
VIRTUAL REALITY SIMULATION OF A SMART
EATING TABLE FOR

HANDICAPPED PEOPLE

DISSERTATION
zur Erlangung des akademischen Grades

eines Doktors der Ingenieurswissenschaften (Dr.-Ing.)

vorgelegt von

Salih Rashid Majeed

eingereicht bei der
Naturwissenschaftlich-Technischen Fakultät

der Universität Siegen

Siegen, 2019

Betreuer und erster Gutachter

Prof. Dr.-Ing. Hubert Roth

Universität Siegen

Zweiter Gutachter

Prof. Dr.rer.nat. Volker Blanz

Universität Siegen

Tag der mündlichen Prüfung

06. Oktober 2020

Acknowledgment
I would like to thank my god for supporting me through the PhD study.

Through the PhD study, I had many problems in my research, which couldn't be solved

without the help and great ideas from Prof. Dr-Ing. Huber Roth and Prof. Dr-Ing. Klaus Dieter

Kuhnert and his team (Dipl.-Inform. Jens Schlemper, M.Sc. Simon Hardt, Dipl.-Inform.

Klaus Müller, Dipl.-Inform. Jan Kunze, Dipl.-Inform. Marc Steven Krämer). Many thanks to

M.Sc.Marco Hutwol for his scientific advice through this research. Also, many thanks for

Prof.rer.nat.Volker Blanz for his cooperation and his great advice. I would also like to thank

Dr.Khaled Sailan for his idea for improving the work.

Many thanks go to Prof.Dr. Holger scheonherr, Prof.Dr. Ivor Fleck and Prof.Dr. Markus

Lohery for their support and cooperation.

Many thanks to DAAD and Germany for giving me the opportunity to complete my PhD

study in Germany and supporting me.

Kurzfassung
Diese Arbeit beschäftigt sich mit der simulierten Interaktion zwischen Mensch und Roboter

und der Verwendung des Roboters in verschiedenen Lebensbereichen. Entsprechend der

Entwicklung in der künstlichen Intelligenz und in der Robotik wird es möglich, neue

intelligente Roboteranwendungen zu entwickeln. Die Idee zu diesem Projekt entstand durch

die große Anzahl der behinderten Menschen in meinem Heimatland, die durch den dortigen

Terrorkrieg verletzt worden sind. Die Herausforderung ist, ein neues intelligentes

Robotersystem zu bauen, das den Menschen bei ihren alltäglichen Lebensaktivitäten - speziell

beim Essen und Trinken - hilft. Aus vielen Gründen, die im ersten Kapitel erläutert werden,

haben wir beschlossen, die Simulationssoftware zu verwenden, um ein solches System zu

implementieren. Das vorgeschlagene simulierte System besteht aus drei Subsystemen: dem

Robotersystem (einem JACO Manipulator Arm). Dem Seh-System (semantische Kamera),

das verschiedene Umgebungsobjekte nach ihren Typen und Namen erkennen kann. Es liefert

uns dann die Koordinaten für jedes einzelne Objekt. Das letzte Subsystem ist das

Geräuscherkennungssystem, das die Wörter erkennt, die programmiert wurden, um den

Prozesstyp Essen oder Trinken auch auf die Lebensmittelarten zu beziehen. Die gesamte

Umgebung wurde mit Hilfe eines Simulationsprogrammes (MORSE) erstellt, das Python

vollständig unterstützt und auf Blender basiert (3D-Zeichnungs und Animationsprogramm).

Die Umgebung besteht aus dem Modell einer Person, einem Essenstisch, zwei Schüsseln mit

verschiedenen Farben, um die verschiedenen Essensarten darzustellen, einer Küche mit

einigen Pflanzen, Heizungen, Spüle und Tisch. Der Arm wurde mit den Designdaten des

realen Armes implementiert. Er beinhaltet die gleichen Gelenke, Links und Funktionen. Der

Roboterarm, der in diesem Projekt verwendet wurde, ist ein JACO Roboterarm. Dieser Arm

wurde speziell für Behinderte entwickelt, die kleine Probleme mit Essen und Trinken haben.

Wir haben diesen Arm durch Hinzufügen von zwei Systemen weiterentwickelt: diese Systeme

sind Sehen und Hören. Dies wird den Leuten helfen, die ihre Hände nicht benutzen können.

Das externe Mikrofon wird mit dem PC verbunden und startet seine Funktion, wenn das

Programm startet. Das System wird unter Verwendung von robot operating system (ROS)

gesteuert, dass die Sprache C ++ unterstützt. Das System beginnt wie folgt: Wenn der Mensch

das gewünschte Wort sagt, das die Nahrungsmittelarten oder das Getränk beschreibt, wird es

durch das Geräuscherkennungssystem erkannt. Das Sichtsystem wird die Koordinaten des

erforderlichen Essens oder Getränks erkennen. Die Koordinaten des Essens oder des

Getränkes werden gespeichert und dann an den Roboterarm übertragen. Der Roboterarm fährt

zum Essenstisch oder zum Glas, nimmt es auf und bewegt sich dann zum Mund. Danach

bringt er den Rest des Essens oder das Glas zurück an die erste Position. Dieses Projekt kann

sehr hilfreich sein für Menschen, die körperliche Probleme beim Essen oder Trinken haben.

Also insbesondere für Behinderte mit Einschränkungen der Handhabung.

Dedication

To my country Iraq with love. You will be back better than before.

To my mother, and father. Without your encouragement, I would never have been able to

complete my graduate studies.

To my wife and beautiful son, you always support me, I love you both and I appreciate

everything that you have done for me.

To my brother and sisters, thank you for your love.

“"be", and it is!”

Abstract
This thesis deals with simulated human-robot interaction and how to use a robot in different

everyday life activities. It is in line with the significant developments in the sector of artificial

intelligent and robotic fields that have enabled the emergence of a new smart robot generation.

The idea of this project came from the large number of disabled people, especially

handicapped people. This number has been substantially increased by the terrorist war in my

country. The challenge of this task is how to build a new smart robotic system that can help

those people in everyday life activities, especially in eating and drinking. Due to many reasons

that will be clarified in the first chapter, we decided to use simulation software to implement

such a system. The proposed simulated system comprises three sub-systems: the robotic

system (a JACO manipulator arm), the semantic camera system – which can detect the

different environment objects according to their types and names, which finally gives us the

coordinates for each one – and the sound recognition system, which will recognize the words

from the person using it. It has been programmed to refer to the process type (eating or

drinking), as well as the food types. The whole environment has been built using a simulation

program (MORSE) that completely supports Python and is based on Blender (a 3D drawing

and animation program). The simulated environment comprises a human model, a food table,

two dishes with different colours to represent the food types, a kitchen room with some plants,

heaters, sink, and tables. The robot arm has been implemented with the same design as the

real arm. It includes the same joints, links, and functions. The robotic arm simulated in this

project is a JACO robotic arm. This arm has been designed especially for disabled people who

have minor problems with eating and drinking. We improved this arm by adding two systems,

one for semantic camera system and one for sound. This will help people who cannot use their

hands. An external microphone is connected to the PC and starts its function when the

program starts, whereby the system is controlled by using a robot operation system (ROS)

that supports C++. The system then starts with the human saying the required word, which

represents the food type or a drinkable liquid (e.g. water). Each of the available food types

has a specific word. When the person says this word, it will be recognized by the sound

recognition system. Subsequently, the semantic camera system will detect the coordinates of

the required food or drink, which will be stored and then transferred to move the robotic arm.

The robotic arm will drive to the food dish or the water cup and pick up it, before moving to

the mouth and finally returning the rest food or cup to the first position and continuing in this

execution loop. This project will be very helpful to people who have physical problems with

eating or drinking, especially for disabled and handicapped people.

Table of Content

Table of Content ... I
List of Figures .. IV
List of Tables .. VIII

1 Introduction ... 1

1.1 Motivation .. 2

1.2 Research Objectives ... 2

1.3 Main contributions ... 3

1.4 The publications ... 5

1.5 Dissertation Outlines .. 6

2 Literature survey .. 7

2.1 Simulation tool background ... 7

2.2 Semantic environments background .. 8

2.3 Assistive robot background .. 10

2.4 Sound Recognition System Background .. 19

3 System implementation .. 21

3.1 Requirements and Software .. 21
3.1.1 Morse .. 21

3.1.2 ROS .. 22

3.1.3 Blender .. 23

3.2 The schematic for the project ... 25

3.3 Design of the environment ... 28

3.4 General structure of the system .. 31

3.5 Connection control between the systems ... 34

4 Robotics system ... 36
4.1.1 JACO arm specification ... 36
4.1.2 The DH parameters frame position .. 37
4.1.3 Robotic arm model ... 42

4.1.4 Differential Kinematic of the JACO arm model .. 43

4.2 Armature ... 45

4.2.1 Create the armature .. 45
4.2.2 Actuator type of the armature .. 45
4.2.3 Armature pose sensor ... 46

4.3 JACO arm simulation ... 46

4.4 Skinning .. 50

4.4.1 Skinning for rigid skinning .. 51
4.4.2 Weight distribution .. 53
4.4.3 Rotational axis.. 55

Table of Content II

4.5 Controlling the arm .. 58

4.6 Inverse kinematic architecture simulation .. 58

4.7 Trajectory action control .. 62

5 The semantic camera system .. 67

5.1 Overview of the semantic MORSE semantic camera methodology 67

5.1.1 The connectivity ... 69
5.1.2 The objects coordinate ... 70

5.2 Implementation of the semantic objects in the environment 73

5.3 The Objects orientation .. 76
5.3.1 Euler angles .. 77

5.3.2 Quaternion .. 81
5.3.3 Equality .. 81
5.3.4 Addition ... 82

5.3.5 Multiplication ... 82
5.3.5.1 Scalar Multiplication... 82
5.3.5.2 Multiplication of Two Quaternions .. 82
5.3.5.3 Associative Under Multiplication ... 82

5.3.5.4 Implications of i2 = j2 = k2 = ijk = −1 ... 83
5.3.5.5 Multiplication of Two Quaternions Revisited 84

5.3.5.6 Closed Under Multiplication .. 85
5.3.5.7 Multiplicative Identity .. 86

5.3.5.8 Conjugate .. 86
5.3.5.9 Norm ... 87

5.3.6 Rotations in Three-Space ... 87

5.4 Control the semantic camera .. 91

6 The sound recognizer system ... 94

6.1 The system scripts .. 94

6.2 The language model ... 94

6.3 Keywords list .. 95

6.4 Grammars ... 95

6.5 Static language model .. 95

6.6 The control design .. 97

7 End effector task space position optimization using the PID controller 100

7.1 Related work ... 100

7.2 PID Theory ... 101
7.2.1 The Proportional Controller (PC) .. 103
7.2.2 The integral controller (IC) .. 104

7.2.3 Derivative Controller (DC) .. 104

Table of Content III

7.3 Filtering .. 105

7.4 Set Point Weighting .. 106

7.5 Different Parameterizations .. 107

7.6 The PID tuning (Ziegler-Nichols) .. 108

7.7 PID In ROS .. 110

7.8 The results .. 112

8 Experimental results ... 121

8.1 The simulation results .. 121
8.1.1 Case 1: Waffle .. 121
8.1.2 Case 2: Sausage .. 124

8.1.3 Case 3: Water ... 127
8.1.4 Case 4 .. 128

8.2 Safety: ... 130

9 Conclusions and future work ... 133

9.1 The research Objectives answer ... 134

9.2 The future work .. 135

References ... 136

List of Figures

Figure 1: The simulation project. ... 5

Figure 2: Simulators of iCub. From left to right: iCubSim, based on ODE, XDE and
Gazebo. (credits for Gazebo: Silvio Traversaro)[1] ... 7

Figure 3: Terrain and Pioneer2 AT robots [2].. 8

Figure 4: Pipeline for physics aware simulation[4]. .. 9

Figure 5: Learned object-class segmentation of various views fused in 3D in a
Bayesian framework. They not only obtain 3D object-class maps: filtering
in 3D from multiple views also reduces false positives and significantly
improves segmentation quality. This is reflected in the crisp back-
projection of the 3D object-class map into the images.[8]. 10

Figure 6: Workstation assistive robot. [13] .. 11

Figure 7: Assistive robot for self-feeding. Spoon arm (arm #1) uses a spoon to
transfer the food from a container to a user’s mouth. Grab arm (arm #2)
picks up the food from a container and then loads it onto the spoon of arm
#1 [20] ... 12

Figure 8: Joint configuration of a novel feeding robot for Korean foods. P1
(prismatic joint#1) is optionally applied. R = Revolute. P = Prismatic [20] 12

Figure 9: Wheelchair with JACO robotic arm as a project for disabled people [28] 13

Figure 10: System configuration of mobile robotic arm and proposed user interface
surrounded by a grey border, a robotic arm system with the proposed user
interface [36] ... 14

Figure 11: Three modified tasks from the Chedoke Arm and Hand Activity Inventory
that able-bodied users perform through teleoperating the MICO robot [37].... 15

Figure 12: Design overview [38] ... 16

Figure 13: Simulation of a MAT robot in the different tasks in a different
environment [39]. ... 17

Figure 14: Simulation of a human model with an assistive mobile robot in MORSE
[40]. ... 18

Figure 15: Simulation of a human walking and then picking up an object through the
MORSE simulator [41]. .. 19

Figure 16: Simulation of robotic arm motion mechanism with the wheelchair [42]. 19

Figure 17: Different virtual environments in MORSE.[46] ... 22

Figure 18: Illustration of a ROS topic shows the broadcast of two messages. Note that
there is no guarantee that messages sent from different publishers arrive in
the same order at all subscribers, despite it being the case here [47]. 23

Figure 19: Photo realistic Rendering [48]. ... 24

Figure 20: Human model in Blender [48] .. 24

Figure 21: Mechanism of the motion for a rabbit model [48] .. 25

List of Figures V

Figure 22: The simulation project. ... 26

Figure 23: Whole schematic for the project. .. 27

Figure 24: Simulated objects in the environment... 28

Figure 25: Material of the cup. ... 29

Figure 26: Material of the waffle. .. 29

Figure 27: Texture of the waffle. ... 30

Figure 28: Whole simulated environment. ... 31

Figure 29: Simulated zoom environment. .. 31

Figure 30: Flow chart of the program. ... 33

Figure 31: ROS nodes data flow for the whole project. ... 35

Figure 32: JACO manipulator robotic arm.[28] ... 37

Figure 33: Gripper for JACO arm (two fingers, three fingers).[28] 37

Figure 34: Classic DH parameters frame position.[51][53] ... 38

Figure 35: Link coordinate frame and joint parameters [51][52]....................................... 39

Figure 36: JACO arm link lengths [54]. ... 39

Figure 37: The coordinates system for the point P [54][50] .. 42

Figure 38: The simulated JACO arm. .. 46

Figure 39: Links and joints for the robotic arm ... 47

Figure 40: Joints and links for the gripper of JACO. ... 47

Figure 41: Skeleton used for moving the arm. ... 48

Figure 42: Bones added to the skin of JACO arm.. 49

Figure 43: Link number three through the weight paint stage. .. 50

Figure 44: Colour spectrum and respective weights.[57] .. 50

Figure 45: Vertex between the second and the third bone of JACO 53

Figure 46: Applying the second way in weight distribution. ... 54

Figure 47: Applying the first way in the weight distribution. .. 55

Figure 48: Arm rotates softly with the right specified axis. ... 56

Figure 49: Deformation when moving the joint in the incorrect axis. 57

Figure 50: Simple idea of inverse kinematics. ... 59

Figure 51: Cube in the origin axis of the armature. ... 60

Figure 52: Plane axis of the cube compatible with the axis of the base bone. 61

Figure 53: Arm follows the created object. .. 62

Figure 54: IK ROS node schematic.. 62

Figure 55: Joint trajectory action schematic [68]. .. 63

Figure 56: Whole schematic of the trajectory ROS node... 64

Figure 57: JACO arm link number two moved. ... 65

Figure 58: JACO link number one rotated about the Z axis. ... 65

List of Figures VI

Figure 59: JACO gripper hold the red object as a picking process. 66

Figure 60: Releasing process when the gripper releases the object to fall away. 66

Figure 61: The general work description of the MORSE semantic camera....................... 67

Figure 62: The image as .pts file .. 68

Figure 63: The sequence of transferring the image to blender. .. 69

Figure 64: 4-pixel connectivity. ... 70

Figure 65: The object surrounded by the box boundary [89]. .. 71

Figure 66: The object surrounded by the sphere boundary [89]. 71

Figure 67: The object surrounded by the cylinder bounder [89].. 72

Figure 68: The environment with the cake (waffle) selected and the options for
picking up process. ... 74

Figure 69: The environment with the selected red dish and options 75

Figure 70: The semantic camera in the environment. .. 76

Figure 71: 3D rocket .. 77

Figure 72: The Pitch rotation angle. ... 77

Figure 73: The Yaw rotation angle. ... 78

Figure 74: The rotation around two axises. .. 78

Figure 75: The roll rotation angle. ... 79

Figure 76: Set 90 degree to the Y-green axis. .. 79

Figure 77: Rocket rotates around the X axis. ... 80

Figure 78: Rocket rotates around the Z axis. ... 80

Figure 79: The vector v will be rotated clockwise about u through an angle of 2θ
[74]. ... 88

Figure 80: The vector v = 3i − 5j + 2k is rotated 90° clockwise about the axis (i + j)
into w = (−1 +2)i − (1 + 2) j − 42k. [74]. .. 90

Figure 81: The output of the semantic camera (each object with its details). 91

Figure 82: The semantic camera system Node... 93

Figure 83: The ROS topic recognizer schematic. .. 97

Figure 84: The detection time for the red word ... 99

Figure 85: The detection time for the green word .. 99

Figure 86: The detection time for the white word. ... 99

Figure 87: The control block diagram .. 101

Figure 88: Step response with its parameters [82] ... 102

Figure 89: Step response for the control motion .. 102

Figure 90: (a) the step response when kp=5 (b) the step response when Kp =2 103

Figure 91: (a) the step response when ki=2 (b) the step response when Ki =4 104

Figure 92: (a) the step response when kd=2 (b) the step response when Kd =4 105

Figure 93: An example for time response signal [86] .. 109

List of Figures VII

Figure 94: Time response of the position Z for the cup in the simulator. 110

Figure 95: The general schematic ROS nodes with a PID controller. 111

Figure 96: The configuration of the PID gains.[87] ... 112

Figure 97: The time response of the Mouth coordinates without using a PID
controller. .. 113

Figure 98: The Time response of the mouth coordinates using a PID controller. 114

Figure 99: The time response of the cup coordinates without using a PID controller. 115

Figure 100: The Time response fort the CUP coordinates without PID 116

Figure 101: The time response for the red dish coordinates without using a PID
controller. .. 117

Figure 102: The time response for the desired and actual green dish coordinates. 118

Figure 103: The time response of the green dish coordinates without using a PID
controller. .. 119

Figure 104: The time response for the green dish coordinates with the PID controller. ... 120

Figure 105: The red cycle begins (go then grip). .. 121

Figure 106: The red cycle continues (grip then eat). ... 122

Figure 107: The red cycle last step (eat then return to the origin coordinates of red
food). ... 122

Figure 108: The arm cycle from moving to the food in the red dish to the end. 124

Figure 109: The green cycle begins (go + grip). ... 124

Figure 110: The green cycle continues (grip then eat). ... 125

Figure 111: The green cycle last step (eat then return to the origin coordinates of green
food). ... 125

Figure 112: The arm cycle from moving to the food in the sausage to the end. 126

Figure 113: The cup cycle begins (go then grip) ... 127

Figure 114: The cup cycle continues (grip then eat) ... 127

Figure 115: The red cycle last step (eat then return to the origin coordinates of red
food) .. 128

Figure 116: The arm cycle from moving the water cup. ... 129

Figure 117: The sequence of the sound commands to the robotic arm. 131

Figure 118: The arm moves to a crash position; the person stops the whole system. 131

Figure 119: The arm stops through gripping the sausage. ... 132

Figure 120: The arm stops through the eating process. ... 132

List of Tables

Table 1: Arm lengths and auxiliary parameters [54] .. 41

Table 2: The DH diagram and angle transformation.[54]... 42

Table 3: The objects with its type, label, and description. .. 75

Table 4: Every object with its coordinates .. 92

Table 5: The response of the sound recognition system with time 98

Table 6: Ziegler-Nichols Recipe [86] ... 109

1 Introduction

Robots today are involved in many different life fields, including the medical field, the

automotive industry, human life activity and space, among others. Robots normally comprise

mechanical parts, sensors and actuators. This research deals with the design of an intelligent

system (robot arm, environment), while also dealing with the implementation of a control

software that makes the robotic arm autonomously through the pick-up and release object

operations, which will be associated with sound recognition and semantic camera systems.

This project may be expansive because any error in the programming algorithms could affect

the robotic arm hardware and subsequently may damage the arm joints and links. Moreover,

our project deals with humans directly, which means that any error in this algorithm could

harm people. One of the most suitable and effective solutions for conducting our task is by

using simulation programs to carry out the system physically with all reality specifications.

With the simulation, many features will be achieved, such as:

♦ low cost of implementation

♦ avoiding hardware defects (the arm simulation gives more flexibility through

motion)

♦ increased safety for the user (it could be handled easily if a programming error

occurs)

♦ more flexibility in using of the simulated intelligent semantic camera system

On the other hand, this solution also has side effects as follows:

♦ losing the real imagination for the system

♦ more programming complexity, given that many specifications have to be

 programmed as follows:

a. the robotic arm motion mechanism, such as inverse kinematic, trajectory, joints

rotation limits, links length

b. the physical features for the environment (the border of the objects, gravity)

c. implementing a semantic camera system and sound system with different middle

ware language

Chapter 1 Introduction: Motivation 2

1.1 Motivation

The main idea for this research came from the negative security situation in my country

(Iraq), where the numbers of handicapped and disabled people have increased due to terrorist

attacks and previous wars. Moreover, the number of disabled people has also increased

around the world and they need some devices to simplify their lives. At present, robots with

artificial intelligence are entering all fields, including different life activities. The main target

of this research is to explore how to implement an autonomous robotic eating system

supported by a semantic camera system and a sound recognition system, using a simulation

program to simulate a JACO robot arm that has six degrees of freedom (DOF). In the

simulated environment, there is a table, eating dishes and a water cup. The arm moves

according to the required food types, whereby each one of these types refers to a specific

colour dish. The sound recognition system stores the colour names and then the semantic

camera system inquiries about the coordinates of each object in the environment according

to the internal data of these objects into blender environment which have been implemented

and stored into MORSE data bank. When the human says the specific object-type (colour

name), the arm will move directly to the coordinates of this dish and pick up the food, before

moving it to the mouth coordinates. This will help disabled people, especially those who

have physical problems with their hand, and it will also be an effective alternative to

receiving external help from another person.

1.2 Research Objectives

This research is part of a larger project conducted at the Institute of Real-Time Learning

Systems at the University of Siegen. This research aims to develop a new simulated

intelligent robotic system for the disabled. Following momentous inspections, it has emerged

that the building of such a simulation robotic arm with sound and semantic camera systems

has never been attempted. This has led to various inquiries concerning the automation of

such a system:

♦ How can a completely automated intelligent system be created for helping

handicapped people when they are eating or drinking? This system should comprise

three sub-systems: semantic camera system, sound and robotics systems.

♦ Can a JACO robotic arm be integrated in a simulation program with completely

functioning hardware and specifications? The arm should be represented by links

Chapter 1 Introduction: Main contributions 3

length with the real specifications, the rotation angle (value and axis) of each joint

and solve the inverse kinematic problem while skinning and planning a trajectory.

These are important challenges when arm movement is simulated.

♦ How complex is software when combining three different language systems?

Compatibility between the three systems is not easy, especially because each of these

systems uses a different programming environment, which necessitates building

connecting software bridges to combine their work.

♦ Will the software support the capacity to create reasonable sensor and input

information that can be utilized by the control program? This should correspond in

real time.

♦ Can the simulation give a graphic user interface that permits imagining the

movements of the robotic joints (rotate or translate)? This should be easy to

implement with the crashing and gripping process between robotic parts and objects.

♦ Can the software give an identical control interface as real robots? This interface

should essentially comprise various topics that can be utilized to send control

messages to the different robotic parts.

♦ Can the semantic camera system be checked to recognize the objects required and

coordinate effectively with software? Will there be sufficient time for recognizing

the sound and then sending the signal back to complete the task?

♦ Will the sound system complete its task easily and not be affected by repetition or

background noise?

1.3 Main contributions

The main objective of this research is to create a complete intelligent robotic system for

people with disabilities when they are eating or drinking, as shown in Figure (1). The main

contributions pertaining to specialized technical issues in building this new system are listed

briefly below, before explained in detail in chapters three, four and five:

♦ Studying, analysing and modelling the implantation systems used to create a new

library in the simulation software for the whole system, which should work as one

unit. When the user calls up this library, the system starts automatically, continuing

until the end of the eating or drinking process.

♦ Analysing, programming and designing a sound recognition system based on the

static language model, improving the threshold for each word before adding its

Chapter 1 Introduction: Main contributions 4

value and saving it in the ARPA text format to be used later in the sound control

library. This has significantly improved the sound system.

♦ Implementing and programming the inverse kinematic calculations, adding the

joint’s rotational angles and link length. This is achieved by studying and analyzing

the JACO robot arm through its kinematics and movement mechanisms.

♦ Modelling and analyzing a semantic camera system. Designing the environment

objects, and then programming them as active parameters. The physical properties

of each object (collision border, free fall) also have to be planned. After this,

building a software approach for discovering the coordinates according to their

nature, label and type in the semantic environment is necessary.

♦ Implementing a new skinning method for removing deformations through

movement. This is achieved by studying the mesh distribution method and then

adding the axis and the rotation parameters as new conditions to ensure the soft

motion of the simulation.

♦ Studying, implementing and then programming a new trajectory control approach.

This is undertaken by adding more additional control nodes to control the rotational

joints, instead of using one control node that is responsible for giving the joint angle

values. This improves the motion response time.

♦ Through studying the coordinates system, finding out a new transformation

coordinates system to obtain the exact coordinates of the objects. The camera gives

us the coordinates according to its environment rather than the general coordinates.

Thus, a way of transferring the coordinates from the camera to the robot should be

discovered.

♦ Designing and implementing a new end-effector position controller using a PID

control system that reduces the error between the desired position coordinates and

the actual coordinates for the robotic arm end-effector.

Chapter 1 Introduction: The publications 5

Figure 1: The simulation project.

1.4 The publications

During the PhD research period, the author has published a number of research papers in

scientific journals and one workshop. This research is related to these papers, which are

listed as follows:

1 Salih Rashid Majeed, Klaus D. Kuhnert. Simulation of Jaco robot arm for handicapped
people. Proceedings of the 8th International Workshop on Human Friendly Robotics –
HFR TUM 2015, October 21–23, 2015, in Munich, Germany.

2 Salih Rashid Majeed, Klaus D. Kuhnert. Automatic Skinning of the Simulated
Manipulator Robot Arm. International Journal of Computer Graphics & Animation
(IJCGA) Vol.6, No.1, January 2016.

3 Salih Rashid Majeed, Klaus D. Kuhnert. Simulation of the Inverse-Kinematics for JACO
Manipulator Robot Arm. International Journal of Robotics and Automation Vol. 1, No.
1, 2016.

4 Salih Rashid Majeed, Klaus D. Kuhnert. Object Detection based on Semantic Camera for
Indoor Environment. International Journal of Advance Robotics & Expert Systems
(JARES) Vol.1, No.1, 2016.

5 Salih Rashid Majeed, Klaus D. Kuhnert. Trajectory Controller Building for the (KUKA,
JACO) Simulated Manipulator Robot Arm Using ROS. International Journal of Robotics
and Automation (IJRA) Vol.3, Issue 1, January 2017.

6 Salih Rashid Majeed, Klaus D. Kuhnert. Simulated Robotic Arm Control using Sound
Recognition System Commands. International Robotics and Automation Journal (IRATJ)
Vol.3, Issue 1, September 2017.

Chapter 1 Introduction: Dissertation Outlines 6

7 Salih Rashid Majeed. Improvement of the automatic skinning approach for the JACO
robotic arm based on a new weight-vertex distribution method. International Robotics
and Automation Journal,Volume 5, Issue 4 - 2019

1.5 Dissertation Outlines

This dissertation comprises nine chapters, which explain the main contributions and the

results for each of the main systems as follow:

♦ Chapter two presents the research and papers used as references for our research,

followed by the state of art of each sub-system.

♦ Chapter three displays the flow chart of the project, describes the control loop for

the different systems and explains the communication between the systems.

♦ Chapter four discusses the implementation of the JACO robotic arm. It describes the

arm specifications with the mechanical design and how to implement the real arm. It

studies and analyses inverse kinematic calculations, as well as describing our new

skinning approach and explaining it in detail. Our new control system for the arm is

described in this chapter.

♦ Chapter five describes the semantic camera system implementation, as well as

displaying the objects recognition method and how the camera works through the

program. It explains the camera control unit with the ROS nodes and how to obtain

the coordinates of the detected objects.

♦ Chapter six discusses the sound system, including its methodology and control unit.

Our new improvement compared with the old system is discussed, including how to

achieve a better recognition result.

♦ Chapter seven discusses the position control of the task space and how to control the

end-effector position using the PID controller. Moreover, it discusses some theory

and results regarding the actual and desired coordinates.

♦ Chapter eight describes the experimental results, as well as the safety case study.

♦ Chapter nine provides a summary of the dissertation provided and some suggestions

and ideas for the future.

Chapter 2 Literature survey: Simulation tool background 7

2 Literature survey

This chapter deals with the research that has been represented as a basis for this project. The

research is classified into four different groups, each of which deals with a specific field.

The first group displays the simulation of the environments and how to implement the

different things or objects, while the second group involves the semantic camera and maps.

The assistant robot research is presented in the third group, before the final group deals with

research in the field of sound recognition.

2.1 Simulation tool background

The first challenge in this project was how to simulate the project into a real environment

and then find suitable software to simulate the environment. Simulation softwares are widely

used due to flexibility in the designing process and the facility through the implementing

control process, the simulation gives the capability to build and test multiple prototypes until

reaching the optimum one as in the nature life. As shown Figure (2) [1] there is a growing

number of tools for dynamics simulation, ranging from dynamic solver libraries to systems

simulation software, provided through either open or closed source code solutions, each

more or less tailored to their expected domains of application[1].

Figure 2: Simulators of iCub. From left to right: iCubSim, based on ODE, XDE and Gazebo.

(credits for Gazebo: Silvio Traversaro)[1]

In our project, we encountered many problems during the simulation process. These included

the physical properties for the static and dynamic objects, such as free fall and collision. In

the robotic researches, simulation programs permit to build and test multiple virtual designs

for the robots, also give the ability for implementing and testing many controlling theories

such as the motion planning , PID controller, fuzzy logic controller and many other theories.

[2] most simulators have been restricted to 2D worlds, and few have matured to the point

where they are both highly capable and easily adaptable. [2] Gazebo is designed to fill this

Chapter 2 Literature survey: Semantic environments background 8

niche by creating a 3D dynamic multi-robot environment capable of recreating the complex

worlds that will be encountered by the next generation of mobile robots.

Figure 3: Terrain and Pioneer2 AT robots [2].

2.2 Semantic environments background

As one of the two main sub-systems the camera is based on semantic model principles,

represented by the semantic camera in this research. The camera can be directed to detect

objects by type in the simulation environment (further details will be provided later). The

second challenge was recognizing multiple object coordinates and how to use them later in

the motion task. Regardless of usage of the simulation data analysis due to the reasons in the

introduction we displayed a literature of a real science data analysis as a reference for the

future studies. In the past, different definitions have been given: the word 'winter' could also

signify 'snow', ' sledging' or ' mulled wine,' [3]. It has also been suggested that the meaning

of a word is only the entity in the world to which it refers, such as proper nouns like New

York and Eiffel Tower.[3]

One important piece of research is provided by [4] their application involves detection

of objects placed in a clutter and in tight environments, such as a shelf. In particular, given

access to 3D object models, several aspects of the environment are simulated and the models

are placed in physically realistic poses with respect to their environment to generate a labeled

synthetic dataset, The 3D CAD models are generated and loaded in a calibrated environment

on the simulator using Blender, a subset of the objects is chosen for generating a scene, the

scenes are rendered from known camera poses and perspective projection is used to compute

2D bounding boxes for each object as shown in the Figure (4)[4].

Chapter 2 Literature survey: Semantic environments background 9

Figure 4: Pipeline for physics aware simulation[4].

[5] presented an approach that combines the robustness of CNNs with a fine-resolution

instance-based 3D pose estimation, where the model is trained with fully-annotated synthetic

training data, generated automatically from the 3D models of the objects. [5] Their results

show that the proposed model can be trained only with synthetic renderings of the objects

3D models and still be successfully applied on images of the real objects.

[6] Proposing an algorithm that allows robots to efficiently learn human-centered

environment models from descriptions of natural language, typical semantic mapping

approaches add to metrical maps with high-level surroundings properties (e.g. place type,

object locations) but do not use this information to improve the metric map. A semantic

hierarchical classifier that uses the semantics of image labels to extract knowledge about

inter-class relationships and integrates them into the visual appearance learning process

reduces the classifier complexity in the number of classes, helping to learn about the visual

similarities in the experimental section [7].

The new approach to semantical mapping proposed in [8] is object-class image

segmentation, which is used to recognize objects in the pixel-wise RGB-D images shown in

Figure (5). They include the depths and colour markers in the random forest decision

classifier, normalizing the scale characteristics through depth measurements, based on

trajectory estimates derived from the SLAM approach [8]. These use the image segmentation

into a probabilistic 3D object-class map and demonstrate in experiments from two data sets

that their approach not only provides a 3D segmentation of object classes but also

significantly improves the quality of 2D segmentation [8]. Their approach operates directly

within the original image measurements while fusing RGB-D measurements into a 3D map

and classifying 3D volumes. [8]

Chapter 2 Literature survey: Assistive robot background 10

Figure 5: Learned object-class segmentation of various views fused in 3D in a Bayesian framework. They

not only obtain 3D object-class maps: filtering in 3D from multiple views also reduces false
positives and significantly improves segmentation quality. This is reflected in the crisp back-

projection of the 3D object-class map into the images.[8].

2.3 Assistive robot background

The main part or execution of the motion uses a JACO robotic arm, which is part of a project

for people with disabilities. This arm is well known with suitable material for human

activities, whereby there are different types of assistive robots according to [9].

A. Four types of rehabilitation robots:

1) Static robots that operate in a structured environment (workstations) [9]: this type of

robots is designed for disabled people, and they usually comprise a manipulator robotic arm

fixed on the table or disk with no sensor. [9] This arm is programmed to collect some item

from drawers (e.g. phone, book) such as DeVAR [10], ProVar [11], RAID [12] and Master

[13]. In such types, the positions of the collected objects are known in advance. [9] There is

also another type of workstation robots, such as the robotic arm that is designed with a spoon

and fork for self-feeding for disabled or handicapped people. [9] This arm is usually fixed

Chapter 2 Literature survey: Assistive robot background 11

on the food plate station to take the food quickly, and transfers it to the person’s mouth.

RAIL [14], Handy I [15] and MySpoon [16], [17] are some systems of this type. [9]

Figure 6: Workstation assistive robot. [13]

2) Stand-alone manipulators comprise [9] a robotic system fixed on the desk or any feeding

station, whereby the positions of the required food or object is not known in advance and

thus sensors should use for collecting the object position positions and sending it to the arm

to transfer to the disabled people. This type has a limitation regarding the positions of the

objects when the object is far from the arm and it cannot reach this point. Examples of these

types are Tou robot [18] and the ISAC robot [19][9]. As an example, a simple robotic system

with a dual-arm handling system allows Korean food such as boiled rice to be handled in an

ordinary food container, as shown in Figure (8). [20] The first robotic arm (a spoon arm,

arm #1) uses the spoon to transfer food from a container to the mouth of the user, and the

second robot arm (a grab-arm, arm #2) picks up the food from a container and then places it

on the spoon of a robotic arm. It divides the food processor into two sub-takes: picking

up/releasing food and transferring it into the mouth of the user. [20] The two arms have

different functions, whereby the design of the end-effectors of the two arms can be chosen

to take up or release food stably, and the grab arm can use odd-shaped grippers as indicated

by the bottom left-hand of Figure (7), as the gripper needs to stay away from the user's

mouth. [20] If an end-effector has an unusual shape, it could pose a risk to the user when it

comes near the person’s face. A spoon arm has two degrees of freedom (DOF) to transfer

the food to the spoon without altering the spoon's positioning: a grab arm includes a three-

Chapter 2 Literature survey: Assistive robot background 12

DOF-SCARA planar motion array, and a one-DOF prismatic up and down motion joint and

a gripper as shown in Figure (8) [20].

Figure 7: Assistive robot for self-feeding. Spoon arm (arm #1) uses a spoon to transfer the food from a

container to a user’s mouth. Grab arm (arm #2) picks up the food from a container and then loads
it onto the spoon of arm #1 [20]

Figure 8: Joint configuration of a novel feeding robot for Korean foods. P1 (prismatic joint#1) is optionally

applied. R = Revolute. P = Prismatic [20]

Chapter 2 Literature survey: Assistive robot background 13

3) Wheelchair mounted manipulators [9] are represented by a wheelchair with a robotic arm,

whereby this system allows disabled people to easily obtain objects such as food on a table

that is far away from them. [9] These systems also have a limitation regarding the working

area due to the fixed robotic arm on the wheelchair, which can be influenced on the arm

working area. An example of this is MAUNS [21] [22], which uses a joystick, panel and

voice commands, while another example is FRIEND with a voice commands system [23],

AVISO [24], [25] and VICTORIA with a touch control screen [26]. Another type can be

controlled using a keyboard and can also be controlled by using a joystick, namely a raptor

arm [27][9].

Figure 9: Wheelchair with JACO robotic arm as a project for disabled people [28]

4) Mobile robots comprise a complete mobile robot with a robotic arm [9]. However, the

arm can move independently from the movement of the wheelchair, which gives the disabled

person more flexibility while carrying the object, and it also gives the person an option for

sharing the object with another person. Examples of this type are WALKY [29], MOVAID

[30], ARPH [31], HERMES [32], KARES II [33] and CARE-O- BOT[34].

As an example, [35] the robotic arm could appear in the briefcase of a laptop computer

without removing any parts, with the user interface comprising a single web camera to

receive the user’s eye movements, a computer that runs to the centre of the iris sensor and

the student, and a display unit to indicate user feedback information and control boxes for

detecting the user's eye motion [35]. The user interface comprises a web camera that offers

VGA video and monitors the user's eye movements, a personal computer (PC) for photo-

processing eye movements, and a display unit that provides simple feedback on a desk that

is selected by turning LEDs on/off [35].

[36] Four LEDs provide feedback information with a four-bit binary value, and the

position coordinates of the plate are then transmitted to the robotic arm when it is selected,

Chapter 2 Literature survey: Assistive robot background 14

which then initiates a feeding program that allows the end effector of the robotic arm to reach

the food on the select platform, collect and bring it to the mouth [36].

Figure 10: System configuration of mobile robotic arm and proposed user interface surrounded by a grey

border, a robotic arm system with the proposed user interface [36]

5) Mats system comprises a robotic system [9] or arm that is fixed on the table or anywhere

using the dock system and it serves to assist disabled people in a wheelchair or who are

sitting on a chair in front of this arm. This system can be controlled by the user [9]. There

are also examples of assistive robots that have been used as references to our work [37].

Assistive robotic arms increasingly enable users with extreme disabilities to carry out

activities by themselves [37] the increased ability and dexterity of arms make them more

challenging to control with simple, low-dimensional interfaces like joysticks and snap-and-

puff interfaces. [37] However, in their interviews with everyday users of the JACO arm of

Kinova, mode switches have been identified as a problem for both time and cognitive loads.

It has also been objectively confirmed that the switching mode consumes approximately 17.4

percent of execution time, even for skilled users who use JACO [37].

Chapter 2 Literature survey: Assistive robot background 15

Figure 11: Three modified tasks from the Chedoke Arm and Hand Activity Inventory that able-bodied users

perform through teleoperating the MICO robot [37].

iCRAFT [38] has two main parts: the computer with the eye-tracking interface, as well as

the interface for the robotic arm. [38] The computer has a USB camera and an external

monitor with the microcontroller and the bowls and spoon on the robot arm. [38] The process

starts with the eye-tracking system interactions, in which the eye-tracking system calculates

where the eye can track, and a servo controller connects the computer to the robot by servo

connection. Through a servo controller wire, the servo control unit connects the robot arm,

eye trackers send a signal to a robot's arm that moves to either one of the three bowls or the

rest position, and the arm carries out an automatic action to collect food on a spoon, which

then reaches the robot's arm [38].

Chapter 2 Literature survey: Assistive robot background 16

Figure 12: Design overview [38]

B. Simulated human robot interaction [9]:

The new development and the emergence of simulation programs have influenced the

assistive robotic design, improving the implementation process through reducing prototype

costs, and offering the user more flexibility for testing the system (hardware and software).

Given the important of safety for disabled people, with this simulation we can avoid the risk

of contact between the hardware components and the human. This software also supports

open-source middleware, which encourages users to implement such massive assistive robot

projects with low prices compared with the hardware. This project [39] combines the

simulator type and the MATS projects type, this project concerned about how to do a specific

task in an environment such as living room, kitchen. [39] One of the functions of this system

is that it can be fixed to different places and can move along the home environment, whereby

this arm can be fixed to the wheelchair, allowing flexibility through using the docking

system. [39] Moreover, using simulation software offer the ability to provide more technical

and functional specifications to provide the conceptual phase. All of these simulated

elements are based on real dimensions and specifications [39].

Chapter 2 Literature survey: Assistive robot background 17

The implementation process will be classified into the following three steps [39]:

♦ Building the environment: the working area such as the kitchen, building an

architectural structure that is suitable for fixing the robotic arm, as well as

specifying the communication system, power distribution and control units [39].

♦ Implementing the robotic arm: in order to design the robotic arm fitted to the

docking system, arm kinematics such as end-effector movement (IK) should provide

the interface control system [39].

♦ Designing the wheelchair: this wheelchair will move independently and be

controlled by the user, while the communication control system should also be

implement the position for fixing the arm [39].

Figure 13: Simulation of a MAT robot in the different tasks in a different environment [39].

The development [40] in the simulation software is an attractive factor for users due to the

reduced execution time and lower effort compared with providing sophisticated software

and hardware, reflecting one of the challenges that robots have to contend with when they

enter the real world. [40] HRI simulation applications have used a MORSE simulator as an

Chapter 2 Literature survey: Assistive robot background 18

excellent example for implementing the human-robot interaction. Some distinct purposes for

the use of this simulation can be discerned in the HRI literature [40]. As described in terms

of how HRI simulations have dealt with concurrent constraints arising from robotic

simulation and digital simulation while remaining easy-to-use devices, MORSE is now

already being used as a forum in several institutions, effectively facilitating human-robot

interaction applications [40].

Figure 14: Simulation of a human model with an assistive mobile robot in MORSE [40].

[41] The simulation software represents the faster and easiest way to develop the robotic

system, using the human-robot interaction option to integrate humans in the simulation loop.

[41] Robotics can test and verify their research with simulators in a sandbox, which restricts

risks within their chosen level of abstraction. A preliminary test involving real consumers in

a pick-place-carry job for which positive outcomes will be collected shows the proposition.

Accordingly, high-level programming initiatives can use a simulation to describe low levels

(e.g. navigation, image processing, localization) to prevent dealing with related problems

when testing the device [41].

Furthermore, the simulation setup can also help to test the element design of the onboard

robotic system before attempting costly integration it has focused on human-robot

interactions such as MORSE and how the human being can be controlled directly by existing

codes or a human operator like any other device [41].

Chapter 2 Literature survey: Sound Recognition System Background 19

Figure 15: Simulation of a human walking and then picking up an object through the MORSE simulator

[41].

In our project, several researchers have worked with handicapped robot, such as [42] They

have developed a design prototype methodology (task-oriented design), whereby they used

the simulator for designing a robotic arm especially for handicapped people, They studied

the arm orientation through picking-up process, in which the robotic arm has more freedom

through moving due to the rotation corresponding during the fixing station. Their

experimental results confirmed that the developed arm accomplished the required task [42].

Figure 16: Simulation of robotic arm motion mechanism with the wheelchair [42].

2.4 Sound Recognition System Background

In the project, one of the important objectives was to achieve cooperation between the

different systems especially the sound system, because this system cannot connect through

message instructions using ROS topic as a carrier. However, after searching, we

implemented this system in ROS, as will be explained in chapter five. [43] The main focus

is on connecting speech and language with non-linguistic knowledge (perception of objects

currently in the visual field), and abilities (e.g. object grasping or speech synthesis) presented

as a natural language using a spoken dialog system on the Stanford AI Robot (STAIR). They

wrote the ROS node to call Sphinx3, and modified the live program Sphinx3 to accept input

from the ROS wrapper (which subscribes to the audio location topic to have audio clips)

Chapter 2 Literature survey: Sound Recognition System Background 20

[43]. [44] Advances in audio recognition have made it possible for a wide range of interactive

voice systems to be successful in the realm over the past two decades. Indeed, the same

techniques have proved promising in recognizing audio space non-speech events in recent

decades [44]. Their paper presents a new software library – the ROS Open-Source Audio

Recognizer (ROAR) – which offers a full set of end-to-end tools for online supervised

learning of a new audio events, function extraction, automatic one-classes support vector

machine model tuning and real-time audio event model tuning [44]. Implementation of the

MetraLabs Scitos G5 humanoid indoor service robot with a natural interface based on

language using technologies such as speech reconnaissance and speech synthesis allows the

robot to accept and respond to simple voice commands [45]. The implementation of the

human robot interface was modularly-structured and partitioned into packages, with a voice

input comprising a vocal recognizer, some pre-process, a voice interpreter performing

semantic input analysis, generating output and communicating with other software

components, such as head control and voice output [45].

Chapter 3 System implementation: Requirements and Software 21

3 System implementation

The design process is the major phase of the simulation process, whereby we present the

whole environmental design process, in which the first task involves the design of the

environment and objects. The goals to be implemented are as follows according to this

simulation Program:

1 It should have the capacity to create a reasonable sensor and input information that can
be utilized by the control programming, which should correspond with real time.

2 It should give an identical ROS control interface as in real robots. This interface
essentially comprises various ROS topics that can be utilized to send control massages to
the different robot parts.

3 It should offer a graphical user interface that permits imagining the movements of the
robot joints (revolute or translate), while making the crashing and gripping process
between the robot part and some environment objects easy to implement.

3.1 Requirements and Software

A PC with an Intel i5 or higher and 4GB RAM as a minimal requirement. Linux (X 86 or X

86-64) as an operating system, and Python 3.4.2. qt creator C++ are the minimal

requirements for installing the simulation and control programs, which are listed as follows:

3.1.1 Morse

MORSE is [46] a generic simulator for academic robotics focused on the realistic 3D

simulation of small to large environments in- or outdoors, MORSE can be controlled

completely through command line, and simulation scenes can be generated by simple Python

scripts, and are largely written in Python, MORSE is an application that enables making

simple and quick changes to source code, except in computing-intensive processes (such as

3D rendering or physics simulations) MORSE is designed to be modular, with new sensors,

the new actuator, post-processing (such as the application of the noise function), adding new

services, or even complete communication, MORSE has supported many middlewares such

as ROS, yarp and socket. As a different environment in MORSE, the human-robot

interaction is shown in the right-hand side of Figure (17)[46].

Chapter 3 System implementation: Requirements and Software 22

Figure 17: Different virtual environments in MORSE.[46]

3.1.2 ROS

One of the most difficult challenges in this research is how to create a robot control program

and it is in the same centrepiece of other sub-systems, which means that too many types of

robots are developed each day. However, these are controlled by a special program that uses

one mediumware, and with ROS is able to control the different types of robots. As

understood from [47], the Robotic Operating System (ROS) is used to interact with nodes

via messages, whereby the nodes are calculation processes. ROS is very modular, and one

robot control system usually contains several different nodes, such as voice recognition of

one node, navigation control of the other node, and the master nodes uses the ROS Master

to find, exchange messages or invoke the server vice [47]. If a node finds another node, the

Master functions as a DNS server and they are connected directly to each other [47].

The communication between nodes would be by publishing messages to topics, the

datastructure for those messages contains typed fields [47]. Those messages supported

Standard primitive types (integer, floating point, boolean, etc.) as are arrays of primitive

types [47]. The topics are messages processed through topics, nodes that are capable of

publishing (sending) messages and nodes that can subscribe to messages to them [47].

Multiple editors and subscribers can have topics, and a node can post and/or subscribe to

various topics [47].

The subject uses a publish/subscribe model and normally carries the bulk of the data

into one system (e.g. motor speed measurements or laser scanner distance measurements)

[47].

Chapter 3 System implementation: Requirements and Software 23

Figure 18: Illustration of a ROS topic shows the broadcast of two messages. Note that there is no guarantee

that messages sent from different publishers arrive in the same order at all subscribers, despite it
being the case here [47].

3.1.3 Blender

Blender [48] is a 3D open-source creation suite, whereby advanced users use blender's API

for the Python ascription to customize the application and write special tools. Blender

supports all 3D pipeline modelling, rigging, animation, simulation, rendering, composting,

and motion tracker, even video editing, and creating games, minimum (basic use) hardware

with 2Ghz dual-core support for SSE2, 2 GB RAM, 24-bit 1280 daily display, a mouse or

track-pad, open GL 2.1 graphics with 512 MB RAM compatibility [48]. A number of

features are important during the implementation of this project and are also represented the

main purpose for using this kind of software:

A. Photorealistic rendering [48]

♦ Blender provides a real-time imagination using cycle rending type, which allows us

to implement our environment (kitchen, furniture, dishes, etc.).

Chapter 3 System implementation: Requirements and Software 24

Figure 19: Photo realistic Rendering [48].

B. Fast rigging [48]

♦ Blender provides a kind of effective armature or structure, whereby the bones are

represented the actuators of the robotic arm, and force is distributed using the

weight painting method. The skinning of the arm gives us more flexibility over the

arm motion.

Figure 20: Human model in Blender [48]

C. Animation toolset [48]

♦ Blender allows us to implement inverse and forward kinematics specially during the
arm pose.

Chapter 3 System implementation: The schematic for the project 25

Figure 21: Mechanism of the motion for a rabbit model [48]

In this section, we have described the important features for using the Blender program. In

our work, we used some of these features, including the physical properties and the lighting

features in the environment drawing. Furthermore, the features related to the skinning,

inverse kinematic, weight painting and distribution have been used. These features are

mainly needed to implement the robotic arm into Blender. All of these feature will be

explained in detail in relation to our work in the design chapter.

3.2 The schematic for the project

The simulation environment – as shown in Figure (22) – includes the human model, dishes,

cup, the robotic arm and the semantic camera. Additionally, there is a sound package

represented in the external microphone, which connects to the PC. The design and control

process of the environment components will be explained with all of the details in chapters

three and four, respectively.

Chapter 3 System implementation: The schematic for the project 26

Figure 22: The simulation project.

In order to explain the whole project and collect ideas, the general schematic of the whole

system and the data flow between the different systems are shown in Figure (23). After

drawing and designing the arm, three Python scripts that should be written and then sorted

as follows:

♦ The general or main Python script, which will be explained in the following

sections.

♦ The second Python script, which will be used for:

1. Defining the actuators and sensors of the arm (because it is a new model and the
design has to be implemented into the simulation program). These actuators, sensors
and the designing process will be explained in detail in chapter three.

2. Defining the ROS topics used in the control process, for the arm, inverse kinematic
or trajectory controller action, as well as for the orientation motion, i.e. this script is
responsible for the arm motion strategies.

3. The third Python script for defining the function of the gripper actuator.

These latter two scripts should be stored in the Morse library as the definition scripts for the

new arm model in the simulation program, before being called by the general or the main

one.

Chapter 3 System implementation: The schematic for the project 27

Figure 23: Whole schematic for the project.

As will be explained in chapter three, the ROS topics and control messages were

programmed within the ROS node, which contains the semantic camera system, sound

system and the other movements arm commands, whereby these messages will be either

published to the control system node or subscribed from the system or the subscriber ROS

node. The execution of the program will be as follows:

1 Run the main Python script.

2 Run the ROS nodes.

3 The sound comes from the microphone, and then is detected and the specific required
signal is sent (i.e. the food type that the person wants).

4 The semantic camera controller sends a signal to the camera and then receives the food
type details (coordinates, types, and label).

5 The coordinates are sent to the arm controller, comprising:

6 Inverse kinematic controller action, which it sends the target’s coordinates to the arm.

7 Gripping controller, which sends the command to grip the object.

Chapter 3 System implementation: Design of the environment 28

3.3 Design of the environment

The simulation of the environment represents the target of this chapter, which should be the

same as the natural living environment. As previously mentioned, the simulation was chosen

as it solved many problems concerning human safety, power and time waste, as well as

prototype design costs.

Figure 24: Simulated objects in the environment.

Figure (24) shows the objects that have been drawn and then modulated, whereby (1) refers

to the dishes, the cup is represented in (2) and segment (3) shows the simulated sausage and

waffle. Finally, segment (4) shows the human model and table. After the drawing step using

the Blender drawing toolbox, the material should be applied to the required texture. As an

example, the material for the water cup (white colour)that would be without any other details

is shown in Figure (25).

The other example is the material of the waffle, whereby there are two stages to

undertake the required design: first, the material colour is specified as a combination of the

yellow and nutty colour with many options for distribution, whereby in Figure (26) the

colour has been chosen to accomplish the real design.

Chapter 3 System implementation: Design of the environment 29

Figure 25: Material of the cup.

Figure 26: Material of the waffle.

The second step as shown in Figure (27) adds the image that should be applied to the material

object (waffle) and then unwraps the image on the material, whereby for this process there

are also many options for applying the texture, like smart unwrap, manual and projectiles.

Chapter 3 System implementation: Design of the environment 30

Figure 27: Texture of the waffle.

The previous steps represented the design process of the objects’ surfaces dealing with the

material colour, the shadow of the lights when reflecting from the object and the real object

texture. The main objects of the whole environment comprising a kitchen room are shown

in Figure (28).

This environment is represented by the kitchen room, which is a human model (the

human who needs to eat or drink), whereby he sits in front of the table and over the table

there are different colour dishes, with each colour referring to a varied food type, as well as

the water cup and some kitchen furniture as shown in Figure (29).

After drawing the environment in Blender, it should be implanted in Morse. This

involves using an object drawing toolbox in Blender, whereby the texture of the environment

objects is changed to simulate nature, while the robotic arm JACO has also been covered

with the required texture and material design through the design and drawing step.

Chapter 3 System implementation: General structure of the system 31

Figure 28: Whole simulated environment.

Figure 29: Simulated zoom environment.

3.4 General structure of the system

The whole system as a sub-individual system has already been described in chapters three

and four, whereby the sequence of the data cycle will be as follows:

1 The handicapped person states their required food type

♦ RED: represents the food in the red dish, namely a waffle.

♦ GREEN: represents the food in the green dish, namely a sausage.

♦ WATER: represents the water drink.

Chapter 3 System implementation: General structure of the system 32

2 The required word will be processed and recognized by the sound recognition system.

3 The camera detects the required object coordinates and stores them in the system.

4. The coordinates should be sent to the arm and then the arm moves to the required
coordinates.

5. The arm picks up the required object and then moves it to the mouth.

6. The arm moves back to put the rest of the food in its position.

Each of the food types will be represented as a single cycle. When the handicapped person

chooses the food in the red dish, the red cycle will begin until the end. This ensures that the

eating process is carried out with some kind of flexibility, which means that any noise from

an external source such as human sound or mistake through speech will be ignored. Another

important factor affecting the design is the human model, involving a static model with no

ability to move one’s mouth or eat. In this situation, it is necessary to know whether the

person has finished eating yet. In order to solve this problem, we considered a time for each

process regarding each of the food types or drink cycle.

Chapter 3 System implementation: General structure of the system 33

Figure 30: Flow chart of the program.

The time devoted to each process has been specified and could be extended or reduced

according to the required design. The sound recognition system can detect the required word

in time (msec). The specified time for moving the arm to the required target was considered

Chapter 3 System implementation: Connection control between the systems 34

as 3 seconds for gripping the food and eating. As explained before, all of this can be changed

by the user. The general flow chart is shown in Figure (30).

According to the flow chart, the program should be written to accomplish the required

functions as follows. The program comprises two parts: the first part in Morse using a Python

script and the other in ROS using C++. The main challenge was how to add a new robotic

arm to the simulation program with the same specifications and properties for the real arm,

as explained in chapter three. The programming steps for the whole project are divided into

two parts: the Python script for Morse representing the output, i.e. the environment for

displaying the whole simulated objects, the required sensors and actuators of the robotic arm

and the middleware that controls the systems; and the C++ program managing the ROS

control messages and the communications between the different systems to undertake the

variety of functions such as the gripping process, the sound recognition process, the

movement processes and the semantic camera system process.

Python script

1 Call the Blender file of the robotic arm (the mechanical design that has been drawn).

2 Define the armature of the bones as actuators for the robotic arm.

3 Specify the method that can control the armature:

♦ using a trajectory action server.

♦ using an inverse kinematic.

In our project, we used the inverse kinematics (IK) method.

4 Specify the end-effector, which presents the IK target when the arm is moving towards
the goal.

5 Add the gripper and the orientation motion actuators.

6 Add the semantic camera and place it in the correct position.

7 Add the stream middleware, which will control the sensors and armature actuator, in our
project using ROS.

8 Add the environment (the table, dishes, the kitchen room with all of the physical
specifications).

3.5 Connection control between the systems

In this section, the data flows into the ROS system through the different ROS nodes, whereby

the system will begin from the sound and then the semantic camera system until the end of

the execution process.

Chapter 3 System implementation: Connection control between the systems 35

Figure 31: ROS nodes data flow for the whole project.

In Figure (31), the overall schematic ROS nodes and topics are presented, showing the data

flow when a word comes from the system of the sound recognition and is then processed

into the recognizer ROS node. On the other side, the semantic camera node will detect the

object with its coordinates. The data is collected from two system nodes and then crossed to

the JACO ROS node through the talker node, which presents the connected chain between

the main system (JACO arm) and the other systems (the sound and semantic camera system).

Subsequently, the data flows to Morse (the whole environment) to give the output of the

system simulation.

Chapter 4 Robotics system: Connection control between the systems 36

4 Robotics system

In this chapter, we will describe the robotic system from the starting stage (the animation

design) to the control and implementation, which represented the final stage. During this

stage, we will display the problems that occurred with details (i.e. the algorithms used and

the improvement of these algorithms, including the new contributions that have been

implemented and how).

4.1.1 JACO arm specification

'The JACO robot arm – developed by Kinova at its state-of-the-art department – is a

revolutionary device designed for multiple professional applications. [28] The arm is shown

in Figure (32), and it is a leading product in a new generation of lightweight portable robotic

tools that enables users to interact with their environment with complete safety, freedom,

and effectiveness. JACO moves smoothly and silently around 6 degrees of freedom with

unlimited rotation on each axis, whereby the axes are aluminium compact actuator discs

(CADs) of a unique design, each JACO robot arm comprises two distinct sets of three

identical, interchangeable, and easy-to-replace CADs linked together by a ZIF (zero

insertion force) cable [28]. and its main structure – entirely made of carbon fiber – delivers

optimal robustness and durability as well as a cutting-edge look-and-feel [28]. The arm

[28][49] is mounted on a standard aluminium extruded support structure that can be affixed

to almost any surface, and the gripper comprises three under-actuated fingers that can be

individually controlled, whereby their unique bi-injected plastic structure (patent pending)

endows them with great flexibility and unrivalled grip (the gripper two types are shown in

Figure (33)). JACO technology allows the fingers to adjust to any object whatever its shape:

as a result, they can gently pick up an egg or firmly grasp a jar. Some of the important arm

properties are the total weight of 4.4 kg, maximum load of 1.5kg, reach of 90cm [49][28].

Chapter 4 Robotics system: Connection control between the systems 37

Figure 32: JACO manipulator robotic arm.[28]

Figure 33: Gripper for JACO arm (two fingers, three fingers).[28]

4.1.2 The DH parameters frame position

By definition, DH parameters describe “the position and orientation of the links and joints

that make up the robotic arm” [50].

As modified from [51][52], Kinova provides DH parameters to the end user. As a

movement of the end-effector to a certain known position, the kinematics enables us ignoring

strength, torque and inertia, and simply concentrating on the manipulator position in space,

regardless of load of the manipulated object and arm inertia while moving. [51][52] The DH

parameters for the arm kinematic chain are applied when the joints are connected and driven

by the actuators, whereby each joint connection establishes a degree of freedom (DOF) with

Chapter 4 Robotics system: Connection control between the systems 38

a 6-DOF arm. Six joints are found, and the base (link 0) shall be excluded as a degree of

freedom because the links maintain a fixed connection between joints. [51][52] Reference

frames shall be used to position the manipulator at a desired position by applying DH

parameters and coordinating transformations (see Figure (35)). The DH link coordinates and

joint parameters are shown in Figure (34) and described as follows [51][52]:

For the link structure [51][52]:

♦ ai (length of the link)

♦ αi (twist of the link)

For the relative position between links [51][52]:

♦ di (distance between the two x-z normal)

♦ θi (angle between the two-x normal).

Figure 34: Classic DH parameters frame position.[51][53]

Chapter 4 Robotics system: Connection control between the systems 39

Figure 35: Link coordinate frame and joint parameters [51][52].

Figure 36: JACO arm link lengths [54].

As modified from the original Equations in [51] and [52], the DH parameters are used to

associate each connection with neighbouring relationships and identify each link-joint pair

Chapter 4 Robotics system: Connection control between the systems 40

after the reference frames are fixed. In a transformation matrix, these parameters are used to

connect the following frames to create a frame of the link coordinate [51][52]:

♦ The first rule is the zi-1 axis lies along the axis of motion of the Ith joint [51][52]

♦ The second rule is the xi axis is normal to the zi-1 axis directed toward the zi axis

[51][52]

♦ The third is that the yi axis is defined by the cross product of zi and xi then the three

axes form a right-handed system[51][52].

Once the link parameters and reference frames have been determined, each individual can

correlate successive frames (i-1) with I via translations and rotations with the two reference

frames. For example, see Equation 1 [51][52]

𝐴(𝑖−1),𝑖 = 𝑅𝑜𝑡𝑧,𝜃𝑖
𝑇𝑟𝑎𝑛𝑠𝑧,𝑑𝑖

𝑇𝑟𝑎𝑛𝑠𝑥,𝑎𝑖
𝑅𝑜𝑡𝑥,𝛼𝑖

=

 cosθi - sinθi 0 0 1 0 0 0 1 0 0 ai 1 0 0 0

(1)
 sinθi cosθi 0 0 0 1 0 0 0 1 0 0 0 cosαi -sinαi 0

 0 0 1 0 0 0 1 di 0 0 1 0 0 sinαi cosαi 0

 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

=

 cosθi - sinθi cosαi sinθi sinαi ai cosθi

 sinθi cosθi cosαi - cosθi sinαi ai sinθi

 0 sinαi cosαi di

 0 0 0 1

''The matrix A is the transform from one joint to another via [51][52]

♦ A rotation around z,

♦ A translation along d,

♦ Another translation along a

♦ And finally, a rotation around x. In the matrix, ai and αi are constant, whereas di

and θi are joint variables. The sub matrix in blue depicts rotation, the sub matrix in

orange depicts translation, the perspective transforms in red and the scaling factor is

in green'' [51][52].

As understood and modified from [54], one would ask how the transformation matrices

of each connection can be obtained analytically. In order to derive these, it is necessary

to understand how the various reference frames are physically connected and ascertain

this with the DH parameters. The classical manipulator DH parameters and the length

values of each link are shown. Table 1 provides the arm dimensions, as also shown in

Figure (36) [54].

Chapter 4 Robotics system: Connection control between the systems 41

Robot length values (in meters) Auxiliary variables

D1 0.2755 Base to elbow aa 𝜋

6𝑥

D2 0.4100 Arm length ca cos(aa)

e2 0.0098 Joint 3-4 lateral o set sa sin(aa)

D3 0.2073 Front arm length c2a cos(2aa)

D4 0.0741 First wrist length s2a sin(2aa)

D5 0.0741 Second wrist length d4b D3 + D5(𝑠𝑎

𝑠2𝑎
)

D6 0.1600 Wrist to the centre

 of the hand

 d5b D4(𝑠𝑎

𝑠2𝑎
)+ D5(

𝑠𝑎

𝑠2𝑎
)

 d6b D5(
𝑠𝑎

𝑠2𝑎
) + D6

Table 1: Arm lengths and auxiliary parameters [54]

Once the coordinate frames have been established and the values for the DH matrices are

known, the position of the JACO arm end effector with the base can be determined via the

following transform: [52][51]

T = A01A12A23 … A(n−1)n (2)

As the Kinova JACO arm is a 6-DOF manipulator, it gives the expression [51]:

T = A01A12A23A34A45A56 (3)

The T matrix works on the first vector position – as shown in Equation 4 - the end effector

final position can be found by applying the DH on the initial end effector position [55]:

FinalPosition = T[PxPyPz1]T (4)

When the forward cinematic solution – as shown in Equation 3 is established – the end-

effector can be located in space given the values of “θ” and “α,” since “d” and “a”. [55]

Besides, classical DH parameters are shown in Table 2. The variables in that table

are listed in Table 2. The transformation matrices for each connection –

 according to the DH convention – are the same as each link: [54]

(5)

Chapter 4 Robotics system: Connection control between the systems 42

i

αi−1 ai−1 di θi DH Algorithm Angle Physical Angle

1 𝜋

2
 0 D1 q1 q1 −q1Robot

2 π D2 0 q2 q2 q2Robot − 90°

3 𝜋

2
 0 - e2 q3 q3 q3Robot + 90°

4 2·aa 0 -d4b q4 q4 q4Robot

5 2·aa 0 -d5b q5 q5 q5Robot − 180°

6 π 0 -d6b q6 q6 q6Robot + 90°

Table 2: The DH diagram and angle transformation.[54]

The JACO2 physical angles must also be converted to the angles of the

Denavit-Harteberg algorithm, as shown in Table 2. The DH parameters are obtained

after determining the various coordinate frames for each link shown in Figure (34)[54].

Since the DH parameters are known, by applying Equation 5 the forward kinematics

model can be calculated using Equation 2, and it is now interesting to introduce the

difference in the kinematics model [54].

4.1.3 Robotic arm model

As understood and modified from[50][54], suppose that an arbitrary point P in space has to

be shown regarding the base frame O0. If its position is only known from the reference frame

O1, one way to achieve this is by taking into account the position from that reference frame,

adjusting the point orientation to match that of the base frame and adding the distance

between the origin of both reference frames. [54]

The conceptual mapping form for the general transformation of a vector from its

description in O1 to a description in O0 would be:

𝑃0 = 𝑅1
0𝑃1 + 𝑂1

0 (6)

Figure 37: The coordinates system for the point P [54][50]

Chapter 4 Robotics system: Connection control between the systems 43

the coordinates system for the point P, where O0
1 ∈R3 is the distance between the reference

frames and R0
1∈ SO (3) [54]

According to this Equation, the general transformation matrix represented by T and It

would be [54]

𝑇1
0 = [

𝑅1
0 𝑂1

0

𝑂𝑇 1
] (7)

as a general form, the homogeneous transformation matrix would be as follows:

T =

 1 0 0 Mx

(8) 0 1 0 My
 0 0 1 Mz
 0 0 0 1

The M translation vector is represented by:

 Mx
 My (9)
 Mz

The rotation matrix is written according to the axis of the rotation:

R3xD(w) = [
1 0 0
0 cos(w) −sin(w)
0 sin(w) cos(w)

]

 R3yD(φ) = [
cos(o) 0 sin(o)

0 1 0
−sin(o) 0 cos(o)

] (10)

R3zD(K) = [
cos(K) −sin(K) 0

sin(K) cos(K) 0
0 0 1

]

𝑇0
1 is usually [54] referred to as a homogeneous matrix for transformations. [54] This

captures information about the distance between the origins and the direction of the frames

by means of a rotation matrix. [54] These four-dimensional matrices are essential for

drawing on the movie model. The transformation matrix of the base to the TCP of the JACO

arm is shown in Equation 3 [55][54]

4.1.4 Differential Kinematic of the JACO arm model

As modified from the original Equations in [54], the end effector velocity comprises linear

and angular velocity. Let us suppose that the end effector linear velocity is 𝑉𝑛
0 and its angular

velocity is 𝑊𝑛
0.

This relationship is contained in the matrix called Jacobian, which is important for

analysing singularity and inverse kinematics, but it is also useful for calculating torques on

Chapter 4 Robotics system: Connection control between the systems 44

the joints when a certain force is applied on the end-effector [54]. The joint velocity is q̇ .
[54]

𝑉𝑛
0= Jav (q) q̇ (11)

𝑊𝑛
0 = Jaw (q) q̇ (12)

Where Jav (q) is a (3 X n) matrix for the linear end-effector 𝑉𝑛
0 velocity with the joint velocity

q̇ and Jaw is also a (3 X n) matrix detailing the relation from the angular end-effector velocity

to the joint velocity [54]. In combination, these sub-matrices form the Jacobian matrix Ja.

[54]

The total end-effector velocity (for linear) = 𝑉𝑛
𝑜 = ∑𝑛

𝑖=1
𝜕𝑗𝑎𝑣

𝜕𝑞𝑖
𝑞𝑖

. = ∑𝑛
𝑖=1 𝐽𝑎𝑣𝑖𝑞𝑖

. (13)

The total end-effector velocity (for angular) = 𝑊𝑛
0 = ∑𝑛

𝑖=1 𝑊𝑖−1,𝑖 = ∑𝑛
𝑖=1 𝐽𝑎𝑤𝑖𝑞𝑖

. (14)

If the joints are prismatic or revolute, the joint velocities qi are expressed differently. In this

case, the JACO2 has six joints with frequent hem revolutions, whereby the angular and linear

velocity for a revolving joint is indicated as follows, modified from [54]:

♦ For the revolute joints

When the ith is a revolute joint, then the rotation axis is Zi-1. When 𝑊𝑖−1,𝑗
𝑖−1 represents the

angular velocity of the link I, the frame i – 1. Then, we have: [54]

𝑊𝑖−1,𝑗
𝑖−1 = 𝑞𝑖

. 𝑍𝑖−1
𝑖−1 (15)

♦ For the prismatic joints:

when the joint is prismatic, the frame I will be translated to the frame i-1, then [54]:

𝑊𝑖−1,𝑗
𝑖−1 = 0 (16)

In this case, the JACO has six joints, all of which are revolute, so the angular and linear

velocity for a revolute joint for subsequent links is represented as: [54]

𝑉𝑖 = 𝑉𝑖−1 + 𝑊𝑖 × 𝑟𝑖−1,𝑖 (17)

𝑊𝑖 = 𝑊𝑖−1 × ∅.𝑍𝑖−1 (18)

Where [54] Zi-1 is often the vector of the unit, the joint i axis and the ri-1, i corresponds to

the total distance from origin when the frame i is coordinated regarding the origin of the

frame i–1. [54] This means that the speed in connection i is the same as in connection i–1

with the increase of a component associated entirely changing due to the rotation of link i.

Subsequently, if the calculation of the linear speed of each link is made regarding the frame,

the equality presented in Equations (13)(14) is reordered as [54]:

Chapter 4 Robotics system: Armature 45

{
𝐽𝑎𝑣𝑖𝑞𝑖

. = 𝑤𝑖−1,𝑖 × 𝑟𝑖−1,𝑒 = ∅𝑖
. 𝑧𝑖−1 × (𝑝𝑒 − 𝑝𝑖−1)

𝐽𝑎𝑤𝑖𝑞𝑖
. = ∅𝑖

. 𝑧𝑖−1
↔ {

𝐽𝑎𝑣𝑖 = 𝑍𝑖−1 × (𝑃𝑒 − 𝑃𝑖−1)
𝐽𝑎𝑤𝑖 = 𝑍𝑖−1

 (19)

Where Pe is the distance from the origin of the end effector coordinate framework totals the

basis frame and pi-1 the analogue distance from link i-1. As previously mentioned, the

Jacobian for the angular and linear velocity have been derived [54].

These two Equations are logical equivalence to the two following Equations: [54]

[
𝐽𝑎𝑣𝑖

𝐽𝑎𝑤𝑖
] = [

𝑧𝑖−1 × (𝑝𝑒 − 𝑝𝑖−1)
𝑧𝑖−1

] (20)

As previous noted, [54] a recursive methodology can be used to calculate the Jacobian

matrix, where 𝑍𝑖−1 and 𝑃𝑖−1 are cyclically calculated. It is therefore clear that the Jacobian

depends on the manipulator's duration. [54] The reason for this is that the variables described

in Equation (20) are extracted from the homogeneous changes derived from Equation (3),

which rely entirely on articular variables. That being said, Pe corresponds to the first three

elements of the last column 𝑇𝑛
0 and pi-1 is equivalent to the unit vectors of joint I and z-1,

which are available in a third column of rotation matrix from Equations 2 and 3 [54].

4.2 Armature

The armature plays a significant objective in the simulation of the arm in Morse, which will

be the main core for the movement of the skeleton. For implementing the process of the

motion for the robotic arm, the following steps should be known, as modified from [56]:

4.2.1 Create the armature

The armature in Morse could be defined as how the kinematics links or chains have been

simulated that are involved in either revolute or prismatic joints, the number of bones

collected together to make an armature. [56]

4.2.2 Actuator type of the armature

The armature is represented in Morse [56] as actuators that can be controlled using ROS,

such as the trajectory action controller, joint space controller and path mechanism controller.

The actuators can move by two methods using an armature chain: first, by giving the target

position to the end effector of the chain (inverse kinematics solution); and second, by setting

values for each arm joint using data streams that represent trajectory controllers [56]

https://en.wikipedia.org/wiki/Logical_equivalence

Chapter 4 Robotics system: JACO arm simulation 46

4.2.3 Armature pose sensor

This sensor transmits the joint state of a specific parent armature as a child of this armature

– which is specified depending on the armature – to the data structure of the export data

stream from the armature sensor and on the pair dictionary (joint name, rotation angle value),

whereby the combined value is the radius value (for revolute connects). [56]

4.3 JACO arm simulation

This section presents how to implement the JACO robotic arm in the simulation program.

First of all, the arm has been drawn using a normal toolbox in Blender and then it should

have the same real arm texture and colour, which could be achieved by using the same

texture and colours as the real one, as shown in Figure (38).

Figure 38: The simulated JACO arm.

The JACO robot arm should be drawn in the simulation as the real design of this arm (the

number of joints, links and type of the material), whereby the arm comprises the number of

links and the joints of each link are controlled by one bone. When the bones rotate on the

required axis, this motion will be reflected on the body (skin) of the robotic manipulator arm

and this will undertake the required motion.

Chapter 4 Robotics system: JACO arm simulation 47

Figure 39: Links and joints for the robotic arm

The simulated robotic arm joints and links are clearly shown in Figures (39) and (40),

whereby the first figure represents the whole links and joints for the arm and the latter

represents them for the gripper, whereby each link is described with red colour and the joints

are described with yellow colour.

Figure 40: Joints and links for the gripper of JACO.

Chapter 4 Robotics system: JACO arm simulation 48

After drawing the arm in Blender, the bones (actuators) distributed along each link are used

for moving the simulated robotic arm. These bones move according to the joint motion. The

bones have the ability to move vertically and horizontally (rotating about its axis), as shown

in Figure (41).

Figure 41: Skeleton used for moving the arm.

The skeleton of the robot arm comprises a group of the connected bones, whereby the bones

should be added to the skin of the arm as shown in Figure (42). Each bone should represent

the link that will move according to the bone rotation. The axis of the rotation for each one

of the armature bones should be specified, and each joint must specify its type (rotation,

translation), while the value of its maximum movement should be specified, i.e. the

maximum angle of the rotation in rotational joint and the maximum placement in the

translation joint. The relationships between the bones should also be changed according to

the required movement, whereby the parent-child relationship will be implemented to the

bones and the mesh.

Chapter 4 Robotics system: JACO arm simulation 49

Figure 42: Bones added to the skin of JACO arm.

The number of bones that should be added to the arm depends on three factors:

♦ Number of joints and links used the bones for direct motion

♦ Number of axis rotation for each of the joints

♦ Kind of joint motion (prismatic or rotation).

After adding the armature to the skin of the arm, each of the bones is applied to the suitable

weight (the weight represented the bone force, which will reflect the motion to the skin)

according to its movement on the joint and which link should be moved. This can be

specified using the weight paint tool, as shown in Figure (43). The first step should be to

select the bone that will move, then select the arm part by part (link by link) and check the

link in terms of whether it needs to move with the bone. As an example, with bone number

(2) and link number (3), the link will not move while the selected bone is moving. There are

many options to make the weight paint process easily controllable.

Chapter 4 Robotics system: Skinning 50

Figure 43: Link number three through the weight paint stage.

The diameter of the selector can be changed as shown in Figure (43). This allows selecting

the vertex group precisely, and it can be selected in any position, even the small places of

vertex. The weight can be added using the colour intensity: as shown in Figure (44), for the

colours every weight has a special spectrum [57]. This could be using the add option,

whereby many options refer to special processes like subtract when removing the load, blur

normally smothers without any basics, among other options.

Figure 44: Colour spectrum and respective weights.[57]

4.4 Skinning

Skinning as a general definition relates to how to overcome and control the deformation

resulting from bone movement, i.e. when we want to move the skin according to the bone

movement, there is some mismatch between the two movements, caused by deformation.

The work deals with the robot arm as the human arm and distributes the bones on the arm

joints, whereby the arms with the bones are like the complete moving system and one

completes the other in motion. Accordingly, the bones should move accurately and exactly

like real human joints when moved with the skin of the arm. Therefore, we used Blender as

Chapter 4 Robotics system: Skinning 51

a program for drawing the arm and adding the bones. There are many algorithms for the

skinning, the most famous of which is linear skinning. All details about this algorithm are

briefly explained in this work, whereby the distribution of the weight in blender follows this

algorithm. Here, we study the effect when applying automatic skinning (automatic weight

distributed on the bones) and the exact weight distribution according to the arm motion

effect, whereby the weight distribution effect represents the colour percentage and thus the

colour ratio from dark blue to dark red (from the zero-weight effect to the maximum weight).

Enveloping (or skinning) [58] in computer graphics is a common and fundamental task.

Whenever an animator controls a character via a skeleton, enveloping is used to map these

controls to deform a mesh surface. [58] There is no standard way to envelope: an artist may

run a physical simulation to model muscle deformations or tune complex systems of shape

blending for more direct control. For interactive applications, linear blend skinning enjoys

the most popularity, it is easy to use and can be accelerated on graphics hardware [58]. The

basic and most popular algorithm for direct skeletal deformation is the linear blend skinning

(also known as a sub-spatial skeleton deformation, (single-weight) enveloped or matrix-

palette skinning [59].

''The traditional interactive skinning model goes by many names'' [60], ''including

skeleton sub-space deformation (SSD). Maya calls it smooth skinning and we call it linear

blend skinning' '[61][60].

The challenge in this work is implementing the movement of the manipulator robot arm

(JACO), which is an example. The arm has many joints, each of which must rotate about a

specific axis after drawing the arm with all of the material specifications and vertex to be

like the real arm in reality.

The bones have been added to the skin of the robotic arm, whereby the bones here are

the actuators, which will move the skin accordingly. The basic idea is to transfer the arm

parts softly from one place to another without deformation in the arm joints and links. The

first step in blender skinning is the weight distribution: to move the skin, we need to

distribute the effect of each bone on the right skin part, with each bone being responsible for

moving a specific arm part.

4.4.1 Skinning for rigid skinning

The general Equations are as in [62], which each vertex for the object is applied to exactly

one bone, as can be seen in the Figure (45). The vertex on the upper link side is subjected to

a different bone than the skin on the lower side, whereby the position of each vertex on the

skin would be as follows in the space world: [62]

Chapter 4 Robotics system: Skinning 52

Let us suppose – as modified from [62] – the position of the vertex as Pv in its space

coordinates, so the vertex position of the vertex according to the world coordinates should

be: [62]

Pvi world = Ti Pvi (21)

T is the transformation matrix representing the motion of the bone from its space to the world

space. [62]

[62] Remove the deformation through the motion of the arm by applying the linear

blend to the vertex near the joint, and which has been done by subjecting each arm skin

vertex to all affected bones. [62] This leads to Pi,j for a different bones coordinates system,

not just one. Here, the weight is the main objective, especially for the differently-oriented

skin vertex. Each vertex J that belongs to the bone i is assigned to a weight Wi,j. Accordingly,

the vertex position in the world coordinates is obtained from Equation: [62]

Pvi world =∑𝑗 𝑊𝑖,𝑗𝑇𝑖𝑃𝑣𝑗
𝑖

 (22)

as modified from [62]. Besides the border of each object, to prevent collisions we can also

assign the normal and tangent vectors: [62]

𝑁𝑟𝑗
′ = ∑ 𝑊𝑖𝑗𝑇𝑗

−𝑇𝑛𝑗
𝑖

𝑖

(23)

𝑇𝑗
′ = ∑ 𝑊𝑖𝑗𝑇𝑖𝑡𝑗

𝑖

𝑖

 (24)

The applied weights are independent of the motion of the arm: if the angle of a joint is

changed, the skin should not become deformed. This is called the spare weight, which will

be quickly integrated and should be smooth to avoid dislocations through the motion.

There is one limitation for this method that forced us to improve and add some variables

to this motion, which is when the joint angles are large or when a bone undergoes a twisting

motion. So that the axis of the rotation for each link should be subjected as in:

𝑊𝑖,𝑗 = 1i𝑓
1

5
≤

(𝑋𝑝𝑖 − 𝑇𝑗) ∗ (𝑋𝑐𝑖 − 𝑇𝑖)

|𝑋𝑐𝑖 − 𝑇𝑖|
≤

4

5

(25)

Otherwise, 𝑊𝑖,𝑗= 1 / R, where R is the number of the JACO joints.

For the JACO simulated arm where Xpi and Xci represented respectively by the parent

and child link positions which are located near the vertex Pv, R is the number of the rotation

joints.

Chapter 4 Robotics system: Skinning 53

This makes the vertex that is far away from the bone end point influenced by its bone,

although the closer would gradually influence. The deformation will be smother, especially

the dislocations through the motion [62].

Figure 45: Vertex between the second and the third bone of JACO

4.4.2 Weight distribution

The main step of skinning is how to apply the suitable weight to the vertex, for which there

are two options in Blender:

1 Applying a constant value of weight to the whole vertex and then editing the vertex
position when the deformation occurs.

2 Applying the suitable and specific weight to each vertex, which allows the vertex to
move flexibly according to the required applied weight.

The second way is more flexible and reliable because the arm has many joints and vertexes,

and each group of vertexes moves in a specific axis. By contrast, the first way is suitable for

an animation that does not feature many vertex groups, while in the second way the

deformation may happen or not due to the good weight distribution, as shown in Figure (46).

Before entering the weight and how it has been distributed, the bone will connect two

respective joints, whereby the motion of the bone will affect the last joint if the motion is

rotated about horizontally or along the bone’s vertical axis.

Chapter 4 Robotics system: Skinning 54

Figure 46: Applying the second way in weight distribution.

We will take the rotation of one link as an example and apply this link to these two methods

for weight distribution. In the second method, each one of the vertex groups will be applied

to the specific weight that is exactly or close to the required value. As shown here with the

motion of bone number two as an example, obviously bone number two has an effect on the

base vertex group in photo (1), link two vertex group in photo (2), link three vertex group in

photo (3), link number four vertex group in photo (4) and link five vertex group, whereby

we can see that link number four moves very softly and without any deformation. This is

shown in photo (6).

Applying the first way, when the deformation happens in one vertex group moving in a

specified axis, we need to edit the vertex position in this axis to overcome the deformation,

although this has a side effect on the other vertex groups and other deformation will appear

in the other vertex groups. We can see the effect of bone number two on each of the vertex

group links in Figure (47), although here when applying automatic weight distribution and

the deformation will clearly happen due to the non-effective distribution of the weight along

the vertexes in Figure (47) the effect of bone number two on the base vertex group in photo

Chapter 4 Robotics system: Skinning 55

(1), link two vertex group in photo (2), link three vertex group in photo (3) and link four

vertex group in photo (4) and link five vertex group.

Figure 47: Applying the first way in the weight distribution.

4.4.3 Rotational axis

The axis of the bone rotation must be specified, and an incorrect bones axis can cause many

deformations in the skin of the robot arm. Accordingly, the rotation axis must be known for

each joint to make the right decision when choosing the rotational axis, as shown in

Figure (48). In Blender, many rotational axes can be shown, but the problem is how to

choose the suitable axis for the rotation to take place.

Chapter 4 Robotics system: Skinning 56

Figure 48: Arm rotates softly with the right specified axis.

We can see here an example of one joint that is surrounded by the red circle on the left side

and we can see the zoom joint and the deformation, which clearly happened in Figure (49).

The reasons for this are discussed in detail in [63]. By splitting a rigid transformation into a

rotation and translation pair, we are committing to a specific pivot point (centre of rotation),

around which the rotations will be interpolated [63]. By default, this centre of rotation

corresponds to the origin of material-space coordinates, which are typically located near the

object’s centre of mass, thus explaining the unusual result [63].

Chapter 4 Robotics system: Skinning 57

Figure 49: Deformation when moving the joint in the incorrect axis.

The arm has been modelled using Python script and then implemented in MORSE, whereby

this should also be defined physically to apply the natural arm movement. After this, the

sensors and actuators should be added to the arm. In our work, the components that should

be added are as follows:

♦ Armature actuator

♦ Semantic camera sensor

♦ Armature pose sensor.

In this case, it will not be allowable to use this sensor and actuators as stand-alone elements

([64]) in the simulation, although if the user wants to implement these to work together, he

should add a virtual-fake robot. The fake robot as in [64] will be like the parent of the

sensors/actuators. There is no visual representation of this robot and it comprised a single

empty blender, whereby its only purpose is the base to connect the sensors [64].

Chapter 4 Robotics system: Controlling the arm 58

4.5 Controlling the arm

The mechanism to control the chain of the bones in MORSE can employ two methods, either

using the joint-space trajectory method or inverse kinematic by putting the end-effector to

the target’s coordinates and then moving towards it. Each method has special steps to

implement it.

The robot [65] control interprets the robot’s application program and generates a series

of joint values and joint velocities (and sometimes accelerations) in an appropriate way for

the feedback control. [65] At present, mainly an independent joint control approach is taken.

However, increasingly sophisticated control approaches like adaptive control, non-linear

control, etc. are involved in robotics, whereby the programmer uses the teach box of the

robot control and drives the robot to the desired positions and stores them and other values

like travel speeds, process parameters, etc. For the programming period – which can take a

significant time for complex tasks – the production is idle, and the robot mechanics will

transform the joint torques applied by the servo drives into an appropriate motion [65].

In our work the bones will be the actuators for the arm joints. Based on this information

the motion mechanism would be classified into two groups as follow and as modified from

[65]:

♦ PTP (Point to Point) motion

The TCP follows the desired (Cartesian) path, whereby the motion between these points

specifies the configuration of the robot at the beginning and the endpoint, and it is mainly

relevant to pick and place tasks where the position and orientation on the road holds no

importance since this movement is complicated to predict for the Cartesian space [65].

♦ CP (Continuous Path) motion

The motion type that defines the entire TCP position and orientation path (the position of

the manipulator by providing a description or the TCP frame (TCP = Tool Centre Point)

attached to the end-effector relative to the base frame attached to the manipulator (non-

moving base this means that the motions in each of the axes are mutually mutable [65].

4.6 Inverse kinematic architecture simulation

It was necessary to determine the trajectory path and inverse kinematic and how we

implemented them in the Morse simulation, as well as which type was supported in the

simulation (i.e. how we can move the arm, by which mechanism, trajectory joints).

The inverse kinematic (IK) is defined in [66] as the problem of determining a set of

appropriate joint configurations in which the end-effectors move to the desired positions as

Chapter 4 Robotics system: Inverse kinematic architecture simulation 59

smoothly, quickly and exactly as possible. In recent decades, several advanced or

algorithmic techniques and methodologies have been proposed to offer fast and realistic

solutions to the problem in inverse kinematics (IK), although many of the methods currently

available are subject to high computational costs and unrealistic poses compared with

popular inverse kinematic (IK) reliability.

We can explain the idea of IK in a simple way: first, we have an object and a robot arm,

whereby the robot arm should follow the object wherever it goes, which is achieved by

calculating the coordinates of the object relative to each one of the robotic arm joints, as

shown in Figure (50),

Figure 50: Simple idea of inverse kinematics.

Every robot arm has an end-effector. This end-effector is at the end of the robot arm and it

is changeable according to the specific applications; for example, for gripping, welding and

others. IK uses the Equations that give the joint parameters at each desired position for each

end-effector. The robot arm must know the coordinates of the ball relatively and then

calculate the rotation angle required for each robot joint to reach the ball, although in the

simulation the object will be created from the same plane of the robot arm axis, whereby the

implementation of IK mainly needs to study the axis compatibility, bones relationships, IK

options and use of each one of these options. This will be much easier than with classic

algorithms.

In order to implement IK, the first step starts with the mesh, while a cube in the centre

of the armature origin has been added as shown in Figure (51) This cube represents the target

according to whose movement the armature moves, and the mesh (cube) should be in the

same plane of axis with the armature bone, which will be fixed and will work as a reference

for the other bones, as shown in Figure (51).

Chapter 4 Robotics system: Inverse kinematic architecture simulation 60

We can see the execution of IK when the cube moves in the direction as the parent, so

the armature should follow the cube as the child, which happens when the whole system is

in pose mode. We can observe this step to ensure that the motion becomes soft without the

deformation in the arm links. Figure (52) illustrates the results of this implementation,

namely that the bones will certainly move into “pose mode.” Figure (53) also displays the

axis of the rotation object with the gripper.

Figure 51: Cube in the origin axis of the armature.

The IK technique has been programmed in ROS node (JACO), as shown in Figure (54). This

node is responsible for two main functions:

The gripper function: the ROS topic on the branch/Jaco/armature/gripper, which will

receive two messages, namely TRUE for gripping the object and FALSE for releasing the

object.

The IK function: the ROS topic on the branch/Jaco/armature/move_IK, whereby the

received message will be classified into options:

1 Name of the IK target (this will be a string referring to the name of the target)

2 Translation vector (x, y, z), which represents the translate position of the target

3 Rotation vector (rx, ry, rz) representing the rotational position for the target, the angles
in radian

4 Relative: specifies the translation and the rotation relative to the actual target movement
(the default option is true)

Chapter 4 Robotics system: Inverse kinematic architecture simulation 61

5 Linear speed (m/s): the linear speed for the inverse kinematic target

6 Rotational speed (rad/s): the rotational speed for the inverse kinematic target

Figure 52: Plane axis of the cube compatible with the axis of the base bone.

Chapter 4 Robotics system: Trajectory action control 62

Figure 53: Arm follows the created object.

Figure 54: IK ROS node schematic.

4.7 Trajectory action control

The trajectory is a set of points that should be reached at a specific time in ROS. These points

are represented as way points, each of which is expressed by its position as a main selection.

Moreover, velocity and acceleration are also selected, albeit as unessential options. A simple

schematic for the joint trajectory action node is shown in Figure (55), in which the trajectory

controller sends the massages (joints angles) to the arm joints immediately after the

trajectory target coordinates have been received through the joint trajectory action. These

messages are recognized according to the joint names, whereby every bone added to the arm

represents the joint name. The joint trajectory node gives us feedback after the operation is

successfully completed.

Chapter 4 Robotics system: Trajectory action control 63

As modified from [67], the joint trajectory action controller performs joint-space paths on a

set of joints. It takes as a command a message specifying the desired position and velocity

of each joint at every point in time and executes this command [67]. Furthermore, the

mechanism [67] allows the controller template to work with multiple trajectory

representations by default. [67] A spline interpolator is provided, although it is possible to

support other representations. Depending on the way point specification, the spline

interpolator uses the following interpolation strategies, as in [67]:

♦ Linear: only the position is specified, guarantees continuity at the position level,

although it is discouraged because it yields trajectories with discontinuous velocities

at the way points [67].

♦ Cubic: position and velocity are specified, guarantees continuity at the velocity level

[67].

♦ Quintic: position, velocity and acceleration are specified, guarantees continuity at

the acceleration level [67].

Figure 55: Joint trajectory action schematic [68].

The principles of the controller node for JACO have some differences compared with the

other modulated arms: because it does not modulate in Morse, the arm pose will receive the

actions from the trajectory and orientation and send them to the arm directly. These actions

have been defined in MORSE, whereas JACO needs to correspond these actions with the

modulated joint movement, i.e. the bones’ rotation must follow the action directions

precisely.

The control of the JACO arm is conducted through the MORSE-ROS interface, after

simulating the arm and adding the actuators to it. Every joint can move according to the

message that has been published. As described in the theoretical algorithm, the JACO arm

comprises many joints with different rotation axes according to which the bones will rotate

either about themselves or about the meeting point, which will be with the other bones.

Chapter 4 Robotics system: Trajectory action control 64

All of this needs to be defined in Morse, as shown in Figure (56). The joint trajectory

node is responsible for moving every joint to a specified published coordinate (joint angles)

with the option of velocity specification, including the time of goal reach. The orientation

node has to select the bones that need to rotate about themselves with a specified axis and

angle magnitude. This actuator reads the angle values of rotation around three axes and

applies them to the associated robot [69]. The function of the JACO gripper still picks up the

object when the command comes from the controller unless another message comes for

releasing the object, which is what the gripper node does.

Figure 56: Whole schematic of the trajectory ROS node.

In Figure (57) above, we can classify the ROS topic and their messages:

1 ROS topic/JACO/armature/gripper.

2 ROS topic/JACO/orientation responsible for moving the bone around the vertical axis or
the horizontal axis depending on the bone axis, the message when the bone needs the
orientation and about the specific axis. Moreover, it specifies the limited orientation
values.

3 ROS topic/JACO/armature/trajectory responsible for giving each one of the bones the
acceleration, position, velocity, and timing in seconds.

Start ROS node publisher: in this C++ program, it is necessary to enter the message types

and magnitude, which will be published to the specific node for moving the arm.

Send trajectory coordinates to arm joint: in this case, we took bones number 1 and

number 2 as examples. In Figure (57), we can see bone number 1, which represents the

second link of the JACO arm when moved with published topic position (2). This shows us

the magnitude of the position (joint angles), whereby we can also specify the time and

velocity to reach the target.

Bone number Bone name Position

1 JACO 2 2

Chapter 4 Robotics system: Trajectory action control 65

Figure 57: JACO arm link number two moved.

Send an angle to rotate the bones around itself: Sometimes the JACO arm joints have to

rotate about along the rotate axis like joint number one as shown in Figure (58) when the

rotation angle has been published on JACO link number one along the Z axis.

The gripping operation in MORSE simulation program is like putting glue between the arm

gripper and the object that we want to catch it, Figure (59) shows us when a ROS topic

published to the gripper to keep catching the red object, and the Figure (60) shows the

releasing object process.

Figure 58: JACO link number one rotated about the Z axis.

Chapter 4 Robotics system: Trajectory action control 66

Figure 59: JACO gripper hold the red object as a picking process.

Figure 60: Releasing process when the gripper releases the object to fall away.

This actuator doesn't simulate the interaction between the gripper fingers and the objects that

it takes [70].

The gripper in Morse could be programmed using Python script in the same time,

whereby some proprieties should be defined in the Blender file: for the graspable object,

there are options for defining the border of the object, namely the collision properties. For

the gripper, another kind of sensor should be added, called the radar. This sensor is

responsible for the gripper physical properties as follows: [70]

♦ Angle: the amount of angle within which the arm can recognize the object [70].

♦ Distance: the distance between the gripper and the object to pick up the object [70].

♦ Axis: the axis of the right pick for the graspable object [70].

Chapter 5 The semantic camera system: Overview of the semantic MORSE semantic camera
methodology 67

5 The semantic camera system

In this chapter we will display the semantic camera system. The system design consists of

many steps, from the way objects are defined to the way objects coordinates can be

discovered. This system should have the same real controlling system as the real MORSE

semantic camera which will be designed with the ROS control nodes, as explained below.

5.1 Overview of the semantic MORSE semantic camera methodology

The working MORSE semantic camera could be described as follows. The MORSE

semantic camera is a high-level sensor which consists of three units. The MORSE semantic

camera decides which objects should be detected in the simulated environments (This could

be done using the Logical properties i.e. define if the object is passive or active), each object

should be defined in the environments of the Blender as in the Section (5.2), Figure (61) can

describe the input and output to the MORSE semantic camera through the processing. This

MORSE semantic camera is used to detect the environment simulated object quickly and

this will be a suitable and effective solution as when using the image processing methods for

the same task.

Figure 61: The general work description of the MORSE semantic camera.

i.e the semantic camera will publish the objects information from 3D blender simulation into

the Morse simulation environment. The input would be internal data of blender environments

for the simulated objects i.e. every object has several details such as label, type, etc. The

object’s information has been stored in a Morse data bank with its label, type and other

Chapter 5 The semantic camera system: Overview of the semantic MORSE semantic camera
methodology 68

specifications, such as Graspable and object visibility. The MORSE semantic camera will

give an output according to the input type and would be as follows:

1 The object name: the name that has been given and pre-defined into the blender
environments. The type of the data is string, such as cup, red dish.

2 The object type: the type of each object which also is also pre-defined, the type of the
data is string.

3 The object position: the global 3D position of the object, the type of the data is
vec3(float).

4 The object orientation: the object orientation will be clarified in the section of
Quaternion.

The MORSE semantic camera always triggers. If the object found has been defined in the

database using blender, the MORSE semantic camera will display all the pre-defined

information related to the object, in addition, a 6D object pose will be sent. The 6D pose is

combined of the object position in the environment and the orientation of the object. The

output coordinates represent the centre of the object relative to the centre of the MORSE

semantic camera (the view region). Actually, the MORSE semantic camera detects the object

through its border which has actor physical properties. The object border is represented by

the physical simulation properties (bounding box). To demonstrate the process of converting

the real data image and using it through the semantic MORSE semantic camera we had to

use a point cloud MORSE semantic camera which gives us 3D scene data.

To convert 3D scene data into blender it has to be ply format which allows us to make

a mesh image like in blender with vertexes and the normal simulated colours. Before that,

the file should be in pts format as shown in the Figure (62).

Figure 62: The image as .pts file

The first number represents the header of the image, the second line consists of seven

numbers. Then for each point we got X, Y, Z and then the scanner intensity, which

represented as a grey level image inside the scanner, the last three numbers represented the

values of the RGB.

Chapter 5 The semantic camera system: Overview of the semantic MORSE semantic camera
methodology 69

Under the header the definition of the parameters which involved the .ply file. It started from

the format of the file, then the x, y, z and then in the normal x, y, z after that the colours and

then the intensity of the scanner until the element face (the faces represented polygons).

These faces have been read after reading the vertices, i.e. the number of the face gives us an

indication of how many polygons there are, we can then summarise the process from reading

a 3D scene data until covert into blender with the Figure (63).

Figure 63: The sequence of transferring the image to blender.

The general software process into the camera would be as follow:

♦ Import the necessary libraries (objects type [active or passive], 3D transformation,

objects properties, colours, sensors).

♦ Read the image through real time triggering.

♦ Compare each detecting the object with the reference's objects.

♦ Detecting the object bounding border and determine the centre of the object.

♦ Send the name, type, label, positions as output to the semantic camera ROS node.

As clarified, each object border has to be defined by the Blender; this option could be done

using a 3D bounding box. The semantic camera will subscribe to the centre of the detected

object. The boundary box of the object will surround the whole faces and vertices of the

object, the object would be in the centre of the boundary. The object acts like a blob and it

should be detected, another algorithm should be used to connect the object pixels.

5.1.1 The connectivity

After creating the bounding box, the challenge will be to determine how to recognize the

positions of the object’s faces. The connectivity is a method where the pixel in 2 or 3 D is

Chapter 5 The semantic camera system: Overview of the semantic MORSE semantic camera
methodology 70

connected to the neighbour's pixels with the similar amount of grey level, i.e. each two pixels

can be connected if they are adjacent in the same sense. This algorithm will take the object

pixels inside the boundary box and check every pixel to see if it belongs to the object or not

until the whole pixel checking is finished and then the object will be detected. As a simple

concept let us suppose pixel P with the coordinated (x, y) and P has a neighbour in the

horizontal (x ± 1, y) and in the vertical (x, y ± 1) as shown in the Figure (64).

(x, y-1)

(x-1, y) P (x, y) (x+1, y)

(x, y+1)

Figure 64: 4-pixel connectivity.

for the 3-Dsystem (x, y, z) this P has a relationship with its neighbour (x ±1, y, z) , (x, y ±1,

z),(x, y ,z ±1), this relationship in 2-D and 3-D is effected by the grey level values, there are

two types of connectivity according to the type of the dimensions 4 Pixel ,8-pixel, 18

pixel ,26 pixel connected.

5.1.2 The objects coordinate

There is a different form for the bounding box. This box has different form options such as

rectangular, circle, sphere or free-hand sketch. These forms are according to the vertices of

the mesh; the orientation of the 3D bounding box is usually relative to the global world

coordinates system.

♦ Bounding box: the rectangle which contains the object as shown in Figure (65), this

rectangle will be around the object in the three dimensions (X, Y, Z).

Chapter 5 The semantic camera system: Overview of the semantic MORSE semantic camera
methodology 71

Figure 65: The object surrounded by the box boundary [89].

♦ Bounding sphere: the minimum sphere which contains the object as shown in

Figure (66), the object will be at the centre of the sphere.

Figure 66: The object surrounded by the sphere boundary [89].

Chapter 5 The semantic camera system: Overview of the semantic MORSE semantic camera
methodology 72

♦ Bounding cylinder: the minimum cylinder which contains the object as shown in

Figure (67).

Figure 67: The object surrounded by the cylinder bounder [89].

The centre of the mass for the object inside the boundary box has completed for the 2-D

dimension as [71] and this is modified from [71] for our object. It should be noticed that it

is a 3-D dimension object, normally the average x, y, z position represents the centroid of

the object, this can be calculated using this formula:

𝑋𝑐 =
1

𝑁
∑ 𝑋𝑖

𝑁

𝑖=0

(26)

𝑌𝑐 =
1

𝑁
∑ 𝑌𝑖

𝑁

𝑖=0

(27)

𝑍𝑐 =
1

𝑁
∑ 𝑍𝑖

𝑁

𝑖=0

(28)

Where N represented the number of the pixels, xi yi zi the coordinates of the N pixel, that

means the x value is the summation of x coordinated for the whole pixels in the detected

object inside the boundary box. Also, another alternative method to find the centre of the

mass is approximately the same to the centre of the boundary box for the 2-D as [71], but

for our objects 3-D the x boundary centre, y boundary centre, z boundary centre.

Chapter 5 The semantic camera system: Implementation of the semantic objects in the
environment 73

𝑋𝑏𝑏 =
𝑋𝑚𝑖𝑛 + 𝑋𝑚𝑎𝑥

2
 (29)

𝑌𝑏𝑏 =
𝑌𝑚𝑖𝑛 + 𝑌𝑚𝑎𝑥

2
 (30)

𝑍𝑏𝑏 =
𝑍𝑚𝑖𝑛 + 𝑍𝑚𝑎𝑥

2
 (31)

This can be done by scanning the whole object and find the summation of the pixels inside.

5.2 Implementation of the semantic objects in the environment

The semantic map is a new requirement in the robot field using the simulation program

(Morse), a simulator completely programmed by Python that is used to implement 3-D

environments. Robots comprise many possible actuators and sensors and this simulator will

execute in Blender, as this program is based on Blender. The communication between these

will be with ROS controlling the robot motion and displaying information, ROS representing

the communication ring between various programs and making it possible to share

information between these programs. Normally there are many middle wares for

communicating between Morse and Blender, like socket, yarb and ROS. With ROS there are

many facility options and while the control is more effective and reliable than with others,

multi-robot types can be chosen and objects can be defined and then placed in the

environment.

The semantic camera is programmed in Python to give us the position of the object

related to its orientation in the (x, y, z) axis, as well as its position in the environment. This

is modified and understood from [72] the sensor and emulates a high-level camera which

outputs the names of the objects which are to be placed in the viewing region. The sensor

[72] detects the objects (objects which are defined with a proprietary logic as in Figure (69)),

and a single visibility test is carried out for casting a ray from the centre of the camera to the

centre of the object.

After drawing the objects and adding them to the environment, the objects need to be

defined in the semantic camera database in order to be recognizable later. The passive objects

in [73] are modelled on the simulation and will act as static objects moving without any

force, with the animation offering us the chance to control their movement with keyframes.

When simulating a ball falling on a table, the ball is an active object, as the gravity affects

Chapter 5 The semantic camera system: Implementation of the semantic objects in the
environment 74

the ball (the table is passive because its position is fixed). As shown in Figure (22), the dishes

and the food above it, the cup and the human model are also already in the simulation. All

these objects have to be defined in the semantic database.

The objects classified into two groups: one which is picked up by the arm and another

which is not picked up. The first set of coordinates are stored in the system and then sent to

the arm for the picking-up process. In Figure (68), the cake is already selected and the arm

should pick up it. In the options window, there is an object checkbox: this defines every

object in the simulation as an object visible to all other objects. The other option is graspable:

this check box will be true when the selected object should be picked up. The other properties

are optional, through which the object will gain more detail and be precisely described. We

can see in Figure (69) that there are more options for the object, where here the red dish has

been selected. The red dish should not be picked up by the robotic arm. This option executes

the object behaviour; then the object will act as if it is in a real environment, in addition to

the previous options (Object, Graspable).

Figure 68: The environment with the cake (waffle) selected and the options for picking up process.

The objects as in [72] that will be defined in three main categories:

♦ Type: usually the type of the objects that will be recognized

♦ Label: simple label or name to define the object

♦ Description: more objects details can be added here

Waffle properities

Chapter 5 The semantic camera system: Implementation of the semantic objects in the
environment 75

In our work every passive object has been defined in the data base we can see that obviously

in the Table (3)

the object type label description

red dish dish red red dish

green dish dish2 green green dish

cup water cup cup water cup

sausage food sausage meat

waffle food waffle cake

mouth skin mouth human mouth
Table 3: The objects with its type, label, and description.

Subsequently, the main issue in the physical object definition is to implement a bounding

box, which allows specifying the border of the object. The object after that would be

comparable with Morse physics.

In Figure (70), we can see the semantic camera fixed in Front of the human model who

sits on the chair. It is fixed to discover and detect the whole objects defined in the database.

Figure 69: The environment with the selected red dish and options

Red dish properities

Chapter 5 The semantic camera system: The Objects orientation 76

Figure 70: The semantic camera in the environment.

After implementing the objects in blender, as explained in Section 5.1, the input would be

the internal data of blender, i.e. every object has a number of details such as label, type, etc.

The object’s information has stored in blender with its label, type and the other specifications

of the object, such as graspable. The semantic camera acts as a sensor when it receives the

data and will give output (string) according to the input type (the object image with its type,

label); the semantic camera always triggers. If the object found has been defined in the

database using blender, the semantic camera will display all the pre-defined information

related to the object, and besides a 6D object pose will be sent. The 6D pose combined with

the object position in the environment furthers the orientation of the object. The output

coordinates represent the centre of the object relative to the centre of the camera (the view

region).

5.3 The Objects orientation

The semantic camera gives the position and the orientation of the 3D modelling objects

concerning the environment. The homogeneous transformation provides orientation and

translation; these transformations are commonly used in the robotic field. To represent the

orientation, there are two algorithms, either using Euler angles or Quaternions.

Chapter 5 The semantic camera system: The Objects orientation 77

5.3.1 Euler angles

Leonhard Euler discovered these angles. Euler angles are three angles which used for

describing the rigid body rotation. These angles are commonly used in aircraft production or

3-D computer graphics. As a simple explanation for these angles, we will take the 3-D rocket

in Figure (71) as an example.

Figure 71: 3D rocket

There are three angles for rotating this rocket:

♦ pitch: the pitch angle knows the rotation of the red X axis, as in Figure (72), the X

axis rotation has to be aligned to the world. In this way, the rocket goes up and

down around the X axis.

Figure 72: The Pitch rotation angle.

Chapter 5 The semantic camera system: The Objects orientation 78

♦ yaw/head: the angle as the head of the rocket rotates about it as shown in the

Figure (73) when the rocket rotates around the Blue Y axis.

Figure 73: The Yaw rotation angle.

♦ When the value of the blue Y axis and of the X axis change, the rocket will not rotate

about the Y world axis, but around the plane defined by X rotation. The Y rotation is

applied with respect to the reference frame of the rocket, not the world as shown in

Figure (74).

Figure 74: The rotation around two axises.

Chapter 5 The semantic camera system: The Objects orientation 79

♦ Roll: this angle represents the amount of rotation around the rocket itself, as shown

in Figure (75), the roll rotation (around green Z) also changes with respect to the

rocket's orientation, all the rotations are applied with respect to the rocket, not the

world.

Figure 75: The roll rotation angle.

Euler angles are useful for mobile, robotically filed and flight applications. They are

commonly used to control the orientation of the wrist joint in robotic arms. Euler angles also

have limitations, such as the Gimbal Lock problem. If we rotate the rocket 90 degrees around

the Y-axis (as shown in Figure (76) and try to rotate the rocket around the X red axis or Z

green axis, the rocket has the same rotational effect. This means that we have lost a degree

of freedom, as shown in Figure (77) and Figure (78).

Figure 76: Set 90 degree to the Y-green axis.

Chapter 5 The semantic camera system: The Objects orientation 80

Figure 77: Rocket rotates around the X axis.

Figure 78: Rocket rotates around the Z axis.

In summary, Euler angles are straightforward and easy to analyse and regulate. However,

they do have one limitation problem which is the Gimbal Lock, this problem can influence

on the measurement of the orientation and preventing the right measurement.

Chapter 5 The semantic camera system: The Objects orientation 81

5.3.2 Quaternion

A discussion of how to rotate a vector in three-dimensions by multiplying three quaternions

together follows.

Quaternions as modified from [74] consists of 4-tuples of real numbers: q = (q0, q1, q2,

q3). Equivalently, quaternions can be written in the form

𝑞 = 𝑞0 + 𝑞1𝑖 + 𝑞2𝑗 + 𝑞3𝑘 (32)

Where

𝑖 = (0,1,0,0)

𝑗 = (0,0,1,0)

𝑘 = (0,0,0,1)
(33)

In R³, a vector is defined as v = υ xi+ υ yj+ υ zk where i, j, and k are vectors of the form

𝑖 = (1,0,0)

𝑗 = (0,1,0)

𝑘 = (0,0,1).
(34)

Any vector in R³ can map to R4 by (υ x, υ y, υ z) → (0, υ x, υ y, υ z) This mapping can represent

by v = 0 + v = υ. By convention, the i, j, and k components of a quaternion. Thus, any

quaternion q may be written as [74]

𝑞 = 𝑞0 + 𝑞 = 𝑞0 + 𝑞1𝑖 + 𝑞2𝑗 + 𝑞3𝑘 (35)

Where

𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1. (36)

q0 represented the scalar part of the quaternion and q = q1i+q2j+q3k represented the vector

part of the quaternion [74].

5.3.3 Equality

Two quaternions, p = p0 + p1i + p2j + p3k and q = q0 + q1i + q2j + q3k will be equal if and

only if their corresponding scalar components are equal [74]:

Chapter 5 The semantic camera system: The Objects orientation 82

𝑝0 = 𝑞0

𝑝1 = 𝑞1

𝑝2 = 𝑞2

𝑝3 = 𝑞3

(37)

5.3.4 Addition

Two quaternions, p = p0 + p1i + p2j + p3k and q = q0 + q1i + q2j + q3k, can be added together

by combining their corresponding scalar and vector components [74]:

𝑝 + 𝑞 = (𝑝0 + 𝑝1𝒊 + 𝑝2𝒋 + 𝑝3𝒌) + (𝑞0 + 𝑞1𝒊 + 𝑞2𝒋 + 𝑞3𝒌)

 = (𝑝0 + 𝑞0) + (𝑝1 + 𝑞1)𝒊 + (𝑝2 + 𝑞2)𝒋 + (𝑝3 + 𝑞3)𝒌 (38)

5.3.5 Multiplication

There are two kinds of multiplication: either scalar multiplication or multiplication of two

quaternions. The multiplication of two quaternions as follow: p = p0 + p1i + p2j + p3k and q

= q0 + q1i + q2j + q3k. [74].

5.3.5.1 Scalar Multiplication

Multiplication of a quaternion q = q0 + q1i + q2j + q3k by a scalar s [74]

𝑆𝑞 = 𝑆𝑞0 + 𝑆𝑞 = 𝑆𝑞0 + 𝑆𝑞1𝒊 + 𝑆𝑞2𝒋 + 𝑆𝑞3𝒌. (39)

5.3.5.2 Multiplication of Two Quaternions

The multiplication of two quaternions, p = p0 + p and q = q0 + q, is defined as [74]

𝑝𝑞 = (𝑝0 + p)(𝑞0 + q) = 𝑝𝑜𝑞0 + 𝑝𝑜q + 𝑞𝑜p + pq. (40)

Continuation of multiplication pq is given in chapter 5.3.5.5.

5.3.5.3 Associative Under Multiplication

Quaternions [74] are associative under multiplication, for any three quaternions, 𝑝 = 𝑝0 +

 𝑝1i + 𝑝2j + 𝑝3k, 𝑞 = 𝑞0 + 𝑞1i+𝑞2j+𝑞3k, and 𝑟 = 𝑟0 + 𝑟1i+𝑟2j+𝑟3k, the order in which the

quaternions are gathered together [74]:

Chapter 5 The semantic camera system: The Objects orientation 83

(𝑝𝑞)𝑟 = (𝑝0𝑞0 + 𝑝0q + 𝑞0p + pq) (𝑟0 + r)

 = 𝑝0𝑞0𝑟0 + 𝑝0𝑞0r + 𝑝0𝑟0q + 𝑝0qr + 𝑞0𝑟00p + 𝑞0pr + 𝑟0pq + pqr.

Factoring 𝑝0 out of the first four terms and p out of the last four terms [74],

(𝑝𝑞)𝑟 = 𝑝0(𝑞0𝑟0 + 𝑞0r + 𝑟0q + qr) + p (𝑞0𝑟0 + 𝑞0𝒓 + 𝑟0q + q𝒓)

 = (𝑝0 + p) (𝑞0𝑟0 + 𝑞0r + 𝑟0q + qr)

By definition, 𝑞𝑟 = 𝑞0𝑟0 + 𝑞0r + 𝑟0q + qr . [74]

(𝑝𝑞)𝑟 = 𝑝(𝑞𝑟). (41)

5.3.5.4 Implications of i2 = j2 = k2 = ijk = −1

The relationships i2 = j2 = k2 = ijk = −1 must hold; some important relationships that follow

from these statements will drive [74].

Since i2 = ii = ijk = −1, this implies that

i = jk. (42)

equivalently, since k2 = kk = ijk = −1,[74]

k = ij. (43)

Using Equation (43) then multiplying by j on the right,[74]

k (j) = ij (j)

kj = i(jj) = i(𝒋2) = i(-1) = -i

so

i = -kj. (44)

From Equations (42) and (44), the following relationships can find for i:[74]

i = jk = -kj.

Using Equation (42) and multiplying on the left by j,[74]

(j)i = (j)jk

ji = (jj) k = (j2) k=(-1) k= -k

https://www.thesaurus.com/browse/equivalently

Chapter 5 The semantic camera system: The Objects orientation 84

so

k = -ji. (45)

From Equation (43) and (45), the following [74] relationships are found for k:

k = ij = -ji.

Using Equation (45) and multiplying on the right by i [74].

(k)i = -ji (i)

ki = -j (ii) = -j (i2) = -j (-1) = j.

Thus,

j = ki. (46)

Using Equation (43) and multiplying on the left by i [74].

(i) k = (i)ij

ik = (ii) j = (i2) j = (-1) j = -j.

Hence,

j = -ik. (47)

From Equations (46) and (47), the following [74] relationships are found for j:

 j = ki = -ik.

To summarize, when multiplying two quaternions together, the relationships

i2 = j2 = k2 = ijk = −1 must always hold. These relationships imply the following [74]:

ij = -ji = k

jk = -kj = i

ki = -ik = j
(48)

5.3.5.5 Multiplication of Two Quaternions Revisited

The multiplication [74] of two quaternions, 𝑝 = 𝑝0 + p and 𝑞 = 𝑞0 + q, defined as

𝑝𝑞 = (𝑝0 + p)(𝑞0 + q) = 𝑝𝑜𝑞0 + 𝑝𝑜q + 𝑞𝑜p + pq.

The last term, pq, is the product of two vectors. This term can be expanded [74]

pq = (𝑝1i + 𝑝2j + 𝑝3k)(𝑞1i + 𝑞2j + 𝑞3k)

 = 𝑝1i (𝑞1i + 𝑞2j + 𝑞3k) + 𝑝2j (𝑞1i + 𝑞2j + 𝑞3k) + 𝑝3k(𝑞𝑞1i + 𝑞2j + 𝑞3k)

Chapter 5 The semantic camera system: The Objects orientation 85

 = 𝑝1𝑞1ii + 𝑝1𝑞2ij + 𝑝1𝑞3ik + 𝑝2𝑞1ji + 𝑝2𝑞2jj + 𝑝2𝑞3jk + 𝑝3𝑞1ki + 𝑝3𝑞2kj + 𝑝3𝑞3kk.

The relationships developed in the previous subsection (48), and the fact that

i2 = j2 = k2 = −1, the above Equation can be further simplified as [74]

pq = 𝑝1𝑞1 (−1) + 𝑝1𝑞2k + 𝑝1𝑞3 (−j) + 𝑝2𝑞1 (−k) + 𝑝2𝑞2 (−1)

+ 𝑝2𝑞3i + 𝑝3𝑞1j + 𝑝3𝑞2 (−i) + 𝑝3𝑞3 (−1)

 = −(𝑝1𝑞1 + 𝑝2𝑞2 + 𝑝3𝑞3)

 + [(𝑝2𝑞3 − 𝑝3𝑞2)i + (𝑝3𝑞1 − 𝑝1𝑞3)j + (𝑝1𝑞2 − 𝑝2𝑞1)k].

 The term 𝑝1𝑞1 + 𝑝2𝑞2 + 𝑝3𝑞3 is the familiar dot product of two vectors. The term

[(𝑝2𝑞3 − 𝑝3𝑞2)i + (𝑝3𝑞1 − 𝑝1𝑞3)j + (𝑝1𝑞2 − 𝑝2𝑞1)k] is the cross product of two vectors

[74].

pq = - (p·q) + p × q. (49)

The above Equation indicates that the product of two vectors in R4 results in a scalar (the dot

product) and another vector (the cross product) [74].

Plugging pq = - (p·q) + p × q into Equation (40), the multiplication of two

quaternions, 𝑝 = 𝑝0 + p and 𝑞 = 𝑞0 + q, [74] is

pq = 𝑝0𝑞0 + 𝑝0q + 𝑞0p + pq

 = 𝑝0𝑞0 + 𝑝0q + 𝑞0p +[- (p·q) + p × q].

The terms 𝑝0𝑞0 and - (p·q) are scalars. The other three terms are all vectors. Gathering scalar

terms together and vector terms together, the Equation for the multiplication of two

quaternions becomes [74]

 pq = 𝑝0𝑞0 − (p·q) + 𝑝0q + 𝑞0p + p × q. (50)

5.3.5.6 Closed Under Multiplication

The multiplication [74] of any two quaternions, 𝑝 = 𝑝0 + p and 𝑞 = 𝑞0 + q, will result

in a third quaternion, 𝑟: 𝑟0 + r:

 pq = 𝑝0𝑞0 - (p·q) + 𝑝0q + 𝑞0p + p × q

 = (𝑝0𝑞0 − 𝑝1𝑞1 − 𝑝2𝑞2 − 𝑝3𝑞3) + (𝑝0𝑞1 + 𝑝1𝑞0 + 𝑝2𝑞3 − 𝑝3𝑞2)i

 + (𝑝0𝑞2 − 𝑝1𝑞3 + 𝑝2𝑞0 + 𝑝3𝑞1)j + (𝑝0𝑞3 + 𝑝1𝑞2 − 𝑝2𝑞1 + 𝑝3𝑞0)k

 = 𝑟0 + 𝑟1i + 𝑟2j + 𝑟3k

 = 𝑟.

Chapter 5 The semantic camera system: The Objects orientation 86

5.3.5.7 Multiplicative Identity

The product [74] of a quaternion 𝑞 = 𝑞0 + q and the multiplicative identity should return

the quaternion 𝑞. For quaternions, the multiplicative identity is the quaternion with a scalar

part of 1 and zero vector part [74]:

𝑞 (1) = (𝑞0 + q)(1 + 𝟎)

 = 𝑞0(1) − (q · 𝟎) + 𝑞0(0) + (1)q + q x 𝟎

 = 𝑞0 + q

 = 𝑞.

If the order of multiplication is reversed [74]:

(1) 𝑞 = (1 + 𝟎)(𝑞0 + q)

 = (1)𝑞0 − (0 · q) + (1)q + 𝑞0(𝟎) + 𝟎 x q

 = 𝑞0 + q

 = 𝑞.

Since 𝑞(1) = (1)𝑞, 1 is the multiplicative identity for R4 [74].

5.3.5.8 Conjugate

The complex conjugate [74] of a quaternion q = q0 + q = q0 + q1i + q2j + q3k defined as

q∗ = q0 -q = q0−q1i−q2j−q3k. The result of the multiplication of a quaternion and its complex

conjugate would always be in scalar product. Multiplying q by q∗,

𝑞𝑞∗ = (𝑞0 + 𝒒) (𝑞0 − 𝒒)

 = 𝑞0
2 − (𝒒 · −𝒒) + 𝑞0𝒒 − 𝑞0𝒒 + 𝒒 × (−𝒒).

(51)

The cross product of q and −q can be done by pulling the negative out: q×−q = − (q × q).

The cross product of any vector with itself always be zero (q × q = 0), the above Equation

will be as follows [74]:

𝑞𝑞∗ = (𝑞0
2 + 𝒒 · 𝒒)

 = 𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2
(52)

𝑞∗𝑞 = (𝑞0 − 𝒒) (𝑞0 + 𝒒)

 = 𝑞0
2 − (−𝒒 · 𝒒) + 𝑞0𝒒 − 𝑞0𝒒 + (−𝒒) × 𝒒.

(53)

The negative sign pulled out if the cross product (−q) × q = − (q × q) = 0. The above Equation

will be in a simple form as follows [74]:

Chapter 5 The semantic camera system: The Objects orientation 87

𝑞∗𝑞 = 𝑞0
2 + 𝒒 · 𝒒

 = 𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2
(54)

The product of a quaternion and its complex conjugate is equal to [74]:

𝑞𝑞∗ = 𝑞∗𝑞 = 𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2. (55)

5.3.5.9 Norm

The norm [74] of a quaternion q = q0 + q = q0 + q1i + q2j + q3k defined

𝑁(𝑞) = √𝑞∗𝑞

 = √𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2

 = ‖𝑞‖.

(56)

5.3.6 Rotations in Three-Space

As an example [74], for the 3-D rotation the vector v = vxi + vyj + vxk rotates through an

angle 2θ about vector u. The vector u is a unit vector and both v and u are pass through the

origin point. The vector w = wxi + wyj + wzk represents the image of v after rotation.

The vectors v and w are in R3 should be mapped to R4

𝒗 = 0 + 𝒗

𝒘 = 0 + 𝒘. (57)

Chapter 5 The semantic camera system: The Objects orientation 88

The quaternions υ = 0 + v and ω = 0 + w usually represented by the vectors v and w.

Figure 79: The vector v will be rotated clockwise about u through an angle of 2θ [74].

By multiplying the vector v by a quaternion of the form q = cos θ + u sin θ then multiplying

by a quaternion form q∗ = cos θ – u sin θ, the vector w which represented an image of

rotation the vector v about u through angle 2θ [74]

𝑾 = 𝑞v𝑞∗

 = (𝑐𝑜𝑠𝜃 + u 𝑠𝑖𝑛 𝜃) v (𝑐𝑜𝑠 𝜃 − u 𝑠𝑖𝑛 𝜃).
(58)

The Equation (60) shows a vector w that is the image of v rotated about u through an angle

2θ.

To rotate [74] a vector v = υxi + υyj + υzk about an axis u = uxi + uyj + uzk through an angle

2θ where v and u pass through the origin point, the following steps should be done:

1 The vector v = υxi + υyj + υzk must map from R3 to R4 [74]:

𝝂 = = 0 + v. (59)

2 The axis of rotation must have length 1. otherwise the desired axis of rotation, m = mxi
+ myj + mzk, does not have length 1, then m would be [74]:

𝑚 =
𝑚𝑥𝒊 + 𝑚𝑦𝒋 + 𝑚𝑧𝒌

√𝑚𝑥
2 + 𝑚𝑦

2 + 𝑚𝑧
2

. (60)

3 Plug v, u, and 2θ into w = v cos 2θ + (u x v) sin 2θ + 2 (u ∙ v) u sin 2θ [74]:

Chapter 5 The semantic camera system: The Objects orientation 89

w = v 𝑐𝑜𝑠 2𝜃 + (u × v) 𝑠𝑖𝑛 2𝜃 + 2(u · v) u 𝑠𝑖𝑛2 𝜃. (61)

4 The quaternion ω = 0 + w must have a zero-scalar. The vector w which represented the
rotation of v around u through an angle of 2θ [74].

Another example [74] for rotating the vector v = 3i−5j + 2k 90 ° about the axis (i + j). The

first step is to normalize the rotation axis:

𝒖 =
1

√12 + 12 + 02
𝒊 +

1

√12 + 12 + 02
𝒊 +

0

√12 + 12 + 02
𝒌

 =
1

√2
𝒊 +

1

√2
𝒋

(62)

Now, find the rotating vector, w as in Equation (61) [74]

𝒘 = v cos 2𝜃 + (u x v) sin 2𝜃 + 2(u · v) u sin2𝜃 (63)

𝑐𝑜𝑠2𝜃 = 𝑐𝑜𝑠90° = 0

𝑠𝑖𝑛2𝜃 = 𝑠𝑖𝑛90° = 1

𝑠𝑖𝑛2𝜃 = 𝑠𝑖𝑛2 45° = (
1

√2
)2 =

1

2

(64)

[74] Plugging the above trig identities in,

𝒘 = v 𝑐𝑜𝑠90° + (𝒖 × 𝒗) 𝑠𝑖𝑛90° + 2 (u · v) u 𝑠𝑖𝑛2 45°

 = v(0) + (u × v)(1) + 2(u · v) u
1

2

 = (u × v) + (u · v)u.

(65)

To calculate the dot and cross products of u = 1

√2
𝒊 + 1

√2
𝒋 and v = 3i − 5j + 2k separately and

then plug them to find w, the dot product of u and v is [74]

u · v = (
1

√2
𝒊 +

1

√2
𝒋) · (3𝒊 − 5𝒋 + 2𝒌)

 =
1

√2
 (3) +

1

√2
(−5) + 0(2)

 =
3 − 5

√2

 =
−2

√2

 = −√2.

(66)

Chapter 5 The semantic camera system: The Objects orientation 90

[74] And the cross product of u and v is

u x v = (
1

√2
𝒊 +

1

√2
𝒋) x (3𝒊 − 5𝒋 + 2𝒌)

 = [
1

√2
 (2) − 0(5)] 𝒊 + [0(3) −

1

√2
 (2)] 𝒋 + [

1

√2
 (−5) −

1

√2
(3)] 𝒌

 =
2

√2
𝒊 −

𝟐

√2
𝒋 +

−5 − 3

√2
𝒌

 = √2𝒊 − √2𝒋 − 4√2𝒌.

(67)

The dot and cross product can be plugged in Equation (65) to solve for w,[74]

w = (u × v) + (u · v)u

 = (√2𝒊 − √2𝒋 − 4√2𝒌) + (−√2) (
1

√2
𝒊 +

1

√2
𝒋)

 = (√2𝒊 − √2𝒋 − 4√2𝒌) + (−𝒊 − 𝒋)

 = (−1 + √2)𝒊 − (1 + √2)𝒋 − 4√2𝒌.

(68)

As shown in Figure (80), the vector v = 3i − 5j + 2k has been rotated 90° about the axis i +

j into the vector w = (−1 + √2) i − (1 + √2) j − 4√2 k.

Figure 80: The vector v = 3i − 5j + 2k is rotated 90° clockwise about the axis (i + j) into

w = (−1 +√2)i − (1 + √2) j − 4√2k. [74].

Chapter 5 The semantic camera system: Control the semantic camera 91

5.4 Control the semantic camera

After the definition of each object in the environments (as shown in section above) is

complete, the discovery of the coordinates, type, label and state of the object follows. The

camera looks for the objects that have been defined before. The ROS topic for the semantic

camera gives the status of this topic, representing the information stored, which is related to

many objects in the simulated environment. This Q quaternion which is an extension of a

non-switching operation of complex numbers provides a suitable and easy solution for

calculating the orientation or rotation of the 3D objects, it can also represent the orientation

or 3D rotation by these four values. The quaternion represents two things, first (x, y, z)

components which represent the vector and W represents the scalar value of the rotation

around that vector, as modified from [76].

This quaternion call will always be the normal of quaternion q when it rotates

interactively in the quaternion – mode [76]:

||𝑞|| = √𝑋2 + 𝑌2 + 𝑍2 + 𝑊2 (69)

The following formulation applies: W = cos(a/2) [76] to find the actual rotation at the

defined angle, where a is really the angle of rotation we're looking for, in the Figure (81) is

shown obviously that the objects with its coordinates and types.

Figure 81: The output of the semantic camera (each object with its details).

These coordinates are presented to the camera system. Let us assume that the general

coordinates matrix will be B, the matrix from the camera is B where i is the number of

objects. We have the base coordinates matrix which is represented by Bi where I represent

the robot, camera or human, etc. Every object in the environment has a coordinates matrix

according to the base of the environment.

Chapter 5 The semantic camera system: Control the semantic camera 92

Bbase
camera XBrobot

base = Brobot
camera (70)

then according to the results which have been extracted from the camera system

BCamera
Object X Brobot

Camera= Brobot
Object

 (71)

So, the robot will go directly to the object coordinates, each object has a specific

transformation matrix.

As shown the objects classified to:

1 Red dish: represented the first type of the food. (eat)

2 Green dish: represented the second type of the food. (eat)

3 Water cup: represented the drinkable liquid. (drink)

In Figure (82), the ROS schematic for the semantic camera control node is shown. This node

is programmed to take the coordinates and the other object details that have been discovered

by the camera, this information is then stored for later use in the system. The ROS message

carried on the ROS topic semantic camera represents the environment object’s details. These

details will enter the main node called Morse and then be processed. The ROS topic /fake

robot/semantic camera will receive the message about each object’s details and as explained

before, be used later in the arm coordinates. In Table (4), all of the objects will need to be

defined and stored for later use.

The object

Position Orientation

X Y Z X Y Z W

Cup 0.01475 -0.68943 0.96633 0 0 -0.98770 0.15638

Red dish 0.06852 -0.35229 0.87113 0 0 0 1

Green dish -0.29988 -0.39974 0.87950 0 0 0 1

Mouth 0.23578 -0.37367 0.92093 0 0 0 1
Table 4: Every object with its coordinates

Moreover, we can see that the camera node sends the specific messages to the n_taker, which

represents the connected ring between the node and the whole environment. The semantic

camera sensor is applied to the fake robot as a child relationship with it.

Chapter 5 The semantic camera system: Control the semantic camera 93

Figure 82: The semantic camera system Node.

It is not permitted in the simulation to simultaneously implement many sensors or actuators,

but if the user wants to implement these to work together, the user should add a virtual fake

robot. These sensor and actuators are to act as stand-alone elements ([75]). This fake robot

is similar to the parent of the sensors because the robot does not show any imagery and has

one blender empty, its sole aim is to provide the base for connecting sensors with the parent

of as many sensors/actuators as necessary can be connected to a fake robot.

Chapter 6 The sound recognizer system: The system scripts 94

6 The sound recognizer system

The sound recognition system is one of the essential steps, the exact word required is most

accurate. The algorithms used in this project are based on [77] and has improved using our

new algorithm, this algorithm used with some editing according to the project requirements,

the reader can also find more details and examples. One of the difficulties is how to

communicate the system with other systems, so we found the best way to program ROS

nodes that are responsible for recognizing words, but this technique bumped into several

problems.

6.1 The system scripts

The sound system will consist of three main subdivided script:

1 The main script: will run the node to publish the messages on the specific topic also will
be like the administer which arranges the function. Also, responsible for launching the
node of the recognition system

2 The dictionary script (.doc): in this script contains the words as real pronounced and as
follow:

WATER W AO T ER

RED R EH D

GREEN G R IY N

3 The static language model script (. lm): this is an essential part of our sound system; it is
a type of the language models (explained in 6.5). As shown below:

-2.8116 GREEN -0.3004

-2.8116 RED -0.2990

-2.8116 WATER -0.2647

6.2 The language model

The main part of the sound recognition system, it contains the decoder of the words that

could be recognized, there are different types of the model language like keywords list,

grammars and static language model which used in our system [77].

Chapter 6 The sound recognizer system: Keywords list 95

6.3 Keywords list

It is the type of language template, the principle in this model is set as a threshold of every

word. It can be easily detected with the speech; the threshold is different from the long key

phrase and the short key phrase; the keywords list has also supported the pocket sphinx [77].

6.4 Grammars

This model would be easy to control, and there are not many options for the word sequences,

i.e. the word only has one or two possible options that can be detected [77]. This method

must precisely and carefully specify the input data. If the user makes unintended mistakes

and misspells some words, the recognition process fails and the words are not used. [77] The

grammars language model can be created with the Java Speech Grammar Format JSGF and

have a file extension .gram or .jsgf. Users should avoid using complex grammar and

sentences with complex rules which will take a long time to recognize, as such a process

could be subject to failure [77].

6.5 Static language model

In this model, the design contains many words or a combination of words and it is quite

possible to edit these terms easily. Therefore, it is highly recommended to use the sound

system design, so the user can simply treat this model by saying everything in everyday

language and then defining, saving and programming these words with a simple engineering

effort [77].

For [77] the new generation of sound recognition interfaces, the static language model

uses the above properties because, when depending on natural language, it becomes more

effective to use this model to escape the control language of the old versions or generations

of commands. There are several methods which are used to create the static language model

[77]:

♦ Small amount of data: using an on-line quick web service [77].

♦ Large amount of data: using a CMU language modelling toolkit [77].

♦ Sometimes needing to build a favourite toolkit: using ARPA [77].

''The static language model can be saved into three formats: [77]

♦ Text ARPA: it will take up a lot of storage space, but be very easy and to edit. The

extension will be. Lm [77].

Chapter 6 The sound recognizer system: Static language model 96

♦ Binary BIN: this takes less space and is faster to load but is difficult to edit. The

extension will be. lm.bin [77].

♦ Binary DMP: this is not recommended for use, because it is very complicated [77].

[77] Changing between formats and changing from one to another is permissible, building

the static language and preparing the suitable text or words, and then training the ARPA.

This [77] can be done using toolkits like SRILM, CMUCLMTK, IRSLM and MITLM, and

is recommended if the user wants an efficient and straightforward system without

complicated control commands. If the language is English, then a file.tx should be created

that includes the necessary project words (red, green, water), then it would need to be loaded

into the project. This page is then able to create a.dic and .lm file and download it once a

launch script has been programmed to be used as a guide between the two scripts for the

information cycle. The program is then written and programmed to create the sound

recognition node inside the ROS[77].

In order to illustrate the numbers in the .lm script, the language model based on the probably

distribution for the words. In our work each one of the words (green, red, water) has a

threshold which has been specified by the probably distribution. As modified from [88] the

sequence of the N word represented by the term n-gram, the n-grams has many types

according to the word sequence such as unigram for one word sequence as we have in our

work , bigram for two words sequence, n-gram for N words sequence. The sequence of the

N words will be represented by (w1, w2, ..., wn).

The value of joint probabilities for each word in a sequence would be represented by [88]:

P (w1, w2, ..., wn) (72)

this can compute in the easiest way by using the chain rule of the probability[88]:

P(𝑋1 … 𝑋𝑛) = 𝑃(𝑋1)𝑃(𝑋2|𝑋1)𝑃(𝑋3|𝑋1
2) … 𝑃(𝑋𝑛|𝑋1

𝑛−1)

(73)
= ∏ 𝑃(𝑋𝑘|𝑋1

𝑘−1)

𝑛

𝑘=1

after applying this to words we get [88]:

P(𝑤1
𝑛) = 𝑃(𝑤1)𝑃(𝑤2|𝑤1)𝑃(𝑤3|𝑤1

2) … 𝑃(𝑤𝑛|𝑤1
𝑛−1)

(74)
= ∏ 𝑃(𝑤𝑘|𝑤1

𝑘−1)

𝑛

𝑘=1

http://code.google.com/p/mitlm/

Chapter 6 The sound recognizer system: The control design 97

[88] The chain rule is the link between computing the joint probability of the word sequence

and computing the conditional probability of a word given previous words. The suggested

method for estimating the joint probability in Equation (73) does not tend to be the optimum

solution due to the creativity in the language, and any context might have never occurred

before [88] so that there are many algorithms such as Markov Models, Maximum-Likelihood

Estimates for computing the practical value (threshold) of the probability [88].

6.6 The control design

The ROS pocket defines everything concerning, the microphone and how to connect to the

program. It contains the data line, how to get the sound and how to handle it. This pocket

usually requires a model and dictionary file for the sound sensor access, which is

programmed to recognize specific words, as shown in Figure (83). The ROS node recognizer

consists of two parts for processing and one for output connection between the output of the

ROS node and the output environment.

Figure 83: The ROS topic recognizer schematic.

In Table (5), we test and evaluate the sound recognition system. In the test, we repeated the

word several times and proved whether the recognizer recognized the word, which involved

a different time period because the word was repeated many times. In our table, we took

only five random attempts. The repeat of each word will first be alone; for example, the word

red in the first attempt is repeated many times without another word, just red to see the

efficiency of the system. When repeating the same words many times and testing the

recognition time in terms of whether it would still be constant or the time would be in a

closed period. The second attempt is to repeat the word after another word, for example red-

green-red, the third would be like red-green-green-red, the fourth red-green-water and the

last one could be a random sequence such as red-green-water-water-green-green-red-water-

red-green.

Chapter 6 The sound recognizer system: The control design 98

The words
No. of

repeated Time to recognize (m sec)

Red 5 0.543 0.789 0.876 0.854 0.986

green 5 0.456 0.675 0.789 0.921 0.965

water 5 0.523 0.603 0.890 0.876 1.02
Table 5: The response of the sound recognition system with time

From this information, the average time for recognizing the red word is about 0.8096 msec;

therefore, the response of the system will be very good. For green and water, it is 0.7612 and

0.7824 msec, respectively.

One of the improvements that have been improved the system for recognizing the words

precisely and quicker than the old system this has been done in the following steps:

1 Edit the threshold value for the word

2 Establish the static language

3 Prepare the delectable text or words

4 Learn ARPA

5 Create the files.lm and.dic

6 Import it into the pocketsphinx

This improvement shows new results as in Figure (84) which represented a comparison of

the detection time of the word red between the old and the new method, a comparison of

green - word detection time between old and new method shown in the Figure (85), the last

figure shows the comparison of the white – word between the old and the new approach. In

those figures the right side represents the detection time for the sound system with the old

language model probably threshold, and the left side the represents the new detection time

with the new value of the language model threshold.

Chapter 6 The sound recognizer system: The control design 99

Figure 84: The detection time for the red word

Figure 85: The detection time for the green word

Figure 86: The detection time for the white word.

0,543

0,354

0,789

0,564

0,876

0,547

0,854

0,498

0,986

0,568

0,456

0,267

0,675

0,456

0,789

0,501

0,921

0,598

0,965

0,567

0,523
0,456

0,603
0,512

0,89

0,612

0,876

0,59

1,02

0,634

Chapter 7 End effector task space position optimization using the PID controller: Related
work 100

7 End effector task space position optimization
using the PID controller

The PID controller is widely used in different control systems. It is a technique used today

in industrial fields to achieve a stable system, as it improves and increases stability. This

occurs by reducing the error with regard to physical parameters such as position and

temperature. The PID working principles are based on the gain of the PID types, i.e. the PID

controller is based on proportional, integral and derivative gains. These gains tune their

values in different ways, as is clarified in the following sections.

The first theory of the PID controller was founded in 1922 when the Russian American

engineer Nicolas Minorsky refined an automatic steering system for the U.S. Navy. This

system is based on the steerman’s observations of the rating change between the actual error

and past error, this ratio keeps the ship on the correct path [78].

7.1 Related work

As an overview for our suggested algorithm, the position of the end effector consists of x, y,

z and each one has an error ratio due to the simulated environment; so we suggest using the

PID controller to reduce the sole error ratio problem. [79] This proposed approach aims to

find an auto-tuning method for PID controllers of robotic arm manipulators. [79] This

method for the PID controller which is used for finding the absolute value to achieve the

best trajectory path uses particle swarm optimization for the task and deals with the

maximum joint torque and maximum position error, and the integral of the error used for an

optimization algorithm. In this field, there are two ways to optimize the arm motion. First is

to use joint space to control the joint rotation angle as [80] this controls the joint angle

position using the PID controller. [80] They then adjusted the PID gain value, which

oscillated between different joint angles, the PID controller tuned every instant to avoid the

high peak overshoot through the motion to the stable joint angle value. They then medalled

and designed two links robotic arm using the simulation and implemented the 2- DOF Robot

Forward and Inverse Kinematics with Denavit-Hartenberg parameters (DH). The second

way to control the arm motion is by using the end-effector position. [81] The suggested (PID)

[proportional, integral and derivative] and friction compensator controller increased the

motion stability and reduced the position error into the trajectory tracking and point control.

[81] Due to the significant error in the positioning system, they then presented the PID

position controller to control the position of the two linked robot arm joints, the modelling

Chapter 7 End effector task space position optimization using the PID controller: PID
Theory 101

of the vertical movement represented the kinematics and dynamics of the two linked robotic

arms.

7.2 PID Theory

The main purpose of the PID is to reduce the error in the system parameters, which then

increases the system stability. The PID consists of three controllers; proportional, integral

and derivative. The control block, as shown in Figure (87), consists of the input and the PID

blocks, which are connected to the plant or process and then to the output.

Figure 87: The control block diagram

The equation for the PID algorithm would be as follow:

𝑢(𝑡) = 𝐾 (𝑒(𝑡) +
1

𝑇𝑖
∫ 𝑒(𝜏)𝑑𝜏 + 𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0

(75)

Where y is the measured process variable, u is the control signal and e is the control error

[85].

There some parameters should be clarified with regards to the response Figure (88) which is

modified from [82]:

Chapter 7 End effector task space position optimization using the PID controller: PID
Theory 102

Figure 88: Step response with its parameters [82]

♦ Rise Time: The required response time from 10 % to 90% of the steady state.

♦ Settling Time: The required time to stay with the given error limits.

♦ Overshoot: The maximum Peak of the response.

♦ Steady state error: The difference between the input signal and the output signal

regarding to the time in steady state.

For studying the effect of the proportional, integral, derivative gains on the response, the

Figure (89) represented a normal step response as an example.

Figure 89: Step response for the control motion

The PID controller is commonly used in industrial fields; the principles of the PID controller

are based on the comparison between the present and the input and the output of the whole

0

2

4

6

8

10

12

0 0,5 1 1,5 2 2,5 3 3,5 4

P
o

s
it

io
n

Time

Control Motion

Chapter 7 End effector task space position optimization using the PID controller: PID
Theory 103

PID controller block. The feedback control has two categories, positive and negative

feedback in the feedback the output sensed. [83] The signals in the positive feedback tend to

boost their values and become larger; the output value can be added to the input when they

are at the same phase. In the negative feedback, the system tends to be more stable which

decreases the input value [83]. The PID controller consists of [84]: -

♦ PC proportional controller

♦ IC integral controller

♦ DC derivative controller

7.2.1 The Proportional Controller (PC)

The proportional Controller [83] will applied to control the system parameters such as the

position (end effector position of the robot arm) which will be proportional to the difference

between the desired value and the actual value. The proportional response is achieved by

multiplying the error by a constant Kp, the Kp is called the proportional gain which is given

by:

𝑃 = 𝐾𝑝. 𝑒𝑟𝑟𝑜𝑟(𝑡) (76)

Figure 90: (a) the step response when kp=5 (b) the step response when Kp =2

The system [83] will be unstable when the proportional gain is a high value; the high

proportional gain value would affect the output and increase it for a given change in the

error. On the other hand, if it is very small, the control action will not respond correctly to

the system disturbance. The proportional gain would affect the control parameters and will

decrease the values of rise time, settling time, steady-state error and the expectation of the

overshoot will increase [83].

Chapter 7 End effector task space position optimization using the PID controller: PID
Theory 104

7.2.2 The integral controller (IC)

This control represents [83] the sum of the rapid error over time, Ki is called the integral

gain which has an effect on the control parameters as follows. The Ki will decrease the values

of rise time, steady-state error and the expectation of the overshoot and settling time will

increase. The integral controller is given by the Equation:

𝐼 = 𝐾𝐼 ∫ 𝑒𝑟𝑟𝑜𝑟(𝑡)𝑑𝑡

𝑡

0

 (77)

Figure 91: (a) the step response when ki=2 (b) the step response when Ki =4

The output of the Integral Controller (IC) [83] is proportional to both the magnitude of the

error and the duration of the error. The integral in a PID controller is the sum of the

instantaneous error over time and gives the accumulated offset that should have been

previously corrected. Steady state accuracy is usually given if there are an integral part,

independent of the value of Ki as long as the system is stable. [83].

7.2.3 Derivative Controller (DC)

The derivative controller [83] could be represented by the slope of the error over time

multiplied by the derivative gain, Kd is called the derivative gain. The derivative Equation

will be as follows:

𝐷 = 𝐾𝐷 ∙
𝑑𝑒𝑟𝑟𝑜𝑟(𝑡)

𝑑𝑡

(78)

The derivative controller will reduce the values of rise time, the overshoot and settling time

which improves the stability of the system [83].

Chapter 7 End effector task space position optimization using the PID controller: Filtering 105

Figure 92: (a) the step response when kd=2 (b) the step response when Kd =4

7.3 Filtering

The noise has a significant influence on differentiation; this influence can be seen in the

transfer function G(s)=s of a differentiator which goes to infinity for large s. [85]

𝑦(𝑡) = 𝑠𝑖𝑛 𝑡 + 𝑛(𝑡) = 𝑠𝑖𝑛𝑡 + 𝑎𝑛 𝑠𝑖𝑛 𝜔𝑛 𝑡 (79)

The derivative of the signal will be (80) assuming the noise is sinusoidal noise with

frequency ω. [85].

𝑑𝑦(𝑡)

𝑑𝑡
 = 𝑐𝑜𝑠 𝑡 + 𝑛̇(𝑡) = 𝑐𝑜𝑠 𝑡 + 𝑎𝑛 𝜔 𝑐𝑜𝑠 𝜔𝑛 𝑡

(80)

The signal to noise ratio for the original signal is 1/an but the signal to noise ratio of the

differentiated signal is ω/an [85]. Therefore, in a functional controller with derivative action,

it is necessary to limit the derivative term high-frequency gain. This can be achieved using

the derivative definition as [85].

𝐷 = −
𝑠𝐾𝑇𝑑

 1 + 𝑠𝑇𝑑/𝑁
 𝑌

(81)

instead of D = sTdY. The approximation given by (81) can be interpreted as the ideal

derivative sTd filtered by a first-order system with the time constant Td/N. The approximation

acts as a derivative for low-frequency signal components. The gain, however, is limited to

KN. This means that high-frequency measurement noise is amplified at most by a factor KN.

Typical values of N are 8 to 20 [85].

Here we can see some drawback of the high frequencies gain, the transfer function from

measurement y to controller output u of a PID controller with the derivative is [85]

𝐶(𝑠) = −𝐾(1 +
1

𝑠𝑇𝑖
 +

𝑠𝑇𝑑

1 + 𝑠𝑇𝑑/𝑁
)

(82)

Chapter 7 End effector task space position optimization using the PID controller: Set Point
Weighting 106

This controller has constant gain [85]

lim
𝑠→∞

𝐶(𝑠) = −𝐾(1 + 𝑁) (83)

at high frequencies. This can be achieved by additional low pass filtering of the control signal

by [85].

𝐹(𝑠) =
1

(1 + 𝑠𝑇𝑓)𝑛

(84)

Here Tf is the filter time constant and n is the order of the filter. The choice of Tf is a

compromise between filtering capacity and performance. The value of Tf can be coupled to

the controller time constants in the same way as for the derivative filter above. If the

derivative time used, Tf = Td/N is a suitable choice. If the controller is only PI, Tf = Ti/N

may be suitable [85].

The controller can also be implemented as

𝐶(𝑠) = −𝐾 (1 +
1

𝑠𝑇𝑖
 + 𝑠𝑇𝑑)

1

(1 + 𝑠𝑇𝑑/𝑁)2

(85)

This model has the advantage of designing model methods for an ideal PID controller and

using an iterative design process [85].

7.4 Set Point Weighting

Any step changes in the reference signal will result in an impulse of the control signal; this

will be unwanted issue so that the derivative action is usually not applied to the reference

signal, one of the solutions for this problem is filtering the reference signal before feeding it

to the controller, a second suggestion solution would by applying the proportional part only

to the reference signal which is called set point weighting [85].

𝑢(𝑡) = 𝐾(𝑏𝑟(𝑡) − 𝑦(𝑡)) +
1

𝑇 𝑖
∫ 𝑒(𝜏)𝑑 𝜏

𝑡

0

+ 𝑇𝑑 (𝑐
𝑑𝑟(𝑡)

𝑑𝑡
 −

𝑑𝑦(𝑡)

 𝑑𝑡
))

(86)

b and c represented the additional parameters. The integral controller part would be based

on the feedback error to ensure the required steady state. The controller is given by (86)

represented by a structure with two degrees of freedom due to that the signal path from y to

u is different from that from r to u. so that [85] the transfer function from r to u is:

𝑈(𝑠)

𝑅(𝑠)
 = 𝐶𝑟(𝑠) = 𝐾 (𝑏 +

1

𝑠𝑇𝑖
 + 𝑐𝑠𝑇𝑑)

(87)

and the transfer function from y to u is [85]

Chapter 7 End effector task space position optimization using the PID controller: Different
Parameterizations 107

𝑈(𝑠)

𝑌(𝑠)
 = 𝐶𝑦(𝑠) = 𝐾 (1 +

1

𝑠𝑇𝑖
 + 𝑠𝑇𝑑)

(88)

Set point weighting is thus a special case of controllers having two degrees of freedom. The

system obtained with the controller (86) respond to load disturbances and measurement noise

in the same way as the controller (75) [85].

7.5 Different Parameterizations

The PID algorithm given by Equation (75) can be represented by the transfer function [85].

𝐺(𝑠) = 𝐾 (1 +
1

𝑠𝑇𝑖
 + 𝑠𝑇𝑑)

(89)

A slightly different version is most common in commercial controllers. This controller is

described by [85]

𝐺′(𝑠) = 𝐾′ (1 +
1

𝑠𝑇𝑖
′) (1 + 𝑠𝑇𝑑

′) = 𝐾′(1 +
𝑇𝑑

′

𝑇𝑖
′ +

1

𝑠𝑇𝑖
′ + 𝑠𝑇𝑑

′)
(90)

The controller given by Equation (89) called non-interacting, and the one given by Equation

(90) interacting. The interacting controller Equation (90) represented as a non-interacting

controller whose coefficients are given by [85].

𝐾 = 𝐾′
𝑇𝑖

′ + 𝑇𝑑
′

𝑇𝑖
′

𝑇𝑖 = 𝑇𝑖
′ + 𝑇𝑑

′

𝑇𝑑 =
𝑇𝑖

′𝑇𝑑
′

𝑇𝑖
′ + 𝑇𝑑

′

(91)

The non interacting controller corresponds the interacting controller of the Equation (90)

under the following condition [85]

𝑇𝑖 ≥ 𝟒 𝑇𝑑 (92)

Chapter 7 End effector task space position optimization using the PID controller: The PID
tuning (Ziegler-Nichols) 108

The parameters [85] are given by

𝐾′ =
𝐾

2
 (1 + √1 −

4𝑇𝑑

𝑇𝑖

𝑇𝑖
′ =

𝑇𝑖

2
 (1 + √1 − 4𝑇𝑑/𝑇𝑖

𝑇𝑑
′ =

𝑇𝑖

2
 (1 − √1 − 4𝑇𝑑/𝑇𝑖

(93)

The non-interacting [85] controller given by Equation (89) is more general, and we will use

that in the future. However, it is [85] sometimes claimed that manually tuning the interacting

controller is easier [85]. Remember that different controllers may have different structures

when operating with PID controllers, if another controller type replaces a controller, the

controller parameters may need to be modified, interacting and non-interacting modes varied

only when controller parts I and D used, if we only use the controller as P, PI or PD

controller, all types are equivalent. Yet another representation of the PID algorithm is given

by when both the I and the D parts of the controller are used [85].

𝐺′′(𝑠) = 𝑘 +
𝑘𝑖

𝑠
+ 𝑠𝑘𝑑

(94)

The parameters are related to the parameters of standard form through [85]

𝑘 = 𝐾 𝑘𝑖 =
𝐾

𝑇𝑖
 𝑘𝑑 = 𝐾𝑇𝑑

(95)

The representation Equation (94) equals the standard form, but the parameter values are quite

different. This [85] can cause significant difficulties for anyone unaware of the differences,

particularly if parameter 1/Ki called integral time and Kd derivative time, it's even more

confusing to call Ki integration time, Equation (94) form is often useful in analytical

calculations as the parameters appear linear. The representation also has the advantage of

obtaining pure additive, integral, or derivative operation by finite parameter values [85].

7.6 The PID tuning (Ziegler-Nichols)

There are many methods for tuning the Kp, Ki and Kd for the PID controller. One of the

famous methods is by Ziegler-Nichols. This method is generally used when the function

system is hard to find or when it is a very complex Equation. It is also called the on-line

tuning method. In terms of our project, we used the PID controller for controlling the end-

effector position, these positions had been received from the semantic camera and

Chapter 7 End effector task space position optimization using the PID controller: The PID
tuning (Ziegler-Nichols) 109

represented the food coordinates. For adjusting the PID gain values, there are many methods

on for tuning the PID controller such as Ziegler-Nichols, in the Figure (93) we can see the

output signal response.

Figure 93: An example for time response signal [86]

In this method there are a number of parameters which are used for getting the PID gains as

shown in the Figure (93). These parameters such as K, L and T with the Ziegler-Nichols

formula as shown in the table (6) which is used for getting the PID gains. The table (6) shows

the proportional, integral and derivative gains that have been specified by the Ziegler-

Nichols method. In many cases the PI or P would be enough and gives the required results

and minimizes the error.

Table 6: Ziegler-Nichols Recipe [86]

For each object in the simulated environment, there are specific coordinates, as shown in

Table 4. As an example, for the cup, we have x, y, z coordinates as position and the other as

quaternion to describe the orientation of the object. In the PID design, we take each X output

from the semantic camera and try to reduce its difference with the X, which is being sent to

Chapter 7 End effector task space position optimization using the PID controller: PID In
ROS 110

the robotic arm. To reduce the difference between the x or y or z, a PID controller with a

specific gain (Kd, Ki, Kp) should be designed.

Let us take as example the z coordinates for the cup after approximation 0.9667,

according to our specifications the time to reach the position is 3 sec. The drawing of the

Ziegler-Nichols sketch is shown in the Figure (94)

Figure 94: Time response of the position Z for the cup in the simulator.

According to the values from the figure below and when substituted with the parameters

table, the gain values will be tuned for designing the required PID controller; this will be

classified into three categories as follows:

♦ only proportional (P): Kp = 1.8/0.3 = 6

♦ Proportional and integral (PI): Kp = 0.9 *1.8/0.3 = 5,4 , Ki =0.3/0.3 =1

♦ Proportional and integral and derivative (PID): Kp= 1.2*1.8/0,3= 7,2

Ki = 2*0.3 = 0,6 , Kd = 0.5 * 0.3 = 0,15

7.7 PID In ROS

This algorithm has been modified from the [87]. The PID controller in ROS represented by

package of a Proportional-Integral-Derivative controller, it would be useful in case of having

a straightforward control problem which need to be solved using PID loop [87]. There are

many features for this package such as: Low-pass filter in the error derivative with a

parameterized cut-off frequency provides smoother derivative term and a Ziegler-Nichols

Chapter 7 End effector task space position optimization using the PID controller: PID In
ROS 111

auto tuner [87]. There are several parameters can be influenced in the PID designing method

using ROS as follows:

♦ Set point: represented the desired value for the controlling process in the system. It

will be the desired position of end effector for the JACO robotic arm [87].

♦ Plant status: represents the actual value that has been gotten from the controlling

process. In our project it would be the actual value of the end effector position [87].

♦ Control effort: how much force does the controller take to make the plant status

equal to the set point. In this case it is the bone rotational angle [87].

The PID controller Node schematic shown in Figure (95)

Figure 95: The general schematic ROS nodes with a PID controller.

The controller node represents the main controller node in the PID ROS package, this

controller will be responsible for making the set point equal to the plant values equal to the

set point then reducing the error and the difference between the actual and desired values.

To illustrate Figure (96) /setpoint, /state, and /control effort represented the topic names used

by the PID controller through the subscribing and publishing processes. The set

position_node publishes the real-time value to the PID controller on the end effector_PID

node; the corrections values would be applied to the IK_JACO node via / control_effort

topic. The IK_JACO node publishes the actual end-effector position of the simulated JACO

arm to the /state topic which the PID controller subscribes to its control effort. One of the

Chapter 7 End effector task space position optimization using the PID controller: The results 112

important challenges when designing the software PID is how to tune the gains, as shown in

Figure (96).

Figure 96: The configuration of the PID gains.[87]

One of the important reasons for using the automatic PID gain configuration is to achieve a

smooth, repeatable movement which gives an experiment indication about the right gain

values. This could be another method for setting those values and then importing those

values in the launch file after specifying them. Every gain has some characteristics which

will affect the output response, as explained in Section 7.2. The important challenge will be

to determine how to find a compatibility between the different gains values with the working

range as quickly as possible with a high efficiency to action the required task and transfer

the system in the stability zone.

7.8 The results

After implementing the PID controller, there are some facts should be clarified:

♦ The tuning of the Kp, Ki, Kd has been done using automatic Ziegler-Nichols in ROS.

♦ Each x, y, z is applied to the PID controller system to reduce the error difference

between the actual and the desired coordinates values.

♦ The system has been working with efficiency 99%

Here in the Figures we can see the time response between the coordinates from the camera

and the coordinates which have been sent to the arm. Those results can be classified into

four groups:

1 The Mouth coordinates: The MX, MY, MZ represented the coordinates of the mouth as
received from the semantic camera as shown in the Figure (97) which represented the

Chapter 7 End effector task space position optimization using the PID controller: The results 113

time response without using PID controller the vertical axis represented the position in
(mm) and the horizontal axis represented the time in (sec).

Figure 97: The time response of the Mouth coordinates without using a PID controller.

Chapter 7 End effector task space position optimization using the PID controller: The results 114

Next, Figure (98) represented the time response while using the PID controller. And how the

output coordinates either in X or Y or Z changed to be optimum with the desired values.

Figure 98: The Time response of the mouth coordinates using a PID controller.

Chapter 7 End effector task space position optimization using the PID controller: The results 115

2 The Cup coordinates: The CX, CY, CZ represented the coordinates of the water cup as
received from the semantic camera as shown in the Figure (99) which represented the
time response without using PID controller.

Figure 99: The time response of the cup coordinates without using a PID controller.

Chapter 7 End effector task space position optimization using the PID controller: The results 116

The next level would be using the PID controller to reduce the error difference between the

desired value and the actual value of the end effector position as shown in the Figure (100).

Figure 100: The Time response fort the CUP coordinates without PID

Chapter 7 End effector task space position optimization using the PID controller: The results 117

3 The red dish coordinates: The RX, RY, RZ represented the coordinates of the red dish
as received from the semantic camera as shown in the Figure (101) which represented
the Time response without using PID controller.

Figure 101: The time response for the red dish coordinates without using a PID controller.

Chapter 7 End effector task space position optimization using the PID controller: The results 118

After this result which represented the time response for the red dish coordinates without

using the PID controller, the next level would be using the PID controller to reduce the error

difference between the desired value and the actual value as shown in the Figure (102)

Figure 102: The time response for the desired and actual green dish coordinates.

Chapter 7 End effector task space position optimization using the PID controller: The results 119

4 The green dish coordinates: The GX, GY, GZ represented the coordinates of the green
dish as received from the semantic camera as shown in the Figure (103) which
represented the time response without using PID controller

Figure 103: The time response of the green dish coordinates without using a PID controller.

Chapter 7 End effector task space position optimization using the PID controller: The results 120

With using of the PID controller to make the actual and the desired values equal to get more

stability that can be shown in the Figure (104)

Figure 104: The time response for the green dish coordinates with the PID controller.

Chapter 8 Experimental results: The simulation results 121

8 Experimental results

The main purpose of this research is how to build a fully-simulated controlled intelligent

robotic system, which deals with handicapped people who cannot eat or drink by themselves.

In this chapter, the results will be displayed in figures.

8.1 The simulation results

The results were divided into the following four categories:

8.1.1 Case 1: Waffle

If the word red comes from the microphone:

♦ The semantic camera discovers the red dish coordinates and stores them in ROS.

♦ Send these coordinates to the arm using the ROS topic IK and the required

messages.

♦ Send the ROS topic that is responsible for gripping the required food (waffle).

♦ After the gripping process, the arm moves to the mouth.

♦ The arm moves back with the rest of the food to the red dish position.

As shown in Figure (105), for the ROS node output when the (red) word appears, the

response for the microphone words and sound recognition would be very fast in msec. The

specified time for the eating or drinking, gripping movement has been estimated and could

be changed, whereby this cycle will be for the red dish or waffle cycle. The time has taken

at different periods, and it has specified as 3 sec after the beginning of the process, either

eating or drinking.

Figure 105: The red cycle begins (go then grip).

Chapter 8 Experimental results: The simulation results 122

The arm moves to the red dish, which will take time 3 sec, as specified before. Subsequently,

the gripping message is sent to the gripper to pick up the waffle, after which in Figure (106)

the cycle engages when the person starts to eat the waffle.

Figure 106: The red cycle continues (grip then eat).

At the end of this cycle, the rest of the food will return to the original position as shown in

Figure (107).

Figure 107: The red cycle last step (eat then return to the origin coordinates of red food).

The first case study is when the handicapped person wants a waffle, i.e. he wants to eat from

the red dish. When the word red comes from the microphone, this recognized through the

sound recognition system, and thus the red cycle should start, as shown in Figure (108).

Chapter 8 Experimental results: The simulation results 123

Chapter 8 Experimental results: The simulation results 124

Figure 108: The arm cycle from moving to the food in the red dish to the end.

8.1.2 Case 2: Sausage

If the word green comes from the microphone:

♦ The semantic camera discovers the green dish coordinates and stores them in ROS.

♦ These coordinates are sent to the arm using the ROS topic IK and the required

message.

♦ Send the ROS topic that is responsible for gripping the required food (sausage).

♦ After the gripping process, the arm moves to the mouth.

♦ The arm moves back with the rest of the food to the green dish position.

As shown in Figure (109), the cycle arm moves to the green dish then grips the sausage. For

the ROS node output when the (green) word appears, the response for the microphone words

and sound recognition would be very fast in msec. The specified time for the eating or

drinking, gripping movement has been estimated and could be changed, whereby this cycle

will be for the green dish or sausage cycle. The time has taken at different periods, and it has

specified as 3 sec after the beginning of the process, either eating or drinking

Figure 109: The green cycle begins (go + grip).

Chapter 8 Experimental results: The simulation results 125

The arm moves to the green dish, which will take time 3 sec, as specified before.

Subsequently, the gripping message is sent to the gripper to pick up the sausage, after which

in Figure (110) the cycle engages when the person starts to eat the sausage.

Figure 110: The green cycle continues (grip then eat).

The last cycle will return the rest of the sausage to its first position, as shown in Figure (111).

Figure 111: The green cycle last step (eat then return to the origin coordinates of green food).

The second case study is when the handicapped person wants to eat sausage, i.e. he wants to

eat from the green dish. When the word green comes from the microphone, it recognized

through the sound recognition system, and thus the green cycle should start, as shown in

Figure (112).

Chapter 8 Experimental results: The simulation results 126

Figure 112: The arm cycle from moving to the food in the sausage to the end.

Chapter 8 Experimental results: The simulation results 127

8.1.3 Case 3: Water

If the word water comes from the microphone:

♦ The semantic camera discovers the water white cup coordinates and stores them in

ROS.

♦ These coordinates are sent to the arm using the ROS topic IK and the required

message.

♦ Send the ROS topic that is responsible for gripping the cup.

♦ After the gripping process, the arm moves to the mouth.

♦ The arm moves back with the cup to its position.

The cycle of the moving arm to the cup, then gripping is shown in Figure (113).

Figure 113: The cup cycle begins (go then grip)

Subsequently, it Figure (114) the period when the handicapped person drinks the water is

shown.

Figure 114: The cup cycle continues (grip then eat)

The last sequence is to return the cup to its position, as shown in Figure (115).

Chapter 8 Experimental results: The simulation results 128

Figure 115: The red cycle last step (eat then return to the origin coordinates of red food)

The third case study is when the handicapped person wants to drink water, i.e. wants to grip

the white cup. When the word water comes from the microphone, this recognized through

the sound recognition system, and thus the water cup cycle should start, as shown in

Figure (116).

8.1.4 Case 4

If there is no specific word or the word has not been defined to detect, the output message

would be:

♦ nothing is done

Chapter 8 Experimental results: The simulation results 129

Figure 116: The arm cycle from moving the water cup.

Chapter 8 Experimental results: Safety: 130

8.2 Safety:

There has always been considerable attention paid to human-robotic interaction, as robots

should not harm natural beings. With a technological growth, the entirely separate robotic

procedure provides further collaboration. It is also a complicated manufacturing process,

owing to issues of contact and operating safety among beings and machines, and job terms

in a cooperative exchange. To ensure that JACO robot operates efficiently and safely in

dynamic uncertain environments, we have built a safety command. Our intelligent system

deals directly with the human body so that any errors in the programming procedures can be

affected by the human. In spite of the JACO arm having made with suitable material for

humans (which would not harm the body), the high velocity of acceleration could be very

dangerous. The best solution for this is to build a new command for stopping the arm if

something happens.

The command which has programmed to implement the safety command is ''STOP''

word and the sound system consists of three main subdivided script:

1 The main script: publish messages on a specific topic will also run as an administrator
arranging the function. Also responsible for launching the recognition node

2 The dictionary script (.doc): includes the word as in nature pronounced

STOP ST AA P

3 3. The static language model script (.lm): consists of the type of language models
(explained in 4.3.1). As shown below:

-3.1126 STOP -0.2647

This has programmed into the ROS node which is responsible for the sound system, this

would be as follow:

♦ Establish the static language

♦ Prepare the delectable text or words

♦ Learn ARPA

♦ Crate the files.lm and .dic

♦ Import it into the pocketsphinx

In Figure (117) The ROS will start the main node, which connected with the sound and

semantic camera system. Someone will then say green, red or water: which represented the

word of the required food. When something wrong happens, they should say stop. After this,

the arm and the whole system will stop immediately. This command will break the ROS

Chapter 8 Experimental results: Safety: 131

communication nodes and stop the sequence of the main program. This stop command acts

like the emergency button in industrial applications.

Figure 117: The sequence of the sound commands to the robotic arm.

In our case study, we made some mistake in the coordinates system for the arm; the arm has

been moved to the wrong position as you see in the Figure (118), we used offset in the

coordinates of each location for example:

The correct coordinates for the sausage (X1, Y1, Z1) + Offset (X2, Y2, Z2) {this has

been added by us to make a new wrong coordinate through the moving of the arm}

Figure 118: The arm moves to a crash position; the person stops the whole system.

Chapter 8 Experimental results: Safety: 132

In Figure (119) we can see another example for the emergency stop when the arm moves to

grip the food in the green dish.

Figure 119: The arm stops through gripping the sausage.

As a third emergency stop example in Figure (120) the JACO stops when the arm goes to

move the food to the mouth.

Figure 120: The arm stops through the eating process.

Chapter 9 Conclusions and future work: Safety: 133

9 Conclusions and future work

In this research, there are many objectives, the main one being how to build an automated

robotic intelligent system for handicapped people. This target comprises several sub-

objectives. After having achieved our goal, these objectives could present as follows:

1 The environment (human model, dishes, kitchen furniture, table) has been drawn then
accurately implemented in the program to follow the reality design.

2 The arm model:

♦ The arm has been simulated close to the original design; for example, it has the same

joint rotation angles and links length.

♦ The arm could be fully controlled using the ROS trajectory action or IK action to

give the perfect arm motion.

♦ The gripper is also controlled using ROS commands.

3 The sound recognition system: this system has been built then programmed to give us a
high level of accuracy and response. It is a beneficial system and could recognize the
words precisely.

4 The semantic camera system: this system is a very accurate system, which is noticed
clearly after the building and programming of this system. It gives the exact coordinates
and details of each object.

5 The overall system worked in an efficient, accurate and successful way and undertook
the required tasks intelligibly.

In this thesis, we have presented a new design for the assistive robot. Several developments

give many new features in this project compared with others, detailed as follows:

1 Using a new robot model JACO instead of the other robotic arms: this arm has been
designed for helping disabled people with eating, drinking and other life activities. The
challenge was how to build this arm and model it into the simulation then work with this
arm through controlling the process for creating a new automated assistive model. This
gives the project more realistic.

2 Using a semantic camera instead of the normal camera: this camera represents a new
generation technique for the smart environment. With this camera, the environment
objects could be defined relative to their definition in the environment, type and nature
such as the innate intelligence. This process based on the internal data of each object into
environment which has been implemented such as type, label and getting this orientation
and position related to the blender environment.

Chapter 9 Conclusions and future work: The research Objectives answer 134

3 Using a sound system in addition to other systems: this ensures flexible treatment between
the disabled and the system, which gives the disabled person more options to say what he
wants without any effort, such as pressing a button or moving a joystick.

For implementing this system in real world, we need the following hardware components:

1 A vision system: represented by two cameras for detecting the environment objects and
discover their coordinates, we can use for example point cloud camera.

2 A robotic system: for execution the pick and place the food and drink.

3 A sound recognition system: which is already has been implanted in our project by a
microphone and a programmed sound package into ROS.

4 Other components for getting more safety such as external emergency stop, laser range
sensor to specify the arm work space.

5 Metal frame to fix the human face and gives more flexibility through the mouth detection
process.

As software requirements will be ROS (robot operating system) and OpenCV.

9.1 The research Objectives answer

1 A new intelligent robotic library has created in MORSE, which can be used for the
handicapped people; this system has been worked effectively.

2 The JACO robot arm has been implemented with the original arm specifications, the
joints rotation angles and the length of the links also has been planning. The inverse
kinematic mechanism motion has been calculated and provided.

3 The software for the project was very complicated. The combination of the three systems
was a hard challenge, specially the Morse should be programmed in Python but ROS
nodes

4 The software can implement the intelligent sensors which have worked in the real-time
with an adequate response.

5 The graphical user Interface gives us the real environment with an option for providing
the physical properties (I.e. the user has the opportunity to implement the crash, the
gravity...etc.). The software also can display the motion of the arm motion and the object
precisely.

6 The semantic camera system worked and discovered the coordinates based on the world
(environment) coordination system, also can recognize the object-type.

7 The response of the sound recognition system was perfect especially after our
improvement in the threshold which reduced the response time

Chapter 9 Conclusions and future work: The future work 135

9.2 The future work

For future work there are a number of the suggestions as follows:

♦ Using two JACO robotic arms instead of one arm to give more options in functions

such as one of the two arms for eating and the other for drinking.

♦ Using a point cloud camera instead of the semantic camera to give more options,

whereby many objects can be defined specifically in different environments. These

objects could be stored in the database then using the neural network to detect the

different objects and their coordinates. Moreover, it could help with the mouth

detection relative to the human face.

♦ Using a KUKA robotic arm instead of the JACO arm, while the environment should

also be changed to be the industrial environment to undertake industry tasks.

♦ There is a new project version for handicapped people using brain signals to move

the arm or grip the required objects, which could also be a useful suggestion for

future work.

References

[1] Serena Ivaldi, Vincent Padois, Francesco Nori, Tools for dynamics simulation of
robots: a survey based on user feedback, 14 IEEE-RAS international
conference on humanoid robots (humanoids), Spain, 2014.

[2] Nathan Koenig, Andrew Howard, Design and Use Paradigms for Gazebo, An Open-
Source Multi-Robot Simulator, IEEE/RJS international conference on
intelligent robots and systems, Japan, 2004.

[3] http://all-about-linguistics.group.shef.ac.uk/branches-of-linguistics/semantics/what-
does-semantics-study/, all-about-linguistics [has been accessed on 12 April
2017].

[4] Chaitanya Mitash, Kostas E. Bekris and Abdeslam Boularias ; Physics-aware
Simulation for Object Detection and Pose Estimation , Department of
Computer Science, Rutgers University 2017.

[5] Josip Josifovski, Matthias Kerzel, Christoph Pregizer, Lukas Posniak, Stefan
Wermter; Object Detection and Pose Estimation based on Convolutional
Neural Networks Trained with Synthetic Data , IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) Madrid, Spain,
October 1-5, 2018.

[6] Matthew R. Walter, Sachithra Hemachandra, Bianca Homberg, Stefanie Tellex, Seth
Teller, Learning Semantic Maps from Natural Language Descriptions,
Proceedings of the 2013 Robotics: Science and Systems IX Conference, June
24-28, 2013, Berlin, Germany.

[7] Marcin Marszałek, Cordelia Schmid, Semantic Hierarchies for Visual Object
Recognition, Computer Vision and Pattern Recognition, CVPR '07. IEEE
Conference on Minneapolis, MN, USA, 2007.

[8] Jörg Stückler, Nenad Biresev, Sven Behnke, Semantic Mapping Using Object-Class
Segmentation of RGB-D Images, IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Vilamoura, Portugal, October 2012.

[9] Claire Dune, Christophe Leroux, Eric Marchand, Intuitive human interaction with an
arm robot for severely handicapped people A One Click Approach,
Proceedings of the IEEE 10th International Conference on Rehabilitation
Robotics, Netherlands, June 12-15, 2007.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4269955
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4269955

References 137

[10] H F M Van der Loos. Vastanford, rehabilitation robotics research and development
program: Lessons learned in the application of robotics technology to the
field of rehabilitation. IEEE Trans. on Neural Systems and Rehabilitation
Engineering, 3:46–55, March 1995.

[11] H F M Van der Loos, J J Wagner, N Smaby, K Chang, O Madrigal, L J Leifer, and
O Khatib. Provar assistive robot system architecture. In IEEE Int. Conf. on
Robotics and Automation, Detroit, May 2000.

[12] T. Jones. Raid, Toward greater independence in the office& home environment. In
IEEE Int. Conf. on Rehabilitation Robotics, pages 201–206, 1999

[13] M. Busnel, R. Gelin, and Lesigne B. Evaluation of a robotized master/raid
workstation at home : protocol and first results. In IEEE Int. Conf. on
Rehabilitation Robotics, 2001

[14] M. Topping, H. Heck, G. Bolmsjo, and D. Weightman. The develop- ment of r.a.i.l.
In TIDE, pages 23–25, 1998

[15] J. Topping, M.and Smith. The developpement of handy 1 , a reha- bilitation robotic
system to assist the severely disabled. In Industrial robot, pages 316–320.
1998.

[16] S. Ishii, S. Tanaka, and F. Hiramatsu. Meal assistance robot for severely handicapped
people. In IEEE Int, Conf on Rehabilitation and Automation, pages 1308–
1313, San Francisco, USA, 1995.

[17] R. Soyama, S. Ishii, and A. Fukase. The development of meal- assistance robot
’myspoon’. In IEEE Int. Conf. on Rehabilitation Robotics, pages 88–91,
2003.

[18] A Casals, R Villa, and D Casals. A soft assistance arm for tetraplegics. In 1st TIDE
Cong., pages 103–107, April 1993.

[19] K. Kawamura and M. Iskarous. Trends in service robots for the disabled and the
elderly. Special session on service robots for the disabled and elderly people,
1994.

[20] Won-Kyung Song; Jongbae Kim; Kwang-Ok An; In-Ho Lee; Won-Jin Song;
BumSuk Lee; Sung-Il Hwang; Mi-Ok Son; Eun-Chang Lee, Design of Novel
Feeding Robot for Korean Food. Aging Friendly Technology for Health and
Independence. ICOST Lecture Notes in Computer Science, Vol. 6159.
Springer, Berlin, Heidelberg, 2010.

[21] H. Eftring and K. Boschian. Technical results from manus user trials. In IEEE Int.
Conf. on Rehabilitation Robotics, pages 136–141, 99.

References 138

[22] Duimel Kwee H H, J J, SMits, A A J.J, Tuinhofde Moed, and J A van Woerden. The
manus wheelchair-borne manipulator : System review and first results. In
IARP, 2nd Workshop Medical and Healthcare Robotics, pages 385–395,
1989.

[23] I Volosyak, Ivlev O., and Graser A. rehabilitation robot friend ii - the general concept
and current implementation. In IEEE Int. Conf. on Rehabilitation Robotics,
pages 540–544, Chicago, IL, USA, June 2005.

[24] C Leroux, G Chalubert, O Tahri, S Schmutz, N Biard, I Lafont, Dsert J-F, and R
Alexandre, J Mand Gelin. Interface intelligente pour la saisie d’objets
robotise, handicap 2006. In National Conf. Handicap, paris, june 2006

[25] C Leroux, M Guerrand, C. Leroy, Y Masson, and B. Boukarri. Magritte: a graphic
supervisor for remote handling interventions. In ESA Workshop on
Advanced Space Technologies for Robotics and Automation, ’ASTRA 2004,
Noordwijk, The Netherlands, November 2004.

[26] F. Bley, M. Rous, U. Canzler, and K. Karl-Friedrich. Supervised navigation and
manipulation for impaired wheelchair users. IEEE Trans.on Machine Man
and Cybernetics, pages 152–165, 2004.

[27] R. Mahoney. The raptor wheelchair robot system. In IEEE Int. Conf. on
Rehabilitation Robotics, pages 135–141, Evry, France, 2001

[28] http://www.robotnik.eu/robotics-arms/kinova-jaco-arm [has been accessed on 28
August 2017].

[29] H. Neveryd and G. Bolmsj. Walky, an ultrasonic navigating mobile robot for the
disabled. In TIDE, pages 366–370, Paris, France, 1995.

[30] P Dario, E Guglielmelli, C Laschi, and G Teti. Movaid: A mobile robotic system
residential care to disabled and elderly people. The First MobiNet
Symposium, 1997.

[31] P. Hoppenot and E. Colle. Localization and control of a rehabilitation mobile robot
by close human - machine cooperation. IEEE Trans. on Neural Systems and
Rehabilitation Engineering, 9:1534–1724, 2001.

[32] R. Bischoff. Design concept and realization of the humanoid service robot hermes.
In A. Zelinsky, editor, In Field and Service Robotics, pages 485–492.
London, springer edition, 1998

[33] Z. Bien, J.S. Kim, M.J. Chung, Kwon D.S., and Chang P.H. Devel- oppement of a
wheelchair-based rehabilitation robotic system (kares ii) with various human
robot interaction interfaces for the disabled. In Int. Conf. on Advanced
Intelligent Mechatronics, volume 20. IEEE/ASME, 2003

References 139

[34] B. Graf, M Hans, and R D Schraft. Care-o-bot ii:development of a next generation
robotic home assistant. Autonomous robots, 2004.

[35] Fei Gao, Hiroki Higa, Hideyuki Uehara, and Takashi Soken, A Mobile Robotic Arm
for People with Severe Disabilities: Trial Development of a Vision-Based
User Interface , Journal of Advanced Control, Automation and Robotics
(JACAR), 1 (1): 25-30, 2015 ISSN 2186-9154

[36] F. Gao, H. Higa, H. Uehara, and T. Soken, “A vision-based user interface of a mobile
robotic arm for people with severe disabilities,” Proc. Int’l conf. Intelligent
Informatics and Biomedical Sciences, pp. 172–175, 2015.

[37] Laura V. Herlant; Rachel M. Holladay; Siddhartha S. Srinivasa, Assistive
Teleoperation of Robot Arms via Automatic Time-Optimal Mode Switching,
Human-Robot Interaction (HRI)11th ACM/IEEE International Conference
on Christchurch, New Zealand, 2016.

[38] Pedro Lopes; Ryan Lavoie; Rishi Faldu; Nick Aquino; Jason Barron; Mohamed
Kante; Basel Magfory; Waleed Meleis (Advisor), 2012 Available on
http://www.ece.neu.edu/personal/meleis/icraft.pdf.

[39] Gunnar Bolmsjö ; Magnus Olsson and Ulf Lorentzon, Development of a general
purpose robot arm for use by disabled and elderly at home , International
Symposium on Robotics, ISR2002 - Stockholm

[40] Severin Lemaignan ; Marc Hanheide; Michael Karg; Harmish Khambhaita; Lars
Kunze; Florian Lier; Ingo Lutkebohle and Gregoire Milliez , Simulation and
HRI Recent Perspectives with the MORSE Simulator, 4th International
Conference, SIMPAR 2014, Bergamo, Italy, October 20-23, 2014.

[41] Gregoire Milliez, Emmanuel Ferreira, Michelangelo Fiore, Rachid Alami, and
Fabrice Lefevre, Simulating human-robot interactions for dialogue strategy
learning , 4th International Conference, SIMPAR 2014, Bergamo, Italy,
October 20-23, 2014.

[42] Pyung Hun Chang; Hyung-Soon Park, Development of a Robotic Arm for
Handicapped People: A Task-Oriented Design Approach, Autonomous
Robots 15, 81–92, 2003 c 2003 Kluwer Academic Publishers. Manufactured
in The Netherlands.

[43] Adam Vogel; Karthik Raghunathan; Stefan Krawczyk, A Situated, Embodied
Spoken Language System for Household Robotics, Department of Computer
Science Stanford University California, 2006.

[44] Joseph M. Romano; Jordan P. Brindza; Katherine J. Kuchenbecker, ROS open-
source audio recognizer: ROAR environmental sound detection tools for
robot programming, 2013. Available on the following website:
https://pdfs.semanticscholar.org/0b1e/ec864bb1dec63f0d1500a730f442735
4d891.pdf.

References 140

[45] Mihael Simoniˇc, Bachelor Thesis: A Voice User Interface for Human-Robot
Interaction on a Service Robot UNIVERSITY OF TÜBINGEN, Institute for
Informatics the Chair of Cognitive Systems, 2015.

[46] https://www.openrobots.org/morse/doc/latest/what_is_morse.html [has been
accessed on 12 June 2017].

[47] The Robot Operating System, “Ros basic concepts.”
http://ros.org/images/wiki/ROS_basic_concepts.png. Accessed May 19,
2017.

[48] https://www.blender.org/features/ [has been accessed on 24. August 2017].

[49] http://www.roboticmagazine.com/robot-review/jaco-robot-arm-2, admin on June 1,
2011.

[50] Craig, John J., Introduction to Robotics Mechanics and Control, 3rd ed. Upper
Saddle River: Pearson Prentice Hall, 2005.

[51] Ronald H. Palacios, robotic arm manipulation laboratory with a six degree of
freedom JACO arm, submitted in partial fulfillment of the requirements for
the degree of Master of Science in applied physics, Monterey, California:
Naval Postgraduate School 2015.

[52] R. D. Klafter; T. A. Chmielewski; M. Negin, Robotic Engineering: An Integrated
Approach, 1st ed. Englewood Cliffs, NJ: Prentice Hall, 1989.

[53] JACO DH Parameters of JACO R&D, V1.1.5, Kinova, Boisbriand, Canada, 2013.

[54] Miguel Pereira Mendes, Computed torque-control of the Kinova JACO Arm,
Coimbra, Sep. 2017

[55] A. Jacinto, Unmanned systems: A lab-based robotic arm for grasping, M.S. thesis,
Dept. Physics, Naval Postgraduate School, Monterey, CA, 2015.

[56] http://www.openrobots.org/morse/doc/1.2/user/actuators.html [has been accessed on
27. November 2017].

[57] https://wiki.blender.org/index.php/Doc:2.4/Manual/Modeling/ Meshes/Weight
Paint [has been accessed on 24. August 2017].

[58] Robert Y.Wang; Kari Pulli; Jovan Popovic, Real-time enveloping with rotational
regression, ACM Transactions on Graphics (TOG)-Proceedings of ACM
SIGGRAPH, Volume 26 Issue 3, July 2007.

[59] Ladislav Kavan, Skinning: Real-time Shape Deformation Part I: Direct Skinning
Methods and Deformation Primitives, SIGGRAPH Course 2014.

https://www.openrobots.org/morse/doc/latest/what_is_morse.html

References 141

[60] Alex Mohr; Michael Gleicher, Building Efficient, Accurate Character Skins from
Examples, ACM Transactions on Graphics (TOG) Proceedings of ACM
SIGGRAPH,Volume 22 Issue 3, July 2003.

[61] J. P. Lewis; Matt Cordner; Nickson Fong, Pose space deformations: A unified ap-
proach to shape interpolation and skeleton-driven deformation, proceedings
of the 27th annual conference on computer graphics and interactive
techniques, pages 165-172, 2000.

[62] https://web.stanford.edu/class/cs248/pdf/class_13_skinning.pdf. [has been accessed
on 24. September 2017].

[63] Ladislav Kavan; Steven Collins; Jirı Zara; Carol O’Sullivan1, Geometric skinning
with approximate dual quaternion blending, Journal ACM Transactions on
Graphics (TOG), Volume 27 Issue 4, 2008.

[64] http://www.openrobots.org/morse/doc/1.2/user/robots/fakerobot.html [has been
accessed on 10. September 2017].

[65] http://www.easy-rob.com/uploads/media/LectureRobotics.pdf, FH Darmstadt,
summer term 2000 [has been accessed on 15. October 2017].

[66] Andreas Aristidou; Joan Lasenby, Technical Report Inverse Kinematics: a review of
existing techniques and introduction of a new fast iterative solver, September
2009, Available on: http://www.researchgate.net/publication/273166356.

[67] http://wiki.ros.org/joint_trajectory_controller [has been accessed on 27. November
2017].

[68] http://wiki.ros.org/joint_trajectory_action [has been accessed on 27. November
2017].

[69] http://www.openrobots.org/morse/doc/1.2/user/actuators/orientation.html [has been
accessed on 27. November 2017].

[70] https://www.openrobots.org/morse/doc/stable/user/actuators/gripper.html [has been
accessed on 30. November 2017].

[71] Thomas B. Moeslund, Introduction to Video and Image Processing,Springer-Verlag
London Limited 2012

[72] https://www.openrobots.org/morse/doc/stable/user/sensors/semantic_camera.html
[has been accessed on 17. October 2017].

[73] https://blender.stackexchange.com/questions/1552/what-is-the-difference-between-
an-active-animated-rigid-body-and-a-passive-rigid [has been accessed on 15.
October 2017].

http://www.researchgate.net/publication/273166356

References 142

[74] Jeanette Schofield, Quaternions and 3D Rotations , April 7, 2011

[75] http://www.openrobots.org/morse/doc/1.2/user/robots/fakerobot.html [has been
accessed on 10. September 2017].

[76] https://de.wikipedia.org/wiki/Quaternion [has been accessed on 20. October 2017].

[77] https://cmusphinx.github.io/wiki/tutoriallm/, CMUSphinx [has been accessed on 15.
November 2017].

[78] Anthony K. Ho, Fundamental of PID Control, PDHonline Course E331 (3 PDH),
P.E.2014, PDH Centre

[79] Zidan, Ahmed & Kotlarski, Jens & Ortmaier, Tobias. (2017). A Practical Approach
for the Auto-tuning of PD Controllers for Robotic Manipulators using
Particle Swarm Optimization. 34-40. 10.5220/0006419700340040.

[80] Nasr M. Ghaleb and Ayman A. Aly, Modeling and Control of 2-DOF Robot Arm,
International Journal of Emerging Engineering Research and Technology,
Volume 6, Issue 11, 2018, PP 24-31

[81] Kaung Khant Ko Ko Han, Aung Myo Thant Sin, Theingi, Kinematic and Dynamic
Analysis of Two Link Robot Arm using PID with Friction Compensator,
International Journal of Scientific & Engineering Research 2017,ISSN 2229-
5518

[82] https://au.mathworks.com/help/control/ref/stepinfo.html.

[83] Kambiz Arab Tehrani and Augustin Mpanda, PID Control Theory, Introduction to
PID Controllers Theory, Tuning and Application to Frontier Areas, Prof.
Rames C. Panda (Ed.), 2012, ISBN: 978-953-307-927-1, InTech, Available
from: http://www.intechopen.com/books/introduction-to-pid-controllers-
theory-tuning-and-application-to-frontier-areas/theory-of-pid-and-
fractional-order-pid-fopid-controller

[84] K. Astrom, K. and T.Hagglund, PID Controllers: Theory, Design, and Tuning,
Instrument Society of America, ISBN 1-55617-516-7, 1995

[85] Karl Johan Åström, control system design, lecture notes for ME 155 A, department
of mechanical and environmental, university of california 2002.

[86] Brian R Copeland, The Design of PID Controllers using Ziegler Nichols
Tuning,application of computers in processes control, Purdue university, ,
March 2008.

[87] http://wiki.ros.org/pid

References 143

[88] Daniel Jurafsky, James H. Martin; Speech and Language Processing (3rd ed. Draft),
2019 Available on https://web.stanford.edu/~jurafsky/slp3/ .

[89] https://docs.blender.org/manual/en/2.79/editors/3dview/object/editing/transform/co
ntrol/pivot_point/bounding_box_center.html

	Title page
	Acknowledgment
	Kurzfassung
	Dedication
	Abstract
	Table of Content
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Research Objectives
	1.3 Main contributions
	1.4 The publications
	1.5 Dissertation Outlines

	2 Literature survey
	2.1 Simulation tool background
	2.2 Semantic environments background
	2.3 Assistive robot background
	2.4 Sound Recognition System Background

	3 System implementation
	3.1 Requirements and Software
	3.2 The schematic for the project
	3.3 Design of the environment
	3.4 General structure of the system
	3.5 Connection control between the systems

	4 Robotics system
	4.1.1 JACO arm specification
	4.2 Armature
	4.3 JACO arm simulation
	4.4 Skinning
	4.5 Controlling the arm
	4.6 Inverse kinematic architecture simulation
	4.7 Trajectory action control

	5 The semantic camera system
	5.1 Overview of the semantic MORSE semantic camera methodology
	5.2 Implementation of the semantic objects in the environment
	5.3 The Objects orientation
	5.4 Control the semantic camera

	6 The sound recognizer system
	6.1 The system scripts
	6.2 The language model
	6.3 Keywords list
	6.4 Grammars
	6.5 Static language model
	6.6 The control design

	7 End effector task space position optimization using the PID controller
	7.1 Related work
	7.2 PID Theory
	7.3 Filtering
	7.4 Set Point Weighting
	7.5 Different Parameterizations
	7.6 The PID tuning (Ziegler-Nichols)
	7.7 PID In ROS
	7.8 The results

	8 Experimental results
	8.1 The simulation results
	8.2 Safety:

	9 Conclusions and future work
	9.1 The research Objectives answer
	9.2 The future work

	References

