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Zusammenfassung

Die Kontamination von Antipersonenlandminen (APM) auf der ganzen Welt ist seit vielen Jahrzehn-
ten ein ernstes Problem für die Menschheit. Ab 1999, als die Landmine Monitor-Organisation
gegründet wurde, gab es mehr als 110.000 registrierte Opfer, während 2018 einer der höchsten
Prozentsätze der betroffenen Zivilisten war (87%, 47% davon Kinder). APMs sind relativ klein (z.
B. ca. 10 cm Durchmesser und 5 cm Höhe) und werden im Allgemeinen durch leichten Druck ak-
tiviert, sodass sie in unmittelbarer Nähe töten (oder verstümmeln). Da APMs fast ausschließlich aus
Kunststoff bestehen (mit Ausnahme der Zündvorrichtung und anderer Kleinteile), können sie mit
Metalldetektoren häufig nicht erkannt werden.
Eine vielversprechende Alternative ist der Einsatz des Ground Penetrating Radar (GPR). GPRs sind
für den dielektrischen Kontrast empfindlich, daher können sie nichtmetallische vergrabene Ziele nur
aufgrund ihrer unterschiedlichen dielektrischen Eigenschaften vom Hintergrundboden unterschei-
den. Um die erforderliche Auflösung für die identifizierungvon APMs zu erhalten, muss ein GPR
für die Erkennung von Landminen mit sehr hohen Frequenzen und Bandbreiten (beide bei 1 bis 2
GHz) arbeiten. In diesen Situationen gibt es viele unerwünschte Rückstreuungsbeiträge, die die tat-
sächliche Zielantwort maskieren können.
Klassifizierungsansätze werden oft verwendet, um zwischen Landminen und natürlichen oder kün-
stlichen Störquellen zu unterscheiden. Zu diesem Zweck wird normalerweise eine Datenbank mit
Zielsignaturen von bekannten APMs verwendet, um den Klassifikator der Wahl zu trainieren. Klas-
sifizierungstechniken erfordern jedoch in der Regel eine Sammlung von Daten, die alle möglichen
Ziele und Bodeneigenschaften darstellen. Eine solche allgemeine Datenbank zu erstellen, bleibt eine
mühsame Aufgabe. Es ist häufig vorzuziehen, Unterscheidungsmerkmale (die gegenüber der Varia-
tion der Szenariobedingungen robust bleiben) aus einer kleineren (aber repräsentativen) Datenbank
zu extrahieren. Die für diese Arbeit ausgewählten Merkmale sind spärliche Repräsentationskoef-
fizienten.
Sparse Representation (SR) teilt seinen technischen Rahmen mit der Compressive Sensing Theorie
(CS). Während das Ziel von CS darin besteht, das interessierende Signal unter Verwendung weniger
seiner Abtastwerte wiederherzustellen, befasst sich SR mit dem Problem der Darstellung eines Sig-
nals mit einer minimalen Anzahl von Koeffizienten in einer bestimmten Basis oder einem bestimmten
Dictionary. Diese wenigen Koeffizienten können für eine bestimmte Zielklasse charakteristisch sein
(in unserem Fall verschiedene Arten von Minen oder Clutter), wenn das ausgewählte Wörterbuch
Beispiele für alle Klassen im betrachteten Datensatz enthält.
Die Auswahl des Wörterbuchs ist entscheidend; Anstatt es auszuwählen, kann man es aus einem
repräsentativen Satz von Signalen lernen, nämlich einem training set. Dictionary Learning (DL) Tech-
nikenzielen darauf ab, ein dictionary zu generieren, das verschiedene Klassen von Zielen mit einer
minimalen Anzahl von non-zero-Koeffizienten darstellen kann. Beliebte DL-Techniken (wie K-SVD)
behandeln den gesamten Trainingssatz in jeder Iteration, wodurch der Lernprozess für hochdimen-
sionale Datensätze verlangsamt wird. Dieser Ansatz wird als Batch Dictionary Learning bezeichnet.
Online-DL-Techniken bewältigen den Trainingssatz, indem sie ein Element nach dem anderen oder
in Mini-batches betrachten. Dadurch wird die Lernverarbeitung schneller als bei Batch-DL und an
Variationen anpassbar.
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In dieser Arbeit analysieren wir eine Auswahl von state-of-the-art Online-DL-Ansätzen zur spär-
lichen darstellungsbasierten Klassifizierung von verschütteten Landminen unter Verwendung von
von GPR-range profiles (oder A-Scans). Eine detaillierte Beschreibung der Entwicklung eines neuar-
tigen Online-Dl-Algorithmus, des Drop-Off-Mini-Batch-Online-Wörterbuchlernens (DOMINODL),
wird ebenfalls vorgestellt. Für die Validierung verwenden wir range profiles aus einem exper-
imentellen GPR-Datensatz, der verschiedene Klassen von Landminen-Simulanzien enthält, die in
einem sandigen und stark inhomogenen Boden vergraben sind.
Die vorgeschlagene Strategie besteht zunächst darin, eine Sammlung sorgfältig ausgewählter Bere-
ichsprofile als Trainingssatz für verschiedene Online und Batch DL Strategien (K-SVD, LRSDL,
ODL, CBWLSU und DOMINODL) zu verwenden. DL-Algorithmen reagieren sehr empfindlich auf
Eingabeparameter (z. B. Anzahl der Iterationen, Anzahl der gelernten Atome usw.). Um eine op-
timale Auswahl der Parameterkombination zu gewährleisten, haben wir eine umfassende Auswer-
tung durchgeführt, die sich auf statistische Kennzahlen wie die Kolmogorov-Smirnoff-Test distance
und die Dvoretzky-Kiefer-WolfowitzInequality stützt. Die mit den gelernten Wörterbüchern erhal-
tenen spärlichen Koeffizienten werden schließlich als Merkmale für einen Support Vector Machine
Classifier verwendet.
Die Online-DL-Strategie erwies sich als viel schneller als die ihrer Batch-Kollegen. Insbesondere ist
DOMINODL das schnellste und kann das Wörterbuch in nur 1,75 Sekunden erlernen (3-mal schneller
als ODL und 15-mal schneller als K-SVD). Bei Verwendung der optimalen Eingabeparameter für
DL stellen wir fest, dass größere Minen (PMN / PMA2) mit ausgezeichneter Genauigkeit klassi-
fiziert werden (Pcc = 98%), und dies gilt auch für Clutter (Pcc = 90)%). Mittelgroße Minen (ERA)
sind nicht immer korrekt klassifiziert, aber die Erklärungen um ihre Grundwahrheit entsprechen
immer einer Klasse von Landminen. Die Klassifizierungsgenauigkeit für kleinere Landminen (Typ
72) ist in Bezug auf die EFR-Ziele höher, obwohl es sich um die kleinsten Minen im Satz handelt.
Online-DL-Methoden zeigen höhere Werte für PCC für die ERA- und Type-72-Ziele in Bezug auf
K-SVD und LRSDL. Als zusätzlichen Vergleich mit einem Klassifizierungsalgorithmus nach dem
neuesten Stand der Technik verwenden wir ein Convolutional Neural Network (CNN), das mit dem-
selben Trainingssatz trainiert wurde, der für unseren DL-basierten Ansatz verwendet wurde. Klas-
sifizierungsergebnisse mit CNN sind im Allgemeinen schlechter, insbesondere für ERA und T72 (Pcc

verschlechtert sich um mehr als 27%). Unsere abschließende Bewertung bestand in der Beurteilung
der Klassifizierungsgenauigkeit, wenn die ursprünglichen Stichproben der GPR-Bereichsprofile auf
25% 50% und 75% reduziert wurden. Während CNN seine Klassifizierungsgenauigkeit drastisch
reduziert, selbst wenn die Reduktion nur 25% beträgt, sind DL-basierte Ansätze gegenüber der
Probenreduktion definitiv robuster. Der vorgeschlagene Ansatz ist nicht auf den GPR-Datensatz
beschränkt und kann auch auf anderen Radaranwendungen getestet werden. Aufgrund der extrem
schnellen Lernzeit von Online-DL-Strategien (insbesondere DOMINODL) ist auch ein Echtzeitlernen
eines sich ständig ändernden Trainingssatzes (Aktualisierung mit neuen Messungen) vorgesehen,
was den Weg für einen vollständig kognitiven Klassifizierungsansatz ebnet.



Abstract

The contamination of Antipersonnel Landmines (APM) all over the world has been a serious threat
to mankind since many decades. Starting from 1999, when the Landmine Monitor organization was
founded, there have been more that 110,000 registered casualties while 2018 marked one of the high-
est percentage of civilians affected (being 87% with 47% of them being children). APMs are relatively
small (for instance, ca. 10cm of diameter and 5cm of height), generally activated by light pressure
hence designed to kill (or maim) in their close proximity. Being many APMs almost entirely made
of plastic (with the exception from their ignition device and other small parts) they often cannot be
recognized using metal detectors.
A promising alternative consists in the use of the Ground Penetrating Radar (GPR). GPRs are sensible
to dielectric contrast, hence they can distinguish non-metallic buried targets from the background soil
only due to their different dielectric properties. To obtain the necessary resolution to resolve APMs, a
GPR for landmine recognition has to work with high frequencies and bandwidth (being both around
1-2 GHz). In these situations there are many unwanted backscattered contributions that can mask
the actual target response.
Classification approaches are often employed to recognize between landmines and natural or man-
made clutter sources; in order to do that, a database of target signatures from known APMs is usu-
ally employed to train the classifier of choice. However, classification techniques typically require
a collection of data representing all possible targets and soil characteristics; to create such a general
database remains a cumbersome task. It is often preferable to extract discriminative features (which
will remain robust to the variation of the scenario conditions) from a smaller (but representative)
database; the features chosen for this work are sparse representation coefficients.
Sparse Representation (SR) shares its framework of techniques with Compressive Sensing theory
(CS). However, while CS goal is to recover the signal of interest by using less of its samples, SR deals
with the problem of represent a signal with a minimum number of coefficients in a certain base or
dictionary. These few coefficients can be characteristic of a certain class of target (in our case different
types of mines or clutter) if the chosen dictionary contains sufficient examples of all classes in the
considered dataset.
The selection of the dictionary is crucial; instead of choosing it, one can learn it from a represen-
tative set of signals, namely a training set. Dictionary Learning (DL) techniques aim to generate a
dictionary which can represent different classes of targets with a minimum number of non-zero co-
efficients. Popular DL techniques (such as K-SVD) deal with the entire training set in each iteration,
making the learning process slow for high dimensional datasets; this approach is called batch Dic-
tionary Learning. Online-DL techniques deal with the training set by considering one element at
a time or in mini batches, making the processing of learning faster than batch-DL and adaptive to
variations.
In this work we anaylize a selection of state-of-the-art Online-DL approaches for sparse represen-
tation based classification of buried landmines using GPR range profiles (or A-Scans). A detailed
description on the development of a novel Online-Dl algorithm, the Drop-Off Mini-Batch Online
Dictionary Learning (DOMINODL), is also presented. The development of this algorithm is one of
the main contribution of this thesis. For the validation, we use range profiles from an experimental
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GPR dataset which includes different classes of landmine simulants, buried in a sandy and highly
inhomogeneous soil.
The proposed strategy initially consists in using a collection of carefully selected range profiles as
a training set for different Online and Batch DL strategies (K-SVD, LRSDL, ODL, CBWLSU and
DOMINODL). DL algorithms are very sensitive to input parameters (such as number of iterations,
number of learned atoms, etc.); in order to assure an optimal selection of parameters combination, we
performed an exhaustive evaluation which relies on statistical metrics such as Kolmogorov-Smirnoff
test distance and Dvoretzky-Kiefer-Wolfowitz inequality. The sparse coefficients obtained with the
learned dictionaries are finally employed as features for a Support Vector Machine Classifier.
Online-DL strategy demonstrated to be much faster than their batch counterparts. In particular,
DOMINODL is the fastest, being capable of learning the dictionary in just 1.75 seconds (3 times faster
than ODL and 15 faster than K-SVD). When using optimal input parameters for DL, we observe that
bigger mines (PMN and PMA2 types) are classified with excellent accuracy (Pcc = 98%), and so it
is for clutter (Pcc = 90%). Medium sized mines (a standard test target provided by ERA technolo-
gies, we simply call them ERA) are not always correctly classified but the declarations around their
ground truth always correspond to a class of landmine. Classification accuracy for smaller landmines
(Type-72) is higher with respect to ERA targets, despite being the smallest mines in the set. Online
DL methods show higher PCC for the ERA and Type-72 targets with respect to K-SVD and LRSDL.
As an additional comparison with a state-of-the art classification algorithm, we use a Convolutional
Neural Network (CNN) trained with the same training set used for our DL-based approach. Classi-
fication results with CNN are poorer in general, especially for ERA and T72 (Pcc degrades by more
than 27%). Our final evaluation consisted in assessing the classification accuracy when reducing the
original samples of the GPR range profiles to 25% 50% and 75%. While CNN classification accuracy
reduces drastically even when the reduction is only 25%, DL-based approaches are definitely more
robust to the sample reduction.
The proposed approach is not limited to GPR dataset and can be tested on other radar applications
as well. Due to the extremely fast learning time of Online-DL strategies (especially DOMINODL),
real time learning of a constantly varying training set (updating it with new measurements) it is also
envisioned, paving the way for a fully cognitive classification approach.
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Chapter 1
Introduction

The introduction is divided in two sections describing the main problem adressed in this work (de-
mining via Ground Penetrating Radar) and the manifold of techniques which have been used to
tackle it (the Compressive Sensing framework).

1.1 GPR and the de-mining problem

The international legal definition describe as explosive remnants of war (ERW) both unexploded
Ordinances (UXO) and abandoned explosives ordnances (AXO). UXO are defined as unstable
explosives which have been placed during conflicts and remained untriggered while AXO have not
been used during armed conflicts but have been abandoned and are not effectively controlled. ERW
can include artillery shells, grenades, mortars, rockets, air-dropped bombs and cluster munition
remnants. ERW have a relatively big deflagration and most of them are anti-vehicle mines which are
designed to explode from the presence of a vehicle.
Antipersonell landmines (APM) are not defined as ERW, though they represent a serious threat for
many individuals (mostly civilians) and one of the worst kind of global pollution nowadays. As
the name suggest, differently from ERW, APM are generally activated by a single person (wether
a soldier or a civilian) and they are designed to kill (or maim) in their close proximity. APM are
generally blast mines, fragmentation mines or even improvised explosive devices (IED), the latter
are not constructed by conventional military designs and they are associated to insurgent guerrillas,
commando forces, etc.
In November 2018, the landmine monitor (the reporting network which provides a global overview
of the landmine situation) recorded 7239 mine/ERW casualties, of which at least 2793 people were
killed (with 87% being civilian and 47% of them being children). Over the last years, APM casualties
had a sharp increase. The year 2016 marked the highest number of annual recorded casualties in
the monitor data since 1999 (9,228), the most child casualties ever recorded, and the highest number
of annual casualties caused by improvised mines. Casualties in 2016 were identified in 52 states
and four other areas, of which 35 are States Parties to the Mine Ban Treaty. The high total was
mostly due to casualties recorded in armed conflicts in Afghanistan, Libya, Ukraine, and Yemen.
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2 Chapter 1: Introduction

The Monitor has recorded more than 110,000 mine/ERW casualties since its global tracking began in
1999, including some 80,000 survivors (see figure 1.1) [1, 2].
The detection and efficient classification of APM remains nowadays a complex scientific and techni-
cal issue. The use of conventional metal-detectors in demining operations may become particularly
slow and inefficient because of the low-metal content of several modern landmines and the presence
of abundant metallic scrap in battlefields. Therefore, alternative methods have been intensively
investigated in the past years [3]. Ultra wideband (UWB) Ground Penetrating Radar (GPR, hereafter)
is a promising alternative and/or complementary technology to tackle this serious problem since it
can sense any dielectric anomaly present in soil in a non-invasive way [4]. A GPR is used for probing
the underground by transmitting radio waves in the subsurface and recording the backscattered
reflections. The interest in GPR is due to its ability to reveal buried objects and detect non-metallic
scatterers with increased sensitivity to dielectric contrast [5, 6]. This sensing technique is, therefore,
attractive for several applications such as geophysics, archaeology, forensics, and defense (see e.g. [4,
5] for some surveys). Mine detection GPR usually operates in L-band (1-2 GHz) with ultra-wideband
(UWB) transmit signals that allow resolving small targets (5-10 cm diameter) at shallow depths
( 15-30 cm) [7, 8]. In such situations, GPR target recognition suffers from signal distortion due to
inhomogeneous soil clutter, surface roughness and antenna ringing. Moreover, the constituting
material of many models of landmines is largely plastic and has a very weak response to radar
signals due to its low dielectric contrast with respect to the soil, therefore, complex processing may
become necessary to extract and interpret the target responses from the radar data [4, 9]. A variety
of signal processing algorithms have been proposed for detection of low metal-content landmines in
realistic scenarios; approaches based on feature extraction and classification are found to be the most
effective (see e.g [10–13]), yet false-alarm rates remain very high. Further, a high-resolution GPR has
long scan times thereby making the data acquisition by a portable instrument very cumbersome [14].

1.2 The Compressive Sensing framework

Sensing and processing systems for images, audio, video and other kind of data, rely on the sam-
pling and digitalization of continuous, band-limited signals. The theoretical background provided
by Kotelnikov(1933), Nyquist (1949) and Shannon (1949) indicated that such signals can be exactly
recovered from a set of uniformly spaced samples taken with a rate which is twice the cutoff of the
signal itself. The digital revolution began, and, since their first introduction, digital systems demon-
strated to be cheaper, more flexible and robust respect to its analog counterparts. However, if we
just think about radar applications, the demand for a large bandwidth results in very high Nyquist
rates, increasing (when possible) the complexity and cost of A/D converters along with data dimen-
sionality. Moreover, many radar systems rely on multiple acquisition channels thus increasing the
amount of data by another factor. Despite the advances in computational power, the acquisition and
processing of such an enormous amount of information is still very challenging [15].
Compressive Sensing (CS hereafter) is a novel signal processing framework which has rapidly
evolved in the recent years. Its development began with the necessity to overcome the limitations of
the classical sampling theory.
To better understand CS, we need to address the concept of sparsity. We say that a signal is sparse in
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Figure 1.1 – Landmines, ERW and cluster submunition casualties in 2016. Reprinted [adapted]
from ’Landmine Monitor 2017’ by Monitoring and Research Committee, ICBL-CMC
Governance Board, 2017, page 94.

a certain domain (for example: space, time, frequency, etc.) if it exists a basis (or frame) where this
signal can be represented using only a very limited number of elements of the aforementioned basis.
CS theory states that, if a signal can be sparsely represented, then it can be exactly recovered from
a small set of linear, non adaptive measurements [16–21]. This implies, for example in radar, that
we can reduce the sampling in time (i.e reducing Nyquist bandwith restrictions) or in space (i.e. less
TX/RX elements) and still capture the essential information of the signal.
Even if we are not interested in reducing the sampling rate, one can find a basis where only a few
coefficients are sufficient to represent the signal accurately (i.e. the signal is sparsely represented).
This is a more general application of the same framework of techniques and it is called Sparse Rep-
resentation (SR). The theoretical fundation of CS (and SR) was presented around 2006 by the brilliant
contributions of Candes, Romberg, Tao and Donoho, however, the idea of recovering a signal from a
smaller subset of measurements was already a challenge long before; the reader may find interesting
to go through the pioneering works of Prony [22], Caratheodory [23], and, more recently: George et
al. [24], Blu et al. [25] and Beurling [26].
Very briefly, SR and CS, deal with the solution of an under-determined system of equations where
the number of measurements (samples) is generally smaller than the number of the constituting ele-
ments of a pre-selected basis. This basis is usually represented as a two-dimensional matrix which,
depending on the different interpretations of the problems at hand, can be called Sensing Matrix or
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Dictionary. The sensing matrix usually encompass a physical model and its columns (or atoms) can be
seen as a collection of realizations of the signal of interest in a certain domain. CS applications that
use this concept are aimed to optimize the selection of physical sensors to improve the estimation of
the parameters of interest (for example the target position, speed, velocity, etc.) for a given scenario.
The dictionary does not encompass any physical model, rather it contains a series of realizations of a
given signal or its representation into another base. This is suitable for image processing and classi-
fication purposes where every realization (atom) could represent (for example) a particular patch of
an image or a certain signal class associated to a particular target. For the purpose of this work we
will refer to a dictionary instead of a sensing matrix.
The solution of the aforementioned system would lead to multiple results if sparsity in a certain
domain is not assumed. Approaches which aim to solve this problem by limiting the number of
non-zeros coefficients are called greedy algorithms; the most popular being Matching Pursuit (MP),
Orthogonal Matching Pursuit (OMP), Block Orthogonal Matching Pursuit (BOMP), etc. [27, 28]. It
has been demonstrated that approaches which solve convex optimization problems can also guaran-
tee sparsity in the final solution [29], popular ones are Basis Pursuit and LASSO [30, 31].
When it is inefficient to pre-define the dictionary to contain arbitrary basis (e.g. Fourier, wavelets
or empirically constructed ones), the usual resort is to learn the dictionary from previous measure-
ments. Dictionary learning (DL) techniques aim to create adapted dictionaries which provide the
sparsest reconstruction for given training-sets, i.e., a representation with a minimum number of con-
stituting atoms [32]. Classical DL algorithms such as Method of Optimal Directions (MOD) [33]
and K-SVD [34] operate in batches (Batch-DL) dealing with the entire training set in each iteration.
Although extremely successful, these methods are computationally demanding and not scalable to
high-dimensional training sets. An efficient alternative are Online Dictionary Learning algorithms
(Online-DL thereafter) such as ODL [35], which converge fast, process small sets, and can infer the
dictionary from large or time-varying training sets.
Radar applications can benefit from the use of CS and SR techniques [36]. The condition for using
these techniques in radar is that the scene has to be sparse, meaning that there should be only a few
dominant targets inside the observed domain. This condition can be easily fulfilled for detection
and localization task where we have only a few point-like targets or applications where only a few
extended objects/structures are present inside a low reflecting background. In these situations, one
can use CS and reduce the number of measurements and still obtain a perfect reconstruction of the
radar scene. Nowadays, only few real architectures integrate CS processing in the hardware [37],
and only for experimental studies. Usually CS is applied in post processing and the full received
signal is under-sampled before CS techniques are employed. A real CS architecture would, for ex-
ample, directly generate less measurements at the transmitting stage. Among the most popular CS
applications for radar there is pulse compression [38] where, respect to the classical matching filter
approach, one can reduce the number of frequencies contained in the sensing waveform (i.e. a chirp)
and still obtain an efficient estimation of the targets positions. As mentioned before, CS and SR can
be used for radar target parameters estimation (such as range, angle and velocity), in this case the
dictionary is replaced with the sensing matrix. The resolution of radar images can be increased over
the Rayleigh limit (super-resolution) and the SNR may improve respect to classical beamforming
(see figure 1.2), however, a tradeoff with computational burden and the increasing coherence of the
sensing matrix must be made [36]. SR and CS are also used for direction of arrival estimation (DOA)
of radar targets and their corresponding complex amplitudes. Normally we assume that range and
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Figure 1.2 – Imaging of an X-shaped collection of point like targets using CS and FFT beamform-
ing from a simulated Ka-Band MIMO radar. The SNR is 20dB and the CS image has
been obtained using a factor sixteen undersampling of the original data. The resolu-
tion of the CS image is set to 0.1m in range and 0.1 degrees in azimuth, whereas the
FFT beamforming has a resolution of 0.18m in range and 0.8 degrees in azimuth

Doppler estimation has been previously performed. The dictionary will contain all the possible steer-
ing vectors for a defined angular domain where the target may lie [39].
The application of interest for this work is sparse decomposition based classification (SRC). The idea
of this approach is to use the vector of coefficients obtained from the application of SR as a collection
of features for classification. For this purpose, one can use many signature signals which belong to
different classes of targets (i.e. build a "dictionary of signatures") [40, 41] or one can use a collection
of signals as the training set for a dictionary learning algorithm [42]. In both cases, the non-zero el-
ements of the resulting coefficient vector represent discriminant features which can be associate to a
certain signal class.

1.3 Major Contributions

The main scope of this work is to investigate the use of Online Dictionary Learning (Online-DL) tech-
niques for SR based target classification for the case of abandoned anti-personnel landmines (APM),
using experimental GPR data.
In particular we will highlight the benefits of using Online-DL techniques respect to Batch-DL ap-
proaches in terms of learning time and target identification accuracy. We will also introduce a novel
Online-DL algorithm called DOMINODL which exploits the fact that a lot of the training data (for
generating the dictionary) could be correlated and have similar sparse representation. The idea be-
hind DOMINODL is to iteratively consider new and previous elements of the training set in small
batches and dropping off the samples which become less relevant during the iterations. For as-
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sessing the performances and select the optimal parameters of the employed DL methods, we per-
formed an evaluation which relies on statistical metrics such as Kolmogorov-Smirnoff test distance
and Dvoretzky-Kiefer-Wolfowitz inequality. These metrics allow greater fine-tuning of parameters
respect to the conventional bulk statistics such as root mean square error (RMSE). As an additional
comparison with a state-of-the-art classification method, a Convolutional Neural Network architec-
ture has also been evaluated. Finally, both CNN and DL-based classification outcomes are compared
when the samples of the original range profiles are randomly reduced. Our experiments with real
data from L-band GPR show that online-DL methods reduce learning time by 36-93% and increase
mine detection by 4-28% over K-SVD. Our DOMINODL is the fastest and retains similar classification
performance as the other two online DL approaches. Comparisons of the classification performance
using CNN reveal that sparse decomposition based techniques with DL generally perform better
than CNN alone when the input signals are randomly sub-sampled.

1.4 Thesis outline

In chapter 2 we will give a comprehensive overview on the GPR technology and GPR system archi-
tectures. We will then focus on GPR for de-mining applications and describe a work based on the
parametric analysis of synthetic GPR signatures associated to landmine-like objects. A description of
two classification algorithms used for GPR target recognition will also be provided in the appendices;
those being Support Vector Machine (SVM, which will be an integral part of the proposed classifi-
cation approach) and Convolutional Neural Networks (CNN) classifiers (which we will employ for
comparison purposes).
Chapter 3 describes Sparse Representation (SR) and Dictionary Learning (DL) theoretical background
and techniques. We will first introduce the the fundation of SR and describe the greedy and convex-
optimization-based techniques that have been employed for this work. We will then introduce the
Dictionary Learning theory, and provide an overview of state-of-the-art techniques for batch-DL and
online-DL along with our novel DOMINODL approach.
In chapter 4 we present our DL-based classification approach in detail and assess its performance.
We will provide accurate information on the employed experimental GPR dataset, describe an eval-
uation based on higher order statistical metrics (to select the optimal input parameters for DL) and
finally analyze the classification results. Additional analysis will include the comparison of classifica-
tion accuracy when using Convolutional Neural Networks and the influence of randomly reducing
samples of the GPR signal in time.
Chapter 5 will then provide the conclusions and some insights for possible future works.
Throughout this thesis, we reserve boldface lowercase and uppercase letters for vectors and matrices,
respectively. The ith element of vector y is yi while the (i, j)th entry of the matrix Y is Yi,j. We denote
the transpose by (·)T. We represent the set of real and complex numbers by R and C, respectively.
Other sets are represented by calligraphic letters. The notation ‖·‖p stands for the p-norm of its argu-
ment and ‖·‖F is the Frobenius norm. A subscript in the parenthesis such as (·)(t) is the value of the
argument in the tth iteration. The convolution product is denoted by ∗. The function diag(·) outputs
a diagonal matrix with the input vector along its main diagonal. We use Pr{·} to denote probabil-
ity, E {·} is the statistical expectation, and | · | denotes the absolute value. The functions max(·) and
sup(·) output the maximum and supremum value of their arguments, respectively.



Chapter 2
Ground Penetrating Radar Technology and
Target Classification

In this chapter we will give an insight on the GPR technology, data acquisition and target classifica-
tion strategies. In section 2.1 we provide some geophysical background to understand the complex
scattering behavior of electromagnetic waves in the soil, focusing on the phenomenon that arises
when probing the underground for shallow targets recognition.In section 2.2 we will explain the
GPR basic principles and the different architectures of GPR systems, both in time and frequency do-
main. The visualization is a crucial step for interpreting the acquired data; thus we will explain the
methodology to generate the so-called A-scans, B-scans and C-scans.
In section 2.3, the most relevant for our purposes, we will give an overview about GPR target classifi-
cation. In subsection 2.3.2 we will describe a previous work about a parametric analysis of synthetic
GPR signatures from landmine-like targets. This preliminary study was meant to understand how
the target, soil and antenna characteristics will affect the GPR signatures of buried landmine-like tar-
gets, and therefore its correct classification.
In the appendices, we will describe two state-of-the-art classification methods which have also been
used for GPR target classification: Neural networks (NN) and Support Vector Machines (SVM).

2.1 Geophysical Background

A GPR probes the underground by transmitting electromagnetic (EM) waves into the subsurface. In
order to better understand this technology and its challenges, we will give a brief background on EM
waves propagation and how these are affected by the electrical properties of the media [2, 4, 43, 44].
The reader is encouraged to follow the citations thorough this section to improve his understand-
ing in the topic. Provided some boundary conditions are defined and assuming the general case of
anysotropic (dispersive) media, the description of electric and magnetic fields vectors for a given
point in space (r in [m]) and for a certain time instant (t in [sec]) is described by the Maxwell equations
and the related consitutive relations in frequency domain:

7
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∇× E(r, ω) = −iω~B(r, ω) (2.1)

∇×H(r, ω) = (σ(r, ω) + iωε0εr(r, ω)) E(r, ω) (2.2)

∇ · (ε0εr(r, ω)E(r, ω)) = 0 (2.3)

∇ · B(r, ω) = 0 (2.4)

D(r, ω) = ε0εr(r, ω)E(r, ω) (2.5)

B(r, ω) = µ0µr(r, ω)H(r, ω) (2.6)

J(r, ω) = σ(r, ω)E(r, ω) (2.7)

where the vector E in [V/m] is the electric field intensity, D in [C/m2] is the electric flux density, B in
[T] is the magnetic flux density, J in [A/m2] is the electric current density, ρc in [C/m3] is the electric
charge density, ε0 and µ0 (in [Farad/m] and [Henry/m]) are the electric and magnetic field constants,
εr and µr (still in [Farad/m] and [Henry/m]) are the relative dielectric permittivity and the relative
magnetic permeability respectively, σr in [S/m] is the electrical conductivity and the parameter ω in
[rad/s] is the angular frequency. The constitutive equations (2.5,2.6 and 2.7) do not generally hold
for time-dependent fields (unless the medium of propagation is non-dispersive, such as vacuum),
therefore, we choose to describe both them and the Maxwell equations (2.1,2.2,2.3 2.4) in frequency
domain.
We assume the media to be homogeneous, this means that εr, µr and σ are indipendent of the
position, though they generally remain complex and frequency dependent. However, for a typical
GPR scenario with operating frequency from 10 MHz to a few GHz, the magnetic permeability can
be neglected (µr = 1), the imaginary part of the electric conductivity can be ignored and its real part
can be assumed as frequency indipendent and equal to the DC conductivity [45].
The real part of εr (with εr = ε′r + iε′′r ) represent the electric permittivity of the soil and the imaginary
part considers the losses for the conductivity and the frequency. For most GPR applications, the
imaginary part of εr can be ignored and the real part is what affects the attenuation and the phase
constant of the transmitted EM wave, resulting in a phase velocity (vph in [m/s]) which is inversely
dependent of the square root of the real part of the dielectric permittivity [4]:

vph ≈
c0√

ε′r
(2.8)

In typical GPR applications we are not dealing with an homogeneous media, rather we are in a situa-
tion where an EM wave reaches interfaces between different dielectric mediums. According to classi-
cal optical geometry, as indicated by Fresnel equations [46], depending on the dielectric properties of
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MATERIAL εr σ (mS/m) v (m/ns) α (dB/m)

Air 1 0 0.3 0

Distilled Water 80 0.01 0.033 2e-3

Fresh Water 80 0.5 0.033 0.1

Sea Water 80 3e3 0.01 103

Dry Sand 3-5 0.01 0.15 0.01

Saturated Sand 20-30 0.1-1 0.06 0.03-0.3

Limestone 4-8 0.5-2 0.12 0.4-1

Shales 5-15 1-100 0.09 1-100

Silts 5-30 1-100 0.07 1-100

Clays 5-40 2-1000 0.06 1-300

Granite 4-6 0.01-1 0.13 0.01-1

Dry Salt 5.6 0.01-1 0.13 0.01-1

Ice 3.4 0.01 0.16 0.01

Table 2.1 – Dielectric constant (ε), conductivity (σ), velocity (v), attenuation (α) of different ma-
terials [44].

the materials, part of the incident energy will be reflected while the remaining will be transmitted to
the lower medium. However, when we are facing a GPR scenario with shallow objects or interfaces
in the close proximity of the illuminating source, the aforementioned equations are not sufficient to
describe the EM waves behavior at the interface. Moreover, regarding the scattering of buried ob-
jects, optical geometry rules are valid only when the dimensions of the objects is much bigger than
the wavelenght of the transmitting waves. When this situation is not fulfilled, one has to refer to the
Mie or Rayleigh scattering methods (depending if the particles of the medium are respectively equal
or much smaller respect to the wavelenght) to describe the EM waves propagation [47, 48].
The electrical properties of the soil are also affecting the GPR signal propagation and they depend
on different factors: the volumetric water content, the frequencies of interest, the texture of the soil
particles, the bulk density and the temperature [49]. Table 2.1 indicates the real part of the dielectric
permittivity (the relative permittivity εr), the conductivity σ, the wave propagation speed v and the
attenuation (α) for different materials that can be encoutered during a GPR survey.

Among all the components which contributes to the electrical permittivity of the soil, the water
content is the one which affects the most. Many works proposed empirical and semi-empirical re-
lationships between the moisture content and the permittivity [50–53]. Finally, another important
physical phenomenons which affect EM propagation trough soils are the spatial variability and the
roughness of the ground/air interface. The spatial variability can be expressed by the correlation
lenght of the soil, i.e. the measure of the range over which fluctuations in one region of space are
correlated with those in another region. The roughness of the Air-Ground interface influences the
magnitude of the backscatter energy and depends on the surface characteristics and the wavelenght
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of the signal.

2.2 GPR principles

GPR operational principles are similar to the ones for conventional radar systems with the difference
that now the waves are travelling into the subsurface. GPR systems can be employed for frequencies
above 1MHZ, where the EM behavior is not inductive and can be described by EM waves (as indi-
cated in the previous section). The penetration of the transmitted waves depends on the operating
frequency, in general the lower the frequency the more the penetration in the subsurface. In other
words, the backscattering from anomalies/targets which are much smaller with respect to the trans-
mitted wavelenght is negligible whereas it becomes important for wavelenghts in the order of their
size. However other factors such as the moisture content of the subsurface or, more generally, the
dielectric properties of the soil can hamper the penetration depth. The attenuation coefficient (α) is
defined as:

α =

√
µ

ε

σ

2
≈ Z0

σ

2
√

εr
(2.9)

Where ε is the permittivity of the soil, µ is the magnetic permeability and σ is the electric conductivity,
as for Z0 in [Ω] we refer to the EM impedance defined as:

Z =

√
µ

ε
≈ Z0√

εr
(2.10)

with

Z0 =

√
µ0

ε0
(2.11)

being the EM impedance and εr =
ε
ε0

being the relative permittivity when neglecting µr =
µ
µ0

. Figure
2.1 shows the penetration depth of a GPR in function of the frequency, for various types of materi-
als. The aforementioned figure indicates that the penetration depth changes also in function of the
dynamic range; an upper and lover operation curve is shown for each material, forming a boundary
between 150 and 100 dB of dynamic range. The dynamic range of a GPR system indicates the differ-
ence (in dB) between strongest and weaker signal which can be recorded; these limits should bracket
the ground reflection and the noise level of the system [5]. The dynamic range defines the capability
to detect weak signals in the presence of strong superimposed signals (i.e. the ground reflection)
and it is directly correlated to the penetration depth capability [54]. For many applications such as
landmine detection, there is a need to work with higher frequencies (i.e. from 1GHz) to obtain the
necessary resolution for discriminating very small targets; in these situation the penetration depth
decreases dramatically [4]. GPR system usually operate between 30MHz to 3GHz.
The speed of the EM wave into the soil is also affected by the dielectric properties, in general the more
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the dielectric permittivity gets higher, the more the velocity decrease. We define the phase velocity
of the EM wave into the subsurface (in m/s) as:

vph =
1
√

εµ
≈ c0√

εr
(2.12)

where,

c0 =
1

√
ε0µ0

(2.13)

being the phase velocity in free space with c0 = 3x108 m/s.

Figure 2.1 – Penetration depth vs. frequency of operation for different soil types. Reprinted
[adapted] from ’Surface-penetrating Radar’ by D.J. Daniels, 2004, page 19.

The radar reflections happen when there is a change in the EM properties of the soil (in particular
the dielectric permittivity). The reflected signals will contain the contribution of a specific target at a
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certain depth, plus all the unwanted effects from antenna coupling, system ringing and interface/soil
contributions.
According to the operation mode, GPR systems can be classified in time-domain or frequency-
domain GPR. Systems that transmit a short time pulse and receive the backscattered reflection via a
sampling-based receiver operate in time domain while systems that transmit a series of individual
frequencies and receive the signal via a frequency conversion receiver operate in frequency domain.
We are going to describe only the architecture of time-domain pulsed GPR systems like the one which
has been used for this work (see chapter 4).
Pulsed GPR systems transmit a series of short pulses (with duration between 200ps and 50ns) with a
repetition interval which goes from hundreds of microsecond to one millisecond. UWB GPR (like the
one used in the experiments described in section V) send pulses with central frequency ( fc) between
some MHz up to 1 GHz and a bandwidth which is equal to fc. These kind of GPR systems are used
for shallow target detection (such as landmines). The resolution of a GPR in depth (∆z in [m], when
the depth axis is z according to cartesian coordinate) is calculated like this:

∆z =
vph

B
(2.14)

As we can see, the resolution depends on the phase velocity, thus, it also depends on the dielectric
permittivity of the material where the target lies. As an example, a radar with receiver bandwidth
of 2GHz can resolve targets which are spaced from 10cm to 1cm apart from each other, depending
on the value of εr. The main architecture of an UWB pulsed radar is shown in figure 2.2. The pulse

Figure 2.2 – Pulsed UWB GPR system architecture

generator uses a technique of rapid discharge of the stored energy (from the high voltage supply)
into a short transmission line for generating the pulse, this approach gets more complicated when
increasing the pulse repetition time. The receiver quantize the signal using a sample/hold technique
then uses an flash ADC for digital conversion. Dipoles and Bow-Tie antennas are widely used in
pulsed GPR since they are wideband, easy to design, non-dispersive and linearly polarized [55].
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Usually they are sealed in a shielding box filled with absorbing material to prevent coupling issues.
A descriptive representation of how an UWB pulsed GPR works is shown in figure 2.3.

Figure 2.3 – a) Down looking GPR system operation indicating a single range profile b) Direction
of a single survey line (x), survey lines positions (y) and depth (z) in 3D, indicating
a 2D section at depth z (C-Scan)

The GPR moves along a survey line and, for each horizontal position (indicated with crosses), sends
a pulse (or a series of pulses) and record the backscattered reflection (or integrate a series of received
ones). The GPR is usually moved by a single operator or pulled by a veichle. In our experiments,
the GPR was moved along pre-defined tracks by the means of a precise mechanical system. The
acquisition is usually triggered in function of the traveled distance (for example by an odometer
connected to a wheel). For each horizontal position, we obtain a single range profile (also called
1D-scan or A-scan as shown in figure 2.3) usually generated from the integration of many received
pulses (to increase SNR). If we stack many range profiles together along the survey line, we obtain a
2D visualization (also called B-Scan, see figure 2.4a). Due to the beamwidth of the antenna, the GPR
will start receiving reflections from a target before he is right above it, this result in the well-known
hyperbola-like response in the B-scan where the edge of the hyperbola is associated to the real depth
of the target. If the acquisition has been repeated for many survey lines, we could stack them togheter
to form a datacube. In figure 2.4b we show a X/Y section of the aforementioned datacube for a certain
depth, this visualization is also called C-scan.

2.3 GPR target classification

GPR classification approaches aim to discriminate target/anomalies from the ground clutter, possibly
indicating their precise position in the analyzed surveys. Unlike GPR imaging approaches (such as
backprojection, migration/focusing etc.) which aim at improving the visualization of the targets in
the final GPR image, the output of classification methods can be seen as a map of declared classes
along the survey area (see an example from experimental measurements in figure 2.5).
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Figure 2.4 – a) B-scan of a simulated spherical target buried in sand material b) C-Scan from real
data at 15cm depth of two landmine simulant buried in highly non-homogeneous
soil

2.3.1 Overview and challenges

GPR classification approaches can work on raw or pre-processed data, in time or frequency domain,
and can evaluate single A-scans or a collection of received GPR data (such as entire B or C-scans).
Many classification approaches rely on a database of GPR signatures. This can be synthetically
generated (for example, by a modeling software like GprMax [56] or Comsol) taking in account
all the necessary parameters (soil, antenna, transmitted signals, etc) of the scenario under test.
However, having a complete and general database of GPR signatures is usually very challenging;
in many cases it is more convenient to extract salient features from a representative database of the
target of interest and use them as an input for the chosen classifier. A representative database is
smaller w.r.t. a general database since it contains only an accurate selection of the classes of interest
for the desired application.Among some GPR signal features that demonstrated to be promising
for buried targets/structures discrimination purposes we indicate Wavelets [41, 57, 58], Target
resonances [8, 59], Top/bottom reflection ratios [8, 41], Edge histogram descriptors [60] and Sparse
representation coefficients [40]. Figure 2.6 schematically summarizes the typical approach for GPR
target classification.

The features that have been used in this work are Sparse Representation Coefficients; their efficient
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Figure 2.5 – Example of a classification map (right) of a GPR survey area which contains 2 land-
mine simulants. On the left side we show the related raw data (from experimental
measurements) at 15cm depth (left), here a sparse representation based classification
approach was used

Figure 2.6 – GPR target classification, general approach

extraction is the key for the success of the proposed classification strategy (see chapter 4).

As mentioned in chapter 1, the data received from a GPR system is subject to many sources of noise
and/or unwanted phenomenons which hinder the reflections of buried targets and the subsurface
features of interest, thus making classification tasks very difficult. Below, we indicate some of the
effects which could hamper the correct classification of GPR signals:

Ground reflection Being the antennas of GPR systems normally standing at some cm above the
surface, one has to take in account a considerable reflection from the air/ground interface which
in most cases is stronger than any other reflection.
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Antenna cross-coupling The cross coupling between the receiver and the transmitter antenna cause
the transmitter signal to be harmfully interfering with the received one even though absorber
materials are commonly used in between of TX and RX modules.

Antenna ringing Antenna ringing effect cause the transmitting antenna to continue radiation after
the exciting source has expired. In a Bow-tie antenna (one of the most popular design for GPR
applications) this is due to the internal reflections of the charges that occur at the ends of the
bow-tie wings and at the excitation points, this corrupts the transmitted pulse waveform and
reduces range resolution.

Surface roughness Depending on the frequency of exploration, in accordance with the Rayleigh
criterion, the roughness of the surface can cause undesired scattering patterns which are not
associated with subsurface features [61]. This is especially true for shallow surface exploration
(i.e. for landmine detection) where the frequencies of operations are around 1-2 GHz.

Moisture content The higher the moisture content in the subsurface the more the signal is attenuated
during its propagation in the subsurface [4]. The attenuation due to water content depends on
the frequency of operation and its strictly related to the dielectric permittivity of the soil.

Low permittivity contrast The intensity of reflections received from the GPR depends on the permit-
tivity contrast between the soil where the EM wave is propagating and the targets/features of
interest [2]. Small, Non-metallic targets (such as landmines) usually have very low permittivity
contrast respect to the soil, making its discrimination extremely challenging.

To deal with these issues, pre-processing on the raw GPR data can be necessary. Here we present a
short list of just some of the popular pre-processing techniques for time-domain pulsed GPR.

Time gating Time gating consists in cutting the GPR data in the range/time dimension, thus limiting
the prospection depth between a specified interval. In some situations, this practice is useful to
remove the effects from the ground reflection and/or limit the data only to depths where targets
returns are expected. Unfortunately, cutting the ground reflection is not always beneficial since
some shallow targets (i.e. landmines) responses mix up with the reflection from the air/ground
interface. Time gating can be also used in post-processing.

Dewow Dewow is a running average filter to remove the initial DC and low-frequency component.
A common way to perform dewow is is to calculate the mean among some GPR profiles (A-
Scans) taken along a section then subtract this mean value from every single profile in the
section. The length of the section depends on the wavelength/frequency of the signals.

Time gain Some GPR architectures can incorporate a time-varying gain to compensate from the at-
tenuation of the signal during its propagation trough the ground. The gain curve can be cus-
tomized in order to account to a more smooth or edge transition along the depth. Time gain
can also be applied in post processing to improve data visualization.

Background subtraction Background subtraction is commonly implemented by subtracting the
mean profile (over an entire survey line) from each profile in the line. It is different from De-
wow since it takes an entire survey line instead of a "moving window". A popular way for



2.3: GPR target classification 17

performing background subtraction is via Pricipal Component Analysis (PCA) [62, 63] . In the
latter, singular value decomposition is perfomed to extract the first principal values of the data,
which are associated to the background, and subtract their contribution from the considered
profiles.

Thanks to numerical modeling it is possible to simulate complex physical phenomena via dedicated
tools. For the application of landmine recognition with GPR, an accurate simulation of a GPR
scenario (including the antenna, the soil and the target) becomes important to test feature-extraction
and target-classification algorithms. Moreover, the obtained results can be employed to build a
database of synthetic outputs, which may be used for example as a training set for automatic
classification algorithms.

2.3.2 Analysis of GPR scattering signatures from landmine-like targets

In order to better understand the scattering mechanisms of buried APMs in response to GPR signals
and to identify discriminant characteristics for classification, a comprehensive parametric study is
useful and made possible by synthetic modelling of a typical GPR scenario for landmine clearance.
In this subsection we present an extensive study of Ultra Wide Band Ground Penetrating Radar
returns by small buried targets using electromagnetic modeling software [8]. There are several suc-
cessful GPR modeling attempts reported in specialized literature and many of them are based on
the Finite Difference Time Domain (FDTD) method. This numerical technique works by assigning
appropriate constitutive parameters to a collection of defined discrete locations (cells) that made up
a given computational domain where the electromagnetic field components are operating. The mod-
eling software used in the presented work is GprMax V2.0, which is freely available on the web [56].
Our model for the parametric analysis consists of a parallel pair of bow-tie antennas (one transmitter
and one receiver) enclosed in a shielding case (with or without filling absorber material) and placed
5cm above a typical sandy soil (εsoil = 5). The transmitted pulse is a Monocycle (or Ricker) type with
a central frequency of 2GHz (see fig. 2.7). Given the Gaussian waveform

sG(t) = Ae−2π2 f 2
c (t−τ)2

, t ∈ [0,+∞], (2.15)

where fc is the central frequency, A is the peak amplitude and τ = 1/ fc, the monocycle waveform is
its first derivative [64]

sT(t) = −4π2 f 2
c A(t− τ)e−2π2 f 2

c (t−τ)2
, t ∈ [0,+∞]. (2.16)

In these UWB systems both the central frequency and the bandwidth are approximately the recipro-
cal of the pulse length. The reference landmine-like target is a plastic cylinder (εtarget = 3) of 10cm
diameter and 5cm height. The whole GPR model is shown in fig. 2.8.

In our simulations we analyze single received 1D traces (A-scan), computed by placing the GPR an-
tennas a few centimeters above the ground and the targets at a specific depth in soil and directly
below the antennas. The aforementioned responses can be studied in either time-domain (TD),
frequency domain (FD) or considering functions of both variables, time and frequency, i.e., time-
frequency domain analysis (TFD).



18 Chapter 2: Ground Penetrating Radar Technology and Target Classification

Figure 2.7 – Simulated transmitted Ricker pulse with Bow Tie antennas enclosed in a shielding
metal box filled with absorber material

Figure 2.8 – The modeled GPR scenario.

2.3.2.1 Time domain analysis

TD analysis is probably the most natural descriptor of a given signal. In our application, the recorded
signal in time is the sum of the contributions coming from the buried object, the surface and the soil
plus the direct coupling between the transmitter and receiver antennas or crosstalk (that coincides
with the first arrival). Hence, to isolate the response of the target, we subtract the received signal in
the simulation without target (background) from the total received signal in the simulation with the
buried target. In the following analysis we mostly refer to the Hilbert signatures which correspond
to the analytical signal obtained via Hilbert transform of the real-valued temporal signal s(t). The
shape (or certain features extracted from it) of these signatures may be successfully employed as
target classifier. We will also analyze here the behavior of the first and second main peaks present in
the signature.
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2.3.2.2 Frequency domain analysis

FD analysis essentially describes which frequencies are contained in the waveform, as well as their
corresponding amplitudes and phases. Considering a signal as a group of contributions recorded
with time, its spectral response (using the Fourier Transform) shows how much of s(t) lies within
each given frequency over a range of frequencies. In order to investigate the energy concentration
in the spectral response as a potential discriminant, we determine the number and position of reso-
nances present in the FD signature for several scenarios.

2.3.2.3 Time-Frequency domain analysis

Time-frequency distributions, which are 2D functions, can reveal the time-varying frequency con-
tent of 1D signals. A simple way to characterize a signal simultaneously in both domains consists
in distributing the energy of the signal along a time-frequency space. To apply such approach, we
can define the short-time Fourier transform (STFT) and define the so called spectrogram [65]. How-
ever, the resolution of the distribution is limited by the STFT. A possible approach to enhance the
resolution is the wavelet transform (WT) [57], which is characterized by the ability to segment the
time-frequency plane into localized regions of interest. Nevertheless, a non-trivial point in the WT is
the appropriate selection of the basic wavelet. Another 2D distribution which shows a better time-
frequency resolution than the STFT and the continuous wavelet transform can be obtained via the
Wigner-Ville transform or Wigner distribution function (WDF) [65]:

WD(t, ω) =
∫ +∞

−∞
x(t +

τ

2
)x∗(t− τ

2
)e−iωτdτ (2.17)

where x(t) is the analytic associate of the real-valued time signature, τ is the time shift and ω is the
angular frequency. The WDF does not require the selection of additional time–frequency functions
or wavelets. We have selected this sort of time-frequency transform for the present study and we
will show some examples of the resulting time-frequency distributions assuming different target
scenarios. The obtained real matrices can provide some discriminant features between targets.

2.3.2.4 Study of the scattering responses

We compared different signatures in time and frequency domain when changing different parame-
ters in the presented GPR scenario, the results are shown in figures 2.9-2.11 and commented below.
Antenna Height (Fig. 2.9a): Modifying the antenna height above the ground changes the shape and
amplitude of both time and frequency signatures. Basically, when we elevate the antenna the overall
amplitude of the target echo decreases due to a worse energy coupling into the soil. Nevertheless,
for landmine applications, it is necessary to keep the antenna at a certain distance from the ground
for safety reasons and to avoid bounces when moving the system in a wrinkled terrain. A good
tradeoff is achieved by placing the antenna at 5cm height. The duration of the time domain signature
is dependent on the antenna height and it seems larger when we have a good energy coupling into
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the soil (i.e. h=1cm) but it does not change very much between the 3 and 5cm cases. Accordingly,
the resonances and the overall shape of the frequency signature changes mostly for 1cm height.
Target Shape (Fig. 2.9b): The target shape affects importantly to the profile of the time and frequency
signatures. More specifically, there is a drastic variation on the number and position of resonances
in frequency domain. Regarding the magnitude, the echo coming from the sphere has a smaller
amplitude than the ones produced by the cube and the cylinder; this is due to its smaller RCS (Radar
Cross Section).
Target horizontal dimension (Fig. 2.9c): Keeping the cylinder height fixed at 5cm (vertical dimen-
sion) and increasing the diameter of the cylinder (horizontal dimension) results in an increasing
magnitude of both the time and frequency domain signatures. When the horizontal dimension is
significantly bigger than the vertical dimension (diameter range: 10-15cm) the signature shape does
not change very much. On the other hand, for smaller or similar horizontal dimensions, there is a
significant variation. The frequency signature is affected as well, in particular the resonances get
more separated from each other when increasing the diameter.

Figure 2.9 – Signatures in time (upper plots) and frequency (lower plots) domain of a plastic
cylinder buried in a sandy soil (5cm depth) with a) different antenna heights, b)
different target shapes and c) different cylinder diameters.

Target vertical dimension (Fig. 2.10a) : Increasing the height of the cylinder and keeping its radius fixed
causes the second reflection of the Hilbert signature to shift and decrease in magnitude while the
first reflection remains unchanged. This is because of the increasing travelling time and attenuation
through the object when it gets thicker, i.e. the reflections from the bottom of the cylinder arrive
later. Frequency signatures are changing a lot without a clear trend.
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Target depth (Fig. 2.10b): As expected, the signatures in time domain shift and decrease in amplitude
when increasing the depth of the cylinder. The shapes remain very similar (at least for negligible soil
conductivity values). Accordingly, the amplitude of the frequency signature decreases in amplitude
with the depth and its shape and the resonances are not very sensitive either apart from a slight shift
for the 7cm and 10cm case.
Target inclination (Fig. 2.10c): The rotation of the cylinder modifies his apparent RCS to the incoming
wave, and hence the backscattered signal. We observe that, both for time and frequency domain,
there is almost no difference in rotating the cylinder clockwise or counterclockwise and along x or
y axes; this is due to the symmetry of our model. Concerning the time domain, when we rotate
the cylinder 45◦, the signature is highly attenuated and its shape changes appearing some ringing
effects; a rotation of 90◦ results in an attenuation of the amplitude as well but with less ringing.
Accordingly, the frequency signature changes in shape and magnitude with the rotation angle, in
particular the number of resonances increases significantly with a rotation of 45◦.

Figure 2.10 – Signatures in time and frequency domain of a plastic cylinder buried in soil with a)
different cylider heights, b) different cylider depths and c) different cylinder incli-
nation.

Target permittivity (Fig. 2.11a): The dielectric properties of the target affect the signatures remarkably.
For this analysis we can consider the signature in terms of the permittivity contrast between the
target and the soil.
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Contrast =
εtarget − εsoil

epsilonsoil
(2.18)

where εtarget and εsoil are respectively the relative dielectric permittivity of the target and the soil.
In the obtained signatures it is usually possible to locate two main contributions that are associated
to the wave reflected at the top interface of the target and the reflection coming from the bottom
interface (both peaks are indicated with arrows in Fig. 2.11a). Note that the secondary contribu-
tions present at the backscattered responses by plastic targets (which are of similar dimension as the
illuminating wavelength) are due to different multiple scattering mechanisms (in addition to the bot-
tom reflection), resulting from the wave travelling inside and along the object [15].When the target
permittivity value increases above the one of the soil, the bottom reflection shifts in time and its con-
tribution becomes comparable to the one from the top reflection. From the figure we also see that the
sign of the contrast is important (i.e. εtarget = 3 vs. εsoil = 5 do not generate the same signature as
εtarget = 7 vs. εsoil = 5), i.e., there is not a "symmetric" scattering behavior. When the permittivity of
the target grows, the frequency signature presents an increasing number of resonances.
Soil permittivity (Fig. 2.11b): Changing the permittivity of the soil and maintaining the target one
constant results in a shift of the top reflection depending on the value of the soil permittivity (due
to the different travelling velocity in different materials). Top/bottom amplitude ratios vary with
the contrast but obviously the bottom reflection position does not shift since the target permittivity
remains the same. In frequency domain we still can see that increasing the contrast always produce
more resonances and as expected, raises the magnitude of the signature.
Soil conductivity (Fig. 2.11c): The electrical conductivity affects only the magnitude of the signature
while the shape remains mostly unchanged; this is confirmed for both time and frequency domain.
More precisely, when we increase the electrical conductivity, the attenuation of the travelling wave
grows and consequently the amplitude of the signature decreases. The electrical conductivity of the
soils depends mainly on their water content (along with salts and clay content).

Some Wigner-Ville distributions corresponding to the time signatures of the reference cylinder for
varying depth, antenna height and target permittivity are displayed in Fig. 2.12. As we can see, the
different depths mainly shift the position in time of the WVD without altering its overall shape and
intensity, while the height and in particular the permittivity of the cylinder, affect significantly the
whole appearance of the target image. We are not going to make a deeper analysis here, but it has
been shown in literature that landmine discrimination based on WV time-frequency signatures may
be successfully performed by the extraction of certain features via singular value decomposition and
principal component analysis [63].

We present here some results associated to the variation of the analysis parameters in the model in or-
der to have a better understanding of the impact of each investigated factor. We will also analyze two
descriptors extracted from the data: the top/bottom amplitude ratio and the number and position of
resonances, both in function of the permittivity contrast and the shape/dimension of the target. In
table 2.2 we show the correlation coefficients between different GPR signatures for different values
of model parameters. The correlation coefficient C is calculated as follows:

C = max(|rxy(τ)|) (2.19)
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Figure 2.11 – Signatures in time and frequency domain of a plastic cylinder buried in soil with
a) different target permittivities, b) different soil permittivities and c) different soil
conductivities.

where:

rxy(τ) =
rxy(τ)√

rxx(0)ryy(0)
(2.20)

is the normalized cross-correlation function with:

rxy(τ) =
∫ +∞

−∞
x(t)y(t + τ)dt (2.21)

being the cross-correlation function i.e. a measure of the similarity between two different signals (x(t)
and y(t)) as a function of the time shift τ between them. Each entry of the table 2.2 corresponds to
a value of the correlation coefficient between signatures generated from target with different height,
depth, diameter, permittivity, rotation and soil permittivity. The similarity results are consistent with
the analysis made in the previous section. The depth of the cylinder does not produce a significant
variation, while the dimensions (diameter and height) and the target permittivity are remarkably
affecting the echoes. It is also interesting to remark that the values associated to the rotation of the
target are in agreement with what we explained in section 3 except for the 90◦ rotation which appears
similar to 0◦ rotation. Finally, the soil permittivity does not seem to have very much impact on the
correlation coefficient. Figure 2.13 shows the variation of the top/bottom amplitude ratio in function
of the permittivity contrast. The top/bottom amplitude ratio is just the amplitude of the bottom
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Figure 2.12 – Wigner Ville transforms of the signatures from a cylindrical target buried in sandy
soil at different depth (a), different height (b) and different permittivity (c).

reflection divided by the amplitude of the top one. To locate these values, we automatically select
the peaks that agree with the estimated arrival times of the top/bottom reflections from the Hilbert
signature of a given target. We investigated this ratio for a fixed εsoil = 5 (sand) and different values
of εtarget, assuming different shapes (sphere, cylinder) and dimensions of the targets. It is interesting
to see that, for all the geometries, there is a general decreasing trend of the ratio when the contrast
increases, even if this is clearer for values starting from -0.5 (which means εtarget = 3). In fact, the
cylinder with diameter equal to 10cm has a different behavior for values of the contrast below -
0.35. Some values of contrast are not covered because we couldn’t distinguish any bottom reflection.
This happens for example for the case of the cylinder with diameter 5cm and εtarget ≈ 3 and may
be due to a lack of vertical resolution. Finally, for most of the cases, when εtarget is considerably
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bigger than εsoil (contrast > 0.5 approx.), then the bottom reflection is bigger in amplitude than the
top one (top/bottom reflection amplitude ratio is < 1). Figure 2.14(b) represents the variation of the
number and position of the resonances (amplitude maxima) in function of the permittivity contrast.
We determined the resonances automatically from the frequency signatures. The target/soil/contrast
conditions are the same as in the previous analysis. In general, we can see that the resonances are
growing in number with the contrast and also they shift towards lower frequencies. The collected
points for every target describe a set of curves associated to different frequency intervals (orders).
The blue and red curves are related to cylinders while the black and the magenta ones to spheres.
It is interesting to observe that the diameter of the cylinder does not affect so much the resonances
(red and blue curves are overlapping for the different frequencies orders) but for the spheres of 5
and 10cm of diameter, the associated curves are not always coinciding (as happens in the frequency
range between 1 and 2 GHz). We can also see that the relative positions of the resonances between
the different targets may change depending on the contrast value.

Table 2.2 – Correlation coefficients between time domain signatures related to different target
parameters. In red we highlight lower correlation values indicating major changes in
the signatures

With this study we have observed that the time and frequency signatures of landmines are relatively
robust to variations in target’s depth and soil conditions and very sensitive to varying target per-
mittivity, shape and size due to the internal energy reverberation and the different travelling times
through the target. On the other hand, the top/bottom reflection amplitude ratio and the number
and position of resonances demonstrated a nearly regular trend with the increasing permittivity con-
trast. However, for values of εtarget that are associated to landmines (≈ 3 or less), it is not always
possible to distinguish the bottom reflection; similarly, the behavior of the resonances becomes more
difficult to interpret, since they are changing quickly in number and position within this range.
Finally, despite the acquired knowledge on the GPR scattering mechanisms for APM recognition, we
found out that the features we were able to extract from these synthetic GPR signatures were not
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Figure 2.13 – Top/Bottom reflection amplitude ratio behavior of a plastic cylinder buried in a
sandy soil ( εsoil = 5) in function of the permittivity contrast (variable εtarget.

Figure 2.14 – Resonances behavior of a plastic cylinder buried in a sandy soil ( εsoil = 5) in func-
tion of the permittivity contrast (variable εtarget.

robust enough to be used for experimental data; this motivated further research which finally led to
the classification approach proposed in chapter 4. Further studies can implement these descriptors
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along with other characteristic features. In addition, more complex parametric analysis could also be
made introducing heterogeneous or layered soils and rough surfaces in the simulations.
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Chapter 3
Sparse Representation and Dictionary
Learning techniques

As introduced in section 1.2, given that a signal is sparse in a certain domain, which is usually the
case in typical radar scenarios [36], Compressive Sensing (CS) techniques permit the reconstruction
of this signal from much less measurements than required by the classical Shannon-Nyquist sam-
pling theorem [15, 66]. This property has a big potential for practical radar applications as one can
accelerate the acquisition speed and reduce operational costs.
Sparse representation (SR) and CS share the same framework of techniques but with a slightly dif-
ferent goal. SR tries to exploit the inherent sparsity of data by representing it on an appropriate basis
without necessarily reduce the amount of measurements. SR has been succesfully employed in radar
for augmented resolution [67, 68], clutter reduction [34] and classification [40, 41, 69–71].
The selection of the dictionary matrix is crucial for obtaining a sparse(r) representation of a signal,
i.e., a representation with a minimum number of non-zero coefficients. Depending on the applica-
tion, one can buld a dictionary with an arbitrary basis (such as Fourier, Wavelets, etc.) [57] or by
collecting empirical or synthetic target signatures [40].
Another option is to learn the dictionary from a training set of known data via dictionary learning
(DL hereafter). In the context of classification, if the training set is representative of all the possible
signal classes, one can use the sparse non-zero coefficients obtained with the learned dictionary, as a
collection of features.
In this chapter we first introduce the basics of SR, describing the properties of the dictionary matrix
for correct signal reconstruction. We introduce then some popular and state-of-the-art algorithms for
SR, dividing them between greedy and convex optimization approaches. We will then introduce the
theoretical fundation of DL and the most important algorithms for learning a dictionary [34]. We will
divide these DL approaches into batch-learning (such as K-SVD and LRSDL) [72] and online-learning
(such as ODL and CBWLSU) [35, 73]. We will then analyze in detail our novel online dictionary learn-
ing approach: the Drop-Off Mini-Batch Online Dictionary Learning (DOMINODL). This is intended
to be an improvement over the state-of-the-art online dictionary learning approaches and it will be
one of the core contributions of this doctoral thesis aimed at the adaptive classification of GPR sig-
nals.

29
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3.1 Fundamentals of Sparse Representation

To introduce the basics of SR, we need to asses the concepts of signal recovery from linear measure-
ments and the process of regularization. We say that the information which are coming from a certain
observed scene, are acquired by a measurement process. Assuming that the measurements are real
(obtained with linear sensors and then discretized) one can write:

y = Dx (3.1)

Where y ∈ CM×1 represents the measurements of the observed scene, arranged in a M dimensional
column vector, D ∈ CM×K represents the model of the scene which can be constructed via a MxK
matrix (we will call this the dictionary matrix later) and x ∈ C1×K is a coefficient vector which
represents the signal information according to the model specified in D. The vector x represents the
information that we want to recover
The problem in 3.1 leads to an equation system which can be: overdetermined (when K<M, there
may not be a single solution), determined (when K=M with an unique solution) or underdetermined
(when K>M, there will be infinite solution). The latter is the problem of interest for CS and SR.
The solution of an under-determined system of equation is possible if restrictions are applied to x, in
this context the concept of regularization comes at hand. Regularization is the process of estimating
certain measurement parameters, based on additional a priori information on them. As an example,
a regularization problem can be expressed in this way:

x̂ = argmin
x

J(x) subject to y = Dx (3.2)

Where J : C → C is a cost function, while y and x are defined above.A classical cost function used
in many regularization problems is J(x) = ||x||22. One example of regularization process for signal
estimation is the matched filter; the regularization problem for this particular application can be
expressed like this:

x̂ = argmin
x

|xHs|2
E {|xHn|} subject to y = sx + n, (3.3)

where s is the transmitted signal, y is the received one, n is the noise realization and x is the
parameter that we want to estimate in order to maximize the cost function which, in the case of
matched filtering, represent the the signal to noise ratio.
Sparse representation techniques are aimed at the solution of a under-determined linear system as
the one indicated in 3.1. The regularization process consists into minimizing a cost function which
enforces the sparsity of the vector x (i.e. the number of its non-zero elements). The problem can be
expressed like this:

x̂ = argmin
x

||x||0 subject to y = Dx (3.4)
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where ||x||0 is the l0-norm of the vector x. Formally, the lp norm of a vector is defined as:

||x||p = p
√

ΣN
n=1|xn|p, 0 < p < inf (3.5)

where N is the number of elements of the vector x. The l0-norm is a pseudo-norm and can be defined
as the limit for p→ 0 of |x||p, resulting in

||x||0 = card{n ∈ [N] : xn 6= 0} (3.6)

Equation 3.6 defines the cardinality of the support set of x and this corresponds to the number of its
non-zero elements (i.e. what equation 3.4 aims to minimize).
If the observed scene is sparse, then, it can be proven that 3.4 has an unique solution i.e. one can
find a matrix D which gives a perfect reconstruction of the measurements with probability close to
one [20]. The number of non-zero elements of the vector x is also called the support of the signal y; if
y is mapped on the vector x using S non-zero elements then it is said to be S-sparse.
The solution of (3.4) is a NP-hard combinatorial problem, however, techniques based on greedy
algorithms and convex optimization demonstrated to be efficient in approximating such problem
(see 3.2).
We already mentioned the difference between sensing matrix and dictionary in chapter 1. Hereafter,
we refer to D as the dictionary since the scope of our work is radar target classification, i.e. the
matrix D is not encompassing a phyisical model for a radar signal like in the sensing matrix,
rather it contains features from different classes of possible received signals. The columns of D are
called atoms. The original signal y is sparsely represented when it can be espressed with a linear
combination of a few atoms of the dictionary D with the corresponding the non-zero elements of x.
We will assume that matrix D ∈ CM×K has M < K and that y, the measured signal, is sparse or
compressible. We addressed the concept of sparsity in chapter 1, we say that a signal is compressible
when it can be well-approximated by sparse signals, this is an important point since very few
real-world signals are really sparse. We can quantify the compressibility of a signal y by calculating
the error committed in approximating it like this:

σS(y)p = min
ŷ∈ΣS

||y− ŷ||p, (3.7)

where ΣS is a set of S-sparse signals, i.e. with ||x||0 ≤ S.

3.1.0.1 Null space condition, coherence and Restricted Isometric Property (RIP)

There are some conditions that the dictionary matrix D should fulfill to obtain an exact reconstruction
of the original signal, i.e in order that the sparse vector x will contain the information of the original
signal y. We introduce here the null space condition and the Restricted Isometry Property (RIP). We
will also explain the concept of coherence for D, an additional property for a succesfull reconstruction
of y. The null-space condition is defined by the following equation:

N (D) = {z : Dz = 0} (3.8)
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If we have two vectors x, x′ ∈ ∑S with Dx = Dx′ then D(x− x′) = 0 and x− x′ ∈ ∑2S represents the
null space of D, N (D) (with z = x− x′). This means that D uniquely represents all x ∈ ∑s if and
only if N (D) contains no vectors in ∑2S. In other words, D obeys the null space condition when
two distinct vectors x, x′ ∈ ∑S will generate two different measurement reconstructions Dx 6= Dx′

or, conversely, any single measurement y will accept an unique sparse representation x ∈ ∑S in D.
The coherence of the dictionary matrix D is also an important factor for satisfactory recovery. Let
D ∈ CMxK being the dictionary matrix with column vectors dk and ||dk||2 = 1. The coherence of D
is defined as:

µ(D) := max
1≤i<j≤K

| < di, dj > |
||di||2||dj||2

: i, j ∈ N (3.9)

µ(D) values are between 0 and 1; if D is a quadratic matrix and all the columns of D are orthonormal
between each other then µ(D) = 0, conversely when all columns are completely correlated we have
µ(D) = 1. For under-determined systems, where M < K, which are of interest for SR, a small
coherence means that all sub-columns matrices Dj with |j| ≤ M are well-conditioned thus, for SR,
the coherence should be the smallest possible.
Respect to the null-space propriety, the Restricted Isometry Property (RIP) takes in account the noise
in the measurements for the correct reconstruction [15, 74]. RIP is used to indicate if the sparse vectors
x are actually related to measurements y which have energy close to x. We say that D possess the RIP
of order S (being S the support of y in D) if exist a δS(D) such that the following equation:

(1− δS)||x||22 ≤ ||Dx||22 ≤ (1 + δS)||x||22, (3.10)

holds for all x ∈ ΣS. If D satisfies the RIP property of order 2S, given by δ2S ≤ δ ≈
√

2− 1, then with
high probability all S-sparse vectors are successfully recovered [15, 74].

3.2 Sparse Representation methods

As mentioned in the previous section, the problem presented in (3.4) is a NP-hard problem and it is in
general not tractable, in this section we will describe some typical techniques to approximate its so-
lution dividing them into greedy and convex optimization approaches. Popular greedy approaches
to solve 3.4 (such as matching pursuit (MP), orthogonal matching pursuit (OMP), block orthogonal
matching pursuit (BOMP), etc. [27, 28]) approximate the l0-norm solution in 3.4 using iterative strate-
gies; they are computationally fast but may not lead to a global optimum solution. State of the art
algorithms for sparse representation such as basis pursuit (BP), basis pursuit de-noising (BPDN) [30,
31], LASSO [75] and LARS [76] aim to approximate (3.4) by using less restrictive constraints (norm-1
and norm-2) which can still assure a sparse solution for x [29]. These methods are based on convex
optimization, they are more robust against noise and therefore they may lead to a better reconstruc-
tion of y but they are computationally more demanding. In this section we will describe in detail
the SR techniques that we employed the most in our work: the Orthogonal matching pursiut (OMP)
(along with a faster implementation of it) along with its batch version (batch-OMP) [72]. Convex op-
timization methods (such as BPDN, LASSO and LARS) will also be introduced since they have been
used for the dictionary update step of some of the proposed DL algorithms (see 3.4).
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3.2.1 Greedy approaches

Greedy strategies for SR are iterative approaches which searches for the best local optimal solution
for each iteration (i.e. the greediest one) hoping that it coincides to the global best one. They can
approximate the solution of the problem in 3.4. These algorithms chooses only the most appropriate
elements in x according to the input constraint (which is the expected sparsity or the reconstruction
error, as we will explain right away) to reconstruct the measurement vector y [77]. We start by
describing in detail the Orthogonal Matching Pursuit (OMP), a variation of the Matching Pursuit
(MP) algorithm.

3.2.1.1 Orthogonal matching pursuit (OMP)

The OMP problem has a dual formulation:

x̂ = argmin
x

||y−Dx||2 subject to ||x||0 ≤ S (3.11)

x̂ = argmin
x

||x||0 subject to ||y−Dx||2 ≤ δ (3.12)

Equation (3.11) constraints the sparsity number S while (3.12) constraints the l2-norm of the residual
by the parameter δ. OMP is an iterative process, at each iteration it search for an atom di wich
gives the best projection onto the residual signal y−Dx and obtains the value of the corresponding
coefficient xi by least square. Our implementation of OMP can use either the sparsity number S or
the residual error δ as a stopping criterion, algorithm 1 shows the details of its implementation which
is based on the work in [27].

Algorithm 1: Orthogonal Matching Pursuit (OMP)
Input: Measurement vector (y ∈ CMx1), Dictionary (D ∈ CMxK), Sparsity number (S) or Residual error threshold (δ)
Output: Sparse coefficients vector (x ∈ R1xK)

1 Initialize iteration count i = 1
2 Initialize the residual as the measurement vector: ri = y
3 Initialize the vector of sparse coefficients: x = 0 ∈ C1xn

4 Initialize the matrix of new found atoms: D0 = ∅

5 Loop until i = S or ||ri −Dx||2 ≥ σ

6 Find the atom di which gives the maximum dot product with r: di = argmax
di

〈ri, di〉

7 Normalize the new found atom by the norm-2 : di =
di
||di ||2

8 Include di in the set of new found atoms: Di = Di−1 ∪ di

9 Update xi by solving a least square problem: xi = argmin
x
||y−Dix||2

10 Update residual: ri = ri−1 −Dixi

11 EndLoop

We initialize the residual vector ri as the measurement vector y and we create an empty set D which
will contain the atoms of D which will be used for the sparse decomposition of y and updated during
the iterations. If the input S 6= 0 and S ∈ N , the maximum iterations count correspond to the desired
sparsity number. In many radar applications, this is equivalent to select the number of expected
targets in the scene which we want to detect, in other words, we are making an assumption on the
support of the vector y. If S = 0 and/or δ ∈ R with 0 ≤ δ ≥ 1 we are ignoring the sparsity number
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and the stopping criterion depends on the error: ||ri −Dx||2. For every iteration, the algorithm finds
di, the atom of D which has the bigger dot product with the residual ri. The new found atom is
normalized and included to the setD at the current iteration (Di). The coefficient update step is what
differentiate OMP respect to MP and it is obtained by a least square regression problem (see step
9) [27]. Finally, the residual error is updated before evaluating the stopping criterion and evenually
go on with the iterations.

3.2.1.2 A faster implementation of OMP

The least square problem at step 9 of algorithm 1 is computationally demanding and it is usually
computed by using a Cholesky factorization or a QR decomposition [72]. To speed up computa-
tions we propose a faster variant of OMP (see 2). The difference in this implementation is that the
new found atom is orthogonalized against all the previously found one dj with j = 1, · · · , i− 1 via
Gram–Schmidt process (see step 10) [78] before the coefficient update. Having an orthonormal basis
among the new found atoms is beneficial for the coefficient update where, instead of solving a least
square problem, we can directly obtain the updated coefficients x by projecting them over the resid-
ual ri (see step 13). After the stopping criterion is met, we adjust the coefficient vector obtained at
the last iteration (xi) solving just one least square problem without orthogonalizing before, this make
possible that the coefficients x have the right coefficient values respect to y.

Algorithm 2: A faster implementation of OMP
Input: Measurement vector (y ∈ Cmx1), Dictionary (D ∈ Cmxn), Sparsity number (S) or Residual error threshold (δ)
Output: Sparse coefficients vector (x ∈ C1xn)

1 Initialize iteration count i = 1
2 Initialize the residual as the measurement vector: ri = y
3 Initialize the vector of sparse coefficients: x = 0 ∈ C1xn

4 Initialize the matrix of new found atoms: D0 = ∅

5 Loop until i = S or ||ri −Dx||2 ≥ δ

6 Find the atom di which gives the maximum dot product with r: di = argmax
di

〈ri, di〉

7 Normalize the new found atom by the norm-2 : di =
di
||di ||2

8 Include di in the set of new found atoms: Di = Di−1 ∪ di

9 for j = 1, · · · , i− 1
10 Orthogonalize di against all previously found dj: di = di −

〈
dj, di

〉
dj

11 end for
12 for j = 1, · · · , i
13 Coefficients update xi =

〈
xj, rj

〉
14 end for
15 EndLoop
16 UPDATE xi by solving a least square problem: xi = argmin

x
||y−Dix||2

17 Update residual: ri = ri−1 −Dixi

3.2.1.3 Batch-OMP

Batch-OMP is a variant of the classical OMP and it is used when a large number of signals must
be represented over the same dictionary. The intuition behind this method is that it is not required
to compute the residual r at each iteration for the atom selection step, only DTr is required. The
atom selection step can be rewritten in order to exploit its dependance only on the dictionary at the
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iteration i (called Di) and the measurement vector y [79] without calculating DTr.
Calling α = DTr, α0 = DTy and G = DTD one can write;

α = DT(y−DI(DI)
+y)

= α0 −GI(DI)
+y

= α0 −GI(DT
I DI)

−1DT
I y

= α0 −GI(GI,I)
−1α0

I

(3.13)

Given the pre-computed α0 and G, one can compute α without explicitly computing r. However, if
the residual is not computed, it is impossible to set a stopping criterion based on the error. In [72]
an extention of batch-OMP where the residual l2 norm ||r||22 at the iteration i is calculated by an
incremental formula; this permits the use of the residual as a stopping criterion without explicitly
computing it; see [72] for the implementation details.
Batch-OMP will be used in some of the proposed DL algorithms (see chapter 4) and in presented,
novel algorithm for online dictionary learning (DOMINODL).

3.2.2 Convex optimization approaches

A convex optimization problem deals with miminizing convex functions over a convex set; the
convexity makes the minimization easier since the local minimum of the fuction is also the global
one [80]. Convex optimization methods for SR, contrary to greedy approaches, aim to minimize the
l1-norm of the coefficient vector x.

x̂ = argmin
x

||x||1 subject to Dx = y (3.14)

The objective function ||.||1 is in fact a convex and tractable, whereas ||.||0 is non-convex and gen-
erally very difficult to solve. The problem in 3.14 is known as basis pursuit (BP); it can be solved
efficiently using linear programming techniques and it is demonstrated [20] that it still leads to a
sparse approximation of the underdetermined system solution in 3.4.
In case we want to take in account for the noise in the data, we can make an additional approxima-
tion:

x̂ = argmin
x

||x||1 subject to ||y−Dx||2 ≤ δ (3.15)

In this way we don’t want to exactly solve 3.14 but we make an approximation based on a positive
parameter δ which amplitude (between 0 an 1 if the data is normalized) corresponds to the noise
level, this parameter plays the same role of δ in OMP (see 2). This problem is called basis pursuit
denoise (BPDN).
There are different derivation that we can extract from 3.15 like the LASSO problem [75]

x̂ = argmin
x

||y−Dx||2 subject to ||x||1 ≤ τ (3.16)

and the penalized least square problem

x̂ = argmin
x

||y−Dx||2 + λ||x||1 (3.17)
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Where λ is a regularization parameter [81]. For an appropriate choice of δ, τ and λ the solutions of
these three approaches coincide.
One of the most popular algorithm for solving the problems in 3.15 and 3.16 was proposed from
Van Der Berg and Friedlander and it is based on the relation between LASSO and BPDN, defined by
the Pareto curve. The Pareto curve indicates the optimal trade off between two-norm of the residual
(||y−Dx||2) and the one-norm of the solution x. The solution of a BPDN problem using this approach
consists on solving a sequence of LASSO problem using spectral projected gradient and use the
Newton method applied to the Pareto curve to observe how much the solution of 3.16 get close
to 3.15; the process stops when satisfactory threshold is met [30, 31].
Homotopy approaches [82] such as LARS [76] solve the BPDN problem by repeatedly solving 3.17
for all possible values of λ. LARS is an algorithm for both variable and coefficient selection which is
aimed to fit a linear regression model to high dimensional data (in SR we can identify the atoms of the
dictionary as variables and the sparse elements of the vector x as coefficients). LARS has been already
proposed for l1 minimization problems [83] and it is convenient to use it to solve the penalized least
square problem in 3.17 because of its speed (comparable to forward selection algorithms) and for the
fact that it produces a full piecewise linear solution path (i.e. for every λ) [84]. Moreover the LASSO
problem can be derived by LARS, in fact, LASSO can be seen as a variation of a ridge-regression
problem [84] where the focus is on coefficients selection rather to variable estimation but with the
constraint of putting some coefficients to zero. In a nutshell, refering to equation 3.16, the basic steps
of LARS are:

• Start with all coefficients xj with (j = 1...K) equal to zero, set the initial residual r as y

• Find the atom dj which has the highest correlation with the r

• Increase the coeficient xj in the direction of the sign of its correlation with y, calculate the resid-
ual r = ||y − Dx||22 for each increment and stop when some other atom dk has as as much
correlation with r as dj has.

• Increase xj, xk in the direction defined by their joint least-square coefficient of the current resid-
ual on dj, dk , until some other dm has as much correlation with the residual r

• Continue until all atoms are considered in the model

The LARS-LASSO problem is proposed in [76] and will be used later in this work for the sparse
decomposition step of the Online Dictionary Learning (ODL) algorithm.

3.3 Fundamentals of Dictionary Learning

The dictionary D may be learned from the data it is going to represent. Dictionary learning (DL)
techniques aim to create adapted dictionaries which provide the sparsest reconstruction for given
training-sets, i.e., a representation with a minimum number of constituting atoms. DL methods are
critical building blocks in many applications such as deep learning, image denoising, and super-
resolution; see [85, 86].
Please note that, at the time of writing this dissertation, the DL algorithms described in this section
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could only be applied on real data (whereas the SR techniques presented previously could also work
on complex data).

The first step in DL consists of building a training database Y =
[
y1 · · · yL

]
∈ RMxL of L vectors,

each with M elements. We assume that every vector yi is generated by a linear combination of the
K atoms of a certain dictionary matrix D ∈ RMxK and an associated sparse vector of coefficients xi,

having X =
[
x1 · · · xL

]
∈ RKxL. The core problem of DL is to find the dictionary D which give the

set of sparsest solution X, whe have then:

Y(MxL) = D(MxK) X(KxL), (3.18)

where the dimension L is usually larger than the number of the dictionary elements (L > K). The DL
problem has a dual formulation, whether it constraints sparsity (3.19) or the model deviation (3.20):

D̂, X̂ = argmin
D,X

‖Y−DX‖F

subject to ‖xi‖0 ≤ S, 1 ≤ i ≤ L. (3.19)

D̂, X̂ = argmin
D,X

‖Y−DX‖F

subject to ‖yi −Dxi‖2 ≤ ε, 1 ≤ i ≤ L. (3.20)

Where S is the sparsity number, i.e. the desired number of the non-zero elements in the decomposed
vector and ε is the residual error.
Since both D and x are unknown, a common approach is to use alternating minimization in which
we start with an initial guess of D and then obtain the solution iteratively by alternating between
two stages: sparse representation and dictionary update [87] - as follows:
1) Sparse representation: Obtain X(t) for each yi as:

X̂(t) = argmin
X

∥∥∥Y−D(t−1)X
∥∥∥

F

subject to
∥∥∥xi(t−1)

∥∥∥
p
≤ S, 1 ≤ i ≤ L, (3.21)

where X(t) is the SR in tth iteration. This can be solved using greedy algorithms such as orthogonal
matching pursuit (OMP) (p = 0) or convex relaxation methods like basis pursuit denoising (BPDN)
(p = 1).

2) Dictionary Update: Given X(t), update D(t) such that

D(t) = argmin
D∈D

∥∥∥Y−DX(t)

∥∥∥
F

, (3.22)

where D is a set of all dictionaries with unit column-norms,
∥∥dj
∥∥

2 = 1 for 1 ≤ j ≤ K. This subprob-
lem is solved by methods such as singular value decomposition or gradient descent [35, 87].

3.4 Dictionary Learning methods

In this section we will analyze some state-of-the-art DL algorithms that we used for the classification
approach described in section 4, dividing them in batch-DL and online-DL approaches. Regarding
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batch-DL, we will focus on the description of the K-SVD, one of the most popular DL algorithms [72]
and the more recent LRSDL [88] due to its capability of generating a class-discriminative dictionary.
Regarding online-DL techniques, we will analyze the state-of-the-art method ODL [35], the recent
CBWLSU [35, 73] and describe the development of a novel Online-DL strategy named Drop-Off
Mini-batch Online Dictionary Learning (DOMINODL) [42].

3.4.1 Batch DL approaches

Classical methods for DL such as Method of Optimal Directions (MOD) [33] and K-SVD [34] retain
a guess for D and X and iteratively update either X using basis/matched pursuit or D using least
squares or singular value decomposition (SVD). Batch-DL methods deal with the entire training set
for every iteration, although very successful, they are computationally demanding and not scalable
to high-dimensional training sets.
Discriminative DL algorithms such as Label Consistent K-SVD [89] and discriminative K-SVD [90]
still classify as batch DL techniques (since they deal with the entire training set) but they learn a
class-discriminative dictionary which is separated in subsets of atoms belonging to different classes
present in the training set. Low Rank Shared Dictionary Learning (LRSDL [88]) is an interesting
discriminative DL technique which adress some shortcomings its precursors and has therefore been
tested for our classification strategy.

3.4.1.1 K-SVD

K-SVD iteratively alternate a sparse decomposition and a dictionary update step solving a minimiza-
tion over the number of non-zero elements in the set of representation vectors X, and one over D for
updating the dictionary.
For the sparse coding step at the iteration t, K-SVD solves OMP for each element yi in the training
set Y:

x̂i = argmin
xi

‖xi‖0

subject to
∥∥∥yi −D(t−1)xi

∥∥∥2

2
≤ δ, ∀1 ≤ i ≤ L, (3.23)

where i is the index which represent the training set elements, D(t−1) is the dictionary computed at
the previous iteration (t− 1) and δ is the maximum residual error.
K-SVD shares the same strategy for the sparse decomposition step with MOD, however, the dictio-
nary update rule is different. Let K be an input parameter of K-SVD which indicates the number of
columns of the learned dictionary. For the dictionary update step, K-SVD solves the global minimiza-
tion problem in (3.22) via K sequential minimization problems, wherein every column dk of D and
its corresponding row of coefficients Xrow,k of X are updated. The dictionary update step for K-SVD
is explained in algorithm 3.
Let’s assume that we are at the iteration t and we already peformed the sparse decomposition step
using the dictionary which has been obtained in the iteration t− 1. For each kth dictionary atom, we
calculate the error term Yr = Y− ∑

l 6=k
dlt−1 Xrow,l(t−1)

and extract a subset Yk of it which comprises the

elements of Yr which use the selected atom (k). Then we use SVD to find the closest rank-1 approxi-
mation of Yk to obtain dk subjected to the constraint ‖dk(t)‖2 = 1.
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K-SVD global optimization will terminate after a series of sparse decomposition plus dictionary up-

date steps depending on the changes on
∥∥∥Y−DX(t)

∥∥∥2

F
.

Algorithm 3: K-SVD dictionary update step
Input: D(t−1), X(t) and residual error threshold (δ)
Output: D(t)

1 Initialize atom index: k = 1

2 Loop until k = K
3 Select dk(t−1)

and the corresponding Xrow,k(t)

4 Compute Yr = Y− ∑
l 6=k

dl(t−1)
Xrow,l(t−1)

5 SR of Yr using OMP with residual error threshold = δ

6 Select a subset of signals Yk from Yr which use the atom dk(t−1)
in their SR.

7 Compute SVD of Yk for obtaining both dk(t) and Xrow,k(t)

8 EndLoop

For this work, a particular K-SVD implementation was used [72]. This version employs a faster
approximation for the SVD step in the dictionary update and uses batch-OMP for the sparse decom-
position step, making it more feasible to deal with large sets of signals.
The performance of K-SVD can be improved in terms of both computational complexity and ob-
taining an incoherent dictionary if the learning process enforces constraints such as hierarchical tree
sparsity [91], structured group sparsity (StructDL) [92], Fisher discrimination (FDDL) [93], and low-
rank-and-Fisher (D2L2R2) [94].

3.4.1.2 LRSDL

LRSDL [88] is one of the latest evolution of discriminative DL algorithms; we tested it on our clas-
sification approach due to its promising capabilities for class recognition. In this subsection we try
to give the basic idea of discriminative-DL and briefly describe the theoretical background on which
LRSDL is based of.
Discriminative DL algorithms, as D-KSVD [90] and LC-KSVD [89], employ a learning strategy which
promotes the generation of a dictionary D which is separated in blocks of atoms associated to differ-
ent classes as D = [D1, · · · , DC] ∈ RM×K where C is the number of classes present in the training set
Y. The resultant coefficient matrix X is close to be sparse with all non-zeros being one while satisfying
a block diagonal structure.
However, objects belonging to different classes often have common features, therefore the assump-
tion of non-overlapping subspaces done by such algorithms is often unrealistic in practice. Tech-
niques such as DL with structured incoherence and shared features (DLSI) [95], separating the com-
monality and the particularity (COPAR) [96] and convolutional sparse DL (CSDL) [97] exploit com-
mon patterns among different classes even though different objects possess distinct class-specific
features. These methods produce am additional constituent D0 which is shared among all classes so
that D = [D1, · · · , DC, D0] ∈ RM×K. The drawback of these strategies is that the shared dictionary
may also contain class-discriminative features.
To avoid this problem, LRSDL [88] requires that the shared dictionary must have a low-rank struc-
ture and that its sparse coefficients have to be almost similar. LRSDL learns both D and X by solving
a minimization problem with a cost function which is closely related to the one of another DL al-
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gorithm called Fisher Discriminative Dictionary Learning (FDDL) [98]. FDDL tries to minimize the
discriminative fidelity Jy(D, X), defined as:

Jy(D, X) =
1
2

fy(D, X) + λ1||X||1 +
λ2

2
g(X) (3.24)

with Y ∈ RM×L being the class-labeled training set with with c = 1...C classes and L = ∑C
c=1 nc being

its number of elements with nc being the number of elements for the class c. D = [D1, · · · , DC] ∈
RM×K being the dictionary with K = ∑C

c=1 kc with kc being the number of atoms for the class c, λ1

and λ2 being two fidelity terms and fy(D, X) being:

fY(D, X) =
C

∑
c=1

rYc(D, Xc) (3.25)

with Yc ∈ RM×nc being the training set elements belonging to the class c and Xc ∈ Rkc×nc being its
SR and rYc(D, Xc) being:

rYc(D, Xc) = ||Yc −DXc||2F + ||Yc −DcXc
c||2F + ∑

j 6=c
||DjX

j
c||2F (3.26)

with Xc
c ∈ Rk×nc being the sparse coefficients of Yc on Dc and the last term ensures that the mini-

mization process leads to a Dj with a small contribution to the representation of Yc for all j 6= c. g(X)
in 3.25 is called discriminant constraint and it is expressed as:

g(X) =
C

∑
c=1

(||Xc −Mc||2F − ||Mc −M||2F) + ||X||2F (3.27)

where Mc = µ(Xc) ∈ Rkc×nc and M = µ(X) ∈ Rk×L with µ(X) being an operator which calculates
the mean vectors of X and stack them column-wise as many times as the columns of X to generate
a matrix M. The last term in 3.27 make sure that the cost function 3.24 became convex w.r.t. X. The
number of columns in the first two terms depends on context, e.g. by writing Mc −M, we mean that
n = nc.
We are now including the shared dictionary D0 in the presented FDDL formulation.
Let D̄ = [D1, · · · , DC, D0] ∈ RM×K be the total dictionary with X̄ = [XT, (X0)T] and X̄c = [XT

c , (X0
c)

T].
The discriminative fidelity term fY(D, X) becomes fȲ(D̄, X̄) = ∑C

c=1 r̄Yc(D̄, X̄c) with r̄Yc(D̄, X̄c) de-
fined as:

r̄Yc(D̄, X̄c) = ||Yc − D̄X̄c||2F + ||Yc −DcXc
c −D0X0

c ||2F + ∑
j 6=c
||DjX

j
c||2F (3.28)

Since r̄Yc(D̄, X̄c) = rȲc
(D, Xc) with Ȳc = Yc − D0X0

c , we have f̄Yc(D̄, X̄c) = fȲc
(D, Xc) with Ȳ =

Y−D0X0.
The aforementioned expressions indicate that Yc must be represented by a combination of Dc and D0

and therefore the shared atoms of D0 must represent samples from all c classes
The other assumption which LRSDL does (unlike other discriminative approach which use a shared
dictionary such as COPAR [96]) is that D0 must have low rank to prevent that it will include class-
discriminative atoms. LRSDL use a regularization on the nuclear norm ||D0||∗ which is the convex
relaxation of the rank(D0) to force the shared dictionary in having low rank.
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Finally, LRSDL levels the contributions of the shared dictionary D0 to all the C classes in the training
set. The regularization term ||X0 −M0||2F is added to the objective function g(x) in 3.27 to force each
X0 to be close to the mean vector of all X0.

g(X̄) = g(X) + ||X0 −M0||2F (3.29)

The LRSDL dictionary update step employs alternating direction method of multipliers (ADMM) [99]
and FISTA [100] for the sparse decomposition step. Once the data is sparsely represented with such
dictionaries, a sparse-representation-based classifier (SRC) is used to predict the class of new data.

3.4.2 Online DL approaches

Batch-Learning approaches, like K-SVD, deal with the entire training set for each iteration thus they
cannot efficiently treat large or dynamically changing data. Online dictionary learning algorithms
processes one signal at a time or in small sets and have a faster convergence w.r.t. classical DL
methods. ODL [35] is one of the first online dictionary learning algorithm and it set a standard on
the top of which many other online strategies have developed.

3.4.2.1 ODL

ODL is an interesting alternative for inferring a dictionary from large training sets or ones which
change over time [35], like K-SVD this algorithm also updates the entire dictionary sequentially,
but draws one element of training data at a time for the dictionary update. ODL assumes that the
training set Y is composed of i.i.d. samples of a distribution p(x). In many practical applications,
Y can be obtained by a collection of measurements that has been randomly permuted and will be
drawn consecutively for each iteration (as it happens for our work, see chapter 4).
The input parameters of the algorithm are: the initial dictionary D0 ∈ RM×K, the regularization
parameter λ, the dimension of the learned dictionary K, and the number of iterations T (which will
also correspond to the number of training set elements that will be used for learning D). The first
step at the iteration t, with with t = 1...T, is to draw an example of the training set yi from Y , then the
sparse decomposition step is done using the dictionary obtained at the previous operation D(t−1) via
a Cholesky-based implementation of the LARS-Lasso algorithm [82] which solves a l1-regularized
least-squares problem as indicated in 3.30. In the dictionary update we consider all the training set
elements analyzed so far: yi with i = 1...t.

x̂(t) = argmin
x∈Rn

1
2
||yt −D(t−1)x||22 + λ||x||1, (3.30)

The next step is the dictionary update, this step requires the input dictionary D = [d1, d2, . . . , dk] ∈
RK×K and two matrices A = [a1, a2, . . . , ak] ∈ RM×K = ∑t

i=1 xixT
i and B = [b1, b2, . . . , bk] ∈ RM×K =

∑t
i=1 yixT

i . This algorithm updates each column of D sequentially using block coordinate descent
with a “warm restart” (which consists in the dictionary calculated at the previous step Dt−1). The
following equations are used for updating the jth column of D while keeping the other ones fixed:

uj ←
1

Ajj

(
bj −Daj

)
+ dj (3.31)
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dj ←
1

max
(
||uj||2

)uj (3.32)

This approach gives the solution to the dictionary update problem:

Dt
∆
= argmin

D∈C

1
t

(
t

∑
i=1
||yi −Dxi||22 + λ||xi||1

)
= (3.33)

argmin
D∈C

1
t

(
1
2

Tr
(

DTDAt

)
− Tr

(
DTBt

))
(3.34)

Where C is a convex set, i.e. we have to impose that the column of the dictionary matrix have an

l2-norm less than or equal to one. C ∆
=
{

D ∈ RM×K subject to ∀ j = 1, ..., k dT
j dt ≤ 1

}
. The ODL

algorithm is faster that the batch K-SVD and, since it uses D(t−1) as warm restart for computing Dt,
few iterations could be enough for the correct reconstruction. We refer the reader to [35] for further
insights on ODL.
A few improvements to ODL have already been proposed. For example, [101] considered a faster
Online Sparse Dictionary Learning (OSDL) to efficiently handle bigger training set dimensions using
a double-sparsity model.

3.4.2.2 CBWLSU

A recent study [73] notes that even though online processing reduces computational complexity
compared to batch methods, ODL performance can be further improved if only useful informa-
tion from previous data is used for updating the atoms. In this study, a new online DL called
Correlation-Based Weighted Least Square Update (CBWLSU) was proposed. CBWLSU is an online
method that introduces an interesting alternative for the dictionary update step. Like ODL, CB-
WLSU evaluates one new training data at a time, yt. However, to update the dictionary, it searches
among all previous training data and uses only the ones which share the same atoms with yt. Let

YQt =
[
yl1 · · · yl|Qt |

]
, where l1, · · · , l|Qt| ∈ Qt. be the set of previous training elements at iteration

t. DefineNt =
{

l : 1 < l < t,
〈
xT

l , xt
〉
6= 0

}
⊂ Qt as the set of indices of all previous training elements

that are correlated with the new element such that |Nt| = Npt . The new index set is Nt = Nt ∪ {t}
so that the training set becomes YNt =

[
yl1 · · · yl|Nt |

]
, where l1, · · · , l|Nt| ∈ Nt. CBWLSU then

employs a weighting matrix W(yt) to evaluate the influence of the selected previous elements for
the dictionary update step and solves the optimization problem therein via weighted least squares
(WLS). The sparse coding in CBWLSU is achieved via batch OMP.

3.4.2.3 DOMINODL

We now introduce our DOMINODL approach for online DL which not only leads to a dictionary
(D) that is tuned to sparsely represent the training set (Y) but is also faster than other online algo-
rithms. The key idea of DOMINODL is as follows: When sequentially analyzing the training set, it
is pertinent to leverage the memory of previous data in the dictionary update step. However, algo-
rithms such as CBWLSU consider all previous elements. Using all previous training set samples is
computationally expensive and may also slow down convergence. The samples which have already
contributed in the dictionary update do not need to be considered again. Moreover, in some real-time



3.4: Dictionary Learning methods 43

applications (such as highly correlated range profiles of GPR), their contribution may not be relevant
anymore for updating the dictionary.
In DOMINODL, we save computations by considering only a small batch of previous elements that
are correlated with the new elements. The two sets are defined correlated if, in their sparse decom-
position, they have at least one common non-zero element. The time gained from considering fewer
previous training elements is used to consider a mini-batch of new training data (instead of a single
element as in ODL and CBWLSU).
The sparse coding step of DOMINODL employs batch OMP, selecting the maximal residual error δ in
(3.23) using a data-driven entropy-based strategy as described later in this section. At the end of each
iteration, DOMINODL also drops-off those previous training set elements that have not been picked
up after a certain number of iterations, Nu. The mini-batch drawing combined with dropping off
training elements and entropy-based criterion to control sparsity results in an extremely fast online
DL algorithm that is beneficial for real-time radar operations.
We initialize the dictionary D using a collection of K training set samples that can be randomly chosen
from Y (alternatively one can also use random vectors with a given distribution) and then perform
a sparse decomposition of Y with the dictionary D; the algorithm then scans the entire training set

sequentially. Define the mini-batch of Nb + 1 new training elements as YBt =
[
yl1 · · · ylNb+1

]
with

l1, · · · , lNb+1 ∈ Bt such that the index set Bt = {l : t ≤ l < t + Nb}. When t > L− Nb, we simply
take the remaining new elements to constitute this mini-batch1. We store the set of dictionary atoms
participating in the SR of the signals in YBt as DBt . Let the coefficient vectors associated with the SR
of YBt are indicated with XBt and

IXB = ∑
p∈Bt

xp (3.35)

being an indicator vector whose non-zero elements indicate the atoms of D being used by YBt .

Define YQt =
[
yl1 · · · ylt

]
with l1, · · · , lt ∈ Qt the collection of previous training elements with

the index set Qt = {l : 1 ≤ l < t− 1}. Consider YMt =
[
yl1 · · · ylNr

]
with l1, · · · , lNr ∈ Mt ⊂ Qt

as a randomly selected mini-batch of Nr previous elements. The coefficient vectors associated with
the SR of YMt are indicated with XMt and

IXM = ∑
l∈Mt

xl (3.36)

is an indicator vector whose non-zero elements indicate the atoms of D being used by YMt .

Define YAt =
[
yl1 · · · yl|At |

]
with l1, · · · , l|At| ∈ At where

At =
{

l : l ∈ Mt,
〈

IXBt

T, IXMt

〉
6= 0

}
⊂Mt, (3.37)

is a subset of previous training elements that are correlated with the mini-batch of new elements. In
order to avoid multiple occurrences of the same element in consecutive mini-batches, DOMINODL
ensures thatMt ∩Mt−1 = ∅ providing that a sufficient number of previous training set elements

1In numerical experiments, we observed that the condition t > L− Nb rarely occurs because DOMINODL updates the
dictionary and converges in very few iterations. The algorithm also ensures that the number of previous samples ≥ 2Nr

before the dictionary update. If this condition is not fulfilled, then it considers all previous training samples.
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is available. Let DAt be the set of dictionary atoms used for SR of YAt . Our new training set is
YCt = YAt ∪ YBt . Both mini-batches of new and previous elements are selected such that the entire
training set size (Nb + Nr) is still smaller than that of CBWLSU where it is Npt + 1 (see above on
CBWLSU explanation).

The dictionary update subproblem then reduces to considering only the sets YCt , DCt and XCt :

D̂Ct = argmin
DCt∈D

||YCt −DCt XCt ||2F. (3.38)

Assume that the sparse coding for each example is known and define the errors as

ECt = YCt −DCt XCt = [e1, · · · , eNr ]. (3.39)

We can update DCt , such that the above error is minimized, with the assumption of fixed XCt . A
similar problem is considered in MOD where error minimization is achieved through least squares.
Here, we employ weighted least squares inspired by the fact that it has shown improvement in con-
vergence over standard least squares [73]. We compute the weighting matrix WCt using the sparse
representation error ECt

WCt = diag
(

1
||e1||22

, ...,
1

||eNr ||22

)
, (3.40)

and then solve the following optimization problem

D̂Ct = argmin
DCt∈D

||(YCt −DCt XCt)W
1
2
Ct
||2F. (3.41)

This leads to the weighted least squares solution

D̂Ct = YCt WCt Y
T
Ct
(YCt WCt Y

T
Ct)
−1. (3.42)

The dictionary D is then updated with the atoms D̂Ct and its columns are normalized by their `2-
norms.

The D is then used for updating the sparse coding of YCt using batch OMP.Algorithm 4 summarizes
all major steps of DOMINODL.

Table 3.1 summarizes the important differences between DOMINODL and other related algorithms.
Like MOD and CBWLSU, DOMINODL uses weighted least squares solution in the dictionary
update. The proof of convergence for the alternating minimization method in MOD was provided
in [102] where it is shown that alternating minimization converges linearly as long as the following
assumptions hold true: sparse coefficients have bounded values, sparsity level is on the order of
O(M1/6) and the dictionary satisfies the RIP property. In [73], these assumptions have been applied
for CBWLSU convergence. Compared to CBWLSU, the improvements in DOMINODL include
mini-batch based data selection and data reduction via drop-off strategy but the update algorithms
remain the same. Numerical experiments in Chapter 4 suggest that DOMINODL usually converges
in far fewer iterations than CBWLSU.
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Algorithm 4: Drop-Off MINi-Batch Online Dictionary Learning (DOMINODL)
Input: Training set (Y), number of trained atoms (K), mini-batch dimension for new training data (Nb), mini-batch dimension

for previous training data (Nr), drop-off value (Nu), convergence threshold (χ ∈ R) and Residual error threshold (δ) for
SR

Output: Learned dictionary (D), sparse decomposition of the training set (X)

1 Generate the initial dictionary D of dimension K using training samples
2 Normalize the columns of Y and D by their `2-norms
3 Sparsely decompose Y with the initial dictionary using batch OMP
4 Loop

5 Gather a mini-batch of new training set elements YBt =
[
yl1 · · · ylNb+1

]
with l1, · · · , lNb+1 ∈ Bt such that the index set

Bt = {l : t ≤ l < t + Nb}
6 SR of YBt with the dictionary D using entropy-thresholded batch OMP
7 Store the set of atoms DBt participating in the SR of YBt

8 XBt ← coefficient vectors associated with the SR of YBt and indicator vector IXB ← ∑p∈Bt xp

9 YQt ←
[
yl1 · · · ylt

]
with l1, · · · , lt ∈ Qt as the collection of previous training elements with the index set

Qt = {l : 1 ≤ l < t− 1}
10 Randomly select a mini-batch of previous training set elements YMt =

[
yl1 · · · ylNr

]
with l1, · · · , lNr ∈ Mt ⊂ Qt

11 XMt ← the coefficient vectors associated with the SR of YMt and indicator vector IXM ← ∑l∈Mt xl

12 YAt ←
[
yl1 · · · yl|At |

]
with l1, · · · , l|At | ∈ At, where At =

{
l : l ∈ Mt,

〈
IXBt

T , IXMt

〉
6= 0

}
⊂Mt,

13 YCt ← YAt ∪ YBt and store DCt the atoms of D shared by Bt andMt

14 ECt ← YCt −DCt XCt = [e1, · · · , eNr ].

15 WAt ← diag
(

1
||e1 ||22

, ..., 1
||eNr ||22

)
16 D̂Ct ← D̂Ct = YCt WCt YT

Ct
(YCt WCt YT

Ct
)−1 and normalize its columns

17 Replace the updated atoms DCt into D and normalize its columns
18 Perform SR of selected signals used in the previous step using entropy-thresholded batch OMP
19 Eliminate previous training set elements which have not been used for the last Nu iterations
20 if ||

(
YCt −DtXCt

)
(Wi)

0.5 ||2F < χ then break
21 EndLoop

Table 3.1 – Comparison of DL steps

DL step K-SVD LRSDL ODL CBWLSU DOMINODL

Training method Batch Batch Online Online Online

Sparse coding method OMP FISTA LARS Batch OMP batch OMP

Dictionary update Entire D Entire D Entire D Entire D Partial D adaptively

Samples per iteration Entire Y Entire Y Yt YNt YCt

Optimization method SVD ADMM Gradient descent Weighted least squares Weighted least squares

Dictionary pruning Yes No Yes No No

Training-set drop-off No No No No Yes

Although we developed and tested DOMINODL on a highly correlated GPR dataset (see chapter 4),
this technique may be employed in other applications where real-time learning is necessary and the
signals are correlated. Our tests demonstrate that DOMINODL converges faster than other online DL
approaches (see chapter 4) because of the combined strategy of drawing more new elements for each
iteration, considering less previous elements in search for correlation and dropping off the unused
previous elements.
Computational complexity of DOMINODL has a very low order compared to other online ap-
proaches. Let us indicate the order of complexity as OCDL, with the subscript DL indicating the
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employed DL algorithm. As mentioned earlier, there are N atoms in the dictionary. Assume that
every signal is represented by a linear combination of Ks atoms, Ks � N. Empirically, among all
possible combinations of Ks atoms from N, the probability to have a common atom in the sparse
representation is Ks/N. Given L training elements, the number of training data which have a specific
atom in their representation is proportional to LKs/N. Suppose our mini-batch has elements that
reduce the number of training data by a factor β < 1 (depending on the value of Nb and Nr. Further,
assume that the dropping off step reduces the training set elements by a factor ρ < 1. The number
of used training data Lt in the tth iteration is proportional to βρtKs/N. Then, the worst estimate of
DOMINODL’s computational complexity is due to the sparse coding batch OMP which is of order
OCDOMINODL = O(LtN2) = O(βρtKsN) ≈ O(βρtN). This is much smaller than the complexity of
ODL (OCODL = O(N3)) or CBWLSU (OCCBWLSU = O(tN)) [35, 73].
Figure 3.1 illustrates the computational complexity of online DL approaches compared to DOMIN-
ODL. Here, we generally indicate with OCDL(t) and OCDL(k) the order of complexity in function
of the number of iterations and atoms of the dictionary. Figure 3.1(a) shows that, for fixed number
of iterations (t = 60), the general trend of complexity with respect to the increase in the number of
atoms (K) is similar for all algorithms. However, the complexity of ODL is higher than CBWLSU
and DOMINODL; the latter being the least complex. When the number of iterations is increased,
the complexity of ODL and CBWLSU have a similar increasing trend (see Fig. 3.1(b)). In case of
DOMINODL, its complexity is similar to the increasing trend of CBWLSU and determined largely
by Nb. When DOMINODL iterations begin accounting for Nr previous elements, its complexity stays
constant. The value of β changes for every iteration, while ρ depends on the data itself. In general,
after a few dozen of iterations, DOMINODL’s complexity always stays lower than CBWLSU.

Figure 3.1 – Computational complexity of online DL strategies for increasing number of (a) iter-
ations and (b) trained atoms.
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The proposed DL methods are heuristic, they do yield over-complete dictionaries but with no
theoretical guarantee of obtaining coherent dictionaries. Several state-of-the-art results that outline
DL algorithms with concrete performance guarantees require stronger assumptions on the observed
data.
An efficient sparse representation (SR) which accurately represents the scattering behaviors related
to soil type and targets serves a twofold purpose. First, it allows application of CS in reducing
sensing data and associated scan time. Second, the literature [69, 103] indicates that SR is effective
in extracting the mid- or high-level features in image classification. For example, in the context
of landmines classification with Ground Penetrating Radar, our prior work [40, 104] has shown
that frameworks based on sparse representation improve the classifier performance. SR has been
frequently applied to data from synthetic aperture radar (SAR) [105]), inverse SAR (ISAR) [36]) and
interferometric SAR (InSAR) [106] because these are not naturally sparse in the range-time domain.
In [107], it has been shown that an efficient SR for SAR image can lead to reducing computational
load in signal reconstruction from partial measurements. In the particular case of GPR, [14, 108–110]
have proposed CS-based imaging for various GPR waveforms.
Techniques to reduce the aquired radar samples using CS have been previously used to address
the bottleneck of long scan times in conventional radar systems. The estimation accuracy of target
parameters is greatly affected by radar’s dwell time [111], i.e., the time duration a directional
radar beam spends hitting a particular target. But, at the same time, this negatively affects the
ability of the radar to look at targets in other directions thereby prolonging the total scan time.
For example, [112] employs matrix completion to reduce scan time in a weather radar. In [113],
Xampling framework in slow-time domain is used to recover target parameters with fewer trans-
mit pulses. Similar techniques have also been shown to be useful in radar imaging applications [114].
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Chapter 4
Online dictionary learning for adaptive
GPR target recognition

In this section, we present a strategy for buried landmine classification using GPR range profiles (i.e
A-Scans). The proposed methodology is based on the combined application of different DL algo-
rithms (for improved sparse representation) and Support Vector Machine (for classification). More
particularly, we apply batch and online DL methods for generating dictionaries apt to sparsely repre-
sent our GPR measurements. The resulting sparse vectors are then employed as an input to a Support
Vector Machine (SVM) classifier (see see Appendix B for an explanation of how SVM works) which
discriminates between different types of mines and clutter. The results of the proposed approach will
be evaluated on experimental measurements from a GPR test field with buried landmine-simulants.
We will utilize all the DL algorithms described in chapter 3, including our novel Drop-Off MINi-
batch Online Dictionary Learning (DOMINODL).
The selection of the different parameters for the presented DL algorithms is crucial for their success in
sparsifying the data. Contrary to previous studies which determine DL parameters (number of itera-
tions, atoms, etc.) based on bulk statistics such as normalized root-mean-square-error (NRMSE) [41],
we consider statistical inference for parameter analysis. Our methods are based on Kolmogorov-
Smirnoff test distance [115] and Dvoretzky-Kiefer-Wolfowitz (DKW) Inequality [116, 117]
The comparison of K-SVD with three online DL algorithms - ODL, its correlation-based variant [73]
and DOMINODL - shows that online methods present distinct advantages in speed (in particular
DOMINODL) and low false-alarm rates, successfully improving the detection of mines with very
small RCS buried deep into clutter and noise.
Some recent studies [3, 118–120] employ state-of-the-art deep learning approaches such as a convolu-
tional neural network (CNN) to classify GPR-based mines data (see Appendix A) for an explanation
of how CNN works). A main limitation of these kinds of approaches is the necessity of large training
sets. The comparison with CNN illustrates that it has poorer performance in detection of small mines
than our online DL approaches. This may also be caused by the relatively small dimensions of our
training set which, even if sufficient for DL, may not meet the expected requirements for CNN [121].
We also show that the classification performance of online DL methods does not deteriorate seriously

49
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when signal samples are reduced. This may be specially convenient for application such as mine de-
tection, where time and computational cost
This chapter is organized as follows. We initially provide an overview of the GPR system, field cam-
paign and collected data sets. We then introduce our techniques for DL parameter selection and
finally we present classification results.

4.1 Experimental measurements

In this section, we first provide details of our GPR system and the field measurement campaign. We
then describe the procedure to organize the entire dataset for our application.

4.1.1 Ground Penetrating Radar System

The GPR system(see Fig. 4.1) is the commercially available Surface Penetrating Radar unit called
SPRScan manufactured by ERA Technology. It is an L-band, impulse waveform, ultra-wideband
(UWB) radar that is mounted on a movable trolley platform (see figure 4.1). Pulsed GPRs are more
effective in terms of offering penetration depth and wide bandwidth with respect to the standard
Stepped-Frequency Continuous Wave (SFCW) systems. The former is also more robust to electronic
interference and does not suffer from unequal balancing of antenna signals [122].

Figure 4.1 – The L-band GPR system is attached to a movable trolley platform. It is mounted
along a rail system and scans the target from above.

Table 4.1 lists the most important operational parameters of the system. The radar uses a 8× 8 cm
dual bow-tie dipole antenna for both transmit (Tx) and receive (Rx) sealed in a metallic shielding
filled with an internal absorber. The central frequency of the system ( fc) and its bandwidth (∆ f ) are
2 GHz. The pulse repetition frequency (PRF) and the sampling of the receiver ADC is 1 MHz. The
scanning system has a resolution of 1 cm towards the perpendicular broadside (or X direction) and 4
cm towards the cross-beam (Y direction). In our field campaigns, the SPRScan system moves along
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Table 4.1 – Technical characteristics of impulse GPR

Parameter Value

Operating frequency 2 GHz

Pulse repetition fre-
quency

1 MHz

Pulse length 0.5 ns

Sampling time 25 ps

Spatial sampling along
the beam

1 cm

Cross-beam resolution 4 cm

Antenna height 5-9 cm

Antenna configuration Perpendicular
broadside

Samples/A-scan 512

the survey area over a rail system which allows accurate positioning of the sensor head in order to
obtain the aforementioned resolution in X and Y (see also Section 2.2).
The transmit pulse of the GPR system is a monocycle (see 2.2). The scattering of UWB radar signals

from complex targets that are composed of a finite number of scattering centers can be described in
terms of the channel impulse response (CIR). Here, the CIR is considered as a linear, time invariant,
causal system which is a function of the target shape, size, constituent materials, and scan angle. The
CIR h(t) of a GPR target, with M scatterers, is expressed as a series of time-delayed and weighted
Gaussian pulses [123]

h(t) =
M

∑
m=1

αme−4π[(t−tm)/∆Tm]2 , (4.1)

where each scatterer located at range rm from the radar is characterized by the reflectivity αm, dura-
tion ∆Tm, relative time shift tm = 2rm/vs, where vs = c/

√
εr is the speed of the electromagnetic wave

in the soil, c = 3× 108 m/s is the speed of light, and εr is the dielectric constant which depends on
the soil composition and moisture.
The response of the target to the Gaussian monocycle is the received signal

y(t) = sT(t) ∗ h(t), (4.2)

also regarded as the range profile.
For each X/Y position, the system receives a radar echo (range profile) from the transmitted pulse.
In order to deal with the exponential signal attenuation during the propagation through the soil
medium, the dynamic range of the signal is enhanced via stroboscopic sampling [124–126]. This tech-
nique comprises integrating N receiver samples (generated by transmitting a sequence of N pulses) at
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the ADC receiver sampling rate but with a small time offset δ for each of them. To achieve the desired
stroboscopic sampling rate Ts, the time offset must be selected accordingly, i.e., δ = Ts/N [126]. Our
GPR system employs stroboscopic sampling to reach a pseudo sampling frequency of fs = 1/Ts = 40
GHz (much above the Nyquist rate) to yield the discrete-time signal y[n] = y(nTs). The receiver has
the ability to acquire a maximum of 195 profiles per second, each one consisting of 512 range sam-
ples. Prior to the A/D conversion, the signal is averaged to improve the signal to noise ratio (SNR).
A time-varying gain correction can be applied to compensate for the soil attenuation and increase
the overall dynamic range of the system. The receiver averages 100 range profiles for each antenna
position.

4.1.2 Test Field

We evaluated the proposed approach with the measurement data from a 2013 field campaign at
Leibniz Institute for Applied Geophysics (LIAG) in Hannover (Germany) [11]. Fig. 4.2 shows the test
field, for detailed ground truth informations.
The soil texture was sandy and highly inhomogeneous (due to the presence of material such as or-
ganic matter and stones), thereby leading to a high variability in the electrical parameters. The di-
electric constant at three different locations of the testbed was measured with a Time Domain Reflec-
tometer (TDR) to obtain an estimate of its mean value and variability. The average value oscillated
between 4.6 and 10.1 with 15% standard deviation and correlation length [11] of 20 cm. These big
variations in soil dielectric properties pose difficulties in mine detection. During the field tests, the
SPRScan system moved on two plastic rails with the scan resolution in the X and Y directions being
1 and 4 cm, respectively. The entire survey lane was divided in 1× 1 m sections (see Fig. 4.2), each
containing two targets in the center. The targets on the left and right sides of the lane were buried at
approximately 10 and 15 cm depths, respectively.
Our testbed contains standard test targets (STT) and simulant landmines (SIM) of different sizes and
shapes. An STT is a surrogate target used for testing landmine detection equipment. It is intended
to interact with the equipment in an identical manner as a real landmine does. An SIM has the
representative characteristics of a specific landmine class although it is not a replica of any specific
model [127]. In this paper, we study three STTs (PMA2, PMN and Type-72) and one SIM (ERA). All
of these test objects are buried at a depth of 10-15 cm in the test field [2]. For classification purposes,
we group PMN and PMA2 together as the largest targets while T72 mines are the smallest (Fig. 4.3).

4.1.3 Dataset Organization

The entire LIAG dataset consists of 27 survey sections (or simply, ”surveys”, see 4.2) of size 1× 1 m.
Every survey consists of 2500 range profiles. We divided the data into two sets: The training set (Y)
to be used for both DL and classification and the test set (YTEST): to evaluate the performance of the
classification.
The training set Y ∈ RM×L is a matrix whose L columns {yi}L

i=1 consist of sampled range profiles
yi =

[
y[0], · · · , y[M− 1]

]T of M range samples each. The profiles are selected from different surveys
and contain almost exclusively either a particular class of landmine or clutter. In total, we have
463, 168, 167 and 128 range profiles for clutter, PMA2/PMN, ERA and Type-72, respectively, see
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Figure 4.2 – The LIAG test field in Hannover (right) along with its layout (left). The scan direc-
tions X and Y of the radar are indicated on the photograph and layout. The radar
coverage region is indicated by solid red lines with a red circle showing the origin
of the scan. The white arrows in the photograph indicate specific lanes scanned in
the X direction that are separated in the Y direction by 4 cm. In the layout, each gray
dot represents the location of a buried test target. An individual survey area unit of
1 m × 1 m that contains 2 targets is also indicated on the layout (solid black lines)
and the photograph (dotted black lines). The solid black arrow over the middle rail
in the photograph is where the SPRScan was mounted.

Figure 4.3 – Details of the simulant landmines and the standard test target buried in the test field.

table 4.2. An accurate separation of these classes was very challenging because of the contributions
from the non-homogeneous soil clutter that often masked the target responses completely. A poor
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Table 4.2 – Training set classes

Target class Number of elements

Clutter 463

PMN 168

ERA 167

T72 128

selection would lead the DL to learn a dictionary that is appropriate for sparsely representing clutter,
instead of landmines. The test set YTEST ∈ RM×J is a matrix with J = 15000 columns {yTESTi}

J
i=1 that

correspond to sampled range profiles from 6 surveys, two for each target class. The test and training
sets contain data from separate surveys to enable fair assessment of the classification performance.
We denote by the matrices X ∈ RN×L and XTEST ∈ RN×J as the sparse representations of Y and YTEST,
respectively and K by the number of atoms of the learned dictionary D ∈ RM×K.

4.1.4 A note on signal pre-processing

We tested different pre-processing techniques on the range profiles coming from our dataset: back-
ground subtraction, Fourier transformation, DC component removal, Hilbert transform, etc. We ver-
ified the DL and classification performances with the aforementioned processing to note that the best
results were obtained with raw-data, time-gated on the area where landmines are usually located
adding DC-removal. The time gating helped to remove unwanted contribution from air/ground in-
terface and discard depths where targets are not present, this reduced our signal samples to 512 to
211 corresponding to depths of ca. 5 - 30cm. Techniques such background removal proved to be
effective for simulated data (see 2.3.2) but, in real measurements, the landmine response is so close
to the background clutter that eliminate the latter means cancelling out the contribution of the mine
as well.

4.1.5 Selecting the maximal residual error for SR

Selecting a value for the residual error threshold δ (see 3.2) for SR is usually not straightforward. This
value can be related to the amount of noise in the observed data but this information is not known.
The samples of our training set can be seen as realizations of a statistical process with an unknown
distribution and therefore one can associate to these realizations the concept of statistical entropy. We
compute the normalized entropy of the mean vector of all the training set samples as

E(µY) = −
M

∑
i=1

P(µyt) log P(µyt), (4.3)

where µY is the mean vector of all training samples, M is the number of features for each training
sample and P(·) is the probability mass function. In our case, P(·) is obtained as the normalized
histogram of µY. The E(µY) is an indicator of the randomness of the data due to noise.
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We use the value of E(µY) for the maximal residual error δ for the SR step inside the proposed DL
strategies and when performing SR of the test set.

4.2 Parametric evaluation of DL algorithms

The classification performance of our SR/DL based approach is sensitive to the input parameters
of DL algorithms thereby making it difficult to directly apply DL with arbitrary parameter values.
Previous works set these parameters through hit-and-trial or resorting to metrics that are unable to
discriminate the influence of different parameters [41].
In this section, we propose a method to investigate the effect of the various input parameters on the
learning performance and then pre-set the parameters to optimal values that yield the dictionary D
(for each DL method) optimized to sparsely represent our GPR data, therefore improving the quality
of the features for classification (i.e. the sparse coefficients).
Table 4.3 lists these input parameters. K-SVD and ODL take number of iterations Nt, number of
trained atoms K as input parameters while CBWLSU uses only K. DOMINODL parameters are the
dimension of the mini-batch of new (Nb) and previous (Nr) training elements for each iteration and
the drop-off value Nu which indicates after how many iteration the algorithm should discard each
unused training set element. We applied K-SVD, ODL, CBWLSU and DOMINODL separately on the
training set for different combinations of parameter values.

Table 4.3 – DL parameters

DL algorithm Input parameters

K-SVD Nt, K

ODL Nt, K

CBWLSU K

DOMINODL K, Nb, Nr, Nu

In order to compare the dictionaries obtained from various DL algorithms, we use a similarity measure
that quantifies the closeness of the original training set Y with the reconstructed set Ŷ obtained using
the sparse coefficients of the learned dictionary D. From these similarity values, empirical probability
density functions (EPDFs) for any combination of parameter values are obtained; we evaluate these
EPDFs using statistical metrics described in Section 4.2.2. These metrics efficiently characterize the
similarity between Y and Ŷ and lead us to an optimal selection of various DL input parameters for
our experimental GPR dataset.
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4.2.1 Similarity Measure

Consider the cross-correlation between a training set vector yi and its reconstruction using a learned
dictionary ŷi: The cross-correlation between yi and ŷi can be defined as:

ryi ,ŷi [l] =
+∞

∑
n=−∞

yi[n]ŷi[n + l] (4.4)

whereas its normalized version (normalized cross-correlation) is given by:

ryi ,ŷi [m] =
ryi ,ŷi [m]√

ryi ,yi [0]rŷi ,ŷi [0]
. (4.5)

For the vector yi, we finally define the similarity measure si as

si = max
m
|ryi ,ŷi(m)|, (4.6)

where a value of si closer to unity demonstrates greater similarity of the reconstructed data with the
original training set element (i).
We compute {si}L

i=1 for all vectors {yi}L
i=1, and then obtain the normalized histogram or empirical

probability density function (EPDF) of all similarity measures. In statistics, an EPDF is defined as
the distribution function associated with the empirical measure of a set of data (in our case a set of
similarity measures). We indicate the EPDF of a particular DL algorithm as psDL . Here, the subscript
DL represents the algorithm used for learning D e.g. "K-SVD", "LRSDL", "ODL", "CBWLSU" and
"DOMINODL", respectively.
Various parameter combinations for a specific DL method result in a collection of EPDFs. For a
given DL method, our goal is to compare the EPDFs by varying these parameters, and arrive at the
thresholds of parameter values after which the changes in psDL are only incremental. For instance,
Fig. 4.4 shows the EPDFs of {si}L

i=1 obtained from the GPR mines data where optimal parameters
for different DL methods were determined using the statistical methods described in the following
subsection. In the figure we also indicate which parameters were affecting each particular distribu-
tions (in parenthesis). We note that the online DL approaches (psODL , psCBWLSU and psDOMINODL ) yield
distributions that are more skewed towards unity than K-SVD (psK−SVD ). The distribution associated
to LRSDL is concentrated on a single peak with high values of similarity, nevertheless, it does not
exibith the extremely close to unity values of Online-DL distributions.

4.2.2 Statistical Metrics

We are looking for parameter values for which psDL is skewed towards unity and has small variance.
The individual comparisons of mean (µ) and standard deviation (σ) of EPDFs, as used in previous
GPR DL studies [41], are not sufficient to quantify the observed dispersion in the EPDFs obtained by
varying any of the parameter values. Some DL studies [41, 106, 128] rely on bulk statistics such as the
Normalized Root Mean Square Error (NRMSE) but these quantities are less sensitive to changes in
parameter values and, therefore, not so helpful in fine-tuning the algorithms. For this evaluation, we
will use three different metrics: the coefficient of variation, the Two-sample Kolmogorov-Smirnov
(K-S) distance and the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality.
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Figure 4.4 – Normalized histograms of similarity measure using the following optimal parame-
ters for the DL algorithm: Nt = 100, K = 640, Nb = 30, Nr = 10, and Nu = 10. See
Section 4.2.3 on the process to select these optimal values.

4.2.2.1 Coefficient of variation

We choose to simultaneously compare both mean (µ) and variance (σ) of a single EPDF by using the
coefficient of variation:

CV = σ/µ (4.7)

In our analysis, it represents the extent of variability in relation to the mean of the similarity values.

4.2.2.2 Two-sample Kolmogorov-Smirnov (K-S) distance

In the context of our application, it is more convenient to work with the cumulative distribution
functions (CDFs) rather than with EPDFs because the well-developed statistical inference theory al-
lows for convenient comparison of CDFs. Therefore, our second metric to compare similarity mea-
surements obtained by successive changes in parameter values is the two-sample Kolmogorov-Smirnov
(K-S) distance [115], which is the maximum distance between two given empirical cumulative distri-
bution functions (ECDF). Larger values of this metric indicate that samples are drawn from different
underlying distributions. Given two distributions s1 and s2 taken at L discrete points, suppose F̂s1

and Ĝs2 are their ECDFs of the same length and correspond to their EPDFs f̂s1 and ĝs2 , respectively.
Denote Ω as the set of L observations used to evaluate both distributions (in our case, L is the number
of range profiles in the training set). Then, the discrete two sample K-S distance is:

dks(F̂s1 , Ĝs2) = sup
i∈Ω
|F̂s1(i)− Ĝs2(i)|, (4.8)

where sup(·) denotes the supremum over all distances.
We first compute a reference ECDF (Ĝsref) for each DL algorithm with fixed parameter values. For
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our purposes, this reference ECDF will be obtained by a particular combination of input parameters
of the selected DL algorithm. Then, we vary parameter values from this reference and obtain the
corresponding ECDF F̂stest of similarity measure. Finally, we calculate the K-S distance dks of each
F̂stest with respect to Ĝsref as

dks = dks(F̂stest , Ĝsref) = sup
1≤i≤L

|F̂stest(i)− Ĝsref(i)|. (4.9)

For our evaluation, dks states how much the selection of certain input parameters of DL changes the
ECDFs of similarity values (i.e. how different is the result of DL) w.r.t. the reference one. In other
words, using this metric in combination with CV gives us information regarding the variation and
the quality of the obtained dictionary according to the selected input parameters.

4.2.2.3 Dvoretzky-Kiefer-Wolfowitz (DKW) inequality

As a third metric, we exploit the Dvoretzky-Kiefer-Wolfowitz inequality (DKW) [116, 117] which pre-
cisely characterizes the rate of convergence of an ECDF to a corresponding exact CDF (from which
the empirical samples are drawn) for any finite number of samples.
Let dks(Ĝs, Fs) be the K-S distance between ECDF Ĝs and the continuous CDF Fs for a random vari-
able s and L samples. Since Ĝs changes with the change in the L random samples, dks(Ĝs, Fs) is also a
random variable. We are interested in the conditions that provide desired confidence in verifying if
F and G are the same distributions for a given finite L. If the two distributions are indeed identical,
then the DKW inequality bounds the probability that dks is greater than any number ε, with 0 < ε < 1
as follows:

Pr
{

dks
(
Ĝs, F

)
> ε

}
≤ 2e−2Lε2

. (4.10)

The corresponding asymptotic result that as L → ∞, dks → 0 with probability 1 is due to the
Glivenko-Cantelli theorem [129, 130].
Consider a binary hypothesis testing framework where we use (4.10) to test the null hypothesis
H0 : F = Ĝ for a given ε. The DKW inequality bounds the probability of rejecting the null hypothe-
sis when it is true, i.e., the type I statistical error. Assuming that this error is smaller than a certain
confidence level α, the following inequality must hold with probability at least 1− α [131]:

dks
(
Ĝs, F

)
≤
√
− 1

2L
ln
(α

2

)
. (4.11)

Our goal is to use the DKW inequality to compare two ECDFs F̂stest and Ĝsref as in (4.9), to verify if
they are drawn from the same underlying CDF. By the triangle inequality, the K-S distance

dks(F̂stest , Ĝsref) = dks(F̂stest , F) + dks(Ĝsref , F), (4.12)

where G an F are the underlying CDFs corresponding to Ĝ and F̂. We now bound the right side using
DKW

dks(F̂stest , Ĝsref) ≤
√
− 1

2L
ln
(α

2

)
+

√
− 1

2L
ln
(α

2

)
=

√
− 2

L
ln
(α

2

)
, (4.13)
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which is the maximum distance for which F̂stest and Ĝsref are identical with probability 1 − α. The
DKW metric is the difference

dDKW =

√
− 2

L
ln
(α

2

)
− dL(F̂stest , Ĝsref). (4.14)

Larger values of this metric imply greater similarity betweem the two ECDFs; a negative value im-
plies that the null hypothesis is not true.
For our purposes, dDKW is an alternative way to state the variation of ECDFs respect to dKS, however,
dDKW also tell us if two distribution are coming from the same underlying CDFs or not (wether the
metric is positive or negative, i.e. fulfilling or not the null hypotesis) thus giving a stronger indication
on how the input parameters affect the final result of DL.

4.2.3 Parametric Evaluation results

In this subsection we evaluate the performance of the presented DL algorithms using the metrics ex-
plained in 4.2.2 for the reconstruction of the training set Y. There are various soil types and scenarios
for a landmine contaminated site. The LIAG test data provides an accurate representation of a prac-
tical scenario. Our metrics are general and derived from widely accepted statistical studies. Thus,
their relevance to similar scenarios is very likely.
We refer to the Table 4.3 to indicate what are the parameter which affect the presented DL approaches.
In particular, the number of iterations Nt is not relevant to CBWLSU and DOMINODL while the latter
requires additional parameters for the mini-batch dimensions and the iterations required to drop-off
unused training set elements.
Due to the notable amount of information provided by this evaluation, before explaining in detail its
results, we give a brief outlook of the final outcomes in table 4.4.

Table 4.4 – Outlook on the influence of the different
input parameters for the proposed DL ap-
proaches. I = important, S.I. = slightly im-
portant, N.U. = not used

Nt K Nb Nr Nu

K-SVD N.I. I. N.U. N.U. N.U.

ODL S.I. I. N.U. N.U. N.U.

CBWLSU N.U. I. N.U. N.U. N.U.

DOMINODL N.U. I. S.I. S.I. I.

Please note that we compute the K-S distance and the DKW metric for all methods with respect to
a reference distribution pref, as explained in 4.2.2. This reference is obtained using the following
parameters, as applicable: Nt = 1, K = 300, Nb = 30, Nr = 10 and Nu = 10.
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4.2.3.1 Influence of the number of iterations

Figures 4.5, 4.6 and 4.7 show the effect of Nt on the CV, K-S test distance (dks) and the DKW met-
ric (ddkw) for K-SVD and ODL and LRSDL. We have skipped CBWLSU and DOMINODL from this
analysis because they do not accept Nt as an input. For ODL, the CV remains relatively unchanged
with an increase in Nt. However, the K-SVD CV exhibits an oscillating behavior and generally high
values. In case of the K-S distance, ODL shows slight increase in dks while K-SVD oscillates around
a mean value that is higher than ODL. The DKW metric provides better insight: even though the
ODL distributions differ from pref with increase in the iterations, the null hypothesis always holds
because dDKW remains positive. The dDKW for K-SVD is also positive but much smaller than ODL.
It also does not exhibit any specific trend with an increase in iterations. We also observed a similar
behavior with the mean of similarity values. The influence of the number of iterations in LRSDL had
the same oscillating behaviour as in K-SVD but with larger variation. We conclude that the number
of iterations Nt does not significantly influence the metrics for both algorithms, and choose Nt = 100.

Figure 4.5 – (a) CV for K-SVD and ODL parameter analyses as a function of the number of itera-
tions Nt.

4.2.3.2 Influence of the number of trained atoms

Figs. 4.8, 4.9 and 4.10 compare all three metrics with change in the number of trained atoms K, a
parameter that is common to all DL methods. We observe that CV generally decreases with an
increase in K. This indicates an improvement in the similarity between the reconstructed and the
original training set. K-SVD shows an anomalous pattern for lower values of K but later converges
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Figure 4.6 – (b) K-S distancefor K-SVD and ODL parameter analyses as a function of the number
of iterations Nt.

Figure 4.7 – (c) DKW metric for K-SVD and ODL parameter analyses as a function of the number
of iterations Nt.

to a trend that is identical to other DL approaches. The K-S distance exhibits a linear change in the
the distributions with respect to the reference. Since dks quantifies the difference between the distri-
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butions rather than stating which one is better, combining its behavior with CV makes it evident that
an increase in K leads to better distributions of similarity values. The DKW metric dDKW , calculated
with the same reference, expectedly also shows a linear change. It is clear that, even a slight change
in K leads to more negative values of dDKW implying that the null hypothesis does not hold true.
This shows the significant influence of the parameter K on the distributions. It was interesting to see
a slight improvement for the coefficient of variation when using LRSDL with respect to the other
strategies. However, KS-distance and DKW metric indicated that the distributions of similarity
values for LRSDL were sensitive to the number of trained atoms only up to a certain value. The
value of K is finally chosen such that the dictionary is consistently overcomplete e.g. the number of
atoms is three times greater than the number of samples (K = 640 vs M = 211).

Figure 4.8 – CV for various DL algorithms as a function of the number of trained atoms K.

4.2.3.3 DOMINODL input parameters selection

It is difficult to evaluate DOMINODL EPDFs by varying all four parameters together. Instead, we
fix the parameter that is common to all algorithms, i.e. the number of trained atoms K, and then
determine optimal values of Nb, Nr and Nu.
Figure 4.11 shows the coefficient of variation CV of the distribution of similarity values as a func-
tion of DOMINODL parameters. The drop-off value Nu appears to have a greater influence with
respect to the mini-batch dimensions Nb and Nr. To select these parameters we made considerations
based on the computational time and the way the algorithm is initialized. The computational time of
DOMINODL is essentially independent of Nr and Nu but slightly increases with Nb. This was veri-
fied and expected because, with Nb we are also increasing the number of SR steps (see Algorithm 4)
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Figure 4.9 – K-S distance for various DL algorithms as a function of the number of trained atoms
K.

Figure 4.10 – DKW metric for various DL algorithms as a function of the number of trained atoms
K.

at every iteration which is the source of bulk of computations in DL algorithms [73]. Further, in order
to ensure that the correlation and the drop-off steps kick off from the very first iteration, DOMINODL
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should admit several new samples for each iteration thereby increasing Nb as well as the number of
previous elements accordingly. Taking into account these observations, we choose Nb = 30 Nr = 10
and Nu = 10.

Figure 4.11 – CV as a function of DOMINODL input parameters for K = 640 and Nu as (a) 2, (b)
5, (c) 8, and (d) 10.

According to the results of the parametric evaluation, we choose the following combination of "opti-
mal" parameters for testing our DL strategies: Nt = 100, K = 640, Nb = 30, Nr = 10, and Nu = 10.

4.2.3.4 Considerations on computational efficiency of DL algorithms

We used a MATLAB platform on an 8-Core CPU Windows 7 desktop PC to clock the times for DL
algorithms. The ODL algorithm from [35] is implemented as mex executable, and therefore already
fine-tuned for speed. For K-SVD, we employed the efficient implementation from [72] to improve
computational speed. Table 4.5 lists the execution times of the four DL approaches when using op-
timal input parameters. The LRSDL is the slowest of all while ODL is more than 4 times faster than
K-SVD. The CBWLSU provided better classification results but is three times slower than ODL. This
could be because the dictionary update step always considers the entire previous training set ele-
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ments that correlate with only one new element (i.e. there is no mini-batch strategy). This makes the
convergence in CBWLSU more challenging.
The DOMINODL is the fastest DL method clocking 3x speed than ODL and 15x than K-SVD. This
is because the DOMINODL updates the dictionary by evaluating only a mini-batch of previous ele-
ments (instead of all of them as in CBWLSU) that correlate with a mini-batch of several new elements
(CBWLSU uses just one new element). Further, DOMINODL drops out the unused elements leading
to a faster convergence. We note that, unlike ODL and K-SVD implementations, we did not use mex
executables of DOMINODL which can further shorten current execution times.From Table 4.5, the
reduction in DOMINODL computational time over K-SVD is ((25.8− 1.75)× 100)/25.8 ≈ 93%. The
reduction for ODL and CBWLSU are computed similarly as 8% and 36%, respectively.
The computational bottleneck of mines classification lies in the training times. In comparison, the
common steps of sparse decomposition and SVM-based classification during testing take just 0.4 s
and 1 s, respectively, for an entire survey (1 m × 1 m area with 2500 range profiles). Thus, time taken
per range profile in ca. 0.59 ms. The average scan rate of our GPR system is 0.19 m/s (or 1 cm/52.1
ms). This can go as high as 2.7 m/s (or 1 cm/3.61 ms) in other GPRs used for landmines application.
Therefore, the test times do not impose much computational cost.

Table 4.5 – Computational times for DL algorithms

DOMINODL CBWLSU ODL K-SVD

Time (seconds) 1.751 16.49 5.75 25.8

1 Blue denotes the best performance among all DL algorithms

4.3 Classification results

After selecting the input parameters of the proposed DL strategies (see table 4.4), we proceed by
using the obtained dictionaries for the sparse decomposition of both training and test sets. The re-
sulting sets of sparse coefficients are the input to the SVM classifier. Figure 4.12 resumes the proposed
methodology with a flow diagram, note that the labeled training set Y is used both for DL and clas-
sification. As mentioned in appendix B, the threshold C and the kernel function parameter γ for
SVM have been selected through cross validation. Our key objective is to assess wether online DL
algorithms (and in particular DOMINODL) lead to an improvement in the classification accuracy
over batch learning strategies or not. As a comparison with a popular state-of-the-art classification
method, we also show the classification results with a deep-learning approach based on CNN. Fi-
nally, we will show classification performances when the original samples of the range profiles are
randomly reduced.

4.3.1 Classification with Optimal Parameters

For a comprehensive analysis of the classification performance, we provide both classification maps
and confusion matrices for the test set YTEST using the optimal DL input parameters that we selected
following our parametric evaluation in Section 4.2. The classification maps depict the predicted class
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Figure 4.12 – Flow diagram which describe the proposed adaptive classification strategy

of each range profile of the survey under test. The pixel dimension of these maps is dictated by the
sampling of the GPR in X and Y directions (see Table 4.1). We stacked together 3 of the 6 surveys
from the test set YTEST where each survey had 2 buried landmines of a specific class (PMN/PMA2,
ERA and Type-72).
The support of the measurements on our learned dictionaries varies from 1 to 4. Due to coherency,
these few non zero elements may appear in the same position for different vector class but with
slightly different values. This proved to be enough for the classifier to correctly discriminate be-
tween different classes.
Figure 4.13 shows the classification maps for different DL methods along with the raw data at depth
15 cm. The raw data in Fig. 4.13(a) shows that only four of the six mines exhibit a strong reflectiv-
ity while the other two mines have echoes so weak that they are not clearly visible in the raw data.
Figures 4.13(b)-(d) show the results of the SR-based classification approaches using DL. All methods
clearly detect and correctly classify the large PMN/PMA2 mines. In case of the medium-size ERA,
the echoes are certainly detected as non-clutter but some of its constituent pixels are incorrectly clas-
sified as another mine. It is remarkable that the left ERA mine is recognized by our method even
though it cannot be discerned visually in the raw data. Most of the false alarms in the map belong to
the smallest Type-72 mines. This is expected because their small sizes produce echoes very similar to
the ground clutter. On the other hand, when T-72 is the ground truth, it is correctly identified.
Using accurate ground truth information, we defined target halos as the boundaries of the buried
landmines. The dimension of the target halos varied depending on the mine size. Let the number of
pixels and the declared mine pixels inside the target halo (for a certain class) be nt and nm, respec-
tively. Similarly, we denote the number of true and declared clutter pixels outside the target halo by
nc and nd, respectively. Then, the probabilities of correct classification (PCC) for each target class and
clutter are, respectively,

PCCmines =
nm

nt
, and PCCclutter =

nd

nc
. (4.15)

The PCC being the output of a classifier should not be mistaken as the radar’s probability of detection
Pd which is the result of a detector. A detector declares the presence of a mine when only a few pix-
els inside the halo have been declared as mine. PCC provides a fairer and more accurate evaluation
of the classification result. This per-pixel information can be easily used to improve the final detec-
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Figure 4.13 – (a) Raw data at 15 cm depth. The classification maps of the same area containing
6 buried landmines using an SR-based approach with dictionary learned using (b)
K-SVD, (c) ODL, (d) CBWLSU, (e) DOMINODL and (f) LRSDL algorithms with
optimally selected input parameters.

tion result. For instance, the operator could set a threshold for the minimum number of pixels to be
detected in a cluster so that a circle with center at the cluster centroid could be used as the detected
mine. However, such a circle may exclude some of the mine pixels leading to a potential field danger.
The per-pixel classification is then employed to determine the guard area around the mine circle.
A confusion matrix is a quantitative representation of the classifier performance. The matrix lists the
probability of classifying the ground truth as a particular class. The classes listed column-wise in
the confusion matrix are the ground truths while the row-wise classes are their predicted labels.
Therefore, the diagonal of the matrix is the PCC while off-diagonal elements are probabilities of mis-
classification. For the classification map of Fig. 4.13, table 4.6 shows the corresponding confusion
matrices for each DL-based classification approach. In general, we observe an excellent classification
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Table 4.6 – Confusion matrix with optimal DL input parameter selection.

Clutter PMN/PMA2 ERA Type-72

Clutter 0.892 0.044 0.25 0.37

K-SVD
PMN/PMA2 0.022 0.9381 0.166 0.074

ERA 0.021 0.017 0.472 0.018

Type-72 0.064 0 0.111 0.537

Clutter 0.435 0.061 0.111 0.351

LRSDL (SRC)
PMN/PMA2 0.155 0.289 0.319 0.259

ERA 0.172 0.372 0.361 0.278

Type-72 0.237 0.272 0.208 0.111

Clutter 0.871 0 0.194 0.333

ODL
PMN/PMA2 0.022 0.973 0.139 0

ERA 0.018 0.026 0.583 0.018

Type-72 0.088 0 0.083 0.648

Clutter 0.872 0.017 0.181 0.314

CBWLSU
PMN/PMA2 0.023 0.973 0.153 0

ERA 0.025 0.008 0.528 0

Type-72 0.08 0 0.138 0.685

Clutter 0.876 0.017 0.167 0.315

DOMINODL
PMN/PMA2 0.023 0.974 0.138 0

ERA 0.027 0.008 0.58 0

Type-72 0.077 0 0.11 0.685

1 Gray denotes the PCC value for a specified class and DL algorithm

of PMN/PMA2 landmines (∼ 98%), implying that almost every range profile in the test set which be-
longs to this class is correctly labeled. The Pcc for the clutter is also quite high (∼ 90%). This can also
be concluded from the classification maps where the false alarms within the actual clutter regions are
very sparse (i.e. they do not form a cluster) and, therefore, unlikely to be interpreted as an extended
target. As noted previously, most of the clutter misclassification is associated with the Type-72 class.
The ERA test targets show some difficulties with correct classification. However, most of the pixels
within its target halo are declared at least as some type of mine (which is quite useful in terms of
issuing safety warnings in the specific field area). This result can be explained by the fact that ERA
test targets (being simulant landmines, i.e. SIMs) do not represent a specific mine but have general
characteristics common to most landmines. The Type-72 mines exhibit a Pcc which is slightly higher
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with respect to ERA targets. This is a remarkable result because Type-72 targets were expected to be
the most challenging to classify due to their small size.
Conventionally, as mentioned in [88], LRSDL is associated with a sparse-representation-based clas-
sification (SRC) technique. However, applying this approach to our problem resulted in very low
accuracy (an average of ca. 20% across all classes as evident from Table 4.6) and semi-random clas-
sification maps (Fig. 4.13). This can be explained by the extreme similarity between the training set
examples of different classes; mines and clutter are only slightly dissimilar in their responses and
mine responses are generally hidden in the ground reflections. Each learned “block” Dc differed
only slightly from the other and, therefore, poor classification results are achieved with this dataset.
LRSDL won’t be used for further evaluations.
All DL algorithms used for our sparse classification approach show very similar results for the clutter
and PMN/PMA2 classes. However, online DL methods show higher PCC for the ERA and Type-72
targets with respect to K-SVD.
From Table 4.6, the detection enhancement using the best of the online DL algorithms for
PMN/PMA2 over K-SVD is ((0.974− 0.938) × 100)/0.938 ≈ 4%. The improvements for ERA and
T-72 are computed similarly as 23% and 28%, respectively.

4.3.2 Classification with Non-Optimal Parameters

In order to demonstrate how the quality of the learned dictionary affects the final classification, we
now show the confusion matrices for a non-optimal selection of input parameters in different DL
algorithms. Our goal is to emphasize the importance of learning a good dictionary by selecting the
optimal parameters rather than specifying how each parameter affects the final classification result.
We arbitrarily selected the number of trained atoms K to be only 300 for all DL approaches, reduce
the number of iterations to 25 for ODL and KSVD and, for DOMINODL, we use Nr=30, Nb=5 and
Nu=2. Table 4.7 shows the resulting confusion matrix. While the clutter classification accuracy is
almost the same as in Table 4.6, the Pcc for PMN/PMA2 landmines decreased by ∼ 10% for most of
the algorithms except ODL where it remains unchanged. The classification accuracy for ERA and
Type-72 mines is only slightly worse for online DL approaches. However, in the case of K-SVD, the
PCC reduces by ∼ 30% and ∼ 10% for ERA and Type-72, respectively. Clearly, the reconstruction and
correct classification of range profiles using batch algorithms such as K-SVD is strongly affected by a
non-optimal choice of DL input parameters. As discussed earlier in Section 4.2.3, this degradation is
likely due to the influence of K rather than Nt.

4.3.3 Comparison with Deep Learning Classification

The core idea of SR-based classification is largely based on the assumption that signals are linear
combinations of a few atoms. In practice, this is often not the case. This has led to a few recent
works [132] that suggest employing deep learning for radar target classification. However, these
techniques require significantly large datasets for training. We compared classification results of our
methods with a deep learning approach. In particular, we constructed a CNN because these networks
are known to efficiently exploit structural or locational information in the data and yield comparable
learning potential with far fewer parameters [133]. We modeled our proposed CNN framework as a
classification problem wherein each class denotes the type of mine or clutter. The training data set for
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Table 4.7 – Confusion matrix with non-optimal DL input parameter selection

Clutter PMN/PMA2 ERA Type-72

Clutter 0.853 0.07 0.305 0.222

K-SVD
PMN/PMA2 0.037 0.851 0.222 0.111

ERA 0.032 0 0.194 0.241

Type-72 0.077 0.078 0.277 0.426

Clutter 0.86 0.017 0.181 0.444

ODL
PMN/PMA2 0.016 0.973 0.097 0

ERA 0.022 0.008 0.638 0

Type-72 0.1 0 0.083 0.555

Clutter 0.887 0.078 0.319 0.352

CBWLSU
PMN/PMA2 0.019 0.877 0.097 0

ERA 0.018 0.043 0.541 0

Type-72 0.074 0 0.042 0.648

Clutter 0.888 0.078 0.319 0.352

DOMINODL
PMN/PMA2 0.019 0.877 0.097 0

ERA 0.018 0.043 0.54 0

Type-72 0.074 0 0.042 0.648

our CNN structure is the matrix Y (see 4.1.3). Building up a synthetic database is usually an option for
creating (or extending) a training set for deep learning applications. However, accurately modeling
a GPR scenario is still an ongoing challenge in the GPR community because of the difficulties in
accurately reproducing the soil inhomogeneities (and variabilities), the surface and underground
clutter, the antenna coupling and ringing effects, etc. Even though some applications have been
promising [134], this remains a cumbersome task. The input layer of our CNN took one-dimensional
range profiles with 211 samples. It was followed by two convolutional layers with 20 and 5 filters of
size 20 and 10, respectively. The output layer consisted of four units wherein the network classifies
the given input data as clutter or one of the three mines. There were rectified linear units (ReLU)
after each convolutional layer; the ReLU function is given by ReLU(x) = max(x, 0) [135].
The architecture of the CNN was selected through an arduous process of testing many combination
of layers/filters and hyperparameters which would lead to better accuracy during training. A deeper
network slightly increased the accuracy in the training phase but led to poorer performance when
classifying new data (i.e. the test set Ytest). Since our data are limited, adding more layers (i.e.
more weights) only led to overfitting and made the network incapable to generalize on new datasets.
A multi-dimensional CNN formed by clustering 2D and 3D data would have further reduced the
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training set. Augmenting the data was also envisioned but commonly used transformations such as
scaling/rotations are not useful in our case because the mines were always in the same inclination
and their dimension defines the class itself. We also attempted adding different levels of noise but
this did not lead to better results considering the available data are already very noisy.
We trained the network with the labeled training set Y, selecting ∼ 20% of the training data for
validation. Specifically, the validation set employed 100, 25, 25, and 25 range profiles for clutter,
PMN/PMA2, ERA and Type-72, respectively. We used a stochastic gradient descent algorithm for
updating the network parameters with the learning rate of 0.001 and mini-batch size of 20 samples for
2000 epochs. We realized the proposed network in TensorFlow on a Windows 7 PC with 8-core CPU.
The network training took 3.88 minutes. Figure 4.14 shows the classification map obtained using
CNN. The corresponding confusion matrix is listed in Table 4.8. We note that the CNN classifier
shows worse PCC than our SR-based techniques, particularly for ERA and Type-72 target classes.

Figure 4.14 – (a) Raw data at 15 cm depth. (b) Classification maps of the same area containing 6
buried landmines using CNN-based classification.

Table 4.8 – Confusion matrix for CNN-based classification

Clutter PMN/PMA2 ERA Type-72

Clutter 0.909 0.14 0.38 0.574

PMN/PMA2 0.036 0.807 0.181 0

ERA 0.022 0.053 0.319 0.056

Type-72 0.033 0 0.111 0.370
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4.3.4 Classification with Reduced Range Samples

We now analyze the robustness of our DL-based adaptive classification method to the reduction of
the number of samples in the raw data. Assuming the collected data YTEST is sparse in dictionary
D, we undersampled the original raw data YTEST in range to obtain its row-undersampled version
ỸTEST by randomly reducing the samples. We then applied the same random sampling pattern to
the dictionary D for obtaining the sparse coefficients. We also analyzed the CNN classifier when the
signals are randomly reduced in the same way. Figure 4.15 illustrates the classification map for all DL
approaches when the sampling is reduced by 50%. Tables 4.9,4.10 and4.11 show confusion matrices
when undersampling by 25%, 50%, and 75%.
In comparison to the results in Table 4.6 which used all samples of the raw data, the DL approaches

maintain similar classifier performance even when we reduce the samples by 75% (i.e. just 52 samples
in total). In contrast, the CNN classifier result which is already heavily compromised with a reduction
of 25%, fails completely for 50%and 75% sampling rate.
Reducing the number of signal samples when using a dictionary which minimizes the number of
non-zero entries in the sparse representation, still assures an exact reconstruction of the signal itself
and, consequently its correct classification. The features for classifying the traces are thus robust
to the reduction of the original samples. Deep learning strategies use the signal samples directly
as classification features. They also require enormous amount of data for training. Therefore, the
degradation in their performance is expected. From the confusion matrix in Table 4.11 indicates that
CNN has the highest PCC for ERA. This is a false trail because the network mis-classified almost
every pixel as ERA. Overall, DOMINODL and CBWLSU provide excellent results for small mines.
However, as seen earlier, CBWLSU is not very well-suited for real-time operation because of longer
execution times.
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Figure 4.15 – The classification maps of the same area containing 6 buried landmines using an
SR-based approach with dictionary learned using (a) K-SVD, (b) ODL, (c) CB-
WLSU, and (d) DOMINODL algorithms. The input parameters were optimally
selected and the number of samples were reduced by 50%. (e) The corresponding
result with reduced samples for CNN-based classification.
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Table 4.9 – Confusion matrices for different DL algorithms and CNN with 25% samples reduc-
tion

Clutter PMN/PMA2 ERA Type-72

Clutter 0.892 0.078 0.319 0.389

K-SVD
PMN/PMA2 0.021 0.921 0.153 0.055

ERA 0.021 0 0.486 0.018

Type-72 0.065 0 0.041 0.537

Clutter 0.872 0.088 0.208 0.315

ODL
PMN/PMA2 0.024 0.956 0.139 0

ERA 0.018 0.017 0.527 0.018

Type-72 0.087 0 0.111 0.666

Clutter 0.871 0.026 0.194 0.351

CBWLSU
PMN/PMA2 0.024 0.956 0.139 0

ERA 0.025 0.017 0.541 0

Type-72 0.79 0 0.125 0.648

Clutter 0.88 0.017 0.236 0.277

DOMINODL
PMN/PMA2 0.022 0.964 0.138 0

ERA 0.018 0.017 0.527 0

Type-72 0.078 0 0.097 0.722

Clutter 0.708 0.359 0.333 0.407

CNN
PMN/PMA2 0.026 0.41 0.097 0.018

ERA 0.236 0.21 0.5 0.426

Type-72 0.029 0.017 0.069 0.148
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Table 4.10 – Confusion matrices for different DL algorithms and CNN with 50% samples reduc-
tion

Clutter PMN/PMA2 ERA Type-72

Clutter 0.882 0.026 0.291 0.37

K-SVD
PMN/PMA2 0.018 0.947 0.153 0.037

ERA 0.021 0.026 0.5 0

Type-72 0.078 0 0.055 0.592

Clutter 0.868 0 0.208 0.333

ODL
PMN/PMA2 0.021 0.965 0.18 0.018

ERA 0.018 0.035 0.5 0

Type-72 0.09 0 0.111 0.648

Clutter 0.872 0.017 0.25 0.40

CBWLSU
PMN/PMA2 0.023 0.973 0.111 0

ERA 0.02 0.008 0.541 0

Type-72 0.083 0 0.097 0.592

Clutter 0.868 0.035 0.194 0.296

DOMINODL
PMN/PMA2 0.023 0.929 0.138 0

ERA 0.024 0.035 0.527 0.018

Type-72 0.083 0 0.138 0.685

Clutter 0.265 0.166 0.181 0.148

CNN
PMN/PMA2 0.062 0.096 0.069 0.018

ERA 0.645 0.728 0.736 0.75

Type-72 0.027 0.088 0.014 0.074
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Table 4.11 – Confusion matrices for different DL algorithms and CNN with 75% samples reduc-
tion

Clutter PMN/PMA2 ERA Type-72

Clutter 0.877 0.061 0.402 0.426

K-SVD
PMN/PMA2 0.02 0.912 0.125 0.074

ERA 0.021 0.026 0.333 0.018

Type-72 0.08 0 0.138 0.481

Clutter 0.862 0.02 0.319 0.296

ODL
PMN/PMA2 0.023 0.964 0.138 0.018

ERA 0.021 0.008 0.416 0.074

Type-72 0.091 0 0.125 0.611

Clutter 0.855 0.088 0.388 0.370

CBWLSU
PMN/PMA2 0.023 0.973 0.111 0

ERA 0.027 0.017 0.333 0.018

Type-72 0.091 0 0.125 0.611

Clutter 0.864 0.035 0.278 0.444

DOMINODL
PMN/PMA2 0.027 0.938 0.152 0

ERA 0.026 0.026 0.5 0

Type-72 0.082 0 0.069 0.556

Clutter 0.162 0.105 0.152 0.129

CNN
PMN/PMA2 0.015 0.061 0.013 0

ERA 0.647 0.71 0.708 0.759

Type-72 0.17 0.12 0.12 0.11



Chapter 5
Summary and conclusions

5.1 Existing challenges and proposed methodology

APM detection/classification with UWB GPR is an extremely difficult task. Undesired effects
coming from antenna ringing, strong clutter, inhomogeneous soil and surface roughness contribute
to distort the backscattered signals from the targets of interest. Moreover, APMs have a very weak
signal response due to their low permittivity contrast w.r.t. the soil. Various classification approaches
rely on databases of synthetic (or measured) signatures to discriminate between mines and clutter,
however, to create a general database which takes into account all possible GPR scenario parameters
and inhomogeneities is a cumbersome task. An alternative is to extract discriminative features from
a representative database which only includes the targets of interest.
In this work, our main goal was to extract relevant features from real GPR measurements of buried
APMs via sparse representation (SR) and exploit them for classification. In order that the SR will
efficiently represent the measurements, one must obtain an appropriate dictionary. The core of our
approach is to evaluate different dictionary learning (DL) strategies, using a representative set of
measurements (i.e. a training set) to learn the dictionary which will yeld characteristics features for
the classification of our GPR dataset.
In particular, we compare online-DL with batch-DL strategies and use the obtained sparse co-
efficients as input features of a Support Vector Machine Classifier which discriminates between
different types of mines and clutter. Among the tested DL strategies, we also introduce our novel
DOMINODL Online-DL algorithm which is able to learn faster than other DL methods and avoid
redundant use of the the training set by analyzing it in mini-batches. The employed DL algorithms
are K-SVD, LRSDL, ODL, CBWLSU and the proposed DOMINODL

5.2 Evaluation of DL algorithms

Our classification approach is sensitive to the input parameters of DL algorithms such as the dimen-
sion of the training set or the number of iterations. In 4.2 we propose a method to investigate the
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effect of these parameters on the learning performance in order to select optimal parameter values
that yield a dictionary which is optimized to sparsely represent our GPR data.
We use a similarity measure based on the cross correlation formula to quantify the closeness of the
original training set Y with the reconstructed one Ŷ, the latter being obtained by sparse reconstruction
with the learned dictionary. We generate Empirical Probability Density Functions (EPDFs) of similar-
ity measures for every proposed DL algorithms using a particular combination of input parameters
and analyze these EPDFs (and Cumulative Distribution Density Functions ECDFs) using statistical
metrics such as the coefficient of variation (CV), the 2-sample Kologorov Smirnoff-Distance (dks) and
the Dvoretzky-Kiefer-Wolfowitz inequality metric (ddkw). The latter two, being based on a distance
calculation, are computed according to a reference distribution.
We noticed that increasing the number of iterations (Nt) generates distributions with slightly better
metrics for ODL while K-SVD and LRSDL have an oscillating trend; with LRSDL having the lower
CV. However, the null hypotesis for the DKW metric always stays true for all of them meaning that
the change in the distributions is marginal. ODL, K-SVD and LRSDL are the only algorithms which
used Nt as an input.
The number of learned atoms (K) has a significant impact on all DL algorithms. Increasing K leads
to a smaller CV for all algorithms apart from LRSDL, where CV is almost constant w.r.t. K and lower
than for the others algorithms. The null hypotesis for ddkw fails very quickly meaning that distribu-
tions tend to change a lot for different values of K and produce EPDFs which are more skewed to
the unity value of normalized frequencies. LRSDL has a different behaviour since its ddkw tends to
stay constant after a certain number of training atoms indicating no particular benefits/change after
a certain increase in K
A dedicated evaluation of the DOMINODL input parameters (Nb,Nr, and Nu, being the dimension
of the mini-batch of new elements, of previous elements and the drop-off value) showed that Nu ap-
pears to have a greater influence w.r.t. Nb and Nr, however it is important to select Nb and Nr so that
the correlation steps start from the first iterations and the value of Nu so that the drop off happens
during the iterations.
The DOMINODL algorithm is the fastest DL method (3x speed than ODL and 15x than K-SVD),
LRSDL is the slowest needing ca. 17 minutes to train the dictionary.

5.3 Classification performances

In 4.3 we show the results of our DL-based classification approach on experimental GPR measure-
ments with buried landmine simulants, along with some additional comparison/tests. The classifi-
cation of the SR coefficients obtained with the different DL algorithms has been performed with a
Support Vector Machine classifier (SVM) using a Radial Basis Function (RBF) kernel. When using
optimal input parameters for the DL algorithms (obtained with the aforementioned evaluation) we
observe an excellent classification of PMN/PMA2 landmines (Pcc = 98%), and clutter (Pcc = 90%).
The classification maps show very sparse false alarms inside the clutter region which is unlikely to
be mistaken with targets.Most of the clutter mis-classification is associated with the Type-72 class.
ERA test targets are not always correctly labeledbut always detected as a threat. The Pcc is around
58% while, if we sum up wrong target declarations inside the ERA regions, we obtain a detection
rate above 80%. The Type-72 classification accuracy is higher with respect to ERA targets, despite



5.4: Final remarks and outlook 79

being the smallest mines in the set (Pcc = 68.5%). All DL algorithms used in our sparse classifica-
tion approach achieve very similar results for the clutter and PMN/PMA2 classes. However, online
DL methods show higher PCC for the ERA and Type-72 targets with respect to K-SVD and LRSDL.
For the latter, due to the class-discriminative nature of the obtained dictionary, the classification is
residual-based (see [40] ) resulting in a very poor accuracy. Therefore LRSDL was not used for further
classification tests.
Using non-optimal parameter values for the proposed DL algorithms leads to worse classification
performance, specially for K-SVD, demonstrating how important is to properly select DL input pa-
rameters for the training set at hand and how online-DL algorithms are more robust to a non-optimal
selection.
As an additional comparison with a state-of-the art classification algorithm, we use a Convolutional
Neural Network (CNN) trained with the same training set used for our DL-based approach. Clas-
sification results with CNN are poorer for the classification of clutter and landmines, particularly
ERA and T72 Pcc with an accuracy that degrades more than 27%. Using a deeper structure increased
slightly the accuracy in the training phase but led to poorer performance when classifying new data
(i.e. the test set Ytest). Since the amount of experimental data is limited, adding more layers (i.e. more
weights) only led to overfitting and made the network incapable of generalize on new datasets. We
also tested the implementation of a 3D CNN, by re-organizing the training sets in 3D clusters. How-
ever, we ended up with much less data examples (only 68 examples for training/test). The problem
of overfitting was more prominent and, in order for the network to yield any significant outcome,
we had to use only a single convolutional layer. The network was able to recognize some patterns of
mines (especially the bigger ones) but failed completely in the class declaration.
Our final evaluation consisted in assessing the classification performances when reducing the orig-
inal samples of the GPR range profiles to 25% 50% and 75%. This can be seen as a connection with
the classical Compressive Sensing applications where one uses incomplete (or compressed) measure-
ments to reconstruct the original signal. In our case we wanted to see how this reduction affects the
PCC of mines and clutter. CNN reduces drastically its classification accuracy even when the reduction
is only 25% and completely fails when increasing the rate of undersampling. DL-based approach per-
formances are definitely more robust to the sample reduction with mixed results depending on the
type of mines and rate of undersampling. As an example, classification accuracy using DOMINODL
drops only by 1.2% for clutter, 3.5% for PMN/PMA2, 8% for ERA and 12.9% for T72. Here, we even
obtained the dictionary on the full profiles and classify with the reduced ones.

5.4 Final remarks and outlook

The evaluation of the proposed DL algorithms for our experimental GPR dataset with buried land-
mine simulants showed that Online-DL algorithms can provide better reconstruction performances
than their batch counterparts (specially for smaller APMs) while being significantly faster. DOMIN-
ODL is the fastest one and employs only correlated mini-batches of previous and new training set
elements, dropping off unused ones.
Our approach is able to detect 4 different classes of APM responses, separating them well from clut-
ter; most of the classes are also correctly classified. DL approaches are robust to the reduction of
signal samples, outperforming a simple CNN classifier.
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This approach is not limited to GPR datasets and can be applied to other classification problems and
data types. Due to the extremely fast learning time of Online-DL strategies (specially DOMINODL),
real time learning of a constantly varying training set (updating it with new measurements) it is also
envisioned, paving the way for a fully adaptive classification approach.
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Appendix A
Convolutional Neural Networks

Neural networks, also known as Artificial Neural Networks (ANN), are computational models which
have been studied and developed since 1943 thanks to the early works of McCulloch, Warren and
Pitts [136]. ANN are widely used for speech recognition, computer vision, text processing and classi-
fication tasks in general; they belong to the branch of Machine Learning research called Deep Learning
which is experiencing a lot of contributions in the last years [137, 138]. The computational model of a
neural network is inspired by how the human brain process information; the basic computation unit
of an ANN is called neuron (or node). A neuron receives one or more inputs (x1...xn) and process
one output (y) based on an activation function f . Since real world data is generally not linear, and we
want the network to be able to learn this non-linearity behaviour, f is a non-linear function. The in-
puts of f are weighted according to the relevance that we want to give to each one of them, plus there
can be a bias weight b associate to an additional input. As an example, for a node with two inputs (x1

and x2) with their respective weights (w1 and w2) and a bias factor b we get the following activation
function: y = f (w1 ∗ x1 + w2 ∗ x2 + 1 ∗ b). Popular activation functions being used in pratice are the
sigmoid (σ(x) = 1

1+e−x ), the hyperbolic tangent (tanh(x) = (ex−e−x)
(ex+e−x)

) and the Rectified Linear Unit,
ReLu ( f (x) = max(0, x)). The simplest form of neural networks has a feed-forward structure in the
sense that the information moves only from the input to the output of the network (i.e. there are no
cycles or loops). In its simplest form, a feed-forward neural network has an input layer and an out-
put layer (Single layer perceptron), if it contains one or more layers of neurons in between the input
and the output layers (called hidden layers) it’s called Multi Layer Perceptron (MLP). Every layer
of the network contains a pre-defined number of neurons; the neurons in the input layer just pass
the data from the outside world to the network. In the hidden layer, the neurons compute the input
data and move it forward to the output layer or progress to more hidden layers. The neurons in the
output layer process the ouputs from the hidden layers to generate the output of the neural network.
The output nodes usually employ an activation function called softmax which ensures that the out-
put probabilities of the ANN sums up to 1. Figure A.1 shows a basic structure of a MLP with three
input node (and one bias node), one hidden layer (with one bias node), and two output nodes. The
training of a neural network is the process where we learn the weights for every node in every layer
according to a training data of which we know already the output (i.e. the training set is labeled, this
procedure is called supervised learning). Once the learning phase is over, the neural network is able to
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Figure A.1 – A example of Multi Layer Perceptron with one hidden layer

predict the output for new data (test data). A MLP can be trained using a backpropagation algorithm.
Initially the weights are assigned randomly, then the ANN is activated for each input in the training
set. The error between the known output and the correct one is propagated back to the previous lay-
ers and the weights are adjusted accordingly for every neuron, the most popular strategy to adjust
the weights is the gradient descent [137].
Convolutional Neural Networks (CNN) are known to efficiently exploit structural or locational infor-
mation in the data and yield comparable learning potential using far fewer parameters with respect
to ANN [132, 133]. In this subsection we briefly describe their basic structure and operation.
In ANN, the activations are generated by direct matrix multiplication; every neuron process all the
input from the previous layer, using a different weight for each one of them; the layers in an ANN
are fully connected. For high-dimensional datasets (such as time series or images) this can result in
an huge amount of weights, especially when the number of neurons in the network increases. This
will also slow down the computations and lead to a higher chanche of overfitting [135] CNN em-
ploys convolutional layers; these layers use convolution (instead of matrix multiplication) with filters
(also called kernels) of different dimension to extract different features of the data at every layer.
It is very common to use two-dimensional or three dimensional images (RGB) as an input of the
neural network for image classification purposes. However, since the data that we will deal with
are one-dimensional time series, we will refer to such representations for the following examples.
The convolution operation between a one dimensional time series x(t) and a filter f (t) filter can be
written like this:

y(t) = x(t) ∗ f (t) =
+∞

∑
a=−∞

x(a) f (t− a), (A.1)

where y(t) is the output of the convolution operation, in CNN, its samples are called activations. One
can apply different filters to the input data and obtain more outputs, i.e. channels; the dimension
of the filters and their number are one of the hyperparameters of a CNN layer. Two other important
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hyperparameters of a convolutional layer are the stride and the padding. The stride indicates the
amount of shift (in terms of data samples) between two different convolutions, while the padding
regulates what the amount of zeros to be added at the borders of the data before computing
convolution. Typical padding parameters are same (where we add zeros in order to have the number
of activations equal to the input data) and valid (where we add no zeros at the border and therefore
the output data ,i.e. the activations, will have a smaller dimension). Another building block of a
convolutional layer is the pooling which in many texts it is considered an additional layer, here we
will treat it as a block inside the actual convolutional layer. Pooling needs no hyperparameters
apart from the filter dimension and the stride, it can be seen as an additional filter which, instead
of performing the convolution operation with a filter, it just take the maximum (maxpool) or the
average of the considered activations from the previous layer. A convolutional neural network can
still include fully connected layers in its architecture and the softmax function for the output layer is
still used. The non-linear activation function (such as the ReLu) and the bias are still employed in
CNN.

Figure A.2 – An example of a typical CNN architecture

Figure A.2 shows an example of a typical architecture of a CNN with two convolutional layers, two
fully connected layers and a softmax function for the output. We assumed a valid padding in the
two convolutional layers and a softmax function for obtain a vector of four outputs. The relation that
gives the dimension of the next layer, according to the previous input size is given by:

nout =
nin + 2p− f

s
+ 1, (A.2)

where nin and nout are the input and output size respectively, p is the padding, f is the filter dimen-
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sion and s is the stride.
Neural networks have been previously employed with GPR data for classifying different types tar-
gets/structures: steel reinforcements [139], underground services [140], road evaluation [141], buried
landmines [120, 142] and more [143].



Appendix B
Support Vector Machines

Support Vector Machines are an useful tool for data classification [144–146]. Like neural networks
and many other classification approaches, SVM relies on the presence of a training set of known
observations and a test set of unknown ones. SVM work in two steps, first they learn a functional
from the labeled training set, then this functional is used to assign every observation to a particular
class. The functional works on a feature space (F ) of higher dimension respect to the original space of
the observations; here the data can be separated more easily. The second step is to use the obtained
functional to classify unknown data. It is obvious that, for satisfactory classification results, the
training set has to be representative of the test set that we want to classify. Let X ∈ Rmxl with xi ∈ Rm

and i = 1...l be a pre-defined collection of l labeled observations, namely a training set, SVM searches
for a functional which will assign a class to any given observation xi. Assuming a 2-class classifier
we have then:

f : Rm → R

 f (xi) ≥ 0, assign observation to class + 1

f (xi) ≤ 0, assign observation to class − 1
(B.1)

SVM moves the data into the aforementioned feature space (F ), by the means of a function Φ. In this
high-dimensional space, a simple hyperplane will suffice for the separation between different classes.
An hyperplane can be described as the set of points of x satisfying w · x − b = 0, with w being a
vector normal to the hyperplane and b an offset parameter.

Φ : Rn → F , x→ Φ(x) (B.2)

It is possible to map observations from a general set into a feature spaceF without having to compute
the mapping explicitly if only dot products are used between vectors in the feature space. These high-
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dimensional dot products can be computed within the original space, by means of a kernel function;
K is a Kernel if exists a mapping Φ such that:

K(xi, xj) = Φ(xi)
TΦ(xj) (B.3)

Where xi and xj are two observation vectors in the original set. One popular choice for kernel func-
tions is the Radial Basis Function (RBF).

K(xi, xj) = e(−γ||xi−xj||2) (B.4)

Being f (x) = wx + b the simple hyperplane which separates 2 different classes in the feature space
(with the associated parameters w and b) and being y ∈ Rl the indicator vector such that yi ∈ −1, 1
SVM solves the following optimization problem:

minimize
w,b,χ

1
2

wTw + C
l

∑
i=1

ξi

subject to yi(wTΦ(xi) + b) ≥ 1− ξi,

with ξi ≥ 0 (B.5)

Where C ≥ 0 is the penalty parameter of the error term. The solution of this problem can be tuned ac-
cording to the selection of the parameters C and, assuming we are using a RBF kernel, the parameter
γ. The correct values for C and γ are usually found by a cross-validation process. Cross validation is
about splitting the training set (for wich we know exactly the labels of each class) into two (or more)
subsets. One subset will be used to train the SVM, i.e. to obtain the functional f for each combination
pair of C and γ among an empirically selected range of values. The other subset(s) will be used as
validation to test the classification accuracy with the obtained functional. By refining the range of
values for C and γ one can find the combination which gives the best classification accuracy for one
particular training set. To further improve the selection of the parameters, one can use a n-fold cross
validation where the process is averaged over n different combinations of training and validation
vectors.
Support vector machines have been succesfully applied for GPR target classification [40, 41, 104] and
they will also be a key ingredient of our adaptive sparse-representation-based approach.
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