Untersuchung des Cotton-Mouton-Effektes in der isotropen Phase flüssigkristalliner Substanzen

Dissertation

zur Erlangung des Grades eines Doktors der Naturwissenschaften

vorgelegt von Dipl. Chem. Hasan-Nuri Blachnik aus Hemsin

eingereicht beim Fachbereich 8 der Universität-Gesamthochschule Siegen

Siegen 1999

Die vorliegende Arbeit entstand am Institut für Physikalische Chemie an der Universität-Gesamthochschule Siegen unter der Leitung von Prof. Dr. F. Schneider. Ihm gilt mein besonderer Dank für die Vergabe des interessanten Themas, seine ständige Diskussionsbereitschaft und die persönliche Betreuung dieser Arbeit.

Der Arbeitsgruppe Physikalische Chemie III wird für die kollegiale Zusammenarbeit gedankt.

Mein besonderer Dank gilt Herrn Dr. H. Kneppe und Herrn M. Ney für ihre Diskussionsbereitschaft und viele hilfreiche Anregungen.

Herrn R. Nagel und Herrn M. Partik danke ich für die Einführung und die Unterstützung bei den DSC-Messungen der Flüssigkristalle. Frau K. Rhode wird für ihre Hilfe bei der Durchführung der Brechungsindex- und Dichtemessungen gedankt.

Herrn P. Kerzdörfer, Herrn B. Meier und Herrn G. Neumann danke ich für die Hilfe bei der Konstruktion der Meßapparatur.

Gutachter: Prof. Dr. F. Schneider
 Gutachter: Prof. Dr. G. von Bünau
 Tag der mündlichen Prüfung: 11. Mai 1999

Inhaltsverzeichnis

Kapitel

1	Einleitung	1			
1.1	Einführung	2			
1.2	Themenstellung	2			
2	Grundlagen	3			
2.1	Flüssigkristalline Phasen				
2.1.1	Nematische Phase				
2.1.2	Smektisch-A Phase				
2.2	Magnetisch induzierte Doppelbrechung				
2.2.1	Die diamagnetische Suszeptibilität				
2.2.2	Orientierung von Molekülen und Orientierungsgrad	12			
2.2.3	Cotton-Mouton-Effekt	15			
2.2.4	Faraday-Effekt	16			
2.3	Phasenumwandlungen und kritische Gesetze	18			
2.3.1	Kritische Gesetze	18			
2.3.2	Universalität	21			
2.3.3	Landau-Theorie	22			
2.3.4	Abschätzung der Koeffizienten der Landau-Entwicklung	25			
2.4	Cotton-Mouton-Effekt in der isotropen Phase von Flüssigkristallen	28			
3	Experimentelles	31			
3.1	Meßverfahren	31			
3.2	Apparatives	32			
3.3	Optische Bauteile und ihre Justage	34			
3.3.1	Polarisator und Analysator	34			
3.3.2	Ausrichtung des Lasers	36			
3.3.3	Die Pockelszelle	36			
3.4	Die Meßzelle	40			
3.4.1	Dimensionierung der Meßzelle	41			

3.4.2	Befüllung	43
3.4.3	Thermostatisierung und Temperaturmessung	45
3.4.4	Magnetfeldkalibrierung	46
3.5	Testmessungen mit Benzol und Toluol	46
3.6	Der "anomale" Cotton-Mouton-Effekt	50
4	Ergebnisse und Auswertung	53
4.1	Enthalpiemessungen für die Umwandlung isotrop-flüssigkristallin	53
4.2	CM-Konstante von Nitrobenzol und Toluol als Funktion der Temperatur	56
4.3	CM-Konstante von Flüssigkristallen in der isotropen Phase als Funktion	58
	der Temperatur	
4.4	Auswertung der Meßwerte mit der Landau-de Gennes-Theorie	66
4.5	Berücksichtigung der nematischen Fluktuationen	73
4.6	Berücksichtigung der smektischen Fluktuationen	79
4.7	Verwendung von kritischen Gesetzen	83
5	Zusammenfassung	89
6	Literaturverzeichnis	92
7	Anhang	96
7.1	Verwandte Symbole	96
7.2	Allgemeine Daten	103
7.3	Meßwerte	104
7.4	Fit-Parameter	123

1.1 Einführung

Im Jahre 1869 entdeckte Thomas Andrews (1879) bei optischen Untersuchungen an Kohlendioxid, daß die Lichtstreuung am kritischen Punkt stark zunimmt. Diese als kritische Opaleszenz bezeichnete Erscheinung ist seitdem vielfach untersucht worden. Es hat sich herausgestellt, daß die starke Zunahme der Lichtstreuung am kritischen Punkt durch Fluktuationen der Dichte verursacht wird. Das anomale Ansteigen der Streuintensität in der Nähe der Phasenumwandlungstemperatur ist ein Beispiel für eine Vorumwandlungserscheinung.

Dieser Begriff wurde erstmalig von Ubbelohde (1938) für das Schmelzen eines Kristalls verwendet, an dem er ein anomales Anwachsen der spezifischen Wärme und des Ausdehnungskoeffizienten in der Nähe der Phasenumwandlungstemperatur beobachtet und wurde dann von Frenkel (1939) für alle Phasenumwandlungen verallgemeinert. Nach dessen Theorie existieren in der Nähe einer Phasenumwandlungstemperatur kleine Bereiche der korrespondierenden Phase (heterogene Fluktuationen). Sie sind die Ursache für das anomale Verhalten einiger physikalischer Größen in der Umgebung der Phasenumwandlungstemperatur.

Die Vorumwandlungserscheinungen bei Phasenumwandlungen in Flüssigkristallen wurden zum ersten Male durch Jacqueline Kahn-Eisenmann (1930, 1936) an dem Flüssigkristall p-Azoxyanisol (PAA) beim Übergang isotrop-nematisch beobachtet. Zadoc und Kahn-Eisenmann untersuchten die Temperaturabhängigkeit der Cotton-Mouton (CM)-Konstante (Cotton, Mouton 1911) in der isotropen Phase und stellten ein anomales Ansteigen der CM-Konstante bei Annäherung an die nematische Phase fest. Das enorme Anwachsen der CM-Konstante in der Nähe des Klärpunktes wurde in Analogie zum Frenkelschen Tröpfchenmodell durch die Ausbildung von "nematischen Tröpfchen" (Ornstein und Kast 1933; Chatelain 1951; Hoyer und Nolle 1955) erklärt.

Eine andere Erklärung für das quasidivergente Anwachsen bestimmter physikalischer Größen bei der Umwandlung isotrop-nematisch erfolgte durch de Gennes (1971). Er wendete die Landau-Theorie (1958) der kontinuierlichen Phasenumwandlung auf die schwach diskontinuierlich verlaufende Phasenumwandlung nematisch-isotrop an.

Die fast gleichzeitig durchgeführten Messungen des Cotton-Mouton-Effektes in Abhängigkeit von der Temperatur an 4´-Methoxybenzyliden-4-n-butylanilin (MBBA) von Stinson und Litster (1970) belegten seine Theorie. Seitdem sind sehr viele Experimente an unterschiedlichen Substanzen durchgeführt worden, wobei die Ergebnisse teilweise nicht mit der Landau-de Gennes-Theorie in Einklang zu bringen sind. So lassen sich die theoretischen Ansätze für die Beschreibung der Vorumwandlungserscheinungen in drei Gruppen aufteilen. Die erste Gruppe verwendet die Landau-Theorie mit einigen Modifikationen wie z. B. die Berücksichtigung von nematischen (Fan und Stephen 1970) und smektischen Fluktuationen so wie eine mögliche Kopplung von beiden (Anisimov et al. 1983; Gohin et al. 1983). Andere Autoren begründen die Unstimmigkeit zwischen Experiment und der Landau-Theorie damit, daß in der Nähe des Klärpunktes ein "cross-over" zum kritischen Verhalten stattfindet (Stinson und Litster 1970, Malraison et al. 1979). Die dritte Gruppe wendet das ursprünglich für kritische Mischungen entwickelte kritische Gesetz auf das Temperaturverhalten der CM-Konstante in der isotropen Phase von Flüssigkristallen an (Oxtoby et al. 1979). Diese dritte Beschreibung der Phasenumwandlung isotrop-nematisch sagt für den kritischen Exponenten der CM-Konstante einen deutlich anderen Wert voraus als die beiden erstgenannten Theorien.

1.2 Themenstellung

Ziel dieser Arbeit war es, eine Apparatur aufzubauen, die eine genauere Bestimmung der CM-Konstante erlaubt als die von Stinson und Litster (1970) oder Muta et al. (1974) verwandten Apparaturen, um verläßlichere experimentelle Daten für den Vergleich mit den theoretischen Voraussagen zur Hand zu haben. Geklärt werden sollte vor allem das seit der Anwendung der Landau-de-Gennes-Theorie auf die Phasenumwandlung isotropnematisch bestehende "long standing puzzle", nämlich die Abweichung zwischen der Landau-de Gennes-Theorie und dem Experiment wenig oberhalb der Klärpunktstemperatur. Der von Anisimov et al. (1983) angenommene Einfluß der smektischen Fluktuationen wird durch Messung und Vergleich dieser Abweichung in Flüssigkristallen mit unterschiedlicher nematische Phasenbreite untersucht werden. In Anlehnung an Lichtstreuuntersuchungen von nichtkritischen Mischungen sollten alle Messungen der Cotton-Mouton-Konstante durch Verwendung von kritischen Gesetzen ausgewertet werden.

2. Grundlagen

2.1 Flüssigkristalline Phasen

Die erste flüssigkristalline Verbindung wurde von dem österreichischen Botaniker Friedrich Reinitzer im Jahre 1888 entdeckt, als er das Schmelzverhalten von Cholesterylbenzoat im Schmelzpunktsröhrchen untersuchte. Er stellte fest, daß die Substanz bei 145 °C vom festen in einen trüben flüssigen Zustand übergeht und bei 178 °C eine klare Flüssigkeit wird. Lehmann führte diese Untersuchungen mit Hilfe eines Polarisationsmikroskops fort und beobachtete in der trüben flüssigen Mesophase (Zwischenphase) eine Textur, die in der klaren Phase (isotrope Phase) verschwand. Das Auftreten einer Textur unter dem Polarisationsmikroskop war aber in dieser Zeit nur von Kristallen bekannt, andererseits war die Substanz in der Mesophase flüssig, so daß man dieser Substanz die Eigenschaften eines Festkörpers und die einer Flüssigkeit zuschreiben mußte und sie daher als Flüssigkristall bezeichnete. Substanzen, bei denen eine flüssigkristalline Phase bei Änderung der Temperatur ausgebildet wird, nennt man thermotrop. Daneben gibt es auch Flüssigkristalle, die aus amphiphilen Verbindungen und einem oder mehreren Lösungsmitteln aufgebaut sind. Die Ausbildung von flüssigkristallinen Phasen ist in diesen Systemen eine Funktion der Zusammensetzung und der Temperatur. Da diese Flüssigkristalle häufig von Tensid-Wasser-Systemen gebildet werden, bezeichnet man sie als lyotrope Flüssigkristalle.

In dieser Arbeit sind nur thermotrope Flüssigkristalle mit den Phasenübergängen isotropnematisch und isotrop-smektisch untersucht worden. Daher werden diese Phasen im folgenden etwas näher erklärt.

2.1.1 Die nematische Phase

Die einfachste flüssigkristalline Phase ist die nematische Phase. Zwei Vertreter dieser Substanzklasse sind die Substanzen 4-Cyano-4´-pentylbiphenyl (5CBP) und 4-Methoxybenzyliden-4´-n-butylanilin (MBBA). Die Angabe der Phasenübergangstemperaturen bei Flüssigkristallen erfolgt i. a. durch die Angabe der Phasenabfolge und der dazwischen geschriebenen Umwandlungtemperaturen. Für 5CBP lautet die Phasenabfolge K 22,8 N

Abb. 1: Strukturformel von MBBA

34,8 I, was bedeutet, daß diese Substanz bei Temperaturen oberhalb von 22,8 °C von der kristallinen (K) in die nematische (N) Phase übergeht und bei Temperaturen oberhalb 34.8 °C isotrop (I) (Klärpunkt) wird. Die Phasenabfolge für den Flüssigkristall MBBA ist K 21,8 N 45,7 I. Eine schematische Darstellung einer nematischen Phase, bei der Flüssigkristallmoleküle als Stäbchen dargestellt sind, zeigt Abb. 2.

Abb. 2: Struktur einer nematischen Phase

Die nematische Phase ist die flüssigkristalline Phase mit der geringsten Ordnung. Sie unterscheidet sich von einer isotropen Phase nur dadurch, daß die Moleküllängsachsen eine Parallelorientierung aufweisen und eine uniaxiale Struktur vorhanden ist. Die Vorzugsrichtung wird durch den Direktor \vec{n} beschrieben, die auch die optische Achse definiert. Die räumliche Ausdehnung von Gebieten mit einheitlicher Direktororientierung liegt im Bereich der Wellenlänge des sichtbaren Lichts. Aufgrund der hieraus resultierenden Streuphänomene sind die nematischen (und auch andere) Phasen milchig-trüb. Bei der Betrachtung einer nematischen Phase mit einem Polarisationsmikroskop erscheinen die Gebiete mit einheitlicher Direktororientierung als Isochromaten im Schlieren-Textur-

bild.

Abb. 3: Schlieren-Texturbild der nematischen Phase von 5CBP.

Die Güte der Parallelorientierung in einer nematischen Phase wird durch den nematischen Ordnungsgrad *S* beschrieben (Tsvetkov 1942)

$$S = \frac{1}{2} \langle 3\cos^2 \theta - 1 \rangle \tag{1}$$

In Gl. (1) bedeutet die eckige Klammer eine Mittelung über eine genügende Anzahl von Molekülen (Abb. 4) innerhalb eines Bereiches mit einheitlicher Direktororientierung. In Abb. 5 ist der funktionelle Zusammenhang zwischen dem Ordnungsgrad *S* und der reduzierten Temperatur mit Hilfe der empirischen Formel von Haller (1975)

$$S = \left(1 - \frac{T}{T^{**}}\right)^{\beta} \tag{2}$$

Abb. 5: Ordnungsgrad *S* einer nematischen Phase als Funktion der reduzierten Temperatur nach Haller.

 $T_{\rm NI}$ ist die Klärpunktstemperatur.

dargestellt. Dabei bedeutet T^{**} eine fiktive Temperatur, die etwa 1 K oberhalb des Klärpunktes liegt. Gl. (2) gilt für alle nematischen Phasen, wobei der Exponent $\beta \approx 0,18$ etwas variiert. Eine theoretische Begründung für den Verlauf des Ordnungsgrades in Abhängigkeit von der reduzierten Temperatur wurde von Maier und Saupe (1958, 1959, 1960) gegeben. In ihrer Theorie wird für den Ordnungsgrad der nematischen Phase ein mikroskopisches Modell verwendet, das auf einer Mean-Field-Näherung und der Beschränkung auf die orientierungsabhängige Dispersionswechselwirkung basiert.

2. Grundlagen

2.1.2 Die smektische A-Phase

Die Struktur der smektischen A-Phase unterscheidet sich von der nematischen Phase dadurch, daß sie neben der Parallelorientierung der Moleküllängsachsen eine Schichtenstruktur der Molekülschwerpunkte aufweist. Die Molekülschwerpunkte in unterschiedlichen Schichten sind nicht korreliert. Verlaufen die Moleküllängsachsen parallel zur Schichtnormalen, so spricht man von der smektischen A-Phase. Sind die Moleküllängs-

Abb. 6: Struktur einer smektischen A Phase

achsen hingegen gegen die Schichtnormale gekippt, wird die Phase als smektisch-C bezeichnet. Daneben gibt es eine Vielzahl von smektischen Phasen, die sich durch Unterschiede in den Positionsordnungen innerhalb der Schichten unterscheiden. Da in dieser Arbeit neben der Phasenumwandlung isotrop-nematisch auch die Phasenumwandlung isotrop-smektisch-A untersucht wurde, wird auf diesen Typ näher eingegangen. Ein Vertreter dieser Klasse ist 4-Octyl-4´-cyanobipenyl (8CBP) mit der Phasenabfolge K 21,7 S_A 32,8 N 40,5 I. Diese Substanz weist in Abhängigkeit von der Temperatur zwei

Abb. 7: Strukturformel von 8CBP

unterschiedliche flüssigkristalline Phasen, nämlich die smektisch A-Phase (zwischen 21,7 und 32,8 °C) und die nematische Phase (zwischen 32,8 und 40,5 °C) auf. Die Betrachtung der S_A -Phase von 8CBP unter einem Polarisationsmikroskop liefert die für die

S_A-Phase typische fächerförmige Textur.

Die smektische Phase wird als Tieftemperaturphase zur nematischen Phase ausgebildet. Im allgemeinen nimmt die Tendenz zur Bildung der smektischen A-Phase zu, je länger

Abb. 8: Fächertextur-Bild der S_A-Phase von 8CBP

die terminalen Alkylketten der Flüssigkristallmoleküle sind (vgl. die homologe Reihe der nCBP und nOCBP auf Seite 70 und 71). Bei sehr langen Alkylketten (etwa zehn und mehr Kohlenstoffatome) wird die smektische A-Phase häufig direkt aus der isotropen Phase gebildet. Aufgrund des im Vergleich zur nematischen Phase größeren Ordnungsunterschiedes zwischen der isotropen und der smektisch A-Phase sind die Werte der Umwandlungsenthalpien isotrop-smektisch-A mit 0,5-5 kJ / mol um den Faktor 5 - 50 größer.

Mit einer Erweiterung der Maier-Saupe-Theorie für die Beschreibung der nematischen Phase gelang es Mc Millan 1971 diese Beobachtungen an der smektischen Phase qualitativ zu erklären. Die wesentliche Annahme bei dieser Theorie ist, daß das System infolge der Dispersionswechselwirkungen den energetisch günstigsten Zustand erreicht, wenn neben einer allgemeinen Parallelorientierung die leicht polarisierbaren aromatischen Molekülmittelteile möglichst nahe beieinander liegen, wodurch bei Molekülen mit langen terminalen Alkylketten die smektische Schichtanordnung begünstigt wird. Mit dieser Theorie erhielt Mc Millan einen gemischten Ordnungsgrad σ als Funktion der Temperatur, der sowohl die nematische als auch die smektische A-Phase beschreibt. Dieser Ordnungsgrad setzt sich zusammen aus dem Translationsordnungsparameter ρ_1 ,

$$\rho_1 = \left\langle \cos \frac{2 \pi z}{d} \right\rangle \tag{3}$$

der der Amplitude der Dichtewelle (die in z-Richtung liegt) entspricht, der smektischen Schichtdicke d (siehe Abb. 6), und dem Orientierungsordnungsparameter S der nematischen Phase.

$$\boldsymbol{\sigma} = \left\langle \left(\frac{3}{2}\cos^2\theta - \frac{1}{2}\right)\cos\frac{2\pi z}{d}\right\rangle \tag{4}$$

In Tab. 1 sind die Ordnungsgrade für die diskutierten Phasen angegeben.

Phase	σ	ρ_1	S
isotrop	0	0	0
nematisch	0	0	≠O
smektisch A	≠0	≠0	≠ 0

Tab. 1:Die Ordnungsgrade der flüssigkristallinen Phasen.

2.2 Magnetisch induzierte Doppelbrechung

2.2.1 Die diamagnetische Suszeptibilität

Eine magnetisch induzierte Doppelbrechung wird nur beobachtet, wenn eine Ausrichtung der Moleküle im Magnetfeld erfolgt. Die dazu notwendige Wechselwirkung wird über die Anisotropie der magnetischen Suszeptibilität vermittelt. Die magnetische Suszeptibilität $\hat{\chi}_v$ ist ein Tensor zweiter Stufe und wird über die Magnetisierung \vec{M} und die magnetische Feldstärke \vec{H} definiert.

$$\vec{M} = \hat{\chi}_{\rm V} \vec{H} \tag{5}$$

 χ_{v} ist eine dimensionslose, makroskopische Größe (bezogen auf ein Einheitsvolumen). In der Literatur wird die Suszeptibilität häufig auf ein Mol bezogen (χ_{m}) oder nach Ditchfield als molekulare Größe χ verwendet:

$$\chi_{\rm m} = N_{\rm A} \chi \quad , \tag{6}$$

wobei N_A die Avogadro-Konstante darstellt.

In dieser Arbeit wird das SI-System verwendet. In diesem System ist es üblich, die magnetische Induktion \vec{B} in Tesla anzugeben.

Die Substanzen, die im Rahmen dieser Arbeit untersucht wurden, sind durchweg diamagnetisch. Die diamagnetische Suszeptibilität ist eine Eigenschaft der Elektronenhülle, die sich klassisch durch eine Larmor-Präzession der Hüllenelektronen um die Richtung des von außen angelegten Magnetfelds verstehen läßt. Typische Werte für die diamagnetische Suszeptibilität organischer Substanzen liegen um $\chi_v = 10^{-6}$ In Molekülen wird die diamagnetische Suszeptibilität durch die unterschiedliche Beweglichkeit der Bindungselektronen (Lonsdale 1939) richtungsabhängig. Die in dieser Arbeit verwendeten Flüssigkristalle sind aus zwei in para-Position substituierten Benzolringen aufgebaut. Induzierte Ringströme in den Benzolringen verursachen in solchen Molekülen eine Anisotropie der magnetischen Suszeptibilität. Dabei ist das magnetische Moment der Ringströme dem angelegten magnetischen Feld entgegen gerichtet (Lenzsche Regel) und senkrecht zu den Benzolringen maximal. Ein derartiges Molekül ordnet sich daher beim Anlegen eines äußeren Feldes mit seiner Längsachse parallel zum magnetischen Feld an, da diese Lage energetisch am günstigsten ist (Hückel, 1933; Pauling 1936).

2.2.2 Orientierung von Molekülen und Orientierungsgrad

Aufgrund der Anisotropie der Suszeptibilität wird sich ein Molekül so in einem Magnetfeld orientieren, daß seine Wechselwirkungsenergie mit dem Magnetfeld minimal ist. Zur Abschätzung dieser Energie werden ein raumfestes Achsensystem (x, y, z) und ein molekülfestes (x', y', z') Achsensystem zusammen mit den Richtungskosinussen (ψ_1 , ψ_2 , ψ_3) verwendet. Weiterhin wird vereinbart, daß die Richtung des Magnetfeldes mit der Richtung der raumfesten z-Achse zusammenfällt.

Abb. 9: Das Magnetfeld \vec{H} liegt parallel zur *z*-Achse eines raumfesten Koordinatensystems x, y, z; die Achsen des molekülfesten Koordinatensystems werden mit x', y', z' bezeichnet.

Aus der Magnetisierung

$$\vec{M} = \begin{pmatrix} \chi_{xx} \cos \psi_1 & 0 & 0 \\ 0 & \chi_{yy} \cos \psi_2 & 0 \\ 0 & 0 & \chi_{zz} \cos \psi_3 \end{pmatrix} \vec{H}$$
(7)

und der Energiedichte u:

$$u = \frac{1}{2}\vec{H}\vec{B} = \frac{1}{2}\mu_0\vec{H}(\vec{H} + \vec{M})$$
(8)

ergibt sich

$$u = \frac{1}{2}\mu_0 \vec{H}^2 + \frac{1}{2}\mu_0 \vec{H}^2 (\chi_{xx} \cos^2 \psi_1 + \chi_{yy} \cos^2 \psi_2 + \chi_{zz} \cos^2 \psi_3)$$
(9)

Der erste Term ist die Energiedichte des Vakuums, wobei $\mu_0 = 4\pi \cdot 10^{-7}$ V s A⁻¹m⁻¹ die magnetische Feldkonstante ist. Die $\cos \psi_i$ bezeichnen die Richtungskosinusse zwischen den Molekülachsen und dem Magnetfeld, die χ_{ii} sind die Komponenten des Suszeptibilitätstensors.

Bei Molekülen, deren Suszeptibilitätstensor uniaxial ($\chi_{xx} = \chi_{yy}$) ist, vereinfacht sich die Gl. (9) durch Verwendung der Beziehung

$$\cos^2 \psi_1 + \cos^2 \psi_2 = 1 - \cos^2 \psi_3 \tag{10}$$

zu

$$u = \frac{1}{2}\mu_0 H^2 + \frac{1}{2}\mu_0 \chi_{xx} \vec{H}^2 + \frac{1}{2}\mu_0 \vec{H}^2 (\chi_{zz} - \chi_{xx})\cos^2 \psi_3$$
(11)

Der Energieunterschied für die Umorientierung eines Benzolmoleküls aus einer senkrechten Stellung in eine parallele Stellung zum Magnetfeld beträgt

$$\Delta u' = \frac{1}{2} \mu_0 H^2 (\chi_{zz} - \chi_{xx}) \frac{1}{N_A} \frac{M}{\rho} = \frac{1}{2} \mu_0 \left(\frac{B}{\mu_0}\right)^2 (\chi_{zz} - \chi_{xx}) \frac{1}{N_A} \frac{M}{\rho}$$
(12)

Mit den Volumensuszeptibilitätswerten aus Shoemaker et al. (1969) $\chi_{xx} = \chi_{yy} = -4,93 \cdot 10^{-6}$ (Magnetfeld parallel zur Ringfläche) $\chi_{zz} = -1,33 \cdot 10^{-5}$ (Magnetfeld senkrecht zur Ringfläche) erhält man mit den Werten für die Dichte $\rho = 0,879$ g cm⁻³ und für die Molmasse M = 78,11 g m ol⁻¹ sowie der magnetischen Induktion von 2 Tesla (1 T = 1 V s / m²) für ein Benzolmolekül

$$\Delta u' = \frac{1}{2} \frac{2^2 (\text{V sm}^{-2})^2}{4\pi 10^{-7} \text{ V sA}^{-1} \text{ m}^{-1}} (-13,3+4,93) \cdot 10^{-6} \frac{\text{mol}}{6,023 \cdot 10^{23}} \frac{78,11 \text{ g mol}^{-1}}{0,879 \cdot 10^{6} \text{ g m}^{-3}} \approx -2 \cdot 10^{-27} \text{ J}$$

Um die zu erwartenden Orientierungseffekte abschätzen zu können, muß man das Verhältnis $\frac{-\Delta u'}{kT}$ bilden. Mit den obigen Werten und für Zimmertemperatur ergibt dieses

Verhältnis einen Wert von $5 \cdot 10^{-7}$.

Dieses Ergebnis zeigt, daß die orientierende Wirkung des Magnetfeldes sehr klein ist. Umso größer sind daher die Anforderungen an eine Apparatur, die in der Lage ist, diese durch ein Magnetfeld induzierte "Ordnung" quantitativ zu erfassen.

2.2.3 Cotton-Mouton-Effekt

Optisch isotrope Substanzen können in einem Magnetfeld neben der Drehung der Polarisationsebene von linear polarisiertem Licht (Faraday-Effekt) auch Doppelbrechung zeigen (Cotton und Mouton 1911), die nach ihren Entdeckern Cotton-Mouton-Effekt genannt wird. Linear polarisiertes Licht der Wellenlänge λ und der Ausbreitungsrichtung \vec{k} fällt auf eine optisch isotrope Probe. Durch Anlegen eines Magnetfeldes *H* senkrecht zur Fortpflanzungsrichtung des Lichtes wird die Probe optisch anisotrop. Hinter der Probe haben die elektrischen Komponenten des Lichtvektors parallel E_p und senkrecht E_s zum Feld einen Gangunterschied Γ .

Abb. 10: Schematische Darstellung des Cotton-Mouton-Effektes.

Der Gangunterschied läßt sich durch die Doppelbrechung Δn als Differenz aus den Brechungsindexkomponenten parallel n_p und senkrecht n_s und der Länge l der Probe ausdrücken:

$$\Gamma = \Delta n \cdot l = (n_{\rm p} - n_{\rm s})l \tag{13}$$

Dieser Gangunterschied erweist sich als proportional zur Länge *l* der Probe und zum Quadrat der magnetischen Feldstärke *H*:

$$\Delta n = n_p - n_s = C \lambda H^2 \tag{14}$$

Die Proportionalitätskonstante C wird als Cotton-Mouton (CM)-Konstante bezeichnet.

Die Einführung der Wellenlänge des verwendeten Lichts in Gl. (14) bringt keinen Vorteil mit sich, wird aber üblicherweise vorgenommen.

2.2.4 Der Faraday-Effekt

Als Faraday-Effekt bezeichnet man die Erscheinung, daß Materie unter der Einwirkung eines Magnetfeldes \vec{H} die Polarisationsebene des durchgehenden Lichtvektors \vec{E} um den Winkel ϕ dreht.

Abb. 11: Schematische Darstellung des Faraday-Effektes

$$\phi = VlB\cos(\vec{k}, \vec{B}) \tag{15}$$

wobei *V* die Verdetsche Konstante ist. Ihr Wert beträgt z. B. für Benzol 900 $^{\circ}$ T⁻¹ m⁻¹. Bei einer magnetischen Induktion von 2 T und einer Probenlänge von 0,1 m (das sind übliche Werte in der vorliegenden Arbeit) wird die Polarisationsebene des durch die Probe tretenden Lichtes um 180° gedreht.

Im Gegensatz zum CM-Effekt ist eine elektrische und magnetische Suszeptibilitätsanisotropie der Moleküle zur Erzeugung dieses Effektes nicht notwendig.

Wie aus Gl. (15) zu entnehmen ist, ist der Faraday-Effekt maximal, wenn die Ausbreitungsrichtung des Lichtes parallel bzw. antiparallel zum Magnetfeld verläuft. Bei belie-

2. Grundlagen

bigen Winkeln zwischen Richtung des Magnetfeldes und Ausbreitungsrichtung des Lichtes (außer bei ganzzahligen Vielfachen von π),wird in solchen Experimenten immer die Überlagerung von Faraday und Cotton Mouton-Effekt beobachtet. Eine analytische Trennung dieser Effekte ist nicht möglich (Ramachandran 1961).

Der CM-Effekt läßt sich ohne den Faraday-Effekt nur beobachten, wenn der Lichtstrahl die Feldlinien des Magneten senkrecht durchsetzt.

Dieser für die Bestimmung der CM-Konstante nachteilige Effekt der Überlagerung durch den Faraday-Effekt wurde wirkungsvoll für die Justage der Apparatur (siehe Kap. 3) eingesetzt.

2.3 Phasenumwandlungen und kritische Gesetze

Die Phasenumwandlung "isotrop-nematisch" in Flüssigkristallen ist i.a. mit einer kleinen Umwandlungsenthalpie, beispielsweise 0,18 kJ/mol für 5OCBP, verbunden. Es ist bekannt, daß kontinuierliche Phasenumwandlungen, wie z. B. die Umwandlung der smektisch A-Phase in die smektisch C-Phase oder das Verschwinden des Ferromagnetismus am Curiepunkt, ohne Umwandlungsenthalpie verlaufen können. Bei einer kontinuierlichen Phasenumwandlung ändern sich bestimmte Materialeigenschaften bei der Phasenumwandlungstemperatur im Gegensatz zu einer diskontinuierlichen Phasenumwandlung nicht sprunghaft (diskontinuierlich), sondern stetig (kontinuierlich). Eine weiteres Phänomen ist, daß bestimmte physikalische Eigenschaften bei Annäherung an die Phasenumwandlungstemperatur (kritische Temperatur) divergieren. Als Beispiel sei hier das starke Anwachsen der Rayleigh-Streuung bei der Entmischung eines binären Anilin-Cyclohexan-Gemisches mit einer kritischen Zusammensetzung von 47 Gew-% Anilin genannt.

Auch Flüssigkristalle zeigen ein solches Verhalten: Wird der oben erwähnte Flüssigkristall 5OCBP in der isotropen Phase abgekühlt, beobachtet man eine starke Zunahme der Lichtstreuung bei Annäherung an die flüssigkristalline Phase.

Wegen dieser Analogien sollten einige Resultate der Theorien zur kontinuierlichen Phasenumwandlungen auf die Phasenumwandlung isotrop-flüssigkristallin angewendet und auf ihre Übertragbarkeit untersucht werden.

2.3.1 Kritische Gesetze

Kritische Gesetze können strenggenommen nur auf kontinuierliche Phasenumwand-lungen angewendet werden. Hierbei wird in einem sehr engen Temperaturbereich die gemessene physikalische Eigenschaft als Funktion der reduzierten Temperatur

$$t = \frac{T - T_{\rm C}}{T_{\rm C}} \tag{16}$$

in Form eines Potenzgesetzes Stanley (1987) dargestellt,

$$F(t) = at^{\varphi}(1 + bt^{x} + ... +)$$
(17)

In dieser Darstellung ist *x* eine natürliche Zahl. Für $t \to 0$ d.h. $T \to T_{C}$, verschwinden alle Terme in der Klammer bis auf das erste Glied, so daß F(t) in der unmittelbaren Nähe von T_{C} einem Potenzgesetz der Form

$$F(t) \propto t^{\varphi} \tag{18}$$

genügt. Diese Darstellung wird als kritisches Gesetz bezeichnet, der Exponent φ wird kritischer Exponent und die Phasenumwandlungstemperatur T_c kritische Temperatur genannt.

Die zur Beschreibung dieses Phänomens entwickelten Modelle haben alle gemein, daß die betrachtete physikalische Eigenschaft bei der kritischen Temperatur divergiert. Sie unterscheiden sich in den angenommenen Wechselwirkungen der Teilchen, deren Reichweite und deren Dimensionalität.

Zwei dieser Theorien, das Mean-field-Modell und das Ising-Modell werden in dieser Arbeit für die Auswertung verwendet und sollen daher kurz skizziert werden.

Die Landau-Theorie, basiert ebenfalls auf den Annahmen eines Mean-field, sie wird aber wegen ihrer großen Bedeutung für die Beschreibung der Phasenumwandlungen in flüssigkristallinen Systemen im nächsten Abschnitt gesondert behandelt.

Die Grundannahme der Mean-field-Modelle ist, daß sich ein Teilchen in einem mittleren Feld (Mean-field) befindet, das von allen anderen erzeugt wird. Diese Vorstellung soll am Beispiel der Beschreibung des ferromagnetischen Zustandes durch P. Weiss (1908) erläutert werden.

Weiss nahm an, daß sich Eisenatome in einem Ferromagneten wie Elementarmagnete verhalten, und sich ohne ein äußeres Magnetfeld durch die Wechselwirkung mit dem durch die anderen Atome hervorgerufenen Magnetfeld ausrichten. Dieses Feld ist der makroskopischen Magnetisierung proportional. Bei der Curie-Temperatur verschwindet die makroskopische Magnetisierung, da eine erhöhte Temperatur eine Entropieerhöhung zur Folge hat. Die Erhöhung der Entropie ist gleichbedeutend damit, daß einige Eisenatome aus dem kollektiven Verband ausbrechen und somit das mean-field schwächen, was dazu führt, daß die restlichen Eisenatome im Verband noch leichter dem ausrichtenden Feld entkommen können und schließlich der ferromagnetische Zustand verschwindet.

Diese Theorie ergab für die Curie-Temperatur von Eisen den Wert 0,2 K, der rund vier Größenordnungen kleiner ist als der beobachtete.

Das Resultat zeigte, daß die Annahme der Mean-field-Näherung zur Beschreibung des ferromagnetischen Zustandes nicht korrekt war, weil insbesondere die ausrichtenden Kräfte nicht über die dipolare Wechselwirkung, sondern über die quantenmechanisch begründete Austauschwechselwirkung vermittelt werden.

E. Ising (1925) formulierte das nach ihm benannte Ising-Modell. In diesem Modell wird angenommen, daß die Teilchen einen Spin mit zwei entgegengesetzten Orientierungsmöglichkeiten haben, auf festen Gitterplätzen sitzen und nur benachbarte (kurzreichweitige Wechselwirkung) Teilchen miteinander wechselwirken können. Die Wechselwirkungsenergie ist für eine Parallelstellung der Spins minimal. Da das Bestreben nach kooperativer Ausrichtung der Spins nur über benachbarter Teilchen vermittelt wird, ist es einleuchtend, daß die aus dieser Theorie resultierenden Vorhersagen von der Dimensionalität des Modells abhängen. So konnte beim eindimensionalen Modell (lineare Kette) gezeigt werden, daß hier weder eine kritische Temperatur noch eine spontane Magnetisierung vorliegen. Beim zwei- und dreidimensionalen Modell hingegen existiert eine kritische Temperatur, bei der die spontane Magnetisierung erfolgt. Der energetisch niedrigste Zustand ist der, bei dem alle Spins ohne Einwirkung eines äußeren Feldes in dieselbe Richtung zeigen. Bei Temperaturenköhung äußert sich die Erhöhung der Entropie darin, daß einige Spins entgegen der orientierenden Wirkung der Nachbarn umklappen. Dieser Vorgang erleichtert einigen im alten Zustand verbliebenen Spins das gleiche zu tun. Der Prozeß nimmt beim Erreichen der kritischen Temperatur eine lawinenartige Form an.

2.3.2 Universalität

Alle Systeme mit der gleichen räumlichen Dimension und der gleichen Symmetrie des Ordnungsparameters haben die gleichen kritischen Exponenten, und zwar unabhängig von der Art ihrer Atome und von deren elektrischen oder magnetischen Eigenschaften. Mit "Symmetrie des Ordnungsparameters" bezeichnet man die Anzahl n seiner unabhängig wechselwirkenden Komponenten (Spindimension). Eine weitere Bedingung für die Universalität ist, daß die zwischen den Teilchen wirkenden Kräfte kurzreichweitig sind. Anders ausgedrückt, die Wechselwirkungsenergie muß für Abstände, die klein gegenüber der Kohärenzlänge sind, kleiner als kT sein. Ist diese Forderung erfüllt, dann divergiert beispielweise die Kompressibilität eines Flüssig-Gas-Systems an seinem kritischen Punkt mit dem gleichen Exponenten wie die magnetische Suszeptibilität eines Ferromagneten an seinem Curie-Punkt.

Aus diesem Grund können in der Auswertung in Kap. 4 die Ergebnisse aus der Messung der Lichtstreuung an kritischen und nichtkritischen Mischungen mit den magnetisch induzierten Doppelbrechungsmessungen an Flüssigkristallen in der isotropen Phase verglichen werden.

In Tab. 2 sind die zu einer physikalischen Eigenschaft zugehörigen experimentell ermittelten Exponenten und die aus dem Mean-field und 3d-Ising-Modell erwarteten Werte aufgeführt. Daraus kann entnommen werden, daß das 3d-Ising-Modell die experimentellen Werte wesentlich besser voraussagt als das Mean-field-Modell.

Physikalische	F(t)	Kritischer	Experimenteller	Ising-	Mean-
Eigenschaft		Exponent	Wert	Modell	field-
				d = 3	Theorie
spezifische Wärme	С	- <i>C</i> (0 - 0,2	0,12	0
Ordnungsparameter	Q	β	0,3 - 0,4	0,31	0,5
Suszeptibilität	χ	- Y	1,2 - 1,4	1,24	1
Korrelationslänge	Ľ	- V	0,6 - 0,7	0,64	0,5

 Tab. 2:
 Physikalische Eigenschaft und kritischer Exponent

2.3.3 Landau-Theorie

Die Landau-Theorie (Landau 1937) geht davon aus, daß während einer kontinuierlichen Phasenumwandlung eine Symmetriebrechung stattfindet. Um dieses mathematisch zu beschreiben, wird ein Ordnungsparameter *Q* eingeführt, der die Ordnung der höhergeordneten Phase, üblicherweise die Phase bei niedrigerer Temperatur, beschreibt. Diese Beschreibung von kontinuierlichen Phasenumwandlungen wurde von de Gennes (1970) auf die Phasenumwandlungen in Flüssigkristallen angewendet (Landau-de Gennes-Theorie (LdG)).

In Flüssigkristallen ist der Ordnungsparameter oberhalb des Klärpunktes sehr klein. Man kann daher versuchen, die freie Energiedichte in einer Potenzreihe von Q zu entwickeln:

$$F = F_0 + \frac{1}{2} A Q^2 - \frac{1}{3} B Q^3 + \frac{1}{4} C Q^4$$
(19)

In Gl. (19) taucht kein lineares Glied auf, da oberhalb des Phasenübergangs die isotrope Phase stabil ist, F also bei Q = 0 ein Minimum haben soll. Für den Entwicklungskoeffizienten A wird eine Temperaturabhängigkeit der Form

$$A = a'(T - T^*)^{\gamma} \tag{20}$$

mit $\gamma = 1$ angenommen. Diese Annahme erfüllt die Forderung, daß der Koeffizient *A* beim Phasenübergang verschwindet und sein Vorzeichen ändern muß. Der Vorzeichenwechsel ergibt sich daraus, daß oberhalb der Phasenumwandlung die ungeordnete Phase stabil sein soll, die freie Energiedichte ein Minimum bei Q = 0 aufweisen muß und somit A > 0 sein muß. In der flüssigkristallinen Phase muß für Q = 0 ein relatives Minimum der freien Energiedichte vorliegen, also A < 0 sein. Die Koeffizienten *B* und *C* werden als temperaturunabhängig angenommen. Durch den Term dritter Ordnung wird ein Phasenübergang erster Ordnung erzwungen.

Aus Gl. (19) läßt sich mit Hilfe von Gl. (20) für Flüssigkristalle ein Phasenübergang bei

$$T_{\rm C} = \frac{T^*}{1 - \frac{2B^2}{9a'C}}$$
(21)

ableiten (siehe Seite 26), ferner lassen sich die Umwandlungsenergie und der Ordnungsgrad bei $T_{\rm C}$ als Funktion der Entwicklungskoeffizienten und von T^* angeben. Der Klärpunkt $T_{\rm C}$, bei dem der Phasenübergang stattfindet, liegt nur wenig über der Temperatur T^* . T^* ist die Temperatur, bei der die Phasenumwandlung isotrop-flüssigkristallin kontinuierlich verlaufen würde.

Die Bedeutung der Temperaturen T^* , T^{**} und $T_{\rm C}$ ist aus Abb. 12 ersichtlich:

Bei T^* wechselt der Koeffizient *A* das Vorzeichen, unterhalb T^* ist die isotrope Phase instabil, da bei T^* das lokale Minimum bei Q = 0 verschwindet. Andererseits wird die flüssigkristalline Phase oberhalb von T^{**} instabil, das lokale Minimum bei Q > 0 verschwindet. Bei T_C besitzen die freien Energiedichten der flüssigkristallinen und der isotropen Phase den gleichen Wert. Die von Maier und Saupe entwickelte Theorie des isotrop-nematischen Phasenübergangs basiert auf einer orientierungsabhängigen van-der-Waals-Wechselwirkung zwischen den

Abb. 12: Verlauf der freien Energiedichte $\Delta F = F - F_0$ als Funktion des Ordnungsparameters Q bei verschiedenen Temperaturen. T^* ist die Temperatur, bei der die isotrope Phase gerade noch stabil (Unterkühlung) ist. Unterhalb kann keine isotrope Phase mehr existieren. Bei der Temperatur T_c liegen die isotrope und die flüssigkristalline Phase stabil vor (Klärpunkt). Die Temperatur T^{**} ist die Temperatur, bei der die flüssigkristalline Phase gerade noch stabil existieren kann.

Molekülen und einer Mean-field-Näherung. Sie kann für den Bereich der isotropen Phase in eine Potenzreihe entwickelt werden, die mit der aus der Landau-Theorie identisch ist. Eine molekulare Theorie, wie die von Maier und Saupe, ergibt für den Exponenten γ in Gl. (20) den Wert $\gamma = 1$.

2.3.4 Abschätzung der Koeffizienten der Landau-Entwicklung

Es wird aus praktischen Gründen die dimensionslose Form von Gl. (19) verwendet. Dazu wird Gl. (19) mit RT_{K} dividiert:

$$f = f_0 + \frac{1}{2}atQ^2 - \frac{1}{3}bQ^3 + \frac{1}{4}cQ^4$$
(22)

t ist die reduzierte Temperatur.

Die Verwendung der reduzierten Umwandlungstemperatur

$$t_{\rm K} = \frac{T_{\rm K} - T^*}{T_{\rm K}} \tag{23}$$

und die Berücksichtigung der Bedingungen $f - f_0 = 0$ und $Q_1 = 0$ (isotrope Phase) ergibt mit Gl. (22)

$$\frac{1}{2}at_{\rm K} - \frac{1}{3}bQ + \frac{1}{4}cQ^2 = 0 \tag{24}$$

mit der Lösung

$$Q_{2,3} = \frac{2b}{3c} \pm \sqrt{\frac{4b^2}{9c^2} - \frac{2at_{\rm K}}{c}}$$
(25)

Die möglichen Lösungen von Gl. (25) fallen zusammen für

$$t_{\rm K} = \frac{2b^2}{9ac} \,, \tag{26}$$

aus der sich der Klärpunkt $T_{\rm K}$ unter Verwendung von Gl. (23) zu

$$T_{\rm K} = \frac{T^{*}}{1 - \frac{2b^2}{9ac}}$$
(27)

ergibt. Der Ordnungsgrad am Klärpunkt in der flüssigkristallinen Phase läßt sich aus Gl. (25) zu

$$Q_{\rm K} = \frac{2b}{3c} \tag{28}$$

bestimmen.

Die Entropie wird mit $\partial F / \partial T = -S$ aus Gl. (22) erhalten:

$$\frac{1}{RT_{\rm K}}\frac{\partial F}{\partial T} = \frac{1}{RT_{\rm K}}\frac{\partial F_0}{\partial T} + \frac{a}{2T_{\rm K}}Q^2$$
(29)

Wird die Entropie für die isotrope (Q = 0) und die nematische Phase $Q \neq 0$ berechnet, so ergibt sich für die Umwandlungsentropie

$$\Delta S_{\rm K} = \frac{1}{2} a R Q_{\rm K}^{2} \tag{30}$$

Die Umwandlungsentropien sind aus Messungen der Umwandlungsenthalpien bekannt. Der Sprung des Ordnungsgrades am Klärpunkt ist in dieser Arbeit nicht bestimmt worden, so daß an dieser Stelle Literaturwerte verwendet werden müssen.

Mit den Gl. (26), (28) und (30) lassen sich nun die Koeffizienten *a*, *b* und *c* bestimmen:

$$a = \frac{2\Delta S_{\rm K}}{RQ_{\rm K}^{2}} \tag{31}$$

$$b = \frac{6\Delta S_{\rm K}}{RQ_{\rm K}^{3}} t_{\rm K}$$
(32)

$$c = \frac{4\Delta S_{\rm K}}{RQ_{\rm K}^{4}} t_{\rm K}$$
(33)

Für MBBA beispielsweise erhält man mit den Werten:

$$T_{K} = 320 \text{ K}$$
, $Q_{K} \approx 0.4$, $\Delta S_{K} = 1.57 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$ und $t_{K} = \frac{1.5}{320}$

a = 2,36 b = 0,083 c = 0,138

In dem Buch von Anisimov (1991) wurden diese Koeffizienten ebenfalls mit den Gl. (31), (32) und (33) berechnet. Allerdings wurde dort bei der Berechnung des Wertes von a mit Gl.(31) der Faktor 2 übersehen.

Diese mit Hilfe der Landau-Theorie und experimentell ermittelten Daten berechneten Größen werden bei der Verwendung von unterschiedlichen Theorien zur Datenauswertung in Kap. 4 zu Vergleichszwecken herangezogen.

:

2.4 Cotton-Mouton-Effekt in der isotropen Phase von Flüssigkristallen

In der isotropen Phase gibt es keine langreichweitige Molekülorientierung, der Ordnungsparameter verschwindet im zeitlichen Mittel. Innerhalb molekularer Dimensionen, definiert durch die Kohärenzlänge ξ , existiert jedoch noch lokale Ordnung (Abb.13).

Abb. 13: Schematische Darstellung der Nahordnung nach de Gennes in der isotropen Phase (dicht am Klärpunkt) eines nematischen Flüssigkristalls.

Die geordneten Bereiche werden im Magnetfeld teilweise orientiert. Dieser Effekt führt dazu, daß bei Anwesenheit eines äußeren Feldes das Minimum von F nicht mehr bei Q = 0 liegt, der Ordnungsparameter also im zeitlichen Mittel einen von Null verschiedenen Wert annimmt.

Da der Ordnungsparameter in der isotropen Phase auch bei Anwesenheit eines großen Feldes klein ist, genügt es, die in Gl. (19) angegebene Reihenentwicklung durch ein Glied zu ergänzen, das die zusätzliche Energiedichte in einem äußeren Magnetfeld berücksichtigt und bereits nach den quadratischen Gliedern abzubrechen.

$$F = F_0 + \frac{1}{2}a(T - T^*)Q^2 - \frac{1}{2}\chi_a\mu_0H^2Q$$
(34)

 χ_a ist die Suszeptibilitätsanisotropie und ergibt sich aus der Differenz der Suszeptibilitäten parallel und senkrecht zum Magnetfeld bei einem Ordnungsgrad von 1.

Das Minimum von F ergibt sich bei:

$$Q = \frac{\chi_a \mu_0 H^2}{2a(T - T^*)}$$
(35)

Die in der isotropen Phase induzierte Doppelbrechung, Δn , ist nach Stinson und Litster dem Ordnungsgrad proportional

$$\Delta n = \frac{\varepsilon_{\rm s} - \varepsilon_{\rm p}}{2\sqrt{\varepsilon}} Q = \varepsilon_{\rm a} Q \tag{36}$$

wobei ε_s und ε_p die Dielektrizitätskonstanten (bei Lichtfrequenz) senkrecht und parallel zum Magnetfeld bei Q = 1 sind und

$$\overline{\varepsilon} = \frac{1}{3} (2\varepsilon_{\rm s} + \varepsilon_{\rm p}) \tag{37}$$

die Spur des Dielektrizitätstensors bedeutet. Der Faktor vor Q in (36) ist die Anisotropie der Dielektrizitätskonstante ε_a

Durch einsetzen von (36) in (35) erhält man:

$$\Delta n = \frac{1}{2} \frac{\varepsilon_{a} \chi_{a} \mu_{0} H^{2}}{a} \frac{1}{(T - T^{*})}$$
(38)

Ein äußeres Magnetfeld induziert in der isotropen Phase eines Flüssigkristalls eine Doppelbrechung. Daraus erhält man mit Gl. (14) für die Temperaturabhängigkeit der CM-Konstante:

$$CM = \frac{\Delta n}{\lambda H^2} = \frac{\varepsilon_a \mu_0 \chi_a}{2 \lambda} \frac{1}{a (T - T^*)} = \frac{\kappa}{T - T^*}$$
(39)

Bei elektrischer Doppelbrechung, Strömungsdoppelbrechung und Lichtstreuung ergeben sich analoge Gesetzmäßigkeiten für die Kerr-Konstante, Maxwell-Konstante und Streuintensität.

Nach dieser Theorie sollte eine Auftragung der reziproken CM-Konstante gegen die Temperatur T eine Gerade ergeben. Dabei ist festgestellt worden, daß in der Nähe des Klärpunktes zum Teil eine starke Abweichung von der Theorie auftritt. Für die Temperatur T^* ergibt sich ein Wert, der etwa 1 K unterhalb der Klärpunktstemperatur liegt.

3. Experimentelles

3.1 Meßverfahren

Der experimentelle Nachweis (siehe Abb. 15) der magnetisch induzierten Doppelbrechung (CM-Effekt) geschieht i.a. so, daß man senkrecht zur Richtung des Magnetfeldes einen Lichtstrahl durch die Probe schickt, der unter 45° zur Feldrichtung linear polarisiert ist.

Wegen der in der Probe hervorgerufenen optischen Anisotropie erhalten die beiden parallel bzw. senkrecht zum Magnetfeld schwingenden Komponenten der elektromagnetischen Welle unterschiedliche Ausbreitungsgeschwindigkeiten, so daß nach der Probe der Meßstrahl nicht mehr linear, sondern elliptisch polarisiert ist. Hinter einem zur ursprünglichen Polarisationsrichtung um 90° gedrehten zweiten Polarisator erhält man teilweise Aufhellung.

Obwohl aus der vom zweiten Polarisator durchgelassenen Intensität prinzipiell die Phasendifferenz bzw. die Doppelbrechung berechnet werden kann, wird diese Methode wegen der großen Beeinflussung durch Intensitätsschwankungen nicht angewandt; fast alle Meßmethoden beruhen auf einer Kompensation der zu messenden Doppelbrechung.

Die Kompensation der Doppelbrechung wird in dieser Arbeit durch eine Pockelszelle vorgenommen und zur Steigerung der Detektionsempfindlichkeit wird die Lock-In-Technik verwendet.
3.2 Apparatives

Für die Messung des CM-Effektes wurde die in Abb. 14 gezeigte Apparatur aufgebaut.

Als Lichtquelle wird ein He-Ne-Laser mit einer Leistung von 5 mW verwendet. Als Polarisator und Analysator werden Glan-Thompson-Polarisationsprismen der Firma "Bernhard Halle" GmbH eingesetzt. Das Magnetfeld wird mit einem Magneten (B-E 25) der Firma Bruker erzeugt. Die bei einem Polschuhabstand von etwa 25 mm erreichbare maximale Feldstärke beträgt 18 kG. Die Messung und Regelung der Feldstärke erfolgt über eine Hall-Sonde, die sich zentral auf dem Polschuh befindet. Die Messung der induzierten Doppelbrechung erfolgt über eine Pockelszelle und Lock-In-Technik. Dazu wird die Betriebsspannung der Pockelszelle mit einer Wechselspannung der Frequenz von ca. 7 kHz und einem Modulationshub von ca. 4 V überlagert. Als Detektor wird eine Photodiode benutzt. Die Polarisationsebene des Laserlichtes wird durch den Polarisator mit 45° zu den Magnetfeldlinien festgelegt. Dieses Licht passiert erst die Pockelszelle, in der daraus moduliertes elliptisches Licht erzeugt wird, und gelangt in die Probe. Die sich im Magnetfeld befindende Meßsubstanz ist optisch anisotrop und kompensiert die durch die Pockelszelle vorgegebene Elliptizität des Lichtes, so daß wieder linear polarisiertes Licht die Meßzelle verläßt. Mit einem dahinter angebrachten, zum Polarisator senkrecht stehenden Analysator läßt sich dieses Licht vollständig auslöschen. Die an der Pockelszelle anliegende Spannung ist ein Maß für die in der Meßzelle indu-

zierte Doppelbrechung.

Abb. 15: Schematische Darstellung der Apparatur zur Messung der Cotton-Mouton-Konstante.

3.3 Optische Bauteile und ihre Justage

3.3.1 Polarisator und Analysator

Als Polarisator und Analysator wurden Glan-Thomson-Polarisationsprismen der Firma Bernhard Halle GmbH eingesetzt. Die Prismen haben eine Öffnung von 7,5 mm und eine Länge von 24 mm. Das Löschungsverhältnis ist besser als 10⁻⁶. Die Ebenheit der Stirnflächen ist besser als $\lambda/4$. Die Wellendeformation der durchgehenden Welle ist ebenfalls kleiner als $\lambda/4$ und die prismatische Ablenkung beträgt maximal 2'.

Abb. 16: Halterung des Polarisators mit Reiter für X95-Profil

Die isotrope Phase einer flüssigkristallinen Substanz wird bei Anwendung eines Magnetfeldes anisotrop. Im Prinzip liegt ein uniaxialer Kristall vor, dessen optische Achse durch die Richtung des Magnetfeldes gegeben ist. Es existieren zwei Achsen mit unterschiedlichen Brechungsindizes, deren maximale Differenz (Doppelbrechung) nun zu bestimmen ist. Zur Bestimmung der Doppelbrechung wird die Polarisationsebene des eingestrahlten Lichtes so eingestellt, daß sie einen Winkel von 45 ° mit einer der beiden Achsen des "Kristalls" bildet. Da eine Achse des "Kristalls" durch die Richtung des Magnetfeldes vorgegeben ist, wird sie aus praktischen Gründen als Bezugsrichtung gewählt. Für die Einstellung dieses Winkels wurden die beiden Polarisatoren selbst verwandt. Im ersten Schritt wird die Polarisationsebene des Polarisators P auf etwa 45° zum Magnetfeld eingestellt. Der Analysator A wird in Kreuzstellung zum Polarisator justiert. Dazu wird die Intensität des Laserlichtes nach dem Passieren der Polarisatoren gemessen und der Analysator soweit gedreht, bis die beobachtete Intensität minimal ist.

In Abb. 17 ist dieser Aufbau schematisch dargestellt, dabei verläuft der Laserstrahl senkrecht zur Papierebene. Eine solche Anordnung hat nur dann eine zweifache Rotationsachse (C_2) bezüglich der Durchlaßrichtung von Analysator und Polarisator, wenn der Winkel α 45° beträgt und die Polarisatoren gekreuzt sind. Dieser Zustand wird erreicht, wenn nach einer Drehung des Polarisators um 180° um die Symmetrieachse und anschließend des Analysators um 90° um den Azimutwinkel, die beobachtete Intensität des Laserlichtes hinter den Polarisatoren den gleichen Wert hat wie vor Änderung der Winkel. Die sukzessive Anwendung dieser Einstellung ermöglicht die Justage ohne Zuhlifenahme weiterer Meßgeräte.

3.3.2 Ausrichtung des Lasers

Die Fortpflanzungsrichtung \vec{k} des Laserlichtes muß für die Messung des CM-Effektes senkrecht zur magnetischen Feldstärke \vec{H} stehen.

Abb. 18: Schematische Darstellung der Ausrichtung des Lasers.

Für die Justage wird der Faraday-Effekt ausgenutzt. Eine Probe, die keinen CM-Effekt zeigt, wird zwischen die gekreuzten Polarisatoren plaziert. Diese Forderung ist bei einem Molekül ohne Suszeptibilitätsanisotropie wie Tetrachlorkohlenstoff (CCl₄) erfüllt. Tetrachlorkohlenstoff zeigt nur den Faraday-Effekt. Der Magnet wird im eingeschalteten Zustand so gegen den Laserstrahl gedreht, bis ein Intensitätsminimum hinter dem Analysator zu beobachten ist ($\beta = 90^{\circ}$). In dieser Lage werden die magnetischen Feldlinien senkrecht vom Laserlicht durchsetzt.

3.3.3 Die Pockelszelle

Die induzierte magnetische Doppelbrechung wird durch den Einsatz einer Pockelszelle kompensiert. Die Pockelszelle PZ (ein speziell verarbeiteter Kaliumdideuteriumphosphat-Einkristall) ist ein elektrooptischer Kompensator. Eine an die PZ angelegte Gleichspannung induziert eine Biaxialität in dem Einkristall, die bewirkt, daß ein durch sie laufendes linear polarisiertes Licht in ein elliptisch polarisiertes umgewandelt wird.

Es wird zwischen zwei Pockelszelltypen unterschieden, je nach dem ob das angelegte elektrische Feld parallel oder quer zur optischen Achse liegt. Im ersten Falle spricht man vom longitudinalen, im zweiten vom transversalen Pockelseffekt. Die hier eingesetzte Pockelszelle wurde von der Firma Gsänger (PZ7) bezogen und nutzt den longitudinalen Pockelseffekt aus.

Die Genauigkeit der Meßwerte hängt sehr stark von der Güte der Justage der Pockelszelle ab. Um die PZ richtig justieren zu können, ist eine Halterung konstruiert worden, die eine Justage der PZ in drei Raumrichtungen ermöglicht.

Abb. 19:

- Justier- und Thermostatisiervorrichtung für die Pockelszelle:
- 1: Kabel für Stromzufuhr
- 2: Öffnung für Laserstrahl
- 3: Kontaktschlauch für Temperierung
- 4: Temperierung und Isolierung
- 5: Mikrometerschraube für die Azimuteinstellung
- 6: Drehteller mit Winkeleinstellung

Für die Justage wird der vom Hersteller der PZ angegebener Wert der Halbwellenspannung verwandt. Dazu wird die Zelle zwischen die gekreuzten Polarisatoren gebracht und mit divergentem Licht durchstrahlt.

8. Experiment	telles
---------------	--------

Abb. 20 zeigt das so beobachtete Interferenzmuster. Dieses Bild ist typisch für alle ein achsigen Kristalle, die sich im divergenten, polarisierten Licht zwischen gekreuzten Polarisatoren befinden. Die Lage des Achsenkreuzes in diesem Bild beweist, daß die

Abb. 20: Interferenzfigur der Pockelszelle beim Blick entlang der isotropen Achse (ohne Betriebspannung). Das Kreuz gibt zwei der kristallographischen Achsen des Kristalls wieder. Die Schwingungsebene des polarisierten Laserlichtes verläuft entlang einer dieser Achsen. Die Richtung des Magnetfeldes ist die Winkelhalbierende.

Polarisationsebene des Laserlichtes richtig eingestellt ist. Nach dem Anlegen der Halbwellenspannung von etwa 4 kV wird der Analysator um 90° gedreht und mit der Mikrometerschraube (siehe Abb. 19) der Azimutwinkel so eingestellt, bis das gleiche Interferenzmuster wie in Abb. 20 erhalten wird.

Der Spannungswert, bei dem bei paralleler Polarisator-Analysator Stellung keine Intensität hinter dem Analysator zu beobachten ist, bzw. ein Interferenzmuster wie in Abb. 20 erhalten wird, ist die für die Pockelszelle charakteristische Halbwellenspannung. Ihr Wert liegt für einen He-Ne-Laser mit 632 nm bei etwa 4 kV.

Es hat sich herausgestellt, daß dieser Wert stark von der Temperatur der Pockelszelle abhängt. Die Schwankungen der Halbwellenspannung betrugen an manchen Tagen mit großen Raumtemperaturänderungen ± 200 V. Eine Möglichkeit, diesen Temperatureffekt zu berücksichtigen, bestand darin, bei jedem Experiment auch die Halbwellenspannung zu messen. Dieses Verfahren bringt jedoch zwei Nachteile mit sich:

- Bei jeder Messung muß der Analysator um 90° gedreht werden, dadurch entstehen zusätzliche Ungenauigkeiten.
- 2. Der Betrieb der Pockelszelle mit sehr hoher Spannung d. h. häufigem Anlegen

3. Experimentelles

der Halbwellenspannung, senkt ihre Lebensdauer drastisch.

Die einzige Möglichkeit, über die gesamte Meßzeit von ca. 12 Stunden für eine Probe eine stabile Halbwellenspannung für die Pockelzelle zu erhalten, war ihre Thermostatisierung. Sie erfolgte durch einen Kontaktschlauch, mit dem die Fassung der Pockelszelle umwickelt war und der von Wasser aus einem Thermostaten durchströmt wurde. Alle Messungen wurden bei einer Zelltemperatur von 20 °C durchgeführt.

3.4 Die Meßzelle

Da sich die Meßzelle während der Messungen im Magnetfeld befindet, sollte das verwendete Material das Magnetfeld möglichst wenig beeinflussen. Es konnten daher nur Materialien mit einer geringen magnetischen Suszeptibilität verwendet werden. Zudem mußte der Werkstoff der Stirnflächen transparent und völlig plan sein. Aus diesem Grund erfolgte die Herstellung der Meßzelle zunächst aus Messing und Glas. Dabei wurden die als optische Platten dienenden Glasplatten mit einem Klebstoff an den Stirnflächen der aus Messing gefertigten Meßzelle angebracht. Der Klebstoff quoll jedoch bei Kontakt mit der Probensubstanz auf, veränderte damit die Lage der optischen Platten und bewirkte so eine Ablenkung des Lichtstrahls von seiner ursprünglichen Richtung. Messing und Glas besitzen zudem unterschiedliche thermische Ausdehnungskoeffizienten, daher entsteht bei einer Temperaturänderung eine mechanische Spannung im Glas, die zu einer Doppelbrechung des Lichtes führt. Der Einsatz zweier unterschiedlicher Materialien für die Konstruktion der Meßzelle mußte also aus diesen Gründen aufgegeben werden.

Die geforderten Kriterien einer geringen Suszeptibilität, eines sehr geringen thermischen Ausdehnungskoeffizienten und der Beibehaltung der optischen Eigenschaften bei der Verarbeitung besitzt Quarz, der daher als Werkstoff für die Meßzelle dienen sollte. Es hat sich auch bei dieser Meßzelle gezeigt, daß es sehr schwierig ist, die optischen Fenster so anzubringen, daß die optischen Eigenschaften nicht beeinträchtigt werden. Insbesondere ist es nicht gelungen, die Zellfenster so zu verarbeiten, daß ihre Flächennormalen parallel zur Ausbreitungsrichtung des Laserlichtes lagen, was zur Folge hatte, daß der Laserstrahl eine Ablenkung von seiner ursprünglichen Richtung erfuhr.

In der nächsten Entwicklungsstufe wurde eine ähnliche Meßzelle angefertigt, wie die zu Beginn dieser Arbeit verwendete. In dieser wurden die optischen Platten nicht auf die Stirnflächen der Messinghülle geklebt, sondern durch ein Stempel-Feder System auf einen dazwischenliegenden 0,2 mm starken Teflonring gedrückt. Die Abdichtung erfolgte durch den Teflonring. Mit dieser Meßzelle sind sehr viele Messungen unproblematisch verlaufen. Diese Meßzelle eignete sich nicht für Messungen, bei der die Substanz entgast werden mußte, weil sie nicht vakuumdicht ist. Daher ist in der letzten Entwicklungsstufe eine Meßzelle aus einer Messinghülle und einer in ihr gelagerten Quarzküvette entstanden. Die Quarzküvette ist eine Sonderanfertigung der Firma Hellma. Diese Meßzelle weist folgende Eigenschaften auf:

- sehr geringe magnetische Suszeptibilität,
- sehr gute optische Eigenschaften,
- optimale Thermostatisierbarkeit bei minimalem Zelldurchmesser,
- minimaler Substanzverbrauch (ca. zwei Milliliter),
- evakuierbarer Probenraum

3.4.1 Dimensionierung der Meßzelle

Die magnetisch induzierte Doppelbrechung ist proportional zur Weglänge des Lichtes in der Substanz. Die Doppelbrechung wäre also am größten, wenn der gesamte Polschuhdurchmesser von 25 cm, benutzt würde. Die Weglänge von 25 cm kann jedoch aus den nachstehend angeführten Gründen nicht vollständig ausgenutzt werden:

- An den Rändern der Polschuhe ist das Feld des Magneten inhomogen, so daß die Bedingung der konstanten Feldstärke über die gesamte Probenlänge nicht erfüllt ist.
- Bei der Messung des Cotton-Mouton-Effektes bei Flüssigkristallen kurz oberhalb der Klärpunktstemperatur ist die Streuung des Lichtes so stark, daß bei großen Weglängen die Lichtintensität am Detektor zu gering ist.

Aus diesen Gründen ist eine optische Weglänge von 10 cm gewählt worden, da bei dieser Länge ein homogenes Magnetfeld über die gesamte Probenlänge sichergestellt ist und auch direkt oberhalb des Klärpunktes eine ausreichende Intensität am Detektor vorliegt. Eine untere Grenze für die Breite der Küvette ergab sich aus der Breite des Laserstrahls (2 mm). Es sollte auf jeden Fall vermieden werden, daß das Licht an der Wandung reflektiert wird, da dieser Effekt zu einer Veränderung des Polarisationszustandes führt. Die Zelldicke von 16 mm ergibt sich aus dem Durchmesser der Quarzküvette von 7 mm, dem Abstand zwischen Küvette und Außenwand für die Thermostatisierflüssigkeit und der Stärke der Gefäßaußenwand.

Bei der Konstruktion ist darauf geachtet worden, daß Füllrohr und Stirnflächen der Küvette ebenfalls weitgehend thermostatisiert sind. Bei den ersten Konstruktionen mit außenliegendem Füllrohr hat sich gezeigt, daß die auftretende Konvektionsströmung im Einfüllrohr die Messung merklich stört. Die Stirnflächen der Küvette liegen in der jetzigen Konstruktion hinter 30 mm thermostatisierter Luftsäule (siehe Abb. 21).

Abb. 21: Schematische Darstellung der Meßzelle. Die Pfeile zeigen in Fließrichtung der Thermostatisierflüssigkeit.
1: Thermostatflüssigkeit, 2: Quarzküvette, 3: Substanz, 4: Stempel, 5: O-Ring, 6: Feder, 7: Arretierung, 8: Halterung, 9: Grundplatte

Die Quarzzelle wird nach Entfernen des Deckels in die Messinghülle eingesetzt. Nach Aufsetzen des Deckels liegt die Quarzzelle mit ihren Zellfenstern in zwei Rohren, die gegen die Fenster mit einem O-Ring gedichtet und mit einem Stempel-Feder-Stempel-System leicht angedrückt werden. Der Einfüllstutzen wird durch ein Loch im Deckel nach außen geführt. Der Deckel wird ebenfalls mit jeweils einem O-Ring gegen die Hülle und den Einfüllstutzen gedichtet.

Abb. 22: Die Messinghülle mit eingesetzter Quarzküvette.

3.4.2 Befüllung

Bei den ersten Versuchen mit dieser Zelle wurde die Füllung mit einer Spritze mit Stahlkanüle vorgenommen. Um die Substanz von eingeschleusten Gasblasen zu befreien, wurde die Kanüle der Spritze schnell auf und ab bewegt. Mit der dadurch bewirkten Flüssigkeitsbewegung gelingt es, Gasblasen in der Nähe des Einfüllstutzens nach oben zu transportieren. An der Zellbewandung festsitzende Gasblasen wurden gelöst, in dem die Kanülenspitze gegen die Zellwand gestoßen wurde. Dieses Verfahren brachte den Nachteil mit sich, daß die Probe durch winzige Bruchstücke der Kanüle verunreinigt wurde. Es konnte nachgewiesen werden, daß diese Verunreinigung die Ursache des in der Literatur als "anomale CM-Konstante" beschriebenen Effektes ist (siehe Abschnitt 3.6).

Um diesen Effekt zu vermeiden, wurde ein thermostatisierbarer Kolben (siehe Abb. 23)

mit einem aufgesetzten T-Stück konstruiert.

Das Einfüllen erfolgt in mehreren Schritten:

- Die Substanz wird in den Kolben eingebracht und mit der Öffnung 3 an den Einfüllstutzen der Meßzelle angeschlossen.
- 2.) Der Kolben wird über die Anschlüsse 1 und 2 bei einer Temperatur von 20 K oberhalb der Klärpunktstemperatur thermostatisiert.
- 3.) Das Ventil zur Stickstoffflasche wird geschlossen, das zur Drehschieberpumpe geöffnet, und es wird zwei Stunden bei 10⁻³ mbar evakuiert.
- 4.) Das Ventil zur Pumpe wird geschlossen. Der Kolben mit der Meßzelle wird so gekippt, daß die Substanz in die Meßzelle fließt. Dieser Vorgang wird durch das Öffnen des Stickstoffventils beschleunigt.

3.4.3 Thermostatisierung und Temperaturmessung

Die Thermostatisierung der Meßzelle erfolgte mit einem Thermostaten der Firma Lauda (C6CP). Als Badflüssigkeit wurde je nach Meßtemperatur Wasser oder Paraffinöl verwendet. Die Schwankung der Temperatur betrug in beiden Fällen $\pm 0,02$ K.

Die Meßzelle hat für die Badflüssigkeit jeweils zwei symmetrisch angeordnete Eingänge und Ausgänge unterhalb und oberhalb der Zelle (siehe Abb. 21 und 22), wodurch eine optimale Thermostatisierung der Probe gewährleistet wird.

Die Temperatur wurde aus praktischen Gründen am Eingang der Meßzelle gemessen. Zum Vergleich ist eine Messung mit einem anderen in der Arbeitsgruppe entwickelten Thermostaten (Ney, 1998) durchgeführt worden. Dieser Thermostat zeichnet sich durch eine hohe Temperaturstabilität (±0,0004 K) aus, was besonders in der Nähe der Phasenumwandlung von Vorteil war. Dieser Vergleich hat auch gezeigt, daß die bisherigen Messungen kaum von den Messungen mit dem Präzisions-Thermostaten abwichen. Die Temperatur wurde bei den CM-Messungen mit einem Pt-100 Platinwiderstandmeßfühler und einem Digitalvoltmeter (R44/2 Lauda mgw) mit einer Temperaturauflösung von 0,01 K bestimmt. Vor jeder Messung wurde der Meßfühler nach einer Einschaltzeit von zwei Stunden in eine Eis / Wasser-Mischung gesteckt und die Anzeige des Gerätes auf

Т	ab.	. 3:

Vergleich Anzeige Präzisionstemperaturmeßgerät (PAAR) und Lauda (mgw).

<i>T</i> (PAAR) / °C	<i>T</i> (mgw) / °C
30,060	30,07
40,093	40,11
49,823	49,84
59,898	59,92
70,037	70,06
80,077	80,06

0,00 °C gebracht.

Der Meßfühler wurde zwischen 30 und 80 °C mit einem geeichten Präzisions-Temperaturmeßgerät der Firma PAAR (MKT) verglichen. Die absolute Genauigkeit dieses Gerätes beträgt $\pm 0,001$ K. Die Vergleichswerte sind in Tab. 3 zusammengestellt. Die Temperaturdifferenzen betrugen maximal $\pm 0,03$ K.

3.4.4 Magnetfeldkalibrierung

Die Feldstärke des Magnetfeldes wurde mit Hilfe einer Hallsonde, die sich zwischen der Probe und einem der Polschuhe in der Polschuhachse befand, gesteuert und gemessen. Die Vermessung der Feldstärke längs der Probe mit Hilfe einer zweiten Hallsonde ergab Abweichungen von maximal 0,5 % an den Enden. Die über die Probe quadratisch gemittelte Feldstärke stimmte daher für die durchzuführende Untersuchung genügend genau mit dem Wert im Probenzentrum überein. Weiterhin wurde der von der Hallsonde angezeigte Wert mit Hilfe einer Kernresonanz-Feldmeßsonden der Fa. AEG überprüft. Danach liegt die wahre Induktion bei 17,64 kG statt der für die Messung eingestellten 17,5 kG. Für die Auswertung wurde der korrigierte Wert verwandt.

3.5 Testmessungen mit Benzol und Toluol

Als Eichsubstanzen kamen Verbindungen in Betracht, die einen hinreichend großen

Abb. 24: Abhängigkeit der Kompensationspannung als Funktion des Quadrates der angelegten Magnetfeldstärke für Benzol und Toluol bei 25 °C.

3. Experimentelles

Cotton-Mouton-Effekt zeigen, stabil und flüssig sind und von denen gesicherte Literaturwerte vorliegen. Diese Bedingungen werden von Benzol und Toluol gut erfüllt, weshalb sie dann auch zur Eichung eingesetzt wurden. Die Substanzen wurden unmittelbar vor ihrer Untersuchung destilliert und entgast.

In der Regel liegt eine Spannungsdoppelbrechung zu Beginn der Messung vor. In Abb. 24 trifft dies für beide Messungen zu. Der Betrag der Spannungsdoppelbrechung hängt von der verwendeten Küvette sowie vom Andruck des Teflonrings ab.

Bestimmung der CM-Konstante

Die Phasenverschiebung der beiden Komponenten E_p und E_s (s. Abb. 10) beträgt nach Durchlaufen der Probe

$$\phi = \frac{2\pi\Delta nl}{\lambda} \tag{40}$$

Die bei der Messung angelegte Kompensationsspannung U_k wird mit der Halbwellenspannung der Pockelszelle verglichen

$$\frac{U(\lambda/2)}{U_k} = \frac{\pi}{\phi}$$
(41)

Daraus ergibt sich für die induzierte Doppelbrechung

$$\Delta n = \frac{\lambda U_k}{2lU(\lambda/2)} \tag{42}$$

Mit der Definition der CM-Konstanten

$$CM = \frac{1}{\lambda} \frac{\Delta n}{H^2}$$
(43)

und der Beziehung $B = \mu_0 H$ erhält man

$$CM = \frac{\mu_0^2}{2lU(\lambda/2)} \frac{U_k}{B^2}$$
(44)

Für die Messung der CM-Konstante ist die Spannungsdoppelbrechung der Zelle ohne Magnetfeld irrelevant, da zur Auswertung U_k / B^2 aus dem Differenzenquotienten $\Delta U_k / \Delta B^2$ berechnet wird.

Für die CM-Konstante von Benzol bei 25 °C ergibt sich mit

Küvettenlänge	:	l = 0,1 m
Halbwellenspannung	:	$U(\lambda / 2) = 3973,2 \text{ V}$
magnetische Feldkonstante	:	$\mu_0 = 4\pi \cdot 10^{-7} \text{ Vs} / (\text{Am})$
magnetische Induktion	:	$\Delta B = 1,7 \text{ T} = 1,7 \text{ Vs} / \text{m}^{-2}$
Kompensationsspannung	:	$\Delta U_{\rm k} = 11,4 { m V}$

$$CM = \frac{(4 \pi \cdot 10^{-7})^2 \text{ V}^2 \text{ s}^2 \text{ A}^{-2} \text{ m}^{-2}}{2 \cdot 0,1 \text{ m} \cdot 3973,2 \text{ V}} \frac{11,4 \text{ V}}{1,7^2 \text{ V}^2 \text{ s}^2 \text{ m}^4}$$

 $CM = 7,84 \cdot 10^{-15} \text{ A}^{-2} \text{ m}$

	Benzol	Toluol
$CM / 10^{-15} \text{m A}^{-2}$	$7,\!84 \pm 0,\!16$	$8,\!41 \pm 0,\!16$
eigene Messung		
$CM / 10^{-15} \text{m A}^{-2}$	$7,90 \pm 0,24$	$8,35 \pm 0,25$
Bataglia et al. (1976)		

 Tab. 4:
 Vergleich der gemessenen CM-Konstanten mit Literaturwerten.

Meßgenauigkeit:

Die aus Tab. 4 folgende Unsicherheit bei der Bestimmung der CM-Konstanten beträgt etwa 2%.

Es zeigte sich, daß bei ungünstigem Einsetzen der Küvette in die Messinghülle die Schwankungen der Meßwerte mit dem Ein- und Ausschalten der Thermostatheizung korreliert sind. Selbst Temperaturänderungen von 0,001 Kelvin konnten eindeutig nachgewiesen werden.

3.6 Der "anomale" Cotton-Mouton-Effekt

Muta et al. berichteten 1978 zum ersten Male über einen anomalen Cotton-Mouton-Effekt der Substanz 4-Cyano-4´-pentyloxybiphenyl (4OCBP). Die Autoren beobachteten, daß die untersuchte Substanz bei niedrigen Magnetfeldstärken eine sehr starke Doppelbrechung aufwies ("Anomalie") und bei Erhöhung der Magnetfeldstärke die quadratische Feldstärkeabhängigkeit der Doppelbrechung eintrat. Ein Jahr später folgte von derselben Arbeitsgruppe eine Veröffentlichung, in der diese Anomalie auf ungenügende Entgasung der Probe zurückgeführt wurde. Weiterhin wurde in der Arbeit gezeigt, daß diese Anomalie nach "richtigem" Entgasen verschwindet.

Eine ähnliche Anomalie wurde auch in der vorliegenden Untersuchung beobachtet, unabhängig davon, ob die Probe entgast wurde oder nicht. Die induzierte Doppelbrechung war dabei sehr stark von der magnetischen Induktion abhängig. Sehr kleine Felder von etwa 1 G (!) bewirkten dabei eine Doppelbrechung, die normalerweise bei etwa 1 kG beobachtet wird. Bei höheren Magnetfeldern traten Sättigungseffekte ein. Bei Feldstärken oberhalb der Sättigungsmagnetisierung wurde der normale CM-Effekt beobachtet (siehe Abb. 25 und 26). Der Effekt fand sich auch bei Substanzen wie Nitrobenzol oder Toluol. Der Effekt trat verstärkt dann auf, wenn die Zelle mit höher viskosen Flüssigkristallen gefüllt wurde. Um die Substanz von eingeschleusten Luftblasen zu befreien, mußte die in Abschnitt 3.4.2 beschriebene Prozedur angewendet werden. Möglicherweise entstehen dabei winzige Quarzbruchstücke oder ferromagnetische Späne aus dem Stahl der Kanüle, welche diesen Effekt hervorrufen.

Zur Klärung wurde ein Experiment mit Nitrobenzol durchgeführt. Frisch destilliertes Nitrobenzol wurde mit einem Teflonschlauch in die Quarzzelle eingefüllt und der normale CM-Effekt wurde beobachtet (volle Kreise in Abb. 25). Im zweiten Experiment wurden abgefeilte Bruchstücke einer Kanüle mit einer Länge von etwa 10 μ m (unter dem Mikroskop ausgesucht) Nitrobenzol zugefügt und das Ganze im Ultraschallbad dispergiert. Die CM-Messung zeigte nun eine Anomalie, wie sie von Muta et al. und in der

Abb. 25: Der Cotton-Mouton-Effekt bei Nitrobenzol.
 Leere Kreise: Nitrobenzol mit Eisen aus der Kanüle verunreinigt
 Volle Kreise: Reines Nitrobenzol

vorliegenden Untersuchung beobachtet wurde (leere Kreise in Abb. 25).

Abb. 26: Der Cotton-Mouton-Effekt bei Triethylenglykol. Leere Kreise: Triethylenglykol mit Eisen aus der Kanüle verunreinigt. Volle Kreise: Reines Triethylenglykol

Weiterhin sollte geklärt werden, welchen Einfluß diese Bruchstücke auf eine Substanz haben, die normalerweise einen sehr schwachen CM-Effekt zeigt. Das Experiment mit Triethylenglykol zeigt im Falle der Verunreinigung die Anomalie (Abb. 26) und weist oberhalb von 2 kG die gleiche CM-Konstante wie die reine Verbindung.

Diese Experimente ergaben, daß die beobachtete Anomalie nicht substanzspezifisch, sondern vielmehr ein "Schmutzeffekt" ist. Die Sättigungsfeldstärke beträgt bei allen auf diesen Effekt hin untersuchten Substanzen (Toluol, Nitrobenzol, Dodekan und viele Flüssigkristalle in der isotropen Phase) etwa 2 kG. Der Wert der Kompensationsspannung U_k in den Abb. 25 und 26 ist stark von der Vorgeschichte der Probe abhängig: So wurde beobachtet, daß eine mit Eisenpartikeln versetzte Substanz direkt nach der Dispersion im Ultraschallbad den größten Effekt zeigt und dieser mit der Zeit abnimmt.

Die Erklärung für dieses Phänomen findet sich in Schütz (1936) unter dem Titel "Magnetooptischer Kerr-Effekt". Danach wirken die als Verunreinigung in die Probe eingebrachten Eisenpartikel wie winzige Spiegel. Bei der Reflektion des Lichtes an der Oberfläche der Eisenpartikel wird der Polarisationszustand dieses Lichtes in Abhängigkeit vom Magnetisierungsgrad verändert. Die Sättigungsmagnetisierung wird bei Eisen in Übereinstimmung mit den hier gemachten Beobachtungen bei einer Feldstärke von 2 kG erreicht. Oberhalb von 2 kG findet daher keine Änderung der Polarisationsebene des durch die Probe tretenden Lichts statt.

Dieser Effekt, ist wie auch hier festgestellt, unabhängig vom verwendeten Dispersionsmedium (hier: Nitrobenzol, Triethylenglykol).

4.1 Enthalpiemessungen für die Umwandlung isotrop-flüssigkristallin

Die Umwandlungsenthalpien wurden mit einem DSC-Gerät der Firma Perkin Elmer (DSC 7) gemessen. Als Eichsubstanzen wurden Gallium (Smp. 29,76 °C und $\Delta H = 5,569$ kJ mol⁻¹) und Indium (Smp. 156,59 °C und $\Delta H = 3,286$ kJ mol⁻¹) eingesetzt. Jede Substanz wurde zweimal eingewogen, vermessen und der Mittelwert gebildet. Die Werte der Einzelbestimmungen unterschieden sich um maximal 3%.

Aufgrund der sehr kleinen Umwandlungsenthalpie für den Übergang isotrop-nematisch wurde eine kleine Scanrate von 0,5 K min⁻¹ gewählt.

Abb. 27: DSC-Kurven von 6CBP und 12CBP für die Phasenumwandlung isotrop-flüssigkristallin.

Die Abb. 27 zeigt die DSC-Kurven für die Substanzen 6CBP und 12CBP. Die Substanz 6CBP weist die niedrigste und 12CBP die höchste Umwandlungsenthalpie in der homologen Reihe der Alkylcyanobiphenyle auf. Die anderen Glieder dieser homologen Reihe sind wegen der Übersichtlichkeit nicht in der Graphik dargestellt.

Obwohl die Umwandlungsenthalpien sehr klein sind, konnten sie recht genau ermittelt

werden (siehe Tab A1 im Anhang). Sie stimmen mit den Messungen von Thoen et al. (1982, 1983, 1987) und Orwoll et al. (1987) innerhalb von 3% überein.

Trägt man die gemessenen Umwandlungsenthalpien ΔH bzw. Umwandlungsentropien ΔS gegen die Anzahl der C-Atome *n* des Alkylrests auf, so wird ein odd-even-Effekt (Riste, Pynn 1973; de Jeu et al. 1973; Marcelja 1974 und Yamamoto et al. 1978) ersichtlich, der auch beobachtet wird, wenn die Klärpunkte $T_{\rm K}$ in Abhängigkeit von der Kettenlänge betrachtet werden.

Abb. 28: Umwandlungsentropie ΔS (volle und leere Kreise) und Klärpunkt $T_{\rm K}$ (volle und leere Quadrate) in Abhängigkeit von der Alkylkettenlänge *n* für nCBP und nOCBP.

Die Umwandlungsentropie am Klärpunkt gibt unter anderem einen Hinweis auf die Pakkungsdichte in der flüssigkristallinen Phase: Die Packungsdichte ist in der flüssigkristallinen Phase von der Kettenlänge abhängig. Bei einer geraden Anzahl von Kohlenstoffatomen in der Alkylkette der Cyanobiphenyle wird das Verhältnis aus der Länge und Breite des Moleküls kleiner als bei einer ungeraden Anzahl. Dieser Effekt hat zur Folge, daß bei einer geraden Anzahl von Kohlenstoffatomen die sich bildende flüssigkristalline Phase weniger stark geordnet ist als bei einer ungeraden Zahl und somit auch die gemessene Umwandlungsenthalpie bzw. Umwandlungsentropie kleiner ist.

Mit dieser Theorie lassen sich die in Abb. 28 dargestellten Effekte gut erklären. Für Alkylkettenlängen mit mehr als acht C-Atomen wirkt sich dieser Effekt nicht mehr aus. Bei den OCBP "vergrößert" das Ethersauerstoffatom die Kettenlänge um eine Einheit, so daß hier bei einer ungeraden Anzahl der Kohlenstoffatome eine höhere Packungsdichte in der flüssigkristallinen Phase erreicht wird.

Die Erklärung für die alternierenden Werte der Klärpunkte in Abhängigkeit von der Kettenlänge verläuft analog.

4.2 CM-Konstante von Nitrobenzol und Toluol als Funktion der Temperatur

Um zu klären, ob die CM-Konstante als Funktion der Temperatur in der isotropen Phase von Flüssigkristallen Gemeinsamkeiten mit "normalen" Flüssigkeiten aufweist, wurden die Substanzen Nitrobenzol und Toluol vermessen. Die zugrunde liegende Vorstellung ist, daß sehr weit oberhalb der Klärpunktstemperatur die Vorumwandlungserscheinung verschwinden muß und die Substanz sich wie eine "gewöhnliche" Flüssigkeit verhält.

In Abb. 30 ist die CM-Konstante als Funktion der Temperatur für Nitrobenzol und Toluol dargestellt. Man kann gut erkennen, daß Nitrobenzol eine viel stärkere Temperaturabhängigkeit der CM-Konstante aufweist als Toluol. Die CM-Konstante von Nitrobenzol ist bei Zimmertemperatur etwa um den Faktor fünf größer als die von Toluol.

Nach der Born-Langevin-Theorie sollte eine Auftragung der CM-Konstante gegen die reziproke absolute Temperatur eine Gerade ergeben. Diese Annahme wird durch das experimentelle Resultat für Toluol gestützt. Sie beschreibt aber den temperaturabhängigen Verlauf der CM-Konstante von Nitrobenzol nicht. Diese Beobachtungen stimmen mit den von Szivessy (1922), Matull (1934), Goldet (1938) und Rabinovitch et al. (1947) durchgeführten Untersuchungen überein.

Ursache für diese Abweichung ist die Bildung von Assoziaten in dieser stark polaren Flüssigkeit. Bei der Ableitung der Born-Langevin-Theorie wird angenommen, daß die Teilchen nicht miteinander wechselwirken. Aus Messungen von Pferrer (1982) der molaren CM-Konstanten von Nitrobenzol in der Gasphase und bei Zimmertemperatur wird ${}_{\rm m} CM {}^{\rm fl.} = 3,2 {}_{\rm m} CM {}^{\rm gasf.}$ gefunden. Hieraus wird ein Assoziat aus drei Molekülen in der flüssigen Phase abgeleitet, das oberhalb des Siedepunktes zerfällt. Das gleiche Experiment liefert für Toluol das Verhältnis ${}_{\rm m} CM {}^{\rm fl.} = 1,1 {}_{\rm m} CM {}^{\rm gasf.}$.

Zur Zeit liegen Untersuchungen über Assoziate und deren Temperaturabhängigkeit an Flüssigkristallen nicht vor. Daher lassen sich keine Aussagen darüber machen, ob und in welcher modifizierten Form die Born-Langevin-Theorie auf die isotrope Phase von Flüssigkristallen angewendet werden kann.

4.3 CM-Konstante von Flüssigkristallen in der isotropen Phase als Funktion der Temperatur

Alle in dieser Arbeit untersuchten Verbindungen stammten von der Firma Merck, sie weisen eine hohe Reinheit auf, so daß die CM- bzw. DSC-Messungen ohne zusätzliche Reinigungsprozeduren (Destillation, Umkristallisation) durchgeführt werden konnte.

Die Auswahlkriterien für die Substanzen waren, neben der hohen chemischen Stabilität und niedrig liegende Klärpunkte, was für die Durchführung der Messungen günstig ist, auch unterschiedliche Breiten der nematischen Phasen. Letzteres war von Interesse, um Theorien, welche die nematische Phasenbreite für die Beschreibung der Vorumwandlungserscheinung enthalten, zu überprüfen.

In der homologen Reihe der Alkylcyanobiphenyle (nCBP) und der Alkyloxycyanobiphenyle (nOCBP) weisen einige Verbindungen unterhalb der isotropen Phase nematische und/oder smektische und die der Alkylcyanophenylcyclohexane (nPCH) nur nematische Phasen auf.

Ein weiteres für die Verwendung dieser Substanzen sprechendes Argument ist die Tatsache, daß sie von anderen Arbeitsgruppen mit unterschiedlichen Methoden (Kerr-Effekt: Kollinsky et al. 1980, Pouligny et al.1983; Lichtstreuung: Coles und Strazielle 1979, Zink und De Jeu 1985) untersucht wurden und somit die Ergebnisse verglichen werden konnten.

Wie aus Abb. 31 - 33 zu entnehmen ist, divergieren die CM-Konstanten der Flüssigkristalle als Funktion der Temperatur in der Nähe des Klärpunktes in unterschiedlich starker Weise. Wie bei den Umwandlungsentropien ist auch hier in Abhängigkeit von der Kettenlänge ein even-odd-Effekt bezüglich der maximalen CM-Konstante zu sehen. Die maximale CM-Konstante (CM_{max}) ist der direkt oberhalb des Klärpunktes in der isotropen Phase gemessene Wert.

Die CM-Konstanten der Verbindungen aus der nOCBP-Reihe besitzen (bei gleicher Temperaturdifferenz zum Klärpunkt) wesentlich größere Werte, als die entsprechenden Verbindungen aus der nCBP-Reihe. Diesem Effekt liegen zwei Ursachen zugrunde:

Abb. 31: CM-Konstante als Funktion der Temperatur in der homologen Reihe der Alkylcyanobiphenyle.

Abb. 32: CM-Konstante als Funktion der Temperatur in der homologen Reihe der Alkyloxycyanobiphenyle.

Abb. 33: CM-Konstante als Funktion der Temperatur in der homologen Reihe der Alkylcyanophenylcyclohexane.

Der erste Grund ist, daß die freien Elektronenpaare des Ethersauerstoffatoms das π -Elektronensystem des benachbarten Benzolrings erweitern und somit die Polarisierbarkeitsanisotropie des Moleküls vergrößert wird. Nach Gl. (39) wird dadurch eine größere CM-Konstante verursacht. Der zweite Grund liegt in der geringeren Entropie für die Umwandlung isotrop-flüssigkristallin bei den Verbindungen der OCBP-Reihe mit vergleichbarer Kettenlänge. Die Phasenumwandlung verläuft daher schwächer diskontinuierlich als bei den entsprechenden Verbindungen der CBP-Reihe. Aus diesem Grund sind hier die Vorumwandlungserscheinungen stärker ausgeprägt.

Die untersuchten Verbindungen der Alkylcyanophenylcyclohexan-Reihe (PCH) sind unterhalb der isotropen Phase, wie die kurzkettigen Verbindungen der beiden anderen Reihen, nematisch. Die maximalen CM-Konstanten sind bei diesen Verbindungen um eine Größenordnung kleiner als die der Cyanobiphenylderivate mit vergleichbarer Umwandlungsentropie. Der Grund hierfür liegt in der im Verhältnis zum Benzolring wesentlich kleineren elektrischen und magnetischen Suszeptibilitätsanisotropie des Cyclohexylringes. Zur Quantifizierung der Stärke der Vorumwandlungserscheinung wird die Halbwertstemperatur $T_{1/2}$ definiert. Sie gibt die Temperaturspanne an, innerhalb derer der Wert von CM_{max} auf die Hälfte abfällt. In Abb. 34 sind die Halbwertstemperaturen für einige der untersuchten Flüssigkristalle aufgetragen. Die Halbwertstemperaturen für kleine Umwandlungsentropien liegen zwischen 0,5 und 2 K (Phasenübergang isotrop-nematisch) und für größere Umwandlungsentropien oberhalb von 2 K (Phasenübergang isotropsmektisch). Bei den Verbindungen 110CBP und 12CBP, die eine Halbwertstemperatur von etwa 4 K aufweisen, läßt sich, wie die Abb. 31 und 32 zeigen, kaum von einer Vor-

Abb. 34: Die Halbwertstemperatur als Funktion der Umwandlungsentropie für unterschiedliche Verbindungen und Phasenumwandlungen isotrop-flüssigkristallin.

umwandlungserscheinung sprechen. Generell läßt sich aus den Abb. 31 - 33 entnehmen, daß der Phasenübergang isotrop-nematisch von Vorumwandlungserscheinungen begleitet wird, deren Ausmaß von der Umwandlungsentropie abhängt.

Ein Vergleich der gemessenen CM_{max} -Werte mit der Umwandlungsentropie zeigt, daß innerhalb einer homologen Reihe kleine Umwandlungsentropien große Vorumwandlungserscheinungen verursachen (Abb. 35).

Diese Beobachtung läßt sich mit Hilfe der Theorie der kontinuierlichen Phasenumwand-

lungen ($\Delta S = 0$) plausibel machen; danach divergiert die Suszeptibilität bei der Phasenumwandlungstemperatur (kritische Temperatur).

Auch die Landau-Theorie sagt dies voraus: Dazu wird Gl. (22) auf die nematische und die isotrope Phase angewendet:

Abb. 35: Zusammenhang zwischen der maximalen CM-Konstanten (volle Kreise) und der Alkylkettenlänge sowie Umwandlungsentropie (Dreiecke) und der Alkylkettenlänge für die Verbindungen aus der OCBP-Reihe.

nematisch:
$$f_{\rm N} = f_0 + \frac{1}{2} A Q^2 - \frac{1}{3} B Q^3 + \frac{1}{4} C Q^4$$
 (45)

In der isotropen Phase ist der Ordnungsgrad Q = 0 und somit $f_1 = f_0$. Wird die gleiche Rechenprozedur wie auf Seite 26 durchgeführt, erhält man

$$S_{\rm I} - S_{\rm N} = \Delta S = \frac{1}{2} a R Q_{\rm NI}^{2}$$
(46)

Gl. (46) bedeutet, daß die Umwandlungsentropie und der erste Entwicklungskoeffizient *a* in der Landau-Entwicklung einander proportional sind. Der Ordnungsgrad $Q_{\rm NI}$ der nematischen Phase am Klärpunkt beträgt etwa 0,4. Wird *a* in Gl. (39) durch ΔS substituiert, so erhält man die Beziehung

Abb. 36: Die maximale CM-Konstante als Funktion der reziproken Umwandlungsentropie.

die den beobachteten Sachverhalt beschreibt.

Praktisch läßt sich diese Regel dazu verwenden, aus der Messung einer beliebigen Sus-

zeptibilität direkt am Klärpunkt in der isotropen Phase und der Phasenumwandlungsenthalpie isotrop-flüssigkristallin für einen Vertreter einer homologen Reihe die Umwandlungsenthalpie der anderen Glieder aus der Messung der Suszeptibilität abzuschätzen (siehe Abb. 36).

Dieses Verfahren funktioniert bei den in Abb. 36 dargestellten Homologen recht gut.

Zur Bestimmung der maximalen CM-Konstante

Wenn man die Abb. 31 - 33 betrachtet, könnte der Einwand erhoben werden, daß für Verbindungen, die große Vorumwandlungserscheinungen zeigen, die in der Nähe des Klärpunktes ermittelten Werte der CM-Konstante aufgrund der sehr steil verlaufenden Kurven, *stark* von der Wahl der niedrigsten Meßtemperatur in der isotropen Phase und der Temperaturstabilität des Thermostaten abhängen.

Die Messung der maximalen CM-Konstante ist eng an die Bestimmung der Temperatur des Klärpunktes geknüpft. Sobald sich ein Tropfen der nematischen Phase in der isotropen Phase ausbildet, wird das Licht des Lasers in der Probe so stark gestreut, daß kein Signal zu detektieren ist. Die Temperatur für die Bestimmung von CM_{max} liegt etwa 0,01 - 0,02 K oberhalb der Klärpunktstemperatur.

Die Messung von CM_{max} wurde mit verschiedenen Thermostaten durchgeführt, mit denen sich unterschiedliche Genauigkeiten der Temperierung erreichen ließen. Die Abweichung der erhaltenen Werte beträgt bei der Verwendung eines Thermostaten mit einer Temperaturstabilität von ±0,02 K maximal 5%. Der Einsatz eines in der Arbeitsgruppe entwickelten Thermostaten (Temperaturstabilität ±0,0004 Kelvin) ermöglicht Meßwerte von CM_{max} , die im Mittel eine Abweichung von 0,5% aufweisen.

Diese Experimente zeigen, daß die Bestimmung der maximalen CM-Konstanten reproduzierbar ist und kaum von der Temperaturstabilität des verwendeten Thermostaten abhängt.

In der Arbeit von Muta et al. (1978) finden sich Werte für die maximale CM-Konstante für die Verbindungen der CBP- und OCBP-Reihe, die durchgehend um den Faktor zwei kleiner sind als die hier gefundenen. Da die CM-Konstanten von Muta et. al auch bei höheren Temperaturen halb so groß sind wie die hier bestimmten, ist anzunehmen, daß dort ein Umrechnungsfehler vorliegt.

4.4 Auswertung der Meßwerte mit der Landau-de Gennes-Theorie (LdG)

Eine experimentelle Überprüfung der Landau-de Gennes-Theorie erfolgte 1970 durch Stinson und Litster mit an MBBA durchgeführten Lichtstreu- und Cotton-Mouton-Experimenten. Die sehr gute Übereinstimmung des aus der CM-Messung ermittelten Wertes für die Umwandlungsenthalpie und des kalorimetrisch bestimmten wurde als Beleg für die große Leistungsfähigkeit dieser Theorie aufgeführt.

Daher war der erste Schritt dieser Arbeit die Wiederholung des Cotton-Mouton-Experiments an MBBA.

Abb. 37: Reziproke CM-Konstante von MBBA als Funktion der Temperatur.

Nach der LdG-Theorie ergibt die Auftragung der reziproken CM-Konstante gegen die Temperatur eine Gerade. T^* ergibt sich aus der Extrapolation der Geraden auf den Wert $H^2 / \Delta n = 0$, an dieser Stelle wird die CM-Konstante unendlich. Die Gerade beschreibt

daher eine kontinuierliche Phasenumwandlung. Diese Temperatur wird häufig auch als hypothetische Phasenumwandlungstemperatur zweiter Ordnung (nach Ehrenfest) bezeichnet. Die Temperatur T^* wird bei Phasenumwandlungen isotrop-flüssigkristallin wegen der vorhandenen Uwandlungsenergie nicht erreicht, da die Substanz vor Erreichen dieser Temperatur bei $T_{\rm K}$ (Klärpunkt) flüssigkristallin wird.

Obwohl das von Stinson und Litster verwendete MBBA aufgrund des sehr niedrig liegenden Klärpunktes verunreinigt gewesen sein muß, zeigen beide Experimente (Abb. 38) dieselbe Temperaturabhängigkeit der CM-Konstante.

Die Verwendung der Gl. (30) und (39)

$$\Delta S_{\kappa} = \frac{1}{2} a R Q_{\kappa}^{2}$$

und

$$\frac{\Delta n}{H^2} = \frac{\Delta \varepsilon \chi_a}{6\sqrt{\varepsilon}a \left(T_{\rm K} - T^*\right)}$$

läßt die Bestimmung der Umwandlungsentropie $\Delta S_{\rm K}$ aus der Steigung $\Delta n / H^2$ in Abb. 37 zu. $T_{\rm K}$ und $Q_{\rm K}$ bedeuten Klärpunktstemperatur und Ordnungsgrad der nematischen Phase am Klärpunkt.

Die Differenz $T_{\rm K}$ - T^* beträgt bei Stinson und Litster 1 K und in dieser Arbeit 1,8 K; die anderen Größen in den Gleichungen (30) und (39) sind für beide Messungen identisch. Daraus erhalten Stinson und Litster mit der Verwendung der molekularen Größen aus der Literatur (Freiser, Haller 1970) für die Umwandlungsenthalpie $\Delta H_{\rm K}$ ein Wert von 490 J mol⁻¹. Die direkte Messung der Umwandlungsenthalpie liefert 500 J mol⁻¹.

Die Übereinstimmung eines berechneten Wertes aus einer komplexen und grobe Näherungen enthaltenden Theorie mit einem gemessenen ist verblüffend und wohl eher zufällig. Aufgrund der um den Faktor 1,8 größeren Temperaturdifferenz wird in der vorliegenden Arbeit der Wert 272 J mol⁻¹ erhalten.
Die Abweichung der Meßwerte von einer Geraden in der Nähe des Klärpunktes ist in dieser Arbeit stärker ausgeprägt als bei Stinson und Litster und die maximale CM-Konstante ist dort um den Faktor drei größer. Die Werte für die CM-Konstante 15 K oberhalb des Klärpunktes stimmen etwa überein (siehe Abb. 37), so daß ein Fehler bei der Berechnung der CM-Konstante wie bei Muta et al. (1978) auszuschließen ist.

Der Dreh- und Angelpunkt bei der Auswertung der Meßwerte, wie in den Abb. 37 - 40 dargestellt, liegt im Auffinden des Temperaturbereiches, in dem die reziproke CM-Konstante proportional zur Temperatur ist. So kann man, die Gerade an Meßwerte anpassen, die in unmittelbarer Nähe des Klärpunktes liegen oder Meßwerte aus einem größeren Temperaturbereich ($T - T_K \approx 50$ K) verwenden. Im ersten Fall würden sich Werte von $T_K - T^* \approx 1$ K , und für den zweiten Fall wesentlich größere Werte ergeben. So verwenden Zhang et al. 1983 und Pouligny et al. 1983 nur solche Meßwerte für die Anpassung aus der sich 1 K für die Temperaturdifferenz ergibt. Andere Autoren (Coles et al. 1979, Kollinsky und Jennings 1980) extrapolieren sogar den Verlauf der Meßwerte in der Nähe des Klärpunktes (Stern in Abb. 37) auf die Abszisse, und definieren (!) einen Klärpunkt, um näher an T^* zu kommen.

Eine Auswertung nach der LdG-Theorie hat bei allen untersuchten Verbindungen ergeben, daß mit dieser Darstellung kein linearer Bereich festzustellen ist. Es ergeben sich je nach dem für die Anpassung verwendeten Temperaturbereich unterschiedliche Werte für die Temperaturdifferenz $T_{\rm K}$ - T^* (siehe Abb. 38 und Tab. 5).

Abb. 38: Reziproke CM-Konstante als Funktion der Temperatur für 8CBP. Die erhaltenen Werte für T^* hängen vom verwendeten Temperaturbereich für die Anpassung ab.

Tab. 5:Zusammenhang zwischen dem für die Anpassung verwendetem Temperaturbereich
und der daraus resultierendem Temperaturdifferenz $T_{\rm K}$ - T^* für die Verbindung
8CBP. In der dritten Spalte ist der Korrelationskoeffizient r aufgeführt.

Für die Anpassung verwendeter Temperaturbereich	$T_{ m K}$ - T^{*}	r
bis 1 K oberhalb $T_{\rm K}$	0,64	0,9988
bis 5 K oberhalb $T_{\rm K}$	4,52	0,9988
bis 55 K oberhalb $T_{\rm K}$	2,17	0,9976
10 bis 55 K oberhalb $T_{\rm K}$	5,83	0.9983
20 bis 55 K oberhalb $T_{\rm K}$	8,43	0,9986
30 bis 55 K oberhalb $T_{\rm K}$	11,45	0,9991

Als weitere Beispiele werden in Abb. 39 und 40 die reziproken CM-Konstanten als

Funktion der Temperatur für zwei homologe Reihen vorgestellt.

Abb. 39: Reziproke CM-Konstante in Abhängigkeit von der Temperatur von Verbindungen der CBP-Reihe.

Abb. 40: Reziproke CM-Konstante von rein nematischen Verbindungen in Abhängigkeit von der Temperatur.

Die Verbindungen aus der Alkylphenylcyclohexanreihe (PCH) weisen unterhalb der isotropen Phase auch bei den höheren Homologen nur nematische Phasen und keine enantiotropen smektische Phasen auf. Die Verbindungen aus der Alkylcyanobiphenylund Alkyloxycyanobiphenylreihe hingegen weisen unterhalb der isotropen Phase nematische und smektische Phasen mit unterschiedlicher Phasenbreite auf.

Dieses Verhalten ist schematisch für Homologe der Pentylcyanobiphenyle und Pentyloxycyanobiphenyle in den Abb. 41 und 42 dargestellt. Werden die reziproken CM-Konstanten gegen die Temperatur für die Homologen der Alkylcyanobiphenyle aufgetragen (Abb. 39), so wird beobachtet, daß besonders bei den längerkettigen Cyanobiphenylen kein Temperaturbereich existiert, in dem die reziproke CM-Konstante eine lineare Funktion der Temperatur ist.

Aus Abb. 39 geht hervor, daß es einen Zusammenhang zwischen der Krümmung (Abweichung von der LdG-Theorie) und der nematischen Phasenbreite geben könnte. Für den Vergleich sind in Abb. 41, 42 die Phasenbreiten der interessierenden Verbindungen zusammengestellt.

Abb. 41: Schematische Darstellung der flüssigkristallinen Phasen als Funktion der Temperatur für Alkylcyanobiphenyle.

Abb. 42: Schematische Darstellung der flüssigkristallinen Phasen als Funktion der Temperatur für Alkyloxycyanobiphenyle.

4.5 Berücksichtigung der nematischen Fluktuationen

In der LdG-Theorie werden Fluktuationen nicht berücksichtigt. Fan und Stephen haben 1970 die Fluktuationen in LdG-Theorie eingeführt. Das Ergebnis ist eine Gleichung, die in der Nähe des Klärpunktes zwei Korrekturglieder in Potenzen der Korrelationslänge ξ enthält. Bei höheren Temperaturen geht diese Entwicklung in Gl. (39) über.

$$\xi = \xi_0 \sqrt{\frac{T^*}{T - T^*}}$$
(48)

 ξ_0 ist die Korrelationslänge bei 0 K.

Die bezüglich der Fluktuation korrigierte Relation lautet nach Fan und Stephen

$$CM^{-1} \propto a \left(T - T^{*}\right) \left[1 + \frac{7}{2\pi} \frac{c}{a^{2}} \frac{\upsilon_{0}}{\xi_{0}^{3}} \frac{\sqrt{T^{*}}}{(T - T^{*})^{1/2}} - \frac{7}{4\pi^{2}} \frac{b^{2}}{a^{3}} \frac{\upsilon_{0}}{\xi_{0}^{3}} \frac{\sqrt{T^{*3}}}{(T - T^{*})^{3/2}}\right]$$
(49)

In dieser Gleichung sind *a*, *b* und *c* (siehe Seite 25) die dimensionslosen Koeffizienten aus der LdG-Entwicklung v_0 ist das Molekülvolumen. Das Verhältnis aus dem Molekülvolumen und dem Korrelationsvolumen ξ_0^3 liegt für MBBA ungefähr bei zwei. Werden die konstanten Größen zusammengefaßt, erhält man eine Anpassungsvorschrift mit vier Parametern

$$CM^{-1} = P \left[\left(T - T^* \right) \left[1 + \frac{P 3}{\left(T - T^* \right)^{1/2}} - \frac{P 4}{\left(T - T^* \right)^{3/2}} \right]$$
(50)

Für MBBA lassen sich die Parameter P3 und P4 abschätzen:

$$P3 = \frac{7}{2\pi} \frac{c}{a^2} \frac{v_0}{\xi_0^3} \sqrt{T^*} \approx \frac{7}{2\pi} \frac{0.14}{2.36^2} 2\sqrt{320} \text{K} \approx 1 \text{ K}^{1/2}$$
$$P4 = \frac{7}{4\pi^2} \frac{b^2}{a^3} \frac{v_0}{\xi_0^3} \sqrt{T^{*3}} \approx \frac{7}{4\pi^2} \frac{0.08^2}{2.36^3} 2\sqrt{(320} \text{K})^3 \approx 1 \text{ K}^{3/2}$$

Das Ergebnis zeigt, daß sehr nahe am Klärpunkt der dritte Term und für höhere Temperaturen der zweite Term in Gl. (50) bestimmend wird.

Bei der Auswertung der Meßwerte mit der LdG-Theorie kam die Frage auf, ab welcher Temperatur oberhalb des Klärpunktes die Theorie angewendet werden darf. Diese Frage wird durch das Ginzburg-Kriterium (Ginzburg 1960) beantwortet und läßt sich aus Gl. (49) ableiten. Da die Terme in der Klammer Korrekturglieder sind, kommt ihre Wirkung zur Geltung, wenn sie in die Größenordnung von 1 (erster Wert in der Klammer in (49)) kommen. Daher wird zur Abschätzung dieser Temperaturwerte das zweite Korrekturglied in (49) gleich 1 und $T^* \approx T_K$ gesetzt

$$T - T_{K} = T_{K} \left(\frac{7}{4\pi^{2}} \frac{b^{2}}{a^{3}} \frac{v_{0}}{\xi_{0}^{3}} \right)^{\frac{2}{3}}$$
(51)

Werden nun die Zahlenwerte für MBBA eingesetzt, so erhält man je nach Größe der Umwandlungsentropie (Gl. (30)) für die Temperaturdifferenz Werte zwischen 1 K bei großen und 10 K bei kleinen Umwandlungsentropien. Bei kleinen Umwandlungsentropien darf die Anpassung nach der LdG-Theorie nur für die Meßwerte erfolgen, die mindestens 10 K oberhalb des Klärpunktes liegen. Unterhalb dieser Temperatur werden die Fluktuationen zu groß.

Dieses Ergebnis stimmt, wie die Abb. 37 - 39 zeigen, nicht mit den hier gemachten Beobachtungen überein.

Abb. 43: Doppellogarithmische Auftragung der CM-Konstanten als Funktion der Temperatur. Die durchgehenden Linien wurden mit Gl. (50) und den Parametern aus dem Marquardt-Fit berechnet.

Die Anpassung mit Gl. (50) an die Meßwerte erfolgte durch Verwendung eines speziellen least-squares-Verfahrens dem "Marquardt-Fit" (Numerical recipes 1992). Abhängig von den gewählten Startwerten ergaben sich bei einigen Verbindungen (z. B. 9OCBP) für Parameter 3 positive oder negative Werte bei vergleichbarer Standardabweichung. Wie man aus Gl. (49) ersehen kann, sind die Parameterkombinationen mit einem negativen Wert für den Parameter 3 physikalisch nicht sinnvoll. Das Ergebnis dieser Fits zeigt Abb. 43 in einer doppellogarithmischen Darstellung. Darin ist auch der Fit für 9OCBP (volles Dreieck, Spitze oben) mit einem negativen Wert für den Parameter 3 dargestellt. Der unterschiedliche Verlauf der beiden Kurven wird durch die berechneten Abszissenwerte bewirkt, da unterschiedliche T^* -Werte eingehen.

Ein Maß für die Güte der Anpassung einer Funktion an die Meßwerte ist das Residuum *R* (Mendenhall und Sincich 1992). Darunter wird die Differenz aus dem Meßwert und dem damit korrespondierenden Wert aus dem Fit verstanden. In dieser Arbeit wird die Differenz der Logarithmen aus Meßwert und Anpassung verwendet

Abb. 44: Das Residuum als Funktion der Temperatur für einige Verbindungen der OCBP-Reihe. Der Abstand zwischen den Skalenstrichen oberhalb und unterhalb der 0 entspricht 0,2. Die 2 Residuen für 9OCBP ergeben sich durch die Verwendung der unterschiedlichen Werte für T^* .

$$R = \ln CM (T_i) - \left\langle \ln CM (T_i) \right\rangle$$
(52)

In Gl. (52) symbolisiert der Klammerausdruck die mit Gl. (50) berechneten Werte. Als Beispiel werden einige Vertreter (wegen der Übersicht nicht alle) aus der Alkyloxycyanobiphenyl-Reihe in Abb. 44 gezeigt.

Für den Quotienten der Parameter P3 und P4 findet man mit Gl. (49) und Gl. (50):

$$\frac{P3}{P4} = \frac{2\pi ac}{b^2 T^*}$$
(53)

Die Werte für *a*, *b*, *c* können mit den Gl. (31), (32) und (33) berechnet werden. Die Temperatur T^* ergibt sich aus der Anpassung mit Gl. (49). Die Bestimmung des Quotienten *P*3 / *P*4 läßt sich noch einfacher unter Verwendung von Gl. (26) durchführen. Es ergibt sich:

$$\frac{P3}{P4} = \frac{4\pi}{9} \frac{1}{(T_{\rm K} - T^{*})}$$
(54)

Werden die gefitteten Parameter *P*3 und *P*4 in Gl. (54) eingesetzt, so erhält man für die linke Seite der Gleichung je nach Verbindung Werte zwischen 0,01 und 10 K⁻¹. Die rechte Seite der Gleichung liefert teilweise um den Faktor 100 kleinere oder größere Werte. Andererseits korrelieren die Werte aus Spalte 2 und 3 in Tab. 9 mit Ausnahme von 90CBP für eine homologe Reihe.

Verbindung	$\frac{P(3)}{P(4)} / \mathrm{K}^{-1}$	$\frac{4\pi}{9} \frac{1}{(T_{\rm K} - T^{*})} / {\rm K}^{-1}$
5OCBP	0,86	1,95
6OCBP	1,79	2,45
70CBP	2,52	3,20
80CBP	6,63	3,77
9OCBP	0,35	5,90
10OCBP	0,04	0,12
11OCBP	0,05	0,62
MBBA	1,5	1,44

Tab. 6:Linke und rechte Seite der Gl. (54)

Eine Entscheidung über die Gültigkeit des Modells von Fan und Stephen läßt sich mit den vorliegenden Messungen nicht treffen. Einerseits ist eine sehr präzise Anpassung der Gleichung von Fan und Stephen an die Daten möglich, und die gefundenen Fit-Parameter liegen in der richtigen Größenordnung, d. h. die Anpassung ist physikalisch sinnvoll. Auf der anderen Seite ist bekannt, daß wenn eine Fitfunktion auch nur grob richtig ist, mit vier freien Parametern immer eine relativ gute Anpassung gelingt. So zeigt sich z. B, daß die Anpassung einer Funktion mit den Exponenten -1 oder -2 im letzten Term sogar geringere Standardabweichungen ergibt als für den aus der Theorie folgenden Ausdruck mit -1,5.

Die Aussage kann daher wohl nur die sein: Die experimentellen Daten sprechen nicht gegen das Fan-Stephen-Modell; einen schlüssigen Beleg für die Theorie stellen die Messungen jedoch nicht dar.

4.6 Berücksichtigung der smektischen Fluktuationen

In Abb. 39 fällt auf, daß insbesondere bei längerkettigen Cyanobiphenylen kein Temperaturbereich existiert, in dem die reziproke CM-Konstante eine lineare Funktion der Temperatur ist.

Wird die Breite der nematischen Phasen in Abb. 41 mit der Krümmung der Kurven in Abb. 39 verglichen, so könnte ein Zusammenhang zwischen der Breite der nematischen Phasen und der Krümmung (Abweichung von der LdG-Theorie) vermutet werden. Die Krümmung der Kurven in Abb. 39 ist bei Verbindungen mit kleinen nematischen Phasenbereich und einer darunter liegenden smektischen Phase stärker ausgeprägt, als bei solchen, die entweder keine smektische Phase unterhalb der nematischen Phase besitzen oder einen sehr breiten nematischen Phasenbereich aufweisen.

Diese Beobachtung führte zu einer von Anisimov (1983) und Gohin et al. (1983) unabhängig voneinander aufgestellten Theorie, die besagt, daß die Abweichung von der LdG-Theorie durch eine Kopplung der nematischen und smektische Fluktuationen in der isotropen Phase verursacht wird.

Das Resultat dieser Theorie ist eine Gleichung, die diese Kopplung sowie die Breite der nematischen Phasen beinhaltet,

$$CM^{-1} \propto a'(T - T^*) + \frac{\chi}{(T - T_s^*)^{1/2}} - \frac{\lambda^2}{(T - T_s^*)^{3/2}}$$
 (55)

In dieser Gleichung bedeuten χ und λ Größen, die die Kopplung der Ordnungsgrade der nematischen und smektischen Phase berücksichtigen. Die Temperaturen T^* und T_s^* stellen die absolute Stabilitätsgrenze der isotropen Phase für den Übergang isotropnematisch bzw. isotrop-smektisch dar.

Werden die Größen (außer T) in Gl. (55) als Parameter aufgefaßt, erhält man für die Auswertung der Meßwerte eine Fit-Vorschrift mit fünf Parametern.

Die Durchführung dieser Fits ist schwierig, da T^* der einzige zugängliche und abschätzbare Parameter ist.

Die mit dieser Rechnung erhaltenen Parameter finden sich in Tab. 7 und im Anhang (Tab. A4). Die Anpassung mit fünf Parametern (Abb. 45 und 46) ist natürlich besser als die von Fan und Stephen vorgeschlagenen Anpassungsgleichung mit vier Parametern.

Von Anisimov et al. und Gohin et al. wird eine Korrelation zwischen der aus dem Fit erhaltenen Differenz $T^* - T_s^*$ und der Abweichung von der LdG-Theorie vermutet (siehe letzte Spalte in Tab. 7). Bis auf den Parameter T^* erscheinen die gefundenen Parameter teilweise physikalisch wenig sinnvoll, so ergeben sich für 11CBP 136 K und 35 K als absolute Unterkühlungstemperaturen für die isotrope und nematische Phase.

Abb. 45: Doppellogarithmische Darstellung der CM-Konstante als Funktion der Temperatur von Verbindungen mit einer nematischen Phase (MBBA, 50CBP), mit nematischer und smektischer Phase (8, 90CBP) und mit smektischer Phase (10, 110CBP). Die durchgehenden Linien sind Fits nach Gl. (55).

Abb. 46: Das Residuum als Funktion der Temperatur für einige Verbindungen mit unterschiedlichen flüssigkristallinen Phasen. Der Abstand zwischen den Skalenstrichen oberhalb und unterhalb der null auf der Ordinate entspricht 0,2.

Dies und die folgenden Ausführungen zeigen, daß die Theorien von Anisimov und Gohin die Abweichungen von der LdG-Theorie nicht erklären kann. Diese Aussage wird insbesondere durch die Analyse der Meßdaten der PCH-Reihe mit Hilfe dieser Theorie deutlich. Die PCH weisen zwischen der festen und der isotropen Phase nur die nematische Phase auf. Der Fit aber liefert für diese Verbindungen und für die höher alkylierten Cyanobiphenyle und Oxycyanobiphenyle (siehe Tab.7 und A4) ähnliche Parameter. Dieses Ergebnis ist nicht weiter verwunderlich, denn wie aus Abb.38 und 39 zu entnehmen ist, zeigen diese Verbindungen wie auch die höher alkylierten CBP und OCBP, auch dort ähnlich große Abweichungen von der LdG-Theorie.

Verbindung	<i>T</i> _N / K	T^* / K	<i>T</i> _S / K	$T^*_{\rm S}$ / K	T^* - $T^*_{ m S}$
80CBP	352,15	351,24	340,25	350,55	0,69
90CBP	351,95	347,00	348,95	346,19	0,81
8CBP	313,69	301,93	305,98	296,53	5,4
9CBP	322,85	305,13	318,25	294,32	10,81
11CBP	330,25	138,56	329,85	35,94	102,62
PCH3	318,15	291,11	-	271,72	19,19
PCH4	312,15	297,19	-	228,30	68,89
PCH5	328,15	309,99	-	298,08	11,91
PCH7	330,15	297,19	_	273,65	23,54

Tab. 7: Experimentell bestimmte Umwandlungstemperaturen (T_N , T_S) und
Temperaturen aus der Anpassung mit Gl. (55).

4.7 Verwendung von kritischen Gesetzen

Wie bereits in Kap. 2 ausgeführt, sind kritische Gesetze nur für kontinuierlich verlaufende Phasenumwandlungen und nur in einem sehr engen Temperaturbereich gültig. Die Phasenumwandlung isotrop-nematisch verläuft diskontinuierlich. Es stellt sich die Frage, ob hier ein kritisches Gesetz angewendet werden darf und welcher Temperaturbereich oberhalb des Klärpunktes für die Auswertung der Messungen zu verwenden ist. Daher wird in diesem Abschnitt der steile Teil der Kurven in Abbildung 31 - 33 untersucht. Der Temperaturbereich läßt sich bei Verbindungen mit quasidivergentem Verhalten der CM-Konstante aus den Abb. 31 - 33 mit etwa 1 bis 3 K oberhalb des Klärpunktes abschätzen.

Ein Zusammenhang zwischen der Umwandlungsenthalpie bzw. -entropie und dem kritischen Exponenten ist unbekannt. Für den Fall $\Delta H = 0$ ist bekannt, daß die Phasenumwandlung kontinuierlich verläuft. Doch hier stellt sich eine Frage von zentraler Bedeutung:

Ist die magnetisch bzw. elektrisch induzierte Doppelbrechung eine Suszeptibilität und ist damit der Wert des kritischen Exponenten -1,24 (siehe Tab. 2)?

Das von Oxtoby (1979) entwickelte "Droplet-Modell" liefert für das Temperaturverhalten der CM-Konstante (oder der Kerr-Konstante) in der Nähe der kritischen Temperatur $T_{\rm C}$ das kritische Gesetz

$$CM \propto \left(\frac{T - T_{\rm C}}{T_{\rm C}}\right)^{-\psi}$$
 (56)

Der kritische Exponent ψ setzt sich aus den kritischen Exponenten für den Ordnungsparameter Q und für die Suszeptibilität χ (siehe Tab. 2) nach dieser Theorie auf folgende Weise zusammen:

$$\psi = \gamma - 2\beta = -1,24 + 2 \times 0,325 = -0,59$$

der Wert für den kritischen Exponenten sollte daher -0,59 betragen.

Diese Theorie besagt, daß die experimentell bestimmte CM-Konstante sich zusammensetzt aus der Suszeptibilität und dem Ordnungsparameter.

Untersuchungen der Lichtstreuung von Woermann et al. (1997) an kritischen Mischungen ($\Delta H = 0$) in Abhängigkeit von der Temperatur ergeben für den Exponenten den theoretisch erwarteten Wert von -1,24. Werden die gleichen Messungen an Mischungen durchgeführt, die eine Mischungslücke ($\Delta H \neq 0$) aufweisen, so werden für Mischungen mit einer sehr kleinen Lücke Werte von etwa -1,24 für den Exponenten erhalten und für Mischungen mit größeren Lücken wird -0,60 gefunden.

Untersuchungen des Kerr-Effektes (Schadt und Helfrich 1972) in der isotropen Phase von Flüssigkristallen in der Nähe des Klärpunktes liefern in Übereinstimmung damit für den kritischen Exponenten Werte zwischen -0,5 und -0,7. Da der Kerr-Effekt das elektrische Analogon zum Cotton-Mouton-Effekt ist, sollten für diesen ähnliche Exponenten erhalten werden.

Für die Auswertung der Meßwerte mit einem kritischen Gesetz wird die logarithmierte und normierte Form von Gl. (56) verwendet und die kritische Temperatur $T_{\rm C}$ durch T^* ersetzt.

$$\ln \frac{CM}{CM_{\text{max}}} = P1 - \psi \ln(T - T^*)$$
(57)

Die Meßwerte werden zur Demonstration zunächst über den gesamten untersuchten Temperaturbereich mit Gl. (57) ausgewertet.

In dieser Darstellung kommt der Steigung der Geraden die Bedeutung eines kritischen Exponenten und der Temperatur T^* die einer kritischen Temperatur zu.

Abb. 47: Doppellogarithmische Darstellung der CM-Konstanten in Abhängigkeit von der Temperatur für die homologe Reihe der Pentylcyanobiphenyle. Die durchgehenden Linien wurden mit Gl. (57) und den Parametern aus dem Marquardt-Fit berechnet.

Der Fit mit nur drei Parametern ist für alle untersuchten Verbindungen in erster Näherung gut, bei genauerem Betrachten fällt insbesondere bei 6CBP auf, daß die Meßwerte in manchen Bereichen oberhalb und in anderen unterhalb des Fits liegen.

Dieser Effekt hängt damit zusammen, daß der gewählte Temperaturbereich zu groß und somit das verwendete Gesetz in diesem Bereich nicht anwendbar ist, was an den Verbindungen 406 und 6CBP in Abb. 48 demonstriert werden soll. Die Messung der CM-Konstante erfolgte bei diesen Substanzen durch Einsatz des sehr temperaturstabilen Thermostaten. Die Messung erfolgte bis 30 Kelvin oberhalb des Klärpunktes.

Abb. 48: Doppellogarithmische Darstellung der CM-Konstanten (hochaufgelöste Messung) in Abhängigkeit von der Temperatur für 406 und 6CBP. Die durchgehenden Linien wurden mit Gl. (57) und den Parametern aus dem Marquardt-Fit berechnet.

In Abb. 48 sind keine größeren Abweichungen zwischen den Meßwerten und den Anpassungen zu erkennen. Wird jedoch das Residuum für 6CBP in Abb. 49 betrachtet, so ist das "gekippte S" deutlich zu sehen.

Das Residuum *R* wird aus der Differenz des Logarithmus des Meßwertes und dem korrespondierenden Logarithmus der Anpassung gebildet und entspricht dem relativen Fehler der Meßwerte bezüglich der Anpassung. Er beträgt im Mittel etwa 3%. Die statistischen Schwankungen der Meßwerte dürften nach Abb. 49 dagegen im Promillebereich liegen.

Wird das Temperaturintervall verkleinert, ändern sich natürlich auch die Fit-Parameter.

Abb. 49: Das Residuum *R* als Differenz der Logarithmen aus Meßwert und Anpassung mit Gl. (57) in Abhängigkeit von der Temperatur für 6CBP für einen Temperaturintervall von 30 K.

In Tab. 8 und im Anhang (Tab. A5) sind die Fit-Parameter für ein großes Temperaturintervall (30 K) und für ein Intervall von einem Kelvin oberhalb des Klärpunktes aufgeführt.

ſ	(T T) / V	Donomoton	CDD	106	
	r	Femperaturinterval	lle für 6CBP und 4O6.		
'	Tab. 8: 1	Fit-Parameter aus	Gl. (56) für die hochaufgelöste	e CM-Messung für	verschiedene

$(T-T_{\rm K}) / {\rm K}$	Parameter	6CBP	406
30	T^{*}	302,302	319,546
	ψ	-0,868	-0.849
1	T^{*}	302,401	319,718
	ψ	-0,763	-0,709

Abb. 50: Exponenten für alle untersuchten Verbindungen. Der Temperaturbereich für die Auswertung mit Gl. (57) erstreckt sich über ein Kelvin oberhalb des Klärpunktes.

Die Auswertung mit einem kritischen Gesetz zeigt, daß in der Nähe des Klärpunktes der Exponent universellen Charakter annimmt, bei höheren Temperaturen überwiegen andere temperaturabhängige Effekte wie Assoziatbildungsphänomene, die substanzspezifisch sind.

In Abb. 50 sind die Exponenten für Verbindungen mit der Phasenumwandlung isotrop-nematisch dargestellt. Die Exponenten liegen zwischen -0,85 und -0,65. Die Verbindungen mit der Umwandlung isotrop-smektisch-A bzw. smektisch-C ergeben Exponenten, die um -0,3 liegen. In diesem Fall haben die Exponenten nichts mit kritischen Exponenten gemein. Die Umwandlungsenthalpie isotrop-smektisch ist mit einigen kJ pro Mol so hoch, daß nur geringe Vorumwandlungserscheinungen und somit auch kein kritisches Verhalten am Klärpunkt zu erwarten ist (siehe Abb. 31 und 32).

5 Zusammenfassung

Die vorliegende Arbeit gliedert sich in drei Teile. Im ersten Teil wird eine Apparatur vorgestellt, die eine sehr genaue Bestimmung der magnetisch induzierten Doppelbrechung (Cotton-Mouton-Konstante) erlaubt. Im zweiten Teil werden die damit durchgeführten Messungen der CM-Konstanten an bestimmten Substanzen vorgestellt. Im dritten Teil werden die Meßwerte verwendet, um bestehende Theorien zu testen.

Die Apparatur wurde zum größten Teil im Rahmen der Diplomarbeit aufgebaut und während der Promotion weiterentwickelt. Das zentrale Problem lag in der Konstruktion einer Meßzelle, die eine optimale Thermostatisierbarkeit gewährleistet. Neben dem Thermostatisierungsproblem galt es auch, die Meßzelle so zu konstruieren, daß beide Quarzplatten an den Stirnflächen plan sind und parallel zueinander stehen. Nach Bewältigung dieser Probleme ist eine Meßapparatur entstanden, die es unter Verwendung der Lock-in-Technik gestattet, Doppelbrechungswerte von $\Delta n = 10^{-11}$ zu detektieren. Sie erlaubt, Messungen von relativ kleinen CM-Konstanten von nicht flüssigkristallinen Verbindungen (z.B. Toluol) mit einer Genauigkeit von 1-2% durchzuführen.

Die Untersuchung der CM-Konstante in der isotropen Phase von verschiedenen Flüssigkristallen hat gezeigt, daß die Vorumwandlungserscheinungen in der Nähe des Klärpunktes je nach Verbindung unterschiedlich ausgeprägt sind. Für die Charakterisierung der Stärke der Vorumwandlungserscheinungen wurde eine Halbwertstemperatur definiert, welche die Temperaturdifferenz zum Klärpunkt angibt, bei der die CM-Konstante auf die Hälfte ihres Maximalwertes (CM_{max}) gefallen ist. Der Vergleich der mit einem DSC-Gerät bestimmten Umwandlungsenthalpie und der Halbwertstemperatur läßt den Schluß zu, daß kleine Umwandlungsenthalpien auch kleine Halbwertstemperaturen und somit große Vorumwandlungserscheinungen bewirken. So ist es auch zu erklären, warum bei der Umwandlung isotrop-smektisch-A kaum Vorumwandlungserscheinungen zu beobachten sind. Die Umwandlungsenthalpie für diesen Übergang ist zu hoch. Bei der Untersuchung von homologen Reihen wurde ein even-odd-Effekt der Umwandlungsenthalpien und CM_{max} festgestellt. Die Analyse der Meßwerte ergibt eine umgekehrte Proportionalität zwischen diesen beiden Größen. Mit dieser Beziehung läßt sich eine "Eichgerade" erstellen, mit der die Umwandlungsenthalpien der restlichen Glieder der homologen Reihe abgeschätzt werden können.

Für die Überprüfung der Landau-de Gennes-Theorie wurden Messungen an der Substanz MBBA durchgeführt, da Stinson und Litster versuchten, diese Theorie durch Messung der CM-Konstante an dieser Verbindung zu belegen. Die hier durchgeführten Messungen ergaben andere Ergebnisse als in der Arbeit von Stinson und Litster. Beispielsweise ist nicht nachvollziehbar, daß dort für die CM-Konstante am Klärpunkt um den Faktor drei größere Werte gefunden werden und die Werte etwa 10 K oberhalb des Klärpunktes mit den hier gemessenen übereinstimmen.

Einer der seltsamen Befunde von Stinson und Litster ist der Wert für die maximale Unterkühlungstemperatur T^* , die etwa ein Kelvin unterhalb der Klärpunktstemperatur liegt. Sehr viele Autoren finden auch diese Temperatur, weil die Anpassung so durchgeführt wurde, daß diese Temperaturdifferenz von einem Kelvin erhalten wird. In der vorliegenden Arbeit hat die systematische Untersuchung von verschiedenen Verbindungen eindeutig ergeben, daß die Anpassung der Meßwerte mit der LdG-Theorie nicht gelingt, und somit auch kein Wert für T^* angegeben werden kann.

Die Auswertung der Meßwerte unter Berücksichtigung von nematischen bzw. smektischen Fluktuationen erfolgt durch eine Fit-Vorschrift mit vier bzw. fünf Parametern. Die Durchführung der Fits hat sich bei so vielen unabhängigen Parametern als äußerst schwierig erwiesen. So ergab die Fit-Prozedur je nach Startwert unterschiedliche Parameterwerte. Eine der wesentlichen Aussagen der Theorie, welche die smektischen Fluktuationen berücksichtigt, ist, daß die Abweichung von der LdG-Theorie von der Breite der nematischen Phase abhängt, wenn eine smektische Phase existiert. Die hier durchgeführten Untersuchungen lassen einen solchen Schluß nicht zu: Verbindungen mit nur einer breiten nematischen Phase und solche mit nur einer smektischen Phase ergeben im Widerspruch zu dieser Theorie ähnliche Fit-Parameter. Die einzige Theorie, die das Temperaturverhalten der CM-Konstanten in unmittelbarer Nähe des Klärpunkts gut beschreibt, ist das kritische Gesetz nach Oxtoby (1979). Der kritische Exponent ist nach dieser Theorie *nicht* der einer reinen Suszeptibilität. Er muß mit dem kritischen Gesetz des Ordnungsparameters skaliert werden. Es ergibt sich dann ein Exponent mit universellem Charakter: Sein Wert ist $\psi = -0,59$.

Das erste Experiment, die Messung der Kerr-Konstante in einem sehr kleinen Temperaturbereich am Klärpunkt, wurde 1971 von Schadt und Helfrich durchgeführt. Sie fanden Werte für den Exponenten zwischen -0,5 und -0,7 und zeigten sich erstaunt darüber, daß sie wesentlich kleinere Exponenten erhielten als es die LdG-Theorie verlangt (der Wert des Exponenten beträgt in dieser Theorie -1). Die Autoren machten die starken Dipolmomente der untersuchten Verbindungen verantwortlich und äußerten die Vermutung, daß ein kritisches Verhalten vorliegt. Die Messungen in der vorliegenden Arbeit ergeben für den Exponenten Werte zwischen -0,65 und -0,85.

Die kritischen Gesetze haben nur für kontinuierliche Phasenumwandlungen universellen Charakter. Die Phasenumwandlung isotrop-flüssigkristallin verläuft diskontinuierlich. Daher kann bei der Auswertung der Messungen durch einen Fit mit einem kritischen Gesetz kein universeller Exponent erwartet werden, denn die Messung der CM-Konstante erfolgt nicht vollständig in dem Temperaturbereich, aus dem ein kritischer Exponent resultiert, was die unterschiedlichen Werte für den Exponenten zwischen -0,65 und -0,85 erklärt. In diese Werte gehen die speziellen mikroskopischen Eigenschaften der Verbindungen ein, die nur sehr nahe an kritischen Temperaturen keine Rolle mehr spielen. Aufgrund der Umwandlungsenthalpie bei der Umwandlung isotrop-nematisch existiert weder eine kritische Temperatur noch ein kritischer Exponent.

Zusammenfassend kann festgestellt werden, daß zur Zeit keine Theorie existiert, die Phasenumwandlungen mit Vorumwandlungserscheinungen korrekt beschreibt.

6. Literaturverzeichnis

Andrews, T.; Phil. Trans. R. Soc. 159, 575 (1879)

Anisimov, M. A., Gorodetskii, E. E., Podnek, V. E., JETP Letters 37, 414 (1983)

Anisimov, M. A.; "Critical Phenomena in Liquids and Liquid Crystals", Gordon and Breach Science Publishers, 1991

Bataglia, R., Ritchie, L. D.; J. Chem. Soc. Farad. Trans. II **73**, 209 (1976) Born, M.; Ann. Phys. **55**, 177 (1918)

Chatelain, P.; Acta Crystallogr. 4, 453 (1951)

Coles, H. J.; Mol. Cryst. Liq. Cryst. 55, 237 (1979)

Cotton, A., Mouton, H.; Journ. de Phys. 1, 5 (1911)

de Gennes, P. G.; Mol. Cryst. Liq. Cryst. 12, 193 (1971)

De Jeu, W. H.; Solid State Commun. 12, 405 (1973)

Ditchfield, R.; "Molecular Structure and Properties"; MTP International Review of Science; Physical Chemistry Series 1

Drozd-Rzoska, A., Gorny, M.; Liq. Cryst. 21, 273 (1996)

Fan, C. P., Stephen, M. J.; Phys. Rev. Lett. 25, 500 (1970)

Frenkel, J.; J. Chem. Phys. 7, 538 (1939)

Ginzburg, V. L.; Sov. Phys. Sol. State 2, 1824 (1960)

A. Gohin, C. Destrade, H. Gasparoux und J. Prost, J. Physique 44, 427 (1983)

Goldet, A.; Ann. de Phys. 10, 103 (1938)

Grodde, K. H.; Phys. Z. 39, 772 (1938)

Haller, I.; Progr. Solid State Chem. 10, 103 (1975)Hoyer, W. A., Nolle, A. W.; J. Chem. Phys. 24, 803 (1955)

Hückel, E.; Phys. Z., 83, 632 (1933)

Ising, E.; Phys. Z. 31, 253 (1925)
König, H.; Ann. Phys. 31, 289 (1938)
Kolinsky, P. V., Jennings B. R.; Mol. Phys. 40, 979 (1980)

Landau, L. D., Lifschitz, E.F.; "Statistische Physik", Akademie Verlag Berlin (1987)

London, F.; J. Phys. Radium 8, 397 (1937)

Londsdale, K.; Proc. Roy. Acad. 171 A, 941 (1939)

Maier, W, Saupe, A.; Z. Naturforsch. 13a, 564 (1958)

Maier, W., Saupe, A.; Z. Naturforsch. 14a, 882 (1959)

Maier, W., Saupe, A.; Z. Naturforsch. 15a, 287 (1960)

Marcelja, S.; J. Chem. Phys. 60, 3599 (1974)

Matull, E.; Ann. Phys. 21, 345 (1934)

McMillan, W. L.; Phys. Rev. A4, 1238 (1971)

McMillan, W. L.; Phys. Rev. Lett. 61, 1851 (1988)

Mendenhall, W., Sincich, T.; "Statistics for engeneering and the sciences", Macmillan Publishing Company, New York 1992

Ney, M.; Dissertation in Vorbereitung

K. Muta, H. Takezoe, A. Fukuda und E. Kuze, Jpn. J. Appl. Phys. 17, 957 (1978)

K. Muta, H. Takezoe, A. Fukuda und E. Kuze, Jpn. J. Appl. Phys. 18, 2073 (1979)

Ornstein, L. S., Kast, W.; Trans. Faraday. soc. 29, 931 (1933)

R. A. Orwoll, V. J. Sullivan und G. C. Campbell, Mol. Cryst. Liq. Cryst. 149, 121 (1987)

Oseen, C. W.; Trans. Faraday. Soc. 29, 883 (1933)

Otterbein, G.; Phys. Z. 35, 249 (1934)

Oxtoby, D. W., Greffe, J. L., Goulon, J.; J. Chem. Phys. 70, 4742, (1979)

- Pauling, L.; J. Chem. Phys. 4, 673 (1936)
- Pferrer, S.; "Untersuchung der magnetisch induzierten Doppelbrechung an hochsiedenden aromatischen Kohlenwasserstoffen in der Gasphase" Dissertation, Universität Ulm (1982)
- Pink, D. A.; J. Chem. Phys. 63, 2533 (1975)
- Pouligny, B., Marcerou, J. R., Lalanne, J. R. and Coles H. J.; Mol. Phys. 49, 583, (1983)
- Press W. H., Flannery, B. P., S. A. Teukolsky, Vetterling, W. T.; Numerical Recipes, Cambridge University Press, 2nd. 1992
- Rabinovitch, J., Kunzl, V.; J. de Phys. 8, 111 (1947)
- Ramachandran, G. N., Ramaseshan, S.; Crystal Optics, Handbuch der Physik, Bd. 25/1, Berlin (1961)
- Riste, T. Pynn, R.; Solid State Comm.. 12, 409 (1973)
- Rzoska, S. J., Droszd-Rzoska, A., Gorny, M. Ziolo, J.; Phys. Rev. E, 49, 5234 (1994)
- Rzoska, S. J., Droszd-Rzoska, A.; J. Phys. Rev. E, 52, 6325 (1995)
- Schadt, M., Helfrich, W.; Mol. Cryst. Liq. Cryst. 17, 355 (1972)
- Shoemaker, R. L., Flygare, W. H.; J. Chem. Phys. 51, 2988 (1969)
- Schütz, W.; "Magnetooptik" Akademische Verlagsgesellschaft mbH Leipzig (1936)
- Stinson, T. W.; Litster, J. D., Phys. Rev. Lett. 25, 503 (1970)
- Szivessy, G.; Ann. Phys. 68, 231 (1922)
- Szivessy, G.; Ann. Phys. 68, 127 (1922)
- Thoen, J., H. Marynissen und W. Van Dael, Phys. Rev. A, 26, 2886 (1982)
- Thoen, J., H. Marynissen und W. Van Dael; Mol. Cryst. Liq. Cryst. 97, 149 (1983)
- Thoen, J.,H. Marynissen und W. Van Dael ; Mol. Cryst. Liq. Cryst. 124, 195 (1985)

Tsvetkov, V.; Acta Physicochimica. USSR 16, 132 (1942)

Ubbelohde, A. R.; Trans. Farad. Soc. 34, 282 (1938)

Weiss, P.; Phys. Z. 11, 358 (1908)

- Woermann, D., Lesemann, M., Martin, A. und Belkoura L.; Ber. Bunsenges. Phys. Chem. **101**, 228, (1997)
- Zadoc-Kahn, J.; Compt. Rend. 190, 672 (1930)
- Zadoc-Kahn, J.; Compt. Rend. 191, 1002 (1930)
- Zadoc-Kahn Eisenmann, J.; Ann. de Phys. 6, 455 (1936)
- Zhang, S. L., Peng, Z.-Y., Wu, J.,Shen, H.,Wu, N.-Q.; Mol. Cryst. Liq. Cryst. **91**, 295 (1983)
- Zink, H., De Jeu, W. H.; Mol. Cryst. Liq. Cryst. 124, 287 (1985)
- Zocher, H.; Z. Physik 28, 790 (1927)

7.1 Verwandte Symbole

1. Lateinische Abkürzungen und Symbole

А	Ampere
Α	Erster Entwicklungskoeffizient in der Landau-Entwicklung
а	Erster dimensionsloser Entwicklungskoeffizient in der Landau-
	Entwicklung
\vec{B}	Magnetische Induktion
В	Zweiter Entwicklungskoeffizient in der Landau-Entwicklung
b	Zweiter dimensionsloser Entwicklungskoeffizient in der Landau-
	Entwicklung
С	Dritter Entwicklungskoeffizient in der Landau-Entwicklung
С	Cotton-Mouton-Konstante
С	Dritter dimensionsloser Entwicklungskoeffizient in der Landau-
	Entwicklung
С	spezifische Wärme
СМ	Cotton-Mouton-Konstante
CM_{max}	Cotton-Mouton-Konstante am Klärpunkt
$_{\rm m}CM^{\rm fl.}$	Molare Cotton-Mouton-Konstante in der flüssigen Phase
mCM ^{gasf.}	Molare Cotton-Mouton-Konstante in der Gasphase
cm	Zentimeter
d	Schichtdicke
$E_{ m p}$	Komponente des Lichtvektors parallel zur Richtung des Direktors
$E_{\rm s}$	Komponente des Lichtvektors senkrecht zur Richtung des Direktors

F	Freie Energiedichte
F_{I}	Freie Energiedichte der isotropen Phase
$F_{ m N}$	Freie Energiedichte der nematischen Phase
g	Gramm
_ →	
Н	Magnetische Feldstärke
H_{x}	x-Komponente der magnetischen Feldstärke
$H_{ m y}$	y-Komponente der magnetischen Feldstärke
$H_{\rm z}$	z-Komponente der magnetischen Feldstärke
Ι	Isotrope Phase
J	Joule
\vec{k}	Wellenvektor
k	Boltzmann-Konstante
Κ	Kelvin
kHz	Kilohertz
kG	Kilogauss
kV	Kilovolt
l	Küvettenlänge
\vec{M}	Magnetisierung
М	Molmasse
m	Meter
mm	Millimeter
Ν	Nematische Phase

Avogadro-Konstante
Direktor
Komponente des Brechungsindex parallel zur Richtung des Direktors
Komponente des Brechungsindex senkrecht zur Richtung des Direktors
Parameter
Ordnungsparameter
Wärmefluß
Ordnungsgrad der nematischen Phase am Klärpunkt
Residuum
Gaskonstante
Entropie
Ordnungsgrad
Smektische A-Phase
Smektische C-Phase
Schmelzpunkt

Temperatur
Tesla
Absolute Stabilitätsgrenze der isotropen Phase
Absolute Stabilitätsgrenze der nematischen Phase
Reduzierte Temperatur
Halbwertstemperatur
Kritische Temperatur
Reduzierte Temperatur am Klärpunkt
Klärpunktstemperatur

$T_{ m NI}$	Klärpunktstemperatur für den Übergang nematisch isotrop
$T_{\rm S}$	Phasenumwandlungstemperatur isotrop-smektisch
$T_{\rm S}$	Phasenumwandlungstemperatur nematisch-smektisch
$T_{\rm S}^{*}$	Absolute Stabilitätsgrenze der smektischen Phase
и	Energiedichte
$U_{ m k}$	Kompensationsspannung
$U(\lambda/2)$	Halbwellenspannung der Pockelszelle
V	Verdetsche Konstante
V	Volt
x	Ortskoordinate
у	Ortskoordinate
Z.	Ortskoordinate

2. Griechische Abkürzungen und Symbole

α	Kritischer Exponent für die spezifische Wärme
β	Kritischer Exponent für den Ordnungsparameter
β	Winkel zwischen Fortpflanzungsrichtung des Lichtes und Richtung der Magnetischen Feldstärke
Г	Gangunterschied
γ	Kritischer Exponent für die Suszeptibilität

$\Delta H_{ m K}$	Phasenumwandlungsenthalpie am Klärpunkt
Δn	Doppelbrechung (Optische Anisotropie)
$\Delta S_{\rm K}$	Phasenumwandlungsentropie am Klärpunkt
$\overline{\mathcal{E}}$	Spur des Dielektrizitätstensors
\mathcal{E}_{p}	Dielektrizitätskonstante parallel zum Direktor
\mathcal{E}_{s}	Dielektrizitätskonstante senkrecht zum Direktor
heta	Winkel
К	Konstante
2	
λ	Wellenlänge
	Magnatiasha Faldkanstanta
μ_0	Wagnetische Pelukonstante
V	Kritischer Exponent für die Korrelationslänge
·	Thirdsener Enponent für die Hofferunonslunge
Ę.	Korrelationslänge
$\xi(T)$	Kohärenzlänge als Funktion der Temperatur
ξ_0	Korrelationslänge bei o K
ho	Dichte
$oldsymbol{ ho}_1$	Translationsordnungsgrad
σ	Gemischter Ordnungsgrad
φ	Kritischer Exponent
φ	Phasenverschiebung in Bogenmaß
ϕ	Drehwinkel beim Faraday-Effekt

χ	Magnetische Suszeptibilität
$\chi_{ m a}$	Magnetische Suszeptibilitätsanisotropie
$\chi_{ m m}$	Molare magnetische Suszeptibilität
$\chi_{ m v}$	Volumen-Suszeptibilität
$\chi_{\rm xx}$	x-Komponente des Suszeptibilitätstensors
$\chi_{ m yy}$	y-Komponente des Suszeptibilitätstensors
Xzz	z-Komponente des Suszeptibilitätstensors
ψ	Kritischer Exponent
ψ_1	Winkel zwischen der Richtung der magnetischen Feldstärke und x-Achse
	des Moleküls
ψ_2	Winkel zwischen der Richtung der magnetischen Feldstärke und y-Achse
	des Moleküls
ψ_3	Winkel zwischen der Richtung der magnetischen Feldstärke und z-Achse
	des Moleküls

3. Untersuchte Flüssigkristalle, Akronyme

5CBP	4-Cyano-4´-pentylbipheny
JCDP	4-Cyano-4 -pentyloiphen

- 6CBP 4-Cyano-4´-hexylbiphenyl
- 7CBP 4-Cyano-4´-heptylbiphenyl
- 8CBP 4-Cyano-4´-octylbiphenyl
- 9CBP 4-Cyano-4´-nonylbiphenyl
- 10CBP 4-Cyano-4´-decylbiphenyl
- 11CBP 4-Cyano-4´-undecylbiphenyl
- 12CBP 4-Cyano-4´-dodecylbiphenyl
- 50CBP 4-Cyano-4´-pentyloxybiphenyl
- 6OCBP 4-Cyano-4´-hexyloxybiphenyl
- 70CBP 4-Cyano-4´-heptyloxybiphenyl

80CBP	4-Cyano-4´-octyloxybiphenyl				
90CBP	4-Cyano-4´-nonyloxybiphenyl				
10OCBP	4-Cyano-4´-decyloxybiphenyl				
11OCBP	4-Cyano-4´-undecyloxybiphenyl				
PCH3	4-Cyano-1-[trans-4-propylcyclohexyl]-benzol				
PCH4	4-Cyano-1-[trans-4-butylcyclohexyl]-benzol				
PCH5	4-Cyano-1-[trans-4-pentylcyclohexyl]-benzol				
PCH7	4-Cyano-1-[trans-4-heptylcyclohexyl]-benzol				
MBBA	4´-Methoxybenzyliden-4-n-butylanilin				
EBBA	4´-Ethoxybenzyliden-4-n-butylanilin				
406	4-n-Butylbenzoesäure-[4-n-hexyloxyphenylester]				
407	4-n-Butylbenzoesäure-[4-n-heptyloxyphenylester]				
N4	Eutektische Mischung der beiden isomeren				
	4-n-Butyl-4´-methoxyazoxybenzole				

7.2 Tabelle A1 Allgemeine Daten

	r,		1	1
Verbindung	Phasenabfolge		ΔS	\underline{CM}_{max}
		kJ mol ⁻¹	J m o 1 ⁻¹ K ⁻¹	$10^{-15} \mathrm{m A}^{-2}$
5CBP	K 22,8 N 34,8 I	0,3715	1,206	3280
6CBP	K 14 N 29,1 I	0,2739	0,906	4627
7CBP	K 29,2 N 42,6 I	0,5631	1,783	2390
8CBP	K 21,7 S _A 32,8 N 40,5 I	0,6091	1,942	2407
9CBP	K 40,7 S _A 45,1 N49,7 I	1,1515	3,566	1037
10CBP	K 44,3 S _A 51,6 I	2,7889	8,858	394
11CBP	K 52,9 S _A 56,8 N57,1 I	3,6185	10,95	218
12CBP	K 43,9 S _A 58,5 I	4,1216	12,42	147
50CBP	K 53,0 N 68,1 I	0,1857	0,544	7920
6OCBP	K 58,2 N 76,8 I	0,2766	0,790	5621
7OCBP	K 53,1 N 74,6 I	0,2523	0,726	6277
80CBP	K 54,7 S _A 67,1 N 79 I	0,4504	1,279	3812
90CBP	K 65 S _A 75,8 N 78,8 I	0,6590	1,872	2484
100CBP	K 60,9 S _A 84,1 I	2,7002	7,559	636
11OCBP	K 71 S _A 86,7 I	3,5439	9,848	256
PCH3	K 42,1 N 45 I	0,8422	2,647	196
PCH4	K 41 (N 39) I	0,5085	1,629	348
PCH5	K 30 N 55 I	0,7573	2,308	259
PCH7	K 30 N 57 I	0,8065	2,443	224
MBBA	K 21,8 N 45,7 I	0,4922	1,544	5100
EBBA	K 38 N 79,9 I	0,4439	1,257	2378
406	K 29,1 N 48 I	0,5688	1,746	1393
407	K 35,3 N 43,3 I	0,5062	1,599	1728
7.3 Tabelle A2

Meßwerte

		5CBP	(6CBP	7	CBP
Meß- wert	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$
1	34,765	3280,213	29,080	4627,040	42,600	2390,080
2	34,865	2829,004	29,180	3698,112	42,700	2040,192
3	34,970	2500,596	29,280	3134,912	42,805	1793,792
4	35,065	2263,063	29,385	2747,360	42,905	1603,712
5	35,165	2069,036	29,480	2460,480	43,025	1436,864
6	35,315	1840,975	29,580	2240,480	43,165	1282,688
7	35,465	1663,088	29,685	2054,624	43,320	1146,816
8	35,655	1480,639	29,835	1833,568	43,500	1028,896
9	35,860	1335,488	29,985	1660,032	43,700	924,352
10	36,165	1169,074	30,185	5 1474,880	43,925	834,240
11	36,465	1042,763	30,435	5 1299,830	44,175	752,928
12	36,863	915,400	30,735	1141,536	44,475	674,925
13	37,365	796,458	31,230	953,568	45,020	570,240
14	37,965	692,252	32,025	760,320	45,620	489,632
15	38,705	596,712	33,025	609,312	46,320	420,992
16	39,700	503,838	34,530	471,680	47,120	364,320
17	41,000	421,877	37,025	345,664	48,020	316,800
18	43,000	338,968	41,020	243,936	49,020	277,376
19	46,015	262,831	46,020	179,590	50,515	234,854
20	50,015	203,149	51,010	142,947	53,015	187,898
21	55,010	158,800	56,000	119,082	56,010	152,346

7. Anhang

	5CBP		6CBP		7CBP	
Meß- wert	$\frac{T}{^{\circ}C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$	$\frac{T}{^{\circ}C}$	$\frac{CM}{10^{-15} \mathrm{m A}^{-2}}$	$\frac{T}{^{\circ}C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$
22	60,010	130,661	61,000	102,362	60,010	122,496
23	65,000	111,048	66,000	89,584	65,000	99,123
24	70,010	96,803	71,000	79,658	70,000	83,776
25	75,010	85,540	76,000	71,878	75,000	73,075
26	80,000	77,049	81,000	65,120	80,000	65,402
27	85,000	70,067	86,000	59,066	85,000	59,242
28	90,000	64,418	91,000	54,419	90,000	54,630
29	95,000	59,787	96,000	50,618	95,000	50,794

	8CBP		9CBP		10CBP	
Meß- wert	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15}} \mathrm{mA}^{-2}$
1	40,455	2407,680	49,740	1036,992	51,240	393,536
2	40,550	2033,152	49,840	933,856	51,340	378,752
3	40,650	1764,224	49,940	852,544	51,445	364,672
4	40,750	1571,680	50,040	789,184	51,540	353,056
5	40,850	1419,616	50,140	734,624	51,665	339,715
6	40,945	1296,416	50,240	688,864	51,805	325,424
7	41,070	1178,496	50,360	640,640	51,965	310,253
8	41,235	1050,720	50,500	593,120	52,145	295,856
9	41,420	937,728	50,660	548,768	52,345	281,213

	8	8CBP	ļ	OCBP	10)CBP
Meß- wert	$\frac{T}{^{\circ}\mathrm{C}}$	$\frac{CM}{10^{-15} \mathrm{m A}^{-2}}$	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$
10	41,650	834,240	50,840	506,176	52,595	265,302
11	41,950	729,344	51,040	466,752	52,895	248,512
12	42,325	632,192	51,310	423,808	53,300	229,539
13	42,825	538,912	51,715	373,120	53,800	210,144
14	43,527	448,096	52,210	327,008	54,590	186,243
15	44,430	370,656	52,810	285,824	55,610	163,082
16	45,520	307,472	53,510	249,603	56,800	142,842
17	46,920	253,546	54,410	215,987	58,200	125,523
18	48,620	209,792	55,600	183,814	59,800	111,197
19	50,320	179,520	57,100	155,690	61,600	98,349
20	52,415	153,085	58,995	131,859	63,600	87,754
21	55,120	129,078	61,990	107,078	66,600	76,278
22	60,010	101,446	64,990	90,640	70,000	66,950
23	65,000	84,128	69,990	73,322	75,000	57,235
24	70,005	71,878	75,000	62,022	80,000	50,512
25	75,000	63,149	80,000	54,067	85,000	45,725
26	80,000	56,637	85,000	47,978	89,900	41,923
27	85,000	51,533	89,980	42,838	95,000	38,931
28	90,000	47,696	94,970	38,790		
29	95,000	44,387				

	1	1CBP	12CBP		
Meß- wert	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$	
1	57,100	217,747	58,475	147,206	
2	57,200	212,608	58,575	144,531	
3	57,300	207,948	58,715	141,293	
4	57,450	201,274	58,915	136,998	
5	57,700	191,910	59,170	132,106	
6	58,050	179,379	59,515	125,981	
7	58,500	166,496	59,920	119,750	
8	59,050	153,648	60,510	110,915	
9	59,700	141,117	61,010	105,037	
10	60,550	127,741	61,720	97,891	
11	61,600	115,069	62,620	90,394	
12	63,150	101,376	63,710	83,248	
13	65,100	89,408	65,100	76,138	
14	67,650	78,214	66,700	69,837	
15	69,990	70,611	68,700	63,290	
16	75,000	59,734	71,000	57,675	
17	80,000	52,342	73,500	52,765	
18	85,000	47,626	76,500	48,611	
19	90,000	43,824	80,000	44,669	
20	95,000	40,832	85,050	40,093	
21			90,050	36,502	
22			95,020	33,722	

	5	OCBP	6OCBP		7OCBP	
Meß- wert	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \mathrm{m A}^{-2}}$	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \mathrm{m A}^{-2}}$	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$
1	68,115	7920,224	76,807	5651,577	74,668	6276,746
2	68,145	7234,820	76,825	5421,105	74,690	5928,811
3	68,158	7033,408	76,866	4836,908	74,720	5337,322
4	68,191	6523,363	76,930	4226,658	74,770	4690,163
5	68,215	6188,677	77,005	3647,472	74,840	3966,458
6	68,245	5815,914	77,115	3122,396	74,930	3423,680
7	68,275	5475,216	77,225	2691,513	75,055	2860,025
8	68,308	5139,528	77,375	2313,740	75,200	2400,751
9	68,333	4921,081	77,560	1980,056	75,400	1990,188
10	68,375	4600,424	77,775	1701,485	75,650	1649,212
11	68,410	4342,896	78,020	1471,013	75,970	1358,338
12	68,450	4083,365	78,315	1262,586	76,360	1120,351
13	68,491	3889,968	78,670	1091,235	76,855	919,940
14	68,540	3672,523	79,065	944,936	77,665	718,834
15	68,590	3473,114	79,665	791,521	78,750	556,696
16	68,645	3303,768	80,465	655,142	80,250	425,177
17	68,680	3188,532	81,460	535,697	82,250	320,796
18	68,730	3027,201	82,660	443,007	84,840	241,467
19	68,799	2852,844	84,150	364,046	87,830	196,166
20	68,899	2622,372	86,150	295,205	90,830	161,999
21	69,018	2400,918	88,845	233,979	94,820	132,007
22	69,147	2208,524	92,040	190,190	98,810	110,643
23	69,325	1984,064	95,830	153,314	102,810	95,334

	50	OCBP	6	OCBP	70	CBP
Me ß- wert	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \mathrm{m A}^{-2}}$	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \mathrm{m A}^{-2}}$	$\frac{T}{^{\circ}C}$	$\frac{CM}{10^{-15} \mathrm{m A}^{-2}}$
24	69,496	1816,721	99,820) 128,664	106,790	84,131
25	69,716	1639,358	103,81	0 110,226	110,790	75,015
26	69,964	1475,021	107,80	0 96,297		
27	70,239	1330,726	111,80	0 85,676		
28	70,545	1202,463	115,78	0 77,158		
29	70,895	1083,219				
30	71,285	975,999				
31	71,787	867,778				
32	72,380	768,073				
33	73,180	665,864				
34	74,175	570,669				
35	75,370	489,202				
36	76,865	414,850				
37	78,860	345,007				
38	81,860	275,464				
39	85,850	216,944				
40	89,840	178,566				
41	93,840	151,711				
42	97,830	131,169				
43	101,810	115,236				
44	105,790	103,011				
45	109,770	92,790				
46	113,770	84,974				

	80CBP		9ОСВР		100CBP	
Meß- wert	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \mathrm{m A}^{-2}}$	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$
1	80,300	3811,961	79,295	2483,754	84,540	636,261
2	80,350	3327,578	79,345	2240,144	84,640	603,489
3	80,400	2860,531	79,410	1979,165	84,850	545,964
4	80,470	2513,800	79,510	1715,069	85,240	463,337
5	80,550	2215,611	79,690	1454,090	86,050	359,444
6	80,650	1941,694	79,850	1209,144	87,230	271,030
7	80,800	1655,641	80,150	968,206	88,840	206,741
8	80,995	1383,457	80,550	771,358	90,840	160,686
9	81,250	1158,082	81,140	597,223	92,830	132,377
10	81,550	976,395	82,150	438,676	95,820	105,567
11	82,220	720,160	83,340	336,244	98,810	88,449
12	83,030	557,543	84,830	261,291	101,810	76,491
13	84,030	436,534	86,830	202,459	104,810	67,879
14	85,330	341,877	89,830	151,733	107,790	61,011
15	86,820	274,715	93,820	115,615	110,780	55,573
16	88,820	217,886	97,820	92,233	113,780	50,761
17	91,810	166,708	101,800	77,759	116,760	47,066
18	95,810	127,701	105,790	66,314	119,750	43,719
19	99,800	103,673	109,780	58,520	122,750	40,790
20	103,790	87,376	113,760	52,641	125,750	38,001
21	107,770	75,934	117,780	47,208		
22	111,760	67,266				
23	115,750	60,088				

	11	OCBP
Meß- wert	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$
1	86,820	256,928
2	86,920	242,642
3	87,160	229,848
4	87,680	208,559
5	88,470	182,172
6	89,470	157,971
7	90,860	134,046
8	92,860	110,850
9	94,860	95,628
10	96,850	84,013
11	99,840	71,947
12	102,830	63,452
13	105,820	57,384
14	108,810	52,079
15	111,800	47,918
16	114,780	44,902
17	117,770	42,301
18	120,780	39,943
19	123,770	38,210

	Ν	/IBBA	I	EBBA	N4	
Meß- wert	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$	$\frac{T}{^{\circ}\mathrm{C}}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$
1	45,740	5110,242	79,890	2378,690	75,660	3343,811
2	45,790	4727,740	79,940	2287,977	75,710	3221,918
3	45,840	4430,121	80,000	2182,865	75,760	3102,893
4	45,915	4065,934	80,075	2062,635	75,815	2991,397
5	46,000	3733,446	80,170	1940,245	75,890	2851,937
6	46,100	3372,077	80,290	1800,576	75,970	2709,251
7	46,215	3069,527	80,455	1647,588	76,050	2587,286
8	46,335	2786,066	80,655	1494,132	76,155	2441,803
9	46,475	2545,788	80,905	1345,932	76,305	2258,247
10	46,655	2298,887	81,250	1182,649	76,500	2066,086
11	46,850	2079,811	81,740	1011,879	76,800	1836,640
12	47,100	1864,962	82,460	846,292	77,260	1578,693
13	47,400	1664,553	83,455	690,893	77,750	1370,579
14	47,800	1460,623	84,655	568,575	78,455	1151,530
15	48,300	1272,189	86,140	467,099	79,355	970,842
16	48,900	1102,775	87,840	390,605	80,550	805,211
17	49,600	958,721	89,830	327,934	81,835	684,035
18	50,600	809,383	92,830	263,499	83,340	582,935
19	51,800	685,052	97,810	199,316	86,330	451,363
20	53,300	576,219	102,810	160,295	89,820	357,899
21	54,990	487,461	107,810	133,765	94,815	277,665
22	57,000	414,201	112,790	114,852	99,810	227,008
23	59,995	337,771	117,790	100,072	104,800	192,412

	MBBA		EBBA		N4	
Meß- wert	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \mathrm{m A}^{-2}}$	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$
24	65,000	258,453	122,770) 88,913	109,790	167,746
25	70,000	210,693	127,750	80,058	114,780	148,458
26	75,000	176,458	134,700) 69,942	119,770	133,186
27	80,000	152,437	140,600	63,211	124,770	120,387
28	85,000	133,453			129,760	109,740
29	90,000	118,695			134,760	100,813

	РСН3]	PCH4		PCH5	
Meß- wert	$\frac{T}{^{\circ}\mathrm{C}}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$	
1	46,325	195,728	39,470	348,326	54,570	258,599	
2	46,375	190,581	39,540	326,066	54,675	239,742	
3	46,440	185,323	39,690	293,300	54,800	219,799	
4	46,505	180,102	39,890	258,211	55,005	194,948	
5	46,575	175,100	40,090	232,657	55,305	167,784	
6	46,675	168,492	40,290	212,130	55,705	142,408	
7	46,795	161,446	40,490	195,695	56,210	121,133	
8	46,945	153,523	40,735	178,497	56,810	103,853	
9	47,145	144,359	41,080	158,629	57,510	89,693	
10	47,365	135,232	41,485	142,888	58,310	77,916	
11	47,670	125,327	41,980	126,869	59,205	68,312	

]	PCH3	F	PCH4		CH5
Meß- wert	$\frac{T}{^{\circ}\mathrm{C}}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$	$\frac{T}{^{\circ}C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$
12	48,165	112,194	42,580	112,098	60,200	60,356
13	48,960	96,605	43,375	97,570	62,000	50,121
14	50,165	80,942	44,370	84,256	64,990	40,132
15	51,660	67,762	45,670	72,016	69,990	30,108
16	53,960	54,984	47,460	60,193	74,990	24,430
17	58,940	39,869	49,960	49,409	79,990	20,855
18	63,930	31,836	54,945	36,962	85,010	18,296
19	68,920	26,798	59,930	29,750	90,000	16,333
20	73,910	23,257	64,910	24,930	95,000	14,791
21	78,890	20,664	69,900	21,671		
22	83,880	18,693	74,900	19,244		
23	88,880	16,794	79,890	17,233		
24	93,870	15,608	84,880	15,811		
25	98,870	14,421	89,870	14,389		
26	103,870	13,509	94,870	13,280		
27	109,860	12,486	99,860	12,344		
28	115,850	11,610	104,850	11,650		
29			109,84	0 10,957		

	PCH7			
Meß- wert	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$		
1	58,155	223,637		
2	58,240	206,687		
3	58,360	188,787		
4	58,530	167,636		
5	58,780	145,609		
6	59,085	126,686		
7	59,485	108,531		
8	60,035	91,435		
9	60,735	76,859		
10	61,925	61,115		
11	63,925	45,955		
12	66,915	34,411		
13	69,910	27,872		
14	74,895	21,407		
15	79,890	17,710		
16	84,880	15,123		
17	89,875	13,224		
18	94,865	11,945		
19	99,855	10,996		
20	104,850	10,155		
21	109,830	9,461		

	4	06	4	407
Meß- wert	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$
1	48,045	1392,701	43,335	1729,878
2	48,095	1304,531	43,385	1583,864
3	48,145	1223,963	43,435	1469,865
4	48,205	1135,131	43,485	1368,692
5	48,275	1054,439	43,350	1685,337
6	48,355	970,032	43,520	1312,662
7	48,445	894,478	43,578	1218,579
8	48,540	828,402	43,660	1117,999
9	48,655	767,302	43,760	1007,924
10	48,775	713,353	43,870	913,064
11	48,915	658,103	43,990	834,729
12	49,075	597,840	44,120	762,929
13	49,255	550,266	44,255	700,695
14	49,455	508,512	44,410	645,143
15	49,690	463,446	44,580	590,227
16	49,995	417,048	44,780	540,572
17	50,345	374,613	45,005	493,581
18	50,895	323,759	45,263	450,058
19	51,445	285,409	45,565	406,779
20	52,095	251,343	45,965	362,466
21	52,895	219,946	46,435	325,728
22	53,895	190,374	47,135	278,536
23	55,200	162,703	48,035	235,844

	406		5 40	
Meß- wert	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$
24	56,805	138,071	49,235	196,489
25	58,800	116,281	50,740	162,477
26	60,810	100,672	52,495	135,127
27	63,310	86,802	54,495	113,350
28	65,810	76,591	56,975	94,941
29	68,320	67,828	60,115	78,972
30	70,830	61,103	63,620	66,368
31	73,330	55,373	67,125	57,120
32	75,830	51,055	70,630	50,092
33	78,330	47,527	74,140	44,597
34	74,175	570,669	77,640	40,382
35	75,370	489,202	81,160	36,869
36	76,865	414,850	84,660	33,844
37	78,860	345,007	88,680	30,666
38	81,860	275,464	93,190	28,087

	6CBP		406	
Meß- wert	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$	$\frac{T}{\circ C}$	$\frac{CM}{10^{-15} \text{ m A}^{-2}}$
1	29,540	4955,343	47,000	1416,814
2	29,550	4864,873	47,010	1390,563
3	29,560	4736,362	47,020	1370,687
4	29,570	4624,302	47,030	1351,561
5	29,580	4507,101	47,040	1333,186
6	29,590	4406,349	47,050	1314,810
7	29,600	4308,168	47,060	1296,809
8	29,610	4214,100	47,070	1278,433
9	29,620	4122,602	47,080	1261,182
10	29,630	4037,272	47,090	1244,306
11	29,640	3960,682	47,100	1226,306
12	29,650	3881,521	47,110	1211,305
13	29,660	3812,642	47,120	1194,429
14	29,670	3743,248	47,130	1179,804
15	29,680	3673,855	47,145	1157,303
16	29,700	3545,863	47,160	1135,552
17	29,720	3434,321	47,180	1108,925
18	29,740	3325,863	47,200	1081,549
19	29,760	3225,631	47,220	1057,548
20	29,780	3130,024	47,240	1034,672
21	29,800	3043,671	47,260	1012,921
22	29,820	2961,945	47,280	993,045

Hochaufgelöste CM-Messung

23	29,840	2887,415	47,300	973,732
24	29,860	2814,942	47,330	946,543
25	29,880	2746,581	47,360	921,229
26	29,900	2681,819	47,390	897,416
27	29,920	2622,197	47,420	875,665
28	29,940	2564,117	47,450	855,414
29	29,960	2508,608	47,480	836,288
30	29,980	2455,155	47,520	811,537
31	30,000	2406,328	47,560	787,536
32	30,020	2359,558	47,600	766,160
33	30,040	2313,816	47,640	745,909
34	30,060	2269,102	47,680	726,783
35	30,080	2227,472	47,720	708,407
36	30,110	2166,826	47,760	691,531
37	30,140	2111,836	47,800	675,031
38	30,170	2058,901	47,850	656,280
39	30,200	2008,537	47,900	637,904
40	30,240	1945,840	47,950	621,028
41	30,280	1887,256	48,000	605,277
42	30,320	1831,241	48,060	587,277
43	30,360	1781,127	48,120	570,401
44	30,400	1732,064	48,190	552,025
45	30,440	1686,331	48,260	535,149
46	30,480	1644,197	48,340	516,773
47	30,520	1604,118	48,430	498,023
48	30,560	1564,554	48,530	478,522
49	30,600	1528,074	48,640	458,646

	1			
50	30,650	1484,916	48,760	439,520
51	30,700	1444,842	48,890	420,019
52	30,750	1406,824	49,030	402,018
53	30,800	1371,377	49,200	381,205
54	30,850	1336,958	49,400	360,241
55	30,900	1304,595	49,650	336,653
56	30,950	1274,289	49,950	312,952
57	31,000	1245,267	50,300	288,763
58	31,050	1217,274	50,600	271,512
59	31,100	1191,080	51,000	251,261
60	31,150	1167,199	51,500	230,260
61	31,200	1141,776	52,000	212,372
62	31,250	1118,152	52,750	190,771
63	31,300	1095,710	53,500	173,183
64	31,350	1075,068	54,500	154,132
65	31,400	1054,734	55,750	136,131
66	31,460	1031,629	57,000	121,693
67	31,520	1009,397	58,500	108,267
68	31,580	987,732	60,000	97,879
69	31,640	968,071	62,000	86,629
70	31,710	945,484	65,000	74,253
71	31,780	924,028	68,000	65,253
72	31,860	900,521	71,000	58,128
73	31,940	878,967	74,000	52,127
74	32,030	855,105		
75	32,130	830,681		
76	32,240	805,646		

77	32,360	779,895
78	32,490	754,148
79	32,630	727,944
80	32,780	702,156
81	32,940	676,629
82	33,110	651,621
83	33,290	626,874
84	33,480	603,109
85	33,680	580,325
86	33,900	556,624
87	34,140	533,242
88	34,380	511,761
89	34,640	490,393
90	34,920	469,496
91	35,220	449,123
92	35,570	427,487
93	35,970	405,103
94	36,420	382,793
95	36,920	360,712
96	37,520	337,649
97	38,220	314,118
98	39,020	291,146
99	39,920	269,145
100	40,920	248,373
101	41,920	230,737
102	42,920	215,465
103	43,920	202,198

104	44,920	190,576
105	45,920	180,239
106	46,920	171,136
107	47,920	162,752
108	48,920	155,345
109	49,920	148,607
110	51,420	139,682
111	53,420	129,443
112	55,420	119,313
113	57,420	111,500
114	59,420	104,560
115	61,420	98,340
116	63,420	92,942
117	65,420	88,316
118	67,420	84,018
119	69,420	80,193
120	71,420	76,287
121	73,420	73,408
122	75,420	70,169
123	77,420	67,393
124	79,420	64,772
125	81,420	62,767

7.4 Tabelle A3 Fit-Parameter a) nach Fan und Stephen

$$\ln CM^{-1} = \ln \left[P \left[P \left[T - T^* \right] \right] \left[1 + \frac{P \left[3 - T^* \right]}{\left(T - T^* \right)^{1/2}} - \frac{P \left[4 - T^* \right]}{\left(T - T^* \right)^{3/2}} \right] \right]$$

Verbindung	<i>P</i> 1 /10 ⁻¹⁵ K ⁻¹	$P3 / 10^{-15} K^{1/2}$	<i>P</i> 4 / 10 ⁻¹⁵ K ^{3/2}	T^* / K
5CBP	0,00024	1,158	0,358	307,197
6CBP	0,00026	0,957	0,168	301,779
7CBP	0,00030	1,502	14,833	310,910
8CBP	0,00034	1,416	13,096	309,143
9CBP	0,00037	2,936	19,598	317,972
10CBP	0,00013	22,164	22,164	309,511
11CBP	0,00008	530,18	3256,03	320,651
12CBP	0,00005	79,88	389,57	322,512
5OCBP	0,00023	0,3519	0,4063	340,544
6OCBP	0,000298	0,5263	0,29484	349,375
7OCBP	0,000339	0,4298	0,1668	347,38
80CBP	0,00041	0,7892	0,1195	353,081
90CBP	0,000495	0,4963	1,3916	351,038
90CBP	0,000476	0,9043	-0,0143	352,27
10OCBP	0,000443	1,799	42,0745	347,079
11OCBP	0,000035	134,07	2793,470	335,85
PCH3	0,00076	4,7951	19,0833	314,616
PCH3	0,000749	5,3798	-1,4818	318,812
PCH4	0,000988	2,384	10,335	308,909
PCH5	0,00101	3,821	14,681	323,880
PCH7	0,00113	5,523	49,854	323,930

PCH7	0,0013	3,871	-0,608	331,111
MBBA	0,000161	0,914	0,604	317,933
EBBA	0,000235	0,403	1,718	350,714
406	0,00057	1,112	0,129	320,615
407	0,00064	0,518	0,571	315,512
N4	0,00014	0,845	1,707	346,771

Tabelle A4Fit-Parameterb) nach Anisimov und Gohin et al.

$$\ln CM^{-1} = \ln \left[a \left(T - T^* \right) + \frac{\chi}{\left(T - T_s^* \right)^{1/2}} - \frac{\lambda^2}{\left(T - T_s^* \right)^{3/2}} \right]$$

Verbindung	<i>a</i> /10 ⁻¹⁵ K ⁻¹	T^* / K	λ^2 / 10 ⁻¹⁵ K ^{3/2}	$T^* - T_s^* / K$	$\chi/10^{-15} \text{ K}^{1/2}$
5CBP	0,00026	303,750	0,00004	-2,029	-0,0011
6CBP	0,000284	299,127	-0,00005	-1,452	-0,00084
7CBP	0,000333	303,126	0,000525	-5,863	-0,00981
8CBP	0,000371	301,927	0,000205	-5,390	-0,00977
9CBP	0,00045	305,124	0,00076	-10,801	-0,01849
10CBP	0,00284	229,287	0,00311	-75,566	-0,10828
11CBP	0,000179	138,568	0,00186	-174,504	-0,12334
12CBP	0,000307	230,301	0,00027	-87,4033	-0,09085
5OCBP	0,00024	339,962	0,0000092	-0,584	-0,00016
6OCBP	0,00031	348,000	0,000018	-0,678	-0,00049
70CBP	0,000351	346,000	-0,000003	-0,279	-0,00059
80CBP	0,00453	351,542	0,000291	-0,991	-0,00057

90CBP	0,00049	347,00	0,000116	-0,807	-0,00489
10OCBP	0,000487	336,726	0,000010	-8,477	-0,03050
11OCBP	0,000275	220,321	0,010624	-113,55	-0,17598
PCH3	0,00096	291,117	0,00297	-19,392	-0,06606
PCH4	0,00112	297,190	-0,00052	-8,8936	-0,03704
PCH5	0,01293	309,999	-0,00137	-11,918	-0,04585
PCH7	0,00147	297,192	0,000207	-23,540	-0,14867
MBBA	0,00017	316,052	0,000080	-1,6039	-0,00034
EBBA	0,00024	350,144	-0,000332	-1,6546	-0,00032
406	0,00066	313,00	-0,000147	-0,4427	-0,00299
407	0,00022	308 , 271 0,000291		-0,63288	-0,00183
N4	0,000156	03,000,005405		-1,7370	-0,00093

Tabelle A5

Fit-Parameter

c) Verwendung eines kritischen Gesetzes

$$\ln \frac{CM}{CM_{\text{max}}} = P1 - \psi \ln (T - T^*)$$

Verbindung	<i>P</i> 1	- Ų	T^* / °C
5CBP	-0,56	0,74	34,29
6CBP	-0,90	0,69	28,80
7CBP	-0,61	0,77	42,14
8CBP	-071	0,74	40,07
9CBP	-0,30	0,72	49,07
10CBP	+0,47	0,73	49,32

11CBP	+0,86	0,74	53,89
12CBP	+0,57	0,52	55,47
50CBP	-1,05	0,82	67,83
6OCBP	-1,03	0,78	76,54
70CBP	-1,18	0,79	74,44
80CBP	-1,08	0,69	80,08
90CBP	-0,74	0,81	78,89
10OCBP	-0,58	0,81	82,71
11OCBP	-0,58	-0,30	67,08
PC,548		0,65	44,94
PCH4	-0,56	0,67	38,71
PCH5	-0,55	0,80	53,53
PCH7	-0,51	0,68	57,43
MBBA	-0,08	0,802	45,21
EBBA	-0,09	0,74	79,01
406	-0,51	0,76	47,53
407	-0,64	0,82	42,87