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Introduction

This habilitation thesis summarises the postdoctoral scientific work of the author

in the following areas:

Sec. 1: Mappings between the Sphere and Planar Surfaces

These mappings are of central importance for various applications in Com-

puter Graphics (e.g. environment maps, shadow and lighting maps, sam-

pling strategies for ray tracing) and in Cartography, Remote Sensing, and

Astronomy (e.g. mapping of astronomical entities and mapping of sur-

faces of celestial bodies). Their properties, in particular areal and angular

distortions and discontinuities, are analysed for the special cases of map-

pings to the square and the circle [8] and mappings to cube faces [3]. Cube

faces are of particular importance for the visualization of data about the

Earth as well as neighboring planets and moons [10, 15]. In this context,

the difference between the rotational ellipsoid model and the sphere has to

be taken into account [2].

Sec. 2: Simulation of Time-Of-Flight Sensors

The simulation of Time-Of-Flight sensor imagery allows evaluation of

sensor design variations without producing prototypes [11] and the cre-

ation of realistic data with Ground Truth [12] for the evaluation of data

processing algorithms [4]. In addition to light propagation [7], the sim-

ulation must consider appropriate models of the lens system [5] and the

sensor electronics [11] to produce realistic results. The results from this

work were used to support research activities in 3D reconstruction [13, 6].

Sec. 3: Complementary Work and Related Topics

Additional research work motivated by teaching activities and collabora-

tions was carried out in related areas such as stereoscopic rendering [17],

Virtual Reality [9, 14], Scientific Visualization [1], and Image Analy-

sis [16].

The overarching topic of this work is the interactive aspect of Computer Graph-

ics: the ultimate goal is to enable interactive visual analysis [1, 2, 3, 5, 8, 10, 14,

15, 16], simulate dynamic scenes in an interactive fashion so that motion is handled

appropriately [4, 7, 11, 12], reconstruct 3D environments with interactive sensor

handling [6, 13], or render stereoscopic contents with the goal of immersion [9,

17].

All of these use cases impose hard constraints on the computing time available

to produce or to process each frame of information, and therefore require care-

ful design of data structures and algorithms that make efficient use of dedicated

computing resources such as Graphics Processing Units (GPUs).
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1 Mappings between the Sphere and Planar Surfaces

Overview

Mappings between the sphere and planar surfaces have been studied for centuries,

starting with world maps and celestial maps [Sny87]. Since the sphere surface is

not developable, such mappings always exhibit either areal or angular distortions,

and often both. Equal-area mappings preserve area ratios, at the cost of large angu-

lar distortions, and conformal mappings preserve angles locally, at the cost of large

area distortions.

In the context of Computer Graphics, such mappings are central in various ar-

eas. The most common one is environment mapping, in which information about

the environment is used to compute lighting for objects placed within that envi-

ronment. In this case, the spherical environment around a center is mapped to one

or more planar surfaces represented by two-dimensional textures. Environment

mapping can be used to implement glossy or mirroring reflections inside graphics

pipelines that only support local illumination, or to represent complex environmen-

tal lighting that cannot be modelled using distinct light sources, such as in sky-lit

scenes. Other application areas include panoramic imaging, procedural texturing,

the generation of sampling points on a disc or sphere for material/light interaction

sampling, and the representation of data bound to a sphere surface in visualizations

of, for example, remote sensing data for Earth.

Projections of a sphere or a hemisphere to a single planar surface (often a disc

or a square) is possible (see Fig. 1 for examples), but results in strong distortions

and often in singularities [Sny87]. Nevertheless, such mappings have useful ap-

plications in Computer Graphics, for example in panoramic imaging and sampling

point generation [8].

The first step to reduce distortions is to subdivide the sphere into regions that

are mapped to separate planar surfaces, usually the faces of a polyhedron. As the

number of faces grows, distortions are reduced significantly [Sny92], at the cost of

introducing interruptions at the face boundaries that often manifest themselves as

C1 discontinuities of the mapping function.

Most existing hardware and algorithms are build for handling images and simi-

lar two-dimensional sampled data as rectangular arrays with fixed sample spacings

in horizontal and vertical direction. Often, especially in the context of GPUs and

hierarchical methods such as quad trees or mipmaps, the most efficient representa-

tion is even more restricted, requiring square arrays with one fixed sample spacing

in both directions.

This makes the cube the polyhedron of choice for many applications, espe-

cially in interactive Computer Graphics [3] where efficient use of computational

resources is paramount: the number of faces is low, and each face is a square (see

Fig. 1).
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Figure 1: Mappings of a sphere surface. From left to right: an equidistant mapping

to a disc, a conformal mapping to a square, and an equal-area mapping to the faces

of a circumscribing cube.

Contributions

In the context of planetary-scale terrain rendering for visualization purposes, the

author introduced the use of an equal-area cube mapping approach for hierarchical

data management [15]. This was an improvement over previous methods with more

complex map compositions [Koo+09] or other cube mapping variants [LMG10].

However, the focus on area distortions was limited. Drawbacks of the chosen

equal-area mapping method include high computational costs and additional C1

discontinuities at the diagonals of each cube face.

A subsequent survey in this application context compared many more mapping

methods [10]. Each mapping was analyzed with regard to its computational costs

and its area and angular distortions. For distortion analysis, two measurements for

area and angular distortions were defined based on the texture sampling needs of

spherical terrain rendering, in particular clip mapping.

These and other [SM01] highly specific measurements do not translate well to

other application domains. For that reason, alternative measurements that are ap-

plication independent were derived and first applied to mappings between sphere,

disc, and square [8]. These measurements are based on the framework of Tissot’s

Indicatrix [Sny87], used in world map projection analysis. The idea of the Indica-

trix is that any mapping method maps an infinitesimal circle on the sphere onto an

infinitesimal ellipse on the planar surface. This ellipse describes the local charac-

teristics of the map projection. Its most important properties are the lengths a of its

semi-major axis and b of its semi-minor axis. Based on product and ratio of these

two lengths, measurements DA for local area distortion and DI for local isotropy

distortion, which is strongly related to local angular distortion, were defined. Al-

though more properties of the ellipse can be analyzed, these two measurements are

sufficient to characterize the map sampling performance in the context of Computer

Graphics.

Later, these generalized measurements were applied to cube mapping meth-

ods used in the wider context of interactive Computer Graphics [3], not limited

to planetary terrain rendering. The simplest form of cube mapping, and the one
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commonly implemented in graphics hardware, is equivalent to Gnomonic map-

ping from the sphere center onto the faces of a circumscribing cube. This mapping

results in relatively strong area and angular distortions. Over the years, many meth-

ods were developed to reduce these distortions by manipulating the cube face co-

ordinates obtained from the (potentially hardware-based) implementation of basic

Gnomonic cube mapping. The aforementioned survey of these methods revealed

that a common pattern of these methods is to apply a one-dimensional transforma-

tion function to the horizontal and vertical cube face coordinates that is sigmoid in

shape. A systematic search in the space of these functions revealed an algebraic

sigmoid that results in a cube mapping method with better distortion properties

than previously available alternatives, at reduced computational costs.

One remaining problem with cube mapping is the handling of the C1 disconti-

nuities at cube face borders. Graphics hardware typically has functionality builtin

that enables seamless sampling across cube face boundaries (available in OpenGL

via GL_TEXTURE_CUBE_MAP_SEAMLESS), which is sufficient for the typical

use case of environment mapping. However, other application areas have different

requirements. Especially in the context of numerical analysis or simulation, such

discontinuities are undesirable. Depending on the application context, it is possible

to move them over areas of little interest [2] by rotation.

Furthermore, if the application data is about the surface of the Earth or other

celestial bodies, the underlying model is not a perfect sphere but rather a spheroid,

or ellipsoid of revolution. The difference between sphere and spheroid cannot be

ignored if one strives for maximum precision, especially if elevation measurements

are involved [15]. The coordinate shift that was originally used to solve this prob-

lem is straightforward, but an alternative was later found that is both more elegant

and more precise [2].

2 Simulation of Time-Of-Flight Sensors

Overview

Sensor simulation allows comparative analysis of sensor design variations without

building prototypes [11], the analysis of sensor behaviour in application scenar-

ios without recreating these scenarios [BDC20], and the evaluation of sensor data

processing algorithms based on Ground Truth information about both scene and

camera [12].

Time-Of-Flight (ToF) sensors measure per-pixel information about the distance

of scene objects. This distinguishes them from other types of imaging sensors and

opens a completely new range of applications. Here, we focus on the simulation

of amplitude-modulated continuous-wave (AMCW) ToF sensors because of their

importance in application fields and because of the unique challenges they pose.

ToF sensors measure distances based on the time t that light travels from the

active light source (in close proximity to the sensor) to an object in the scene and

back to the sensor: d = 1
2
·c · t, with c being the speed of light. AMCW ToF sensors
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emit intensity modulated light in the near infrared range. The sensor pixels measure

the correlation between the reference signal g and the light signal s reflected from

the scene [Kol+10]:

C(τ) = s⊗g = lim
T→∞

∫ T/2

−T/2
s(t)g(t + τ)dt (1)

Assuming a sinusoidal signal with a modulation frequency fmod, a correlation am-

plitude a, a correlation bias b, and a distance-dependent phase shift φ = 2π · 2d ·
fmod

c
, the correlation measurement is

C(τ) =
a

2
cos( fmodτ +φ)+b (2)

The common approach to reconstruct the phase shift φ for the distance computation

is to use the arctangent on four samples of the correlation function Di =C(i · π
2
), i ∈

{0,1,2,3}. Using the common library function atan2, we have

φ = atan2(D3 −D1,D0 −D2) (3)

The correlation function samples Di are called phase images and are obtained by

subtracting two signals NA,i and NB,i per pixel: Di = NA,i −NB,i. These signals

result from the electrons generated in the optically active area of a sensor pixel,

which are directed towards two readout circuits A and B using an electric field that

is based on the reference signal g.

Sensors based on this principle suffer from various sources of systematic errors,

including the following (see Fig. 2):

Distance inhomogeneity: Light paths received by one sensor pixel do not generally

originate from a single surface point, but rather from a solid angle around

the main light direction through the pixel center. Thus, light paths from

foreground and background objects with different phase shifts mix, which

leads to distance reconstruction errors. Due to the nonlinear reconstruction

principle, the reconstructed distance does not necessarily lie between the

foreground and background distances, resulting in the "flying pixel" effect.

Motion artefacts: In dynamic scenes, the camera pose and scene surfaces may

change both during the acquisition time of a single phase image and in the

time between phase image acquisitions, leading to inconsistent phase infor-

mation from which the distance is reconstructed.

Multipath effects: Light does not only travel from light source to surface and di-

rectly back. This direct light path is superimposed with many indirect light

paths, which deteriorates the phase sampling depending on the amplitude of

the indirect light paths.

The common root cause of these error sources is that phase samples do not repre-

sent a single surface point.
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sonable. However, using the rasterization-based graphics pipeline accelerated by

GPUs means that light propagation is initially restricted to direct illumination only,

which means that multipath effects cannot be simulated.

This restriction was later lifted by extending the Reflective Shadow Map ap-

proach [DS05] with information about active AMCW virtual point lights to arrive

at a single-bounce approximation of indirect lighting [7]. Reflective Shadow Maps

are originally limited to a single view of the scene and therefore lack information

about directly illuminated surfaces that are outside that view. This restriction can

be lifted by using full environment maps such as cube maps, which benefit from

the improvements described in Sec. 1.

A limitation of these sensor models is that they are either based on the basic

pinhole camera projection principle [KK09] or take only thin lens vignetting ef-

fects into account [11]. For comparisons with real cameras, lens effects such as

radial and tangential distortion have to be taken into account. To lift this limitation,

the standard lens calibration model from widely used software packages such as

OpenCV and Matlab was integrated into rendering pipelines so that lens parame-

ters measured with standard tools can be used directly in camera simulation [5].

All of the simulation functionality described above was implemented by the au-

thor in the Open Source camera simulation software CamSim (https://marlam.

de/camsim), which was recently described as "the most advanced ToF camera

simulator" [BDC20]. It provides a rich set of Ground Truth information, includ-

ing information about scene geometry (positions, surface normal vectors, and IDs

of scene objects, shapes, and triangles), scene dynamics (forward and backward

optical flow in 2D and 3D), camera pose and parameters, and simulated sensor

raw data such as phase images. This information is useful for the evaluation of

ToF data processing algorithms [12], for example in the area of motion artefact

correction [4].

This kind of information is also useful for higher-level applications using per-

pixel distance data, such as 3D scene reconstruction [13], a crucial part of which is

the estimation of camera poses from the input images of a handheld camera [6].

3 Complementary Work and Related Topics

Additional research in related areas of interactive Computer Graphics was moti-

vated by activities in teaching and by collaborations. This work is detailed in the

following subsections.

Stereoscopic Rendering

Stereoscopic rendering provides distinct images for the left and right eye of the

viewer, so that depth perception based on stereopsis becomes possible. Stereo-

scopic video is typically preproduced and only played back, not rendered on the

fly. This is problematic since the optimal configuration of left and right view de-
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pends on viewing geometry parameters such as screen size and distance. This

means the same stereoscopic video material cannot target both cinema and home

viewing conditions with the same level of quality.

To lift this restriction, functionality to estimate the disparity between both

views and retarget them to new viewing conditions during playback was inte-

grated into the author’s GPU-based stereoscopic video player Bino (https://

bino3d.org) in a collaboration with INRIA (France) [17].

Virtual Reality

Virtual Reality systems place especially hard time constraints on the delivery of

the next rendered frame, since latency in the reaction to user input will prevent

immersion and may even lead to simulation sickness.

In teaching the technically oriented Virtual Reality (VR) lecture and tutorial

at the University of Siegen, it became apparent that for students implementing

their own VR applications, the main entry barrier is the management of multi-

ple displays, GPUs, and hosts in a render cluster. Student project groups super-

vised at the University of Siegen used abstraction libraries and frameworks such

as Equalizer [EMP09] to target Virtual Reality systems, for example in the field

of interactive volume analysis [14], but these frameworks are typically very com-

plex themselves, so that a large part of the project time was spent fighting software

complexities instead of focussing on the topic.

To reduce this burden and enable more student activities in the Virtual Real-

ity teaching context, a concept was devised to hide such complexity and provide

a renderer interface that is as familiar as possible to students who completed the

beginner-level graphics courses, while still supporting the complete range of Vir-

tual Reality hardware, from head-mounted displays to render clusters driving mul-

tiple displays [9].

Scientific Visualization

One of the building blocks of visualization systems is the mapping of quantities to

colors using color maps. Ordered values progressing from low to high are mapped

to sequential maps, and data ordered around a central value with extrema in both

directions are mapped to diverging maps. For unordered data, qualitative maps

that do not imply magnitude differences are used. Examples for these categories

are given in Fig. 3.

The quality of color maps is determined by criteria such as discriminative

power and perceptual uniformity [Buj+18]. The latter is important to avoid in-

troducing interpretation bias. These perceptual qualities at the same time form a

bridge to the larger field of Computer Graphics. Driven by the needs of visual-

ization applications as well as teaching activities, a set of methods to allow in-

teractive design of color maps that are perceptually uniform by construction was

introduced [1]. The examples in Fig. 3 were created using these methods.
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Sequential map with

varying lightness, single hue

Sequential map with

varying lightness, user-defined hues

Sequential map with

varying saturation

Diverging map with

varying lightness

Diverging map with

varying saturation

Qualitative map with

varying hue

Figure 3: Examples for sequential, diverging, and qualitative color maps.

Image Analysis

The detection of curvilinear structures in images is important in medical applica-

tions, such as the analysis of blood vessel structures in the eye. To evaluate such

methods, measures based on pixel differences were often applied, but these fail

to capture the true performance of each method because they do not take struc-

tural aspects into account. A structure-aware evaluation scheme based on graph

representation and matching was introduced [16] to alleviate this problem.

Conclusion

The main theme of the post-doctoral scientific work of the author is the interactive

aspect of Computer Graphics and the restriction it places on computation time,

necessitating the efficient use of GPUs to meet application requirements.

The work covers both basic research such as the analysis of mappings between

spheres and planar surfaces (Sec. 1) and application-oriented research such as the

simulation of Time-of-Flight sensors (Sec. 2), both of which provide results that

are relevant to the larger field. These main areas are complemented with research

work in related fields, motivated by teaching activities and collaborations (Sec. 3).
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M. Lambers / Interactive Creation of Perceptually Uniform Color Maps

the Wijffelaar model. The model enforces perceptual uniformity

in each half of the color map via a custom color space based on

CIELAB. Sequential or qualitative maps, or maps with constant

lightness, are not covered by this model.

Green [Gre11] proposed the Cube Helix model for a sequential

color map specifically for astronomical intensity data. It is based

on increasing lightness combined with constantly changing hue to

increase its discriminative power. The produced color maps are in

effect similar to the ones created by the McNames model, but the

Cube Helix model is constructed so that its color maps are approx-

imately perceptually uniform. However, the hues are always cy-

cling through the complete hue cycle and cannot be chosen freely.

Furthermore, diverging or qualitative maps, or maps with constant

lightness, are not covered by this model.

In contrast to the models listed above, our models support se-

quential, diverging, and qualitative maps, allow multiple custom

hues inside sequential maps for increased discriminative power,

and allow color maps with constant lightness for applications that

require additional shading.

3. Perceptually Uniform Color Maps in CIELCH

We consider perceptual differences using the euclidean distance

measure in the perceptually linear CIELUV color space, as Wijf-

felaars [WVVV08], Moreland [Mor09] and others [BTS*18] did.

In order to arrive at intuitive parameters, we use the CIELCH

representation of this color space based on lightness L ∈ [0,100],
chromaticity C ∈ [0,100], and hue H ∈ [0,2π). Using C = L ·S, we

can furthermore replace the chromaticity parameter with a more

intuitive saturation parameter S.

CIELCH is related to CIELUV through U = C cosH and V =
C sinH. Formulating the euclidean distance in CIELUV using the

CIELCH representation leads to the distance measure d:

d(LCH0,LCH1) =
√

(L0 −L1)2 +C2
0 +C2

1 −2C0C1 cos(H0 −H1)

(1)

The color map models described in the following all compute

a color LCHt for each t ∈ [0,1] based on their individual set of

parameters.

In the following subsections, we introduce sequential, diverging,

and qualitative color map models. The individual models names are

highlighted in the text in bold italics; each has an example in Fig. 1.

3.1. Sequential Color Maps

Variation in lightness has been identified as the main factor for dis-

criminative power of a sequential color map [Kov15], and when it

increases monotonically it also guarantees a natural order of col-

ors [BTS*18].

An obvious approach is therefore to base sequential color maps

on monotonically increasing lightness. This is consistent with all

other parameterized models described in Sec. 2. However, some

applications require color maps of constant lightness in order to

combine them with shading in 3D rendering. In the following, we

describe models for both cases.

Sequential map with varying lightness, single hue.

Sequential map with varying lightness, rainbow hues.

Sequential map with varying lightness, custom hues. In this case,

H0.25 = 0◦ (red) and H0.75 = 60◦ (yellow) were used.

Sequential map with varying saturation.

Diverging map with varying lightness.

Diverging map with varying saturation.

Qualitative map with varying hue.

Figure 1: Example results for all methods from Sec. 3.

3.1.1. Varying Lightness

Linearly increasing lightness is modeled with a lightness range pa-

rameter RL ∈ (0.5,1]:

L0 = (1−RL) ·100

L1 = RL ·100

L(t) = (1− t)L0 + tL1

This leaves chromaticity (or saturation) and hue as free parame-

ters. To let the user choose one or more hues freely, the chromaticity

parameter is the one we use to enforce perceptual uniformity.

With linear increasing lightness, saturation is typically low at

both the dark and the light ends, and stronger in the middle of the

color map. Using a parameter RS ∈ (0.5,1] for the saturation range

and a parameter S ∈ [0,5] for the overall saturation of the map, we

define:

S0 = 1−RS

S0.5 = SRS

S1 = 1−RS

Note that the distances d(LCH0,LCH0.5) and d(LCH0.5,LCH1)
are only exactly equal for single-hue maps. However, both dis-

tances are dominated by the lightness differences in the multi-hue

case. Because C0 = L0S0 and C1 = L1S1 are small, the difference in

hue does not have much effect (see Eq. 1). Therefore, the difference
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Abstract—The amount of geospatial data generated globally, 
together with the necessity for increased interoperability of 
these data, call for innovative solutions for global geospatial 
reference frames. Discrete Global Grid Systems are a class 
of spatial reference systems that use hierarchical tessellation 
of cells to partition and address the globe without gaps or 
overlaps. The specific properties of DGGS make them 
important candidates for future standard geospatial 
reference frames and fuel further efforts to investigate their 
potential for organization, exchange and processing such 
data. In this paper, we focus on DGGSs based on the so-
called spherical cube mapping technique and present some 
first results of how these can be optimized to serve as global 
reference frames for large volumes of gridded geospatial 
data. 

I. INTRODUCTION 
The amount of geospatial data increases with a very 

high velocity. As an example, high-resolution satellite and 
airborne footages are collected at rates of many terabytes 
per day. The organization of such data-collections 
becomes challenging per se, while processing and 
analyzing require suitable spatial reference frames. So far 
most satellite missions have come up with own individual 
reference grid(s) for global data representation. To 
facilitate the fusion of data from different missions, 
standardized multi-resolution reference frames would, 
however, be necessary. 

One option to define a hierarchical tessellation of near 
equal-area cells at multiple levels of granularity for the 
entire Earth is called Discrete Global Grid Systems 
(DGGS) [1]. The importance of DGGS is underlined by 
the fact that the Open Geospatial Consortium (OGC) has 
founded the DGGS Standard and Domain Working 
Groups to foster the interoperability of geospatial data. A 
lot of DGGS has been proposed in recent years, with 
various methods achieving the proper tessellation of the 
surface [2]. Most of such systems are based on regular, 
multi-resolution partitions of polyhedra, called Geodesic 
DGGSs [3]. The two out of five design choices that fully 
specify a Geodesic DGGS, according to [3], are a base 
regular polyhedron and its orientation relative to the Earth.  

A significant number of proposed DGGSs are based on 
the icosahedron and use triangular or hexagonal cells [2]. 
Despite their good properties in approximating the Earth’s 
surface, the absence of orthogonal axes and cell 
congruency, as well as a complicated implementation 
seem to prevent their widespread acceptance. On the other 
hand, cube-based DGGSs introduce greater distortion, 

because of the lower number of primary partitions. 
However, the ease of the implementation and superior 
properties in data organization and retrieval make them 
more attractive for the usage in different applications. The 
main motivation for this paper is to boost the public 
interest for the application of the cube based DGGS by 
minimizing area distortion in the ellipsoid to sphere 
mapping and the distortion of the landmass projection 
through the orientation of the base cube. 

II. RESEARCH QUESTIONS 
The term Discrete Global Grid System is relatively new 

[2], but the need for a global system that would collect 
spatial data from all over the world is much older. Without 
better nomenclature, they were referred to as Earth 
database systems at that time. Some attempts to develop 
an Earth database system based on a Quadrilateralized 
Spherical Cube dates from the early 1970s [4]. The 
proposed system was modified later [5], and served for the 
Cosmic Background Explorer (COBE) project at NASA. 
Several decades later, cube-based DGGS regain popularity 
[6-7], mainly because they provide quadrilateral cells that 
can be efficiently handled [8]. 

Although there are numerous spherical cube map 
projections [9], most of the published papers about them 
deal with the properties of projecting the sphere to a cube, 
as their names imply. However, the implementation of 
DGGS requires the usage of a more accurate 
approximation of the Earth’s surface, such as the WGS84 
ellipsoid. This paper provides an answer to the question of 
what the properties of such projections are when the 
ellipsoid is projected to a cube and whether the distortions 
can be minimized by additional transformations. 

The second question relates to a possibility to reduce 
the amount of distortion on the landmass if the projection 
cube is rotated, so that the areas with larger distortions are 
placed over the oceans or other water bodies. 

The two previously described steps for the WGS84 
ellipsoid projection to a cube are combined into a pipeline 
of transformations. These can, then, serve for constructing 
DGGSs that would provide effective solutions for the 
needed standardized reference frames, boosting 
interoperability of global raster data. 

III. DISTORTION OPTIMIZATION 
In this paper, we focus on the two aspects of distortion 

optimization: minimizing the influence of ellipsoid to 
sphere mapping and reducing distortion over certain areas 
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by base polyhedron rotation. Although the greatest 
influence on the distortion comes from the chosen sphere 
to cube mapping, the principles described in this paper are 
generally applicable to all of them. To illustrate the impact 
of proposed methods, we have chosen adjusted spherical 
cube [10-11], as easy to implement, yet very efficient 
method to project sphere to a cube [9]. The forward 
transformation, i.e. mapping the spherical (,) to 
rectangular (x,y) coordinates of the cube face is defined by 
(1) and (2). 

x =   4/ (1) 

y = arctan( tan() / cos() )  4/ (2) 

The adjusted spherical cube mapping is neither equal-
area, nor conformal projection, but the maximum-to-
minimum area distortion is 1.4142, which is far better than 
most other non-equal-area spherical cube map projections, 
for which this parameter ranges from 2.0, for the 
Continious Cube mapping [12], up to 5.2 for the 
Tangential Spherical Cube [9]. 

A. Transformation Pipelines 

In order to provide the WGS 84 to Cube-map 
coordinates transformation, and vice versa, proper 
pipelines are defined. Fig.1 depicts the main steps in both 
the forward and the inverse pipeline, combined to a cycle 
of coordinate transformations. 

 

 
The forward transformation starts with the ellipsoid to 

sphere transformation, presented in the next section. This 
step is optional and serves to reduce a certain type of 
distortion, according to the property we want to preserve. 

The next step rotates the base cube, diminishing the 
distortion over the areas of interest. Since the distribution 
of the distortion is fixed across the faces of the cube, and 
depends on the chosen projection only, the impact on 
certain areas can be changed by rotating the base cube. 

The last step in the forward pipeline is mandatory. It 
defines the actual sphere to cube transformation. 

The inverse pipeline converts spherical cube map 
coordinates back to WGS84, consisting of the reverse 
order of the inverse transformations from the forward 
pipeline. 

B. Ellipsoid to Shere Transformation 

The ellipsoid to sphere transformation is the first stage 
in the forward pipeline. It is not a unique process and 
depends on the property that should be preserved. A 
common way to perform this step is to transform geodetic 
latitude to some “auxiliary” latitude. 

The geodetic latitude is an angle between the equatorial 
plane and the vector perpendicular to the surface of the 
ellipsoid at a given point. It is slightly greater than any 
auxiliary latitude, except at the Equator and poles, where 
they are all equal. Spherical forms of map projections can 
be adapted for use with the ellipsoid by substituting the 
geodetic latitude with one of the various auxiliary 
latitudes. The auxiliary latitudes were systematically 
described and all formulas derived by O. Adams [13], in 
1921, but wider popularity is gained much later with 
Snyder’s working manual [14]. 

There are six auxiliary latitudes, each with certain 
properties: 
 geocentric () – an angle between the equatorial 

plane and the radius vector, 
 parametric () – the parallel on the sphere (with the 

radius equal to a semi-major axis) has the same 
radius as the parallel of geodetic latitude, 

 conformal () – preserves angles, 
 authalic () – preserves surface area, 
 rectifying () – preserves distances along 

meridians and 
 isometric () – equal increments of isometric 

latitude and longitude correspond to equal distance 
displacements along meridians and parallels. 

Geocentric and parametric latitudes are the simplest to 
compute. In both cases, the ratios of tangents of given 
auxiliary and geodetic latitude are constants. Rectifying 
latitude represents the other extreme on the calculation 
scale. It cannot be expressed in the closed-form and 
requires series or numerical integration. Isometric latitude 
is also specific. It rapidly diverges from the geodetic 
latitude, tending to infinity at the poles. Both, rectifying 
and isometric latitudes, are out of the scope of this paper. 

 

 
Figure 2. Auxiliary Latitudes – The divergence from the geodetic 

latitude 

The divergence from the geodetic latitude of the four 
most frequently used auxiliary latitudes is shown in Fig.2. 
The difference is maximal at around 45. It is interesting 
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Figure 1. Coordinate transformation cycle consisting of the two 
pipelines – forward and inverse 
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to notice that geocentric and conformal latitudes are 
almost the same; hence, being much easier to compute, the 
geocentric latitude usually substitutes the conformal 
latitude in the calculations. 

One of the main problems in cartography is preserving 
sizes and shapes. However, as in the projecting a sphere to 
a plane, projecting an ellipsoid to a sphere cannot preserve 
both of them. The projection can be either a conformal or 
equal-area. For preserving angles, geocentric latitudes can 
be used as a good approximation; while preserving surface 
area requires application of authalic latitudes. 

The authalic latitude () is very complex to compute 
and requires multiple iterations for the inverse 
transformation. The equations (3) through (5) define 
forward (geodetic to authalic), while (6) through (8) 
define inverse (authalic to geodetic) transformation. 

 = arcsin(q/qp) (3) 

q = (1 – e2) {sin  / (1 – e2sin2) – (1/(2e))  
        ln[(1 – e sin ) / (1 + e sin )]} (4) 

qp = q(=90)= (1 – e2) {1 / (1 – e2) – (1/(2e))  
         ln[(1 – e) / (1 + e)]} (5) 

q = qp sin  (6) 

0 = arcsin (q/2) (7) 

i+1 = i + [(1 – e2 sin2 i)2 / (2 cos i)]  
        { q/(1 – e2) – sin i / (1 – e2 sin2 i) +  (8) 
         (1/2e) ln[(1 – e sin i) / (1 + e sin i)]}  

Aside from its complexity, the inverse authalic 
transformation loses its precision toward the poles, as 
shown in Fig.3. With a single iteration, the error is about 2 
degrees at the pole, which corresponds to approximately 
200km. 

 

 
Figure 3. Authalic Latitude Inverse Function Error  

 - InvAuth(Auth(  )) 

Because of the very poor properties of the authalic 
latitude, like complex computation, iterative calculation of 
the inverse transformation with a loss of the precision in 
the proximity of the poles, a better solution is desirable. 
So, we propose an approximation, defined in (9), that is 
easy to compute, requires no iterations, and retains a very 
high precision throughout with a maximum deviation of 
about 0.1 arc-second (3m) around 25 latitude ( see Fig.4).  

’ = arctan [(1 - e2)2/3 tan ] (9) 

Note that the approximated authalic latitude (9) has a 
form similar to the geocentric latitude ( = arctan [ (1 - e2) 
tan ]) and the parametric latitude ( = arctan [ (1 - e2)1/2 
tan ]), with values somewhere in between the two. 

 
Figure 4. The difference between the authalic () and the approximated 

authalic (’) latitude 

The impact of the chosen auxiliary latitude on the 
ellipsoid to sphere mapping distortion illustrated by the 
example of the adjusted spherical cube, is shown in 
section IV. 

C. Base Cube Orientation 

The distribution of the distortion depends on the chosen 
spherical cube map projection. Usually, the minimums are 
located at the centers of the faces, and the distortion 
increases toward the edges and corners of the base cube 
[9]. Hence, the impact on the area of interest can be 
diminished by rotating the cube and moving those areas 
toward the center of the faces. 

The second phase in the forward pipeline performs the 
transformation by converting coordinates into the 
Cartesian coordinate system, rotating about all three axes, 
and transforming them back to the polar coordinate 
system. 

 
Figure 5. Raster masks used for the optimal base cube orientation 

The optimal orientation can be found by varying 
rotation angles (,  and  in Fig.1), from -45 to 45, 
around all three axes, and comparing distortions over the 
areas of interest. These areas are confined by raster masks 
(Fig.5) defining landmass, population density, or any 
other criterion used for estimating an optimal orientation. 
The raster maps used as masks can be in any projection. 
However, for the sake of simplicity and efficiency, 
avoiding additional transformations, the maps used in 
experiments, as shown in Fig.5, are in LatLon WGS84 
projection (EPSG:4326). The calculation is done for each 
pixel of all faces of the cube, that projects to a masked 
area, using the inverse pipeline. Since the calculation time 
is directly proportional to the resolution of the cube faces, 
the lower resolution is used for a wide range of angles, 
while higher resolution ones are used for fine-tuning of 
the base cube orientation, around expected extremes. 
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IV. RESULTS AND DISCUSSION 

A. The Effects of Chosen Ellipsoid to Shere 

Transformation 

The two most frequently used metrics to depict shape 
deformations in the projection process are angular and 
areal distortions. Ideally, two lines should intersect at the 
same angle, both on the surface of the globe and on the 
projected map. If the projection is conformal, the angles 
are preserved and, hence, the shape of the features. For the 
non-conformal projections, the angular distortion 
represents the maximum deviation from the correct angle 
at a given location. 

On the other hand, the projection also may alter the 
scale of the features. The ratio of the projected and 
original area is known as the areal distortion. Equal-area 
projections preserve the area. Unfortunately, the 
projection cannot be both conformal and equal-area. 
Preserving one feature leads to sacrifice of the other, and 
sometimes the distortion of the unpreserved feature can be 
severe. So, in most of the cases a compromise is required, 
and, hence, the projections that are neither conformal nor 
equal-area are very commonly used. The adjusted 
spherical cube is one of such projections. 

Table I summarizes the effects of the distortion using 
different sphere-to-ellipsoid mappings. The first row 
contains parameters of the perfect sphere, while the next 
three contain distortion for the WGS84 ellipsoid using 
geodetic, geocentric and the approximated authalic 
latitude mappings, respectively. Each row is divided into 
three sub-rows, for the side face, top face and the cube as 
a whole (an averaged value for the four side faces and two 
top faces). The values are separately shown for the side 
and top faces to illustrate the asymmetry of the mappings. 
Table I does not contain the minimal value angular 
distortion column, since the value is always 0. The 
maximum-to-minimum is added as an additional column 
to the areal distortion, as it, probably, depicts the essential 
aspect of the surface preserving – a cell size variation 
across the surface of the map. Or, in our case, across the 
surface of the cube face.  

 
TABLE I.  

Distortion Effects of Various Sphere-to-Ellipsoid Mappings (Auxiliary 
Latitudes) on the Different Cube Faces 

Angular 
distortion 

Areal 
distortion 

Type Face Max. Avg. Min. Max. Max./Min. Avg. 

Sphere 
Side 31.085 11.569 1.621 2.293 1.414 1.925
Top 31.085 11.569 1.621 2.293 1.414 1.925
All 31.085 11.569 1.621 2.293 1.414 1.925

Geodetic 
Side 30.962 11.570 1.632 2.308 1.414 1.934
Top 31.332 11.588 1.610 2.293 1.424 1.921
All 31.332 11.576 1.610 2.308 1.433 1.929

Geo-
centric 

Side 31.085 11.569 1.621 2.300 1.419 1.927
Top 31.084 11.569 1.632 2.300 1.410 1.934
All 31.085 11.569 1.621 2.300 1.419 1.929

Approx. 
authalic 

Side 31.044 11.567 1.625 2.298 1.414 1.929
Top 31.167 11.575 1.625 2.298 1.414 1.929
All 31.167 11.570 1.625 2.298 1.414 1.929

 
 

As it is expected, geocentric latitude produces the 
smallest angular distortion, while approximated authalic 
produces the smallest area distortion. If geocentric latitude 
is used in ellipsoid to sphere mapping, there is an increase 
of about 0.34% in area distortion (max/min ratio), while 
angular distortion is kept at the level of a perfect sphere. 
On the other hand, approximated authalic latitude keeps 
the areal distortion; while maximum angular distortion is 
increased by 0.26%. The usage of the geodetic latitude 
yields the largest distortions: 
 0.8% the increase of maximum angular distortion, 
 0.056% the increase of average angular distortion 

and 
 1.35% the increase of area distortion (max/min 

ratio). 

B. The Optimal Orientation to Minimize Landmass 

Distortion 

There are lots of different criteria that can be used for 
choosing the best orientation of the base cube. One of the 
most prominent goals is to preserve continental plates of 
being split by the cube edges and reduce overall distortion 
of the landmass. Without rotations, all continents, except 
for Antarctica, are in quite unfavorable positions with 
regard to the cube faces, as shown in Fig. 7. 

If the rotation angles are confined to integer numbers, 
the minimal angular distortion of the continental plates is 
gained for the following rotation angles:  = 17,  = -10 
and  = 32. Fig. 6 illustrates the position of the base 
cube, after rotating by the defined angles.  

 
Figure 6. Optimal base cube orientation for the landmass distortion 

minimization 

The rotation angles differ for minimum areal or aspect 
distortion, but we have chosen to minimize the angular 
distortion, because it has a wider range of possible values 
and hence a more noticeable difference between 
consecutive values of rotation angles. Also, the proposed 
rotation yields visually a very effective result, as can be 
seen in Fig. 8. 

By using the proposed base cube orientation and 
approximated authalic latitude, an average angular 
distortion is reduced from 11.21 to 9.03, while at the 
same time an average areal distortion is decreased from 
1.92 to 1.86. Fig.8 shows the position of the continental 
plates on the cube faces for the optimal orientation of the 
base cube. 
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Figure 7. Cube-map faces for the initial base cube orientation (without 

rotations) 

 

V. CONCLUSIONS 
The need to store and organize large amounts of 

multiresolution geospatial data bring into play DGGS as a 
powerful concept. Geodetic DGGSs based on a cube, 
despite their relatively large distortion of the stored data, 
have a great potential to be accepted by a wide range of 
users due to the simplicity of implementation. 

The effect of distortion can be reduced, to some extent, 
by choosing the appropriate mapping of the ellipsoid to 
the sphere and the orientation of the base cube. Given the 
almost spherical shape of the planet Earth, the choice of 
auxiliary latitude does not significantly affect the 
reduction of distortion imposed by ellipsoids to the sphere 
mapping. However, it is desirable to use the appropriate 
auxiliary latitude according to the type of projection, to 
preserve certain properties. For conformal projections, it is 
desirable to use geocentric latitude, while for equal-area 
projections it is desirable to choose authalic latitude. As 
the authalic latitude is very complex to compute, requires 
more iterations for the inverse transformation, and even 
with more iterations loses precision near the poles, an 
approximate function is proposed in this paper that 
eliminates all these shortcomings. 

The orientation of the base cube cannot affect the 
overall distortion, but it can significantly reduce their 

impact on specific areas of interest. We have shown that 
by appropriate rotation the average angular distortion of 
continental plates can be reduced by almost 20% in the 
case of adjusted spherical cubes, while the area distortion 
is reduced by a much more modest 3%. 

The proposed methods are part of the measures that 
should pave the way for enhanced DGGSs based on 
spherical cubes. Further research will be focused on other 
aspects of DGGSs, such as hierarchical spatial partitioning 
of cube pages, consideration of characteristics and 
efficiency of individual projections of spherical cubes, as 
well as finding an efficient method for visualization of 
such organized spatial data. 
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A B S T R A C T

Field sequential (FS) imaging comprises image acquisition systems that capture image channels in temporal

sequence in order to provide the final image. A classical application is multispectral imaging. In case of

dynamic scenes, the sequential nature of the acquisition imposes motion artifacts, i.e., spatially misaligned

images channels. Compensating motion artifacts for this kind of imagery is non-trivial, as commonmethods

for motion estimation rely on the intensity consistency constraint that is violated in FS imaging.

This paper surveys approaches to motion compensation in the context of FS imaging. We focus on accuracy

in handling intensity inconsistent data and, secondarily, speed, as FS imaging is commonly done in real-time.

We introduce a conceptual classification for algorithmic approaches for motion estimation for FS imagery

and discuss known andmodified approaches to tackle the intensity inconsistencies between adjacent image

channels using image transformation and intensity correction methods. As result, we get a set of 379 vari-

ants of motion estimation methods applicable to FS data streams. We evaluate these methods using our

benchmark database, which comprises data sets from the Middlebury and the MPI Sintel databases, modi-

fied to emulate FS imagery, as well as additionally captured multispectral short wave infrared (SWIR) and

sRGB image sequences, as well as simulated Time-of-Flight (ToF) image sequences that consist of four chan-

nels (called phase images). In order to quantify the motion estimation techniques, we use a ranking scheme

similar to Middlebury and combine it with a run-time evaluation.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Field sequential (FS)1 imaging systems acquire several channel

images sequentially at full spatial resolution of the final image. These

kind of image acquisition systems mainly appear in multispectral

imaging, but also in range imaging, e.g. in Time-of-Flight (ToF) range

imaging. In the case of multispectral imaging, the final image is com-

posed of this set of spectral channels, while in ToF range imaging,

the final depth image is computed from the channels (called phase

images in the ToF context).

Multispectral FS imaging system are capable of capturing high-

density spectral information of object surfaces and thus offer several

� This paper has been recommended for acceptance by Sinisa Todorovic.
* Corresponding author.
E-mail address: andreas.kolb@uni-siegen.de (A. Kolb).

URL: https://www.cg.informatik.uni-siegen.de (A. Kolb).
1 Derived from Field Sequential Color Capturing for color imaging [1].

advantages over grayscale or RGB cameras in applications such as

remote sensing, astronomy, agriculture, medicine or food quality

control [2], as well as high quality color image reproduction and con-

servation of art [3]. While simultaneous multispectral image acquisi-

tion use, e.g., static filters such as the Bayer pattern or beam splitters,

multispectral FS imaging systems are realized using, e.g., broad band

imagers combined with interchangeable band pass filters mounted

on a filter wheel [3-5], electronically tunable filters [6], or active

(narrow band) illumination setups [7]. The multispectral FS imag-

ing approaches are more flexible in selecting the spectral bands

and allow for the acquisition of a much larger number of spectral

channels than simultaneous approaches.

ToF cameras calculate the camera-object distance by estimating

the time delay that actively emitted light takes to travel from the

light source to the object surface and back to the sensor’s pixel.

Therefore, the amplitude of the emitted light signal is modulated and

the backscattered light signal is correlated at pixel-level in the sen-

sor. It takes at least three different phase images (channels in our

notation) in order to reconstruct a distance image [8-10].

https://doi.org/10.1016/j.imavis.2019.07.001

0262-8856/© 2019 Elsevier B.V. All rights reserved.
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Combined

(Uncompensated)

Channel 0

(t=0)

Channel 1

(t=1)

Channel 2

(t=2)

Fig. 1. A waving hand recorded using field-sequential color capturing, with channels captured at subsequent times t. When the channels are combined in a multispectral image,

the color breakup effect occurs.

In case of dynamic scenes, all FS image capturing systems suffer

frommotion artifacts, as moving objects will not match between the

different channels; see Fig. 1. Depending on the amount of motion

and the application requirements, raw FS imagery cannot be used

without compensating the motion artifacts. Although motion esti-

mation has a long and successful history in computer vision, existing

motion estimation techniques cannot handle FS imagery properly,

as it strongly violates the intensity consistency assumption between

adjacent channels, which most state of the art motion estimation

techniques rely upon [11].

In this paper, we describe simple and generic approaches in order

to apply existing motion estimation approaches to FS imagery that,

in most cases, incorporate up to three components:

Motion estimation scheme: There are various basic concepts on

how to estimate motion within an FS image stream (see Section 3).

Corresponding channel matching (CCM) methods estimate motion

fields between corresponding channels of adjacent images, thus pre-

venting the intensity inconsistency problem at the cost of larger

temporal gaps that need to be bridged. In contrast to this, neighbor-

ing channel matching (NCM) approaches estimate temporally dense

motion fields between neighboring channels within an image or

across neighboring images, which requires the handling of intensity

inconsistency; see also Fig. 2.

Image transformation& intensity correction:AnyNCMmethod

needs to handle the intensity inconsistency. This can be either done

by transforming the image in another domain (e.g. gradients) or by

correcting the intensity by some preprocessing procedure.

Intensity consistent motion estimation: Finally, the motion

between several channels within or across the FS images are esti-

mated using a state-of-the-art method (see Section 2).

We present a first thorough analysis and discussion of motion

estimation approaches that are applicable to FS imaging systems.

As motion compensation for FS imaging primarily makes sense for

real-time image capturing, we mainly focus on online estimation

methods. Thus, the performance of any FSmotion estimationmethod

is defined by both, high motion estimation accuracy and low processing

time.

This paper provides the following methodological and technical

contributions:

• A set of general concepts for motion estimation schemes that

are applicable to FS imagery, refining the basic principles of

corresponding channel matching (CCM) and neighboring channel

matching (NCM) (see Section 3).

• A benchmark data set including different test scenarios from

both domains, FS multispectral imagery as well as phase

image sequences from ToF cameras. These data sets include

translational and rotational movements and partially comprise

ground truth data. Regarding multispectral imagery, we also

include existing data sets such as Middlebury or MPI Sintel

(Section 6).

• An in-depth evaluation with respect to compensation accuracy

and processing time of a large set of FS motion estimation

methods comprising the components listed above (Section 7).

As an overall contribution, this paper provides simplified and

quantified means to select the most promising methods for motion

estimation on FS data depending on sample-based application sce-

narios.

The remainder of the paper is structured as follows. Section 2

gives an overview on existing motion estimation algorithms based

on optical flow and block matching. Section 3 discusses the gen-

eral approaches applicable to field sequential motion estimation. In

Sections 4 and 5, we describe the image transformation and inten-

sity correction schemes that we use in order to compensate for

Neighboring Channel Matching (NCM)

Corresponding Channel Matching (CCM)

Fig. 2. Flow calculations for two successive FS images with four channels using either corresponding channel matching (CCM) or neighboring channel matching (NCM).
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the intensity inconsistency of FS imagery. Section 6 presents the

evaluation of all 379 algorithm combinations.

2. State of the art in motion estimation

Optical flow (OF), Block matching (BM), and Deep neural network

basedmethods are themost prominent classes of approaches to esti-

mate dense motion fields between consecutive images. As a fully

comprehensive survey of motion estimation techniques is beyond

the scope of this work, interested readers are referred to the work of

Fotun et al. [12], to get deeper insight into optical flow computation

methods, and to the survey on block-based methods by Jakubowski

and Pastuszak [13].

In this paper, we focus on methods that allow for sufficiently fast

motion estimation, i.e. for which fast implementations are available

or which have the potential to be implemented in a near-to-realtime

fashion. Similar as the Middlebury [11] and MPI Sintel [14] bench-

marks, this survey and benchmark paper is open to be extended

to any motion estimation technique, e.g. for more accurate (and

potentially slower) approaches in the future.

The original approaches on the calculation of optical flow have

been proposed by Horn and Schunck [15] and Lucas and Kanade [16].

They assumed that every change in a pixel’s brightness is due to

motion. They compute the flow field using brightness gradients and

a constraint on motion smoothness. Brox et al. [17] extended this

assumption by a gradient constancy constraint to deal with slight

changes in brightness and an enhanced smoothness assumption.

Another approach by Zach et al. [18] is based on total variation

(TV) regularization, using the L1 norm (TV-L1) and claims to be very

robust against illumination changes and occlusions. Both, Refs. [17]

and [18], are available as real-time GPU-based implementation.

Werlberger et al. [19] proposed to replace the TV regularization with

the Huber norm (Huber-L1). They presented a library called FlowLib,

which contains GPU accelerated implementations of their algorithm

in different variations. Additionally, Werlberger [20] proposed alter-

native data terms, representing the structure of the image rather

than intensities. Their normalized cross-correlation (NCC), census

transform and consistency of gradients approaches provide better

compensation for intensity variations.

More modern variants that surpass the accuracy of the aforemen-

tioned approaches and could be better suited for FS imagery include

the Large displacement optical flow (LDOF) presented by Brox and

Malik [21] as well as the EpicFlow described by Revaud et al. [22].

Both methods deal with the common problem of variational optical

flow methods, which tend to select the local minimum closest to the

initialization, i.e., a wellmatching pointwith the smallestmotion. For

this purpose, LDOF incorporates descriptor matching techniques into

the variational approach to emphasize matches with higher accu-

racy even in the presence of similar looking image areas. EpicFlow

relies on a sparse-to-dense approach which detects and preserves

edges. The FlowFieldsmethod presented by Bailer et al. [23] builds up

on the edge preserving interpolation of EpicFlow, but improves on

its results by using a new hierarchical correspondence field search

strategy based on either census or SIFTflow as data term.

The basic idea of block matching, on the other hand, is to divide an

image into macro blocks of a given block size b and to find the best

matching block in a reference image using error functions such as the

sum of absolute differences (SAD).

Usually, only translational motion is taken into account. To avoid

blocking artifacts at object boundaries, different techniques such as

overlapping blocks, adaptive block size, multiscale approaches and

filtering have been proposed [24]. The search range can be limited to

a maximum displacement range (p-value). A simple full search tests

all possible block displacements within this range. More efficient

search strategies can be applied, e.g., temporal motion prediction,

which reduce the number of calculations at the cost of accuracy [25].

Due to its high degree of parallelism, BM can be efficiently imple-

mented on GPUs or FPGAs to achieve real-time processing.

Recently, motion estimation based on convolutional deep neural

networks emerged [26] and soon surpassed OF and BM methods in

quality, as demonstrated e.g. by the KITTI benchmark [27]. As acquir-

ing ground truth motion data for training purposes is challenging,

unsupervised variants have been proposed [28], but they do not typ-

ically reach the same level of quality. In this paper, we evaluate the

recent pre-trained networks FlowNet2 [29] and LiteFlowNet [30] in

the context of FS imagery.

Ref. [7] is the first work addressing the motion compensation

problem for multispectral short wave infrared (SWIR) FS imagery.

They estimate forwards and backwards motion fields using state

of the art OF methods for each pair of related waveband channels,

which are intensity consistent by nature. Due to the interpolation

over large time spans, this corresponding channel matching (CCM)

approach yields rather poor results on scenes involving non-constant

motion.

In the context of Time-of-Flight (ToF) cameras, various motion

estimation approaches have been proposed. Most of them apply

OF [31, 32] or BM [33] on the set of phase images, thus imple-

menting a neighboring channel matching (NCM) approach. To deal

with the intensity inconsistency problem, they estimate motion on

normalized phase intensity images.

A different and computationally very efficient approach tomotion

compensation has been proposed by Schmidt and Jahne [34]. Their

pixelwise artifact correction (PAC)method detects motion artifacts on

pixel level by assuming temporally smooth intensity variation in the

non-motion case: if the first channel contains no discontinuity but at

least one of the following channels does, then the pixel is assumed to

be affected by motion.

3. Field sequential motion estimation schemes

Consider a field sequential (FS) image stream consisting of images

Mi, with i ∈ N being a sequential number, which themselves

contain n channels Ci,w, which were acquired at sequential times

ti,w,w = 0, . . . ,n − 1, with w being the channel index. Further-

more, a discrete and equidistant acquisition time Dt = ti,w − ti,w−1

is assumed for each channel and a constant acquisition time

T = ti,0 − ti−1,0 = nDt for the full image, as illustrated in Fig. 2. For-

mally, motion estimation for FS image streams has to compute the

displacement vector fields F(i,w)→(i,0) between any channels Ci,w,w >

0, . . . ,n − 1 and the first channel Ci,0, which serves as reference.

By applying a displacement vector field F(i,w)→(i,0) to channel Ci,w,

all pixel values p(x, y) from Ci,w are shifted according to the two-

dimensional displacement vectors �d(x, y) = F(i,w)→(i,0)(x, y). In the

final “corrected” images ˜Ci,w, the positions of moving objects will

match those in the reference channel Ci,0, if the motion estimation

has been accurate.

When optical flow is calculated directly between adjacent chan-

nels of the image sequence, i.e. between Ci,w and Ci,w+1, purely

intensity-based optical flow algorithms will produce invalid dis-

placement vectors due to the violation of the intensity consistency

assumption. In the following, we describe two fundamental con-

cepts to overcome this problem, i.e., corresponding channel matching

(CCM; see Section 3.1) and neighboring channel matching (NCM;

see Section 3.2), and discuss approaches to modify existing motion

estimation techniques in order to be applied with either concept.

3.1. Corresponding channel matching(CCM)

By using two consecutive FS images Mi−1 and Mi and estimat-

ing motion only between pairs of corresponding channels, as shown

in Fig. 2, the violation of the intensity inconsistency problem can
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be avoided. Despite the larger displacement between the com-

pared images, state-of-the-art motion estimation techniques will

most likely produce accurate displacement vectors based on this

method. Assuming a constant and linear motion between corre-

sponding channels Ci−1,w and Ci,w, every flow vector F(i−1,w)→(i,w)(x, y)

is regarded as a linear combination of n identical partial vectors

describing a pixel’s movement between Ci,w and Ci,w−1,

F(i,w)→(i,w+1)(x, y) ≡

1

n
F(i−1,w)→(i,w)(x, y). (1)

3.1.1. Bidirectional, all channel optical flow (CCM-B)

The CCM method presented by Steiner et al. [7] cal-

culates a forward flow F(i−1,w)→(i,w) and a backward flow

F(i,w)→(i−1,w),w = 1, . . . ,n − 1 for each pair of channels

〈Ci−1,w,Ci,w〉,w > 0. Both forward and backward flows are applied

with weights (n−w)
n and w

n in order to interpolate a motion corrected

channel ˜Ci,w,w = 1, . . . ,n − 1, for the reference time ti,0:

˜Ci,w =
(n − w)

n
F(i−1,w)→(i,w)[Ci−1,w] ⊕

w

n
F(i,w)→(i−1,w)[Ci,w]. (2)

The bidirectional interpolation function ⊕ calculates the intensity

of every pixel in ˜Ci,w by averaging the corresponding pixel values

in both Ci−1,w and Ci,w. In conjunction with the detection of occlu-

sions, this function provides high interpolation accuracy. The main

disadvantage of this approach is its extremely high computational

complexity, as it requires 2 • (n − 1) OF calculations for each FS image.

In the following, we discuss alternative approaches that reduce

computational complexity, but generally also reduce the accuracy of

compensation; see Section 7.

3.1.2. Unidirectional, all channel optical flow (CCM-U)

This approach simplifies the interpolation method by using

only one OF calculation for each pair of channels Ci−1,w and

Ci,w,w = 1, . . . ,n − 1. It uses either the forwards or backwards flow

depending on the current channel, to keep the length of the resulting

motion vectors and, thus, the expected error as small as possible:

˜Ci,w =

{

w
n

•F(i,w)→(i−1,w)[Ci,w] if w ≤
n
2

(n−w)
n

•F(i−1,w)→(i,w)[Ci−1,w] if w >
n
2

(3)

3.1.3. Unidirectional, partial channel optical flow (CCM-1/CCM-2)

The number of OF calculations can be further decreased by inter-

polating a given flow field to subsequent channels. Assume that the

backwards flow F(i,u)→(i−1,u) for channel u is known and the motion

is constant during the acquisition time of both FS images. Then, the

backward flow F(i,v)→(i−1,v) for channel v > u can be interpolated

using F(i,u)→(i−1,u):

F(i,v)→(i−1,v) = −

v − u

n
•F(i,u)→(i−1,u)[F(i,u)→(i−1,u)]. (4)

The motion corrected image ˜Ci,v is calculated according to Eq. (3)

(case w ≤
n
2 ). This way, the number of required optical flow calcula-

tions for each cube can be reduced down to one (CCM-1). However,

the more flow fields are interpolated from a previous one, the

higher the approximation error will be if the assumption of constant

motion does not hold true. Neglecting this fact, one calculated flow

field could even be extrapolated over several image cubes, further

reducing the processing time at the cost of an even higher approxi-

mation error. In practice and depending on the amount and nature

of expected motion in the scene, it seems to be a better choice to

interpolate only a limited number of flow fields from others.

In the case of four (or more) channels per FS image, a more accu-

rate interpolation can be achieved if a second flow field F(i,w)→(i−1,w)

of a subsequent channel w is used to bidirectionally interpolate

F(i,v)→(i−1,v),u < v < w (CCM-2):

F(i,v)→(i−1,v) = −

v − u

n

•F(i,u)→(i−1,u)[F(i,u)→(i−1,u)] ⊕

w − v

n
•F(i,w)→(i−1,w)[F(i,w)→(i−1,w)]. (5)

3.2. Neighboring channel matching(NCM)

The NCM approach commonly applied to ToF images [31-33] esti-

matesmotion fields F(i,w)→(i,w−1) between adjacent channels Ci,w,w >

0 directly. To compensate motion in Ci,w, all partial flow fields

F(i,w)→(i,w−1) are applied to Ci,w sequentially:

˜Ci,w = F(i,1)→(i,0)[. . . [F(i,w)→(i,w−1)[Ci,w]]]. (6)

NCM is a potentiallymore accurate alternative to CCM, as it keeps the

object displacement minimal for each flow calculation and allows to

compensate dynamic changes of motion speed and direction during

the acquisition of the FS image. Obviously, though, it has to han-

dle the intensity inconsistency problem between different spectral

channels.

The expected total interpolation error can further be reduced by

estimating motion between adjacent channels of two neighboring FS

images forwards or backwards towards the closest reference chan-

nel; see Fig. 2. The compensated image ˜Ci,w can then be found by

sequentially applying the resulting flow vectors either forwards or

backwards:

˜Ci,w =

{

F(i,1)→(i,0)[[F(i,w)→(i,w−1)[Ci,w]]] if w ≤
n
2

F(i−1,n−1)→(i,0)[[F(i−1,w)→(i−1,w+1)[Ci−1,w]]] if w >
n
2

(7)

4. Image transformation and correlation

In general, the realization of NCM methods requires handling

the intensity differences between neighboring channels. Here, three

different types of operations can be applied:

1. transformation of the image (channel) into another domain

(e.g. gradients),

2. finding dense correlations between neighboring channels

(using, e.g., cross-correlation), or

3. applying intensity correction (using, e.g., equalization)

Even though intensity transformation and correlation approaches

can be applied sequentially, this is rarely done in literature. There-

fore, we decided to apply only one of the methods and describe the

related methods in this section. Intensity correction methods are

summarized in Section 5.

The following image transformation approaches are evaluated in

this respect, in Section 7.

Census transform, proposed by Zabih and Woodfill [35],

describes the local spatial structure around a specific pixel of an

image by calculating a binary vector px,y for each pixel: if a neigh-

boring pixel has a lower intensity than px,y, a 1 will be added to the
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Fig. 3. Examples of methods applied on an FS image with three channels: a) original image; b) global normalization; c) local normalization; d) histogram equalization; e) CLAHE;

f) gradients.

vector, otherwise a 0. After the transformation, correspondence is

calculated by finding the minimum Hamming distance.

Image gradients describe the intensity variations in a pixel’s local

neighborhood and can be computed, e.g., using a Sobel filter [36]; see

Fig. 3 f).

We investigated the following correlation based approaches that

can be applied to two images in order to solve the intensity inconsis-

tency problem:

Mutual information is based on the entropy of an image pair and

yields a high value if the information gain of a new image in addi-

tion to an existing image is low, i.e., if two images of the same scene

are geometrically aligned. Mutual information is known to be robust

against non-linear intensity relationships and has been proposed for

both multispectral and multimodal image registration applications

[37, 38] . It can be used as a cost function for block matching, but it

cannot be linearized for the use in OF algorithms.

Cross-spectral feature detection is frequently used in multispec-

tral or multimodal image registration [37], where image transfor-

mation or warping parameters are estimated based on detected

features. While these methods cannot be used to estimate dense

motion fields between two images directly, they might be used for

the registration of blocks in block matching algorithms.

Normalized cross-correlation (NCC): Cross-correlation is com-

monly used as cost function in order to find the position of specific

features in an image [36]. NCC additionally normalizes the image

which improves the robustness against illumination changes. NCC

can be used as an inverse cost function for BM, as well as a linearized

data term in OF [39, 20].

4.1. Preliminary method selection

As we face the fundamental problem of combinatorial complexity

when evaluating a large amount of approaches making up the final

motion estimation method, we executed preliminary tests in order

to exclude approaches for which we observe significant drawbacks

in our context of motion estimation for FS imagery. Census trans-

form, image gradients and cross-correlation deliver valuable results,

so we use them in our exhaustive evaluation in Section 7. Apply-

ing mutual information was found to be computationally extremely

expensive2. Thus, we excluded mutual information as its application

2 We tested the fast approximative implementation from Shams and Barnes [40]

in combination with block matching. Here, the average execution time for a single

image pair with a resolution of 640 × 480pixels and a (small) search window of

11 × 11pixels requires ≈300 s on a typical PC.

to a larger set of test sequences and motion estimation methods

would be impracticable. Cross-spectral feature detection delivered

significantly inferior results when testingwith some of the ourmulti-

spectral data sets from Section 7. Thus, we also excluded this method

from our full evaluation.

5. Intensity correction methods

There are several ways to address the intensity inconsistency

problem in case of NCMmotion estimation using intensity correction

approaches. In the following, we assume a grayscale image I that is

intensity corrected, resulting in ˜I. Fig. 3 illustrates their effect on the

channels of an FS image.

The following approaches to reduce the intensity inconsistency

between the spectral channels are evaluated in Section 7.

Global linear normalization is a simple linear mapping of the

used intensity range [Imin, Imax] to a new range [0, ˜Imax] [41]; see Fig. 3

b).

Local linear normalization compensates for non-uniform illumi-

nation within an image [42]; see Fig. 3 c). Using the windowed mean

mI(x, y) and variance s I(x, y) for each pixel (x, y), the normalized

intensity ˜I(x, y) computes as:

˜I(x, y) =
I(x, y) − mI(x, y)

sI(x, y)
. (8)

Histogram equalization uniformly distributes the intensity

values over the available intensity range [41]; see Fig. 3 d).

It normalizes the histogram H(i) of an input image and cal-

culates the cumulative distribution H′(i), which is used to

remap the intensity values:

˜I(x, y) = H′(I(x, y)) with H′(i) =
∑

0≤j≤i

H( j). (9)

Contrast limited adaptive histogram equalization (CLAHE) per-

forms the histogram equalization in a local per-pixel window. As

this operation tends to amplify noise in homogeneous areas, the

CLAHE algorithm introduces a clipping limit for histogram redistri-

bution [43]; see Fig. 3 e).
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(a) Linear stage. (b) Rotating wheel. (c) Head tilting. (d) Walking.

Fig. 4. Examples of the test scenarios included in the FS multimodal data set.

(a) Phase image 0. (b) Phase image 1. (c) Phase image 2. (d) Phase image 3. (e) Range image.

Fig. 5. Sequence of four simulated ToF raw phase images (channels) and the resulting depth frame.

6. Evaluation setup

6.1. Datasets

For evaluation of the motion estimation methods for FS imagery,

we have prepared five different types of data sets. In all cases, the

number of channels is n = 3 or n = 4.

Middlebury: All Middlebury evaluation samples with at least

8 frames from the Middleburry benchmark3 by Baker et al. [11].

Please note that sequences with less than 8 frames, as well as

other, frequently used data sets such as KITTI that do not provide

RGB sequences of sufficient length cannot be incorporated in our

evaluation.

From each of the sample sequences, we derive an RGB FS image

sequence with ground truth images by dropping two of the three

color channels yielding a 3-channel FS image sequence. Furthermore,

we generateRGB-R FS image sequences that contain a fourth channel

generated by converting the RGB image into a grayscale image with

reduced brightness. This channel resembles the so-called dark refer-

ence frame commonly acquired in active multispectral camera systems

in order to subtract background illumination.

MPI Sintel: TheMPI Sintel data set 4 by Butler et al. [14] (marked

as “final”) is used in the RGB and RGB-R data sets.

Own sRGB: This data set is acquired using an active multi-

spectral SWIR video sequence for three different scenarios (see

Fig. 4): Linear stage (laterallymoving test pattern), rotating wheel, and

humanmovement showing a person’s upper-body performing several

movement patterns. We generated FS data RGB, RGB-R analogous to

Middlebury and MPI Sintel.

ShortWave Infrared (SWIR): The humanmovement data inOwn

sRGB provides the SWIR test data. Ground Truth is available using

the additional RGB video stream (see below for details).

3 See http://vision.middlebury.edu/flow.
4 See http://sintel.is.tue.mpg.de/.

Time-of-Flight (ToF): ToF ground truth is extremely hard to

access, as the channels, commonly called phase images in ToF imag-

ing, are directly processed in the camera and there is no option to

either trigger the exposure of phase images nor to access the explicit

timing of the exposition. Therefore, we use simulated ToF imagery

based on Lambers et al. and Bulczak et al.[10, 44], for which ground

truth motion fields can be explicitly extracted. We used two sam-

ple scenes, one with a lateral moving object and one with a rotating

star-like shape. Both scenes have been acquired with two different

velocities.

The simulator generates four phase images (channels) per depth

frame and includes noise and motion artifacts (see Fig. 5). We deac-

tivate the simulation of background intensity in order to be able to

apply the same quality measures as for the multispectral data sets

that do not include this intensity bias.

Note that all data sets except MPI Sintel contain indoor scenes

as motion estimation in the context of both multispectral and ToF

sensors typically targets such scenes.

6.2. Details for RGB and MS data set acquisition

The multispectral data sets have been captured using an active

FS-based SWIR camera system with three wavebands and a dark ref-

erence channel (-R), in combination with a high quality RGB camera

with the same frame rate. The cameras were arranged in a staring

imager configuration in a well-lit environment, which is common for

FS NIR imaging systems. Although the subject is the same in all of

the humanmovement sequences, different movement patterns have

been captured to provide diversity.

Any negative effect caused by demosaicing of the RGB camera’s

Bayer pattern is accounted for by recording in high definition with

1920 × 1080pixels and downsampling the images to the resolution

of the SWIR camera’s images, i.e. 636 × 508pixels.

The ground truth for our MS data set is created from the addi-

tional RGB sequences. As the SWIR camera system uses n = 4

39



176 H. Steiner, H. Sommerhoff, D. Bulczak, et al. / Image and Vision Computing 89 (2019) 170–182

channels, the RGB camera simultaneously acquires four virtual chan-

nels, i.e. R, G, B, and dark reference (-R). For evaluation, we use a

cross-compensation approach that applies the optical flow calcu-

lated for the SWIR imagery to the RGB image sequence and compares

the result to the corresponding RGB full frame.

To match the field of view of the RGB camera to the SWIR cam-

era, the RGB imagery is shifted and cropped appropriately. However,

the baseline between both cameras of ≈20 cm induces a slightly

different perspective and thus a mismatch in the motion fields. To

estimate this mismatch, we recorded a second data set where the

SWIR camera was replaced by a second RGB camera. Applying the

same cross-compensation procedure to this stereo-like setup, we

found a baseline error for the comparison IEbase ≈ 2.7. As IEbase is by

far lower than the error of the best FS motion compensation method

with IE ≈ 6.6, we find our cross-compensation approach to be valid

within this range.

6.3. Quality measures

The objective comparison of a compensated image with the

ground truth image is performed using the following quality mea-

sures:

1. Interpolation Error (IE) [11] is defined as the root mean square

of the L2 norm of the vector of spectral channel differences

between the interpolated and ground truth images, analog to

the Middlebury OF evaluation,

2. Structural Similarity Index Metric (SSIM), which describes the

similarity of images based on structural information and is

inspired by the human visual perception [45], and

3. Spectral Error (SE), which we define as the root mean square of

all pixel’s spectral angular distance [41].

7. Results and discussion

With 379 combinations of methods and preprocessing options,

the total amount of results is very extensive. Here, we present

only a representative selection and summarize the findings.

The complete results can be found in the digital supplemen-

tal material, which presents all details about influences of

individual steps and changes of preprocessingmethods or algorithms

to the results.

Table 1 states all methods and algorithms applied and explains

the abbreviations used in the following evaluation. CCM and NCM

are the General concepts applicable to motion estimation for FS

imagery. For CCM, we need to specify the Motion estimation

scheme that defines how the full flow for an FS image frame is com-

puted, e.g., using the uni- or bidirectional approach (see Section 3).

Remember that CCM-2 only makes sense if we have four (or more)

channels per FS image, thus CCM-2 can only be applied to RGB-R and

ToF data sets. Either of the resulting concept-scheme combinations

is applied to the original or a transformed version of the chan-

nels (Image transformation; see Section 4) that has optionally been

processed by an Intensity correction method (see Section 5). The

resulting combination can be implemented using any kind of BM or

Table 1

Abbreviations used in Table 2, Figs. 6 and 7, 8, 9, 10, and 11.

General concept

CCM Corresp. channel matching

NCM Neighboring channel matching

CCMmotion estimation scheme

-B All channels bidirectional

-U All channels unidirectional

-2 Partial (2 channels)

-1 Partial (1 channel)

Image transformation

-I Intensity (i.e. no transformation)

-TG Transformation to gradients

-TC Transformation to census

-C Correlation

Intensity correction

N Global normalization

L Local normalization

H Histogram equalization

C Contrast limited adaptive

Histogram equalization

Algorithms

BM Block Matching, sum of absolute differences

FBM Fast Block Matching, BM with restricted set of candidates

LK Lucas-Kanade OF

Br Brox OF

TVL1 TV-L1

HL1 Huber-L1

FHL1 Fast Huber-L1, parameters optimized for speed [19]

HQS Huber-L1 with quadratic fitting, sum of absolute differences [20]

H1C Huber regularization term, L1 data term, compensation of brightness constancy violations

H2C Huber regularization term, L2 data term, compensation of brightness constancy violations

TGVC 2nd order Total Generalized Variation w. Census transform [46, 47]

FF FlowFields

LDOF Large Displacement Optical Flow

PAC Pixelwise Artifact Correction

FN FlowNet2 [29]

LFN LiteFlowNet [30]

* = optimized for speed by authors of this paper, see Section 7.

** = part of algorithm.
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Table 2

Results of the top-20 ranking approaches with respect to the multispectral data set (Own sRGB, Middlebury and MPI Sintel) (top section), the top-20 ranking approaches with

respect to the ToF data sets (middle section), and selected additional approaches (lower section) on our data sets; values are given as averaged ranks unless otherwise noted.

Concept, Image Int. Algo. Tot. MS Tot. ToF Own sRGB SWIR Middleburry MPI Sintel Time

Scheme Transform. Corr. Avg. Avg. RGB RGB-R RGB RGB-R RGB RGB-R [s]

Uncomp – 296.59 161.08 261.97 285.52 251.78 283.2 303.64 318.19 –

NCM -TG** HL1 45.11 239.42 25.18 28.55 43.41 106.97 29.75 40.56 41.39 0.23

NCM -I N Br 46.54 203.17 45.39 20.21 94.74 86.63 24.53 36.25 18.00 0.32

NCM -TG** C HL1 46.64 248.67 31.12 25.82 36.81 129.00 38.95 39.75 25.06 0.24

NCM -I L LDOF 47.67 151.33 44.76 23.21 45.19 67.83 23.00 64.81 64.92 9.68

NCM -TG L LDOF 50.58 155.42 58.85 30.70 50.00 77.82 35.58 50.17 50.94 7.83

NCM -TG N LDOF 50.84 136.33 95.73 36.18 24.30 71.17 24.87 61.92 41.72 5.29

NCM -TG** N HL1 55.61 285.58 36.88 21.12 136.19 110.17 41.18 32.00 11.72 0.27

NCM -I N LDOF 57.18 129.67 156.15 25.52 73.63 62.18 27.70 39.75 15.36 7.88

NCM -(I+TG)** C HL1 57.78 264.42 78.21 33.61 34.67 142.03 37.23 46.78 31.92 0.16

NCM -TG N LK 58.15 134.75 55.21 20.82 47.96 105.17 44.18 90.61 43.08 0.07

NCM -TG N LK* 59.82 127.17 67.76 14.27 47.41 91.95 46.87 100.06 50.42 0.04

NCM -TG+TG** HL1 65.51 46.83 37.30 29.64 41.48 139.57 59.55 74.58 76.44 0.23

NCM -I L LFN 66.80 175.25 109.67 88.39 25.59 50.82 98.53 32.56 62.03 7.65

NCM -TG N HQS 69.23 114.83 44.67 51.85 65.74 123.03 44.73 109.28 45.28 0.18

NCM -I C Br 69.68 188.92 20.55 73.73 58.81 94.00 142.82 18.39 79.47 0.32

NCM -I H LDOF 70.21 225.50 124.42 40.76 176.56 73.87 27.78 34.83 13.28 7.02

NCM -TG H LDOF 74.73 234.00 95.00 35.97 149.89 97.67 45.35 56.58 42.64 7.98

NCM -TG L Br 74.97 134.17 74.48 37.33 59.07 111.23 83.02 87.25 72.39 0.48

NCM -TG** C HL1* 75.27 224.25 54.61 44.55 83.07 148.95 78.47 65.42 51.83 0.05

NCM -TG+TG** N HL1 75.50 78.25 52.61 45.48 80.37 141.53 90.15 69.94 48.39 0.27

CCM-B -I FHL* 118.11 22.25 100.39 139.45 52.00 69.28 109.83 173.03 182.78 0.03

CCM-B -I HL1* 118.98 23.25 100.88 140.03 54.19 70.28 111.20 173.06 183.25 0.04

CCM-B -TG** HL1 97.82 26.42 88.88 128.85 48.59 51.52 95.45 127.42 144.06 0.43

CCM-B -TC** TGVC 102.18 26.50 88.82 123.30 46.96 60.13 96.10 145.92 154.06 0.49

CCM-B -I H1C* 119.19 29.50 102.42 139.61 53.22 71.22 110.62 173.94 183.33 0.05

CCM-B -I HQS* 106.55 31.33 85.03 122.06 50.59 69.55 112.53 147.69 158.42 0.05

CCM-B -TG** HL1* 111.00 33.17 105.33 143.03 48.30 66.50 103.77 151.94 158.14 0.07

NCM -TG+TG** C HL1 87.49 34.92 67.42 46.70 52.30 179.73 113.70 84.14 68.42 0.24

CCM-B -(I+TG)** HL1* 105.81 35.08 95.48 132.24 46.89 72.57 108.85 139.56 145.06 0.05

CCM-B -TC** TGVC* 139.29 36.00 140.79 168.48 67.63 97.97 126.10 190.50 183.56 0.08

CCM-B -I FHL 103.49 36.42 88.45 121.70 54.30 55.17 94.28 144.06 166.44 0.19

CCM-B -I HL1 103.49 36.83 88.85 123.52 49.89 55.95 94.15 145.47 166.64 0.23

NCM -TG+TC** C TGVC* 118.22 37.00 77.94 49.48 119.59 155.17 154.13 139.42 131.78 0.07

CCM-B -(I+TG)** HL1 87.33 38.42 80.76 112.45 46.56 44.68 87.57 116.28 123.03 0.29

CCM-B -I TVL1 122.72 38.58 112.52 143.94 65.70 61.52 107.15 174.67 193.53 0.68

NCM -TG+TG** C HL1* 110.30 39.92 80.82 56.97 71.70 195.67 145.85 122.19 98.89 0.06

NCM -TG H1C* 194.64 41.75 114.00 164.76 119.48 226.85 298.55 192.53 246.33 0.04

CCM-B -I H1C 104.54 46.50 88.82 122.55 50.22 58.07 97.87 148.28 166.00 0.30

NCM -TG+TG** HL1 65.51 46.83 37.30 29.64 41.48 139.57 59.55 74.58 76.44 0.23

NCM -TG+TG** HL1* 92.62 47.17 59.21 44.85 59.26 166.10 94.98 115.06 108.86 0.06

NCM -I BM 314.19 281.00 283.85 351.30 322.52 279.05 342.77 287.03 332.83 11.50

NCM -TG BM 244.12 270.25 218.12 233.18 259.44 217.22 272.50 246.06 262.31 11.62

CCM-B -I Br 84.74 49.00 70.15 97.24 56.52 49.38 77.60 111.83 130.44 0.66

CCM-U -I Br 131.95 118.50 114.97 152.61 85.96 77.17 127.20 170.50 195.25 0.32

NCM -TG Br 138.52 78.92 60.06 167.42 127.93 112.13 199.38 102.00 200.72 0.33

NCM -I TVL1 316.43 285.17 265.79 354.12 317.85 285.47 366.20 267.78 357.78 1.12

NCM -I H FBM 183.24 277.25 189.91 156.36 255.37 209.50 124.17 193.50 153.86 0.20

NCM -I HL1 317.31 256.25 271.61 363.64 311.44 293.20 360.43 272.28 348.56 0.12

NCM -TC** TGVC 129.21 303.92 142.33 109.45 189.85 163.15 121.43 80.97 97.28 0.26

NCM -I N LK 304.08 215.17 284.70 354.48 292.48 231.80 361.27 250.17 353.69 0.05

NCM -C** HL1 154.97 312.25 196.64 123.27 271.15 191.98 122.22 106.36 73.17 0.16

NCM -I H HL1 210.25 346.00 237.79 137.36 316.67 275.88 192.97 210.06 101.00 0.14

CCM-U -I LDOF 114.82 112.83 135.30 161.21 48.22 55.87 104.55 131.33 167.25 8.50

NCM -I LDOF 174.20 135.33 118.91 282.45 142.85 61.90 290.15 51.47 271.67 5.61

NCM -I FF 346.42 346.42 307.55 326.67 273.44 184.35 261.63 266.42 307.03 53.54

NCM -I L FF 291.13 332.00 289.82 280.85 314.78 182.32 168.47 264.39 251.25 53.01

CCM-B -I FN 106.84 121.00 120.42 123.85 39.70 50.12 79.85 110.44 124.33 30.46

NCM -I L FN 154.72 191.00 178.09 149.94 56.37 111.50 139.95 87.69 105.56 15.40

NCM -I H LFN 106.75 333.92 162.88 131.09 164.70 63.97 109.43 38.72 76.44 7.53

CCM-1 -I LFN 200.87 89.67 222.55 262.21 100.30 145.48 209.13 213.42 253.00 2.52

dense OF algorithm. In this work, GPU-accelerated implementations

of Brox, TV-L1, Lucas-Kanade (LK), LDOF and Huber-L1-based opti-

cal flow, as well as full search and fast approximate BM algorithms

from standard libraries (OpenCV 2.4.11 and FlowLib 3.0) are used.

They are complemented by a (multithreading) CPU implementation

of FlowFields, which is not currently available as a GPU-accelerated

version. All Brox- and FlowLib-based algorithms have been applied

twice, once with recommended (quality-oriented) parameters and

once with parameters optimized for speed, which is denoted with a

*. Optimal parameters have been found experimentally5.

As some of the algorithms already include an image

transformation, e.g. to gradients, we explicitly mark this with **. In

5 BM: search field parameter p = 20, block size bs = 25; Brox: 3 instead of 10

inner and solver iterations each; FlowLib: 3 instead of 10 iterations and warps each.
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Fig. 6. Scatter plot showing accuracy and processing time of the described approaches. An SVG version of this plot is available in the Supplementary material.

our evaluation, we also feed gradient images to these algorithms,

leading to an overall image transformation of type TG+TG**. Some

algorithms internally use intensity and gradient images for estimat-

ing motion, denoted as (I+TG)**. If fed with gradient images, these

algorithms read TG+(I+TG)**.

Computational efficiency ismeasured on a standard desktop com-

puter with a recent Intel CPU and nVidia graphics card using the FS

multispectral RGB-R data set. Note, however, that there is some vari-

ation in system setup between methods, so the timing information

in Table 2 and Fig. 6 should be interpreted as a rough estimate.

Analog to theMiddlebury evaluation, all methodswere ranked for

each test sequence based on all described quality measures. Table 2

shows the average ranks of the top-20 combinations of algorithms

and approacheswith respect tomultispectral data set(includingOwn

sRGB,Middlebury andMPI Sintel) in the upper part. Themiddle part

of Table 2 shows the ranking with respect to the ToF data set. For

comparison, results of the original algorithms without optimization

for FS data sequences and different CCM optimizations have been

added in the lower part. In addition, Fig. 6 allows to easily compare

the motion compensation performance to the computational effi-

ciency of the different methods. A higher resolution plot can also be

found in the supplemental material. All abbreviations are explained

in Table 1.

To illustrate the performance of different approaches, example

images from each data set and a selection of motion compensation

results are shown in Figs. 7, 8, 9, 10, and 11.

7.1. Comparing CCM and NCM

The multispectral data sets (including Middlebury and MPI

Sintel) are handled best with NCM methods. This is mainly due to

the fact, that multispectral data sets exhibit less intensity inconsis-

tencies than ToF data. Furthermore, non-linear motion can be better

captured using neighboring channel matching (NCM) due to shorter

interpolation intervals. CCM-methods, on the other hand, produce

primarily superior results on ToF data sets. However, several NCM

methods work well on ToF data sets. Namely NCM-TG+TG** with

the HL1 algorithm, which is among the top-20 for both, multispectral

and ToF.

7.2. Varying the number of OF in CCM

Table 2 includes CCM results using all channels bi- (CCM-B) and

unidirectional (CCM-U), first and last channel (CCM-2), as well as

first channel only (CCM-1) based on the Brox algorithm that per-

forms best for CCM. For all algorithms, a reduction of the number of
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Channel 0 Channel 1 Channel 2 Uncompensated

CCM-1 TV-L1 CCM-B FN CCM-B TV-L1 NCM-TG N FN

Fig. 7. Examples for an image before and after motion compensation (data set Middlebury).

OF calculations decreases the processing time almost proportionally,

while simultaneously increasing the error in a very predictable way;

see Fig. 6.

7.3. Handling of inconsistent intensities with NCM

Without image transformation and intensity correction, only the

Brox algorithm (NCM-I-Br) is capable of handling the inconsistent

intensities with NCM-I methods to some degree. Applying image

transformation only (NCM-*-<none>), transformation to gradient,

potentially applied twice, i.e. during preprocessing and, again, within

the algorithm itself, clearly yields the best results. The census trans-

formation and correlation-based methods (NCM-C) cannot compete.

Applying intensity correction only (NCM-I-*), Brox and LDOF perform

well on multispectral data if global or local normalization is applied.

7.4. Influence of the OF algorithm

Ignoring image transformation and intensity correlation-based,

there is no clear tendency in terms of OF algorithms, neither for

the multispectral nor for the ToF data sets. While LDOF, as one

of the more modern approaches is quite successful on multispec-

tral data sets, more classical approaches like Brox and Huber-based

algorithms yield comparable results; on ToF data sets they even

dominate. Surprisingly, the most modern algorithm in the evalua-

tion, FlowFields, performed worst. A possible explanation for this

finding could be that it’s SIFTflow matching approach is optimized

for color rather than grayscale images.

When taking processing time into account, the normal and speed-

optimized Huber-L1 (HL1, FHL1), as well as Lucas-Kanade optical

flow (LK) deliver outstanding results.

7.5. Pixelwise artifact correction (PAC)

This approach from Schmidt and Jahne [34] is the only one specif-

ically developed to correct ToF raw data. It performs comparably bad

regarding quality, but the approach is computationally very effective

and fast, although it does not rely on GPU acceleration.

Channel 0 Channel 1 Channel 2 Uncompensated

CCM-B LFN CCM-B TV-L1 NCM-I LFN NCM-TG L LFN

Fig. 8. Examples for an image before and after motion compensation (data set MPI Sintel).
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Channel 0Channel 0 Channel 1Channel 1 Channel 2Channel 2 UncompensatedUncompensated

PACPAC NCM HL1NCM HL1 CCM-U BrCCM-U Br CCM-U BMCCM-U BM

CCM-B BrCCM-B Br CCM-1 BrCCM-1 Br NCM-TG N LK*NCM-TG N LK* NCM-TG**NCM-TG**

Fig. 9. Examples for an image before and after motion compensation (data set Own sRGB).

7.6. Deep neural networks

The deep neural network based methods FlowNet2 (FN) and Lite-

FlowNet (LFN) both perform well. Note that we use public available

pre-trained implementations of both. These have been trained on

RGB data, whereas here, we apply them to individual channels of

our FS imagery which are interpreted as grayscale images. Training

either method specifically for a given FS type (multispectral or ToF)

will likely result in improved quality.

8. Conclusions

This paper presents and evaluates approaches to apply existing

motion estimation methods to field-sequential (FS) imagery, origi-

nating from multispectral dynamic scene captures or Time-of-Flight

cameras. The major challenge here is the assumption of consistent

intensities for corresponding pixelsmade bymostmotion estimation

approaches, which is in general not fulfilled for adjacent channels of

FS imagery.

While corresponding channel matching (CCM) methods esti-

mate motion fields between corresponding channels of successive

FS images to avoid intensity inconsistencies, neighboring channel

matching (NCM) estimates motion fields between neighboring chan-

nels within a single FS image, which requires a successful handling

of inconsistent intensities between the channels but (potentially)

benefits from interpolation for shorter time intervals and displace-

ment vectors.

We combine existing motion estimation schemes with known

image transformation and/or intensity correction methods, leading

to an overall set of 379 combinations of FS motion compensation

approaches, implemented using state of the art algorithms.

We present the new FS database containing data sets with ground

truth acquired using RGB, multispectral SWIR, and ToF camera sim-

ulators, which will be available to the scientific public in order to

promote further research in this field. Our evaluation also involves

data from theMiddlebury and theMPI Sintel data sets.

Due to the variety in the FS database that includes also strongly

intensity inconsistent ToF phase images as well as moderate incon-

sistent multispectral imagery, there is not “the best” method supe-

rior to others. There is, however, a clear tendency, that NCMmethods

are more successful for moderate intensity inconsistency. For strong

intensity inconsistency, CCM methods perform best, while NCM

in combination with gradient transformation (potentially applied

twice) still give good results.

Datasets

The full data used in this paper is available at https://www.cg.

informatik.uni-siegen.de/data/fsmotion2019/.
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Channel 0 Channel 1 Channel 2 Channel 3

CCM-B FN Channel 1 CCM-B FN Channel 2 CCM-B FN Channel 3

NCM-TG LFN

Channel 1

NCM-TG LFN

Channel 2

NCM-TG LFN

Channel 3

Fig. 10. Examples for an image before and after motion compensation (data set SWIR).
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Fig. 11. Examples for an image before and after motion compensation (data set ToF).
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ABSTRACT

Rendering images with lens distortion that matches real cameras requires a camera model that allows calibration

of relevant parameters based on real imagery. This requirement is not fulfilled for camera models typically used in

the field of Computer Graphics.

In this paper, we present two approaches to integrate realistic lens distortions effects into any graphics pipeline.

Both approaches are based on the most widely used camera model in Computer Vision, and thus can reproduce the

behavior of real calibrated cameras.

The advantages and drawbacks of the two approaches are compared, and both are verified by recovering rendering

parameters through a calibration performed on rendered images.

Keywords
Lens distortion, Camera calibration, Camera model, OpenCV

1 INTRODUCTION

In Computer Graphics, the prevalent camera model is

the pinhole camera model, which is free of distortions

and other detrimental effects. Real world cameras, on

the other hand, use lens systems that lead to a variety

of effects not covered by the pinhole model, includ-

ing depth of field, chromatic aberration, and distortions.

This paper focusses on the latter.

In Computer Vision, distortions must be taken into ac-

count during 3D scene analysis. A variety of camera

models have been suggested to model the relevant ef-

fects; Sturm et al. [1] give an overview. The dominant

model in practical use is a polynomial model based on

the work of Heikkilä [2, 3] and Zhang [4] and is imple-

mented in the most widely used Computer Vision soft-

ware packages: OpenCV [5] and Matlab/Simulink [6].

In the following, we refer to this camera model as

the standard model. Typical Computer Vision applica-

tions estimate the distortion parameters of the standard

model for their camera system in a calibration step, and

then undistort the input images accordingly before us-

ing them in further processing stages.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit

or commercial advantage and that copies bear this notice and

the full citation on the first page. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee.

For a variety of applications, including analysis-by-

synthesis techniques [7], sensor simulation [8], and spe-

cial effects in films [9], it is useful to apply the reverse

process, i.e. to synthesize images that exhibit realis-

tic distortions by applying a camera model. Using the

standard model for this purpose has the advantage that

model parameters of existing calibrated cameras can be

used directly, with immediate practical benefit to all ap-

plication areas mentioned above.

In this paper, we present and compare two ways of inte-

grating realistic distortions based on the standard cam-

era model into graphics pipelines. One is based on

preprocessing the geometry, and the other is based on

postprocessing generated images. We show that both

methods have unique advantages and limitations, and

the choice of method therefore depends on the applica-

tion. We verify both approaches by showing that stan-

dard model calibration applied to synthesized images

recovers the distortion parameters with high accuracy.

2 RELATED WORK

In Computer Graphics, camera models that are more

realistic than the pinhole model are typically based on

a geometric description of the lens system that is then

integrated into ray tracing pipelines [10, 11]. This ap-

proach is of limited use if the goal is to render im-

ages that match the characteristics of an existing cam-

era, as suitable parameters cannot be derived automat-

ically. Furthermore, this approach excludes rasteriza-

tion pipelines, which is problematic for applications

that benefit from fast image generation.
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In contrast, using a Computer Vision camera model al-

lows to apply parameters obtained by calibrating a real

camera and, as shown in Sec. 3, can be done in any

graphics pipeline.

Sturm et al. [1] give an overview of camera models in

Computer Vision. Most models account for radial dis-

tortion (e.g. barrel and pincushion distortion, caused

by stronger bending of light rays near the edges of a

lens than at its optical center) and tangential distortion

(caused by imperfect parallelism between lens and im-

age plane). Some also account for thin prism distortion

(caused by a slightly decentered lens, modeled via an

oriented thin prism in front of a perfectly centered lens),

and tilted sensor distortion (caused by a rotation of the

image plane around the optical axis).

The complete formulas for the standard model [5] com-

pute distorted pixel coordinates from undistorted pixel

coordinates and use parameters k1, . . . ,k6 for radial dis-

tortion, p1 p2 for tangential distortion, s1, . . . ,s4 for thin

prism distortion, and τ1,τ2 for tilted sensor distortion.

In practice, thin prism distortion and tilted sensor

distortion are usually ignored, and radial distortion is

limited to two or at maximum three parameters (the

others are assumed to be zero). This is documented

by the fact that the calibration functions of OpenCV1

and Matlab/Simulink2 estimate only the parameters

k1,k2, p1, p2 and optionally k3 by default.

In the following, we focus on the standard camera

model of Computer Vision, and apply it to arbitrary

rendering pipelines via either geometry preprocessing

or image postprocessing.

3 METHOD

We first summarize the standard model in Sec. 3.1, fo-

cussing on the aspects relevant for this paper and incor-

porating its intrinsic camera parameters into the projec-

tion matrix of a pinhole camera model. On this basis,

simulating lens distortion can be done in one of two

ways:

• By preprocessing geometry. In this approach, each

vertex of the input geometry is manipulated such

that its position in image space after rendering cor-

responds to a distorted image.

• By postprocessing images. In this approach, an

undistorted image is rendered based on the pinhole

camera model, and distorted in a postprocessing step

based on the standard model.

These approaches are described in detail in the Sec. 3.2

and Sec. 3.3.

1 https://docs.opencv.org/3.4.0/dc/dbb/

tutorial_py_calibration.html
2 https://mathworks.com/help/vision/ug/

camera-calibration.html

1 vec4 clipCoord = P * position;

2 vec2 ndcCoord = clipCoord.xy / clipCoord.w;

3 vec2 pixelCoord = vec2(

4 (ndcCoord.x * 0.5 + 0.5) * w,

5 (0.5 - ndcCoord.y * 0.5) * h);

6 // apply the standard model to pixelCoord

7 ndcCoord.x = (pixelCoord.x / w) * 2.0 - 1.0;

8 ndcCoord.y = 1.0 - (pixelCoord.y / h) * 2.0;

9 clipCoord.xy = ndcCoord * clipCoord.w;

Algorithm 1: GLSL code fragment for applying the

standard model in the vertex shader.

3.1 The Standard Model

The standard model, reduced to the part that is rele-

vant in this discussion, has the following parameters:

the camera intrinsic parameters, consisting of the prin-

cipal point cx,cy and the focal lengths fx, fy (both in

pixel units), the radial distortion parameters k1,k2, and

the tangential distortion parameters p1, p2. The model

computes distorted pixel coordinates u,v from undis-

torted pixel coordinates x,y by first computing normal-

ized image coordinates s, t with distance r to the prin-

cipal point, applying the distortion, and then reverting

the normalization [5]:

s =
x− cx

fx

t =
y− cy

fy

r2 = s2 + t2

d = 1+ k1r2 + k2r4

u = (sd +(2p1st + p2(r
2 +2s2))) fx + cx

v = (td +(p1(r
2 +2t2)+2p2st)) fy + cy

(1)

Here, the undistorted pixel coordinates x,y are equiv-

alent to pixel coordinates generated with the pinhole

camera model of a standard graphics pipeline when the

camera intrinsic parameters cx,cy, fx, fy are accounted

for in the projection matrix. This matrix is typically de-

fined by a viewing frustum given by the clipping plane

coordinates l,r,b, t for the left, right, bottom, and top

plane. These values have to be multiplied by the near

plane value n; here we assume n = 1 for simplicity.

Given the image size w×h, suitable clipping plane co-

ordinates can be computed from the camera intrinsic

parameters as follows:

l =−
cx +0.5

fx

r =
w

fx

+ l

b =−
cy +0.5

fy

t =
h

fy

+b
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Using this frustum to define the projection matrix in a

standard graphics pipeline accounts for the camera in-

trinsic parameters of the standard model. The remain-

ing problem is to integrate the lens distortion param-

eters k1,k2, p1, p2. This is discussed in the following

sections.

3.2 Preprocessing Geometry

In this approach, each input vertex is manipulated such

that its image space coordinates match the distorted co-

ordinates of the standard model.

In a standard graphics pipeline, this manipulation is

typically done in the vertex shader. Since the standard

model operates on pixel coordinates, we first apply the

projection matrix from Sec. 3.1 to each vertex, result-

ing in clip coordinates, and then divide by the homo-

geneous coordinate to get normalized device coordi-

nates (NDC). By applying the viewport transformation,

these are transformed to window coordinates, which are

equivalent to pixel coordinates in the standard model.

After modifying the x and y components of the window

coordinates to account for lens distortion according to

Eq. 1, we transform back to clip coordinates. See Alg. 1

for an OpenGL vertex shader code fragment.

This approach has two limitations.

First, modifying clip coordinates in this way means

that a fundamental assumption of the graphics pipeline,

namely that straight lines in model space map to straight

lines in image space, is no longer fulfilled. This leads

to errors. A similar problem occurs in graphics applica-

tions that project onto non-planar surfaces, e.g. shadow

maps [12] and dynamic environment maps [13] that aim

to reduce memory usage. There, the errors are consid-

ered acceptable if the tessellation of the input geometry

is fine enough such that triangle edges in image space

are short. Whether this condition is met in our case de-

pends on the application.

Second, our vertex modification takes place before clip-

ping, and therefore includes vertices that lie outside the

domain of the standard model. Depending on the distor-

tion parameters, transforming these vertices may place

them into image space, resulting in invalid triangles that

ruin the rendering result. To avoid this problem, we dis-

card triangles that contain at least one vertex outside of

the view frustum. A tolerance parameter δ can be ap-

plied during this test to avoid holes in the final image

caused by triangles that are partly inside the frustum:

a vertex is discarded if its unmodified NDC xy coordi-

nates lie outside [−1−δ ,1+δ ]2. Since the preprocess-

ing approach requires a finely detailed geometry any-

way, simply using δ = 0.1 should work fine. We used

this value for all of our tests.

For certain types of distortion, mainly barrel distortion

(see Fig. 1), we must additionally account for vertices

that lie outside of the pinhole camera frustum but may

be mapped into image space nonetheless. This is done

by adding a distortion-dependent value D to the param-

eter δ . Given the inverse of the standard model (see

Sec. 3.3 for details), we can determine a lower bound

for D automatically by undistorting the distorted im-

age space corner coordinates (0,0),(w,0),(w,h),(0,h),
transforming them to NDC coordinates, and setting D

to the maximum of the absolute value of each coordi-

nate, minus one.

3.3 Postprocessing Images

In this approach, the scene is first rendered into

an undistorted image using an unmodified graphics

pipeline based on a pinhole camera with the projection

matrix from Sec. 3.1. The result is then transformed

into a distorted image by applying the standard model

in a postprocessing step, e.g. using a fragment shader.

This postprocessing step requires the computation of

undistorted pixel coordinates (x,y) from distorted pixel

coordinates (u,v), i.e. the inverse of Eq. 1. This inver-

sion is not a trivial problem; several approaches exist,

but none supports the full set of parameters of the orig-

inal standard model. For example, Drap and Lefèvre

propose an exact inversion, but for radial distortion

only [14].

We apply ideas by Heikkilä [3] to invert Eq. 1 using

an approximation based on Taylor series. Note that his

camera model differs from the standard model; in par-

ticular, it computes undistorted pixel coordinates from

distorted pixel coordinates. Nevertheless, his inversion

process is still applicable. The resulting formulas sup-

port radial distortion parameters k1,k2 and tangential

distortion parameters p1, p2, which is sufficient in prac-

tice:

s =
u− cx

fx

t =
v− cy

fy

r2 = s2 + t2

d1 = k1r2 + k2r4

d2 =
1

4k1r2 +6k2r4 +8p1t +8p2s+1

x = (s−d2(d1s+2p1st + p2(r
2 +2s2))) fx + cx

y = (t −d2(d1t + p1(r
2 +2t2)+2p2st)) fy + cy

(2)

Note that the postprocessing step can only fill areas

in the distorted image for which information exists in

the undistorted image. For certain types of distortion,

mainly barrel distortion (see Fig. 1), this means that

some areas of the result remain unfilled. This can only

be alleviated by using both an enlarged frustum and

an increased resolution when rendering the undistorted
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Preprocessing geometry Postprocessing images

Distortion model completeness full limited to radial and tangential

Prerequisites finely detailed geometry none

Result completeness full may have unfilled areas

Rendered data types all limited to interpolatable, relocatable data

Complexity geometry-dependent resolution-dependent

Table 1: Comparison of the pre- and postprocessing approaches to lens distortion rendering based on the standard

model. See Sec. 3.4 for details.

image. Note that while it is possible to derive suit-

able frustum and resolution parameters by computing

undistorted coordinates for the distorted image space

corner coordinates (0,0),(w,0),(w,h),(0,h), similar to

method described for the preprocessing approach, we

did not do so in our tests for simplicity.

3.4 Discussion

In this section, we discuss several aspects of the prepro-

cessing and postprocessing approaches, summarized in

Tab. 1.

Distortion model completeness: In the preprocessing

approach, we apply the forward standard model and

thus can use the full formulas unchanged, i.e. with sup-

port for all parameters, including thin prism and tilted

sensor distortion if relevant. The postprocessing ap-

proach requires the inverse model, and no inversion is

known that accounts for all parameters. It is therefore

limited to radial and tangential distortion with param-

eters k1,k2, p1, p2, but this should be sufficient for the

majority of applications.

Prerequisites: Applying the preprocessing approach re-

quires finely tessellated geometry to keep errors small.

Not all applications may be able to make such guaran-

tees. The postprocessing approach does not have this

limitation.

Result completeness: While the preprocessing ap-

proach can map geometry outside of the pinhole

camera view frustum into the distorted image, such

information is not available to the postprocessing

approach unless an enlarged frustum and increased

resolution are used for the undistorted image. See

Fig. 1.

Rendered data types: The postprocessing approach will

usually map undistorted pixels with interpolation to the

distorted image. This is fine e.g. for RGB images, but

may break for other kinds of data that special applica-

tions may render into images, e.g. object IDs or 2D

pixel flow. In these cases, only the preprocessing ap-

proach can be applied.

Computational complexity: The complexity of the post-

processing approach depends on the number of vertices

in the input geometry, while the complexity of the post-

processing approach depends on the number of output

pixels. While the preprocessing approach can be in-

tegrated directly into any pipeline, the postprocessing

approach requires an additional render pass.

4 RESULTS

We implemented both the preprocessing and the post-

processing approach in a standard OpenGL rendering

pipeline. To verify that our implementation produces

results that match the OpenCV/Matlab implementation

of the standard model, we varied the model parame-

ters cx,cy, fx, fy,k1,k2, p1, p2, then rendered a set of 17

images of size 800× 600 for each parameter set, con-

taining the standard OpenCV checkerboard calibration

pattern in various 3D positions and orientations, and

then used the OpenCV calibrate.py script to es-

timate the model parameters from the rendered images.

Note that OpenCV also supports a circle grid calibra-

tion pattern, but we chose to use the more widely used

checkerboard pattern.

In most cases, the original parameters were recovered

with high accuracy, even though the rendered set of

images was of low quality for calibration purposes.

The average recovery error was less than 1 % for

cx,cy, fx, fy,k2, p1, p2. Interestingly, for k1 the error

was significantly larger, however this did not cause

noticeable errors in the undistorted images that were

produced for verification purposes. For a few sets,

calibration failed, mostly caused by parts of the

checkerboard pattern not being visible in some images.

Fig. 2 shows a visual verification: first, an undistorted

image is rendered, then a distorted one with a specific

set of parameters, and this distorted image is finally

undistorted using OpenCV with the same parameters.

The first an last image show only minimal differences.

5 CONCLUSION

We presented two methods to accurately render images

that match the characteristics of real cameras regard-

ing implicit parameters and lens distortion. Both meth-

ods are based on the most widely used camera model

in Computer Vision, and can be integrated into any ren-

dering pipeline.

We highlighted the specific advantages and drawbacks

of each approach to help implementers pick the right

approach for a given application.
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Figure 1: Effects of barrel distortion (k1 =−0.11,k2 =
0, p1 = 0, p2 = 0). From top to bottom: undistorted im-

age, distorted image from preprocessing geometry, and

distorted image from postprocessing the undistorted

image.

Figure 2: From top to bottom: undistorted image of size

800,600 rendered with intrinsic parameters cx = 399.5,

cy = 299.5, fx = fy = 400, distorted image rendered

with parameters k1 = −0.05, k2 = 0.01, p1 = 0.03,

p2 = −0.01, and undistorted image produced from the

distorted image by OpenCV using the same parameters.
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Robust Range Camera Pose Estimation for Mobile

Online Scene Reconstruction
Dmitri Presnov, Martin Lambers, and Andreas Kolb

Abstract— We present a multi-sensor camera tracking method
for a real-time 3-D reconstruction on mobile devices. Our
approach combines the iterative closest point (ICP) pose esti-
mation using the low-resolution range maps delivered by a PMD
pico-flexx time-of-flight camera with the 6-DOF pose estimates
given by inertial tracking. In contrast to prior approaches, we do
not rely on additional sensors, such as 2-D visual odometry.
We fuse the results of the inertial tracking with the extrapolated
ICP pose estimates using an extended Kalman filter (EKF).
Subsequently, the output of the EKF is used as initial guess for the
next ICP-based pose estimation. This approach yields an efficient
and robust pose tracking for the spatially and temporally low-
resolution range data given in mobile applications, and, at the
same time, it results in a consistent geometric reconstruction,
as the final pose minimizes the error with respect to the scene
geometry.

Index Terms— Scene reconstruction, mobile, tracking,
extended Kalman filter.

I. INTRODUCTION

R
EAL-time 3D scene reconstruction from depth data is a

well-established research area where several approaches

have been proposed [1]–[3]. However, because of high com-

putational requirements and due to the absence of highly

integrated range cameras, their implementation was limited

for a long time to highend platforms including robots that

involving PCs or laptops and rather energy intensive and

bulky range cameras such as the Microsoft Kinect. Alternative

approaches utilize the standard colour camera of a mobile

device, i.e. smartphone or tablet, in order to extract 3D

information from RGB image streams [4]–[7]. In the last years,

however, the availability of highly integrated Time-of-Flight

(ToF) depth cameras such as the Real3™ areasensor from infi-

neon [8] integrated in ToF cameras such as the picoflex from

pmd-technologies [9] or in mobile devices such as Lenovo’s

PHAB2 Pro, makes mobile 3D reconstruction possible.

The 3D scene reconstruction problem requires the

estimation of the camera’s pose (position and orientation)
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January 31, 2018. Date of publication February 5, 2018; date of current version
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and the reconstruction of the scene in parallel. Thus, it is

structrually very similar to simultaneous localization and

mapping (SLAM), which also can involve ToF cameras [10].

3D reconstruction and SLAM, however, have different foci:

While 3D scene reconstruction aims for high geometric quality

of the reconstructed scene, in SLAM trajectory and pose

estimation have the highest priority. In this paper, we mainly

address 3D scene reconstruction, a survey of visual SLAM

approaches can be found, e.g., in [11].

Commonly, in 3D scene reconstruction the camera pose

estimation is formulated as a registration problem. Given a

sequence of overlapping depth maps delivered by the range

camera, the camera pose is estimated by finding the best

alignment between two successive depth maps (frame-to-frame

registration) or between the current frame with the recon-

structed model of all preceding frames (frame-to-model align-

ment). There are various registration approaches, e.g. iterative

closest point (ICP), RANSAC, PCA, or cross-correlation [12],

[13]; see Salvi et al. [14] for an overview. In online scene

reconstruction, the ICP algorithm is commonly applied.

Camera tracking based on, e.g., ICP, is a task demanding

high computing and data cost even in the standard, desktop

3D scene reconstruction pipelines. Since the accuracy of 3D

map registration heavily depends on the size of overlapping

areas and the magnitude of relative transformation that has

to be estimated, it requires both, significant CPU and GPU

capabilities and high spatial and temporal resolution of the

depth data. However, mobile devices with highly integrated

ToF cameras comprise restricted computational resources and

significantly lower temporal and spatial resolution (see Tab. I),

making high quality online 3D scene reconstruction hard to

achieve.

On the other hand, online scene reconstruction can benefit

from additional sensory information, e.g. from an inertial

measurement unit (IMU). A common approach to embed these

motion data is to provide them as initial guess for geometric

registration, i.e. to ICP. This initial guess can be either obtained

by mere integration of the IMU data [15], or by sensor fusion,

e.g. with an extended Kalman filter (EKF), that delivers more

robust pose predictions. However, because the IMU lacks any

complementary data source for position estimation, fusion

algorithms require either a third sensory input from, e.g.,

a camera-based feature tracker [16] or they are restricted to the

rotational component only [17]. Some approaches apply a final

fusion of the ICP results with other sensory information. This

approach, however, is only benefical, if the ICP pose is less

reliable, leading to unwanted geometric reconstruction errors.

1558-1748 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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TABLE I

KEY MEASURES OF A TYPICAL DESKTOP PLATFORM USED IN RECENT PUBLICATIONS, E.G. [23], AND MOBILE DEVICES (TEGRA K1). NOTE THAT

THE PERFORMANCE AND FILL-RATE FIGURES ARE IMPERFECT, AS THERE ARE NO STANDARDIZED ACQUISITION PROCESSES

In this paper we propose a lightweight solution for real-time

3D reconstruction on mobile devices. In order to address

the challenges arising from a low temporal and spatial depth

resolution and the limited computational resolution, we pro-

pose a novel multi-sensor tracking, solely using IMU as

additional sensory input. In particular, our approach comprises

the following contributions:

• We adapt the point-based framework as proposed by

Keller et al. [3] for mobile online scene reconstruction.

• For initialization of the ICP-based registration, we pro-

pose a novel EKF-based fusion approach that robustly

estimates rotational and positional pose information using

the IMU sensor in combination with extrapolated ICP

pose estimations as virtual measurements.

• We demonstrate that our approach minimizes the risk

of an ICP failure, particularly in case of a fast camera

motion.

II. RELATED WORK

The integration of the inertial tracking and 2D imagery for

3D reconstruction on mobile devices has been investigated

in several prior works. In the context of scene reconstruc-

tion based on motion stereo, inertial tracking has been used

for scene scale estimation and bridging the temporal gap

between the two camera frames which are asynchronously

acquired [4] or as initial guess of the current pose within

the scope of a photo-consistency-based tracking [5]. In [7] an

online estimation of the relative rotation between two camera

frames by integration the gyroscope data only, combined with

the information from a 2D feature point tracker, is used for

an offline structure-from-motion algorithm. Other approaches

use visual inertial odometry (VIO) as filter-based fusion of

inertial and feature point tracking data, e.g. VIO from the

Tango library [6].

In the context of scene reconstruction from depth data,

several approaches use additional sensory information, such

as inertial tracking and visual tracking, in order to improve

camera pose estimation.

Kähler et al. [17] estimate rotational and translational

components of the camera pose separately from different

tracking sources. The IMU data in connection with a fusion

algorithm are used for orientation estimation whereby ICP and

the colour-based tracker only optimize position. This way the

rotational drift is reduced.

Klingensmith et al. [18] incorporate VIO from a Tango

mobile device, which fuses inertial data with visual odometry,

based on feature tracking using a fish-eye camera. The low

depth frame rate of the range camera of ≈ 3 − 6 Hz doesn’t

allow for standard ICP-based pose estimation. Thus, the ICP

is initialized with the pose from Tango VIO and refined

incrementally. The approach is designed for large scale scene

reconstructions with low to moderate reconstruction resolution

of 2−3 cm and yields camera drift of ≈ 5 m in the case of long

trajectories (≈ 175 m). In [16] the authors further improved

their approach by applying a corrective transformation to the

Tango-based pose estimation for ICP initialization in order to

compensate the VIO drift. The correction term is updated with

each depth frame using the difference between the initial guess

and the final ICP pose.

Huai et al. [19] combine inertial data with ICP and SIFT

odometry on a heavy-weight mobile platform consisting of a

notebook and a Microsoft Kinect range camera. The integra-

tion of IMU readings provides a predicted camera orientation,

which is used for initialization and validity check of the ICP.

In case ICP fails, SIFT odometry is used. If both ICP and

SIFT odometry fail, the incremental motion from the inertial

tracking is used as final pose estimation. An EKF is used to

correct the IMU-based predictions, where ICP or SIFT odom-

etry serve as measurements for position correction, whereas

the states with a small acceleration are utilized for roll and

pitch correction by means of the gravity direction from the

accelerometer.

In the context of SLAM, Chow et al. [20] describe a 3D ter-

restrial LiDAR system that integrates a MEMS IMU and two

Microsoft Kinect sensors to map indoor urban environments

in a stop-and-go fashion. The pose estimation is achieved

by an implicit iterative extended Kalman filter (IEKF) that

predicts poses integrating IMU data and gets measurements

from visual tracking. The latter uses alternatively ICP-based

point cloud matching initialized by sparse 3D feature point

matching (during the “going” state), LiDAR data (during the

“stopped” state) or 5-point monocular visual odometry (VO) in

highly textured areas or regions with few depth features. The

IMU-based pose predictions are also used for initialization of

visual tracking.

To the best of our knowledge, current approaches solely

relying on IMU data as additional sensory input are restricted

to non-lightweight platforms and non-integrated range cameras

such as the Microsoft Kinect. Niessner et al. [15] combine the
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IMU of a mobile device with a Kinect depth sensor on a laptop

platform. The inertial tracking integrates IMU data without

sensor fusion and provides an estimate of the transformation

between last and current camera pose that is used for ICP ini-

tialization. The authors demonstrate that their method reduces

the number of ICP iterations and makes the tracking more

robust in scenarios such as fast camera motion or scanning

of planar surfaces. Hervier et al. [21] propose a general

framework for the fusion of ICP-based pose tracking with

data from motion sensors by means of an invariant EKF. The

approach uses ICP noise covariances estimates on the basis

of the Fisher matrix which allows detection of unobservable

directions and prevents that information along these directions

flows from ICP “measurements” in a-posteriori pose estimates.

The pose prediction from motion data is used to initialize

the ICP. Based on this framework, an implementation with

a Kinect camera and a tri-axial gyroscope is described and

experimentally tested. Camurri et al. [22] combine ICP-based

camera tracking and inertial tracking in order to solve the

SLAM problem for legged robots in a three-folded manner:

the pose predicted by means of IMU data is used for ICP

initialization, for validity check of the ICP result and, finally,

for correction of ICP pose estimates by replacing roll and

pitch.

Refocusing on online 3D scene reconstruction, i.e. using

additional sensory information for the initialization of the geo-

metric registration, we can conclude that existing approaches

either use integrated IMU data as ICP initialization (which

requires high temporal depth resolution) or use Kalman fil-

tered IMU for orientation estimation only. More sophisticated

approaches use a second sensory input, e.g. a fisheye-based

feature tracker, in order to obtain robust position and orien-

tation estimates via Kalman filtering. In contrast to this prior

work, our approach requires only IMU as additional sensor

information in conjunction with a mobile ToF camera with low

spatial and temporal resolution and applies a fusion algorithm

including extrapolated ICP poses as virtual EKF measurements

in order to obtain a robust ICP initialization.

III. ONLINE SCENE RECONSTRUCTION

FROM RANGE MAPS

In this section, we first give a coarse overview of the

standard 3D reconstruction pipeline (Sec. III-A) and some

implementation details related to porting the standard point-

based pipeline to a mobile device (Sec. III-B).

A. 3D Reconstruction Pipeline

The process of scene reconstruction from depth data can

be considered as a pipeline whose main steps are depth

map preprocessing, camera pose estimation and model update

(see Fig. 1, the present structure representation is based on [3],

[23], a more generic description can be found for instance in

Kolb et al. [24].)

In the following we describe the single steps more in detail.

Depth Map Preprocessing: The incoming depth map Di is

usually filtered for outlier removal and data smoothing.

Fig. 1. 3D reconstruction pipeline.

The projection of the 3D point (x, y, z)T into the image

plane of a depth camera is described with the pinhole

camera model as

z(u, 1)T
= K (x, y, z)T (1)

where u = (ux , u y)
T are pixel coordinates, z = Di (u)

the depth value and K is the intrinsic camera matrix.

The standard approach for the calculation of 3D positions

from depth images is the inverse transformation [2]

Vi (u) = Di (u)K −1(uT , 1)T (2)

where Vi is the vertex map. In addition to the positions,

other vertex attributes such as normals, stored in a normal

map Ni , or 3D point sizes will be calculated, depending

on the specific approach.

Camera Pose Estimation: The vertex map Vi created in the

first pipeline step contains 3D positions in camera coordi-

nates. However, the fusion of the incoming points with the

already reconstructed part of the scene requires a common

coordinate system, i.e. the respective camera pose in a

reference coordinate frame must be known. A widely

used solution for camera pose estimation is ICP [25].

The ICP algorithm iteratively aligns two overlapping

geometries estimating the rigid transformation between

them. It will be achieved by performing the following

steps:

1) transform the input geometry to the target coordinate

system using the currently estimated transformation,

2) for each transformed input point seek for a correspond-

ing (closest) point in the target geometry, and

3) for the set of corresponding points minimize the

determined alignment error function by adjusting the

transformation.

The above procedure is iterated until the alignment error

is small enough.

In the context of 3D scene reconstruction, ICP is com-

monly used to align the incoming depth map Di to

the so-far accumulated scene model, i.e. in a frame-to-

model approach. Commonly, the point-to-plane alignment

error function is used in order to estimate the differential

transformation Ti→(i−1) between two successive camera

poses:

E(Ti→(i−1)) =

∑

u

〈(Ti→(i−1)Vi (u) − VM,i−1(û)),

NM,i−1(û)〉2. (3)
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where VM,i−1 is the model vertex map in the camera

coordinates of frame i − 1 and û the estimated pixel

coordinates of the model point corresponding to Vi (u).

This error function measures the distance between the

incoming point and the tangential plane of the model at

the corresponding model point.

The ICP algorithm solves a highly non-linear optimiza-

tion problem. Thus, its successful convergence heavily

depends on a good initial guess for the camera pose.

In the case of high temporal and spatial resolution range

cameras such as the Microsoft Kinect, a simple initial-

ization, such as the identity matrix [2], is fully sufficient.

In our case, i.e. for a low temporal and spatial range

camera resolution, this leads to misalignments, i.e. the

optimization results in a local minimum, which yields

significant geometric artifacts (e.g. ghost geometries).

In order to cope with faster motions, the ICP is com-

monly applied in a hierarchical manner [2]. By setting

up an image pyramid, coarser version of the underlying

matching problem are deduced. Solving this hierarchical

optimization in a coarse-to-fine approach leads to a

refinement of the camera pose which can overcome local

minima to some extend.

Model Update: After camera pose estimation, the currently

incoming range data is fused with the so-far accumu-

lated model data. In the case of point-based geometry

representation, as proposed by Keller et al. [3], the final

correspondences are used and the following attributes are

averaged into the model: position, normal, and point size.

In order to cope with outliers and isolated points,

the model points have a confidence attribute, which

counts the number of merges, i.e. observations. Points

are tagged as “unstable” or “stable”, if their confidence

counter is below or above a given threshold, respectively.

Furthermore, incoming points observed from larger dis-

tances than the corresponding model point are withdrawn

from accumulation, as they are less reliable than the

accumulated observations.

B. Implementation Details

In this paper, we basically use the point-based online scene

reconstruction framework proposed by [3], [23]. Due to its

memory efficiency, this approach does not impose specific

modifications with respect to memory or algorithmic layout

when porting to a mobile platform. Still, there are some

adaptions required in order to use it in the case of range

cameras with low temporal and spatial resolution, such as the

picoflexx [9]. Highly integrated ToF cameras are designed for

near-range and wide-field-of-view types of applications. The

wide field of view leads to severe camera distortions which

need to be accounted for by camera calibration and in the

pre-processing of the range maps. Furthermore, wide field

of view in combination with low spatial resolution leads to

points with larger sizes and higher noise even at moderate

camera-to-object distances and, in average, to fewer model

point observations. This effect needs to be taken care of by

adapting the system thresholds for, e.g., the confidence counter

and the ICP convergence.

IV. MULTI-SENSOR CAMERA TRACKING WITH EKF

ICP is known to produce accurate estimations on the condi-

tion that transformations between successive camera poses are

relatively small. However, larger transformations can lead to

false results due to convergence in a local minimum, or even

to a failure due to false correspondes. On a mobile system

the probability of such critically large frame-to-frame trans-

formations increases because of a lower range camera frame

rate and longer processing times due to limited computational

resources. The latter may lead to the situation that not all

camera frames can be processed in real time, which results

in frame dropping and, consequently, reduces the effective

frame rate even more. Our camera tracking approach improves

robustness by incorporating inertial sensor data in order to

predict the camera pose that is used as ICP initialization. As a

consequence, our approach speeds up convergence as it allows

reducing the amount of image pyramid levels.

Since integrating noisy IMU data quickly leads to error

accumulation, the results of inertial tracking are commonly

fused with data from another tracking source, e.g. from a fea-

ture point-based visual odometry. An often used sensor fusion

algorithm is EKF. In our approach, however, we deliberately

do not incorporate any additional tracking device in order

to keep hardware efforts as low as possible. Alternatively,

we assume moderate change rates in human motion and

take advantage of the available ICP camera pose estimations.

In particular, we predict future camera poses by extrapolating

ICP pose estimates from previous frames and take them as

“virtual measurements” that are fused with the IMU integra-

tion results using an EKF with the objective to compensate

the errors due to the high-frequency IMU noise.

Consequently, our EKF approach aims at estimating ICP

results that is considered as true states. Since the true states

corresponding to the camera frame i are known, it is preferable

to reset the filter to these values and estimate the next

frame-to-frame transformation T(i+1)→i only, thus keeping the

error accumulation as small as possible. However, due to a

processing delay in the reconstruction pipeline the last ICP

result T ICP
i is not available at ti , i.e., at the beginning of the

next inter-frame interval i → (i +1). We address this issue by

splitting the rotational part of the camera pose Ri+1 in the prior

frame orientation Ri (base orientation) and the current frame-

to-frame rotation R(i+1)→i , i.e., Ri+1 = Ri · R(i+1)→i . The

EKF starts for each interval i → (i + 1) with zero frame-to-

frame rotation and translation and with an estimate R̃i without

waiting for the ICP result. These states are propagated by

integration of incoming IMU data within the interval. At ti+1,

i.e., at the end of the interval, the true previous orientation

RICP
i is always available and can be used in the measurement

vector that is passed to the EKF for correction of the predicted

states. Due to the split representation of the orientation, it is

possible to weight each of its components separately by setting

appropriate values in the noise covariance matrices and, thus,

to control their influence on the corrector. A generic scheme

of the tracking workflow is shown in Fig. 2.

The (partial) filter reset after each inter-frame interval and

the weighting of the orientation components according to their
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Fig. 2. Scheme of camera tracking. The components of the initial guess
estimation module are highlighted in blue, the ICP-based pose estimation
module is highlighted in green.

confidences reduces errors in the a-posteriori estimates despite

multiple prediction steps without corrections. Furthermore,

executing the more computationally expensive correction step

only once per frame supports a high tracking performance.

In the following we describe the EKF design in more detail.

A. System State and Propagation

In the following orientations are represented as unit quater-

nions q = (s, vT ), where s is the scalar and v the imagery

vectoral component. Below, all quaternions are assumed to

be normalized although we omit the normalization step for

simplicity. Regarding the time steps, k corresponds to the IMU

steps whereas the i refers to ICP frame index.

We define the state vector as

x = [q v p qb] (4)

where q is the current frame-to-frame rotation, v is the veloc-

ity, p is the translation relating to the last camera position (both

in global coordinates) and qb is the estimated last orientation

(base orientation).

Let

xk+1 = f(xk, uk, wk) (5)

be the discrete-time non-linear process function where uk is

the control parameter vector and wk is the process white noise

with normal distribution. uk consists of angular velocity ωk ,

acceleration ak , gyroscope bias b̂g and accelerometer bias b̂a ,

all expressed in local coordinates. The state propagation

x̂−

k+1 = f(x̂+

k , uk, 0) (6)

is specified with the following difference equations:

q̂−

k+1 =

1

2
�tk q̂+

k ⊗ (0, (ωk − b̂g)T ) (7)

v̂−

k+1 = v̂+

k + �tk(qrot(q̂+

b,k ⊗ q̂+

k , ak − b̂a) − g) (8)

p̂−

k+1 = p̂+

k + �tk v̂+

k (9)

q̂−

b,k+1 = q̂+

b,k, (10)

where ·
− refers to the a-priori and ·

+ to the a-posteriori

estimate, �tk is the current sample step, g is the accelera-

tion due to gravity, ⊗ represents quaternion multiplication,

and qrot(r, s) describes rotation of vector s by unit quater-

nion r.

In order to reduce the filter complexity and to increase

performance, we assume the gyroscope and accelerometer

biases to be constant over time and do not include them in the

state vector. Periodical filter resets allow avoiding large error

accumulation despite this simplifying assumption. During a

short steady phase at the beginning of each experiment we

estimate b̂g averaging angular velocity measurements over this

time interval. Analogously, the averaging across accelerometer

readings produces an estimate of the acceleration due to

gravity affected by the accelerometer bias in the reference

(start) frame g̃ = g + b̂ref
a . Thus we can approximate the

object acceleration in global coordinates rotating the measured

local acceleration ak by means of the current estimated device

orientation q̂+

b,k ⊗ q̂+

k and subtracting g̃. Thus, the right part

of the Eq. (8) can be rewritten as:

qrot(q̂+

b,k ⊗q̂+

k , ak −b̂a)−g = qrot(q̂+

b,k ⊗ q̂+

k , ak)−b̂
re f
a − g

= qrot(q̂+

b,k ⊗ q̂+

k , ak) − g̃.

The propagation of the error covariance matrix

Pk = E[(xk − x̂k)(xk − x̂k)
T
] (11)

is described according to the standard EKF formulation as

P−

k+1 = J f (x̂
+

k )P+

k J f (x̂
+

k )T
+ Q, (12)

where

J f (x̂
+

k ) =

∂f

∂ x̂+

k

∣

∣

∣

∣

∣

uk

(13)

is the Jacobian of f(x̂+

k ) and Q the process noise covariance

matrix.

At t0 (the beginning of scene reconstruction) the filter is

initialized with zero velocity, translation and orientations. In

our experiments we set the error covariance matrix to

P0 = 10−4
· Id14. (14)

As soon as new IMU values are available, the system state

vector (Eq. (7)-(10)) and the error covariance matrix (Eq. (12))

are propagated. Since the filter correction is executed only for

the last sample of each estimated interval, the intermediate

steps are given as:

x̂+

k = x̂−

k and P+

k = P−

k .

B. Measurement Model

The measurement vector is defined as:

z = [qe ve pe qICP
b ] (15)

where ·
e represents extrapolated equivalents of the state

vector components, while qICP
b is ths previous ICP camera

orientation.
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Fig. 3. Examples of estimated pdf of virtual noise. (a) δa.x . (b) δw.x .

In order to calculate zi , first the velocity ṽi , the acceleration

ãi and the angular velocity ω̃i (all in global coordinates) are

estimated with a backward Euler method.

ṽi =

{

(pICP
i − pICP

i−1)/�ti−1, if i > 0

0, else,
(16)

ãi =

{

(ṽi − ṽi−1)/�ti−1, if i > 1

0, else,
(17)

q̃ω,i =

{

2
�ti−1

(qICP
i − qICP

i−1) ⊗ q∗ICP
i−1 ), if i > 0

(1, 0T ), else,
(18)

where pICP, qICP are the translational and rotational part of the

respective ICP camera pose estimates, �ti is the time between

ICP frames i and i + 1, and q̃ω = (0, ω̃) contains the angular

velocity ω̃ as its imagery vector component.

After that, the measurements are calculated with an explicit

Euler method:

qe
i+1 = q∗I C P

i ⊗ (
1

2
�ti q̃ω,i ⊗ qICP

i ), (19)

ve
i+1 = ṽi + �ti ãi , (20)

pe
i+1 = pICP

i + �ti ṽi . (21)

The measurement function h(·) is linear and only copies the

a-priori estimates:

h(x̂−

k+1) = x̂−

k+1. (22)

C. Noise Modeling

Besides bias, whose treatment is explained in IV-A, the IMU

measurements are perturbed by white noise w, which is

commonly modeled as Gaussian [26]. w is considered in the

process noise covariance matrix Q.

The noise in the virtual measurements arises from uncertain-

ties in the estimation of the motion parameters (Eq. (16)-(18))

used by the extrapolation. More precisely, the linear and

angular velocities, estimated over an interval (i − 1) → i ,

and the acceleration over (i − 2) → i , are assumed to be

constant over the next interval i → (i + 1), which generally

is an approximation and not the true state. Having the camera

pose T ICP
i+1 , we can retrospectively calculate the true values

vi , ai and ωi substituting the left parts of the Eq. (19)-(21)

with ICP results and solving them for the respective motion

parameters. Then, the current deviations from the true values,

normalized by the time intervals, can be obtained as

�vi = (ṽi − vi )/�ti (23)

�ai = (ãi − ai )/�ti (24)

�ωi = (ω̃i − ωi )/�ti . (25)

We applied the above calculations to the outcomes of our

three scene reconstruction experiments in order to estimate

the distributions of �v, �a and �ω (see Fig. 3(a)-3(b)). The

results demonstrate that they follow a Gaussian distribution

with zero mean, which justifies modeling them as white

Gaussian noise.

Even though, both noise covariance matrices are concep-

tually related to real-world physical noise measures, we treat

them as filter tuning parameters by setting them as constant,

diagonal matrices. The matrix values are determined experi-

mentally by manual optimization with respect to filter response

and noise rejection as described hereafter. This kind of sim-

plification is repeatedly applied in the context of inertial

navigation, e.g. [27], and it yields satisfactory precision at

minimal computational costs, i.e. minimal time delays for the

overall system (see Sec. V-B).

The values of the noise covariance matrix Q are determined

taking the following considerations into account. The integra-

tion of angular velocity (after bias subtraction) delivers rather

precise orientation estimations. The velocity estimation, and,

even worse, the position estimates, are less precise due to

the high-frequency noise in the acceleration values and the

double integration. After manual optimization, we set Q’s

diagonal matrix elements that correspond to q, v, p and qb to

10−5, 10−2, 10−1 and 10−5, respectively. The measurement

noise covariance matrix R is set in an analogous manner.

Initially, we conducted some simulation experiments in order

to get more insight into the precision of the ICP extrapolation

values. We found a higher precision for positional and lower

precision for rotational values. The base orientation from ICP,

interpreted as true state, gets the highest confidence, i.e. the

smallest noise value. After manual optimization, the R’s values
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Fig. 4. The test scenes used for evaluation. (a) Hen scene and Tango tablet with mounted picoflexx camboard in start position. (b) Hen Duplo scene.
(c) Office scene.

Fig. 5. Reconstruction of the geometric resolution target. Space widths left
to right: 22 mm, 14.5 mm, 9 mm, 6 mm, 4 mm, 2.5 mm and 1.5 mm.
(a) Reconstructed target.

that correspond to qe, ve, pe and qICP
b are set to 10−3, 10−6,

10−5 and 10−13, respectively.

From the perspective of accuracy and precision, more

sophisticated approaches to calculate Q and R incorporating,

e.g., measured IMU noise values and dynamic adaptation,

are promising. However, besides the additional work load

and resulting loss in temporal performance, the asymmetrical

design of our EKF, i.e. the unequal number of propagation and

correction steps, is a major challenge for conceptual design

and implementation of these kinds of filters. For instance,

a commonly used adaptive approach applies noise covariance

matching by means of innovation or residual covariances

during each correction step [28], [29]. These covariances are

estimated within a sliding window of the n latest measurement

updates, and it is assumed that the error covariance matrix P

(Eq. 11) is constant within this temporal window [30]. This

assumption, however, is unjustifiable in our case, as ≈ 10

system propagations that update P (see Eq. 12) occur between

two consecutive measurement updates. In future work, we will

investigate more sophisticated, adaptive filter approaches that

lead to improved filter response and noise rejection at reason-

able computational costs.

D. Correction and Filter Reset

Once a new camera frame i + 1 initiates a new cycle of the

reconstruction pipeline (see Fig. 1), the estimation of the pose

transformation for the interval i → (i + 1) is terminated and

the result T̂ EKF
(i+1) →i is available for the ICP pipeline module.

At ti+1 , i.e. at the end of the interval, the virtual measurements

are computed via ICP extrapolation (Eq. (19)-(21)) and the

EKF correction is executed. Due to the linearity of h(·) the

Kalman gain equation can be written in a simplified form:

Kk+1 = P−

k+1(P−

k+1 + R)−1. (26)

Knowing the Kalman gain, the a-posteriori estimates of the

system states and of the error covariance matrix are computed:

x̂+

mi
= x̂−

mi
+ Kmi (zmi − x̂−

mi
), (27)

P+

mi
= (I − Kmi )P−

mi
, (28)

where mi is the last IMU sample index in the current inter-

frame interval i → (i + 1).

Than the current camera pose estimate is determined as

p̂Init
i+1 = pICP

i + p̂+

mi
, (29)

q̂Init
i+1 = qICP

i ⊗ q̂+

mi
. (30)

After the submission of the pose frame-to-frame component

to the ICP module, the EKF is reset for the next inter-frame

interval (i + 1) → (i + 2). Let

x̂0i+1 = g(x̂−

mi
, qICP

i ) (31)

be the reset function that re-initializes the state vector for the

interval (i + 1 → i + 2) and operates as:

q̂0i+1 = (1, 0T ) (32)

v̂0i+1 = v̂+

mi
(33)

p̂0i+1 = 0 (34)

q̂b,0i+1 = qICP
i ⊗ q̂+

mi
(35)

Consequently, the errors in the frame-to-frame translation and

rotation are not propagated to the next interval and the base

orientation includes only an error from the last frame-to-frame

rotation estimate. Finally, the error covariance matrix P is

re-initialized:

P0 = Jg(x̂
+

mi
)P+

mi
Jg(x̂

+

mi
)T , (36)

where

Jg(x̂
+

mi
) =

∂g

∂ x̂+

mi

∣

∣

∣

∣

qICP
i

(37)

is the Jacobian of g(x̂+

mi
). Since the part which relates to

the frame-to-frame translation and rotation is cleared to zero,

we reinitialize the corresponding diagonal values like in

Eq. (14).
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TABLE II

HEN SCENARIO: THE ROTATIONAL AND POSITIONAL DRIFT ERRORS, AS WELL AS THE TOTAL NUMBER OF ITERATIONS

FOR THE ICP AND THE ICP + IMU METHOD FOR DIFFERENT FRAME DROPPING (ALL, 1/2, 1/4) AND DIFFERENT

PYRAMID LEVEL (l = 3, l = 2, l = 1). ∅ INDICATES ICP FAILURE

TABLE III

HEN_DUPLO SCENARIO: THE ROTATIONAL AND POSITIONAL DRIFT ERRORS, AS WELL AS THE TOTAL NUMBER OF ITERATIONS

FOR THE ICP AND THE ICP + IMU METHOD FOR DIFFERENT FRAME DROPPING (ALL, 1/2) AND DIFFERENT

PYRAMID LEVEL (l = 3, l = 2, l = 1). ∅ INDICATES ICP FAILURE

TABLE IV

OFFICE SCENARIO: THE ROTATIONAL AND POSITIONAL DRIFT ERRORS, AS WELL AS THE TOTAL NUMBER OF ITERATIONS

FOR THE ICP AND THE ICP + IMU METHOD FOR DIFFERENT FRAME DROPPING (ALL, 1/2) AND DIFFERENT

PYRAMID LEVEL (l = 3, l = 2, l = 1). ∅ INDICATES ICP FAILURE

E. Synchronization

Although incoming depth images and IMU data are

provided with timestamps, the respective clocks are unsyn-

chronized. In our implementation we use a simple synchro-

nization approach considering relative times between samples.

The EKF is initialized with the first incoming depth image.

The arrivals of subsequent depth images serve as synchroniza-

tion events. At each such synchronization event, we compare

the time �tD between two last depth image timestamps

(camera inter-frame time) and the integration time �tEKF of

the EKF, accumulated between the events provoked by the

corresponding images.

If �tEKF > �tD , the number of integration steps is cut off

to match �tD . If �tEKF < �tD , we cut off the corresponding

IMU raw data at the beginning of the next interval.

V. RESULTS

A. Experimental Setup and Evaluation Criteria

The system described above is implemented on a Tango

Yellowstone Tablet with a NVIDIA Tegra K1 processor.
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TABLE V

HEN_SLOW SCENARIO: THE ROTATIONAL AND POSITIONAL DRIFT ERRORS, AS WELL AS THE TOTAL NUMBER OF ITERATIONS

FOR THE ICP AND THE ICP + IMU METHOD FOR DIFFERENT FRAME DROPPING (ALL, 1/2, 1/4) AND DIFFERENT

PYRAMID LEVEL (l = 3, l = 2, l = 1). ∅ INDICATES ICP FAILURE

Fig. 6. The Office scene reconstruction results. (a) reconstructed with ICP + IMU method, 1/2 frames, l = 1. (b) shows ghost artifacts by the reconstruction
with ICP method, All frames, l = 3.

The range data are provided by an external CamBoard

picoflexx fixed on the tablet and connected via USB. The

picoflexx provides ≈ 15 FPS at a resolution of 224 × 171 px.

For a comparison of principle characteristics of the equip-

ments used in our handheld system and in a recent desktop

solution [23], they are summarized in the Tab. I.

In order to evaluate the achievable accuracy with the given

system, we designed a geometric resolution target consisting

of bars and spaces of different widths (see Fig. 5(a)). The

width decreases from left to right: 22 mm, 14.5 mm, 9 mm,

6 mm, 4 mm, 2.5 mm and 1.5 mm. We capture the target from

a distance of 0.5 m, which corresponds to a theoretical point

diameter of ≈ 2.5 mm (see Tab. I). Fig. 5(a) shows the result

of the target reconstruction. The two largest spaces are clearly

recognisable, the next two are partially closed and the space

of 4 mm is only distinguishable as a groove without holes. The

space smaller than 4 mm cannot be recognized. This result is

expected, as the imaging system’s optics, e.g. it’s point-spread

function, limits the system resolution.

The depth camera is calibrated against the integrated RGB

camera of the tablet using standard calibration methods [31].

In order to calculate the complete calibration matrix we use

the transformation between RGB camera and IMU from the

Tango library.

We demonstrate an improvement of tracking robustness by

our method applying extreme scenarios with fast handheld

camera motions and abrupt directional changes. In the exper-

iments we use three different scenes (see Fig. 4(a)-4(c)), for

each of them we acquired a data set consisting of range and

IMU data. The first scene, with relatively sparse geometric

details, is composed of a gypsum hen figure and two cubes

with gypsum eggs thereon (Hen). For the second data set Hen

was extended with some Lego Duplo figures (Hen_Duplo).

The third scene shows an office desk (Office). The data

was acquired by moving the camera around the respective

scene with loop closure. In addition, we recorded the (Hen)

scene with slower, smoother camera movements (Hen_Slow)

in order to evaluate the system under moderate motion

conditions.

We compare the result of our tracking method (ICP + IMU)

with the ICP initialized with identity matrix (ICP) in consid-

eration of the following aspects.
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Fig. 7. Distance quality of EKF estimate Init_EKF comparing with the standard initialization approach Init_Id for the Office scenario with frame
dropping All, 1/2.

Fig. 8. Angular quality of EKF estimate Init_EKF comparing with the standard initialization approach Init_Id for the Office scenario with frame
dropping All, 1/2.

Levels of Image Pyramid: Executing the ICP on several

levels of the input image stabilizes the camera pose

estimation; see Sec. III-A. However, this hierarchical

approach requries additional computations and mem-

ory. We demonstrate that due to the enhanced initial

guess by ICP + IMU, we obtain good correspondence

pairs already at the full image resolution, thus decreas-

ing the overall computation and memory requirements.

In our experiments we use l = 3, l = 2 and l = 1 pyramid

levels.

Frame Dropping: The throughput of the reconstruction

pipeline on the given mobile hardware is ≈ 8 FPS while

the picoflexx delivers ≈ 15 depth frames per second.

Thus, in real time the pipeline is unable to process all

data and has to drop some frames. Such an online frame

dropping depends on different internal factors of the oper-

ating system and is therefore unpredictable. In order to

achieve reproducible results, we used a controlled frame

dropping approach in our experiments. This approach

processes a predefined set of depth images, independently

of the processing time of the mobile device, leading to test

sequences All, 1/2 and 1/4 that contain all, each second

and each forth depth frame, respectively. The frame drop-

ping enlarges pose transformation between consecutive

processed frames and leads to similar inputs as capturing

the same motion at a higher speed.
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In order to evaluate the overall tracking precision and global

drift errors, we setup the camera path as loop-closures, i.e.

with the same start and end pose. Thus, we can calculate

the positional and rotational drift for each test sequence and

pose estimation method as absolute differences between the

first and final estimated position and orientation respectively

(see Tab. II-V). Large drift errors indicate unreliable pose esti-

mations: in cases where they exceed the specified thresholds

( 0.15 m for positional and 10◦ for rotational error), we place

the respective results in parentheses, even though ICP itself

did not fail, i.e. no matrix singularity occurred.

A reduction of image pyramid does not automatically lead

to a smaller total number of ICP iterations since a bad initial

guess can slow down the convergence on lower pyramid levels.

In order to demonstrate the impact of pyramid reduction on

the computational effort, we consider for each experiment the

mean and the standard deviation of the total iteration number.

Finally, we evaluate the enhancement of the initial guess

by our method considering the difference in position and

orientation between the EKF estimate, i.e., the ICP’s initial

pose, and the final pose after ICP (Init_EKF) and comparing

it with the respective difference between the last and current

ICP pose (Init_Id), which corresponds to the common ICP

initialization with the identity matrix.

Besides the demonstration of an improvement over the

standard ICP initialization, we also compare our method with

the Tango VIO-based initialization approach proposed in [16].

For this purpose, we saved the respective pose from Tango

tracking for each incoming depth image during the Office

scene capturing. After the scene is reconstructed, we calculate

the pose predictions offline, using the stored Tango data and

the ICP results.

Again, we obtain differences between Tango-based predic-

tions and ICP poses (Init_Tango).

B. Evaluation

The experimental results in Tab. II-IV show a considerable

improvement of tracking robustness by ICP + IMU. Consid-

ering fast motion scenarios, ICP delivers reliable results only

for one configuration, i.e. the Hen_Duplo scenario (Tab. III)

with all pyramid levels and all frames (which is de-facto

not achievable in online mode), whereas ICP + IMU yields

valid reconstruction in almost all scenarios and configurations.

Fig. 6(b) shows visual artifacts due to a large drift error

in the Office scene reconstructed by ICP using All frames

and l = 3. The comparison Fig. 6(a) shows the more precise

reconstruction results achieved with ICP + IMU using fewer

frames (1/2) and pyramid level (l = 1). Note that the artifacts

on the computer screen are attributable to the general weakness

of ToF cameras in capturing strongly light absorbing, i.e. dark,

surfaces.

For the frame dropping rate 1/2 that is close to the online

frame dropping due to the hardware limitations, ICP + IMU

works successfully in all experiments, which demonstrate

real-time capability of our method. Furthermore, ICP + IMU

preserves tracking stability with fewer pyramid levels in most

cases. In particular, in all tests with the “online-like” frame

dropping 1/2 the pose estimation on the basis of original image

resolution (l = 1) was possible.

On the other hand, in the experiment with a slow camera

motion (Tab. V), suitable for scene reconstruction with ICP,

the application of ICP + IMU doesn’t deteriorate tracking

results and exhibits higher robustness under the highest frame

dropping (1/4) with a reduced image pyramid (l = 2, l = 1).

As can be seen in Tab. III and V, in those experiments where

both methods have delivered reliable results, the mean iteration

number in ICP + IMU is only marginally below the one of

ICP. In general, however, ICP + IMU achieves a robust result

with considerable fewer overall iterations when fewer pyramid

levels are used. As expected, the drift errors are comparable

in cases where ICP and ICP + IMU deliver reliable results.

Concerning the difference between the initial guess and final

pose, Fig. 7 and 8 show the absolute errors for a sequence

of ≈ 130 frames of the Office scenario with l = 1 for frame

dropping All and 1/2. In the vast majority of the frames

there is a significant improvement by the EKF prediction. The

overall relative error Init_EKF/Init_Id for the range image

sequence of All frames is 0.5392±0.6965 for the mean relative

positional and 0.4556±0.3697 for the mean relative rotational

error. Dropping half of the frames (1/2), we get a mean relative

position error of 0.4348±0.4546 and a mean relative rotational

error of 0.3283 ± 0.2876. Thus, for faster motion we get

relatively better initializations using our method.

As a comparison, the Tango-based initialization according

to [16] produces with the frame sequence 1/2 a mean relative

error Init_Tango/Init_Id of 0.2926 ± 0.3147 in position

and 0.4349 ± 0.4659 in orientation. The results demonstrate

that our method is only slightly less precise in position

prediction, and at the same time has a slightly higher precision

in orientation prediction. In summary, we can obtain an

initial guess precision comparable with the above VIO method

without requiring a fisheye camera with large opening angle

and high temporal and spatial resolution.

The processing of an individual input depth frame according

to Fig. 1 requires ≈ 23 ms for the preprocessing stage,

20 − 25 ms and ≈ 11 ms for the pose estimation stage in the

l = 3 and the l = 1 case, respectively, 41 − 51 ms for the depth

map fusion, and 35 − 57 ms for the surface reconstruction.

C. Limitations

1) Gap in Sensor Sampling Rate: A higher sampling fre-

quency of IMU allows to bridge longer intervals between

depth images. However, the integration of raw IMU data

leads to a considerable sensor drift due to error accumulation

(see discussion in Sec. IV). Although our method partially

corrects the integration errors by the EKF at the end of each

inter-frame interval, the error increases for longer temporal

gaps between successive processed depth images, causing the

a-posteriori estimates of the EKF be less precise. Furthermore,

larger inter-frame intervals lead to a decreased reliability of

the ICP pose extrapolations, particularly in the case of abrupt

changes of motion direction. Thus, the difference between

initial guess and final pose in our method increases by higher

frame dropping rates albeit, as a general tendency, remaining
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TABLE VI

OVERVIEW OF THE FUNDAMENTAL CHARACTERISTICS OF MOBILE APPROACHES FOR SCENE RECONSTRUCTION FROM RANGE DATA:
REQUIRED SENSORS, APPLICATION OF SENSOR FUSION, INTERNAL MODEL REPRESENTATION AND

SYSTEM PERFORMANCE (VALUE IS N/A IF NO DATA ARE AVAILABLE)

below this parameter in the standard approach. For example,

only one “fast” data set (Hen)) can be processed with the

dropping rate 1/4 (see Tab. II).

The only way to counteract this problem is to reduce

the inter-frame gap by faster depth frame processing, which,

in turn, requires novel reconstruction approaches.

2) Noise Estimation: A further aspect that can limit the

prediction precision is low accuracy of the noise estimation.

As described in Sec. IV, we tuned the process noise covari-

ance matrix experimentally, however, a measurement-based

noise estimation, for instance using Allan variance [32] might

provide more accurate results. Concerning the noise of ICP

extrapolations, an online calculation depending on the length

of the inter-frame interval may lead to a more appropriate

noise estimation model.

3) ICP Failure Handling: A good initial guess of the current

camera pose can prevent ICP errors, such as convergence

in local minima or false correspondence association, related

to large frame-to-frame transformations. However, a lack of

geometric features, e.g. when sliding along planar geometries,

also results in ICP stability problems. In these cases the ICP

and EKF estimations diverge. If this constellation appears in

several successive frames, tracking failure may occur. The

experiment Hen, All, 1/2, l = 1 (Tab. II) shows that in this

particular case even discarding frame prevents tracking failure.

A possible solution for the above problem is to discard

ICP results for such frames and continuing inertial-based

estimation until new reliable ICP estimates are available. This

requires sophisticated ICP error detection [15], [21]. This

improvement is orthogonal to our proposed method and will

be integrate in our system as part of the future work.

VI. CONCLUSIONS

In this paper we presented a novel, lightweight solution for

real-time 3D reconstruction on mobile devices that uses IMU

data as the only additional sensory input. Our pose estimation

incorporates a novel EKF-based fusion of inertial tracking

data with extrapolated ICP camera poses in order to initial-

ize the ICP pose estimation. We demonstrate considerable

enhancement of the tracking robustness in comparison with

the common initialization approach. On the one hand, our

method shows a higher stability in the case of fast camera

motion. On the other hand, our approach reliably deals with

the low temporal resolution of highly integrated depth cameras

such as the picoflexx. In addition, the robust ICP initialization

allows to reduce the number of ICP image pyramid levels and,

consequently, to achieve a higher depth frame throughput. All

in all, our approach minimizes the negative impact of hardware

limitations existing on a mobile system and allows 3D point-

based scene reconstruction for fast camera motion. Tab. VI

summarizes some distinctive characteristics of the approaches

for scene reconstruction from range data on mobile devices,

illustrating the most important conceptual differences between

our method and existing solutions.1

In future work we will improve the robustness of our

tracking method in scenarios with sparse geometric features by

integrating a corresponding ICP failure detection logic. Thus,

also ICP failures due to scenes with low geometric feature can

be handled more robustly. Furthermore, we aim to enhance the

accuracy of EKF by means of an adaptive noise estimation.
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Abstract: In the last decade, Time-of-Flight (ToF) range cameras have gained increasing popularity

in robotics, automotive industry, and home entertainment. Despite technological developments,

ToF cameras still suffer from error sources such as multipath interference or motion artifacts.

Thus, simulation of ToF cameras, including these artifacts, is important to improve camera and

algorithm development. This paper presents a physically-based, interactive simulation technique for

amplitude modulated continuous wave (AMCW) ToF cameras, which, among other error sources,

includes single bounce indirect multipath interference based on an enhanced image-space approach.

The simulation accounts for physical units down to the charge level accumulated in sensor pixels.

Furthermore, we present the first quantified comparison for ToF camera simulators. We present

bidirectional reference distribution function (BRDF) measurements for selected, purchasable materials

in the near-infrared (NIR) range, craft real and synthetic scenes out of these materials and

quantitatively compare the range sensor data.

Keywords: time-of-flight; sensor simulation; BRDF

1. Introduction

Amplitude modulated continuous wave Time-of-Flight (AMCW-ToF) depth sensors provide

per-pixel distance information by estimating the phase shift of a received amplitude modulated light

signal that has been emitted by an active light source using a reference signal [1]. This phase shift

is proportional to the time light traveled from the light source to the sensor. Despite recent rapid

development progress, AMCW ToF cameras still suffer from several error sources. Some of the major

effects that severely influence AMCW ToF range measurements are motion artifacts, flying pixels and

multipath interference (MPI).

The simulation of AMCW ToF cameras including reproduction of the major sensor effects benefits

the development of new sensors by allowing tests of variations to the sensor design [2], as well as

the development of down-stream data processing algorithms by providing ground truth and test

data [3,4]. AMCW ToF simulation requires modeling the illumination, the light propagation in the

scene, and the individual sensor pixel behavior. Furthermore, computationally efficient approaches are

of great importance for simulating dynamic scenes and/or for parameter studies in hardware layout

and algorithm design [2,5].

Up to now, there has only been very little research in multipath interference (MPI) simulation

for AMCW ToF cameras. Meister et al. simulate MPI using non-interactive global illumination

schemes, which implicate very high computational costs of approximately 2 h per depth image,

including simple analytic bidirectional reflectance distribution functions (BRDFs) [4]. Furthermore,

there is very little research in providing quantitative comparison to real-world measurements, which is

indispensable to reliably predict the behavior of prospective AMCW ToF cameras and their application.

Sensors 2018, 18, 13; doi:10.3390/s18010013 www.mdpi.com/journal/sensors
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Such a comparison needs to take real scene material properties into account, typically provided by

BRDF measurements. We are not aware of any work that uses such measurements at the relevant

near-infrared wavelength for AMCW ToF simulation.

In this paper, we present a physically based simulation method for AMCW ToF cameras that runs

on interactive frame rates. Our approach is based on Lambers et al. [2], which already accounts for

physical units. Our simulation approach is fully GPU-based and comprises the following contributions:

• Enhancement of the Reflective Shadow Map (RSM) algorithm [6] for GPU-based, interactive,

single-bounce, image-space, multipath interference simulation.

• BRDF-based reflection simulation for measured real-world materials.

• Extension of the simulation model to include realistic electronic and optical shot noise.

Furthermore, this paper presents evaluation approaches for ToF simulations based on data

captured by real cameras with the following contributions:

• Measurement of isotropic BRDF at 850 nm wavelength for several specified materials that can be

purchased worldwide and thus can be used to reproduce scenes reliably.

• Quantitative evaluations of the proposed simulator based on AMCW ToF camera acquisition

of real-world reference scenes. We clearly see the improved ToF simulation results of our

single-bounce approach over direct simulation in terms of quality, and over higher-order global

illumination simulation [4] in terms of computational performance.

• Publicly available simulator, BRDF data including references to material vendors, geometry of

the reference scenes, and real AMCW ToF camera measurements, in order to promote further

activities in quantitative evaluation of AMCW ToF simulation.

2. Related Work

Keller and Kolb [5] present a GPU-based AMCW ToF simulation approach that computes light

propagation in real-time by using basic rasterization techniques, including local illumination with

a Lambertian reflection model. Their simulation approach generates so-called phase images, i.e., the raw

images acquired by a AMCW-ToF camera, and can reproduce spatio-temporal artifacts such as flying

pixels and motion artifacts.

Meister et al. [4] propose an AMCW ToF simulation method that adopts a global illumination

technique, i.e., bidirectional path tracing, to simulate multipath interference. This approach is

computationally very expensive and only suitable to simulate static scenes. They provide a visual

comparison with real data on range image basis for two scenes (“corner” and “box”) as well as limited

quantitative comparison of simulated data with real data captured with a PMDTec CamCube 3 (pmd

technologies ag, Siegen, Germany). Neither real material properties are acquired nor used within

their simulator.

Alternative AMCW ToF sensor simulation approaches have a stronger focus on the sensor

hardware. Schmidt and Jähne [7] model optical excitation and target response to simulate the

conversion of photons to electrical charges. Their approach does not simulate light propagation

and illumination.

Lambers et al. [2] introduce a realistic sensor model to simulate both the photometric relations

in the scene including light propagation and illumination, and physically correct charges at a sensor

pixel’s readout circuit level, that result from incoming photons. Their simulation is limited to scene

materials that are Lambertian reflectors. They provide quantitative comparison of AMCW ToF camera

simulation data with real captured data, but their evaluation is limited to sensor pixel based plausibility

checks of their simulation model and ignores characteristic error sources.

So far, none of the existing AMCW ToF simulation approaches is capable of simulating MPI effects

at interactive rates, none take realistic scene material properties into account in the light propagation

simulation, and no quantitative evaluation is available at range image level.
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Ritschel et al. [8] give an overview of interactive global illumination methods.

These approximations of global illumination are more suitable to simulate MPI effects at interactive

rates than the more general, but computationally much more expensive methods, such as the

bidirectional path tracing used by Meister. Image-space approximations of global illumination

such as Reflective Shadow Maps [6] are especially efficient and sufficient for our use case despite

their limitations.

In addition to global illumination approximation, realistic scene materials need to be taken into

account to allow comparisons of simulated results and measurements. Most existing BRDF databases

for material properties, such as the widely known MERL [9] and CUReT [10] databases, focus on

visible wavelengths and are typically limited to RGB channels.

Lacking near-infrared BRDF measurements, Mutny et al. [11] use an Oren–Nayar BRDF model

with parameters fitted from the CUReT database for AMCW ToF simulation using Meister’s simulator

to create a database of scenes for correcting multipath artifacts based on a machine learning approach.

Choe et al. [10] recently published the first BRDF database for near-infrared wavelengths,

demonstrating that material properties at these wavelengths may differ significantly from those

at visible wavelengths. They focus on finely-structured materials such as fabrics. In contrast, in this

work, we focus on standardized materials that are available for purchase worldwide, in order to allow

reliable reproduction of scenes with defined material properties.

3. Time-of-Flight Simulation

Our simulation model is based on Lambers et al. [2] that consists of two parts, the direct

light propagation (Section 3.1) and sensor pixel behaviour (Section 3.2). We describe our extension

of this model with respect to BRDF-based materials (Section 3.1), multipath effect simulation via

global illumination approximation (Section 3.3), and a realistic noise model (Section 3.4). For further

information on the AMCW ToF principle, we refer the reader to, e.g., [1,2,12].

3.1. Direct Light Propagation

The model described by Lambers et al. [2] assumes Lambertian reflectors only. We directly extend

this model to use BRDFs. Starting with the power PL[W] of the camera light source L, we can deduce the

radiant intensity I(θL→P) from L to a surface point P. This radiant intensity can be assumed constant

for an isotropic light source model, or taken from a vendor-provided intensity table depending on the

angle θL→P between the main light direction~nL and P − L; see Figure 1b.

readout circuit A

readout circuit B

area AS

optical active delay τ

s

g

AMCW sensor pixel

IR light source
incoherent

(a) Scheme of a AMCW ToF camera

P′

P

AMCW camera
with illum. unit

~nP
~nP′

LP′→P→S

S
L LL→P→S

L
L→P ′→P

(b) Direct and single-bounce indirect illumination

Figure 1. Scheme of a AMCW ToF camera including the pixel layout and the optically active pixel area

AS (gray) with the two readout circuits A (red) and B (green) (a); direct illumination and one path of

single-bounce indirect illumination in the AMCW ToF simulation (b).

The irradiance EL→P [W/m2] of P resulting from direct illumination is:

EL→P = IL(θL→P)
cos θP→L

‖P − L‖2
, (1)
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where θP→L is the angle between L − P and the surface normal ~nP at P. This notation will be used

throughout the following derivations.

The resulting direct-illumination radiance LL→P→S from surface point P to sensor S depends on

the material of the surface, described by its BRDF fL→P→S at P for incoming light direction L → P and

outgoing light direction P → S:

LL→P→S = EL→P · fL→P→S. (2)

3.2. Sensor Pixel Model

The AMCW ToF sensor consists of an array of w × h sensor pixels. Each sensor pixel accumulates

charges in the readout circuits, A and B, depending on its irradiation; see Figure 1a. The irradiance ES

of the pixel’s photosensitive area AS resulting from direct illumination is given as

EL→P→S = LL→P→S · cos θS→P. (3)

EL→P→S determines the optical power PS[W] and from that the energy WS[J] that is accumulated

in one pixel over the integration time T for a common AMCW duty cycle of 50%:

PS = ES · AS, WS = PS · T · 0.5. (4)

The conversion into electron–hole pairs in the pixel depends on the quantum efficiency νq,

which describes how many electrons are generated per incoming photon, and the wavelength λ:

Ntot =
WS

νq ·
q·λ
h·c

, (5)

where h is the Planck-constant, c is the speed of light, and q is the value of elementary charge.

This total charge Ntot = NA + NB is accumulated in the two circuits A and B depending on the

phase shift φ, the internal phase delay τ, and the achievable demodulation contrast D ∈ [0, 1]:

NA =
Ntot

2
(1 + D · f (τ, φ)), NB =

Ntot

2
(1 − D · f (τ, φ)). (6)

Here, f is the correlation function resulting from the mixing of the optical signal s with the delayed

reference signal g; see Figure 1a. Commonly, it is assumed that g and s are ideal cosine shaped

functions, which results in a cosine shaped correlation function f (τ, φ) = cos(τ + φ).

3.3. Multipath Simulation

The simulation model of Lambers et al. [2] is restricted to direct illumination, i.e., light paths

L → P → S. Here, we describe an approximation of the total radiance LP→S reaching the sensor S

from point P based on the rendering equation (see Figure 1b), which in our notation is

LP→S =
∫

P′∈scene
fP′→P→S · LP′→P · cos θP→P′ · VP,P′ dP′, (7)

where fP′→P→S is the BRDF at P for incoming light direction P′ → P and outgoing light direction

P → S, and VP,P′ = 1 if P and P′ are mutually visible, otherwise 0.

We adapt the ideas of instant radiosity [13] and its implementation via Reflective Shadow

Maps (RSMs) [6] for our purposes. First, we separate the direct illumination path LL→P→S from

the single-bounce indirect illumination paths LP′→P→S. Second, we consider a discrete set of points

P′ in the scene that are directly illuminated by L. This set of virtual point lights (VPLs) is generated

by rendering the scene from the point of view of the light source into a two-dimensional map

(called reflective shadow map, RSM). Each pixel in this RSM describes one VPL. Note that the RSM
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approach ignores multi-bounce indirect illumination paths and realizes single-bounce multipath

reflections only.

Considering the separated direct and single-bounce reflections using RSM, the rendering equation

then simplifies to

LP→S = LL→P→S + ∑
P′∈RSM

fP′→P→S · LL→P′→P · cos θP→P′ · VP′ ,P · WP′ ,P (8)

with (analogous to the direct illumination path)

LL→P′→P = EL→P′ · fL→P′→P, EL→P′ = IL(θL→P′)
cos θP′→L

‖P′ − L‖2
(9)

and the VPL weight factor

WP′ ,P = AP′
cos θP→P′

‖P′ − P‖2
. (10)

WP′ ,P describes the steradiant of the VLP P′ (considered as area light source) at surface point P. In order

to provide all necessary information, each VPL in the RSM stores the irradiance EL→P′ and the VPL’s

area AP′ .

Furthermore, for the image-space RSM approach, visibility tests between P and P′ are impractical,

thus we simplify this term by suppressing light directions below the horizon, i.e.,

VP,P′ =

{
1, if θP′→P <

π

2 ∧ θP→P′ <
π

2 ,

0, otherwise.
. (11)

As the results will show, the limitations of the RSM approach are acceptable in our use

case. Its benefits as a purely image-space approach are its simplicity and efficiency, especially for

GPU-based implementations.

In contrast to the original RSM approach that samples VLPs only in the vicinity of P, we sample

the entire RSM when computing the incident radiance at P.

In the sensor pixel, the charges NA and NB now result from a superimposed signal from the direct

and multiple single-bounce indirect light paths. We convert radiance incident to the sensor pixel from

indirect illumination paths and LL→P′→P→S into irradiance

EL→P′→P→S = cos θS→P · LP→S (12)

and can then deduce electron pair counts Ntot,L→P′→P→S for each indirect path using

Equations (4) and (5).

Denoting the phase shift along the direct and a single-bounce indirect light path as φL→P→S

and φL→P′→P→S, respectively, we can compute the total charges NA and NB by combining

Equations (6) and (8), yielding

NA =
Ntot,L→P→S

2
(1 + D cos(τ + φL→P→S)) + ∑

P′∈RSM

Ntot,L→P′→P→S

2
(1 + D cos(τ + φL→P′→P→S)), (13)

NB =
Ntot,L→P→S

2
(1 − D cos(τ + φL→P→S)) + ∑

P′∈RSM

Ntot,L→P′→P→S

2
(1 − D cos(τ + φL→P′→P→S)). (14)

3.4. Noise Model

Electronic and optical shot noise plays the dominant role for ToF cameras [12], which is especially

the case for low light situations [14]. In contrast to other noise sources, shot noise cannot be reduced by

signal processing methods but has an impact on range resolution ∆L =
L

360◦
· ∆φ with non-ambiguity

70







Sensors 2018, 18, 13 8 of 14

with incoming~l1,~l2 and outgoing directions ~d1, ~d2 corresponding to~ρ1 and~ρ2, respectively. This weight

definition accounts for angular differences between both the incident and the outgoing angles.

Thus, measured BRDF values have a large weight in the BRDF estimation of a set of unobservable

angular parameters, if their angular parameters are similar. We use u = 5, which has been

determined experimentally.

5. Results

In this section, we present the results related to the BRDF measurement for standard materials

(Section 5.1) and the evaluation of the multipath interference using the proposed simulation technique

(Section 5.2).

5.1. BRDF Measurement

The measurement setup has been equipped with a 850 nm NIR-laser as a light source

(LDM850/5LT, Roithner Lasertechnik GmbH, Vienna, Austria) and a photo diode as detector.

The chosen sampling stepsizes are ∆α = ∆β = ∆γ = 2◦ for specular material and ∆α = ∆β = ∆γ = 5◦

for diffuse materials. To reduce noise, we averaged 1000 measurements for each parameter set

~ρ = (α, β, γ). Finally, we normalized the measured reflection values by the maximum energy

arriving directly from laser to detector and the cosine of the incident angle θi in order to get the

final BRDF values.

We have selected materials with rather diffuse and rather glossy reflection properties. Since we

consider reflections but not scattering, transmission, and other properties, we have chosen opaque

materials so that almost no light transmission occurs. As diffuse materials, we have chosen

guttagliss PVC rigid foam variants [21], as materials with glossy specular reflection we have chosen

PLEXIGLAS R© [22]; see Table 1.

Table 1. Materials used for BRDF measurement. The PLEXIGLAS R© provides more specular reflection,

and the PVC rigid foam is rather diffuse.

Mat. No. PLEXIGLAS R© (Glossy) Mat. No. Guttagliss PVC (Diffuse)

1 XT (allround), White WN297 GT 5 Rigid Foam, White
2 XT (allround), Red 3N570 GT 6 Rigid Foam, Red
3 XT (allround), Green 6N570 GT 7 Rigid Foam, Green
4 XT (allround), Blue 5N870 GT 8 Rigid Foam, Blue

9 Rigid Foam, Yellow
10 Rigid Foam, Gray

Figure 4 shows the polar plots of the raw measured and the resulting interpolated BRDFs;

see Section 4. Plots of the raw measurement visualize the missing measurements around the

incoming direction for β ∈ [−10◦, 10◦]. The IDW interpolation closes the gap and slightly smooths

the measurements.

Open Science

Upon acceptance of this paper, we will make the full BRDF data publicly available, thus other

researchers can purchase the respective materials in order to setup their own test scenes for

quantitative evaluations.
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Figure 6 shows the depth images for all three test-scenes for GroundTruth, the CamCube

measurements, and the SimDirect and SimSingle simulations. Figures 7 and 8 give additional insight

into range simulation results by showing the signed differences between the simulation and the

CamCube measurements for the scenes CornerCube, CornerCubeShift and the explicit range values

along row 100 for all three scenes, respectively. As expected, the real ToF data exhibits significant

multipath effects in all three scenes. Considering the simulation without multipath component

(SimDirect), the resulting range values are close to the ground truth depth. This is consistent with

the ToF measurement principle, which explicitly considers direct reflection only. Table 2 states all

error values for all scenes and material with respect to the measured CamCube data. Especially for

scenes Corner and CornerCube, our approach outperforms SimDirect since it captures multipath

effects in the corners. In CornerCubeShifted, our approach still decreases the errors by more than 50%.

In summary, we find that adding single-bounce indirect reflections (SimSingle) significantly improves

the simulation results with respect to the CamCube measurements. This is especially the case for the

Corner and the CornerCube scenes. For the CornerCubeShift scene, however, the deviation between

the ToF measurement CamCube and the simulation including single-bounce reflections SimSingle

still deviate, mainly in the visual corners between the base corner and the inserted, shifted cube.

Table 2. Evaluation of error for all simulation methods and scenes with respect to to the measured

CamCube data. For each method you can see the the mean-absolute-error (MAE), mean-squared-error,

(MSE) and the root-mean-squared-error (RSME).

Corner CornerCube CornerCubeShifted
Material #1 Material #5 Material #1 Material #5 Material #1 Material #5

GroundTruth
MAE 0.1001 0.0998 0.0831 0.0790 0.0969 0.0897
MSE 0.0103 0.0105 0.0071 0.0068 0.0106 0.0091

RMSE 0.1017 0.1025 0.0853 0.0823 0.1029 0.0956

SimDirect
MAE 0.0885 0.0884 0.0728 0.0688 0.0846 0.0777
MSE 0.0084 0.0085 0.0079 0.0069 0.0086 0.0074

RMSE 0.0916 0.0924 0.0888 0.0829 0.0927 0.0859

SimSingle
MAE 0.0238 0.0200 0.0194 0.0138 0.0396 0.0342
MSE 0.0007 0.0005 0.0006 0.0003 0.0023 0.0017

RMSE 0.0270 0.0226 0.0233 0.0171 0.0476 0.0417

Figure 9 shows the limitations of our simulation method. We have used a variant of the

CornerCube scene, where have placed an aluminum cube with an edge length of 5 cm into the

glossy corner (Material #1). In our simulation, we have used a Cook-Torrance BRDF to model the

reflection behavior of the aluminum cube. In this highly reflective scenario, the multipath effects

have a strong influence on the CamCube measurements (see range values in row 108, Figure 9 right).

Here, the cube nearly vanishes in the distance measurements between pixels 90 and 110. SimSingle,

in comparison, cannot capture this camera behavior, as no higher order multipath effects are simulated.

Regarding the noise model, we observe that the noise level of the SimSingle simulations and the

real ToF measurements CamCube are comparable, whereas the noise level for the direct simulation

SimDirect is higher. This is due to the fact that the total amount of charge is lower and that, in this case,

the additive Poisson noise is with a fixed amplitude. Thus, the relative impact of the noise is higher in

the case of the lower overall charge in the SimDirect simulation. This effect gets very apparent for flat

incident angle with respect to the direct light–surface impact .

Some final notes on the performance of the simulator: The computation of RSMs takes approx.

1.5 ms. Since we sample the whole RSM, the final accumulation step takes approx. 80 ms. Thus,
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Figure 1. A mapping between a sphere and a square, composed of a mapping between a

hemisphere and a disc, a mapping between a disc and a square, and an arrangement of two

squares in a new square.

Abstract

A variety of mappings between a sphere and a disc and between a disc and a square, as

well as combinations of both, are used in computer graphics applications, resulting in

mappings between spheres and squares. Many options exist for each type of mapping;

to pick the right methods for a given application requires knowledge about the nature

and magnitude of mapping distortions.

This paper provides an overview of forward and inverse mappings between a unit

sphere, a unit disc, and a unit square. Quality measurements relevant for computer

graphics applications are derived from tools used in the field of map projection, and a

comparative analysis of the mapping methods is given.

1. Introduction and Background

Mappings between spheres, discs, and squares are useful tools in many areas of com-

puter graphics. Examples include panoramic imaging [German et al. 2007; Fong

2014], environment mapping [Greene 1986; Heidrich and Seidel 1998], and generat-

ing points on a disc or sphere for sampling purposes [Shirley and Chiu 1997; Sloan

et al. 2005].

1 ISSN 2331-7418
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Important properties of such mappings include the angle and area distortions that

they introduce [Floater and Hormann 2005]. Some applications require equal-area

mappings that preserve area ratios, and others require conformal mappings that pre-

serve angles locally. No mapping can be both equal-area and conformal at the same

time, and preserving one quality often results in strong distortions in the other. Many

applications, in particular in computer graphics, require mappings that allow efficient

sampling of maps [Snyder and Mitchell 2001] without introducing artifacts. A bal-

anced mapping for this purpose provides both small area distortions and small angle

distortions, although neither distortion has to be zero.

This paper gives an overview of mappings between a unit sphere, a unit disc, and

a unit square, with formulas for forward and inverse transformation. Furthermore, we

derive two quality measurements relevant for computer graphics applications based

on established tools from the field of map projection, and we compare the mappings

based on these measurements.

Section 2 starts with mappings between discs and squares, Section 3 describes

map projections between spheres (or hemispheres) and discs, and Section 4 details

methods to combine methods from both categories to produce mappings between

spheres and squares. Section 5 provides numerical analysis results for all mappings

based on the derived quality measurements. The supplementary material consists of

C++ source code that implements all mapping and analysis methods as well as all

tools necessary to recreate the figures and results presented in this paper.

2. Mappings between Disc and Square

This section provides an overview of mappings between the closed unit disc D and

the closed unit square R. We identify points on D using either polar coordinates, with

radius r and angle ϕ, 0 ≤ r ≤ 1, −π < ϕ ≤ π, or Cartesian coordinates, u and v

with r =
√
u2 + v2 and ϕ = atan2(v, u). Points on R are identified using Cartesian

coordinates x and y, −1 ≤ x ≤ +1, −1 ≤ y ≤ +1. The mappings are summarized

and compared in Table 1.

2.1. Radial Stretching

Perhaps, the most direct method of mapping a disc to a square is to adjust the radius

of a point on the disc according to its angle.

For (x, y) ∈ R, we have a distance of t =
√
x2 + y2 to the origin and a polar

angle of ϕ = atan2(y, x). The polar radius of (r, ϕ) ∈ D can then be set to r =

t cosϕ for ϕ ∈ [−π/4,+π/4] (and accordingly for the remaining ranges of ϕ). Using

cosϕ = x/t, sinϕ = y/t, tanϕ = v/u, and a method applied by Cline to Shirley’s

equal-area mapping [Shirley and Cline 2011] to reduce the number of cases, this leads

to the following simple equations (see the derivation by Fong for details [Fong 2015]):

2
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Disc to square mapping:

r =
√
u2 + v2

(x, y) =




(0, 0) if r = 0

(sgn(u) · r, sgn(v) · rv/u) if r > 0 and u2 ≥ v2

(sgn(u) · ru/v, sgn(v) · r) if r > 0 and u2 < v2

Square to disc mapping:

t =
√
x2 + y2

(u, v) =




(0, 0) if t = 0

(sgn(x) · x2/t, sgn(y) · xy/t) if t > 0 and x2 ≥ y2

(sgn(x) · xy/t, sgn(y) · y2/t) if t > 0 and x2 < y2

This mapping is neither conformal nor equal-area. It suffers from strong angular

and area distortions.

2.2. Shirley’s Equal-Area Mapping

Shirley constructs an equal-area map between a disc and a square by mapping con-

centric disc strings to concentric square strips [Shirley and Chiu 1997]. Note that

Roşca derived an equivalent mapping (except for a scale factor) using a different

approach [Roşca 2010]. Both prove the equal-area property by showing that the Jaco-

bian is constant. The following formulas for the disc-to-square mapping are based on

Shirley’s code samples. The formulas for the inverse mapping are based on Cline’s

method for reducing the number of cases [Shirley and Cline 2011].

Disc to square mapping:

r =
√

u2 + v2

ϕ =

{
atan2(v, u) if atan2(v, u) ≥ −π/4

atan2(v, u) + 2π, otherwise

(x, y) =




(r, 4

π
rϕ) if ϕ < π/4

(− 4

π
r(ϕ− π/2), r) if ϕ < 3π/4

(−r,− 4

π
r(ϕ− π)) if ϕ < 5π/4

( 4
π
r(ϕ− 3π/2),−r), otherwise

Square to disc mapping:

(r, ϕ) =




(x, π
4
y/x) if x2 > y2

(y, π
2
− π

4
x/y) if x2 ≤ y2 and y2 > 0

(0, 0), otherwise

4
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Note that by writing the square to disc mapping of the radial stretching method in

terms of r, ϕ, using cosϕ = x/t and sinϕ = y/t, one can see that Shirley’s mapping

uses the same stretching of the radius but modifies the angle, ϕ.

This mapping is equal-area. It suffers from strong angular distortions, especially

around the discontinuities at the diagonals of the square.

2.3. Fernández-Guasti’s Squircle Mapping

Fernández-Guasti introduced a geometric form that can be varied between square and

circle using a “squareness” parameter [Fernández-Guasti 1992]; he later called this

form squircle. Note that the term squircle is sometimes used to refer to a special

case of a superellipse. To avoid ambiguities, we therefore use the term “Fernández-

Guasti’s squircle”.

In terms of Cartesian coordinates, the equation that describes Fernández-Guasti’s

squircle is s2

k4
x2y2 − x2

+y2

k2
+1 = 0, where s is the squareness parameter and k is the

radius of the circle (for s = 0) or half the side length of the square (for s = 1). For

values of s between 0 and 1, the geometry resembles both square and circle.

Fong proposes to map concentric circles to concentric squircles to construct a

mapping between a unit disc and a unit square [Fong 2014]. For this purpose, he sets

s = k and varies s from 0 to 1, taking r = s =
√

x2 + y2 − x2y2 as disc radius.

Disc to square mapping:

w =
sgn(uv)
√
2

√
u2 + v2 −

√
(u2 + v2)(u2 + v2 − 4u2v2)

(x, y) =

{
(w/v,w/u) if |w| > 0

(u, v), otherwise

Square to disc mapping:

u = x

√
x2 + y2 − x2y2√

x2 + y2

v = y

√
x2 + y2 − x2y2√

x2 + y2

Note that (0, 0) must be mapped to (0, 0) as a special case.

This mapping is neither equal-area nor conformal.

2.4. Elliptical Arc Mapping

Nowell derived a method to map a square to a disc by mapping lines of constant x

and lines of constant y in the square to ellipses in the disc [Nowell 2005]. Cigolle et

al. mention an elliptical mapping between a disc and a square [Cigolle et al. 2014].

Their paper omits details, but their implementation in the supplementary material

5

84



Journal of Computer Graphics Techniques

Mappings between Sphere, Disc, and Square

Vol. 5, No. 2, 2016

http://jcgt.org

shows that they derived equivalent formulas for the mapping from square to disc and

additional formulas for the inverse mapping. The simpler formulas for the inverse

mapping given below were derived by Fong [Fong 2015].

Disc to square mapping:

x =
1

2

√
2 + u2 − v2 + 2

√
2u−

1

2

√
2 + u2 − v2 − 2

√
2u

y =
1

2

√
2− u2 + v2 + 2

√
2v −

1

2

√
2− u2 + v2 − 2

√
2v

Square to disc mapping:

u = x

√
1−

y2

2

v = y

√
1−

x2

2

This mapping is neither equal-area nor conformal.

2.5. Conformal Mapping

In complex analysis, the Schwarz-Christoffel transformation provides a way to con-

struct conformal transformations between simple polygons and the upper half of the

complex plane. Since there exists a conformal transformation between the upper half

of the complex plane and the open unit disc, one can construct a conformal mapping

between a square and a disc. Indeed, this special case was used as illustration and mo-

tivation in Schwarz’ original publication on the topic. However, formulas for forward

and inverse mappings suitable for implementation on computers were not available

for some time.

Conformal mapping of a disc onto a rotated square using the Schwarz-Christoffel

transformation is a core element of the Peirce quincuncial map projection [Peirce

1879]; see also Section 4. The formulas given below are based on Lee’s analysis of

Peirce’s projection [Lee 1976].

The mapping from disc to square first rotates the disc by 45◦. This step is not

necessary, but it makes this mapping consistent with the others with regard to the

orientation of the square content. Then, the rotated disc is conformally mapped to

a rotated square with corners (1, 0), (0, 1), (−1, 0), (0,−1). This square is then

rotated and scaled to fit the unit square. The conformal mapping is based on the

incomplete elliptic Legendre integral, F , with a modulus of k = 1/
√
2. This integral

must be computed using iterative methods. Numerical libraries usually provide the

necessary methods; our supplementary material includes an implementation based on

the Landen transformation.

The mapping from square to disc first rotates and scales the unit square back into

the square with corners (1, 0), (0, 1), (−1, 0), (0,−1). It then uses the complex-

valued Jacobian elliptic function cn with modulus k = 1/
√
2 to conformally map
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that square to the unit circle. Afterwards, the inverse of the optional rotation is ap-

plied. This mapping requires the value K = F (π/2) ≈ 1.854, which is the complete

elliptic integral of the first kind with modulus k = 1/
√
2. The function cn must

again be computed using iterative methods. Numerical libraries often provide real-

valued implementations that compute the related functions cn, sn, and dn at the same

time; our supplementary material includes an implementation based on the arithmetic-

geometric mean. For the special case of k = 1/
√
2, the complementary elliptic mod-

ulus k′ =
√
1− k2 is identical to k, and the complex cn function can be computed

from real-valued cn, sn, and dn as follows:

cn(x+ iy) =
cn(x) cn(y)

1− dn2(x) sn2(y)
− i

sn(x) dn(x) sn(y) dn(y)

1− dn2(x) sn2(y)

Note that Stark derives optimized numerical methods for the special case of con-

formal mappings between unit sphere and unit disc [Stark 2009].

Disc to square mapping:

u′ = (u− v)/
√
2

v′ = (u+ v)/
√
2

A = u′2 + v′2

B = u′2 − v′2

T =
√
(1 +A2)2 − 4B2

U = 1 + 2B −A2

α = acos((2A− T )/U)

β = acos(U/(2A+ T ))

x′ = sgn(u′)(1− F (α)/2K)

y′ = sgn(v′)(F (β)/2K)

x = x′ + y′

y = y′ − x′

Square to disc mapping:

x′ = x/2− y/2

y′ = x/2 + y/2

w = cn(K(1− x′)− iKy′)

u = (ℜ(w) + ℑ(w))/
√
2

v = (ℑ(w)−ℜ(w))/
√
2

This mapping is conformal, except for the four singular points located on the

corners of the square. Area deformation is substantial, especially near the singular

points.
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3. Mappings between Sphere and Disc

This section covers mappings between the unit sphere, S , and the unit disc, D . We

identify points on S using the longitude λ and the colatitude θ, −π < λ ≤ π,

0 ≤ θ ≤ π. The colatitude measures the angle to the north pole (by convention

(0, 0, 1) in Cartesian coordinates). We use colatitude instead of latitude (which mea-

sures the angle to the equatorial plane), because the resulting formulas are shorter.

The longitude measures the angle in the xy-plane. Points on D are again identified

using polar coordinates with radius r and angle ϕ, 0 ≤ r ≤ 1, −π < ϕ ≤ π.

The problem of mapping the sphere onto the disc is one of the classical areas

of map projection, and the methods discussed in this section are well known in that

field. In the following sections, all methods map the north pole to the center of the

unit disc, set the polar angle ϕ = λ− π/2, and compute radius r as a function of the

colatitude θ. We will discuss only this radius function for each method.

Only a subset of the mappings covered here can map the whole sphere to the unit

disc; others are restricted to a hemisphere. By shifting the north pole of the sphere

to another point and suitably recomputing longitude and colatitude, other projection

centers can be chosen. In Section 4, we will use the south pole as an additional

projection center to cover both north and south hemispheres. For this case, the new

colatitude is simply π − θ, and the longitude remains unchanged.

The mappings are summarized and compared in Table 2.

3.1. Equal-Area Projection (Lambert Azimuthal)

Lambert designed several important map projections [Snyder 1987], among them the

azimuthal equal-area map projection.

Sphere to disc mapping:

r = sin(θ/2)

Disc to sphere mapping:

θ = 2asin(r)

When projecting just one hemisphere instead of the whole sphere, an additional

scale factor of
√
2 is applied to the radius so that the unit disc is filled.

This mapping can map the whole sphere in a disc. It is an equal-area mapping.

Angular distortions increase with distance to the pole.

3.2. Conformal Projection (Stereographic)

The stereographic map projection is a conformal projection that was already known

in ancient Greece [Snyder 1987].

8
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Hemisphere to disc mapping:

r = tan(θ/2)

Disc to hemisphere mapping:

θ = 2atan(r)

This mapping cannot be used to map a complete sphere in a disc. It is a conformal

mapping. Scale increases with distance from the pole.

3.3. Harmonic Mean of Equal-Area and Conformal Projection (Breusing)

Many attempts have been made to balance the area-preserving qualities of the Lam-

bert azimuthal equal-area projection with the angle-preserving qualities of the stere-

ographic projection, with the goal of arriving at a map projection with only moderate

area and angle distortions throughout. Breusing is credited with the idea of using the

geometric mean of both projections; Young preferred the harmonic mean over the

geometric and arithmetic means and stated that it leads to simpler formulas than the

alternatives while being an error-minimizing projection in some sense [Young 1920].

Sphere to disc mapping:

r = tan(θ/4)

Disc to sphere mapping:

θ = 4atan(r)

When projecting just one hemisphere instead of the whole sphere, an additional

scale factor of 1
√

2−1
is applied to the radius so that the unit disc is filled.

This mapping can map the whole sphere in a disc. It is neither equal-area nor

conformal, but both area and angular distortions are moderate.

3.4. Mixture of Equal-Area and Conformal Projection

Instead of using a fixed relation between equal-area and conformal projection, Fong

proposes to use a parameterized mixture of both [Fong 2014]. The tradeoff between

area and angular distortions can be chosen using a parameter β ∈ [0, 1], with β = 0

choosing the stereographic projection and β = 1 choosing the Lambert azimuthal

equal-area projection. Fong applied this idea to the whole sphere, which lead to dif-

ficulties since the stereographic projection requires an infinite plane to map the com-

plete sphere; in his version, the parameter β can only approach zero, but not become

zero. We restrict the mixed projection to the hemisphere instead and can, therefore,

use simpler formulas that furthermore do not impose a restriction on β.

10
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Hemisphere to disc mapping:

r =

√
1 + β tan(θ/2)√
1 + β tan2(θ/2)

Disc to hemisphere mapping:

θ = 2atan

(
r√

1 + β(1− r2)

)

For β = 0, r = tan(θ/2) and θ = 2atan(r), thus this mapping becomes

the stereographic mapping. For β = 1, r =
√

2 tan(θ/2)√
1+tan2(θ/2)

=
√
2 sin(θ/2) and

θ = 2atan(r/
√
2− r2) = 2 asin(r/

√
2), thus this mapping becomes the Lambert

azimuthal equal-area mapping in its hemisphere variant.

This mapping cannot map the whole sphere in a disc. It can be equal-area (for

β = 1) or conformal (for β = 0) and balances area against angular distortions for

0 < β < 1.

3.5. Equidistant Projection

The equidistant map projection has been known for many centuries; its origin can-

not be clearly identified [Snyder 1987]. Its main features are its simplicity and the

preservation of distances measured from the center of the projection. Its area and an-

gular distortions fall between those of the equal-area and conformal projections, thus

making this projection another candidate for a compromise between both.

Sphere to disc mapping:

r = θ/π

Disc to sphere mapping:

θ = rπ

When projecting just one hemisphere, instead of the whole sphere, an additional

scale factor of 2 is applied to the radius so that the unit disc is filled.

This projection can map the whole sphere in a disc. It is neither conformal nor

equal-area, but balances area and angular distortions. Distances to the center are

preserved.

4. Mappings between Sphere and Square

For projecting a sphere onto a square, there are essentially two layout options, de-

scribed in the following sections.
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Figure 2. Example map with the south pole of the sphere mapped to the square border. Here

the equidistant azimuthal projection was combined with the disc-to-square mapping based on

Fernández-Guasti’s squircle.

4.1. Pole-at-border Layout

The first layout option projects the whole sphere onto a disc using one of the methods

from Section 3 that is capable of this, and then applies one of the methods from

Section 2 to map that disc to a square.

In this layout, the sphere point opposite the projection center is mapped to the

border of the square. In our examples, the projection center is the north pole, and the

south pole is spread across the border. Figure 2 shows an example map.

Obviously, this layout leads to very strong distortions in the region around the

point opposite the projection center. This limits its usefulness in applications that

require acceptable sampling quality throughout the map, but there are still use cases

for this layout, for example in panoramic imaging [Fong 2014].

4.2. Quincuncial Layout

Peirce’s quincuncial map projection [Peirce 1879] shown in Figure 3 introduced this

layout. It projects each hemisphere onto its own disc, maps these discs to two squares,

and then arranges the squares into a single square as depicted in Figure 4. The center

part and the four corner parts form a quincunx.
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Figure 5. Tiling of the quincuncial layout. The upper-left and lower-right quarters are the

original map, the upper-right and lower-left quarters are rotated by 180
◦.

The sphere point opposite the projection center is mapped to the four corners of

the square. Distortions are much smaller than in the opposite-point-at-border layout.

Additionally, the quincuncial layout has the nice property that maps can be tiled, as

shown in Figure 5: when leaving the map at any border point except the four corners,

in any direction, there is a continuation point where we can re-enter the map without

disruption.

The quincuncial layout has been used in computer graphics to represent an octa-

hedron inside a square for the purpose of vector representation [Meyer et al. 2010;

Cigolle et al. 2014] or sphere parametrization [Praun and Hoppe 2003] and for the

display of panoramic images [German et al. 2007].

To arrange two unit squares into a unit square in quincuncial layout, both must

first be rotated by −45
◦ and scaled by 1/

√
2. Each quadrant of the second input

square R2 is then mirrored along its border in that quadrant; see Figure 4.
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Selected mappings in quincuncial layout are summarized and compared in Ta-

ble 3. Note that there are methods that map directly between sphere and octahedron or

square, without using the disc as an intermediate step. These include Snyder’s equal-

area map projection for polyhedral globes [Snyder 1992] and Gringorten’s square

equal-area world map [Gringorten 1972]. Furthermore, Clarberg describes an opti-

mized SIMD implementation of a mapping between sphere and square using Shirley’s

equal-area mapping and an octahedral layout [Clarberg 2008]. These methods are not

discussed in this paper.

5. Analysis

In this section, we derive quality measurements and provide numerical analysis results

for all mappings. Note that all results were obtained using IEEE double precision

floating-point numbers and computations.

5.1. Distortion Measurements

To evaluate the mapping methods discussed in the preceding sections, we use a stan-

dard tool from the field of map projection: Tissot’s indicatrix [Snyder 1987].

The idea of the indicatrix is that any map projection maps an infinitesimal circle

on the sphere onto an infinitesimal ellipse on the map. This ellipse describes the

local characteristics of the map projection. For example, a conformal map projection

preserves angles, and the local ellipse will therefore be a circle, but generally not of

the same size as the original circle. An equal-area map projection preserves area, and

the size ratio of the local ellipse to the original circle will be constant throughout the

map, but the axes of the ellipse will have varying orientation and length.

In general, for any pair of lines that intersect at a given point on the sphere, the

angle at which they intersect on the map will not be identical (unless the map projec-

tion is conformal). The greatest deviation from the correct angle at a given point is

called the maximum angular deformation ω.

Both the original circle and the mapped ellipse are infinitesimal, but Tissot’s indi-

catrix allows to compute the ratio between corresponding properties. The most impor-

tant ellipse properties are the semi-major axis a and the semi-minor axis b. Both are

measured relative to the original circle: the identity mapping will result in a = b = 1.

For applications in computer graphics, two values derived from a and b are of

special interest, since they determine the sampling quality of a map projection:

• The local area distortion DA. The determinant of the Jacobian matrix of a map-

ping gives the local scale factor s, which can also be determined numerically as

s = ab. In a strict sense, s must be 1 everywhere on the map for the mapping

to be truly area-preserving, but usually source and destination have different

areas, and an equal-area mapping will have a constant scale factor representing
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 7. DA (top) and DI (bottom) of the method described in Section 3.4, for varying β.

Table 2 shows that the harmonic mean, mixture, and equidistant mappings all

provide good compromises in terms of DA and DI when compared to the equal-

area and conformal mappings. We used β = 0.4 for the mixture method since it

delivers the best compromise; see Figure 7. Still, the harmonic mean method might

be preferable if an adjustable error tradeoff is not required.

Table 3 shows only a small subset of the many possible quincuncial combina-

tions of methods. The distortions introduced by sphere/disc and disc/square mappings

combine. Compromises between equal-area and conformal mappings still exhibit rel-

atively large values for DA and DI at the corners of the inner square, mainly caused

by the disc/square mapping. For some applications, it is possible to position these

four points in regions of low interest, e.g. oceans for applications that visualize Earth

landmass data.

5.2. Precision Measurements

We tested the numerical precision of our implementation by placing a uniform grid

on the square map, applying inverse mapping to each grid point to obtain coordinates

in the original domain (disc or sphere), and then mapping these coordinates first to

the map and then back again. For each obtained point in the original domain, we then

have a distance to the point resulting from forward and inverse transformation. The

maximum distance is the error measurement.

The mappings between disc and square all have very low errors. Measured on

Earth’s equatorial disc, the distances are in the micrometer range or below, with two

exceptions: Fernández-Guasti’s squircle mapping has an error in the millimeter range,

and conformal mapping has an error in the meter range. Of course, these are im-

plementation dependent, but we did not arrive at lower distances for the conformal

mapping when using different numerical libraries for the computation of F and cn.

The errors of mappings between sphere and square are dominated by the errors of

the disc/square mappings used. On an Earth-sized sphere, they are again mostly in the

micrometer range, except when Fernández-Guasti’s squircle mapping or conformal

mapping are used, in which case errors in the millimeter (squircle) or meter range

(conformal) occur.
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6. Conclusion

This paper gives an overview of mappings between a disc and a square, between a

sphere and a disc, and (by composition) between a sphere and a square. It provides

ready-to-implement formulas for both the forward and inverse mappings, and it ana-

lyzes all mappings using distortion measurements that are relevant for applications in

computer graphics.

Since requirements in terms of mapping properties strongly depend on the appli-

cation area, general recommendations cannot be made. Instead, this paper provides

analysis results intended to help pick the right mapping for a given application.
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Abstract

In Computer Graphics, it is common practice to accompany lectures with hands-on tutorials and/or project assignments that

allow students to write and run their own interactive graphics applications. In the special case of Virtual Reality courses, this

approach is difficult to maintain since the software requirements pose a high entry barrier to students.

In this paper, we propose a technique to significantly simplify Virtual Reality application programming, and implement it in an

easy-to-use framework that supports the full range of typical Virtual Reality hardware setups, from head-mounted displays to

multi-node, multi-GPU render clusters. The framework lowers the entry barrier for students and allows them to focus on course

goals instead of fighting software complexities.

Categories and Subject Descriptors (according to ACM CCS): K.3.2 [Computers and Education]: Computer and Information

Science Education—Computer Science Education I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—

Virtual and Augmented Reality

1. Introduction

Virtual Reality (VR) courses at universities often target postgradu-

ate students because the entry barrier regarding hardware and soft-

ware has traditionally been high. Recently, the hardware situation

improved significantly with the availability of affordable sensor,

display, and interaction devices. Sousa Santos et al. [SDM15] doc-

umented a course taking advantage of this development.

However, software requirements for VR application program-

ming are still complex, and finding the right software to base a

course on is difficult [SDSS14, SDM15]. To cover the full range of

common VR setups, applications must be able to handle multi-GPU

and multi-node systems [EMP09]. The complexity of distributed

graphics applications is usually handled by a specialized frame-

work, but available frameworks come with their own complexities

and steep learning curves.

Consistent with observations made by Boers et al. [BDHB08]

and Anderson and Peters [AP10], our experience with past courses

shows that students lose time and motivation fighting software

complexities instead of focusing on course goals. Therefore, the

hands-on tutorial part of our VR course was limited in compari-

son to other computer graphics courses, and student projects in VR

typically had a difficult and time-consuming start phase.

In this paper, we focus on reducing the software-side complexity

of VR courses, with the goals of increasing hands-on tutorial con-

tent and enabling more student projects. We define the following

requirements for a VR software framework:

1. The framework must be free and open-source. We agree with

Sousa Santos et al. [SDM15] that in academic contexts paying

for VR software licenses is problematic, especially when stu-

dents can use their own devices.

2. The framework must allow the use of external rendering soft-

ware, but also plain OpenGL. High-level rendering engines are

useful for advanced student projects and thesis works, but sim-

ple tutorial assignments should not require the students to learn

about such an engine when plain OpenGL is sufficient.

3. The framework must support the full range of common VR

graphics hardware, including head-mounted displays and multi-

GPU/multi-host setups. Applications based on the framework

must run in CAVE-like VR environments and other hardware

available in a VR lab, and also on the students’ own devices.

4. The framework must be easy to set up and work with. Students

must be able to quickly reach a productive familiarity with the

framework so that they can focus on course goals.

To arrive at a VR framework that fulfills these requirements,

we propose a technique to simplify multi-window, multi-GPU, and

multi-process handling in Sec. 3, and describe its implementation

in Sec. 4. Sec. 5 shows example results, and Sec. 6 discusses the

current state and future work.

2. Related Work

Software frameworks used in VR courses at universities include in-

house frameworks that are not publicly available [Sta05] and/or are
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while application is running do

preRenderProcess();

foreach window w do

preRenderWindow(w);

for i ← 1 to stereoRenderPasses(w) do

Mi ← viewMatrix(w, i);

Fi ← frustum(w, i);

Ti ← texture(w, i);

render(Mi,Fi,Ti);

end

postRenderWindow(w);

end

postRenderProcess();

foreach window w do

updateDisplay(w, T1, T2);

asyncBufferSwap(w);

end

processEvents();

updateApplication();

waitForBufferSwaps();

end

Algorithm 1: The main loop in the single-context single-thread

approach. Multi-process handling is omitted for brevity.

not actively developed [Ant09, DK11], frameworks that are cou-

pled to a particular rendering, scene graph, or game engine [Tra99,

vRKG∗00,LCC∗12,SDSS14] and scene graph engines with multi-

GPU or multi-host support [Rei02], and web-oriented techniques

such as VRML and WebGL [Zar06,SDM15]. None of the solutions

from these categories fulfill the requirements defined in Sec. 1.

The only two frameworks we could find which fulfill the require-

ments 1 – 3 are VR Juggler [BJH∗01] and Equalizer [EMP09]. Both

fail to fulfill requirement 4. As noted by Sousa Santos [SDM15],

VR Juggler is complex to install and set up, and support for recent

hardware is absent. We also note that development seems to have

slowed down significantly, or even stopped.

We have therefore based our VR courses, tutorials, and projects

on Equalizer in the last years. While it is a very powerful and flex-

ible framework, capable of much more than just VR application

scenarios, in our experience it is also very hard for students to work

with. We have observed the following major obstacles:

• Install-and-setup obstacle: Equalizer is split into many sub-

libraries and requires several external libraries that a custom

build script partly tries to download and install during the Equal-

izer build. This process fails regularly on relevant platforms.

• Hierarchy-level obstacle: Distributing program logic over the

Equalizer hierarchy levels (see Sec. 3) runs counter to the stu-

dents’ previous experiences with object-oriented programming,

which is to group program logic according to its purpose.

• Multi-context obstacle: Equalizer uses multiple OpenGL con-

texts, and contexts on the same GPU share objects such as tex-

tures. Students are typically not familiar with OpenGL contexts,

context sharing, and context/thread binding. As a result, they

struggle to understand which context is active at which time and

in which thread, and how OpenGL objects should be managed

across multiple contexts and/or multiple GPUs.

• Multi-thread obstacle: Equalizer uses multiple rendering threads

c l a s s VRAppl i ca t ion {

/∗ Mandatory f u n c t i o n s ∗ /

/ / Update s c e n e s t a t e ( a n i m a t i o n s e t c ) .

/ / C a l l e d once b e f o r e each new frame .

void u p d a t e ( . . . ) = 0 ;

/ / Render t h e s c e n e i n t o t e x t u r e T u s i n g

/ / f r u s t u m F and view m a t r i x M.

void r e n d e r (M, F , T ) = 0 ;

/∗ O p t i o n a l f u n c t i o n s ∗ /

/ / Even t hand l ing , u s i n g Qt c o n v e n t i o n s

void k e y P r e s s E v e n t ( . . . ) {}

void mouseMoveEvent ( . . . ) {}

void mousePres sEven t ( . . . ) {}

/ / S p e c i a l per−p r o c e s s / per−window a c t i o n s

void p r e R e n d e r P r o c e s s ( . . . ) {}

void preRenderWindow ( . . . ) {}

void postRenderWindow ( . . . ) {}

void p o s t R e n d e r P r o c e s s ( . . . ) {}

/ / Mul t i−p r o c e s s s u p p o r t

void s e r i a l i z e D y n a m i c D a t a ( . . . ) c o n s t {}

void d e s e r i a l i z e D y n a m i c D a t a ( . . . ) {}

} ;

Figure 1: Summary of the interface that a VR application needs to

implement. Note that most functions are optional.

within each process on multi-GPU systems. Many students

struggle to grasp all consequences of this approach, especially

when integrating third-party software, and consequently run into

multithreading pitfalls that are notoriously hard to debug.

Like Sousa Santos et al. [SDM15], we prefer simple software

that allows “actually understanding the whole process necessary to

create a virtual environment”. Furthermore, we agree with Boers

et al. [BDHB08] and Anderson and Peters [AP10] that students

need to focus on course goals instead of losing time and motivation

fighting with framework setup and usage complexities.

3. Simplified VR Application Programming

A central function of a VR framework is the handling of multi-GPU

and multi-node render systems. Challenges associated with multi-

GPU programming are listed in the Parallel OpenGL FAQ [Eil07].

The main aspects relevant to VR are the following:

• An OpenGL context can only be bound to one thread at a time,

and a switch of that thread is expensive. Therefore, all rendering

to a context should happen from only one thread.

• Access to a GPU is serialized by the driver. Rendering into dif-

ferent contexts on the same GPU therefore best happens in a

serial manner, to avoid unnecessary costly context switches.

• The swapping of back and front buffers of a context is typically

synchronized with the refresh rate of the connected display. The

function that triggers the swap blocks the calling thread until that

swap happens.

• OpenGL contexts can share objects such as textures if they live

on the same GPU.

• Multi-GPU systems need to provide a way for an application to

differentiate between GPUs. This is system dependant.
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Figure 2: Example VR application running in a CAVE-like VR lab (left), across a laptop and a desktop PC (middle), and on the Oculus Rift

DK2 head-mounted display (right).

The Equalizer framework handles these challenges using a hi-

erarchy of processes, GPUs, windows, and channels. Each process

can handle multiple GPUs, each GPU can drive multiple windows,

and each window can be divided into multiple channels. Each win-

dow has its own context, and contexts on the same GPU share ob-

jects. Each GPU has a dedicated rendering thread.

While very flexible and powerful, this multi-context multi-thread

approach introduces a lot of complexity: an application needs to

split operations and data over four hierarchy levels, it has to man-

age multiple contexts that share objects only if they live on the same

GPU, and it has to manage concurrent access to process-level re-

sources by different rendering threads.

We propose the following simplified single-context single-thread

approach. There are only two hierarchy levels: process and win-

dow. Each process handles only one GPU, and maintains a master

OpenGL context on that GPU that is not connected to any visible

window. This is the only context a VR application process sees. All

windows of a process have their own private contexts that share ob-

jects with the master context. The windows are represented by tex-

tures in the master context. The private window contexts are driven

by private rendering threads that display these textures and wait for

the buffer swap, while the main thread is free for other work such

as application scene state updates. The corresponding render logic

is summarized in Alg. 1.

In this approach, the application programmer only handles a set

of textures in a single OpenGL context, and renders different views

into these textures sequentially from the main thread. The multi-

context and multi-thread obstacles are eliminated.

Multiple processes, both for multi-GPU and multi-host setups,

are handled by serializing relevant VR application data (mostly

scene state) on the master process, writing it via local or network

pipes to the slave processes, and deserializing it there. The applica-

tion only needs to implement serialization and deserialization logic.

One potential drawback of our approach affects multi-GPU

hosts. We use separate processes for each GPU, and inter-process

communication via pipes. Equalizer uses separate threads, thus

avoiding communication overhead. However, we found that the

complexities and pitfalls of multi-threaded rendering often drove

our students to switch to multi-process but single-threaded Equal-

izer configurations, thereby eliminating the advantage. Further-

more, we expect that the communication costs are tolerable when

shared memory or similar techniques are used for processes on the

same host.

4. A Simple VR Application Framework

We based our implementation of the single-context single-thread

approach on the C++ language and the Qt library because our stu-

dents are already familiar with both from other courses, and be-

cause both offer widely used and easy-to-setup development tools.

This eliminates the install-and-setup obstacle.

The interface that a VR application has to implement is sum-

marized in Fig. 1. Since only a single interface needs to be im-

plemented, the hierarchy-level obstacle is removed. To allow stu-

dents to quickly become familiar with the framework, the interface

is kept minimal, and optional components have an empty default

implementation.

The configuration file concept of Equalizer has been very useful

in our experience, and we copy it in our framework. A configura-

tion file defines the VR application processes, one for each GPU,

and their properties. For each process, it defines windows with at-

tributes such as stereo mode, size, position, and projection area ge-

ometry. When starting the VR application, the running process is

assumed to be the master process defined first in the configuration

file. Slave processes are started automatically by the framework.

The application can run unmodified on different display hardware

setups by using different configuration files.

5. Results

The simplifications proposed in Sec. 3 are made possible by graph-

ics hardware and API capabilities that are now ubiquitous (render-

to-texture via framebuffer objects, off-screen contexts, context ob-

ject sharing). All platform dependent aspects are handled by Qt,

keeping the code base of the framework small.

To demonstrate the versatility in terms of display hardware se-

tups, we show a simple example application using different config-

uration files for different hardware setups in Fig. 2. The first setup

(left) is a CAVE-like VR lab. Its render system has four GPUs, each

connected to three projectors for a total of six passive stereo pro-

jection areas. The second setup (middle) demonstrates multi-host

support using a laptop and a desktop PC. The third setup (right) is

an Oculus Rift DK2 head-mounted display.

While the simple example application is written in plain

OpenGL, more complex applications often require external render-

ing engines. The integration of such engines is simplified by our

single-context single-thread approach since this corresponds well
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Figure 3: Left: OpenSceneGraph viewer running in a three-

window configuration with monoscopic views. Right: a VTK vi-

sualization pipeline running in a three-window configuration with

stereoscopic views for red-cyan anaglyph glasses.

to the common usage scenario of embedding a rendering engine

into an application-managed graphics window.

The versatility in terms of rendering approaches is demonstrated

in Fig. 3. The left side shows a scene rendered by a full-featured

OpenSceneGraph viewer. The integration of OpenSceneGraph with

our framework requires only few lines of code, while its integration

with Equalizer (osgScaleViewer; included in the Equalizer source

code) is much more complex and still does not provide full func-

tionality. The right side of the figure shows a VTK example that

renders an isosurface extracted from a voxelized sphere. The inte-

gration of VTK is equally simple and does not impose any restric-

tions on VTK visualization pipelines.

Full source code is available under the MIT/Expat license

at https://github.com/marlam/qvr. This includes the

framework, called QVR, and all examples shown in this section.

6. Discussion and Conclusions

The four complexity obstacles we observed while using Equalizer

are removed: the single-context single-thread approach removes

the multi-context and multi-threading obstacles, and the framework

implementation removes the install-and-setup and hierarchy-level

obstacles.

The framework handles distributed graphics only. Applica-

tions typically use third-party libraries for other VR-related tasks,

e.g. VRPN [THS∗01] for tracking devices. On the one hand, this

requires teachers to provide additional software depending on their

lab equipment and course topics. On the other hand, it keeps the

framework lightweight and easy to set up, and lowers maintenance

burden.

The framework is currently in a testing stage. Initial feedback

from selected students is encouraging to the point that we decided

to base our future VR courses on it. However, further tweaks will

likely become necessary once the framework is in wider use. For

example, we plan to measure the impact of the potential commu-

nication overhead in multi-GPU systems for real-world applica-

tions, and implement appropriate countermeasures such as the use

of shared memory instead of pipes if required.
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Abstract. A wide variety of projections from a planet surface to a two-dimensional

map are known, and the correct choice of a particular projection for a given application

area depends on many factors. In the computer graphics domain, in particular in the

field of planet rendering systems, the importance of that choice has been neglected

so far and inadequate criteria have been used to select a projection. In this paper,

we derive evaluation criteria, based on texture distortion, suitable for this application

domain, and apply them to a comprehensive list of spherical cube map projections to

demonstrate their properties.

Keywords: Map projection, spherical cube, distortion, texturing, graphics

1. Introduction

Map projections have been used for centuries to represent the curved surface of
the Earth with a two-dimensional map. A wide variety of map projections have been
proposed, each with different properties. Of particular interest are scale variations
and angular distortions introduced by map projections – since the spheroidal surface
is not developable, a projection onto a plane cannot be both conformal (angle-
preserving) and equal-area (constant-scale) at the same time. These two properties
are usually analyzed using Tissot’s indicatrix. An overview of map projections and
an introduction to Tissot’s indicatrix are given by Snyder [24].

In computer graphics, a map projection is a central part of systems that render
planets or similar celestial bodies: the surface properties (photos, digital elevation
models, radar imagery, thermal measurements, etc.) are stored in a map hierarchy
in different resolutions. During the rendering, the data from this map hierarchy
are sampled for display on a screen. Despite its central role, many systems do not
pay much attention to the choice of projection for the map hierarchy. Often, a
relatively straightforward approach is used, which leads to sampling problems both
during the creation of the map hierarchy and during its sampling at rendering time.
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Fig. 1.1: Polyhedral projections based on Platonic solids: tetrahedron (a), octahe-
dron (b), hexahedron (c), dodecahedron (d) and icosahedron (e).

This is particularly apparent with systems that use a single map to cover the whole
planet surface. Such systems usually exhibit strong distortions and artifacts in the
polar regions. Examples include the well-known commercial products like Google
Earth [5] and NASA World Wind [15]. A few systems do care about the projection
they use, but use insufficient evaluation criteria and/or evaluate too few alternatives
to make a good choice [10, 13, 11].

Projecting a spheroidal surface to a single plane (flat or folded into a cylinder or
a cone) always results in singularities [10, 24], therefore the first step for improve-
ment is to subdivide the spheroidal surface into several regions, each of which is
projected to a separate projection plane. The subdivision reduces map distortion,
but increases the number of interrupts. The faces of an encompassing or inscribed
polyhedron are very good candidates for the projection planes, hence the polyhe-
dral projections have been used for centuries to represent the surface of the Earth.
Fig. 1.1 displays unfolded polyhedral projections based on Platonic solids.

As it can be seen in Fig. 1.1, the increase of the polyhedral faces number reduces
distortion and increases interrupts at the same time. The number of interrupts is
also an important aspect of a map projection. For paper maps, interrupts make
visual discontinuities, while for electronic maps (i.e. textures) they may require
separate data sets for each region. The number of data sets may have a direct
impact on the memory usage [4]. Therefore, it should be minimized if possible.

For the purposes of computer graphics, the projection to the faces of a cube
(as a special form of a hexahedron) is of particular interest because each face is
rectangular and thus allows straightforward storage of map data in common 2D file
formats, as well as management of rendering data in common 2D texture formats.
Also, cube based projections expose moderate distortion and number of interrupts.

In this paper, we derive a set of evaluation criteria, based on texture distortion,
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and apply them to a comprehensive list of hexahedral map projections to demon-
strate their properties. This list covers all spherical cube map projection known to
be used in planet-sized terrain rendering. One of the projections (Outerra Spher-
ical Cube Map) is published for the first time, thanks to its original implementer
Brano Kemen [8]. We implemented all of these projections as well as map projection
software and a set of evaluation tests.

The remainder of this paper is organized as follows. Sec. 2. gives an overview
of related work in the field of planet rendering, with an emphasis on the choice
of map projections. In Sec. 3., we derive the evaluation criteria that we apply to
spherical cube map projections, reviewed in Sec. 4. The results of this evaluation
are presented and discussed in Sec. 5. Finally, Sec. 6. concludes the paper.

2. Related Work

Map projections from a sphere surface to a plane have a long history, and a
wide variety of methods have been developed, each with specific properties carefully
chosen for specific tasks. An overview is given by Snyder [24].

A popular map projection for planet rendering systems, including the com-
mercial offerings Google Earth [5] and NASA World Wind [15], is the equidistant
cylindrical (or plate carrée) projection. Like all single-map projections, it suffers
from singularities. In proximity to the poles, very small surface areas are mapped
to many samples on the map, distributed over elongated areas. This causes signifi-
cant storage and data access overhead in the renderer as well as a radial blur in the
rendered image [10].

The problems associated with singularities can only be avoided by subdividing
the sphere and using multiple maps. Kooima et al. use equidistant cylindrical pro-
jection for the equatorial part of the planet and two additional polar stereographic
projections for the polar regions. Weighted averages are used for smooth transitions
between the three regions [10].

Among polyhedral projections, the cube based approaches are very popular.
They divide the spherical surface into six identical regions, as shown in Fig. 2.1.
This allows using a single map projection (Fig. 2.2) that behaves consistently at
cube face borders, thus eliminating the need for weighted averaging. Furthermore,
the rectangular maps for the cube faces allow straightforward data storage using
quadtree hierarchies and common file formats and straightforward data management
in the rendering system using common and efficient rectangular textures.

The straightforward projection of the sphere to the cube faces is a gnomonic
projection. The distortions introduced by gnomonic projection onto cube faces
are significant. For this reason, Lerbour and et al. proposed an adjustment to
the gnomonic projection [13] that reduces these distortions to some degree. Lam-
bers and Kolb compared the gnomonic and adjusted gnomonic projections with the
Quadrilateralized Spherical Cube (QSC) projection, and chose the latter [11]. As
we will demonstrate in the next sections, their evaluation was too limited.
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Fig. 2.1: A spherical planet model inscribed into a cube. The cube partitions the
sphere surface into six equal areas.

Fig. 2.2: The world mapped using a cube map projection.

In the application area of planet rendering, very few map projections have been
considered for subdivisions of the planet. Of the cube-based subdivisions, only the
gnomonic projection, an adjusted version of the gnomonic projection and the QSC
projection are documented in the literature. In the next sections, we extend this list
with a projection used in the Outerra rendering engine [8], an approximately equal-
area projection based on the sphere representation in the Cartesian coordinates

108



Spherical Cube Map Projections Used In Planet-Sized Terrain Rendering 263

[17] and a variant of the HEALPix projection [6]. All of these spherical cube map
projections are explained in Sec. 4. and compared using the criteria derived in
Sec. 3., according to the distortion they introduce in the texture application for
planet-sized terrain rendering algorithms.

3. Evaluation Approach

In classical applications of map projections, the two-dimensional map is the fi-
nal product and intended for direct use by the end user. In a planet rendering
application, on the other hand, the map is just an intermediate data representa-
tion. Consequently, the projection is used in two steps: first, when mapping the
original data to the cube-based hierarchical representation in a preprocessing step,
and second, when sampling this representation during rendering to produce the end
result. While a poor choice of map projection can have negative effects already dur-
ing preprocessing, the crucial step for the quality of the end result is the rendering
step.

We will, therefore, focus on rendering and sampling aspects of spherical cube
map projections. To this end, we first examine, in Sec. 3.1., the way textures
are applied to a rendered terrain. This discussion provides sufficient details to
understand how texture filtering is performed and how effects of distortion can
be reduced. In Sec. 3.2., we discuss how applied projections introduce a texture
distortion, while Sec. 3.3. explains the methods used in the evaluation process. The
main evaluation criterion for the projection comparison is texture distortion, but we
also consider the precision and efficiency of the forward and inverse transformations,
as well as the size of the applied textures.

3.1. Texture Application

Two-dimensional textures are image-overlays applied to geometrical objects to
improve their fidelity without increasing their complexity. A texture application
entails mapping from texture space to screen space. The mapping is done through
two filtering schemes: minification and magnification [23]. When a texel (the small-
est unit of a texture) is smaller than an area, it is applied to (one texel maps to
multiple pixels on a screen) a magnification filter is used. Otherwise, multiple texels
are mapped to a single pixel using a minification filter. In order to minimize the
aliasing effect caused by minification, multiple levels of detail (the same texture in
different resolutions) are used. That enables choosing the level where the texel-to-
pixel ratio is near to one. Lance Williams proposed mipmaps as an efficient way to
pack multiple levels of detail into a single texture [28]: each lower resolution level is
constructed from the higher resolution level by downsampling with a factor of two
in both horizontal and vertical directions.

Mipmaps have been used for decades as a very efficient way of texture mapping.
As the size of the object being mapped increases, however, the application of high-
fidelity mipmapped textures becomes untenable. The visualization of the planet

109
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Fig. 3.1: A clipmap – an updatable partial mipmap. Clipmap levels are grouped
into two sets: the clipmap pyramid (low-resolution static levels) and the clipmap
stack (higher-resolution dynamic levels). The levels in the clipmap stack are cen-
tered on the focal point and toroidally updated as it moves.

Earth, with submeter accuracy, could require several petabytes of storage space
for the full mipmapped texture; clearly this is too much to fit in the graphics or
system memory. To solve this problem, several techniques have been developed.
One of the most popular is known as clipmapping [26]. A clipmap is an updatable
representation of a partial mipmap, in which each mipmap level is clipped to a
specified size. Instead of the exponential growth of full mipmaps, a clipmap grows
linearly with each new level of detail.

The appropriate level of clipmap to apply is chosen according to the texture
scale-factors. The scale-factors of the applied texture are calculated using partial
derivatives of the given functions u(x, y) and v(x, y) that map screen coordinates
(x, y) to the two-dimensional texture coordinates s and t, respectively. Depending
on the orientation of the surface, scale-factors along the horizontal and vertical
screen axes (ρx and ρy, respectively) may differ.

ρx(x, y) =

√(
∂u

∂x

)2

+

(
∂v

∂x

)2

ρy(x, y) =

√(
∂u

∂y

)2

+

(
∂v

∂y

)2

ρmax(x, y) = max (ρx(x, y), ρy(x, y))

ρmin(x, y) = min (ρx(x, y), ρy(x, y))

(3.1)

Since derivatives may be computationally expensive and/or numerically unsta-
ble [9], they are usually approximated in the graphics hardware by computing for-
ward/backward differences between neighboring pixels in a 2×2 block. Whether the
forward or backward difference is used depends on the position of the pixel in the
block. In standard texture filtering schemes, a proper level of detail (λ) is selected
according to ρmax(x, y) which gives smoother results:

(3.2) λ(x, y) = log
2
(ρmax(x, y))
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Further smoothing is achieved by linear interpolation of the texel values closest
to the center of the displayed pixel. Bilinear filtering interpolates values of the
texel from a single level only, selected by the rounded value of an integral part of
λ. Trilinear filtering further improves the smoothness by combining two adjacent
levels. The integral part of λ selects a more detailed level, while the fractional part
defines blending factor with the next coarser one (λ + 1).

If the surface being viewed is at an oblique angle, trilinear filtering could result
in a blurry display. The fidelity and sharpness of the applied texture, in that case,
can be improved through anisotropic filtering [19]. Unlike the previous (isotropic)
filtering schemes, where the footprint of the filter projection into texture space is
a square, anisotropic filtering may have very narrow or long footprints. A higher
degree of anisotropy may improve texture filtering quality, but at the same time
reduce the texture filtering rate. Hence, the maximum degree of anisotropy (̺) is
always limited, usually to 16. According to the OpenGL anisotropic texture filter
specification [19], a proper texture level for anisotropic filtering should be selected
using the following equations:

N(x, y) = min

(⌈
ρmax(x, y)

ρmin(x, y)

⌉
, ̺

)

λ(x, y) = log2

(
ρmax(x, y)

N(x, y)

)(3.3)

In the next section, we shall see how applied filtering is used to minimize the
manifestation of texture distortion.

3.2. Distortion

Tissot’s indicatrices are very useful in estimating the distortion of a projection of
the Earth’s surface to a planar map. They are used in cartography to evaluate the
size and shape of the objects depicted on the map. However, in computer graphics
the more important consideration is the distortion of the textures after application
to a 3D model of the planet. In order to evaluate this texture application distortion
we will introduce two measures of distortion:

• the texel aspect distortion and

• the texel area distortion.

The texel aspect distortion (δaspect) is defined as the texel width (Λx) to height
(Λy) ratio after unprojecting to the surface of a planet:

(3.4) δaspect =
Λx

Λy
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In Eq. 3.4, Λx and Λy are calculated as distances on the spheroidal surface along
directions aligned with the texture (i.e. projection) axes X and Y, respectively. The
calculation is based on the central differences using the following equations:

(ϕl, θl) ← inverse(x−∆/2, y)

(ϕr , θr) ← inverse(x+∆/2, y)

(ϕb, θb) ← inverse(x, y −∆/2)

(ϕt, θt) ← inverse(x, y +∆/2)

Λx = σ(ϕl, θl, ϕr, θr)

Λy = σ(ϕb, θb, ϕt, θt)

(3.5)

In the previous equations, x and y are the coordinates of the point in texture
space and ∆ is a texel size. The function inverse depends on the chosen projection.
Sec. 4. presents all spherical cube map projections with their forward transformation
(from a sphere onto a plane, with normalized coordinates in the range [-1,1]) and
inverse transformation (from the plane back to the sphere). A distance on the sphere
between two points defined by their spherical coordinates (ϕ1, θ1) and (ϕ2, θ2), is
calculated with the function σ based on the following formulae:

σ(ϕ1, θ1, ϕ2, θ2) =

2Re arcsin

(√
sin2

|θ1 − θ2|

2
+ cos θ1 cos θ2 sin

2
|ϕ1 − ϕ2|

2

)

Re =
2 · a+ b

3

(3.6)

Since the Earth is an oblate spheroid with very small flattening (f = 1/298.25722
3563), in order to simplify equations throughout this paper, we are using a spherical
approximation with the same volume as the reference ellipsoid (Re = (a · b)1/3 ≈
(2 · a + b)/3 = 6371km). The parameters a and b in the previous equations refer
to the semi-major and semi-minor axes of the WGS84 ellipsoid [16], respectively.
For the ellipsoidal model of the planet, the distance between two points can be
calculated more accurately using a Vincenty’s inverse method [27]. However, the
difference between the great circle distance formula (Eq. 3.6) and Vincenty’s inverse
formula in calculating distortion values is negligible. For example, in the case of
QSC projection (Sec. 4.5.), the relative error of the maximum texel aspect distortion
of the spherical approximation (compared to the WGS84 ellipsoidal model) is only
about 5 · 10−6. Therefore, the use of spherical approximations in the following
discussion is justified.

Although the texel aspect distortion is usually neglected when a projection is
chosen, the impact on the rendered surface can be significant and it manifests
through:
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• aliasing/blurring,

• additional anisotropy and

• a requirement for bigger textures.

The aliasing or blurring effects are consequences of shrinking or stretching of
the texture over the applied surface. A texel distortion is always the combination
of both aspect and area distortion. In order to simplify the analysis, without loss of
generality, let us assume that distortion affects just a single direction (Fig. 3.2). If
δaspect > 1, stretching appears, while δaspect < 1 causes texture shrinking. Depend-
ing on the texture scale-factors (Eq. 3.1), if the distortion is significant, even the
current level of a clipmap (λ) may change. Without bilinear or trilinear filtering, the
distortion results in a noticeable aliasing effect. Aliasing effects can be reduced by
bilinear/trilinear filtering, but only to a certain degree and with an accompanying
blur effect (Fig. 3.2).

Since aspect distortion introduces uneven texture sampling along different axes,
a higher texture fidelity and sharpness can be achieved only by using anisotropic
filtering (Fig. 3.2), but this introduces computational costs and is limited by the
maximum anisotropy degree. As the surface is viewed from a more oblique angle, a
higher degree of anisotropic filtering is required to provide sharpness. Because part
of the available anisotropy is spent on aspect distortion correction, oblique surfaces
may appear blurry.

Another reason for minimizing texel aspect distortion, even more important
than the blur of oblique surfaces, is the need for bigger textures. Because of aspect
distortion, after the application to a terrain, a texture changes its aspect and cover
the different area along different directions, resulting in more details in the direction
where shrinking occurs and fewer details in the direction where stretching occurs. If
we select the texture level with enough details for the stretching direction while not
taking into account aspect distortion, it will result in exceeding the size of a current
clipmap level along the direction where shrinking occurs (black strips in Fig. 3.2).
This issue can be solved by using texture levels bigger than their nominal size, for
the factor greater or equal to the maximum texel distortion. Bigger textures induce
higher memory consumption and longer update times. Choosing a coarser clipmap
level, to avoid exceeding the size of the current level, leads to blurry rendering
results.

The texel area distortion (δarea) is defined as the ratio of the texel size at the
current position (Λx ·Λy) and the texel size at the center of the cube face (Λ0 ·Λ0)
after unprojecting to the surface of a planet:

(3.7) δarea =
ΛxΛy

Λ0Λ0

Unlike texel aspect distortion, the texel area distortion is important only if it
changes across the surface of the current clipmap level λ. If δarea is nearly constant,
a distortion actually does not exist. The texel area distortion in non-equal-area
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Fig. 3.2: Effects of the texel aspect distortion. From left to right: texture with-
out distortion (a), horizontal stretching δaspect = 2 (b), horizontal shrinking with
trilinear filtering δaspect = 0.67 (c), horizontal shrinking with anisotropic filtering
δaspect = 0.67 (d)

projection can be nearly constant only for the higher resolution levels. Such levels
have smaller spatial extent, which prevents significant change in the value of area
distortion. For the lower resolution levels, where it is not the case, area distortion
has to be treated the same way as aspect distortion.

At the first glance, it seems that the texel area distortion does not require
bigger textures, but only a modification of the clipmap level selection, defined by
the following equation:

(3.8) λ′ = λ+ log2 (
√
δarea)

However, since texel area distortion gradually changes across the surface and
its value is usually not high enough to switch to the coarser clipmap level, texel
area distortion also contributes to the need for larger textures. If the value of λ′ is
clamped to a higher integral value, a nominal size of the texture can be used, but
the blurry outcome is inevitable. In order to preserve the ability to properly blend
adjacent clipmap levels and gain required sharpness of the visualization, we have to
provide levels big enough to contain nominal spatial extent, no matter where the
viewer is located.

Considering both texel aspect and area distortion, the size of the storage space
for a clipmap level should be bigger than its nominal size for the factor ε, where:

(3.9) ε = max(deltamax
aspect, delta

max
area)

deltamax
aspect and deltamax

area are the maximum values of the texel aspect and area
distortion, respectively.

In the conclusion, both texel aspect and area distortions result in higher texture
storage demands and, hence, slightly slower update. The texel aspect distortion
also spends a part of the available anisotropic filtering range. The higher aspect
distortion the blurrier the display of a surface viewed from an oblique angle. The
texel distortion elaborated in this section is one of the very important aspects that
has to be evaluated when a proper projection for the terrain rendering system is
chosen. The following section presents an evaluation method we used for comparing
spherical cube map projections in this paper.
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3.3. Evaluation Method

In order to examine their properties, we have implemented all spherical cube map
projections that we could collect. Our development environment was the Microsoft
Visual Studio 2013 and we used C/C++ compiler. All calculations are done on the
CPU using double extended precision [7]. For each face of the spherical cube, the
following tests were carried out:

• precision self-test,

• forward/inverse transformation time measurement,

• texel aspect distortion statistics, and

• texel area distortion statistics.

The precision self-test was used both for an internal implementation check and
for checking the quality of the projection. For each of N2 equally spaced points in
the map space (x, y ∈ [−1, 1]), the inverse transformation is executed followed by
forward transformations of its results. The final results should match the starting
coordinates. The difference of the starting and final values projected to the surface
of the Earth is used as a precision evaluation criterion.

Projection (forward transformation) and unprojection (inverse transformation)
are required in data preparation and during terrain rendering, respectively, which
is why the transformation execution time is an important property for evaluation.
High-performance counters [14] are used for measuring the transformation of huge
matrices with input coordinates. The measured time, besides the transformations
themselves, includes iteration and matrix access time. Such overhead is required in
order to prevent compiler optimizations from leading to incorrect results.

The texel aspect and area distortion are computed, using Eq. 3.4 through 3.7,
for the points on the equally spaced grid in map space. The statistics discussed in
this paper are computed for the set of up to 80002 points, with ∆ = 1 · 10−6.

In addition to the numerical tests, the same software was used to generate world
maps in each of the projections, to reproject data from the equidistant cylindrical
projection and to produce the images of texel aspect and area distribution over the
faces of the cube. The results of the tests, as well as the generated images, are
displayed and discussed in the following sections.

4. Spherical Cube Map Projections

This section presents a comprehensive set of Spherical Cube Map (SCM) pro-
jections. All projections are presented with their forward and inverse transforma-
tions, visual aspects of distortion shown through continents coastline and graticule
skewing for the front and top faces, and the distribution of texel aspect and area
distortions over the faces of the cube. The given formulae for forward and inverse
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transformations apply to the cube face centered on ϕ = 0 and θ = 0 (the front

face). An exception is the HEALPix projection, where transformations differ for
equatorial and polar regions, and, hence, have to be treated separately. Also, for
each of the projections, the effects of the inverse transformation are visualized by
reprojecting continent coastline and equally-spaced regular grid in the map space
back to the globe.

4.1. Tangential Spherical Cube

Tangential Spherical Cube (TSC) is the simplest SCM projection. It uses the
standard gnomonic projection to map the globe onto the six faces of a tangent
cube. As a gnomonic projection, it is distortion-free only at the point where the
tangent plane touches the surface. The distortion of shape, area and scale increases
with the distance from that point. The gnomonic projection dates from Ancient
Greece. Thales of Miletus (624-546 BC) used it for celestial maps. TSC was used
for terrestrial maps in the beginning of the 19th century for the first time [24]. It
is neither conformal nor equal-area projection.

Fig. 4.1: Front and top faces of the TSC projection.

Forward transformation:

x = tanϕ

y =
tan θ

cosϕ

(4.1)

Inverse transformation:

ϕ = arctanx

θ = arctan (y · cosϕ)
(4.2)
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Fig. 4.2: The distribution of the texel aspect (left side) and area (right side) dis-
tortion over the face of the cube when TSC projection is used. The texel aspect
distortion ranges from 0.707 to 1.414 (δmax

aspect/δ
min
aspect = 2.0), while the texel area

distortion ranges from 0.222 to 1.0 (δmax
area/δ

min
area = 4.5).

Fig. 4.3: The inverse transformation of the rectangular equidistant grid in TSC
planar space and the continent coastlines to a globe surface.

Although it is simple, TSC is rarely used for visualization of the planet Earth,
because of its significant distortions, both in aspect and area. Fig. 4.1 depicts a
distortion through continent coastlines and graticule skewing, while Fig. 4.2 gives
a spatial distribution of distortions over the faces of the cube through the shades
of gray. Darker tones for the δaspect represent shrinking in the X-direction, while
brighter tones represent shrinking in the Y-direction. Darker tones for δarea repre-
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sent an area shrinking. Texels at the corners of a face of the cube cover 4.5 times
smaller surface than texels at the center. The effect of area shrinking can be ex-
plicitly visualized through the inverse transformation of the rectangular equidistant
grid in the projection space to a globe surface (Fig. 4.3). While aspect distortion is
slightly better than the equal-area or approximately equal-area SCM projections,
area distortion is far worse.

4.2. Adjusted Spherical Cube

Adjusted Spherical Cube (ASC) modifies TSC in order to reduce area distor-
tion. Instead of sampling the plane of projection, ASC samples the map directly
in spherical coordinates with steps expressed in terms of angles [12, 13]. Thus,
the forward transformation of TSC can be turned into ASC by simply calculating
arctan of the x and y coordinates and normalizing to ±1.

Fig. 4.4: Front and top faces of the ASC projection.

Forward transformation:

x =ϕ ·
4

π

y =arctan

(
tan θ

cosϕ

)
·
4

π

(4.3)

Inverse transformation:

ϕ = x ·
π

4

θ = arctan
(
tan (

π · y

4
) · cosϕ

)(4.4)
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Fig. 4.5: The distribution of the aspect (left side) and area (right side) distortion
over the face of the cube when ASC projection is used. The texel aspect distortion
ranges from 0.707 to 1.414 (δmax

aspect/δ
min
aspect = 2.0), while the texel area distortion

ranges from 0.707 to 1.0 (δmax
area/δ

min
area = 1.414).

Fig. 4.6: The inverse transformation of the rectangular equidistant grid in ASC
planar space and the continent coastlines to a globe surface.

ASC was published for the first time in 1996, with slightly different formulae
based on colatitude [22]. It was reinvented and used for the planet-sized terrain
rendering many years later, in 2009 [12]. Like TSC, ASC is neither conformal
nor equal-area. However, the proposed adjustment of TSC effectively reduces area
distortion. Graticule spacing increases toward the midpoints of the edges of the
cube (Fig. 4.4), which indicates the texture area is shrinking. The distribution of
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distortions is depicted in Fig. 4.5. Texel aspect distortion stays the same, except
that the space the axes are inverted compared to TSC. Λx increases along the X-
axis, while Λy increases along the Y-axis. Far better property of ASC, considering
the area distortion, can be verify also by comparing Fig. 4.6 and Fig. 4.3.

4.3. Outerra Spherical Cube

Outerra Spherical Cube (OSC) is an SCM projection used in the Outerra plan-
etary 3D engine [8]. The engine has the ability to render the whole planet with a
full range of detail levels, from space down to individual blades of grass, and thus
requires more uniform sampling than previous schemes. Unlike the other described
projections, OSC does not have a closed form for the forward transformation. Hence,
a Newton’s iterative method is used in algorithm 1.

x = sinϕ cos θ
y = sin θ
z =

√
1− x2 − y2

M = (1/(2
√
2− 2)− 1) = 0.207106781

a = Mx2y2

b = −M(x2 + y2)
c = −z
d = 1 +M
repeat

F = az4 + bz2 + cz + d
F ′ = 4az3 + 2bz + c
dF = F

F ′

z = z − dF
until |dF | < ǫ
x = zx
y = zy

Algorithm 1: OSC forward transformation

Inverse transformation:

M = (1/(2
√
2− 2)− 1) = 0.207106781

z = 1 +M(1− x2)(1− y2)

l =
√
x2 + y2 + z2

x = x/l

y = y/l

ϕ = arcsin

(
x

cos (arcsin (y))

)

θ = arcsin (y)

(4.5)
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Fig. 4.7: Front and top faces of the OSC projection.

Fig. 4.8: The distribution of the aspect (left side) and area (right side) distortion
over the face of the cube when OSC projection is used. The texel aspect distortion
ranges from 0.934 to 1.006 (δmax

aspect/δ
min
aspect = 1.013), while the texel area distortion

ranges from 0.324 to 1.0 (δmax
area/δ

min
area = 3.088).

OSC has the least aspect distortion of all SCM projections described in this
paper. There is another approach with no aspect distortion - a conformal SCM
projection proposed in [21]. However, it is based on infinite Taylor series, and as
such it is less suitable for our purpose.

The OSC texel area distortion (δarea) is significant and it radially increases with
the distance from the center of the cube face (Fig. 4.8). It is less than in the case
of TSC, but much greater than for any other SCM projection.
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Although the forward transformation requires iterations, the convergence is fast.
With at most five iterations, a very high precision is achieved. The maximum error
for the Earth-sized sphere, imposed by transformations, is less than 1nm if double
extended precision is used.

Fig. 4.9: The inverse transformation of the rectangular equidistant grid in OSC
planar space and the continent coastlines to a globe surface.

4.4. COBE Quadrilateralized Spherical Cube

COBE quadrilateralized Spherical Cube (CSC) is an SCM projection based on
research on the feasibility of a Quadrilateralized Spherical Cube (QLSC) Earth
Data Base system, carried out in the early 1970s [3]. The purpose of the proposed
projection was to minimize both area and shape distortion, and it was used, at least
as it was reported, primarily in the U.S. Navy and later at NASA for the COsmic
Background Explorer (COBE) project.

Forward transformation:

x̃ =tanϕ

ỹ =
tan θ

cosϕ

x =F (x̃, ỹ)

y =F (ỹ, x̃)

(4.6)
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F (x, y) =xγ + x3(1− γ)

+xy2(1 − x2)
[
Γ + (M − Γ)x2

+(1− y2)

∞∑
i=0

∞∑
j=0

(Cijx
2iy2j)

]

+x3(1− x2)
[
Ω− (1− x2)

∞∑
i=0

Dix
2i
]

(4.7)

However, QLSC has wrong forward transformation (or inverse transformation, if
the notation from the original paper is used), which disqualifies it from any serious
usage. That is the reason it is omitted from this paper, although it was a very
important reference for all later spherical cube map studies. CSC was probably an
effort to modify QLSC to be used in COBE project. As reported by Calabretta [1],
the initial numeric parameters and equations derived in [3] were changed, as defined
in the following formulae.

Fig. 4.10: Front and top faces of the CSC projection.

Instead of an infinite series, practical implementations use only a few terms.
The following set of parameters is in use for the CSC:

(4.8)

γ = 1.37484847732 C00 = 0.141189631152
M = 0.004869491981 C10 = 0.0809701286525
Γ = −0.13161671474 C01 = −0.281528535557
Ω = −0.159596235474 C20 = −0.178251207466
D0 = 0.0759196200467 C11 = 0.15384112876
D1 = −0.0217762490699 C02 = 0.106959469314
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Inverse transformation:

x̃ =I(x, y)

ỹ =I(y, x)

I(x, y) =x+ x(1 − x2)

N∑
j=0

N−j∑
i=0

Pijx
2iy2j

ϕ =arctan x̃

θ =arctan (ỹ · cosϕ)

(4.9)

The COBE implementation confines N to 6 and uses the following set of best-
fitting values for coefficients Pij :

(4.10)

P00 = −0.27292696 P12 = −0.56800938 P30 = 0.54852384
P01 = −0.02819452 P13 = 1.50880086 P31 = −1.74114454
P02 = 0.27058160 P14 = −1.41601920 P32 = 0.98938102
P03 = −0.60441560 P15 = 0.52032238 P33 = 0.08693841
P04 = 0.93412077 P20 = −0.22797056 P40 = −0.62930065
P05 = −0.63915306 P21 = 0.48051509 P41 = 1.71547508
P06 = 0.14381585 P22 = 0.30803317 P42 = −0.83180469
P10 = −0.07629969 P23 = −0.93678576 P50 = 0.25795794
P11 = −0.01471565 P24 = 0.33887446 P51 = −0.53022337
P60 = 0.02584375

Fig. 4.11: The distribution of the aspect (left side) and area (right side) distortion
over the face of the cube when CSC projection is used. The texel aspect distortion
ranges from 0.65 to 1.538 (δmax

aspect/δ
min
aspect = 2.365), while the texel area distortion

ranges from 0.94 to 1.325 (δmax
area/δ

min
area = 1.41).

CSC is an approximately equal-area projection with δarea ∈ [0.94, 1.32]. The
ratio of maximum and minimum texel area distortions is the same as for ASC
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(δmax
area/δ

min
area = 1.41), but the distribution of values is much better (RMSD(δarea =

0.019)). The texel aspect distortion is worse than all previously mentioned projec-
tions (δaspect ∈ [0.65, 1.54]).

Fig. 4.12: The inverse transformation of the rectangular equidistant grid in CSC
planar space and the continent coastlines to a globe surface.

Worse than the texel aspect distortion is the imprecision of the projection. The
approximation imposed by using a finite number of terms and best-fitting coeffi-
cients in Eq. 4.6 and 4.9 causes a significant error in positioning. After successive
inverse and forward transformations, the maximum absolute error of the position
on the equivalent sphere is 1.39km. Moreover, CSC stretches an area toward the
cube edges. It can be clearly seen in Fig. 4.12. The middle part of Europe al-
most disappeared at the edge of the cube, while Greenland is much wider than it
should be. All these properties disqualify CSC for the application in any geographic
information system and, hence, in SCM also.

4.5. Quadrilateralized Spherical Cube

Quadrilateralized Spherical Cube (QSC) is another SCM projection based on the
work of Chan and O’Neill [3], described in Sec. 4.4. O’Neill and Laubscher [20]
defined an equal-area projection to map the sphere surface to a cube face with the
purpose of storing data in hierarchical structures for each cube face. In addition to
being equal-area, the QSC projection was designed to limit angular distortions.
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280 A. Dimitrijević, M. Lambers and D. Rančić

Forward transformation:

q =cos(θ) cos(ϕ)

r =cos(θ) sin(ϕ)

s =sin(θ)

ϕ̃ =arccos(q)

θ̃ =arctan(s, r)

µ =arctan

(
12

π

)
· (θ̃ + arccos(sin(θ̃) cos(

π

4
))−

π

2
)

ν =arctan

(√
1− cos(ϕ̃)

cos2(µ) · (1− cos(arctan(1/ cos(θ̃))))

)

x =tan(ν) cos(µ)

y =tan(ν) sin(µ)

(4.11)

Inverse transformation:

ν =arctan(
√
x2 + y2)

µ =arctan
(y
x

)

t =
π

12
tan(µ)

θ̃ =arctan

(
sin(t)

cos(t)− 1/
√
2

)

ϕ̃ =arccos(1 − cos2(µ) tan2(ν)(1 − cos(arctan(1/ cos(θ̃)))))

q =cos(ϕ̃)

s =
√
1− q2 sin(θ̃)

r =
√
1− q2 − s2

θ =arccos(−s)−
π

2

ϕ =arctan

(
r

q

)

(4.12)

The formulae for forward and inverse transformations, given above, apply to
one-quarter of the front cube face; the other three-quarters are handled by rotating
this definition. This is done by first determining the interval of θ̃, which defines the
quarter, then shifting θ̃ to the interval of definition [−π

4
, π
4
] by adding or subtracting

a multiple of π
2
, then computing µ as described, and finally shifting µ back to the

original quarter by again adding or subtracting a multiple of π
2
. Furthermore, other

cube faces than the front cube face are handled by adapting the computation of θ̃,
e.g. θ̃ = arctan(s,−q) for the appropriate cube face.

As can be seen in Fig. 4.13, QSC suffers from significant shape distortion. Fur-
thermore, there are discontinuities at the x = |y| directions (diagonals of the cube
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Fig. 4.13: Front and top faces of the QSC projection.

Fig. 4.14: The distribution of the aspect (left side) and area (right side) distortion
over the face of the cube when QSC projection is used. The texel aspect distortion
ranges from 0.649 to 1.539 (δmax

aspect/δ
min
aspect = 2.37), while the texel area distortion

ranges from 0.89 to 0.93 (δmax
area/δ

min
area = 1.042).

faces). These discontinuities change the direction of aspect distortion (which is also
at its maximum), cause severe additional texture distortion if intersecting trian-
gles of the underlying mesh and also slightly disturb the equal-area property of the
projection. The left side of Fig. 4.16 depicts a distortion caused by intersecting
triangles, while the underlying mesh is shown on the right side of the Fig. 4.16.
This issue can be solved by splitting the cube faces into four triangular regions,
using a very fine tessellation (a pixel-sized triangles) or ray casting rendering (per
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Fig. 4.15: The inverse transformation of the rectangular equidistant grid in QSC
planar space and the continent coastlines to a globe surface.

Fig. 4.16: Discontinuities at the cube face diagonals can cause severe texture dis-
tortion if they intersect triangles of the textured mesh. Diagonals toward the pole
and India ripple the grid, while the diagonal toward the center of Africa does not,
since the line of discontinuity is aligned with triangles’ edges.

pixel texture sampling).

4.6. Cartesian Spherical Cube

Cartesian Spherical Cube (KSC) emerged from mapping a square to a circle [18]
and its generalization to mapping a cube to a sphere [17], proposed by Philip Now-
ell. The proposed mapping is actually the inverse transformation in a closed form
with coordinates defined in Cartesian coordinate system (Eq. 4.15). The initial in-
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tent was not to provide a cartographic mapping, but just a sphere parametrization
example posted on the Web blog [17]. However, some nice properties of this trans-
formation yielded an implementation of the forward transformation [25] five years
later. Prior to the forward transformation (Eq. 4.14), the polar coordinates have
to be transformed to the Cartesian coordinates (Eq. 4.13) and the cube face has to
be determined (the third row in the Tab. 4.1) according to one-sixth the maximum
of all three Cartesian coordinates (the first row in the Tab. 4.1) and its sign (the
second row in the Tab. 4.1). Depending on the cube face, input variables for the
transformation have to be rearranged (the fourth row in the Tab. 4.1), so that each
face can be transformed to the front face of the cube.

Fig. 4.17: Front and top faces of the KSC projection.

(|x| ≥ |y|) ∧ (|x| ≥ |y|) (|y| ≥ |x|) ∧ (|y| ≥ |z|) (|z| ≥ |x|) ∧ (|z| ≥ |y|)

x > 0 x < 0 y > 0 y < 0 z > 0 z < 0
Face 1 Face 3 Face 4 Face 5 Face 0 Face 2
(right) (left) (top) (bottom) (front) (back)
x’ = -z x’ = z y’ = -z y’ = z x’ = -x
z’ = x z’ = x z’ = y z’ = y

Table 4.1: Face selection and mapping to a front face before KSC forward transfor-
mation.

Forward transformation:

χ = cos θ sinϕ

ψ = sin θ

ζ = cos θ cosϕ

(4.13)
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Fig. 4.18: The distribution of the texel aspect (left side) and area (right side)
distortion over the face of the cube when KSC projection is used. The texel aspect
distortion ranges from 0.577 to 1.731 (δmax

aspect/δ
min
aspect = 3.0), while the texel area

distortion ranges from 1.0 to 1.155 (δmax
area/δ

min
area = 1.155).

ξ = −
√
(2ψ2 − 2χ2 − 3)2 − 24χ2

x = sign(χ) ·min

(√
max(ξ + 2χ2 − 2ψ2 + 3, 0)

2
, 1

)

y = sign(ψ) ·min

(√
max(ξ − 2χ2 + 2ψ2 + 3, 0)

2
, 1

)

z = sign(ζ)

(4.14)

Inverse transformation:

x′ = x ·

√
max(1−

1

2
y2 −

1

2
z2 +

1

3
y2z2, 0)

y′ = y ·

√
max(1 −

1

2
x2 −

1

2
z2 +

1

3
x2z2, 0)

z′ = z ·

√
max(1 −

1

2
x2 −

1

2
y2 +

1

3
x2y2, 0)

(4.15)

ϕ =arctan
x′

z′

θ =arcsin y′
(4.16)

KSC is an approximately equal-area SCM projection (15% deviation), with a
severe texel aspect distortion. It has worse aspect distortion than any other previ-
ously mentioned SCM. Another unusual property of the KSC is both shrinking and
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Fig. 4.19: The inverse transformation of the rectangular equidistant grid in KSC
planar space and the continent coastlines to a globe surface.

stretching of the texels at the same time along different axes, while moving from the
center of the cube face toward the middle of the edges. The texel aspect is constant
at the diagonals.

4.7. Hierarchical Equal Area isoLatitude Pixelization

Hierarchical Equal Area isoLatitude Pixelization (HEALPix) [6] is a class of
spherical projections with a property of distributing 12N2 points as uniformly as
possible over the surface of the unit sphere. These hybrid projections combine the
Lambert cylindrical equal-area projection, for the equatorial region with the inter-
rupted Collignon projection for the polar regions. This infinite class of projections
is parameterized by Nθ and Nφ [6] (often referred to as K and H, respectively [2]).
Nθ is the number of base-resolution pixel layers between the north and south poles
and Nφ is the multiplicity of the meridional cuts, or the number of equatorial or
circumpolar base-resolution pixels. In this paper, we discuss only the HEALPix
projection with Nθ = 3 and Nφ = 4 (Fig. 4.20), since it is the only projection of
the whole class that can be rearranged to a cube-based hexahedral projection.

The equatorial and the polar regions meet at latitude θ̃. This particular latitude
can be calculated based on the fact that the polar region, as a part of an equal-area
projection, needs to be one-sixth of the total area, and that the area of the spherical
cap can be calculated as P = 2π(1− sin θ) [2]. Hence, θ̃ = arcsin (2/3) ≈ 41.81◦.

Since the projection differs for the equatorial and polar regions, we will provide
forward and inverse transformations separately. The forward transformation of the
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Fig. 4.20: The world map based on HEALPix projection with Nθ = 3 and Nφ = 4.

equatorial region (|θ| < θ̃) is:

x =ϕ ·
4

π

y =
3

2
· sin θ

(4.17)

Inverse transformation for equatorial region:

ϕ =x ·
π

4

θ =arcsin
2y

3

(4.18)

As it can be seen in the Fig. 4.22, HEALPix is an exact equal-area projection
for the equatorial region. Also, the texel aspect distortion (δaspect) is less than for
any other SCM projection, except for OSC.

HEALPix projections are not cube-based, but the four triangles of the inter-
rupted Collignon projection for the polar regions can be rearranged and grouped to
form a face of the cube. The process of rearrangement after the forward transfor-
mation is summarized in Tab. 4.2. This process should be reversed in the inverse
transformation.

Forward transformation for polar regions:

σ =
√
3(1− | sin θ|)

x =σϕ ·
4

π
y =1− σ

(4.19)
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Fig. 4.21: Front and top faces of the HEALPix (Nθ = 3 and Nφ = 4) projection.

Fig. 4.22: . The distribution of the aspect (left side) and area (right side) distortion
over the equatorial face of the cube when HEALPix (Nθ = 3 and Nφ = 4) projection
is used. The texel aspect distortion ranges from 0.654 to 1.178 (δmax

aspect/δ
min
aspect =

1.8). There is no area distortion.

Inverse transformation for polar regions:

σ =1− y

ϕ =
x

σ
·
π

4

θ =± arcsin

(
1−

σ2

3

)(4.20)
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Fig. 4.23: The inverse transformation of the rectangular equidistant grid in
HEALPix (Nθ = 3 and Nφ = 4) planar space and the continent coastlines to a
globe surface.

ϕ
[
−π

4
, π
4

] [
π
4
, 3π

4

] [
3π
4
, 5π

4

] [
5π
4
, 7π

4

]

y = y-1 z = x x = -x z = x

θ > θ̃ x = 1-y y = 1-y x = y-1
y = z y = -z

y = 1-y z = x x = -x z = x

θ < −θ̃ x = 1-y y = y-1 x = y-1
y = -z y = z

Table 4.2: Rearrangement of interrupted Collignon projection’s triangles into a
quad after the forward transformation.

Subface y ≤ |x| −x ≤ y ≤ x y ≥ |x| −y ≤ x ≤ y

North y = 1+y z = y x = -x z = y
polar y = 1-x y = 1-y y = 1+x
face x = z x = -z
South x = -x z = y y = 1-y z = y
polar y = 1+y y = 1+x y = 1-x
face x = z x = -z

Table 4.3: Splitting the polar quads into interrupted Collignon projection’s triangles
before the inverse transformation.
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Fig. 4.24: The distribution of the aspect (left side) and area (right side) distortion
over the polar face of the cube when HEALPix projection is used. The texel aspect
distortion ranges from 0.548 to 1.826 (δmax

aspect/δ
min
aspect = 3.33), while the texel area

distortion ranges from 1.0 to 1.27 (δmax
area/δ

min
area = 1.27).

Texel aspect distortion is very high in the polar regions (left side of Fig. 4.24).
It has the highest value of all described projections, and it can be clearly seen on
the graticule and continents shape (right side of the Fig. 4.21). Like in QSC, there
are discontinuities at x = |y| directions on the polar faces of the cube, with even
higher magnitude. These discontinuities cause the same problems as with QSC, like
further increase of the aspect distortion (it is at maximum and change direction at
the line of discontinuity), texture rippling over triangles that intersect discontinuity
and also disturbing the equal-area property (right side of the Fig. 4.24).

5. Spherical Cube Map Projection Comparison

In this section, we summarize the characteristics of the projections, covered in
the previous sections, and present a side-by-side comparison according to the tests
described in Sec. 3.

Although precision was not the main criteria used in SCM projection evaluation,
poor precision can certainly limit a projections field of application. For example,
precision is very important in location services, cadastral surveys and geographic
information systems. Almost all SCM projections maintained good precision, with
the error introduced by an inverse transformation followed by a forward transfor-
mation less than or equal to 1µm for an Earth-sized planet. The only exception is
CSC (and also QLSC, but this projection is not covered in the paper). Because of
its imprecision and tendency to stretch the surface toward the edges of the cube,
CSC cannot be used for Earth mapping.
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Another property used in the evaluation process is the execution time of both
forward and inverse transformations. Execution time significantly depends on im-
plementation optimization, compiler, CPU architecture, working frequency, caching
scheme, etc. Therefore, Fig. 5.1 depicts normalized values. The normalization is
done using the shortest execution time. The tests were executed on Intel Core
i7-4700HQ CPU using the Microsoft Visual Studio 2013 C++ compiler on the Mi-
crosoft Windows 8.1 operating system. As can be seen in Fig. 5.1, HEALPix is
the fastest projection, while OSC and QSC are the slowest ones. The OSC forward
transformation, due to its iterative nature, has a relatively long execution time,
but even so it has approximately the same speed as QSC. On the other hand, the
inverse transformation of OSC is much faster than QSC. KSC has approximately
the same execution time for both transformations. Generally, excluding HEALPix,
all other SCM projections have the same order of magnitude execution time.

Fig. 5.1: Forward and inverse transformation execution time comparison. Values
are normalized using HEALPix equatorial inverse transformation time.

The most important property used in evaluating the quality of SCM projections
is distortion. Table 5.1 gives a comparative review of relevant distortion parameters:
minimum (min) and maximum (max ) values, maximum-to-minimum ratio (ratio)
and root-mean-square deviation (RMSD) of both texel aspect and area distortion.
HEALPix for the polar regions and KSC have the worst aspect distortion. QSC
has a significant texel aspect distortion, while TSC and ASC are slightly better.
HEALPix and QSC are actually not hexahedral projection. In order to reduce the
effects of discontinuities, faces of the cube have to be divided into, at least, four
triangular areas with edges aligned with discontinuities. OSC is the only SCM
projection that eliminates aspect distortion.

TSC has the worst texel area distortion. OSC is better than TSC, but still has
significant area distortion at the corners of the cube faces. ASC has a relatively low
area distortion, while KSC can be considered approximately equal-area projection.
QSC is classified as an equal-area projection, although the discontinuities slightly
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disturb that property. Furthermore, in the tests of this property, we have compared
texels all over the cube face with the texel in its center. However, the central texel
in the QSC projection crosses both lines of discontinuities, hence its size is bigger
than any other texel in the map. That is the reason the maximal value of the
QSC area distortion is less than one. The even number of texels is assumed along
each axis, which eliminates the extreme value and gives a little better overall equal-
area property of QSC. HEALPix for the equatorial region is an exact equal-area
projection, while the polar regions suffer from discontinuities the same way as QSC,
but even with a higher magnitude.

δaspect δarea
Projection min max ratio RMSD min max ratio RMSD

TSC 0.707 1.414 2.000 0.155 0.222 1.000 4.500 0.506
ASC 0.707 1.414 2.000 0.146 0.707 1.000 1.414 0.153
OSC 0.994 1.006 1.013 0.001 0.324 1.000 3.088 0.280
CSC 0.650 1.538 2.365 0.218 0.940 1.325 1.410 0.019
QSC 0.650 1.539 2.369 0.271 0.894 0.931 1.042 0.099
KSC 0.577 1.732 3.000 0.227 1.000 1.155 1.155 0.063
HEALPixE 0.654 1.178 1.800 0.156 1.000 1.000 1.000 0.000
HEALPixP 0.548 1.826 3.334 0.437 1.000 1.272 1.272 0.108

Table 5.1: Comparative review of SCM projections relevant distortion parameters:
minimum (min) and maximum (max ) values, maximum-to-minimum ratio (ration)
and root-mean-square deviation (RMSD) of both texel aspect and area distortion.

Even though a tabular review is useful for comparing values, a visual represen-
tation is usually more convincing. Fig. 6.1 gives a side-by-side comparison of all
evaluated SCM projections. A comparison is done through topographic view with
the graticule, texel aspect distortion and texel area distortion distribution over the
face of the cube. Since projections may differ in the equatorial and polar regions,
both equatorial (front) and polar (top) faces are provided.

Fig. 6.2 compares the inverse transformation effects by reprojecting regular grids
from the projection planes back to the spherical surface. The figure reveals how
the grid is distorted and also the issues with CSC projection. It can be clearly
seen that the shapes of the continents are incorrect in the case of CSC. CSC was
used for mapping cosmic background radiation, where the equal-area property was
important in representing its density, while the distortion effects were of secondary
importance if they were relevant at all or even noticed.

6. Conclusion

A spherical surface cannot be mapped to a plane without distortion. If a projec-
tion preserves shapes, it does not preserve area and vice versa. The choice of map
projection must therefore always consider the requirements of the application area.
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For planet-sized terrain rendering, projections from the sphere onto the six faces
of a cube are of particular interest, since the rectangular cube faces allow use of ex-
isting file formats for image and data storage, textures with mipmap and anisotropic
filtering capabilities as are typical in graphics pipelines, and quadtree hierarchies
and clipmaps are commonly used for level-of-detail purposes.

The rendering stage, in particular the texture sampling stage in modern graphics
pipelines, dictates the quality of the rendering result of such applications. We,
therefore, derive the following quality criteria for the evaluation of map projections:
texel aspect distortions, texel area distortions, and efficiency of transformations
required for texture sampling.

Both texel aspect and area distortion increase texture size required for the cer-
tain level of fidelity, while texel aspect distortion also spends a certain amount of
the hardware supported anisotropy range. The efficiency of the transformations
directly dictates the time needed for the data preparation and the rendering itself.

Using these criteria, we evaluated a comprehensive list of suitable SCM projec-
tions. Each projection has its advantages and disadvantages. A few projections are
clearly unsuitable for the task; QLSC because of the wrong forward transformation
and CSC because of imprecision and distortion that cannot be corrected by texture
filtering. Among other presented projections, both QSC and HEALPix are actually
not hexahedral and they introduce discontinuities if they are treated as such. Also,
both QSC and HEALPix introduce high texel aspect distortion.

Comparing all presented SCM projections, ASC is probably the best choice,
combining easy implementation, relatively fast transformation and moderate dis-
tortion. ASC requires the texture storage space twice the size of the nominal value.
OSC enables sharper rendering than any other SCM, since the available anisotropy
filtering range in not spent on the aspect distortion. However, OSC may require
bigger texture storage space (about 54% more than ASC, if the same texture levels
blending scheme is used). Also, OSC has slower forward transformation than ASC.

KSC requires approximately the same texture size as OSC, but results in the
blurrier rendering of flat, nearly horizontal surfaces, because of spending a signif-
icant range of available anisotropic filtering for correcting aspect distortion. TSC
is the worst choice considering required texture size (2.25 times more than ASC).
Although the texel aspect distortion of the TSC is the same as of ASC, the texel
area distortion is far worse than any other SCM projection.

Among the vast number of known projections (and the infinite number of as
yet unknown projections), there are certainly more that can be applied to map a
sphere to cube faces. Future work will, therefore, include the search for more pro-
jections, and their evaluation. Since the particular needs of the planet-sized terrain
rendering were not considered when constructing most known map projections, it
is possible that a projection specifically created for this task could be superior to
the projections evaluated in this paper.
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Fig. 6.1: Side-by-side comparison of all evaluated SCM projections.
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Fig. 6.2: Side-by-side comparison of the SCM inverse transformations effects. The
effects are visualized by reprojecting regular grids from the projection planes back
to the spherical surface.
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19. NVIDIA Corporation, EXT texture filter anisotropic. https://www.opengl.org/

registry/specs/EXT/texture_filter_anisotropic.txt, 11 2014.

20. E. O’Neill and R. Laubscher, Extended studies of a quadrilateralized spherical cube
earth data base, Tech. Report NEPRF 3-76 (CSC), Naval Environmental Prediction

Research Facility, May 1976.
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Simulation of Time-of-Flight Sensors for

Evaluation of Chip Layout Variants
Martin Lambers, Stefan Hoberg, and Andreas Kolb

Abstract— Simulation of time-of-flight (ToF) sensors has
mainly been used to evaluate depth data processing algorithms,
and existing approaches, therefore, focus on the generation of
realistic depth data. Thus, current approaches are of limited
usefulness for studying alternatives in sensor chip design, since
this application area has different requirements. We propose
a new physically based simulation model with a focus on
realistic and practical sensor parameterization. The model is
suitable for implementation on massively parallel processors
such as graphics processing units, to allow fast simulation of
many sensor frames across a wide range of parameter sets for
meaningful evaluation. We use our implementation to evalu-
ate two alternative approaches in continuous-wave ToF sensor
design.

Index Terms— Sensors/sensor phenomena and characteriza-
tion.

I. INTRODUCTION

CONTINUOUS-WAVE Time-of-Flight (ToF) sensors mea-

sure distances based on the time that light travels from an

intensity-modulated light source into the scene and back to the

sensor. This travel time is derived from the phase shift between

measured and reference signal. The phase shift is obtained by

electronically correlating both signals in the individual sensor

pixels. For this purpose, a typical sensor pixel is of type

dual-readout: electrons are gathered during acquisition time in

two readout circuits, and an electrical field generated by the

reference signal steers electrons into one or the other circuit.

Simulation of ToF sensors is useful for the development

and evaluation of ToF imaging and vision algorithms [1]–[3],

to produce ground truth and test data. Like the simulation of

most imaging sensors, it requires a model of light propagation

and illumination, and a model of the individual sensor pixel

behaviour [4].

For light propagation and illumination, simulation methods

that aim to simulate many sensor frames in a short time

typically use rasterization and a local illumination model,

i.e. ignoring indirect lighting effects, to leverage the com-

puting power of graphics processing units (GPUs) [5].

Methods that aim to simulate complex illumination effects

including multipath effects need to apply global illumina-

tion models instead, leading to much higher computational
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costs [6], which typically limits these approaches to static

scenes and limited parameter variation.

Sensor pixel simulation models can be devised at

different abstraction levels. Existing approaches are either

based directly on a mathematical formulation of the sensor

principle [5], or on a model of the processes that convert

photons to voltages [7].

For the purpose of sensor chip layout evaluation, both levels

need to be considered. We make the following contributions

to the simulation of ToF sensors:

• Realistic modelling: We use physical units throughout

the simulation, from light source power to sensor pixel

readout voltages. This allows to verify simulation results

and to interface with existing design and evaluation

tools.

• Sensor parameterization: We model the individual

sensor pixel geometry and layout, in both the

dual-readout and single-readout approach, since the

placement of components on a sensor pixel is crucial for

its performance.

• Lens parameterization: We account for vignetting effects

by using a thin lens model.

• Temporal oversampling: We consider scene motion

within the acquisition time and readout time of a sin-

gle phase image, leading to improved motion artefact

simulations.

In this paper, we focus on the evaluation of an alter-

native sensor chip layout in which each readout circuit

contributes to the results of two neighboring sensor pixels

(single-readout approach). In effect, this approach increases

the amount of optically active areas on the chip while keeping

the pixel’s fill factor high, and allows to shrink the sensor

pixel size [8].

To evaluate the performance of the new single-readout

approach in comparison to the dual-readout approach, we

simulate both pixel layouts. Since we are interested in practical

sensor behaviour, we simulate complete sensors and not just

individual pixels, and we consider dynamic scenes to examine

effects such as motion artifacts.

Sec. II gives an overview of related work in the field of

ToF sensor simulation. Sec. III summarizes the principle of

continuous-wave ToF sensors. Sec. IV describes our simula-

tion model. Experimental results and evaluation are presented

in Sec. V. Sec. VI concludes the paper.

II. RELATED WORK

Simulating a Time-of-Flight sensor requires the computa-

tion of

• the composition of light arriving at a sensor pixel

during the acquisition time, and

1530-437X © 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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• the sensor pixel response to this incoming light.

Keller and Kolb [5] focus on computing the light

propagation in real-time, and use a standard computer graphics

lighting model, with a pinhole camera and a point light source

at the camera position, and a local illumination model based

on Lambertian reflectors. Their sensor model is based directly

on the sensor principle: the light that reaches a sensor pixel

traveled twice the distance between camera/light source and

a surface point. From this information, the phase shift and thus

the phase images and the end result are computed as described

in Sec. III. Artificial noise is added on top of the simulated

data.

Meister et al. [6] focus on realistic light propagation,

and therefore go beyond the local illumination computation

provided by typical rasterization-based computer graphics

approaches. Their global illumination model based on bidi-

rectional path tracing is computationally expensive and thus

only suitable for static scenes. However, their technique allows

to simulate advanced light propagation, in particular multipath

effects. They can either use a basic sensor model similar to the

one used by Keller and Kolb, or the physically based model

by Schmidt and Jähne.

The sensor simulation approach of Schmidt and Jähne [7]

focusses on simulation of the sensor hardware, and thus does

not handle light propagation and illumination. It requires

precomputed light maps as input. Schmidt and Jähne model

optical excitation and target response to simulate the conver-

sion of photons to electrical charges. The use of statistical

models allows realistic simulation of various noise effects.

Additionally, vendor-specific features such as Suppression of

Background Illumination (SBI) are considered.

All of the above approaches focus on simulating the final

depth maps acquired from a ToF sensor. Only these depth maps

are provided in physical units that are directly comparable

to the output of real sensor systems, whereas intermediate

results such as phase images and derived values have no

physical meaning. Furthermore, parameterization of light

source, lens, and sensor layout are limited. In contrast

to the global illumination approach by Meister et al., the

rasterization-based approach of Keller and Kolb can efficiently

handle dynamic scenes. However, motion is only considered

between individual phase images; a single simulated phase

image is still based on a static snapshot of the scene.

III. CONTINUOUS-WAVE TIME-OF-FLIGHT PRINCIPLE

Time-of-Flight sensors measure distances based on the

time t that light travels from the active sensor light source

to an object in the scene and back to the sensor. Under the

assumption that the light source is a point light source at the

sensor position, the light travels the distance d between object

and sensor two times: d = 1
2

· c · t , with c being the speed of

light.

Continuous-Wave Time-of-Flight sensors emit intensity

modulated light in the near infrared range. The pixels on

the sensor chip measure the correlation between the reference

signal g and the light signal s reflected from the scene.

Following the notation of Kolb et al. [9], we have

C(τ ) = s ⊗ g = lim
T →∞

∫ T/2

−T/2

s(t)g(t + τ )dt (1)

Fig. 1. Four horizontally neighboring sensor pixels in the dual-readout
approach with A readout circuit (red), B readout circuit (green), and optically
active area (gray).

Fig. 2. Four horizontally neighboring sensor pixels in the single-readout
approach with A readout circuit (red), B readout circuit (green), and optically
active area (gray). The influence areas for each circuit are depicted below the
sensor pixels.

Assuming a sinusoidal signal with a modulation

frequency fmod, a correlation amplitude a, a correlation

bias b, and a distance-dependent phase shift φ = 2π ·2d ·
fmod

c
,

the correlation measurement is

C(τ ) =
a

2
cos( fmodτ + φ) + b (2)

The common approach to reconstruct the phase shift φ
for the distance computation is to use the arctangent on

four samples of the correlation function Di = C(i · π
2
),

i ∈ {0, 1, 2, 3}. Using the common library function atan2, we

have

φ = atan2(D3 − D1, D0 − D2) (3)

The correlation function samples Di are also called

phase images. They are obtained by subtracting two signals

NA,i and NB,i per pixel: Di = NA,i − NB,i . These signals

result from the electrons generated in the optically active area

of a sensor pixel, which are directed towards two readout

circuits A and B using an electric field that is based on the

reference signal g.

In the common dual-readout approach, each sensor pixel

has its own A and B readout circuit placed at its left and

right border. See Fig. 1. In the single-readout approach, each

circuit collects electrons from its two neighboring optically

active areas. Sensitive areas that drive electrons to A or B are

modulated by the reference signal g. Consequently, the center

of generated electrons for A is displaced by half the pixel

pitch from the center of generated electrons for B . Thus the

difference signal D is also influenced by this shift. See Fig. 2.

The single-readout approach allows a pixel layout with

significantly increased fill factor because the number of

components for readout circuitry is halved [8]. It is there-

fore one suitable way to shrink ToF pixels to smaller pixel

pitches. In contrast, shrinking the pixel pitch for the common

dual-readout approach is not practicable because the resulting

fill factor would be very poor. The light-sensitive area of

a pixel must have a minimum size to achieve a sufficient

signal-to-noise ratio at typical integration times; quantum
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efficiency is limited by wavelength and applied sensing

material (here silicon). With the single-readout approach,

a pixel pitch of 8 µm can be achieved, while the dual-readout

approach has its limit as 12 µm. With these pixel pitches, the

signal-to-noise ratio of both approaches is comparable, and

the total size of the sensor array is kept constant while the

single-readout approach provides higher resolution.

On the other hand, the horizontal overlap between pixels

in the single-readout approach will likely have a negative

influence on the quality of the acquired data: the shifted

sensitive areas of the A and B readout circuits can negatively

affect the lateral resolution in terms of the modulation transfer

function (MTF). The simulator presented in the following

is used to evaluate these effects for the single-readout and

dual-readout approaches.

IV. SIMULATION

To handle dynamic scenes efficiently, we use the

rasterization-based approach of light propagation and illumi-

nation, and implement this step and the highly parallelizable

problem of simulating many sensor pixels on the GPU.

Like previous approaches, we assume that the modulated

light source L and the focus point of the camera C are located

at the same position, which without loss of generality is the

origin �0. Furthermore, like previous approaches, we assume

that surfaces are Lambertian reflectors for the infrared light

emitted by L.

In the following, we first describe a model suitable for

simulation of the common dual-readout approach. We then

solve the problem of simulating the single-readout approach

by transforming it to the problem of simulating a special type

of dual-readout approach.

A. Light Source

In our model, the light source L is a point light source

defined by the following parameters:

• Light power PL [W].

• Main direction of light propagation �nL .

• Radiant intensity IL(θL), depending on the angle θL

between the light propagation direction and the main

direction �nL .

For light sources with homogeneous light propagation over

a solid angle ωL , the light source radiant intensity IL within

ωL is independent of θL :

IL =
PL

ωL

(4)

For an isotropic light source, the solid angle is ωL = 4π .

For a light source with aperture angle φL , the solid angle

is given by the area of the spherical cap with height

h = 1 − cos
φL

2
on the unit sphere: ωL = 2π(1 − cos

φL

2
).

If light propagation is not homogeneous, i.e. IL depends

on θL , then the light source manufacturer typically provides a

table that can be used to look up IL (θL).

B. Illumination

Consider a point P on a surface that is illuminated by the

light source L. See Fig. 3. The surface normal at P is �n P .

The distance of P to the light origin is rP = ||P||. The light

Fig. 3. Surface illumination.

vector (and camera vector) at P is �lP = −P
rP

. The incident

angle is θP = acos(�lP · �n P ).
The light propagation angle is θL = acos(−�lP �nL). With

this angle, the light source radiant intensity IL(θL) is known

(see Sec. IV-A).

This radiant intensity can also be written as IL(θL) =
d PL

dωL
.

Let A denote an infinitesimal area on a light source. Then

dωL =
d A cos θP

r2
P

, which gives IL (θL) =
d PL

dωL
=

r2
P d PL

d A cos θP
.

The irradiance E P [W/m2] of the surface point P due to

the point light source L therefore is:

E P =
d PL

d A
= IL(θL)

cos θP

r2
P

(5)

Assuming that the surface is a Lambertian reflector with

albedo ρ ∈ [0, 1], the radiant exitance (or radiosity)

BP [W/m2] of the surface point P is:

BP = ρ · E P = ρ · IL(θL)
cos θP

r2
P

(6)

Furthermore, the radiance of a Lambertian reflector is equal

in all directions of the hemisphere. This gives us

BP =

∫
2π

L cos θ dω = L

∫
2π

cos θ dω = Lπ (7)

Thus, the radiance L P from P to the sensor is:

L P =
BP

π
(8)

C. Lens

To account for vignetting effects, we use the thin lens model

for the sensor camera S, with an f-number NS (ratio of focal

length to aperture diameter). In this model, the irradiance

ES [W/m2] on the sensor resulting from the radiance L P

is given by the fundamental equation of radiometric image

formation [10]:

ES =

(
π

4

(
1

NS

)2

cos4 θL

)
L P (9)

Further thin lens effects such as aberrations and depth of

field are not taken into consideration.
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D. Sensor

The sensor consists of an array of W × H sensor pixels,

each with an area AS . Assuming that one pixel is illuminated

only by a small homogeneous area around a surface point P ,

the optical power PS [W] irradiated on the pixel is

PS = ES · AS (10)

PS is the peak power of the rectangular modulated light

signal. It is common that this signal has an duty cycle of 50%.

Then the energy accumulated in one pixel over T is

WS = PS · T · 0.5 (11)

This energy is converted into electron-hole pairs in the

pixel, depending on the quantum efficiency νq that describes

how many electrons are generated per incoming photon. The

total accumulated charge is mainly depending on the quantum

efficiency and the energy (wavelength λ) of photons with is

calculated as follows.

Ntot =
WS

νq ·
q·λ
h·c

(12)

Here, h is the Planck-constant, c is the speed of light in

vacuum, and q is the value of elementary charge.

The total charge Ntot is the sum of the electrons accu-

mulated in the two circuits A and B of each pixel:

Ntot = NA+NB . The charges NA and NB depend on the phase

shift and on the four-phase algorithm described in Sec. III. For

the four phases τ ∈ 0◦, 90◦, 180◦, 270◦, they are computed as

NA =
Ntot

2
(1 + D · cos(τ + φ)) (13)

NB =
Ntot

2
(1 − D · cos(τ + φ)) (14)

Here, D ∈ [0, 1] is the achievable demodulation contrast,

and the phase shift φ is computed as

φ = 2π · 2rP ·
fmod

c
(15)

This model allows to accumulate partial results by summing

up charges. This is necessary to allow spatial and temporal

oversampling as described in the next sections.

E. Spatial Oversampling

The simulation model described so far considers only a

single surface point per sensor pixel, but in reality one sensor

pixel covers a larger area. This area may cover inhomogeneous

depths, e.g. at object borders. This is the cause of flying pixels

and related effects.

Like previous approaches [5], we subdivide each sensor

pixel into an array of WS × HS subpixels to simulate these

effects. The measurements for the full pixel are simply the

sum of the measurements of its subpixels.

An effect that has not yet been considered in ToF simulation

is that not all areas on a sensor pixel are sensitive to incoming

light; some parts are blocked e.g. by control circuits. However,

the placement of optically sensitive areas on a sensor pixel

affects the measurements.

To simulate this effect, we store an additional mask value

o ∈ [0, 1] per subpixel that represents the optically sensitive

Fig. 4. Reducing the single-readout approach (top row) to the dual-readout
approach (bottom tow) by introducing virtual dual-readout sensor pixels Ti .
The virtual pixels are half as wide as the dual-readout pixels, and are
horizontally displaced to them, so that the positions of readout circuits and
optically active areas match. The optically active areas of each A readout
circuit (red) overlap the optically active areas of its two neighboring B readout
circuits (green) and vice versa.

portion of the subpixel area. Typically the resulting subpixel

mask is identical for all pixels in a sensor.

The simulated results for one subpixel are affected by the

value o by taking it into account in the computation of light

power in Eq. 10.

F. Temporal Oversampling

The sensor principle assumes that the four phase images Di

refer to the same surface, i.e. the scene is static during the

acquisition of the four phase images. In practice, this is not

the case. Movements that occur during the acquisition lead to

motion artifacts.

Previous simulation approaches [5] accounted for this by

simulating the four phase images at different points in time.

While the phase image scenes differ in this approach, it is still

assumed that no movement occurs during the acquisition of a

single phase image.

Since motion artefact compensation algorithms typically

work at the level of phase measurements [1], [2], an evaluation

of such algorithms using simulated data benefits from accurate

motion artifacts even on the level of a single phase image.

Therefore, we subdivide the integration time T into t

time steps and simulate separate intermediate phase images

according to these shortened integration times as described

by Eq. 11. The final phase image is computed as the

sum of these intermediate phase images. This assumes

that the shortened interval is still significantly longer than
1

fmod
so that Eq. 1 and Eq. 2 are still valid.

G. Single-Readout Approach

The simulation model described so far applies to the dual-

readout approach of continuous-wave ToF sensors.

To simulate the single-readout approach using the same

model, we reduce the problem of simulating single-readout

results to the problem of simulating dual-readout results by

introducing an intermediate simulation step. This intermediate

step simulates results for virtual dual-readout sensor pixels Ti

that are constructed to match the structure of the single-readout

pixels Pi as shown in Fig. 4.
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In this construction, the optically active area for each

A or B readout circuit in a single-readout sensor pixel now

corresponds to the optically active areas of readout circuits

in two neighboring dual-readout sensor pixels. The signals

N
Pi

A and N
Pi

B for a single-readout pixel Pi can therefore be

computed from the simulated charges for the virtual pixels:

N
Pi

A = N
T2i

A + N
T2i+1

A (16)

N
Pi

B = N
T2i+1

B + N
T2i+2

B (17)

Note that the order of A and B circuits in the virtual dual-

readout pixels alternates. Therefore, this approach requires that

the optically active areas are placed symmetrically between

two circuits in horizontal direction.

V. EXPERIMENTAL RESULTS

The simulation model described in Sec. IV was imple-

mented in C++ and OpenGL. All parts of light propagation

and illumination and of the sensor simulation are computed

on the GPU. Results reported below were acquired on a

PC system with an NVIDIA GTX480 graphics card.

A. Evaluation of the Simulation Model

We performed tests to compare measured amplitude data

with simulated data.

For this purpose, we set the simulation parameters to match

PMD’s Camboard Pico which uses Infineons 3D Image Sensor

IRS10x0C [11]. In contrast to the original setup, we used

an alternative VCSEL light source with a specific intensity

profile provided by the manufacturer and integrated it into the

simulation model as described in Sec. IV-A.

Fig. 5 shows a simulated amplitude profile for an array of

120 × 160 sensor pixels. This profile results from the specific

intensity profile of the VCSEL and from vignetting effects

caused by the lens.

The sensor was mounted on the movable sled of a linear

translation stage. A white wall was used as the target scene.

The global offset, which describes the averaged phase offset of

all pixels, and the Fixed Pattern Phase Noise (FPPN), which is

the individual offset of each pixel, were calibrated. Integration

time was set to 5 ms. The lambertian albedo parameter of the

surface in the simulated scene was tuned to match the real

wall measured at a distance of 1 m.

The results shown in Fig. 6 demonstrate a good match

between measured and simulated amplitude data for the center

pixel. The measured data is affected by the systematic distance

error known as wiggling that originates in the triangular

correlation function used in the real sensor; the simulation

assumes a sinusoidal shaped correlation function as outlined in

the sensor principle (see Sec. III), and therefore is not affected

by this error. Furthermore, tuning the albedo parameter of

the simulated surface at a fixed distance based on measured

data affected by wiggling results in simulated amplitude

values that are higher than the measured values in the near

range (< 1.5m).

Note that our simulation model intentionally does not

account for the wiggling error and other errors caused by

the electronics used in real sensors. This allows us to

compare the effects caused by the sensor principle for the

Fig. 5. Simulated amplitude profile.

Fig. 6. Comparison of measured and simulated data at the center pixel.

single- and dual-readout approaches without overlay of

secondary effects.

B. Evaluation of the Single-Readout Approach

As explained before, the goal of the single-readout approach

is to shrink the sensor pixel size. A common pixel pitch

scenario is to assume 12 µm structure size for the dual-readout

approach, and 8 µm for the single-readout approach. Pitches

in this order of magnitude are described in latest publications

related to the dual-readout approach [12]–[14].

For a fair comparison between both approaches, we there-

fore assume a sensor resolution that is 50% higher in both

horizontal and vertical direction for the single-readout

approach than for the dual-readout approach.

The signal to noise ratio is comparable since the full well

capacity and the sensitive area remain identical, and the pixels

typically operate in a regime dominated by shot noise due to

ambient light.

1) Lateral Resolution: To analyze the lateral resolution

precision of both approaches, we use identical simulation

parameters except for pixel pitch and number of pixels in hori-

zontal and vertical direction, as explained above. In particular,

the opening angle of the simulated sensors are identical.

We then capture a tilted cuboid, with the tilting angle

chose to match the slanted edge provided in the ISO 12333
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Fig. 7. Spatial Frequency Response (SFR) of 8 µm single-readout pixel and
12 µm dual-readout pixel.

Fig. 8. Test scenario for motion artifacts: static background and moving
foreground objects.

chart [15]. A pseudo Modulation Transfer Function (MTF) is

then calculated based on the simulated depth maps. The result

is presented in Fig. 7. The 8 µm single-readout pixel has a

better resolution at Nyquist frequency despite the overlapping

sensitive areas described in Sec. IV-G.

2) Motion Artifacts: As described in Sec. IV-F, motion

artifacts are caused by changes in the scene during acquisition

of the four phase images. Since the four samples represented

by the phase images do not correspond to a single correlation

function as assumed in Eq. 2 and Eq. 3, such scene changes

lead to failures in phase shift reconstruction that are hard

to predict, and therefore to depth errors of widely varying

magnitude. If a sensor pixel is affected by scene motion,

then its depth value is useless; there is currently no known

way to estimate the error.

For this reason, to measure the susceptibility to motion

artifacts of a given sensor, we count the number of pixels

affected by motion artifacts for a given dynamic scene, but

we disregard the magnitude of the depth errors.

To determine which pixels are affected by motion artifacts,

we need to compare the simulated depth value of each pixel

with the true depth. However, since the scene is dynamic,

there are no true depth values for moving objects: during the

acquisition time of one sensor image, the depth observed by

a sensor pixel varies.

In order to count pixels affected by motion artifacts, we

therefore construct a scene in which only two true depth values

can occur: one for the foreground (a moving object) and one

for the static background. A simulated depth value for one

pixel that is neither the background depth nor the foreground

depth must be affected by motion.

An object that exhibits a single depth value would have to

be a spherical cap, and movement would have to be restricted

to a path with constant distance to the camera. In order to

work with planar objects and linear movement paths instead,

we compute cartesian coordinates from the simulated radial

depth values using the intrinsic camera parameters, and then

compare z coordinates instead of depth values.

Based on the requirements listed above, our test scenario is

as follows. As static background object, we use a plane with

a distance of 1.5 m to the sensor. The plane size is chosen

so that it fills the complete view of the sensor. A rectangle

of 10 cm with and 50 cm height moving horizontally in a

distance of 60 cm from the sensor is our foreground object.

See Fig. 8.

If the z component of the cartesian coordinates computed

from a simulated depth value differs by more than one

millimeter from both the true foreground and true background

z coordinate, then the corresponding sensor pixel is considered

to be affected by motion artifacts. This threshold works

for this simulated scenario because other effects that would

decrease precision and increase noise in real sensors are not

considered here. However, note that this error measurement

also counts flying pixels; a complete separation of these two

error categories is not possible in dynamic scenes.

Since the difference between the single-readout and dual-

readout approaches only affects pixel rows and not the

columns, we simulate horizontal movement. We use constant

speeds between 0 and 180 cm per second for each measure-

ment. The simulated time period for each measurement is

0.2 seconds, which corresponds to 26 sensor depth frames in

our sensor parameterization.

With an aperture angle of 70◦ and a horizontal resolution

of 256 pixels, a speed of 100 cm per second of an object

at 60 cm distance corresponds to ca. 305 horizontally swept

sensor pixels per second.

For a fair comparison we assume a higher resolution for

the 8 µm single-readout approach than for the 12 µm dual-

readout approach. Therefore, we compare the ratios of affected

and unaffected pixels.

Fig. 9 (top) shows that this ratio is consistently slightly

greater for the single-readout approach than for the dual-

readout approach, regardless of object speed. If we assume

a structure size of 12 µm and therefore the same

resolution for both sensor approaches, this difference is larger

149



LAMBERS et al.: SIMULATION OF ToF SENSORS FOR EVALUATION OF CHIP LAYOUT VARIANTS 4025

Fig. 9. Ratio of pixels affected by motion artifacts at different object speeds.
Top: comparison of the dual-readout and single-readout approaches assuming
8 µm structures for the single-readout approach and 12 µm structures for
the dual-readout approach, resulting in a difference in sensor resolution.
Middle: the same comparison assuming 12 µm structures and thus identical
resolutions for both approaches. Bottom: comparison with identical resolutions
using vertical instead of horizontal object movement.

(Fig. 9 middle). When simulating vertical motion and assum-

ing the same resolution for both sensor approaches, the ratios

are exactly equal, as expected (Fig. 9 bottom). The nearly

constant ratio of flying pixels in the scene can be measured at

object speeds near zero.

The absolute differences between true depth and simulated

depth values is not meaningful because motion leads to

Fig. 10. A simulation result using a sphere as foreground object.
Top: a static sphere; no movement occurs. Middle: a sphere that moves from
left to right with a velocity of 1 m per second, simulated using the single-
readout approach with 8 µm structures. Bottom: the same moving sphere
simulated using the dual-readout approach with 12 µm structures.

unpredictable depth values, as explained above. In this test

scenario, absolute differences between 1 mm (the lowest

detected error) and 1481 mm occurred.

We also verified that our simulation approach for the

single-readout sensor summarized in Eq. 16 and Eq. 17

does not suffer from a directional bias: the results for

left-to-right and right-to-left motion of the foreground object

show no significant difference, regardless of simulated move-

ment speeds. Furthermore, experiments confirm that vertical

movement does not exhibit differences between the

two approaches.

In this evaluation with planar objects, pixels affected by

motion artifacts can be identified in a simple way. On the

other hand, motion artifacts only occur on the left and right

borders of the moving foreground object. In contrast, for a

non-planar object such as a sphere, each pixel that sees a

part of the moving object during the acquisition time will be

affected by motion artifacts, since the distance to the observed

object surface will change. In this case, true depths do not exist

(since depths vary over time), and a true shape does not exist

either, so a quantitative analysis is not possible. However, the

visual comparison shown in Fig. 10 confirms the results of the

previous evaluation: the single-readout approach is stronger

affected by motion artifacts than the dual-readout approach.
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Furthermore, Fig. 10 shows that the absolute error grows with

the variation of the observed depth in both approaches. The

observed object shape is not spherical anymore; distortions

occur in horizontal direction.

VI. CONCLUSION

Our simulation model improves on existing approaches by

using physical units throughout the simulation, by improv-

ing parameterization, especially of sensor geometry, and by

improved simulation of dynamic scenes through temporal

oversampling. We have not presented a noise model for the

simulated data, since it was not needed for our evaluation pur-

poses, but per-pixel noise behavior can be integrated into our

model in the sensor simulation described in Sec. IV-D. Since

we focus on efficient simulation of many frames, to cover

a large parameter space and to handle dynamic scenes for

motion artifacts, expensive global illumination effects required

for the simulation of e.g. multipath effects have not been inte-

grated into our simulation model. Currently our simulation is

limited to Lambertian reflectors in the scene. We plan to inte-

grate realistic material models given by measured or modelled

Bidirectional Reflectance Distribution Functions (BRDFs) into

our model in Eq. 6 – 8. The assumptions that both the light

source and the sensor are located in the origin, which is

also the center of light rays, has been used before and is

considered sufficient for typical sensors intended to record

indoor scenes. However, the assumption may not hold for

short range applications such as hand gesture recognition. Our

sensor model can be enhanced to study the resulting near field

effects. In this situation, an area light source can be modelled

using multiple point light sources whose contributions are then

summed up analogous to the oversampling methods presented

in Sec. IV-E and IV-F.

We used a GPU-based implementation of our simulation

model to evaluate a new chip layout variant for continuous-

wave ToF sensors. The single-readout approach with 8 µm

structure size provides a better lateral resolution than the

common dual-readout approach with 12 µm structure size.

Even though this new approach is more susceptible to motion

artifacts, the improved lateral resolution may be useful for

specific application scenarios. Further investigations may find

a way to reduce the susceptibility for motion artifacts by

reducing the pixel mixing shown in Fig. 2 in a postprocessing

step on the sensor.
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Abstract. In this work, we systematically analyze how good ground

truth (GT) datasets for evaluating methods based on Time-of-Flight

(ToF) imaging data should look like. Starting from a high level char-

acterization of the application domains and requirements they typically

have, we characterize how good datasets should look like and discuss

how algorithms can be evaluated using them. Furthermore, we discuss

the two different ways of obtaining ground truth data: By measurement

and by simulation.

1 Introduction

Time-of-Flight imaging is known to suffer from various random and systematic
error sources such as multi path, depth wiggling and sensor noise (cf. Chapter 2).
Their low resolution additionally restricts their suitability to tasks that do not
require a high lateral accuracy. Many methods have been proposed in literature
to over-come these problems. Many of them were also published together with
ground truth data on which the algorithms were validated. As these works cen-
ter on the methods themselves, usually less attention is given to the nature of
the ground truth (GT) data, with the content chosen to be ‘realistic’ without
further specification what ‘realistic’ actually means. Furthermore, the simulta-
neous optimization of the GT data and the method at hand runs in danger of
over fitting the algorithm to the data or vice versa. Therefore, we believe that a
more rigorous definition of ground truth for Time-of-Flight imaging is necessary,
independent of a specific method at hand or a specific camera manufacturer.
The goal of this paper is to better define many of these problems. Starting from

M. Grzegorzek et al. (Eds.): Time-of-Flight and Depth Imaging, LNCS 8200, pp. 52–74, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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a problem domain analysis we will investigate and discuss requirements for good
GT data in Section 2. Next, in Section 3, we will discuss different ways of creat-
ing GT data by measuring reference data or by simulation. Then we will explore
existing datasets and discuss what characteristics good datasets have in Section
4 before discussing performance measures to evaluate algorithms in Section 5.
Finally, we will conclude with a section on best practices and lessons we learned
during ground truth acquisation in Section 6.

2 Application Domains and Requirements Engineering

It is unlikely that we can find one generic algorithm which optimally works
under all circumstances: This is called the generalization-specialization-dilemma.
It states that given an application, our algorithm might either be so specific that
it is not able to deal with previously unobserved data (overfitting). On the other
hand the algorithm might generalize well over many scenarios but yield mediocre
results in each of them. Thus, in order to analyze the appropriateness of an ToF
algorithm for a given application, we need to know the application.

On the other hand, there might be an infinite number of yet unknown ap-
plications for ToF algorithms. It seems unlikely that we can first enumerate all
applications and then analyze the performance of each and every algorithm for
each and every application. System engineers found a way around this problem
by identifying a number of meaningful and intuitive properties for each system
component (c.f. Table 1). These are measured and then listed in a specifica-
tion sheet. These properties are selected by finding those which are, ideally,
important for as many relevant applications as possible. In order to select the
most indicative properties, all currently available applications are considered.
Then, by experimentation, system properties are selected and tested for their
usefulness.

For four example applications we have identified a set of requirements, and
analyzed which ones are relevant for each application. Table 1 enumerates the
importance of several requirements for the example applications. Based on these
findings, ground truth data and appropriate test scenarios can be acquired /
generated to evaluate the performance and suitability of depth imaging devices
and algorithms with respect to the application requirements. In the following we
will discuss the requirements of various application fields, except for multimedia,
which is discussed in Chapter 6. As low-level pre-processing algorithms are used
in all applications below, we will first summarize their requirements separately.

Low-Level Pre-processing Algorithms

Well-known issues (cf. Chapter 1) such as noise (cf. Chapter 2), multi-path or
motion-induced artifacts often need to be reduced before high-level algorithms
can try to understand the scene. Superresolution (SR) is regularly used to scale
up depth images and thereby increase the detail of depth edges. Usually, this
approach is coupled with denoising and sometimes with sensor-fusion (cf. Chap-
ter 6) were other cameras are used to obtain hints on how to increase the detail.
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Table 1. Requirements and their importance for selected example applications. A +

indicates an important requirement, 0 is less important and - unimportant.

Requirements Gesture

Control

Room

Supervision

Driver

Assistance/

Robotics

Multimedia

Low Latency + - + +

Low Noise / High Precision 0 0 + +

High Accuracy - - + -

High Frame Rage + 0 + +

Motion Robustness + 0 + +

Robustness Against

Environmental Influences
0 0 + +

Interference Robustness - + 0 0

Low Hardware Requirements 0 0 + -

Graceful Degradation

Self-Inspection
0 + + 0

Depth Range - 0 + -

Lateral Resolution + 0 - +

Multi-path is a largely unsolved problem, whereas motion artifacts can already
be handled to some degree. In terms of requirements, these algorithms have in
common, that they should ideally be able to annotate their outcome with confi-
dences so that higher-level methods are able to judge whether they want to use
the data at all.

All of these algorithms address information-theoretic problems: given a subset
of the information of the scene, how can we add believable detail from other
sources? Information is added by prior knowledge as simple as interpolation
kernels, regularization techniques or more complex cues such as e.g. temporal
coherence or different modalities (such as RGB color).

Other algorithms on intermediate and higher levels of semantic understanding
could be 3D reconstruction and camera/object tracking as well as object detec-
tion and scene understanding. All of the discussed requirements can play a more
or less important role, such as depth accuracy is important for 3D reconstruction
but not necessarily for scene understanding whereas speed and beauty can play
a role depending on the application domain.

Gesture Control

Gesture Control is one of the major and most mature depth imaging applications.
Most gesture interaction systems do not need an overly high depth accuracy
and precision, as they use distinct gestures to trigger actions and the accuracy
of interactions is primarily limited by ergonomic considerations. However, low
latency and motion robustness are mandatory for a good and pleasant gesture
control system.
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Room Supervision

With the room supervision application in mind, we are interested in the number
of people in a room. Therefore, we want to use multiple cameras that observe
the room from different angles to ensure that no person is occluded. The use of
multiple cameras requires that they are able to observe the same scene without
interfering with each other. The processing power required for image processing
is increased with each added camera.

Reliability is very important in this application, so the system should be able
to detect when it is in an undefined state. Since exact localization of the persons
is not required, other requirements can be relaxed. Latency, motion robustness,
accuracy and noise are not a big issue.

Driver Assistance/Mobile Robotics

In driver assistance and autonomous mobile robotics, i.e realtime systems with
limited computational resources and possible public safety issues, speed is not
the only important criterion: Energy, memory and bandwidth consumption have
to be taken into consideration, as many subsystems are competing for limited
system resources. Accuracy is also relevant, as the desired behavior depends on
the distance to a detected obstacle - e.g. start breaking or initiate an evasive ma-
neuver. Finally, the algorithm should not only have self-inspection capabilities,
but also degrade gracefully, as small irritations such as specular reflections on
other cars or interference with other ToF-equipped vehicles can occur frequently.

In the following chapters, we will discuss different techniques to create datasets
for benchmarking such applications and requirements.

3 Ground Truth Generation

There are two ways of generating ground truth data. By measurement or by
simulation. Both these approaches assume that the reference data is dense and
has an error which is an order of magnitude smaller than the expected ToF error1.
In all cases, two datasets are created simultaneously: A scene captured using
ToF along with reference data for comparison. If reference data is measured, the
accuracy of the reference modality and alignment issues need to be considered
(cf. Chapter 3.1). GT can also be obtained by simulation. Here, a scene with
known geometry is used as a starting point and the ToF data simulated using
various ToF models (cf. Chapter 3.2). Even though such models usually need to
make simplifications to remain tractable, they offer the opportunity of white box
testing. Hence, this shifts the problem to the question what a good simulation is.
The reference data may be exact but the derived data can show subtle differences
compared to a real sequence.

1 In Section 5.2 on weak and sparse ground truth we will discuss what can be done if

this requirement does not hold anymore.
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3.1 By Measurement

We will introduce various methods which can be used for measuring ground
truth before discussing alignment issues that are relevant to all these methods.
These datasets can be used for general black-box testing. In the last part, we
will also discuss various strategies for isolating specific aspects of Time-of-Flight
imagers for white-box testing.

3.1.1 Methods

A. High Precision Scanning

High precision scanning techniques include Time-of-Flight and triangulation
based laser scanners as well as structured light scanners. Structured light

scanners and triangulation based laser scanners both infer depth by
triangulating the position of some active illumination pattern. Figure 1 de-
picts two example scans using these modalities. These scanners typically
have an accuracy of 1 - 100 microns and can safely be considered to be an
order of magnitude more accurate than ToF imagers [1]. They usually have
a limited working volume of a few liters and have a working range of up to
2 meters[]. As all optical measurement techniques they succumb to objects
with specular surfaces. Therefore, for best results, often the object to be
scanned has to be coated with a diffuse paint.

Fig. 1. Left: high density point cloud of statue scanned using structured light. Right:

Point cloud of office space acquired using terrestrial laser scanning.

In recent times ToF based terrestrial laser scanners (TLS) commonly
used for large scale terrain and building scanning have received more atten-
tion for creating ground truth datasets for applications such as stereo match-
ing or optical flow [2] and most recently also for Time-of-Flight imaging [3].
Most ToF laser scanners claim to have an accuracy of a few millimeters over
a wide range of distances (2 - 100 m), making them an ideal modality to
create ground truth for static scenes. As with ToF imaging the accuracy can
deteriorate depending on the actual sensor-scene setup[1], though the effects
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of such errors are certainly smaller than in ToF cameras. Still, a few aspects
should be considered while creating TLS datasets. Depending on model and
position of the scanner as well as the skill of the operator the error can reach
multiple centimeters.

Mixed Pixels. As the pixels have a certain size, the laser beam also has
a certain width and is subject to beam divergence which causes mixed
pixel effects at object boundaries. Since the reconstruction formulas used
in most ToF scanners are not as highly nonlinear as in the ToF imager 1,
these points lie between the foreground and background depth. Depend-
ing on the distance of the near object this can still lead to a substantial
broadening of the object. Current TLS systems employ lasers with start-
ing beam diameters of 6mm and beam divergences in the range of ≈ 0.1
mrad. Although the most often used gaussian beam profile allows for
a more exact localization of the beam center in orthogonal direction,
mixed pixel effects will be observed in a region of the size of the same
magnitude as the beam diameter. A rough calculation with a 40 degrees
FOV and 200 pixels sensor resolution for the ToF imager, yields that a
pixel accounts for around 6 mm at 2 m distance (Effects dependent on
the point spread function not taken into consideration). That means that
especially super resolution, flying pixel compensation and denoising al-
gorithms should evaluate whether mixed pixel effects actually affect their
evaluation at depth boundaries. An example scan with mixed pixels can
be seen in Figure 2.

Fig. 2. LiDAR based point cloud with high amount of flying pixels

Material Based Offset. Similarly Clark et al[4] and Boehler et al[1] have
reported a material/albedo (amplitude) based offset in the order of mag-
nitude of a centimeter. Though they cite different intensity based offsets,
this can be due to calibration/environmental effects or equipment degra-
dation (see last point). Again a visual inspection of the laser scan data is
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advisable to ensure that such effects are not present or are compensated
for [4].

Resolution/Sparsity. The resolution or point density of various scanners
can often be adjusted in a certain range. This can alleviate problems
caused by depth discontinuities making sure that the scene is sampled
denser than by the ToF camera to evaluate. Keep in mind that this will
not automatically compensate for mixed pixel effects. Scan density can
also be reduced in favor of speed. Velodyne scanners for example have a
very small vertical resolution of only 64 scanlines. The advantage is that
scan times are significantly lower, reaching even the typical frame times
of ToF cameras. This provides for some interesting evaluation scenarios
as reference data can be both accurate and dynamic but is also sparse
in at least one spatial direction.

Angle of Inclination. A small effect of surface inclination towards the
laser beam was observed by [5]. This effect was accounted to be up to 2
mm such that it alone most probably will not affect scan quality.

Scanning Volume/Shadowing. TLSs are made for large scale scanning.
Hence, using them in closed cluttered scenes will lead to a lot of shadow-
ing which requires tedious additional scans (especially as these scanners
are usually quite heavy).

Calibration/Environmental Effects. Boehler et al[1] reported that scan
performance can deteriorate depending on handling and age of the scan
equipment. Also as high precision mirrors are used, a drift in depth can
be caused due to temperature variations. Many of these effects can be
compensated for by appropriate calibration and we refer to the methods
proposed in [6].

Scan Time. Scan Time for these devices is typically at least a few seconds,
although real-time scanners with severely reduced lateral resolution ex-
ist. This limits their use to static ground truth scenes.

B. Kinect Fusion

Although depth cameras using different modalities may only offer compara-
ble but not superior accuracy, their output can still be useful for evaluations.
Examples would be the use of intelligent data fusion or temporal integration
approaches. We will demonstrate this on the example of the KinectFusion
pipeline [7,8].

The Kinect camera itself does not have a better lateral resolution than
typical Time-of-Flight cameras and its depth accuracy is also only in the
centimeter range [9]. Depth images acquired from the camera are therefore
not directly suited for evaluation.

Nonetheless, an interesting approach to ground truth generation using
the Kinect was presented by Meister et. al [10]. The Kinect Fusion algorithm
presented by Newcombe, Izadi et al. [7,8] uses the input of a kinect camera
to recreate a 3D representation of a scene. This is done by converting the
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Fig. 3. Left: KinectFusion generated mesh of evaluation target. Middle: Euclidean error

of mesh(red:15mm). Right: ToF depth image of the test target.

cameras depth data into a voxel based implicit surface representation [11].
Each new view and camera position is matched to the previous ones using an
special variant of an iterative closest point algorithm and the voxel volume
is then updated with new surface data.

This approach could be described as volumetric superresolution since the
resulting 3D representation is more accurate and shows less noise than the
individual depth frames. The polygon meshes created by applying marching
cubes to the zero-level set of the surface are known to have a geometrical
precision of 10 to 80 mm, depending on scene size. This does at least fulfill the
requisites for weak ground truth (c.f Section 5.2). Advantageous is that this
method works without complicated setup procedures and does not require
expensive equipment. It should be noted though, that as Kinect Fusion relies
on depth map registration, the quality will also depend on the the amount
of “clutter” in the scene.

C. Self Made Targets

Up until now arbitrary scenes were measured with ToF and a reference
modality for later comparison.

A different approach to creating real world test objects is to start off with
a computer model and produce them using various manufacturing processes.
This allows to create targets with specific characteristics such as known
curvature or controllable reflection properties using different materials.

Hand Measurement/Construction. Though probably considered some-
what archaic, for simple geometries it is possible to create the test tar-
gets manually. Objects with accuracy of a few millimeters or lower can
be created using standard materials like wood or metal. The test object
in Figure 5 was created from fiberboard with an accuracy of ≈ 1mm.

Milling. On the other end of the accuracy spectrum, processes such as CNC
milling have a precision of a couple of microns. The size of objects created
this way is typically limited. An example object can be seen in Figure 4.
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3D Printing. Automated 3D manufacturing even for private home use is
becoming increasingly popular in the recent years. So called 3D printers
which can produce arbitrary objects by depositing thermoplastics are
available for a few hundred Euros. Although typically limited to objects
as few dozen centimeters wide they also reach precisions of tenth of
millimeters.

Fig. 4. Left: CNC milled object, Right: Photogrammetric Target

3.1.2 Alignment

Once the same Dataset has been acquired using different modalities, the ToF
data needs to be aligned to the 3D data by estimating the relative rotation and
translation between the camera and the reference coordinate system. The first
decision that has to be made is whether this alignment is done using the point
cloud data directly or by first estimating the ToF camera pose in the reference
dataset and then back projecting the ToF points into space.

Manual Alignment. As a baseline it is possible to manually align the ToF with
reference data. This can be a very tedious job as 6 DOF have to be optimized
by hand. We suggest that instead users choose a set of correspondences
between the ToF data and the Reference data, and then align them by
means of standard pose estimation techniques [12].

Point based matching. This will work if the scene is cluttered enough, other-
wise it may result in drifts. Also it should be noted that systematic errors in
the scene will lead to a bias in matching. This can be circumvented to a cer-
tain extent by applying sparse point matching or robust versions of ICP [13]
that also account for the anisotropic noise present in the ToF point clouds.

Using Targets. Photogrammetric targets can be used to semi-automatically
align ToF with reference data. In case of RGBD reference data this amounts
to finding and matching feature points of known properties. Typical examples
are circles or checkerboard corners as they are easy and exact to locate (c.f.
Figure 4).

Partial Alignment. In certain situations the geometric properties of specific
areas of the image are known (e.g. a planar wall or table). It is therefore also
possible to just fit the ToF pixels to these simple models.
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3.1.3 Isolation of Effects

As many algorithms claim to target different specific aspects of ToF imaging,
datasets should help assess how well they perform. In the following we propose
various techniques to separate those specific aspects.

Temporal averaging. If the goal of the algorithm is to remove the statistical
fluctuation of the depth map, a GT dataset can be simply created by tem-
poral averaging of the input intensity images. The obtained dataset will still
contain all systematic errors, but can still be used to assess the power of
different regularizers (See Section 2).

Controlled Movements. Controlled Movements are interesting for algorithms
that try to compensate for motion artifacts (Section 1). Basically two param-
eters can be optimized: a) How accurately the movement can be controlled
and b) the accuracy with which the movement can be tracked. An example
for a) was given by Schmidt et al. [14] who used a rotating target of known
geometry with constant angular velocity to create ground truth for their
experiments. Another possibility is to use a rail system to constraint the
movement in one dimension. The movement can then either be estimated by
tracking a target or by evaluating the optical flow.

Lighting. While the light is usually fixed to the camera, Schmidt et. al [14]
separated the light from the sensor. This was done in order to decouple
saturation effects from the wiggling error.

Materials. As different materials affect the ToF measurement, especially multi-
path, the usage of specific materials can help making measurements with
reduced multi-path effect.
– As specular surfaces tend to show more multi-path interference, the usage

of highly lambertian surfaces such as spectralon could be used to isolate
interreflection effects.

– Often white walls in rooms increase global multi-path effects. Hence,
dark absorbing materials such as fleece should be used to reduce these
effects.

– Another interesting idea is to use infrared retroreflecting spots or sprays
while reducing the integration time such that the direct reflection out-
weighs the multi-path illumination. Combining this with dark materials
in a scene can possibly be utilized to estimate intra-lens reflections.

3.2 By Simulation

Computer generated data is in many cases a suitable alternative to measured
ground truth data for algorithm validation [15]. In the context of Time-of-Flight
imaging, a sensor simulator can provide such data.

To be useful for Time-of-Flight imaging method evaluation, a sensor simulator
must provide two kinds of data: ideal depth data without any noise or artefacts,
and realistic sensor data with typical noise characteristics and relevant system-
atic errors. The latter may include intermediate results that a real sensor may
provide to the user, such as phase images (c.f Chapter 1).
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The problem of simulating Time-of-Flight sensor data encompasses two areas:

1. Modeling of scene geometry and materials, light source, and light propaga-
tion, and

2. Modeling of the sensor hardware and operating principle.

Ground truth data generation for imaging method evaluation requires simu-
lation of sensor data that exhibits a clearly defined and identifiable challenge.
Depending on this problem domain, a simulator can be based on models on dif-
ferent abstraction levels in both areas. Typically, some aspects of the complete
system have to be simplified in order to maintain tractability. For example, to
produce ground truth data for the evaluation of methods to reduce motion arte-
facts, a simulator might chose relatively straightforward optics and light propa-
gation models in order to allow fast computation of multiple sensor data frames
for dynamic data.

3.2.1 Light Propagation

The light propagation model determines the composition of light that reaches
each sensor pixel in the sensor hardware model.

For that purpose, the light propagation model must encompass a modulated
light source, a scene description consisting of geometry and material properties,
a reflection model for each material, and a camera optics model.

Keller and Kolb [16] use a model based on the traditional computer graphics
pipeline. The camera is a pinhole camera and the light source is a point light
source located at the camera pinhole. All object surfaces in the scene are assumed
to be Lambertian reflectors at the wave length of the sensor light source.

In this model, the light that reaches a sensor pixel traveled twice the distance
d between camera / light source and a surface point. Thus, the phase shift of this
incoming light relative to the light source is known. Furthermore, its amplitude
can be computed from d, the direction from the light source to the surface point,
and the surface normal.

Knowing phase shift and amplitude allows to compute the four phase images
typically generated by Time-of-Flight sensors, and from these phase images the
final depth map can be computed. See Sec. 3.2.2.

The advantage of this model is that a simulator can leverage the processing
power of Graphics Processing Units (GPUs) to compute light propagation in-
formation for many sensor data frames, even for complex and dynamic scenes.
Furthermore, existing modeling tools from the computer graphics domain can
be used to create and animate test scenes.

Keller and Kolb use a spatial oversampling to simulate typical effects such as
flying pixels. For each sensor pixel, the rasterization produces a block of subpix-
els with light source information for the cone covered by that sensor pixel. This
allows to compute the incident light properties as a mixture of the responses
of different surface points, which is important e.g. at object boundaries. Addi-
tionally, computing the four phase images at distinct points in time allows to
simulate motion artefacts in dynamic scenes, with the limitation that the scene
is still assumed to be static during the exposure time of each phase image.
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The rasterization approach can be extended to support the simulation of
more effects by using methods known from the Computer Graphics domain. This
includes the approximation of area light sources with multiple point light sources,
improved modeling of material and reflection properties, transparent materials,
depth of field, and certain types of distortions caused by camera optics.

However, as known from Computer Graphics, rasterization has certain lim-
itations that prohibits its use for more complex light propagation effects. In
the context of Time-of-Flight imaging, multi-reflection (or multipath) artefacts
are a particularly interesting example. To simulate such effects, global illumina-
tion methods such as Photon Mapping or Path Tracing have to be employed.
These methods typically have significantly higher computational costs, to the
point that they are impracticable for complex dynamic scenes. However, they
can generate much more realistic light propagation information.

The main challenge in applying global illumination methods to Time-of-Flight
sensor data simulation is that the composition of modulated light reaching a
sensor pixel must be known, including phase shifts.

Calculating all possible or even only all physically relevant paths between
(multiple) lightsources and the camera is practically impossible. So most GI
algorithms try to infer the light distribution in a scene using intelligent sampling
schemes and by making certain assumptions about the light contributions. Two
of these assumptions namely that light propagation is instantaneous and that
the lighting situation is in a steady state for a single frame do not hold for ToF
imaging.

A possible approach to this problem is the simulation of individual phase
raw-frames similar to the mentioned scanline renderers. The path length (and
therefore the phase) of light which was reflected multiple times inside a scene
can be tracked and then be used to modulate the individual light contributions
when they hit a sensor pixel. These modifications could easily be added to most
existing global illumination algorithms.

In most cases this image synthesis is a stochastic process and noise in rendered
images is of a different nature than the sensor and photon noise present in real
cameras. A physically correct simulation would therefore need to be sustained
until the render noise has no more significant influence on the generated depth
maps. Then correct sensor noise as shown in Section 3.2.2 could then be applied
to the raw data. In practice, the minor differences in the noise characteristics of
the various simulations seldom justify the massive increase in computation time
this approach would necessitate.

A problem arises from the typically high-order parameter space of various
global illumination methods. Apart from the possible settings of the render en-
gine such as light sample sizes, recursion depth or sampling parameters, material
parameters such as reflectivity, surface roughness or texture can be changed indi-
vidually. The Time-of-Flight simulation may depend on any of these parameters
and finding the correct ones can be a challenging task in itself. Experiences from
computer graphics or image synthesis can only be applied partially as they may
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be focused on subjective expectations (Does it look good vs. does it look real)
or e.g. be limited to the visual spectrum.

Light propagation effects that have not yet been addressed by simulators based
on either rasterization or global illumination include advanced optics effects such
as lens flare and scattering inside the camera casing. The properties for lenses
used in Time-of-Flight imaging are generally quite different from those of regular
lenses. For example, they need to be transparent for infrared wavelengths and
suitable for intensities with high dynamic range. If a description of the lens is
available, the lens effects can be computed using optical engineering software
such as OSLO [17] or Zemax [18].

Fig. 5. Left: Ground truth geometry of test object. Middle: Geometry as seen by real

ToF camera. Right: Simulation with method by Keller and Kolb.

3.2.2 Sensor Hardware

Given the composition of incoming light as computed by the light propagation
model, a sensor hardware model can simulate the sensor pixel response. Again,
such hardware models can have different abstraction models, depending on the
problem domain.

Keller and Kolb [16] employ a phenomenological sensor model. Based on the
light input for each of the four phase images of typical PMD sensors, their sim-
ulator computes the ideal theoretical phase image sensor response, as described
in Chapter 1. To achieve a realistic simulation result (as opposed to a perfect re-
sult), Keller and Kolb apply additive and multiplicative Gaussian noise to these
ideal phase images before computing the final depth map sensor response.

This phenomenological model focuses on computational efficiency for the han-
dling of dynamic scenes: similar to their light propagation model, Keller and Kolb
leverage the processing power of Graphics Processing Units (GPUs) to compute
the sensor response for each pixel in parallel.

Schmidt and Jähne [19,20] employ a physical model of individual sensor pixel
components, with the goal of simulating the cause of sensor data imperfections
instead of applying noise effects after computation of the sensor response. This
leads to better understanding of sensor data, more realistic simulation results,
and more fine-grained control over simulator behavior.

In particular, their physical model accounts for real-world effects like
non-sinusoidal light modulation, non-rectangular switching functions, non-linear
photo response, and the influence of sensor-specific techniques such as the
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Suppression of Background Illumination (SBI) method commonly found in PMD
sensors. Consequently, their system can simulate various types of sensor noise
realistically.

Both the phenomenological approach by Keller and Kolb and the physical
modeling approach by Schmidt and Jähne originally used light propagation in-
formation generated by basic rasterization methods, but could also be combined
with more sophisticated light propagation models.

In addition to these approaches on relatively high abstraction levels, sensor
manufacturers can employ chip design evaluators that simulate chip behavior on
a transistor level, based on chip descriptions in VLSI. Such simulators naturally
require immense computational power even for small sensor resolutions, and are
therefore typically impracticable for producing ground truth data targeted at
the evaluation of imaging methods.

4 Content Selection and Available Datasets

4.1 Content Selection

An equally important question is which targets or scenes should be used for
the ground truth sequences. Three important aspects of ground truth datasets
are interpretability, progression and realism. Interpretability refers to the
aspect that an algorithm failing or working on a certain dataset should not only
tell us that it failed or worked but also give some insight that the algorithm
fails due to certain conditions. As a baseline, isolated effects on simple planar
geometries can be analyzed. In Section 5.2.1, simple geometries and measure-
ment methods to obtain certain effects are discussed. In more complex scenes
masks can be supplied that highlight only certain effects in the scene such as
specular reflections, multi-path or transparency. The second aspect - progres-
sion - is concerned with avoiding a problem heavily used datasets have. As the
optimization criterion is to minimize a certain error measure on this particular
dataset researchers tend to overfit their algorithms to this specific dataset[21].
On the other hand, if the dataset is initially too challenging, it may not receive
the needed traction in the research community.

Therefore we believe that a large database should include a progression of
difficulty to accommodate for this. Progression can be obtained by combining
different effects but also by more complex geometries that make simple regular-
izers etc. fail.

Finally, realism refers to the GT data being relevant to actual use cases.
Obviously a dataset can not be exhaustive regarding all possible applications.
But once an application domain is identified the goal should be to create ground
truth data as close to the actual working conditions as possible.

4.2 Existing Datasets

So far the number of available datasets and scene compositions is limited. Here
we present a short but representative selection of the available sets along a short
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description of the included data. Either the dataset name or the title of the
corresponding publication is given.

Capturing Time-of-Flight Data with Confidence. To calculate confidence
values for ToF imaging Reynolds et al. [3] provide a ground truth dataset
based on laser scanner data. The set consists of four scenes of which two are
augmented with ground truth data. ToF data includes depth maps as well
as intensity and amplitude images and intrinsic calibration data. Alignment
between the two modalities is enabled by the usage of reflecting calibration
markers. The dataset is available at http://visual.cs.ucl.ac.uk/pubs/
tofconfidence/.

Fig. 6. Left: ToF Intensity Image, Middle: ToF Z-Depth. Observe the ’halo’ around

object corners. Right: Ground Truth Z-Depth.

HCI LiDAR Dataset. A ToF dataset referenced with terrestrial laser scanner
data is available at http://hci.iwr.uni-heidelberg.de//Benchmarks/.

It consists of images of a office scene taken with a PMD CamCube 3
ToF camera. Included are intensity images, depth images, sensor raw data
as well as camera calibration data. The displayed room was also scanned
using a RIEGL VZ-400 terrestrial laser scanner 2 with an stated accuracy
of 5 mm and 3 mm precision. The scan was performed from 6 individual
positions with approximately 5 Million points per scan.

Ground truth depth maps were created by manually selecting 2D-to-3D
correspondences between the ToF intensity images and a delaunay trian-
gulation of the scanned point clouds. Using these correspondences camera
pose estimation was performed and the depth of the triangulated mesh was
rendered.

It should be noted that the lidar based polygon mesh contains multiple
errors or holes due to occlusions and flying pixels in the point cloud. See Sec-
tion 3.1 for typical problems regarding laser scanner data. Figure 6 shows a
ToF intensity image of the dataset as well as a depth map and corresponding

2 http://www.riegl.com
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ground truth map. The dataset does not adhere to all points mentioned in
Section 6 but is still useful for many evaluation tasks.

HCIBOX Depth Evaluation Dataset. An additional dataset is available un-
der the same url (http://hci.iwr.uni-heidelberg.de//Benchmarks/).
The test object is a wooden box containing several simple geometric objects
such as cylinders or spheres, see Figure 5 for an image. This set consists of ToF
images of the same type as well as fully calibrated megapixel stereo images.
Ground truth depth maps were again created using standard pose estimation
techniques. For this set the 3D model was created by measuring the depicted
test object by hand, reaching a general accuracy of ≈ 1 mm.

Locally Consistent ToF and Stereo Data Fusion. This dataset created by
Mutto et al. [22] contains both rectified stereo camera data as well as data
from aMESA SR4000 camera and is intended for use in sensor data fusion ap-
proaches (http://lttm.dei.unipd.it/downloads/tofstereo). The ToF
data does include amplitude, depth and confidence images and is of par-
ticular interest as ground truth data for this camera model is rare. Three
scenes containing household objects are contained in the set. Ground truth
for was created using the Spacetime stereo method by Zhang et al. [23], rely-
ing on the stereo systems images itself to create the reference data. Although
there are no indications about the accuracy of the used ground truth.
Additionally some rendered stereo images and ToF depth maps are also
available from the same location. These depth maps are purely synthetic
and lack typical ToF artifacts and errors.

5 Application of Ground Truth

5.1 Algorithm Performance Metrics

In this section we will give a short overview over the most often used error
metrics and give advise on how or when they should be used.

The performance metric most commonly used for GT evaluation is the mean
endpoint error/squared error. It is defined as the mean of the absolute distances
between the ground truth and the measured depth. Though useful in many cases,
the reduction of performance to a single scalar value may not be too meaningful.
To name one example: Often a visually pleasing result that contains a bias is
more preferable to a bias free solution with a high variance.

In general, performance metrics can be divided into different classes:
Local metrics are typically defined for every pixel of the depth map and in-

dependent of each other. Image processing and analysis has the advantage that
these individual observations have a clear and descriptive meaning. Also the spa-
tial structure of these observations has a meaning in itself so it is advantageous
to use error metrics which preserve this spatial information. An example for a
local metric would be the per pixel endpoint error.
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Global metrics which includes the classical mean endpoint error are often
derived from local metrics by statistical analysis. This could be standard de-
viation of the error, higher order momenta or more subjective metrics like the
apparent smoothness (with smoothness deliberately left without a strict defi-
nition). If a local metric is used, there is practically no reason not to include
some simple statistics for this property. Mean, standard deviation, median and
quantiles are rather fast to compute and can give additional insights.

Another classification scheme would be the distinction between direct met-

rics which can be computed directly when the ground truth is given (or some-
times even independently of the GT), or derived metrics which need more
or less extensive postprocessing before they can be applied. Examples would be
the fit between polygon meshes which are based on the measured depth data.
This is usually more application dependent and may be expressed in terms of
the requirements presented in Section 2.

The following enumeration is in no way exhaustive as each application may
define its own error metric. These metrics should be considered as a guideline
for low-level examinations.

Endpoint error / Bias / Accuracy. The most basic error metric describes
the absolute distance between a ToF pixel and the true depth. As ToF cam-
eras are prone to systematic errors as well as high noise it can only give a
rough estimate about the quality of a measurement.

Standard deviation / Variance / Precision. The expressiveness of this
metric depends on whether it denotes the temporal or spatial deviation.
Spatial variance is typically highly dependent on scene geometry and not
very descriptive unless a flat will with uniform depth was imaged. Tempo-
ral variance can be of interest when the light situation and material of the
underlying pixel is of interest.

(Root) Mean Squared Error ((R)MSE). The RMSE is equal to the sum of
the standard deviation and the endpoint error (or bias). It is quite popular
due to its statistic properties but is otherwise not very descriptive.

Local curvature/Slope. Due to the various effects of ToF cameras, otherwise
planar or piecewise planar objects such as walls or room corners may appear
curved or slanted. Differences between the actual and measured surfaces can
give insight into the magnitude of those effects. Before this metric can be
evaluated a appropriate surface reconstruction must be applied to the depth
data.

Edges. Depth and texture edges are considered significant information for many
low-level vision and image processing tasks, albeit they may lack a proper
definition. ToF depth is known to vary depending on the observed intensity
even if the true depth is constant. This can lead to false depth edges in
regions where there is actually only a texture edge present. A yet to be
defined metric for edge quality could help distinguish between true and false
depth edges. This metric would be even more useful for ground truth with
labeled depth as well as texture edges.
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5.2 Weak Ground Truth

In Computer Vision, the finite accuracy of ground truth is often not taken into
consideration. This is fine as long as the GT has an accuracy of over an order of
magnitude more everywhere compared to the application at hand. Often there
are methods that can create reliable GT data for only certain parts of the scene
whereas other parts are erroneous. If those errors can be quantified and the
regions clearly be localized such weak GT can still be feasible to use for a quick
evaluation, as long as the analysis is mathematically/statistically sound.

5.2.1 Basic Example for Generation of Weak Ground Truth

A plane is a very basic example for ground truth that can be used to evaluate
several kinds of distance errors like temperature drift, intensity related errors or
distance offsets as well as noise characteristics. Given a carefully chosen setup,
other influences such as multi-path or motion artifacts can be eliminated or
reduced.

The weak ground truth for a plane can be generated by detecting and evaluat-
ing checkerboard corners in the amplitude image. From the detected points and
the knowledge of the checkerboard geometry, the position of the checkerboard
can be derived. For an ideally calibrated pin-hole camera, and a single corner
distance measure in the center, the approximate distance error can be estimated
using the intercept theorem:

e =
2dped

d̂2p − 2edd̂p
f. (1)

with dp being the corner distance, f is the focal length, distance between focal

point and checkerboard t, d̂p =
dp

t
f is the according distance of the corners

projected onto the sensor and ed is the detection error with respect to distance
on the chip (has to be divided by the pixel pitch to get the detection error in
pixels).

For the technical specifications of a MESA SR 4000 camera, a typical corner
detection error of a 10th of a pixel (for each corner) a checkerboard at t = 1m
distance and with a corner distance of dp = 85mm, the maximum error in the
estimated checkerboard distance is approx. e = 0.73mm. For a checkerboard
with n corners the total estimation error decreases to e

√

n
(assuming normally

distributed error statistics). Given a sufficiently large number of corners in the
checkerboard, the estimation error can be well below the typical ToF depth error
which is in the centimeter range.

5.2.2 Weak Ground Truth of Another Modality

Even if the reference modality has an accuracy of the same order of magnitude as
the ToF data, it can still be useful if a error distribution or a confidence score is
known. An example would be, if somebody uses a Kinect Fusion scan to assess
accuracy of a ToF denoising algorithm. If the reference modality has a error
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distribution that is known, The likelihood of the ToF Data given the probability
distribution of the reference data can be easily computed. An increasing number
of algorithms offer confidence measures [3,24] between 0 and 1 without any
further probabilistic interpretation. As low confidence data points are not an
error measure, low confidence data may still be interesting. We therefore propose
to borrow from sparsification plots used for confidence measures [24]. Normal
sparsification plots are concerned with the evaluation of confidence in presence
of ground truth. The endpoint error is plotted as a function of removing points
with a confidence lower than a certain threshold. In our case we plot the error
metric between the ToF data and the reference weak ground truth as a function
of the confidence of the reference data.

6 Best Practices

This last part is intended to be a tutorial section explaining how to create good
ground truth data which can be comparable with other ground truth datasets.
We will discuss various supplemental results that should be made available to
facilitate such comparisons. Many points in this section may appear obvious but
experience has shown that often data which is missing or was mislabeled during
the measurement process is in fact crucial for any further research effort.

Generally speaking, it is advisable to capture as much data and metadata as
possible. With data we designate individual frames from the camera, while meta-
data designates everything else, be it recorded automatically or by additional
experiments or setup procedures.

Data and Metadata

The metadata for a ground truth set should at least include:

Temperature The depth output of a ToF camera can be highly temperature
dependent. The camera should therefore have reached a steady state and
temperature changes due to environmental conditions (sunlight etc.) should
either be reduced or at least be recorded.

Light situation This does include the documentation of additional light
sources apart from the cameras own as well as significant external changes
(e.g. due to cloud movement etc.)

Camera parameters If possible, the camera should be calibrated and camera
matrices as well as lens distortion parameters be provided. For lenses with
fixed focus and aperture these values can be static over a long time but for
otherwise the calibration should be considered invalid each time the lens is
touched. If multiple cameras are used (e.g. in a stereo setup) the external
calibration should be measured and treated in a similar manner. As ToF
system are often used in image fusion approaches conjunction with other
imaging systems this requirement is generally observed in existing datasets.
This also includes all the presented example datasets in Section 4.2.
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Materials What type of materials are visible in the scene? It should also be
taken in to account, that the reflection and illumination behavior of certain
materials may be radically different under infrared lighting. Glass for exam-
ple may not be longer transparent while wood grain can appear much more
distinct, etc.

Sensor settings This includes integration times, framerates, gain, etc. If it is
adjustable it should be documented.

Software Which capture software and which version of it was used? If available
the source code as well as any configuration files should be supplied. Data
can be subtly different when seemingly unrelated program parameters or e.g.
the capture drivers change.

A written scene description An image may say more than a thousand words
but it may not always be as obvious as it seems. If many scenes with only
slightly different parameters were captured, the motivation to do so could
be included here.

Additional postprocessing or calibration data This may include the mea-
sured fixed pattern noise, data about sensor or light inhomogenities or cali-
bration fits for depth calibrated cameras.

Regarding the images, raw data if available should always be saved alongside
the derived depth maps. This is important as denoising or postprocessing on raw
phase images is a ongoing field of study (See Section 2) and research will benefit
from access to this data.

For static scenes it is advisable to capture multiple frames to allow investiga-
tion of e.g. temporal noise and to reduce the error by averaging. For dynamic
scenes noting the approximate speed of the camera and scene objects allows for
sanity checks.

Typical Errors

The following points are easily avoidable but may lead to inferior results or
deteriorated data when not detected early:

Under/Overexposure. Depth data on overexposed pixels may be completely
incorrect. Depth on pixels with a too low amplitude on the other hand may
be more accurate but is prone to severely increased noise and should be
considered unreliable.

Recording at different temperatures. The PMD CamCube camera for ex-
ample needs to run for about 20 minutes before it reaches a temperature
steady-state. During this warm-up-time the measured depths may change
significantly.

Low-frequency light modulation. Often caused by fluorescent lamps. May
not influence the measured depth but the intensities between adjacent frames.

Depth-of-field. Often neglected due to the rather low resolution of the most
common ToF cameras and their use of fixed focus optics. Out-of-focus record-
ings may have increased artifacts based on flying pixels. Edge quality may
also be effected.
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Ignoring imaging modalities. Assumptions about material behavior
(e.g. lambertian or specular reflectance) may not hold under infrared illu-
mination. Black ink on regular paper for example may appear brighter than
the surrounding white paper.

Incorrect interpretation of depth data. The depth maps produced by most
ToF cameras represent radial depth, which is the distance of the point to the
camera center. The depth from triangulation based methods (e.g. stereo) is
generally given as z-depth, the orthogonal distance from the sensor plane.
With known camera intrinsics both representations can be converted into
each other to make them comparable.

Occlusion of depth maps. For ground truth acquired by means of measuring,
the fields of view of the different sensors should overlap as much as possible.
Small deviations in the scan positions can lead to occlusion in the depth
maps, resulting in potentially sparse ground truth.

Multi path from unobserved walls. Often multi path effects from objects
just outside the camera frustum can be observed, even though the object
itself is not imaged by the camera.

7 Conclusion

While its creation is in no way easy we consider good ground truth to be a
necessity for advancements in the field of ToF imaging. Both applicants as well
as developers of ToF centric algorithms need ways to interpret their results.
Starting with clear requirement definitions the performance of ToF systems and
ToF based applications need to be evaluated. We have presented methods to
create ground truth data, both strong and weak as well as metrics to compare
and evaluate errors. We hope that with the help of these guidelines additional
and more detailed ground truth datasets will soon be made available to the
research community.
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Abstract

Real-time or online 3D reconstruction has wide appli-

cability and receives further interest due to availability of

consumer depth cameras. Typical approaches use a mov-

ing sensor to accumulate depth measurements into a single

model which is continuously refined. Designing such systems

is an intricate balance between reconstruction quality, speed,

spatial scale, and scene assumptions. Existing online meth-

ods either trade scale to achieve higher quality reconstruc-

tions of small objects/scenes. Or handle larger scenes by

trading real-time performance and/or quality, or by limiting

the bounds of the active reconstruction. Additionally, many

systems assume a static scene, and cannot robustly handle

scene motion or reconstructions that evolve to reflect scene

changes. We address these limitations with a new system

for real-time dense reconstruction with equivalent quality

to existing online methods, but with support for additional

spatial scale and robustness in dynamic scenes. Our system

is designed around a simple and flat point-based represen-

tation, which directly works with the input acquired from

range/depth sensors, without the overhead of converting be-

tween representations. The use of points enables speed and

memory efficiency, directly leveraging the standard graphics

pipeline for all central operations; i.e., camera pose estima-

tion, data association, outlier removal, fusion of depth maps

into a single denoised model, and detection and update of

dynamic objects. We conclude with qualitative and quantita-

tive results that highlight robust tracking and high quality

reconstructions of a diverse set of scenes at varying scales.

1. Introduction and Background

Online 3D reconstruction receives much attention as inex-

pensive depth cameras (such as the Microsoft Kinect, Asus

Xtion or PMD CamBoard) become widely available. Com-

pared to offline 3D scanning approaches, the ability to obtain

reconstructions in real time opens up a variety of interactive

applications including: augmented reality (AR) where real-

world geometry can be fused with 3D graphics and rendered

live to the user; autonomous guidance for robots to recon-

struct and respond rapidly to their environment; or even to

provide immediate feedback to users during 3D scanning.

The first step of the reconstruction process is to acquire

depth measurements either using sequences of regular 2D

images (e.g. [19]), or with active sensors, such as laser

scanners or depth cameras, based on triangulation or time-

of-flight (ToF) techniques. Unlike methods that focus on

reconstruction from a complete set of 3D points [5, 7], on-

line methods require fusion of many overlapping depth maps

into a single 3D representation that is continuously refined.

Typically methods first find correspondences between depth

maps (data association) and register or align depth maps to

estimate the sensor’s egomotion [1, 24]. The fusion method

typically involves removal of outliers e.g. by visibility test-

ing between depth maps [16], observing freespace violations

[2], or photo-consistency [12], and merging of measurements

into the global model, e.g. using simple weighted averaging

[2] or more costly spatial regularization [25, 12].

Recent online systems [6, 11] achieve high-quality results

by adopting the volumetric fusion method of Curless and

Levoy [2]. This approach supports incremental updates, ex-

ploits redundant samples, makes no topological assumptions,

approximates sensor uncertainty, and fusion is performed

using a simple weighted average. For active sensors, this

method produces very compelling results [2, 9, 6, 11]. The

drawbacks are the computational overheads needed to con-

tinuously transition between different data representations:

Where point-based input is converted to a continuous implicit

function, discretized within a regular grid data structure, and

converted back to an (explicit) form using expensive poly-

gonization [10] or raycasting [14] methods. As well as the

memory overheads imposed by using a regular voxel grid,

which represents both empty space and surfaces densely, and

thus greatly limits the size of the reconstruction volume.

These memory limitations have led to moving-volume

systems [17, 23], which still operate on a very restricted

volume, but free-up voxels as the sensor moves; or hierarchi-

cal volumetric data structures [26], which incur additional

computational and data structure complexity for only limited

gains in terms of spatial extent.

Beyond volumetric methods, simpler representations have
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also been explored. Height-map representations [3] work

with compact data structures allowing scalability, especially

suited for modeling large buildings with floors and walls,

since these appear as clear discontinuities in the height-

map. Multi-layered height-maps support reconstruction of

more complex 3D scenes such as balconies, doorways, and

arches [3]. While these methods support compression of

surface data for simple scenes, the 2.5D representation fails

to model complex 3D environments efficiently.

Point-based representations are more amenable to the

input acquired from depth/range sensors. [18] used a point-

based method and custom structured light sensor to demon-

strate in-hand online 3D scanning. Online model rendering

required an intermediate volumetric data structure. Interest-

ingly, an offline volumetric method [2] was used for higher

quality final output, which nicely highlights the computa-

tional and quality trade-offs between point-based and volu-

metric methods. [22] took this one step further, demonstrat-

ing higher quality scanning of small objects using a higher

resolution custom structured light camera, sensor drift correc-

tion, and higher quality surfel-based [15] rendering. These

systems however focus on single small object scanning. Fur-

ther, the sensors produce less noise than consumer depth

cameras (due to dynamic rather than fixed structured light

patterns), making model denoising less challenging.

Beyond reducing computational complexity, point-based

methods lower the memory overhead associated with vol-

umetric (regular grid) approaches, as long as overlapping

points are merged. Such methods have therefore been used

in larger sized reconstructions [4, 20]. However, a clear

trade-off becomes apparent in terms of scale versus speed

and quality. For example, [4] allow for reconstructions of

entire floors of a building (with support for loop closure and

bundle adjustment), but frame rate is limited (∼ 3 Hz) and an

unoptimized surfel map representation for merging 3D points

can take seconds to compute. [20] use a multi-level surfel

representation that achieves interactive rates (∼ 10 Hz) but

require an intermediate octree representation which limits

scalability and adds computational complexity.

In this paper we present an online reconstruction system

also based around a flat, point-based representation, rather

than any spatial data structure. A key contribution is that our

system is memory-efficient, supporting spatially extended

reconstructions, but without trading reconstruction quality

or frame rate. As we will show, the ability to directly render

the representation using the standard graphics pipeline, with-

out converting between multiple representations, enables

efficient implementation of all central operations, i.e., cam-

era pose estimation, data association, denoising and fusion

through data accumulation, and outlier removal.

A core technical contribution is leveraging a fusion

method that closely resembles [2] but removes the voxel

grid all-together. Despite the lack of a spatial data structure,

our system still captures many benefits of volumetric fusion,

with competitive performance and quality to previous online

systems, allowing for accumulation of denoised 3D models

over time that exploit redundant samples, model measure-

ment uncertainty, and make no topological assumptions.

The simplicity of our approach allows us to tackle another

fundamental challenge of online reconstruction systems: the

assumption of a static scene. Most previous systems make

this assumption or treat dynamic content as outliers [18, 22];

only KinectFusion [6] is at least capable of reconstructing

moving objects in a scene, provided a static pre-scan of the

background is first acquired. Instead, we leverage the imme-

diacy of our representation to design a method to not only

robustly segment dynamic objects in the scene, which greatly

improves the robustness of the camera pose estimation, but

also to continuously update the global reconstruction, regard-

less of whether objects are added or removed. Our approach

is further able to detect when a moving object has become

static or a stationary object has become dynamic.

The ability to support reconstructions at quality compara-

ble to state-of-the-art, without trading real-time performance,

with the addition of extended spatial scale and support for

dynamic scenes provides unique capabilities over prior work.

We conclude with results from reconstructing a variety of

static and dynamic scenes of different scales, and an experi-

mental comparison to related systems.

2. System Overview

Our high-level approach shares commonalities with the

existing incremental reconstruction systems (presented previ-

ously): we use samples from a moving depth sensor; first pre-

process the depth data; then estimate the current six degree-

of-freedom (6DoF) pose of sensor relative to the scene; and

finally use this pose to convert depth samples into a unified

coordinate space and fuse them into an accumulated global

model. Unlike prior systems, we adopt a purely point-based

representation throughout our pipeline, carefully designed

to support data fusion with quality comparable to online vol-

umetric methods, whilst enabling real-time reconstructions

at extended scales and in dynamic scenes.

Our choice of representation makes our pipeline ex-

tremely amenable to implementation using commodity

graphics hardware. The main system pipeline as shown

in Fig. 1 is based on the following steps:

Figure 1. Main system pipeline.

Depth Map Preprocessing Using the intrinsic parame-

ters of the camera, each input depth map from the depth

2
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sensor is transformed into a set of 3D points, stored in a

2D vertex map. Corresponding normals are computed from

central-differences of the denoised vertex positions, and per-

point radii are computed as a function of depth and gradient

(stored in respective normal and radius maps).

Depth Map Fusion Given a valid camera pose, input

points are fused into the global model. The global model is

simply a list of 3D points with associated attributes. Points

evolve from unstable to stable status based on the confi-

dence they gathered (essentially a function of how often they

are observed by the sensor). Data fusion first projectively

associates each point in the input depth map with the set

of points in the global model, by rendering the model as

an index map. If corresponding points are found, the most

reliable point is merged with the new point estimate using

a weighted average. If no reliable corresponding points are

found, the new point estimate is added to the global model as

an unstable point. The global model is cleaned up over time

to remove outliers due to visibility and temporal constraints.

Sec. 4 discusses our point-based data fusion in detail.

Camera Pose Estimation All established (high confi-

dence) model points are passed to the visualization stage,

which reconstructs dense surfaces using a surface splatting

technique (see Sec. 5). To estimate the 6DoF camera pose,

the model points are projected from the previous camera

pose, and a pyramid-based dense iterative closest point (ICP)

[11] alignment is performed using this rendered model map

and input depth map. This provides a new relative rigid 6DoF

transformation that maps from the previous to new global

camera pose. Pose estimation occurs prior to data fusion, to

ensure the correct projection during data association.

Dynamics Estimation A key feature of our method is

automatic detection of dynamic changes in the scene, to

update the global reconstruction and support robust camera

tracking. Dynamic objects are initially indicated by outliers

in point correspondences during ICP. Starting from these

areas, we perform a point-based region growing procedure to

identify dynamic regions. These regions are excluded from

the camera pose estimate, and their corresponding points

in the global model are reset to unstable status, leading to

a natural propagation of scene changes into our depth map

fusion. For more detail, see Sec. 6.

3. Depth Map Preprocessing

We denote a 2D pixel as u = (x,y)⊤∈ R
2. Di ∈ R is the

raw depth map at time frame i. Given the intrinsic camera

calibration matrix Ki, we transform Di into a corresponding

vertex map Vi, by converting each depth sample Di(u) into

a vertex position vi(u) = Di(u)K
−1
i (u⊤,1)⊤ ∈ R

3 in cam-

era space. A corresponding normal map Ni is determined

from central-differences of the vertex map. A copy of the

depth map (and hence associated vertices and normals) are

also denoised using a bilateral filter [21] (for camera pose

estimation later).

The 6DoF camera pose transformation comprises of rota-

tion (Ri ∈ SO3) matrix and translation (ti ∈ R
3) vector, com-

puted per frame i as Ti = [Ri, ti]∈ SE3. A vertex is converted

to global coordinates as v
g
i = Tivi. The associated normal is

converted to global coordinates as n
g
i (u) = Ri ni(u). Multi-

scale pyramids V
l
i and N

l
i are computed from vertex and

normal maps for hierarchical ICP, where l ∈ {0,1,2} and

l = 0 denotes the original input resolution (e.g. 640×480 for

Kinect or 200×200 for PMD CamBoard).

Each input vertex also has an associated radius ri(u) ∈ R

(collectively stored in a radius map Ri ∈ R), determined as

in [22]. To prevent arbitrarily large radii from oblique views,

we clamp radii for grazing observations exceeding 75◦.

In the remainder, we omit time frame indices i for clarity,

unless we refer to two different time frames at once.

4. Depth Map Fusion

Our system maintains a single global model, which is

simply an unstructured set of points P̄k each with associated

position v̄k ∈ R
3, normal n̄k ∈ R

3, radius r̄k ∈ R, confidence

counter c̄k ∈ R, and time stamp t̄k ∈ N, stored in a flat array

indexed by k ∈ N.

New measurements v are either added as or merged with

unstable points, or they get merged with stable model points.

Merging v with a point P̄k in the global model increases the

confidence counter c̄k. Eventually an unstable point changes

its status to stable: points with c̄k ≥ cstable are considered

stable (in practice cstable = 10). In specific temporal or geo-

metric conditions, points are removed from the global model.

4.1. Data Association

After estimation of the camera pose of the current input

frame (see Sec. 5), each vertex v
g and associated normal and

radius are integrated into the global model.

In a first step, for each valid vertex v
g, we find potential

corresponding points on the global model. Given the inverse

global camera pose T
−1 and intrinsics K, each point P̄k in

the global model can be projected onto the image plane

of the current physical camera view, where the respective

point index k is stored: we render all model points into a

sparse index map I. Unlike the splat-based dense surface

reconstruction renderer used in other parts of our pipeline

(see Sec. 5), this stage renders each point index into a single

pixel to reveal the actual surface sample distribution.

As nearby model points may project onto the same pixel,

we increase the precision of I by supersampling, represent-

ing I at 4×4 the resolution of the input depth map. We start

identifying model points near v
g(u) by collecting point in-

dices within the 4×4-neighborhood around each input pixel

location u (suitably coordinate-transformed from D to I).

3
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Amongst those points, we determine a single corresponding

model point by applying the following criteria:

1. Discard points larger than ±δdepth distance from the

viewing ray v
g(u) (the sensor line of sight), with δdepth

adapted according to sensor uncertainty (i.e. as a func-

tion of depth for triangulation-based methods [13]).

2. Discard points whose normals have an angle larger than

δnorm to the normal n
g(u). (We use δnorm = 20◦.)

3. From the remaining points, select the ones with the

highest confidence count.

4. If multiple such points exist, select the one closest to

the viewing ray through v
g(u).

4.2. Point Averaging with Sensor Uncertainty

If a corresponding model point P̄k is found during data

association, this is averaged with the input vertex v
g(u) and

normal n
g(u) as follows:

v̄k ←
c̄kv̄k +αv

g(u)

c̄k +α
, n̄k ←

c̄kn̄k +αn
g(u)

c̄k +α
, (1)

c̄k ← c̄k +α , t̄k ← t , (2)

where t is a new time stamp. Our weighted average is distinct

from the original KinectFusion system [11], as we introduce

an explicit sample confidence α . This applies a Gaussian

weight on the current depth measurement as α = e−
γ2
/2σ2

,

where γ is the normalized radial distance of the current depth

measurement from the camera center, and σ = 0.6 is derived

empirically. This approach weights measurements based on

the assumption that measurements closer to the sensor center

will increase in accuracy [2]. As shown in Fig. 2, modeling

this sensor uncertainty leads to higher quality denoising.

Figure 2. Weighted averaging of points using our method (left) and

the method of [11] (right).

Since the noise level of the input measurement increases

as a function of depth [13], we apply Eqs. (1) only if the

radius of the new point is not significantly larger than the

radius of the model point, i.e., if r(u) ≤ (1+ δr)r̄; we em-

pirically chose δr = 1/2. This ensures that we always refine

details, but never coarsen the global model. We apply the

time stamp and the confidence counter updates according to

Eqs. (2) irrespectively.

If no corresponding model point has been identified, a

new unstable point is added to the global model with c̄k = α ,

containing the input vertex, normal and radius.

4.3. Removing Points

So far we have merged or added new measurements to

the global model. Another key step is to remove points from

our global model due to various conditions:

1. Points that remain in the unstable state for a long time

are likely outliers or artifacts from moving objects and

will be removed after tmax time steps.

2. For stable model points that are merged with new data,

we remove all model points that lie in front of these

newly merged points, as these are free-space violations.

To find these points to remove, we use the index map

again and search the neighborhood around the pixel

location that the merged point projects onto1. This is

similar in spirit to the free-space carving method of [2],

but avoids expensive voxel space traversal.

3. If after averaging, a stable point has neighboring points

(identified again via the index map) with very similar

position and normal and their radii overlap, then we

merge these redundant neighboring points to further

simplify the model.

Points are first marked to be removed from P̄k, and in a

second pass, the list is sorted (using a fast radix sort imple-

mentation), moving all marked points to the end, and finally

items deleted.

5. Camera Pose Estimation

Following the approach of KinectFusion [11], our camera

pose estimation uses dense hierarchical ICP to align the bilat-

eral filtered input depth map Di (of the current frame i) with

the reconstructed model by rendering the model into a virtual

depth map, or model map, D̂i−1, as seen from the previous

frame’s camera pose Ti−1. We use 3 hierarchy levels, with

the finest level at the camera’s resolution; unstable model

points are ignored. The registration transformation provides

the relative change from Ti−1 to Ti.

While KinectFusion employs raycasting of the (implicit)

voxel-based reconstruction, we render our explicit, point-

based representation using a simple surface-splatting tech-

nique: we render overlapping, disk-shaped surface splats

that are spanned by the model point’s position v̄, radius r̄

and orientation n̄. Unlike more refined surface-splatting

techniques, such as EWA Surface Splatting [27], we do not

perform blending and analytical prefiltering of splats but

trade local surface reconstruction quality for performance by

simply rendering opaque splats.

We use the same point-based renderer for user feedback,

but add Phong shading of surface splats, and also overlay

the dynamic regions of the input depth map.

1Backfacing points that are close to the merged points remain protected—

such points may occur in regions of high curvature or around thin geometry

in the presence of noise and slight registration errors. Furthermore, we

protect points that would be consistent with direct neighbor pixels in D, to

avoid spurious removal of points around depth discontinuities.

4
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6. Dynamics Estimation

The system as described above already has limited sup-

port for dynamic objects, in that unstable points must gain

confidence to be promoted to stable model points, and so

fast moving objects will be added and then deleted from the

global model. In this section we describe additional steps

that lead to an explicit classification of observed points as

being part of a dynamic object. In addition, we aim at seg-

menting entire objects whose surface is partially moving and

remove them from the global point model.

We build upon an observation by Izadi et al. [6]: when

performing ICP, failure of data association to find model

correspondences for input points is a strong indication that

these points are depth samples belonging to dynamic objects.

Accordingly, we retrieve this information by constructing

an ICP status map S (with elements si(u)) that encodes for

each depth sample the return state of ICP’s search for a

corresponding model point in the data association step:

no input: vk(u) is invalid or missing.

no cand: No stable model points in proximity of vk(u).
no corr: Stable model points in proximity of, but no

valid ICP correspondence for vk(u).
corr: Otherwise ICP found a correspondence.

Input points marked as no corr are a strong initial estimate

of parts of the scene that move independent of camera mo-

tion, i.e. dynamic objects in the scene.

We use these points to seed our segmentation method

based on hierarchical region growing (see below). It creates

a dynamics map X, storing flags xi(u), that segments the

current input frame into static and dynamic points. The

region growing aims at marking complete objects as dynamic

even if only parts of them actually move. (Note that this high-

level view on dynamics is an improvement over the limited

handling of dynamics in previous approaches, e.g., [6].)

In the depth map fusion stage, model points that are

merged with input points marked as dynamic are potentially

demoted to unstable points using the following rule:

if xi(u) ∧ c̄k ≥ cstable +1 then c̄k ← 1 (3)

Thus, the state change from static to dynamic is reflected

immediately in the model. A critical aspect is the offset

of +1 in Eq. (3): it ensures that any dynamic point that

sufficiently grew in confidence (potentially because it is now

static) is allowed to be added to the global model for at

least one iteration; otherwise, a surface that has once been

classified as dynamic would never be able to re-added to the

global model, as it would always be inconsistent with the

model, leading to no corr classification.

For the bulk of the time, however, dynamic points remain

unstable and as such are not considered for camera pose

estimation (see Sec. 5), which greatly improves accuracy

and robustness of T.

Hierarchical Region Growing The remainder of this sec-

tion explains the region growing-based segmentation ap-

proach that computes the map X.

The goal is essentially to find connected components in

D. In the absence of explicit neighborhood relations in

the point data, we perform region growing based on point

attribute similarity. Starting from the seed points marked in

X, we agglomerate points whose position and normal are

within given thresholds of vertex v(u) and normal n(u) of a

neighbor with x(u) = true.

To accelerate the process, we start at a downsampled X
2,

and repeatedly upsample until we reach X
0 = X, each time

resuming region growing. (We reuse the input pyramids built

for camera pose estimation.)

We improve robustness to camera noise and occlusions

by removing stray no corr points through morphological

erosion at the coarsest pyramid level X 2 after initializing

it from S. This also ensures that X 2 covers only the inner

region of dynamic objects.

7. Results

We have tested our system on a variety of scenes (see

Table 1 ). Fig. 3 shows a synthetic scene Sim. We generated

rendered depth maps for a virtual camera rotating around

#frames #model- Avg. timings [ms]

input/processed points ICP Dyn- Fusion

(fps in./proc.) Seg.

Sim 950/950 467,200 18.90 2.03 11.50

(15/15)

Flower- 600/480 496,260 15.87 1.90 6.89

pot (30/24)

Teapot 1000/923 191,459 15.20 1.60 5.56

(30/27)

Large 11892/6704 4,610,800 21.75 2.39 13.90

Office (30/17)

Moving 912/623 210,500 15.92 3.23 16.61

Person (30/20)

Ball- 1886/1273 350,940 16.74 3.15 17.66

game (30/21)

PMD 4101/4101 280,050 10.70 0.73 3.06

(27/27)

Table 1. Results from test scenes obtained on a PC equipped with

an Intel i7 8-core CPU and an NVidia GTX 680 GPU. Input frames

have a size of 640×480 pixels, except for the PMD scene which

uses a frame size of 200×200.

Figure 3. The synthetic scene Sim. Left: error in final global model

based on ground truth camera transformations. Right: final error

based on ICP pose estimation2.

5
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Figure 4. The scenes Flowerpot (top row) and Teapot (bottom row).

A and B show reconstruction results of the original KinectFusion

system. The other images show our method (middle: phong-shaded

surfels, right: model points colored with surface normals).

this scene and used these as input to our system. This gave

us ground truth camera transformations T
GT
i and ground

truth scene geometry. Using T
GT
i , the points in the resulting

global model have a mean position error of 0.019 mm. This

demonstrates only minimal error for our point-based data

fusion approach. The camera transformations Ti obtained

from ICP have a mean position error of 0.87 cm and a mean

viewing direction error of 0.1 degrees. This results in a mean

position error of 0.20 cm for global model points.

The Flowerpot and Teapot scenes shown in Fig. 4 were

recorded by Nguyen et al. [13]. Objects are placed on a

turntable which is rotated around a stationary Kinect camera.

Vicon is used for ground truth pose estimation of the Kinect,

which are compared to ICP for our method and the original

KinectFusion system Fig. 5

Fig. 6 shows that the number of global model points for

these scenes remains roughly constant after one full turn

of the turntable. This demonstrates that new points are not

continuously added; and the global model is refined but kept

compact. Note that one Kinect camera input frame provides

up to 307,200 input points, but the total number of points in

the final global teapot model is less than 300,000.

The Large Office scene shown in Fig. 7 consists of

two rooms with a total spatial extent of approximately

10m× 6m× 2.5m. A predefined volumetric grid with 32-

bit voxels and 512 MB of GPU memory would result in a

voxel size of more than 1 cm3. In contrast, our system does

not define the scene extents in advance: the global model

grows as required. Furthermore, it does not limit the size

of representable details; Fig. 7 shows close-ups of details

on the millimeter scale (e.g. the telephone keys). The 4.6

million global model points reported in Tab. 1 can be stored

in 110 MB of GPU memory using 3 floating point values

for the point position, 2 for the normalized point normal, 1

for the radius, and one extra byte for a confidence counter.

Additionally, RGB colors can be stored for each global point,

to texture the final model (see Fig. 7 far right). Rather than

2Rendered using CloudCompare, http://www.danielgm.net/cc/.

Figure 5. Tracking errors for the original KinectFusion system

compared to our point-based approach. Tracking results were

computed on the Flowerpot sequence, by subtracting Vicon ground

truth data from the resulting per frame 3D camera position. For

each system, error is computed as the absolute distance between

the estimated camera position and the ground truth position (after

aligning both coordinate spaces manually). Where the error of the

original KinectFusion exceeds that of the new, the gap is colored

blue. Where the error of our method exceeds the original, the gap

is colored red. Note our method is similar in performance with the

largest delta being ∼ 1cm.

Figure 6. The number of global model points stored on the GPU

plotted over time for the Flowerpot and Teapot scenes. Note after

the completion of one full turn of the turntable, the number of

points converges instead of continuously growing.

merge RGB samples, we simply store the last one currently.

In the Moving Person scene shown in Fig. 8, the person

first sits in front of the sensor and is reconstructed before

moving out of view. Since the moving person occupies

much of the field of view, leaving only few reliable points

for ICP, camera tracking fails with previous approaches (see

e.g. Izadi et al. Fig. 8 [6]). Our system segments the moving

person and ignores dynamic scene parts in the ICP stage,

thereby ensuring robustness to dynamic motion.

The Ballgame scene shown in Fig. 9 shows two people

playing with a ball across a table. Our region growing ap-

proach segments dynamics on the object level instead of just

6
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Figure 7. The Large Office scene, consisting of two large rooms and connecting corridors. A: overview; B and C: dynamically moving

objects during acquisition; Note the millimeter scale of the phone’s keypad. Other close-ups are also shown (right column: RGB textured).

Figure 8. The Moving Person scene. Person sits on a chair, is

reconstructed, and then moves. Dynamic parts occupy much of the

field-of-view and cause ICP errors with previous approaches (top

row). Segmenting the dynamics (A) and ignoring them during pose

estimation (B) allows increased robustness (bottom row).

the point level: each person is recognized as dynamic even if

only parts of their bodies are actually moving. Static objects

that start moving are marked as dynamic and their model

points are demoted to unstable status, while dynamic objects

that stop moving eventually reach stable status in the global

model when the observed points gain enough confidence.

Most scenes shown throughout this paper were recorded

with a Microsoft Kinect camera in near mode, but our method

is agnostic to the type of sensor used. Fig. 10 shows an ex-

ample scene recorded with a PMD CamBoard ToF camera,

which exhibits significantly different noise and error charac-

teristics [8]. In this example, we used the per-pixel amplitude

information provided by PMD sensors in the computation of

the sample confidence α (see Sec. 4.2).

8. Conclusion

We have presented a new system for online 3D recon-

struction which demonstrates new capabilities beyond the

state-of-art. Our system has been explicitly designed to allow

Figure 9. The Ballgame scene consists of two people moving a

ball across a table. A: global model colored with surface normals;

B: raw input data of the previously static ball being picked up; C:

segmentation of dynamic parts; Bottom row: reconstructed result

(model points + dynamic parts).

Figure 10. A: the PMD scene acquired with a PMD ToF camera. B

and C: close-ups using per-pixel intensity values for coloring.

for a single point-based representation to be used through-

out our pipeline, which closely fits the sensor input, and is

amenable to rendering (for visualization and data associa-

tion) through the standard graphics pipeline.

Despite the lack of a spatial data structure, our system

still captures many benefits of volumetric fusion, allowing

for accumulation of denoised 3D models over time that ex-

ploit redundant samples, model measurement uncertainty,

and make no topological assumptions. This is achieved

using a new point-based fusion method based on [2]. Recon-

structions at this scale, quality, speed and with the ability to

deal with scene motion and dynamic updates have yet to be

demonstrated by other point-based methods, and are core

contributions of our work.

7
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There are many areas for future work. For example, whilst

our system scales to large scenes, there is the additional pos-

sibility of adding mechanisms for streaming subset of points

(from GPU to CPU) especially once they are significantly

far away from the current pose. This would help increase

performance and clearly the point-based data would be low

overhead in terms of CPU-GPU bandwidth. Another issue is

sensor drift, which we do not currently tackle, instead focus-

ing on the data representation. Drift in larger environments

can become an issue and remains an interesting direction

for future work. Here again the point-based representation

might be more amenable to correction after loop closure

detection, rather than resampling a dense voxel grid.
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1. Introduction

Abstract

Volume Rendering applications require sophisticated user interaction for the definition

and refinement of transfer functions. Traditional 2D desktop user interface elements have

been developed to solve this task, but such concepts do not map well to the interaction

devices available in Virtual Reality environments.

In this paper, we propose an intuitive user interface for Volume Rendering specifically de-

signed for Virtual Reality environments. The proposed interface allows transfer function

design and refinement based on intuitive two-handed operation of Wand-like controllers.

Additional interaction modes such as navigation and clip plane manipulation are sup-

ported as well.

The system is implemented using the Sony PlayStation Move controller system. This

choice is based on controller device capabilities as well as application and environment

constraints.

Initial results document the potential of our approach.

1. Introduction

Volume Rendering visualizes 3D grids of voxels. Each voxel typically stores a scalar

value representing density, as retrieved via a 3D scanning technique such as CT or MRI.

Direct Volume Rendering techniques such as volume ray casting work directly on the

voxel data instead of extracted geometry such as isosurfaces. Such techniques use a

transfer function to map voxel values to opacity and color. The volume ray caster then

generates a ray through the 3D grid for every pixel in the image plane, samples the

voxel data along the ray, and composites the opacity and color information given by the

transfer function to compute the final pixel color.

A basic transfer function is a one-dimensional function that directly maps a scalar voxel

value to opacity and color. Volume Rendering applications require user interface con-

cepts that allow efficient and precise design and refinement of such transfer functions, to

enable the user to visualize the interesting parts of the volume data set. In the traditional

2D graphical user interface domain of desktop systems, this problem is solved using 2D

widgets that typically allow mouse-based manipulation of the functions [3]. This paper

focuses on one-dimensional transfer functions, but note that advanced two-dimensional

transfer functions models exist that take the gradient or the curvature at the voxel location

into account and require even more complex user interfaces.

Since Virtual Environments are especially well suited to explore spatial properties of

complex 3D data, bringing Volume Rendering applications into such environments is

a natural step. However, defining new user interfaces suitable both for the Virtual En-

vironment and for the Volume Rendering application is difficult. Previous approaches

mainly focused on porting traditional 2D point-and-click concepts to the Virtual Environ-

ment [8, 5, 9]. This tends to be unintuitive, to complicate the interaction, and to make

only limited use of available interaction devices.

2
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2. Related Work

In this paper, we propose an intuitive 3D user interface for Volume Rendering based

on interaction devices that are suitable for Virtual Reality environments. We focus on

a simplified approach to design and refine transfer functions that allows intuitive use

of interaction devices, specifically the Sony PlayStation Move controller system. Our

demonstration system also supports other Volume Rendering interaction modes such

as navigation and clip plane manipulation.

The remainder of this paper is organized as follows. Sec. 2 discusses related work. In

Sec. 3, we describe our user interface concepts in detail, and present its implementation

based on Sony PlayStation Move controllers in a Virtual Reality Lab. Initial results are

shown in Sec. 4. Sec. 5 concludes this paper.

2. Related Work

One of the first applications of Volume Rendering in a Virtual Reality environment was

presented by Brady et al. in 1995 [1]. This early work concentrated on navigation using

a Wand-like device. In 2000, Wohlfahrter et al. presented a two-handed interaction sys-

tem with support for navigating, dragging, scaling, and cutting volume data in a Virtual

Reality environment [12]. Neither of these early approaches supported transfer function

manipulation.

One of the first works on transfer function editing for Volume Rendering in Virtual Reality

environments was presented by Schulze-Döbold et al. in 2001 [8]. Their transfer function

editor requires a 6 DOF controller with three buttons. The controller is primarily used to

point at an interaction element to select it for manipulation. To control scalar values, the

editor uses virtual knobs that are manipulated by twisting the hand. The three buttons

are used to manipulate position and size of the 2D transfer function editor inside the

3D environment. This interface is directly based on the 2D desktop point-an-click inter-

face. Consequently, the authors refer to the controller as a 3D mouse. Schulze-Döbold

later refined the user interface based on feedback collected in a user study [7], but the

principal design remained unchanged.

Wössner et al. reuse Schulze-Döbold’s work for the purpose of collaborative volume ex-

ploration in distributed setups [13]. Kniss et al. split the task of defining multidimensional

transfer functions into a classification step and an exploration step [5]. The classifica-

tion step, which defines the transfer function, is performed prior to visualization on a

classical 2D desktop system using the mouse. The Virtual Reality interface is based on

Schulze-Döbold’s work.

Later works also mainly use variations of this approach of bringing 2D point-and-click

interfaces to 3D environments [4, 9]. An exception is the work of Tawara and Ono from

2010, in which they combined a Wiimote and a motion tracking cube to get a tracked

manipulation device for a volume data application [11]. However, their approach focuses

on volume segmentation in augmented reality; in particular, it does not support transfer

function manipulation.

3
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3. 3D User Interface for Volume Rendering

Figure 2: Interactive Volume Rendering in the Virtual Reality environment

We considered interaction devices that are based on readily available and affordable

hardware components and provide enough input facilities for both navigation and trans-

fer function editing. Devices that fulfill these criteria include the Microsoft Kinect, the

Nintendo Wiimote, and the Sony PlayStation Move. Traditional game controllers as well

as the Flystick provided by our optical tracking system were excluded since they do not

provide enough input facilities.

Microsoft Kinect uses an optical tracking system to follow the movement of the user, al-

lowing full-body gesture interaction. Unfortunately the Kinect system requires the cam-

era to be placed directly in front of the user, which was not possible in our environment.

We experimented with a Kinect camera placed at the top of the screen and looking at

the user with an angle of approximately 45 degrees, but this setup leads to unusable

tracking data.

The concepts of the Wiimote and the Move are similar. In both systems the user holds

a wand-like controller in his hand that can measure its movement and orientation. The

Move system additionally uses an optical tracking system to determine the absolute

position of the controller, and can therefore provide position and orientation data with

higher precision and reliability. In contrast to the Kinect system, the Move system works

fine with the camera mounted on top of the screen, as shown in Fig. 1. Furthermore,

the Move controller has a glowing bulb on top whose color can be changed. This gives

interesting opportunities for user feedback (see Sec. 3.2.1).

Recently, Takala et al. identified a lack of user interface concepts based on the PlaySta-

tion Move system, partly due to the locked-up nature of the SDK [10]. That situation

has changed: the SDK is now freely available for educational and research purposes.

Additionally, prices for the hardware part of system dropped significantly.

For these reasons, we chose to base our experiments on the PlayStation Move system.
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3. 3D User Interface for Volume Rendering

A peak p is defined by its center c, width w, and height h:

p(x) =

{
h · sin

(
π

2w
(x− c+w)

)
c−w ≤ x ≤ c+w

0 otherwise
(1)

(Alternatively, different window functions could be used).

The result of a transfer function t for a voxel value x is then defined as the result of

alpha-blending the peak colors using the peak value p(x) as the opacity value.

In practical use, only a small number n < 8 of peaks is required, since more peaks tend

to clutter up the visualization result. An example is given in Fig. 4.

This transfer function model significantly reduces the number of parameters that a user

has to modify, while still allowing flexible and powerful transfer functions.

The user can add a peak to a transfer function and select its color from a list of predefined

colors using digital buttons on the Move Nav-Pad (see Fig. 3). Similarly, peaks can

be deleted, temporarily disabled, or selected for parameter adjustment using additional

Nav-Pad buttons.

To change the center c, width w, and height h of a peak, the Move controller is used.

We tried different combinations of mapping these three peak parameters to the x-, y-,

and z-axes of the Move controller. Using the z-axis proved to be unintuitive and therefore

difficult to control. Our current solution is that the user has to choose (using buttons

on the Move controller) to adjust either c and h or w. This has the advantage that both

adjustments take place in the x/y-plane. The reason for separating w from the other

parameters was that the visualization result is especially sensitive to changes of peak

widths, so that users tend to first define position and height of a peak and then fine-tune

the result by adjusting its width.

To provide the user with visual feedback about the current transfer function properties

and the selection state, we display an overview widget at a fixed position in the Virtual

Environment, as shown in Fig. 4. Note that this widget is for informational purposes only

and does not require traditional point-and-click functionality.

As an additional aid, we set the color of the glowing Move controller bulb to the color of

the transfer function that is currently selected. Experienced users can use this feedback

to determine the current state of transfer function manipulation without looking at the

overview widget.

3.2.2. Navigation

Navigation is implemented by performing translation and rotation using the tracked Move

controller. Translation is active while the largest digital button of the Move controller is

pressed, while rotation is active while the analogue trigger of the Move controller is

pressed. See Fig. 3. Translation works by directly applying Move controller position

changes to the volume. Rotation works by mapping horizontal controller movements to

volume rotations around the y-axis, vertical movements to volume rotations around the

x-axis, and controller rotations around the z-axis to volume rotations around the z-axis.
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3. 3D User Interface for Volume Rendering

Figure 4: Transfer function defined by n = 5 peaks. Each peak assigns color and opacity

information to a voxel value range. The histogram of voxel values is displayed in white in

the background.

An obvious alternative would be to directly apply both Move controller position and ori-

entation changes to the volume while in navigation mode, but separating translation and

orientation in the way described above allows a more fine-grained control of movement,

which is useful to examine smaller volume areas in detail. Furthermore, mapping con-

troller movements to rotations instead of directly using the controller orientation avoids

uncomfortable wrist positions. Requiring a button to be pressed for navigation mode

allows the user to move freely in the Virtual Reality environment without unintentionally

moving the volume.

3.3. Implementation

The physical setup is described by Fig. 1.

Our software implementation is based on the Equalizer framework for parallel and dis-

tributed rendering [2]. This allows the application to run across the six nodes of our

render cluster, each of which renders one of the stereo channels using two graphics

cards.

We used the official Move.Me SDK from Sony for connecting the PlayStation Move sys-

tem to Equalizer. The controller sends its sensor data via Bluetooth to the PlayStation

console, on which the Move.Me SDK runs as a server application. Our application acts

as a client to this server and receives position, orientation, and button state data via

network UDP packets. This data is transformed to custom input events and handed over

to the Equalizer event handling mechanisms to allow consistent input event handling.

The GPU-based volume ray caster is based on a ray casting shader implementation pro-

vided by the Visualization Library project1. The ray caster is straightforward but proved

sufficient for our purposes while being fast enough for interactive use in a Virtual Reality

environment.

1http://www.visualizationlibrary.org
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5. Conclusion

pose a problem.

Another challenge especially for inexperienced users is to remember the mapping be-

tween controller movements and buttons to the various interaction functionalities of the

application. We plan to integrate an online help function that displays images of the con-

trollers on screen, along with schematic descriptions of their usage, in order to avoid the

need for leaving the Virtual Reality environment to look up user interface documentation.

Despite these shortcomings, we believe the approach has the potential to be usable in

real-world Volume Rendering applications.

5. Conclusion

We propose a 3D user interface concept for Volume Rendering in Virtual Environments.

Unlike previous approaches, this concept does not try to map traditional 2D point-and-

click concepts to the Virtual Environment; instead, it is based on a set of intuitive user

actions using the Sony PlayStation Move controller system.

For this purpose, a simplified transfer function model was designed that allows a reduc-

tion of interaction complexity. This comes at the cost of reduced flexibility and precision

when compared to a traditional 2D desktop interface, but we believe that our system is

still flexible and precise enough for exploration of most volume data sets, while allowing

faster and more intuitive manipulation of transfer functions.

In the future, we would like to refine the interface based on user feedback. Furthermore,

it would be interesting to explore the possibility to extent our approach to two-dimensional

transfer functions.
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Abstract

Advances in sensor technology lead to a rapidly growing number of terrain data sets with very high spatial

resolution. To allow reliable visual analysis of this data, terrain data for planetary objects needs to be rendered

with accurate reproduction of every detail.

This combination of very large scale and very fine detail is challenging for multiple reasons: the numerical ac-

curacy of typical data types is not sufficient, simple spherical planet models fail to accurately represent the data,

and distortions in map projections used for data storage lead to sampling problems.

In this paper, we propose the Ellipsoidal Cube Map model to address these problems. We demonstrate the possi-

bilities of the model using a simple renderer implementation that achieves interactive frame rates for a variety of

data sets for Earth, Moon, and Mars.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Ge-

ometry and Object Modeling—Curve, surface, solid, and object representations; I.3.8 [Computer Graphics]:

Applications—

1. Introduction

Today, spaceborne and airborne Remote Sensing systems

provide data sets for the Earth’s surface with details on

the decimeter or even centimeter scale. This is true both

for image-like data, e.g. from multispectral sensors or Syn-

thetic Aperture Radar (SAR) systems, and for elevation

data, e.g. from Interferometric SAR (InSAR) or Light De-

tection And Ranging (LIDAR) systems. Additionally, high-

resolution data sets increasingly become available for other

objects in the solar system, such as the Moon and Mars.

This raises the problem of rendering high-resolution ter-

rain data sets for planetary-scale objects with adequate pre-

cision to allow reliable visual analysis. Compared to terrain

rendering systems that are only concerned with limited local

areas, additional challenges in the areas of numerical accu-

racy, planet modelling, and terrain data map projection must

be addressed.

In this paper, we propose the Ellipsoidal Cube Map

(ECM) model. The main contributions are as follows:

• A data model that uses an ellipsoid as the common ref-

erence, to allow accurate interpretation of high-resolution

data.

• A terrain data map projection that provides nearly uniform

data sampling quality across the complete planet surface,

without singularities at poles or decreasing quality in bor-

der regions.

• Methods to split geometry computations for rendering

into two parts: static double-precision computations and

dynamic single-precision computations. This allows ac-

curate rendering using efficient single-precision rendering

pipelines.

In contrast to previous approaches, the proposed techniques

allow accurate rendering of planet-wide data sets at decime-

ter and centimeter resolutions across the complete planet sur-

face. Furthermore, the model allows to generate or augment

terrain data at rendering time for applications such as erosion

simulations, procedural terrain detail generation, or interac-

tive fusion of multiple data sets.

We demonstrate the techniques using a simple level-

of-detail and rendering approach. Alternatively, the ECM

model can be combined with existing performance-

optimized terrain rendering approaches.

c© The Eurographics Association 2012.
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Figure 6: Left: an area in Utah, with different elevation data sets fused at rendering time. Middle: a HiRISE image of Mars,

combined with elevation data from the Mars Orbiter Laser Altimeter. Right: elevation data of the Moon, derived from Lunar

Reconnaissance Orbiter Camera (LROC) images. The texture data is computed from the elevation data at rendering time.

The first stage works as follows. The set of quads selected

for rendering is initialized with the six root quads of the cube

sides. The bounding box of each selected quad is projected

to screen space, and unless it is outside the visible area or

the number of pixels covered is less than t = 1.5 times the

number of data samples it provides, it is replaced by its four

subquads. This process is repeated until no more changes to

the set of selected quads are necessary.

In the second stage, our demonstration implementation

simply renders each quad with full geometric detail by ren-

dering 2k
×2k subquads for quads that provide 2k+1

×2k+1

data samples. This brute-force approach still results in in-

teractive frame rates with current graphics hardware; al-

ternatively, implementing a view-dependent level of de-

tail mechanism is also possible. Skirts around each quad

avoid discontinuities between quads of different quadtree

levels [DSW09, LMG10].

6. Experimental Results

The experimental results described below were obtained

on a Linux PC with an Intel Core i7-930 processor and

an NVIDIA 480GTX graphics card. Preprocessing used 8

threads where possible. The quad size was 512× 512 sam-

ples, and the viewport size was 1280×1024 pixels.

The Utah HRO 2006 data set provides photos with

ca. 25 cm ground resolution. It consists of 3239 files, each

storing 16000× 16000 RGB samples using lossy compres-

sion. This corresponds to 2316.7 GiB of uncompressed input

data. Preprocessing the data set, including lossless compres-

sion of the resulting quads, took 114 hours and 54 minutes.

The SRTM 90m Digital Elevation Database version

4 [JRNG08] provides data for Earth’s land masses between

+60◦ and −60◦ latitude. It consists of 872 files, each storing

6000× 6000 16-bit samples (58.5 GiB uncompressed data).

Preprocessing this data set took 9 hours and 30 minutes, in-

cluding lossless compression.

Fig. 6 shows several example scenes. The left image

shows a view of an area in Utah. The elevation data is com-

bined from different data sets at 2 m and 5 m resolution at

rendering time, allowing interactive examination and com-

parison of data sets. 21 quads from levels 6 – 11 are rendered

at approximately 35 frames per second. The middle image

shows a HiRISE image of Mars overlayed over elevation

data from the Mars Orbiter Laser Altimeter. 21 quads from

quadtree levels 10 – 13 are rendered at approximately 50

frames per second. The right image shows elevation data for

the Moon derived from Lunar Reconnaissance Orbiter Cam-

era images. Per-pixel lighting is applied. The color gradient

texture, including isolines, is computed dynamically from

the elevation data during rendering, allowing interactive ex-

amination of the elevation data. 25 quads from quadtree lev-

els 2 – 3 are rendered at approximately 30 fps.

7. Discussion

The main characteristics of the ECM model (ellipsoidal

model, QSC projection, accurate rendering in single-

precision) affect both quality and efficiency.

The ellipsoidal model avoids errors caused by interpreting

elevation data relative to a sphere. See Fig. 7. Approaches

that use a sphere model should first transform data sets based

on the best elevation model available, thereby reducing this

error significantly for planetary objects with small flattening

and high-quality elevation models such as Earth. However,

this transformation is impractical and is not documented to

be applied by any sphere-based approach. Our ellipsoid-

based model avoids this transformation and associated errors

entirely.

QSC projection avoids data access overhead and sam-

pling problems caused by map projection distortions as de-

scribed by Kooima et al. [KLJ∗09]. It is more expensive than

Gnomonic projection, but this additional cost only affects

the preprocessing step. During rendering, only the computa-

tion of quad corner points Q0, . . . ,Q3 involves QSC projec-
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Figure 7: The Utah scene (see Fig. 6 left) with color-coding

of the error caused by interpreting elevations along a sphere

normal instead of an ellipsoid normal. The used color range

(right) encodes the error from 0 m (blue) to 11 m (red).

tion. With typically 20 – 30 quads required for a view, these

runtime costs are negligible.

The rendering approach used with the ECM model main-

tains full accuracy in single-precision and replaces costly

and/or inaccurate geometry refinements, as used by previous

approaches, with lookups of static precomputed data.

8. Conclusion

We propose the Ellipsoidal Cube Map model to over-

come accuracy limitations of existing techniques to render

planetary-scale terrain data sets. The ECM model is based

on a reference ellipsoid circumscribed by a cube, and uses

a map projection that preservers areas and angles better

than alternatives. Accurate rendering can be achieved using

only single-precision computations in the rendering pipeline.

Generation or augmentation of elevation data at rendering

time is possible.

The simple renderer described in Sec. 6 can demon-

strate interactive frame rates at full detail level; alternatively,

the ECM model can be combined with more sophisticated,

performance-optimized terrain rendering methods.
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a b s t r a c t

Curvilinear structures are useful features in a variety of applications, particularly in medical image anal-

ysis. Compared to other commonly used features such as edges and regions, there is relatively few work

on performance evaluation methodologies for curvilinear structure detection algorithms. For instance, a

pixel-wise comparison with ground truth has been used in all recent publications on vessel detection in

retinal images. In this paper we propose a novel structure-based methodology for evaluating the perfor-

mance of 2D and 3D curvilinear structure detection algorithms. We consider the two aspects of perfor-

mance, namely detection rate and detection accuracy, separately, in contrast to their mixed handling

in earlier approaches that typically produces biased impression of detection quality. By doing so, the pro-

posed performance measures give us a more informative and precise performance characterization.

Experiments on both synthetic and real examples will be given to demonstrate the advantages of our

approach.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Performance evaluation is an important issue in pattern recog-

nition (Bharkad and Kokare, 2011; Cardoso and Sousa, 2011).

Extensive early work exists for evaluating algorithms for edge

detection and region-based segmentation. Already 1997, for in-

stance, Heath et al. (1997) listed 12 edge detection evaluation

methods. A discussion of related literature can be found in (Jiang,

2005; Jiang et al., 2006). In contrast there is only very little work

on evaluating algorithms for curvilinear structure detection.

The term curvilinear structure denotes a line or a curve with

some width. In contrast to edges, they have the same shape but

non-negligible and varying width. Curvilinear structures are useful

features for a variety of applications (finding roads or rivers in aer-

ial images, detecting lanes for traffic tasks, etc.). Particularly in

medical imaging they belong to the most widely observed and

important features; examples are blood vessels, bones, airway

trees, and other thin structures.

It is the purpose of this work to discuss the weaknesses of an

approach widely used in medical image analysis literature and to

propose an improved evaluation methodology. Throughout this pa-

per our discussion will be exemplified by the task of detecting

blood vessels in retinal images. However, it is important to point

out that our approach is in no way bounded to retinal images only,

but instead applicable in the general context of the evaluation of

2D and 3D curvilinear structure detection algorithms.

Reliable segmentation of the vasculature in retinal images is a

nontrivial task for image analysis and has immense clinical rele-

vance. Blood vessel appearance is an important indicator for diag-

noses including diabetes, hypertension, and arteriosclerosis. For

this purpose one needs a quantification of features of veins and

arteries such as color, diameter, tortuosity, and opacity. Vessel

detection provides the fundament for this kind of diagnosis making

and indirectly also for other problems. Automatic detection algo-

rithms for pathologies like microaneurysms may be improved if re-

gions containing vasculature is excluded from the analysis (Frame

et al., 1998). In addition, knowledge about the location of vessels

can aid in registration of retinal images (Zana and Klein, 1999)

and detection of other features like optic disc and fovea (Hoover

and Goldbaum, 2003). The retinal vessels can be further separated

into arteries and veins (Rothaus et al., 2009), which are fundamen-

tal to computing the important AV-ratio (ratio of artery to vein cal-

ibres). For all these reasons reliable vessel segmentation in retinal

images and evaluation of vessel segmentation algorithms is of

interest both from a theoretical and a clinical point of view. Similar

conclusion applies to other curvilinear structure detection tasks in

medical image analysis as well.

We motivate our work with a detailed discussion of the

drawbacks of early approaches in Section 2. Then, we describe an

improved evaluation methodology in Section 3. Experimental work

demonstrating the usefulness of our approach follows in Section 4.
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Finally, some discussions conclude the paper. This paper is an ex-

tended version of the conference paper (Ji ang et al., 2011) and con-

tains more detailed literature review, additional technical details,

and substantially extended experimental work.

2. Drawbacks of non-structural approaches

The efforts of performance evaluation in computer vision can

generally be classified into four distinct categories: theory-based,

human evaluation, ground truth (GT) based, and task-based. Our

methodology falls into GT-based evaluation. The term ground truth

is used to denote some reference result that represents the ex-

pected ideal segmentation. The basic idea of GT-based evaluation

is then to compute some measure of differences between machine

segmentation result and the ground truth.

Many algorithms have been proposed for vessel segmentation

in retinal images (Chaudhuri et al., 1989; Fang et al., 2005; Hoover

et al., 2000; Jiang and Mojon, 2003; Lam and Yan, 2008; Lam et al.,

2010; Martinez-Perez et al., 1999; Staal et al., 2004; Zana and

Klein, 2001). While visual inspection has been applied in early ap-

proaches for performance evaluation, recent works report on

experimental results based on large datasets with manually speci-

fied ground truth. Hoover et al. (2000) have collected a dataset

STARE (STructured Analysis of the REtina) of 20 retinal images

which were manually segmented by two observers. The DRIVE

(Digital Retinal Images for Vessel Extraction) dataset (Niemeijer

et al., 2004; Staal et al., 2004) consists of 40 images with manual

segmentation from three observers. Also the authors of Fang

et al. (2005) reported on a dataset of 35 retinal images with ground

truth. Two of the datasets (STARE and DRIVE) are publicly

available.

In all those works using manually specified ground truth, a

straightforward method is used for performance evaluation. Given

a machine-segmented result image (MS) and its corresponding

hand-labeled ground truth image (GT), any pixel which is marked

as vessel in both MS and GT is counted as a true positive. Any pixel

which is marked as vessel in MS but not in GT is counted as a false

positive. The true positive rate (TPR) is established by dividing the

number of true positives by the total number of vessel pixels in GT.

The false positive rate (FPR) is computed by dividing the number of

false positives by the total number of non-vessel pixels in GT. As an

alternative, the FPR can also be based on the total number of non-

vessels pixels within the circular field of view1 (FOV) only (Niemei-

jer et al., 2004). This latter version seems to be more reasonable and

thus will be consistently used in this work. If different pairs of sen-

sitivity and specificity can be achieved, for instance by thresholding

a soft classification or various parameter sets, the performance of a

system can be investigated by receiver operating curves (ROC). The

closer a ROC approaches the top left corner (TPR = 100%, FPR = 0%),

the better the performance of the system. In (Lam and Yan, 2008)

a variant of TPR is introduced to emphasize on pathological regions

that are especially important but difficult to deal with.

Similar pixel-wise comparison has also been used for evaluating

binarization methods (Lee et al., 1990) and building extraction

from aerial imagery (Shufelt, 1999). While this approach is suitable

there for comparing large regions, its application to curvilinear

structures as elongated and thin regions is more questionable. This

is illustrated in Fig. 1 with several modified versions of the GT.

MSthin results from thinning the GT at some places while in MSdel
some vessel sections are deleted and others remain unchanged.

For both MSthin and MSdel we obtain TPR = 85.1% and FPR = 0.0%,

indicating an equal rate of 85.1% correct detection and no spurious

vessels. But in reality there are substantial differences between the

two MS images. In MSthin the entire vessel network is correctly de-

tected, but some vessels have a smaller width than GT. In contrast

MSdel perfectly equals GT except the deleted parts. A more objec-

tive performance measure would be TPR (MSthin) = 1.00 and TPR

(MSdel) < 1.00, indicating the percentage of the correctly detected

part of the vessel network. The correctly detected parts of the ves-

sel network can be further evaluated with respect to the detection

accuracy, i.e., the width error. Then, we would expect a non-zero

width error for MSthin and zero width error for MSdel, respectively.

A second situation in Fig. 1(e) and (f) illustrates a related prob-

lem. Again, the two MS images MSexp and MSins have equal perfor-

mance measures TPR = 100% and FPR = 1.7%, implying a full

detection of the vessel network and 1.7% spurious vessels in both

cases. Here MSexp emerges from GT by locally expanding GT while

MSins equals GT plus eight spurious (diagonal) vessel parts. Differ-

ent from MSins, the spurious vessel pixels in MSexp cause vessel

width errors, but do not change the vessel network structure in

any way. Intuitively, a measure FPR (MSexp) = 0 and FPR (MSins) > 0

thus makes more sense. Accordingly, MSexp and MSins should be

associated with non-zero and zero width error, respectively.

The examples above clearly show the drawbacks of the early ap-

proach to evaluating the performance of vessel segmentation algo-

rithms. Due to the nature of curvilinear structures being thin and

elongated regions, a pixel-wise comparison is not the most mean-

ingful way of performance assessment. As a matter of fact, the

overall performance measures TPR and FPR are both a mixture of

two different aspects of performance, namely detection rate

(how much of the vessel network structure is detected) and detec-

tion accuracy (what is the accuracy of the detected network struc-

ture). As shown in the examples above, such a mixture may result

in a biased impression of the detection quality.

The non-structural nature of TPR and FPR has been implicitly

acknowledged by other authors. Fang et al. (2005), for instance,

state ‘‘Visual inspection is a way to examine extraction results

for blood vessels in retinal images. Our method is able to recover

an almost perfect morphological structure for high contrast

images’’. Later, they use TPR and FPR to measure the detection

quality without any further discussion about the accuracy of struc-

ture detection. This simply means that despite of the use of TPR

and FPR, they were only able to obtain some qualitative impression

of structure detection accuracy by visual inspection.

Another problem is discussed in (Niemeijer et al., 2004): ‘‘A dis-

advantage is that in this way the wider vessels have a larger influence

on the end result than the smaller vessels. [. . .] Many of the smallest

vessels of the gold standard and the second manual segmentation

are not or partly visible in the automatic segmentations. In an applica-

tion where small vessel detection is critical a method with a lower

overall accuracy could still be marked the better method if it would

segment more of the smallest vessels’’. With the current definition

of TPR and FPR we do not distinguish between wider and smaller

vessels in any way and thus a more sophisticated performance

assessment as formulated by the authors of (Niemeijer et al.,

2004) is not possible.

Based on the discussion above we believe that the key of a more

meaningful way of performance assessment is to separate the two

factors detection rate and detection accuracy. In our previous work

(Jiang and Mojon, 2002) we represent the structure of a vessel net-

work by its thinned version of midline points of one pixel width.

The structures of the GT and the MS vessel network are compared

by a point matching process. Then, the detection rate is measured

by TPR and FPR defined by means of the matched midline points,

reflecting the structural differences of the two networks. After-

wards, the computation of detection accuracy is based on the

width information of matched midline points. While this approach

is exactly what we need to alleviate the problems addressed above,

1 The retinal images typically have a limited field of view, mainly due to the

curvedness of human retina. If needed, multiple images can be fused using image

registration techniques to form a montage with a larger field of view.
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the point matching process is an ad hoc one and results in many

non-optimal matchings. In this work we further develop the ap-

proach of (Jiang and Mojon, 2002) by introducing an optimal point

matching process. In addition the experimental validation has been

substantially extended to demonstrate the usefulness of our

approach.

Similar philosophy has been applied in (Niemeijer et al., 2010)

to evaluate the detection accuracy of microaneurysms in retinal

images. Instead of counting pixels the performance is measured

by comparing microaneurysms as a whole (by using a simple cor-

respondence procedure).

3. Structural evaluation methodology

The basic assumption is that for each test dataset (image or vol-

ume), we have a corresponding GT dataset with the curvilinear

structures manually specified. Our approach is thus a supervised

one.

Given a binary dataset V, for example a blood vessel image, we

define its structure as the set of midline points along with the

width information. Such a representation fully characterizes the

curvilinear network by two information sources, allowing us to

investigate the detection rate and the detection accuracy sepa-

rately. We extract this structure in the following way:

� Find the midline points by computing the skeleton of V. The

skeleton is denoted by Vt. There are many thinning and skelet-

onization methods, each with different properties. We use the

method from Cardoner and Thomas (1997) because it guaran-

tees that (a) the skeleton is thin (single-pixel wide), (b) the skel-

eton is connected, and (c) the skeleton can be used to

reconstruct the original image with a tolerance of one pixel.

Furthermore, it can be generalized to higher dimensions

(Romero et al., 2000). Note that for elongated shapes like curvi-

linear structures under consideration in this work the relatively

simple thinning algorithm from Cardoner and Thomas (1997)

suffices; for thinning general binary shapes more sophisticated

approaches like (Tang et al., 2010) will be needed.

� Compute a distance map of V: Each structure point (i.e., point

from the skeleton Vt) is assigned its Euclidean distance d to

the background. Then, each structure point p in Vt receives a

corresponding width value wp = 2dp. There are multiple meth-

ods to compute an exact squared Euclidean distance transform

for this purpose in linear time. We chose the one presented in

(Maurer et al., 2003).

Given a MS and GT, we propose to measure the detection rate

by comparing MSt and GTt only, i.e., how much of the GT curvilin-

ear network structure is detected in MS. In a second step the width

of matched MSt and GTt structure points is compared to give a

measure of detection accuracy.

The most crucial part of our approach is how to match GTt and

MSt. We need to match as many structure points of GTt as possible

to structure points in MSt and vice versa, in a way that ensures that

two matched structure points are as similar as possible with re-

spect to both their position and width. We formulate this problem

as one of optimal graph matching.

3.1. Graph matching

A graph G is bipartite if its vertices form two disjoint subsets so

that no edge exists between vertices in the same subset. The dis-

joint structure point sets GTt and MSt therefore form a bipartite

graph Ggm if every edge connects a structure point p 2 GTt with a

structure point q 2MSt. Such an edge represents a candidate for a

match between the structure points p and q. Every edge is associ-

ated with cost that depends on the distance of p and q and on the

difference of their width information.

A match between the two disjoint vertex sets of a bipartite

graph is a set of edges so that each vertex is endpoint of at most

one edge. Such a match will be called a structural matching in the

following. In a structural matching, every structure point in GTt
is matched to at most one structure point in MSt and vice versa.

The task can now be expressed as the problem of finding an

optimal structural matching with minimum cost among all

structural matchings with the maximum number of edges in Ggm.

Such a matching is called a maximum-cardinality minimum-cost

matching.

To build the graph Ggm we need to determine the set of match

candidates and to specify their cost. Given the graph Ggm, we have

to develop a procedure for finding its optimal structural matching

M. Based on this optimal structural matching we finally define a

Fig. 1. (a) Retinal image; (b) GT; (c) MSthin: partial thinning of GT; (d) MSdel: deletions in GT; (e) MSexp: partial expanding of GT; (f) MSins: insertions in GT.
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new set of performance measures. The details of these steps are gi-

ven in the following subsections.

3.2. Selecting match candidates

Not every pair (p,q) should be a match candidate: The Euclidean

distance d(p,q) should not be too high, and p, q should not repre-

sent structures of very different width.

To determine the match candidates and therefore the edges in

Ggm, two thresholds dmax and wmax are necessary. A pair (p,q) is a

match candidate if and only if

dðp; qÞ 6 dmax ^ jwp �wqj 6 wmax

These thresholds are not independent of each other. In the case of

thick structures, the allowed difference in position may be higher

than in the case of thin structures, where it is more important to

match the position exactly. To reflect this, wmax is determined from

GTt:

wmax ¼ cw �maxfwpjp 2 GTtg:

Then, dmax is determined from wmax:

dmax ¼ cd �wmax:

The factors cw and cd are parameters and have to be chosen in ad-

vance. Details of choosing parameter values will be discussed in

Section 3.6.

3.3. Cost of match candidates

For each match candidate (p,q) 2 Ggm, p 2 GTt, q 2MSt, its cost

c(p,q) should be proportional both to the Euclidean distance

d(p,q) and to the difference jwp � wqj of the structure widths. Addi-

tionally, the cost should be normalized to [0,1] to ease the task of

defining quality measures later. Because d(p,q) is bounded by dmax

and jwp � wqj is bounded by wmax, the following definition fulfills

these requirements:

cðp; qÞ ¼ 1� 1�
dðp; qÞ

dmax

� �

� 1�
jwp �wqj

wmax

� �

2 ½0;1�

A good match candidate (p,q) means small value of d(p,q) and

jwp �wqj, which results in small c(p,q). The minimum of c(p,q), 0,

is reached only in case of perfect matches. Note that this cost de-

pends on the ground truth segmentation GT since wmax and dmax

are computed from GTt.

Based on this cost for match candidates, the cost C(M) of a struc-

tural matching M between GTt and MSt is defined as follows:

CðMÞ ¼

X

ðp;qÞ2M

cðp; qÞ 2 ½0; jMj�

summing up the costs of all individual matches in M.

3.4. Computing optimal structural matching

The problem of determining a maximum-cardinality minimum-

cost matching on Ggm can be expressed as a special case of the

assignment problem for which efficient algorithms are known.

For this purpose, the problem can first be reduced to the com-

putation of a minimum-cost perfect match in an auxiliary graph

G0

gm; see (Gabow and Tarjan, 1989), Section 202. (A perfect match

in a bipartite graph G = A [ B is a match so that each vertex of A

is matched to exactly one vertex of B and vice versa.) We form

the auxiliary bipartite graph G0

gm as follows. It is created by putting

Ggm and a copy of Ggm together. Then, we connect each vertex in

Ggm with its copy and each such new edge is assigned the cost

N � cmax, where N is the number of vertices in Ggm and cmax is the

maximum cost assigned to an edge in Ggm (in our case cmax = 1).

G0

gm is again bipartite with the two disjoint vertex sets GT1
t

S

MS2t
and MS1t

S

GT2
t (each represented by a dashed ellipse in Fig. 2),

where GT1
t and MS1t are the vertices of GT and MS part of Ggm,

respectively, and GT2
t and MS2t are the corresponding vertices from

the copy of Ggm. It can be shown that G0

gm contains a minimum-cost

perfect match, which corresponds to a maximum-cardinality min-

imum-cost match in Ggm when all edges that end in a vertex of the

copy of Ggm are eliminated. More details can be found in (Gabow

and Tarjan, 1989).

The maximum-cardinality minimum-cost match in Ggm is the

optimal structural matching M we are looking for. The remaining

problem of finding a minimum-cost perfect match in G0

gm is a spe-

cial case of the assignment problem and can be solved efficiently

using the Cost Scale Assignment (CSA) algorithm from Goldberg

and Kennedy (1995).

3.5. Quality measures

Based on the optimal structural matching M we define the fol-

lowing quality measures.

True positives: The successfully detected structure points of GTt
are those that have a corresponding structure point in MSt accord-

ing to the optimal structural matchingM. The portion of these suc-

cessfully detected structure points in M to the total number of

structure points in GTt is the true positives rate (TPR):

TPR ¼
jMj

# stucture points in GTt

The definition of TPR tells us how much of the GT curvilinear net-

work structure is successfully detected in the machine segmenta-

tion. A measure of the matching quality of the true positives is

the detection error (DE):

DE ¼
CðMÞ

jMj
2 ½0;1�

Recall that CðMÞ is the cost function bounded by ½0; jMj� with zero

indicating the best case. The detection error can also be split into

two values to separately measure the position error (PE) and width

error (WE) of the successfully detected curvilinear structure:

PE ¼
1

jMj

X

ðp;qÞ2M

dðp; qÞ; WE ¼
1

jMj

X

ðp;qÞ2M

jwp �wqj

Lower values of DE, PE, and WE correspond to higher accuracy. Note

that all three error measures are scaled by 1=jMj because they are

copy of

GTt
1

GTt
2

MSt
1

G gm

G gmMSt
2

Fig. 2. Construction of auxiliary graph G0

gm: The dotted lines represent the edges

connecting each vertex in Ggm with its copy.
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intended to represent the error per pair of correctly detected struc-

ture point and its GT correspondence.

False positives: Those structure points of MSt that have no match

in GTt according to M are false positives. The false positives rate

(FPR) is defined as:

FPR ¼
# structure points in MSt � jMj

# non-structure points in FOV of GTt

Note that the number of non-structure points in the denominator

may alternatively be counted in GTt. In this work we follow the

more reasonable convention from Niemeijer et al. (2004) to restrict

the consideration to FOV only.

In addition to compute the false positive rate (equivalently the

number of false positives in MSt) it is also interesting to ask about

the characteristic, for instance the width, of these spurious struc-

tures. It is probably more problematic to erroneously detect thick

structures than thin ones. To obtain this information we can estab-

lish a width histogram of the false positives.

False negatives: Those structure points of GTt that have no match

in MSt according to M are false negatives. The false negatives rate

(FNR) is defined as:

FNR ¼
# structure points in GTt � jMj

# structure points in GTt

This measure indicates how much of the GT structure is missing in

the machine segmentation. Likewise we can investigate the width

characteristics of these false negatives by a width histogram.

The structure-based evaluation procedure is summarized as

follows.

/⁄ detection rate ⁄/

construct GTt from GT and MSt from MS;

find the optimal structural matchingM between GTt and MSt;

NoOfTruePositives¼ jMj;

NoOfFalsePositives = (# structure points in MSt)-jMj;

NoOfFalseNegatives = (# structure points in GTt)-jMj;

TPR = NoOfTruePositives/ (# structure points in GTt);

FPR = NoOfFalsePositives/ (# non-structure points in FOV of

GTt);

FNR = NoOfFalseNegatives/ (# structure points in GTt);

/⁄ detection error ⁄/

Compute position error PE of true positive structures;

Compute width error WE of true positive structures;

3.6. Choosing parameter values

Two parameters cd and cw are used during the selection of match

candidates. These parameters affect the number of match candi-

dates as well as their cost, and therefore also the optimal match

M and the induced quality measures. Fortunately, it turns out that

the quality measures are fairly robust to parameter changes.

Since there is no stringent reason to treat distance in position

differently from difference in width, cd = 1 and therefore dmax =

wmax is a suitable choice. This leaves only cw to be determined.

The influence on the number of match candidates is more crit-

ical than the influence on their cost. Since the optimal matchingM

is a maximum-cardinality match, too many match candidates inev-

itably lead to nonsense matches in M. Therefore, cw must not be

chosen too large. On the other hand, cw must not be chosen too

small either, to avoid the exclusion of reasonable match candi-

dates. Suppose the segmentation algorithm tends to mark struc-

tures wider than they really are. Then a small value of cw quickly

leads to the exclusion of reasonable match candidates.

It turns out that all reasonable match candidates are already

included for cw � 0.5: The true positives rate conforms to the

expectations. The higher TPR observed for increasing values of cw
comes at the cost of match quality: The position error value PE

and the width error value WE increase rapidly already for cw � 1.

A study of this parameter reported in Section 4.3 indicates quite

stable results for cw 2 [0.4,0.7]. For this reason, a good parameter

choice is cw = 0.5, cd = 1 and the experimental results reported in

Section 4 are based on this parameter setting.

In principle, it would also be possible to choose wmax and dmax

locally. For the structure point p 2 GTt currently under examina-

tion, one could choose wmax = cw � wp and dmax = cd � wmax. The

expectation would be that the selection of match candidates

adapts to the nature of the different structure regions and there-

fore further improves the quality measures. It turns out, however,

that this method is very sensitive to the choice of parameters. Fur-

thermore, the quality measures show no significant improvements

even when suitable values are found. For this reason we will con-

sistently apply the global version with cw = 0.5, cd = 1 in all exper-

iments reported in the next section.

4. Experimental results

The motivation of our work is to develop a structure-based eval-

uation methodology so that we can overcome the bias problems

discussed in Section 2. A series of experiments using both synthetic

and real data have been conducted to demonstrate the effective-

ness of our approach.

4.1. Synthetic data

First we show how our method evaluates the four images in

Fig. 1(c)–(f), see Table 1. As wanted, MSthin has TPR near 100%,

implying a full detection of the vessel network structure. The fact

that the detected vessels are thinner than GT is expressed by the

width error 0.452 (pixel). The width error indirectly results in a po-

sition error 0.191. Note that TPR is not perfectly 100% because the

thinned version MSthin generally results in a skeleton which

slightly differs from that of GT. In contrast MSdel leads to

TPR = 77.6% only and accordingly 22.4% of the vessel network

structure undetected. Since no error has been added to the cor-

rectly detected 77.6% of the vessel network in synthesizing MSdel,

the error measures are all negligible in this case. The missing

vessels in MSdel are expressed by the high number of false nega-

tives 1729, meaning that 1729 of the structure points of GTt cannot

be matched to the segmentation result. In comparison MSthin only

has 32 missing structure points. Based on the histogram of false

negatives we see further that the missing vessels are relatively

thin; 62.2% of the missing parts have a width up to 3. The

Table 1

Evaluation results for MSthin, MSdel, MSexp, and MSins.

MSthin MSdel

TPR 99.6% 77.6%

Detection error DE 0.060 0.000

Position error PE 0.191 0.002

Width error WE 0.452 0.002

False positives 0 0

False negatives 32 1729

FN histogram – 1–2:50.3%, 2–3:11.9%, 3–4:25.0%, 4–5:9.4%

MSexp MSins

TPR 100.0% 100.0%

Detection error DE 0.068 0.000

Position error PE 0.226 0.000

Width error WE 0.462 0.000

False positives 6 400

FP histogram – 1–2:8.0%, 2–3:4.0%, 3–4:4.0%, P4:84.0%

False negatives 0 0
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interpretation of these evaluation measures is exactly what we

postulated for more informative and precise performance evalua-

tion in contrast to the pixel-wise evaluation method.

Similar improvement can also be observed for MSexp and MSins.

Although both MSexp and MSins have 100% TPR, MSexp is not a per-

fect detection. The partial expanding in MSexp results in a width er-

ror 0.462, indicating some detection inaccuracy. Basically, no false

positive is found in MSexp, compared to 400 in MSins. Furthermore,

the spurious vessels in MSins are mainly thick ones with 84.0%

being at least 4 pixels wide (corresponding to the thick added diag-

onal vessels). The measures on this second image pair again con-

firm our impression of the segmentation results and demonstrate

the more informative and precise nature of the proposed evalua-

tion methodology.

4.2. STARE database

The STARE database (Hoover et al., 2000) contains 20 images of

digitized slides (available at http://www.parl.clemson.edu/stare/

probing/, 700 � 605 pixels, 8 bits per color channel). There are

two hand-labelings made by two different persons (computer sci-

entists with knowledge in ophthalmology), see Fig. 3 for an exam-

ple. The first hand-labeling, which is usually used as ground truth

in performance evaluation (Hoover et al., 2000; Jiang and Mojon,

2003; Staal et al., 2004), took a more conservative view of the ves-

sel boundaries and in the identification of small vessels than the

second hand-labeling.

4.2.1. Single image case (STARE)

We start with the single retinal image shown in Fig. 4, together

with the corresponding ground truth, and vessel detection MS1 and

MS2 from two different algorithms (Jiang and Mojon, 2003 and

Martinez-Perez et al., 1999). Using the pixel-wise evaluation we

obtain: MS1: TPR = 91.9%, MS2: TPR = 80.3%. There is a large differ-

ence (11.6%) in TPR. The evaluation measures based on our ap-

proach are: MS1: TPR = 89.3%, MS2: TPR = 87.2%. Actually, MS1
only detects 2.1% more of the vessel network structure than MS2.

The much larger difference of 11.6% above is explained by the fact

that MS1 tends to be thicker than GT. Thus, it produces a better pix-

el-wise matching result. Measured by our method, this is ex-

pressed by a larger width error for MS1 (1.129) than MS2 (0.693).

Here our performance measures clearly provide a more precise

description of the differences between algorithmic results and

ground truth.

4.2.2. Whole database (STARE)

We compare our evaluation approach with the early pixel-wise

method in three different situations. The first hand-labeling is used

as ground truth in all three of them. The results are summarized in

Fig. 5.

Verification-based adaptive local thresholding (Jiang and Mojon,

2003): This vessel detection method has been evaluated on the

STARE database. Based on eight parameter sets the ROC is plotted

in Fig. 5 (‘‘multi-threshold probing’’). Note that the 20 retinal

images are divided into a subset of normal and a subset of abnor-

mal cases. The performance study thus can be done for three test

instances (all, normals, abnormals). In this case both evaluation

methods have similar TPR values. The reason lies in the fact that

the results from Jiang and Mojon (2003) tend to be thicker than

the ground truth. Therefore, as soon as some part of the vessel net-

work is detected, most of the vessel pixels of that part will be

marked, leading to a local TPR value near 100% comparable to

the local TPR from our evaluation approach. On the other hand,

the FPR has much smaller values due to the use of spurious midline

pixels only in our approach instead of all spurious vessel pixels.

Piecewise threshold probing of matched filter response (Hoover

et al., 2000): For this method only one result per image for a par-

ticular parameter set is available. Looking at Fig. 5 (‘‘filter response

analysis’’), we see that our evaluation method rates the TPR consid-

erably more positive (from lower than 70% to almost 80%). The low

TPR value of pixel-wise evaluation is caused by the algorithm’s ten-

dency of not fully marking all local vessel pixels even if the middle

part, thus the local network structure, is correctly found. Our struc-

ture-based evaluation approach considers the aspects of structure

Fig. 3. Two hand-labelings of a retinal image from STARE database and their color overlay for making the tiny differences clearer. The first hand-labeling (left) is coded in

green und the second (middle) in red. Common labeling points thus appear yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to

the web version of this article.)

Fig. 4. (a) Retinal image; (b) GT; (c) first detection results MS1; (d) second detection

result MS2.
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detection and local detection accuracy separately and is therefore

able to characterize the behavior of an algorithm more precisely.

Second hand-labeling: In (Hoover et al., 2000; Jiang and Mojon,

2003) the second hand-labeling has been used as ‘‘machine-seg-

mented result images’’ and compared to the first hand-labeling.

The detection performance measures are then regarded as a target

performance level. In Fig. 5 this level is indicated by an isolated

mark in each plot (‘‘second hand-labeling’’). Although the second

observer masked the vessels more completely, the pixel-wise TPR

only amounts to about 90% because the second labeling is partly

thinner than the first one. This assessment is obviously against

our intuition and expectation. Using our approach the TPR in-

creases to almost 100%.

Table 2 gives the details of this comparison for the retinal image

shown in Fig. 3. The pixel-wise evaluation results in a TPR value of

only 66.0% for this image. On the other hand, our approach indi-

cates that a much higher rate of 92.2% of the vessel network struc-

ture has been correctly segmented by the second observer. The

large divergence is caused by the differences in position and width

of the marked vessels by the two observers, which is signified by

quite large position and width errors in our case. The second obser-

ver labels more small vessels. This is documented by the number of

false positives, namely 955. Among them 90.1% are midline pixels

of thin vessels of one pixel width. This example makes once more

our way of assessing the detection quality clear.

4.3. Study of parameter cw

Our approach has one major parameter cw. We have conducted

a study using varying parameter values based on the multi-

threshold probing method and the STARE database; see Fig. 6.

The results indicate quite stable behavior for cw 2 [0.4,0.7]. For this

reason the parameter setting cw = 0.5 was chosen and used for all

experimental results reported in this paper.

4.4. Robustness issues of skeletonization

The basis for our proposed evaluation method is the skeleton-

ization of detected vessel networks. Two robustness issues are con-

sidered here.

Image rotation: Ideally, the computed skeleton should be invari-

ant to image translation and rotation. While translation invariance

is mostly satisfied, the rotation invariance is more challenging. The

relatively simple thinning algorithm from (Cardoner and Thomas,

1997), which is used in our current implementation, produces

slightly different results for rotated binary images. To investigate

the influence of rotation-dependent thinning results to the perfor-

mance measures, we conducted the following experiment. The

detection result in Fig. 4(c) was compared four times with the GT

in Fig. 4(b): The original pair and counterclockwise rotated

versions by 90�, 180�, and 270�. The resulting three main rates

are listed in Table 3. It can be concluded that the influence of rota-

tion-dependent thinning is not significant and thus using a thin-

ning algorithm like (Cardoner and Thomas, 1997) should not

have any impact on ranking vessel segmentation methods.
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Fig. 5. Evaluation of multi-threshold probing, filter response analysis, and second hand-labeling on STARE database: pixel-wise evaluation (left) and our approach (right). In

our case the FPR has much smaller values due to the use of spurious midline pixels only instead of all spurious vessel pixels.

Table 2

Evaluation results for comparing the second labeling in Fig. 3 against the first labeling.

TPR 92.2%

Detection error DE 0.375

Position error PE 1.573

Width error WE 0.634

False positives 955

FP histogram 1–2:90.1%, P2:9.9%

False negatives 558

FN histogram 1–2:70.1%, 2–3:5.9%, 3–4:17.4%, P4:6.6%
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Fig. 6. Performance measure for varying values of parameter cw (multi-threshold

probing, STARE).
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Spurious branches: Skeletonization potentially produces minor

spurious branches. This phenomenon is not only observable in

the relatively simple thinning algorithm (Cardoner and Thomas,

1997) used in our current implementation. Even more sophisti-

cated thinning methods like (Tang et al., 2010) cannot fully avoid

it. For the task under consideration, however, these spurious

branches are of such small proportion that they should not signif-

icantly influence the performance measures. This expectation has

been well confirmed by our experiments, in which such spurious

branches were manually removed from both detection result and

GT. The performance measures with and without the manual re-

moval of spurious branches hardly differ.

4.5. DRIVE database

The DRIVE database consists of 40 images (available at http://

www.isi.uu.nl/Research/Databases/DRIVE/, 768 � 584 pixels, 8 bits

per color channel). The pixel classification approach to vessel

detection from Niemeijer et al. (2004) has been evaluated using

both methods, see Fig. 7. Similar to the evaluation of the verifica-

tion-based adaptive local thresholding (Jiang and Mojon, 2003)

on the STARE database, the performance measure TPR does not

change too much in this case. Large changes occur, however, if

we compare two different hand-labelings. Similar arguments apply

here as well. Our structure-based evaluation indicates more pre-

cisely the structure detection rate.

4.6. Computational time

For comparing a pair of GT and MS image, the skeletonization

takes about 2.5 s (STARE) and 1.6 s (DRIVE), respectively, on a stan-

dard notebook. In both cases the matching time is about 1.5 s. No

code optimization has been tried so far. For the non-realtime task

of performance evaluation the computation time is acceptable.

5. Discussions and conclusion

Compared to other commonly used features such as edges and

regions, there is relatively little work on performance evaluation of

algorithms for curvilinear structure detection. In this paper we

have proposed a novel structure-based methodology for this pur-

pose. We consider the two aspects of performance, namely detec-

tion rate and detection accuracy, separately, in contrast to their

mixed handling in earlier approaches that typically produces

biased impression of detection quality. By doing so, the proposed

performance measures give us a more informative and precise per-

formance characterization. The detailed information about width,

for instance, helps the user select a suitable algorithm for a partic-

ular application as discussed in Section 2.

Both synthetic and real examples have been used to demon-

strate the advantages of our approach. In fact, the use of our eval-

uation approach may change our thinking about the relative

performance of algorithms. Concerned with the vessel detection

method from Hoover et al. (2000), for instance, although the eval-

uation could only be done for one parameter setting, the results in

Section 4.2 (i.e., the increased TPR value according to our structure-

based evaluation) indicate that this algorithm has a higher ‘‘intrin-

sic’’ detection rate than assumed so far based on the pixel-wise

comparison. The superior performance of the algorithm (Jiang

and Mojon, 2003) is at least partly caused by its tendency of pro-

ducing thicker vessels. More experiments (using vessel detection

results not available to us yet) will be needed to fully clarify this

point. But this incomplete comparison shows the potential of our

approach to directing the evaluation to the intrinsic algorithmic

performance.

It is not our intention in this work to conduct a rather complete

performance evaluation for a large number of algorithms. Instead,

the experiments reported in Section 4 are shown to demonstrate

the principal usefulness of our structural performance evaluation.

We will do the evaluation work in future by involving other

researchers in a joint effort.

The description of the evaluation methodology and the experi-

mental work have been embedded in the context of blood vessel

detection in retinal images. It is important to point out that our ap-

proach is applicable in the general context of the evaluation of cur-

vilinear structure detection algorithms. In particular, extraction of

airway tree and other thin structures in volumetric data (Holtz-

man-Gazit et al., 2006; Tschirren et al., 2005) is a challenging task

Table 3

Performance measures of rotated detection results.

Original 90� 180� 270�

TPR 89.28% 89.22% 89.40% 89.14%

FPR 0.10% 0.10% 0.10% 0.09%

FNR 10.72% 10.78% 10.60% 10.86%
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Fig. 7. Evaluation on DRIVE database: pixel-wise evaluation (left) and our approach (right). The term ‘‘Niemeijer’’ denotes the vessel detection method from Niemeijer et al.

(2004). In our case the FPR has much smaller values due to the use of spurious midline pixels only instead of all spurious vessel pixels.
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and our evaluation technique will help assess the algorithm perfor-

mance as well.
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ABSTRACT   

3D shape perception in a stereoscopic movie depends on several depth cues, including stereopsis. For a given content, 

the depth perceived from stereopsis highly depends on the camera setup as well as on the display size and distance. This 

can lead to disturbing depth distortions such as the cardboard effect or the puppet theater effect. As more and more 

stereoscopic 3D content is produced in 3D (feature movies, documentaries, sports broadcasts), a key point is to get the 

same 3D experience on any display. For this purpose, perceived depth distortions can be resolved by performing view 

synthesis. We propose a real time implementation of a stereoscopic player based on the open-source software Bino, 

which is able to adapt a stereoscopic movie to any display, based on user-provided camera and display parameters.   

Keywords: Stereoscopy, 3D video, depth perception, depth-preserving disparity mapping, view synthesis, real time, 

stereoscopic player 

1. INTRODUCTION  

Many media are now available in stereoscopic 3D without offering the best viewing condition due to the depth distortion 

that appear on different displays due to the variety of screen sizes and distances. However this distortion may be reduced 

through view synthesis methods, which usually involve three steps
1
: computing the stereo disparity, applying a disparity-

dependent mapping to the original views and compositing the resulting images. In this paper, we do not focus on the first 

step: while stereo disparity computation is still an active research topic, state-of-the art methods give results that are 

satisfying for our application.  

In the first part of this paper, we focus on the main constraints on the camera setup used to shoot a stereoscopic movie 

for a given display configuration.  Then, we discuss the choice of our view synthesis method through a view synthesis 

model built on shooting and viewing geometries. We make the assumption that the movie is correctly rectified: a pixel 

from the left image corresponds to a pixel on the same horizontal line in the right image, i.e. there is no vertical disparity 

or vertical misalignment. In the second part, we present our pipeline and an efficient way to implement it on the GPU 

using several render passes satisfying video frame rate performance and high quality.  Finally, we discuss our results, the 

problems that may appear, such as visual artifacts, and how to solve them. 

Our main research goals and contributions are to propose a stereoscopic movie player performing real-time content 

adaptation to the display geometry with a framework using both CPU and GPU.  

2. SHOOTING CONSTRAINTS DESCRIPTION AND CONTENT ADAPTATION 

Projecting a stereoscopic movie on different screen sizes and distances will produce different perceptions of depth, 

which implies that a movie is shot for a particular display configuration. If a stereoscopic movie is viewed without 

modification, three main issues have to be considered: eye divergence, image scaling and roundness factor
2
.  

Figure 1 shows the various geometric parameters describing the camera and display configurations. 
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Figure 1. Shooting and viewing geometries can be described using the same small set of parameters. 

Since triangles MlPMr and ClPCr are homothetic, the disparity 𝑑 can be written as a function of the real depth  𝑍 :  

𝑑 =       , or  𝑍 =      (1) 

2.1 Eye divergence 

The perceived depth can be expressed by the same way since the horizontal disparity in the images and the screen 

disparity respectively expressed as a fraction of image width and fraction of screen width are equal: 𝑑 = 𝑑′. This results 

in: 

𝑍 =      (2) 

By eliminating the disparity 𝑑, from (1) and (2), we obtain: 

𝑍 =  (3) 

Eye divergence occurs when 𝑍 < 0, i.e.  𝑑 > 𝑏𝑊 ; object placed at infinity in the real scene (𝑍   → ∞) will cause eye 

divergence if and only if   𝑊’/𝑏’   >   𝑊/𝑏. 

2.2 Scale ratio 

The image scale ratio 𝜎  represents how much an object placed at depth 𝑍 seems to be enlarged (eg. 𝜎 > 1 ) or reduced 

(eg. 𝜎 < 1 )  in 𝑋and 𝑌direction with respect to objects present in the convergence plane 𝑠 =  . 

𝜎 = =   
  

  = 
/

/
  (4) 

On-screen objects get a scale ratio equal to 1 since the disparity is 0. Moreover the relation between 𝑍 and 𝑍′ is non 

linear except if 
  

′

′
= . 

2.3 The roundness factor  

The roundness factor 𝜌 measures how much the object proportions are affected for an object of dimensions 𝛿𝑋, 𝛿𝑍 in the 

width and the depth directions at a depth  𝑍, perceived as an object of dimensions 𝛿𝑋′, 𝛿𝑍′ at depth  𝑍′. 

𝜌 = =   
/

/
  = 𝜎       (5) 

The roundness factor of an object on the screen plane (𝑍 = 𝐻 and   𝑍 = 𝐻′) is: 

𝜌 =    =   (6) 

Note that despite common belief, the on-screen roundness factor does not depend on the screen size, but on the screen 

distance. This on-screen roundness factor is equal to 1 if and only if 𝑏′ 𝑏 =   𝐻′ 𝐻. 

Symbol Camera Display 

𝐶 ,𝐶  camera optical center eye optical center 

𝑃 physical scene point perceived 3-D point 

𝑀 ,𝑀  image points of 𝑃 screen points 

𝑏 camera interocular eye interocular 

𝐻 convergence distance screen distance 

𝑊 width of convergence plane screen size 

𝑍 real depth perceived depth 

𝑑 left-to right disparity (as a fraction of 𝑊  ) 
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In order to get perfect shape reproduction, the roundness factor should be equal to 1 everywhere. This implies that the 

geometric parameters have to satisfy 𝑏′ 𝑏 = 𝑊′ 𝑊 =   𝐻′ 𝐻. Consequently, the only camera configurations that 

preserve the roundness factor everywhere are scaled versions of the viewing geometry
2
. 

2.4 View synthesis model 

A generalized depth preserving view synthesis model built on shooting and viewing geometries parameters which 

satisfies both described constraints can be written as follows
3
. 

A pixel in the left image which has coordinates (𝑥 , 𝑦) and disparity 𝑑   maps to the following pixel in the interpolated 

view: 

(𝑥 +   (  𝑥 + 𝑤𝑑    − 𝑥 )𝜎 (𝑑   )   +   𝑤(𝑑 (𝑑   ) −   𝑑   ), 𝑦   + (  𝑦 − 𝑦 )  𝜎 (𝑑   )  ),   (7) 

where w is the image width in pixels, 𝑑  is the mapping from the original disparity to the synthesized disparity: 

𝑑 (𝑑) =   (8) 

and 𝜎  is the disparity-dependent image scaling: 

𝜎 𝑑 =  . (9) 

Similarly, a pixel in the right image which has coordinates (𝑥 , 𝑦) and disparity 𝑑   maps to the following pixel in the 

interpolated view: 

(𝑥 +   (  𝑥 − 𝑥 )𝜎 (𝑑   )   +   𝑤(𝑑 (𝑑 ) −   𝑑   ), 𝑦𝑐   + (  𝑦 − 𝑦 )  𝜎 (𝑑   )) (10) 

Note that 𝜎 ′′ and 𝑑 ′′ depend on the parameters that describe the shooting and viewing geometries. 

As we only need to synthesize one view to maximize the quality
3
, we prefer a simpler depth-preserving disparity 

mapping synthesis method over view synthesis method. Depth-preserving disparity mapping preserves the depth 

proportions with a roundness factor equal to 1 for on-screen object, and it avoids eye-divergence, although the disparity-

dependent image scaling 𝜎 ′′ is not applied, resulting in off-screen objects having a roundness different than 1.  

Expressions (7) and (10) become: 

(  𝑥 +   𝑤 ∗ 𝑑 (𝑑   ), 𝑦  )  (11) 

and 

(  𝑥   +   𝑤 ∗ (𝑑 (𝑑 ) −   𝑑   ), 𝑦), (12) 

and the pixel-dependent blending factors to be applied to the two warped images are: 

𝛼 = |𝑑 |/(|𝑑 | + |𝑑 |) ,              𝛼 = 1 − 𝛼  (13) 

The computation of the disparity 𝑑 ′′ at each pixel can be easily parallelized on a GPU architecture, since it is a closed-

form computation that only depend on values at that pixel.  

3. RENDERING PIPELINE OVERVIEW 

Most view synthesis algorithms require a stereo pair and the associated disparity map(s), but rendering a movie at video 

frame rate imposes some constraints on the performance required. Our approach can be divided into a sequence of steps: 

1. We make sure than the stereo input video sources are rectified. This ensures that each pixel in the left image 

corresponds to a pixel on the same horizontal line in the right image. 

2. We compute the disparity maps from this stereo sequence using a coarse-to-fine method. This method can be 

implemented on the GPU
4
 and run almost at video-rate on today’s GPUs. Then we encode the disparity map in 

a video stream using the luminance channel. 
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3. Both the disparity and the video streams are sent to the stereoscopic movie player. The CPU decodes each 

stream and the two decoded image pairs (left and right images, left-to-right and right-to-left disparity maps) are 

sent to the GPU. 

4. Two views are rendered from the stereo pair displaced using vertex buffer grid geometry, and depth 

discontinuities are handled by using transparency. 

5. We then composite these views to obtain a stereo pair adapted to the viewing conditions and sent to the display 

using a standard stereoscopic display stream format (Top/bottom, Above/Below, Checkerboard…) 

6. An optional pass can be inserted before conversion to the stereoscopic format, in order to remove artifacts using 

a confidence map
3
. 

Figure 2 describes graphically the data flow from the original images and disparity maps to the synthesized image pair. 

 

3.1 Implementation framework 

To implement our real-time solution we used the framework provided by the open-source stereoscopic movie player 

Bino
5
 which already implements many required features in a unified framework, for example multithreaded and 

synchronized video stream decoding. It also supports different stereoscopic display formats, such as top/bottom, 

above/below, and checkerboard ,and offers a linear OpenGL pipeline. The decoding is processed through the open-

source library FFmpeg, which supports a large number of codecs as well as multi-threaded decoding on the CPU. 

Moreover, the framework takes care of using linear RGB pixel values over the pipeline, which is essential during all the 

process
6
. Intermediate color buffers may lose precision in lower value ranges when stored as 8-bit linear images. For this 

reason, either 8-bit sRGB images or 16-bit linear-RGB images are used as intermediate buffers. 

Our disparity map was produced with a coarse-to fine dense stereo matching algorithm, which is suitable for real-time 

performance
4 

to be as close as possible to an embedded solution in a stereo movie player.  Both left and right disparity 

maps are encoded in a gray scale video. All the videos were encoded using the H.264 codec for its quality, performance 

and popularity as it's widely used by many streaming Internet sources. As a disparity can be either positive or negative, 

an encoding range needs to be chosen to define the 0 disparity.  

3.2 Asymmetric precomputation pass 

The first rendering pass converts the disparity video input stream by applying the correct scale and offset, and performs 

the computation of the texture element displacement. Since recent OpenGL versions allow the use of multiple render 

targets, left and right streams can be processed on the same pass sharing the same GLSL shader using two framebuffers 

to store the result. This pass does not use any diverging branches, which makes it very fast. xd   and xd represent the 

displacement from a point x from L to I and from R to I. 

 

Input Textures: left and right disparity maps 

Input parameters: viewing and shooting geometries parameters  

 

   xd = w ∗ d
′′(d   )          

 xd =   w ∗ d
′′
d −   d     

 

  α = |d |/(|d | + |d |)                  

 α = 1 − α  

  

Output_buffer [0]: xLI, d′′(d ), d , α  

Output_ buffer [1]: xRI, d′′(d )   −   d   ), d   , α  

 

Note that the current pixel position isn’t applied yet. 

 

All the computation is done in the fragment shader, since the vertex shader only needs to transfer the texture coordinates. 
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3.3 Rendering half views 

Image based rendering can be performed with explicit geometry or with implicit geometry. Our use case is closer to 

view interpolation than to free viewpoint methods, as our goal is to adapt the content using disparity mapping
7
, which 

can be seen as a depth-dependent baseline interpolation method. 

Using a grid model where each vertex is displaced by the OpengGL pipeline rasterizer makes sense, since we can also 

handle occlusions that way, by using the disparity itself as the z-component and using a Z-buffer.  We preferred using 

standard OpenGL shaders rather than Cuda or OpenCL in the pipeline, because switching the GPU between the OpenGL 

and the Cuda/OpenCL modes takes too much time on consumer-level graphics cards.  By using only one large indexed 

vertex buffer object grid in HD (1920*1080) made from a single triangle strip, we can render both view in two passes. 

The grid is initialized with texture coordinates corresponding to an identity transform.  

Input Textures: assymetric_framebuffer (  xd , d′′(d ), d , α ) 

Input parameters: threshold (1.0) 

 

x =   gl . x + xd  

 

gl = gl ∗ (  x , gl . y,−d′′(d ), 1.0  )  

    

The vertex shader applies the displacement on the x-axis for each vertex from the grid using the mapping from the 

previous pass but also on the z-axis using only the synthesized disparity to handle self-occlusions of the displaced grid. 

Detecting depth discontinuities is easy as the previous buffer can be sampled in its neighborhood: when ||xd – 

x d ||>threshold, the blending factors has to be set to 0.0.  By default the threshold has to be 1.0 to detect any elongated 

triangles in the displaced grid.  

 

Output [0]: RGBvalues  from  left  view, blending  factor 

 

The fragment shader just applies the color from the texture through the textures coordinates attached to each displaced 

vertex. Note that left and right borders must be refilled using the last candidate with a blending factor set to 0.0. 

Figure 3 shows the intermediate result with the two rendered half-views. 

 

3.4 Blending  

The two synthesized views are blended together using the asymmetric disparity mapping blending factors, combined 

with the discontinuity-detection blending factors. 

 

Input :  left and right contribution to synthesize the new view 

 

α = |d |/(|d | + |d |)                α = 1 − α  

 

Output: compose views using blending factors 

4. RESULTS 

The resulting software plays videos fluently at Full HD resolution (1080p25) on a quad-core 2.8GHz with a GeForce 

GTX480 GPU. The overall quality is good, but some visual artifacts may appear because of errors present in the 

disparity maps. Many of these artifacts can actually be detected by image processing
8
, and we are working on GPU-

based artifact removal methods that could be used for real-time rendering. 
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Figure 3. Left view mapped to the synthesized view (top), right view mapped to the synthesized view (bottom). 

5. CONCLUSION AND FUTURE WORK 

We presented a real-time stereoscopic movie player with content adaptation to the display geometry through a 

framework that unifies video streams decoding on the CPU and depth preserving view synthesis into a set of chained 

algorithmic building blocks on the GPU. Future work should be focus on real-time artifact removal methods, and on the 

computation and transmission of the disparity maps. 

The disparity maps should be computed on the fly from the left and right video streams, and can either be transmitted 

together with the left and right videos, or could be computed on the client side (for example on a set-top box). 
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Another subject of interest is to detect which shots can be left untouched (so that artifacts caused by view synthesis can 

be avoided completely), based on the amount of divergence and on the global amount of depth distortions caused by 

viewing the unmodified shot.  

 

 
Figure 4. New composed view with depth-preserving synthesis method. 

REFERENCES 

[1] Sammy Rogmans, Jiangbo Lu, Philippe Bekaert, and Gauthier Lafruit, “Real-time stereo-based view synthesis 

algorithms: A unified framework and evaluation on commodity GPUs,” Signal Processing: Image Communication, 

24(1-2):49–64 (2009). ISSN 0923-5965. doi: 10.1016/j.image.2008.10.005. Special issue on advances in three-

dimensional television and video. 

[2] Frédéric Devernay, Sylvain Duchêne, and Adrian Ramos-Peon, “Adapting stereoscopic movies to the viewing 

conditions using depth-preserving and artifact-free novel view synthesis,” Stereoscopic Displays and Applications 

XXII, volume 7863 (2011). SPIE. doi: 10.1117/12.872883. 

[3] Frédéric Devernay and Sylvain Duchêne, “New view synthesis for stereo cinema by hybrid disparity remapping,” 

Proc. International Conference on Image Processing (ICIP), pages 5–8, Hong Kong, (2010). doi: 

10.1109/ICIP.2010.5649194.  

[4] M. Sizintsev, S. Kuthirummaly, S. Samarasekeray, R. Kumary, H. S. Sawhneyy, and A. Chaudhryy, “GPU 

accellerated realtime stereo for augmented reality,” Proc. Intl. Symp. 3D Data Processing, Visualization and 

Transmission (3DPVT), 2010. 

[5] Martin Lambers, “Bino: free 3D video player” http://bino3d.org/ Accessed:  december 2011 

[6] Larry Gritz and Eugene d'Eon, “The Importance of Being Linear,” GPU Gems 3, Chapter 24, Hubert Nguyen (ed.), 

Addison-Wesley (2007), ISBN 0321515269 

[7] Manuel Lang, Alexander Hornung, Oliver Wang, Steven Poulakos, Aljoscha Smolic, and Markus Gross, “Nonlinear 

disparity mapping for stereoscopic 3D,” ACM SIGGRAPH 2010 papers, SIGGRAPH ’10, pages 75:1–75:10 

(2010). ISBN 978-1-4503-0210-4. doi: 10.1145/1833349.1778812. 

[8] Frédéric Devernay and Adrian Ramos-Peon, “Novel view synthesis for stereoscopic cinema: detecting and 

removing artifacts,” Proc.1st international workshop on 3D video processing, 3DVP ’10, pp. 25–30 (2010). ACM. 

ISBN 978-1-4503- 0159-6. doi: 10.1145/1877791.1877798. 

216


	Title
	Contents
	Introduction
	Mappings between the Sphere and Planar Surfaces
	Simulation of Time-Of-Flight Sensors
	Complementary Work and Related Topics
	Conclusion
	Bibliography
	Publications
	Interactive Creation of Perceptually Uniform Color Maps
	Distortion Optimized Spherical Cube Mapping for Discrete Global Grid Systems
	Survey of Cube Mapping Methods in Interactive Computer Graphics
	Fast Motion Estimation for Field Sequential Imaging: Survey and Benchmark
	Realistic Lens Distortion Rendering
	Robust Range Camera Pose Estimation for Mobile Online Scene Reconstruction
	Quantified, Interactive Simulation of AMCW ToF Camera including Multipath Effects
	Mappings between sphere, disc, and square
	Lowering the entry barrier for students programming Virtual Reality applications
	Comparison Of Spherical Cube Map Projections Used In Planet-Sized Terrain Rendering
	Simulation of Time-of-Flight Sensors for Evaluation of Chip Layout Variants
	Ground Truth for Evaluating Time of Flight Imaging
	Real-time 3D Reconstruction in Dynamic Scenes using Point-based Fusion
	User Interface for Volume Rendering in Virtual Reality Environments
	Ellipsoidal Cube Maps for Accurate Rendering of Planetary-Scale Terrain Data
	Structural Performance Evaluation of Curvilinear Structure Detection Algorithms with Application to Retinal Vessel Segmentation
	A stereoscopic movie player with real-time content adaptation to the display geometry


