
Quantum Hypergraph States and the
Theory of Multiparticle Entanglement

Dissertation

zur Erlangung des Grades eines Doktors
der Naturwissenschaften

vorgelegt von
MSc. Mariami Gachechiladze

eingereicht bei der Naturwissenschaftlich-Technischen Fakultät
der Universität Siegen

Siegen, 2019



Gutachter:

• Prof. Dr. Otfried Gühne

• PD Dr. Hermann Kampermann

Datum der mündlichen Prüfung: 26.08.2019

Prüfer:

• Prof. Dr. Otfried Gühne (Vorsitz der Prüfungskommission)

• PD Dr. Hermann Kampermann

• PD Dr. Tobias Huber

• PD Dr. Michael Johanning

i



Dedicated to my grandparents

ii





Abstract

This thesis is devoted to learning different aspects of quantum entanglement theory.

More precisely, it concerns a characterization of certain classes of pure multipartite

entangled states, their nonlocal and entanglement properties, comparisons with the

other well-studied classes of states and, finally, their utilization in certain quantum

information processing tasks.

The most extensive part of the thesis explores an interesting class of pure multipartite

entangled states, quantum hypergraph states. These states are generalizations of the

renowned class of graph states. Here we cover their nonlocal properties in various

scenarios, derive graphical rules for unitary transformations and Pauli bases measure-

ments. Using these rules, we characterize entanglement classes of hypergraph states

under local operations, obtain tight entanglement witnesses, and calculate entangle-

ment measures for hypergraph states. Finally, we apply all the aforementioned anal-

ysis to endorse hypergraph states as powerful resource states for measurement-based

quantum computation and quantum error-correction.

The rest of the thesis is devoted to three disjoint problems, but all of them are still in

the scope of entanglement theory. First, using mathematical structure of linear ma-

trix pencils, we coarse grain entanglement in tripartite pure states of local dimensions

2×m× n under the most general local transformations. In addition, we identify the

structure of generic states for every m and n and see that for certain dimensions there

is a resemblance between bipartite and tripartite entanglement. Second, we consider

the following question: Can entanglement detection be improved, if in addition to

the expectation value of the measured witness, we have knowledge of the expectation

value of another observable? For low dimensions we give necessary and sufficient

criterion that such two product observables must satisfy in order to be able to detect

entanglement. Finally, we derive a general statement that any genuine N-partite en-

tangled state can always be projected on any of its k-partite subsystems in a way that

the new state in genuine k-partite entangled.
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Zusammenfassung

Diese Arbeit ist verschiedenen Aspekten der Verschränkungstheorie gewidmet. Ge-

nauer gesagt, beschäftigt sie sich mit der Charakterisierung verschiedener Klassen

reiner mehrteilchenverschränkter Zustände, sowie ihrer nicht-lokalen und Verschrän-

kungseigenschaften, Vergleichen mit anderen bekannten Klassen von Zuständen und,

letztendlich, ihrer Verwendung in der Quanteninformationsverarbeitung.

Der größte Teil dieser Arbeit beschäftigt sich mit einer interessanten Klasse von rei-

nen mehrteilchenverschränkten Zuständen, den Hypergraphen Zuständen. Diese Zu-

stände bilden eine Verallgemeinerung der weithin bekannten Graphen Zustände. Wir

werden ihre nicht-lokalen Eigenschaften untersuchen und graphische Regeln für ihr

Verhalten unter unitären Transformationen sowie Messungen in der Pauli Basis her-

leiten. Unter Verwendung dieser Regeln werden Verschränkungsklassen unter lokalen

Operationen charakterisiert, und optimale Verschränkungszeugen sowie Verschrän-

kungsmaße berechnet. Zuletzt wird, unter Berücksichtigung der vorangegangenen

Analyse, gezeigt, dass Hypergraphen Zustände eine Ressource für Messungsbasier-

te Quantencomputer und Quantenfehlerkorrektur bilden.

Der verbleibende Teil dieser Arbeit beschäftigt sich mit drei unterschiedlichen Proble-

men im Rahmen der Verschränkungstheorie. Zuerst wird die Verschränkung reiner

Dreiteilchenzustände mit lokalen Dimensionen 2 × m × n unter den allgemeinsten

Transformationen untersucht. Dazu wird eine spezielle mathematische Struktur ver-

wendet, die so genannten Matrix Pencils. Zudem identifizieren wir die Struktur von

generischen Zuständen für alle m und n und wir werden sehen, dass in bestimm-

ten Dimensionen eine Ähnlichkeit zwischen Zweiteilchen- und Dreiteilchenverschrän-

kung besteht. Danach wird der Frage nachgegangen: Kann Verschränkungsdetektion

verbessert werden, wenn man zusätzlich zum Erwartungswertes des Verschränkungs-

zeugen noch den Erwartungswert einer anderen Observablen kennt? Für niedrige Di-

mensionen werden notwendige und hinreichende Bedingungen hergeleitet, die zwei

Produktobservablen erfüllen müssen um Verschränkung detektieren zu können. Zu-

letzt wird die allgemeine Aussage bewiesen, dass jeder echte N-Teilchen verschränkte

v



Zustand immer auf seine k-Teilchen Subsysteme projiziert werden kann, sodass dieser

Zustand echt k-Teilchen verschränkt ist.
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Chapter 1

Introduction

Quantum information theory and quantum computing are products of a rapid de-

velopment of several key fields of science since the turn of the twentieth century:

physics, computer science, information theory, and cryptography. At that time along

with gaining more understanding of radiation and the structure of an atom, it was

becoming more and more evident that the predictions made by classical physics could

not be made consistent with experimental observations by simply adding ad hoc hy-

potheses to classical physics. As a result the new theory, called quantum mechanics

was developed, which is accountable for describing nature at its smallest scales of

energy levels.

Quantum mechanics offers a mathematical framework for developing the laws that

physical systems must comply with. Its main aspects can be given in several pos-

tulates: State space postulate, system evolution postulate, quantum measurement

postulate, and composite quantum system postulate. The first postulate sets up a

mathematical playground for quantum mechanics: A state of an isolated quantum

mechanical system is fully specified by a wave function ψ, which mathematically can

be represented by a complex vector in a Hilbert space. Then, if one considers a wave

function over a composite system of two subsystems, one soon realizes that there exist

state vectors in the corresponding composite Hilbert space (in accordance to the last

postulate), which cannot be described as a union of any two state vectors over its con-

stituent subsystems. Instead, only the description of the entire global wave function is

accessible. To say it yet in another words, the state of one particle cannot be accessed

independently of the state of another one, regardless of the distance between them.

This striking phenomenon is known as quantum entanglement and was first described

by Einstein, Podolsky, and Rosen (EPR) in 1935 [1]. In this paper the authors, however,

were rather questioning the completeness of the quantum-mechanical description of
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Introduction 2

physical reality given by a wave function. To them it was counterintuitive that, given

two space-like separated systems, it was possible to measure either the position or

momentum of only one system, and to immediately determine the position or mo-

mentum, respectively, for the second one. Shortly after, Schrödinger for the first time

coined the term entanglement (Verschränkung in German) in his seminal paper [2],

nonetheless, he also referred to the findings of EPR as a "very disconcerting fact".

In 1964, Bell recognized that, if the locality assumption of EPR were indeed true, then the

strength of the correlations obtained from the measurements on the composite system,

must have been upper-bounded for any complete theory of quantum mechanics [3].

Bounding the strength of correlations, now known as Bell’s theorem, was indeed an

ingenious approach to the problem, as it provided an experimentally verifiable devi-

ations of quantum mechanics from the theories requiring complete local descriptions.

In 1972 Bell’s theorem was experimentally verified [4] by violating CHSH inequal-

ity [5] (discussed in Chapter 2). Along with the rapid development of experimental

tools, many other Bell tests were performed [6–9], however, all these experiments had

either detection loophole or locality loophole. Finally, in 2015 the loophole-free experimen-

tal violation of Bell inequalities was announced [10–12].

Quantum entanglement has established itself as a central resource in many applica-

tions of quantum information theory: quantum teleportation [13], dense coding [14],

quantum cryptography [15], measurement-based quantum computation [16], quan-

tum error-correction [17, 18], speed-up in computation [19, 20], the quantum inter-

net [21], precision measurements [22]. Because of its importance, quantum entan-

glement has been extensively investigated over many years. Even though the phe-

nomenon is fairly well understood for the bipartite scenario, due to its complex struc-

ture in multipartite case, its full characterization is unmanageable. Moreover, it has

been established that most of the multipartite quantum states are even too entangled

to be useful for certain quantum information processing tasks [23–25] and, in addition,

it appears that it is more difficult to find resource states for some quantum computing

tasks, than quantum computing itself [26]. Taking all these reasons into account, it is

crucial to find classes of quantum multipartite states, which are useful for many of the

aforementioned applications and at the same time, have easy-to-handle description.

Graph states [27], which are multipartite entangled states, have been utilized in almost

all the applications of quantum information theory. Despite their usefulness, this class

of states also has its own limitations. To give examples, graph states are fragile against

noise and also they need non-Pauli bases measurements as additional resources to

guarantee universal measurement-based quantum computation [28]. One of the main
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goals of this thesis is to investigate properties of more general pure multipartite entan-

gled states, called hypergraph states and to establish the areas of quantum information

processing, where these, more general states, could offer an advantage. The biggest

chunk of my thesis is devoted to investigating these states and their applications. See

Chapters 3-7.

In Chapter 3, we investigate nonlocality of hypergraph states and derive genuine mul-

tipartite Bell inequality specifically for the three-qubit case. The technique is general

and can be applied to other hypergraphs. Moreover, we show that certain symmetric

N-qubit hypergraph states, in the analogy to the symmetric N-qubit graph states [29],

violate Bell inequalities in the exponentially increasing manner with the number of

particles. Differently from graph states though, this violation is robust under particle

loss. The results on nonlocality of hypergraph states and their connection to the better

precision quantum metrology are described in the paper in Ref. [30].

Many insights in entanglement properties of graph states are connected to their graph-

ical representation [27, 31]. In Chapter 4, we generalize some of the known construc-

tions to hypergraph states and derive graphical language to handle useful transforma-

tions on hypergraph states. There rules cover local and nonlocal unitary transforma-

tions on hypergraph states and Pauli bases measurements. In Chapter 5 we use these

results to quantify and detect entanglement present in these states. These results are

based on several publications, Refs. [32, 33].

Aforementioned graphical rules also help to construct hypergraph states, which are

universal resource states for measurement-based quantum computation. Here hyper-

graph states have a major advantage that entire computation can be performed using

Pauli measurements only. These findings with additional analysis for the depth of

universal computation using the new resource state are given in the paper, Ref. [33]

and are presented in Chapter 6.

As a last application we investigate whether similarly to graph states, we can use

hypergraphs for quantum error-correcting codes [34, 35]. We find several curious

statements in this direction. Graph states seems to be more efficient when construct-

ing higher distance codes. However, hypergraph states can be used to describe new

nonadditive quantum error-correcting codes. See derivations and results in Chapter 7.

The rest of the thesis is dealing with three different aspects of entanglement theory:

classification of entanglement in Chapter 8, entanglement detection in Chapter 9, and

Bell nonlocality in Chapter 10.

In entanglement theory it is very important to characterize which quantum states can

be transformed to one another under operations in local laboratories. For example, it
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is known that in order to perfectly teleport an unknown quantum state from Alice to

Bob, it is necessary that these two parties share a so-called two qubit Bell state. Any

other state which cannot be obtained from a Bell state under local unitary operations,

cannot be a perfect resource for the same task. A Bell state is also called a maximally

entangled stated. In multipartite case, entanglement classifications becomes harder,

since there are infinite number of quantum states in the corresponding Hilbert space.

One way to handle the problem is to consider coarse graining of some of the classes

together. In this direction, in Chapter 8 we investigate coarse graining of entanglement

in the systems consisting of three parties of unequal local dimensions. As a result, we

identify the most powerful states for various tasks. These results are based on the

publication, Ref. [36].

Entanglement witnesses are a very important tool in experiments. In Chapter 9 we

study how one can improve entanglement detection and estimation, using a witness

observable L on the state, when additional data is known from the experiment, such

as an expectation value of another observable C. For low-dimensional systems, we

derive a necessary and sufficient condition for the product observables L = LA ⊗ LB

and C = CA ⊗ CB to detect entanglement. The findings are based on the publication,

Ref. [37].

Finally, we consider a general question: Which pure quantum states are nonlocal? In

1992 Popescu and Rohrlich showed that any genuine N-partite entangled state can be

projected on a two qubit entangled state, using projective measurements on the rest

of (N− 2) parties [38]. That being the case, there exists a Bell inequality that this two-

qubit state violates [39]. The original proof had a flaw, but the statement could still be

proven [40]. In addition, we generalize the original theorem of Popescu and Rohrlich

by showing that, if the original N-qubit state is genuine multipartite entangled, then

one can project on any k qubits via measuring the rest of (N− k) qubits in Pauli bases,

such that the remaining state is also genuine k-partite entangled. These findings can

be partially found in the publication, Ref. [40].

To sum up, this thesis is based on six publications [30, 32, 33, 36, 37, 40] and several

derivations of the work in progress.



Chapter 2

Preliminaries

This chapter is devoted to the introduction of the notions and definitions used later in

the thesis. It also presents related results and constructions from the literature, which

both, motivate and help explain my work.

2.1 Quantum states and their entanglement

Any quantum system is identified with a finite or infinite dimensional Hilbert space

H. In this thesis we will be only concerned with the finite case. A d-dimensional pure

quantum state mathematically can be described by a vector living in a Hilbert space

H = Cd. For d = 2, we refer to quantum states as qubit states and if the dimension

is higher, as qudit states. A pure state is a normalized vector and is called a ket vector

|ψ〉 ∈ Cd. Its dual vector is called a bra vector 〈ψ|, where 〈ψ| = |ψ〉†. A pure state |ψ〉
can be expressed as a linear combination of some orthonormal basis {|ai〉}d−1

i=0 :

|ψ〉 =
d−1

∑
i=0

ci|ai〉, (2.1)

where due to the normalization constraint, 〈ψ|ψ〉 = 1, which corresponds to the alge-

braic inner product between two complex vectors, the complex-valued coefficients ci

satisfy the following constraint, ∑d−1
i=0 |ci|2 = 1. If the basis {|ai〉}d−1

i=0 correspond to the

standard basis in linear algebra, {|i〉}d−1
i=0 , they are called computational basis and each

element of the basis set |i〉 is then a computational basis element. On the other hand, the

square of the absolute value of each coefficient ci, corresponds to the probability of

obtaining an outcome ai, if the system was measured in the basis {|ai〉}d−1
i=0 .

5
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Often it happens that one does not have an exact information about a state of a quan-

tum system, but rather knows that with some probability pi the system is in a pure

state |ψi〉. In this case entire physical system is in a mixed state and can be described

by a density matrix ρ:

ρ = ∑
i

pi|ψi〉〈ψi|. (2.2)

Since pi’s are probabilities, that is pi ≥ 0 and ∑i pi = 1, it follows that tr(ρ) = 1. At

the same time, each matrix |ψi〉〈ψi| is hermitian and positive. Hence, a density matrix

ρ is a complex-valued trace-one matrix with non-negative real eigenvalues, ρ ≥ 0.

Moreover, any trace-one semidefinite matrix is a density matrix describing a mixed

state. From here it follows that the set of all quantum states is a closed convex set with

pure states on its boundary.

Until now we regarded a quantum system as a single system living in a d-dimensional

Hilbert space Hd. However, we can consider a system containing N quantum states,

each with a respective Hilbert space dimension, d1, . . . dN . Then a pure state |ψ〉 is a

state vector in a composite Hilbert space, denoted by the tensor product Hd1 ⊗Hd2 ⊗
· · · ⊗HdN :

|ψ〉 =
(d1−1),...,(dN−1)

∑
i1,...,iN=0

ci1 ...iN |i1〉 ⊗ · · · ⊗ |iN〉 =
(d1−1),...,(dN−1)

∑
i1,...,iN=0

ci1 ...iN |i1 . . . iN〉, (2.3)

where the right hand side is a short hand notation, first, omitting the tensor product

and then merging two ket vectors into one: |a〉 ⊗ |b〉 ≡ |a〉|b〉 ≡ |ab〉.

2.1.1 Bipartite entanglement

In this subsection we discuss the properties of composite quantum systems more

closely. We start by considering bipartite systems.

Let us assume that a bipartite pure state |ψ〉 ∈ HA ⊗HB is shared between two lab-

oratories A and B. Having a mathematical description of the entire system, we can

wonder what are the local pure states present in each laboratory: |ψA〉 ∈ HA and

|ψB〉 ∈ HB. It appears that given a global physical state, such a local description

cannot always be guaranteed [2].

Definition 2.1. A pure state |ψ〉 ∈ HA ⊗HB is called a product state if can be written

as a tensor product of two local pure states |ψA〉 ∈ HA and |ψB〉 ∈ HB :

|ψ〉 = |ψA〉 ⊗ |ψB〉. (2.4)

Otherwise, the state |ψ〉 is entangled.
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The simplest and most famous example of pure entanglement is the two-qubit Bell

state:

|Φ+〉 = |00〉+ |11〉√
2

. (2.5)

There is a very powerful tool to describe entanglement present in bipartite systems,

called Schmidt decomposition:

Lemma 2.2. Let |ψ〉 = ∑dA,dB
i,j=1 cij|aibj〉 be a bipartite state in HA ⊗HB. Then there exists an

orthonormal basis |αi〉 ∈ HA and an orthonormal basis |βi〉 ∈ HB, such that the following

statement holds

|ψ〉 =
D

∑
k=1

λk|αkβk〉 (2.6)

for positive real λk, called Schmidt coefficients, D is called Schmidt rank of |ψ〉 and is equal to

the number of non-zero λk’s.

The concept of a bipartite entanglement can also be generalized to mixed states.

Definition 2.3. A mixed state ρ of a composite system is called separable, if it can be

written as a probabilistic mixture of local mixed states ρA
i and ρB

i :

ρ = ∑
i

piρ
A
i ⊗ ρB

i . (2.7)

Otherwise, the state is called entangled.

From the definition of separability follows that the convex combination of two or more

separable states is again a separable state. Therefore, the set of all separable states is

a convex subset of the set of all states with its extremal points being pure product

vectors belonging to the boundary of the entire state space.

Given a density matrix, it is interesting to know, if it is separable or not. Although

there exist several criteria to decide the separability for some bipartite states [41–44],

no general solution for the problem is known.

2.1.2 Multipartite entanglement

Composite systems get more complicated with the increasing number of parties, as

there exist different notions of entanglement in multipartite systems. The first notion

captures no entanglement present in a quantum state: An N-partite pure state |ψ〉 is

called a product state, if it can be written as a tensor product of local pure states:

|ψ〉 = |ψA〉 ⊗ |ψB〉 ⊗ · · · ⊗ |ψN〉. (2.8)
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Otherwise, the state is called entangled.

Definition 2.4. If a pure multipartite state |ψ〉 cannot be written as a tensor product of

any of its subsystems, then we say that the state is not biseparable or, otherwise, the

state is genuine multipartite entangled.

Examples of three-qubit genuine multipartite entangled states are Greenberger-Horne-

Zeilinger (GHZ)- [45, 46] and so-called W-states [47]:

|GHZ〉 = |000〉+ |111〉√
2

, |W〉 = |001〉+ |010〉+ |100〉√
3

. (2.9)

2.1.3 Local manipulation of entanglement

Entanglement is a key resource for many applications in quantum information pro-

cessing. Hence, it is important to classify entangled quantum states in order to learn

which states are more powerful. This is done by considering the following questions:

Take two quantum states, |ψ〉 and |φ〉, shared between several distant labs. If some lo-

cal operations are performed on the state |ψ〉 in these local labs, can the resulting state

be equal to the state |φ〉? In other words, can |ψ〉 be transformed to |φ〉 using only

local operations? And if so, how do such local manipulations change entanglement

present in the state?

There are three most studied operations in this direction: Local unitaries (LU), local

operations and classical communication (LOCC), and stochastic local operations and

classical communication (SLOCC). Here we give a brief overview of each of them:

(i) LU equivalence: Two N-partite states, |ψ〉 and |φ〉, are equivalent to each other

under local unitary transformations, if there exist unitary matrices U1, . . . , UN ,

such that

U1 ⊗ · · · ⊗UN |ψ〉 = |φ〉. (2.10)

Note that such operations cannot change any entanglement property of a given

quantum state. Therefore, this is the strongest form of local equivalence in the

sense that, if the state |ψ〉 can be used for any quantum information processing

task, the same is true for the state |φ〉 and the other way around.

The following two-by-two self-adjoint local unitary operations will play an im-

portant role throughout the thesis:

Pauli-Z :

(
1 0

0 −1

)
, Pauli-X :

(
0 1

1 0

)
. (2.11)
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We will be denoting them as Z and X. Pauli operators Z and X are the generators

for Pauli group P consisting of four elements:

P = {1, Z, X, Y}, (2.12)

where the self-adjoint Pauli-Y operator is equal to Y = iXZ = −iZX.

(ii) LOCC: This class of operations is difficult to describe mathematically, however,

one can note that under LOCC action entanglement present in the state can-

not increase. We will discuss this more closely when looking at entanglement

measures in the next section.

(iii) SLOCC equivalence: These are probabilistic LOCC. To say otherwise, we want to

transform state |ψ〉 to the state |φ〉 via LOCC with a non-zero probability. The

set of LOCC are the strict subset of the set of SLOCC. These general stochastic

operations seem physically less motivated at the first sight, as they can indeed

change entanglement quantifiers of states they are acting on. However, they have

the major advantage that their mathematical description is quite simple and this

helps to reveal a rich structure of multipartite entanglement. Mathematically

an action of SLOCC on a d-dimensional Hilbert space is represented by a d× d

general invertible matrix in GLd. Two N-partite states |ψ〉 and |φ〉 are SLOCC

equivalent, if there exist invertible operations A, B, . . . N acting on respective

subsystems such that

A⊗ B⊗ · · · ⊗ N|ψ〉 = |φ〉. (2.13)

These operations define equivalence classes for quantum states. For example,

every two-qubit entangled state is SLOCC equivalent to a Bell state, given in

Eq. (2.5). In other words, there is a single SLOCC equivalence class in two-qubit

state space. Situation changes drastically with the increasing number of parti-

cles. Already for three qubits there are two SLOCC classes of genuine tripartite

entangled states, which cannot be transformed to each other via SLOCC [47].

Their representatives are GHZ- and W-states, given in Eq. (2.9). In four qubits

there are already infinitely many SLOCC classes [48]. This classification of en-

tanglement underlines that the bipartite entanglement is very different from a

highly complicated multipartite case.

More generally than all three classes of operations discussed above, in terms of the

resource theory of entanglement, one wishes to study non-entangling maps or, alterna-

tively, separability-preserving maps in different scenarios. These are the largest classes

of quantum operations, which map separable states to separable states and have been
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extensively investigated qualitatively and quantitatively [49–52], but these kind of gen-

eral maps are outside of the scope this thesis.

2.1.4 Entanglement measures

Entanglement measure E(ρ) is used to quantify amount of entanglement in the state

ρ and fulfills several properties:

(i) If the state ρ is separable, then it vanishes, E(ρ) = 0.

(ii) Entanglement measure is invariant under local unitary transformations:

E(ρ) = E(U1 ⊗ · · · ⊗UN ρ U†
1 ⊗ · · · ⊗U†

N). (2.14)

(iii) Given a positive map ΛLOCC mathematically describing LOCC operations, en-

tanglement measure cannot increase under such a map:

E[ΛLOCC(ρ)] ≤ E(ρ). (2.15)

To learn more about entanglement measures and their properties see reviews [53, 54].

One of the examples of multipartite entanglement measures is the geometric measure of

entanglement EG [55, 56]. This entanglement measure quantifies the distance between

a given state and a set of separable states. For pure states it is defined to be one minus

the maximal squared overlap between a given state and the closest product state:

EG(|ψ〉) = 1− max
|φ〉=|a〉|b〉|c〉...

|〈φ|ψ〉|2. (2.16)

Geometric measure of entanglement of many pure states has been calculated using

different techniques and algorithms [55, 57–61]. However, since one needs to opti-

mize over increasing number of parameters in multipartite case, the problem is still

challenging for general states. On the other hand, if the given state is permutation

symmetric one can make the optimization problem significantly easier.

Theorem 2.5. [62] Given an N-partite permutation symmetric pure state |ψ〉symm, where

N ≥ 3, the closest product state maximizing the overlap with this state must necessarily be

permutation symmetric:

Eg(|ψ〉symm) = 1−max
|a〉
|〈a|⊗N |ψ〉symm|2. (2.17)
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entangled

W (2)

W (1)

separable

Figure 2.1: Schematic representation of the convex set of all states and the nested
convex set of separable states. The hyperplanes W(1) and W(2) are entanglement
witnesses. We refer to the former as a tight witness, as tr(W(1)ρs) = 0 for some pure

product state ρs.

Moreover, if all the coefficients of the state |ψ〉symm are positive real numbers, it is

straightforward to see that the closest product state can also be chosen to be real-

valued. For permutation symmetric qubit states this construction reduces calculations

to a single parameter optimization problem.

2.1.5 Entanglement Witnesses

In the previous section we saw quantifiers of entanglement. Here we introduce a con-

struction to detect entanglement, entanglement witnesses [63]. There is a subtle differ-

ence between entanglement measures and witnesses. When quantifying entanglement

using, for example, geometric measure, we need to know the exact description of the

multipartite quantum state in order to find out its distance to the separable states and

only then deduce, whether it is entangled or not. On the other hand, entanglement

witnesses correspond to observables, which can be directly measured in experiments.

Alone from the measurement results and statistics one can deduce, if the measured

unknown state was entangled.

Definition 2.6. An observable W is called an entanglement witness, if the following

holds

tr[Wρs] ≥ 0, for all separable states ρs and

tr[Wρe] < 0, for at least one entangled state ρe.

Therefore, if in the experiment one obtains tr[Wρ] < 0, one can conclude that ρ is

entangled.



Preliminaries 12

In order to understand entanglement witnesses, it is instructive to keep the geomet-

rical picture in mind, see Fig. 2.1. Here we denote the set of all states and the set

of separable states as a nested convex structure. The expectation value of an observ-

able depends linearly on the state and, therefore, lines cutting the entire state space

are defined by the hyperpnales of the type tr (Oρ) = c, for some observable O and a

constant value c ∈ R. However, by definition not all such hyperplanes are entangle-

ment witnesses, but only the ones which have non-negative expectation values for all

separable states. In Fig. 2.1 the hyperplanes W(1) and W(2) correspond to witnesses.

Any state on the right hand side of the hyperplane W(2) can be detected by this wit-

ness. The hyperplane W(1) can also detect all these states and, in addition, the ones

between W(1) and W(2). One can conclude that W(1) is more powerful witness than

W(2). Moreover, since the witness W(1) is touching the set of separable states, or to say

it otherwise, since tr (W(1)ρs) = 0 for some separable state ρs, we say that the witness

W(1) is tight. However, tight witnesses as are not necessarily the most powerful ones.

From the geometrical picture the following statement follows.

Theorem 2.7. [42] For every entangled state ρe exists an entanglement witness that detects

it.

The main question now is: Given some entangled quantum state, how to construct

an entanglement witness, which detects it and how to make sure that this witness is

tight?

Construction of witnesses

In this subsection we consider the construction of entanglement witnesses. There

are many ways to construct entanglement witnesses, see Ref. [64] for an overview.

One possible way to design a witness for any state |ψ〉 is to consider the following

observable

W = α1− |ψ〉〈ψ|. (2.18)

The main task then is to determine minimal α ∈ R+, such that W is still positive on

all separable states. However, since the set of separable states is defined as a convex

hull of all pure product states, the optimization can be done only over pure product

states. Therefore, α in Eq. (2.18) is the maximal overlap between the state |ψ〉 and

the pure biseparable states. This can be computed by the maximal squared Schmidt

coefficient occurring when computing the Schmidt decomposition with respect to all

bipartitions,

α = max
bipartitions

{max
λBP

k

{[λBP
k ]2}}. (2.19)
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This optimization is in general a difficult problem. However, we shall see later that for

special classes of states the optimization can be fully understood. On the other hand,

finding α helps us not only detect, but also quantify entanglement, more precisely, to

lower-bound the value of the geometric measure of entanglement for a given state |ψ〉.

2.2 Nonlocality

In this section we take a different approach from the previous ones to detect entan-

glement in a so-called device-independent way using Bell inequalities. The main idea

here is to derive a set of inequalities, which must be satisfied by any local realistic

theory, but can be violated in quantum mechanics. Mathematically local theory can

be described by local hidden variable (LHV) models. Throughout this section we explain

LHV theories and its incompatibility with quantum mechanics for various scenarios.

2.2.1 Bell inequalities

Bipartite case

We introduce the setup on a bipartite system shared between Alice and Bob. Both

parties make local measurements on their respective subsystems. If one assumes local

realism, or otherwise, one assumes that measurement outcomes existed locally before

the measurements were made and that no superluminal signaling is possible, one

can derive bounds on two-body correlations obtained from two space-like separated

measurements. However, one can perform a quantum mechanical experiment, where

these bounds are surpassed by the correlations obtained from a shared entangled

system. Therefore, measurement results of such experiment cannot be described by

LHV models.

Local hidden variable models

Here first we introduce a Bell scenario for two parties, each having two measure-

ment settings with two outcomes. Consider a system shared between Alice and Bob

as shown in Fig. 2.2. Alice and Bob both can measure two quantities each on their

respective parties. Alice can choose between measurements A1 and A2 and Bob be-

tween B1 and B2. Results of experiments are a ∈ {+1,−1} for Alice and similarly

b ∈ {+1,−1} for Bob. Correlations for each choice of measurements can be calculated
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Source

x y

a b

A B

Figure 2.2: A schematic representation of a Bell scenario. A source produces an
entangled pair of particles and sends each to labs of Alice and Bob. Alice and Bob
choose their measurement settings x and y, respectively and get outcomes a and b.

as follows

〈
AiBj

〉
= p(++|AiBj)− p(+−|AiBj)− p(−+|AiBj) + p(−−|AiBj). (2.20)

Here p(+−|AiBj) corresponds to a joint probability of Alice measuring Ai and ob-

taining outcome a = +1 and Bob measuring Bj and obtaining outcome b = −1. LHV

models assign for every value of the hidden variable, λ, results to all measurements of

the parties in a local manner, meaning that for a fixed LHV Alice’s probabilities cannot

depend on Bob’s choice of measurement and vice versa. Therefore, the probabilities,

described by the response functions χ for a given value of hidden variable factorize:

p(a, b|Ai, Bj) =
∫

dλp(λ)χA(a|Ai, λ)χB(b|Bj, λ), (2.21)

where a, b ∈ {+,−} correspond to possible outcomes and the hidden variable λ occurs

with probability p(λ). One can always assume that LHV assigns deterministic values

0 or 1 to the response functions χA(a|Ai, λ) and χB(b|Bj, λ) for a fixed value of λ [65].

From the deterministic nature of LHV model and its predictions for probabilities,

one can directly see that the following inequality is always satisfied on the level of

probabilities [66]:

p(−− |A1B1) + p(+− |A1B2) + p(−+ |A2B1)− p(−− |A2B2) ≥ 0. (2.22)

One can similarly choose to work on the level of expectation values:

〈
AiBj

〉
=
∫

dλp(λ)U (Ai, λ)U (Bj, λ), (2.23)

where U (Ai, λ) = χA(+|Ai, λ)− χA(−|Ai, λ) and rewrite the inequality in Eq. (2.22)
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accordingly. As a result, the well known Clauser-Horne-Shimony-Holt (CHSH) in-

equality comes out [5, 67]:

〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 ≤ 2. (2.24)

Similarly to the case of probabilities, one can also easily check all possible determinis-

tic assignments to the expectation values in the inequality in order to prove the LHV

bound. Therefore, local hidden variable predictions satisfy these inequalities, called

Bell inequalities [3], whether they are written on the level of probabilities or expectation

values.

To shift ourselves to quantum mechanics, we choose measurements on Alice’s side to

be quantum mechanical observables A1 = −X and A2 = −Y, Bob’s observables to be

B1 = (X + Y)/
√

2 and B2 = (X − Y)/
√

2. Here X and Y correspond to Pauli spin

operators. Consequently, we define a so-called Bell operator [68]

B = A1 ⊗ B1 + A2 ⊗ B1 + A1 ⊗ B2 − A2 ⊗ B2. (2.25)

Then, if we look for the maximum expectation value that quantum states can attain

over this operator, we get that

max
|ψ〉
〈ψ|B|ψ〉 ≤ 2

√
2, (2.26)

where the value 2
√

2 corresponds to the largest eigenvalue of the operator B. The

corresponding eigenstate is a two-qubit singlet state |Ψ−〉 = (|01〉 − |10〉)/
√

2, which

is LU equivalent to the maximally entangled state in Eq. (2.5). It appears that 2
√

2

is the maximal violation quantum mechanics allows for such a Bell scenario and is

known as the Tsirelson bound [69].

The violation of Bell inequalities have been extensively tested in experiments [70, 71].

The conclusions that one can draw from these results is that the constraints that local

hidden variable theories put on the point behaviour p(a, b|Ai, Bj) are not compatible

with nature, which is quantum mechanical.

Multipartite case

The concept of bipartite Bell inequalities can be easily generalized to the multipartite

case. Let us assume that there are N different parties in N distinct labs measuring

some observables on a shared system. Then the measurement outcomes and their

correlations are described by fully local hidden variable models, if for any choice of
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measured quantity we can express its expectation value in the following fashion,

〈
AiBjCk . . .

〉
=
∫

dλp(λ)U (Ai, λ)U (Bj, λ)U (Ck, λ) . . . , (2.27)

where U (Ai, λ) is described as before. The violation of this inequality certifies entan-

glement in the measured multipartite quantum system.

2.2.2 Genuine multipartite nonlocality

So far we only considered hidden variable models where all the probabilities fac-

torized. Now for multipartite case we go beyond this restricted type of models to the

so-called hybrid models [45]. The hybrid model is similar to the definition of the bisep-

arability, since one asks if the given correlations can be explained by hidden variable

model where one party (let us say party A) is local with respect to the other parties

(let us say B and C together), or otherwise, if the joint probability factorizes as follows:

p(a, b, c|Ai, Bj, Ck) =
∫

dλp(λ)χA(a|Ai, λ)χBC(b, c|Bj, Ck, λ). (2.28)

Here χBC(b, c|Bj, Ck, λ) is a nonlocal response function for party B and C together. In

order to prevent direct conflict with relativity, we assume that the response function

χBC(b, c|Bj, Ck, λ) does not allow instantaneous signaling. Put differently, the joint

probability distribution for Bob and Charlie is limited by no-signaling constraints for-

mally expressed as:

∑
c

p(b, c|Bj, Ck) =∑
c

p(b, c|Bj, C′k), for all b, Bj, Ck, C′k .

∑
b

p(b, c|Bj, Ck) =∑
b

p(b, c|B′j, Ck), for all c, Ck, Bj, B′j .
(2.29)

Physically these constraints impose that the local marginals of Bob’s probabilities must

be independent of Charlie’s choice of measurement settings and vice versa. Together

with the positivity and normalization constraints of probabilities, no-signaling con-

straints form a no-signaling polytope. A polytope can be fully described as a convex

hull of finite set of vertices. For the Bell-scenario with two measurements and two out-

comes there are 24 such vertices, 16 of which are the local deterministic ones, but the

rest of 8 are nonlocal vertices, all described by so-called PR-boxes and are equivalent

up to some relabeling of measurement settings and outcomes:

p(b, c|Bj, Ck) =

 1/2, if b+1
2 ⊕ c+1

2 = (j− 1)(k− 1),

0, otherwise,
(2.30)
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where j, k ∈ {1, 2} are choice of measurement settings. It is straightforward to check

that the correlations of PR-box surpasses the maximal value of CHSH-inequality vi-

olation for quantum mechanics 2
√

2 and attains the algebraic maximum, 4, for the

inequality. See Ref. [72] for the review on the topic.

As a next step we consider taking probabilistic mixture of the hybrid scenario for all

possible bipartitions. Then for the tripartite case this would lead to a hidden variable

model explaining the following correlations:

〈
AiBjCk

〉
= p1

∫
dλp(λ)U (Ai, λ)U (Bj, Ck, λ)

+ p2

∫
dλp′(λ)U ′(Bj, λ)U ′(Ai, Ck, λ)

+ p3

∫
dλp′′(λ)U ′′(Ck, λ)U ′′(Ai, Bj, λ),

(2.31)

where p1 + p2 + p3=1. If such a description of correlations cannot replicate results

obtained in experiments, we say that the measured state reveals genuine tripartite non-

locality.

Here we review how to detect genuine multiparticle nonlocality using linear program-

ming techniques. Having fixed the number of measurement settings and outcomes,

probabilities arising from a hybrid local-nonsignalling model for the splitting A|BC,

form a polytope whose extremal points are given by combinations of deterministic

local assignments for the party A and extremal nonsignalling assignments, i.e., local

deterministic and PR-boxes [72], for the parties BC. In order to detect genuine multi-

particle nonlocality, one has to consider all combinations of probabilities arising from

this and the other local-nonsignalling splittings, namely C|AB and B|AC. Geometri-

cally, this corresponds to taking the convex hull of the three polytopes associated with

the three different splittings. Let us denote such polytopes as PA|BC, PC|AB, PB|AC and

their convex hull as PL−NS. By definition of a convex hull, every vector ~p ∈ PL−NS can

be written as a convex combination of its extremal points, denoted by ~vA|BC, ~vB|AC,

and ~vAB|C.

Hence, in order to check whether a given point ~p belongs to the polytope PL−NS,

we need to solve the following membership problem formulated as a linear program

(LP) [72]:

maximize: ~κ · ~p− C

subject to: ~κ ·~vi − C ≤ 0, for all ~vi

~κ · ~p− C ≤ 1.

(2.32)
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The variables of the LP are {~κ, C}, where ~κ represents the coefficient of a Bell in-

equality, detecting genuine multiparticle nonlocality, and C the corresponding local-

nonsignalling bound. The LP optimizes the coefficients ~κ to obtain the maximal value

(at most C + 1) for the quantum probabilities, while keeping the local-nonsignaling

bound equal to C. As a consequence, the vector ~p can be written as a convex combi-

nation of {~vi}, if and only if the optimal value of the LP is 0.

2.2.3 Hardy-type argument

Just like in standard Bell tests, in Hardy argument the parties generate the conditional

statistics in the form of the correlations. The distinctive feature of Hardy-type non-

locality proofs is that we are only concerned whether these probabilities are strictly

positive or exactly zero, corresponding to possible and impossible results, respectively.

Let us recall the original Hardy argument for bipartite systems, with two measurement

settings A1,2 and B1,2 and two outcomes {+,−} [73]. The essence of the argument is

that the following four expressions can not be simultaneously satisfied in any local

realistic theory:

p(+,+|A1, B1) = 0,

p(−,+|A1, B2) = 0,

p(+,−|A2, B1) = 0,

p(+,+|A2, B2) > 0.

(2.33)

This, then, implies that the event of observing (+,+) having measured A2 and B2 is

impossible in local realistic theory, while measurements on a quantum system can ex-

hibit such correlations [73]. Hardy-type arguments for many states have been studied

and it is known that almost all entangled states reveal such a contradiction with local

realism [74].

2.3 Quantum computation

One of the main applications of quantum information theory is quantum computation.

Here we review quantum computation and its elementary building blocks.
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2.3.1 Quantum Circuits

A quantum computer is built in a resemblance to its classical counterpart. Rather

having electrical circuits composed of wires and logic gates, quantum computation is

carried out via quantum circuits built with quantum "wires", carrying quantum infor-

mation, and quantum gates modifying this information. Quantum circuits consist of

compositions of quantum gates, which themselves are mathematically described by

unitary operations acting on quantum information, in general, expressed in computa-

tional basis. An example of a quantum gate in an analogy with its classical equivalent

is a NOT-gate, implemented by Pauli-X operator:

X|0〉 = |1〉 and X|1〉 = |0〉. (2.34)

In a circuit model this gate is represented as follows:

Pauli-X gate: X

It is conventional to assume that information flows from left to right. In order to

express multi-qubit gates, the gate must have multiple inputs and outputs, represented

by parallel wires:

Multi-qubit Gate

U

Any unitary operation is a quantum gate, but there are several conventionally impor-

tant quantum single- and multi-qubit gates that we introduce here, both, algebraically

and diagrammatically:

Hadamard CNOT Gate CZ Gate Swap Gate CCZ Gate

H • • × •

T Gate • × •

T •

In a matrix notation these gates look as follows:

Single qubit gates: H =
1√
2

(
1 1

1 −1

)
, T =

(
1 0

0 eiπ/4

)
. (2.35)
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Two-qubit gates:

CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 , CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , SWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 , (2.36)

and the three-qubit CCZ gate

CCZ = 1− 2|111〉〈111|. (2.37)

Another important single qubit gate is a square-root of Pauli-Z operator and is called a phase-

gate. Note also its connection with T-gate,
√

Z = T2.

In general, the length of a quantum computation is expressed by the depth of a quantum

circuit implementing this computation. The depth increases when unitary gates in a given

circuit do not commute as they cannot be implemented in one time step of a computation.

2.3.2 Universal gate sets

In classical computation a small set of gates can be used to decompose an arbitrary classical

function. Such sets of gates are called universal. The same concept can be adopted in quantum

computation.

Definition 2.8. A quantum gate-set is said to be universal, if a quantum circuit built up using

the gates from this gate-set can approximate any unitary operation to an arbitrary accuracy.

Here we introduce two of the most popular universal gate-sets:

Theorem 2.9. [75] A gate-set {CNOT, H, T} is universal for quantum computation.

Theorem 2.10. [76] A gate-set {CCZ, H} is universal for quantum computation.

In addition to the universality, there exists an insightful hierarchy of unitary gates, called

Clifford hierarchy. The Pauli group, P = {1, X, Y, Z}, corresponds to the first level in this

hierarchy, C1. The unitary gates in the k-th level of the Clifford hierarchy Ck are defined

inductively using the Pauli-group:

Ck+1 = {U| ∀UP ∈ C1, UUPU† ∈ Ck}. (2.38)

The gates in the second level C2 form a finite group, so-called Clifford group. This group

is generated by gates {CNOT, H,
√

Z} and is the normalizer of the Pauli group, that is, it

preserves the Pauli group elements under conjugation.

The Clifford group is not universal for quantum computation. What is more, there is a famous

theorem called the Gottesman-Knill Theorem, which states that
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Theorem 2.11. [28] A quantum unitary evolution using only the following elements can be efficiently

simulated on a classical computer:

• Initialization of a quantum state in any of the computation bases element, e.g. |0 . . . 0〉.

• Evolving the initial state with the unitaries from Clifford group.

• Measuring the resulting state in computational basis.

To sum the discussion of universality, in both theorems, Theorem 2.9 and Theorem 2.10, the

universal gate sets contain gates from the Clifford group and, in addition, a single gate from

the third level of Clifford hierarchy. In case of Theorem 2.9, T ∈ C3 is needed for universality

and for latter, CCZ ∈ C3.

2.3.3 Quantum error-correcting codes

Introduction to error-correction

Coping with noise and correcting errors in information processing is one of the most impor-

tant tasks. In classical information theory error detection and correction has been broadly

studied. The key idea here is to encode the message into some bigger message in a way that,

even if errors have occurred, there is enough redundancy in the encoded message to recover

original message. We call this last step decoding. To give a simple and a standard classical

example, suppose we wish to send a single bit message, but the communication channel is

not perfect. That is, with a probability p > 0 the message will arrive unchanged, but with a

probability (1− p) the bit we are sending might get flipped. One way to improve our chances

of communicating a right message is to send three copies of the message in the following way:

0 7→ 000 (2.39)

1 7→ 111. (2.40)

The bit strings 000 and 111 are called logical 0 and 1, respectively. We say that an original

message is encoded in the logical subspace. All three bits are sent through the noisy commu-

nication channel as described above. The receiver at the end of the channel gets a possibly

corrupted message. Nevertheless, now he/she can decide with the majority voting, whether

the original message was 0, or 1. This simple error correction code is called a repetition code.

More complicated and effective error correcting techniques have been developed in classical

case, however, here we switch out attention to quantum error-correction codes. There are

subtle differences between classical and quantum information processing that one can already

grasp from the simple repetition code example. These dissimilarities necessitate new tech-

niques to make quantum error-correction realizable. We shortly describe them here:

• No cloning: Quantum state cannot be copied. Consequently, there cannot be the direct

quantum analog to the repetition code.
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• Continuous errors: In classical information processing, when error occurs, a value of a

classical bit gets flipped. In quantum information processing on the other hand, there

can be other kind of errors, e.g., the phase-flip error. Any one-qubit operator corre-

sponds to an error that can occur on a single quantum bit. Therefore, errors in quantum

information processing are continuous.

• Measurement destroys quantum information: In quantum mechanics after a measurement

is made on a states, the state is projected in one of the eigenstates of the measured

observable. As a consequence, information about the original state is impossible to be

recovered.

Fortunately, it is possible to circumvent all these challenges that quantum mechanics brings in.

In order to see this, we consider the simplest quantum error-correcting code in the analogy of

the repetition code: Encode a singe qubit state a|0〉+ b|1〉 in three qubits as a|000〉+ b|000〉. The

encoded space is the logical space spanned by two basis vectors, the logical zero, |0L〉 ≡ |000〉
and the logical one, |1L〉 ≡ |111〉. Then the encoded qubits are passed through the noisy

channel, which with the probability p performs the so-called bit-flip, Pauli-X operation on the

qubit and with the probability (1− p), leaves it untouched. If the error occurs on one or less

qubits, then it can be corrected with the following procedure:

• (i) Error-detection: For error-detection measurements must be performed on the received

message. Since it is assumed that p < 1/2, the measurements are only required to check,

whether no error or one error has occurred. This can be done using the projectors of the

following form:

P0 =|000〉〈000|+ |111〉〈111|, (2.41)

P1 =|001〉〈001|+ |110〉〈110|, (2.42)

P2 =|010〉〈010|+ |101〉〈101|, (2.43)

P3 =|100〉〈100|+ |011〉〈011|. (2.44)

It is noteworthy that these projective measurements do not change the state received and

moreover, their outcome cannot reveal any information about the value of the encoded

state. This step only helps identify where the bit-flip error has occurred.

• (ii) Recovery: Once the location of the flipped bit is identified, it can be perfectly reversed

back to the original state.

This example demonstrated that all the difficulties quantumness brings into error-correction

can be coped with. Similarly to the bit-flip case, one can design an error-correcting code for

the phase-flip. Moreover, one can even extend this analysis to an arbitrary single qubit error

E by considering its decomposition into Pauli matrices:

E = eo1+ e1X + e2Z + e3XZ. (2.45)

Then, if the single error happens on one of the qubits in the logical subspace Ei|ψL〉 =

Ei(a|0L〉 + b|1L〉, one can first write out the new corrupted state as a superposition of four
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possible scenarios: no error, bit-flip error, phase-flip error, and bit and phase-flip errors to-

gether. Then one can apply error-detecting procedures to decide which of these four errors

has occurred. As a result, one can resolve correcting a continuum of errors in a discrete man-

ner.

Conditions for quantum error-correction

In the previous section we learned elementary concepts for quantum error-correction. Now we

formalize the conditions, which guarantee that the logical subspace, we encode the message

in, can detect or correct certain amount of errors. At this point, some very broad assumptions

are in order. First, we assume that the noise can be described by some quantum operation E
and, second, the complete error-correction step can be captured by a trace-preserving quantum

operation R. Here we must note that certain codes can only have power to detect existence of

errors, but they cannot correct them. Hence, naturally, the operationR can be thought as a two

step procedure: Error-detection and error-correction. Finally, given an error-correcting code,

formally defined as a subspace C of some Hilbert space, the error-correction to be successful,

the following requirement must be fulfilled for any state ρ with its support in C

(R ◦ E(ρ)) ∝ ρ. (2.46)

Not every subspace C is useful for the error-detection/correction. If we want to detect/correct

errors using a subspace C, it must satisfy certain conditions. Knill and Laflamme formulated

these conditions for the general case [77]:

Theorem 2.12 (Knill-Laflamme). Let C ⊂ H be a quantum code and P the projector onto C. Suppose

E is a quantum noise operator with elements {Ei}. Then there exists a recovery operator R, if and only

if the following conditions hold

PE†
i EjP = αijP, ∀ i, j (2.47)

and for some Hermitian matrix α.

In this thesis we assume that the noise model is local and independent on each Hilbert space.

Thus, it can be expressed as a tensor product of errors acting on the respective local dimen-

sions. We will be only discussing codes over qubit systems and therefore, we can express

errors in Pauli operator basis as in Eq. (2.45). We say that noise is acting trivially on some

qubit, if the identity gate, E0 = 1, is applied on this qubit. Number of non-trivial errors acting

on the subspace is called the weight of errors and is denoted by w(E).

Now, we are ready to define a distance d quantum error-correcting code:

Definition 2.13. A distance d quantum error-correcting code C on a system of n parties, each of

local dimension D is defined as a K-dimensional subspace C and is conventionally denoted as

((n, K, d))D. Then, any of its orthonormal bases, {|ci〉} satisfies the Knill-Laflamme conditions
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for all errors {Ek} of weight less than d, w(Ek) < d,

〈cl |Ek|cm〉 =

 0, for l 6= m,

αk, for l = m.
(2.48)

In addition, we say that the code is pure if αk = tr (Ek)/DN and we refer to this restricted

version of Knill-Laflamme conditions as strict Knill-Laflamme conditions.

A code with distance d can either correct any errors acting non-trivially on at most (d− 1)/2

qubits, or can detect errors on at most (d− 1) qubits. Importantly, the parameters of code C,

((n, K, d))D cannot take arbitrary values.

Theorem 2.14. (Singleton bound) [78] Let C be a quantum code with parameters ((n, K, d))D. Then

the following inequality must hold,

K ≤ Dn−2d+2. (2.49)

The Singleton bound underlines that, for example, it is not possible to demand correcting

arbitrarily many errors, having fixed the number of particles and the code subspace dimension.

Many conditions, constructions, and restrictions exist in a similar spirit to rule out existence

of quantum error-correcting codes of certain number of qubits, dimensions, and distance [34,

79–84]. There exist tables presenting already discovered codes and alongside describing the

parameters for still many unknown cases [85].

Most prominent examples of the codes are stabilizer codes. For the purpose of this thesis,

we do not need a detailed introduction of these codes, but see Refs. [34, 35] for an overview.

Stabilizer codes are also called additive, due to the connection to classical codes. Qubit stabilizer

codes are related to classical additive codes over the finite field GF(4). But more interestingly

to us, they are also referred to as graph codes, since their basis can be chosen to be multipartite

entangled states, called graph states. We introduce graph states in Section 2.4.1 and explain

their exact role in quantum error-correcting codes.

Nevertheless, here we give a brief insight, why multipartite entanglement is desirable for

error-correction. If a pure code has a distance d, then any state in that code has (d− 1) qubit

reduced density matrices (RDMs) maximally mixed. States complying with this requirements

are highly entangled across any bipartition [17, 18]. Therefore, ideally one looks for an n-

particle state with all of its bn/2c RDMs maximally mixed. Such states are called absolutely

maximally entangled (AME) states. For qubits they do not exist for n = 4 and n > 6 [86]. And

the ones that exist can be described by graph states, as we will see in the subsequent section.

As it is often impossible for a given number of particles n and local dimensions D to find an

AME state, one investigates an optimal number k, such that exists at least one state of n qudits,

with maximally mixed k marginals. In the literature such states are sometimes called k-uniform

states. However, this naming conflicts with some other notation in the thesis. So, we will be

instead using the k RDMs or k marginals, interchangeably.
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2.4 Multipartite pure states and their applications

Due to its possible applications in quantum information processing, multiparticle entangle-

ment is under intensive research. Its characterization has, however, turned out to be difficult.

One problem hindering the exploration of multiparticle entanglement is the exponentially in-

creasing dimension of the Hilbert space. This implies that making statements about general

quantum states is difficult. So, one has to concentrate on families of multiparticle states with

an easier-to-handle description. In fact, symmetries and other kinds of simplifications seem

to be essential for a state to be a useful resource. Random states can often be shown to be

highly entangled, but useless for quantum information processing [23–25]. One of the objec-

tives in this field is the identification of families of states, which are useful in applications, but

nevertheless, can be described by a simple formalism. In this section we introduce concepts

and definitions for three classes of pure multipartite entangled states, then we discuss their

properties and applications.

2.4.1 Graph states

An interesting class of multi-qubit quantum states is given by pure states called graph states

[27]. Mathematically a graph G = (V, E) is described by its set of vertices V and set of edges

E. The set E contains an element e = {v1, v2}, if the vertices v1, v2 ∈ V are connected by an

edge. Physically vertices correspond to particles and edges represent two-body interactions

between them. We will be assuming that we are working with the qubit systems.

2.4.1.1 Constructing graph states

A graph state |G〉 corresponds to a graph G = (V, E) in a following manner:

• For each vertex v ∈ V, we initialize the physical system in the "+1" eigenstate of Pauli-X

operator, |+〉 = (|0〉+ |1〉)/
√

2. Thus, the N-vertex graph state is initialized as |+〉⊗N ,

where N = |V| is the cardinality of the vertex set.

• For each edge in the graph G, e = {v1, v2}, we apply the two-qubit entangling unitary,

represented by a diagonal CZe gate, between qubits v1 and v2 of the initialized state

|+〉⊗N . As a result we get a graph state corresponding to the graph G:

|G〉 = ∏
e∈E

CZe|+〉⊗|V|, (2.50)

where CZ gates are diagonal commuting unitaries, CZ = 1− 2|11〉〈11|.

The simplest non-trivial example of a graph state corresponds to the two-vertex graph in

Fig. 2.3 (a). The state has a single CZ gate and is equal to:

|G(a)〉 = CZ12|+〉1|+〉2 =
1
2
(|00〉+ |01〉+ |10〉 − |11〉) (2.51)
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Figure 2.3: Graphs representing graph states: (a) The simplest non-trivial graph state,
with two vertices and a single edge. This state is local unitary equivalent to the Bell-
state. (b) Multipartite graph state with three vertices and three edges. This state is

local unitary equivalent to the GHZ-state. (c) An arbitrary five-qubit graph state.

and is a maximally entangled state. To say it otherwise, it is local unitary equivalent to the

Bell-state in Eq. (2.5). Note that the state is permutation symmetric as well as the graph is

invariant under vertex relabeling.

As a second example we consider a three-qubit graph state in Fig. 2.3 (b). This graph has three

vertices and three edges between them and can be written as follows:

|G(b)〉 =CZ12CZ13CZ23|+〉1|+〉2|+〉3 (2.52)

=
1

2
√

2
(|000〉+ |001〉+ |010〉 − |011〉+ |100〉 − |101〉 − |110〉 − |111〉). (2.53)

One can see that this is too a permutation symmetric state, as the graph itself is invariant under

vertex relabeling. The state |G(b)〉 is local unitary equivalent to the GHZ-state in Eq. (2.9).

The state in Fig. 2.3 (c) represents an arbitrary five-vertex graph state. In general, when we

consider N-vertex or N-qubit graph states, we will assume that the graph is connected, unless

stated otherwise. That means, there is a connected path between any two vertices of a graph.

Finally, we say that the graph state is (permutation) symmetric if it corresponds to a fully

connected graph.

2.4.1.2 Stabilizer Formalism

There exists an alternative and a very fruitful definition of graph states, called a stabilizer

formalism. Given an N-qubit graph state corresponding to a graph G = (V, E), where V =

{1, 2 . . . , N}, for every vertex i ∈ V we say that the function N (i) gives the neighbourhood of

the vertex i, that is the set of all the vertices i is adjacent to. Then for each vertex i ∈ V we can

define the operator gi consisting of the tensor product of Pauli-X on the vertex i and Pauli-Z’s

on N (i):

gi = Xi
⊗

j∈N (i)

Zj. (2.54)

The operators gi, 0 ≤ i ≤ N form a commutative group and the graph state |G〉 is their unique

common eigenstate with eigenvalue "+1":

gi|G〉 = |G〉 for all i ∈ V. (2.55)
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The stabilizer formalism and its properties have turned out to be very fruitful in studying

graph states. We review some of its application is the consequent subsections.

2.4.1.3 Local unitary equivalent graph states

Given two N-qubit graph states |G1〉 and |G2〉, it is interesting to learn under which local

transformations they are equivalent to each other. It turned out that for graph states LU

operations are as powerful as SLOCC operations.

Lemma 2.15. [31] Two N-qubit graph states |G1〉 and |G2〉 are SLOCC equivalent, if and only if they

are LU equivalent.

From Lemma 2.15 we directly understand that for two-qubits, as expected, there is only the

single local unitary equivalence class of graph states. The graph state in Fig. 2.3 (b) corre-

sponds to the GHZ-state and it appears that all other three-qubit graph states are also in the

GHZ-class. Therefore, all other graphs with three vertices represent the same state up to LU

equivalence. In the following we review a graphical rule of how to transform one graph state

to another under local unitaries.

We use local Clifford group operators which correspond to the square-roots of Pauli matrices:

√
X
±
=

(
1±i

2
1∓i

2
1∓i

2
1±i

2

)
= |+〉〈+| ± i|−〉〈−|,

√
Z
±
=

(
1 0

0 ±i

)
, (2.56)

where |±〉 = 1√
2
(|0〉 ± |1〉) is a "±1" eigenstate of Pauli-X. Recall that, the Clifford group

is a normalizer of the Pauli group. Hence, for graph state equivalence local Clifford group

operations play an outstanding role.

An N-qubit graph state |G〉 can be transformed to another N-qubit graph state |G′〉 by means

of local Clifford group actions, if and only if the graph G′ can be obtained from the graph

G by a series of local complementations [87]. The local complementation on a graph G works

as follows: One picks a vertex i ∈ V and complements a subgraph induced over the neigh-

bourhood N (i). To complement a subgraph means to erase all the edges in the subgraph, but

instead connect the vertices which were originally disconnected. For some time it was con-

jectured that the rule of local complementation was exhausting all local unitary equivalences

between two graph states [87], however, it was later disproved by counterexamples [88, 89].

The local complementation over the vertex i ∈ V can be physically achieved by the following

local unitary transformation:

τi(G) =
√

Xi
± ⊗

j∈N (i)

√
Zj
∓

. (2.57)

See Fig. 2.4 for examples of local complementations.
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Figure 2.4: Graphical rule of local complementation: (a) Local comp lementation
is applied to the vertex 1, τ1. Neighbourhood of the vertex 1 induces a subgraph
on vertices N (1) = {4, 5}. These vertices get connected as a result of LC. (b) Local
comelemntation is applied on the vertex 2, τ2. Neighbourhood of the vertex 2 induces
a subgraph on vertices N (1) = {3, 4, 5}. The vertices 4 and 5 were connected as well
as 3 and 5. As a result of LC, they both get disconnected. The vertices 3 and 4 were
disconnected before the LC, therefore, after the action of LC, they get connected and

we get graph in (c).

2.4.1.4 Pauli measurement rules for graph states

Next we review how a given graph state changes if one of its vertex is measured in Pauli bases.

It appears that the post- measurement state is always local unitary equivalent to a graph state

and moreover, one can derive graphical rules for a given graph G = (V, E):

• Pauli-Z basis measurement: If a qubit i ∈ V is measured in Pauli-Z basis, the vertex and

all of its edges are removed from the graph. Formally, a post-measurement state is:

PZi(s)|G〉 7→ Us|G− {i}〉, (2.58)

where PZi(s) expresses Pauli-Z basis measurement on qubit i for the outcome s ∈ {0, 1}
and the notation |G− {i}〉 indicates that the vertex i is deleted from the graph G. The

post-measurement state can be described by |G−{i}〉 up to local unitary Us corrections:

U0 = 1, U1 =
⊗

j∈N (i)

Zj. (2.59)

• Pauli-Y basis measurement: If a qubit i ∈ V is measured in Pauli-Y basis, first the local

complementation is done over the vertex i and then i with all of its edges is removed

from the graph:

PYi(s)|G〉 7→ Us|τi(G)− {i}〉, (2.60)

where for outcomes s ∈ {+,−}, the unitary corrections are given by

U+ =
⊗

j∈N (i)

√
−iZj, U− =

⊗
j∈N (i)

√
iZj. (2.61)

• Pauli-X basis measurement: This is the most involving rule as it includes a set of three

local complementations. If a qubit i ∈ V is measured in Pauli-X basis, first, the local

complementation is done over one of the vertices in the neighbourhood of i, j ∈ N (i).

Second, the local complementation is done over the vertex i. Third, the vertex i is

removed with all of its edges and finally, the local complementation is done over the
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vertex j again:

PXi(s)|G〉 7→ Us|τj(τi(τj(G))− {i})〉, (2.62)

where for outcomes s ∈ {+,−}, the unitary corrections are given by

U+ =
√

iY j
⊗

k∈N (j)\(i∪N (i))

Zk, U− =
√
−iY j

⊗
k∈N (j)\(i∪N (i)

Zk. (2.63)

At the first step of Pauli-X measurement on vertex i, the choice of the vertex in the

neighbourhood j ∈ N (i) is not unique, but the post-measurement graph states for any

choice of j are LU equivalent.

2.4.1.5 Bell inequalities for graph states

There have been multiple constructions and approaches to derive Bell inequalities for graphs

states [90–92]. Here we review so-called Mermin inequalities derived for N-qubit symmetric

graph state, which is LU equivalent to the N-qubit GHZ-state. The inequality is violated by

an amount that grows exponentially with N. In the original paper, in Ref. [29] the following

local variation of N-qubit GHZ-state was considered to reach the aforementioned violation:

|ψN〉 =
1√
2
(|00 . . . 0〉+ i|11 . . . 1〉). (2.64)

The state |ψN〉 is an eigenstate of the Pauli stabilizer operator

g1|ψN〉 = Y1X2X3 . . . XN |ψN〉 (2.65)

and due to the symmetry, the same holds for all other permuted stabilizers gi too, 1 ≤ i ≤ N.

Here skip writing tensor products, A1 ⊗ A2 ⊗ · · · ⊗ AN ≡ A1 A2 . . . AN .

We take a product of three distinct stabilizer operators, e.g., g1, g2, and g3,

g1 Y1X2X3X4 . . . XN

× g2 X1Y2X3X4 . . . XN

g3 X1X2Y3X4 . . . XN

g1g2g3 −Y1Y2Y3X4 . . . NN

Then it follows that Y1Y2Y3X4 . . . XN |ψN〉 = −|ψN〉. Due to the symmetry every permutation

of such operator would give the same eigenvalue equation. Similarly, we can take a product

of five stabilizers and one can be easily convinced that the Y1Y2Y3Y4Y5X6 . . . XN |ψN〉 = |ψN〉.
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Therefore, we get an alternating sing for the eigenvalue equation. Interestingly, one can com-

bine all such products with its permutations and reach the so-called Mermin operator [29]:

M =Y1X2X3X4 . . . XN + permutations

−Y1Y2Y3X4 . . . XN − permutations

+Y1Y2Y3Y4Y5X6 . . . XN + permutations

−Y1Y2Y3Y4Y5Y6Y7X8 . . . XN − permutations

+ . . . .

(2.66)

From the eigenvalue equations and an alternating sign it directly follows that the N-qubit

GHZ-like state is an eigenstate of each summand in the Mermin operator, with the eigenvalue

having also the alternating sign. That being the case, quantum value of the Mermin operator

is equal to the number of terms in the summand:

〈ψN |M|ψN〉 = ∑
i odd

(
N
i

)
= 2N−1. (2.67)

However, if one considers the local hidden variable model, the maximal classical value that

the Mermin operator can attain is equal to

〈M〉LHV = 2bN/2c. (2.68)

From here one sees that graph states can attain exponentially increasing violation of local

realism with the number of parties.

The quantum value of Mermin inequality obtained by the GHZ-like state is not robust under

particle loss, since the GHZ-state becomes fully separable, in case even a single qubit gets

traced out. Therefore, the noisy state does not violate the separability inequalities [93]. The

separability inequalities are, in general, violated exponentially stronger than the local reality

inequalities by entangled states.

2.4.1.6 Measurement-based quantum computation

Measurement-based quantum computation (MBQC) is a popular scheme of universal quantum

computation and differs from the usual circuit model of computation in several key aspects.

First, entangling unitary gates are not available during computation on a fly. Instead, all

entanglement used during the computation is prepared in a form of a particular many-body

highly entangled quantum state before any computation starts. This state is referred to as a

resource state for universal MBQC. Then an input quantum state is encoded in the resource

state. A computational algorithm is executed on this input by performing local measurements

on a resource state with the side classical computer analyzing past measurement outcomes in

order to predict the future measurement bases.

To show that such measurement-based scheme is universal, one has to prove that a chosen re-

source state can implement all the gates from some universal gate-set via local measurements.
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Figure 2.5: Cluster state – an universal resource for MBQC. This multiqubit graph
state can be divided in three parts: I - input part, where quantum input state is
encoded via Bell-bases measurements. I I - middle part, where measurements are
made in order to implement quantum circuit on an encoded input state. I I I - output

part where the final output state is prepared. Information flows from left to right.

If this is the case we call this state an universal resource state. Some classes of universal resource

states and their properties have been investigated in the literature [16, 26, 94–98]. Here we

review the most conventional universal resource state, the 2D-cluster state and its computa-

tional scheme [94]. The 2D cluster state is a particular graph state built on a 2D lattice using

the nearest neighbour interactions (See Fig. 2.5).

Having fixed some universal resource state, it is important to characterize physical resources

required for computations: the entangling gates needed to prepare the state and the required

class of measurements enabling computation. Cluster states are constructed using CZ gates,

which are unitaries in the second Clifford hierarchy. Then, due to Gottesman-Knill The-

orem 2.11, Pauli measurements cannot suffice to perform universal quantum computation.

Therefore, non-Pauli measurements constitute physical resources for cluster state MBQC.

In order to discuss the complexity of MBQC, one needs to consider three aspects. The first is

the adaptation of measurement bases, namely whether the choice of some measurement bases

should depend on the results of previous measurements. Second, this naturally induces the

notion of parallelism and logical depth. Some classes of gates can be carried out by simulta-

neous measurements, but for implementing other gates one needs to adapt the measurement

bases, increasing the logical depth of an underlying circuit. Third, due to intrinsic randomness

in the measurement outcomes, there are always random unwanted unitaries, so-called called

byproduct operators, needed to be corrected, in order to make MBQC deterministic. While it is

known that the correction of Pauli operators can be accumulated to the end of computation

by classical feed-forwarding of measurement outcomes, one may need to adapt measurement

bases and perform additional gates, in general. This step is referred to as a correction step.

The universal gate-set, Clifford group plus T gate from Theorem 2.9 is implemented on a

cluster state. Pauli measurements implement Clifford group gates up to random Pauli errors.

Since the Clifford group is the normalizer of the Pauli group, Pauli errors can be propagated
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Cluster State
Preparation gates CZ ∈ C2

Measurements Pauli + C2

Implemented gates
↓ ↓
C2 C3

Byproduct {X, Z}
Parallelized gates C2

Table 2.1: Summary of features of MBQC scheme on cluster states.

in a computation in a closed form. To say it otherwise, if one does not correct Pauli errors

directly and keeps Clifford group calculations on a "corrupted" quantum information, the

accumulated errors at the end of the Clifford group computation will still be elements of the

Pauli group. Therefore, Clifford group unitaries can be implemented without any adaptation

of measurement basis, so these gates can be all parallelized in a single step of computation.

As Clifford group gates are not universal, more general measurements in the X − Y-plane

of the Bloch sphere must be performed to generate T ∈ C3. The direction of measurements

are chosen according to accumulated Pauli errors. Therefore, depth of a circuit increases when

implementing a T gate. Such time ordering is referred to as a T-depth and has been investigated

for many circuits as a measure of a cost of its implementation [99–103]. The random byproduct

group after implementing the T gates remains to be generated by the Pauli operators X and

Z. See Table 2.1 for the general summary of a computational scheme on cluster states.

2.4.1.7 Graph states in quantum error-correction

Given a pure quantum error-correcting code ((n, K, d))2, all of its basis states must have all (d−
1) reduced density matrices maximally mixed. Thus, it is interesting to investigate states with

such properties. In the following, we give examples of ((n, 1, d))2 codes, which corresponds to

n-qubit graph states with all of their (d− 1) RDMs being maximally mixed.

To start with, note that any connected graph state has all of its 1 RDMs maximally mixed. But

it appears one can do much better. Namely, every possible AME state in qubits corresponds

to a graph state. For two-qubits it is a Bell state as in Fig. 2.3 (a). For three qubits, it is the

GHZ-state, as in Fig. 2.3 (b). No AME state exists for four qubits [18]. Five and six qubit AME

states are presented in Fig. 2.6.

An usual approach to construct an error-correcting code, having found an AME state, or some

other entangled state with all of its (d− 1) RDMs maximally mixed, is to use this state and

its LU equivalent states as codewords. We will take this approach when studying hypergraph

state based error-correcting codes.



Preliminaries 33

(a) (b)

Figure 2.6: Absolutely maximally entangled (AME) states. (a) The five-qubit graph
state which is an AME state. (b) The six-qubit graph state which is an AME state.

2.4.2 Hypergraph states

Hypergraph states [104–106] correspond to mathematical structures of hypergraphs H =

(V, E) and are generalizations of graph states. These states have been recognized as special

cases of the so-called locally maximally entangleable (LME) states [104]. Hypergraph states

have turned out to play a role for search algorithms in quantum computing [107], quantum

fingerprinting protocols [108, 109] and have been investigated in condensed matter physics

as ground states of spin models with interesting topological properties [97]. Quantum state

verification problem has also been extensively studied for this class of states [110–112].

2.4.2.1 Constructing hypergraph states

A hypergraph state |H〉 corresponding to a hypergraph H = (V, E), defined over a set of ver-

tices V and a set of hyperedges E, which may connect more than two vertices. A hypergraph

state is constructed in a following manner:

• For each vertex v ∈ V we initialize the physical system in the "+1" eigenstates of Pauli-

X operator, |+〉 = (|0〉+ |1〉)/
√

2. Thus, the N-vertex hypergraph state is initialized as

|+〉⊗N , where N = |V| is the cardinality of the vertex set.

• For each hyperedge e ∈ E in the hypergraph H, we calculate edge cardinality |e| and we

apply the |e|-qubit entangling unitary, represented by the diagonal gate C on the qubits

in the hyperedge e of the initialized state |+〉⊗N . As a result we get a hypergraph state

corresponding to the hypergraph H:

|H〉 = ∏
e∈E

Ce|+〉⊗|V|, (2.69)

where Ce gates are generalized CZ gates on |e| qubits and are defined as follows Ce =

1− 2|11 . . . 1〉〈11 . . . 1|.

The simplest non-trivial example of a hypergraph state corresponds to a three-vertex hyper-

graph with a single hyperedge containing all three vertices (See Fig. 2.7 (a)) and as a state
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Figure 2.7: Hypergraph states. (a) A three-vertex hypergraph with a sin-
gle hyperedge E = {{1, 2, 3}}. (b) The four-vertex three-uniform complete
hypergraph that is every three vertex is connected with a hyperedge: E =
{{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}. (c) An arbitrary five-vertex hypergraph, con-

taining hyperedges of different cardinality: E = {{1}, {3, 5}, {2, 4, 5}, {1, 2, 3, 4}}.

vector it looks as follows:

|H3
3〉 =C{1,2,3}|+〉⊗3 = CCZ|+〉⊗3 (2.70)

=
1√
8

(
|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉 − |111〉

)
. (2.71)

Definition 2.16. We call a hypergraph state k-uniform if all of its hyperedges ∀e ∈ E act

exactly on k vertices, or otherwise, all hyperedges have the cardinality |e| = k. We say that a

hypergraph is complete/fully connected k-uniform if it has every possible hyperedge of the

cardinality k. See Fig.2.7 (b) for a 3-uniform example.

To give an example, every graph state is a 2-uniform hypergraph state. The state in Fig. 2.7 (b)

is a 3-uniform complete hypergraph state. The state in Fig. 2.7 (c) is an example of a hyper-

graph state with mixed cardinality edges.

Hypergraph states as state vectors correspond to equally weighted real-valued superposition

of all computational basis elements. Alternatively they can be also viewed as states capable of

encoding Boolean functions f (x):

|H〉 = 1
2N/2 ∑

x∈{0,1}N

(−1) f (x)|x〉. (2.72)

There is a one-to-one correspondence between hypergraph states and such Boolean function

encodings. For example, one can easily check that the hypergraph state in Eq. (2.70) can

be expressed by the function f (x) = x1x2x3, where x = (x1, x2, x3). On the other hand,

graph states correspond to functions with only two variables. For example, the graph state in

Fig. 2.3 (b) is described by the function of the form f (x) = x1x2 + x2x3 + x1x3. This already

indicates that there are significantly more hypergraph states than graph states.
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Figure 2.8: All three qubit hypergraph states with at least one hyperedge are local
Pauli equivalent. Pauli-X on a vertex i, adds all the hyperedges in the adjacency of i.
X3 is applied to the hypergraph state in (a) and the state in (b) is obtained, since the
adjacency of the vertex 3 is {1, 2}. X2 is applied to the hypergraph state in (b) and
since the adjacency of vertex 2 is given by {{1}, {1, 3}}, these hyperedges are found
in addition in (c). Finally, applying X1 to the qubit one and Z1Z2Z3 to all three qubits,

gives the state in (d).

2.4.2.2 Nonlocal stabilizer formalism

Hypergraph states also have an alternative definition using stabilizer formalism, however, the

stabilizer is not given by a tensor product of local operators [113]. It turns out that even

a nonlocal stabilizer description can be fruitful for investigating entanglement properties of

hypergraph states.

Given an N-qubit hypergraph state corresponding to a hypergraph H = (V, E), first we intro-

duce a term that can be regarded as a generalization of the term neighbourhood from graph

theory. We call it adjacency of a vertex i ∈ V and denote it byA(i) = {e−{i}|e ∈ E with i ∈ e}.
The elements of A(i) are sets of vertices which are adjacent to i via some hyperedge. To

give an example, the adjacency of the vertex i = 2 in hypergraph in Fig. 2.7 (c), is given by

A(2) = {{4, 5}, {1, 3, 4}}. Then for each vertex i ∈ V we can define the operator hi, consisting

of the tensor product of Pauli-X on the vertex i and generalized controlled-Z gates on the

adjacent qubits:

hi = Xi
⊗

ej∈A(i)
Cej . (2.73)

The operators hi, 0 ≤ i ≤ N form a commutative group and the hypergraph state |H〉 is their

unique common eigenstate with the eigenvalue "+1":

hi|H〉 = |H〉 for all i ∈ V. (2.74)

To given an example, we write down some of the nonlocal stabilizer operators of the hyper-

graph in Fig. 2.7 (c) explicitly:

h1 =X1 ⊗ C{}C{2,3,4} = −X1 ⊗ C{2,3,4}. (2.75)

h5 =X5 ⊗ C{3}C{2,4}. (2.76)

Note that the vertex 1 is included in hyperedges {{1}, {1, 2, 3, 4}}, and, therefore, its adjacency

contains an empty hyperedge {} ∈ A(1). An empty hyperedge itself corresponds to a global



Preliminaries 36

Figure 2.9: 27 local unitary equivalence of four-qubit hypergraph states with at least
one hyperedge. It appears that local Pauli operations are enough to distinguish these

entanglement classes.

sign, −1, as seen in Eq. (2.75). For the sake of a simpler notation, sometimes where it is

clear we will skip the tensor product, brackets, and commas in the description of generalized

controlled-Z gates and instead write: h5 = X5C3C24.

2.4.2.3 Local Pauli equivalences of hypergraph states

Similar to graph state case, it is interesting to investigate which hypergraphs are local unitary

equivalent. In Ref. [113] it was shown that in case of three-qubit hypergraph states, containing

a least one hyperedge, there is a single local unitary equivalence class. This equivalence can

be unraveled by investigating local Pauli-X and -Z actions on hypergraph states.

From nonlocal stabilizer equations Eq. (2.73), one can directly derive the graphical rule for

Pauli-X operations on hypergraph states:

Xi
⊗

ej∈A(i)
Cej |H〉 = |H〉 ⇒ Xi|H〉 =

⊗
ej∈A(i)

Cej |H〉. (2.77)

Pauli-X operator on qubit i adds all the edges defined over adjacency of i to the hypergraph.

On the other hand, Pauli-Z operator is much more trivial, since it just adds a local Ci to the

qubit it is applied to.

Hence, in three-qubit case there are totally two LU inequivalent classes of hypergraph states:

GHZ-state and |H3
3〉. The former corresponds to a graph state as we have seen previously and

is the representative of one of the SLOCC classes. The latter can be transformed with local

Pauli operations to any other three-qubit hypergraph states that contain a hyperedge {1, 2, 3}.
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See Fig. 2.8 for the exact transformations. Finally, three-qubit GHZ-state and |H3
3〉 are not LU

equivalent but they are in the same SLOCC equivalence class.

In four-qubit case the situation changes drastically as there are totally 29 LU inequivalent

classes of hypergraph states: Two out of 29 classes are graph states, but the rest of the 27

classes are given in Fig. 2.9 and they have at least one hyperedge. Note that, similar to the

three-qubit case, local Pauli operations are able to identify all LU equivalences.

2.4.3 Linear matrix pencil states

In this subsection we review entanglement classification of tripartite pure states |ψ〉 in non-

homogeneous Hilbert space of local dimensions H = C2 ⊗ Cm ⊗ Cn, where m ≤ n under

SLOCC transformations. For m = n = 2 we already saw that there are two genuine multiparty

entangled SLOCC classes, the W-class and the GHZ-class. Interestingly, the problem of SLOCC

classification for arbitrary m and n can be solved using mathematical structures of linear matrix

pencils [114].

A tripartite state |ψ〉 in Hilbert space H shared between Aline (A), Bob (B), and Charlie (C)

can be expressed as

|ψ〉 =|0〉A|R〉BC + |1〉|S〉BC (2.78)

=
[
|0〉A(R⊗ 1) + |1〉A(S⊗ 1)

]
|Φ+

n 〉 (2.79)

=
[
|0〉A(1⊗ RT) + |1〉A(1⊗ ST)

]
|Φ+

m〉, (2.80)

where |Φ+
k 〉 = 1√

k ∑k−1
i=0 |ii〉 is a k-dimensional Bell-state and R and S are complex m× n matri-

ces. A pair of matrices R and S form a linear matrix pencil P(R, S) = µR+λS, a homogeneous

matrix polynomial of degree 1 in variables µ and λ. In this thesis we use notation P(R, S),

P(µ, λ), and simply P interchangeably. Linear matrix pencils and pure quantum states in

2×m× n are in one-to-one correspondence. In Ref. [114] the connection between SLOCC clas-

sification of states in 2×m× n systems was connected to the normal form of matrix pencils.

In the following we review this connection. Without loss of generality, we assume that all the

states are of the full local ranks.

Since the SLOCC operations are characterized by Alice’s, Bob’s, and Charlie’s invertible actions

A, B, and C on a state |ψ〉, respectively, we investigate their effects on a corresponding matrix

pencil individually. We start by Alice’s action: Alice has the smallest of the local dimensions.

Her invertible operation can be represented by an arbitrary 2× 2 matrix A with a non-zero

determinant:

A =

(
α β

γ δ

)
. (2.81)

Then A transforms the state |ψ〉 to a new state

A⊗ 1⊗ 1|ψ〉 = |0〉A(α|R〉BC + β|S〉BC) + |1〉A(γ|R〉BC + δ|S〉BC). (2.82)
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Alternatively, we can say that a pencil P(R, S) = µR + λS is transformed to a new pencil with

new variables µ̃ = αµ + γλ and λ̃ = βµ + δλ,

P(µ̃, λ̃) = (αµ + γλ)R + (βµ + δλ)S. (2.83)

Action of Bob and Charlie can be discussed together:

1⊗ B⊗ C|ψ〉 =[|0〉A(BR⊗ C) + |1〉A(BS⊗ C)]|Φ+
n 〉 (2.84)

=[|0〉A(BRCT ⊗ 1) + |1〉A(BSCT ⊗ 1)]|Φ+
n 〉. (2.85)

Therefore, a matrix pencil P(R, S) is transformed to P(BRCT , BSCT). From these discussions

it is evident that the classification of matrix pencils are in order.

Definition 2.17. Two m× n matrix pencils P(R,S) and P(R̃, S̃) are said to be strictly equivalent

to each other if there exist invertible general linear operators B ∈ GLm and C ∈ GLn, such that

BRCT = R̃ and BSCT = S̃. (2.86)

It follows that, if two states are SLOCC equivalent under B and C, then their pencils can be

made strictly equivalent too. Luckily, there exists the normal form to identify strict equivalence

of matrix pencils.

Lemma 2.18. Two matrix pencils are strictly equivalent to each other if and only if they correspond to

the same Kronecker canonical form.

Kronecker canonical form (KCF) is a generalization of well-known Jordan normal form. A

matrix pencil, which is reduced to its KCF is denoted by PKCF. KCF of a m × n full-rank

matrix pencil has a Block-diagonal form:

PKCF = {Lε1 , . . . , Lεa , LT
ν1

, . . . LT
νb

, J}. (2.87)

Here Lε, and LT
ν are called right and left null-space blocks, respectively and indices ε1, . . . εa,

ν1, . . . νb are minimal indices of a pencil. J is very a similar square matrix to a Jordan matrix and

is referred to as divisor block. It is filled-up with blocks specified by the so-called elementary

divisors or, equivalently, with the so-called pencil eigenvalues, xi ∈ C∪ {∞}. There are specific

steps in order to determine eigenvalues and minimal indices of a matrix pencil. We review

them here.

First, we define a rank of a matrix pencil to be the largest integer r, such that there exists a

nonvanishing r-minor for any choice of variable µ and λ. A k-minor of matrix is a determinant

of a matrix obtained by erasing all but its k rows and k columns. Note that, defining rank of a

pencil in this way also incorporates Alice’s action. Then we define Dk(µ, λ) for 1 ≤ k ≤ r to be

the greatest common divisor of all k-minors of a pencil P(R, S). More formally, a polynomial

Dk(µ, λ) is calculated as

Dk(µ, λ) = gcd[minors[P(R, S), k]]. (2.88)
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By convention D0 = 1 and Dk = 0 for k > r. The polynomials Dk(µ, λ) uniquely factorize as a

product of eigenvalues of a matrix pencil:

Dr(µ, λ) = µq−t p1 . . . pt, (2.89)

where t ≤ q and q ≤ r and pi = µxi + λ, for xi ∈ C are called a finite eigenvalue of a pencil

and the factor µ is called an infinite eigenvalue of a pencil sometimes denoted by {∞}. The

infinite eigenvalue has an algebraic multiplicity (q− t) denoted by eµ, while for distinct finite

eigenvalues pi, we denote the corresponding algebraic multiplicity by ei.

Next step is to calculate invariant polynomials of a matrix pencil for 1 ≤ k ≤ r:

Ek(µ, λ) =
Dk(µ, λ)

Dk−1(µ, λ)
. (2.90)

Since by definition Dk−1(µ, λ) always divides Dk(µ, λ), an invariant polynomial Ek(µ, λ) is a

homogeneous polynomial. Then using distinct we define a size signature for each eigenvalue

pi to be a sequence of r integers si = (ei
1, . . . , ei

r), where ei
j is a maximal integer power of pi,

such that (pi)
ei

j divides the invariant polynomial Ej(µ, λ), for r ≥ j ≥ 1. A size signature for

an infinite divisor is defined in the same way and sµ = (eµ
1 , . . . , eµ

r ).

We can already look at the full structure of J blocks assuming that a pencil has l ≤ r distinct

finite divisors:

J = {Me1
1(x1), . . . , Me1

r (xl), Neµ
1 , Neµ

2 , . . . , Neµ
r }, (2.91)

where Mei
j and Meµ

j are ei
j × ei

j and eµ
j × eµ

j matrices:

Mei
j(xi) =

ei
j←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

µxi + λ µ 0 . . . 0

0 µxi + λ µ
...

. . . . . . 0

µxi + λ µ

0 . . . 0 µxi + λ



xy
ei

j and (2.92)

Neµ
j =

eµ
j←−−−−−−−−−−−−−−−→

µ λ 0 . . . 0

0 µ λ
...

. . . . . . 0

µ λ

0 . . . 0 µ



xy
eµ

j . (2.93)

The total size of eigenvalue blocks is q = ∑j(∑i ei
j) + eµ

j . The rest of the m× n pencil is filled

up with null-space blocks, which we review next.
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A right null-space of a pencil P corresponds to vectors of homogeneous polynomials in vari-

ables λ and µ

~yi =
εi

∑
j=0

yijµ
εi−jλj, (2.94)

where yij ∈ C and the vector satisfies the constraint

(µR + λS)~yi = 0. (2.95)

Let a be the number of linearly independent vectors for which Eq. (2.95) holds. We choose

linearly independent vectors ~yi of minimal degree, εi and order them by degree in the ascend-

ing order, (ε1, . . . εa), obtaining the unique set of right minimal indices of a matrix pencil. The

integer values of the right minimal indices are sufficient to define Lε blocks:

Lε =

ε+1←−−−−−−−−−−−−−−−→
λ µ 0 . . . 0

0 λ µ
...

. . . . . . 0

λ µ



xy
ε . (2.96)

The left null-space block is defined in an analogous way, but instead of the constraint in

Eq. (2.95), the vectors have to satisfy the transposed one:

(µRT + λST)~yi = 0, (2.97)

uniquely defining b left minimal indices ordered in the ascending order, (ν1, . . . νb). Respec-

tively the left null-space block LT
ν has dimensions (ν + 1) × ν. This finishes the descrip-

tion of KCF of a matrix pencil. For a more detailed overview of matrix pencil theory see

Refs. [114, 115].

We now get back to the SLOCC classification of 2× m× n states. Lemma 2.18 says that two

states are SLOCC equivalent under transformation 1⊗ B⊗C, if and only if their corresponding

matrix pencils have the same KCF. Finally, we unify this result with Alice’s transformation A

in Eq. (2.83). By redefining pencil variables, (µ, λ) 7→ (µ̃, λ̃), Alice cannot change left or right

minimal indices [114, 115], but she can alter eigenvalues of a pencil, whether finite or infinite,

in the following way:

xi 7→


αxi+β
γxi+δ , if γxi + δ 6= 0

∞, if γxi + δ = 0
and ∞ 7→

 α
γ , if γ 6= 0

∞, if γ = 0
. (2.98)

From this transformation it follows that Alice can transform at most arbitrary three distinct

eigenvalues, finite or infinite to other three eigenvalues. This implies that Alice can always map

an infinite eigenvalue to some other finite one. Thus, we only have to make statements about

finite eigenvalues from now on and the full SLOCC classification theorem under A⊗ B⊗ C

transformations can now be stated as:
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Theorem 2.19. Two 2×m× n-dimensional pure states |ψ〉 and |φ〉 with corresponding matrix pencils

having only finite eigenvalues are SLOCC equivalent, if and only if they have the same minimal indices,

matching eigenvalue size signatures, and the eigenvalues {xi} and {x̃i}, respectively, are related by a

linear fractional transformation
αxi + β

γxi + δ
= x̃i (2.99)

for αδ− βγ 6= 0.

We can shortly discuss some examples of pencils and implications of Theorem 2.19. First,

since there is a one-two-one correspondence between SLOCC classes in 2×m× n systems and

the number of possible KCFs for m × n matrix pencils, for small m and n, one can directly

enumerate all the classes. For example, in case m = n = 2, since we restrict ourselves to

the full-rank pencils, there cannot be a left or right null-space block in the pencil. As for the

eigenvalues, they can either correspond to a distinct eigenvalue case or to the single eigenvalue

with an algebraic multiplicity of two:

PW =

(
λ µ

0 λ

)
and PGHZ =

(
µ 0

0 λ

)
. (2.100)

As the labels of these pencils indicate, one can directly write out representatives of SLOCC

classes in three-qubit systems: the W-state and the GHZ-state as defined in Eq. (2.9). To go

beyond the three-qubit case, in 2× 2× 3 systems there are also two SLOCC classes with the

corresponding pencils given in KCF:

P1 =

(
λ 0 0

0 λ µ

)
and P2=

(
λ µ 0

0 λ µ

)
. (2.101)

The first pencil P1 has a single eigenvalue and the null-space block L1. The second one has no

divisors and only the single null-space block L2. No other block structure can fit in a full-rank

2× 3 pencil. The full enumeration of SLOCC classes in 2× 3× n systems was also provided

in Refs. [114, 116]. Note that there are discrete number of SLOCC classes in these dimensions.

However, in 2× 4× 4 systems there are infinite number of SLOCC classes. One can directly

see it by considering the 4× 4 matrix pencil with four distinct divisors:

P4×4 =


λ 0 0 0

0 λ + µ 0 0

0 0 µ 0

0 0 0 µx1 + λ

 . (2.102)

Alice can only fix any three divisors out of four, leaving one finite divisor with an arbitrary

parameter x1 ∈ C. So, each value of x1 corresponds to a new SLOCC class in 2 × 4 × 4.

Therefore, P4×4 describes a single parameter family of pure states in 2× 4× 4.

Until now we reviewed how the SLOCC classes in 2×m× n can be characterized via matrix

pencils. Here, we go one step beyond that and recall the necessary and sufficient condition

for the existence of a local (non–invertible) transformation from a state |ψ〉 with local ranks
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2× m × n to a state |φ〉 with local ranks 2× m × k where k < n. We consider now a (non-

invertible) SLOCC transformation on a state with local rank 2× m × n to a state with local

rank 2× m × (n − 1). The general case can be deduced from that by iterating the process.

Note that such a transformation requires a non-invertible SLOCC operation performed by C.

The necessary and sufficient conditions for the existence of this operation are stated in the

following theorem which is presented in [114]. Here and in the following, we will denote the

matrix pencil that is associated to a state |ψ〉 by Pψ.

Theorem 2.20 ([114]). Let |ψ〉 and |φ〉 be states with local ranks 2×m× n and 2×m× (n− 1) and

let c1, c2, . . . , cn denote the columns of the pencil Pψ(µ, λ). Then |ψ〉 can be mapped to |φ〉 via some

non-invertible SLOCC operators iff for some 1 ≤ i ≤ n, there exist constants a1, ai−1, ai+1, . . . , an

and some invertible linear transformation (µ, λ) 7→ (µ̂, λ̂) such that the pencil Pψi (µ̂, λ̂) = [c1 +

a1ci, . . . , ci−1 + ai−1ci, ci+1 + ai+1ci, . . . , cn + anci] is strictly equivalent to Pφ(µ, λ).

Let us remark here, that in the transformation from |ψ〉 to |φ〉, the pencil [c1 + a1ci, . . . , ci−1 +

ai−1ci, ci+1 + ai+1ci, . . . , cn + anci] is obtained by the third party, Charlie, applying an operator

C that is given via the (n− 1)× n matrix

C = Pn−1(1+ |φ〉〈i|), (2.103)

where Pn−1 denotes the projector onto the (n− 1) dimensional subspace spanned by all stan-

dard basis vectors, but ~ei and |φ〉 = ∑j 6=i aj|j〉. The intuition behind the theorem is that any

matrix C̃ can be brought to its so-called reduced row echelon form C using invertible row opera-

tions, i.e., matrices that act on the left, only [117].

Similarly, transformations from states of local rank 2×m× n to states with local rank 2× (m−
1)× n can be achieved by some non-invertible operation B performed by Bob. Non-invertible

operators applied by Alice are not considered as they would always leave Alice disentangled

with the rest of the parties.



Chapter 3

Extreme violation of local realism in

quantum hypergraph states

Hypergraph states form a family of multiparticle quantum states that generalizes the well-

known concept of Greenberger-Horne-Zeilinger states, cluster states, and more broadly graph

states. In this chapter we study the nonlocal properties of quantum hypergraph states. We

demonstrate that the correlations in hypergraph states can be used to derive various types

of nonlocality proofs, including Hardy-type arguments and Bell inequalities for genuine mul-

tiparticle nonlocality. Moreover, we show that hypergraph states allow for an exponentially

increasing violation of local realism which is robust against loss of particles. Our results sug-

gest that certain classes of hypergraph states are novel resources for quantum metrology and

a certain scheme of measurement-based quantum computation.

3.1 Introduction

Learning nonlocal properties of multipartite quantum states is important due to their appli-

cations in quantum information processing tasks. In this chapter we show that hypergraph

states violate local realism in an extreme manner, but in a way that is robust against the loss of

particles. We demonstrate that this leads to applications of these states in quantum metrology

and quantum computation. We see that the stabilizer formalism describing hypergraph states,

despite being nonlocal, can be used to derive Hardy-type nonlocality arguments [73], Bell in-

equalities for genuine multiparticle entanglement [45], or a violation of local realism with a

strength exponentially increasing with the number of particles. Our approach starts precisely

with the properties of the stabilizer, in order to identify the useful correlations provided by

quantum mechanics. This is in contrast to previous approaches that were either too general,

e.g., Bell inequalities for general multiparticle states [38, 40, 118, 119], or too restricted, con-

sidering only a few specific examples of hypergraph states and leading to nonrobust criteria

[113]. The violation of local realism is the key to further applications in information pro-

cessing. Indeed, it is well known that violation of a Bell inequality leads to advantages, in

43
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distributed computation scenarios [72, 120]. In addition, we will explicitly show that certain

classes of hypergraph states lead to Heisenberg scaling in quantum metrology and advantages

in measurement-based quantum computation.

3.2 Local correlations from nonlocal stabilizer

The key observation for the construction of our nonlocality arguments is that the stabilizer of

hypergraph states, despite being nonlocal, predicts perfect correlations for some local mea-

surements. In the following, we explain this for the three-qubit hypergraph state |H3
3〉 given in

Fig. 2.7 (a) and in Eq. (2.70) as a state vector, but the method is general. The nonlocal stabilizer

operators for the hypergraph |H3
3〉 are:

h1 = X1 ⊗ C23, h2 = X2 ⊗ C13, and h3 = X3 ⊗ C12. (3.1)

Since the hypergraph state is permutation symmetric, we can derive correlations only from one

of the generators of nonlocal stabilizer group and then permute them afterwards for another

qubits. So, let us write one of the generators more explicitly:

h1 = X1 ⊗


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 . (3.2)

It will be useful to note that the diagonal elements of the CZ23 operator can be viewed as

the projections on the four subspaces corresponding to four measurement outcomes if Pauli-

Z basis measurements were made on qubits 2 and 3: |00〉〈00|, |01〉〈01|, |10〉〈10|, −|11〉〈11|,
respectively. Then, if the first party decides to make quantum measurement in Pauli-X basis

and gets an outcome ” + ”, keeping in mind the eigenvalue equation,

h1|H3
3〉 = +|H3

3〉, (3.3)

the second and third party when measuring in Pauli-Z direction can never both obtain out-

comes 1 and 1, since this would correspond to projecting on the ”− ” sign. One can translate

this statement into deterministic probability for hypergraph state:

P(+−−|XZZ) = 0. (3.4)

Just for the sake of notation, we also denote Pauli-Z measurement outcomes also by ”± ”.

Next, we can try to repeat the argumentation when the first party measures in Pauli-X basis

but gets the outcome ”− ”. Then the only possibility for parties 2 and 3 measuring in Pauli-Z

basis, is to project on −|11〉〈11|. Therefore, P(−−−|XZZ) = 1 for the hypergraph state |H3
3〉.

From here other three deterministic assignments follow for the probablilities:

P(−++|XZZ) + P(−−+|XZZ) + P(−+−|XZZ) = 0. (3.5)
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Since the three-qubit hypergraph state is symmetric, the permuted correlations can be obtained

by considering eigenvalue equations using h2 and h3:

P(−+−|ZXZ) + P(−−+|ZZX) = 0. (3.6)

P(+−+|ZXZ) + P(−−+|ZXZ) + P(+−−|ZXZ) = 0. (3.7)

P(+ +−|ZZX) + P(−+−|ZZX) + P(+−−|ZZX) = 0. (3.8)

So, totally we obtain twelve perfect correlations for the three-qubit hypergraph state.

Derivation of perfect correlations can be extended to other hypergraph states too. Here we give

an example for |HN
N 〉 state, which is an N-qubit hypergraph state with the single cardinality

N hyperedge. Then the correlation from Eqs. (3.4-3.5) directly generalize to

P(+−− · · · − |XZZ . . . Z) = 0 (3.9)

and

P(−+ · · ·+ |XZ . . . Z) + P(−+ · · ·+−|XZZ . . . Z) + · · ·+ P(−− · · · −+|XZ . . . Z) = 0.

(3.10)

Note that the state |HN
N 〉 is also permutation symmetric, so, the correlations obtained for the

first qubit can directly be permuted for every other.

3.3 Hardy-type arguments and nonlocality proofs

In this section we would like to show that the perfect correlations obtained from the stabilizer

equations can first lead to a Hardy-type arguments, which then we translate to Bell nonlocality

arguments for fully local hidden variable models. Recall that such models assign for any

value of the HV λ results to all measurements of the parties in a local manner, meaning that

the probabilities for a given HV factorize. First we consider the tripartite case. If we denote

by ri the result and by si the measurement setting on the ith particle, respectively, then the

probabilities coming from local models are of the similar form as discussed in Eq. (2.21) but

for more parties

P(r1r2r3|s1s2s3) =
∫

dλp(λ)χA(r1|s1, λ)χB(r2|s2, λ)χC(r3|s3, λ). (3.11)

For probabilities of this form it suffices to consider deterministic models for a given λ. Con-

sidering such LHV models and twelve perfect correlations obtained for the three qubit hyper-

graph state one can reach a Hardy-type contradiction.

Theorem 3.1. If a fully local hidden variable model satisfies the conditions from Eqs. (3.4-3.5) and

their symmetric correlations coming from the permutations, then it must fulfill the following perfect

correlations too

P(+−−|XXX) + P(−+−|XXX) + P(−−+|XXX) = 0. (3.12)
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The proof of this statement is done by exhausting all possible local deterministic assignments.

The Harty-type contradiction comes from the fact that for the three-qubit hypergraph state

|H3
3〉 the following statement holds,

P(+−−|XXX) =
1

16
. (3.13)

Due to symmetry the same holds for other two correlations from Eq. (3.12).

Our method shows how the correlations of the nonlocal stabilizer can be used for Hardy-type

arguments. We recall that Hardy-type arguments have been obtained for all permutation-

symmetric states [121, 122]. However, they involved different settings and have no direct

connection with the stabilizer formalism, making a generalization complicated. In contrast, we

will see that our measurements can even be used to prove genuine multiparticle nonlocality

of the hypergraph state. First, we translate the Hardy-type argument into a Bell inequality:

Theorem 3.2. Putting together all the null terms derived from the stabilizer formalism and subtracting

the terms causing a Hardy-type argument, we obtain the Bell inequality

〈B(1)3 〉 = P(+−−|XZZ) + P(−++|XZZ) + P(−−+|XZZ) + P(−+−|XZZ)

+ P(−+−|ZXZ) + P(+−+|ZXZ) + P(−−+|ZXZ) + P(+−−|ZXZ)

+ P(−−+|ZZX) + P(+ +−|ZZX) + P(−+−|ZZX) + P(+−−|ZZX)

−P(+−−|XXX)− P(−+−|XXX)− P(−−+|XXX) ≥ 0.

(3.14)

Proof. This Bell inequality follows from the Hardy argument: If a deterministic local model

predicts one of the results with the minus signs, it also has to predict at least one of the

results corresponding to the terms with a plus sign, otherwise, it contradicts with the Hardy

argument. In addition, all the terms with a minus sign are exclusive, so a deterministic LHV

model can predict only one of them.

The hypergraph state |H3
3〉 violates this inequality with the value 〈B(1)3 〉Q = 3

16 .

We can get similar Hardy-type argument and Bell inequality from the stabilizer correlations

in Eqs. (3.9-3.10):

Theorem 3.3. If a fully local hidden variable model satisfies the conditions from Eqs. (3.9-3.10) and

their symmetric correlations coming from the permutations, then it must imply all the following perfect

correlations too, for any possible set of results {ri}, where one ri1 = +1 and two ri2 = ri3 = −1

P(r1r2 . . . rN |XX . . . X) = 0. (3.15)

the proof of this statement again relies on all possible local deterministic assignments. But for

the N-qubit hypergraph state |HN
N 〉 the value of probability in Eq. (3.15) is equal to 1/2(2N−2),

which is exponentially decreasing with the number of parties. This Hardy-type argument

leads to a Bell inequality as in Eq. (3.14), which is violated by the state with a value of −(2N −
N − 2)/2(2N−2).
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Clearly, the violation of the Bell inequality is not strong, as it does not increase with the number

of particles. Nevertheless, Theorem 3.3 shows that the nonlocal stabilizer formalism allows one

to easily obtain nonlocality proofs. In fact, one can directly derive similar arguments for other

hypergraph states (e.g., states with one hyperedge of cardinality N and one further arbitrary

hyperedge).

3.4 Genuine multiparticle nonlocality

So far, we considered only fully local models, where for a given HV all the probabilities factor-

ize. Now we go beyond these restricted types of models to the so-called hybrid models [45].

We consider a bipartition of the three particles, say A|BC, and consider a model of the type

presented in Eq. (2.28). Here, Alice is separated from the rest, but χBC may contain corre-

lations, e.g., coming from an entangled state between B and C. In order to be physically

reasonable, however, we still request χBC not to allow instantaneous signaling.

It turns out that even this kind of more general model, even if different bipartitions are mixed

as in Eq. (2.31), cannot explain the correlations of the hypergraph state, meaning that the hy-

pergraph state is genuine multiparticle nonlocal. First, one can see by direct inspection that the

stabilizer conditions from Eqs. (3.4-3.5) are not compatible with the hypergraph correlations

P(−−−|XXX) =
1

16
and P(−−−|ZZZ) =

1
8

. (3.16)

Since these quantities are symmetric, one can construct a Bell-Svetlichny inequality [45] valid

for all the different bipartitions and arrive to one of the main results of this chapter:

Theorem 3.4. Putting all the terms from the hypergraph stabilizer formalism and the correlations

P(−−−|XXX) and P(−−−|ZZZ) together, we obtain the following Bell-Svetlichny inequality for

genuine multiparticle nonlocality,

〈B(2)3 〉 = P(+−−|XZZ) + P(−++|XZZ) + P(−−+|XZZ) + P(−+−|XZZ)

+ P(−+−|ZXZ) + P(+−+|ZXZ) + P(−−+|ZXZ) + P(+−−|ZXZ)

+ P(−−+|ZZX) + P(+ +−|ZZX) + P(−+−|ZZX) + P(+−−|ZZX)

+P(−−−|XXX)− P(−−−|ZZZ) ≥ 0,

(3.17)

which is violated by the state |H3
3〉 with the amount of −1/16.

Proof. The proof is done by an exhaustive assignments of nonsignaling and local models.

To investigate the noise tolerance of inequality (3.17), we consider mixing white noise with the

hypergraph state

ρ = (1− ε)|H3
3〉〈H3

3 |+
ε

8
1. (3.18)

We ask how much noise can be added, while the inequality is still violated by ρ. The white

noise tolerance of inequality (3.17) is ε = 1/13 and is optimal in the sense that for larger values
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Figure 3.1: Complete hypergraph states. (a) Two-uniform fully connected hyper-
graph state – a complete graph state, LU equivalent to GHZ-state. (b) Three-uniform
fully connected hypergraph state – every combination of three vertices are connected
by a hyperedge. (c) Four-uniform fully connected hypergraph state – every combina-

tion of four vertices are connected by a hyperedge.

of noise a hybrid model can be found, which explains all possible measurements of X and Z

(within numerical precision). The existence of such a model can be shown by solving mem-

bership problem using linear programming as discussed in Eq. (2.32). With the same method

we can also prove that the state becomes fully local with respect to X and Z measurements for

ε ≥ 2/3.

3.5 Extreme violation in complete three-uniform states

In this section we extend our analysis of nonlocality to hypergraph states with a larger number

of particles. In the spirit of the exponential violation derived in Chapter 2, Subsection 2.4.1.5

using the N-qubit GHZ-state, we try to get the similar violation of Bell inequalities with the

increasing number of parties for hypergraph states. Such a behaviour has previously been

observed only for GHZ-states and some cluster states [90, 91].

The N-qubit GHZ state corresponds to the N-vertex complete graph state as in Fig. 3.1 (a),

i.e., fully connected two-uniform hypergraph states. The first natural generalization is to

investigate the case, where instead of all cardinality two edges, we consider the states with all

cardinality three hyperedges. Thus, we take the N-vertex three-uniform complete hypergraph

state, |H3
N〉 as in Fig. 3.1 (b) and we investigate its nonlocal properties. Similarly to the Mermin

operator in Eq. (2.66) we write down a new Bell operator for our state:

BN =− Z1Z2Z3Z4 . . . ZN

+ X1X2Z3Z4 . . . ZN + permutations

− X1X2X3X4Z5 . . . ZN − permutations

+ X1X2X3X4X5X6Z7 . . . ZN + permutations

− . . . .

(3.19)
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These operator is constructed using sums of tensor products of Pauli operators, it is permu-

tation symmetric, has 2N−1 terms and an alternating sign in front of the terms with differ-

ent number of Pauli-X or Pauli-Y matrices. So, the operator BN can be obtained from the

Mermin one by the change of bases. On the other hand, changing bases cannot alter the

maximum classical value the operator can attain. Therefore, one directly concludes that the

LHV bound for the new Bell operator can be derived from the bound of the Mermin operator.

If N is odd, our Bell inequality is exactly the rotated Mermin inequality BM
N . If N is even,

〈BN〉LHV = 〈Z · BM
N−1 + X · B̃M

N−1〉LHV ≤ 2〈BM
N−1〉LHV , where B̃ denotes the inequality where

Pauli-X and Pauli-Z are exchanged, and the claim follows.

〈BN〉LHV ≤ 2bN/2c. (3.20)

Now we calculate the value of the new operator for the three-uniform complete hypergraph

state |H3
N〉.

Theorem 3.5. The N-qubit fully connected three-uniform hypergraph state, |H3
N〉 violates the classical

bound of the operator BN , by an amount that grows exponentially with the number of qubits, namely

〈BN〉Q ≡ 〈H3
N |BN |H3

N〉 ≥ 2N−2 − 1
2

. (3.21)

Proof. The proof is done by direct calculation of the expectation value of the operator, similarly

to the GHZ-state case. However, our state is no longer an eigenstate of each summand in the

operator BN with the eigenvalue ±1. Instead, for each summand we obtain the following

expectations values. On N qubits and for even m with 1 < m < N

〈X . . . X︸ ︷︷ ︸
m

Z . . . Z〉 =

 + 1
2 if m = 2 mod 4,

− 1
2 if m = 0 mod 4.

(3.22)

Moreover, if m = N, then the correlations are given by

〈XX . . . XX︸ ︷︷ ︸
N

〉 =

 0 if N = 0 mod 4,

1 if N = 2 mod 4.
(3.23)

Finally, we always have 〈ZZ . . . ZZ〉 = 0. The derivations of these equations are rather lengthy

and require diligent calculations, which we shift to the Appendix A. The key result here corre-

sponds to the fact that terms in Eq. (3.22) have an alternating sign, precisely corresponding to

the alternating sign we saw before, when evaluating the Mermin operator for the GHZ-state.

The only difference is the factor of 1/2, which is independent of the number of parties. This

guarantees an exponentially growing violation of local realism using three-uniform hyper-

graph states. In particular, for odd N, we have

〈BN〉Q =
N

∑
k even

(
N
k

)
1
2
= 2N−2. (3.24)
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If N = 0 mod 4, then

〈BN〉Q =
N−1

∑
k even

(
N
k

)
1
2
− 〈X . . . X〉 = 2N−2 − 1/2 (3.25)

and for N = 2 mod 4, we have

〈BN〉Q =
N−1

∑
k even

(
N
k

)
1
2
− 〈X . . . X〉 = 2N−2 + 1/2. (3.26)

This finalizes the proof. For the exact derivations and techniques used, see Appendix A.1.

3.6 Extreme violation in complete four-uniform states

In this section we extend our analysis of extreme nonlocality even further to the hypergraphs

with all cardinality four hyperedges, |H4
N〉. See Fig. 3.1 (c) for an example of the four-uniform

complete hypergraph. For them, the correlations of measurements are not as simple as in

Eq. (3.22): They are not constant and depend on number of Pauli-X operators, m as well as

on number of particles N. Nevertheless, they can be explicitly computed and also lead to an

exponentially increasing violations of local realism.

Theorem 3.6. The N-qubit complete four-uniform hypergraph state violates local realism by an amount

that grows exponentially with the number of qubits. More precisely, one can find a Mermin-like Bell

operator 〈BN〉 such that

〈BN〉Q
〈BN〉LHV

N→∞∼
(1 + 1√

2
)N−1

√
2

N+3 ≈ 1.20711N

2
√

2 + 2
, (3.27)

where 〈BN〉Q ≡ 〈H4
N |BN |H4

N〉.

Proof. The proof is done by direct calculation of the expectation value of the operator, similar

to the three-uniform complete hypergraph state case. However, it is much more involving. In

order to make it more evident that hypergraph states behave very differently with local Pauli

stabilizers than graph states do, here we give a summary of values of individual correlations.

Luckily, it turns out that these states for every value of N reveal correlations from which

exponential violation of Mermin-like Bell inequalities can be derived. The same fails to hold

for higher cardinality hyperedges.

The following statements hold for N-qubit, four-uniform complete hypergraph states:

1. For the case N = 8k− 2 or N = 8k− 1, or 8k, we have:

(i)

〈X . . . X︸ ︷︷ ︸
m

Z . . . Z〉 =

 + 2bN/2c−m+1
2bN/2c−bm/2c if (m− 1) = 0 mod 4,

− 2bN/2c−m+1
2bN/2c−bm/2c if (m− 1) = 2 mod 4.

(3.28)
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(ii) For N = 8k− 1, we have:

〈XX . . . XX︸ ︷︷ ︸
N

〉 = −1. (3.29)

For N = 8k− 2 or N = 8k, these correlations will not be needed.

2. For N = 4k + 1, we have:

〈X . . . X︸ ︷︷ ︸
m

Z . . . Z〉 =


+ 1

2dm/2e , if (m− 1) = 0 mod 4,

− 1
2dm/2e , if (m− 1) = 2 mod 4,

1
2bN/2c , if m = N.

(3.30)

3. For N = 8k + 2 or 8k + 4, we have for even m:

(i)

〈X . . . X︸ ︷︷ ︸
m

Z . . . Z〉 =

 + 2m/2−1

2N/2 if (N −m) = 0 mod 4,

− 2m/2−1

2N/2 if (N −m) = 2 mod 4.
(3.31)

(ii)

〈XX . . . XX〉 = 2
N
2 −1 + 1

2
N
2

. (3.32)

4. For N = 8k + 3, 〈X . . . X︸ ︷︷ ︸
m

Z . . . Z︸ ︷︷ ︸
N−m−1

1〉 for even m gives the same exact result as the part 3, so

we have:

〈X . . . X︸ ︷︷ ︸
m

Z . . . Z︸ ︷︷ ︸
N−m−1

1〉 =

 + 2m/2−1

2M/2 if (M−m) = 0 mod 4,

− 2m/2−1

2M/2 if (M−m) = 2 mod 4,
(3.33)

where M = N − 1.Note that for this last case the full correlation functions do not have

the structure required for exponential violation, but if we consider tracing out one of the

parties, Eq. (3.33) emerge. For the exact derivations see Appendix A.2

Having established the correlations, we sum them up for calculating the violation. We take

either the Bell inequality in Eq. (3.19), or the original Mermin operator, 〈BM
N 〉, but we fix instead

of Y, Pauli-X and Pauli-Z for X. The choice of the Bell operator depends on the number of

qubits: From the correlations above in Eq. (3.6) for a given N either the correlations for an

even m or an odd m are given. If m is even, we choose Eq. (3.19) and 〈BM
N 〉, otherwise.

From the correlations, it is evident that we need to consider separate cases for different N.

However, here we choose the one which encounters the smallest growth in the violation and

this is naturally the N = 8k + 3 case. Other cases just encounter different factors in the growth
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or are greater. For the N = 8k + 3, the strategy consists of measuring the Bell operator from

Eq. (3.19) on M = N − 1 qubits. Then we have:

〈BN〉Q ≥
M

∑
m=2,4...

(
M
m

)( 1√
2

)M−m+2
=

1
2

[ M

∑
m even

(
M
m

)( 1√
2

)M−m
]
−
( 1√

2

)M+2

=
1
4

[(
1 +

1√
2

)M
−
(

1− 1√
2

)M
]
−
( 1√

2

)M+2
.

(3.34)

Checking the ratio of the quantum and classical values, we have that

〈BN〉Q
〈BN〉C

N→∞∼
1
4

(
1 + 1√

2

)N−1

2
N−1

2
=

(
1 + 1√

2

)N−1

√
2

N+3 ≈ 1.20711N

2
√

2 + 2
. (3.35)

Looking at the expectation values from Eq. (3.6), it is straightforward to see that in all other

cases of N, correlations are stronger than in the N = 8k + 3 case, so the quantum violation

increases.

3.7 Robustness of violation

So far, we have shown that the three- and four-uniform hypergraph states violate local realism

comparable to the GHZ-states. A striking difference is, however, that the entanglement and

Bell inequality violation of hypergraph states is robust under particle loss. This is in stark

contrast with the GHZ-states, which become fully separable if a particle is lost. We already got

a glimpse at this advantageous property of hypergraph states when looking at the correlations

for N = 8k + 3 four-uniform complete hypergraph states. Now we extend our analysis to

more general cases.

For the three-uniform complete hypergraph states we can prove that the reduced states are

highly entangled, as they violate inequalities testing for separability [93] exponentially.

Theorem 3.7. The N-qubit (except when N = 4k) three-uniform HG state violates the separability

inequality exponentially after tracing out a single qubit.

Proof. First we calculate correlations for the reduced density matrices. Alternatively, we mea-

sure (N − 1)-partite correlations. Then the following statements hold for the three-uniform

complete hypergraph states:

(i) For N = 8k + 5, N = 8k + 6, or N = 8k + 7:

〈X . . . X︸ ︷︷ ︸
m

Z . . . Z︸ ︷︷ ︸
N−m−1

1〉 =


− 1

2b N−1
2 c if (m− 1) = 0 mod 4,

+ 1

2b N−1
2 c if (m− 1) = 2 mod 4.

(3.36)
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# k Quantum Value Separability Bound ≈Ratio

0 511.5
√

2 361.69

1 16

√
2 11.31

2 8

√
2 5.66

3 4

√
2 2.83

4 2

√
2 1.414

Table 3.1: Violation of the separability inequalities [93] for the N = 11 qubit three-
uniform complete hypergraph state. Here k is the number of traced out qubits. When

k = 0, the Mermin-like inequality is violated as expected.

(ii) For N = 8k + 1, N = 8k + 2, or N = 8k + 3:

〈X . . . X︸ ︷︷ ︸
m

Z . . . Z︸ ︷︷ ︸
N−m−1

1〉 =


+ 1

2b N−1
2 c if (m− 1) = 0 mod 4,

− 1

2b N−1
2 c if (m− 1) = 2 mod 4.

(3.37)

(iii) For N = 4k:

〈X . . . X︸ ︷︷ ︸
m

Z . . . Z︸ ︷︷ ︸
N−m−1

1〉 = 0 (3.38)

See Appendix A.4 for the exact derivations. We consider only one case, N = 8k + 5, as others

are analogous. Here M = N − 1:

〈BN〉Q =
M

∑
m odd

(
M
m

)( 1√
2

)M
= 2M−1 · 2−M/2 =

√
2

N−3
. (3.39)

Separability bound is
√

2 [93] and it does not depend on the number of qubits.

This violation decreases with the number of traced out qubits, but persists even if several

qubits are lost. See Table. 3.1 for the example of N = 11 qubit state, where four qubits are

traced out. This suggests that this class of hypergraph states is more robust than GHZ states.

One can also check that after particle loss three-uniform complete hypergraph states no longer

violate Mermin-like inequalities. Despite the structural differences, this property resembles of

the W state, which is itself less entangled but more robust than the GHZ state [123].

The four-uniform complete hypergraph states turn out to be even more robust under particle

loss:

Theorem 3.8. The N-qubit complete four-uniform hypergraph state preserves the violation of the local

realism even after loss of one particle. More precisely for for N = 8k + 4, we have

〈BN−1〉Q
〈BN〉Q

N→∞∼ 1√
2 + 1

. (3.40)

As the fraction is independent of N, the reduced state shows the same exponential scaling of the Bell

inequality violation as the original state.
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#k Quantum Value Classical Bound Separability Bound ≈Ratio
0 153.141 64 2.39283
1 89.7188 32 2.78125

2 37.1563 32 1.16113

3 15.4219 -
√

2 10.9049

4 6.375 -
√

2 4.50781

5 2.70313 -
√

2 1.9114

Table 3.2: Violation of Bell (for odd m) and Separability inequalities in the N = 12
qubit four-uniform complete HG state. Here k is the number of traced out qubits.
The red line represents that when k = 1, or equivalently one qubit is traced out,
the violation of Bell inequalities increases. This is caused by decrease in the classical

bound [29].

Proof. Similar to the last case, the proof is again based on the direct inspection of correlations.

The following statement holds for N = 8k + 4 qubit four-uniform complete hypergraph states:

〈X . . . X︸ ︷︷ ︸
m

Z . . . Z︸ ︷︷ ︸
N−m−1

1〉 =


−
(

1√
2

)N−m+2
if m = 0 mod 4,

+
(

1√
2

)N−m+2
if m = 2 mod 4.

(3.41)

See exact derivations in Appendix A.3. We can summarize the correlations to derive the

quantum value for expectation value. Denote M ≡ N − 1. Then

〈BN−1〉Q =
M

∑
m=2,4...

(
M
m

)( 1√
2

)M−m+3
=

1
2
√

2

[ M

∑
m even

(
M
m

)( 1√
2

)M−m
]
−
( 1√

2

)M+3

=
1

4
√

2

[(
1 +

1√
2

)M
−
(

1− 1√
2

)M
]
−
( 1√

2

)M+3
.

(3.42)

Checking the ratio of the quantum and classical values, we have that

〈BN−1〉Q
〈BN−1〉C

N→∞∼
1

4
√

2

(
1 + 1√

2

)N−1

2
N−2

2
=

(
1 + 1√

2

)N−1

√
2

N+3 ≈ 1.20711N

2
√

2 + 2
. (3.43)

Note that the same value for the N = 8k + 4 qubit four-uniform complete HG state is

〈BN〉Q
〈BN〉C

N→∞∼ ≈ 1.20711N

4
. (3.44)

Summing up all the ratios, we arrive to the statement of the theorem. Hence, after tracing out

a single qubit, the local realism violation decreases with the small constant factor.

It is important to note that the similar violation is maintained after tracing out more than one

qubits. For example, one can calculate for N = 12, that if one takes a Bell inequality with the

odd number of X measurements, instead of the even ones as we have chosen in the proof, an
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exponential violation is maintained after tracing out two qubits. But even if five qubits are

traced out, the state is still entangled and this can be verified using the separability inequality

[93]. Exact violations for the 12-qubit case is given in Table 3.2.

3.8 Applications and Outlook

The exponential violation of Mermin-like inequalities is not only interesting for proving ex-

treme nonlocality of the state, but from the violation one can deduce that some quantum

computational tasks can avail themselves of such states. A first application of our results is

quantum metrology. In the standard scheme of quantum metrology one tries to make a high

resolution measurement Mθ on a quantum system and estimate some physical parameter θ

[22, 124]. In classical estimation theory the average error in a measurement outcome can be

brought down by an amount proportional to n−1/2, when measurement is made n times.

Quantum multipartite entanglement can offer the advantage of reducing the error rate farther

by an amount proportional to n−1.

In quantum metrology first an N-partite quantum state is prepared. If the state admits local

description, we can write it as an N-fold tensor product, ρ⊗N , then in each local quantum state

a parameter θ in encoded by some local evolution ρ(θ) = e−iHθρeiHθ . Next step is to perform

quantum measurements on the state ρ(θ)⊗N and try to recover the value of a continuous

phase parameter θ. When the initial state is a product state, from the measurement Mθ on

each particle one obtains a signal

〈Mθ〉 ∼ cos(θ), (3.45)

repeating the measurement on all N particles allows to determine θ with the so-called standard

quantum limit accuracy δθ ∼ 1/
√

N. However, if one takes instead the N-qubit GHZ state,

one can observe

〈(Mθ)
⊗N〉 ∼ cos(Nθ). (3.46)

This phase superresolution itself allows to reach the Heisenberg limit δθ ∼ 1/N. For a general

state ρ, it has been shown that the visibility of the phase superresolution is given by the

expectation value of the Mermin-type inequality [124],

V = tr(BNρ)/2N−1. (3.47)

And since the three-uniform complete hypergraph staes violate these inequalities exponen-

tially, the visibility is V ∼ 1/2, independently of the number of parties. As a result one can

summarize that hypergraph states can be used for Heisenberg-limited metrology and from our

results they can be expected to have the advantage of being more robust to noise and particle

losses.

A second application of exponential violation of Bell inequalities is a nonadaptive measure-

ment based quantum computation with linear side-processing (NMQC⊕) [125]. The NMQC⊕
is a non-universal model of quantum computation, where linear classical side-processing is

combined with quantum measurements in a nonadaptive way, i.e., the choice of settings is
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independent of previous outcomes. In Ref. [125] the authors connect the expectation value of

a full-correlation Bell expression [118] with the success probability of computing a Boolean

function, specified as a function of the inequality coefficients via NMQC⊕. In particular, the

exponential violation of generalized Svetlichny inequalities [123] (equal to Mermin inequalities

for even N) corresponds to a constant success probability Psucc of computing the pairwise

AND on N bits extracted from a uniform distribution, whereas in the classical case this prob-

ability decreases exponentially with N. As a consequence, the exponential violation of the

full-correlation Bell expression can be directly related to an exponential advantage for compu-

tation tasks in the NMQC⊕ framework. Moreover, in several cases, e.g., four-uniform hyper-

graph states of N = 6 mod 8 qubits, also the Svetlichny inequality is violated exponentially,

providing advantage for computation of the pairwise AND discussed in Ref. [125].

In summary, we have shown that hypergraph states are very interesting class of multipar-

tite entangled states violating local realism in many ways. These states are also useful for

quantum information theoretic tasks in a robust manner and this, supposedly, makes them

interesting for experimentalists. In our work, we focused only on some classes of hypergraph

states, but for future research, it would be desirable to identify classes of hypergraph states

which allow for an all-versus-nothing violation of local realism or which are strongly genuine

multiparticle nonlocal. As for a more specific task, it would be interesting to find inequali-

ties for hypergraphs with higher cardinality hyperedges, which such states can also violate

with an increasing amount. According to our observations, the correlations coming from such

states (e.g., five- or six- uniform complete hypergraph states) for Mermin-like summands do

not behave as nicely as the ones from three- and four- uniform case. Therefore, trying some

new inequalities are in order.



Chapter 4

Graphical rules for transformations

on hypergraph states

Hypergraph states form an interesting family of multiparticle quantum states and have an

insightful graphical representation. In this chapter we give a collection of transformations

on hypergraph states, which also have a nice graphical rule. Such actions include local and

nonlocal unitary transformations between hypergraph states. This leads to a generalization

of local complementation and graphical rules for various gates, such as the CNOT gate and

the Toffoli gate. As an application, we show that already for five qubits local Pauli operations

are not sufficient to check local equivalence of hypergraph states. Next we study Pauli bases

measurement rules for hypergraph states, for Pauli-Z this rule is rather simple and was given

in Ref.[113]. We give a sufficient criteria when Pauli-X measurements do not leave hypergraph

state space.

4.1 Introduction

Multipartite quantum states known as hypergraph states generalize several features of graph

states as seen in Chapter 2. First, they admit the stabilizer description (See subsection 2.4.2.2)

and they also violate local realism exponentially (See subsection 2.4.1.5 for graph states and

Chapter 3 for the generalizations). Most relevantly for this chapter, they have nice graphical

rules for Pauli equivalences (See subsection 2.4.2.3). Since different graphs and hypergraphs

may lead to quantum states with the same entanglement properties, it is important to study the

action of local and nonlocal unitary transformations between these states. For graph states,

the local complementation plays a very important role (See subsection 2.4.1.3). Physically

this map is implemented by local unitaries, which correspond to the square-roots of a local

Pauli stabilizer. Likewise, we derive the graphical rule for the action of the square-roots of

a nonlocal stabilizer. The unitaries obtained this way are not necessarily local, but we give

several constructions for which one can manage to restrict these operations to local Clifford

transformations.

57
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Figure 4.1: Generalized local complementation. Transformation τ(1) is applied to
the hypergraph (a). The adjacency of the vertex 1 is A(1) = {{2, 3}, {4, 5, 6}}. As a

result the new hyperedge {2, 3, 4, 5, 6} is added to the hypergraph.

Since the hypergraph states are equally weighted Boolean function encoded states as defined

in Eq. (2.72), transposing some of the computational basis elements map hypergraph states to

hypergraph states. Pauli-X operation is the simplest such transformation. We express general

transpositions in the form of multiqubit controlled-NOT unitaries and derive graphical rules

for hypergraph states. These rules find applications in several directions of quantum infor-

mation theory. First, they are one of the core transformations when deriving entanglement

witnesses for hypergraphs states (See Chapter 5). Second, they are used when deriving graph-

ical rules for Pauli-X basis measurements (we give these derivations in this chapter), which

are themselves crucial to construct measurement-based quantum computation protocols using

hypergraph states (See Chapter 6).

To sum up, this chapter is denoted to deriving new graphical rules on hypergraph states.

4.2 Local complementation in hypergraph states

We introduce the concept of a local edge-pair complementation in hypergraphs around a vertex

a ∈ V. Let us define first the set of adjacency pairs of vertex a to be the set

A2(a) = {{e1, e2}|e1 6= e2, e1 ∈ A(a), e2 ∈ A(a)} (4.1)

of all distinct pairs in the adjacency set. The local edge-pair complementation around a vertex

a complements the edges in the multiset P = {e1 ∪ e2|{e1, e2} ∈ A2(a)}. Notice that P is a

multiset and only the edges appearing with odd multiplicity are be affected. Complementation

of the edges in this multiset means that they are deleted from the hypergraph, if they were

already present, and the are added, if they were not present.

The local complementation or a local edge-pair complementation is implemented over some

vertex a ∈ V of a hypergraph H = (V, E) by applying the square-roots of the stabilizer ha,

defined in Eq. (2.73). Note that the signs of the square-roots have to be chosen in a particular

way:

τ(a) =
√

Xa
± ⊗

e∈A(a)

√
Ce
∓

. (4.2)
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√
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Figure 4.2: Local Clifford equivalence of two five-qubit hypergraph states. (a) Ap-
plication of two local Clifford operators, which effectively implement two local com-
plementations over vertices 1 and 5. Importantly the signs of local complementations
shall be chosen to be different from one another. These two maps commute and,
moreover, square-roots of adjacent operators on qubits 2 and 3 cancel out. (b) Ad-
ditional hyperedge {2, 3, 4} is obtained as a result of local complementation over the
first vertex. This example shows that for five-qubit hypergraph states local Pauli

operators are not enough to classify local unitary equivalences.

Here
√

Ce
±
= 1− (1− (±i))|11 . . . 1〉〈11 . . . 1| is a diagonal operator acting on |e| vertices. We

are ready to formulate the generalized local complementation theorem

Theorem 4.1. For any hypergraph state corresponding to a hypergraph H = (V, E), the transfor-

mation τ(a) around a vertex a ∈ V performs a local edge-pair complementation on its corresponding

hypergraph.

Proof. See the proof in Ref. [32].

Note that the transformation τ is a nonlocal map, so it can change entanglement properties of

the state. The name, generalized local complementation, shall not be interpreted as if the map

is local. For an examples of generalized local complementation see Figs. 4.1 and 4.2.

In Chapter 2, subsection 2.4.2.3 we saw that for the four-qubit hypergraph states Pauli oper-

ators are necessary and sufficient to describe local unitary equivalences. Here we investigate

local Clifford operations and their actions on hypergraph states. It appears that one can take

advantage of the generalized local complementation rule by applying it over different vertices

in the way that all the nonlocal unitary actions cancel out. Then a new hypergraph state is

obtained only as a result of local Clifford operations. To give an example, consider the five-

vertex hypergraph state H5 = (V, E), with hyperedges, E = {{1, 2, 3}, {1, 4}, {2, 3, 5}}. See

also Fig. 4.2. Then one can write explicitly that the local complementation over the vertex 1

can be implemented by several local Clifford gates:

τ+(1)|H5〉 =τ+(1)τ−(5)|H5〉 = τ−(5)τ+(1)|H5〉

=
√

X1
+√

Z4
−√

C23
−√

X5
−√

C23
+|H5〉

=
√

X1
+√

X5
−√

Z4
−
(
√

C23
−√

C23
+
)|H5〉

=
√

X1
+√

X5
−√

Z4
−|H5〉 = C234|H5〉.

(4.3)
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Figure 4.3: Examples of transpositions on hypergraph states. (a) Pauli-X transpo-
sition is applied to the vertex 1 and as a results new hyperedges are added to the
hypergraph. (b) CNOT12 is applied to the hypergraph state. Adjacency of the target
qubit is A(2) = {{1, 3, 4, 5}, {8, 9}}, when getting united with the controlled qubit, 1,

the new hyperedges, Enew = {{1, 3, 4, 5}, {1, 8, 9}}, are added to the state.

This example shows that already for five qubits, one needs a bigger class of local unitaries

than local Pauli operators in order to classify local unitary equivalent states.

4.3 Graphical rules for permutation unitaries on hypergraph

states

In the previous section we considered the extension of local complementation for hypergraph

states. In this section we investigate a different family of unitary transformations, we call

them permutation unitaries. These transformations permute the vectors of the computational

basis. Such permutations are obviously unitary and from Eq. (2.72) it is clear that they map

hypergraph states to hypergraph states, so there must be a graphical description.

The simplest example of such a permutation unitary is Pauli-X (or NOT) gate, action of which

was studied before as discussed in Chapter 2, see also Fig. 4.3 for an example. A nonlocal ex-

ample of a permutation unitary is the CNOT gate as seen in Eq. (2.36). This is a nonsymmetric

gate in its input, so one has to clarify which qubit is a controlled qubit, c and which one is a

target one, t:

CNOTct : |10〉 ↔ |11〉 (4.4)

Its extension to three-qubits is the Toffoli gate, CCNOTc1c2t : |110〉 ↔ |111〉. The Toffoli gate

is itself a conjugated CCZ gate: CCNOTc1c2t = H3CCZH3. Clearly, it is not necessary to

consider all permutations, as any permutation can be viewed as a sequence of transpositions.

For two-qubit permutations, one can easily see that NOT and CNOT are enough to cover

all possible permutations. Additionally, it is known that every permutation on {0, 1}N can

be realized by means of a reversible circuit using the NOT, CNOT and CCNOT basis and
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at most one ancilla bit [126]. It is possible to derive a graphical rule of how such maps

transform hypergraph states. Here we give rules explicitly only for the two-qubit CNOT

and its multiqubit extensions, but the methodology can be applied to derive any arbitrary

permutation unitary, if the exact graphical transformation is needed.

Theorem 4.2. Applying the CNOTct gate on hypergraph state, where c is the control qubit and t is the

target one, introduces/deletes the hyperedges of the form Et = {et ∪ {c}|et ∈ A(t)}.

Proof. Without loss of generality we assume that CNOT12 acts on the first two qubits. We write

a hypergraph state |H〉 in the expanded form over vertices 1 and 2 as follows:

|H〉 =|00〉|H(E00)〉 E00 = {e|e ∈ E, e ∩ c = ∅, e ∩ t = ∅}, (4.5)

+|01〉|H(E00 + E01)〉 E01 = {e|e ∈ A(t), e ∩ c = ∅}, (4.6)

+|10〉|H(E00 + E10)〉 E10 = {e|e ∈ A(c), e ∩ t = ∅}, (4.7)

+|11〉|H(E00 + E01 + E10 + E11)〉 E11 = {e|e ∈ A({c, t})}. (4.8)

The CNOT12 gate then swaps |10〉 and |11〉, or alternatively Eq. (4.7) and Eq. (4.8), but leaves

the other parts invariant. Therefore we obtain the following relations between the old and new

hyperedges:

Enew
00 = E00. (4.9)

Enew
00 + Enew

01 = E00 + E01 ⇒ Enew
01 = E01. (4.10)

Enew
00 + Enew

10 = E00 + E01 + E10 + E11 ⇒ Enew
10 = E01 + E10 + E11. (4.11)

Enew
00 + Enew

01 + Enew
10 + Enew

11 = E00 + E10 ⇒ Enew
11 = E11. (4.12)

Equations (4.9-4.12) show that only the hyperedges containing the control qubit can play role.

More precisely, Eq. (4.11) shows that the new hyperedges that are added/deleted are of the

form Et = {et ∪ c|et ∈ A(t)}.

An example of this rule is shown in Fig. 4.3. We can directly generalize this rule to extended

CNOT gates, such as the Toffoli gate, the proof is essentially the same.

Corollary 4.3. Applying the extended CNOTCt gate on a hypergraph state, where a set of control qubits

C controls the target qubit t, introduces or deletes the set of hyperedges Et = {et ∪ C|et ∈ A(t)}.

Moreover, as mentioned above every permutation can be constructed using NOT, CNOT,

and CCNOT and at most one ancilla qubit. An ancilla qubit is necessary to construct the

multiqubit gate set, T = {C0NOT, CNOT, . . . , Ck NOT} [127] and the set T is enough to

realize any permutation on k indices. As T exactly consists of the gates with graphical rules

from above, we can state:

Corollary 4.4. Every permutation unitary maps a hypergraph state to a hypergraph state and its

graphical action can be seen as a composition of rules from T = {C0NOT, CNOT, . . . , Ck NOT}
graphical rules.
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It is interesting to note how the different rules change the cardinality of edges. If m is the

cardinality of the largest edge in the hypergraph, the NOT gate can only create/erase edges

with a cardinality strictly smaller then m. The CNOT gate can create/erase edges with car-

dinality smaller or equal to m. However, the CCNOT can create hyperedges with cardinality

larger than m, since it controls two vertices and if these vertices are disjoint with the adjacency

present in the highest cardinality edge of a target qubit, then the new biggest hyperedge will

have the cardinality (m + 1). We will see the use of a general CNOT action on hypergraph

states in various derivations in the subsequent sections.

4.4 Pauli measurement rules on hypergraph states

In this section we discuss graphical rules for Pauli measurements on hypergraph states. The

rule for Pauli-Z is rather simple and we start by introducing it. Then we derive Pauli-Y and

-X measurements rules. Both of those heavily use generalized local complementation and

transposition rules for hypergraphs states.

Definition 4.5. Given a hypergraph state |H〉 corresponding to a hypergraph H = (V, E). If

we write this hypergraph state as follows,

|H〉 = 1√
2
|0〉a|H0〉+

1√
2
|1〉a|H1〉, (4.13)

we say that hypergraph state is expanded over a vertex a ∈ V. By definition |H0〉 and |H1〉 are

also hypergraph states respectively corresponding to hypergraphs H0 and H1 with hyperedges

E0 = {e ∈ E|a /∈ e} and E1 = E0 ∪A(a). If we choose a subset of vertices Vx ⊂ V instead of a

vertex a, we say that hypergraph state is expanded over a set of vertices Vx ⊂ V and expansion

is done iteratively for every vertex in Vx.

For example, if we want to expand the hypergraph state |H〉 over vertices a and b, we first

expand it over a and then we expand hypergraphs |H0〉 and |H1〉 separately over b resulting

in

|H〉 = 1√
2
|0〉a

(
|0〉b|H00〉+ |1〉b|H01〉

)
+

1√
2
|1〉a

(
|0〉b|H10〉+ |1〉b|H11〉

)
. (4.14)

The Pauli-Z measurement rule directly follows from the expansion of a hypergraph state. In

Eq. (4.13) if the vertex a is measured in Z direction, then both outcomes occur with equal

probability. The outcome 0 corresponds to projecting on a hypergraph state |H0〉 and the

outcome 1 on a hypergraph state |H1〉 and the vertex a is removed from the hypergraph H.

Formally, denoting Pauli-Z measurement by PZ, one gets:

PZa(s)|H〉 7→ Us|H − {a}〉, (4.15)

where according to outcome s ∈ {0, 1}, random unitaries are applied:

U0 = 1, U1 =
⊗

e∈A(i)
Ce (4.16)
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Figure 4.4: Graphical rules for Pauli measurements. (a) The vertex 2 is measured in
Pauli-Z basis and as a result it gets removed from the hypergraph. For the outcome
0 all the hyperedges containing 2 get removed and for the outcome 1, all hyperedges
in A(2) get added. (b) The vertex 2 is measured in Pauli-Y basis, first generalized
LC is performed over the vertex 2 and then the vertex 2 gets removed from the
hypergraph. Dashed and dotted lines correspond to the different signs of square-
root of all hyperedges in A(2). Dashed ones correspond to the positive sign and

dotted one to negative. Note that post-measurement states are not LU equivalent.

The rule is analogous to the graph state case. See Eq. (2.58).

The Pauli-Y measurement rule can be derived as a combination of generalized local comple-

mentation and Pauli-Z basis measurement rule. One can directly observe this by writing down

the eigenvectors of Pauli-Y operator as follows:

√
X
−|0〉 ∝ |0〉+ i|1〉 ≡ |y+〉 and

√
X
−|1〉 ∝ |0〉 − i|1〉 ≡ |y−〉. (4.17)

Then measuring a vertex a in Pauli-Y basis first corresponds to applying
√

X
+
a and then mea-

suring a in Pauli-Z basis in the full analogy to the graph state Pauli-Y measurement rule in

Eq. (2.60).

Lemma 4.6. Given a hypergraph state corresponding to a hypergraph H = (V, E), Pauli-Y measure-

ment rule on a vertex a ∈ V can be expressed as follows:

PYa(s)|H〉 7→ Us|τa(H)− {a}〉, (4.18)

where unitary corrections Us depend on a measurement outcome s and correspond to the different signs

of square-roots of adjacency phase-gates of the vertex a:

U+ =
⊗

e∈A(a)

√
Ce

+
, U− =

⊗
e∈A(a)

√
Ce
−

. (4.19)

Proof. One can directly observe the structure of the post-measurement states taking into ac-

count the identities in Eq. (4.17).

For the examples of Pauli-Z and Pauli-Y measurements see Fig. 4.4. Note that unlike for graph

states, for hypergraph states post-measurement states for a given measurement basis are not

in general LU equivalent, therefore, they possess different entanglement properties.
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Next we discuss the rule for Pauli-X measurements on hypergraph states. This is the trickiest

of all three bases rules, since Pauli-X measurements lead, in general, out of the hypergraph

state space. To give an example let us consider the three qubit hypergraph state |H3〉 as in

Fig. 2.7 (a). Then measuring any of its vertex in Pauli-X bases with an outcome 〈+| gives the

post-measurement state proportional to:

|00〉+ |01〉+ |10〉 – not LU equivalent to a hypergraph state. (4.20)

Thus, in the rest of the section we give a sufficient criterion for Pauli-X measurements on a

hypergraph state to project on a post-measurement state, which is LU equivalent to some other

hypergraph state. Curiously, this criteria entirely captures the rule for graph states.

Let us again consider a hypergraph state expanded over its vertex a as in Eq. (4.13). If the

vertex a is measured in Pauli-X basis, then the post-measurement state is proportional to the

equally weighted superposition of two hypergraph states, ∝ (|H0〉 ± |H1〉) and is not always

local unitary equivalent to a hypergraph state. To check if for a given hypergraph state mea-

suring a vertex a or a set of vertices Va in Pauli-X basis gives a state local unitary equivalent

to a hypergraph state, one can expand an original hypergraph state over a vertex a or a set of

vertices Va and check if all the possible equally weighted superpositions of expanded hyper-

graph states give some other hypergraph state or a state which is local unitary equivalent to a

hypergraph state. Here we give a sufficient criterion for the equally weighted superpositions

of two hypergraph states being a hypergraph state up to local unitary operations and derive

the graphical rule for such cases:

Theorem 4.7. Let Hα = (V, E) and Hβ = (V, E ∪ {a} ∪ Ẽ), where Ẽ are hyperedges not containing

a vertex a ∈ V. Then the equally weighted superpositions of two hypergraph states |Hα〉 and |Hβ〉 up

to the Hadamard gate acting on the vertex a, Ha are still hypergraph states denoted by |H+〉 and |H−〉:

Ha|H+〉 ≡ Ha(|Hα〉+ |Hβ〉) ∝ ∏
e′∈E′

Ce′ ∏
ea∈Aα(a)

∏
ẽ∈Ẽ

Cea∪ẽCẽ∪a|+〉⊗N , (4.21)

Ha|H−〉 ≡ Ha(|Hα〉 − |Hβ〉) ∝ Ca ∏
e′∈E′

Ce′ ∏
ea∈Aα(a)

Cea ∏
ẽ∈Ẽ

Cea∪ẽCẽ∪a|+〉⊗N . (4.22)

Here Aα(a) is the adjacency of the vertex a in hypergraph Hα and E′ = {e′|a /∈ e′, e′ ∈ E} and

Ca = Za.

Proof. Let us assume that a = 1. Then we get:

H1|H+〉 = H1(|Hα〉+ |Hβ〉) (4.23)

= H1(|Hα〉+ Z1 ∏
ẽ∈Ẽ

Cẽ|Hα〉) (4.24)

= H1(∏
e∈E

Ce

(
|+〉⊗N + Z1 ∏

ẽ∈Ẽ

Cẽ|+〉⊗N
)

(4.25)

= H1 ∏
e∈E

CeH1H1

([
|+〉+ |−〉∏

ẽ∈Ẽ

Cẽ

]
|+〉⊗N−1

)
(4.26)
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= H1 ∏
e′∈E′

Ce′ ∏
e′′∈E′′

Ce′′H1H1

([
|+〉+ |−〉∏

ẽ∈Ẽ

Cẽ

]
|+〉⊗N−1

)
(4.27)

= ∏
e′∈E′

Ce′H1 ∏
e′′∈E′′

Ce′′H1H1

([
|+〉+ |−〉∏

ẽ∈Ẽ

Cẽ

]
|+〉⊗N−1

)
(4.28)

= ∏
e′∈E′

Ce′ ∏
e1∈Aα(1)

CNOTe1,1

([
|0〉+ |1〉∏

ẽ∈Ẽ

Cẽ

]
|+〉⊗N−1

)
(4.29)

∝ ∏
e′∈E′

Ce′ ∏
e1∈Aα(1)

CNOTe1,1 ∏
ẽ∈Ẽ

Cẽ∪1|+〉⊗N (4.30)

= ∏
e′∈E′

Ce′ ∏
e1∈Aα(1)

∏
ẽ∈Ẽ

Ce1∪ẽCẽ∪1|+〉⊗N (4.31)

In Eq. (4.26) we decompose a set of hyperedges E into two parts: E′, hyperedges which do

not contain the vertex 1 and E′′ hyperedges which contain the vertex 1. In Eq. (4.27) the

set of hyperedges ∏e′∈E′ Ce′ commute with H1 and going to Eq. (4.28), H1 ∏e′′∈E′′ Ce′′H1 =

∏e1∈Aα(1) CNOTe1,1, since Hadamard gate H1 changes Z1 to X1 and, therefore, generalized

Controlled-Z gates become generalized CNOT gates.

In Eq. (4.28), H1 is applied to |±〉 and in Eq. (4.29) a new hypergraph state is obtained, which is

written in an expanded form over vertex 1. If we write this hypergraph state we get Eq. (4.30):

([
|0〉+ |1〉∏

ẽ∈Ẽ

Cẽ

]
|+〉⊗N−1

)
∝ ∏

ẽ∈Ẽ

Cẽ∪1|+〉⊗N . (4.32)

Then generalized CNOT gates are applied to a new hypergraph state in Eq. (4.30). The action

of generalized CNOT gate was already described in the previous section.

In Eq. (4.30) the generalized CNOT gate is applied to the hypergraph state which corresponds

to the hypergraph (V, {ẽ ∪ {1}|ẽ ∈ Ẽ}). The target qubit in the generalized CNOT gate is the

vertex 1 and its adjacency is, therefore, given by edge-set Ẽ. The control qubits are presented

by the edge-set Aα(1), which correspond to the adjacency of the vertex 1 in the hypergraph

Hα. The action of generalized CNOT gate takes the pairwise union of hyperedges in Aα(1)

and Ẽ and adds or deletes new hyperedges:

∏
e1∈Aα(1)

∏
ẽ∈Ẽ

Ce1∪ẽ. (4.33)

Inserting these hyperedges in Eq. (4.31), we get the final hypergraph states:

H1(|H+〉) ∝ ∏
e′∈E′

Ce′ ∏
e1∈Aα(1)

∏
ẽ∈Ẽ

Ce1∪ẽCẽ∪1|+〉⊗N . (4.34)

In case of the minus superposition H1|H−〉, the derivations are very similar to H1|H+〉 up

to Eq. (4.29): In particular, due to the minus sign in the superposition, we get a different

hypergraph state from the one in Eq. (4.32):
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H1(|+〉 − |−〉∏
ẽ∈Ẽ

Cẽ)|+〉⊗N−1 = (|0〉 − |1〉∏
ẽ∈Ẽ

Cẽ)|+〉⊗N−1 = C1 ∏
ẽ∈Ẽ

Cẽ∪1|+〉⊗N (4.35)

Now we apply generalized CNOT gate to the hypergraph state in Eq. (4.35) :

∏
e1∈Aα(1)

CNOTe1,1C1 ∏
ẽ∈Ẽ

Cẽ∪1|+〉⊗N . (4.36)

The hypergraph state in Eq. (4.35) has the additional edge C1 and this means that the adjacency

of the vertex 1 in Eq. (4.36) is given by the edge-set {Ẽ ∪ {∅}}. The action of generalized

CNOT gate takes the pairwise union of hyperedges in Aα(1) and {Ẽ ∪ {∅}} and introduces

new hyperedges of the form in the hypergraph:

∏
e1∈Aα(1)

Ce1 ∏
ẽ∈Ẽ

Ce1∪ẽ (4.37)

Inserting these hyperedges in the original derivations, gives us the final hypergraph state:

H1|H−〉 ∝ C1 ∏
e′∈E′

Ce′ ∏
e1∈Aα(1)

Ce1 ∏
ẽ∈Ẽ

Ce1∪ẽCẽ∪1|+〉⊗N . (4.38)

This finishes the derivations.

It appears that there is a graphical way to derive the post-measurement states and it is very

similar to the Pauli-X measurement rule for graph states in Eq. (2.62). Let the original hyper-

graph state be written as

|HB〉 =
1√
2

(
|0〉B|Hα〉+ |1〉B|Hβ〉

)
, (4.39)

where |Hα〉 and |Hβ〉 satisfy the sufficient conditions of Theorem 4.7. Then we can formulate

a nice graphical rule for the post-measurement states obtained as a result of measuring B in

Pauli-X basis.

Theorem 4.8. Given a hypergraph state |HB〉 corresponding to a hypergraph HB = (VB, EB) as in

Eq.(4.39), then the post-measurement states of Pauli-X basis measurement on the vertex B is derived by

three actions of generalized local complementations as follows:

Ux,±|τ̃a(τ̃B ◦ τ̃a(|HB〉))− {B}〉, (4.40)

where a and B are contained in the same graph edge, {a, B} ∈ EB and

Ux,+ = 1 and Ux,− = Ca ∏
ei∈AHα (a)

Cei . (4.41)

Here AHα(a) means that the adjacency of qubit a must be taken from the hypergraph Hα.
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Figure 4.5: Post-measurement rule for Pauli-X basis measurement on a hypergraph
state. (a) The vertex 1 is to be measured. So, we chose one of its neighbours e.g.,
2 ∈ N (1) and we apply the generalized local complementation over 2. (b) The result
of LC on vertex 2. Now we apply LC over the vertex 1. (c) as a result we obtain (c),
but we need to remove the vertex 1 with all of its hyperedges. These hyperedges are
blurred in the Figure. Finally, LC over the vertex 2 is in order. (d) Post-measurement

states corresponding to different outcomes.

Proof. From Theorem 4.7 we know that the hypergraphs have the following structure: Hα =

(V, E) and Hβ = (V, E ∪ {a} ∪ Ẽ), where Ẽ are hyperedges not containing a vertex a ∈ V.

Therefore, the hypergraph HB indeed contains an edge {a, B} and there is no other hyperedge

in HB containing both a and B together.

Let us then consider the action of the first generalized local complementation τ̃(a). Note again

that a is only contained in the hyperedges E ∪ {a, B}:

τ̃(a)|HB〉 =τ̃(a)CaB ∏
ẽi∈Ẽ

Cẽi∪B|+〉B|Hα〉

=CaB ∏
ei∈AHα (a)

Cei∪B ∏
ej∈AHα (a),i<j

Cei∪ej ∏
ẽi∈Ẽ

Cẽi∪B|+〉B|Hα〉.
(4.42)

Now we consider the second action, when τ̃(B) is applied to the new hypergraph. Note that

the vertex B is now contained in three types of hyperedges: the every hyperedge in AHα ∪ in

every hyperedge in Ẽ ∪ finally in {a, B}. We have to take a pairwise union between the types

of the hyperedges and also the pairwise union within each type too:

τ̃(B) ◦ τ̃(a)|HB〉 = CaB ∏
ei∈AHα (a)

Cei∪B ∏
ẽi∈Ẽ

Cẽi∪BCẽi∪aCẽi∪ei ∏
ẽj∈Ẽ,i<j

Cẽi∪ẽj ∏
e′∈E′

Ce′ |+〉⊗|VB |, (4.43)

where E′ are hyperedges in Hα, which do not contain the vertex a. Next step is to remove the

vertex B and all the hyperedges it is adjacent to:

|τB ◦ τa(|HB〉))− {B}〉 = ∏
ei∈AHα (a)

∏
ẽi∈Ẽ

Cẽi∪aCẽi∪ei ∏
ẽj∈Ẽ,i<j

Cẽi∪ẽj ∏
e′∈E′

Ce′ |+〉⊗|VB |−1. (4.44)
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# Outcome Post-measurement state
1. 〈+++|123 ∝ (|Hα〉+ |Hβ〉)
2. 〈++−|123 ∝ (|Hα〉 − |Hβ〉)
3. 〈+−−|123 0

4. 〈− −−|123 ∝ −(|Hα〉 − |Hβ〉)

Table 4.1: All possible post-measurement states for Pauli-X measurements on qubits
1, 2, 3 in Eq. (4.47). Case 2 and 4 are equivalent up to a global sign.

And finally, the generalized local complementation over the vertex a gives:

|τa(τB ◦ τa(|HB〉))− {B}〉 = ∏
e′∈E′

Ce′ ∏
ẽi∈Ẽ

Cẽi∪a ∏
ei∈AHα (a)

Cẽi∪ei |+〉⊗|VB |−1. (4.45)

This expression exactly corresponds to the one in Eq. (4.21), the post-measurement state for

the positive superposition. For the negative outcome we just fix the correction term Ux,−:

Ux,−|τa(τB ◦ τa(|HB〉))− {B}〉 = Ca ∏
e′∈E′

Ce′ ∏
ẽi∈Ẽ

Cẽi∪a ∏
ei∈AHα (a)

Cẽi∪ei Cei |+〉⊗|VB |−1, (4.46)

which exactly corresponds to the post-measurement state for negative superposition in Eq.

(4.22).

To see an example of the rule of Pauli-X basis measurement on a hypergraph state using local

complementation rule, see Fig. 4.5.

The results above and the general hypergraphs considered in Eq. 4.39 guaranteed that the

original hypergraph had at least one graph edge. Here we ask an inquisitive question, whether

it is possible to start from a hypergraph state with hyperedges of the minimal cardinality three

and still project on a hypergraph state after making Pauli-X basis measurements.

To resolve this question, let us consider particular cases of hypergraph states |H〉, which when

expanded over three vertices 1, 2, 3, give eight new hypergraphs satisfying the following con-

straints H000 = H001 = H010 = H100 ≡ Hα and H111 = H110 = H101 = H011 ≡ Hβ. Then the

expanded state can be written as follows:

|H〉 = 1√
8

(
(|000〉+ |001〉+ |010〉+ |100〉)123 ⊗ |Hα〉

+(|111〉+ |110〉+ |101〉+ |011〉)123 ⊗ |Hβ〉
)

.
(4.47)

If qubits 1, 2, 3 are all measured in Pauli-X basis, due to the symmetry of the first three qubits,

there are only four possible post measurement states presented in Table 4.1. We see from Table

4.1 that outcome 〈+ − −| never occurs and outcomes 〈+ + −| and 〈− − −| are equivalent

to each other up to the global sign. Therefore, if we measure the first three qubits of the

hypergraph state |H〉 as presented in Eq. (4.47), there are only two possible post-measurement

states and they correspond to the equally weighted superposition of two hypergraph states
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Figure 4.6: The five-qubit three-uniform hypergraph state is the smallest hypergraph
state with no usual graph edges which can project on a Bell state deterministically.
It has hyperedges E = {{1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 3, 5}}. The
qubits 1, 2, 3 are measured in X-basis and the post-measurement state is a graph state
with a Hadamard correction on the vertex 4. The graph state is obtained with unit
probability but up to Pauli-Z4 random unitary. The probabilistic Pauli-Z4 appears
with the probability 4/5 when the product of Pauli-X measurement outcomes is −1.

(|Hα〉 ± |Hβ〉). Below we consider three examples, where we measure these three qubits but

we vary the hypergraphs Hα and Hβ and check if new emerging hypergraphs Hα and Hβ

satisfy the condition of Theorem 4.7.

For now we restrict ourselves to three-uniform hypergraph states and focus on cases when

post-measurement states are graph states regardless of the measurement outcomes, in general,

this is not the case.

Example 4.1. The smallest three-uniform hypergraph state which after measuring the first three qubits

in Pauli-X basis can deterministically project on a Bell state is (see Fig. 4.6) :

|H5〉 =C124C125C134C135C234C235|+〉⊗5

=
1

2
√

2

((
|000〉+ |001〉+ |010〉+ |100〉

)
|+〉⊗2

+
(
|011〉+ |110〉+ |101〉+ |111〉

)
|−〉⊗2

)
.

(4.48)

The state |H5〉 is given in the expanded form over vertices 1, 2, 3 as in Eq. (4.47) and |Hα〉 = |+〉⊗2

and |Hβ〉 = |−〉⊗2 = Z⊗2|+〉⊗2.

We fix a to be vertex 4, Hα to have hyperedges Eα = {} and Hβ to have hyperedges Eβ = {{4} ∪ Ẽ},
where Ẽ = {{5}}. These two hypergraphs satisfy condition of Theorem 4.7. So, measuring qubits 1, 2, 3

in Pauli-X basis gives two possible post-measurement hypergraph states H4|H+〉 ∝ |+〉⊗2 + |−〉⊗2

with the probability 1/5 and H4|H−〉 ∝ |+〉⊗2 + |−〉⊗2 with the probability 4/5. Using Theorem 4.7

we derive these post-measurement states:

H4|H+〉 ∝ H4

(
|+〉⊗2 + |−〉⊗2

)
∝ C45|+〉⊗2, (4.49)

H4|H−〉 ∝ H4

(
|+〉⊗2 − |−〉⊗2

)
∝ C45C4|+〉⊗2. (4.50)
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Figure 4.7: Pauli-X measurements on the three-uniform hypergraph state. Vertices
1, 2, and 3 are measured in Pauli-X basis and the post-measurement state is a graph
state on 4, 5, and 6 up to a Hadamard gate. A Random Z5 appears, if the product of

Pauli measurement outcomes is −1. Post-measurement states are LU equivalent.

Example 4.2. Let us consider the six-qubit hypergraph state |H6〉 presented in Fig. 4.7. After measur-

ing qubits 1, 2, 3 in X-basis we project on the three-qubit graph state. To see this, we write |H6〉 directly

in the expanded form over vertices 1, 2, 3:

|H6〉 ∝ (|000〉+ |001〉+ |010〉+ |100〉)⊗ 4 5 6

+(|110〉+ |101〉+ |011〉+ |111〉)⊗ 4 5 6 .
(4.51)

Here Hα has hyperedges Eα = {} and Hβ has hyperedges Eβ = {{4}, {5}, {6}} and we fix to apply

the Hadamard correction on the vertex a = 5. We can use Theorem 4.7 to derive two post-measurement

states up to Hadamard gate applied to the vertex 5:

H5|H+〉 ∝ C45C56|+〉⊗3 and H5|H−〉 ∝ C45C56C5|+〉⊗3. (4.52)

Example 4.3. Let us consider more complicated six-qubit hypergraph state |H6〉 presented on Fig. 4.8.

We write this state expanded over vertices 1, 2, 3:

|H6〉 ∝ (|000〉+ |001〉+ |010〉+ |100〉)⊗ 4 5 6

+(|110〉+ |101〉+ |011〉+ |111〉)⊗ 4 5 6 .
(4.53)

Here Hα has hyperedges Eα = {{1, 2, 3}} and Hβ has hyperedges Eβ = {{1, 2, 3}, {4}, {5}, {6}} and

we fix to apply the Hadamard correction on the vertex a = 5. We can use Theorem 4.7 to derive two

post-measurement states up to Hadamard gate applied to qubit 5:

H5|H+〉 ∝ C45C56|+〉⊗3 and H5|H−〉 ∝ C45C56C46C5|+〉⊗3. (4.54)

As a closing remark on Pauli-X basis measurement, we can increase the number of vertices that

we measure in Pauli-X and generalize the result to higher cardinality edges. Let us expand

a hypergraph state over m-qubits, where 3 ≤ m ≤ N − 2 is an odd number, in the following

way:

|HN〉 ∝
(

∑
x
|x〉
)
⊗ |Hα〉+

(
∑
y
|y〉
)
⊗ |Hβ〉, (4.55)
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Figure 4.8: Pauli-X measurements on the three-uniform hypergraph state. Vertices
1, 2, and 3 are measured in Pauli-X basis and the post-measurement state is a graph
state on 4, 5, and 6 up to a Hadamard gate. The random gates here include CZ and
Z5 gates and they appears, if the product of Pauli measurement outcomes is −1.

Post-measurement states are LU equivalent.

where x, y ∈ {0, 1}m and the first sum runs over all computational bases elements with the

weight w(x) ≤ bm/2c and the second sum runs over all computational bases elements with

the weight w(y) > bm/2c.

If all the first m vertices are measured in Pauli-X bases, then we again get two possible mea-

surement outcomes |Hα〉 ± |Hβ〉. However, it is of our interest how original hypergraph state

looks.

For simplicity let us fix |Hα〉 = |+〉⊗|N−m| and |Hβ〉 = |−〉⊗|N−m|. Then smallest hyperedges

that connect first m vertices to the rest of the hypergraph have a cardinality equal to dm/2e+ 1.

But for some cases of m with this construction the first m vertices can be connected to the rest

of the hypergraph with different sizes of hyperedges.

To illustrate this let us consider an example of |H7〉, where m = 5 and |Hα〉 = |+〉⊗2 and

|Hα〉 = |−〉⊗2. Then the smallest cardinality hyperedge in the hypergraph is of a size four -

the smallest weight of vector |y〉 is equal to d5/2e = 3 and plus 1. However, these are not all the

hyperedges in the hypergraph: The vectors with the weight four are in the second summand

and they are tensored with |−〉⊗2. However, if we choose any four vertices among m, then

every three from them are connected to both vertices m + 1 and m + 2, but (4
3) = 4, which is an

even number. So, the hypergraph must have additional cardinality 5 edges. Similarly we have

to check the weight of the last term in the sum: (5
3) + (5

4) = 15 is an odd number and, therefore,

there is no cardinality six edges in the hypergraph. Therefore, first five qubits are connected

with the rest of the hypergraph with four- and five- qubit hyperedges in a symmetric manner.

4.5 Summary and outlook

In this chapter we reviewed several graphical rules on hypergraph states. These transforma-

tions make the formalism more attractive and useful, as we will see in the subsequent chapters.

There are several directions one could proceed the analysis of graphical transformations. Al-

ready in Ref. [89], more general unitary equivalence rules were developed for graphs and

hypergraphs, however, it remains unclear whether these unitaries and corresponding rules

are also sufficient to decide for LU equivalences for hypergraph states. It is also interesting
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to consider a more restrictive question, whether a k-uniform hypergraph state can be trans-

formed to a k̃-uniform one with local unitary operations for k 6= k̃ [106]. It turns out that the

transformation is possible with SLOCC operations even for symmetric states but no result is

known for unitary operations:

Lemma 4.9. The N-qubit complete graph state is SLOCC equivalent to the N-qubit hypergraph state

with only the single N-cardinality hyperedge.

Proof. The N-qubit complete graph state is LU equivalent to the GHZ-state. Then one can

easily verify that the N-fold tensor product of the invertible operator A maps the GHZ state

to |HN
N 〉 with a non-zero probability, where a and b in

A = a(|0〉+ |1〉)〈0|+ b|1〉〈1| (4.56)

satisfy constraints:

aN =
1

√
2

N−1 and bN = −2aN . (4.57)

This statement emphasizes that for general class of hypergraph states LU transformations

constitute strict subset of SLOCC transformations, differently for just graph states case as

discussed in Lemma 2.15 [31]. No further connection between graph-theoretic properties of

hypergraphs and SLOCC equivalence has been investigated in the literature yet.

As for the measurement rules, they are crucial for deriving MBQC schemes, but apart from

that they may find independent applications in deriving entanglement witnesses [32, 128],

nonlocality proofs [30, 129, 130], and state verification protocols [110–112] for a large class of

hypergraph states.



Chapter 5

Quantifying and detecting

entanglement in hypergraph states

Quantum hypergraph states constitute an interesting subclass of pure states. Due to their

usefulness it is important to investigate tools to quantify and detect entanglement present in

these states. In the first part of this chapter we derive tight entanglement witnesses specifi-

cally for hypergraph states. In the process we use the graphical language developed in the

previous chapter. The second half of this chapter is devoted to calculating geometric measure

of entanglement for many classes of hypergraph states.

5.1 Introduction

The construction of entanglement witnesses for hypergraph states is one of the applications of

the graphical rules derived in Chapter 4. We take the existing approach as for graphs states and

derive witnesses mostly relying on the graphical reasoning, rather than algebraic derivations.

We construct tight witnesses for complete three-uniform hypergraph states. These states are of

special interest for MBQC protocols and Bell inequality violations. The Mermin-like inequali-

ties that we considered in Chapter 3 can be used to prove that there is some entanglement in

the state exhibiting certain quantum correlations. In this section, we take a different approach

and focus on entanglement witnesses for genuine multiparticle entanglement.

Quantifying entanglement is an important task but has been one of the challenges even for

pure quantum states. For some graph states different entanglement measures have been con-

nected to certain graph-theoretic properties of a given graph [59]. Here we study geometric

measure of entanglement for symmetric hypergraph states and for the states exhibiting certain

stabilizer symmetries [131]. We find analytic results that the optimization very often can be

simplified by considering real symmetric product states only.

73
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5.2 Entanglement detection for hypergraph states

Recall from Chapter 2 that an entanglement witness is an observable, which for a general state

|ψ〉 can be defined as

W = α1− |ψ〉〈ψ|, (5.1)

where α is the maximal overlap between the state |ψ〉 and the pure biseparable states (See

Eq. 2.19).

For usual graph states the witness can be determined in the following way [132]: First, for any

bipartition one can count minimal number of independent edges shared between the two parties

by considering only local operations with respect to this partition. Here by independence of

edges we mean that none of the edges share the same vertex. To say it otherwise, we count

how many Bell pairs are shared between this fixed bipartition. We say then that a graph state

has been reduced to its normal form for a fixed bipartition. On the other hand, one shall keep

in mind that during local operations, the maximal Schmidt coefficient can only increase. This

proves directly that for any connected graph and for its any bipartition we can upper-bound

the squared Schmidt coefficient by λBP
k ≤ 1/2, so

W =
1
2
1− |G〉〈G| (5.2)

is a witness. Using a similar construction, we can write down a witness for three-uniform

hypergraph states.

Theorem 5.1. For any three-uniform hypergraph state |HN〉 the operator

W =
3
4
1− |HN〉〈HN | (5.3)

is an entanglement witness detecting this state.

Proof. The proof is similar to the one for graph states, but in this case the aim is to share the

three-qubit hypergraph state between the bipartition. For this state one can directly calculate

that the maximal Schmidt coefficient is α = 3/4. Given an N-qubit three-uniform state, we

consider a bipartition 1, . . . , p|p + 1, . . . , N. One can get rid of any edge which entirely belongs

to either side of the bipartition. Since the graph is assumed to be connected at least one

three-edge remains shared between the two parts. Without loss of generality we can assume

that this hyperedge is e = {p − 1, p, p + 1}. Now by making measurements in the Pauli-Z

basis on every qubit except these three in e, we can disentangle all the qubits from the main

hypergraph except {p− 1, p, p+ 1} regardless of the measurement outcomes. See Chapter 4 for

the measurement rules. Therefore, for all possible measurement results, i.e. with probability

one the resulting state is, up to local unitaries, a three-qubit hypergraph state consisting only

of the edge e.

The previous witness can be used for any connected three-uniform hypergraph state, but

similarly to the graph state entanglement witness case, it is not necessarily tight. For the
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Figure 5.1: Different possibilities of the normal forms for the complete three-uniform
hypergraph states. (a) The normal form, if p is even and N is even. (b) The normal
form, if p is odd and N is odd. (c) The normal form, if p is odd and N is even. We
have two cases: (c1) The hypergraph without the edge {p, N}. This is the normal
form, if either both (p + 1) = 2 mod 4 and (N − p + 1) = 2 mod 4 or if both
(p + 1) = 0 mod 4 and (N − p + 1) = 0 mod 4. (c2) The hypergraph with the edge
{p, N}. This is the normal form, if (p + 1) = 0 mod 4 and (N − p + 1) = 2 mod 4
or if (p + 1) = 2 mod 4 and (N− p + 1) = 0 mod 4. The edge {p, N} is represented

by the dashed line.

special case of complete three-uniform states, where any possible three-edge is present, we

derive the tight witnesses. For this we first calculate relevant Schmidt coefficients:

Lemma 5.2. Consider an N-qubit complete three-uniform hypergraph state. Then, the maximal squared

Schmidt coefficient with respect to the bipartition 1 vs. (N − 1) qubits, is

λ1 =
1
2

, if N = 4k.

λ1 =
1
2
+

1
2(N+1)/2

, if N = 4k + 1 or N = 4k + 3.

λ1 =
1
2
+

1
2N/2 , if N = 4k + 2. (5.4)

For the 2 vs. (N − 2) partition it is λ2 = 1
8 (3 +

√
2N+6+4N

2N ).

And for the 3 vs. (N − 3) partition it is given by λ3 = 9
16 if N = 6 and for N > 6, one has λ3 < 1

2 .

The proof is done by tracing out the parties and calculating the Schmidt coefficients as eigen-

values of the reduced states. Details can be found in Appendix B. Values of Schmidt coeffi-

cients calculated here are relevant for determining the tight value of α. But first in the spirit of

counting number of Bell pairs shared between any bipartitions for graph states, we also define

a normal form for hypergraph states.

Lemma 5.3. Consider an N-qubit complete three-uniform hypergraph state and a fixed bipartition

1, . . . , p|p + 1, . . . , N. Then, using only local actions with respect to this bipartition the hypergraph

can be reduced to the form shown in Fig. 5.1. We call this form the normal form of the complete

three-uniform hypergraph state respecting the bipartition 1, . . . , p|p + 1, . . . , N.

Proof. The proof consist of an application of a sequence of CNOT gates on both sides of the

bipartition. We review the simplest case here to give the idea of how the normal form is

obtained in a general case.
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Figure 5.2: (a) The normal form hypergraph state for the bipartition 1|2, 3, . . . , N.
(b) An example for the step (c) for obtaining the normal form for the bipartition

1|2, 3, . . . , N. See the text of the proof for further details.

First we would like to show that the following statement holds: Consider the bipartition

1|2, 3, . . . , N for an N-qubit complete three-uniform hypergraph state. Then this state is locally

(for the given bipartition) equivalent to the three-uniform hypergraph state where every vertex

is contained in only one hyperedge and hyperedges are of the form: E = {{1, i, i + 1} | 2 ≤
i < N and i is even.} And only if N = 4k, an additional cardinality two edge appears, which

is {1, N}.

Fig. 5.2 (a) represents the goal hypergraph state respecting a bipartition 1|2, 3 . . . N. The algo-

rithm to achieve this state is as follows:

(a) Erase all the edges which only contain subsets of vertices {2, 3, . . . N}.
All the remaining edges are {{1, i, j}|i < j, 2 ≤ i, j ≤ N}.

(b) Apply CNOTi,i+1 for each i, 2 ≤ i < N.

To give an example, we start with the CNOT23 gate. The adjacency of 3 is A(3) =

{1, i}, where i 6= 3, 2 ≤ i ≤ N. The hyperedges introduced by the CNOT23 gate are

{et ∪ {2}|et ∈ A(3)} and therefore, this action removes all the hyperedges where 2 is

contained except of the hyperedge {1, 2, 3} and adds the cardinality two edge {1, 2}.
At this step the remaining edges are {{1, 2}, {1, 2, 3}, {1, i, j}|i < j, 3 ≤ i, j ≤ N}.
Since 2 /∈ A(i + 1) for i ≥ 3, it is clear that consecutive CNOT gates, presented in this

step, do not modify hyperedges containing 2. To give another example, CNOT34 erases

all the hyperedges where 3 is presented except already established one {1, 2, 3} and the

gate where vertices 3 and 4 are presented together {1, 3, 4}. It also adds the cardinality

two edge {1, 3}. Repeating this procedure:

All the remaining edges are of the form {{1, j, j + 1}|2 ≤ j < N} and cardinality two edges

{{1, i}|2 ≤ i < N}.



Quantifying and detecting entanglement in hypergraph states 77

(c) Apply CNOTi+2,i, for each even i, 2 ≤ i < (N − 1).

The adjacency of i = 2 mod 4 right before applying the CNOTi+2,i gate is given by

A(i) = {{1}, {1, i + 1}}. The CNOTi+2,i gate, therefore, erases/creates hyperedges of

the types {{1, i + 2} and {1, i + 1, i + 2}}. This means that the adjacency of i = 0

mod 4 is only {1, i + 1} and application of CNOTi+2,i gate can only erase a hyperedge

{1, i + 1, i + 2}. See Fig. 5.2 (b).

To give the final configuration as in Fig. 5.1, here we have to consider three different cases:

1. N is odd:

All the remaining edges are of the form {1, i, i + 1}, for even 2 ≤ i ≤ N and also {1, i}
for unless i = 0 mod 4. It is easy to see that all two edges can be removed by actions of

Pauli-X.

2. N = 2 mod 4:

The last hyperedge {1, N− 1, N} is erased and the edge {1, N} cannot be created. There-

fore, the last qubit is completely disentangled in this case. See Fig.5.2 (a).

3. N = 0 mod 4

The last hyperedge {1, N− 1, N} is erased and the edge {1, N} is created. See Fig.5.2 (b)

for the exact procedure.

The normal form for other bipartitions are calculated in detail in Appendix B.

For completeness, we sum up the case of the bipartition 1|2, 3, . . . , N. There are three possibil-

ities for the normal form of the hypergraph and it only depends on the number of parties in

the hypergraph. If N odd, then every vertex is exactly in one hyperedge. If N = 4k, then the

final hypergraph corresponds to the one in Fig. 5.2 (a) including the dashed line. Note that

this is in agreement with the fact that the maximal Schmidt coefficient for this case is 1/2 (see

Lemma 5.2), as there is a Bell pair shared across the bipartition [91]. In case N = 4k + 2, the

dashed line is missing, therefore, the last qubit can be removed and the result for the maximal

Schmidt coefficient matches with the N = 4k + 1 case from Lemma 5.2.

Theorem 5.4. The tight witness for the N-qubit complete three-uniform hypergraph state |H3
N〉 is

given by

W = α1− |H3
N〉〈H3

N |, (5.5)

where α = max{λ1, λ2}.

Proof. We have to show that, in general, it is sufficient to consider the 1 vs. (N − 1) and 2

vs. (N − 2) partitions. As seen in Lemma 5.2 the 3 vs. (N − 3) partitions give only smaller

Schmidt coefficients. For any other 1, . . . , p|(p + 1), . . . , N bipartition with p > 3 we use the

normal form in Fig. 5.1. If a resulting hypergraph is reduced either to Fig. 5.1 (b) or (c) [without

the dashed edge], then on qubits 1 . . . (p − 3) the measurements in the Pauli-Z basis can be

made. As a result, the hypergraph state on vertices (p− 2), (p− 1), p|(p + 1) . . . N is obtained.
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Figure 5.3: Estimation of the Schmidt coefficient for a 4 vs. 4 bipartition. See the text
for further details.

We know from the Lemma 5.2 that the 3 vs. (N− 3) partition has the largest squared Schmidt

coefficient less than 1/2 (unless N = 6). Keeping in mind that measurements can never

decrease the squared maximal Schmidt coefficient, we reach the conclusion that the bipartition

1, . . . , p|(p + 1), . . . , N cannot contribute to the maximal Schmidt coefficient when p ≥ 3. If in

the normal form in Fig. 5.1 (c) the dashed edge is present, one can make measurements on

both sides of the partition to reduce the state to a Bell state between qubits p and N. This

clearly gives a squared Schmidt coefficient λ ≤ 1/2.

The final case is the state with a normal form in Fig. 5.1 (a). Here the strategy is as follows:

Pauli-Z measurements are made on every qubit but eight of them, namely the qubits (p −
3), (p− 2), . . . , (p+ 3), (p+ 4) remain untouched. This leaves us with the state given in Fig. 5.3,

where the qubits have been relabeled. Then, a Pauli-Z measurement is made on qubit 1.

With probability 1/2 (in case of outcome 1), the edge {2, 8} is introduced and qubit 1 is

disentangled. With probability 1/2 (outcome 0) both qubits 1 and 2 are disentangled. For the

first case (1 outcome), we again make a Pauli-Z measurement on qubit 5, denoted by Z1
5 . This

itself gives two possible outcomes with half-half probabilities, the outcome 1 gives the edge

{4, 6} and disentangles qubit 5 and the outcome 0 disentangles qubits 4 and 5. Putting all

measurement outcomes together with corresponding probabilities yields as a bound on the

Schmidt coefficient

λ ≤ 1
4
· 1

4
+

1
4
· 1

2
· 1

8
(3 +

√
5) +

1
2
· 1

8
(3 +

√
2) ≈ 0.420202 <

1
2

. (5.6)

Note that in this estimation it was used that one minus the largest squared Schmidt coefficient

can be viewed as the geometric measure of entanglement for this partition, and this measure

decreases under local operations even for mixed states.
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5.3 Geometric Measure of hypergraph states

Recall from Chapter 2 Theorem 2.5 that in order to calculate geometric measure of entangle-

ment for permutation symmetric states with N ≥ 3 particles, one shall optimize its overlap

with an N-fold tensor product of a single particle state |a〉 = cos θ|0〉+ eiϑ sin θ|1〉. Therefore,

optimization is performed over two parameters only. In this section we calculate such overlaps

for several classes of hypergraph states. We show that it is, in addition, sufficient to set the

complex parameter to zero, thus, to optimize over only a single parameter θ.

Example 5.1. As a starting point, let us consider an example of the four-qubit thee-uniform complete

hypergraph state |H3
4〉, which in the computational basis is given by a state:

|H3
4〉 =

1
4

4

∑
x=0

(−1)(
x
3)
(
|0 . . . 0︸ ︷︷ ︸

4−x

1 . . . 1︸ ︷︷ ︸
x

〉+ permut.
)
. (5.7)

Then one can easily check that for t = 1/2 arctan[1/2(−1 +
√

5)], application of the real unitary

U4 =

(
cos(t) sin(t)

− sin(t) cos(t)

)
(5.8)

brings the state |H3
4〉 in the following form:

|SH4〉 = U⊗4
4 |H3

4〉 =
1
8
(3−

√
5)
(
|0000〉+ |1111〉

)
+

1
8
(1 +

√
5)(|0011〉+ permut.). (5.9)

Here all the coefficients in the state vector are positive and thus, maximization of the overlap can be

done over |a〉 ∈ R:

max
|a〉
〈a⊗N |SH4〉 =max

θ

(
sin4(θ) + cos4(θ)

)
+

6
8

(
1 +
√

5
) (

sin2(θ) cos2(θ)
)

=
1
8

(
3 +
√

5
)

.
(5.10)

The last equality follows from taking a derivative of the overlap and finding zero points. Since LU trans-

formations cannot change the value of entanglement measures, it follows that Eg(|H3
4〉) = 25−3

√
5

32 ≈
0.571619. This value was previously derived in Ref. [113], but only numerically.

Next we consider geometric measure of entanglement for states with a single hyperedge con-

taining all its vertices.

Lemma 5.5. Geometric measure of entanglement of N-qubit hypergraph state with only the single

hyperedge of a cardinality N can be obtained via optimizing over real symmetric states.

Proof. The statement can be directly checked by applying a Hadamard gate to one of the qubits

in the hypergraphs. The resulting state has only non-negative coefficients:

H1|HN
N 〉 =

1√
2

H1(|0〉|+〉⊗N−1 + |1〉|HN−1
N−1〉) =

1√
2
(|+〉⊗N + |−〉|HN−1

N−1〉) ∈ R+. (5.11)
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Figure 5.4: Geometric measure of |HN
N 〉. Blue dots represent the result of optimiza-

tion in over the single real parameter and yellow ones are lower bounds on geometric
measure from Ref. [133] obtained by considering bi-partitions. The x-axis shows the

number of particles. The lower-bound improves as states get less entangled.

Since Hadamard is also a real unitary operation, the optimal product state can also be chosen

to have real coefficients.

In Ref. [133] lower bounds for geometric measure of entanglement of symmetric hypergraph

states were derived by considering entanglement witnesses. i.e., maximal squared Schmidt

coefficients. Here we compare the lower bounds for |HN
N 〉 with our numerical optimization

results. For small number of vertices there is a significant difference between the results,

however, as the cardinality of hyperedge increases, naturally the state becomes more and

more closer to the product state and lower bounds start to become tight. See Fig. 5.4. Note

that the optimization is done numerically over a single parameter.

We can generalize Lemma 5.5 to nonsymmetric hypergraph states too:

Lemma 5.6. Given a hypergraph state |HE〉 where every arbitrary edge e ∈ E contains a vertex a ∈ V.

The optimal overlap can always be obtained by real product states.

Proof. The proof concerns more general case of the result obtained in Lemma 5.5. Without a

loss of generality assume that a = 1. Then it is always possible to rewrite the hypergraph as

follows:

|H1〉 =
1√
2

(
|0〉|+〉⊗N−1 + |1〉|HE\{1}〉

)
. (5.12)

Application of a Hadamard gate on the first qubit maps a hypergraph state to all positive

coefficient state. Hence, the overlap is maximized by product states with real coefficients.
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To present other results we need to first introduce a mathematical theorem for hypergraph

states, which studies local Pauli stabilizer structures for k-uniform hypergraph states. Here

k = k1 . . . km is a vector.

Lemma 5.7. [131] A symmetric N-qubit k-uniform complete hypergraph state is

(1) a plus one eigenstate of X⊗N iff

m

∑
i=1

(
ω

ki

)
=

m

∑
i=1

(
N −ω

ki

)
, (mod 2) for 0 ≤ ω ≤ N. (5.13)

(2) a plus one eigenstate of −X⊗N iff

m

∑
i=1

(
ω

ki

)
=

m

∑
i=1

(
N −ω

ki

)
+ 1, (mod 2) for 0 ≤ ω ≤ N. (5.14)

(3) a plus eigenstate of Y⊗N iff

m

∑
i=1

(
ω

ki

)
=

m

∑
i=1

(
N −ω

ki

)
+ ω +

N
2

, (mod 2) for 0 ≤ ω ≤ N. (5.15)

Keeping the structure of local Pauli stabilizers, we notice that

Lemma 5.8. An N-qubit hypergraph state, which is eigenstate of X⊗N with ”+ 1” eigenvalue has real

coefficients after the action of
√

X±
⊗N . And the one which is eigenstate of X⊗N with ”− 1” eigenvalue

has all imaginary coefficients after the action of
√

X±
⊗N .

Proof. The proof is straightforward in both cases.

X⊗N |H3
N〉 = |H3

N〉 ⇒
√

X±
⊗N |H3

N〉 =
√

X∓
⊗N |H3

N〉. (5.16)

Two sides of last equality are complex conjugates of each other and from the equality follows

that imaginary part is equal to zero. In a similar manner the second case can be treated:

X⊗N |H3
N〉 = −|H3

N〉 ⇒
√

X±
⊗N |H3

N〉 = −
√

X∓
⊗N |H3

N〉. (5.17)

Here the minus sign on of the right hand-side implies that the real part of expressions must

be zero.

Interestingly for N-qubit graph state case, when the ±1 eigenvalue condition of X⊗N holds,

the square-root of Pauli’s map graph state to the N-qubit GHZ-state:
√

X
⊗N |H2

N〉 = |GHZ〉N .

We can apply the same transformations to more general states:

Lemma 5.9. Given a symmetric hypergraph state that is an eigenstate of X⊗N with ” + 1” eigen-

value, then it is possible to calculate a coefficient of the computational basis element of a weight e after

application of
√

X
⊗N

using the following expression:
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k|e| ≡ k0...01...1 =
1
√

2
N −

1

2
3N
2 −1 ∑

ω

|e|
∑

m=0

(
N − |e|
ω−m

)(|e|
m

)
<
(
(1 + i)N(−i)ω+|e|−2m

)
, (5.18)

here ω depends on the cardinality of hyperedges in a symmetric hypergraph states and sum runs over

all the entries with the negative sign in the state vector.

Proof. Let us express an N-qubit hypergraph state which is an eigenstate of X⊗N with +1

eigenvalue as follows:

|H〉 = |+〉⊗N − 1
√

2
N−2

N

∑
w

(
|1 . . . 1︸ ︷︷ ︸

w

0 . . . 0〉+ permut.
)
. (5.19)

Then the application of
√

X
⊗N

gives,

√
X+
⊗N |H〉 =

√
X+
⊗N
(
|+〉⊗N − 1

√
2

N−2

N

∑
ω

(
|1 . . . 1︸ ︷︷ ︸

ω

0 . . . 0〉+ permut.
))

=|+〉⊗N − 1
√

2
N−2

√
X+
⊗N N

∑
ω

(
|1 . . . 1︸ ︷︷ ︸

ω

0 . . . 0〉+ permut.
)
.

=|+〉⊗N − 1
√

2
N−2

1
2N

(
(1 + i)1+ (1− i)X

)⊗N
N

∑
ω

(
|1 . . . 1︸ ︷︷ ︸

ω

0 . . . 0〉+ permut.
)

(5.20)

We will now derive some intermediate steps separately. It is clear that for any binary vector

of weight ω0, |1 . . . 1︸ ︷︷ ︸
ω0

0 . . . 0〉, the following holds for any 0 ≤ j ≤ N:

X⊗j ⊗ 1⊗N−j|1 . . . 1︸ ︷︷ ︸
ω0

0 . . . 0〉 =X⊗j ⊗ 1⊗N−jX⊗N |0 . . . 01 . . . 1︸ ︷︷ ︸
N−ω0

〉

=1⊗j ⊗ X⊗N−j|0 . . . 01 . . . 1︸ ︷︷ ︸
N−ω0

〉.
(5.21)

From Lemma 5.7 it is clear that if the vectors with the weight ω have negative sign, than

vectors with weight N − ω have negative sign too and the converse also holds. Let us take a

pair of vectors of weight ω and N −ω related to each other as in Eq.(5.21). Then for any j we

get the following term:

(1− i)j(1 + i)N−jX⊗j ⊗ 1⊗N−j|1 . . . 1︸ ︷︷ ︸
ω0

0 . . . 0〉+ (1− i)N−j(1 + i)j1⊗j ⊗ X⊗N−j|0 . . . 01 . . . 1︸ ︷︷ ︸
N−ω0

〉

=
(
(1− i)j(1 + i)N−j + (1− i)N−j(1 + i)j)X⊗j ⊗ 1⊗N−j|1 . . . 1︸ ︷︷ ︸

ω0

0 . . . 0〉 = 2<
(
(1− i)j(1 + i)N−j

)
=2<

(
(−i)j(1 + i)N

)
.

(5.22)
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Let us separately derive the coefficients k|e〉for computational bases |e〉 obtained after applica-

tion of Clifford get on each qubit. We start from the simplest case and then generalize it:

k0...0 =
1
√

2
N −

1
√

2
N−2 · 2N

N

∑
ω

(
N
ω

)
<
(
(−i)ω(1 + i)N

)
. (5.23)

Now consider more difficult case, a coefficient of k0...011, or otherwise a coefficient of a com-

mutation basis with weight exactly equal to two:

k0...011 =
1
√

2
N −

1

2
3N
2 −1

N

∑
ω

((
N − 2

ω

)
<
(
(1 + i)N(−i)ω+2

)
+ 2
(

N − 2
ω− 1

)
<
(
(1 + i)N(−i)ω

)
+

(
N − 2
ω− 2

)
<
(
(1 + i)N(−i)ω−2

))
=

1
√

2
N −

1

2
3N
2 −1 ∑

ω

2

∑
m=0

(
N − 2
ω−m

)(
2
m

)
<
(
(1 + i)N(−i)ω+2−2m

)
.

(5.24)

From here one can directly generalize that the coefficient of any computational basis element

with the weight |e| is given as follows:

k|e| ≡ k0...01...1 =
1
√

2
N −

1

2
3N
2 −1 ∑

ω

|e|
∑

m=0

(
N − |e|
ω−m

)(|e|
m

)
<
(
(1 + i)N(−i)ω+|e|−2m

)
. (5.25)

This finishes the proof.

Now that we have the general formula for coefficients after action of
√

X
⊗N

, we would like to

use it to calculate geometric measure of some of the important hypergraph states.

Theorem 5.10. The geometric measure of N-qubit three-uniform complete hypergraph state, which

is an eigenstate of X⊗N with the +1 eigenvalue, can be calculated via optimizing over a single real

parameter of the product state |a〉⊗N .

Proof. An N-qubit three-uniform complete hypergraph state is an eigenstate of X⊗N with +1

eigenvalue, if and only if N is of the form N = 2 mod 4 [131]. It is easy to verify that the

weight vectors with negative coefficient in |H3
N〉 are the ones with the weight ω = 3 (mod 4):

|H3
N〉 = |+〉⊗N − 1

√
2

N−2

N

∑
w=3,7,...

(
|1 . . . 1︸ ︷︷ ︸

w

0 . . . 0〉+ permut.
)
. (5.26)

Then we evaluate the expression for the coefficients k|e|. One can directly observe that in

Eq. (5.18) when the weight |e| is odd, since N/2 is also an odd number, the following holds,

<
(
(1 + i)N(−i)ω+|e|−2m

)
= <

(
(1 + i)N(±1)

)
= <

(
±(i2)N/2

)
= 0. (5.27)

Thus, for all odd |e|, the coefficient k|e| =
1√
2

N .
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If the weight |e| is either zero |e| = 0, or |e| = N, then the expression k|e| simplifies to:

k0 = kN = ±1
2

. (5.28)

For even |e| we have to go through a lengthy combinatorial calculation, which yields the value

of coefficients to be zero k|e| = 0.

We write N = 4p + 2, p > 0, p ∈N. Then we can simplify the sums in k|e| as follows:

N

∑
ω=3,7...

|e|
∑

m=0

(
N − |e|
ω−m

)(|e|
m

)
<
(
(1 + i)N(−i)ω+|e|−2m

)
(5.29)

=(−1)p+1
N

∑
ω=3,7...

|e|
∑

m=0

(
N − |e|
ω−m

)(|e|
m

)√
2

N=
(
(−i)ω+|e|−2m

)
(5.30)

=(−1)p
N

∑
ω=3,7...

|e|
∑

m=0

(
N − |e|
ω−m

)(|e|
m

)√
2

N=
(
(−i)1+|e|−2m

)
(5.31)

=(−1)p
√

2
N N

∑
ω=3,7...

|e|
∑

m=0

(
N − |e|
ω−m

)(|e|
m

)(−1)m if |e| mod 4 = 2.

(−1)m+1 if |e| mod 4 = 0.
(5.32)

Let us consider the case when |e| = 4p̃ + 2 (the second case works in the analogous way), then

we get

(−1)p
√

2
N
|e|
∑

m=0
(−1)m

(|e|
m

)[ N

∑
ω=3,7...

(
N − |e|
ω−m

)]
(5.33)

=(−1)p
√

2
N
|e|
∑

m=0
(−1)m

(|e|
m

)[
1
4

3

∑
j=0

(2 cos
jπ
4
)N−|e| cos

jπ(N − |e| − 2(3−m))

4

]
(5.34)

=(−1)p
√

2
N 1

4

|e|
∑

m=0
(−1)m

(|e|
m

)
× (5.35)[

2N−|e| + 2
N−|e|

2

(
cos

π(N − |e| − 6 + 2m)

4
+ cos

3π(N − |e| − 6 + 2m)

4

)]
(5.36)

=(−1)p
√

2
N 1

4

|e|
∑

m=0
(−1)m

(|e|
m

)[
2N−|e| − (−1)q2

N−|e|
2
(

sin
mπ

2
− sin

3mπ

2
)]

(5.37)

=(−1)p+q+ p̃
√

2
2N−|e|−4√

2
|e|+2

=
√

2
2N−2

(5.38)

where q = (N− |e|)/4. Note here that that (p+ p̃+ q) is an even number. Inserting everything

in k|e|, we get:

k|e| =
1
√

2
N −

1
√

2
3N−2

√
2

2N−2
= 0. (5.39)

Finally, the entire state can be mapped to

± 1√
2
|GHZ〉+ 1

√
2

N ∑
w(x) odd

|x〉. (5.40)
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If there is a positive sign in front of GHZ state, we are done. If not N-fold tensor product

of Pauli-Z operations introduces a global negative sign for the entire state, which can just be

neglected.

From Eq. (5.40) we write a formula for the geometric measure of entanglement for three-

uniform complete hypergraph states:

EG(|H3
N〉) =1−max

t

[
1
2
(tN +

√
1− t2

N
) +

1
√

2
N ∑

j odd

(
N
j

)
tj
√

1− t2
N−j
]2

(5.41)

=1−max
t

[
1
2
(tN +

√
1− t2

N
) +

1
√

2
N+2

(
(t +

√
1− t2)N − (

√
1− t2 − t)N)]2

.

(5.42)

The expression above is symmetric under exchange of t and
√

1− t2, and its derivative van-

ishes at t = 1√
2
. Inserting this value of t back in the expression of the geometric measure, we

get:

EG(|H3
N〉) =

3
4
− 1

2N −
1
√

2
N . (5.43)

We conjecture that the maximization is indeed attained at the point t = 1√
2
. We have checked

this statement up to N = 4002 qubits.

5.4 Summary and outlook

In this chapter we have discussed entanglement witnesses and measures for certain classes of

hypergraph states. We connected entanglement detection to the graphical transformations on

hypergraphs and derived first tight witnesses for three-uniform complete hypergraph states.

In the second part we studied geometric measure of entanglement for symmetric hypergraphs.

Interestingly, one can often restrict optimization over a single parameter. Moreover, we em-

ployed the constructions from local Pauli stabilizers of hypergraphs to derive our results.

Having introduced the formalism for witnesses and simplifications for geometric measures,

it would be interesting to investigate entanglement of other hypergraph states, including the

non-symmetric ones: E.g. Resource states for MBQC protocols and error correcting codes

(See subsequent chapters for applications). Finally, numerical calculations confirm that one

can generalize our obtained results to other symmetric states, which are eigenstates of Pauli

operators.



Chapter 6

Changing circuit-depth complexity

of MBQC with hypergraph states

Measurement-based quantum computation (MBQC) was introduced in Chapter 2 mainly us-

ing graph states as resource states. In this chapter we establish that hypergraph states can

be new interesting resource states allowing deterministic computational schemes. Our MBQC

construction heavily relies on measurement rules derived in Chapter 3. So, for the full under-

standing of the technical parts in this chapter, we recommend readers to get familiar with the

Pauli measurement rules from Chapter 3 first.

6.1 Introduction

A typical way to build a computer, classical or quantum, is to realize a universal set of ele-

mentary gates. Consequently, the concept of universality is fundamental in computer science.

While the most common choice for the universal gate set in quantum circuits is a two-qubit

entangling gate supplemented by certain single-qubit gates (see Theorem 2.9), the universal

gate set given by the three-qubit Toffoli gate [or the Controlled-Controlled-Z (CCZ) gate for

our case] and the one-qubit Hadamard (H) gate (see Theorem 2.10) is fascinating for several

reasons.

First, the Toffoli gate alone is already universal for reversible classical computation. Conse-

quently, the set may give insight into fundamental questions about the origin of quantum

computational advantage, in the sense that changing the bases among complementary ob-

servables (by the Hadamard gates) brings power to quantum computation [134–138]. Second,

this gate set allows certain transversal implementations of fault-tolerant universal quantum

computation using topological error correction codes. Transversality means that, in order to

perform gates on the encoded logical qubits, one can apply corresponding gates to the phys-

ical qubits in a parallel fashion, and this convenience has sparked recent interest on this gate

86
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Cluster State Hypergraph State
Preparation gates CZ ∈ C2 CCZ ∈ C3

Measurements Pauli + C2 Pauli

Implemented gates
↓ ↓ ↓
C2 C3 CCZ, H

Byproduct {X, Z} {CZ, X, Z}
Parallelized gates C2 {CCZnn, SWAP}

Table 6.1: Features of MBQC schemes using cluster and hypergraph states. Our
scheme with a hypergraph state implements all logical CCZ and SWAP gates without

adaptation of measurements, leading to a massive parallelization of these.

set [139–142]. Third, the many-body entangled states generated by the CCZ gates correspond

to hypergraph states.

Motivated by these observations, we introduce a deterministic scheme of MBQC for the gate

set of {CCZ, H}, using multi-qubit hypergraph states. MBQC is a scheme of quantum com-

putation where first a highly-entangled multi-particle state is created as a resource, then the

computation is carried out by performing local measurements on the particles only [16, 94].

Compared with the canonical model of MBQC using cluster states generated by Controlled-Z

(CZ) gates, our scheme allows to extend substantially several key aspects of MBQC, such as

the set of parallelizable gates and the byproduct group to compensate randomness of mea-

surement outcomes (see [96, 143, 144] for previous extensions using tensor network states).

Although 2D ground states with certain symmetry-protected topological orders (SPTO) have

been shown to be universal for MBQC [97, 145, 146], our construction has a remarkable feature

that it allows deterministic MBQC, where the layout of a simulated quantum circuit can be pre-

determined. As a resource state, we consider hypergraph states built only from CCZ unitaries.

This is because (i) these states have a connection to genuine 2D SPTO, (ii) it is of fundamental

interest if CCZ unitaries alone are as powerful as common hybrid resources by CCZ (or so-

called non-Clifford elements) and CZ unitaries, and (iii) they might be experimentally relevant

since it requires only one type of the entangling gate, albeit a three-body interaction (cf.[147–

149]). On a technical side, we use a complex graphical rule for Pauli-X basis measurements

on general hypergraph states, which allows a deterministic MBQC protocol on a hypergraph

state, for the first time.

As a remarkable consequence of deterministic MBQC, we demonstrate an N-qubit generalized

Controlled-Z (CN Z) gate, a key logical gate for quantum algorithms such as the unstructured

database search [150], in a depth logarithmic in N. Although relevant logarithmic implemen-

tations of CN Z have been studied in Refs. [101–103], we highlight a trade-off between space

and time complexity in MBQC, namely, reducing exponential ancilla qubits to a polynomial

overhead on the expense of increasing time complexity from a constant depth to a logarithmic

depth, in this example.
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Figure 6.1: Any quantum computation can be described as alternative applications of
logical CCZ and Hadamard gates. Our MBQC scheme allows a parallelization of all
logical CCZ (namely, CCZnn and SWAP) gates and each Hadamard layer increments
computational depth, as it requires adaptation of measurement bases to correct prior

byproducts.

6.2 Summary of computation scheme

In MBQC, an algorithm is executed by performing local measurements on some entangled

resource state. Consequently, two different physical resources, the entangling gates needed to

prepare the state and the required class of measurements, characterize the MBQC scheme. In

the first column of Table 6.1 cluster state MBQC model is summarized.

As reviewd in Chapter 2, There are three relevant aspects in the complexity of MBQC. First:

the adaptation of measurement bases, namely whether the choice of some measurement bases

depends on the results of previous measurements. Second: the notion of parallelism and

logical depth (cf. [151, 152]) in terms of the ordering of measurements. Third: due to intrinsic

randomness in the measurement outcomes, there are byproduct operators sometimes to be

corrected. In the canonical scheme of MBQC using the cluster state, Pauli measurements

implement Clifford gates in C2 without adaptation of measurement bases, so these gates are

parallelized. As Clifford gates are not universal, more general measurements in the X-Y-plane

of the Bloch sphere must be performed to generate unitaries in C3. The byproduct group is

generated by the Pauli operators X and Z.

Our scheme, however, has several key differences summarized in Table 6.1. Our state is pre-

pared using CCZ gates (CCZ ∈ C3), but Pauli measurements alone are sufficient for universal

computation. We choose {CCZ, H} to be the logical gate set for universal computation. In-

deed, we can implement all logical CCZ gates at arbitrary distance in parallel, by showing

that nearest neighbor CCZ gates (CCZnn) and SWAP gates are applicable without adaptation.

Our implementation generates the group of byproduct operators {CZ, X, Z}, which differs

from the standard byproduct group. Since we need Hadamard gates to achieve universality

and our byproduct group is not closed under the conjugation with the Hadamard gate, we

need to correct all CZ byproducts before the Hadamard gates. Thus, the logical depth grows

according to the number of global applications of Hadamard gates, effectively changing the

computational bases (see Fig. 6.1).
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Figure 6.2: (a) Denoting the four-qubit hypergraph state with hyperedges E =
{{1, 2, 4}, {2, 3, 4}, {1, 3, 4}} with the vertex and the box. (b) Pauli-X measurements

on vertices 1, 2, 3 by Pauli-X measurement on the box.
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Figure 6.3: Pauli-X-measurements on the given hypergraph states result in graph
states, with a Hadamard gate applied to its vertex 5. All dashed lines (depicting
byproducts) appear additionally if the product of measurement outcomes on vertices

1, 2, 3 is −1. (a) Pauli-Z byproduct. (b) Pauli-Z and CZ byproducts.

6.3 Universal three-uniform hypergraph state and determinis-

tic MBQC

We use a three-uniform hypergraphs state as a resource state for MBQC. In MBQC protocols

CZ unitaries guarantee information flow via perfect teleportation [94]. Obtaining CZ gates

with an unit probability from three-uniform hypergraph states has been a challenge as Pauli-

Z measurements always give probabilistic CZ gates. Therefore, only probabilistic or hybrid

(where CCZ and CZ gates are available on demand) scenarios have been considered in the

literature [97, 142, 153]. However, using a non-trivial Pauli-X measurement rule on three-

uniform hypergraph states, we achieve deterministic teleportation via projecting on CZ gates

with unit probability. See Chapter 4 and Fig. 4.6 for the simplest such example.

In this section we use two Pauli-X measurement examples as building blocks of our resource

state. They were already discussed individually in Fig. 4.7 and Fig. 4.8. For ease of notation,

we draw a box instead of three vertices V = {1, 2, 3} and connect it with an edge to another

vertex k (≥ 4) [see Fig. 6.2 (a)], if every two out of those three vertices are in a three-qubit

hyperedge with the vertex k. In addition, we say that a box is measured in the M-basis if all

three qubits {1, 2, 3} are measured in the M-basis [see Fig. 6.2 (b), where M = X]. Then the

simplified figures for the examples in Fig. 4.7 and Fig. 4.8 can be seen in Fig.6.3.

Now we are ready to formulate the main theorem of the chapter:
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Figure 6.4: (a) The universal resource state composed of elements on Fig. 6.3 (a) and
(b). (b) Resource state obtained after measuring all boxes in Pauli-X bases, except
the ones attached to three qubits surrounded by a hyperedge. All dashed circles

represent Pauli-Z byproducts.

Theorem 6.1. Based on the hypergraph state of Fig. 6.4 (a), we propose MBQC with the following

features: (i) it is universal using only Pauli measurements, (ii) it is deterministic, (iii) it allows parallel

implementations of all logical CCZ and SWAP gates, among the universal gate set by CCZ, SWAP,

and Hadamard gates, and (iv) its computational logical depth is the number of global layers of logical

Hadamard gates.

Proof. We discuss the points in Theorem 6.1 individually: (i) Universality with Pauli measure-

ments only: For the universal gate set we choose CCZ and Hadamard gates. We realize the

CCZ gate on arbitrary qubits in two steps: a nearest neighbor CCZ gate (CCZnn) and a SWAP

gate, swapping an order of inputs. Here we assume that information flows from the bottom

to the top differently from the convestion in circuits or previous MBQC schemes.

As a first step we measure almost all boxes in Pauli-X basis, except the ones attached to the

horizontal three vertices surrounded by a hyperedge CCZ. As a result we get graph edges

connecting different parts of the new state, see the transition from Fig. 6.4 (a) to (b). Getting

these graph edges is a crucial step, since it is partially responsible for (ii) determinism of the

protocol. We use the resource in Fig. 6.5 to implement the CCZnn gate. For CCZnn gate

H

H

H

X X X

Z

Z

Z

:=
Z

CCZnn

H

Figure 6.5: A nearest-neighbor CCZ gate is implemented up to {Z, CZ} byproducts.
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Figure 6.6: A deterministic graph state to implement SWAP, H gates, and correction
steps. (a) Gets rid of hyperedges entirely and projects on the graph state with Pauli-Z
and CZ byproducts depicted by dashed lines in (b). The hexagonal lattice (d) is ob-
tained deterministically after measuring colored vertices in suitable Pauli bases on (c).

implementation we have to secure independently three inputs and three outputs for CCZ

hyperedge in a hypergraph state to be used as a logical CCZ gate. The box is measured in

the Pauli-Z basis and just gets removed. The three vertices to which the box was attached

to are still surrounded by a hyperedge CCZ up to Pauli-Z byproducts. These three qubits

are connected to the rest of the state with the graph edges, and performing measurements as

shown on Fig. 6.5 teleports the CCZ gate to the output qubits (up to {CZ, Z} byproducts). The

measurement rules from Chapter 4 have been used for explicit derivations.

Now we need a SWAP and a Hadamard (H) gate both contained in C2. Since some graph

states can directly implement Clifford gates with Pauli measurements only, we first get rid of

all unnecessary CCZ hyperedges from the resource state by measuring all remaining boxes in

Fig. 6.4 (b) in Pauli-X bases resulting to the state in Fig. 6.6 (b) (the full Pauli-X measurement

rule is needed for the derivation) and looking at the bigger fragment, we get a graph as in

Fig. 6.6 (c). The main idea here is to get rid of all the vertices which might be included in edges

corresponding to byproduct CZ’s. Then, we make Pauli-Z measurements (qubits to which an

H is applied, we measure in the Pauli-X basis) on coloured vertices. As a result, we project

to a hexagonal lattice deterministically. This construction is the final step also responsible

for (ii) Determinism of the protocol. The hexagonal lattice can implement any Clifford gate in

parallel up to {X, Z} byproducts using Pauli measurements only [95], and therefore, we can

implement a SWAP gate. (iii) Parallelization: The SWAP and CCZnn gates together give a CCZ

gate over arbitrary distance, up to {CZ, X, Z} byproducts without adaptivity.
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Figure 6.7: (a) The circuit identity to create a C6Z gate. Crossed lines correspond
to SWAP gates as seen in Chapter 2.3. The first three qubits are measured in Pauli-
X basis. The adaptation of measurement bases is needed twice for two Hadamard

layers.

(iv) Logical depth: Finally, after every CCZ gate layer, we need to implement the Hadamard

layer, which is straightforward [94]. However, since CZ byproducts cannot be fed-forward

through Hadamard gates, we need to correct all CZ’s. We can again use the hexagonal lattice to

perform the correction step, however, the (k− 1)-th correction step as enumerated in Fig. 6.1 it-

self introduces {X, Z} byproducts which due to the commutation relation, CabcXa = XaCabcCbc,

introduces new CZ byproducts before the k-th correction step. Consequently, the measurement

results during the (k− 1)-th correction must be taken into account to correct all CZ byprod-

ucts before the k-th correction step. To sum up, we can parallelize all CCZ gates, but we need

to increment the circuit depth for each Hadamard layer in order to correct all CZ byproducts

adaptively.

6.4 Applications of computation scheme

We demonstrate that the parallelization in our MBQC protocol may find practical applications,

by considering an example of an N-times Controlled-Z (CN Z) gate. Its implementation has

been known either (i) in an O(log N) non-Clifford T depth with (8N − 17) logical T-gates,

(10N − 22) Clifford gates and d(N − 3)/2e ancillae [101, 103], or (ii) in a constant depth (or

constant rounds of adaptive measurements) albeit with O(exp N) CZ gates in the cluster-state

MBQC model and O(exp N) ancillae [94]. In our approach, a decomposition of the CN Z gate

by CCZ gates and a few number of Hadamard layers is desired.

Theorem 6.2. An N-times Controlled-Z (CN Z) gate is feasible in an O(log N) logical depth of the

Hadamard layers (or “Hadamard” depth), using a polynomial spatial overhead in N, namely (2N − 6)

logical Hadamard gates, (2N − 5) CCZ gates and (N − 3) ancillae, where N = 3 · 2r for a positive

integer r.

Proof. We construct a circuit implementing generalized controlled-Z gate complying with the

statements of theorem. As a first step, we give the circuit identity for C6Z gate in Fig. 6.7,
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Figure 6.8: (a) The circuit identity to create a C12Z gate. The first six qubits are mea-
sured in Pauli-X basis. The adaptation of measurement bases is needed additionally

twice for two Hadamard layers.

which has only two Hadamard layers. Next we use the new C6Z gate to create C12Z with only

two additional Haramard layers (See Fig. 6.8). Iterating this procedure for implementing a

C3·2r
Z gate, one can directly calculate that we need 2r layers of Hadamards only. We also give

a brief algebraic derivations of the circuit identity. We first show that the following equality

holds for any state |ψ〉 and sets i ∈ e1 and i ∈ e2 :

Ce1 HiCe2 HiCe1 |+〉i|ψ〉 = |+〉iCe1∪e2\{i}|ψ〉. (6.1)

Assume that i = 1 and denote e′1 ≡ e1\{1} and e′2 ≡ e2\{1}, then e1 ∪ e2\{1} = e′1 ∪ e′2:

Ce1 HiCe2 HiCe1 |+〉i|ψ〉 = C{1}∪e′1
CNOTe′2,1C{1}∪e′1

|+〉1|ψ〉. (6.2)

We can express an arbitrary multi-qubit state |ψ〉 in Pauli-X orthonormal basis |j〉: |ψ〉 =

∑j φj|j〉. Then each vector |+〉1|j〉 is itself a hypergraph state.The action of a generalized CNOT

gate was already used in the previous sections: Applying the generalized CNOTCt gate to a

hypergraph state, where a set of control qubits C controls the target qubit t, introduces or

deletes the set of edges Et = {et ∪ C|et ∈ A(t)}.

In our example the target qubit t = 1 and for each hypergraph state |+〉1|j〉 the target qubit

t = 1 is in a single hyperedge Ce1 only. Therefore from linearity follows that:

C{1}∪e′1
CNOTe′2,1C{1}∪e′1

|+〉1
(

∑
j

ψj|j〉
)
=C{1}∪e′1

Ce2∪e′1
C{1}∪e′1

|+〉1
(

∑
j

ψj|j〉
)

=Ce2∪e′1
|+〉1|ψ〉

(6.3)
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Next we count physical resource necessary to implement CN Z gate. We saw in Fig. 6.5 that

the minimal physical resource for CCZnn gate is one physical CCZnn gate, and three CZ gates,

and six. The minimal physical resource for a SWAP gate is nine CZ gates and eight ancilla

qubits as we are implementing conventional SWAP gate on a cluster state [94]. Number of total

CCZnn gates can be counted easily from the circuit, it also matches with number of Hadamard

gates in the circuit plus one and for implementing C3·2r
gate is equal to:

KCCZ = 3
( r

∑
k=1

2k
)
+ 1 = 2N − 5. (6.4)

Here we count number of SWAP gates needed. For C6Z we need twenty-four SWAP gates. In

general, to implement a CN Z gate with our protocol having already created a CN/2Z gate, we

need N(N − 2) SWAP gates. So, in order to create CN Z gate we need to sum up SWAP gates

needed at all previous steps of iteration. If N = 3 · 2r, then there are totally r = log (N/3)

iterations in our model from Theorem 6.2. To sum up, totally

KSWAP =
r

∑
k=1

(3 · 2k)(3 · 2k − 2) = 4N(
N
3
− 1) (6.5)

SWAP gates are needed.

So, to sum up we need KCCZ = 2N− 5 physical CCZnn gates, 3KCCZ + 9KSWAP = 3(2N− 5) +

12N2 − 36N = 12N2 − 30N − 15 physical CZ gates, and 6KCCZ + 8KSWAP = 32
3 N2 − 20N − 30

physical qubits.

Next we look into the standard protocol for creating the CN Z gate using MBQC with cluster

states. It appears that this gate can be implemented in a constant depth, but it has a massive

drawback of requiring exponential number of ancillae qubits. In Refs. [94] the 55-qubit cluster

state is given to implement three-qubit phase-gates, using Pauli measurements and eigenbasis

of operators UZ(±π
4 )XUZ(±π

4 )
†. If one extends this result for C4Z gate, the initial cluster state

must be reduced to the graph state via Pauli measurements implemented in parallel, but now

one needs ∑4
i=1 (

4
i) = 24 − 1 qubits. And in general, to implement a CN Z gate in the standard

way starting from the cluster state, one would only need to adapt measurement basis twice,

which is constant for any N, but number of qubits one would require is ∑N
i=1 (

N
i ) = 2N − 1

which is exponential with the size of the gate implemented [89].

Let us look at the count of a physical qubits in case our gate identity from Theorem 6.2 is

implemented on a cluster state. One can directly calculate that totally 8(KCCZ + KSWAP) =
32
3 N2 − 16N − 40 qubits are needed, which is polynomial in N. Therefore, Theorem 6.2

demonstrates a general trade-off between space and time complexity required for quantum

algorithms, from the perspective of MBQC.
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6.5 Summary and outlook

We introduced a deterministic scheme of MBQC for the gate set of CCZ and H gates, using

a three-uniform hypergraph state and Pauli measurements. Our physical implementation

enabled us to parallelize massively all long-range CCZ gates and the computational depth

depended only on the change computational bases. It would be interesting to study if there

exist hypergraph states with simpler planar architecture allowing similar MBQC protocols,

since such hypergraph states could also be possessing certain interesting symmetries granting

them to be 2D ground states with certain symmetry-protected topological orders (SPTO).

Noise in experiments is one of the major challenges in quantum computing. Along this di-

rection, we have already seen in Chapter 3 that for certain nonlocal tasks hypergraph states

can be more robust resources than graph states. Therefore, it would be desirable to investigate

how certain realistic noise models affect computations performed using hypergraph resources.

Moreover, for Bell inequality violations we saw that four-uniform hypergraph states give sig-

nificantly more robust results than three- or two- uniform ones. Thus, it could be fruitful to

design MBQC protocols using such families of hypergraph states too.



Chapter 7

Quantum error-correction and

hypergraph states

Hypergraph states generalize graph states in many ways. Both states violate local realism

exponentially, they are both useful for measurement-based quantum computation. Here we

investigate whether hypergraph states can be used as bases of quantum-error correcting codes.

Doing so, we derive strict Knill-Laflamme conditions specifically for hypergraph states and

find the optimal quantum error-correcting codes up to six qubits. Finally, we compare new

codes to existing stabilizer codes and show that hypergraph states might offer a new platform

for studying nonadditive quantum error-correcting codes.

7.1 Introduction

Quantum error-correcting codes (QECC) constitute an important application of many body

quantum entanglement. Since graph states and, more broadly, stabilizer states have proven

extremely useful for this task, it is interesting to study whether hypergraph states are simi-

lar or better candidates for error-correction. Hence, for the start, it is important to look for

hypergraph states with all of their (d − 1)-marginals maximally mixed. Even though one-

dimensional pure quantum codes cannot be used to transmit any information, the notion of

distance is still useful in such cases. Every higher-dimensional pure quantum code has to be

spanned by such one-dimensional codes. So, we use such states to construct distance d QECC

codes and accordingly we call these codes hypergraph-based quantum error correcting codes. To

differentiate these codes from graph-based codes, we require that each basis states in a code

has at least one hyperedge with a cardinality greater or equal to three. In the following we

derive conditions on basis hypergraph states to have maximally mixed marginals.
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7.2 Conditions for distance two hypergraph-based QECC

In order to study distance d = 2 hypergraph-based pure quantum error-correcting codes, we

first give conditions for hypergraph states to have all 1 RDMs maximally mixed.

Given a hypergraph state |H〉 and a vertex a ∈ V, we say that it is written in the expanded

form over the vertex a, if it is written in the following form:

|H〉 = 1√
2

(
|0〉a|H0(a)〉+ |1〉a|H0(a) ⊕ H1(a)〉

)
, (7.1)

where |H0(a)〉 and |H0(a) ⊕ H1(a)〉 are also hypergraph states. We will often skip writing the

vertex number in the brackets when it is clear from context. Thus, we will denote |Hj(a)〉 by

|Hj〉. The hypergraph state |H0〉 corresponds to a hypergraph H0 = (V\{a}, {e ∈ E|a /∈ e})
and H1 is also a hypergraph H1 = (V\{a}, {e− {a}|e ∈ E & a ∈ e}). The notation ’⊕’ denotes

an overlay of two hypergraphs, with the same vertex set. It gives a new hypergraph with the

same set of vertices and a new edge-set that is obtained by taking the symmetric difference of

the edge-sets of original two hypergraphs,

(V, E1)⊕ (V, E2) = (V, E1∆E2). (7.2)

Lemma 7.1. An N-qubit hypergraph state |H〉 has ath-qubit RDM maximally mixed, if and only if

the hypergraph state |H1〉 corresponding to the hypergraph H1 from the expanded form of |H〉 over the

vertex a satisfies the following equality:

〈+|⊗N |H1〉 = 0. (7.3)

Later we will denote |+〉⊗N by |∅〉, since it is a hypergraph state with an empty set of edges

and we will call a hypergraph state balanced, if it is orthogonal to 〈∅|.

Proof. Let us expand a hypergraph state |H〉 over the qubit a as in Eq.(7.1). The ath-qubit RDM

to be maximally mixed, we need to require that all off-diagonal entries in the RDM must be

zero. Due to hermiticity of RDM, we only get a single orthogonality condition:

〈H0|H0 ⊕ H1〉 = 0. (7.4)

The following statements are equivalent to Eq.(7.4):

〈∅|CH0 CH0 |∅⊕ H1〉 = 0 ⇔ 〈H0 ⊕ H0|H1〉 = 0 ⇔ 〈∅|H1〉 = 0. (7.5)

This finishes the proof.

We will often use the following identity 〈H′|H′ ⊕ H′′〉 = 〈H′ ⊕ H′|H′′〉 = 〈∅|H′′〉 for arbitrary

hypergraphs H′ and H′′ with equal number of vertices.
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If every vertex in a hypergraph state |H〉 satisfies the condition in Lemma 7.1, then |H〉 has

all RDMs maximally mixed, therefore, this state forms a distance d = 2 one-dimensional pure

code. We can use such states as basis of higher-dimensional codes of distance d = 2.

Given two N-qubit hypergraph-based distance d = 2 one-dimensional pure codes |H(1)〉 and

|H(2)〉, we rewrite Knill-Laflamme conditions to get higher-dimensional codes. For any error

operator E ∈ {1, Z, X, Y} the following must hold:

〈H(1)|E|H(2)〉 = 0. (7.6)

We consider each error operator Individually. If E = 1, then the two states must be orthogonal.

〈H(1)|H(2)〉 = 〈∅|H(1) ⊕ H(2)〉 = 0. (7.7)

In order to simplify the notation, we denote H(1) ⊕ H(2) by dH and call it a difference between

two hypergraphs.

Next we consider E = Za, then

〈H(1)|Za|H(2)〉 = 〈∅|Za|dH〉 = 〈∅|(V, {{a}})⊕ dH〉 = 0. (7.8)

Therefore, not only the difference between two hyperedges must be balanced, but also any

possible addition of a single vertex hyperedge to the difference hypergraph must also keep it

balanced.

Next we consider E = Xa. Pauli-X error condition is trickier:

〈H(1)|Xa|H(2)〉 = 〈H(1)
1(a)|dH〉 = 〈H(2)

1(a)|dH〉 = 〈∅|H(1)
1(a) ⊕ dH〉 = 〈∅|H(2)

1(a) ⊕ dH〉 = 0. (7.9)

Since the two conditions 〈H(1)
1(a)|dH〉 = 0 and 〈H(2)

1(a)|dH〉 = 0 are equivalent, we only need to

check one of them and the other follows.

And finally, if E = Ya, then

〈H(1)|Ya|H(2)〉 = 〈H(1)
1(a)|Za|dH〉 = 〈∅|(V, {{a}})⊕ H(1)

1(a) ⊕ dH〉 = 0. (7.10)

If all the above orthogonality relations are satisfied for hypergraph basis set, then these basis

states constitute codewords in the hypergraph-based pure QECC. In the next section we study

such codes.
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(a) (b)

1 2

34
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34

Figure 7.1: Two examples of base hypergraph states for construction of ((4, 4, 2))2
code. (a) The base hypergraph for the first code. Other three hypergraphs in the
code have additional hyperedges: E(a)

2 = {{3}, {4}}, E(a)
3 = {{1}, {2}, {3, 4}}, and

E(a)
4 = {{1}, {2}, {3}, {4}, {3, 4}} (b) The base hypergraph for the second code. Other

three hypergraphs in the code have additional hyperedges: E(b)
2 = {{2}, {3}} E(b)

3 =

{{2}, {4}}, and E(b)
4 = {{3}, {4}}.

7.3 Hypergraph based codes of distance two

In this section we give examples of hypergraph-based codes of distance d = 2. By using the

constraints derived in the previous section we search for hypergraph-based codes up to N = 6

qubits. We find all hypergraph-based pure codes up to N = 5 qubits. We also find some

hypergraph-based pure codes for N = 6 qubits. In all of these cases the codes saturate the

quantum Singleton bound.

For three qubits there is no hypergraph state with at least one hyperedge which satisfies Knill-

Laflamme conditions.

Situation changes in four qubits. Already the symmetric case of the four-qubit three uniform

complete hypergraph state has all of its 1 RDMs maximally, mixed. However, there also exist

other hypergraph states in four qubits with the similar properties and, in addition, these

basis states can be used to construct QECCs, which saturate the quantum Singleton bound.

In Fig. 7.1 we give two examples of hypergraph states for the construction of ((4, 4, 2))2

codes. With the exhaustive search we also found more codes with the same property, but

all their base hypergraph states are local unitary equivalent to one of the base hypergraph

states in Fig. 7.1. Here (a) corresponds to the base hypergraph with hyperedges E(a)
1 =

{{1, 2}, {2, 3}, {3, 4}, {1, 4}, {1, 3, 4}, {2, 3, 4}} and (b) to the base hypergraph with hyperedges

E(b)
1 = {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}}.

Note that all four-qubit codes saturating the quantum Singleton bound are locally equivalent

to the additive/stabilizer QECCs [154].

For five qubits we exhaustively characterize the following optimal hypergraph based codes:

(i) The code ((5, 2, 2))2, where the base code is a three-uniform hypergraph state and the

second codeword in the subspace has only single-qubit Pauli-Z decorations. Here by
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decorations we mean that the second hyperedge has in addition Pauli-Z gates applied

to it.

(ii) The code ((5, 4, 2))2, where the base code is a three-uniform hypergraph state and the

other codewords in the subspace are obtained by single-qubit Pauli-Z and graph edge

CZ decorations. This is the optimal dimension if we require to have three-uniformity in

the base code. The same dimension can be attained by single-qubit Pauli-Z and graph

edge CZ and hyperedge CCZ decorations. Decorations of higher cardinalities cannot

improve the bound.

(iii) The code ((5, 5, 2))2, where base code is only required to have at least one hyperedge of

cardinality three or higher and other codewords can be obtained by single-qubit Pauli-

Z decorations. This is again an optimal case since allowing more general decorations

cannot increase the dimension of the code, neither when allowing higher cardinality

hyperedges in the original codeword. Therefore, in five qubits if requiring to have even

a single codeword containing at least one hyperedge of cardinality three or higher, the

singleton bound cannot be saturated.

The detailed representatives of all these codes are given in Appendix C.

For graph-based pure codes it is typical that the base code is given by a graph state and other

states in the code differ from this graph state only by local Pauli-Z operations. In case of

hypergraph-based codes, where we require a base code to have at least one three- or higher

cardinality hyperedge, we have seen that the other hypergraphs in the code differ from the

base one by not only local Pauli-Z operations, but possibly in addition by CZ’s and CCZ’s.

For N = 4-qubit codes we have seen that hypergraphs in the code differ by Pauli-Z and CZ

operations and in 5-qubits we have mixture of all, Pauli-Z, CZ and CCZ-gates. Interestingly

along this line or search we found that ((6, 2, 2))2 is the smallest hypergraph based pure code,

where the base hypergraph state is three-uniform (see Fig. 7.2 (a)) and the difference with the

other hypergraph is given by graph edges only (see Fig. 7.2 (b)).

1 2

3

45

6

45

1

36

2

(a) (b)

Figure 7.2: The hypergraph based pure quantum code ((6, 2, 2))2. (a) In N = 6-
qubits if we consider three-uniform hypergraphs, there are totally (6

3) = 20 pos-
sible three-qubit hyperedges. The base three-uniform hypergraph state for code
((6, 2, 2))2 has every possible three-qubit hyperedge but the ones presented here.
(b) The difference with the second hypergraph in the code is given by the six edges

{{1, 3}, {3, 5}, {1, 5}, {2, 4}, {4, 6}, {2, 6}}.

Already for six qubits an exhaustive search becomes difficult. However, it appears that if one

restricts the first base state to be a three-uniform hypergraph state, then it is indeed possible
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Figure 7.3: An overlay of (a) and (b) gives the 3-uniform base code for ((6, 16, 2)).

to find other 15 codewords, all together building up a ((6, 16, 2))2 code. The overlay of two

hypergraphs in Fig. 7.3 represents the three-uniform base state. They are drawn separately, in

order to make the structure of the base more vivid. See Appendix C for the full description

of the code. The code saturates the quantum Singleton bound. In Ref. [79] distance two

quantum codes were investigated. It was found that differently from ((4, 4, 2))2 case, 2m-

qubit code, m ≥ 3, which saturates the quantum Singleton bound, need not be additive. The

explicit construction of a nonadditive code was given for m = 3 case, or otherwise, for 6-qubit

case by checking that some quartic invariant differs from that of the additive one with the

same parameters [154]. We calculated the same quartic invariants for our hypergraph-based

((6, 16, 2))2 code and found that our code is also nonadditive and, moreover, the values of the

invariants differ from both, additive case and from the code in Ref. [79]. This demonstrates

that hypergraph states might offer a new platform for studying nonadditive QECCs.

7.4 Summary and outlook

To sum up, in this chapter we studied error-correcting codes using hypergraphs states. We

derived Knill-Laflamme conditions specifically for hypergraph states, which helped to exhaus-

tively study all the QECC codes up to six qubits. We gave explicitly several interesting codes

and the ones saturating the quantum Singleton bound. Finally, we computed quartic invari-

ant for the ((6, 16, 2))2 hypergraph-based QECC and concluded that this code in nonadditive.

This finding hints that hypergraph states and its stabilizer formalism can be employed to

investigate nonadditive codes.

For the future work, it would be nice to derived conditions and constructions to obtain higher

distance hypergraph-based codes and also to generalize our findings further to establish the

connection between hypergraph states and quantum error-correcting codes.



Chapter 8

Coarse graining of entanglement

classes in nonhomogeneous systems

Until now we always considered pure states with equal local dimensions. In this chapter we

discuss so-called coarse graning of SLOCC classes in 2× m× n systems. In general, there are

infinitely many SLOCC classes in given dimensions. However, when considering operations

from higher- to lower-dimensional Hilbert spaces, an additional hierarchy among the classes

can be revealed. We study three-partite pure states in the Hilbert space C2 ⊗ Cm ⊗ Cn using

the theory of linear matrix pencils and determine generic state set for every dimension. In

addition, we show that in order find a resource state capable of transforming to all generic

states in 2× n×m systems, one just needs to increase local dimension m or n by one. We also

investigate optimal resource states, which can be transformed to any state (not excluding any

zero-measure set) in the smaller-dimensional Hilbert space. In order to understand mathemat-

ical notation and derivations in this section, it is advisable to first read Subsection 2.4.3 from

the preliminaries chapter about linear matrix pencils.

8.1 Introduction

Entanglement and especially multiparticle one, has drawn a lot of attention in recent years

due to its potential application. Thus, having a better understanding of the phenomenon is

one of the main objectives of quantum information theory. Due to its complexity an enormous

amount of work has been already devoted to the quantification and qualification of multipar-

tite entanglement. See Refs. [53, 155–157] for the overview. As a state of the art, bipartite

entanglement is quite well understood, however, the same cannot be said for multipartite case.

One of the most common ways to get an insight into the structure of multiparticle entangle-

ment, is to establish which of the states can be transformed to each other under local operations

and classical communication (LOCC). It is straightforward that, if a state |ψ〉 can be used in
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a certain application, then another state |φ〉, which can be transformed to |ψ〉 under local op-

erations and classical communication, is at least equally good for the same task. Therefore, it

is of a great interest to investigate states which can reach other ones with LOCC. In fact, such

transformations among pure states are fully characterized in the bipartite case [158]. For this

simplest case the maximally entangled state has been identified, which can be transformed

into any other state with LOCC. For multiparticle case there does not exist a single maxi-

mally entangled state in this spirit (recall that GHZ- and W-states from Chapter 2 are not even

probabilistically inter-convertible with LOCC). Instead, one gets a whole set of the maximally

entangled states, which has the property that any state outside of this set can be obtained via

LOCC from one of the states within the set. Moreover, the set is minimal in the sense that

no state inside the sets can be transformed to another. Such sets are very complicated and

have been extensively investigated in sequences of publications [159–163] with the conclusion

that in general transformations among pure multipartite entangled states via LOCC are almost never

possible [163].

The results on LOCC transformability suggest the need to consider more general maps, in-

vertible stochastic local operations and classical communication. These transformations divide

state space into equivalence classes. Although it is possible to find only two such classes for

three-qubit case, already for four qubits there are infinite number of SLOCC classes. The same

holds for three-qutrit case and qubit-ququart-ququart case. So, even under the most general

maps classification gets difficult.

In this chapter we look for common resource states not in the same Hilbert space as the states

we would like to transform to, but instead we increase local dimensions and consider non-

invertible general operations from higher to lower dimensional Hilbert spaces. More formally,

we look for common resource states:

Definition 8.1. A common resource (CR) state for a set of states S is a state that can be

transformed probabilistically to any state contained in S. A common resource state |ψ〉 is

called optimal common resource state (OCR), if for any other common resource state |φ〉 for S,

it holds that either |φ〉 can be probabilistically transformed to |ψ〉, or neither |ψ〉 nor |φ〉 can

be probabilistically transformed into the other.

We consider the case of 2×m× n systems, where linear matrix pencils and their normal form

can be used for SLOCC classification (see Chapter 2). The main question then is: Given a set

of states, S in Hilbert space C2 ⊗ Cm ⊗ Cn, each representing different SLOCC class, what is

the minimal dimension of the Hilbert space needed in order to find a state |ψ〉 in it, such that

it can be transform to all the states in the set S.

Similar question was already considered before in Ref. [164]: It has been shown that a common

resource state always exists, if one of the dimensions is increased sufficiently, in particular it

has been shown that given a Hilbert space H = Cd1 ⊗Cd2 ⊗ · · · ⊗CdN , where d1 ≤ d2 ≤ · · · ≤
dN , there exists a state which can be transformed to all the other states by LOCC if and only if

N−1

∏
i=1

di ≤ dN . (8.1)
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This result is strong since the common resource state maps to every state in the same- or lower-

dimensional Hilbert spaces deterministically, thus the set S contained every state in H. Here

we wonder if better optimal bounds can be attained for more restricted set S using SLOCC

operations.

8.2 SLOCC classes containing generic states

In this section we characterize a generic set of states in 2 × m × n. In order to do so, we

first introduce some lemmata concerning a necessary and sufficient condition for a matrix

pencil to be a direct sum of right null-space blocks Lεi only, and a sufficient condition on the

matrix pencil corresponding to a state such that the operation applied by the first party can

be inverted by a transformation of second and third parties. We use these results for both,

the characterization of generic sets of states and to prove that a generic state can always be

transformed into any state in a full measure set of states of smaller dimension. Using then the

characterization of generic matrix pencils presented in Ref. [165], we show that the union of

SLOCC classes of states corresponding to a generic set of matrix pencils is of full measure (see

Theorem 8.4). Interestingly, it turns out that this generic set of states (similarly to the generic

set of matrix pencils) is characterized by m − 3 parameters in case m = n and has no free

parameter in case m 6= n.

From now on we employee notation for matrix pencils and its Kronecker canonical form (KCF)

introduced in the preliminaries subsection 2.4.3. The following lemma plays an important role

for subsequent proofs:

Lemma 8.2. Let P(µ, λ) denote a m × n matrix pencil, where n > m. Then the following two

statements are equivalent.

1. Dm = 1,

2. P(µ, λ) is strictly equivalent to a direct sum of right nullspace blocks Lεi only.

In particular, for an m × (m + 1) matrix pencil P(µ, λ) we have Dm = 1 iff P(µ, λ) is strictly

equivalent to Lm.

Proof. If P(µ, λ) is strictly equivalent to a direct sum of Lεi blocks, then it is straightforward

to see that Dm = 1, as one of the m-minors equals µm and another one equals λm and their

greatest common divisor is therefore 1. Let us now prove that the converse also holds. First

note, that in case Dm = 1 there is no J block present in the pencil’s KCF. To see this, note

that the rank of the matrix pencil is m, which implies that Dm = µeµ
∏i,xi 6=∞(xiµ + λ)ei

, which

can only equal 1 if there exists no eigenvalue and hence no J block. One can also see this by

considering the invariant polynomials. Let us assume that a J block is present, which implies

that there exist eigenvalues, either finite or infinite. Recall that if this is the case, then there

exists an invariant polynomial Ek = Dk
Dk−1

= µeµ
k ∏i,xi 6=∞(xiµ + λ)ei

k 6= 1. As Dk divides Dm

for all k ≤ m and we have at least one k for which Dk 6= 1, we also have that Dm 6= 1 which
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contradicts the assumption that Dm = 1. This implies that there is no J block present. We

hence have a direct sum of Lεi and LT
νi

blocks only. Due to dimensionality reasons, the number

of Lεi blocks equals n − m plus the number of LT
νi

blocks. We now have to show, however,

that there cannot be any left nullspace blocks. Let us assume the contrary, i.e., there is at least

one LT
ν block present. We show that in this case all m-minors vanish implying Dm = 0, which

contradicts Dm = 1. For computing any of the m-minors, there are at most ν vectors which

are non-vanishing in the first ν + 1 components. Hence, this (ν + 1)-dimensional subspace can

never be spanned by those vectors and thus, the minor vanishes. This completes the proof.

The statement about m × (m + 1) matrix pencils follows immediately from the fact that if

n = m + 1 there exists no other direct sum of right null space blocks which amounts to the

required dimension.

Note that from the structure of KCF of pencils it is clear that if a matrix contains only nullspace

blocks, then Alice’s invertible transformation can always be reversed by Bob and Charlie.

Hence, A ∈ GL2 there exist operators B ∈ GLm, C ∈ GLn such that A⊗ 1⊗ 1|ψ〉 = 1⊗ B⊗
C|ψ〉. This property resembles a property of bipartite states as for any bipartite state, |φ〉, we

have that for any operators A there exist operators B such that A⊗ 1|φ〉 = 1⊗ B|φ〉.

In Ref. [165] a generic set of matrix pencils has been characterized. TO say otherwise, a set of

matrix pencils G = {Pi} has been identified with the property that the union of the orbits of

matrix pencils within this set,
⋃

iO(Pi) is of full measure, where O(Pi) = {BPiCT , with B ∈
GLm, C ∈ GLn}. In m × m it is easy to verify that the set of matrix pencils with distinct

eigenvalues is generic [166]. In m× n, with d = n−m ≥ 1, however, there is only one matrix

pencil, whose orbit is generic. It is given by a direct sum of (at most two different) null-space

blocks. More precisely, the following theorem has been proven in Ref. [165].

Theorem 8.3. [165] A generic matrix pencil of dimension m × m corresponds to the matrix pencil

with m distinct divisors. If d = n − m ≥ 1, the generic matrix pencil is given by P(R, S) =

(d − (m mod d))Lbm/dc ⊕ (m mod d)Ldm/de, where b.c (d.e) denotes the floor (ceiling) function,

respectively.

Let us mention here that in order to prove this result the codimension of the orbit, O(P) has

been computed. See [165] and references therein. It is defined as the difference between the

dimension of the whole space, i.e., 2mn (counting complex dimensions), and the dimension of

the orbit, dim {O(P)}. It is evident that the codimension is minimal for n = m if there are

only distinct divisors (as for such a pencil the dimension of the symmetries, SP = {(B, C) :

BPCT = P}, is the smallest). However, in case d = n − m ≥ 1, it has been shown that the

codimension is minimal, in fact vanishes, iff the matrix pencil contains right null-space blocks

only and the dimension of the null-space blocks are chosen equal to each other or, if this is not

possible, the difference between the two different dimensions of nullspace blocks is at most 1.

We show that the union of SLOCC classes of states corresponding to a generic set of matrix

pencils is of full measure. More precisely, we use the lemmata and the theorem above to prove

there the following theorem.
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Theorem 8.4. The set of full rank states in 2×m× n belonging to a SLOCC class with a representative

whose corresponding matrix pencil is generic, is of full measure.

Proof. The proof of the theorem is presented in the appendix of our paper [36]. The two cases,

when m = n and m < n need individual treatment.

Stated differently, we have that for n = m a generic set of states is given by the union of SLOCC

classes whose representatives are given by

|Ψ(x1, . . . , xm)〉 = |0〉(D1 ⊗ 1)|Φ+
m〉+ |1〉(1⊗ 1)|Φ+

m〉, (8.2)

where D1 = diag(x1, . . . , xm), where xi 6= xj for i 6= j. Note that not all states |Ψ(x1, . . . , xm)〉
correspond to different SLOCC classes, as, e.g., the entries of D1 could be sorted differently

even via local unitaries. Moreover, as mentioned before, the eigenvalues of the matrix pencil,

xi can be altered by an operator applied by A. More precisely, three of the eigenvalues can

be fixed, leading to the fact that the representatives constitute a m− 3 parameter family. For

n > m a generic set of states is given by the SLOCC class of a single state corresponding to

the matrix pencil given in Theorem 8.3. For instance, in case m = 7, n = 10, the generic matrix

pencil is L2 ⊕ L2 ⊕ L3 and the representative of the generic SLOCC class is given by

|Ψ〉 = |0〉(|01〉+ |12〉+ |24〉+ |35〉+ |47〉+ |58〉+ |69〉)
+|1〉(|00〉+ |11〉+ |23〉+ |34〉+ |46〉+ |57〉+ |68〉).

(8.3)

For n = m + 1, i.e. d = 1 the generic matrix pencil is the single nullspace block, Lm. Hence, in

this case the generic SLOCC class is represented by the state

|Ψ〉 = |0〉
(

m

∑
i=1
|i− 1, i〉

)
+ |1〉|Φ+

m〉. (8.4)

Note that there is only one generic SLOCC class in case n 6= m. However, there is a (m− 3)–

parameter family of SLOCC–classes in case m = n whose union constitutes a generic set of

states.

8.3 Common resource states for generic states

In this section we look for a common resource states. That means that we study possible

transformations from e.g., 2 × m × n to 2 × m × (n − 1). We show that a random state in

2× m× n can be transformed into any state in a full measure set within 2× m× (n− 1) for

any m, n and not only, a random state has a power to reach some other states in 2×m× (n− 1).

We first study transformations from a generic state in 2×m× (m + 1) to 2×m×m.
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Lemma 8.5. A 2×m× (m + 1) state |ψ〉 corresponding to the matrix pencil Pψ = Lm is a common

resoure state to any 2×m×m state |φ〉 corresponding to a matrix pencil with m distinct eigenvalues

x1, . . . , xm, i.e. Pφ =
⊕m

i=1 J(xi).

Proof. We consider the matrix pencil consisting of a single Lm block and use Theorem 2.20

to prove the statement. Then there exist local non-invertible transformations which map Lm

to the matrix pencil where the last column of Lm is added to the others with coefficients

−a0,−a1, . . . ,−am−1 ∈ C that we will choose later on. That is, there exist local operators

accomplishing the transformation

Lm =

m+1←−−−−−−−−−−−−−−−−→

λ µ · · · ·
· λ µ · · ·
· · λ µ · ·
· · · . . . . . . ·
· · · · λ µ



xy
m 7−→ (8.5)

Pm =

m←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

λ µ · · ·
· . . . . . . · ·
· · λ µ ·
· · · λ µ

−a0µ · · · · −am−2µ −am−1µ + λ



xy
m. (8.6)

We calculate the KCF of the pencil Pm. To determine the pencil’s KCF, we first evaluate the

greatest common divisor of its k-minors, Dk, for 1 ≤ k ≤ m. First note that Dk = 1 for all

1 ≤ k ≤ m− 1. This can be seen as follows. Among the (m− 1)-minors, there is one minor

equal to λm−1 and another one equal to µm−1. Hence, their greatest common divisor equals

to 1 and therefore Dm−1 = 1 which implies that Dk = 1 for all 1 ≤ k ≤ m− 1. The m-minor,

however, equals the determinant of P which can be expressed as

Dm(µ, λ) = λm +
m−1

∑
i=0

(−1)m−iaiµ
m−iλi. (8.7)

As Dm is of degree m, there must exist m (not necessarily distinct) eigenvalues. Recall that this

implies that the size of the J block equals q× q with q = m. Hence, the KCF of the matrix pencil

contains no nullspace blocks, only the J block is present. Moreover, as Dm(µ = 0, λ) 6= 0, all

the eigenvalues are finite. Denoting the (here possibly non-distinct) eigenvalues as x1, . . . , xm,

Dm can, hence, be expressed as

Dm = (µx1 + λ)(µx2 + λ) . . . (µxm + λ). (8.8)
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The coefficients, a0, a1, . . . , am−1, are thus given by

ak = (−1)m−k
(

∑
i1,i2,...,im∈{0,1}

∑m
j=1 ij=(m−k)

xi1
1 xi2

2 . . . xim
m

)
, (8.9)

which can be verified by comparing the coefficients of the polynomials in µ and λ in Eq. (8.7)

and Eq. (8.8).

Let us denote by {x̃i}i the set of distinct eigenvalues. Considering that Dm−1 = 1 and

therefore Ek = 1 for all k ≤ m − 1, the size signature corresponding to an eigenvalue x̃i is

si = (0, . . . , 0, mi), where mi is the algebraic multiplicity of eigenvalue x̃i. Hence the KCF of

the matrix pencil is of the form

PKCF =



x̃1µ + λ µ · · · · ·
· . . . . . . · · · ·
· · x̃1µ + λ µ · · ·
· · · x̃1µ + λ · · ·
· · · · x̃2µ + λ µ ·
· · · · · . . . . . .


=
⊕

i
J(x̃i) =

⊕
i

Mmi (x̃i),

(8.10)

where the size of J(x̃i) is mi ×mi.

In case the eigenvalues x1, x2, . . . , xm ∈ C are all distinct, the KCF is diagonal and one can

easily determine the matrices B and CT bringing the given matrix pencil to its KCF, i.e.,

BPCT = PKCF. In order to see that, note that the matrix pencil P is of the form λ1+ µC,

where C is the transpose of a so-called companion matrix [117]. We can hence use the Vander-

monde matrix

V =


1 x1 x2

1 . . . xm−1
1

1 x2 x2
2 . . . xm−1

2
...

...
...

. . .
...

1 xm x2
m . . . xm−1

m

 (8.11)

to diagonalize C as VCTV−1 = diag(x1, x2, . . . , xm), where diag(x1, x2, . . . , xm) denotes a di-

agonal matrix with the entries x1, x2, . . . , xm [117]. Hence, the matrices bringing P to its KCF

are B = V−1T and CT = VT . Note that if the eigenvalues, xi, are degenerate then C is not

diagonalizable. In this case a similarity transformation Ṽ can be used, which transforms C
to a block diagonal matrix, where each block is a Jordan block of size given by the algebraic

multiplicity of the eigenvalues. Hence, the matrix pencil, λ1+ µC, can be transformed with

this similarity transformation Ṽ to its KCF given in Eq. (8.10).

The discussion above tells us how to choose appropriate coefficients a0, . . . , am−1 to reach states

that correspond to a pencil with finite eigenvalues, x1, x2, . . . , xm and with a KCF given in Eq.

(8.10). In particular, we can reach any state corresponding to a pencil with distinct, finite

eigenvalues. Due to Theorem 2.19 infinite eigenvalues do not need to be considered, as the
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corresponding states are always SLOCC equivalent to a state with finite eigenvalues. This

completes the proof.

From the proof above we can see that it is also possible to reach states whose correspond-

ing pencils have non-distinct eigenvalues. As Dm−1 = 1, however, the corresponding size

signatures cannot be chosen freely, they are given by si = (0, . . . , 0, mi), where mi equals the

algebraic multiplicity of eigenvalue xi.

Let us now, conversely, start from an arbitrary state, |ψ〉, with local ranks 2× (m+ 1)× (m+ 1)

corresponding to a matrix pencil with m+ 1 distinct eigenvalues and consider transformations

to states with local ranks 2×m× (m + 1). Here, we prove that a state |φ〉 with Pφ = Lm can

be reached from any such state |ψ〉.

Lemma 8.6. Any state |ψ〉 in 2× (m + 1)× (m + 1) corresponding to a (m + 1)× (m + 1) matrix

pencil Pψ with m + 1 distinct eigenvalues can be transformed via local operations to the 2×m× (m +

1) state |φ〉 corresponding to a matrix pencil that consists of one single Lm block, i.e., Pφ = Lm.

Proof. Let us denote the eigenvalues of Pψ as x1, x2, . . . , xm. Due to Theorem 2.20, there exists

a non-invertible matrix B which, applied to |ψ〉, transforms |ψ〉 to a state whose corresponding

matrix pencil, P ′, can be obtained by erasing the first row of the initial pencil after adding it to

the other rows with coefficients a2, a3, . . . , am+1. We will prove that the resulting matrix pencil,

P ′, is strictly equivalent to Pφ = Lm for some choice of the coefficients a2, a3, . . . , am+1. The

explicit pencils read

Pψ =


µx1 + λ 0 · ·
· µx2 + λ

. . . ·
· · . . . 0

· · · µxm+1 + λ

 and (8.12)

P ′ =

m+1←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
a2(µx1 + λ) µx2 + λ · · ·
a3(µx1 + λ) · µx3 + λ · ·

... · · . . . ·
am+1(µx1 + λ) · · · µxm+1 + λ



xy
m. (8.13)
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It is straightforward to see that Dm of P ′ is given by

Dm = gcd{(µx2 + λ)(µx3 + λ) · · · (µxm+1 + λ),

−a2(µx1 + λ)(µx3 + λ) · · · (µxm+1 + λ),

a3(µx1 + λ)(µx2 + λ)(µx4 + λ) · · · (µxm+1 + λ),

...

(−1)mam+1(µx1 + λ)(µx2 + λ) · · · (µxm + λ)}

= gcd{(−1)j+1aj

m+1

∏
i=1,i 6=j

(µxi + λ) | j = 1, . . . , (m + 1)} = 1, (8.14)

where a1 = 1. Note that the last equality holds iff none of the coefficients ai vanish. This is in

fact the only requirement we impose on the choice of coefficients. Using Lemma 8.2 it follows

that P ′ is strictly equivalent to Lm, which proves the statement.

Using the lemmata above, we are now in the position to prove one of the main results of this

chapter, namely that a generic state in 2×m× n can be transformed to any state in the generic

set of states in 2×m× (n− 1), as stated in the following theorem.

Theorem 8.7. Any generic state |ψ〉 in 2 × m × n can be transformed to any generic state |φ〉 in

2×m× (n− 1).

In order to prove this theorem, we make use of the following lemma, which is actually more

general than needed for the proof of the theorem above.

Lemma 8.8. A state |ψ〉 in 2× m × n with Pψ =
⊕n−m

i=1 Lεi can be transformed to a state |φ〉 in

2× m × (n − 1) with Pφ =
⊕n−m−1

i=1 Lε′i
via local operations for any n ≥ m + 2 if the following

condition holds. There exists j ∈ {1, . . . , n−m− 1} such that for all i ∈ {1, . . . , j− 1} εi = ε′i and

for all i ∈ {j, . . . , n− m− 1} εi+1 ≤ ε′i , where we assume (εi)i and (ε′i)i to be sorted in ascending

order.

The proof of this lemma can be found in Appendix D. Let us now use it to prove Theorem 8.7.

Proof of Theorem 8.7. Let us write d = n − m, where d ≥ 0. The cases d = 0 and d = 1

were discussed and proven above in Lemma 8.6 and Lemma 8.5, respectively. Let us now

prove the statement for the case d ≥ 2. To this end, we consider the matrix pencils Pψ and

Pφ corresponding to the states |ψ〉 and |φ〉 which we assume w.l.o.g. to be in SKCF. As

shown in Theorem 8.4, the matrix pencils corresponding to generic states are given by Pψ =

(d− (m mod d))Lbm/dc ⊕ (m mod d)Ldm/de and Pφ = (d− 1− (m mod (d− 1))Lbm/(d−1)c ⊕
(m mod (d− 1))Ldm/(d−1)e. Note that the matrix pencils contain only Lεi blocks. More pre-

cisely, ε1 = . . . = ε(d−(m mod d)) = bm/dc, and if m mod d 6= 0, ε(d−(m mod d)+1) = . . . = εd =

dm/de for Pψ and ε′1 = . . . = ε′(d−1−(m mod (d−1))) = bm/(d− 1)c, and if m mod (d− 1) 6= 0,

ε′(d−1−(m mod (d−1))+1) = . . . = ε′(d−1) = dm/(d− 1)e for Pφ. Hence, the sizes of the blocks are

distributed in such a way that Lemma 8.8 applies proving that |ψ〉 can be transformed to |φ〉,
which completes the proof.



Coarse graining of entanglement classes in nonhomogeneous systems 111

8.4 Common resource states for all states

In the previous section we showed that any generic state in 2×m× (n+ 1) can be transformed

probabilistically to any generic state in 2×m× n. Stated differently, it is sufficient to increase

n only by one in order to find a generic state that can be transformed to every generic state in

a lower dimensional Hilbert space.

In this section, we extend our result. In particular, we look for common resource states for S

containing all states in H = C2 × Cm × Cn for fixed m and n, i.e., where in addition to the

generic set of states also sets of measure zero are included. In the following, we show that in

contrast to common resources for a generic set of states, the increase of dimension by one is

not sufficient to find common resource states for the full set of states.

To find such common resource states, we consider an increase of the highest dimension, n,

i.e., we look for common resource states in C2 ×Cm ×Cñ, where ñ > n. Due to the bound in

Eq. 8.1, it is clear that a common resource state exists in case ñ = 2m. However, the question

we address here is whether we can find a common resource state for which ñ < 2m. Again,

a difference between the two cases m = n and m 6= n becomes apparent. In the following

theorems, we prove that in case m = n such a common resource state exists for ñ = 2m− 2.

Moreover, this increase of dimension (of the third system) is optimal. In contrast to that, in case

m 6= n, the teleportation bound is tight, i.e., there exists no common resource state whenever

ñ < 2m.

The following m× (m− 2) matrix pencil will be of relevance throughout the remainder of this

section,

Pψ = (m− 3)L1 ⊕ L2 ⊕M1(0). (8.15)

The reason for that is that this pencil corresponds to the 2×m× (2m− 2) state |ψ〉, which turns

out to be a common resource for all 2× m × m states, which we will show in the following

theorem.

Theorem 8.9. The 2×m× (2m− 2) state |ψ〉 that corresponds to the matrix pencil given in Eq. (8.15)

is a common resource for 2×m×m states, where m ≥ 4, i.e., |ψ〉 can be transformed to any 2×m×m

state via non-invertible SLOCC.

Proof. Although we could directly prove the statement considering the matrix pencil given

in Eq. (8.15), we prove this theorem in three steps for readability. First, we explicitly give a

2× m × 2m state which reaches all 2× m × m states. Based on this state, we then construct

a 2 × m × (2m − 1) state which can be used for the same task. Finally, we argue that the

dimension can be reduced by one more by showing that the 2×m× (2m− 2) corresponding

to the matrix pencil Pψ given in Eq. (8.15) is a common resource for all 2×m×m states.

A common resource |ψ〉 for 2× m × m states can be trivially found in 2× m × 2m, namely

|φ+
2 〉AC ⊗ |φ+

m〉BC. Associating |0〉C ⊗ |i〉C to |i〉C and |1〉C ⊗ |i〉C to |m + i〉C, the corresponding
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matrix pencil is

Pψ =


µ · · λ · ·
· . . . · · . . . ·
· · µ · · λ

 , (8.16)

which is strictly equivalent to its KCF equal to mL1.

We present now an alternative proof of this statement by considering the corresponding matrix

pencils. We show that given the matrix pencil Pψ = mL1, any m×m matrix pencil Pφ can be

obtained applying Theorem 2.20 m times consecutively. In particular, we explicitly show that

the L1 blocks in Pψ can be combined in such a way that arbitrary blocks, L, LT , and J can be

created for Pφ. Furthermore, we count the number of required L1 blocks and see that m of

them present in Pψ suffice.

First note that L2 can be obtained by adding the first column of some L1 to the last column

of another L1 block and discarding this column afterwards. This procedure can be iterated to

generate Lε, consuming ε L1 blocks. An LT
ν block can be generated by first generating Lν+1

and then discarding the first and the last column of Lν+1. This procedure consumes (ν + 1)

of the L1 blocks in total. As the matrix pencil Pφ is square, we have that the number of L

blocks equals the number of LT blocks in Pφ. Let us assume w.l.o.g. that the matrix pencil Pφ

consists of null-space blocks of total dimension k× k, where k = ∑a
i=1 εi + ∑a

i=1(νi + 1) and of

a J block of size (m− k)× (m− k). As explained above, the null-space blocks can be created by

consuming k of the L1 blocks of Pψ. We will now show that the (m− k) remaining L1 blocks

can be used to create an arbitrary J block. First note, that due to dimensionality reasons, the

size signatures of the eigenvalues sum up to (m− k). An arbitrary finite eigenvalue xi (infinite

eigenvalue) with size signature 1 can be created consuming a single L1 block by adding the

second column to the first one with coefficient xi and discarding the second column afterwards

(discarding the first column), respectively. Moreover, an existing Mei
j(xi) block can be enlarged

to Mei
j+1

(xi) consuming a single L1 block arranged to the upper left, i.e., L1 ⊕Mei
j(xi). To this

end, the second column of L1 is added to the first column of the existing Mei
j(xi) block before

it is added to the first column of the L1 block with coefficient xi and discarded afterwards.

Similarly, an Neµ
j block can be enlarged. Thus, in total m− k L1 blocks are consumed in order

to create an arbitrary J block of size (m− k)× (m− k). Hence, Pψ = mL1 can be transformed

to an arbitrary m×m matrix pencil and thus, the 2×m× 2m state |ψ〉 can be transformed to

any 2×m×m state.

Let us now show that the 2×m× (2m− 1) state |ψ〉, whose corresponding matrix pencil is

Pψ = (m− 1)L1 ⊕M1(0), (8.17)

can perform the same task. Note that the first (m − 1) L1 blocks are the same as before.

However, the last L1 block is replaced by M1(0). We will distinguish the two cases that Pφ has

eigenvalues and that Pφ has no eigenvalues. In both cases we show that Pψ given in Eq. (8.17)

can be transformed into Pφ. In the first case, as a first step, Alice’s action is used to transform

the eigenvalue 0 present in Pψ to some eigenvalue x that is present in Pφ. From this point on,
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the same procedure as described above is used to increase the size signature of the eigenvalue

x or to obtain the remaining blocks present in Pφ. In the second case, the pencil Pφ does not

contain a J block, hence it is a direct sum of L and LT blocks only. Due to dimensionality

reasons, at least one LT block is present in Pφ. It is easy to see that in this case, the M1(0)

block in Pψ, can be used together with ν L1 blocks to obtain LT
ν by first using the ν L1 blocks

to create Lν as described above and finally adding the M1(0) block below the last column of

the created Lν bock and discarding the first column of this block. From this point on, the

procedure described in the 2×m× 2m scenario can be used in order to obtain the remaining

blocks present in Pφ.

Let us now show that we can further reduce the dimension by one by considering the 2×m×
(2m− 2) state |ψ〉, whose corresponding matrix pencil Pψ is given in Eq. (8.15). As it is more

involved to see that |ψ〉 is indeed a common resource to all 2× m × m states and, thus, the

theorem holds, we will consider the following three classes of matrix pencils separately. Note

that each matrix pencil Pφ belongs to at least one of these classes,

(i) There is at least one Lε block with ε ≥ 2 present in Pφ,

(ii) There is at least one L1 block present in Pφ,

(iii) There is no L block present in Pφ.

Let us first deal with case (i). In that case, the block L2 together with ε− 2 L1 blocks in Pψ

can be used to create the block Lε as explained above. Due to dimensionality reasons, there

exists also a LT
ν in Pφ and we can use the M1(0) block together with ν L1 blocks to create

it. We are left with m − 3 − (ε − 2) − ν L1 blocks which are used to create the remaining

arbitrary [m− (ε + ν + 1)]× [m− (ε + ν + 1)] sized matrix pencil, as explained above. Let us

now consider case (ii). We keep one of the L1 blocks in Pψ unchanged, as this block is also

present in Pφ. Again, due to dimensionality reasons, there exists a LT
ν block in Pφ, which can

be created using L2 together with ν− 1 L1 blocks. We are left with m− 3− ν L1 blocks and

the M1(0) block which are used to create the remaining arbitrary [m− (2+ ν)]× [m− (2+ ν)]

sized matrix pencil, as explained above in the [2× m× (2m− 1)] scenario. In the remaining

case, case (iii), no L block and hence (as Pφ is square) also no LT block is present in Pφ, i.e.,

it only remains to be shown that Pψ can be used to reach an arbitrary J block of size m×m.

Due to Theorem 2.19, we only have to consider finite eigenvalues. Let us show that with one

exception (we elaborate on that below), Pψ can indeed be used to reach an arbitrary J block

of size m×m. First, Alice can transform M1(0) to M1(x) for an arbitrary x. The L2 block can

either be used to create M2(x) or M1(x1)⊕M1(x2), where x1 6= x2 as proven in Lemma 8.5

and right below it. Together with M1(0), L2 can also be used to create M3(x). As explained

above, the remaining L1 blocks can be used to create the remaining part of the J block by either

creating new M1(x) blocks, or by increasing the size signature of existing ones. Let us note

here, that with the method explained here, it is possible to reach any J, except pencils of the

form Pφ = mM1(x). The reason for that is that L2 cannot be used to create M1(x)⊕M1(x).

However, this is not a problem as this matrix pencil corresponds to a state where Alice is not

entangled with the other parties. This completes the proof.
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Let us remark here that Theorem 8.9 does not hold for m = 3, as


λ µ · ·
· λ µ ·
· · · λ

 can be used

to reach any 3× 3 matrix pencil except


λ µ ·
· · µ

· · λ

. Moreover, no other 2× 3× 4 state is a

common resource for 2× 3× 3, which can be easily verified by considering the full SLOCC

hierarchy up to 2× 3× 6 states which has been derived in Ref. [114, 116]. A common resource

for 2× 3× 3 states can be found in C2 ⊗ C3 ⊗ C5 instead. For example, the 2× 3× 5 state

corresponding to the matrix pencil


λ µ · · ·
· · λ µ ·
· · · · λ

 can be used to reach any 2 × 3 × 3

state.

We are going to show next that the resource state introduced in Theorem 8.9 is an optimal

resource for C2 ⊗Cm ⊗Cm states.

Theorem 8.10. The common resource state given in Theorem 8.9 is optimal, i.e., no common resource

state which reaches any 2×m×m state for m ≥ 4 exists in C2 ⊗Cm ⊗C2m−3 or lower dimensions.

Proof. The proof of this theorem is presented in our paper in Ref. [36].

Finally, we consider the optimal common resource state for 2×m× n states where n > m. We

see that in contrast to the 2× m× m scenario, where we found an optimal resource state in

C2 ⊗Cm ⊗C2m−2, here, the trivial 2×m× 2m state that can be used to perform teleportation

is optimal. In other words, no common resource for 2×m× n states exists in C2⊗Cm⊗C2m−1

or lower dimensions.

Theorem 8.11. A common resource state which reaches any 2 × m × n state for m ≥ 2, n > m

exists in C2 ⊗Cm ⊗C2m. It is optimal, i.e., no common resource exists in C2 ⊗Cm ⊗C2m−1 or lower

dimensions.

Proof. The complete proof of this theorem is presented in our paper in Ref. [36]. The main

idea is that we consider the set of matrix pencils Pψ corresponding to 2×m× (2m− 1) states

|ψ〉 and prove the statement in two steps. First, we show that a common resource Pψ may not

contain a divisor block. Due to dimensionality reasons, only one candidate remains, which we

prove not to be a common resource in the second step.

8.5 Summary and outlook

In conclusion, we have investigated the hierarchy of pure quantum states representing SLOCC

classes in 2 × m × n-systems. We used matrix pencils and their Kronecker canonical form

to identify SLOCC classes and to study most general non-invertible transformations between
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them [114]. This allowed us to find and parametrize generic SLOCC classes in every dimension

and to find possible non-invertible transformations between them. Moreover, we identified re-

source states in higher dimensions, which can be used to probabilistically generate all possible

(including zero measure sets) SLOCC classes in a lower dimensional system. These results

lead to a coarse graining of SLOCC classes. The identification of such resource states is also

relevant from the point of view of state discrimination as will be explained in the following.

It has been shown that if a state |Φ〉 on a multipartite high-dimensional system is a resource

state for all states in a lower-dimensional multipartite system, then its complex conjugate |Φ∗〉
is a universal resource for unambiguous state discrimination in the lower-dimensional system

[167]. More precisely, any state out of a fixed set of linearly independent states {|ψi〉} in the

low-dimensional system can be correctly identified with non-vanishing probability of success

(and a fail to do so can be detected), if the parties share in addition the resource |Φ∗〉.

There are several directions in which our work may be generalized. First, it may be useful

to find new witnesses or polynomial invariants characterizing the SLOCC classes [168–170].

These invariants can be used to construct entanglement measures such as the so-called three-

tangle. Moreover, it would be appealing to use the results obtained here to gain more insight

into the entanglement properties of three-partite systems. Apart from the relation among the

SLOCC classes which is induced via the hierarchy studied here, a more detailed investiga-

tion of entanglement seems possible. In particular, it would be desirable to study the derived

resource states further and to understand their entanglement properties better. Furthermore,

for some of the considered SLOCC classes it might prove promising to study LOCC transfor-

mations within them, as the symmetries of states in those classes indicate that the structure

of possible LOCC transformations lies somewhere between the very simple bipartite LOCC

structure and truly multipartite LOCC structure. Finally, it would be very interesting to go be-

yond the somehow artificial restriction of 2×m× n-dimensional systems and consider general

three-partite systems. This, however, probably requires a significant extension of the present

theory of matrix pencils.



Chapter 9

Entanglement detection with two

observables

Detecting entanglement in experiments is crucial in many areas of quantum information and

accordingly various different techniques for constructing witnesses have been derived. In this

chapter we are interested how the knowledge of the expectation value of another observable

can help improve entanglement detection. We tackle the problem with the method of Leg-

endre transformation, leading even to entanglement quantification. We focus on two product

observables and for low dimensions give the necessary and sufficient criteria for entanglement

detection.

9.1 Introduction

Entanglement witnesses are the most convenient tools to certify entanglement in experiments.

See Chapter 2 for basic introduction. Any entanglement witness can be represented as follows:

W = gs1− L, (9.1)

where L is a measured observable and the value of gs is given by

gs = sup
σ
{tr (σL)|σ ∈ Ssep}, (9.2)

where the optimization can be performed over pure product states.

We go a step further and consider, in addition to l = 〈L〉, the expectation value c = 〈C〉 of

a second observable C. Under which conditions on L and C can we benefit from such extra

knowledge? To give an example, if an observable C is a scalar multiple of an observable L,

then, trivially, entanglement detection cannot be improved with such an additional knowl-

edge. More generally, from the knowledge of the expectation value of two observables, one

116
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determines the expectation value of a composite observable X = αC + βL, where α, β ∈ C.

Then the new witness operator depends on α and β and can be expressed as

W(α, β) = gs(α, β)1− X. (9.3)

Since the separable state space is convex, it follows that if the knowledge of l = 〈L〉 and

c = 〈C〉 can be used to certify entanglement of some state, then the witness W(α, β) can also

detect this state for some α and β.

Similar problem, so called, ultrafine entanglement witnessing (UEW) was addressed in recent

few publications [171–173], but with a different approach. Given an entanglement witness as

in Eq. (9.1), one tries to evaluate how the value of gs changes if the states must satisfy another

hyperplane constraint c = 〈C〉:

gs = sup
σ
{tr (σL)|σ ∈ Ssep and tr (σC) = c}. (9.4)

It turns out that this problem is more involving as the optimization over pure product states

is no longer sufficient [37, 172]. Instead one has to work with rank-two mixed states.

In our work we focus on the witnesses of the type presented in Eq. (9.3). We study a bipartite

case and consider the observables which are of the product form: L = LA ⊗ LB and C =

CA ⊗ CB. We analyze entanglement detection using Legendre transformations. The approach

itself is not new [174, 175], but it helps to derive analytic results useful to understand the

structure of such composite witnesses. Finally, we derive conditions that L and C shall fulfill

in order to be able to detect entanglement.

9.2 Formulation with Legendre transformation

In this section using Legendre transformations we want to find a lower bound on the value

of some entanglement measure E($) of the state $ knowing the two expectation values c =

tr {($C)} and l = tr {($L)} of the observables C and L. That is, we need to compute the

minimal value of E($) over all states compatible with the observed quantities,

ε(c, l) = inf
$
{E($) | tr {($C)} = c and tr {($L)} = l}. (9.5)

For the convex entanglement measure E($), this is a convex function in c and l and, hence,

it can be characterized as the supremum over all affine functions below it. Therefore, given c

and l, we would like to find the smallest constant k ∈ R, such that

ε(c, l) ≥ αc + βl − k (9.6)
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for arbitrary α and β ∈ R. Rewriting Eq. (9.6), we obtain

k := Ê(X) = sup
c,l
{αc + βl − ε(c, l)}

= sup
$
{αtr {($C)}+ βtr {($L)} − E($)}, (9.7)

which is the definition of Ê as the Legendre transform of the entanglement measure E, evalu-

ated for the operator

X = αC + βL. (9.8)

We can use the value of k itself to obtain the supremum over all slopes α and β:

ε(c, l) = sup
α,β
{αc + βl − Ê(X)}. (9.9)

This on the other hand is a Legendre transform of Ê(X) and as seen before corresponds to

a lower bound on the entanglement measure E($) compatible with the values c and l. From

convex geometry one can see that this lower bound is tight, since there exists a state with

the values c and l having the entanglement E($) = ε(c, l). Also, one shall note the practical

difference between Eq. (9.7) and Eq. (9.9): For obtaining a valid lower bound on E($) one

needs the global optimum in the maximization in Eq. (9.7). In Eq. (9.9), however, any pair of

values α, β gives a valid lower bound.

Whether one can analytically evaluate Eqs. (9.7, 9.9) depends on the entanglement measure E

and the specific form of observables. For measures defined via the convex roof construction,

E($) = inf
pi ,|ψi〉

∑
i

piE(|ψi〉), (9.10)

with $ = ∑i pi|ψi〉〈ψi|, the Legendre transform can be evaluated by optimizing over pure states

only [174]:

E(X) = sup
|ψ〉
{〈ψ|X|ψ〉 − E(|ψ〉)}. (9.11)

Here, we concentrate on the geometric measure of entanglement EG [55] defined for pure

states as in Eq. (2.16) and for mixed states via a convex roof construction. Thus, we need to

evaluate

EG(X) = sup
|ψ〉

sup
|φ〉=|a〉|b〉|c〉...

{〈ψ|(X + |φ〉〈φ|)|ψ〉 − 1}. (9.12)

This optimization can be done in practice numerically in an efficient manner [174]. Here,

however, we consider a specific case of X where analytical derivations are possible.

Example 9.1. We choose as observables

C = σz ⊗ σz, L = σx ⊗ σx. (9.13)
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Figure 9.1: Lower bounds on the geometric measure of entanglement based on the
expectation values c = tr($σz ⊗ σz) and l = tr($σx ⊗ σx). The white inner region

corresponds to separable states.

The operator X accordingly is then diagonal in the Bell basis with eigenvalues (α + β, α − β,−α +

β,−α− β). For such operators, the Legendre transformation of the geometric measure is given by [92]

EG(X) =
λ1 + λ2 − 1

2
+

1
2

√
(λ1 − λ2)2 + 1, (9.14)

where λ1 denotes the largest, and λ2 denotes the second-largest eigenvalue of X. Note that the formula

in Ref. [174] is formulated as an upper bound on the Legendre transform, but for the special case of

two-qubit Bell states equality holds. This is due to the fact that for any pair of Bell states we can find a

product vector having an overlap of 1/2 with both. Finally, it should be added that Eq. (28) in Ref. [92]

contains a typo.

For c = tr {($C)} and l = tr {($L)} we can assume without loss of generality that c ≥ l ≥ 0, as

this can be achieved for the given observables by local unitary transformations that do not alter the

entanglement. In addition, we have c ≤ 1. It is easy to see that the higher the values of c and l, the

more entangled the state is. From this it follows that in Eq. (9.9) the interesting case is if α and β both

have positive values.

We have to distinguish between two cases, α ≥ β ≥ 0 and β ≥ α ≥ 0. First, assume that α ≥ β ≥ 0,

then

ε(c, l) = sup
α,β

[
α(l − 1) +

1
2
+ βc−

√
β2 +

1
4

]
. (9.15)

Taking the partial derivative with respect to α we obtain ∂αε(c, l) = (l − 1) ≤ 0, therefore α must be

chosen as small as possible, i.e., α = β. Inserting this and taking the partial derivative with respect to

β we find

∂βε(c, l) = (c + l − 1)− β√
β2 + 1

4

!
= 0, (9.16)
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Figure 9.2: Eigenvalues of the qubit-ququart operator X = C+λL for different values
of λ [see Eqs. (9.19, 9.20)]. This gives a counterexample for the qubit-ququart case.

and consequently β = (c + l − 1)/[2
√

1− (c + l − 1)2]. This yields the final result:

EG ≥ ε(c, l) =
1
2

(
1−

√
1− (c + l − 1)2

)
. (9.17)

Considering the second case, β ≥ α ≥ 0, the second largest eigenvalue changes from α− β to β− α.

The function to maximize is essentially the same as before, but with α and β swapped. Therefore, the

solution is the same and Eq. (9.17) also holds. The corresponding bounds on the geometric measure are

depicted in Fig. 9.1.

9.3 Criterion for various scenarios

In this section we give a brief overview of the qualitative results on the conditions that the C

and L must be satisfying in order to detect entanglement. The proofs and derivations for all

the subsequent statements can be found in our paper [37].

Theorem 9.1. Consider a two-qubit system and product operators C = CA ⊗ CB and L = LA ⊗ LB.

Then C and B can be used for entanglement detection, if and only if

[CA, LA] 6= 0 and [CB, LB] 6= 0. (9.18)

In the proof of the previous theorem perturbation theory was employed and one had to treat

degenerate and non-degenerate cases individually. It appears that one can generalize the

results to qubit-qutrit observables, but it needs to be ensured that the ground state of C is

non-degenerate.

Theorem 9.2. Consider a qubit-qutrit system and operators C = CA ⊗ CB and L = LA ⊗ LB where

the ground state and the most excited state of C are non-degenerate. Then C and L can be used for

entanglement detection, if and only if [CA, LA] 6= 0 and [CB, LB] 6= 0.

For the case of qubit-ququart similar statement no longer holds. To show this, we present two

Hermitean operators L = LA ⊗ LB and C = CA ⊗ CB with [CA, CB] 6= 0 6= [LA, LB], where
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the operator X = αC + βL does not have entangled ground or most excited states for any α

and β. Thus, no combination of expectation values of 〈C〉 and 〈L〉 is useful for entanglement

detection. If one chooses observables to be

CA = σz and CB =


2 0 0 0

0 1
3 0 0

0 0 −1 0

0 0 0 4

 (9.19)

and

LA = σx and LB =


3 0 0 0

0 0 1 0

0 1 0 0

0 0 0 3

 , (9.20)

leads to the eigenvalue structure displayed in Fig. 9.2. Similar counterexample can be obtained

in the two-qutrit case too [37].

9.4 Summary and outlook

In this section we considered quantifying and detecting entanglement using data from two

observables. We used methods from Legendre transformation for giving quantitative results.

In addition, we obtained necessary and sufficient criterion for lower-dimensional two product

observables to be able to detect entanglement. Surprisingly we saw that there are counterex-

amples to the criterion in high dimensions. The statement is interesting and counter-intuitive,

since in many situation one expects that in order to derive strong witnesses one is inclined

to choose product observables that anticommute locally [128]. It turned out that in higher

dimensions this may not be a good strategy. It is, hence, still to be determined under which

conditions observables become useful in high-dimensional Hilbert spaces.



Chapter 10

Pure entangled states are Bell

nonlocal

Bell inequalities are one of the oldest and most important tools in quantum information as

they rule out local hidden variable models (See Chapter 2 for the introduction). The question

whether all entangled states exhibit quantum nonlocality is of the great importance. In 1992 in

a paper by Popescu and Rohrlich [38] a proof has been presented that any pure entangled state

violates some Bell inequality. We point out the gap in the proof, but with additional efforts

show that the statement indeed holds. This construction demonstrates how to obtain two

qubit entanglement from any multiqubit entangled state by performing local measurements.

We generalize the statement further to projecting on genuine multipartite nonlocality.

10.1 Introduction

The question which quantum states violate a Bell inequality and which not is of central im-

portance for quantum information processing. In Ref. [38] it has been shown that any pure

multiparticle quantum state violates a Bell inequality. The strategy for proving this statement

was the following: First, one can show that for any entangled pure state on N particles one

can find projective measurements on (N− 2) particles, such that for appropriate results of the

measurements the remaining two particles are in an entangled pure state. Then,one can apply

the known fact that any pure bipartite entangled state violates some Bell inequality [39].

Here we point out a gap in the proof presented in Ref. [38]. The gap concerns the part where

the projective measurements on (N − 2) particles are made. It turns out that a certain logical

step does not follow from the previous statements and we give an explicit counterexample for

a conclusion drawn at the critical point. Luckily it turns out, however, that with a significantly

refined and extended argumentation the main statement can still be proven. Independently of

the connection to Ref. [38], our results provide a constructive way how a two particle entangled

state can be generated from an N-particle state by performing local projections onto (N − 2)

122



Pure entangled states are Bell nonlocal 123

particles. This may be of interest for the theory of multiparticle entanglement. Finally we

generalize the results to projecting on genuine multipartite entangled states if the initial state

was genuine multiparticle entangled.

10.2 Discussion of the original argument

The gap concerns the proof of the Lemma on page 296 of Ref. [38]. This lemma states that:

Let |ψ〉 be an N system entangled state. For any two of the N systems, there exists a projection onto a

direct product of state of the other (N − 2) systems, that leaves the two systems in an entangled state.

In the following we show that while the Lemma is correct, there is a gap in its original proof.

Doing so, in this section we will reformulate the proof in modern language in order to see

where the problem is. For simplicity, we first consider only qubits.

The proof from Ref. [38] is a proof by contradiction, so it starts with assuming the opposite. So,

orthogonal basis vectors |bi〉 ∈ {|0〉, |1〉} are considered for each qubit i, where the conclusion

does not hold. That is,

〈b3|〈b4| . . . 〈bN |ψ〉 = |α〉|β〉, (10.1)

where the projections are carried out on the qubits 3, . . . , N and the qubits one and two remain

in the product state |α〉|β〉 for any possible choice of the 〈b3|〈b4| . . . 〈bN |. The 〈bi| can take the

values 0 or 1. So, the product vector will in general depend on this choice and it is appropriate

to write this dependency as

|α〉 = |α(b3, . . . , bN)〉 and |β〉 = |β(b3, . . . , bN)〉. (10.2)

What happens if the value of b3 changes? The proof in Ref. [38] argues convincingly that then

not both of the |α〉 and |β〉 can change: If this were the case, a projection onto the superposition

〈c3| = 〈b3 = 0|+ 〈b3 = 1|, while keeping 〈b4| . . . 〈bN | constant, projects the system on the first

two qubits in an entangled state. So, we have either

|α〉 = |α(◦, b4, . . . , bN)〉 or |β〉 = |β(◦, b4, . . . , bN)〉, (10.3)

where the “◦” indicates that |α〉 or |β〉 for the given values of b4, . . . , bN does not depend on b3.

The original proof continues the argument as follows: Repeating the argument for other subspaces,

we conclude that ... each index [bi] actually appears in either |α〉 or in |β〉 but not in both. This

conclusion is unwarranted. The point is that for a given set of b4, . . . , bN one of the vectors

(say, |α〉 for definiteness) does not depend on b3, but for another choice of b4, . . . , bN the other

vector |β〉 may be independent on b3, while |α〉 may depend on it. So, one cannot conclude

that one of the vectors is generally independent.

The problem is best illustrated with a counterexample. Consider the four-qubit state
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|ψ〉 = 1
2
(|0000〉+ |0101〉+ |0110〉+ |1111〉). (10.4)

One can easily check that this is not a product state for any bipartition, so the state is genuine

multiparticle entangled. Also, any projection into the computational basis on the particles

three and four leaves the first two particles in a product state. We have for the dependencies:

|α(00)〉 = |0〉, |α(01)〉 = |0〉, |α(10)〉 = |0〉, |α(11)〉 = |1〉, (10.5)

and

|β(00)〉 = |0〉, |β(01)〉 = |1〉, |β(10)〉 = |1〉, |β(11)〉 = |1〉, (10.6)

so neither of these vectors does depend on a single index only.

Of course, if one chooses measurements in other directions on the qubits three and four, that

is, one measures vectors like

|c3〉 = cos(γ)|0〉+ sin(γ)|1〉 and |c4〉 = cos(δ)|0〉+ sin(δ)|1〉, (10.7)

then the remaining state on the qubits one and two is entangled. So the state |ψ〉 is not a

counterexample to the main statement of the Lemma, but it demonstrates that proof requires

some extra work.

Finally, if one accepts the step that each index [bi] occurs only in |α〉 or |β〉, but not in both,

one can conclude as demonstrated in Ref. [38] that the original state has to factorize, so it is

not entangled, which would lead to a contradiction.

10.3 Completing the argument

In Ref. [40] we provided a way to add the missing part to the proof. Here we give a short

overview to the main construction.

We prove the following statement: Let b′ = (b3, b4, . . . , bN) with bi ∈ {0, 1} be the basis vectors

which are used for the projection on the qubits 3, . . . , N and denote the remaining product state on the

first two qubits by |α(b’)〉|β(b’)〉. Then, |α(·)〉 depends only on some subset of the indices b′, while

|β(·)〉 depends on the complement subset. This statement implies the correctness of the Lemma in

Ref. [38].

The proof is done by assuming the opposite and reaching a contradiction. The opposite claim

is that there exists an index i (without the loss of generality, we can take i = 3) and two sets of

values for the remaining indices

b = b4, b5, . . . , bN and B = B4, B5, . . . , BN , (10.8)

such that

|α(0, b)〉 6= |α(1, b)〉 and |β(0, B)〉 6= |β(1, B)〉, (10.9)
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meaning that both depend on b3. Here, |α(0, b)〉 is a short-hand notation for |α(b3 = 0, b)〉.
Also, the inequality symbol here and in the following indicates linear independence, i.e.,

|α(0, b)〉 6= λ|α(1, b)〉 for any λ 6= 0.

The vectors b and B differ in some entries, but in some entries they match. Without loss of

generality, we can assume that they differ in the first k entries while the others are the same

and equal to zero. More specifically, they can be taken of the form:

b = 0 0 0 . . . 0 0 0 . . . 0,

B = 1 1 1 . . . 1︸ ︷︷ ︸
k

0 0 . . . 0︸ ︷︷ ︸
N−k−3

. (10.10)

Then the proof proceeds via induction on k. The precise statement we want to prove for all k is

the following: Let the vectors b and B differ by at most at k terms. Then, if |α(0b)〉 6= |α(1b)〉,
the equality |β(0B)〉 = |β(1B)〉 must hold. The crucial point here is that on each induction

step we need to use the already derived linear dependencies and independencies from all the

previous induction steps, i.e. for all k′ < k.

The base case proof when k = 0, or, equivalently, when b = B, is covered in the original

paper [38].

The first (k = 0 7→ k = 1) and the second (k = 1 7→ k = 2) step of the induction explicitly is

given in Ref. [40] and these are used in order to get the idea for the general case. The rest of

the proof is given in Ref. [40].

The results can be extended to higher dimensional systems. There are two ways to deal with

this issue. First, one can extend the discussion used to for qubits also to the higher dimensions.

The point is that in the qubit proof the core conditions were always stating that certain indices

are equal or not equal. This, of course, can be formulated also for non-binary indices. A

second and more elegant way, however, makes use of the fact that any N-qudit entangled pure

state can be projected by local means on an entangled N-qubit entangled state. This can be

achieved by the following procedure:

Let |ψ〉 be a d × d × ... × d entangled state, where d is the dimension of the Hilbert space

associated with each system. We start by considering the first subsystem and write down the

Schmidt decomposition with respect to the split 1|2, 3, 4, . . . , N:

|ψ〉 =
d

∑
i=1

si|i〉1|i〉2,3,4,...,N . (10.11)

Then, we proceed as follows:

1. If |ψ〉 is separable with respect to the 1|2, 3, 4, . . . , N partition, the sum consists only

of one term and we do nothing. Note that effectively the whole state lives on a one-

dimensional subspace on Alice’s side, so one can view it as a 1× d× · · · × d state.
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2. If |ψ〉 is entangled with respect to the 1|2, 3, 4, . . . , N partition, we project locally for Alice

onto the two first Schmidt vectors, resulting in the truncated sum:

|ψ′〉 = ∑
i=1,2

s′i|i〉1|i〉2,3,4,...,N . (10.12)

This state is still entangled with respect to the 1|2, 3, 4, . . . , N partition and it is a 2× d×
· · · × d state.

Now, we go on and do the same procedure iteratively for particle 2, then particle 3, etc., until

we arrive at the last party N. At the end we have a state living in a 2× 2× · · · × 2-dimensional

Hilbert space. If the original state was entangled, then the state |ψ′〉 is also entangled: when

going through the parties, there will be some party, say j, where the last projection according

to point (2) above is made. So the final state will be entangled with respect to the j|rest
partition (where rest denotes all the remaining parties) and it is not a fully separable state.

Note that the projection on j may change the separability properties of the 1|rest partition,

and this partition may become separable. However, at least one entangled partition remains,

and as discussed above, this is sufficient to show that the state is not a fully separable state.

So any entangled d × d × · · · × d pure state can be projected locally onto a pure entangled

N-qubit state and for qubit states we already repaired the proof.

A further point worth to discuss is the question whether the state |ψ〉 considered in the proof

has maybe vanishing coefficients in the basis where the projections are made. In fact, the

careful reader may have noticed that for the theorem and the proof above to work, it is required

all possible projections in the computational basis, especially the states |α(·)〉 and |β(·)〉 are

non-zero. This might not be fulfilled for a given basis.

Of course, for a random choice of the product basis this will be in general fulfilled and this

property has been recently utilized to show that genuine multipartite entanglement of all

multipartite pure states in arbitrary finite dimension can be detected in a device-independent

way by employing bipartite Bell inequalities on states that are deterministically generated

from the initial state via random bases measurements [176]. But more constructively, one

can ask whether there is a set of local unitaries that, when applied to any initial state |ψ〉
in the computational basis, give with certainty some states where all the coefficients are non-

vanishing. Interestingly, this question was brought up as one of the “ten most annoying

questions in quantum computing” [177] with the local unitaries being the Hadamard gates

and the solution was given in Ref. [178]. We now recall this result in the following lemma with

the notation σx and σz being the Pauli-X and Pauli-Z matrices, respectively.

Lemma [178]. Given an N-qubit pure state, there is always a way to apply Hadamard gates to

some subset of the qubits to make all 2N computational basis components having non-zero amplitudes.

In other words, if one considers the 2N product bases defined by the eigenstates of the observables

σ
(1)
k1
⊗ · · · ⊗ σ

(N)
kN

with σ
(j)
k ∈ {σx, σz}, then any state |ψ〉 has non-vanishing coefficients in at least

one of these bases.

This Lemma guarantees that a suitable basis can be found in a constructive manner.
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10.4 Projecting on genuine multipartite entanglement

The idea of having an entangled multipartite resource state and projecting it onto a smaller

entangled state via local operations was developed further since the paper of Popescu and

Rohrlich [38]. In Ref. [176] it was proven that given an N-qudit genuine multipartite entangled

state, one can project on a genuine multipartite entangled state on (N − k) parties regardless

of the outcomes, if the rest of the k parties are measured in random bases. Similar statement

was made for projecting on genuine tripartite entanglement using only Pauli-X and -Z bases

measurements in Refs. [179, 180]:

Theorem 10.1. [179, 180] Let |ψ〉 be an N-qubit entangled state with N ≥ 3. There exists some

choice of three of the N qubits and a projection of the other (N − 3) qubits onto a tensor product of

computational and Pauli-X bases states that leaves the three qubits in a genuinely entangled state.

This is a generalization of the result presented in the previous section since the measurement

bases are fixed. However, it is still restricted since it only promises the projection on a genuine

multipartite entangled state on some subset of qubits. Here we give a proof to the most general

result:

Theorem 10.2. Any N-qubit genuine multipartite entangled state can be projected on k party genuine

multipartite entanglement via measurements in X and Z direction on the other (N − k) parties, 3 ≤
k ≤ (N − 1).

Proof. We take a genuine N-qubit entangled state |ψ〉. Let us consider the simplest case: N = 4

and k = 3 and assume the opposite to the theorem. From the original argument of Popescu

and Rohrlich we know that it is possible to project on any two entangled qubits. Let us assume

that to project on an entangled state on parties 12, we need to measure 〈m3| and 〈04| on qubits

three and four, respectively. Then 〈04|ψ〉 7→ 12|3. Similarly, let us assume that to project on

qubits 2, 4 such that the state on 24 is entangled, we need to measure 〈03| on qubit 3. Then

〈03|ψ〉 7→ 1|24. Thus, if we first measure 〈04|ψ〉 7→ 12|3 and after, if we measure 〈03| on the

resulting state, we end up either with entangled state on qubits 1 and 2 since

〈03|ψ12|3〉 7→ 12, (10.13)

or we get zero, since the post-measurement state on qubit 1, 2, 3 might have been of the form

|ψ12|3〉 = |ψ12〉 ⊗ |13〉. However, if we first measure 〈03|ψ〉 7→ 1|24 and then 〈04|, we end up

with a separable state on 1 and 2:

〈04|ψ1|24〉 7→ 1|2 (10.14)

and since the state on 24 is entangled, measuring the forth qubit in computational basis cannot

give 0. This is a contradiction. Therefore, a genuine multipartite entangled state on three qubits

can be obtained by measuring the fourth qubit in either X or Z direction.

Next we generalize the construction to an arbitrary k. For this it is sufficient to show that if

the statement is correct for k = N − 2, then the same follows for k = N − 1. The proof is very

similar to N = 4 and k = 3 case.
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We start by assuming the opposite. We can project on a genuine multipartite entangled state

on the first (N − 2) qubits when measuring 〈mN−1| and 〈0N | without loss of generality. Then

according to the assumption the following must hold

〈0N |ψ〉 7→ 12 . . . (N − 2)|(N − 1). (10.15)

On the other hand, there exits a measurement on the qubit (N − 1), assume 〈0N−1|, which

projects on the configuration

〈0N−1|ψ〉 7→ 1|23 . . . (N − 2)N, (10.16)

where the state on qubits 23 . . . (N − 2)N is genuine multipartite entangled.

Then similarly to the first case, measuring first 〈0N | and then 〈0N−1| gives either a genuine

multipartite entangled state on qubits 12 . . . (N − 1)

〈0N−1|ψ12...(N−2)|(N−1)〉 7→ 12 . . . (N − 2), (10.17)

or zero. On the other hand, first measuring 〈0N−1| and then 〈0N | would yield

〈0N |ψ1|2...(N−2)N〉 7→ 1|2 . . . (N − 2), (10.18)

where the post-measurement state factorizes for the bipartition 1 versus the rest. The rest

can be genuine multipartite entangled or it can itself be separable for some other bipartition,

but this is not important for the proof. What is important that it cannot be zero. Since the

difference sequences of the same commuting measurements reach to the states with different

entanglement properties, we reach the contradiction to the initial assumption. Thus, given any

N-qubit entangled pure state, it is possible to project on a genuine multipartite entangled state

on any subset of 2 < k < N qubits using X or Z bases measurements.

10.5 Summary and outlook

In this section we discussed the proof of the result that any state can violate some Bell in-

equality. We started with an N-partite state and showed that using Pauli-X and -Z bases

measurements it can be projected on any subset of two-qubit entangled states. We generalized

these results to projecting on genuine multipartite entanglement on any arbitrary subset of

2 < k < N parties. The original results for two qubits have been previously used to derive Bell

inequalities in various scenarios. It would be interesting to employee the more general results

in the same direction.
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In this thesis we have considered mainly pure multipartite entanglement and its applications.

The biggest part of the thesis, Chapters 3-7, is devoted to quantum hypergraph states, their

properties, and applications. We compared all our results with already well-established theory

for graph states.

In Chapter 3 we investigated nonlocal properties of hypergraph states. We managed to use

existing nonlocal stabilizer formalism to derive genuine multipartite Bell inequalities. Be-

sides, we demonstrated that the symmetric three- and four- uniform hypergraph states violate

Mermin-like inequalities in an exponentially growing manner with the number of qubits. This

violation is robust under particle loss, in contrast to the results known for the GHZ-states. Due

to such violations, we found interesting applications of these states in quantum metrology and

nonadaptive measurement-based quantum computation with linear side-processing.

In Chapter 4 we developed graphical rules for transformations on hypergraph states. We

started from generalizing the concept of local complementation to hypergraph states. Then we

derived graphical rules of how a hypergraph changes, in case some of its computational basis

elements are transposed. Finally, we used these two results to develop graphical measurement

rules for hypergraph states. These rules curiously correspond to the exact generalizations of

graph state measurement rules.

In Chapter 5 we discussed entanglement quantification and detection for hypergraph states.

We used graphical rules developed in Chapter 4 to obtain tight entanglement witnesses for

three-uniform complete hypergraph states. In the second half of the chapter, we calculated

geometric measure of entanglement for many classes of hypergraph states. Most importantly,

we connected the properties of having a local Pauli stabilizer to analytic derivations of the

value of geometric measure. We believe that these results will have broad further implications

for investigating nonlocal properties of hypergraph states.

In Chapter 6 we demonstrated that three-uniform hypergraph states are novel and interest-

ing resource states for measurement-based quantum computation using Pauli measurements

only. This is not the only advantage they offer, the entire protocol is deterministic and, as

a result, adaptation of measurement basis is only required when basis are changed during

computation.
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In Chapter 7 we studied pure quantum error-correcting codes with hypergraphs being all the

codewords. We derived strict Knill-Laflamme conditions specifically for hypergraph states, ex-

haustively characterized hypergraph states satisfying this condition up to six qubits. We found

that many hypergraphs state codes saturating quantum Singleton bounds. Most interestingly

we discovered that such a six-qubit code is a nonadditive code.

There are several directions in which one can extend our work on hypergraph states:

(i) It would be interesting to derive Bell inequalities for more classes of hypergraph states,

especially for the ones which are eigenstates of local Pauli stabilizers. Since certain

hypergraph states are robust under particle loss, they are also natural candidates to

reveal nonlocality even in the condition of low detection efficiency.

(ii) Graph states are SLOCC equivalent iff they are LU equivalent. This result heavily relies

on the uniqueness of the SLOCC normal form up to LU operations. Already for three-

qubits we saw that for the entire class of hypergraph states this statement does not hold:

The 3-qubit GHZ-state is SLOCC equivalent to the three qubit hypergraph state |H3
3〉,

however, they are not LU-equivalent. Therefore, it is interesting to investigate power of

SLOCC transformations in general hypergraph states. This would help to get an idea

about the limitations of LU operations on hypergraphs and perhaps can give an insight

into deriving new LU equivalence rules.

(iii) We derived a criterion when Pauli-X measurements map hypergraph states to hyper-

graph states. It is not clear that this criteria is necessary for the measurement rule to

hold.

(iv) We used graphical rules for basis transposition to derive tight entanglement witnesses

for three-uniform complete hypergraph states. For graph states tight entanglement wit-

nesses have been derived from stabilizer formalism. It would be desirable to combine

our analysis with the knowledge of graph state case and study detection of entangle-

ment in hypergraph states in general.

(v) We used several techniques to estimate geometric measure of entanglement of symmet-

ric hypergraph states. All these techniques work for symmetric cases. First, it would

be interesting to connect entanglement measures with hypergraph-theoretic properties

of examined states, in a resemblance to the construction in graph states [181]. We have

already seen on the example of three-uniform complete hypergraph states, that local

Pauli stabilizers can be connected to geometric measure of entanglement. This analysis

could be extended to other symmetric states.

(vi) We showed that hypergraph states can be used for measurement-based quantum com-

putation. It is interesting to investigate, how the fidelity of gates implemented on our

architecture scales with certain noise models in the resource states.

(vii) A lot of work needs to be done in the direction of hypergraph-based quantum error-

correcting codes. The code ((6, 16, 2))2 is a stimulating example in this direction, since

it is an example of a nonadditive code. Also it would be interesting to find hypergraph-

based error-correcting codes of higher distance.



Conclusions and outlook 131

The rest of the thesis is devoted to independent topics, however, studying entanglement is still

central in all of them.

Chapter 8 is devoted to pure entangled states with non-homogeneous local dimensions, 2×
m× n. We revisited the connection between these states and linear matrix pencils. As a result

we characterized generic states for any m and n by showing that the full measure set of states

indeed corresponds to the full measure set of pencils in the same local dimension. We studied

coarse graining of entanglement present in these states under noninvertible transformations.

First we showed that in order to obtain any state in the full measure set for any local dimension

2 × m × n, it is sufficient to take a random state in 2 × m × (n + 1). Then this state is a

common resource state for any generic state in 2×m× n under noninvertible transformation.

We also investigated common resource states to reach all the states in 2× m × m, including

the ones in zero measure set and we found that there is a states in 2× m× (2m− 2), which

can do the job. Indeed one can show that this is the optimal local dimension for the common

resource state. Finally the optimal common resource state for all the states in 2×m× n, when

n > m is obtained trivially in 2× m × 2m. There are several directions in which our work

may be generalized. First, it may be useful to find new witnesses or polynomial invariants

characterizing the SLOCC classes. These invariants can be used to construct entanglement

measures such as the so-called three-tangle. Moreover, it might prove promising to study

LOCC transformations within a generic state in 2×m× n systems, as similarly to the bipartite

case, the representative of this SLOCC class is a single state.

In Chapter 9 we studied a possibility to detect entanglement with two observables. We asked

the following natural question, given expectation value of one of the observables, can we im-

prove entanglement detection, if experimental data from some other observable is also known.

We tackled the problem with the theory of Legendre transforms, which, in addition to detect-

ing, can also quantify entanglement. Restricting ourselves to two sets of product observables

C = CA ⊗ CB and L = LA ⊗ LB , we found that, if we are dealing either with qubit-qubit or

qubit-qutrit case, expectation values of these observables can be used to detect entanglement,

if and only if they do not commute locally: [CA, LA] 6= 0 and [CB, LB] 6= 0. For higher di-

mensional cases non-commutativity is not sufficient for detecting entanglement. It is, hence,

still to be determined under which conditions product observables become useful in higher

dimensional Hilbert spaces.

In Chapter 10 we revisited the proof of the following statement. Two-particle entangled state

can be generated from any entangled N-particle state by performing local projections onto

(N − 2) particles. The original proof had a flaw, which we pointed out by a counterexample,

however, the statement itself luckily could be proven with some extra effort. One can indeed

show that, it is sufficient to consider Pauli-X and Z measurements. We generalized the proof

one step further: Any N-qubit genuine multipartite entangled state can be projected on k party

genuine multipartite entanglement via measurements in X and Z direction on the other (N −
k) parties, 3 ≤ k ≤ (N − 1). It is still unclear, if the statement is true for higher dimensions.

Moreover, the original statement has been heavily used in nonlocality proofs and derivations

of Bell inequalities. It is desirable to find similar applications for the more general case.
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Appendix A

An Appendix to Chapter 3

Preliminary calculations

Before starting with the actual calculations, we need to settle couple of identities and a look-up

table, which we will refer to throughout the main proofs.

The first and probably the most important identity is a commutation relation between multi-

qubit phase gates and Pauli X matrices [113],

Ce
(⊗

i∈K
Xk
)
= (

⊗
i∈K

Xk
)(

∏
f∈P(K)

Ce\{ f }
)
. (A.1)

Here, P(K) denotes the power set of the index set K. Note that the product of the Ce\{ f } may

include the term C∅, which is defined to be −1 and leads to a global sign.

Furthermore, it turns out to be useful to recall some basic facts about binomial coefficients, as

the appear frequently in the following calculations.

Lemma A.1. The following equalities hold:

Re
[
(1 + i)n

]
=

n

∑
k=0,4,...

(
n
k

)
−
(

n
k + 2

)
, (A.2)

Im
[
(1 + i)n

]
=

n

∑
k=0,4,...

(
n

k + 1

)
−
(

n
k + 3

)
. (A.3)

Proof. Here we derive (A.2) and (A.3) together:

s := (1 + i)n =
n

∑
k=0

(
n
k

)
ik =

n

∑
k=0,4,...

(
n
k

)
+ i
(

n
k + 1

)
−
(

n
k + 2

)
− i
(

n
k + 3

)
. (A.4)

It is easy to spot that Re[s] and Im[s] indeed leads to the identities (A.2) and (A.3) respectively.
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# n Re
[
(1 + i)n

]
Im
[
(1 + i)n

]
Re
[
(1 + i)n

]
+ Im

[
(1 + i)n

]
Re
[
(1 + i)n

]
− Im

[
(1 + i)n

]
1. n = 0 mod 8 +2

n
2 0 +2

n
2 +2

n
2

2. n = 1 mod 8 +2
n−1

2 +2
n−1

2 +2
n+1

2 0
3. n = 2 mod 8 0 +2

n
2 +2

n
2 −2

n
2

4. n = 3 mod 8 −2
n−1

2 +2
n−1

2 0 −2
n+1

2

5. n = 4 mod 8 −2
n
2 0 −2

n
2 −2

n
2

6. n = 5 mod 8 −2
n−1

2 −2
n−1

2 −2
n+1

2 0
7. n = 6 mod 8 0 −2

n
2 −2

n
2 +2

n
2

8. n = 7 mod 8 +2
n−1

2 −2
n−1

2 0 +2
n+1

2

Table A.1: Look-up table for the values of Eq. (A.2) and Eq. (A.3).

The look-up table, Table A.1 represents the values of (A.2) and (A.3) for different n. These

values can be derived from the basic properties of complex numbers.

A.1 Complete three-uniform hypergraph correlations

Correlations for Pauli-X and Z operators for fully-connected three-uniform
hypergraph states

Proof. Here we present the proof of correlations in Eq. (3.22). We can write:

K := 〈HG|X . . . XZ . . . Z|HG〉 = 〈+|⊗N
(

∏
e∈E

Ce

)
X . . . XZ . . . Z

(
∏
e∈E

Ce

)
|+〉⊗N . (A.5)

We can group all the controlled phase gates on the right hand side of the expression (A.5).

Note that the operators Ce and Xi do not commute, but we can use the identity (A.1). While

regrouping we count the multiplicity of each phase gate. If each phase gate appears even

times, we get an identity as C2 = 1, if not, we keep these phase gates with the multiplicity one

for the further calculations.

For the purposes which will become apparent shortly, we denote the parties which measure

in X direction by ~ and ones in Z direction by 4, in a way that, for example, if an arbitrary

phase gate acts on XXXZZ, it is represented as ~~~44. Without loss of generality, we

fix one phase gate Ce and consider all the possible scenarios of ~ and 4 it can be acting on.

Since we work on three-uniform HG states, every phase gate acts on bashes of different three

party systems. These parties can be either of type ~ or 4 and we have to consider all possible

scenarios. Since we are working with symmetric states, we can sort the parties such that we

have m ~’s followed by (N −m) 4’s:

~ · · ·~︸ ︷︷ ︸
m

4 · · ·4︸ ︷︷ ︸
N−m

(A.6)

and then we can enumerate all the scenarios of one phase gate acting on (A.6):
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1. CeZZZ corresponds to 444 3. CeXXZ corresponds to ~~4

2. CeXZZ corresponds to ~44 4. CeXXX corresponds to ~~~

We consider each case separately:

1. CeZZZ = ZZZCe as Ce and Z commute. Ce moves on the right side with the multiplicity

one. To save us writing in the future, we will denote the multiplicity of the phase gate moving

on the right side by #e. In this particular case it is #444 = 1. However, on the right side

of the equation (A.5) we have a product of all three-party phase gates. Therefore, we get Ce

with the multiplicity of two and C2
e = 1. Note that, as we have chosen an arbitrary three-qubit

phase gate, the same result holds for every such phase gate. So, all three-qubit phase gates

coming from the case 1, cancel out. We will see that with the same reasoning all three qubit

phase gates cancel out (give an identity).

2. For CeXZZ, we use the identity (A.1):

CeXZZ = XCeC{e\X}ZZ. (A.7)

The three-qubit phase gate Ce, from (A.7), appears with the multiplicity one (# ~44 = 1)

and like in the case 1, it gives an identity when being multiplied by the same three-qubit phase

gate at the right side of the expression in (A.5). It is more tricky to calculate the multiplicity of

C{e\X} (#44 as the ~ part (or equivalently, X part) is removed from the set of vertices e.). For

this we need to fix 44 and count all the scenarios when an arbitrary Ce is reduced to 44.

As we are working with the symmetric case, such scenario repeats (m
1 ) = m times, where m is

the number of parties measuring in X direction.We shortly denote this as #44 = (m
1 ) = m.

So, as m is an even number, (C{e\X})m = (C44)m = 1.

Note that the gate C44 can only be generated from in case 2.

3. For CeXXZ, we use the identity (A.1):

CeXXZ = XXCeC{e\XX}
[
∏
∀X

C{e\X}
]

Z. (A.8)

The three-qubit phase gate Ce, from (A.7), appears with the multiplicity one (# ~~4 = 1);

therefore, like in the two previous cases, it cancels out on the right side of the expression. A

multiplicity of C{e\XX} is calculated by fixing a concrete 4 and counting all possible appear-

ance of arbitrary ~~. As the number of parties measuring in direction is X is m, this means

that it is all combination of two parties with X measurements out of total m parties. So,

#4 =

(
m
2

)
=

m(m− 1)
2

=

 even, if m = 0 mod 4 ⇒ C4 cancels out.

odd, if m = 2 mod 4 ⇒ C4 remains.
(A.9)

The last one from this case is the multiplicity of C{e\X} or # ~4. Here we fix one qubit from

m (X direction) and one from N −m (Z direction) and count the number of such occurrences,
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when the third qubit is an arbitrary one of the type ~, which is exactly (m−1
1 ). Therefore,

# ~4 =

(
m− 1

1

)
= m− 1, which is odd,⇒ C~4remains. (A.10)

4. For CeXXX, we use the identity (A.1):

CeXXX = XXXCe

[
∏
∀X

C{e\X}
][

∏
∀X

C{e\XX}
]
C{}. (A.11)

Ce occurs once and it gives an identity with the other one from the right side like in the

previous cases. The multiplicity of C{e\X} is #~~. Here we fix two parties in X direction and

count the occurrence of this scenario by altering the third party, from the remaining m− 2, in

X direction. Therefore,

# ~~ =

(
m− 2

1

)
= m− 2, which is even,⇒ C~~ cancels out. (A.12)

Similarly for C{e\XX}, we fix one party in X direction and count all possibilities of choosing

two parties out of remaining m− 1. Therefore,

#~ =

(
m− 1

2

)
=

(m− 1)(m− 2)
2

=

 odd, if m = 0 mod 4 ⇒ C~ remains.

even if, m = 2 mod 4 ⇒ C~ cancels out.
(A.13)

At last, we consider C{}. This gate determines the global sign of the expectation value and it

appears only when Ce acts on systems which are all measured in X direction. Therefore,

#{} =
(

m
3

)
=

m(m− 1)(m− 2)
2 · 3 , which is even⇒ the global sign is positive . (A.14)

To go on, we need to consider two cases #1: m = 0 mod 4 and #2: m = 2 mod 4 and calculate

the expectation value separately for both:

Case #1: When m = 0 mod 4, we write out all remaining phase gates and continue the

derivation from equation (A.5):

〈K〉 := 〈+|⊗N X . . . XZ . . . Z ∏
∀~,∀4

C~4C~|+〉⊗N . (A.15)
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Using the fact that X is an eigenstate of 〈+|, we can get rid of all Xs and then we can write

C4 instead of Z:

〈K〉 =〈+|⊗N ∏
∀~,∀4

C~4C~C4|+〉⊗N =
1
√

2
N

11...11

∑
i=00...00

〈i| ∏
∀~,∀4

C~4C~C4
1
√

2
N

11...11

∑
j=00...00

|j〉

=
1

2N

[
〈00 . . . 00| ∏

∀~,∀4
C~4C~C4|00 . . . 00〉+ · · ·+ 〈11 . . . 11| ∏

∀~,∀4
C~4C~C4|11 . . . 11〉

]
=

1
2N Tr

[
∏
∀~,∀4

C~4C~C4

]
.

(A.16)

In (A.16), to get line two from the line one, note that ∏∀~,∀4 C~4C~C4 is a diagonal matrix.

To evaluate the trace of the given diagonal matrix, we need to find the difference between the

number of +1 and −1 on the diagonal. We write every row in the computational basis by

enumerating it with the binary notation. For each row, we denote by α the number of 1’s in

binary notation appearing in the first m columns and by β, the same on the rest. For example,

for N = 7 , and m = 4, the basis element |1101110〉 leads to α=3 and β = 2. Considering the

phase gates in the equation (A.16), the expression (−1)s defines whether in the given row the

diagonal element is +1 or −1, where :

s :=
(

α

1

)(
β

1

)
+

(
α

1

)
+

(
β

1

)
= αβ + α + β. (A.17)

In s, (α
1)(

β
1) denotes how many C~4 acts on the row. Also, (α

1) determines the number of C~

and (β
1), number of C4. Every time when the phase gate acts, it changes the sign of the diag-

onal element on the row. Therefore, we need to determine the number s:

To see whether s is even or odd, we have to consider the following cases exhaustively:

1. α is even & β is even (−1)s = +1 ⇒ These two cases sum up to zero.
2. α is even & β is odd (−1)s = −1

3. α is odd & β is even (−1)s = −1 ⇒ These two contribute with ”− ” sign.
4. α is odd & β is odd (−1)s = −1

From the cases 3 and 4, one can directly calculate the trace:

〈K〉 = 1
2N

[
−

m

∑
α=1,3,...

(
m
α

) N−m

∑
β=0

(
N −m

β

)]
= −2m−12N−m

2N = −1
2

. (A.18)

So, we get that if m is divisible by 4,

〈X . . . X︸ ︷︷ ︸
m

Z . . . Z〉 = −1
2

. (A.19)
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Case #2: We use the identical approach: when m = 2 mod 4, we write out all remaining phase

gates and continue the derivation from equation (A.5):

〈K〉 = 〈+|⊗N X . . . XZ . . . Z ∏
∀~,∀4

C~4C4|+〉⊗N . (A.20)

Again we use the fact that X is an eigenstate of 〈+| and Z = C4. As in (A.20), there is already

one (C4), they cancel. Therefore, we are left with:

〈K〉 = 〈+|⊗N ∏
∀~,∀4

C~4|+〉⊗N =
1

2N Tr
[

∏
∀~,∀4

C~4

]
. (A.21)

We need to define the sign of the diagonal element by (−1)s, where

s =
(

α

1

)(
β

1

)
= αβ. (A.22)

1. α is even (−1)s = +1 ⇒ This case contributes with the positive sign in the trace

2. α is odd & β is even (−1)s = +1 ⇒ These two give zero contribution together.
3. α is odd & β is odd (−1)s = −1

As the case 2 and 3 add up to zero, we only consider the case 1:

〈K〉 = 1
2N

m

∑
α=0,2,...

(
m
α

) N−m

∑
β=0

(
N −m

β

)
=

2m−12N−m

2N =
1
2

. (A.23)

So, we get that if m is NOT divisible by 4,

〈X . . . X︸ ︷︷ ︸
m

Z . . . Z〉 = 1
2

. (A.24)

This completes the proof.

Correlations for Pauli-X operators for three-uniform hypergraph states

Proof. In this proof of Eq. (3.23) we employ the notation introduced in details in the proof of

the Eq. (3.22).

〈K〉 := 〈HN
3 |XX . . . XX|HN

3 〉 = 〈+|⊗N
[

∏
e∈E

Ce

]
XX . . . XX

[
∏
e∈E

Ce

]
|+〉⊗N . (A.25)

We use the identity (A.1), to regroup the phase gates on the right hand side of the expression

(A.25). Therefore, we count the multiplicity of the remaining phase gates:



An Appendix to Chapter 3 141

#~~~ Each Ce, where |e| = 3, occurs once and cancels with the one on right hand side.

#~~ = (N−2
1 ) is even⇒ C~~ cancels .

#~ = (N−1
2 ) = (N−1)(N−2)

2 is

 odd, if N = 0 mod 4 ⇒ C~ remains.

even, if N = 2 mod 4 ⇒ C~ cancels.

#{} = (N
3 ) =

N(N−1)(N−2)
2·3 is even⇒ global sign GS is positive.

Therefore, we need to consider two cases to continue the derivation of the expression (A.25):

Case #1: If N = 0 mod 4, then

〈K〉 = 〈+|⊗N XX . . . XX ∏
~∈E

C~|+〉⊗N = 〈+|⊗N ∏
~∈E

C~|+〉⊗N = 0. (A.26)

Case #2: If N = 2 mod 4, then

〈K〉 = 〈+|⊗N XX . . . XX|+〉⊗N =
[
〈+|+〉

]N
= 1. (A.27)

A.2 Complete four-uniform hypergraph correlations

Proof. Each part of the equations (3.6) needs a separate consideration. note that the notation

and machinery that is employed in the proof is based on the proof of the Eq. 3.22. Therefore,

we advise the reader to become familiar with that one first.

Part 1. We consider the cases when N = 8k− 2, N = 8k− 1 or 8k and odd m together. We

prove (i) first:

〈G1〉 = 〈HN
4 |X . . . X︸ ︷︷ ︸

m

Z . . . Z|HN
4 〉 = 〈+|⊗N

(
∏
e∈E

Ce

)
XX . . . XZ . . . Z

(
∏
e∈E

Ce

)
|+〉⊗N . (A.28)

We need to use the identity (A.1) to regroup all the phase gates on the right hand side of

the expression (A.28). If each phase gate occurs even number of times, they give an identity,

otherwise, they are used in the further calculations. We consider each case separately in the

following table:

Remark: All four-qubit phase gates move with the multiplicity one to the right side and there-

fore, cancel out with the same phase gate on the right. The detailed reasoning was discussed

in proof of Eq. (3.22) in the Appendix A.1. So, we skipped such scenarios in Table A.2.

Now we consider two cases of (m− 1) separately and for each case we fix the global sign (GL)

defined in Table A.2.
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1. #444 = (m
1 ) is odd⇒ C444 remains.

2. #44 = (m
2 ) =

m(m−1)
2 is

{
even, if (m− 1) = 0 mod 4 ⇒ C44 cancels.
odd, if (m− 1) = 2 mod 4 ⇒ C44 remains.

#~44 = (m−1
1 ) is even⇒ C~44 cancels.

3. #4 = (m
3 ) =

m(m−1)(m−2)
2·3 is

{
even, if (m− 1) = 0 mod 4 ⇒ C4 cancels.
odd, if (m− 1) = 2 mod 4 ⇒ C4 remains.

#~~4 = (m−2
1 ) is odd⇒ C~~4 remains.

#~4 = (m−1
2 ) = (m−1)(m−2)

2 is

{
even, if (m− 1) = 0 mod 4 ⇒ C~4 cancels.
odd, if (m− 1) = 2 mod 4 ⇒ C~4 remains.

4. #~~~ = (m−3
1 ) is even⇒ C~~~ cancels.

#~~ = (m−2
2 ) = (m−2)(m−3)

2 is

{
odd, if (m− 1) = 0 mod 4 ⇒ C~~ remains.
even, if (m− 1) = 2 mod 4 ⇒ C~~ cancels.

#~ = (m−1
3 ) = (m−1)(m−2)(m−3)

2·3 is even⇒ C~ cancels.
#{} = (m

4 ) =
(m−1)(m−2)(m−3)(m−4)

2·3·4 affects global sign (GL).

Table A.2: Counting phase gates for a four-uniform case. m is odd.

Case # 1: (m− 1) = 0 mod 4:

〈G1〉 =± 〈+|⊗N XX . . . XZ . . . Z ∏
∀~,∀4

C444C~~4C~~|+〉⊗N (A.29)

=± 1
2N Tr( ∏

∀~,∀4
C444C~~4C~~C4). (A.30)

Remark: We write the ’±’ sign as we have not fixed the global sign yet.

To evaluate the trace of the given diagonal matrix, we need to find the difference between the

number of +1’s and −1’s on the diagonal. We write every row in the computational basis by

enumerating it with the binary notation. Due to the symmetry of the problem, we assign the

first m columns to X measurement (~) and the rest to, Z(4). For each row, we denote by α the

number of 1’s in binary notation appearing in the first m column and by β, the same on the

rest. This notation is also adopted. See the proof of Eq. (3.22) for more detailed explanation.

Considering the phase gates in (A.29), the expression (−1)s defines whether in the given row

the diagonal element is +1 or −1, where :

s :=
(

β

3

)
+

(
α

2

)(
β

1

)
+

(
α

2

)
+

(
β

1

)
=

β(β− 1)(β− 2)
2 · 3 +

α(α− 1)
2

(β + 1) + β. (A.31)

The sign of the diagonal element is determined at follows:
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1. α is even & β is even: if α = 0 mod 4⇒ (−1)s = +1

if α = 2 mod 4⇒ (−1)s = −1

2. α is odd & β is even: if (α− 1) = 0 mod 4⇒ (−1)s = +1

if (α− 1) = 2 mod 4⇒ (−1)s = −1

3. (Any α) & β is odd: if (β− 1) = 0 mod 4⇒ (−1)s = −1

if (β− 1) = 2 mod 4⇒ (−1)s = +1

Having established the ±1 values for each row, we can sum them up to find the trace in (A.29).

Here we use the identities (A.2) and (A.3) and afterwards the look-up Table A.1 to insert the

numerical values where necessary:

〈G1〉 =±
1

2N

[
N−m

∑
β=0,2,4...

(
N −m

β

)[ m

∑
α=0,4,...

(
m
α

)
+

(
m

α + 1

)
−
(

m
α + 2

)
−
(

m
α + 3

)]

+ ∑
β=1,5,...

[
−
(

N −m
β

)
∑
α

(
m
α

)
+

(
N −m
β + 2

)
∑
α

(
m
α

)]]

=± 1
2N

[[
Re
[
(1 + i)m

]
+ Im

[
(1 + i)m

]]
2N−m−1 + 2m

N−m

∑
β=1,5,...

[
−
(

N −m
β

)
+

(
N −m
β + 2

)]]

=± 1
2N

[[
Re
[
(1 + i)m

]
+ Im

[
(1 + i)m

]]
2N−m−1 − 2m Im

[
(1 + i)N−m

]]
≡ ± 1

2N E.

(A.32)

We have to consider N = 8k − 1 and N = 8k or N = 8k − 2 separately to continue the

derivation of (A.32):

1. For N = 8k− 1, using the values from Table A.1:

〈G1〉 =±
1

2N

[
2

m+1
2 2N−m−1 − 2m Im

[
(1 + i)N−m

]]

=± 2
m+1

2 2N−m−1 + 2m2
N−m

2

2N = ±2bN/2c−m + 1
2bN/2c−bm/2c .

(A.33)

2. For N = 8k orN = 8k− 2 , using the values from Table A.1:

〈G1〉 =±
1

2N

[
2

m+1
2 2N−m−1 − 2m Im

[
(1 + i)N−m

]]

=± 2
m+1

2 2N−m−1 + 2m2
N−m−1

2

2N = ±2bN/2c−m + 1
2bN/2c−bm/2c .

(A.34)
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Therefore,

〈G1〉 = ±
2bN/2c−m + 1
2bN/2c−bm/2c . (A.35)

Concerning the sign in (A.35), it is affected by the product of two components: one from the

case 4 from Table A.2: GL and the other by E from (A.32). If (m− 1) = 0 mod 8, the equation

E has a positive sign and also GL = +1. And if (m− 1) = 4 mod 8, E has a negative sign and

GL = −1. Therefore, in both cases or equivalently, for (m− 1) = 0 mod 4,

〈G1〉 = +
2bN/2c−m + 1
2bN/2c−bm/2c . (A.36)

Case # 2: (m− 1) = 2 mod 4:

〈G1〉 = ±〈+|⊗N XX . . . XZ . . . Z ∏
∀~,∀4

C444C44C~~4C~4C4|+〉⊗N

= ± 1
2N Tr( ∏

∀~,∀4
C444C44C~~4C~4).

(A.37)

In this case, we apply the same technique to determine the sign:

s :=
(

β

3

)
+

(
β

2

)
+

(
α

2

)(
β

1

)
+

(
α

1

)(
β

1

)
=

β(β− 1)(β− 2)
2 · 3 +

β(β− 1)
2

+
α(α− 1)

2
β + αβ.

(A.38)

The sign of s, is determined at follows:

1. β is even & any α if β = 0 mod 4⇒ (−1)s = +1

if β = 2 mod 4⇒ (−1)s = −1

2. β is odd & α is even: if α = 0 mod 4⇒ (−1)s = +1

if α = 2 mod 4⇒ (−1)s = −1

3. β is odd & α is odd: if (α− 1) = 0 mod 4⇒ (−1)s = −1

if (α− 1) = 2 mod 4⇒ (−1)s = +1

〈G1〉 =±
1

2N

[
∑

β=0,4...

[(
N −m

β

) m

∑
α=0

(
m
α

)
−
(

N −m
β + 2

) m

∑
α=0

(
m
α

)]

+ ∑
β=1,3,...

(
N −m

β

)[ m

∑
α=0,4,...

(
m
α

)
−
(

m
α + 1

)
−
(

m
α + 2

)
+

(
m

α + 3

)]]

=± 1
2N

[
2m ∑

β=0,4,...

[(
N −m

β

)
−
(

N −m
β + 2

)]
+ 2N−m−1

[
Re
[
(1 + i)m

]
− Im

[
(1 + i)m

]]]

=± 1
2N

[
2mRe

[
(1 + i)N−m

]
+ 2N−m−1

[
Re
[
(1 + i)m

]
− Im

[
(1 + i)m

]]]
≡ 1

2N E.

(A.39)
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We have to consider N = 8k − 1 and N = 8k or N = 8k − 2 separately to continue the

derivation of (A.32):

1. For N = 8k− 1, using the values from Table A.1:

〈G1〉 =±
1

2N

[
2mRe

[
(1 + i)N−m

]
+ 2

m+1
2 2N−m−1

]

=± 2m2
N−m

2 + 2
m+1

2 2N−m−1

2N = ±2bN/2c−m + 1
2bN/2c−bm/2c .

(A.40)

2. For N = 8k orN = 8k− 2 , using the values from Table A.1:

〈G1〉 =±
1

2N

[
2mRe

[
(1 + i)N−m

]
+ 2

m+1
2 2N−m−1

]

=± 2m2
N−m−1

2 + 2
m+1

2 2N−m−1

2N == ±2bN/2c−m + 1
2bN/2c−bm/2c .

(A.41)

Therefore,

〈G1〉 = ±
2bN/2c−m + 1
2bN/2c−bm/2c . (A.42)

Concerning the sign in (A.42), it is affected by the product of two components: one from the

case 4 from Table A.2: GL and the other by E in (A.39).

Hence, if (m − 3) = 0 mod 8, E has a negative sign and GL = +1. And if (m − 3) = 4

mod 8, E has a positive sign and GL = −1. Therefore, in both cases or equivalently, for

(m− 1) = 2 mod 4,

〈G1〉 = −
2bN/2c−m + 1
2bN/2c−bm/2c . (A.43)

This completes the proof of part 1 (i).

Part 1 (ii) For N = 8k− 1, show that

〈G2〉 = 〈XX . . . XX︸ ︷︷ ︸
N

〉 = −1. (A.44)

Here as well we use the identity (A.1) to count the multiplicity of remaining phase gates. Since

all the measurements are in X direction, we need to make a new table with the same notations

as in the previous case:

Therefore,

〈G2〉 = −
1

2N Tr
(
1
)
= −1. (A.45)

This finishes the proof of part 1.
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1. # ~~~~ every gate occurs only once⇒ every Ce cancels with the Ce.

2. # ~~~ (8k−4
1 ) is even⇒ C~~~ cancels.

3. # ~~ (8k−3
2 ) is even⇒ C~~ cancels.

4. #~ (8k−2
3 ) is even⇒ C~ cancels.

5. #{} (8k−1
4 ) is odd⇒ we get a global negative sign.

Table A.3: Counting phase gates for a four-uniform HG when each system is mea-
sured in X direction.

Part 2: We show that, for N = 4k + 1:

〈G3〉 = 〈X . . . X︸ ︷︷ ︸
m

Z . . . Z〉 =


+ 1

2dm/2e , if (m− 1) = 0 mod 4,

− 1
2dm/2e , if (m− 1) = 2 mod 4,

1
2bN/2c , if m = N.

(A.46)

Since the number of systems measured in the X direction is the same in this part as it was in

part 1, we can use the results demonstrated in Table A.2. Therefore, we use equation (A.32)

when m− 1 = 0 mod 4 and (A.39), for m− 1 = 2 mod 4.

Case # 1: (m− 1) = 0 mod 4:

〈G3〉 = ±
1

2N

[[
Re
[
(1+ i)m

]
+ Im

[
(1+ i)m

]]
2N−m−1− 2m Im

[
(1+ i)N−m

]]
= ± 1

2N E. (A.47)

As N = 4k + 1, we have that N − m = 4k + 1− m = 4k − (m− 1), which is divisible by 4.

Therefore, Im
[
(1 + i)N−m

]
= 0 and equation (A.47) reduces to:

〈G3〉 = ±
2N−m−1

2N

[
Re
[
(1 + i)m

]
+ Im

[
(1 + i)m

]]
= ± 1

2dm/2e . (A.48)

We need to fix the global sign GL from Table A.2. For this, we consider two cases. First, if

(m− 1) = 0 mod 8, then GL = + and so is the sign E in equation (A.47):

〈G3〉 = +
1

2dm/2e . (A.49)

Second, if (m− 1) = 4 mod 8, then GL = − and so is the sign ofE in equation (A.47):

〈G3〉 = +
1

2dm/2e . (A.50)
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Case # 2: For (m− 1) = 2 mod 4:

〈G3〉 = ±
1

2N

[
2mRe

[
(1 + i)N−m

]
+ 2N−m−1

[
Re
[
(1 + i)m

]
− Im

[
(1 + i)m

]]]
. (A.51)

As N = 4k + 1, we have N −m = 4k + 1−m = 4k− (m− 1), which is not divisible by 4 but is

an even number. Therefore, Re
[
(1 + i)N−m

]
= 0. So, the equation (A.51) reduces to:

〈G3〉 = ±
2N−m−1

2N

[
Re
[
(1 + i)m

]
− Im

[
(1 + i)m

]]
≡ ±2N−m−1

2N E. (A.52)

We need to fix the global sign GL from Table A.2. For this, we consider two cases. First, if

(m − 3) = 0 mod 8, then the global sign is positive but the sign of E in (A.52) is negative.

Therefore,

〈G3〉 = −
1

2dm/2e . (A.53)

Second, if (m− 3) = 4 mod 8, then the global sign is negative but the sign of E in (A.52) is

positive. Therefore,

〈G3〉 = −
1

2dm/2e . (A.54)

Case # 3: m = N resembles part 1 (ii). The only difference comes in with the number of qubits

we are currently working with:

1 # ~~~~ e every gate occurs only once⇒ every Ce cancels with the Ce.

2. # ~~~ (4k−2
1 ) is even⇒ C~~~ cancels.

3. # ~~ (4k−1
2 ) is odd⇒ C~~ remains.

4. #~ (4k
3 ) is even⇒ C~ cancels.

5. #{} the global sign depends on k, as (4k+1
4 ) = (4k+1)4k(4k−1)(4k−2)

2·3·4

Table A.4: Counting phase gates for a four-uniform HG when each system is mea-
sured in X direction.

Back to the expectation value,

〈G3〉 = ±
1

2N Tr
[

∏
∀~

C~~

]
. (A.55)

So, we have to count the difference between the amount of +1’s and −1’s on the diagonal. As

we use exactly the same techniques before, we will skip the detailed explanation. The sign on

the diagonal is:

(−1)(
α
2) = (−1)

α(α−1)
2 . (A.56)

and it is straightforward to evaluate it for each value of α.
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〈G3〉 =±
1

2N

[
N

∑
α=0,4,...

(
N
α

)
+

(
N

α + 1

)
−
(

N
α + 2

)
−
(

N
α + 3

)]

=± 1
2N

[
Re
[
(1 + i)N

]
+ Im

[
(1 + i)N

]]
≡ ± 1

2N E.

(A.57)

Keeping in mind that N = 4k + 1, the global sign from Table A.4 is positive for even k and

negative for odd. The sign of E in (A.57) is positive if k is even and negative, otherwise.

Therefore,

〈G3〉 =
1

2bN/2c . (A.58)

This completes the proof of part 2.

Part 3: We start with (ii). We show that for N = 8k + 2, or 8k + 4:

(ii)

〈G4〉 = 〈XX . . . XX〉 = 2
N
2 −1 + 1

2
N
2

. (A.59)

Although the result seems identical, unfortunately, each case needs a separate treatment. The

technique is similar to the previous proofs, though. We just mind the number of qubits we are

working with:

For N = 8k + 2 we find the remaining phase gates as follows:

1 # ~~~~ each gate only once; thus, every Ce cancels with the Ce.

2. # ~~~ (8k−1
1 ) is odd⇒ C~~~ remains.

3. # ~~ (8k
2 ) is even⇒ C~~ cancels.

4. #~ (8k+1
3 ) is even⇒ C~ cancels.

5. #{} (8k+2
4 ) is even times⇒ we get a global positive sign.

Table A.5: Counting phase gates for a four-uniform HG when each system is mea-
sured in X direction.

Therefore,

〈G4〉 =
1

2N Tr
[
∏
∀~

C~~~

]
. (A.60)
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We use (−1)s to define the sign of the diagonal element and s = (α
3). So, after considering all

possible values of α, it is directly obtained that

〈G4〉 =
1

2N Tr(C~~~) =
1

2N

[ N

∑
α=0,2,...

(
N
α

)
+ ∑

α=1,5,...

[(N
α

)
−
(

N
α + 2

)]]

=
1

2N

[
2N−1 + Im

[
(1 + i)N]] = 2

N
2 −1 + 1

2
N
2

.

(A.61)

For N = 8k + 4 we find the remaining phase gates as follows:

1. # ~~~~ each gate occurs only once⇒ every Ce cancels with the Ce.

2. # ~~~ (8k+1
1 ) is odd⇒ C~~~ remains.

3. # ~~ (8k+2
2 ) is odd⇒ C~~ remains.

4. #~ (8k+3
3 ) is odd⇒ = C~ remains.

5. #{} (8k+4
4 ) is odd⇒ we get a global negative sign, GL = −1.

Table A.6: Counting phase gates for a four-uniform case in all X direction.

Therefore,

〈G4〉 = −
1

2N Tr
[
∏
∀~

C~~~C~~C~

]
. (A.62)

We use (−1)s to define the sign of the diagonal element and s = (α
3) + (α

2) + (α
1). So, after

considering all possible values of α, it is directly obtained that

〈G4〉 =−
1

2N Tr(C~~~C~~C~) = −
1

2N

[ N

∑
α=0,4,...

[(N
α

)
−
(

N
α + 2

)]
−

N

∑
α=1,3,...

(
N
α

)]

=− 1
2N

[
− 2N−1 + Re

[
(1 + i)N]] = 2N−1 + 2N/2

2N =
2

N
2 −1 + 1

2
N
2

.

(A.63)

This finishes the proof of part (i).

(ii) We need to show that

〈G4〉 = 〈X . . . X︸ ︷︷ ︸
m

Z . . . Z〉 =

 + 2m/2−1

2N/2 if (N −m) = 0 mod 4,

− 2m/2−1

2N/2 if (N −m) = 2 mod 4.
(A.64)

Note that in this case m is an even number. Therefore, we have to derive again from the scratch

how phase gates can be moved to the right hand side of the expression and for this we use the

identity (A.1).

Remark: Similarly to previous proofs the four-qubit phase gates cancel out. Therefore, we

directly skip the discussion about them.
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1. #444 = (m
1 ) is even⇒ C444 cancels.

2. #44 = (m
2 ) =

m(m−1)
2 is

{
even, if m = 0 mod 4 ⇒ C44 cancels.
odd, if m = 2 mod 4 ⇒ C44 remains.

#~44 = (m−1
1 ) is odd⇒ C~44 remains.

3. #4 = (m
3 ) =

m(m−1)(m−2)
2·3 is even⇒ C4 cancels.

#~~4 = (m−2
1 ) is even⇒ C~~4 cancels.

#~4 = (m−1
2 ) = (m−1)(m−2)

2 is

{
odd, if m = 0 mod 4 ⇒ C~4 remains.
even, if m = 2 mod 4 ⇒ C~4 cancels.

4. #~~~ = (m−3
1 ) is odd⇒ C~~~ remains.

#~~ = (m−2
2 ) = (m−2)(m−3)

2 is

{
odd, if m = 0 mod 4 ⇒ C~~ remains.
even, if m = 2 mod 4 ⇒ C~~ cancels.

#~ = (m−1
3 ) = (m−1)(m−2)(m−3)

2·3 is

{
odd, if m = 0 mod 4 ⇒ C~ remains.
even, if m = 2 mod 4 ⇒ C~ cancels.

#{} = (m
4 ) =

m(m−1)(m−2)(m−3)
2·3·4 affects the global sign (GL).

Table A.7: Counting phase gates for the four-uniform HG state, for even m.

We need to consider two cases, when m = 0 mod 4 and m = 2 mod 4 for each N = 8k + 2 and

8k + 4 separately:

Case # 1: If m = 0 mod 4:

〈G4〉 = ±〈+|⊗N XX . . . XZ . . . Z ∏
∀~,∀4

C~44C~4C~~~C~~C~|+〉⊗N

= ± 1
2N Tr

[
∏
∀~,∀4

C~44C~4C~~~C~~C~C4
]
.

(A.65)

We use (−1)s to define the sign of the diagonal element and s = (α
1)(

β
2) + (α

1)(
β
1) + (α

3) + (α
2) +

(α
1) + (β

1). If s is even, the value on the diagonal is +1 and −1, otherwise. We consider all

possible values of α and β:

1. α is even & β is even if α = 0 mod 4⇒ (−1)s = +1

if α = 2 mod 4⇒ (−1)s = −1

2. α is even & β is odd: if α = 0 mod 4⇒ (−1)s = −1

if α = 2 mod 4⇒ (−1)s = +1

From here one can easily spot that for even α, there is equal number of +1 and −1 on the

diagonal. So, they do not contribute in the calculations. We now consider the odd α:
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3. α is odd & β is even if β = 0 mod 4⇒ (−1)s = −1

if β = 2 mod 4⇒ (−1)s = +1

4. α is odd & β is odd: if (β− 1) = 0 mod 4⇒ (−1)s = −1

if (β− 1) = 2 mod 4⇒ (−1)s = +1

We now continue calculation of the trace from (A.65):

〈G4〉 = ±
1

2N ∑
α=1,3,5...

(
m
α

)[ N−m

∑
β=0,4,...

−
(

N −m
β

)
−
(

N −m
β + 1

)
+

(
N −m
β + 2

)
+

(
N −m
β + 3

)]

= ±2m−1

2N

[
− Re

[
(1 + i)N−m

]
− Im

[
(1 + i)N−m

]]
= ±2m−1

2N

(
∓ 2

N−m
2

)
.

(A.66)

We have to take care of the sign which appears from the product of the sign of the sum of

real and imaginary part in (A.66) and global sign (GL), which we defined while deriving the

remaining phase gates. If m is divisible by 8, GL = +1 and since we are in N = 8k + 2 case,

(N −m = 8k + 2−m)− 2 mod 8 and therefore:

〈G4〉 =
2m−1

2N

(
− 2

N−m
2

)
= −2m/2−1

2N/2 . (A.67)

If m is not divisible by 8, the global sign GL = −1, and the sum of real and imaginary part

also contribute with a negative sign. Thus,

〈G4〉 = −
2m−1

2N

(
− (−2

N−m
2 )

)
= −2m/2−1

2N/2 . (A.68)

Since the N = 8k + 4 case is identical, we only have to mind the sign of the sum of the real

and imaginary part. Here as well we consider two cases: if m is divisible by 8, then the global

sign GL = +1, and the sign of the sum of real and imaginary part is ”− ”. Therefore,

〈G4〉 =
2m−1

2N

(
− (−2

N−m
2 )

)
= +

2m/2−1

2N/2 . (A.69)

And if m is not divisible by 8, GL = −1, and the sign of real and imaginary part is ” + ”.

Therefore,

〈G4〉 = −
2m−1

2N

(
− (+2

N−m
2 )

)
= +

2m/2−1

2N/2 . (A.70)

Case # 2: If m = 2 mod 4:

〈G4〉 = ±〈+|⊗N XX . . . XZ . . . Z ∏
∀~,∀4

C~44C~~~C44|+〉⊗N

= ± 1
2N Tr( ∏

∀~,∀4
C~44C~~~C44C4).

(A.71)
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We use (−1)s to define the sign of the diagonal element and s = (α
1)(

β
2) + (α

3) + (β
2) + (β

1). If s

is even, the value on the diagonal is +1 and −1, otherwise. We consider all possible values of

α and β:

Considering the terms from odd α:

1. α is odd & β is even if (α− 1) = 0 mod 4⇒ (−1)s = +1

if (α− 1) = 2 mod 4⇒ (−1)s = −1

2. α is odd & β is odd: if (α− 1) = 0 mod 4⇒ (−1)s = −1

if (α− 1) = 2 mod 4⇒ (−1)s = +1

It is easy to see that these cases adds up to 0.

3. α is even & β is even if β = 0 mod 4⇒ (−1)s = +1

if β = 2 mod 4⇒ (−1)s = −1

4. α is even & β is odd: if (β− 1) = 0 mod 4⇒ (−1)s = −1

if (β− 1) = 2 mod 4⇒ (−1)s = +1

Therefore,

〈G4〉 = ±
1

2N ∑
α=0,2,4...

(
m
α

)[ N−m

∑
β=0,4,...

(
N −m

β

)
−
(

N −m
β + 1

)
−
(

N −m
β + 2

)
+

(
N −m
β + 3

)]

= ±2m−1
[

Re
[
(1 + i)N−m

]
− Im

[
(1 + i)N−m

]]
= ±2m/2−1

2N/2 .

(A.72)

To fix the sign, we need to first consider N = 8k + 2, and (m− 2) = 0 mod 8. Then the global

sign GL = +1 and type of N −m also yields a positive sign. But if (m− 2) = 4 mod 8, global

sign in negative and the N −m also yields the negative sign. So,

〈G4〉 =
2m/2−1

2N/2 . (A.73)

N = 8k+ 4 case is identical to N = 8k+ 2, therefore we will just state the result. For N = 8k+ 4

〈G4〉 = −
2m/2−1

2N/2 . (A.74)

To sum up,

〈G4〉 =

 + 2m/2−1

2N/2 if (N −m) = 0 mod 4,

− 2m/2−1

2N/2 if (N −m) = 2 mod 4.
(A.75)

This finishes the proof of part 3.

Part 4: We show that for N = 8k + 3, 〈X . . . X︸ ︷︷ ︸
m

Z . . . Z︸ ︷︷ ︸1
N−m−1

〉 for even m gives the same exact result

as the part 3 (i).
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We tackle the problem as follows: We make a measurement on one of the qubits in Z direction

and depending on the measurement outcome, we obtain the new |HM
4new
〉 state, where M :=

N − 1. Then we consider the expectation values for the all possible measurement outcomes

and |HM
4new
〉. From that we conclude the statement in the part 4.

Initial HG state |HN
4 〉 can be written in the following form as well:

|HN
4 〉 =∏

e
Ce|+〉⊗N = ∏

e′ ,e′′
Ce′Ce′′ |+〉⊗N

= ∏
e′ ,e′′

[
1e′\N |0〉N〈0|N + Ce′\N |1〉N〈1|N

]
Ce′′ |+〉⊗N ,

(A.76)

where e′ represents the gates containing the last qubit, N and e′′ represents the ones which do

not contain Nth qubit. And e = e′ + e′′. Then if one makes a measurement in Z basis on the

last qubit and obtains outcome +,

|HM+
4new
〉 = 〈0N |HN

4 〉 = ∏
e′ ,e′′

[
〈0|N1e′\N |0〉N〈0|N + 〈0|NCe′\N |1〉N〈1|N

]
Ce′′ |+〉⊗N

= ∏
e′ ,e′′

1e′\N〈0|NCe′′ |+〉⊗N = 〈0|N ∏
e′ ,e′′

1e′\NCe′′ |+〉⊗M(|0〉N + |1〉N
)

= ∏
e′ ,e′′

1e′\NCe′′ |+〉⊗M = ∏
e′′

Ce′′ |+〉⊗M.

.

(A.77)

So, + outcome after measuring in Z direction leaves us with |HM+
4new
〉, which is precisely four

uniform M-qubit HG state. Now, let us see what is the remaining state if one gets − as an

outcome result:

|HM−
4new
〉 = 〈1N |HN

4 〉 = ∏
e′ ,e′′

[
〈1|N1e′\N |0〉N〈0|N + 〈1|NCe′\N |1〉N〈1|N

]
Ce′′ |+〉⊗N

= ∏
e′ ,e′′

Ce′\N〈1|NCe′′ |+〉⊗N = 〈1|N ∏
e′ ,e′′

Ce′\NCe′′ |+〉⊗M(|0〉N + |1〉N
)

= ∏
e′ ,e′′

Ce′\NCe′′ |+〉⊗M.

(A.78)

So, − outcome after measuring in Z direction leaves us with |HM−
4new
〉, which is precisely a

symmetric M-qubit HG state with all possible edges of cardinality four and three. We will call

such HG state a three- and four-uniform HG state.

Therefore, problem boils down to showing that, (i) If the measurement outcome is +, we get

the M = 8k + 2 four-uniform HG state and the correlations are given in part 3.

(ii) If the measurement outcome is −, we get M = 8k + 2 three- and fouruniform HG state

and the following holds:

〈G−5 〉 = 〈HM−
4new
|X . . . X︸ ︷︷ ︸

m

Z . . . Z|HM−
4new
〉 =

 − 2m/2−1

2M/2 if (M−m) = 0 mod 4,

+ 2m/2−1

2M/2 if (M−m) = 2 mod 4.
(A.79)
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(i) |HM+
4new
〉, where M = 8k + 2 was already considered in part 3.

(ii). For |HM−
4new
〉,

〈G−5 〉 = 〈+|⊗M
[

∏
e′ ,e′′∈E

Ce′Ce′′
]

X . . . X︸ ︷︷ ︸
m

Z . . . Z
[

∏
e′ ,e′′∈E

CeCe′′
]
|+〉⊗M. (A.80)

Before, we treated three- and four-uniform cases separately. Now, we just need to put them

together.

Case # 1: If m = 0 mod 4:

Then from equations (A.16) and (A.65), we can directly write down that

〈G−5 〉 =
1

2M Tr
[

∏
∀~,∀4

C~44C~~~C~~C4

]
. (A.81)

We check the sign of each term on the diagonal by (−1)s, where s = (α
1)(

β
2) + (α

3) + (α
2) + (β

1).

For this we need to consider each value of α and β separately.

1. α is even & β is even
α = 0 mod 4⇒ +1

⇒ These give zero contribution.

α = 2 mod 4⇒ −1

2. α is even & β is odd
α = 0 mod 4⇒ −1

α = 2 mod 4⇒ +1

3. α is odd & β is even
β = 0 mod 4⇒ +1

β = 2 mod 4⇒ −1

4. α is odd & β is odd
β− 1 = 0 mod 4⇒ −1

β− 1 = 2 mod 4⇒ +1

〈G−5 〉 = ±
1

2M

m

∑
α odd

(
m
α

)[ M−m

∑
β=0,4

(
M−m

β

)
−
(

M−m
β + 1

)
−
(

M−m
β + 2

)
+

(
M−m
β + 3

)]

= ±2m−1

2M

[
Re(1 + i)M−m − Im(1 + i)M−m

]
= ±2

m
2 −1

2M/2 .

(A.82)

If m = 0 mod 8, real and imaginary part in (A.82) has a negative sign and the global sign

coming from Table A.7, GL is positive. Note from equation (A.14) that three uniform gate

moving does not introduce any global signs. And if m = 4 mod 8, real and imaginary part in

(A.82) has a positive sign and the global sign coming from Table A.7, GL is negative.Therefore,

〈G+
5 〉 = −

2
m
2 −1

2M/2 . (A.83)
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Case # 2: If m = 2 mod 4:

Then from equations (A.20) and (A.71), we can directly write down that

〈G−5 〉 = ±
1

2M Tr
[

∏
∀~,∀4

C~44C~4C~~~C44

]
. (A.84)

We check the sign of each term on the diagonal by (−1)s, where s = (α
1)(

β
2) + (α

3) + (β
2) + (α

1)(
β
1).

For this we need to consider each value of α and β separately.

1. α is even & β is even
β = 0 mod 4⇒ +1

β = 2 mod 4⇒ −1

2. α is even & β is odd
β− 1 = 0 mod 4⇒ +1

β− 1 = 2 mod 4⇒ −1

3. α is odd & β is even
α− 1 = 0 mod 4⇒ +1

⇒ These give zero contribution.
α− 1 = 2 mod 4⇒ −1

4. α is odd & β is odd
α− 1 = 0 mod 4⇒ −1

α− 1 = 2 mod 4⇒ +1

〈G−5 〉 = ±
1

2M

m

∑
α even

(
m
α

)[ M−m

∑
β=0,4

(
M−m

β

)
+

(
M−m
β + 1

)
−
(

M−m
β + 2

)
−
(

M−m
β + 3

)]

= ± 1
2M 2m−1

[
Re(1 + i)M−m + Im(1 + i)M−m

]
= ±2

m
2 −1

2M/2 .

(A.85)

If m − 2 = 0 mod 8, real and imaginary part in (A.85) has a positive sign and the global

sign coming from Table A.7, GL is positive. Note from equation (A.14) that the three uni-

form gate moving does not introduce any global signs. And if m − 2 = 4 mod 8, real and

imaginary part in (A.85) has a negative sign and the global sign coming from Table A.7, GL is

negative.Therefore,

〈G−5 〉 = +
2

m
2 −1

2M/2 . (A.86)

Finally, we can put everything together. Since one can observe that 〈G−5 〉 = −〈G+
5 〉,

|0〉〈0|〈G+
5 〉 − |1〉〈1|〈G−5 〉 = |0〉〈0|〈G+

5 〉+ |1〉〈1|〈G+
5 〉 = 1〈G+

5 〉 = 〈X . . . X︸ ︷︷ ︸
m

Z . . . Z︸ ︷︷ ︸
N−m−1

1〉. (A.87)

This completes the proof of part 4.
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A.3 Bell and separability inequalities for noisy four-uniform

states

Proof. The derivation of this result is very similar to the combinatorial calculations in the

previous subsections. Since m is even, we refer to Table A.7 to see what gates remain after

regrouping hyperedges on the right hand side of Eq.(3.41):

Case # 1: If m = 0 mod 4:

〈G6〉 = ±〈+|⊗N X . . . X︸ ︷︷ ︸
m

Z . . . Z︸ ︷︷ ︸
N−m−1

1 ∏
∀~,4,♦

C~44C~4C~4♦C~♦C~~~C~~C~|+〉⊗N

= ± 1
2N Tr

[
∏
∀~,4,♦

C~44C~4C~4♦C~♦C~~~C~~C~C4
]
.

(A.88)

Here ~ again refers to X operator, 4 to Z and ♦ to 1 and it is denoted as γ. The strategy now

is similar to the previous proofs: count the number of +1’s and -1’s on the diagonal and then

their difference divided by 2N gives the trace.

We use (−1)s to define the sign of the diagonal element and s = (α
1)(

β
2) + (α

1)(
β
1) + (α

1)(
β
1)(

γ
1) +

(α
1)(

γ
1) + (α

3) + (α
2) + (α

1) + (β
1). If s is even, the value on the diagonal is +1 and −1, otherwise.

We consider all possible values of α, β, and γ:

a) If γ is even (that is γ = 0):

1. α is even & β is even if α = 0 mod 4⇒ (−1)s = +1

if α = 2 mod 4⇒ (−1)s = −1

2. α is even & β is odd: if α = 0 mod 4⇒ (−1)s = −1

if α = 2 mod 4⇒ (−1)s = +1

From here one can easily spot that for even α, there is equal number of +1 and −1 on the

diagonal. So, they do not contribute in the calculations. We now consider the odd α:

3. α is odd & β is even if β = 0 mod 4⇒ (−1)s = −1

if β = 2 mod 4⇒ (−1)s = +1

4. α is odd & β is odd: if (β− 1) = 0 mod 4⇒ (−1)s = −1

if (β− 1) = 2 mod 4⇒ (−1)s = +1

b) If γ is odd (that is γ = 1):

The cases 1 and 2 don’t change. Therefore, they sum up to 0.

3. α is odd & β is even if β = 0 mod 4⇒ (−1)s = +1

if β = 2 mod 4⇒ (−1)s = −1
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4. Stays the same as in the previous case.

Therefore the result is:

〈G6〉 = ±
1

2N

(
∑

γ even

(
γ

0

)[ m

∑
α odd

(
m
α

)
×

[ N−m−1

∑
β=0,4...

−
(

N −m− 1
β

)
−
(

N −m− 1
β + 1

)
+

(
N −m− 1

β + 2

)
+

(
N −m− 1

β + 3

)]]

+ ∑
γ odd

(
γ

1

)[ m

∑
α odd

(
m
α

)
×

[ N−m−1

∑
β=0,4...

(
N −m− 1

β

)
−
(

N −m− 1
β + 1

)
−
(

N −m− 1
β + 2

)
+

(
N −m− 1

β + 3

)]])

= ± 2m

2N · (−Im[(1 + i)N−m−1]) = ∓
(

1√
2

)N−m+2

.

(A.89)

It is time to fix a sign. One needs to keep in mind that the sign of the Eq. (A.89) is negative:

if m = 4 mod 8, the global sign from the Table A.7 is negative, and Im[(1 + i)N−m−1] =

−2
N−m−2

2 . Therefore, an overall sign in negative. If m = 0 mod 8, global sign is positive and

Im[(1 + i)N−m−1] = 2
N−m−2

2 . Therefore, an overall sign in negative.

Case # 2: If m = 2 mod 4:

〈G6〉 = ±〈+|⊗N X . . . X︸ ︷︷ ︸
m

Z . . . Z︸ ︷︷ ︸
N−m−1

1 ∏
∀~,4,♦

C~44C~~~C44C~4♦C4♦|+〉⊗N

= ± 1
2N Tr( ∏

∀~,4,♦
C~44C~~~C44C~4♦C4♦C4).

(A.90)

We use (−1)s to define the sign of the diagonal element and s = (α
1)(

β
2) + (α

1)(
β
1)(

γ
1) + (α

3) +

(β
2) + (β

1)(
γ
1) + (β

1). If s is even, the value on the diagonal is +1 and −1, otherwise. We consider

all possible values of α, β, and γ:

a) If γ is even (that is γ = 0):

Considering the terms from even α:

1. α is even & β is even if β = 0 mod 4⇒ (−1)s = +1

if β = 2 mod 4⇒ (−1)s = −1

2. α is even & β is odd: if (β− 1) = 0 mod 4⇒ (−1)s = −1

if (β− 1) = 2 mod 4⇒ (−1)s = +1
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Considering odd α:

3. α is odd & β is even if (α− 1) = 0 mod 4⇒ (−1)s = +1

if (α− 1) = 2 mod 4⇒ (−1)s = −1

4. α is odd & β is odd: if (α− 1) = 0 mod 4⇒ (−1)s = −1

if (α− 1) = 2 mod 4⇒ (−1)s = +1
It is easy to see that cases 3 and 4 adds up to 0.

b) If γ is odd (that is γ = 1):

1. Stays the same as in the previous case.

2. Gets an opposite sign, therefore, will cancel out with the a) case 2 in the sum.

3. Stays the same as in the previous case.

4. Stays the same as in the previous case.

Therefore the result is:

〈G6〉 = ±
1

2N 2m
[ N−m−1

∑
β=0,4..

(
N −m− 1

β

)
−
(

N −m− 1
β + 2

)]
= ± 2m

2N Re[(1 + i)N−m−1]. (A.91)

It is time to fix a sign: if m = 2 mod 8, the global sign is positive from Table A.7 and Re[(1 +

i)N−m−1] = 2
N−m−2

2 . Therefore, an overall sign is positive. If m = 6 mod 8, overall sign in

negative and Re[(1 + i)N−m−1] = −2
N−m−2

2 . Therefore, an overall sign in positive.

A.4 Separability inequality for noisy three-uniform states

Proof. As a starting point, we derive the remaining gates on the right hand side of the equa-

tions (3.36), the same derivation turns out to be working for Eq. (3.37) and (3.38). This approach

is analogous to the previous proves, but now, m is odd. Consider two cases:

1. If (m− 1) = 0 mod 4:

〈G7〉 = ±〈+|⊗N X . . . X︸ ︷︷ ︸
m

Z . . . Z︸ ︷︷ ︸
N−m−1

1 ∏
∀~,4,♦

C~~C44C4♦|+〉⊗N

= ± 1
2N Tr

[
C~~C44C4♦C4

]
.

(A.92)

Here ~ again refers to X operator, 4 to Z and ♦ to 1 and is denoted by γ. The strategy

is similar to the previous case: count the number of +1’s and -1’s on the diagonal. Their

difference divided by 2N , gives the trace.

We use (−1)s to define the sign of the diagonal element and s = (α
2) + (β

2) + (β
1)(

γ
1) + (β

1). If s

is even, the value on the diagonal is +1 and −1, otherwise. We consider all possible values of

α, β and γ:
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1. # ~~ = (m−2
1 ) is odd⇒ C~~ remains.

2. #~ = (m−1
2 ) = (m−1)(m−2)

2 is

{
even, if (m− 1) = 0 mod 4 ⇒ C~ cancels.
odd, if (m− 1) = 2 mod 4 ⇒ C~ remains.

3. #{} = (m
3 ) =

m(m−1)(m−2)
2·3 is

{
even, if (m− 1) = 0 mod 4 ⇒ gives "+".
odd, if (m− 1) = 2 mod 4 ⇒ gives "-".

4. #44 = (m
1 ) is odd⇒ C44 remains.

5. # ~4 = (m−1
1 ) is even⇒ C~4 cancels.

6. #4 = (m
2 ) =

m(m−1)
2·3 is

{
even, if (m− 1) = 0 mod 4 ⇒ C4 cancels.
odd, if (m− 1) = 2 mod 4 ⇒ C4 remains.

Table A.8: Counting phase gates for a three-uniform HG when m (m is odd) systems
are measured in X direction.

a) If γ is even (that is γ = 0 ): Considering the terms from even β:

1. β is even & α is even if α = 0 mod 4 and β = 0 mod 4⇒ (−1)s = +1

if α = 0 mod 4 and β = 2 mod 4⇒ (−1)s = −1

if α = 2 mod 4 and β = 0 mod 4⇒ (−1)s = −1

if α = 2 mod 4 and β = 2 mod 4⇒ (−1)s = +1

2. β is even & α is odd if (α− 1) = 0 mod 4 and β = 0 mod 4⇒ (−1)s = +1

if (α− 1) = 0 mod 4 and β = 2 mod 4⇒ (−1)s = −1

if (α− 1) = 2 mod 4 and β = 0 mod 4⇒ (−1)s = −1

if (α− 1) = 2 mod 4 and β = 2 mod 4⇒ (−1)s = +1

Considering odd β:

3. β is odd & α is even if α = 0 mod 4 and (β− 1) = 0 mod 4⇒ (−1)s = −1

if α = 0 mod 4 and (β− 1) = 2 mod 4⇒ (−1)s = +1

if α = 2 mod 4 and (β− 1) = 0 mod 4⇒ (−1)s = +1

if α = 2 mod 4 and (β− 1) = 2 mod 4⇒ (−1)s = −1

4. β is odd & α is odd if (α− 1) = 0 mod 4 and (β− 1) = 0 mod 4⇒ (−1)s = −1

if (α− 1) = 0 mod 4 and (β− 1) = 2 mod 4⇒ (−1)s = +1

if (α− 1) = 2 mod 4 and (β− 1) = 0 mod 4⇒ (−1)s = +1

if (α− 1) = 2 mod 4 and (β− 1) = 2 mod 4⇒ (−1)s = −1

b) If γ is odd (that is γ = 1):

Considering the terms from even β:
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1. and 2. Nothing changes in comparison to a) 1. and 2.

3. and 4. These two terms have opposite sign from a) 3. and 4. Therefore, in the sum they

cancel (γ is always 1.). Therefore,

〈G7〉 =
1

2N−1

[ N−m−1

∑
β=0,4..

(
N −m− 1

β

)
−
(

N −m− 1
β + 2

)]
×

[ m

∑
α=0,4..

(
m
α

)
+

(
m

α + 1

)
−
(

m
α + 2

)
−
(

m
α + 3

)]
=

1
2N−1 Re[(1 + i)N−m−1] ·

(
Re[(1 + i)m] + Im[(1 + i)m]

)
.

(A.93)

Now we can consider each cases separately, for this we use the look-up Table A.1:

(i) If N = 8k + 5 and if (m− 1) = 4 mod 8, Re[(1 + i)N−m−1] = −2
N−m−2

2 and Re[(1 + i)m] +

Im[(1 + i)m] = 2
m+1

2 . Therefore,

〈G7〉 = −
2

N−m−2
2 · 2 m+1

2

2N−1 = −
(1

2

) N−1
2

. (A.94)

And, if (m− 1) = 0 mod 8, Re[(1 + i)N−m−1] = +2
N−m−2

2 and Re[(1 + i)m] + Im[(1 + i)m] =

−2
m+1

2 . Therefore,

〈G7〉 = −
2

N−m−2
2 · 2 m+1

2

2N−1 = −
(1

2

) N−1
2

. (A.95)

Exactly the same is true for N = 8k + 7. But for N = 8k + 6 and if (m − 1) = 4 mod 8,

Re[(1 + i)N−m−1] = −2
N−m−1

2 and Re[(1 + i)m] + Im[(1 + i)m] = 2
m+1

2 . Therefore,

〈G7〉 = −
2

N−m−1
2 · 2 m+1

2

2N−1 = −
(1

2

)b N−1
2 c

. (A.96)

And, if (m − 1) = 0 mod 8, Re[(1 + i)N−m−1] = 2
N−m−1

2 and Re[(1 + i)m] + Im[(1 + i)m] =

−2
m+1

2 . Therefore,

〈G7〉 = −
2

N−m−1
2 · 2 m+1

2

2N−1 = −
(1

2

)b N−1
2 c

. (A.97)

(ii) If N = 8k + 1 and if (m− 1) = 4 mod 8, Re[(1 + i)N−m−1] = −2
N−m−2

2 and Re[(1 + i)m] +

Im[(1 + i)m] = −2
m+1

2 . Therefore,

〈G7〉 =
2

N−m−2
2 · 2 m+1

2

2N−1 =
(1

2

) N−1
2

. (A.98)

And, if (m− 1) = 0 mod 8, Re[(1+ i)N−m−1] = 2
N−m−1

2 and Re[(1+ i)m] + Im[(1+ i)m] = 2
m+1

2 .

Therefore,

〈G7〉 =
2

N−m−1
2 · 2 m+1

2

2N−1 =
(1

2

)b N−1
2 c

. (A.99)

It is analogous for other two cases as well.
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(iii) For N = 4k, Re[(1 + i)N−m−1] = 0. Therefore, 〈G7〉 = 0.

2. If (m− 1) = 2 mod 4:

〈G7〉 = 〈+|⊗N X . . . X︸ ︷︷ ︸
m

Z . . . Z︸ ︷︷ ︸
N−m−1

1 ∏
∀~,4,♦

C~~C~C44C4♦C4C♦|+〉⊗N

=
1

2N Tr
[
C~~C~C44C4♦C♦

]
.

(A.100)

Here ~ again refers to X operator, 4 to Z and ♦ to 1 and is denoted by γ. The strategy

is similar to the previous case: count the number of +1’s and -1’s on the diagonal and their

difference divided by 2N , gives the trace.

We use (−1)s to define the sign of the diagonal element and s = (α
2) + (α

1) + (β
2) + (β

1)(
γ
1) + (γ

1).

If s is even, the value on the diagonal is +1 and −1, otherwise. We consider all possible values

of α, β and γ:

a) If γ is even (that is γ = 0): Considering the terms from even β:

1. β is even & α is even if α = 0 mod 4 and β = 0 mod 4⇒ (−1)s = +1

if α = 0 mod 4 and β = 2 mod 4⇒ (−1)s = −1

if α = 2 mod 4 and β = 0 mod 4⇒ (−1)s = −1

if α = 2 mod 4 and β = 2 mod 4⇒ (−1)s = +1

2. β is even & α is odd if (α− 1) = 0 mod 4 and β = 0 mod 4⇒ (−1)s = −1

if (α− 1) = 0 mod 4 and β = 2 mod 4⇒ (−1)s = +1

if (α− 1) = 2 mod 4 and β = 0 mod 4⇒ (−1)s = +1

if (α− 1) = 2 mod 4 and β = 2 mod 4⇒ (−1)s = −1

Considering odd β:

3. β is odd & α is even if α = 0 mod 4 and (β− 1) = 0 mod 4⇒ (−1)s = +1

if α = 0 mod 4 and (β− 1) = 2 mod 4⇒ (−1)s = −1

if α = 2 mod 4 and (β− 1) = 0 mod 4⇒ (−1)s = −1

if α = 2 mod 4 and (β− 1) = 2 mod 4⇒ (−1)s = +1

4. β is odd & α is odd if (α− 1) = 0 mod 4 and (β− 1) = 0 mod 4⇒ (−1)s = −1

if (α− 1) = 0 mod 4 and (β− 1) = 2 mod 4⇒ (−1)s = +1

if (α− 1) = 2 mod 4 and (β− 1) = 0 mod 4⇒ (−1)s = +1

if (α− 1) = 2 mod 4 and (β− 1) = 2 mod 4⇒ (−1)s = −1

b) If γ is odd (that is γ = 1):

1. and 2. These two terms have opposite sign from a) 1. and 2. Therefore, in the sum they

cancel (γ is always 1.)
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3. and 4. Nothing changes in comparison to a) 3. and 4.Therefore,

〈G7〉 =
1

2N−1

[ N−m−1

∑
β=0,4..

(
N −m− 1

β + 1

)
−
(

N −m− 1
β + 3

)]
×

[ m

∑
α=0,4..

(
m
α

)
−
(

m
α + 1

)
−
(

m
α + 2

)
+

(
m

α + 3

)]
=

1
2N−1 Im[(1 + i)N−m−1] ·

(
Re[(1 + i)m]− Im[(1 + i)m]

)
.

(A.101)

Now we can consider each cases separately, for this we use the look-up Table A.1:

(i) If N = 8k + 5 and if (m− 1) = 4 mod 8, Im[(1 + i)N−m−1] = 2
N−m−2

2 and Re[(1 + i)m]−
Im[(1 + i)m] = −2

m+1
2 . And the overall sign from Table A.8 is negative. Therefore,

〈G7〉 = −
2

N−m−2
2 · (−2

m+1
2 )

2N−1 =
(1

2

) N−1
2

. (A.102)

And, if (m− 1) = 0 mod 8, Im[(1 + i)N−m−1] = −2
N−m−2

2 and Re[(1 + i)m]− Im[(1 + i)m] =

2
m+1

2 . Overall sign in negative. Therefore,

〈G7〉 = −
−2

N−m−2
2 · 2 m+1

2

2N−1 =
(1

2

) N−1
2

. (A.103)

The same holds for N = 8k + 6 and N = 8k + 7. Besides, (ii) differs with the sign flip and is

trivial to check.It is also trivial to prove (iii), as when N = 4k, Im[(1 + i)N−m−1] = 0.
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An Appendix to Chapter 5

Proof of Lemma 5.2

Proof. First we consider 1 vs. N − 1 bipartition. To calculate the maximal Schmidt coefficient

we compute the reduced density matrix. As the state is symmetric, we only have to take the

bipartition 1|2, 3, . . . , N. We have

$1 = Tr
(
|H〉〈H|

)
2...N =

1
2N

(
2N−1 a

a 2N−1

)
. (B.1)

The diagonal elements follow directly from the representation of the hypergraph state in

Eq. (2.72) and do not depend on the structure of the hypergraph. For computing the off-

diagonal entries, we write the hypergraph state as

|H〉 = |0〉∑
x

[
(−1) f0(x)|x〉

]
+ |1〉∑

x

[
(−1) f1(x)|x〉

]
. (B.2)

with x ∈ {0, 1}(N−1). Since we deal with three-uniform complete hypergraph states, we have

f0 = (w(x)
3 ) and f1 = (w(x)+1

3 ), where w(x) is the weight (i.e., the number of “1” entries) of x.

We can then write

a = ∑
x
(−1) f0(x)+ f1(x). (B.3)

The values of f0 and f1 do only depend on w(x) mod 4. Instead of summing over x, we can

also sum over all possible k = w(x) in Eq. (B.3) and distinguish the cases of k mod 4. The

value for a given k is then up to the sign given by the numbers of possible x with the same

w(x) = k. We have:

a =
2N−1

∑
k=0,4...

[(
N − 1

k

)
+

(
N − 1
k + 1

)
−
(

N − 1
k + 2

)
−
(

N − 1
k + 3

)]
=Re

[
(1 + i)N−1]+ Im

[
(1 + i)N−1]. (B.4)
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To give the final result, we have to consider several cases in Eq. (B.4): If N = 4`, then a = 0,

therefore, $1 is maximally mixed and λ1 = 1/2. If N = 4`+ 1 or N = 4`+ 3, then a = ±2
N−1

2 .

Then, it follows that λ1 = 1/2 + 1/2
N+1

2 . Similarly, for N = 4`+ 2, a = ±2
N
2 and therefore

λ1 = 1/2 + 1/2
N
2 . This ends the computation of λ1.

Second, we look at the 2 vs. N− 2 bipartitions. The idea of the proof very much resembles the

previous case. First, we take the bipartition 1, 2|3, 4, . . . , N and trace out the second part:

$12 = Tr
(
|H〉〈H|

)
3...N =

1
2N


2N−2 a+ a+ 0

a+ 2N−2 2N−2 a−
a+ 2N−2 2N−2 a−
0 a− a− 2N−2

 . (B.5)

For computing the entries, we express a hypergraph state in the following way:

|H〉 = |00〉∑
x

[
(−1) f00(x)|x〉

]
+ |01〉∑

x

[
(−1) f01(x)|x〉

]
+ |10〉∑

x

[
(−1) f10(x)|x〉

]
+ |11〉∑

x

[
(−1) f11(x)|x〉

]
. (B.6)

with x ∈ {0, 1}(N−2). The diagonal elements of $12 are, as before, easy to determine. This is

also the case for the two anti-diagonal terms |01〉〈10| = |10〉〈01| as f01 + f10 is always even.

The next term, a+, is derived as Eqs. (B.3, B.4): a+ = Re[(1 + i)N−2] + Im[(1 + i)N−2]. For

the term |00〉〈11|, f00(x) + f11(x) is even if w(x) is even and is odd if w(x) is odd. Therefore

∑x(−1) f00+ f11 = 0. For the last term we find a− = a− a+ = Re
[
(1 + i)N−2]− Im

[
(1 + i)N−2].

Putting all these terms together in the matrix, one can calculate the maximal eigenvalue of $12:

λ2 =
1
8
(3 +

√
4N + 128(a2

+ + a2
−)

2N ) =
1
8
(3 +

√
4N + 64Abs[(1 + i)N ]2

2N )

=
1
8
(3 +

√
4N + 2N+6

2N ). (B.7)

Finally, we have to consider the 1, 2, 3|4 . . . N bipartition and write down the reduced density

matrix:

$123 = Tr
(
|H〉〈H|

)
4...N =

1
2N



2N−3 c c 0 c 0 0 b

c 2N−3 2N−3 −b 2N−3 −b −b 0

c 2N−3 2N−3 −b 2N−3 −b −b 0

0 −b −b 2N−3 −b 2N−3 2N−3 −c

c 2N−3 2N−3 −b 2N−3 −b −b 0

0 −b −b 2N−3 −b 2N−3 2N−3 −c

0 −b −b 2N−3 −b 2N−3 2N−3 −c

b 0 0 −c 0 −c −c 2N−3


,

(B.8)

where c = Re
[
(1 + i)N−3]− Im

[
(1 + i)N−3] and b = −Re

[
(1 + i)N−3]+ Im

[
(1 + i)N−3].

From this we can be derive all possible values of maximal Schmidt coefficient λ3.
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If N ≡ 4k, then λ3 = 2−2 + 2−4k−3
√

48 · 24k + 44k. If N ≡ 4k + 1, then λ3 = 2−2 + 2−2k−1 +

2−4k−3
√

16k(16 + 24k + 22k+2). If N ≡ 4k + 2, then λ3 = 2−2 + 2−2k−1 + 2−4k−3
√

24k(2 + 22k)2

and finally, if N ≡ 4k + 3, then λ3 = 2−2 + 2−2k−2 + 2−4k−3
√

24k(4 + 24k + 22k+1). It can be

easily seen that λ3 is decreasing with N and it is only greater than 1/2 when N = 6.

Reduction of three uniform hypergraph states to the normal form in Lemma 5.3.

Proof. We continue the proof of Lemma 5.3 by considering other simple bipartitions, where

the strategy is the similar and then the final statement follows directly.

We derive the normal form for the bipartition 12|3, 4, . . . , N for an N-qubit fully-connected

three-uniform hypergraph state. We heavily use the normal form for one versus the rest

bipartition. We show that the following statement holds: This state is locally equivalent to the

three-uniform hypergraph state already derived from the bipartition 2|3 . . . N and in addition

has the hyperedge {1, 2, N}.

The steps are very similar to the 1|23 . . . N case:

(a) From a hypergraph we remove all the hyperedges which do not contain either party 1,

or 2.

All the remaining hyperedges are {{1, i, j}, {2, i, j}, {1, 2, i}|2 < i < j ≤ N}

(b) Apply CNOT12.

The adjacency of 2 is A(2) = {{i, j}, {1, i}} for 2 < i < j ≤ N}. Augmented by the control

qubit 1, action of CNOT12 removes {1, i, j} and creates {1, i}, 3 ≤ i ≤ N.

All the remaining hyperedges are {{1, i}, {2, i, j}, {1, 2, i}|2 < i < j ≤ N}

(c) Apply X2.

All the elements in the adjacency A(2) = {{1, i}, {i, j}} for 2 < i < j ≤ N} are added as

hyperedges to the hypergraph. Thus, all the edges of the type {1, i} cancel out and {i, j} can be

directly removed.

All the remaining hyperedges are {{2, i, j}, {1, 2, i}|2 < i < j ≤ N}

(d) Apply the algorithm from the bipartition 1|2 . . . N to the qubits 2|3 . . . N.

Each of the action of the CNOTi,i+1 gate from the algorithm for the bipartition 1|2 . . . N

step (b), 3 ≤ i < N, removes the hyperedge {1, 2, i}, in addition to the its actions consid-

ered for the case of bipartition 1|2 . . . N. Therefore only the hyperedge {1, 2, N} remains

of this type and other ones resulting from the action algorithm from the bipartition one

versus the rest on qubits 2|3 . . . N.

Considering any bipartition 1 . . . p|(p + 1) . . . N of the complete three-uniform hypergraph

state, the consecutively applying local CNOT gates (respecting the fixed bipartition) reduces

the hypergraph to the union of two hypergraphs as shown on Fig. 5.1: p|p + 1 . . . N and

N|1 . . . p, both already reduced to the normal form by the results of one versus the rest bipar-

tition.
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This result is obtained by applying the algorithm from one versus the rest bipartition first to

N|1 . . . p and then to p|(p + 1) . . . N. This ends the proof of Lemma 5.3.
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An Appendix to Chapter 7

Here we give representatives of five- and six-qubit codes as described in the main text:

(i) ((5, 2, 2))2: A three-uniform base code and Pauli-Z decoration for the second codeword

respectively are:

{{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}} and {{3}, {4}, {5}}.
(C.1)

(ii) ((5, 4, 2))2: A three-uniform base code and the decoration for the three other codewords

are given respectively:

The base code: {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}} (C.2)

Decoration #1: {{2}, {1, 3}, {4}, {1, 4}, {3, 4}, {5}, {3, 5}, {4, 5}} (C.3)

Decoration #2: {{2}, {1, 2}, {3}, {4}, {1, 4}, {2, 4}, {2, 5}, {4, 5}} (C.4)

Decoration #3: {{1}, {1, 2}, {3}, {1, 3}, {4}, {2, 4}, {3, 4}, {2, 5}, {3, 5}}. (C.5)

(iii) ((5, 5, 2))2: One of the base codes with mixed cardinality edges and Pauli-Z decorations

for four other codewords respectively are:

The base: {{1, 3},{2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}, {1, 2, 4}, {1, 4, 5}, {2, 4, 5}}
(C.6)

Decoration #1: {{1}, {2}, {4}} (C.7)

Decoration #2: {{1}, {2}, {5}} (C.8)

Decoration #3: {{1}, {4}, {5}} (C.9)

Decoration #4: {{2}, {4}, {5}}. (C.10)
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Decorations of ((6, 16, 2))2 code with the base three-uniform hypergraph state is given in Fig.

7.3:

The base: {{1, 2, 3}, {1, 2, 4}, {1, 3, 5}, {1, 4, 6}, {1, 5, 6}, (C.11)

{2, 3, 6}, {2, 4, 5}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6}} (C.12)

are either single-qubit Pauli-Z or graph edges CZ:

#1: {{1}, {2}, {3}, {6}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 6}, {3, 6}, {4, 6}, {5, 6}} (C.13)

#2: {{1}, {2}, {4}, {6}, {1, 2}, {1, 6}, {2, 3}, {2, 4}, {2, 5}, {3, 6}, {4, 6}, {5, 6}} (C.14)

#3: {{1}, {3}, {5}, {6}, {1, 3}, {1, 6}, {2, 3}, {2, 6}, {3, 4}, {3, 5}, {4, 6}, {5, 6}} (C.15)

#4: {{2}, {4}, {5}, {6}, {1, 4}, {1, 6}, {2, 4}, {2, 6}, {3, 4}, {3, 6}, {4, 5}, {5, 6}} (C.16)

#5: {{3}, {4}, {5}, {6}, {1, 5}, {1, 6}, {2, 5}, {2, 6}, {3, 5}, {3, 6}, {4, 5}, {4, 6}} (C.17)

#6: {{1}, {2}, {5}, {6}, {1, 2}, {1, 3}, {1, 4}, {1, 6}, {2, 4}, {2, 5}, {2, 6}, {3, 5}} (C.18)

#7: {{1}, {3}, {4}, {6}, {1, 2}, {1, 4}, {1, 5}, {1, 6}, {2, 3}, {3, 4}, {3, 5}, {3, 6}} (C.19)

#8: {{1}, {4}, {5}, {6}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 6}, {5, 6}} (C.20)

#9: {{2}, {3}, {4}, {6}, {1, 2}, {1, 4}, {2, 3}, {2, 5}, {2, 6}, {3, 4}, {4, 5}, {4, 6}} (C.21)

#10: {{2}, {3}, {5}, {6}, {1, 2}, {1, 3}, {2, 5}, {3, 4}, {3, 5}, {3, 6}, {4, 5}, {5, 6}} (C.22)

#11: {{1}, {2}, {3}, {4}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 5}, {3, 6}, {4, 5}, {4, 6}} (C.23)

#12: {{1}, {2}, {3}, {5}, {1, 2}, {1, 5}, {2, 3}, {2, 4}, {2, 6}, {3, 5}, {4, 5}, {5, 6}} (C.24)

#13: {{1}, {2}, {4}, {5}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 3}, {2, 5}, {4, 5}, {5, 6}} (C.25)

#14: {{1}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 5}, {1, 6}, {2, 4}, {3, 4}, {4, 5}, {4, 6}} (C.26)

#15: {{2}, {3}, {4}, {5}, {1, 3}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {2, 6}, {3, 4}, {3, 6}}. (C.27)



Appendix D

An Appendix to Chapter 8

Here, we restate Lemma 8.8 introduced in the main text in order to prove Theorem 8.7 and

present a proof of the lemma.

Lemma 8.8. A state |ψ〉 in 2× m × n with Pψ =
⊕n−m

i=1 Lεi can be transformed to a state |φ〉 in

2× m × (n − 1) with Pφ =
⊕n−m−1

i=1 Lε′i
via local operations for any n ≥ m + 2 if the following

condition holds. There exists j ∈ {1, . . . , n−m− 1} such that for all i ∈ {1, . . . , j− 1} εi = ε′i and

for all i ∈ {j, . . . , n− m− 1} εi+1 ≤ ε′i , where we assume (εi)i and (ε′i)i to be sorted in ascending

order.

Proof. First of all, let us note that it suffices to prove the lemma for j = 1, as any other case

can be reduced to that case by acting trivially on the subspace of Pψ which contains the blocks

Lε1 , . . . , Lεj−1 . Hence, we will assume j = 1 in the following, which implies that εi+1 ≤ ε′i
holds for all i ∈ {1, . . . , n−m− 1}. To prove the statement we will explicitly derive the local

operations which perform the transformation. More precisely, we will construct an (n− 1)× n

matrix C which has rank n − 1 such that PψCT is strictly equivalent to PψCT in Eq. (D.2),

where the gray areas vanish. Then we will show that the rank of this matrix pencil, P̃ , is m.

We will then explicitly construct B̃ ∈ Mm such that B̃Pφ = PψCT . As the rank of PψCT is

maximal (and coincides with the rank of the matrix pencil Pφ), B̃ must be invertible, which

shows that there exist B and C such that 1⊗ B⊗ C|ψ〉 = |φ〉.

Let us write d = n − m, where d ≥ 2 and let us assume that the matrix pencils Pψ and Pφ

are in KCF and, furthermore, w.l.o.g. the blocks Lε1 , . . . , Lεd present in Pψ and Lε′1
, . . . , Lε′d−1

present in Pφ are arranged in order of ascending size. Let us now consider an operation C by

the third party given in terms of the n× (n− 1) matrix

CT =
d−1

∑
i=1
Ipi ,p′i

(εi + 1) + Ipi+1,p′i+ε′i−εi+1
(εi+1 + 1), (D.1)

where pi = ∑i−1
j=1(εj + 1), p′i = ∑i−1

j=1(ε
′
j + 1), and Ik,l(ε) is an (m + d)× (m + d− 1) matrix with

all entries vanishing except an ε× ε identity submatrix with its upper left corner placed at the
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coordinate (k, l). This operator transforms the pencil Pψ to an m× (n− 1) sized pencil PψCT

given by





Lε1

Lε2 Lε2

Lε3 Lε3

Lε4

Lεd−1

Lεd

. . .

. . .

ε1 + 1 ε2 + 1 ε3 + 1 ε4 + 1 εd

ε2 + 1

ε3 + 1

ε4 + 1

ε′1 + 1 ε′2 + 1 ε′3 + 1 ε′d−1 + 1

PψCT = .

(D.2)

In other words, the operator CT copies the blocks Lεi and redistributes these copies to new

columns as indicated in Eq. (D.2). Note that this transformation is achieved by column oper-

ations on the pencil solely. Hence, indeed only the third party has to apply some operation

to perform the transformation. Let us look at the structure of the pencil PψCT in Eq. (D.2)

in more detail. The columns of the pencil can be grouped into d− 1 sectors of width ε′i + 1,

respectively. In each of this sectors, two blocks, Lεi and Lεi+1 , occur. It is ensured that these

blocks entirely fit into the sector, as due to the assumption εi+1 ≤ ε′i and thus also εi ≤ ε′i .

Furthermore note, that the horizontal overlap of those two blocks is at least one column, as

ε′i =m−
d−1

∑
j=1,j 6=i

ε′j = m−
i−1

∑
j=1

ε′j −
d−1

∑
j=i+1

ε′j (D.3)

≤m−
i−1

∑
j=1

εj −
d−1

∑
j=i+1

εj+1 = m−
d

∑
j=1,j 6=i,j 6=i+1

εj = εi + εi+1, (D.4)

where we used the assumption εj+1 ≤ ε′j to obtain the inequality. This shows that the trans-

formation from Pψ to PψCT as given in Eq. (D.2) is always possible. The grey shaded areas

will be explained later on.

In the following, we show that this pencil, PψCT , is strictly equivalent to Pφ. To this end, we

first show that PψCT is a full rank matrix pencil, and then we show that there exists some
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invertible operation B such that BPψCT = Pφ. To see that PψCT is of full rank, we consider

the pencil PψCT and apply one more transformation by the third party, which is invertible, to

obtain a strictly equivalent pencil P̃ which is of lower block-triangular form. We then show

that P̃ has full rank. Note that PψCT has a form where the first ε1 rows are zero for all except

the first ε1 + 1 columns. We now give an iterative procedure transforming PψCT to the desired

pencil P̃ which has the property that for all i, the first qi+1 rows are zero on all except the first

pi+1 columns, where qi = ∑i−1
j=1 εj and the above definition for pi is used. In particular, P̃ is

the same matrix pencil as the one given in Eq. (D.2), but now the entries on the grey shaded

areas vanish. As observed above, PψCT has the required form for the first q2 = ε1 rows.

Let us now assume that the pencil has the required form for the first qi rows. We will show

that the pencil can be transformed to a pencil of required form for the first qi+1 rows. To this

end, we show that the columns pi + 1 until p′i can be used to cancel the entries in the rows

qi + 1 until qi+1 of columns pi+1 + 1 until p′i + εi + 1, which constitute one of the grey shaded

areas in Eq. (D.2). To see this, note that the columns pi + 1 until p′i have no non-zero entries in

the first qi rows due to the assumption. On rows qi + 1 until qi+1, these columns have the same

entries as the columns pi+1 + 1 until p′i + εi + 1, as these are entries of two copies of the block

Lεi which are positioned suitably. Hence, we can subtract the columns pi + 1 until p′i from

the columns pi+1 + 1 until p′i + εi + 1 in order to cancel those entries. The resulting pencil

now has the required form for the first qi+1 rows. Moreover, the rest of the pencil remains

unchanged under this operation, because the columns pi + 1 until p′i vanish on all rows after

qi+1, as the first entry on such a row appears in column p′i+1− (εi+1 + 1) + 1 and we have that

(p′i+1 − (εi+1 + 1) + 1) > p′i due to the assumption ε′i ≥ εi+1.

Let us now observe important properties of the pencil P̃ . This pencil has lower block triangular

form, i.e., the pencil has rectangular blocks on its diagonal, all entries to the upper right of the

blocks in the diagonal vanish, and entries in the lower left region are arbitrary.

The first d− 1 blocks are cyclic column permutations of the blocks Lεi , respectively. The last

block is a εd× εd sized block given by the last εd columns of Lεd . Let us now show that the rank

of P̃ is maximal, i.e., r = m. To this end, let us delete d− 1 columns from the pencil, one from

each of the first d− 1 rectangular blocks in the diagonal, in order to obtain a m×m matrix of

lower block-triangular form whose determinant is one m-minor of P̃ . The determinant of a

block-triangular matrix equals the product of the determinants of the blocks on the diagonal

[117] and as all of these determinants are non-vanishing we obtain an non-vanishing m-minor,

which proves that P̃ is of full rank and hence also PψCT is.

We show now that there exists an m× m matrix B̃ such that B̃Pφ = PψCT . To see this, note

that rows of the pencil Pφ can be easily redistributed in order to obtain the pencil PψCT . In

particular, the operator B̃ is given by

B̃ =
d−1

∑
i=1
Iqi ,q′i

(εi) + Iqi+1,q′i+ε′i−εi+1
(εi+1), (D.5)

where q′i = ∑i−1
j=1 ε′j. Here, Ik,l(ε) is a m×m matrix which is defined analogous to before.
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As we have proven that the matrix pencil PψCT is of full rank, it follows that B̃ is invertible

as otherwise the rank of PψCT must be smaller than m. Defining B = B̃−1 we have that

Pφ = BPψCT and hence |φ〉 = 1⊗ B⊗ C|ψ〉, which completes the proof.

Let us prove the following Lemma about minimal indices.

Lemma D.1. Given a list of p linearly independent (in the sense introduced in the preliminaries)

homogenous polynomial vectors in µ and λ (~y1,~y2, . . . ,~yp) of ascending degrees and given a matrix

pencil P such that P~yl = 0 ∀ 1 ≤ l ≤ p. Let ε1 ≤ ε2 ≤ . . . ≤ εp be the first p minimal indices of P .

Then it holds that εl ≤ deg(~yl) ∀ 1 ≤ l ≤ p, where deg(~yl) denotes the degree of ~yl .

Proof. W.l.o.g. we assume that the matrix pencil P is in KCF. Note that the J block and the LT
νi

blocks do not have any vector in the right null-space. The vectors ~yl can hence only be non-

vanishing for the first ∑a
j=1(εj + 1) entries, where a denotes the number of right null-space

blocks in P . Moreover, for each Lε there exists exactly one (linearly independent) vector in the

nullspace. Note that the smallest possible degree of such a vector is ε. Let us now write the

vectors ~yl as ~yl = (~y1
l , . . . ,~ya

l , 0, . . .)T , where the dimension of ~yk
l is εk + 1. Given the block diag-

onal form of P (in KCF) we have that P~yl = P(~y1
l , . . . ,~ya

l , 0, . . .)T = (Lε1~y
1
l , . . . , Lεa~y

a
l , 0, . . .)T .

The fact that each Lεi has only one vector in the null-space implies that for any set of k linearly

independent vectors {~yl} one needs to have at least k different ~yk
l 6= 0. As mentioned before,

for any ~yk
l for which Lεk~y

k
l = 0 it must hold that deg(~yk

l ) ≥ εk and therefore deg(~yl) ≥ εk. As

the vectors (~yl) are sorted in order of increasing degree, the assertion deg(~yl) ≥ εl for all l

follows.



Bibliography

[1] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of

physical reality be considered complete?,” Physical review, vol. 47, no. 10, p. 777, 1935.

[2] E. Schrödinger, “Die gegenwärtige situation in der quantenmechanik,”

Naturwissenschaften, vol. 23, no. 49, pp. 823–828, 1935.

[3] J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics Physique Fizika, vol. 1,

pp. 195–200, 1964.

[4] S. J. Freedman and J. F. Clauser, “Experimental test of local hidden-variable theories,”

Physical Review Letters, vol. 28, no. 14, p. 938, 1972.

[5] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test

local hidden-variable theories,” Phys. Rev. Lett., vol. 23, pp. 880–884, Oct 1969.

[6] E. S. Fry and R. C. Thompson, “Experimental test of local hidden-variable theories,”

Physical Review Letters, vol. 37, no. 8, p. 465, 1976.

[7] A. Aspect, P. Grangier, and G. Roger, “Experimental tests of realistic local theories via

bell’s theorem,” Physical review letters, vol. 47, no. 7, p. 460, 1981.

[8] A. Aspect, P. Grangier, and G. Roger, “Experimental realization of

einstein-podolsky-rosen-bohm gedankenexperiment: a new violation of bell’s

inequalities,” Physical review letters, vol. 49, no. 2, p. 91, 1982.

[9] A. Aspect, J. Dalibard, and G. Roger, “Experimental test of bell’s inequalities using

time-varying analyzers,” Physical review letters, vol. 49, no. 25, p. 1804, 1982.

[10] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F.

Vermeulen, R. N. Schouten, C. Abellán, et al., “Loophole-free bell inequality violation

using electron spins separated by 1.3 kilometres,” Nature, vol. 526, no. 7575, p. 682,

2015.

[11] M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer,

K. Phelan, F. Steinlechner, J. Kofler, J.-A. Larsson, C. Abellán, W. Amaya, V. Pruneri,

M. W. Mitchell, J. Beyer, T. Gerrits, A. E. Lita, L. K. Shalm, S. W. Nam, T. Scheidl,

R. Ursin, B. Wittmann, and A. Zeilinger, “Significant-loophole-free test of bell’s

theorem with entangled photons,” Phys. Rev. Lett., vol. 115, p. 250401, Dec 2015.

173



Bibliography 174

[12] L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens,

T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge,

A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R.

Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellán, W. Amaya,

V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin,

E. Knill, and S. W. Nam, “Strong loophole-free test of local realism,” Phys. Rev. Lett.,

vol. 115, p. 250402, Dec 2015.

[13] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters,

“Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen

channels,” Physical review letters, vol. 70, no. 13, p. 1895, 1993.

[14] C. H. Bennett and S. J. Wiesner, “Communication via one-and two-particle operators on

einstein-podolsky-rosen states,” Physical review letters, vol. 69, no. 20, p. 2881, 1992.

[15] A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Physical review letters,

vol. 67, no. 6, p. 661, 1991.

[16] R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Physical Review

Letters, vol. 86, no. 22, p. 5188, 2001.

[17] N. Gisin and H. Bechmann-Pasquinucci, “Bell inequality, bell states and maximally

entangled states for n qubits,” Physics Letters A, vol. 246, no. 1-2, pp. 1–6, 1998.

[18] A. Higuchi and A. Sudbery, “How entangled can two couples get?,” Physics Letters A,

vol. 273, no. 4, pp. 213–217, 2000.

[19] S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack,

“Separability of very noisy mixed states and implications for nmr quantum

computing,” Physical Review Letters, vol. 83, no. 5, p. 1054, 1999.

[20] R. Jozsa and N. Linden, “On the role of entanglement in quantum-computational

speed-up,” Proceedings of the Royal Society of London. Series A: Mathematical, Physical and

Engineering Sciences, vol. 459, no. 2036, pp. 2011–2032, 2003.

[21] H. J. Kimble, “The quantum internet,” Nature, vol. 453, no. 7198, p. 1023, 2008.

[22] V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating

the standard quantum limit,” Science, vol. 306, no. 5700, pp. 1330–1336, 2004.

[23] P. Hayden, D. W. Leung, and A. Winter, “Aspects of generic entanglement,”

Communications in Mathematical Physics, vol. 265, pp. 95–117, Jul 2006.

[24] D. Gross, S. T. Flammia, and J. Eisert, “Most quantum states are too entangled to be

useful as computational resources,” Phys. Rev. Lett., vol. 102, p. 190501, May 2009.

[25] M. J. Bremner, C. Mora, and A. Winter, “Are random pure states useful for quantum

computation?,” Phys. Rev. Lett., vol. 102, p. 190502, May 2009.



Bibliography 175

[26] T. Morimae, “Finding resource states of measurement-based quantum computing is

harder than quantum computing,” Physical Review A, vol. 96, no. 5, p. 052308, 2017.

[27] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest, and H. J. Briegel,

“Entanglement in graph states and its applications,” Quantum Computers, Algorithms

and Chaos, (IOS Press, Amsterdam, 2006), quant-ph/0602096., vol. 162, 2006.

[28] D. Gottesman, “Stabilizer codes and quantum error correction,” arXiv preprint

quant-ph/9705052, 1997.

[29] N. D. Mermin, “Extreme quantum entanglement in a superposition of macroscopically

distinct states,” Physical Review Letters, vol. 65, no. 15, p. 1838, 1990.

[30] M. Gachechiladze, C. Budroni, and O. Gühne, “Extreme violation of local realism in

quantum hypergraph states,” Physical review letters, vol. 116, no. 7, p. 070401, 2016.

[31] M. Van den Nest, J. Dehaene, and B. De Moor, “Local equivalence of stabilizer states,”

in Proceedings of the 16th international symposium on mathematical theory of networks and

systems (MTNS). KU Leuven, Belgium, 2004.

[32] M. Gachechiladze, N. Tsimakuridze, and O. Gühne, “Graphical description of unitary

transformations on hypergraph states,” Journal of Physics A: Mathematical and Theoretical,

vol. 50, no. 19, p. 19LT01, 2017.

[33] M. Gachechiladze, O. Gühne, and A. Miyake, “Changing the circuit-depth complexity

of measurement-based quantum computation with hypergraph states,” Physical Review

A, vol. 99, no. 5, p. 052304, 2019.

[34] G. Nebe, E. M. Rains, and N. J. A. Sloane, Self-dual codes and invariant theory, vol. 17.

Springer, 2006.

[35] A. R. Calderbank, E. M. Rains, P. Shor, and N. J. Sloane, “Quantum error correction via

codes over gf (4),” IEEE Transactions on Information Theory, vol. 44, no. 4, pp. 1369–1387,

1998.

[36] M. Hebenstreit, M. Gachechiladze, O. Gühne, and B. Kraus, “Coarse graining of

entanglement classes in 2× m× n systems,” Physical Review A, vol. 97, no. 3, p. 032330,

2018.

[37] M. Gachechiladze, N. Wyderka, and O. Gühne, “The structure of ultrafine

entanglement witnesses,” Journal of Physics A: Mathematical and Theoretical, vol. 51,

no. 36, p. 365307, 2018.

[38] S. Popescu and D. Rohrlich, “Generic quantum nonlocality,” Physics Letters A, vol. 166,

no. 5-6, pp. 293–297, 1992.

[39] N. Gisin and A. Peres, “Maximal violation of bell’s inequality for arbitrarily large

spin,” Physics Letters A, vol. 162, no. 1, pp. 15–17, 1992.



Bibliography 176

[40] M. Gachechiladze and O. Gühne, “Completing the proof of “generic quantum

nonlocality”,” Physics Letters A, vol. 381, no. 15, pp. 1281–1285, 2017.

[41] A. Peres, “Separability criterion for density matrices,” Phys. Rev. Lett., vol. 77,

pp. 1413–1415, Aug 1996.

[42] M. Horodecki, P. Horodecki, and R. Horodecki, “Separability of mixed states: necessary

and sufficient conditions,” Physics Letters A, vol. 223, pp. 1–8, Feb 1996.

[43] P. Horodecki, “Separability criterion and inseparable mixed states with positive partial

transposition,” Physics Letters A, vol. 232, pp. 333–339, Feb 1997.

[44] K. Chen and L.-A. Wu, “A matrix realignment method for recognizing entanglement,”

arXiv e-prints, pp. quant–ph/0205017, May 2002.

[45] G. Svetlichny, “Distinguishing three-body from two-body nonseparability by a bell-type

inequality,” Phys. Rev. D, vol. 35, pp. 3066–3069, May 1987.

[46] D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Going Beyond Bell’s Theorem,”

arXiv e-prints, p. arXiv:0712.0921, Dec 2007.

[47] W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent

ways,” Phys. Rev. A, vol. 62, p. 062314, Nov 2000.

[48] F. Verstraete, J. Dehaene, B. De Moor, and H. Verschelde, “Four qubits can be entangled

in nine different ways,” Physical Review A, vol. 65, no. 5, p. 052112, 2002.

[49] J. Cirac, W. Dür, B. Kraus, and M. Lewenstein, “Entangling operations and their

implementation using a small amount of entanglement,” Physical Review Letters, vol. 86,

no. 3, p. 544, 2001.

[50] S. Virmani, S. F. Huelga, and M. B. Plenio, “Classical simulability, entanglement

breaking, and quantum computation thresholds,” Physical Review A, vol. 71, no. 4,

p. 042328, 2005.

[51] K. Audenaert, M. Plenio, and J. Eisert, “The entanglement cost under operations

preserving the positivity of partial transpose,” arXiv preprint quant-ph/0207146, 2002.

[52] F. G. Brandão and M. B. Plenio, “A reversible theory of entanglement and its relation to

the second law,” Communications in Mathematical Physics, vol. 295, no. 3, pp. 829–851,

2010.

[53] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum

entanglement,” Reviews of Modern Physics, vol. 81, pp. 865–942, Apr 2009.

[54] M. B. Plbnio and S. Virmani, “An introduction to entanglement measures,” Quantum

Info. Comput., vol. 7, pp. 1–51, Jan. 2007.

[55] T.-C. Wei and P. M. Goldbart, “Geometric measure of entanglement and applications to

bipartite and multipartite quantum states,” Phys. Rev. A, vol. 68, p. 042307, Oct 2003.



Bibliography 177

[56] A. Schimony, “Degree of entanglementa,” Annals of the New York Academy of Sciences,

vol. 755, no. 1, pp. 675–679, 1995.

[57] L. Tamaryan, H. Kim, E. Jung, M.-R. Hwang, D. Park, and S. Tamaryan, “Toward an

understanding of entanglement for generalizedn-qubit w-states,” Journal of Physics A:

Mathematical and Theoretical, vol. 42, p. 475303, nov 2009.

[58] D. Markham, A. Miyake, and S. Virmani, “Entanglement and local information access

for graph states,” New Journal of Physics, vol. 9, pp. 194–194, jun 2007.

[59] M. Hajdušek and M. Murao, “Direct evaluation of pure graph state entanglement,”

New Journal of Physics, vol. 15, p. 013039, jan 2013.

[60] L. E. Buchholz, T. Moroder, and O. Gühne, “Evaluating the geometric measure of

multiparticle entanglement,” Annalen der Physik, vol. 528, no. 3-4, pp. 278–287, 2016.

[61] L. Qi, G. Zhang, and G. Ni, “How entangled can a multi-party system possibly be?,”

Physics Letters A, vol. 382, no. 22, pp. 1465 – 1471, 2018.

[62] R. Hübener, M. Kleinmann, T.-C. Wei, C. González-Guillén, and O. Gühne, “Geometric

measure of entanglement for symmetric states,” Physical Review A, vol. 80, no. 3,

p. 032324, 2009.

[63] B. M. Terhal, “Bell inequalities and the separability criterion,” Physics Letters A, vol. 271,

no. 5-6, pp. 319–326, 2000.

[64] O. Gühne and G. Tóth, “Entanglement detection,” Physics Reports, vol. 474, no. 1, pp. 1

– 75, 2009.

[65] A. Peres, “All the bell inequalities,” Foundations of Physics, vol. 29, pp. 589–614, Apr

1999.

[66] J. F. Clauser and M. A. Horne, “Experimental consequences of objective local theories,”

Phys. Rev. D, vol. 10, pp. 526–535, Jul 1974.

[67] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test

local hidden variable theories.,” Phys. Rev. Lett., vol. 24, pp. 549–549, Mar 1970.

[68] S. L. Braunstein, A. Mann, and M. Revzen, “Maximal violation of bell inequalities for

mixed states,” Phys. Rev. Lett., vol. 68, pp. 3259–3261, Jun 1992.

[69] B. S. Cirel’son, “Quantum generalizations of bell’s inequality,” Letters in Mathematical

Physics, vol. 4, pp. 93–100, Mar 1980.

[70] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg,

R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell,

M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson,

“Loophole-free bell inequality violation using electron spins separated by 1.3

kilometres,” Nature, vol. 526, pp. 682 EP –, Oct 2015.



Bibliography 178

[71] B. Hensen, N. Kalb, M. S. Blok, A. E. Dréau, A. Reiserer, R. F. L. Vermeulen, R. N.

Schouten, M. Markham, D. J. Twitchen, K. Goodenough, D. Elkouss, S. Wehner, T. H.

Taminiau, and R. Hanson, “Loophole-free bell test using electron spins in diamond:

second experiment and additional analysis,” Scientific Reports, vol. 6, pp. 30289 EP –,

Aug 2016. Article.

[72] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,”

Reviews of Modern Physics, vol. 86, no. 2, p. 419, 2014.

[73] L. Hardy, “Nonlocality for two particles without inequalities for almost all entangled

states,” Phys. Rev. Lett., vol. 71, pp. 1665–1668, Sep 1993.

[74] S. Abramsky, C. M. Constantin, and S. Ying, “Hardy is (almost) everywhere:

nonlocality without inequalities for almost all entangled multipartite states,”

Information and Computation, vol. 250, pp. 3–14, 2016.

[75] P. O. Boykin, T. Mor, M. Pulver, V. Roychowdhury, and F. Vatan, “A new universal and

fault-tolerant quantum basis,” Information Processing Letters, vol. 75, no. 3, pp. 101–107,

2000.

[76] Y. Shi, “Both toffoli and controlled-not need little help to do universal quantum

computation,” arXiv preprint quant-ph/0205115, 2002.

[77] E. Knill and R. Laflamme, “Theory of quantum error-correcting codes,” Physical Review

A, vol. 55, no. 2, p. 900, 1997.

[78] E. M. Rains, “Nonbinary quantum codes,” IEEE Transactions on Information Theory,

vol. 45, no. 6, pp. 1827–1832, 1999.

[79] E. M. Rains, “Quantum weight enumerators,” IEEE Transactions on Information Theory,

vol. 44, no. 4, pp. 1388–1394, 1998.

[80] A. Scott, “Multipartite entanglement, quantum-error-correcting codes, and entangling

power of quantum evolutions,” Physical Review A, vol. 69, no. 5, p. 052330, 2004.

[81] E. M. Rains, “Shadow bounds for self-dual codes,” IEEE Transactions on Information

Theory, vol. 44, no. 1, pp. 134–139, 1998.

[82] E. Rains and N. Sloane, “Self-dual codes, in the handbook of coding theory, vs pless

and wc huffman, eds,” 1998.

[83] A. Ekert and C. Macchiavello, “Error correction in quantum communication,” arXiv

preprint quant-ph/9602022, 1996.

[84] P. Sarvepalli and A. Klappenecker, “Degenerate quantum codes and the quantum

hamming bound,” Physical Review A, vol. 81, no. 3, p. 032318, 2010.

[85] M. Grassl, “Bounds on the minimum distance of linear codes and quantum codes.”

Online available at http://www.codetables.de, 2007. Accessed on 2019-05-19.

http://www.codetables.de


Bibliography 179

[86] F. Huber, O. Gühne, and J. Siewert, “Absolutely maximally entangled states of seven

qubits do not exist,” Physical review letters, vol. 118, no. 20, p. 200502, 2017.

[87] M. Van den Nest, J. Dehaene, and B. De Moor, “Local unitary versus local clifford

equivalence of stabilizer states,” Phys. Rev. A, vol. 71, p. 062323, Jun 2005.

[88] Z. Ji, J. Chen, Z. Wei, and M. Ying, “The lu-lc conjecture is false,” arXiv preprint

arXiv:0709.1266, 2007.

[89] N. Tsimakuridze and O. Gühne, “Graph states and local unitary transformations

beyond local clifford operations,” Journal of Physics A: Mathematical and Theoretical,

vol. 50, no. 19, p. 195302, 2017.

[90] O. Gühne, G. Tóth, P. Hyllus, and H. J. Briegel, “Bell inequalities for graph states,”

Physical review letters, vol. 95, no. 12, p. 120405, 2005.

[91] G. Tóth, O. Gühne, and H. J. Briegel, “Two-setting bell inequalities for graph states,”

Physical Review A, vol. 73, no. 2, p. 022303, 2006.

[92] O. Gühne and A. Cabello, “Generalized ardehali-bell inequalities for graph states,”

Physical Review A, vol. 77, no. 3, p. 032108, 2008.

[93] S. Roy, “Multipartiteseparability inequalities exponentially stronger than local reality

inequalities,” Physical review letters, vol. 94, no. 1, p. 010402, 2005.

[94] R. Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-based quantum

computation on cluster states,” Physical review A, vol. 68, no. 2, p. 022312, 2003.

[95] M. Van den Nest, A. Miyake, W. Dür, and H. J. Briegel, “Universal resources for

measurement-based quantum computation,” Physical review letters, vol. 97, no. 15,

p. 150504, 2006.

[96] D. Gross and J. Eisert, “Quantum computational webs,” Physical Review A, vol. 82,

no. 4, p. 040303, 2010.

[97] J. Miller and A. Miyake, “Hierarchy of universal entanglement in 2d

measurement-based quantum computation,” npj Quantum Information, vol. 2, p. 16036,

2016.

[98] A. Kissinger and J. van de Wetering, “Universal MBQC with generalised parity-phase

interactions and Pauli measurements,” arXiv e-prints, p. arXiv:1704.06504, Apr 2017.

[99] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, “A meet-in-the-middle algorithm for

fast synthesis of depth-optimal quantum circuits,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 32, no. 6, pp. 818–830, 2013.

[100] M. A. Nielsen and I. Chuang, “Quantum computation and quantum information,”

2002.

[101] D. Maslov, “Advantages of using relative-phase toffoli gates with an application to

multiple control toffoli optimization,” Physical Review A, vol. 93, no. 2, p. 022311, 2016.



Bibliography 180

[102] F. Motzoi, M. Kaicher, and F. Wilhelm, “Linear and logarithmic time compositions of

quantum many-body operators,” Physical review letters, vol. 119, no. 16, p. 160503, 2017.

[103] P. Selinger, “Quantum circuits of t-depth one,” Physical Review A, vol. 87, no. 4,

p. 042302, 2013.

[104] C. Kruszynska and B. Kraus, “Local entanglability and multipartite entanglement,”

Physical Review A, vol. 79, no. 5, p. 052304, 2009.

[105] R. Qu, J. Wang, Z.-s. Li, and Y.-r. Bao, “Encoding hypergraphs into quantum states,”

Physical Review A, vol. 87, no. 2, p. 022311, 2013.

[106] M. Rossi, M. Huber, D. Bruß, and C. Macchiavello, “Quantum hypergraph states,” New

Journal of Physics, vol. 15, no. 11, p. 113022, 2013.

[107] M. Rossi, D. Bruß, and C. Macchiavello, “Hypergraph states in grover’s quantum

search algorithm,” Physica Scripta, vol. 2014, no. T160, p. 014036, 2014.

[108] H. Buhrman, R. Cleve, J. Watrous, and R. De Wolf, “Quantum fingerprinting,” Physical

Review Letters, vol. 87, no. 16, p. 167902, 2001.

[109] C. E. Mora, H. J. Briegel, and B. Kraus, “Quantum kolmogorov complexity and its

applications,” International Journal of Quantum Information, vol. 5, no. 05, pp. 729–750,

2007.

[110] Y. Takeuchi and T. Morimae, “Verification of many-qubit states,” Physical Review X,

vol. 8, no. 2, p. 021060, 2018.

[111] T. Morimae, Y. Takeuchi, and M. Hayashi, “Verification of hypergraph states,” Physical

Review A, vol. 96, no. 6, p. 062321, 2017.

[112] H. Zhu and M. Hayashi, “Efficient verification of hypergraph states,” arXiv preprint

arXiv:1806.05565, 2018.

[113] O. Gühne, M. Cuquet, F. E. Steinhoff, T. Moroder, M. Rossi, D. Bruß, B. Kraus, and

C. Macchiavello, “Entanglement and nonclassical properties of hypergraph states,”

Journal of Physics A: Mathematical and Theoretical, vol. 47, no. 33, p. 335303, 2014.

[114] E. Chitambar, C. A. Miller, and Y. Shi, “Matrix pencils and entanglement classification,”

Journal of Mathematical Physics, vol. 51, no. 7, p. 072205, 2010.

[115] F. Gantmacher, “The theory of matrices chelsea publishing company,” New York, vol. 1,

pp. 125–131, 1959.

[116] E. Chitambar, C. A. Miller, and Y. Shi, “Comment on" matrix pencils and entanglement

classification",” arXiv preprint arXiv:0911.4058, 2009.

[117] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university press, 2012.

[118] R. F. Werner and M. M. Wolf, “All-multipartite bell-correlation inequalities for two

dichotomic observables per site,” Physical Review A, vol. 64, no. 3, p. 032112, 2001.



Bibliography 181
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