" UNIVERSITAT Computergraphik und C §

SIEGEN Multimediasysteme

EFFICIENT RENDERING AND SIMULATION OF
FLUID TRANSPORT AND PHASE TRANSITIONS
IN SPH-BASED FLUIDS

DISSERTATION
zur Erlangung des Grades eines
Doktors der Ingenieurswissenschaften (Dr.-Ing.)

vorgelegt von
Dipl.-Inf. Hendrik Hochstetter

eingereicht bei der Naturwissenschaftlich-Technischen Fakultét
der Universitdt Siegen
Siegen 2018



Betreuer und erster Gutachter
Prof. Dr. Andreas Kolb
Universitat Siegen

Zweiter Gutachter
Prof. Dr. Riidiger Westermann
Technische Universitiat Miinchen

Tag der miindlichen Priifung
22.Mai 2019

Gedruckt auf alterungsbestdndigem holz- und sdurefreiem Papier.



Abstract

Particle based fluid simulation using the smoothed particle hydrodynam-
ics (SPH) method has gained much attention in recent years. Due to
its flexible discretization, inherent mass preservation and its ability to stably
simulate free surface flows and complex interactions with boundaries, SPH
has found its way into many fields of research and application. While many
phenomena including the transport of substances such as salt or dye, and
melting and solidification can already be described in SPH, interactions with
the air phase are commonly omitted. Typically, SPH liquids are rendered only
in terms of their surface. However, with the growing complexity of simulations
there arises a need for complementary rendering and visualization techniques
that take transport of substances in the fluid’s bulk into account. The goal of
this work is to improve fluid animation of surface dynamics and the rendering
and visualization of fluid transport.

First, a simulation of evaporation and condensation of SPH based fluids
is introduced. Therefore, the air phase is simulated on a coarse grid and ex-
changes mass with the particle based liquid phase. Condensation only takes
place on surfaces of rigid objects and is realized using textures into which mass
can be condensed and from which particles can be generated. In order to
achieve high visual detail of condensed liquids at surfaces, an implicit surface
model is developed that allows to render moving liquid droplets at sub-particle
detail including dynamic contact angles.

Second, an efficient adaptive volume ray casting of SPH-based scalar fields
is developed. In order to achieve fast spatial access to particle data, particles
are mapped to cells of a view-aligned perspective grid. By applying a sampling
error analysis to the volume rendering equation inside of each grid cell, the
sampling rate can locally be adjusted according to a user-defined screen space
error tolerance yielding substantial speedups without sacrificing image quality.

Third, this work presents a vector field visualization of advective-diffusive
flows of scalar quantities. Therefore, the advective, diffusive and total flow are
each decomposed into a scalar quantity and a velocity component of transport.
By introducing the novel visual metaphor of stream feathers, all flow compo-
nents can be simultaneously visualized allowing for an intuitive insight into
complex flow scenarios.






Zusammenfassung

Partikelbasierte Fliissigkeitssimulation mit der Smoothed Particle Hydrody-

namics (SPH) Methode hat in den letzten Jahren grolle Aufmerksamkeit
erfahren. Aufgrund ihrer flexiblen Diskretisierung, ihrer inhdrenten Masseer-
haltung und ihrer Stérke, Strémungen an freien Oberflachen und komplexe
Fluid-Struktur-Kopplung stabil zu simulieren, hat die SPH-Methode Einzug
in viele Forschungs- und Anwendungsbereiche gehalten. Wahrend viele Pha-
nomene wie der Transport von Substanzen wie Salz oder Farbstoff und das
Schmelzen und Erstarren bereits in SPH umgesetzt werden, werden Wech-
selwirkungen mit der umgebenden Luftphase im Allgemeinen vernachléssigt.
Ublicherweise werden nur Oberflichenrenderings von SPH-basierten Fliis-
sigkeiten zur Darstellung verwendet. Mit der wachsenden Komplexitidt von
Simulationen geht allerdings auch der Bedarf an entsprechenden Techniken
des Renderings und der Visualisierung einher, die auch den Transport von
Substanzen im Inneren des Fluids miteinbeziehen. Das Ziel dieser Arbeit ist es,
sowohl die Fluidanimation von Oberflachenprozessen als auch das Rendering
und die Visualisierung von Fluidtransportphdnomenen weiterzuentwickeln.

Zuerst wird eine Simulation der Verdunstung und Kondensation SPH-basier-
ter Fliissigkeiten vorgestellt. Dazu wird die Luftphase auf einem groben Gitter
simuliert, tiber das ein Masseaustausch mit der partikelbasierten Fliissigkeits-
phase erfolgt. Kondensation findet ausschliellich an Oberflachen von Festkor-
pern statt und wird mittels Texturen realisiert, in die Masse kondensieren kann
und von der Partikel erzeugt werden konnen. Um kondensierte Fliissigkeit in
hoher visueller Auflésung zu erreichen, wird ein implizites Oberflichenmodell
entwickelt, das es ermdglicht, sich bewegende Partikel in Subpartikelauflosung
mit dynamischen Kontaktwinkeln darzustellen.

Zweitens wird ein effizientes adaptives Volumen-Raycasting fiir SPH-basierte
Skalarfelder entwickelt. Um dabei schnellen raumlichen Zugriff auf Partikel-
daten zu erhalten, werden Partikel auf Zellen eines perspektivischen Gitters
abgebildet, das mit dem Sichtfrustum ausgerichtet ist. Durch eine Analyse des
Samplingfehlers der Volumenrenderinggleichung innerhalb jeder Gitterzelle
kann die Samplingrate lokal an eine benutzerdefinierte Bildfehlertoleranz an-
gepasst werden. Dadurch lésst sich eine gro3e Beschleunigung erreichen, ohne
die Bildqualitdt zu beeintrdachtigen.



Drittens wird in dieser Arbeit eine Vektorfeldvisualisierung von advektiv-
diffusiven Fliissen von skalaren Grof3en vorgestellt. Dazu werden der advektive,
der diffusive und der totale Fluss jeweils in eine skalare und eine Geschwindig-
keitskomponente des Transports zerlegt. Mit Hilfe der neuen graphischen Me-
tapher der Stream Feathers konnen alle Komponenten von Fliissen gleichzeitig
dargestellt werden, was einen intuitiven Zugang zu komplexen Flussszenarien
erlaubt.
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Notations

This nomenclature gives all necessary symbols as used throughout this thesis.
Despite striving for uniqueness, some symbols are still used redundantly in dif-
ferent meanings. This is true, e.g., for T which in general denotes temperature
but denotes transparency in the context of ray casting in Chapter 5. Thus, the
nomenclature below is grouped into general quantities and special quantities
that are used only in specific contexts and chapters. In case of redundancy, the
specific meaning should always be clear from context.

Acronyms and abbreviations

APIC Affine Particle-in-Cell method

CFL Courant-Friedrichs-Lewy

CSPH Corrected SPH

EOS Equation of state

FLIP Fluid-Implicit-Particle method

IISPH Implicit Incompressible SPH

MAC Marker-and-Cell

PBF Position-based fluids

PCISPH Predictive Corrective Incompressible SPH
PIC Particle-in-Cell method

RK4 The Runge-Kutta method (of order 4)
SPH Smoothed Particle Hydrodynamics method
WCSPH Weakly Compressible SPH

Mathematical and Physical Notations

- a o o\’
\Y Gradient operator (E’ 3y &)
; 4 , 0,0
V- Divergence operator (ﬁ + 3y + &)
2 62 02 02
\Y% Laplace operator (_6x2 + 372 +37

T, AT Time, time step

xiii



Notations
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Aoz
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Ry

SPH notations

Xi

Mass

Area

Volume
Density
Pressure
Temperature
Concentration
Position
Velocity
Acceleration

[

Force, force density f =7
Gravitational acceleration and its normalized direction
Dynamic viscosity, kinematic viscosity

Surface curvature

Surface delta function

Surface tension

Surface stress tensor

Viscous stress

Diffusivity

Boltzmann constant

Specific heat capacity

Heat conductivity

Overall heat transfer coefficient

Specific gas constant of water

Position of particle i

Vector x; — x; between particles i and j and its length
Velocity difference vector v; — ¥; between particles i and j
Kernel function

Corrected SPH kernel function

Kernel support radius

Particle number density

Quantity Q, e.g., temperature or concentration, of particle i
Implicit surface function

Smoothed surface delta



Notations

Evaporation and Condensation

c Cell index

t Texel index

i,]j Particle index

s Surfel, i.e., either a surface particle or a texel index

w; Weighting term of particle i, w; € [0,1]

Volume Ray Casting

I, , o4 Emitted radiance, absorption of light

xTt Interval x* =[x, x|

w(xT) Width of interval x*

E; Error tolerance for radiance in the final image € [0, 1]

Erelax Relaxation parameter for relaxed error estimation € [0, 1]

Q;, Ok Quantity of particle 7, of ray sample k

Q% Quantity bounds at sampling depth k

i,f’l , t,f’l Radiance, transparency sample bounds at sampling depth k
and level [

I CI’Z , TCI'I Radiance, transparency cell bounds of cell ¢ and level [

Isp , Tsp Radiance, transparency of a super-pixel

[I%’l , T%’l Radiance, transparency ray bundle bounds for cell sequence
lo, ...l

c Cell

C Cell indexing function

max Maximum sampling level of cell ¢

I Vector of sampling levels of cell sequence Iy, ..., /a5t

Dy, , D, Resolution of a cell in xy- and z-directions

Aip=2! Discrete sampling step size at level [

tf Transfer function

Advection-Diffusion Visualization

Car»Cd, Ct, Cm

Va, Vi, Vs, Um

ja’jd’ft’jm

Advective, diffusive, unified mean and unified maximum
concentration

Advective, diffusive, unified mean and unified maximum
velocity

Advective, diffusive, unified mean and unified maximum
concentration fluxes
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Introduction

This chapter briefly describes the challenges of fluid simulation and rendering
in the context of computer graphics and motivates the investigation of complex
phenomena involving fluid transport and thermodynamic processes. The chap-
ter closes by outlining the contributions that have been made to different fields
of computer graphics.

In the field of computer graphics, a wide range of topics is studied. This Researchin
includes 3D modeling as it is used in computer-aided design, animation ™" uter graphics
and rendering of dynamic scenes including fluid simulation, and visualization

of simulated or scanned data. Especially in rendering and animation, many de-

velopments are driven by the computer games and film industries which strive

for ever-growing levels of realism in physical simulations and visual effects. For

games, real-time constraints additionally have to be fulfilled which require the

development of highly efficient methods that often exploit massively parallel

processors like GPUs. Animation includes the simulation of liquids and gases

which are rendered to produce high-quality visual results. In visualization,

computer graphical methods are developed that focus on visually conveying

insight into often large amounts of data instead of striving only for realism.

Visualization most often addresses medical and scientific applications, e.g., the

visual presentation of simulated scalar fields by means of volume rendering.

In animation, rendering and visualization, liquids are usually only de- Fluidanimation and
scribed in terms of their convective motions. Additional effects like advective- """
diffusive fluid transport, interactions with the air phase and thermodynamic
processes have only rarely been considered. The goal of this thesis is to fill
some of these gaps and to introduce a simulation approach for the thermody-
namic processes of evaporation and condensation, an efficient rendering of
volumetric scalar data, and a vector field visualization method that intuitively
conveys advective-diffusive transport phenomena.



Introduction

1.1

Motivation

CFD methods in
computer graphics

Fluid transport

Modeling complex
phenomena

Efficient parallel
simulation and
visualization

Every new generation of hardware leads to an increase in performance and
memory space and thus allows for simulations and renderings at higher resolu-
tions as well as with more realistic and more detailed models. While early fluid
simulation models in computer graphics rather focused on imitating the visual
appearance of fluids, it is desirable to derive simulation models in close accor-
dance with the laws of physics. The parameters involved, e.g., density, viscosity
and surface tension, can be interpreted very intuitively. Thus, techniques in
computer graphics are increasingly adopted from the field of computational
fluid dynamics (CFD). For efficiency reasons, models in computer graphics are
often reduced and only encompass a small subset of underlying physical laws.

In fluid transport, the fluid acts as a carrier of substances which are trans-
ported by two distinct modes of transport. On the microscopic level, substances
are transported by diffusion, i.e., through random collisions between neighbor-
ing molecules. On the macroscopic level, transport is due to the advective flux
which follows the velocity field of the fluid and hence its bulk movement. Both
processes occur simultaneously and are key processes in a large number of
engineering problems such as chaotic microscopic mixing. A lot of interesting
phenomena both from the fluid simulation and engineering perspective occur
mainly at the fluid surface and the interface with rigid objects. These include
the effect of wetting in combination with surfactants, i.e., soluble substances
that have a higher affinity to the fluid surface than the fluid volume.

Many phenomena encountered in day to day life are due to an intricate
interplay between different influences. For example, the tears of wine inside
a glass are due to the mixture of water and alcohol which both have different
dew points at which they turn into a gaseous state and due to the fact that the
surface concentration of alcohol in water reduces surface tension. Because al-
cohol evaporates faster than water, a gradient in surface tension is maintained
that is able to pull liquid up the glass wall against the influence of gravity. Sim-
ulating such visually appealing effects using physically-based models strongly
motivates the contributions of this thesis.

Even with physically-based models it is, however, not trivial to achieve a
desired fluid behavior. Animators often have to spend a large amount of time
in tweaking artificial parameters. Efficient simulations in which results can
be visually inspected on-the-fly and parameters can be interactively adjusted
are thus invaluable. These visual tools encompass surface, volume and flow
visualizations that are able to convey the shape of the fluid, as well as the
distribution and transport of concentrations and other fluid properties.



1.2

1.2 Methodology

Methodology

In fluid simulation, there have traditionally been two main approaches, i.e.,
grid-based approaches [FSJ01, Sta99] that follow the Eulerian point of view
and grid-free approaches like smoothed particle hydrodynamics (SPH) [Luc77,
GM77] which follow the Lagrangian point of view. Eulerian models describe flu-
ids with respect to a fixed frame of reference, while in Lagrangian methods the
points of discretization, i.e., the particles, are moved along with the fluid. Thus,
particle-based discretizations allow fluids of arbitrary shape and especially free
surface flows to be very naturally described. In SPH, physical processes are
described in terms of interactions between particles which cause particles to
change their physical properties, e.g., their position. Due to its simplicity, its
inherent mass-preservation and its suitability to be efficiently parallelized on
GPUs, this work adopts the Lagrangian point of view using SPH as method of
choice for simulating liquids.

Depending on the area of research, the requirements both to the simulation
and the rendering or visualization of results can differ considerably. In CFD,
the focus usually lies on a precise modeling of the underlying phenomena and
on quantitatively evaluating results. As CFD simulations often generate large
amounts of data [CCB*08], visualization techniques are employed that allow
for an interactive navigation through data sets at the cost of offline preprocess-
ing [FSWO09].

For simulations in the area of computer graphics, coarser simplified sim-
ulation models are often preferred that can be evaluated more efficiently. By
not simulating the air phase and assuming isothermal conditions, the simu-
lation complexity is significantly reduced. While in computer animation, the
goal usually is to derive physically plausible models, the focus in real-time
fluids [MMCK14, CMK15] lies on achieving the simulation and rendering at
interactive frame rates. Thus, physical plausibility often has to be traded for
coarse approximations that yield only visually plausible results. Physical mod-
els have even been replaced by predicting particle positions and velocities
using machine learning techniques and massive training from precomputed
offline simulations [LJS*15].

The visual presentation of fluids in computer graphics follows similar goals.
The rendering of real-time fluids has to obey strict frame rate constraints,
thus, approximate methods like screen space splatting [vdLGS09] of particles
are mainly employed. For computer animation purposes, fluids are often
rendered offline using mesh based intermediate representations that allow for
photo-realistic rendering like ray tracing [AIAT12]. Nonetheless, interactive
rendering methods are still important tools for an on-the-fly investigation of

Fluid simulation
methods

Smoothed particle
hydrodynamics

CFD simulation and
visualization

Fluids in computer
graphics

Rendering of fluids



4 Introduction

simulation runs and an interactive steering of simulation parameters. Tab. 1.1
shows examples of particle-based simulations from different areas of research
and compares the respective goals of the applied methods with respect to
simulation and graphical presentation of results.

Table 1.1: Methodological foci and directions of the simulation (following Or-
thmann [Ort14]) and visual presentation of fluids in different fields of research.

Computational Physics Computer Graphics
Computational fluid Fluid animation Real-time fluids
dynamics N Bl :

© 2014 IEEE © 2015 IEEE
Chatelain et al. [CCB*08]' | Thmsen et al. [[CS*14] Chentanez et al. [CMK15]
Simulation: . . Simulation:

Simulation:

* Physical accuracy
e Numerical

* Visual plausibility

* Physical basis e Numerical

¢ Numerical

precision efficiency
. . robustness .
* Quantification e Interactivity
Visual presentation: Visual presentation: Visual presentation:
e Volume e High-quality e Approximate, fast
visualization offline rendering rendering
* Flow visualization e Photo-realism * Interactivity

|3 Challenges

Although SPH-based fluid animation is already able to simulate and render
highly realistic and astonishingly beautiful artistic scenes, numerous challenges
still remain, both in simulation and rendering of particle-based fluids.

Scalability of Especially for the movie industry, a physically plausible behavior of fluids is
Parameters - qesirable because scenes are not always rendered from scratch but instead only

'Reprinted from Computer Methods in Applied Mechanics and Engineering, 197, Chate-
lain, Philippe; Curioni, Alessandro; Bergdorf, Michael; Rossinelli, Diego; Andreoni, Wanda;
Koumoutsakos, Petros “Billion vortex particle direct numerical simulations of aircraft wakes”,
Pp- 1296-1304, © 2008, with permission from Elsevier.



1.3 Challenges

parts of recorded scenes may be simulated. At different spatial and temporal
resolutions, simulations may yield substantially different fluid motion due to
the fact that SPH parameters are not invariant to scaling [PICT15, WHK17].
Although the behavior can always be adjusted by manual tweaking, parameters
should be intuitive and independent of the resolution.

In order to achieve high visual detail, a high particle resolution is usually
preferred. Large particle counts, however, lead to computationally expensive
simulations. Adaptive simulations in which high resolution is limited to areas
of interest save computational resources [SG11, OK12, WHK17]. Although flu-
ids can already be described with highly adaptive particle systems [WHK17],
the boundary conditions need to be adjusted as well in order to guarantee for
versatile simulations including complex interactions like cleansing or deposit-
ing paint [OHB*13] on static and dynamic bodies. Moreover, manual tweaking
of scale dependent parameters gets even more difficult as adaptive simulations
can contain particles of different sizes that dynamically change over time.

For most simulations in computer graphics, the assumption of isothermal
conditions is made and the air phase is neglected although a large number of
physical phenomena is only due to temperature differences and the interaction
with an air phase. While some works have taken heat transport into account in
order to simulate, e.g., melting and solidification [SSP07], a dynamic coupling
with an air phase suffers from instabilities due to the large density difference
between air and liquid which have only partly been alleviated [SP08, IOS*14].
The air phase has only been mimicked by sampling ghost particles around the
liquid surface [SB12] or as a constant external velocity field that causes friction
at the liquid surface [GBP*17a, GBP*17b]. For the simulation of phase changes
of water to steam, i.e., the simulation of evaporation and condensation, both
temperature and the air phase have to be taken into account. Moreover, the air
phase has to be modeled such that it allows for a conservative transfer of mass
and heat between air and liquid.

Research in fluid rendering is mainly concerned with conveying the geo-
metric shape of the fluid, i.e., with surface rendering. Increasing the particle
resolution at the surface does, of course, also increase the detail in render-
ing. Yet, lower resolutions are preferable in interactive or real-time applica-
tions [MMCK14]. Although surface reconstruction is able to yield smooth
surfaces [YT10, AIAT12], the collision of liquids with rigid boundaries still
causes problems. For mesh based fluid representations, vertices of the fluid
surface can be shifted to closest point on the boundary to resolve intersec-
tions [HKKO7b], which, however, can cause self-intersections in the resulting
mesh. By mirroring particles to the opposite side of boundaries, static contact
angles can be modeled [MWEI16]. This, however, induces a costly sampling of
additional particles. By taking rigid boundaries into account, surface rendering

Robust adaptivity

Comprehensive
simulation

Surface rendering
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quality can be increased and interactions of the liquid with rigid objects can be
conveyed that don’t even have to be present in the simulation data.

The more parameters are involved in simulations, the more sophisticated
methods of visually presenting the data are necessary. Volume rendering of
additional parameters like concentrations of substances can create visually
appealing effects and, moreover, allows to examine simulation data for their
plausibility. Even though there are methods that address the volume rendering
of particle-based fluids, they mostly depend on preprocessing and rely on
rasterization hardware [FAW10] or they are built around object space data
access structures which limits parallelism due to traversal logic [OKK10]. For
interactive applications that allow for a direct steering of parameters, however,
an on-the-fly presentation of volumetric scalar data is of great importance.

Apart from volume rendering, applying vector field visualization also adds
an invaluable tool to inspect the time-dependent behavior of fluid flows. While
there has been research addressing the visualization of pathlines that are di-
rectly derived from particle trajectories [FW12], vector field visualization of
concentration and heat transport has not yet been investigated.

Contributions

In this thesis, three major contributions to the field of computer graphics in
fluid animation, volume rendering of particle-based data and in flow visualiza-
tion are presented. The contributions address the challenges of comprehensive
simulation, surface rendering, on-the-fly volume rendering and vector field
visualization and are components of a larger framework that combines fluid
simulation with rendering and visualization capabilities and allows for effi-
cient GPU-based computation of incompressible SPH fluids and their visual
presentation. The contributions are summarized in the following.

Evaporation and Condensation are both thermodynamic processes and,
thus, depend on the temperature of the involved substances. As heat makes
liquid water turn into a gaseous state, an air phase has to be simulated explicitly.
To that end, the air phase is efficiently simulated on a coarse regular grid in
which vapor mass is transported. Using a novel physically-based model of
evaporation and condensation, liquid particles can be evaporated by trans-
ferring their mass to the air phase. Condensation takes place on surfaces of
rigid objects using textures that store liquid mass. If sufficient mass is accu-
mulated, it is transformed back to new liquid particles. The small-scale details
of condensation using textures are complemented by an improved implicit
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surface definition for rendering the particle-based liquid phase. By taking
rigid surfaces into account, dynamic contact angles of moving particles can be
rendered. Even at low particle counts, the method is able to achieve convincing
high-quality results.

Adaptive Volume Ray Casting: Most fluid rendering focuses on surface ren-
dering techniques. The depiction of scalar quantities like concentration and
temperature, however, requires a volumetric rendering. While in general, parti-
cle quantities can be mapped onto grids and rendered using standard volume
rendering methods, this introduces interpolation errors, requires additional
memory and also limits the rendering performance due to the resampling. In
this thesis, a novel volume rendering method is introduced that operates di-
rectly on raw particle data. In order to speed up rendering, a hierarchical error
analysis based on interval arithmetic is proposed that allows to locally adjust
sampling rates while obeying a user-controlled screen space error tolerance.
The volume ray casting is also used to ray cast surfaces yielding an efficient
high-quality on-the-fly rendering.

Vector Field Visualization of Advective-Diffusive Flows: Although a combi-
nation of surface and volume rendering techniques is well able to convey static
distributions of scalar quantities, their dynamic behavior can only be revealed
by time sequences. Especially in advective-diffusive transport processes, it is
desirable not only to visualize the quantity distribution but also the direction in
which transport takes place, and which mode of transport, advection or diffu-
sion, dominates. In this thesis, a novel method to visualize advective-diffusive
flows is developed. By introducing a new visual metaphor, the stream feather,
superposed advective-diffusive flows and their respective components can be
intuitively presented. Although it is demonstrated only for SPH-based fluids,
the method describes a general framework and can be applied to simulation
data from different sources.

Overview

Most of the content presented in the following chapters has already been
published. The structure of this work thus follows these publications which are
complemented by two chapters that cover foundations and a final chapter that
concludes this thesis.

Chapter 2 introduces the theoretical foundations of fluid transport. General
concepts of mesh-based and particle-based fluid simulations are outlined as
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necessary to understand later chapters. As a visual representation of fluid
simulations is usually desired, general rendering and visualization techniques
for fluid surfaces, volumetric data, and general vector field visualization tech-
niques for flow visualization are reviewed.

Chapter 3 introduces the theoretical foundations of SPH-based simulation
and describes how fluid transport can be modeled with SPH. As SPH sim-
ulations can be computationally expensive, different adaptive methods are
presented as well as algorithmic means to efficiently solve them on parallel
platforms like GPUs.

Chapter 4 explains how the “Simulation of Evaporation and Condensa-
tion of SPH-based Fluids” is realized. It is based on the work presented at
the Symposium on Computer Animation 2017 [HK17] and includes both the
physically-based model of evaporation and condensation and the improved im-
plicit surface definition that takes interactions of the liquid with rigid surfaces
into account and allows for a rendering of dynamic contact angles.

Chapter 5 describes an “Adaptive Sampling for On-The-Fly Ray Casting of
Particle-based Fluids” presented at High Performance Graphics 2016 [HOK16].
The adaptive sampling is shown to speed up volume rendering while preserving
visual features. The screen space error of the resulting renderings is limited by
a user-controlled error tolerance.

Chapter 6 presents a “Vector Field Visualization of Advective-Diffusive
Flows” that has been presented at EuroVis 2015 and published in Computer
Graphics Forum [HWK15]. The combined visualization of advection and diffu-
sion using stream feathers as a novel visual metaphor allows for an expressive
and intuitive graphical presentation of complex flow scenarios.

Chapter 7 summarizes this thesis, draws conclusions and gives hints for
possible directions of future works.
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This chapter introduces the governing equations of fluid transport including
advective-diffusive flows of concentration and heat transport. In the following,
particle-based, grid-based and hybrid simulation approaches are presented
and compared. Subsequently, a brief discussion of time integration schemes is
presented. As simulation results will be visually conveyed, foundations of surface
rendering, volume rendering and vector field visualization are outlined.

For further details the reader is referred to the following textbooks on fluid
simulation by Bridson [Bri08], transport phenomena by Bird et al. [BSLO7],
volume rendering by Engel et al. [EHK" 06], and visualization by Johnson and
Hansen [JHO4].

ransport phenomena typically encompass three main components, i.e.,
fluid dynamics, the transport of heat, and mass transport. All these com-
ponents are very closely related [BSL0O7]. While the governing equations are
described assuming a continuous medium, the fundamental processes behind
these models occur on a molecular level. Sec. 2.1 covers both the molecular
intuition and the mathematical formalisms that constitute fluid transport.

Fluid transport can be described from two distinct viewpoints. In the Eule-
rian viewpoint, the fluid moves according to a fixed coordinate system and in
the Lagrangian viewpoint, the fluid elements themselves follow the flow. Both
viewpoints lead to distinct simulation methods as presented and discussed in
Sec. 2.2. In order to simulate the time evolution of fluid transport phenom-
ena, different time integration schemes can be applied as will be discussed in
Sec. 2.3.

At the end of each simulation pipeline, renderings and visualizations of the
simulated data are usually generated to present simulation results. In liquid
simulations, these are mainly surface renderings and in case of volumetric
scalar fields, such as the concentration of solutes, also volume rendering and
vector field visualization as outlined in Sec. 2.4.
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2.1

Theoretical Background of Fluid Transport

2.1.1

In general, a fluid volume can be described by a set of smaller parcels of fluid
volumes that interact with each other. Each of these parcels carries mass m,
has volume V and thus a density p = {7 and is centered at a position x in space.
The fluid motion is described by the velocity v that evolves over time according
to the momentum equation (see Sec. 2.1.1). Additionally concentrations of sub-
stances and heat can be transported along with the fluid flow and be diffused

between different fluid parcels (see Secs. 2.1.3 and 2.1.4).

Conservation of Momentum

Momentum
equation

Surface stress

Incompressibility

Viscosity

Gravity

Surface tension

Marangoni
convection

Fluid parcels are moved through space by velocity ¢, which changes over time
7 through the influence of other fluid parcels and external forces as described
by the momentum equation

-

Dv -
,oaz—v-mf”‘t (2.1)

where X denotes the surface stress, and f ext external forces. % denotes the
material derivative and will be discussed in Sec. 2.1.2.

The surface stress X transfers momentum across the fluid and is due to
molecular collisions that depend on the free space between molecules and
their respective velocities. The stress can be subdivided into viscous stress ¢
and stress due to pressure p as X = { — p1, where 1 denotes the 3 x 3 identity
matrix. In incompressible fluids, the pressure term ensures a divergence free
velocity field

V-0=0 (2.2)

and the viscous stress can further be simplified to V- = VpV# = nV2 ¥ assuming
a constant viscosity 11 throughout the medium. The viscosity acts as diffusion
of momentum which in turn locally smoothes the velocity field.

External forces usually comprise gravitation g and in case of liquids surface

tension as f Xt = pg + (oxn+ V;0)8, where « is the surface curvature, o the
strength of surface tension, 7 the unit surface normal, and ¢ the surface delta
function which is one exactly at the surface and zero everywhere else. Surface
tension acts to minimize the surface area of the liquid phase. Additionally,
gradients in surface tension can cause Marangoni convection that induces a
fluid motion tangentially to the surface as described by the surface gradient
Vi=V-n(n-V),ie., the gradient’s orthographic projection onto the surface.
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11

While the formulation above was derived using force densities f = é, itis
more easy to reformulate it to accelerations according to Newton’s second law
F=mda=m D" Plugging the simplified stress into Eq. (2.1) and dividing by p,
gives the well-known Navier-Stokes equation [Bri08]

—D v 2y 1 ~ext
D = vV - —-Vp + &/ , (2.3)
T ~——
Viscosity \p~r-’ External
Pressure Acceleration

Acceleration

l'fvext fe’“
m

where v = % is the kinematic viscosity, and @' = describes external

acceleration.

Eulerian vs. Lagrangian Point of View

There are two distinct viewpoints from which fluid transport can be described.

In the Eulerian viewpoint, a fixed frame of reference is adopted that can be
compared to describing the flow of a river while standing on a bridge. More
formally speaking, the fluid is described in terms of volume elements that are
fixed in space but exchange physical quantities over their faces that connect
them to neighboring volume elements. In the Lagrangian viewpoint, the frame

of reference always moves with the fluid flow. Imagine the flow of a river de-

scribed from a boat that is carried along with the flow. More formally, the fluid
is again discretized as volume elements, however, in the Lagrangian viewpoint,
the fluid elements themselves are moved to describe the flow.

DO

Mathematically, both viewpoints are related by the material derivative 5.

Using the global frame of reference of the Eulerian viewpoint, the material
derivative reads 2 O 00 +V(- %= = 00 + V() - ¥ and comprises an unsteady
and a convective derlvatlve In the Lagranglan viewpoint 5= DO - equals the total
differential ‘;(T) because it is calculated according to a local frame of reference

that moves with the flow.

From the Eulerian viewpoint, the convective derivative has to be calculated
explicitly as

ov _ 2 > 1 —ext
6_+ v-Vvo =vWv - —Vp + ad , (2.4)
T v v Vv
Convective  Viscosity ~—— External
Derivative Pressure Acceleration

Acceleration

while in the Lagrangian viewpoint in which fluid parcels travel with the flow,
the momentum equation simplifies to

dv
d—: —szv—;Vp+ act 2.5)

Navier-Stokes
equation

Eulerian viewpoint

Lagrangian
viewpoint

Material derivative

Navier-Stokes in
Lagrangian frame
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as the convective derivative vanishes.

Throughout this thesis, both the Lagrangian and the Eulerian point of view
will be adopted in different places.

Concentration Transport

Advection-diffusion
equation

Fick’s law

Concentration
transport in
Lagrangian frame

2.14

While the fluid motion can be described by the momentum equation (cf.
Eq (2.3)), additional quantities can also be transported with the flow. Transport
of concentration c of solved substances inside the fluid generally follows the
advection-diffusion equation as [BSL07]

oc

— =V. (DV¢) -V.- (vc) + R, , (2.6)
o0t ~—— S~~~ ~~
Diffusion Advection Sinks and
Sources

where R, denotes source and sink terms due to, e.g., chemical reactions. D
denotes the diffusivity which is either scalar in case of isotropic diffusion or a 3 x
3-matrix for anisotropic diffusion. D depends on the material components as
well as the temperature. The diffusive term of Eq. (2.6) follows Fick’s law [ALS09]
and is due to the random movements of molecules that causes concentration
gradients to vanish over time.

Considering a Lagrangian frame of reference, Eq. (2.6) simplifies to

dc
— =V-(DV¢) +R,, 2.7)
drt

so that the advection term vanishes. In Chapter 6, a vector field visualization to
simultaneously convey advection and diffusion of field quantities is presented.

Heat Transport

Radiation

Fourier’s law

The transport of heat is usually made up of three modes of transport: conduc-
tion, convection and radiation. Heat radiation takes place without a connecting
medium due to emission and absorption of electromagnetic waves. In the fol-
lowing, however, only convection and conduction of heat will be considered
that obey similar laws like concentration transport.

Heat Q is transported following an advection-diffusion equation. For the
diffusive part, i.e., the conduction, Fourier’s law [BSL07] relates the heat flux g
to the temperature difference as g = —xVT. On a molecular level, conduction
is due to collision of molecules, atoms and electrons by which internal energy,
i.e., heat, is dispersed and temperature differences are equalized.
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Heat convection can generally describe the fluid movement induced by
temperature differences. These cause for differences in density and hence for
buoyancy. Here, however, only the passive advection of heat is considered in
which volumes of different heat are transported with the velocity field.

Assuming a homogeneous medium, heat Q can be related to temperature
T by the simple relation T = p%, where C is the specific heat capacity of the

medium so that only temperatures appear in the following equations. The time
rate of change of temperature in the Eulerian frame can then be expressed as

oT 1
—=—V- «VT) -V- 0T) + Rr , (2.8)
or  pC —— —~— —~~
Conduction Advection  Sinks and
Sources

where Rt describes sources and sinks of heat. In the Lagrangian frame the heat
transport equation simplifies to

AT _ 1 g v +R 2.9)
—=—V-(x .
dt  pC !

as the advective component vanishes again because the temperature is carried
by the moving fluid parcels.

Overview of Fluid Simulation Approaches

While the underlying equations of fluid motion have been discussed, the
methodology to discretize the equations is yet to be described. Mainly, there
exist mesh-based methods that take on the Eulerian viewpoint and mesh-free
or particle-based methods that follow the Lagrangian viewpoint. Additionally,
there are hybrid methods that try to take advantage of the strengths of both
representations.

Although simulation approaches can vary considerably, they all should
fulfill a common set of requirements in order to allow for convincing interactive
applications:

e conservation of quantities, especially in free surface flows,
e ability to enforce incompressibility,

e computational efficiency,

* results have to be visually plausible

In the following, common mesh-based, particle-based and hybrid fluid simula-
tion approaches will be outlined and discussed. There exist many optimizations
to each simulation method that are able to alleviate specific shortcomings that
are out of the scope of this thesis.

Heat advection

Heat transport in
Eulerian frame

Heat transport in
Lagrangian frame

Requirements to
fluid solvers
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2.2.1

Mesh-based Approaches

Staggered grid

Splitting

SLA

Numerical
dissipation

Volume loss

Particle level-set

Conservative
advection

Simulation of gases

Fluid animation started out with Eulerian methods that discretize the simu-
lation domain using regular grids [FM96]. Staggered grids store fluid prop-
erties in cell centers and velocities at cell faces in order to increase stabil-
ity [Har64, FSJO1]. Most solvers follow the concept of splitting [Bri08], i.e.,
velocities are first updated according to external forces and viscosity before
quantities and velocities are advected. Lastly, velocities are projected onto a
divergence-free field by efficiently solving the pressure Poisson equation. While
a direct forward advection [FM96] is easy to implement, the unconditionally
stable semi-Lagrangian advection (SLA) alleviates time step restrictions by
tracing the velocity back in time to calculate the advection [Sta99]. Advection
is still highly dissipative and leads to a visible damping of the fluid motion and
loss of mass and volume. The blurring of sharp features causes small droplets
and splashes to disappear.

To alleviate volume loss at free surfaces, the surface resolution should
generally not be restricted to the grid resolution [FM96]. In order to track
liquid surfaces, massless marker particles that are passively advected with
the flow have been employed [Har64, FM96]. A combined surface tracking
using particles and a level-set representation (PLS) [FF01, EMF02] more stably
advects liquid surfaces. Moreover, numerical dissipation has been addressed
by using higher order [SFK*08] and conservative advection schemes [LAF11,
CM14]. Fig. 2.1 shows a schematic simulation using semi-Lagrangian advection
and the particle level-set surface representation.

"
g

Figure 2.1: A mesh-based simulation using a staggered grid. Quantities are
stored in cell centers (dark green points) while velocity components are stored
on cell faces (red). The liquid surface is tracked using the particle level-set
method (white points).

Although semi-Lagrangian advection suffers from numerical dissipation, it
is in widespread use due to its simplicity especially when simulating gaseous
substances [FM97, FSJ01, PTC*10]. Vorticity confinement is used to inject fine
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turbulent swirling motion back to the simulation that has been damped [FSJ01].
Marker particles are often employed for rendering smoke [Bri08] and turbu-
lence particles increase the details of simulations on coarse grids [PTC*10].

Particle-based Approaches

Lagrangian methods like SPH have become very popular in computer graph-
ics [DCY96, MCGO3] due to their flexibility and their ability to stably handle free
surfaces and dynamic boundaries. In SPH, particles are used as carriers of mass
that is automatically preserved throughout the simulation. Advection is solved
correctly by moving particles according to the velocity field. Fig. 2.2 shows a
schematic particle-based simulation.

Figure 2.2: A Lagrangian simulation using particles. The particles carry all in-
formation and are moved with velocity field in order to calculate the advection.

While grid-based methods can efficiently access neighborhoods as they are
implicitly defined by the mesh, in particle-based methods neighborhoods have
to be tracked explicitly. To that end, background grids [HKKO07c, Gre09], com-
pact spatial hashing [TABT11] or hierarchical [ATO16] data access structures are
employed into which the particles get sorted. As interpolations of quantities
and their derivatives are based on the particle neighborhood, irregular sam-
pling and underresolved neighborhoods can cause instable behavior [Mon05].
In order to increase stability, artificial viscosity is usually employed, which, how-
ever, damps the fluid motion [Mon05, I0OS*14]. In order to achieve more turbu-
lent fluids, vorticity confinement [MMCK14] or a micropolar model [BKKW17]
in which particles also carry a rotational component have been employed.

Although the advection term is easily solved in SPH, solving the pressure
term depends on derivatives and is more involved. It can either be solved
for compressible fluids using an equation of state [BT07, MCGO3] or for in-
compressible fluids using iterative [SP09b] and implicit [ICS*14, BK15] or
constraint-based solvers [MM13]. Pressure has also been solved by coupling
SPH to a grid [RWT11] or using a coarse incompressible SPH simulation that is
coupled to finer FLIP particles [CIPT14].

SPH

Particle
neighborhoods

Turbulence
modeling

Incompressibility
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2.2.3

Hybrid Approaches

PIC

Loss of momentum

FLIP

Particle resampling

Extensions to PIC

Narrow-band FLIP

Vortex methods

Hybrid approaches, originating from the Particle-in-cell (PIC) method [EH57],
solve the pressure projection on a grid and use particles to solve the advection
step. Therefore, quantities and velocities are interpolated between particles
and grid cells. While this alleviates the loss of mass and numerical dissipation
of grid-based advection, direct interpolation between particles and grid intro-
duces a damping of the dynamics and a loss of momentum. Fig. 2.3 shows a
schematic hybrid particle-grid-based approach. By updating particle veloci-

Figure 2.3: A hybrid simulation using both particles and grid cells. Quantities
and velocities are advected using particles (green points) while the velocity
is projected onto a divergence free field using the grid (red) and interpolated
back to the particles.

ties according to the time rate of change of grid velocities the Fluid-Implicit-
Particle method (FLIP) [BR86] eliminates the damping of PIC simulations. This,
however, comes at the cost of particle resampling [ATW13] due to clustering
or void space between particles as there is no interaction between particles.
Using a combination of PIC and FLIP interpolation is widely used in com-
puter graphics [ZB05] as it increases stability compared to pure FLIP at lower
numerical damping than PIC. The numerical damping due to interpolating
between grid and particles in PIC has also been addressed by storing locally
affine (APIC) [JSS*15] or polynomial (PolyPIC) [FGG*17] descriptions of the
velocity field. While conservation of momentum can well be improved, both
methods have large memory requirements. In narrow-band FLIP [FAW*16], the
use of FLIP particles is restricted to a small region around the liquid surface to
reduce both the memory footprint and the computational cost. Chentanez et al.
[CMK15] couple a shallow water simulation for large scale fluid scenarios with
a grid and a particle-based surface simulation to locally resolve fine details.

In contrast to vorticity confinement which only amplifies existing vortices,
vortex methods are based on the curl of the Navier-Stokes equations [SRF05,
CCB*08] and can simulate highly turbulent phenomena like explosion. Vortex
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particles carry the vorticity while the pressure is solved on a grid. The approach,
however, is quite expensive as the Poisson equation becomes vector valued.

vy Comparison Between Different Approaches

Simulation methods perform differently well according to the requirements
formulated in Sec. 2.2. Tab. 2.1 gives a short summary of the general strengths
and weaknesses as discussed above.

Table 2.1: Comparison of different fluid solvers. Advantages of solvers with
respect to the requirements are highlighted in green, disadvantages in red and
general properties in black.

Method | SLA PIC-FLIP/APIC SPH
Requirement
. Numerical . .
Conservation e Conservative advection
dissipation
- . . Stable gradients are
Incompressibility Efficiently solvable on grid difficult
Unconditionally Interpolation Costly search for
Efficiency stable, efficient between grid and neighbors and
incompressibility particles incompressibility
- Visible loss of mass | Damped dynamics, | Plausible if
Plausibility . . . .
and momentum particle clustering | incompressible

A recent user study of the visual plausibility of different methods [UHT17] Visual plausibility

revealed that incompressible SPH simulation was superior to grid-based and study

hybrid methods at comparable spatial resolutions. Hybrid solvers, especially

APIC, however, yielded more plausible results when the simulation resolution

was adjusted to a given time budget. There was no simulation method that

generally outperformed the remaining approaches, yet, comparisons of more

specialized simulation methods under more versatile scenarios still have to be

conducted.

In the following, all liquids are simulated using incompressible SPH while
the gas phase used in Chapter 4 is simulated using a grid-based solver using
semi-Lagrangian advection and vorticity confinement.
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2.3

Time Integration

Explicit numerical
integration

Runge-Kutta
method

CFL conditions

Implicit numerical
integration

As analytic solutions cannot be found in most cases, the time evolution of, e.g.,
a particle’s quantities like its position due to its changing velocity

T+AT
XA = xT f v(s,x%)ds (2.10)

T

has to be numerically solved using time discretization schemes. The simplest
method is a direct numerical integration using a forward Euler scheme as

X7 = xT + B(r, xDAT, 2.11)

where the derivative v = g—’r‘ is approximated as a piecewise constant func-

tion. By predicting intermediate steps, the Runge-Kutta method achieves a
consistency of fourth order (RK4). The final approximation of a function

At
xH'AT:xT+?(171+2172+2173+174) (2.12)

is a weighted sum of individual approximations #; = B(t,x7), U, = (T + &L, x7 +
2

% U1),U3=0(T+ %,x’ + %172), U, = V(T + AT, x" + AT¥3) that is able to reduce
the accumulated error [BZBP09].

Generally, the propagation of a signal, i.e., the displacement of a particle in
one time step may not exceed the spatial resolution, i.e., the particle size. To
prevent such cases, Courant-Friedrichs-Lewy (CFL) conditions can be defined
that limit time steps according to the current particle configuration. Usually
the current forces and velocities are used in order to adjust At so that

AT <A and At <A;

@™ lgmax]|’

(2.13)

where 7™* and @™ are the maximum velocity and acceleration of all particles
and A3 = 0.4 and A; = 0.25 are empirically determined constants [Mon05,
IAGT10]. CFL conditions for heat and concentration transport can also be
defined, however, in most cases they are not necessary, because the particle
movement is the limiting factor at the scales of interest [CM99].

Another family of numerical integration schemes, i.e., implicit integra-
tion, has already been mentioned in the context of pressure solvers. Although
implicit integration does not increase the rate of convergence, it yields un-
conditionally stable approximations and thus allows for large time steps in
simulations. The backward Euler scheme is simply expressed as

XTHAT = xT + pTTATAL, (2.14)
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where the derivative v of the next time step is used instead of the derivative of
time 7 in the explicit Euler scheme [BZBP09].

For the integration of equations of motion, semi-implicit methods like the Euler-Cromer

Euler-Cromer scheme are often used. Therefore, the velocity is first integrated scheme
using a forward Euler step as #* ™7 = #” + Atd". The position is then implicitly

updated using the already updated velocity as x* 27 = x” + A7#7 ™47 [I0S*14].

In this thesis, the Euler-Cromer scheme is adopted for SPH simulations
while the Runge-Kutta method is used in Chapter 6 to trace streamlines.

yX1 Rendering and Visualization

Simulation results are displayed via rendering and visualization. In render-
ing, the focus usually lies on the visually plausible appearance of a scene.
Fluid rendering can be divided into surface and volume rendering techniques.
Visualization, in contrast, aims at revealing important processes, e.g., the spa-
tial distribution or temporal evolution of quantities, that otherwise would be
missed. Visualization typically uses scalar or vector fields that are visualized as
volumes or as glyphs, characteristic lines and surfaces. Sections 2.4.1 to 2.4.3
describe surface and volume rendering as well as vector field visualization
techniques with a focus on particle data.

yXWE Surface Rendering

Rendering of particle-based surfaces can be subdivided into high-quality offline
methods and into interactive screen space methods.

Fluid surfaces are usually implicitly described and rendered indirectly us- Implicitsurface
ing a Marching Cubes triangulation [LC87]. Early descriptions used meta- """
balls [Bli82] or iso-surfaces of the color field [MCGO03] which, however, yield
quite blobby surfaces. Taking particle radii r; into account and calculating
the distance between the weighted average particle position ¥ and the current
position x as [ZB05]

¢px) = [x—x|-7(x) (2.15)

Fo= w;x)r; (2.16)

X = w;x)x;, (2.17)

yields a smooth signed distance function, where w; (x) = zl-uzu(f()x) with w;(x) =
]

w(]lx—x;|) is a corrected kernel function (see Sec. 3.1.3). The zero level set
of ¢ yields the fluid surface. Between small splashes that are separated by a
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distance of about 7, spurious fluid artifacts can appear. These can be alleviated
by modifying the distance 7 according to the largest Eigenvalue of the Jacobian
of x which is large in proximity to artifacts [SSP07], by density decay func-
tions [OCD11] or by using anisotropic smoothing kernels [YT13]. The resulting
level set can be tessellated using uniform Marching Cubes [LC87, AIAT12] or
with adaptive methods [AAOT13]. Direct ray casting [GSSP10, OCD11] and ray
tracing [MWE16, BSS*18, WTYH18] of iso-surfaces has also been presented but
is limited to small sets of particles if interactive frame rates are desired.

In order to achieve smooth surfaces in interactive applications, screen
space approaches are usually employed. Particles are either splatted onto the
screen as spheres [vdLGS09] or as ellipsoids that are calculated according to
the particle’s anisotropy [YT13, MM13]. Smoothing is achieved by applying
separable binomial filtering [MSDO7] or screen space curvature flow [vdLGS09]
to the splatted depth values. However, as only the foremost surface can be
displayed, depth perception of transparent renderings is limited especially in
complex fluid scenes. For moderate particle numbers, multiple surface layers
can be rendered using a perspective grid of binary voxels that is constructed
on-the-fly and smoothed in screen space [ZD15, ZD17].

Large data sets of opaque particles can be efficiently rendered using P-k-
d-trees [WJP14]. Hierarchical binary volume representations have been used
to efficiently render surfaces of very large particle data which however have to
be preprocessed offline [RCSW14]. Particles have also been mapped to sparse
voxel structures that are used for volume and iso-surface ray tracing [Hoel6].

An implicit surface definition that is able to render dynamic contact angles
for liquids in contact with rigid surfaces will be presented in Chapter 4.

Volume Rendering

Volume rendering
integral

In direct volume rendering (DVR), a physically-based model of light transport
through a participating medium is evaluated that can comprise emission, ad-
sorption and scattering. While the former two do not change the direction
of light, scattering causes light rays to be diffracted and sent off in different
directions. The volume rendering integral assumes viewing rays are cast from
the viewer at x( through the medium to exit point xp as
XD
I(xp,®) = f I(x,@)- T (x0,x)dx" + Ipg(x0,®) T (x0,Xp),
X0 (2.18)
X Ny
T(xi,xj) _ e_fxi oq(xdx ,
where I(x,®) = I,(x) + I;(x,®) models emitted and scattered radiance in direc-
tion @ towards the viewer, I,g the background radiance, and T the transparency
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(a) At each point, light is (b) Light is attenuated by (c) External and internal
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on the way to the viewer neighborhood tered towards the viewer

Figure 2.4: Different simplifications of the volume rendering model. The
volume is shown in green. Black arrows indicate light traveling towards the
viewer on the left. Emission is highlighted in yellow and absorption in red.

that is attenuated due to the medium’s absorption o, [JSYR14].

Multiple scattering means to recursively evaluate Eq. (2.18) with I;(x,®) =
Jo s(x,@;,@)I(x,®;)d@; taking scattered contributions s from all directions @;
on the unit sphere Q into account. Due to its computational effort, scattering is
usually simplified or omitted. Single scattering of external light approximates
I by local illumination models like BRDFs using the gradient of the scalar
field as normal vector [Lev88, EHK*06, HLSR08]. Local ambient occlusion
attenuates light contributions according to the absorption of surrounding
samples [HLY10] and deep shadow maps approximate transparency as seen
from a light source in a multi-layer texture to render shadows [HKSBO06]. Global
illumination can be approximated by simulating light transport as a convection-
diffusion problem [ZM13]. Fig. 2.4 illustrates different simplifications of volume
rendering integral. For a detailed overview, the reader is referred to the survey
papers by Max and Chen [MC10] and J6énsson et al. [J[SYR14].

A widespread simplification for interactive applications only considers
emission and absorption of the medium. As Eq. (2.18) is analytically solvable
only for few cases [MC10], it is often expressed as a Riemann sum as shown in
Fig. 2.5. Theray path 0...D is therefore subdivided into N segments of equal
length As = D/N, where the i-th segment spans the interval [s;, s;+1]. The
radiance of segment i is approximated as I; = I,(s;)As and the transparency
as T; = e 9e)As so that T(0, D) simplifies to e~ Jo Tadl o o= TN oalsAs _
MY e 0alsDAs = [TV 1 T; [Max95]. The approximation of Eq. (2.18) then reads

N-1 i-1
ID)= Y L[]

] N-1
Tj+1Ivg [] Tj- (2.19)
i=0  j=0 j=0

Volume illumination

Volume shadowing

Emission-
absorption
model

Discretization

While higher order integration techniques can be applied, their accuracy is Adaptive volume

rendering
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Figure 2.5: Volume rendering of a signal using a Riemann sum approximation
that subdivides the interval [0, D] into N segments. The viewer is placed in the
origin and background illumination is emitted from outside the medium.

restricted due to discontinuities, e.g., at material boundaries. Thus, sampling
techniques in which segment lengths are adapted to the properties of the
integrand are preferred [EHK* 06, MC10].

Visual attributes, i.e., radiance and transparency, are calculated from the
medium’s scalar quantities via transfer functions. Pre-classification directly
maps quantities at each data point to visual attributes. As features of non-linear
transfer functions can be missed when interpolating pre-classified values at
ray samples, post-classification applies transfer functions after interpolating
quantities [EHK*06]. Moreover, the volume rendering integral can be pre-
integrated for each pair of quantities and stored in lookup tables [EKEO1].

While SPH simulations evaluate field quantities only at particle positions,
direct volume rendering requires a continuous sampling along rays. To prevent
costly sampling, particles can be splatted in any order with an emission-only
model [FSW09] or using depth-sorted particles to approximate the emission-
absorption model [HE03]. When directly splatting particles onto the screen,
only pre-classification can be applied. Particle quantities can also be splat into
an intermediate volumetric grid for ray casting [KC05, FAW10], which allows
for post-classification, but can cause interpolation artifacts and imposes severe
memory traffic. Direct rendering of unstructured particle data requires efficient
access structures. Object space data structures like octrees [OKK10, RTW13,
HEO03] can be used as well as perspective data structures that align with the
viewing rays [FAW10].

The emission-absorption volume rendering presented in Chapter 5 uses a
perspective data structure, adaptive sampling step sizes and post-classification.

Vector Field Visualization

While surface and volume rendering are able to convey mass and concentration
distributions, vector field visualization techniques are necessary in order to
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convey directional information of the fluid flow.

General vector field visualizations use regularly sampled geometric primi- General
tives like arrows and lines that may vary in size according to the vector mag- ;i;f}:fj:;on
nitude [JHO04]. In line integral convolution (LIC) noise textures are convolved
with vector fields to yield a dense representation [CL93]. By mapping vector
fields to scalar data, volume rendering can be applied as discussed in Sec. 2.4.2.

Flow visualization can be expressively conveyed through integral lines, i.e.,
streamlines, pathlines, and streaklines. Integral lines are based on the velocity Integrallines
field ¥ (x, T) that maps positions to velocities for each point in time 7. By tracing
massless marker particles from a position x at starting time 7 through the
velocity field, an arbitrary position on a streamline is found as [JH04]

T
2% (7, X0, Tg) = X +[ b (x°"MM (s, X0, T0), To) s, (2.20)

To

and on a pathline as

T
2P (7 x0,70) = x0 + f 7 (2P (s, x0,70), $)ds. (2.21)

To

For a streakline, marker particles are released at subsequent points in time
T € [T, Tend] and integrated to time Tepq as

Tend
xstreak(_r, X0, Tend) = X0 + l-;(xpath(s, x0,7), 5)ds. (2.22)

T

Connecting subsequent positions over time yields the actual integral lines.
While streamlines assume a steady velocity field, pathlines and streaklines are
traced assuming an unsteady flow. Fig. 2.6 shows a schematic visualization of

Figure 2.6: Vector field visualization using streamlines. Lines are seeded from
the red points and traced along the velocity field as depicted by the green
points.
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a set of streamlines that are seeded from a line of seed points. The precision of
the results and the rendering performance depend both on the time integration
scheme and the time-step. Thus, adaptive sampling of integral lines can be
employed [CPKO09].

Integral lines are usually visualized by geometric means like tubes and
ribbons [MLP*10]. Additionally, illustrative techniques enhance renderings by
adding directional information, by reducing cluttering or by improving depth
perception [BCP*12]. Surfaces of integral lines can be interactively rendered by
connecting neighboring lines to meshes [BFTWO09] or by densely seeding lines
according to the current viewpoint [MSE14].

While it is desired to capture all important flow features, especially in 3D
flows, dense representations cause occlusion and cluttering. Several techniques
have been proposed to improve the visual presentation by automatically ad-
justing opacities in LIC [FW08] and in line-based rendering according to the
current viewport [GRT13, GTG17]. By automatically seeding lines or surfaces
only in important flow regions [ELM*12] and by a hierarchical clustering and
splitting of streamline bundles [HCCC12] followed by an adjustment of the line
thickness in screen space [KFW16] cluttering can be avoided.

In Chapter 6 a vector field visualization for advective-diffusive flows is
presented which is based on streamlines.



SPH-based Simulation of
Fluid Transport

This chapter describes the theoretical foundations of SPH-based simulations
and presents models to discretize the fluid transport equations as they are used
throughout the remainder of this thesis. The chapter closes by presenting adap-
tive methods and implementation strategies for efficient and parallel simula-
tions.

For a comprehensive introduction to the SPH method, the reader is referred to
the survey papers by Monaghan [Mon05] and Ihmsen et al. [I0S* 14].

he Lagrangian smoothed particle hydrodynamics method (SPH) has been
introduced by Lucy [Luc77] and Gingold and Monaghan [GM77] for the
simulation of astrophysical problems. While the first simulations of liquids
in fluid animation were based on compressible fluid models [MCGO03, BT07],
SPH has progressed rapidly. Since then, the simulation of highly deformable
bodies [DC96], incompressible fluids [SP09b, MM 13, ICS*14, BK15], multi-
phase flows [SP08, RLY* 14] and surface tension effects [BT07, AAT13] have been
realized and SPH is easily able to interact with static [HKK07c] and dynamic
rigid [BTT09, AIA*12] and elastic bodies [MMCK14, YCL*17]. The principle
idea of SPH is to represent a continuous medium in terms of a discrete number
of particles which act as carriers of physical quantities. Continuous fields are
reconstructed at arbitrary positions from quantities of neighboring particles
using a weighting kernel. The momentum and transport equations can then
be discretized in terms of interactions between neighboring particles.

In the following, the theoretical foundations of SPH simulations are dis-
cussed in Sec. 3.1 before describing how fluid transport equations are dis-
cretized using SPH in Sec. 3.2. In Sec. 3.3, adaptive simulation methods are
presented that aim at reducing the computational overhead by adapting parti-
cle sizes or time steps and Section 3.4 discusses algorithmic means to achieve
efficient simulation especially on massively parallel platforms like GPUs.

25
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3.1

SPH Interpolation and Kernel Functions

Smoothing length h

Kernel properties

The derivation of the SPH interpolation starts by assuming an infinite number
of sampling points x in the simulation domain Q. A function Q can then be
described in integral form as

x=0
x) = x)o(||lx—x'|[)dx’, 6(x) = > 3.1)
o = [ a()e(lx-1) e
where dx' is the differential volume element and § the Dirac delta function. For
computations, the Dirac delta function is approximated by a weighting kernel
W as

Q) zfQQ(x')W(Hx—x'H h)dx’, (3.2)
where & denotes the smoothing length. Finally, the field is discretized for an

arbitrary position x by replacing the volume integral with a sum over a finite
number of interpolation points, the particles, using particle quantities Q; as

Q) = Q) =Y Q;V;W(|x-x|,h), (3.3)
J

where V; is a particle’s dynamic volume and (-) denotes the SPH-interpolation.
The discretization around another particle i as shown in Fig. 3.1 is usually

Figure 3.1: SPH-interpolation for a particle i weights contributions of neigh-
boring particles (green) inside its support radius / (green circle) by the kernel
function W;; according to their distance.

written as (Q;) = (Q(x;)) = X ; Q; V;W(||x; — x;|, ). In the following, however,

angle brackets will be omitted as is usually done in literature [Mon05, I0OS* 14].
The kernel function

W(xij,h):Wi(xj,h):W,-j (3.4)

weights contributions of particles j in the neighborhood of particle i depending
on their distance x;; = ||5’c, j || = || Xi—Xj || The kernel function usually should
satisfy the following properties [Mon05]
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Normalization, i.e., f_hh W(x,hdx=1

Even function, i.e., W(x, h) = W (-x, h)

e Converges to Dirac delta, i.e., lim;,_ o W(x, h) = 6(x)
¢ Non-negativity, i.e., W(x, h) =0

e Compact support, i.e., x>h = W(x, h) =0.

While for physical correctness it is best to assume a Gaussian kernel [Mon92,
GM?77], efficient simulations require a compact support radius as the compu-
tational cost of simulations is directly linked to the number of neighbors that
have to be considered. The number of neighbors, however, determines the
stability of interpolation and, in particular, derivatives are prone to errors if
there are only few neighbors [I0S*14].

In practice, spline functions, e.g., the cubic spline, the poly6 or the spiky
kernels are preferred. Especially in computer graphics the poly6 kernel is
very popular because the particle distance only appears squared so that no
square roots have to be calculated [MCGO03]. Computing pressure forces, how-
ever, causes particles to clump together because its derivative vanishes as x
approaches zero so that there is too little repulsion between close particles.
Thus, for pressure calculations the spiky kernel has been proposed [DC96].
Fig. 3.2 shows the poly6 and spiky kernels and their first derivatives that will
be used throughout this thesis if not stated otherwise. Depending on the sim-
ulated physical quantity, more specialized kernel functions have also been
proposed. The cohesion kernel shown in Fig. 3.2(c) is employed to simulate
surface tension effects (see Sec. 3.2.1).

24 0.2-
C(x)
W, (x)
E N 51 Wapiky () 0.1-
2.5-\
> 0
1 X 1 X 1 X
5 —0.11
33 Wepiky (%)
—21 —10- —0.21
0
_3] aWpolyG (X) —154
(a) Poly6 kernel (b) Spiky kernel (c) Cohesion kernel

Figure 3.2: The poly6 and spiky kernel functions (red) and their first derivatives
(green) and the cohesion kernel (right). The particle distance is plotted on the
x-axis, the kernel weight on the y-axis. The support radiusis i = 1.

Small support radii

Common kernel
functions
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3.1.1

Derivatives in SPH

First derivatives

Vanishing gradient
for constant fields

Antisymmetric first
derivatives

Second derivatives

Antisymmetric
second derivatives

As SPH interpolates field quantities only in terms of particle quantities Q,
spatial derivatives only have to be applied to the kernel function as

VQ; = ZQ]V VW;j, (3.5)

o ey %ij o0 .. ; ;
where VW;; is short for V, W (||x; — x|, h) = o O W (x;j, h). While this for-
mulation is a valid first derivative, it does not vanish for constant field values
and also the sum of gradients of all particles is not zero which, however, is
necessary if, e.g., pressure accelerations should be calculated in a momentum

preserving way.

Monaghan [Mon05] therefore proposed two different discretizations of
gradients in SPH by introducing an additional term in the derivative as V(®Q),
where ® is any differentiable function. After applying the product rule and
rearranging, the gradient can be writtenas VQ = %(V(CD Q) — QV®). By applying
the standard SPH gradient from Eq. (3.5) on the right hand side and simply
assuming @ = 1, the gradient definition

VQi=) (Qj—Qi)V;VW;; (3.6)

J

is obtained that vanishes for constant fields [Mon05]. For deriving the accel-
eration due to pressure differences, D= % can be used which after using the

quotient rule yields —= VQ V( ) =32 and by applying SPH interpolation and

rearranging reads

0

Qi Q;
VQl—piij(—;+—zl VW;;. (3.7)
P Py

This antisymmetric formulation has been shown to conserve both angular and
linear momentum when used to calculate pressure acceleration, i.e., when
Q = pis used [Mon05].

For the standard Laplace operator V2 which in SPH formulation is given as

V2Q; =) Q;ViViWi;, (3.8)

J
a similar problem arises, i.e., the Laplacian does not vanish for constant Q.
This causes loss or gain of quantities if it is applied to diffusion equations.

Additionally, the formulation is very sensitive to particle disorder [Mon05]. In-
stead of directly using the second derivative of the kernel, Morris et al. [MFZ97]
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proposed a more stable formulation:

Q]) ..x] 'ij=22(Qi—Qj)ww, (3.9)

Xij Xij j ij

VZQ,—ZZ(

in which a first derivative of the kernel and a finite difference scheme for the
quantities is used.

Calculating the Fluid Density and Volume

While the particle’s mass m; is an intensive property of each particle i, it does
usually not change during a simulation so that mass preservation is implic-
itly guaranteed. However, the standard SPH interpolation does depend on
the volume of each particle which is an extensive property and thus has to
be recomputed every time the particle configuration changes According to

Monaghan, the volume is generally expressed as V; = m’ =Tom W [Mon05].

If, however, multiple fluids of different rest dens1t1es are simulated, this
formulation leads to severe clumping at fluid interfaces [SP08]. Hence, a di-
mensionless formulation based on the particle number density

ni=) viW;j (3.10)
J

can be used to calculate the dynamic volume V as

Vi=—, (3.11)

where v is the rest volume of a fluid particle [OHB*13]. The density is then
calculated as p; = % This formulation will be assumed in all later SPH inter-
polations. In the case of constant rest density, however, the above formulations
are equal.

Corrected SPH Interpolation

Although the standard SPH interpolation (see Eq. (3.3)) is commonly used in
simulations, it is not even able to reconstruct a constant field if the particle dis-
tribution is not perfectly regular. The evaluation of field quantities, especially
at the fluid surface or at arbitrary non-particle positions, can result in severe
under- or overestimation of quantities as shown in Fig. 3.3. In order to be able

Particle number
density

Dynamic volume

Irregular
neighborhoods
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Figure 3.3: Comparison of the reconstruction of a constant quantity field using
standard SPH-interpolation (red) and corrected SPH-interpolation (green).

to reconstruct constant quantity fields, Corrected SPH (CSPH) interpolation
uses a normalized kernel [BK02]

Wi = i) (3.12)
X ViW; ()
based on the Shepard filter [She68]. In the following, the corrected SPH in-
terpolation will be used whenever field quantities have to be calculated for
non-particle positions as done in Chapter 5 for volume rendering and in Chap-
ter 6 for vector field visualization.

Discretizing Fluid Transport in SPH

Splitting

In the following, the discretization of the Navier-Stokes equation (see Eq. (2.5))
and the fluid transport equations (see Eq. (2.7) and Eqg. (2.9)) in terms of in-
teractions between SPH particles will be described. In order to allow for an
efficient evaluation of the incompressibility, which is mandatory for visually
plausible fluid motion, non-pressure and pressure accelerations are usually cal-
culated separately following the splitting approach [Bri08]. The non-pressure
accelerations are first evaluated and used to predict particle velocities

*

v = 0(1)+ Ara"onpressure (3.13)

which are used to derive pressure values to reduce the density deviations from
the rest density. The pressure acceleration is used to calculate the final velocity
as

D(T+AT) = U+ AraP"eme, (3.14)

The incompressibility can be enforced using any of the pressure solvers that
will later be described. Additionally, transport of heat and concentrations can
be simulated. Alg. 3.1 gives a description of a splitting-based SPH simulation.
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1: while Simulating do

Particle neighborhoods and volumes

for all Particle i do

N; — Neighborhood of particle i
end for
for all Particle i do

V; — Calculate dynamic volume
end for

> see Sec. 3.4

> see Sec. 3.1.2

Particle interactions

8: for all Particle i do

9: Zl?on_pressure — Gravity, viscosity, etc.
10: U — v(1) + AT ghon-pressure
1
11: % — Fluxes due to, e.g., diffusion

12: end for

> Non-pressure acceleration
> Predict velocity

> Heat and concentration fluxes

Calculate pressures

13: for all Particle i do

—pressure .
14: af — Resolve compression

15: end for

> Pressure acceleration

Time integration

16: for all Particle i do

17: b — l_}.;k L AT ﬁ?ressure
18: X, — X;+AT-U;

. dQ;
19: Qi — Qi +AT- 7+

20: end for
21: end while

> Correct velocities
> Advect particles
> Integrate fluxes

Algorithm 3.1: A generic SPH simulation loop following the splitting approach.
The neighborhood search allows for efficient interpolation of particle quanti-
ties. Accelerations (green) and quantity fluxes (red) are calculated and finally

integrated.

Non-pressure Accelerations

Non-pressure accelerations mainly comprise gravity, viscosity, surface tension,

and interactions with rigid bodies.

Viscosity: Although viscosity is quite low for liquids like water, it is an integral
component of the equations of fluid motion. The most widespread model
of viscosity is the artificial viscosity [Mon05] which has been introduced to
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Artificial viscosity  computer graphics by Becker and Teschner [BT07] as
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(3.15)

where v is an arbitrary parameter that loosely corresponds to the kinematic
viscosity and where 0.01/2 in the denominator is used to prevent divisions by
zero. Even though there are SPH models of viscosity that are more physically
plausible [MFZ97], the artificial viscosity is often preferred because it increases
stability [I0S*14]. For highly viscous fluids like, e.g., tooth paste, implicit
viscosity formulations have been derived which are computationally expensive
and are not applicable to simulate fluids of low viscosity [PICT15].

Surface Tension: Surface tension is mostly simulated using inter-particle
interaction forces (IIF) or continuum surface forces (CSF). IIF models [BT07,
TMO05, YML*17] are motivated by molecular attraction between particles that
cancels out in the fluid volume but causes a net force at fluid surfaces. CSF
models, in contrast, aim at minimizing the surface curvature (CSF) [BKZ92,
MCGO03, BPHK13] and often only influence particles at the fluid surface which
can be detected, e.g., by thresholding a color field gradient [MCGO03]. According
to a comparison of different surface tension models, no model is equally suited
for all use cases and models should be chosen according to the desired fluid
effects [HRWE15].

Throughout this thesis, the combined model of Akinci et al. [AAT13] is
employed as

—

X

e j o o
a}ensmn =- ZKinij(xif)F - ZKin(ni —nj), (3.16)
J oo
where surface normal #; = h)_ iViVWij, Kij = pf+;))j is a density dependent

weighting term, and y a user-defined parameter. The first term uses the spe-
cially designed cohesion kernel C (see Fig. 3.2(c) in Sec. 3.1) that causes a
repulsion for close particles and an attraction between farther particles with a
maximum attraction at rest distance. The second term aims at minimizing the
surface curvature.

Boundary Handling: Static rigids such as the scene geometry can be effi-
ciently modeled using signed distance functions [HKKO07c] or by explicitly cal-
culating distances between particles and triangle geometries that are efficiently
accessed through, e.g., OpenVDB [ATO16]. Distance-based penalty forces can
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then be applied to particles [Mon05] or particle velocities and positions can be
adjusted by direct forcing approaches [BTT09, IAGT10].

Particle-based representations of rigid objects allow for a consistent dy-
namic two-way coupling. Rigids can be represented as a single layer of particles.
The dynamic particle volume is calculated as the inverse number density as
Vi = ﬁ, where k and [ are only rigid particles. The fluid-rigid interaction
is realized by mirroring fluid particle pressures to the rigid particles so that
these exert a pressure force on the fluid and vice versa. Additionally, friction
between rigid and fluid particles can be modeled using artificial viscosity (see
Eq. (3.15)) [AIA*12]. Also for secondary effects like heat transfer between the
fluid and rigid objects [SSP07], a consistent particle-based representation is
advantageous. In this thesis, rigid objects are thus represented as particles.

Although the air phase is commonly ignored, randomly sampled ghost
particles around the fluid surface [SB12] or an external pressure [HWZ*14]
have been used to mimic an air phase. Gissler et al. [GBP*17a, GBP*17b]
simulate liquid-air interaction in terms of a constant external velocity field that
causes friction at the fluid’s surface.

Many substances like surfactants [FAB*11] behave differently on the fluid
surface than in the bulk. Orthmann et al. [OHB*13] introduced a consistent
surface model that assigns a value to each particle estimating its surface area.
By applying a one-sided tent kernel

Ll1+%) ifp; <0
m:d( ”1¢’ (3.17)
0 else

to the implicit surface definition ¢; = ¢(x;) = | x; — ¥ ;x; V; W;;|| — d [ZB05], a
smoothed surface delta value can be derived. The surface distance d matches
the particle radius. Using corrected SPH interpolation yields the particle’s
surface area as
Ai=V;) 6,V Wj. (3.18)
j

This allows to formulate conservative transport processes at the surface like
cleansing of rigid objects [OHB*13] and to stably detect surface particles and
will be used in Chapter 4 for the simulation of evaporation and condensation.

Pressure Acceleration and Incompressibility

I Vpi . . .
The last acceleration afressure = % is due to pressure gradients which are

commonly calculated using the antilsymmetric formulation of Eq. (3.7) in order
to guarantee conservation of linear and angular momentum [Mon05, I0S*14]

Two-way rigid
coupling

Fluid-air interaction

Consistent surface
model

Momentum
conservation
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3.2.3

(see Sec. 3.1.1). Although this answers the question how pressures lead to an
acceleration of fluid particles, the question remains, how to obtain pressure
values to enforce incompressibility.

First methods to calculate pressure used equations of state that relate parti-
cle densities to pressures. Equations of state for compressible fluids are based
on the ideal gas equation [MCGO3] and for weakly compressible fluids on Tait’s
equation [BT07]. Even though equations of state are easily implemented, re-
ducing compressibility requires very small time steps due to their stiffness.

Solenthaler and Pajarola [SP09b] alleviated the time step restrictions by
introducing predictive-corrective incompressible SPH (PCISPH) in which the
pressure is iteratively accumulated until particle densities converge to the rest
density. In implicit incompressible SPH (IISPH) [ICS* 14] the density invariance
condition is discretized by predicting densities due to non-pressure forces
and solving for pressures that restore constant rest density after time integra-
tion [ICS*14]. Instead of the density invariance, the divergence-free condition
of the velocity field is addressed in divergence-free SPH (DFSPH) [BK15]. In
position-based fluids (PBF) [MM13] particle positions are directly optimized
assuming a quasi-static problem to resolve density constraints. The reader is
referred to the survey by Ihmsen et al. [[0S*14] for a thorough discussion of
pressure solvers.

Throughout this thesis, incompressibility in SPH-based fluids is enforced
using PCISPH.

Transport of Concentrations and Heat

Homogeneous
diffusion

Heterogeneous
materials

While the above models only considered the equations of fluid motion, addi-
tional fluid properties can be advected with and diffused inside the fluid as
discussed in Secs. 2.1.3 and 2.1.4.

The time rate of change of concentration ¢ due to diffusion follows Fick’s
second law [ALS09]. Assuming a homogeneous medium it can be expressed
as [Mon05, CM99]

(3.19)

Heat transfer follows the very similar law of Fourier. However, heat transport
is usually not restricted to a homogeneous liquid phase but also encompasses
heat transport in rigid objects. Cleary and Monaghan [CM99] arrive at

dTi_ Vl 4Ki7<j o ”V[/Vl]”
dr _miCi;'Ki+Kj(Tl T])V] Xij (3.20)
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to model heat conduction, where C denotes the specific heat capacity and x
:fr’;’] as the effective heat conductivity, hetero-
geneous materials with substantially varying conductivities can be simulated
in SPH [CM99]. In both cases, the discretization of the Laplacian of Eq. (3.9)

has been applied.

the heat conductivity. By using

Adaptive Simulation

Apart from the proper modeling of the fluid transport equations, visually plau-
sible simulations also depend on the spatial resolution. As larger numbers of
particles increase both the memory consumption and the computation time,
adaptive methods have been introduced that limit the particle refinement to
certain areas of interest, e.g., the fluid’s surface.

Spatial Adaptivity: A simple but effective method to achieve high resolution
at the surface and lower resolution in the fluid’s bulk is to use separate simula-
tions in each area and indirectly couple the resolutions by artificial forces [SG11,
HS13]. However, separate simulations can diverge and mass-preservation is
not guaranteed. Instead, splitting and merging of directly interacting particles
has been applied in order to adjust particle sizes [APKG07, DC99]. Direct re-
placement of particles, however, causes instabilities in incompressible fluids.
These have been alleviated with the concept of Temporal Blending [OK12] by
smoothly adjusting resolutions over time. Recently, the concept of continuous
adjustment of particle masses has been introduced [WHK17], where local im-
portance criteria are mapped to an optimal mass m?p " each particle should
take on. The ratio m? = % is then used to classify particles into categories.
Particles that are far too largle can be split. Far too small particles can be merged
with neighbors, and among other particles, mass can be smoothly redistributed
to meet the optimal particle mass [WHK17]. A derived approach is used in

Chapter 4 to continuously evaporate particles.

Temporal Adaptivity: As discussed in Sec. 2.3, time steps should be chosen
according to CFL conditions that depend on the current particle configura-
tion. CFL conditions can also be defined to vary in space according to the
configuration of the local particle neighborhood. By locally adjusting time
steps, computational resources can be saved. Locally adaptive time stepping
can either freeze particles in quiet areas [GP11] or use integer multiples of a
global time step [GB14] or freely adjustable time steps [RHEW17] that locally
adapt to the fluid properties. Local time stepping methods, however, have not

Two-scale
simulation

Splitting and
merging

Continuous particle
mass

Global vs. local time
steps



36

SPH-based Simulation of Fluid Transport

3.4

been applied to incompressible fluids because they cause instabilities. In order
to improve efficiency in incompressible fluids, time steps are often globally
adapted [IAGT10].

The reader is referred to the survey of Manteaux et al. [MWN™16] for further
details on adaptive methods.

Efficient and Parallel Implementation

Complexity of SPH

Neighborhood
search

Neighborhood lists

When using a Gaussian kernel as proposed by Monaghan [Mon05], SPH sim-
ulations can have quadratic cost in case every particle has to interact with
every other particle like in astrophysical gravitational problems. In case of
incompressible fluids and compact support radii, however, pressure forces
keep particles apart so that the problem can be reduced to linear cost as only a
maximum number of particles is in the neighborhood of every other particle.
As interactions between neighboring particles can be formulated indepen-
dently for each particle, SPH can be trivially parallelized and is well-suited to
massively parallel architectures like GPUs [Gre09].

The question of how to compute dynamically changing particle neighbor-
hoods so that no unnecessary particle pairs have to be considered lies at the
heart of every efficient simulation. In simulations with varying particle sizes, hi-
erarchical data structures like kd-trees [KAG* 06, APKGO07] or OpenVDB [ATO16]
are often used to sort and efficiently access particles according to their spatial
position. For uniform particle sizes, uniform grids are preferred because of
their simplicity [Gre09, GSSP10, IABT11, WHK16]. For every uniform grid cell,
memory needs to be reserved even if it is empty, thus, for large scale simula-
tions, compact hashing can be employed in which memory is only occupied
for non-empty cells [THM*03, IABT11]. In order to efficiently simulate FLIP
on GPUs, voxel data structures are applied to calculate pressures and access
particles [WTYH18].

These data structures can either be accessed in every SPH interpolation
to iterate over particle neighborhoods on-the-fly or neighborhood lists can
be computed. Interpolations then only have to loop over each particle’s list
of neighbors and the access data structure can be discarded after the lists
have been generated [DCGG13]. Neighborhood lists are able to increase per-
formance considerably, especially if many interpolations are necessary like
in iterative pressure solvers, however, they also drastically increase memory
consumption [WHK16]. As the calculation of neighborhood lists itself imposes
a computational overhead, the fact that particles usually don't move much
between time steps can be exploited by recomputing neighborhood lists only
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every n-th time step [I[ABT11, ATO16].

For GPU-based implementations there are two distinct options: particles
can either be scattered onto evaluation points which incurs write collisions
or they are gathered at sampling positions which requires access to particle
neighborhoods. In early GPU-based approaches, scattering of particle data into
textures was usually applied as it maps well to the programmable rasterization
pipeline [HKK07c, HKK07a, ZSP08]. Scattering does not rely on acceleration
data structures and is still attractive for rendering [vdLGS09, FAW10, FGE10].
Gathering approaches, in contrast, are better able to exploit massive paral-
lelism but rely on generic APIs like OpenCL or CUDA in order to calculate
data structures for neighborhood search [Gre09, GSSP10, MMCK14]. Neigh-
borhood search is usually realized using uniform grids and spatial index-
ing [Gre09, WHK16] in combination with data-parallel sort [SHG09], and scan
and compact primitives [SHZO07]. Neighborhood lists can be calculated in
one pass using preallocated memory assuming a fixed maximum number of
neighbors per particle WHK16] or in two-passes by first counting the number
of neighbors and in the second pass collecting the indices of neighboring par-
ticles to reduce memory consumption [OK12]. In constrained neighborhood
lists [WHK16], particle support radii are iteratively reduced to achieve a user-
defined number of particle neighbors. This both increases performance and
reduces memory consumption as necessary on GPUs due to limited VRAM.

GPU-based
implementations

Scattering

Gathering

Neighborhood lists






Simulation of Evaporation
and Condensation

This chapter presents a method to simulate evaporation and condensation of
liquids. Therefore, both the air and liquid phases have to be simulated. A coarse
grid is employed for the air phase, as a carrier of vapor, and mass-preservingly
coupled to an SPH-based liquid and rigid body simulation. Since condensation
only takes place on rigid surfaces, it is captured using textures that carry water to
achieve high surface detail. The textures can exchange water with the air phase
and are used to generate new particles due to condensation effects yielding a full
two-way coupling of air phase and liquid. In order to allow gradual evaporation
and condensation processes, liquid particles can take on variable sizes.

In order to improve the rendering of liquids in contact with rigid surfaces, e.g.,
of condensed droplets, a modified implicit surface definition is proposed that
is able to render dynamic contact angles for moving droplets and yields highly
detailed fluid renderings.

The methods described in this Chapter have been published [HK17] and pre-
sented at the Symposium of Computer Animation (SCA) 2017 in Los Angeles,
USA.

Evaporation and condensation are ubiquitous phenomena encountered
in everyday life, yet, they have not been modeled and simulated in a
comprehensive way. While there are some works in which liquid and gaseous
fluids are coupled, e.g., to simulate burning oil [LSSF06, MMCK14], no two-
way coupling of water and its vapor in air has been proposed so far. In the
context of SPH-based fluids there have been models of evaporation due to boil-
ing [MSKGO05, PCPW15, VIT*18] while Tillmann and Bohn [TB15] simulated
condensation on rigid surfaces by generating explicitly meshed droplets from
vapor transported in a grid.

In this chapter, a simulation of evaporation and condensation is proposed
that uses a coarse Eulerian grid to simulate the air phase while the liquid
phase is simulated using SPH particles. Condensation only takes place on
rigid surfaces and is realized in sub-particle detail using textures to deposit
mass into, and to generate new particles from. In order to allow for gradual
evaporation, particles use variable sizes. In reality, fluids in close contact with
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Contributions

4.1

rigid surfaces take on distinct contact angles. In order to allow for a rendering of
SPH fluids with dynamic contact angles a modified implicit surface description
is proposed.

In summary the contributions are

¢ aphysically-based model of evaporation and condensation that allows
for

* mass-preserving coupling of grid, and particle system to simulate evapo-
ration and condensation,

* sub-particle detail of surface wetting using textures to contain mass and

* rendering of dynamic contact angles using an improved implicit surface
representation for SPH fluids.

The remainder of this chapter is structured as follows. Sec. 4.1 discusses
related work and introduces necessary foundations for the proposed algorithm
that is outlined in Sec. 4.2. The heat coupling between different systems is
discussed in Sec. 4.3, and Sec. 4.4 presents the method to simulate evapora-
tion and condensation. In Sec. 4.5 the improved implicit surface definition
is introduced. Results are presented in Sec. 4.6, before Sec. 4.7 draws final
conclusions.

Foundations and Prior Work

SPH-based
simulation

This section briefly describes closely related works to the contributions in
this Chapter and gives necessary foundations of fluid flow and evaporation
and condensation that have not been covered in Chapter 2. As discussed in
Chapter 3, there is a wide array of phenomena that have successfully been
described in SPH, like the thermodynamic processes of melting and solidifi-
cation [SSP07]. Evaporation has been modeled by stochastically transforming
liquid to air particles after reaching a critical temperature [MSKGO05] or using
a physically-based model of boiling [PCPW15]. Villa Salazar et al. [VIT*18],
published after the work presented here, simulate boiling and condensation by
directly transforming liquid to gas particles and vice versa using a latent heat
model. The model, however, does note take the surrounding air phase into
account and is not able to address other evaporative phenomena than boiling.
Ren et al. [RLY* 14] allow particles to carry volume fractions of different fluid
phases that can mix, unmix and react. Although the model is able to simulate
chemical reactions of two liquids to form a gaseous product, all particles have
a constant mass so that the volume of gas particles drastically increases which
impairs simulation stability. Moreover, the fluid mixture is not incompressible,
hence, the pressure term has to rely on an equation of state. Yang et al. [YCL*17]
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extend the approach by including heat transport and model continuous phase
changes using a volume fraction model. Although the model is supposed to
capture phase changes between solid, liquid and gaseous states, only melting
and solidification is considered.

In the context of mesh-based methods, versatile interactions of liquids,
solids and gases have been realized by Losasso et al. [LSSF06] and very detailed
interaction of water with surfaces has been simulated by Wang et al. [WMTO05].
Tillmann and Bohn [TB15] first used a grid to simulate an air phase that trans-
ports vapor which can be condensed to static droplets on rigid surfaces using
explicit meshes.

High-quality rendering of SPH fluids is mainly achieved using implicit
surface definitions [ZB05, SSP07, YT10, OCD11] as discussed in Sec. 2.4.1. Al-
though these methods are able to yield smooth liquid surfaces, interactions
with rigid objects can cause visually unplausible interpenetration. For mesh
based surface representations, vertices can just be moved to closest point on
the rigid surface to resolve intersections [HKKO07b]. This however can cause
self-intersections in the resulting mesh and is, like all mesh optimization strate-
gies, not applicable to direct rendering approaches. Approaches that directly
modify the implicit surface definition, in contrast, can also be applied in direct
rendering. In that way, Huber et al. [HEW15] successfully prevent the liquid
surface from penetrating cloth and Morgenroth et al. [MWE16] enforce a pre-
scribed static contact angle between liquid and solid surfaces which greatly
enhances optical realism. However, dynamic contact angles that are formed
between moving liquids and rigid surfaces have not yet been addressed.

Equations of Fluid Flow

For grid simulations, usually an incompressible, inviscid fluid is assumed which
can be described using the Navier-Stokes equations (see Eq. (2.4) in Sec. 2.1).
Temperature T and density p are just advected with the flow according to

oT .

_ = —(U'V) T (41)
ot

6—'0 = —(0-V) 4.2)
ot P '

In order to make warm air rise and dense air sink, an explicit buoyancy can be
introduced into the external acceleration as an additional term

‘_ibuoy =—apg+ P (T - Tamp) & (4.3)

where g is the normalized direction of gravity, p the density and a and § are
user-defined parameters [FSJO1].

Grid-based
simulation

Surface rendering

Interaction with
rigid objects

Buoyancy
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Evaporation and Condensation

Vapor pressure

Saturation vapor
pressure

Evaporation rate

4.2

Evaporation and condensation depend on the states of the liquid and air phase
and follow the difference between the saturation vapor pressure at the surface
temperature and the partial pressure of the vapor in the air phase, i.e., the vapor
pressure [SLJ94, Shal4]. At saturation vapor pressure, the liquid and gaseous
state of water are just at an equilibrium so that no net phase change occurs.
If the actual vapor pressure is larger, condensation sets in, else evaporation
takes place. The vapor pressure can easily be described using the ideal gas
equation [RY96] as

MRy (T —273.15°C)
= 7

where m. is the water vapor mass in the air, V, its volume, T, the temperature
in °C and R,, the specific gas constant of water. The saturation vapor pressure
at surface temperature T can be calculated from Magnus’ formula [RY96] as

) (4.4)

Pc

17.62- T

—_—. (4.5)
243.12°C+ T

piat:611.2Pa-exp(

To calculate the time rate of change of mass of a liquid surface due to evapora-
tion, Smith et al. [SLJ94] proposed the following formula based on empirical

data
omy
ot
It depends on the surface of contact As, the saturation vapor pressure of the
liquid surface p$*, the vapor pressure of the air phase p,, the air velocity at the

interface 7, and two parameters a and b.

= As(a+b-1191) (P - pe)- (4.6)

Algorithm Overview

The proposed algorithm can be subdivided into three phases.

Phase 1 comprises a standard SPH-simulation including rigid particles and
adaptive particle sizes.

Phase 2 is a standard grid-based simulation of the air phase with vapor and
temperature advection.

Phase 3 realizes the couplings between the grid based air phase, the SPH-
based liquid phase and rigid objects. The coupling comprises heat trans-
fer (see Sec. 4.3) and mass transfer due to evaporation and condensation
(see Sec. 4.4). In order to add sub-particle details of evaporation and
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condensation, rigid objects use textures into which water can condense
and evaporate from.

1: while Simulating do
Phase 1 - Simulate particles (liquid and rigid)

2: Move particles according to forces of last iteration
3: Neighborhood search

4: Heat transport

5:  External forces

6

: Pressure solve
Phase 2 - Simulate grid (air phase)

7: Classify cells as air or liquid/rigid
8:  Add forces, enforce boundary conditions

9:  Advection of velocity, vapor and temperature
10: Diffusion of heat, vapor
11: Pressure projection
Phase 3 - Coupling of grid, particles, texture
12: Neighborhood search: texture — (rigid) particles — grid — texture
13: Heat transfer: (rigid) particles — grid
14:  Temperature interpolation: rigid particles — texture
15: Particle evaporation: particles — grid
16: Sub-particle evaporation and condensation: grid — texture
17: Particle condensation: texture — particles
18: Mass redistribution and merging of particles

19: Particle path force
20: end while

Algorithm 4.1: Overview over the proposed simulation of evaporation and
condensation. Colored parts are added for the approach. Red color denotes
heat transport and green color denotes mass transport. Coupling directions
are highlighted in bold face.

Alg. 4.1 gives an overview over the proposed algorithm. Fig. 4.1 shows the
paths of heat transport and mass transport in more detail. Except for the
deposition of mass, no dynamic behavior of water inside textures is simulated.
However, there are different approaches to simulate texture-based water flows
on surfaces which could be included [WMTO07, EJGP09].

Particle Simulation

The SPH-simulation is based on standard components and comprises a PCISPH
pressure solver [SP09b], rigid particles [AIA*12] and surface tension and adhe-
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Figure 4.1: Mass transfer (outer green circle) and heat transfer (inner red circle)
between different systems. Arrows indicate in which direction transfer can
take place.

sion [AAT13]. As evaporation and condensation takes place at surfaces, the ap-
proach depends on a stable measure of a particle’s surface area A; which is cal-
culated as proposed by Orthmann et al. [OHB*13] (see Eq. (3.18) in Sec. 3.2.1).

As the simulation of evaporation causes particles to lose mass, particles are
allowed to have adaptive sizes. In literature, particle sizes are usually adjusted
by modifying the support radius. If particles of different support radii interact,
this can, however, lead to severe instabilities [OK12, WHK17]. Thus, the support
radius is left unchanged and only particle masses are scaled using a weighting
term w; € [0, 1]. Due to the fact that the weighted mass m,,, = w;m; is used in
the density calculation, the fluid volume is automatically scaled accordingly. In
order to achieve an efficient simulation it is desirable to use larger particles of
w =1, therefore, smaller particles are allowed to merge.

Grid Simulation

The grid is mainly used as a means to simulate the air phase and transport
water vapor, thus, a coarse grid with a cell size larger than two times the particle
support radius is employed. The grid simulation uses semi-Langrangian ad-
vection [Sta99], a simple conjugate gradient solver to enforce a divergence-free
velocity field and vorticity confinement [FSJ01] to retain fine details of the flow
dynamics. The liquid and rigid particles are considered as boundary condition
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for the grid simulation, i.e., cells are classified as air or solid/liquid.

Texture-based Rigid Surface Representation

To allow for a sub-particle detail evaporation and condensation at rigid sur-
faces, textures are used as a means to describe condensed water mass. For
the approach to work, several static textures are precomputed, i.e., textures
that store the world position x; of each texel ¢ and surface area spanned by
the texel A;. In order to transfer mass from the texture to particles, a texture
that stores particle seeding positions is used. These are created using Poisson
disk sampling [Bri07] to prevent overlapping seeding positions which cause
instabilities if particles are simultaneously emitted at very close positions. Ad-
ditionally, a texture that stores the maximum amount of mass that is allowed to
be deposited in each texel m*®* is used.

The only dynamic textures are the mass texture which stores the actual
amount of water at each texel m;, the temperature texture 7; and a wetting
history [WMTO05]. The latter allows particle paths along surfaces to be rendered
and to prevent emitting particles in the neighborhood of texels that are already
covered by particles.

Neighborhood Search

As depicted in Fig. 4.1, the simulation includes direct interactions between
every pair of systems, thus, neighborhoods for grid-cells, texels and rigid and
liquid particles have to be calculated. As rigids are static in the simulation and
textures are fixed to their rigid bodies, neighborhoods between rigid particles,
grid cells and texels have to be calculated only once. For liquid particles,
however, neighborhoods have to be recomputed in every time step. In order to
calculate neighborhoods between grid cells, particles and texels, the cell-based
approach of Green [Gre09] is adopted.

Heat Transfer

Thermodynamic processes like evaporation and condensation depend on the
temperatures of the different phases. Thus, all components of the simulation
first have to be coupled in terms of heat transport to achieve realistic behavior.
Heat transport between particles is realized according to Cleary and Mon-
aghan [CM99] (see Eq. (3.20) in Sec. 3.2.3). Heat, however, has to be transferred

Particle seed texture
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across phase transitions between grid cells and particles and to the surface
textures.

Heat Transfer Between Grid and Particles

Time rate of change
of temperature

4.3.2

The transfer of heat between grid cells and particles follows a form of Fourier’s
law that resembles Newton’s law of cooling and reads

dT % UAAT

dt p-C p-C’

4.7)

where A is the interface area over which heat is transferred, and U is the overall
heat transfer coefficient which is a constant for each pair of materials and
can be calculated from the respective materials’ heat conductivities x and the
distance the heat transfer has to bridge [LL16, BSL07].

Particles i can interact with more than one neighboring cell ¢, and cells
interact with more than one particle, thus, neighborhoods have to be iterated
in order to calculate heat transfer. The time rate of change of temperature due
to heat transfer across the air-liquid or air-rigid interface then can be expressed

as
aT; 1

P G Ai;Uicaic(Ti— Te) (4.8)

for particles i and
= AiUjcaic |\ T, —T; 4.9
g ,OcCc; jUjcaje(Te—Tj) (4.9)

for cells c. The coefficients a ;. denote trilinear interpolation weights for po-
sition x; that are used to weight cell-particle interactions. The heat transfer
coefficient is calculated in accordance with the heat transfer between particles
(see Eq. (3.20)) as Uj, = h(zk’i’fﬁc) by assuming the transfer has to bridge the
support radius £ until the air phase is reached”. Note that the temperature flux

is not antisymmetric as the actual physical quantity transferred is heat.

Heat Transfer to Texture

Textures are only used as a means to increase the surface detail of rigid bodies.
Thus, they should not add too much computational overhead. To that end,

Tn the original manuscript [HK17], the heat conductivity x was directly used whereas the
distance over which heat is transported erroneously was neglected. This is corrected by taking
the overall heat transfer coefficient U = 3 [LL16]. Note, the presented simulation results were
not affected as Ax corresponds to the particle support which was setto h = 1.
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instead of directly including textures in heat transport, rigid particle tempera-
tures are only interpolated onto the texels in each time step using a corrected
SPH interpolation, see Eq. (3.12).

Evaporation and Condensation

As evaporation and condensation only take place at rigid and liquid surfaces,
the simulation model is based on the general notion of surface elements or
surfels. Surfels will be denoted with s which can mean texel or liquid particle
and cell values are denoted with c. First, the general model of evaporation
and condensation is described before the specific algorithmic solution is de-
tailed that allows for a mass-preserving coupling between texels, grid cells and
particles.

In order to allow evaporation and condensation to transfer variable amounts
of mass between air and liquid, particles of variable size are used. However, in
order to prevent a system of a lot of very tiny particles and to prevent too small
particles to penetrate rigid surfaces [WHK17], particles are kept as close as
possible to w; = 1. This is done by allowing particles to exchange mass among
each other and by merging neighboring particles.

Modeling Evaporation and Condensation

Although the time rate of change of mass in Eq. (4.6) originally only described
evaporation, it will also be used to model condensation. Depending on the
sign of ag'r’s, either evaporation or condensation takes place which allows to

separately describe both rates as

evaRate(c, s) (4.10)
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for a cell ¢ and a surfel s. To get spatially smooth values, trilinear interpola-
tion of cell quantities at position x; is used. As the velocity term in Eq. (4.6)
introduces energy, it can only cause an increase of evaporation but not of con-
densation, thus, its contribution is removed in case of a condensation process
by setting b = 0. In order to guarantee mass preservation, the same amount of
mass that is taken from the liquid has to be transferred to the air phase and
vice versa, i.e., mg_. = —m.—s has to be enforced.

Interpolation of
texel temperatures

Initial evaporation
and condensation
rates
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Texel Evaporation and Condensation

Correction of initial
rates

443

As the model of evaporation and condensation is based mainly on temper-
atures, it can easily calculate evaporation or condensation rates that would
cause either negative masses or make texels exceed their maximum allowed
mass m;*®. Thus, a balancing step is necessary that guarantees that both the
cell’s vapor mass and the surfel’s water mass stay non-negative. Additionally,
the maximum amount of mass m}"® of texels must not be exceeded.

The proposed approach works by taking the evaporation and condensation
rates above only as initial estimates and correcting them using scaling factors.
Alg. 4.2 gives a detailed description of evaporation and condensation using
textures. First the texel mass is bounded. Evaporation is scaled by factor w{"® €
[0, 1] which enforces non-negativity of texel masses while the factor w?"nd €
[0,1] is applied to condensation and enforces a maximum texel mass of m;"®*.
After properly scaling the mass transfer to respect the texel bounds, a third
scaling factor wS°" is applied to condensation that enforces non-negativity of
vapor mass in cells. After scaling, the masses of cells and texels are updated.

Alg. 4.2 ensures that the total mass in the simulation is preserved.

Evaporation and Condensation of Particles

Wetting history

While particles can directly evaporate by transferring mass to the grid, con-
densation is only realized through the texture. In order to generate particles
from texels due to condensation, the precomputed texture that stores particle
seeding positions is used. Particle condensation directly takes mass from texels
and only takes place if sufficient mass is present, thus, no special balance has
to be calculated.

The same is not true for particle evaporation for which a similar correction
as outlined in Alg. 4.2 is applied. However, adaptive particle masses are deter-
mined using weighting terms w;, which thus have to be adjusted instead of
changing the particle mass, directly.

When a texel has just been in contact with a particle, the texel is excluded
from condensation for a small amount of time. This achieves two goals: Firstly,
it prevents fluctuating evaporation and condensation of particles back and
forth into the texture and, secondly, it allows for a realistic rendering of particle
paths down surfaces. To keep track of excluded texels, the time of the last con-
tact between texels and particles is stored in a wetting history texture [WMTO05].
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Phase 1 - Initial estimate
1: for all Texel t do
2: for all Cell cdo

3: mg?, — evaRate(c, t) - dt > see Eq. (4.10)
4: m‘;f’_nf — condRate(c, 1) - dt > see Eq. (4.11)
5: end for

6: end for

Phase 2 - Balance
7: for all Texel t do

8: wi'® — min ():L#%Yf,’ 1) > Keep texel non-negative
9: w?ond — min ( r;;n:;;r;,’ 1) > Keep texel mass below m}"®*
10: for all Cell c do o
11: m&?, — m?, - wi'? > Scale mass transport
12: m‘;"ff — m?f’_ncd- w?ond
13: end for
14: end for
15: for all Cell c do v
16: we°d — min (%, 1) > Keep cell non-negative
t—c

17: end for
Phase 3 - Update mass
18: for all Texel t do

19: My — My + Zc(m‘gf’_ncd . wgf’nd -mg?,)
20: end for

21: for all Cell c do

22: Me — Mg — zt(mggn;i . wg‘md -mg?,

23: end for

Algorithm 4.2: Evaporation from and condensation into textures. Because
the initial evaporation and condensation rates in Phase 1 may cause negative
mass or may exceed mass bounds, they have to be corrected in Phase 2 before
updating the masses Phase 3.

Dynamic Particle Adjustment

As particles can shrink due to evaporation, particles of different sizes may
interact. Recently, an adaptive SPH simulation with continuously adjustable
particle sizes has been presented [WHK17] that builds on particle merging
and redistribution of mass among neighboring particles in order to arrive
at prescribed sizes. In order to prevent particles from interacting that have
strongly different sizes, a similar idea is adopted.

In this approach, however, particles of uniform size w; = 1 should be
achieved, thus, particles are allowed to merge if the sum of their weights does
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not exceed 1, else mass between particles of different size can be redistributed
in order to make particle sizes more uniform. Uniform particles achieve better
stability and are able to prevent liquid particles from penetrating rigid objects
that are also uniformly sampled.

Particle merging In order to merge neighboring particles i and j to form a new particle n,
their weights are used. The new weight is the sum of the old weights w,, =
w; + w;. All other quantities, except for the mass which remains constant, are
determined using a weighted average as
x, = Wi T X Wi (4.12)
Wn
to guarantee conservation of momentum [WHK17]. After merging only particle
n remains and i and j are removed. In case of mass redistribution, only the
fraction w; — w’;wj of the larger particle i is redistributed to the smaller particle
j- And only the remaining quantities of particle j are updated like above.

“ Surface Rendering

In order to achieve a realistic fluid appearance, it is crucial to have a proper
interaction of fluids with rigid surfaces. This can either be achieved by simu-
lating the interaction of liquid particles with the rigid at costly high particle
resolution [BPHK13] or by approximating the appearance only in the render-
ing step. Although fluid rendering that uses implicit surface definitions is not
new, only recently Morgenroth et al. [MWE16] proposed a method to achieve
prescribed static contact angles at rigid surfaces. Starting from the original
zero level-set surface definition described in Sec. 2.4.1 in the following two
subsequent correction steps to ¢p(x) are proposed in order to achieve dynamic
contact angles depending on the velocity of the fluid.

Pﬂrametric'ﬂuid Deserno [Des04] derived a parametric description for the fluid meniscus at
MENSES 3 vertical solid wall for arbitrary angles between the horizontal plane and the
fluid surface v as

s N s Yo : N
1 cosh § + (7 cos 3 — (1 —costg)) sinh 7

x(s,wo) =
v cosh% + cos % sinh%
Zsin%
yis,po) = (4.13)

cosh% +cos % sinh%

where x(s, () describes the distance to the wall in normal direction, y(s, %)
the vertical offset from the horizontal plane and s is the arc length of the
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meniscus starting at the wall with s = 0. [ is the capillary length which in this
work is set to the particle radius. x(s, ) is close to identity, i.e., s = x(s, ) for
moderate angles ¥ so that y(s,1() can be used to correct the surface distance
function as proposed by Morgenroth et al. [MWE16].

As the derivation in Eq. (4.13) only describes an offset from the horizontal Static contactangle
plane, in practice, the correct initial contact angle between fluid and rigid has
to be enforced. Therefore, Morgenroth et al. [MWE16] mirror ghost particles
across solid walls which, however, can cause problems if fluid particles are on
both sides of thin rigid walls and is costly due to the sampling of additional
particles. Instead, in this work an explicit correction is presented which in turn
extrudes a projected footprint of the fluid onto the wall. Fig. 4.2 (left) shows Projected footprint
a schematic of the proposed approach. Assume a fluid is in close vicinity to a
wall with unit normal 72, the weighted average position is X and the grid point
to evaluate the signed distance for is x. Then the distance function is adjusted
according to

T BN C) .
ox) = |lx—xx)| (Sin(ﬁ)+d(x)),w1th
B = arccos(max(g-ﬁ,o)). (4.14)
X — x|l

As particle sizes vary, the CSPH interpolated radius 7 (x) is used (see Eq. (3.12)).
The max in S restricts the correction to work in the direction of the solid wall.
In a next step the term d(x) is calculated which allows to enforce dynamic

Figure 4.2: Adjustment of distance function according to advancing a,4y and
receding ae. angles yields nicely rendered details at the surface (red) and
dynamic appearance even for single particles (green outline).

wetting angles as depicted in Fig. 4.2 (right). In general, there is a dependency
between the capillary number, which relates viscosity and velocity to surface

tension, and the third power of the dynamic contact angle [Kis93]. As surface Dyriamic contact
angle
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tension and viscosity are constant, the receding and advancing contact angles
can be described as functions of the velocity as

Qrec(D) E — Arecll I3

- /4 Sl
aadv(v) E + Aadv” V|3 (4.15)

-

where Arec and A,qy control the influence of the velocity. Using two different
control parameters allows to capture hysteresis effects that can cause advancing
and receding angles to differ.

The actual dynamic contact angle to achieve is determined by the relative
projected positions of the weighted average particle position x and the grid
position of evaluation x. These are orthogonally projected onto the surface
to yield x, and x,. The distance between these points is projected onto the
%). The sign of p determines if x is located at
the receding or advancing front of the droplet. The contact angle « is then inter-
polated between the static contact angle ay,se and the receding and advancing
angles ayec and a,qy as

velocity vector as p = (

(4.16)

p4'al‘ec(i))+(1_p4)'abase if _].Sp<0
alp) = .

pi 'aadv(ij)"'(l_pi)‘abase if0=sp=1

The power terms force the receding angle to form a narrow tail and the advanc-
ing front to form a more drop-like shape. Finally the corrections

dex) = y(Ix,—x1.5 - a(p) (4.17)

are plugged into Eq. (4.14). Fig. 4.3 shows how a droplet consisting of a single
particle is modified using the proposed method. In order to not make the

Figure 4.3: A drop of one particle is modified using the proposed approach.
Left: Unmodified Drop, middle left: drop with projected footprint, middle right:
drop at moderate downward velocity, right: drop at fast downward velocity.

Influence radius of - surface correction expand from fluids far away to the surface, in practice the

rigid surface
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correction terms are restricted to distances || X — X, |l < 7 which has, however,
been omitted in Fig. 4.3 to make the corrections more articulate. Fig. 4.4 shows
a comparison of an uncorrected surface extraction and the proposed method
in one of the demo scenes.

Figure 4.4: Uncorrected surface rendering (left) and the proposed modification
to render dynamic contact angles (right).

Results

The proposed simulation was tested on four different scenes. In order to evalu-
ate evaporation, a liquid drop was put on a hot surface (see Fig. 4.5). In the SCA
Logo Tex scene, humid air is blown onto an impregnated mirror. It uses purely
texture-based evaporation and condensation (see Fig. 4.6) while in the SCA
Logo scene, particles are emitted from the texture seeding points (see Fig. 4.7).
In the Glass scene, the outside of a glass filled with a cold liquid is steamed
with a stream of warm vapor from the left hand side while the liquid inside
remains at rest (see Fig. 4.8). All simulations have been carried out using an
NVIDIA GeForce GTX Titan with 6 GiB VRAM. The simulation framework has
been implemented using C++, CUDA 8.0. Tab. 4.1 shows a summary of the
resolutions and timings of the demo scenes. All scenes have been rendered
using Mitsuba [Jak10] and the proposed modified surface extraction. Surface
steaming effects have been rendered using a rough material where the rough-
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Evaporation of a
drop

Table 4.1: Scenes with particle ‘#Ptcl’ and rigid particle ‘#RigPtcl’ counts, grid
‘#Cell’ and texture ‘#Texel” resolution and run times. ‘Ptcl’ gives the time spent
for the SPH simulation, ‘Grid’ the run time of the grid simulation. The remain-
ing timings describe the coupling: ‘Neigh’ denotes the time for neighborhood
searches, ‘Heat’ for heat transfer and interpolation, and ‘Eva’ for evaporation
and condensation, dt denotes the corresponding simulation time step.

Scene Resolution Run time per step (ms)
Q

e ® |3 % = | = S| 5 <

S| F | R % | E|&|Z2|Z2|a|=
Drop (no tex) | 1207 | 5108 | 643 - 186526114
Drop 1207 | 5108 | 64° | 5122 | 18 |65 |11 | 6 | 26 | 4
SCALogoTex | - |28K [64%3]1024°| — |60| - | 16]15] 5
SCA Logo 135 | 28K | 643 | 1024> | 13 [60] 8 [ 17 [ 31 ] 5
Glass 174K | 89K | 643 | 10242 [ 210 [ 31 [ 32 |23 |40 | 2

ness was controlled by the water mass textures. The impregnation of the SCA
logo has been realized by adjusting the maximum mass texture.

Figure 4.5: A spherical drop of water is dripped onto a hot surface, evaporates
and transfers its mass into the grid simulation. The sequence progresses from
left to right and from top to bottom.

In the drop scene (see Fig. 4.5), the initial liquid and air temperatures were
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set to 20°C while the ground plane was set to a temperature of 150°C causing a
fast evaporation of the liquid. In order to assess the overhead of using textures,
two versions of the drop scene were simulated, while the general simulation
outcome was not changed. Due to the comparably low number of particles, the
run time was mainly determined by the grid solver which took 65 ms per time
step while the particle simulation only took 18 ms and the coupling between
air and liquid phase only 9 ms (see line ‘Drop (no tex)’ in Tab. 4.1). When
adding textures to the simulation (see line ‘Drop’ in Tab. 4.1), the timings for
the coupling increased to 53 ms. However, due to the fact that heat is only
interpolated from rigid particles to texels, the run time for heat transfer does
not measurably increase when using textures.

Figure 4.6: A mirror is steamed by humid air revealing the impregnated SCA
logo.

Also for the SCA Logo scene two versions were simulated, one that uses Condensationona
only textures and no liquid particles (SCA Logo Tex, see Fig. 4.6) and one ™"
that uses the full simulation including liquid particles (see Fig. 4.7). In the
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Balanced
evaporation and
condensation

Surface rendering

Figure 4.7: Blowing moist air onto the impregnated SCA logo causes particles
to condense.

logo scene, moist air at 20°C is blown onto a cold mirror at 4°C which causes
condensation to set in. The SCA Logo Tex scene demonstrates that very fine
surface detail can be captured using the proposed coupling. The run time was
again dominated by the grid solver with 60 ms per time step while the coupling
only took 31 ms in total. As the neighbor search for rigid-texel coupling is done
in a preprocessing step it did not introduce any additional cost per time step.
When additionally introducing liquid particles into the scene, neighbor search
has to be performed in each step increasing the run time for the coupling to
56 ms.

The glass scene (see Fig. 4.8) demonstrates that the proposed method is
able to properly work in a well balanced way; i.e., allowing to simulate a cold
fluid at rest that does not evaporate while particles in the vicinity condense at
the outside of the glass. The liquid simulation for the glass scene took 210 ms
per time step and dominated the overall run time. The grid solver only took
31 ms and the coupling took 95 ms in total.

The marching cubes [L.C87] based renderer runs solely on the CPU. Render-
ing times for the Glass scene are 31.7 s using the original surface definition and
53.8 s using the proposed approach, i.e., the proposed modification lead to an
overhead of 70%. For the SCA Logo scene rendering times were 9.3 s per frame
without and 14.6 s with modification, i.e., an overhead of 60%.
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Figure 4.8: A glass filled with cold liquid surrounded by moist air (left) causes
water to condense at the glass surface (right).

Limitations As evaporating particles can become very small, they sometimes
are able to penetrate rigid bodies. This a known limitation of current adaptive
approaches [WHK17]. Since explicit meshes of large triangle counts are used to
represent rigid surfaces, the overhead for the proposed implicit surface defini-
tion was quite big. It could be reduced by using more efficient representations
for rigid surfaces.

Conclusions

This chapter described the modeling and simulating of the evaporation and
condensation of SPH-based fluids. The air phase is modeled using a coarse
Eulerian grid solver while the liquid phase is based on an adaptive SPH solver.
In order to achieve very fine surface detail, textures are used on rigid objects
into which mass can be transferred. The texels exchange mass with the grid
solver and if sufficient mass has been gathered, are used to generate particles.
Particles can evaporate by transferring mass into grid cells which in turn yields
a mass preserving cycle of evaporation and condensation. In order to achieve
realistic high-quality surface renderings of fluids, a modified implicit surface
definition has been presented that is able to enforce static and dynamic contact
angles of fluids at rigid surfaces. The use of textures in combination with the
novel implicit surface model allows for a rendering of rigid-fluid interactions at
very high spatial resolution even at moderate particle sizes.






Adaptive Volume Ray
Casting

Figure 5.1: The fluid letters HPG 2016 (left) are dropped into a basin and cause
a splashing effect (right). The sparse, perspective particle access grid adapts to
the scene (middle).

This chapter presents a fast and accurate ray casting technique for unstructured
and dynamic particle sets. The technique focuses on efficient, high quality vol-
ume rendering of fluids for computer animation and scientific applications.
The novel adaptive sampling scheme allows to locally adjust sampling rates
both along rays and in lateral direction and is driven by a user-controlled screen
space error tolerance. In order to determine appropriate local sampling rates,
a sampling error analysis framework based on hierarchical interval arithmetic
is proposed. The approach leads to significant rendering speed-ups with con-
trollable screen space errors. Efficient particle access is achieved using a sparse
view-aligned grid which is constructed on-the-fly without any pre-processing.
The basic principle of the adaptive ray casting approach has first been described
by Orthmann [Ort14] and is introduced in Sec. 5.2 and 5.3. In order to achieve
competitive rendering performance, the approach was significantly improved
as presented in Sec. 5.4. The resulting method has been published [HOK16] and
presented at High Performance Graphics (HPG) 2016 in Dublin, Ireland.

article-based methods like smoothed particle hydrodynamics (SPH) of-
fer several advantageous properties. Due to their high spatial flexibility,
convection-driven free surface flows, and interactions with dynamic objects

59
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Contributions

can naturally be described [I0S*14]. Moreover, the flow of concentrations
and heat, i.e., advective-diffusive transport can easily be incorporated [CM99,
Mon05, OHB*13]. However, ad hoc rendering of large unstructured and dy-
namic particle sets is still a challenging task.

As discussed in Sec. 2.4, there are several methods to reconstruct smooth
surfaces from particle-based data [SSP07, vdLGS09, OCD11, AIAT12, YT13,
RCSW14, ZD15, ZD17]. While surface rendering is able to convey the fluid’s
geometric shape, it does, however, not provide any information about inter-
nal fluid structures, e.g., in advection-diffusion scenarios. In order to provide
insight into fluid transport phenomena, volume rendering [EHK* 06, HLSR08]
has to be applied. Volume rendering of particle data has been realized using
hybrid splatting-slicing approaches [FGE10, FAW10] that scatter particle con-
tributions [Wes90] onto axis-aligned [SP09a] or view-aligned [FGE10, FAW10,
NMM*06] texture slices. Compositing these slices in front-to-back order yields
the final image. Because texture-slicing approaches are tailored for the rasteri-
zation pipeline of the GPU, incorporating adaptive sampling techniques is very
difficult. Ray casting, in contrast, constitutes a more generic volume rendering
approach for which, however, efficient means to directly access particle data
are necessary. Moreover, in case of dynamic particle sets, these data structures
must not rely on any kind of costly preprocessing. In the following an on-the-fly
volume ray casting for unstructured particle data sets is proposed. The ray
casting makes use of an adaptive sampling scheme to allow for an efficient
rendering of large dynamic particle sets as shown in Fig. 5.1. In detail, the
proposed rendering approach incorporates the following contributions:

* An on-the-fly sampling error analysis framework based on hierarchical
interval arithmetic for ray bundles which is able to derive strict bounds
to the screen space error resulting from locally adapting sampling rates
in lateral and viewing directions.

* Agreedy algorithm that optimizes the degree of adaptivity both in viewing
and lateral directions to yield significant speed-ups for a user-controlled
screen space error.

* The perspective, view-aligned grid known from texture-slicing [FAW10]
is enhanced to an efficient sparse access structure for particle data that
is constructed on-the-fly.

The remainder of this chapter is structured as follows: Sec. 5.1 discusses
foundations and prior work in adaptive volume ray casting and introduces in-
terval arithmetic. Sec. 5.2 gives an overview of the ray casting pipeline. Sec. 5.3
and 5.4 describe the proposed sampling error analysis framework and how it
is able to determine local sampling rates. Implementation details are given in
Sec. 5.5. Sec. 5.6 discusses the results before conclusions are drawn in Sec. 5.7.
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Foundations and Prior Work

Adaptive Volume Rendering

As introduced in Sec. 2.4.2, volume ray casting evaluates a physically-based
model of light transport by treating quantity fields as a participating medium.
Each viewing ray x(si) is sampled at integer coordinates k =0,...,N — 1 which
are distributed at distances s € [Spear, Star] from the camera, where sy, and
Star are the distances to the near and far clipping planes of the view frustum.
The SPH-based quantity field is evaluated using corrected interpolation [BK02]
(see Eqg. (3.12)). Interpolated samples Qi = Q(x(sx)) along rays are mapped to
radiance and transparency values as iy = tf7(Qy) and t; = tf7(Qg), respectively,
where tf;,tf7 : [0,1] — [0, 1] are material dependent transfer functions. The
volume rendering equation composites radiance and transparency samples to
yield the ray’s radiance and transparency as [EHK*06]

N- k-1 A N-1 A
Z H i land T= T g™ (5.1)
k=0 k=0

In contrast to the previously presented volume rendering equation (2.19) which
assumed uniform step sizes, the transparency values given for a unit reference
length are corrected in Eq. (5.1) to match the sampling step size Asi. In the
following, opacity correction terms will be omitted to improve readability but
in practice they have to be applied appropriately.

Adaptive Rendering of Grid Structures Adaptive sampling is mainly applied
for data on regular grids [BHMF08, GS04, KHW*09]. Danskin and Hanrahan
use importance sampling in order to locally adapt sampling rates [DH92]. Al-
though it is possible to substantially speed up rendering using importance
sampling, it is a stochastic approach and hence it is difficult to calculate ex-
plicit bounds for the screen space error. Ledergerber et al. [LGM*08] introduce
a Moving-Least-Squares (MLS) approach to reconstruct higher order continu-
ous field functions, which can also be applied to irregular grids. Similar to the
proposed approach, Guthe and Strasser [GS04] estimate screen space errors
due to adaptive sampling when uncompressing wavelet representations. How-
ever, their approach requires a costly wavelet transform as precomputation,
which is unfeasible for on-the-fly visualization of dynamic particle data sets.

Volume Rendering for Particle Sets In contrast to sampling in regular grids,
efficiently accessing unstructured particle data that contribute to a sampling

Object-aligned data
structures
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Particle upsampling

View-aligned grids

5.1.2

position poses quite a challenge. This is commonly addressed using spacial
subdivision structures such as object-aligned octrees [OKK10]. As all object-
aligned access structures require cell finding logic and may introduce thread
divergence, parallelism can be drastically reduced [PGSS07].

In order to increase rendering performance, the particle count can be re-
duced by upsampling operators [APKGO07, ZSP08, HHK08] that approximate
particle subsets by fewer larger particles [HE03, FSW09, FAW10]. As upsam-
pling can introduce visual artifacts [BOT01, KAG*06], it should only be used to
prevent under-sampling in case the particle size falls below the pixel size.

Perspective, view-aligned grids can be employed to achieve memory coher-
ence and to remove traversal efforts [HMO08]. Starting from a precomputed mul-
tiresolution particle representation Fraedrich et al. [FAW10] resample particle
sets to a perspective grid for further texture-based ray casting. Their approach
adjusts the sampling step size in viewing direction to be consistent with the
perspectively increasing lateral resolution (see also Sec. 5.5.1). In a follow up
work, Reichl et al. [RTW13] preprocess the SPH particle set by resampling it
onto an object-aligned octree hierarchy before ray casting. Orthmann [Ort14]
used a perspective grid to directly access particle data and applied an adaptive
ray casting. As the error analysis was very pessimistic, speed ups could only be
achieved for very large error tolerances. By deriving screen space error bounds
from interval arithmetic and separating lateral from longitudinal contributions,
the sampling error analysis proposed in the following very tightly follows the
error tolerance and yields large speed-ups.

Interval Arithmetic

Arithmetic
operations

Interval arithmetic is a common tool that helps to put bounds on, e.g., numeri-
cal approximations of mathematical calculations [MKCO09]. Instead of working
on real valued variables, a whole interval is used in calculations in order to
bound all possible results of computations for a range of input values. In the
following, interval variables will be marked with T and the corresponding up-
per and lower bounds with superscripts | and *, respectively. The width of an
interval xT = [x+, x "] will be denoted as

w(xI) =x' —xt. (5.2)

In order to perform calculations using intervals, arithmetic operations have
to be extended, accordingly. For any operation e € {+,—, -, /}, the lower bound of
xlI-sz can be determined as min{xf-xzi, le-sz, xlT-sz, xlT-sz}. The upper
bound is determined accordingly as the maximum. Some operations can,

however, be expressed more efficiently. The addition operation can be defined
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by adding the lower and upper bounds separately
X+ Xy =[x+, %] + X, |

As, in general, negative bounds have to be considered, the multiplication oper-
ation can not be simplified. In the case of only non-negative values, which is
true for radiance and transparency values, it can however be simplified to

T.T_(.l.l . T.T
X1 X5 _[xlx2’x1x2]'

As neither subtractions nor divisions are used in the following, they are omitted.

Calculating output intervals of general functions can be very costly as results
to all potential inputs have to be considered as f (xD) =1 f)lxe xT1}. In con-
trast, monotonically increasing functions are efficiently evaluated as [MKC09]

faeh=[fah, fxh]. (5.3)

As the volume rendering equation (5.1) takes only non-negative radiance and
transparency values as input and is composed only of addition and multipli-
cation operations, it is monotonically increasing in each argument. For a set
of input radiance and transparency intervals it, thus, has to be evaluated only
twice in order to calculate interval bounds. This makes interval arithmetic a
perfect tool for the proposed screen space error analysis.

Proposed Adaptive Ray Casting Pipeline

Even though the proposed on-the-fly ray casting is used for dynamic SPH
data sets in this work, the scheme can be applied to any kind of unstructured
particle sets based on local operators for recovering continuous quantity fields.
However, particle sizes are assumed to not fall below pixel size in screen space,
thus, particle upsampling cannot be applied.

The proposed ad hoc on-the-fly ray casting of dynamic SPH particle sets
uses the original particle set “as is” to prevent any additional error due to re-
sampling or interpolating particle quantities onto intermediate data structures
such as grids or coarser particles. Also, any other kind of prohibitive and costly
precomputation is omitted.

The proposed ray casting pipeline comprises five components:

Sparse View-Aligned Grid Structure: An enhanced perspective grid that sub-
divides the view frustum into cells that are aligned with view rays. In
contrast to Fraedrich et al. [FAW10], who resample particle quantities

Monotonically
increasing functions

Application to
volume rendering
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into a dense grid, a sparse data structure to access the original particle
data is used. Figure 5.2 shows the resulting sparse grid structure. The grid
is built from scratch in every frame using only raw particle data as input.
The particles are assigned to all cells that intersect their volume and only
cells that contain particles are present in the final grid. During ray casting
each cell is traversed by a ray bundle covering D, x Dy, pixels in screen
space. As the cells are aligned with the view rays, all rays of a bundle
traverse the same set of cells in viewing direction. Using an inverse per-
spective mapping, the perspectively distorted sampling positions in view
space are described in uniform sample space (see Sec. 5.5.1).

Initially each cell contains Dy, x Dy, x D, samples, with D, > 1 and
D, > 1. Each ray samples D, positions inside of each cell, however, the
sampling error analysis allows to locally reduce the number of samples in
powers of 2. Thus, the sampling level I, corresponds to D /2" sampling
positions per ray in cell c.

Sampling Error Analysis: To locally adapt the sampling rate for each cell, a
formulation of the rendering equation based on hierarchical interval
arithmetic is introduced. Inside of each cell, upper and lower bounds
to radiance and transparency values due to adaptive sampling are de-
termined. This is efficiently realized by mapping particle data onto one
representative ray that is cast through the cell instead of sampling all D yz
rays. The cell bounds are then composited in front-to back to efficiently
predict screen space errors due to adaptive sampling and to compute an
optimal combination of per-cell sampling levels (see Sec. 5.3).

The interval arithmetic is further extended so that adaptive sampling in
viewing and lateral directions can be combined. To that end, a repre-
sentative radiance and transparency is calculated for each cell. Lateral
adaptivity is then realized by rendering the cell’s radiance and trans-
parency as a super-pixel that spans all pixels the cell covers in screen
space (see Sec. 5.4).

Greedy Optimization: In order to achieve an efficient adaptive ray casting, the
degree of adaptivity has to be maximized for each cell for a user-defined
screen space error tolerance (see Sec. 5.3.4). To yield higher speed-ups,
the error prediction can be relaxed by removing the lateral error in the
sampling error analysis. This leads to a performance optimized greedy
algorithm which practically still satisfies the error bounds while allowing
for higher sampling levels in viewing direction and for an alternative
super-pixel rendering (see Sec. 5.4).

Cell Merging: Consecutive cells in viewing direction that support higher sam-
pling levels are merged to reduce the number of particles to be sampled
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Figure 5.2: Sparse access structure. Cell merging ensures a constant number
of Dyy x Dy x D, samples per cell. The image plane is split into ray bundles
of size Dyy x Dy, each storing cells ¢1 and ¢t in a look-up table. My x M, x M,
is the maximum number of cells present in a dense grid.

and keep a constant number of samples per cell (see Sec. 5.5.2).

Adaptive Ray Casting: The final volume ray casting algorithm simplifies to an
entirely thread-coherent front-to-back traversal of cells. Cells are either
rendered as super-pixels or else all rays only sample the necessary subset
of particles that has been assigned to the cell (see Sec. 5.5.3).

Sampling Error Analysis Framework

The goal of the sampling error analysis is to determine sampling levels for each
cell so that a user-defined error tolerance E; is not exceeded by the screen
space error. Therefore, a hierarchical interval arithmetic scheme is proposed to
determine upper and lower bounds to the radiance and transparency on the
level of ray bundles. These bounds determine the screen space error via the
volume rendering equation (Eq. (5.1)).

The error analysis works hierarchically on the level of samples, of cells and
finally of whole ray bundles. Inside each cell, bounds to the quantity field at
each sampling depth along the ray bundle are first calculated. The quantity
bounds QT are mapped to radiance and transparency sample bounds i T, t*
that bound the radiance and transparency at each sampling depth for all rays
of the bundle (see Sec 5.3.1). Sample bounds are composited inside cells to cell
bounds IT, TT (see Sec. 5.3.2). The screen space error analysis (see Sec. 5.3.3)
composites bounds of traversed cells in viewing direction to ray bounds 1T, TT

Error tolerance

Error analysis
overview
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using different combinations of cell sampling levels. Note that only D, lower
and upper bounds have to be composited inside each cell to yield cell bounds
and only one upper and lower cell bound has to be composited per cell along
the cell sequence to efficiently calculate the bounds for all rays of a ray bundle.

Greedy optimization Based on the error analysis, cell sampling levels l?pt are determined for all
cells ¢ for the final adaptive ray casting. As a direct or analytic identification
of the optimal sampling levels is not possible, sampling levels are greedily
optimized while keeping the width of the error bound below a user defined

error tolerance Ej (see Sec. 5.3.4). Alg. 5.1 gives pseudocode of the sampling
error analysis.

1: for all cell c € perspective grid do
Sample bounds

2: for all Sample0< k<D, do

3: QI = lateral_quantity_bounds(particle quantities Q;,)
4: [i]%, t,f] = sample_bounds (Q%)
5: end for
Cell bounds
6:  forall Samplinglevel / do
7. !, 7' = cell_bounds (i}, {£}1, 1)
8: if w(IT%) > Eror w(TH*) > E; then
9: I =max(/-1,0) © Error tolerance exceeded, last level is maximum
10: break
11: end if
12: end for
13: end for

Greedy optimization

14: for all Ray bundle b do

15: = greedy_optimization(Ej, {Ié[’l}, {T,:I’l}, {1773
16: end for

Algorithm 5.1: The proposed sampling error analysis determines bounds for
particle quantities and samples in cells, composites sample bounds to cell
bounds and finally composites cell bounds along ray bundles to determine
ray bundle bounds and thus to the screen space error. The greedy algorithm
finally returns appropriate cell sampling levels I

pml Lateral Quantity and Sample Bounds

First, the maximum and minimum of all D xyz samples at each sampling depth
sk inside of cells are determined. Since CSPH quantities are affine combina-
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tions of particle quantities (cf. Sec. 3.1.3), sample quantities are bounded by
the particle quantities contributing to the lateral neighborhood at depth sy, i.e. Eaterzl quantity
ounds

T 1 :
Q= max Qj, Qk = min Qj,
|zj—sk|<h]- |Zj_5k|<hj

where z; is the z-coordinate of particle j in view space and h; its radius. As
transfer functions can introduce high frequencies (see Fig. 5.3), the bounds Q%
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Figure 5.3: A radially increasing concentration profile rendered with a complex
transfer function. The center of the concentration profile is in the upper right
of all images. High-frequency transfer functions introduce visible artifacts if
sampling rates are naively reduced (left). The proposed screen space error
analysis locally adjusts sampling rates to retain visible features (right). Only
the volume covered by gray cells has to be sampled at the highest sampling
rate to give correct rendering results, yellow cells are rendered as super-pixels
and green cells by reducing the sampling rate in viewing direction (bottom).

of the quantity field are mapped to radiance bounds using exhaustive search Radiance sample

for extremes in tf;(Q) as shown in Fig. 5.4: bounds for level 0
ii = max_ Q) if= min t;(Q)
k L oT ’ k 1 AT '
QE[Qk er] QE[Qk’Qk]

In practice, i ', it are accessed from a dynamically calculated 2D-texture using

Q' and QT aslookup coordinates. Analogously, transparency bounds t,f are
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computed and stored by analyzing tf7(Q). Note that only D, sample bounds
are calculated each of which strictly bounds the Dy yz samples of the ray bundle
passing through the cell. By reducing the D xyz ray samples to sample bounds,
the following stages of the sampling error analysis has to be performed only on
the D, representative radiance and transparency sample bounds.

Figure 5.4: For each sampling depth s, quantity bounds QII, Qé are deter-
mined by finding the maximum and minimum quantities of the particles that
contribute to sy depicted by the red arrows (left). The transfer function’s maxi-

mum and minimum i]I, i ,? is searched in the parameter range [Qé, Q;] (right).

Cell Bounds

Sampling level and
step size

Radiance sample
bounds for higher
levels

The second stage of the hierarchical interval arithmetic calculates bounds for
cell ¢ at sampling level /. For I = 0, cell radiance and transparency bounds
I CI’O, TCI’O are found by compositing sample bounds i]f, t]:C[ using the volume
rendering Eq. (5.1). Note that the sample bounds already include the lateral
variation of the ray bundle.

If a cell is sampled at a higher level /, less samples are used. Each of these
coarser samples, however, represents a larger span of A; = 2! samples of level
0 along the ray. Thus, samples of higher levels are bounded by the minimum
and maximum of the original samples at level 0 they span. For samples k =
0,...,D,—1 this yields

i;'lzl . max . {i-T}.
jef &) a4 ]
. 1,1

For i, min is used instead of max. Analogously, t,f’l is calculated using
transparency samples. After determining the proper set of sample bounds
for level ! in cell ¢, the samples are composited using the volume rendering
Eq. (5.1), to yield cell bounds ICI'I and TCI’I as shown in Fig. 5.5.

As large radiance variations, i.e. w(/, CI’Z) > 0, strongly influence the error
bounds, the sampling level of each cell c is limited according to the cell’s
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Figure 5.5: Computation of radiance bounds of cell ¢ for three sampling levels.
With larger sampling step sizes Ai, = 4, bounds (right, green area) differ from
accurate bounds at Ai, =1 (left, gray area) to the signal (red area). This may
lead to sampling errors. Compositing sample bounds i,f’l and t,f’l yields cell

radiance and transparency bounds Ié[’l, TCI'I.

maximum potential error to [[*** = argmax; { w(ICI'k) <E 1}. Preventing that
coarser sampling of a single cell exhausts the error tolerance, yields a better
distribution of the error tolerance between cells. The more cells are sampled
coarsely the higher the speed-up.

An important aspect is the handling of cells ¢ which contain surface par-
ticles. As particles only model the fluid but not the air phase, radiance and
transparency bounds cannot be computed correctly. Surface particles are de-
tected using the approach of Orthmann et al. [OHB*13]. Assume one particle
covers all sampling depths inside a cell but is only hit by some rays while all
other rays pass through empty space, then the cell bounds yield w(ICI'O) =0al-
though errors are introduced into the image. As only the particle’s z-component
is used to calculate sample bounds, empty space in the lateral neighborhood is
not detected. In order to prevent erroneous adaptive sampling in surface cells,
I = 0 is set. Apart from this, surface particles are treated like bulk particles.

Screen Space Error Analysis

The final stage of the hiera