
TIMEA: Time-Triggered Message-based

Multicore Architecture for AUTOSAR

DISSERTATION

zur Erlangung des akademischen Grades

eines Doktors der Ingenieurwissenschaften (Dr.-Ing.)

vorgelegt Dissertation von:

Moisés Ignacio Urbina Fuentes

eingereicht bei der Naturwissenschaftlich-Technischen Fakultät der

Universität Siegen

Siegen− Mai 2020

Gedruckt auf alterungsbeständigem holz- und säurefreiem Papier.

Betreuer und erster Gutachter:

Prof. Dr. Roman Obermaisser, Universität Siegen

Zweiter Gutachter:

Prof. Dr. Roland Wismüller, Universität Siegen

Promotionskommission:

Prof. Dr. Roman Obermaisser

Prof. Dr. Roland Wismüller

Prof. Dr. Markus Lohrey

Prof. Dr. Madjid Fathi (Vorsitz der Prüfungskommission)

Tag der mündlichen Prüfung: 04. Dezember 2020

TIMEA: Time-Triggered Message-based

Multicore Architecture for AUTOSAR

DISSERTATION

to obtain the degree of

Doctor of Science Engineering

Submitted by

Moisés Ignacio Urbina Fuentes

Submitted to the Faculty of Science and Technology of

the University of Siegen

Siegen− May 2020

This dissertation is specially dedicated to my beloved mother and brother . . .

Acknowledgements

I would like to thank all my family, school friends, university friends and the rest of the

people who have been part of my life till this really important moment. Particularly I want

to express my special gratitude to two people whose participation was crucial so I could

accomplish this goal: 1) My Adviser, the Professor Dr. Roman Obermaisser who has been

a tremendous mentor for me during this phase of my life. Your incredible work passion

and outstanding professionalism were always a source of motivation to me to carry out this

PhD work. 2) My beloved friend Lisa Villioth who was the person that stood with me at

the beginnings of this journey and pushed me to believe in myself and to take this exciting

challenge in this beautiful country.

Additionally, I gratefully acknowledge the funding received towards my PhD from the

German Academic Exchange Service (DAAD). Without your financial support it would have

been extremely difficult. Furthermore, gratitude to the dSpace Company for their software

support.

Abstract

Multi-Processors System-on-a-Chips (MPSoCs) are becoming a preferred option for the

development of embedded system applications. They provide the possibility to execute

different software components in parallel on different cores. In the last years several MPSoC

architectures have been developed for specific application domains (e.g., by intel, powerpc,

etc). However, commercial MPSoCs are the cause of major concern to certification authorities.

The paradigm of message-based Networks-on-a-Chip (NoC) with support for time-triggered

communication provides significant advantages with respect to temporal predictability, fault

isolation and energy efficiency in comparison to the common shared memory approaches

implemented for the development of multicore systems. Therefore predictable multicore

platforms (e.g., COMPSOC, GENESYS MPSoC) provide message-based on-chip networks

as a solution.

At present, in the automotive domain, multicore processors are deployed that use the

paradigm of shared memory for the interaction between the cores. The AUTOSAR (Auto-

motive Open System Architecture) standard introduces a multicore version of its Electronic

Control Unit (ECU) software architecture since the version 4, defining a multicore operating

system that controls the execution of AUTOSAR Software Components (SWCs) allocated

to different cores with a shared memory for the inter-core communication. However, AU-

TOSAR does not provide any approach for the mapping of its ECU software architecture to a

NoC-based MPSoC.

In order to combine the benefits of NoC-based MPSoCs with the AUTOSAR standard,

this dissertation presents a novel system architecture which maps the AUTOSAR single-core

ECU software architecture to a message-based multicore platform. The so-called TIMEA

(TIme-triggered MEssage-based multicore platform for AUTOSAR) defines a message-based

NoC as the only physical medium for the communication between the cores and introduces

autonomous application cores which function as AUTOSAR Micro-ECUs (µECUs) on the

MPSoC. Each µECU acts as a unit of abstraction where the SWCs are provided with a

Run-Time Environment (RTE) and a lightweight implementation of the AUTOSAR Basic

Software (BSW), exploiting the advantages of message-based NoC in contrast to a shared

memory approach (e.g., fault isolation, temporal predictability).

viii

Furthermore, computationally expensive functionality of the basic software is delegated

to system cores, which serve as hardware accelerators for the application cores. TIMEA

supports fault-tolerance mechanisms by the integration of new BSW modules for health

monitoring services and proxy functionalities for accessing the dedicated system cores

offering SWC redundancy at the core level and at the MPSoC level.

TIMEA was prototypically implemented and evaluated using a simulation framework.

The simulation framework consists of an AUTOSAR simulator and on-chip simulator for the

implementation of the models and algorithms. Automotive use cases based on an anti-lock

braking system and a light indicator system served for the evaluation.

The obtained results demonstrate a better fault isolation for the AUTOSAR system

due to the use of an on chip network for the inter-core communication. TIMEA supports

stringent temporal guarantees for the SWC interaction between different cores. Moreover, the

reliability of the AUTOSAR multicore system was improved considerably. Faults at the SWC

level and at the core level are detected and recovery solutions based on SWC redundancy

are exploited. Finally, the proposed architecture supports, for the first time, an AUTOSAR

multicore platform with SWC communication through a message-based NoC.

Kurzfassung

System-on-a-Chips mit mehreren Prozessoren (MPSoC) werden zu einer bevorzugten Op-

tion für die Entwicklung eingebetteter Systemanwendungen. Sie bieten die Möglichkeit,

unterschiedliche Softwarekomponenten auf unterschiedlichen Kernen parallel auszuführen.

In den letzten Jahren wurden mehrere MPSoC-Architekturen für bestimmte Anwendungs-

bereiche (z.B., Intel, PowerPC usw.) entwickelt. Kommerzielle MPSoCs geben den Zerti-

fizierungsstellen jedoch Anlass zu groûer Sorge. Das Paradigma der nachrichtenbasierten

Netzwerke auf einem Chip (NoC) bietet signifikante Vorteile hinsichtlich der zeitlichen

Vorhersagbarkeit, der Fehlerisolierung und der Energieeffizienz im Vergleich zu den für

die Entwicklung von Multicore-Systemen implementierten gemeinsamen Speicheransätzen.

Daher stellen vorhersagbare Multi-Core-Plattformen (z.B., COMPSOC, GENESYS MPSoC)

nachrichtenbasierte On-Chip-Netzwerke als Lösung bereit.

Zur Zeit werden im Automobilbereich Multicore-Prozessoren eingesetzt, die das

Paradigma des gemeinsamen Speichers für die Interaktion zwischen den Kernen ver-

wenden. Mit dem AUTOSAR-Standard (Automotive Open System Architecture) wird

seit Version 4 eine Multi-Core-Version der ECU-Softwarearchitektur eingeführt, die ein

Multi-Core-Betriebssystem definiert, das die Ausführung der zugewiesenen AUTOSAR-

Softwarekomponenten (SWCs) steuert und verschiedene Kerne mit einem gemeinsamen

Speicher unterstützt. AUTOSAR bietet jedoch keinen Ansatz für die Zuordnung seiner

ECU-Softwarearchitektur zu einem NoC-basierten MPSoC.

Um die Vorteile von NoC-basierten MPSoCs mit dem AUTOSAR-Standard zu kom-

binieren, wird in dieser Dissertation eine neuartige Systemarchitektur vorgestellt, die die

AUTOSAR-Einkern-ECU-Softwarearchitektur auf eine nachrichtenbasierte Multi-Core-

Plattform abbildet. Die sogenannte TIMEA (TIme-triggered MEssage-based Multi-Core-

Plattform für AUTOSAR) definiert ein nachrichtenbasiertes NoC als einziges physikalisches

Medium für die Kommunikation zwischen den Kernen und führt autonome Anwendungskerne

auf dem MPSoC ein, die als AUTOSAR Micro-ECUs (µECUs) funktionieren. Jede µECU

fungiert als Abstraktionseinheit, bei der die SWCs mit einer Laufzeitumgebung (RTE) und

einer einfachen Implementierung der AUTOSAR Basis Software (BSW) ausgestattet sind,

x

wobei die Vorteile von nachrichtenbasiertem NoC im Gegensatz zu einem gemeinsamen

Speicheransatz genutzt werden (z.B., Fehlerisolation, zeitliche Vorhersagbarkeit).

Darüber hinaus wird die rechenintensive Funktionalität der Basis Software an System-

kerne delegiert, die als Hardwarebeschleuniger für die Anwendungskerne dienen. TIMEA

unterstützt Fehlertoleranzmechanismen durch die Integration neuer BSW-Module für Health

Monitoring Services und Proxy-Funktionalitäten für den Zugriff auf die dedizierten System-

kerne, die SWC-Redundanz auf Kerne-Ebene und auf MPSoC-Ebene bieten.

TIMEA wurde prototypisch implementiert und mit einem Simulationsframework

evaluiert. Das Simulationsframework besteht aus einem AUTOSAR-Simulator und einem On-

Chip-Simulator zur Implementierung der Modelle und Algorithmen. Zur Auswertung dienten

Automotive Use Cases auf Basis eines Antiblockiersystems und eines Lichtanzeigesystems.

Die erhaltenen Ergebnisse zeigen eine bessere Fehlerisolierung für das AUTOSAR-

System aufgrund der Verwendung eines On-Chip-Netzwerks für die Inter-Core-

Kommunikation. TIMEA unterstützt strenge zeitliche Garantien für die SWC-Interaktion

zwischen verschiedenen Kernen. Darüber hinaus wurde die Zuverlässigkeit des AUTOSAR-

Multicore-Systems erheblich verbessert. Fehler auf der SWC-Ebene und auf der Kerne-Ebene

werden erkannt und Wiederherstellungslösungen basierend auf der SWC-Redundanz werden

ausgenutzt. Schlieûlich unterstützt die vorgeschlagene Architektur erstmals eine AUTOSAR-

Multicore-Plattform mit SWC-Kommunikation über ein nachrichtenbasiertes NoC.

Contents

List of Figures xv

List of Tables xix

1 Introduction 1

1.1 Contributions . 2

1.2 Thesis Organization . 4

2 Background and Basic Concepts 7

2.1 Real-time Embedded Systems . 7

2.1.1 Classification of Real-time Systems 8

2.1.1.1 Based on its Temporal Constrains 8

2.1.1.2 Based on its Behavior after Failure Occurrences 9

2.1.1.3 Based on its Action Trigger Approach 9

2.1.2 Timing Concepts . 10

2.2 Dependability . 11

2.2.1 Attributes of Dependability . 11

2.2.2 Means of Dependability . 12

2.2.3 Threats of Dependability . 13

2.3 Architecture Paradigms in Real-time Systems 13

2.3.1 Federated Architecture . 14

2.3.2 Integrated Architecture . 14

2.4 AUTOSAR . 15

2.4.1 Motivation . 15

2.4.2 System View . 17

2.4.3 AUTOSAR Software Components 17

2.4.4 AUTOSAR ECU Architecture . 19

2.4.4.1 Application Layer . 19

xii Contents

2.4.4.2 Run-time Environment 19

2.4.4.3 Basic Software . 20

3 Analysis of the State-of-the-Art 23

3.1 AURIX TC3XX . 24

3.2 MERASA and parMERASA European Projects 25

3.3 State-of-the-Art of I/O Multicore Solutions 27

3.4 ARINC 653 Health Monitoring . 27

3.5 Multicore Approach of AUTOSAR . 28

3.6 Limitations of the existing AUTOSAR Multicore Version 30

3.7 Research Gap of the State-of-the-Art . 31

4 Message-based Multicore Architecture for AUTOSAR 33

4.1 Overview of the AUTOSAR Multicore System 33

4.1.1 Message-based Network-on-a-Chip 34

4.1.2 Application Cores and System Cores 35

4.1.3 Fault Hypothesis . 37

4.1.3.1 Fault Containment Regions 38

4.1.3.2 Failure Mode Assumptions 38

4.2 Architecture of an AUTOSAR Micro-ECU 40

4.2.1 Communication Stack for NoC support 41

4.2.2 I/O Proxy Functionality . 42

4.2.3 Health Monitoring Service . 43

4.3 Architecture of the I/O Gateway Core . 49

4.4 Architecture of the Off-Chip Network Gateway Core 52

4.4.1 COM module . 53

4.4.2 PDU Router . 53

4.4.3 Virtualization Layer for Off-Chip Network Gateway Core 54

4.5 Architecture of the Memory Gateway Core 55

4.5.1 Distributed Mixed-Criticality Transaction Controller 55

4.5.2 Basic Memory Controller . 57

4.6 Fault Tolerance Mechanisms . 57

5 Simulation Framework for Message-based AUTOSAR MPSoC Platforms 59

5.1 Concept of the Co-simulation Framework 61

5.1.1 Simulation Model of Network-on-Chip 62

5.1.2 Environment Simulation . 62

Contents xiii

5.1.3 Simulation Model of an AUTOSAR Micro-ECU 62

5.1.4 Co-simulation Coordination . 63

5.1.4.1 Local Coordinator for AUTOSAR Simulation 64

5.1.4.2 AUTOSAR µECUs . 66

5.1.4.3 Local Coordinator for NoC simulation 66

5.2 Implementation of the Co-simulation Framework 68

5.2.1 Simulation System for AUTOSAR Micro-ECUs 68

5.2.2 Simulation System for Network-on-a-chip Communication 71

5.2.2.1 SystemC-based TTNoC Simulation 71

5.2.2.2 NoC simulation with GEM5 73

5.2.3 Implementation of the Coordination Interface 75

5.2.3.1 Implementation of the AUTOSAR local Coordinator . . . 75

5.2.3.2 Local Coordinator for the NoC simulation 79

5.3 Extension of the Co-simulation Coordination 80

6 Development Process of TIMEA 83

6.1 Implementation of the AUTOSAR Micro-ECUs 83

6.1.1 Software Architecture Modeling 84

6.1.2 Internal Behavior implementation for the AUTOSAR SWCs 85

6.1.3 Configuration of the AUTOSAR Micro-ECUs 86

6.1.3.1 Configuration of a µECU with AUTOSAR I/O abstraction

implementation . 87

6.1.3.2 Configuration of an accelerated µECU 89

6.2 Implementation of the Input/Output Cores 91

6.3 Implementation of the Memory Gateway Core Simulation 92

6.3.1 Implementation of the External Memory Simulation 92

6.3.2 Implementation of the Simulated Memory Gateway Core 93

6.4 Implementation of the Off-Chip Gateway Core 94

7 Evaluation and Results 97

7.1 Evaluation of the Co-simulation Framework for AUTOSAR Message-based

MPSoC Platforms . 97

7.1.1 Use Case-Description . 98

7.1.1.1 Co-simulation of VEOS and the SystemC-based TTNoC

Simulation . 98

7.1.1.2 Co-simulation of VEOS and GEM5-based NoC Simulation 99

7.1.2 Results . 100

xiv Contents

7.1.2.1 Co-simulation of VEOS and the SystemC-based TTNoC

Simulation . 100

7.1.2.2 Co-simulation of VEOS and GEM5-based NoC Simulation 100

7.1.3 Discussion . 104

7.2 Evaluation of Performance and Fault Containment in AUTOSAR Micro-ECUs104

7.2.1 Use Case-Description . 105

7.2.2 Results . 106

7.2.2.1 Timing Failure Experiment 106

7.2.2.2 Babbling Idiot Experiment 107

7.2.2.3 Omission/Crash Failure Experiment 108

7.2.2.4 Value Failure Experiment 111

7.2.2.5 Evaluation of the Operating System Overhead 111

7.2.3 Discussion . 112

7.3 Evaluation of Performance with an I/O Gateway Core 113

7.3.1 Use Case-Description . 113

7.3.2 Results . 114

7.3.3 Discussion . 117

7.4 Evaluation of Performance with an Off-chip Network Gateway Core 117

7.4.1 Use Case-Description . 117

7.4.2 Results . 118

7.4.3 Discussion . 121

7.5 Evaluation of Performance with a Memory Gateway Core 121

7.5.1 Use Case-Description . 121

7.5.2 Results . 122

7.5.3 Discussion . 124

8 Conclusion 125

Bibliography 129

Selected Publications 143

List of Figures

2.1 Federated Architecture . 14

2.2 Integrated Architecture . 14

2.3 Application View . 18

2.4 AUTOSAR ECU Architecture . 19

3.1 parMESARA Software Architecture . 25

3.2 parMESARA Clustered System Architecture 26

3.3 Health Monitoring Decision Tree . 28

3.4 The AUTOSAR Multicore System . 29

3.5 The IOC Functional Concept . 31

4.1 TIMEA Platform . 34

4.2 Failure Modes . 38

4.3 AUTOSAR µECU Architecture . 41

4.4 BSW Modification . 42

4.5 Efficient AUTOSAR Multicore Platform based on I/O Gateway Cores . . . 50

4.6 Error Detection Algorithm employed by the Virtualization Layer in the I/O

Gateway Core . 51

4.7 Architecture of the Off-Chip Network Gateway Core 52

4.8 Error Detection Algorithm employed by the Virtualization Layer in the Off

Chip Network Gateway Core . 54

4.9 Memory Gateway Architecture . 56

5.1 Architecture of a simulated AUTOSAR Micro-ECU 63

5.2 Simulation Framework for TIMEA . 65

5.3 State Machine of the NoC Local Coordinator 67

5.4 VEOS environment . 69

5.5 VEOS scheduling example with three tasks 70

5.6 SystemC TTNoC simulation Model . 72

xvi List of Figures

5.7 Simulated NoC in GEM5 . 74

5.8 Co-simulation Coupling of VEOS and NoC simulation 76

5.9 Model Description of the FMU Wrapper 78

5.10 Co-simulation Example with Three Tasks 79

5.11 Co-simulation of Distributed systems based on TIMEA 80

6.1 ToolÂs Interaction in the AUTOSAR µECU development 84

6.2 Modelling of the AUTOSAR Software Components 84

6.3 Simulink Environment for modeling SWC Behavior 86

6.4 Micro-ECU Configuration with I/O BSW Implementation 87

6.5 Micro-ECU Configuration with I/O Proxy Module and Health Monitoring

Service . 89

6.6 Architecture of the Input/Output Gateway Core Simulation 91

6.7 Architecture of the Memory Gateway Core Simulation 93

6.8 Configuration of the simulated Off-chip Gateway Core 95

7.1 Mesh Topology . 98

7.2 Spidergon Topology . 99

7.3 Car Speed and Wheel Speed using VEOS-SystemC Co-simulation Environment101

7.4 Traveled Distance . 101

7.5 Wheel Slip . 101

7.6 ABS Performance Comparison of two different TTNoC Configurations . . 101

7.7 Car Speed and Wheel Speed using VEOS-GEM5 Co-simulation Environment103

7.8 Braking Distance . 103

7.9 Wheel Speed with different NoC Configurations 103

7.10 Braking Distance with different NoC Configurations 103

7.11 Automotive Use Case for Fault Containment Evaluation 105

7.12 Braking Distance and Wheel Slip with NoC Configuration 1 108

7.13 Braking Distance and Wheel Slip with NoC Configuration 2 109

7.14 Braking Distance and Wheel Slip with NoC Configuration 3 110

7.15 Braking Distance in Omission/crash Failure Experiment 111

7.16 Braking Distance in Permanent Value Failure Experiment 111

7.17 Comparison of Task Invocations in AUTOSAR micro-ECUs 112

7.18 Automotive Use Case for Evaluation of the I/O Gateway Core 114

7.19 Comparison of Car Speeds in I/O Gateway Core Experiment 115

7.20 Comparison of Braking Distances in I/O Gateway Core Evaluation 115

List of Figures xvii

7.21 Distributed Automotive Use Case for Off-Chip Network Gateway Core

Evaluation . 118

7.22 Comparison of Car Speeds in Off-chip Network Gateway Core Evaluation . 119

7.23 Comparison of Braking Distances in Off-chip Network Gateway Core Evalu-

ation . 119

7.24 Overhead Comparison for ABS functionality 120

7.25 Overhead Comparison for LIS functionality 120

7.26 Overhead Comparison for BLI functionality 120

7.27 Distributed Automotive Use Case for Memory Gateway Core Evaluation . . 122

7.28 Overhead Comparison in MPSoC 1 . 124

7.29 Overhead Comparison in MPSoC 2 . 124

List of Tables

5.1 NoC configuration in SystemC model . 73

5.2 NoC configuration in GEM5 model . 75

7.1 SystemC-based TTNoC configuration . 98

7.2 NoC Configuration 1 . 102

7.3 Gem5-based NoC Configuration 2 . 102

7.4 NoC Configuration 3 . 103

7.5 NoC Configuration 4 . 104

7.6 NoC Configuration in Timing Failure Experiment 106

7.7 NoC configuration 1 for Babbling Idiot Experiment 107

7.8 NoC Configuration 2 for Babbling Idiot Experiment 109

7.9 NoC Configuration 3 for Babbling Idiot Experiment 110

7.10 TTNoC Configuration for I/O Gateway Core Evaluation 115

7.11 Comparison of Task Invocations in I/O Gateway Core Evaluation 116

7.12 FFT Timing Accesses . 116

7.13 NoC Configurations in Off-Chip Network Gateway Core Evaluation 118

7.14 TT-CAN Communication Configuration 119

7.15 FlexRay Bus Communication Configuration 122

7.16 Overall Execution Time Per µECU . 123

Chapter 1

Introduction

For the development of embedded systems, such as those in the automotive industry, suitable

programming models are needed that support a high degree of concurrency and sensitivity to

the needs of embedded systems in terms of reliability, real-time capability, resource efficiency

and support for heterogeneous computing cores. Today the paradigm of shared memory

is predominant in multicore architectures. However, a shared memory typically leads to

temporal unpredictability, since the access of the cores is not planned and simultaneous

memory accesses are resolved dynamically. In addition, memory hierarchies and cache

coherence protocols contribute significantly to the temporal unpredictability [LSL+09]. In

contrast, a time-triggered message-based Network-on-a-Chip (NoC) has significant advan-

tages [OKP10] [PPB+07] for embedded real-time systems such as improved fault isolation,

real-time support and energy efficiency. As explained in [HO09] a message-based NoC is

superior to a shared memory in case of a high computation/communication ratio, which is

typical of automotive electronics. Compared with shared-memory architectures, message-

based NoCs eliminate the overhead and the hardware complexity of a protocol for cache

coherency [LAS+07], offer a better temporal predictability, support the seamless integration

of autonomous cores and exhibit higher reliability and energy efficiency. These advantages

are also achieved by time-triggered off-chip communication systems in the automotive

domain such as FlexRay [Fle05].

Due to the increasing importance of Multi-Processor System-on-a-Chips (MPSoCs),

in 2012 the automotive industry introduced support for MPSoCs in the development of

automotive embedded systems with the publication of the version 4 of the Automotive Open

System Architecture (AUTOSAR) standard. The last release of the AUTOSAR platform

(4.3) defines a multicore operating system [AUT16c] for managing an MPSoC with multiple

cores, which are used for parallel execution of AUTOSAR Software Components (SWCs).

Furthermore, the functionalities provided by the AUTOSAR Basic Software (BSW) are

2 Introduction

separated in multiple master and slave modules to support the AUTOSAR SWCs in the

application layer on different cores. Thus, in order to allow the communication between

the master and the slave BSW modules, and between SWCs located in different cores, an

Inter-OS-Application Communicator (IOC) was introduced as a new service in the BSW of

each core using a shared memory as the medium for the inter-core communication.

Nevertheless, the multicore version of AUTOSAR lacks support for message-based

MPSoC architectures, therefore the mentioned advantages of message-based NoCs over a

shared memory cannot be exploited. In particular, temporal predictability has been identified

as a weak point in AUTOSAR [ROH+09]. In previous works MPSoC platforms based

on message-based NoCs [OK09] [HGBH09] were introduced that support stringent fault

isolation and temporal predictability. A major scientific challenge is the extension of the

AUTOSAR architecture for such an MPSoC platform.

1.1 Contributions

The thesis presents the TIme-triggered MEssage-based multicore platform for AUTOSAR

(TIMEA) with support for reliability and real-time requirements. Autonomous application

cores serve as AUTOSAR Micro-Electronic Control Units (µECUs). The interaction occurs

only using messages on the Virtual Functional Bus (VFB), which are mapped to the on-chip

network. Each µECU is a unit of abstraction, where the timely provision of message-based

services can be analyzed and understood independently from the other µECUs. Each µECU

has its own BSW and there are no hidden interactions between the BSW of different µECUs.

Additionally, specific system cores (e.g., off-chip gateway, I/O gateway, etc) are defined

which serve as hardware accelerators for the AUTOSAR software running on the µECUs.

Appropriate system models and algorithms are defined for extending the AUTOSAR BSW

towards a hierarchical platform comprising:

• Communication between SWCs on the same application core. Implementing the RTE

as defined by the AUTOSAR single-core architecture.

• Message-based on-chip communication. Enabling communication between application

cores on the same MPSoC.

• Message-based off-chip communication. Enabling inter-communication between dif-

ferent MPSoCs.

The contributions of the dissertation are summarized as follows.

1.1 Contributions 3

• Autonomous application cores in the role of µECUs. Each application core uses a

local AUTOSAR operating system, which is solely responsible for the management of

the resources of the application core. The elimination of hidden dependencies between

cores avoids error propagation and facilitates the integration of independently devel-

oped and validated cores. Therefore, the AUTOSAR BSW on the application cores is

adapted to support the communication through the message-based NoC. Additionally,

the BSW on the µECUs is extended with new health monitoring service modules to

provide failure recognition and recovery actions to the AUTOSAR software.

• Interaction between cores using a message-based NoC. The paradigm of time-

triggered control leads to significant advantages [OKP10, PPB+07]. The NoC of

the proposed AUTOSAR MPSoC platform realizes these benefits at the chip level and

provides high temporal predictability, inherent fault isolation and a global time base.

Thus, an interface module for the NoC is defined for connecting higher layers of the

AUTOSAR BSW (e.g., PDU router) with the NoC.

• AUTOSAR-specific system cores. The AUTOSAR MPSoC platform delegates costly

functions of the AUTOSAR BSW to system cores to improve the performance of the

execution environment by acceleration through dedicated hardware and reduction of

the operating system overhead on the application cores. Specific specialized system

cores such a off-chip network gateway cores, input/output cores and memory cores are

defined.

• Simplified AUTOSAR BSW. A reduced AUTOSAR BSW is used on the application

cores that uses the functions of the system cores. In contrast, the traditional AUTOSAR

multicore operating system leads to higher complexity of the AUTOSAR BSW, since

more cores are managed and additional synchronization and communication mecha-

nisms are implemented via shared memory.

• Efficient implementation of drivers. For I/O hardware, sensors, actuators and in

particular for realizing complex drivers an efficient implementation with system cores

is supported. For instance, for dedicated peripherals that have stringent time constraints

a hardware acceleration of a device driver is possible. The choice whether a driver

would be accelerated in hardware is transparent to the RTE and the AUTOSAR

applications.

• Simulation Framework. A novel co-simulation framework supporting the integration

of the AUTOSAR architecture with NoC-based platforms is presented. We describe

a simulation model for application cores playing the role of AUTOSAR µECUs on

4 Introduction

the MPSoC platform. The framework introduces an interface for the co-simulation of

simulation models for the AUTOSAR-based software (µECUs), the natural environ-

ment and the NoC behavior. This co-simulation interface describes multiple simulation

building blocks and local simulation coordinators for the synchronization and the data

exchange between the simulators hosting the simulation models.

• Evaluation and Experiments. A set of experiments were carried out to evaluate the

performance of the system using several automotive use cases in a simulation scenario

under failure occurrences. The obtained results demonstrate how the TIMEA platform

remains operational in the presence of failures.

1.2 Thesis Organization

The remainder of the thesis is structured as follows.

• Chapter 2 introduces the basic concepts and provides the background knowledge used

in this work.

• Chapter 3 discusses the existing state-of-the-art for domain-specific embedded system

architectures followed by the existing multicore platforms that use message-based

NoCs for the communication between the cores. Additionally, several I/O core im-

plementations are presented and the chapter compares different approaches for the

acceleration and the employment of dedicated-core solutions for multicore applications.

Moreover, the Health monitoring service of the avionic domain is presented. Finally,

the original AUTOSAR multicore operating system with a shared memory approach is

studied and compared to the proposed message-based NoC architecture.

• Chapter 4 maps an AUTOSAR system to a multicore platform with a message-based

NoC. Application cores are described as autonomous µECUs, each containing a

lightweight AUTOSAR operating system and a RTE. µECUs provide meaningful

units of abstraction and ensure freedom of inference from other cores. Computation-

ally expensive functionality of the BSW is delegated to system cores, which serve as

hardware accelerators for the application cores.

• Chapter 5 presents a framework for the simulation of multicore processors hosting

AUTOSAR software, which employs message-based NoCs for the inter-core com-

munication. The simulation framework introduces models for the simulation of the

AUTOSAR µECUs, the physical environment and the on-chip communication network.

1.2 Thesis Organization 5

Additionally, local coordinators are described for the communication between the

simulations tools, which implement the Functional Mock-Up Interface (FMI) standard

as a key part of the synchronization of the simulation systems.

• Chapter 6 provides a detailed process for the development of the AUTOSAR message-

based multicore system. The dSpace AUTOSAR development tools are used for the

configuration and the programming of the AUTOSAR application cores, using the stan-

dard AUTOSAR development process of AUTOSAR single-core ECUs. Furthermore,

the implementation of the previously defined system cores is carried out employing

different tools for the simulation of message-based multicore systems.

• Chapter 7 describes a set of automotive use cases that are implemented for the evalua-

tion of the performance and fault isolation of the AUTOSAR message-based multicore

platform. Several experiments are carried out which reveal the ability of the presented

multicore architecture for the recognition and recovery of software and hardware

failures in the AUTOSAR system.

• Chapter 8 concludes the thesis through a discussion of the overall results of the

presented solutions.

Chapter 2

Background and Basic Concepts

In this chapter the background and main concepts required for the full understanding of the

work presented in the dissertation are explained.

It starts with the definition of real time embedded systems, their different classifications

and the concept of timing. Thereafter, the definition of dependability, its attributes and means

are established which are needed to describe a dependable system. At third, the architecture

paradigms for the development of real time embedded systems are presented.

Finally, the AUTOSAR software architecture is presented together with the description of

its hierarchical abstraction layers and the definitions of the AUTOSAR software components.

2.1 Real-time Embedded Systems

An entity formed by the interaction of multiple dependent components whose spatial and

timing constrains can be different is considered a system. These interactions and relationships

between the components together with the overall behavior of the system interacting with the

environment define the functionalities of the system. The particular service delivered by the

system is seen as the behavior of the system perceived by the system user. The user of the

system can be a human operator as well as a second system.

Furthermore, an embedded system is a system resulting from the combination of hardware

components and software components in order to perform a particular task or several tasks.

An embedded system is defined by [Kam11] and [Shi09] as a system composed by two main

components: a particular function-purpose hardware and the embedded software. These

two components are combined to accomplish a specific application or as part of a larger

system to provide a specific function. Additionally, [Hea02] defines an embedded system as

a microprocessor-based system consisting of an instruction control unit and an arithmetic

8 Background and Basic Concepts

control [Sta96], which is built to perform a function or several functions and differently to a

personal computer is not designed be programmed by the end-user.

Embedded systems are provided with memories and input/output ports for the storage

of the program code and the data, and the interaction with the environment and the system

user respectively. Nowadays different types of memories are used which involve different

storage purposes. A non-volatile memory (i.e., ROM) retains the stored information even

after the system is powered off, so this memory is used for the storage of the program code

and the configuration information. A volatile memory (i.e., RAM) serves for the storage

of the application data which is used by the system during the execution. Another kind of

memory is the cache which is located closer to the microprocessor unit so it increases the

performance and reduces the memory access delay providing a direct and faster access to the

currently used application data [LS11].

Peripherals are required by the system for the exchange of information with the external

environment. Input and output ports are used for collecting significant data used by the

system for the correct execution of the instructions and for the transmission of the resulting

actions through system actuators or other output devices.

An embedded system is seen as a real time system when the correctness of its output

behavior depends not only on the logical result of the computation but also on the physical

time when the output behavior was produced by the system with respect to a global time

base [Kop13]. For this, the system must maintain a continuous and timely interaction with

its environment.

2.1.1 Classification of Real-time Systems

As explained in [Kop13] real-time embedded systems can be classified from different per-

spectives. In this section we introduce the relevant classifications used within the scope of the

dissertation. If a system is evaluated based on its temporal behavior with respect to a deadline,

it is classified as a soft or hard real-time system. In case the evaluation is performed based on

its reaction after a fault occurrence the system is classified as a fail-safe or fail-operational

system. When the system is observed in relation with the control of its actions and the

transmission of its signals it is classified as an event-triggered or a time-triggered system.

2.1.1.1 Based on its Temporal Constrains

A real-time system has to calculate its outputs within a bounded interval of time after the

collection of its inputs so the time instants when its outputs must be delivered can be reached.

The time instant for the delivery is known as the deadline of the output. In case of stringent

2.1 Real-time Embedded Systems 9

timing constrains an output deadline is defined as a hard deadline. This means, in case the

deadline is not met, this would lead to severe consequences as costly environmental damages

or human life loss.

A system is considered a hard real-time system in case at least one of its deadline outputs

is classified as a hard deadline. The design of this kind of systems requires guaranteed

temporal behavior and temporal predictability to provide full deadline compliances, so the

safety and reliability of the system can be ensured. In the automotive domain, an anti-lock

braking system is an example of a hard real-time system. A hard real-time system represents

a safety critical system.

On the other hand, systems which do not declare any hard deadline to be met are con-

sidered as soft real-time systems. This kind of systems has less stringent timing constraint

so they are able to tolerate a certain amount of deadline misses without catastrophic con-

sequences rather than the degradation of their output results. A navigation system is an

example of a soft real-time system within the automotive domain.

2.1.1.2 Based on its Behavior after Failure Occurrences

A safety critical system can also be classified depending of its reaction under failure occur-

rences. For this, two types of systems are distinguished: fail-safe systems and fail-operational

systems.

In case of the appearance of a failure, a fail-safe system provides one or more safe

states that can lead to stop delivering its original functionality but serve to avoid major

consequences. These systems are designed to have high error detection coverage. A traffic

light which switches always to red in case of a component failure is an example of a fail-safe

system.

A fail-operational real time system is a system that must stay operational providing an

acceptable level of the services regardless the occurrence of a failure. In order to achieve this,

a fail-operational system is designed to support fault tolerance mechanisms and component

failure masking so recovery actions can be triggered in case of failure occurrences. For

instance, an airplane computer control system is an example of a fail-operational system since

this is supported with component redundancy [OKS08] in order to provide full operation

under a failure appearance.

2.1.1.3 Based on its Action Trigger Approach

In [Kop13], an event that causes the starting of one or more actions is declared as a trigger. In

this context, the nature of the trigger serves to classify the systems according to two different

triggering mechanisms: event-triggered systems and time-triggered systems.

10 Background and Basic Concepts

In an even-triggered system processing activities and communication signals are triggered

by events that can be originated within the system itself or from changes of states in the

environment which are perceived through a specific message (e.g., an alarm condition

indicated by a sensor). An event-triggered system implements interruptions in order to serve

the events accordingly.

On the other hand, in a time-triggered system the execution of the communication and

processing activities is bound to particular points in time which are synchronized based on a

global time base. In [Kop92] this global time base is defined as a sparse time that enables

the temporal coordination of the actions that are initiated periodically based on prior known

clock ticks according to a synchronized clock reference. Real-time information about the job

executions and message transmissions is contained in a pre-defined schedule table.

2.1.2 Timing Concepts

The duration between two consecutive micro-ticks of a digital physical clock is defined

as the granularity of the clock. In a real-time system the synchronization of the system

actions is possible due to the mapping of these to specific time stamps which preserve the

time information of each activity. An absolute synchronization is obtained in case all the

time stamps of a system are synchronized with an external reference clock that serves as an

observing timekeeper.

In a distributed real time system with multiple nodes, every node is provided with its own

local physical clock. The maximum offset between the micro ticks of two different clocks

is known as the time precision between the clocks. The system is synchronized when all

local clocks have the same granularity and are synchronized with the same precision. Thus, a

global tick of the system global time is described as a set of micro ticks of each local clock.

The time instant when a task or action within a component becomes ready to be executed

is called the release time. The computation time or execution time is the time required by a

task for its execution completion after the task was started and without interruptions [Zur09].

The estimation of the execution time depends on the available system resources and possible

inter-task dependencies. The response time is calculated from the difference between the

release time of the task and its time completion. For hard real-time tasks the bounding of the

response time is mandatory, so the analysis of the Worst Case Execution Time (WCET) must

be performed assuming all possible inter-task dependencies and interruptions.

The end-to-end delay in a real-time system consists of the related time between the

occurrence of an event and the occurrence of a second event. In a message system the end-to-

end delay is the time required by the transmission of a message from its sender component

2.2 Dependability 11

till its receiving destination. The message transmission may involve multiple communication

networks such as on-chip and off-chip networks.

2.2 Dependability

The property of computer systems to measure their ability to provide justifiably trusted

services to the final users is known as dependability [Dub13]. This is a very important

non-functional term for the description of real-time systems which consists of the following

three classifications [UAcLR01]: attributes, means and threats.

2.2.1 Attributes of Dependability

In [LAK92] the following dependability attributes must be taken into consideration for the

delivery of a dependable system:

Safety

This dependability attribute refers to the ability of the system to avoid catastrophic conse-

quences in case of the failure of a component. This property involves the behavior of the

whole system rather than the behavior of a single component [Sto96].

Reliability

Reliability is defined as the ability of the system to maintain the correctness of the service

delivery in a specific environment and period of time. This property denotes the probability

of the system to stay failure-free operational with respect to a specific time unit. In safety-

critical systems embedded system services are required to have a reliability in the order of

10−9 failures/hour [LHSC10]. In the example described in 2.1.1.2, the traffic light system

exposes a poor reliability since the original service function is not delivered in case of a

component failure.

Maintainability

The ability of the system to repair itself after the occurrence of a system failure is known

as maintainability. This property measures the time required by the system to become

operational after stopping the delivery of the services due to a failure.

12 Background and Basic Concepts

Availability

Availability refers to the property of the system to stay ready for delivering its functionality.

This property is directly related to the reliability and maintainability of the system. Thus,

having high reliability and high maintainability increases the availability of the system.

Security

This attribute is concerned with the ability of the system to avoid unapproved access to the

information and services handled by the system. It aims to reduce espionage vulnerabilities

and to increase the protection against threats and cyber attacks.

2.2.2 Means of Dependability

The means to attain dependability are grouped into the four following classes according to

[ALRL04]:

Fault Prevention

This term refers to the set of quality control methods and techniques which are employed

during the design phase of the hardware and software. These methods and techniques are

applied to reduce the introduction of faults to the system during the design phase.

Fault Tolerance

This mean refers to the ability of the system to stay operational and continuing to provide

correct services in the presence of faults. This property includes error detection mechanisms

and recovery solutions to move the system from a faulty state to an operational state without

errors. To achieve this, a solid fault hypothesis of the system is required which provides a

clear understanding of the fault assumptions.

Fault Removal

This term points to the set of techniques employed during the design phase for the verification

of the system in order to detect any system behavior which does not comply with the specified

functional conditions. Additionally, it also includes diagnostic and correction mechanisms to

eliminate these faults.

2.3 Architecture Paradigms in Real-time Systems 13

Fault Forecasting

The estimation and evaluation of the possible future fault occurrences and the analysis of their

consequences is known as fault forecasting. This evaluation can be qualitative, by identifying,

classifying and ranking the faults, as well as quantitative providing a probabilistic evaluation

with respect to the dependability attributes.

2.2.3 Threats of Dependability

Threats represent any failure, error or fault that can occur during the execution of the system

functionalities.

Failure

A failure occurs when the system behavior is not consistent with its specification. This can

be due to a system output which does not comply with the expected behavior of the system or

because the system specification does not describe the functionality of the system adequately.

Error

An error is a system state that could lead to a failure of the system. A failure occurs when an

error is propagated to the interfaces of the systems.

Fault

The adjudged or hypothesized cause of an error is denoted as a fault. There are different

classifications of faults with respect to various criteria such as the nature of the fault, the

domain, the persistence of the fault, the location and the frequency of appearance.

2.3 Architecture Paradigms in Real-time Systems

In the last years the increasing employment of embedded systems for the construction of

different real-time applications has caused the design of multiple control subsystems to fill

the various and controversial domain requirements. These subsystems are required to meet

stringent specifications to accomplish the dependability attributes. From this evolution, the

following embedded system architectures can be distinguished:

14 Background and Basic Concepts

Node

Service

Figure 2.1: Federated Architecture

Node

Service

Figure 2.2: Integrated Architecture

2.3.1 Federated Architecture

In this architecture each node is responsible of the execution of a maximum of one service, as

illustrated in Figure 2.1. In this figure a distributed system is constituted by two applications,

wherein each application service is allocated to a single node. Moreover, a service can run

several tasks within its own node.

The federated architecture is highly used for the implementation of distributed systems

performing applications with different criticality, because of the loose coupling between the

application nodes. As a disadvantage, the federated architecture implies a high number of

resources, and therefore, high hardware costs, size and weight.

2.3.2 Integrated Architecture

Oppositely to the federated architecture, the integrated architecture allocates different services

to the same node, which share hardware resources (input and output interfaces, external

memory, etc) and use the same physical communication channel for the communication with

services in other nodes (see Figure 2.2).

A drawback of the integrated architecture is potential interference between services due

to the sharing of resources. On the other hand, such an architecture reduces the hardware

costs, as well as the weight and size of the distributed system.

2.4 AUTOSAR 15

2.4 AUTOSAR

In 2003 the automotive industry has founded the development partnership AUTomotive

Open System ARchitecture (AUTOSAR). This partnership is intended to counteract the

skyrocketing costs, as well as the growing complexity and versatility of the manufacturing

tools used to create automotive Electronic Control Unit (ECU) software. The aim of this

consortium was to provide a uniform software architecture for the cost reduction, the quality

improvement and the re-usability of existing developed components. This section presents the

reasons for the introduction of this new software architecture. Subsequently, the components

of AUTOSAR and the ECU architecture are explained.

2.4.1 Motivation

The number and the complexity of the faced challenges in the development of ECU software

have been growing steadily in the recent years. More and more functionalities for deeply

embedded automotive systems such as door, tail, light, engine and sun roof control devices

are required. These controllers form a highly distributed and networked system with the

required installed functionalities.

Additionally, the development of the ECU software used to be centralized and not

function-based. A function-based approach means that, for example, a warning flasher

control function requires a hazard warning flasher ECU. However, as the number of required

functionalities grows extremely fast, a function-based approach leads to an unmanageable

system of ECUs, where some of them perform similar tasks. In a centralized ECU approach,

for instance a turn signal system in the car, the ECU is the subject of various functions, e.g.,

remote control for the central locking, warning flash button, etc., and providing an own ECU

for each one of these functions makes no sense.

However, a centralized ECU approach leads to complex software with a high potential

for errors. In addition, there is a large variety of different hardware components of the

ECUs, with different processors, computing powers and memories. Each Original equipment

manufacturer (OEM) also requires the employment of its own operating system (basic

software) for the ECUs it orders from the Tier1 suppliers. All this leads to requirement

changes being complex and expensive.

Another major problem in the production of the ECU software is the strong mixing of

functional code (application logic, algorithms) with technical (hardware-specific) code. This

makes the reuse of already created application logic very difficult, time-consuming and

expensive.

16 Background and Basic Concepts

Objectives

The automotive market is a mass market with an enormous competitive pressure. Conse-

quently, the top priority is the cost reduction. Following their motto "Cooperate on standards,

compete on implementation", AUTOSAR achieves a strict separation of functional and basic

software code. AUTOSAR precisely specifies the implementation of the basic software and

its modules for the ECUs.

The technical portion of the ECU software is standard and is specified by AUTOSAR,

while the application logic or functional code expresses the competition between the various

manufacturers. Further goals of AUTOSAR are the easy interchangeability of modules and

the reuse of software components of the functional code. These goals should lead to a

simplification of the work processes of all participating companies, which should then be

reflected in a cost reduction.

Furthermore, the strict separation of technical and functional code can also reduce

hardware costs. AUTOSAR avoids unnecessary code resulting from mixing functional and

technical code, and thus, allows the use of an ECU with the next smallest memory.

Advantages

AUTOSAR introduces a standardized software architecture that guarantees clear hardware

independence as a layered model. This immensely facilitates the reuse of application logic

and the implementation of requirement changes. The modularity improves the quality of the

software, since individual module tests can be performed. The loose coupling of the modules

makes it easy to use them in various software projects. If a module with a certain algorithm

is already used correctly in a software project for a long time, it can be used with little effort

in another software project. The error-free running time of the module in the previous project

represents a strong quality statement. Furthermore, the functional or architecture-based view

is used via AUTOSAR. First, all the functions to be realized are collected and developed and

only after this, the application logic is assigned to the various ECUs. Moreover, AUTOSAR

uses exactly one basic software whose modules are described precisely. This has several

advantages:

• The interchangeability of modules is relatively easy.

• Suppliers who serve several different OEMs no longer need to maintain their own basic

software and development tools for each OEM.

• Already developed application logic is easy to reuse.

2.4 AUTOSAR 17

• The system integration on the part of the OEM is simplified.

• Due to the late assignment of the application software to the ECU, there is a high

degree of design flexibility.

Another advantage for suppliers is the ability to establish new business models. Suppliers

can offer finished libraries to software components with pure functional code, or develop

and sell combined hardware-software products in the field of sensors-actuators. Distributed

development with offshore forces is also conceivable, as the AUTOSAR standard enables a

clearly defined division of labor.

2.4.2 System View

In the system view, the automaker has the overall view of the vehicle type and all functions

to be created for that vehicle. Now the "System Configuration Input" file is created in the first

step. This is a predefined AUTOSAR template, in which the planned software and hardware

components for realizing the functions are recorded. The step "Configure System" decides

which software components are used. The development of the software components can be

carried out by the OEM or given to others. Only after successful completion of this step, it is

decided on which ECU the software components are to run. This decision also defines the

required communication network between the various ECUs and the actuators and sensors

required based on the software components running on them. The result of this work is stored

in the "System Configuration Description" file. From this file, in the "Extract ECU specific

Information" step, the car manufacturer individually extracts the "ECU Extract of System

Configuration" file for each ECU and gives it to the suppliers, who can then produce it in the

ECU view.

2.4.3 AUTOSAR Software Components

The AUTOSAR Software Components (SWCs) serve as a modeling tool for structuring and

arranging the functional application. The actual code is encapsulated in so-called "runnables"

within the SWCs (see Figure 2.3). A distinction is made between different SWCs, with

special mention being made of the SWCs for actuators and sensors. They are the only

ones that are not hardware-independent, as they are tied to actuators and sensors of specific

manufacturers and the corresponding ECUs.

The exchange of information between SWCs takes place via so-called ports. The

AUTOSAR standard defines ports as the interconnection points between SWCs in the

AUTOSAR architecture to indicate the data flow between these SWCs [AUT16d]. The

18 Background and Basic Concepts

Virtual Functional Bus

Application

Functionality

Software Component

R-Port Prototype

Client-Server

Interface

Sender-Receiver

Interface

P-Port Prototype

Runnable

Runnable

Runnable
SWC

Figure 2.3: Application View

interconnections between the SWCs through the ports conform to the so-called AUTOSAR

Virtual Funcitonal Bus (VFB), which represents the communication relations between differ-

ent SWCs, independently of the ECU mapping of the SWCs.

Port interfaces define the information that is transported through the ports. Ports, which

will be connected to each other, must have compatible interfaces. According to [AUT16d]

three different port interfaces are distinguished:

• Sender/receiver interface, for sending and receiving data values, the so-called variable

data prototypes.

• Client/server interface, for invoking and deploying operations. The argument data

values handled by these operations are called argument data prototypes.

• Calibration interface, for the provision and the use of static calibration values.

Application data types represent data types linked to the variable data prototypes and

the argument data prototypes. Computation methods define the scaling conversion between

the physical and the internal representation of the data [AUT16d]. Data-constraint elements

restrict the physical range of values. Units represent the physical dimensions. Constant

specifications of the application data types are assigned to the SWC input ports in order to

define initial values [AUT16d].

An internal behavior provides means for formally defining the behavior of a SWC

[AUT16d]. It is characterized by the runnables, exclusive areas and per instance memories.

Exclusive areas represent critical sections that may not be interrupted by other runnables,

while per instance memories are used for the exchange of array-based or structure-based

variables between two runnables [AUT16d].

2.4 AUTOSAR 19

Run-Time Environment (RTE)

SWC SWC SWC SWC

Application Layer

COM servicesSystem

Services

AUTOSAR

Operating

System

Communication

HW Abstraction

Memory

HW Abstraction

Memory

Drivers

I/O

Hardware

Abstraction

Complex

Drivers

Memory

Services

COM

PDU

Router

Communication

Drivers

I/O

Drivers

Figure 2.4: AUTOSAR ECU Architecture

2.4.4 AUTOSAR ECU Architecture

The AUTOSAR architecture is a layered model in which each layer is further abstracted

from the underlying hardware. Thus, this architecture layer model exhibits typical properties.

The layers are loosely coupled. Each layer knows only the underlying layer. Exceptions

to the rule are the "complex drivers", which will be discussed later. Figure 2.4 shows the

AUTOSAR architecture with its different layers.

2.4.4.1 Application Layer

In this layer, we find application SWCs with their functional code. The development of

this takes place here independent of the vehicle bus and the hardware used. The SWCs for

sensors and actuators are the exception here, as mentioned previously.

2.4.4.2 Run-time Environment

The AUTOSAR Run-Time Environment (RTE) functions as the VFB at the ECU level. The

RTE ensures the communication between the SWCs depending on the assignment of the

SWCs to the ECUs. If two SWCs communicating with each other are located on the same

ECU, the RTE establishes the communication link directly between the SWCs. If the SWCs

are located on different ECUs, the connection to the other SWC is realized by the RTE via

the basic software and the vehicle communication bus.

20 Background and Basic Concepts

2.4.4.3 Basic Software

The AUTOSAR Basic Software (BSW) layer itself is divided into three layers:

• The service layer contains the operating system and system services for the application

layer. This layer abstracts the RTE from a direct access to the underlying layers of the

BSW. The operating system is an OSEK [Joh98] operating system that adds features

such as memory protection or extended counters. Additionally, system services include

diagnostic and communication functions as well as memory management.

• The ECU abstraction layer abstracts upper layers from the underlying ECU hardware,

for example a Controller Area Network (CAN) controller mounted onboard for access-

ing the communication bus. Furthermore, this layer provides an I/O abstraction with

direct access to the RTE so sensor and actuator SWCs can be serviced.

• The Micro-Controller Abstraction Layer (MCAL) is directly above the hardware and

depends on the installed micro-controller. It allows the initialization and configuration

of the micro-controller. If the micro-controller is replaced, then this layer must be

completely replaced.

The complex drivers completely bypass the layer logic established by the AUTOSAR

standard. This section is only used for the implementation of functionalities that are not

contained in the AUTOSAR standard yet. Moreover, in case of time-critical features, a

complex driver allows a faster access to the hardware.

Furthermore, the AUTOSAR BSW is divided into five vertical areas, the so-called stacks.

The stacks and the layers overlap and form the so-called functional blocks. Within a functional

block, the AUTOSAR standard defines so-called modules. The modules within a function

block have similar tasks or work together to complete a task. Figure 2.4 illustrates the stacks

and the functional blocks.

• System Service Stack: It is responsible of the provision of basic network, diagnostic

services and software arbitration services. Also, the AUTOSAR operating system is

located here .

• Memory Stack: It allows the storage in non-volatile memory. It consists of the blocks

"Memory Services", "Memory Hardware Abstraction" and "Memory Drivers".

• Communication Stack: This stack provides communication services for exchanging

data with other ECUs for the application layer and the BSW layer. This stack includes

the "Communication Services", the "Communication Hardware Abstraction" and the

2.4 AUTOSAR 21

"Communication Drivers" functional blocks. The communication services support

the routing of messages (i.e., COM module, Protocol Data Unit (PDU) module),

the multiple use of a channel by multiplexing and the provision of the transport

protocols for the off-chip network systems, e.g., CAN, Local Interconnect Network

(LIN) and FlexRay. Moreover, the communication hardware abstraction abstracts the

bus-specific hardware (e.g., CAN, FlexRay, Ethernet). The interfaces provide functions

for accessing the available channels of the respective bus system.

• I/O hardware stack: This stack concentrates all functional blocks for setting and

reading digital input and output values. The stack contains the functional blocks "I/O

Hardware Abstraction" and "I/O Drivers".

Chapter 3

Analysis of the State-of-the-Art

Over the years, the construction of embedded systems in different application domains has

resulted in the development of several domain-specific system architectures. For example,

the AUTOSAR standard, which is the predominant standard in the automotive domain,

Integrated Modular Avionic (IMA) [Aer15] for the aerospace domain and the Network on

Terminal Architecture (NoTa) in the mobile domain [KKOE07].

Furthermore, different Multi-Processor System-on-a-Chip (MPSoC) architectures have

been developed for specific application domains (e.g., CellBE [IST06], Sonics [Son02] and

Nostrum [MNT+04]). All of them focus on a shared memory approach for the communica-

tion between the cores.

Within the European initiative ARTEMIS [ART06] common challenges were identified

on specific-domain architectures (e.g., composability, predictability, robustness, security).

Driven by these domain-independent challenges, the European research project GENESYS

[OK09] developed a MPSoC reference architecture blueprint that can be universally imple-

mented on different application domains as automotive, avionic, industrial control, mobile and

consumer electronic systems. Moreover, during the European ARTEMIS project ACROSS

[SEH+12] a MPSoC architecture was developed which was specifically designed for safety-

critical embedded system applications. These two architectures introduce a Time-Triggered

Network-on-a-Chip (TTNoC) for the communication between the cores in order to provide

the advantages of this king of networks to the multicore system. The benefits of the im-

plementation of such a message-based MPSoC architecture specifically for the automotive

domain are well discussed in [HO09].

In the rest of this chapter we present an example of a comercial multicore platform

highly used at the moment in the automotive industry for the development of ECUs, the

so-called Aurix TC3xx from the Infinieon multicore family. Thereafter, as an example of the

on-going state-of-the-art in the area of Network-on-Chip (NoC)-based MPSoC platforms the

24 Analysis of the State-of-the-Art

results of the MESARA and parMERASA projects in the context of automotive applications

are analyzed. Furthermore, a discussion of available I/O multicore solutions is presented

followed by the description of the health monitoring service developed by the avionic domain.

Finally, the multicore solution developed by the AUTOSAR Consortium is presented together

with the research gap, which compares this existing AUTOSAR multicore version with the

AUTOSAR message-based multicore architecture proposed in this dissertation.

3.1 AURIX TC3XX

The Aurix TC3xx family of microcontrollers is developed by Infinieon technologies specifi-

cally focused for electric and automated vehicles. The multicore architecture of the Aurix

TC3xx family contains up to six independently operating 32-bit TriCore processor cores.

Together with the enhanced features for vehicle communication, data security and functional

safety, the TC3xx microcontrollers are currently used for the development of many vehicle

applications, e.g., the control of motors, transmission systems and hybrid and electric drives.

Especially the domain controllers for hybrid drives are been benefited from TC3xx microcon-

trollers as well as the battery management and AC / DC converter. TC3xx microcontrollers

are suitable for safety-critical applications such as airbags, brake systems and power steering,

as well as radar- or camera-based driver assistance systems. The high real-time capability

and the comprehensive security functions make the TC3xx family suitable for data fusion,

and thus, for the implementation of automated vehicle applications [DMK+18].

The Aurix TC3xx microcontrollers offer up to 16 MB of embedded flash memory and

more than 6 MB of built-in RAM. Four of the six TriCore cores have an additional Lockstep

core. Up to 2,400 DMIPS of computing power is available to design systems with the highest

level of safety, i.e., ASIL-D of the ISO26262 standard [Int11]. The high computing power

and the reusability of existing safety concepts enable automotive system manufacturers to

save a grand part of development time. In addition, multiple feature can be implemented on

a single microcontroller, e.g., a powertrain domain control together with vehicle dynamic

applications.

An improved Hardware Security Module (HSM) is offered by every TC3xx microcon-

troller. The HSM makes on-board communication more secure and hampers hardware

manipulation such as engine tuning. It integrates new features to support asymmetric en-

cryption mechanisms according to the EVITA project requirements [KZK+14]. This allows

Aurix software update over-air and helps to prevent software hijacking.

The Aurix TC3xx supports the latest communication interfaces, which allows it to host

complex gateway and telematic applications. The Aurix is provided with a Gigabit Ethernet

3.2 MERASA and parMERASA European Projects 25

Domain Specific Interface

Non-Critical RTE Services

System

Services

Core Library

Hardware

Communication

and

Synchronization

Input/Output

Services

SWC
Critical

SWC
SWC

Application Layer

Critical RTE Services

Figure 3.1: parMESARA Software Architecture

interface, up to 12 CAN with Flexible Data-Rate (CAN FD) channels according to ISO

11898-1 [Int15] and up to 24 LIN channels. Additionally, an integrated eMMC interface for

external flash interface enables local data storage.

3.2 MERASA and parMERASA European Projects

The Multi-Core Execution of Parallelised hard Real-Time Applications Supporting

Analysability (parMERASA) EU project [UBG+13] was carried out to investigate industrial

real-time programs for their possible performance enhancement by means of suitable paral-

lelization together with user companies from the fields of aircraft electronics, automotive

technology and construction machinery. The focus was on moving from a sequential to a

parallel real-time program that still meets real-time requirements despite the simultaneous

execution of the parallel control threads on a multicore processor. In order to achieve this

goal, a corresponding software design process was developed, suitable parallel software

structures were found, and different hardware structures were examined for their suitability.

The parMERASA was developed on the resulting basis obtained from the initial Multi-

Core Execution of hard Real-Time Applications Supporting Analysability (MERASA)

project [UCS+10]. Both projects were coordinated by Prof. Ungerer, being the first one

26 Analysis of the State-of-the-Art

Core Core Core Core

CoreCoreCoreCore

Cluster 1

Cluster 2

Inter-Cluster

Communication
Inter-Core

Communication

Figure 3.2: parMESARA Clustered System Architecture

focused on developing real-time multicore processors with two to eight cores, which are,

on an order of magnitude, the today already being used general-purpose processors for PCs

and servers. The parMERASA followed-up project continued this investigation to multi-

core processors with up to 64 cores and with other new connection structures. While the

focus of research and development work in MERASA was on the hardware development, in

parMERASA it shifted to user programs and their parallelization as well as the support of

the system software.

Figure 3.1 depicts the software architecture approach introduced by the parMERASA

project. The aim of this architecture is to ensure that timing assumptions performed on the

application level development are full filled. For this, the architecture differentiates between

no critical and critical services providing protection environments to avoid access across

partition boundaries except if it is explicitly allowed (e.g., memory mapping). Thus, only

critical services can influence other partitions.

Depending of the application domain these protection environments are defined to comply

with specific domain requirements. For instance, Figure 3.1 introduces AUTOSAR tiny RTEs

for critical services and for no critical services, abstracting the application software from

the BSW functionalities, e.g., system services (scheduling, protection), communication and

synchronization services and I/O interfaces.

Additionally, the project proposes to build the parMERASA architecture on top of a

clustered processor architecture, where cores in the same cluster are connected through a

NoC and cores on different clusters are connected using a inter-cluster NoC (see Figure

3.2). Thus, inter-core communication running within the same cluster does not interfere with

applications running on a different cluster (intra-cluster communication). Only in case of

communication between cores allocated on different clusters (inter-cluster communication)

3.3 State-of-the-Art of I/O Multicore Solutions 27

messages are routed through the inter-cluster NoC to the application running in the specific

cluster.

3.3 State-of-the-Art of I/O Multicore Solutions

In the last years I/O management in combination with multicore processors has been inves-

tigated. A review of different solutions for maintaining coherency between caches and the

data generated or consumed by I/O devices is presented in [Ber09]. This work compares

different approaches for data and I/O coherence with solutions trading off hardware versus

software complexity depending on the application and the system characteristics.

A high performance multicore I/O manager for the Glasgow Haskell Compiler (GHC) is

introduced in [VWHY13]. The so-called Mio manager eliminates the bottlenecks originating

from a typical GHC I/O manager when implemented on a multicore processor. In [JGJ+09]

a virtual regionalized NoC is used to optimize the performance of the peripheral devices.

This work presents an architecture consisting of a NoC with a mesh topology wherein

the network is divided into several virtual regions taking advantage of the characteristics

of the applications and their communication patterns to adapt to the I/O communication

requirements.

A heterogeneous multicore embedded system with virtualization to improve security and

isolation among virtualized environments is presented in [KGC12]. This multicore embedded

architecture consists of an I/O management unit that enables the virtualization and provides

support for a global coherent address space, flow isolation, security, resource management

and runtime monitoring. In [KYBS14] a partition scheduler providing conflict-free I/O for

multicore avionic systems is introduced. This work proposes a heuristic algorithm that

prevents conflicts among I/O transactions from applications running in different cores.

3.4 ARINC 653 Health Monitoring

The Aeronautical Radio, Incorporated (ARINC) 653 [Aer15] is an avionic standard for

integrated modular avionics which defines an execution environment based on time partition-

ing for safety-critical avionic Real Time Operating System (RTOS). It describes a general

purpose application interface between the operating system and the application software.

This standard introduces a health monitoring service [ZW+13] which provides a frame-

work to raise and handle alarms in a system consisting of three levels in a hierarchical fashion:

process level, partition level and module level (see Figure 3.3). A system health monitoring

table defines the level of an error (module, partition, process) based on the error and the state

28 Analysis of the State-of-the-Art

Error Detected by OS

or Raised by Application

Is this error synchronous to

a partition execution?

According to Level in

Multi-Partition_HM table

According to Level in

Partition_HM table

A module level error

recovery action defined in

Module_HM table is appllied

Selection of Multi-Partition

HM table associated with the

current partition

A module level error recovery

action defined in Multi-

Partition_HM table is appllied

A Partition level error recovery

action defined in

Partition_HM table is appllied

Error Handler

is activated

Level = MODULE Level = PARTITION

(Level = PARTITION) OR

(Error Handler not present) OR

(error caused by Error Handler)

(Level = PROCESS) AND

(Error Handler is present) AND

(error outside Error Handler)

NO YES

Figure 3.3: Health Monitoring Decision Tree

of the system. Additionally, fault responses and recovery actions are defined depending on

the error level.

Recovery actions for process level errors are defined by the application programmer, while

recovery actions for the partition and module level are specified in the health monitoring

configuration tables. The partitions can have separated configuration tables or share a

common table.

3.5 Multicore Approach of AUTOSAR

The version 4 of the AUTOSAR standard specifies the first (and still up to date) version with

multicore support for its ECU architecture. With this first multicore support, AUTOSAR

found a path to a multicore architecture that makes minimal changes to its original system

architecture. As a result, the cost of conversion should be kept relatively low. One crucial

aspect of the AUTOSAR design was exploited: all SWCs in a vehicle network can be freely

distributed to the ECUs in the network at design time, as the VFB provides an abstraction

from the actual ECU used. In a multicore system, the VFB now also provides an abstraction

of the cores. As a result, SWCs can also be used in a multicore system without any further

3.5 Multicore Approach of AUTOSAR 29

SWC SWC SWC SWC SWC

Run-Time Environment (RTE)

AUTOSAR

Muticore

Operating

System

AUTOSAR

Basic Software

Master Core Slave Core

MPSoC Hardware

Figure 3.4: The AUTOSAR Multicore System

adaptation, so in other words, there is no migration effort on the application development

side.

Even the BSW does not have to be completely reworked. The operating system and

the RTE are both adapted. The operating system must be able to execute tasks on multiple

cores and the RTE must now implement the VFB in such a way that, in addition to the well-

known local and external communication, a third form is supported, namely the cross-core

communication within an ECU. However, the rest of the BSW does not need to be specially

adapted to the multicore system according to AUTOSAR. This is achieved by using the

BSW only on one, previously determined, master core. This ensures that any implicit or

explicit synchronization within the BSW will continue to work just as well as the one-core

system does. The resulting architecture is shown in Figure 3.4.

The largest amount of customization affects the operating system [AUT16c]. This

AUTOSAR multicore operating system can execute tasks on all cores of a multicore processor.

The task-core assignment is done statically as part of the configuration by always assigning

an operating system application to exactly one core. Since synchronization using existing

OSEK resources only applies to mutually exclusive tasks and not to parallel operations,

resources are assigned to a core and may only be assigned to tasks on the same core.

To synchronize tasks on multiple cores, AUTOSAR spinlocks are introduced. Here,

AUTOSAR uses a term different from its usual definition. The term spinlock usually refers to

an application-level synchronization mechanism wherein the involved processes synchronize

based on the value of a memory location. Waiting processes actively check the value of

the memory location and therefore occupy the processor once it is their turn. Spinlocks are

favored where low competition and short block times are expected, as they bring very little

overhead. In return, AUTOSAR spinlocks are provided entirely as a unit independent service

30 Analysis of the State-of-the-Art

to the operating system. To get the semantics of spinlocks, a task that requests an occupied

AUTOSAR spinlock is blocked by the operating system. However, executable low-priority

tasks are not assigned to the processor in order to give the impression that the blocking task

would still occupy the processor. The reason for this heavy weight approach is to try to

avoid deadlocks. Therefore, the assignment of an AUTOSAR spinlock is linked to several

conditions, for example, a certain order must be adhered to when using several spinlocks.

These conditions are checked by the operating system before the AUTOSAR spinlock is

actually allocated. If the conditions are violated, the operating system returns with an error

message without occupying the AUTOSAR spinlock.

Most operating system services are available across the cores. Examples include acti-

vating tasks or setting events. The exception are the functions for interrupt locks, which

always only affect the calling core. The AUTOSAR operating system is also enhanced with

a subsystem for signal-based communication across core and memory protection boundaries,

the so-called Inter OS-application Communicator (IOC). The IOC is primarily designed

tu be used by the RTE, offering communication channels with or without queues. Each

channel must be configured with the data type and, if necessary, the length of the queue. The

AUTOSAR operating system then manages corresponding memory areas.

As another module of the AUTOSAR system, the RTE is adjusted, but here the changes

are less extensive. During the generation phase of the RTE, it must be checked for each local

communication whether it exceeds the limits of an AUTOSAR operating system application.

If this is the case, the communication should be routed through a suitable IOC channel. If

the calling SWC is assigned to another core, then the function call is not allowed take place

from its own task. The RTE therefore implements all BSW calls from such SWCs as remote

calls. For this, the RTE sends the call parameters to a proxy task on the first core. This task

then invokes the appropriate function. This procedure is shown in Figure 3.5 for SWC B. If

the function has a return value, it is sent back to the calling core. Task B is in the meantime

blocked and waits for the answer. This provides the synchronous semantics of a function call

to the calling SWC.

3.6 Limitations of the existing AUTOSAR Multicore Ver-

sion

In the AUTOSAR multicore version the cores share the same configuration and code, while

different data is processed. The complete BSW is provided only on the master core, while

the slave cores have a subset of the AUTOSAR BSW to support SWCs and complex device

drivers. The described IOC service is used for the communication between the cores. This

3.7 Research Gap of the State-of-the-Art 31

SWC A SWC B

BSW

Master Core Slave Core

MPSoC Hardware

Task B

Task A Proxy Task

Parameter Sending

F
u

n
c
t
io

n
 C

a
ll

F
u

n
c
t
io

n
 C

a
ll

RTE

Figure 3.5: The IOC Functional Concept

type of communication is implemented by shared memory [AUT16c] and is used by the

AUTOSAR RTE for the communication between SWCs on different cores.

This AUTOSAR multicore version gives a limited autonomy to the cores, which are

managed by a common operating system. Dependencies between cores, for example, by

the possibility of activating tasks, task chaining or setting alarms/events on other cores, can

lead to error propagation between cores in case of permanent and transient hardware errors

(e.g., soft errors) and design errors. These dependencies require the analysis of the temporal

behavior of each core under the influence of the other cores on the MPSoC. The starting and

stopping of individual cores is not supported, and only the complete MPSoC can be put into

"sleep mode". Moreover, the master core represents a single point of failure and provides

limited scalability.

Finally, the sender/receiver communication is the only communication type supported,

while the client/server communication is not provided. Also, "1:N" communication is not

directly supported but implemented with multiple interactions. For synchronization between

cores busy-waiting with spinlocks is used, so configuration tools need to check offline that

no deadlocks occur when using the spinlocks.

3.7 Research Gap of the State-of-the-Art

The AUTOSAR multicore operating system lacks support for message-based MPSoC archi-

tectures, whereby the advantages of this architecture model for temporal predictability, fault

isolation, low overhead, energy efficiency and scalability can not be realized for AUTOSAR-

based systems. The development of such an AUTOSAR NoC platform represents a major

32 Analysis of the State-of-the-Art

scientific challenge, where several requirements must be fulfilled: (1) A requirement is the

mapping of the VFB to a message-based NoC. (2) Interfaces that can also be bypassed for

performance reasons within the AUTOSAR BSW and the possibility of direct access through

cross-layer shortcuts represent a risk to the realization of the AUTOSAR BSW functions on

different cores. (3) The limited local memory resources within the cores are another technical

risk. (4) Finally, the complete compatibility with existing interfaces and specifications (e.g.,

AUTOSAR RTE, AUTOSAR operating system) is a challenge of central importance.

Furthermore, the state-of-the-art does not provide I/O management as part of an

AUTOSAR message-based multicore platform. Moreover, the support for remapping be-

tween input/output cores and application cores is required for the integration of a health

monitoring service and recovery actions to the AUTOSAR multicore system.

In this Dissertation we propose a time-triggered multicore architecture for AUTOSAR

that offers significant advantages in comparison with the existing AUTOSAR multicore

operating system version. The followed advantages are validated in the results presented in

Chapter 7.

• Better reliability. The message-based NoC and autonomous AUTOSAR application

cores provide fault isolation in the time and value domains. Fault isolation is a weak

point in the AUTOSAR multicore operating system [DBT09].

• High performance with low overhead. The parallel execution of SWCs on multiple

cores, system cores with hardware support for gateways, I/O and memory bus and

simplified BSW increase the performance and reduce the resource requirements in the

AUTOSAR layer model.

• Temporal predictability. The message-based NoC and the decoupling of the cores lead

to deterministic temporal behavior and suitability for real-time applications.

• Smooth integration. Autonomous Micro-Electronic Control Units (µECUs) (appli-

cation cores) lead to clear responsibility and support for seamless integration of

independently developed SWCs.

• Seamless communication with SWCs on other MPSoCs. Gateway system cores support

seamless communication between the chip-level and distributed systems, especially

with the support of time-triggered off-chip networks such as FlexRay [Fle05].

Chapter 4

Message-based Multicore Architecture

for AUTOSAR

In this chapter we present a novel message-based multicore architecture for AUTOSAR

which combines the AUTOSAR software with a multi processor NoC platform. Thus, the

benefits of message-based NoC architectures discussed in Chapter 1 in the context of temporal

predictability and fault isolation can be exploited by the AUTOSAR system.

The architecture defines a message-based NoC as the only physical medium for the com-

munication between the cores and introduces autonomous application cores which function

as AUTOSAR µECUs on the MPSoC. Each µECU acts as a unit of abstraction where the

SWCs are provided with a RTE and a lightweight implementation of the AUTOSAR BSW.

Additionally, we extend the AUTOSAR BSW on the µECUs with new BSW modules to

connect them with the on-chip network and dedicated system cores that serve as hardware ac-

celerators to the AUTOSAR application. Moreover, a health monitoring service is integrated

which provides recovery actions to the AUTOSAR software in case of software failures in

the time domain or value domain.

4.1 Overview of the AUTOSAR Multicore System

The proposed system architecture, denoted from now on as TIme-triggered MEssage-based

multi-core architecture for AUTOSAR (TIMEA) [UO15] [Urb17], describes a message-

based multicore architecture for the mapping of the single-core AUTOSAR ECU software

architecture to a message-based multi/many-core system. As depicted in Figure 4.1, this

architecture introduces a message-based NoC as the communication interface between the

cores. Two types of cores can be distinguished: application cores and system cores. While

the application cores, so-called AUTOSAR µECUs, are in charge of the execution of the

34 Message-based Multicore Architecture for AUTOSAR

AUTOSAR

μECU

Message-based NoC

AUTOSAR

μECU

AUTOSAR

μECUCAN
System Core System Core

Complex

Driver

System Core

I/O

System core

Memory
AUTOSAR

μECU

Figure 4.1: TIMEA Platform

specific automotive application functionality, system cores perform hardware acceleration

services needed by the µECUs.

A time-triggered NoC supports bandwidths of several Gbps and provides communication

plans with precise phase positions of messages in the range of a few ns. Since most of the

functionalities realized by the AUTOSAR BSW are designed for latency requirements with

orders of magnitude no lower than 1ms, a NoC for inter-core communication allows the in-

troduction of dedicated system cores for replacing computationally expensive functionalities

originally handled by the BSW modules in the µECUs. In Figure 4.1 we propose system

cores dedicated to I/O functionalities (e.g., PWM, ADC functionality, etc) [UO17], for

replacing special complex driver implementations, to provide memory services [OO16] and

to implement off-chip communication networks for supporting inter-MPSoC communication

[UO16].

4.1.1 Message-based Network-on-a-Chip

The proposed message-based NoC provides temporal predictability and fault isolation to

the AUTOSAR µECUs and the system cores. There is a considerable trend towards mul-

tiple timing models in on-chip communication systems to overcome trade-offs in terms of

predictability and flexibility [Edi12]. We assume that the TIMEA NoC provides support

for these timing models to fulfill the different and partially contradicting communication

requirements of different application subsystems in real-time embedded systems such as

those in the automotive industry. Different available NoCs satisfy this assumption, e.g.,

AEtheral [GD+05] and DREAMS-NoC [AO15].

Time-Triggered (TT) communication: this kind of communication specifies messages

whose transmission times are stored in a static communication schedule, where each message

4.1 Overview of the AUTOSAR Multicore System 35

is assigned to a specific time slot with respect to a global time base. Time-triggered messages

ensure temporal predictability since resource conflicts with other time-triggered messages

are eliminated at development time.

Rate-Constrained (RC) communication: A sufficient bandwidth allocation for each

message transmission is guaranteed with a defined Minimum INter-arrival Time (MINT) and

temporal deviations. Rate-constrained messages provide flexibility and a high utilization of

resources. Priorities are used to resolve contention between multiple rate-constrained mes-

sages and contention with time-triggered messages. Time-triggered messages are assigned

higher priority than rate-constrained ones.

Best-Effort (BE) communication: It supports the transmission of messages that are

triggered by the occurrence of significant events in the environment or inside the system.

Priorities are also used to resolve contention but in comparison with time-triggered and rate

constrained messages, this kind of messages are assigned lower priority and they may be lost.

The message-based NoC is composed of Network Interfaces (NIs) and routers. Each

µECU and system core of the MPSoC is provided with a NI. These NIs serve as the interfaces

for the µECUs and the system cores to access the NoC by injecting the messages from the

cores into the NoC as well as delivering the received messages from the NoC to the cores.

Routers relay the fixed-length fractions of messages from the sender NI to the destination NI.

Physical links serve for the interconnection between the NIs and the routers.

The message-based NoC provides support for different configurable topologies (e.g.,

mesh, ring) with a global time base for the temporal coordination of the message transmissions

between the µECUs and the system cores. For the execution of the NoC, the configuration

parameters of the required topology have to be defined at design time. This a priori knowledge

is used later to setup the NoC and define its NIs and the static communication schedule.

4.1.2 Application Cores and System Cores

Application cores implement the required automotive functionality by hosting one or more

AUTOSAR SWCs. The application cores represent AUTOSAR µECUs in the MPSoC

platform.

Each application core is provided with a middleware implementing the AUTOSAR RTE.

The purpose of the RTE as defined by AUTOSAR is to provide an interface to the SWCs that

makes them independent from the underlying platform and from the mapping to a specific

ECU hardware [HBS+06]. SWCs can access via the RTE the following AUTOSAR services

[AUT16b]: memory services (nvram manager), system services, communication services

(e.g., CAN, LIN, FlexRay), input/output hardware, and complex drivers.

36 Message-based Multicore Architecture for AUTOSAR

In the proposed AUTOSAR MPSoC, the RTE in the application cores offers access to

system services (i.e., AUTOSAR Operating System (OS)) and communication services. The

communication services are mapped to the NoC transparently to the application software.

This provided version of the AUTOSAR RTE serves as the only interface for the interac-

tion between SWCs on different application cores. The application cores require only a

reduced realization of the AUTOSAR BSW, wherein BSW modules for memory services,

I/O hardware abstraction and complex drivers are replaced by stubs to dedicated system cores.

The motivation behind this approach are the improved performance and lower overhead for

AUTOSAR in the µECUs since the system cores act as hardware accelerators.

Furthermore, BSW modules in the "ECU Communication Abstraction Layer" are added

for supporting access to the message-based NoC. In contrast, BSW communication modules

for network off-chip accesses are also allocated to dedicated system cores.

The VFB defined by the AUTOSAR standard is available for the AUTOSAR SWCs

through a hierarchical platform. The communication hierarchy is performed as follows:

• Inner-core communication: the exchange of messages between SWCs on the same

µECU is performed by the RTE of the µECU.

• Inter-core communication: the communication between SWCs on different µECUs

in the same MPSoC is available through the extended COM service modules for on-

chip communication and the NoC, based on the pre-defined on-chip communication

schedule of the network.

• Off-chip communication: The passing of messages between SWCs in different

MPSoCs is possible by using a dedicated system core supporting any off-chip commu-

nication network.

The advantages of this approach are the reduced requirements on operating system

functionality within a single application core as well as the inherent encapsulation of the

µECUs using the message-based NoC.

The system cores are deployed to implement parts of the AUTOSAR BSW. System cores

implement particular AUTOSAR functions such as gateways or input/output functions. The

system cores perform virtualization of specific resources, e.g., ensure absence of interference

on I/O or NVRAM. The access to the system cores is mapped to message-based on-chip

communication. At the system cores a modified implementation of the system services layer

is required to process those requests from the BSW on the application cores, integrating a NI

to interact with the deterministic on-chip-network. The introduction of these system cores in

the multicore AUTOSAR platform radically simplifies the AUTOSAR BSW in the µECUs.

4.1 Overview of the AUTOSAR Multicore System 37

The advantage of these dedicated system cores are simpler application cores, since they are

tailored to the needs of the actual application only, and the potential of reuse for such system

cores in different designs.

The identified system cores are described as follows.

• Off-chip network gateway core. This gateway core supports the data exchange between

the message-based NoC and the off-chip automotive networks. The gateway core has,

in addition to the communication hardware abstraction for the NoC, also software

modules and interfaces for accessing off-chip networks such as FlexRay, LIN or

CAN. Thus, the communication between the SWCs in different MPSoCs is possible.

For instance, Figure 4.1 depicts the realization of the off-chip gateway functionality

in a specific system core supporting the CAN communication protocol instead of a

communication middleware in each application core.

• Input/output core. AUTOSAR adopts a layer model to provide a uniform access to

input/output devices, where at the microcontroller abstraction level, basic drivers for

analog and digital input/output (e.g., pulse width modulation, capturing of input signals

and analog to digital conversion) are provided. An input/output core provides hardware

support for the realization of the input/output hardware abstraction services.

• Memory access core. The NVRAM management functionality is delegated to a

dedicated system core. This system core is connected to a chip-external memory

component (e.g., flash memory) on the ECU. The memory access core implements

the functionality of the memory hardware abstraction of the ECU abstraction layer. It

provides an abstraction from the type and location of the specific memory. A flash or

EEPROM memory is accessible via the same interface.

• Complex drivers core. AUTOSAR defines the purpose of complex drivers as an

interface for complex sensors or actuators, which have stringent requirements on

timing and are implemented for specific designs. A complex driver (e.g., for a fast

ADC) implemented as a system core highly increases the efficiency of the specific

driver functionality.

4.1.3 Fault Hypothesis

In this section we define the fault hypothesis for the TIMEA platform. This fault hypothesis

specifies the assumptions about the kinds of failures that system components may experience

and, as a consequence, could lead to the failure of the entire system. Based on these failure

assumptions, fault tolerance mechanisms are defined. In case a fault occurs, which has not

38 Message-based Multicore Architecture for AUTOSAR

Crash Failure

Omission Failure

Bubbling Idiot

Failure

Timing Failure

Arbitrarily Failure

Value Failure

Transient Value Failure

Permanent

 Value Failure

Figure 4.2: Failure Modes

been included in the failure assumptions, the complete system might fail. The fault hypothesis

includes the specification of the Fault Containment Regions (FCRs) and the failure mode

assumptions [OP07] [UO18].

4.1.3.1 Fault Containment Regions

The FCRs represent isolated units of failures that operate independently from each other

and perform correct outputs regardless of any arbitrary logical or electrical fault that may

occur in the system outside of their delimited regions. This independence of the FCRs can

be compromised if something happens at runtime that was not assumed as part of the fault

assumptions (e.g., massive explosion).

We consider AUTOSAR SWCs and AUTOSAR µECUs as FCRs for the AUTOSAR

multicore architecture. In each µECU, the AUTOSAR software architecture guarantees a

high level of fault independence between SWCs which is assured by the AUTOSAR operating

system with memory protection and temporal partitioning (task scheduler). Furthermore,

µECUs are identified as independent units of failures due to the employment of the message-

based NoC for the communication between each other, which provides fault isolation to each

µECU. Thus, two layers of defense can be distinguished: (1) SWCs as FCRs with lower

containment coverage (only addressing software faults) (2) µECUs as FCRs with higher

containment coverage (also addressing hardware faults).

4.1.3.2 Failure Mode Assumptions

Assumptions of the failures are determined independently of the actual cause of the failure

(e.g., logical error, hardware error) but from the perspective of the service user and can be

classified as a failure in the time domain or in the value domain (see figure 4.2). Based

on these assumptions, different failure modes are specified which allow to determine the

4.1 Overview of the AUTOSAR Multicore System 39

degree of redundancy required to provide correct error processing. For the development of

the TIMEA platform the following failure assumptions are considered.

1) Time Domain:

• Timing Failure. A timing failure is a kind of failure where a FCR does not comply

with its temporal specification. The FCR outputs are delivered too early or too late. In

case no prior knowledge about the message periods (time-triggered messages) or the

MINT (rate-constraint messages) is available to the system, the detection of a timing

failure is not possible.

A time-triggered SWC that does not send a message according to its temporal run-time

configuration would be an example of a timing failure.

• Omission Failure. This kind of failure represents a transient failure, where a FCR fails

sending a message at its respective time slot and, as a consequence, the receiver FCR

does not respond to any input. In contrast to a general timing failure in an omission

failure the output is never delivered by the FCR. An example of an omission failure

would be a µECU that fails sending a message in its respective time slot through the

on-chip network.

• Crash Failure. In contrast to the omission failures, a crash failure represents a per-

manent failure that can remain undetected by the system. In case a specific FCR is

experiencing a crash failure this FCR would stop producing any outputs. In case a

SWC suffers a crash failure this SWC would stop sending messages.

• Babbling Idiot Failure. This failure represents a special kind of timing failure where

a FCR starts sending numerous messages without a minimum time interval between

each other, so the communication medium is monopolized by the FCR.

An example would be an AUTOSAR SWC which constantly sends messages generat-

ing delays because of contention in the communication network.

2) Value Domain:

• Transient/Permanent Value Failure. It represents a kind of failure where the content

of the message sent by an FCR is corrupted. In case the failure has a sporadic behavior

it is called a transient value failure, otherwise if the failure remains it is called a

permanent value failure. In the context of this dissertation we use AUTOSAR message

specifications to identify value failures. Thus, a SWC which sends random message

values that do not comply with its AUTOSAR specification (e.g., data constraint

element, constant specifications) would be an example of a value failure.

40 Message-based Multicore Architecture for AUTOSAR

4.2 Architecture of an AUTOSAR Micro-ECU

In this section we explain in details the software architecture for an AUTOSAR µECU.

Figure 4.3 illustrates the µECU software architecture.

The BSW of the µECUs is extended with new BSW modules in order to support message-

based NoC communication. Special communication service modules (COM module, PDU

Router) [UO15] serve as the interface between the RTE and the NI for connecting the µECU

to the on-chip network. Thus, µECUs are able to use the NoC for the communication

between each other.

Additionally, we propose an efficient implementation of the I/O drivers by replacing the

original AUTOSAR-defined BSW modules of the I/O abstraction layer by an input/output

core (I/O abstraction core in figure 4.3) dedicated to these functionalities. Instead of having

an implementation of the whole I/O abstraction layer in the BSW of each AUTOSAR µECU,

an I/O proxy module is defined. The I/O proxy serves to forward data prototypes [AUT16d]

(sender/receiver interface) or argument prototypes [AUT16d] (client/server interface) sent

by the sensor/actuator SWCs to the PDU router and thus, to the input/output core through

the message-based NoC. Additionally, ECU signals captured by the input/output core can

be received by the µECUs and forwarded to the sensor/actuator SWCs using this I/O proxy

module. Moreover, external peripherals requiring stringent time constraints that would need

a complex driver realization in the BSW of the µECU can be accelerated by delegating

the device driver to a dedicated core. In this case, a proxy module for matching ECU

signals of the specific input/output core with the data/argument prototypes of their related

sensor/actuator SWCs must be integrated into the BSW of the µECUs that require this

service. As an example, Figure 4.3 illustrates a Fast Fourier Transform (FFT) proxy service

module which allows the interaction of a µECU with an input/output core dedicated to the

FFT functionality. Also, the decision whether a device driver is accelerated by hardware is

kept transparent to the RTE and the AUTOSAR application. From now on the FFT example

will be used as an accelerated complex driver use case.

Furthermore, a health monitoring module is added to the BSW in the µECUs. This

module provides error detection mechanisms based on AUTOSAR pre-defined parameters,

e.g., data constraint element and constant specifications, and recovery solutions in case of

the failure of a SWC consisting of SWC redundancy in the same µECU or in a different

µECU in the MPSoC. Thus, if a sensor/actuator SWC fails, the health monitoring service

can activate a replicated SWC located in the same µECU which replaces the failed SWC. If

there is no replica available in the same µECU, the health monitoring service makes aware

the proxy module to send a notification message to the specific input/output core (e.g., I/O

4.2 Architecture of an AUTOSAR Micro-ECU 41

Message-based NoC

AUTOSAR

µECU

AUTOSAR µECU

Memory

System Core

I/O

System Core

RTE

SWC SWC SWC SWC

Application Layer

COM services

I/O

Proxy

FFT

Proxy

System Services

AUTOSAR

Operating

System

COM

PDU

Router

COM HW Abstraction

Peripherals Services

Network Interface

Health Monitoring

FFT

System Core

Figure 4.3: AUTOSAR µECU Architecture

abstraction core) in order to indicate that a replica of the failed SWC located on another

µECU must take over the access to the I/O functionality. In the scenario depicted in picture

4.3 the I/O system core represents a single point of failure. To avoid this, core redundancy can

be also implemented to provide recovery solutions in case of software failures or hardware

failures in the system cores. However, the extension of replicated system cores is not within

the scope of the thesis and it can be object of study for further investigations.

4.2.1 Communication Stack for NoC support

The AUTOSAR BSW on each µECU is extended to support message-based NoC com-

munication. Figure 4.3 shows the NoC modules added in the AUTOSAR BSW. New

communication modules are integrated in the "ECU communication layers" for accessing

the NoC. A NoC driver module for the MCAL, a NoC hardware abstraction interface and

extended COM service modules (COM module and PDU router) are integrated.

As explained in Chapter 2 the RTE is in charge of the inter-SWC communication func-

tionality exposed by the VFB. The RTE provides signals mapped to the variables handled

by the SWC ports. For SWC ports hosting a sender-receiver interface, the data transferred

by the interface is mapped to a RTE signal. For client-server interfaces, RTE signals are

mapped to the function arguments of the SWC ports. The COM module is in charge to

42 Message-based Multicore Architecture for AUTOSAR

RTE

Actuator

SWC

Application Layer

Atomic Software Component

R-Port Prototype

Client-Server Interface

Signal

Abstraction

R1

Proxy

Functionality

R2

Proxy SWC

PDU

ROUTER

Error Detection

Recovery Action

Signal

Abstraction

Replicated

Actuator

SWC

R1'

Health Monitoring

Figure 4.4: BSW Modification

store the RTE signals to outgoing on-chip PDUs and the mapping of these to one of the

communication models supported by the NoC (time-triggered messages, rate constrained

messages and event-triggered messages). Additionally, the COM module maps incoming

on-chip PDUs to the RTE signals. The PDU router contains routing tables to forward NoC

PDUs to the COM module and the re-direction of COM PDUs to the NI.

4.2.2 I/O Proxy Functionality

In the AUTOSAR standard [AUT16a] the RTE is in charge of the communication between

sensor/actuator SWCs and the BSW modules of the I/O hardware abstraction layer. The

I/O abstraction layer consists of BSW SWCs with ports hosting AUTOSAR interfaces

(sender/receiver or client/server). Thus, sensor/actuator SWC ports and I/O BSW SWC ports

are connected though the RTE layer.

4.2 Architecture of an AUTOSAR Micro-ECU 43

In order to make the application layer and the RTE independent from the acceleration

of a device driver, the integration of a proxy module is realized as a BSW SWC, which

also implements AUTOSAR interfaces to interact with the application layer. For instance,

Figure 4.4 shows an actuator SWC that is connected with a proxy SWC using a client/server

interface. In this way, the decision whether a device driver is accelerated or not is kept

transparent to the RTE and the application layer.

The internal behavior of the proxy SWC consists of two AUTOSAR runnables. One

runnable (R1 in Figure 4.4) is used for the signal abstraction. The aim of this runnable is

to abstract in the data handled by the SWC ports from the physical layer values, mapping

the proxy SWC ports to ECU signals. Thus, application designers do not have to be aware

about implementation details of the device driver APIs and the units of the physical layer

values. Thereafter, ECU signals are forwarded to the second runnable of the proxy SWC (R2

in Figure 4.4).

The second runnable matches the ECU signals to PDUs, and invokes the error detection

service of the health monitoring module before forwarding the PDU signal to the PDU router.

For any value failure recognized by the error detection service the data value is dropped.

In case the error detection mechanisms determine that a crash failure or a permanent value

failure occurred, a recovery function of the health monitoring service is called. Thus, the two

following scenarios are possible:

• In case a replicated actuator SWC depending on the same I/O functionality is located

in the same µECU, the proxy function selects this ECU signal (coming from runnable

R1’ in Figure 4.4) to be packed into the PDU instead of the original one.

• If no redundancy is available on the same µECU, the proxy functionality configures the

PDU with a notification message to indicate to the input/output core that the specific

µECU is not able any more to control the I/O functionality.

Additionally, the previously defined PDU router is extended with new routing tables to

forward PDUs from the proxy module to the NI and vice versa.

4.2.3 Health Monitoring Service

In this section we explain the functionality of the introduced health monitoring module. As

mentioned previously, the health monitoring module serves to detect software failures in

the time or value domain and to enable recovery solutions in the application software. This

module consists of an error detection block and a list of recovery actions that cover the kinds

of failures described by the fault hypothesis (see Figure 4.4).

44 Message-based Multicore Architecture for AUTOSAR

In the TIMEA architecture, we use spare SWCs which are activated upon the detection of

a fault. This means, safety-critical SWCs are developed with multiple implementations that

can be activated in case the pre-set SWC fails. For this, callback functions are used to resume

(at run time) operating system tasks that host the replicated SWC. As defined by AUTOSAR

[AUT16c], callback functions provide the capability to trigger or stop SWCs that are outside

of the AUTOSAR BSW. Thus, a replica of the SWC does not increase the operating system

overhead, since the tasks are set up in suspended state [AUT16c] as defined at compile time.

Omission and crash failure recognition is processed by the error detection block using

algorithm 1, which defines the crash failure processing procedure. Moreover, for the handling

of transient and permanent value failures the value failure processing procedure is presented

in algorithm 2. Also, algorithm 1 defines the procedure for activating replicas, which is used

by both algorithms for the exploitation of the SWC redundancy.

The following sets and entities are used to explain the health monitoring algorithm:

• RT Eswci j: This represents the obtained status of a SWC data/argument prototype

returned by its specific RTE function, with i ∈ [1, I] and j ∈ [1,J], where I is the

total number of AUTOSAR SWCs in the µECU, i is the ID of the requester SWC,

J represents the total number of data/argument prototypes handled by the SWC and

j is the data/argument prototype ID. This returned RTE function status means: (1)

RT E_E_OK = the job processing finished correctly, (2) RT E_NOT _OK = the job

processing finished with error.

• Dswci j: It represents a data/argument prototype of a specific SWC. Each Dswci j is

associated with a data constraint element DCi j ∈ [DCi jmin,DCi jmax] and has a specific

unit Uniti j, both set up by the data/argument prototype AUTOSAR specification.

• ρi: This threshold parameter represents the maximum number of consecutive omission

failures of a single SWC that can be tolerated by the µECU.

• φi: This threshold parameter represents the maximum number of consecutive value

failures of a single SWC that can be tolerated by the µECU.

• ϕi: This threshold parameter represents the maximum number of omission failures of

a single SWC that can be tolerated by the µECU within an interval of κi executions.

• γi: This threshold parameter represents the maximum number of value failures of a

single SWC that can be tolerated by the µECU within an interval of ci executions.

• Ni: It represents the actual number of consecutive omission failures of a single SWC.

4.2 Architecture of an AUTOSAR Micro-ECU 45

• Ri: It represents the actual number of consecutive value failures of a single SWC.

• ni: It represents the actual number of omission failures of a single SWC within an

interval of κi executions.

• ri: It represents the actual number of value failures of a single SWC within an interval

of ci executions.

• SDswci j: This variable serves to indicate whether the data/argument prototype complies

with its AUTOSAR specification.

• Gi: It represents the actual grade of redundancy provided for the specific safety-critical

SWCi. This means, the number of SWC replicas available on the µECU.

• Rswciz: It represents the SWC replica of a safety-critical SWCi, with z ∈ [0,G].

• ξi: It represents the actual number of executions of a single SWC within an interval of

κi executions.

• χi: It represents the actual number of executions of a single SWC within an interval of

ci executions.

The following expressions are used to determine the presence of a crash failure occurrence

and a permanent value failure occurrence.

{

Ni > ρi +1 Crash failure detected

Ni < ρi +1 No crash failure present
(4.1)

Permanent Omission Failures

{

ni > ϕi +1 Crash failure detected

ni < ϕi +1 No crash failure present
(4.2)

Multiples Omission Failures within κi executions

{

Ri > φi +1 Permanent value failure detected

Ri < φi +1 No permanent value failure
(4.3)

Permanent Value Failures

46 Message-based Multicore Architecture for AUTOSAR

{

ri > γi +1 Pemanent value failure detected

ri < γi +1 No permanent value failure
(4.4)

Multiple Value Failures within ci executions

Algorithm 1 HM Algorithms - Crash Failure Processing

1: procedure CrashFailureRecognition(RT Eswci j)

2: ξi = ξi +1

3: if RT Eswci j == True then

4: Ni = 0

5: if ξi == κi then

6: ξi = 0

7: ni = 0

8: end if

9: ValueFailureRecognition(Dswci j)
10: else

11: Ni = Ni +1

12: ni = ni +1

13: if Ni > ρi +1 ∥ ni > ϕi +1 then

14: if Gi > 0 then

15: ActivateReplica(Rswciz)

16: ProxyIndication

17: Gi = Gi −1

18: else

19: ProxyIndication

20: end if

21: else

22: if ξi == κi then

23: ξi = 0

24: ni = 0

25: end if

26: end if

27: end if

28: end procedure

29: procedure ActivateReplica(Rswciz)

30: RT E_SWCiz(OFF)
31: RT E_Rswciz(ON)
32: end procedure

Once a safety critical SWC runnable is triggered by the AUTOSAR operating system, the

status of its specific RTE function for the internal communication is observed by the integrated

4.2 Architecture of an AUTOSAR Micro-ECU 47

health monitoring functionality. This functionality uses the algorithm 1 for monitoring the

status value of the RTE function.

As explained earlier, algorithm 1 is responsible for the recognition and processing of

crash failures. The procedure "CrashFailureRecognition(RT Eswci j)" is called for each

safety-critical SWC triggered by the operating system. This procedure distinguishes between

two kinds of crash failure possibilities: (1) Reaching a pre-defined threshold of consecutive

omission failures ρi tolerated by the µECU, (2) Reaching a pre-defined threshold of total

omission failures ϕi tolerated by the µECU within an interval of κi executions.

The algorithm starts updating the ξi counter since a new SWC execution was performed.

This counter is checked every single execution and serves to keep the ni counter updated

within a delimited interval of κi executions. In case ξi reaches κi and no crash failure was

recognized, this counter, as well as the ni counter, are set to 0.

The passed RTE function status RT Eswci j is checked for the recognition of omission

failure occurrences. In case RT Eswci j is True, the Ni counter is set to 0 since no consecutive

omission failure was detected and the "ValueFailureRecognition(Dswci j)" procedure of

algorithm 2 is called for value failure processing. This procedure will be explained later for

algorithm 2.

In case the RT Eswci j is False, this means that an omission failure occurred and therefore

the Ni and ni counters are increased. After this, the expression 4.1 serves for determining

the existence of a crash failure due to consecutive omission failures and, based on this

assumption, the "ActivateReplica(Rswci)" procedure is called if a crash failure was detected

and another SWC is available. In case a crash failure was detected and no SWC replica is

available, the proxy module is notified. The "ActivateReplica(Rswci)" procedure is detailed

later.

If no crash failure was determined by the expression 4.1, then expression 4.2 is used

for determining the existence of a crash failure due to multiple omission failures within

an interval of κi executions. At this moment, in case no crash failure was detected, the

value failure recognition is initiated and the "ValueFailureRecognition(Dswci j)" procedure

of algorithm 2 is called.

The algorithm 1 also defines the "ActivateReplica(Rswci) procedure. This procedure

implements callback functions to resume the tasks running Rswci and pause the tasks hosting

the original SWCi. Callback functions are implemented according to the Rte_Call_ < p >

_ < o > API [AUT16i] of the RTE in order to enable safe configuration of the AUTOSAR

services.

The algorithm 2 is in charge of the processing of the value failures. It defines the

ValueFailureRecognition(Dswci j) procedure, which serves to distinguish a permanent value

48 Message-based Multicore Architecture for AUTOSAR

Algorithm 2 HM Algorithms - Permanent Value Failure Processing

1: procedure ValueFailureRecognition(Dswci j)

2: χi = χi +1

3: if Dswci j < DCi jmin ∥ Dswci j > DCi jmax ∥ Dswci j.Unit ̸= [Uniti j] then

4: SDswci j = False

5: else

6: SDswci j = True

7: end if

8: if SDswci j == False then

9: ProxyIndication

10: Ri = Ri +1

11: ri = ri +1

12: if Ri > φi +1 ∥ ri > γi +1 then

13: if Gi > 0 then

14: ActivateReplica(Rswciz)

15: ProxyIndication

16: Gi = Gi −1

17: else

18: ProxyIndication

19: end if

20: else

21: if χi == ci then

22: χi = 0

23: ri = 0

24: end if

25: end if

26: else

27: Ri = 0

28: if χi == ci then

29: χi = 0

30: ri = 0

31: end if

32: end if

33: end procedure

4.3 Architecture of the I/O Gateway Core 49

failure from a transient value failure. Alike the crash failure processing, permanent value

failures are differentiated in two types: (1) Reaching a pre-defined threshold of consecutive

value failures φi tolerated by the µECU, (2) Reaching a pre-defined threshold of total value

failures γi tolerated by the µECU within an interval of ci executions.

The permanent value failure recognition starts by updating the χi counter. Comparable

to the "CrashFailureRecognition(RT Eswci j)" procedure, the χi counter is checked every

single execution to keep the ri counter updated within a delimited interval of ci executions.

In case χi reaches ci and no permanent value failure was recognized, this counter, as well

as the ri counter, are set to 0. For any value failure recognition a proxy module indication

function is called, so the data value can be dropped.

The passed data/argument prototype Dswci j is checked for the recognition of a tran-

sient value failure. For this, the data constraint element and the data unit linked to this

data/argument prototype are used. Since the data/argument prototype must be bounded by

its data constraint element, it is compared with the maximum and minimum values of the

constraint element. Additionally, the data/argument prototype unit is compared with its

original specification. In case Dswci j conforms to its AUTOSAR specification, SDswci j

is set to True (no value failure), otherwise it is set to False. If a transient value failure

occurred, the Ri and ri counters are increased and expressions 4.3 and 4.4 are used to detect

the presence of a permanent value failure. When a permanent value failure is recognized, the

"ActivateReplica(Rswci) procedure is called to execute the replica Rswci and to turn off the

original SWC in case SWC redundancy is available, otherwise the proxy module is notified

that no recovery action was triggered.

4.3 Architecture of the I/O Gateway Core

Input/output cores replace the functions normally provided by the I/O BSW abstraction layer

[AUT16a] and the complex driver abstraction layer of AUTOSAR (see Figure 4.5). The

input/output cores support bidirectional communication via the NI that connects the core

to the on-chip network. Additionally, a virtualization layer abstracts the I/O functionalities

from their underlying AUTOSAR µECUs and sensor/actuator SWCs that control the I/O

ports. This layer uses the input port and output port provided by the corresponding NI for

the exchange of data with the network supporting fault isolation. ECU signals handled by

the I/O ports (e.g., ADC converter) are mapped to time-triggered messages as part of the

pre-configured time schedule of the network. The virtualization layer injects input signals via

time-triggered buffers with a pre-defined time slot in order to be sent by the NI through the

NoC. Additionally, each message received from the NI by the virtualization layer is matched

50 Message-based Multicore Architecture for AUTOSAR

NoC

I/O Abstraction Core

Network Interface

Virtualization

Layer

Fast-Fourier Transform

Core

Network Interface

Virtualization

Layer

AUTOSAR

µECU 1

Replica

AUTOSAR

µECU 1

AUTOSAR

µECU 2

A
D

C

SP
I

P
W

M

I2
C

Figure 4.5: Efficient AUTOSAR Multicore Platform based on I/O Gateway Cores

to an output signal of a specific driver device, for example an output pin connected to a light

switch.

The virtualization layer allows the use of redundancy for sensor/actuator SWCs at the

MPSoC level. The algorithm depicted in Figure 4.6 is implemented by the virtualization

layer for the detection of hardware crash failures and software permanent failures on the

µECUs. The following entities serve to explain the error detection mechanism:

• ∂i = This threshold parameter represents the maximum number of consecutive hardware

omission failures of a single µECU that can be tolerated by the system core, with

i ∈ [1, I], where I is the total number of µECUs using the system core and i is the ID

of the requester µECU.

• ςi = This threshold parameter represents the maximum number of hardware omission

failures of a single µECU that can be tolerated by the system core within an interval

of τi executions.

• Ui = It represents the actual number of consecutive omission failures of a single µECU.

• ui = It represents the actual number of omission failures of a single µECU within an

interval of τi executions.

• Gi: It represents the actual grade of redundancy provided for the specific µECUi. This

means, the number of µECU replicas available on the MPSoC.

• Rµecuiz: It represents the µECU replica of a safety-critical µECUi, with z ∈ [0,Gi].

4.3 Architecture of the I/O Gateway Core 51

WaitTTmessage

 Wait for new TTmessage

 ξi =ξi+1

 Verify whether the message

is empty or not

ErrorDetection1

Ui = Ui+1

ui = ui+1

ErrorDetection2

ReadPDU

 Evaluation of the PDU Content

 Verify whether it is a failure

notification or an ECU Signal

I/OFunction

Ui = 0

if ξi ==κi then

 ξi = 0

 ui = 0

end if

Empty message New PDU

IF (u ≥ ςi+1)

Software Error No Error

ELSE
IF (U ≥ ∂i+1)

ELSE

−−

Redundancy

If Gi > 0i then

 ActivateReplica(Rµecuiz)

 Gi = Gi−1

end if

Figure 4.6: Error Detection Algorithm employed by the Virtualization Layer in the I/O

Gateway Core

• ξi: It represents the actual number of executions of a single µECU within an interval

of τi executions.

The detection of a hardware crash failure is determined by the following expressions:

{

U > ∂i +1 Hardware crash failure detected

U < ∂i +1 No hardware crash failure present
(4.5)

Permanent Hardware Omission Failures

{

u > ςi +1 Hardware crash failure detected

u < ςi +1 No hardware crash failure present
(4.6)

Multiples Hardware Omission Failures within τi executions

A no received message at its pre-scheduled point in time is perceived by the virtualization

layer as a hardware omission failure. In case a hardware crash failure is detected by the

52 Message-based Multicore Architecture for AUTOSAR

H
a

rd
w

a
re

M
C

A
L

COM Services

COM Module

PDU Router

Off-Chip Interface

Network
Off-Chip Drivers

Interface

A
b

st
ra

ct
io

n

C
A

N

LI
N

F
le

x
R

a
y

E
th

e
rn

e
t

LI
N

Fl
e

xR
a

y

E
th

e
rn

e
t

C
A

N

Virtualization

Layer

Figure 4.7: Architecture of the Off-Chip Network Gateway Core

virtualization layer using the expressions 4.5 and 4.6 (e.g., the µECU1 in Figure 4.5), this

layer provides access to another µECU hosting a replica of the sensor/actuator SWC which

takes over interacting with the specific I/O functionality (Replica of µECU 1 in Figure 4.5).

Likewise, if a µECU sends a notification message indicating a software permanent failure of

a sensor/actuator SWC (explained previously), the µECU redundancy is exploited, otherwise

the specific ECU signal is forwarded to the specific I/O functionality.

Additionally, in case multiple µECUs need to access the same service provided by an

input/output core dedicated to a complex driver (for example the FFT core of Figure 4.5), the

virtualization layer also supports the sharing of the I/O core among different µECUs based

on static priorities defined at compile time according to ISO26262 [Int11]. For instance, if

µECU 1 and µECU 2 require to trigger a FFT of an ECU signal during a certain time period,

based on the criticality assigned to the each µECU, the virtualization layer will forward their

requests to the FFT service in a specific order. Hence, the FFT of the µECU signal with the

highest criticality finishes first.

4.4 Architecture of the Off-Chip Network Gateway Core

The off-chip gateway system core provides support for off-chip communication to the µECUs

in the TIMEA platform. In Figure 4.7 the software architecture of the presented off-chip

network gateway core is depicted. Three layers compose the gateway core architecture: a

communication service layer, a hardware-abstraction layer and the MCAL for the communi-

cation drivers.

As shown Figure 4.7, the gateway core requires an implementation of the NI at the

MCAL level in order to be able to access the message-based NoC for on-chip communica-

4.4 Architecture of the Off-Chip Network Gateway Core 53

tion. Besides the NI, communication hardware-abstraction modules for supporting off-chip

communication are also integrated. Depending on the off-chip communication network to be

supported by the gateway, specific AUTOSAR BSW hardware-abstraction modules of the

specific communication bus are selected for the implementation.

Additionally, a virtualization layer is integrated on the hardware abstraction layer, so

SWC redundancy on the different µECUs can be exploited by the off-chip network gateway

core.

4.4.1 COM module

In the AUTOSAR architecture the COM module [AUT16e] works as an interface between

the RTE and the PDU router. Its main function is the mapping of the RTE signals to PDUs

and vice versa. Moreover, The implementation of the COM module is independent of the

communication protocol used by the ECU for off-chip communication.

For the off-chip gateway core, the COM module is in charge of receiving PDUs from the

PDU router and to make use of a look up table to assign incoming NoC PDUs with off-chip

PDUs and vice versa. The format of the PDUs sent through the off-chip network depends of

the implemented communication protocol as explained in [AUT16e], while for NoC PDUs a

format description is presented later.

As mentioned previously, a message-based NoC supports bandwidths of several Gbps

with communication latencies and jitter in the range of ns. Since the bit rate of off-chip

networks is typically lower by several orders of magnitude in comparison to a message-based

NoC, the COM module is also used to change the sending time and cycle time for providing

rate conversion support to the gateway. This is done by using the transfer property of the

PDUs. This property defines whether the PDU should be transmitted whenever its message

content changes or if the PDU is sent periodically with the last message stored to it.

4.4.2 PDU Router

A typical PDU router implements routing tables and a router engine for routing and trans-

ferring PDUs from the COM module to the communication hardware-abstraction which

transforms them into an actual message that is then forwarded to the MCAL in order to be

sent over the communication hardware entity provided by the ECU. As defined in [AUT16h],

the purpose of the PDU router is to statically route PDUs based on their PDU identifier and

to avoid any dynamic routing at run-time. Just as the COM module, the PDU router has the

same design independent of the off-chip communication protocol.

54 Message-based Multicore Architecture for AUTOSAR

WaitTTmessage

 Wait for new TTmessage

 ξi =ξi+1

 Verify whether the message is

empty or not

ErrorDetection1

Ui = Ui+1

ui = ui+1

ErrorDetection2

PDUForwarding

Ui = 0

if ξi ==κi then

 ξi = 0

 ui = 0

end if

Redundancy

If Gi > 0i then

 ActivateReplica(Rµecuiz)

 Gi = Gi−1

end if

Start Tx

Empty message New PDU

IF (u ≥ ςi+1)

ELSE

IF (U ≥ ∂i+1)
ELSE

Figure 4.8: Error Detection Algorithm employed by the Virtualization Layer in the Off Chip

Network Gateway Core

In the off-chip gateway core the PDU router is extended to support the routing of PDUs

coming from the message-based NoC. With this purpose, it contains extended routing tables

to forward not just PDUs between the COM module and the off-chip interface in the gateway

but also for NoC PDUs between the COM module and the virtualization layer.

4.4.3 Virtualization Layer for Off-Chip Network Gateway Core

The virtualization in the off-chip gateway core allows the TIMEA platform to provide SWC

redundancy on the MPSoC level for SWCs that need to interact with SWCs located on a

different MPSoC. Thus, if a safety-critical µECU using the off-chip network presents a

hardware failure and therefore fails forwarding its functionality, the off-chip network gateway

core may pick a different µECU input to maintain providing the correct MPSoC function on

a distributed system.

4.5 Architecture of the Memory Gateway Core 55

The state machine illustrated in Figure 4.8 performs the error detection employed by

the virtualization to recognize µECU failures. The entities defined in Section 4.3 for the

virtualization layer in the I/O gateway core are used also here for the error recognition.

In case a safety-critical µECU fails sending its time-triggered message on time, expres-

sions 4.5 and 4.6 are used to differentiate between faults based on the hardware crash failure

assumption. Moreover, if a hardware crash failure was detected a different time-triggered

message from the µECU redundancy is selected by the virtualization layer to be forwarded

to the PDU router.

4.5 Architecture of the Memory Gateway Core

As mentioned previously, a system core serving as a memory gateway allows the µECUs to

access an external memory using the message-based NoC. This gateway core is provided

with a NI so it can access the message-based NoC to receive memory transactions and to send

memory replies to the µECUs. An architecture picture of the memory gateway is depicted

in Figure 4.9, which illustrates an example of a distributed system consisting of multiple

networked TIMEA platforms. As shown in this figure, each MPSoC is provided with its own

memory gateway and off-chip network core.

The memory gateway core consists of a Distributed Mixed-criticality Transactional Con-

troller (DMTC) algorithm [OUOA16] and a basic memory controller. Memory transactions

are first processed by the DMTC based on their criticalities according to ISO26262 and

thereafter they are queued in the basic memory controller to be executed. Additionally,

memory replies are forwarded from the external memory to the receptive µECU through the

on-chip network using the NI.

4.5.1 Distributed Mixed-Criticality Transaction Controller

The DMTC encompasses a version container, a global page table and a set of locally stored

memory pages (see Figure 4.9). It is responsible to manage address versioning and memory

page exchanges between different MPSoCs and µECUs.

The version container is in charge of the tracking and handling of the address versioning

of all addresses that are locally stored in the MPSoC. At the other hand, the global page table

serves to locate required pages within a MPSoC of a distributed system. This global page

table is globally shared and synchronized by all MPSoCs connected to the distributed system

based on the requests for memory pages.

56 Message-based Multicore Architecture for AUTOSAR

Memory Gateway

Distributed Mixed-criticality Transaction

Controller (DMTC)

Global Page Table

(G)

Versions Container

(V)

MPSoC 1

µECU 1µECU N

External Memory

µECU

N-1Basic Memory Controller

NINI

NI

MPSoC 2

µECU 1 µECU K

MPSoC 3

µECU 1 µECU L

µECU L-1

MPSoC n

µECU 1 µECU J

µECU J-1

R S
Off-chip

Network

Off Chip

Network

Gateway

NI

NoC

Memory

Gateway

NI

µECU

K-1
NG NG

NG

NoC

NoC

NoC

MG MG

MG

Figure 4.9: Memory Gateway Architecture

Additionally, the algorithm presented by [Owd16] uses the version container and the

global page table to execute criticality-aware conflict resolution. The DMTC allows the

processing of the following 3 different cases for the executing of memory operations and

their required memory pages:

• Locally at the µECU. In case the required memory page is in the same requester

µECU this page can directly be accessed.

• Locally at the MPSoC. If the required memory page is in a different µECU of the same

MPSoC the DMTC locates the page and the page ownership is given to the requester

µECU. Therefore the corresponding updates are performed to the local global page

table and version container.

• Remotely at another µECU. In case the required memory page is located at a µECU

of a different MPSoC, this page is located in the global page table of the remote

MPSoC and moved to the requester µECU, which takes the ownership of the page.

Additionally, relevant records of the page are moved from the remote version container

to the local version container of the requester MPSoC and the local global page table

is updated.

The detailed explanation of the criticality-aware conflict resolution functionality and the

description of its algorithms are very well discussed on [OUOA16] and [Owd16] as part of

the resulting work presented on a different dissertation.

4.6 Fault Tolerance Mechanisms 57

4.5.2 Basic Memory Controller

In the memory gateway core we assume a compositional real-time memory controller such

as [AGR07], which provides support for analytical design-time verification of hard real-time

requirements. This memory controller consists on a two-step approach: (1) starting by

defining the memory access groups with known efficiency and latency (2) a predictable

credit-controlled static-priority arbiter [AGR07] is responsible for scheduling these groups

dynamically. The dynamic scheduling guarantees the allocated bandwidth and the maximum

latency bounds of the memory interactions.

4.6 Fault Tolerance Mechanisms

The TIMEA platform provides a set of fault tolerance mechanisms comprising recovery

solutions to counteract the impact of the pre-defined failure modes. Additionally, a single-

fault hypothesis is selected, which means the maximum number of failures is 1. The

maximum number of failures represents the maximum number of FCR failures that the

system may handle at the same time. A single failure occurrence is the prevalent assumption

in many present-day safety-critical systems [OP07] (e.g., TTA, FlexRay [Fle05]).

Since a message-based NoC is used for the communication between the cores, communi-

cation delays due to the occurrence of a babbling idiot failure can be avoided in safety-critical

SWCs. These SWCs use time-triggered messages with pre-defined network scheduling, thus

quarantining the core faults since they are isolated by the communication network. Thus,

in case a SWC starts sending unlimited messages to the network no delays are perceived at

other µECUs.

In case of omission/crash failures, the defined monitoring service allows the TIMEA

platform to provide recovery actions based on SWC redundancy on the µECU level. Thus,

supposing a safety-critical SWC crashes, the error detection algorithm would determine

the presence of a crash failure and the replica of the SWC would be executed. Likewise,

for hardware crash failures, as for example a safety-critical AUTOSAR µECU that stops

completely its operation, SWC redundancy at the MPSoC level serves to provide a recovery

solution to the multicore system.

For timing failures of the AUTOSAR software, we expect time-triggered messages in the

NoC to not be affected. This means, in the scenario that a safety-critical SWC does not obey

its temporal specification and delays the sending of a message, the resulting communication

jitter would not be affected due to the intrinsic fault isolation property of time-triggered

messages.

58 Message-based Multicore Architecture for AUTOSAR

In the same way that the omission/crash failures are prevented, the monitoring ser-

vice avoids the propagation of value failures through the NoC. For example, in case a

safety-critical SWC starts sending messages whose values are not complying with its data

constraint element specification, the monitoring service would recognize the fault and use

SWC redundancy on the µECU to avoid the persistence of the failure.

The choice of the defined threshold parameters used by the health monitoring service for

failure recognition depends on the specific design and implementation use case.

It is important to highlight that in TIMEA the described message-based NoC represents

a single point of failure, where failure occurrences are not covered by the presented health

monitoring and redundancy methods. For the recovery of these failures other kind of methods

may be employed (for example using redundant communication typologies, i.e., double start

topology) which are not object of study within the scope of this dissertation. Additionally,

other parts of the AUTOSAR software beside the SWCs in the application layer could exhibit

failure occurrence. For instance, the defined proxy module could fail propagating the PDU

ECU signals to the PDU router. This scenario impedes a two fault hypothesis statement since

redundancy in the MPSoC level would serve as the only available recovery action.

Chapter 5

Simulation Framework for

Message-based AUTOSAR MPSoC

Platforms

Simulation environments are important for the development of automotive applications,

helping system architects in exploring different design decisions. Simulation systems enable

the early examination of applications on MPSoC platforms, providing environments for

performance evaluation before implementing the physical system. In the automotive industry

simulation environments play a very important role in the development process of embedded

systems since they also provide a framework for reliability examination of the platforms

under fault occurrences using fault injection.

However, the simulation of time-triggered message-based multicore processors hosting

AUTOSAR-based software and the application behavior for virtual validation scenarios

are still missing. There are no full-system simulation tools that support both AUTOSAR-

based software and on-chip network simulation. Such a simulation framework is required

to quantify in an early stage the advantages obtained by the integration of the AUTOSAR

architecture with a message-based NoC and to evaluate the impact of the hardware choices

(e.g., multicore topology, NoC configurations) on the AUTOSAR software.

In this chapter a novel simulation framework for AUTOSAR applications running on a

multicore platform with NoCs is designed and implemented with the purpose to serve the

TIMEA architecture presented in Chapter 4. In the following, available MPSoC simulation

tools are compared with respect to their abstraction level, the support for network on-chip

and off-chip simulation and the ability for AUTOSAR software execution.

Several simulation tools support multicore processors, software architectures, on/off-chip

networks and memory system simulations. For example, OPNET [HGY07] and OMNET++

60 Simulation Framework for Message-based AUTOSAR MPSoC Platforms

[Var99] are off-chip network simulation tools that are used for designing and validating

networked systems. Furthermore, OPNET provides an interface that is compatible with other

simulation tools (e.g., Simulink).

The On-Chip Communication Network (OCCN) [CCG+04] proposes a simulation envi-

ronment for modeling and simulation of on-chip communication architectures. Additionally,

cycle-accurate simulation tools such as SystemC and GEM5 are widely used for on-chip

network simulations.

On-chip simulation is supported by full system simulators such as Simics [MCE+02]

and Sniper [CHE11]. Also, SystemC and GEM5 support the simulation of system-level

architectures.

Simulation tools such as VEOS (dSpace) and CANoe (Vector) provide simulation en-

vironments for experimental tests specifically in the automotive domain. These simulation

environments support both application simulation as well as simulation of off-chip communi-

cation.

However the combination of these simulation tools represents a major scientific challenge.

The definition of interfaces for data exchange and synchronization between the simulation

tools is required. In the last years, several co-simulation environments have been presented

in research and industry communities for the co-simulation of off-chip network simulations,

on-chip network simulations, and application functionality simulations.

For co-simulation focusing on the communication behavior of the systems, the co-

simulation can be abstracted from the computational functionality of the system. In

[ZEK+13] a time-triggered cyber-physical system simulation is presented performing a co-

simulation of SystemC with a hardware-in-the-loop automotive simulation tool. In [MRR08],

ONNET++ and SystemC are combined in a co-simulation system for the simulation of

distributed systems.

On the other hand, for performing full-system co-simulations, virtual platforms are

required to support hardware virtualization (e.g., OPVSim, QEMU). In [FMZ+12] the so-

called transformer is presented. This is a full-system simulator for multicore simulation

based on QEMU. In [CYT11], [NHT+12], [WG14] QEMU and SystemC are combined for

the emulation of the CPUs and the communication behavior of a multicore NoC respectively.

A co-simulation framework between the OVP virtual platform and QEMU is presented

in [CLP14]. This co-simulation framework implements a systemC-based interface for

integrating systemC components into the overall simulated system. Moreover, in [BKM13] a

design methodology for the integration of heterogeneous SWCs and multicore architectures

is presented. The so-called HeroeS is mapped on a SystemC virtual platform framework for

5.1 Concept of the Co-simulation Framework 61

the simulation of embedded real-time architectures, and was evaluated by its integration into

an AUTOSAR environment.

In [PHO+14] a GEM5 full system emulation and a CPU-GPU simulator are combined.

This GEM5-GPU simulator implements a shared memory interface for the information

exchange between the two simulation tools.

Based on the latter discussion, the simulation of AUTOSAR-based systems with on-

chip networks for multicore communication is not supported by any existing co-simulation

environment. The commercial AUTOSAR multicore tools that are available on the market

implement a shared memory approach for multicore simulations (e.g., VECTOR tools

[VEC16], ETAS tools [ETA16]).

The presented co-simulation framework [UAO16] supports the simulation of time-

triggered message-based multicore processors hosting AUTOSAR-based software and can be

easily adapted and implemented based on existing AUTOSAR simulators and on-chip simu-

lation tools. We present the coordination of three different simulation levels: the AUTOSAR

software, the physical environment and the NoC behavior. We propose a communication

interface for the synchronization and data exchange between the simulation systems. Local

simulation coordinators are defined, which determine when a co-simulation step can be per-

formed. Additionally, the extension of AUTOSAR BSW simulation modules for supporting

NoC communication is presented.

Furthermore, the implementation of the proposed simulation framework is carried out as

part of the work presented in [UOO15]. The AUTOSAR-based system simulator VEOS is

used for the simulation at the on-chip application level and two different NoC simulators,

GEM5 and SystemC, serve for the simulation at the on-chip communication level.

5.1 Concept of the Co-simulation Framework

The proposed simulation framework consists of one AUTOSAR-based system simulator

hosting the simulation of the AUTOSAR µECUs and the physical environment simulation,

one on-chip simulator hosting the NoC simulation, and the coordination of the simulation

tools.

In the rest of this section we present the simulation model for the message-based NoC,

as well as the simulation models for the AUTOSAR µECUs and the physical environment.

Additionally, the co-simulation and coupling of the simulation tools is presented. We

introduce a socket-based coordination of simulation tools, which uses TCP/IP and integrated

local coordinators for interfacing and synchronizing the simulation tools.

62 Simulation Framework for Message-based AUTOSAR MPSoC Platforms

5.1.1 Simulation Model of Network-on-Chip

The presented simulation framework gives support for the different timing models described

in Chapter 4 (i.e., best-effort, time-triggered and rate-constrained) in a message-based

multicore processor running AUTOSAR software.

The simulated MPSoC interconnects several simulated cores supporting different topolo-

gies (e.g., Mesh, Spidergon, etc) using the NIs. The interface between the application,

running on the core, and the NoC is realized by configurable Ports. Based on the config-

uration, each port contains a FIFO (for event messages) or a buffer with update-in-place

semantics (for state messages) to store messages.

Ports are used at the sender core as well as at the destination cores. At the sender core, the

NI dequeues the port at the instant, which is determined by the schedule, the rate-constraints

and the priority. At the destination cores, ports keep the arrived messages until the core

dequeues them. Alternatively, an interrupt can be used to notify the application, once the

message arrives at the port.

5.1.2 Environment Simulation

Environment models act as simulation models representing the natural environment of an

MPSoC in a virtual validation scenario. These environment models emulate the physical

process resulting from the interaction of the µECUs with the physical environment. They

are controlled by the AUTOSAR-based system simulator and can be integrated as discrete

simulation models as well as continuous simulation models into the AUTOSAR simulation.

5.1.3 Simulation Model of an AUTOSAR Micro-ECU

As explained in Chapter 4, TIMEA describes application cores which play the role of

AUTOSAR µECUs using a message-based NoC for the communication between each other.

To achieve this, existing simulation models of the AUTOSAR ECUs are extended with

simulation building blocks for the simulation of the message-based NoC communication.

The µECUs host the AUTOSAR SWCs and each one of them is provided with a RTE

and BSW. In the proposed framework, µECUs are configured as depicted in Figure 5.1 and

simulated by the AUTOSAR system simulator.

Since the AUTOSAR standard does not provide support for NoC communication, we

extend the BSW on the simulated µECUs with special BSW modules to support the com-

munication through the NoC. An NoC interface module for the hardware abstraction layer

is integrated for accessing the NoC. Extended COM service modules are integrated for

5.1 Concept of the Co-simulation Framework 63

RTE

System

Services
NoC

Interface

I/O

Hardware

Abstraction

Environment

Interface

SWC SWC SWC SWC

Application Layer

COM services

COM

PDU

Router

Modules required only for the simulation

Figure 5.1: Architecture of a simulated AUTOSAR Micro-ECU

routing the messages from the NoC to the application software and vice versa. The integrated

NoC interface module allows the access from the BSW of the µECU to the NoC simulation.

This module is in charge of the exchange of data between the BSW on the µECU and its

corresponding NI in the NoC simulation.

Moreover, as defined by the AUTOSAR standard, the RTE provides signals that are

attached to the data handled by the SWC ports, depending on the communication interface

hosted by the port (server/client or sender/receiver). The integrated COM module matches

these RTE signals to one of the communication types provided by its NI (i.e., best-effort,

time-triggered and rate-constrained) in the NoC simulation. This is done by mapping the

RTE signals to the sender/receiver ports on the NI. Furthermore, the integrated PDU router

[UO15] is in charge of passing the data from the NoC interface module to the COM module

and vice versa.

In case of a µECU hosting sensor/actuator SWCs and I/O BSW modules in the hardware

abstraction layer an environment interface module is integrated to connect the µECU with a

physical environment model imported into the AUTOSAR-based system simulator.

5.1.4 Co-simulation Coordination

The co-simulation of the simulation models described in Sections 5.1.1, 5.1.2 and 5.1.3

results in the proposed simulation framework for AUTOSAR message-based multicore

processors. The co-simulation coordination is based on integrated local coordinators for

the coupling of the AUTOSAR simulation level and the NoC simulation level. Figure 5.2

depicts an architecture picture of the co-simulation. The TCP/IP protocol was selected for

the communication between the simulation tools. The µECUs implement TCP clients for

64 Simulation Framework for Message-based AUTOSAR MPSoC Platforms

the exchange of data with their specific NIs on the NoC simulation. Additionally, the local

coordinators use the TCP connection to synchronize simulation steps on both simulation

systems.

The socket-based communication makes the co-simulation framework independent from

the location of the simulation tools and their operating systems. With this approach an

existing AUTOSAR-based system simulator is extended for supporting the simulation of

µECUs as application cores in a message-based MPSoC.

The following messages are used for the communication between the two simulation

tools:

• Data Message. It represents a message sent from the µECUs to the NoC local coordi-

nator and vice versa. It contains the following fields:

1. Message Status: This parameter indicates whether the data message is empty or

the number of PDUs that it contains.

2. Sender ID: This field contains the ID of the µECU sending the message.

3. Receiver ID: This field declares the destination µECU ID.

4. SWC Port: It indicates for which RTE signal the PDU is matched.

5. Payload: It contains the user data.

Empty data messages are needed because of the time-triggered behavior for the data

exchange between simulation systems and the event-triggered execution of the simu-

lation systems. Fields 4 and 5 represent a PDU. Fields 3, 4 and 5 are repeated in the

same order depending on the number of PDUs that the data message contains.

• Synchronization Message. It is used for the time synchronization of both simulation

systems. It is defined as follows:

1. Creation Time: It represents the creation time of the synchronization message.

2. Indication: In a synchronization message sent from the AUTOSAR-based system

simulator this field indicates that a communication point was reached. Further-

more, if the synchronization message is sent from the NoC simulation this field

indicates that the data exchange has finished and the next communication step

can be performed.

5.1.4.1 Local Coordinator for AUTOSAR Simulation

In the AUTOSAR simulation system a local coordinator is used for the synchronization of

the AUTOSAR simulation system. The local coordinator uses the TCP connection for the

5.1 Concept of the Co-simulation Framework 65

AUTOSAR Simulator
VECU

Local

Coordinator
VECU

Message-based NoC

Network

Interface

Network

Interface

Network

Interface

NoC
Simulation

VECU

TCP Connection

µECU

Local

Coordinator

Data Flow

Synchronization

µECU µECU

Periodic

Task

Periodic

Task

Figure 5.2: Simulation Framework for TIMEA

66 Simulation Framework for Message-based AUTOSAR MPSoC Platforms

communication with the message-based NoC simulation. This AUTOSAR local coordinator

implements a periodic task with a fixed simulation step size for the co-simulation. Whenever

a cycle is finished, the AUTOSAR simulation system is paused and a synchronization

message is sent to the NoC simulation. Thereafter the AUTOSAR local coordinator waits

for an incoming synchronization message from the NoC simulation in order to run another

simulation step on the AUTOSAR simulation. The implementation of the local coordinator

for the AUTOSAR simulation will be explained later in details.

5.1.4.2 AUTOSAR µECUs

The µECUs implement the TCP connection for the data exchange with the NoC simulation.

Once a communication point is reached in the AUTOSAR-based system simulation, a data

message is sent by the NoC interface from each µECU to the NoC simulation. In case of

outgoing PDUs from the PDU router on the µECU, these PDUs are integrated into the data

message, otherwise the data message is configured to be empty using the message status.

Additionally, an incoming data message from the NoC simulation is received by the NoC

interface of each µECU, which verifies its message status. If the data message contains

a PDU, this is made available to be used by the PDU router of the µECU during the next

communication step.

5.1.4.3 Local Coordinator for NoC simulation

The NoC local coordinator implements the TCP connection for the exchange of data with the

AUTOSAR simulation and for the synchronization of the NoC simulation system. The NoC

local coordinator is used to control the NoC simulation model exactly in the same way as

the AUTOSAR local coordinator controls the AUTOSAR simulation. Furthermore, the NoC

local coordinator is used to receive the data from the µECUs, to convert it to the adequate

message format for the NoC model and to inject it into the respective network interfaces.

Also, the NoC local coordinator accepts data from the network interfaces, re-converts the

message format and sends it to the µECUs.

The co-simulation is started initiating first the NoC simulation and then the AUTOSAR

simulation. The NoC local coordinator waits for the TCP connection of the µECUs and the

AUTOSAR local coordinator before triggering the first NoC execution.

Let us discuss how the co-simulation coordination of the NoC model works using the

state machine illustrated in Figure 5.3. After starting the simulation in the initiate state, the

NoC local coordinator configures the parameters to establish the socket-based connection,

configures the initial values for the NoC simulation and waits for the connection of the

µECUs and the AUTOSAR local coordinator. Thereafter the NoC local coordinator performs

5.1 Concept of the Co-simulation Framework 67

Initiate

 Configure TCP connection

 Configure initial values

 Wait for VECUs and FMU

Run

Perform a

Communication Step

Wait

IF (Socket_Broken)

 go to Stop

END IF

TCP_Receive()

Verify_status

Update

Update sending ports

from NI

Verify_NI

PDU

PDUs are packed into

new data messages

Null

Empty messages are

configured

Data_send

IF (Socket_Broken)

 go to Stop

END IF

Data messages are

sent to VEOS

Sync_send

IF (Socket_Broken)

 go to Stop

END IF

Send_SyncMessage()

Stop

Stop simulation!

IF (!empty_message)ELSE

ELSEIF (receiving_port)

Stop_Simu

Stop_Simu

Stop_Simu

Start Tx

Figure 5.3: State Machine of the NoC Local Coordinator

68 Simulation Framework for Message-based AUTOSAR MPSoC Platforms

a communication step on the NoC simulation in the run state. In the wait state an incoming

synchronization message from the AUTOSAR local coordinator is waited for. Once a

synchronization message arrives, the status of the data messages received from the µECUs

is verified in the verify_status state. Thus, if no empty data messages were received, the

respective ports of the NIs are updated in the NoC simulation model in the update state,

otherwise the next state verify_NI is directly accessed. In this state, the receiver ports of

the NIs are verified and, in case of new data, the PDU state is accessed wherein the data is

packed into PDUs and these PDUs are stored into new data messages, otherwise these data

messages are configured to be empty in the null state. In the data_send state data messages

are sent to the respective µECUs and thereafter a synchronization message is sent to the

AUTOSAR local coordinator in the sync_send state. Finally, the run state is accessed again

and the whole procedure is repeated.

Furthermore, if the co-simulation is stopped by the AUTOSAR-based system simulator

the stop state is accessed from wait, data_send or sync_send state. In this state the NoC

simulation is stopped.

5.2 Implementation of the Co-simulation Framework

In the implementation of the co-simulation framework, the AUTOSAR system is modelled

and simulated with the dSpace AUTOSAR tools including the VEOS simulation framework.

Additionally, the SystemC and GEM5 simulators are used for the simulation of the NoC

communication behavior.

5.2.1 Simulation System for AUTOSAR Micro-ECUs

The VEOS simulation tool serves for the simulation of the AUTOSAR µECUs. The VEOS

environment is the dSpace software for the simulation of ECUs and environment models on

a host PC [dSp14d]. The following tools comprise the VEOS software:

• The VEOS simulator is the simulation platform for PC-based simulation of simulation

systems. The experimental tool ControlDesk can access the VEOS simulator for testing

ECU software [dSp14c].

• The VEOS player is the software tool for the integration of simulated ECUs and

environment models into a simulation system and for the execution control of a

simulation running in the VEOS simulator.

5.2 Implementation of the Co-simulation Framework 69

VU VECU

VPU

VEOS

VPU

VPU Port

VPU

Environment

µECU
 µECU

Figure 5.4: VEOS environment

• dSpace Target for offline simulation is a Simulink Coder that allows to build envi-

ronment models for simulation with VEOS. Environment models serve as virtual

representations of an ECU environment during virtual validation scenarios.

SystemDesk allows the generation of simulated AUTOSAR ECUs and the integration of

them in a simulation system. This simulation system is built with SystemDesk, building an

Offline Simulation Application (OSA) file [dSp14a].

The OSA file comprises binary files for each simulated ECU. The OSA file is needed

to run the simulation system with the VEOS player. In a running simulation the simulated

ECUs can be accessed by an experimental tool like ControlDesk for parameter calibration

via the Universal Measurement and Calibration Protocol (XCP). XCP is "a bus-independent,

master-slave communication protocol to connect ECUs with calibration systems" [ASA17].

A2L files are used to access and interpret the data transmitted via XCP. A2L files describe

the variables available for measurement and calibration [ASA17].

Simulated AUTOSAR ECUs running on VEOS are configured according to the software

architecture of Figure 5.1, so they serve as the AUTOSAR µECUs on the TIMEA platform.

Additionally, the environment models are integrated into the AUTOSAR simulation using

the Automotive Simulation Models (ASMs) from dSpace which can be configured using

Simulink and the dSpace simulation coder TargetLink as explained earlier.

Each µECU and environment model is represented as an independent Virtual Processing

Unit (VPU) by the VEOS player."VPU is a generic term for a part of a simulation system

that can be run in an offline simulation by VEOS" [dSp14a]. Using VEOS player, µECUs

70 Simulation Framework for Message-based AUTOSAR MPSoC Platforms

R1

R2 R3

Task 1

Task 2

R2 R3

R4

Task 3

R1

R2 R3 R2 R3
Triggered event

ΔTpc = 0

ΔTpc = 0

0 5 10 15 ms

Figure 5.5: VEOS scheduling example with three tasks

and environment models can be interconnected through their VPU ports. VPU ports provide

direct communication between VPUs without using off-chip communication [dSp14d]. In

the VEOS player VPU ports of the µECUs are represented by the sensor/actuator SWC ports

used by the I/O hardware abstraction layer, while VPU ports of the environment models

are represented by simple Simulink input or output blocks. An architecture picture of the

simulation environment and its components is depicted in Figure 5.4.

During the simulation, an emulated AUTOSAR OS is used to run the simulated µECUs

on a host PC [dSp14d]. The main purpose of the OS is to invoke OS tasks. VEOS simulates

correctly the order of OS task and function calls. The simulation time is the same for all the

µECUs and environment models in the simulation system. VEOS performs a zero execution

time assumption for the simulation. The tasks are executed instantly in the virtual simulation

time, which means "all tasks are assumed to run on the µECUs with an execution time

of ∆tPC = 0ms" [dSp14d]. This zero execution time assumption is not a problem for the

simulation of TIMEA since time-triggered or rate-constrained activation is independent from

the execution times, so the focus is on the system-level timing and not on the execution times

of the individual tasks.

Figure 5.5 depicts a scheduling example with three tasks. Task 1 is triggered periodically

every 10ms and calls runnable R1. Task 2 is triggered by the OS every 5ms and calls

runnables R2 and R3. Task 1 is called before task 2 because of its higher priority. Task 3 is

an event-triggered task called sporadically by Task 2. Task 3 calls runnable R4. During the

simulation of this scenario, VEOS triggers tasks every 5 ms. At t = 0ms, Task 1 is triggered

and runnable R1 is called. Then Task 2 is triggered and runnables R2 and R3 are called.

After runnable R3 returns, VEOS advances the simulated clock to t = 5ms and triggers Task

2 again. The same example is used later to explain the coordination of the co-simulation.

5.2 Implementation of the Co-simulation Framework 71

5.2.2 Simulation System for Network-on-a-chip Communication

For the simulation of the NoC communication behavior two different NoC simulation models

are used according to the works presented in [OO15] and [AO15]. The system described

in [OO15] provides a SystemC-based NoC simulation which allows us later to simulate

the system cores for hardware acceleration in combination with a message-based NoC. On

another hand, [AO15] describes a GEM5 NoC simulation system which provides a more

accurate simulation time for the analysis of the temporal behavior.

5.2.2.1 SystemC-based TTNoC Simulation

SystemC is a widely used system-level modeling language for event-driven modeling [OG09]

[CMM+15]. Timing accuracy in SystemC is ranging from untimed to cycle-accurate where

precise temporal specifications and SystemC modules can be simulated to validate the behav-

ior of the platform. Additionally, Transaction Level Models (TLMs) [Ghe06] are used in the

simulation frameworks to enhance the overall simulation speed. TLMs capabilities such as

interface-based communication, blocking and non-blocking process structures, bidirectional

and unidirectional transactions inspired researchers to develop simulation frameworks owing

to the adaptability and accuracy that SystemC/TLM provides.

The simulation of the NoC is based on the work presented in [OO15]. TLM/SystemC is

used to implement the communication behavior of a TTNoC. Time-triggered channels are

expressed using SystemC channels, while message-based communication is managed using

interfaces. Interfaces of the TTNoC are inherited from the sc_interface class of SystemC.

Time-triggered channels are defined as bidirectional transactions and process structures are

managed as blocking and non-blocking processes. The overall system model is illustrated in

Figure 5.6.

In the Time-Triggered Network Interfaces (TTNIs), a communication interface is required

to transmit time-triggered messages by providing procedures to send/receive messages

to/from other cores. Moreover, the TTNI is responsible for mapping the outgoing messages to

the time-triggered communication according to the Time Division Multiple Access (TDMA)

schedule.

The transmission of time-triggered messages is based on the following parameters:

period, phase, message size, sender core ID and receiver core IDs. The formed time-triggered

messages in the TTNI are periodically transmitted based the time-triggered communication

schedule. The phase of the message defines the start time with respect to the start of the

period. The message size is determined by the message payload, and the routing requires the

source and the destination core IDs of the message.

72 Simulation Framework for Message-based AUTOSAR MPSoC Platforms

SystemC/TLM MPSoC

SubSystem #2 (BodyTrack)

SubSystem #2 (BodyTrack)

SubSystem #1 (FFT)

HP #3

TTNoC

TTNI

HP #2

TTNI

HP #1

TTNI

HP #4

TTNI

HP #5

TTNI

HP #6

TTNI TTNI

HP #7

TTNI

sc_port

sc_interface

Output sc_socket

Input sc_socket

Com. channel

HP #4

Figure 5.6: SystemC TTNoC simulation Model

During the execution of the framework, a cyclic dispatcher method is called in the

network interface to determine whether a time-triggered message has to be sent according to

the predefined schedule. In this case, the formed time-triggered message is redirected to the

corresponding channel port.

To receive a message at the cores, the network interface ports are notified by the time-

triggered channels that a message is received. A receive function is triggered in the core that

invokes the incoming message.

The TTNoC establishes the time-triggered schedule and the time-triggered communica-

tion channels. The schedule is a static configuration parameter and loaded at the beginning

of the simulation. The TTNoC uses time-triggered channels that represent the temporal and

spatial allocation of physical links of the simulated TTNoC. The time-triggered channels can

simulate communication delays that represents the router delays of a real NoC by defining

the configuration and schedule of the simulated use case.

The time-triggered communication table is defined as a Comma-Separated Values (CSV)

file that contains the message-based communication configuration.

As shown in the example configuration in table 5.1, time-triggered messages are scheduled

to be transmitted periodically. The configuration table defines the time-triggered message

period, phase, senderCoreID and ReceiverCoreIDs. The message phase parameter defines

the start transmission time in relation to the defined period. In addition to that, the static

configuration defines the sender µECU ID and the receiving µECUs.

5.2 Implementation of the Co-simulation Framework 73

Message Period (ms) Phase (µs) Sender Core Receiver Cores Delay (ns)

Angular speed 1 0 0 1 50

Braking force 1 1 4 1 50

Relative slip 1 2 1 3 50

Slip comparison 1 3 3 4 50

Table 5.1: NoC configuration in SystemC model

Log files provides information about the injection time, receiving time, delay and jitter of

the time-triggered messages that are sent through the TTNoC during a SystemC simulation. A

detailed explanation of the log file generation and in-depth description of the SystemC-based

TTNoC simulation model is provided in [Owd16].

5.2.2.2 NoC simulation with GEM5

The employed simulation environment is based on the GARNET interconnection net-

work [AKPJ09] inside the GEM5 multicore simulator [BBB+11]. The simulated MPSoC

models a classic five-stage pipelined router, including input buffers, routing logic, allocators

and the crossbar switch, with Virtual Channel (VC) flow control at flit-level. It also supports

the three mentioned communication paradigms, i.e., best-effort, time-triggered and rate-

constrained, using a Time-Triggered Extension Layer (TTEL) [AO15] which is added to

the NI of GARNET (cf. Firgure 5.7). This extension layer takes care of the timely injection

of the messages and priorities of the rate-constrained messages and the NI (of GARNET)

generates the flits of the messages and injects them into the NoC.

In the simulated MPSoC, ports provide the interface to the NoC for the cores. They

include a data area, port configuration parameters and port status flags. The data area stores

the messages and can be a single buffer, which is overwritten in case of messages with state

semantics, or a queue in case of messages with event semantics. The port configuration

is implemented as a separate class PortConfig and is instantiated by CSV configuration

files, once the simulation is started. The generated PortConfig object is afterwards used

for the instantiation of the ports. This class (PortConfig) contains the parameters of the

communication channel, e.g., the direction of the port, the path to the destination, temporal

parameters such as the period and the phase for time-triggered messages and the MINT for

the rate-constrained messages.

Messages are stored at output ports by the sender core. They are dequeued into the NoC

(considering the priorities and the schedule) by the extension layer. At the destination side,

the messages are stored at input ports to be dequeued by the core. The core can invoke several

API routines for sending and receiving the messages. These can be used by the simulated

74 Simulation Framework for Message-based AUTOSAR MPSoC Platforms

NetworkInterface

Extension Layer

CORE

NetworkInterface

Extension Layer

CORE

Interconnect

Figure 5.7: Simulated NoC in GEM5

application or by the defined local coordinator which connects two simulation environments

in this work.

The time-triggered behavior in GEM5 was technically realized by extending the Con-

sumer class and adding a Scheduled Wake-up to this class. This class is a virtual base class of

all classes that can be the targets of wakeup events. This change enables the classes inherited

from Consumer to be waked-up not only by the linked consumer, but also by the scheduled

wake-up (using schedule method).

The NI and the routers in GARNET handle the messages and flits of different types and

priorities in the same manner, as the type and the priority of the messages are abstracted from

them. This is the task of the scheduler to establish a collision-free communication of the

time-triggered messages and to guarantee no impact of the rate-constrained message on the

time-triggered messages due to contention at the resources (e.g., buffers at routers, physical

links).

The scheduler triggers the injection of time-triggered messages according to an a priori

defined time-triggered communication schedule. In order to avoid collisions of messages at

the NoC level, a scheduler uses the concept of Timely Block. Timely block guarantees the

absence of collisions between time-triggered and rate-constrained messages by blocking the

injection of rate-constrained message during the guarding windows. The schedule for opening

and closing instants are defined based on the time-triggered communication schedule.

The scheduler employs source-based routing in order to achieve spatial partitioning.

Source-based routing enables the scheduling tools to determine the path through which, flits

5.2 Implementation of the Co-simulation Framework 75

Message
Sender

Core

Receiver

Core

Message

Size (bytes)

Temporal

Configuration

Angular speed 0 1 60 TT (period: 1ms)

Braking force 4 1 100 RC (MINT: 3 ms)

Relative slip 1 3 80 RC (MINT: 3 ms)

Slip comparison 3 4 70 RC (MINT: 3 ms)

Table 5.2: NoC configuration in GEM5 model

of the message are traversing. The NI uses a look-up table or computes the path for each

message and includes the routing information of the head flits.

The MPSoC simulation system is highly configurable using CSV files. These files enable

us to configure a wide range of parameters, such as the topology of the NoC, the number

of cores and the allocation and the configuration of ports. Moreover, the schedules for the

injection of the time-triggered and the rate-constrained messages are defined using the CSV

files. An example table of a NoC configuration in GEM5 is presented in table 5.2

In addition to the configuration parameters and the schedules, log files are also imple-

mented as CSV files. These files provide information about the time behavior of the messages

during a GEM5 simulation, so latencies and jitters can be calculated.

5.2.3 Implementation of the Coordination Interface

In this section the implementation of the co-simulation coordination at each simulation

system is described. The TCP/IP protocol is used by a server in the NoC simulation and

clients in the VEOS simulation. The blocking socket-based communication is used to suspend

and resume both simulation tools.

5.2.3.1 Implementation of the AUTOSAR local Coordinator

The Functional Mock-up Interface (FMI) was selected for the implementation of the local

coordinator for the AUTOSAR simulation. The FMI is a tool-independent standard [BO+11]

that provides support for both model exchange and co-simulation of dynamic models. These

models are shipped as Functional Mock-up Units (FMUs) containing an XML description

file and the compiled application C-code.

FMI defines interfaces for the data exchange and the time synchronization which are

provided by the FMU and used by a master algorithm implemented by the hosting simulator.

Although the FMI standard is not just limited to the automotive domain, it is currently

highly used by the most popular AUTOSAR simulation tools (e.g., CANoe, AUTOSAR

builder, VEOS, etc) [Modls] for the co-simulation of simulation models of different suppliers

76 Simulation Framework for Message-based AUTOSAR MPSoC Platforms

VECU

FMU Wrapper

Network

Interface

VECU

TCP Connection

Local

Coordinator

Data Flow

Control Flow

µECU

µECU

Subsystem

Master

functionality

Subsystem

Environment

Model

Subsystem

TTNoC

Network

Interface

Slave

FMI

Interface

VEOS SIMULATOR

Figure 5.8: Co-simulation Coupling of VEOS and NoC simulation

and OEMs. This allows us to introduce an interface according to FMI as a key part in

the implementation of the AUTOSAR local coordinator, using it for the synchronization

between the AUTOSAR simulator and the NoC simulation. However, since most of the

on-chip simulators (e.g., GEM5 [BBB+11] and SystemC [CMM+15]) do not support FMI,

the presented co-simulation coordination is not just limited to an FMI implementation as

explained in the previous section.

The FMI standard for co-simulation defines discrete communication points tci for the

data exchange between simulation models running in different simulation tools. Each

communication point is known as a synchronization point between simulation models. The

time between two consecutive communication points represents the communication step size:

hci = tci+1 − tci (5.1)

A communication step is defined as:

tci −→ tci+1 = tci +hci (5.2)

During a communication step the simulation of the models is performed independently

in the different simulation tools.

Figure 5.8 illustrates an architecture picture of the co-simulation coordination applying

the FMI standard. As depicted in this picture, the AUTOSAR local coordinator is imple-

mented as a wrapper and integrated into the AUTOSAR-based system simulator for the time

synchronization with the NoC simulation model running in the on-chip simulator.

The AUTOSAR-based system simulator realizes the master functionality defined by

the FMI standard. The FMU wrapper is controlled by the simulator using functions to

5.2 Implementation of the Co-simulation Framework 77

synchronize the FMU simulation with the simulation of the µECUs and the environment

models, proceeding in communication steps from the initial time tc0 = tstart to the finish

time tcN = tstop. Likewise, the FMU wrapper uses the TCP connection to trigger the NoC

simulation in the on-chip simulator. It is important to note that FMI functions for data

exchange between the µECUs and the NoC model are not provided by the defined FMU

wrapper. The data exchange is realized directly between the µECUs and the NoC simulation

when a communication point is reached by the FMU wrapper as explained previously.

Since VEOS only allows a fixed communication step size (hci = k) for the co-simulation

of an FMU with an AUTOSAR simulation, its choice becomes a key parameter for the

implementation of the framework. Thus, the choice of the communication step size influences

the accuracy and efficiency of the co-simulation framework. Increasing the communication

step would reduce the synchronization overhead between the simulation environments and

hence reduce the accuracy of their results whilst a short communication step would decrease

the simulation performance hence making it less efficient. Since the RTE and the AUTOSAR

BSW can only react to an event occurring in the NoC simulation within the interrupt detection

latency, we use the minimum interrupt detection latency as a fixed communication step size

for the co-simulation with the NoC simulator. We assume hci = 1µs as the minimum

interrupt detection latency. The reason behind this assumption is that the RTE and most of

the AUTOSAR BSW are designed for latency and bandwidth requirements that are orders of

magnitude higher than 1µs.

VEOS allows the integration of FMUs for co-simulation of subsystem models which

have been imported together with their solver and do not require additional tools for their

simulation. Using FMI the VEOS simulator is able to control the FMU simulation. A TCP

client is integrated into the FMU to establish the communication with the NoC simulator.

This approach extends the VEOS simulator for co-simulation of FMUs requiring an extra

simulation tool.

The initialization mode of the FMU wrapper is used to configure the socket-based com-

munication. In the start function of the FMU, the socket-based communication parameters

are configured to setup the TCP client connection with the NoC simulator.

In the step mode of the FMU wrapper the blocking mechanism provided by the socket-

based communication is used to suspend and resume the VEOS simulation with synchro-

nization messages. A function for sending synchronization messages is allocated as well as a

function that waits for incoming synchronization messages from the NoC simulation. When-

ever a communication point is reached, the function for sending synchronization messages

is called and thereafter the function that receives a synchronization message from the NoC

simulation. Thus, the VEOS simulation is suspended till a synchronization message arrives

78 Simulation Framework for Message-based AUTOSAR MPSoC Platforms

<?xml version="1.0" encoding="ISO-8859-1"?>

<fmiModelDescription fmiVersion="2.0" modelName="gem5FMU"

guid="{8c4e810f-3df3-4a00-8276-176fa3c9f008}" numberOfEventIndicators="0">

 <CoSimulation modelIdentifier="gem5FMU" canHandleVariableCommunicationStepSize="false">

 <SourceFiles>

 <File name="gem5FMU.c"/>

 </SourceFiles>

 </CoSimulation>

 <LogCategories>

 <Category name="logAll"/>

 <Category name="logError"/>

 <Category name="logFmiCall"/>

 <Category name="logEvent"/>

 </LogCategories>

 <DefaultExperiment startTime="0" stepSize="1.00000000000000000e-03"/>

 <ModelVariables> </ModelVariables>

 <ModelStructure>

 <Outputs>

 <Unknown index="1" />

 </Outputs>

 </ModelStructure>

</fmiModelDescription>

Figure 5.9: Model Description of the FMU Wrapper

from the NoC local coordinator. During this time the exchange of data messages between

the µECUs and the NoC simulation is performed. Once a synchronization message arrives,

the FMU simulation is unblocked and the next communication step can be performed on the

whole VEOS simulation.

As mentioned previously, the model description is provided as an XML file. The model

description file for the FMU wrapper is depicted in Figure 5.9. As shown is this picture, the

FMU does not handle a variable communication step size defining a fixed communication

step size of hci = 1µs. The start time for the FMU simulation is defined as tc0 = 0s, which

is required by the VEOS simulator for the simulation of FMUs.

5.2 Implementation of the Co-simulation Framework 79

Figure 5.10: Co-simulation Example with Three Tasks

5.2.3.2 Local Coordinator for the NoC simulation

The NoC coordinator is implemented in both, the GEM5 model for on-chip communication

and the NoC simulation model based on SystemC. Both of them are realized according to the

state machine presented in Section 5.1.4.3 with a task period for loop execution of hci = 1µs

as implemented in the FMU wrapper on VEOS.

1) GEM5 Implementation: The local coordinator is realized in GEM5 using Python and

it is implemented as a task controlling the execution of the NoC simulation (implemented

in C++) and the exchanging of data between the NIs and the VEOS simulation. A TCP

server is integrated into the local coordinator for the data exchange with the µECUs and to

establish the co-simulation coordination with the FMU wrapper. The blocking mechanism

of the TCP communication is used in the same way and it is implemented in the FMU

wrapper in VEOS. Once a communication step was performed on the NoC simulation, the

local coordinator invokes the function for receiving synchronization messages from the

FMU wrapper, blocking temporally the GEM5 simulation. Thus, the GEM5 simulator

is regularly suspended and the data exchange is possible during the co-simulation. This

blocking mechanism is controlled based on the execution steps of the state machine described

in Section 5.1

2) SystemC Implementation: In the SystemC-TTNoC simulation model a process im-

plemented in C serves as a TTNoC local coordinator and a TCP/server is integrated. A

function that waits for the connection of the µECUs and the FMU wrapper is allocated to the

TTNoC local coordinator. Thereafter, an infinite loop implements a function that waits for

80 Simulation Framework for Message-based AUTOSAR MPSoC Platforms

VECU

FMU Wrapper

Network

Interface

VECU
Local

Coordinator

µECU

µECU

TTNoC

Network

Interface

MPSoC2

VECU

VECU

µECU

µECU

TCP Connection

Data Flow

Control Flow

MPSoC1

Gateway

Core

Gateway

Core

Off-Chip

 Network

Figure 5.11: Co-simulation of Distributed systems based on TIMEA

the synchronization messages from the FMU wrapper and the data messages from µECUs.

In case of new PDU messages, this function updates the payloads of the respective network

interfaces. After this function the TTNoC model is run for 1µs and the function for sending

synchronization messages is called. In addition, this function also takes new payloads in the

network interfaces (in case of new data), constructs the data messages and sends them to the

µECUs. Thus, after one loop execution the simulation is paused till a new synchronization

message and new data messages arrive from the VEOS simulation.

An example of the synchronization of both simulation systems is shown in Figure 5.10,

which resembles the scenario from Figure 5.5. Once the NoC simulation model receives a

synchronization message from the FMU wrapper and the data messages from the µECUs,

the NoC local coordinator verifies whether there is new data coming from the µECUs. In

case of new data, the message payloads of the respective NI are updated (using sender ID and

Receiver ID) and the NoC simulation model is run for one simulation step (1µs). Thereafter

the simulation is paused and, in case of new data in the NIs, message payloads are packed

into data messages and sent to the µECUs. Finally a synchronization message is sent to

the FMU wrapper on VEOS to give run permission for a following simulation step on the

AUTOSAR simulation.

5.3 Extension of the Co-simulation Coordination

In order to support the simulation of distributed systems based on TIMEA the local coor-

dinator of the AUTOSAR simulation is extended for the synchronization of multiple NoC

simulation models. That means, AUTOSAR µECUs are mapped to different MPSoCs using

different instances of the NoC simulation. Thus, after one simulation step, the AUTOSAR

5.3 Extension of the Co-simulation Coordination 81

local coordinator sends a synchronization message to each NoC simulation and waits for

the responses of all of them before performing the next simulation step. In Figure 5.11 an

example of a co-simulation of VEOS with two NoC simulation models is presented.

As explained previously (see Section 5.2.3.1), the VEOS local coordinator is implemented

as an FMU wrapper using the FMI standard. For the coordination of several NoC simulations,

in the initialization mode of the FMU wrapper multiple TCP client connections are established

depending on the number of TIMEA platforms that are connected to the distributed system

application. In the start function of the FMU, the socket-based communication parameters

are configured to setup all the TCP client connections with their respective NoC simulation

model.

In the step mode of the FMU wrapper, for instance, whenever a communication point

is reached, a synchronization message is sent to each one of the NoC simulation models

and thereafter a function that receives synchronization messages from each one of the NoC

simulations is called. Thus, the VEOS simulation is suspended till all the synchronization

messages arrive from the NoC local coordinators within the co-simulation system. During this

time the exchange of data messages between the µECUs and the multiple NoC simulations is

performed. Once all the synchronization messages arrive, the FMU simulation is unblocked

and the next communication step can be performed on the AUTOSAR µECUs.

Additionally, the data message described in Section 5.1.4 is extended for the handling of

the DMTC coordination messages and off-chip communication messages. A data message

for a distributed simulation system of TIMEA platforms includes the following elements:

• Header: This field indicates whether the message represents either an on-chip message,

an off-chip message or DMTC coordination message.

• Type: This parameter is used to distinguish between the different types of the DMTC

coordination messages.

• Status: Indicates whether the message is empty or not. In case the message is not

empty, the number of data and memory operations contained in the message is denoted.

• Sender ID: Contains the ID of the µECU sending the data or a memory operation. The

destination core is known from the on-/off-chip communication schedules.

• Payload: Contains the data or the memory operations.

Chapter 6

Development Process of TIMEA

The realization of the proposed AUTOSAR message-based multicore architecture with the

co-simulation framework is presented in this chapter. Based on the system architecture

introduced in Chapter 4, the dSpace AUTOSAR development tools are used for the design

and configuration of the defined AUTOSAR µECUs. SystemDesk and TargetLink serve for

the development of the system architecture based on SWCs and their internal implementation

behavior. Additionally, SystemDesk is used for the configuration and generation of simulated

µECUs with the integrated I/O proxy module and the health monitoring service module.

The SystemC-based TTNoC simulation model serves for the implementation of the I/O

gateway core and memory gateway core as SystemC-based core processors. Moreover, the

development and generation of the off-chip network gateway core is carried out with the

SystemDesk architecture tool.

6.1 Implementation of the AUTOSAR Micro-ECUs

Simulated AUTOSAR µECUs are developed using the dSpace AUTOSAR solutions (Sys-

temDesk and TargetLink) [dSp14c]. These tools offer a high level of maturity for designing

AUTOSAR-based systems and strict compliance to the AUTOSAR workflow [AUT16g].

SystemDesk is a software tool that allows to model the software architecture of distributed

automotive electronic systems consisting of AUTOSAR SWCs. The SWCs host the applica-

tion functionality and are developed independently from each other and the specific ECU

technology. For the functional behavior modeling the TargetLink AUTOSAR module is

available, which allows the import and export of SWC descriptions. It also supports the

AUTOSAR-compliant production code generation for the SWCs from the Simulink-Stateflow

graphical environment [dSp14b].

84 Development Process of TIMEA

Internal Behavior Modelling

µECU Configuration

Figure 6.1: ToolÂs Interaction in the AUTOSAR µECU development

Figure 6.2: Modelling of the AUTOSAR Software Components

Furthermore, SystemDesk is used to generate ECU configurations and for the generation

of simulated µECUs for virtual validation scenarios [dSp14c]. A picture pointing out the

interaction between the tools in the development process of the AUTOSAR µECUs is

depicted Figure 6.1.

6.1.1 Software Architecture Modeling

The modeling of the system architecture is performed using the dSpace system architecture

tool SystemDesk. The software architecture is designed in terms of SWCs and the interaction

between these SWCs (see Figure 6.2).

A set of SWCs is defined, where each one encapsulates a functionality and the integration

of all of them represents the specific automotive system. Once the SWCs are identified,

6.1 Implementation of the AUTOSAR Micro-ECUs 85

input and output ports (so-called provided and required ports by AUTOSAR) must be added

to each one of these SWCs. After defining the AUTOSAR SWCs and their ports, specific

sender/receiver or client/server interfaces are defined. An interface is assigned to every port,

describing the data or operations provided or required by a SWC via its ports.

An internal behavior is assigned to each SWC, so their runnables, RTE events, exclusive

areas and per instance memories are specified. The initial modeling of the internal behavior

of each SWC is performed as follows.

• Several runnable entities are defined for the SWC internal behavior.

• RTE events (e.g., timing event, data received event, etc) are defined, which will trigger

the created runnable entities.

• Interrunnable variables are created, which are variables that are just used by the

runnables of the specific SWC. A specific variable data type is assigned to each

interrunable variable. Also initial constant values for the interrunable variables are

defined.

• Data accessed by the defined runnable entities is specified. Interrunnable variables and

variable data prototypes defined in the interfaces of the SWC ports are selected.

• A data type mapping set is created, which maps the application data types to imple-

mentation data types. Implementation data types specify implementation details such

as SW base types or endianness.

• A constant specification mapping set is created and constant specifications of the

implementation types must be defined, which maps constant specifications that have

application data types to constant specifications that have implementation types.

Once an internal behavior was already assigned to each SWC the descriptions [AUT16g]

are exported as AUTOSAR XML files for behavior modeling with TargetLink.

6.1.2 Internal Behavior implementation for the AUTOSAR SWCs

The behavior modeling of the SWCs is performed using Simulink and the dSpace production

code generation tool TargetLink. This software tool provides an AUTOSAR module for

modeling, simulating and code generation of AUTOSAR SWCs.

The SWC descriptions of the SystemDesk defined SWCs are imported to the TargetLink

Data Dictionary Manager (TDDM). A Simulink frame model from the imported AUTOSAR

SWC files is generated in a new Simulink model environment using the TargetLink frame

86 Development Process of TIMEA

Figure 6.3: Simulink Environment for modeling SWC Behavior

model feature (see Figure 6.3). The generated frame model works as a starting point for

modeling the SWC implementation, having systems representing the SWCs and subsystems

representing the runnables within the SWCs. The internal behavior of the SWCs is graphically

developed using Simulink blocks and the special TargetLink blocks of the AUTOSAR

TargetLink module.

Once the SWC behaviors are modeled, it is possible to perform a Model-in-the-loop (MIL)

simulation of the graphical Simulink model to verify the model behavior. An AUTOSAR

SWC implementation (C code) is generated for each SWC and a Software-in-the-loop (SIL)

simulation can be performed. The new AUTOSAR SWC descriptions with the generated

SWC implementations are exported from the TDDM for the generation of the ECU configu-

rations using SystemDesk.

6.1.3 Configuration of the AUTOSAR Micro-ECUs

The SWC descriptions provided by TargetLink (with the corresponding SWC implementa-

tions) are re-imported to SystemDesk for the completion of the AUTOSAR-based system.

SystemDesk allows to define ECU instances that can have communication controllers and

connectors for accessing a physical channel of a communication cluster in the context of a

system [dSp14a]. Depending of the specific automotive functionality, a set of ECU instances

is defined. SWC ports are connected to each other to indicate the data flow between SWCs

through the VFB. Once the ECU instances are identified, the SWCs are mapped to them in

order to define the automotive system.

6.1 Implementation of the AUTOSAR Micro-ECUs 87

RTE

System

Services
NoC

Interface

I/O

Hardware

Abstraction

DAP

Module

SWC SWC SWC SWC

Application Layer

COM services

COM

PDU

Router

Modules required only for the simulation

Figure 6.4: Micro-ECU Configuration with I/O BSW Implementation

The BSW and RTE of the ECU instances can be configured and generated using Sys-

temDesk. In the simulation environment proposed in Chapter 5, ECU instances are configured

to simulate the µECUs in the TIMEA platform. In this section we present the configuration

process for two type of µECUs: 1) for µECUs holding an I/O abstraction implementation as

defined by AUTOSAR, 2) for µECUs holding the introduced I/O proxy modules and health

monitoring module.

6.1.3.1 Configuration of a µECU with AUTOSAR I/O abstraction implementation

Figure 6.4 presents the BSW structure of this kind of AUTOSAR µECUs. Red modules are

required for connecting the µECU with the simulated environment and the NoC simulation.

The configuration of the BSW and RTE for each ECU instance is performed as follows.

• ECU Configuration. A single reduced ECU configuration (without off-chip network

communications, external memory access and special complex driver support) is

selected for each ECU instance. An I/O hardware abstraction module and a Data

Access Point (DAP) module are added to the ECU configurations. The I/O hardware

abstraction module is a BSW module for accessing I/O signals [AUT16b]. The DAP

module provides the needed information to integrate the µECUs in a simulation system

[dSp14a]. The integration of the I/O abstraction module and DAP module is necessary

for µECU hosting sensor/actuator SWCs.

• Generation of the I/O abstraction layer. The I/O abstraction layer is configured,

selecting the ports (with their corresponding data types) that will be used by the I/O

hardware abstraction. A BSW component representation (with its corresponding ports

88 Development Process of TIMEA

and interfaces) of the I/O hardware abstraction is generated. The BSW component

ports are connected to the application SWC ports. The I/O abstraction layer code is

generated.

• Generation of the DAP module. The BSW module is configured automatically accord-

ing to the I/O abstraction module configuration. The ECU I/O signals are mapped to

DAP signals. A VPU port (introduced in Section 5.2.1) will be assigned to each DAP

signal when a simulation system is run by VEOS player.

• Configuration of the AUTOSAR operating system. A reduced configuration of the

AUTOSAR OS is used, which just takes care of the tasks to handle application SWC

runnables and I/O abstraction runnables. OS tasks are created and the SWC runnables

(from the application layer and the BSW abstraction layer) are mapped to them in

order to define the execution context of the runnables. The task type, schedule, priority

and execution order of the runnables are set for each OS task. A NI_Task with 1µs

periodicity is created and the lowest priority is assigned to it. Also, a COM_Task with

1µs periodicity is created and the highest priority is assigned to it. These two tasks

will be used later to instantiate COM service functions and NoC interface functions

in the RTE. For completing the configuration OS events, OS alarms, OS application

modes and the OS counter are configured.

• Generation of the RTE. Based on the application software and BSW configuration

of the ECU instances a RTE implementation is generated (C code) [AUT16b]. The

generated RTE, besides interconnecting the SWCs, connects the application software

to the generated I/O abstraction layer and the operating system.

Before building the ECU configurations and the generation of the µECUs developed

BSW modules are integrated to the ECU configurations for the completion of the BSW as

shown in Figure 6.4. The developed NoC interface module and COM service modules are

also integrated to each ECU configuration.

For the simulation of the µECUs, the NoC interface module provides a TCP client

to connect the µECU with its corresponding network interface of the NoC simulation as

explained in Section 5.1.4. It is responsible for the construction of the data messages sent to

the NoC simulation. This is made by integrating incoming PDUs from the PDU router to a

data message or configuring the message status to indicate that the data message is empty.

The NoC interface module provides a sending queue wherein incoming PDUs from the COM

module are stored by the PDU router.

The PDU router re-directs available PDU messages in the NoC interface module to the

COM module and vice versa. The COM module takes incoming PDUs from the PDU router

6.1 Implementation of the AUTOSAR Micro-ECUs 89

RTE

System

Services
NoC

Interface

SWC SWC SWC SWC

Application Layer

COM services

COM

PDU

Router

Module required only for the simulation

I/O Proxy

abstraction

Peripherals Services

Health

Monitoring

Figure 6.5: Micro-ECU Configuration with I/O Proxy Module and Health Monitoring Service

and puts their payloads available to the respective RTE signals. This is made by using the

SWC port identifier provided in the PDU message. Furthermore, the COM module takes

updated data on the RTE signals and constructs PDU messages. The PDU messages are

passed to the PDU router, which puts them in the sending queue used by the NoC interface

module.

The generated RTE implementation (C code) is modified manually in order to adapt the

integrated COM service modules and the NoC interface module. The TCP/client connection

function of the NoC interface module is allocated to the Rte_Start task provided by the RTE.

This task is in charge of allocating and initializing system resources and communication

resources used by the RTE. The NoC interface function for sending data messages to the

TTNoC local coordinator is allocated to the NI_Task. This means, after an execution of 1µs

a data message is sent from the µECU to the NoC simulation. Also, a PDU router function

is allocated to the COM_Task. This function verifies whether there is a new PDU available

in the NoC interface. Thus, before an execution of 1µs a new incoming PDU from the NoC

simulation is passed to the PDU router. This is possible because of the configured priorities

for NI_Task and COM_Task.

6.1.3.2 Configuration of an accelerated µECU

For the development of accelerated AUTOSAR µECUs, the simulated µECUs are configured

based on the software architecture picture depicted in Figure 6.5. A single reduced ECU

configuration without off-chip network communications, external memory access and special

complex driver support, is selected for the configuration of each µECU. Additionally, an

empty I/O hardware abstraction layer (without c-code implementation) is added to each ECU

90 Development Process of TIMEA

configuration. Thus, BSW SWCs are generated automatically together with their interfaces

that connect them to the sensor/actuator SWCs at the application layer. This allows us to

develop manually the internal behavior (C-code) of these BSW SWCs to implement the

proxy modules as defined in Chapter 4.

The OS of each µECU is configured and consists of OS tasks for hosting the SWC

runnables that are located in the µECU. Also, OS tasks for hosting the proxy runnables are

defined. Moreover, for completing the configuration OS events, OS alarms, OS application

modes and OS counters are set up.

Furthermore, based on the application SWCs and the BSW configuration of the µECUs

the RTE is automatically generated. This generated RTE interconnects SWCs and connects

the application layer with the generated BSW SWCs and the AUTOSAR OS.

Before the generation of the simulated µECUs, the COM service modules (i.e., COM

module, PDU router), an NoC interface module, the health monitoring service module and

the implementation of the proxy SWCs are integrated into the BSW of the µECUs. The

mentioned NoC interface module is a specific simulation module for connecting the µECU

with the corresponding NIs of the NoC simulation.

The generated RTE implementation is modified manually in order to integrate the COM

module, PDU router, NoC interface, the proxy modules and the health monitoring service.

The integration of the COM service modules and the NoC interface module is performed in

the same way as described in 6.1.3.1.

The runnables representing the internal behavior of the proxy SWCs are allocated to their

specific tasks (defined previously) in the RTE implementation. Additionally, the initialization

functions of the proxy implementations are allocated to the start function of the ECU State

Manager [AUT16f].

In the implementation of the health monitoring service, the callback functions are used

for the recovery actions. These actions are implemented according to the RTE_Call_ < p >

_ < o > API [AUT16i] of the RTE in order to enable safe configuration of the AUTOSAR

services as specified by the standard [AUT16a]. The initialization function of the health

monitoring module is allocated to the Rte_Start task provided by the RTE implementation.

This task is in charge of allocating and initializing system resources and communication

resources used by the RTE.

After this, the ECU configurations can be built, generating the µECUs which are inte-

grated to a single simulation system (OSA file) for being run in VEOS.

6.2 Implementation of the Input/Output Cores 91

TTNoC

TTNI TTNI

SystemC

Model

Local

Coordinator

I/O Abstraction Core

TTNI

Virtualization

Layer

Figure 6.6: Architecture of the Input/Output Gateway Core Simulation

6.2 Implementation of the Input/Output Cores

The SystemC TTNoC simulation presented in [OO15] serves for the implementation of the

defined input/output cores (i.e., I/O abstraction core and any input/output core dedicated to

complex drivers). Input/output cores are developed as SystemC-based cores that run together

with the TTNoC on the same SystemC simulation. For instance Figure 6.6 introduces the

I/O abstraction core as a SystemC-based core in the TTNoC simulation.

As mentioned in Section 5.2.2.1, the SystemC-based TTNoC simulation model allows

the configuration of the on-chip communication through a pre-defined schedule (CSV file),

wherein the period and the phase of each message are set. For the implementation of an

input/output core, we extend the on-chip schedule in order to provide information about the

priorities of the µECUs that try to access a service of the input/output core (as explained

in Chapter 4). Additionally, in order to provide redundancy at the MPSoC level, new time-

triggered messages are included in the on-chip schedule to support this specific functionality

as well as the configuration of the error threshold parameter ∂ defined in Section 4.3.

The virtualization layer is developed on top of the corresponding TTNI of the input/output

core in order to abstract in the driver functionality from the NoC-based multicore platform

implementation. Thus, this layer provides variables that map the receiving port of the TTNI

directly to ECU signals handled by the input ports of the core (e.g., analog input, ADC,

etc), while the data handled by the sending port of the TTNI is mapped to the ECU signals

handled by the output ports of the core (e.g., PWM, analog output, etc). Since the extended

on-chip schedule provides information about the messages used for supporting redundancy

on a different µECU, the virtualization layer allows the mapping of multiple time-triggered

messages to a single ECU output-signal. Thus, the algorithm presented in Section 4.3 is

implemented by the virtualization layer to determinate the presence of a crash failure on

the µECU responsible of the first assigned time-triggered message. In case a crash failure

92 Development Process of TIMEA

occurred, the virtualization layer automatically switches to the second time-triggered message

from the µECU wherein redundancy is provided.

Furthermore, the criticality assigned to the µECUs based on the Automotive Safety

Integrity Levels (ASILs) (according to the ISO 26262 [Int11]) are used by the virtualization

layer in order to provide the µECU holding the highest criticality a faster access to an

input/output core service.

Environment models of the VEOS simulation generate the ECU input signals which are

received by the NoC local coordinator on the SystemC-based simulation and redirected to the

input/output abstraction core. Moreover, ECU output signals generated by the input/output

abstraction core are redirected by the NoC local coordinator to the VEOS simulation where

the FMU wrapper forwards them to the environment simulation models.

6.3 Implementation of the Memory Gateway Core Simula-

tion

In this section the implementation of the memory gateway core together with the external

memory simulation are presented. The SystemC-based TTNoC simulation framework is

used to carry out the development of the gateway and the simulation of the external memory.

An architecture picture of the memory gateway core and the external memory is depicted in

Figure 6.7.

6.3.1 Implementation of the External Memory Simulation

For the implementation of the memory gateway core, the DRAMSim2 simulator [RCBJ11]

serves for the simulation of the external memory. DRAMSim2 is a widely used cycle-

accurate open-source DRAM simulator that models the memory controller, memory channels,

ranks, banks and timing constraints [KYL+]. This simulator provides a flexible simulation

framework based on dynamic memory models and an interface for the co-simulation with

other simulations. Additionally, DRAMSim2 allows the execution of trace-based memory

simulations using a TraceBaseSim functionality.

In order to connect DRAMSim2 with the SystemC-based TTNoC simulation a

TLM/SystemC interface was established based on the work presented in [OO15]. This

interface is in charge of the re-direction of incoming memory instructions from the memory

gateway to their specific memory controller of the external memory and vice versa.

The configuration of the external memory is described with input files that specify the

external memory initialization defining the memory technology, block size and the transaction

6.3 Implementation of the Memory Gateway Core Simulation 93

SystemC instance

NoC Local

Coordinator

TTNI

TTNOC

TTNI

M
e

m
o

ry

C
o

n
tro

lle
r

DMTC

Protocol

M
e

m
o

ry
 G

a
te

w
a

y

TxQue
ComQue

PendRQue
RetQue

 Transaction QueuesMC

MC

MC

MC

DRAM Channel

DRAM Channel

DRAM Channel

DRAM Channel

D
R

A
M

S
im

On-chip Messages Exchange

DMTC Coordination protocol

Memory Requests

Figure 6.7: Architecture of the Memory Gateway Core Simulation

queue depth. For this, DRAMSim2 provides memory configuration templates that can be

used or modified according to the simulation requirements. Additionally, the CSV TTNoC

configuration file is extended to provide the configurations of the memory channels, ranks,

and banks of DRAMSim2, which are loaded in the memory gateway core. Each channel has

its own memory controller and its transaction queues as follows:

• The transaction queue "TxQue" receives and stores incoming transactions.

• The queue "ComQue" stores the translated commands of each transaction.

• If a read command is dispatched to the memory, then the transaction will be stored into

the queue "PendRQue" until the data is returned.

• The queue "RetQue" is used to store the returned transactions.

6.3.2 Implementation of the Simulated Memory Gateway Core

For the implementation of the memory gateway core a SystemC-based host core is extended

to implement and support the hierarchical DMTC protocol and algorithms described in

Chapter 4. The memory gateway contains the following building blocks: the TTNI of

94 Development Process of TIMEA

the gateway, the DMTC that provides the transactional memory services and the memory

controller to the DRAMSim2-based external memory (see Figure 6.7).

The memory gateway core is inherited from the host processor class. Its main functionality

is to initialize the external memory according to the configuration parameters of the simulation

setup. Additionally, the gateway core is in charge of providing the required interface from the

TTNoC to DRAMSim2. It is responsible for sending and receiving the memory transactions

and mapping them from the memory transaction format to the DRAMSim2 instructions.

API calls serve for invoking the memory transactions of the DMTC. Thus, transaction

replies are processed correctly, since the data obtained from a read transaction is sent to the

corresponding core.

In addition to the DMTC, the proposed memory gateway assumes a compositional real

time memory controller [CG03] that uses a predictable arbiter responsible for scheduling

memory access groups dynamically in order to guarantee the allocated bandwidth and the

maximum latency bounds.

6.4 Implementation of the Off-Chip Gateway Core

In this Section the off-chip network gateway core is developed using the AUTOSAR archi-

tecture tool SystemDesk and is integrated into the AUTOSAR simulation to be run together

with the µECUs.

SystemDesk allows the definition of ECU instances where each of them can have a

communication controller and a connector to access a physical channel of a communication

network of an automotive distributed system. For the simulation of the off-chip network

gateway core, depending on the specific automotive distributed system, a number of ECU

instances is defined in SystemDesk and configured as depicted in Figure 6.8 without applica-

tion layer, RTE implementation or AUTOSAR OS. Each gateway core is a system core of an

independent TIMEA platform.

The configuration of the off-chip gateway core is performed as follows.

• Network Description. A network communication description file is imported into the

SystemDesk development environment. This description file contains elements such as

system signals, I-Signals/I-PDUs and frames which will be used by the gateway core

for the exchange of messages with other MPSoCs. Typically, the network description

is based on one of the AUTOSAR description files (e.g., Database Container (DBC),

Fieldbus Exchange Format (FIBEX), etc) depending of the automotive off-chip network

implemented for off-chip communication.

6.4 Implementation of the Off-Chip Gateway Core 95

COM Module

PDU Router

NoC Interface

Off-Chip

Interface

Modules required only for the simulation

Virtualization
Layer

Figure 6.8: Configuration of the simulated Off-chip Gateway Core

• ECU configuration. A single empty ECU configuration is selected for each gateway

core ECU instance. An off-chip interface module, a COM module and a PDU router

are added to the ECU configuration. The off-chip interface module serves as the

communication hardware abstraction to connect the gateway core with a simulated off-

chip network running in VEOS while the COM module and the PDU router represent

the communication service layer.

• Off-chip Interface. Depending on the automotive off-chip network the off-chip interface

module is required to implement a specific network interface. For CAN and LIN

communication protocols SystemDesk provides the specific CAN interface module

and LIN interface module respectively. Theses modules allow to connect the gateway

core with the simulation of a CAN bus or a LIN bus running in VEOS. For Ethernet

or FlexRay [Fle05] communication protocols, SystemDesk provides the DsIdBusIf

module, which offers idealized bus simulation with VEOS (e.g., not all the PDU

properties are taken into account in a FlexRay bus simulation). Independently of the

implemented off-chip network, the off-chip module is configured automatically based

on the imported network description file.

• COM module. The implementation (C code) of the COM module is manually de-

veloped. The COM module matches NoC PDUs with off-chip PDUs and vice versa.

Using SystemDesk counters are generated to handle cycle and sending times according

to the time-triggered schedule of the message-based NoC and the off-chip network.

Since the latencies handled by the off-chip network are orders of magnitude slower

than the inter-core communication latency of the on-chip network, a Last In, First

Out (LIFO) politic is employed for the message exchange between the two communi-

cation networks. This is implemented for all kind of messages, independently of their

temporal behavior (i.e., rate constrained, time-triggered or event-triggered).

96 Development Process of TIMEA

• PDU Router. The implementation of the PDU router is automatically generated by

SystemDesk based on the imported network description file. As mentioned in Chapter

4, the PDU router in the off-chip network gateway core is in charge of routing the

PDUs from the message-based NoC to the off-chip network and vice versa. For this,

new routing tables are added to the generated PDU router for handling incoming and

outcoming NoC PDUs.

Before building the ECU configurations and the generation of the off-chip gateway cores

a developed NoC interface module and the visualization layer are integrated in the ECU

configuration. Similar to the µECU configuration, for the simulation of the gateway core

the NoC interface uses the TCP/IP protocol to connect the gateway with its corresponding

network interface of the NoC simulation. PDUs coming from the virtualization layer are

integrated into data messages by the NoC interface and sent to the NoC local coordinator.

Additionally, the NoC interface accepts PDUs coming from the NoC simulation and makes

them available to the virtualization layer.

Additionally, the virtualization layer implements the algorithm described in Section 4.4

so the µECU redundancy can be exploited by the off-chip network gateway core. This layer

maps multiple PDUs coming from the NoC interface to one PDU ID. Thus, in case a crash

failure is detected on the first assigned µECU, the virtualization layer switches to the second

PDU from the µECU wherein redundancy is provided.

After this, the ECU configurations can be built, generating the gateway cores which are

integrated into the simulation system of µECUs (OSA file) for being run in VEOS.

Chapter 7

Evaluation and Results

The proposed message-based multicore architecture for AUTOSAR with the extended BSW

modules and the defined system cores is evaluated in this chapter. In the following, five

evaluation scenarios are described and discussed based on the experimental results.

This evaluation serves to prove the goals specified in Chapter 1 regarding temporal

predictability, enhanced performance, reduced operating system overhead and fault contain-

ment, which were expected to be obtained by the combination of the AUTOSAR software

architecture with message-based on-chip networks and the integration of the defined system

cores.

7.1 Evaluation of the Co-simulation Framework for AU-

TOSAR Message-based MPSoC Platforms

As introduced in Chapter 5, the presented co-simulation framework is implemented with

two different NoC simulation models, one based on the SystemC-based TTNoC simulation

and the second based on the GARNET interconnection network in GEM5. We describe the

employed use case and the obtained results of the simulation performance using the two

message-based NoC simulation models.

These two implementations are used later depending of the required test experiment. The

GEM5 NoC implementation provides a more accurate simulation time for the analysis of the

temporal predictability and the increased performance of the AUTOSAR system during the

simulation scenario, while the SystemC-based NoC implementation allows us to perform

experiments based on system cores for I/O services and memory abstraction services for

hardware acceleration.

98 Evaluation and Results

Router

Id: 0

Router

Id: 1

Router

Id: 2

Router

Id: 3

Router

Id: 4

Router

Id: 5

Router

Id: 6

Router

Id: 7

NI NI NI NI

4 5 6 7

Figure 7.1: Mesh Topology

Message Period (ms) Phase (µs) Sender Core Receiver Cores Delay (ns)

Angular speed 1 0 0 1 50

Braking force 1 1 4 1 50

Relative slip 1 2 1 3 50

Slip comparison 1 3 3 4 50

Table 7.1: SystemC-based TTNoC configuration

7.1.1 Use Case-Description

7.1.1.1 Co-simulation of VEOS and the SystemC-based TTNoC Simulation

An Anti-lock Braking System (ABS) serves as an example use case to evaluate the developed

AUTOSAR multicore simulation environment. The anti-lock braking system was modelled

as an AUTOSAR-based system consisting of five SWCs. The SWCs are distributed on

four µECUs (µECU0, µECU1, µECU2 and µECU3), where one of them hosts two SWCs

and the other three host one SWC each. Each µECU is mapped to a single core on a

message-based MPSoC of 8 cores in a mesh topology (see Figure 7.1).

The scheduling of the inter-core communication through the TTNoC is summarized in

Table 7.1. A period of 1ms is used for each message core and a unique phase is assigned

to each message core. One ms is a reasonable period in the example, since the minimum

task period in the developed ABS application is 5ms. Additionally, in order to inject a crash

failure in our MPSoC platform we use the experimental tool ControlDesk to disable the

7.1 Evaluation of the Co-simulation Framework for AUTOSAR Message-based MPSoC

Platforms 99

Router

Id: 1

Router

Id: 0

Router

Id: 7

Router

Id: 6

Router

Id: 5

Router

Id: 4

Router

Id: 3

Router

Id: 2

Figure 7.2: Spidergon Topology

µECU3 hosting the ABS SWC controller. In this case, we expect the ABS functionality to

stop working.

Furthermore, ASMs are integrated into the AUTOSAR simulation representing the phys-

ical environment that interacts with the MPSoC, e.g., road characteristics, dynamics of the

brake system hydraulic component, the physical wheel and the human braking behavior of

the driver. The wheel has an initial angular speed of 70.4rad/sec, which is kept constant till

t = 5s, when a hard braking is implemented by the driver.

7.1.1.2 Co-simulation of VEOS and GEM5-based NoC Simulation

The ABS use case serves for the evaluation of the co-simulation framework. The use case was

modelled as an AUTOSAR-based system consisting of 4 AUTOSAR µECUs, three of them

hosting one SWC each and the other one hosting two SWCs. The µECUs are implemented

within an MPSoC with 8 cores in a Spidergon topology (see Figure 7.2), where each µECU

is mapped to a single core in the MPSoC. This allows us to use different NoC configurations

and to evaluate the ABS performance when mapping the µECUs to different cores in the

MPSoC. Additionally, since the minimum task period in the ABS application is 5ms the

accuracy of the co-simulation is guaranteed having a communication step size of hci = 1µs.

100 Evaluation and Results

Additionally, in order to simulate a crash failure experiment RTE interventions are used

to perform fault injections during the simulation scenario. The RTE interventions are defined

by the AUTOSAR standard for the testing of ECU code allowing to access the RTE internal

communication of sender-receiver and client-server interfaces in order to read and to modify

the data elements and operation arguments transmitted by the interfaces. Also, the status

return values of RTE API functions can be modified using RTE interventions. Thus, during a

simulation SWC ports can be stimulated or error states can be injected to test the behavior of

the SWCs. Using SystemDesk a RTE intervention is configured to perform the injection of a

crash failure in the ABS SWC controller. In this case, we expect the ABS functionality to

fail.

In our simulation scenario a hard braking is implemented by the driver having an initial

angular speed of 70.4rad/sec.

7.1.2 Results

7.1.2.1 Co-simulation of VEOS and the SystemC-based TTNoC Simulation

Using the dSpace modular experiment and instrumentation software for ECU development,

ControlDeskGeneration, the developed time-triggered multicore ABS was tested. A 22s

co-simulation time was performed during an overall of 6 minutes of real time. The whole

co-simulation system is hosted by a 64-bit Windows PC with 4GB of RAM.

Figures 7.3 and 7.4 show the results with enabled ABS and under the influence of the

crash failure on µECU5. Figure 7.3 compares the angular speed of the wheel with the angular

speed of the car. Figure 7.4 depicts the distance traveled by the car, showing a reduction of

the braking distance of 41m when the ABS is enabled. Figure 7.5 shows the behavior of the

relative slip suffered by the wheel without and under the ABS action.

As a last result, Figure 7.6 compares the distance traveled by the car when changing the

values of the message periods in Table 7.1 to 9ms. In this scenario the TTNoC communication

has a lower frequency than the execution of the software in the µECUs. Thereby, we can

observe the influence of the TTNoC on the ABS performance. A reduction of the ABS

performance is visible, increasing the braking distance to 1.4m compared to the previous

configuration of the TTNoC.

7.1.2.2 Co-simulation of VEOS and GEM5-based NoC Simulation

A simulation time of 18s was selected. Results are obtained using the experimental tool

ControlDesk for the application behavior on the µECUs and environment models, and GEM5

for the inter-core communication behavior. Table 7.3 presents the first NoC configuration

7.1 Evaluation of the Co-simulation Framework for AUTOSAR Message-based MPSoC

Platforms 101

0 2 4 5 6 8 10 12 14 16 18 20 22
0

10

20

30

40

50

60

70.4

80

Time(s)

A
n

g
u

la
r
 S

p
e
e
d

 (
r
a
d

/s
e
c
)

Wheel Speed without Failure Injection

Car Speed without Failure Injection

Wheel Speed under Failure Injection

Car Speed under Failure Injection

Figure 7.3: Car Speed and Wheel Speed using

VEOS-SystemC Co-simulation Environment

0 2 4 5 6 8 10 12 14 16 18 20 22
0

50

100

150

200

250

289.4

330.4

Time(s)

T
r
a
v
e
le

d
 d

is
ta

n
c
e
(m

)
Without Failure Injection

Under Failure Injection

Figure 7.4: Traveled Distance

2 4 5 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

Time(s)

R
e
la

ti
v
e
 S

li
p

Under Failure Injection

Without Failure Injection

Figure 7.5: Wheel Slip

12 14 16 18 20 22
270

275

280

285

289.4
290.8

295

Time(s)

T
r
a
v
e
le

d
 D

is
ta

n
c
e
(m

)

9ms period

1ms period

Figure 7.6: ABS Performance Comparison of

two different TTNoC Configurations

102 Evaluation and Results

NoC Configuration 1 Results

Message
Sender

Core

Receiver

Core

Temporal

Configuration

Min. E2E

Delay (ns)

Max. E2E

Delay (ns)

Jitter

(ns)

Angular speed µECU7 µECU4 RC (MINT: 3 ms) 232 264 32

Braking force µECU5 µECU4 TT (period: 8ms) 17 17 0

Relative slip µECU4 µECU1 RC (MINT: 3 ms) 264 272 8

Slip comparison µECU1 µECU5 BE 217 226 9

Table 7.2: NoC Configuration 1

NoC Configuration 2 Results

Message
Sender

Core

Receiver

Core

Temporal

Configuration

Min. E2E

Delay (ns)

Max. E2E

Delay (ns)

Jitter

(ns)

Angular speed µECU0 µECU1 TT (period: 1ms) 17 17 0

Braking force µECU4 µECU1 RC (MINT: 3 ms) 232 264 32

Relative slip µECU1 µECU3 BE 232 272 40

Slip comparison µECU3 µECU4 BE 217 226 9

Table 7.3: Gem5-based NoC Configuration 2

implemented for the evaluation of our ABS multicore system. In the configuration table, the

sender and the receiver cores represent the cores which host the µECUs.

In order to validate the correct operation of the simulation environment, the simulation

scenario is analyzed comparing an ideal scenario with a correct behavior of the ABS multicore

processor and under the influence of the software crash failure on the ABS controller. Figure

7.7 compares the wheel behaviors during the simulation scenario while Figure 7.8 shows a

braking distance reduction of 26m when the ABS is enabled. Also, the configuration table

provides results of the communication behavior (end-to-end delay) of each message sent

through the NoC. The use case simulation took an overall of 5 minutes having the VEOS

simulation on a 64-bit Windows PC with 4GB of RAM, while the Gem5 simulation was

executed on a 64-bit Linux PC with 2GB of RAM.

Furthermore, different NoC configurations were implemented in the mapping of the

µECUs to different cores in the MPSoC in order to evaluate the influence of the NoC

simulation on the ABS performance. Tables 7.2, 7.4 and 7.5 presents three different NoC

configurations and their communication results. Figure 7.9 compares the angular speed of the

wheel of 4 different NoC configurations, while Figure 7.10 compares the different braking

distances. These results demonstrate the ability of the simulation environment to evaluate the

impact of different hardware choices (e.g., different NoC configurations) on the high-level

system behavior.

7.1 Evaluation of the Co-simulation Framework for AUTOSAR Message-based MPSoC

Platforms 103

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70.4

80

Time(s)

A
n

g
u

la
r

S
p

e
e

d
 (

ra
d

/s
e

c
)

Car Speed under Failure Injection

Car Speed without Failure Injection

Wheel Speed under Failure Injection

Wheel Speed without Failure Injection

Figure 7.7: Car Speed and Wheel Speed using

VEOS-GEM5 Co-simulation Environment

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

219.6

245.5

290

Time(s)
B

ra
k
in

g
 D

is
ta

n
c
e
 (

m
)

Under Failure Injection

Without Failure Injection

Figure 7.8: Braking Distance

6 7 8 9 10 11 12 13 14
0

5

10

15

20

25

30

35

40

Time (s)

A
n

g
u

la
rS

p
e

e
d

 (
ra

d
/s

e
c

)

NoC Configuration 1

NoC Configuration 2

NoC Configuration 3

NoC Configuration 4

12.5 13 13.5 14 14.4
218

218.5

219

219.6

219.9

220.6

220.9

221.5

Time(s)

B
ra

k
in

g
 D

is
ta

n
c
e
(m

)

NoC Configuration 1

NoC Configuration 2

NoC Configuration 3

NoC Configuration 4

NoC Configuration 3 Results

Message
Sender

Core

Receiver

Core

Temporal

Configuration

Min. E2E

Delay (ns)

Max. E2E

Delay (ns)

Jitter

(ns)

Angular speed µECU0 µECU3 RC (MINT: 3 ms) 232 264 32

Braking force µECU6 µECU3 RC (MINT: 3 ms) 232 272 40

Relative slip µECU3 µECU2 TT (period: 3ms) 17 17 0

Slip comparison µECU2 µECU6 BE 217 226 9

Table 7.4: NoC Configuration 3

Figure 7.9: Wheel Speed with different

NoC Configurations

Figure 7.10: Braking Distance with

different NoC Configurations

104 Evaluation and Results

NoC Configuration 4 Results

Message
Sender

Core

Receiver

Core

Temporal

Configuration

Min. E2E

Delay (ns)

Max. E2E

Delay (ns)

Jitter

(ns)

Angular speed µECU3 µECU4 BE 217 264 47

Braking force µECU1 µECU4 RC (MINT: 3 ms) 232 264 32

Relative slip µECU4 µECU6 BE 249 295 46

Slip comparison µECU6 µECU1 TT (period: 12ms) 32 32 0

Table 7.5: NoC Configuration 4

7.1.3 Discussion

The capability of the presented co-simulation environment was evaluated presenting an ABS

use case. The influence of the message-based NoC on the AUTOSAR-based system was

analyzed. The realistic automotive use case together with the virtual validation scenario

demonstrates the ability of the framework for early validation of applications as well as its ca-

pability to analyze the performance and the real-time behavior of AUTOSAR applications on

different multicore platforms with message-based NoCs under fault interjection experiments.

The presented simulation environment allows the connection with the ControlDesk

Generation tool for experimental tests. The simulation can be controlled, e.g., resumed and

stopped at any time. Specific simulation steps can be configured and also a limited simulation

time is set up. Information from the µECUs can be obtained during execution-time. µECUs

can be turned on/off at any time. Furthermore, the simulation results are obtained graphically

and numerically.

Additionally, the log files from both message-based NoC simulations provide temporal

information of the communication behavior of the network. In the co-simulation with the

GEM5-based NoC model the messages configured with a time-triggered temporal behavior

hold a 0 communication jitter as expected. This is due to the temporal behavior of the NoC

for the injection of this kind of messages in contrast to the rate-constrained and best effort

messages whose communication jitters are different to 0.

7.2 Evaluation of Performance and Fault Containment in

AUTOSAR Micro-ECUs

The co-simulation environment consisting of VEOS and the GEM5 message-based NoC

simulation is selected for the implementation of the use case for the evaluation of the

performance and the fault containment in the µECUs. This is due to the ability of the

7.2 Evaluation of Performance and Fault Containment in AUTOSAR Micro-ECUs 105

Message-based NoC

µECU 1 µECU 2 µECU 3

µECU 4

ABS Functionality (ASIL D)

dSpace_SWC

Math_SWC

µECU 5µECU 6

Light Indicator System

Functionality

µECU 7

BI_SWC

µECU 8

(ASIL A)

Figure 7.11: Automotive Use Case for Fault Containment Evaluation

NoC in GEM5 to configure different timing models (i.e., rate-constrained, best-effort and

time-triggered) for the message exchange between the µECUs.

7.2.1 Use Case-Description

As a realistic automotive use case, we employ the ABS consisting of five AUTOSAR SWCs

distributed on 4 AUTOSAR µECUs and a Light Indicator System (LIS) of four SWCs

distributed on 4 µECUs. Both application systems are implemented within a multicore

platform of 8 cores in Spidergon topology, where each µECU is mapped to a single core in

the MPSoC.

Figure 7.11 presents the described use case. The µECU4 contains an AUTOSAR SWC

performing the controller of the ABS functionality. Additionally, SWC redundancy is

implemented in the µECU4. Thus, two different SWC implementations of the controller are

used, one based on the open source ABS simulink implementation of MathWorks [Matml]

adapted to an AUTOSAR SWC (Math_SWC), and one obtained from the dSpace solution

for an AUTOSAR ABS implementation (dSpace_SWC). We set the threshold parameters

for crash and permanent value failure recognition on µECU4 with a granularity of ρ = 3,

φ = 6, ϕi = 6, γi = 12, κi = 50 and ci = 50. Furthermore, to analyze the impact of a babbling

idiot failure on our MPSoC platform a SWC (BI_SWC) is implemented on the µECU7 of

the LIS functionality sending untimely messages to the network.

Additionally, ASMs are integrated into the AUTOSAR simulation representing the phys-

ical environment that interacts with the MPSoC as described in the previous section (see

Section 7.1.1). In the presented simulation scenario, a hard braking is implemented by the

106 Evaluation and Results

NoC Results

Configuration Without Fault Injection Under Fault Injection

ID
Sender

Core

Receiver

Core

Temporal

Configuration

Min. E2E

Delay (ns)

Max. E2E

Delay (ns)

Jitter

(ns)

Min. E2E

Delay (ns)

Max. E2E

Delay (ns)

Jitter

(ns)

1 µECU4 µECU1 TT (period: 1ms) 17 17 0 17 17 0

2 µECU8 µECU5 RC (MINT: 3 ms) 232 264 32 232 264 32

3 µECU1 µECU2 TT (period: 1ms) 17 17 0 17 17 0

4 µECU2 µECU4 TT (period: 1ms) 32 32 0 32 32 0

5 µECU2 µECU3 TT (period: 1ms) 17 17 0 17 17 0

6 µECU3 µECU4 TT (period: 1ms) 17 17 0 17 17 0

7 µECU5 µECU6 BE 246 272 26 246 286 40

8 µECU6 µECU5 BE 264 284 20 264 284 20

9 µECU6 µECU7 BE 258 286 28 258 304 46

10 µECU1 µECU4 TT (period: 1ms) 17 17 0 17 17 0

11 µECU7 µECU8 RC (MINT: 3 ms) 234 262 28 234 275 41

12 µECU7 µECU8 RC (MINT: 3 ms) 248 289 41 248 298 50

Table 7.6: NoC Configuration in Timing Failure Experiment

driver while the car has an initial speed of 88km/h. Moreover, for the evaluation of the

TIMEA platform and the presented fault tolerance mechanisms, RTE interventions are used

to perform fault injections during the simulation scenario.

In this scenario the ABS functionality represents a safety critical system (ASIL D) while

the LIS (ASIL A) is less important in terms of safety.

7.2.2 Results

7.2.2.1 Timing Failure Experiment

For analyzing the behavior of the AUTOSAR message-based multicore system under a timing

failure occurrence, RTE interventions are employed to delay the time-triggered execution

of the SWCs which send the messages through the NoC, for both, the ABS and the LIS. In

this fault injection experiment we use the NoC configuration presented in table 7.6 for the

setting of the network. In this NoC configuration messages exchanged by the ABS are set as

time-triggered messages since this functionality is safety critical, while messages exchanged

by the LIS are set as best-effort and rate-constrained messages.

Additionally, table 7.6 establishes a comparison between the resulting jitter of the NoC

messages without faults and in the presence of a timing failure. These communication results

demonstrate how time-triggered messages are unaffected by the delay fault occurrence unlike

best-effort and rate-constrained messages whose communication jitter is affected.

7.2 Evaluation of Performance and Fault Containment in AUTOSAR Micro-ECUs 107

ResultsNoC

Configuration 1 Without Fault Injection Under Fault Injection

ID
Sender

Core

Receiver

Core

Temporal

Configuration

Min. E2E

Delay (ns)

Max. E2E

Delay (ns)

Jitter

(ns)

Min. E2E

Delay (ns)

Max. E2E

Delay (ns)

Jitter

(ns)

1 TT (period: 1ms) 17 17 0 17 17 0
2 RC (MINT: 3 ms) 232 264 32 232 293 61
3 µECU1 µECU2 TT (period: 1ms) 17 17 0 17 17 0
4 µECU2 µECU4 TT (period: 1ms) 32 32 0 32 32 0
5 µECU2 µECU3 TT (period: 1ms) 17 17 0 17 17 0
6 µECU3 µECU4 TT (period: 1ms) 17 17 0 17 17 0
7 µECU5 µECU6 BE 246 272 26 246 413 167
8 µECU6 µECU5 BE 264 284 20 264 435 171
9 µECU6 µECU7 BE 258 286 28 258 489 231
10 TT (period: 1ms) 17 17 0 17 17 0
11 RC (MINT: 3 ms) 234 262 28 234 319 85
12 RC (MINT: 3 ms) 248 289 41 248 322 74

 µECU1
 µECU7 µECU2

13 BI_SWC µECU3 BE Fault Injection
 µECU4
 µECU5
 µECU6

 µECU1 µECU4
 µECU7 µECU8
 µECU7 µECU8

µECU4 µECU1
µECU8 µECU5

µECU8

Table 7.7: NoC configuration 1 for Babbling Idiot Experiment

7.2.2.2 Babbling Idiot Experiment

As a second experiment, we run our simulation scenario having BI_SWC on the µECU7, so

the response of the platform under a babbling idiot failure is tested. The NoC configuration 1

presented in table 7.7 is used for the configuration of the multicore platform. Additionally,

we run our simulation use case using the NoC configurations 2 and (see tables 7.8 and 7.9),

where messages exchanged by the ABS functionality are set as rate-constrained messages

and best-effort messages respectively, so a comparison can be established.

Figures 7.12, 7.13 and 7.14 represent the distance traveled by the car and the wheel slip

with and without babbling idiot failures using each one of the NoC configurations. Figure

7.12 shows how the behavior of the wheel slip stays equal and the distance traveled by the

car was not affected, which is due to the time-triggered behavior of the messages sent by

the ABS functionality. In contrast, Figures 7.13 and 7.14 exhibit a difference between the

curves when the babbling idiot failure is injected. In Figure 7.13 the braking distance is

increased by 2.03m (⋍ 1%), while in Figure 7.14 the distance presents a significant increase

of 5.37m (⋍ 2.5%). Furthermore, tables 7.7, 7.8 and 7.9 compare the resulting maximum and

minimum delays in all three NoC configurations with and without babbling idiot injection.

108 Evaluation and Results

13.4 13.6 13.8 14 14.2 14.4

219

219.53

Time (s)

T
r
a

v
e

le
d

 D
is

ta
n

c
e

 (
m

)

Braking Distance

6 8 10 12 14

0.15

0.2

0.25

0.3

R
e

la
ti

v
e

 S
li

p

Time (s)

With and without Babbling Idiot

Wheel Slip

With and without Babbling Idiot

Figure 7.12: Braking Distance and Wheel Slip with NoC Configuration 1

As presented in these tables, NoC configuration 1 shows no difference between maximum

and minimum delays on messages sent by the ABS functionality, so a jitter of 0 is kept for

all of them. This is not the case for NoC configurations 2 and 3 where the calculated jitter is

increased significantly.

7.2.2.3 Omission/Crash Failure Experiment

We run our simulation scenario using RTE interventions for the injection of consecutive

omission failures in the ABS SWC controller (Math_SWC). In this case we expect the

monitoring service to recognize the omission failures by receiving error statuses from the

RTE function that triggers this SWC and thus, to determine the presence of a crash failure so

dSpace_SWC will be activated for fault recovery. The experiment was run with and without

having health monitoring service on µECU4. The omission failure injection was initiated

after 4s of simulation time.

Figure 7.15 illustrates the comparison of the braking distance behavior when no value

failure is injected (curve 1), under fault injection (curve 2) and without health monitoring

service (curve 3). This Figure shows how the ABS functionality remains operational under a

crash failure occurrence when having the monitoring service module. However, a reduction

of ⋍ 0.1% (0.22m) in the ABS performance is visible in curve 3 compared with curve 2,

which is resulting from the delay in response of the fault recognition algorithm.

7.2 Evaluation of Performance and Fault Containment in AUTOSAR Micro-ECUs 109

ResultsNoC

Configuration 2 Without Fault Injection Under Fault Injection

ID
Sender

Core

Receiver

Core

Temporal

Configuration

Min. E2E

Delay (ns)

Max. E2E

Delay (ns)

Jitter

(ns)

Min. E2E

Delay (ns)

Max. E2E

Delay (ns)

Jitter

(ns)

1 RC (MINT: 3 ms) 17 46 29 17 317 300

2 RC (MINT: 3 ms) 17 46 29 17 373 356

3 µECU1 µECU2 RC (MINT: 3 ms) 17 52 35 17 347 330

4 µECU2 µECU4 RC (MINT: 3 ms) 32 68 36 32 332 300

5 µECU2 µECU3 RC (MINT: 3 ms) 17 52 35 17 386 369

6 µECU3 µECU4 RC (MINT: 3 ms) 17 46 29 17 366 349

7 µECU5 µECU6 BE 138 172 34 138 613 475

8 µECU6 µECU5 BE 146 184 38 146 795 649

9 µECU6 µECU7 BE 184 196 12 184 589 405

10 RC (MINT: 3 ms) 17 46 29 17 317 300

11 RC (MINT: 3 ms) 17 52 35 17 319 302

12 RC (MINT: 3 ms) 17 68 51 17 362 345

 µECU1

 µECU7 µECU2

13 BI_SWC µECU3 BE Fault Injection
 µECU4

 µECU5

 µECU6

µECU4 µECU1

µECU8 µECU5

µECU1 µECU4
 µECU7 µECU8
 µECU7 µECU8

µECU8

Table 7.8: NoC Configuration 2 for Babbling Idiot Experiment

13.4 13.6 13.8 14 14.2 14.4

219.56

219.9

221.59

Braking Distance

Time (s)

T
r
a

v
e

le
d

 D
is

ta
n

c
e

 (
m

)

6 8 10 12

0.15

0.2

0.25

0.3

0.35

R
e

la
ti

v
e

 S
li

p

Wheel Slip

Time (s)

Without Babbling Idiot
With Babbling Idiot

With Babbling Idiot
Without Babbling Idiot

Figure 7.13: Braking Distance and Wheel Slip with NoC Configuration 2

110 Evaluation and Results

ResultsNoC

Configuration 3 Without Fault Injection Under Fault Injection

ID
Sender

Core

Receiver

Core

Temporal

Configuration

Min. E2E

Delay (ns)

Max. E2E

Delay (ns)

Jitter

(ns)

Min. E2E

Delay (ns)

Max. E2E

Delay (ns)

Jitter

(ns)

1 BE 138 176 38 138 917 779

2 RC (MINT: 3 ms) 17 26 9 17 173 156

3 µECU1 µECU2 BE 32 62 30 32 632 600

4 µECU2 µECU4 BE 64 88 24 64 587 523

5 µECU2 µECU3 BE 32 52 20 32 648 616

6 µECU3 µECU4 BE 17 46 29 17 936 919

7 µECU5 µECU6 BE 64 72 8 64 832 768

8 µECU6 µECU5 BE 52 84 32 52 795 743

9 µECU6 µECU7 BE 32 96 64 32 917 885

10 BE 17 46 29 17 1089 1072

11 RC (MINT: 3 ms) 17 22 5 17 119 102

12 RC (MINT: 3 ms) 17 28 11 17 162 145

µECU8
µECU1

 µECU7 µECU2

13 BI_SWC µECU3 BE Fault Injection
µECU4

µECU5

µECU6

µECU1 µECU4
 µECU7 µECU8
µECU7 µECU8

µECU4 µECU1

µECU8 µECU5

Table 7.9: NoC Configuration 3 for Babbling Idiot Experiment

13.4 13.6 13.8 14 14.2 14.4

219.53

222.5

224.9
Braking Distance

Time (s)

T
r
a

v
e

le
d

 D
is

ta
n

c
e

 (
m

)

6 8 10 12

0.15

0.2

0.25

0.3

0.35

R
e

la
ti

v
e

 S
li

p

Wheel Slip

Time (s)

Without Babbling Idiot
With Babbling Idiot

With Babbling Idiot
Without Babbling Idiot

Figure 7.14: Braking Distance and Wheel Slip with NoC Configuration 3

7.2 Evaluation of Performance and Fault Containment in AUTOSAR Micro-ECUs 111

13.5 14 14.5 15 15.5 16 16.5 17

219.53

219.75

242.2

Time (s)

T
ra

v
e
le

d
 D

is
ta

n
c
e
 (

m
)

Curve 3 − Fault Injection − No Health Monitoring

Curve 2 − Fault Injection & Health Monitoring

Curve 1 − Without Fault Injection

13.5 14 14.5 15 15.5 16 16.5 17

219.53

219.92

237.6

Time (s)

T
ra

v
e

le
d

 D
is

ta
n

c
e

 (
m

) Curve 3 − Fault Injection − No Health Monitoring

Curve 2 − Fault Injection & Health Monitoring

Curve 1 − Without Fault Injection

7.2.2.4 Value Failure Experiment

In order to test the response of the message-based MPSoC platform to a permanent value

failure scenario, we use RTE interventions to inject value failures on Math_SWC. The value

failure consists of a message value which is not compliant to the data constraint element of

the AUTOSAR message.

Just as for the crash failure injection, in this case the expected result is the monitoring

service triggering the dSpace_SWC once the parameter φ is overcome to continue providing

the ABS functionality. In Figure 7.16, curves 1 and 2 depict the distance traveled by the

car without faults and in the presence of a permanent value failure. As displayed in this

Figure, the ABS performance in curve 2 has decreased by ⋍ 0.2% (0.39m) compared with

curve 1, but still offering a significant difference of the braking distance in comparison with

curve 3 when no health monitoring functionality is provided under a permanent value failure

occurrence.

7.2.2.5 Evaluation of the Operating System Overhead

In order to measure the impact of the introduced health monitoring service on the operating

system overhead the number of task invocations realized by the AUTOSAR operating system

in µECU4 is compared. This parameter represents how many times a single task is triggered

by the operating system during the whole simulation scenario. We expect a considerable

increase of the task invocations when using the health monitoring service since new tasks are

handled by the operating system to trigger this functionality.

Figure 7.15: Braking Distance in
Omission/Crash Failure Experiment

Figure 7.16: Braking Distance in
Permanent Value Failure Experiment

112 Evaluation and Results

6500

6600

6700

6800

6900

7000

7100

7200

7300

With Healh
Monitoring

Without Health
Monitoring

With SWC
redundancy

without SWC
redundancy

Task Invocations 7246 6754 7246 7246

T
a

s
k

 I
n

v
o

c
a

ti
o

n
s

Figure 7.17: Comparison of Task Invocations in AUTOSAR micro-ECUs

Figure 7.17 compares the number of task invocations in µECU4 with the health monitor-

ing implementation, without health monitoring, with SWC redundancy and without SWC

redundancy. This figure shows an increase of ⋍ 6.8% of the operating system overhead

when a health monitoring service is provided by the BSW in the µECU, which can be

justified since the reliability of the system has improved significantly. Additionally, the SWC

redundancy does not affect the operating system overhead as expected.

7.2.3 Discussion

We presented an evaluation of the performance and fault containment of the AUTOSAR

µECUs in the TIMEA platform. A realistic automotive simulation scenario and multiple fault

injection experiments were carried out using a co-simulation environment for AUTOSAR

message-based multicore systems.

The obtained results demonstrate how µECUs running safety critical automotive func-

tionalities are isolated from faults occurring on a different core due to the intrinsic fault

isolation property of the network, since these functionalities are mapped to time-triggered

messages with a static communication schedule.

Furthermore, the reliability of the AUTOSAR multicore system has been improved

considerably through the integration of the health monitoring service and the SWC redun-

7.3 Evaluation of Performance with an I/O Gateway Core 113

dancy. Software failures on the value domain can be recognized and backup solutions can be

activated to overtake the functionality provided by the failed AUTOSAR SWC.

7.3 Evaluation of Performance with an I/O Gateway Core

In this section we perform an experimental use case to evaluate the performance of the

TIMEA platform when using the implemented I/O gateway core. Accordingly, the co-

simulation environment consisting of VEOS and the SystemC-based TTNoC simulation

serves for the examination.

7.3.1 Use Case-Description

For the evaluation, we define a use case consisting of a TIMEA platform of 8 cores in mesh

topology. An ABS functionality is distributed over three AUTOSAR µECUs, two of them

hosting 2 SWCs and one of them hosting just one. Figure 7.18 represents an architecture

picture of the use case. In our simulation scenario, a hard braking is implemented by the

driver with an initial speed of 88km/h. Additionally, we use RTE interventions to perform

fault injections in order to change the values of the data prototypes handled by the AUTOSAR

SWC ports. Thus, the recovery solutions provided by the health monitoring service together

with the I/O proxy module and the I/O gateway core can be tested.

As depicted in Figure 7.18, the µECU1 has a sensor SWC which interacts with the I/O

abstraction core receiving an ECU signal from the velocity sensor through an ADC input

port. Also, µECU3 hosts an actuator SWC responsible for computing the control signal

of the ABS functionality (dSpace_SWC in Figure 7.18), which is sent by the NoC to the

I/O abstraction core. We inject value failure in the error detection block which consists of

an unexpected value for the ABS control signal exceeding the limits assigned by the data

constraint element. As a recovery action the health monitoring service in µECU3 must

resume tasks for activating a replica of the actuator SWC (Math_SWC in Figure 7.18) that

is located in the same µECU in order to use redundancy at the µECU level. Additionally,

a Breaking Light Indicator (BLI) functionality is performed by one SWC hosted by the

µECU4. In order to provide redundancy at the MPSoC level, a replica of the actuator SWC

for the ABS control signal is also allocated to µECU4 (dSpace_SWC’ in Figure 7.18).

Furthermore, µECUs 5 and 6 represent automotive functionalities which require a FFT

service each for a certain time, which is made available to the µECUs through a dedicated

input/output core (FFT core in Figure 7.18). The FFT application is based on [FFTft], which

performs a 16-point FFT computation of the input signal. Different priorities are assigned to

114 Evaluation and Results

TTNoC

µECU 1

V/S

µECU 2

ABS Functionality (ASIL D)
Breaking Light (ASIL QM)

µECU 3 µECU 4

I/O Abstraction

Core FFT Core

V/S

I PWM O

BL

µECU 5 µECU 6

dSpace_SWC
Math_SWC Output BL

dSpace_SWC'

 ASIL QM ASIL D

ABS

Figure 7.18: Automotive Use Case for Evaluation of the I/O Gateway Core

each µECU in order to avoid conflicts in accessing the FFT core. Since µECU6 possesses a

higher criticality level (ASIL D) than µECU5 (ASIL QM), this µECU is pre-configured at

compile time in the virtualization layer of the FFT core with a higher priority as explained in

Chapter 4. Thus, the values obtained from a specific µECU are queued by the virtualization

layer in a 16 point buffer before passing them to the FFT application. The virtualization layer

forwards the buffer that corresponds to the higher priority in case two µECUs require the

FFT service at the same time. For this, trace files allocated in µECUs 5 and 6 are used to

provide the signals to be sent to the FFT core.

As shown in Figure 7.18, the I/O abstraction core provides one ADC input pin for

receiving the velocity sensor signal, a PWM pin for forwarding the ABS control signal

and an output pin connected to the BLI functionality. We configure the parameters ∂ and ς

(defined in Section 4.3) in the virtualization layer of the I/O abstraction core with a granularity

of ∂ = 3 and ς = 6. This seems to be a reasonable selection of both threshold parameters

since the minimum task period in the presented use case is 5ms.

7.3.2 Results

The NoC configuration implemented for the TIMEA platform is presented in table 7.10.

Also, this table provides the resulting latencies for each message sent through the TTNoC.

The simulated TTNoC does not accept the sending of simultaneous messages at the same

time through the NoC, having a processing time of 50ns from sender core to receiver core.

For this, phases were selected with a difference of more than 50ns to avoid delays because of

contention in the network.

7.3 Evaluation of Performance with an I/O Gateway Core 115

ID Period (ms) Phase (µs) Sender Core Receiver Core Delay (ns)

1 1 2 I/O Core µECU1 50

2 1 54 µECU1 µECU2 50

3 1 106 µECU2 µECU3 50

4 1 158 µECU2 µECU4 50

5 1 210 µECU3 I/O Core 50

6 1 262 µECU4 I/O Core 50

7 1 314 µECU4 I/O Core 50

8 1 366 µECU5 FFT Core 50

9 1 418 µECU6 FFT Core 50

Table 7.10: TTNoC Configuration for I/O Gateway Core Evaluation

14��14.1��14.23 16.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (s)

C
a

r
S

p
e

e
d

 (
km

/h
)

Curve 1 - with ABS

Curve 2 - using Fault Injection

Curve 3 - �ECU3 turned off

Curve 4 - without ABS

���� �� ���� �� ���� �� ���� ��

	�
��

	�
�

		���

	����

�
������

�
��
�

�
�
��

�
��
�
�
�
��
�
�

�������� �!
�"�#�$

������	� ���
���%��&��'�(���
)�

�������� �*+�,�������-�)..

�������� �!
�")���#�$

Figure 7.19 compares the behavior of the vehicular speed, while Figure 7.20 illustrates the

braking distance behavior. In both figures, curve 1 shows the braking behavior of the car when

no fault is injected. Curve 2 shows the braking behavior when injecting a value failure on

the dSpace_SWC of the µECU3 to test the recovery action (activating Math_SWC), while

curve 3 represents the braking behavior when disabling the µECU3 to simulate a crash failure

of the µECU, which means requesting the virtualization layer of the I/O abstraction core to

take the ABS control signal from another core where redundancy is provided (dSpace_SWC’

on µECU4 in this case). As shown in Figure 7.20, the ABS performance in curve 2 and 3

has decreased by ⋍ 1.3% (0.3m) and ⋍ 2.8% (0.7m) respectively compared with curve 1 but

still offering a significant difference of the braking distance in comparison with curve 4 when

no ABS functionality is provided.

Figure 7.20: Comparison of Braking Distances
in I/O Gateway Core Evaluation

Figure 7.19: Comparison of Car Speeds in I/O
Gateway Core Experiment

116 Evaluation and Results

Task Invocations

Core With I/O Core Without I/O Core
Health Monitoring

Service

 µECU1 4377 7450 ----------------

 µECU3 7576 9327 897

 µECU4 7346 12456 ----------------

Table 7.11: Comparison of Task Invocations in I/O Gateway Core Evaluation

Core
FFT initial

Request Time (µs)

Proccessing

Time (µs)
Ending Time (µs)

µECU5 5000366 32000 5032366

µECU6 5000418 17000 5017418

µECU5 10000366 17000 10017366

µECU6 11000418 17000 11017418

µECU5 15010366 22000 15032366

µECU6 15000418 17000 15017418

Table 7.12: FFT Timing Accesses

In order to measure the impact of the OS overhead resulting from the implementation of

the I/O abstraction core we also run our simulation scenario keeping the I/O functionalities

on the BSW of each µECU. Table 7.11 compares the number of task invocations realized by

the OS with and without a dedicated input/output core. As shown in table 7.11, in µECU1

the OS overhead decreases by 27.82% when the I/O abstraction core is implemented, while

µECU3 and µECU4 exhibit an overhead reduction of 18.77% and 41.02% respectively. In

µECU3 the integrated health monitoring service represents 9.84% of the OS overhead, which

can be justified since the reliability of the system has being improved significantly.

Furthermore, µECU5 and µECU6 require the service provided by the FFT core at three

different times during our simulation scenario. Table 7.12 presents the latency results

obtained by the interaction between the µECUs and the FFT core. Both µECUs access the

FFT core using the TTNoC at their pre-defined time slots. The results presented in table 7.12

demonstrate how the µECU6 with the highest criticality level always needs the minimum

time (17ms) for processing the FFT.

7.4 Evaluation of Performance with an Off-chip Network Gateway Core 117

7.3.3 Discussion

We presented an evaluation of performance of the time-triggered multicore architecture for

AUTOSAR based on input/output cores. Costly I/O functionalities of the AUTOSAR BSW

I/O abstraction layer are delegated to a dedicated input/output core (I/O abstraction core)

which is made available to the AUTOSAR SWCs located on different µECUs through the

NoC. Additionally, an FFT core represents an example for a complex driver input/output

core.

The results demonstrate how the OS overhead of the µECUs is reduced significantly

when the I/O functionalities are delegated to dedicated input/output cores. Furthermore,

the presented simulation scenario shows how the performance of the ABS functionality is

preserved under the occurrence of core crash failures due to the integrated I/O abstraction

core which allows the extension of SWC redundancy on different AUTOSAR µECUs.

7.4 Evaluation of Performance with an Off-chip Network

Gateway Core

In this section we carry out an experimental use case to evaluate the performance of the

TIMEA platform when using the implemented off-chip network gateway core. The co-

simulation environment consisting of VEOS and the GEM5-based NoC simulation model

serves to run the use case simulation scenario.

7.4.1 Use Case-Description

The ABS use case consisting of 5 SWCs was distributed on 5 different µECUs, hosting one

SWC each. Likewise, the LIS and the BLI use cases were distributed on 5 and 2 µECUs,

hosting one SWC each. Figure 7.21 represents an architecture picture of the developed

use case. The µECUs are distributed on two TIMEA multicores of 8 cores in Spidergon

topology where both MPSoCs are provided with an implementation of the off-chip network

gateway core supporting TT-CAN bus communication for the interaction between each other.

Moreover, the MPSoC1 holds a replica of the µECU4 (µECU4Â) of the ABS functionality

while the MPSoC2 is holding a replica of the µECU8 (µECU8Â) of the ABS functionality.

Parameters ∂1, ∂2 and ς1, ς2 are configured with a granularity of ∂ = 3 and ς = 6 in the

virtualization layer of the off-chip gateway cores 1 and 2 respectively.

We test the developed distributed system in a simulation scenario where the driver

performs a hard braking having an initial speed of the car of 88km/h. Fault injections are

118 Evaluation and Results

Message-based NoC

Off-Chip Network

Gateway Core 1

µECU 1 µECU 2 µECU 3

ABS Functionality

µECU 6

Light Indicator System

Functionality

µECU 5µECU 4

Message-based NoC

Off-Chip Network

Gateway Core 2

µECU 8 µECU 9

µECU11

Light Indicator System

Functionality

µECU12

µECU 7

TT-CAN

ABS Functionality Breaking Light Breaking Light

µECU10

MPSoC1 MPSoC 2

µECU4' µECU8'

Figure 7.21: Distributed Automotive Use Case for Off-Chip Network Gateway Core Evalua-

tion

NoC Configuration MPSoC1 NoC Configuration MPSoC2

ID
Sender

Core

Receiver

Core

Temporal

Configuration

Sender

Core

Receiver

Core

Temporal

Configuration

1 µECU5 µECU6 TT (period: 1ms) Off-Chip Core2 µECU7 TT (period: 1ms)

2 µECU6 µECU4 TT (period: 1ms) µECU7 µECU8 TT (period: 1ms)

2 µECU6 µECU4' TT (period: 1ms) µECU7 µECU8' TT (period: 1ms)

3 µECU4 Off-Chip Core1 TT (period: 1ms) µECU8 Off-Chip Core2 TT (period: 1ms)

4 µECU4' Off-Chip Core1 TT (period: 1ms) µECU8' Off-Chip Core2 TT (period: 1ms)

5 Off-Chip Core1 µECU5 TT (period: 1ms) µECU9 Off-Chip Core2 RC (MINT: 3 ms)

6 Off-Chip Core1 µECU1 RC (MINT: 3 ms) Off-Chip Core2 µECU10 BE

8 µECU2 µECU3 BE µECU10 µECU11 BE

9 µECU3 Off-Chip Core1 BE µECU11 µECU12 BE

Table 7.13: NoC Configurations in Off-Chip Network Gateway Core Evaluation

used to evaluate the ability of the implemented off-chip gateway core to exploit the µECU

redundancy under failure occurrences. The scheduling of the inter-core communication for

the two NoCs is summarized in table 7.13. Additionally, table 7.14 presents the scheduling

of the TT-CAN bus communication between the MPSoCs.

7.4.2 Results

To validate the correct operation of the off-chip gateway core we compare the speed of the car

and the braking distance having enabled and disabled the µECU4 in MPSoC1 and µECU8

in MPSoC2 to simulate a crash failure of the µECUs, so the µECU redundancy should

maintain the ABS functionality fully operational. Figure 7.22 compares the car speed while

Figure 7.23 compares the braking distance performance. Figure 7.23 presents an increase of

the braking distance of 0.78m (⋍ 0.35%) when the crash failure is injected on both MPSoCs

7.4 Evaluation of Performance with an Off-chip Network Gateway Core 119

 TT-CAN Configuration

ID Period Phase Sender MPSoC Receiver MPSoC

1 10ms 1ms 1 2

2 10ms 2ms 2 1

3 10ms 3ms 2 1

4 10ms 4ms 1 2

Table 7.14: TT-CAN Communication Configuration

17 17.4 20.5
0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

C
a

r
S

p
e
e
d

 (
k

m
/h

)

Curve 1 − Fault Injection/No µECU redundancy

Curve 2 − No Fault Injection

Curve 3 − Fault Injection & µECU redundancy

16 17 17.4 20.5 21

222.58

223.36

 241.4

Time (s)

T
ra

v
e

le
d

 D
is

ta
n

c
e

 (
m

) Curve 3 − Fault Injection/No µECU Redundancy

Curve 2 − Fault Injection & µECU Redundancy

Curve 1 − Without Fault Injection

(curve 2) but still meeting a significant performance compared to curve 3 when no µECU

redundancy is offered.

In order to quantify the influence of the gateway core on the AUTOSAR multicore system

Figures 7.24, 7.25 and 7.26 compare the overall number of task invocations performed by the

OS of each µECU for the 3 automotive implemented functionalities. For this, the µECUs

where distributed differently on the two multicores, keeping the off-chip network functionality

in the own BSW of each µECU. Thus, our described use case was also executed without an

implementation of the gateway core.

The µECUs performing the ABS functionality reflects a reduction of the OS overhead of

28.56%, 66.64%, 28.56%, 18.17% and 49.96% when the gateway is used, while µECUs for

the LIS and BLI functionalities present a reduction of 49.97%, 33.32%, 49.95%, 49.95% and

22.21%, and 66.62% and 49.98% respectively. These results demonstrate how the developed

off-chip gateway core improves the efficiency of the MPSoC platform acting as a hardware

accelerator for the AUTOSAR application running in the µECUs.

Figure 7.22: Comparison of Car Angular
Speeds in Off-chip Network Gateway Core
Evaluation

Figure 7.23: Comparison of Braking Distances

in Off-chip Network Gateway Core Evaluation

120 Evaluation and Results

4 5 7 8

5002

1001

5002

9002

2002

7002

3001

7002

11002

4002

T
a

s
k

 I
n

v
o

c
a

ti
o

n
s

 AUTOSAR µECUs

With Gateway Without Gateway

6

Figure 7.24: Overhead Comparison for ABS functionality

2 3 11 12

2002

4001

1002 1002

7002

4002

6001

2002 2002

9002

T
a

s
k

 I
n

v
o

c
a

ti
o

n
s

10
AUTOSAR µECUs

With Gateway Without Gateway

Figure 7.25: Overhead Comparison for LIS functionality

1 9

1002

2001

3002

4001

T
a

s
k

 I
n

v
o

c
a

ti
o

n
s

AUTOSAR µECUs

With Gateway Without Gateway

Figure 7.26: Overhead Comparison for BLI functionality

7.5 Evaluation of Performance with a Memory Gateway Core 121

7.4.3 Discussion

The results show that the introduction of an off-chip network gateway core in a message-

based multicore platform for AUTOSAR simplifies the AUTOSAR BSW in the µECUs

since the off-chip communication functionality is delegated to the dedicated core. The

off-chip gateway core allows the communication between SWCs in different MPSoCs which

is performed through the off-chip automotive network implemented by the gateway.

Due to the use of the message-base NoC for inter-core communication, SWCs in dif-

ferent µECUs are able to use the gateway for the exchange of data with other MPSoCs.

Additionally, the obtained results reflect a significant increase in the performance of the

AUTOSAR operating system since it is not any more required to handle expensive off-chip

communication functionalities, which are replaced by the integrated off-chip gateway core.

7.5 Evaluation of Performance with a Memory Gateway

Core

In this section we carry out an experimental use case to evaluate the performance of TIMEA

on a distributed system when employing the described memory gateway core. For this, the

co-simulation environment consisting of VEOS and the SystemC-based TTNoC simulation

serves for the implementation of the use case.

7.5.1 Use Case-Description

An automotive use case consisting of a Pedestrian Detection Mechanism (PDM) running in

parallel with an audio-video streaming system serves for the evaluation of the implemented

memory gateway core performing the hierarchical DMTC protocol. The automotive ISO-

26262 functional safety standard is used to set the criticality of the applications.

The combination of the following three applications constitutes the PDM functionality:

(1) A Body Track (BT) computer vision algorithm for pedestrian detection (ASIL D) (2)

An FFT (ASIL C) (3) A Noise Removal (NR) algorithm (ASIL B). Additionally, since the

audio-video streaming service is not critical an ASIL QM criticality level is assigned to it.

The Simlarge input-sets of the PARSEC benchmarks [BKL08] are used for the gener-

ation of trace-files for 12 cores representing the mentioned applications. These trace-file

applications are integrated manually on 12 SWCs that serve as the application layer for 12

generated µECUs using SystemDesk. Before the generation of the OSA simulation file the

122 Evaluation and Results

µECU6
Video

AudioT1

µECU5
Video

AudioT2

µECU2

BTT2

µECU3

BTT3

µECU4

FFTT1

µECU1

BTT1

MPSoC #1
Q
M

D D D C

Q
M

TTNoC

µECU5
Video

AudioT3

µECU2

BTT5

µECU3

BTT6

µECU4

FFTT2

µECU1

BTT4

MPSoC #2

D D D C

Q
M

TTNoC

µECU6
NRT1

B

NG
F
l
e
x
R
a
y

B
u
s

NG

MG

MG

Figure 7.27: Distributed Automotive Use Case for Memory Gateway Core Evaluation

FlexRay Configuration

ID Period Phase Sender MPSoC Receiver MPSoC

1 1ms 200µs 1 2

2 1ms 300µs 2 1

Table 7.15: FlexRay Bus Communication Configuration

RTE of each µECU is modified to allocate the reading function of the trace-file application

in the OS tasks hosting the SWC runnables.

Figure 7.27 represents an architectural picture of the distributed system use case. The

µECUs are distributed on two TIMEA platforms in mesh topology with a memory gateway

core implementation in both of them, as well as an off-chip gateway core providing access

to a FlexRay communication bus for the inter-MPSoC communication. Each MPSoC has

an external memory of 4GB micron DDR3. The schedule of the off-chip communication

between the two MPSoCs is presented in table 7.15.

7.5.2 Results

The use case was evaluated with respect to the total execution time for each benchmark

application core. The execution time of an application core is calculated from the difference

between the starting time of the application until the time at which the trace file has finished its

7.5 Evaluation of Performance with a Memory Gateway Core 123

 MPSoC 1

µECU ID µECU1 µECU2 µECU3 µECU4 µECU5 µECU6

Criticality ASILD ASILD ASILD ASILC QM QM

FOW 2.554s 0.071s 0.049s 4.042s 0.317s 0.021s

DMTC 2.370s 0.037s 0.037s 5.929s 0.424s 0.063s

 MPSoC 2

µECU ID µECU1 µECU2 µECU3 µECU4 µECU5 µECU6

Criticality ASILD ASILD ASILD ASILC QM ASILB

FOW 0.088s 7.322s 0.103s 6.297s 0.045s 0.237s

DMTC 0.052s 5.430s 0.174s 4.840s 0.054s 0.540s

Table 7.16: Overall Execution Time Per µECU

execution, which means that all messages and memory operations of the trace file have been

successfully executed. Additionally, the existing First One Wins (FOW) conflict resolution

serves for a comparison. This algorithm allows the first transaction to commit while rolling

back all other conflicting transactions.

Table 7.16 compares the overall execution time for each µECU when using the FOW and

the DMTC protocols. This table reflects an improvement of the BT application performance

of 25.84% when using the DMTC protocol compared to the FOW execution, while the

execution time of the FFT application has decreased by 6%. On another hand, the NR and

video-audio streaming applications present an increase of their execution time when using

the DMTC protocol in comparison to the FOW execution. This is due to the criticality

prioritizing of the DMTC execution while the FOW handles non critical applications in a

similar way as the critical applications. The DMTC ensures the fastest execution time of the

µECUs with higher criticality level since their execution is independent from the execution

of the µECUs with a lower criticality.

Additionally, the use case was executed keeping the memory services on the BSW of

each AUTOSAR µECU, which means, without an implementation of the dedicated memory

gateway core. Thus, a comparison between the OS overhead on the µECUs can be established

with and without accelerated system cores.

Figures 7.28 and 7.29 present the number of task invocations executed by the OS of

each µECU on both MPSoCs. For µECUs on MPSoC 1 Figure 7.28 shows a reduction of

the OS overhead by 41.67%, 34.51%, 33.43%, 27.3%, 29.1% and 53.2% when the memory

gateway core is implemented. Likewise, the OS overhead is reduced by 64.2%, 77.8%,

50.2%, 43.1%, 58.8% and 67.13% on the µECUs in MPSoC 2.

124 Evaluation and Results

1 2 3 4 5 6

3764

2789
3574

7458
7965

2895

6453

4259

5369

10258

11235

6185
T
a
s
k
 I

n
v
o

c
a
ti

o
n

s

AUTOSAR µECUs

With Gateway Without Gateway

Figure 7.28: Overhead Comparison in MPSoC 1

1 2 3 4 5 6

2849

1246

4256

6195

1975
1264

7958

5632

8546

10896

4793

3846

T
a
s
k
 I

n
v
o

c
a
ti

o
n

s

AUTOSAR µECUs

With Gateway Without Gateway

Figure 7.29: Overhead Comparison in MPSoC 2

7.5.3 Discussion

The obtained results demonstrate how the introduced memory gateway core can be accessed

by different µECUs running different applications using the TTNoC. The DMTC protocol

performed by the memory gateway core imposes no additional execution delay on applications

hosting the higher criticality level while transactions required by the µECUs hosting non

critical applications are executed with a lower priority.

Furthermore, the operating system overhead has decreased considerably in all µECUs

since memory services are not required to be implemented locally on the BSW of the µECUs

but they are delegated to the dedicated memory gateway core.

Chapter 8

Conclusion

In the last years MPSoCs have become a suitable option for the development of real-time

embedded systems. Specifically in the automotive domain the AUTOSAR standard describes

a multicore version of the AUTOSAR operating system for the implementation of automotive

systems. However, AUTOSAR just focuses on a shared memory implementation for the

inter-core communication for the interaction between SWCs allocated in different cores.

Based on the analysis of the state-of-the-art presented in Chapter 3, this dissertation

introduced a novel TIme-triggered MEssage-based multicore architecture for AUTOSAR

(TIMEA) together with models and algorithms to provide message-based on-chip communi-

cation and health monitoring services to the AUTOSAR system.

The proposed AUTOSAR multicore architecture combines the AUTOSAR software with

a message-based NoC platform. This architecture exploits the benefits of NoC architec-

tures achieving a better temporal predictability and stronger fault isolation for the cores

running the AUTOSAR SWCs. Application cores play the role of AUTOSAR µECUs in the

MPSoC with the extension of new communication service modules in the BSW to support

on-chip network communication. Moreover, computationally expensive functionalities of the

AUTOSAR BSW are delegated to dedicated system cores that serve as hardware accelera-

tors to the µECUs, so a lightweight implementation of the BSW in the µECUs decreases

considerably the overhead of the AUTOSAR operating system.

The presented architecture identifies µECUs as FCRs, which are isolated from timing

faults occurring outside their constrained region due to the temporal behavior of the message-

based NoC for the communication between the cores. The pre-defined temporal configuration

capability of the network allows to set up time-triggered messages for the communication

between µECUs running safety critical functionalities. Additionally, the integrated health

monitoring service in the BSW of the µECUs provides failure detection to the AUTOSAR

software delimiting SWCs as FCRs addressing software failures in the time and value

126 Conclusion

domains. SWC redundancy at the µECU level, as well as at the MPSoC level serves as

recovery actions to counteract SWC failures.

For the implementation of TIMEA a novel framework supporting the integration of

the AUTOSAR architecture with NoC architectures was presented (see chapter 5). The

framework can be used in conjunction with the available simulation tools and consists

of one AUTOSAR-based system simulator, for the simulation of the AUTOSAR software

and the physical environment, and one on-chip simulator for the simulation of the NoC

communication, implementing local coordinators in combination with additional coordination

mechanisms to provide an interface for synchronization and data exchange between the two

simulation tools. Furthermore, simulation building blocks for the extended AUTOSAR BSW

for NoC communication were introduced.

The simulation framework was implemented using the VEOS simulation tool for the sim-

ulation of the AUTOSAR application and environment models while two different simulation

models of message-based NoCs served for the simulation of the on-chip communication.

The dSpace AUTOSAR development tools were employed for the configuration of the

AUTOSAR µECU with the extended BSW modules for health monitoring and proxy func-

tionalities for managing the dedicated system cores.

Several automotive use cases in a realistic simulation scenario were implemented to carry

out a set of experiments which validated the capability of the framework and served to evalu-

ate the performance of the proposed multicore architecture under failure occurrences. The

obtained results revels how the reliability of the AUTOSAR system is improved significantly

by the following aspects:

1. Safety critical µECUs are isolated from failures in the time domain, due to the static

communication schedule of the network.

2. The presented AUTOSAR multicore platform continuous providing an outstanding

performance of safety critical automotive functionalities in case of fault occurrences in

the SWCs. The pre-defined fault assumptions are detected by the health monitoring

service which is able to trigger replicated SWCs in the same µECU, as well as in a

different µECU.

3. The operating system overhead in the µECUs has decreased considerably as expected

due to the introduction of the system cores for hardware acceleration.

127

Future Work

Future work will continue to focus on the integration of the NoC configuration to the

AUTOSAR work flow. For this, the NoC configuration parameters must be mapped to

one of the AUTOSAR data/information exchange formats (e.g., FIBEX file). As a first

implementation the NoC configuration parameters of the GARNET network inside GEM5

will serve for the definition of the AUTOSAR on-chip communication file. A python-based

tool is thought to be developed which will use this AUTOSAR on-chip communication file

for the automated generation of the CSV configuration files to set the GEM5-based NoC.

Additionally, tools for the automatic code generation of the defined proxy and health

monitoring modules must be developed as well as for the generation of the communication

service modules (i.e., COM, PDU router), so support for NoC communication can be provided

to the µECUs.

Furthermore, a real prototype implementation of TIMEA is planned to be carried out

using a multicore-FPGA platform running a DREAMS-NoC. The challenge behind this real

implementation is the lack of support from commercial AUTOSAR tools for the generation

of AUTOSAR software that can be deployed in such a platform, specially for the MCAL,

where hardware dependencies must be entirely developed.

Bibliography

[Aer15] Aeronautical Radio, Inc., 2551 Riva Road, Annapolis, Maryland 21401. Speci-
fication 653: Avionics Application Software Standard Interface, Overview of
ARINC 653, 2015.

[AGR07] B. Akesson, K. Goossens, and M. Ringhofer. Predator: A predictable sdram
memory controller. In In Proceedings of the 5th IEEE/ACM/IFIP Interna-
tional Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), pages 251±256, Sept 2007.

[AKPJ09] N. Agarwal, T. Krishna, L. S. Peh, and N. K. Jha. Garnet: A detailed on-chip
network model inside a full-system simulator. In In Proceedings of the IEEE
International Symposium on Performance Analysis of Systems and Software,
pages 33±42, April 2009.

[ALRL04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr.
Basic concepts and taxonomy of dependable and secure computing. IEEE Trans.
Dependable Secur. Comput., 1(1):11±33, January 2004.

[AO15] H. Ahmadian and R. Obermaisser. Time-triggered extension layer for on-
chip network interfaces in mixed-criticality systems. In In Proceedings of the
Euromicro Conference on Digital System Design, pages 693±699, Aug 2015.

[ART06] ARTEMIS (Advanced Research and Technology for Embedded Intelligence
and Systems). ARTEMIS Final Report on Reference Designs and Architectures
Constraints and Requirements, 2006.

[ASA17] Association for Standardization of Automation and Measuring Systems
(ASAM). The Universal Measurement and Calibration Protocol Family, Version
1.5.0, 2017.

[AUT16a] AUTOSAR Consortium. AUTOSAR Specification of I/O Hardware Abstraction,
AUTOSAR Release 4.3, 2016.

[AUT16b] AUTOSAR Consortium. Layered Software Architecture, AUTOSAR Release
4.3, 2016.

[AUT16c] AUTOSAR Consortium. Operating System, AUTOSAR Release 4.3, 2016.

[AUT16d] AUTOSAR Consortium. Software Component Template, AUTOSAR Release
4.3, 2016.

130 Bibliography

[AUT16e] AUTOSAR Consortium. Specification of Communication, AUTOSAR Release
4.3, 2016.

[AUT16f] AUTOSAR Consortium. Specification of ECU state manager, AUTOSAR Re-
lease 4.3, 2016.

[AUT16g] AUTOSAR Consortium. Specification of Interoperability of AUTOSAR Tools,
AUTOSAR Release 4.3, 2016.

[AUT16h] AUTOSAR Consortium. Specification of PDU Router, AUTOSAR Release 4.3,
2016.

[AUT16i] AUTOSAR Consortium. Specification of Run Time Environment, AUTOSAR
Release 4.3, 2016.

[BBB+11] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt,
Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna,
Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay
Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator. SIGARCH
Comput. Archit. News, 39(2):1±7, August 2011.

[Ber09] T. B. Berg. Maintaining i/o data coherence in embedded multicore systems.
IEEE Micro, 29(3):10±19, May 2009.

[BKL08] C. Bienia, S. Kumar, and Kai Li. Parsec vs. splash-2: A quantitative comparison
of two multithreaded benchmark suites on chip-multiprocessors. In In Pro-
ceedings of the IEEE International Symposium on Workload Characterization,
pages 47±56, Sept 2008.

[BKM13] M. Becker, U. Kiffmeier, and W. Mueller. Heroes: Virtual platform driven
integration of heterogeneous software components for multi-core real-time
architectures. In In Proceedings of the Object/Component/Service-Oriented
Real-Time Distributed Computing (ISORC), 2013 IEEE 16th International
Symposium on, pages 1±8, June 2013.

[BO+11] T. Blochwitz, M. Otter, et al. The Functional Mockup Interface for Tool
independent Exchange of Simulation Models. In In Proceedings of the 8th
International Modelica Conference, 2011.

[CCG+04] M. Coppola, S. Curaba, M. D. Grammatikakis, G. Maruccia, and F. Papariello.
Occn: a network-on-chip modeling and simulation framework. In Proceedings
Design, Automation and Test in Europe Conference and Exhibition, volume 3,
pages 174±179 Vol.3, Feb 2004.

[CG03] Lukai Cai and Daniel Gajski. Transaction level modeling: An overview. In In
Proceedings of the 1st IEEE/ACM/IFIP International Conference on Hardware/-
Software Codesign and System Synthesis, CODES+ISSS ’03, pages 19±24, New
York, NY, USA, 2003. ACM.

Bibliography 131

[CHE11] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: Exploring the
level of abstraction for scalable and accurate parallel multi-core simulations.
In International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), pages 52:1±52:12, 2011.

[CLP14] F. Cucchetto, A. Lonardi, and G. Pravadelli. A common architecture for
co-simulation of SystemC models in QEMU and OVP virtual platforms. In
In Proceedings of the Very Large Scale Integration (VLSI-SoC), 2014 22nd
International Conference on, pages 1±6, Oct 2014.

[CMM+15] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti. Noxim: An open,
extensible and cycle-accurate network on chip simulator. In 2015 IEEE 26th
International Conference on Application-specific Systems, Architectures and
Processors (ASAP), pages 162±163, July 2015.

[CYT11] Ming-Chao Chiang, Tse-Chen Yeh, and Guo-Fu Tseng. A QEMU and SystemC-
Based Cycle-Accurate ISS for Performance Estimation on SoC Development.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 30(4):593±606, April 2011.

[DBT09] S. Faucou D. Bertrand and Y. Trinquet. An analysis of the AUTOSAR OS timing
protection mechanism in Emerging Technologies and Factory Automation.
ETFA 2009. IEEE Conference on, 2009.

[DMK+18] E. Díaz, E. Mezzetti, L. Kosmidis, J. Abella, and F. J. Cazorla. Modelling
multicore contention on the aurix™ tc27x. In 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), pages 1±6, June 2018.

[dSp14a] dSpace. SystemDesk 4.x Guide, Release 2014-B, 2014.

[dSp14b] dSpace. Target Link AUTOSAR Modeling Guide, Release 2014-B, 2014.

[dSp14c] dSpace. VEOS Player Document, Release 2014-B, 2014.

[dSp14d] dSpace. Virtual Validation Overview, Release 2014-B, 2014.

[Dub13] Elena Dubrova. Fault-tolerant design. Springer, 2013.

[Edi12] Editted by: Roman Obermaisser. Time-Triggered Communication. Embedded
Systems. CRC Press, USA, 2012.

[ETA16] ETAS. Multi-core Automotive ECUs: Software and Hardware Implications,
2016.

[FFTft] Fast Fourier Transform based on SystemC, https://github.com/systemc/systemc-
2.2.0/tree/master/examples/sysc/fft.

[Fle05] FlexRay Consortium. BMW AG, DaimlerChrysler AG, General Motors Corpo-
ration, Freescale GmbH, Philips GmbH, Robert Bosch GmbH, and Volkswagen
AG. FlexRay Communications System Protocol Specification Version 2.1, May
2005.

132 Bibliography

[FMZ+12] Zhenman Fang, Qinghao Min, Keyong Zhou, Yi Lu, Yibin Hu, Weihua Zhang,
Haibo Chen, Jian Li, and Binyu Zang. Transformer: A functional-driven cycle-
accurate multicore simulator. In In Proceedings of the Design Automation
Conference (DAC), 2012 49th ACM/EDAC/IEEE, pages 106±114, June 2012.

[GD+05] K. Goossens, J. Dielissen, et al. Aethereal network on chip: concepts, architec-
tures, and implementations. Design Test of Computers, IEEE, 22(5):414±421,
Sept 2005.

[Ghe06] Frank Ghenassia. Transaction-Level Modeling with Systemc: Tlm Concepts and
Applications for Embedded Systems. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006.

[HBS+06] H. Heinecke, J. Bielefeld, K. Schnelle, M. Maldener, H. Fennel, O. Weis,
T. Weber, L. Ruh, J. Lundh, T. Sandén, P. Heitkämper, R. Rimkus, J. Leflour,
A. Gilberg, U. Virnich, S. Voget, K. Nishikawa, K. Kajio, T. Scharnhorst, and
B. Kunkel. AUTOSAR Current results and preparations for exploitation. In In
Proceedings of the EUROFORUM "Software in the vehicle", 2006.

[Hea02] Steve Heath. Embedded Systems Design. Elsevier Science, 2002.

[HGBH09] Andreas Hansson, Kees Goossens, Marco Bekooij, and Jos Huisken. CoMPSoC:
A Template for Composable and Predictable Multi-processor System on Chips.
ACM Trans. Des. Autom. Electron. Syst., 14(1):2:1±2:24, January 2009.

[HGY07] C. Harding, A. Griffiths, and H. Yu. An interface between matlab and opnet to
allow simulation of wncs with manets. In In Proceedings of the Networking,
Sensing and Control, 2007 IEEE International Conference on, pages 711±716,
April 2007.

[HO09] B. Huber and R. Obermaisser. An ARTEMIS Cross-Domain Embedded System
Architecture and Its Instantiation for Real-Time Automotive Applications. In
In Proceedings of the 30th IFAC Workshopon Real-Time Programming and 4th
International Workshop on Real-Time Software, Poland, 2009.

[Int11] International Organization for Standardization. Road vehicles-Functional safety-
Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented
analyses. ISO 26262-9:2011, ICS: 43.040.10, 2011.

[Int15] International Organization for Standardization. Road vehicles Ð Controller
area network (CAN). ISO 11898-1:2015, ICS: 43.040.15, 2015.

[IST06] IBM, Sony, and Toshiba. Cell broadband engine architecture. Tech, 2006.

[JGJ+09] C. Jian, J. Guanjun, L. Jingwei, W. Chao, and C. Tianzhou. Optimistic peripheral
devices performance by virtual regionalized network-on-chip. In In Proceed-
ings of the Scalable Computing and Communications; Eighth International
Conference on Embedded Computing, 2009. SCALCOM-EMBEDDEDCOM’09.
International Conference on, pages 650±655, Sept 2009.

[Joh98] D. John. Osek/vdx history and structure. In IEE Seminar on OSEK/VDX Open
Systems in Automotive Networks (Ref. No. 1998/523), pages 2/1±214, Nov 1998.

Bibliography 133

[Kam11] Raj Kamal. Embedded systems: architecture, programming and design. Tata
McGraw-Hill Education, 2011.

[KGC12] G. Kornaros, M. D. Grammatikakis, and M. Coppola. Towards full virtual-
ization of heterogeneous noc-based multicore embedded architectures. In In
Proceedings of the Computational Science and Engineering (CSE), 2012 IEEE
15th International Conference on, pages 345±352, Dec 2012.

[KKOE07] K. Kronlof, S. Kontinen, I. Oliver, and T. Eriksson. A method for mobile termi-
nal platform architecture development. Advances in Design and Specification
Languages for Embedded Systems, pages 285±300, 2007.

[Kop92] H. Kopetz. Sparse time versus dense time in distributed real-time systems.
In [1992] Proceedings of the 12th International Conference on Distributed
Computing Systems, pages 460±467, June 1992.

[Kop13] Herman Kopetz. Real-Time Systems: Design Principles for Distributed Em-
bedded Applications. Springer Publishing Company, Incorporated, 2nd edition,
2013.

[KYBS14] J. E. Kim, M. K. Yoon, R. Bradford, and L. Sha. Integrated modular avionics
(ima) partition scheduling with conflict-free i/o for multicore avionics systems.
In In Proceedings of the Computer Software and Applications Conference
(COMPSAC), 2014 IEEE 38th Annual, pages 321±331, July 2014.

[KYL+] Hyesoon Kim, Sudhakar Yalamanchili, Jaekyu Lee, Nagesh Lakshminarayana,
Andrew Kerr, Arun Rodrigues, and Genie Hsieh. Tutorial on ocelot and sst-
macsim simulator. ISCA 2012.

[KZK+14] C. T. Kiranoudis, E. Zachariadis, I. Keramitsoglou, K. Saini, O. Kakaliagou,
and E. Kleitsikas. Wildfire evacuation trigger buffers for sensitive areas: Evita
project. In 2014 Third International Workshop on Earth Observation and
Remote Sensing Applications (EORSA), pages 121±125, June 2014.

[LAK92] J.C. C. Laprie, A. Avizienis, and H. Kopetz, editors. Dependability: Basic
Concepts and Terminology. Springer-Verlag, Berlin, Heidelberg, 1992.

[LAS+07] Jacob Leverich, Hideho Arakida, Alex Solomatnikov, Amin Firoozshahian,
Mark Horowitz, and Christos Kozyrakis. Comparing Memory Systems for Chip
Multiprocessors. In In Proceedings of the 34th Annual International Symposium
on Computer Architecture, ISCA ’07, pages 358±368, New York, NY, USA,
2007. ACM.

[LHSC10] Xin Li, Michael C. Huang, Kai Shen, and Lingkun Chu. A realistic evaluation
of memory hardware errors and software system susceptibility. In Proceedings
of the 2010 USENIX Conference on USENIX Annual Technical Conference,
USENIXATC’10, pages 6±6, Berkeley, CA, USA, 2010. USENIX Association.

[LS11] E.A. Lee and S.A. Seshia. Introduction to Embedded Systems: A Cyberphysical
Systems Approach. Electrical Engineering & Computer Sciences. Lulu.com,
2011.

134 Bibliography

[LSL+09] Yan Li, V. Suhendra, Yun Liang, T. Mitra, and A. Roychoudhury. Timing
Analysis of Concurrent Programs Running on Shared Cache Multi-Cores. In In
Proceedings of the Real-Time Systems Symposium 30th IEEE, Dec 2009.

[Matml] Mathworks. Modeling an Anti-Lock Braking System,
www.mathworks.com/help/simulink/examples/modeling-an-anti-lock-
braking-system.html.

[MCE+02] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full system
simulation platform. Computer, 35(2):50±58, Feb 2002.

[MNT+04] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch. The Nostrum
backbone-a communication protocol stack for Networks on Chip. In In Pro-
ceedings of the VLSI Design, 2004. 17th International Conference on, pages
693±696, 2004.

[Modls] Modelica Association. FMI Support in Tools, https://fmi-standard.org/tools/.

[MRR08] B. Muller-Rathgeber and H. Rauchfuss. A Cosimulation Framework for a
Distributed System of Systems. In In Proceedings of the Vehicular Technology
Conference, 2008. VTC 2008-Fall. IEEE 68th, pages 1±5, Sept 2008.

[NHT+12] K. Nakajima, T. Hieda, I. Taniguchi, H. Tomiyama, and H. Takada. A Fast
Network-on-Chip Simulator with QEMU and SystemC. In In Proceedings of
the Networking and Computing (ICNC), 2012 Third International Conference
on, pages 298±301, Dec 2012.

[OG09] R. Obermaisser and P. Gutwenger. Model-based development of mpsocs with
support for early validation. In In Proceedings of the Industrial Electronics,
2009. IECON ’09. 35th Annual Conference of IEEE, pages 2867 ± 2873, 2009.

[OK09] R. Obermaisser and H. Kopetz. GENESYS: A Candidate for an ARTEMIS Cross-
Domain Reference Architecture for Embedded Systems. Südwestdeutscher
Verlag für Hochschulschriften, 2009.

[OKP10] R. Obermaisser, H. Kopetz, and C. Paukovits. A Cross-Domain Multi-Processor
System-on-a-Chip for Embedded Real-Time Systems. IEEE Transactions on
Industrial Informatics, 2010.

[OKS08] R. Obermaisser, H. Kraut, and C. Salloum. A transient-resilient system-on-a-
chip architecture with support for on-chip and off-chip tmr. In 2008 Seventh
European Dependable Computing Conference, pages 123±134, May 2008.

[OO15] Z. Owda and R. Obermaisser. Trace-based simulation framework combining
message-based and shared-memory interactions in a time-triggered platform.
In In Proceedings of the International Conference on Event-based Control,
Communication, and Signal Processing (EBCCSP), pages 1±8, June 2015.

[OO16] Z. Owda and R. Obermaisser. Mixed-criticality transactional memory controller
for embedded systems. In In Proceedings of the IEEE 14th International
Conference on Industrial Informatics (INDIN), pages 104±110, July 2016.

Bibliography 135

[OP07] Roman Obermaisser and Philipp Peti. The fault assumptions in distributed
integrated architectures. In In Proceedings of the SAE AeroTech Congress and
Exhibition, 2007.

[OUOA16] Z. Owda, M. Urbina, R. Obermaisser, and M. Abuteir. Hierarchical transac-
tional memory protocol for distributed mixed-criticality embedded systems.
In In Proceedings of the IEEE 14th Intl Conf on Dependable, Autonomic and
Secure Computing, 14th International Conference on Pervasive Intelligence
and Computing, 2nd Intl Conf on Big Data Intelligence and Computing and Cy-
ber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech),
pages 334±343, Aug 2016.

[Owd16] Z. Owda. Predictable Transactional Memory Architecture for Hierarchical
Mixed-Criticality Systems. University of Siegen. Fcaulty of Embedded Systems,
2016.

[PHO+14] J. Power, J. Hestness, M. Orr, M. Hill, and D. Wood. GEM5-GPU: A Heteroge-
neous CPU-GPU Simulator. Computer Architecture Letters, page 1, 2014.

[PPB+07] F. Poletti, A. Poggiali, D. Bertozzi, L. Benini, P. Marchal, M. Loghi, and
M. Poncino. Energy-Efficient Multiprocessor Systems-on-Chip for Embedded
Computing: Exploring Programming Models and Their Architectural Support.
Computers, IEEE Transactions on, 2007.

[RCBJ11] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. Dramsim2: A cycle accurate
memory system simulator. IEEE Computer Architecture Letters, 10(1):16±19,
Jan 2011.

[ROH+09] M. Rudorfer, T. Ochs, P. Hoser, M. Thiede, M. Missmer, O. Scheickl, and
H. Heinecke. Realtime system design utilizing AUTOSAR methodology. In
elektroniknet, 2009.

[SEH+12] C.E. Salloum, M. Elshuber, O. Hoftberger, H. Isakovic, and A. Wasicek. The
ACROSS MPSoC ± A New Generation of Multi-core Processors Designed for
Safety-Critical Embedded Systems. In In Proceedings of the Digital System
Design (DSD), 2012 15th Euromicro Conference on, pages 105±113, Sept 2012.

[Shi09] KV Shibu. Introduction to Embedded Systems. Tata McGraw-Hill Education,
2009.

[Son02] Sonics. Sonics u network technical overview, 2002.

[Sta96] William Stallings. Computer Organization and Architecture (4th Ed.): De-
signing for Performance. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1996.

[Sto96] Neil R. Storey. Safety Critical Computer Systems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1996.

[UAcLR01] Algirdas Avizienis Ucla, Algirdas Avizienis, Jean claude Laprie, and Brian
Randell. Fundamental concepts of dependability, 2001.

136 Bibliography

[UAO16] M. Urbina, H. Ahmadian, and R. Obermaisser. Co-simulation framework for
autosar multi-core processors with message-based network-on-chips. In In Pro-
ceedings of the IEEE 14th International Conference on Industrial Informatics
(INDIN), pages 1140±1147, July 2016.

[UBG+13] T. Ungerer, C. Bradatsch, M. Gerdes, F. Kluge, R. Jahr, J. Mische, J. Fernandes,
P. G. Zaykov, Z. Petrov, B. Böddeker, S. Kehr, H. Regler, A. Hugl, C. Rochange,
H. Ozaktas, H. Cassé, A. Bonenfant, P. Sainrat, I. Broster, N. Lay, D. George,
E. Quiñones, M. Panic, J. Abella, F. Cazorla, S. Uhrig, M. Rohde, and A. Pyka.
parmerasa ± multi-core execution of parallelised hard real-time applications
supporting analysability. In 2013 Euromicro Conference on Digital System
Design, pages 363±370, Sep. 2013.

[UCS+10] T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange,
E. Quiñones, M. Gerdes, M. Paolieri, J. Wolf, H. Cassé, S. Uhrig, I. Gu-
liashvili, M. Houston, F. Kluge, S. Metzlaff, and J. Mische. Merasa: Multicore
execution of hard real-time applications supporting analyzability. IEEE Micro,
30(5):66±75, Sep. 2010.

[UO15] M. Urbina and R. Obermaisser. Multi-core architecture for autosar based on
virtual electronic control units. In In Proceedings of the IEEE 20th Conference
on Emerging Technologies Factory Automation (ETFA), pages 1±5, Sept 2015.

[UO16] M. Urbina and R. Obermaisser. A gateway core between on-chip and off-chip
networks for an autosar message-based multi-core platform. In In Proceedings
of the AmE 2016 - Automotive meets Electronics; 7th GMM-Symposium, pages
1±6, March 2016.

[UO17] M. Urbina and R. Obermaisser. Efficient multi-core autosar-platform based on
an input/output gateway core. In In Proceedings of the 25th Euromicro Inter-
national Conference on Parallel, Distributed and Network-based Processing
(PDP), pages 157±166, March 2017.

[UO18] M. Urbina and R. Obermaisser. Evaluation of performance and fault contain-
ment in autosar micro-ecus on a multi-core processor. In 2018 IEEE 12th
International Symposium on Embedded Multicore/Many-core Systems-on-Chip
(MCSoC), pages 192±200, Sep. 2018.

[UOO15] M. Urbina, Z. Owda, and R. Obermaisser. Simulation environment based on
systemc and veos for multi-core processors with virtual autosar ecus. In In Pro-
ceedings of the IEEE International Conference on Computer and Information
Technology; Ubiquitous Computing and Communications; Dependable, Auto-
nomic and Secure Computing; Pervasive Intelligence and Computing, pages
1843±1852, Oct 2015.

[Urb17] Moisés Urbina. A time-triggered message-based multi-core architecture for
autosar: Student research abstract. In In Proceedings of the Symposium on
Applied Computing, SAC ’17, pages 1488±1489, New York, NY, USA, 2017.
ACM.

Bibliography 137

[Var99] A. Varga. Using the OMNeT++ discrete event simulation system in education.
Education, IEEE Transactions on, 42(4):11, Nov 1999.

[VEC16] VECTOR. AUTOSAR goes Multi-core ± the safe way, 2016.

[VWHY13] Andreas Richard Voellmy, Junchang Wang, Paul Hudak, and Kazuhiko Ya-
mamoto. Mio: A high-performance multicore io manager for ghc. SIGPLAN
Not., 48(12):129±140, September 2013.

[WG14] P. Wehner and D. Gohringer. Parallel and distributed simulation of networked
multi-core systems. In In Proceedings of the System-on-Chip (SoC), 2014
International Symposium on, pages 1±5, Oct 2014.

[ZEK+13] Zhenkai Zhang, E. Eyisi, X. Koutsoukos, J. Porter, G. Karsai, and J. Sztipanovits.
Co-simulation framework for design of time-triggered cyber physical systems.
In In Proceedings of the Cyber-Physical Systems (ICCPS), 2013 ACM/IEEE
International Conference on, pages 119±128, April 2013.

[Zur09] Richard Zurawski. Embedded Systems Handbook, Second Edition 2-Volume
Set. CRC Press, Inc, Boca Raton, FL, USA, 2009.

[ZW+13] H. Zhang, S Wang, et al. Testing method of integrated modular avionics health
monitoring. In CHEMICAL ENGINEERING TRANSACTIONS CET, AIDIC
publication, 2013.

List of Acronyms

TTNI Time-Triggered Network Interface

NoC Network-on-Chip

CAN Controller Area Network

CAN FD CAN with Flexible Data-Rate

LIN Local Interconnect Network

ECU Electronic Control Unit

FCR Fault Containment Region

FIBEX Fieldbus Exchange Format

DBC Database Container

MPSoC Multi-Processor System-on-a-Chip

NI Network Interface

OEM Original equipment manufacturer

TTNoC Time-Triggered Network-on-a-Chip

VC Virtual Channel

AUTOSAR AUTomotive Open System ARchitecture

DMTC Distributed Mixed-criticality Transactional Controller

OS Operating System

RTE Run-Time Environment

140 Bibliography

SWC Software Component

TIMEA TIme-triggered MEssage-based multi-core architecture for AUTOSAR

BSW Basic Software

PDU Protocol Data Unit

FMU Functional Mock-up Unit

FMI Functional Mock-up Interface

µECU Micro-Electronic Control Unit

LIS Light Indicator System

BLI Breaking Light Indicator

ABS Anti-lock Braking System

FFT Fast Fourier Transform

ASM Automotive Simulation Model

TTEL Time-Triggered Extension Layer

VFB Virtual Funcitonal Bus

MCAL Micro-Controller Abstraction Layer

MINT Minimum INter-arrival Time

VPU Virtual Processing Unit

OSA Offline Simulation Application

XCP Universal Measurement and Calibration Protocol

CSV Comma-Separated Values

MIL Model-in-the-loop

SIL Software-in-the-loop

OCCN On-Chip Communication Network

TDMA Time Division Multiple Access

Bibliography 141

TLM Transaction Level Model

DAP Data Access Point

TDDM TargetLink Data Dictionary Manager

ASIL Automotive Safety Integrity Level

PDM Pedestrian Detection Mechanism

BT Body Track

NR Noise Removal

FOW First One Wins

IOC Inter OS-application Communicator

LIFO Last In, First Out

IMA Integrated Modular Avionic

NoTa Network on Terminal Architecture

ARINC Aeronautical Radio, Incorporated

TTSoC Time-Triggered System-on-a-Chip

RTOS Real Time Operating System

GHC Glasgow Haskell Compiler

HSM Hardware Security Module

parMERASA Multi-Core Execution of Parallelised hard Real-Time Applications Support-

ing Analysability

MERASA Multi-Core Execution of hard Real-Time Applications Supporting Analysability

WCET Worst Case Execution Time

Selected Publications

1. M. Urbina and R. Obermaisser, "Evaluation of Performance and Fault Containment in

AUTOSAR Micro-ECUs using dedicated System Cores on a Multi-Core Processor",

The 13th ACM/IEEE International Workshop on Network on Chip Architectures

(NocArc-2020) at the 53rd ACM/IEEE International Symposium on Microarchitecture

(MICRO-53). Athens, Greece - October 2020.

2. M. Urbina and R. Obermaisser, "Evaluation of Performance and Fault Containment

in AUTOSAR Micro-ECUs on a Multi-Core Processor", The IEEE 12th International

Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC-2018).

Hanoi, Vietnam - September 2018.

3. M. Urbina, ªA Time-triggered Message-based Multi-core Architecture for AUTOSAR",

The ACM 17th Symposium on Applied Computing (SAC-2017). Marrakesh, Morocco

- April 2017.

4. M. Urbina and R. Obermaisser, ªEfficient Multi-core AUTOSAR-Platform based on

an Input/Output Gateway Core", The IEEE 25th Euromicro International Conference

on Parallel, Distributed and Network-based Processing (PDP-2017). St. Petersburg,

Russia - March 2017.

5. Z. Owda, M. Urbina, R. Obermaisser, M. Abuteir, ªHierarchical Transactional Mem-

ory Protocol for Distributed Mixed-Criticality Embedded Systemsº, BEST PAPER

AWARD at The 14th IEEE International Conference on Dependable, Autonomic and

Secure Computing (DASC-2016). Auckland, New Zealand - August 2016.

144 Bibliography

6. M. Urbina, H. Ahmadian, R. Obermaisser, ªCo-simulation Framework for AUTOSAR

Multi-Core Processors with Message-based Network-on-Chipsº, The IEEE 14th Inter-

national Conference on Industrial Informatics (INDIN-2016). Poitiers-Futuroscope,

France - July 2016.

7. M. Urbina and R. Obermaisser, "A Gateway Core between On-chip and Off-chip

Networks for an AUTOSAR Message-based Multi-core Platformº, The 7th Automotive

meets Electronics GMM-Symposium (AmE-2016). Dortmund, Germany - March

2016.

8. M. Urbina, Z. Owda, R. Obermaisser, ªSimulation Environment based on SystemC

and VEOS for Multi-Core Processors with Virtual AUTOSAR ECUsº, The 13th

IEEE International Conference on Dependable, Autonomic and Secure Computing

(DASC-2015). Liverpool, England - October 2015.

9. M. Urbina and R. Obermaisser, ªMulti-Core Architecture for AUTOSAR based on Vir-

tual Electronic Control Unitsº, The 20th IEEE International Conference on Emerging

Technology & Factory Automation (ETFA-2015). Luxembourg, September - 2015.

	Title page
	Acknowledgements
	Abstract
	Kurzfassung
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contributions
	1.2 Thesis Organization

	2 Background and Basic Concepts
	2.1 Real-time Embedded Systems
	2.2 Dependability
	2.3 Architecture Paradigms in Real-time Systems
	2.4 AUTOSAR

	3 Analysis of the State-of-the-Art
	3.1 AURIX TC3XX
	3.2 MERASA and parMERASA European Projects
	3.3 State-of-the-Art of I/O Multicore Solutions
	3.4 ARINC 653 Health Monitoring
	3.5 Multicore Approach of AUTOSAR
	3.6 Limitations of the existing AUTOSAR Multicore Version
	3.7 Research Gap of the State-of-the-Art

	4 Message-based Multicore Architecture for AUTOSAR
	4.1 Overview of the AUTOSAR Multicore System
	4.2 Architecture of an AUTOSAR Micro-ECU
	4.3 Architecture of the I/O Gateway Core
	4.4 Architecture of the Off-Chip Network Gateway Core
	4.5 Architecture of the Memory Gateway Core
	4.6 Fault Tolerance Mechanisms

	5 Simulation Framework for Message-based AUTOSAR MPSoC Platforms
	5.1 Concept of the Co-simulation Framework
	5.2 Implementation of the Co-simulation Framework
	5.3 Extension of the Co-simulation Coordination

	6 Development Process of TIMEA
	6.1 Implementation of the AUTOSAR Micro-ECUs
	6.2 Implementation of the Input/Output Cores
	6.3 Implementation of the Memory Gateway Core Simulation
	6.4 Implementation of the Off-Chip Gateway Core

	7 Evaluation and Results
	7.1 Evaluation of the Co-simulation Framework for AUTOSAR Message-based MPSoC Platforms
	7.2 Evaluation of Performance and Fault Containment in AUTOSAR Micro-ECUs
	7.3 Evaluation of Performance with an I/O Gateway Core
	7.4 Evaluation of Performance with an Off-chip Network Gateway Core
	7.5 Evaluation of Performance with a Memory Gateway Core

	8 Conclusion
	Bibliography
	 Selected Publications

