

follows (we indicate only the two candidates approved):

v2 : (c,c1), v3 : (c1,c2), v4,v5 : (c1,c3), v6,v7 : (c2,c3).

Figure 3.2 illustrates the matching graph (the one on the left) according to Example 3.20. Based
on this instance, we obtain a graph G=(V ,E ) with vertices V = {c1,c2,c3}, edges E = {e3, . . . ,e7}
(where ei is incident to the vertices named after the two candidates approved by voter vi, 3≤ i≤ 7),
and capacities b(c1) = 2 = score(C,V )(c) + `− pscore(C,V c

1∪V c
2 )
(c1) = 1 + 2− 1 = 2 and b(c2) =

b(c3) = 3 (as they are not potentially approved by any voters who definitely approve of c). Observe
that `= 2 and `′ = 1 (one bribe is reserved for the voter in V0, the other bribe concerns the set V¬c

2 ).
In our example, the maximum matching has a cardinality of four (e.g., all edges but e5). Never-

theless, there is no successful bribery as it holds (∑3
j=1(score(C,V )(c)+ `− pscore(C,V c

1∪V c
2 )
(c j)))−

2(|V¬c
2 |− `′)− `= (2+3+3)−2 ·4−2 =−2 6≥ 0. Or, in other words, leaving all voters according

to the matching unchanged implicates that c, c1, c2, and c3 have a (p)score of 3 each, not accounting
for the approvals for c1, c2, and c3 assigned by the bribed voters. However, as soon as one bribed
voter approves of some c j, c is beaten by c j.

The right graph corresponds to a variation of Example 3.20 with the difference that voter v5
does not occur in V . Observe that there is now a maximum matching consisting of all edges in E .
Now our instance is a YES-instance: the matching (cardinality 4) is large enough as we require a
matching with at least |V¬c

2 |− `′ = 4−1 = 3 edges. Moreover, our inequality holds: 2+3+3−2 ·
3−2 = 0≥ 0. Suppose that the briber leaves unchanged the voters one-to-one corresponding to e3,
e4, and e6 in the matching and bribes v7 (and v1). Then the ”preliminary scores” of c1, c2, and c3 are
3, 2, and 2, respectively (by ”preliminary”, we mean the final scores of the c j without accounting for
`= 2 approvals the bribed voters still have to assign to them). By making the bribed voters approve
of c twice and c2 and c3 once each, we obtain a final (p)score of 3 for all candidates in C and c is a
necessary winner. Note that another bribery strategy (e.g., according to the matching e3, e6, and e7)
yields a YES-instance as well since then the bribed voters may approve of c1 and c2, aside from c,
and again all candidates have three points.

We obtain yet another polynomial-time result for the 1TOS structure.

Theorem 3.21. 2-APPROVAL-1TOS-NECESSARY BRIBERY is in P.

Proof. Let C̃⊆C be the candidate subset completely ranked by each voter. First of all, if c /∈ C̃, we
can regard an equivalent instance with C̃′ := C̃∪{c} and all voters rank c last among the candidates
in C̃′. Hence, we let c ∈ C̃. Our algorithm distinguishes the following cases:

• C̃ =C. This case corresponds to bribery under full information which is in P [119].

• C̃ = {c}. In this case, each voter potentially approves of all non-distinguished candidates and
c is never approved in his worst-case. Thus, we have pscore(d) = n for every candidate d 6= c
and score(c) = 0. We can solve this subcase by instead regarding a TTO instance with V =V0
and apply the algorithm in the proof of Theorem 3.19.
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Figure 3.2: Two examples of the matching graphs according to Example 3.20. The left graph
corresponds to the original example, while the graph on the right represents the variation of the
original example. The edges in a maximum matching are marked red. The vertex capacities are
written next to the vertices.

• c ∈ C̃, C \ C̃ = {p}. In this case, we have score(c) = s1(c), where si(c) (i = 1,2) is defined
as the number of voters ranking c on position i in subelection (C̃,V ). Moreover, we have
pscore(c′) = score(C̃,V )(c

′) = s1(c′)+ s2(c′) for each c′ ∈ C̃ \{c} and pscore(p) = n. In other
words, each voter potentially approves of p. In addition, each voter definitely approves of his
favorite candidate in C̃ and potentially approves of his second most preferred candidate in C̃
unless this candidate is c (as unsure approvals do not count for c in c’s worst-case).

First, if score(c)+ ` < n− `, we reject since p has n− ` or more potential points in the final
election, while c has merely score(c)+ `= s1(c)+ ` definite points after the bribery.

If score(c)+`≥ n, we accept as the briber can make c achieve a full score for every extension.

It remains to argue for n− ` ≤ score(c) + ` < n. In this case, the briber cannot make c
reach a full approval score for at least one extension. Nonetheless, c can reach p and all
non-distinguished candidates in C̃ when we do not account for the ` approvals that bribed
voters assign to candidates other than c after the bribery. The reason is as follows. The
distinguished candidate c is definitely approved by score(c)+ ` voters after the bribery. Each
non-distinguished candidate is potentially approved by at most n− ` unbribed voters and
possibly by some bribed voters. Due to our assumption, we have score(c)+ `≥ n− `.

We will show that the briber should bribe as many (arbitrary) voters v as possible with
posC̃(c,v) > 2 and as few (arbitrary) voters v as possible with posC̃(c,v) = 2. Moreover,
the briber does not bribe any voters v with posC̃(c,v) = 1 as c definitely scores in these votes.

Observe that the briber leaves unchanged n− s1(c)− ` voters v with posC̃(c,v) ≥ 2 and
bribes the ` remaining of these voters. Assume that among these n− s1(c)− ` voters,
λ (c′) ∈ {0, . . . ,n− s1(c)− `} voters potentially approve of c′ ∈ C̃ \ {c}. 13 (Note that all
voters left unchanged potentially approve of p.) Then the bribed voters may still assign

13Actually, λ (c′) is bounded from above by n− s1(c)−` and by the number of voters v with posC̃(c,v)> 1 potentially
approving of c′.
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B(c′) := s1(c)+ `−pscore(C,V c)(c
′)−λ (c′)(≥ 0) approvals to c′ after the bribery (where V c

denotes the set of voters definitely approving of c), and the final pscore of c′ does not exceed
the final definite score of c. Moreover, p may receive further B(p) := s1(c)+2`−n approvals
from the bribed voters (this number holds regardless of the ` voters bribed by the briber).

We accept for this subcase if and only if the sum over all B(d), d ∈ C \ {c}, is at least `.
Otherwise, accounting for ` further approvals for non-distinguished candidates implicate that
for each extension some non-distinguished candidate beats c.

By aggregating over all B(d), d ∈C \{c}, we obtain

∑
d∈C\{c}

B(d) = ( ∑
c′∈C̃\{c}

(s1(c)+ `−pscore(C,V c)(c
′)−λ (c′)))+(s1(c)+2`−n)

= ( ∑
c′∈C̃\{c}

(s1(c)+ `))− ( ∑
c′∈C̃\{c}

pscore(C,V c)(c
′))− ( ∑

c′∈C̃\{c}
λ (c′))+(s1(c)+2`−n).

As c is definitely approved by s1(c) voters, it follows that ∑c′∈C̃\{c} pscore(C,V c)(c
′) = s1(c).

Now let us assume that β voters v with posC̃(c,v)≥ 3 and α voters v with posC̃(c,v) = 2 are
left unchanged by the briber. Notice that it holds α + β = n− s1(c)− `. Since each voter
ranking c on second position, restricted to C̃, potentially approves of only one candidate in
C̃ \ {c} and since all voters v with posC̃(c,v) ≥ 3 potentially approve of two candidates in
C̃ \{c}, it holds ∑c′∈C̃\{c}λ (c′) = 2β +α and we obtain

∑
d∈C\{c}

B(d) = (|C̃|−1) · (s1(c)+ `)− s1(c)−2β −α +(s1(c)+2`−n).

This number is maximized when β is as small as possible and α is as large as possible (that
is, as many voters v as possible with posC̃(c,v) = 2 remain unchanged by the briber). Notice
that α̂ = min(s2(c),n− s1(c)− `) and β̂ = n− s1(c)− `− α̂ is the combination maximizing
the sum over all B(d). According to the previous reasoning, it follows that the briber can
make c a necessary winner if and only if

(|C̃|−1) · (s1(c)+ `)− s1(c)−2β̂ − α̂ +(s1(c)+2`−n)≥ `.

Then, and only then, c is a necessary winner of the final election after ` bribed voters have
assigned ` approvals to non-distinguished candidates (recall from the reasoning above that c is
definitely a necessary winner in the final election when we do not consider these ` approvals).
Observe that this inequality holds regardless of which voters are actually bribed according to
the ”bribing strategy” (α̂, β̂ ).

• 2 ≤ |C̃| ≤ |C| − 2. In this case, there are at least two non-distinguished candidates p with
p /∈ C̃. As there are extensions where two candidates in C \C̃ are approved by each voter, we
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have score(c) = 0, pscore(p) = n (p∈C\C̃), and pscore(c′) = score(C̃,V )(c
′)−|{v∈V : c�v

c′ �v d ∀d ∈ C̃ \{c,c′}}| for c′ ∈ C̃ \{c}. 14

First of all, if ` < n
2 , our instance is a NO-instance as the candidates in C \ C̃ have n− ` or

more potential points in the final election which is higher than c’s definite final score `.

If `≥ n
2 and `≥ n− s1(c), our instance is a YES-instance. The briber bribes all voters v with

posC̃(c,v) ≥ 2 and `− n+ s1(c) voters v with posC̃(c,v) = 1. By making all bribed voters
approve of c and w.l.o.g. the same c′ ∈ C̃\{c}, we obtain score(C,V̄ )(c) = pscore(C,V̄ )(c

′) = `,
pscore(C,V̄ )(c

′′) = 0 (c′′ ∈ C̃\{c,c′}; only relevant when |C̃|> 2), and pscore(C,V̄ )(p) = n−`.
Observe that no non-distinguished candidate has a higher score than c for any extension.

Hence, it remains to argue for n
2 ≤ ` < n−s1(c). In this subcase, the briber does not bribe any

voters with favorite candidate c restricted to the candidates in C̃ as these voters only contribute
to the pscore values of the candidates in C\C̃, whereas all other voters potentially approve of
at least one non-distinguished candidate in C̃ in addition.

Since the briber can bribe at least half of all voters and ensure a definite score of ` for c,
all non-distinguished candidates have at most n− `≤ `= score(C,V̄ )(c) potential points in the
final election each when we consider all approvals meant for them except for those ` approvals
that bribed voters assign to them after the bribery.

Analogously to the case C \ C̃ = {p}, p 6= c, it follows that the briber should bribe as many
voters v as possible with posC̃(c,v) ≥ 3 and leave unchanged as many voters v as possible
with posC̃(c,v) = 2. According to our assumptions, the briber does not bribe any voters v with
posC̃(c,v) = 1. In contrast to the other case, we have to consider the following aspects. Firstly,
we have score(c) = 0 and therefore pscore(C,V c)(c

′) = 0 for each c′ ∈ C̃ \ {c}. Secondly,
n− s1(c)− ` voters not ranking c first in subelection (C̃,V ) are ignored by the briber and
the remaining of these voters are bribed. In opposition to the previous case, the s1(c) voters
ranking c first, restricted to C̃, do not increase the (p)score of any candidate in C̃, but again
these voters are not bribed in this subcase. Thirdly, the bribed voters may assign a total of
|C \ C̃| · (2`− n) approvals to candidates in C \ C̃ and c necessarily beats or ties with all of
them.

Again, we assume that the briber ignores α̂ := min(n− s1(c)− `,s2(c)) voters v with
posC̃(c,v) = 2 and β̂ := n−s1(c)−`−α̂ voters v with posC̃(c,v)≥ 3 and bribes the remaining
` voters v with posC̃(c,v)> 1. We define B(d), d ∈C \{c}, analogously to the previous case
and set B(c′)= `−λ (c′) for c′ ∈ C̃\{c} (where λ (c′)∈{0, . . . ,min(pscore(c′),n−s1(c)−`)}
denotes the number of voters ignored by the briber who (1) potentially approve of c′ and (2)
do not rank c first among the candidates in C̃) and B(p) = 2`−n for each p∈C\C̃. Likewise,
we accept if and only if ∑d∈C\{c}B(d)≥ `, that is, our instance is a YES-instance if and only
if

`≤ (|C \C̃| · (2`−n))+((|C̃|−1)`−2β̂ −1α̂).

14c′ receives all potential points that c′ would gain in subelection (C̃,V ), except for those voters ranking c first and c′

second restricted to candidates in C̃: although c′ is approved by these voters for some extensions, c′’s approval does not
count in c’s worst-case. The reason is as follows. Since c′ can never achieve a higher score than c in these votes for any
extension, we assume that c and c′ are ranked outside an approval position each, behind all candidates in C \ C̃ who all
are potentially approved by these voters. If |C \ C̃| = 2, we obtain full information for these votes in a sense that both
”outside” candidates get an approval score of one in these votes and all candidates in C̃ are supposed to be ranked behind.
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It follows that our decision problem belongs to P as each subcase either directly reduces to
bribery under full information (which is known to be easy due to [119]), can be solved via the
algorithm in the proof of Theorem 3.19 tailored to the TTO model, or we just have to check some
polynomially bounded inequalities. q

Although bribery under full information is easy both for Plurality and 2-Approval, we could ob-
serve that six models of partial information make the complexity jump from P to NP-completeness,
whereas three models preserve the polynomial-time decidability.

By contrast, we know that for k ≥ 3 bribery in k-Approval is NP-complete under full informa-
tion [119]. Consequently, according to Theorem 3.15, necessary bribery is NP-complete under all
nine structures of partial information as well.

Corollary 3.22. k-APPROVAL-X-NECESSARY BRIBERY is NP-complete for each k ≥ 3 and each
X ∈ PIM.

Now let us turn to the Veto rule. Opposed to Plurality, the complexity of bribery under Veto
does not increase for any structure of partial information compared to full information.

Theorem 3.23. VETO-X -NECESSARY BRIBERY is in P for every model X ∈ PIM.

Proof. It suffices to regard the two most general models, FP and PC. Basically, there are three
different kinds of votes v:

1. c is potentially vetoed by v, regardless of whether v potentially vetoes other candidates as
well.

2. Voter v certainly vetoes c j ( j ∈ {1, . . . ,m−1}).

3. Voter v potentially vetoes the pairwise different non-distinguished candidates c j1 , . . . ,c jr (2≤
r ≤ m−1).

We assume that all potential vetoes count for c or, in other words, all voters from the first group
veto c for some extensions. Hence, c has pvetoes(c) vetoes in the original election. Moreover, we
suppose that each c j is only vetoed by voters from the second group. We may argue like this as
we want to make c beat or tie with c j in extensions where all potential vetoes count for c, but only
the definite vetoes for c j are considered. As we wish to ensure this for all c j, we may assume that
voters from the third group do not increase anyone’s veto number. Therefore, we count the number
of definite vetoes for each c j, denoted by vetoes(c j) (1≤ j ≤ m−1).

A rational briber bribes as many voters as possible who potentially veto c. Moreover, every
bribed voter does not veto c after the bribery. Similarly to the proof under full information [79], a
greedy algorithm can be applied: each bribed voter vetoes the non-distinguished candidate with the
currently lowest veto number. We distinguish the following cases.

If `≥ pvetoes(c), we accept because the briber can make c reach zero vetoes for every extension
which is sufficient for c to be a necessary winner in the co-winner model.

For ` < pvetoes(c), the briber bribes arbitrary ` voters potentially giving their veto to c and
makes them veto other candidates after the bribery. Since c has pvetoes(c)− ` vetoes in the final
election, candidate c j requires δ (c j) := max(0,pvetoes(c)− `− vetoes(c j)) additional vetoes from
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the bribed voters in order to not beat c. It remains to check whether ` additional vetoes from bribed
voters (after the bribery) suffice to give δ (c j) new vetoes to each c j. It follows that c is a necessary
winner after the bribery of ` voters if and only if ` ≥ ∑

m−1
j=1 δ (c j) holds. As this condition can be

checked in polynomial time and the preprocessings from above are easy as well, our overall problem
is in P. q

Before considering the complexity of necessary bribery in 2-Veto, we first settle the following
auxiliary result for k-Veto.

Lemma 3.24. Let (δ (c1), . . . ,δ (cm−1))∈Nm−1
0 (one can interpret δ (c j) as the additional number of

vetoes c j still requires from the bribed voters). Then, given k-Veto (k < m), the following condition
holds:

` voters can feasibly assign δ (c j) vetoes to c j (for each j = 1, . . . ,m−1) if and only if it holds

δ (c j)≤ ` (1≤ j ≤ m−1) and
m−1

∑
j=1

δ (c j)≤ k`.

Lemma 3.24 provides us a formalization of the intuitive result that ` bribed voters can greedily
assign at most ` voters to each c j such that their total number of required vetoes does not exceed the
total number of vetoes that ` bribed voters assign, namely k · `. For better readability, we defer the
proof to the Appendix and instead give a short example how these vetoes are greedily assigned.

Example 3.25. Let C = {c,c1, . . . ,c5}, k = 3, and |V | > ` = 4 (where |V | is not specified). The
needs of additional vetoes are as follows:

δ (c1) = 3, δ (c2) = 4, δ (c3) = 3, δ (c4) = 0, δ (c5) = 1.

According to Lemma 3.24, the four voters can distribute the k` = 3 · 4 = 12 vetoes to the five
non-distinguished candidates such that each of them gets at least δ (c j) ≤ 4 vetoes and their total
required number of additional vetoes is at most 12—the total veto number assigned by bribed voters:
it holds δ (c j) ≤ 4 for each j ∈ {1, . . . ,5} and δ (c1)+ . . .+δ (c5) ≤ 12. Let A j (1 ≤ j ≤ 5) denote
the (4× 3)-matrix after j candidates have been assigned their vetoes. In this matrix, air contains
the candidate whom the ith bribed voter ranks on his rth best veto position (note that according to
this, ai3 contains voter i’s candidate ranked last, whereas ai1 represents i’s third to least preferred
alternative). Our algorithm defined in the proof in the Appendix assigns the vetoes as follows:

A1 =


c1 ∗ ∗
c1 ∗ ∗
c1 ∗ ∗
∗ ∗ ∗

 , A2 =


c1 c2 ∗
c1 c2 ∗
c1 c2 ∗
c2 ∗ ∗

 , A3 =


c1 c2 c3
c1 c2 c3
c1 c2 ∗
c2 c3 ∗

 ,

A4 =


c1 c2 c3
c1 c2 c3
c1 c2 ∗
c2 c3 ∗

 , A5 =


c1 c2 c3
c1 c2 c3
c1 c2 c5
c2 c3 ∗

 .

Loosely speaking, our algorithm starts in the leftmost column in the upper left field of the matrix
and moves down as long as possible in the current column. As soon as the present column is entirely
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filled, the algorithm moves to the top of the next column on the right and again moves down as long
as possible. After five iterations, each c j has been assigned to δ (c j) bribed voters, the algorithm
successively fills exactly ∑

m−1
j=1 δ (c j) = 11 entries of the matrix with candidates, not leaving out any

field ”on its way”, and no candidate is vetoed twice or thrice by the same voter. The reason is as
follows. Either a candidate fits in one column of the matrix (such as c1 or c5) or there is a column
break without any overlaps. E.g., the fourth voter gives his first veto to c2 and the first three voters
assign their second veto to c2 each.

In our example, there is one veto not yet assigned—the third veto assigned by the fourth voter.
As voter v4 already vetoes c2 and c3, we set a43 = c1 (w.l.o.g. the lexicographically smallest candi-
date not yet vetoed by voter 4). This leads to the following final veto distribution:

A =


c1 c2 c3
c1 c2 c3
c1 c2 c5
c2 c3 c1

 .

Observe that this algorithm is very intuitive and based on a simple idea. We point out that a
similar procedure might already exist in a very different setting. Just in case, we have provided this
simple and yet non-trivial result.

Our next result states that necessary bribery in 2-Veto is easy for all models in PIM.

Theorem 3.26. 2-VETO-X -NECESSARY BRIBERY is in P for every model X ∈ PIM.

Proof. It suffices to show our result for FP and PC. All other results follow. Regardless of which
model we study, we count all potential vetoes for c and all definite vetoes for each c j. We point out
that this is entirely correct for the FP structure and almost correct for partial orders. For PC, it may
occur that c is possibly but not definitely vetoed by a voter v, and v votes c�v c j for some c j. Then,
in c’s worst-case, c is fixed to position m−1 and c j to position m—regardless of whether c j’s veto
is definite or not. Observe that these extensions hurt c the most as c performs as badly as possible
compared to all candidates ci (i 6= j) and not better than c j, for c and c j get the same score from v
(v can be extended such that c is not vetoed and c j is vetoed, but not the other way round; thus, c j

can never do better than c in v).
In both models, we obtain (at most) the following kinds of votes, specifying the two veto posi-

tions (we have i 6= j, 1≤ i, j ≤ m−1):

(c,c j), (c,∗), (ci,c j), (c j,∗), (∗,∗).

∗ stands for an uncertain veto that surely does not go to c. Now the following three observations
help us for the remainder of the proof. Firstly, a rational briber bribes only voters potentially vetoing
c because this increases the relative gain against each other candidate compared to the latter three
types of votes. Secondly, bribed voters do not veto c after the bribery. Finally, voters of the type
(c,∗) should be bribed rather than voters of the kind (c,c j). Bribing a voter of the second type,
only c loses a veto, whereas bribing the first kind of voters also decreases the veto number of a
non-distinguished candidate.

For our purposes, we let pvetoes(c) =: v0(c)+ v1(c) where v0(c) counts the number of voters
potentially vetoing c and for whom the other vetoed candidate is not uniquely known, while v1(c)
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denotes the number of voters definitely vetoing c j and potentially vetoing c. 15 Our algorithm
distinguishes the following cases:

• ` ≤ v0(c) and ` < pvetoes(c). Then the briber bribes ` arbitrary voters with c being the
only definite veto candidate. As c has pvetoes(c)− ` vetoes after the bribery, the briber
succeeds when he manages to give δ (c j) := max(0,pvetoes(c)− `− vetoes(c j)) vetoes to c j

( j ∈ [m− 1]). δ (c j) is the smallest number of vetoes that c j additionally needs from bribed
voters to not beat c in the final election for any extension. It follows from Lemma 3.24 that
the briber can make c a necessary winner after the bribery by bribing ` voters of the type (c,∗)
if and only if

(
m−1

∑
j=1

δ (c j))≤ 2` ∧ `≥ max
j∈[m−1]

δ (c j)

holds. Then—and only then—2` vetoes from bribed voters after the bribery suffice that each
c j can get at least δ (c j) additional vetoes in order to not beat c in the new election, and that
no candidate requires more than ` vetoes in total.

• ` > v0(c) ∧ ` < pvetoes(c). In this case, the briber bribes all v0(c) voters with c as the only
definite veto candidate and `− v0(c) further voters with two unique veto candidates (and c
among them). Observe that—in order to keep the minimum veto numbers for the c j as high
as possible—the briber should bribe a voter vetoing c and a candidate c j with the currently
highest veto number. After updating the veto numbers in each step and performing `− v0(c)
such bribes, the briber greedily distributes 2` vetoes according to the distribution scheme in
the previous case, that is, at most 2` additional vetoes are given to non-distinguished can-
didates c j and none of them gets more than ` vetoes. It remains to validate whether c is a
necessary winner or not after applying this strategy, by comparing c’s number of potential
vetoes with the numbers of definite vetoes of all other candidates.

• pvetoes(c)≤ `. In this case, the answer to our problem is YES since the briber can take away
all potential vetoes from c and make all these voters veto arbitrary other candidates. Hence,
c has zero vetoes after the bribery for each completion and this is sufficient to be a winner in
the co-winner model.

q

As we could observe in the proofs of Theorem 3.23 and 3.26, our instance is a YES-instance
under the co-winner model whenever the briber can ensure that c has zero potential vetoes after the
bribery. For the unique-winner model, this does not hold anymore as the briber must guarantee one
or more definite vetoes for every c j. Our next result shows that 3-VETO-BRIBERY, that is, bribery

15To avoid confusion, we point out that c’s veto may actually be uncertain, but unsure vetoes are regarded as definite
vetoes in the worst case of c. Also remind that—under partial orders—both the vetoes for c and c j may be unsure and
the voter prefers c to c j, but both candidates are fixed on the two veto positions in c’s worst-case. Hence, the word
”definitely” refers to our election after implementing our preconsiderations from above.
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under full information, is hard under the unique-winner model even though no voter vetoes c in the
initial election. 16 In fact, the briber bribes only voters not vetoing c.

Theorem 3.27. 3-VETO-BRIBERY is NP-complete under the unique-winner model.

Proof. We are given a 3DM instance (X ,Y,Z,E), with |X | = |Y | = |Z| = n and triples E =
{e1, . . . ,em} ⊆ X×Y ×Z. Moreover, we let m≥ n because otherwise a three-dimensional matching
is impossible. Based on this 3DM instance, we construct the following 3-VETO-BRIBERY instance.

Let C = {c}
·
∪ X

·
∪ Y

·
∪ Z

·
∪ F , with F = { f1, . . . , f3m−3n}, be the set of candidates including

3m+1 candidates and c the designated candidate. We further let V be the set of voters containing
m voters vi, 1≤ i≤ m, where each vi vetoes exactly the candidates (xi,yi,zi) according to the triple
ei ∈ E (with xi ∈ X , yi ∈ Y , and zi ∈ Z for each i, 1 ≤ i ≤ m). Let the bribery limit be ` = m− n.
Finally, l(a) denotes the number of triples in E containing a ∈ X ∪Y ∪Z.

Note that vetoes(c) = 0, vetoes( f j) = 0, for each j with 1≤ j ≤ 3m−3n, and vetoes(a) = l(a)
for each a ∈ X ∪Y ∪Z.

We claim that there is a three-dimensional matching of size n if and only if c can be made the
unique 3-Veto winner of the election by bribing at most m−n voters.

(⇒): Assume there is a three-dimensional matching of size n. Let the briber bribe the m− n
voters not corresponding to the matching and veto in each vote three different candidates from F .

After the bribery, we obtain the following veto numbers: vetoes(C,V̄ )(c) = 0 and vetoes(C,V̄ )(d) =
1 for each d ∈C \{c}; thus, c is the unique 3-Veto winner of the resulting election.

(⇐): Assume that we can make c the unique 3-Veto winner of the election by changing at most
m−n votes. This implies that 3m−3n candidates in F must receive a veto in the bribed votes and
this is only possible if each bribed voter vetoes three different candidates in F such that none of
them is vetoed at least twice and all candidates in F are vetoed exactly once. On the other hand, the
remaining n voters must veto at least once each candidate in X , Y , and Z; otherwise, there would
be a candidate other than c with zero vetoes, hence tying with c for first place. Since there are 3n
candidates in the sets X , Y , and Z and n voters can veto exactly 3n candidates, the candidate triples
vetoed by these n voters have to correspond to a three-dimensional matching. q

Theorem 3.27 and Theorem 3.15 imply that necessary bribery in 3-Veto is hard for all nine
models in PIM under the unique-winner model.

Corollary 3.28. 3-VETO-X -NECESSARY BRIBERY is NP-complete for every model X ∈ PIM un-
der the unique-winner model.

Our next theorem states that bribery in 3-Veto is easy for all models in PIM under the co-winner
model.

Theorem 3.29. Under the co-winner model, 3-VETO-X -NECESSARY BRIBERY is in P for all par-
tial information models in PIM.

Proof. We prove our theorem only for X ∈ {FP,PC}. All other models inherit the polynomial
time upper bound from one of these two models. In both models, we count all pvetoes(C,V )(c)

16This proof (more precisely, the same proof but reducing from R3DM) was submitted to IJCAI 2018 in the context of
lot-based voting. The result itself was also presented at my talk at the Doctoral Consortium (ADT 2017 in Luxembourg).
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potential vetoes for c, whereas we consider only definite vetoes for the c j. Under the PC model, this
is barely correct as voters possibly but not definitely vetoing c, and preferring c to c j, first must be
rewritten by fixing c on a veto position and c j behind c. Note that there may be up to two different
candidates other than c who are fixed on a veto position according to this, regardless of whether or
not their vetoes are uncertain in the original election.

After applying this preprocessing for each vote, we calculate pvetoes(C,V )(c) and vetoes(C,V )(c j)
(1≤ j ≤m−1) in both models. We partition V into voters in V¬c definitely not vetoing c and voter
group V c each of whom potentially vetoes c. In contrast to the standard model of full information,
the following kinds of votes may occur, with the vetoed candidates being specified (we let 1 ≤
h, i, j ≤ m−1, and |{h, i, j}|= 3):

(ch,ci,c j), (ch,ci,∗), (ch,∗,∗), (∗,∗,∗),

(c,ch,ci), (c,ch,∗), (c,∗,∗).

∗ denotes a veto position for which the vetoed candidate is not uniquely known (those vetoes
surely do not go to c as all potential vetoes count for c). The upper row contains only voters from
V¬c, each voter according to the lower line belongs to V c.

First regard the case |V c| = pvetoes(C,V )(c) ≤ `. We accept because the briber reaches that
c has no potential veto at all in the final election, no matter how the votes are completed. The
briber achieves this just via bribing all voters in V c and making all of them veto three arbitrary
non-distinguished candidates.

It remains to argue for ` < |V c|. After the bribery, c has pvetoes(C,V )(c)−` > 0 potential vetoes.
To solve our problem, we define the following generalized b-edge cover problem.

We are given an undirected multigraph G = (V ,E ) with vertexes V := (C \ {c})
·
∪ {b,∗,∗∗}

and edges E defined as follows.

• Each voter vetoing c, ci, and c j yields an edge between ci and c j (1≤ i < j ≤ m−1).

• For each voter vetoing c and c j ( j ∈ [m− 1]) and for whom the third vetoed candidate is
unknown, there is an edge between c j and ∗.

• For each voter vetoing c and for whom the other two vetoed candidates are not uniquely
determined, there is an edge between ∗ and ∗∗.

• For each j ∈ [m−1], there are ` edges between b and c j.

The lower capacities are bl(c j) = max(0,pvetoes(C,V )(c)−`−vetoes(C,V¬c)(c j)) for j ∈ [m−1],
bl(∗) = bl(∗∗) = 0, and bl(b) = 3`. Moreover, we have bu(b) = 3`. All remaining upper capacities
are unlimited. Note that each unbribed voter in V c corresponds to one edge, whereas each bribed
voter yields three edges incident to b. The fixed capacity of b ensures that b is covered exactly 3`
times, that is, bribed voters assign 3` vetoes to non-distinguished candidates and at most ` vetoes to
each c j.

We claim that the briber can make c a necessary winner by bribing (w.l.o.g.) exactly ` voters if
and only if there is a minimum edge cover with at most |V c|+2`= pvetoes(C,V )(c)+2` edges.
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(⇒): Assume that a successful bribery exists. Then every c j has at least pvetoes(C,V )(c)− `
vetoes in the final election (C,V̄ ). Let α(c j) be the number of voters in V c who are not changed
by the briber and who veto c j. Let further β (c j) be the number of bribed voters vetoing c j af-
ter the bribery. Since c is a necessary winner in the final election, it holds vetoes(C,V̄ )(c j) =
vetoes(C,V¬c)(c j) + α(c j) + β (c j) ≥ pvetoes(C,V̄ )(c) = pvetoes(C,V )(c)− `. We construct the fol-
lowing edge cover satisfying our desired properties:

• Each voter in V c vetoing c, c j, and ci (c, c j, and the third veto candidate is not uniquely
known) and not being bribed yields an edge {ci,c j} (an edge {c j,∗}) in the cover. If the voter
potentially vetoes c and no non-distinguished candidate is definitely vetoed, we add an edge
{∗,∗∗} to the cover.

• For each bribed voter v, there are three edges {b,cv
1}, {b,cv

2}, and {b,cv
3} in the cover (where

cv
h, 1≤ h≤ 3, are the three pairwise different non-distinguished candidates vetoed by v after

the bribery).

Observe that there are pvetoes(C,V )(c)− ` edges according to the first edge group and exactly 3`
edges corresponding to the second voter group in the cover. Our constructed edge cover includes a
total of pvetoes(C,V )(c)+2` edges and we have ι(c j) := α(c j)+β (c j)≥ bl(c j) due to our assump-
tion that c j has at least as many vetoes as c in the final election, where ι(c j) is defined as the number
of edges incident to c j in the cover. Since exactly 3` edges are incident to b and since the capacity
constraints for ∗ and ∗∗ are trivially satisfied, the first direction follows.

(⇐): Now suppose that an edge cover defined as above exists. Again, let ι(x) be the number of
edges incident to vertex x in this cover. Observe that ι(b) = 3` and ι(c j) ≥ bl(c j) (1 ≤ j ≤ m−1)
according to the cover. The capacity restrictions of ∗ and ∗∗ are trivially satisfied. Moreover,
the cardinality of the matching is pvetoes(C,V )(c) + 2`, where 3` edges are incident to b due to
the capacity constraints of b. We define the following YES instance of 3-VETO-X -NECESSARY

BRIBERY (X ∈ {FP,PC}):

• Each voter in V¬c remains unchanged.

• According to the capacity of the cover, there are exactly pvetoes(C,V )(c)− ` edges {ci,c j},
{ci,∗}, or {∗,∗∗} in the cover (where 1 ≤ i, j ≤ m− 1, i 6= j). The briber leaves all these
voters in V c unchanged and bribes the other ` voters potentially vetoing c.

• Exactly β (c j) bribed voters veto c j after the bribery (1 ≤ j ≤ m− 1), where β (c j) denotes
the number of edges {b,c j} in the cover. Since it holds β (c j) ≤ ` for each c j and β (c1)+
. . .+β (cm−1) = 3`, Lemma 3.24 implies that the ` bribed voters can feasibly assign these 3`
vetoes to non-distinguished candidates without any c j being vetoed at least twice by the same
voter.

It follows that c is a necessary winner in the final election: We have pvetoes(C,V̄ )(c) =
pvetoes(C,V )(c)− ` voters potentially vetoing c after the bribery. Note that each c j with bl(c j) = 0
does not beat c as enough voters in V¬c definitely veto c j and therefore c j does not require any
additional vetoes from voters in V c, regardless of whether these voters are bribed or not. Now
consider candidates with bl(c j) > 0. Since the edge cover is feasible, it holds vetoes(C,V̄ )(c j) =
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vetoes(C,V¬c)(c j)+ ι(c j)≥ vetoes(C,V¬c)(c j)+bl(c j) = vetoes(C,V¬c)(c j)+max(0,pvetoes(C,V )(c)−
`− vetoes(C,V¬c)(c j)) = pvetoes(C,V )(c)− `= pvetoes(C,V̄ )(c). Consequently, c beats or ties with c j

in the final election for every extension, and since this holds for each c j, the distinguished candidate
c is a necessary winner after the bribery of ` voters.

As computing a minimum generalized b-edge cover is in P and we can reduce our bribery
problem to edge cover in polynomial time, our original problem is in P. q

Note that we used a construction and idea similar to the proof under full information. 17

Last but not least, bribery in k-Veto is NP-complete for k ≥ 4.

Corollary 3.30. k-VETO-X -NECESSARY BRIBERY is NP-complete for every k ≥ 4 and each X ∈
PIM.

This finding immediately follows Theorem 3.15 and from the fact that bribery under full infor-
mation is hard [119].

3.6 Possible Bribery

In this section, our focus lies on the possible bribery problem which is a hybridization of standard
bribery and possible winner (for the results, we refer to our work in [69]). The formal definition is
as follows.

F -X -POSSIBLE BRIBERY

Given: An election (C,V ) with m candidates in candidate set C, n voters in voter set V according to
X ∈ PIM, a designated candidate c ∈C, and a nonnegative integer `.

Question: Is it possible to change up to ` votes such that c is a winner of the election under F for at
least one completion of the votes in V ?

Possible bribery can be regarded as the optimistic variant of bribery under incomplete informa-
tion. The question is whether there is a chance at all that the briber makes c a winner of the election
via altering a given number of votes. If an instance of possible bribery leads to the output YES,
this does not say anything about the quality of the designated candidate as this candidate might be a
winner for almost all completions as well as for only one extension. Following this, possible bribery
can be seen as some kind of minimum criterion for bribery under partial information.

Secondly, when we consider partial information as indecisiveness of voters, possible bribery can
be regarded as a problem where the briber entirely convinces some (bribed) voters of his own ideas,
and persuades the other voters (not bribed) to decide on one possible ranking (that is, completion of
their partial vote), cf. also the arguing in [117, 146].

Possible bribery appears to be attractive to study from the theoretical point of view. Remind that
possible winner under partial orders is only easy for Plurality and Veto, but hard for k-Approval

17We point out that Lin [119, 120] claimed that 3-VETO-BRIBERY is easy under full information for the co-winner
model, but he did not provide any proof. As this proof had not been published, Lin’s phd supervisor Edith Hemaspaandra
sent a proof sketch to Gábor Erdélyi at the end of September 2015 while we were preparing our AAMAS paper [30].
However, their proof used a traditional b-edge cover approach, whereas we showed our result by means of generalized
b-edge cover. Moreover, our proof is tailored to partial information, while Lin’s proof is specific to full information.
Nevertheless, our proof is strongly based on Lin’s proof idea.
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and k-Veto, for each k > 1 [21, 167]. Hence, our intuition initially was that similar, very general
structures of partial information lead to hardness results, too, and we hoped for possible bribery to
become hard for Plurality and/or Veto under partial orders. To put it another way, we study whether
there are some problems for which both possible winner for the corresponding partial model and
standard bribery are easy, but their combination is hard. For the necessary winner version of bribery,
we have found many such problems, e.g., necessary bribery in Plurality for six models, among them
Gaps and PC (cf. Section 3.5).

In the remainder of this section, we provide complexity results for the constructive variant of
the possible bribery problem. The results are summarized in Table 3.6. We start with a theorem,
pinpointing the connections between the possible bribery problem and the possible winner and
standard bribery problems. (In each proof throughout this section, unless stated otherwise, our
input is given as in the previous section about necessary bribery.)

Theorem 3.31. F -X -POSSIBLE WINNER and F -FI-BRIBERY many-one reduce to F -X -
POSSIBLE BRIBERY.

Proof. Let X ∈ PIM. Observe that for ` = 0, our problem is equivalent to F -X -POSSIBLE-
WINNER. For X = FI (each vote is complete), possible bribery and standard bribery coincide. q

According to Theorem 3.31, we can immediately disclose some hardness results without any
further considerations.

Voting rule FI Gaps FP TOS PC CEV 1TOS 1Gap TTO BTO
Plurality P P P P P P P P P P
2-Approval P P P NPC P P P P P
k-Approval (k ≥ 3) NPC NPC NPC NPC NPC NPC NPC NPC NPC NPC
Veto P P P P P P P P P P
2-Veto P P P NPC P P P P P
3-Veto P P P NPC NPC P P P P
k-Veto (k ≥ 4) NPC NPC NPC NPC NPC NPC NPC NPC NPC NPC

Table 3.6: Summary of results for the possible bribery problem under the co-winner model. Key:
P means ”polynomial-time decidable”, NPC stands for ”NP-complete”. Column FI displays the
results for bribery under full information following from [79] for Plurality and Veto and from [119]
for k-Approval and k-Veto (k ≥ 2). Results in italic are hardness results that follow from already
existing hardness results for bribery under full information or the possible winner problem. We ex-
ploit that the possible winner problem under partial orders is hard for 2-Approval [167], 2-Veto [21],
and 3-Veto [21]. Moreover, 3-VETO-TOS-POSSIBLE WINNER is hard according to Theorem 3.13.
Results in boldface are new.

Our first complexity result states that possible bribery in Plurality is easy for all nine models in
PIM. Membership in P is shown via computing a maximum integral flow.

Theorem 3.32. PLURALITY-X -POSSIBLE BRIBERY is in P for every model X ∈ PIM.

Proof. It suffices to regard PC and FP. The other structures of partial information are special cases
of PC or FP, thus membership in P immediately follows for them. The proofs are identical for both
models apart from the preprocessing. For FP, we assume that all voters approve of c who (1) rank
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c first or (2) do not assign a fixed position to c and the first position is open. In all other votes,
one or more non-distinguished candidates are potentially approved. Likewise, given partial orders,
we assume that all those voters rank c first who do not definitely prefer any c j over c. In all other
votes v, the potential scorers are those candidates c j for whom there exists no other candidate that v
definitely prefers over c j.

In a nutshell, for both models a voter either favors c (at least for some extension), definitely
ranks some c j first, or prefers one out of several distinct c j1 , . . . ,c jr , with 1≤ j1 < .. . < jr ≤ m−1
and r ∈ {2, . . . ,m− 1}. We count all potential points for c, including both definite and uncertain
approvals. In case there is an extension for which c is a winner, there is necessarily an extension
with c being a winner gaining as many points as possible, according to the partial information given.
This is a mere consequence of the weak monotonicity property holding for the Plurality rule.

First of all, if pscore(c)+ ` ≥ n
2 , we accept because in some extensions the briber can ensure

that at least half of all voters give a point to c. Since no other candidate can achieve more points for
such completions, c is a possible winner.

For pscore(c)+ ` < n
2 , we aim at finding n− pscore(c)− ` voters definitely not ranking c first

and complete them in a way that each c j has at most pscore(c)+ ` points—the best-case score of
the c after the bribery. To do so, we define the following flow maximization problem. (For our
purposes, we assume that w.l.o.g. exactly the voters v1, . . . ,vn−pscore(c) definitely disapprove of c.
All remaining voters potentially have c as their top preference and are thus assumed to vote for c.)

Our flow network is defined by its source x, sink y, its vertices v1, . . . ,vn−pscore(c) and
c1, . . . ,cm−1, and the following edges:

• There is an edge from x to vi with capacity one (i = 1, . . . ,n−pscore(c)).

• There is an edge between vi and c j with capacity one if and only if c j is potentially ranked
first by vi (i = 1, . . . ,n−pscore(c), j = 1, . . . ,m−1).

• There is an edge going from c j to y with capacity pscore(c)+ ` ( j = 1, . . . ,m−1).

The first two edge groups guarantee that every voter not voting for c votes for one c j. In contrast,
the third group of edges ensure that—if possible—no candidate may reach a higher score than c for
an extension with c being a winner.

We claim that the briber can make c a possible winner by bribing ` voters if and only if there is
a maximum integral flow with value of at least n−pscore(c)− `.

(⇒): Suppose that there is a successful bribery. This implies that we can find n−pscore(c)− `
voters who are (1) left unchanged by the briber and (2) certainly disapprove of c, complete these
votes and every c j has at most as many points as c after the bribery for this extension, that is, a
score of pscore(c)+ `. According to these aspects, we construct a flow F as follows. If voter vi

(i ∈ [n−pscore(c)]) remains unchanged and approves of c j for the extension with c as a winner, set
F((x,vi)) = F((vi,c j)) = 1. Since there are n−pscore(c)−` such voters, a flow with this size starts
from the source x. Set F((c j,y)) = ∑

n−pscore(c)
i=1 F((vi,c j)), that is, F((c j,y)) is equal to the number

of voters approving of c j in our given extension with c being a winner. As c is a winner, we have
F((c j,y))≤ pscore(c)+ `= cap((c j,y)) for each j ∈ [m−1].

Observe that all other capacity constraints are met, too. We have F((x,vi)),F((vi,c j)) ∈ {0,1}
for each i ∈ [n− pscore(c)] and j ∈ [m− 1]. Hence, our flow F is feasible, integral, and has value
n−pscore(c)− `.
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(⇐): Now suppose that an integral flow with a value of at least n− pscore(c)− ` exists. We
define the following YES instance of possible bribery:

• Select n−pscore(c)− ` voters vi according to edges with F((x,vi)) = 1.

• The remaining ` voters are bribed and approve of c after the bribery.

• W.l.o.g., the first n− pscore(c)− ` voters vi with F((x,vi)) = 1 remain unchanged in our
constructed extension (i.e., the voters with smallest index i ∈ {1, . . . ,n− pscore(c)}; this is
only relevant when the maximum flow is larger than n− pscore(c)− `). For these voters vi,
it holds F((vi,c j)) = 1 for one non-distinguished candidate c j, due to the flow conservation
conditions. Hence, voter vi approves of c j in our given extension according to the flow.

• As the flow is feasible, we have ∑
n−pscore(c)
i=1 F((vi,c j)) = F((c j,y)) ≤ cap((c j,y)) =

pscore(c) + ` for each j ∈ [m− 1], that is, every c j has no more points than c in the final
election.

Since we may consider approvals for non-distinguished candidates in n− pscore(c)− ` vot-
ers definitely not supporting c and all c j have pscore(c) + ` or fewer points, c is a winner with
pscore(c)+ ` points for our constructed extension.

Because computing a maximum integral flow and transforming our initial problem to flow max-
imization are easy, our overall problem is in P. q

As we could observe, the bribery problem combined with possible winner is easy for all nine
models in PIM. Verify that this proof generalizes the proof of PLURALITY-PC-POSSIBLE WINNER

in [21] in a sense that for `= 0 both proofs more or less coincide. Figure 3.3 provides an example
with n = 5, pscore(c) = ` = 1, and m = 4. Voter v1 definitely favors c1, v2 potentially ranks c1
and c2 on top, v3 certainly likes c2 most, v4 potentially approves of c2 and c3, while v5 potentially
prefers c (we fix this approval, no matter whether this approval is definite or unsure). Each edge in
the flow network is labeled with two numbers. The left number represents the number of flow units
flowing through the network, the right number corresponds to the capacity of the edge. The flow of
size n−pscore(c)− `= 3 and its corresponding edges are marked red. Notice that the briber bribes
the voter v3 and makes him approve of c. In our constructed extension associated with the flow F ,
voter v1 favors c1, whereas v2 and v4 vote for c2.

For 2-Approval, our problem becomes hard under partial orders.

Corollary 3.33. 2-APPROVAL-PC-POSSIBLE BRIBERY is NP-complete.

Proof. Hardness follows from Theorem 3.31 and the fact that 2-APPROVAL-PC-POSSIBLE WIN-
NER is NP-complete [167]. q

Opposed to our initial expectation, other very general partial information models do not yield
hard possible bribery/winner problems. In fact, according to the next two theorems, possible bribery
in 2-Approval is easy for seven out of nine structures. In contrast to bribery under full information
(cf. [119]), the proofs for possible bribery do not work with b-edge cover, but with generalized b-
edge matching (with upper and lower capacity restrictions both for edges and vertices) and require
more elaborate constructions.
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Figure 3.3: Example of the flow algorithm in the proof of PLURALITY-X -POSSIBLE BRIBERY.

Theorem 3.34. 2-APPROVAL-1TOS-POSSIBLE BRIBERY is in P.

Proof. Let C̃ ⊆ C denote the candidate set totally ordered by each voter. Our algorithm checks
the following cases:

• |C̃| ≤ 2 or c ∈C \ C̃. Then there are extensions such that c is approved of by every voter. If
c ∈ C \ C̃, there are completions where each voter ranks c first. In case c ∈ C̃ and |C̃| ≤ 2,
there are extensions for which all candidates in C \ C̃ are ranked behind the candidates in C̃
including c. We accept in both cases.

• C̃ =C. In this case, we have full information for which the P result follows from [119].

• c ∈ C̃ and C \ C̃ = {p}. In this case, we have pscore(c) = score(C̃,V )(c). In other words,
we account for all potential approvals for c. Each other candidate c′ ∈ C̃ has at least s1(c′)
approvals and at most s1(c′) + s2(c′), where st(c′) (t = 1,2) denotes the number of voters
ranking c′ on position t when we restrict ourselves to candidates in C̃. Note that in each vote
p is potentially, but never definitely approved of. We assume that voters regarding c as their
second best choice in C̃ actually disapprove of p because otherwise c would be disapproved
by these voters.

First of all, if pscore(c) + ` ≥ n, we accept as the briber can ensure a full approval score
for c in at least one extension. Thus, let pscore(c) + ` < n. We transform our initial
problem to a generalized b-edge matching problem defined below. For practical reasons,
let v1, . . . ,vpscore(c) be the voters ranking c among the first two positions in (C̃,V ) and
vpscore(c)+1, . . . ,vn denote the voters definitely disapproving of c. Our matching problem
is defined as follows. We are given an undirected multigraph G = (V ,E ) with vertices
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V = (C \ {c})
·
∪ {v1, . . . ,vpscore(c)}

·
∪ K

·
∪ {b}, where K is a set of auxiliary vertices. In

other words, every non-distinguished candidate and all voters potentially approving of c yield
a vertex in the graph each. We further create a vertex b representing the ` approvals that bribed
voters assign to non-distinguished candidates after the bribery; remind that each bribed voter
approves of c and another candidate. Last but not least, each voter vi disapproving of c yields
two vertices kvi

1 and kvi
2 in K (i ∈ {pscore(c)+1, . . . ,n}). The edges are defined as follows:

– For each voter vi (1≤ i≤ pscore(c)) favoring c over all other candidates in C̃ and con-
sidering c′ as their second best choice within C̃, there are two edges {vi,c′} and {vi, p}.
If vi ranks c′ and c first and second restricted to C̃, respectively, there is an edge {vi,c′}
(and no edge {vi, p} since p must not be approved by these voters in order that c’s
approval is accounted for).

– For each d ∈C \{c}, there are ` edges connecting d with b. 18

– Each voter vi (pscore(c)+ 1 ≤ i ≤ n)—that is, vi surely disapproves of c—yields four
edges {c′,kvi

1 }, {k
vi
1 ,k

vi
2 }, {k

vi
2 ,c
′′}, and {kvi

2 , p}, where c′ and c′′ are voter vi’s most and
second most preferred alternatives in C̃, respectively.

The capacities are as follows: bl(vi) = bu(vi) = 1 (1≤ i≤ pscore(c)), bu(d) = pscore(c)+ `
(d ∈C \{c}), bl(b) = bu(b) = `, and bl(k

vi
h ) = bu(k

vi
h ) = 1 (pscore(c)+1 ≤ i ≤ n, h = 1,2).

All lower capacities not listed here are meant to be equal to zero.

Henceforth, we will refer to the latter group of edges, incident to some vertex in K, as Con-
struction I.

The capacity restrictions for the vertexes vi (i ≤ pscore(c)) are to ensure that each of these
voters approves of one other candidate in a given extension. The capacities bu(d) must be
satisfied since otherwise some d beats c in our extension. Finally, b has the function to
represent ` approvals that bribed voters assign to candidates other than c after the bribery.

We claim that the briber can make c a possible winner by bribing (w.l.o.g. exactly) ` voters if
and only if the graph yields a matching with at least 2n−pscore(c) edges.

(⇒): Suppose that the briber can make c a possible winner by bribing ` voters. Then c has
a potential score of pscore(c)+ ` and we can extend the votes not changed such that each
other candidate d has no more points than c. In the following, we define a collection of
edges according to our extension with c being a winner and argue at the end that this edge
collection corresponds to a matching with the desired properties. First of all, we point out
the following aspects. Each candidate d 6= c receives (1) τ(d) approvals from the voters vi

(1≤ i≤ pscore(c)) who approve of c as well (and who are not bribed by a rational briber), (2)
γ(d) approvals from the voters vi (i > pscore(c)) left unchanged, and (3) β (d) approvals from
bribed voters after the bribery. Observe that the previous aspect suggests that V is partitioned
into the following three voter groups: (1) voters approving of c before and after the bribery,

18Lin [119] defined similar edges in his proof for bribery in 3-Veto under full information (as already mentioned, this
proof has never been published). Independently from Lin, we defined analogous edges (in form of capacitated edges) in
our flow maximization algorithm in the proof of Theorem 3.40. This latter proof had been finished around one month
earlier before we learned about Lin’s proof in form of a private communication of Edith Hemaspaandra with Gábor Erdéyi
at the end of September 2015.
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Figure 3.4: Example of a voter vi (pscore(c) < i ≤ n) according to Construction I. vi ranks c′ first
and c′′ second restricted to the candidates in C̃, where c′ 6= c 6= c′′ holds. The lower and upper
capacities of a vertex in K, separated by a ”|”, are written above the vertex. The red edges in both
graphs display two possibilities of which edges can belong to a matching according to vote vi. Note
that in the left graph the edge {kvi

2 , p} could be in the matching instead of the edge {kvi
2 ,c
′′}.

(2) voters disapproving of c before and after the bribery, and (3) voters disapproving of c
before and approving of c after the bribery. Notice that there are pscore(c) voters in the first
group, n−pscore(c)− ` voters in the second group, and ` voters in the third group.

With these preconsiderations in mind, we define the following edge collection for our graph:

– Each voter vi (1≤ i≤ pscore(c)) in the first group yields one edge {vi,c′} or {vi, p} in
our edge selection—depending on whether vi approves of both c and c′ or both c and p.
Our matching construction ensures that p is never approved whenever posC̃(c,vi) = 2,
as this would exclude the approval for c. Note that there is a total of pscore(c) edges
according to the first group.

– Each voter vi (pscore(c)< i≤ n) in the second group yields the two edges {c′,kvi
1 } and

either {kvi
2 , p} or {kvi

2 ,c
′′}—according as vi approves of both c′ and p or both c′ and c′′.

– Each voter vi (pscore(c)< i≤ n) in the third group yields two edges {kvi
1 ,k

vi
2 } and {b,d},

where vi approves of d 6= c and c after the bribery. (Notice that the approvals for non-
distinguished candidates before the bribery do not matter and hence the edge {kvi

1 ,k
vi
2 }

is in the matching.

According to our bribery instance, each voter in the first group corresponds to one edge and
all other voters correspond to two edges each in our collection. Hence, we obtain exactly
pscore(c)+2(n−pscore(c)−`)+2`= 2n−pscore(c) edges. Observe further that all capac-
ity constraints hold. Each voter vi (1 ≤ i ≤ pscore(c)) satisfies ι(vi) := bl(vi) = bu(vi) = 1
(where ι(x) is defined as the number of edges incident to vertex x ∈ V in our edge se-
lection) as exactly one candidate is approved aside from c. Moreover, since ` voters are
bribed and since bribed voters assign ` approvals to non-distinguished candidates, we have
ι(b) = ∑d∈C\{c}β (d) = `. Notice that ι(d) = τ(d)+ γ(d)+β (d)≤ bu(d) for each candidate
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d other than c (since d does not achieve a higher score than c). As the capacity constraints
for the kvi

h (h = 1,2, pscore(c)+ 1 ≤ i ≤ n) are met as well, our edge selection is a feasible
matching and we are done.

(⇐): Assume that our matching instance is a YES instance. We show that the briber can make
c a winner for at least one completion by bribing ` voters. Given a matching, we construct
the following possible bribery instance:

– Each voter vi (1 ≤ i ≤ pscore(c)) either approves of c and one of the candidates p and
c′ ∈ C̃ \{c}, depending on whether the edge {vi, p} or {vi,c′} is in the matching.

– For w.l.o.g. the first 19 n− pscore(c)− ` voters for whom the edge {c′,kvi
1 } and one of

the edges {kvi
2 ,c
′′} and {kvi

2 , p} (pscore(c)+1 ≤ i ≤ n) are in the matching, we assume
that voter vi approves of c′ and either c′′ or p, depending on whether the edge {kvi

2 ,c
′′}

or {kvi
2 , p} is in the matching.

– Whensoever the edge {kvi
1 ,k

vi
2 } is in the matching, voter vi is bribed.

– Note that there are `1 ≤ ` voters with edge {kvi
1 ,k

vi
2 } in the matching (otherwise, the

cardinality of this matching would be too small). We assume that the remaining `− `1
voters with two edges ({c′,kvi

1 } and either {kvi
2 ,c
′′} or {kvi

2 , p}) 20 in the matching are
bribed as well. Since there are exactly ` edges incident to b in the matching, we let
exactly β (d) bribed voters approve of c and d after the bribery (where d ∈C \{c} and
β (d) denotes the number of edges {b,d} in the matching).

Observe that our matching yields pscore(c) voters approving of c before the bribery, ` bribed
voters (approving of c and one other candidate each), and n−pscore(c)−` unchanged voters
that disapprove of c before and after the bribery. As each candidate vertex d meets its upper
capacity pscore(c)+ `, it follows that c has the highest score among all candidates for our
constructed completion of the resulting election and is hence a possible winner.

• c ∈ C̃, 2 ≤ |C \ C̃| ≤ m− 3. In this case, there are at least two ”outside” candidates and at
least three candidates in C̃ (such that c does not necessarily have a full potential score in the
best case). Generally, both first and second positions in subelection (C̃,V ) do not count in
some votes (i.e., two candidates in C \ C̃ may be actually approved by a voter for a given
extension), we nevertheless assume that all potential points count for c. Again we suppose
that pscore(c)+` < n as otherwise the briber can make c reach a full approval score for some
extension and we trivially accept then.

We point out that the ”outside” candidates (let us denote them with p j, 1 ≤ j ≤ r, where
C \ C̃ = {p1, . . . , pr}) may be regarded as a coalition of candidates who must not get more

19Note that the maximum matching may yield more than n−pscore(c)− ` voters vi (pscore(c)< i≤ n) for whom two
edges are in the matching. As we require only n− pscore(c)− ` voters disapproving of c before and after the bribery
(and the remaining ones are bribed), we may restrict ourselves to the first n− pscore(c)− ` of these voters one-to-one
corresponding to two edges incident to a vertex in K in the matching. These are w.l.o.g. the voters with the smallest index
i. Observe that under this restriction all upper capacities bu(d) (with d ∈C \{c}) remain satisfied since we even consider
fewer approvals for non-distinguished candidates then.

20that is, the voters vi with largest index i and different from the n− pscore(c)− ` voters vi (i > pscore(c)) left un-
changed.
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than |C\C̃| ·(pscore(c)+`) approvals in total. (In case the candidates in C\C̃ receive exactly
|C \ C̃| · (pscore(c)+ `) approvals after the bribery for a given extension, it is possible that
these approvals are distributed in a way that each p ∈C\C̃ has the same approval score as c.)

We start our analysis by guessing a pair (α1,α2) and check if c can be made a possible
winner with ` voters being bribed for a given completion, at most α2 of the unbribed voters
approve of two p j and at most α1 voters in total approve of one p j and one candidate in C̃
(possibly equal to c). Note that we may focus on all guesses with α1,α2 ∈N0 and 2α2+α1 =
|C \C̃| · (pscore(c)+ `) and α2 ≤ n−pscore(c)− `. 21 All other cases, where the p j may get
more or fewer points in total, are not worth studying. Either the p j might get too many points
altogether and thus one among them necessarily beats c or the candidates in C̃ \{c} get more
points altogether (in case the p j get fewer than |C \C̃| · (pscore(c)+ `) points in total).

To show membership in P, we borrow the matching algorithm from the previous case and
adjust it as follows.

– Instead of p, there is a vertex ∗ with capacities bl(∗) = 0 and bu(∗) = α1. Vertex ∗ shall
ensure that at most α1 voters in the final election approve of exactly one p j. These voters
may approve of c as well, before and/or after the bribery. Note that voters approving
of two p j can only be found among those voters disapproving of c before and after the
bribery.

– In place of edges incident to p, there are analogous edges incident to ∗.
– Again, voters ranking c first among the candidates in C̃ yield one of the edges {vi,c′} or
{vi,∗} (c′ ∈ C̃ \{c}, 1≤ i≤ pscore(c)) in the matching.

– The voters according to Construction I correspond to the same edges as before on the
whole, with one slight adjustment: voters vi (i > pscore(c)) remaining in the election
and approving of two p j correspond to only one edge {kvi

1 ,k
vi
2 }. In contrast, ` bribed

voters vi correspond to an edge {kvi
1 ,k

vi
2 } (with i > pscore(c)) and an edge {b,c′} (with

c′ ∈ C̃ \{c}) or {b,∗} in the matching, all other voters again yield the edge {c′,kvi
1 } and

one of the edges {kvi
2 ,c
′′} and {kvi

2 ,∗}, for c′,c′′ ∈ C̃ \{c}.

Similarly to the case C\C̃ = {p}, the briber can make c a possible winner by bribing ` voters
if and only if there is a feasible guess (α1,α2), defined as above for which a matching exists
with 2n− pscore(c)−α2 edges. Note that, to a certain extent, the α2 votes—with two p j

being approved (instead of one or two candidates in C̃ \ {c})—can be considered as further
”bribes” in order to decrease the scores of candidates in C̃ \ {c}. The only difference is that
they do not increase the score of c and two candidates from C \C̃ are actually approved.

As computing a maximum matching is easy and there are only polynomially many guesses
(α1,α2) to check in the latter subcase, our problem is in P. q

The approach with Construction I helped us handling the interdependencies characteristic of
the 1TOS structure. The algorithm in the proof of Theorem 3.34 automatically guarantees that in

21The only voters that may approve of two candidates in C\C̃ are voters not approving of c, before or after the bribery.
There are at most n−pscore(c)− ` such voters.
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case a voter’s second best choice in C̃ is approved in a given extension, his favorite C̃ candidate is
approved, too. Note that setting ` = 0 yields an alternative proof of possible winner under 1TOS
which has been proven by means of an entirely different approach in [33]. In their proof, however,
c is meant to be a candidate in C̃. The 1TOS model, by contrast, allows c to be a new candidate, i.e.,
c /∈ C̃. Yet their model is no real restriction—as the authors themselves point out in [33]—since the
case c /∈ C̃ directly implies that our instance is a YES instance.

Example 3.35 displays some numerical examples of the matching algorithm in the proof of
Theorem 3.34.

Example 3.35.

(a) Let (C,V ) be an election with candidate set C = {c,c′,c′′, p}, voter set V = {v1, . . . ,v4},
distinguished candidate c, and bribery limit ` = 1. Each vote is partial according to the
1TOS model and C̃ = {c,c′,c′′} denotes the totally ordered subset. Finally, the voting rule is
F = 2-Approval. The voters vote as follows:

v1 : c′ � c� c′′, v2 : c′′ � c′ � c, v3,v4 : c′ � c′′ � c.

(b) Let (C,V ) be an election with candidate set C = {c,c′,c′′,c′′′, p1, p2}, voter set V =
{v1,v2,v3}, distinguished candidate c, and bribery limit `= 1. Each vote is partial according
to the 1TOS model and C̃ = {c,c′,c′′,c′′′} denotes the totally ordered subset. Moreover, the
voting rule is F = 2-Approval. The voters’ votes are as follows (we restrict the rankings to
the voters’ two favorite candidates in C̃):

v1,v2 : c′ � c′′, v3 : c′ � c′′′.

The detailed calculations can be found in the Appendix. Our next result says that the problem
is easy for six other models.

Theorem 3.36. 2-APPROVAL-X -POSSIBLE BRIBERY is in P for each model X ∈
{Gaps,FP,CEV,1Gap,TTO,BTO}

Proof. We may assume that c is fixed as high as possible and thus obtains all potential approvals.
The following kinds of votes may occur (we let 1≤ i, j ≤ m−1, i 6= j):

1. c and ci are approved.

2. c is approved, no other candidate is definitely approved.

3. ci and c j are approved.

4. ci is approved, the other approved candidate is not uniquely known, and c is certainly disap-
proved.

5. Both approval positions are open, and c is not approved.
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A rational briber bribes only voters belonging to the latter three groups.
First, if pscore(c)+`≥ n, we immediately accept since the briber can reach a full approval score

for c in some extensions. For pscore(c)+ ` < n, we argue as follows. In contrast to the previous
case, c cannot reach a full score for any completion and, in particular, there are more than ` voters
definitely not approving of c in the original election (C,V ). We will transform our problem to an
instance of generalized b-edge matching. In contrast to the proof for full information, we can no
longer argue with the classical edge matching or cover approach as the fourth and fifth kinds of
votes do not lead to any one-to-one correspondence between votes and edges, but produce bundles
of edges or even complete subgraphs. The matching problem is defined below. For our purposes,
we again let v1, . . . ,vpscore(c) potentially approve c and vpscore(c)+1, . . . ,vn surely disapprove of c. We

are given an undirected multigraph G = (V ,E ) with vertices V = (C \{c})
·
∪ {v1, . . . ,vpscore(c)}

·
∪

{b}
·
∪ K, where K is a set of auxiliary vertices. Notice that all non-distinguished candidates and all

voters potentially approving of c yield a vertex denoted by the same symbol each. The edges in E
are as follows.

• Each voter vi approving of c (i.e., 1 ≤ i ≤ pscore(c)) yields an edge between vi and c j (1 ≤
j ≤ m−1) if and only if c j is potentially approved of by vi (aside from c).

• For each j ∈ [m−1], there are ` edges {b,c j}.

• Voters vi (pscore(c) + 1 ≤ i ≤ n) certainly approving of c j and possibly but not definitely
approving of the pairwise different candidates c j1 , . . . ,c jr (2 ≤ r ≤ m−2) yield four vertices
kvi

h in K with capacities bl(k
vi
h ) = bu(k

vi
h ) = 1 (h = 1, . . . ,4). Moreover, there are the edges

{c j,k
vi
1 }, {k

vi
h ,k

vi
h+1} (1≤ h≤ 3), and {kvi

4 ,c jt} (1≤ t ≤ r).

• Voters vi (pscore(c)+1≤ i≤ n) possibly but not definitely approving of the pairwise different
candidates c jt (1≤ t ≤ r, with 3≤ r ≤ m−1) yield the vertices kvi

h (1≤ h≤ 3) and the edges
{kvi

1 ,k
vi
2 }, {k

vi
1 ,k

vi
3 }, {k

vi
2 ,k

vi
3 }, and {kvi

1 ,c jt} (1≤ t ≤ r). The capacities are bl(k
vi
h ) = bu(k

vi
h ) = 1

(h = 2,3) and bl(k
vi
1 ) = bu(k

vi
1 ) = 2.

• We obtain edges and vertices analogously to the previous case when voter vi (pscore(c)+1≤
i ≤ n) definitely approves of two non-distinguished candidates (the same setting as before
with r = 2).

We refer to the latter three kinds of edges as Construction II. The remaining capacities are given
as follows: bu(vi) = bl(vi) = 1, 1 ≤ i ≤ pscore(c) (each of these voters approves of precisely one
c j), bu(c j) = pscore(c)+`, 1≤ j≤m−1 (each c j must have no more points than c after the bribery
for a completion with co-winner c), and bl(b) = bu(b) = ` (the bribed voters assign ` approvals to
non-distinguished candidates after the bribery). All other lower capacity constraints are meant to be
zero.

Figure 3.5 illustrates the edges according to Construction II and which edges can belong to a
matching.

According to this construction, the voters vi (i > pscore(c)) yield either two or three edges in
the matching. (Note that a matching always exists. We select arbitrary pscore(c) edges {vi,c j} in E
(1≤ i≤ pscore(c), 1≤ j≤m−1), arbitrary ` edges {b,c j}, and for each vi, i> pscore(c), either the
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two edges {kvi
1 ,k

vi
2 } and {kvi

3 ,k
vi
4 } (when voter vi definitely approves of exactly one non-distinguished

candidate before the bribery) or the two edges {kvi
1 ,k

vi
2 } and {kvi

1 ,k
vi
3 } (when vi certainly approves

of either zero or two non-distinguished candidates). Verify that this collection of edges satisfies all
capacity constraints.)

Each voter vi (i ≤ pscore(c)) corresponds to exactly one edge in the matching. A feasible
matching further contains exactly ` edges according to points assigned by bribed voters to non-
distinguished candidates after the bribery. Finally, each voter disapproving of c before the bribery
and approving of c after the bribery (that is, the voter is bribed) yields two edges according to Con-
struction II—either the two edges {kvi

1 ,k
vi
2 } and {kvi

3 ,k
vi
4 } or the two edges {kvi

1 ,k
vi
2 } and {kvi

1 ,k
vi
3 }. In

case a voter disapproves of c before and after the bribery, a matching contains three edges according
to Construction II (cf. Figure 3.5).

As a combined result, each matching has a cardinality somewhere between 2n− pscore(c)+ `
and 3n−2pscore(c)+ ` (as each voter disapproving of c yields either two or three edges according
to Construction II). By means of a similar reasoning to the proof of Theorem 3.34, we accept if
and only if there is a maximum matching with at least 3n−2pscore(c) edges as then and only then
we can find (1) exactly pscore(c) edges according to voters approving of c before and after the
bribery, (2) at least 3(n− pscore(c)− `) edges according to voters disapproving of c before and
after the bribery, (3) at most 2` edges according to Construction II representing voters disapproving
of c before the bribery and approving of c after the bribery (each of these edges is incident to two
different vertices in K), and (4) exactly ` edges incident to b (the ` approvals that non-distinguished
candidates receive from bribed voters after the bribery).

As computing a maximum matching is in P and as the transformation to this matching problem
is surely polynomially bounded, our overall problem is in P. q

To the best of our knowledge, neither Construction I nor Construction II are existing in litera-
ture. Moreover, we are currently not aware of any proofs in COMSOC showing membership in P
reducing from generalized b-edge matching/cover. Construction II can be considered as a refine-
ment of Construction I since it additionally models voters approving of two out of three or more
possibly but not definitely approved candidates with the same priority (i.e., in contrast to the al-
gorithm in the proof of Theorem 3.34, there are no interdependencies in a sense that, for a given
extension, a candidate is approved only when another candidate is approved, too). Although such
interdependencies exist for the 1TOS model, the proof of Theorem 3.34 using Construction I ex-
ploits that the candidates in C \ C̃ can be treated as a coalition of nameless candidates whose total
number of approvals divided by the cardinality of C \C̃ must not exceed the final potential score of
c (loosely speaking, the ”outside candidates” are identical for every vote).

This is not the case for the TOS model, in general. We point out that the complexity for this
structure is still open. Matching approaches as in the proofs of Theorem 3.34 and 3.36 have failed
up to now. Although we conjecture that even the possible winner problem (and thus the possible
bribery problem) is hard for 2-Approval under the TOS model, we could not adjust the hardness
proof for partial orders (which can be found in [167]) in order to show hardness for the TOS model.

For k ≥ 3, we can derive an overall hardness result:

Corollary 3.37. k-APPROVAL-X -POSSIBLE BRIBERY is NP-complete for each k≥ 3 and each X ∈
PIM.
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Figure 3.5: The upper graph describes the edges and vertices according to Construction II for vot-
ers definitely approving of exactly one non-distinguished candidate and possibly but not definitely
approving one among two or more candidates other than c, provided the voter is not bribed. The
lower graph corresponds to voters who definitely approve of either two or zero non-distinguished
candidates, provided that the voter is left unchanged by the briber. Either the red edges or the green
edges are in the matching. In the former variant, two approvals for non-distinguished candidates
are accounted for, whereas in the second variant these approvals are not considered. Observe that
for the first variant there is exactly one red edge {kvi

4 ,c jt} (1 ≤ t ≤ r) in the matching. Similarly,
for the second variant, the red variant includes exactly two edges {kv

1,c jh} and {kvi
1 ,c js}, where

1≤ h < s≤ r. Our example covers exactly one possibility for red edges incident to the c jt , 1≤ t ≤ r
(namely, c j1 and c jr ). Again, the lower and upper capacities of a vertex in K are written above the
vertex and separated by a ”|”.

Proof. Hardness immediately follows from Theorem 3.31 and because k-APPROVAL-BRIBERY

(that is, under full information) is NP-complete for k ≥ 3 [119]. q

Now let us turn to the k-Veto family. Pursuant to the next result, our problem is easy under all
nine models in PIM:

Theorem 3.38. VETO-X -POSSIBLE BRIBERY is in P for each model X ∈ PIM.

Proof. We regard only PC and FP, the two most general models in PIM. Formally, for each vote
v we can partition the candidate set C into a subset Cv

− containing only candidates definitely not
vetoed and another subset Cv

+ including all candidates potentially vetoed by v.

• For PC, we obtain Cv
− = {d ∈C : ∃e ∈C : d �v e} and Cv

+ =C \Cv
−.
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• For FP, we first complete each vote with exactly position m being open by assigning this open
position to the only candidate without any fixed position. After this preprocessing, there are
two kinds of votes. Either position m is assigned to some candidate d or the veto position and
at least one other position are open. In the former case, d is the unique veto candidate. In
case of an open veto position, exactly the candidates not assigned to any fixed position are the
potential veto candidates.

Note that these sets can be computed in O(nm2) time for both structures.
We premise that only definite vetoes count for c. Thus, in case c ∈Cv

+ and |Cv
+| ≥ 2, we reset

(Cv
−)
′ :=Cv

−∪{c} and (Cv
+)
′ :=Cv

+ \{c} and consequently c gets only definite, unavoidable vetoes
in some (best-case) extensions. Assuming the briber to be rational, he bribes only voters definitely
vetoing c and he bribes as many such voters as possible. Let vetoes(c) denote the number of certain
vetoes for c.

First, let vetoes(c)≤ `. We accept since the briber can ensure zero vetoes for c for some exten-
sions. Accordingly, bribing all voters vetoing c and making them veto arbitrary non-distinguished
candidates is a successful bribery strategy.

If vetoes(c) > `, the briber can ensure that c has vetoes(c)− ` > 0 vetoes for some extension.
We show that our possible bribery instance is a YES instance if and only if c is a possible winner of
the election (C,Ṽ ) defined as follows.

• W.l.o.g. the voters v1, . . . ,v` (the bribed voters in the original election) potentially veto all
candidates in C \{c}. 22

• The voters v`+1, . . . ,vvetoes(c) veto c.

• The remaining votes are partial according to PC (FP) and c is not vetoed.

The new election is equivalent to (C,V ) in all votes not bribed, but contains ` voters potentially
vetoing all non-distinguished candidates and definitely not vetoing c. These ` votes one-to-one cor-
respond to ` bribed voters initially vetoing c for whom the briber can freely decide which voter
among them vetoes which non-distinguished candidate. We point out that the transformation be-
tween these two elections is surely polynomial bounded.

Due to [167] and Theorem 3.8, possible winner is in P for Veto under the PC and the FP model,
respectively. This in turn implicates that the possible bribery problem is in P for these models. q

Now let us focus on 2-Veto. In contrast to the Veto rule, we can settle a hardness result given
partial orders:

Corollary 3.39. 2-VETO-PC-POSSIBLE BRIBERY is NP-complete.

Proof. We know from [21] that 2-VETO-PC-POSSIBLE WINNER is NP-complete. Hence, we
may conclude from Theorem 3.31 that 2-VETO-PC-POSSIBLE BRIBERY is hard as well. q

Nevertheless, we obtain a P result for a total of seven models in PIM. Let us first show mem-
bership in P for six of these seven structures.

22All non-distinguished candidates are potentially vetoed as our algorithm must check first which candidate requires
how many additional vetoes in order to make c a winner with vetoes(c)− ` vetoes.
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Theorem 3.40. 2-VETO-X -POSSIBLE BRIBERY is in P for every model X ∈
{Gaps,1Gap,FP,BTO,TTO,CEV}.

Proof. It suffices to regard X ∈ {Gaps,FP}. We rewrite each vote by fixing c on the highest
possible position unless the position of c in a vote is already fixed.

The following types of votes may occur (with the veto candidates specified; it holds 1 ≤ i, j ≤
m−1, i 6= j):

(ci,c j), (ci,∗), (∗,∗), (c,ci), (c,∗).
∗ represents a veto which may go to different non-distinguished candidates for different exten-

sions. In particular, a ∗ veto never goes to c in the rewritten election where all unsure vetoes for c
are not accounted for. For voters of type (∗,∗), no vetoed candidate is uniquely known.

In a nutshell, either two, one, or zero vetoes for the c j are definite and the other zero, one, or
two vetoes for the other non-distinguished candidates are uncertain. Or c is either vetoed together
with some c j or the other candidate vetoed aside from c is not uniquely known. Let vetoes(c) be the
number of definite vetoes for c.

First of all, if vetoes(c) ≤ `, we accept since the briber can make c reach zero vetoes for some
extension by bribing all voters vetoing c and making each of them veto two arbitrary other candi-
dates.

Henceforth, let vetoes(c)> `. In this case, the briber bribes ` voters initially vetoing c and each
of them does not veto c after the bribery (note that fewer bribes might suffice to make c a possible
winner, but then ` bribes would lead to a successful bribery as well). Thus c has vetoes(c)− ` > 0
vetoes after the bribery.

To show membership in P, we define the following flow network (for convenience, we assume
that v1, . . . ,vn−vetoes(c) do not definitely veto c and w1, . . . ,wvetoes(c) definitely veto c):

The vertices include a source x, a sink y, vertices c j ( j = 1, . . . ,m− 1), v1, . . . ,vn−vetoes(c),
w1, . . . ,wvetoes(c), ki (i = 1, . . . ,n− vetoes(c)), and two additional vertices u and b. The edges are
defined as follows:

• There is an edge from x to c j ( j = 1, . . . ,m−1) with capacity vetoes(c)− `. These edges are
to assure that every candidate receives at least as many vetoes as c, namely vetoes(c)− `.

• There is an edge (c j,vi) with capacity one if and only if c j is definitely vetoed by vi ( j =
1, . . . ,m−1, i = 1, . . . ,n− vetoes(c)).

• There is an edge from c j to ki ( j = 1, . . . ,m−1, i = 1, . . . ,n− vetoes(c)) with capacity one if
and only if vi possibly but not definitely vetoes c j.

• There is an edge from ki to vi (i = 1, . . . ,n− vetoes(c)) with capacity equal to the number of
indefinite veto positions in this vote vi.

• There is an edge from c j to wi ( j = 1, . . . ,m−1, i = 1, . . . ,vetoes(c)) with capacity one if and
only if c j is potentially vetoed by wi. Note that c is the other candidate vetoed by wi. 23

23Notice that we do not need the auxiliary vertices ki for the voters wi as the algorithm either selects the candidate
uniquely vetoed aside from c or one out of several candidates possibly but not definitely vetoed. In particular, the
algorithm need not make a difference between definite and unsure vetoes for non-distinguished candidates in contrast to
votes vi where c is not vetoed.
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• From vi to y, there is an edge with capacity 2 (i = 1, . . . ,n− vetoes(c)). These edges make
sure that all voters vetoing two non-distinguished candidates may give only two vetoes to
other candidates.

• From wi to u, there is an edge with capacity 1 (i = 1, . . . ,vetoes(c)).

• There is an edge from u to y with capacity vetoes(c)− `. Auxiliary vertex u shall guarantee
that only vetoes(c)− ` of these votes (not bribed) initially vetoing c actually assign vetoes
to non-distinguished candidates. The other ` voters originally vetoing c can arbitrarily give
vetoes to non-distinguished candidates. These are modeled by b.

• From c j to b, there is an edge with capacity ` ( j = 1, . . . ,m−1).

• From b to y, there is an edge with capacity 2`. These previous two groups of edges ensure
that each c j receives at most ` vetoes from bribed voters, and bribed voters can give 2` vetoes
to non-distinguished candidates in total. The two capacity constraints are necessary and suf-
ficient conditions for 2-Veto concerning how 2` vetoes can be admissibly assigned to the c j;
in particular, these conditions ensure that no candidate is vetoed twice by the same voter (cf.
Lemma 3.24).

We claim that there is an integral flow F with value (m−1) ·(vetoes(c)−`) (that is, a maximum
flow) if and only if the briber can make c a possible winner via bribing ` voters.

(⇒): Suppose that a maximum flow F exists. We construct our completion with c being a
winner after the bribery as follows. In a maximum flow, we have F((x,c j)) = vetoes(c)− ` for
each j ∈ [m− 1]. Thus, each c j has at least as many vetoes as c. These vetoes are distributed as
follows. Each c j, j ∈ [m−1], receives F((c j,b)) ∈ {0, . . . , `} vetoes from the bribed voters after the
bribery, according to the flow F . Which voters are bribed, will be explained below. Moreover, in
case F((c j,ki)) = 1 or F((c j,vi)) = 1, voter vi vetoes c j (1≤ i≤ n−vetoes(c), 1≤ j≤m−1). The
same holds for voters wi with F((c j,wi)) = 1 (1 ≤ i ≤ vetoes(c)) who remain unchanged. Since

∑
vetoes(c)
i=1 F((wi,u))≤ vetoes(c)− `, at most vetoes(c)− ` voters initially vetoing c and their vetoes

for other candidates are actually considered.
Observe that the flow generally does not fill all veto positions for the c j. We complete the

remaining veto positions as follows:

• For all voters vi with F((vi,y)) ≤ 1 (1 ≤ i ≤ n− vetoes(c)), we complete the remaining 2−
F((vi,y)) veto positions in vi’s vote, left out by the flow, as follows. If cap((c j,vi)) = 1
and F((c j,vi)) = 0, let voter vi veto c j as vi definitely vetoes c j due to the definition of
the flow network. Likewise, in case F((ki,vi)) < cap((ki,vi)) (1 ≤ i ≤ n− vetoes(c)), we
suppose that vi vetoes cap((ki,vi))−F((ki,vi)) arbitrary candidates c j with F((c j,ki)) = 0
and cap((c j,ki)) = 1.

• According to the maximum flow F , there are vetoes(c)− `−∑
vetoes(c)
i=1 F((wi,u))(≥ 0) voters

vetoing c who are not bribed and who are ignored by the flow (i.e., we have F((wi,u)) = 0 and
cap((wi,u)) = 1). In other words, this number of voters wi are left unchanged by the briber,
in addition to the voters wi with F((wi,u)) = 1 since the maximum flow gets along with fewer



3.6. POSSIBLE BRIBERY 103

than vetoes(c)− ` voters vetoing c and their vetoes for non-distinguished candidates and yet
each c j has exactly vetoes(c)− ` vetoes in the final election according to the flow F .

We select arbitrary vetoes(c)−`−∑
vetoes(c)
i=1 F((wi,u)) of these voters and let wi veto any non-

distinguished candidate c j with cap((c j,wi)) = 1 and F((c j,wi)) = 0 (that is, c j is potentially
vetoed by wi).

• The remaining voters wi, not considered so far (that is, the voters wi with F((wi,u)) = 0 not
among the vetoes(c)− `−∑

vetoes(c)
i=1 F((wi,u)) voters wi for whom we have assumed in the

previous step that they remain unchanged, too), are bribed by the briber. Note that bribed vot-
ers assign 2` vetoes to non-distinguished candidates in total and at most ` to each c j. Hence,
if F((b,y)) < 2`, we assign arbitrary 2`−F((b,y)) vetoes to non-distinguished candidates
such that each c j has at most ` vetoes accordingly, taking into account that c j already receives
F((c j,b)) vetoes from bribed voters, according to the flow. We refer to the algorithm in the
proof of Lemma 3.24 describing which voter vetoes which candidates.

Notice that our constructed completion and the corresponding bribery leads to c being a winner
in this completion.

(⇐): Assume that the briber can make c a winner for some extension by bribing ` voters vetoing
c. As c has vetoes(c)− ` vetoes after the bribery, each c j has vetoes(c)− ` or more vetoes in this
extension. For each c j, we select vetoes(c)− ` arbitrary vetoes, either from bribed voters or from
voters left unchanged. We construct a feasible flow as follows. First, set F((x,c j)) = vetoes(c)− `
for each j ∈ [m− 1]. Assign the flow units according to these voters as follows (we describe a
recursive way to determine F):

1. If c j (1≤ j ≤ m−1) is definitely vetoed by vi (1≤ i≤ n− vetoes(c)), set F((c j,vi)) = 1.

2. If c j is possibly but not definitely vetoed by vi (1≤ i≤ n− vetoes(c)), set F((c j,ki)) = 1.

3. If c j is potentially vetoed by wi and wi is left unchanged by the briber (1≤ i≤ vetoes(c)), set
F((c j,wi)) = F((wi,u)) = 1.

4. If the vetoes(c)− ` vetoes meant for c j come from exactly β (c j) bribed voters (after the
bribery), set F((c j,b)) = β (c j). Observe that β (c j)≤ ` and ∑

m−1
j=1 β (c j)≤ 2` holds.

5. Set further F((b,y)) = ∑
m−1
j=1 β (c j) = ∑

m−1
j=1 F((c j,b)).

6. Let F((ki,vi)) = ∑
m−1
j=1 F((c j,ki)) (1≤ i≤ n− vetoes(c)).

7. Compute F((vi,y)) = (∑m−1
j=1 F((c j,vi)))+F((ki,vi)) (1≤ i≤ n− vetoes(c)).

8. Finally, set F((u,y)) = ∑
vetoes(c)
i=1 F((wi,u)).

Especially, the latter values exploit the flow conservation condition and ”continue” the flow
flowing through the source until all flow units reach the sink. Observe that the flow F is maximum
and feasible as all constraints are satisfied.

As computing a maximum flow is in P and all constraints are bounded from above by a polyno-
mial, the overall problem is in P. q
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We achieve another easiness result for the 1TOS structure.

Theorem 3.41. 2-VETO-1TOS-POSSIBLE BRIBERY is in P.

Proof. Let C̃ ⊆C be the subset completely ranked by each voter. Our algorithm distinguishes the
following cases:

• C = C̃. Then our problem coincides with bribery under full information which is known to be
easy according to [119].

• c ∈C \C̃ or |C̃| ≤ |C|−2. We accept as there are extensions of the original election where no
voter vetoes c. Hence, c is a possible winner even without any voters being bribed.

• c ∈ C̃, C \ C̃ = {p}. In this case, each candidate c′ ∈ C̃ is definitely vetoed by the voters
regarding c′ as their least preferred alternative in C̃. Moreover, c′ is possibly but not definitely
vetoed by each voter preferring c′ to exactly one candidate in C̃. In other words, last positions
in subelection (C̃,V ) definitely count as vetoes, whereas second to last positions in subelection
(C̃,V ) correspond to unsure vetoes in election (C,V ). Note that each voter possibly but not
definitely vetoes p. We assume that only definite vetoes count for c. Hence, in case c is a
voter v’s second to least preferred alternative in C̃, v’s least preferred C̃ candidate and p are
treated like definitely vetoed candidates.

According to the previous reasoning, each voter either definitely vetoes two candidates or
definitely vetoes one candidate and possibly but not definitely vetoes two candidates. Conse-
quently, we may apply the same flow algorithm as in the proof of Theorem 3.40.

As all three cases are easy to decide, our overall problem is in P, too. q

In particular, Theorem 3.31 and Theorem 3.41 implicate that 2-VETO-1TOS-POSSIBLE WIN-
NER is in P which has been claimed in Theorem 3.10 in Section 3.4.

As we could observe, possible bribery of the 2-Veto rule is easy for seven models and hard for
one model. For the TOS model, we could not settle the complexity although we conjecture that even
the possible winner problem is hard (similarly to 2-Approval).

For 3-Veto, possible bribery is hard for each structure in PIM under the unique-winner model:

Corollary 3.42. 3-VETO-X -POSSIBLE BRIBERY is NP-complete for every X ∈ PIM under the
unique-winner model.

Proof. Hardness follows from Theorem 3.27 and Theorem 3.31 as bribery under complete in-
formation is hard in the unique-winner model and possible bribery is a generalization of standard
bribery. q

For the co-winner model, we cannot reduce bribery under full information in order to show
hardness for possible bribery. Nevertheless, we obtain some hardness results by reducing from
possible winner.

Corollary 3.43. 3-VETO-X -POSSIBLE BRIBERY is NP-complete for every X ∈ {TOS,PC} under
the co-winner model.
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Proof. The problem 3-VETO-TOS-POSSIBLE BRIBERY is NP-complete due to Theorem 3.31
and 3.13. As 3-VETO-PC-POSSIBLE WINNER is NP-complete [21], 3-VETO-PC-POSSIBLE

BRIBERY is hard as well, applying Theorem 3.31. (Note that we could also argue that PC is a
generalization of TOS and therefore inherits the NP-hardness lower bound.) q

In contrast, our problem is easy for six models under the co-winner model. The proof showing
polynomial-time decidability widely works with generalized b-edge cover.

Theorem 3.44. 3-VETO-X -POSSIBLE BRIBERY is in P for each model X ∈
{Gaps,FP,1Gap,BTO,TTO,CEV,} in the co-winner model.

Proof. It suffices to prove our theorem for X ∈ {Gaps,FP}. For both models, we merely count
definite vetoes for c, unsure vetoes for c are not considered. Observe that for both structures, the
following kinds of votes may exist (with the three vetoes specified, we have 1≤ h, i, j ≤ m−1 and
|{i,h, j}|= 3):

(ch,ci,c j), (ch,ci,∗), (ch,∗,∗), (∗,∗,∗),

(c,ch,ci), (c,ch,∗), (c,∗,∗).

∗ stands for an uncertain veto position for which the vetoed candidate may differ from comple-
tion to completion, and such a veto never goes to c (as only certain vetoes are supposed to count
for c). Correspondingly, voters of the type (ch,∗,∗) definitely veto ch and the other two vetoes are
uncertain and not meant for c.

For vetoes(c)≤ `, we accept because the briber reaches that c is not vetoed for some extensions
after the bribery.

In case vetoes(c) > `, the designated candidate c has a positive final veto number for each
completion. We transform our problem to the generalized b-edge cover problem defined below. For
our purposes, we let V¬c denote the voters not definitely vetoing c (i.e., the veto for c is excluded
due to our assumptions from above) and V c := V \V¬c include all voters definitely vetoing c. For
the sake of simplicity we assume that V¬c = {v1, . . . ,vn−vetoes(c)} and V c = {w1, . . . ,wvetoes(c)}. The
cover problem is defined as follows. We are given an undirected multigraph G = (V ,E ) with

vertices V = V¬c ·∪ (C \ {c})
·
∪ K

·
∪ {b}, where K is a set of auxiliary vertices. The edges are

defined as follows.

• For voter vi ∈V¬c, there is an edge {vi,c j} if and only if vi possibly but not definitely vetoes
c j.

• For j ∈ [m−1], there are ` edges {c j,b} (c j may receive at most ` vetoes from bribed voters).

• For each voter wi (1≤ i≤ vetoes(c)), definitely vetoing c and c j, and potentially vetoing the
candidates c j1 , . . . ,c jr (with 1 < r ≤ m− 2), the graph contains four vertices kwi

h in K (1 ≤
h ≤ 4) and the following edges according to Construction II: {c j,k

wi
1 }, {k

wi
1 ,kwi

2 }, {k
wi
2 ,kwi

3 },
{kwi

3 ,kwi
4 }, and {kwi

4 ,c jt} (t = 1, . . . ,r). We have bl(k
wi
h ) = bu(k

wi
h ) = 1 for h = 1, . . . ,4.
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• Each voter wi (1≤ i≤ vetoes(c)) definitely vetoing c and possibly but not definitely vetoing
the candidates c j1 , . . . ,c jr (3 ≤ r ≤ m−1; otherwise, all vetoed candidates would be unique)
yields the three vertices kwi

h in K (1 ≤ h ≤ 3) and the edges {kwi
1 ,c jt} (1 ≤ t ≤ r), {kwi

1 ,kwi
2 },

{kwi
1 ,kwi

3 }, and {kwi
2 ,kwi

3 } according to Construction II. We have bl(k
wi
h ) = bu(k

wi
h ) = 1 (h =

2,3) and bl(k
wi
1 ) = bu(k

wi
1 ) = 2.

• Setting r = 2, we obtain the same edges and vertices as in the previous case representing
voters definitely vetoing c, c j1 , and c j2 .

The vertex capacities not yet defined are bl(vi) = bu(vi) = αi
24 for each vi ∈ V¬c (where αi ∈

{0,1,2,3} denotes the number of indefinite veto positions in vote vi; voter vi assigns exactly αi

unsure vetoes to non-distinguished candidates), bl(c j) = max(0,vetoes(c)− `− vetoes(C,V¬c)(c j)),
1 ≤ j ≤ m− 1 (each c j must have at least as many vetoes as c), and bl(b) = bu(b) = 3` (bribed
voters assign exactly 3` vetoes to non-distinguished candidates). All remaining upper capacities are
unlimited.

We point out the following aspects. Firstly, voters in V¬c are never bribed and yield exactly
∑

n−vetoes(c)
i=1 αi =: α edges in any feasible edge cover (if one exists). Secondly, a cover contains

precisely 3` edges incident to b, representing vetoes that non-distinguished candidates get from
bribed voters after the bribery. Thirdly, each voter in V c corresponds either to two edges (the
voter is bribed 25) or three edges (the voter is left unchanged and the vetoes for non-distinguished
candidates count) according to Construction II in a cover.

Since we desire that at most vetoes(c)− ` of the voters in V c may yield three edges in the cover
(otherwise, we account for the vetoes for non-distinguished candidates in more than vetoes(c)− `
votes in V c and hence effectively fewer than ` voters are bribed; yet the definition of our cover
problem requires that exactly ` voters are bribed and c has precisely vetoes(c)− ` vetoes after
the bribery), we search for a minimum cover with at most (3`+α) + (3(vetoes(c)− `) + 2`) =
3vetoes(c)+α +2` edges. q

The formal proof works very similarly to the one showing the result for 2-Approval (Theo-
rem 3.36) which in turn uses a similar construction to the proof of Theorem 3.34. In contrast, we
search for a minimum matching (i.e., a cover) in the case of 3-Veto, whereas we compute a max-
imum matching given 2-Approval. Both proofs use the same construction on the whole. While
for 2-Approval we try to find as many voters as possible yielding three instead of two edges in the
matching, for 3-Veto we seek to find as few voters as possible with three instead of two edges in the
cover.

For 1TOS, the general complexity of possible bribery is still unknown to us in the co-winner
model. However, we can settle a polynomial-time result for all cases but c ∈ C̃ and |C \ C̃| = 2. If
C = C̃, the problem equals to bribery under full information. In case c /∈ C̃ or |C̃| ≤ |C| − 3, we
accept as there are extensions for which c is not vetoed by any voter. Finally, in case c ∈ C̃ and

24Note that vertices vi (1 ≤ i ≤ n− vetoes(c)) for which all three vetoed candidates are uniquely known, are isolated
vertices with fixed capacity zero trivially satisfied by each cover. We introduced these vertices into our graph for the sake
of compact representation, but we could also omit them.

25Actually, a bribed voter yields five edges in the cover—the two edges {kwi
1 ,kwi

2 } and {kwi
3 ,kwi

4 } (or {kwi
1 ,kwi

2 } and
{kwi

1 ,kwi
3 }) on the one hand and three edges incident to b and three different c j each on the other hand.
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|C \ C̃| = 1, easiness follows from transforming our problem to generalized b-edge cover, i.e., we
borrow the algorithm from the proof of Theorem 3.44.

Finally, for k ≥ 4 all problems are hard.

Corollary 3.45. k-VETO-X -POSSIBLE BRIBERY is NP-complete for every k ≥ 4 and every X ∈
PIM.

Proof. Possible bribery is hard for every model in PIM due to Theorem 3.31 and because bribery
under full information is hard [119]. q

3.7 Conclusion

We have considered nine partial information models. Three models—FP, Gaps, and TOS—were
introduced and formalized by us in [30], five models (PC, TTO, BTO, 1TOS, and 1Gap) had already
been defined and studied in literature before, and the model CEV had been suggested, but not yet
studied in the context of strategic behavior.

In a first step, we have pointed out the interrelationships between these models. Subsequently,
we have analyzed the complexity of necessary and possible bribery. We have further closed all
but two gaps for the possible/necessary winner problems. Our analysis is restricted to the voting
rules k-Approval and k-Veto, to the constructive variants of the given problems, and basically to the
co-winner model.

Concerning the possible/necessary winner problems, we could extend the result by [167] for
necessary winner under partial orders via proving that necessary winner is easy for every scoring
rule under the FP model as well. Hence, there is an overall polynomial-time result for all nine
models in PIM and for every scoring rule. Moreover, we have pointed out that possible winner
is easy for the whole families k-Approval and k-Veto under six of nine models. For k-VETO-
1TOS-POSSIBLE WINNER, we have achieved a dichotomy result by proving the remaining cases
k ≥ 2. For the models PC, TOS, and 1TOS, nearly all possible winner problems are hard for the
two voting rule families considered. This is no surprise, for these three models inhere a more
intractable structure than the other six structures in PIM. Interestingly, ties matter for 3-VETO-
1TOS-POSSIBLE WINNER which is easy under the co-winner model and hard under the unique-
winner model.

With regard to strategic behavior, we have found that necessary bribery tends to result in harder
problems under incomplete information compared to full information. As a byproduct, we have
discovered several instances where ties matter. In other words, several problems are easy under the
co-winner model and hard under the unique-winner model. Notice that in each of these cases the
underlying voting rule is 3-Veto. In opposition to necessary bribery, we have not found any instance
of F -X -POSSIBLE BRIBERY for which F -BRIBERY and F -X -POSSIBLE WINNER are in P, but
their hybridization is NP-complete. Therefore, additional hardness for possible bribery compared to
bribery under full information follows only for problems for which the possible winner counterpart
is already hard.

We point out that only k-Approval offers some additional worst-case barrier under incomplete
information for necessary bribery, while for k-Veto the complexities remain unchanged compared to
full information. It is worth mentioning that more or less the same models yield additional hardness
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for k-Approval. Interestingly, the three models TTO, CEV, and 1TOS never increase the complexity
for necessary bribery, compared to bribery under full information. By contrast, Gaps, 1Gap, FP, PC,
TOS, and BTO reveal the same complexity-theoretic behavior in necessary bribery and hence all of
them either yield a hard problem or a given problem is easy for all six of them.

Generally speaking, possible bribery does not satisfy our initial expectations that all problems
become hard for the PC structure and for other general structures—such as Gaps or FP—as well.
In contrast, necessary bribery meets our expectations concerning additional hardness under partial
information, albeit merely for k-Approval and not for k-Veto. Hence, k-Approval offers some addi-
tional worst-case protection against bribery, not only for PC, but as well for other general structures
such as Gaps, 1Gap, or FP. As pointed out, possible bribery is harder under partial information than
bribery under full information, but merely because some possible winner problems are already hard.

One model worth further investigations is NI (”No Information”) which was proposed in [39].
Under this structure, an external agent or a manipulator (group) has no information at all. This
structure can be considered as the counterpart of FI (”Full Information”) and is—just like FI—a
special case of all models in PIM, but independent from FI. One can easily verify that necessary and
possible bribery are easy for the whole families k-Approval/-Veto. For possible bribery, the P result
is trivial even for every scoring rule. Even with a bribery limit `= 0, we may assume that all voters
rank c first. In the co-winner model, this immediately implies that c is a possible winner. Under the
unique-winner model, some additional cases have to be distinguished, but the problem is yet easy
for all scoring rules. For necessary bribery, when restricting ourselves to k-Approval and k-Veto,
one simply has to check whether c is a necessary winner when the briber assigns the approvals as
uniformly as possible to non-distinguished candidates. We assume that all unbribed voters approve
of (each) c j and not c (similar arguing holds for k-Veto). It would be interesting to know whether
necessary bribery is easy for all other scoring rules and—if not—for which classes of scoring rules.

By regarding nine different structures, we could observe interesting complexity differences be-
tween the models which exceed our initial expectations. So the hardness in possible bribery for
2-Approval and 2-Veto only holds for PC, but we could not settle hardness results for any other
model. Although 1TOS is one of the most special models in PIM, almost all possible winner prob-
lems of the k-Approval/-Veto rules are hard for 1TOS, but easy for six other structures in PIM. In
contrast, BORDA-1TOS-POSSIBLE WINNER is in P [32], but BORDA-X -POSSIBLE WINNER is
hard for all other models in PIM. This holds since BORDA-CEV-POSSIBLE WINNER is identical
to BORDA-X -COALITIONAL MANIPULATION which was shown to be hard in [23, 41]. As CEV
is a special case of all models in PIM\{1TOS}, hardness follows for the other models. The fact
that BORDA-CEV-POSSIBLE WINNER is hard also yields an instance where CEV (a structure very
simple and easy to handle) yields a hard problem, but its counterpart under full information, namely
BORDA-WINNER, is easy. One can easily find other examples of model pairs where the first model
yields a hard problem and the second structure yields an easy problem. We recently studied CCAV
and CCDV under these nine models, both in a necessary and possible winner version [143, 70].
Necessary/possible control by adding voters, in the constructive version, asks whether a chair can
add up to ` unregistered voters such that a distinguished candidate is a necessary/possible winner of
the resulting election. We could show that TOS is the only model for which necessary constructive
control by adding voters in k-Approval is easy for k ≤ 2 and hard for k ≥ 3 when the registered
voters are complete and the unregistered voters are partial. For all other structures in PIM, the same
problem is either easy exactly for k = 1 (namely, for PC, FP, 1Gap, and Gaps) or for k≤ 3 (for BTO,
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1TOS, TTO, and CEV). For k = 2, the problem is easy for TOS and hard for Gaps, 1Gap, and FP.
Hence, we could find a problem that is easier for TOS than for Gaps, 1Gap, and FP. Observe further
that necessary bribery in k-Approval and k-Veto reveals the same complexity theoretic behavior for
the BTO structure as for the models Gaps, 1Gap, FP, PC, and TOS, but this is not the case for our
given control example. Such examples might encourage researchers to study these structures more
closely and possibly find further models with real-world applications.

We have recently found two such models—FP1CS and 1SFP. Both models are defined as special
cases of FP. While for FP1CS the candidate set with known fixed positions is the same for all voters
(formally, Cv =: C̄ for each v ∈ V ), for 1SFP the set of known fixed positions is constant for all
voters (formally, Posv =: Pos for every v). E.g., one can easily show that PLURALITY-FP1CS-
NECESSARY BRIBERY is easy, while the same problem is hard for FP (all candidates in C \ C̄ can
be assumed to potentially score in all votes where no candidate in C̄ is ranked first; hence, they can
be treated like one candidate (coalition) and our problem reduces to bribery under full information
to a certain extent). Considering these two structures in our detailed complexity analysis appears to
be an intriguing task for future research.

We point out that the concept of worst-case complexity has some limitations. As the name
suggests, hardness is only guaranteed in the worst-case. Hence, even when a problem is formally
hard, this does not mean that the problem requires exponential running time in the average case (cf.
the simplex algorithm [40] that is in P for typical-case instances; one has to construct some instances
far from real-world applications in order to show hardness in the worst-case [116]). To read more
about average case complexity in the context of voting, we refer to [66, 140]. Moreover, problems—
though being NP-hard—can yet be approximated in polynomial time (by way of example, see [77]
for some approximation algorithms in voting), easy for some special structures, or there might exist
good heuristics to deal with a given problem (cf. the arguing in [89] for this and the next paragraphs
about worst-case complexity).

Besides, when a problem is in O(e0.0000001n) (where e is the Euler function), the instance size
must be exorbitantly large that current computers meet their limits. By contrast, polynomial-time
algorithms with running time O(n100000) are formally easy, but do not work efficiently in practice.

Furthermore, referring to voting, hardness may hold for general preference profiles, but prefer-
ence profiles are often structured according to a special pattern. For instance, in political elections
profiles are often single-peaked or nearly single-peaked [74, 67]. Single-peaked preferences can be
motivated as follows. Assume that there is an ideological spectrum, such as the left-right spectrum
in political elections. Each voter favors one party placed on an axis and the further away another
party is located on the left-right axis, the less the voter prefers the party. Nearly single-peaked
profiles are ”within a certain distance threshold” to a profile single-peaked with respect to a certain
axis. Other structures, such as single-dipped [115, 2] or single-crossing preference profiles [29],
exist as well. It would be nice to know whether our hardness results still hold when the voter profile
exhibits some special structural property.

Last but not least, hard problems might become easy when some input parameter of a given
problem is small. Concerning elections, small numbers of voters, candidates, and/or small bribing
limits may simplify things to a malicious agent. This perspective encouraged several researchers to
study the parameterized complexity for problems related to voting (we refer to Section 3.1 for some
literature). Referring to partial information, a hard problem could become easy when the amount
of existing/missing information is small. For instance, under the FP structure one could restrict the
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number of known or unknown positions for every voter or in total.
Despite all its limitations, determining the worst-case complexity of a given problem appears

to be a reasonable first step towards studying the qualitative properties of voting rules with regard
to manipulative attacks. Accordingly, all these drawbacks of the concept of worst-case complexity
pose many questions for future research.

We point out that even easy problems may offer a certain protection against undesired attacks
when there is partial information. As an example consider instances for which (nearly) no infor-
mation is given [39]. Even though it is easy to decide whether a necessary bribery exists or, more
precisely, it can be verified in polynomial time that a necessary bribery does not exist, this infor-
mation might be low-value to the briber. Consider an instance of bribery in Plurality for which
the briber has no information at all. Observe that the briber must bribe at least half of all voters
to ensure that his favorite candidate c is a necessary winner after the bribery. If his bribery limit is
smaller, there may be extensions where one and the same candidate d 6= c is ranked first by all voters
not bribed. Note that ` ≥ |V |/2 always yields a YES instance for bribery in Plurality in general,
regardless of the amount of given information. In contrast, if ` < |V |/2, the briber cannot make c
a necessary winner and therefore the lack of information provides a certain protection against brib-
ing attacks. Admittedly, one may argue that necessary winner merely concerns the worst-case of a
distinguished candidate. Accordingly, bribing fewer than half of all voters can lead to a sufficiently
high probability that c is a winner after the bribery. In real-world settings, it is thinkable that all
other voters spread their votes or even vote for c as well. Nevertheless, the lack of information may
make things considerably harder to the briber.

For future research, we further refer to the open problems in this chapter. So many results have
only been shown under the co-winner model and accordingly providing all proofs for the unique-
winner model as well appears to be an intriguing task. In the following chapter, we will see that some
proofs require additional considerations under the unique-winner model. One could also extend our
study to other voting rules, other models (e.g., 1SFP and FP1CS), control, other bribery variants
and restrictions, or manipulation (regard the models different from PC), to name a few. Besides,
it would be nice to achieve dichotomy results for all scoring rules in all regarded problems. Other
natural extensions of our research could be introducing weights and price tags for each voter.

Where we studied the constructive settings in this thesis, their destructive counterparts raise
many questions as well. So we showed that Possible Destructive Control and Possible Destructive
Bribery are easy even for all scoring rules as one has to check for at most m−1 non-distinguished
candidates d whether an extension exists for which the despised candidate performs as badly as
possible and d as well as possible (for detailed proofs, cf. [69, 70]; we omitted these proofs as in
this thesis we study merely constructive problems in voting).

Another intriguing problem is Dominating Bribery defined in the style of the problem Domi-
nating Manipulation in [39]. This problem asks whether the briber can bribe in a way that for each
extension of the final election the briber is at least as satisfied with the outcome of the election as
before the bribery, and there is at least one extension for which the briber is more satisfied than
before. This definition was inspired by the well-known Pareto Dominance (for a formal definition,
we refer to [146]).

In Section 3.1, we have mentioned the voting rules Normalized Range Voting and
Fallback Voting which are currently the two voting rules with the smallest number of vulnerabilities
among 22 selected control types (under full information). Since both voting rules are not exclusively
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preference-based, it would be nice to know (1) whether one can find some partial information model
tailored to these rules and (2) whether all control problems are either computationally intractable
or impossible under partial information. Moreover, there might exist other voting rules displaying
better or similar complexity theoretic behavior under complete or partial information.

For future research, we further refer to more refined concepts than possible/necessary winner
to deal with partial information such as qualitative or probabilistic approaches. In this context, we
point out that there are some works about applying voting rules directly to partial votes, such as
votes with ties or top-truncated votes (cf. Section 3.1). A fascinating field of research could be
combining necessary/possible winner with voting rules tailored to partial votes.

Other possible research directions include voting rules based on pairwise comparisons applied to
voters with intransitive preferences which invite us to study several problems under the PC structure.

One could also study game-theoretic approaches (with two or more bribers or campaign man-
agers) and/or combine bribery with manipulation and/or control (see [87] wherein a model combin-
ing manipulation and control was studied).
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Chapter 4

Lot-based Voting

In this chapter, we regard a different way of voting under incomplete information. In contrast to
Chapter 3, each voter declares a complete ranking over all candidates in C, but there is a lottery
picking K ∈ {1, . . . ,n} voters at random and the voting rule is applied to these K voters. Although
this general idea dates back to ancient Greece and was also used in a fairly complex process for the
election of the Doge of Venice, similar ideas are used today in the selection process of the chair
of the Internet Engineering Task Force (IETF). Furthermore, lot-based voting rules can describe
elections where (at first) only K sample voters are actually accounted for. So, in political elections
in some countries only a small sample of voters are considered and this sample is meant to be
representative for the entire electorate.

One of the main motivations for introducing this additional non-deterministic step of selecting
some voters at random is the hope that this step can impede strategic behavior and corruption.

Not so long ago Walsh and Xia [160] have defined lot-based voting and studied the compu-
tational complexity of evaluation as well as manipulation for voting rules such as Borda, STV 1,
Copeland, and Maximin. According to their definition for lot-based voting in [160], the winner
of an election is determined in two steps. First, K voters are selected by a lottery over the set of
voters; second, a voting rule is applied on this K-voter subelection. Although several interesting
questions in the field of lot-based voting were answered in their work, at the same time even more
new questions were raised. One of these questions is the computation of possible and necessary
winners (cf. [117]) in the setting of lot-based voting rules.

In this chapter we address this open question by analyzing the computational complexity of
the evaluation (i.e., checking whether the winning probability of a given candidate exceeds a given
bound), the possible and the necessary winner problems in the lot-based setting for k-Approval and
k-Veto. Another natural question is to ask in how many subelections drawn by the random step a
candidate is the unique winner. Analyzing the counting complexity of this problem is particularly
relevant as solving this task is crucial for computing exact winning probabilities for a given candi-
date. Furthermore, we analyze the complexity of possible/necessary bribery, i.e., the setting where
an external agent can influence one or multiple voters in order to make a designated candidate win
for at least one/all size K subsets of the voters.

1The STV rule can be regarded as a generalization of Plurality with Runoff with at most |C|−1 rounds where in each
step, the candidate with the smallest plurality score is ruled out. As soon as a candidate has an absolute majority of votes,
this candidate is the winner of the election.

113
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Our main contributions concerning lot-based voting are as follows:

• In our complexity analysis, we study the problems evaluation as well as possible and nec-
essary winner for k-Approval and k-Veto in the lot-based setting. In particular, we obtain a
complete picture for possible and necessary winner.

• We explore how hard it is to count the number of winning subelections and present a complete
picture. For 2-Approval or 2-Veto, the decision problem is in P, but the counting problem is
# P-complete, i.e., the task is easy to decide but hard to count.

• We also study the complexity of bribery. Unfortunately, for k-Approval and k-Veto the com-
plexity of the lot-based setting matches the standard case. From the perspective of worst-case
complexity, this indicates that further voting rules and lot-based formalisms have to be found
to impede bribery.

• For 3-Veto we find several cases where ties matter, i.e., the complexity differs depending on
whether the winner is required to be unique or can be tied with other candidates.

• On our way to prove our results for #LOTTHENk-VETO, we settle the complexity of VETO-
#CCAV, namely membership in FP. (The counting complexity of control for Veto was left
open by [164].)

4.1 Related Work

Our work was motivated by the paper by Walsh and Xia [160]. They explored the normative proper-
ties of lot-based rules. Furthermore, they introduced the evaluation problem for lot-based rules and
investigated it as well as two manipulation problems from the complexity theoretic perspective for
some prominent voting rules. In contrast, we introduce the necessary and possible winner problems
for lot-based rules and study bribery as well. As pointed out in Section 3.1, the necessary and possi-
ble winner problems go back to Konczak and Lang [117]. There is, however, an important difference
between their and our definitions. While Konczak and Lang defined their problems for incomplete
profiles in a sense that even individual votes can be incomplete, we only allow incomplete profiles
in a sense that we choose a fixed-size subelection with complete votes from the original election.

Lot-based voting rules can be seen as hybrid rules where we first use a lottery selecting the
voters for a final round, to which we apply a certain voting rule. Conitzer and Sandholm [37]
and Elkind and Lipmaa [57] studied somewhat similar hybrid systems from a complexity theoretic
point of view. In their setting, in a first step a voting rule is used to rule out some candidates. In
contrast, in lot-based voting rules in the first step some voters are ruled out randomly. Furthermore,
the above mentioned two works did not investigate the possible and necessary winner problems for
their voting rules. Hybrid voting rules have been further used in [106] and in [68, 63] for showing
hardness in electoral control, however, these are very different settings compared to ours.

Lot-based voting rules are randomized voting rules introducing uncertainty to elections. In our
case, the set of voters whose votes will count is not known beforehand. There are several papers
handling uncertainty in elections. Elkind and Erdélyi [52] considered voting-rule uncertainty where
the uncertainty is on the voting rule itself (it is picked from a set of possible voting rules after
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all votes are cast). A similar model was introduced by [19]. There is much more literature about
uncertainty in voting, cf. Section 3.1.

Our possible winner problem is somewhat related to the constructive control by adding voters
(CCAV) problem introduced by [16]. Recall that in CCAV we are given an election, an additional
set of voters, an integer `, and a distinguished candidate. The question is whether we can add up
to ` voters from a pool of additional voters to the election such that the distinguished candidate is
the winner of the resulting election. One can consider our possible winner problem as a special
case of CCAV where the original election consists of no voters and we want to add exactly a certain
number of voters from the additional voters such that the distinguished candidate is the winner.
This, however, has absolutely no impact on our complexity results as in CCAV we add up to a
certain number of voters and in the possible winner problem we have to add exactly a given number
of voters to an empty voter set. In fact, we will see that this small difference can lead to different
complexity results. 2 To a certain extent, our problem is also related to the constructive control
by deleting voters (CCDV) problem introduced by [16]. In CCDV, a chair deletes up to ` voters
from the election. Our possible winner problem can be seen as a special case of CCDV where a
chair deletes exactly |V |−K voters from the election and at least one voter remains in the election.
Similarly to CCAV, this (at first glance) little difference can yet lead to different complexity results
between CCDV and the possible winner problem. In particular, whenever CCDV is in P for a given
voting rule, this does not mean that the possible winner problem for the corresponding lot-based
voting rule is in P as well. 3 We refer to [119] for an overview of the results of CCAV and CCDV
in the k-Approval/-Veto families under complete information. 4 In contrast to Lin, we lay our focus
on the unique-winner model. In the context of control, we have to mention the work by Wojtas and
Faliszewski [164] who studied the counting complexity of CCAV in k-Approval, among others.

Our possible winner problem is a special case of a method for designing committees [58]. We
inherit the results for k-Approval and for Veto (see Table 4.1).

We further point out the overview article in Chapter 1 in [60] and the references therein which
are in particular about axiomatic properties in randomized social choice. Some works examine the
mechanism random dictatorship [95] and its axiomatic properties. Loosely speaking, a voter is
picked at random and the voter’s most preferred candidate wins the election. These settings are
different from ours.

Finally, as mentioned above, we have found some problems easy to decide but hard to count.
More of such problems can be found in [157] and [164]. While the former article provides a de-
tailed overview of various problems with easy decision and hard counting variant (especially graph-
theoretical or combinatorial problems), the latter paper presents some easy to decide and hard to
count problems related to voting.

2E.g., LOTTHEN3-APPROVAL-POSSIBLE WINNER [58] and 3-APPROVAL-CCAV [119] are hard and easy, respec-
tively, while LOTTHEN3-VETO-POSSIBLE WINNER and 3-VETO-CCAV are easy and hard, respectively (cf. Theo-
rem 4.5 and [119]). All results hold under the co-winner model.

3By way of example, LOTTHEN3-VETO-POSSIBLE WINNER is NP-complete due to Theorem 4.4 while 3-VETO-
CCDV is in P [119]. Both results hold under the unique-winner model.

4For Plurality, the results originally follow from [16].
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4.2 Problem Settings

Lot-based voting rules are defined as follows. For a given election (C,V ), let K be a fixed (not
constant, in general) natural number with K ≤ |V |. For a voting rule F , the randomized voting rule
LotThenF selects the winner in two steps: first, K voters are selected uniformly at random, second,
the winner is chosen from this K-voter subelection via the voting rule F .

Throughout this chapter, our input is an election (C,V ) with m candidates in candidate set
C = {c1, . . . ,cm−1,c}, n voters in voter set V = {v1, . . . ,vn} (where m,n ∈ N 5), a distinguished
candidate c∈C, and a lot size K ∈N with K≤ n. When regarding evaluation, p∈ [0,1](∩Q) denotes
a probability threshold, whereas for bribery problems a nonnegative integer ` with `≤ n denotes the
bribery limit. We often denote the final election with (C,V̄ ). Analogously to the previous chapter,
V̄ coincides with V in the votes left unchanged by the briber, but contains the new rankings in the
bribed votes. Throughout this chapter, we always assume that the voters vi are given as strict linear
orders over C. If not mentioned other, we are given such an input specific to the current problem we
are studying. Sometimes we rename the voters and/or candidates for practical reasons.

By default, we regard the unique-winner model. Sometimes we also consider the co-winner
model to pinpoint that both winner models yield different complexities of a given problem. One
reason why we focus on the unique-winner model is that Walsh and Xia [160] considered a version
of the unique-winner model (although in their settings, a fixed order over candidates to break ties
is given). Moreover, the unique-winner model has an advantage compared to the co-winner model:
the winning probabilities of all candidates and the probability that a K-voter subelection has no
unique winner sum up to one, whereas this is possibly but not necessarily the case for the co-winner
model. E.g., regard the three-voter and three-candidate election (C,V ) with C = {c1,c2,c3} and
V = {v1,v2,v3} where the lot size is K = 2. Our voting rule is the Plurality rule and voter vi votes
for ci (1≤ i≤ 3). There are three 2-voter subelections and each subelection has two tying winners
with one point each. In the co-winner model, the winning probabilities are 2

3 for all three candidates
(they sum up to two instead of one); in the unique-winner model, the winning probabilities are
zero for each candidate and the probability that there is no unique winner is equal to one. Hence,
the unique-winner model ”normalizes” the winning probabilities to one which might be a slight
advantage when studying more complex models differing from the uniform distribution assumption,
the canonical assumption in our setting. In other words, the lottery selects each combination of K
out of n voters with the same probability 1

(n
K)

.

Before we start our complexity analysis, we recall and introduce the decision and counting prob-
lems we will explore below. We start with the evaluation problem which was introduced in [160].

LOTTHENF -EVALUATION

Given: An election (C,V ), a designated candidate c ∈C, a rational number p ∈ [0,1], and a natural
number K ≤ |V |.

Question: Is the probability of c to be the LotThenF winner by drawing K votes strictly larger than p?

It is also interesting to compute whether there is at least one subelection in which a given can-
didate can win and whether the candidate wins in all subelections. This can be seen as a natural

5In this chapter, we assume that there is always at least one voter in V because the lot size K is always positive, too.
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adaption of the possible/necessary winner problem [117] to lot-based voting rules and was also
suggested as an interesting direction in [160].

LOTTHENF -POSSIBLE/NECESSARY WINNER

Given: An election (C,V ), a designated candidate c ∈C, and a natural number K ≤ |V |.
Question: Is c the LotThenF winner of at least one/of every K-voter subelection?

We point out that possible winner can be regarded as a form of electoral control where the chair
can fix a K-voter subelection in advance, i.e., the chair manipulates the lottery itself and replaces
the actually random sampling of the lottery.

In contrast to the evaluation problem which asks only whether the probability is greater than a
given value, it can be desirable to compute the number of subelections in which the candidate wins.
We define this counting problem as follows:

#LOTTHENF

Given: An election (C,V ), a designated candidate c ∈C, and a natural number K ≤ |V |.
Question: How many K-voter subelections do exist with the unique winner c?

Finally, we regard two variants of bribery, namely possible and necessary bribery introduced
by us in the context of lot-based voting. Note that in a lot-based setting we cannot work with the
standard bribery definition where in a given election the briber is allowed to change some voters’
votes in order to make his favorite candidate win the election [79]. In contrast, in lot-based elections
we can ask whether there exists a K-voter subelection after the bribery where the briber reaches his
goal (possible bribery) or whether the briber reaches his goal in all K-voter subelections (necessary
bribery).

LOTTHENF -POSSIBLE/NECESSARY BRIBERY

Given: An election (C,V ), a designated candidate c ∈C, a bribery limit ` ∈N0 (with `≤ |V |), and a
natural number K ≤ |V |.

Question: Is it possible to change up to ` votes such that c is the LotThenF winner of at least one/every
subelection of K voters?

Analogously to possible winner, possible bribery can be seen as a combination of bribery/control
where the chair may completely change some voters’ votes and decide which voters are drawn by
the lottery.

4.3 Results

Our results are summarized and juxtaposed with results from the literature in Table 4.1. Analogously
to the previous chapters, we say that some problems are NP-complete or # P-complete; however,
we only prove hardness. Note that membership in NP or # P can be shown via simple guess&check
algorithms.
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NW PW # Eval. NB PB
LotThenPlurality P P [58] FP P P P
LotThen2-Approval P P [58] #PC P P
LotThenk-Approval (k ≥ 3) P NPC [58] #PC NPC NPC NPC
LotThenVeto P P [58] FP P P P
LotThen2-Veto P P #PC P P
LotThen3-Veto P NPC #PC NPC NPC NPC
LotThenk-Veto (k ≥ 4) P NPC #PC NPC NPC NPC

Table 4.1: Complexity results for LOTTHENk-Approval and LOTTHENk-Veto under the unique-
winner model. Results in boldface are new. Results in italic follow from [119] or [58] via reduc-
tions. Key: ”NW” stands for ”necessary winner”, ”PW” means ”possible winner”, ”#” stands for
”counting complexity”, ”Eval.” stands for ”evaluation”, ”NB” means ”necessary bribery”, ”PB”
stands for ”possible bribery”, ”#PC” stands for ”# P-complete”, and ”NPC” means ”NP-complete”.
P and FP indicate membership results.

4.3.1 Possible and Necessary Winner

Our first result says that the necessary winner problem for lot-based voting rules is easy even for the
whole family of scoring rules.

Theorem 4.1. LOTTHENF -NECESSARY WINNER is in P for every scoring rule F .

Proof. Our algorithm checks for every candidate c j ( j ∈ [m−1]) whether c j can beat or tie with
c for at least one subelection with K voters. To do so, we first sort the voters vi in decreasing order
according to the score differences score(C,{vi})(c j)−score(C,{vi})(c). This can be done in polynomial
time. 6 Hence, for each c j, we assume that (after sorting) the voters in V are sorted in decreasing
order according to these score differences. In other words, v1 and vn maximize and minimize this
score difference, respectively. Note that all voters might yield the same difference.

We accept if and only if it holds ∆(c j) := ∑
K
i=1(score(C,{vi})(c j)− score(C,{vi})(c))< 0 for each

j ∈ {1, . . . ,m− 1} as then and only then for every K-voter subelection c has a higher score than
every other candidate c j. Observe that for each c j, the first K score differences lead to a maximum
∆(c j). Hence, if there is any chance for c j to beat or tie with c in a subelection of K voters, these K
voters ensure this.

Note that our problem is in P as we can first compute the difference score(C,{vi})(c j)−
score(C,{vi})(c) in every vote, sort the values decreasingly, and calculate the sum of the first K values.
This is done for at most m−1 candidates. q

Now let us focus on possible winner. In [58], the authors have already studied the possible
winner problem for k-Approval and for the Veto voting rule in lot-based elections. 7 More pre-
cisely, they considered a variant of the unique-winner model with ties broken in a predetermined

6The ”naive” approach (already existing in literature) for sorting a list of n numbers is as follows. Go through the
whole list, move the largest element at the end of the list, leave the ordering of the remaining numbers unchanged. Go
a second time through the list, move again the largest element among the first n− 1 numbers at the end of this list with
n−1 numbers. Apply this subroutine n times. Observe that this naive approach requires O(n2) running time.

7These results can be regarded as a byproduct of their work since they actually studied the so-called k-DELEGATION

problem of which possible winner is a special case with k = 1. They did not use the term ”possible winner” to denote this
special case k = 1.
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order. To tailor these results to our unique-winner model, for k-Approval (k ≤ 2) and Veto we may
also exploit that the more general problem possible bribery is polynomial-time decidable (cf. The-
orem 4.27, 4.28, and 4.30). For 3-Approval, the proof of Theorem 6.1 in [58] holds for a unique-
winner variant with ties broken in favor of the distinguished candidate (called z in their proof).
Hence, in fact, the authors therein show the result for the co-winner case defined as in Section 2.3,
for the tie-breaking rule selects c in doubt. To adapt their proof to ”our” unique-winner model, we
adjust their construction as follows.

Theorem 4.2. LOTTHENk-APPROVAL-POSSIBLE WINNER is NP-complete for k ≥ 3.

Proof Sketch. We first provide the construction for k = 3 and argue later how to adjust it for
k > 3. We renounce of a detailed proof since our construction is nearly identical to the one used in
the proof of Theorem 6.1 in [58] and the argument of correctness works almost identically.

Given an instance (B,S ) of X3C with B = {b1, . . . ,b3m}, S = {S1, . . . ,Sn}, Si ⊂ B, |Si| = 3
for each i, 1 ≤ i ≤ n, and n ≥ m (otherwise, a cover does not exist), we construct the following
instance of LOTTHEN3-APPROVAL-POSSIBLE WINNER. Let C = {c,d1, . . . ,d4}

·
∪ B denote the

set of candidates, c be the distinguished candidate, and K = m+2. Moreover, there are n+2 voters
in V defined as follows:

• vi approves of the candidates in Si (1≤ i≤ n).

• Voter vn+1 approves of c, d1, and d2.

• Voter vn+2 approves of c, d3, and d4.

In order that c is a unique winner in a K-voter subelection, the lottery must select the lowermost
two voters vn+1 and vn+2 and m voters in {v1, . . . ,vn}. The only way to ensure that c is a unique
winner in such a subelection is that the lottery picks each b j ∈ B at most once. Since m voters from
{v1, . . . ,vn} approve of 3m candidates in total and B includes 3m candidates, this is only possible
if an exact cover exists. In case an exact cover exists, the lottery makes c the unique winner via
selecting the m cover corresponding voters and vn+1 and vn+2.

For k > 3, we additionally introduce (n+2)(k−3) dummy candidates each of whom is approved
by exactly one voter in V .

In the following, we complete the picture by solving the possible winner problem for LotThenk-
Veto, for all k ≥ 2.

Theorem 4.3. LOTTHEN2-VETO-POSSIBLE WINNER is in P.

Proof. We omit the proof because Theorem 4.17 and 4.31 imply that the more general problem
LOTTHEN2-VETO-POSSIBLE BRIBERY is in P. q

For 3-Veto, the complexity of the possible winner problem differs in the unique-winner and
co-winner models. This is yet another case in the list of voting problems where ties matter (and
again the voting rule is 3-Veto). Recall that ties matter for the ”classical” possible winner problem
(Theorem 3.11 and 3.12 in Section 3.4) as well.

First, we show that possible winner for 3-Veto is hard under the unique-winner model.
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Theorem 4.4. LOTTHENk-VETO-POSSIBLE WINNER is NP-complete for k≥ 3 under the unique-
winner model.

Proof. The proof is for 3-Veto. At the end of the proof, we will show how to adapt the proof
for k ≥ 4. We show hardness by a reduction from 3DM. Based on a 3DM instance (X ,Y,Z,E)
with |X |= |Y |= |Z|= n, E = {e1, . . . ,em} (where E ⊆ X ×Y ×Z), and m ≥ n (otherwise, a three-

dimensional matching does not exist), we construct an election (C,V ), where C = {c}
·
∪ X

·
∪ Y

·
∪ Z

is the set of candidates, c is the designated candidate, and V = {v1, . . . ,vm} is the set of voters,
where each vi, 1≤ i≤m, vetoes exactly the candidates in ei. Furthermore, let n be the lot size. Note
that vetoes(c) = 0 in the overall election. Thus, the distinguished candidate has zero vetoes in every
n-voter subelection.

We claim that c is a LotThen3-Veto possible winner if and only if there is a three-dimensional
matching E ′ ⊆ E.

(⇒): Assume that c is a LotThen3-Veto possible winner. This means that every a ∈ X ∪Y ∪Z
is vetoed at least once in an n-voter subelection. As the lottery distributes exactly 3n vetoes by
selecting n voters vi1 , . . . ,vin at random (where 1 ≤ i1 < .. . < in ≤ m) and since there are exactly
3n candidates in X ∪Y ∪ Z, the corresponding sets ei1 , . . . ,ein have to form a three-dimensional
matching of X ∪Y ∪Z.

(⇐): Assume that a three-dimensional matching E ′ = {ei1 , . . . ,ein} exists. Consider the n-voter
subelection (C,{vi1 , . . . ,vin}). In this subelection, each a ∈ X ∪Y ∪ Z receives exactly one veto.
Thus, being the only candidate with zero vetoes in the resulting n-voter subelection, c is the unique
winner in this n-voter subelection and thus a LotThen3-Veto possible winner.

For k ≥ 4, we extend the construction for 3-Veto by introducing k−3 dummy candidates who
are vetoed in every vote. q

The following theorem says that the same problem as in the previous theorem is solvable in
polynomial time under the co-winner model.

Theorem 4.5. LOTTHEN3-VETO-POSSIBLE WINNER is in P in the co-winner model.

Proof. Again, we refer to the corresponding result for possible bribery. According to Theo-
rem 4.17 and 4.33, LOTTHEN3-VETO-POSSIBLE BRIBERY is easy in the co-winner model. Since
possible winner is a special case of possible bribery, membership in P follows. q

Ties matter for LOTTHEN3-VETO-POSSIBLE WINNER. The following theorem says that for
k ≥ 4, LOTTHENk-VETO-POSSIBLE WINNER is NP-complete under the co-winner model as well.
The proof uses a different construction to the proof sketch in [119] pointing out that the closely
related problem k-VETO-CCDV is NP-complete for k≥ 4. To complete the picture, we next present
the full proof, tailored to the possible winner problem for lot-based voting rules.

Theorem 4.6. LOTTHENk-VETO-POSSIBLE WINNER is NP-complete for every k ≥ 4 in the co-
winner model.

Proof. The proof is for 4-Veto. At the end of the proof, we will show how to adapt the proof for
k ≥ 5.

We show hardness by a reduction from X3C. Our X3C instance (B,S ) is defined by B =
{b1, . . . ,b3m}, S = {S1, . . . ,Sn}, Si⊂B, and |Si|= 3 (i= 1, . . . ,n). W.l.o.g., we let n≥m (otherwise,
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a cover does not exist) and m≥ 2. 8 According to (B,S ), we construct an election (C,V ), where C =

{c,d1,d2,d3}
·
∪ B is the set of candidates, and V is the set of voters with the following n+3m(m−1)

voters:

1. For each i, 1≤ i≤ n, there is a voter vi who vetoes c and the candidates in Si and

2. for each j, 1≤ j ≤ 3m, there are m−1 voters who veto b j and the dummy candidates d1, d2,
and d3.

Furthermore, let K = m+ 3m(m− 1) be the number of voters drawn by the lottery. Note that
vetoes(c) = n, vetoes(d j) = 3m(m−1) for each j, 1≤ j≤ 3, and vetoes(b j) = l j +(m−1), for each
j, 1≤ j ≤ 3m, where l j = |{Si ∈S : b j ∈ Si}|.

We claim that c is a LotThen4-Veto possible winner if and only if B has an exact cover.
(⇒): Assume that c is a possible winner, hence there exists a K-voter subelection where c

is a winner. Since there are only 3m(m− 1) voters not vetoing c, and K = m+ 3m(m− 1), the
distinguished candidate c receives at least m vetoes in this subelection. First we show that in a
subelection of which c is a winner, c has to get exactly m vetoes. Then we argue that an exact cover
of B must exist. Assume that c receives m+ t vetoes. This means that m+ t voters of the first group
and 3m(m−1)− t voters of the second group are drawn by the lottery. Consequently, the candidates
in B receive a total of 3(m+t)+1(3m(m−1)−t) vetoes in such K-voter subelections. These vetoes
have to be distributed among all b j ∈ B such that each of the 3m candidates in B receives at least
m+ t vetoes. Thus, the following inequality has to hold:

3(m+ t)+1(3m(m−1)− t)≥ 3m(m+ t).

We can simplify this inequality to:
3mt ≤ 2t.

Since t is a nonnegative integer and m is positive due to our assumptions from above, t = 0 is the
only admissible solution to this inequality.

Therefore, c being a possible winner implies that only m voters drawn by the lottery veto c and
all voters of the second group belong to this K-voter subelection.

As c has m vetoes and each b j is vetoed by m−1 voters in the second voter group, 3m candidates
in B require (at least) 3m additional vetoes from voters in the first group, drawn by the lottery. This
is only possible when the lottery can pick m voters vi1 , . . . ,vim from the first group such that the sets
Si1 , . . . ,Sim exactly cover B.

(⇐): Assume that B has an exact cover. Drawing the corresponding m voters from the first
voter group and all voters from the second voter group makes c a winner of this subelection since
vetoes(c)= vetoes(b j)=m for each j, 1≤ j≤ 3m, and vetoes(d j)=K−m= 3m(m−1) (1≤ j≤ 3).
(In particular, from m > 1 it follows that c has at most as many vetoes as the d j; for m = 1, the d j

would have fewer vetoes than c.)
To adapt the proof for k-veto with k ≥ 5, it suffices to introduce k−4 dummy candidates being

vetoed in every vote. q

8This additional condition will turn out to be essential as otherwise the dummy candidates beat c.
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Thus, we have achieved a complexity dichotomy for k-Veto under the unique-winner model and
could show that LOTTHENk-Veto-POSSIBLE WINNER is easy for k ≤ 2 and hard for k ≥ 3.

Our next theorem states that our results still hold when we drop the assumption that K voters
are uniformly drawn at random and relax this assumption by allowing that each combination of K
voters is drawn with an individual positive probability.

Theorem 4.7. All results for possible and necessary winner still hold if each combination of K
voters is drawn by the lottery with arbitrary positive probability.

Proof. Verify that all proofs for necessary winner and possible winner only care about whether c
is the winner for at least one or all subelections with K voters. The actual probability weights are
irrelevant. q

4.3.2 Counting Problems

In this section, we analyze the computational complexity of #LOTTHENF for the voting rules
studied above. Firstly, these results allow to compare the complexity of the decision problems
with the counting problems. Secondly, the #LOTTHENF problem can also be used to compute the
probability of being a winning candidate. (Notice that this is in contrast to the evaluation problem
where we only check whether the probability is larger than a specified bound.)

Theorem 4.8. #LOTTHENPLURALITY is in FP.

Proof. For this result we use the relation to constructive control by adding voters (CCAV) and
build upon a result from the literature (Theorem 6 in [164]) which states that the counting version of
CCAV for Plurality is in FP. In a nutshell, in CCAV one can add up to ` voters to the given election
to make a designated candidate win. This is in contrast to lot-based voting rules where we have a
lot-size of exactly K = `. To compute #LOTTHENPLURALITY, it suffices to construct two CCAV
instances: the first one with candidate set C, empty registered voter set, unregistered voter set V , and
with K voters allowed to be added from V to the election; the second one is the same, but permits
only K−1 voters to be added.

Let N be the solution count for the instance with K and N′ for the instance with K−1, respec-
tively. We compute the difference N−N′ which gives us the number of ways to add exactly K voters
from V to the empty election such that c is the unique winner. This is equivalent to the lot-based
possible winner problem for Plurality and hence #LOTTHENPLURALITY is in FP. q

Our next result reveals that we can check in polynomial time whether c is a possible winner,
but counting the number of K-voter subelections with c as the sole winner is hard. The proof uses
a similar construction to the proof of Theorem 10 in [164] showing that k-APPROVAL-#CCAV is
# P-complete for k ≥ 2.

Theorem 4.9. #LOTTHENk-APPROVAL is # P-complete for k ≥ 2.

Proof. In a first step, we show hardness for k = 2 and argue later how to adapt the proof for larger
values. We reduce from #PERFECT MATCHINGS which is well-known to be # P-complete [157].
Given an instance (X ,Y,E ) with |X |= |Y |= n and E = {e1, . . . ,em} (each edge connects a vertex in
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X with a vertex in Y ), and m≥ n (otherwise, a matching is impossible) of #PERFECT MATCHINGS,
we construct an instance of #LOTTHEN2-APPROVAL as follows.

Let C = {c,d1,d2}
·
∪ X

·
∪Y , where c is the designated candidate. The voters in V are defined as

follows.

1. For each ei = {xi,yi} ∈ E (i ∈ {1, . . . ,m}, xi ∈ X , yi ∈ Y ), there is a voter (”edge voter”) vi

approving of xi and yi.

2. Besides, there are two additional voters vm+1 and vm+2 approving of the candidate pairs
{c,d1} and {c,d2}, respectively.

Finally, let K = n+2.
Observe that if c is drawn at most once, c cannot be the unique winner as there is at least one

candidate approved of by an edge voter who would be tied with c or beat c. Hence, a subelection
with c as the winner must have vm+1 and vm+2 among its voters. Now n remaining voters give
2n points to 2n non-distinguished candidates. Consequently, the only way for c to win with two
approvals is the existence of a perfect matching since then every non-distinguished candidate is
drawn exactly once and none of the candidates in X ∪Y scores at least twice in the drawn votes. The
dummy candidates d1 and d2 have only a score of one each and therefore lose against c if vm+1 and
vm+2 are picked by the lottery. As the number of winning subelections equals the number of perfect
matchings, hardness for our problem follows immediately.

For higher values of k we simply introduce (m+2)(k−2) dummy candidates who are approved
of precisely once in total. q

Before we show our result for the Veto rule, we first prove an FP result left open in [164]. Based
on this easiness result, we will be able to settle our FP result for #LOTTHENVETO in the subsequent
theorem.

Theorem 4.10. VETO-#CCAV is in FP.

Proof. To prove our result, we use a recursion based on a similar approach to the one in the proof
of Theorem 6 in [164] (showing that PLURALITY-#CCAV is in FP).

Our input is an election (C,V
·
∪W ) with m> 1 candidates in candidate set C = {c,c1, . . . ,cm−1},

nV voters in registered voter set V , nW voters in unregistered voter set W , distinguished candidate c,
and a nonnegative integer `≤ nW denoting the number of voters the chair may add from W .

First let Vd and Wd contain all voters in V and W vetoing candidate d ∈ C, respectively. Our
goal is to count the number of subsets W ′ added from W such that |W ′| ≤ ` holds and c is the unique
winner in the final election (C,V ∪W ′). In case j added voters veto c ( j ∈ {0,1, . . . ,min(`, |Wc|)}),
the chair can additionally introduce any number of voters between 0 and `− j from Wc1∪ . . .∪Wcm−1 .

Let N′(C,V,W,c, `, j) be the number of ways that (1) the chair adds exactly j voters vetoing
c from W and (2) at most `− j other voters (i.e., from Wc1 ∪ . . .∪Wcm−1), and (3) c is the unique
winner in the resulting election. Observe that the total number N(C,V,W,c, `) of possibilities to add
` voters or less from W such that c is the unique winner in the final election can be computed the
following way:

N(C,V,W,c, `) =
min(|Wc|,`)

∑
j=0

N′(C,V,W,c, `, j).



124 CHAPTER 4. LOT-BASED VOTING

In the following, we show how to derive the values N′(C,V,W,c, `, j) (for each j ∈
{0,1, . . . ,min(`, |Wc|)}) via recursion. One idea is that we first compute this value restricted to
one candidate c1 and for any possible number of added vetoes for non-distinguished candidates.
Based on these values, we can compute these numbers embracing the candidates c1 and c2 (that is,
c must beat both c1 and c2), and step by step, we can amplify the number of candidates restricting
ourselves to until we incorporate all candidates other than c. Accordingly, for a given number j of
added voters vetoing c, we recursively determine the numbers of ways to add at most `− j voters
vetoing the other candidates such that c1, . . . ,cm−1 have more than vetoes(C,V )(c)+ j vetoes in the
final election.

Formally, we let a j
ti denote the number of subsets W ′′ ⊆Wc1 ∪ . . .∪Wci added from W such that

|W ′′| = t holds and every ch (1 ≤ h ≤ i) has more than |Vc|+ j vetoes in total (including vetoes
from voters in V and from voters added from W ). Note that it holds j ∈ {0,1, . . . ,min(|Wc|, `)},
t ∈{0,1, . . . , `− j}, and i∈{1, . . . ,m−1}. j denotes the index representing the additional number of
vetoes for c from voters added from W , i is the candidate index (i.e., the number of non-distinguished
candidates to whom we restrict ourselves), and t denotes the index representing the number of voters
added from Wc1 ∪ . . .∪Wci .

In other words, when computing a j
ti, we actually calculate the number of ways to add exactly

t voters from W vetoing the first i non-distinguished candidates such that c beats each of them, by
implicitly assuming that j further added voters veto c, that is, c is the unique winner for the final
election restricted to the candidate subset {c,c1, . . . ,ci} even though we increase the original veto
number of c by j. Note that in this context we do not consider the number of ways to select j vetoes
for c from |Wc| voters in Wc. We compute the number of ways for c to get j vetoes from voters in W
separately at the end of the proof.

As aforementioned, since c has |Vc|+ j vetoes in the final election, every ch (1 ≤ h ≤ i) must
have at least |Vc|+ j + 1 vetoes in the final election. We apply the following recursive algorithm
to our problem. For each j ∈ {0, . . . ,min(|Wc|, `)}, t ∈ {0, . . . , `− j}, and i ∈ {1, . . . ,m− 1}, we
compute the values a j

ti as follows. (In the Appendix, we will provide a numerical example in order
to illustrate this algorithm.)

• If t = 0, i≥ 1, compute a j
ti =

{
1, if |Vc|+ j < min(|Vc1 |, . . . , |Vci |)
0, else

.

When we add t = 0 voters not vetoing c, there is only one possibility to ”add” zero vetoes for
the first i non-distinguished candidates such that c is the winner with j additional vetoes: the
case where c beats the first i candidates c1, . . . ,ci who receive only their vetoes from voters in
V and c even gets j additional vetoes.

• If t > 0, i = 1, compute a j
t1 =

{(|Wc1 |
t

)
, if t > |Vc|+ j−|Vc1 |,

0, else
.

We can only add t vetoes for the first candidate c1 and c has fewer vetoes than c1 in the final
election (even though j additional vetoes for c are considered) if t is large enough and there
are enough vetoes for c1 in W to add.

• In case t > 0 and i > 1, compute a j
ti = ∑

min(|Wci |,t)
s=max(|Vc|+ j−|Vci |+1,0)

(|Wci |
s

)
a j

t−s,i−1.
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Every summand behind the sigma sign counts the number of ways to add s vetoes for the ith
candidate from W such that ci and all candidates c1, . . . ,ci−1 have more vetoes than c in the
final election (where c has |Vc|+ j vetoes) and exactly t− s vetoes in total for the first i− 1
candidates (and thus exactly t vetoes for the first i non-distinguished candidates) are added
from W . The lower bound of the sum describes that ci requires at least max(|Vc|+ j−|Vci |+
1,0) additional vetoes from voters in W to not beat or tie with c in the final election (as c has
|Vc|+ j vetoes in the final election; since ci is vetoed by |Vci | voters in V , ci requires at least
max(|Vc|+ j−|Vci |+1,0) additional vetoes from voters added from W in order to not tie with
or even beat c). Zero additional vetoes only suffice for ci to have more vetoes than c when
ci already receives more than |Vc|+ j vetoes from voters in V . The upper bound of the sum
ensures that the chair can add no more than t, but also no more than |Wci | voters from Wci .
Note that in case the upper bound is smaller than the lower bound, we obtain a zero sum. The
same holds for binomial coefficients where the upper number is smaller than the lower one.
Observe that there are

(|Wci |
s

)
ways to select s vetoes for ci in W . In case the chair adds s voters

vetoing ci and t voters vetoing the first i candidates in total, there are a j
t−s,i−1 combinations to

select the remaining voters added from Wc1 ∪ . . .∪Wci−1 such that the first i candidates have
more vetoes than c in the final election. The sum implicitly exploits that c has |Vc|+ j vetoes
in the final election.

Recall that a j
ti counts the number of ways to add exactly t ≤ `− j voters vetoing the candidates

c1, . . . ,ci (i.e., the first i candidates, i ≤ m− 1) such that every candidate in {c1, . . . ,ci} has more
vetoes than c in the final election, under the assumption that j voters vetoing c are added from W . 9

Note that we compute a j
ti (for the first i candidates), directly exploiting the values a j

t ′i′ (t ′ = 0, . . . , t,
i′ = 1, . . . , i−1).

One can regard the j index as the outermost loop, t as the middle loop, and the i index as the
innermost loop, i.e., based on the current values for j and t, our algorithm provides the values a j

ti
for i = 1, . . . ,m−1.

The number N(C,V,W,c, `), counting all possible ways to add at most ` voters from W and c is
the unique winner afterwards, is computed as follows:

N(C,V,W,c, `) =
min(|Wc|,`)

∑
j=0

N′(C,V,W,c, `, j)

=
min(|Wc|,`)

∑
j=0

(
|Wc|

j

)
·
`− j

∑
t=0

a j
t,m−1.

Observe that there are only polynomially many values a j
ti to determine. More precisely, there

are O(`2m) such numbers to compute and each one in turn is easy to calculate. Thus, this sum can
be computed in polynomial time and our overall counting problem is in FP. q

Directly exploiting the algorithm given in the proof of Theorem 4.10, we can settle the number
of ways to draw K out of n voters and c is the only winner:

9Remind that the number of combinations of j vetoes being selected from |Wc| voters in Wc do no matter here. We
consider these numbers for every j when calculating the final sum at the end of the proof.
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Theorem 4.11. #LOTTHENVETO is in FP.

Proof. Analogously to the proof of Theorem 4.8, we define two instances of VETO-#CCAV and
compute N = N(C, /0,V,c,K)−N(C, /0,V,c,K− 1), where N(C, /0,V,c,K) is defined as the number
of ways to add at most ` voters from V to an election without any voters and c is the unique winner.
Likewise, subtracting two sums of problems easy to count is in FP as well. q

Our next result offers us another instance where the decision problem is easy, but the counting
problem is hard (for k = 2):

Theorem 4.12. #LOTTHENk-VETO is # P-complete for k ≥ 2.

Proof. Our proof is only for k = 2. At the end, we will argue how to adapt the proof to higher
values of k. For 2-Veto, we reduce #PERFECT MATCHINGS to our problem. Given an instance
(X ,Y,E ) of #PERFECT MATCHINGS with |X | = |Y | = n and E ⊆ {{x,y} : x ∈ X ,y ∈ Y}, E =

{e1, . . . ,em}, we construct our election as follows. We are given a candidate set C = {c}
·
∪ X

·
∪ Y ,

where c denotes our distinguished candidate. Our voters are defined as follows. For ei = {xi,yi}
(xi ∈ X ,yi ∈Y, i = 1, . . . ,m), there is a voter vetoing xi and yi. Finally, our lot size is K = n. W.l.o.g.,
we have m ≥ n as otherwise a perfect matching does not exist and our election would not be well-
defined (as the lot size would be greater than the number of voters).

Notice that c has zero vetoes, no matter which K voters are drawn. However, c only wins alone
if and only if every candidate in X ∪Y is vetoed at least once in a given subelection of K = n voters.
As 2n vetoes go to 2n candidates in total, this implies that c can only be the winner if and only if the
n drawn votes form a perfect matching of X and Y . As the number of winning subelections equals
the number of perfect matchings and this latter number is hard to count, our counting problem is
hard as well. For higher values of k, we introduce k− 2 dummy candidates d1, . . . ,dk−2 who are
vetoed in every vote. q

Thus, we obtain dichotomy results both for k-Approval and k-Veto. For both voting rules, the
cases k = 1 are easy to count and the other cases are hard to count.

4.3.3 Evaluation

In this section we present some evaluation results for lot-based voting rules not considered by Walsh
and Xia [160]. We start with a theorem which relates the possible winner, necessary winner, and the
evaluation problems.

Theorem 4.13. For every voting rule F the following holds:

1. LOTTHENF -POSSIBLE WINNER ≤p
m LOTTHENF -EVALUATION and

2. LOTTHENF -NECESSARY WINNER ≤p
m LOTTHENF -EVALUATION,

where ≤p
m means polynomial-time many-one reducibility.

Proof.

1. The possible winner problem is a special case of the evaluation problem with p = 0.
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2. Let n be the number of voters and K the lot size. For a candidate c, a winning probability
of p = 1− 1/

(n
K

)
under the uniform distribution means that there is exactly one K-voter

subelection where c is not the unique winner. If we use this probability p in the evaluation
problem, we require that c is the unique winner in all K-voter subelections and the underlying
problem is actually the necessary winner problem. Hence, the necessary winner problem is a
special case of the evaluation problem with p = 1−1/

(n
K

)
.

q

We point out that both reductions still hold when we relax the assumption of the uniform distri-
bution and allow for general positive probabilities for every combination of K voters to be drawn by
the lottery. Let pmin denote the smallest probability with which a combination of K voters is drawn
by the lottery. Then p = 1− pmin is a possible probability threshold for necessary winner, while
p = pmin is a threshold for possible winner.

Our next result gives us a direct connection between easy counting problems and their corre-
sponding evaluation problems.

Theorem 4.14. LOTTHENPLURALITY-EVALUATION and LOTTHENVETO-EVALUATION are in P.

Proof. Let p ∈ [0,1] be a probability threshold and regard Plurality or Veto. Due to Theorem 4.8
and 4.11, the number N of K-voter subelections with unique-winner c can be easily computed. To
evaluate if c is the winner with a probability greater than p, we only have to check whether N

(n
K)

> p

holds. q

Due to Theorem 4.13 and 4.4, and the fact that LOTTHEN3-APPROVAL-POSSIBLE WINNER is
NP-complete [58], hardness follows for k-Approval and k-Veto for every k≥ 3 in the unique-winner
model.

Corollary 4.15. LOTTHENk-APPROVAL-EVALUATION and LOTTHENk-VETO-EVALUATION are
NP-complete for k ≥ 3 in the unique-winner model.

Note that in the co-winner model, we can perform this latter reduction only for k-Veto, k ≥ 4.
Yet one can show that evaluation is hard for 3-Veto too.

Theorem 4.16. LOTTHEN3-VETO-EVALUATION is NP-complete in the co-winner model.

Proof. We prove NP-hardness by a reduction from X3C. Given an X3C instance (B,S ) with
B = {b1, . . . ,b3m}, S = {S1, . . . ,Sn}, Si ⊂ B, and |Si|= 3 (i = 1, . . . ,n), we construct the following
election.

Let C = {c,d,e}
·
∪ B be the set of candidates, c the designated candidate, and let V consist of

the following n+1 voters:

• For each i, 1≤ i≤ n, there is a voter vi vetoing the candidates in Si and

• there is one voter vn+1 vetoing the candidates c, d, and e.
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Furthermore, let p =
( n

m+1

)
/
(n+1

m+1

)
be the probability threshold and K = m + 1 the lot size.

W.l.o.g., we let n≥ m because otherwise an exact cover does not exist.
We claim that the probability of c being a LotThen3-Veto winner is strictly larger than p if and

only if B has an exact cover.
(⇒): Assume that the probability of c being a winner is strictly larger than p. If the lottery only

chooses m+1 voters of the first voter group, c is a LotThen3-Veto winner with zero vetoes (recall,
in the co-winner model a candidate with zero vetoes is always a winner). There are

( n
m+1

)
different

ways to choose m+1 voters from the first voter group. Hence, for exceeding the winning probability
p, there has to be an (m+1)-voter subelection containing voter vn+1 so that c is a winner. This means
that vetoes(c) = vetoes(d) = vetoes(e) = 1 in this subelection. The distinguished candidate c can
only be a winner if the lottery picks each b j ∈ B at least once. As B contains 3m candidates and the
lottery picks exactly m votes from voter group one assigning 3m vetoes to candidates in B in total,
the existence of an exact cover of B follows.

(⇐): Assume that B has an exact cover. Again, the lottery can pick in
( n

m+1

)
different ways

m+ 1 voters from the first voter group. In all these subelections c is a winner with zero vetoes.
Additionally, picking the exact cover corresponding voters from voter group one and voter vn+1 is
a subelection where c is a winner (each candidate in the election has exactly one veto). Thus, the
winning probability of c is at least (1+

( n
m+1

)
)/
(n+1

m+1

)
> p. q

Note that the problem is open for 2-Approval and 2-Veto, under both winner models. Although
we know that counting the number of winning subelections for c is hard for both voting rules, and
even though we implicitly require these numbers to compare them with the probability thresholds
p, we cannot formally derive hardness of the evaluations problems from hard counting problems.
Nevertheless, our intuition is that both problems are hard.

4.3.4 Bribery

In this section, we investigate two different types of bribery for lot-based voting rules, namely
necessary bribery and possible bribery. Before arriving at the actual complexity analysis, we provide
the following reductions:

Theorem 4.17. For every voting rule F , the following holds:

1. LOTTHENF -NECESSARY WINNER ≤p
m LOTTHENF -NECESSARY BRIBERY,

2. LOTTHENF -POSSIBLE WINNER ≤p
m LOTTHENF -POSSIBLE BRIBERY,

3. F -BRIBERY ≤p
m LOTTHENF -NECESSARY BRIBERY,

4. F -BRIBERY ≤p
m LOTTHENF -POSSIBLE BRIBERY

where ≤p
m means polynomial-time many-one reducibility.

Proof. The first two relations follow since under a bribery limit ` = 0 necessary and possible
bribery coincide with necessary and possible winner, respectively. The third (fourth) relation holds
as LOTTHENF -NECESSARY BRIBERY (LOTTHENF -POSSIBLE BRIBERY) instances with K = n
(i.e., the lottery draws all voters in V ) coincide with standard bribery. q

Before we settle the first complexity result, we provide an auxiliary result.
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Lemma 4.18. Let F = k-Approval. Suppose that the distinguished candidate c has at least s̄ points
in every K-voter subelection and there is at least one K-voter subelection for which c has exactly
s̄ points. Then (under the unique-winner model) c is a necessary winner if and only if each other
candidate c j has at most s̄−1 points in total.

Proof. The minimum guaranteed score s̄ for c in any K-voter subelection is uniquely determined.
Assuming that c has score(c) points in a given election and the lottery picks as many voters as
possible disapproving of c, it holds s̄ = max(0,score(c)− n+K). This finding can be interpreted
as follows. In case c has more than score(c)−n+K approvals, the lottery can ignore n−K voters
approving of c and selects exactly s̄ = score(c)− n+K > 0 voters approving of c. In case c has
at most n−K points in total, the lottery ignores all c-voters and therefore no drawn voter approves
of c.

Next, we show that c is a necessary winner with minimum guaranteed score s̄ if and only if for
each c j it holds score(c j)≤ s̄−1.

(⇐): As c j has at most s̄−1 points in total, this holds for any subelection with K voters. Since
c has s̄ or more points in any K-voter subelection, c is the only winner no matter which K voters are
drawn by the lottery.

(⇒): Assume for contradiction that c is the unique winner for every K-voter subelection, but
there is some c j with score(c j)≥ s̄. We distinguish the following cases:

• score(c j) ≥ max(K, s̄). In this case, we can construct a K-voter subelection where K voters
approving of c j are drawn. Hence, c is not the only winner in this subelection and thus no
necessary winner.

• s̄≤ score(c j)< K. Observe that the lottery cannot draw K voters approving of c j, but we may
assume that it selects as many c j-voters as possible. We construct the following subelection
for which c is not a unique winner.

1. Pick all K− s̄ voters not approving of c. These voters exist as c has only s̄ points in the
worst-case.

2. Draw all min(s̄,score(c,c j)) voters approving of c and c j.

3. Select s̄−min(s̄,score(c,c j)) voters approving of c, but not c j.

If min(s̄,score(c,c j)) = s̄, the lottery draws s̄ voters approving of c and c j. Since c has
exactly s̄ points and c j at least s̄ points in this subelection, c is not the unique winner. If
score(c,c j)< s̄, the lottery selects all score(c,c j) voters approving of c and c j and all voters
approving of c j, but not c. Hence, c j has at least s̄ points in this subelection and c has exactly
s̄ points.

Observe that each considered subcase results in a contradiction. q

We obtain an analogous result for k-Veto by exploiting that a voter vetoes a given candidate if
and only the voter disapproves this candidate. Thus, we can likewise determine v̄ ∈ {0, . . . ,K} as
the largest possible veto number in any K-voter subelection. Observe that it holds s̄+ v̄ = K.

We start with necessary bribery asking whether the briber can make c the winner for every
K-voter subelection.
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Theorem 4.19. LOTTHENPLURALITY-NECESSARY BRIBERY is in P.

Proof. First, if score(c)+ ` > n− K
2 , we accept because the briber can make c reach more than

fifty percent of all votes in each K-voter subelection: c gains at least bK
2 c+ 1 points in any such

subelection and consequently, each other candidate has at most K−bK
2 c−1 < bK

2 c+1 points.
For score(c)+ ` ≤ n−K, there are selections of K voters so that c does not score at all and, in

particular, c is never a unique winner with zero points in any election (in fact, c would not even be
a co-winner). Thus, we reject.

It remains to argue for n−K < score(c)+ `≤ n− K
2 . In this case, c reaches a positive score in

every subelection of K voters and can achieve at most a weak majority of points (that is, half of all
points) in the worst case. The briber can make c reach at least a score of s̄ := score(c)+`−n+K ∈
{1, . . . ,bK

2 c} in any subelection. Notice that after the bribery, the non-distinguished candidates have
a total score of K− s̄, but before the bribery, they have K− s̄+` points altogether. As the guaranteed
worst-case score of c is s̄, the briber must make sure that the other candidates have a score of at
most s̄−1 each since in c’s worst-case, the lottery draws all remaining voters not supporting c (cf.
Lemma 4.18). Thus, the briber must ensure that no candidate other than c has more than s̄− 1
points in the final election. Or, in other words, ` bribes must suffice to keep the score of every non-
distinguished candidate below s̄ which leads to the following condition equivalent to a successful
bribery:

`≥
m−1

∑
j=1

max(0,score(c j)− s̄+1).

Note that this problem is surely in P since it is easy to compute the scores for all candidates and
processing the different subcases is easy, too. q

In practice, the briber applies a greedy algorithm as in the case of bribery under full infor-
mation [79] according to which he step by step bribes a voter favoring the currently best non-
distinguished candidate. We now turn to 2-Approval.

Theorem 4.20. LOTTHEN2-APPROVAL-NECESSARY BRIBERY is in P.

Proof. Armed with Lemma 4.18, we know that the briber must reach score(C,V̄ )(c j)< s̄ for every
c j. We distinguish the following cases:

• If score(c)+ `≤ n−K +1, we reject because there are subelections for which c is approved
by at most one voter. If no voter approves of c (this is possible when score(c)+ ` ≤ n−K
holds), c cannot be the winner. The same holds for score(c)+ ` = n−K + 1, that is, there
are K-voter subelections for which exactly one voter approves of c. Since there is another
candidate approved aside from c, this candidate beats or ties with c in this subelection.

• For n−K+2≤ score(c)+`≤ n, the briber can make c achieve at least s̄ = score(c)+`−n+
K ∈ {2, . . . ,K} points in any K-voter subelection. (Note that s̄ ≥ 2 implies that K ≥ 2.) We
may assume that all voters disapproving of c after the bribery are picked by the lottery—and
exactly s̄ voters approving of c after the bribery join them. In order to make c the winner
for each such subelection, we need to ensure that each c j is approved by at most s̄−1 voters
in the end. Observe that a rational briber bribes only voters originally not approving of c
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because this maximizes the relative gain of c against all other candidates. Note that in case
score(c,c j)≥ s̄ for some c j, we immediately reject since there are subelections for which all
s̄ voters approving of c and c j are picked by the lottery and hence c at most ties with c j for
the victory. Bribing some voters approving of c and c j, in order to get rid off some common
approval(s) for c and c j, fails in this case, too, as this decreases the guaranteed score of c to
s′ < s̄ and again it is possible that all remaining voters approving of c and c j are drawn by the
lottery. Henceforth, we assume that score(c,c j)< s̄ for each j, 1≤ j ≤ m−1.

Similarly to the proof of Theorem 3.19, we reduce our problem to a b-edge matching problem
defined as follows. We are given an undirected multigraph G = (V ,E ) with vertices V =
C \{c}. Each voter approving of ci and c j (1 ≤ i, j ≤ m−1, i 6= j) yields an edge {ci,c j} in
E . As upper capacities, we are given b(c j) = s̄−1− score(c,c j). 10

Analogously to the proof of Theorem 3.19, it follows that the briber can make c a necessary
unique winner with ` bribes if and only if there is a maximum b-edge matching with at least
n− score(c)− ` edges and the following inequality holds:

`≤ (
m−1

∑
j=1

(s̄− score(c,c j)−1))−2(n− score(c)− `).

The main differences are as follows. Firstly, in opposition to the proof of Theorem 3.19,
each vote in this proof is complete. (Nevertheless, the other proof also holds for V0 =V1 = /0
and then the argument of correctness is almost identical to the one in this proof.) Secondly,
the existence of a matching with n− score(c)− ` edges is a necessary condition (instead
of |V¬c

2 | − `′ edges as in the other proof). If such a matching does not exist, the capacity
constraints implicate that we can construct a K-voter subelection of the final election such that
c has only s̄ points and some c j has s̄ or more points and thus beats or ties with c whenever we
consider as many voters as possible approving of c j but not c, and when we account for up to
s̄ voters approving of both c and c j, cf. the reasoning in the proof of Lemma 4.18. Thirdly,
the inequality must hold as otherwise some c j has s̄ or more points when we account for `
approvals the bribed voters assign to non-distinguished candidates after the bribery. Last but
not least, the capacity constraints and the inequality are adapted to the unique-winner model.

• score(c)+ ` > n. The briber can make c reach a full approval score after the bribery. Conse-
quently, c is approved by each voter in every subelection of K voters after the bribery. Observe
that it must hold score(C,V̄ )(c,c j)< K = s̄ for each c j. Otherwise, the lottery may pick K vot-
ers approving of c and the same c j, and c is not the unique winner. Hence, the briber must
ensure with highest priority that ”overhanging” points above K−1 must be taken away from
each c j. Accordingly, we propose the following greedy algorithm:

– Bribe all n− score(c) voters disapproving of c in the original election. This is essential
in order to ensure that c has a full score of K points in every K-voter subelection.

– Greedily bribe further `−n+ score(c)(> 0) voters so that in each step the briber bribes
a voter in V c (=the voters who approve of c in the initial election (C,V )) approving

10As s̄ > score(c,c j) holds for each c j, due to our assumption from above, the capacity constraints are always nonneg-
ative.
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of c j with c j ∈ argmax1≤i≤m−1score(C,V c)(ci) defined as the set of non-distinguished
candidates with the presently largest approval score. After each step, we decrease
score(C,V c)(c j) by one and go to the next step until the bribery limit is reached.

– After the bribery, each bribed voter approves of c and ` approvals for other candidates
must still be allocated. Greedily give the current approval to a c j with the presently
smallest approval score score(C,V c)(c j). Update the scores in each step.

Observe that this procedure keeps max(score(C,V c)(c1), . . . ,score(C,V c)(cm−1)) as small as pos-
sible in each step and thus—if possible—each c j shares fewer than K common approvals
with c after the bribery. Verify that c can be made a necessary winner by means of this
greedy algorithm if and only if `− (n− score(c)) ≥ ∑

m−1
j=1 max(0,score(c,c j)−K + 1) and

(K − 1)(m− 1) ≥ n hold. The first condition states that the briber achieves by bribing
`−n+ score(c) voters already approving of c before the bribery that each c j has temporarily
(i.e., not considering ` approvals the bribed voters assign to non-distinguished candidates af-
ter the bribery) fewer than K points. The second condition implies that there are few enough
voters. Notice that in case (K−1)(m−1)< n, one c j necessarily reaches K or more points.

q

It follows from Theorem 4.17 that the necessary bribery problem for k-Approval is NP-complete
for lot-based voting rules for k≥ 3. Although Lin [119] only provided a hardness proof for standard
bribery in k-Approval (k ≥ 3) in the co-winner model, his hardness proof can be adapted to the
unique-winner model with some minor changes in the construction.

Theorem 4.21. k-APPROVAL-BRIBERY is NP-complete for k ≥ 3 under the unique-winner model.

Proof. We tailor the proof in [119] to the unique-winner model as follows (the proof is also very
similar to the one showing that APPROVAL-BRIBERY is NP-complete [79]). We reduce from an
instance (B,S ) of X3C with B = {b1, . . . ,b3m}, S = {S1, . . . ,Sn}, |Si| = 3, Si ⊂ B (1 ≤ i ≤ n),
and w.l.o.g. n ≥ m (otherwise, a cover cannot exist). Based on such an instance, we construct an
election (C,V ) with C = B

·
∪ {c}

·
∪ D, where D is a set of 6mn+ 6m− 4n+ 2 dummy candidates.

Moreover, V contains of 3mn+2m−n+1 voters divided into the following groups:

1. For each i, 1≤ i≤ n, there is a voter vi approving of the candidates in Si.

2. For each j, 1 ≤ j ≤ 3m, there are n+ 1− l j voters wi approving of b j, where l j := |{Si ∈
S : Si 3 b j}|. Each voter in this group approves of exactly one candidate in B and two
dummy candidates such that no dummy candidate is approved at least twice.

3. There are n−m+1 voters ui approving of c and two other dummy candidates (each of whom
is approved only once in total).

Finally, the bribery limit is ` = m. The scores are score(c) = n−m+ 1, score(b j) = n+ 1
(b j ∈ B), and score(d) ≤ 1 for each d ∈ D. Note that there are exactly 2m dummy candidates not
scoring, the remaining 6mn+4m−4n+2 receive one point each. Similarly to the proofs in [119]
and [79], we accept if and only if there is an exact cover. Then, and only then, the briber bribes the
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voters vi according to the cover, c has n+ 1 points, all b j have n points, and each d has one point
in the final election. The bribed voters assign m approvals to c and 2m approvals to those dummy
candidates not scoring in the initial election.

For k > 3, we introduce further |V |(k−3) dummy candidates approved once in total each. q

Theorem 4.21 implicates the following result:

Corollary 4.22. LOTTHENk-APPROVAL-NECESSARY BRIBERY is NP-complete for k ≥ 3 under
the unique-winner model.

Now we turn to Veto.

Theorem 4.23. LOTTHENVETO-NECESSARY BRIBERY is in P.

Proof. First, observe that a rational briber bribes as many voters as possible vetoing c and
each of them vetoes a non-distinguished candidate after the bribery. Accordingly, c has v̄ :=
max(0,vetoes(c)− `) vetoes in the final election. Our algorithm checks whether c is always a
unique winner whenever the lottery picks as many voters as possible vetoing c.

If v̄ ≥ K, we immediately reject since there are K-voter subelections containing only voters
vetoing c.

Henceforth, let v̄ < K. First, suppose that vetoes(c)≥ `. Then the briber bribes ` voters vetoing
c and c has v̄ = vetoes(c)− `≥ 0 vetoes after the bribery. We suppose that all v̄ voters vetoing c are
drawn by the lottery. Now the question arises which c j should get how many vetoes from the bribed
voters. Observe that c j and all other non-distinguished candidates must have at least v̄+ 1 vetoes
each in any subelection of K voters. This is only possible when K ≥ v̄+(m−1)(v̄+1). Otherwise,
we immediately reject as the lot size K is too small. Provided that K ≥ v̄+(m−1)(v̄+1), it must
hold that all candidates in C\{c,c j} have at most K− v̄− (v̄+1) vetoes after the bribery altogether.
This, in turn, implies that c j must have at least n−K + v̄+1 vetoes in total. Otherwise, the lottery
can draw too many vetoes for candidates in C \ {c,c j} and c j has at most v̄ vetoes in a K-voter
subelection where v̄ voters veto c. 11 Hence, we accept if and only if ` is large enough to ensure
that each c j can be given at least max(0,n−K + v̄+1− vetoes(c j)) additional vetoes in the bribed
votes, i.e., our instance is a YES instance if and only if `≥∑

m−1
j=1 max(0,n−K+ v̄+1−vetoes(c j)).

Now let vetoes(c) < `. In this case, the briber can make c reach zero vetoes by bribing all
vetoes(c) voters vetoing c. Similarly to the previous case (setting v̄ = 0), each c j must have at least
n−K + 1 vetoes in the final election. Otherwise, the lottery can pick K voters and none of them
vetoes c j. These preconsiderations lead to the following greedy algorithm:

• Bribe every voter vetoing c, give the veto to the c j with the currently smallest veto number.
Update the veto number of c j and repeat this step until all vetoes(c) vetoes for c are replaced
by vetoes for non-distinguished candidates.

• Check whether c is a necessary unique winner. If yes, we accept. If no, bribe a voter vetoing
a candidate with the currently highest veto number and assign the veto to a candidate with
the presently lowest veto number. Do this at most `− vetoes(c) times. Check in every step
whether c is a necessary unique winner, i.e., whether vetoes(c j)≥ n−K+1 holds for each j.

11The intuition behind this is as follows: For vetoes(c j) = n−K+ v̄, the lottery can ignore n− v̄ vetoes of c j and draw
only v̄ voters vetoing c j. Hence, c j and c have the same veto number v̄ for some K-voter subelections.
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Verify that our problem is surely in P because we merely have to check some inequalities and
apply a greedy subroutine in the last subcase. q

Next, we show that necessary bribery is easy for 2-Veto as well.

Theorem 4.24. LOTTHEN2-VETO-NECESSARY BRIBERY is in P.

Proof. Our algorithm distinguishes the following two cases. In each case, the briber bribes voters
vetoing c with highest priority and each bribed voter does not veto c after the bribery.

• vetoes(c)≥ `. In this case, the briber bribes only voters vetoing c. After the bribery, there are
v̄ := vetoes(c)− ` ≥ 0 voters vetoing c. We check whether c is the winner for every K-voter
subelection when all these v̄ voters are drawn by the lottery. First of all, if v̄ ≥ K, we reject
as there are K-voter subelections where all voters veto c. Hence, we let 0≤ v̄≤ K−1 in the
following. Next we show that c is a necessary winner after the bribery if and only if each c j

has at least n−K + v̄+1 vetoes in the final election. We argue similarly to the arguing in the
proof of Lemma 4.18 and use the identity s̄ = K− v̄, by interchanging the roles of vetoes and
approvals. More precisely, c has at most v̄ ∈ {0, . . . ,K−1} vetoes in any K-voter subelection
according to our assumption. Therefore, c has at least s̄ = K− v̄ ∈ {1, . . . ,K} points in any
subelection. From Lemma 4.18, we know that each c j may have at most s̄− 1 approvals in
total. Thus, c j must have at least n−(s̄−1) vetoes. Exploiting again that s̄ = K− v̄, we obtain
that c j must have n− (K− v̄−1) = n−K + v̄+1 or more vetoes in the final election.

Thus, we accept if and only if the briber reaches that every c j has n−K+ v̄+1 or more vetoes
in the final election. To check whether such a bribery exists, we define a greedy algorithm
similar to the one in the proof of Theorem 3.26. In contrast to the other proof, each vote is
complete in our lottery-based setting and the briber must ensure that each non-distinguished
candidate has n−K + v̄+1 vetoes in total (instead of pvetoes(c)− ` vetoes in the proof with
partial votes). The remainder of the proof works analogously. The briber bribes ` voters
vetoing c and each bribed voter initially vetoes c and a candidate c j with currently the largest
veto number among all non-distinguished candidates. After ` such bribes, it remains to check
whether or not the bribed voters can assign 2` vetoes in total and at most ` vetoes to each c j

such that each c j has n−K + v̄+1 or more vetoes in the final election.

• vetoes(c) < `. Then c can reach zero vetoes, but—if necessary—the briber bribes further
voters initially not vetoing c. We thus may fix the bribes concerning the vetoes(c) voters
originally vetoing c. The question is which further voters the briber should bribe and whether
it makes sense at all to bribe any further voters. A necessary and sufficient condition for a
successful bribery is again that—since v̄ = 0—each c j has n−K +1 or more vetoes after the
bribery. If some c j has fewer vetoes, he still needs a positive number of additional vetoes
from the bribed voters. If c j has exactly n−K + 1 vetoes (without c being simultaneously
vetoed), c j does not require any new vetoes, but must not lose any further vetoes by bribery.
Thus we proceed as follows:

First bribe all voters vetoing c. Check whether these 2vetoes(c) vetoes can be assigned to
the c j such that vetoes(C,V̄ )(c j) ≥ n−K + 1 after the bribery for each j ∈ [m− 1]. This is
equivalent to
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n−K +1− vetoes(¬c,c j)≤ vetoes(c) ∀ j ∈ [m−1]

and
m−1

∑
j=1

max(0,n−K +1− vetoes(¬c,c j))≤ 2vetoes(c).

If yes, we accept (cf. Lemma 3.24). Otherwise, we define the following b-edge matching.
We are given an undirected multigraph G = (V ,E ) where V contains all candidates c j ( j ∈
[m− 1]). Each voter vetoing two candidates in V yields an edge e ∈ E connecting these
two candidates. Finally we have upper constraints b(c j) := max(0,vetoes(¬c,c j)− (n−K +
1)). The capacity constraints are nonnegative and in particular, they are only positive when
vetoes(¬c,c j)− (n−K+1)> 0, that is, c j may lose a positive number of vetoes and has still
enough vetoes to lose against c in all K-voter subelections. In other words, c j has at least
two vetoes in each subelection of K voters and may lose some vetoes, given that b(c j) > 0.
Observe that any matching may contain only edges where both candidates may still effectively
lose further vetoes. We compute a maximum matching with ∆ edges. If ∆+ vetoes(c) ≥ `,
the briber bribes `− vetoes(c) arbitrary voters according to edges in the matching and all
vetoes(c) voters initially vetoing c. Note that the briber can effectively replace 2` vetoes. It
remains to check whether the briber can assign at most ` vetoes to each c j and at most 2`
vetoes in total such that each c j has a total of at least n−K +1 vetoes.

If ∆+vetoes(c)< `, the briber bribes all voters according to the edges in a maximum match-
ing. By setting E := ∑

m−1
j=1 b(c j) (the total excess of vetoes that badly performing candidates

may still lose in votes initially not vetoing c), the briber can bribe min(E−2∆, `−vetoes(c)−
∆) voters where exactly one vetoed candidate different from c may lose yet another veto and
the other candidate not (the briber additionally bribes all vetoes(c) voters vetoing c); other-
wise, the edge would belong to the matching and the cardinality of the maximum matching
would be larger than ∆. Note that again it does not matter according to which maximum
matching the briber bribes the voters and which further voters he bribes (where only one veto
can be effectively replaced) as he leaves the veto for the ”strong” candidate unchanged. Oth-
erwise, this one would require a new veto in turn. Note that if E−2∆ < `−vetoes(c)−∆, the
briber could nevertheless bribe further voters to completely exhaust his bribery limit, but he
cannot effectively replace these vetoes with vetoes that strong candidates require.

Again, it remains to check whether the briber can greedily assign the missing vetoes in the
bribed votes to candidates who need some further vetoes. Once more, we can make use of
Lemma 3.24 to do so.

Observe that both cases can be decided in polynomial time as our problem by and large reduces
to applying a greedy algorithm, computing a maximum matching, and greedily assigning vetoes to
non-distinguished candidates. q

We here point out that the previous proof provides—under K = n—yet another proof for 2-
VETO-BRIBERY (under full information). Compared to the proof in [119] (we applied a greedy
algorithm and a matching approach in contrast to Lin) showing the result merely for the co-winner
model, our proof tailored to the unique-winner case is much more involved and requires additional
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considerations in case of vetoes(c)< `. In opposition to the co-winner model, it may be necessary
that the briber bribes some voters not vetoing c in the unique-winner case.

Our next result holds due to Theorem 4.17 and 3.27 where it is shown that standard bribery is
a special case of necessary bribery in lot-based voting rules and bribery in 3-Veto is NP-complete
under the unique-winner model, respectively. For the co-winner model, we know from [119] that
bribery in k-Veto is hard for k ≥ 4.

Corollary 4.25. LOTTHENk-VETO-NECESSARY BRIBERY is NP-complete for k≥ 3 in the unique-
winner model and for k ≥ 4 in the co-winner model.

In contrast, necessary bribery in 3-Veto is easy under the co-winner model.

Theorem 4.26. LOTTHEN3-VETO-NECESSARY BRIBERY is in P in the co-winner model.

Proof. First, if vetoes(c) ≤ `, the briber can bribe all voters vetoing c. As c has zero vetoes in
total after the bribery, the same holds for each K-voter subelection. Consequently, we accept.

For vetoes(c)> `, the briber reaches that c has v̄ := vetoes(c)− `(> 0) vetoes in the final elec-
tion. If v̄ ≥ K, we reject since there are K-voter subelections such that all voters veto c. Due to
m > k, there are three or more other candidates and one of them necessarily has fewer than K vetoes
in a given K-voter subelection. Hence, c is never a winner in such elections.

Henceforth, we let 0 < v̄ < K. Following the arguing in the proof of Theorem 4.24, the briber
can make c a necessary winner if and only if each c j has at least n−K+ v̄ vetoes in the final election
(which is equivalent to the condition that at most K− v̄ voters do not veto c j after the bribery; the
proof of Lemma 4.18 can be easily adapted to the co-winner model in a way that each c j must have
at least n−K + v̄ vetoes or at most s̄ points in total, depending on whether the underlying voting
rule is k-Veto or k-Approval).

We regard the following generalized b-edge cover problem (suppose that V¬c contains all voters
not vetoing c, and V c the voters vetoing c). Each c j yields a vertex c j (1 ≤ j ≤ m− 1). There is
further a vertex b assigning 3` vetoes to non-distinguished candidates in the bribed votes. The edges
are defined as follows:

• Each voter in V c vetoing c, ci and c j yields an edge between ci and c j (1≤ i, j≤m−1, i 6= j).

• For each j ∈ [m−1], there are ` edges {b,c j}.

• The capacities are bl(c j)=max(0,n−K+ v̄−vetoes(C,V¬c)(c j)) ( j∈ [m−1]), bl(b)= bu(b)=
3`. All remaining upper capacities are unrestricted.

Analogously to the proof of Theorem 3.29 (bribery in 3-Veto under partial information in the
co-winner model), it follows that the briber can make c a necessary winner if and only if there is a
cover with 3`+ v̄ = vetoes(c)+2` edges. (Note that the cover—provided that one exists—contains
3` edges incident to b and any number between zero and |V c| edges according to voters in V c.
If only v̄ edges—and the vetoes for non-distinguished candidates assigned by the corresponding
voters—are in the cover according to voters in V c left unchanged, there is a successful bribery.
Otherwise, we need to account for the vetoes assigned by more than v̄ voters in V c in order to make
c a necessary winner and this contradicts to our assumption that exactly ` voters are bribed. The
capacity constraints ensure that each c j has at least the required number of vetoes, where we fix all
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vetoes from (unchanged) voters in V¬c. Zero constraints are trivially met by each cover and express
that c j even gets enough vetoes from voters in V¬c.

Observe that the only differences between the two proofs lie in the capacity constraints for the
c j and in the fact that there are no edges of type {c j,∗} or {∗,∗∗} as it is the case for necessary
bribery with partial votes.

Since calculating a minimum edge cover is easy, our original problem is easy as well. q

Note that we obtain yet another instance of ties matter as the corresponding problem is hard in
the unique-winner case. And once again the voting rule involved is 3-Veto.

In contrast to necessary bribery, the possible bribery problems asks whether we can find a K-
voter subelection for which c is the unique winner after the bribery. Let us first consider the Plurality
rule.

Theorem 4.27. LOTTHENPLURALITY-POSSIBLE BRIBERY is in P.

Proof. We may assume that the lottery picks as many votes for c as possible. Hence, after the
bribery there are K-voter subelections giving c a score of min(K,score(c)+ `) points.

First, if score(c)+` > K
2 , there exists a K-voter subelection such that more than half of all voters

favor c and—as no other candidate achieves the same score as c in this subelection—c is the only
winner and hence a possible winner. Our algorithm therefore outputs YES in this case.

In case score(c)+ ` ≤ K
2 , our distinguished candidate c is only the winner of a subelection of

K voters if the lottery can select K− (score(c)+ `) voters supporting other candidates and none of
them reaches a final score greater than score(c)+ `− 1 in this subelection. Each c j can contribute
with at most min(score(c j),score(c)+ `−1) points to a subelection where c is supposed to be the
sole winner with score(c)+` points (this number may be even smaller after the bribery). We refer to
these points as harmless points, as, being drawn by the lottery, they do not prevent c from being the
winner of the subelection. Therefore, a rational briber should not take away points from c j ”below
the threshold” score(c)+ `−1 when there is a way to bribe a voter supporting a candidate with at
least score(c)+` point. This leads to the same greedy algorithm as under full information [79]. The
briber step by step bribes a voter voting for a c j with the currently highest score. Accordingly, he
bribes ` voters and each bribed voter gives the point to c. After performing this greedy procedure,
it remains to check whether K− score(c)− ` ≤ ∑

m−1
j=1 min(score(c)+ `− 1,score(C,V̄ )(c j)), where

score(C,V̄ )(c j) denotes the final score of c j after the briber has bribed ` voters according to the
proposed greedy algorithm. The inequality expresses that for our K-voter subelection we can find
K− score(c)−` voters not supporting c such that no c j has more than score(c)+`−1 points in this
subelection. q

The next proof—for 2-Approval—is a little more involved although the problem is yet in P.

Theorem 4.28. LOTTHEN2-APPROVAL-POSSIBLE BRIBERY is in P.

Proof. Our algorithm distinguishes the following cases. First, if score(c)+ ` ≤ 1 or K = 1, we
reject as in any subelection, c is approved of at most once. Arguing similarly to the proof for
necessary bribery (cf. Theorem 4.20), it follows that c is not a possible unique winner then.

Second, in case score(c) + ` ≥ K > 1, the briber can ensure a full approval score for some
subelections. We accept except for ` = 0 and score(c) = score(c,c j) ≥ K for some c j (that is, all
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voters approving of c approve of the same c j as well and the briber cannot change this). Otherwise,
there are K-voter subelections where c is approved by K voters and at least two different candidates
are approved aside from c.

It remains to argue for the case where 2≤ score(c)+` < K. We may assume in this case that the
lottery picks all voters approving of c after the bribery—as this is the best case for c—and there are at
least two and at most K−1 such voters. Again, we reject in case score(c) = score(c,c j) for some c j

and `= 0 as then the briber cannot make c reach a higher score than c j for any K-voter subelection.
If it holds score(c) > score(c,c j) for all c j or ` > 0, we try to find K− score(c)− ` voters each of
whom approves of two non-distinguished candidates so that every c j has at most score(c)+ `− 1
points in this K-voter subelection. As candidate c j shares score(c,c j) common approvals with c, at
most score(c)+ `− score(c,c j)−1 unbribed voters disapproving of c and approving of c j may join
this subelection. This leads to the following b-edge matching problem:

Let G = (V ,E ) be an undirected multigraph with vertices V = C \ {c} and edges as follows.
Each voter approving of ci and c j (1 ≤ i, j ≤ m− 1, i 6= j) yields an edge {ci,c j} in E . Moreover,
vertex c j has upper capacity b(c j) = score(c)+ `− score(c,c j)−1.

Arguing similarly to the proof of Theorem 4.20, it follows that the briber can make c a winner
for at least one K-voter subelection if and only if there is an edge matching with K− score(c)− `
edges and the following inequality holds:

(
m−1

∑
j=1

(score(c)+ `− score(c,c j)−1))−2(K− score(c)− `)− `≥ 0.

There are only two slight differences:

1. The capacity constraints reflect that c has a score of score(c)+` in this subelection (compared
to the proof of Theorem 4.20 according to which c has only s̄ points in some worst-case
subelections). In other words, the lottery draws as many c-voters as possible (instead of as
few c-voters as possible).

2. In contrast to the previous case, where all K− s̄ = n− score(c)− ` voters disapproving of c
after the bribery are picked by the lottery, now only K−score(c)−` of these voters (and their
approvals for non-distinguished candidates) are considered in a K-voter subelection giving c
the highest potential score.

Again, each voter approving of two non-distinguished candidates one-to-one corresponds to an
edge in the graph. A matching with this cardinality must necessarily exist as otherwise the lottery
cannot fill this subelection with exactly K− score(c)− ` voters not approving of c and c is the sole
winner with score(c)+ ` points (as some c j’s capacity constraint is hurt and hence c j has no less
points than c in the given K-voter subelection, even without accounting for the points for c j from
bribed voters approving of c j and c after the bribery). Likewise, the inequality expresses that the
briber can assign ` approvals to non-distinguished candidates and c is still the only winner for at
least one K-voter subelection. q

From Theorem 4.17 and since bribery in 3-Approval is hard under full information [119] (i.e.,
when the lottery selects all voters), it follows that LOTTHENk-APPROVAL-POSSIBLE BRIBERY is
NP-complete for every k ≥ 3 (see also Theorem 4.21 for the adaption to the unique-winner model):
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Corollary 4.29. LOTTHENk-APPROVAL-POSSIBLE BRIBERY is NP-complete for k ≥ 3.

Let us turn to the Veto rule.

Theorem 4.30. LOTTHENVETO-POSSIBLE BRIBERY is in P.

Proof. First, assume that K < m−1. We reject because even though no voter vetoing c is drawn
by the lottery, there is at least one non-distinguished candidate not being vetoed either. Hence, c
cannot be the only winner in any subelection with K voters.

Henceforth, we let K ≥ m− 1. If vetoes(c)− ` ≤ 0, the briber can make c reach a final veto
number of zero. However, in contrast to the co-winner model, this does not imply the victory for
c as there may be too many candidates who end up in zero vetoes, too. Let C0 := {c j : 1 ≤ j ≤
m−1, vetoes(c j) = 0} and c0 := |C0|. We claim that our instance is a YES instance if and only if
`≥ c0 holds.

(⇒): If there exists a possible bribery, the briber can ensure that each c j has more than zero
vetoes after the bribery. This implies that the bribery limit is so large that each c j with initially zero
vetoes can be assigned one veto.

(⇐): Suppose that `≥ c0. Then a successful bribery strategy is given as follows:

1. Bribe all voters vetoing c and make as many as possible among them veto pairwise different
candidates in C0.

2. Now two cases have to be distinguished from each other:

(a) If vetoes(c)≤ c0(≤ `), bribe further c0− vetoes(c) voters initially vetoing the currently
worst c j. We argue next that, according to this greedy algorithm, the briber never bribes
voters vetoing a non-distinguished candidate with exactly one veto, i.e., there are at
least c0− vetoes(c) vetoes ”above” one for non-distinguished candidates in the original
election. Or, equivalently speaking, it holds c0− vetoes(c)≤ ∑

m−1
j=1 max(0,vetoes(c j)−

1). Note that c initially has vetoes(c) vetoes, c0 other candidates have zero vetoes, and
thus m−1−c0 non-distinguished candidates are vetoed by n−vetoes(c) voters in total.
Due to our assumptions, each of these candidates has at least one veto; otherwise, they
would belong to C0. This implies that n−vetoes(c)≥ (m−1−c0) ·1. It remains to show
that even n− vetoes(c) ≥ (m− 1− c0)+ (c0− vetoes(c)) holds. This latter inequality
expresses that each of the m− 1− c0 candidates in C \ ({c}∪C0) has at least one veto
and their total number of vetoes ”above one” is at least (c0−vetoes(c)) (i.e., the number
of voters not vetoing c who are bribed). This inequality is equivalent to n≥m−1 which
is true because of the above assumption n≥ K ≥ m−1.
All in all, the briber greedily bribes c0− vetoes(c) voters vetoing the currently worst
non-distinguished candidate (with presently at least two vetoes) and each bribed voter
vetoes a candidate in C0 not yet vetoed in any vote bribed up to now.

(b) If vetoes(c)> c0, the briber bribes all voters vetoing c. c0 of them veto the same number
of candidates with initially zero vetoes. The remaining bribed voters assign vetoes to
arbitrary non-distinguished candidates. Now each c j has at least one veto in the final
election. Since K ≥ m− 1, the lottery can pick one veto for each c j and arbitrary K−
m+1 further vetoes for candidates other than c. It follows that c is the only winner (with
zero vetoes) in this K-voter subelection.
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Next regard the case where vetoes(c)− ` > 0 and vetoes(c)− `≤ n−K hold. Now c can reach
zero vetoes for some K-voter subelection after the bribery. In contrast to the previous case, the
briber bribes only voters vetoing c and some voters vetoing c remain unchanged (we assume that
these voters are not selected by the lottery). Once more, a reasonable briber step by step assigns the
current veto to the presently best c j. Accordingly, he reaches that as many candidates as possible
with zero vetoes in the initial election have a veto in the final election. Again, we accept if and only
if `≥ c0 holds. Remind that, due to our above settings, it holds K ≥m−1, that is, K is large enough
that the lottery can select at least one veto for each non-distinguished candidate.

Last but not least, for vetoes(c)−` > n−K, c has at least v̄ := vetoes(c)−`−n+K > 0 vetoes.
Again, the briber does best by greedily assigning each veto to the currently best non-distinguished
candidate. In the end, all non-distinguished candidates’ vetoes and exactly v̄ vetoes for c are picked
by the lottery and it remains to verify whether or not c is the only winner. As a combined result,
we therefore accept if and only if K ≥ v̄+(m−1)(v̄+1) and ∑

m−1
j=1 max(0, v̄+1− vetoes(c j))≤ `.

The first inequality reflects that the lot size K is great enough to ensure that at the same time, c may
have v̄ vetoes and all other candidates (at least) v̄+1 vetoes at all. The second condition states that
the bribery limit is large enough that bribed voters can assign to each c j (at least) max(0, v̄+ 1−
vetoes(c j)) additional vetoes such that c j has more vetoes than c in this K-voter subelection.

Observe that all cases are in P as they reduce to checking some (polynomially restricted) in-
equalities or applying some (polynomially bounded) greedy subroutines. q

Next we find that our problem is easy for 2-Veto, too.

Theorem 4.31. LOTTHEN2-VETO-POSSIBLE BRIBERY is in P.

Proof. Our algorithm distinguishes the following cases:

• If ` ≥ K, the bribery limit is so large that the lottery can draw K-voter subelections merely
consisting of bribed voters. We accept if and only if 2K ≥ m−1 since then and only then the
lot size is large enough to ensure that all c j are vetoed once.

• If K > ` and vetoes(c)−`≤ n−K, the briber bribes ` voters such that as many voters vetoing
c as possible are bribed, there are K-voter subelections after the bribery such that no voter
vetoes c, and the briber cannot determine a complete subelection with ` bribes. W.l.o.g.,
we assume that all bribed voters are picked by the lottery. We regard a generalized b-edge
cover problem defined as follows. Let G = (V ,E ) be an undirected multigraph with vertices

V = (C \{c})
·
∪ {b}. The edges in E are defined as follows:

– Each voter vetoing ci and c j (i, j ∈ [m−1], i 6= j) yields an edge {ci,c j}.
– For each j ∈ [m−1], there are ` edges {b,c j}.

The lower capacities are bl(c j) = 1 (1 ≤ j ≤ m− 1), and bl(b) = 2`. Moreover, we have
bu(b) = 2`. All other upper capacities are unrestricted.

It follows that the briber can make c the winner of at least one K-voter subelection if and
only if there is a cover with `+K edges. Observe that the basic ideas and the argument of
correctness are similar to the ones in the proof of Theorem 4.26. The differences are that each
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c j requires one veto, bribed voters assign 2` vetoes to non-distinguished candidates (instead
of 3` vetoes), and we try to find a cover with K + ` edges, according to K voters. Note that
any cover, provided that one exists, contains exactly 2` edges incident to b (corresponding
to ` bribed voters and the 2` vetoes assigned by them after the bribery) and K − ` edges
{ci,c j} according to K− ` voters vetoing two non-distinguished candidates and being left
unchanged by the briber. In contrast, in the proof of Theorem 4.26 each voter worth bribing
vetoes c and two non-distinguished candidates before the bribery. All in all, the briber bribes
arbitrary min(vetoes(c), `) voters initially vetoing c and arbitrary `−min(vetoes(c), `) voters
not vetoing c and not corresponding to any edge {ci,c j} in the matching (where 1 ≤ i, j ≤
m−1, i 6= j).

• vetoes(c)− ` > n−K (⇒ ` < K; otherwise, if ` ≥ K, the inequality vetoes(c)− ` > n−K
is equivalent to vetoes(c)− n > `−K, and the nonpositive left-hand side is larger than the
nonnegative right-hand side which is a contradiction). In this case, the briber cannot reach
zero vetoes for c in any subelection. Hence, in all subelections with K voters, c has at least
v̄ := vetoes(c)−`−n+K(> 0) vetoes. If v̄ = K, we immediately reject. Given that v̄ < K, we
argue as follows. Suppose that c has exactly v̄ vetoes in a K-voter subelection. We construct
a subelection as follows:

1. Fix all n− vetoes(c) voters who initially do not veto c. If c is supposed to win in the
subelection, these voters should belong to it.

2. Add greedily v̄ voters to the subelection who give a veto to c and for whom the second
veto candidate is as good as possible concerning the veto numbers after step 1 (i.e., this
non-distinguished candidate currently has as few vetoes as possible). This strategy leads
to as uniform veto numbers as possible.

3. Now ` arbitrary voters with c initially being vetoed are bribed and added. If possible,
the briber step by step gives the required numbers of missing vetoes to all c j (at most `
additional vetoes per candidate) such that c j has at least v̄+1 vetoes in the constructed
K-voter subelection.

Verify that this subelection consists of exactly K voters as it holds (n− vetoes(c))+ v̄+ ` =
n− vetoes(c)+ (vetoes(c)− `− n+K)+ ` = K according to the three listed voters groups.
Either this latter subroutine leads to c being the unique winner with v̄ vetoes or not, but if one
K-voter subelection with unique winner c exists, this subroutine finds it.

Observe that all three subcases are in P since we check a (polynomially bounded) inequality,
compute a minimum edge cover, and apply a greedy procedure, respectively. q

Our next result holds due to Theorem 4.17 and because standard bribery (with K = n in our lot-
based settings) is NP-complete for k-Veto (k ≥ 3 in the unique-winner and k ≥ 4 in the co-winner
model). These hardness results under complete information follow from Theorem 3.27 (unique-
winner) and from [119] (co-winner).

Corollary 4.32. LOTTHENk-VETO-POSSIBLE BRIBERY is NP-complete for k ≥ 3 in the unique-
winner model and for k ≥ 4 in the co-winner model.



142 CHAPTER 4. LOT-BASED VOTING

Now just the complexity of LOTTHEN3-VETO-POSSIBLE BRIBERY in the co-winner model
has not been considered yet. Our final theorem presents yet another case where ties matter.

Theorem 4.33. LOTTHEN3-VETO-POSSIBLE BRIBERY is in P in the co-winner model.

Proof. First of all, if vetoes(c)− ` ≤ n−K, we accept since the briber can ensure that there are
at least K voters who do not veto c which in turn implies that c is a winner with zero vetoes for at
least one K-voter subelection.

Hence, it remains to consider the case where vetoes(c)− ` > n−K. In this case, c receives
v̄ := vetoes(c)− `− n+K > 0 vetoes for sure. Let v̄ < K because otherwise c cannot be a winner
for any subelection of K voters. We assume that the lottery selects all voters initially not vetoing c
(we denote these voters by V¬c). There are K− v̄(= n− vetoes(c)+ `) such voters in total after the
bribery. Note that n−vetoes(c) voters do not veto c before and after the bribery, while ` voters veto
c before but not after the bribery. Consequently, each c j has thus at least vetoes(C,V¬c)(c j) vetoes
in such subelections and we must find at least max(0, v̄−vetoes(C,V¬c)(c j)) further voters belonging
to our K-voter subelection who (1) veto c and c j before and after the bribery or (2) are bribed and
veto c j (and surely not c) after the bribery. We regard a generalized b-edge cover problem defined

as follows. We are given an undirected multigraph G = (V ,E ) with vertices V = (C \{c})
·
∪ {b}.

Moreover, our graph contains the following edges E :

• Each voter vetoing c, ci, and c j yields an edge {ci,c j} in E .

• For each j ∈ [m−1], there are ` edges {b,c j} in E .

The capacities are bl(c j) = max(0, v̄− vetoes(C,V¬c)(c j)) (note that such capacities can be zero,
but then candidate vertex c j trivially meets its lower capacity constraint; in this case, c j is vetoed by
v̄ or more voters in V¬c and does not beat c in such subelections assigning c exactly v̄ vetoes) and
bl(b) = bu(b) = 3`. All remaining upper capacities are unlimited.

Analogously to the proof of Theorem 4.26 showing that LOTTHEN3-VETO-NECESSARY

BRIBERY is in P, it follows that the briber can make c a possible winner via bribing ` voters (ini-
tially vetoing c) if and only if there is an edge cover with v̄+ 3` = vetoes(c)+ 2`− n+K edges.
One slight difference compared to the other proof is that, in this context, only vetoes(c)− `−n+K
vetoes for c count in our subelection (instead of vetoes(c)− ` as in the other proof where as many
c-vetoes as possible are considered by the lottery) and therefore all other candidates require only
vetoes(c)− `− n+K vetoes in total, instead of vetoes(c)− `. Notice that for possible bribery the
lottery selects all voters not vetoing c and as few voters as possible vetoing c.

In a cover, 3` edges correspond to 3` vetoes assigned by ` bribed voters to non-distinguished
candidates. Moreover, v̄ edges one-to-one correspond to the same number of voters vetoing c who
are not bribed and who are picked by the lottery.

As computing a minimum edge cover is easy (and the transformation to this problem is in FP),
our overall problem turns out to be in P. q

Observe that the proofs of Theorem 4.26 and Theorem 4.33, showing that LOTTHEN3VETO-
NECESSARY BRIBERY and LOTTHEN3VETO-POSSIBLE BRIBERY are easy under the co-winner
model, are generalizations of the proof of 3-VETO-BRIBERY (i.e., under full information) and use
basically the same construction as the original proof by Lin [119] (with generalized edge cover
instead of classical edge cover). Notice that for K = n both proofs more or less coincide.
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4.4 Conclusion

We have presented a detailed complexity analysis for lot-based voting with k-Approval and k-Veto
as underlying voting rules. The decision problems of evaluation, of possible winners, and necessary
winners have been analyzed. We have also considered the counting complexity and two bribery
problems—possible and necessary bribery.

All our results hold under the unique-winner model and the assumption that each combination
of K voters is drawn by the lottery with the same probability, most results are still valid when we
drop the uniform distribution assumption and allow that each K-voter subelection is drawn by a
general positive probability.

While necessary winner is easy even for all scoring rules, possible winner is hard for almost all
voting rules belonging to the k-Approval/-Veto families. More precisely, possible winner is easy for
k ≤ 2 and hard for k > 2 both for k-Approval and k-Veto in the unique-winner model. As for the
counting versions of possible winner, only Plurality and Veto are easy to count, all other problems
are #P-complete. As a byproduct of this endeavor, we have identified interesting cases where it is
easy to decide but hard to count as well as problems where ties matter, i.e., the complexity differs
depending on whether the unique- or co-winner model is used. Moreover, we have provided an
FP recursion for VETO-#CCAV. For necessary and possible bribery, we have found that, despite
the presence of a lot-based voting rule, the computational (worst-case) complexity does not change.
These findings indicate that further voting rules have to be explored and it might become necessary
to search for a refined lot-based formalism to impede bribery.

Although there is no additional hardness for bribery under the use of this lot-based voting mech-
anism, lot-based voting makes it harder for a briber to certainly reach his goal. We provide some
examples illustrating that the briber’s (or, more precisely, c’s) success strongly depends on the lot
size K and even though the briber reaches c to be a winner of the overall election, a small lot size—
compared to the total number of voters—may make things more difficult to the briber. Consider the
following example:

Example 4.34. Let (C,V ) be an election with candidate set C = {c,c1,c2}, voter set V =
{v1, . . . ,v8} (i.e., m = 3 and n = 8), designated candidate c, and F = Veto. We have vetoes(c) = 2,
vetoes(c1) = vetoes(c2) = 3.

Table 4.2 presents the probabilities of c being the LOTTHENVETO winner for all possible lot
sizes K. We denote the probability of c being the only winner in a K-voter subelection with Prob(K).

K 1 2 3 4 5 6 7 8
Prob(K) 0 9

28
9

28
3
14

3
7

13
28

1
4 1

(in %) 0.00 32.14 32.14 21.43 42.86 46.43 25.00 100.00

Table 4.2: Overview of the winning probabilities of c in Example 4.34 for all lot sizes K.

In the Appendix, we will provide the detailed calculations. Although c is the unique winner
of the entire election (that is, for K = n = 8), the winning probability of c collapses down to 25
percent when the lottery selects all but one voter. Interestingly, the probability is considerably
higher for K = 6 (nearly twice the probability for K = 7) and again falls a little when resetting
K = 5. Interestingly, K = 4 yields a local minimum of the winning probability (21.42%). Notably,
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for K = 2 and K = 3 the winning probability is identical and about one third, while it falls down to
zero for K = 1.

We can generalize Example 4.34 in a way that there are two voters vetoing c and for each c j

(1 ≤ j ≤ r) there are three voters vetoing c j. By this we obtain a sequence (Cr,V r) of elections
(where |V r|= 3r+2 and |Cr|= r+1, that is, there are r non-distinguished candidates). For K = n,
the winning probability is one, while for K = n− 1 the winning probability is 2

3r+2 . Observe that
for r→ ∞ the winning probability collapses from 100% down to nearly zero when we select all but
one voter instead of evaluating the entire election.

At first sight, we could observe a strange and nearly paradoxical behavior of c’s winning prob-
ability. One interesting point is that the winning probability collapses from 1 to around 1/4 (or to
2/(3r+2), in the generalization of Example 4.34) when the lottery ignores only one voter. On the
other hand, the winning probability does not gradually fall or rise, but reveals a zigzagging behavior.
The reason for the first (and possibly for the second aspect as well) is that c is only just a unique
winner in the overall election and the election is somewhat unstable. An intriguing task for future
research is therefore studying similar examples and finding instances where small, large, or medium
lot sizes are beneficial for c, or examining the question whether there are some paradoxes (e.g., that
the winning probability is zero if and only if K = n

2 or if and only if K = n).
In our example, the best possible lot size for c is the largest possible lot size. In other examples,

a candidate might be better off when the lottery selects only few voters. Suppose for instance that
one voter favors c over all other candidates and 100 voters favor all other candidates over c. Surely,
c is not the Condorcet winner in the overall election. In fact, c is a Condorcet loser for each lot
size K > 2 in every K-voter subelection. Nevertheless, c is a possible Condorcet winner, but only
for K = 1 when the subelection draws the first voter. All other lot sizes prevent c from being the
Condorcet winner. The following example provides an instance where K has to take a ”middle”
value.

Example 4.35. Let (C,V ) be an election with candidate set C = {c,c1, . . . ,c7}, voter set V =
{v1, . . . ,v9}, and distinguished candidate c. Let F=2-Approval. The voters in V are defined as
follows:

1. vi approves of c and ci (1≤ i≤ 3).

2. v4, . . . ,v6 approve of c4 and c5.

3. v7, . . . ,v9 approve of c6 and c7.

In the Appendix, we will show that c is a possible winner if and only if 2≤ K ≤ 7.
Examples 4.34 and 4.35 raise the question which lot size is best possible for an external agent—

a briber or a chair—to reach his goal. Although an agent cannot make c a necessary winner with
his given budget, he might be able to maximize the winning probability of c whenever the agent has
influence on the lot size and/or some voters. Going back to the question whether lotteries offer an
additional protection against strategic behavior, especially Example 4.34 supports this conjecture,
though not in terms of worst-case complexity: as soon as some voters do not belong to this subelec-
tion, the winning probability of c for several exemplary values K < n is smaller than 50%. Hence,
even though the briber can make c (only just) a unique winner with his resources, as in Example 4.34
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(where we may suppose that this is the final election after some voters have been bribed), the lottery
jeopardizes c’s chances of success.

In contrast to our examples, the winning probability is even hard to determine for general K and
n when the underlying voting rule is k-Approval or k-Veto for k ≥ 2. This is a mere consequence
of the fact that the corresponding counting problem is hard then. In order to determine the winning
probability of c, we need the number of subelections with c as the winner. Additionally, a chair
or briber with influence on the lot size faces the problem that sometimes a small lot size is favor-
able for c, for other instances a lot size ”in between” maximizes c’s winning probability, while in
other examples the lot size should be as large as possible. Coming back to the question whether
lot-based voting excludes or at least impedes strategic behavior in elections, we have to point out
that lot-based voting does not make things harder to a briber or a chair in terms of worst-case com-
plexity, but one can say that additional difficulties arise for a manipulative agent, especially when
the counting problem is hard in general (i.e., for k-Approval/-Veto and k > 1). We refer to study-
ing lot size control models combined with bribery or multimode control attacks for future research.
Investigating the winning probability (or winning probability distribution over all candidates in C)
therefore appears to be a fascinating task, both under the uniform distribution assumption and for
general probabilities.

Whether or not the randomization step first running a lottery on the voter set satisfies some
crucial fairness properties and is hence a good alternative to ”classical” voting, cannot be finally
accessed at this point. Intuitively, the additional randomization step may be a great disadvantage to
strong candidates and a chance for weak candidates. For instance, consider a Plurality election with
two candidates c and d, 98 voters supporting c, and 2 voters favoring d. Yet d can be the unique
winner in 3-voter subelections. Other, similar examples can be easily constructed for other voting
rules as well. Nevertheless, such paradoxical situations can be better circumvented by election
designers simply via using more appropriate and more representative lot sizes. We further point out
that lotteries defined as in this chapter treat all voters and candidates equally. For a brief discussion
of some fairness properties like anonymity or neutrality, we refer to [160] and leave more detailed
investigations for future research.

We further refer to the open cases for LOTTHENF -EVALUATION (for 2-Approval and 2-Veto)
for future research. Besides, regarding all problems under the co-winner model appears to be a
promising task.

Two problems worth studying are Improving Bribery and Fixed Bribery. 12 In improving bribery,
we ask whether a briber can raise the winning probability of a distinguished candidate by bribing
some voters. Note that improving bribery reduces to the possible bribery problem. Suppose that a
candidate c is not a possible winner. Then an improving bribery exists if and only if the possible
bribery problem has a solution. Moreover, fixed bribery generalizes the evaluation problem and asks
whether a briber can make a candidate the winner with a probability larger than a given threshold p.
Fixed bribery generalizes standard bribery, necessary, and possible bribery and hence we can derive
many hardness results all at once.

One could also investigate other kinds of strategic behavior such as multimode control. Fur-
thermore, one could consider destructive variants where we check whether the briber can prevent c
from being the only winner or among the winners for all, at least one, or at least a certain number
of K-voter subelections.

12The names remind of the similarly defined problems Improving Manipulation and Fixed Manipulation [160].
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Again we refer to other generalizations such as extending our studies to other voting rules or
introducing weights and/or price-tags (when studying bribery). As pointed out above, one could
regard a more general model where every combination of K voters is drawn with an individual
(positive) probability. Most results still hold (namely, all results in this chapter but the ones for eval-
uation). For general probabilities, the complexity of evaluation is questionable (e.g., for Plurality
our proof exploiting the number of subelections with unique-winner c cannot be tailored to general
probabilities; we need a different approach to solve the more general problem). What we can say is
that evaluation is hard for general probabilities whenever the corresponding problem is hard under
the uniform distribution assumption. In particular, the question arises whether and how the results
change when some combinations of K voters are drawn by the lottery with a probability of zero.

In [160], some suggestions for sampling with general probabilities are given. Possibly, this gives
rise to some new control variants where a chair can—completely or only to a certain extent—play
around with probabilities of K-voter subelections or each voter himself is drawn by the lottery with
an individual likelihood.

As another interesting research direction, we propose a variant of lot-based voting where the
chair can fix K′ voters, while the lottery draws K′′ other voters at random (it holds K = K′+K′′).
For K′ = 0, we deal with lot-based voting in the classical meaning, whereas K′′ = 0 corresponds to
the case where a chair can entirely determine a K-voter subelection and there is no random sampling
in this extreme case. Instead of single voters, one could also study models where K voter groups
instead of K single voters are selected by a lottery.

We further refer to parameterized control. Natural parameters are |C|, |V |, `, K, or the difference
|V |− |K|.

In particular, when K or |V |−K are constants, we obtain interesting results on first sight. For
instance, one can easily observe that many problems become easy for constant K. Since we only
have to evaluate

(n
K

)
subelections with K voters, all counting problems, evaluation, possible winner,

and necessary winner become/are easy—even for voting rules with an easy winner problem. The
same reasoning can be applied to settings with constant n−K. All these results still hold when each
K-voter subelection is drawn by an individual positive probability.

Moreover, possible bribery in k-Approval and k-Veto becomes easy for all natural numbers k
when we let K be constant. Either ` ≤ K holds and we can polynomially enumerate over all

(n
K

)
K-voter subelections (of which the number is polynomially bounded from above for constant K) and
for each such combination, we check whether the briber can make c the winner of the subelection
by trying out all

(K
`

)
ways to bribe ` out of K voters. If ` > K, ` is not constant in general, but

the briber can change all votes in some K-voter subelection. We assume then that the briber bribes
arbitrary K voters, each of them approves of c, and we simply have to verify whether or not the
other approvals can be distributed to non-distinguished candidates in a way that no other candidate
has a full approval score. This can be done by a simple greedy algorithm. Note that we can argue
analogously for k-Veto.

For constant n−K, the complexities for necessary and possible bribery in k-Approval and k-
Veto are the same as for the case where n−K and K are unrestricted. This holds as for K = n the
difference n−K is constant (namely zero) and hence our problems are at least as hard as bribery
under full information.

Once again, we refer to other complexity-theoretic concepts for future research.
Last but not least, lot-based voting is one way to describe uncertainty in voting. One could addi-

tionally assume that the votes themselves are partial according to some model in PIM (cf. Chapter 3)
and/or the voting rule is not uniquely known (cf. [19]).



Chapter 5

Bribery and Control in Runoff Rules

Up to the present, our focus has been on bribery and winner determination in voting under in-
complete information. Nevertheless, there are still many open problems related to voting un-
der full information. In [73], we regarded control and bribery for some voting rules that belong
to the most important and frequently studied rules in literature: k-Veto, Copelandα , Maximin,
Plurality with Runoff, and Veto with Runoff.

As we mainly consider the two families k-Approval and k-Veto in this thesis, we re-
strict ourselves to the probably most important and novel results in [73] and only focus on
Plurality with Runoff and Veto with Runoff. Surprisingly, for both rules neither bribery nor con-
trol by adding, deleting, or replacing voters and/or candidates have been investigated in literature
so far. That’s why we closed the gaps for these voting rules. Once again, we address merely the
constructive variants for these problems.

Although we could have also studied k-Approval or k-Veto (k ≥ 2) in a runoff version, our
analysis is limited to the two possibly most prominent rules among them—Plurality with Runoff
and Veto with Runoff. Both voting rules work similarly. First of all, we determine the scores and
veto numbers according to the Plurality and Veto rule, respectively. The two best candidates then
move to a runoff stage and compete against each other. The candidate in the runoff winning the
head-to-head contest is the runoff winner. In practice, tie-breaking rules are applied to determine
the two runoff candidates and the unique runoff winner. Although we could allow the voters to
revote in the runoff, we follow the largest part of the COMSOC literature and assume that all voters
truncate their rankings to the two remaining candidates. E.g., when a and b move to the runoff and a
voter votes c� a� d � b� e, the voter must not change his ranking into b� a and therefore votes
a� b in the runoff, too.

The rule Plurality with Runoff and its variations are often used in political elections, e.g., in
the presidential election in France. The other rule, Veto with Runoff, occurs—albeit frequently in
a multistage version—in competitions of whatever kind with several rounds where in each round
the worst candidate is ruled out, e.g., by a jury. Basically, the Veto with Runoff rule and some
variations are applied in situations where a committee or an electorate concentrates on the two least
unpopular alternatives and ignores all other ones (with more vetoes).

147
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5.1 Related Work

Once more, we refer to Section 3.1 for the literature about bribery and control in elections as well
as about the computational aspects of voting rules. In this chapter, we focus on bribery and on
multimode control by adding and deleting candidates and voters. Additionally, we address several
special cases such as control by adding voters, deleting voters, and replacing voters and study the
analogous problems for candidates. We emphasize that the general (multimode) control problem,
allowing an external agent to perform different types of control actions at once, such as deleting
and/or adding voters and/or candidates, was introduced in [81]. Replacement control was studied
in [17] in the context of judgment aggregation; Loreggia et al. [123] considered replacement con-
trol in elections. While Faliszewski et al. [81] addressed the voting rules Condorcet, Maximin,
Approval, and Plurality, Loreggia et al. mainly focused on replacement control in Borda, Veto, and
k-Approval.

As mentioned above, bribery and control have not yet been investigated for the two rules
Plurality with Runoff and Veto with Runoff even though both rules apply to many real-world set-
tings. In contrast, the results for coalitional and single manipulation are known to be easy for
Plurality with Runoff [170]. Moreover, in parallel to us, Maushagen et al. [125] settled the complex-
ity of shift bribery for several multi-stage voting rules, and in particular for Plurality with Runoff.
However, the setting of shift bribery is different from standard bribery and both problems are inde-
pendent from each other.

Apart from strategic behavior, the Plurality with Runoff rule and/or other runoff and multistage
rules and their axiomatic properties were studied in [100, 131, 148] in various directions. The list is
far from being exhaustive.

5.2 Results

In this section, we study the complexity of voter control, bribery, and candidate control for
Plurality with Runoff and Veto with Runoff. We begin our analysis showing that the problems
constructive control by adding voters, by deleting voters, and by replacing voters are easy for both
voting rules. After that, we study bribery ere we finally focus on candidate control.

5.2.1 Voter Control

Instead of showing the results separately one-by-one, we prove that exact constructive control by
adding and deleting voters (denoted by F -ECCAV+DV) is polynomial-time solvable, where F
is either Plurality with Runoff or Veto with Runoff. In this exact variant, our input is an election
(C,V ∪W ) with m≥ 2 candidates in candidate set C, nV voters in registered voter set V , nW voters
in unregistered voter set W (nV ,nW ∈ N0), a designated candidate c, and two nonnegative integers
`AV ≤ |W | and `DV ≤ |V | denoting the numbers of voters that may be added from W and deleted
from V , respectively. Since we study exact control, we even require that the numbers of added and
deleted voters are exactly equal to the corresponding given integers, i.e., we require that |V ′|= `DV

and |W ′| = `AV . Moreover, we have `AC = `DC = 0 and D = /0 as we do not consider candidate
control in this section. Note that CCAV, CCDV, CCRV, their exact variants, and CCAV+DV are
polynomial-time many-one reducible to ECCAV+DV (cf. Theorem 5.3).
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If not mentioned other, we assume that ties are broken in favor of candidate c. This way to
break ties is sometimes called parallel-universe tie-breaking in literature as—given distinguished
candidate c—we search for at least one way to break ties over all tied candidates such that our
instance is a YES instance for c. In contrast to other tie-breaking schemes, parallel-universe tie-
breaking keeps the voting rule anonymous and neutral (as each voter is treated equally and each
non-distinguished candidate can win in his own best-case).

Theorem 5.1. PLURALITY WITH RUNOFF-ECCAV+DV is in P.

Proof. First regard the case C = {c,d} with d 6= c. A rational chair adds exactly `AV voters from
W , among them as many as possible favor c. Moreover, he deletes precisely `DV voters from V and
as many as possible of these voters favor d over c. It remains to check whether c wins or ties with d
in the final election or not. Let n′ := |V̄ | = nV + `AV − `DV denote the number of voters in the final
election (C,V̄ ). According to the chair’s adding/deleting strategy, we accept if and only if

score(C,V̄ )(c) = score(C,V )(c)+min(`AV ,score(C,W )(c))−max(0, `DV − score(C,V )(d))≥
n′

2

as then and only then c is a weak Condorcet winner in the final election (C,V̄ ). Observe
that the chair adds exactly min(`AV ,score(C,W )(c)) voters favoring c from W and deletes precisely
max(0, `DV − score(C,V )(d)) voters supporting c from V . Hence, score(C,V̄ )(c) voters prefer c to d in
the final election and our algorithm checks whether this number is at least n′

2 (otherwise, d wins the
pairwise contest against c).

Henceforth, we let |C| > 2, that is, not all candidates move to the runoff stage. Our algorithm
guesses a candidate d ∈C \ {c} and four integers `c

AV , `
d
AV , `

c
DV , `

d
DV such that 0 ≤ `c

X + `d
X ≤ `X for

X ∈ {AV, DV}. The guessed candidate d is supposed to be the one who competes with c in the
runoff stage. Moreover, `c

AV (`d
AV ) is said to be the number of voters added from W that approve

c (d) and `c
DV (`d

DV ) denotes the number of voters deleted from V that approve c (d). Given such
guessed candidate and integers, we determine whether the chair can add exactly `AV votes of whom
`c

AV (`d
AV ) approve c (d) and whether he can delete exactly `DV votes of whom `c

DV (`d
DV ) approve c (d)

such that c and d reach the runoff for at least one way to break ties and c is a runoff winner. Observe
that the original instance is a YES-instance if and only if at least one guess leads to a YES answer
to the above question. We show how to find the answer to the above question in polynomial-time.
We immediately discard the guess if one of the following conditions holds:

1. `c
DV > score(C,V )(c),

2. `d
DV > score(C,V )(d),

3. `c
AV > score(C,W )(c),

4. `d
AV > score(C,W )(d).

Assume that none of the above conditions holds. Then, the scores of c and d are fixed. In
particular, the final score of e ∈ {c,d} is given by score(C,V̄ )(e) = score(C,V )(e)+ `e

AV − `e
DV . Let

s̄ = min(score(C,V̄ )(c),score(C,V̄ )(d)). To ensure c and d to be in the runoff, each candidate a ∈ A :=
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C\{c,d}may have at most s̄ points in total. A second condition for c to be a runoff winner against d
is that c does not lose against d in the pairwise comparison between them. Since there are n′ = nV +
`AV − `DV voters in the final election (C,V̄ ), c must win at least dn′

2 e duels against d or, equivalently
speaking, at most bn′

2 c comparisons may be won by d. Let score(C,V )(A) = ∑a∈A score(C,V )(a).
Moreover, for X ∈ {AV,DV}, let `A

X = `X − `c
X − `d

X . (Note that we immediately discard our current
guess if `A

AV > score(C,W )(A) or `A
DV > score(C,V )(A) holds; the conditions `A

X ≥ 0 (X ∈ {AV,DV})
are met due to the definition of `c

X and `d
X .) As d in turn wins score(C,V̄ )(d) comparisons against c in

all votes of the final election where d is the top candidate, there may be at most bn′
2 c− score(C,V̄ )(d)

voters favoring some a ∈ A and preferring d to c in the final election. Hence, if this number is
negative, we immediately reject for the current guess and regard the next one as d beats c in the
runoff stage, no matter which voters favoring some a ∈ A join them. Otherwise, we search for
exactly nV − score(C,V )(c)− score(C,V )(d)− `A

DV = score(C,V )(A)− `A
DV voters in V not deleted and

voting for candidates in A and for exactly `A
AV voters added from W and preferring some a ∈ A such

that the final election contains at most bn′
2 c− score(C,V̄ )(d) voters who rank some a ∈ A first and

prefer d over c. This leads to the following mincost flow problem. (For practical reasons, let V A

(W A) denote the set of voters in V (W ) with favorite candidate in A.)

There is a source x, a sink y, and two vertices vA and wA. Moreover, each voter in V A ∪W A

yields a vertex. Likewise, each a ∈ A yields a vertex a. If not mentioned other, each edge cost is
equal to zero. There is an edge from x to vA with capacity score(C,V )(A)− `A

DV . There is another
edge from x to wA with capacity `A

AV . Each voter v ∈V A yields an edge (vA,v) with capacity 1. The
cost of this edge is equal to one if and only if v prefers d to c. Analogously we define edges from
wA to vertices w∈W A. There is an edge from v to a with capacity one if and only if v prefers a most
(where v ∈V A∪W A). Each a ∈ A yields an edge (a,y) with capacity s̄.

We claim that the chair can make c a winner by adding `AV voters and deleting `DV voters
according to the current guess if and only if there is an integral flow F with value score(C,V )(A)−
`A

DV +`A
AV (that is, the greatest possible flow value) and minimum cost of at most bn′

2 c−score(C,V̄ )(d).
(⇒): Suppose that the chair reaches his goal. Then there is a way to make c and d reach the

runoff for some way to break ties, at least half of all voters in the final election prefer c to d, where
the chair adds `e

AV voters approving of e (e ∈ {c,d}) and `A
AV voters from W A, and he further deletes

`e
DV voters voting for e (e ∈ {c,d}) and `A

DV voters from V A. We construct the flow F as follows:

• Let F((x,vA)) = score(C,V )(A)− `A
DV and F((x,wA)) = `A

AV as these are the numbers of voters
in the final election that favor a candidate in A and belong to V and W , respectively.

• We let F((vA,v)) = 1 for each voter v ∈V A remaining in the election. If v is deleted from V ,
we have F((vA,v)) = 0. Note that due to F((x,vA)) = score(C,V )(A)− `A

DV , the same number
of edges (vA,v) have the flow value 1. More precisely, it holds F((x,vA)) = ∑v∈V A F((vA,v)).

• Moreover, we let F((wA,w)) = 1 whenever voter w ∈W A joins the election. Since exactly
`A

AV such voters join the final election (accordingly, we have set F((x,wA)) = `A
AV ), we have—

following the flow conservation condition—exactly `A
AV edges (wA,w) with flow value 1, that

is, ∑w∈W A F((wA,w))=F((x,wA))= `A
AV . For the remaining edges w (corresponding to voters

in W A not added to the election), we set F((wA,w)) = 0.
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• For each voter v ∈ V A ∪W A belonging to the final election, we set F((v,a)) = 1, where a ∈
A is voter v’s most preferred candidate. If v does not belong to the final election, we set
F((v,a)) = 0. Note that exactly score(C,V )(A)− `A

DV + `A
AV edges (i.e., the size of a maximum

flow) (v,a) have the flow value 1.

• Observe that the total cost of edges (vA,v) or (wA,w) (where v∈V A, w∈W A) with flow value
1 is at most bn′

2 c − score(C,V̄ )(d) since otherwise a majority of voters in the final election
would prefer d to c and c would lose against d in the final runoff.

• Finally, we set F((a,y)) = ∑v∈V A∪W A F((v,a)) for each a ∈ A. Observe that F((a,y)) ≤ s̄ as
otherwise a would have more points than c or d and there would not exist any tie-breaking
rule for which both c and d reach the runoff.

It follows that the flow F is feasible and has the required size.
(⇐): Assume that a flow as described above exists. Accordingly, we construct an election where

c and d reach the runoff for some way to break ties and c does not lose the pairwise comparison
in the final election. Each edge v ∈ V A∪W A with F((v,a)) = 1 one-to-one corresponds to a voter
v in the final election voting for a ∈ A. As the flow is integral, each edge (v,a) has either value
one or zero. Observe that due to F((x,vA)) = score(C,V )(A)− `A

DV and F((x,wA)) = `A
AV , exactly

score(C,V )(A)− `A
DV voters in V A and exactly `A

AV voters in W A belong to the final election. As
F((a,y)) ≤ s̄ for each a ∈ A, it follows that c and d are among the best two candidates (for some
way to break ties). Since the total cost is at most bn′

2 c− score(C,V̄ )(d), at most this number of edges
(v,a) has flow value 1. Note that according to our reasoning above, the final number of voters
is exactly n′ as there are exactly score(C,V̄ )(e) voters favoring e (e ∈ {c,d}) in the final election.
Moreover, the final number of voters favoring some a ∈ A is equivalent to the value of the flow. As
the total cost of the flow is small enough, at least half of all voters in the final election prefer c to d,
and c is at least a tying winner in the resulting election.

In summary, our problem is in P as our algorithm runs only polynomially many guesses. There
are m−1 pivotal non-distinguished candidates d, for each such candidate we have to check at most
polynomially many guesses (`c

AV , `
d
AV , `

c
DV , `

d
DV ), and for some feasible guesses we compute a min-

cost flow with a fixed flow value. Since both computing such a flow and the transformation from a
guess to the corresponding min-cost flow problem are easy, our overall problem is in P. q

A similar algorithm can be applied for Veto with Runoff:

Theorem 5.2. VETO WITH RUNOFF-ECCAV+DV is in P.

Proof. Once more, our algorithm checks for each non-distinguished candidate d if both d and c
can reach the runoff for some tie-breaking scheme and c beats or ties with d in the runoff. In case
|C| = 2, the two voting rules Plurality with Runoff and Veto with Runoff coincide and we argue
analogously to the proof of Theorem 5.1.

Let henceforth be |C| > 2 and d a pivotal candidate. We presume that the chair adds exactly
`AV voters and deletes `DV voters. Suppose further that the chair adds `c

AV voters vetoing c, `d
AV

voters vetoing d, and `A
AV voters vetoing candidates in A := C \ {c,d}. Moreover, the chair deletes

`c
DV voters vetoing c, `d

DV voters vetoing d, and `A
DV voters vetoing candidates in A. It must hold

`AV = `c
AV +`d

AV +`A
AV , `DV = `c

DV +`d
DV +`A

DV , and `e
X ∈N0 (e ∈ {A,c,d}, X ∈ {AV,DV}). Note that
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the following conditions must be satisfied: `e
AV ≤ vetoes(C,W )(e) and `e

DV ≤ vetoes(C,V )(e) (where
e ∈ {c,d,A} and vetoes(C,V )(A) = ∑a∈A vetoes(C,V )(a); we analogously define vetoes(C,W )(A)). Oth-
erwise, we can immediately drop the sextuple (`c

AV , `
d
AV , `

A
AV , `

c
DV , `

d
DV , `

A
DV ) and proceed with the

next one (if any).
It follows that the final veto numbers of c and d are uniquely determined for a given guess.

We have vetoes(C,V̄ )(e) = vetoes(C,V )(e)− `e
DV + `e

AV for e ∈ {c,d} in the final election (C,V̄ ). Let
v̄ = max(vetoes(C,V̄ )(c),vetoes(C,V̄ )(d)). To ensure that both c and d reach the runoff for some way
to break ties, every candidate a∈ A requires at least v̄ vetoes in the final election. Hence, for the final
election (C,V̄ ) the following conditions must hold (we let V A and W A denote the voters in V and W
vetoing a candidate in A, respectively). (1) Exactly vetoes(C,V )(A)− `A

DV voters in V A remain in the
election, not being deleted by the chair, (2) exactly `A

AV voters are added from W A, (3) for each a∈ A
at least v̄ voters in the final election veto a, and (4) at least half of all voters in the final election must
prefer c over d. Since each voter vetoing c prefers d to c and the final election (C,V̄ ) may include
at most bn′

2 c voters preferring d to c (where n′ = |V |+ `AV − `DV denotes the number of voters in
the final election), there may be at most bn′

2 c− vetoes(C,V̄ )(c) voters in the final election that prefer
d to c and veto a candidate in A. Note that in case this number is negative, we immediately discard
the current sextuple as then c loses against d in the runoff, provided that both candidates reach the
runoff at all. Notice that voters vetoing d never favor d over c.

To express these conditions, we define the following mincost flow problem. There is a source
x, a sink y, and three vertices vA, wA, and r. Besides, each voter v in V A∪W A yields a vertex v. We
further have a vertex for every a ∈ A. If not mentioned other, the cost of an edge is zero. The edges
are defined as follows:

• There is an edge from x to vA with capacity vetoes(C,V )(A)− `A
DV .

• Another edge goes from x to wA with capacity `A
AV . These two edges assign vetoes to candi-

dates in A in all votes of the final election. Observe that `A
DV voters from V A are deleted and

`A
AV voters are added from W A.

• For each v ∈V A, there is an edge from vA to v with capacity one. The edge cost is one if and
only if the voter prefers d to c. Otherwise, the cost is zero.

• Analogously, we define edges from wA to w (one for each voter w ∈W A).

• Each voter v ∈V A∪W A yields the edges (v,a) and (v,r) with capacity 1 each, where a is the
candidate vetoed by v.

• Each candidate a yields an edge from a to y with capacity v̄.

• There is an edge (r,y) with capacity (vetoes(C,V )(A) − `A
DV + `A

AV ) − (v̄ · (|C| − 2)) =
vetoes(C,V̄ )(A)− (v̄ · |A|). (If this capacity is negative, we immediately discard our current
guess as then the candidates in A cannot receive enough vetoes in total in order that each of
them has v̄ or more vetoes.)

Analogously to the proof of Theorem 5.1, we show that there is a successful control with the piv-
otal strategy sextuple and pivotal candidate d if and only if there is a flow with size vetoes(C,V )(A)−
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`A
DV + `A

AV (that is, a flow of maximum size) and costs of at most bn′
2 c− vetoes(C,V̄ )(c) as then and

only then each a has v̄ or more vetoes (the flow assigns exactly v̄ vetoes to candidates in A via the
edges (a,y), the excessive vetoes for candidates in A are bypassed over the edges (v,r) and (r,y)).
Note that the leftmost and the rightmost edges (i.e., (x,vA) and (x,wA) on the one hand and (a,y)
and (r,y) on the other hand) carry the same total flow from source to sink. In case of a flow of value
vetoes(C,V )(A)− `A

DV + `A
AV , all vetoes for candidates in A in the final election are considered. Since

each a has v̄ or more vetoes, there is a tie-breaking method for which c and d go to the final stage.
In case the costs are low enough, c does not lose the pairwise comparison with d in the runoff. Note
that it is important to consider all voters vetoing candidates in A in the final election (i.e., not leaving
out any veto positions for candidates in A in the final election) in order to check whether c really
wins against or ties with d in the pairwise comparison against d. Possibly, fewer vetoes already
suffice to assign v̄ vetoes to every a, but we cannot say anything about the pairwise comparison
between c and d when regarding fewer vetoes for candidates in A than there are in the final election.

Since there are O(m) candidates d and O(n6) sextuples (`c
AV , `

d
AV , `

A
AV , `

c
DV , `

d
DV , `

A
DV ) to check,

and computing an integral min-cost flow is easy, our overall problem is in P. q

Figure 5.1 provides an example of the flow algorithm defined in the proof of Theorem 5.2 where
vetoes(C,V̄ )(c)= vetoes(C,V̄ )(d)= 1, that is, each candidate a∈A= {a1,a2} requires at least one veto
in the final election (C,V̄ ) in order that c and d reach the runoff for some way to break ties. Suppose
that V A = {v1,v2}, W A = {w1,w2}, `A

AV = 2, and `A
DV = 1. We further assume that both voters in V A

veto a1, while both voters in W A veto a2. All voters in V A ∪W A except v1 prefer d to c. Observe
that |V̄ |= 5 (three voters in V A∪W A and two voters vetoing c and d each). Hence, there may be at
most one voter in V A∪W A preferring d to c because otherwise c would lose against d in the runoff.
Notice that we can assign one veto to each candidate in A by assuming v1 and w1 to be in the final
election. However, the vertex r ensures that all vetoes for candidates in A in the final election are
taken into account. Hence, a flow must have size 3 (i.e., the total capacity of the rightmost edges).
As each flow of size 3 costs at least two units, we reject for our guess.

Given the above results about exact multimode control, we obtain the following theorem.

Theorem 5.3. PLURALITY WITH RUNOFF-Y and VETO WITH RUNOFF-Y are in P for all Y ∈
{CCAV, CCDV, CCRV, CCAV+DV} and their exact counterparts.

Proof. For ECCRV, we use the algorithms of Theorem 5.1 and Theorem 5.2 for `AV = `DV =: `.
For CCRV, we regard `+ 1 instances of ECCRV where the chair replaces exactly `′ ∈ {0,1 . . . , `}
voters.

For ECCAV, we regard an instance of ECCAV+DV with `DV = 0. In CCAV, we regard `AV +1
instances of ECCAV where the chair adds exactly `′AV ∈ {0,1, . . . , `AV} voters.

ECCDV is a special case of ECCAV+DV with `AV = 0. For CCDV, we simply have to consider
at most `DV +1 ECCDV instances where the chair deletes exactly `′DV ∈ {0,1, . . . , `DV} voters.

Finally, for inexact multimode control, we try out at most (`AV +1) · (`DV +1) exact multimode
control problems where the chair adds precisely `′AV voters and deletes exactly `′DV voters, where
`′AV ∈ {0, . . . , `AV} and `′DV ∈ {0, . . . , `DV}.

Note that there are only polynomially many subproblems to regard for each case which all are
in P. q
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Figure 5.1: Example of the flow algorithm in the proof of Theorem 5.2

5.2.2 Bribery

In this section, we focus on bribery in Plurality with Runoff and Veto with Runoff. These results
have not yet been published, but they fit well into our results about candidate and voter control.
Our input is an election (C,V ) with m candidates in candidate set C, n voters in voter set V (where
m ∈ N, n ∈ N0), a distinguished candidate c, and a nonnegative integer ` ≤ |V |—the bribery limit.
W.l.o.g., we assume that m≥ 2 as otherwise c is trivially a winner being the only candidate.

Our first result reveals that bribery is easy for the rule Plurality with Runoff under parallel-
universe tie-breaking.

Theorem 5.4. PLURALITY WITH RUNOFF-BRIBERY is in P

Proof. First assume that |C| = 2 (C = {c,d}). Then a rational briber bribes as many voters as
possible voting for d and each of them approves of c after the bribery. It remains to check whether
at least half of all voters vote for c after the bribery. We accept if and only if score(c)+`≥ n

2 holds.
Otherwise, more voters in the final election prefer d to c than the other way around.

For |C| > 2, we define an algorithm based on a similar idea to the one for multimode control
(cf. Theorem 5.1). We guess a candidate d 6= c and check whether the briber can bribe w.l.o.g. 1

` voters such that c and d reach the runoff for some tie-breaking rule and c wins or ties with d

1Even if fewer bribes suffice to make c win the election, this is no restriction as the additionally bribed voters may
submit the same rankings as before.
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in their head-to-head contest. We assume that the chair bribes λc voters voting for c, λd voters
approving of d, and λA voters preferring a candidate in A := C \ {c,d}. Such a guess satisfies the
condition `= λc+λd +λA and λc,λd ,λA ∈N0. If λc > score(c), λd > score(d), or λA > score(A) :=
∑a∈A score(a), we immediately discard the current guess.

Moreover, we assume that `c and `d bribed voters vote for c and d after the bribery, respectively.
Note that it does not make sense when bribed voters favor other candidates. If c and d make it to
the runoff, `c voters favor c and `d bribed voters prefer d, and there are still some bribes left (that
is, `c + `d < `), a rational briber gives these overhanging points to c as this increases c’s advantage
compared with all other candidates and makes c win further pairwise comparisons against d which
might turn out to be essential in the runoff stage. Thus, we regard all combinations (`c, `d) ∈ N2

0
with `c + `d = `.

In opposition—as we could observe above—the bribes may concern voters initially approving
of c, d, or some candidate in A.

Notice that after the bribery, c and d have uniquely determined scores, that is, score(C,V̄ )(e) =
score(C,V )(e)−λe + `e (e ∈ {c,d}). Let s̄ := min(score(C,V̄ )(c),score(C,V̄ )(d)). In order to get c and
d into the runoff (for at least one way to break ties), the briber must ensure that each a ∈ A has at
most s̄ points. Moreover, c must not lose the pairwise comparison against d in the runoff. Since d
definitely wins each vote against c where d is ranked first, and as d may win at most bn

2c pairwise
comparisons against c in total, the final election may contain at most bn

2c− score(C,V̄ )(d) voters
favoring a candidate in A and preferring d to c. Note that in case this number is negative, we reject
for the current guess as a majority of voters favor d and accordingly d wins the pairwise comparison
against c. We define the following flow network. There is a source x, a sink y, a vertex v for each
voter v approving of some a ∈ A (once more, let us call the set of these voters V A), and a vertex a
for each a ∈ A. The edges are defined as follows.

• Each voter v ∈V A yields an edge (x,v) with capacity one.

• For each v ∈ V A, a ∈ A, there is an edge (v,a) with capacity one if and only if v approves of
a. The cost of the edge is one if and only if v prefers d to c. Otherwise, the cost is zero.

• Each a ∈ A yields an edge (a,y) with capacity s̄.

• All costs are zero if not mentioned other.

Similarly to the proof of Theorem 5.1, we accept for the current guess if and only if the flow
network yields an integral flow of the size score(A)−λA and total cost of at most bn

2c−score(C,V̄ )(d)
as then and only then c and d make it to the runoff for some way to break ties and c does not lose
the pairwise comparison against d.

Our problem is surely in P since the number of guesses to check is polynomially bounded and
our problem polynomially reduces to computing an integral flow with minimum cost. q

For Veto with Runoff, the bribery problem turns out to be easy, too. Again, the proof makes use
of computing a flow of minimum cost.

Theorem 5.5. VETO WITH RUNOFF-BRIBERY is in P.
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Proof. First of all, for |C|= 2, the briber bribes as many voters vetoing c as possible and each of
them vetoes the other candidate after the bribery. It remains to check whether c has no more vetoes
than the other candidate in the resulting election.

Now let |C|> 2. Similarly to the proof of Theorem 5.2, our algorithm guesses a candidate d 6= c
and we check whether c and d can make it to the runoff and d does not win the pairwise duel against
c. We further test whether this is possible when the briber bribes λc voters vetoing c, λd voters
vetoing d, and λA voters vetoing some candidate a ∈ A := C \ {c,d}. Moreover, we suppose that
`d bribed voters veto d after the bribery, whereas `A bribed voters give their veto to some a ∈ A.
We may assume that no bribed voter vetoes c after the bribery since this makes c lose his pairwise
comparison against d. Therefore, we suppose that either d or some a ∈ A get these vetoes. Notice
that for a given guess it holds `A + `d = `, λA +λd +λc = `, and λd ,λc,λA, `d , `A ∈ N0.

Our current guess must additionally satisfy the conditions λc ≤ vetoes(c), λd ≤ vetoes(d), and
λA ≤ vetoes(A) := ∑a∈A vetoes(a). Otherwise, we discard this guess and check the next one.

Depending on a guess (that is, a combination (d,λc,λd ,λA, `d , `A)), we obtain uniquely de-
termined veto numbers vetoes(C,V̄ )(c) = vetoes(C,V )(c)− λc and vetoes(C,V̄ )(d) = vetoes(C,V )(d)−
λd + `d . In order to get both c and d into the runoff (for some tie-breaking scheme), it must hold
vetoes(C,V̄ )(a)≥max(vetoes(C,V̄ )(c),vetoes(C,V̄ )(d)) =: v̄ for each a ∈ A in the final election (C,V̄ ).

Moreover, c must defeat d or tie with d in their head-to-head contest after the bribery. As each
voter vetoing c prefers d to c, the distinguished candidate c may lose at most bn

2c− vetoes(C,V̄ )(c)
pairwise comparisons in votes of the final election where some a ∈ A is vetoed. Observe that if
bn

2c− vetoes(C,V̄ )(c)< 0, we discard the current guess as a proper majority of voters favor d over c
and—provided that both c and d make it to the runoff stage—c is not a runoff winner.

Hence, we check whether it is possible to find vetoes(A)−λA voters vetoing some a ∈ A left
unchanged by the briber and at most bn

2c− vetoes(C,V̄ )(c) of them prefer d to c. Note that `A voters
veto candidates in A after the bribery (no matter whom they have vetoed before the bribery) and their
vetoes can be arbitrarily set by the briber. Each of these voters is supposed to prefer c to d without
any restriction as they either veto d (and hence c is trivially ranked better) or they veto a candidate in
A and thus c and d are w.l.o.g. on the first and second position in these votes, respectively. Moreover,
each a ∈ A must have v̄ or more vetoes in the final election. All these preconsiderations lead us to
the following mincost flow problem. The flow network contains a source x, a sink y, vertices vA,
b, r, a vertex v for each voter v vetoing a candidate in A (we call the set of these voters V A), and a
vertex a for each candidate a ∈ A. If not mentioned other, the cost of an edge is zero. The edges are
defined as follows.

• There is an edge (x,vA) with capacity vetoes(A)− λA. This edge is to ensure that exactly
vetoes(A)−λA voters in V A remain unchanged.

• There is an edge (x,b) with capacity `A. This edge makes sure that precisely `A bribed voters
veto candidates in A after the bribery.

• From vA, there is an edge to each v ∈ V A with capacity 1. The edge cost is 1 if and only if v
prefers d to c.

• For each v ∈ V A, there are two edges (v,a) and (v,r) with capacity 1 each, where a is the
candidate vetoed by v.
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• For each a ∈ A, there is an edge (b,a) with capacity `A. Moreover, there is an edge (b,r) with
capacity `A.

• For every a ∈ A, there is an edge (a,y) with capacity v̄.

• There is an edge (r,y) with capacity vetoes(A)− λA + `A− (m− 2)v̄. (Again, this number
must not be negative as then there are not enough vetoes in total to distribute such that each
a ∈ A can get (exactly) v̄ vetoes. Thus, c and d do not make it to the runoff together. We
immediately discard our current guess in this case.)

Similarly to the proofs of Theorem 5.1, 5.2, and 5.4, it follows that the briber can make c a
runoff winner against d under the current guess if and only if the flow network yields an integral
flow with flow value vetoes(A)−λA + `A and a total cost of at most bn

2c− vetoes(C,V̄ )(c).
The basic ideas are as follows. The edges starting from the source assign vetoes(A)−λA vetoes

to (unchanged) voters in V A and `A vetoes that bribed voters assign to candidates in A. Hence, the
number of vetoes for candidates in A in the final election is equivalent to the flow size. Again, each
voter in V A preferring d to c in the final election, according to the flow, costs one unit. Vertex b
feasibly distributes `A vetoes to candidates in A. The vertex r functions as an auxiliary vertex that
bypasses the excessive vetoes for the a ∈ A to the target vertex. Each a requires at least v̄ vetoes.
If possible, the flow network ensures that exactly v̄ vetoes are considered (via the edges (v,a) and
(a,y)) and the remaining, excessive vetoes (that would lead to a higher veto number for a ∈ A) flow
to y via vertex r. 2 Observe that (∑a∈A cap((a,y)))+ cap((r,y)) = cap((x,vA))+ cap((x,b)). The
values on both sides of the equation correspond to the size of a maximum flow. q

Notice that both proofs hold for the exact and inexact variant (we assumed that the briber meets
his bribery limit). The reason is that—in contrast to control—the briber can effectively bribe fewer
voters when some bribed voters approve or veto the same candidate(s) as before. In control by
deleting voters, for example, we cannot say that the chair faces the same problem when deleting
five voters instead of three voters. Assume, e.g., that two deleted voters approve of c, which may
hurt c decisively. In bribery, bribing a voter approving of c can be made undone by making the voter
approve of c again.

5.2.3 Candidate Control

Consider now candidate control. We show that candidate control is generally NP-complete for
both runoff rules. In each proof, we reduce from RX3C and are given an instance (B,S ) with
B = {b1, . . . ,b3m}, S = {S1, . . . ,Sn=3m}, Si ⊂ B, and |Si| = 3, for each i, 1 ≤ i ≤ n. Sometimes,
we rename the candidates in B for practical reasons. For instance, we often write Si = {bi

1,b
i
2,b

i
3}

to emphasize the three candidates in B belonging to a particular 3-set Si. We start with CCAC for
Plurality with Runoff.

2Again, we included the r vertex into our construction as thus we can decide whether c still beats or ties with d in the
head-to-head contest when we consider all voters vetoing candidates in A in the final election. If we did without vertex
r and its incident edges, our flow network would show whether it is possible that c and d make it to the runoff for some
tie-breaking method, but then a statement whether c wins or loses against d (or ties with d) would not be possible in
general.
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Theorem 5.6. PLURALITY WITH RUNOFF-CCAC is NP-complete.

Proof. To show our result, we give a reduction from the RX3C problem to PLURALITY WITH

RUNOFF-CCAC. Let (B,S ) be an instance of RX3C, i.e., each b j ∈ B occurs in exactly three
subsets in S . Remind that it holds |S |= |B|= 3m for any instance of RX3C. Our CCAC instance

is defined as follows. The set of registered candidates is C = {c,q}
·
∪ B, whereas D = S contains

the unregistered candidates. c is our designated candidate. We create the following 15+24m votes:

1. There are eight voters ranking q first and all other candidates in C∪D behind.

2. Seven voters rank c first and all other candidates in C∪D behind.

3. For each b j ∈ B, there are two voters voting b j � c� ((C∪D)\{b j,c}).

4. Finally, for each Si ∈S , Si = {bi
1,b

i
2,b

i
3}, we create two votes with preference Si� bi

j � ·· · �
c� q, 1≤ j≤ 3 (how the candidates in between are ranked, is immaterial to our analysis). In
other words, each Si yields six voters in this group, two for each bi

j (1≤ j ≤ 3).

We are allowed to add at most m candidates. This completes the construction. Observe
that in the original election, we obtain score(q) = 8, score(c) = 7, and score(b j) = 8 for every
j ∈ [3m]. Thence, c is not in the runoff for any tie-breaking rule, and consequently c is not a
Plurality with Runoff winner.

We claim that an exact cover S ′ of B exists if and only if at most m candidates can be added
from D such that c is a winner.

(⇒): Assume that there is an exact 3-set cover S ′. Notice that after adding candidates in S ′, q
has 8 points, c has 7 points, every Si ∈S ′ has 6 points, and every b j ∈ B has 8-2=6 points. Hence,
q and c go into the runoff stage. As N(c,q) = 24m+ 7 > 24m+15

2 = |V |
2 (this inequality is valid for

every m∈N), more voters prefer c to q than vice versa and consequently c is a unique runoff winner
against q.

(⇐): Presume that the chair can make c a winner by adding no more than m candidates. Observe
that to ensure c to survive the first round of the election, at least m candidates must be added.
Otherwise, there is at least one candidate b j ∈ B who receives 8 approvals, and q and this candidate
have more points than c. This means that c does not reach the runoff. Let S ′ be a solution. As
discussed, we have |S ′|= m. If S ′ is not an exact 3-set cover, again there is a candidate b j ∈ B not
belonging to any subset of S ′ and thus receiving 8 approvals after the addition of the candidates in
S ′ to the election. Once more, c does not reach the runoff stage. Therefore, S ′ must be an exact
3-set cover. q

We achieve another hardness result for the Veto with Runoff rule.

Theorem 5.7. VETO WITH RUNOFF-CCAC is NP-complete.

Proof. We prove the claim by a reduction from the RX3C problem. For a given RX3C instance
(B,S ), we create the following VETO WITH RUNOFF-CCAC instance.

Let C = B
·
∪ {c,q} be the set of registered candidates, S be the set of unregistered candidates

(for each Si ∈ S we create a candidate denoted by the same symbol), and c the distinguished
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candidate. Let V be the set of voters consisting of the following 18m2 + 6mn+ 11n− 9m+ 1 =
36m2 + 24m+ 1 voters (the equality holds because of n = 3m; when defining the voters, we yet
distinguish between the indexes n and m in order to emphasize which voter groups are based on the
Si and which ones refer to the elements in B):

1. There is a voter of the form S � B� c� q,

2. for each i, 1≤ i≤ n, there are 3m+1 voters of the form q� B� c�S \{Si} � Si,

3. for each i, 1≤ i≤ n, there are 3m+1 voters of the form c� B� q�S \{Si} � Si,

4. for each j, 1≤ j ≤ 3m, there are 6m−3 voters of the form c� q�S � B\{b j} � b j,

5. for each i, 1≤ i≤ n, there are three voters of the form q� B�S \{Si} � c� Si,

6. for each i, 1 ≤ i ≤ n, with Si = {bi
1,b

i
2,b

i
3} ∈S , there are two voters of the form c � q �

B\{bi
1} �S \{Si} � bi

1 � Si,

7. for each i, 1 ≤ i ≤ n, with Si = {bi
1,b

i
2,b

i
3} ∈S , there are two voters of the form c � q �

B\{bi
2} �S \{Si} � bi

2 � Si, and

8. for each i, 1 ≤ i ≤ n, with Si = {bi
1,b

i
2,b

i
3} ∈S , there are two voters of the form c � q �

B\{bi
3} �S \{Si} � bi

3 � Si.

We are allowed to add at most m candidates, i.e., ` = m. Note that c has 3m(3m+ 1) + 9m
vetoes (because of vetoes from voter groups 2. and 5.), q has 3m(3m+1)+1 vetoes (due to groups
1. and 3.), and for every j, 1≤ j≤ 3m, b j has 6m+3 vetoes (from the remaining four voter groups).
In particular, it holds vetoes(b j) = 6m+ 3 < vetoes(c) = 3m(3m+ 1)+ 9m which is equivalent to
9m2+6m−3> 0. This implies 9m2+6m−3≥ 9m+6m−3= 15m−3≥ 15−3= 12> 0 for every
natural number m. Since |B| ≥ 3, the designated candidate c does not even reach the runoff and is
thus not a Veto with Runoff winner. We point out that as soon as one candidate in S is added, q’s
number of vetoes collapses to one.

We claim that the chair can make c a Veto with Runoff winner by adding at most m candidates
if and only if an exact cover of B exists.

(⇐): Assume that there is an exact 3-set cover S ′ of B. After adding the candidates in S ′,
candidate q has 1 veto, for every i, 1≤ i≤ n, each Si ∈S ′ has at least (3m+1)+(3m+1) = 6m+2
vetoes (due to the second and third voter group), for every j, 1≤ j≤ 3m, b j has 6m+3−2= 6m+1
vetoes, and c has 6m vetoes. Hence, q and c move to the runoff stage. It remains to show that c does
not lose the pairwise comparison against q. More precisely, we even prove that c wins the head-to-
head contest against q. Observe that all voters except from groups two and five prefer c to q. Thus,
there are exactly 3m(3m+1)+3m ·3 voters in total who prefer q to c. Consequently—considering
that there are 36m2 +24m+1 voters in V —a total of 27m2 +12m+1 voters like c more than q. We
obtain N(c,q) = 27m2 + 12m+ 1 > 36m2+24m+1

2 = |V |
2 which is equivalent to 18m2 + 1 > 0 (which

holds for every m ∈ N). Consequently, a majority of voters prefer c to q.
(⇒): Assume that adding S ′ ⊆S from the set of unregistered candidates to the election makes

c a winner under Veto with Runoff.
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Observe first that S ′ must contain exactly m candidates since otherwise, due to voter group
five, c would have at least 3(2m+1) = 6m+3 vetoes. On the other hand, at least one candidate in B
would have at most 6m+3−2 = 6m+1 vetoes as at least one Si is added (for S ′ = /0, we already
know that c is not a winner). Hence, this candidate and q would both have fewer vetoes than c, and
c would not even reach the runoff stage. So, we have |S ′| = m. It follows that c has 6m vetoes
after the addition of m candidates in S ′. If S ′ is not an exact 3-set cover, there must be a candidate
b j ∈ B occurring in at least two subsets of S ′. Then, because of voter groups 6-8, this candidate
has at most 6m+3−4 = 6m−1 vetoes and this veto number is smaller than the veto number of c.
Since q has fewer vetoes than c as well, c does not reach the runoff stage. So, we can conclude that
S ′ is an exact 3-set cover. q

We can also settle a hardness result for Plurality with Runoff and CCDC.

Theorem 5.8. PLURALITY WITH RUNOFF-CCDC is NP-complete.

Proof. We prove the claim by a reduction from the RX3C problem. For a given RX3C
instance (B,S ), we create the following instance of PLURALITY WITH RUNOFF-CCDC. Let

C = {c,q}
·
∪ B

·
∪ S be the set of candidates and c the distinguished candidate. Let V be the set

of voters consisting of the following 9m2 +21m+1 voters (recall that n = 3m holds).

1. There are 2m voters of the form q� b1 � b2 � ·· · � b3m �S � c,

2. there are m+1 voters of the form q� b3m � b3m−1 � ·· · � b1 �S � c,

3. for each j, 1≤ j ≤ 3m, there are 3m−3 voters of the form b j � B\{b j} �S � c� q,

4. for each i, 1≤ i≤ n, there are three voters of the form Si � c�C \{Si,c,q} � q,

5. for each i, 1 ≤ i ≤ n, with Si = {bi
1,b

i
2,b

i
3} ∈S , there are two voters of the form Si � bi

1 �
C \{Si,c,q,bi

1} � c� q,

6. for each i, 1 ≤ i ≤ n, with Si = {bi
1,b

i
2,b

i
3} ∈S , there are two voters of the form Si � bi

2 �
C \{Si,c,q,bi

2} � c� q, and

7. for each i, 1 ≤ i ≤ n, with Si = {bi
1,b

i
2,b

i
3} ∈S , there are two voters of the form Si � bi

3 �
C \{Si,c,q,bi

3} � c� q.

Furthermore, assume that the chair may delete m candidates from C. W.l.o.g., we require that
m≥ 4. In the original election, c has no point at all, whereas all other candidates have some points.
Thus, c certainly does not reach the runoff and cannot be a winner under the Plurality with Runoff
rule.

We claim that c can be made a Plurality with Runoff winner by deleting at most m candidates if
and only if an exact cover of B exists.

(⇐): Assume there is an exact 3-set cover S ′. After deleting the candidates in S ′, q has
2m + m + 1 = 3m + 1 approvals, c has 3m approvals, every Si ∈ S \S ′ has 9 approvals, and
for every j, 1 ≤ j ≤ 3m, b j has 3m− 3+ 2 = 3m− 1 approvals. Therefore—not least because
m ≥ 4 holds—q and c go to the runoff stage, implicating that c is the final winner as N(c,q) =
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9m2 +18m > |V |
2 = 9m2+21m+1

2 (which is equivalent to 9m2 +15m−1 > 0; this in turn follows from
9m2 +15m−1≥ 9+15−1 = 23 > 0) holds for every m ∈ N, and in particular for m≥ 4. In other
words, a majority of voters favor c over q. Note that all voters except from the first two voter groups
like c more than q.

(⇒): Presume now that the chair can make c a Plurality with Runoff winner of the election
by deleting at most m candidates. Let us denote these candidates by C′. Note that q 6∈ C′ since
otherwise there would be two candidates in B receiving at least 3m− 3+ 2m = 5m− 3 and 3m−
3+m+ 1 = 4m− 2 approvals, preventing c from winning. 3 Furthermore, none of the candidates
in B should be deleted, i.e., B∩C′ = /0. In fact, if we delete a candidate b j ∈ B, then the candidate
ranked immediately after b j in the 3m−3 votes created for b j (group three) would receive at least
(3m−3)+ (3m−3) = 6m−6 approvals, preventing c from going to the runoff stage. This means
that the deletion of one candidate in B invites the deletion of all candidates in B, to make c the
winner. However, we are allowed to delete at most m candidates. Therefore, we have C′ ⊆S . After
deleting the candidates in C′, c has 3|C′| approvals, due to the fourth voter group. Note that |C′|= m
must hold. Otherwise, at least one candidate in B would receive more approvals than candidate c
after the deletion of all candidates in C′ as c would have at most 3(m− 1) approvals and some b j

would have at least 3m−3+2 = 3m−1 points in the final election, due to voter groups 3 and 5-7.
Thence, c would not go to the runoff stage. Therefore, we know that c receives 3m approvals after
the deletion of all candidates in C′. If C′ is not an exact 3-set cover, then there must be a candidate
b j ∈ B who occurs in at least two subsets Si belonging to C′. Due to the construction, this candidate
receives at least 3m−3+2+2 = 3m+1 approvals (3m−3 approvals from the third voter group and
at least four approvals according to two Si sets containing b j), implying that q and this candidate
have more points than c, and c does not reach the runoff. Thus, the sets Si in C′ must form an exact
3-set cover of B. q

We can settle a hardness result for Veto with Runoff as well.

Theorem 5.9. VETO WITH RUNOFF-CCDC is NP-complete.

Proof. We prove the theorem reducing once again from the RX3C problem. For an instance
(B,S ) of RX3C, we create the following instance of CCDC. We are given the candidate set C =

{c,q}
·
∪ B

·
∪S . c is our distinguished candidate. There are 6n+1 = 18m+1 (as n = 3m holds for

RX3C instances) voters defined as follows:

1. There is a voter with preference S � B� q� c.

2. For each Si = {bi
1,b

i
2,b

i
3} ∈S , we create six votes as follows (number of votes: preferences

of the votes):

2 : c� q� B\{bi
1} �S \{Si} � bi

1 � Si,

3Note that if we delete q (and possibly some b j), we leave at least |B|− (m− 1) = 2m+ 1 candidates from B in the
election as the chair may delete at most m candidates in total and one deletion is reserved for q. Let b′ denote the candidate
b j in the final election with smallest index j, b′′ denotes the one with largest index, i.e., formally there are two candidates
b j1 =: b′ and b j2 =: b′′ (with 1≤ j1 < j2 ≤ 3m) not deleted, and all candidates b1, . . . ,b j1−1 and b j2+1, . . . ,b3m are deleted
by the chair. It follows that b′ has at least 5m−3 points (from group 1 and 3), and b′′ has at least 4m−2 approvals from
voters in group 2 and 3. Observe that c gets three points for each deleted Si. As at most m−1 such candidates are deleted,
c has no more than 3(m−1) points and this score is below the score of both b′ and b′′.
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2 : c� q� B\{bi
2} �S \{Si} � bi

2 � Si, and

2 : c� q� B\{bi
3} �S \{Si} � bi

3 � Si.

We are allowed to delete at most m candidates.
Observe that every b j ∈ B and q have 0 vetoes, c has 1 veto, and every Si ∈ S has 6 vetoes.

Hence, the current winner must be from B∪{q} since two of these candidates reach the runoff stage,
depending on the tie-breaking rule used.

We claim that there is an exact cover S ′ of B if and only if the chair can make c a winner by
deleting at most m candidates.

(⇒): Let S ′ be an exact 3-set cover of (B,S ). Then, after deleting the candidates in S ′, c
has 1 veto, every b j has 2 vetoes, q has 0 vetoes, and every Si ∈S \S ′ (i.e., the candidates Si not
deleted) has 6 vetoes. Hence, c and q survive the first stage of voting. As all except the first voter
prefer c to q (and there are at least three voters in total), c becomes the unique winner.

(⇐): Suppose now that the chair can make c a winner by deleting the candidate subset C′,
where |C′| ≤ m. We first argue that it must hold |C′| = m and C′ ⊆S since otherwise at least two
non-distinguished candidates with zero vetoes remain in the election (no matter whether q and/or
candidates in B are among the candidates deleted). If the sets in C′ do not exactly cover B, there
are candidates b j ∈ B who do not occur in any subset of C′. Such candidates would have 0 vetoes.
Hence, c would not even survive the first stage of voting in this case. So, we can conclude that all
sets in C′ must exactly cover B. q

Note that all hardness results hold regardless of the tie-breaking rule used. It remains to show
the replacing candidates cases. Before continuing, we provide the following definition:

Definition 5.10. [122, 123] A voting rule satisfies the condition Insensitiveness to Bottom-ranked
Candidates (IBC) if the winners of a given election do not change after a proper subset of candidates
who are ranked after all other candidates in all votes are deleted.

This definition turns out to be useful in the following lemma.

Lemma 5.11. [122, 123] Let F be a voting rule satisfying IBC. Then, F -CCRC is NP-hard if
F -CCDC is NP-hard.

Now we are equipped to determine the complexity for constructive control by replacing candi-
dates for our two runoff rules.

Theorem 5.12. PLURALITY WITH RUNOFF-CCRC and VETO WITH RUNOFF-CCRC are NP-
complete.

Proof. The hardness result for Plurality with Runoff follows from Lemma 5.11, Theorem 5.8,
and the fact that Plurality with Runoff fulfills the criterion IBC.

For Veto with Runoff, we adjust the instance in the proof of Theorem 5.7 (CCAC) as follows:
Introduce m additional candidates d1, . . . ,dm ranked first by every voter, that is, each voter v votes
d1 � d2 � . . .� dm �

−→
Rv, where

−→
Rv is the original ranking of v in the proof of Theorem 5.7. As the

chair may exchange m candidates, these m candidates are deleted with highest priority. In case two
or more d j remain in the election, two d j reach the runoff. If one d j remains in the election, c cannot
make it to the runoff either (compare the proof of Theorem 5.7; recall that q has only one veto when
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Voting rule Bribery AV DV RV AV+DV AC DC RC AC+DC
Plurality with Runoff P P P P P NPC NPC NPC NPC
Veto with Runoff P P P P P NPC NPC NPC NPC

Table 5.1: Results for bribery and control in Plurality with Runoff and Veto with Runoff. When
referring to control, we use a two- instead of four-letter code and drop the two letters CC. E.g., we
write ”AV” instead of ”CCAV”. The complexities are the same when we regard the exact versions
of the problems instead. All polynomial-time results hold under parallel-universe tie-breaking. All
hardness results hold regardless of tie-breaking rules and both under the co- and unique-winner
model in the runoff. Key: P stands for ”polynomial-time solvable”, NPC stands for ”NP-complete”.

at least one Si is added and hence—in case some d j is not deleted—our distinguished candidate is
at most third best candidate in the preliminary round). Hence, all d j must be replaced with the m
candidates added in the proof of Theorem 5.7. q

Note that the hardness result for all exact variants follow as well, with the same limits as in their
inexact variants. Moreover, hardness follows for exact and inexact multimode control (allowing a
chair to add and delete candidates and voters).

5.3 Conclusion

We have investigated the computational complexity of bribery, candidate control, and voter control
for Plurality with Runoff and Veto with Runoff in their constructive variants, closing the gaps in
the literature. Table 5.1 summarizes our results for the two runoff rules.

Contrary to the previous chapters, we have only provided the results under full information.
While investigating replacement control for various voting rules such as Maximin, Copeland, or
Condorcet (cf. our results in [73]), we have noticed that—to the best of our knowledge—neither
bribery nor control has been solved for these two runoff rules up to then. This appeared to us
somewhat surprising because both voting rules are frequently used in practice, in their pure form
as well as in variations such as multi-stage versions or as adaptions allowing revoting in the runoff
stage. We point out that studying scoring rules in a runoff version fits in the line of investigating
two-stage rules as we have done in Chapter 4 in the context of lot-based voting rules. In contrast
to lotteries selecting a subset of voters and applying a voting rule to these voters, runoff rules
rule out all but the two best candidates and apply the Weak Condorcet or Condorcet rule to these
two candidates—depending on the winner model. We have decided to present only the results for
Plurality with Runoff and Veto with Runoff and ignore the other results from [73] as the focus in
this thesis lies on k-Approval and k-Veto. Studying k-Approval/-Veto, k ≥ 2, in a runoff version
appears to be a promising task for future research.

Our findings in this chapter state that the worst-case complexities for Plurality with Runoff and
Veto with Runoff match the complexities for their counterparts without runoff (for the results for
Plurality and Veto without a runoff, we refer to [79] for bribery, [16] for control by adding/deleting
voters/candidates, [81] for multimode control, and [122] for replacement control). More precisely,
constructive control by adding, deleting, and replacing candidates is hard for both runoff rules.
These results hold regardless of the given tie-breaking rule, for multimode control, and for the ex-
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act variants of multimode control and control by adding, deleting, and replacing candidates. Both
bribery and control by adding, deleting, and replacing voters are easy for both runoff rules. By
providing the polynomial-time results for the most general voter control problem exact multimode
control, the other voter control results follow. Although the problems are not harder than the cor-
responding problems without runoff, we have to point out several aspects. Firstly, the proofs are
surely more involved. E.g., bribery in Plurality and Veto (under full information) can be solved
by means of simple greedy algorithms [79], but the proofs for the runoff versions require more
complex constructions with transformations of some subproblems to the polynomial-time solvable
INTEGRAL MIN-COST FLOW problem. Secondly, all polynomial-time results have been shown un-
der the parallel-universe tie-breaking rule. The question arises whether the problem is easy for other
or even for arbitrary tie-breaking rules. Thirdly, the results hold under the assumption that each voter
provides a complete ranking, revoting is not allowed, and each voter shows up to the runoff elec-
tion. This poses some further intriguing questions. One could study what happens when the voters’
votes are partial according to a model X ∈ PIM, a lot-based mechanism determines the voters whose
votes count or the voters who actually participate in the runoff election, or how the results change
when some or all voters may change their ballots in the final runoff. Moreover, variants of these
two runoff rules, such as multi-stage versions (the multi-stage version of Plurality with Runoff is
called STV in literature) or other variations raise further questions. Finally, we have to mention
destructive control, which has been studied by us in [73], and destructive bribery. Nevertheless, we
have decided to omit these results as we merely concentrate on constructive problems in Part I. The
proofs of the destructive versions basically use the same constructions as the constructive versions.
For the easy problems, it suffices to guess a non-distinguished candidate that is a runoff winner for
at least one way to break ties, while the constructions showing hardness of constructive candidate
control can be adjusted to prove the corresponding results for destructive candidate control.

In this chapter, we have considered exact control where the chair must meet his adding, deleting,
and/or replacing limits. By studying exact multimode voter control, we could prove membership
in P for the subproblems (E)CCAV, (E)CCDV, (E)CCAV+DV, and (E)CCRV at the same time.
Although exact control has been widely ignored in literature so far, to the best of our knowledge,
one can fancy many real-world applications where an election has to consist of fixed numbers of
candidates or voters. One such application is given by lot-based voting (cf. Chapter 4) which can
be regarded as an exact version of CCAV with an empty set of registered voters, V being the set
of unregistered voters, and the lottery adds exactly K voters. Observe that the complexity might
go up when we move from CCAV to ECCAV. By way of example, we know that 3-APPROVAL-
CCAV is in P [119]. In contrast, 3-APPROVAL-ECCAV is NP-complete. We may simply borrow
the reduction showing that LOTTHEN3-APPROVAL-POSSIBLE WINNER is NP-complete (see also
Theorem 6.1 in [58] and Chapter 4 about lot-based voting). The question arises whether there are
other instances where the exact variant of the given problem is hard and the inexact variant is easy.

As pointed out above, our original motivation behind our work in and around [73] was to obtain
a complete picture over the complexities for replacement control. During our research, we could
observe that (1) many other control problems had been open up to then and (2) control and bribery
in two basic voting rules—Plurality with Runoff and Veto with Runoff—had been ignored in liter-
ature by then (to the best of our knowledge). Hence, our goal was to gain a complete insight into
the complexity for several control and bribery problems and for various voting rules the more so as
there are many other voting rules important in practice for which few complexity results are known
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until now (such as Majority Judgment [8]). Thus, completing the ”complexity puzzle” by including
more and other voting rules seems to be a promising task.

In general, there are still many open problems in multimode control (adding, deleting, and
bribing voters and/or candidates), such as multimode control in k-Approval (k≥ 2) and k-Veto (k ∈
N). We only know that that (inexact) multimode voter control in Plurality is easy [81]. It therefore
makes sense to solve these problems, especially in their most general versions (i.e., exact multimode
control by adding + deleting voters). Likewise, one could combine bribery or other control problems
(e.g., control by partition of voters) with control by adding/deleting candidates/voters. An appealing
idea is studying multicontrol in a sense that a chair has several goals at the same time. So a chair
might have the goal to see a candidate c win and another candidate d lose the election, he tries to
reach that his three favorite candidates are among the top three scorers of the final election (when
the underlying voting rule is a scoring rule). We refer again to [175] for a model where a chair tries
to prevent several candidates from winning an election.

Aside from studying k-Approval and k-Veto, it would make sense to obtain dichotomy results for
all scoring rules. According to this, there does not yet exist a dichotomy result for CCRV or exact
voter control. Likewise, under the parallel-universe tie-breaking mechanism, one could examine
which scoring rules combined with a runoff stage yield an easy bribery or voter control problem.

One could further study CCRV and other control problems under incomplete information—
either in possible/necessary winner variants or directly applying a voting rule to partial votes. Espe-
cially for possible/necessary winner combined with CCRV/DCRV, it would be interesting to know
whether it makes a difference if the registered or the unregistered voters are partial and the other
group is complete. This would enable us to compare the results with the ones about control or
bribery under partial information which we have achieved in [143, 70] and in Chapter 3, respec-
tively. In this context, we point out that necessary constructive control by adding voters may be easy
for the case where the registered votes are partial and the unregistered votes are complete, while the
same problem is hard for the case where the unregistered votes are partial and the registered votes
are complete. Possibly, such a result can be settled for replacement control as well.

Observe that one can investigate many other forms of strategic behavior in voting and show
the missing results for various voting rules. Accordingly, a similar study to the one by us in [73]
can be applied to control by partitioning voters or candidates, by runoff partition of candidates,
by multipartition, equipartition, or partitioning groups (for other control models and the literature
for these problems, we refer to Section 3.1). Likewise, various forms of bribery such as support
bribery [150] or shift bribery [150] are worth further investigations. Possibly, new forms of control,
bribery, or manipulation are discovered.

Finally, we again refer to other concepts in complexity theory, such as parameterized complexity
or average-case complexity.
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Chapter 6

Introduction

In this part, we present the results of our works about group identification [71, 72]. First of all, Sec-
tion 6.1 provides the most important notions in group identification. Section 6.2 gives an overview
of the literature in and around group identification.

6.1 Preliminaries

Let N := {a1, . . . ,an} be a set of n ∈ N individuals. For practical reasons, we mostly use a, a′, or b
to denote individuals in N in the following. A profile over N is a function ϕ : N×N→ {0,1}. We
say that individual a ∈ N qualifies (disqualifies) a′ ∈ N if ϕ(a,a′) = 1 (ϕ(a,a′) = 0). The mapping
ϕ induces a matrix (ϕ) ∈ {0,1}n×n where ϕi j := ϕ(ai,a j). A social rule is defined as a function
f : (ϕ,N)→P(N), i.e., it selects some individuals in N that are said to be socially qualified with
respect to f and an instance (ϕ,N). Note that we can restrict f and ϕ to each subset T ⊆ N by
replacing N by T in the definition of a social rule. Next we define the social rules considered in
Part II. We can roughly divide them into consent rules and procedural rules. The former class is
specified by two parameters and is directly applied to an instance (ϕ,N). The latter rules iteratively
amplify the set of socially qualified individuals and stop as soon as the set of socially qualified
individuals does not change anymore. The main reason why we study consent rules, the liberal-start-
respecting rule, and the consensus-start-respecting rule is that they are among the most significant
social rules that have been investigated in the literature so far. Besides, they satisfy several fairness
properties, see, e.g., [48, 111, 147]. The social rules studied by us are defined as follows (our
definitions are in the style of the definitions in [171] the more so as our works can be regarded as a
continuation of the work therein).

• Consent Rule ( f (s,t)). Consent rules are based on two parameters s, t ∈N in a way that it holds
for an individual set N and individual a ∈ N:

• Individuals a qualifying themselves are socially qualified (formally, a ∈ f (s,t)(ϕ,N)) if and
only if |{a′ ∈ N : ϕ(a′,a) = 1}| ≥ s holds.

• Individuals a disqualifying themselves are socially disqualified (formally, a /∈ f (s,t)(ϕ,N)) if
and only if |{a′ ∈ N : ϕ(a′,a) = 0}| ≥ t holds.

169
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The two parameters s and t are called consent quotas. For s = t = 1, we obtain the liberal rule f L.
According to the liberal rule, an individual is socially qualified if and only if he qualifies himself,
i.e., we have f L(ϕ,N) = {a ∈ N : ϕ(a,a) = 1}. The liberal rule is the only consent rule with
the property that the question whether or not an individual a is socially qualified, only depends on
a’s self-evaluation and is independent from the others’ valuations. Note that for our complexity
analysis, unless stated otherwise, s and t are constant and do particularly not depend on the number
of individuals. Nevertheless, we will check in several proofs whether the respective results also hold
when some or all parameters become non-constant.

We point out that the original definition of consent rules by Samet and Schmeidler [147] contains
the additional constraint s+ t ≤ n+2 for the consent quotas s and t which must hold as otherwise
the monotonicity property is hurt. A social rule is monotonic if a socially qualified individual a is
still socially qualified when someone who disqualifies a changes his valuation to qualify a and the
remainder of the profile remains unchanged. In fact, this monotonicity condition can merely be hurt
when an individual a changes his self-assessment from not qualified to qualified. In other words,
even without the restriction s+ t ≤ n+2, if a is socially qualified, then he is still socially qualified if
an individual other than a originally disqualifying a changes his assessment to qualify a. To illustrate
the monotonicity property, consider the following example with individual set N = {a,b,c}, consent
quotas s= t = 3, and a profile ϕ defined by ϕ(a,a)= 0=ϕ(b,a), ϕ(c,a)= 1 (the other values do not
matter in this context). Observe that a is socially qualified under profile ϕ as a disqualifies himself
and has at most two disqualifications in total. By setting ϕ(a,a) = 1 and leaving the remainder of
the profile ϕ unchanged, there are two qualifications for a in total, but a is socially disqualified now,
having a total of 2 < 3 = s qualifications.

As we examine several problems in Part II from the complexity theoretic point of view, we ignore
this additional constraint and hence obtain even more general results.

• Consensus-Start-Respecting Rule ( f CSR). This rule is defined recursively by first determin-
ing a starting set of socially qualified individuals and then iteratively extending the set of socially
qualified individuals until there is no change anymore. Formally, f CSR is defined as follows. Let
KC

0 (ϕ,N) be the set of initially qualified individuals defined as:

KC
0 (ϕ,N) := {a ∈ N : ∀a′ ∈ N : ϕ(a′,a) = 1}.

Then we successively compute for natural numbers i:

KC
i (ϕ,N) = {a ∈ N : ∃a′ ∈ KC

i−1(ϕ,N) : ϕ(a′,a) = 1}∪KC
i−1(ϕ,N).

We obtain f CSR(ϕ,N) = KC
i (ϕ,N) for some i with KC

i (ϕ,N) = KC
i+1(ϕ,N).

• Liberal-Start-Respecting Rule ( f LSR). Again, we have a social rule iteratively defined as
follows:

KL
0 (ϕ,N) := {a ∈ N : ϕ(a,a) = 1}.

The remaining iterations are computed as for f CSR, i.e., via

KL
i (ϕ,N) = {a ∈ N : ∃a′ ∈ KL

i−1(ϕ,N) : ϕ(a′,a) = 1}∪KL
i−1(ϕ,N) (i ∈ N).

Likewise, we obtain f LSR(ϕ,N) = KL
i (ϕ,N) for some i with KL

i (ϕ,N) = KL
i+1(ϕ,N).
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Note that the starting set of f LSR includes all individuals that qualify themselves, whereas the
starting set of f CSR contains only individuals qualified by each individual. In particular, we have
KL

i (ϕ,N) ⊇ KC
i (ϕ,N) for each i ∈ N0 and each instance (ϕ,N). When N and ϕ are clear from the

context, we sometimes write KL
0 and KC

0 instead of KL
0 (ϕ,N) and KC

0 (ϕ,N), respectively.
Observe that for both procedural rules we can determine the socially qualified individuals in

O(n2) time. The starting sets KC
0 (ϕ,N) and KL

0 (ϕ,N) can be computed in O(n2) and O(n) time,
respectively. For both rules, we have to check for at most n ”pivotal individuals” a which individuals
are qualified by a (which is possible in O(n2) in total). Moreover, searching for the pivotal rows of
the matrix ϕ can be done in quadratic time as well. 1

The following example visualizes the way how social rules work:

Example 6.1. Let N = {a1,a2,a3,a4}. Consider the profile ϕ over N as follows (the entry row
indexed by ai and column indexed by a j is ϕ(ai,a j)).

a1 a2 a3 a4

a1 1 1 1 1
a2 0 1 1 0
a3 0 1 0 0
a4 0 1 1 0

The socially qualified individuals with respect to some of the above social rules f are as follows.

f (1,1) f (1,2) f (2,1) f (2,2) f CSR f LSR

a1,a2 a1,a2,a3 a2 a2,a3 a2,a3 a1,a2,a3,a4

Observe that the liberal rule f (1,1) selects exactly the individuals qualifying themselves, namely
a1 and a2. For f (1,2), a1 and a2 are still socially qualified, qualifying themselves. Moreover, ac-
cording to the definition, individuals a disqualifying themselves are only socially qualified if all
other individuals qualify a. This is the case for a3, but not for a4. Thus, a3 is socially qualified as
well. For f (2,1), a self-disqualification of an individual immediately implies that this individual is
socially disqualified. Individuals a qualifying themselves require at least two qualifications in total,
consequently there must be at least one other individual that qualifies a. This holds for a2, but not
for a1. The f (2,2) rule socially qualifies a2 (at least two qualifications in total) and a3 (at most one
disqualification in total), the other two individuals do not satisfy their respective criteria.

For the f CSR rule, we obtain the starting set KC
0 = {a2} (as only a2 is qualified by everyone).

As a2 qualifies himself and a3, we have KC
1 = {a2,a3}. Now we check which individuals, not yet

socially qualified, are qualified by a2 or a3. There is no such individual and we therefore obtain
KC

2 = {a2,a3} = KC
1 . Since there is no change anymore, it holds KC

2 = f CSR(ϕ,N) = {a2,a3} by
definition. The f LSR rule has a1 and a2 in its starting set. As a1 qualifies all individuals, we have
KL

1 = {a1,a2,a3,a4}=N. According to KL
2 =N =KL

1 , we obtain f LSR(ϕ,N)=N from the definition
of the liberal-start respecting rule.

1Possibly, the complexity for determining the socially qualified individuals in procedural rules has already been exist-
ing, but we mention it just in case.
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Observe that six different rules output five different subsets of socially qualified individuals.
One can construct other examples with six different sets of socially qualified individuals. In the
following example with N = {a1,a2,a3,a4} and

ϕ =


1 0 0 1
1 1 0 1
1 0 0 1
1 0 1 0

 ,

each pair of distinct social rules outputs different sets of socially qualified individuals. We ob-
tain f LSR(ϕ,N) = N, f CSR(ϕ,N) = {a1,a3,a4}, f (1,1)(ϕ,N) = {a1,a2}, f (1,2)(ϕ,N) = {a1,a2,a4},
f (2,1)(ϕ,N) = {a1}, and f (2,2)(ϕ,N) = {a1,a4}.

Moreover, it may occur that all six social rules from the previous examples yield one and the
same set of socially qualified individuals. By way of example, the (4× 4)-matrix with only zero
entries canonically outputs the empty set as socially qualified individuals (except for degenerate
examples with a consent rule and t > n).

Last but not least, we point out that all social rules can represent different scenarios. So the
liberal rule applies to situations where the social status of an individual merely depends on his own
opinion. Larger s and t reflect the majoritarian perspective for which the influence of the whole
group is stronger than an individual’s influence. E.g., in case an individual disqualifies himself,
he can yet be socially qualified when the largest part of the group consider a as socially qualified.
Compare the arguing in [147].

Accordingly, both procedural rules can be used to describe group structures. KL
0 and KC

0 can be
regarded as the cores of a given group containing the individuals that regard themselves as qualified
or that are considered as qualified by all individuals of the group. Especially individuals in the core
of the consensus-start respecting rule may be regarded as the center of a group with the broadest
support among all individuals. Following this, all individuals that are somehow directly or indirectly
connected to individuals in the core have a certain status in N as well. Individuals occurring in sets
KC

i with smaller index could be regarded as closer to the core than other individuals. Nevertheless,
one should take account of the total numbers of qualifications of the individuals as well. Since we
investigate the complexity of several problems, such interpretations are immaterial to our analysis.
In contrast to the f CSR rule, all individuals regarding themselves as qualified belong to the core
according to the liberal-start respecting rule—even when all other individuals do not qualify them.
As suggested in [147], the f LSR rule applies to situations where each individual’s opinion about
himself has a crucial impact. Note that other procedural rules are thinkable where every individual
in the core satisfies a certain quota of the total number of qualifications from (other) individuals.
Generally, especially procedural rules provide us some kind of network structure for the individual
group N. Thus, bribery or control—studied in the next section—can be regarded as lobbying or
influencing the ”right” group members (for lobbying in voting, we refer to [25, 35]).

6.2 Related Work

Group identification itself, in particular the liberal rule, the consent rules, the consensus-start-
respecting rule, and the liberal-start-respecting rule, was introduced and further studied from an
economic and axiomatic point of view in [111, 47, 48, 130, 147]. In contrast, we investigate the
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computational aspects of strategic behavior in group identification and group identification under
partial information.

The model of group identification has also been studied in a recent paper in the context of expert
selection in social networks [154]. However the work is different from ours the more so as the author
proposes an algorithm based on some axioms and provides a case study, but does not consider the
computational aspects.

Group identification is somewhat related to voting under approval-based voting rules in multi-
winner elections as for two given individuals a and a′, individual a either qualifies or disqualifies
a′. In other words, all social rules studied by us are approval-based in a sense that each individual
approves (qualifies) or disapproves (disqualifies) every individual. As opposed to approval vot-
ing [27], we do not count the number of approvals and let the individuals with the highest number
of approvals win, but apply a social rule given the approval assignment. Another related work to
mention is the work by Kilgour, Brams, and Sanver on electing representative committees via ap-
proval ballotting [114]. Again, they look for a fixed committee size. Furthermore, they do not
consider the complexity of manipulative actions in their model.

Elkind et al. proposed and studied the properties of multi-winner voting rules based on single-
winner scoring rules [53]. There are many different multi-winner voting rules based on single-
winner voting rules in the literature that we do not use in our work [56, 84, 92, 142]. Meir et al.
initiated the complexity theoretic analysis of strategic behavior in multi-winner elections where they
investigated the complexity of manipulation and control under some prominent voting rules [126].
Obraztsova, Zick, and Elkind studied the complexity of manipulation in multi-winner scoring rules
with a special focus on tie-breaking [135]. Furthermore, we point out the work by Aziz et al. on
the computational aspects of best responses in multi-winner approval voting [4]. Last but not least,
there are some recent works about multi-winner voting rules for which the size of the winner set is
not predetermined [83, 113].

Our works fit in the line of research on the computational aspects of strategic behavior in elec-
tions initiated by a series of papers by Bartholdi et al. [14, 15, 16], proposing that computational
hardness offers a (worst-case) protection against manipulative attacks. For the literature about
bribery and electoral control, we refer to Section 3.1. In contrast to these works, we focus on
bribery and control in group identification.

Constructive control by adding, deleting, and partitioning individuals for group identification
were first introduced and studied by Yang and Dimitrov [171]. In Chapter 7, dealing with strategic
behavior in group identification, we extend their work to destructive control and to constructive
and destructive bribery. To the best of our knowledge, bribery has not been studied for group
identification up to now.

Chapter 8 is about group identification with partial information. Our problems are somewhat
related to the possible and necessary winner problems first introduced by [117]. As far as we know,
the problem of determining the socially qualified individuals in group identification with partial
information has not been investigated so far. Nevertheless, determining winners in voting rules with
partial information has been studied in the literature. Once more, we refer to Section 3.1 presenting
the related work in the context of voting under partial information.

There are various differences between voting and group identification. First of all, in group iden-
tification the sets of voters and candidates coincide and are called individual set. Each individual
thus votes on every other individual and himself. Furthermore, in our setting individuals are neither
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strategical nor selfish. Finally, group identification differs from single- or multi-winner voting as a
social rule does not care about the size of the set of socially qualified individuals which can be arbi-
trary. In opposition, in multi-winner voting one often regards a committee of a fixed size. Thence,
if at all, the social rules studied in this thesis are somewhat similar to single-winner approval-based
voting rules that output all candidates as winners that satisfy a certain criterion. For example, regard
voting rules based on a threshold where all candidates with an approval score above or not below
this threshold are the winners. Such thresholds can be fixed numbers, but also be dependent on the
number of voters. Possible thresholds are |V | (each winner must be approved by all voters), |V |/2
(each winner is approved by at least half of all voters), or 0 (all candidates are winners). Once
more, we point out the five- or ten-percent hurdles in many elections. Another example is given
by the Weak Condorcet rule which does not care about the number of winners and any number of
candidates can be in the set of winners. Nevertheless, the setting in group identification is different
as candidates and voters are merged to the set of individuals and intuitively our focus lies on find-
ing a group rather than in the context of voting where several co-winners are often considered as a
necessary evil.

In contrast to voting rules, a social rule in the context of group identification does not aim at
selecting winners, but provide quantitative criteria to decide if an individual is appropriate for a
given task or not. Note that these criteria are fixed (e.g., for consent rules, two parameters uniquely
determine these criteria) and can produce arbitrary numbers of socially qualified individuals, while
in multi-winner elections we are interested in electing a committee of fixed size and in single-winner
elections we canonically search for one winner (although in the co-winner model, a voting rule may
output several winners as well).



Chapter 7

Strategic Influences in Group
Identification

This chapter presents our results about strategic behavior in group identification [71]. We proceed as
follows. In Section 7.1, we introduce the underlying problems. Section 7.2.1 is about constructive
bribery, whereas Section 7.2.2 deals with destructive misuses on groups. Section 7.3 concludes the
section.

7.1 Problem Settings

In this section, we introduce the formal definitions of the problems considered in this chapter. Con-
structive control by adding, deleting, and partitioning individuals in the context of group identifica-
tion was introduced and studied in [171]. We extend their work by defining the destructive versions
of these problems. In the destructive version of adding individuals, the chair’s goal is to socially
disqualify a distinguished set of individuals by adding some individuals to the group.

f -DESTRUCTIVE GROUP CONTROL BY ADDING INDIVIDUALS (DGCAI)

Given: A 5-tuple (N,ϕ,S,T, `) of a set N of individuals, a profile ϕ over N, two nonempty subsets S
and T such that S⊆ T ⊆ N and S∩ f (ϕ,T ) 6= /0, and a natural number `.

Question: Is there a subset U ⊆ N \T such that |U | ≤ ` and S∩ f (ϕ,T ∪U) = /0?

In the destructive version of deleting individuals, the chair removes some individuals in order to
socially disqualify a distinguished set of individuals. Note that the chair is not allowed to remove
individuals from the distinguished set.

f -DESTRUCTIVE GROUP CONTROL BY DELETING INDIVIDUALS (DGCDI)

Given: A 4-tuple (N,ϕ,S, `) of a set N of individuals, a profile ϕ over N, a nonempty subset S ⊆ N
such that S∩ f (ϕ,N) 6= /0, and a natural number `.

Question: Is there a subset U ⊆ N \S such that |U | ≤ ` and S∩ f (ϕ,N \U) = /0?

Our final destructive control model is partitioning the set of individuals.

175
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f -DESTRUCTIVE GROUP CONTROL BY PARTITION OF INDIVIDUALS (DGCPI)

Given: A 3-tuple (N,ϕ,S) of a set N of individuals, a profile ϕ over N, and a nonempty subset S⊆N
such that S∩ f (ϕ,N) 6= /0.

Question: Is there a subset U ⊆ N such that S∩ f (ϕ,V ) = /0 with V = f (ϕ,U)∪ f (ϕ,N \U)?

In contrast to control, in bribery an external agent is allowed to change some individuals’ opin-
ions over N in a way he desires.

f -CONSTRUCTIVE GROUP BRIBERY (CGB)

Given: A 4-tuple (N,ϕ,S, `) of a social rule f , a set N of n individuals, a profile ϕ over N, a nonempty
subset S⊆ N with S 6⊆ f (ϕ,N), and a natural number `.

Question: Is there a way to change at most ` rows of the matrix ϕ such that S ⊆ f (ϕ̄,N) where ϕ̄ ∈
{0,1}n×n is the resulting new profile?

By replacing S 6⊆ f (ϕ,N) by S∩ f (ϕ,N) 6= /0 and S ⊆ f (ϕ̄,N) by S∩ f (ϕ̄,N) = /0, we obtain
the definition of f -DESTRUCTIVE GROUP BRIBERY ( f -DGB, for short) which asks whether the
briber can change ` individuals’ valuations in a way that all individuals in subgroup S are socially
unqualified after the bribery.

We say that a social rule f is immune to a constructive (destructive) problem defined above if it
is impossible to make every individual in S socially qualified (not socially qualified) by performing
the corresponding manipulative action, i.e., the problem has only NO-instances. Otherwise, the
social rule f is said to be susceptible to the problem.

Observe that our definitions exclude the possibility that in a constructive problem all individuals
are socially qualified in the initial situation. Likewise, in destructive control or bribery at least one
individual is socially qualified in the original profile.

We further point out that in all our problems, the parameter ` is strictly positive (except for the
partitioning cases where ` does not occur). The complexity results in the next sections also hold
when ` is a nonnegative integer. In case ` = 0, however, our problems would be trivial and reduce
to evaluating a social rule. Hence, we exclude the cases where `= 0.

Last but not least, we have to mention that a social rule f is not part of the input. Nevertheless,
various complexity results in this and the next chapter still hold when s or t are not constant (i.e.,
the consent rule f (s,t) may belong to the problem’s input and the complexity remains polynomial).

7.2 Results

7.2.1 Constructive Group Bribery

Throughout this section, we let (N,ϕ,S, `) denote a bribery instance where N is a set of n individuals
(n ∈ N), ϕ a profile, S ⊆ N a non-empty set of distinguished individuals the briber wants to make
socially qualified, and ` is a natural number representing the maximum number of individuals the
briber may bribe. ϕ̄ denotes the profile after the bribery. Moreover, in some proofs throughout this
chapter, we make use of the sets Sh := {a ∈ S : ϕ(a,a) = h} (h = 0,1).

Our results on constructive group bribery are summarized in Table 7.1. The first result indicates
that bribery in consent rules is easy given t = 1.
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f f (s,1) f (s,2) f (s,t), where s≥ 1 and t ≥ 3 f CSR f LSR

f -CGB P NPC P P

Table 7.1: Results for constructive group bribery. “P” stands for “polynomial-time solvable” and
“NPC” for “NP-complete”.

Theorem 7.1. f (s,1)-CGB is in P for all constants s.

Proof. We first compute S0 = {a∈ S : ϕ(a,a)= 0} and S1 = S\S0. These computations take O(n)
time since our algorithm simply runs all diagonal elements of the matrix ϕ according to individuals
in S. Our algorithm then checks the following cases:

• ` < |S0|. Then our instance is a NO instance as there is an a ∈ S disqualifying himself after
the bribery and consequently a /∈ f (ϕ̄,N) after the bribery. (Observe that this holds regardless
of the final profile ϕ̄ .)

• ` ≥ |S0|. In this case, the briber bribes all individuals in S0 and makes all of them qualify
all individuals (at least they all must qualify all individuals in S). For s = 1, our instance is
a YES instance because each individual in S qualifies himself and this is sufficient for S to
be socially qualified. For s > 1, we must ensure that each individual qualifying himself has
s qualifications in total. As there are still `−|S0| bribes left and S = S1 currently holds (i.e.,
each individual in S qualifies himself), we may w.l.o.g. restrict ourselves to a (transformed)
bribery problem with S0 = /0 (where all already bribed individuals qualify all individuals).
There are still two cases left to differentiate between:

– ` ≥ s. Then the briber bribes arbitrary s individuals and makes them all qualify all
individuals. Thus—due to our assumption ϕ(a,a) = 1 for each a ∈ S—it holds S ⊆
f (ϕ̄,N) after the bribery as each a ∈ S has s or more qualifications in total.

– ` < s. Now ` is bounded from above by the constant s. It suffices to check for all
(n
`

)
ways to bribe ` individuals (there are O(ns−1) such possibilities to check) if all indi-
viduals in S are socially qualified provided that the briber makes each bribed individual
qualify all individuals (in S).

For s = 1, the complexity is therefore linear in n. Given s > 1, it first takes us O(n) time to
compute S1 and S0 and then O(n2 · ns−1) = O(ns+1) time to check for each combination of
` < s bribes whether all individuals in S are socially qualified after the bribery or not.

q

In contrast, we cannot preserve easiness by fixing s = 1 and permitting t to be an arbitrary
nonnegative integer. We show hardness via reduction from RX3C.

Theorem 7.2. f (s,t)-CGB is NP-complete for each s≥ 1 and t ≥ 3.

Proof. We prove our theorem for s = 1 and t = 3 and will argue later how to adjust the proof for
higher values s and t. Given an RX3C instance by a pair (B,S ) defined as in the RX3C definition,
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we construct the following instances of f (1,3)-CGB with distinguished subgroup S = B, bribery
limit ` = n−m = 2m (due to n = 3m), and individuals N = B∪S . The profile ϕ is defined as
follows:

• Each b j ∈ B disqualifies himself and qualifies all other individuals.

• Si disqualifies b j if and only if b j ∈ Si.

• The values ϕ(Si,Sh) may be arbitrary (1≤ i,h≤ n, i 6= h).

Each individual in B has four disqualifications in total. In order to be socially qualified, an
individual in B must either qualify himself or have at most two disqualifications after the bribery,
i.e., at least two disqualifications must fall away by the bribery. Notice that a bribed individual
qualifies all individuals including himself (at least the individuals in S). We claim that there is an
exact cover of B if and only if there exists a successful bribery.

(⇒): Assume that S ′ ⊆ S is an exact cover of B. Then the briber bribes all individuals
in S \S ′ such that they qualify all individuals. Thus one disqualification from individuals in S
remains for each b j. Consequently—since each b j disqualifies himself—b j has two disqualifications
in the end, and so S⊆ f (1,3)(ϕ̄,N).

(⇐): Now assume that there is a successful bribery. First we show that the briber does not bribe
any individuals in B. Second, we prove that a successful bribery in S requires the existence of an
exact cover of B.

Suppose that the briber bribes α individuals in B and 2m−α individuals in S . Notice that, as
mentioned above, each bribed individual qualifies all individuals after the bribery. The b j bribed are
socially qualified (as they qualify themselves after the bribery) and can be ignored for the remaining
bribes. To successfully bribe, the briber must take away at least two disqualifications from each
remaining b j ∈ B, i.e., 2(3m−α) disqualifications in total. As there are only 2m−α bribes left and
three disqualifications are caught by each bribe (i.e., 3(2m−α) in total), a necessary condition for a
successful bribery is that 2(3m−α)≤ 3(2m−α), this implies that α ≤ 0 or—as α is a nonnegative
integer—α = 0, i.e., we can deduce that the briber bribes only individuals in S .

As he must take away at least two disqualifications from all 3m individuals in B, and 2m bribes
take away 2m · 3 = 6m disqualifications in total, this implies that each b j ∈ B loses exactly two
disqualifications and this in turn means that exactly one disqualification remains in the unbribed
individuals in S for each b j ∈ B. Thus the individuals in S not bribed form an exact cover of B.

For t ≥ 4, we set ` = 2m+(t − 3) and add t − 3 dummy individuals in S disqualifying each
individual and being disqualified by every individual. These dummy individuals are bribed with the
highest priority. The remainder of the proof remains identical.

For s ≥ 2, the same reasoning as for s = 1 can be used: s as a parameter is only relevant when
b j ∈ B is qualified after the bribery. As bribing b j and making him qualify himself is too costly
given our construction (i.e., bribing only one b j ∈ B makes it impossible that all other individuals
in B lose their disqualifications), for s≥ 2 our focus lies on making each individual in B fall below
the threshold t, too. q

In contrast, constructive group bribery is easy for procedural rules.

Theorem 7.3. Both f LSR-CGB and f CSR-CGB are solvable in polynomial time.
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Proof. For f LSR, our instance is always a YES instance: the briber simply bribes an arbitrary
individual â and makes â qualify himself and all individuals in S. This ensures that â is in the starting
set and each individual a∈ S is socially qualified as a is qualified by â, i.e., we have KL

0 (ϕ̄,N)⊇{â},
KL

1 (ϕ̄,N) ⊇ {â}∪S. Actually, when â qualifies all individuals (including the individuals in N \S),
we even have KL

1 (ϕ̄,N) = N, with only one individual being bribed.
Given f CSR, we first check if KC

0 6= /0 (which requires O(n2) time). If yes, we bribe any a ∈ KC
0

and make a qualify all individuals including himself. This makes all individuals (and in particular
the individuals in S) socially qualified. If no, we distinguish the following cases:

• Let y(a) be the number of individuals a′ with ϕ(a′,a) = 1. The values y(a) can be computed
in quadratic time in n. If maxa∈N y(a)+ ` < n, there is no way to make any a ∈ S socially
qualified as even the individual with the highest number of qualifications in the original elec-
tion cannot reach KC

0 after the bribery (even if all bribed individuals disqualify this individual
before and qualify him after the bribery). As KC

0 = /0 after the bribery, there is no chance for
the briber to reach his goal since due to the definition of the f CSR rule, KC

0 = KC
i = /0 for all

natural numbers i holds.

• For maxa∈N y(a)+ ` > n, the briber chooses an individual â with y(â) = maxa∈N y(a), bribes
â and all remaining individuals initially not qualifying â, and makes each bribed individual
qualify w.l.o.g. all individuals in N. This makes all individuals in S socially qualified.

• If maxa∈N y(a)+ ` = n (i.e., an individual with the maximum number of qualifications can
barely reach the starting set KC

0 after the bribery), we check for each â maximizing this ex-
pression (there may be more than one such individual) if making â reach KC

0 implies that all
individuals in S belong to some KC

i (i ∈ N0). The briber bribes all individuals initially dis-
qualifying â and makes each bribed individual qualify all individuals. As the individuals to
bribe are fixed, our problem reduces to evaluating the f CSR rule. This subcase requires at most
O(n3) time: The briber bribes the remaining individuals initially not qualifying a (which is
possible in quadratic time) by filling the corresponding rows of the matrix ϕ with ones, then
we check by computing the socially qualified individuals for f CSR if all individuals in S are
socially qualified (observe that f CSR can be evaluated in quadratic time in n).

q

Note that the complexity of f (s,2)-CGB is still open. One can verify that the problem is easy
unless s < ` < |S0|, i.e., to show hardness one needed to regard this open subcase. The remaining
cases are easy to decide since for s ≥ `, the number of ways the briber can bribe ` individuals in
bounded from above by a polynomial since s is a constant. If |S0| ≤ ` and ` > s, we accept as the
briber can ensure that all individuals in S qualify themselves after the bribery and ` bribes guarantee
that all individuals in S have s or more qualifications in total.

7.2.2 Destructive Group Actions

In this section, we consider destructive influences on group identification, i.e., the briber or the
chair seeks to prevent all individuals in a certain group S ⊆ N from being socially qualified. Our
results are summarized in Table 7.2. The first result gives a connection between the constructive
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f
f (s,t)

f LSR f CSRs = 1 s = 2 s≥ 3
t = 1 t ≥ 2 t = 1 t = 2 t ≥ 3 t = 1 t ≥ 2

f - DGCAI I NPC I NPC NPC I NPC I NPC
f - DGCDI I I P P P NPC NPC P P
f - DGCPI I I NPC NPC NPC NPC NPC P
f - DGB P P NPC NPC P P

Table 7.2: Results for destructive group control and destructive group bribery. Results for destruc-
tive group control for consent rules follow from Theorem 7.4 and Theorem 7.5, and the results
in [171]. Results for destructive group bribery for consent rules follow from Theorem 7.4, The-
orem 7.5, and Table 7.1. Results for procedural rules are written in boldface and are shown in
Theorem 7.6, 7.7, 7.8, 7.9, and 7.11 in this section as they cannot be derived from Theorem 7.4
and 7.5. In the table, ”I” stands for ”immune”, ”P” for ”polynomial-time solvable”, and ”NPC” for
”NP-complete”.

and destructive variants of our problems for consent rules. We point out that Theorem 7.4 and
Theorem 7.5 only hold for constant s and t.

Theorem 7.4. [147] Let ϕ be a profile over N. Then it holds f (s,t)(ϕ,N) = N \ f (t,s)(−ϕ,N) for a
given consent rule f (s,t), where −ϕ is obtained from ϕ by reversing the values (i.e., ϕ(a,b) = 1 if
and only if −ϕ(a,b) = 0). 1

Proof. Given an instance (ϕ,N), let a ∈ f (s,t)(ϕ,N). In case ϕ(a,a) = 1, then there are at least
s individuals qualifying a with respect to ϕ . Hence, there are at least s individuals disqualifying
a with respect to −ϕ . As −ϕ(a,a) = 0, a 6∈ f (t,s)(−ϕ,N). Given ϕ(a,a) = 0, then at most t− 1
individuals in N disqualify a (otherwise a is socially disqualified for ϕ). It follows that−ϕ(a,a) = 1
and at most t individuals in N qualify a in the profile −ϕ . Hence, a is not socially qualified in the
profile −ϕ according to the social rule f (t,s).

It follows by means of a similar argument that the condition a 6∈ f (t,s)(−ϕ,N) implicates that
a ∈ f (s,t)(ϕ,N). q

As a direct consequence of Theorem 7.4, we can reduce constructive group bribery/control
problems to destructive group bribery/control problems. As an example, if the chair tries to make
an individual a socially qualified with respect to the f (10,4) rule and a profile ϕ by adding some
individuals, he faces exactly the same problem as for the case where he wants to prevent a from
being socially qualified for the f (4,10) rule and reversed ϕ function. Let AI, DI, and PI denote
adding individuals, deleting individuals, and partitioning of individuals, respectively. In general,
the following link between destructive and constructive group control/bribery holds.

Theorem 7.5. Suppose that X ∈ {AI,DI,PI}. Then
(

f (s,t)-CGCX
f (s,t)-CGB

)
is

 in P
NP-complete
impossible

 if and

1This result also follows from Proposition 2 in [147], albeit in a different context.
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only if
(

f (t,s)-DGCX
f (t,s)-DGB

)
is

 in P
NP-complete
impossible

.

For the corresponding results, we refer to Table 7.2. Note that for s = t, the complexities for the
constructive and destructive variants coincide. Theorem 7.4 and Theorem 7.5 do not apply to f CSR

and f LSR as we can see in the following.
In the remainder of this section, we first examine destructive group control before we regard

destructive group bribery. We restrict ourselves to procedural rules as the corresponding results for
consent rules follow from Theorem 7.4 and 7.5.

Our first control result shows that adding individuals in the destructive case for the consensus-
start-respecting rule is computationally hard. We prove the theorem via reduction from EXACT

COVER BY 3-SETS (X3C).

Theorem 7.6. f CSR-DGCAI is NP-complete.

Proof. Given an X3C instance (B,S ), we construct an instance (N,ϕ,S,T, `) of f CSR-DGCAI
with N = S ∪B, T = S = B, `= m, and ϕ defined as follows:

• For all r, j ∈ {1, . . . ,3m}, let ϕ(br,b j) = 1.

• For all i,h ∈ {1, . . . ,n}, let ϕ(Si,Sh) = 0.

• If b j ∈ Si, for all 1≤ i≤ n and 1≤ j ≤ 3m, let ϕ(Si,b j) = 0; otherwise, let ϕ(Si,b j) = 1.

The values ϕ(b j,Si) may be arbitrary. Note that each b j ∈ B is qualified by each individual in
B. Thus all individuals in B are socially qualified at the beginning. We claim that an exact cover of
B exists if and only if there is a successful control.

(⇒): Suppose that there is an exact cover for B, i.e., there is a subset S ′ ⊆ S so that each
b j ∈ B is in precisely one Si ∈ S ′. By adding the individuals in S ′, we achieve KC

0 = /0 and
thus f CSR(ϕ,B∪S ′) = /0. Each added Si disqualifies himself and is thus not qualified by each
individual. The same holds for each b j ∈ B as we have added an Si according to the exact cover with
ϕ(Si,b j) = 0.

(⇐): Suppose that each individual b j ∈ B can be prevented from being socially qualified. As
all individuals in B qualify themselves and KC

0 = B holds in the original situation, for each b j ∈ B,
we must add a subset Si with ϕ(Si,b j) = 0 to throw b j out of the starting set. As 3m individuals
require at least one disqualification from added individuals and m added individuals assign a total
of 3m disqualifications, this in turn implies that all b j ∈ B are disqualified by exactly one Si added.
Consequently, the added Si form an exact cover of B. q

The following theorem says that group control by adding individuals in f LSR is never possible.

Theorem 7.7. f LSR is immune to destructive group control by adding individuals.

Proof. Let (N,ϕ,S,T, `) be an instance of f LSR-DGCAI. First suppose that there is an a ∈ S with
ϕ(a,a) = 1. Then a ∈ KL

i , for each nonnegative integer i, and this cannot be changed by adding
additional individuals. Thus the only chance for the chair to reach his goal at all is when ϕ(a,a) = 0
holds for all a ∈ S at the beginning. a ∈ f LSR(ϕ,N) implies that there are individuals ai0 ,ai1 , . . . ,air
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where r is a nonnegative integer, ai0 ∈ KL
0 , ai j ∈ N for 0≤ j ≤ r, ϕ(ai j ,ai j+1) = 1 for 0≤ j ≤ r−1,

and ϕ(air ,a) = 1, i.e., there is a sequence of individuals qualifying the respective successors with
starting point in KL

0 and endpoint in a. Such sequences exist for all socially qualified individuals
a ∈ S (there is at least one socially qualified individual in S according to the definition of DGCAI)
and do not change no matter which additional individuals are added. Thus, we have immunity for
this case. q

In contrast, destructive group control by deleting individuals in both f CSR and f LSR is possible
and solvable in polynomial time. In order to show membership in P, we give reductions from our
problems to the MINIMUM (u,u′)-SEPARATOR problem which is known to be in P [152].

Theorem 7.8. Both f LSR-DGCDI and f CSR-DGCDI are in P.

Proof. Let (N,ϕ,S, `) be a given instance of f LSR-DGCDI. We construct the following auxiliary
digraph G. An individual a ∈ N yields vertex v(a). There is an edge from vertex v(a) to vertex
v(a′), a,a′ ∈ N, a 6= a′, if and only if a qualifies a′. Let V LSR be the set of all vertices v(a) with
ϕ(a,a) = 1 and let ΓG(V LSR) be the set of all vertices reachable from a vertex in V LSR. Then
the socially qualified individuals with respect to f LSR are the ones corresponding to vertices in
ΓG(V LSR) . Due to this observation, we can solve the instance as follows. If v(a) ∈ V LSR for
some a ∈ S, the given instance is a NO instance. Otherwise, merge all vertices corresponding to
individuals in S into v(S), create a new vertex w and an edge from w to each vertex in V LSR. Let
V ′ be a minimum (w,v(S))-separator. If |V ′| ≤ `, the given instance is a YES instance; otherwise,
it is a NO instance. Observe that this problem is in P as the computation of the help graph and all
decisions require O(n2) time. Moreover, we know from [152] that computing a minimum separator
can be done in polynomial time.

In the case of consensus-start-respecting rules, let (N,ϕ,S, `) be a given instance of f CSR-
DGCDI. Again, we create an auxiliary digraph G identical to the graph in the first part of the
proof, with the following difference. Instead of V LSR, we define V CSR as the set of all vertices v(a)
for which the corresponding individual a is in the starting set, i.e., for which ϕ(a′,a) = 1 holds for
all individuals a′ ∈ N. Then, the socially qualified individuals with respect to f CSR are the ones
corresponding to vertices in ΓG(V CSR). Based on this observation, we solve the instance as follows.
If there is an a ∈ S such that v(a) ∈ V CSR, our instance is a NO instance. Otherwise, we merge all
vertices corresponding to individuals in S into v(S), create a new vertex w and an edge from w to
every vertex in V CSR. Let V ′ be a minimum (w,v(S))-separator. If |V ′|> `, the given instance is a
NO instance. If |V ′| ≤ ` and |V CSR|> |V ′|, our instance is a YES instance. In fact, deleting the in-
dividuals according to vertices in V ′ makes all a ∈ S socially disqualified. The reason is as follows.
First, V CSR \V ′ 6= /0. Assume for the sake of contradiction that after deleting all individuals stand-
ing for vertices in V ′ some a ∈ S is still socially qualified. Due to the definition of the graph, the
vertex v(S) is still reachable from some vertices in a set U whose corresponding individuals are in
the starting set of socially qualified individuals after deleting individuals corresponding to vertices
in V ′. Moreover, all individuals in V CSR \V ′ qualify individuals corresponding to U . Thus, there
are edges from V CSR \V ′ to U , and hence there are edges from w to v(S) which is a contradiction.
On the other hand, if |V ′| ≤ ` but |V CSR| ≤ |V ′|, we distinguish two cases. If there is a minimum
(w,v(S))-separator V ′ such that V CSR \V ′ 6= /0, the given instance is a YES instance as the indi-
viduals corresponding to V ′ is a solution (we may argue analogously to the case where |V ′| ≤ `
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and |V CSR| > |V ′|). If V CSR is the unique minimum (w,v(S))-separator, we delete all individuals
according to vertices in V CSR, reset ` := `−|V CSR| and repeat the algorithm with the new instance
after the deletion of the individuals. q

We now turn to the partition of individuals cases.

Theorem 7.9. f LSR-DGCPI is in P.

Proof. We let (N,ϕ,S) be a f LSR-DGCPI instance. First, in case there is an a ∈ S with ϕ(a,a) =
1, our instance is a NO instance: a∈

⋃
i∈N0

KL
i and this holds for each subset of N containing a. Thus,

a survives—qualifying himself—both the preliminary and the final round and is therefore socially
qualified being in the starting set independent from the other individuals’ decisions. Thence, the
only case worth studying is ϕ(a,a)= 0 for all a∈ S. In this case, our instance is a YES instance: The
partition (U,W ) of N with U = S and W = N \S ensures that neither in S survives the preliminary
round (due to KL

0 (ϕ,S) = /0) and thus no individual from S is socially qualified. As our problem
merely reduces to the question whether there exists an a ∈ S such that ϕ(a,a) = 1 (which can be
checked in linear time in n), it follows that our problem is in P. q

The problem f CSR-DGCPI is still open, however, we can show easiness under the restriction
ϕ = ϕT (i.e., a qualifies a′ if and only if a′ qualifies a).

Theorem 7.10. f CSR-DGCPI is in P if ϕ = ϕT holds.

Proof. We are given an instance (N,ϕ,S) with ϕ = ϕT . Observe that the starting set KC
0 is non-

empty due to the definition of DGCPI, premising that at least one individual in S is socially qualified
according to the profile ϕ . This in turn is impossible when the starting set is empty. Our algorithm
checks the following cases:

• KC
0 ∩S 6= /0. Then a ∈ KC

0 ∩S is in the starting set for each subset of N, reaches the final round
and is hence socially qualified. Thus, we reject in this case.

• KC
0 ∩ S = /0, KC

0 6= /0. Accordingly, there is some a0 ∈ KC
0 \ S, i.e., a0 /∈ S and a0 is qualified

by each individual in N. This implies that a0 is in the starting set for each subgroup N′ ⊆ N.
Due to ϕ = ϕT , we have ϕ(a0,a) = 1 for each a ∈ N and especially each a ∈ S. Notice that
each a0 ∈ KC

0 must be in a partition set different from each individual in S. Otherwise, a0—
socially qualified in his partition set—ties all S individuals belonging to the same partition
set to the final round which makes them socially qualified, too (as a0 is in the starting set in
the final round, too). Consequently, we w.l.o.g. set S ⊆U and KC

0 ⊆W . Now we check if
there is some a ∈ S qualified by each a′ ∈ S. If no, we may set U = S and W = N \ S and—
as no S individual survives the prelim—are done and accept. If yes, we do the following.
Check if there is currently some a ∈ N \ (U ∪W ) being qualified by each individual in N \W .
Such individuals are qualified by each subgroup of N \W (and thus by each individual in U
including all a ∈ S), reach the final round and—as ϕ is symmetric—each other element in
U including S, too. Thus, the chair must successively set these individuals into W . In each
iteration, we therefore check if there is some individual not yet assigned to U or W that is
qualified by each individual not in the present set W . If yes, we fix this element in W and
proceed with the next iteration. If no, we are done and put all still unassigned individuals
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(if any) in U . For these individuals, we know that they are not qualified by all individuals
in N \W = U . Thus, they all do not belong to the starting set in U . If there is a chance
at all to get each a ∈ S out of the starting set in U (and make all individuals in S socially
disqualified according to this), this procedure is the best strategy for the chair as he adds as
many individuals from N \ S as possible to the partition set U (i.e., the chance that for each
a∈ S an individual disqualifying a belongs to the same partition set is thus maximized). After
putting each individual in N either into U or W , it hence suffices to check if the starting set
in U is empty or not (note that at most individuals in S can belong to the starting set in U
after applying this algorithm). If yes, our instance is a YES instance. If no, we obtain a
NO instance as all individuals but S are set into W , and hence some a ∈ S and (due to the
symmetry of ϕ) all individuals in S reach the final round and are socially qualified (as some
a0 ∈ KC

0 survives the partition set W , reaches the final round and in turn makes all individuals
in S socially qualified in the final round). Note that this algorithm requires O(n3) time as
we regard O(n) pivotal individuals in N \ (KC

0 ∪ S) one by one and verify in each step if all
remaining O(n) individuals not yet regarded are qualified by all O(n) individuals in N \W .

Observe that the problem (especially the algorithm in the last subcase) takes no more than O(n3)
time as the first case (mainly computing the starting set) is in O(n2) and the algorithm in the second
case works in cubic time. q

The assumption ϕ = ϕT makes sense in practice and induces several interesting substructures.
Individuals may build coalitions and hence there is mutual support (or rejection). Another, possibly
more restrictive interpretation of a symmetric ϕ is that similar individuals (or individuals within a
certain distance threshold) qualify each other.

Our last result discloses that destructive group bribery is easy for both procedural rules.

Theorem 7.11. f CSR-DGB and f LSR-DGB are in P.

Proof. Destructive group bribery in f CSR is always possible (since we assume in our bribery
definition that the briber can bribe at least one individual). The briber simply bribes an arbitrary
individual and makes him disqualify each individual. By this, we obtain KC

0 = /0.
For f LSR, our input is an instance (N,ϕ,S, `). A necessary condition for the briber to reach his

goal is obtaining S1 = /0 after the bribery. We may assume that each bribed individual disqualifies
all individuals after the bribery in order to keep the number of qualifications as low as possible in
the final election. Our algorithm checks the following cases:

• |S1| > `. Then our instance is a NO instance as the briber cannot reach KL
0 ∩ S = /0 after the

bribery.

• |S1| = `. Then the briber bribes all S1 individuals, each bribed individual disqualifies all
individuals after the bribery, and it remains to validate if some a ∈ S is socially qualified or
not in the final election.

• |S1|< `. The briber then bribes all individuals in S1 (these bribes are fixed) and `−|S1| further
individuals. Thus, w.l.o.g., we regard an instance with S0 = S (and all individuals in S1 in the
initial situation are meant to disqualify all individuals in the transformed instance). We define
the same help graph to the one in proof of Theorem 7.8.
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It remains to argue that there is a minimum (w,v(S))-separator of size less or equal to `
if and only if there is a successful bribery of at most ` individuals. Bribing an individual
and making him disqualify each individual can be interpreted as deleting this individual: let
a ∈ N \ (KL

0 ∪ S), then, after the bribery, all edges outgoing from v(a) are deleted (as the
briber makes a disqualify all individuals after the bribery). Although there may be some
ingoing edges left, they are worthless as v(a) is a dead end and no other vertex is reached by
v(a). Thus, a can be treated as if deleted. A reasonable briber would not bribe individuals in
S in doubt as his aim is to destroy all ingoing edges with higher priority than edges between
some individual in S and other individuals (possibly in S). The reason is that it does not matter
if one or more individuals in S are reached, i.e., we want to cut off the ”first” connection to
individuals in S.

Verify that the algorithm takes polynomial time as all computations and decisions except the
last subcase require O(n2) time and computing a minimum separator is in P, too. q

Due to Theorem 7.4 and Theorem 7.5, we directly obtain the complexities of destructive group
bribery in consent rules. We refer the reader to Table 7.2

7.3 Conclusion

We have investigated the complexity of destructive group control and constructive and destructive
group bribery in the context of group identification. Constructive group control had been previ-
ously considered in the work by Yang and Dimitrov [171]. We have found a direct connection
between destructive and constructive problems for consent rules and could thus derive all com-
plexities for the destructive problems of consent rules. According to our results and the results
obtained in [171], every consent rule f (s,t) with s, t ≥ 3 resists all group control and bribery prob-
lems studied so far in the literature. In contrast, many group control and bribery problems for the
liberal-start-respecting rule and consensus-start-respecting rule turned out to be polynomial-time
solvable. Hence, our results suggest that consent rules outperform the liberal-start-respecting and
consensus-start-respecting rules in terms of the resistance to strategic behavior.

We have not considered manipulation [14, 170] (i.e., referring to the setting in group identi-
fication, some strategic individuals report insincere preferences in order to make a desired group
of individuals socially qualified). Given constructive group manipulation, the best a manipulator
can do is qualifying all individuals. Likewise, the manipulators disqualify all individuals in the
destructive version. These problems all are in P.

For future research, we refer to the open problems in this chapter. As an example, we mention
constructive group bribery in f (s,2) respectively the ”mirrored” problem in destructive group bribery.
One could further extend the model to other social rules or other strategical influences on groups
such as runoff partition of individuals or other control models [65].

Another direction for future research would be to consider some variants of the group bribery
problems studied in this chapter. For instance, the briber has to pay 1 dollar for an individual to
change his opinion over an individual and the briber wants to pay in total ` dollars in order to reach
his goal. In addition, it is natural to assume in some setting that all individuals do not want to
deviate much from their true opinions. In this setting, a bribed individual only flips at most τ of his
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qualifications or disqualifications over the individuals, where τ is a small number. It also seems to
be worth studying what happens when each individual qualifies or disqualifies exactly k individuals
or when each individual has more than two options beyond qualification and disqualification. At this
point, we have to mention the work by Cho and Ju [34] who studied multinary group identification
where each individual a has an opinion about each individual b about the group to which b belongs
(there may be more than two groups; for two groups, their model coincides with the classical model
of group identification). One could also consider social rules in settings where the individuals
provide further information, e.g., declare complete or partial rankings over the individuals in N.

Another intriguing task for future research is investigating bribery and control in group iden-
tification under settings with some uncertainty in the individuals’ valuations. Possibly, some in-
dividuals are not able or not willing to express an opinion about all individuals or an external,
manipulative agent has no access to all individuals’ opinions. One such model of partial informa-
tion will be studied in the following chapter—Chapter 8—in the context of determining the socially
qualified individuals for incomplete profiles.



Chapter 8

Group Identification with Partial
Information

In this chapter, we focus on a setting of group identification with partial information, based on
our work [72]. Observe that given the full information of qualifications or disqualifications of
these individuals, the socially qualified individuals with respect to all social rules mentioned in
Section 6.1 can be calculated in polynomial time. However, in some real-world applications we are
not able to obtain or access full information. For instance, if the number of individuals is extremely
large (this happens often on online platforms), then it is not expected that every individual shows
his opinion over every individual. Instead, every individual only qualifies or disqualifies a small
number of individuals whom he knows well or whom he is particularly interested in. In addition, in
some cases, even though the full qualifications and disqualifications exist, they cannot be entirely
accessed by some specific people, say someone (or a company) who would like to predict the result.
In this case, the one who wants to predict the result can only do so based on parts of the information.
With the missing of some information, two significant questions arise: who have positive possibility
to be socially qualified if the missing information is filled and who are definitely socially qualified
regardless of the missing information? Moreover, how many complexity resources we need to
achieve an answer to the above questions is of particular importance.

In this chapter, we study the complexity of two problems that capture the above two questions.
More precisely, we study the Possibly Qualified Individuals problem (PQI) and the Necessarily
Qualified Individuals problem (NQI). In both problems we are given a set of individuals N each of
whom qualifies or disqualifies a subset of N, together with a subset S ⊆ N. The former problem
asks whether there is an extension of these qualifications and disqualifications with respect to which
all individuals in S are socially qualified, and the latter one asks whether all individuals in S are
socially qualified with respect to every extension of these qualifications and disqualifications. Here,
an extension means that every individual fills out potential gaps regarding individuals’ qualifica-
tions, i.e., the individual determines a given qualification for individuals with previously undefined
qualifications.

Investigating scenarios with incomplete information are relevant, especially from a practical per-
spective. The PQI/NQI problems considered here are a natural first step towards more complicated
scenarios with incomplete information.

187
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8.1 Problem Settings

In this section, we formally describe partial profiles. Intuitively, a partial profile is a profile with
several 1s and 0s to be replaced with the symbol ∗, where ϕ(a,b) = ∗means that whether a qualifies
b or not is unknown, or a does not hold an opinion on the qualification of b. The formal definition
is as follows.

A partial profile ϕ is a mapping ϕ : N×N 7→ {0,1,∗}. For each a ∈ N and x ∈ {0,1,∗}, x(a,ϕ)
is the set of individuals b ∈ N such that ϕ(a,b) = x, i.e., x(a,ϕ) = {b ∈ N : ϕ(a,b) = x}. A profile
φ is an extension of a partial profile ϕ if and only if

1. for every a,b ∈ N such that ϕ(a,b) ∈ {0,1}, it holds that φ(a,b) = ϕ(a,b); and

2. for every a,b ∈ N such that ϕ(a,b) = ∗, it holds that φ(a,b) ∈ {0,1}.

For a natural number k≤ n := |N|, a k-profile ϕ over N is a (complete) profile such that for every
a ∈ N, it holds that |1(a,ϕ)|= k, i.e., each individual qualifies exactly k individuals in N. A partial
profile ϕ is called an k-partial profile if |1(a,ϕ)| ≤ k for every a ∈ N. A k-profile φ is a k-extension
of a k-partial profile ϕ if φ is an extension of ϕ .

Verify that a k-partial profile ϕ has a k-extension if and only if |∗(a,ϕ)| ≥ k−|1(a,ϕ)| for every
a ∈ N. Throughout this chapter, we consider only k-partial profiles that have k-extensions.

Before we continue, regard the following examples:

ϕ1 =

1 1 0
1 0 1
0 1 1

 , ϕ2 =


1 1 1 0
1 ∗ ∗ 0
∗ ∗ ∗ ∗
∗ ∗ ∗ 1

 .

Observe that the complete profile ϕ1 is a 2-profile as well as a 2-partial profile. Verify that
φ1 = ϕ1 is the only extension and the only 2-extension of ϕ1.

ϕ2 is a 3-partial profile and a (general) partial profile. Due to the first row with exactly three
one entries, ϕ2 is a 4-partial profile but not a 2-partial profile and has neither 2- nor 4-extensions.
Possible extensions of ϕ2 are given as follows:

φ
1
2 =


1 1 1 0
1 1 1 0
1 1 1 1
1 0 0 1

 , φ
2
2 =


1 1 1 0
1 1 1 0
1 1 0 1
1 0 1 1

 .

Notice that φ 1
2 is an extension, but not a k-extension for any k ≤ 4, whereas φ 2

2 is an extension
and a 3-extension since each individual qualifies exactly three individuals. The first individual’s
opinions are uniquely determined as ∗(a1,ϕ2) = /0. Likewise, although ∗(a2,ϕ2) 6= /0, we know that
a2 definitely qualifies a1, a2, and a3—provided that our extension is a 3-extension. About individual
a3, we only know that a3 qualifies exactly three individuals, but not which ones. Individual a4
certainly qualifies himself and possibly but not definitely qualifies two of the other three individuals
(when focusing on extensions that are 3-profiles).

In this chapter, we study the complexity of the following problems.
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f -POSSIBLY/ f -NECESSARILY QUALIFIED INDIVIDUALS ( f -PQI/ f -NQI)

Given: A 3-tuple (N,ϕ,S) of a set N of individuals, a partial profile ϕ over N, and a nonempty subset
S⊆ N.

f -PQI: Is there an extension φ of ϕ such that S⊆ f (φ ,N)?
f -NQI: Does S⊆ f (φ ,N) hold for every extension φ of ϕ?

In addition to the above problems, we also study f -k-PQI ( f -k-NQI) where the input and ques-
tion are similar to that of f -PQI ( f -NQI) with only the following differences. First, in the input
we require ϕ to be a k-partial profile rather than a partial profile. Second, in the question we re-
place ”extension” with ”k-extension”. Notice that f -k-PQI ( f -k-NQI) is not a special case of f -PQI
( f -NQI) as one of the restrictions is on the solution space. Some polynomial-time results in this
chapter still hold when s, t, or k are non-constant.

Throughout this chapter, we use I = (N,ϕ,S ⊆ N) (S 6= /0) to denote the given instance in the
problems we study for a social rule f , where f ∈ { f (s,t), f LSR, f CSR}, and do not state this explic-
itly in the proofs of the theorems. Furthermore, for better readability we make use of the diction
”PQI/NQI for social rule f ” instead of ” f -PQI/ f -NQI”.

In some proofs, we borrow the notation in Chapter 7 and again let y(a) denote the number of
individuals in N qualifying a. Likewise, n(a) := n− y(a) is the sum of all individuals disqualifying
a (y(a) and n(a) are defined in the style of ”yes” and ”no”).

In various proofs, we further let Si := {a ∈ S : ϕ(a,a) = i} (i ∈ {1,0,∗}).

8.2 Results

8.2.1 Unbounded Qualifications

In this section, we study PQI and NQI where each individual can qualify as many as up to n in-
dividuals. Our main results are polynomial-time algorithms for PQI and NQI for consent rules,
liberal-start-respecting rule, and consensus-start-respecting rule.

Consider first consent rules. Our polynomial-time algorithms are based on the observation that
if an individual a is socially qualified and someone else disqualifying a changes his opinion to
qualifying a, then a is still qualified. In particular, when studying PQI, this observation enables us
to safely reset the values of many ϕ(a,b) with ϕ(a,b) = ∗ in advance to 1.

Theorem 8.1. PQI and NQI for consent rules f (s,t) can be solved in O(n2) time, for all integers s
and t.

Proof. First regard PQI. For each individual a ∈ S, we may extend all entries ϕ(b,a) = ∗ (b ∈
N \ {a}) by φ(b,a) = 1. Regardless of whether a qualifies or disqualifies himself, this is best
possible for a: If a qualifies himself, this maximizes the number of qualifications for a. By contrast,
in case a disqualifies himself, the number of disqualifications for a is thus minimized.

Note that changing the subprofile restricted to all rows and the columns according to individuals
in S can be done in O(n2) and—more precisely—in O(n|S|) time.

For individuals in S1∪ S0, we obtain a complete subprofile by this (that is, we know all values
φ(b,a) for each b ∈ N, a ∈ S1 ∪ S0). For a ∈ S1, we therefore check if y(a) ≥ s in the changed
profile. If a ∈ S0, we check whether or not n(a)< t holds.
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For a ∈ S∗, we simply try out both possibilities. First we let φ(a,a) = 1 and check if y(a) ≥ s
holds, provided that all individuals b 6= a with ϕ(b,a) = ∗ qualify a. Afterwards, we set φ(a,a) = 0
and check whether n(a)< t holds. a is a possibly socially qualified individual if and only if at least
one of these two possibilities makes a socially qualified.

In total, we can check in O(|S|n) time if all individuals in S are socially qualified for at least one
extension.

Now it remains to argue for the NQI problem. Independent from whether a ∈ S0 or a ∈ S1,
the worst possible scenario for a is that all individuals b, with b 6= a and ϕ(b,a) = ∗, disqualify a.
Following this, we change the profile restricted to the columns according to individuals in S. For
a ∈ S0∪S1, we simply need to verify whether or not y(a)≥ s (a ∈ S1) or n(a)< t (a ∈ S0) holds in
the worst-case extension. For a ∈ S∗, a is necessarily socially qualified if and only if both setting
φ(a,a) = 1 and φ(a,a) = 0 makes a socially qualified according to the f (s,t) rule. With roughly the
same reasoning as for PQI (with the difference of replacing stars by zeroes instead of ones), our
problem is in O(|S|n), too. q

Now we turn our attention to the procedural rules f CSR and f LSR. Based on a similar observation
to the one for consent rules, we develop polynomial-time algorithms for PQI and NQI for these two
rules.

Theorem 8.2. PQI and NQI for f LSR and f CSR can be solved in O(n2) time.

Proof. Let f ∈ { f LSR, f CSR} be any procedural rule. We first show that an individual a is a socially
qualified individual under social rule f for at least one extension φ of ϕ if and only if a is socially
qualified for the extension φ1 where it holds φ1(a,b) = 1 for all entries with ϕ(a,b) = ∗. Note that
the back direction trivially holds. Hence, we only have to show the first direction. By proving the
first direction, we implicitly demonstrate that in case not all individuals in S are socially qualified
under φ1, there are no other extensions φ for which all individuals in S are socially qualified. The
reason is as follows. Suppose that a is socially qualified according to f ∈ { f LSR, f CSR} under φ .
Then there are r+ 1 pairwise different individuals a(0),a(1), . . . ,a(r) in N (r ∈ N0) such that a(0) is
in the starting set, a(r) = a, and φ(a( j),a( j+1)) = 1 holds for every j ∈ {0,1, . . . ,r−1} (possibly, it
holds r = 0 which means that a is in the starting set). Note that this sequence still consists when we
replace all entries with ϕ(a,b) = ∗ and φ(a,b) = 0 by φ1(a,b) = 1 (according to this, we obtain the
profile φ1). We have φ1(a( j),a( j+1)) = 1 for each j ∈ {0,1, . . . ,r−1} and a is socially qualified in
the profile φ1 as well.

Next we define φ0 as an extension of ϕ , where we set φ0(a,b) = 0 each time ϕ(a,b) = ∗ holds.
We claim that a is socially qualified under the profile φ0 if and only if a is socially qualified for every
extension φ of ϕ . Again, the opposite direction is trivial. It suffices to show the first direction. As a
is socially qualified under φ0, there exist again r+1 pairwise different individuals a(0),a(1), . . . ,a(r)

in N (r ∈ N0) such that a(0) is in the starting set, a(r) = a, and φ0(a( j),a( j+1)) = 1 holds for every
j ∈ {0,1, . . . ,r−1}. Observe that each extension φ 6= φ0 can be won from φ0 by turning some zeroes
into ones, where ϕ(a,b) = ∗ holds in the partial profile. In contrast, φ0 contains the largest possible
number of zeroes. Consequently, it holds φ(a( j),a( j+1)) = 1 for each j for any other extension φ ,
and a is still socially qualified.

φ1 can be regarded as the best-case profile as all undetermined entries are extended to qualifica-
tions, whereas in φ0, all unsure qualifications turn out to be disqualifications.
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According to the reasoning above, we only have to check whether all individuals in S are socially
qualified under the extensions φ1 (for PQI) and φ0 (for NQI), respectively.

Since computing the optimistic and pessimistic profiles can be done in O(n2) time (scanning all
entries in the matrix and changing them, if necessary) and calculating the set of socially qualified
individuals in both social rules is possible in O(n2) as well, our overall problem is in O(n2). q

8.2.2 k-Partial Profiles

In this section, we study two variants of PQI and NQI, namely k-PQI and k-NQI. In particular, in
these two variants every individual must qualify exactly k individuals in extensions of the given
partial profile. We have seen in the previous section that PQI and NQI are polynomial-time solvable
for all social rules considered. The intuition is that in all cases, maximizing the number of indi-
viduals who qualify an individual a increases the possibility of a to be socially qualified in a given
extension, and maximizing the number of individuals who disqualify a decreases the possibility of
a to be socially qualified. As such, in PQI/NQI we generally replace ∗ with 1/0. However, if every
individual is allowed to qualify exactly k individuals, we have to carefully replace ∗ with 1 or 0.

We prove that k-PQI and k-NQI for consent rules are polynomial-time solvable too. However,
the polynomial-time algorithms studied in this section are not trivial generalizations of the ones
studied in the previous section. In fact, we derive different algorithms for consent rules with differ-
ent consent quotes s and t. Moreover, we obtain some of the polynomial-time algorithms only when
k and t are both constants. However, the polynomial-time algorithms studied in the previous section
hold for all integers s and t. For the two procedural social rules f CSR and f LSR, we prove that 1-PQI
and k-NQI (k ∈ N) are polynomial-time solvable. However, if k increases just by one, we show that
k-PQI for both procedural rules becomes NP-hard. Hence, we obtain complexity dichotomy results
for k-PQI and k-NQI for f CSR and f LSR with respect to the values of k.

An observation that is useful in deriving the polynomial-time algorithms is as follows: if there
is an individual a ∈ N such that |1(a,ϕ)| = k, then in each k-extension φ of ϕ it must be that
φ(a,b) = 0 for every b ∈ ∗(a,ϕ). In addition, if |∗(a,ϕ)|= k−|1(a,ϕ)| for an individual a ∈ N, in
every k-extension φ of ϕ it must be that φ(a,b) = 1 for every b ∈ ∗(a,ϕ).

We consider first k-PQI and k-NQI for consent rules. Our first result is a polynomial-time algo-
rithm for k-NQI for consent rules f (s,t). Moreover, the polynomial-time solvability holds regardless
of the values of s and t.

Theorem 8.3. k-NQI for all consent rules f (s,t) can be solved in O(n2) time.

Proof. We develop a polynomial-time algorithm as follows. First, the algorithm calculates
|1(a,ϕ)| and | ∗ (a,ϕ)| for all a ∈ N. This can be done in O(n2) time. Then, the algorithm breaks
down I into |S| subinstances, each of which takes as input I and an individual a ∈ S, and asks if
there is a k-extension φ of ϕ such that a 6∈ f (s,t)(φ ,N). Observe that I is a NO-instance if and only
if at least one of the subinstances is a YES-instance. Let I′ = (I,a ∈ S) be a subinstance. We show
how to solve I′ in polynomial time, by distinguishing between the following cases. Observe that,
no matter if a qualifies or disqualifies himself, a k-extension with more individuals disqualifying a
is more likely to prevent a from being a socially qualified individual.
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• ϕ(a,a)∈ {0,1}. Due to the above observation, we only need to check if a is socially qualified
under an extension with as many individuals disqualifying a as possible. To this end, we have
to call the following procedure:

For every b ∈ N such that a ∈ ∗(b,ϕ), if |∗(b,ϕ)| > k−|1(b,ϕ)|, reset ϕ(b,a) = 0; 1 other-
wise, reset ϕ(b,a) = 1. This can be done in O(n) time. If ϕ(a,a) = 1 and |{b∈N : ϕ(b,a) =
1}| < s, or ϕ(a,a) = 0 and |{b ∈ N : ϕ(b,a) = 0}| ≥ t after doing so, I′ is a YES-instance.
Otherwise, I′ is a NO-instance. We can check this in O(n) time.

• ϕ(a,a) = ∗. Assume that | ∗ (a,ϕ)|> k−|1(a,ϕ)| (and also |1(a,ϕ)|< k) since otherwise a
qualifies (disqualifies) himself in all k-extensions of ϕ . In this case, we can reset ϕ(a,a) = 1
(ϕ(a,a) = 0) and solve I′ by calling the procedure in the first case. We deal with the second
case with this assumption as follows. First, for every b ∈ N \ {a} such that a ∈ ∗(b,ϕ), if
|∗(b,ϕ)| > k−|1(b,ϕ)|, reset ϕ(b,a) = 0; otherwise, reset ϕ(b,a) = 1. After doing so, we
compare s−1 with the number of individuals qualifying a. In particular, if |{b∈N : ϕ(b,a)=
1}| ≤ s− 1 after resetting ϕ(a,a) = 1, a is not socially qualified in every k-extension of ϕ .
Hence, we can conclude that I′ is a YES-instance. If, however, |{b ∈ N : ϕ(b,a) = 1}| ≥ s,
we reset ϕ(a,a) = 0. Then, if |{b ∈ N : ϕ(b,a) = 0}| ≥ t, a is not socially qualified in
every k-extension of ϕ , implying that I′ is a YES-instance as well. In all other cases, I′ is a
NO-instance. The above procedure can be done in O(n) time.

As we have at most |S| ≤ n subinstances, the whole running time of the algorithm is bounded
by O(n2)+n ·O(n) = O(n2), where the first O(n2) is the time for calculating |1(a,ϕ)| and | ∗ (a,ϕ)|
for all a ∈ N. q

Now we consider k-PQI for consent rules. We start with a special case of k-PQI where in the
input profile ϕ , it holds that ϕ(a,a)∈ {0,1} for every a∈ S. We denote this special case by k-PQI-S
and show that this problem for all consent rules f (s,t) is polynomial-time solvable even for k,s, t
being non-constants. This algorithm will be used to develop polynomial-time algorithms for k-PQI
for some consent rules later.

For an individual a ∈ N, let x−1(a,ϕ) = {b ∈ N : ϕ(b,a) = x}, where x ∈ {0,1,∗}. Observe
that 1−1(a,ϕ) = y(a) and 0−1(a,ϕ) = n(a). We introduce this additional formalism to emphasize
the dependence on a particular k-partial profile.

Lemma 8.4. k-PQI-S for consent rules can be solved in O(n3) time.

Proof. Suppose that ϕ is a k-partial profile with ϕ(a,a) ∈ {0,1} for every a ∈ S. We solve
the problem in polynomial-time by reducing it to the MAXIMUM FLOW problem and create the
following network.

For every a ∈ N, we create one vertex v(a). Moreover, for every b ∈ S we further define one
vertex u(b). Finally, we create a source vertex x and a sink vertex y. The edges and capacities
of the edges are as follows. First, there is an edge from the source x to every v(a) with capacity
cap((x,v(a)))= k−|1(a,ϕ)|, indicating that a can further qualify at most k−|1(a,ϕ)| individuals in
S, apart from individuals definitely qualified by a. Second, there is an edge from a vertex v(a),a∈N,

1Actually, we could also write φ as the resetting of ϕ means that we extend ϕ . For the sake of readability and because
we only extend parts of the profile, we often argue with ϕ instead of φ throughout our proofs.
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Figure 8.1: An illustration of the construction of the network in the proof of Lemma 8.4. Each red
edge from x to a vertex v(a) corresponding to an individual a ∈ N has capacity k−|1(a,ϕ)|. Each
blue edge from a vertex u(b) corresponding to an individual b ∈ S to y has capacity max(0,s′−
|1−1(b,ϕ)|). A black edge from v(a),a ∈ N to u(b),b ∈ S means that ϕ(a,b) = ∗. Moreover, each
black edge in the middle has capacity 1.

to a vertex u(b),b ∈ S, with capacity 1 if and only if ϕ(a,b) = ∗, indicating that it is possible (but,
in general, not definite 2) to let a qualify b in a k-extension of ϕ . Finally, there is an edge from every
vertex u(b),b ∈ S to the sink y with capacity cap((u(b),y)) = max(0,s′−|1−1(b,ϕ)|), where s′ = s
if ϕ(b,b) = 1 and s′ = n−t+1 if ϕ(b,b) = 0. The capacity of the edge from u(b) to y indicates how
many qualifications are still needed to make b socially qualified. See Figure 8.1 for an illustration
of the network.

We argue that our network yields an integral flow of size ∑b∈S cap((u(b),y)) if and only if I is a
YES-instance.

(⇐): Assume that there is a k-extension φ of ϕ under which all individuals in S are socially
qualified with respect to f (s,t). Consider the following flow. First, the flow on each edge from
u(b),b ∈ S to y is cap((u(b),y)). Regard now the flows on the edges in the middle. As each
individual b ∈ S is socially qualified in φ , the number of individuals a such that ϕ(a,b) = ∗ and
φ(a,b) = 1 is at least max(0,s′−|1−1(b,ϕ)|) = cap((u(b),y)), where s′ is defined as above. Then,
from these individuals, we select any arbitrary cap((u(b),y)) individuals a ∈ N. Moreover, for each
such selected individual a the flow on the edge from v(a) to u(b) is 1. Finally, the flow on each
edge from x to every v(a),a ∈ N is the sum of flows leaving v(a). Note that there can be at most
k−|1(a,ϕ)| individuals b ∈ S such that ϕ(a,b) = ∗ and φ(a,b) = 1. Hence, the flow on each edge
from x to v(a),a ∈ N does not exceed the capacity of the edge. The flows on all remaining edges
are 0. Verify that the size of the flow is ∑b∈S cap((u(b),y)).

(⇒): Assume that our network has an integral flow of size ∑a∈S cap((u(a),y)). We can find a
k-extension φ of ϕ under which all individuals in S are socially qualified as follows. Consider the
k-partial profile φ obtained from ϕ by resetting ϕ(a,b) = 1 for every edge from a vertex v(a),a ∈ N
to a vertex u(b),b ∈ S with flow 1. Hence, for each b ∈ S with ϕ(b,b) = 1, there are at least

2Whenever ϕ(a,b) = ∗, a definitely qualifies b only if |1(a,ϕ)|+ | ∗ (a,ϕ)|= k.
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|1−1(b,ϕ)|+cap((u(b),y))≥ s individuals qualifying b with respect to φ . In addition, for each b∈ S
with ϕ(b,b) = 0, there are at least |1−1(b,ϕ)|+ cap((u(b),y))≥ n− t +1 individuals qualifying b.
This means that there are at most t− 1 individuals disqualifying b with respect to φ . Then, due to
the definition of f (s,t), any k-extension φ of ϕ is a solution of I.

It remains to analyze the running time of the algorithm. It was recently shown by Orlin [136]
that the MAXIMUM FLOW problem is solvable in O(p ·q) time, where p is the number of edges and
q is the number of vertices in the network. As the network constructed above has O(n2) edges and
O(n) vertices, the running time of our algorithm is bounded by O(n3). q

Armed with Lemma 8.4, we are ready to show our polynomial-time algorithms for k-PQI for
consent rules. We start with some results for k-PQI for consent rules with (s, t) = (1,2) or t = 1,
and unbounded values of k.

Theorem 8.5. k-PQI for f (1,1) and for f (1,2) can be solved in O(n2) time. For f (s,1), k-PQI is in
O(n3).

Proof. We develop polynomial-time algorithms with the corresponding running times as stated
in the theorem as follows.

f (1,1): If there is an individual a ∈ S such that ϕ(a,a) = 0, I is a NO-instance. This can be
checked in O(|S|) = O(n) time. In addition, if there is an a∈ S such that ϕ(a,a) = ∗ and |1(a,ϕ)|=
k, the instance is a NO-instance as well since in all k-extensions of ϕ , individual a disqualifies
himself. If such an individual a does not exist, the instance must be a YES-instance. As it takes
O(n) time to calculate |1(a,ϕ)| for each a∈ S, the algorithm terminates in O(n)+ |S| ·O(n) = O(n2)
time.

f (1,2): If there exist a∈ S and b∈N \{a} such that ϕ(a,a) = ϕ(b,a) = 0, we conclude that I is a
NO-instance. In addition, if there exist a ∈ S and b ∈ N \{a} such that ϕ(a,a) = ∗ and ϕ(b,a) = 0,
we reset ϕ(a,a) = 1. If after the reset |1(a,ϕ)| > k, we conclude that I is a NO-instance. We deal
with the remaining cases as follows. It is clear that if ϕ(a,a) = 1 for some a ∈ S, or ϕ(a,a) = 0 and
ϕ(b,a) = 1 for all b ∈ N \{a}, then a is socially qualified in every k-extension of ϕ . We need only
to focus on other individuals in S. Let S∗0 be the set of individuals a ∈ S such that ϕ(a,a) = 0, there
exists some b ∈ N \ {a} such that ϕ(b,a) = ∗, and it holds ϕ(b,a) 6= 0 for each b ∈ N \ {a}. We
maintain the set S∗0 throughout the algorithm. For every a ∈ S∗0, we have to reset ϕ(b,a) = 1 for all
b∈N such that ϕ(b,a) = ∗ since otherwise a would not be socially qualified. Due to this, we derive
a procedure to deal with the remaining cases as follows. While S∗0 6= /0, for every a ∈ S∗0 and b ∈ N
such that ϕ(b,a) = ∗, reset ϕ(b,a) = 1. If k < |1(b,ϕ)| after resetting ϕ(b,a) = 1, the procedure
immediately returns ”NO”.

After the while loop, for all b ∈ N with k = |1(b,ϕ)|, we do the following:
(1) reset ϕ(b,a) = 0 for all a ∈ ∗(b,ϕ) (note that after this adjustment of the profile, there might

be some a ∈ S with ϕ(a,a) = ϕ(b,a) = 0 for some b ∈ N \{a}; in this case, we reject.), (2) update
S∗0; 3 and (3) go back to the while loop if S∗0 6= /0.

If no conclusion is drawn after the while loops terminate and after step (1) directly following
the last iteration, we can conclude that I is a YES-instance. The reason is as follows. For every
a ∈ S with ϕ(a,a) = ∗ (note that there is no individual left in S∗0 and there has not been any socially

3After step (1), it is possible that an individual a ∈ S with ϕ(a,a) = ∗ at the beginning currently disqualifies himself.
If it holds ϕ(b,a) ∈ {1,∗} for each b ∈ N \{a}, a is presently belonging to S∗0.
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disqualified individual in S up to the present), we know that |1(a,ϕ)| < k holds; therefore, we can
reset ϕ(a,a) = 1 to make a socially qualified. Notice that there are no individuals a ∈ S left with
ϕ(a,a) = ∗ and |1(a,ϕ)| = k. For these individuals, we would have reset ϕ(a,a) = 0 in step (1)
directly following the while loop and either there would have been a contradiction or we would have
run again the while loop for a after the updating in step (3).

Observe that the above algorithm runs in O(n2) time.
f (s,1), s> 1: If there is an individual a∈ S such that ϕ(a,a) = 0, or ϕ(a,a) = ∗ and k = |1(a,ϕ)|,

then I is a NO-instance since a is not socially qualified in any k-extension of ϕ . As |1(a,ϕ)| can
be calculated in O(n) time for a given a, this can be checked in O(n2) time. Assume that no such
individuals a as discussed above exist. Then, if there is an a ∈ S such that ϕ(a,a) = ∗, we can
safely reset ϕ(a,a) = 1: if there is a k-extension of ϕ under which all individuals in S are socially
qualified, then a must qualify himself in the k-extension. This can be done in O(|S|) = O(n) time.
Hence, we have now that ϕ(a,a) = 1 for every a ∈ S. Then, due to Lemma 8.4, we can solve
the instance in O(n3) time. Notice that the whole running time of the algorithm is bounded by
O(n)+O(n3) = O(n3). q

We have shown that if (s, t) = (1,2) or t = 1, k-PQI for f (s,t) is polynomial-time solvable even
when k (and s, when regarding f (s,1)) is not a constant. In the following, we continue to show
some polynomial-time algorithms based on Lemma 8.4. However, these algorithms are based on
the assumption that k and t are constants. Before showing the result, let us first study a property, as
summarized in the following lemma. In general, it states that in any k-profile, the number of socially
qualified individuals disqualifying themselves is bounded by k+ t−1. Hence, due to this property,
we can enumerate all individuals a ∈ S with ϕ(a,a) = ∗ who disqualify themselves in a solution in
O(nk+t−1) time. If both k and t are constants, this can be done in polynomial time. Moreover, we
can solve k-PQI in polynomial-time based on Lemma 8.4.

Lemma 8.6. Let ϕ be a k-profile over N. Let A be the set of socially qualified individuals with
respect to the consent rule f (s,t) who disqualify themselves, i.e., A= {a∈ f (s,t)(ϕ,N) : ϕ(a,a) = 0}.
Then, |A| ≤ k+ t−1.

Proof. Consider the profile ϕ restricted to A. Let x be the number of qualifications in the subpro-
file, i.e., x = |{ϕ(a,b) : a,b ∈ A,ϕ(a,b) = 1}|. As each individual qualifies k individuals, we have
that x≤ k · |A|. On the other hand, as each individual in A is socially qualified, for each a ∈ A there
are at most t−1 individuals in A disqualifying a and consequently at least |A|−t+1 individuals in A
qualifying a. It follows that x≥ |A| ·(|A|−t+1). In summary, we have that |A| ·(|A|−t+1)≤ k · |A|.
It directly follows that |A| ≤ k+ t−1. q

Now we are ready to show an algorithm to solve k-PQI for all consent rules.

Theorem 8.7. k-PQI for f (s,t) can be solved in O(n(t+k+2)) time.

Proof. According to Lemma 8.6, if I is a YES-instance, then for any solution φ of I, it must
be that |{a ∈ S : φ(a,a) = 0}| ≤ k + t − 1. Due to this, we can enumerate all subsets A of S∗
such that all individuals in A disqualify themselves and all individuals in S∗ \A qualify themselves
in a solution φ of I, i.e., A = {a ∈ S∗ : φ(a,a) = 0}. Then, for each enumerated A, we extend
ϕ by resetting ϕ(a,a) = 0 for all individuals a ∈ A and resetting ϕ(a,a) = 1 for all individuals
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a ∈ S∗ \ A (if ϕ is not a k-partial profile after the resetting, we discard this enumeration). So,
each enumeration corresponds to an instance of k-PQI-S. Observe that I is a YES-instance if and
only if at least one of the enumerations corresponds to a YES-instance. Due to Lemma 8.4, k-
PQI-S can be solved in O(n3) time. As we have in total at most

(|S|
0

)
+
(|S|

1

)
+ . . .+

( |S|
k+t−1

)
≤(n

0

)
+
(n

1

)
+ . . .+

( n
k+t−1

)
= O(n0)+O(n1)+ . . .+O(n(k+t−1)) = O(n(k+t−1)) enumerations, we can

solve I in O(n3) ·O(n(k+t−1)) = O(n(k+t+2)) time. 4 q

According to the above theorem, if both k and t are constants, we can solve k-PQI for f (s,t) in
polynomial-time. One may wonder if we could get a similar result but with the assumption that s is
a constant. As a matter of fact, if we assume that n− k is a constant, i.e., each individual is allowed
to disqualify a constant number of individuals, we could obtain a similar lemma to Lemma 8.6.
Based on the lemma, we could obtain an algorithm with running time O(n(n−k+s+2)). In addition,
by utilizing Lemma 8.4 we could derive an algorithm with running time O(2|S| · n3): enumerate
all possible values of ϕ(a,a) for all a ∈ S with ϕ(a,a) = ∗. Observe that there are at most 2|S|

enumerations and we can solve each enumerated case in O(n3) time according to Lemma 8.4.
In the remainder, we study k-PQI and k-NQI for the two procedural rules f CSR and f LSR. We

prove that the values of k have a significant impact on the complexity of these two problems. First,
we show that 1-PQI and 1-NQI for f LSR and f CSR are polynomial-time solvable, based on the fol-
lowing lemma.

Lemma 8.8. Let X ∈ {CSR,LSR} and φ a 1-extension of ϕ . Then, an individual a ∈ N is socially
qualified in φ with respect to f X if and only if a is in the initial set of socially qualified individuals
in φ , i.e., a ∈ KX

0 (φ ,N).

Proof. As φ is a 1-extension of ϕ , every individual in N qualifies exactly one individual. Then,
due to the definition of f X , an individual in the initial set of φ with respect to f X does not qualify
anyone not in the initial set. It directly follows that f X(φ ,N) = KX

0 (φ ,N), i.e., the socially qualified
individuals with respect to f X and φ are exactly the individuals in the initial set of socially qualified
individuals. The lemma follows. q

Based on the above lemma, we are able to show our results.

Theorem 8.9. 1-PQI and 1-NQI for f CSR and f LSR can be solved in O(n2) time.

Proof. Due to Lemma 8.8, 1-PQI for f CSR ( f LSR) consists in determining whether there is a 1-
extension of ϕ where every a ∈ S is in the initial set KCSR

0 (KLSR
0 ) of socially qualified individuals.

We develop polynomial-time algorithms for 1-PQI as follows.

f LSR: Return ”NO” if and only if there is an a ∈ S such that ϕ(a,a) = 0, or ϕ(a,a) = ∗ and k =
1 = |1(a,ϕ)|. This can be done in O(n2) time. Notice that if ϕ(a,a) = ∗ for some a ∈ S and
k = 1 > |1(a,ϕ)| = 0, we can safely reset ϕ(a,a) = 1 without changing the answer to the
instance.

4It may occur that α individuals in S definitely disqualify themselves. Hence, it suffices to consider extensions φ for
which at most k+ t−1−α individuals in S∗ disqualify themselves.
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f CSR: Note that in every 1-extension, there can be at most one individual in the initial set of socially
qualified individual with respect to f CSR. Hence, due to Lemma 8.8, we can immediately con-
clude that I is a NO-instance if |S| ≥ 2. Assume now that S = {a}. Again, due to Lemma 8.8,
if there is an individual b ∈ N such that ϕ(b,a) = 0, or ϕ(b,a) = ∗ and k = 1 = |1(b,ϕ)|,
I is a NO-instance; otherwise, I is a YES-instance as we can find a solution obtained from
ϕ by resetting ϕ(b,a) = 1 for every ϕ(b,a) = ∗ in advance. In the worst case, we need to
calculate |1(b,ϕ)| for all b ∈ N. As |1(b,ϕ)| can be calculated in O(n) time for each b ∈ N,
the algorithm terminates in n ·O(n) = O(n2) time.

Now we turn our attention to 1-NQI for f CSR ( f LSR). To solve the problem, it suffices to deter-
mine if there is an a ∈ S and a 1-extension φ of ϕ such that a 6∈ f CSR(φ ,N) ( f LSR(φ ,N)). Due to
Lemma 8.8, this is equivalent to determining if there is a 1-extension of ϕ such that a is not in the
initial set of socially qualified individuals. We accept if this is impossible for all individuals in S.
Hence, we can use similar algorithms to the ones for 1-PQI to solve the instance here.

For f LSR, we accept if and only if for all a ∈ S, it holds either ϕ(a,a) = 1 or ϕ(a,a) = ∗ and
|0(a,ϕ)|= n−1.

For f CSR, we accept if and only if S = {a} (that is, S is a singleton) and for each b ∈ N it holds
either ϕ(b,a) = 1 or ϕ(b,a) = ∗ and |0(b,ϕ)|= n−1.

Note that both conditions can be checked in O(n2) time. q

In contrast to the polynomial-time solvability of 1-PQI and 1-NQI, we show that if the indi-
viduals are allowed to qualify one more individual, k-PQI for f CSR and f LSR become NP-hard, i.e.,
k-PQI for f LSR and f CSR are NP-hard for every constant k ≥ 2. Our proofs are based on reductions
from the HAMILTONIAN PATH problem which is known to be NP-hard [90]. We first show the
NP-hardness of k-PQI for f LSR.

Theorem 8.10. k-PQI for f LSR is NP-complete for every constant k ≥ 2.

Proof. Let G = (V ,E ) be a given instance of the HAMILTONIAN PATH problem. We create an
instance I = (N,ϕ,S⊆ N) of f LSR-k-PQI as follows.

For each vertex u ∈ V , we create an individual a(u). In addition, we have k individuals
b0, . . . ,bk−1. We define S = {a(u) : u ∈ V }. Hence, N = S∪{b0, . . . ,bk−1}. The k-partial pro-
file ϕ is defined as follows.

• ϕ(a,a) = 0 for every a ∈ S.

• ϕ(a,bi) = 1 for every a ∈ N and 0≤ i≤ k−2.

• ϕ(bi,bk−1) = 1 for every 1≤ i≤ k−1 and ϕ(a,bk−1) = 0 for every a ∈ S∪{b0}.
• ϕ(b0,a(u)) = ∗ for every a(u) ∈ S.

• ϕ(bi,a(u)) = 0 for every 1≤ i≤ k−1 and a(u) ∈ S.

• For a(w),a(u) ∈ S, if (w,u) ∈ E , then ϕ(a(w),a(u)) = ∗; otherwise,
ϕ(a(w),a(u)) = 0.

It remains to prove the correctness of the reduction. We claim that there exists a Hamiltonian
path in G if and only if there is a k-extension of ϕ such that all individuals in S are socially qualified.

(⇒): Assume that there is a Hamiltonian path (u1, . . . ,uq) in G, where q = |V |. Consider the
k-extension φ of ϕ obtained from ϕ by resetting the values of ∗ entries as follows.
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• Set φ(b0,a(u1)) = 1.

• For every 1≤ i≤ q−1, set φ(a(ui),a(ui+1)) = 1.

• Set φ(a(uq),a(ui)) = 1, where ui is any arbitrary outneighbor of uq in G.

• Reset φ(a(ui),a(u j)) = 0 for all entries not defined above.

In this extension, b0 is socially qualified. According to the definition of f LSR, a(u1) is also
socially qualified as b0 qualifies a(u1) in φ . Moreover, if a(ui) is socially qualified, so is a(ui+1) for
every i ∈ {1,2, . . . ,q−1}. This implies that all individuals in S are socially qualified in φ . Hence, I
is a YES-instance.

(⇐): Let φ be a k-extension of ϕ with respect to which all individuals in S are socially qualified.
As each individual a(u)∈ S qualifies the k−1 individuals b0,b1, . . . ,bk−2, a(u) qualifies exactly one
more individual a(w) ∈ S. Moreover, b0 qualifies exactly one individual in S. Hence, from b0, we
can find a sequence of individuals a(u1),a(u2), . . . ,a(uq) such that b0 qualifies a(u1) and a(ui)
qualifies a(ui+1) for every 1 ≤ i ≤ q−1. Due to the construction, (u1,u2, . . . ,uq) is a Hamiltonian
path in G. q

We can prove the NP-hardness of k-PQI for f CSR by a similar reduction.

Theorem 8.11. k-PQI for f CSR is NP-complete for every constant k ≥ 2.

Proof. Let us first show NP-hardness of 2-PQI for f CSR. We will show later how to adjust the
reduction to the case k ≥ 3. Let G = (V ,E ) be a given instance of the HAMILTONIAN PATH

problem. We create an instance I = (N,ϕ,S⊆ N) of f CSR-k-PQI as follows.
For each vertex u ∈ V , we create an individual a(u). In addition, we have an individual b. We

define S = {a(u) : u ∈ V }. The 2-partial profile ϕ is defined as follows.

• ϕ(a(u),b) = 1 and ϕ(b,a(u)) = ∗ for every a(u) ∈ S.

• ϕ(b,b) = 1.

• ϕ(a(u),a(u)) = 0 for every a(u) ∈ S.

• For distinct a(w),a(u) ∈ S, if (w,u) ∈ E , then ϕ(a(w),a(u)) = ∗; otherwise,
ϕ(a(w),a(u)) = 0.

This completes the construction. Notice that b is socially qualified in every 2-extension φ of ϕ .
It remains to prove the correctness of the reduction. We claim that there is a Hamiltonian path in G
if and only if our instance of f CSR-k-PQI is a YES-instance.

(⇒): Assume that there is a Hamiltonian path (u1, . . . ,uq) in G, where q = |V |. Consider the
2-extension φ of ϕ obtained from ϕ by resetting the values of ∗ entries as follows.

• φ(b,a(u1)) = 1.

• For every 1≤ i≤ q−1, set φ(a(ui),a(ui+1)) = 1.

• Set φ(a(uq),a(ui)) = 1, for an arbitrary ui with (uq,ui) ∈ E .

• Set φ(a(ui),a(u j)) = 0 for all ∗ entries not defined above.
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In this extension, b is qualified by all individuals. According to the definition of f CSR, b is
socially qualified. Moreover, as b qualifies a(u1), a(u1) is also socially qualified. Furthermore, if
a(ui) is socially qualified, so is a(ui+1) for every i ∈ {1, ...,q−1}. This means that all individuals
in S are socially qualified in φ . Hence, I is a YES-instance.

(⇐): Let φ be a 2-extension of ϕ with respect to which all individuals in S are socially qualified.
As each individual a(u)∈ S definitely qualifies the individual b in ϕ , a(u) qualifies exactly one more
individual a(w) ∈ S. Moreover, b qualifies exactly one individual in S. Hence, from b, we can find a
sequence of individuals a(u1),a(u2), . . . ,a(uq) such that b qualifies a(u1) and a(ui) qualifies a(ui+1)
for every 1 ≤ i ≤ q− 1. Due to the construction, (u1,u2, . . . ,uq) is a Hamiltonian path in G. This
completes the proof.

The reduction for the case k ≥ 3 can be obtained from the above one by a slight modification.
In particular, we create further k− 1 dummy individuals b1, . . . ,bk−1. Let B be the set of these
individuals. So, we have q+ k individuals and N = S

·
∪ {b}

·
∪ B now. The profile restricted to

S∪ {b} is defined exactly as in the above reduction. The values of the remaining entries are as
follows.

• Every individual in S∪{b} qualifies the individuals b1, ...,bk−2.

• Every individual of {b1, . . . ,bk−1} qualifies the individuals in {b}∪B.

• ϕ(a,a′) = 0 for all a,a′ ∈ N for which ϕ(a,a′) has not been defined yet.

The point is that no individual in B qualifies an individual in S. Moreover, each individual in
S∪{b} is able to qualify at most one individual in S in any k-extension of ϕ , just as in the above
reduction for 2-PQI. q

In the k-partial profiles constructed in the proofs of Theorem 8.10 and Theorem 8.11, all indi-
viduals in S disqualify themselves. Hence, we in fact proved that k-PQI-S for both f LSR and f CSR

with k ≥ 2 is NP-complete.
In contrast, k-NQI is easy for both procedural rules and arbitrary k ∈ N.

Theorem 8.12. f CSR-k-NQI and f LSR-k-NQI are in O(n4) for every k ≥ 2.

Proof. W.l.o.g., N contains more than k individuals (hence, n > 2 holds as k≥ 2) as otherwise all
individuals are trivially socially qualified for each k-extension. Let us start with the consensus-start
respecting rule. In a first step, our algorithm checks whether there is a k-extension φ of ϕ such that
the starting set KC

0 (φ ,N) is empty. In that case, the answer to our problem is NO as there are no
socially qualified individuals at all for such k-extensions φ . After doing so, in case the starting set
is non-empty for all k-extensions φ , our algorithm checks in a second step for each individual b ∈ S
whether there are k-extensions for which b is socially disqualified. We accept if and only if making
b socially disqualified is impossible for each b ∈ S.

The starting set according to a given k-extension φ is empty if and only if for each individual
a∈N there is an individual a′ ∈N with φ(a′,a) = 0. In other words, each individual a is disqualified
by at least one individual in the (complete) k-profile φ extending ϕ . Note that if ϕ(a′,a) = 0 holds
for a,a′ ∈ N, then a is definitely not in the starting set. Hence, we just have to focus on individuals
a for whom ϕ(a′,a) 6= 0 holds for each a′ ∈ N. Let us denote these individuals by N 6=0. In order to
show our result, we define the following flow network. There is a source x, a sink y, a vertex v(a)
for each a ∈ N, and a vertex u(a′) for each a′ ∈ N 6=0. The edges are defined as follows.
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• There is an edge from x to each v(a) with capacity (n− k)− |0(a,ϕ)| (a ∈ N). Notice that
a surely disqualifies |0(a,ϕ)| individuals in the partial profile ϕ . Moreover, a disqualifies
exactly n− k individuals in total for each k-extension φ . Hence, the capacity indicates how
many further individuals may still be disqualified by a so that exactly n− k individuals are
disqualified by a in total. For all these individuals a′ it holds ϕ(a,a′) = ∗.

• There exists an edge from v(a) to u(a′) with capacity 1 if and only if ϕ(a,a′) = ∗ (a ∈ N,a′ ∈
N 6=0). These edges ensure that a can assign the remaining 5 disqualifications only to those
individuals a′ for which ϕ(a,a′) = ∗ holds. All other individuals are either definitely qualified
or definitely disqualified by a.

• For every a ∈ N 6=0, there is an edge from u(a) to y with capacity 1.

Analogously to the proof of Lemma 8.4, it follows that the flow network yields an integral flow
of size |N 6=0| (that is, a maximum flow) if and only if there is a k-extension φ of ϕ for which each
individual is disqualified by at least one individual in N. In contrast to the other proof, our flow
network assigns the further (and, in general, indefinite) disqualifications instead of the (generally)
uncertain qualifications. Each individual can assign exactly (n− k)−|0(a,ϕ)| further disqualifica-
tions to individuals in N which is expressed by the capacities of the edges starting from the source.
The rightmost edges describe that each individual in N 6=0 requires at least one disqualification.

Note that we reject in case we are able to compute a maximum flow. The preprocessing detect-
ing all individuals with certain disqualifications and determining N 6=0 can be done in O(n2) time.
Moreover, as there are O(n) vertices and O(n2) edges in the flow network, we can determine a
maximum integral flow in O(n2) ·O(n) = O(n3) time due to [136].

Henceforth, we suppose that such a flow does not exist, i.e., each k-extension φ yields a non-
empty starting set. For each b ∈ S, we regard a subinstance I(b) for which we try to make b socially
disqualified for at least one k-extension. According to this, our overall instance is a NO instance if
and only if I(b) is a YES subinstance for at least one b ∈ S.

We provide an algorithm based on the observation that an individual qualifying b in a k-
extension φ of ϕ must not be socially qualified either, in order to reach a YES subinstance. And
these individuals in turn must not be qualified by yet another socially qualified individual, and so on.
We thus compute a sequence of sets (Fb

i )i∈N0 containing all ”forbidden” individuals who would—in
case of being socially qualified—make b socially qualified, too. In each step we set Hb

i := N \Fb
i .

In particular, we have Fb
0 = {b} and Hb

0 = N \{b}. (For the sake of simplicity, we drop the index b
in the following.) These sets are computed as follows.

• F0 := {b}. We wish that b is not socially qualified. Note that it does not matter whether
b qualifies himself 6, as—if possible—every individual in the (non-empty) starting set of at
least one k-extension φ disqualifies b and so b is (if possible) no member of the starting set.

5Intuitively, these further disqualifications are possible but not definite disqualifications. In case |0(a,ϕ)|+ |∗(a,ϕ)|=
n− k or |1(a,ϕ)|+ | ∗ (a,ϕ)| = k hold, there is actually no incompleteness concerning a’s opinion about individuals in
N. These somewhat degenerated cases are explicitly allowed the more so as such cases can occur in various algorithms
throughout this chapter, e.g., when some other potential qualification is fixed to one or zero, and the initially incomplete
evaluation of a concerning all individuals in N becomes complete during the running of an algorithm.

6Note that for n = 1 and k = 1, b is socially qualified if and only if b qualifies himself. However, our algorithm is
based on n > k ≥ 2.
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• For i≥ 1, we compute Fi := Fi−1∪{a ∈ N \Fi−1 : [∃a′ ∈ Fi−1 : ϕ(a,a′) = 1] ∨ [| ∗ (a,ϕ)∩
Hi−1| < k− |1(a,ϕ)|]}. In other words, we make two classes of individuals join the set of
”forbidden” individuals. On the one hand, if a definitely qualifies an individual in Fi−1, we
let a ∈ Fi as in case a is socially qualified, a qualifies an individual in Fi−1, that individual in
turn is either b or qualifies an individual in Fh with h < i−1, and so on. Such a sequence of
individuals exist—as a mere consequence of the definition of the sets Fi— regardless of how
we extend ϕ . Anyway, it follows that then b is necessarily socially qualified as well provided
that an individual in the current set Fi is socially qualified for a given k-extension φ . 7 On the
other hand, a might not definitely qualify any individual in Fi−1, but in each k-extension φ

there are exactly k−|1(a,ϕ)| individuals a′ with ϕ(a,a′) = ∗ and φ(a,a′) = 1 (otherwise, we
do not obtain a k-extension). Note that if there are fewer than k−|1(a,ϕ)| individuals a′ in
Hi−1(= N \Fi−1) for whom ϕ(a,a′) = ∗ holds, a necessarily qualifies at least one individual
in Fi−1 for every k-extension φ of ϕ . Hence, in order to prevent b from being necessarily
socially qualified, a must not be socially qualified either.

We point out that the special case i = 1 can be simplified by calculating F1 := {b}∪ {a ∈
N \{b} : ϕ(a,b) = 1∨ [ϕ(a,b) = ∗ ∧ |1(a,ϕ)|+ | ∗ (a,ϕ)|= k]}. Equivalently speaking, in
order to prevent b from being socially qualified for at least one k-extension φ , we must hinder
all these individuals a 6= b from being socially qualified who definitely qualify b or for whom
ϕ(a,b) = ∗ holds, but the ∗ necessarily turns into a 1, in order that φ is a feasible k-extension
of ϕ .

• We repeat the previous step until Fi = Fi+1 =: F 8 for some i ∈ N0. In this case, we stop and
set further Hi =: H.

Given that the starting set KC
0 (φ ,N) is non-empty for every k-extension φ of ϕ , we claim that

I(b) is a YES instance if and only if H 6= /0 (and for our overall instance, we thus reject as b is
socially disqualified for some k-extension φ , being isolated from the starting set individuals and all
socially qualified individuals given φ ).

(⇒): First assume for contradiction that b is socially disqualified for some k-extension and
H = /0. As H is empty, we have F = N. According to our assumptions from above, the starting set is
non-empty for each k-extension φ , i.e., for each φ there is at least one individual ā∈KC

0 (φ ,N). Note
that all individuals are in F , including the ones belonging to the starting set KC

0 (φ ,N) for at least
one k-extension φ . Thus, by definition of the sequence (Fi)i∈N0 , for each φ and each individual ā
belonging to the starting set of φ there exist (1) a sequence of nonnegative integers i1, . . . , ir (where
r ∈ N) with i1 > i2 > .. . > ir = 0, (2) r pairwise different individuals aih (1 ≤ h ≤ r), (3) it holds
ai1 = ā, (4) air = b, and (5) φ(aih ,aih+1) = 1 (and ϕ(aih ,aih+1) ∈ {∗,1}) for each h, 1 ≤ h ≤ r− 1.
Note that ā = b is possible (which implies r = 1, but then b is trivially socially qualified and we
obtain a contradiction). Observe that, by definition of the sets Fi, i ∈ N0, such a sequence exists
for every φ and every starting set individual in φ . Otherwise, this starting set individual would

7One can illustrate the sets Fi as different hierarchies of forbidden sets. As soon as an individual is part of some Fi, it
is necessarily attracted by some Fj with smaller index j (if any) until it finally reaches F0 = {b}. Thus, each individual in
some Fi is connected with b via a sequence of individuals each of whom qualifying their respective successors.

8We point out that we traditionally denote a flow with F . Since there is no way of confusion in this context, we make
an exception and henceforth define F as the set of ”forbidden individuals”.
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not belong to F . It follows that b is necessarily socially qualified which is a contradiction to our
assumption.

(⇐): Suppose that H 6= /0. We construct a k-extension φ of ϕ , for which b is socially disqual-
ified, as follows. First of all, it holds ϕ(a,a′) = φ(a,a′) whenever ϕ(a,a′) ∈ {0,1} (a,a′ ∈ N).
The question arises how the other, unsure qualifications have to be set in order to obtain such a
k-extension φ . Let a ∈ H. According to the definition of the sets Fi, i ∈ N0, a does not qualify any
individual in F (otherwise, a ∈ F , by definition). Moreover, a definitely qualifies |1(a,ϕ)| individu-
als in H and it is possible that a qualifies k−|1(a,ϕ)| individuals a′ ∈H with a′ ∈ ∗(a,ϕ) in a given
k-extension (otherwise, a would belong to F due to the construction of the sets Fi). Notice that a
may qualify k individuals in H (including himself) which implies that |H| ≥ k. Now consider other
individuals in H. For these individuals, we may argue analogously. Accordingly, we construct φ

by letting each individual a in H qualify arbitrary k individuals in H such that exactly k−|1(a,ϕ)|
individuals in ∗(a,ϕ)∩H are qualified by a and the remaining individuals in ∗(a,ϕ)∩H (if any)
are disqualified. Moreover a disqualifies all individuals in F .

Observe that no matter how we extend the opinions of the individuals in F (such that each
individual in F qualifies k individuals as well), no individual in F is in the starting set and no
individual in F is socially qualified (as each individual in H disqualifies all individuals in F). Hence,
the pivotal individual b, belonging to F , is socially disqualified in φ .

As a combined result, if H 6= /0, then H has at least cardinality k and at least one individual
in the starting set for some k-extension φ of ϕ belongs to H. Note that we did not make use of
the condition that an individual in H belongs to the starting set for at least one k-extension, but
we implicitly conclude this by assuming that H 6= /0 and that the starting set is non-empty for all
k-extensions. Since no individual in F belongs to the starting set in our constructed k-extension, we
know that an individual in H must belong to KC

0 (φ ,N).
We point out that not necessarily all individuals in H are socially qualified for a given k-

extension φ , but for at least one k-extension φ the set H contains all socially qualified individuals.
Possibly, an individual a ∈ H can be isolated from all other individuals in H and F in a sense that
no other individual in H qualifies a in our constructed k-extension φ , but a does not qualify any
individual in F either (as otherwise a would belong to F), but a qualifies other individuals in H (at
least the individual(s) in the starting set of φ ). One can say that our algorithm computes a smallest
possible set F .

Observe that we require at most n iterations to compute F (in the worst-case, in each iteration
exactly one individual joins the current iterated set Fi. In each step, it requires O(n2) time to check
whether an individual in Hi necessarily qualifies an individual in Fi−1. Hence, the computation of
the sets F and H requires O(n3) time, for a given pivotal individual b ∈ S.

For the f LSR rule, our proof works similarly. Analogously to the f CSR rule, we compute the sets
Fi and Hi. We claim that b is socially disqualified for at least one k-extension φ of ϕ if and only if
there is a k-extension φ of ϕ such that each individual in F disqualifies himself.

First assume for contradiction that b is socially disqualified, but for every k-extension φ there is
an individual in F ∩KL

0 (φ ,N). In this case, b is necessarily socially qualified due to the definition of
the sequence (Fi)i∈N0 . This holds because then b is necessarily connected with an individual a0 ∈ F
in the starting set (for at least one φ ) by a chain of individuals such that each one in this chain
qualifies his respective successor, the first individual in this sequence is a0, and the last individual is
b (cf. the reasoning for the consensus-start respecting rule). Therefore, we obtain a contradiction.
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Conversely, assume that there is a k-extension φ such that F ∩KL
0 (φ ,N) = /0. If H∩KL

0 (φ ,N) =
/0, we are done as KL

0 (φ ,N) = KL
1 (φ ,N) = KL

2 (φ ,N) = . . . = f LSR(φ ,N) = /0. If there is some a0 ∈
H ∩KL

0 (φ ,N), we know that a0 can qualify k individuals in H for at least one k-extension. Hence,
we construct φ by making a0 qualify himself and k−1 other individuals in H. This is possible since
otherwise a0 would belong to F by definition. We argue analogously for all other individuals in
H. Each of these individuals can qualify only individuals in H, according to the definition of the
sequence (Fi)i∈N0 . It follows analogously to the f CSR rule that no individual in F , including b, is
socially qualified in φ as it is possible that all of them disqualify themselves and each individual in
H disqualifies all individuals in F according to φ .

In summary, we only have to compute the sets Fi and Hi, i ∈ N0, and check whether for each
individual a ∈ F it holds either ϕ(a,a) = 0 or both ϕ(a,a) = ∗ and |1(a,ϕ)|+ | ∗ (a,ϕ)|> k (in this
case, we accept for our subinstance I(b), b ∈ S). These conditions can be checked in O(n2) time.

In contrast to the f CSR rule, the question of whether an individual is in the starting set is inde-
pendent on the other individuals’ opinions about this individual.

As a combined result, since there are at most O(n) individuals b ∈ S to check and each subin-
stance can be checked in O(n3) time, it follows that the overall problem is in O(n4) for all values k
and both procedural rules. q

The following example illustrates how the algorithm works.

Example 8.13. Let f ∈ { f CSR, f LSR}, k = 2, n = 6, N = {a1, . . . ,a6}, and the profile ϕ be defined
as follows:

ϕ =



1 ∗ 0 0 ∗ 0
1 ∗ 0 ∗ ∗ 0
∗ 0 0 0 1 0
1 0 ∗ 0 ∗ 0
1 0 0 ∗ ∗ 0
1 ∗ ∗ 0 0 0

 .

Let further S = {a5}.

For both procedural rules, our algorithm computes the following ”forbidden sets”: F0 = {a5},
F1 = {a3,a5} (as a3 qualifies a5, all other individuals do not necessarily qualify a5), F2 = {a3,a4,a5}
(for each 2-extension, a4 qualifies either a3 or a5 and hence a4 must not be socially qualified
either; no other individual necessarily qualifies at least one of the individuals a3 and a5), and
F3 = {a3,a4,a5} = F2 =: F (since neither a1, a2, nor a6 necessarily qualifies any individual in
{a3,a4,a5}). Setting H := N \F , we obtain H = {a1,a2,a6}. As H is non-empty, we construct
the following 2-extension according to which a5 is socially disqualified, given the f CSR rule (the
replaced ∗-entries are marked red):

φ =



1 1 0 0 0 0
1 1 0 0 0 0
1 0 0 0 1 0
1 0 1 0 0 0
1 0 0 1 0 0
1 1 0 0 0 0

 .
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Observe that, given the consensus-start respecting rule, a6 ∈ H is not socially qualified for the
constructed 2-extension according to which b is socially disqualified. a1 is necessarily in the starting
set. Remind that one assumption to compute the sequence (Fi)i∈N0 at all is that for each 2-extension,
at least one individual belongs to the starting set.

Since a5 is socially disqualified according to φ , we accept for our subinstance I(a5) and reject
for our instance of f CSR-2-NQI. For the liberal-start respecting rule, b is socially disqualified as
well for our k-extension φ since a3, a4, and a5 disqualify themselves and thus KL

0 (φ ,N)∩F = /0
holds.

The following example provides an instance where an individual in F is in the starting set
for some k-extensions, but yet the individual in S is socially disqualified for some (different) k-
extension.

Example 8.14. Let f ∈ { f LSR, f CSR}, n = 5, N = {a1, . . . ,a5}, S = {a5}, k = 3, and ϕ be defined
as follows:

ϕ =


1 ∗ 1 ∗ 0
1 1 ∗ 0 1
1 ∗ 1 ∗ 0
1 ∗ ∗ 1 0
1 ∗ ∗ ∗ ∗

 .

Under both procedural rules, we compute F0 = {a5}, F1 = {a2,a5}, and F2 = F1 = F . Hence,
we obtain H = N \F = {a1,a3,a4}. For the f CSR rule, we already know—due to H 6= /0—that a5 is
socially disqualified for at least one 3-extension. We obtain the following 3-extension:

φ =


1 0 1 1 0
1 1 0 0 1
1 0 1 1 0
1 0 1 1 0
1 1 0 1 0

 .

The new entries are marked in red. Observe that individuals in F may arbitrarily assign their
unsure qualifications (as they remain ”among themselves”), while individuals in H must not qualify
individuals in F . Observe that precisely the individuals in H are socially qualified. Notice that,
although a2 ∈ F , there are 3-extensions with socially qualified a2. This is no contradiction to our
algorithm, for we only require that at least one individual, belonging to the starting set for at least
one 3-extension, must be in H.

For the f LSR rule, we reject for our subinstance (and therefore accept for our NQI instance) as
a2 ∈ F definitely qualifies himself. When regarding the same example with ϕ(a2,a2) = ∗ instead of
ϕ(a2,a2) = 1, we reset:

ϕ =


1 ∗ 1 ∗ 0
1 0 ∗ 0 1
1 ∗ 1 ∗ 0
1 ∗ ∗ 1 0
1 ∗ ∗ ∗ 0

 .
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as an intermediate step, in order that the individuals in F are not in the starting set of the 3-
extension with socially disqualified a5 we like to construct (the changes in the profile compared to
the original partial profile are marked red). Analogously to the f CSR rule, we compute a profile φ

with socially disqualified a5 given the f LSR rule as follows:

φ =


1 0 1 1 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 0
1 1 0 1 0

 .

Under φ , all individuals in H are socially qualified and all individuals in F are socially disqual-
ified according to the f LSR rule. Hence, we reject in total.

8.3 Conclusion

We have studied PQI and NQI under the framework of group identification. In these problems, we
are given a partial profile and a subset S of individuals. The question is whether the individuals in S
are socially qualified in at least one extension of the given partial profile (PQI) or in every extension
of the given partial profile (NQI). In addition, we have considered k-PQI and k-NQI which differ
from PQI and NQI in that in the searched extensions we restrict each individual to qualify exactly k
individuals.

We have studied the complexity of these problems for the prevalent consent rules and two proce-
dural rules f LSR and f CSR. More precisely, we have derived both polynomial-time algorithms as well
as NP-hardness results. In general, our results reveal that most of these problems are polynomial-
time solvable. Moreover, for consent rules, the complexity of our polynomial-time algorithms in-
creases slightly as the consent quotes increase. Furthermore, the consent quotes s and t play different
roles in the complexity of these problems. For instance, for consent rules f (s,t) the problem k-PQI
can be solved in O(n2) time if s = 1 and t ≤ 2. For t = 1 and s≥ 2, the running time of the algorithm
for k-PQI increases to O(n3). When min(s, t) ≥ 2, the running time of our algorithm for k-PQI in-
creases to O(n(k+t+2)), leaving the algorithm to be polynomial-time decidable only when k+ t is a
constant. By contrast, for k-NQI the running time of our algorithms is O(n2) for all consent quotes.
We have obtained a complexity dichotomy result for k-PQI for f LSR and f CSR with respect to the
values of k. In particular, if k = 1, k-PQI for f CSR and f LSR can be solved in O(n2) time; otherwise,
it becomes NP-hard. For k-NQI, we have achieved O(n2)-time algorithms for f LSR and f CSR for
k = 1, whereas the problem is in O(n4) for k≥ 2 for both procedural rules. The intuition that k-PQI
and k-NQI for consent rules are generally easy to solve is that whether an individual a is socially
qualified can be independently determined by the number of individuals qualifying or disqualifying
a. However, in f CSR and f LSR, if an individual a is socially qualified does not depend only on who
qualify a, but also on the connectivity between the individuals qualifying a and the initially socially
qualified individuals. Between k-PQI and k-NQI, our results reveal that k-NQI is easier to solve
(cf. the results in Chapters 3 and 4 for necessary and possible winner both under partial information
and for lot-based voting rules; this is in contrast to necessary bribery which is harder than possible
bribery for several problems). The reason is that in k-NQI we need only to determine if there is just
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consent rule f (s,t)
f CSR f LSR

s+ t = 2 s+ t = 3 ∨ t = 1 s+ t ≥ 4 ∧ t > 1

k-PQI O(n2)
s = 1 : O(n2)

O(n(k+t+2))
k ≥ 2 : NPC k ≥ 2 : NPC

t = 1 : O(n3) k = 1 : O(n2) k = 1 : O(n2)

k-NQI O(n2) O(n2) O(n2)
k = 1: O(n2) k = 1: O(n2)

k ≥ 2 : O(n4) k ≥ 2 : O(n4)

Table 8.1: A summary of our results for k-PQI and k-NQI. n denotes the number of individuals.
NPC stands for NP-complete.

one individual a ∈ S and one k-extension of ϕ with respect to which a is not socially qualified. We
refer to Table 8.1 for a summary of our results.

There remain several open questions. For example, investigating the NP-complete problems
studied in this chapter from the parameterized complexity point of view would be an interesting
research topic. A natural parameter would be |S|. As pointed out above, k-PQI for consent rules f (s,t)

is fixed-parameter tractable (FPT) with respect to |S|. In fact, we would have a single-exponential
time algorithm for the problem with respect to |S| (see the discussion after Theorem 8.7). However,
whether k-PQI for the two procedural rules f CSR and f LSR is FPT with respect to |S|, remains open.

As we have already done in Chapters 3 and 4, one could also study a k-Veto variant in group
identification, that is, a setting where each individual disqualifies exactly k individuals.

We further refer to other kinds of incomplete profiles for future research. So individuals might
additionally declare partial orders over all individuals and each individual qualified by an individual
a must be preferred to all individuals disqualified by a. Or each individual specifies a complete or
partial order over N, and for each individual the number of qualifications assigned by this individual
is unknown or lies in a certain range. Moreover, it seems to be an appealing idea to regard partial
profiles in bribery or control as we have done in Chapter 3 in the context of voting.

Besides, one could define and regard other social rules. One could also consider more general
profiles ϕ in a sense that each individual has more than two options to evaluate the other individuals.
So individuals might qualify or disqualify other individuals, or be just indifferent towards another
individual. Other, yet more general profiles are thinkable as well.

Going beyond studying the complexity, studying group identification under partial information
from the axiomatic perspective (cf. the related work about group identification) appears to be a
fascinating direction for future research.
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[65] G. Erdélyi, E. Hemaspaandra, and L. Hemaspaandra. More natural models of electoral con-
trol by partition. In Proceedings of the 4th International Conference on Algorithmic Decision
Theory, pages 396–413. Springer, 2015.
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Appendix

Transformation Algorithm to obtain a R3DM instance

SIMPLIFICATION RULE FOR (≤ 3)-3DM

Given: An instance (X ,Y,Z,E) of (≤ 3)-3DM with |X |= |Y |= |Z|= n, |E|= m, and l(a)≤ 3
for each a ∈ X ∪Y ∪Z, where l(a) denotes the number of triples containing a ∈ X ∪Y ∪
Z. Let further Ci := {a ∈ X ∪Y ∪Z : l(a) = i} (0≤ i≤ 3).

Goal: Transform (if possible) our instance into an instance (X ′,Y ′,Z′,E ′) of R3DM, i.e., it
holds l(a) ∈ {2,3} for each a ∈ X ′∪Y ′∪Z′.

Let E ′ be a collection of triples which are fixed while running the simplification algorithm
defined in the following. Our algorithm is based on the observation that in case an element
a ∈ X ∪Y ∪Z occurs in exactly one triple, this triple must belong to a three-dimensional matching,
provided that one exists. The initially empty matching E ′ gets larger and larger until we (1) find
a three-dimensional matching, (2) notice that a matching is impossible, or (3) obtain a smaller
instance of our original problem for which every element occurs in two or three triples. Our
simplication algorithm does as follows:

Initialization: E ′ = /0, C0, C1, C2, C3, and E (the latter five sets correspond to the original
instance). Go to step 1.

1. If C0 6= /0, output NO as a matching is impossible. Our algorithm halts. Otherwise, go to step
2.

2. If C0 = /0, C1 6= /0, select an arbitrary a ∈C1. Fix e = {xe,ye,ze} with e 3 a in the matching,
that is, E ′ = E ′∪{e} (observe that a = xe or a = ye or a = ze holds). 1 As a feasible matching
must not contain any further triple with elements in e, delete all triples e′ with e∩e′ 6= /0 from
E. Update our instance as follows:

E = E \{e′ ∈ E : e′∩ e 6= /0}, X ∪Y ∪Z = (X ∪Y ∪Z)\{xe,ye,ze}.

1Although this is not entirely correct, we regard e as a three-element subset of X ∪Y ∪Z including one element from
X , Y , and Z each.
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Observe that all remaining elements are not yet assigned to any triple in the current matching.
Compute Ci for our residual instance. If |C0 ∪C1| > 0, go back to step 1. Otherwise, go to
step 3.

3. If C0 =C1 = /0 and C2∪C3 6= /0, each element belongs either to C2 or C3, and we arrive at an
instance of R3DM. Our algorithm halts in this case. Otherwise, go to step 4.

4. If |E ′| = n (and thus C0 = C1 = C2 = C3 = /0), our matching is, by construction, a three-
dimensional matching (as our construction ensures that no element occurs in two or more
triples in E ′, and |E ′|= n is thus only possible when all elements occur in exactly one triple).
Hence, our algorithm accepts and halts.

Observe that our algorithm either accepts our original instance, rejects this instance, or reduces
the original (≤ 3)-3DM instance to a R3DM instance. Note that it is possible that our initial
instance is already a R3DM-instance. In this case, our algorithm immediately jumps to step 3
and comes to a halt without accepting or rejecting our problem. Interestingly, this algorithm can
be modeled via a DTM that halts for every input, but for some inputs (namely, when we actually
compute a R3DM-instance) it neither accepts nor rejects our original (≤ 3)-3DM instance.

We point out that this algorithm is probably existing in literature, but we have not found it. Thus,
we have provided this algorithm just in case.
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Proof Sketch of Theorem 3.8

Claim: k-APPROVAL-X -POSSIBLE WINNER and k-VETO-X -POSSIBLE WINNER are in P for each
k ∈ N and each model X ∈ {Gaps,FP,1Gap,BTO,TTO,CEV}.

Proof Sketch. Let (C,V ) be an election with m > k candidates in candidate set C =
{c1, . . . ,cm−1,c}, n voters in voter set V = {v1, . . . ,vn} (w.l.o.g. n ∈ N) all according to the same
model X ∈ {FP,Gaps} (all other models are special cases of both of them), and a designated candi-
date c ∈C.

First regard k-Approval. As a first step, we determine in each vote v the candidates definitely
approved (Cv

A), possibly but not definitely approved (Cv
?), and definitely disapproved by v (Cv

D). To
do so, we apply Theorem 3.5. If c ∈ Cv

? , we reset Cv
A = Cv

A ∪{c} and Cv
? = Cv

? \ {c}. Possibly, Cv
?

becomes singleton after that and the vote artificially becomes complete, by fixing c on an approval
position and the remaining candidate in Cv

? on a disapproval position.
After this preprocessing, we compute the potential score pscore(c) embracing all definite and

unsure approvals for c. Moreover, score(c j) denotes the definite approval score of c j (1 ≤ j ≤
m−1). If score(c j)> pscore(c) for some c j, we immediately reject as c j beats c for every extension.
Otherwise, we check whether c is a winner for at least one completion by trying to distribute the
unsure approvals to non-distinguished candidates in a way that no other candidate has more points
than c. Let us assume that voter vi, 1 ≤ i ≤ n, assigns αi unsure approvals to non-distinguished
candidates (unsure approvals for c are already fixed as approvals) which in turn means that k−αi

approvals assigned by vi are already fixed. We define the following b-edge matching problem for the
bipartite and simple graph G, defined by the vertices V and edges E defined next. We let V =V ∪
(C\{c}). The edges in E are defined as follows. There is an edge {vi,c j} if and only if c j is possibly
but not definitely approved by vi (1 ≤ i ≤ n, 1 ≤ j ≤ m− 1). The upper capacity constraints are
b(vi) = αi (this number of unsure approvals have to be assigned) and b(c j) = pscore(c)− score(c j)
(c j may still receive this number of uncertain approvals; if c j gets more unsure approvals, c is beaten
by c j). Note that b(c j)≥ 0 due to our assumption.

We claim that a maximum matching with ∑
n
i=1 αi edges exists if and only if c is a possible

winner.
In case this matching exists, we extend our partial profile by letting each voter vi approve of c j

if the edge {vi,c j} is in the matching. All definite approvals are already fixed. Due to the size of
the matching, all unsure approvals are considered. Since all constraints b(c j) are satisfied, no c j has
more points than c.

Conversely, in case the maximum matching has smaller size, selecting exactly ∑
n
i=1 αi edges

(one-to-one corresponding to the unsure approvals assigned by the voters in V ) implies that some
c j beats c (otherwise, the matching would not be maximum). Hence, c cannot be a possible winner.
Note that a feasible matching always exists as the empty matching is always feasible given our
assumption pscore(c)≥ score(c j) for each c j, 1≤ j ≤ m−1.

For k-Veto, we may apply the same algorithm by regarding (m− k)-Approval. Note that the
reduction to the matching remains polynomial.

Observe that this proof is a mere adaption of the proof by Baumeister et al. [18]. Both proofs
are modeled as assignment problems where a certain number of unknown approval positions are
assigned to candidates. In contrast to this proof sketch, their proof works with flow maximization.
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Proof Sketch of Theorem 3.11

Let C̃ ⊆C denote the subset completely ranked by each voter according to the 1TOS structure.

Claim: 3-VETO-1TOS-POSSIBLE WINNER (under the co-winner model) is in P under the case
where c ∈ C̃ and C \C̃ = {p,q}.

Proof Sketch. We are given an election (C,V ) with m candidates in candidate set C, n voters in
voter set V , and a designated candidate c ∈C. Each voter completely ranks the candidates in C̃⊆C,
where c ∈ C̃ and C \ C̃ = {p,q}, p 6= q. W.l.o.g., we let n > 0. Moreover, we restrict ourselves to
|C| ≥ 5. Otherwise, our voting rule is either the constant scoring rule (when |C| ≤ 3) or the Plurality
rule (for |C|= 4) for which our problem is easy even for the more general model PC [21].

Notice that last positions in subelection (C̃,V ) correspond to definite vetoes, while each voter
possibly, but not definitely vetoes p, q, and his second and third least preferred candidates in C̃.
All other candidates are surely not vetoed by the voter. Finally, if a voter vetoes his third to least
preferred candidate in C̃ in a given extension, the second to least preferred candidate in C̃ must be
vetoed, too (observe that the voters’ least preferred C̃ candidates are definitely vetoed).

Keeping this in mind, we transform our problem to a generalized b-edge cover problem similar
to the one in the proof of Theorem 3.34. Before we do so, we point out that c has v1(c) definite
vetoes (where v1(c′) denotes the number voters ranking c′ ∈ C̃ last among the candidates in C̃;
w.l.o.g., unsure vetoes do not count for c). Then p and q must have at least 2v1(c) vetoes in total.
Suppose that at least α2 voters veto both p and q, while at least α1 voters veto either p or q for a
given extension. We may restrict ourselves to (α1,α2) ∈ N2

0 satisfying 2α2 +α1 = 2v1(c). Observe
that α1 is even. If p and q have exactly 2v1(c) vetoes altogether, the partial votes can be extended
in a way that both candidates have exactly v1(c) vetoes. We call (α1,α2) a guess. Based on such a
guess, we define the following generalized b-edge cover problem:

Let G = (V ,E ) be an undirected graph with vertices V = C̃
·
∪ K

·
∪ {∗}, where K is a set of

auxiliary vertices. The edges are according to Construction I (defined in the proof of Theorem 3.34)
and are defined as follows:

• A voter v voting C̃ \{c′,c′′,c′′′} �v c′′′ �v c′′ �v c′ yields two vertices kv
1 and kv

2 in K and the
four edges {c′′,kv

1}, {kv
1,k

v
2}, {kv

2,c
′′′}, and {kv

2,∗}.

The capacities are bl(c) = bu(c) = 0 (unsure vetoes never count for c), bl(c′) = max(0,v1(c)−
v1(c′)), c′ ∈ C̃ \{c} (this capacity displays the additional number of unsure vetoes that must count
for c′ in order that c′ has at least as many vetoes as c), bl(∗) = α1, and bl(kv

h) = bu(kv
h) = 1 (v ∈V ,

h = 1,2). All remaining upper capacities are unlimited.
Observe that, provided that one exists 2, a cover yields either two edges or one edge for each

voter (see below). Hence, any feasible cover has a cardinality between n and 2n. Moreover, at least
α2 voters must yield one edge {kv

1,k
v
2} as only these votes assign two vetoes for p and q. 3

2The largest cover that might exist has 2n edges and no voter yields an edge {kv
1,k

v
2} in the cover. In case the largest

possible cover is infeasible, for each extension there is some c′ ∈ C̃ \{c} vetoed by fewer than v1(c) voters.
3Possibly, there are considerably more voters vetoing either p or q (that is, the capacity constraint bl(∗) is ”overful-

filled” and even with α2−1 voters vetoing both p and q in a given extension, p and q have at least 2v1(c) altogether. This
case, however, is also captured by a cover based on another guess (α1,α2).
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Similarly to the arguing the proof of Theorem 3.34 and 3.44, it follows that c is a possible
winner if and only if there is a guess (α1,α2) and a cover with at most 2n−α2 edges according
to this guess. Given v, the following edges may occur in a cover (each other possibility leads to a
contradiction since kv

1 and kv
2 each occur exactly once in any feasible cover):

1. If {kv
1,k

v
2} is in the cover, voter v vetoes p and q for our extension with co-winner c.

2. If {kv
1,c
′′} and {kv

2,c
′′′} belong to the cover, voter v vetoes c′′ and c′′′.

3. If {kv
1,c
′′} and {kv

2,∗} are in the cover, v vetoes c′′ and either p or q.

Note that v definitely vetoes his least preferred candidate in C̃, regardless of how we distribute
the other two vetoes according to one of the three listed possibilities.

In case a cover with at most 2n−α2 edges exists, there are at least α2 voters v yielding one edge
in the cover and thus p and q have enough vetoes altogether, additionally taking into account that at
least bl(∗) edges in the cover are incident to ∗.
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Overview of all 4-combinations of approved candidates in Example 3.9,
part (c)

Recall that C = {a, . . . ,g}, F =4-Approval, X =PC, and a voter v specifies the pairwise compar-
isons Πv = {(a,b),(a,c),(a,d),(b, f ),(c,e),(c,g),(d,g)}.

Note that it suffices to focus on all twenty 4-combinations with a being approved. There exist 15
other 4-combinations without a, but these ones do not correspond to our four approved candidates
for any extension. The table below gives an overview of all 4-combinations of approved candidates.
Notice that an extension of v may have exactly the following quadruples of approved candidates
(a,b,c,d), (a,b,c,e), (a,b,c, f ), (a,b,d, f ), (a,c,d,e), and (a,c,d,g). Observe that an approval
for g implies an approval for c, d, and a. An approval for f implicates b and a being approved.
Likewise, an approval for e implies that c and a are approved. This relatively simple example gives
an idea of how complex these interdependencies might become for growing k or m.

Approved Candidates feasible? Approved Candidates feasible?

(a,b,c,d) X (a,c,d,e) X

(a,b,c,e) X (a,c,d, f ) � (b�v f )

(a,b,c, f ) X (a,c,d,g) X

(a,b,c,g) � (d �v g) (a,c,e, f ) � (b�v f )

(a,b,d,e) � (c�v e) (a,c,e,g) � (d �v g)

(a,b,d, f ) X (a,c, f ,g) � (b�v f )

(a,b,d,g) � (c�v e) (a,d,e, f ) � (c�v e)

(a,b,e, f ) � (c�v e) (a,d,e,g) � (c�v e)

(a,b,e,g) � (c�v e) (a,d, f ,g) � (b�v f )

(a,b, f ,g) � (d �v g) (a,e, f ,g) � (b�v f )

Table A.1: Overview of all feasible 4-combinations of approved candidates for Example 3.9. Key:
Xmeans that the approval combination is feasible, � means that the considered combination inheres
at least one contradiction. One such contradiction is given in brackets behind the lightning symbol.
For instance, the combination (a,b,c,g) hurts the condition that g’s approval implies an approval
for d since v prefers d over g. According to this, each feasible approval combination satisfies the
conditions a�v c′ for each c′ ∈C \{a}, b�v f , c�v e, c�v g, and d �v g.
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Proof of Lemma 3.24

Lemma 3.24: Let (δ (c1), . . . ,δ (cm−1)) ∈ Nm−1
0 (one can interpret δ (c j) as the additional number

of vetoes c j still requires from the bribed voters). Then the following holds under the assumption
k < m:

` voters can feasibly assign δ (c j) vetoes to c j (for each j = 1, . . . ,m−1) if and only if it holds

δ (c j)≤ ` (1≤ j ≤ m−1) and
m−1

∑
j=1

δ (c j)≤ k`.

Proof. (⇒): Suppose for contradiction that δ (c j)> ` for some j or ∑
m−1
j=1 δ (c j)> k`. In the first

case, some c j requires more than ` additional vetoes. This means that one bribed voter vetoes c j at
least twice which is a contradiction. Suppose for contradiction that the second inequality is hurt, but
w.l.o.g. the first inequality holds for each c j (if the first inequality is hurt as well, we arrive again
at the first case). Since ` voters assign k` vetoes in total, the total demand of additional vetoes for
non-distinguished candidates exceeds the number of vetoes that bribed voters can assign to them.
Again, there is a contradiction.

(⇐): Assume that both conditions hold. Since the total demand of additional vetoes can be
covered, we merely have to construct an algorithm that assigns the required vetoes to each c j and
none of them is vetoed at least twice by the same voter. For our purposes, we let A be a matrix with
` rows and k columns. We associate rows with voters and columns with vetoes. E.g., air denotes
the rth veto assigned by the ith voter. One could interpret the first and last column as the best and
worst veto position in each vote, respectively. Let us first illustrate the basic idea of our algorithm.
It begins in field a11 and writes c1 onto the first δ (c1) fields in the first column (that is, the first δ (c1)
voters assign their first=best veto position to c1). As many other voters as possible place c2 onto
their best veto position. If δ (c2)> `−δ (c1), the first δ (c2)− (`−δ (c1)) voters assign their second
best veto position to c2, and so on. By this, the algorithm runs from the upper left corner of the
matrix towards the lower right corner; more precisely, it runs from top to bottom in each column,
then moves to the top of the next column on the right, until the first ∑

m−1
j=1 δ (c j) veto positions of the

matrix are filled.
Formally, our algorithm is defined as follows. Let i be the row index, r the column index, and j

the candidate index. Initially, we have i = 0, j = 1, and r = 1. While j ≤ m−1, do the following:

1. If i+δ (c j)≤ `, reset alr = c j for each i+1≤ l ≤ i+δ (c j). Update i = i+δ (c j), j = j+1,
r remains unchanged. Repeat step 1. Otherwise, go to step 2.

2. If i+δ (c j)>`, reset alr = c j for each i+1≤ l≤ ` and al,r+1 = c j for each 1≤ l≤ δ (c j)+ i−`
(it comes to a column break). Update r = r+1, i = δ (c j)+ i− `, j = j+1. Go back to step
one.

As soon as j = m holds after increasing j by one, our algorithm halts (either in 1. or 2.).
For j = m, greedily fill the open positions in A (if any). In each row i, there is some column ρ

such that all entries aiρ , . . . ,aik are empty and all entries ai1, . . . ,ai,ρ−1 are filled. W.l.o.g. fill these
open positions step by step with the presently lexicographically smallest c j (according to the index)
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not yet being vetoed by the ith voter. This is possible as there are m− 1 ≥ k non-distinguished
candidates according to our assumptions (for k = m, all candidates including c would be vetoed).

Observe that our algorithm fills ∑
m−1
j=1 δ (c j)≤ `k positions after scanning the veto demands for

m− 1 non-distinguished candidates. It remains to show that no candidate is vetoed at least twice
by the same voter. If all c j-vetoes fit in the same column, this trivially holds. Otherwise, there is
some l ∈ {2, . . . , `} and some column index r ∈ {1, . . . ,k− 1} such that c j is vetoed by the voters
l, . . . , ` in column r and by the voters 1, . . . ,δ (c j)−(`− l+1) in column r+1. Or, formally, it holds
alr = al+1,r = . . .= a`r = c j and a1,r+1 = . . . ,aδ (c j)−`+l−1,r+1 = c j. In case some voters assigned two
vetoes to c j, at least voter l would veto c j twice. Then, however, it would hold δ (c j)− `+ l−1≥ l
which in turn is equivalent to δ (c j) ≥ `+ 1. This is impossible due to δ (c j) ≤ ` according to our
assumptions. Hence, we obtain a contradiction. q
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Detailed Calculations for Example 3.35

Example 3.35:

(a) Let (C,V ) be an election with candidate set C = {c,c′,c′′, p}, voter set V = {v1, . . . ,v4},
distinguished candidate c, and bribery limit `= 1. Each vote is partial according to the 1TOS
model and C̃ = {c,c′,c′′} denotes the totally ordered subset. Finally, the voting rule is F = 2-
Approval. The voters vote as follows:

v1 : c′ � c� c′′, v2 : c′′ � c′ � c, v3,v4 : c′ � c′′ � c.

(b) Let (C,V ) be an election with candidate set C = {c,c′,c′′,c′′′, p1, p2}, voter set V =
{v1,v2,v3}, distinguished candidate c, and bribery limit `= 1. Each vote is partial according
to the 1TOS model and C̃ = {c,c′,c′′,c′′′} denotes the totally ordered subset. Moreover, the
voting rule is F = 2-Approval. The voters’ votes are as follows (we restrict the rankings to
the voters’ two favorite candidates in C̃):

v1,v2 : c′ � c′′, v3 : c′ � c′′′.

Part (a) yields a graph G = (V ,E ) defined as follows. The vertices are given by V =
{c′,c′′, p,b,v1}∪{kvi

h : 1≤ h≤ 2, 2≤ i≤ 4}. The edge set is given by E =: E1∪E2∪E3 which are
defined as follows:

• E1 := {{v1,c′}} (i.e., the edge corresponding to the voter potentially approving of c),

• E2 := {{c′′,kv2
1 },{k

v2
2 ,c′},{kv2

2 , p},{c′,kv3
1 },{k

v3
2 ,c′′},{kv3

2 , p},{c′,kv4
1 },{k

v4
2 ,c′′},{kv4

2 , p}} ∪
{{kvi

1 ,k
vi
2 } : 2≤ i≤ 4} (i.e., the edges according to voters disapproving of c), and

• E3 := {{c′,b},{c′′,b},{p,b}} (each bribed voter assigns one approval to one candidate other
than c after the bribery).

Finally, we obtain the following capacities: bu(c′)= bu(c′′)= bu(p)= pscore(c)+`= 1+1= 2,
bl(b) = bu(b) = 1, bl(v1) = bu(v1) = 1, and bl(k

vi
h ) = bu(k

vi
h ) = 1 (1≤ h≤ 2, 2≤ i≤ 4). All other

lower capacities, not listed here, are zero.
We accept if and only if the capacity of the maximum matching is at least 2n−pscore(c) = 8−

1 = 7. By setting M = {{v1,c′},{c′′,kv2
1 },{k

v2
2 , p},{c′,kv3

1 },{k
v3
2 , p},{kv4

1 ,kv4
2 },{b,c′′}}, we obtain

a feasible matching of desired size. According to the matching, we obtain the following bribery
strategy and extension of the remaining votes:

• Voter v1 approves of c and c′.

• v2 approves of c′′ and p.

• v3 approves of c′ and p.

• v4 is bribed and approves of c and c′′ after the bribery (due to the edge {b,c′′}).
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In (b), we define a graph G = (V ,E ) with vertices V = {c′,c′′,c′′′,∗,b}∪{kvi
h : 1≤ h≤ 2, 1≤

i≤ 3} and edges E =: E2∪E3 which are defined as follows:

• E2 := {{c′,kv1
1 },{k

v1
2 ,c′′},{kv1

2 ,∗},{c′,kv2
1 },{k

v2
2 ,c′′},{kv2

2 ,∗},{c′,kv3
1 },{k

v3
2 ,c′′′},{kv3

2 ,∗} ∪
{{kvi

1 ,k
vi
2 } : 1 ≤ i ≤ 3}} (edges according to voters disapproving of c in the initial election)

and

• E3 := {{b,c′},{b,c′′},{b,c′′′},{b,∗}} (each bribed voter assigns one approval to some can-
didate other than c after the bribery).

We have E1 = /0 as no voter approves of c before the bribery. Observe that pscore(c) = 0 and
pscore(C,V̄ )(c) = 1. Hence, we obtain the capacities bu(c′) = bu(c′′) = bu(c′′′) = 1, bl(b) = bu(b) =
bl(k

vi
h ) = bu(k

vi
h ) = 1 (1≤ h≤ 2, 1≤ i≤ 3), and bu(∗) = α1. All lower capacities not listed here are

equal to zero.
Since c has one potential point in the final election, p1 and p2 may have at most |{p1, p2}| ·

pscore(C,V̄ )(c) = 2 ·1 = 2 points in total. We check the two guesses α := (α1,α2) ∈ {(2,0),(0,1)}
(where 2α2 +α1 = 2, α1,α2 ∈ N0). We accept if and only if for at least one guess α , there is a
matching with at least 2n−pscore(c)−α2 = 2 ·3−0−α2 = 6−α2 edges.

• α = (0,1). We search for at most one voter to be left unchanged and approving of both p1 and
p2. Due to bu(∗) = 0, there must not be any voter approving of either p1 or p2. A feasible matching
of cardinality 5= 6−α2 is given by M = {{c′,kv1

1 },{k
v1
2 ,c′′},{kv2

1 ,kv2
2 },{k

v3
1 ,kv3

2 },{b,c′′′}}. Bribing
and completing the votes according to M makes c a winner for the constructed extension: v1 is
left unchanged and approves of c′ and c′′. Voter v2 is left unchanged and approves of p1 and p2.
Moreover, voter v3 is bribed and approves of c and c′′′ after the bribery. Hence, each candidate has
one point for this extension and c is a winner. Note that v2 and v3 could change parts. In general,
whenever there are `+α2 voters each of whom corresponds to one edge {kvi

1 ,k
vi
2 } in the matching,

any ` voters among them may be bribed and the other α2 ones remain unchanged and approve of
two candidates in C \ C̃. Or, even more generally, as many as up to ` such voters vi yielding one
edge {kvi

1 ,k
vi
2 } in the matching are bribed and the remaining ones, if any, are left unchanged by the

briber and approve of two candidates in C \C̃.

• α = (2,0). In this case, we look for a matching with six edges. Note that a possible bribery
cannot exist since c′ has at least two points in the final election and c at most one. We distinguish
three cases:

1. v1 yields two edges in the matching. Then {kvi
1 ,k

vi
2 } (i = 2,3) must be in a feasible matching

(due to bu(c′) = 1). Even if the edge incident to b is in the matching, we have only five edges
in total. Due to symmetry, we argue analogously when v2 yields two edges in the matching.

2. v3 corresponds to two edges in the matching. Again the other two voters may yield only the
edges {kvi

1 ,k
vi
2 } (i = 1,2) in a feasible matching (due to c′’s upper capacity). Once again, the

resulting matching has at most cardinality five.
3. Each voter vi corresponds to one edge {kvi

1 ,k
vi
2 } in the matching (1 ≤ i ≤ 3). Then only one

edge incident to b may join the matching which has a size of four then. Again, the matching
has not the required size.

Hence, we reject for guess (2,0).
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Example of Calculation for the Algorithm in the proof of Theorem 4.10

In this section, we consider a numerical example to illustrate the algorithm in the proof of The-
orem 4.10. Suppose that we are given a set of candidates C = {c,c1,c2}, registered voter set
V = {v1, . . . ,v11}, and unregistered voter set W = {w1, . . . ,w10}. Moreover, c is our distinguished
candidate and `= 3 denotes the number of voters that may be added from W . Let the veto numbers
be as follows.

vetoes(C,V )(c) = 2, vetoes(C,V )(c1) = 4, vetoes(C,V )(c2) = 5,

vetoes(C,W )(c) = 2, vetoes(C,W )(c1) = 5, vetoes(C,W )(c2) = 3.

In the following, let vetoes(C,V )(d) = |Vd | and vetoes(C,W )(d) = |Wd | (d ∈C).
Our algorithm step by step computes the values a j

ti, that is, the number of ways to add at most t
voters vetoing the first i non-distinguished candidates such that c has fewer vetoes than the first i can-
didates in the final election when j vetoes from voters in W additionally count for c (recall that we do
not count here the number of possibilities to add j vetoes for c from W ; this will be calculated sepa-
rately after running the recursion algorithm). Note that it holds j ∈ {0, . . . ,min(vetoes(C,W )(c), `) =
min(2,3) = 2}, i ∈ {1,2}, and t ∈ {0, . . . , `− j} = {0, . . . ,3− j}. At the beginning, we initialize
our procedure with j = 0, t = 0, and i = 1.

• j = 0.

– t = 0.

∗ i = 1: a j
ti = a0

01 = 1 since |Vc|+ j = 2+0 < |Vc1 |= 4 holds.

∗ i = 2: a j
ti = a0

02 = 1 since |Vc|+ j = 2+ 0 < min(|Vc1 |, |Vc2 |) = min(4,5) = 4. (In
other words, there is one way to a add zero vetoes for c and a total of zero vetoes
for the first two non-distinguished candidates (i.e., c1 and c2), and c is the unique
winner. Conversely, in case c1 or c2 would have no more vetoes than c among the
voters in V , it would hold a0

02 = 0.)

– t = 1.

∗ a0
11 =

(5
1

)
= 5 since t = 1 > |Vc|+ j−|Vc1 |= 2+0−4 =−2.

∗ a0
12 = ∑

min(3,1)
s=max(2+0−5+1,0)

(3
s

)
a0

1−s,1 = 1 ·a0
11 +3 ·a0

01 = 1 ·5+3 ·1 = 8. (Remind that
the value a0

12 denotes the number of ways to (1) add zero vetoes for c from W , (2)
select one voter in W vetoing c1 or c2 (generally, the added voters distribute their
vetoes among the first i non-distinguished candidates), and (3) c has fewer vetoes
than c1 and c2. The sum expresses that there are

(3
0

)
· a0

11 ways to add zero vetoes
for c2 and a total of one veto for the first candidate. Moreover, we have

(3
1

)
· a0

01
ways to select one voter in W vetoing c2 and zero voters vetoing the first candidate,
i.e., c1.)

– t = 2.

∗ a0
21 =

(5
2

)
= 10 because t = 2 > |Vc|+ j−|Vc1 |= 2+0−4 =−2 holds.
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∗ a0
22 =∑

min(3,2)
s=max(2+0−5+1,0)

(3
s

)
a0

2−s,1 =
(3

0

)
a0

21+
(3

1

)
a0

11+
(3

2

)
a0

01 = 1 ·10+3 ·5+3 ·1=
28.

– t = 3.

∗ a0
31 =

(5
3

)
= 10 since t = 3 > |Vc|+ j−|Vc1 |= 2+0−4 =−2 holds.

∗ a0
32 = ∑

min(3,3)
s=max(2+0−5+1,0)

(3
s

)
a0

3−s,1 =
(3

0

)
a0

31 +
(3

1

)
a0

21 +
(3

2

)
a0

11 +
(3

3

)
a0

01 = 1 ·10+3 ·
10+3 ·5+1 = 56.

• j = 1.

– t = 0.

∗ a1
01 = 1 because |Vc|+ j = 2+1 < |Vc1 |= 4.

∗ a1
02 = 1 since |Vc|+ j = 2+1 < min(|Vc1 |, |Vc2 |) = min(4,5) = 4.

– t = 1.

∗ a1
11 =

(5
1

)
= 5 since t = 1 > |Vc|+ j−|Vc1 |= 2+1−4 =−1 holds.

∗ a1
12 = ∑

min(3,1)
s=max(2+1−5+1,0)

(3
s

)
a1

1−s,1 =
(3

0

)
a1

11 +
(3

1

)
a1

01 = 1 ·5+3 ·1 = 8.

– t = 2.

∗ a1
21 =

(5
2

)
= 10 since t = 2 > |Vc|+ j−|Vc1 |= 2+1−4 =−1 holds.

∗ a1
22 =∑

min(3,2)
s=max(2+1−5+1,0)

(3
s

)
a1

2−s,1 =
(3

0

)
a1

21+
(3

1

)
a1

11+
(3

2

)
a1

01 = 1 ·10+3 ·5+3 ·1=
28.

• j = 2.

– t = 0.

∗ a2
01 = 0 since |Vc|+ j = 2+2 6< |Vc1 | = 4. (There is no way to add two vetoes for

c and no veto for the first non-distinguished candidate such that c has fewer vetoes
than c1 in the resulting election. Hence, we obtain a2

01 = 0.)
∗ a2

02 = 0 because |Vc|+ j = 2+2 6< min(|Vc1 |, |Vc2 |) = min(4,5) = 4.

– t = 1.

∗ a2
11 =

(5
1

)
= 5 due to 1 > 2+2−4 = 0.

∗ a2
12 = ∑

min(3,1)
s=max(2+2−5+1,0)

(3
s

)
a2

1−s,1 =
(3

0

)
a2

11 +
(3

1

)
a2

01 = 1 ·5+3 ·0 = 5.

Now we are able to compute N(C,V,W,c, `) = ∑
min(3,2)
j=0

(2
j

)
∑

3− j
t=0 a j

t2 =
(2

0

)
(a0

02 + a0
12 + a0

22 +

a0
32)+

(2
1

)
(a1

02+a1
12+a1

22)+
(2

2

)
(a2

02+a2
12) = 1 · (1+8+28+56)+2(1+8+28)+1(0+5) = 172

as the total number of ways to add at most `= 3 voters from W such that c is the unique winner in
the final election.
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Calculation of the Winning Probabilities in Example 4.34

Recall that C = {c,c1,c2}, V = {v1, . . . ,v8}, 1≤K≤ 8, and vetoes(c)= 2, vetoes(c1)= vetoes(c2)=
3. In this section, we derive the probabilities Prob(K) that a K-voter subelection yields c as the
unique winner in a K-voter subelection, where 1≤ K ≤ 8.

1. K = 1. We obtain a zero probability as in each subelection with one voter c1 or c2 is not
vetoed.

2. K = 2. It holds Prob(2) = (3
1)(

3
1)

(8
2)

= 9
28 since there are

(8
2

)
possible ways to select two out of

eight voters and
(3

1

)
·
(3

1

)
= 9 possibilities that the lottery selects one veto for c1 and c2 each.

3. K = 3. Again, c can only be the unique winner when the lottery picks no voters vetoing c.

We compute Prob(3) = (3
1)(

3
2)+(

3
2)(

3
1)

(8
3)

= 9
28 . The numerator describes how often the lottery can

either pick two vetoes for c1 and one veto for c2 or two vetoes for c2 and one veto for c1. In
total, there are

(8
3

)
possibilities to select three out of eight voters.

4. K = 4. Once again, the lottery must not draw any voter vetoing c. Hence, we count the
number of ways to select one veto for c1/c2 and three vetoes for c2/c1 or two vetoes for c1 and

c2 each. This results in Prob(4) = (3
1)(

3
3)+(

3
2)(

3
2)+(

3
3)(

3
1)

(8
4)

= 3
14 .

5. K = 5. In case the lottery ignores no c-veto, there is no way for c to be the unique winner. In
case one veto for c is ignored by the lottery, the lottery has to leave out one veto for c1 and c2
each. If the lottery rules out two voters vetoing c, the third ignored voter may arbitrarily veto
c1 or c2. As there are

(8
3

)
possibilities for the lottery to ignore three of eight voters, we obtain

Prob(5) = (2
1)(

3
1)(

3
1)+(

2
2)(

6
1)

(8
3)

= 3
7 .

6. K = 6. Again, the lottery must not pick all voters vetoing c. In case the lottery ignores one
voter vetoing c, it does not matter which other veto for c1 or c2 is left out. There is further
exactly one way for the lottery to ignore two voters vetoing c. As there are

(8
6

)
ways for the

lottery to ignore two of eight voters, we obtain Prob(6) = (2
1)(

6
1)+(

2
2)(

6
0)

(8
6)

= 13
28 .

7. K = 7. There are eight different 7-voter subelections. If the voter ignored by the lottery vetoes
c1 or c2, one of these candidates ties with c and consequently c is not the only winner. Hence,
c is the winner of a 7-voter subelection if and only if the lottery omits one voter vetoing c.
This leads to Prob(7) = 2

8 = 1
4 .

8. K = 8. As the only 8-voter subelection is the election (C,V ) itself and as c the winner in this
election, we obtain Prob(8) = 1.
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Construction of K-Voter Subelections with unique-winner c in Exam-
ple 4.35

In Example 4.35, our input is an election (C,V ) with m = 8 candidates in candidate set C =
{c,c1, . . . ,c7}, n = 9 voters in voter set V = {v1, . . . ,v9}, and distinguished candidate c. Let F=2-
Approval and the unique-winner model be the underlying winner model. The voters in V are defined
as follows:

1. vi approves of c and ci (1≤ i≤ 3).

2. v4, . . . ,v6 approve of c4 and c5.

3. v7, . . . ,v9 approve of c6 and c7.

Let K, 1 ≤ K ≤ 9 be the lot size. For K = 1, c is not a possible winner as even if the lottery
picks a voter approving of c, this voter approves of one ci, 1≤ i≤ 3, as well.

For 2 ≤ K ≤ 3, c is the only winner when the lottery draws the first K voters since all selected
voters approve of c, but no other candidate reaches a full approval score restricted to the voters
picked by the lottery.

Likewise, for K ∈ {4,5}, the lottery may draw the first K voters and again c the unique winner
with three points: c1, c2, and c3 have one point each, while c4 and c5 have one (for K = 4) or two
points (for K = 5) each.

If K = 6, the subelection (C,V \{v6,v8,v9}) makes c the unique winner. In a similar fashion, c
is the only winner of the 7-voter subelection (C,V \{v6,v9}). In both cases, c has three approvals,
c1, c2, and c3 are approved by one voter each, and c4 and c5 have two approvals each. For K = 6,
both c6 and c7 have one point, while for K = 7, they have two points each.

For K = 8, the lottery draws all three voters in {v4,v5,v6} or {v7,v8,v9}, for it may ignore only
one voter. In both cases, some candidate in {c4, . . . ,c7} ties with c.

For K = 9, all votes are accounted for and c and the candidates c4, . . . ,c7 are tied for the victory
with three approvals each.

As a combined result, c is a possible winner if and only if 2≤ K ≤ 7.
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