
Fault Injection Framework for
Time-Triggered Systems

DISSERTATION
zur Erlangung des akademischen Grades

eines Doktors der Ingenieurwissenschaften (Dr.-Ing.)

Dissertation vorgelegt von:

Onwuchekwa, Daniel Lucky

eingereicht bei der Naturwissenschaftlich-Technischen Fakultät
der Universität Siegen

Date of Oral Examination: 09. October 2020

Betreuer und erster Gutachter:
Prof. Dr. Roman Obermaisser, Universität Siegen

Zweiter Gutachter
Prof. Dr. Kristof Van Laerhoven, Universität Siegen

Prüfungskommission:
Prof. Dr. Roman Obermaisser

Prof. Dr. Kristof Van Laerhoven
Prof. Frank Gronwald
Prof. Malte Lochau

Acknowledgement

I wrote this thesis during my employment at the department of Embedded Systems, Uni-
versity of Siegen. I thank Prof. Dr Roman Obermaisser for providing the opportunity for
me to be a member of his team, and also for introducing me into the field of fault-tolerant
and safety-critical systems. His valuable remarks and criticism advanced my scientific
experience.

I would also like to thank my colleague, friend, and football teammate, Tobias Pieper.
He played a considerable role that enabled my integration in Germany. He supported my
settlement, taught me a lot about the German culture and introduced me to TSG Adler
Dielfen football team, a common interest for us. I would also like to thank all my colleagues
at the institute. Tobias, Hongie Fang and Maryam Palehvan have been an immense source
of inspiration and a pool of knowledge which was beneficial during my work. I thank my
colleague also Stefan Otterbach for ensuring that I get all the necessary tools required
for the success of this work. I also thank Simon Meckel, Veit Wiese, Michael Schmidt,
Hamidreza Ahmadian and Setareh Majidi for the pleasant atmosphere and harmony at
work.

Special thanks go to my dearest wife Jennifer, who has been very helpful in providing
constructive criticisms and exhibited patience on the way to reach my goal. She also
provided the required emotional support to carry out my work. I also thank my kids,
Giovanni and Gianna, for providing me with the necessary daily smiles and emotional
support. I also thank my sisters Eberechi and Ezinne for their encouragement. I would
also like to thank my in-laws for their presence and support in much needed time while
I carried out my work. Finally, I would like to thank my friends Ugochukwu Osabiku,
Oghneneochuko Obie, and Raymond Webilor for their support.

I

Zusammenfassung

In dieser Dissertation wird eine Methodik zur Verifizierung und Validierung des Ver-
haltens von integrierten System vorgestellt, die auf zeitgesteuerten Ethernet-Netzwerken
basieren. Der Determinismus und die ausreichende Bandbreite, die durch ein zeitgesteu-
ertes Ethernet-Netzwerk bereitgestellt werden, ermöglichen die Konstruktion sicherheits-
kritischer Systeme in verschiedenen Bereichen wie Eisenbahn, Luftfahrt, Gesundheit und
Automobil. Viele Anwendungen in diesen Bereichen stellen hohe Anforderungen an die
Zuverlässigkeit. Deshalb sind Verifizierung und Validierung in den meisten Phasen des
Entwicklungsprozesses sicherheitskritischer Systeme erforderlich.

Aufgrund der Komplexität von zeitgesteuerten Netzwerkprotokollen verwenden Entwick-
ler meist formale Methoden und Simulationen als Verifikations- und Validierungstechni-
ken. Allerdings verifizieren und validieren diese Methoden hauptsächlich bestimmte Funk-
tionen der zeitgesteuerten Protokolle und nicht das Verhalten des integrierten Systems.
Die Gründe dafür liegen in den Nachteilen dieser Ansätze. Die Modellierung komplexer
Systeme führt bei der Benutzung formaler Methoden zu einer Explosion des Zustands-
raums und Simulatoren modellieren bestimmte komplexe Funktionen nicht ausreichend.
Des Weiteren erfordern Simulatoren eine zusätzliche Verifizierung durch ein physikalisches
Netzwerk, um die Aussagekräftigkeit zu verbessern. Da die Evaluierung der physikalischen
Realisierung von zeitgesteuerten Ethernet-Netzwerken zu den besten Ergebnissen führt,
konzentriert sich diese Arbeit auf die Anwendung der Fehlerinjektion auf physikalische
Geräte.

Diese Dissertation schlägt ein neuartiges und topologieunabhängiges Cut-Through-Fehler-
injektions-Framework vor, welches das integrierte Systemverhalten von zeitgesteuerten
Ethernet-Netzwerken auswerten kann. Sie bietet zudem eine Lösung für die Fehlerer-
kennung in zeitgesteuerten Netzwerken während des Synchronisationsstarts, bevor eine
globale Zeit festgelegt wird. Darüber hinaus werden experimentelle Verfahren und Ergeb-
nisse diskutiert, die die Verwendung des Fehlerinjektions-Frameworks für die Bewertung
einer Auswahl verschiedener Anwendungsfälle demonstrieren. Die hier durchgeführten
Experimente bestätigen, wie das neuartige Framework andere zeitgesteuerte Ethernet-

II

0.0 Inhaltsverzeichnis

Frameworks übertrifft, indem es die kollektiven Anforderungen erfüllt. Hierzu gehören
geringe Störanfälligkeit, Portabilität und die Abstraktion der Fehlerinjektionskomponen-
te aus dem zu testenden Netzwerk.

Page III

Abstract

This thesis presents a methodology and tool for verifying and validating the integrated
system behaviour of time-triggered Ethernet networks. The determinism and sufficient
bandwidth provided by time-triggered Ethernet network make it appealing for building
safety-critical systems in different domains such as railway, aviation, health, and auto-
mobile. Many applications in these domains impose stringent dependability requirements.
Therefore, verification and validation are often required at most stages of the development
process when designing these systems.

Due to the complexity of time-triggered network protocols, design engineers mostly employ
formal methods and simulations as the verification and validation techniques. However,
these methods mainly verify and validate only certain functions of the time-triggered
protocol and not the integrated system behaviour. The reasons stem from the downsides of
these approaches. The formal method suffers from a state-space explosion when modelling
complex systems, and simulators do not sufficiently model certain complex functionality.
Simulators also require cross-verification from a physical network to gain better confidence.
Since evaluating the physical realisation of time-triggered Ethernet networks results in
the best confidence levels, this work then focuses on the use of fault injection on physical
devices for this purpose.

This work proposes a novel and topology independent cut-through fault injection frame-
work that can be used to evaluate the integrated system behaviour of time-triggered Eth-
ernet networks. This work also describes a technique that can be used for failure detection
in time-triggered networks during the synchronisation startup before the establishment of
global time. It furthermore presents a discussion of experimental procedure(s) and results
that demonstrate the use of the fault injection framework for the evaluation of a selection
of different use cases. The Experiments carried out herein confirms how the novel fault
injection framework surpasses other time-triggered Ethernet frameworks by satisfying a
set of collective requirements which mainly include low-intrusiveness, portability, and the
abstraction of fault injection component from the network under test.

IV

Contents

Acknowledgement I

Zusammenfassung III

Abstract IV

Table of Contents V

1 Introduction 1
1.1 Context and motivation . 1
1.2 Objectives and contribution . 3
1.3 Thesis structure . 5

2 Background Theory 7
2.1 Real-time systems . 7
2.2 dependability of a system . 8

2.2.1 Means to attain dependability in a system 8
2.2.2 Threats to the dependability of a system 9
2.2.3 Attributes of the dependability of a system 10
2.2.4 Redundancy . 11
2.2.5 Methods of dependability evaluation 12
2.2.6 Safety . 13
2.2.7 Safety-criticality system . 13

2.3 Verification and validation . 14
2.4 Fault injection . 14

2.4.1 Fault injection categorisation . 15
2.4.2 Fault injection environment . 16
2.4.3 Modelling a fault injection framework 17
2.4.4 Types of fault injection . 19

2.5 Concept of deep learning . 21
2.5.1 Machine learning . 21
2.5.2 Deep learning . 22

3 Time-Triggered Ethernet communication 26
3.1 Ethernet . 27

3.1.1 Open system interconnection layers 27
3.1.2 Key characteristics of Ethernet . 28

V

TABLE OF CONTENTS

3.1.3 Components of Ethernet . 30
3.1.4 Absence of determinism in Ethernet 31

3.2 Time-triggered control . 31
3.2.1 Clock and global time . 32
3.2.2 Clock offset . 33
3.2.3 Time-Triggered system . 34

3.3 TTEthernet system . 34
3.3.1 TTEthernet frame structure . 36
3.3.2 Fault tolerant clock synchronization 37
3.3.3 TTEthernet startup and restart service 40

3.4 Time sensitive networking . 43
3.4.1 Background on precision time protocol and profile 45
3.4.2 Generalized precision time protocol 49
3.4.3 Start-up time . 50

4 Related Work 55
4.1 Requirement . 55
4.2 Fault injection tools . 58
4.3 Network verification methods . 61
4.4 Related works on the verification of network protocols 63

4.4.1 Verification and validation of TTEthernet 65
4.4.2 Verification and validation of TSN 68

4.5 Summary of related works . 69

5 System Model of Fault Injection Framework 72
5.1 System model . 72

5.1.1 Fault hypothesis . 73
5.2 TRAITOR in TTEthernet . 74

5.2.1 Architectural overview of TRAITOR 75
5.2.2 Fault injector component . 78
5.2.3 Observation probe . 80
5.2.4 Data collector/analyser . 81
5.2.5 Controller . 81
5.2.6 Monitor . 82

5.3 TSN fault injection framework . 83
5.4 FPGA block diagram design . 83
5.5 Software design . 84
5.6 TRAITOR operation summary . 86

6 Implementation 88
6.1 Fault injection component . 88
6.2 Receiver logic . 89

6.2.1 Retriever logic . 90
6.2.2 Corruption state . 93
6.2.3 Omission state . 95
6.2.4 Masquerading state . 95
6.2.5 Babbling Idiot state . 97

Page VI

TABLE OF CONTENTS

6.2.6 Delay failure state . 98
6.2.7 Link failure State . 99
6.2.8 Crash failure State . 99
6.2.9 Time synchronisation failure state 100
6.2.10 Stuck-At failure . 100

6.3 TSN implementation . 100

7 Experiments, Results and Analysis 102
7.1 Experiment goals . 102
7.2 TTEthernet fault injection . 103

7.2.1 Usecase description and experiment setup 104
7.2.2 Results and discussions . 105
7.2.3 Conclusion . 108

7.3 Fault containment against babbling idiot failure 108
7.3.1 Usecase description and experiment Setup 109
7.3.2 Results and discussions . 110
7.3.3 Conclusion . 114

7.4 Deterministic communication in the railway domain 116
7.4.1 Fault assumption . 118
7.4.2 Usecase description . 118
7.4.3 Experiment setup . 119
7.4.4 Results and discussions . 122
7.4.5 Conclusion . 126

7.5 Failure detection in TSN startup using deep learning 128
7.5.1 Usecase description and experiment setup 129
7.5.2 Results and discussions . 130
7.5.3 Conclusion . 131

7.6 Experiment summary . 133

8 Conclusion and Perspective 134
8.1 Features and advantages of TRAITOR . 134
8.2 Significance of TRAITOR . 135
8.3 limitation . 136
8.4 Future work . 136

Page VII

List of Figures

Fig. 1.1 Thesis structure . 6

Fig. 2.1 The fundamental chain of dependability and security threats [Avizienis
et al., 2004] . 10

Fig. 2.2 Fault Injection Category . 16
Fig. 2.3 Basic components of a Fault injection framework 17
Fig. 2.4 Global framework depicting the applicability of FARM model, [Benso

and Prinetto, 2003]. 18
Fig. 2.5 Model representation of a neural network. 23
Fig. 2.6 A network of two neurons [leavingbio, 2019]. 24

Fig. 3.1 The Ethernet frame format . 28
Fig. 3.2 An example structure of the Time-triggered network 32
Fig. 3.3 The PCF frame format . 37
Fig. 3.4 Synchronization Master state machine. 42
Fig. 3.5 Illustration of IEEE 802.1Qbv transmission selection 46
Fig. 3.6 PTP timing diagram for synchronization message exchange 49
Fig. 3.7 PTP link delay measurement . 50
Fig. 3.8 MDSyncSendSM state machine . 51
Fig. 3.9 MDSyncReceiveSM state machine . 52
Fig. 3.10 Best master clock algorithm state machines interelationships 53

Fig. 5.1 Overview of System Model . 73
Fig. 5.2 System Architecture of the fault injection framework 75
Fig. 5.3 A typical redundant TTEthernet setup 76
Fig. 5.4 Simplified illustration of the fault injection framework on one channel. 77
Fig. 5.5 Fault Injector Model. 78
Fig. 5.6 Zedboard with an Ethernet FMC addon. 79
Fig. 5.7 High-level Architecture of a Graphical User Interface. 82
Fig. 5.8 Block Diagram of FI design on FPGA. 84
Fig. 5.9 Use case diagram of TRAITOR controller. 85
Fig. 5.10 Modules of the controller software. 86
Fig. 5.11 Class diagram of the captureModule. 87

Fig. 6.1 Cascade composition of RecL and RetL. 89
Fig. 6.2 RetL state machine. 92
Fig. 6.3 EIS state machine. 94

VIII

VERZEICHNISSE

Fig. 6.4 Inter frame gap illustration between TT frames. 97
Fig. 6.5 Example illustrating crash failure . 100
Fig. 6.6 802.1Q frame structure . 101

Fig. 7.1 Single Hop Non-redundant network connected to a monitoring station 104
Fig. 7.2 ILA illustration of Golden run . 106
Fig. 7.3 ILA illustration for delay fault of 1µs 107
Fig. 7.4 Experimental setup for Babbling Idiot Fault injection... 110
Fig. 7.5 Virtual Link 2 (End system 2 to End system 3) observation for Jitter. 113
Fig. 7.6 Virtual Link 2 (End system 2 to End system 4) observation for Jitter. 113
Fig. 7.7 Virtual Link 3 (End system 4 to End system 1) observation for Jitter. 114
Fig. 7.8 Virtual Link 5 (End system 2 to End system 4) observation for Jitter. 115
Fig. 7.9 Train composition . 118
Fig. 7.10 Train Consist network . 119
Fig. 7.11 Train network setup based on TTEthernet 121
Fig. 7.12 Effect of fault on Average Latency for TCN-ETB/ECN 123
Fig. 7.13 Effect of fault on Jitter for TCN-ETB/ECN 124
Fig. 7.14 Effect of fault on Average Latency for TCN-TTEthernet 126
Fig. 7.15 Effect of fault on Jitter for TCN-TTEthernet 127
Fig. 7.16 Experimental setup for data acquisition 130
Fig. 7.17 Results of neural network classification of failure. 131
Fig. 7.18 Results showing neural network score for corruption. 132

Page IX

List of Tables

Tab. 3.1 Variant fault tolerant median for computing correction value 39
Tab. 3.2 Time-Sensitive Networking Standards 45

Tab. 5.1 Illustration on how the frame injection, frame Delay and Jamming can
be used to implement the different failure modes. 80

Tab. 5.2 Possible Fault locations . 81
Tab. 5.3 Relationship between number of bits supported by RGMII and network

speed . 84

Tab. 7.1 Results of Corruption Failure (FER = 3) 105
Tab. 7.2 Results of Omission Failure (FER = 3) 106
Tab. 7.3 Experimental Measurement - Golden run scenario and BIF injected

with a payload size(100B) and BAG (0.015s) 111
Tab. 7.4 VLAN profile for TCN based on ETB/ECN 120
Tab. 7.5 Virtual Link profile for TTEthernet use-case for Railway 121
Tab. 7.6 Experiment results for TCN-ETB/ECN 122
Tab. 7.7 Experiment results for TCN-TTEthernet 125
Tab. 7.8 Overview on the fulfilment of experimental goals 133

X

Chapter 1

Introduction

1.1 Context and motivation

Today’s world is currently experiencing the growing demand for embedded devices for
applications in different sectors such as in aviation, health, railway and the military. The
placement of these embedded devices is often done in a distributed fashion. As a con-
sequence, computations are carried out locally on embedded devices that are placed in
multiple locations. For example, let us consider a railway use case, where several Elec-
tronic Control Units (ECUs) are placed in different locations inside a railway vehicle. Each
ECU is responsible for handling certain applications such as the Heating, Ventilation, and
Air Conditioning (HVAC) system, door system, brake control, and entertainment system.
These systems communicate with a central controller which issues control commands.
This kind of system is a distributed system since each node performs local computations
and also interacts with a central controller.

The communication infrastructure used to coordinate the interaction between devices that
are located in different parts of the railway vehicle use-case and its controller is a distrib-
uted communication system. In the railway use-case, it can be observed that there is a mix
of applications with different safety and real-time requirements. For instance, the door
controller has higher safety and real-time constraint compared to the entertainment sys-
tem. Therefore, embedded system designers tend to consider communication systems that
satisfy these requirements. The current trend is towards time-triggered communication
based on Ethernet that satisfies mixed-criticality safety requirements. The TTEthernet
and the Time-Sensitive Networking (TSN) are examples of time-triggered communica-
tions that are based on Ethernet. These protocols satisfy mixed-criticality requirements
by providing spatial and temporal separation, at the same time efficiently utilising avail-

1

Chapter 1.1 Context and motivation

able bandwidth, in addition to satisfying real-time constraints. This thesis was motivated
by a project titled "SAFE architecture for Robust distributed Application Integration in
roLling stock" (SAFE4RAIL) [Safe4RAIL, 2018] which developed concepts for the dis-
tributed communication platform, based on deterministic Ethernet communication. The
distributed communication platform is named "Drive-by-Data" (DBD) in the SAFE4RAIL
project.

The TTEthernet communication protocol has been used in the avionic industry and was
standardised in 2010 [AS6802, 2011]. While the TSN is a group of standards in which all
of the sub-standard is not yet completed as of today. Generally, time-triggered Ethernet
networks provide the following advantages:

• Increased bandwidth for safety applications: Time-triggered networks based on Eth-
ernet have the potential to provide more bandwidth compared to other protocols.
For example, in the railway use case, Ethernet based communication provides more
bandwidth compared to existing Train Communication Network (TCN), especially
for the safety functions.

• Reduced complexity: The reduced complexity provided by time-triggered Ether-
net networks can be illustrated with the railway example which consists of differ-
ent protocols for high criticality applications and low safety-criticality applications.
Currently, the Wire Train Bus/Multifunction Vehicle Bus (WTB/MVB) are used
to implement safety functions while an Ethernet-based network named the Ether-
net Train Backbone/Ethernet Consist network (ETB/ECN) is used for applications
with large bandwidth requirements such as the entertainment systems. There is
increased complexity in the maintenance and management of the mixed network.
Hence the need for TTEthernet and TSN.

• Reduced Maintenance cost: There is a high cost incurred in maintaining multiple
communication platforms as opposed to a single platform. Therefore, hosting all
train applications on the same network would yield reduced cost for maintenance.

• Reduced weight: Time-triggered Ethernet networks host network traffic from ap-
plications with multiple safety-criticality levels on a single link. This feature avoids
the traditional use of multiple wires for applications with different safety levels,
hence the overall weight of all wires is reduced.

• Low latency and Jitters for message transmissions.

These benefits of time-triggered Ethernet networks are the reasons why it is a suitable
candidate for railway, avionic, and automotive applications. Most verification and val-

Page 2

Chapter 1.2 Objectives and contribution

idation activities of the time-triggered protocols carried out to this day focus on formal
methods and simulations. These methods mainly verified and validated certain functions
of the protocol and not the integrated system behaviour. Formal method suffers from
a state-space explosion, and are therefore constrained to modelling only a limited set
of behaviour. The approach of using simulators for verification and validation requires
cross-verification from a physical network to gain better confidence. Certain complex
functionality may not be sufficiently modelled in simulation, which poses a question of
fidelity for the simulator. For this reason, verification of physical prototypes provides
more confidence than formal methods and simulation. Dependability evaluation of a
physical prototype can be achieved by fault injection. Verification and validation using
physical fault injection for network protocols is not a new technique. However, a suitable
framework that uses physical fault injection for time-triggered Ethernet networks such as
TTEthernet and TSN to test for the variety of failures covered by major safety standards
such as the IEC 61508 [IEC61508, 2010] remains unrealised. Considering the anticipated
increase in the deployment of time-triggered Ethernet networks for different application,
a verification and validation tool that covers a broad range of failures that can test the
integrated services of time-triggered Ethernet networks including their synchronisation
services is required.

In time-triggered networks, the correctness of the entire protocols depends on the syn-
chronisation service. A major problem is that it is illogical to rely on the global time base
before the completion of the startup process to implement diagnostic protocols to detect
faulty network components. This is because the global time base is only established after
the startup process. The early detection of failed components during startup would facilit-
ate early activation of diagnostic services, and ensure that fault removal implementations
are triggered earlier. Thus, there is the need to implement a solution to handle failures
before the completion of the startup.

1.2 Objectives and contribution

This work aims at the research of fault injection techniques capable of verifying and
validating the integrated system behaviour of time-triggered Ethernet networks such as
TTEthernet and TSN, providing low intrusion and high confidence level. In addition, the
work strives to implement a solution to failure detection during synchronisation startup
before a global time base is established. In this work, a new fault injection framework
named TRAITOR (cuT-thRough fAult InjecTiOn fRamework) for time-triggered Ether-
net networks is proposed. TRAITOR is designed and implemented to induce the failures

Page 3

Chapter 1.2 Objectives and contribution

listed in IEC 61508. This work enriches the sparse literature in the verification and
validation of time-triggered Ethernet networks using physical fault injection. More in-
sight into the integrated behaviour of the fault-tolerant implementation of time-triggered
Ethernet networks during failure scenarios is desired. TRAITOR is aimed at validating
time-triggered Ethernet network protocol implementations to assist in the final validation
phase of systems designed on top of these protocols. TRAITOR is aimed at satisfying
the following requirements:

1. The ability to target the physical execution of the distributed time-triggered protocol
encompassing the combined software and hardware implementation. Time-triggered
Ethernet networks require the combined operation of a distributed software and
designated hardware components. Fault injection frameworks are often aimed at
validating specific hardware components or software that are considered as a single
unit. TRAITOR is required to target the protocol operation as a whole and not
individual hardware or software components. Therefore, the required target domain
is the network protocol.

2. TRAITOR is required to target the integrated services of time-triggered Ether-
net networks, and the protocols of these networks comprise multiple services. For
instance, TSN comprises several sub-protocols such as protocols for synchronisa-
tion, bridges and bridged networks, and frame replication and elimination. Like-
wise, TTEthernet comprises sub-services such as clock synchronisation, and startup
service. TRAITOR is required to target the integrated behaviour of all services
provided by time-triggered Ethernet networks.

3. TRAITOR is required to target the physical implementation of time-triggered Eth-
ernet networks. The abstraction level of TRAITOR is not aimed at simulation or
formal modelling but the physical implementation.

4. TRAITOR is required to be low intrusive. The addition of TRAITOR to the Net-
work Under Test (NUT) should not affect its operation. TRAITOR should not
introduce noticeable delays to the NUT that will affect its mode of operation.

5. TRAITOR is required to abstract the fault injector component from the NUT. Most
physical fault injection frameworks require modification of the network components
under test to achieve error injection, but herein TRAITOR realises the concept for
a physical fault injection framework that does not require such modifications.

6. It is required for TRAITOR to be portable to multiple applications utilising time-
triggered Ethernet networks as the underlying communication platform. Another
dimension to the portability requirement is the applicability of TRAITOR to im-

Page 4

Chapter 1.3 Thesis structure

plementations by multiple vendors. TRAITOR is required to be developed on the
concept that different implementations of time-triggered Ethernet networks can be
tested without the need to modify vendor-specific implementations or applications.

7. Finally, TRAITOR is required to deliver a technique to diagnose failures during
the startup of synchronisation under different failure scenarios. The applicability of
TRAITOR in data generation for fault diagnostics is explored. Herein, the use of
TRAITOR to generate training data for a neural network is desired. Since time-
triggered Ethernet networks are designed to be fault-tolerant systems with Safety
Integrity Level 4 (SIL4) [IEC61508, 2010], waiting for a failure to occur in a SIL4 sys-
tem is not feasible since the mean time to failure is very large. Therefore, TRAITOR
is required to have the capability to generate the training and test data for different
failure scenarios.

1.3 Thesis structure

The structure of this thesis is shown in Figure 1.1. After the introduction presented in this
chapter 1, the background theory is presented in chapter 2 to provide an understanding
of the fundamental concepts used in this work. Chapter 3 describes the target networks,
that is the TTEthernet and TSN, and provides the details of the characteristics of the
respective networks and their prominent features. Chapter 4 provides a discussion about
the related works in this field — the existing gaps in the state-of-art and how the proposed
technique closes these gaps described in the requirements. Chapter 5 presents a discussion
about the system model of TRAITOR. It provides a general overview of TRAITOR’s
design and operation. The detailed description of the implementation and algorithms of
TRAITOR is presented in chapter 6. A series of experiments and evaluations are carried
out in Chapter 7 to demonstrated the operation of TRAITOR, showing how it satisfies the
design requirements, specifically the requirements which are outlined in Chapter 4. The
sections 7.2, 7.3, 7.4, and 7.5 of Chapter 7 report the works carried out using TRAITOR
in [Onwuchekwa et al., 2018], [Onwuchekwa and Obermaisser, 2018], [Onwuchekwa and
Obermaisser, 2019] and [Onwuchekwa et al., 2020] respectively.The results of each test
are also analysed in each of the mentioned sections. Finally, the conclusion of this work
is presented in Chapter 8.

Page 5

Chapter 1.3 Thesis structure

Figure 1.1: Thesis structure

Page 6

Chapter 2

Background Theory

This chapter discusses the basic concepts and terminologies used in this work. Firstly, the
notion of a real-time system is presented in section 2.1. Section 2.2 introduces the concept
of dependability of a system with an emphasis on the following: means to attain depend-
ability, threats to dependability, attributes of dependability, the concept of redundancy,
and the methods employed in dependability evaluation. Section 2.3 discusses verification
and validation to make clear the distinctions between these concepts. Next section 2.4
explains in detail the idea of fault injection, fault injection categories, and fault injection
environment. Section 2.5 then discusses deep learning and the associated terminologies
used in this work.

2.1 Real-time systems

A system can be defined as a modelling concept which describes the mapping of a set of
inputs to a set of outputs [Laplante, 2004]. When only the inputs and outputs of a system
are of interest, without consideration of the internal operation of the system, then is the
system referred to as a black-box. Conversely, the system is referred to as "white-box"
when the interactions between the system’s input(s) and its internal dynamics to give a
corresponding output(s) are considered. The term system behaviour refers to the sequence
of output in time of a system [Kopetz, 2011]. The intended behaviour of a real-time system
according to the specification is known as the system’s service. If the behaviour violates
the specification, the behaviour represents a failure. A real-time system is one where the
logical correctness of the system behaviour is tied both to the accuracy of the outputs
and the physical time when these outputs are produced.

It can be argued that most systems are real-time; nevertheless, to make clear of the

7

Chapter 2.2 dependability of a system

degree of timeliness and consequence of failure, this work divides real-time systems into
three classes. Depending on the severity of the consequence of not meeting a system
time-constraint, a real-time system can be classified as hard, firm or soft. A hard real-
time system is one in which the failure to satisfy the timing constraints can result in a
catastrophe such as loss of life, severe damage to the environment and huge financial loss.
The firm real-time describes a system in which missed deadlines result in the generation
of unusable or inaccurate system outputs. The distinction between the hard and firm
real-time system is that missed deadlines in the firm real-time system do not result in a
catastrophic consequence, even though the service delivered becomes useless in the event
of a missed deadline. The soft real-time is used to describe a system which still produces
useful output after a missed deadline.

2.2 dependability of a system

The work in [Laprie, 1992] described the dependability of a system as the measures taken
to justify the reasons for trusting the services delivered by the system. In more recent
times, a more refined definition in [Avizienis et al., 2004] described dependability of a
system as the ability to avoid service failures that are more frequent and more severe
than acceptable. This work adopts the concepts of dependability presented in [Avizienis
et al., 2004], which attempted to establish a consensus of concepts for dependability.

2.2.1 Means to attain dependability in a system

The means to attain dependability in a system can be classified into four categories
namely, fault prevention, fault tolerance, fault removal and fault forecasting. A system
that provides verified fault preventive mechanisms and fault-tolerance services can be
considered to deliver trusted services. Fault prevention and fault tolerance aim to deliver
trusted services while fault removal and fault forecasting aim to reach confidence in that
ability.

Fault prevention is the means to prevent the occurrence or introduction of faults. Fault
prevention is implemented during the development phase of system design. Some examples
of prevention strategies for software and hardware can include the use of a modular
structure for programming and information hiding, and the use of design rules.

Fault tolerance is the means to deliver correct service in the presence of faults. It is carried
out in dependable systems using fault detection, fault containment, fault localisation, fault
recovery and fault masking mechanisms [Barry, 1989]. Fault detection identifies whether

Page 8

Chapter 2.2 dependability of a system

there is a fault present in a system. Fault containment is the process of isolating the
fault to prevent error propagation through the system. Fault localisation involves the
determination of where a fault occurs. Fault recovery mechanisms transform a system
ladened with error into a state without errors. Fault masking achieves fault tolerance by
hiding faults, such that it prevents a system from introducing errors into its information
structure.

Fault removal is the means to reduce the number or severity of faults. It can be considered
all through a system lifecycle, from development to deployment. During the development
phase, fault removal involves three steps, namely, verification, diagnosis and correction.
Every embedded system must be designed to meet certain requirements, and these re-
quirements are called properties or specifications. Verification is the process of checking
whether systems adhere to the specified property. Verification is discussed in more details
in section 2.3. Diagnosis and correction of faults are carried out when the system fails
its verification. Fault removal for an already deployed system is usually in the form of
corrective or preventive maintenance.

Fault forecasting is the technique used to predict the occurrence of a fault in a system,
to isolate, remove or circumvent these faults. This is achieved by evaluating the system
behaviour either qualitatively (ordinal evaluation) or quantitatively (probabilistic evalu-
ation).

2.2.2 Threats to the dependability of a system

The threats to a dependable system are faults, errors, and failures [Arlat et al., 1993].
A fault is a physical defect, imperfection, or flaw that occurs in a hardware or software
component of a system. Precisely, a fault can be defined as the adjudged or hypothesised
cause of an error. An error is the part of a system’s total state that may lead to a failure
[Avizienis et al., 2004]. When a fault results in an error, it is said to be "active" otherwise it
is "dormant". Errors can be propagated from one system sub-state to another, eventually
resulting in the system’s failure, except if it is tolerated or contained. Service failure is
the event that occurs when the error is perceived by the users or external systems [Natella
et al., 2016]. The deviation of a system from providing the correct service is termed service
failure. The service failure may manifest in different ways known as service failure modes.
The "chain of threats" shown in figure 1, as cited in [Avizienis et al., 2004] illustrates the
relationship between fault, error and failure. If a fault produces an error when activated,
this error can be propagated from one system component to another if not contained,
which can then result in the system’s failure. In the case of a complex system where
the failure is localised on a certain component, the failed component has the potential to

Page 9

Chapter 2.2 dependability of a system

cause another fault, thereby prolonging the chain of events. The taxonomy of faults given
in [Avizienis et al., 2004] classified faults into three major partially overlapping groupings,
namely, development faults, physical faults, and interaction faults. The development
faults are the faults that occur during the development process of a system. Physical
faults are all the possible faults that affect hardware component of a system. Interaction
faults are all the faults that originate externally to the system.

Figure 2.1: The fundamental chain of dependability and security threats [Avizienis et al.,
2004]

Apart from the service failure, failures can also be classified into two additional classes; the
development failures, and dependability and security failures. Development faults may
be introduced into a system during the development phase by its environment, human
developer, and development tools. These faults may lead to partial or development failures
or may remain undetected in the development phase and manifest in the use phase.
Failures that occur during the development phase are termed as development failures.
Similarly, it is to be expected that various kinds of faults can also affect a system during
it’s use phase causing unacceptably degraded performance or even total service failure. A
dependability and security specification is agreed upon to states goals for dependability
attributes (see next section 2.2.3 for dependability attributes). Thus a dependability and
security failure occurs in the use phase when the given system suffers service failures more
frequently or severely than acceptable.

2.2.3 Attributes of the dependability of a system

The dependability concept is integrative, it encompasses the attributes: availability, reli-
ability, safety, integrity, and maintainability. Availability can be defined as the readiness
of a system to provide correct service. The reliability of a system is the probability that
a system will continue to provide the specified service until time t, given that the system
was operational at t = to [Kopetz, 2011]. Safety is reliability regarding malign (critical)
failure modes. Safety is further explained in Subsection 2.2.6. Integrity describes the
absence of improper system alterations. Maintainability is used to describe the ability of
a system to undergo modification and repair.

Page 10

Chapter 2.2 dependability of a system

2.2.4 Redundancy

Redundancy is an essential requirement in fault tolerance [Verma et al., 2011]. Redund-
ancy is the introduction of additional support of information, time or resources to a
system, to give the system fault-tolerance capabilities and prevent failure. Redundancy
can be attained by replicating hardware, software, information or by addition of extra
time to perform a certain function.

Hardware redundancy

Hardware redundancy is the addition of extra hardware for the purpose of detecting or
tolerating faults. Hardware redundancy can be achieved using three techniques, namely,
passive, active and hybrid methods [Verma et al., 2011]. In passive technique, fault
masking is achieved by replicating hardware and exploiting voting or median of the module
output to determine the correct output, such as in Triple Modular Redundancy (TMR)
or N-Modular redundancy. The active technique achieves fault tolerance by detecting
the faults and then performing a function to remove the faulty hardware. Detection is
achieved using a comparison function. The hybrid technique combines the passive and
active method.

Information redundancy

Information redundancy occurs when redundancy is introduced into the transmitted data
or into the memory of a system. Techniques to verify the correctness of message trans-
mission are exploited, such as checksums, cyclic codes, and duplicate codes used to store
additional information.

Time redundacy

Time redundancy is achieved by the repetition of computations targeted at detecting
transient faults. A computation can be performed multiple times, or a message retrans-
mitted multiple times to detect transient faults. However, extra time is required and thus,
can pose challenges in applications with stringent timing requirements. Nevertheless, it
is useful when extra time can be provided, for instance, using high-speed devices and in
situations where additional hardware cannot be used for redundancy.

Software redundancy

Software redundancy is the addition of extra software for the purpose of detecting or tol-
erating faults. Software redundancy can be implemented in different forms. For instance,

Page 11

Chapter 2.2 dependability of a system

a complete replica of a program can be implemented. The downside is that software
flaws are often a result of incorrect design. Therefore, given a flawed specification, differ-
ent software implementations based on this specification will fail in a correlated manner.
However, techniques such as consistency checks, capability checks, and N-version program-
ming are used to implement software redundancy. The N-version programming uses the
comparisons of designs, code and results of multiple versions of the same software to de-
tect design flaws. Consistency checks use prior knowledge about output to detect certain
errors. Capability checks are performed to verify that a system possesses the capability
expected.

2.2.5 Methods of dependability evaluation

There are several methods of evaluating the dependability of a system. A classification
based on the intent of these methods is given in [Benso and Prinetto, 2003]. These
methods include dependability evaluation by analysis, field experience, and testing. In
dependability evaluation by analysis, the analysis of a process or product can be applied
at different stages of a product development lifecycle. For example, in the ’concept phase’
of product design, some applied techniques include performing comparative studies, Pre-
liminary Hazard Identification and Analysis (PHIA), risk analysis, risk evaluation, and
consequence analysis. In later design phases, when the system architecture is available,
other techniques applied include reliability block diagram, Fault Tree Analysis (FTA),
Failure Mode and Effect Analysis (FMEA), and simulations. However, dependability
evaluation by analysis can be affected by high complexities, unavailability of certain in-
formation, and invalid assumptions.

After a system has gone into service, its dependability can also be evaluated. This evalu-
ation is known as evaluation by field experience. However, field experience is not feasible
when the dependability requirement is very high. For example, the relationship between
the observation time T, desired confidence (γ) and the hazardous failure rate (λ) are
shown in equation 2.1. The reaching of 95% confidence for a Safety Integrity Level 4
(SIL4) system, λ = 10−9, requires an infeasible observation time. This spells out the
challenges with evaluation by field experience.

T = − ln(γ)∗1/λ (2.1)

Dependability evaluation by fault injection is deployed when direct evidence by testing is a
feasible way to provide the required evidence for validation. Fault injection is discussed in
section 2.4 in more detail. However, it is important to note that dependability evaluation

Page 12

Chapter 2.3 dependability of a system

by fault injection reduces the observation time needed to verify/validate a system.

2.2.6 Safety

There are respective boundary conditions for safety in different fields. For instance, in the
automotive industry, safety is often discussed as the property of a system that describes
the probability of correct operation without critical failures that could cause harm to
people or the environment. Automotive producers stretch this definition to mean that
the system should cause no accident by any means. This is because even if there is no
harm to people, drivers could still cause an accident. Therefore, producers make efforts
to prevent any possible occurrence of accidents [Leveson, 2012].

In the area of risk management, safety can be defined as freedom from unacceptable
risk. In this context, the risk must be tolerable to be safe [IEC61508, 2010]. However,
[Committee et al., 1999] gives a general definition of system safety as the application of
engineering and management principles, criteria, and techniques to optimise all aspects of
protection within the constraints of operational effectiveness, time and cost throughout
all phases of the system life cycle.

2.2.7 Safety-criticality system

A safety-criticality system is a system whose failure can result to harm impacted onto
the physical world (people, property or environment). Safety-criticality systems exist
across several domains. In the medical field, some examples of safety-criticality systems
include the insulin pump hardware, heart pacemaker, defibrillator machines, and medical
imaging devices (e.g. X-ray). Similar examples of safety-criticality systems in the auto-
motive industry include systems such as the airbag, braking, seat belt, power steering
and battery management systems. In the aviation industry, similar examples include the
engine control, air traffic control and radio navigation system. The vast majority of these
safety-criticality applications require real-time guarantees, which describes the property
of a system to deliver its services to meet a specified deadline.

The combination of real-time and safety requirements in cyber-physical systems demands
a communication platform that satisfies stringent safety and real-time requirements. For
example, communication protocols such as the TTEthernet, and TSN [Farkas et al., 2018]
implement services to meet both real-time and reliability requirements. This is because,
in many safety criticality systems, the reliability of the network is important for the safety
of the system. TTEthernet and TSN are within the scope of this work and are therefore
discussed extensively in chapter 3.

Page 13

Chapter 2.4 Verification and validation

2.3 Verification and validation

The diverse scientific and technological areas of embedded devices have led to different
definitions of the concept of Verification and Validation (V & V). Verification is described
in [Babuska and Oden, 2004] as the processes of establishing if a computational model
and the code implementing the computational model represent the mathematical model of
the design with sufficient accuracy. The IEEE Standard Glossary of Software Engineering
Terminology’ defines verification as the process of determining whether or not the product
of a given phase of the software development cycle fulfils the requirements established
during the previous phase whereas validation is the process of evaluating software at
the end of the software development process to ensure compliance with the software
requirements. [Boehm, 1984] extends the definition of validation to include the activities
at the beginning of a software definition process: activities that determine the fitness or
worth of a software product for its operational mission. Another definition of validation
is given in [Oberkampf and Roy, 2010] as the substantiation that a computerised model
within its domain of applicability possesses a satisfactory range of accuracy consistent
with the intended application of the model. The distinction between verification and
validation is often unclear and has no universal consensus.

In [Grady, 2010], validation is considered to mean a process carried out to show that
one or several requirements are clearly understood and that it is possible to satisfy these
requirements through design work within the current technological state of the art, fund-
ing, and schedule whereas verification is defined as the proof process for unequivocally
revealing the relationship between the content of a specification and the characteristics of
the corresponding product. This work follows the definition of verification and validation
in the IEEE Standard Glossary of Software Engineering Terminology, since it answers the
question "Is the right system being built?" for validation, and addresses verification to
answer the question "is the system being built right?". These two questions can be used
to establish a clear difference between verification and validation.

2.4 Fault injection

Fault injection is a dependability evaluation technique, as mentioned in section 2.2.5. A
fault injection system sets up controlled experiments for a target system into which faults
are deliberately introduced. The user of the fault injection framework then observes the
target system to determine or analyse the following: the impact of faults on performance,
analyse fault tolerance mechanisms and test the resilience of the system against known

Page 14

Chapter 2.4 Fault injection

faults. Unlike the evaluation of a system by field experience, which takes a long time,
fault injection is used to accelerate the occurrence and propagation of faults into a system
to evaluate the system’s dependability.

[Arlat et al., 1993] defines fault injection as a technique used to evaluate Fault Tolerance
Algorithms and Mechanisms (FTAM’s) in line with the faults that they are intended to
tolerate. When considering the use of fault injection on FTAMs, its intent can be seen in
two dimensions: either it is used for fault removal or fault forecasting. If fault injection
is used for fault removal, it is used to target the reduction of faults present in the design
and implementation of FTAM. However, if fault injection is used for fault forecasting, it
can be used to rate the efficiency of FTAM by evaluating the system.

Fault injection often aims at evaluating the match between a system’s response and its
specification, in the presence of faults. Nevertheless, the main objectives of fault injection
remain for fault removal and fault forecasting. These two methods yield the following
benefits as described in [Ziade et al., 2004].

• Provide insights into the effect of the fault on system functionality and performance.

• Enable the assessment of implemented fault tolerance mechanisms.

• Enable the forecasting of faults in a system, in particular encompassing the meas-
urement of the coverage provided by the fault tolerance mechanisms.

• Identification of weak points in system design.

• Studying the system’s behaviour in the presence of faults, for example, fault con-
tainment regions and error propagations.

Fault removal and fault forecasting are not usually used separately in practice. They are
used together to help the designer improve the system.

2.4.1 Fault injection categorisation

Three major categories can be used to classify fault injection techniques [Benso and Di-
Carlo, 2011]. These categories include:

• Classification based on the target domain.

• Classification based on the abstraction layer.

• Classification based on the level of intrusiveness.

Figure 2.2 illustrates these classifications with a diagram. Classification based on the
target domain expresses whether the fault injection framework targets hardware systems

Page 15

Chapter 2.4 Fault injection

Figure 2.2: Fault Injection Category

or software. Faults can be directly injected at pin-level (internally or externally) into
hardware which could either be an emulated component of the system or the actual
system. In software, faults can be inserted at compile time or into running software, at
the CPU registers or networks.

The classification of fault injection based on the abstraction layer is illustrated using two
approaches: simulation-based and execution based. Simulation-based fault injection is
employed in the early life of a system when no actual implementation is available. An
abstraction/model of the system is developed in which faults are injected. In contrast,
the execution based fault injection involves injecting faults into a prototype version of
the system. Faults are directly injected into the real system, and the system execution is
observed.

Classification of fault injection based on the intrusion level is described using the terms
"invasive" and "non-invasive". In setting up a fault injection experiment, the addition of
the fault injection component may introduce noticeable footprints. For example, a fault
injector component may introduce delay into the system. The fault injection is said to be
invasive when such a footprint is noticeable. However, when such a footprint is masked, or
the fault injection has no effect on the system under test, then it is termed as non-invasive
fault injection.

2.4.2 Fault injection environment

The fault injection environments is a term used to describe the various components used
to perform a fault injection campaign. These components include the fault injector,
workload generator, fault library, workload library, controller, monitor, data collector, and
data analyzer [Hsueh et al., 1997]. The fault injector is the component that introduces
faults into a target system by executing commands from a workload generator which
generates the workload for the system input. The fault library stores the set of fault

Page 16

Chapter 2.4 Fault injection

Figure 2.3: Basic components of a Fault injection framework

types, fault locations and fault times for the fault injection. The workload library stores
the sample workloads for the target system. The controller determines the behaviour
of the experiment. The monitor tracks the execution commands in the fault injection
implementation, while the data collector gathers the data observed during the experiment,
which is then examined by the data analyzer. The model of a fault injection framework
illustrating the basic components and the relationship between them as described by
[Hsueh et al., 1997] is shown in Figure 2.3. The controller in the diagram triggers the
injection and selects the type of fault to inject.

2.4.3 Modelling a fault injection framework

[Arlat et al., 1993] proposed the Faults Activations Readouts and Measures (FARM)
model to model a fault injection framework. The work proposed experimental evaluation
methods that include concepts of a fault injection test sequence, characterised by an input
domain and an output domain. The input domain is used to represent a set of injected
faults F and a set A that specifies the data used for the activation of the target system,
and consequently, of the injected faults. Fault activation is the application of an input
to a component that has the potential to cause a fault to become active. Most internal
faults cycle between a dormant state and an active state. The output domain represents
a set of readouts R that are obtained to determine the behaviour of the target system in
the presence of a fault, and a set of measures M that are derived from analysing the FAR
sets.

[Benso and DiCarlo, 2011] used the terms temperance, justice, prudence and courage to
discuss aspects of the FARM model concerning a fault injection environment. Temperance
is described as the virtue suggested in choosing an effective fault model F. Justice is the

Page 17

Chapter 2.4 Fault injection

Figure 2.4: Global framework depicting the applicability of FARM model, [Benso and
Prinetto, 2003].

virtue that is necessary when choosing a set of activation A that strictly reflect real
working conditions, and cannot be chosen just to make an experiment work. Prudence
should be applied in the choice of readouts R from a fault injection experiment. Finally,
real and useful results require analysing the raw data with courage, without being afraid
of having to add experiments or modify the methodology to obtain significant results.

A fault injection model is affected by the level of abstraction of the target system and
the fault-tolerant requirements for the target system [Benso and Prinetto, 2003]. Three
levels of abstraction are identified in [Arlat et al., 1993]: Axiomatic models, empirical
models and physical models. The axiomatic model describes a high abstraction layer
where reliability block diagrams, fault trees and Markov chain modelling can be used to
build analytic models to represent the target system. The empirical model uses more
detailed information about the system structure and behaviour to build a model. Lastly,
the physical model is a prototype of the actual system, when used as the target system
in a fault injection campaign. The experimental data gathered from the physical model
has the potential to affirm or deny the hypothesis for parameter selection of axiomatic
models.

[Benso and Prinetto, 2003] provided a global framework depicted in Figure 2.4 that
characterises the application of fault injection for testing the FARM of a target system.
The input domain is represented as I ={D × Y × F}, where D is a set that designates
the external input data, Y is a set that defines the current internal states, and F is a set
of injected faults. The output domain is represented as O = {Z × U}. Z is a set that
defines the internal state of the target fault-tolerant system, and U is a set that represents
the services provided by the target system.

The FARMmodel explicitly describes the fault space in the input domain I = D × Y × F .

Page 18

Chapter 2.4 Fault injection

It enables the target system to be described using a function f that relates the input
domain to the output domain O = Z × U . The target system behaviour is then described
by a sequence of states that perceives the impact of the fault. This is formally described
using equation 2.2.

∀t, ∃d(t) and/or y(t) such that f(d, y, f ; t) 6= f(d, y, fo; t) (2.2)

Where fo(t) in equation 2.2 indicates the "absence of fault". This reads that at all times
t, there exists an element of the set D, d(t), and or y(t) (i.e. an element of the set Y,
internal system state) such that there is a deviation from the expected output trace under
a given fault. This activation corresponds to the deviation from the expected behaviour
of the system, which is observed by the expected trace of the output (Z or U, or in both
Z and U shown in Figure 2.4). When only the state Z is altered, an internal error is
perceived. However, when such activation affects the service of a system due to failure,
U also deviates from the specified service.

2.4.4 Types of fault injection

Over the past years, many fault injection techniques have been proposed and used. They
can be classified into five categories: hardware-based fault injection, software-based fault
injection, simulation-based fault injection, emulation-based fault injection and hybrid
fault injection, as surveyed by [Ziade et al., 2004]. Hybrid fault injection is the integration
of two or more techniques to exploit the advantages of each technique. The description,
benefits and drawbacks of the fault injection techniques are given as follows.

• Hardware-based fault injection. This involves changing the parameters at a
physical level, and faults are usually injected into a prototype system. Depending
on the type of faults to be injected into a target system, faults can be injected either
by direct contact or without contact. In chip manufacturing, an example of fault
injection by direct contact is by forcing faulty analogue signal to the pins. Non-
contact fault injection can be induced by changing the physical environment, that
is applying techniques such as heavy-ion radiation or electromagnetic interference.
The target hardware can be a prototype or the final system.

The benefits of hardware-based fault injection are that experimental evaluation can
accurately estimate the coverage and latency of actual hardware, as experiments
are fast and can be run in real-time. Hardware fault injection can also inject faults
with low perturbation. The drawback of hardware fault injection is the process
of fault injection may introduce a high risk of damage to the target hardware.

Page 19

Chapter 2.4 Fault injection

Low portability and limited possible points to inject faults are also a significant
drawback. The types of fault that can be injected are also limited. Lastly, hardware-
based fault injection is affected by cases of limited observability, controllability and
reproducibility.

• Software-based fault injection. In recent times, software faults are the leading
cause of system failure. Fault injection is used to access the consequences of software
faults such as hidden bugs. In software-based fault injection, the software that runs
on the system under test is altered to enable the system designer to modify the
system’s state machine. The designer usually modifies the software of the system
to inject a fault and to observe the effect. The software injection can be applied
during compile-time or run-time. For the compile-time injection method, the faults
are injected into the source code of the target program before the program image is
loaded or executed. This method can emulate permanent faults since it is hardcoded.
Software-based fault injection is considered a run-time injection method when a fault
injection mechanism is triggered during the execution of the program.

The advantage of software-based fault injection is that it can target the application
and operating system. It often does not require any special purpose hardware, thus
having low implementation cost. The disadvantages of this technique, however,
is that it requires the modification of the source code to support fault injection.
Therefore, the code that is used for the fault injection experiment is not the exact
code that is deployed to the field. The consequence of such modification is that
there is the possibility that the system will not behave the same and thus poses a
question of fidelity for the software-based fault injection.

• Simulation-based fault injection requires the construction of a simulation model
of the target system, including a detailed simulation model of the target system’s
processor. This method is favourable when the system is still under development,
and a hardware prototype is not yet available. The use of Hardware Description
Languages (HDL) often aids the design of simulation models. For example, the Very
high speed integrated circuit - Hardware Description Language (VHDL) can be a
preferable choice due to its recognition as a viable language for developing high-level
models of the digital system and for driving test activities.

The simulation-based fault injection has the advantage that it can support all system
abstraction levels: axiomatic, empirical, and physical. It provides timely feedback
to the system designer and is able to model both transient and permanent faults. A
major drawback of this approach is that an enormous development effort is required
to model an actual system. Besides the accuracy of the results depends on the

Page 20

Chapter 2.5 Concept of deep learning

quality of the developed model, i.e. how close is the model to the real system.

• Emulation-based fault injection exploits the use of Field Programmable Gate
Arrays (FPGAs) to speed up fault occurrences inside circuit emulations. Emulation-
based fault injection technique provides the designer with the ability to study the
actual behaviour of the circuits in the application environment. The VHDL designs
used in these techniques must be synthesisable. The benefit of this technique is the
speed of injection time compared to simulation, where the drawbacks are increased
development efforts and cost.

2.5 Concept of deep learning

2.5.1 Machine learning

Machine learning is a subset of a broader field known as Artificial Intelligence (AI). AI
is a field that exploits ways to enable computers to mimic the cognitive capabilities of
humans. Machine learning is a type of applied statistics with an increased emphasis on
the use of computers to estimate complicated functions statistically. A machine learning
algorithm is one that is able to learn from data. [Goodfellow et al., 2016, p. 98]. The
meaning of learning as defined by [Mitchell et al., 1997], states that a computer is said to
learn from experience with respect to some class of tasks and performance measures, if its
performance at tasks in the class when measured by the performance measures, improves
the experience.

The concept of learning defines the means to attain the ability to perform a specified task.
However, the learning itself is not the task. For example, if we want a computer to learn
to walk, the process of learning is not the task but walking. Machine learning is used
to solve several complex tasks such as classification, classifications with missing inputs,
regression, transcription, machine translation, anomaly detection, imputation of missing
values, de-noising, density estimation and so on.

The ability of a machine learning algorithm is usually evaluated quantitatively. For ex-
ample, the accuracy of a classification task can be measured directly from the proportion
of correct classification achieved by the machine learning algorithm or by measuring the
error rate.

The categorisation of machine learning can be carried out based on the kind of exper-
ience the learning algorithm has during its process execution. It can be categorised as
supervised and unsupervised learning. Supervised learning algorithms experience a

Page 21

Chapter 2.5 Concept of deep learning

dataset containing features that are mapped to labels. Unsupervised learning algorithms
experience datasets containing many features in which they learn useful properties of the
dataset structure, and there is no labelling of datasets. In unsupervised learning, the
algorithms attempt to implicitly or explicitly learn the probability distribution P(x) of
observed random vector x or some interesting properties of P(x) of observed random vec-
tor x. However, in supervised learning, the observed random vector x is associated with a
value or vector y. The vector y is predicted from x usually by estimating P(y|x) [Goodfel-
low et al., 2016]. A key challenge in most traditional ML methods is feature extraction.
Tasks such as object recognition require the programmer to develop algorithms for fea-
ture extraction. The success in performing such tasks are heavily reliant on the ability
to extract features used for classification. However, the deep learning approach provides
an automated way to accomplish feature extraction with little or no guidance from the
programmer.

2.5.2 Deep learning

Deep learning is a subset of machine learning techniques that uses multiple layers on
nonlinear data processing for supervised or unsupervised feature extraction and trans-
formation [Deng et al., 2014]. Deep learning cuts across multiple research areas, including
neural networks, artificial intelligence, graphical modelling, optimisation, pattern recogni-
tion, and signal processing. In this work, deep learning is classified into two major classes
which reflect its usage. These classes include:

1 Deep networks for unsupervised and generative learning

2 Deep networks for supervised learning

In classification tasks, where information about the target class label is unavailable, unsu-
pervised learning can be used to capture the high-order correlation of the observed data
for pattern analysis or synthesis purposes. Networks that implement the unsupervised
deep learning architecture include:

• Restricted Boltzmann Machine (RBM).

• Deep Belief networks (DBN).

• Autoencoders.

• Generative Adversarial Networks (GANs).

The description of the operation of these architectures can be found in [Wani et al., 2020].
The subsequent discussion will be limited to supervised learning since it is the applied
architecture in this work. The supervised networks are also called the discriminative deep

Page 22

Chapter 2.5 Concept of deep learning

networks [Deng et al., 2014, p 214]. Supervised learning is used to provide discriminative
power for pattern classification often by characterising the posterior distribution of classes
conditioned for available data.

Supervised deep learning architectures have evolved over the past few years with increas-
ing accuracy on many tasks. The Convolutional Neural Network (CNN), Deep Neural
Network (DNN), and Recurrent Neural Network (RNN) are the most commonly used su-
pervised deep learning architectures. CNN is a suitable choice for image data recognition
and classification because of its high accuracy. The training of a CNN that consist of many
layers is achieved using large sets of labelled data. Some examples of the supervised CNN
architectures include AlexNet, GoogleNet, LeNet-5, ZFNet, VGGNet, DenseNet, CapsNet
and ResNet [Wani et al., 2020]. The RNN is a suitable choice when dealing with sequen-
tial data such as text, audio and time-series. However, for tabular data, DNN is the most
suitable choice.

Artificial neural network

Biological neurons inspired the modelling of an Artificial Neural Network (ANN). The
model of artificial neurons is illustrated in Figure 2.5. It consists of the summation of
weighted inputs that is passed through an activation function to produce an output.
ANN was loosely inspired by the attempt to simulate the brain function of humans. The
ANN concept stems from mimicking a neuron which has dendrites, a nucleus, axon and
terminal axon as shown in figure 2.6. The neurons are usually connected via synapses;
these synapses connect the dendrite to the terminal axon of another neuron as shown in
the left of figure 2.6.

Figure 2.5: Model representation of a neural network.

Page 23

Chapter 2.5 Concept of deep learning

Figure 2.6: A network of two neurons [leavingbio, 2019].

Deep feed-forward network

Deep feed-forward networks are also referred to as Multilayer Perceptrons (MLPs) and
are the quintessential deep learning models. MLPs have no feedback connections that
feed the output of the model to itself. It is a network of functions that are described with
a directed acyclic graph, in which the overall length of the chain of functions gives the
depth of the model. The first function (layer) is termed the input layer, while the final
layer of the chain of functions is called the output layer. All the layers in between the
input and output layers are known as hidden layers.

The feed-forward network can be described as a function approximation machine designed
to achieve statistical generalisation. To achieve statistical generalisation, linear models
such as logistic and linear regression are appealing. However, the model capacity of linear
models is limited to linear functions. Therefore, the interactions between any two input
variables cannot be exposed. Nevertheless, linear models can be extended to represent
nonlinear functions by applying a nonlinear transformation to the input. The nonlinear
transformation can be seen as a new representation of the input or could provide a set of
features describing the input. Therefore, the linear model is not applied directly to the
input, say x, but a to a nonlinearly transformed input. The deep learning strategy is to
learn the nonlinear transformation. Equation 2.3 illustrates the deep learning approach
used to attain such a non-linear transformation.

y = f(x; θ, w) = φ(x; θ)Tw. (2.3)

The parameter θ in the equation is used to learn the nonlinear transformation from a

Page 24

Chapter 2.5 Concept of deep learning

broad class of functions, while w is used to map the nonlinearly transformed input to
the desired output. This description is an example of a feed-forward network, where φ
(nonlinear transformation) defines the hidden layer.

Page 25

Chapter 3

Time-Triggered Ethernet
communication

This chapter begins with a discussion of standard Ethernet, where the key characteristics
of Ethernet are introduced, including the components of Ethernet. It then points out the
desirable features for safety criticality applications such as determinism, bounded latency,
and jitter of message transmission that are lacking in Ethernet. Section 3.2 introduces
the time-triggered networking concepts in which clocks and the notion of a global time
are discussed. Early deployment of Ethernet did not take into account determinism and
safety-criticality requirements. The time-triggered networks address these requirements.
This work considers two time-triggered Ethernet networks, TTEthernet and TSN, which
extends classical Ethernet with additional services to meet the requirements of a fully
deterministic communication and guarantee constant latency. Also, they provide both
temporal and spatial isolation for its network traffic. TTEthernet and TSN are considered
due to the increasing interest of embedded system designers to use these networks in ap-
plications with mixed-criticality, for both industrial and non-industrial use cases. The
TTEthernet protocol is discussed in Section 3.3. Therein the TTEthernet frame struc-
ture, fault-tolerant clock synchronisation, services for startup and restart are addressed.
Finally, section 3.4 discusses TSN with emphasis on the synchronisation protocol. The
Precision Time Protocol (PTP) and the Generalised Precision Time Protocol (gPTP) are
discussed.

26

Chapter 3.1 Ethernet

3.1 Ethernet

Ethernet is the most widely used Local Area Networking (LAN) technology today. Eth-
ernet’s origin dates back to 1973 when it was introduced in a memo by Xerox Palo Alto
Research Centre (PARC) [Spurgeon, 2000]. Ethernet was invented in an effort to improve
the Aloha network. The Aloha network was an early experiment in the development of
mechanisms for sharing common communication channels. The Aloha network suffered
from message collisions.

Ethernet was thus developed to include a mechanism that detected when a collision oc-
curred, and also to implement a “listen before talk” scheme. The “listen before talk” is
described as carrier sensing, since stations listened for activity on the channel before trans-
mitting. This is the idea behind the naming of the Ethernet channel access protocol as
Carrier Sense Multiple Access with Collision Detection (CSMA/CD). More sophisticated
backoff algorithms have since then been developed that allow Ethernet in combination
with the CSMA/CD protocol to function more efficiently. The first version of Ethernet
operated at 2.94 Mbps. However, this has been improved over the years to the following:
10 Mbit/, 100 Mbit/s, 1000Mbit/s and above.

Ethernet was first standardised in 1985 as IEEE 802.3, titled “Carrier Sense Multiple
Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Spe-
cification”. There have been various versions over the years with major improvements and
optimisations.

3.1.1 Open system interconnection layers

The Open System Interconnection (OSI) layer is a reference model developed by the
International Organisation for Standardisation abbreviated as ISO. This model consists
of seven layers. The OSI reference model is a method of describing how the interactions
between sets of hardware and software can be organised in a communication network to
work together.

There are seven OSI layers, namely, application, presentation, session, transport, network,
data link, and physical layer. The physical layer describes the part of the networking
standard that covers the electrical, mechanical, and functional control of data circuits
which connects the physical medium [Spurgeon, 2000]. The data link layer is also known
as the MAC layer. In this part of the standard, the Ethernet frame format and MAC
protocols are defined. The network layer establishes higher-level functions and proced-
ures for the exchange of data between nodes across multiple links. In this work, the term

Page 27

Chapter 3.1 Ethernet

Figure 3.1: The Ethernet frame format

"node" is similar to the description in [Obermaisser, 2011, p. 6], it is a self-contained com-
posite hardware/software subsystem that can interact with other nodes. The transport
layer is used to provide end-to-end error recovery functions and flow control in the high-
level networking software. The session layer provides mechanisms for establishing reliable
communications between cooperating applications. The presentation layer provides the
functions for dealing with how data is presented to the application. Finally, the applic-
ation layer provides mechanisms to support end-user applications such as file transfers,
mails and so on. The Ethernet standard is only applicable to the physical and data link
layer.

3.1.2 Key characteristics of Ethernet

Ethernet system is made up of four building blocks that work together to provide the
networking services. These building blocks include the following:

• Ethernet frame

• Media access control (MAC) protocol

• Signaling component

• Physical medium

Frame

An Ethernet frame is a standardised data unit used to exchange data between nodes. It
is the data chunk which is sent over the Ethernet network. Figure 3.1 shows the frame
format of the Ethernet.

The preamble is 7 bytes long and is used to align the physical signalling circuit on the
sender and receiver. The preamble allows the participating nodes in a network to syn-
chronise their receiver clocks. Each of the 7 bytes of the preamble is a repeated pattern
of “10101010” bit. The preamble is followed by the Start Frame Delimiter (SFD) which
is used to indicate the start of a frame. The SFD is 1 byte long and contains the bits:
“10101011”. The following field is called the Destination MAC address field and it is
6 bytes long. It specifies the address of the receiver of a frame. The first 3 bytes in the

Page 28

Chapter 3.1 Ethernet

destination MAC address field gives the Organisationally Unique Identifier (OUI), and
the next 3 bytes specify the Network Interface Controller (NIC). The following field is the
source address field which is the sender’s address. The Source MAC address is 6
bytes long and has the same descriptions as the destination MAC address. The type
field follows the source MAC address and it is 2 bytes long. The type field indicates the
type of the client protocol or can be used to indicate the size of the Ethernet frame. The
following field is the data field which carries the payload and ranges between 46 bytes
to 1500 bytes. The actual message is encoded in this field. Payloads below 46 bytes are
padded with zero bytes. The following field is called the Cyclc Redundancy Check
(CRC) field or Frame Check Sequence (FCS) and it is 4 bytes long. This is used by
the receiving node to check the integrity of frames during frame transmission. The last
field is called the Inter-Frame Gap (IFG) field and consist of a minimum of 12 bytes.
The IFG is used to establish the spacing between subsequent Ethernet frames.

Media access control (MAC) protocol

The MAC protocol defines a set of rules used to arbitrate access to the shared channel
among a set of nodes connected to that channel. It allows a fair sharing of access for
multiple nodes to a shared medium. There is no central controller, and each node is
equipped to operate independently. An example operation delivered by the MAC is the
broadcast delivery, where each frame transmitted is seen by every node on the network.

The MAC control mechanism uses the CSMA/CD protocol. The CSMA/CD protocol
operates such that every node first listens to a quiet period on the channel before trans-
mission. This action is called carrier sense. Every node is giving an equal chance when
there is no transmitting node. This is described with the term multiple access. If it
happens that two nodes transmit at the same time, the occurrence is detected, and both
nodes stop transmitting. The detection is known as collision detection.

Ethernet signalling

Signalling is used to describe how bits are transmitted over the physical layer. Various
encoding techniques are used for several Ethernet variants. There exist a variety of sig-
nalling techniques. For example, the 100BASE-TX uses the 4B5B MLT-3 coded signalling
while the 1000BASE-T uses the PAM-5 coded signalling. Early Ethernet standards used
Manchester coding to ensure self-locking signals that are not adversely affected by high
pass filters.

Page 29

Chapter 3.1 Ethernet

Physical medium

The physical medium specifies the type of connectors and cables used to establish connec-
tions between nodes. It describes the electrical or optical properties of the physical connec-
tion between nodes in the network. The Ethernet links are usually a twisted-pair of cables
for different network speed: 10/100 Mbps and 1000 Mbps (Gigabit) Ethernet. Ethernet
can use either copper or fibre as the physical media. Some example media types include
Copper:100 BaseTX-UTP Cat5 and the Fiber:100 BaseFX-Multimode/single mode.

3.1.3 Components of Ethernet

Ethernet consist of the following components: Controllers, hubs, switches and routers.
The Ethernet controllers refer to the network interface card attached to a node that is used
to send and receive frames. The controllers support layer 2 and other upper protocols such
as the Transmission Control Protocol (TCP) [Blanton and Zimmermann, 2015], Simple
Mail Transfer Protocol (SMTP) [Klensin et al., 2008], and HyperText Transfer Protocol
(HTTP) [Fielding et al., 1999].

The Ethernet hub provides only layer two support. It is used to broadcast frames on all
its port, and no frame content is modified. The collision domain is not reduced when
using hubs as the traffic ends up in ports where it is not needed. Hubs are also known as
repeaters because they just forward every message they get to all ports.

An Ethernet switches forwards and receives Ethernet frames. The switch supports layer
two of the Ethernet. The support for layer three and upper protocols used for management
are optional. Switches also do not modify frame content. However, switches learn the
location of each node by reading the source address, which it uses to establish a forwarding
table. Incoming frames are forwarded only to ports that connect to the correct destination
node.

Routers also forward and receive frames. The frame headers are modified, and they sup-
port up to layer three and upper protocols. Routers perform similar operations with the
switches except that they look at IP packets. IP packets are embedded into Ethernet
frames and can be logically segmented into subnets. One major difference is that un-
like switches, routers do not forward Ethernet broadcast frames. While switches reduce
collision domains, routers reduce broadcast domains. The combined use of routers and
switches is important for building a hierarchical, scalable network.

Page 30

Chapter 3.2 Time-triggered control

3.1.4 Absence of determinism in Ethernet

In bus-based Ethernet, there are no timing guarantees for the frame transmission, and the
latency of frames is not bounded by the CSMA/CD mechanism. In switched Ethernet,
collisions are avoided in point-to-point transmissions between switches and nodes. Never-
theless, traffic burst can cause congestion in switches and packet delays, buffer overflows
and packet loss. The order in which messages are transmitted is also not maintained on
reception.

Ethernet nodes have to regulate traffic to ensure determinism, operate a schedule for com-
municating, handle network failure and bound the latencies and jitters of messages. The
switches have to support static routing and perform traffic enforcement schemes. The
efforts to satisfy industrial requirement such as deterministic properties, fault tolerance,
latency and jitter constraints, are the reason for the development of several protocols over
Ethernet such as Ethernet/IP [Brooks, 2001], PROFINET [Guideline, 2003], MODBUS-
TCP [Swales et al., 1999], SERCOS III [Bosch, 2010], EtherCAT [Park, 2002], Ethernet
POWERLINK [POWERLINK, 2004], AFDX [Part, 2006], TTEthernet, and TSN. The
protocols TTEthernet and TSN are within the scope of this work and are therefore dis-
cussed in section 3.3 and 3.4, respectively.

3.2 Time-triggered control

Cyber-physical systems often involve the interaction between sensors, actuators and em-
bedded computers. The embedded computer interacts with a controlled object using
sensors and actuators. Cyber-physical systems are often distributed and demand strin-
gent real-time and safety requirements. Therefore, the underlying communication between
controllers, sensors and actuators also have to satisfy these real-time and safety require-
ments. A time-triggered network provides promising features to satisfy the real-time
and safety requirement for connecting cyber-physical nodes. The node consists of a host
computer and a communication controller. The term “Cluster” refers to a set of nodes
in conjunction with the interconnection medium between them. Figure 3.2 illustrates
the structure of a time-triggered network. The nodes are connected by multiple links
through switches. A Time-Division Multiple Access (TDMA) scheme is used to control
the transmission of messages between nodes.

The TDMA scheme operates by granting nodes access to a network at periodic intervals.
Therefore, the temporal allocation of communication resources on links to messages from
individual nodes is according to a global time base. The schedule for frame transmission

Page 31

Chapter 3.2 Time-triggered control

Figure 3.2: An example structure of the Time-triggered network

in a time-triggered network is carried out following a global time base.

3.2.1 Clock and global time

A digital clock is a device that measures time. A clock is realised with a counter that is
increased in response to a physical oscillation mechanism that reacts periodically. The
periodic event generated by the physical oscillation mechanism is called the microtick.
The interval between two microticks is called the granule. The measurement of a clock’s
granularity can only be achieved with a clock of finer granularity. Let gz represent the
granularity of reference clock z used for measurement and gk the granularity of clock
k. The granularity of the given clock k can be measured by counting the number of
microticks of clock z between two microticks of clock k. Let this nominal number be
represented as nk.

The drift of clock k can then be derived from equation 3.1.

driftki = z(microtickk
i+1 −microtickk

i)/nk (3.1)

The drift rate is influenced by environmental conditions such as temperature changes,

Page 32

Chapter 3.2 Time-triggered control

variations in voltage levels applied to a crystal oscillator or the wearing out of the crystals.
Clocks that are never re-synchronised are called free-running clocks. Clock drift causes
free-running clocks to deviate from a bounded relative time interval after a finite time.
Therefore, there is a need for periodic synchronisation to ensure that clock drifts are
corrected. The synchronisation of all clocks thus requires a global global time to serve
as a reference.

3.2.2 Clock offset

The term offset denotes the time difference between the respective microticks of two given
clocks [Obermaisser, 2011]. It is measured using the number of microticks of the reference
clock. The offset between two clocks j and k measured by a reference clock z at its ith

microtick is defined in equation 3.2.

offsetjk
i = |z(microtickj

i)− z(microtickk
i)| (3.2)

As mentioned earlier, the need for clock synchronisation is brought about by the drifting
of clocks over time. Clock drifts have adverse effects on the performance of time-triggered
networks. Other major causes of discrepancies between local clocks that communicate in
a network include the following:

• Different clocks can have different starting points of microticks.

• Clocks could have different frequencies.

• Varying actual tick interval between clocks [Zhang et al., 2016].

Various services ensure that devices participating in distributed safety-criticality commu-
nication do meet their timing requirements, irrespective of the existence of clock drifts.
Some of these synchronisation services include the Global positioning system (GPS),
BeiDou (BD) system, Network Time Protocol (NTP), Inter-Range Instrumentation Group
time code B (IRIG-B) and IEEE 1588. In [Yang et al., 2016], a comparison of these
synchronisation services that considered accuracy, lock-time, cost, Ethernet support and
reliability was carried out. IEEE 1588 did have dominant attractive features when it came
to reliability, cost and support for Ethernet. However, due to the need for maintaining
a tighter synchronisation, further development such as the TTEthernet synchronisation
service has been realised afterwards. The TTEthernet synchronisation service was stand-
ardised as SAE AS6802 [AS6802, 2011]. It added merits to guarantee the precise moments
for time-triggered message transmission and reception between network participants.

Page 33

Chapter 3.3 TTEthernet system

3.2.3 Time-Triggered system

All actions in a time-triggered system are triggered by the passage of time. Such actions
include communication actions and application task. Optimal system performance is
achieved by coordinating task and communication activities that are triggered by the
passage of time. The two properties that characterise a time-triggered system are the
global notion of time and the global schedule. In a distributed system, the global time
is available to each node, and the interaction between nodes are in accordance with a
global schedule. The global time and schedule are used to realise a system with timing
guarantees, minimised jitter, and predictable real-time behaviour.

Protocol operation of a time-triggered system

In a time-triggered system, the action time for transmission and reception of frames is
performed during known time slots that are reserved by the scheduler. The knowledge of
the global time and scheduling scheme is resident inside the protocol controllers (MAC
layer) and cannot be modified by the application CPU. During operation, each time-
triggered node performs a timing check to account for clock drift and frame propagation
delays.

3.3 TTEthernet system

TTEthernet is a fault-tolerant communication protocol that extends legacy Ethernet
(IEEE 802.3) to provide reliability and determinism for safety criticality applications.
The extension supports applications where temporal determinism and fault tolerance are
required. TTEthernet delivers the platform for mixed-criticality applications such that
simple data acquisition systems, multimedia systems and the safety-critical real-time sys-
tem can all share the same hardware platform. TTEthernet uses a decentralised clock
synchronisation mechanism to facilitate the transmission of time-triggered (TT) frames
with low jitter. The TTEthernet standard shows the combined operational principle of
a fault-tolerant clock synchronisation used for TT frame interaction, together with the
ARINC 664p7 Rate-constrained (RC) frames [Part, 2006], and the legacy Ethernet frames
which are known as best-effort (BE) frames.

TTEthernet consist of nodes, switches, and physical links that connect them, individually
referred to herein as network participants. TTEthernet supports three traffic classes for
frame transmission: TT, RC, and BE traffic. The term traffic class differentiates between
TTEthernet communication modes. TTEthernet transmits TT traffic periodically at pre-

Page 34

Chapter 3.3 TTEthernet system

defined times, referencing a synchronised global time base that is available to all network
participants. The interval of silence between two TT messages is used for the transmis-
sion of RC and BE traffic. A TTEthernet distributed network controls the transmission
instance of TT frames such that the transmissions occur during the active interval of a
sparse time base [Kopetz et al., 2005]. Applications that require tight latency, jitter, and
determinism use TT frames to fulfil such requirements.

TTEthernet provides bandwidth guarantees for RC traffic, including multicast capability.
The RC messages are sent between the intervals of the silence of TT traffic in a way
to realise a well-shaped dataflow. The difference between TT and RC traffic is that
unlike TT traffic, TTEthernet does not transmit RC messages according to a system-wide
synchronised time base. As a result, the network participants may send RC messages
at the same point in time to the same receiver, consequently resulting in queueing at
the network switches. Therefore, there is increased jitter compared to TT traffic, and
the switches also require increased buffer space. TTEthernet switches require a conflict
resolution strategy to handle contention between the different traffic classes and employ
three methods, namely, preemption, timely block and shuffling.

• In preemption, if a high priority frame arrives a switch when a low priority frame is
being transmitted, the low priority frame is halted. The switch then establishes the
minimum silence and then transmits the high priority frame at a time slot specified
a priori.

• In timely block, considering that the switch knows a priori the arrival time of every
high priority frame, the switch will not forward any frame at these time slots, in
order to ensure that the high priority frame is transmitted without delay.

• In shuffling, if a low priority frame is transmitted when a higher priority frame
arrives, the low priority frame transmission is completed before transmitting the
higher priority frame. Shuffling presents an optimal solution from a utilisation
point of view since it does not truncate frames nor block the outgoing ports of low
priority frames.

BE traffic is event-triggered traffic and conforms to the classic Ethernet implementation.
SAE AS6802 arranges the different traffic types in order of decreasing priority as TT, RC
and BE. All network participant must be synchronised in TTEthernet when configured
to support TT traffic.

Depending on the involvement of each network participants, three roles are defined for each
network participants, namely, synchronisation master (SM), synchronisation clients (SC)
and compression master (CM). These roles describe the part played by each participant

Page 35

Chapter 3.3 TTEthernet system

in the exchange of synchronisation frames known as protocol control frame (PCF).

TTEthernet configures the end systems and switches as SM, SC or CM. TTEthenet per-
forms a synchronisation algorithm in two steps [Obermaisser, 2011]. In the first step,
end systems configured as SMs initiate the synchronisation algorithm by sending PCFs
containing their local time to the compression masters (usually switches), and each com-
pression master produces a new PCF called compressed PCF. In the second step, the
compressed PCFs are sent by all CMs to SMs and SCs. SCs are only recipients of the
compressed PCFs. SCs do not send PCF frames. TTEthernet can configure switches and
end-systems as SCs. On completion of the synchronisation startup process, the system
makes a global time available to all network participants. Therefore, it then creates a
predetermined schedule for the transmission of TT messages.

TTEthernet implements the concept of virtual links for RC frames as described in ARINC
664p7. A virtual link is a unidirectional communication path between a sender and
receiver(s). The message source is always from one sender to one or many receivers.
The frame structure of legacy Ethernet is modified to support TTEthernet critical traffic.
TTEthernet splits the destination address of Ethernet into two parts, namely, the constant
field bits and the virtual link identifier (VLID). The first four bytes of the source address
is referred to as the constant field while the last two bytes specify the VLID. The constant
field bits are used to separate critical traffic (TT and RC) from the BE traffic. The VLID
can be further used to separate TT from RC traffic.

3.3.1 TTEthernet frame structure

The frame structure of TTEthernet is compliant with the Ethernet frame format. How-
ever, some implementations of TTEthernet use the Ethertype field to distinguish the
different traffic classes in TTEthernet. More efficient and faster implementations per-
form this distinction using the destination address field. TTEthernet encapsulates its
synchronisation messages in the PCF frames. A PCF frame is also an Ethernet frame
with a minimum payload of 46 octets. TTEthenet sets the Ethertype Field to 0x891d, to
distinguish a PCF frame from other frame types. Figure 3.3 depicts the content of the
PCF frame.

The TTEthernet uses the Integration_Cycle field to carry the number of the current integ-
ration cycle. TTEthernet represents time cyclically with a period called the cluster cycle.
The cluster cycle is defined by the least common multiple of all time-triggered frames.
The cluster cycle represents the full cycle through the schedule of TT frames [Ober-
maisser, 2011]. The system provides multiple synchronisation points between two TT
periods. TTEthernet refers to these integration points as the integration cycles. The

Page 36

Chapter 3.3 TTEthernet system

Figure 3.3: The PCF frame format

period for clock synchronisation is called the “integration cycle”. TTEthernet tracks the
participants in the synchronisation protocol using the membership_new field. TTEther-
net uses the sync_priority field to provide hooks for system_of_systems through these
priority settings. When there is more than one synchronisation domain, TTEthernet uses
the sync_domain field to specify the domain which a participant belongs. The differ-
ent types of PCF used in TTEthernet synchronisation protocols include ColdStart (CS)
frame, Coldstart Acknowledgment (CA) frames and Integration (IN) frame. TTEthernet
carries out its startup and restart process using the CS and CA. It then performs clock
synchronisation with the IN frames.

3.3.2 Fault tolerant clock synchronization

TTEthernet utilises a transparent clock mechanism to ensure a detailed end-to-end latency
computation for its synchronisation messages (PCFs). The transparent clock mechanism
ensures that all devices measure and add their send delays, relay delays, and receive delays
imposed on the PCF in the final delay computation. A high precision network requires
several integration cycles within one cluster cycle. A TTEthernet device uses two variables
to maintain its local view of the synchronised global time-base. These variable are called
the local_clock and local_integration_cycle. TTEthernet uses the local_clock variable to
count cyclically within an integration cycle and uses the local_integration_cycle to count
the number of integration cycles. The synchronisation service executes at the beginning
of each integration cycle using a two-step implementation as earlier mentioned.

In the first step, the network participants configured as SMs send PCFs to the participants
configured as CMs. The CMs perform a convergence function to produce a compressed
PCF. The compressed PCF is sent to all participants configured as SMs and SCs. The

Page 37

Chapter 3.3 TTEthernet system

second step executes a function such that the SMs and SCs collect the compressed PCF
from different CMs and performs a second convergence function.

First convergence function

It is the CMs that execute the first step convergence. The compression function runs
unsynchronised to the synchronised global time. The SMs dispatch PCFs according to
their local clocks, which is then received by a compression function that runs in the CMs.
The compression function produces a new PCF which it sends to SMs as a response.
This dispatch point in time from the CM is known as the compressed point in time
[Obermaisser, 2011, p. 197]. The compression function starts to run at the reception of a
PCF, and since the senders (SMs) of this PCF are unsynchronised, it is possible to have
SMs that send their PCF too early or too late. If the PCFs arrive in the compression
function too early or too late, the convergence computation could be performed for only
a subset of PCFs in a given integration cycle. The CM derives the permanence point in
time of the PCFs using the permanence function.

The permanence function is a method that uses the transparent clock mechanism to trans-
form the dynamic network delay into a constant maximum delay. TTEtherent computes
the permanence delay using equation 3.3.

permanence_delay = max_transmission_delay − pcf_transparent_clock (3.3)

The maximum transmission delay is a parameter computed offline. It defines the max-
imum one-way transmission delay of any PCF transmitted between any synchronisation
participants. The pcf_transparent_clock is the value of a field in the PCF frame payload
which stores the accumulated send, relay and receiving delays of the PCF. For PCFs in
the same integration cycle, the CM uses the first recorded permanence point in time as a
reference for successive PCFs. The CM records the relative offset of the successive PCFs
to the first permanent point in time. The TTEthernet protocol accommodates situations
where multiple PCFs having different integration cycles become permanent. When this
occurs, a parallel compression function is executed. The collection phase of PCFs by the
CM is regulated by the Observation Window (OW). The OW is the maximum deviation
of two correct local clocks in the system as measured by a clock within the network [Ober-
maisser, 2011, p. 199]. The OW enables the computation of the compression function in
a fault-tolerant manner. To tolerate a certain number of faulty synchronisation masters f,

Page 38

Chapter 3.3 TTEthernet system

Equation 1 denotes the computation for the Maximum Observation Window (MaxOW).

MaxOW = (f + 1) ∗OW (3.4)

.

The TTEthernet protocol computes the clock correction value using a variant of the
fault-tolerant median. The use of this approach is to mitigate the impact of faulty SMs.
Where pi, i ≥ 1 represents the permanence point in time. The variable i is an integer
which represents the order for the permanence point in time with p1 being the first per-
manence point in time. Table 1 illustrates the computation of the fault-tolerant median
implemented in TTEthernet.

Permanence Point in time (pi) Correction Value
1 0
2 p2 − p1

2
3 p2 − p1

4 ((p2 − p1)(p3 − p1))
2

5 p3 − p1
> 5 Average of (k + 1)th largest and (k + 1)th smallest

inputs. Where K is the number of faulty SMs
that has to be tolerated

Table 3.1: Variant fault tolerant median for computing correction value

After the collection phase, the CM waits for a certain time before dispatching the com-
pressed PCF. This delay between the collection phase and the dispatching of the com-
pressed PCF is known as the delay phase. The delay phase is computed from equation
3.5

delay_phase_duration = Cval + (k + 1) ∗OW − Cphase (3.5)

Where Cval is the correction value, OW is the observation window, and Cphase is the
collection phase duration. The variable k is the number of faulty SMs that have to be
tolerated. At the compressed point in time, the CM generates the compressed new PCF
with an integration cycle that conforms with the current integration cycle, assuming there
is no parallel compression execution. The compressed PCF is sent to all SMs. When a
central guardian function is employed, the compressed PCF can be delayed to support
such a service.

Page 39

Chapter 3.3 TTEthernet system

Second convergence function

At the SM, the expected receive time of the compressed PCF is known as the sched-
uled_receive_pit, where pit refers to point in time. The scheduled_receive_pit is decided
offline and is computed from equation 3.6

scheduled_receive_pit = dispatch_pit+ 2×MTD + CMD. (3.6)

where MTD is the maximum_transmission_delay, and CMD is the compression master
delay. The MTD represents the interval between the dispatch point in time from an SM
when the local clock counter is equal to zero to the time when the PCF becomes permanent
in the CM. It takes another MTD until the compressed PCF becomes permanent in
the SMs. An interval around the scheduled_receive_pit is defined, to tolerate faulty
components, digitalisation errors, and timing errors introduced by crossing clock domains.
This interval to accommodate this variance is known as the acceptance window.

The SMs evaluate all PCFs that are within the schedule of the defined acceptance window.
It evaluates multiple PCFs given, according to the number of CM per channel. The
evaluation is done in three steps [Obermaisser, 2011, p. 201]:

• Per-channel selection

• Low-membership exclusion

• Clock-correction calculation

In per-channel selection, the SM selects one PCF per channel. It is the PCF with the
highest number of bits set in the PCF membership new field that is selected. In case
of an equal maximum number of bits set by multiple PCFs, the latest PCF with the
maximum number of bits set in the PCF membership_new is selected. The SM removes
PCFs with a relatively low number of bits in the PCF membership_new field. Finally,
the SM calculates the clock correction. In the case of one best-channel PCF, the clock
correction is the scheduled receive point in time minus the permanence point in time of the
best-channel PCF. However, if two-best channel PCFs remain, then the clock correction
value is the arithmetic mean of the difference between the schedule receive point in time
and the permanence point in time of both values. [Obermaisser, 2011, p. 201].

3.3.3 TTEthernet startup and restart service

The startup and restart services define the algorithm to initially synchronise the TTEth-
ernet network participants. Before synchronisation, the SM triggers a fault-tolerant hand-
shake. The fault-tolerant handshake is a sequence of negotiation where each SM sends

Page 40

Chapter 3.3 TTEthernet system

CS frames to all CMs, which relays the frames back to all SMs on the network; The SMs
subsequently respond by sending a CA frame. The SAE AS6802 standard specifies differ-
ent state machines for implementing synchronisation on CM, SM or SC depending on the
failure hypothesis considered. An SM can be configured to have a failure mode restricted
to inconsistent-omission failure. In a case where the TTEthernet network tolerates the
fault of a CM and an SM at the same time, it is considered as a high integrity configura-
tion. When the TTEthernet network is configured to tolerate the failure of only SMs or
CMs, then the term standard integrity is used. The difference is that for high integrity
configurations, the SMs accepts all CS frames except the ones that originate from itself
while in standard integrity configuration, the SMs accepts all CS frames. This is because,
in the event of an arbitrary failure of an SM, the CS frame are not acknowledged in
the high integrity configuration. Under normal operating conditions, the synchronisation
participants are expected to be synchronised after a successful fault-tolerant handshake.

A detailed formal description of the state machines of TTEthernet startup is described
in the TTEthernet standard AS6802. The TTEthernet synchronization protocol uses
five variables: local_timer, local_clock, local_integration_cycle, local_sync_membership
and local_async_membership. The local_timer is an unsynchronised timer and is used
prior to synchronization to measure timeouts. The local_clock is a synchronized timer
used to measure time instants relative to the current integration cycle [AS6802, 2011].
The local_integration_cycle is used to count the number of integration cycles. The
local_sync_membership and local_async_membership variable are used mainly in the
synchronous/asynchronous and relative clique detection functions. The clique detection
together with the integration, coldstart and restart function are the four functions realized
by the startup/restart service of the TTEthernet protocol.

Integration

TTEthernet devices differentiate between an unsynchronised and synchronised state. Fig-
ure 3.4 illustrates the state machine for an SM. A TTEthernet device first enters the in-
tegration state when powered-on. In Figure 3.4, it is illustrated as SM_INTEGRATE for
an SM. The device first attempts to integrate into an already existing synchronisation if
available. Usually, the newly connected SM waits for a duration of two integration cycles
to be certain whether synchronisation already exists in the network. It will receive an
integration frame from a CM if a synchronisation service is running. On reception of an
integration frame, the integrating SM examines the number of bits set on the member-
ship_new field of the frame. The weight of the value determines what mode the newly
connected component would enter next. A sufficiently high number of bits in the mem-
bership_new field would cause the integrating component to join and start the execution

Page 41

Chapter 3.3 TTEthernet system

Fi
gu

re
3.
4:

Sy
nc
hr
on

iz
at
io
n
M
as
te
r
st
at
e
m
ac
hi
ne

.

Page 42

Chapter 3.4 Time sensitive networking

of the synchronisation service immediately. Otherwise, the integrating component enters
the SM_UNSYNC state and executes the coldstart procedure.

Coldstart

The coldstart procedure is executed in the SM_UNSYNC and SM_FLOOD state. The
SMs would send CS frames to all CMs. The CMs will then spread these CS frames to
all SMs. As explained earlier in this section, high integrity configuration would only
process CS frames from other SMs but not the ones sent by itself. The SM acknow-
ledges the received CS frames by sending a CA frame. Finally, the CM again relays
the CA to all SMs to complete the coldstart procedure. The SMs then transit to the
SM_WAIT_4_CYCLE_START_CS state. After a defined offset allowing the received
CA to become permanent, the SM_TENTATIVE_SYNC state is entered to test whether
the normal operation mode can be entered. In this state, the SMs send IN frames to
the CM; they are compressed and sent back to the SMs. When the SM receives back
the IN frames, they examine the number of membership bits for sufficiency. A strong-
synchronised operation mode is assumed when the number of bits is sufficient.

Clique detection

It is a strong requirement for startup algorithms to guarantee timely and safe startup
[Steiner and Kopetz, 2006]. The safety property is focused on eliminating cliques during
startup. Cliques are scenarios that emerge when a subset of integrating devices seems
to communicate synchronously within the set but not with others. During synchronised
operation, the TTEthernet synchronisation participant can be in either one of the three
states, namely TENTATIVE_SYNC, SYNC and STABLE. A clique detection algorithm
is utilised by the TTEthernet to detect all clique scenarios.

Restart

Restart is triggered when a component loses synchronisation. The clique detection mech-
anism is used to detect the synchronisation state of a TTEthernet component. When
synchronisation is lost, the component attempts to regain synchronisation by re-executing
the restart or coldstart mechanism which depends on the current state of the system.

3.4 Time sensitive networking

Time-Sensitive Networking (TSN) belongs to a group of IEEE 802.1 standards, which
cover bridged networks and network management. TSN uses a Stream Reservation Pro-

Page 43

Chapter 3.4 Time sensitive networking

tocol (SRP) for Audio Video Bridge (AVB) traffic bandwidth reservation. TSN can re-
serve up to 75% of the total bandwidth for AVB traffic in a port [Zhao et al., 2018]. TSN
transmits the regular best effort (BE) frames within the unreserved bandwidth.

Furthermore, similar to the TTEthernet network, TSN uses a TDMA scheme that provides
temporal partitioning on an Ethernet network. TSN utilises preconfigured time slots to
ensure the deterministic transmission of messages awaiting transmission in IEEE 802.1Q
[IEEE802.1Q, 2014] priority queues. TSN synchronises all its nodes which exchange
TT traffic following a global time base. The synchronisation mechanism is covered in
IEEE 802.1AS-rev, which is an ongoing amendment of IEEE 802.1AS-2011 [IEEE802.1AS,
2011].

In TSN, each switch port consists of 8 priority queues as specified in the IEEE 802.1Q
standard. Priorities are assigned to TT, AVB and BE traffic. However, the time-aware
shaper defined in IEEE 802.1Qbv [IEEE, 2016] provides the temporal partitioning support
required for TT traffic. Table 3.2 shows the list of standards covered by the TSN task
group. The updates to the TSN standard can be tracked in [Farkas et al., 2017]. The IEEE
802.1Qbv and IEEE 802.1AS-rev lay the foundation for the time-triggered communication
paradigm, such that TSN uses to attain temporal and spatial isolation [Oliver et al., 2018].

IEEE 802.1Qbv provides the enhancement for scheduled traffic using the Time aware
shaper (TAS). TAS is a mechanism that controls the opening and closing of gates that
are associated with each priority queue defined in the IEEE 802.1Q. It uses a preconfigured
cyclic schedule known as the gate control list (GCL) to control the state of each queues’
gate, a gate of which can only be in one of two states (Open or Close). Frames are
only available for forwarding when the gate associated with its queue is open. Figure
3.5 illustrates an example of the time-aware shaper. The time-aware is basically a gate
mechanism that dynamically enables or disables the selection of frames that are queued up
at the egress of a TSN device. The gate control list shown in Figure 3.5 has a predefined
schedule given by the gate control entry (GCE) from T00 to T06. Each GCE is opened
for a time that corresponds to a pre-scheduled time window with a desired transmission
selection algorithm (TSA) once the queue gate is opened. For instance, T00 uses an 8-bit
binary system to hold the schedule “01001000” which translates to the time slot for the
schedule T00, the queue for traffic class number 6 and traffic class number 3 are open,
while other gates are closed.

However, in the example scenario shown in Figure 3.5, VLAN 60 and 70 are configured
to convey TT messages and assigned priority class 6 and 7, respectively. AVB frames
are routed to queues assigned priority 3, 4 and 5 on VLAN 30, VLAN 40 and VLAN
50 respectively. The GCL holds the status of the state for each queue that is assigned

Page 44

Chapter 3.4 Time sensitive networking

IEEE Standard Function Title
802.1Qbu-2016 Frame Preemption
802.1Qbv-2015 Enhancements for Scheduled Traffic
802.1Qca-2015 Path Control and Reservation
802.1AS-2011 Timing and Synchronization for

Time-Sensitive Applications in
Bridged Local Area Networks

802.1Qat-2010 Stream Reservation Protocol (SRP)
802.1Qav-2009 Forwarding and Queueing Enhancements

for Time-Sensitive Streams
802.1BA-2009 Audio Video Bridging (AVB) Systems

Table 3.2: Time-Sensitive Networking Standards

priority 0 to 7 according to IEEE 802.1Q. The GCL synchronously changes according to
predefined time intervals. The GCL status determines which queue is allowed to forward
frames. Figure 3.5 shows the moment the gate of priority class 7 (TT) is open. In the
current GCL state, all other gates are closed.

Since the TSN consist of several standards, all of which cannot be covered within the
scope of this work, this work focuses on the standard which provides synchronisation for
the distributed network.

3.4.1 Background on precision time protocol and profile

Precision time protocol

IEEE 1588-2008 Precision time protocol (PTP) synchronises the clocks of a distributed
system. TSN makes it possible to synchronise the clocks of a sensor’s local node, actuators,
and other devices that operate in a distributed fashion using the Ethernet network. A
primary objective of the PTP is to achieve a sub-microsecond synchronisation accuracy.
A delay request-response mechanism is the bases of the PTP clock synchronisation. PTP
measures the offset and delay between a master and a slave clock. It operates on packet-
based networks that support multicast communications [Eidson, 2006]. There are five
types of devices in the PTP; the ordinary clock, boundary clock, end-to-end transparent
clock, peer-to-peer transparent clock and management node.

• The Ordinary clocks are end nodes that support PTP interactions. They are char-
acterised by a single port which is used to communicate with the network via two
logical interfaces for event messages and general messages. PTP defines two mes-
sage classes, event messages, and general messages. Event messages require accurate
timestamping at both transmission and reception, while the general messages do not
require accurate timestamps.

Page 45

Chapter 3.4 Time sensitive networking

Fi
gu

re
3.
5:

Ill
us
tr
at
io
n
of

IE
EE

80
2.
1Q

bv
tr
an

sm
iss

io
n
se
le
ct
io
n

Page 46

Chapter 3.4 Time sensitive networking

• Network devices such as switches and routers that are equipped with PTP capab-
ilities are usually used as boundary clocks. The boundary clock has multiple ports,
and each of the ports is similar to that of an ordinary clock. The exceptions to these
similarities are:

1. The data sets and local clock are common to all ports of the boundary clock.

2. The protocol engine in each of the ports resolves the state of all ports in
the device to determine which port’s reference time will be used to synchronise the
common local clock.

• The end-to-end transparent clock is used to measure the residence time of event
messages. The residence time is the time it takes the event messages to traverse the
transparent clock.

• The peer-to-peer transparent clock is similar to the end-to-end transparent clock
except that it corrects and handles event messages. It computes delays between link
peers by exchanging Pdelay_Req, Pdelay_Resp, and possibly Pdelay_Resp_Follow
_Up messages.

• The management node is used to configure and monitor the clocks during PTP
operation.

PTP uses a two-step execution in its operation. Firstly it establishes a master-slave
hierarchy, and secondly, it synchronises the local clocks. PTP consist of event messages
and general messages.

The event messages consist of four message types, namely Sync, Delay_Req, pDelay_Req,
and pDelay_Resp. The general messages consist of six types of messages, namely An-
nounce, Follow_Up, Delay_Resp, Pdelay_Resp_Follow_Up, Management, and Signal-
ing. IEEE 1588-2008 (PTP) uses two mechanisms to measure propagation delay, the
delay request-response and the peer delay mechanism. The Sync, Delay_Req, Follow_Up
(optional), and Delay_Resp messages are used by the delay request-response mechanism
to synchronize an ordinary and boundary clock. While the pDelay_Req, Pdelay_Resp
and Pdelay_Resp_Follow_Up are used by the peer delay mechanism to measure the link
delay between two clock ports. PTP uses the Announce message to establish the syn-
chronisation hierarchy. It uses the management messages to query and update the clock
data set. For other purposes such as rate negotiation of unicast messages between clock
nodes, PTP uses the signaling messages.

PTP permits a given communication network to host multiple independent synchron-
isation systems known as “subdomains”. It logically configures the network into a tree

Page 47

Chapter 3.4 Time sensitive networking

structure to support the master-slave hierarchy before it starts operating. The “grand-
master clock” is at the root of this hierarchy. Every PTP node utilises the same timescale
with the grandmaster clock. The ports of an ordinary clock or boundary clock execute
an independent copy of the PTP protocol state machine. The states of each port are
determined using an algorithm termed “best master clock algorithm” (BMCA). During
the execution of the BMCA, the protocol analyses the contents of the announce message
and the data sets associated with the PTP devices to resolve the state of each port. The
possible port states are MASTER, SLAVE, and PASSIVE. A port in the MASTER state
provides the time in which a port in the SLAVE state uses for synchronisation. A port in
the PASSIVE state serves neither as a master nor a slave. The BMCA consists of two sub-
set algorithms, namely the data set comparison and state decision algorithm. PTP uses
the data set comparison algorithm to compare the attributes of clock pairs, after which
it selects the best clock. The state decision algorithm is used to determine the next port
state. It is only after the implementation of the BMCA that the clock synchronisation
procedure is started.

Figure 3.6 shows a timing diagram of a PTP synchronization mechanism, illustrating the
timeline of a master and slave clock. The master node sends a multicast Sync message at
egress time t1 recorded by the master clock. The slave clock receives the Sync message
and assigns an ingress timestamp at time t2. Afterwards, the master node sends another
multicast message (Follow_Up) to all slaves. The Follow_Up message is an optional
configuration in PTP synchronization when one step-clock mode is not available [Liu and
Yang, 2011]. If the Follow_Up message is configured, then the egress timestamp t1 of the
initial sync message is conveyed to the slave node through the Follow_Up message’s data
field. The slave nodes is then prompted to send a Delay_Req message to its master clock.
The slave nodes records the Delay_Req’s egress time as t3. The master nodes receives the
Delay_Req message and records it at time t4. The timestamp t4 is sent by the master
immediately in the payload of a Delay_Resp message to the slave node. The slave node
finally calculates the offset using t1, t2, t3 and t4 with equation 3.7.

Offset = (T2 − T1)− (T4 − T3)
2 (3.7)

The slave node adjusts its local clock by adding the offset to its current node time using
equation 3.8.

SynchronizedT ime = CurrentNodetime +Offset (3.8)

PTP operates under the assumption that the propagation delay in the network is sym-

Page 48

Chapter 3.4 Time sensitive networking

Figure 3.6: PTP timing diagram for synchronization message exchange

metrical. This assumption means that the message propagation delay from the master
to slave is the same when perceived from slave to master. Figure 3.7 illustrates the link
delay in clocks that support P2P path correction. This mechanism operates on port peers.
The connected ports that share the same link carry out delay measurements for the link.
The delay measurement allows clock corrections irrespective of the direction taken by
Sync messages. In figure 3.7, port-1 sends a Pdelay_Req message noting the egress time
stamp as t1. The Pdelay_Req message when received by port-2 is timestamped at t2.
Afterwards, port-2 sends a Pdelay_Resp message, noting the egress timestamp as t3. The
difference between the timestamp t2 and t3 is returned immediately by port-2 either
in either a Pdelay_Resp message or the Pdelay_Resp_Follow_Up message or in both.
Port-1 then records the ingress message at t4. The timestamps t1, t2, t3 and t4 are then
used to compute the mean link delay.

3.4.2 Generalized precision time protocol

A profile of PTP known as generalised PTP (gPTP) is standardised as IEEE 802.1AS-
2011. The gPTP consist of two types of devices referred to as time-aware systems. These
devices are the time-aware end station and time-aware bridge. Delay mechanism is defined
in gPTP based on the media. However, this work focuses only on the IEEE 802.3 Ethernet
full-duplex point-to-point links. Similar to PTP, the gPTP uses the BMCA in the selection

Page 49

Chapter 3.4 Time sensitive networking

Figure 3.7: PTP link delay measurement

of the master clock. However, the BMCA implementation in gPTP is simplified. The
major differences between gPTP and PTP are summarised in clause 7.5 of the IEEE
802.1AS-2011 standard.

Delay measurements take into account the resident time and communication path delay.
The resident time describes the time taken by a time-aware bridge to forward a received
message. The computation ofresident time is performed internally by the time-aware
bridges and are straightforward. However, The link delay is measured using the peer
delay algorithm defined in PTP. The time synchronisation correction is dependent on the
accuracy of the link delay and resident time measurements.

3.4.3 Start-up time

One of the objectives of PTP is the establishment of an automated mechanism and distrib-
uted approach that handles power-up, clock appearance, and disappearance, and change
in clock functionality and system topology [Eidson, 2006]. The BMCA is used to achieve

Page 50

Chapter 3.4 Time sensitive networking

Figure 3.8: MDSyncSendSM state machine

the PTP startup and reconfiguration. Each ordinary or boundary clock first listens for
an announce message for a configurable time interval. The announce message contains
information about the status and characterisation information of the transmitting node
and its reference grandmaster clock. The clocks assume the role of a master when no
announce message is received until a better clock appears.

However, on startup, several state machines are executed by each port of a gPTP device.
Out of these state machines, only the state machines that impact the startup time
and behaviour are depicted herein. These include the BMCA state machines, time-
synchronisation state machines, and the state machine for peer-delay state mechanism.
These state machines are described in clause 10 to 11 of the gPTP standard for a full-
duplex point-to-point link [IEEE802.1AS, 2011]. Figure 3.8 to 3.10 presents an abstraction
from these state machines and is used to illustrate how they impact the startup mechan-
ism of gPTP. The variables affected by the startup process of the state machines are the
rcvdSync, rcvdMDsync, portEnabled, pttPortEnabled and asCapable. The details of all
other variables are explained in the gPTP standard. However, some variables illustrated
in the figure 3.8 to 3.10 provides more clarity to the operation of gPTP.

The MDSyncSendSM state machine is illustrated in Figure 3.8. The MDSyncSendSM

Page 51

Chapter 3.4 Time sensitive networking

Figure 3.9: MDSyncReceiveSM state machine

receives an MDSyncSend structure from the PortSync entity of the same port, transmits
synch messages and also computes the information needed for the Follow_Up message
before transmission. PortSync entity computes port-specific delays needed for the time
synchronisation correction. The global variables portEnabled, pttPortEnabled rcvdMD-
Sync and asCapable are required during the INITILIAZING state to enable the system
transition into the SEND_SYNC state and SEND_FOLLOW_UP state. The portEn-
abled is a Boolean that is set if the time-aware system’s MAC Relay Entity and Spanning
Tree Protocol (STP) entity can use the MAC Service provided by the Port’s MAC entity
to transmit and receive frames to and from the attached Local Area Network (LAN). The
pttPortEnabled is also a boolean variable that is set to TRUE if the BMCA and the time-
synchronisation function of the port are enabled. The rcvdMDSync is a boolean variable
that notifies the current state machine when an MDSyncSend structure is received. The
rcvdMDSync is reset by the current state machine. The asCapable is a Boolean that is set
to TRUE if and only if it has been established that the ports of two connected time-aware
bridges can inter-operate with each other via the IEEE 802.1AS protocol.

In Figure 3.9, the MDSyncReceiveSM receives Sync and Follow_Up messages, and sends
information about time-synchronisation contained in the message to the PortSync entity
of the same port. The rcvdSync, portEnabled, pttPortEnabled and asCapable are also

Page 52

Chapter 3.4 Time sensitive networking

Figure 3.10: Best master clock algorithm state machines interelationships

Page 53

Chapter 3.4 Time sensitive networking

required for a port that receives a synchronisation message to change into the WAIT-
ING_FOR_FOLLOW_UP state. Else the WAITING_FOR_FOLLOW_UP message
will not be entered until the conditions are met. On gPTP startup, the variable portEn-
abled is TRUE only when conditions defined in clause 10, 10.2.4.11 of IEEE 802.1AS-2011
are met. When the time-synchronisation and BMCA functions are enabled, only then is
the pttPortEnabled set. The rcdMDSync is a variable that notifies the current state
machine when an MDSyncSend structure is received, while rcvdSync notifies the current
state when a sync message is received. The time required to determine if a link is gPTP
capable has a notable impact on the startup time of gPTP. The variable asCapable is used
to indicate gPTP capable link. The variableasCapable is used to determine if each port
connecting multiple time-aware systems can interoperate with each other via the IEEE
802.1AS protocol. It is noteworthy that the variable asCapable is used by the PortSync
entity (shown in IEEE 802.1AS -2011 Clause 10, Figure 10-1). However, asCapable is
set in the MDPdelayReq state machine. Therefore, the startup procedure of the other
dependent state machines, including the BMCA state machine shown in Figure 3.10 are
only completed when the asCapable variable is determined. Therefore, in some imple-
mentations, the variable asCapable is first determined before an announce and SYNC
messages can appear on any link. The PortAnnounceReceive state shown in Figure 3.10
is invoked by the PortSync entity. The state receives and checks if announce messages are
qualified. The PortAnnounceInformation announce state is used to compare if a newly
received announce information is better than the current best master information. The
PortRoleSelection determines and updates the port role for each port, while the PortAn-
nounceTransmit transmits announce information at specified announce interval.

Therefore, contrary to the startup time definition in popular opinions such as in [Diarra
et al., 2015] which defines startup-time as the time between the transmission of the first
Sync message by a grandmaster and the last arrival of a Pdelay_Resp message at an end
device. This work defines the startup time as the elapsed time between the transmission
of the first PDelay_Req message by any node and the arrival of the Follow Up message
at the end device which received it last. In this way, the time taken for the determination
of asCapable and other global variables (e.g. portEnabled, pttPortEnabled) is included.
Another source of delay during startup is the spanning tree protocol (STP) protocol, but
this work focuses only on the IEEE 802.1AS startup mechanism and does not include the
STP protocol.

Page 54

Chapter 4

Related Work

This chapter discusses existing fault injection frameworks and methods used in evaluat-
ing the dependability of a system. Firstly, the requirements of the proposed validation
framework for TTEthernet and TSN are discussed in section 4.1. Afterwards, different
fault injection tools are discussed in section 4.2, to portray how the existing state-of-art
do not satisfy the requirements for the intended framework of this work. In the following
section 4.3, the verification carried out for different MAC layer protocols is discussed.
The discussions include the different methods of network verification, and practices such
as peer review, simulation, formal methods and prototype testing. Section 4.4 discusses
the application of techniques such as formal methods, simulation and prototype testing
for the verification of different network protocols. The related works discussed include
different network protocols such as Ethernet, Controller Area Network (CAN), FlexRay,
Time-Triggered Protocol (TTP/C), and Time triggered CAN (TTCAN). Finally, section
4.5 summarises the related works, emphasises the gaps, and outlines the contribution of
this work.

4.1 Requirement

The use of fault injection in evaluating the dependability of a system, be it hardware sys-
tems or software systems is not a new technique. The design of a fault injection framework
is constrained by certain factors such as the target domain (hardware or software), level of
intrusiveness, abstraction layer, and type of faults to be injected. Several fault injection
frameworks and tools have been designed over the years targeting different platform, and
these tools are discussed in section 4.2. Nevertheless, due to the diversity in target applic-
ations (both in software and hardware), the fault injection framework is usually designed

55

Chapter 4.1 Requirement

for a specific target domain. Therefore, a fault injection framework that is designed to
validate the dependability of a hardware target by injecting hardware faults may not be
suitable for validating software target. The requirement of the desired fault injection
framework in this work is that the fault injector must match the target domain, which
is a network protocol that comprises the joint operation of both hardware and software
devices. The mentioned domain requirement is considered in this work as the requirement
1, such that the failure modes listed in IEC 61508 are covered, and the fault injection
framework is aimed at validating a distributed communication protocol (TTEthernet and
TSN in focus).

This work is based on two time-triggered communication protocols, TTEthernet and TSN.
These two protocols are appealing to applications with high dependability requirements.
This works aims at developing a fault injection framework in which the target domain is
the time-triggered communication protocol. Time-triggered protocols require specialised
hardware devices and software implementation to operate. Therefore, verification and
validation exercises for these networks using some existing state-of-art are not suitable
for the target domain. The integrated system behaviour of the time-triggered protocols
cannot be captured by evaluating only the hardware implementing implementation or
only software implementation. Several fault tolerance mechanisms are often implemented
for time-triggered protocols. For example, the fault-tolerance startup and restart service
discussed in section 3.3.3 of the previous chapter 3. A fault injection framework that
targets all the integrated behaviour of both hardware and software implementation of the
fault-tolerant mechanism and behaviour under failure for TTEthernet/TSN physical setup
remains insufficiently researched. As a consequence, no framework gives total coverage of
the protocol state machine paths for all physical network participants. The requirement
that refers to the integrated behaviour of all implemented TTEthernet and TSN is referred
herein as requirement 2.

Existing industrial practices rely on verification and validation techniques carried out in
simulation and mathematical models, and fault injection is often implemented in sim-
ulation. A significant challenge with these techniques is the gap that exists between
abstraction layers. Notably, if models are classified in increasing order to close out miss-
ing abstraction details, one would see it as follows “Mathematical model - Simulation -
Emulation - Prototype”. The verification and validation of prototypes provide a higher
confidence level since it is the closest to the actual system to be deployed. Verification
and validation of fault-tolerant properties and system behaviour under failure for TTEth-
ernet and TSN physical setup fall within the scope of this work. The choice of hardware,
operating system, and coding techniques used in the realisation of a prototype or final
version plays a critical role in determining the behaviour of the systems. Therefore, it can

Page 56

Chapter 4.1 Requirement

be argued that it is not enough to conclude validation exercises in simulation or formal
methods, thus the abstraction level requirement. This abstraction requirement is referred
to herein as requirement 3.

As discussed in section 2.4.1, the introduction of a fault injection component into a NUT
may leave a footprint that affects the system’s functions, which should not be the case.
Fault injection frameworks often present some level of intrusion where the framework
itself affects the operation of the system under test, predominantly by adding delays in
target domains that require message exchange. Low invasiveness is essential for time-
triggered communication, where the correctness of the system depends on the timely
transmission and reception of messages. The effect of the fault injection component must
be limited to the faults it is intended to inject. It is necessary to avoid all side effects, for
instance, unaccounted and inconsistent delay footprint by the fault injector. Therefore,
overcoming this challenge is a critical requirement for designing a fault injection framework
for TTEthernet and TSN. Low-intrusion and a masked delay footprint requirement of the
fault injector component are referred herein as requirement 4.

This chapter aims to evaluate existing fault injection framework based on its suitability
to cover the validation of the correctness of the fault-tolerance services in TTEthernet
and TSN protocols, and the reliability evaluation of applications based on these protocols.
Further requirements such as the abstraction of the fault injector from the target system
(requirement 5), the portability of the fault injection framework across TTEthernet and
TSN (requirement 6), form the basis of analysis for the state-of-art.

Abstraction here means the separation of the fault injection framework from the system
being tested (network). Several fault injection framework that will be discussed do modify
the components of the systems under test or NUT. For example, the works carried out
by [Rodriguez-Navas et al., 2003] and [Ziermann et al., 2012], as will be discussed in
this chapter performed such modification. The TTEthernet protocol and TSN protocols
present auspicious safety features and are currently being implemented by several vendors.
Therefore, such an abstraction feature is needed to enable the fault injection framework to
evaluate multiple implementation and applications of the different vendors. The sfiCAN
framework in [Gessner et al., 2014] is an example of where such abstraction is attained.
The abstraction of the testing framework from the NUT would make it possible to test
the fault injection implementation across the different applications that use TTEthernet
and TSN. Such an application-independent framework makes it possible to inject faults
into a variety of applications for dependability evaluation. Since the component being
tested is a given network, the placement of the fault injection framework should be such
that the components of the network (switches and nodes) are not modified. In regards

Page 57

Chapter 4.2 Fault injection tools

to the portability requirement (requirement 6), the fault injection framework should not
be vendor-specific. The view of the portability requirement is that the fault injection
framework should be portable to different time-triggered protocols such as TTEthernet
and TSN, as well as across different vendors.

Apart from the use of fault injection frameworks to carry out verification and validation
exercises for fault-tolerant mechanisms, the data acquired from a given framework can
also be learned to avoid failures. The adoption of machine learning techniques for learn-
ing large data statistics is currently a popular field. The application of deep learning to
learn the profile of certain failure modes such as corruption and omission failures provide
a promising diagnostic solution for detecting failures before the establishment of a global
time-base in time-triggered networks. To detect failures earlier before the completion
of the synchronisation startup process is quite a challenge since such a fault-tolerance
mechanism would most likely rely on missed deadlines to identify omission or corruption
failure. Deep learning can be used to train a model using the results of the fault injec-
tion framework at development time, and then deploying the model in the real system
afterwards. Hence, the trained model would be useful at run-time. Therefore, the fault
injection framework must be capable of generating data that can be used to train a neural
network. The ability of the fault injection framework to generate data that can be used
for training the neural network is referred to herein as requirement 7.

4.2 Fault injection tools

A detailed survey on fault injection tools was carried out in [Ziade et al., 2004]. Several
fault injection tools are described for software, hardware, simulation, and hybrid based
methods. These frameworks include the following below, arranged according to different
target domains:

1. FERRARI (Fault and Error Automatic Real-Time Injection) [Kanawati et al., 1995],
FTAPE (Fault Tolerance and Performance Evaluator) [Tsai and Iyer, 1995], FIAT
(Fault Injection-based Automated Testing) [Segall et al., 1995], XCEPTION [Car-
reira et al., 1998], DOCTOR [Han et al., 1995], EXFI [Benso et al., 1998], NFTAPE
[Stott et al., 2000], and GOOFI [Aidemark et al., 2001] used for software-based fault
injection.

2. RIFLE [Madeira et al., 1994], FOCUS [Choi and Iyer, 1992], MESSALINE [Arlat
et al., 1990], FIST (Fault Injection System for Study of Transient Fault Effect)
[Gunneflo et al., 1989], and MARS(Maintainable Real-time System) [Karlsson et al.,
1998] used for hardware-based fault injection.

Page 58

Chapter 4.2 Fault injection tools

3. VERIFY (VHDL-based Evaluation of Reliability by Injection Faults Efficiently)
[Sieh et al., 1997], MEFISTO-C [Arlat et al., 2003], HEARTLESS [Rousselle et al.,
2001], VFIT (VHDL simulation-based Fault Injection Tool) developed by the GSTF
(Fault Tolerant Systems Group — Polytechnic University of Valencia) to run on a
PC platform [Gil et al., 2003], and FTI (Fault Tolerance Insertion) [Entrena et al.,
2001] used for simulation fault injection.

4. LIVE (Low-Intrusion Validation Environment) [Impagliazzo and Fabiomassimo, 2003]
used in the hybrid fault injection

Ferrari uses a software trap and trap handling routine to inject faults into registers and
memory locations to emulate data corruption. The execution state of a program is altered
by a fault/error injection process running concurrently. The two processes run concur-
rently on the same machine; therefore, the fault injector component is not abstracted
from the target device. In as much as Ferrari is a software-based fault injector, it does
not cover the failure modes defined in IEC 61508; hence requirement 1 is not met. The
integrated behaviour of hardware and software is not within the scope of Ferrari and
consequently does not satisfy requirement 2. Finally, there is no abstraction of the fault
injection component from the target device; therefore, requirement 5 is also not met.

FTAPE is a tool that integrates the injection of faults and the generation of the workload
necessary to propagate those faults. The tool is composed of three main parts: FI (the
fault injector), MEASURE, and WG (the workload generator). The FI performs fault
injection, measurements of the current workload activity is performed by the MEASURE,
while the WG creates workloads to propagate the injected faults. FTAPE targets CPU,
local memory, and mirrored disk system [Tsai and Iyer, 1995]. Ferrari and FTAPE target
the software running on a given hardware device. The context for controlling the injec-
tion of faults in a distributed system was not within the scope. FTAPE is not aimed for
distributed network protocols. Thus, the FTAPE and Ferrari are not suitable for validat-
ing the total distributed nature of fault-tolerance mechanism for TTEthernet and TSN.
FTAPE does not satisfy requirement 1, requirement 2, requirement 5, requirement 6, and
requirement 7.

FIAT is designed for distributed systems and implements hardware structures composing
of; Fault Injection REceptacles (FIRE) and the Fault Injection Manager (FIM). The FIM
provides run-time control for the experiment and supports the data collection/analysis.
The FIRE provides the execution platform for the distributed system under test in the
experiment. Therefore, the framework is not abstracted from the target device, and
hence requirement 5 is not met. Requirement 1 is also not met since it does not cover the
communication failure modes defined in IEC 61508.

Page 59

Chapter 4.2 Fault injection tools

The XCEPTION tool is a software-based fault injection tool consisting of three modules,
namely the kernel, fault setup, and Experiment Manager Module (EMM). The scope of
XCEPTION is for a target system composed by the processor, system buses and memory.
XCEPTION is abstracted from the target application, but the implementation is on the
same target system. Although XCEPTION is portable across different processors, it is
not designed to target distributed communication systems. XCEPTION does not satisfy
requirement 1, requirement 5, requirement 6, and requirement 7.

DOCTOR is a software fault injection environment which is capable of generating syn-
thetic workload, injecting various types of faults including communication fault, and col-
lecting performance and dependability data. DOCTOR supports three kinds of faults:
memory faults, CPU faults, and communication faults. The fault injector component of
DOCTOR consists of three modules: Experimental Generation Module (EGM), Exper-
iment Control Module (ECM), and Fault Injection Agent (FIA). The FIA injects faults
or causes a workload to wait/start/stop by receiving commands from the ECM via Eth-
ernet. The EGM generate executable images of workloads that are downloaded to the
target system. DOCTOR is designed for a distributed system, and its design separates
the components of the fault injector from the target system, thereby, minimising the delay
footprint that can be caused by the fault injector component. The communication fail-
ure realised in DOCTOR are classified in [Han et al., 1995] as message loss (omission),
altered message (corruption), duplicated message, and delayed message. Although the
failure modes compatible with DOCTOR are covered in the IEC 61508, the operating
dynamics of TSN and TTEthernet communication protocol presents a different challenge.
Both networks protocols consist of implementations of multiple complex state machines
which can be impacted by the fault location. For example, as mentioned earlier, all the
traffic classes in TTEthernet include, PCF, TT, RC, and BE. Validating the fault-tolerant
startup protocol of TTEthernet would require targeting the PCF traffic class. The fault
injection framework also needs to understand the dynamics of the target system to have
the ability to satisfy requirement 1 completely. DOCTOR does not satisfy requirement 1,
requirement 2, and requirement 6.

EXFI is a software fault injection based on the trace exception mode available in most
microprocessors. EXFI is divided into three modules, namely the Fault List Manager
(FLM), Fault Injection Manager (FIM) and result analyser. The FLM generates the
fault list to be injected into the system, the FIM injects the faults into the system, and
the result analyser collects the results and produces a report concerning the whole fault
injection experiment. EXFI is not designed for distributed systems and hence can not
be used to validate the integrated system behaviour of TTEthernet and TSN. EXFI does
not satisfy requirement 1, requirement 2, and requirement 6.

Page 60

Chapter 4.3 Network verification methods

NFTAPE is a software fault injection tool for composing automated fault injection experi-
ments from available lightweight fault injectors, triggers, monitors and other components.
In NFTAPE, the fault injection component is replaced by a LightWeight Fault Injector
(LWFI). The NFTAPE also handles logging, configuration, and communication functions.
NFTAPE operates in a distributed environment and targets CPU registers, memory, ap-
plications and specific operating system functions. The framework is not suitable for
TTEthernet and TSN protocol based on the same argument provided for DOCTOR in
regards to the operating dynamics of the target system (TTEthernet and TSN protocol).
Therefore, requirement 1, requirement 2, and requirement 6 are not met.

GOOFI is a fault injection tool highly portable to different host platforms. GOOFI sup-
ports pre-runtime Software Implemented Fault Injection (SWIFI) and Scan-Chain Im-
plemented Fault Injection (SCIFI). The SCIFI is used to inject faults through a built-in
boundary scan-chain and internal scan-chain that is present in many modern VLSI cir-
cuits. In the pre-runtime SWIFI, faults are injected into the program and data areas
of the target system before the program starts. Again, GOOFI is not sufficient to tar-
get distributed communication platform. Even though the fault injector component is
abstracted from the target system, requirement 1 is not satisfied.

As mentioned in section 4.1, the two time-triggered communication protocols, TTEthernet
and TSN require both hardware and software support. Unlike the above-listed frameworks
which target either software or hardware, the target system in this work is the distributed
network. Therefore, RIFLE, FOCUS, MESSALINE, FIST and MARS do not satisfy
requirement 1. Similarly, VERIFY, VFIT, and FTI are simulation-based framework;
the target domain requirement is also not met. The failure modes of the hybrid fault
injector LIVE do not cover the failure modes given in IEC 61508. LIVE does not satisfy
requirement 1, and requirement 6, and requirement 7.

4.3 Network verification methods

There exist several verification techniques to investigate the correctness of systems. These
techniques include peer-reviewing, analysis using formal methods and testing on simu-
lators, emulators and prototypes. Peer review involves the analysis of a system by an
experienced professional. Most often, the reviewer checks the system (e.g. software code)
manually for mistakes. Peer review is usually followed by an automated analysis which is
extensively used in industry [Geilen, 2002].

Simulation can be useful in exposing the erroneous behaviour of a system. Simulation is
scalable and can be used for testing, evaluation, and the initial validation of a protocol

Page 61

Chapter 4.3 Network verification methods

stack. A simulator can be designed for general-purpose or specific applications. The
accuracy of the underlying model used in creating a simulator determines its fidelity.
The more accurate a model attempts to represent a physical phenomenon, the more the
complexity of the simulator increases — this increased complexity results in low execution
speed of the simulator [Barnes, 2017].

Formal methods are computer techniques based on mathematical logic that is used to
prove that a system complies with a set of properties [Qadir and Hasan, 2015]. Usually,
the system to be verified and its interactions are modelled in a mathematical language to
verify a set of properties on the model. The following are needed to accomplish formal
verification [Mouradian, 2013]:

• Verification method

• Formal modelling language

• Modelling tool

A verification method is used to establish proof that the system functions correctly. The
two main formal verification methods for network protocols are model-checking and net-
work calculus [Barnes, 2017]. Model-checking is used to verify that a system (usually
modelled as a finite state machine (FSM)) satisfies its specification. Formal methods
sometimes express specifications as temporal logic which uses a set of defined formal
algorithms to explore the states of the FSM exhaustively. Some example properties in-
clude accessibility, safety and deadlock. The main limitation of model checking is the
state-space explosion problem. Consider a system that has M components and each of
these components having N different internal states. The total number of possible sys-
tem states is NM . The exponential growth of the number of states with the number of
system components and the size of the specification is called the state-space explosion
effect [Geilen, 2002]. Network calculus is a theoretical environment that provides deep in-
sight into flow problems encountered in networking. Network calculus provides the basis
to analyse the fundamental properties of flow control, scheduling and buffers or delay
dimensioning [Le Boudec and Thiran, 2001]. However, the limitation is the restriction of
the calculus to performance bounds for a given topology.

The formal modelling language describes the behavioural rules of the system. Some
examples of formal modelling language include petri nets [Murata, 1989], process algebra
[Baeten, 2005] and automata [Fisher and Raney, 1969]. The modelling tool provides the
platform to model the system in a given formal language.

A prototype is an early sample of a product built to test a concept. Test runs on pro-

Page 62

Chapter 4.4 Related works on the verification of network protocols

totypes are highly effective and result in more confidence level than other analysis tech-
niques. However, the major setback is that it is time-consuming and expensive to build a
prototype. Before a prototype can be realised, the design is almost ready. In particular,
for safety-critical systems where the cost of failure or maintenance is very high, prototype
evaluation is justifiable.

4.4 Related works on the verification of network pro-
tocols

Depending on the stage of a system development lifecycle, the techniques discussed in sec-
tion 4.3 are adopted to verify network communication protocols. Other factors that could
affect the choice of the verification technique include financial requirements, available
expertise, and certification requirements.

[Revsbech et al., 2012] designed a testbed to validate the performance of Ethernet for an
in-car network. The testbed comprises a specially designed field-programmable gate array
(FPGA) based networking card, the NT4E 4-port adapter from Napatech [Napatech, 2017]
for measurements. The purpose of developing the testbed was to obtain precise model
parameters useful for designing an in-car network. However, the work did not perform
any detailed analysis of the in-car network, since it was not within the scope.

Similarly, [Ziermann et al., 2012] evaluated the timing behaviour of the Controller Area
Network (CAN) with the use of a testbed. The testbed approach was adopted to reveal
problems that are not visible at the simulation level. The work used a Virtex-5 Open-
SPARC evaluation platform to implement each CAN node and a standard PC for two
purposes. The first purpose was to allow for debugging during development time. The
second purpose was to gather performance measurements. The work used the FPGA
for message generation, message transmission and performance evaluation. If different
vendors would like to test their CAN implementations on this platform, it would require
redesigning the applications running on the FPGA to conform to their requirement. It
does not abstract the evaluation strategy from the components of the network under test
(NUT). Therefore, requirement 5 is not met.

Verification can ensure that specific dependability properties are met. In safety criticality
systems, fault-tolerant mechanisms are used to ensure that a system continues to operate
safely when an error occurs. The verification of fault-tolerance mechanisms is often used
to provide arguments towards the level of confidence placed on a safety-criticality system.

An architecture for physical fault injection in CAN networks was presented in [Rodriguez-

Page 63

Chapter 4.4 Related works on the verification of network protocols

Navas et al., 2003]. The work designed a physical fault injection tool that is capable
of testing the fault tolerance mechanisms of the CAN protocol. The work considered
two approaches to selecting the fault location. The fault location specifies where to
inject physical faults. The first consideration was in the transmission medium, and the
second was between a CAN controller and its transceiver. [Rodriguez-Navas et al., 2003]
implemented the latter, which meant that each node was modified with an individual fault
injector (IFI). The challenge with this approach is that node modification was required
to achieve physical fault injection. If this approach is to be adopted, it would require
modifying each node to contain the IFI before performing validation exercises. Again,
requirement 5 is not met as there is no abstraction of the fault injection framework from
the NUT.

[Lanigan et al., 2010] employed a software-based method to inject faults into AUTOSAR
applications. By leveraging the CANoe simulation environment, the framework used two
types of hooks (suppression and manipulation), inserted into the AUTOSAR codebase. A
CANoe is a software tool used to develop, test and analyse electronic control units (ECUs).
It is developed by Vector Informatik [Vector-Informatik, 1996]. The principal drawback
of this approach as described in [Lanigan et al., 2010], is that certain faults such as modi-
fication of data buffers or attempting to cause timing violations causes a simulation-wide
probe effect crashing the entire simulator. Besides, simulators are modelled to mimic
certain functionality of the real-world system, and the fidelity of the simulator is determ-
ined by the underlying model used for the simulated design. Therefore, certain complex
systems or complex functionality of some systems may not be sufficiently represented by
a simulator. The requirement 3 is not met since the target domain is not based on the
actual system but simulation.

A Star-Based Physical Fault-Injection Infrastructure for CAN Networks (sfiCAN) was
developed in [Gessner et al., 2014]. The work relied on a CAN-compliant hub, which is
connected in a star-based topology to several CAN nodes. The hub described is equivalent
to a CAN bus, and the framework achieves fault injection without the need to make any
modification on the CAN node. It allows testing the behaviour of the software under
failure without the need to modify the software being tested or the host computer of the
software. The framework has the limitation that it requires the inclusion of extra COTS
transceivers per node. However, its attractive feature is that it abstracts the testing
component from the NUT similar to the fault injection framework implemented in this
work, even though the framework is restricted to the CAN network. The sfiCAN is not
portable to TTEthernet and TSN. Therefore, requirement 6 is not satisfied.

[Kim et al., 2008] developed a system model and verification for FlexRay communication

Page 64

Chapter 4.4 Related works on the verification of network protocols

using systemC. The analysis employed the FlexRay Specification and Description Lan-
guage (SDL) description. Every module was tested by test signals which are expected to
be entered as the state of the communication controller changes. The drawback is that
the verification is carried out on abstract models of the real systems. Therefore, the high
complexity of certain network topology can be difficult to model; requirement 3 is not
satisfied. Secondly, the work did not consider verification under faulty scenarios.

Verification of FlexRay communication was also carried out through behavioural simu-
lation in [Muller and Valle, 2010]. The work compared measurements from a modelled
FlexRay physical layer transceiver, which was developed in VHDL-AMS hardware descrip-
tion language [Christen and Bakalar, 1999], to measurements from actual devices. The
aim was to improve the confidence of a tuned transceiver model. Apart from simulation-
based approaches for FlexRay, verification by analysis was also carried out in [d. Souto
et al., 2016]. The work exploited an analytical model based on discrete-time Markov
chains to evaluate the broadcast protocol for FlexRay. The work considered permanent,
transient, omission, and asymmetric faults that affect both nodes and channels.

Furthermore, dependability evaluation of Time-Triggered Protocol (TTP/C) was carried
out in [Racek et al., 2012]. Fault injection was used to evaluate the different fault-tolerant
hypothesis of the TTP/C protocol. The work used a generic C-language to design the
simulation models. Requirement 3 is not satisfied with these approaches.

Several works verifying the startup algorithms in other time-triggered platforms such as
TTA, FlexRay and TTCAN using formal methods were surveyed in [Saha et al., 2016].
The work gives a detailed overview on the verification approach adopted, based on the
works carried out in [Dutertre and Sorea, 2004], [Steiner et al., 2004], [Saha et al., 2007a]
for TTA, in [Steiner, 2005] for FlexRay, and in [Saha et al., 2007b] for TTCAN. The
Symbolic Analysis Laboratory (SAL) toolset [de Moura et al., 2004], a model checking tool
was predominantly used for the verification of the startup algorithms in these protocols.
Nevertheless, requirement 3 is not satisfied since the target domain was not based on the
physical setup of the networks.

4.4.1 Verification and validation of TTEthernet

Formal methods

[Steiner and Dutertre, 2010] verified the TTEthernet’s compression function using a SAL
model checker known as the sal-inf-bmc. The work formally verified several properties
of different characteristics (e.g membership and clock synchronisation) and discussed their
computational overhead. The assessment carried out in this work, allowed the addition of

Page 65

Chapter 4.4 Related works on the verification of network protocols

a configurable number of faulty dispatch processes. [Steiner and Dutertre, 2010] added a
dedicated error-state to investigate the termination property of the compression function.

The SAL model checker was later extended by the same authors to present an automated
proof of the full TTEthernet clock-synchronisation algorithm [Steiner and Dutertre, 2011].
The major highlights of this work are the use of a model of continuous uninterpreted time
and the proof that the fault-tolerant clock synchronisation can be fully automatised.

[Ammar and Mohamed, 2011] used another formal model known as the PRISM model
checker to verify the time-triggered Ethernet. PRISM is a probabilistic model checker,
a tool for formal modelling and analysis of systems that exhibit probabilistic behaviour
[Kwiatkowska et al., 2002]. [Ammar and Mohamed, 2011] introduced hardware faults
in a probabilistic manner, and the PRISM was able to detect a state in which some
TTEthernet properties are violated. The violated properties were the properties which
stated the following:

• At any given point in time, there’s only one node sending a message.

• A node only sends on its time partition.

The faulty states were reached when a switch and a node fail at the same time. [Ammar
and Mohamed, 2011] describe the scenario in which this violation occurs in detail.

The verification activities mentioned above did not target the integrated system beha-
viour of all TTEthernet components, and thus requirement 2 is not satisfied. In an
attempt to capture the integrated behaviour, [Dutertre et al., 2012] used an automated
test-generation tool to drive high-coverage testing of prototype TTEthernet hardware,
based on a state-machine model of the TTEthernet protocol. Again the work was built
on the existing SAL formalisation discussed in [Steiner and Dutertre, 2010] and [Steiner
and Dutertre, 2011]. [Steiner and Dutertre, 2013] summarises the formal analysis and
verification activities of the TTEthernet synchronisation protocol based on the SAL. Re-
quirement 3 is not satisfied with formal methods.

Simulation approach

[Abuteir and Obermaisser, 2013] developed a simulation framework for TTEthernet that
supports the validation of TTEtherent-based applications in its early development stage.
The simulation framework was implemented using the OPNET tool suit for discrete event
simulations of communication networks [Riverbed-Technology, 2019]. Generic building
blocks for TTEthernet switches, end systems (nodes) and fault injectors were developed.
The building blocks can be instantiated in OPNET and configured to represent distributed
embedded applications. The simulation framework extended the standard Ethernet switch

Page 66

Chapter 4.4 Related works on the verification of network protocols

and end nodes by adding deterministic frame transfer capabilities while retaining full
compatibility with the requirements of IEEE 802.3. The end nodes can exchange the three
traffic classes of TTEthernet frame: TT, RC and BE. The implemented fault injection
block covers the following failure modes: Omission, corruption, link, crash, delay, stuck-at,
babbling idiot, and masquerading failure.

Further work on simulation-based fault injection was carried in out [Fejoz et al., 2018].
Therein, a combination of a simulation model and experimental platform were used to gain
quantified insights on Time-Triggered Ethernet’s operation. Confidence in the resulting
simulation model was gained by cross-verification with traces monitored on a real network.
[Fejoz et al., 2018] used the CPAL [Navet and Fejoz, 2016] modelling and simulation
environment. The authors performed cross-verification for the model validation with the
following.

• A simulation model.

• Measurements taken on a physical experimental platform.

• results obtained from Formal methods.

A simulation assessment of TTEthernet startup time was carried out in [Sandic et al.,
2018] using the OMNeT++ [Varga, 2010] simulator. [Sandic et al., 2018] simulated a
single-fault tolerant configuration of TTEthernet, where a single switch was faulty. Several
anomalies of the PCF frames were simulated, in which coldstart frames (CS), coldstart
acknowledgement frames (CA) and Integration frames (IN) were sent at critical moments
from the faulty switch. The experiment was carried out to analyse several anomalies that
can negatively impact the startup time of the TTEthernet network.

[Li et al., 2018] modelled the TTEthernet Startup service using SystemC. The work fo-
cused on verifying the TTEthernet’s fault-tolerant protocol under fail-omission scenarios.
SystemC was used to establish an executable model of the synchronisation master and
compression master, and also to design the corresponding testbench. The testbench was
set to form different external stimuli for the executable models.

Simulators are often modelled to mimic certain functionality of a real-world system. For
example, the simulation works in [Sandic et al., 2018], and [Li et al., 2018] focused on
the synchronisation service of TTEthernet. Nevertheless, the fidelity of the simulator
(OMNeT++, OPNET, SystemC, and CPAL) is always determined by the underlying
model. Certain complex functionality may not be sufficiently represented. Confidence
in the resulting simulation model can only be indeed gained by cross-verification with
traces monitored on the physical counterpart network. Hence, requirement 3 is again not

Page 67

Chapter 4.4 Related works on the verification of network protocols

satisfied with simulators.

Prototype testing

Performance analysis of Time-triggered Ethernet-Networks was carried out in [Bartols
et al., 2011]. A low cost and lightweight approach were proposed to measure the end-to-
end latency of time-triggered Ethernet traffic using COTS components. The work further
presented a validation activity with an Ethernet performance analyser and a mathemat-
ical framework to check results obtained. The contribution of the work was a lightweight
analyser that supports time measurements in the range of microseconds. This was ac-
complished on an embedded PC and a Linux OS with RT Kernel patch. The analyser
supports specifically the Linux TTEthernet protocol stack. Although TTEthernet can
be implemented in software, the realisation of the TTEthernet on layer 2, provides by
far less end-to-end latency and jitter when compared to a software implementation. For
this reason, most safety-critical applications opt to implement TTEthernet services in the
MAC layer. The performance measurement approach proposed in [Bartols et al., 2011] is
only supported for protocol-specific components residing between the application and the
network driver.

The model-based analysis of TTEthernet mentioned in section 4.4.1 [Dutertre et al.,
2012] was used to drive high-coverage testing of prototype TTEthernet hardware, based
on the state-machine model of the TTEthernet protocol. The work explored the integ-
rated system behaviour of connected TTEthernet components using a network integration
laboratory (NIL). The NIL testbed consisted of more than 25 end systems and 17 switches
that are instrumented for fault injection. The NIL-based testing did not target protocol
branch coverage but emphasised high-level system properties. The scope of the work did
not define the portability to TSN, and the sufficiency of the data to train a neural network
for startup failure diagnostics was not investigated. Hence, requirement 6 and requirement
7 are not satisfied with this method.

4.4.2 Verification and validation of TSN

[Pahlevan and Obermaisser, 2018a] designed an OPNET simulation framework for sim-
ulating TSN time-based features. The framework implemented the ingress time-based
policing and enhancements for scheduled traffic as an extension of the Ethernet stand-
ard. The framework provided a modular implementation of the time-aware shaper and
policer. The TSN model used the standard MAC unit for switching messages but adds
the necessary functionality to support strict temporal requirements. The implementa-
tion was designed in such a way that it can be integrated into different vendor-specific

Page 68

Chapter 4.5 Summary of related works

network elements. A fault injection mechanism was later developed to evaluate the reli-
ability of TT communication using the designed OPNET simulation platform [Pahlevan
and Obermaisser, 2018b]. The requirement for a higher abstraction layer than simulation
(requirement 3) is not satisfied.

4.5 Summary of related works

The argument presented herein is that when simulation and mathematical methods are
used for dependability evaluation, there is a gap between the designed models and the
actual system. It is a challenge to model all the properties of a real system. Usually,
only certain properties of the whole system are modelled, and how accurate these models
are, determines the authenticity of the simulation/mathematical approach. Therefore,
for formal methods, the syntactic and semantic gap between the verified model and the
real system pose a significant disadvantage. As for simulation methods, the fidelity of an
experiment is much dependent on the method used in generating input parameters for
the test, whether it is done randomly or with the use of some form of theory.

This work presents TRAITOR, a cut-through fault injection framework suitable for the
dependability evaluation of the TSN and TTEthernet protocol by physical fault injec-
tion. TRAITOR is designed to target real systems or prototypes that implement these
protocols. TRAITOR has the potential to reveal problems that are not directly visible
in the simulation/analytical methods. Testing on a real system or prototype provides
more accurate and trusted results than simulation and analytical methods. Similar to
the sfiCAN framework described, the TRAITOR abstracts the fault injector component
from the network participants (e.g. Nodes and Switches). A difference is that sfiCAN is
restricted to CAN networks while the fault injection framework herein is developed for
TTEthernet and TSN. The sfiCAN reference its applicability to a star topology, whereas
the framework designed in this work, is topology independent.

[Revsbech et al., 2012] and [Ziermann et al., 2012] did not consider validations under
failure scenarios. In the design of safety criticality systems, it is unarguable needful
and a strong practice to consider failure scenarios when validating a system — the work
in [Ziermann et al., 2012] modified the network under test. The node modification has
an impact in the portability of the framework. The need for node modification was also
done in the work of [Rodriguez-Navas et al., 2003]. In [Lanigan et al., 2010] due to the
simulation approach, some complex functionality are not sufficiently represented, which
is the same case in [Kim et al., 2008].

[ISO, 2011] and [IEC61508, 2010] recommend fault injection as a validation technique.

Page 69

Chapter 4.5 Summary of related works

Until this day, there is no known physical fault injection framework designed for the
dependability evaluation of both TSN and TTEthernet, such that the fault injector is
abstracted from the components of the NUT. In addition, most works that analyse network
protocols rely on observing three test criteria, namely latency, jitter, and checks for drop
packets. However, efforts to observe and make visible the behaviour of a system under
failure scenarios using deep learning techniques, particularly during the startup process,
have not been fully exploited in evaluating the TTEthernet and TSN. During the startup
process of TTEthernet and TSN, before the global time is established, it is ineffective to
implement a fault tolerance mechanism that is based on the global schedule. Deep learning
provides a promising way to automatically classify the behaviour of the synchronisation
transaction during startup under given failure scenarios. Techniques that employ deep
learning to capture the behaviour of TSN and TTEthernet during startup have not been
extensively researched.

This work presents the design, implementation and testing of the physical fault injection
framework (TRAITOR) for TSN and TTEthernet network equipped with deep learning
capabilities during analysis.

The gaps covered by the fault injection framework proposed herein are summarised as
follows:

1. The development of a framework that is able to abstract the fault injection com-
ponent from the NUT.

2. The development of a framework that is portable to different time-triggered proto-
cols such as TSN and TTEthernet.

3. The development of a framework that is able to inject double faults in a distributed
network.

4. The development of a framework with a masked delay footprint; a framework with
low intrusiveness.

5. A fault injection framework designed to capture the integrated behaviour of all
implemented TSN or TTEthernet protocols.

6. A fault injection framework in which the analysis component applies deep learning
to evaluate startup protocols before the establishment of the global time.

In summary, TRAITOR provides novel techniques beyond other methods by posing the
ability to target individual traffic classes of the TTEthernet and TSN, including their
synchronisation frames. TRAITOR is also designed to be portable in the sense that it
can be tested on TTEthernet and TSN devices that are implemented by multiple vendors

Page 70

Chapter 4.5 Summary of related works

since no modification of the network participants is required. TRAITOR provides high
controllability, as faults can be injected into specified traffic classes and also on particular
bytes when desired. TRAITOR provides high observability, as it captures all injected
faults and frames over the network. TRAITOR can capture faulty frames even before it
is dropped by the switch/end system. TRAITOR has low intrusiveness; it utilises passive
network test access points (TAPs) to monitor frames over the network, to avoid delay
footprints. The delay on the fault injector component is masked.

Page 71

Chapter 5

System Model of Fault Injection
Framework

This chapter begins with the description of the system model for TRAITOR in section 5.1.
It further provides the description of the parts of TRAITOR that applies to TTEthernet,
and its design in section 5.2. The TSN aspects of TRAITOR are described in section 5.3.
The FPGA block diagram is then presented in section 5.4. The controller software design
of the fault injection framework is described in section 5.5. Finally, a summary of how
to use TRAITOR is given in section 5.6. In-depth implementation details of the fault
injection framework are discussed in the next chapter.

5.1 System model

TRAITOR is modelled using an architecture similar to Figure 2.3 with the exception
that the system under test is a network. TRAITOR is subdivided into the following
components: target system, fault injector, controller, workload, monitor, and data col-
lector. The target system is the network whose protocol is to be validated by TRAITOR.
TRAITOR is integrated into the target system according to a cut-through paradigm.
Consider Figure 5.1a, which depicts two network component A and B, connected by a
link L1. Figure 5.1b depicts the same network with TRAITOR connected according to a
cut-through paradigm. TRAITOR is placed between component A and B, as both com-
ponents continue to interact without the participation of devices belonging to TRAITOR.
The components data collector (a1 and a2), fault injector (f1), and the Monitor station
(M1) are the parts belonging to TRAITOR. The controller and monitor are implemented
in M1. The workload generator is all part of the system configuration for the NUT. The

72

Chapter 5.1 System model

dotted links (p1 and P2) in Figure 5.1b connecting a1 and a2 to M1 are parallel network
different from the NUT, and belonging to TRAITOR. The parallel network serves two
purposes. Firstly, the parallel network measures end-to-end latency between components
A and B. Secondly, it sniffs all the traffic over the network. The link c1 connecting M1
and f1 is used to set configuration parameters for TRAITOR.

(a) NUT without TRAITOR (b) NUT connected to TRAITOR

Figure 5.1: Overview of System Model

5.1.1 Fault hypothesis

Each node of the target network is considered to be a Fault Containment Region (FCR).
The FCR is a subsystem that continues to function correctly, even in the presence of
faults that occur outside the region. This work aims at emulating physical faults in
FCRs. TRAITOR is designed to inject several communication failures that are defined in
the IEC61508 standard with the addition of time synchronisation failure. The supported
failure modes include:

• The corruption failure emulates changes to the original message, in which it alters
the content of a frame. An example of a possible source of corruption failure can
be due to Electromagnetic Interference (EMI) disturbances. TRAITOR emulates
corruption failure by altering the content of the frame.

• Omission failure: An omission failure occurs when a transmitting node fails to send
a message or when a receiving node fails to receive a message.

• Delay failure: TRAITOR emulates delay failures that originate from faulty nodes.
A transmitted message is delayed for a configurable specified time.

• Babbling Idiot: A babbling idiot failure occurs when a transmitting node violates
its temporal specification, thereby causing transmitted messages to monopolise the
network.

Page 73

Chapter 5.2 TRAITOR in TTEthernet

• Masquerading: A masquerading failure occurs when a node assumes the identity of
another node in the network without authority.

• Link failure: TRAITOR emulates a crash failure of a link.

• Crash failure: The crash failure describes a node which does not produce any output,
that is a node that becomes inactive in the network.

• Time synchronisation failure: The time synchronisation failure is used to describe a
scenario where the network does not meet its temporal specification. The messages
from the nodes are delivered either too early or too late [Obermaisser, 2011].

TRAITOR executes the above failure modes according to a configurable time interval
and emulates the behaviour of a failed node by altering the transmitted messages or the
timing behaviour of the transmitted message.

5.2 TRAITOR in TTEthernet

TRAITOR injects error directly into the communication link of the TTEtherent network
setup. The fault injector component of TRAITOR is placed inside the TTEthernet net-
work according to a cut-through paradigm. The placement of the fault injector is such
that TTEthernet network traffic traverses through the fault injector component. The
cut-through approach which features that the fault injector is not implemented in the
components of the TTEthernet network participant satisfies the abstraction requirement,
mentioned in the chapter 4. The fault injector is also implemented on an FPGA to provide
low invasiveness, high reachability, and portability for the framework. Utilising the pro-
grammable logic of the FPGA in implementing the network traffic pass-through, provides
a faster computational capability for the framework. Thereby introducing minimal pro-
cessing delay footprint. The little processing delay introduced by the cut-through is to
satisfy the low invasiveness requirement. This processing delay is also constant. There-
fore, the delay footprint can be removed during post-processing of results obtained from
an experiment. The fault injector can target all the inputs/outputs of a node, using the
programmable logic of the FPGA. All the states of the nodes can thus be impacted by
the consequences of the fault, demonstrating high reachability. Since the cut-through ap-
proach utilises a fault injection component abstracted from the components of the NUT,
it is thus portable from one testbed to another. Controllability in terms of time and space
is also made possible by the implementation of the fault injection in the programmable
logic of an FPGA. In the FPGA’s programmable logic, the traffic signals can be read and
manipulated at the MAC layer of the TTEthernet network protocol. The fault injector

Page 74

Chapter 5.2 TRAITOR in TTEthernet

Figure 5.2: System Architecture of the fault injection framework

can target individual bytes. TRAITOR shows its application for high fidelity by target-
ting the physical implementation of the Time-triggered Ethernet systems. Finally, high
observability is attained by utilising hardware-implemented network sniffers placed by the
user at desirable points of the TTEthernet network.

5.2.1 Architectural overview of TRAITOR

TRAITOR is designed such that it can be placed at any point of the TTEthernet network.
Figure 5.2 illustrates the system architecture of the TRAITOR.

The dotted components from the figure 5.2 are the components of the TRAITOR. The
TTEthernet network consists of switches and end systems. The switches and end systems
play different roles, as explained in section 3.3. The switches and end systems are all
referred to as Network Components (NCs) in the diagram. The components of TRAITOR
shown in the system architecture include the Fault Injector (FI), Observation Probe (OP),
Controller, Data Collector/Analyser, and Monitor. The FI and OP can be placed at any
point in the network irrespective of the network topology. The controller component is
used to command and direct the operation of the FI and OP component. The FI injects
a pre-configured fault into the network, while the OP collate message traces and feeds
them to the data collector. The monitor is used to observe the operation of the FI, to
track the activation of the injected fault.

Figure 5.3 and 5.4 illustrate how the system architecture can be mapped to a given
physical setup. Figure 5.3 shows a typical TTEthernet redundant setup consisting of
four end systems and four switches. Two switches operate as compression masters, and
two other switches operate as synchronisation client. All the end systems operate as
synchronisation masters.

Whereas, in figure 5.4, a single channel is used to describe the possible placement of

Page 75

Chapter 5.2 TRAITOR in TTEthernet

Fi
gu

re
5.
3:

A
ty
pi
ca
lr

ed
un

da
nt

T
T
Et

he
rn
et

se
tu
p

Page 76

Chapter 5.2 TRAITOR in TTEthernet

Fi
gu

re
5.
4:

Si
m
pl
ifi
ed

ill
us
tr
at
io
n
of

th
e
fa
ul
t
in
je
ct
io
n
fra

m
ew

or
k
on

on
e
ch
an

ne
l.

Page 77

Chapter 5.2 TRAITOR in TTEthernet

Figure 5.5: Fault Injector Model.

TRAITOR components in the network. The FI can be placed between an end system
and a switch or between two switches. Likewise, the OP can be placed in any of these
locations to observe the NUT. A parallel network is set up to probe the NUT. The reason
for the parallel network is that when a fault is injected into the NUT, the NUT has the
likelihood to become ladened with errors. Therefore, confidence cannot be placed on the
measurements acquired by the OP if it is in the same network as the NUT. The second
reason for using a parallel network is because of the need for a network asynchronous to the
NUT. If data acquired by the OP is triggered by the same clock and the synchronisation
mechanism of the NUT, then it means the OP is in the same failure domain as the NUT.
Therefore, a different network (measurement network shown illustrated in 5.4) is used to
observe the NUT. The monitor station comprises the controller software which includes
monitoring task of the FI and a network capture software. The subsequent subsections
provide more details on the different TRAITOR components.

5.2.2 Fault injector component

The fault injector is implemented using the Zedboard which is a low-cost FPGA devel-
opment board for the Xilinx Zynq©-7000 SoC. The FPGA communicates with a host-PC
through a JTAG connection and a UART serial cable. The parameter settings: experi-
ment duration, type of fault to inject, rate of fault injection, and number of experiments
are consequently transferred through the JTAG cable to the FPGA. The model of the
fault injector component is shown Figure 5.5. The parameters experiment duration, type
of fault to inject, rate of fault injection, and number of experiments are represented in
Figure 5.5 as p, q, r, s respectively.

The FPGA is connected according to a cut-through paradigm. The TTEthernet network
traffic flows into the FPGA, and then a fault is injected depending on the failure mode
activated, after which the data flow out of the FPGA. The Xilinx Zedboard is equipped
with only one Ethernet port. However, an Ethernet FMC (FPGA Mezzanine Card) from
Opsero Electronic Design Incorporated is added to the FMC connector of the FPGA.

Page 78

Chapter 5.2 TRAITOR in TTEthernet

Figure 5.6: Zedboard with an Ethernet FMC addon.

The Ethernet FMC utilises 4 Gigabit Ethernet ports. Figure 5.6 shows a picture of the
Xilinx Zedboard connected with an Ethernet FMC card on the FPGA’s FMC port. The
fault injector uses two ports of the Ethernet FMC port (i.e. PORT0 and PORT1 from
the figure). The fault injector acts on an Ethernet full-duplex traffic. Depending on the
direction of traffic, one port is used as ingress port and the other as the egress port.

Since the FPGA is connected as a cut-through in the TTEthernet network, it has access
to all the network traffic for the link in which it is connected.

The failure mode triggered by TRAITOR to emulate failures in TTEthernet network is
attained using either one or a combination of the following techniques listed below.

1. Nibble/Byte Insertion: The FPGA inserts or corrupts the nibbles in a frame that
is transmitted through the link.

2. Frame Delay: The FPGA implements a delay function for configurable target frames
to cause predetermined delays on the network traffic.

3. Frame Jamming: This implements frame jamming, which is used to prevent one or
several end systems from receiving or sending frames. The FPGA jams specified
frame(s) to emulate frame drop.

Table 5.1 summarises how the combination of the techniques mentioned above is used by
TRAITOR to trigger different failure modes. The possible fault locations are summarised
in Table 5.2. Table 5.2 shows where the failure modes can occur. The three possible
locations are the switches, end system and links.

Page 79

Chapter 5.2 TRAITOR in TTEthernet

Failure Strategy Insert. Delay Jam
Omission This is implemented by jamming

target frames with the FI module.
x

Corruption The FI module inject nibbles/bytes
to replace correct bytes/nibbles.

x

Link The FI module jams both incoming
and outgoing frames on a link to
implement the link failure.

x

Crash Node crash is implemented by
jamming all frames to and fro the
target node.

x

Delay This is realised by applying delay
function using the FI module net-
work traffic.

x

Stuck-at The stuck at failure is implemen-
ted by first jamming the correct
message frame, then injecting the
target specified frame in a continu-
ous manner.

x x

Babbling Idiot The FI module generates and in-
jects sporadic messages over the
network

x

Masquerading This failure is realised by changing
the ID’s for network traffic using
frame injection (e.g. the Virtual
Link ID for TT frames).

x

Time Synch The FI in this case applies frame
injection, frame delay, and frame
jamming for PCF frames. This is
done in a manner to omit, cor-
rupt, and delay PCF frames.

x x x

Table 5.1: Illustration on how the frame injection, frame Delay and Jamming can be used
to implement the different failure modes.

5.2.3 Observation probe

The observation probe is realised in TRAITOR using COTS components. The Neox
Networks P100CCA network Test Access Point (TAP) is used in this work to ensure that
minimal delay footprint is introduced during measurement. The probes can be placed at
locations desirable by the tester. The probe sniffs network traffic and transmits a copy of
the frames to the data collector.

Page 80

Chapter 5.2 TRAITOR in TTEthernet

Failure Mode End node Switches Links
1 Omission x x
2 Corruption x x x
3 Link x
4 Crash Failure x x x
5 Delay Failure x x
6 Stuck-at- x x
7 Babbling Idiot x x
8 Masquerading x
9 Time Sync x x

Table 5.2: Possible Fault locations

5.2.4 Data collector/analyser

TRAITOR also uses COTS devices to collate data. It uses high-resolution Network Ac-
celerator Cards (NACs). The NAC is manufactured by Napatech, and the model used
for TRAITOR is the Napatech NT4E2-4-PTP. These NACs are used to obtain readouts
with nanosecond accuracy for timestamps on frames. The NAC is used to determine the
latency of the transmitted frames over the NUT. The OP (i.e. the network TAPs) extracts
a copy of the traversing frame from the NUT in a passive manner and forwards it to the
NAC which is used to provide a hardware timestamp just before the frames are received
in the monitoring station. The original transmitted frame travels completely through the
NUT; only the copy is sent to the NAC. The Tshark software [Combs, 2006] is used to
analyse the data obtained. Tshark runs on a host PC that is connected to NACs. Ana-
lysis such as the computations of latency and jitter of different virtual links are handled
offline via a custom program, designed specifically for analysing time-triggered Ethernet
traffic. Tshark is operated with a library provided by Napatech to identify the interfaces
of the NAC. The captured traffic is exported as Comma Separated Values (CSV) files for
post-processing. Apart from computing the latency, jitter and the number of dropped
packets from the captured data, a novel approach to observe the startup behaviour of
synchronisation service is implemented in TRAITOR.

5.2.5 Controller

A software program is designed using C++ to control the entire experiment conducted
using TRAITOR. The software controls the operation of TRAITOR through a compact
and functional Graphical User Interface (GUI). The controller software can configure
TRAITOR, and adjust configured settings during run-time as well as the initiation and
termination of a fault injection experiment. The controller directs the operation of setting

Page 81

Chapter 5.2 TRAITOR in TTEthernet

Figure 5.7: High-level Architecture of a Graphical User Interface.

up several subprograms. Figure 5.7 shows a high-level representation of the controller
GUI.

The component Control Commands contains the instructions, which tell the program
when to start and stop the experiment, load settings, and choose the number of exper-
iments. It also contains the input command for the duration of each experiment. The
Fault Injection settings incorporate all the information regarding the external insertion of
the faults, such as the type of the inserted fault, frequencies, delays or the byte selection.
The next component is FPGA Settings, which includes all the set of registers that determ-
ine the behaviour of the FPGA; these registers also contain the information introduced
in the Fault Injection settings. The Wireshark settings is the network monitor software
used to analyse the captured data. It uses the Tshark tool to capture the traffic in the
network and save the experimental data in ordered files. The content of experimental
data consists of the timestamps for the reception and transmission of frames, source ad-
dress, a destination address, interface connection, and message content. The controller
also directs Tshark when to stop capturing data from the network.

5.2.6 Monitor

The Monitor component implements a series of programmable logic output ports that
produce HIGH and LOW signals. These signals are used to track and monitor a series
of events that occur in the FI. Flags are set for events, such as when the FI detects the

Page 82

Chapter 5.4 TSN fault injection framework

frame header, or when the FI injects a fault, or when the FI changes from one state to
another (the FI states are discussed in the next chapter). The monitor also detects when
an error occurs during the execution of TRAITOR.

5.3 TSN fault injection framework

The design of TRAITOR to function on TSN is similar to that of the TTEthernet. There
exist only one major difference which is the implementation of the FI component de-
scribed above. Similar architecture with the TTEthernet is employed for the controller
component, OP component, Monitor component, and data collector/analyser. The
FI can switch between two modes of operation, one for the TTEthernet and the other for
the TSN. The frame structure of TSN is similar to TTEthernet (i.e. both are based on
the IEEE 802.3), but the content and mode of operation are different. Therefore, the de-
tection of TSN frame by the FI is based on the different logic block from the TTEthernet.
The FI detects TSN frame to decide its handling based on the configuration inputted. If
TSN mode is configured for TRAITOR, the FI targets TSN frames.

5.4 FPGA block diagram design

The FI is implemented on an FPGA and designed using the Xilinx Vivado Design Suite.
Figure 5.8 illustrates the design of the FI. Herein, the network tap concept introduced
by [Johnson, 2015], is used to implement the FI. The ZYNQ processing system block, AXI
(Advanced eXtensible Interface) interconnection block, FIFO block, and GMII-RGMII
block are Xilinx’s intellectual properties (IPs). The ZYNQ Processing system and AXI
interconnection block are both used for configuration purposes. The ZYNQ block is used
to configure the network speed of the GMII-RGMII block through its GEM1 (Gigabit
Ethernet MAC 1) port. The configuration parameters for TRAITOR are given through
the AXI interconnection block using the ZYNQ M_AXI GPIO port. The dotted arrows
in Figure 5.8 illustrates the path of a network cut-through via the programmable logic of
the FPGA.

TRAITOR realises a network pass-through using two PHY ports form the Ethernet FMC
which supports Reduced Gigabit Media-Independent Interface (RGMII) [Packard et al.,
2000]. The RGMII is intended to be an alternative to the IEEE802.3u MII standard, it
is developed to reduce the number of signals required to connect a PHY to a MAC and
supports 10/100/1000 and Mbit/s data transmission. Table 5.3 summarises the number
of bits transmitted between the PHY and MAC for each clock cycle based on the different

Page 83

Chapter 5.5 Software design

Figure 5.8: Block Diagram of FI design on FPGA.

Mbit/s MHz Bits/Clock Cycle
10 2.5 4
100 25 4
1000 125 8

Table 5.3: Relationship between number of bits supported by RGMII and network speed

network speeds.

RGMII transmits data on both rising and falling edges of the clock. The transmission of
data at both clock edges is known as Double Data Rate (DDR). The GMII-RGMII block
from Figure 5.8 converts the DDR signals to a single-data-rate. Each Ethernet FMC port
is a full-duplex port (i.e. the port can send and receive data at the same time on a signal
carrier). When connecting a GMII-RGMII block to another; separate clocks are observed
between the transmit interface and receive interface. Since both ports are independently
clocking to transmit and receive data, there is a need for a cross-clocking domain. The
cross clocking domain is implemented with FIFO (First In, First Out) buffers. However,
the use of an elastic buffer is proposed in [Johnson, 2015], because if momentarily the
FIFO is being read slightly faster than it is being written to, there will be occasions
where the FIFO is empty for one clock cycle and forced to de-assert the "valid" signal.

5.5 Software design

The controller software is used to control the operation of TRAITOR. Fault injection ex-
periments require multiple runs to increase the confidence placed on the results obtained.
Therefore, the controller software is also necessary to automate TRAITOR. The controller
software is mainly to issue the commands required to configure and program the FPGA,

Page 84

Chapter 5.5 Software design

Read Inputs

Begin Experiment

Load Configuration

Verify Inputs

Display Error

Start InjectionRead Outputs

Analyze Data

Show Results

Generate Charts
and Graphs

Stop Experiment

Configure Network
Devices

<<include>>

Programmer

<<extend>>

<<include>>

<<include>>

<<extend>>

Network

Figure 5.9: Use case diagram of TRAITOR controller.

control the capture interface, and control the execution and number of experiments. Fig-
ure 5.9 illustrates the use-case diagram of the controller software.

The programmer can perform operations such as read inputs, input TRAITOR config-
urations (e.g. type of fault, FER, duration of experiments e.t.c.), read outputs, analyse
data, show results, start and stop the experiment. The controller is designed in modules,
to achieve the functions displayed in the use case diagram. Each module is used to es-
tablish a program that provides control capability for the main controllerModule. Figure
5.10 shows the different modules. The captureModule is used to provide control capability
for the controllerModule to control the Tshark software. The loadConfigurationModule
provides the control capability for the controllerModule to manage the C-based program
used to program the FPGA. The faultDetectionModule provides a control capability for
the controllerModule to handle fault detection when establishing connections between

Page 85

Chapter 5.6 TRAITOR operation summary

Figure 5.10: Modules of the controller software.

TRAITOR software and the FPGA. Finally, the displayModule is used to implement the
GUI for TRAITOR.

Figure 5.11 shows the classs diagram to illustrate the methods executed in managing
the network interface (i.e controlling Tshark) and methods used to control the entire
experiment. In the Interface class, the software uses the getName() and getID() to obtain
the interface name and ID, and uses the setName() and setID() to set the interface
name and ID respectively. In the CaptureControl class, the software uses the start(),
stop(), loadConfig(..) method to start the experiment, stop the experiment, and load
configuration for the experiment.

5.6 TRAITOR operation summary

The usage of the framework can be summarised as follows. The user connects network
TAPs to the desired points of the network links. Likewise, the user connects the FI in a
cut-through manner to the links where fault injection is intended. TRAITOR software is
then started to pop-up the GUI. Using the GUI, the user then sets the configuration mode
(e.g. TSN or TTEthernet), after which the user inputs all the corresponding parameters
and configurations. For example, the configuration parameters include the type of fault to
inject, frequency of injection, network speed (100Mbit/s or 1000Mbit/s), target frame, and

Page 86

Chapter 5.6 TRAITOR operation summary

Figure 5.11: Class diagram of the captureModule.

duration of the experiment. After that, the user inputs configuration commands to set up
Tshark for capturing. The user starts the test with a command issued by a button click in
the GUI. As the experiment runs, TRAITOR saves the results of individual experiments
in an ordered fashion. The analysis of the results obtained is carried out offline using
C++ software designed for the purpose.

Page 87

Chapter 6

Implementation

This chapter explains the implementation of TRAITOR’s fault injection component. De-
tailed insight into the overall implementation strategy of the fault injection component is
given in section 6.1. Section 6.2 describes the receiver logic implementation of TRAITOR.
Subsection 6.2.1 describes the retriever logic component of TRAITOR. In section 6.3, the
modifications needed for TSN and its implementation is described.

6.1 Fault injection component

As mentioned in the previous chapter, the abstraction of the fault injection component
using an FPGA for cut-through is chosen to avoid significant delay footprint caused by
the FI component. However, the only delay introduced is the processing delay of the
FPGA (FI component). The processing delay ∆tc is equal to 850 nanoseconds for 1000
Mbit/s network and four microseconds for 100 Mbit/s network. This processing delay is
unavoidable because to make decisions on what to do with the frame that enters the FI
component requires reading the frame’s MAC header. Examples of the decision referred to
herein include the decision on where to inject faults and on which frame should TRAITOR
inject faults. However, this delay is fixed once the FPGA is programmed, and is resolved
during analysis. The delay can also be factored into the configuration of the NUT since
it is a fixed delay.

The FI is modelled as a Finite State Machine (FSM) and is made up of a serial composition
of two state machines. The state machines include:

• Receiver Logic (RecL)

• Retriever Logic (RetL)

88

Chapter 6.2 Receiver logic

Figure 6.1: Cascade composition of RecL and RetL.

The FI serial composition is illustrated in Figure 6.1.

The output port O1 from RecL feeds into the input port I2 of RetL. Both O1 and I2 are
of the same data type (byte array) V1 and V2 respectively, therefore

V1 ⊆ V2.

This asserts that the output produced by RecL on port O1 is an acceptable input toRetL
on port I2. The reaction of RecL and RetL is asynchronous, therefore, a machinery for
buffering the data that is sent from RecL to RetL is implemented. The RecL first passes
the data to a shift register from which it is forwarded to the RetL. It is in the shift register
that the MAC header is read for decision making. The delay ∆ts imposed by the shift
register is a composite of the processing delay ∆tc mentioned above. The ∆ts is also a
fixed delay. The size of the shift register is tied to the size of the MAC header. The shift
register enables the RetL to determine the beginning of a frame, and the frame type and
size. The content of the payload is not of interest to TRAITOR for TTEthernet. The
information concerning the MAC header retrieved from the shift register is sufficient to
inject faults.

6.2 Receiver logic

The RecL is implemented in the ingress port of the FI. Its main function is to receive
and write incoming frames into a shift register. The RecL also sets the value of a variable
"Fire", which is used to control state changes in the RetL. The RecL implements the
input instructions from the user. Algorithm 1 summarises the operation of the receiver
logic. The process that executes the RecL reacts to parameters in the sensitivity list
which include the current_state, trigger, clk, isPreamble, and data_out_reg. The

Page 89

Chapter 6.2 Receiver logic

current_state is maintained by TRAITOR to hold the current state. The trigger is the
input command received from the user to indicate to TRAITOR the type of failure to
execute. The clk is TRAITOR’s reference clock. The isPreamble is a boolean variable to
indicate the start of a frame, and the data_out_reg signals changes in the shift register.
Whenever any of these variables changes, the RecL reacts. The state operates such that
it passes the user input value trigger to cause state changes in the RetL state. These
reactions are also dependent on the current state of TRAITOR, which is also given as
user input. The algorithm is executed at the rising edge of the clock; clk =′ 1′.

Algorithm 1 The RecL Operation
1: Process RecL(current_state, trigger, clk, isPreamble, data_out_reg)
2: if clk =′ 1′ then

{CASE} fault_config.faultType
{when} x”1” =>

3: Fire <= x”1”;−−−CorruptionfailureState
{when} x”2” =>

4: fire <= x”2”;−−−OmissionfailureState
{when} x”3” =>

5: fire <= x”3”;−−−Linkfailurestate
{when} x”4” =>

6: fire <= x”4”;−−−DelayfailureState
7: delayFaultF lag <=′ 1′;
8: res <=′ 0′;

{when} x”5” =>
9: fire <= x”5”;−−−MasqueradingFailureState

{when} x”6” =>
10: fire <= x”6”;−−−BabblingIdiotFailureState

{when} x”7” =>
11: fire <= x”7”;−−−TimesynchfailureState

{when} x”8” =>
12: fire <= x”8”;−−−CrashfailureState

{when} x”9” =>
13: fire <= x”9”;−−−Stuck − AtFailureState {when} others=>

{ENDCASE}
14: end if
15: end Process

6.2.1 Retriever logic

The shift register is implemented in the RetL. The Algorithm 2 shows the implementation
of the shift register.

Two major functions are implemented in the shift register, one of which is carried out

Page 90

Chapter 6.2 Receiver logic

Algorithm 2 The RetL Shift register algorithm
1: Process shiftReg(clk, signalEnable)
2: while signalEnable = true do
3: if clk = 1 then
4: Obtain and update current shift register position counter
5: Execute function (LocateHeader)
6: if LocateHeader returns true then
7: Execute Function (checkFrameContent) to identify Target Frame
8: if checkFrameContent returns true then
9: Update target Flag

10: end if
11: end if
12: else
13: Do nothing
14: end if
15: end while
16: end Process
17: function locateHeader(mem : register0)
18: if shiftRegContent = EthernetPreamble then
19: return true;
20: end if
21: end function
22: function checkFrameContent(mem : register0)
23: if shiftRegContent = TargetFrame then
24: return true;
25: end if
26: end function

Page 91

Chapter 6.2 Receiver logic

Figure 6.2: RetL state machine.

to detect the beginning of a frame and the other to identify the configured target frame
to inject an error. The shift register process operates on every rising edge of the input
clock. It maintains a counter that tracks the position of the bytes, starting from when
it receives the frame header. The locateHeader function locates the frame header. When
the header is identified, it then executes a function checkFrameContent to read the frame
content as the bytes move through the shift register. The shift register updates a flag
when it identifies the frame content.

The RetL is modelled as a complex state consisting of three major sub-states namely,
Golden Run State (GRS), Error Insertion State (EIS), and the Reset State (RES). The
RetL state machine is shown in Figure 6.2.

The RetL state initialises by entering the GRS. In the GRS state, the input data is allowed
to pass through the RetL without any error insertion. The input data frame is shown as
"Df" in the state machine diagram. The GRS represents the state of the system when
no fault is applied, and it is assumed that the FPGA is in a cut-through mode with the
Df passing through it without any modification. TRAITOR maintains a positive integer
variable named "Fire" to transition between states. When TRAITOR is started, "Fire"
is set to "0". TRAITOR remains in the GRS state as long "Fire" remains "0". When the
value of "Fire" is changed to a non-zero value, the system moves to the EIS state. The
EIS state is responsible for the insertion of error into the input data frames. Data frames

Page 92

Chapter 6.2 Receiver logic

that are affected by errors are shown in the state machine as Df ′.

The EIS is a complex state consisting of the following state: Corruption, Omission,
Delay, Masquerading, Babbling idiot, Link, Crash, TimeSynch, Stuck-At WaitOnFault,
InjectionFinished. Transition into the EIS is made to the sub-state that has a value set
for "Fire" corresponding to it. The EIS sub-states are illustrated in Figure 6.3. The EIS
reads data on the shift register and then triggers the injection of the pre-configured fault.

6.2.2 Corruption state

The corruption state would corrupt the bytes in the frame as specified by the user. The
corruption state has the potential to modify any byte in the TTEthernet frame structure
on the fly, as the frame passes through the shift register. This state can target specific
traffic classes, and it filters the data on the shift register then uses the MAC header
to specify the frame type. The inputs to this state are the data input from the shift
register, trigger signal to commence fault injection, and configuration parameters. This
state is entered if the value of the trigger signals corresponds to the value set for its
sensitivity. The sensitivity value for corruption is given when ["Fire" = 1] is inputted.
The implementation makes it possible to configure a Frame Error Rate (FER). The FER
is the frequency at which it is intended to inject faults. The behaviour of the corruption
state is such that when a user specifies which byte to corrupt in a given frame and
the intended FER, the state reads the data from the shift register and then performs a
NOT-gate operation on the target byte. Algorithm 3 illustrates the implementation of
corruption. The description of parameters that appear on the sensitivity list is similar
to Algorithm 1. The enable_in and error_in are signals that move along with the Df.
The signals are the Reduced Gigabit Media Independent Interface (RGMII) enable and
error signals. The RGMII is the physical connection between the Ethernet physical layer
and the Ethernet MAC. It is a dual data rate (DDR) interface that consists of a transmit
path, from FPGA to the physical layer, and a receive path, from the physical layer to
the FPGA. Details of RGMII can be found in [Packard et al., 2000]. The targetF lag and
the faultflag are indicators for showing when the target frame is acquired, and when
the time to inject a fault as specified by the user is reached, respectively. The corruption
state maintains a counter "corrLocation_counter" to aim at the target byte.

For example, the corruption state can be pre-configured to corrupt the 3rd byte in the
payload and to do this for every 5th frame. When the corruption state executes the
first corrupted byte, it will set a counter equals a value that corresponds to the user-
specified FER (in this instance FER = 5). It will then move to wait for the injection
time in the WaitOnFault state. If the counter condition is met (i.e. targetF lag =′ 1′

Page 93

Chapter 6.2 Receiver logic

Fi
gu

re
6.
3:

EI
S
st
at
e
m
ac
hi
ne

.

Page 94

Chapter 6.2 Receiver logic

Algorithm 3 The RetL Corruption failure Algorithm
1: Process RetrieverLogic(clk, data_in, enable_in, error_in, data_outreg)
2: if targetF lag =′ 1′&faultF lag =′ 1′ then
3: if byte_corrupt = corrLocation_counter then
4: data_out_value <= not_operation (data_out_value)
5: end if
6: end if
7: end Process

and faultF lag =′ 1′), then the system transits from WaitOnFault state to the corruption
state to execute another corrupt-byte procedure.

6.2.3 Omission state

This state causes network frames to be omitted according to the user specification, i.e.
the frame types to be omitted are pre-selected by the user. In Omission state, an entire
frame is omitted. The state implements a function to read the shift register, and based on
specific user configurations; it omits the specified frames. An omission is achieved by not
producing the output for the targeted frames. The Omission state blocks and discards the
frame choice marked by the user. It resumes producing output once the frame blocking
function is disabled. The inputs to this state include the traversing frame data input
(contained in the shift register), and the trigger signals. The trigger signals are presented
in the configuration parameters which are given in the sensitivity list shown in the RetL
Algorithm. The omission state is entered when the value of ["Fire" = 2]. The FER is
also configured for the Omission state. The state transitions to the WaitOnFault state
when the target is identified and waits until the FER condition is met before omitting
the target frame. The Algorithm 4 illustrates the operation of the omission state. When
the omission state is done with the fault injection, it transitions first to the WaitOnFault
state and then to the Injection-Finished state.

6.2.4 Masquerading state

The action of this state ensures that an end system assumes the identity of another end
system. TRAITOR implements this by changing the source field of the MAC header, giv-
ing it the address of another end system. By so doing a masquerading failure is emulated
where a system falsely assumes the identity of another system· Since the identity of an
end system is stored in the frame, this information is available to the shift register. The
source field is modified by replacing the content of this field with the address of another
end system whose address is known apriori. When the state is activated, it modifies the

Page 95

Chapter 6.2 Receiver logic

Algorithm 4 The Omission failure Algorithm
1: Process RetrieverLogic(clk, data_in, enable_in, error_in, data_out_reg)
2: if targetF lag =′ 1′ and faultF lag =′ 1′ then
3: data_out <= x”00”;
4: enable_out <=′ 0′;
5: error_out <=′ 0′;
6: else
7: data_out <= push_data_out;
8: enable_out <= enable_out_reg;
9: error_out <= error_out_reg;

10: end if
11: end Process

source address field of the target frame it receives and transits to the WaitOnFault state,
and then it waits for a period corresponding to the value set for the FER. When a counter
condition is met, indicating that it is due to perform another masquerading fault, it will
transit back to the masquerading state and cause another masquerading failure. The mas-
querading state is entered when ["Fire" = 3]. The algorithm 5 shows how masquerading
failure is accomplished.

Algorithm 5 The Masquerading failure Algorithm
1: Process RetrieverLogic(clk, data_in, enable_in, error_in, data_outreg)
2: if targetF lag =′ 1′ and faultF lag =′ 1′ then
3: if counterMasq < startofDestinationaddress then
4: Pass_input_data_to_output_data_without_modification
5: else if (counterMasq >= SODA)and(counterMasq < EODA) then
6: Pass_input_data_to_output_without_modification
7: CRC_re− computation
8: else if (counterMasq >= SOSA)and(counterMasq < EOSA) then
9: Replace_source_address AND compute_new_CRC

10: Push_out_masked_source_Address
11: else if counterMasq > EOSA then
12: Push_out_the_remaining_frame AND compute_CRC
13: end if
14: else
15: Pass_input_data_to_output_data_without_modification
16: end if
17: end Process

The input to the state includes the trigger signal for the state, the data from the shift re-
gister, and the configuration parameters. As shown in Algorithm 5, a counter counterMasq

is maintained. It is used to locate and track the position of every byte in a frame. If fault
injection is activated, the start and the end of the source address (i.e. the SOSA and

Page 96

Chapter 6.2 Receiver logic

(a) TT frame periodic interval under normal operation.

(b) Inter frame gap illustration between TT frames.

Figure 6.4: Inter frame gap illustration between TT frames.

EOSA shown in the Algorithm 5 respectively) are located by the counterMasq. Since
the source address is modified, the state also computes a new CRC for the frame. The
CRC computation is achieved on the fly with no additional delay. The CRC computation
begins with the start of the destination address field (SODA) and ends when the last byte
of the payload is added.

6.2.5 Babbling Idiot state

The babbling idiot is characterised by the transmission of arbitrary messages at random
points in time. TRAITOR emulates a babbling idiot failure mode by implementing a ran-
dom interval between two consecutive frames. The time interval between two consecutive
frames is known as the inter-frame gap (IFG). Therefore by making the IFG a random
variable, frame transmissions are performed in an untimely manner. The babbling idiot
state generates TTEthernet frames and implements a random function for the IFG.

Figure 6.4 illustrates the interval between two consecutive TT traffic. In the GRS state,
TT frames are transmitted at a constant periodic interval (tp). Therefore, the IFG between
two TT frame is constant, as shown in Figure 6.4a. However, the IFG becomes a random
variable when BIF is activated. Figure 6.4b illustrates the behaviour of TT frames with
random IFG. It is seen that the IFG tp shown in figure 6.4a assumes a random interval
and is shown as tr in figure 6.4b. In this way, the untimely generation of network traffic
is realised. The babbling idiot failure state is entered when ["Fire" = 4]. Algorithm 6
illustrates the implementation of the babbling idiot failure. The frame description used
for the generation process is provided during configuration by the user. Examples of
frame description provided include source address, a destination address, constant field,
and payload. The traffic is generated with random intervals using the case statements
specified by the user. CRC is also recomputed by TRAITOR in the babbling idiot state.

Page 97

Chapter 6.2 Receiver logic

Algorithm 6 The Babbling Idiot failure Algorithm
1: Process RetrieverLogic(clk, data_in, enable_in, error_in, data_outreg)

{CASE} FrameType
{When} frameType = TTconfig
{Generate} TTmessages {Compute} CRC

{When} frameType = RCconfig
{Generate} RCmessages {Compute} CRC

{When} frameType = BEconfig
{Generate} BEmessages {Compute} CRC

{ENDCASE}
2: end Process

6.2.6 Delay failure state

In delay state, target frames that enter the FPGA are delayed. The user configures the
duration by which the frames are delayed. Transition is made into the delay state when
the value of ["Fire" = 5], as shown in Figure 6.3. When the trigger "Fire" is set to 5, the
state causes TRAITOR to delay every frame by a duration configured by the user. The
frames that enter the FI leave the FPFA without any error injection except that they
are delayed. Transition is made to Injection-Finished state when the action is completed.
The Algorithm 7 is used to illustrate the implementation of the delay state. The delay
state implements delay by buffering the frames.

Algorithm 7 The Delay failure Algorithm
1: Process RetrieverLogic(clk, data_in, enable_in, error_in, data_outreg)
2: if EnableIn =′ 1′ and faultF lag =′ 1′ then

{SAVE} Data in Buffer if message available
{WAIT for} DelayV alue = configDelay
EnableOut =′ 1′
{READ} Data from Buffer and Push to egress port

3: else{Do Nothing}
4: end if
5: end Process

If the EnableIn is high and fault injection is activated, frames are saved in the buffer. The
EnableIn signal indicates when a frame is received in the ingress of the FI. TRAITOR
takes control of the enable signal during re-transmission, this means that TRAITOR
generates a new enable signal EnableOut when it needs to re-transmit the frame saved in
the buffer. The EnableIn indicates when there is a frame available to save in the buffer.
TRAITOR also checks to know how long to keep the frame in buffer. The duration in
which the frame must remain in the buffer is pre-configured by the user. The time to

Page 98

Chapter 6.2 Receiver logic

re-transmit the frame is determined by Algorithm 7 when DelayV alue = configDelay.
The DelayV alue is used to keep the current delay of the messages in the buffer, while
the configDelay is the desired duration configured by the user.

6.2.7 Link failure State

The Link Failure state shuts out a link from the network. This is accomplished by an
FPGA that breaks the link on the DDR channel that connects two network participant.
This is implemented by blocking all outgoing and incoming frames on the desired link. In
this state, the frames read from the shift register are discarded and not forwarded. The
inputs to this state are the frame data input and the trigger signal. This state produces
no output. Transition is made into the link failure state when the value of ["Fire" =
6], as shown in Figure 6.3. Algorithm 8 is used to illustrate the implementation of the
Link failure state. The implementation is such that once the value of "Fire" is set to 6,
TRAITOR produces no output.

Algorithm 8 The Link failure Algorithm
1: Process RetrieverLogic(clk, data_in, enable_in, error_in, data_outreg)

{When} [Fire = 6] Block link
2: end Process

6.2.8 Crash failure State

In this state, TRAITOR implements crash failure for both switches and end system. It
can be viewed as a complete outage of a network participant. This framework implements
the crash failure by totally blocking the DDR channel of the target participant (breaking
every link connected to the participant). For example, in Figure 6.5 consider the setup
of 2 switches (SW1 and SW2) and 2 end systems (ES1 and ES2). If the switch SW1 is
targeted to fail, all the links connected to it is cut off, as illustrated with the points on the
link marked x. The points marked x are FPGAs connected according to a cut-through
paradigm. When a crash failure is triggered, the DDR channels are simultaneously cut.

The implementation is similar to the link failure, except that crash failures are cooperating
link failures. For example, to emulate a crashed end system, all the links connected to
the end system are shut out. By so doing, there is no participation of the affected system
in the network. The crash failure is achieved by having the controlling FPGA send out a
block signal to other FPGAs connected on the links attached to the target node.

Page 99

Chapter 6.3 TSN implementation

Figure 6.5: Example illustrating crash failure

6.2.9 Time synchronisation failure state

The time synchronisation failure is achieved by configuring other failure modes to target
PCF frames. TRAITOR is equipped with the ability to target the individual traffic
classes of TTEthernet. Therefore, in this state, the user targets the PCF frames for
corruption, omission, delay, masquerading failure, and babbling idiot. The PCF frames
are injected with errors to produces the corresponding failures mentioned so as to observe
the operation of the synchronisation mechanism of TTEThernet under the presence of
failures.

6.2.10 Stuck-At failure

Although stuck-At failures refer to when a system fails such that a bit is stuck at "high"
or "low", the implementation of babbling idiot failure is modified in this work for stuck-At
failure, where frame repetition still follows the network schedule but repeats the trans-
mission of a specific frame. Therefore, stuck-at failure is implemented in the context of
being stuck at a frame rather than a bit.

6.3 TSN implementation

The same state machines and algorithms used in the implementation of TTEthernet
was used for the TSN. Nevertheless, although TSN and TTEThernet have the same
frame structure extracted from standard Ethernet, both networks translate and handle
the Ethernet frame fields in different ways.

Page 100

Chapter 6.3 TSN implementation

Figure 6.6: 802.1Q frame structure

The implementation of TTEthernet divides the destination address field into two parts;
constant field and the Virtual Link Identification (VLID) field. The destination address
is composed of 6 bytes (i.e. 48 bits). The first 32 bits of the destination address are used
for the constant field while the next 16 bits are used for the VLID. The constant field is
utilised by the TTEthernet to differentiate between BE effort frames from both TT and
RC traffic. The participating devices in the TTEthernet network use the constant field
bits to classify a frame as time-triggered or rate-constrained when the constant field in
the Destination Address is set to a configured value. All other traffic that does not have
the configured value is seen as BE frames.

In TSN, the destination address does not serve any purpose different from its usage in
standard Ethernet. However, a significant difference in the whole frame is the usage of
the Ethernet’s 802.1Q optional tag in the TSN network. The IEEE 802.1Q frame consists
of a starting 8-byte signal (7-bytes for preamble and 1-byte for Start Frame Delimiter),
6-byte for destination MAC address, 6-byte for source MAC address, 4 bytes of 802.1Q
optional tag, 2-byte for Ethernet Type/Size, 46 to 1500-bytes for payload, 4-byte for
Cyclic Redundancy Check (CRC) or Frame Check Sequence (FCS). The 802.1Q frames
use a 32-bit optional header that is located between the source MAC address and the
Ethernet Type/Size headers. It consists of a 16-bit for Tag Protocol Identifier (TPID),
3 bits Priority code point (PCP), 1-bit Drop eligible Indicator (DEI), and 12 bits VLAN
identifier (VID). The 802.1Q frames structure is shown in Figure 6.6.

The FI designed in this work reads the frame contents with a nibble resolution. In the
TSN mode, the TSN header that is shown in Figure 6.6 is used to identify the TSN
frames for fault injection. In the TTEthernet mode, the Destination address is used to
identify the TTEthernet frames for fault injection. The above explanation addresses the
operational difference of how TTEthernet and TSN fault injection are implemented in
TRAITOR.

Page 101

Chapter 7

Experiments, Results and Analysis

This chapter discusses and demonstrates the applicability of TRAITOR to various use-
cases, showing how TRAITOR satisfies its requirements. Four sets of experiments are
carried out, each satisfying a given set of experimental goals described in section 7.1.
Section 7.2 demonstrates the use of TRAITOR in TTEthernet fault injection, showing the
realisation of the fundamental techniques discussed in Table 5.1 of chapter 5. Section 7.3,
shows the use of TRAITOR in evaluating the fault containment of TTEthernet against
babbling idiot failure. Section 7.4 demonstrates the use of TRAITOR in evaluating a
deterministic protocol in the railway domain and compares the performance with a non-
deterministic protocol. Section 7.5 demonstrates the potential of TRAITOR in generating
data that can be used in training a neural network to facilitate the early detection of faults,
especially during the synchronisation startup phase of time-triggered Ethernet systems.
Finally, the summary of the experiments is given in section 7.6.

7.1 Experiment goals

The first goal of the experiments conducted herein is to test the implementation of the
foundational techniques for TRAITOR, including the control of the fault injection instant
and its ability to target individual traffic classes. Several requirements of TRAITOR were
discussed in chapter 4, these were labelled requirement 1 to requirement 7. The second
goal of the experiments conducted in this work is to evaluate these requirements. The
experiments will demonstrate how TRAITOR satisfies the following:

Requirement 1 - The applicability of TRAITOR in evaluating Time-triggered network
protocols.

Requirement 2 - The use of TRAITOR to evaluate the integrated behaviour of time-

102

Chapter 7.2 TTEthernet fault injection

triggered network protocols such as TTEthernet and TSN.

Requirement 3 - The use of TRAITOR in evaluating a physical prototype or final
implementation of time-triggered network components.

Requirement 4 - To demonstrate the low intrusiveness of TRAITOR.

Requirement 5 - To demonstrate the separation of TRAITOR from the NUT.

Requirement 6 - To demonstrate the portability of TRAITOR to different time-triggered
protocols or Ethernet-based protocols such as TTEthernet and TSN.

Requirement 7 - Evaluate the use of TRAITOR in generating data to train a neural
network for failure detection.

Scalability - To demonstrate the scalability of TRAITOR.

Applicability to different topologies - To show that TRAITOR can be applied to
validating applications and protocols irrespective of the network topology. Thereby
establishing that TRAITOR is topology independent.

7.2 TTEthernet fault injection

Most fault injection techniques for network protocols integrate the fault injection com-
ponent into the NUT. As earlier discussed in Chapter 4, this requires the modification
of the hardware/software of the NUT component. These modifications restrict the FI
implementation to specific application setup, such that for every use-case one would re-
quire to modify the NUT component to perform fault injections. However, since the
method developed in this work abstracts the FI from both the end systems and switches,
its advantage is the provision of the generic capability to TRAITOR to target different
use cases. Also, the possibility of introducing unintended errors into the switches or end
system due to modifications is eliminated. As reported in Chapter 5, the abstraction is
attained by placing the FI component following a cut-through paradigm, where network
faults are injected on the link between the end systems and switches.

This section reports the result obtained from the development of TRAITOR. Herein,
the fundamental techniques (i.e. byte injection, frame delay, and frame jamming) are
tested to observe the operation of TRAITOR. The correctness of TRAITOR’s operation
is manually observed in this first version of experiments. The aim of the experiment is to
demonstrate the capability of the framework in achieving the following:

1. To test and demonstrate TRAITOR’s foundational techniques: byte injection, frame

Page 103

Chapter 7.2 TTEthernet fault injection

delay, and frame jamming.

2. To test and control the injection instant.

3. To ensure that the framework can target the individual traffic classes of a time-
triggered Ethernet network protocol. This is to show the ability of TRAITOR to
impact individual protocol algorithms. For instance, to impact on the synchron-
isation mechanism of TTEthernet, TRAITOR must be able to inject faults on the
PCF frames. However, this first experiment demonstrates the ability of TRAITOR
to target TT, RC and BE frames.

7.2.1 Usecase description and experiment setup

The experiment is performed on the single-hop non-redundant configuration shown in
Figure 7.1. In the figure, two end systems (ES1 and ES2) are connected via a TTEthernet
switch (SW). The SW is assigned the role of a CM, while ES1 and ES2 are assigned
the role of an SM. Mixed-criticality traffic (i.e. the mix of TT, RC, and BE messages)
is configured for transmission between ES1 and ES2 on a 100 Mbits/s link. A parallel
network consisting of three passive network taps is set up to measure latencies, jitter and
dropped packets in the network. The network taps are represented as NT1, NT2 and
NT3 in Figure 7.1. All TTEthernet network traffic in this setup is sniffed by the network
taps and received at the monitoring station. The fault injection component of TRAITOR
is represented as FI in the figure, and it implements the algorithms and state machines
described in Chapter 6.

Figure 7.1: Single Hop Non-redundant network connected to a monitoring station

Delay, corruption and omission failure were injected individually into the TTEthernet
network targeting TT, RC, and BE traffic classes respectively. The FI component is

Page 104

Chapter 7.2 TTEthernet fault injection

responsible for the injection. The impact of the FI can be observed using the three
network TAPS NT1, NT2 and NT3. Since there are TAPs located before and after the FI
component, the action of the FI can be observed directly.

7.2.2 Results and discussions

Corruption failure is first injected, and the results are illustrated in Table 7.1. The table
illustrates the results of injecting corruption fault with a FER (Frame error rate) of 3. The
FER indicates the frequency at which corruption fault was applied. FER of 3 corrupts
every 3rd frame. Therefore, it is expected that the switch drops every corrupted frame
indicated by the CRC computation. The experiment was conducted for TT, RC, and
BE traffic, to demonstrate the frameworks capability to target individual traffic classes.
Table 7.1 shows that out of a 110 observed TT traffic, a FER = 3 resulted in 35 injections
which are approximately one-third of the total observed frame. In the case of RC traffic,
the number of injected fault is equal to 34, which is exactly one-third of the total number
of observed frames. The total number of observed frames in BE is equal to 105, and the
number of injected faults obtained is 36, which is also approximately one-third of the total
number of frames. The values obtained can be confirmed from the number of received
packets registered by the network Tap NT3. The transmission of frames sent by ES1 is
registered by NT1, and the reception is registered by NT3. NT1 and NT3 provides a way
to obtain the number of drop packets. Latency and jitter can also be computed from the
timestamps obtained from NT1 and NT3.

The frames sniffed by NT1, NT2 and NT3 are fed into the high resolution NAC card
described in Chapter 5. The results are further analysed using Tshark. The monitor-
ing network introduces no significant delay to the NUT since passive network TAPs are
utilised.

Frame
Type

Total no. of No. of No. of

observed frames Injected
Faults

Frame
Received

TT 110 35 75
RC 102 34 68
BE 105 36 69

Table 7.1: Results of Corruption Failure (FER = 3)

The results for omission failure injection show that all omitted frames are not perceived
by the switch. Table 7.2 illustrates the impact of omission failure. The results indicate

Page 105

Chapter 7.2 TTEthernet fault injection

that the omitted frames were not forwarded to the switch and receiving end system. A
FER = 3 was also configured for omission failure. Out of 120 transmitted TT message
injected with omission failure, 40 omission failures were observed, and 80 frames were
received. Out of 117 RC messages injected with omission failure, 39 frames were omitted,
and 78 frames received, and out of 114 BE messages injected with omission failure, 39
frames are omitted, and 75 frames received. Approximately one-third of all frames are
omitted. The reason for the approximate value stems from the time when the observation
is started. However, the sum of the number of injected faults and the number of received
frame produces accurately the total number of frames observed. Therefore, the injection
is consistent for both corruption failure and omission failure.

Frame Total no. of No. of No. of
Type observed frames Injected

Faults
Frame
Received

TT 120 40 80
RC 117 39 78
BE 114 39 75

Table 7.2: Results of Omission Failure (FER = 3)

Xilinx provides ways to probe the operation of custom IPs developed using the Vivado
platform. One of such ways is the use of the Integrated Logic Analyser (ILA). The ILA
can be used to probe the operation of a custom IP at run-time. The ILA is used herein
to illustrate the outcome of delay failure on the TTEthernet network. A snippet of the
ILA is shown in Figure 7.2 and Figure 7.3 to illustrate the injection of delay failure.

Figure 7.2: ILA illustration of Golden run

The ILA is configured to capture frames with a frequency of 25 MHz. 25 MHz corresponds
to the 100 Mbit/s clock setting required for the GMII-RGMII block. The ILA captured
the inverted nibble format of transmission of the 100 Mbit/s network, as shown in Figure
7.2 and Figure 7.3. Every byte transmitted on the 100 Mbit/s settings through the
GMII-RGMII block is split into two nibbles, and the less significant nibble is transmitted

Page 106

Chapter 7.2 TTEthernet fault injection

Figure 7.3: ILA illustration for delay fault of 1µs

before the higher significant nibble. Figure 7.2 captures the golden run scenario when
no fault is activated. The field data_in and data_out shows the nibble signals received
via the ingress port of the FI, and the nibbles signals that leave the FI via the egress,
respectively. The enable_in signal is an RGMII enable signals which travel in parallel
with the frames to indicate the start and end of a frame. The enable_out shows when
and how the enable_in signal leaves the FI. Flag_delayFault is a flag that shows when
delay failure is triggered, that is the instant when the value of FIRE = 5 (see Figure 6.3).
The flag_preamble is a flag that shows when the FI detects the start of a frame. The
flag_trarget is a flag that shows the instant when the target frame is acquired to begin
fault injection.

In the early version of TRAITOR, the cut-through paradigm introduced a fixed 30 clock
cycle computational delay, as shown in Figure 7.2. The delay is the processing delay of
the FI, which accounts for the time taken to read the TTEthernet frame header. In figure
7.2, two blue flags carrying the value "512", and "542" are shown. The flags are used to
illustrate the shift register delay in the golden run scenario. It shows the beginning of
the frame and the point when the frame leaves the FI. It takes 30 clock cycles for this
configuration. The inverted nibbles of the preamble and SFD make up the first 16 clock
cycle. The inverted nibbles of the destination address make up the next 12 clock cycle.
After which it takes the FI one clock cycle to analyse the shift register content and another
clock cycle to output the frame.

Figure 7.3 is used to illustrate when a 1µs delay is injected into the TT frame. In the
figure, three blue flags carrying the value "483", "512" and "543" are shown. The first
value "483" shows the entry point of the frame into the FI. The value "512" indicates the
instance the delay fault is activated. The value "543" indicates the point when the frame
exits the egress port of the FI. The difference between the point of entry of frames and
the time delay fault was activated is 29 clock cycles. The difference between the point of
injection and the time the frame exits the FPGA is 31 clock cycle. The 31 clock cycle
is how long it takes to implement the configured delay value. The injected 1µs delay is

Page 107

Chapter 7.3 Fault containment against babbling idiot failure

equivalent to a 25 clock cycles delay (Note: each nibble is clocked every 40 ns). Five
clock cycles are taken by the buffer to store the frames for a delay operation. The sum of
the five clock cycle buffer operation, 25 clock cycle delay and one clock cycle instance for
outputting the data are equal to the 31 clock cycle calculated from the ILA in Figure 7.3.

7.2.3 Conclusion

The first overall experimental goal of this work is met in this section 7.2 by demonstrat-
ing TRAITOR’s capability in targeting the individual traffic classes of the TTEthernet
network. It also demonstrated the use of the framework and the correct operation of
the FER. Corruption, omission and delay failure produced the expected impact when
injected into the TTEthernet network. TRAITOR was also able to inject specific delay
faults targeting TTEthernet’s traffic classes. Requirement 1 and requirement 2 are also
met in that TRAITOR is applied to the TTEthernet network such that it captures the
integrated behaviour of all its services (e.g. synchronisation service). Requirement 3 is
met in that the validation was performed on physical devices. The experiment also shows
that the fault injection component is abstracted from the components of the TTEthernet,
thus satisfying requirement 5.

7.3 Fault containment against babbling idiot failure

Reliability measurement relies on controlled fault injection experiments that can observe
the behaviour of a system under the effects of faults. Fault injection thereby provides the
platform for assessing fault containment, testing error handling and tolerance of a system
and assessing solutions to improve dependability. Injecting babbling idiot failures (BIFs)
can be used to aid the evaluation of the fault containment of a network. A babbling idiot
is characterised by the transmission of messages at an arbitrary timing. A faulty node
that monopolises the common channel by sending messages at erroneous points in time
is perceived to have a babbling idiot failure [Wang et al., 2009].

The babbling idiot failure mode has the potential to cause a complete system failure by
disrupting communication between end systems operating correctly. A babbling idiot
phenomenon can impede the fulfilment of real-time and safety criticality requirements by
delaying or causing the loss of other messages. In safety criticality systems BIFs could
result in catastrophic consequences.

BIFs are caused primarily by the node and can originate either from a node’s hardware
or software. A hardware babbling-idiot occurs when the failure is caused by the direct

Page 108

Chapter 7.3 Fault containment against babbling idiot failure

consequence of a hardware fault. A software babbling-idiot takes place when the fault
originates from the application software (e.g. a bug in the code or human factor such as
a malicious attack). The TTEthernet protocol takes advantage of channel redundancy
capability to overcome a babbling idiot failure. In channel redundancy, the deterministic
transmission of messages on the replica is used to override the hardware babbling-idiot
fault [Buja et al., 2005]. TTEthernet also uses the bus guardian system in which it uses
prior knowledge about the permitted temporal behaviour to block untimely messages.
Nevertheless, in this section, the effect that a babbling idiot failure of a link has on other
links is observed. This section focuses on evaluating the fault containment of TTEthernet
against BIF.

7.3.1 Usecase description and experiment Setup

The experiment observed the behaviour of a TTEthernet switch network connected with
four end systems using a 100Mbits/s link. The TTTECH A664 LAB devices are used for
this experiment. Figure 7.4 illustrates the network under test, which is configured with
five virtual links (VL1-VL5). VL1 and VL2 are configured to transmit TT traffic while
VL3 to VL5 are configured to transmit RC traffic.

In Figure 7.4, the direction and type of traffic on the VLs are illustrated with the dotted
arrows. The arrows associated with each virtual link point in the direction of the traffic.
Messages originate from a single sender but can be received by multiple receivers, as
shown in the case of VL1 and VL2. Note that the VLs are logical connections; the
physical connections are shown in the figure with non-dotted blue lines. Four end systems
configured as synchronisation masters are connected to one TTEthernet switch which is
configured as the compression master. Passive network taps are placed on all the physical
links in positions A, B, C and D of Figure 7.4. The network taps are connected to a
central monitoring station, similar to the setup in Figure 7.1. All traffic through the links
is sniffed in a passive manner using these network taps.

Similar to the experiment in the previous section, the monitoring station is equipped
with COTS NACs that receive all traffic from the network taps. Tshark tool is used to
collect all the captured packets. Computations of latency and jitter of different virtual
links are handled offline via a custom C++ program, designed specifically for analysing
TTEthernet traffic.

The FPGA is used to inject untimely messages on VL1 (TT) and VL4 (RC) with a total
frame size of 165 bytes. Best effort messages are also injected in the background according
to a random interval. The scenario in Figure 7.4 is such that the participation of ES1
and its message transmission is emulated to generate a BIF. On startup, the FPGA acts

Page 109

Chapter 7.3 Fault containment against babbling idiot failure

Figure 7.4: Experimental setup for Babbling Idiot Fault injection...

completely as a cut-through interface. This cut-through approach introduces a constant
delay of 2 µs to the usual traffic over the channel. When the BIF is activated, ES1
is cutoff and messages from it are emulated on the FPGA, except that these messages
take an untimely interval, emulating the babbling idiot failure. Information regarding
the virtual links of ES1 is pre-loaded into the FPGA configuration before the start of the
experiment.

The frame size and Bandwidth allocation gap (BAG) for each application running on the
virtual links are configured for the experiments;

• with a payload size of 100 bytes.

• with a BAG of 15000 µs.

The above-listed configurations are set on each VL. Firstly we obtained latency, jitter and
percentage of frame loss values for a Golden Run (GR) scenario. These initially measured
GR values are used to establish a baseline that makes it possible to ascertain the effect
of faults on the network when BIF is injected. The effect of BIF on VL2, VL3 and VL5
are observed by measuring the latency, jitter and frame loss on these VLs.

7.3.2 Results and discussions

The experimental observation for frame loss, average latency and Jitter on VL2, VL3,
and VL5 are shown in Table 7.3. The average latency jitter and frame loss values for the

Page 110

Chapter 7.3 Fault containment against babbling idiot failure

VL Avg.Latency max. Jitter Frame Loss
GR VL2(ES2-ES3) 204.626 µs 1 µs 0
BIF VL2(ES2-ES3) 210.96 µs 89 µs 2
GR VL2(ES2-ES4) 204.659 µs 1 µs 0
BIF VL2(ES2-ES4) 210.498 µs 88 µs 3
GR VL3(ES4-ES1) 19.7907 µs 8 µs 0
BIF VL3(ES4-ES1) 19.9522 µs 17 µs 2
GR VL5(ES2-ES4) 19.7551 µs 7 µs 0
BIF VL5(ES2-ES4) 28.9759 µs 181 µs 1

Table 7.3: Experimental Measurement - Golden run scenario and BIF injected with a
payload size(100B) and BAG (0.015s)

GR scenario are first recorded before the activation of BIF on VL1 and VL4.

Average latency

The experiments considered latency in the context of end to end delay between two
nodes. It expresses the duration taken by frames to get from one end system to another
end system. The network schedule was configured with a period of 20 ms for TT traffic,
and a BAG of 8 ms for RC traffic. The setup operates on a full-duplex communication,
the VL arrows in Figure 7.4 illustrates clearly the direction of traffic. VL1 and VL4 are
not observed since it is linked to the source of failure occurrence. The idea behind the
experiment is to ascertain if the babbling idiot failure is contained when the messages
arrive at the switch. The VLs outside the containment region include VL2, VL3, and
VL5. To observe end to end latency on VL2, the network TAP combination (D and C),
and (D and B) are used. The network tap combination is because, on VL2, ES2 transmits
TT messages to both ES3 and ES4. Therefore, Table 7.3 captures two measurement path
for VL2. VL3 and VL5 are both configured to transmit RC traffic. RC messages are
transmitted on VL3 from ES4 to ES1, and on VL5 from ES2 to ES4.

When BIF is activated, the average latency of frames on VL2 (TT) is slightly increased.
For the RC VLs, the increase in the average latency of frames when BIF is triggered is
more pronounced compared to TT VL. For example, these differences in average latencies
are 6.334 µs and 9.2208 µs for TT VL(ES2-ES3) and RC VL(VL2-ES4) respectively. VL3
is not significantly affected by the BIF because there is no contention with any message
in the transmission direction (see VL3 (RC) in Figure 7.4).

Jitter

Increased jitter was observed across all VLs when BIF is activated. Under GR scenario,
the jitter observed across TT VLs was bounded at 1µs. It is important to know what
conflict resolution (between TT and other traffic) method is implemented on the switch,

Page 111

Chapter 7.3 Fault containment against babbling idiot failure

to accomplish a detailed evaluation of the effect of BIF on TTEthernet network. The
conflict resolution strategy has an impact on the handling of traffic priority by the switch.
The switch in this experiment utilised the shuffling mechanism [AS6802, 2011] for conflict
resolution. Due to the store-and-forward principle and non-fragmented frame transmission
implemented by the shuffling mechanism, TT traffic can be delayed by the RC traffic
resulting in a pronounced jitter. However, this jitter is bounded as it does not exceed the
transmission duration for a single frame.

BIF was injected on VL1 (TT) and VL4 (RC) with a frame size of 165 bytes. In a
100Mbit/s link, a byte is sampled in a bridge every 80 ns. Therefore the switch takes
at least 13.2µs in this experiment to relay a complete BIF message. Since shuffling is
implemented in the switch, if there is ongoing transmission of an RC message by the
switch when a TT frame arrives, the TT frame is delayed by 13.2µs plus the IFG and
switch processing time. The shuffling method is a trade-off between optimal bandwidth
utilisation and real-time quality. The observed bounded jitter degrades Real-time quality.
However, bandwidth is utilised efficiently, as there are no truncated frames. Compared
to TT VL, the jitter on RC VL5 is much more significant. The buffer size specification of
the switch plays a major role in how RC messages are handled. Flooding the switch with
BIF has more significant consequences as the buffer limit is exceeded, resulting in more
pronounced jitter for RC traffic.

Figure 7.5 and Figure 7.6 illustrate a plot on the number of frame samples against latencies
observed in the experiment for VL2 (ES2-ES3) and VL2 (ES2-ES4), respectively. The
plot for the GR (i.e. the observation when no fault is injected) is represented in orange,
and the plot for the BIF is represented in blue. It can be observed that the jitter is not
more than 1µs for VL2. However, notice the spread on both Figures (7.5 and 7.6) when
BIF is triggered. The jitter on VL2 becomes 89µs in direction ES2 to ES3 and 88µs in
the direction ES2 to ES4.

The deduced jitter from the plot is bounded within a maximum of 89 µs for ES2-ES3
and 88 µs for ES2-ES4. The RC VLs illustrated in Figure 7.7 direction ES4 to ES1, and
Figure 7.8 in direction ES2-ES4 are not only affected by the frame size of the BIF message.
They are also affected by the frequency of frame generation and the size of the configured
switch buffer. As a result, the jitter observed for the RC VL was disproportionate. It
can be observed from Figure 7.7 that the jitter experienced by VL3 in direction ES4 to
ES1 when BIF is triggered results to 17 µs, and this is because there is no competition
between VL3 and other VLs in this direction. However, the jitter on VL5 is significantly
affected by BIF failure. VL5 has a jitter value up to 181µs when BIF is triggered. The
significant increase in jitter is due to the buffer operation of the switch in handling RC

Page 112

Chapter 7.3 Fault containment against babbling idiot failure

190 200 210 220 230 240 250 260 270 280 290

100

101

102

103

104

Latency (µs)

N
um

be
r
of

fra
m
e
sa
m
pl
es

V L2_ES2− ES3

BIF
GR

Figure 7.5: Virtual Link 2 (End system 2 to End system 3) observation for Jitter.

200 210 220 230 240 250 260 270 280 290

100

101

102

103

104

Latency (µs)

N
um

be
r
of

fra
m
e
sa
m
pl
es

V L2_ES2− ES4

BIF
GR

Figure 7.6: Virtual Link 2 (End system 2 to End system 4) observation for Jitter.

Page 113

Chapter 7.3 Fault containment against babbling idiot failure

10 15 20 25

100

101

102

103

104

Latency (µs)

N
um

be
r
of

fra
m
e
sa
m
pl
es

V L3_ES4− ES1

BIF
GR

Figure 7.7: Virtual Link 3 (End system 4 to End system 1) observation for Jitter.

traffic.

Frame loss

Frame loss was recorded for both TT and RC traffic under BIF. The arrival of frames to
a receiving end system outside an acceptance window that was specified a priori are dis-
carded. Also, frames that did not meet the bandwidth allocation gap (BAG) requirement
of ARINC 664 were discarded. Both RC VLs and TT VLs were prone to frame loss under
BIF. The frame loss recorded from the experiment is recorded in Table 7.3.

7.3.3 Conclusion

TRAITOR proved significant in evaluating the fault containment of TTEthernet imple-
mentations against babbling idiot failures. Experimental results obtained demonstrated
the use of TRAITOR in providing statistically useful data for the evaluation of TTEth-
ernet fault containment against babbling idiot failures.

TRAITOR successfully provided a platform to observe the impact of BIF on RC and
TT communication. It was observed that an end system which generates babbling idiot
messages on a given virtual link could have an effect of on jitter (i.e. a jitter up to

Page 114

Chapter 7.4 Fault containment against babbling idiot failure

0 50 100 150 200

100

101

102

103

104

Latency (µs)

N
um

be
r
of

fra
m
e
sa
m
pl
es

V L5_ES2− ES4

BIF
GR

Figure 7.8: Virtual Link 5 (End system 2 to End system 4) observation for Jitter.

123 µs for maximum frame size) on a TT virtual link sharing the same switch due to
shuffling. Shuffling thus affects the fault containment of TT communication under the
presence of BIF. If fault containment is considered without the need for trade-offs, the
timely block mechanism [Obermaisser, 2011, pp 192] is a recommended option to decrease
the jitter for TT communication. TRAITOR thus provides the platform to apply direct
measurement necessary for quantification of availability and reliability of TTEthernet
implementation from different vendors. Requirement 1 and requirement 2 of the overall
goal are shown in that TRAITOR is used here to evaluate the fault tolerance mechanism of
TTEthernet’s protection against BIF which encompasses the integrated behaviour of the
connected components. Requirement 3 is also shown since the experiment is performed
on the physical implementation of TTEthernet. TRAITOR is also abstracted from the
TTEthernet network, showing the fulfilment of requirement 5. TRAITOR was applied to
a star topology in this section 7.3, and consisted of more TTEthernet network participants
than the experiment carried out in section 7.2. The experiment, therefore, demonstrated
the scalability and applicability of TRAITOR to different topologies.

Page 115

Chapter 7.4 Deterministic communication in the railway domain

7.4 Deterministic communication in the railway do-
main

The current electronic systems found in trains consists of applications running at different
safety-criticality levels. Such applications include propulsion control, door controls, dia-
gnostics, seat reservations, and so on. These applications host multiple embedded devices
situated in a distributed manner in the train vehicles. A real-time communication system
is necessary to ensure efficient communication between these embedded devices, hence
the development of the Train Communication Network (TCN) standard [Kirrmann and
Zuber, 2001], which provides the guideline for exchanging information between devices
on railway vehicles. The establishment of a common standard for the electronic coupling
of the vehicle’s electronic equipment was the motivating factor behind the TCN develop-
ment [Kirrmann and Zuber, 2001]. Before the development of this standard, the railway
communication system was mostly a proprietary solution and tailored to meet specific
requirements of railway operators and vendors. TCN functions on a hierarchical model
consisting of two network buses, the Wire Train Bus (WTB) and the Multifunction vehicle
bus (MVB). The initial version of the TCN standard (IEC 61375-1, IEC 61375-2-1ff) did
not take care of applications having large bandwidth, such as surveillance cameras and on-
board entertainment. The data rate of this earlier TCN version tops at 1 Mbit/s between
the train vehicle (Train bus) and 1.5Mbit/s within a vehicle (Vehicle bus). Therefore, this
resulted in the development of additional parts to the IEC 61375-family. The improved
standard defined a faster TCN (IEC61375-2-5) capable of handling over 100 Mbits/s, and
conformant to IEEE 802.3. This standard is referred herein as the ETB/ECN and is
based on a hierarchical model, comprising the Ethernet Train Backbone (ETB) and the
Ethernet consist network (ECN).

However, the railway industry still uses the WTB/MVB for safety functions, such as
traction control, brakes, and doors. While the ETB/ECN bus is used for high band-
width functions such as for passenger’s comfort (entertainment) and passenger informa-
tion (e.g. audio message) [Jakovljevic et al., 2017], this presents a mixed network with
two backbones, one for ETB/ECN and the other WTB/MVB. Apart from the increase
in complexity brought by this solution, there is an extended cable length and an in-
crease in maintenance cost resulting from two different network topologies. Recently, a
European railway project titled "SAFE4RAIL" [SAFE4RAIL-1, 2019] began to address
these problems. SAFE4RAIL proposed the use of a deterministic platform for the train
communication network. The determinism and bounded jitter feature of certain networks
termed "deterministic" provide a way to support mixed-criticality traffic. It is expected

Page 116

Chapter 7.4 Deterministic communication in the railway domain

that future communication system in the railway industry will utilise this mixed-criticality
feature of deterministic networks to reduce wiring/weight, complexity, and maintenance
cost. Deterministic platforms such as TSN [Farkas et al., 2018] and TTEthernet [AS6802,
2011] were considered during the SAFE4RAIL project. This is due to the anticipated
worldwide acceptance, integrability and its cost-effectiveness, which are critical consider-
ations for the railway vendors. The proposed integrated modular platform for the train
control and management system (TCMS) in SAFE4RAIL was based on such a determin-
istic communication platform.

This section evaluates the application performance of TCN-TTEThernet (i.e. TCN based
on a TTEthernet profile). The results of the evaluation herein provide a means to compare
the performance of TTEthernet to other deterministic and non-deterministic platforms
quantitatively. The work herein evaluates the application behaviour in the presence of net-
work faults, to aid the implementation of adequate fault coverage. Both TCN-ETB/ECN
(TCN based on ETB/ECN profile) and TCN-TTEthernet are observed under the BIF.
TRAITOR provides the platform to evaluate the actual hardware behaviour in the pres-
ence of faults as opposed to evaluation using models provided in mathematical or formal
methods. For this reason, TRAITOR is used to evaluate the performance of the imple-
mented train communication system. The framework can thus be used, to test hardware
implementation of TCN based on several deterministic platforms, to ensure conformance
to standards, and to verify proper functionality.

This section aims at providing the following contributions:

• Provides the baseline for future comparison of TCN-TTEThernet with other de-
terministic networks.

• Exposes the impact of failure scenarios on the safety and performance of applications
over TCN.

• Proposes and illustrates the use of TRAITOR for performance evaluation of TCN.

• Exposes the efficacy of TTEthernet as a suitable underlying network for TCN,
specifically at layer 2 of the OSI stack.

The terminologies used to describe the train system in this section are illustrated in Figure
7.9. The car is the smallest unit from the physical composition. However, from a network
perspective, multiple cars can constitute a consist. A train fleet is made up of multiple
consists.

Page 117

Chapter 7.4 Deterministic communication in the railway domain

Figure 7.9: Train composition

7.4.1 Fault assumption

TTEtherent provides a means to configure the end nodes and switches with high integrity.
The high-integrity design uses a commander/monitor (COM/MON) system to realize a
fail-silent node [Obermaisser, 2011]. It is assumed that any message sent by a fail-silent
node can only be a correct message. If we consider a TTEtherent switch in line with this
assumption, it will certainly forward only the correct messages. In the case of an end
system, which is the origin and sink of the message, failures can occur before it is fed into
the COM/MON, for example, failures that occur in software. The COM/MON only aims
for error-containment that occurs within a device. The TTEthernet uses a traffic policing
mechanism and a central guardian system to protect itself against BIFs. However, we
evaluate the implication of these mechanisms when hosting railway applications.

7.4.2 Usecase description

The communication infrastructure in the railway systems consists of multiple end devices
(ECUs) that perform several operations, as illustrated in Figure 7.10. An ECN forms
a unit that connects applications within a car. Although not captured in Figure 7.10,
an ECN can consist of multiple cars that form a consist network. However, the diagram
illustrates the hierarchical architecture of TCN, which is made up of the ETB and ECN
network. The ETB connects multiple ECNs. The operator’s cabin is positioned at the
leading consist. The applications captured in the use-case have different levels of safety
criticality classification. The applications considered include the following.

• Surveillance: The CCTV (closed-circuit television) cameras. This application has a
high bandwidth requirement.

• The train braking system, considered in this work as safety-critical, with a higher
priority than the surveillance system.

• Heating, Ventilation and Air Conditioning (HVAC) are considered in this work as
safety-critical.

Page 118

Chapter 7.4 Deterministic communication in the railway domain

Figure 7.10: Train Consist network

• Diagnostic services, in this use case, are provided by each consist. The results are
accumulated in the operator’s cabin.

• Door Control: The use case includes ECUs (Electronic control units) for doors that
are controlled by the operator’s cabin.

This section shows the evaluation of the performance of these applications when hosted
on the same network. Herein, observations are carried out to ascertain the added value
of the temporal and spatial partitioning of the different application messages provided by
TTEthernet. The TCN-ETB/ECN is also set up and evaluated as a baseline to understand
the improvements given by TTEthernet.

7.4.3 Experiment setup

The analysis of a train topology comprising four consist networks connected via a re-
dundant ETB line is carried out. Firstly, we set up a communication network between
the consists using the existing TCN-ETB/ECN profile. Figure 7.11 shows the connections
between the four consists network. The ETBN is a setup of switches implemented in an
FPGA based board; NetLeap Base Board by novtech. The ECNs are also implemented
on the Netleap boards to exchange traffic between each other. Traffic traverses the ECN
nodes via redundant channels. The VLANs map to two different categories of network
traffic, to provide the partitioning required for the different message types. Table 7.4
illustrates these mappings.

The VLANs are configured on different broadcast domains. Based on the IEEE 802.1Q,
priorities were allotted as follows — priority level 7 for break and door control, and priority
level 5 for all others. The column message directon illustrates the direction of messages
on the ETBN channel; this is also reflected in Table 7.4. For instance, on VLAN1, the
network ECN_4 transmits HVAC control commands to ECN_1, ECN_2, and ECN_3.

Page 119

Chapter 7.4 Deterministic communication in the railway domain

VLAN Name Message Direction Application map
VLAN1 ECN_4 →

ECN_1,ECN_2,ECN_3
HVAC control

VLAN2 ECN_4 →
ECN_1,ECN_2,ECN_3

Brake control

VLAN3 ECN_4 →
ECN_1,ECN_2,ECN_3

Door control

VLAN4 ECN_1 → ECN_4 CCTV
VLAN5 ECN_2 → ECN_4 CCTV
VLAN6 ECN_3 → ECN_4 CCTV
VLAN7 ECN_3 → ECN_4 Diagnostic

Table 7.4: VLAN profile for TCN based on ETB/ECN

Secondly, a similar profile was further set up for TTEthernet. One major difference
is the replacement of VLANs with Virtual Links. Virtual links are used to partition the
different applications running on the network. A virtual link is of ARINC 664-part 7 [Part,
2006] origin and it is integrated as a part in the TTEthernet standard. The virtual link
establishes a static path between one transmitter and one or several receivers. It specifies
a logical communication path between one source application to one or more destination
applications (situtated in one or multiple nodes). Table 7.5 illustrates the senders and
receivers assigned following the virtual link concept. The TTE-Switch A664 Lab switches
and end-systems by TTTECH were used for the ETBNs and ECNs, respectively. The four
ECN nodes exchange messages between each other using these virtual links. The safety
(e.g. Brakes), non-safety criticality (e.g. Diagnostics) messages and applications that
require high QoS (e.g. CCTV) are assigned different virtual links. The assignments are
based on the level of criticality. In TTEthernet, three message classes (TT, RC and BE)
can be assigned to provide temporal and spatial partitioning of the messages exchanged
between these applications. The setup demonstrates how rolling stock applications that
have mixed-criticality levels could be hosted on the same network infrastructure and yet
share a common link. Safety-critical applications such as the brake and door control
were assigned higher priorities than lower criticality applications such as diagnostics and
CCTV.

To observe the performance of TCN-ETB/ECN and TCN-TTEthernet under failure,
ECN_1 was conditioned to fail in a manner to flood the network (i.e. BIF). The flooding
was generated by the FI component implemented on the FPGA and connected on link
L1 and L2 in Figure 7.11. Measurement probes were placed on both ports of ECN_2,
ECN_3, and ECN_4 to obtain the end-to-end latencies. The entire network traffic was
monitored using network accelerator cards (NT4E2-4-PTP by Napatech).

Page 120

Chapter 7.4 Deterministic communication in the railway domain

Figure 7.11: Train network setup based on TTEthernet

VL Name VL Direction Application map
VL1 ECN_4 →

ECN_1,ECN_2,ECN_3
HVAC control

VL2 ECN_4 →
ECN_1,ECN_2,ECN_3

Brake control

VL3 ECN_4 →
ECN_1,ECN_2,ECN_3

Door control

VL4 ECN_1 → ECN_4 CCTV
VL5 ECN_2 → ECN_4 CCTV
VL6 ECN_3 → ECN_4 CCTV
VL7 ECN_3 → ECN_4 Diagnostics

Table 7.5: Virtual Link profile for TTEthernet use-case for Railway

Page 121

Chapter 7.4 Deterministic communication in the railway domain

7.4.4 Results and discussions

A C++ software is used to analyse the results obtained; to obtain the latency of individual
VLANs/VLs, jitter and number of dropped packets. This work first investigated a golden
run scenario, before running an investigation under the given failure scenario. It is used
to obtain a baseline to compare and determine the effect of faults when injected.

Behavior of TCN-ETB/ECN

Table 7.6 shows the results obtained from a golden run experiment and an experiment
under the network flooding scenario. The measurements are taken for the ECNs that were
not conditioned to fail; ECN_2, ECN_3 and ECN_4. It can be observed from Table 7.6
that the average latency is reflected in the number of hops and distance between the ECNs
as expected. In the golden run scenario, the average latency value of VLAN1(ECN4
- ECN2), VLAN2(ECN4 - ECN2) and VLAN3(ECN4 - ECN2) is 179.8 µs, while all
VLANs from ECN4 to ECN3 is approximately 89.8µs. The values reflect the number of
hops since ECN 2 is farther than ECN3 from ECN4.

VLAN[map] GR-Avg
Latency
(µs)

Failure-
AvgLatency
(µs)

GR-
Jitter
(µs)

Failure-
Jitter
(µs)

VLAN1(ECN4 - ECN2)[1] 179.8568 179.6034 9.2200 8.7700
VLAN1(ECN4 - ECN3)[2] 89.8794 89.6724 9.2900 17.4000
VLAN2(ECN4 - ECN2)[3] 179.8549 179.6263 11.0100 8.1700
VLAN2(ECN4 - ECN3)[4] 89.8779 89.5754 10.8200 8.6900
VLAN3(ECN4 - ECN2)[5] 179.8529 179.5749 7.6500 8.7100
VLAN3(ECN4 - ECN3)[6] 89.8832 89.6052 9.1800 8.6600
VLAN5(ECN2 - ECN4)[7] 179.8053 210.2321 8.5900 87.5600
VLAN6(ECN3 - ECN4)[8] 89.8675 148.5840 0.3400 167.4300
VLAN7(ECN3 - ECN4)[9] 89.8684 125.5891 0.3400 162.5200

Table 7.6: Experiment results for TCN-ETB/ECN

Figure 7.12 illustrates the impact of BIF on the average latency. The VLANs in the plot
are assigned a VLAN map number to indicate the direction and participants (i.e. the
ECNs involved). For example, the plot represented with the number 1 on the x-axis,
is used to represent VLAN1(ECN4 - ECN2) in Figure 7.12 which corresponds to the
number shown in the first column of Table 7.6. It can be observed that VLAN5, VLAN6
and VLAN7, corresponds with VLAN mapping 7-9 respectively in the figure, and it is
affected by the failure of ECN_1 (configured on VLAN4). The affected VLANs of the
Ethernet full-duplex communication are the traffic sent in the same direction with the
network flood. The average latency is increased due to the shared egress access of the

Page 122

Chapter 7.4 Deterministic communication in the railway domain

Figure 7.12: Effect of fault on Average Latency for TCN-ETB/ECN

switches.

The sporadic generated messages from ECN_1, emulated by the FI component, has an
impact on all ETBNs. Thereby, increasing the average latency of VLAN5(ECN2 - ECN4),
VLAN6(ECN3 - ECN4) and VLAN7(ECN3 - ECN4) by 30.4µs, 58.7µs and 35.72µs re-
spectively. In this work, the transmission selection algorithm used is the strict priority.
VLAN4 shares the same egress resource with VLAN5 on SW1 and SW2. It also shares
the same egress resource with VLAN6 and VLAN7 on SW3 and SW4. The effect of
networking flooding, therefore, increases the average latency on the affected VLANs and
results in a significant jitter increase.

The effect of the failure on jitter is shown in Figure 7.13. Similar to the average latency, it
can be seen that the VLAN5(ECN2 - ECN4), VLAN6(ECN3 - ECN4), and VLAN7(ECN3
- ECN4) are profoundly affected, with a jitter increase of 78µs, 167µs, and 162.2µs re-
spectively.

Page 123

Chapter 7.4 Deterministic communication in the railway domain

Figure 7.13: Effect of fault on Jitter for TCN-ETB/ECN

Page 124

Chapter 7.4 Deterministic communication in the railway domain

Behaviour of TCN-TTEthernet

The train use case in this work observed RC behaviour on TTEthernet. TT behaviour
is minimally affected by the network flooding, as every VL is assigned a time slot that
provides temporal isolation. TT traffic can only be delayed for a maximum of one message
length, when shuffling [Obermaisser, 2011] is used for conflict resolution. The TT delay
inflicted by shuffling is due to the concept of not having fragmented packets, so lower
priority traffic is allowed to finish transmission even if the time slot allocated to TT
traffic is reached. However, it remains a design decision whether to halt transmission of
low priority traffic on the arrival of TT traffic.

Table 7.7 shows the results obtained with an underlying TTEthernet platform. The first
column represents the virtual link members and the direction of traffic. The rest of the
column headers have similar explanations to Table 7.6. In the case of TTEthernet, only
one virtual link is significantly affected; VL5(ECN2 - ECN4)[7]. VL5 is in the same
direction as VL4 and share common ETBN switches (SW1 and SW2). Since VL4 and
VL5 are both RC messages, the sporadic generation of VL4 messages affects VL5, but
not beyond the redundant ETBN switch-pair SW1 and SW2. Although VL6 and VL7
are in the same direction and share the same egress port on SW3 and SW4, they remain
unaffected by the failure due to the frame filtering and policing performed by AFDX
compliant switches (ARINC 664 switches).

VL[map] GR-Avg
Latency
(µs)

Failure-
AvgLatency
(µs)

GR-
Jitter
(µs)

Failure-
Jitter
(µs)

VL1(ECN4 - ECN2)[1] 183.8353 183.5187 81.3000 14.6800
VL1(ECN4 - ECN3)[2] 91.9437 91.7744 81.2900 14.6500
VL2(ECN4 - ECN2)[3] 602.7124 602.7246 0.5400 7.6000
VL2(ECN4 - ECN3)[4] 203.0437 201.6934 0.5800 7.5700
VL3(ECN4 - ECN2)[5] 602.6584 602.7232 157.4700 7.1300
VL3(ECN4 - ECN3)[6] 203.0677 201.6906 160.3500 7.0500
VL5(ECN2 - ECN4)[7] 183.5132 27253.3649 6.7900 4997.7000
VL6(ECN3 - ECN4)[8] 91.7610 92.3172 4.8400 78.4000
VL7(ECN3 - ECN4)[9] 91.7655 92.0790 6.8900 84.0300

Table 7.7: Experiment results for TCN-TTEthernet

Figure 7.14 further illustrates the impact of the failure on the average latency of VL5
(VL mapping representation on chart no. 7). The average latency is increased by 27 ms.
Figure 7.15 shows the effect of failure on Jitter. Similar to its average latency, only VL5
is significantly affected. The jitter value is increased considerably by 5 ms as RC messages
Queue at the egress of SW1 and SW2. The network failure injected via VL4 creates

Page 125

Chapter 7.4 Deterministic communication in the railway domain

Figure 7.14: Effect of fault on Average Latency for TCN-TTEthernet

contention on the shared resource (egress port of SW1 and SW2). ARINC 664-Part 7
defines two priorities for virtual links: high or low. In this work, the priority of VL4 and
VL5 is set to high. Unlike TT traffic, the RC traffic does not share any notion of global
time and are not synchronised to the other network participants (network switches and
end systems). Therefore, frames from VL4 and VL5 that ingresses SW1 and SW2, and
then egresses via the same output port compete. The data contention issue between VL4
and VL5 (RC messages) are addressed through buffering, which is a technique specified by
ARINC 664-Part 7. It is then in the part of designers to ensure that delays imposed by the
frames (even in such a network flooding failure mode) is lower than the accepted delay for
a given virtual link and that there is no frame loss as a result of buffer overflow. A detailed
study on delay encountered by frame traversing an ARINC 664-Part 7 compliant switch
and the techniques used to ascertain the worst-case delays can be found in [Coelho, 2017].
However, this work further pushes the need for critical consideration of failure cases, and
its impact on the worst-case delay.

7.4.5 Conclusion

The impact of failure on TCN for mixed-criticality applications is analysed in this section.
TTEtherent is further explored as the underlying platform for TCN, and its behaviour

Page 126

Chapter 7.4 Deterministic communication in the railway domain

Figure 7.15: Effect of fault on Jitter for TCN-TTEthernet

evaluated under the presence of BIF. The effect of BIF on the performance of TCN based
on ETB/ECN and TCN based on TTEthernet is evaluated. In the case of TTEthernet,
only the latency and jitter of RC virtual link which shares the same egress resource with
the injected failure messages are affected. Although the effect was profound, it was as
a result of the buffering mechanism used in conflict resolution. In the case of standard
Ethernet used in ETB/ECN specification, although logical isolation using VLANs were
used in the experiment, the failure effects on latency and jitter were not contained in
the first set of switches in which the frames traverses. Fault containment is appealing
to safety criticality applications. Therefore, TTEthenet is a suitable candidate for the
underlying platform for TCN.

The experiment in this section 7.4 demonstrates the use of TRAITOR for a realistic use
case (railway use case). The number of network participant in this section 7.4 is lar-
ger than that of section 7.3, further highlighting the scalability of TRAITOR, and its
applicability to different network topologies. The scalability property of TRAITOR is
also shown from the increased network size. As a consequence, the observation probes of
TRAITOR are increased to capture data from more network component of the TTEth-
ernet setup compared to section 7.2. Requirement 1, requirement 2, and requirement 3
are demonstrated as TRAITOR targets the integrated behaviour of a physical setup of

Page 127

Chapter 7.5 Failure detection in TSN startup using deep learning

TTEthernet network. Requirement 5 is demonstrated from the abstraction of TRAITOR
from the NUT. The experiment also shows the portability of TRAITOR (requirement 6),
where TRAITOR is also applied both for TCN based on ETB/ECN and TCN based on
TTEthernet.

7.5 Failure detection in TSN startup using deep learn-
ing

The determinism offered by the time-triggered protocols is desirable for safety criticality
systems that must meet hard deadlines. The primary purpose of periodic bandwidth
allotment for message transmission is to ensure that there is no transmission conflict
for critical messages. The timing of transmissions and receptions of critical messages
is predictable, hence deterministic. At the core of the time-triggered network is the
synchronisation mechanism. The synchronisation mechanism ensures that all connected
network nodes have a common notion of time.

Time-triggered networks will fail to execute correctly if the synchronisation mechanism
fails. In particular, the correct execution of the synchronisation mechanism is essential
during the startup process of time-triggered systems. This is why time-triggered pro-
tocols such as the TTEthernet implemented a set of fault-tolerant protocols for clock
synchronisation during startup [Obermaisser, 2011]. Some time-triggered protocols use
dedicated startup algorithms subdivided into "coldstart" and "integration" as discussed in
Chapter 3. Coldstart describes the synchronisation phase, where the network participants
negotiate/select and agree to an initial synchronisation point. Integration describes the
procedure used by the network participants whose startup is late to join an existing syn-
chronisation.

In TSN, a revised version of IEEE 802.1AS is used for the optimisation of the distributed
time synchronisation. IEEE 802.1AS implements an algorithm known as the Best Mas-
ter Clock Algorithm (BMCA) to select a grandmaster clock from which other network
participants will draw their reference time. A peer-delay mechanism is also used to meas-
ure path delays. However, diagnostic services to detect corruption or omission failures
during startup are not defined within the scope of the standard. The manifestation of
a corruption failure does not necessarily mean that messages will not satisfy the latency
constraints of the peer-delay mechanism. The transmitted messages can be corrupted
before the computation of the frame check sequence. It is a widespread practice to use
the computation of checksums to identify corrupted frames. However, due to the regular

Page 128

Chapter 7.5 Failure detection in TSN startup using deep learning

re-computation of checksums by intermediate nodes when adding the residence time, it is
even possible to compute new checksums using corrupted data. Mainly when the failure
occurs internally between the time of frame reception by a network bridge and before
checksum re-computation. In the case of omission failures, a priory knowledge can be
used to detect when a message is not received at all or when a message is not received on
schedule. Nevertheless, the global time that makes it possible to identify omission failures
is only established after the startup process of the synchronisation mechanism. Therefore,
it is not applicable to rely on the knowledge of the scheduler to identify omission failures
during startup.

Herein, we introduce the use of deep learning to detect omission and corruption failures
during startup. This is to avoid cases of perceiving a correct network synchronisation
startup which has uncertainties and elements of non-determinism caused by the omission
and corruption failures. The approach enriches the startup mechanism of TSN by apply-
ing deep learning techniques to detect network failures during the startup process. Deep
learning is proposed for TSN nodes to capture failure. The safety requirements of safety
criticality systems may be as high as SIL4 (Safety integrity level 4) [IEC61508, 2010],
where field experience by itself is not sustainable for evaluation. Therefore, fault injection
is used to accelerate the occurrence of faults to verify the functionality of fault-tolerant
mechanisms or validate the system itself. Waiting to observe a single fault by field experi-
ence for a high criticality application could mean waiting for an infeasible number of years.
Besides, far more than a single observation is required to establish reasonable confidence.
Therefore, this work uses TRAITOR to generate the data required to train the neural
network. This provides the ability to capture the behaviour of different communication
fault profiles during startup.

7.5.1 Usecase description and experiment setup

A total of 6000 experimental runs were carried out. Two thousand experiments each for
a golden run, corruption failure scenario, and omission failure scenario respectively. Cor-
ruption and omission failure is induced with a fault error rate (FER) of three; this means
faults are injected in the system with a frequency of one fault in every three messages.
The golden run scenario describes a case in which no fault is injected as the behaviour
of the system is captured under the desired operating mode. Figure 7.16 illustrates the
experimental setup used to acquire the data used to train the neural network. The setup
represents a redundant architecture of a robot controller communicating with a set of
sensors connected locally in ES1 and ES2. Actuators, not shown in the diagram, are
connected through SW1 and SW2. A fault injector represented as FI is placed between

Page 129

Chapter 7.5 Failure detection in TSN startup using deep learning

Figure 7.16: Experimental setup for data acquisition

the robotic controller and SW1 according to a cut-through paradigm to manipulate the
data that traverses the network. The FI component only introduces a delay of 700 nano-
seconds, making it possible for the ports of SW1 and the arm controller to be TSN capable
ports. Figure 7.16 also shows a network tap device represented as NT. The network tap
is used to sniff traffic in the network; this was designed using a Xilinx FPGA (Zedboard),
which is the same board used to implement the FI.

The traffic sniffed by NT is captured by a NAC designed by Napatech. The packets are
then saved using the Tshark application as comma-separated files (CSV) files for offline
processing in Rstudio. The time vector (column) of the captured data represents the
timestamps of message transmission and omission. This vector is used to train the neural
network. The time vector is normalised to fall between the range of 0 to 1. After which
200 experiments are taking each from the set of 2000 experiments of the golden run,
corruption and omission run. The 200 experiments are used as the testing data. The
remaining 1800 experiments for the three cases are used to train the neural network.
Finally, the testing set is introduced into the neural network for classification.

7.5.2 Results and discussions

The neural network is trained to classify three labels. These include the fault-free beha-
viour label (referred herein as golden run), corruption, and omission. An average accuracy
above 99% was realised in the classification of test data to match the appropriate label
in all three cases. The result of the experiments are shown in Figure 7.17.

Page 130

Chapter 7.5 Failure detection in TSN startup using deep learning

Corruption GR Omission
30

60

90

99
.3

2%

99
.9

7%

99
.9

9%

99
.9

4%

99
.9

8%

10
0%

45
.1

5%

99
.9

5%

99
.9

9%

P e
rc
en
ta
ge

sc
or
e

%

DNN CLASSIFICATION

Average Score Maximum Score Minimum Score

Figure 7.17: Results of neural network classification of failure.

The average accuracy obtained in classifying the set of 200 golden run test data is 99.97%
with a minimum value of 99.95%. In the case of omission fault, the test data was classified
with a score of 100%. However, in the case of corruption, 99.32% was obtained for the
average accuracy. The minimum score is seen at 45.15%. Nevertheless, the plot in Figure
7.18 shows the individual score for each corruption fault experiment. In the experimental
results obtained for corruption, it can be observed that only two cases out of the 200
experiments are below 95%: one is seen at 80% and the minimum at 45.15%. Nevertheless,
the average accuracy still poses the potential to place strong confidence in the ability to
classify the different failure types.

7.5.3 Conclusion

The work carried out in this section utilised TRAITOR to generate the training data
required for a neural network that can be used to diagnose failures in the time-sensitive
networking startup protocol. Three scenarios were considered: golden run, omission fault
scenario, and corruption fault scenario. The deep learning procedure was able to classify
the presented scenarios using only the behaviour pattern of the startup traffic captured
in the time vector(i.e. a vector which contains the timestamp of transmitted and received

Page 131

Chapter 7.6 Failure detection in TSN startup using deep learning

0 50 100 150 200
40

50

60

70

80

90

100

Individual experiment count

Sc
or
e
(%

)

Individual score for each corruption failure experiment

Corruption occurrence

Figure 7.18: Results showing neural network score for corruption.

packets). The results obtained provides and demonstrates a useful approach to diagnose
the health of time-sensitive networking devices during startup. This approach presents a
solution to diagnosing failures that can occur before the run-time of the TDMA rounds.
For a given safety criticality setup, gathering sufficient data for training is a challenge,
TRAITOR solves this issue by accelerating the process of data generation.

The experiment carried out in this section shows the applicability of TRAITOR to a differ-
ent use case (robotic arm). The TSN startup mechanism requires that the transmission
delay between two connected ports must be 1µs for the ports to be capable of trans-
mitting the synchronisation frames. TRAITOR introduced a delay of 700 nanoseconds,
making it possible to be used for TSN startup. This shows the low intrusive capability of
TRAITOR (requirement 4). The fault injection component of TRAITOR is abstracted
from the network under test, thereby demonstrating requirement 5. TRAITOR is applied
herein to TSN, which shows its portability to TSN networks, demonstrating requirement
6. Finally, TRAITOR also demonstrates how to generate sufficient data for training a
neural network for failure detection, thereby fulfilling requirement 7.

Page 132

Chapter 7.6 Experiment summary

7.6 Experiment summary

This chapter conducted series of experiments to fulfil the experiment goals described
in section 7.1. Table 7.8 illustrates the various requirements and goals fulfilled in the
different experiments organised by sections. The demonstration of scalability is fulfilled
in section 7.3 and section 7.4. The network topology given in section 7.3, section 7.4, and
section 7.5 are used do demonstrate the network topology independence of TRAITOR.
Realistic examples citing a railway use case and a robotic arm used for medical surgery
are accomplished in section 7.4 and section 7.5. Section 7.2, section 7.3, and section
7.4 are used to demonstrate requirements 1-3. Requirement 4 is demonstrated in section
7.5. Requirement 5 is demonstrated in all experiment. Requirement 6 is demonstrated in
section 7.4 and section 7.5. Finally, requirement 7 is demonstrated in section 7.5.

Section 7.2 Section 7.3 Section 7.4 Section 7.5
Scalability demo X X
Demonstration of topology
independence

X X X

Realistic examples X X
Requirement 1 X X X
Requirement 2 X X X
Requirement 3 X X X
Requirement 4 X
Requirement 5 X X X X
Requirement 6 X X
Requirement 7 X

Table 7.8: Overview on the fulfilment of experimental goals

Page 133

Chapter 8

Conclusion and Perspective

In this thesis, a cut-through fault injection framework named "TRAITOR" is developed
for the dependability evaluation of time-triggered Ethernet network. Dependability evalu-
ation is essential for safety-criticality applications widely adopted in various domains such
as the health sector, military, and industrial applications. Several methods that can be
used to verify and validate time-triggered Ethernet network protocols have been studied
in this work. The need for the use of physical fault injection technique and why it presents
a higher confidence level than other techniques (i.e. formal methods and simulation) is
argued in this work. The argument presented herein was based on the gaps that exist
between the dependability analysis using formal methods or simulation and by physical
testing.

Such gaps include the inability to design a model that comprises all system functions due
to the state-space explosion. Also in the case of simulation, it remains an abstraction of
the real system, even though environmental factors are modelled, simulators still require
parameters from prototype testing to tune the simulators or to confirm the fidelity of the
simulator. Prototype testing such as physical fault injection is time-consuming and an
expensive strategy. Nevertheless, for safety-criticality systems where the cost of failure
or maintenance is higher than the developmental value, an evaluation framework for
prototype testing is justifiable; hence the research and development of TRAITOR.

8.1 Features and advantages of TRAITOR

TRAITOR provides a cocktail of attributes that are directed towards the exhibition of low
intrusiveness for the network under test. Low intrusiveness is attained by delivering the
implementation of a TRAITOR at the Media Access Control (MAC) layer of the Ethernet

134

Chapter 8.2 Significance of TRAITOR

protocol stack as opposed to implementations in the application layer. Therefore, the
delay effect of computations by a processing system or the time taken to travel through
the protocol stack is avoided. TRAITOR hence does not introduce high delay values
that affect the operation of the target protocol. Also, the concept of abstracting the
fault injector from the network components under test ensures that TRAITOR does not
interfere with the operations of the network under test.

TRAITOR achieves portability by separating the fault injector components from the
components of the network under test. This abstraction feature of TRAITOR is made
possible by designing the fault injection component according to a cut-through paradigm
to the network under test, as opposed to modifying the hardware elements of the net-
work under test to achieve fault injection. The approach herein ensures that the normal
operation of the network components remains unaffected without any form of intrusion.
The cut-through has been achieved using a Xilinx FPGA where the fault injection is also
activated.

The portability feature provided by TRAITOR makes it an application and vendor-
independent framework. The operation of TRAITOR is not tied to any specific im-
plementation of TTEthernet and TSN by a vendor. This work has shown TRAITOR to
exhibit the capability to be used across multiple implementations of TTEthernet and TSN
to verify and validate the protocol implementation and to validate applications running on
top of these protocols. As TRAITOR is applicable and targeted towards prototypes/real
systems, the results obtained from the framework satisfy the aim of having a framework
that provides high confidence. In addition to the above-mentioned features, TRAITOR
has been designed to show high observability using network test access points that can
be placed in a distributed manner.

This work further pushes the bounds of TRAITOR to generate data that can be used to
train a neural network to enable a node to posses fault detection capabilities. A series
of experiments, discussions and results using TRAITOR were delivered herein, in which
various use cases are shown. It can be seen therein that TRAITOR proved to satisfy the
intended aim of this work.

8.2 Significance of TRAITOR

The implication of this work is that TRAITOR can be used by several vendors that
build applications over time-triggered Ethernet networks for verification and validation of
either the protocol or application. TRAITOR provides a means for vendors to observe the
impact of faults on their design. TRAITOR can also be used to validate fault tolerance

Page 135

Chapter 8.4 limitation

implementations, and to test the impact of faults on different configuration settings,
especially to find optimal settings under different failure scenarios. The low intrusive
feature of TRAITOR is particularly useful for testing over multiple applications without
any design modification of the network components under test.

8.3 limitation

TRAITOR covers the failure modes in the IEC 61508 except for re-sequencing failure.
Re-sequencing occurs when the frame order in a buffer-queue is misread. For example,
let us consider a First-In-First-Out (FIFO) buffer implemented in a switch. Let’s say a
frame k enters the buffer at time te1, and is scheduled for dispatch at time td1, and another
frame p enters at te2 and is scheduled for dispatch at time td2. Re-sequencing failure is
said to occur if at time td1 frame p is sent to the egress port instead of frame k, and at
time td2 frame k is subsequently sent. Re-sequencing is a failure mode that occurs in the
switch.

The reason for not implementing re-sequencing failure is that TRAITOR was aimed at
abstracting the fault injector from the components of the network under test. Therefore,
implementing re-sequencing will require modifying the switch component. An attempt to
implement re-sequencing failure for TRAITOR will cause the unintentional introduction
of an additional failure mode. If re-sequencing failure were to be implemented, it would
require holding a frame in the FPGA for an amount of time. This time is equal to the
maximum time it takes to transmit the bytes of the total frame plus the inter-frame gap
between the frame and the next frame. It would then allow the next frame to pass through
the cut-through FPGA, before releasing the frame that was held. This will introduce delay
failure, which is not intended before performing re-sequencing failure. For this reason,
re-sequencing failure is not integrated into TRAITOR.

8.4 Future work

The use of TRAITOR to generate data that describes the startup behaviour of time-
triggered networks subjected to failure has been demonstrated herein. However, only two
failure modes were covered: corruption and omission failure. It is intended to investigate
other failure modes such as babbling idiot, delay, and crash failure. Currently, TRAITOR
is implemented in the MAC layer of the protocol stack; it is also intended to exploit the
applicability of TRAITOR in the physical layer of the protocol stack, thereby further
reducing the delay introduced.

Page 136

Bibliography

[Abuteir and Obermaisser, 2013] Abuteir, M. and Obermaisser, R. (2013). Simulation
environment for time-triggered ethernet. In 2013 11th IEEE International Conference
on Industrial Informatics (INDIN), pages 642–648. IEEE.

[Aidemark et al., 2001] Aidemark, J., Vinter, J., Folkesson, P., and Karlsson, J. (2001).
Goofi: Generic object-oriented fault injection tool. In 2001 International Conference
on Dependable Systems and Networks, pages 83–88. IEEE.

[Ammar and Mohamed, 2011] Ammar, M. and Mohamed, O. A. (2011). Formal verific-
ation of Time-Triggered Ethernet protocol using PRISM model checker. IEEE.

[Arlat et al., 1990] Arlat, J., Aguera, M., Amat, L., Crouzet, Y., Fabre, J.-C., Laprie,
J.-C., Martins, E., and Powell, D. (1990). Fault injection for dependability validation:
A methodology and some applications. IEEE Transactions on software engineering,
16(2):166–182.

[Arlat et al., 2003] Arlat, J., Boué, J., Crouzet, Y., Jenn, E., Aidemark, J., Folkesson, P.,
Karlsson, J., Ohlsson, J., and Rimén, M. (2003). Mefisto: a series of prototype tools for
fault injection into vhdl models. In Fault injection techniques and tools for embedded
systems reliability evaluation, pages 177–193. Springer.

[Arlat et al., 1993] Arlat, J., Costes, A., Crouzet, Y., Laprie, J. C., and Powell, D. (1993).
Fault injection and dependability evaluation of fault-tolerant systems. IEEE Transac-
tions on Computers, 42(8):913–923.

[AS6802, 2011] AS6802, S. (2011). Time-triggered ethernet. SAE International.

[Avizienis et al., 2004] Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C. (2004).
Basic concepts and taxonomy of dependable and secure computing. IEEE transactions
on dependable and secure computing, 1(1):11–33.

137

Chapter 8.4 BIBLIOGRAPHY

[Babuska and Oden, 2004] Babuska, I. and Oden, J. T. (2004). Verification and valida-
tion in computational engineering and science: basic concepts. Computer methods in
applied mechanics and engineering, 193(36):4057–4066.

[Baeten, 2005] Baeten, J. C. (2005). A brief history of process algebra. Theoretical
Computer Science, 335(2-3):131–146.

[Barnes, 2017] Barnes, C. (2017). Verification and validation of wireless sensor network
protocol properties through the system’s simulation and emulation. PhD thesis, Uni-
versité Côte d’Azur.

[Barry, 1989] Barry, J. (1989). Design and analysis of fault-tolerant digital systems.

[Bartols et al., 2011] Bartols, F., Steinbach, T., Korf, F., and Schmidt, T. C. (2011).
Performance analysis of time-triggered ether-networks using off-the-shelf-components.
In 2011 14th IEEE International Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing Workshops, pages 49–56. IEEE.

[Benso and DiCarlo, 2011] Benso, A. and DiCarlo, S. (2011). The art of fault injection.
Journal of Control Engineering and Applied Informatics, 13(4):9–18.

[Benso and Prinetto, 2003] Benso, A. and Prinetto, P. (2003). Fault injection techniques
and tools for embedded systems reliability evaluation, volume 23. Springer Science &
Business Media.

[Benso et al., 1998] Benso, A., Prinetto, P., Rebaudengo, M., and Reorda, M. S. (1998).
Exfi: a low-cost fault injection system for embedded microprocessor-based boards. ACM
Transactions on Design Automation of Electronic Systems (TODAES), 3(4):626–634.

[Blanton and Zimmermann, 2015] Blanton, E. and Zimmermann, A. (2015). A roadmap
for transmission control protocol (tcp) specification documents. RFC7414.

[Boehm, 1984] Boehm, B. W. (1984). Verifying and validating software requirements and
design specifications. IEEE software, 1(1):75.

[Bosch, 2010] Bosch, G. (2010). Industrial ethernet: The key advantages of sercos iii.
Accessed = 2020-01-18.

[Brooks, 2001] Brooks, P. (2001). Ethernet/ip-industrial protocol. In ETFA 2001. 8th In-
ternational Conference on Emerging Technologies and Factory Automation. Proceedings
(Cat. No. 01TH8597), volume 2, pages 505–514. IEEE.

Page 138

Chapter 8.4 BIBLIOGRAPHY

[Buja et al., 2005] Buja, G., Zuccollo, A., and Pimentel, J. (2005). Overcoming babbling-
idiot failures in the flexcan architecture: a simple bus-guardian. In 2005 IEEE Confer-
ence on Emerging Technologies and Factory Automation, volume 2, pages 8–pp. IEEE.

[Carreira et al., 1998] Carreira, J., Madeira, H., and Silva, J. G. (1998). Xception: A
technique for the experimental evaluation of dependability in modern computers. IEEE
Transactions on Software Engineering, 24(2):125–136.

[Choi and Iyer, 1992] Choi, G. S. and Iyer, R. K. (1992). Focus: an experimental environ-
ment for fault sensitivity analysis. IEEE Transactions on Computers, 41(12):1515–1526.

[Christen and Bakalar, 1999] Christen, E. and Bakalar, K. (1999). Vhdl-ams-a hardware
description language for analog and mixed-signal applications. IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing, 46(10):1263–1272.

[Coelho, 2017] Coelho, R. F. (2017). Buffer Analysis and Message Scheduling for Real-
time Networks. PhD thesis, Technical University Kaiserslautern.

[Combs, 2006] Combs, G. (2006). Tshark-the wireshark network analyser. URL
http://www. wireshark. org.

[Committee et al., 1999] Committee, J. S. S. S. et al. (1999). Software system safety
handbook: A technical and managerial team approach, joint services computer resource
management group, us navy. US Army, US Air Force.

[d. Souto et al., 2016] d. Souto, P. F., Portugal, P., and Vasques, F. (2016). Reliability
evaluation of broadcast protocols for flexray. IEEE Transactions on Vehicular Techno-
logy, 65(2):525–541.

[de Moura et al., 2004] de Moura, L., Owre, S., Harald, R., John, R., N, S., Maria, S.,
and Ashish, T. (2004). Computer Aided Verification: 16th International Conference,
CAV 2004, Boston, MA, USA, July 13-17, 2004, Proceedings, volume 3114. Springer.

[Deng et al., 2014] Deng, L., Yu, D., et al. (2014). Deep learning: methods and applica-
tions. Foundations and Trends® in Signal Processing, 7(3–4):197–387.

[Diarra et al., 2015] Diarra, A., Hogenmueller, T., Zimmermann, A., Grzemba, A., and
Khan, U. A. (2015). Improved clock synchronization start-up time for ethernet avb-
based in-vehicle networks. In 2015 IEEE 20th Conference on Emerging Technologies &
Factory Automation (ETFA), pages 1–8. IEEE.

[Dutertre et al., 2012] Dutertre, B., Easwaran, A., Hall, B., and Steiner, W. (2012).
Model-based analysis of timed-triggered ethernet. In 2012 IEEE/AIAA 31st Digital
Avionics Systems Conference (DASC), pages 9D2–1. IEEE.

Page 139

Chapter 8.4 BIBLIOGRAPHY

[Dutertre and Sorea, 2004] Dutertre, B. and Sorea, M. (2004). Modeling and verification
of a fault-tolerant real-time startup protocol using calendar automata. In Formal Tech-
niques, Modelling and Analysis of Timed and Fault-Tolerant Systems, pages 199–214.
Springer.

[Eidson, 2006] Eidson, J. C. (2006). Measurement, control, and communication using
IEEE 1588. Springer Science & Business Media.

[Entrena et al., 2001] Entrena, L., López, C., and Olías, E. (2001). Automatic generation
of fault tolerant vhdl designs in rtl. In FDL (Forum on Design Languages).

[Farkas et al., 2017] Farkas, J., Bello, L. L., and Gunther, C. (2017). Time-sensitive
networking task group. Available at http://www.ieee802.org/1/pages/tsn.html
(2018/08/15).

[Farkas et al., 2018] Farkas, J., Bello, L. L., and Gunther, C. (2018). Time-sensitive
networking standards. IEEE Communications Standards Magazine, 2(2):20–21.

[Fejoz et al., 2018] Fejoz, L., Regnier, B., Miramont, P., and Navet, N. (2018).
Simulation-based fault injection as a verification oracle for the engineering of time-
triggered ethernet networks. Proc. Embedded Real-Time Software and Systems (ERTS
2018).

[Fielding et al., 1999] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach,
P., and Berners-Lee, T. (1999). Rfc 2616: Hypertext transfer protocol–http/1.1, june
1999. Status: Standards Track, 1(11):1829–1841.

[Fisher and Raney, 1969] Fisher, G. A. and Raney, G. N. (1969). On the representation of
formal languages using automata on networks. In 10th Annual Symposium on Switching
and Automata Theory (swat 1969), pages 157–165.

[Geilen, 2002] Geilen, M. C. W. (2002). Formal techniques for verification of complex
real-time systems. Technische Universiteit Eindhoven.

[Gessner et al., 2014] Gessner, D., Barranco, M., Ballesteros, A., and Proenza, J. (2014).
sfican: A star-based physical fault-injection infrastructure for can networks. IEEE
Transactions on Vehicular Technology, 63(3):1335–1349.

[Gil et al., 2003] Gil, D., Baraza, J. C., Gracia, J., and Gil, P. J. (2003). Vhdl simulation-
based fault injection techniques. In Fault injection techniques and tools for embedded
systems reliability evaluation, pages 159–176. Springer.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learn-
ing. MIT press.

Page 140

Chapter 8.4 BIBLIOGRAPHY

[Grady, 2010] Grady, J. O. (2010). System verification: proving the design solution sat-
isfies the requirements. Elsevier.

[Guideline, 2003] Guideline, P. (2003). Profinet architecture description and specification.
Version V2. 0, Karlsruhe: PNO.

[Gunneflo et al., 1989] Gunneflo, U., Karlsson, J., and Torin, J. (1989). Evaluation of
error detection schemes using fault injection by heavy-ion radiation. In [1989] The
Nineteenth International Symposium on Fault-Tolerant Computing. Digest of Papers,
pages 340–347. IEEE.

[Han et al., 1995] Han, S., Shin, K. G., and Rosenberg, H. A. (1995). Doctor: An integ-
rated software fault injection environment for distributed real-time systems. In Proceed-
ings of 1995 IEEE International Computer Performance and Dependability Symposium,
pages 204–213. IEEE.

[Hsueh et al., 1997] Hsueh, M.-C., Tsai, T. K., and Iyer, R. K. (1997). Fault injection
techniques and tools. Computer, 30(4):75–82.

[IEC61508, 2010] IEC61508 (2010). Iec 61508 functional safety of electrical/electronic/-
programmable electronic safety-related systems. International Electrotechnical Com-
mission, Geneva, Switzerland.

[IEEE, 2016] IEEE (2016). Ieee standard for local and metropolitan area networks –
bridges and bridged networks - amendment 25: Enhancements for scheduled traffic.
IEEE Std 802.1Qbv-2015 (Amendment to IEEE Std 802.1Q-2014 as amended by IEEE
Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, and IEEE Std 802.1Q-2014/Cor 1-
2015), pages 1–57.

[IEEE802.1AS, 2011] IEEE802.1AS (2011). Ieee standard for local and metropolitan area
networks - timing and synchronization for time-sensitive applications in bridged local
area networks. IEEE Std 802.1AS-2011, pages 1–292.

[IEEE802.1Q, 2014] IEEE802.1Q (2014). Ieee standard for local and metropolitan area
networks–bridges and bridged networks. IEEE Std 802.1Q-2014 (Revision of IEEE Std
802.1Q-2011), pages 1–1832.

[Impagliazzo and Fabiomassimo, 2003] Impagliazzo, L. and Fabiomassimo, P. (2003). De-
velopment of a hybrid fault injection environment. In Fault Injection Techniques and
Tools for Embedded Systems Reliability Evaluation, pages 81–93. Springer.

[ISO, 2011] ISO, I. (2011). 26262: Road vehicles-functional safety. International Standard
ISO/FDIS, 26262.

Page 141

Chapter 8.4 BIBLIOGRAPHY

[Jakovljevic et al., 2017] Jakovljevic, M., Geven, A., Ademaj, A., Gaderer, G., Fidi, C.,
Männel, E., Rox, J., and Elvikis, D. (2017). Projet Safe4RAIL: Deliverable D1.1 -State-
Of-The-Art Document on Drive-by-Data.

[Johnson, 2015] Johnson, J. (2015). Fpga network tap: Designing the ethernet pass-
through. Accessed = 2016-12-18.

[Kanawati et al., 1995] Kanawati, G. A., Kanawati, N. A., and Abraham, J. A. (1995).
Ferrari: A flexible software-based fault and error injection system. IEEE Transactions
on computers, 44(2):248–260.

[Karlsson et al., 1998] Karlsson, J., Folkesson, P., Arlat, J., Crouzet, Y., Leber, G., and
Reisinger, J. (1998). Application of three physical fault injection techniques to the
experimental assessment of the mars architecture. Dependable Computing and Fault
Tolerant Systems, 10:267–288.

[Kim et al., 2008] Kim, W. S., Kim, H. A., Ahn, J. H., and Moon, B. (2008). System-level
development and verification of the flexray communication controller model based on
systemc. In 2008 Second International Conference on Future Generation Communica-
tion and Networking, volume 2, pages 124–127.

[Kirrmann and Zuber, 2001] Kirrmann, H. and Zuber, P. A. (2001). The iec/ieee train
communication network. IEEE Micro, 21(2):81–92.

[Kirrmann and Zuber, 2001] Kirrmann, H. and Zuber, P. A. (2001). The iec/ieee train
communication network. IEEE Micro, 21(2):81–92.

[Klensin et al., 2008] Klensin, J. et al. (2008). Simple mail transfer protocol. RFC7504.

[Kopetz, 2011] Kopetz, H. (2011). Real-time systems: design principles for distributed
embedded applications. Springer Science & Business Media.

[Kopetz et al., 2005] Kopetz, H., Ademaj, A., Grillinger, P., and Steinhammer, K. (2005).
The time-triggered ethernet (tte) design. In Object-Oriented Real-Time Distributed
Computing, 2005. ISORC 2005. Eighth IEEE International Symposium on, pages 22–
33. IEEE.

[Kwiatkowska et al., 2002] Kwiatkowska, M., Norman, G., and Parker, D. (2002). Prism:
Probabilistic symbolic model checker. In International Conference on Modelling Tech-
niques and Tools for Computer Performance Evaluation, pages 200–204. Springer.

[Lanigan et al., 2010] Lanigan, P. E., Narasimhan, P., and Fuhrman, T. E. (2010). Ex-
periences with a canoe-based fault injection framework for autosar. In 2010 IEEE/IFIP
International Conference on Dependable Systems Networks (DSN), pages 569–574.

Page 142

Chapter 8.4 BIBLIOGRAPHY

[Laplante, 2004] Laplante, P. A. (2004). Real-time systems design and analysis.

[Laprie, 1992] Laprie, J.-C. (1992). Dependability: Basic Concepts and Terminology,
volume 5 of Dependable Computing and Fault-Tolerant Systems 5. Springer-Verlag
Wien, 1 edition.

[Le Boudec and Thiran, 2001] Le Boudec, J.-Y. and Thiran, P. (2001). Network calculus:
a theory of deterministic queuing systems for the internet, volume 2050. Springer
Science & Business Media.

[leavingbio, 2019] leavingbio (2019). The nervous system - leaving certificate biology.
http://leavingbio.net/nervous-system/, Last accessed on 2019-10-20.

[Leveson, 2012] Leveson, N. (2012). Engineering a safer world. MIT Press,.

[Li et al., 2018] Li, J., Li, Q., and Tang, X. (2018). Modeling ttethernet startup service in
systemc for verifying fault-tolerant protocol under fail-omission scenarios. In TENCON
2018-2018 IEEE Region 10 Conference, pages 1753–1757. IEEE.

[Liu and Yang, 2011] Liu, Y. and Yang, C. (2011). Omnet++ based modeling and sim-
ulation of the ieee 1588 ptp clock. In 2011 International Conference on Electrical and
Control Engineering, pages 4602–4605.

[Madeira et al., 1994] Madeira, H., Rela, M., Moreira, F., and Silva, J. G. (1994). Rifle: A
general purpose pin-level fault injector. In European Dependable Computing Conference,
pages 197–216. Springer.

[Mitchell et al., 1997] Mitchell, T. M. et al. (1997). Machine learning. 1997. Burr Ridge,
IL: McGraw Hill, 45(37):870–877.

[Mouradian, 2013] Mouradian, A. (2013). Proposition et vérification formelle de proto-
coles de communications temps-réel pour les réseaux de capteurs sans fil. PhD thesis,
INSA de Lyon.

[Muller and Valle, 2010] Muller, C. and Valle, M. (2010). System verification of flexray
communication networks through behavioral simulations. In 2010 IEEE International
Behavioral Modeling and Simulation Workshop, pages 1–6.

[Murata, 1989] Murata, T. (1989). Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77(4):541–580.

[Napatech, 2017] Napatech ((accessed February 3, 2017)). nt4e-4-std-product-overview.
https://www.napatech.com/support/resources/data-sheets/napatech-
smartnic-product-overview/nt4e-4-std-product-overview/.

Page 143

Chapter 8.4 BIBLIOGRAPHY

[Natella et al., 2016] Natella, R., Cotroneo, D., and Madeira, H. S. (2016). Assessing
dependability with software fault injection: A survey. ACM Comput. Surv., 48(3):44:1–
44:55.

[Navet and Fejoz, 2016] Navet, N. and Fejoz, L. (2016). Cpal: High-level abstractions
for safe embedded systems. In Proceedings of the International Workshop on Domain-
Specific Modeling, pages 35–41. ACM.

[Oberkampf and Roy, 2010] Oberkampf, W. L. and Roy, C. J. (2010). Verification and
validation in scientific computing. Cambridge University Press.

[Obermaisser, 2011] Obermaisser, R. (2011). Time-Triggered Communication. CRC
Press, Inc., Boca Raton, FL, USA, 1st edition.

[Oliver et al., 2018] Oliver, R. S., Craciunas, S. S., and Steiner, W. (2018). Ieee 802.1qbv
gate control list synthesis using array theory encoding. In 2018 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 13–24.

[Onwuchekwa et al., 2018] Onwuchekwa, D., Foo, J., and Obermaisser, R. (2018). Fault
Injection Framework for Time Triggered Ethernet. In 7th Transport Research Arena
TRA 2018 (TRA 2018). Zenodo.

[Onwuchekwa et al., 2020] Onwuchekwa, D., Garcia, J. E., Lua, C., and Obermaisser,
R. (2020). Failure detection in tsn startup using deep learning. In 2020 IEEE 23rd
International Symposium on Real-Time Distributed Computing (ISORC), pages 140–
141.

[Onwuchekwa and Obermaisser, 2018] Onwuchekwa, D. and Obermaisser, R. (2018).
Fault injection framework for assessing fault containment of ttethernet against bab-
bling idiot failures. In 2018 IEEE/ACM 26th International Symposium on Quality of
Service (IWQoS), pages 1–6.

[Onwuchekwa and Obermaisser, 2019] Onwuchekwa, D. and Obermaisser, R. (2019).
Performance evaluation of deterministic communication in the railway domain. In
2019 Sixth International Conference on Internet of Things: Systems, Management and
Security (IOTSMS), pages 337–343.

[Packard et al., 2000] Packard, H., Marvell, and Broadcom (2000). Reduced gigabit me-
dia independent interface (rgmii).

[Pahlevan and Obermaisser, 2018a] Pahlevan, M. and Obermaisser, R. (2018a). Evalu-
ation of time-triggered traffic in time-sensitive networks using the opnet simulation

Page 144

Chapter 8.4 BIBLIOGRAPHY

framework. In 2018 26th Euromicro International Conference on Parallel, Distributed
and Network-based Processing (PDP), pages 283–287. IEEE.

[Pahlevan and Obermaisser, 2018b] Pahlevan, M. and Obermaisser, R. (2018b). Redund-
ancy management for safety-critical applications with time sensitive networking. In
2018 28th International Telecommunication Networks and Applications Conference (IT-
NAC), pages 1–7. IEEE.

[Park, 2002] Park, S. G. (2002). Fieldbus in iec61158 standard. In Proceedings on the
15th CISL Winter Workshop, Kushu, Japan.

[Part, 2006] Part, A. D. N. (2006). Avionics full-duplex switched ethernet (afdx) network,
arinc specification 664, part 7, aeronautical radio. Technical report, International Air-
craft Manufacturer Airbus.

[POWERLINK, 2004] POWERLINK, E. (2004). Epl (ethernet powerlink): Proposal for
a publicly available specification for real-time ethernet. Doc. IEC65C/356a/NP.

[Qadir and Hasan, 2015] Qadir, J. and Hasan, O. (2015). Applying formal methods to
networking: theory, techniques, and applications. IEEE Communications Surveys &
Tutorials, 17(1):256–291.

[Racek et al., 2012] Racek, S., Herout, P., and Hlavička, J. (2012). Dependability eval-
uation of time triggered architecture using simulation. Computing and Informatics,
23(1):51–76.

[Revsbech et al., 2012] Revsbech, K., Madsen, T. K., and Schiøler, H. (2012). High pre-
cision testbed to evaluate ethernet performance for in-car networks. In 2012 12th
International Conference on ITS Telecommunications, pages 548–552.

[Riverbed-Technology, 2019] Riverbed-Technology (2019). Ropnet modeler 17.1 doc-
umentation. Available at https://support.riverbed.com/content/support/
software/steelcentral-npm/modeler-index.html.

[Rodriguez-Navas et al., 2003] Rodriguez-Navas, G., Jimenez, J., and Proenza, J. (2003).
An architecture for physical injection of complex fault scenarios in can networks. In
EFTA 2003. 2003 IEEE Conference on Emerging Technologies and Factory Automa-
tion. Proceedings (Cat. No.03TH8696), volume 2, pages 125–128 vol.2.

[Rousselle et al., 2001] Rousselle, C., Pflanz, M., Behling, A., Mohaupt, T., and Vierhaus,
H. T. (2001). A register-transfer-level fault simulator for permanent and transient
faults in embedded processors. In Proceedings Design, Automation and Test in Europe.
Conference and Exhibition 2001, page 811. IEEE.

Page 145

Chapter 8.4 BIBLIOGRAPHY

[Safe4RAIL, 2018] Safe4RAIL ((accessed February 3, 2018)). Safe4RAIL (Safe ar-
chitecture for Robust distributed Application Integration in roLling stock). https:
//safe4rail-1.safe4rail.eu/.

[SAFE4RAIL-1, 2019] SAFE4RAIL-1 ((accessed February 10, 2019)). Safe architecture
for robust distributed application integration in roling stock. https://safe4rail.eul.

[Saha et al., 2007a] Saha, I., Misra, J., and Roy, S. (2007a). Timeout and calendar based
finite state modeling and verification of real-time systems. In International Symposium
on Automated Technology for Verification and Analysis, pages 284–299. Springer.

[Saha et al., 2007b] Saha, I., Roy, S., and Chakraborty, K. (2007b). Modeling and veri-
fication of ttcan startup protocol using synchronous calendar. In Software Engineering
and Formal Methods, 2007. SEFM 2007. Fifth IEEE International Conference on, pages
69–79. IEEE.

[Saha et al., 2016] Saha, I., Roy, S., and Ramesh, S. (2016). Formal verification of fault-
tolerant startup algorithms for time-triggered architectures: A survey. Proceedings of
the IEEE, 104(5):904–922.

[Sandic et al., 2018] Sandic, M., Pavkovic, B., and Teslic, N. (2018). Impact of anomalies
within ttethernet network on synchronization protocol: Analysis using omnet++ sim-
ulations. In 2018 Zooming Innovation in Consumer Technologies Conference (ZINC),
pages 29–34. IEEE.

[Segall et al., 1995] Segall, Z., Vrsalovic, D., Siewiorek, D., Ysskin, D., Kownacki, J.,
Barton, J., Dancey, R., Robinson, A., and Lin, T. (1995). Fiat-fault injection based
automated testing environment. In Twenty-Fifth International Symposium on Fault-
Tolerant Computing, 1995,’Highlights from Twenty-Five Years’., page 394. IEEE.

[Sieh et al., 1997] Sieh, V., Tschache, O., and Balbach, F. (1997). Verify: Evaluation of
reliability using vhdl-models with embedded fault descriptions. In Proceedings of IEEE
27th International Symposium on Fault Tolerant Computing, pages 32–36. IEEE.

[Spurgeon, 2000] Spurgeon, C. E. (2000). Ethernet the definitive guide. O’Reilly Media,
Inc.

[Steiner, 2005] Steiner, W. (2005). Model-checking studies of the flexray startup al-
gorithm. TU Wien, Institut für Technische Informatik, Research Report.

[Steiner and Dutertre, 2010] Steiner, W. and Dutertre, B. (2010). Smt-based formal veri-
fication of a ttethernet synchronization function. In International Workshop on Formal
Methods for Industrial Critical Systems, pages 148–163. Springer.

Page 146

Chapter 8.4 BIBLIOGRAPHY

[Steiner and Dutertre, 2011] Steiner, W. and Dutertre, B. (2011). Automated formal
verification of the ttethernet synchronization quality. In NASA Formal Methods Sym-
posium, pages 375–390. Springer.

[Steiner and Dutertre, 2013] Steiner, W. and Dutertre, B. (2013). The ttethernet syn-
chronisation protocols and their formal verification. International Journal of Critical
Computer-Based Systems 17, 4(3):280–300.

[Steiner and Kopetz, 2006] Steiner, W. and Kopetz, H. (2006). The startup problem in
fault-tolerant time-triggered communication. In Dependable Systems and Networks,
2006. DSN 2006. International Conference on, pages 35–44. IEEE.

[Steiner et al., 2004] Steiner, W., Rushby, J., Sorea, M., and Pfeifer, H. (2004). Model
checking a fault-tolerant startup algorithm: From design exploration to exhaustive fault
simulation. IEEE.

[Stott et al., 2000] Stott, D. T., Floering, B., Burke, D., Kalbarczpk, Z., and Iyer, R. K.
(2000). Nftape: a framework for assessing dependability in distributed systems with
lightweight fault injectors. In Proceedings IEEE International Computer Performance
and Dependability Symposium. IPDS 2000, pages 91–100. IEEE.

[Swales et al., 1999] Swales, A. et al. (1999). Open modbus/tcp specification. Schneider
Electric, 29.

[Tsai and Iyer, 1995] Tsai, T. and Iyer, R. (1995). Ftape-a fault injection tool to measure
fault tolerance. In 10th Computing in Aerospace Conference, page 1041.

[Varga, 2010] Varga, A. (2010). Omnet++. In Modeling and tools for network simulation,
pages 35–59. Springer.

[Vector-Informatik, 1996] Vector-Informatik (1996). Testing ecus and networks with ca-
noe. Accessed = 2019-12-18.

[Verma et al., 2011] Verma, A. K., Ajit, S., and Kumar, M. (2011). Dependability of
networked computer-based systems. In Dependability of Networked Computer-based
Systems, pages 169–183. Springer.

[Wang et al., 2009] Wang, K., Xu, A., and Wang, H. (2009). Avoiding the babbling idiot
failure in a communication system based on flexible time division multiple access: A bus
guardian solution. In 2009 IEEE International Symposium on Industrial Electronics,
pages 1292–1297. IEEE.

[Wani et al., 2020] Wani, M. A., Bhat, F. A., Afzal, S., and Khan, A. I. (2020). Advances
in Deep Learning, volume 57. Springer.

Page 147

Chapter 8.4 BIBLIOGRAPHY

[Yang et al., 2016] Yang, X., Zhang, S., and Li, H. (2016). Research and implementa-
tion of precise time synchronization system of microgrid based on ieee 1588. In 2016
IEEE Advanced Information Management, Communicates, Electronic and Automation
Control Conference (IMCEC), pages 258–261. IEEE.

[Zhang et al., 2016] Zhang, Y., He, F., Lu, G., and Xiong, H. (2016). Clock synchroniza-
tion compensation of time-triggered ethernet based on least squares algorithm. In 2016
IEEE/CIC International Conference on Communications in China (ICCC Workshops),
pages 1–5. IEEE.

[Zhao et al., 2018] Zhao, L., Pop, P., Zheng, Z., and Li, Q. (2018). Timing analysis of avb
traffic in tsn networks using network calculus. In 2018 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 25–36.

[Ziade et al., 2004] Ziade, H., Ayoubi, R. A., Velazco, R., et al. (2004). A survey on fault
injection techniques. Int. Arab J. Inf. Technol., 1(2):171–186.

[Ziermann et al., 2012] Ziermann, T., Butiu, A., Teich, J., and Ziener, D. (2012). Fpga-
based testbed for timing behavior evaluation of the controller area network (can). In
Reconfigurable Computing and FPGAs (ReConFig), 2012 International Conference on,
pages 1–6. IEEE.

Page 148

	Title page
	Acknowledgement
	Zusammenfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Context and motivation
	1.2 Objectives and contribution
	1.3 Thesis structure

	Chapter 2 Background Theory
	2.1 Real-time systems
	2.2 dependability of a system
	2.3 Verification and validation
	2.4 Fault injection
	2.5 Concept of deep learning

	Chapter 3 Time-Triggered Ethernet communication
	3.1 Ethernet
	3.2 Time-triggered control
	3.3 TTEthernet system
	3.4 Time sensitive networking

	Chapter 4 Related Work
	4.1 Requirement
	4.2 Fault injection tools
	4.3 Network verification methods
	4.4 Related works on the verification of network protocols
	4.5 Summary of related works

	Chapter 5 System Model of Fault Injection Framework
	5.1 System model
	5.2 TRAITOR in TTEthernet
	5.3 TSN fault injection framework
	5.4 FPGA block diagram design
	5.5 Software design
	5.6 TRAITOR operation summary

	Chapter 6 Implementation
	6.1 Fault injection component
	6.2 Receiver logic
	6.3 TSN implementation

	Chapter 7 Experiments, Results and Analysis
	7.1 Experiment goals
	7.2 TTEthernet fault injection
	7.3 Fault containment against babbling idiot failure
	7.4 Deterministic communication in the railway domain
	7.5 Failure detection in TSN startup using deep learning
	7.6 Experiment summary

	Chapter 8 Conclusion and Perspective
	8.1 Features and advantages of TRAITOR
	8.2 Significance of TRAITOR
	8.3 limitation
	8.4 Future work

	Bibliography

