
Minimizing the Makespan of Diagnostic

Multi-Query Graphs in Embedded Real Time

Systems

DISSERTATION

To Obtain the Degree of Doctor of Engineering

Submitted By

Nadra Tabassam

Submitted To

Department of Electrical Engineering and Computer Science

Chair of Embedded System

University of Siegen

Siegen 2020



Supervisor And First Appraiser

Prof. Dr.Roman Obermaisser

University of Siegen

Second Appraiser

Prof. Dr. Ali Jannesari

Iowa State University

Date of the Oral Examination

27th January 2020



I would like to dedicate my work to my beloved mother who was always there through my

thick and thin.



ACKNOWLEDGEMENTS

I would like to thank my supervisor ”Professor Roman Obermaisser” for his feedback,

cooperation and guidence. In addition, I would like to express my gratitude to the staff of

Embedded System specially Manuela Popp and Stefan Otterbach. I would like to thank my

friends Maryam, Sara, Adele and Sitara for accepting nothing less than excellence from me.

Last but not least, I would like to thank my family for supporting me spiritually throughout

my PhD and my life in general.

v



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Framework for Active Diagnosis . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Objectives of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Summary of Main Contributions . . . . . . . . . . . . . . . . . . . 7

1.5 Structure of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2: Fundamental Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Real Time Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Examples of Real Time Systems . . . . . . . . . . . . . . . . . . . 11

2.1.2 Properties of Real-Time Systems . . . . . . . . . . . . . . . . . . . 12

2.2 Worst-Case Execution Time (WCET) . . . . . . . . . . . . . . . . . . . . . 13

2.3 Time Triggered Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

vi



2.4 Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Database Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.2 Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.3 Real Time Database Management System . . . . . . . . . . . . . . 17

2.5.4 Properties of Real Time Database Management Systems (RTDBMS) 18

2.6 Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.1 Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.2 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.3 Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.4 Size Distribution Estimator . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 3: Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Fault Tree Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Graph Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Fault Detection and Diagnosis Using Graph Based Techniques . . . . . . . 27

3.5 Real Time Databases Management Systems (RTDBMS) . . . . . . . . . . . 28

3.6 Worst Case Execution Time (WCET) . . . . . . . . . . . . . . . . . . . . . 29

Chapter 4: System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Architecture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Application Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Diagnostic Mutli-Query Graph (DMG) . . . . . . . . . . . . . . . . 38

vii



4.2.2 Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Chapter 5: Class-based Query-Optimization for Minimizing the WCET of the
DMG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Basic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Brief Details of Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Detailed Explanation of the Algorithm . . . . . . . . . . . . . . . . . . . . 42

5.3.1 Estimation of Worst Case Execution Time (WCET) . . . . . . . . . 45

5.4 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4.2 Symptoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 6: Minimizing the Makespan of DMGs Using Graph Pruning and Query
Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1 Overview of Graph-Pruning and Query Merging . . . . . . . . . . . . . . . 51

6.2 Detailed Explanation of Algorithm . . . . . . . . . . . . . . . . . . . . . . 51

6.3 Graph Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3.1 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3.2 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.4 Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.5 Calculation of WCET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.6 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.6.1 Queries in DMG Before Optimization . . . . . . . . . . . . . . . . 57

6.6.2 Final Query Execution in DMG . . . . . . . . . . . . . . . . . . . 64

viii



6.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 7: Minimizing the Makespan of DMGs Using Query Aware Partition-
ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.1 Optimization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.1.1 Basic Optimization Rules . . . . . . . . . . . . . . . . . . . . . . . 72

7.1.2 Per Table Optimization for Select Queries . . . . . . . . . . . . . . 73

7.1.3 Join Aware Partition Optimization for Join Queries . . . . . . . . . 73

7.2 Calculation of WCET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.3 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.3.1 Implementation of History Interval and Skip Factor . . . . . . . . . 76

7.3.2 Number of Executions on Basis of Skip Factor . . . . . . . . . . . 76

7.3.3 Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.3.4 Results for Example DMG . . . . . . . . . . . . . . . . . . . . . . 82

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.4.1 Description of Results . . . . . . . . . . . . . . . . . . . . . . . . 84

Chapter 8: Minimizing the Makespan of DMGs Using Genetic Algorithm . . . . 88

8.1 Optimization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.2 Important Components of Technique . . . . . . . . . . . . . . . . . . . . . 89

8.2.1 Fault Diagnostic Query (FDQ) . . . . . . . . . . . . . . . . . . . . 89

8.2.2 Query Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.2.3 Task Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.2.4 Genetic Algorithm (GA) . . . . . . . . . . . . . . . . . . . . . . . 90

ix



8.3 Determining the Worst Case Execution Time . . . . . . . . . . . . . . . . . 92

8.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.4.1 Fault Diagnostic Query . . . . . . . . . . . . . . . . . . . . . . . . 92

8.4.2 Query Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.4.3 Task Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.4.4 Left Deep Tree Based TG . . . . . . . . . . . . . . . . . . . . . . 99

8.4.5 Bushy Tree Based TG . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.4.6 Implementation of Genetic Algorithm for Our Example . . . . . . . 101

8.5 Calculation of WCET using Example Query . . . . . . . . . . . . . . . . . 103

8.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Chapter 9: Fault Detection and Diagnosis Using DMG for Safety Critical HVAC
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9.1 Background of HVAC Systems . . . . . . . . . . . . . . . . . . . . . . . . 108

9.1.1 Time Sensitivity of HVAC Systems . . . . . . . . . . . . . . . . . 109

9.1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.2.1 Building Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 112

9.2.2 Formulation of DMG . . . . . . . . . . . . . . . . . . . . . . . . . 113

9.2.3 Optimization Technique . . . . . . . . . . . . . . . . . . . . . . . 119

9.2.4 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.2.5 Creation of FDQs . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.2.6 Creation of FDQs after applying Cross join and changing Join Order 123

9.3 Genetic Algorithm Based Optimization of the DMG . . . . . . . . . . . . . 124

x



9.3.1 Initial Population . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.3.2 Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.3.3 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.3.4 Cross Over . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.4.1 Result 1 and Result 2 . . . . . . . . . . . . . . . . . . . . . . . . . 127

9.4.2 Result 3 and Result 4 . . . . . . . . . . . . . . . . . . . . . . . . . 127

9.4.3 Result 5 and Result 6 . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.4.4 Conclusion About Results . . . . . . . . . . . . . . . . . . . . . . 129

9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Chapter 10:Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

xi



LIST OF TABLES

2.1 Hard Vs Soft Real-Time System Properties . . . . . . . . . . . . . . . . . . 11

5.1 Classes for Simple Query Types . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Classes for Join Query Types . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Parameters extracted from Database . . . . . . . . . . . . . . . . . . . . . 44

5.4 Cost of Join Orders in Q1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1 Graph Pruning Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Sensors Used in Example FDQs . . . . . . . . . . . . . . . . . . . . . . . 58

6.3 Resultant Fault Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4 Data Statistics for makespan of DMG before Optimization (seconds) . . . . 66

6.5 Data Statistics for makespan of DMG after Optimization (seconds) . . . . . 66

7.1 Resultant Values Extracted from FDQ QC1 . . . . . . . . . . . . . . . . . . 81

7.2 Wi with Different Values (KBs) . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3 WCET for Optimized QEP (OQEP) and Unoptimized QEP (UQEP) . . . . 83

7.4 Makespan for Optimized DMG and Unoptimized DMG . . . . . . . . . . 83

8.1 Makespan of TG (Secs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.1 FDQ11 for CO2 Sensor fault (NR1) F1 . . . . . . . . . . . . . . . . . . . . 116

xii



9.2 FDQ12 for CO2 and Temperature Levels in NR2 F1 . . . . . . . . . . . . . 117

9.3 FDQ13 for Temperature Sensor fault for NR3 F2 . . . . . . . . . . . . . . . 118

9.4 FDQ14 for CO2 and Temperature Levels in NR4 F2 . . . . . . . . . . . . . 119

9.5 Fault Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9.6 FDQ1 for Fire Detection CR1 Floor 1 (F1) . . . . . . . . . . . . . . . . . . 122

9.7 FDQ2: Application of JM and JO to FDQ1 mentioned in Table 9.6 . . . . . 123

9.8 Chromosome Representation for DMGs . . . . . . . . . . . . . . . . . . . 124

9.9 Input for Scheduler for calculation of makespan Fig. 9.4 . . . . . . . . . . 125

xiii



LIST OF FIGURES

1.1 Frame Work for Active Diagnosis . . . . . . . . . . . . . . . . . . . . . . 5

4.1 Example of Architecture Model . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Application Model: Structure of Proposed DMG . . . . . . . . . . . . . . . 36

5.1 Comparison of EWCET of FDQs Before and After Optimization . . . . . . 48

6.1 Steps in Proposed System . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 Representation of DMG Before and After Pruning . . . . . . . . . . . . . 53

6.3 Query Merging: Case 1(A) and Case 2 (B) . . . . . . . . . . . . . . . . . . 55

6.4 Worst Case and Best Case QEP for FDQ Q(n2) from Fig. 6.3B . . . . . . . 57

6.5 Illustrative Example DMG . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.6 Makespan of DMG Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.7 Makespan of DMG Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.8 Makespan of DMG Case 1 & Case 2 . . . . . . . . . . . . . . . . . . . . . 69

7.1 Steps in Proposed Technique . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2 DMG with History Interval and Skip Factor . . . . . . . . . . . . . . . . . 72

7.3 A:PTP, B:Optimized QEP, C:Unoptimized QEP for Query Q1 . . . . . . . . 74

7.4 A:Join Partition, B:Optimized QEP, C:Unoptimized QEP for Query Q2 . . . 74

xiv



7.5 A:Example DMG, B:No of Executions with Skip Factor . . . . . . . . . . . 77

7.6 PTP for QA1,QA2,QA3,QA4 . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.7 A: JAP, B:WCET of Optimized QEP, C:WCET of Unoptimized QEP for QB1 80

7.8 A:JAP, B:WCET of Optimized QEP, C:WCET of Unoptimized QEP for QB2 80

7.9 A: JAP, B:WCET of Optimized QEP, C:WCET of Unoptimized QEP for QC1 82

7.10 Comparison of Makespan of DMG (select FDQs) . . . . . . . . . . . . . . 84

7.11 Comparison of Makespan of DMG (join FDQs) . . . . . . . . . . . . . . . 85

7.12 Comparison of Makespan of DMG (select and join FDQs) . . . . . . . . . 86

7.13 Comparison of CPU Consumption Before and After Optimization) . . . . . 87

8.1 Steps in Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.2 LDT based TG with Binary Representation . . . . . . . . . . . . . . . . . 93

8.3 Query Tree Left Deep Tree and Bushy Tree . . . . . . . . . . . . . . . . . 94

8.4 A:Left Deep Tree 1,B:Task Graph 1,C:Left Deep Tree 2,D: Task Graph 2 . . 95

8.5 A:Bushy Tree 1, B:Task Graph 1, C:Bushy Tree 2, D: Task Graph 2 . . . . 96

8.6 A:Bushy Tree , B:Task Graph . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.7 Left Query Tree before and after Mutation . . . . . . . . . . . . . . . . . . 98

8.8 A:LDT based TG, B:BT based TG, C:BT based TG with Four processors,
D: BT based TG with Six Processors . . . . . . . . . . . . . . . . . . . . . 104

8.9 A:LDT Based TG with Four End Systems, B:LDT Based TG with Six End
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.10 A:LDT Convergence, B:BT Convergence . . . . . . . . . . . . . . . . . . 106

9.1 Flow diagram of diagnostic query based fault detection and diagnosis . . . . 111

9.2 HVAC model of a two floor building each with three rooms and one corridor 114

xv



9.3 DMG Formation of Normal Room (NR) . . . . . . . . . . . . . . . . . . . 120

9.4 Chromosome and Crossover of DMG . . . . . . . . . . . . . . . . . . . . . 125

9.5 WCET of CQ1 from Table 9.6 . . . . . . . . . . . . . . . . . . . . . . . . 126

9.6 Makespan of DMG for Star Topology . . . . . . . . . . . . . . . . . . . . 127

9.7 Makespan of DMG for Bus Topology . . . . . . . . . . . . . . . . . . . . 128

9.8 Makespan of DMG for Ring Topology . . . . . . . . . . . . . . . . . . . . 129

xvi



Abstract

In recent years numerous control systems were deployed with safety-critical compo-

nents comprised of real time embedded systems. These systems have electronic control

units connected by networks, sensors and actuators. These systems demand high levels

of reliability and have strict timing constraints especially in case of fault occurrence. One

method to achieve this reliability is to introduce continuous monitoring and active diagno-

sis in the system. For implementing the active diagnosis in real-time systems, processing

of diagnostic queries needs to satisfy the strict timing bounds. Our optimization algorithms

minimize the overall makespan of Diagnostic Mutli-Query Graphs (DMG) in order to meet

timing bounds. The overall makespan of the DMG is minimized by applying query op-

timization and graph optimization techniques. Query optimization is applied to the Fault

Diagnostic Queries (FDQs) that are the part of each node of the DMG. The best access

methods and best query execution plans are selected for the optimization of FDQs. The

graph optimization is also applied to our DMG without affecting the semantics of FDQs.

The proposed techniques are tested with different types of parameters including (i). FDQs,

(ii). Left Deep Tree (LDT) and Bushy Tree (BT) and (iii) network topologies. The pro-

posed techniques are tested in the context of two domains including (i) vehicles and (ii)

Heating Ventilation and Air Conditioning System (HVAC). These proposed methodologies

show a significant reduction of the makespan and give convincing results with different

parameters.

xvii



Zusammenfassung

In den letzten Jahren wurden zahlreiche Steuerungssysteme entwickelt. Eingesetzt

mit sicherheitskritischen Komponenten, die aus eingebetteten Echtzeitsystemen bestehen.

Diese Systeme verfügen über elektronische Steuergeräte, die über Netzwerke, Sensoren

und Aktoren miteinander verbunden sind. Diese Systeme erfordern ein hohes Maß an

Zuverlässigkeit und unterliegen insbesondere im Fehlerfall strengen Zeitvorgaben. Eine

Methode, um diese Zuverlässigkeit zu erreichen, ist die Einführung einer kontinuierlichen

Überwachung und aktiven Diagnose im System. Für die Implementierung der aktiven

Diagnose in Echtzeitsysteme muss die Verarbeitung von Diagnoseabfragen die strengen

zeitlichen Grenzen erfüllen. Unsere Optimierungsalgorithmen minimieren die Gesamtre-

ichweite von Diagnostic Mutli-Query Graphs (DMG), um die Timing-Grenzen einzuhal-

ten. Die Gesamtdauer des DMG wird durch den Einsatz von Techniken zur Abfrageop-

timierung und Diagrammoptimierung minimiert. Die Query-Optimierung wird auf die

Fault Diagnostic Queries (FDQs) angewendet, die Teil jedes Knotens des DMG sind.

Für die Optimierung von FDQs werden die besten Zugriffsmethoden und besten Query-

Ausführungspläne ausgewählt. Die Graphenoptimierung wird auch auf unser DMG angewen-

det, ohne die Semantik von FDQs zu beeinflussen. Die vorgeschlagenen Techniken werden

mit verschiedenen Arten von Parametern getestet, darunter (i). FDQs, (ii). Linker Deep

Tree (LDT) und Bushy Tree (BT) und (iii) Netzwerktopologien. Die vorgeschlagenen

Techniken werden im Rahmen von zwei Bereichen getestet, darunter (i) Fahrzeuge und

(ii) Heizungs-, Lüftungs- und Klimaanlagen (HVAC). Diese vorgeschlagenen Methoden

zeigen eine signifikante Reduzierung der Markenbreite und liefern überzeugende Ergeb-

nisse mit verschiedenen Parametern.
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CHAPTER 1

INTRODUCTION

This chapter elaborates the background, motivation, objectives and summary of our contri-

bution. The framework that is designed for the realization of our active diagnosis technique

is also introduced briefly.

1.1 Background

Safety-critical systems are different from conventional systems. Failures of these systems

may result in one or more of the following outcomes: (i). loss of life, (ii). damage of

property, (iii). environmental harm. In recent years numerous control systems were de-

ployed with safety critical components comprised of real-time embedded systems. These

systems have electronic control units connected by networks, sensors and actuators. These

systems demand high levels of reliability and have strict timing constraints, especially in

case of fault occurrence. One method to achieve this reliability is to introduce continuous

monitoring and active diagnosis in the system. An important step in fault treatment is a di-

agnosis, which determines the cause of a failure in terms of localization and nature. Using a

root cause analysis, anomalous behaviors and states are traced back to the originating fault.

Depending upon on how diagnostic information is used, one can distinguish between the

passive and active diagnosis. Passive diagnosis stores the diagnostic information and uses

it later for finding the fault in the system. On the other hand, in case of active diagnosis,

both the detection and diagnosis of the fault is performed online within the strict timing

defined by the system. For implementing active diagnosis in real-time systems, processing

of diagnostic fault queries needs to satisfy strict timing bounds.

Real-time systems based on active diagnosis are different from other common systems

in terms of their timing requirement for diagnosis. In the context of applications having
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an active diagnosis of faults, each diagnostic task has to complete within a pre-defined

deadline. If a real time application is unable to fulfill the requirement of fault diagnosis

at run time within hard time bounds, then ultimate consequences can be fatal. In order to

maintain the timeliness of these applications, it is imperative to be guaranteed that all the

tasks complete within the pre-defined deadline. Example systems which benefit from active

diagnosis are health management systems [1], command/control systems [2], electric power

distribution applications [3] and aircraft control systems [4]. Flight control, autonomous

driving, space crafts and military surveillance applications are some examples of these

systems. For example in case of autonomous vehicles, one goal is to achieve safe and

autonomous driving at affordable cost [5]. Therefore one needs to consider the fact that

autonomous vehicles are fail operational and in case of high automation levels there is no

driver to take control of the vehicle. Similarly in Unmanned Aerial Vehicles (UAVs), fault

monitoring and diagnosis are implemented to ensure reliability and safety [6].

Another example is a Fault Tolerant Control System (FTCS). An active FTCS system

reacts to the malfunctioning of system components by re-configuring the controller based

on the information received from a Fault Detection and Diagnosis (FDD) unit. The major

objectives of an active FTCS is to develop an effective FDD scheme to provide information

about the fault with minimal uncertainties in a timely manner [7]. Therefore the fault

detection based on-line diagnosis improves the overall reliability of these safety critical

systems. The active diagnosis in these systems is imperative because these applications

have timing constraints for fault recovery (e.g., actuator freezing, limited time until correct

service is required again or to prepare for the next fault when combining diagnosis with

conventional replication) [8].

There are mainly two solutions in state of the art to ensure the reliability of these sys-

tems. The first solution is based on adding redundant components in the system. But it is

often not feasible as this increases the overall cost of the final product [9]. Another solution

is the continuous monitoring of the system for temporary or permanent component failures.
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There are two types of diagnostic techniques: (i). passive diagnosis that stores the diagnos-

tic information and analyzes it later for fault detection and repair and (ii). active diagnosis

that analyzes the diagnostic information at run time so that an immediate recovery action

can be taken [10]. Embedded systems are typically comprised of numerous actuators and

sensors. All these components are subject to faults which can result in the deviation of

their values from the correct range. These faults may cause damage including loss of life

and harm to the environment. These process abnormalities have a serious impact as the

industry can lose hundreds of billions of dollars [11][12]. Active diagnosis helps to detect

the faults earlier and prevents this damage of system and avert great losses [13].

In order to improve the safety, reliability and performance, numerous researchers have

worked on the problem of fault detection. Therefore different adequate and effective meth-

ods have been designed in this context [14]. The fault detection techniques are classified

into two types (i). history-based methods and (ii). model- based methods [15]. History

based methods are dependent on the historical data processing and are further subdivided

into qualitative (rule-based) and quantitative (statistical) methods [16]. Another aspect of

these applications is the processing of high volumes of data. There is often a huge amount

of data transmitted among the different control units in real-time systems. It is important

to store and process the real time data reliably and timely, otherwise the system can face

a catastrophic situation. There are many real-time database management systems with the

features of concurrency control and transaction scheduling. Real-time database manage-

ment systems that are commercially available include, Pervasive.SQL [17], Polyhedra [18],

TimesTen [19] and Berkeley DB [20]. Research projects that are designed by using these

database systems include DeeDs [21] and BeeHive [22].

As a summary, there are two important aspects of real time systems. One aspect is the

reliability, and another aspect is the huge amount of data processing between the different

control units. Reliability can be achieved by introducing active diagnosis in the system.

And for timely data processing and analysis, one can employ the real-time database man-
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agement system. Hence it is clear from the above discussion that time is the most important

entity in hard real time systems. All the processes, including active diagnosis and the huge

amount of data processing, should be completed within the pre-defined deadline of the

system. Therefore one needs to determine for each computational activity the Worst-Case

Execution Time (WCET). WCET analysis can be defined as the determination of upper

bounds of execution times. Knowledge about the WCET is a vital step for the development

and validation of real-time systems. The determination of WCETs is important because

hard real-time systems should satisfy the strict timing constraints expected from the sys-

tem. In general upper bounds on the execution times are required to show the satisfaction

of these constraints.

1.2 Framework for Active Diagnosis

Fig.1.1 gives an overview of the proposed framework. Our fault detection and diagnosis

platform is based on fault diagnostic queries that use rule-based inference and semantic

web technology to identify faults in the system. In such an approach, a diagnostic knowl-

edge base (DKB) describes the structure of the Open Distributed Real Time Embedded

Systems (ODRE) using semantic web technology, i.e. constituting components and their

interfaces, defines faulty or anomalous behaviour, rules for the identification of faults and

the respective recovery actions for mitigating failures. A directed graph of diagnostic rules

known as Diagnostic Multi-Query Graph (DMG) is the central element of this approach.

The diagnostic inference process will be temporally and spatially decomposed by intro-

ducing inference steps called symptoms. These symptoms and diagnostic features will be

stored in real-time databases, part of which will be timely and consistently replicated to

enable the distributed execution of rules. Each rule (i.e. symptom, fault, action) will be

realized as a query on the diagnostic facts within a real-time database, while edges in the

DMG specify input/output relationships via the real-time database.

The scope of this thesis is to minimize the Makespan (total schedule length) of the
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Figure 1.1: Frame Work for Active Diagnosis
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DMG. Therefore, Fault Diagnostic Queries (FDQs) are optimized in a manner that their

WCET is minimized. Minimization of WCET of FDQs minimizes the overall makespan

of the DMG. This work is important in the context of real-time systems as minimization

of makespans of DMGs enables the fault diagnosis process to be completed in stringent

timing deadlines provided by the system. We have marked the blocks in the black that are

covered in this thesis (Fig. 1.1).

1.3 Motivation

In recent years, the application areas of real-time embedded systems have evolved to in-

clude stringent timing constraints, reliability requirements, and the need for an open world

assumption, i.e. components are integrated at run time to realize emerging global ser-

vices dynamically. These systems demand high reliability, cost efficiency and support for

stringent timing constraints. Although the active diagnosis may benefit dependability of

the Open Distributed Real-time Embedded (ODRE) systems significantly but the present

techniques do not consider the dynamic nature of the system and the strict real time re-

quirements collectively. Moreover, for fault tolerant systems to work efficiently, the active

diagnosis must be reliable itself to ensure that a fault affecting the diagnostic mechanisms

does not cause a wrong fault recovery action. These aspects are usually not considered in

the present day techniques.

In the state-of-the art, a wide variety of methods of active diagnosis is available. An

example of active diagnosis is the classical PMC model [23] ,which is extended to deal

with distributed analysis and transient faults in [24]. Online diagnosis algorithms for run

time isolation and recovery are introduced in [25]. Fault detection and identification us-

ing Bayesian inference and dynamic decision networks with parameterized fault trees are

employed for an on-board architecture for active diagnosis in [26]. Another approach for

active online diagnosis uses residuals which are generated by parameter estimation, taking

into account the parametric peturbations in a non-linear model [27]. None of the existing
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diagnostic techniques satisfies the combined support for openness, real-time and reliabil-

ity as required by the ODRE systems. Either the diagnostic models are rigid without the

support of dynamically changed system structure or the computational cost is unsuited for

ODRE systems.

1.4 Objectives of Thesis

The principal objective of our work is to implement techniques beyond the state of the

art, through which the process of fault detection and diagnosis can be optimized. More

precisely, we have proposed methods based on active diagnosis that satisfy the reliability

and real-time requirements. Our proposed technique enables the system to complete the

process of fault detection and diagnosis within a predictable time. For this purpose, we have

taken into account the methodologies through which we can minimize the makespans of

FDQs. These FDQs are used for active diagnosis in time-driven and non-preemptive real-

time systems. In order to complete these FDQs in the stringent timing deadline provided by

the system, different optimization techniques are applied. These optimization techniques

are applied to minimize the overall WCET of FDQs. Therefore the minimization of WCET

helps the process of fault detection to be completed in the pre-defined deadline of the

system.

1.4.1 Summary of Main Contributions

This research focuses on devising techniques through which the process of fault detection

and diagnosis can be completed with real-time guarantees. The important contributions of

this thesis are as follows:

• FDQs are created for fault detection and diagnosis. These FDQs are based on the

features and symptoms extracted directly from the sensor data. Each FDQ is writ-

ten in SQL format and executed over the database that contains the values from the

sensors data.
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• Based on FDQs a Diagnostic Multi-Query Graph (DMG) is designed. Each DMG

is comprised of multiple FDQs. Each node of the DMG contains an FDQ while

each edge has a weight which is equivalent to the amount of data that is transferred

between parent and child node.

• In order to minimize the overall WCET of the FDQs different optimization tech-

niques are applied. These techniques enable the fault diagnosis process to complete

within the stringent timing deadlines provided by the system. Our main focus of

the optimization is based on the two aspects: (i). optimization of FDQs and (ii).

optimization of the DMG.

• Optimization of FDQs: This is actually a multi-query optimization performed for the

transformation of the DMG. Different steps, including query parsing and selection of

the most optimal query execution plans, have the highest impact on the time of query

execution. These multi-query optimization methods are comprised of (i). selection

of best join orders, (ii). selection of best Query Execution Plan (QEP) and (iii).

selection of the best access methods for a specific FDQ.

• Optimization of DMG: This technique is based on the graph pruning and merging

of graph nodes. An optimized DMG with a lower number of processing nodes and

an optimized QEP are more likely to be scheduleable and detect the faults within the

given deadline. Bigger DMGs with large numbers of fault queries are more difficult

to schedule as there is a risk that these graphs cannot complete their execution within

the predefined deadline of the system. It is important to optimize the DMG in a

manner that it may determine the fault in the system within the timing constraints

defined by the system. Our proposed optimization technique satisfies the reliability

and real-time requirements and enables the process of fault diagnosis to be completed

within a predictable time.
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1.5 Structure of Thesis

The structure of the thesis is as follows:

• Chapter 2 introduces the fundamental definitions related to this work.

• Chapter 3 covers the already existing approaches (related work) that are present in

the state of art.

• Chapter 4 explains the architecture and system model, which is proposed in this

work.

• Chapter 5, 6, 7, 8 and 9 gives a detailed overview of the techniques which are used

for the implementation of this work. Examples are also incorporated in each chapter

along, with experimental results for evaluation.

• Chapter 10 concludes the thesis with an executive summary.
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CHAPTER 2

FUNDAMENTAL CONCEPTS

The research scope of real-time system comprises different aspects, from top-level design

issues down to the implementation of individual components. In order to further clarify

the motivation and the following chapters of the thesis, the fundamental definitions are

described in detail.

2.1 Real Time Systems

Real-time refers to quantitative measurements of time. In other words, the time in this con-

text is measured with a physical clock. So whenever the time is quantified by using a phys-

ical clock, it is actually the measurement of real-time. An example use of this time quan-

tification is observed in a chemical plant. When a power plant will attain a pre-determined

temperature of 260◦C, the system will automatically shut down the heater within the time

interval of 25 milliseconds. In this scenario, the time is quantified by using a physical clock

present in the chemical plant. Therefore a real-time system is the one in which time is used

as a quantitative notion. Any system which is not using quantitative time is not considered

as a real-time system.

A hard real-time system should process the information and responds within the specific

time bounds provided by the system. This implies that all results of a particular task should

come before a defined deadline, otherwise the system can face a catastrophic situation.

Real-time systems are not only dependent on the results of transactions but also the instant

of time at which these results are produced. Real-time systems can be hard or soft in terms

of meeting their deadlines [28]. Typical examples of real time systems include command

control systems, autonomous driving systems and air traffic control system. In the case

of soft real-time systems missing deadline affects the utility of the system, but there are
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no dangerous consequences. There are numerous examples in which applications require

real-time computing. Some of them are elaborated in the next section. Table 2.1 shows the

properties of hard and soft real time systems [29].

Table 2.1: Hard Vs Soft Real-Time System Properties

Characteristics Hard Real-Time Soft Real-Time
Response time hard deadline soft deadline

Safety critical non-critical
Size of files small large

Load in peak performance predictable degraded
Data Integrity long term short term

2.1.1 Examples of Real Time Systems

Automotive applications: Control system in automotive determine the speed of the car with

the help a cruise control system. This system also monitors the fuel consumption, mileage

and average speed of the car.

Metal industry applications: These systems are typically used in controlling processes

such as casting, hot rolling, cold rolling, finishing, soaking, annealing and other functions

related to metal processing.

Aerospace: In modern-day aircraft, there is an option of ”autopilot”. As soon as this

option is selected, a computer system takes control of all the tasks including navigation,

takeoff and landing of the aircraft. This computer obtains the X, Y, Z positions of the air-

craft and compares them with the already specified data. If the direct of aircraft is changed

(start moving towards the wrong destination), then this computer will detect the fault and

take the corrective measures. This process is highly sensitive in terms of time as all the

corrective actions should be taken within a few milliseconds.

Based on these examples of real-time applications, it is observed that the timing con-

straints are not a peculiar property of the design of these systems, but they are determined

by the environment in which these control systems are operating [30].
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2.1.2 Properties of Real-Time Systems

This section highlights the properties of real-time systems. These characteristics distin-

guish real-time systems from conventional systems. It is not necessary that each real-time

system exhibits all of these properties. The properties depend on the context of the appli-

cation.

Timing Constraints: Every real-time system has a time constraint. One aspect of this

time constraint is known as the deadline of a task. A task deadline specifies the time before

which it has to be completed and produce its results. A Real-Time Operating System

(RTOS) ensures that all the tasks meet their respective deadlines.

Correctness Criteria: In the case of real-time systems, correctness is not only related

to the accuracy of results, but it also implies the time at which these results are generated.

The results produced after the deadline are considered to be incorrect.

Safety-Critical: Safety-critical systems are simply systems with safety requirements.

Safety is defined as the reliability with respect to critical failure modes. This means that

safety is a special type of reliability.

Concurrency Control: Real-time systems are often complex and involves a large amount

of data communication among different sensors and actuators. Therefore, real-time systems

should process the data from different sensors and actuators concurrently. The loss of

sensor data may cause a system failure.

Task Criticality: Task criticality is the measure of the cost of the failure of a task. The

high critical tasks require higher levels of reliability. Task criticality is an important aspect

and should be taken into account when fault tolerance is introduced in the system.

Meeting Deadlines: During overload situations, the system should meet the deadlines

of critical tasks as missing the deadline may cause a catastrophic situation.

Reliability and safety: Reliability is defined as the probability that a system will per-

form its expected tasks for a specified period of time under certain constraints provided by

the environment. Safety is the reliability with respect to critical failure modes. Both of
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these objectives can be achieved by introducing active diagnosis in real-time systems [31].

Predictability: Predictability in real-time systems is defined in different ways. In the

case of static real-time systems, the overall performance of the system can be analyzed de-

terministically at development time. In dynamic real-time systems, a stochastic analysis is

often required for the performance evaluation. Predictability of these systems in particular

implies that the timing requirements of critical tasks are guaranteed in all loads and fault

conditions of the system [32].

2.2 Worst-Case Execution Time (WCET)

The problem of finding the WCET for real-time applications is difficult because of various

reasons. There is a large gap between the access times of main memory and cycle times of

modern processors. There are numerous methods in the state of the art for measuring the

WCET of a particular task. Two important aspects should be considered for determining

the WCET. These aspects include (i). safety and (ii). precision. A modular approach for

the timing analysis splits a task into sub-tasks where, these sub-tasks deals with different

properties including control flow, sequential flow of instructions and execution times of

various instructions. Hard real-time systems have stringent timing requirements. Each task

in the system has to satisfy the strict timing bound provided by the system. Generally, an

upper bound for each task is calculated to ensure that the timing constraints given by the

system are not violated. However, in case of programs, it is not always possible to derive

the upper bounds on the execution times. A guarantee about the WCET of the program

can only be given if the worst-case input of the program is known. We assume that the

real-time system is comprised of a number of tasks. Each task has varying execution times

depending upon the types of inputs. The shortest execution time taken by a task is known

as the Best Case Execution Time (BCET), while the longest time is known as the WCET

[33]. There are two types of methods for the WCET calculation of the task.

• Static Methods: These methods do not rely on real hardware. These methods take
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the code and analyze the possible control flow paths (CFPs). Later these CFPs are

combined with abstractions of the hardware model, and the upper bound of the task

is obtained. One such method is elaborated in [34]. Static methods compute an upper

bound on the tasks and guarantee that the task will complete its execution within the

time bound provided by the system.

• Measurement-Based Methods: These methods executes the task on a simulator or the

actual hardware with specific inputs and derive the maximum and minimum time of a

task. By observing the maximum execution time of the task during many executions

with different inputs, an approximation of the WCET is obtained.

2.3 Time Triggered Systems

The tasks within Time Triggered (TT) systems follow a pre-computed schedule. Each

task has its own allocated time slot during which it is executed. It can be assumed that

these systems are predictable in nature as the system designer can predict in advance how

a system will behave at a certain instant of time [35]. Meeting all the timing constraints

and knowing details about the system behaviour can be considered as predictability [36].

However, this type of model is often difficult to implement in real world, and different

approximations are being widely used in practice. The most accurate approximation of

this model is comprised of periodic tasks running in a non-preemptive manner [37]. TT

systems with these kinds of properties have a high level of timing predictability along with

low jitter [38].

2.4 Distributed Systems

A distributed system is a collection of autonomous elements with computing power and

appears as a single entity for the end-user. Considering this definition provides the two

basic aspects of distributed systems: (i) the computing element is normally referred to as
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a node and can behave autonomously. (ii) For end users, all the nodes behave like a single

system which means that all the nodes should collaborate in order to make the system work.

In practice, these nodes work together in order to achieve a single goal, by exchanging

messages. Therefore the nodes communicate using a network. Distribution transparency is

an important design objective. It is also inevitable that any node of the system may fail and

the processes running on that node may stop. These aspects of distributed systems should

be kept in mind in design [39].

2.5 Databases

A database systematically stores similar data in a manner that the data retrieval becomes

fast. Therefore it provides an organized mechanism for storing, managing and retrieving

the information. Databases are comprised of multiple tables, which are known as relations.

Each column is an attribute while each row is a record in the relation. A database is con-

sidered to be more efficient as compared to a flat file systems. A database management

system maintains the data properties like integrity and confidentiality. ANSI has defined a

three level architecture for a database which is comprised of (i) the internal level, (ii) the

conceptual level and (iii) the external level [40].

1. The internal level determines where data is stored at the disk. It contains all the

details related to the number of bytes and how these bytes are transferred from one

storage device to others.

2. The conceptual level describes the details about the logical view of the data, including

queries.

3. The external level describes the details about the interaction of users with the appli-

cation programs.
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2.5.1 Database Model

The database model defines the details about the logical model of the data. There are three

types of database models: (i). hierarchical models, (ii) network models and (iii) relational

models.

Hierarchical Model

In this model, data is stored in a hierarchical manner. Every entity has only one parent but

can have numerous children. There is one entity at the top of this hierarchy which is known

as root.

Network Model

In this model, the entities are stored in the form of a graph, and there are certain entities

which are accessible through different paths.

Relational Model

In this model, the data is stored in a two dimensional structure known as relations. These

relations are connected to each other by primary and foreign keys [41].

2.5.2 Transaction

A database transaction is a task that is performed over the records stored in a relation.

These transactions may retrieve, update or delete the record. In a relational database, each

transaction should maintain the ACID properties (Atomicity, Consistency, Isolation, and

Durability). The atomicity means that a transaction is considered as one atomic unit. The

transaction consists of multiple statements, and all the statements should be considered

as one unit. If one of the statements in a transaction is not completed, then the whole

transaction should rollback.

Consistency means that the database should remain in a consistent state after the transaction
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is completed. Any data written to the database should be valid according to the defined rules

including triggers, cascades and constraints. The property of durability ensures that once

a transaction is committed, it should remain committed even if the system fails or restarts.

Completed transactions are written to non-volatile memory. Isolation is relevant when there

are multiple parallel executions of transactions in a database. It should be ensured that each

transaction is executed independently of the other transactions [42].

2.5.3 Real Time Database Management System

Data management in a real-time system is application dependent. As the complexity of real-

time system increases, it becomes mandatory to manage and store the data in an organized

and systematic manner. Real-time database management systems (RTDBMS) are different

from the conventional DBMS. RTDBMS retrieve and store the data in a similar manner, but

there is an additional feature of timing constraints. Each transaction has to complete within

the pre-defined deadline of the system. Example applications that require the processing of

large amounts of data along with stringent timing requirements include health care systems,

flight control systems, radar tracking and autonomous vehicles.

A conventional DBMS only focuses on the fast average response and the high through-

put for transaction executions. In contrast, RTDBMS are evaluated on the basis of the fact

of how often a transaction misses its deadline. Traditional databases deal with persistent

data-sets. The goal of query processing is to achieve a low average response time and high

throughput. However, RTDBMS deals with time-sensitive data ( i.e. data that is out-dated

after a certain period of time). One of the first real-time database implementations was the

disk-based transaction processing test bed known as RT-CARAT [43]. Other projects are

REACH (Real-time Active and Heterogeneous mediator system project) [44] and STRIP

(Stanford Real-time Information Processor) [45]. Examples of commercial RTDBMS are

eXtremeDB [46], Eaglespeed-RTDBMS [47] and SolidDB [48]. All of these RTDBMS

focus on memory management and memory optimization in order to achieve real-time per-
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formance.

2.5.4 Properties of Real Time Database Management Systems (RTDBMS)

There are various important properties of RTDBMS which should be considered before

using them. Some of them are highlighted in this section.

Transaction, Data and System Characteristics: RTDBMS should maintain temporal

consistency, logical consistency and timing properties of data and transactions.

Transaction Processing: The major issue in transaction processing is predictability [49].

If real time transactions miss their deadlines the end result can be catastrophic. Therefore,

it is mandatory for the system to predict that these transactions are completed before their

pre-defined deadlines. This prediction is only possible if the WCET of the transaction is

already known. In the case of RTDBMS, there are numerous potential sources for unpre-

dictability [50]:

• Conflicts between data and resources.

• Dynamic paging and interference at input/output interfaces.

• Abortion of transactions and resultant rollbacks.

Dynamic paging and I/O conflicts can be resolved by using main memory databases. There-

fore, priority oriented I/O controllers can be used to solve the problem of I/O unpredictabil-

ity.

Scheduling Real Time Transactions: The Scheduling policy for transactions describes

how priorities are assigned to individual transactions for their execution. There are nu-

merous transaction policies defined in the state of the art. A transaction that is scheduled

in a RTDB is known as a task [51]. Scheduling in this context is comprised of allocating

tasks to the processors so that they can be completed on time. A typical real-time system

is comprised of multiple tasks that should be executed concurrently. Each task computes

certain values which can be used by the other tasks. Also, each task has a deadline before
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which the task should be completed [52]. Transactions can be categorized as hard, soft and

firm. These terms describe the value given to a certain transaction when it has to meet its

deadlines [53].

Hard deadline transactions are time sensitive. If the transaction deadline is missed,

then there can be a huge loss. These types of transactions are normally part of safety-

critical systems [30]. A large negative value is assigned to a transaction after the deadline

is missed. Soft deadline transactions in real-time systems can slow down their response

time in case of high processing loads. This means that soft real-time transactions do not

have stringent deadlines. For example, flight reservation systems are flexible in processing

the task and also have large database files. Typically the value given to the system by a

transaction is not equal zero after the deadline is passed. Firm transactions do not dissipate

any value to the system after the deadline is passed.

2.6 Query Optimization

The domain of query optimization encompasses extensive prior work. There are several

contexts and different angles of query optimization covered by researchers. In this section,

we will discuss the structure of a query optimizer and different methods to implement the

concept of optimization. Query optimization is comprised of two stages: (i) rewriting and

(ii) planning [54].

2.6.1 Rewriting

Rewriting transforms the query and establishes a more efficient query as compared to the

original one. In this phase, rewriting only considers the static properties of the query and

does not consider the actual query cost. Because of the nature of this step, rewriting oper-

ates only at a declarative level [55].
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2.6.2 Planning

Planning is the most important module of query optimization. It analyzes all the execution

plans and selects the one with the minimum cost. This step uses a certain search strategy

which identifies the best query execution plan. The search space of execution plans is de-

termined by two other modules present in the optimizer known as the algebraic module and

the method module.

Algebraic Module: This module determines the order of algebraic expressions for the plan-

ner. Trees based on the query operations are created. These trees are represented in the

form of algebraic expressions. There are numerous trees that can be created by consider-

ing different orders of query operations. Therefore each tree has different cost in terms of

resource, time and memory utilization.

Method Module: After getting the tree (as a set of actions) from the algebraic module, this

module produces the complete Query Execution Plan (QEP) to specify the join operations

and indices that are used [56].

2.6.3 Cost Model

This module generates the arithmetic formulas that are employed to find the cost of the

QEP. For all access methods and join types, there is a formula that gives the cost. These

formulas are based on the utilization of different factors like disk and CPU utilization,

buffer management and I/O processing. The most important input factors for the formula

are the size of relations and the buffer pool used by each operation.

2.6.4 Size Distribution Estimator

This module determines the size of relations and results of each sub-query. This module

uses these estimations for finding the cost of the complete QEP [57].
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CHAPTER 3

RELATED WORK

This chapter is divided into four sections. The first section describes the related work in

the domain of query optimization. The second section describes the related work in the

domain of fault tree models. The third section elaborates the graph based optimization

techniques. The forth section describes the fault detection techniques that are using graph

based techniques. The fifth section elaborates the related work in the domain of Real-Time

Database Management systems (RTDMS). Sixth and the last section describes the related

work in the domain of WCET analysis.

3.1 Query Optimization

There is a large number of problems that can be taken into account when considering the

query performance. These problems fall under two different categories: (i) database nor-

malization and (ii) un-optimized queries having no indexes. There are multiple techniques

for query optimization, which work in collaboration with each other. These optimization

techniques may include indexing and selection of the best join order. By applying these

techniques, the overall performance of the query is optimized. The query optimization

technique described in [58] optimizes the query by breaking down the complex queries

into smaller chunks and then execute all of them in parallel.

Optimization solutions select the (i) best QEP and (ii) the most efficient query. Both

of these optimization techniques help in minimizing the overall execution time of queries.

Query optimization is dependent on the database management system and the format of

query [59]. dQUOB (Dynamic Query Objects) is a system that is dynamic, and it enables

the end-users to create a query explicitly for the data that is required. These specific queries

acquire that data in a fashion that is much more pragmatic for the end-user. The dQUOB
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system has been applied to two systems, namely autonomous robotics and software visu-

alization for atmospheric data. The dQUOB system provides a relational data model along

with the SQL based query access to the streaming data [60]. The process of fault handling

is added to the Continuous Event Processing (CEP) Queries. These queries are specifically

designed for the CEP systems. These CEP queries are designed in a customized manner

by the user so that in case of fault occurrence, only the CEP related to a particular fault is

halted [61].

An algorithm was conceptualized and implemented for the optimization of multi-join

queries for smart grid data in a database [62]. This technique uses a genetic algorithm

comprised of the following steps: (i) encoding of virtual connections, (ii) selection of the

individual solution, (iii) application of crossover operation, (iv) mutation and (v) termi-

nation. The proposed solution improves the overall convergence rate and accuracy of the

selected solutions. Query optimization techniques in multi-tenant databases are different as

compared to other databases. In multi-tenant databases, every customer is only restricted

to its schema for the usage of the database. When a data retrieval query is written by a

particular tenant, the syntax of the query is checked. Results in this context show that these

optimization techniques provide efficient and cost-effective queries for data retrieval [63].

Query optimization techniques employed in embedded database systems play an impera-

tive role during the design of an embedded system. During the first phase of this process,

the RTDBMS is selected, as the selection of the database engine plays a vital role. The

selection of efficient RTDBMS enables the embedded system to work correctly and effi-

ciently. During the second phase of this process, the query optimization algorithms are

implemented. Authors in [8] used the particle swarm based query optimization technique.

A high inertia weight is employed in finding a new search space. After the execution of a

maximum number of iterations, a final inertia weight is obtained and the inertia weight is

decreased with different values of particles.

Multifarious re-writing approaches for cost-based optimization of SQL queries are con-
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ferred in [64]. The exploratory investigation presented in this context served as a tuning

tool to enhance the query processing performed for production databases. Experimental

evaluation based on realistic scenarios shows that query performance and operational costs

are improved. A swarm intelligence (called Bees Algorithm) method for the Multi-Join

Query Optimization (MJQO) problem is presented in [65]. The proposed method is ca-

pable of finding an efficient solution with a fastest convergence rate as compared to the

already existing solutions. It minimizes the response time of query processing. Simulation

results show that this algorithm solves the MJQO problem in a shorter time as compared to

the accustomed particle swarm optimization (PSO) techniques.

Genetic Algorithm (GA) based query optimization is widely used in literature [66].

Implementation of GA based optimization techniques provides efficient results when com-

pared with conventional optimization techniques. A GA solves the problem of join ordering

effectively in the context of large join queries. There is a huge amount of data processing

among the different control units of an aerospace management system. One important

problem of this system is the writing of optimized data extraction queries. However, the

design of join queries solves this problem. A Balanced Compromise between Objective

Space and Parameter Space (BCOP) algorithm based on GA for multi-join queries pro-

vides an effective model for solving this problem. The proposed technique [67] takes the

features of Bee Colony (BC) and Simulated Annealing (SA). BC and SA resolve the prob-

lems of rapid convergence and local optima . Query optimization in distributed database

systems requires both global and local optimizations. Global optimization is more critical

as compared to local optimization. As in the case of global optimization, data is processed

and shared at multiple sites [68][69].

An essential goal of a query processor is to produce efficient query results in the short-

est time. One method of achieving this goal is to generate QEPs with minimum processing

costs. The Query Optimizer (QO) is a substantial component of a query processor. The

QO always selects the best QEP from multiple QEPs. QEPs are comprised of different
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access methods and join orders. Best QEP is the one which takes the minimum processing

time [70]. The research on query optimization of heterogeneous databases is an important

area. A heterogeneous database results in many problems including (i) data communica-

tion and (ii) timeliness. A hibernate middleware based technology provides the solution

for heterogeneous database systems [71].This technology solves different problems includ-

ing (i) query decomposition, (ii) data conversion, (iii) data types, (iv) query optimization,

and (v) query translation. Minimization of response time by using hibernate middle-ware

technology provides better results in the context of heterogeneous databases .

Query processing that is performed on a central node incurs more communication over-

head due to frequent exchange of data between the sink and the sensor nodes. This type

of query processing is normally implemented in distributed systems. The proposed Dis-

tributed Nested Loop Join Processing (DNLJP) scheme groups sensors based on geographic

locations to form a cluster. The query processing is performed in a distributed manner over

the data collected from different geographic locations. DNLJP also optimizes the execu-

tion time of a query [72]. Caching methods are used for both single and multi-query op-

timization. The cost of evaluation can be reduced by exploiting common sub-expressions

and maintaining an intermediate data structure. Single query optimization is integrated

with the cache. Multi-query optimization enhances the performance of query execution in

distributed database systems. Such a technique is used in [73]. The following steps are

performed in this context:

1. Maintaining an intermediate data structure generated by queries.

2. Caching input data in memory.

3. Providing support for multi-threaded execution.

4. Use of hybrid shipping.

The proposed model reduces communication cost along with the response time. Multi-join

query optimization is important for designing DBMS. The authors in [74] have proposed a
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new algorithm based on parallel ant colony optimization for solving the problem of multi-

join query optimization. The three factors for the implementation include (i) heuristic

information, (ii) implementation of local and global pheromone update and (iii) design of

state transition rules. The simulation results show that the parallel ant colony optimiza-

tion behaves efficiently as compared to GA [74]. Numerous modern applications required

complex event processing technology to analyze a multi-dimensional stream of big data

that is available in real-time data feeds. A novel real-time event stream processing method

known as Multi-Query Optimization Strategy (MQOS) is designed in [75]. The design is

based on a triaxial hierarchy which consists of nested query patterns and operational hier-

archies. The triaxial hierarchy also describes the relationship between the sub-expressions

of queries. Based on the triaxial hierarchy, a cost-based heuristic is implemented so that an

optimized QEP with minimum costs of operators and communications is found.

3.2 Fault Tree Models

There are several methods already present in the state of art in which fault diagnostic mod-

els are implemented. Some of these models are discussed in the next paragraphs.

Fault tree models are widely used in mechanical fault diagnosis. The reasons of fault

occurrence are represented as an input event while the causes of faults are shown as the

bottom events [76]. Qualitative trend analysis (QTA) is a data oriented technique to di-

agnose the process generated trends from noisy process data. These extracted trends are

matched with the faulty trends already stored in the database. QTA is merged with Signed

Directed Graphs (SDGs) in order to increase the benefits of timely diagnostic processing.

The SDG–QTA based technique satisfies all the diagnostic and prognostic requirements

in real time systems [77]. A dual-tree complex Wavelet Transform (WT) is employed to

extract the features from the vibration signals. A Neural Network (NN) is used to classify

the difference between healthy and faulty data in [36]. A discrete event model framework

is implemented for active diagnosis in battery systems [78]. The normal messages and
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fault messages are split into two different sets. An appropriate system algorithm is applied

to find out which particular fault is causing the problem. Weighted fault diagnosis tree

(WFDT) is modeled in [79] to implement the fault diagnosis mechanism. An extensive

distributed information system is designed based on WFDT. Each node in a tree is an in-

dependent decision making unit. The proposed methodology is implemented in health care

systems, and it provides accurate and timely fault diagnostic mechanism.

3.3 Graph Optimization

Graph partitioning is the process of dividing one graph into multiple subgraphs based on

the similarities [80]. Subgraphs are generated by eliminating some of the nodes or edges

from the parent graph. Graph partitioning strategies are categorized into two types: (i)

local strategies and (ii) global strategies. The local strategy is based on the edge deletion,

but it provides inefficient results as compared to the global strategies. On the other hand,

global strategies are based on mathematical approaches which perform partitioning based

on a network model [81]. Different heuristic approaches are adopted to achieve the best

results in the shortest possible time [82]. A typical strategy based on heuristic rules is

implemented in [83][84]. The algorithm partitions the graph into two equal portions and

then iteratively improves the reduction by cutting edges. A multi-layer graph partitioning

method based on heavy heuristics is introduced in [85] to optimize the graph.

Large graphs are partitioned by applying anti-roughening and optimization techniques.

In [86], a graph optimization algorithm is proposed, which enables the optimization of large

graphs and reduces memory consumption. The original graph is pruned and divided into

multiple sub-graphs. Based on the root to leaf and leaf to root extraction optimization, the

original graphs are optimized with small consumption of memory. In [87] authors study

the problem of graph similarity search. They proposed a systematic method for the edit-

distance based similarity search problem. The proposed method is applied by considering

two lower bounds known as (i). partition-based bounds and (ii). branch-based bounds. A
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uniform index structure known as u-tree is introduced for effective pruning and efficient

query processing. Extensive experiments show that the proposed approach minimizes the

overall query response time. Modern embedded systems are often complex due to their size

and structure. This complexity makes the process of fault diagnosis and analysis difficult

and time-consuming. In order to minimize this complexity, a directed fault propagation

graph model is presented in [88]. The presented graph is optimized by considering the

influence factor based on the quantitative assessment. After optimization, the redundant

components are minimized, and the fault diagnosis process becomes simpler and less time-

consuming.

3.4 Fault Detection and Diagnosis Using Graph Based Techniques

Dynamic Bayesian Networks (DBN) are graphical models which are employed for systems

that have uncertainty and varying inference time. The nodes in these graphs represent the

variables while the edges represent the relationship between these variables. DBN are used

in different domains including risk management, cancer classification and reliability inves-

tigation [89]. However, there is not much research in the state of the art about the usage of

DBN in the context of fault diagnosis for embedded systems [90]. Bond Graph (BG) is an

effective method used for modelling complex systems. BG is able to present the compo-

nents and structure of physical systems. This feature of BG enables the efficient analysis of

fault values and online isolation of faults. A fault detection strategy is implemented for the

autonomous vehicles known as RobuCar. The modelling of the vehicle is done by using

the BG method. The BG method is also helpful for the systematic generation of Analytical

Redundancy Relations (ARRs) [91].

A fault propagation method is implemented by using graph model. This fault oriented

graph model is optimized by considering the fault influence factor and redundant compo-

nents are deleted within the system. Due to this deletion the overall system is simplified

and fault diagnosis and analysis becomes easy and scale able [88].
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3.5 Real Time Databases Management Systems (RTDBMS)

Conventional relational database systems are unable to meet the stringent timing deadlines

provided by safety critical systems. Therefore, RTDBMS are specifically designed for

processing the data in a timely manner which is essential for safety critical systems [92].

RTDBMS are considered to be a salient branch of the conventional Database Man-

agement System (DBMS). Therefore the properties of traditional database systems are ex-

tended with real time processing. RTDBMS are employed in different domains including

data acquisition systems and real-time control systems. RTDBMS have different design

features due to the involvement of timing constraints. There is often a large amounts of

data transference along with the requirements of data consistency and timing constraints.

These RTDBMS use different metrics to evaluate the constraints based on the timing dead-

lines [93]. The quality of any RTDBMS can be measured by how often a transaction

misses its deadline. Data consistency and temporal consistency both should be measured

in case of missing deadlines. High throughput and low response times are further impor-

tant objectives that RTDBMS should achieve [45]. During the last two decades, differ-

ent technologies were developed for managing systems that deal with image processing

data. Image processing should satisfy timing constraints in many applications such as au-

tonomous driving or human/robot collaboration. The timing constraints in this context are

often considered to be hard. Real- time control systems in which image processing is using

RTDBMS play an important role as they are capable of dealing with the timing constraints.

There are three types of timing constraints involved in these systems 1) image acquisition,

2) image transportation and 3) image processing time [94]. A real time DB was designed

and tested on red black tree in [95]. Red black tree proposed by Rudolf Bayer is considered

to be the most effective query tree providing the addition and deletion with defined dead-

lines. This feature makes the red black tree capable of maintaining the timeliness property

of the real-time domain. Other common data structures are AVL trees that perform better
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in terms of main memory usage.

Real-time database design is comprised of different algorithms that have to deal with

memory efficiency and timely data manipulation. Some of the RTDBMS are not relying

on the operating system for the memory, but they are capable of managing their memory

requirements. Memory management methods of these RTDBMS includes: (i) heap array

allocation, (ii) bitmap allocation and (iii) memory pool distribution. Concurrency control is

also implemented by using lock based concurrency control methodologies [96]. Quality of

Service (QoS) based timeliness and freshness techniques improve the quality of data and

transactions in RTDBMS. The data freshness and timeliness of transactions can cause a

conflict between different system requirements. The workload related to a particular trans-

action is not always precisely predictable. Heuristic algorithms are often used to implement

the QoS based techniques. The co-scheduling problem of periodic applications is also stud-

ied in this context. Several methods are also proposed for the prediction of schedules in

advance so that the deadline miss ratio is minimized [97]. RTDBMS need to process all

the data in a stringent timing bound provided by the system. However, existing DB design

and implementation mechanisms are susceptible overheads. To solve this problem a Single

Input Single Output (SISO) feedback admission control scheme is introduced in [98]. The

SISO controller in each node dynamically adjusts the amount of data that can be processed

during a certain time period. Oracle Berkeley DB was used to implement this technique.

Although the concept of RTDBMS is studied extensively in literature most RTDBMS con-

siders only a centralized real time system. Due to this reason throughput, timeliness and the

total amount of data processed within the deadline of the system is extensively decreased

[99].

3.6 Worst Case Execution Time (WCET)

A measurement-based estimation method for the calculation of the WCET of programs in

real-time systems is proposed in [100]. A Control Flow Graph (CFG) is designed for each
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building block of a program. Execution profiles of each basic block along with their exe-

cution probabilities are extracted during the execution of a program. Afterward, a critical

path is identified by calculating execution probabilities of all feasible paths in the CFG.

As the number of applications in embedded systems is increasing in all aspects of life,

the performance issues in real-time systems gain a lot of attention from researchers and

practitioners. In the case of real-time systems, the calculation of accurate WCET is an

important problem. The WCET analysis method described in [101] is known as CRY-

INGCAT. CRYINGCAT is independent of the compiler model. It calculates the WCET by

collecting information from the CFG, cache access, and pipeline access. Hardware mod-

eling and accurate path selection are two major problems that hinder the calculation of a

precise WCET. Authors in [102] have successfully combined the statistical analytics with

run-time measurements of a program. The proposed technique is tested and implemented

on real hardware. Conventional methods depend on the technique of static timing analy-

sis for computing the Worst-Case Response Time (WCRT) of tasks in real-time systems.

Multi-core real-time systems face concurrent task executions, semaphore accesses, and task

migrations. It is difficult to obtain the upper bound of execution time in multi-core real-time

systems. A probabilistic estimation method is presented in [103]. This method solves the

problem of upper bound calculation for WCRT. WCRT is estimated for a set of tasks with

different times. The proposed technique classifies the data with sample size equalization.

Traditional WCET analysis techniques are not appropriate for control systems com-

prised of modern multi-core processors. In [104], authors have proposed modifications for

already existing tools that calculate the WCET for multi-core processor based control sys-

tems. For compositional architectures, the proposed modifications introduce time-effective

analysis along with predictability. Authors in [105] have proposed a technique for the ap-

plications running on multiprocessor systems-on-chip. They have considered average case

and worst case delays. It is evident from the results that the proposed technique reduces the

average-case delay dramatically while keeping the worst case delay as small as possible.
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The proposed method combines average and worst-case optimization techniques for real-

time systems. The proposed method also provides a guarantee for worst-case predictability.

Authors in [106] have proposed a method for low-level timing analysis of the program.

This method is based on measurements of execution times of programs. These programs are

executed on the real architecture. The essence of this method is to derive a system of linear

equations from a limited number of timing measurements for an instrumented version of

the program. The main advantage of this approach is that it does not require architectural

modelling. Therefore, the risk of a discrepancy between the system model and the real

system is avoidable. As compared to the non-exhaustive measurement-based approaches

this method is considered to be more structured and gives complete coverage in terms of the

program paths. It is difficult to calculate the tight upper bound of the worst-case response

time in distributed real-time embedded systems. There are numerous factors which may

cause this complexity. These factors include (i) variations of the execution time of tasks,

(ii) jitter of input arrivals and (iii) scheduling anomalies. In [107] authors, propose a novel

solution based on ILP (Integer Linear Programming). In the proposed technique, a set of

ILP formulas are formulated, while supporting model flexibility. This problem is solved

holistically to achieve tight upper bounds. To mitigate the time complexity of the ILP

method, static analysis based on a scheduling heuristic is added in the proposed technique.

Experiments show promising results that give tight bounds in an optimized time.

Due to the increase in the complexity of embedded systems, it is difficult to verify

that all the system requirements are fulfilled under all possible execution scenarios. There

are numerous assumptions (e.g., WCET, maximum jitter, minimum activation period) that

are considered in this context. It is not always possible that these assumptions are always

fulfilled at run time. Because of these reasons, run-time monitoring and run-time verifi-

cation become an effective alternative to the conventional offline verification. In [108],

authors present four different implementations of a run-time monitoring framework for

safety-critical systems. Two implementations of this framework are written in Ada and
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are appropriate for the development of high integrity systems. The third implementation is

written in C++ and is compatible with the majority of operating systems. The fourth and

last implementation is a kernel module for Linux and saves the system from memory faults.

Researchers have proposed various methods for the calculation of WCET in safety-

critical systems [109]. Typical Worst-Case Analysis (TWCA) is introduced to minimize

the frequency of undesired behaviors based on the concept of weakly hard constraints

[110]. The ILP based method is introduced in [111]. This method is suitable for the sys-

tems where each task has a different deadline for its completion. The proposed approach

addresses the static-priority non-preemptive (SPNP) and static-priority preemptive (SPP)

scheduling policies. A few control applications endure the violation of deadlines to some

extent. The calculation of overly pessimistic WCET is not feasible for these applications.

Some systems are greatly affected by the average response time as compared to the WCET

[112]. Probabilistic WCET analysis techniques use a probability distribution of execution

times with a certain level of confidence. A method for computing, probabilistic bounds on

the execution times of a task is proposed in [113].

Research work in embedded database systems is primarily focused on the algorithms

related to the concurrency control and scheduling of transactions [114]. The evaluation

of these algorithms is based on the number of deadlines missed by a particular transac-

tion. The efficiency of these algorithms is affected by the number of transactions processed

concurrently. There are numerous algorithms that give solutions for the processing of con-

current transactions [115]. It is crucial that all tasks should fulfill their deadlines provided

by the system. It is difficult to calculate the accurate WCET for the database transactions

in event-driven hard real-time systems [116]. Authors in [117] proposes an Adaptive Total

Bandwidth Server (ATBS) algorithm for minimizing the response time of aperiodic tasks

with different execution times. This method reduces the response times of aperiodic tasks

by using predictive execution times instead of WCET. The proposed ATBS and ATBSRR

techniques are compared to the total bandwidth server technique. Results show that the
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average response times for aperiodic tasks are reduced up to 48% [117]. Authors in [118]

have proposed a novel analytical method known as scheduling time bound analysis. The

proposed method is used for finding a tight upper bound of the worst-case response time

in a distributed real-time embedded system. Tasks having different execution times and

jitter of input values are also studied in the context of the proposed technique. By analyz-

ing the graph topology and worst-case scheduling scenarios, the conservative scheduling

time-bound of each task is measured. The proposed method supports an arbitrary mixture

of preemptive and non-preemptive processing elements.
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CHAPTER 4

SYSTEM MODEL

This chapter elaborates the system model of this research. The system model has two

components, an (i) architecture model and an (ii) application model. Architecture model

elaborates the physical representation of our system. The application model represents our

DMG which is used for the fault detection and diagnosis.

4.1 Architecture Model

Our architectural model is based on the physical representation of our proposed system.

Our architecture model consists of sub nodes comprising of R routers and P processors with

L links between them. The processors are connected with each other by using bidirectional

communication links. The architecture of this system S is represented by Eq. 4.1:

S(P,R,L) (4.1)

Where pi ∈ P is a homogeneous processor and each ri ∈ R represents a router in S. The

bi-directional link lpiri ∈ L shows a connection between processor pi and router ri whereas

each lrir j ∈ L represents a link between routers ri and r j. The designed system architecture

has the following characteristics:

1. The system has homogeneous processors with heterogeneous links (having different

bandwidths).

2. Each pi ∈ P has its own sensor attached to it. This sensor is providing the input data

to the particular process.
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3. The system has its own real time database. Each pi ∈ P stores the input data from the

sensors in a RTDBMS known as PSQL.

4. The database stored at one pi is replicated on another p j if the same data is required.

5. The processors are designated for the processing of queries only and will not take part

in any kind of communication. Similarly, routers are only available for the transmis-

sion of messages.

6. Communication among different pi is carried out via a deterministic protocol such

as Time Division Multiple Access (TDMA) and only one message is transmitted

through a link during a given period of time.

7. If two FDQs are assigned to the same end systems then their communication cost is

negligible. This constraint is taken into account because in many distributed systems,

remote communication is more costly as compared to local communication.

8. If two FDQs that are dependent on each other and are assigned to two different pro-

cessors, then they have a communication cost CC associated with them. Therefore

this CC is calculated by considering the path (followed from one pi to another p j)

and the size of the message that is being transferred across that path.

9. Once a FDQ is assigned to a processor, it executes all its periodic iterations on the

same processor.

10. Similarly, a communicating FDQ executes all its iterations on the path that has been

assigned to it.

There is no restriction about the network of topology in our proposed system archi-

tecture and it can use any topology along with an arbitrary number of processors and

communication links between these processors. Our architecture model is depicted

in Fig. 4.1.
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Figure 4.1: Example of Architecture Model
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Figure 4.2: Application Model: Structure of Proposed DMG
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4.2 Application Model

Active diagnosis is different from passive diagnosis. It involves the retrieval of diagnostic

information and analyzing it in a timely manner. In order to enhance the system reliability,

it is important to retrieve the right diagnostic symptoms and analyze them so that recovery

actions can be implemented without missing the deadline given by the systems. Therefore,

it is vital to build an authentic and precise diagnostic model which can represent the FDQs

and enable the system to extract and process the information based on the fault that occurs

in the system.

Therefore after analysing the different state of the art methods, it is clear that there are

numerous methodologies which are used for active diagnosis in real-time systems. Hence

for enhancing the reliability of real-time systems (by computing diagnostic information at

run-time for fault recovery), we need a fault diagnosis mechanisms in the system. Consid-

ering this aspect of active diagnosis, we have designed a multi-query graph for our system.

This graph is formally termed as Diagnostic Multi-Query Graph (DMG) and has been pre-

viously used by the authors in [119]. A DMG is similar to a directed task graph with the

exception that it is implemented using a real-time database. In our DMG, each root node

is associated with a set of sensors that provide continuous input data according to their

periods. An example of proposed DMG is shown in Fig. 4.2.

This input data is stored in a real-time database. The sensors utilize local-error detection

methods to formulate diagnostic facts that are further used to identify symptoms, faults and

to propose respective recovery actions. These diagnostic facts are realized as queries in this

real-time database and are executed repeatedly to keep the diagnosis up-to-date with the

input data. In the DMG, the FDQs are represented by nodes and the relationship between

the FDQs within the real-time database is represented by edges. The nodes are labeled with

the WCET of their associated FDQs. Since we are dealing with real-time systems, each

node is cyclic with a strict period [120]. A strict period means that if a task A has a period
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PA then the difference between the starting points of two of its consecutive iterations should

be equal to PA. Here, nodes are termed as diagnostic features (without incoming edges),

symptoms (with both incoming and outgoing edges) and faults (without outgoing edges)

respectively. The edges are labeled with the amount of data d the nodes are transmitting to

the database. As a FDQ repeats its execution each time with a different set of input data,

it is possible that its corresponding child FDQ requires data from one of its previous or

following repetitions rather than its current one.

4.2.1 Diagnostic Mutli-Query Graph (DMG)

The diagnostic system model requires the optimization of diagnostic queries in a manner

that they can be completed in the pre-defined deadline of the system. These FDQs are

scheduled on the heterogeneous processors for calculation of their makespan. The applica-

tion model is represented by a diagnostic graph comprised of FDQs. This graph is formally

termed as a diagnostic multi-query graph (DMG). In our DMG, each FDQ is unique and

is linked with a sensor or a specific set of sensors. The sensors provide data in a periodic

manner, which is then stored in the real-time database and is timely replicated onto the

processors to ensure the distributed execution of the FDQs. The FDQs are used the identi-

fication of faults. These FDQs are based on the features and symptoms extracted directly

from the sensors data. Our diagnostic queries are represented in SQL format. Each FDQ

is executed periodically to keep the database up-to-date with the sensors data. In a DMG,

each node represents a single FDQ and each edge specifies the relationship between two

FDQs through the real-time database i.e. the precedence constraints and the parent-child

relationship between the FDQs. These FDQs are represented in the SQL format comprising

SQL operations such as select, insert and join.

The nodes are termed as features (nodes without incoming edges), symptoms (nodes

with both incoming and outgoing edges) and faults (nodes without outgoing edges) respec-

tively. Since the sensors are sending data periodically, it is essential for the FDQs to be
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executed after continuous time intervals to keep the analysis up-to-date. Therefore, each

FDQ has a strict time period. Since the cyclic execution of FDQs results in various itera-

tions, it is possible that the child node requires output data from the previous iteration of a

parent node rather than the present one.

The overall DMG is defined as follows

DMG = (N,E) (4.2)

N = (n1,n2, ...,ni) (4.3)

E = (e1,e2, ...,ei) (4.4)

ei = (np→ nc) (4.5)

Where a parent node np has a precedence constraint over a child node nc. Each ver-

tex ni ∈ N is a non-divisible periodic task. Each directed edge enin j ∈ E illustrates the

precedence constraint between ni ∈ N and n j ∈ N such that ni is the parent vertex to n j.

A positive weight WCET (FDQ(ni) represents the WCET of vertex ni ∈ N, FDQ(ni) de-

scribes the FDQ associated with this vertex while Pni represents its time period. Since we

are dealing with periodic tasks, for a DMG represented by Eq. 4.2, each vertex n ∈ N will

repeat its execution after an interval Pn. This interval is termed as the time period and it is

the exact time elapsed between two consecutive iterations of n [121]. W (eni→n j) represents

the amount of data that is transferred from the parent node ni to the child node n j along

the edge e. This amount of data effects the communication cost between the tasks as larger

data will take more time for the transfer. The subsequent child node ni ∈ N cannot start its

execution before all of the data between these particular executions of ni has been success-

fully transmitted to its assigned processor. The size and structure of the DMG depends on

the application. A DMG can comprise any number of nodes and edges.
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4.2.2 Scheduler

The proposed diagnostic framework depends on a scheduler, which is responsible for the

temporal and spatial allocation of resources for the time-triggered execution of FDQs and

for the communication between the processors. The scheduler used in our work was intro-

duced in [122]. It is calculating the makespan of our DMG. The DMG along with the (i)

WCET (FDQ(ni) and (ii) the values W (eni→n j) is provided as an input to the scheduler. The

scheduler calculates the makespan of the DMG by assigning each node of the DMG to pro-

cessors depending on the availability of processing resources. The scheduler also assigns

communication resources by determining the paths on the network. A detailed description

of the scheduler is out of the scope of this thesis.
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CHAPTER 5

CLASS-BASED QUERY-OPTIMIZATION FOR MINIMIZING THE WCET OF

THE DMG

This chapter describes the class based query optimization technique that is used for the

minimization of the WCET of our DMG comprised of FDQs. The proposed algorithm is

comprised of several steps which are elaborated in this context.

5.1 Basic Algorithm

This section elaborates the algorithm designed for the implementation of our technique.

Class of the FDQ is specified on the basis of its type. We have considered two types of

FDQs (i). select and (ii). join. Each FDQ selects the different access method depending on

its type. If the FDQ is join then the best join order is also selected for the purpose of query

optimization. For each FDQ the best QEP is selected as a part of optimization technique.

Algorithm 1 represents the pseudo code representation of our alogrithm.

Algorithm 1 Class Based Query Optimization: CBQO
Input:DMG comprised of Fault Queries
Output:Optimized DMG with reduced WCET

1: Define classes for queries
2: Calculate WCET for each Query Q
3: while (DMG(N)!=0) do
4: Extract SQL queries from DMG
5: Select class for each query
6: Select the access method for query
7: Calculate selectivity factor S f for join queries
8: Select join order with smallest S f
9: end while

10: return DMG
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5.2 Brief Details of Algorithm

1. Class of the FDQ is specified on the basis of its type. We have considered two types

of FDQs (i) select and (ii) join.

2. Each FDQ selects the different access method depending on its type.

3. If the FDQ is join then the best join order is also selected for the purpose of query

optimization.

4. For each FDQ the best QEP is selected as a part of optimization technique.

5.3 Detailed Explanation of the Algorithm

The proposed DMG used for the implementation of our technique is shown in Fig. 4.2.

Each node of the DMG has a FDQ(ni) associated with it. FDQ(ni) is written in SQL format

and comprised of different SQL operations including (i) selection (σ ), (ii) projection (Π)

and (iii) join (./). These FDQs are executed over the database created in Pervasive SQL

(PSQL). For minimizing the overall WCET of FDQ, it is important to optimize them. The

optimization enables the FDQs to be completed in the stringent timing deadline provided by

the system. Therefore, it is important to notice that decreasing the WCET of the FDQ(ni)

is helpful for meeting the deadline. For each FDQ(ni) different QEPs are generated and

the QEP with the minimum cost in terms of time is selected. The proposed algorithm has

three steps:

1. FDQs are divided into different classes. Each class is based on the type of FDQ.

The FDQ can be a select or join query. For each FDQ(ni) the appropriate class is

selected.

2. On the basis of the type of class that is selected for FDQ(ni), the best access method

with the minimum execution time is selected.
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Table 5.1: Classes for Simple Query Types

Name Query Type Operation Access Method
A Simple queries select Full table Scan
B Search Queries <,>,= B-tree scan

Table 5.2: Classes for Join Query Types

Name Query Type Join Access Method
C Inner table of join fits in the memory Nested loop
D Join is an equi-join Hash
E Not an equi-join Sort Merge

3. For FDQs belonging to the join class, a join optimization technique is applied. The

best join order for each FDQ(ni) is selected by considering the selectivity factor (S f ).

The S f for a particular join FDQ is the time taken by FDQ(ni) to find the number of

tuples present within that join order. The join order with the smallest S f (i.e., join

combination which takes minmal time to read the require tuples) is considered.

There are multiple access methods which are used by modern optimizers during the

process of query optimization. These access methods include B+ tree scan and full table

scan. Our methodology selects the access method for the FDQ(ni) on the basis of query

class in which it falls. Classes defined for the categorization and access methods of simple

select queries are shown in Table 5.1. The class categorization along with access methods

for join queries are shown in Table 5.2.

Before selecting the join order for the FDQ, it is important to find the access method

for the relations in the query. The access method for the join FDQ is selected by using

class based categorization from Table 5.2. After the selection of the access method the best

join order is selected. the selection of the best join order is an important research issue

[123]. For this purpose the Left Deep Tree (LDT) is generated on the join predicate of

the SQL query. LDTs are considered to be the best tree because they minimize the overall
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memory utilization of the query. Also in case of real time systems available memory is

often restricted, so this is an important constraint to be considered.

The best join order of the relations present within the join based FDQ(ni) is determined

by calculating the S f . S f is the ratio between the total number of tuples in a relation and the

tuples required by FDQ(ni) during its execution. Therefore S f is calculated for both read

and write operations performed by FDQ(ni). The S f is based on the parameters in Table

5.3 extracted from database.

Table 5.3: Parameters extracted from Database

Parameter Description
R Relation in a database
ti Set of all tuples over relation R

(R1 ./ R2 ./ ... ./ Ri) join order relations within query
Q(ti) Query predicate/condition over the tuple ti

Dr((R1 ./ R2 ./ ... ./ Ri)ti) Disk reads required for join order
Dw((R1 ./ R2 ./ ...Ri)ti) Disk writes required for the join order

A = [n(Dr(R1))+n(Dr(R2))+ ...+n(Dr(Ri))] (5.1)

B = [n(Dw(R1))+n(Dw(R2))+ ...+n(Dw(Ri))] (5.2)

C = n(Dr(∃ti ∈ (R1 ./ R2 ./ ...i)Q(ti))) (5.3)

D = n(Dw(∃ti ∈ (R1 ./ R2 ./ ... ./ Ri)Q(ti))) (5.4)

Eq 5.1 and Eq 5.2 represent the number of disk reads (Dr) and disk writes (Dw) required

by the full relation scan present in the Qni. Eq 5.3 and Eq 5.4 represents that there exists a

tuple ti in the relation order (R1 ./ R2 ./ ...Ri) on which the predicate Q(ti) is true. Variables

C and D give the number of Dr and Dw required for the selection of tuples based on the

predicate Q(ti) within a selected join order. The S f for each join order is defined as follows:
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S f j =
A+B
C+D

(5.5)

The solutions space Sp is based on the solution set of different S f for different combi-

nations of joins in FDQ(ni).

Sp(S f ) = (S f1,S f2,S f3...S fi)

The best S f for the join order is as follows:

Sp(S f ) = min(S f1,S f2,S f3...S fi) (5.6)

So overall the optimized fault diagnostic FDQ(ni) has the best access method and the best

join order with minimum S f .

5.3.1 Estimation of Worst Case Execution Time (WCET)

An estimation of the WCET is denoted as EWCET (FDQ(ni)) is provided as an essential

input for query optimization. There is a difference between the WCET and the estimation

of the WCET. The adopted term EWCET is the derivation of estimates for the maximum ex-

ecution time of an FDQ. A measurement-based method is used for calculating the EWCET

of a simple query [124]. By measuring the execution time for queries during execution with

different input data, the maximum and minimum limits based on the observed execution

time are derived. Measurement of these fault queries generate the estimated WCET but not

the actual WCET. EWCET (FDQ(ni)) is the CPU time dissipated by this FDQ(ni) until its

execution is completed.
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5.4 Illustrative Example

This section elaborates an example scenario in which different FDQs are designed and

the proposed optimization is applied. These FDQs are executed on a database created in

Pervasive.SQL (PSQL). The query optimization module is implemented by using the JDBC

interfacing of PSQL. The database contains relations which store data about a car’s sensors

(i.e., data-set taken from vehicles). PSQL is used because it has numerous benefits in the

real-time scenario as compared to the conventional database management systems. The

proposed query categorization technique allows to find the query class and access method

for the FDQ. This technique minimizes the overall EWCET by up to 56%. The features

included in FDQ(ni) are generated from the vehicles data. An example FDQ is represented

by Q1 which has the following features and symptoms.

Q1:Select Fault from OxygenSensors O JOIN EngineSensors AS E on

O.TempID=E.TempID JOIN TemperatureSensors AS T ON T.TempID=E.TempID

where O.AirRatio > 0.1 and E.FuelRatio > 0.2 and O.OilTemp > 0.3.

5.4.1 Features

The three features of the vehicles are added in Q1. These features are (i) oil, (ii) tempera-

ture, (iii) fuel ratio and (iv) air ratio.

5.4.2 Symptoms

Symptoms are values which are generated by the sensors in case of fault occurrence. These

values are read and written in the database every 15ms. Symptoms in the presented Q1 are

the values present in the where clause, which are AirRatio and FuelRatio and OilTemp.

Each symptom value present in Q1 is compared with the values stored in the database. If

the value of symptoms is greater than a certain threshold provided by the sensors, then it is

assumed that there is some fault in the system at the current point of time. Based on both

46



features and symptoms, Q1 is executed, and the fault is diagnosed. The proposed algorithm

implements the optimization methodology in the following sequence.

• The class of Q1 on the basis of its type is selected. The example Q1 belongs to the

class D where the joins are equi-joins, so the selected access method will be the hash

join method.

• The maximum observed execution time is the time required by the Q1 to execute with

the selected access method and the best join order.

Three tables oxygensensors(O), EngineSensors(E) and TemperatureSensors(T) are join

in the Q1. All the join orders are considered and the best one is selected on the basis of

the value of the S f . Different join orders are generated and Sp is created . Sp is searched

exhaustively by the query optimization module for finding the minimum S f ratio. As Q1

has three joins, there are six possible LDTs. The cost for each join order is calculated on

the basis of the S f .

Table 5.4: Cost of Join Orders in Q1

Access method Join Orders Sf EWCET (ms)
T ./ (O ./ E) 27% 567
O ./ (T ./ E) 31% 577
T ./ (E ./ O) 43% 643
E ./ (O ./ T ) 56% 721

Hash Join O ./ (E ./ T ) 87% 910
E ./ (T ./ O) 51% 702

Table 5.4 represents the EWCET and S f for Q1. On this basis the join order with

minimum S f is selected. The minimum EWCET is considered to be the best selection for

example Q1.

47



5.5 Results

This section represents the results of the optimization technique performed and tested over

different types of FDQs (synthetically defined) including select and join. The example data

is created synthetically and use to populate the database. The data tables with different

sensor data are populated by using insert queries. Almost 80,000 sensor values are inserted

into database to test the validity of our approach. These sensor values are collected from

different websites [125].

Figure 5.1: Comparison of EWCET of FDQs Before and After Optimization

Fig. 5.1 presents the comparison between the EWCET of the FDQs before and after

optimization. The different numbers of joins are taken into consideration for analyzing

the performance aspect of proposed method. It is evident from results that the EWCET

for fault diagnostic queries is decreased after optimization is applied. In order to ensure

the fault diagnosis to be completed within the time bound of the system, the EWCET of

FDQs is measured before and after the optimization is applied. It is evident from the results
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that after the optimization, all the FDQ are enable to minimize their EWCET, which is the

most important objective to achieve for our real-time system. So overall optimization of

these FDQs helps the system to meet their deadline. Decreasing overall EWCET is vital in

our proposed real time system, so that the fault of a system can be diagnosed before any

catastrophe may occur.
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CHAPTER 6

MINIMIZING THE MAKESPAN OF DMGS USING GRAPH PRUNING AND

QUERY MERGING

This chapter describes our proposed technique for minimizing the makespan of DMGs.

This technique focuses on the optimization of DMGs and FDQs both.

Algorithm 2 Graph Pruning (GP)
1: procedure GRAPHPRUNING(DMG)
2: for each Ni ∈ DMG
3: while Depth(DMG) 6= max do
4: Access the DMG with BFS
5: Calculate(no(nodes) ∈ level(DMG))
6: level← maxnoo f nodes
7: while level 6= 0 do
8: for each FDQ(Ni) ∈ level
9: if p(FDQ(Ni)) = pneighbour(FDQ(Ni)) then

10: QueryQueue← Query(Ni)
11: else
12: break
13: end if
14: end while
15: while QueryQueue 6= 0 do
16: for each FDQ(Ni) ∈ QueryQueue
17: if Op(FDQ(Ni)) = Op(FDQ(Ni+1) then
18: if DT (FDQ(Ni)) = DT (FDQ(Ni+1) then
19: MergeQuery(FDQ(Ni),FDQ(Ni+1)
20: Delete(QueryQueue(FDQ(Ni+1)))
21: end if
22: if DT (FDQ(Ni)) 6= DT (FDQ(Ni+1) then
23: MergeQuery(FDQ(Ni),FDQ(Ni+1,Join)
24: Delete(QueryQueue(FDQ(Ni+1)))
25: end if
26: end if
27: NewDMG← QueryQueue(FDQ(Ni))
28: end while
29: GRAPHPRUNING(NewDMG)
30: end while
31: end procedure
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6.1 Overview of Graph-Pruning and Query Merging

Algorithm 2 applies DMG based pruning for the nodes ni. Sets of constraints are defined for

applying pruning. FDQ(ni) which is a FDQ is attached to each node. The query predicates

FDQ(ni) in pruned nodes are not deleted but they are joined with their closest neighbour

n j which can be at the same level or depth. There is a data transfer along each ei. If ni is

deleted then its related ei is also deleted. But the data along this ei is also transferred to

the same n j which has the Q(ni) from the deleted n j. In this manner the data transfer cost

is also minimized because now there is a reduction of ei from parent to child node. After

the pruning of DMG(N) is completed the next step is the optimization of the final FDQ(ni)

attached to each ni. For selecting the most optimized version of FDQ(ni) the best access

method and the best join order are determined. Therefore, the best QEP with minimum

execution time is generated for each FDQ(ni).

In order to minimize the processing of data for all ni except the root node, after the

completion of query execution, a new data table is formed. These new data tables store the

values which are transferred to child ni after the execution of FDQ(ni). In this way, the data

tuples which are only required by the child nodes are transferred from their parent nodes.

Pervasive SQL (PSQL) is selected as a DBMS in order to get advantages of a real time data

management system. Relations present in the database are populated by executing insert

queries. The data-set is based on the data generated from vehicles sensors. The optimized

DMG along with the WCET of each FDQ is provided as an input to a scheduler in order to

calculate the makespan of the DMG.

6.2 Detailed Explanation of Algorithm

The proposed algorithm focuses on two aspects of optimization (i) graph based pruning

and (ii) query based optimization (selection of best QEP). In this section graph pruning

based optimization is described first and then the description of query based optimization
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is provided. The steps in the proposed method are shown in Fig. 6.1

Figure 6.1: Steps in Proposed System

6.3 Graph Optimization

The DMG used in our algorithm is shown in Fig 6.2. The primary objective of graph prun-

ing is to optimize the DMG by deleting different nodes based on constraints and minimizing

its size. These constraints are helpful for the pruning of the DMG and minimize the overall

makespan. The deletion of ni is not straightforward as each ni has a FDQ(ni) attached to it.

Whenever any ni within the DMG is deleted, its FDQ(ni) should be transferred and merged

with its closest neighbour n j. If the constraints that are defined for the merging of FDQ(ni)

and the deletion of ni are not met, then it is not possible to complete the delete process for

the DMG. The defined constraints for DMG pruning and query merging from Table 6.1 are

elaborated in following.

• Constraint C1: It is the most important constraint that should be satisfied as a part

of a DMG optimization algorithm. In order to delete ni and merge its FDQ(ni) with

its closet node n j, it is vital that both ni and n j should be present at the same level of
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Table 6.1: Graph Pruning Constraints

Constraints Description
C1 Level(ni) = level(n j)
C2 P(ni) = P(n j)
C3 NotDel(∀C(ni) ∈ Level(DMG))
C4 SO(FDQ(ni)) = SO(FDQ(nj))
C5 DT (FDQ(ni)) = DT (FDQ(nj))

n1

n2 n4

n5

Pn1

Pn2

Pn5

n1

n2 n4

n5

Pn1

Pn2

Pn5

n3
Pn4

Pn3

A:DMG Before Pruning

FDQ(n1)

FDQ(n4)
FDQ(n2)

FDQ(n5)

FDQ(n3)

n1

n2

n5

n1

n2

n5

FDQ(n1)

FDQ(n2)

FDQ(n5)

FDQ(n1)

FDQ(n2)

FDQ(n5)

B:DMG After Pruning

Pn1

Pn2

Pn5

Figure 6.2: Representation of DMG Before and After Pruning

DMG. The Depth level of the the DMG is considered to be the distance from the root

node to the ni and n j. If the nodes n3 and n4 are deleted in Fig. 6.2A then FDQ(n3)

and FDQ(n4) can only be merged with FDQ(n2) because all of the three nodes n2, n3

and n4 are at the same depth level in the DMG. Therefore according to the constraints

it is not feasible that FDQ(n4) is deleted and is merged with the node FDQ(n5).

• Constraint C2: The node ni which is deleted and n j which is accepting the FDQ(ni)

must have the same parent. For example, n2, n3 and n4 all have the same parent n1 in

Fig. 6.2A.
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• Constraint C3: All children nodes belonging to one parent can be deleted. If n3 and

n4 are deleted then n2 cannot be deleted. Otherwise the FDQs in these nodes are lost

and the fault cannot be diagnosed.

• Constraint C4: Constraint C4 and C5 are based on the FDQs attached with each

DMG(N). Each query FDQ(ni) is split into parts. The query splitting is based on the

two query clauses: (i) SQL operation (SO) and (ii) database table name. After the

FDQ(ni) is split into parts, each query clause is matched with the FDQ(nj) of its clos-

est node with which it has to be merged with. SO(FDQ(ni)) represents the SQL oper-

ation present in each DMG(N). For merging the queries the ”select” operation is con-

sidered. If the two queries FDQ(ni) and FDQ(nj) have two different SO namely ”se-

lect” and ”insert” then they cannot be merged. If the SO(FDQ(n3)) = SO(FDQ(n4))

then queries of n3 and n4 can be merged (see Fig. 6.2A).

• Constraint C5: After the constraint C4 is satisfied DT (FDQ(ni)) represents the

database tables present in each FDQ(ni). Two cases are considered on the basis

of database tables for merging the queries.

6.3.1 Case 1

In the first case the assumption that is considered is DT (Q(n1)) = DT (Q(n2)). It is

seen that both FDQs have the same database tables for their execution. If DT (Q(n2)) =

DT (Q(n3)) = DT (Q(n4)) then the process of deleting n3 and n4 and merging Q(n3) and

Q(n4) with Q(n2) is allowed. Fig. 6.3A represents the example for Case 1.

6.3.2 Case 2

In this case it is assumed that DT (Q(n1)) 6= DT (Q(n2)). Q(n1) and Q(n2) do not execute

on the same database tables. These FDQs are merged by employing the join operation. Fig.

6.3B shows an example for Case 2. The propose graph optimization algorithm perform its
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Figure 6.3: Query Merging: Case 1(A) and Case 2 (B)

operations in a cyclic manner. If the DMG has any set of constraints that it can satisfy then

graph pruning is iteratively performed. The DMG generated after applying the pruning

algorithm is shown in Fig. 6.3B.

6.4 Query Optimization

After the graph pruning based optimization is finished, the next step is to employ the opti-

mization for all FDQ(ni) in DMG(N).

1. The best access method is found for all FDQ(ni). Access methods can be Table Scan

(TS) or Index Scan (TS). The access method which returns the resultant tuples with

the minimum execution time is considered as the best solution.

55



2. After the selection of the best access method the best join order for all join queries

is also found. Join methods can be off various types including Equi-join, Merge Join

(MJ) and Hash Join (HJ). The method with minimum processing time is always taken

into account in this scenario.

3. For FDQ(ni) which have more than two join operations, the best join order with

minimum S f is considered. Different join orders for one FDQ(ni) are determined by

using the LDT [14]. The LDT is considered to minimizes the number of join orders

present in the Sp. After that for each join order the S f is calculated [15]. The S f can

be calculated as follows:

S =
|R1 ./ R2|
|R1| · |R2|

(6.1)

4. After the selection of the best access method and the best join order, different QEP

are created for each FDQ. The best QEP for the FDQ Q(n2) in Fig.6.3B is shown in

Fig. 6.4B. The cost of each QEP is calculated by estimating the total execution time

it takes for its completion.

6.5 Calculation of WCET

The worst case execution time WCET (Q(ni)), is an important input for real time systems

[122]. The WCET in this context is an input for calculating the makespan of DMG. The

WCET is the maximum time FDQ(ni) may take during its worst case. For calculating the

WCET of each query, different QEPs are considered. The QEP with the maximum time to

process the tuples is selected to be the worst one. This WCET for each FDQ(ni) is given

to our scheduler for calculating the maekspan. The worst case QEP for Q(n2) in Fig. 6.3B

is shown in Fig. 6.4A.
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B: Best Case Query Execution 
Plan

A:Worst Case Query Execution 
Plan

Figure 6.4: Worst Case and Best Case QEP for FDQ Q(n2) from Fig. 6.3B

6.6 Illustrative Example

This section elaborates an illustrative example on which the proposed algorithm is applied

and tested.

6.6.1 Queries in DMG Before Optimization

The data from sensors is received by the root Node A. The FDQs that store the sensor

data into database tables are insert queries. The three insert queries are executed at the

Node A according to the time period 3. The example FDQs are synthetic. The fault code

terminologies used in these FDQs are extracted from [18] and summarized in Table 6.2 .

Our example DMG is shown in Fig. 6.5A.

• QA1: Insert into EmissionCtrl (ID, CC, EGR, SAI, EVAP, ECB, EPC) VALUES (1,

0425, 0400, 0410, 0440, 0480,0496)

• QA2: Insert into FuelAirMeter (ID, HO2S, TCWG, CAMSHAFTP, AII, OAT, FPR,
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Table 6.2: Sensors Used in Example FDQs

Sensors Notation
ID Primary Key
CC Control Circuit

EGR Exhaust Gas Recirculation
SAI Secondary Air Injection

EVAP Evaporative emission
ECB Engine Coolant Blower
EPC Exhaust Pressure Control

HO2S Heated Oxygen Sensor
TCWG Turbo Charger Waste Gate

CamshaftP Camshaft Profile
AII Air Assisted Injector

OAT Outside Air Temperature
FPR Fuel Pressure Regulator

MVAF Mass or Volume Air Flow
MECTSC Motor Electronics Coolant Temperature Sensor

HVIC Hybrid Battery Voltage Isolation Circuit
GTS Generator Torque Sensor
DMP Drive Motor Position
GT Generator Temperature

GPS Generator Position Sensor
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Figure 6.5: Illustrative Example DMG

MVAF) VALUES (1,0030, 0035, 0341, 0065, 0070, 00903, 0294)

• QA3: Insert into HybridProp (ID, MECTSC, HVIC, GTS, DMP,GT, GPS) VALUES

(1, 00, 001, 022, 0306, 036, 0402)

Different sets of values are generated by sensors during the time of 15ms and stored in

the corresponding tables. After the execution of FDQs in the parent Node A ends, and the

child nodes start executing. There are three children of Node A named as Node B, Node

C and Node H. After the execution of FDQs (insert queries) at Node A ends, it (Node A

FDQ) sends the required data to all of its child nodes. Data is sent according to the queries

present at each node. There are the following queries at these child nodes:

• QB: Select EVAP, CC, EGR, SAI from EmissionCtrl where CC > 0432. (Results of

QB query is stored into new table QB).
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• QC: Select EVAP, ECB, EPC from EmissionCtrl where SAI > 0418. (Results of QC

query is stored into new table QC).

• QH : Select * from FuelAirMeter where HO2S > 0030 AND TCWG > 0000. (Re-

sults of QH query is stored into new table QH).

At the level two of our DMG the nodes present are Node D, E, F, I, J, K. The parent

child relationship of these nodes is as follows:

• Node D, E: These two nodes are child nodes of B.

• Node F: It is the child of Node C.

• Node I, J, K: These three nodes are child nodes of Node H.

The queries present at all these children nodes are as follows:

• QD: Select EGR, SAI from QB where SAI > 0424

• QE : Select CC from QB where EGR > 0409

• QF : Select EPC, ECB from QC where EVAP <> 04401 and EVAP <> 04402 and

EVAP <> 04403

• QI: Select HO2S, TCWG, CAMSHAFTP from QH where TCWG > 0034.

• QJ: Select AII, OAT, FPR from QH where FPR > 00901

• QK: Select MVAF from QH where MVAF <> 0298 and MVAF <> 0299 (Results

of query QI , QJ , QK is stored into new table QL).

The nodes present at the third level of DMG are Node G and L. The data required by these

nodes are provided by their respective parents. The parent child relationship of these nodes

are as follows:

• Node G: This child node has three parents namely, Node D, E, F.
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• Node L: This child node also has three parents Node I, J, K.

The join queries present at these child nodes are as follows:

• QG: Select QB.CC,QB.SAI,QC.ECB from QB inner join QC on QB.EVAP =

QC.EVAP where ECB <> 0000

• QL: Select HO2S, TCWG, AII, OAT, FPR, MVAF, CAMSHAFTP from QL where

HO2S > 0044

The node present at the fourth level of our DMG is Node M. The parent child relationship

of this node is as follow:

• Node M: It has two parents Node G and Node L.

The join query at Node M is as follow:

• QM:Select QL.HO2S, QL.TCWG, QL.AII, QG.QBCC, QG.QBSAI from QL inner

join QG on QL.ID = QG.ID where QG.QBCC > 04014

Graph Optimization Cycle 1

This section describes how the DMG based optimization pruning of the proposed algorithm

works (see. Fig. 6.5).

• Step 1: The graph pruning algorithm checks the maximum number of ni at all levels

according to C1. The maximum number of ni are present at the second level of the

DMG.

• Step 2: At this step the algorithm checks the parents of all neighboring nodes . At the

selected level 2 all ni should be the same. At level 2 Nodes D and E can be merged

because they have the same parent node B. Nodes I, J, K can be merged because they

have the same parent Node H.

61



• Step 3: According to C3, not all children ni can be deleted. So nodes E, J, K can be

deleted only.

• Step 4: According to C4, the similarity between the SO of prospective merging nodes

should be checked. QD and QE are checked for similar ”select” operations. Accord-

ing to queries mentioned in subsection A, QD and QE have the same SO which is

”select” so they can be merged. Similarly QI , QJ and QK have the same operation

”select” so they can also be merged.

• Step 5: This is the Case 1 of graph pruning as described in the Section 6.2.2. Ac-

cording to C5 and case 1 of pruning, the data tables for merging Q(ni) should be the

same. According to the queries shown in Section 6.4.1, queries QD and QE have the

same database table from QB. Queries QI , QJ and QK also have the same database

table from QH . After the QD is merged with QE and QJ , QK is merged with QI and

the resultant query at QD and QI is as follows:

• QD: Select EGR, SAI from QB where SAI > 0424 AND EGR > 0409

• QI: Select HO2S, TCWG, CAMSHAFTP, AII, OAT, FPR, MVAF from QH where

TCWG > 0034 AND FPR > 00901 AND MVAF <> 0298 and MVAF <> 0299.

The new graph generated after optimization cycle 1 is shown in Fig. 6.5B. All the

other queries at each node remain the same.

Graph Optimization Cycle 2

After the first cycle of optimization is completed, the algorithm will again check the new

generated DMG in order to determine whether additional pruning is still required. If the

constraints that are defined in Table. 6.1 are satisfied then the pruning algorithm will again

be applied on the DMG. There are two new special cases based on pruning optimization

that should be considered at this step.
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• Special Case 1: In this case node H cannot be merged with node B and C. For merging

the left cluster of nodes is more convenient as the node G has two different parents.

In order to keep the data transfer error free the nodes G and L are taken into account

and Nodes B, C and H are not considered for merging (see Fig. 6.5B).

• Special Case 2: The algorithm checks for operation C1. The number of nodes present

at both the first and second level of the DMG are similar and also maximal. So

the algorithm takes the highest level first. It is level 1 and nodes B and C can be

considered. After merging node B and C the new query at QB becomes:

QB: Select EVAP, CC, EGR, SAI, ECB, EPC from EmissionCtrl where CC > 0432

AND SAI > 0418. (Results of QB query are stored into the new table QB).

Now the algorithm access the second level nodes of the DMG. At this level still C1 is sat-

isfied so these nodes are merged. The parent node of node F is node C which has already

been merged with the node B, so it is also necessary for the node F to be merged with the

Node D. This is another special case we considered when the parent node of the child is

already merged and the child also has to merge itself with its neighborhood node and with

the matching Q(ni). The data tuples needed by F are from its parent C. These tuples are

also transferred to the Node B. Q(ni) at Node D and F are:

QD: Select EGR, SAI from QB where SAI > 0424

QF : Select EPC, ECB from QC where EVAP <> 04401 and EVAP <> 04402 and

EVAP <> 04403.

The data table QC required by query QF is now the part of the Node B so the final query at

Node D after merging becomes:

QD: Select EGR, SAI, EPC, ECB from QB where SAI > 0424 and EVAP <> 04401 and

EVAP <> 04402 and EVAP <> 04403. The final pruned graph is shown in Fig. 6.5C.
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6.6.2 Final Query Execution in DMG

The final FDQs present in the DMG are shown in Fig. 6.5C. Before the execution of

the DMG, for each FDQ(ni) the most optimized QEP with minimum cost is created as

described in Section 6.2.4. The worst case QEP is also generated as described in Section

6.2.4. The final FDQ(ni) at each level of the DMG after pruning is as follows.

Level 1

QB: Select EVAP, CC, EGR, SAI, ECB, EPC from EmissionCtrl where CC > 0432 AND

SAI > 0418. (Results of QB FDQ are stored into a new table QB)

QH : Select * from FuelAirMeter where HO2S > 0030 AND TCWG > 0000. (Results of

QH FDQ are stored into new table QH).

Level 2

QD: Select EGR, SAI, EPC, ECB from QB where SAI > 0424 and EVAP <> 04401 and

EVAP <> 04402 and EVAP <> 04403. (Results of QD FDQ are stored into a new table

QD).

QI: Select HO2S, TCWG, CAMSHAFTP, AII, OAT, FPR, MVAF from QH where

TCWG > 0034 AND FPR > 00901 AND MVAF <> 0298 and MVAF <> 0299. (Re-

sults of QI FDQ is stored into a new table QI).

Level 3

Earlier the query QG was a join query but after merging its parents G has no more joins.

QG: Select CC, SAI, ECB from QD where ECB <> 0000

QL: Select HO2S, TCWG, AII, OAT, FPR, MVAF, CAMSHAFTP from QI where HO2S >

0044.
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Table 6.3: Resultant Fault Values

HO2S TCWG AII QBCC QBSAI
0037 03503 0000 040130 04115
0043 0036 06501 040131 04116

Level 4

The final query at Node M has two parents, it is getting the join from the two parent tables

QG and QL.

QM:Select QL.HO2S, QL.TCWG, QL.AII, QG.QBCC, QG.QBSAI from QL inner join

QG on QL.ID = QG.ID where QG.QBCC > 04014.

The resultant fault values after the execution of the final query at the last node M are

shown in Table 6.3. The last node M is executed after all the pruning and optimization

of the DMG is completed at the last phase. The DMG with its WCET is given as an

input to the scheduler defined in the system. The scheduler calculates the makespan of the

DMG. Table 6.4 and Table 6.5 shows the makespan (as determined by the scheduler) of the

example DMG before and after optimization.

6.7 Results

This section elaborates the results based on the graph optimization (graph pruning and

merging) and FDQ based optimization (best query execution plans selection) applied to the

example DMG. The pruned and optimized DMG is given as an input to the scheduler for

the calculation of its makespan.

Fig. 6.6 shows the results when the DMG is considering the case 1. All the nodes which

have the DFQs accessing the same database relation are merged. In case of FDQs having

select operations the overall optimization applied is based on the selection of the best access

path. The best QEP along with the pruned DMG minimized the overall makespan of the

DMG by up to 40% when the proposed technique is applied. Fig. 6.7 shows the results
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Table 6.4: Data Statistics for makespan of DMG before Optimization (seconds)

Nodes Query WCET (Q(ni))
A QA1,2,3 0.066
B QB 0.036
C QC 0.034
H QH 0.033
D QD 0.031
E QE 0.029
F QF 0.039
I QI 0.032
J QJ 0.031
K QH 0.039
G QG 0.056
L QL 0.032
M QM 0.058

Makespan 4.16

Table 6.5: Data Statistics for makespan of DMG after Optimization (seconds)

Nodes Query WCET (Q(ni))
A QA1,2,3 0.066
B QB 0.027
H QH 0.026
D QD 0.025
I QI 0.024
G QG 0.036
L QL 0.026
M QM 0.038

Makespan 2.04
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Figure 6.6: Makespan of DMG Case 1

when the DMG is considering the case 2. FDQs in this case have join operations which

require more optimization, as the best join orders also have to be selected. In this case a

maximum of three join operations is considered. Therefore at each level of the DMG a

maximum of three nodes can merged along with their FDQs. In the context of this scenario

it is evident that when there are graphs with larger sizes which require more pruning and

more query optimization then the proposed technique works more effectively.

Fig. 6.8 shows the results when the DMG considers both cases and the DMG has both

types of FDQs. There are different numbers of select and join FDQs within the DMG. It

is evident from the results that in case where we have higher numbers of FDQs with join

operations and lesser numbers of FDQs with select operations, graph pruning and query

optimization algorithm is more effective.
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Figure 6.7: Makespan of DMG Case 2
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Figure 6.8: Makespan of DMG Case 1 & Case 2
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CHAPTER 7

MINIMIZING THE MAKESPAN OF DMGS USING QUERY AWARE

PARTITIONING

This chapter describes the minimization of the makespan of our proposed DMG by using

the technique of query aware partitioning.

7.1 Optimization Algorithm

The pseudo-code representation of our proposed technique is shown in Algorithm 3.

The steps followed for the implementation of our technique are shown in Fig. 7.1. The

basic implementations details for this algorithm are as follow: Algorithm 3 minimizes the

overall makespan of the DMG, by minimizing the WCET of each FDQ(ni). This goal is

achieved by employing a query aware partition pruning algorithm on the created FDQs

[126]. The second objective is the reduction of resource utilization. This objective is

achieved by minimizing the overall data (and thus communication cost) transferred among

the edges of DMG. This goal is achieved by introducing two new concepts in the proposed

application model presented in Fig. 4.2. These features are history intervals (HI) and the

Skip value (S). The DMG with these two new inputs is shown in Fig. 7.2. For select queries

the Per Table Query Aware Partitioning (PTP) is applied and for join queries, the Join

Aware Query Partitioning (JAP) is applied [127]. Both techniques have different results as

they are applied on different types of FDQs.
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Algorithm 3 Query Optimization Algorithm (QAA)
Input:DMG
Output:Optimized DMG, WCET, Wi

1: while the last node of DMG is not reached do
2: while node has not completed its all executions do
3: if SQL operation of query is ”Select” then
4: Apply PTP to data table in query
5: Calculate Wi for data table after partitioning
6: Generate QEP
7: end if
8: if SQL operation of query is ”Join” then
9: Apply JAP to table in query

10: Calculate Wi for data table after partitioning
11: for all JO in a query do
12: Select JO with minimum cost
13: end for
14: Generate QEP
15: end if
16: Calculate WCET for QEP
17: Read history interval for current node
18: if there is a skip value S then
19: Do not send result partition to child node
20: else
21: Send result partition to the child node
22: end if
23: end while
24: end while
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Figure 7.1: Steps in Proposed Technique

n1

n2 n3

n4

Pn1

WCET(FDQ(n1))
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FDQ(n1)

Pn2 Pn3

Pn4

<Ia,S,Ib>

W(en2 n4) W(en3 n4)

W(en2 n3)

Figure 7.2: DMG with History Interval and Skip Factor

7.1.1 Basic Optimization Rules

There are certain sets of rules applied by modern bottom-up optimizers for query optimiza-

tion [59]. These optimization rules are as follow.
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1. The best access method is determined for each database relation in FDQ(ni) by em-

ploying the table scan or index scan. The selected access path should have less cost

in terms of processing time.

2. The best join path is found for each join query. These join paths can be merge join,

hash join and equi-join. The join path with minimum cost in terms of execution time

is selected.

7.1.2 Per Table Optimization for Select Queries

For select queries, the proposed query optimizer applies the technique of PTP. This type of

pruning deletes all those table partitions which are not required by the FDQ(ni). This op-

timization minimizes the memory requirements of data storage along with the unnecessary

overheads by deleting unused data tuples [128]. An example FDQ, Q1 is considered for the

explanation of this concept.

Q1: Select A from R where A > 10

The child fragments in Fig. 7.3A which are black in color are pruned after applying

PTP optimization. After PTP the QEP for each FDQ(ni) is generated. The QEPs before

optimization and after optimization (less WCET) are shown in Fig. 7.3C and Fig. 7.3B.

Hence the overall WCET is reduced by almost 50% after the PTP is applied.

7.1.3 Join Aware Partition Optimization for Join Queries

For join queries, JAP and pruning are applied (see Algorithm 3, Lines 8-10). After this the

proposed query optimizer selects the best join order with minimum cost (see Algorithm 3,

Lines 11-13). An example query is represented as follows:

Q2: Select * from A, B, C where A.u=B.u AND B.v=C.v AND A.u > 10

The JAP for query Q2 is shown in Fig. 7.4A. The partitions in black are pruned. In

the next step our optimizer finds the best join order. The join operation in case of Q2

is comprised of three tables (A ./ B) ./ C. The Sp for the number of join orders is bigger
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A:Per table partition table 
Query Q1

B: Optimized QEP ,Query 
Q1.WCET:0.15ms

C: Unoptimized QEP 
,Query Q1.

WCET:1.43ms

Figure 7.3: A:PTP, B:Optimized QEP, C:Unoptimized QEP for Query Q1

B: Optimized QEP,Query 
Q2. WCET: 1.75ms

C: Unoptimized QEP ,Query 
Q2. WCET:2.95ms

A: Join Aware Partition, 
Table A,B,C ,Query Q2

Figure 7.4: A:Join Partition, B:Optimized QEP, C:Unoptimized QEP for Query Q2
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because of the data fragments A2, B3, B4, C2, A3, B5, B6, C3. In order to minimize the Sp

for join orders the clustering technique is applied. During clustering we select only those

child partitions of the query table which have the same parents, so according to Fig. 7.4A

the join orders considered for the search space are A2 ./ (B3 ./ B4) and A3 ./ (B5 ./ B6).

Now optimizer selects the best join path for these joins. The best join path for A2 ./

(B3∪B4) is merge join and for A3 ./ (B5∪B6) it is hash join as both of these paths have

less cost. Now for each join order, the child fragments are considered. Proposed optimizer

selects the best join order. These child join orders for (A ./ B) ./C are considered first and

they become (A2 ./ (B3∪B4)) ./C2 and (A3 ./ (B5∪B6)) ./C3. After that, the child join

order for (B ./C) ./ A is considered. The child join order become ((B3∪B4) ./C2) ./ A2

and ((B4∪B5) ./C3) ./ A3. Now the optimizer determines which order is best depending

upon the minimum cost calculation and generates the QEP for that. The QEP before and

after partition pruning is shown in Fig. 7.4C and Fig. 7.4B.

7.2 Calculation of WCET

We estimate the WCET, i.e the maximum time that a FDQ can take for its execution [129].

For determining the WCET of each FDQ, a QEP is generated. The time of each QEP

is measured by considering all the possible sets of data tuples that a FDQ can process.

Therefore the WCET is calculated by reading the overall statistics generated by the QEP.

Divergent cost related factors including I/O cost and CPU cost are analyzed and estimated

from the QEP generated by PSQL [116].

7.3 Illustrative Example

This section elaborates the illustrative example on which the proposed algorithm is imple-

mented and tested.
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7.3.1 Implementation of History Interval and Skip Factor

There are three different queries in the proposed context including insert, select and join.

The major objective is to minimize the overall WCET of select and join queries by applying

the proposed optimization. Fig. 7.5A represents the example DMG. According to Fig. 7.5A

the following history intervals are considered for each nc:

• (A→ B): < 1,0,4 > means that Node B requires all the data from the Node A as the

skip value S=0 while start execution Ia=1 and end execution Ib=4. S=0 is represented

by blue lines from (A1→ B1), (A2→ B1), (A3→ B3) and (A4→ B2) in Fig. 7.5B.

• (B→C): < 1,2,2 > means that start execution Ia=1 and end execution Ib=2 with the

skip value S=2. So Node C requires the data from the first execution of Node B as

shown by the blue line from B1→C1, and skips the data from the second execution

of Node B as shown by the red line from B2→C1 in Fig. 7.5B.

• (A→C) < 3,0,4 > means that the start execution Ia=3 and the end execution Ib=4

with the skip value Sk=0. So Node C requires the data from the third and forth

executions of Node A as shown by the blue line A3 → C1 and A4 → C1. The data

from the first and second execution of Node A is skipped as denoted by the red lines

from A1→C1 and A2→C1 in Fig. 7.5B.

7.3.2 Number of Executions on Basis of Skip Factor

Fig. 7.5B represents the mapping to the hyper period based on Fig. 7.5A. It represents the

number of executions for each node, along with the data that is required by the child node

(nc) from its parent node (np) in a specified execution sequence. The lines drawn in red

show the skipped executions of a parent node from which the child node does not require

data. The number of executions on the basis of skip factor are described in next section:
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A: Example DMG

B:Representation of no of 
Executions with data 

transference for DMG on basis of 
skip factor

Figure 7.5: A:Example DMG, B:No of Executions with Skip Factor

• Node A: It has four executions according to its time period P=1 denoted by

(A1,A2,A3,A4). It repeats its execution every second.

• Node B: It has two executions according to its time period P=2 denoted by (B1,B2).

It starts its first iteration after it receives data from the first and second iteration of

Node A according to the history interval < 1,0,4 > and starts its second execution

after it receives the data from the third and forth execution of Node A according to

the history interval < 1,0,4 >.

• Node C: It has one execution according to its time period P=4 denoted by C1. Node C

starts its single iteration after it receives its data from the first iteration of B according

to the history interval < 1,2,2 >, and the third and fourth iteration of A according to

the HI < 3,0,4 >.

7.3.3 Query Optimization

Node A is the root node which is receiving all the input data from the sensors. FDQs having

insert operations store the data into the database. Suppose we have the following FDQs for

populating the database:
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• QI1:Insert into Oxygen where OxygenRatio is between 0.1 and 2.9 and CO2Ratio

between 0.1 and 1.8.

• QI2:Insert into Water where WaterTemp is between 0.1 and 2.3.

• QI3:Insert into Engine where EngineTemp is between 0.2 and 1.9.

• QI4:Insert into Fuel where FuelTemp is between 0.5 and 2.7.

Execution of Node A

Now we consider the queries that are present at Node A of the DMG. We can see that we

have P=1 as shown in Fig. 7.5A. We consider that we have four select FDQs at Node A

during different executions. The FDQs designed for node A are as follows:

• QA1:Select * from Oxygen where OxygenRatio > 0.1 and OxygenRatio < 0.3

• QA2:Select * from Water where WaterTemp > 0.1 and WaterTemp < 0.4.

• QA3:Select * from Engine where EngineTemp > 0.3 and EngineTemp < 0.5

• QA4:Select * from Fuel where FuelTemp > 0.5 and FuelTemp < 1.1

After the execution of four queries the PTP and QEP are shown in Fig. 7.6. The ratio

of data that is pruned in QA1 is 40%, 25% for QA2, 28% for QA3 and 42% for QA4.

First Execution of Node B

• QB1:Select Oxygen.OxygenRatio, Water.WaterTemp from Oxygen inner join Water

ON Oxygen.ID=Water.ID where Oxygen.OxygenRatio> 0.6 and Water.WaterTemp

> 0.5

Node B requires the data from the < 1,2 > execution of Node A to complete its first

execution. According to Fig.7.5B, Node A has already transferred its data to the Node B.
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Figure 7.6: PTP for QA1,QA2,QA3,QA4

Node B has two executions according to its period. After the data is transferred from the

Node A, now the FDQ at Node B is QB1. Now our optimizer applies the JAP to the QB1.

The JAP applied by the optimizer is shown in Fig. 7.7A. Therefore the partitions O3 and

W5 are pruned. The QEP applied before and after pruning are shown in Fig. 7.7C and Fig.

7.7B.

Second Execution of Node B

• QB2:Select EngineTemp,FuelTemp FROM Engine INNER JOIN Fuel On En-

gine.ID=Fuel.ID where Engine.EngineTemp> 0.6 AND Fuel.FuelTemp > 1.3

After the first execution of Node B, it transfers its data to the Node C. The second execution

of the Node B requires the data from the < 3,4 > execution of the Node A which has

already been transferred by Node A. After the data transfer from the Node A is completed,

now the query at the Node B is QB2. The JAP applied to the Node B at its second execution

is shown in Fig. 7.8A and the QEP before and after pruning is shown in Fig. 7.8C and Fig.

7.8B.
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 A:Partitioning Pruning For QB1
 B:Optimzied QEP, 
Query QB1. WCET.0.91

 C:Unoptimized QEP, Query 
QB1. WCET. 2.18

Figure 7.7: A: JAP, B:WCET of Optimized QEP, C:WCET of Unoptimized QEP for QB1

B: Optimized QEP,QB2: 
WCET: 0.95msA: Join Aware Partition QB2 C: Unoptimized QEP, 

Query.QB2.WCET: 2.03ms

Figure 7.8: A:JAP, B:WCET of Optimized QEP, C:WCET of Unoptimized QEP for QB2
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Table 7.1: Resultant Values Extracted from FDQ QC1

OxygenRatio EngineTemp FuelTemp
1.8 1.5 2.1
2.5 1.5 2.2

Execution of Node C

Now the last Node C of the DMG executes. Node C requires data from two nodes: Node

A and Node B. All of this data has already been sent to the Node C when the executions of

Node A and Node B end.

• Node A: Node C requires the data from the third and fourth iteration of Node A.

• Node B:Node C requires data from the first execution of Node B.

The final query at Node C is QC1. According to the period of Node C (P=4 according

to Fig.7.5A), it has to execute only one time. Now the relations that are present at the

Node C are the join table Oxywater, Engine and Fuel. The JAP and QEP before and after

optimization for QC1 are shown in Fig. 7.9A, 7.9B and 7.9C.

• QC1:Select OxyWater.OxygenRatio,Engine.EngineTemp, Fuel.FuelTemp FROM

OxyWater INNER JOIN Fuel ON OxyWater.ID=Fuel.ID INNER JOIN Engine ON

Fuel.ID=Engine.ID where OxyWater.OxygenRatio> 0.9 AND Engine.EngineTemp

> 1.4

After the complete Execution of Node C

After the final query at Node C executes the tuples extracted from the FDQs are shown in

Table. 7.1. These value are compared with the threshold values stored in database and fault

is detected.
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B: Optimized QEP,WCET 2.87msA: Join Aware 
Partition Query QC1

C: Unoptimized QEP,Query 
QC1.WCET 5.07ms

Figure 7.9: A: JAP, B:WCET of Optimized QEP, C:WCET of Unoptimized QEP for QC1

Table 7.2: Wi with Different Values (KBs)

Parent→ child With Skip value With skip value and partition No (skip value and partition)
A→ B 88 58.88 88
A→C 48 31 88
B→C 47.8 41.3 58.88

Wi Optimize: 131.18 Unoptimized: 234.88

7.3.4 Results for Example DMG

The Table 7.2 represents the amount of data transferred within the the nodes of DMG

before and after the partition and skip value is applied. The Amount of Data (Amt Data

Wi) is shown With Skip value and With Skip value and Partitioning and Without Skip value

and Partitioning.

The resultant values in Table. 7.2 shows that the amount of data after applying S and

P is decreased by 30% to 45% depending upon the type of FDQ. Table 7.3 shows that the

WCET is decreased by almost 40% after applying the optimization.

After the application of the history interval and the query aware partition, the optimized
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Table 7.3: WCET for Optimized QEP (OQEP) and Unoptimized QEP (UQEP)

FDQs at each Node WCET(OQEP) WCET(UQEP)
QA1,QA2,QA3,QA4 3.89 6.92

QB1 0.91 2.18
QB2 0.95 2.03
QC1 2.87 5.07

Table 7.4: Makespan for Optimized DMG and Unoptimized DMG

DMG Make Span (Secs)
Optimized DMG 6.87

Unoptimized DMG 11.04

DMG with the WCET of each query node (cf. Table. 7.3) and the amount of data (Wi) along

each edge of the DMG (cf. Table 7.2) is given to scheduler for finding the makespan. The

makespan of an example DMG in Fig. 7.5A is shown in Table 7.4.

The resultant values in Table 7.4 shows that the overall makespan of the DMG is re-

duced up to 39% after the optimization is applied.

7.4 Results

This section elaborates the results based on the architectural model shown in Fig. 4.1.

The proposed optimization technique was implemented in Java and tested with a PSQL

server. For the evaluation of the proposed algorithm, the implementation of the optimizer

is divided into three different categories.

1. Optimizer considers the DMG with only select queries and applies PTP to it.

2. Optimizer considers the DMG with only join queries and applies JAP to it.

3. Optimizer considers the DMG with both select and join queries and applies PTP and

JAP both according to the type of a query.
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Figure 7.10: Comparison of Makespan of DMG (select FDQs)

7.4.1 Description of Results

This section presents the results based on the query optimization applied to the DMG.

The objectives achieved in our context are the (i) minimization of makespan of DMGs for

meeting the strict timing constraints given by the system and (ii) minimizing the resource

consumption (i.e.,CPU and bandwidth). The makspan of the DMG is calculated by provid-

ing the WCET of FDQs and Wi (weight of the edge( to our scheduler designed in [122].

Fig.7.10 presents the makespan calculation of the DMG with FDQs having only ”se-

lect” operations. For this type of DMG the PTP is applied. Fig.7.11 presents the makespan

calculation of the DMG with FDQs having only ”join queries”. We have considered three

relations in case of join queries. For join queries the JAP is applied. Fig. 7.12 presents the

makespan calculation of the DMG having FDQs with both ”select” and ”join” operations.

Select queries based on the ranges are considered and join queries based on a maximum of
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Figure 7.11: Comparison of Makespan of DMG (join FDQs)

three joins are considered.

According to Fig. 7.10, Fig. 7.11 and Fig. 7.12, there is a significant reduction in

the overall makespan of the DMG, which is the major objective of our work. This is a

significant result and can be exploited in the case where we have safety-critical systems

with stringent timing constraints. Fig. 7.13 shows the CPU consumption of DMG before

and after the optimization. The CPU consumption is calculated by U = PT/C where U=

Consumption, PT= Total Execution Time (ET) taken by each DMG node, C= Capacity

of CPU, which is ET+IT (Idle time). Results in this context show a reduction of CPU

utilization up to 30% after optimization.

85



Figure 7.12: Comparison of Makespan of DMG (select and join FDQs)
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Figure 7.13: Comparison of CPU Consumption Before and After Optimization)
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CHAPTER 8

MINIMIZING THE MAKESPAN OF DMGS USING GENETIC ALGORITHM

This chapter describes the GA based technique, which is used for minimizing the makespan

of our DMGs. Details about the optimization of FDQs along with the example and results

are also presented in this context. The steps followed for the implementation of this tech-

nique are shown in Fig 8.1.

Figure 8.1: Steps in Proposed Algorithm

8.1 Optimization Algorithm

This section describes the pesudo-code representation of our algorithm presented in Algo-

rithm 4.
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Algorithm 4 Task Graph Optimization Algorithm (TGO)
Input:Diagnostic Query (DQ)
Output:Optimized Task Graph (TG), Makespan of TG

1: Convert DQ into Relational Algebra (RA) representation.
2: Convert RA of DQ into Query Tree (QT)
3: QT can be left depth tree or bushy tree
4: Generate different Task Graphs (TG) with different combinations of nodes from QT.
5: Add all these TG into Search Space (SP) of Genetic Algorithm (GA)
6: Create initial population based on these TG for GA.
7: while the TG with minimum Make Span is not found do
8: for all TG in initial population do
9: Calculate fitness function (makespan)

10: end for
11: Select TG with minimum makespan
12: Pass them to next generation
13: Apply mutation on selected solutions (TG)
14: Send them to next generation.
15: Exit when TG with minimum makespan is found
16: end while

8.2 Important Components of Technique

This section elaborates all the important components which are defined for the implemen-

tation of our technique. The details about the Genetic Algorithm (GA) is also mentioned in

this context.

8.2.1 Fault Diagnostic Query (FDQ)

In this work, we have considered only one FDQ for the simplification of our scenario and

understanding of the reader. Designed FDQ in this context is quite complex as it comprised

of multiple join operations.

8.2.2 Query Tree

The second step in the proposed algorithm is to convert the FDQ into a query tree. The

query tree is the algebraic representation of our FDQ. The internal nodes of the query tree

represent the relational algebra operations while the leaves represent the database relations
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present in the FDQ. We have considered two types of trees, including (i). Left Deep Tree

(LDT) and (ii). Bushy Tree (BT) (Fig. 8.3).

8.2.3 Task Graph

For each query tree, different task graphs are generated. For example, in the example FDQ

WCET (T5) represents the WCET of task node T5 and W (e4) represents the weight of the

edge e4. W (e4) represents the amount of data that is being transferred from parent node

(T4) to child node (T5) (see Fig. 8.4B). It is assumed that each edge has a weight that is

W (e) = 1. Whenever the data item of size S is sent from np to nc, the overall cost of the

edge becomes S.W (ei). Each task graph is considered as a solution for the search space in

the GA. Each task graph is comprised of a different number of leaf nodes from one query

tree. The type of these task graphs depends on the type of query tree from which they are

created. These task graphs are either LDT based TG or BT based task graphs.

8.2.4 Genetic Algorithm (GA)

The last step in the proposed solution is to apply the GA so that the task graph with mini-

mum makespan is found. The next section describes the necessary steps for the implemen-

tation of the GA.

Initial Population

Different task graphs (i.e.,individual solutions) that are created on the basis of LDT or BT

(Query tree) are considered as the initial population for the creation of the search space

(see Algorithm 4: Lines 5-6). Binary strings are used for the chromosome representation

of solutions. A binary value 1 is assigned to each SQL operation within the query tree if

it is considered as a separate operation in the TG. And a binary value 0 is assigned to a

particular SQL operation in a query tree if it is considered in combination with its child

node (each node contains an SQL operation). For example if the parent SQL operation is
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combined with the child SQL operation, then two joins are combined together in the form

of one SQL query. Then the parent SQL operation is assigned 1 and child SQL operation

is assigned 0 as a binary representation of the solution.

Fitness Function

The calculation of the fitness function is a significant step in the GA. The WCET of each

graph node along with the W (ei) for each TG is given as an input to the scheduler for

calculating the maekspan. The calculated makespan of each task graph is considered as the

value of the fitness function. The calculation of the fitness function is performed by our

scheduler designed in [122]. The scheduler is invoked whenever the fitness function of the

solution in the search space has to be calculated.

Selection

This step of the GA selects the fittest individuals and passes them to the next generation.

For each solution, makespan is calculated. The solutions with minimum makespan are

selected for the next generations.

Mutation

Cross over for the solutions is not possible. If cross over is performed over two TGs then

there is a chance that the final solution becomes wrong due to the change of the node’s

position. If the mutation between two solutions is not able to create a new solution then

GA will quit its execution.

Termination

The proposed algorithm terminates when the GA keeps finding similar values of makespan

for each solution. After the certain number of generations, the makespan of task graphs

start converging. In this case, the GA will terminate its execution.
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8.3 Determining the Worst Case Execution Time

The GA depends on the calculation of the makespan for each task graph. For calculating

the makespan the WCET of each node in the task graph is required. Each node of the task

graph comprises different SQL operations based on the FDQ. These FDQs are executed

over the vehicle database created in PSQL. For finding the WCET of each node in a TG,

the SQL operation in this graph node is separated from the main FDQ and converted into

a sub query. These sub queries are measured against all the combinations of data extracted

from the database. For our evaluation we have three thousand FDQs that are run over the

designed database for calculating the WCET of different task graphs.

8.4 Example

This sections describes the illustrative example for our proposed algorithm.

8.4.1 Fault Diagnostic Query

As described in Section 4.2 FDQs are represented in the SQL format. The execution of

these FDQs is performed over that data stored in a PSQL server. This database comprises

data that is derived from ehicle sensors. The example FDQ is denoted by QD.

QD: Select Oxygen.OxygenRatio,Water.WaterTemp,Oil.Oillimit, Engine.EngineID

from Oxygen, Oil, Water,Engine,Fuel where Fuel.WaterID=Water.WaterID

and Water.WaterID =Engine.EngineID and Oil.OilID=Engine.OilID and Oxy-

gen.OxygenID=Oil.OxygenID

The query QD is a join query and comprised of four join operations along with five

different relations from database. This FDQ is complex because it contains various joins.
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D:LDT with Two Task Nodes for TGC:LDT with Three Task Nodes for TG

A:LDT with Five Task Nodes for TG B:LDT with Four Task Nodes for TG

E:LDT with one Task Nodes for TG

Figure 8.2: LDT based TG with Binary Representation
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Left Deep Tree Bushy Tree

Figure 8.3: Query Tree Left Deep Tree and Bushy Tree
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A: Left Tree 1 B: Task Graph 1

C: Left Tree 2 D: Task Graph 2

Figure 8.4: A:Left Deep Tree 1,B:Task Graph 1,C:Left Deep Tree 2,D: Task Graph 2
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C:Bushy Tree 2

A:Bushy Tree 1 B:Task Graph 1

D:Task Graph 2

Figure 8.5: A:Bushy Tree 1, B:Task Graph 1, C:Bushy Tree 2, D: Task Graph 2
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A:Bushy Tree B:Task Graph 

Figure 8.6: A:Bushy Tree , B:Task Graph

8.4.2 Query Tree

As described above we are considering two types of query trees including (i) LDT and (ii)

BT. Fig.8.3 shows the informal representation of QD in the form of LDT and BT. Fig.8.2

shows the formal representation of different LDTs. Fig. 8.2A generates the LDT based TG

having five nodes (T1, T2, T3, T4, T5). Fig. 8.2B generates the LDT based TG having four

nodes (T1, T2, T3, T4). Fig. 8.2C generates the LDT based task graph having three nodes

(T1, T2, T3). Fig. 8.2D generates the LDT based TG having two nodes (T1, T2). Fig. 8.2E

generates the LDT based task graph having only one node (T1).

8.4.3 Task Graph

The first task graph that is generated from the query tree considers each operation (i.e., join,

projection) of a query tree as a one task (see Fig. 8.4B). For generating other task graph

more than one operation of a query tree is considered as a one task (see Fig. 8.4D). As

mentioned above that task graphs are generated depending on the type of query tree. They
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A:Left Deep Tree before Mutation B:Left Deep Tree after Mutation

C:Task Graph for Query Tree A D:Task Graph for Query Tree B

Figure 8.7: Left Query Tree before and after Mutation
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can be LDT based TG or BT based task graph.

8.4.4 Left Deep Tree Based TG

If we consider Fig. 8.4A which contains the LDT created from QD, then it is seen that there

is total of five operations (internal nodes) in this LDT.

Task Graph 1

The first and simpler task graph for the query tree in Fig. 8.4A is the task graph that contains

the five nodes. The relational algebra equation for query QD is represented as follows.

{Π(oxygen.OxygenRatio,Water.WaterTemp

Oil.Oillimit,Engine.EngineID)

((((F ./W ) ./ E) ./ O) ./ X))}

(8.1)

Now we will consider Eq. 8.1 for creating the task graphshown in Fig. 8.4B. In

this TG each operation of the query tree is considered as a one separate task. This

task graph comprises of five nodes. T1 = (F ./ W ) T2 =./ E, T3 =./ O, T4 =./ X ,

T5 = Π(oxygen.OxygenRatio,Water.WaterTemp,Oil.Oillimit,Engine.EngineID).

Task Graph 2

Now we will generate another task graph from the query tree shown in Fig. 8.2C. We

consider the Eq. 8.1 for creating this task graph but the operations (F ./ W ) and ./ E are

combined into one task T1. So the nodes defined in Fig. 8.4D become T1 = (F ./W ) ./ E,

T2 =./ O, T3 =./ X , T4 = Π(oxygen.OxygenRatio,Water.WaterTemp,Oil.Oillimit,Engine.EngineID).

If we compare the LDT in Fig. 8.4A with LDT in Fig. 8.4C, we can see that the

LDT based task graph in Fig. 8.4D contains the two join operations in task node T1. In

contrast, the LDT based TG in Fig. 8.4B only contains the one join operation in task node

T1. Therefore the the task graph in Fig. 8.4B has five nodes and TG in Fig. 8.4D has four
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nodes. The total number of these TGs keeps on increasing as long as the number of joins

and relations in FDQ increases. Similarly, other TGs can be created.

8.4.5 Bushy Tree Based TG

In this section we elaborate the creation of BT based TGs.

Task Graph 1

Fig. 8.5A represents the BT. This BT is represented by Eq. 8.2 which is the relational

algebra representation of QD.

{Π(oxygen.OxygenRatio,Water.WaterTemp

Oil.Oillimit,Engine.EngineID)

[((F ./W ) ./ E) ./ (O ./ X)]}

(8.2)

Eq. 8.2 is helpful in creating the task graphs. The algebraic representa-

tion of the BT based task graph (see Fig. 8.5A) is consider as T1 = (F ./

W ), T2 =./ E, T3 =./ (O ./ X), T4 = (((F ./ W ) ./ E) ./ (O ./ X)), T5 =

Π(oxygen.OxygenRatio,Water.WaterTempOil.Oillimit,Engine.EngineID). This TG is shown in Fig. 8.5B.

Task Graph 2

Another query tree generated for the BT is shown in Fig. 8.5C. The task graph that

is created from the Fig. 8.5C is shown in Fig. 8.5D. Therefore Fig. 8.5D comprises

a lower number of nodes as compared to the task graph shown in Fig. 8.5B. These

tasks are T1 = ((F ./ W ) ./ E), T2 =./ (O ./ X), T3 = (((F ./ W ) ./ E) ./ (O ./ X)),

T4 = Π(oxygen.OxygenRatio,Water.WaterTempOil.Oillimit,Engine.EngineID).
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Task Graph 3

Similarly, another task graph is also created. This task graph con-

tains tasks including T1 = (F ./ W ) ./ E) ./ (O ./ X), T12 =

Π(oxygen.OxygenRatio,Water.WaterTempOil.Oillimit,Engine.EngineID). So this task graph only

contains two nodes, as shown in Fig. 8.6B. While the Bushy tree for this task graph is

shown in Fig. 8.6A. So there is a large number of task graphs that can be created using a

similar technique. All these TGs are part of the solution space of the GA. The size of the

solution space increases depending upon the number of task graphs.

8.4.6 Implementation of Genetic Algorithm for Our Example

This section elaborates the steps included in the implementation of GA in our context.

Initial Population

Each task graph (individual solution) is created by considering the different combinations

of query tree operations. As described above, two types of task graphs are generated de-

pending on the type of query tree. These task graph are LDT based TG and BT based task

graph. The chromosome representation of these task graph are shown in Fig. 8.4. The task

graph based on LDT are shown in Fig. 8.2. and the task graph based on the BT is shown in

Fig. 8.5 and Fig. 8.6.

Fitness Function

The WCET of each task node within the TG along with the weight of edges is given as

an input to the scheduler for the calculation of the fitness function i.e., (makespan). For

illustration, we present an example with three task graphs (see Fig. 8.4B, Fig. 8.4D,

Fig.8.5B). The input given to the scheduler for calculating the fitness function (makespan)

of each TG is shown in Table. 8.1.
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Table 8.1: Makespan of TG (Secs)

Task Graph WCET (ms) W(e) MB
Fig. 8.4B T1 = 1.08ms 58.80

T2 = 3.12ms T1→ T2 = 33.78MB
T3 = 4.56ms T2→ T3 = 67.24MB
T4 = 5.08 ms T3→ T4 = 45.98MB
T5 = 4.23ms T4→ T5 = 78.90MB

Make Span 7.29ms
Fig. 8.4D T1 = 4.35

T2 = 4.56ms T1→ T2 = 67.24MB
T3 = 5.08ms T2→ T3 = 45.98MB
T4 = 4.23ms T3→ T4 = 78.90MB

Make Span 6.09ms
Fig.8.5B T1 = 1.08

T2 = 4.87ms T1→ T2 = 58.80MB
T3 = 5.48ms T2→ T4 = 56.03MB
T4 = 4.23ms T3→ T4 = 66.19MB
T5 = 4.74 ms T4→ T5 = 78.90MB

Make Span 4.18ms

Selection

Our selection phase selects the fittest individuals and passes them to the next generation.

For each solution, makespan is calculated. The solutions with minimum makespan are

selected. According to Table. 8.1, the solution in Fig. 8.5B has the smallest makespan. The

makepsan of solutions are compared to each other. The solutions with minimum makespans

are considered as the fittest solutions and are passed to the next generation.

Mutation

In the case of the proposed solution, the mutation is only performed for the fittest solutions.

If two task graphs are mutated and the resultant child task graph is similar to the the one of

its parent then that task graph is not considered for the next generation. Fig. 8.7A shows

the LDT before mutation and Fig. 8.7B shows the LDT after the mutation. Therefore Fig.
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8.7C shows the TG for the LDT in Fig. 8.7A and Fig. 8.7D shows the TG for the LDT in

Fig. 8.7B. It is clear that both task graphs showed in Fig. 8.7C and Fig. 8.7D are similar

in structure, but it is clear that the T1 in Fig. 8.7C is different from the T1 in Fig. 8.7D. It

means that the overall WCET of T1 in Fig. 8.7C is different from the WCET of T1 in Fig.

8.7D, which changes the makespan of both TGs.

8.5 Calculation of WCET using Example Query

This section shows the calculation of the WCET of the task graph shown in Fig. 8.4B. For

example the FDQ QD has four sub-queries and they are named as QD1, QD2, QD3, QD4.

QD1 represents the task node T1. QD2 represents the task node T2. QD3 represents the task

node T3. QD4 represents the task node T4. In this case only join queries are considered.

QD1: Select Oxygen.OxygenRatio,Water.WaterTemp,Oil.Oillimit, Engine.EngineID

from Oxygen, Oil, Water,Engine,Fuel where Fuel.WaterID=Water.WaterID

and Water.WaterID =Engine.EngineID and Oil.OilID=Engine.OilID and Oxy-

gen.OxygenID=Oil.OxygenID

QD2: select Oxygen.OxygenRatio, Water.WaterTemp,Oil.Oillimit, Engine.EngineID

from Oxygen, Oil, Water,Engine, Fuel where Fuel.WaterID=Water.WaterID and Wa-

ter.WaterID =Engine.EngineID and Oil.OilID=Engine.OilID

QD3: Select Oxygen.OxygenRatio, Water.WaterTemp,Oil.Oillimit, Engine.EngineID

from Oxygen, Oil, Water,Engine,Fuel where Fuel.WaterID=Water.WaterID and Wa-

ter.WaterID =Engine.EngineID

QD4: Select Oxygen.OxygenRatio, Water.WaterTemp, Oil.Oillimit, Engine.EngineID

from Oxygen, Oil, Water,Engine,Fuel where Fuel.WaterID=Water.WaterID

According to Fig. 8.3B and Eq. 8.2 QD1 = T5, QD2 = T4 , QD3 = T3, QD4 = T2. For each

of these FDQs the estimated WCET is determined by running these FDQs with different

sets of data. Almost 3,000 FDQs are run and their WCET is calculated. The WCET

calculated for the task graph in Fig. 8.4B is shown in Table. 8.1.

103



A:Left Deep Tree B:Bushy Tree

C:Bushy Tree 4 End Systems D:Bushy Tree 6  End Systems

Figure 8.8: A:LDT based TG, B:BT based TG, C:BT based TG with Four processors, D:
BT based TG with Six Processors

8.6 Results

In experimental results, three different types of network topologies including (i) star-bus (ii)

star-ring and (iii) star-star are considered. The proposed GA selects the TG with minimum

makespan in all the generations. All the selected task graphs are given as an input to

the scheduler for calculating the makespan. The scheduler is running over the networked

distributed systems based on the three network topologies.

Fig. 8.8A and Fig. 8.8B shows the result in the case where two end systems in the

network topology are considered. If both results are compared, it is clear that the TGs
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A:Left Deep Tree 4 End Systems B:Left Deep Tree 6 End Systems

Figure 8.9: A:LDT Based TG with Four End Systems, B:LDT Based TG with Six End
Systems
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A:Left Deep Tree Convergence B:Bushy Tree Convergence

Figure 8.10: A:LDT Convergence, B:BT Convergence
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generated on the basis of the BT have better makespans as compared to the LDTs. In case

of LDTs there is a linear graph because the scheduler can process only one task node at

one time because each child task has to start its execution after its parent task completed

its execution, so the scheduler cannot schedule multiple tasks. On the other hand in case of

the BT there are more tasks at one level of the TG which are ready for processing so at one

point of time multiple tasks can be assigned to processing nodes due to which the overall

makespan is reduced.

If the results presented in Fig. 8.8C and Fig. 8.8D are compared then it is clear that

the BT gives better results since the makespan of the task graphs with more than 30 nodes

shows a remarkable decrease in the case when there are more end systems. The task graphs

with a lower of nodes do not show any reduction in makespans when more end systems are

added. If Fig. 8.9A and Fig. 8.9B are compared then it is clearly seen that in case of LDTs

the makespan is also decreased when more end systems are added in the topology. So the

TGs based on LDT have better makespan in case the scheduler uses six end systems.

If Fig. 8.8C and Fig. 8.9A are compared, then it is clearly seen that the BT based task

graphs have better results in case of 4 end systems as compared to the LDT based TG.

Similarly, if the Fig. 8.8D and Fig. 8.9B are compared, it is also clear that the BT based

task graphs has a lower makespan as compared to the LDT based task graphs in case the

scheduler uses six end systems. If Fig. 8.10A and Fig. 8.10B are compared it is evident

that the BT based search space converges earlier as compared to the LDT based search

space. In the case of LDT, the GA converges after 80th generations while in case of the BT

it converges after 100 generations but gives a better solution with lower makespans.

If we consider the different results based on different topologies then it is evident that

ring topology leads to reduced makespan as compared to star and bus topologies. In case

of the ring topology there are more connections between the end systems so the overall net-

work load is minimized. Minimized network load increases the chances of scheduleability.
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CHAPTER 9

FAULT DETECTION AND DIAGNOSIS USING DMG FOR SAFETY CRITICAL

HVAC SYSTEMS

This chapter evaluates the previously introduced algorithms for query optimization in a

real-world use case with an Heating Ventilation and Air Conditioning System (HVAC). The

HVAC system depends on diagnostic query-based fault detection and diagnosis to monitor

faults. It comprises both safety-critical services for emergency situations (e.g., building

fire) and non safety-critical services for improved comfort and efficiency.

9.1 Background of HVAC Systems

In the U.S., heat, ventilation and cooling (HVAC) systems account for roughly 43% of the

overall energy consumption in buildings [130]. Researchers have tried to improve these

numbers by deploying more embedded sensors in the systems to monitor temperature,

CO2 and humidity levels [131] but including electrical components has made the systems

failure-prone. If a fault arises in one of the electrical components of such systems, the

sensors may produce erroneous data and the actuators may behave differently than what

is expected. These failures usually lead to general human discomfort, excessive energy

consumption, increased overall operation costs, and deterioration of equipment lifespan.

Regular checks and maintenance solve this problem but because of the increased cost of

on-site maintenance, preventive or predictive maintenance in the form of fault-tolerant sys-

tems has become much more significant in recent years [132, 133, 134, 135, 136, 137].

Along with controlling the indoor environment levels, the HVAC systems are gener-

ally integrated with hazard detectors such as smoke detectors and play a crucial role in

restricting hazardous situations. In hospitals, for example, the HVAC systems are one of

the primary responders in the case of a fire [138]. In such situations, it is highly essential
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that the HVAC systems can discern a critical from a non-critical situation i.e. they should

identify if an actual fire has occurred or if there is some fault within the system. False

alarms have a much more negative impact than expected. For example, in homes, occu-

pants have to search for the detector that is sounding the alarm and determine themselves if

the alarm is false or an actual hazardous situation exists. This process is time-consuming,

stressful and potentially dangerous. Ordinarily, the alarms may mistake normal situations

for critical ones. For example, the fire alarms near the bathrooms mistake the steam from

the shower as smoke. In these situations, inhabitants may shut the detectors off to avoid

the annoyance of false alarms. The malfunctioning of the detection system itself is equally

disastrous in life-threatening situations. For example, faulty readings from CO2 sensors in

HVAC systems lead to undetected air poisoning that kills approximately thousands of peo-

ple each year. Therefore, disabled or ineffective detectors may cause a high death toll and

property damage from hazardous situations that otherwise could have easily been prevented

[139].

9.1.1 Time Sensitivity of HVAC Systems

In hazardous situations, thousands of lives depend upon the correct functioning and timely

response of the HVAC systems. If a component is faulty, it should be detected before a

critical situation occurs and actions, such as ventilation and closing of doors/windows/etc

depending on the locations of fires, smoke, people should be performed within in the short-

est time period provided by the system. It means that the HVAC systems are time-sensitive

and the fault detection and diagnosis technique (FDD) used should identify faults within

the system provided time-frame. This aspect of the HVAC systems, although essential, is

usually not discussed in the literature.

109



9.1.2 Contribution

In this chapter, we exploit the query optimization techniques proposed in the previous chap-

ters for a time-critical fault detection and diagnosis approach for HVAC systems. We con-

sider an HVAC system integrated into a complex building architecture with multiple rooms

and floors. There are different sensors and actuators in each room. The HVAC system

maintains the indoor environment levels and also provides detection for fire hazards. We

detect faults in the sensors using diagnostic queries that measure the values of the sensors

for critical and non-critical situations. We consider the critical situations time-sensitive and

our FDD technique determines whether the fire has occurred or a sensor has malfunctioned

within the system’s defined time-bound. The detection and diagnosis in non-critical situa-

tions has no time restriction and is done to minimize the energy consumption of the HVAC

systems due to faulty equipment. To the best of our knowledge, time-sensitive FDD has

never been discussed in HVAC systems before and is the main contribution of our work.

Moreover, our technique does not depend upon the architecture of the building and is inte-

grable with any HVAC system comprising sensors and actuators.

9.2 Problem Formulation

In this work, we propose a multi-query based fault detection and diagnosis (FDD) technique

for HVAC systems. We consider a complex building architecture with multiple rooms and

floors. Each room has a certain set of sensors and actuators depending upon its require-

ments and function. We consider fault detection and diagnosis in the HVAC systems in

two separate scenarios: i). in rooms that have fire hazardous equipment, e.g. kitchen and

ii). in rooms where there is no possibility of a fire, e.g. study room. The functioning

of the HVAC system in a fire-prone environment is considered a critical situation and is

highly time-sensitive. It means that the faults in the electrical equipment in such situations

should be identified and rectified within the system’s defined time-bound. In contrast, the
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Figure 9.1: Flow diagram of diagnostic query based fault detection and diagnosis

maintenance of comfort levels (e.g. room temperature) by the HVAC systems is considered

non-critical and has no time restriction for fault detection and diagnosis. The sensors and

actuators in each room provide output data that is stored in a central database. We formu-

late diagnostic queries that compare the sensor and actuator values with certain thresholds

and concentration levels to determine faults in the system. Since we have multiple sen-

sors and actuators and thus multiple sets of queries, we formulate a diagnostic multi-query

graph (DMG) for a structured and timely diagnosis. Considering we are dealing with highly

time-critical situations where a false output could cause a dangerous situation, it is essential

that we know beforehand the maximum time that our FDD may take to identify faults i.e.

the total execution time of the DMG. For this purpose, we give this DMG to an off-line

scheduler that allocates, maps, and schedules the queries and gives an execution time for

fault detection. This execution time is termed makespan. This makespan should always

be less than the deadline defined by the system for the detection of fire and people in the

building. To ensure that we meet this deadline, we optimize the DMG before giving it to

the scheduler to get an optimal schedule for the execution of the DMG. Fig. 9.1 gives the

main steps of our approach.
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9.2.1 Building Architecture

We consider a building with multiple rooms, corridors, and floors. There are two main

components for modelling the building, (i) the HVAC model and (ii) FDQ execution model.

HVAC model

Each room and corridor in the building has a certain set of sensors and actuators depending

upon its type, function, and requirements for fault detection. We divided the rooms into

two categories,

• Catastrophic Rooms (CR): All the rooms that contain fire hazardous equipment are

sorted into this category. In such rooms, the HVAC system detects the possibility of

a fire and sounds the alarm if a fire has occurred. The fault detection and diagnosis

in such rooms is highly time critical because a faulty component can either hide

the existence of an actual fire or can sound a false alarm that creates a stressful

and dangerous situation. Therefore, in such rooms, it is important that we identify

a defective component within the system’s defined deadline before a catastrophic

situation occurs. We consider the following sensors and actuators in such rooms.

– Temperature: A sensor that measures the temperature of the room and the ad-

jacent corridor.

– CO2: A sensor that measures the concentration level of carbon dioxide in the

room.

– Heater (thermostat): An actuator that controls the amount of heat in the room.

We consider that a fault can occur in any of the mentioned components. If the output

from all three of the components point to the occurrence of a fire then the system

sounds an alarm whereas if one of the components is giving a value above its thresh-

old or is inconsistent with the values of the other two components then the system
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classifies it as defective. Here, the component needs fixing or replacement. To sim-

plify the situation, we assume that only one of the electrical components may be

defective at a time.

• Normal Rooms (NR): The unavailability of fire hazards classifies a room into this

category. These rooms require the normal functioning of the HVAC systems, i.e.

controlling temperature and humidity levels to provide a comfortable environment

for a living. The fault detection in such cases is not time-critical and thus is not

restricted by any deadline. However, it is still essential to identify the faults since

a defective component adds to the energy consumption of the HVAC system and

causes general discomfort for the inhabitants. NR have the same set of sensors as in

CR but we use the damper instead of heater. It deals with the air flow calculations of

the ventilation system and takes the input from the CO2 sensor. Similar to CR, we

assume that only one component is faulty at a time.

For example, we would classify the chemistry lab in the HVAC model of a school building

as a catastrophic room (CR) because it has various sensitive chemicals that can cause explo-

sives whereas we would classify the gym into a normal room (NR) since it has no fire-prone

equipment. We have used the method described in [140] to compose our HVAC model in

MATLAB/Simulink. For simplification of the model, we have restricted the number of CR

per floor to one. The rest of the rooms and the corridor (C) on the floor are classified as

NRs. There is no restriction on the number of rooms per floor or the number of floors in the

building and our technique is scalable to any kind of building structure provided the rooms

can be classified into one of the mentioned categories. Fig. 9.2 shows the HVAC model for

a two floor building each with three rooms and one corridor.

9.2.2 Formulation of DMG

With multiple rooms in the building each with its own set of sensors and actuators, it

is difficult to keep track of the data and the execution of the corresponding diagnostic
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Figure 9.2: HVAC model of a two floor building each with three rooms and one corridor

queries. To simplify this process, we formulate a diagnostic multi-query graph (DMG) that

represents all the queries and their different relationships in a structured form that is much

easier for the scheduler to schedule and for the processing elements to execute. A basic

DMG in our context is shown in Fig. 4.2.

It is important to mention how different DMGs with multiple FDQs are created based

on sensors present in each room. For each room (NR or CR) a separate DMG is created.

This DMG is based on the FDQ about the fault which we want to detect in a particular

room. Therefore, for each room one DMG is created. Later on, all these separate DMGs

(one for each room) are combined and one DMG for a particular floor is formulated. We

have considered only two floors for the simplification of our problem. The next section will

cover the important steps involved in the formulation of these DMGs.

Step 1A: Creation of FDQs for Floor 1 (F1)

The FDQs written for NR1 and NR2 present at F1 are shown in Table 9.1 and Table 9.2. In

the case of normal rooms, we will detect two types of faults (i). sensor faults (temperature

and CO2 sensors), (ii). concentration of CO2 and temperature in a room. In the case of

normal rooms, the concentration of CO2 and temperature is only checked for maintaining
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the comfort level of the rooms. This type of fault detection is not time-sensitive. So in the

case of normal rooms, we are not detecting the critical faults such as fire. And if these faults

are not detected in stringent timing deadlines provided by the system then no catastrophic

situation will occur. Therefore, fault detection performed in normal rooms will minimize

the overall consumption of energy and resources by implementing timely fault detection

and diagnosis mechanism. It is also important to mention that we are only measuring one

fault at one instant of time. The FDQs in normal rooms are executed after every one hour

as we are not dealing with highly critical faults.

FDQs for finding CO2 Sensor Faults NR1(F1)

If we analyze the FDQs mentioned in Table 9.1 it is seen that the value of

CO2 f aultcounter = 1 which shows that there is a fault in the CO2 sensor. The other param-

eters including (i) room temperature1 and (ii) CO2concentration have also values greater

than their threshold (Threshold values: CO2 > 399ppm and temperature > 19C) which

shows that there is a possibility that these sensors are also faulty. But from FDQ RQ14 it is

evident that the CO2 sensor present in NR1 is faulty at the moment.

FDQs for finding CO2 and Temperature Concentration NR2(F1)

Table 9.2 shows the FDQs written for finding the concentration of CO2 and temperature in

NR2. If we analyse the FDQ (RQ21) then we can see that the value of CO2 f aultcounter

is zero. And the values of room temperature2 and CO2concentration are greater than their

thresholds (RQ22, RQ23). Therefore, FDQs including RQ22 and RQ23 shows that there is

higher values of CO2 and temperature in the room NR2 so the window of the room should

be open in order to maintain the comfort level of the room.
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Table 9.1: FDQ11 for CO2 Sensor fault (NR1) F1

Names FDQS
RQ11 Select CO2 f aultcounter

from CO2sensor where CO2 f aultcounter = 1
RQ12 Select CO2value , CO2 f aultcounter

from CO2sensor where CO2concentration > 399
and CO2 f aultcounter = 1

RQ13 Select room temperature1
CO2 f aultcounter

from rooms, CO2sensor where rooms.id= CO2sensor.id
and room temperature1>19 and CO2 f aultcounter = 1

RQ14 Select CO2 f aultcounter, CO2value
room temperature1 from CO2sensor, rooms,

where rooms.id =CO2sensor.id and
room temperature1>19 and CO2concentration > 399

and CO2 f aultcounter = 1

Step 1B: Creation of FDQs for Floor 2 (F2)

In this section, the FDQs are created for finding the fault in the temperature sensor in a room

NR3 present on floor 2. Table 9.3 shows the FDQs (RQ31) in which the fault in temperature

sensor is detected. The value of temperaturefaultcounter is one in RQ31 which shows that

there is a fault in the temperature sensor rather than the fact that CO2concentration and

temperature have values which are greater than their thresholds. Therefore, in Table 9.4 the

FDQs are created for finding the concentration level of CO2 and the value of temperature

in the room NR4. The value of temperaturefaultcounter is zero which shows that there is no

fault in the temperature sensor. However, the values of CO2concentration and temperature

are greater than their threshold. This means that the inhabitant should open the window to

maintain the comfort level of NR4.

Step 2: Creation of DMG from FDQs

In this step the DMG is created from the FDQs generated in step 1. DMG11 for NR1 is

created from the FDQ11 presented in Table 9.1. DMG12 for NR2 is created from the FDQ12

presented in Table 9.2. Both DMG11 and DMG12 are joined together (named as (DMGF1)
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Table 9.2: FDQ12 for CO2 and Temperature Levels in NR2 F1

Names FDQS
RQ21 Select CO2 f aultcounter

from CO2sensor where CO2 f aultcounter = 0
RQ22 Select CO2value , CO2 f aultcounter

from CO2sensor where CO2concentration > 399
and CO2 f aultcounter = 1

RQ23 Select room temperature2
CO2 f aultcounter

from rooms, CO2sensor where rooms.id= CO2sensor.id
and room temperature2>19 and CO2 f aultcounter = 1

RQ24 Select CO2 f aultcounter, CO2concentration
room temperature2 from CO2sensor, rooms,

where rooms.id =CO2sensor.id and
room temperature2>19 and CO2concentration > 399

and CO2 f aultvaluecounter = 1

for finding the two faults (i). CO2 sensor fault, (ii) CO2 and temperature levels in rooms at

F1. Similarly DMG13 for NR3 is created from the FDQ13 presented in Table 9.3. DMG14

for NR4 is created from the FDQ14 presented in Table 9.4. Both DMG13 and DMG14 are

joined together (named as DMGF2) for finding the faults including (i) temperature sensor

fault and (ii) CO2 and temperature values in rooms at F2. Fig 9.3 shows the process of

creating the DMG based on FDQs for each floor. We have created different DMGs for

each floor because we want to compare the temperature of one floor to another floor. The

resultant tuples (RT ) generated by the DMG for different floors are compared. If the RT of

one floor is different from the RT of another floor then there is a possibility that one of the

floors has a fault either in its sensor or has higher values of temperature or CO2.

Step 3: Execution of DMG

In this step the DMG (comprised of the FDQs) is executed by the processors according to

the plan given by the scheduler [122]. As we have created two DMGs in Step 2 named as

(i). DMGF1 and (ii) DMGF2. Both of these DMGs have different FDQs. After these FDQs

are executed over the database (by processors) the final FDQs from each DMG (RQ14,
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Table 9.3: FDQ13 for Temperature Sensor fault for NR3 F2

Names FDQS
RQ31 Select Temperaturefaultcounter

from Temperaturesensor where Temperaturefaultcounter=’1’
RQ32 Select CO2concentration ,

Temperaturefaultcounter from
CO2sensor C, Temperaturesensor T where

C.id=T.id
CO2concentration > 399

and Temperature f aultcounter = 1
RQ33 Select room temperature3

Temperaturefaultcounter
from rooms, CO2sensor where rooms.id= CO2sensor.id

and room temperature3>19 and Temperaturefaultcounter=’1’
RQ34 Select Temperaturefaultcounter, CO2concentration

room temperature3 from CO2sensor, rooms,
where rooms.id =CO2sensor.id and

room temperature3>19 and CO2concentration > 399
and Temperaturefaultcounter=’1’

RQ24, RQ34, RQ44) generates some resultant tuples (i.e., fault values) for both floors.

Step 4: Fault Detection

The important parameters which are considered for fault detection are shown in Table 9.5.

These parameters are defined as follows: (i) Resultant Tuples (RT ) are the results (tuples)

extracted from the execution of FDQs on each floor. The RT = 1 means that there are some

faulty values in RT from both floors. (ii) RT extracted from FDQ of one floor is compare

with the RT on the other floor. This term is named as comparison of RT between two floors

(CA). If there is a similarity between the RTs of two floors then it is clear that both floors

have some fault in CO2 sensor. The numeric value CA = 1 shows that both floors have

similar faulty values while CA = 0 shows that there is no similarity between the RT s of

both floors. (iii) Threshold values (TV ) is used to match the RT with the TV stored in the

database. For example for the FDQ1 the threshold value for CO2Sensorvalue > 399. If

there extracted RT > TV then we will assign 1 (true to this parameter) which shows that
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Table 9.4: FDQ14 for CO2 and Temperature Levels in NR4 F2

Names FDQS
RQ41 Select Temperaturefaultcounter

from Temperaturesensor where Temperaturefaultcounter=’0’
RQ42 Select CO2concentration ,

Temperaturefaultcounter from
CO2sensor C, Temperaturesensor T where

C.id=T.id
CO2concentration > 399

and Temperaturefaultcounter=’0’
RQ43 Select room temperature3

Temperaturefaultcounter
from rooms, CO2sensor where rooms.id= CO2sensor.id

and room temperature3>19 and Temperaturefaultcounter=’0’
RQ44 Select Temperaturefaultcounter, CO2concentration

room temperature3 from CO2sensor, rooms,
where rooms.id =CO2sensor.id and

room temperature3>19 and CO2concentration¿399
and Temperaturefaultcounter=’0’

Table 9.5: Fault Parameters

RT CA TV Fault (Yes/No)
DMGF1 1 1 1 Yes
DMGF2 1 1 1 Yes
DMGF1 1 0 0 No
DMGF2 0 1 0 No

there is a fault in the sensor. In this manner, we can detect the fault in the CO2 sensor.

Hence in a similar manner, all the DMGs are created and different types of faults in-

cluding different sensors can be detected.

9.2.3 Optimization Technique

In the previous section, we have described how different DMGs are created based on FDQs

generated for each floor. Increasing the number of rooms in the building will also increase

the number of sensors. An increasing number of sensors means that we have a large number

of inputs that need to be processed for finding faults in the HVAC system. Hence we have

to write thousands of FDQs for considering the sensor faults from the complete building.
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Figure 9.3: DMG Formation of Normal Room (NR)

Due to this reason, the overall process of fault detection and diagnosis (processing of FDQ

queries in each DMG from the different rooms) becomes extremely complex and costly in

terms of time, as we have to process the inputs from higher numbers of sensors present

at each floor (inside each room). It is also possible that some of these FDQs are time-

sensitive and have stringent timing requirements. This is the scenario when a system has

to deal with hard real-time requirements. One example of this scenario is the fire in the

building and the HVAC system has to shut down as soon as possible. In this scenario, all

the FDQs should complete their execution within the stringent deadline provided by the

system. Therefore to meet the stringent timing requirements we are applying a GA based

optimization to our DMGs so that they can complete their execution before any catastrophic

situation may occur. The proposed method of optimization based on the GA is described

in Algorithm 5.
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Algorithm 5 DMG Optimization Algorithm
Input: DMG with DFQs
Output:Optimized DMG with minimum Makespan

1: Joins methods (JM)=Cross join, Hash Join, Loop Join, Merge Join
2: for all Nodes in DMG do
3: for each qi ∈ Node(DMG) do
4: for each join jk ∈ JM do
5: Apply jk to qi
6: Apply Best Join order (JO) to qi
7: Generate a new DMG (Solution Si)
8: Add S1 to Search Space (SP) of GA
9: end for

10: end for
11: end for
12: Create initial population based on these Si ∈ S for GA.
13: while the Si with minimum Makespan is not found do
14: for all Si in initial population do
15: Calculate fitness function (makespan)
16: end for
17: Select Si with minimum makespan
18: Apply crossover on selected solutions (DMG)
19: Send them to next generation.
20: Exit when Si with minimum makespan is found
21: end while
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9.2.4 Illustrative Example

This section will describe the implementation of our work by using an illustrative example.

9.2.5 Creation of FDQs

Our example considers the FDQs which are time-sensitive in nature and have stringent

timing deadlines. The designed FDQs are executed over the database created in an SQL

server. This database contains 85,000 values from sensors and actuators. These FDQs are

used to detect two types of faults (i) fault in heater damper and (ii) concentration level of

CO2 and temperature for fire detection. Therefore all of these FDQs have stringent timing

deadlines provided by the system. The FDQs mentioned in Table 9.6 are created for finding

the fire in the NR1 considering that the HeaterWarningCounter has a value equal to zero

and Heatvalue and CO2concentration values are above threshold.

Table 9.6: FDQ1 for Fire Detection CR1 Floor 1 (F1)

Names FDQS
CQ1 Select HeaterWarningCounter

from Heateractuator
where HeaterWarningCounter=0

CQ2 Select TemperatureValue, HeaterWarningCounter
from TemperatureSensor T,

Heateractuator H where T.id=H.id and
TemperatureValue>1100 and HeaterWarningCounter=0

CQ3 Select CO2concentration, TemperatureValue
from CO2Sensor C,

TemperatureSensor T
where C.id=T.id and CO2concentration > 12800 and

HeaterWarningCounter=10
CQ4 Select Heatvalue CO2Sensorvalue, TemperatureValue

from
HeatSensor H, CO2Sensor C, TemperatureSensor T

where H.id=C.id and C.id=T.id and
Heatvalue>1100 and CO2concentration > 12800

and HeaterWarningCounter=0
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9.2.6 Creation of FDQs after applying Cross join and changing Join Order

In this step, the cross join method is applied to the FDQs generated in Table 9.6 as men-

tioned in Algorithm 5 (see Line 3-7). The new FDQs after applying a cross join method

and different join orders are shown in Table 9.7.

Table 9.7: FDQ2: Application of JM and JO to FDQ1 mentioned in Table 9.6

Names FDQs
CQ5 Select HeaterWarningCounter from Heateractuator

where HeaterWarningCounter=0
CQ6 Select TemperatureValue, HeaterWarningCounter from

TemperatureSensor T cross join
Heateractuator H where T.id=H.id and

TemperatureValue>1100 and HeaterWarningCounter=0
CQ7 Select CO2Sensorvalue, TemperatureValue from

CO2concentration C
cross join TemperatureSensor T

on C.id=T.id where CO2concentration > 12800 and
HeaterWarningCounter=0

CQ8 Select Heatvalue CO2Sensorvalue, TemperatureValue
from

((HeatSensor H cross join CO2Sensor C)
cross join TemperatureSensor T)

where H.id=C.id and C.id=T.id and
Heatvalue>1100 and CO2concentration > 12800

and HeaterWarningCounter=0

Creation of DMG for the Search Space

After the creation of FDQs shown in the previous step, our next step is the creation of the

DMG. These DMGs are created based on FDQs created in Table 9.6 and 9.7. These DMGs

are then added to the search space of our GA. Similarly, different DMGs are created by

applying different join methods and join orders to FDQs (cf. Algorithm 5 Line 1). The

DMG created from FDQ1 (cf. Table 9.6) is named as DMG1. The DMG created from

FDQ2 after applying the cross join method and selecting the best join order (cf. Table 9.7)

is named as DMG2. Both DMGs are represented in Fig. 9.4.
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9.3 Genetic Algorithm Based Optimization of the DMG

This section will elaborate the implementation of our proposed GA using an illustrative

example.

9.3.1 Initial Population

Each DMG that is created for the catastrophic room from the FDQ Table (cf. Table 9.6,

Table 9.7) is considered to be the initial population for our search space. The chromosome

representation of DMGs is shown in Table 9.8.

Table 9.8: Chromosome Representation for DMGs

Query Type Representation
Select Queries 1

Equi-join (2 relations) 2
Equi-join (3 relations) 3
Cross join (2 relations) 4
Cross join (3 relations) 5
Loop join (2 relations) 6
Loop join (3 relations) 7
Hash join (2 relations) 8
Hash join (3 relations) 9

9.3.2 Fitness Function

As mentioned in Section 9.2 for each DMG we have to calculate the makespan. To calculate

the makespan we require two parameters (i). WCET, (ii). Wi j (data transfer from parent

to child node). These two parameters are given as an input to the scheduler for calculating

the makespan. Each FDQ is run thousands of times to derive its minimum and maximum

execution time. Then a safety margin is added to the WCET of FDQs to satisfy the timing

constraints of the system [129]. WCET of the FDQ CQ1 is shown in Fig. 9.5. The amount

of data weight Wi transferred between parent and child node is calculated by Eq. 9.1. The

input given to the scheduler for calculating the makespan is shown in Table 9.9.
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Figure 9.4: Chromosome and Crossover of DMG

Wi j = [rowsize]× [noo f rows] (9.1)

Table 9.9: Input for Scheduler for calculation of makespan Fig. 9.4

FDQ WCET (Secs) W (MB)
CQ1 1.817
CQ2 2.541 W1: 0.769
CQ3 2.544 W2: 0.769
CQ4 3.922 W3, W4 : 2.769

Makespan (DMG1) 7.189

9.3.3 Selection

In this step, the fittest solution is selected and passed to the next generation. For each so-

lution (DMG) the fitness score is measured by calculating its makespan. The solutions that

have minimum makespan are considered to be the fittest and sent to the next generations.
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9.3.4 Cross Over

We have applied one point cross over in our implementation. Therefore after the imple-

mentation of cross over if we get the similar DMG then these DMGs are not sent to the

next generation. The cross over operation is shown in Fig. 9.4. We have not applied the

mutation to our algorithm because we cannot change the order of the nodes in the DMG

otherwise the parent-child relationship becomes irrelevant and wrong.

Figure 9.5: WCET of CQ1 from Table 9.6

9.4 Results

This section presents the results of our work. In our experimental results we have taken

three types of network topologies including (i) star, (ii) ring and (iii) bus. We have cre-

ated different DMGs with varying sizes. The size of our DMG ranges between 10 to 80

nodes (building comprised of 10 to 80 rooms). We also considered different numbers of

processors while calculating the makespan of our DMG. We can get different results when

we increase the number of processors in all topologies. All the results are generated by

creating the DMGs based on the safety-critical queries (example mentioned in Table 9.6).
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9.4.1 Result 1 and Result 2

In our first result we have considered the two parameters including (i) star topology and

(ii) four end processors (cf. Fig. 9.6A). In our second result, we have considered a similar

topology with six processors (cf. Fig. 9.6B).

A: Graph 1 runs on Star Topology 4 
Processors

B: Graph 2 runs on Star Topology 6 
Processors

Figure 9.6: Makespan of DMG for Star Topology

9.4.2 Result 3 and Result 4

In our third result we have considered the same parameters including (i) bus topology and

(ii) four processors (Fig. 9.7C). In our fourth result we have considered a similar topology
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C: Graph 3 run on Bus Topology 4 Processors

D: Graph 4 run Bus Topology 6 Processors

Figure 9.7: Makespan of DMG for Bus Topology

with six processors (Fig. 9.7D).

9.4.3 Result 5 and Result 6

In our third result we have considered the parameters including (i) ring topology and (ii)

four end processors (Fig. 9.8E). In our fourth result we have considered a similar topology

with six processors (Fig. 9.8F).
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E:Graph 1 run on Ring topology 4 Processors 

F:Graph 2 run on Ring Topology 6 Processors 

Figure 9.8: Makespan of DMG for Ring Topology

9.4.4 Conclusion About Results

If we compare the makespan calculation of all the DMGs with different topologies, it is

evident that when the number of processors increases the overall makespan of the DMG

decreases, especially in case of bigger DMGs. Therefore in our case, the ring topology

gives the best result in terms of minimization of makespan of DMGs. Since there are more

than one connection between the processors in the ring topology, therefore there is more

slots for message transfere in comparison to star and bus topology. So the message does

not have to wait for the link to be free which in turn reduces the makespan of the proposed
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DMG.

9.5 Conclusion

Modern HVAC systems are used both for maintaining comfortable environment levels and

monitoring the occurrence of catastrophic situations e.g. detection of a fire. By applying the

query optimization techniques from the previous chapters we presented a query-based fault

detection and diagnosis technique in HVAC systems to find faults in both safety-critical

and non-safety critical scenarios. We considered the occurrence of a fire in the building as

a safety-critical and time-sensitive situation, i.e. the faults in the sensors/actuators in the

HVAC systems need to be identified and rectified before the system’s defined time-bound.

The normal operation of the HVAC system does not have such time-bounds and the faults

in this case are diagnosed to reduce the energy consumption by the system. We have used

diagnostic fault queries that are realized on the features and symptoms extracted from the

sensors in the HVAC systems. Using these diagnostic queries, we formulated a DMG for

the timely analysis of the faults. To ensure that we meet the stringent timing constraints

of the system, we optimize the DMG using a GA and then give it to a scheduler. The

scheduler generates an optimal execution plan for the DMG and gives the time at which the

fault will be detected, i.e. execution time of the DMG. We ran our fault detection technique

on buildings with 10, 20, 40, 60, and 80 rooms, respectively. Our results show that our

technique minimize the makespan of the DMG which enables the process of fault detection

and diagnosis to be completed within the stringent timing deadline of the system.
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CHAPTER 10

CONCLUSION

This chapter gives a brief summary of the overall results presented in the context of our

research. Different techniques are introduced for minimizing the makespan of a DMG so

that the timing bound of an embedded system is fulfilled. These techniques are tested on

two different domains including (i) vehicles and (ii) HVAC systems.

For the implementation of our research work, we have designed our own application

and architecture models. Our application model known as Diagnostic Multi-Query Graphs

(DMG) is a directed acyclic graph which contains the Fault Diagnostic Queries (FDQs).

Each node of the DMG contains a FDQ which is executed over the database created in

Pervasive SQL. Each FDQ has a worst-case execution time which is determined by using

measurement-based method(i.e., measuring the maximum execution time of each FDQ).

For measuring the makespan of the DMG, the WCET of the FDQ (within the node of

the DMG) along with the Weight (W) of the edge (number of tuples that are transferred

between parent and child node) is given to the scheduler. The scheduler calculates the

overall time taken by the DMG for its execution.

The first method, which extracts fault diagnostic queries from a DMG and applies a

class based categorization. The class based categorization technique selects the best access

method for queries based on the query type. After the selection of the access method, the

best join order is selected by calculating the selectivity factor. The search space for join

orders has been minimized by implementing the left depth tree. The presented results show

that the overall worst case execution time decreases up to 30% after the query optimization.

The second optimization technique is based on graph pruning and query optimization

so that the overall makespan of a DMG can be minimized. The optimization is split into

two steps. The first step comprises the pruning of the graph nodes without affecting the
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semantics of diagnostic queries. Each graph node that satisfies a certain set of constraints

is deleted and its query is merged with its neighborhood nodes. The constraints for pruning

and merging are based on the matching of SQL operations (select or join) and the data

tables between the queries. The new graph generated after pruning is a subset of the original

graph based on the merged FDQs from the deleted nodes. The second step is based on the

optimization of the fault diagnostic queries in each node of the DMG, by selecting the best

query execution plan. After the DMG is pruned and queries are optimized the new DMG

is given as an input to a scheduler to determine the ensuing makespan.

The third optimization technique meets two objectives. The first objective is the mini-

mization of the makespan in order to fulfill the timing constraints of real time systems. The

second objective is to decrease the utilization of CPU. The first goal is achieved by applying

per table query aware partitioning and join aware partitioning on the FDQs. The best QEPs

with minimum worst case execution time are selected for the purpose of optimization. The

second objective of decreasing resource consumption is achieved by applying the concept

of history intervals and skip values. The history interval specifies from which execution of

a parent node, a child node requires data to complete its processing. In order to decrease

the data communication overhead, a skip value S is introduced. Results show that due to

the optimization techniques, the overall makespan of the DMG in the context of select and

join based FDQs is decreased.

The forth presented technique for minimizing the make span of task graphs in real-time

systems is based on a genetic algorithm (GA). Different task graphs on the basis of FDQ

trees are generated. These task graphs are considered as a solution for our search space in

the GA. The task graph with minimum make span is selected by our proposed GA, so that

the deadline constraint of the system can be fulfilled. Different task graphs are tested with

different topologies. The results in the context of bushy trees over a ring topology are better

as compares to left deep trees. The overall makespan of the diagnostic query is reduced by

almost 60% after the optimization is applied.

132



The last presented technique is tested on HVAC systems. For the detection of hazardous

situations, e.g. a fire, defective components in the HVAC systems may hide the occurrence

of a catastrophe or cause stressful situations with false alarms. In both cases, there is a

possibility of damage to human life and property that can be prevented with working de-

tectors. In this chapter, we propose a diagnostic query-based fault detection and diagnosis

technique to monitor faults in the HVAC systems in safety-critical and non safety-critical

situations. We consider the critical situations (detection of fire) time-sensitive and our

technique determines whether an actual disaster has occurred or the system itself has mal-

functioned within the system’s defined time-bound. Our technique ensures that the HVAC

system gives a time-critical and reliable response for detecting a disaster in the building.

Fault detection in non-critical conditions has no time restriction and is performed to mini-

mize the energy consumption of the HVAC systems. We have used fault diagnostic queries

that are realized on the features and symptoms extracted from the sensors in the HVAC sys-

tem. Using these diagnostic queries, we formulate a diagnostic multi-query graph (DMG)

for the structured and timely analysis of faults. To ensure that we meet the stringent timing

constraints of the system, we optimize the DMG using a genetic algorithm. The optimized

DMG serves as the input for the scheduler that gives the execution time for fault detection

and generates an optimal plan for the execution of the DMG.

Minimization of the makespans enables the completion of the process of fault detection

and diagnosis within the time bound provided by the system. Therefore, introducing the

process of optimization in active diagnosis increases the overall reliability of the system,

and it is ensured that the system is capable of detecting a fault before any catastrophic

situation may occur.
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