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Zusammenfassung

Das Thema dieser Arbeit ist ein neuer Ansatz zur Bestimmung von may-alias-Beziehungen
im Rahmen von ANSI-C-Programmen. Von einem may-alias spricht man, wenn zwei ver-
schiedene Variablen (oder auch komplexere Ausdriicke) ein und dieselbe Speicherstelle ver-
wenden. Aliase entstehen durch die Verwendung von call-by-reference-Parametern oder
Zeigern. Im Rahmen von C-Programmen entstehen hier besonders schwerwiegende Pro-
bleme, da C-Programme in der Regel intensiven Gebrauch von Zeigern machen und dariber
hinaus nur sehr wenige Restriktionen fir den Einsatz von Zeigern existieren.

Im Rahmen dieser Arbeit wird ein Verfahren beschrieben, dafi die Zusammenfassung der
fiir die Alias-Analyse relevanten Effekte mit Hilfe von Graphen (function interface graphs)
realisiert. Diese Graphen stellen eine statische Reprasentation der von einem Programm be-
nutzten Speicherstellen, sowie der darin enthaltenen Werte dar. Basierend auf einer Reihe
von Standard-Verfahren (Normalisierung der Aufrufe und Riickgabewerte einer Funktion,
KontrollfluBgraphen, Static-Single-Assignment-Form) wird wahrend der intraprozeduralen
Phase zunachst fir jede Funktion ein Graph gebildet, der ihre Effekte zusammenfafit. Hier-
zu werden einzelne Graphen filir die rein sequentiellen Blocke (basic blocks) einer Funktion
berechnet, die dann nachher unter Zuhilfenahme des Kontrollflufigraphen vereinigt werden.
Nachdem die Graphen fir einzelne Funktionen erzeugt worden sind, werden anschliefend
die Teile der Graphen entfernt, die nicht zur Reprasentation der von auflen sichtbaren Effek-
ten dienen. Die eine Funktion reprasentierenden Graphen werden auf diese Weise deutlich
kleiner, was zu einer Effizienssteigerung fur die nachfolgenden Schritte fuhrt. Die reduzierten
Graphen werden dann gemaf} der existierenden Funktionsaufrufe miteinander vereinigt (in-
terprozedurale Analyse). Hierbei werden indirekte Funktionsaufrufe (iiber Zeiger auf Funk-
tionen) zunéchst ignoriert. Erst wenn im Rahmen der Analyse festgestellt wird welche Funk-
tionen ein solcher Aufruf aufrufen konnte, werden auch die zu diesem Aufruf gehorenden
Graphen vereinigt. Funktionen die an mehreren Stellen aufgerufen werden, werden hierbei
solange wie moglich unter Berticksichtigung des jeweiligen Aufruf-KKontext betrachtet.

Ein wesentlicher Vorteil dieses Algorithmus besteht darin, dafl er fur viele reale ANSI-C-
Programme verwendet werden kann, da nur sehr wenige Einschrankungen notwendig waren
(Assembler-Code, Interrupt-Handling, volatile-Attribute und 1/O-basierte Aliase). Der Al-
gorithmus behandelt die Effekte von Strukturen und Unions, beliebiger Verwendung von
Zeigern, Typ-Umwandlungen und Zeigern auf Funktionen. Da dies dazu fihrt, dafl sich
der Algorithmus nicht auf die vorhanden Typ-Informationen stiitzen kann, basieren die
erzeugten Graphen auf einem Speichermodell auf niedriger Ebene. Der Algorithmus wurde
mit Hilfe des SUIF-Compilers implementiert und erfolgreich mit einer Reihe von realen
Programmen getestet.



Abstract

This work presents a new approach to detect may-aliases within ANSI-C programs. A may-
alias occurs if two variables (or more complex expressions) use the same memory location.
Aliases may be created by call-by-reference function calls or by pointer usage. In the context
of C programs alias analysis becomes very complex because of the extensive pointer usage
and the very few restrictions concerning pointer manipulations.

Within this work it is described how the effects of a program can be summarised by
so-called function interface graphs which are a static representation of the memory loca-
tions and the values stored at these locations. Based on standard techniques (function call
and return statement normalisation, control flow graphs, static single assignment form),
the intraprocedural step creates a function interface graph for each function individually
by computing and merging the information for all its basic blocks according to the CFG
structure. Afterwards these graphs will be reduced to their externally visible effects. This
reduces the size of these graphs and will hence allow the following computations to be car-
ried out more efficiently. Within the next step the reduced graphs will be merged according
to the corresponding functions and their calls (interprocedural analysis). This is done by
ignoring indirect function calls (through function pointers) first, and processing these calls
only if a function that could be called by one of these calls is detected. In case functions
are called by more than a single function call, the calling context will be taken into account
as far as possible.

A major benefit of our algorithm is that it can be applied to real ANSI-C programs since
it makes only a few restrictions, i.e. effects of assembler code, interrupts, volatile attributes
and [/O-based aliases. It deals with structures and unions, arbitrary pointer usage, type
casts and function pointers. Under these circumstances, the algorithm cannot benefit from
type information and, hence, the function interface graphs are based on a low-level memory
representation. The algorithm was implemented using the SUIF compiler, and it has been
successfully applied to a set of non-toy C programs.

il
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Chapter 1

Introduction

The subject of this work is the analysis of C programs with the goal of finding possible aliases
of variables. Aliases appear in programs when the same memory location can be accessed
(read and modified) by different variables. Such situations occur due to call by reference
parameters or pointer variables. Since the C programming language does not support call
by reference parameters, the aliases produced by the use of pointers are in the centre of
this work. The lack of call by reference parameters does not really restrict the language. In
fact an effect similar to call by reference parameters can be achieved by passing a variables
address instead of the variable itself to a function.

Basically, there are two different kinds of aliases: may and must aliases. May aliases
occur only if certain conditions concerning the input data hold, whereas must aliases occur
in any case not depending on the programs inputs. The algorithm presented here performs
a may alias computation. It is precise in the sense that every possible may alias will be
found. Unfortunately, the opposite does not hold as well, and so there may be aliases found
by the algorithm that may not occur when the program is executed. However, it is not
possible to avoid this kind of imprecision. As was shown in [Hor97, LR91] an exact alias
computation is NP-hard, which is far from being acceptable. Therefore, some imprecision
has to be accepted if the analysis shall be performed within reasonable time.

There are several other analysis techniques that heavily depend on alias analysis, e.g.
live variables, available expressions or constant propagation. In many cases the results of
the alias analysis can be used to increase the precision of the results of the other analysis
techniques. Sometimes the results gained by the other analysis techniques may also be used
to increase the precision of the alias analysis itself. In such cases it might be useful to
iterate this process until the results are as precise as possible, or at least precise enough
for the application at hand. As shown in [CC95], even better results can be achieved if
some of these techniques are combined and not only iterated. The alias analysis presented
here could as well be further improved by combining it with some of the other analysis
techniques. However, this will not be discussed in detail here, since it is not of specific
relevance to the chosen approach.

There are several different applications for alias analysis and other derived analysis
techniques:

o Alias analysis is useful if sequential programs have to automatically be transformed
into parallel programs (e.g. [ZC91]). E.g. if one wants to detect if a loop can be
executed in parallel or not, it is necessary to find out if and how the different loop
iterations depend on each other. In this case a good alias analysis can help to detect a
lot more loops which have independent iterations than otherwise. The loop iterations
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that are found to be independent can then lead to a higher level of parallelism, and
hence increase the execution speed of the resulting parallel program.

e Programs are not always only analysed with respect to detecting parallelism, but also
to improve their speed or to reduce the space needed. In such cases it is sometimes
useful to know that certain functions do not modify some data structures, or that
there is no memory location that can be accessed by both of two given variables.
Such information can be extracted easily from the graphs that are used to represent
the alias relations. In some cases this information is sufficient to perform some simple
automatic code optimisations. In any case it can aid the programmer in optimising the
program by providing an alias database. The programmer could then make requests to
the database, which might prevent him from having to scan huge amounts of code just
to find out that it does not modify one of the data structures passed to a particular
function.

e Sometimes programs have to be optimised under certain helpful conditions. Partial
evaluation analyses a program under the assumption that some of the programs inputs
are known (e.g. [And92]). In this case constant propagation is used to find as many of
the variables which have known values as possible. Those statements which calculate
the values that are known at compile time, can then be removed and hence increase
the speed of the resulting program. Here alias analysis can be used to improve the
precision of the constant propagation, and hence the partial evaluation will produce
better results.

o Further, alias analysis may prove useful during program development to detect errors.
E.g. strange effects may occur if a function that is designed to work with non-aliased
variables, is invoked with aliased variables. If the programmer does not completely
overview the effects of his program he could invoke the alias analysis to have a look
at the aliases that may be generated by the program. If he then detects aliases that
have not been intended, this could point out an error that might be found more easily
then.

The major advantage of the algorithm presented here is that it can deal with almost
all the properties of the C programming language. This makes the algorithm applicable
for a wide variety of real C programs with only a few restrictions. Many of the other
approaches for alias analysis are based on a less problematic language like Fortran where
many problems do not even occur because of the language properties. Others analyse C
code as well, but make considerable restrictions to the C programming language. They only
use a C subset that cannot deal with many real programs, because some commonly used
language features are not supported. Our approach is able to deal with all the properties of
the C programming language given below. These properties are as well those that are most
frequently restricted by other approaches because they cause the major difficulties for the
alias analysis.



e pointer (single and multi-level)

e arrays

e structures and unions

e type casting (even between pointers and integral types)
e function calls using function pointers

e variable parameter lists

e dynamic memory allocation

e jumps into other functions (longjmp)

For reasons of efficiency our analysis is only call path sensitive, but not fully execution
path sensitive. This means that it only keeps track of the function producing a certain
may alias, but not of the exact statement. If e.g. one alias may hold in the then-part and
another one in the else-part of an if-then-else statement, it is (falsely) assumed that both
aliases may hold after the if-then-else statement at the same time. However, our approach
is able to avoid such effects if two different functions call another function. In this case
the possible aliases of one of the calling functions are not assumed to hold at the same
time as the aliases of the other calling function. Nevertheless, the intraprocedural control
flow is not left completely unconsidered. Although the intraprocedural analysis parts of
the algorithm leave some effects of the control flow unconsidered, this will at least partially
be compensated by the preceding transformation of the program into SSA form (SSA =
Static Single Assignment). As will be explained in section 3.1 in detail, the computation of
the SSA form makes parts of the control flow visible by renaming occurrences of the same
variable that do not influence each other.

Basically, there are two different representations used by most of the existing alias anal-
ysis algorithms: the first is based on sets of aliased expressions that are propagated through
a possibly interprocedural control flow graph (e.g. [Deu94]), whereas the second is based
on some kind of memory representation (e.g. [CWZ90]). Our algorithm uses the second
concept. So-called function interface graphs, which are a compressed representation of the
memory locations used by the program (or more strictly speaking a representation of the
values stored at these locations), will be used. During the intraprocedural part of the al-
gorithm such a graph is generated for every function occurring in the program. These
graphs are used as a static description of the functions effects, and can later (during the
interprocedural analysis parts) be combined to represent the effects of the whole program.

The rest of this work is organised as follows. Chapter 2 gives a detailed overview of
the restrictions of the algorithm. Besides defining which programs can and which cannot
be analysed, the most important properties of the tools used are explained and some basic
terms (attribute grammars) are defined. The central part of this work is chapter 3, where
the algorithm which computes the alias information is described. The algorithm has been
implemented and tested with real-life programs. The results of these tests are presented in
chapter 4. Finally, related and future work will be discussed in chapters 5 and 6.
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Chapter 2

Basic concepts

This chapter deals with the basic concepts that have been used to implement the alias
analysis algorithm, and that are not specific to the algorithm itself. Further, it gives a
detailed overview of which kind of programs can and which cannot be analysed correctly.

2.1 Restrictions for the analysed programs

One of the main aims of the alias analysis presented here is to deal with as many language
properties of the C programming language as possible. Unlike many other approaches, the
algorithm correctly handles single- and multi-level pointers, type casting as well as struc-
tures and unions. Even function calls using function pointers and functions with variable
parameter lists can be handled by the algorithm, which makes the analysis applicable for
almost every C program. Besides this, the algorithm can handle jump and label statements
correctly without restrictions, even if this results in non-reducible control flow graphs. The
algorithm does not avoid the problems caused by label and jump statements by transforming
the program into an equivalent program without such statements as shown in [EH93]. Such
a transformation would lead to some considerable changes in the program structure and
may result in comparably unreadable code. Further, it is shown how the correct handling
of the longjmp function can be integrated into the algorithm.

Although almost everything that might occur in an ANSI conform C program ([Ame89al)
can be handled correctly, it is not possible to properly handle the effects of every possible
statement in general. Programs containing one of the following items cannot be analysed
correctly.

e functions containing assembler code
e interrupt handling functions (signals)
e variables declared using the volatile attribute

Only functions based on one of the above described constructs cannot be analysed prop-
erly. This is because such functions heavily depend on the target machine architecture used.
Therefore they cannot be handled by an algorithm which is intended to be portable, and
hence has to be independent from the architecture currently used. Furthermore, the effects
of such functions are not or only partially defined by the ANSI standard (for the same
reasons). They should usually be avoided whenever possible to keep programs portable.
Nevertheless, the use of these functions is not forbidden, since it is often useful to analyse
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int a,b,c;

c = 0;
for (a=0; a<b; a=a+1) c=c+1;

Figure 2.1: "Hidden’ assignments

programs which contain such functions as well. In this case the user has to know that the
computed alias sets may be incomplete since the effects of the previously mentioned state-
ments are ignored. However, this leads to valuable results in most cases, because the effects
of low-level routines like assembler statements or interrupt calls do not affect many data
structures in general.

Besides the above-mentioned language constructs, there are two further problems that
are not taken into account by our algorithm.

e aliases based on data read from files or user inputs
e ’hidden’ assignments

Although we do not know of any other algorithm that is able to solve such problems, they
will nevertheless be discussed in short within the following two sections.

2.1.1 Input data read from files or entered by the user

Data entered by the user or read from files is beyond the control of our analysis algorithm.
Usually user or file input is not involved in the process of building aliases. However, it is
nevertheless possible to hide aliases from the analysis by writing data to a file and later
reading the same data from the file. Such effects are almost impossible to control. If one
would like to take such effects into consideration as well, one would have to assume aliases
between all values that have been loaded from or saved to a file (including user inputs from
stdin). This would surely worsen the precision of the analysis extremely, and so it has to
be left to the programmer to think about possible aliases caused by user and / or file input
and output.

2.1.2 ’'Hidden’ assignments

An example of a ’hidden’ assignment is shown in figure 2.1. Here a and ¢ are both ’assigned’
the value of b, even though no explicit assignment statement was used. Since it is possible
to produce similar effects with arbitrary complicated code it would be necessary to treat
every comparison of two values like an assignment, which surely would worsen the analysis
results significantly without gaining much.

Both of the above described problems will be ignored by our algorithm since there seems to
be no appropriate way to deal with such effects without being overly conservative. Anyway,
it is very unlikely that undetectable aliases depending on such effects will occur in programs
that have not explicitly been designed to produce such aliases. It is surely not possible to
design an efficient and useful alias analysis algorithm that will not fail to find aliases if the
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programmer intends to trick the algorithm. Hence, it seems to be acceptable to disregard
the above two problems.

2.2 SUIF

The alias analysis algorithm that will be described in detail in the following chapters was
implemented and tested using the SUIF compiler ([Com94]). The SUIF compiler transforms
a C program into its own intermediate format (Standford University Intermediate Format)
which is quite similar to three operand instructions as mentioned in [ASU88]. This code
can then be used to do a wide variety of things like optimising or analysing the code for
different purposes. The major advantage of using the SUIF compiler is that a lot of work like
programming the lexical and syntactical analysis passes can be avoided, and it is possible
to concentrate on matters of interest right from the start. The different passes of the
SUIF compiler are clearly separated, and they communicate only through the files which
contain the intermediate code. If necessary, additional information can be annotated to the
SUIF code, and so it is fairly easy to add new passes to the compiler wherever necessary.
There are two front ends (C and Fortran) as well as back ends available for different target
architectures. However, only the front end and another early pass of the SUIF compiler are
used here, since it is not intended to generate code for a certain target machine but to find
the possible aliases of a program. Once the aliases are known, this information could be
used in the following steps to optimise the code or as the basis of further analysis steps.
Of course the SUIF compiler cannot compete with other professional compilers in speed
aspects, but this was never intended anyway. Its major advantage is its flexibility and the
clear interfaces for interaction between the different passes, which makes SUIF a valuable
tool for developing new analysis or optimisation strategies.

Another advantage of using the SUIF compiler is that the alias analysis can be performed
after the original C program has been transformed into intermediate code, and therefore it
is not necessary that every kind of C statement is handled by the alias analysis explicitly.
Since the alias analysis processes the intermediate code instead of the original C code, a
lot of work can be saved because the SUIF code does not contain as many statement types
as C code does. Many C code statements can be substituted by others without changing
the semantic, and so the SUIF compiler is able to generate the same intermediate code in
some of these cases. As an example a&>b is equivalent to (*a).b and produces the same
intermediate code. Besides these quite usual and frequently used shortcuts, there are some
more quite curious effects. One such effect is that if £ is a pointer to a function, then the
function calls £(...), (*£)(...), (#*f)(...) and so on are all equivalent and hence correct.
Since all these calls produce the same intermediate code this effect has not to be taken into
account by our algorithm. For reasons of simplicity it is assumed that only the second (and
probably most vivid) version will be used from now on.

As can be seen from the previously given example, there are certain redundancies in the
C code leading to the fact that there are expressions that can be replaced by other expres-
sions. The expression given in the previous example was a simple expression which does not
influence the programs control flow. However, there are similar effects for statements which
influence the control flow as well. As an example the statement

a=(b 7?7 c : 4d)
and the equivalent statement sequence

if (b) a=c; else a=4d;
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while (cond) { if (cond) {

do {
}

} while (! cond);

}
Figure 2.2: WHILE-LOOP and its corresponding transformation

would both be represented by the same intermediate code. Another useful property of the
code produced by SUIF is that it does not contain side-effects within conditions. This is
reflected by the fact that
if (a=b)
produces exactly the same intermediate code as if
a=b;

if_(a)

had been used instead. Therefore, the later analysis can sometimes omit conditions because
they are known to have no side-effects and neither produce new nor destroy existing aliases.

The equivalent statements mentioned up to here always result from syntactical shortcuts
provided by the C programming language to make its use more comfortable. Besides these,
there is a further transformation that is performed by the SUIF compiler: the while loop
transformation. This is one of the few ’'real’ transformations to be effected, since there is
no equivalent to the while loop contained in the SUIF code. while loops are not really
necessary since they can (and will) be replaced by a do loop nested in an if statement as
shown in figure 2.2.

Obviously, it would not be a problem to transform for loops into do loops as well, but
this would result in a loss of information that might be useful later. The SUIF compiler
transforms for loops into do loops if they do not meet certain conditions anyway, which
results in the fact that those loops that are not transformed are 'real’” for loops like those
used in languages like Fortran ([Ame7§]). This means that the loop’s body does not change
the value of the loop index, and that the number of iterations of the loop depends only on
the values of the lower and upper bounds and the step size. These loops might be helpful
for parallelisation or other purposes later, and it would be awkward to throw away this
additional information.

Although the most important aspects of the SUIF code have now been discussed, the
SUIF specific properties should not be relied on wherever possible. In most cases the
algorithm is described as if the original C code had been processed. In cases where certain
C statements are not handled explicitly, because there are equivalent statements that are
already handled by the algorithm, this will be re-stated there.

2.3 Normalisation

The alias analysis is done within four passes: normalisation, SSA form computation, in-
traprocedural analysis and interprocedural analysis. Although all these passes could be
united to a single pass, this is not done for two reasons: first, it is possible to compare the
time needed for the extremely cheap first pass with the time needed for the more expensive
subsequent passes, and second, because this fits quite well into the concept of the SUIF
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compiler. By splitting up the passes it is much easier to find out how much time is needed
by the alias analysis itself and how much time is consumed by the library functions of the
SUIF compiler.

The first pass (normalisation pass) is just a simple traversal of the code, where the
following steps will be performed:

e function call normalisation
e return value normalisation

e dead code elimination

These three different normalisation types as well as their purpose will now be explained
in the following sections.

2.3.1 Function call normalisation

The function call normalisation replaces non-variable expressions by temporary variables
and a preceding assignment of the non-variable expression to that temporary variable. This
is effected for all function typed expressions and function parameters. Furthermore, function
calls within non-trivial assignments are replaced by temporary variables and a corresponding
assignment.

Given a certain function call there may be all of the above-described expression types
that may have to be replaced: the function typed expression, the expressions passed as
parameters and the function call itself. As already mentioned before, the first two kinds of
expressions will only be replaced by temporary variables if they are non-variable expressions.
Accordingly, the function calls are only replaced if they occur as a real subexpression.

For parameter expressions this means that they have to be either compound expressions
like <a or a4+ b or constants. Since the C programming language does not allow function
variables, non-variable function typed expressions can only be replaced by function pointers
and so they need particular handling here. According to section 2.2, function calls using
function pointers are assumed to be written as (*£)(...) and not as £(...) where f is a pointer
to a function. Therefore, the outermost pointer dereference operation may be ignored in such
cases, and so the expression is no longer a non-variable expression. However, expressions like
(#(f 4+ 1))(...) still need to be replaced by temporary variables, since, even if the outermost
pointer dereference operation is ignored which leads to the expression £ 4 1, such expressions
are still non-variable expressions.

To make things clearer the code shown in figure 2.3 shows a function call before and after
it has been normalised. Here fpa is an array of pointers to functions. This array is used in
the function call contained in the last line of the source code. As can be seen, the function
call contains two compound expressions ( (*(fpaln])) and y1 + y2 ). After the code has been
transformed, three additional variables have been added to hold the values of the compound
expressions as well as the functions result value. The first one (tmp1) is used to hold the
function pointer, the second one (tmp2) is used to hold the value of the non-variable first
parameter expression (y1 + y2) and the third one (tmp3) holds the functions return value.
So, finally, all instructions which contain the function calls of the transformed code do not
contain any compound expression besides the function call and the assignment itself.
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int (*(fpa[5]))(int pil,int p2); int (*(fpa[5]))(int pil,int p2);
int nm x,y1,y2,z; int n,m, x,y1,y2, 2, tmp2, tmp3;
int (¥tmpl)(int pi,int p2);

tmpl = fpaln];

tmp2 = y1 +y2;

tmp3 = («tmp1l)(tmp2, z);
x = (x(fpa[n]))(y1+y2,2) + m; X = tmp3 +m;

Source code Transformed code

Figure 2.3: Sample code before and after the function call normalisation

int diff(int x,int y) int diff(int x,int y)
{ {
int tmp ret;
if (x> ) { if (x> y) {
tmp.ret = (x — y);
return (x —y); goto end;
} else { } else {
tmp.ret = (y — x);
return (y — x); goto end;
¥ ¥
end :

return tmp.ret;

¥ ¥

Source code Transformed code

Figure 2.4: Sample code before and after the return value normalisation

2.3.2 Return value normalisation

Like the function call normalisation, the return value normalisation replaces compound
expressions by temporary variables and corresponding assignments. This is done for all
arguments of return statements. Besides the replacement of the compound expressions,
the implicit control flow of the return statements is made visible by replacing the return
statements by goto statements. Every function is transformed in a way so that there always
is only one single return statement at the end of the function. This can be done by replacing
all return statements within the code by goto statements that jump to a newly introduced
label preceeding the final return statement. The example shown in figure 2.4 contains a
function and the corresponding normalised function.

The return value normalisation together with the function call normalisation proves
useful during the later analysis passes, since every value passed between a calling and a
called function, as well as the function itself, can be associated with a variable after the
normalisation has been performed. Additionally, the return value normalisation makes
return statements irrelevant to the control flow since they always only occur as the final
statement of a function. Hence, it is sufficient to handle the control flow relevant effects of
the goto statements which have to be handled anyway.
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2.3.3 Dead code elimination

Now that the replacement of more or less complex expressions by temporary variables has
been sufficiently dealt with, there is only one further thing that is done during the normal-
isation pass and which has been left unexplained so far: the dead code elimination. The
dead code elimination, that is part of the normalisation pass, removes only structural dead
code. A definition of structural dead code is given in the following.

Definition 1 (structural dead code)
Structural dead code is code that cannot be reached during any program execu-
tion, even if it is assumed that all the conditions of the program have arbitrary
values, which do not depend on the current values of the used variables.

E.g. an assignment following a break or goto statement will never be executed as long
as it 1s not preceded by a label. Such statements can safely be removed from the program
without changing the programs semantic. Later the SSA computation will benefit from the
fact that the structural dead code has been eliminated in advance.

2.3.4 Time and space bounds

Since the normalisation is a fairly simple process which just goes through the code once,
the time as well as the space needed for the complete normalisation pass grows linearly to
the size of the code that is analysed!. This is also reflected by the empirical results that are
described in chapter 4.2.

2.4 Attribute grammars

Attribute grammars were first mentioned by Knuth in [Knu68|. Later they were used and
extended by several other authors (e.g. [ASUS8, Gou88, Kai89, KW92, RTD83]). The
definition of attribute grammars given below is similar to the extended version used in
[KW92]. Attribute grammars will later (in section 3.2) be used to define the intraprocedural
part of the alias analysis algorithm.

Definition 2 (context-free grammar)
A context-free grammar is quadruple G = (T, N, S, P), where

is the set of terminal symbols,

is the set of non-terminal symbols,
is the start symbol (S € N),
is a set of productions and

Vipe P) : p=(a, — 3,) where a, € N and 3, € (T'U N)*.

e N

Definition 3 (reduced grammar)
A grammar is said to be reduced, if every production occurs in at least one
derivation of a terminal word from the start symbol.

V(o — B)e P) EI(wET*7U1,U2€(TUN)*) © S S viav, = v oy > w

!This is the minimum for every pass processing every statement of the program.
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Definition 4 (attribute)
An attribute is a tuple (id,v) where id is the name of the attribute and v is the
attributes value domain.

Definition 5 (attribute grammar)
An attribute grammar is a quadruple AG = (G, A, AC, PC'), where

G = (T,N,S,P) is areduced context-free grammar,

A = U A(a) is a finite set of attributes?,
a€TUN

AC = U AC(p) is a finite set of attribute computations and
pEP

PC = U PC(p) is a finite set of plain computations.
pEP

In the definition given above A(«a) denotes the set of attributes which are associated
with each symbol a. Since a symbol can appear more than once within a single production
it is necessary to differ between the attributes of a symbol and the corresponding attribute
occurrences.

Definition 6 (attribute occurrence)
Given a production p € P, with p = ap — a1...a, and a; € (T'U N) for all
(0 <i < n), then ¢j.a is an attribute occurrence if a € A(«;).

There are three different kinds of attributes: inherited, synthesised and intrinsic at-
tributes.  Accordingly the set of attributes (A) can be split up into the three sets
Ainky Asyn and Ay containing the inherited, synthesised and intrinsic attributes (A =

Ainh U Asyn U Amt)

Definition 7 (inherited, synthesised and intrinsic attributes)
Given a production & — v ... ¥mfB¥m41---Yn (n,m € Np), with o, 3 € N and
YiyooyYn € (T'U N), an attribute « of [ is said to be inherited (x € A;.1(3)),
if it 1s computed by a function depending on the attributes of « and 4, to ~, as
well as on the intrinsic and inherited attributes of 3 itself.

fB.x = f(pr.aq,...,ps.as) with s € Ny and
VI <i<s) : ((pi€{am, ) Al € Alp))) v
((pi = B) A (ai € (Ain(B) U Ainn(5))))

Given a production &« — (;...05, (n € Ny), with @ € N and f1,...,0, €
(T'U N), an attribute = of « is said to be synthesised (v € Ajy,(a)), if it is
computed by a function depending on the attributes of 3, to 3, as well as on
the attributes of « itself.

a.x = f(pr.ay,...,ps.as) with s € Ny and
V(1 <i<s) ¢ (pi€{a, B, Bu}) Ala; € A(pi))

Tt is assumed that the attribute names are unique. This allows to identify the symbol to which the
attribute belongs by the attribute’s name. In fact this is no real restriction since an attribute grammar
which does not meet this condition can be transformed into one which meets the condition by combining
the attribute names with the symbols.
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An attribute x of « is said to be intrinsic (# € A;(a)), if it does not depend on
any other attribute. It’s value is computed by earlier passes of the analysis and
therefore available before the attribute grammar computations are carried out.

In general there are no restrictions concerning the dependencies of the different grammar
attributes. However, this can cause the computation of the attributes to become rather
expensive or even impossible if there are circular dependencies. L-attributed grammars
([ASUSS, Gou88]) are attributed grammars which restrict these dependencies in a way that
ensures that the computation of the attributes can be done in a single depth-first-left-to-right
walk through the syntax tree.

Definition 8 (L-attributed grammars)
L-attributed grammars are attributed grammars with the following restrictions:

e The inherited attributes of a symbol may only depend on inherited at-
tributes of its parent, on synthesised attributes of its left siblings in the
syntax tree or on intrinsic attributes.

o There are no cyclic dependencies between the attributes for a single symbol.

Note that attribute grammars do not specify the order in which the computations of
the attributes have to be performed. Although there are dependencies between the different
attributes which influence the order in which the attributes have to be computed, these
dependencies do not in general lead to a total order. Therefore the order has to be specified
explicitly later.

Now, after what kind of alias information will be computed has been explained, we are
ready for the details of the alias computation itself. The basic concepts that will be used in
the next chapter to illustrate the algorithm have been given, and which properties of the C
programming language can and which cannot be dealt with have been described.
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Chapter 3

Alias computation

The alias computation consists of three major parts that have already been mentioned in
the previous chapter: the SSA computation as a basic code transformation to increase the
precision of the analysis results (section 3.1), the intraprocedural analysis summarising the
effects of a single function (section 3.2) and finally the interprocedural analysis combining
the results of the different functions (section 3.3).

code intraprocedural COdj_SSA interprocedural a
— S54 T . — — . — Guau
analysis analysis

y Gfl g e ey Gf y

n

SSA

N .
code computation

As can be seen from the above given graph, the SSA computation is a certain form of
code transformation. The initial program code (code) is normalised and transformed into
another piece of code (codegss) which has some helpful properties. The intraprocedural
analysis then takes this transformed code to produce graphs representing the effects of each
function (Gy,,...,Gy,). Finally, the interprocedural analysis takes the transformed code
as well as the previously computed graphs and builds a new combined graph (Gy;). This
graph then contains all the information necessary to find out if two variables may be aliased
or not.

Although the algorithm that is described in the following sections is able to handle almost
all the problems arising from the use of the C programming language, there are some aspects
that are not taken into account during the discussion of the above described three passes.
This is done to be able to concentrate on the essentials and to avoid the many exceptions
that are necessary to handle some of the less interesting features of the C programming
language. These topics will then be dealt with in section 3.4 where it is shown how they
can be integrated into the algorithm as well.

3.1 SSA form

A function is said to be in SSA form if every location where a variable is used can be
reached by exactly one location where that variable is defined. If the function does not
contain any point where two different definitions of a variable reach a point where that
variable is used, there is no transformation necessary, since the program is then already in
SSA form. However, any non-trivial function contains statements like if, while or goto
which lead to different definitions reaching a point where the variable is used in almost
every case. If such a function has to be transformed into SSA form, this can be done by
renaming the variables using subscripts and adding so-called ¢-functions at places where

15
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a=2>5; a; = b;
b =5; by = 5;
c=25; cy = b
p = &c; p1 = &cy;
if (.. A if (... A
a = 6; a,; = 6;
b=T7; by =7;
} else { } else {
b =6; bz = 6;
*p = 8; *P1 = 8;
} }
d=a+b+c; az = ¢(a,az)
by = ¢(b2, bs)

d; = az + bsg + cy;

Figure 3.1: SSA form for an if-then-else statement

two different reaching definitions meet. Figure 3.1 presents a simple example that shows
where the ¢-functions will be placed in case of an if-then-else statement. As can be seen
in the example, it is not necessary to generate ¢-functions for all the variables occurring in
the code. E.g. there is neither a ¢-function for ¢ nor one for p, since there is no new value
assigned to these variables inside the if-then-else statement. Accordingly there is only one
definition which reaches the end of this statement, and so a ¢-function would be superfluous.

Another important property of the SSA form can be seen if one looks at the variable p.
The assignment statement *p = 8 does not get a new subscript since only the value pointed
to by p is changed instead of p itself. This leads to the fact that the more assignments are
made through pointers the less benefits can be gained by transforming the program into
SSA form. In the worst case, where all but the initialising assignments of a program are
made through pointers, no helpful information can be gained by transforming the program
into SSA form, since it then already has the properties desired by the SSA form. In this case
there is always only one (initialising) assignment for every variable. Although it is possible
to modify any given program in a way that the SSA form computation will be useless!, it
is not very likely that such programs will ever occur in real life.

The computation of SSA form is the basis of the presented alias analysis algorithm. It
was first mentioned in [RWZ388, AWZS88], and was later used as the basis for several program
optimisation problems. There are various different approaches to compute SSA form more
efficiently and to get better average or worst case time or space bounds ([CFR*89, CFR*91,
CF95]). The algorithm presented here was chosen with respect to ease of implementation,
but it could be replaced by any other (faster) algorithm if necessary. There are already
several good algorithms to compute SSA form and it is not the subject of this work to try
to improve them. Anyway, the computation of the SSA form itself is only of minor interest
for this work, and so there were only little changes made to the above-mentioned algorithms
to deal with the particular situation found in our setting.

Note, that the SSA form used here is built as an initial step of the alias analysis and,
hence, does not take pointer induced aliases into account. Although that may result in
programs where more than one (indirect) definition reaches a use, we refer to the result

'E.g. this could be done by replacing every declaration of a variable v having type ¢ by the declarations
of v/ which has type ¢ and v which has type t*. Additionally, v has to be initialised to hold the address of
v' (v = &v'), and every further occurrence of v in the program code has to be replaced by *wv.
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of this step as being in SSA form. A detailed discussion of this problem can be found in
[HH9S].

Before going into the details of the SSA form computation, the SSA variables itself will
be defined.

Definition 9 (SSA variables)
Given the set of variables used in the original program ( VAR) then the set

VARSSA = (VAR X NO)

is the set of SSA variables. A SSA variable is a pair containing a variable of
the original program and a number, the SSA value. These components can be
accessed by the two functions base_var and ssa_val which are defined as follows.

base_var : VARgsqy <= VAR , ssa_val : VARgsqy o= N

base_var((v,n)) = v
ssa_val((v,m)) = n

As already done in the preceding example, a notation differing from the one used in
the definition of the SSA variables will be used. In most cases (v,n) will be written as v,.
Furthermore SSA variables will frequently be referred to as variables. They will only be
called SSA variables if it is not exactly clear what is meant due to the context.

3.1.1 CFG graphs

To compute the SSA form for a given function the algorithm first builds a control flow graph
(CFG).

Definition 10 (CFG graph)

A control flow graph GG = (V, F') is a directed graph whose finite number of nodes
represent parts of the code that are executed in sequential order. A directed
edge (ng,ng) € FE in this graph represents the flow of control and indicates
that under certain circumstances? the destination node (ng) will be executed
after the execution of the source node (n,). Besides that, there are two special
nodes: START and END. START does not have any predecessors and KND has
no successors. An edge exists from the START node to every node where the
execution of the program can begin, and there is another edge from every node
where the execution may stop to the KND node.

As can be derived from the above given definition, the following simple fact holds.

Fact 11
There is no non-trivial control flow contained in the code which belongs to a
certain CFG node, and hence the code is a so-called basic block.

The term ’basic block” will be properly defined soon. Figure 3.2 contains a simple
example program, and figure 3.3 shows its corresponding CFG graph. The numbers in
parentheses at each line of the code refer to the number of the corresponding node in the

CFG graph.
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a=0; (1)
b = 0; (1)
do { )
if (... { (3)
a=a+1; (4)
} else {
b=b+1; (5)
¥

c=c+1; (7)
} while (...); (7)

Figure 3.2: Simple program with non-trivial control flow

START 0
!
SEQ 1
!
DO 2
!
IF 3
S
SEQ / SEQ | 4 5
END_IF E
SEQ 7
!
END_DO 8
!
END 9

Figure 3.3: Control flow graph of a simple program
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Given a control flow graph G = (V, F), where V' is the set of CFG nodes and F is the set
of edges, the function succ returns the set of all immediate successors of a given CFG node.
The set of all immediate predecessors of a CFG node is returned by the pred-function.

Definition 12 (successors and predecessors)

suce : Ve P(V) | pred : V o= P(V)

succ(v) = {v eV | (v,v') € L}
pred(v) = {v' eV | (v,v) € FE}

Here P(V) denotes the set containing all subsets of V. The function path returns the set
of all paths from the first node to the second (a path is represented by the sequence of the
visited nodes, i.e. words over V*). Note that this set will contain infinitely many paths if
there are cycles on the way from the first node to the second node.

Definition 13 (paths)

path : V xV &= P(V*)
path(nse,nast) = {n1...nyg € VE (1 =nse) AN (g =ngst) A
V(1 <i<(kel)) : ngr € suee(ng))}

It is sometimes interesting to know how long a certain path is. Therefore there exists a
function length which takes a path as its input and returns the length.

Definition 14 (length of a path)

length : V* &5 N,
length((ny...nk)) =k <1

3.1.1.1 CFG node types

Besides the two special nodes START and END that are not related to the program code,
there are other nodes which represent one or more statements of a program. There are eight
different types of CFG nodes which refer to the statement(s) they represent. The different
node types are explained in the following box.

SEQ : Sequential nodes (without any non-trivial control flow inside)
g :  Start node for [F-THEN-ELSE statements

END_IF :  End node for [F-THEN-ELSE statements

FOR : Start node for FOR-LOOP statements

END_FOR : End node for FOR-LOOP statements

DO :  Start node for DO-LOOP statements

END_DO . End node for DO-LOOP statements

CALL : Node representing function calls (CALL statements)

?This means that in case of a branch node the corresponding condition evaluates to a certain value. This
does not ensure that this will really happen during program execution, which leads to the fact that there
might be branches that will never be executed.
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Note that the type of a CFG node does not play any role for the SSA computation itself.
However, it is nevertheless useful to introduce the different node types, since it becomes
much easier to understand and explain the computation of the SSA form then. The node
types make it much easier to find out which part of the program code belongs to a certain
CFG node if a program and its corresponding CFG graph are given.

As already mentioned before, there are sequences of statements related to a certain CFG
node. These sequences are always so-called basic blocks.

Definition 15 (basic blocks)
A basic block is a sequence of statements that are always executed in the order
of their textual appearance in the program.

Note that there are no CFG nodes for LABFEL and JUMP statements, since these state-
ments are implicitly handled by generating edges from the nodes containing the JUMP
statements to those containing the corresponding LABFEL statements. LABFEL statements
are always at the beginning of a nodes basic block, whereas JUMP statements (conditional
or unconditional) are always the last statement belonging to a nodes basic block. This
means that a basic block contains at most one JUMP statement (at the end) and that
if there is more than one LABFEL statement contained in a basic block, they are placed in
front of all other statements®. There are no LABEL or JUMP statements between the other
statements of a basic block. This ensures that control flow always enters a basic block at
the first (non-label) statement and leaves it after the execution of the last statement.

The CFG graph that is being built is based on the high-level intermediate code that is
generated by the SUIF compiler. As explained in chapter 2, one of the advantages of using
this intermediate code is that it is not necessary to handle each kind of C statement sepa-
rately. To make it easier to distinguish between the C statements and the SUIF statements,
they are printed in different styles. E.g. if is a C statement, whereas [F-THEN-ELSE is a
SUIF statement.

The following list gives an overview of the SUIF intermediate code statements that are
relevant to the control flow. All other statements are sequential and not of any interest for

building the CFG graph.

IF-THEN-ELSE

FOR-LOOP

DO-LOOP

CALL (function calls)

LABFEL, JUMP (conditional or other)

Note that there exists no WHILE-LOOP since they can (and will) be replaced by a
DO-LOOP inside an [F-THEN-ELSE by the SUIF compiler as explained in chapter 2.

3.1.1.2 Sequential statements (SE(Q)

Sequential statements do not influence the flow of control, and there can be several of them
which belong to a single sequential node (basic block). In most cases sequential nodes have

31t does not seem to make much sense to have two LABELs marking exactly the same location, but this
situation can arise due to preprocessor commands like #£ifdef hiding parts of the code.
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AV AV

SEQ SEQ

l /\

Figure 3.4: Control flow graphs for sequences of sequential statements

AV AV \/

Ir Ir Ir
B B B
0 0] 0
D D D
Y Y Y
END_IF END_IF END_IF

l l l

(a) (b) (c)

Figure 3.5: Control flow graphs for IF statements

only one incoming and one outgoing edge in the flow graph. Only if the code belonging to
the sequential node starts with a LABFL, may there be several incoming edges. However,
there will never be more than two outgoing edges for a sequential node (figure 3.4). Two
outgoing edges occur if the last statement belonging to a sequential node is a conditional
JUMP statement. In this case the program continues either at the next statement which
occurs in the function (condition was false) or after the corresponding LABFEL statement
(condition was true). Note that the C programming language has no direct equivalent to
the conditional JUMP statements of the SUIF code. A conditional JUMP statement is used
by SUIF when an if combined with a goto statement occurs in the C code.

3.1.1.3 [I-THEN-FELSE statements

The CFG graph for an [F-THEN-ELSFE statement with a non-existing (or empty) else-part
is shown in figure 3.5 (a). If the then-part as well as the else-part of the IF-THEN-ELSE
statement is empty, there will be no nodes besides the [F' and the END_IF nodes and
only one edge connecting the [F node with the END_IF node as shown in figure 3.5 (c).
Obviously it does not make much sense to use [F-THEN-ELSE statements with empty
bodies, since their only effect is to evaluate the condition, which could be easier done by
using the condition as a statement instead. Nevertheless they have to be handled correctly
because the ANSI standard allows them, and they do not only occur in senseless programs.
E.g. they could be caused by preprocessor directives that ignore the code contained in
the body under certain circumstances. Figure 3.5 (b) shows a standard [F-THEN-ELSE
statement with non-empty then- and else-parts. If the then-part is empty and the else-part
is not, the graph that is generated is the same as in the opposite case (figure 3.5 (a)).
Note that there are no control flow edges which connect a node outside of an IF-THEN-
ELSE statement with a node in its body. This results from the fact that the SUIF compiler
does not generate [F-THEN-ELSE statements for if statements containing goto or label
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statements that would lead to such a kind of graph. In these cases (jumps into or out of the
body of an if statement) the SUIF compiler transforms the if statement into a semantically
equivalent sequence of statements using JUMP and LABFEL statements.

Nevertheless there can be JUMP and LABFEL statements in the body if the source
and the target of these jumps are both inside the body. This leads to a special case that
may cause the generation of graphs that are different from the ones discussed above. These
graphs occur if the last statement of the body is an unconditional JUMP. In this case it is not
possible to reach the END_IF node and there will be no edge which connects the body with
the KND_IF node then. If both the then- and the else-part of an [F-THEN-ELSE statement
are terminated by an unconditional JUMP, the END_IF node would be unreachable and
will therefore not be generated. In general such IF-THEN-ELSFE statements are senseless,
since the program will never terminate after entering such a statement.

3.1.1.4 [FFOR-LOOP statements

The CFG graphs for FOR-LOOP statements are shown in figure 3.6. The first graph
(figure 3.6 (a)) represents an usual FOR-LOOP without break or continue statements.
Figure 3.6 (b) shows the graph that will be generated if the FOR-LOOP contains break
and continue statements. The graph for a FOR-LOOP always starts with a sequential
node preceding the FOR node. This additional node is necessary because for loops start by
assigning a new value to the loop index, before they start to check the condition, execute
the loop’s body and increment the loop index repeatedly. This means that the code for the
initial assignment cannot be attached to the FOR node, since this node is part of the circle
that represents the loop’s iterations. The graph shown in figure 3.6 (b) represents a loop
with two continue and two break statements. Usually these statements occur only inside
of if or case statements because they would either be superfluous* or otherwise produce
dead code®. For the graph this means that the nodes containing the break statements
are connected with the END_FOR node (arrows to the left), and the nodes containing the
continue statements are connected to the FOR node (arrows to the right). Like the CFG
graphs for IF-THEN-ELSFE statements the graph for a FOR-LOOP statement will change if
the last statement in the body is an unconditional JUMP (break or goto). In this case the
edge connecting the last node of the body with the FFOR node will not be generated. Note
that continue statements do not have any effect if they occur as the last statement in the
body. Since continue and break statements are only a special kind of goto statements,
and will therefore be transformed into JUMP statements, they are always the last statement
belonging to a CFG node.

FOR-LOOP statements with empty bodies do not occur since the SUIF compiler replaces
them by a simple assignment statement that sets the index variable to its final value. In
some cases for-loops with empty bodies occur in ("ingenious”) C programs. E.g. if there
are side-effects due to function calls in the loops condition that already do all the necessary
computations of the loop. In such cases there is no need for further statements in the loops
body. Nevertheless the above-mentioned transformation can be safely done, since the SUIF
compiler only generates FOR-LOOPs if the loop’s upper and lower bounds as well as the
step size are known at compile time. Those for-loops containing the described side-effects
will be transformed into DO-LOOP statements, and so it is not necessary to take them into
consideration here.

4f they occur at the end of the loop
%if they occur elsewhere and they are not followed by a LABEL that has a corresponding JUMP statement
somewhere
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SEQ SEQ

F'OR 1 F'OR 1

END_FOR — END_FOR —

(a) (b)

Figure 3.6: Control flow graphs for FOR-LOOPs

The code belonging to the FOR node is assumed to increment the loop index first and to
check the condition afterwards®, even though this is not exactly the same as what happens
during the execution of a for-loop. If one wants to represent a for-loop correctly, it would
be necessary to add another node for the increment statement. However, this is not done
to keep the graph smaller. One could change the initial assignment to the loop index (by
subtracting the step size) to make sure that the semantic is not changed, but even this is not
necessary, because the absolute values of the loop bounds and the step size do not influence
the computation of the SSA values anyway.

For the same reasons that have already been mentioned in relation to the bodies of
IF-THEN-ELSE statements, there are no connections from nodes inside the body of the
FOR-LOOP to nodes outside the FOR-LOOP.

3.1.1.5 DO-LOOP statements

DO-LOOP statements differ from FOR-LOOP statements in two aspects: they always
contain one sequential node for the termination condition and the body of the loop is
executed at least once. Figure 3.7 (a) shows the CFG graph for a loop without break or
continue statements. Note that if the body of the loop contains no non-trivial control flow,
the sequential node contains the code of the body as well as the code for the termination
condition. In this case there are no further nodes necessary and the sequential node is
an immediate successor of the DO node. In case the loop contains break and continue
statements the graph appears as shown in figure 3.7 (b). In this example there is one break
and one continue statement. The node containing the break statement is connected to
the END_DO node, whereas the node containing the continue statement is connected to
the sequential node containing the code checking the termination condition. The body of
a DO-LOOP never contains jumps to targets outside the loop, and vice versa there are
no jumps from outside the loop into the body of the loop. This is not really necessary
for the computation of the SSA values, but the typical properties of a loop will be lost if

5This has to be checked as the second step in order to satisfy the basic block condition.
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Figure 3.7: Control flow graphs for DO-LOOPs

CALL

Figure 3.8: Control flow graph for function calls

there are arbitrary jumps into and out of the loop. If there are jumps into or out of a for-,
do- or while- loop the SUIF compiler translates the degenerated loop into a semantically
equivalent sequence of statements using JUMP and LABFEL statements.

3.1.1.6 Function calls (CALL)

For every function call contained in the code there will be a corresponding CALL node in
the CFG graph as well. Figure 3.8 shows such a node. It is essential to have these nodes
since a function call can change the value of any global variable” as well as the values of local
variables whose addresses have been taken before. These effects will be taken into account
during the interprocedural part of the alias analysis. There will be no ¢-functions generated
for function calls, since the computation of the SSA values is purely intraprocedural, and it
is not known which variables may be affected by the execution of the called function when
the computation of the SSA values is in progress.

3.1.1.7 LABFL and JUMP statements

There are no nodes in the CFG graph to represent LABFEL and JUMP statements. They are
represented implicitly by sequential or other nodes and their incoming and outgoing edges®.
Since there is no non-trivial control flow allowed inside sequential nodes it is necessary to

"Here global variable means any variable that is alive during the whole execution of the program. This
includes all variables that are declared using the static attribute, even if they are declared inside a function.
They are stored in the same way as all the other global variables anyway, and the only difference is that
their names are not known in the whole program.

8 LABEL statements can as well be the first statements belonging to nodes like IF or CALL, whereas
JUMP statements always belong to a sequential node.
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labi:

if (...) goto lab3;
lab2:

a+ +;

goto labl;
lab3:

b+ +;

if (...) goto lab2;

(0)
(0)
(1)
(1)
(1)
(2)
(2)
(2)

Figure 3.9: Program containing unstructured control flow

V

SEQ 0

1
SEQ 1
SEQ 2

Figure 3.10: Control flow graph for program containing unstructured control flow

generate a new node whenever a LABFL occurs in the code. The same happens after con-
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ditional or unconditional JUMP statements. Figure 3.9 shows a small example containing

conditional and unconditional JUMP statements®. Again the numbers in parenthesis are
the numbers of the corresponding nodes in the CFG graph. The CFG graph corresponding

to this example is shown in figure 3.10.

3.1.2 Computation of SSA values

As can be seen from the graph shown below, the computation of the SSA values is done

within three major steps. Before going into the details, a short overview of these steps will

be given.

set assigned find locations for
variables numbers ¢-functions

First Step: During the first step all variables that are assigned a new value (assigned
variables) receive an unique SSA value. Additionally, track is kept of the variables

that are re-assigned for each single CFG node.

set used
variables numbers

“Note that the "if (...) goto’ statements are transformed into a single conditional JUMP statement,

and that there will be no IF-THEN-ELSE statements generated by the SUIF compiler in this case.
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a; = 1;

by = &ay;

*by = 2;

/* now a; == 2 ! */
C1 = ay;

Figure 3.11: Program with side-effect in SSA form

Second step: The second step takes the CFG graph and the collected assigned variables
to compute the places where ¢-functions are necessary. Furthermore, the SSA values
for the left hand side of the ¢-functions are set.

Third step: The third step computes the SSA values for the remaining non-numbered
occurrences of variables (used variables), and the right hand sides of the ¢-functions
are completed by adding the variables of the reaching definitions.

The computation of SSA values is done for every function in a program without considering
the effects of function calls that are contained in the code. Since the SSA form only ensures
that there is always only one assignment which reaches a use of a variable, and not that
the value of the used variable is the same value that was assigned to it by the assignment
reaching this use, it is not necessary to insert ¢-functions for every variable that might be
affected by the function call. As can be seen in the program in figure 3.11, it is possible that
the value of a variable (a) has changed due to side-effects, even if there is no new SSA value
introduced for this variable. Nevertheless, there is only one reaching definition (a; = 1)
for that variable even though its value has already been changed when the use (¢; = ay) is
reached. The last assignment uses the variable (a;) even though the value (2) is not the
same value that was assigned to a; by the first assignment (1).

Anyway, it would extremely increase the number of generated ¢-functions, if there had
to be ¢-functions for every variable that might be influenced by a function call. Since every
function call can change almost every variable, namely every global variable and every local
variable whose address has been taken, this would lead to a huge amount of ¢-functions for
function calls without producing better results. Obviously it is not possible to consider these
effects during the computation of the SSA values, since it would be necessary to know about
all side-effects and aliases of a statement at this early state of the analysis. These effects
will be taken into account in the later (interprocedural) passes of the alias computation.
For the same reason the side-effects of function calls can be ignored at this point. During
the computation of the SSA values only those changes to variables are considered that will
take place no matter which side-effects occur during the program execution.

3.1.2.1 Domination, dominator trees and dominance frontiers

Dominance frontiers yield an easy and efficient way to compute the locations where ¢-
functions have to be placed. The computation of the dominance frontiers is based on the
dominator tree which has to be computed first. An algorithm computing the SSA values by
using dominance frontiers can be found in [CFR*89, CFR*91].

Definition 16 (dominators)

A node n’ is said to dominate another node n (n’ € dom(n)), if n’ appears on
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every path from the start node START to n.

dom : V &= P(V)
dom(n)={n" €V | ¥Yni...n; € path(START ,n) : 3(1 <i < k):n;, =n'}

If n" dominates n (n' € dom(n)) and n # n’, n' is said to strictly dominate n.

Fact 17
Domination is reflexive as well as transitive.

Definition 18 (post-dominators)
A node n' is said to post-dominate another node n (n' € pdom(n)), if n’ appears
on every path from n to the end node END.

pdom : V &= P(V)
pdom(n) =4{n" €V | ¥Yni...ng € path(n, END):3(1 <i <k):n;=n'}

Note that the post-dominance relation becomes equivalent to the dominance relation, if
every edge in the control flow graph is reversed and the role of the START and END node
are exchanged.

Every node n has an unique immediate dominator (idom(n) € V') which is defined as
follows.

Definition 19 (immediate dominators)

idom : V &>V
idom(n) € (dom(n) &{n}) N V(n' € (dom(n)<{n})):n' € dom(idom(n))

The immediate dominator relation (idom) builds a tree which is called the dominator
tree. Looking at this tree it can be seen that a node n’ is dominated by another node n if
and only if n’ is contained in the sub-tree rooted with node n. The root of the dominator
tree is always the start node START, which is quite obvious since every node is dominated
by the start node.

Definition 20 (dominance frontiers)
The dominance frontier of a node n (df({n})) is the set of all nodes n’ having
a predecessor n” that is dominated by n without being strictly dominated by
n itself. Accordingly, the dominance frontier of a set of nodes is defined as the
union of the dominance frontiers of each node.

df :+ P(V) o P(V)

df ({n1,....nn})={n" €V | IAn € {ny,...,nu},n" € pred(n’))
=((n € dom(n")) AN (n#n")) AN (n & dom(n"))}

The dominance frontier of a node contains exactly those nodes where ¢-functions have
to be placed, if a variable is changed at this node.

The example in figure 3.12 shows the dominator tree as well as the dominance frontiers
for an example graph!®. If e.g. a variable is changed in the code belonging to node F,

10Note that the graph shown in this example is not one of the CFG graphs whose properties have been
described in the earlier sections. Here A serves as the start node, whereas G is the end node of the graph.
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A A
-~ | (o [ dom(u) ] af(a)) |
B B E G A A} 1
Bl {AB} | {G}
C/\\;) E C ]‘) F C I {ABC} {r}
D| {ABD} {F}
N Fl {AFT | (G}
F F {ABF} | {BG}
~_ REXTRERY
G
CFG graph Dominator tree Dominance frontiers

Figure 3.12: CFG graph, dominator tree and dominance frontiers

¢-functions have to be placed at the nodes B and (. Note that placing a ¢-function at a
certain node is a new assignment for this variable, and therefore further ¢-functions caused
by this assignment might become necessary then. E.g. if there is a variable changed at node
D a new ¢-function has to be placed at node F. This newly generated ¢-function makes it
necessary to place further ¢-functions at the nodes B and (.

All nodes where ¢-functions have to be placed (phi({n1,...,n,})) can be obtained by ap-
plying the df-function to the set of nodes where a certain variable is changed ({ny,...,nmn})
until stabilisation is reached.

Definition 21 (phi functions)

phi : P(V) = P(V)

phi({ny, ... ,n,}) = U dfi({n1,...,nn})

In our example this would mean that if a variable is changed at the nodes C' and D,
then ¢-functions will have to be placed at the nodes phi({C, D}) = {B, F, i}. The repeated
computation of the dominance frontiers stabilises after the third iteration since no new nodes
are added to the set of nodes that need a ¢-function.

df({C, D}) ={F}
dr*({c,n}) =df({r}) ={B,G}
df*({C,D}) =df({B,G}) ={G}

Dominance frontiers are computed only once for each node of a CFG graph, whereas the
computation of the ¢-function sets has to be repeated for every variable modified in the
corresponding function.

3.1.2.2 Algorithm

The algorithm used to compute the SSA form that was chosen here, is based on the al-
gorithm presented in [CFRT91]. The algorithm was mainly chosen for reasons of easier
implementation, and it could easily be replaced by a faster one, if necessary.
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{

int a0, &1, a2;
do (...) {
as = ¢(ag, a1);
/* the next statement is useless!! */

Co = ¢(C07C1);
int cq;

CiL = ...

a; = Cq;

¥
¥

Figure 3.13: Program with ¢-function for non-accessible variable

However, most of the algorithms usually used to compute SSA form do have one signif-
icant disadvantage. A problem that cannot be handled by these algorithms arises due to
the fact that the C programming language allows functions containing blocks with variable
declarations. This leads to variables with a limited scope and hence these variables are not
valid throughout the whole function. Since blocks do not influence the CFG graph!!, it is
not possible to consider the effects of blocks when calculating the dominance frontiers. This
is because the computation of the dominance frontiers is only based on the CFG graph and
does not depend on the program code itself. Altogether this may lead to the creation of
¢-functions at places where the corresponding variable is not even accessible, when using
the usual SSA algorithms.

The program shown in figure 3.13 demonstrates what would happen if the effects of
blocks containing variable declarations were not taken into consideration. The ¢-function
generated for a is correct, whereas the one generated for ¢ is superfluous as well as wrong,
since c is not accessible at that place. This effect may lead to huge amounts of useless
¢-functions being generated.

Since 1t is an essential property of algorithms based on dominance frontier calculation
that the dominance frontiers are computed only once for all variables, it is impossible to take
blocks into account when calculating the dominance frontiers. If one wants to consider the
effects of blocks correctly, it would be necessary to calculate dominance frontiers for every
block containing variable declarations separately, which would significantly slow down the
computation in almost every case. Besides, it would be necessary to make sure that code
belonging to different blocks always belongs to different CFG nodes, which would increase
the number of nodes as well as the time needed to calculate the dominance frontiers.

To prevent the superfluous ¢-functions, an algorithm which differs from the one in
[CFR*91] has to be used. Since it is not possible to prevent the creation of ¢-functions or
at least the computation of the locations where they have to be placed, needless ¢-functions
will be removed by the algorithm instead. As already mentioned before, the algorithm
consists of three steps. They will now be explained in detail in the following.

First step: During the first step of the algorithm, the CFG graph is being built, and the
generation of the SSA numbers for all assignment targets takes place. Additionally,

1Blocks do not force the creation of another node when they are reached during the step creating the
CFG graph. It is possible to have SEQ nodes containing code from different blocks, if there is no non-trivial
control flow contained in that code.
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the assigned variables are collected and annotated to the CFG node which belongs to
the code. In case a variable is changed twice or even more often in the code belonging
to a single CFG node, only the last definition is annotated to the CFG node, since
this is the one that is valid after the execution of the code belonging to the CFG node.
All this can be done by traversing the code once.

Second step: The second step computes the dominator tree, the dominance frontiers and
the locations where ¢-functions are necessary. In [LT79] and [Har85] it is described
how the computation of the dominator tree and the dominance frontiers can be done
efficiently. Since the second algorithm is more complicated, and the time spent for
the computation of the ¢-functions is only of minor interest for the alias analysis, the
first algorithm was chosen. The computation of the locations where ¢-functions have
to be placed generates only incomplete ¢-functions, because the reaching definitions
are not yet computed. This means that only the left hand side of the ¢-function
assignment is known, and that the arguments of the ¢-function have to be filled in
later. Nevertheless they are already placed in the code, since the left hand side of the
¢-function assignments is necessary for the next step.

Third step: During the third and last step the reaching definitions are computed. The
previous steps ensure that there is always only one reaching definition for every used
variable, and that all variable definitions (including the ¢-function assignments) al-
ready received a unique SSA number. Now, every used variable receives the SSA
number of the (unique) reaching definition. Additionally, the superfluous ¢-functions
are removed and the remaining ¢-functions are completed by adding all corresponding
reaching definitions to the right hand side of the ¢-functions. This step requires the
code to be traversed once more.

The algorithm shown in figure 3.14 computes all the three steps that have been described
above. There are counters that store the actual SSA number for every variable!'?. They can
be accessed by using the set_act_ssa_val and get_act_ssa_val functions.

Computation of SSA numbers for defined variables (first and second step)
At the beginning all counters are initialised, which means they are set to zero (3-4). Now the
statements contained in the function func will be processed in textual order (7,8,16). If the
processed statement is an assignment to a variable (10,11) a new SSA number will be given
to the assigned variable. This is done by using the corresponding counter, which has to be
incremented then (12-14). In addition, the computation of the CFG graph is effected (9).
Now, after the first step is taken and all statements have been processed, the ¢-functions are
computed during the second step using the algorithms described in [CFR*91] and [LT79]
(19). Now the SSA numbers for all variable definitions (usual assignments as well as ¢-
function assignments) have been computed, and the SSA numbers for all used variables
have to be computed subsequently as the next step. This is done during the third step that
will be explained in detail soon.

Note that not every assignment is an assignment to a variable, e.g. an assignment like
*a = b does not necessarily change the value of a variable. This assignment might change

IZNote that the temporary variables that have been produced by the function call normalisation are
excluded here. They are assigned a new value once and this value will be used only once (right after it was
assigned). Hence it does not make sense to produce ¢-functions for these variables because they are not
used anywhere else.
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(1) function compute_ssa_numbers(func)
2 {

(3) for all (var € used_vars(func)) {

(4) set_act_ssa_val(var, 0);

)}

(6) /x first step x/

(7) stmt = first_stmt(func);

(8) while (stmt # NOSTMT) {

(9) generate_cfg_graph(stmt);

(10) var = assigned_variable(stmt);

(11) if (var # NOVAR) {

(12) ssa_no = get_act_ssa_val(var) + 1;
(13) var.ssa_val = ssa_no;

(14) set_act_ssa_val(var, ssa_no);

15 )

(16) stmt = next_stmt(func);

071 3

(18)  /* second step x/

(19)  compute_phi_funcs();

(20)  /* third step x/

(21)  for all (var € used_vars(func)) {
(22) if (is_block_var(var)) set_act_ssa_val(var, UNDEF);
(23) else set_act_ssa_val(var,0);

21 )

(25)  compute_reaching_defs(main_stmt_seq(func));
(

Figure 3.14: Function computing the SSA numbers for assigned variables

a variables value due to side-effects, but such effects are not taken into consideration here.
Only those assignments that immediately assign a new value to a variable will cause the
generation of a new SSA number. Since the C programming language does not really
distinguish between arrays and pointers ([Ame89al), the computation of the SSA values
treats arrays and pointers equally. This means that the SSA number of an array variable
will never change, because it is not permitted to assign a new value to an array. If an
array is used it is treated like a dereferenced pointer (arr[n] = #(arr +n)), and so there
is no new SSA number necessary. Because the semantic of the array dereference operator is
defined to be the same as the expression shown above using the pointer dereference and the
addition operator, it is only a syntactical alternative, and it would therefore be senseless to
distinguish between them. The fact that C does not really distinguish between pointers and
arrays is reflected in the quite unusual convention that the C programming language allows
arr(n] as well as n[arr] to access an array element, which is caused by the commutative
addition operator ([Ame89b]). All variables that do not receive a SSA number during the
first step are treated as uses rather than as definitions. These variables will receive their SSA
numbers during the last step, even if they appear on the left hand side of an assignment.

Computation of SSA numbers for used variables (third step)

Before the computation of the SSA numbers for the used variables can start, all the vari-
able counters have to be re-initialised. The counters are either set to UNDEF', if they
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are defined in local blocks and therefore not accessible yet, or to zero otherwise (21-23).
The major part of the computation of the missing SSA numbers is done by the function
compute_reaching_defs that will be explained next. Since this function takes a sequence
of statements as its input, the statement sequence contained in the body of the analysed
function has to be passed instead of the function itself (25).

The compute_reaching_defs function itself is shown in figure 3.15. The main problem that
has to be handled occurs if a statement is followed by another statement in textual order,
but those statements are never executed in this order. E.g. the first statement contained in
the else-part of an if is never executed after the last statement of the then-part, even though
they appear successively in the code. This implies that the reaching definitions for the else-
part cannot be derived from the reaching definitions that are valid after the processing of
the then-part. Since the reaching definitions for the first statements of the then- and the
else-part are exactly the same, it is necessary to save the sets of reaching definitions before
the then-part is processed, and to restore them before the else-part is processed. The second
problem that has to be dealt with is the removal of the useless ¢-functions which may occur
outside the scope of a variable.

At the beginning the fields that are used to store the actual state of the SSA coun-
ters at a certain statement have to be initialised (3,4). As can be seen, the function
compute_reaching_defs takes a statement sequence as its input and goes through these state-
ments one by one (6,7,42). These statement sequences contain only those statements that
appear at the same nesting level. The statements contained in blocks, loop bodies etc. are
processed by explicitly calling the function again for those sub-sequences.

It is essential for this algorithm that the statements are processed in a certain order,
which assures that LABFL statements are never processed before at least one of their
predecessors (execution order) has been processed. This predecessor may be either a cor-
responding JUMP statement or the predecessor in textual order if this statement is no
unconditional JUMP. If there were LABFEL statements that could be reached without pro-
cessing one of their predecessors first, there would be no information about the reaching
definitions available, and hence it would be impossible to compute the correct SSA numbers
then. Therefore it is not possible to simply go through the statements in textual order,
if there are arbitrary LABEL and JUMP statements contained in the code. This kind of
proceeding implies that all corresponding LABEL and JUMP statements have to be at the
same nesting level, because it would be possible to jump into blocks without taking care of
the possibly changed set of accessible variables otherwise. However, it is not necessary to
explicitly handle this kind of JUMP and LABFEL statements, because the SUIF compiler
already does all the work by transforming the code in such cases.

At the beginning of the algorithm all used variables appearing in the statement that
is currently processed receive the SSA number that is valid at this point of the program
(8-9). Remember that the initialisation of the counters keeping track of the SSA numbers
for the reaching definitions has already been done by the compute_ssa_numbers function
before the compute_reaching_defs function was called. At this stage the above-mentioned
problems arising from the control flow and blocks have to be handled. In case the currently
processed statement is an assignment that directly changes a variable (13,14), the counter
that keeps the value of the actual SSA number has to be set to the new value (16). If the
assignment is a ¢-function assignment and the value of the actual SSA number is UNDEF
(15), the assignment is superfluous, since the actual SSA number is only set to UNDEF if
the currently processed statement is outside the variables scope. In this case the statement
will be removed (17).

Every time a new block is reached the counters of the variables declared in this block
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function compute_reaching_defs(stmt_seq)

{

for all (stmt € stmt_seq) {
stmt.act_vars = NOVARS)

(1)

(2)

(3)

(4)

5) }

(6) stmt = first_top_level_statement(stmt_seq);

(7) while (stmt # NOSTMT) {

(8) for all (var € used_vars(stmt)) {

9) var.ssa_val = get_act_ssa_val(var);

a0}

(11) switch (type(stmt)) {

(12) case ASSIGNMENT

(13) var = assigned_variable (stmt);

(14) if (var # NOVAR) {

(15) if ((not is_phi_assign(stmt)) or (get_act_ssa_val(var) # UNDEF)) {
(16) set_act_ssa_val(var, var.ssa_val);

(17) } else remove(stmt);

(15) )

(19) case BLOCK

(20) for all (var € block_vars(stmt)) set_act_ssa_val(var,0);
(21) compute_reaching_defs(block_stmt_seq(stmt));

(22) for all (var € block_vars(stmt)) set_act_ssa_val(var, UNDEF);
(23) case [F-THEN-ELSE

(24) mod_vars = save_mod_vars();

(25) compute_reaching_defs(then_stmt_seq(stmt));

(26) restore_mod_vars(mod_vars);

(27) compute_reaching_defs(else_stmt_seq(stmt));

(28) case FOR-LOOP

(29) mod_vars = save_mod_vars();

(30) compute_reaching_defs(for_stmt_seq(stmt));

(31) restore_mod_vars(mod_vars);

(32) case DO-LOOP

(33) compute_reaching_defs(loop_stmt_seq(stmt));

(34) case LABEL

(35) if (stmt.act_vars # NOVARS) restore_all_vars(stmt.act_vars);
(36) case JUMP

(37) dest_stmt = jump_dest(stmt);

(38) if ((dest_stmt.act_vars = NOVARS) and (no_text_order_pred(dest_stmt))) {
(39) dest_stmt.act_vars = save_all_vars();

(10) )

@y )

(42) stmt = next_top_level_statement(stmt_seq);

(43)

(44)

Figure 3.15: Function computing the SSA numbers for used variables
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have to be set to zero (20) before the statements contained in the block are processed (21).
Afterwards it is necessary to set the counters back to UNDEF since the statements that are
processed afterwards are outside the scope of the variables declared in the block (22).

To process an [F-THEN-ELSE statement it is necessary to store the actual values of the
SSA number counters (24) before the statements contained in the then-part are processed
(25). It is not necessary to save the actual SSA numbers of all variables, since there will
only be a few changes in many cases. Here it is sufficient to save the SSA numbers of
those variables for which a ¢-function was generated after the I[F-THEN-FLSE statement
(mod_vars), since these are exactly those variables that are changed by the statements
contained in either the then- or else-part of the IF-THEN-ELSFE statement. Before the
statements contained in the else-part of the IF-THEN-ELSE statement are processed (27),
the previously saved SSA numbers have to be restored (26). This ensures that changes made
to variables in the then-part cannot affect the else-part, and that the counters are exactly
in the same state they were in when the processing of the then-part began. The variables
contained in the condition of the IF-THEN-ELSE statement already received the correct
SSA numbers (8-9) before the statements contained in the then- and else-part have been
processed, so they do not have to be handled explicitly here.

The processing of FOR-LOOP statements requires similar actions. Before the statements
contained in the loop’s body are handled (30), the actual SSA numbers are saved (29). Again
only those values are stored that are changed in the body and for which ¢-functions have
been generated. This is necessary because the program continues at the top of the loop
after the loop’s body was executed. Here the loop’s index is incremented and the loop’s
condition is checked. In case there are no further iterations necessary, the program continues
after the end of the loop. This means that the SSA counters have to be restored (31) after
the processing of the statements contained in the body is done, which guarantees that the
values are again like they were at the beginning of the body. Like the condition of the
IF-THEN-ELSE statement the condition of the FOR-LOOP does not have to be handled
explicitly here, since the SSA numbers are already set to the correct values before the body
of the loop is processed.

DO-LOOP statements are much easier to handle. Since the program continues in textual
order after the last iteration, it is not necessary to save and/or restore the actual SSA
numbers here. All that has to be done is to process the statements contained in the loops
body (33). DO-LOOPs always evaluate their condition after the body has been executed.
This has to be taken into account during the computation of the reaching definitions and
hence the condition is processed after processing the statements contained in the body.

The last problem that has to be dealt with arises if a LABFEL statement is preceded
by an unconditional JUMP statement!?, since the program will never continue in textual
order in this case. When a JUMP statement is processed the first thing that has to be
done is to locate its destination (the corresponding LABEL statement) (37). If this LABEL
is preceded by an unconditional JUMP statement it is necessary to save the actual values
of all SSA counters, as far as this has not yet been done before (38,39). These values are
later restored when the LABEL statement is processed (35). If there are multiple JUMP
statements with the same destination only the statement that is processed first stores the
actual SSA counters. One might wonder why the possibly different SSA counters of the
other JUMP statements are ignored here, but this can safely be done because there are
¢-functions following the LABEL statement for exactly those variables where different SSA

13Gtrictly speaking: the last non-LABEL statement preceding a LABEL statement is an unconditional
JUMP statement. This takes multiple LABEL statements marking the same program location into account
as well.
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counters appear at the corresponding JUMP statements. Those SSA counters that are not
changed by the following ¢-functions are the same for every JUMP statement, and hence any
JUMP statement can be chosen to store the SSA counters. As can be seen here, it is very
important that either the statement preceding the LA BEL statement is not an unconditional
JUMP, or at least one of the corresponding JUMP statements has been processed before
the LABEL statement itself is processed. In the first case the actual SSA numbers are not
changed, and in the second case there are saved SSA counters available that can be restored
then.

When the algorithm wants to find out if it is necessary to save the actual SSA counters
when a JUMP statement is processed, the corresponding LABFEL statement is analysed as
described above. The decision depends on the statement preceding the LABFEL statement.
If this statement is not an unconditional JUMP statement, it is assumed that it is not
necessary to save and restore the actual values of the SSA counters, because the LABEL
statement is processed after processing its predecessors and therefore correct SSA counter
values will be available then. However, this is not correct if the label is preceded by structural
dead code (see chapter 2). This code will never be processed and therefore it would be
necessary to store the actual SSA counters in such cases as well. Fortunately, structural
dead code has already been removed before the calculation of the SSA numbers takes place.
Hence the above described problem cannot arise anymore, and so it is sufficient to check for
unconditional JUMP statements here.

Processing order of statements
The two functions that are shown in figure 3.16 are used to determine the correct order in
which the statements of a statement sequence have to be processed.

The function first_top_level_statement initialises the iteration process and returns the
first statement that is processed afterwards. At the beginning the worklist that contains
branches which have not yet been processed is emptied (3). Additionally, the flags indicating
whether a statement has already been processed are all set to false (5,6). The first statement
that is processed is the first statement in textual order (4,8), and therefore this statement
has to be marked as already processed now (9).

From here on the statement that has to be processed next is determined by subsequent
calls to the function next_top_level_statement. Unless the actual statement is not the last
one in the sequence, the next statement that is processed is the next statement in textual
order (3,4). Only if the actual statement is an unconditional JUMP statement will the next
statement that is to be processed have to be determined differently, because the next state-
ment in textual order might be a LABFEL statement whose corresponding JUMP statements
have not yet been processed. Instead of the next statement in textual order the destination
of the JUMP statement is processed as next then (5,6). In case the actual statement is a
conditional JUMP statement, the destination statement is added to the worklist, to make
sure that this statement and its successors are processed as well (7,8). To prevent state-
ments from being processed twice it is checked whether the next statement has already been
processed before (10). In the latter case new statements are taken from the worklist until
either an unprocessed statement is found or the worklist is empty (10,11). If all statements
have already been processed there is nothing left to do (17). Otherwise the found (unpro-
cessed) statement is the next statement to be processed. Hence its processed-flag will be
set, and the statement will be returned afterwards (14-16).
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(1) function first_top_level_statement(stmi_seq)

2 {

(3) worklist = EMPTYLIST;

(4) act_no = 0;

(5) for all (stmt € stmt_seq) {

(6) stmt.processed = false;

(1) 3

(8) first_stmt = stmt _seq|act_no];

(9) first_stmt.processed = true;

(10)  return first_stmt;

(1) }

(1) function next_top_level_statement(stmit_seq)

2 {

(3) if (act_no # last_stmt_no(stmt_seq)) next_no = act_no + 1;
(4) else next_no = act_no;

(5) if (is_uncond_jump (stmt_seqlact_no])) {

(6) next_no = dest_stmt_no(stmt_seq[act_no));

(7) } else if (is_cond_jump(stmt_seq[act_nol)) {

(8) enqueue(worklist, dest_stmt_no(stmt_seq[act_nol));
C)N

(10)  while (stmt_seq[next_no].processed and (not is_empty(worklist))) {
(11) next_no = dequeue(worklist);

(12) )

(13) if (not stmi_seq[next_nol.processed) {

(14) act_no = next_no;

(15) stmt_seq[act_no].processed = true;

(16) next_stmt = stmt_seqact_nol;

(17)  } else next_stmt = NOSTMT;

(18)  return next_stmt;

(19) }

Figure 3.16: Functions determining the processing order of statements
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3.1.2.3 Time and space bounds

The time as well as the space needed to compute the SSA numbers of a function is influenced
by several properties of the function. The following list gives an overview of these properties:

e number of generated ¢-functions (|PHI|)
e number of occurring variables'* (| VAR,..|)
e number of nodes of the CFG graph (|V])

e number of edges of the CFG graph (|E|)

Of course these properties are not completely independent of each other, and so some
of them can be used to build an upper bound for one of the others. However, using all of
them leads to more exact measures for the time and space bounds.

Time bounds

The first step of the entire algorithm traverses the code once to set the SSA numbers of all
assigned variables, which takes time proportional to the size of the input code (O(|STMT)).
The counters that keep track of the actual SSA numbers are modified several times during
the first step of the algorithm, but since they can be accessed within constant time they
hardly influence the time bounds. The counters can be accessed that fast because every
variable occurring in the code has a link to the corresponding entry in the symbol table,
which as well contains the counters.

The time needed for the second step is mainly influenced by the computation of the
dominance frontiers. Their computation can take time in O(|E| + |V|?) in the worst case
([CCFI1]). However, such behaviour is not expected in general. Even though certain
programs which reach this worst case bound exist, it is very unlikely that a real program
will ever come close to this bound. After the dominance frontiers are calculated the locations
where ¢-functions have to be placed will be computed. This takes time proportional to the
number of ¢-functions that are generated (O(|PHI|)).

The last step of the algorithm has to traverse the complete code again, which takes time
proportional to the size of the output code. Since the ¢-functions have already been placed
in the code this takes time in O(|STMT| + |PHI|). The time needed for all calls to the
functions first_top_level_statement and next_top_level_statement is in O(|STMT| + |PHI|)
as well, since every statement can add at most one element to the worklist. Hence there
are never more than |STMT| elements enqueued to or dequeued from the worklist during
these calls. Additional time is necessary to save and restore the actual SSA numbers for
some of the statements. For all programs which do not contain LABFEL statements that
are preceded by unconditional JUMP statements, this will take time proportional to the
number of generated ¢-functions (O(|PHI|)). Remember that only those variables are saved
that are changed in the body of the statement, and that there will be ¢-functions that
have then been generated for all these variables. In case there are LABFEL statements
preceded by unconditional JUMP statements, the time needed to save the SSA numbers
for such statements is proportional to the number of variables that are used in the code
(O(|VAR,cc|)), since the SSA values of all these variables have to be saved then. Because
there can be O(|STMT|) statements like these, this leads to an overall worst case time

MHere ’occurring variables’ means all variables occurring in one of the functions statements (defined and
used ones). Variables that are declared but not used in the particular function are not included.
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bound of O(|STMT| - |VAR,.|). Of course it is more than unlikely for real programs to
reach this time bound.
Summing up, this leads to the following overall worst case time bound:

O(|STMT]) + (first step)

O(|E|+ |VI*) + O(]PHI|) + (second step)

O(STMT| - |VAR,..|) (third step)
— O(|STMT]?)

This calculation is based on the assumption that there is only a limited number of variables
occurring in a single statement!®, which is true for almost every program. To prove that the
above calculation is correct, it is sufficient to prove that the following equations are correct.

O(|STMT]) C O(|STMT?)
O([E|+[VI?) € O(|STMT?)

( 1
(

O(|PHI|) C O(|STMT|?)
(

2
3

(
(
(
(4

)
)
)
O(ISTMT| - |VAR,.|) € O(|STMT?) (4)

The first equation is obviously true. The number of nodes in the CFG graph (|V]) is
in O(|STMT]), and since there are no nodes having more than two outgoing edges the
number of edges is in O(|STMT|) as well, and hence the second equation holds. The above
made assumption (that there is a constant upper bound for the number of variables which
occur within a single statement), leads to the fact that there are at most O(|STMT|) used
variables in a function. Since there are at most O(STMT) locations where ¢-functions may
be placed, there can be at most O(|STMT|*) ¢-functions per function (third equation). As
shown before O(|VAR,..|) C O(|STMT|) holds, and so the fourth equation does as well.

Although the time needed to compute the SSA numbers has a quadratic worst case time
bound, this behaviour does not occur when dealing with usual programs. For programs
which do not contain unstructured control flow it is impossible to reach this time bound!®,
and even for programs containing LABFEL and JUMP statements this time bound is only
reached by programs that are explicitly made to reach this bound. However, such programs
are only of theoretical interest and do not have any practical relevance.

It is impossible to build an algorithm with better worst case time behaviour since the
number of generated ¢-functions may grow quadratically with the input size. This happens
for programs like the one shown in figure 3.17. The corresponding CFG graph is shown in
figure 3.18. Here the nodes labelled from [y to I, represent the first part of the program
containing the if and goto statements, whereas the nodes L; to L, represent the second
part containing the labels and the assignment statements. Every time n will be incremented
(by adding only a constant amount of statements to the program), n <1 new ¢-functions
will be generated, which leads to |PHI| = %1)

The algorithms presented in [CCF91] and [CFR191] both have a O(|E|+|V|?) worst case
time bound for the computation of the locations where ¢-functions have to be placed. As well
both of them are based on the dominance frontier concept. In [CF95] Cytron and Ferrante

15The variables occurring inside the bodies of DO-LOOPs, FOR-LOOPs and IF-THEN-ELSE statements
are excluded, since it is quite obvious that there is no limit for the number of variables that may occur in
the body of a big loop.

5For these programs the time needed to compute the third step is in O(|STMT| + |PHI|), which is
optimal since this is the size of the output code.



3.1. SSA FORM

if (...) goto labi; if (...) goto labi;
if (...) goto lab2; if (...) goto lab2;
if (...) goto lab3; if (...) goto lab3;
if (...) goto labn; if (...) goto labn;
labi: labi:
varl = .. ; vari =...;
lab2: lab2:
var? =...; vari = ¢(vary, var});
lab3: var: =...;
var® =...; lab3:
. vari = ¢(vary, varl);
labn : var3 = ¢(varj, vari);
var® =...; vars =...;
labn :
var: = ¢(vary, vars_,);
vars_, = o(var3, vart_,);

vary ! = ¢(varp !, var]t);

Figure 3.17: Program with quadratically growing number of ¢-functions

[
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I
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Figure 3.18: Control flow graph for program with quadratically growing number of ¢-

functions
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present an alternative concept which avoids the computation of the dominance frontiers.
Like in [CCF91], SEGs (Sparse data flow Evaluation Graphs) are computed, which are
used to generate the SSA numbers later. The worst case time bound for the construction
of the SEG which has previously ([CCF91]) been O(|E| + |V|?) was improved, and is in
O(|E|-a(|E|))'" now. Nevertheless the calculation of the ¢-functions still takes O(| E|+|V|*)
time in the worst case. Even though the asymptotical bounds of the second algorithm are
much better, there are only minor differences in practice because usual programs have a
certain structure that almost always prevents the algorithm from reaching its worst case
bounds.

It is reported that all of the above-mentioned algorithms are almost linear, as long as

they are applied to usual programs ([CCF91, CFR*91, CF95]).

Space bounds

The space needed for the computation of the SSA numbers mainly depends on the number
of ¢-functions that are generated (O(|PHI|)). There is some additional space necessary to
store the counters that keep track of the actual SSA numbers, but this space is proportional
to the number of used variables (O(| VAR,.|)), which is in O(|STMT|) as shown before.
Altogether this results in a O(|STMT| + |PHI|) worst case space bound. This is already
the best reachable worst case space bound as well as the best case space bound since the
output program size is |[STMT| + |PHI|. As shown in the previous section the number of
¢-functions can still grow quadratically with the number of statements in the input program

(|ISTMTY), which leads to a quadratic worst case space bound of O(|STMT|*).

The average time and space bounds of the SSA computation for a couple of example
programs are shown in section 4.3. They underline the assumptions made above on the
average case behaviour of the algorithm for real C programs.

Now that the SSA form computation has been defined, the following parts of the alias
analysis can benefit from the gained information. The SSA computation is not essential
for the following parts of the analysis. These parts could as well be executed without the
preceeding transformation of the analysed program into SSA form. However, the SSA form
computation will be able to increase the precision of the alias analysis significantly in many
cases.

THere « is the very slowly growing functional inverse of the Ackermann function.
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3.2 Intraprocedural analysis

The main aim of the intraprocedural analysis is to analyse all the effects a single function
can have on a program’s variables. For this purpose a so-called function interface graph will
be constructed that summarises all these effects. This function interface graph collects all
the information necessary to detect every alias that may be introduced while the function
is being processed. Fven those aliases that are introduced somewhere inside the function
and that are in any case destroyed later, are represented in the function interface graph.

Function interface graphs are built within three passes: the first pass processes the ¢-
functions that have been added by the SSA computation, whereas the second pass analyses
all the occurring C statements of the code belonging to a given CFG node. Finally, the third
pass merges the function interface graphs belonging to the different CFG nodes resulting
in the function interface graph for the whole function. During the second pass nodes and
edges are added to the function interface graph to represent the C statements. Note that
variables with different SSA values are treated as independent variables during this pass.
The connections between the variables differing only by their SSA value is taken care of when
the ¢-functions are processed within the first pass. During this pass the nodes corresponding
to the SSA variables occurring in a ¢-function will be joined.

3.2.1 Alas information

The aliases that are found are summarised by the above-mentioned function interface graph.
Before going into the details of the function interface graph computation, it is necessary to
describe which kind of alias information will be computed (section 3.2.1.2). This will become
much easier and clearer if some terms that have already been used before in an informal
manner will be formally defined first.

3.2.1.1 Basic definitions

Since aliases are a relation between certain expressions in a certain program state it is not
possible to talk about aliases without talking about expressions and program states as well.
Therefore it is necessary to formally define some terms related to expressions and program
states before a definition of aliases can be given.

Definition 22 (locations, values and memory state)
A memory state m € MEM of a program is a function which returns the values
contained at the memory locations used by the program

MEM C (LOC — VAL)

where LOC C N is the set of memory locations (addresses) accessed by the
program and VAL is the set of possible values (bytes) stored at these locations.
The set of memory states (MEM ) contains only those memory states that may
really occur during the program execution.

Of course the memory state can change during the program execution (e.g. if a new value
is assigned to a variable). In this case |[MEM| > 1 holds.

Definition 23 (program states)
A program state st € STATFE of a program is a memory state together with the
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position of the program counter p (p € POS). The program counter indicates
which statement is to be executed as next.

STATE C MEM x POS

The set of program states (STATFE) contains only those program states that
may really occur during the program execution. The two functions mem and
pos are used to return the memory state respectively the position of the program
counter of a given program state.

mem : STATE & MEM | pos : STATE < POS

mem((m,p)) = m
pos((m,p)) = p

Definition 24 (simple expressions)
A simple expression exp € EXP,. 1s a C-like expression containing variables,
constants and arbitrary many operators, where all but the following operators

may be uSed: 7()77 7_|__|_77 7@@77 7? :77 7:77 7_|_:77 7@:77 7*:77 7/:77 7%:77 7&:77
|=7, M=, '<<=", '>>=". The set EXPsupi is the set containing all simple
expressions.

Simple expressions are exactly those C-like expressions that neither change the value
of a storage location (assignments) nor contain an implicit conditional statement (’?:’) or
function call (’()’). Hence simple expressions neither modify the memory state nor influence
the control flow of the program.

Definition 25 (base expression)
A base expression exp € EXPp,,. is a simple expression containing exactly one
occurrence of a variable'®. Here EXPy,,. denotes the set containing all base
expressions.

If a variable is accessed in a program the storage locations and values that can be accessed
by base expressions are the ones that have to be taken care of, because they can appear in
new alias relations.

Definition 26 (dereference operation)
A dereference operation is the reference to a value stored at a certain location
by a pointer plus an offset. It is specified by a tuple (m,n) where m is the
offset value and n is the size of the referenced value in bytes!®
the offset value (m) may be unknown at compile time, which will be indicated
by a question-mark (’¢7). This leads to the following definitions for the set of
possible pointer offsets (OFF) and the set of dereference operations (DEROP).

. In some cases

18Note that the expression a—>b is a base expression although two identifiers occur in this expression.
This is because the second identifier is not a variable, but something much more similar to a constant. This
identifier specifies the (constant) offset needed to access one of the elements of a structure.

9This causes bit-fields and their components to be treated as the same element if they are stored in the
same byte. This could be avoided if the sizes were measured in bits instead. Nevertheless this is not done
here for two reasons: first to prevent the examples from getting unnecessarily complex, and second since
bit-fields are only rarely used anyway.
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OFF = Zu{'?}
DEROP = {(m,n) | m € OFF,n € N}

Depending on whether the offset is known or unknown, dereference operations
can be further classified. Those using unknown offsets are called floating deref-
erence operations (DEROPg), whereas the others are called fixed dereference

operations (DEROPg,).

DEROP;, = {("?’.n) | n €N}
DEROPsz, = {(m,n) | m € Z,n e N}

The two functions offset and width can be used to access the two components of
a dereference operation. The offset function returns the first component (offset),
whereas the width function returns the second component (size) of a dereference
operation.

offset : DEROP &~ OFF | width : DEROP - N

offset((m,n)) = m
width((m,n)) = n

Dereference operations are mainly influenced by the following operators?® of the C pro-
gramming language: ", [ ], ">, '+, 'y’ 7.7, The offset of a dereference operation
can be changed by adding something to or subtracting something from a pointer. This can
be done directly using the '+’ or &’ operators or indirectly by the 7.7, &> and [ |
operators.

In many cases it is necessary to compare two dereference operations. The most interesting
thing to know about two dereference operations is if the values that can be accessed using
the first operation can be accessed by the second one and vice versa. This can be easily
checked if one knows the interval of offsets that can be accessed for either operation. If
these intervals do not intersect, the dereference operations cannot access the same data.
The acc_rng function that is now defined returns exactly this interval for a given dereference
operation.

The access range belonging to a dereference operation is the interval which contains all
offset values belonging to the values that are accessed by a particular dereference operation.
The acc_rng function returns the access range belonging to a dereference operation, whereas
the deref_op function returns the dereference operation belonging to a given access range.

Definition 27 (access range)

accerng : DEROP & P(Z) , derefoop : P(Z) <~ DEROP

B {i | 0<i&offset(d) < width(d)}  if offset(d) € Z
acc-rng(d) = { 7 otherwise

B (727,1) iftr=2%
deref-op(r) = { (min(r),1 4+ maz(r) < min(r)) otherwise

20Gince some of the operators in the C programming language are used as unary as well as binary operators,
a subscript (u’ or ’b’) is added in cases where it might not be clear which one is meant.
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Definition 28 (access path)
An access path ap € AP is a (maybe empty) sequence of dereference operations
applied to a location specified by a variables address, where

AP = {(v,doy,...,do,) | (v € VARss4) A (dos,. ... do, € DEROP)}

denotes the set of access paths. Here doq, ..., do, are the dereference operations
that will be applied to the address of the variable v. The dereference operations
are applied to the variables address in order of appearance, which means doq is
first applied to (v) and doy is then applied to (v, doy) and so on.

Like dereference operations, access paths can be separated into two different groups:
those using floating dereference operations and those using only fixed dereference operations.

Definition 29 (floating and fixed access paths)
An access path ap is called fixed access path (ap € AP, ) if it contains only fixed
dereference operations. Otherwise ap is called floating access path (ap € APy).

APs = {(v,doy,...,do,) | (v,doy,...,do,) € AP A
{do1,...,do,} C DEROP4, }
APﬂ = AP @Apﬁx

Floating access paths are used if the offsets of one or more of the corresponding deref-
erence operations cannot be specified at compile time. This means that a floating access
path summarises a complete set of possible fixed access paths, namely all those that can be
obtained by replacing all unknown offsets by constant ones. In this case we say that the
floating access path covers the corresponding fixed access path.

Definition 30 (covering access path)
A (possibly floating) access path ap is said to cover a fixed access path ap’
(ap’ € cover(ap)) if they only differ in the unknown offsets occurring in ap?'.
cover : AP &= P(APg,)

cover((v, doy,...,do,)) ={(v,do},...,dol)) € APz, | V(1 <i<mn) :
(do; = do}) VvV ((width(do;) = width(do})) N (offset(do;) = "7"))}

In some cases it is useful to be able to extend an existing access path. Given an access
path ap and a sequence of dereference operations then the function concat can be used to
produce an access path ap’ having the given additional dereference operations.

Definition 31 (concatenating access paths)

concat : AP x DOSEQ &~ AP
concat((v, doy, ..., do,),(do},...,do’,))) = (v,doy,...,do,,do},... dol,)
where DOSEQ = U2 ,DEROP"

2INote that this definition implies that fixed access paths may as well cover an access path. Each fixed
access path covers exactly one access path: itself.
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*(((int %) x)+1) = ...
IT : #(((char x) x)+3) = ...;

*(((int %) x)+0) #(((int *) x)+1)
| I T T e e B
I*(((char *) x)+0) #(((char %) x)4+3) *(((char %) x)+4)

X
integer size = 4 bytes

*(((int *) x)+0) #(((int *) x)+1)

v

| | T T

I*(((char %) X)+0)  #(((char %) x)+1) *(((char %) x)+2) «*(((char *) x)+3)

X
integer size = 2 bytes

Figure 3.19: Memory layout for different integer sizes

Fixed access paths can be used to represent base expressions. Since they use the sizes
of objects as well as the offsets calculated in bytes, access paths are not independent of the
used machine architecture. This is necessary to avoid overly conservative assumptions when
type casts occur in the analysed program. E.g. the two statements shown in figure 3.19
modify the same storage location if the size of an integer is two bytes, whereas they do not
if the size is four bytes. In this example the locations that are modified are marked with the
number of the corresponding statement. Only when an integer size of two is assumed, do
the sets which contain the modified storage locations of the two statements intersect. When
situations like the one described above arise, there are only two choices for the analyser:
conservatively assume that the offset is unknown or use the machine dependent type size
information. Since type casts are frequently used within C programs, the second alternative
was chosen to avoid unnecessary imprecision.

Before further details concerning access paths are discussed, a function which returns
the fixed access path corresponding to a base expression will be defined.

Definition 32 (fixed access paths representing base expressions)
Given a base expression exp € KXPy,,. then the function

acc_path : EXPy, <+ APg,
returns the fixed access path representing the expression exp.

Figure 3.20 shows some examples of base expressions and their corresponding access
paths. In the cases where pointer variables are dereferenced, two dereference operations
occur. The first dereference operation is always necessary to get the variables value (instead
of its address), which becomes clearer if one looks at expressions that explicitly use the
variables address instead of the variable itself: e.g. *(*(&iptr 4 0)+ 1) is more or less
equivalent to iptr[1], but makes the first dereference step visible.
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‘ exp H acc_path(exp) ‘
int i,xiptr,iarr[5]; &i (1)
char *xxc2ptr, c2arr[5][7]; i (1,(0,2))
struct {int i; float £;} s; *iptr (iptr,(0,4),(0,2))
union {int i; float f;} u; «(iptr + 1) (iptr, (0,4),(2,2))
iarr|[2] (iarr,(0,4),(4,2))

[type | size [bytes] | c2ptr[2[3] (c2ptr, (0,4),(8,4),(3,1))
character 1 c2arr|2][3] (c2arr,(0,4),(17,1))
integer 2 s.i (s,(0,2))
float 4 s.f (s,(2,4))
pointer 4 wf (u, (0,4))

#(((char*)i) 4+ 3) || (4,(0,2),(3,1))

Figure 3.20: Base expressions and their corresponding access paths

The C programming language does not allow the use of arrays as the destination of an
assignment, and so they can never be assigned a new value. In fact C treats arrays much
more like invariable pointers pointing to a certain location at the runtime stack. When they
occur as the right hand side of an assignment their address (the above-mentioned pointer) is
copied to a new storage location instead of copying the array’s contents. Therefore the size
of an array, when used in dereference operations, is always the same as the size of pointers.
This size corresponds to the amount of storage that is copied if an array occurs on the right
hand side of an assignment, which is much more suitable in this case.

Multi-dimensional arrays are handled in a comparatively unusual manner by the C pro-
gramming language. This results in the fact that the two expressions accessing the two
level pointer and the two-dimensional character array, which are shown in the example
above, produce completely different access paths. In the first case there are three deref-
erence operations, whereas in the second case there are only two dereference operations.
This corresponds exactly to what the code generated by an ANSI-C compiler does in such
situations. In case of multi-dimensional arrays the compiler generates an one dimensional
array and transforms multi-dimensional array accesses to one-dimensional ones by using the
formula shown in figure 3.21. This results in a single array access and hence needs only two
dereference operations.

Such a transformation cannot be effected for the two level pointer since there are no
known dimensions of the objects pointed to. Therefore the statement accessing the two
level pointer needs an additional dereference operation.

Another assumption that has been made in the example given above concerns the align-
ment inside of structures. Here a byte-wise alignment was assumed. If e.g. a four-byte-wise
alignment had been chosen, this would have led to a different access path for s.f since the
offset of the second component would then have to be four bytes instead of just two. Besides
which, the size of the whole structure would increase from six to eight bytes in this case.

Fact 33
Every base expression is represented by exactly one fixed access path, whereas
a fixed access path may represent several different base expressions.

E.g. the expressions a[3], *(a + 3), (a + 1)[2] and 2xa[3] are all represented by the same
access path, because they all produce the same sequence of dereference operations. Assuming
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Given the definition of a multi-dimensional array and a corresponding statement ac-
cessing the array like
type arr[si][ss]...[s.];
arr(ty)[ta]. .. [tn]
with m < n, then the compiler allocates the same storage as if an one-dimensional

array like
type arr[s;-s,---Sy;

had been used. If this declaration were used, the statements accessing the array would
have to be replaced by equivalent?? statements like

arr() i (ts - []5oi4 5]

if m =n or by
&(arr[zrjr_lzl(ti ) H?:i-l—l SJ)])

if m < n.

Figure 3.21: Multi-dimensional array access

that a is a four byte pointer to a character, this leads to the access path (a,(0,4),(3,1)).
In the example given above the first three expressions are semantically equivalent, whereas
the last one differs from the others because the value resulting from the pointer dereference
operation is used as an operand of an arithmetic operation. Nevertheless the access path for
this expression is the same as for the other ones. To distinguish between these different kinds
of expressions we call expressions like the first three in our example minimal expressions.
As already mentioned before, minimal base expressions which have the same access path
always only differ in their syntax, but are semantically equivalent.

Definition 34 (minimal expression)
An expression is said to be minimal, if it either consists of a single variable, or
if the outermost operator is one of the following: "x,”, '[]’, 7.7, &>, &, .

Minimal expressions are always closely related to the objects used in the program. In
any case they either specify an addressable object or the address of an object. Non-minimal
expressions specify values that are computed by the program, but are not related to ob-
jects. Examples are the sum or the product of two values, which are neither addresses nor
addressable values in general.

Up to here, only the representation of base expressions has been discussed, and hence
the next thing to be done is to think about a way to represent a simple expressions as well.
As stated earlier, access paths have been defined in such a way that they can easily be
used to represent base expressions. Simple expressions, however, cannot be represented by
a single access path in general (if they are not base expressions). Nevertheless it is possible
to use a set of access paths to represent simple (non-base) expressions as well.

22As stated in [Ame89a] these expressions access the same memory location but differ in their type if
m < n— 1. In this case the original expression has a pointer to array type whereas the transformed one has
the type pointer to type.
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type; a[10], b;

types X,5,2;
int n;

b = a[n];
X = y*2z;

Figure 3.22: Program code containing simple non-base expressions

The difference between simple and base expressions is that simple expressions can contain
multiple variables. The code shown in figure 3.22 contains two simple non-base expressions:
a[n] and y#*z. Simple non-base expressions lead to the problem that there is no single access
path that can be used to represent these expressions. In the case of y*z there are two values
that are accessed, and hence two access paths and two minimal expressions exist which
correspond to these values. The corresponding simple expressions are y and z, the access
paths belonging to these expressions are (y, (0,sizeof(types))) and (z, (0, sizeof(types)))
respectively. However, arithmetic expressions like y*z are almost always of no interest for
the alias analysis since they are rarely used to specify memory locations. Expressions that
are not used to specify memory locations will not produce or carry the information needed to
produce new aliases. Therefore one might consider ignoring expressions like these. This will
prove fatal when expressions using the operators '+;” or "<’ are taken into consideration as
well, since they are used to manipulate pointers, and hence the expressions using one of these
operators can be used to specify memory locations. In this case ignoring such expressions
would make the whole analysis worthless since pointer manipulation is frequently used in
C programs. In the case of a[n]|, which is equivalent to *(a + n), the sum of a and n is
computed and then dereferenced. When a pointer and an integral typed value are added,
the pointer arithmetic of the C programming language computes a new pointer of the same
type as the input pointer which has a value specified by the following expression.

atn < (lype;*) (((char *) a)+ (n- sizeof (type,)))

If the value of n were constant, and hence known at compile time, the corresponding
access path would be (a, (0,4), (n - sizeof(type; ), sizeof (type; ))). Since access paths which
have offsets depending on the values of variables are not allowed, they cannot be used
to represent the expression. However, floating access paths can be used in such cases:
(a,(0,4), (77, sizeof(type;))). Now, one might think that simple expressions could as well
be represented by a single access path if unknown offset values are used. Unfortunately
this is not true in general, since it is not always clear which value is the pointer value and
which value is the offset, when two values are added. Since the C programming language
allows type casts between pointers and integral types, one cannot even rely on the type of
the expressions that are added.

The example program shown in figure 3.23 shows that integral types can hold pointer
values as well. In this program the two integer values p1 and p2 hold "pointers’ to the two
arrays al and a2. Later, either the address of al]n| or a2[n] is assigned to p, depending on
the value of c. Finally, the value of x is assigned to al[n] or a2[n]. This surely is not the
usual way a programmer would choose to gain this effect. However, there might be reasons
to do things like this (e.g. an optimised user-defined memory access management). As can
be seen from this example one does not know in general which value holds the address and
which value holds the offset when values are added. As well it becomes clear that even
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int a1[10], a2[10],x;

long int c¢,p,pl,p2,n;
pl = (long int) &(a1[0]);
p2 = (long int) &(a2[0]);
if (.. A

c=1;
} else {
c = 0;

p = (1 — c)*pl + c*p2 + n+sizeof (int);
#((int *) p) = x;

Figure 3.23: Exchanging the role of pointers and offsets

other arithmetic operands can be (mis-)used to handle pointers. In our case c is used as an
alternative to conditional statements. In the given context (1 <c)*pl 4 cp2 is equivalent
to ((c==0) 7 pl:p2).

Things like these are not explicitly allowed by the ANSI standard ([Ame89a]). Although
the ANSI standard allows type casts between pointer and integral types, the exact effects
of such type casts are not specified in detail. If the size of an integral type is big enough it
is assumed that a pointer casted into an integral type that is later cast back into a pointer
is still the same. Without this assumption the example given above will not lead to the
expected results and will hence have undefined effects.

Altogether this example shows that, given any arithmetic expression, one cannot be sure
that no pointer is hidden inside this expression. Therefore it has to be assumed that any
value is a hidden pointer. Even if pointers are added to integral typed values one will have
to take into consideration that the 'real’ pointer value might be the value which has the
integral type and vice versa due to preceding type casts. Of course the assumption that
every integral type could somewhere be used as a pointer produces many more aliases than
if this assumption would not have been made. Therefore a more precise algorithm, which
does not make this assumption is also given in section 3.2.3.4. Altogether this leads to the
fact that simple expressions cannot be represented by a single access path. However, it is
still possible to represent simple expressions by a set of access paths instead.

Now, after it has been shown how simple expressions can be represented by access paths
as well, an extended version of the function acc_path is defined. The function acc_path_set
returns the set of access paths representing a simple expression. The function acc_path_setg,
returns the same set, besides the fact that all floating access paths have been replaced by
the set of fixed access paths covered by the corresponding floating access path.

Definition 35 (access paths representing simple expressions)
Given a simple expression the function

acc_path_set : FEXPgpy. <= P(AP)

returns the set of access paths corresponding to this expression. The access
paths representing a simple expression can be found by ignoring all but one of
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‘ type H size [bytes] ‘
int i,xiptr; character 1
long int 1,«lptr; integer 2
char *cptr; long integer 4
pointer 4
‘ exp H acc_path_set(exp) ‘
cptr[i] { (eptr,(0,4),(°?7,1)) , (5,(0,2),(°?",1)) }
cptr[l] { (Cpt?“, (074)7(7?77 )) ) ( 7(074)7(7?7 )) }
*(1Ptr‘|‘1) { (lpt?“, (074)7(7?77 )) ( 7(074)7(7?7 )) }
iptr +1 { (eptr, (0,4)) , (1,(0,4)) }

Figure 3.24: Simple expressions and their corresponding access paths

the expressions variables and then computing the access path representing this
base expression. Furthermore, all offsets depending on the values of one of the
ignored variables have to be set to unknown.

The corresponding set of fixed access paths is returned by the function
acc_path_set,.

acc_path_sets, : EXPgmpe <+ P(APs,)
acc_path_selg, (exp) = {ap | Iap’ € acc_path_sel(exp)) : ap € cover(ap’)}

To make things clearer, some example expressions and their corresponding sets of access
paths are shown in figure 3.24. Note, that although the integer value i is not big enough
to hold a pointer value the corresponding access path has as well been added to the set of
access paths representing the expression.

The sets of fixed access paths have not been added to the table since they are either
equivalent to the shown sets or infinitely large in the other case. This shows one of the
major advantages of using floating access paths:

Fact 36
Given a simple expression ezp then the set of access paths corresponding to this
expression (acc_path_set(exp)) is always finite. However, the same does not hold
for the set of fixed access paths representing the expression (acc_path_setg, (exp)).

Now, that (possibly infinite sets of) fixed access paths can be used to represent base
as well as other simple expressions, we can attach a value and a location to a fixed access
path. The location represented by a fixed access path is the storage location that can be
accessed by the corresponding minimal base expressions, whereas the value represented by a
fixed access path is the value stored at this particular location. In general, neither the value
nor the location remain unchanged during the execution of the program, since the values of
variables or the values that can be referenced through variables may change. This implies
that the values and locations that are represented by a certain access path can change as
well while the program is being executed. The function loc returns the storage location
that can be accessed by a fixed access path, and val returns the value that is stored at this
location in a certain program state.
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Definition 37 (locations and values belonging to a fixed access path)

loc : APg, x STATE & LOC | wval : APg x STATE &+ VAL
with STATE C (LOC — VAL) x POS

loc(ap,st) =1 < [is the location specified by ap in state st
val(ap,st) = v & v is the value stored at the location specified
P, St} = by ap in state st
As can be seen from the above definition the two functions are always related to a certain
state of the program (st) since their values are not necessarily stable during the program

execution.

Fact 38
If there are two different fixed access paths which lead to the same location, then

the locations reachable by adding the same fixed dereference operations to both

access paths are the same as well.

(v, doy, ..., do,), (v, doy,...,do.,) € APg.,st € STATE)
loc((v,doy, ..., do,),st) = loc((v',do, ..., dol,),st)
=
V(do},...,dol, € DEROP;,)
loc((v, doy, ..., do,,doY,... do,), st)=
(

loc((v', dol, ..., dol,, doY,... dol,),st)

Fact 39
Given a simple expression exrp, a program state st and the set of fixed access

paths representing the expression (acc_path_setg, (exp)), then at least one access
path ap € acc_path_setg, (exp) exists for every value val € VAL that can be
accessed by exp, so that this value can be accessed by ap as well.

The expression exp can access the value val
=
(ap € acc_path_sets, (exp)) : wal(ap,st) = val

This is quite obvious since the access paths which represent a simple expression have
been chosen in such a way to make sure that every value that can be accessed by a given
expression can be accessed by at least one of the corresponding access paths as well.

Definition 40 (alias)
Two fixed access paths ap and ap’ are aliases (alias(ap,ap’) = true), if they
refer to the same storage location in a certain program state.

alias : APj, Xx AP, &=+ B
alias(ap,ap’) = (st € STATE) : loc(ap, st) = loc(ap’, st)
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(1) if (a>D) { if (a) b=f1;
(2) if (a==Db) a=1; else ¢ =1;
(3) else b = 2; if (a) d=1;
4) } else e = f;

Figure 3.25: Programs with non-realizable execution paths

Since aliases are always related to a certain program point, they can be divided into two
groups: those aliases that occur every time when that certain program point is reached and
those that occur only in some cases. The members of the first group are called must aliases,
whereas the members of the second group are called may aliases. The function must_alias
determines if a given alias is only a may alias or if it is a must alias.

Definition 41 (may and must alias)

must_alias : APg, x AP, &+ B

must_alias(ap, ap’) = 3I(p € POS):V(st € STATFE) :
(pos(st) = p) = loc(ap, st) = loc(ap’, st)

Definition 42 (e-alias)
A variable v is an e-alias of a variable v’, if there exist two aliased fixed access
paths ap and ap’ using these variables.

e_alias : VARgsqy X VARgs4 & B

e_alias(v,v') = J(ap,ap’ € APg;) : (alias(ap,ap’) = true)
(ap = (v, doy,...,do,))
(ap’ = (v', dol, ..., dol,))

If two variables are e-aliases, this means that at least one storage location exists that
can be accessed from either variable by the use of base expressions.

Definition 43 (execution path)
Every path through a functions CFG graph that starts at the START node and
ends with the FND node is called an execution path.

Definition 44 (realizable / non-realizable execution path)

An execution path is called realizable if it corresponds to a possible execution

of the function, and non-realizable otherwise®.

ZThe term ’realizable execution path’ has previously been used in [LR91] in relation with interprocedural
control flow graphs (ICFG) to make sure the aliases introduced on different paths through the call graph
are treated differently (call path sensitive analysis). Here it is used only for ordinary intraprocedural control
flow graphs (CFG) to distinguish between paths through a function that really can occur and those that
cannot.
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Figure 3.25 shows two example programs where non-realizable execution paths occur.
In the first program a is always greater than b when the if statement in the second line is
reached. Therefore the assignment a = 1 in this line is never executed. The second program
has two non-realizable execution paths. These execution paths are non-realizable because
the two if statements in line 1 and 3 have the same condition. Therefore it is not possible
that the assignment d = £ will be executed after the assignment ¢ = £ was executed, or
that the assignment e = £ will be executed after the assignment b = f was executed. If
the knowledge about these non-realizable execution paths is taken into account one could
securely assume that a will not be modified after the execution of the first program, because
the only statement that might modify a’s value does not appear on a realizable execution
path. For the second program this additional information leads to the fact that neither b
and e nor ¢ and d may be pointers to the same location as long as they have not already
been before the execution of the code.

3.2.1.2 Aliases computed by the algorithm

Since a precise alias analysis cannot be done within reasonable time, some restrictions have
to be made. Which restrictions have been made and why they were chosen will be explained
in the following. The following facts outline the kind of alias analysis that is performed.

When a function is being analysed
e it is assumed that every execution path is realizable
o track it is not kept of the conditions leading to a certain alias

e only may aliases are collected

As can be seen from the examples given previously, there may be non-realizable execution
paths. Nevertheless, it is assumed that every execution path is realizable because the loss
of precision that is caused by this assumption does not justify the additional costs resulting
from detecting all non-realizable paths. If one would like to detect all non-realizable exe-
cution paths, it would be necessary to find out under which circumstances the expressions
used as the conditions of statements controlling the control flow?* become true or false.
Since the alias calculation would then depend on the calculation of these conditions as well
as the calculation of these conditions would depend on the aliases, it would be necessary to
repeatedly compute both of them until stabilisation is reached. This would then lead to a
considerable increase in costs of the algorithm.

To get even more precise results one would have to deal with conditional aliases instead
of may aliases. This means that all the found aliases are related to a condition under which
the alias may occur, instead of simply keeping track of those aliases that may occur. Besides
the fact that every execution path is assumed to be realizable, track it is not kept of such
conditions or of the execution paths on which the aliases depend. This means that the alias
analysis is not execution path sensitive. In case there are two may aliases, each of them
introduced by a different branch of an if statement, it is nevertheless (falsely) assumed
that both of them can occur at the same time after the if statement was executed. The

24E.g. expressions used as the conditions of if or while statements
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computation of conditional aliases would significantly increase the costs of the algorithm
and has hence been omitted.

Since the computation of must aliases depends on the calculation of conditional aliases
it has to be omitted as well. Strictly speaking a must alias analysis can only be performed
if the analysis is execution path sensitive. Therefore only may aliases will be computed.

As stated in [Hor97], it is not possible to compute the smallest possible set of flow-
insensitive may aliases with reasonable time and space costs anyway, and therefore some
losses of precision in favour of reasonable costs are unavoidable. Furthermore, it was shown
in [LRI1] that in the presence of two level pointers the problem of determining precise
intraprocedural may alias sets is N"P-hard.

There are other alias analysis algorithms that do not need the restrictions made here.
E.g. in [CBC93] and [Deu94] execution path sensitive algorithms are presented. Here the
aliases are propagated through the CFG graph. The restrictions that have been made
here are strongly related to the fact that our analysis is based on a static memory model
representation instead of a collection of aliased access paths or similar approaches.

The major advantage of our algorithm (that there are only very few restrictions to
the C programming language) results in extreme increases in costs if the above-mentioned
restrictions are not made. However, this is not very astonishing since there always is an
interaction between precision, costs and restrictions of an algorithm and it is not possible
to get along without some compromises.

3.2.2 Function interface graphs

Basically, there are two different concepts used by alias analysis algorithms: the first one is
based on sets of aliased expressions that are propagated along the edges of the control flow
graph, whereas the second one is based on some kind of memory representation. Function
interface graphs belong to the second group. They can be used to find the aliases that
are generated by a certain function. Once a function interface graph has been built it
summarises all the effects to the memory that might occur during the function execution.

In many cases the function interface graph contains more information than necessary for
the following interprocedural analysis parts. E.g. aliases between non-static local variables
that may be introduced during the function execution are only of interest for the function
itself but not for the rest of the program. This is because they are not able to affect the aliases
between other variables of the calling function(s). In such cases it is sometimes possible to
remove superfluous parts of the function interface graphs before they are combined during
the interprocedural analysis parts. Nevertheless this has to be done with great care since
storage locations that can be accessed by one of the non-static local variables could be
affected by other variables as well. Therefore it is necessary that every possible modification
of data accessible by global variables or by function parameters is still represented in the
reduced function interface graph. Additionally, one has to represent the information about
the parameters that are passed to those functions as well as the actual values of all global
variables, since all data accessible through these parameters / variables could be modified
by the called functions. This is necessary since the effects of other functions that are called
by the actually processed function cannot yet be considered in general since it might be
that these functions have not been analysed yet.

Our representation of a functions effects is based on values and references between those
values. This is quite similar to the representation with storage locations like those used
in [CWZ90, HPR&9, LHS88], but there are some advantages in representing values instead
of locations. Anyway, there are only slight differences between values and locations in C
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long int *iptr,i1,i2;

float f;

il = 5;

iptr = &il;

f = (float) ((long int) iptr);

i2 = #((long int *) ((long int) f));

Figure 3.26: Float value used as a "pointer’
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Figure 3.27: Representation using storage locations / values

since values are in many cases used as the addresses of locations (pointers). Since the use of
pointer variables and cast operations is hardly restricted?®, every value must be supposed
to be used as a pointer sometime. Therefore it is not possible to rely on the type of an
expression, if one wants to determine whether it is a pointer or not. Even if a variable is
an integer or a float, it may be transformed into a pointer value and be dereferenced then.
Figure 3.26 shows a small example where a float is used to store the address of a storage
location?®.

Figure 3.27 shows the differences between the representation using values and the one
using locations for a simple assignment like a = b. If the value representation is used, there
are two nodes for the addresses of the two variables and another one which holds the value of
the variables itself. This ensures that whenever one of the two variables is accessed (e.g. by
«a) the used value is the same as if the other variable was chosen. The annotations on top of
the edges are the corresponding dereference operations. Here the last component (the size
of the value) has been omitted. This is done to keep the example as simple as possible and
hence easier to survey. Several of the following examples are reduced in a similar manner
whenever parts of the information are not relevant.

If the location representation is used it becomes more complicated to represent the
effects of the assignment statement. Since the locations where the values of a and b are
kept do not change, the corresponding nodes remain unchanged as well. The only effect
of the assignment is that the same data can be accessed by those variables after it has
been executed. Therefore it would be necessary to ensure that every location reachable by
b, will now be reachable by a with exactly the same sequence of dereference operations.
Remember that if the locations reachable by a single dereference step are the same all the
other locations reachable by multiple dereference steps are the same as well. Since it is not

*Many other programming languages (e.g. Pascal) are much more restrictive concerning their pointer
manipulation constructs. Even if pointer manipulation is possible it is less frequently used in such languages
because it is much more complicated. Unlike these languages, the C programming language encourages the
user to use pointers extensively, and in many cases it is not even possible to avoid pointer usage.

26This is based on the assumption that the size of long integers is at least equal to the size of pointers
and that type casts from integral types to pointers and back do not modify the pointer value.
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SO

Figure 3.28: Representation of statement *(a 4 b) using value and reference nodes

known in advance which dereference operations will be used, it is comparatively complicated
(and less efficient) to make sure that the accesses to other locations through a and b have
the same effects. Another disadvantage of the second representation is that the addresses
of variables neither are locations nor are they stored at any location. Hence they do not fit
as naturally into the representation as they do when using the value representation.

Even if the value representation is used, there are some cases where it is necessary
to make sure that the same values can be reached with the same sequence of dereference
operations starting at two different values. This is quite similar to the problems with the
location representation described above. E.g. if a statement like *(a 4+ b) = ¢ occurs one
does not know exactly which variable plays the role of the pointer and which one is the offset
value. Therefore both variables have to be treated alike, which means that both variables
are treated as if they were the pointer value. Here pointer value means the value holding
the address of a memory location. As long as the user does not ensure that only variables
with pointer type hold such addresses, it is not possible to benefit from the variables type
information. Only in cases where the user guarantees that no memory addresses are kept in
non-pointer type variables, the variable with integer type can be safely ignored. In order to
efficiently handle cases where such a promise is not given, two different kinds of nodes are
used: value nodes and reference nodes. Value nodes represent the values itself whereas the
reference nodes collect all the references between different value nodes.

If the case described above arises, and we have to make sure that two value nodes share
the same references, this can be done by sharing the same reference node. Figure 3.28 shows
an example where the values reachable by the variables a and b are exactly the same even
though the values of the variables itself are not equal. Here and in the following examples
boxes are used to represent value nodes, whereas circles are used for reference nodes. Since a
and b share the same reference node, every future change to the values referenced by either
variable automatically affects the values referenced by the other variable as well.

Definition 45 (function interface graph)
A function interface graph fig € FIG is an annotated directed multi-graph fig =
(V, E) where the functions

sre + KoV o) dst @ Es-sV
return the source and destination node of an edge respectively. The node set
V. = VNURN with VNNREN =9

contains the two different types of nodes: value nodes (VN) and reference nodes

(RN). The set of edges

FE = VREURVE with
V(ee VRE) : src(e) € VN A dst(e) € RN and
V(e€e RVE) : src(e) € RN N dst(e) € VN
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contains two different types of edges: links (VRE) and reference edges (RVFE).
Furthermore, there are functions returning the annotations

vars : VN <= P(VARgsa)
derop : RVE - DEROP
off : RVE & OFF
gen : RVE &= GEN | where GEN = {'i',"d' }

and the following additional conditions hold

Y(vn € VN) : |{e|le€ ENnsrele)=wn}| < 1

Vie,e' € Eye#¢€') 1 sre(e) # sre(€)) V  dst(e) # dst(e€') V
off (e) # off (¢') Vv derop(e) # derop(e’) V
gen(e) # gen(€')

Unlike usual graphs, multi-graphs do not allow identification of an edge by its source
and destination node, since there may be several different edges connecting the same node.
Hence it is necessary to have two functions which return the source and destination nodes
for each edge (sr¢ and dst). As can be seen from the definition there are four functions
used to access the different annotations of the function interface graph. The first of these
functions (vars) accesses the annotations of the value nodes, whereas the following three
functions, namely derop, off and gen, access the annotations of the reference edges. The
meaning of these annotations will be explained in detail soon.

As can be seen from the definition, the function interface graph has two different kinds
of nodes: value nodes (VN) and reference nodes (RN). As well there are two different kinds
of edges: those pointing from a reference node to a value node and those pointing from a
value node to a reference node. The edges pointing from reference nodes to value nodes are
called reference edges (RVE), whereas the other ones are called links (VRE). There are no
edges pointing from reference nodes to reference nodes or from value nodes to value nodes.

The last part of the definition shows two additional properties of function interface
graphs: the first ensures that there is never more than one link connected to a value node,
whereas the second ensures that even though there may be multiple reference edges con-
necting the same nodes, there will not be two such edges which have exactly the same
annotations.

The reference nodes are only used to make it easier (and more efficient) to let value
nodes share the same references. Logically they build a unit together with each value node
that has a link connected to them, since they contain the references belonging to those value
nodes. Therefore only one link always exists which is connected to a value node. Unlike
reference edges the links do not represent dereference operations.

As already mentioned before, there are four functions which access the different anno-
tations of the value nodes and reference edges. The first of these functions (vars) returns
a set of variables annotated to each value node. This set relates the value nodes used to
represent the values of variables to these variables. A variable is annotated to a value node
if the value node is used to represent the address of that variable. Many value nodes do not
represent a variables address, and hence the corresponding set is empty in this case.

Besides the annotations of the value nodes, the function interface graph holds some
additional information which is annotated to the reference edges. This information can be
accessed using one of the functions described above. First, there is the kind of dereference
operation that belongs to the edge, which can be accessed using the derop function, second
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derop

|

N

gen off

Figure 3.29: Information annotated to reference edges

&b :0(—8)» 1
0
&azo (6)

int xa, xb;
a = b+43;

Figure 3.30: Assignment producing a non-zero offset value

there is an additional offset accessible by the off function, and finally there is the generation
mode annotation which is returned by the gen function.

As a convention, the dereference operation is always written above the reference edges,
whereas the value of the generation mode annotation and the additional offsets are writ-
ten below the edges. As long as they are not really necessary, some of the annotations
are omitted in the following examples. Only those annotations that are essential for the
understanding are included to prevent the examples from getting unnecessarily complex.
Figure 3.29 shows an example edge with all its annotations.

3.2.2.1 Offset annotations

The offset attached to the reference edges is useful when the sum of a value and a constant
appears on the right hand side of an assignment. The example in figure 3.30 shows the
graph that is generated for the assignment statement a = b 4 3. Since the value assigned
to a is not the value of b itself, but there is a constant (3) added to this value, this has to
be taken into account as well?”. This constant value is stored in the offset annotation of the
edge pointing to the value of b (value node 1). By doing so, it is now possible to distinguish
between an access via a and b. Even though the access to these variables leads to the same
value node (1) in either case, they differ in the annotations along the paths that have been
used. If a will be used later we can take advantage of the stored information.

The example from figure 3.31 shows what happens if an assignment using a (like *a = ¢)
comes next. Since a was used instead of b, the newly generated reference edge does not
have a dereference operation annotation (0), as it would have had for b, but (6) instead.
This reflects the fact that both a[0] and b[3] access exactly the same memory location.

3.2.2.2 Generation mode annotations

During the building process of the function interface graph there are two different situations
under which a new edge is created and added to the graph. In the first case a value was

?TLike in the previous examples we assume an integer size of two bytes, which leads to an overall offset

of 3 -2 =6 bytes.
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(0) (6)
int xa,*b, c; (0)
a = b+3; &aIQ 5
xa = c;
0
o=

Figure 3.31: Assignment using the non-zero offset value

0 0
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xa="b induced edge assigned edge

n=_ 1(% 2

Figure 3.32: Induced and assigned reference edges

dereferenced, and there was no suitable value node and edge representing that particular
dereference operation available. In this case a new value node is generated and connected
to the value node that is to be dereferenced via a new reference edge. Fdges like this newly
generated one are then called induced edges. The second case are those edges that are
generated when the effect of an assignment has to be represented. Assignment statements
assign a new value to exactly one location?®. This is represented by adding a new reference
edge from the value node corresponding to the address of this location to the value node
corresponding to the newly assigned value. Such an edge is then called assigned edge.

Fact 46
An assignment statement can cause the creation of arbitrary many induced
edges, but there will always be only one assigned edge that is created.

The example shown in figure 3.32 demonstrates which kinds of edges are created for
an assignment statement like *a = b, under the precondition that no information on both
variables is available yet??. In this assignment the values of a and b are read, whereas the
value of *a is modified (set to the value of b). As can be seen from the example, assigned
edges are marked with an ’a’, whereas induced edges are marked with an ’i’. Since no
previous information on a and b was available, two induced edges had to be generated to
make the values of a and b (value nodes 1 and 2) accessible. After a is accessible, the effect
of the assignment, namely changing the value of *a, can be handled by adding a reference

edge from value node 1 to value node 2. In fact there is not really a reference edge between

28The C programming language allows multi assignment statements like a = b = ¢, but those statements
are transformed into multiple separate statements by the SUIF compiler. Therefore it is not necessary to
take such effects into account. Under this condition it can be safely assumed that every statement contains at
most one assignment operator, and accordingly there is only one value changed then. Note that statements
like a + + are assignment statements as well.

2°This means that there are no nodes representing the values of either a or b yet.
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these value nodes. Instead the reference edge connects the reference node belonging to value
node number 1 with the value node number 2. For reasons of simplicity, we nevertheless
speak of value nodes being connected by reference edges in such situations.

3.2.3 Building the function interface graph for statement se-
quences belonging to the same CFG node

When a function is analysed this is done within two major passes. The first pass analyses
the code sequences belonging to a single CFG node and builds the corresponding function
interface graphs. During the second pass, which will be described in section 3.2.4, the
function interface graphs of the different CFG nodes are merged.

When the process of analysing a sequence of statements belonging to the same CFG
node starts, the corresponding function interface graph is empty. Even though there might
be some information about the used variables available from other previously analysed CFG
nodes, this information is not taken into account at this stage. Instead this is left to the
second pass where the function interface graphs are merged. Whenever a previously unused
value is used, new nodes, links and edges are added to the graph if necessary.

Since assignment statements are the only kind of statements at this stage that can intro-
duce new aliases, it is sufficient to analyse only these statements. Of course, function calls
can introduce new aliases as well, but those aliases are handled during the interprocedural
part of the analysis. This leaves the assignment statements as the only ones of interest for
the moment. Other statements like jump and branch instructions do not have to be taken
into account, because their effects are already summarised by the CFG graph.

3.2.3.1 The attribute grammar generating the function interface graphs

The algorithm used to compute the function interface graphs for a statement sequence
will now be defined. This is done using the previously described extension of attribute
grammars. As already mentioned before, attribute grammars do not specify the order in
which the computations of the attributes have to be performed. A corresponding order is
given right after the definition of the attribute grammar.

The grammar does not take operator precedence, l-value or type information into ac-
count, since it is only used to describe the algorithm that is used after the syntax tree has
already been built. All the necessary type and l-value checks have been performed at that
stage and the operator precedence is implicitly given by the tree structure. This prevents
the grammar from getting unnecessarily complex. Only such matters are handled by the
grammar that are directly related to the alias analysis, and all the standard problems like
l-value and type checks can be safely ignored here.

The language that is described by the grammar consists of sequences of simple assignment
statements. Not all operators that are used in the C programming language occur in the
grammar definition. This is done because

e the operator is only a syntactical shortcut for a sequence of other operators ("++’,
7::::77 7_|_:77 7@:77 7*:77 7/:77 7(%):77 7<<:77 7>>:77 7&:77 7|:77 7/\:77 7[ ]77 7©>7)
or
e the operator produces side-effects, respectively, takes influence on the control flow
(7( )77 7 :7)30‘

3%Here ()’ stands for the function call operator. This should not be mistaken with the cast operator
which is written as ’(...)".
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Expressions containing the first mentioned kind of operators can be treated correctly by
simply transforming them into equivalent expressions not using these operators. In the
second case, the statements have already been normalised (see chapter 2) and can therefore
be ignored here. Besides that, the sizeof operator does not occur in the grammar, since it
is assumed that it has already been replaced by the corresponding constant value. Further
the cast operator ’(...)" is treated as an unary operator. The second parameter (the type
to which the expression will be converted) is left out since it will not influence the analysis.
Since the type of all (sub-)expressions is already determined before the algorithm starts, it
is not necessary to analyse the part of the type cast that specifies the destination type.
There is only one thing left that needs exceptional handling by the grammar: dynamic
memory allocation. There are three functions that can be used to allocate a new block of
memory: malloc, calloc and realloc. Unlike usual function calls that will be handled
during the interprocedural part of the analysis, these functions have to be taken into consid-
eration by the grammar as well. The first two of them return a new and uninitialised block
of memory, whereas the third one returns a new block of memory that has been initialised
by copying the memory from the old block. The grammar treats malloc and calloc as
unary operators (ALLOC') where the argument specifies the size of the memory block to be
allocated®'. Therefore calloc has not to be treated explicitly, and it is sufficient to have one
operator representing both functions. realloc is treated as a binary operator (REALLOC)
where the first argument is the old memory block and the second argument is the new size.

G = (T,N,SEQ,P) with
T = { CONST, VAR, COMP, ALLOC, REALLOC, ™, '+, &, 1",
7*u77 7&u77 7‘ 77 7(‘ . ‘)77 7_|_b77 7<:%77 7*b77 7/77 7(%)77 7<<77 7>>77 7&[)77
7|77 7/\77 7>77 7<77 7>:77 7<:77 7::77 7!:77 7&&77 7||77 7:7 }
N = { SEQ, STMT, VAL, UNOP, BINOP }

P = { SEQ &> STMT | STMT SEQ ,
STMT & VAL =" VAL |
VAL & VAR | CONST | UNOP VAL | &, VAL |
) VAL | ALLOC VAL | VAL *." COMP |
VAL BINOP VAL | REALLOC VAL VAL ,

UNOP &+ ™ | 4,0 | & |70 (),

B]NOP @_> 7_|_b7 | 7<:%7 |7*b7 | 7/7 | 7%7 | 7<<7 | 7>>7 | 7&[)7 |
7|7 | YN | 7>7 | 7<7 | 7>:7 | 7<:7 | 7::7 | 7! :7 |
L&

The sets A;.p, Agyn and Ajy,y containing the inherited, synthesised and intrinsic attributes
will be defined next.

A = Ainh U Asyn U Aim‘

Ainn { VAL.deref, VAL.str_off, VAL.csize }
Asgn = { VAL.addr, VAL.val, VAL.add_off, VAL.derop, VAL.cval }
Ay = { CONST.cval, CONST.strid, UNOP.ufunc, BINOP.bfunc, VAlL.type,

COMP .str_off, VAR.id }

3lcalloc(n,t) can in any case be transformed into malloc(n - sizeof(t)). The only remaining difference
between these two function calls is that calloc initialises the memory by setting each byte to zero. However,
since this does not affect the analysis this effect can be ignored.
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The purposes of these attributes are shortly described below. Further the range of the values
is defined for every attribute.

o VAL.addr € (VN U {nil}) : value node belonging to the address of the sub-

expression (if the sub-expression holds a value having an address)
o VAL.wal € (VNU{nil}): value node belonging to the value of the sub-expression
o VAL.add off € OFF : the constant value added to or subtracted from a value

o VAL.derop € (DEROP U {nil}) : last applied dereference operation of a sub-
expression (if one exists)

o VAL.cval, CONST.cval € (RU{nil}) : constant value®® (if the sub-expression is
an integer or float constant)

o CONST.strid € N : unique number identifying the n’th string constant in a
program, value is zero for integer and floating point constants

o VAL.deref € B : indicates if the sub-expression has to be dereferenced (this has
to be done if it is used as the argument of a "+,” operator or occurs on the right
hand side of an assignment)

o VAL.strooff, COMP.strooff € Ny : the offset used to get to the position of a

component inside a structure or union®® measured in bytes

o VAL.csize € N: the size of the sub-component if a component of a structure or
union is processed, the size of the actual sub-expression’s type otherwise

e UNOP.ufunc € (R — R) : the unary function belonging to the unary operator

e BINOP.bfunc € (R x R — R) : the binary function belonging to the binary

operator

o VAL.type € TYPE : the type of a sub-expression where TYPFE is the set of
possible types used by the C programming language

o VAR.id € ID : a reference to an identifier contained in a symbol table®*

Now the attribute computations as well as the plain computations will be described. In
the following only those productions are listed that have a non-empty AC or PC set. All
other productions do not have any computations related to them. Furthermore all AC and
PC sets that are not explicitly mentioned here are assumed to be empty. Symbols which
occur more than once in a production are marked with subscripts to distinguish between
them.

32Here R is used as the set of floating point values that can be represented by a computer, which is in
fact only a finite and hence enumerable subset of the 'real’ R.

33Gince the components of unions overlap and use the same storage the position is always zero in this
case.

34Gince the same identifier can be used for more than one variable if they are defined in different scopes,
a reference to the symbol table is used to identify the variables. This ensures that even those variables with
the same name can be clearly identified by this attribute.
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The attribute computations modify the function interface graph that represents the
effects of the corresponding statements. It is assumed that fig is the function interface
graph currently being processed. Hence all nodes and edges generated by the grammar
rules are added to this graph.

A closer look at the following attribute computations shows that there are dependen-
cies between synthesised attributes of the same symbol. However, they do not cause any
problems because they do not lead to circular dependencies. In fact they could be avoided
if necessary, but it makes the attribute computations smaller and easier to understand if
they are used nevertheless. They do not influence the order in which the rules are applied
because all these dependencies are non-circular and local to the attribute computations,
which means that they do not lead to new dependencies between the different rules. There
are several possible ways to compute these attributes. In any case they can be computed in
order of appearance.

AC(STMT — VAL, =" VAL)) = {
VAL, .deref = false
VALy.deref = true
VAL .strooff = 0
VALy.stroff = 0
VAL .csize = size(VAL;.type)

VALs.csize size( VALqy.type)

}

PC(STMT — VAL, =" VAL:) = {
assign( VAL .addr, VAL, .derop, VALs.add _off , VAL .val)

}

AC(VAL — VAR) = {

VAL.addr = wvar-node(VAR.id, fig)
VA L.val = if (VAL.deref) deref(VAL.addr,(VAL.str_off, VAL.csize))
else nil
VAL.add_off = if (VALwal # nil) get_off (VAL.addr, (VAL.str_off , VAL.csize))
else VAL.str_off
VA L.derop = (VAL.strooff, VAL.csize)
VAL.cval = ni
} 1

AC(VAL —s CONST) = {

VAL.addr = ni

VA L.val = get_str(CONST .strid)
VAL.add off = %

VAL.derop = ni

VAL.cval = CONST.cval

}

AC(VAL, — UNOP VALy) = {

VAL .addr = nil

VAL4 .val = VALs.val

VAL .add off = if (UNOP.ufunc = (...)) VALs.add_off else ¢’

VAL, .derop = ni

VAL .cval = if (VALs.cval # nil) UNOP.ufunc(VALy.cval) else nil
VAL, .deref = VAL, .deref

VALy.str_off = 0

VALs.csize = size(VALy.type)
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AC(VAL1—>7*U7 VALQ) = {
VAL .addr = VALs.val

VAL .val = if (VAL .deref)
deref (VALg.val, (VALg.add _off + VALy.str_off , VAL .csize))
else nil
VAL .add_off = if (VALj.val # nil)
get_off (VALg.val, (VALy.add _off + VAL, .str_off, VAL; .csize))
else ¢’

VAL, .derop = (VALs.add_off + VAL, .str_off, VAL, .csize)

VAL, .cval = nil

VALs.deref = true

VALs.strooff = 0

VALs.csize = size(VALy.type)
}
AC(VAL, — &, VAL)) = {

VAL .addr = nil

VAL .val = VALs.addr

VAL .add_off = VALs.add_off

VAL .derop = ni

VAL, .cval = nil

VALs.deref = false

VALs.strooff = 0

VALs.csize = size(VALy.type)
} VIl

AC(VAL, — ALLOC VALy) = {

VAL .addr = nil

VAL .val = new_value_node(fig)

VAL .add_off = 0

VAL .derop = ni

VAL, .cval = nil

VALs.deref = true

VALs.strooff = 0

VALs.csize = size(VALy.type)
)
AC(VAL, — VAL, >.0 COMP) = {

VAL .addr = VALs.addr

VAL .val = VALs.val

VAL .add off = if (VALy.deref) 0 else VALs.add_off + COMP .str_off

VAL .derop = VALs.derop

VAL, .cval = nil

VALs.deref = VAL, .deref

VALs.str_off = COMP.str_off + VAL, .str_off

VALs.csize = size(VAL;.type)
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AC(VAL, — VAL, BINOP VALs) = {

VAL .addr = nil
VAL .val = if ((VALgs.cval = nil) and (VALs.cval = nil))
bin_join(VALg.val, VALz.val)
else if (VALs.cval = nil) VALs.val
else if (VALs.cval = nil) VALs.val
else nil
VAL, .add_off = if (BINOP.bfunc € {+,—1})
if ((VALy.cval = nil) and (VALs.cval # nil) and
(VALg.add off #°27))
if (is_pointer( VA Ls.type))
BINOP .bfunc(VALs.add _off , ptr_size( VA Ls.type) - VALsz.cval)
else BINOP.bfunc(VALs.add_off , VALs.cuval)
else if ((VALs.cval # nil) and (VALsz.cval = nil) and
(VALs.add off #°27))
if (is_pointer( VA Ls.type))
BINOP .bfunc(VALs.add _off , ptr_size( VA Ls.type) - VALs.cval)
else BINOP.bfunc(VALs.add_off , VALs.cuval)

else ¢’
else ¢’
VAL, .derop = ni
VAL .cval = if ((VALga.cval # nil) and (VALs.cval # nil))
BINOP .bfunc(VALs.cval, VALg.cval)
else nil
VAL, .deref = VAL, .deref
VALs.deref = VAL, .deref
VALy.str_off = 0
VALs.str_off = 0
VALs.csize = size(VALy.type)
VALs.csize = size(VALs.type)

AC(VAL, — REALLOC VAL, VALs) = {

VAL .addr = nil

VAL .val = realloc_val_node( VA Lg.val)
VALy.add off = %

VAL, .derop = ni

VAL .cval = nil

VAL, .deref = true
VALy.str_off = 0

VALs.csize = size(VALy.type)
VALs.deref = true
VALs.str_off = 0

VALs.csize = size(VALs.type)

)

Dynamic memory allocation / deallocation
As already mentioned before, the functions that are used to allocate or deallocate memory
need exceptional treatment differing from the treatment of other functions. The effects of
the functions malloc, calloc and realloc are handled by the grammar rules. On the
contrary, the effects of the function free do not have to be treated by the grammar. This
is because the free function does not affect the function interface graph, and hence calls of
free can be ignored completely.

The two rules related to dynamic memory allocation (VIII and XI) are rather simple.
In case of memory allocation (rule VIII) only a new value node has to be generated to
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represent the values contained in the newly allocated memory area. The rule handling
realloc statements (XI) is only slightly more complicated. Since it is possible that values
stored in the previously allocated memory block are used as pointers pointing to other
locations, it could be that these values will again be used to access these memory locations
after they have been copied to the new memory block. Therefore it is necessary that the
value nodes representing the new and the old memory block share the same reference node
after the realloc statement has been processed. The definition and explanation of the
realloc_val_node function that will follow soon show the further details.

As can be seen there is no big effort necessary to integrate the concept of dynamic
memory allocation. Dynamic memory allocation causes that few problems because it fits
quite naturally into the concept of function interface graphs.

Exemplary grammar rule explanation

Since the different purposes of the various attributes have already been explained, not every
single attribute grammar rule is explained explicitly. Nevertheless one rule is picked out as
an example and explained in detail in the following, just to make things clearer.

One of the more interesting rules is rule VII which handles the address operation. The
expression related to this rule (VAL;) applies the address operation to a sub-expression
(VAL,). The address operator returns the address of the memory location that holds the
value of the sub-expression. This is reflected by the fact that the wval attribute of the
expression receives the value of the addr attribute of the sub-expression. The value returned
by the address operator is not an addressable value itself. Therefore the addr attribute of
the expression is set to nil. Since the address operation cannot only be applied to simple
variables, but as well to structure and union components, the additional offset resulting
from non-null component offsets of structure components has to be taken into account here.
This is done by copying the add_off attribute of the expression to the attribute of its sub-
expression. The derop attribute as well as the cval attribute are set to nil since the last
operation neither was a dereference operation nor was the expressions value an integer or
float constant. Further the deref attribute is set to false because the sub-expression does
not has to be dereferenced. Since the sub-expression does not describe the component of
a structure or union, its str_off attribute can be set to 0. Finally, the size of the sub-
expressions type is assigned to the csize attribute of the sub-expression.

Now the definition of the attribute grammar is almost complete, and the only things still
missing are the definitions of the functions that have been used by the grammar computa-
tions. These function definitions will be given and explained in the following.

Functions used by the different grammar computations

There are various functions used by the grammar computations that have not been explained
yet. Besides the functions used by the grammar computations there are two more functions
that have to be defined since they are used by the other functions. These functions are the
unite and the get_ref_node function.

Besides some rather complex functions that will be defined and explained in detail soon,
there are as well some very simple functions that will not be defined. For the latter only a
short description of their purposes will be given. The following list gives an overview of the
purposes of these simple functions.
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size(t) : returns the size of type ¢

ptr_size(t) : returns the size of the type pointed to by the pointer
type ¢

is_ordinal(t) . checks whether type t is an ordinal type (character,
integer or float) or not

is_pointer(t) : checks whether type t is a pointer or non-pointer
type®

get_str(n) : returns the value node belonging to a string con-
stant identified by the number n, returns nil for non-
strings

new_value_node(fig) : adds a new value node to fig and returns it

new_reference_node(fig) . adds a new reference node to fig and returns it

new_link (fig) : adds a new link to fig and returns it

new_reference_edge(fig) : adds a new reference edge to fig and returns it

delete_value_node(fig,n) . deletes the value node n from fig

delete_reference_node(fig,n) : deletes the reference node n from fig

delete_link (fig, 1) : deletes the link [ from fig

delete_reference_edge(fig,e) : deletes the reference edge e from fig

The analysis always starts with an empty function interface graph. It then generates nodes
and edges for the different statements. The functions new_value_node, new_reference_node,
new_link and new_reference_edge are used to add new nodes and edges to the function
interface graph. The edges (links and reference edges) are not connected to the nodes when
they are newly generated, and their source and destination nodes as well as their annotations
have to be specified by statements like edge.sre = node’. If a node or edge has to be removed
from the function interface graph this can be done by using the functions delete_value_node,
delete_reference_node, delete_link and delete_reference_edge.

Addition and multiplication operations within OFF

The first two functions that are defined explicitly here are used in the attribute computations
of the rule handling the pointer dereference operations (’+,’). They are the extended versions
of the addition and multiplication operation. Since the additional offset annotation (add_off)
can have any value contained in the set OFF, the two functions have to deal with the value
representing unknown offsets (7¢7) as well. They are defined as follows:

Definition 47 (addition and multiplication within OFF)

4+ : OFF x OFF & OFF -+ OFF x OFF &= OFF
Ly = a+b ifa,beZ = a-b ifa,beZ
“ o 797 otherwise “ o 7?7 otherwise

Value nodes belonging to a variable

Another function that has been used by the grammar rules is the var_node function. This
function is shown in figure 3.33. It takes a SSA variable and a function interface graph as
its input and returns the value node belonging to the variables address, if such a node exists

35Note that array types are treated as pointers, and hence the is_pointer function returns true for arrays
as well.
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(1)

) {

(3) if (A(vn € fig.VN) : (var € vn.vars)) {
(4) on = new_value_node(fig);

(5) vn.vars = {var};

6) 7}

(7) return wvn;

(8) 3

Figure 3.33: Function returning the value node representing the address of a variable

(7). In case no such node exists a new node will have to be created first, and marked as the
node belonging to the address of the given variable afterwards (4,5). After that this node
will be returned.

The unite function

In some cases it becomes necessary to unite two or more nodes, which is done by the
unite function shown in figure 3.34. In case the nodes to be united are value nodes, the
corresponding reference nodes have to be united as well (4,5). This ensures that there is
always only one reference node belonging to a value node in any function interface graph. In
either case a new node will be generated that will be used as the result of the union function
(6,8). In the case of value nodes the newly generated node will represent all the variables
addresses that have formerly been represented by one of the nodes that have to be united
(7). In any case, all edges connected to one of the nodes to be united have to be updated
and connected with the new node (9-11). Afterwards, the now superfluous nodes will be
removed from the function interface graph (13-16). Since it is possible that due to the union
of the nodes there are now edges having exactly the same annotations, the duplicate edges
have to be removed (18-23). Finally, the newly generated united node will be returned (25).

The get_ref node function

The get_ref-node function, which is shown in figure 3.35, is used when it becomes necessary
to access the reference node that is connected to a certain value node (e.g. if a new reference
edge has to be added). If a link already exists from the given value node (src_node) to a
reference node, this node is returned (4). Otherwise, a new reference node as well as a new
link have to be generated and connected to the value node (6-9). Afterwards either the
existing reference node found or the newly generated reference node can be returned.

The realloc_val_node function

This really simple function is used to represent the effects of a realloc function call. Its
only parameter is the value node representing the previously allocated memory. First a
new value node representing the newly allocated memory is generated (3). Then, if there is
a value node representing the previously allocated memory (4), the newly generated value
node is connected to the reference node belonging to the other value node (5-7). Finally,
the newly generated value node representing the memory returned by the realloc function
is returned. All this has to be done to make sure that the value nodes representing other
locations which can be accessed from the previously allocated memory, can later be accessed
from the value node representing the newly allocated memory as well. Exactly this can be
achieved by letting the two value nodes share the same reference node.
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function unite(node_set)

if (node_set C fig.VN) {
ref _node_set = {n € fig.RN | (e € fig. VRE) : (e.src € node_set) A (e.dst =n)};
unite(ref _node_set);
unite_node = new_value_node(fig);
unite_node.vars = Upepode_set 1. VATS;
} else if (node_set C fig.RN) unite_node = new_reference_node(fig);
for all (e € fig.F) {
) if (e.src € node_set) e.src = unite_node;
) if (e.dst € node_set) e.dst = unite_node;
)}
) if (node_set C fig.VN) {
) for all (n € node_set) delete_value_node(fig, n);
)} else if (node_set C fig.RN) {
) for all (n € node_set) delete_reference_node(fig, n);
)}
) while (3(e, € € fig. VRE) : (e.src = €' .src) A (e.dst = €' .dst)) {
) delete_link(fig, €');
)}
) while (3(e, e’ € fig.RVL) : (e.src = €' .src) A (e.dst = €'.dst) A (e.derop = €’.derop) A
) e.off = € .off ) A (e.gen = €’.gen)) {
) delete_reference_edge(fig, €');
)
)
)

}

return unite_node;

Figure 3.34: Function used to unite the nodes of a function interface graph

(1) function get_ref-node(src_node)
) 1

(3) if ((e € fig.E) : e.src = src_node) {
(4) rn = e.dst;

(5) } else {

(6) rn = new_reference_node(fig);
(7) [ = new_link(fig);

(8) l.src = src_node;

9) l.dst = rn;

(10) )

(11)  return rn;

(12) }

Figure 3.35: Function returning the reference node belonging to a value node
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1) function realloc_val_node(old_node)
%) |

3 new_node = new_value_node(fig);
4 if (old_node # nil)

5 e = new_link(fig);

e.dst = get_ref-node(old_node);

}

return new_node;

)
)
)
)
)
) e.stc = new_node;
)
)
)
0

)}

(1) function assign(src_node, derop, off, dst_node)

) 1

(3) if ((src_node # nil) and (dst_node # nil)) {

(4) rn = get_ref-node(src_node);

(5) if (A(e € fig.RVE) : (e.src = rn) A (e.dst = dst_node) A (e.derop = derop) A
(6) (e.off = off) A (e.gen ="a')) {
(7) e = new_reference_edge(fig);

(8) e.s7¢ = rn;

9) e.dst = dst_node;

(10) e.derop = derop;

(11) e.off = off;

(12) e.gen ='d";

13 )

(14 )

(15) }

Figure 3.37: Function computing the effects of assignments

The assign function

The assign function shown in figure 3.37 adds a new reference edge to the function interface
graph to represent the effects of an assignment statement. However, this is done only if
the values on either side of the assignment have corresponding value nodes (3). Since the
reference edge that is to be generated has to be connected to the reference node belonging
to the given value node (sre_node), this reference node has to be generated if it does not
exist yet. Otherwise the already existing reference node can be used (4). To represent the
effect of the assignment this reference node has to be connected with the value node which
represents the right hand side of the assignment (dst_node). Furthermore, the values of the
derop and off annotations of the connecting edge have to correspond to the values passed
to the function. Besides which, this edge has to be marked as an assigned edge, since it
was created to represent the effects of an assignment. If such an edge already exists, the
function interface graph is not changed. Otherwise a new edge is generated, connected to
the nodes and the edge’s annotations are set to the corresponding values (5-12).

The deref function

The deref function (figure 3.39) is used when a dereference operation has to be computed.
Dereference operations do not modify any value (unlike assignments), they are only used
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int xi;

char xc;

#((int #%) c) =1+ 3;
#((int *+) (c+1)) =1+ 3;
o= #((int *x) c);

Figure 3.38: Assignments with non-equal intersecting access ranges

to read values. Hence, a dereference operation never causes an assigned edge to be created.
Instead, induced edges are generated to make it clear that the corresponding value has
been read and not modified. Nevertheless dereference operations can affect assigned edges
as well since the access ranges of induced and assigned edges are adapted under certain
circumstances.

At the beginning of the deref function, the reference node belonging to the given value
node (src_node) has to be generated if it does not exist yet (4). The range of values that
may be accessed by the new dereference operation (derop) is computed and compared with
the ranges of the outgoing edges of the reference node. If they intersect this means that
there may be a value that can be accessed by either dereference operation (9-10), and hence
the corresponding value nodes have to be united (11,21). Besides uniting the value nodes,
the edges connecting the reference node to one of the nodes to be united, will be united
as well. Therefore all these edges are deleted (18), and the smallest possible access range
including all the access ranges of the deleted edges is computed (12,13). Since induced
and assigned edges are never united this has to be done for either kind of edge separately.
Further the combined offset of the assigned edges has to be computed. The combined offset
becomes unknown (’¢7) if two different offsets have to be matched, if the access ranges of
the corresponding edges are not equal or if the access range of one of the corresponding
edges is unknown (14-17). The second is necessary since the access ranges may overlap
and therefore affect each other as in the example shown in figure 3.38. Here, the second
assignment partially overwrites the pointer value stored by the first assignment, and so this
pointer may point to absolutely any storage location. Therefore it cannot be assumed that
#((int #*) c) will point to 1 + 3 when the third assignment is processed, which is reflected
by the use of the unknown offset.

After all reference edges have been processed and deleted, the value nodes that have
been connected to these edges can be united (21). In case there have not been any edges,
and respectively no value nodes connected to them, a new value node has to be generated
(22). Now the new reference edges can be generated and connected to the reference node. If
there are assigned reference edges connected to one of the united nodes (23) a new assigned
reference edge is generated. This edge receives a dereference operation corresponding to
the united access range, and also receives the combined offset that has been calculated
previously (24-29). In any case an induced reference edge is generated and equipped with
the corresponding annotations (31-36). This ensures that an induced edge exists in any case
after the function has been executed, even if there has not been an induced edge matching
the given dereference operation before.

Fact 48
The offsets of induced reference edges are always zero since offset annotations
only make sense for edges generated to represent the effects of assignment state-
ments.
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Now the processing of the dereference operation is completed, and the target value node
can be returned (38).

The get_off function

The get_off function shown in figure 3.40 is closely related to the deref function. After the
deref function has united the nodes and edges matching the given dereference operation
there are at most two resulting matching edges left (one assigned and one induced edge). If
there is an assigned edge, the offset of this edge is returned (6). This can be safely done since
the analysed code fragment contains only a sequence of assignments and no control flow.
Therefore a value once assigned will stay valid as long as it is not re-assigned by another
statement of the sequence. If a value is modified the second time and used afterwards, the
combined offset value has already been computed by the deref function. In case the value
has not been assigned before there exists only an induced edge having zero as its offset, and
hence the returned value is zero in this case (7).

The bin_join function

The bin_join function is used to let two value nodes (vny and vng) share the same reference
node. This has to be done if a binary operator is processed, since one does not know which
(if any) of the operators holds the 'pointer’ value®. In cases where the resulting value is
dereferenced later, the corresponding reference edge is reachable through the value nodes
belonging to both operands of the binary operation. This ensures that both of the operands
are now treated as if they were the pointer value.

The first thing that has to be checked is if the operands of the binary operator are
constant values. The only really interesting case is if both operands are non-constant values
(3). In case there is no link connecting the corresponding value nodes with a reference node,
those links have to be generated (7-9, 14-16). Otherwise the existing reference nodes can be
used and modified later if necessary (5,12). Should none of the value nodes be connected
to a reference node, a new reference node has to be generated and connected to both value
nodes (18-21). If there is only one value node which has a corresponding reference node,
the other value node is simply connected to the already existing reference node (22-25).
Otherwise, if both value nodes have a link to a reference node, these reference nodes have to
be united (26). In either case the value node belonging to the sub-expression is determined
to be the value node belonging to the first operand (27). The second operand could have
been chosen as well as the first one since both nodes are now sharing the same reference
node. If only one of the operands is a non-constant value there is not much to be done.
In this case the value node belonging to the sub-expression is the same as the value node
belonging to the non-constant value (28,29). Finally, in cases where both operands are
constants (vny = vny = nil) there are no nodes that could be accessed, and so there exists
no value node belonging to this sub-expression (30).

3.2.3.2 Order of attribute computations

The order in which the grammar’s computations are to be carried out is not specified by
the grammar itself. The grammar’s dependencies are not very complex, and it is quite easy
to prove that this grammar is l-attributed®”. This leads to the fact that the computations
can be carried out within a single depth-first-left-to-right pass over the syntax-tree.

35As already mentioned before, it is not possible to rely on the type of the operands.
37In fact the proof consists of a trivial inspection: all that has to be done is to check for the desired
properties of l-attributed grammars for every single rule.
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function deref(src_node, derop)

if (src_node # nil) {
rn = get_ref-node(src_node);
unite_set = O,
unite_off = nil;
ass_range = I,
ind_range = @;

if (acc_rng(e.derop) N acc_rng(derop) # @)
unite_set = unite_set U {n};

if (unite_off = nil) unite_off = e.off;
else if (unite_off # e.off) unite_off = '27;

delete_reference_edge(fig, €);

¥
J

)
)
)
)
)
)
)
)
)
)
)
) if (|unite_set| > 1) un = unite(unite_set);
) else un = new_value_node(fig);
) if (ass_range # @) {
24) e = new_reference_edge(fig);
) e.src = rn;
) e.dst = un;
) e.derop = deref_op(ass_range U acc_rng(derop));
) e.off = unite_off;
) e.gen ="d’ ;
) ¥
) e = new_reference_edge(fig);
) e.sTc = rn;
) e.dst = un;
) e.derop = deref_op(ind_range U acc_rng(derop));
) e.off =0;
) e.gen ="1;
)} else un = nil;
) return un;
)

Figure 3.39: Function computing dereference operations

for all (n € fig.VN,e € fig.I): (e.stc = rn) A (e.dst =n)) {

if (e.gen="d") ass_range = ass_range U acc_rng(e.derop);
else if (e.gen ="i") ind_range = ind_range U acc_rng(e.derop);

else if (acc_rng(e.derop) # acc_rng(derop)) unite_off = "77;
else if (acc_rng(e.derop) = Z) unite_off = %7,

73
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function get_off (src_node, derop)

{

1
2)
3)  rn = get_ref-node(src_node);

4) if (3(e € fig.RVE) : (e.src = rn) A (e.gen ="a’)A

5) (acc_rng(derop) N acc_rng(e.derop) # @)) {
6) result = e.off ;

7))} else result = 0;

8) return result;

9)

e, e, o, e,

}

Figure 3.40: Function returning the offset annotation

function bin_join(vny, vns)

if ((vny # nil) and (vng # nil)) {
if (A(e € fig.E) :e.src =vny) {
rny = e.dst;
} else {
l1 = new_link(fig);
l1.87c = vny;
rny = nil;
) g
) if (A(e € fig.E) : e.src = vny) {
) rng = e.dst;
) } else {
) lz = new link(fig);
) ly.5mc = vny;
) rng = nil;
) g
) if ((rny = nil) and (rng = nil)) {
) rn = new_reference_node(fig);
) li.dst = rn;
) ly.dst = rn;
) } else if (rny = nil) {
) l1.dst = rng;
) } else if (rng = nil) {
) ly.dst = rny;
) } else unite({rny, rna});
) result = vny;
)} else if (wny # nil) result = vny;
) else if (vng # nil) result = vng;
) else result = nil;
) return result;
)

Figure 3.41: Function joining the reference nodes of the arguments of binary operators
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—

(1)
(2)
(3)  compute(node. AC,p);

(4)  for (i=1 to node.number_sons) {
(5) depth_first_left_to_right (node.son[i]);
6) 7}
(7)  compute(node. ACy,);
(8)  compute(node.PC);
(9)

Figure 3.42: Function specifying the order of the grammar’s computations

The function shown in figure 3.42 specifies this order exactly. First the inherited at-
tributes of a node (AC;,;) are computed (3), then the node’s children (if any) are visited
(5). After that, the synthesised attributes (AC,,) are computed (7), and finally the re-
maining plain computation (PC) of the node can be carried out (8).

3.2.3.3 An example

The example shown in figure 3.43 demonstrates how the algorithm works, and how the
attributes are used. Again it is assumed that the size of an integer is two bytes, whereas
the size of float and pointer values is four bytes. Besides that, it is assumed that the size
of the used structure (str) is six bytes, which means that no unused bytes are added due to
alignment rules. Of course code like the one contained in this example is not very likely to
appear in real programs. Nevertheless this example has been chosen since it demonstrates
some of the most interesting operations of the attributed grammar quite well. Moreover, it
can be seen that although the C programming language allows a lot of very complicated,
and sometimes even senseless operations they are all properly handled by the grammar rules
without any restrictions to the language.

3.2.3.4 A more precise algorithm

The major disadvantage of the algorithm that has been described is the loss of precision
caused by the fact that every variable has to be treated like a pointer variable. Although
this cannot be avoided in general, it is possible to significantly improve the algorithm by
taking the type information into account. If the user ensures that no aliases are introduced
by the use of non-pointer values one can safely ignore all variables which have ordinal type
(character, integer, float) as well as structures, unions and arrays which do not contain
pointer values. E.g. programs that do not contain type casts from pointer to non-pointer
values or casts from non-pointer to pointer values fulfil this condition. However, even
programs which contain both types of cast operations (pointer to non-pointer and non-
pointer to pointer) can fulfil this condition. Note that casts between pointer and non-pointer
values can implicitly occur if unions containing pointer and non-pointer values are used in
a certain way (if a pointer value is written first and a non-pointer value is read afterwards
and vice versa). Besides which, it is possible that cast operations convert a pointer to a
structure (or union) into a pointer to another structure (or union), and that one of the
structures (or unions) contains a pointer value and the other one a non-pointer value at the
same offset position. If the structure (or union) pointers are used in a way so that first a
pointer value is written using one of the structure (or union) pointers and a non-pointer is
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Figure 3.43: Attributed parse tree
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read from the same storage location using the other structure (or union) pointer afterwards
(or vice versa), a situation similar to the one described above arises. In either case an
implicit cast operation has been carried out. This makes it almost impossible to statically
detect if a program contains cast operations between pointer and non-pointer values as
long as it contains unions or casts between structure or union pointers. Since the implicit
cast operations described above are commonly used in C programs, only the most simple
programs can be analysed with the improved algorithm without user interaction. However,
if the user guarantees that the program has the desired properties he can still take advantage
of the more precise results computed by the alternative algorithm.

The above-mentioned more precise results can be achieved by slightly changing the
attribute grammar computations. To do this only two of the rules have to be altered. The
first thing to be done is to make sure that there will be no value nodes generated for ordinal
values. Additionally, the binary operators do not have to unite the nodes belonging to their
operands since the 'pointer’ operand can now be identified by its type.

The modified attribute computations that are necessary to make the algorithm more
precise are listed in the following. Note that only those attribute computations that have to
be altered will be listed, whereas all other attribute computations can remain unchanged.

AC(VAL — VAR) = {

VALwal = if (VAL.deref and (not is_ordinal( VAL.type)))
deref (VAL.addr, (VAL.str_off , VAL.csize))
else nil
} i

AC(VAL, — VAL, BINOP VALs) = {

VALi.val = if (is_pointer(VALs.type) and (not is_pointer(VALs.type))) VALs.val
else if (is_pointer(VALs.type) and (not is_pointer( VALs.type))) VALs.val
else nil

}

3.2.3.5 Handling ¢-functions

As stated before, the effects of the SSA-form have not yet been taken into consideration
in the preceding part of this section, so this is the next thing to do. In fact, programs
that have been transformed into SSA-form do not need many additional rules when the
function interface graphs have to be generated. Note that variables having different SSA-
values have been treated as different variables by the previously described algorithms. The
only difference between analysing 'normal’ code and code that has been transformed into
SSA-form is that the effects of the ¢-functions have to be taken into account as well. The
phi_func_fig function shown in figure 3.44 handles the ¢-functions that may occur at a CFG
node. It has to be called for every ¢-function belonging to a node before the true generation
process of the function interface graph starts. This results in a small initial function interface
graph that is then completed by the previously described algorithm.

¢-functions occur only at CFG nodes with more than one incoming edge. They are
always the first statements belonging to these CFG nodes. A ¢-function of the form a, =
d(ay,,...,ay,) reflects the fact that different values (a,, to a,,) have been assigned to «
on different incoming control paths, and that a, may be any of these values. All that
has to be done in this case is to make sure that the variables a, and a,, to «a,, share the
same reference node when the following code will be analysed. Since the function interface
graph for the analysed CFG node is empty at the beginning, the value nodes belonging
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1) function phi_func_fig(ay = ¢(ay,, ..., ay,))

(1)

(2) {

(3)  node_set = @;

(4)  for all (ve{ay ay,...,ay,}) {

(5) on = var_node(v, fig);

(6) node_set = node_set U get_ref_-node(vn);
(1) 3

(8)  wunite(node_set);

(9) 3

Figure 3.44: Function processing the ¢-functions belonging to a CFG node

to the variables, as well as the shared reference node and the corresponding links have to
be generated from scratch. To do this the function collects (and if necessary creates) the
reference nodes corresponding to the variables occurring in the ¢-function (4-6) and unites
them afterwards (8).

3.2.3.6 CFG nodes representing function calls

Although the effects of function calls are handled by the interprocedural analysis parts,
there are a few things that are done for function calls during the intraprocedural analysis
part as well. The only thing that has to be done is to add a few value nodes representing the
functions parameters and the value to which the functions result is assigned to the otherwise
empty function interface graph. In case the function is called using a pointer to a function, a
further node has to be generated for the variable holding the function pointer. The function
processing the function calls is shown in figure 3.45. It takes the function interface graph
belonging to the function call, the variable to which the functions result is assigned, the
variable holding the function pointer and a set containing the functions parameters as its
input. This information is then used to produce the corresponding function interface graph.
In case the function does not return a value, or the returned value is ignored and hence not
assigned to a variable, this is indicated by passing the value nil instead of the corresponding
variable to the function (parameter resvar). The same applies to function calls which do
not use function pointers and the corresponding parameter (callvar).

If the functions return value is assigned to a variable, this has to be handled like any
other assignment besides the fact that there is no value node available for the value returned
by the function. Hence a new value node will be generated and connected to the value node
representing the address of the variable to which the functions result is assigned (3-15).
After this has been done, it is time to deal with the functions parameters as well. This
is performed by simply dereferencing the value nodes which represent the addresses of the
functions parameters (17-18). This indicates that the corresponding values have been used.
Although these newly generated nodes might be of no further use during the intraprocedural
analysis they are not at all worthless. They will be used by the interprocedural analysis
as a matching interface and are hence in any case necessary. In case of function calls
using function pointers the variable holding the function pointer has to be handled like the
parameters (20-21). This ensures that the possible aliases of this value can be computed later
to find out which functions can be called by the function call. As an example, figure 3.46
shows two function calls and the corresponding function interface graphs.
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if

}

1
if

}

)
)
)
)
)
)
)
) for all (v € params) {
) )
)
)
)
)
)

function func_call_fig(fig, resvar, callvar, params)

(resvar # nil) {

vn = var_node(resvar, fig);

l = new_link(fig);

rn = new_reference_node(fig);
re = new_reference_edge(fig);
on' = new_value_node(fig);
l.src = vn;

l.dst = rn;

re.srec = rn;

re.dst = vn/

re.deref = (0, sizeof (resvar));
re.off = 0;

re.gen = "a’;

deref (var_node (v, fig), (0, sizeof(v)));

(callvar # nil) {
deref (var_node(callvar, fig), (0, sizeof(callvar)));

Figure 3.45: Function processing function calls

int f(int *x, int y);

int r;

r=1(x,y);

void (xf)(char x, int y);

(+£) (%, ¥);

(0,4)
X :QW X

(0,4)
(0,1)

0,2
y :Q(TO)» y

0.2
=0

Figure 3.46: Two function calls and their corresponding function interface graphs

79



80 CHAPTER 3. ALIAS COMPUTATION

1 fllIlCtiOIl Cfg—.ﬁg—matCh (.ﬁgprev.ﬁgpost)

%) |

3)  figres = new-fig();

4 unite_nodes = {(npre, Mpost) | (VN pre € fig,e- VIN) A (0npost € figo5- VIN)A
5 ((vnppe.vars N vn e .vars # @) V

(base_var(v.) = base_var(vl)) A ind_mod_var(v;) A ind_mod_var(v!)))};
gen_nodes_and_links(fig, . , fig o5t + fig res, unite_nodes);
gen_ref_edges(fig e, fig osts figres );
) return fig,,;

)}
Figure 3.47: Function matching the function interface graphs of two CFG nodes

)
)
)
|
) (F(ve, vl € VARgs4) | (ve € vnpre.vars) A (v) € vnpys.vars)A
)
)
)
0
1

3.2.4 Merging the function interface graphs of different CFG
nodes

Now, after the code sequences of all CFG nodes have been processed the resulting function
interface graphs have to be merged. This is done by processing the CFG edges one by one
and combining the function interface graphs of the CFG nodes connected to these edges.
After all these edges have been processed, we receive the function interface graph belonging
to the analysed function. This graph does not take the effects of called functions into account
yet, but it already contains all necessary intraprocedural information.

The matching of the function interface graphs can be done by using a simple worklist
algorithm processing all CFG edges. For each edge there are two (maybe empty) function
interface graphs that have to be matched. The algorithm shown in figure 3.47 takes the
function interface graphs belonging to the two nodes connected by a CFG edge, and produces
a new graph (fig,.,) by combining the two input graphs. Since CFG edges are directed edges
and their direction is important for the matching process as well, it is necessary to distinguish
between the two nodes connected by a CFG edge. The function interface graph belonging
to the source node of the CFG edge is fig,,., whereas the one belonging to the destination
node is fig ;. The major difference between these nodes is that the assigned edges of the
first node have to be matched with the edges of the second node, whereas the assigned edges
of the second node are not matched at all. This is obvious since the code belonging to the
second node is executed after the code of the first node. Hence assignments made in the
code belonging to the first node can influence the code belonging to the second node, but
not vice versa.

The matching process for the two function interface graphs starts by producing a new
empty function interface graph (3). The nodes that have to be matched are those nodes
representing the same variable in the two function interface graphs fig,,. and fig,,,, as well
as all nodes that can be reached from these nodes using matching access paths. Therefore
the initial set of node pairs to be matched is initialised with the node pairs representing
the same variable in the two function interface graphs (4-5). However, there are a few more
nodes that have to be matched. If the address of a variable has been taken, this variable
can be modified indirectly by following statements without accessing the variable itself.
Therefore the nodes representing the corresponding SSA variables have to be merged as
well if they can be modified indirectly (6-7). These nodes are computed with the help of
the function ind_mod_var which checks whether the SSA value of a variable is valid since
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(1)

(2) 1

(3) if (root(ny) # root(ng)) {

(4) if (n1.eq = nil) ny.eq = root(ny);

(5) else if (ng.eq = nil) ny.eq = root(ny);
(6) else root(ny).eq = root(ny);

(1)}

()

Figure 3.48: Function uniting two trees based on the eg-relation

the address of the corresponding variable in the original program has been taken®®.

Now that the initial nodes to be merged have been computed, the value and reference
nodes as well as the corresponding links of the new graph are generated (8), and finally
the missing reference edges are generated and connected to the newly generated value and
reference nodes (9).

When the value nodes of the resulting function interface graph have to be generated, all
assigned and induced edges of the first graph (fig,,. ) have to be matched with the induced
edges of the second graph (fig,,,;). Therefore all nodes of the first graph reachable by a
certain path have to be united with those nodes of the second graph reachable by a matching
path using only induced edges. To compute these nodes the algorithm walks through the
two graphs step by step collecting all nodes that have to be united.

The computation of the nodes is done by the functions gen_nodes_and_links and
compute_representatives which are shown in figures 3.50 and 3.51.  The function
gen_nodes_and_links uses the function compute_representatives to compute the sets of nodes
that have to be matched before the new nodes will be generated.

Computing the set of nodes to be matched

When the function compute_representatives is called the two function interface graphs that
have to be matched, as well as the set containing pairs of value nodes representing the same
variable within the different function interface graphs, are passed to the function. Based
on these initial nodes to be matched the algorithm starts to compute representatives for all
nodes. Later those nodes with the same representative are united.

To handle this problem efficiently, a version of the union search algorithm described in
[Sed92] is used. This algorithm uses a reference between two nodes to identify that they
will later be represented by the same node (eq). These references together with the nodes
produce a forest, where every tree contains all nodes that are later represented by the same
node. Every time the algorithm identifies two nodes that will later be represented by the
same node, the function equalize shown in figure 3.48 is called. This function then unites
the two trees if they have not been united yet (3). In case one of these nodes has not
been united with another node before, this nodes reference is still unused, and hence this
reference can simply be set to refer to the root of the other nodes tree (4,5). Otherwise, the
root of one tree can be connected to the root of the other tree (6).

The function that is used to find the root of a tree is shown in figure 3.49. To increase
the efficiency of this function, the found root node will be stored after it has been computed

38Note that if the address of a SSA variable v, is taken somewhere in the program this may lead to the
fact that the variable v, (which is valid after v,) may be modified indirectly by following statements even
if the address of v, itself has not been taken.
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1) function root(n)

8

(1)

) {

(3) if (n.eq # nil) {
(4) r = root(n.eq);
(5) n.eq =r;

(6) } else r=mn;
(7) return r;

(8)

}

Figure 3.49: Function returning the root of the tree based on the eg-relation

once (5). This means that the tree is being rebuilt permanently and that it is not necessary
to traverse several nodes on the way to the root more than once. Altogether this leads to a
very efficient method to unite two trees and to compute a trees root.

Before the two functions given above can be used, the eq references have to be initialised
first. This is done by the compute_representatives function (figure 3.50) that clears all these
references at the beginning (3,4). The algorithm computing the representatives uses a set
which keeps the pairs of nodes that have to be matched and a boolean value (no_off).
This boolean value indicates if the two nodes have been reached by edges with different or
unknown additional offset values. In case this value is true the dereference operations of
the outgoing edges of this node have to get unknown offsets because these offsets depend
on the additional offsets of the edges leading to the node that are unknown now. To mark
such nodes the flag no_off is used. All these flags are set to false at the beginning of the
algorithm (5). After this has been done, the set containing the nodes to be merged, which
has been passed to the function as a parameter (unite_nodes), is used to initialise the set of
unprocessed nodes. Since the elements of this set do not only contain the two nodes but a
flag (no-off ) as well, this flag has to be initialised here (7). The flags value is always false
since the two nodes represent addresses of variables and hence these values are constant and
nothing could have been added to them.

Since the graphs may contain circles it is necessary to keep track of the nodes that have
already been processed. This is done by the set processed which is empty when the algorithm
starts (8). Unfortunately, the algorithm walks through the two graphs at the same time,
and therefore it is not possible to stop whenever a previously visited node is reached, since it
might be necessary to visit nodes more than once. Every pair of nodes can be processed at
most twice. A node pair has to be revisited if the access ranges of the outgoing edges have
been taken into consideration (no_off = false) when the node pair has been visited for the
first time, and it was found later that the access ranges have to be ignored due to unknown
or unequal additional offset values of the incoming edges (no_off = true). Therefore the
pairs of nodes visited and the corresponding flags have to be stored. If a certain node pair
has been visited once with the no_off flag set, it is not necessary to revisit this node, since
there will be no further nodes found to be matched in this case. This is because taking the
access ranges into consideration only prevents some nodes from being matched that would
have been matched otherwise.

After all the initialisations have been done, the algorithm starts by processing the nodes
contained in the unprocessed set one by one. The first thing to be done is to remove the
corresponding triple from the set containing the unprocessed triples and to add it to the set
of triples that have already been processed (10,11). As described above, the triple containing
the same nodes but a no_off flag that is set to false can be added to the set of processed
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El; it'unction compute_representatives(fig . , fig s, unite_nodes)

2

(3) fOI' all (n € (.ﬁgpre‘NU.ﬁgpost‘N)) {

(4) n.eq = nil;

(5) n.no_off = false;

6) }

(7) unprocessed = {(Vnyre, VNpost, false) | (vnppe, vnyost) € unite_nodes};
(8) processed = &;

9) while (3((vnpre, vRpost, no_off) € unprocessed)) {

(10) unprocessed = unprocessed — { (VN pre, VNpost, n0_0ff ) };

(11) processed = processed U {(vnpre, UNpost, no_off ) };

(12) if (no_off) {

(13) processed = processed U {(vnpre, vny,st, false) };

(14) VN pre.no_off = true;

15}

(16) equalize(Vn e, VN post);

(17) if (3(e € fig,,.-F) 1 e.src = tnye) mpee = e.dst;

(18) else rn,.. = nil;

(19) if (e € fig,pst- L) : €.57C = UNpost) TN post = €.dst;

(20) else rn,..¢ = nil;

(21) if ((rnyre # nil) and (rnp,s # nil)) {

(22) equalize (T ppe, Mpost);

23 )

(24) unprocessed = unprocessed U {(vn,, vnl .. no_off') |

(25) (epre € figpre Ly €post € fig o F) :

(26) (€pre-STC = TNyre) A (€pre-dst = vnf ) A

(27) (€post-5TC = TNpost) N (€post-dst = vnj, ) A

(28) ((accorng(eppe . derop) N acc_rng (e o5t -derop) # D) V no_off )A
(29) (no_off = ((epre-off # €post-0ff ) V (€pre-0ff = 777V V (epost-off = 777)))A
(30) ((vn),e, vl y5e, no_off ') & processed) A (eposi.gen ="i')};
B )

(32) }

Figure 3.50: Function computing representatives for the nodes that have to be united
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triples as well in case the no_off flag has been set, because it does not make sense to revisit
this node pair then (12,13). Additionally, one of the nodes is marked to have no outgoing
edges with dereference operations having non-unknown offsets (14). Here it does not matter
which node is marked since both nodes will later be united anyway. Finally, the trees of the
nodes are joined to ensure that the nodes will be united later (16).

After the value nodes have been processed, the reference nodes belonging to the value
nodes have to be computed (17-20). In case each of the value nodes has a corresponding
reference node, these nodes have to be marked to be united later as well (21-22). Now, new
triples are added to the set containing the unprocessed triples, if there are nodes reachable
from the reference nodes by matching edges. As described above, the access ranges are only
taken into account if the no_off flag is not set. The flag of the new triples (no_off’) is set
depending on the additional offsets of the edges reaching the nodes. Only those triples are
added that have not yet been marked as being processed before (24-30). The computation
terminates if there are no triples left to be processed. Since no triple can be inserted more
than once it is clear that this algorithm cannot run into an endless loop, and hence it will
terminate in any case.

Generating the nodes and links

Now, after the representatives have been computed, the new nodes and links are generated
by the function gen_nodes_and_links. Before the new nodes are generated the no_off flags
for these nodes are computed. This is done by going through the nodes and setting the flag
of the representative if the flag is set for any of these nodes (4-5). This means that the flag
of the representative is set whenever one of the flags of the represented nodes is set.

After this has been done, the generation of the new value nodes can begin. Since all
nodes that are represented by the same node in the resulting graph are now components
of the same tree, a new node will be generated for each of these trees. Besides that, the
newly generated node becomes the new root of the tree (7-9). This allows the algorithm to
compute the value node of the resulting graph representing one of the nodes of the input
graphs by using the root function. Furthermore, the no_off flag of the former root of the
tree is copied to the newly generated root node (10). In case one of the value nodes that is
to be replaced by the newly generated value node has represented a variables address, the
newly generated node will represent this variables address in future. Hence the variables
annotated to any of the nodes to be replaced have to be annotated to the new node within
the next step (13-15).

After all new value nodes have been generated, the new reference nodes are generated in
much the same way (17-20). The only difference here is that all no_off flags can be initially
set to false since the no_off flags of the reference nodes have not been set before (20).

As the last step, the connecting links still missing have to be generated for the resulting
function interface graph. To do this, all links of the two input graphs are processed and in
case the representatives of the links source and destination node are not yet connected by a
corresponding link in the resulting function interface graph, such a link is generated (23-29).
Finally, the no_off flag of the reference node has to be set in case the flag of the value node
connected to the reference node is set (30). This means that the no_off flag of the reference
node is set whenever at least one of the no_off flags of the corresponding values nodes is
set.

Generating the reference edges

Now, after all nodes and links have been generated, the processing of the reference edges can
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function gen nodes_and links(fig ., fig ,o5t+ fi9 es , unite_nodes)

{

compute_representatives(fig,,. , fig s, unite_nodes);
for all (vn € (fig,..- VN U fig,,s- VN)) {
if (vn.no_off) root(vn).no_off = true;
}
for all (vn € (fig,..- VN U fig,,s- VN)) {
if (vn.eq = nil) {
vn.eq = new_value_node(fig,.);
vn.eq.no_off = vn.no_off;
}

}
fOI' all (’Un € (ﬁgpre-VNUﬁgpost‘VN)) {

rt = root(vn);

rt.vars = rt.vars U vn.vars;

}

for all (rn € (fig,...RN U fig,,-BRN)) {
if (rn.eq = nil) {

rn.eq = new_reference_node(fig, ., );
rn.eq.no_off = false;

}
for all (¢ € (fig,.- VRE U fig oy VRE) {

)

)

)

)

)

)

)

)

)

)

)

) 3
)

)

) vn = €.87¢;
) rn = e.dst;

) if (A(e' € fig,.,- VRE) : (root(vn) = e'.src) A (root(rn) = e'.dst)) {
) ¢ = new link(fig,.,);

) ¢’ .sre = root (vn);

) e’ .dst = root(rn);

) €' .dst.no_off = €'.dst.no_off or € .src.no_off;

) 3

)}

)

}

Figure 3.51: Function generating the nodes and links for two function interface graphs that
have to be matched
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start, which is done by the gen_ref_edges function shown in figure 3.52. The set of edges that
have to be processed is initialised and contains all reference edges of the input graphs (3).
Although induced and assigned edges are never united they have to be matched here. This
has to be done since values that are assigned in the first graph produce assigned edges that
have to be matched with the edges that are produced when the previously assigned values
are used in the second graph. When the processing of the edges starts, an arbitrary edge is
chosen, and all matching edges having the same generation mode attribute are removed from
the set of edges that have to be processed (15). This avoids multiple edges having the same
annotations. Two edges can be matched if they have intersecting access ranges or if the
access ranges are ignored due to the no_off flag (14), if their source and destination nodes
have the same corresponding node in the resulting graph (9) and if their generation mode
attributes fulfil the condition displayed in the lines 10 to 13. This condition ensures that
two edges are not matched if one edge is an assigned edge of the second graph (fig,,,,;) and
the other one is an induced edge of the first graph. Every time when a set of edges that will
be united has been removed from the set of edges to be processed, a new edge representing
all the removed edges is added to the resulting graph (22-27). The dereference operation
of the merged edge is computed by uniting the access ranges of the edges that are merged
(6,16). However, if the no_off flag of the source node has been set the dereference operation
will in any case receive an unknown offset (5). The additional offset of the resulting edge is
kept only if all merged edges have the same additional offset and access range. Otherwise
the additional offset is unknown (7,17,18).

Note, that the algorithm explained here can be sped up by avoiding to copy the function
interface graphs and merging them directly. Especially, if there are comparatively few nodes
that have to be merged the overhead caused by copying the graphs results in an unnecessary
waste of time. However, the algorithm as it was described here is easier to understand
because there are no side-effects that have to be taken into account. Such side-effects occur
when changes to one of the graphs are made and the second graph is indirectly modified
as well, since the graphs have already been partially connected during the merging process.
Therefore it was left to the implementation to deal with such details, and the much simpler
algorithm has been described here.

3.2.4.1 An example

The program shown in figure 3.53 serves as an example on how the merging process for
function interface graphs is done. The program is shown in its initial form as well as in SSA
form. The numbers at the end of the source code lines are the numbers of the corresponding
CFG nodes. The CFG graph and the function interface graphs belonging to the CFG nodes
are shown in figure 3.54, and the resulting function interface graph is shown in figure 3.55.
As can be seen, the ¢-functions belong to the DO node (3) since this node has two incoming
edges with different reaching definitions. Since there is no further code belonging to this
node the resulting function interface graph is comparably simple. The only thing that has
been done is that shared reference nodes as well as links have been generated for the variables
occurring in the ¢-functions. The assignments occurring in the program belong to the two
sequential nodes (2 and 4), and so the function interface graphs belonging to these nodes
are used to represent the effects of these assignments. The other CFG nodes have empty
function interface graphs since there is no code belonging to them.

What can be seen from the resulting function interface graph is that ele and first both
point to a storage location holding a pointer back to the same storage location. Although
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funCtion gen—ref—edges(.ﬁgpre7.ﬁgpost7.ﬁgres)

)

)

) edges = fig ... RVE U fig .. - RVE;

) while (d(e € edges)) {

) if (root(e.src).no_off) unite_range = 7Z;
) else unite_range = acc_rng(e.derop);
) unite_off = e.off;

) for all (¢’ € fig,...RVE U fig,,s-RVE) {

) if ((root(e.src) = root(€'.src)) and (root(e.dst) = root(€'.dst)) and
0

1

1 (not ((e.gen ='d’) and (e € fig,,,;-RVE) and

1 (¢'.gen ="i") and (¢’ € fig,,..RVFE))) and

12 (not ((¢’.gen ='a’) and (€' € fig,,,;-RVFE) and

13 (e.gen ="i") and (e € fig,..RVFE))) and

14 ((accorng(e.derop) N acc_rng(€' . derop) # @) or root(e.src).no_off) {
15 if (e.gen = ¢€'.gen) edges = edges — {e'};

16 unite_range = unite_range U acc_rng(e’'.derop);

17 if ((accorng(e.derop) # acc_rng(€’ .derop)) V (unite_off # €' .off)) {
18 unite_off = 777

19

20 }

21

" = new_reference_edge (fig,.,);

" src = root(e.src);

".dst = root(e.dst);

e" .derop = deref_op(unite_range);
e’.off = unite_off;

e".gen = e.gen;

DN M =

)
)
)
)
)
)
)
)
)
) }
)
)
)
)
)
)
)
)
)
)

Figure 3.52: Function generating the edges for two function interface graphs that have to
be matched

typedef struct s { typedef struct s {
int e; int e;
struct s *next; struct s *next;
} int list; } int list;
int list xele,xfirst; int_list xeley, *xele,, xeles, xfirsty;
int sum; int sum;, sum,, sums;
ele = first; ele; = firstoy; (2)
sum = O; sum; = 0; (2)
do { do {
eleg = ¢(eley, eley); (3)
sumgz = ¢(sumy, sums); (3)
sum = sum + (xele).e; sum, = sumg + (*eles).e; (4)
ele = (xele).next; ele, = (*elez).next; (4)
} while (...); } while (...);

Figure 3.53: Example program
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&sumy
0,4
&firsto :O%
1

START 1
' &eleq &sumy
SEQ 2| ~—
] | i
DO 3| —1 &ele, — &sumy —
[ * | |
SEQ 4 | <
&eles &sums
END_DO

¥
5}
FEND I_iLI 2
Ksum, :QM

a/’?’

CFG h
grap &sums :Q% {
(0,4)
&eles :QW :Q
0’4 1/0
vt =000 *

Figure 3.54: Function interface graphs of different CFG nodes
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&sumy
(0,2)
| a/’?’
&sum,y — {
I (0,2) (0,2)
i/0 i/0
&sumg
&eley
w T o
| a/0
&ele, —
' 7 N0.4) o
1/0
&eles / (12/’;1)
&firsto :Q(?/’;l)—

Figure 3.55: Merged function interface graph

this is not true in general, it is at least possible. Nevertheless, it might be that first is a
pointer to an element of a non-cyclic list, and that there is no pointer back to the preceding
elements. However, this is an acceptable source of imprecision since it is not possible to
represent the effects of linked lists exactly, if a finite representation is chosen. Many of the
other approaches dealing with alias analysis (e.g. [HPR89, CWZ90, LLH88, LR92]) deal with
this problem in a similar manner to keep the access paths or graphs as small as possible
without losing too much precision.

3.2.5 Using the function interface graph to find may aliases

The function interface graph can be used to find out if two expressions might be aliased
or not by computing the set of value nodes reachable by the access paths corresponding to
the given expressions. These value nodes can be computed by the help of the two functions
acc_vals and acc_step that are defined in the following.

Definition 49 (value nodes belonging to an access path)
Given a function interface graph fig and an access path (v, doq,...,do,) € AP
then the functions

accvals @ FIG x AP < P(VN)
acc_step : FIG x (VN x OFF) x DEROP* & P((VN x OFF))

can be used to determine all nodes representing the values that might be accessed
by expressions corresponding to the given access path. acc_vals is defined as

acc_vals(fig, (v, doy, ..., do,)) = {wvn € VNg, | 3(o € OFF,vn, € VNg,):
(v € varsgy,(vny)) A ((vn,o0) € acc_step(fig, (vn,,0),doy ... do,))}
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where vn, is the value node belonging to the address of the variable v. The
function acc_step that has been used by acc_vals is defined as follows.

acc_step(fig, (vn,o0),doy ... do,) =

{ (vn",0") € (VN x OFF) | 3(vn’ € VNg,, | € VRE;,,
rm € RNg,, e € RVEz, peZ) :
(l.sre=wn) A (l.dst =1rn) A
e.sre=rn) A (e.dst =wn') A if (n > 0)
p € accrng(doy)) A
(p+o0) € acc_rng(e.derop)) A
on”,0") € acc_step(fig, (vn’,e.off ), doy ... do,) }

(vn, o) otherwise

(
(
(
(

The major part of the computation of the value nodes reachable by a certain access
path is done by the acc_step function, which searches step by step for a path through the
function interface graph. This function takes a function interface graph (fig), a value node
(vn) and the additional offset (o) that occurred on the path to this value node as its input.
Besides these a sequence of dereference operations (do; ... do,) that have to be applied are
passed to the function as well. The function recursively computes a set of pairs containing
value nodes and offset values ((vn”, 0")). The computed value nodes (vn”) are exactly those
value nodes that can be reached by applying the given sequence of dereference operations
(doy ...doy,) to the given value node (vn). The additional offset (o) that appeared on the
path to this node is taken into consideration by the function as well. The computation is
done as follows: as long as there are dereference operations left in the sequence (n > 0),
the function computes the pairs of value nodes and used offsets (vn’,e.off ) for the first
dereference operation of the sequence. It then recursively calls itself with these pairs and
the remaining dereference operations (dos ... do,). Otherwise, if the sequence of dereference
operations is empty, there is nothing left to do but to return the found pair.

Now, there is not much left to do for the acc_vals function. All this function has to do
is to pass the value node representing the address of the variable contained in the access
path as well as the sequence of dereference operations to the acc_step function. After that
the value nodes have to be extracted out of the pairs that will be returned by the acc_step
function.

Now, after the value nodes related to a certain access path have been specified, it is quite
easy to define the aliases represented by the function interface graph.

Definition 50 (aliases represented by the function interface graph)
Two expressions may be aliases (due to a function interface graph) only if two
access paths exist corresponding to the expressions and a value node further
exists contained in both sets of value nodes belonging to these access paths. In
this case fig_alias returns true, otherwise false will be returned.

fig_alias : FIG x AP x AP &~ B
fig-alias(fig, ap,, ap,) = (accvals(fig, ap,) O acc_vals(fig, ap,) # @)

To make things clearer, an example is shown in figure 3.56. This figure contains a
small sequence of C code and the corresponding function interface graph that is created
by the intraprocedural analysis. Looking at the program code it is clear that *b and c
as well as xa and d are aliased after the code has been executed. This is reflected by the
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void fkt()

{

int xa, b, c,d;

0,4)

=)

a/2

&b :Q(?TLL)»

—(O2

91

0,2)
b[0] = ¢; =Y

b1] = d; i/0

a = b+ 17 (0,2)

} td =) i/0

| exrp || acc_vals(fig, ap ..,) | | fig_alias || *a | *b | c | d |

*a {3} *a true | false | false | true
*b {2} *b false | true | true | false
c {2} c false | true | true | false
{3} d true | false | false | true

Figure 3.56: Function interface graph and its represented aliases

function interface graph as well. The access paths corresponding to *a, *b, ¢ and d are
(a,(0,4),(0,2)), (b,(0,4),(0,2)), (¢,(0,2)) and (d, (0,2)). Applying the acc_vals function to
these access paths computes the set of value nodes belonging to them. The computed sets
of value nodes as well as the result of the fig_alias function are shown in the corresponding

tables contained in the figure®.

3.2.6 Correctness

The alias analysis is precise in the sense that every possible alias is detected, whereas the
opposite, that every found alias can really occur, does not hold in general. The aliases
represented by the function interface graph are determined by the fig_alias function, which
leads to the following claim to be proved.

Claim:
Given a function, its corresponding function interface graph fig and two base ex-
pressions®® exp, exp’ € EXPy,,. that may be aliased due to the functions effects,
then they can be identified as possible aliases by the fig_alias function.

Proof:
First Step: Since aliases have only been defined for access paths and not for ex-
pressions we have to deal with the access paths corresponding to the expressions
exp and exp’ here. It is assumed that

7dO//)

ap = (v,doy,...,do,) and ap’ = (v',doy,..., do,
are the access paths corresponding to exp and exp’. According to the definition of

aliases (Def. 40) there has to be at least one program state st so that the memory

39 Although the functions take access paths instead of expressions as their input, the tables contain the
corresponding expressions and not the access paths for reasons of simplicity.

40Tt is not necessary to deal with simple expressions here, since if there are two aliased simple expressions
there always are two corresponding base expressions that are aliased as well.
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location accessible by the access paths ap and ap’ are equal if the expressions exp
and exp’ are aliased. When the program starts the memory locations accessible
by different variables are different as well*!. Only the execution of assignments
occurring in the program can change this. To make the two access paths ap
and ap’ refer to the same location there has to be a sequence of assignment
statements assy, ..., ass; which produce the alias. In the following it is assumed
that each of these assignments has the form

/
ass; : erp; = eIrp;

and that stgs, and st ., denote the program states before and after the assign-
ment ass; has been executed.

The assignment sequence which produces the alias does not necessarily have to
appear in the program code in the same order. It is sufficient if the assignments
are executed in the given order. In between the execution of the assignments
there may be other non-assignment statements (e.g. loops or jumps) that are
executed, but since these statements do not modify any program data they can
be ignored here.

V(1< <t) @ mem(slys ) = mem(stass,,,)

The definition of the fig_alias function (Def. 50) implies that

fig-alias(fig, ap. ap’)
becomes true only if a value node exists corresponding to both access paths.

Altogether this leads to the following to be shown: If the memory locations
accessible by the access paths ap and ap’ become the same due to the execution
of the sequence of assignment statements assy, ..., ass;, then at least one value
node exists corresponding to both access paths.

(loc(ap, stass, ) # loc(ap’, stes,)) A (loc(ap,stwt) = loc(ap’,stwt))
= (3.1)
d(vn € VNgz,) : on € (acc_vals(fig, ap) N acc_vals(fig, ap'))

Second Step: The above given supposition (3.1) will now be proved by induc-
tion.

t = 0: In this case there are no assignments that are executed and hence no new
aliases can occur. This means that the program state will not change when
the (empty) sequence of assignments is executed. Therefore the first part
of the implication is always false, and hence the implication itself becomes
true.

1 This is only true assuming that initialising assignments have not been executed yet, and that no memory
location is accessed directly by the program. The direct access to memory locations as in a = (int *)100
followed by *a = ... is not supported by the ANSI standard anyway. However, even the effects of direct
memory accesses could be handled correctly by introducing value nodes representing the memory locations
accessible by the integer and floating point constants occurring in the program. Since this would worsen the
precision of the analysis, it is not done, although it would only need a slight modification of the attribute
grammar rule handling constants (rule IV).
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t — 1t 4+ 1: The execution of the assignment statement ass;; modifies the mem-
ory state by assigning a new value to the location specified by exp, ;. In
case the value of exp, , is a pointer value or is cast into a pointer value,
the locations that are accessible by using this value equal those that can
be accessed from the location holding the value of expj ;. According to
the supposition, ap and ap’ have not been aliased before the entire assign-
ment sequence has been executed, but are aliased afterwards. This leads
to two cases: in the first case the alias already exists before the (¢ + 1)’th
assignment will be executed,

lOC((Lp, Stmt+1 ) = loc(aplv Stmt+1 )
and in the second case it does not, but it is created by the assignment
statement ass¢qq.

(loc(ap, stass,,, ) # loc(ap’, stass,,. ) A
(loc(ap, Stw“rl) = loc(ap’, stthrl))

The first case is rather trivial: since ap and ap’ are already aliased after the
assignment ass; has been executed there has to exist a value node accessible
by both access paths according to the supposition.

In the second case some further inspections are necessary. Since all dif-
ferences between the memory states of stzs,,, and stus, , are caused by
the assignment ass;;; this means that the memory location reachable by
ap and ap’ after the assignment has been executed, has been reachable by
the access path representing ewp;,, before the assignment ass;y; has been
executed (3.2) and that the value that has been modified by the assignment
is used by either ap or ap’ (3.3). Without affecting the validity of the proof
it is assumed that ap is the access path using the newly assigned value.

A ap,gr, apipr, ap™, aptt, ap*, ap*™ € AP, do, do’, do” € DEROP,
ds, ds', dst € DOSEQ)

(api,, € acc_path_sels, (expi ) A
(lOC((Lp-I_, Stmt+1 ) = lOC((Lp/, Stmt+1 )) A
(loc(concat(apt™, (do")), stass,,, ) = loc(concat(api, ,, (do")), Slassie,)) A

(ap™ = concat(concat(ap), ,(do")),ds)) N
(ap’ = concat(concat(ap™™,(do")), ds")) A
(3.2)
(apiy € acc_path_sets, (exp,,i)) A
(loc(ap™™, stzss,,,) = loc(ap™, stas,, ) A (3.3)

(ap,4, = concat(ap™,ds™)) A
(ap = concat(concat(concat(ap*™, ds%), (do)), ds))

The memory state before and after the assignment has been executed is
shown in figure 3.57. Note that this graph represents the real memory
locations and is no function interface graph.

As can be proved by inspecting the grammar rules, the construction of the
rules is fashioned in a way that the attribute val always holds the value node
corresponding to the access path of the current subexpression. Further, the
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Figure 3.57: Memory state before and after the execution of an assignment
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attribute addr always holds the value node corresponding to the address of
the current subexpression. The rule handling the assignments then connects
the value node corresponding to the expression on the right hand side of an
assignment to the value node corresponding to the address of the left hand
side of the assignment. This means that this value node is contained in the
set of value nodes corresponding to the access paths ap, , and apj,, then.

I(on € VNg,) = wn € (accovals(fig, ap,,,) 0 acc_vals(fig, api,,))

Moreover, there is only one single node vn contained in the above given
sets because the grammar rules unite the value nodes in case more than
one exist. Since there is an unique value node corresponding to these access
paths it can be derived from (3.2) and (3.3) together with the supposition
that the value node vn can as well be accessed by two sub-access paths of
ap and ap’.

vn € acc_vals(fig, apt™)
vn € acc_vals(fig, concat(ap™*, ds™))

According to the supposition and (3.3) there has to be a value node vn’
accessible using either access path ap’ or ap*.

d(vn' € VNz,) = on’ € (acc_vals(fig, ap’) N acc_vals(fig, ap™))

Since both of these access paths use the value that has been assigned to
exp,y1, and is, hence, represented by a single value node (vn), this means
that the value node vn’ can be reached from the node vn using either the
dereference operation sequence ds or ds’. This however means that vn’ can
as well be reached by using the access path ap, which was to be proved.

vn’ € (acc_vals(fig, ap) N acc_vals(fig, ap’))

The only fact that has not been taken into account so far is that the assign-
ments can be represented by different function interface graphs because they
belong to different CFG nodes. However, the function merging the function
interface graphs is constructed in a way that all nodes that can be reached
by the same access paths in the function interface graphs to be merged will
later be represented by the same node in the resulting function interface
graph. Hence, the above made assumptions will hold even if the merged
final function interface graph is inspected.

Now, that it has been shown that if two expressions may be aliased, a value node
exists contained in either set of access paths belonging to the two given expres-
sions, it is obvious that the fig_alias function will indicate the two expressions to
be aliases as it should be, and hence our treatment on the intraprocedural level
is correct.

95
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3.2.7 Time and space bounds

Both the time and space bounds are mainly influenced by the merging of the function
interface graphs belonging to the different CFG nodes. The generation of the function
interface graphs needs time and space proportional to the input size (number of statements
and ¢-functions) of the analysed code (O(|STMT|+ |PHI|)) since the only thing that has
to be done is to generate nodes and edges in the function interface graph that correspond to
a given access path. The access paths grow (at most) linearly to the size of the expressions
and so the number of nodes and edges that have to be generated is linear to the size of the
analysed code as well.

3.2.7.1 Time bounds

The time needed to merge two function interface graphs (fig, and fig,) is proportional to
the product of their value node numbers (O(|fig,.V N| - |fig,.V N|)) in the worst case. This
results from the fact that the algorithm walks through the two graphs in parallel and that
each pair of nodes is at most visited twice. However, it is not very likely that every pair of
nodes will be visited. Even if this should happen it would mean that almost all nodes have
to be united to one node which would reduce the size of the resulting graph and respectively
the costs of the following merging steps significantly.

In many cases there are nodes in the second graph that are not matched since they are
only reachable by assigned edges. Furthermore, not every combination of value nodes is
reachable by matching paths which decreases the time needed to process the two graphs as
well. Altogether the average time needed to merge two graphs is more likely to grow linearly
to the size of the value node sets (O(|fig,.VN| + |fig,.V N|)).

Assuming this linear time behaviour, the overall time to process a function is proportional
to (O(|F|- (|]STMT|+ |PHI|))) where |E| is the number of CFG edges. Even if one or more
merging steps become comparatively expensive this will automatically reduce the costs
for other (following) merging steps, since the resulting graph gets smaller the longer the
merging process takes, because more and more nodes are then united. As can be seen from
the results of the tests shown in section 4.4, the average time needed to analyse a statement
grows almost proportionally to the function size. Assuming that the sizes of the functions
do not grow beyond a certain limit, the overall analysis time will then grow proportionally
to the program size.

3.2.7.2 Space bounds

The space needed by the intraprocedural analysis grows linearly to the size of the input
code (O(|STMT| + |PHI|)). As already mentioned before, the space needed for a function
interface graph belonging to a CFG node is proportional to the size of the code belonging
to this CFG node. This means that the space needed for all the function interface graphs
is proportional to the input code size. When the merging process starts, these function
interface graphs are added to the resulting graph one by one. Even if there were no nodes
to be united during the merging process the resulting graph would not be bigger than
all the single function interface graphs taken together. So the space needed is at most

2-(|STMT| + |PHI|) which obviously is in O(|STMT| + |PHI).

Now the intraprocedural part of the analysis is complete. It has been explained how
the function interface graphs for each function contained in a program can be computed.
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These graphs represent all the effects a function can have on any memory location without
taking other functions calling this function or called by this function into account. Using
these function interface graphs, all local aliases which do not depend on the called or calling
functions can be detected.
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3.3 Interprocedural analysis

Now that the intraprocedural part of the analysis is completed, it is about time to combine
the function interface graphs of the different functions to build a single graph representing
the effects of the whole program. To do this, it becomes necessary to check which other
functions are called by each function to build a call graph. If the program contains function
calls using function pointers, only a first approximation of the call graph can be built.
Starting with this graph, the function calls are processed one by one. This could then lead
to the detection of new functions being called by function calls using function pointers, in
case such function calls occur in the program. This process continues until no more function
calls are left to process. After that the final combined function interface graph representing
all possible aliases that may occur during the program execution is complete.

3.3.1 Basic definitions

Before going into the details of the call graph computation and explaining how the different
function interface graphs are combined, some sets and functions that will be used later have
to be defined first. These sets and functions are necessary to associate variables, function
calls and functions with each other.

As explained in section 2.3, the functions and function calls have been normalised. There-
fore, every function call has either the form

Vo = f(Viy ..oy Vn);
or simply
f(Viyooo, Vn);
where vo,vy,...,v, are variables*? and f is a function typed expression. Further, every

statement returning a functions result value has the form
return v;

where v is a variable. Hence, every value passed to a function or returned by a function
can be identified by the variable holding this value. When functions and function calls are
formally defined in the following, their definition can be based upon the variables associated
with the variables corresponding to the parameters and return values.

The set CALL is the set of function calls occurring in a program. Every function call
¢ € CALL consists of an unique number®® identifying the function call, a variable or the
value nil specifying the value to which the functions result is assigned and a sequence of
variables passed to the called function. The sequence of variables contains the variables in
order of appearance in the function call.

Definition 51 (functions calls)

CALL C (N x (VARgss4 U {nil}) x VARss4™) where
V(e,d € CALL)
((c=(t,v0,v1...05)) A (=050 ...00) A (c£) = 1#£7

42Here as well as in the following definitions the subscripts used by the variables are not meant to be the
SSA values, they are only used to enumerate the variables. If the SSA values are to be processed this is
done by using the ssa_val function.

43The only purpose of this number is to be able to distingnish between function calls that would otherwise
be represented by the same tuple.
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The set FUNC' is the set of functions occurring in a program. Every function f € FUNC
consists of an unique number** identifying the function, the variable used by the return
statement of that function®® or nil (if no such variable exists), a sequence of variables
specifying the formal parameters of the function and a sequence of function calls contained
in the function. The sequence of variables contains the variables in order of appearance in
the function header. As well the sequence of function calls contains the function calls in
order of their textual appearance in the function.

Definition 52 (functions)

FUNC C (N x (VARssq U {nil}) x VARgss™ x CALL*) where

Y(f, f'€ FUNC) :
(f =, vo,01...v5,¢1...e)) AN = (0,01 vl ep o)) N(F# )

=
i

Since functions can contain more than one function call, it is important to be able to
distinguish between the different function calls contained in a particular function. The
following functions can be used to identify a certain function call by assigning an unique
number to each call contained in a function.

Definition 53 (functions and corresponding function calls)

nth_call : FUNC x N &> CALL , callno : CALL <+ N
nth_call((i,v0,v1 ... v5,¢1...¢),n) =¢, if (1 <n<t)
call_no(¢)=n if A(f € FUNC) : nth_call(f,n) = ¢

The function nth_call*® returns the n-th function call (in textual order) occurring in the
function, whereas the function call_no returns the number of the function call inside the
function containing this call. Using these functions we are now able to distinguish between
the different function calls occurring in a certain function.

Besides these two functions there is another useful function, which deals with the func-
tions occurring in the analysed program. The function params can be used to determine
the number of parameters of a function or a function call.

Definition 54 (number of parameters of functions and function calls)

params : (FUNC U CALL) s+ N
params(z) = s if

(((x € FUNC) N (x = (i,00,01...05,€1...¢))) V
((x € CALL) N (2= (1,v0,01...05))))

*4Like the numbers identifying the function calls, the numbers identifying the functions are only needed
to make the functions distinguishable.

45 As stated in section 2.3, every function has at most one return statement after it has been normalised.

45This function is only partially defined. However, it is not necessary to define a value for n > ¢ since this
value will not be used anywhere.
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Given a function or function call =, the function params returns the number of formal
parameters of = in case x is a function, and the number of values passed to the function
contained in z in case x is a function call.

The next thing to be done is to associate the variables with the function calls and the
functions. This can be done with the help of the next two functions. The first one returns
the variables corresponding to the parameters of functions or function calls.

Definition 55 (parameters of functions and function calls)

param : (FUNC U CALL) x N ©— VARgsa
param(x,n) = v, if

(((x € FUNC) N (x = (i,00,01...05,¢1...¢)) N (1 <n<

((x € CALL) N (x=(i,v0,01...05)) A (1 <n<s)))

Given a function or function call z and a positive number n, the function param?” returns
the variable corresponding to the n-th formal parameter of x in case z is a function, and
the n-th variable passed to the function called by x in case x is a function call.

Now the values passed to a function have been handled, and it remains for the values
returned by a function to be handled as well, which is done by the next function.

Definition 56 (return values of functions and function calls)

result @ (FUNC U CALL) & VARgga U {nil}

vo if (((x € FUNC) N (x = (i,v0,01...05,¢1...¢))) V
result (x) = ((x € CALL) N (x = (i,v0,01...05))))

nil otherwise

Given a function or function call x, the function result returns the variable that is
contained in the return statement of x in case x is a function and a value is returned by the
function. Should z be a function call, the variable to which the functions result is assigned
by x is returned if such a variable exists.

Besides the functions defined up to here there are three more functions that will be
needed later. The first of these functions determines if a certain variable v is an input
or output variable of a function or a function call. The input variables of functions are
the variables corresponding to the formal parameters, whereas the output variables are the
variables returned by the return statements. Accordingly, the input variables of function
calls are those that are passed to the called functions, whereas the output variables are the
variables to which the values returned by the called functions are assigned. The input and
output variables are exactly those values that are exchanged directly between the calling
and the called functions.

Definition 57 (input and output variables)
iscio_var @ VARggs x (FUNC U CALL) &~ B

is_io_var(v,x) = (v € {vg,v1,...,0s}) if

(((x € FUNC) N (2= (i,00,01...05,¢1...¢))) V
((x € CALL) N (x = (i,00,01...05))))

4"Like the function nth_call this one is only partially defined.
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The second function can be used to find out if a certain variable is a global variable or
not. Here global variable means any variable with static storage duration. This includes all
variables declared outside of a function (globals), as well as those declared within a function
using the static attribute. The variables scope is not of any interest here. Since values can
be assigned to a static variable in one call, and later the value of this static variable can be
assigned to another variable in a second call, static variables may not be treated like other
local variables®®.

Definition 58 (global variables)
is_global : VARgsy < B

is_global(v) = {

true v is a global or static variable
false otherwise

Up to here the SSA numbers of the variables used in the program did not influence any
of the defined functions. Variables which only differ in their SSA values have been treated
as independent variables up to here. However, it is necessary to know which variables are
valid when a function is called. Here valid means that the variable has a SSA number
corresponding to the program point where the function call is located.

The function is_valid can be used to find the variables having the correct SSA numbers for
a given function call. In the following it is assumed that n. is the CFG node corresponding to
the function call ¢ and that n, and n, are the CFG nodes corresponding to the assignment
statements where the values of the variables v and v are set*.

Definition 59 (valid variables)

ws_valid @ VARggq x CALL &= B

is_valid(v,¢) = I(p € path(n,,n.))
\V/(U/ - VARSSA,}?/ € path(nvl, nc))
(base_var(v) # base_var(v')) V
(length(p) < length(p')) V
((length(p) = length(p')) A
(ssa_val(v) > ssa_val(v')))

Although this might look quite complicated at first glance, it is not as bad as it seems.
The function checks if the current SSA variable is the most recently defined SSA variable
among those SSA variables corresponding to the same variable in the original program.
Therefore this variable has to be defined in the closest CFG node defining one of the SSA
variables corresponding to the same variable in the original program (this is checked using
the length function). Further, if there is more than one of these SSA variables defined in this
CFG node, the least recently defined one has to be chosen. Since the algorithm computing
the SSA values increases the SSA value for every assignment to a SSA variable, the last one
is as well the one having the largest SSA value, which is checked by the function.

Now that the actual SSA values of variables at all function call locations can be deter-
mined, the next function will determine the SSA values valid at the end of a function.

*8Local variables declared using the static attribute can be viewed as global variables with local scope.
Anyway a compiler would usually store static variables together with the global variables at the same
location.

*9Gince the program is in SSA form, every variable is assigned a new value at most once. In case the
variable was assigned by a statement a definite CFG node exists (the node corresponding to the assignment
statement). Otherwise, the variable has never been assigned within the function, and the START node will
be used then.
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Definition 60 (final variables)
The function is_final determines whether the SSA value of a variable is valid at
the end of a function or not.

is_final : VARgsy x FUNC &~ B

is_final(v, ) = { true if v’s SSA value is valid at the end of function f
’ false otherwise

Of course the valid SSA values at the beginning of the function are as interesting as
those at the end of the function. Nevertheless, there is no function necessary to compute
these values. This is because all SSA values are zero in this case.

As will be seen later there are two more properties of functions and function calls that are
of interest. The first is whether a function contains function calls using function pointers or
not. The function ptr_call determines whether a given function call is a call using a function
pointer or if a function contains such a call.

Definition 61 (function calls using function pointers)

ptrecall : (FUNC U CALL) &~ B

ptr_call(z) = (((x € CALL) A (« uses a function pointer)) V
((x € FUNC) N (2= (i,00,01...05,€1...¢)) A
(ptr_call(er) V ...V ptr_call(¢;))))

The second matter of interest is whether the address of a function has been taken some-
where in the program. The function addr_taken can be used to detect if the address of a
given function has been taken.

Definition 62 (functions of which the address has been taken)

addr_taken : FUNC & B
addr_taken(f) = { true if the address of f has been taken

false otherwise

3.3.2 Building the call graph

The interprocedural part of the analysis cannot start without computing the call graph of
the program that has to be analysed first. Basically, there are two different types of function
calls that are represented by the call graph.

e ordinary function calls like £(...) where f is a function

e function calls using function pointers like (*£)(...) where f is a pointer to a function
and function calls using function variables like £(...) where £ is a function variable®

The call graph computation is quite simple for programs which neither contain function
variables nor function pointers. In this case, the exact call graph can be statically computed
within a single pass over the program code at compile time. Even if the program contains
recursive functions this does not cause any problems. A simple example program using
only ordinary function calls and its corresponding call graph is shown in figure 3.58. The
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void main()

{
int a,b;
a = dblsqr(3);
b = sqrdbl(3);

}

int dblsqr(int x) int sqrdbl(int x)
{ {
main int d; int d;
d = sqr(x); d = dbl(x);
return dbl(d); return sqr(d);
dblsqr sqrdbl } }
int dbl(int x) int sqr(int x)
{ {
return x 4+ x; return x*x;
sqr dbl } }

Figure 3.58: Simple program using only ordinary function calls and its corresponding call
graph

program consists of five functions. The two basic functions dbl and sqr are called by the
functions dblsqr and sqrdbl which themselves are called by the main function main.

The major difficulties caused by call graph computation concern the handling of function
calls using the second method to call a function. In this case the situation becomes much
more complicated, since there is no unique called function belonging to a certain function
call any more. Hence it is not known at compile time which functions will be called by a
certain function call, and so the call graph cannot be computed exactly in general. In such
cases 1t becomes necessary to approximate the set of functions that may be called for every
function call.

The example program shown in figure 3.59 shows a program using function pointers and
the corresponding call graph. The program is equivalent to the preceding program, beside
the fact that the two quite similar functions dblsqr and sqrdbl have been replaced by a
single function disp. Instead of calling the basic functions dbl and sqr directly they are
called by pointers. Which function will be called is specified by the function call contained
in the main program main. To make the different types of function calls visible in the call
graph the edges belonging to function calls using function pointers are marked with a star

Since the C programming language hardly restricts the usage of function pointers it be-
comes almost impossible to statically compute the exact call graph. To do this an execution
of the program covering every possible set of inputs which keeps track of the called functions
is needed. This would lead to unreasonable costs in time for all but the easiest programs if
the program contains function pointers. Therefore a solution has to be found that neither
is too expensive, nor makes overly conservative assumptions. Before going into the details
of the call graph computation, the call graphs will be defined first.

°0The C programming language does not support function variables. Nevertheless they could easily be
handled by our algorithm as well.
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void main()

{
int a,b;
a = disp(3, &dbl, &sqr);
b = disp(3, &sqr, &dbl);

}

int disp(int x, int («f1)(int), int (+£2)(int))
{
main int d;
d = £2(x);
return £1(d);

disp }
%N int dbl(int x) int sqr(int x)
dbl sqr { {
return x 4+ x; return x*x;

¥ ¥

Figure 3.59: Sample program using function pointers and its corresponding call graph

Definition 63 (call graph)

A call graph is an annotated directed multi graph
CG =(V,F)
where V = FUNC and £ = (FUNC x FUNC x N)

are the sets of call graph nodes and edges. Further there are the three functions

calling : K < FUNC
called : FE <= FUNC
no : e N

that take a call graph edge as their input and return one of the edges components.
They are defined as follows.

calling(( f1, f2,n)) = fi
called(( f1, f2,n)) = [
no((f1, f2,n)) = n

An edge (f1, f2,n) € F is contained in the call graph if and only if there exists
a function call ¢ € CALL contained in function f; where ¢ = nth_call( fi,n) and
¢ might call function fs.

As can be seen from the definition, the call graph edges consist of three components.

The first component (f;) is the calling function, which as well is the source node of the
call graph edge, whereas the second component (f3) is the called function, which as well is
the destination node of the call graph edge. The third component (n) contains the unique
number identifying which of the calls contained in the calling function belongs to the call

graph edge. These components can be accessed using the functions calling, called and no.

The last part of the definition contains an additional condition. This condition makes

sure that the call graph contains an edge from every function containing a function call
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to every function that might be called by this particular call. There are no further edges
contained in the call graph. Since functions can contain multiple calls, it is necessary to
distinguish between the different calls contained in a function. This is done with the help
of the third component of the call graph edges which specifies which function call is meant.

As mentioned earlier the call graph cannot be computed completely before the interpro-
cedural analysis starts. Depending on the analysed program it might be necessary to update
the call graph by adding new edges for the function calls using function pointers. This is
taken into account by the call graph definition since it depends on which function calls
might call which functions. This however depends on the information so far collected by the
analysing program. Therefore the call graph is not static but depends on the information
gathered at a specific stage of the analysis.

As already mentioned before it is quite simple to compute the call graph as long as a
program does not use function pointers or function variables, whereas it is almost impossible
to compute an exact call graph otherwise. Nevertheless, there have been several approaches
to deal with the problems which arise when the call graph for a program using function
pointers or function variables has to be computed. For example, the algorithm presented in
[HK92] keeps track of the values of function variables. Unfortunately, this algorithm is not
able to deal with function calls through function pointers or function variables contained in
a structure.

All the algorithms computing call graphs can be separated into two different groups:
those restricting the use of function pointers or variables in a certain way (e.g. [HK92])
and those that do not. The first group of algorithms is sometimes able to compute an
exact solution depending on the restrictions they make, whereas the second group always
computes approximated call graphs only. Although the algorithms of the second group are
less precise, the algorithm used here belongs to this group. This is because one of the main
aims of the alias analysis presented here is to be able to deal with almost all the properties
of the C programming language, which makes the algorithms of the first group completely
unsuitable here. If an algorithm of the first group had been chosen this would either lead
to some considerable restrictions to the language which are not desired here, or to a call
graph having too few call edges which could lead to aliases that may not be found by the
alias analysis. Especially the almost unlimited possibilities to manipulate pointers within C
programs make it impossible to build a really precise call graph within a reasonable period
of time. The major advantage of the algorithms of the first group is that the following
analysis steps (the interprocedural parts) can use a call graph that is complete when the
analysis starts, and that they can rely on the fact that it will not be modified during the
following analysis steps.

intraprocedural call graph interprocedural
analysis computation analysis

Algorithms of the second group either do not have this property or are extremely im-
precise. This is because the computation of the sets of functions that may be called can
be reduced to the alias problem itself. In this case, the only thing of interest is to find
out which function addresses a certain function pointer can hold. This is equivalent to the
problem of finding the aliases of the function pointers.

A trivial solution to this problem would be to assume that every pair of variables may
be aliases. Of course this solution is unsuitable for the alias analysis itself, but it may be
used for the call graph computation. In this case every function call using a function pointer
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has to be expected to call any of the functions having a matching type if the address of
such a function has been taken somewhere in the program®'. Obviously this will lead to an
extremely imprecise call graph in many cases, but it is the only way to build a complete call
graph in advance without restricting the language.

If a more precise call graph shall be computed the only thing that can be done is to
combine the call graph computation with the interprocedural analysis (especially the alias
analysis). By doing this, one can start with an incomplete call graph and let the alias
analysis add edges to this call graph every time a new function that may be called by
a certain function call is found. The changed call graph may then be used to compute
previously undetected aliases and new functions that may be called by one of the function
calls respectively. Finally, when stabilisation is reached, the call graph computation as well
as the alias computation itself are completed. One of the algorithms using this scheme to
update the call graph as well as the results of the interprocedural analysis step repeatedly
is described in [Wei80].

intraprocedural call graph interprocedural
analysis computation analysis

In many cases the algorithms which update the call graph step by step are not as fast as
the ones which compute a final call graph before the interprocedural analysis starts. This is
caused by the repeated updating of the interprocedural results which can sometimes become
comparatively costly. As will be seen later, this does not hold for the algorithm presented
here, since it is not necessary to update any of the previously computed results when a
new call graph edge has been found. The only thing that has to be done is to process the
new edge, just like the other edges that have been available right from the start. Hence
the algorithm presented here combines the benefits of being as fast as if the complete call
graph has been computed before the interprocedural analysis starts and of being as precise
as possible without restricting the programming language.

The initial call graph that is used by the interprocedural analysis contains only edges for
function calls where the called function can be statically computed (those not using function
pointers). Therefore the computation of this call graph is as simple as for those programs
which do not contain function pointers, since the calls using function pointers can simply
be ignored in this first step.

3.3.3 Combining the function interface graphs produced by the
intraprocedural analysis

Now, after an initial call graph has been built, it will be described how the function interface
graphs belonging to different functions are combined. Before the matching process itself is
described, the next section shows how the function interface graphs can be reduced to make
the merging process more efficient.

>INote that the effects of function calls using function pointers are undefined if the type of the function
pointer does not match the type of the called function ([Ame89a]). Therefore it is sufficient to assume that
only calls with matching types occur in a program.
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3.3.3.1 Reducing the function interface graph for the interprocedural analysis

The function interface graphs produced by the intraprocedural analysis represent every
memory access a function can perform. Since not every memory access contained in a func-
tion can influence the behaviour of calling or called functions, the function interface graphs
can be reduced before they are combined with other function interface graphs representing
calling or called functions. After the function interface graphs have been thinned out, only
those effects of a function that may introduce new aliases are represented by these reduced
function interface graphs.

Of course some information is lost after the function interface graphs have been reduced,
and this can possibly lead to undetected (local) aliases. Therefore it is necessary to keep a
copy of the non-reduced function interface graph when the graph is reduced. This keeps the
pure local effects of a function still detectable since they can be computed by inspecting the
non-reduced function interface graph. Nevertheless the non-local effects can be computed
more efficiently since they can take advantage of the smaller reduced function interface
graphs. In this context it is helpful to have a proper definition of what is meant by local
and non-local effects.

Definition 64 (local and non-local e-aliases)
Given a function f and two variables v and v’ from which the same memory
location can be accessed (according to definition 42 the variables are e-aliases),
then these variables are called local e-aliases if they are e-aliases in every possible
program containing the function f, and non-local e-aliases otherwise.

Since it is not possible to compute the effects of all programs containing a given function,
local and non-local e-aliases cannot be distinguished by checking if the definition holds.
However, local e-aliases are exactly those aliases that can be detected by inspecting a single
function without looking at the calling or called functions, which obviously is much easier
to check. All local e-aliases are represented by the non-reduced function interface graph.
In many cases, when only local variables are involved, the local e-aliases are only of minor
interest for other functions. The non-local e-aliases can be detected by inspecting the final
function interface graph that is built by combining the reduced function interface graphs
of the different functions. To be able to detect all non-local aliases it is essential that the
reduced function interface graphs still have enough information to represent every memory
access that might lead to non-local e-aliases.

Before the differences between local and non-local aliases and the corresponding function
interface graphs are discussed further, it is defined which information, that is which nodes
and edges, is removed from the function interface graphs when preparing for the merging
process. The definition of the reduced function interface graphs uses the function reachable
that is defined first.

Definition 65 (reachable nodes)
Given a function interface graph fig with fig = (V. F), then the function
reachable is defined as follows.

reachable : V xV &3 B

dneVie€ E)) : reachable(n,ny) A
(sre(e) =ng) A if ny # ny
(dst(e) =n)

true ifn, =ny

reachable(ny,ny) =
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This function can be used to find out if a certain node (nz) of a function interface graph
can be reached from another node (ny) of that graph.

Definition 66 (reduced function interface graph)
Given a function f and its corresponding function interface graph fig, the func-
tion reduce computes the corresponding reduced function interface graph fig,.,.

reduce : FIG x FUNC &= FIG
reduce(fig, f) = fig eq

where
ﬁg = (V7 E)7 ﬁgred = (wﬁdvEred)

and

‘/red = {an eV | EI(U S VARSSAanU € V)
(v € vars(ny)) A reachable(n,,n’) A
((iscio_var(v, f) VvV (Ic€ CALL,n € N) :
(¢ = nth_call(f,n)) A is_io_var(v,c))) V
(is_global(v) N ((ssa-val(v) =0) V
(I(c € CALL,n € N) : (¢ = nth_call(f,n)) A is_valid(v,c)) V
(is final (v, £)))))}
E. = {e€E | (srce(e) € Vi) N (dst(e) € Via)}

Only nodes that can be reached from either a node belonging to a global variable or
from a node belonging to a function parameter (including return values) are kept in the
reduced function interface graph. However, not all nodes belonging to global variables are
kept. Only those nodes belonging to global variables whose SSA values are valid at either
the beginning or the end of the function, or at places where other functions are called, are
chosen. Furthermore, only those edges are kept that connect two of these nodes. All other
nodes and edges belong to memory locations that cannot be accessed from the outside of
the function, and so they are not of any interest for the interprocedural analysis. Remember
that the aliases between local variables can still be detected since a copy of the non-reduced
function interface graph is kept.

The example shown in figure 3.60 shows a function in its original form as well as in SSA
form. The corresponding function interface graph, as well as the reduced function interface
graph are shown in figure 3.61. Like in the previous examples an integer size of two bytes,
a pointer size of four bytes and a byte-wise alignment are assumed. As can be seen from
this example, the nodes and edges that are only reachable from the nodes corresponding to
the local variables that are not used for input or output (ptry, ptry, ptrs, ptra, ci, o, cs,Ca)
have been removed in the reduced function interface graph. Although the variables 1istg, ng
and res; are local variables as well, the nodes reachable from the nodes corresponding to
these variables are included in the reduced function interface graph since the first two of
them are formal parameters and the last one is the value returned by the function.

3.3.3.2 Merging the function interface graphs for a single function call

Every function call has one or more corresponding edges in the CFG graph. Each of these
edges connects the function containing the function call with one of the functions that may
be called by this particular call. To represent the effects of such a possible call correctly, the
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typedef struct list {
int i;
struct list *next;

} *list_ptr;

list_ptr nthele(listptr list, int n)
{

int res,c;

list ptr ptr;

ptr = list;

c=1;

if (m>1) {

do {

ptr = x(ptr.next);
c=c+1;
} while (c < n)

}

res = xptr.i;
return res;

Source code

typedef struct list {
int i;
struct list *next;

} *list_ptr;

109

list_ptr nthele(listptr listy, int no)

{
int resi,cy,co,cC3;
list ptr ptry,ptry,ptrs, ptra;
ptr; = listo;
cg =1;
if (no>1) {
do {
ptrz = ¢(ptry, ptrs);
c3 = P(cq, C2);
ptry = x(ptrz.next);
cy =c3+1;
} while (c2 < ng)
}
cq = P(cyq, C2);
ptrs = ¢(ptry, ptrs);
res; = *ptrs.i;
return resq;

Source code in SSA form

Figure 3.60: Sample program and program in SSA form



110 CHAPTER 3. ALIAS COMPUTATION
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Figure 3.61: Non-reduced function interface graph and reduced function interface graph
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variables that might be used to transfer data between the calling and the called function
have to be matched. Basically, there are only three different ways to transfer data between
functions:

Type I: using the same global variables in the calling and the called function
Type II: passing a value from the calling to the called function as a parameter
Type III: returning a value from the called function to the calling function

Every other alternative to transfer data between functions is based at least on one of these
concepts, and so they do not have to be treated explicitly.

One might wonder whether functions which communicate by storing data to and later
loading data from a certain memory location through pointers have to be treated as a fourth
case. However this is not true, since this is only possible if both functions have access to
the same pointer value. The precondition for having the same pointer value in different
functions is that the pointer value has been passed from one function to the other. This
can only be done by using one of the three ways given above or by using a pointer to this
pointer. In the last case this would lead back to the initial problem of passing a pointer
between functions with the only difference of an increased pointer dereference level.

When the value nodes corresponding to the values that could have been used for inter-
procedural data transfer are matched, not only the value nodes themselves but every other
node reachable from one of these nodes is included into the matching process. Therefore
it is sufficient to use the value nodes described above as the basis for the matching process
and to follow the paths along the dereference operations as far as possible. As described in
section 3.3.3.1, the reduced function interface graph already only contains those nodes that
can be reached from a node corresponding to either a global or an input or output variable
of a function. These variables are exactly those that can be used by one of the three data
transfer methods that have been described above.

The intraprocedural analysis that has been used to generate the function interface graphs
annotated to the different CFG nodes did not use shared value and reference nodes to repre-
sent global data. This means that multiple value and reference nodes exist which represent
the same global variables within different function interface graphs. Furthermore, the value
and reference nodes representing the parameters of functions and those representing the
values passed to the functions are different as well. Given a certain function call this leads
to three different kinds of node pairs that have to be matched.

Type I: value nodes representing the valid global variables in the calling function and the
value nodes representing the corresponding globals variables valid when entering and
leaving the function®?.

Type II: value nodes representing the formal parameters of the called function and the
value nodes representing the corresponding values passed to the function.

Type III: the value nodes representing the return values of the called functions and the
value nodes representing the variables to which the functions results are assigned.

These three kinds of node pairs correspond to the previously described three data transfer
methods. The initial pairs containing the nodes that have to be matched will now be formally

defined.

2In case there are no nodes representing the corresponding variables yet, they will have to be created.
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Definition 67 (initial value node pairs to be matched)

func_unite_nodes : CALL x FIG x FUNC x FIG & P(VN x VN)
Junc_unite_nodes(c, fig,, f, fig;) = {(vne, vny) | Ive, vy € VARgs4)

((ve € varsgy (vn.)) N (vf € varsﬁgf(vnf)) A
(((base_var(v.) = base_var(vy)) A is_valid(ve,¢) A (1)
((ssa-val(vy) =0) V is_final(vs, f)) N is_global(vs)) V
(H(n S N) : ((pamm(f,n) = Uf) A (ﬁgc = ﬁgf) A (IV)
(ve =1vy))))) V
((wnl, vn’f € VN) :
(ve € varsgy (vnl)) A (deref(vnl, (O,Si?eof(vc))) = un.)
(vf € varsg (vn;)) A (deref(vn'y, (0,sizeof(vy))) = vns) A
(A(n e N) = ((param(c,n) =v.) A (param(f,n)=vs))) v (1I)
(v € result(c)) AN (vy € result(f))))) (111)

A

In the definition given above the parts which belong to the different matching node
types can be identified by their number. However, there is a fourth component contained
in the definition. The node pairs specified by this fourth component have to be matched to
handle recursive (direct and indirect) functions correctly as well. When a recursive function
occurs, this leads to a matching process where the function interface graph belonging to
the called function and the function interface graph belonging to the calling function are
the same. In this case, there may be different value nodes which represent the function
parameters of the calling and the called function that have to be matched. This has to be
done because the algorithm does not distinguish between the different calling instances of
recursive functions. Anyway it is not possible to distinguish between all possible calling
instances since a recursive function may arbitrarily often call itself. Therefore at most
an approximation could be made by computing only a certain number of recursive calling
instances. In any case different calling instances remain that are not distinguished by the
algorithm. The additional precision gained by distinguishing between some of the calling
instances does not justify the costs of computing such an approximation, and hence all
calling instances of recursive functions are treated as one.

A closer look at the definition of the nodes to be matched shows that the nodes belonging
to the first and fourth group are nodes which represent the address of a variable, whereas
the nodes of the second and third group represent the variables values. This difference is
caused by the effects that are handled by these groups. The first and fourth group both
specify nodes which represent the same variable within different graphs and so they have to
be merged completely. The second and third group handle the effects of different variables
with different addresses but which hold the same value. In the latter case it is sufficient to
merge the value nodes which represent the variables values and leave the value nodes which
represent the variables address untouched.

Now, after the nodes that have to be matched have been determined, the algorithm
matching the function interface graphs of the calling and the called function can easily be
specified. Since the matching process of two function interface graphs belonging to different
CFG nodes is quite similar to the matching process for function interface graphs belonging
to a calling and a called function, it is not surprising that some of the essential parts of the
algorithm merging the function interface graphs for different CFG nodes can be reused. The
algorithms used to merge function interface graphs belonging to different CFG nodes have
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—

Jig s = new_fig();
unite_nodes = func_unite_nodes(c, fig,, f, figs);

(1)
(2)
(3)
(4)
25; gen_nodes_(md_linkxs(ﬁgc,ﬁgf,ﬁgm7 unite_nodes);
(7)
(8)

gen_ref_edg€8 (.ﬁgm .ﬁgf ) .ﬁgres) )
return fig, . ;

Figure 3.62: Function matching the function interface graphs belonging to a function and
a function called by this function

been described in section 3.2.4. Hence the functions that have been reused can be found
there and are not shown repeatedly here. In fact the function shown in figure 3.47 is the only
function that needs a modification to adapt the algorithm to merge the function interface
graphs belonging to the calling and the called function. Figure 3.62 shows the modified
version of this function. Besides the fact that some variables have been renamed and that
the function has two additional parameters (the function call and the corresponding called
function) there is only one line that has been altered significantly (line 4). Now, the nodes
that have to be united are computed by the func_unite_nodes function (c.f. Def. 67). There
are no further changes necessary to the functions merging the function interface graphs.

An example

Figure 3.63 shows how function calls will be handled. It contains a function calling another
function, the reduced function interface graphs corresponding to the two functions and the
resulting function interface graph representing both functions.

This example contains a new notation that will be used from here on. Whenever it
is necessary to distinguish between variables which have the same name, the name of the
function containing the variable is given as well. E.g. this means that f.a denotes the
variable a which is used within function £°2.

As can be seen, the function g modifies the value pointed to by its parameter b and
returns the value of this parameter afterwards. This results in the fact that f.c and £.b hold
the same pointer value after the function call has been executed. Further, the value of *f.b
and f.a is the same due to the assignment contained in g. This all is properly represented
in the resulting function interface graph since the value nodes representing f.c and f.b as
well as £.a and *f.b are the same.

3.3.3.3 Call path insensitive analysis

Now, that it is clear how the merging of the function interface graphs for a single function
call can be handled, it is about time to think about the problem of merging the function
interface graphs for all the possible function calls that have been and will be detected.
Since there may be function calls that have not yet been detected when the merging process
starts one has to deal with the function calls known right from the start as well as with
those detected during the merging process.

330f course this is not sufficient to identify a variable in any case since there may be variables which have
the same name that are defined in the same function within different scopes. However, since such things do
not occur in the example programs the variables can properly be identified using this notation.
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int d;

void £()

{
int a, xb, xc;
b = malloc(sizeof(int));
a=d;
c=g(a,b);

}

int *g(int a, int *b)

{
*b = a;
return b;

}

Source code

&a1

&dg

&by

&Cl

&ao

&g

fig,

CHAPTER 3. ALIAS COMPUTATION

int do;

void £()
{
int ay, *by, xcy;
b; = malloc(sizeof(int));
ar = do;
c1 = g(a1, b1);

}

int *g(int ao, int #bo)

*bo = ap;
return bg;

}

Source code in SSA form

&f.a1

&f.do

&g.ag

&f.by

&f.Cl

&gbo

Figure 3.63: Sample program, program in SSA form, corresponding (reduced) function

interface graphs and resulting function interface graph demonstrating the merging process
for function calls
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function update_refs(cg, old_fig, new_fig)

(1)
(2) A

(3) for all (fe€cg.N) {

24; } if (f.fig = old_fig) [.fig = f.new_fig;
(6) }

function match(cg, unprocessed_edges)

{
while (3((f1, f2,n) € unprocessed_edges)) {
fig = call_fig-match(nth-call(fi, n), f1-fig, 2, f2-fig);
update_refs(cg, fr.fig, fig);

update_refs(cg, f2.fig, fig);
ptr_call_edges = search_new_edges(cg, fig);

)
)
)
)
4) add_edges(cq, ptr_call _edges);
) unprocessed _edges = (unprocessed_edges U ptr_call__edges) — {(f1, f2,n) };
) )

) }

(18) function call_path_insensitive_match(cg)
(19) {

(20)  match(cg, cg.E);

(21) }

Figure 3.64: Call path insensitive analysis algorithm

The easiest way to do this is to process the edges of the call graph one by one and to com-
bine the function interface graphs belonging to the calling and the called function until all
edges have been processed. This is a very cheap as well as simple strategy. Figure 3.64 shows
the corresponding algorithm. The only input of the function call_path_insensitive_match is
the call graph. It is assumed that the previously computed and reduced function interface
graphs have been attached to the nodes of the call graph and can hence be accessed as well.
The algorithm uses one set (unprocessed_edges) which contains the edges of the call graph
that have not yet been processed. At the beginning the set of edges to be processed contains
all edges of the initial call graph (20). The merging process starts by choosing an arbitrary
call graph edge to be processed as next (9). Then the function interface graphs belonging
to the calling and the called function are merged (10). Now, all references to one of the
function interface graphs that have been merged have to be updated to refer to the newly
created merged function interface graph (3,4,11,12). Due to the merging of the function
interface graphs there may be new functions found that could be called by function calls
using function pointers. This may lead to new edges (13) which are added to the call graph
(14) as well as to the set of edges to be processed (15). These new edges are computed
by the function search_new_edges which only checks if there are new aliases that have been
found for the function pointers used in function calls. Now, the currently processed edge
can be removed from the set of edges to be processed (15). After all edges of the call graph
have been processed, all call graph nodes hold a reference to the resulting function interface
graph®.

As can be seen from the algorithm there are no requirements on the order in which the

>4Otherwise the program contains non-called and hence useless functions.
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void g() void h()
{ {
void £() int *x1,*x2; int *y1, xy2;
{ : :
k(x1,x1,x2); k(y1,y2,52);

: } | } | i
h(); /\

void k(int *p1, int *p2, int *p3) g h

. ‘ N4
’ k

Source code Call graph

Figure 3.65: Imprecision caused by a call path insensitive analysis

call graph edges have to be processed. Even recursive functions do not need any special
treatment. The updating of the references from the call graph nodes to the corresponding
function interface graphs is not very efficient. Although it could be improved by using an
union search algorithm as described in section 3.2.4 this is not done here. This is done to
keep the algorithm as simple as possible and to avoid to have to explain the same algorithm

twice®.

3.3.3.4 Call path sensitive analysis

Although the call path insensitive algorithm works quite well in many situations, there is
one significant disadvantage when this algorithm is used: if a function is called by more
than a single function call, it is not distinguished between the different calling contexts.
This can lead to unnecessary imprecision as shown in the example displayed in figure 3.65.
Here the function k is called by g and h. In the first case this leads to an alias between *p1
and *p2, whereas an alias between #p2 and *p3 will occur in the second case. This means
that the values of *p1, *p2 and *p3 are all represented by the same value node after the
corresponding function interface graphs have been merged. However, this leads to a possible
alias between *p1 and #p3 that cannot really occur.

To avoid the imprecision caused by the call path insensitive algorithm, a call path sen-
sitive algorithm can be used instead. In this case a different strategy has to be used when
the function interface graphs have to be merged. The unnecessary detected possible alias
between *p1 and *p3 can be avoided if the function interface graph belonging to k is dupli-
cated. When the function calls calling k are processed, each call processes a different copy
of the function interface graph and hence there are different value nodes representing the
values of #p1, #p2 and #p3 for each function call calling k. In this simple case the same effect
could have been achieved if the function k had been duplicated before the analysis starts
and the call path insensitive algorithm had been used afterwards. Figure 3.66 shows the
corresponding transformed program. The only difference between duplicating the function
interface graph instead of the program code is that the first is more efficient and hence
should be preferred. In some cases (e.g. if k contains further function calls) the duplication
of functions becomes even less efficient because the number of edges contained in the call

350f course the faster algorithm is used by the implementation.
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void g() void h()
{ {
int *x1, *x2; int *xy1, xy2;
void £() kg(x1,x1,%2); kn(y1,52,52);

b .

void kg(int *pl, int *p2, int *p3)

void ky(int *pl, int xp2, int *p3)

‘- Voo

Source code Call graph

Figure 3.66: Call path sensitive analysis

graph and hence the number of merging processes would then increase as well. Since copy-
ing functions instead of function interface graphs is obviously significantly less efficient, the
function interface graphs instead of the functions are copied when necessary. Nevertheless,
it is sometimes useful to keep the alternative method in mind since both methods have some
common properties.

Although copying function interface graphs is already much more efficient than copying
the functions itself, the additional precision gained by the call path sensitive analysis cannot
be achieved without additional costs. These time and space costs are caused by the dupli-
cation of the function interface graphs. In our example this does not make a big difference
(only the function interface graph belonging to k has to be duplicated once), but there may
be call graphs which lead to larger amounts of copies to be generated. The call graph shown
in figure 3.67 is an example where the number of function interface graphs to be copied
increases linearly to the number of functions (or function calls) occurring in the call graph:
here the function interface graphs of all functions contained in the call graph (besides f;)
have to be copied since every function is called by two different function calls (besides fi).
However, no matter how the call graph will be, the number of function interface graphs
that have to be copied is in any case smaller than the number of edges contained in the call
graph.

Beside the call graph discussed above the figure contains a second (expanded) call graph
which would have been built if the functions instead of the function interface graphs had
been copied. As can be seen, the number of call graph nodes as well as call graph edges in-
creases quadratically in this case, which again shows the significant advantage when function
interface graphs instead of the functions themselves are duplicated.

So far, the duplication of the function interface graphs and the corresponding additional
time and space costs form no big difference between the call path insensitive algorithm and
the call path sensitive algorithm. However, there is an additional problem that has not been
addressed up to here: if a function interface graph is duplicated before all the function calls
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Figure 3.67: Call graph causing many duplication operations

Figure 3.68: Cyclic call graph needing additional matching operations when the function
interface graphs are duplicated and corresponding expanded graph

contained in the called function have been processed, additional matching operations might
be needed. As stated before, the order in which the different function interface graphs are
matched does not play any role for the call path insensitive algorithm. This changes if a
call path sensitive algorithm is used instead. Looking at the example from figure 3.67 this
means that, if a top down processing order is chosen, the function interface graph belonging
to fy will then be copied first. Since the function interface graph belonging to f; has not
yet been matched with the graph belonging to f3, this matching process would have to
be performed for both copies of the graph belonging to f;. Altogether this would finally
lead to as many matching operations as if the algorithm duplicating the functions had been
chosen. However, this effect can be avoided if the merging process is performed in a bottom
up order. In this case, the function interface graph belonging to f, is duplicated first, and
hence both copies can be merged with the graph belonging to f,—1 and so on. Using this
strategy will prevent the introduction of additional matching operations.

The precondition to avoid additional matching operations is that there are so far no
unprocessed function calls if the function interface graph of a function is to be duplicated.
Unfortunately, call graphs do exist where none of the possible processing orders assures
that no additional matching operations are necessary. This is either caused by recursive
functions or by functions containing function calls using function pointers. In these cases
there are two choices: to at least accept some additional matching operations or not to
duplicate some of the function interface graphs and hence to accept precision losses.

The following three examples explain which kind of problems may occur. In the first
case (figure 3.68) the duplication of one of the function interface graphs requires additional
matching operations no matter which order is chosen. In the second case (figure 3.69) it is
at least possible that an additional matching operation is necessary. Fven if all the function
calls of g1 have been processed it might be that another possible function call exists calling
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Figure 3.69: Call graph with functions containing function calls using function pointers

a function A, that has not been detected so far. In this case both copies of the duplicated
function interface graph belonging to ¢; have to be matched with the function interface
graph belonging to h,1; then. The problems shown by the second example may arise if a
new function is found that may be called by a given function. However, the contrary can
cause problems as well: if a new function is found that calls a given function it might be
that the function interface graph belonging to the called function has already been merged
with the function interface graph of another calling function before. For this example it
is assumed that all possible function calls of g; have been processed and the resulting call
graph has been duplicated and merged with f; and f;. If there is a new function call calling
g1 found within a function f5 now, it is not possible to duplicate the function interface graph
representing ¢; and the functions called by ¢y, since both copies of this graph have already
been merged with f; and f;. Of course one could choose one of these duplicates, but this
causes the same imprecision that is caused by the call path insensitive algorithm as well.

As can be seen from these examples, the processing order can significantly influence the
costs of the call path sensitive algorithm. Choosing an awkward processing order could lead
to many unnecessary matching operations. To avoid this and the resulting unnecessary time
and space costs, the algorithm has to choose a suitable processing order. Nevertheless this
does not solve the problems caused by function calls using function pointers and recursive
functions. As long as the program contains neither of these, the problem can simply be
solved by processing the call graph in a bottom up order. In this case the call graph is
acyclic and no further edges are added to the initial graph.

However, recursive functions and function calls using function pointers have to be dealt
with somehow as well. This problem can be addressed by processing the edges of the call
graph within two passes. During the first pass only those edges that are not influenced
by the problems caused by function calls using function pointers and recursive functions
are processed. Within this pass the function interface graphs are duplicated whenever
necessary. During the second pass the remaining edges are processed by the call path
insensitive algorithm. This avoids additional matching operations in any case. Most of the
call graphs of usual C programs are processed completely, or at least almost completely,
within the first pass. Only those programs which use many recursive functions or function
pointers need the second pass and hence produce slightly less precise results. The algorithm
combines the benefits of the call path sensitive algorithm copying the functions and the
call path insensitive algorithm. On the one hand, the number of matching processes is the
same as if the call path insensitive algorithm had been used, and so there are only the
comparably small additional costs of copying the function interface graphs. On the other
hand, the precision of the results is equal or comes close to the call path sensitive algorithm
copying the functions. The details of the algorithm are described next.

The algorithm performing the call path sensitive analysis is shown in figure 3.70. It uses
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function call_path_sensitive_match(cg)
{
for all (fe€cg.N) {
if (ptr_call(f)) f.out_no = oc;
else f.out_no =0;
if (addr_taken(f)) f.in_no = oc;
else f.in_no = 0;
}
for all ((f1, f2,n) € cg.F) {
) if (fi.out_no # oo) fi.out_no = fi.out_no+ 1;
) if (fz.in_no # o0) fa.in_no = fr.in_no + 1;
)}
) done = false;
) unprocessed_edges = cq.F;
) while (not done) {
) if (3(f1, f2,n) € unprocessed_edges | fz.in-no=1) {
) fig = call_fig-match(nth_call(f1, n), f1-fig, f2, f2-fig);
) update_refs(cg, fi1.fig, fig);
) update_refs(cg, f2.fig, fig);
) } else if (3(f1, f2,n) € unprocessed_edges | (fz.out_no=10) Vv
) (f1.fig = f2-fig)) {
) fig = call_fig-match(nth_call(f1, n), f1-fig, f2, f2-fig);
) update_refs(cg, fi1.fig, fig);
) } else done = true;
) if (not done) {
) if (fi.out_no # oo) fi.out_no = fi.out_no — 1;
) if (fz.in_no # oo) fa.in_no = fy.in_no — 1;
) ptr_call_edges = search_new_edges(cqg, fig);
) add_edges(cq, ptr_call _edges);
) unprocessed _edges = (unprocessed_edges U ptr_call _edges) — {(f1, f2,n) };
)
)
)
)

¥
¥

match(cg, unprocessed_edges);

}
Figure 3.70: Call path sensitive analysis algorithm
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two counters which count the unprocessed incoming and outgoing edges of every call graph
node. At the beginning these counters have to be initialised (3-7). Since there may be
additional edges that are added to the call graph during the computation, such edges have
to be taken into account in advance. This is done by setting the outgoing edge counter of
functions containing function calls using function pointers to infinity. This shall reflect the
fact that there may be an arbitrary amount of outgoing edges that may be connected to
this node during the analysis (4). The same is done for the incoming edge counter in case
the functions address has been taken somewhere in the program (6). Now, all edges of the
initial call graph are processed one by one and the incoming and outgoing edge counters
of the calling and the called function are incremented as long as they have not been set to
infinity (9-11). Like the call path insensitive algorithm, the call path sensitive algorithm
uses a set containing the nodes that have not yet been processed (unprocessed_edges) which
is initialised to contain all the edges of the initial call graph (14). After this has been done,
the algorithm checks if a function call exists, where no other unprocessed function call calls
the same function (16). In this case this function call can be securely processed (17), and
the references to the corresponding function interface graphs can be replaced by the new
merged graph (18-19). If no such function call can be found there are two further types of
function calls that can be processed now: those function calls calling a function that does
not contain any unprocessed function calls and those where the function interface graphs
belonging to the calling and the called function have already been merged before and hence
are identical (20). Note that according to the preceding unfulfilled condition at least one
further unprocessed call exists which calls the same function in either case. In the first
case this means that the function interface graph belonging to the called function has to
be duplicated. This is done by computing the merged function interface graph (22) and
exchanging only the references to the function interface graph of the calling function (23).
In general this does not affect the function interface graph of the called function. Hence this
graph can be matched with the function interface graphs belonging to the other functions
calling this function as it is. The second case appears if functions are called recursively.
The steps to be done then are exactly the same, although the intention is different. In this
case the function interface graph of the calling and the called function are identical, and
hence the graph is merged with itself. If none of the unprocessed function calls fulfil one of
the preceding conditions, the first pass has to be ended (24), and the call path insensitive
algorithm will have to deal with the remaining unprocessed function calls (33). Otherwise,
some final steps finish the processing of the current function call (25). The most important
thing to be done is to update the counters of the unprocessed incoming and outgoing edges
as long as they have not been set to infinity (26-27). Finally, the currently processed edge
has to be removed from the set containing the unprocessed edges, and it has to be checked
whether new edges have been found that have to be processed (28-30). Like in the case
of the call path insensitive algorithm every call graph node holds a reference to the final
function interface graph when the algorithm terminates.

An example

The example shown in figure 3.71 contains an indirect recursive function call through the
functions nth_ele and shift. This figure contains the source code, the corresponding code
in SSA form as well as the call graph of the program. The function interface graphs which
belong to these functions are shown in figure 3.72. After the function interface graphs have
been merged it can be seen that the value returned by the function nth_ele can be any of the
three values passed to the function. This is represented by the fact that the corresponding
values are all represented by the same node. Although the possible alias between *p and
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*xz can only occur after the functions have been called recursively twice, this effect can be
detected without the need of repeated merging steps. This shows that recursive functions
do not need recursive updates or merging processes unlike in many other algorithms (e.g.
[WL95]). Hence there is no iteration of the merging process necessary until stabilisation is
reached. Everything can be computed without having to check if there are changes requiring
a further iteration.

3.3.4 Correctness

The correctness of the algorithm is almost clear since there are only comparably few differ-
ences between the merging of function interface graphs belonging to different functions and
those belonging to different CFG nodes. The latter have already been shown to be correct
in section 3.2.6. Since the only difference between these algorithms is the initial set of nodes
to be matched, it is quite clear that as long as these sets are correct, the complete algorithm
is correct as well. As discussed in section 3.3.3.2 this set consists exactly of those nodes that
belong to the values that can be used to interchange data between functions. This ensures
that any value that could be used to transfer data between functions is finally represented
by the same value node, and hence all possible aliases can be detected.

3.3.5 Time and space bounds

Both time and space bounds of the algorithm are mainly influenced by two factors: the
number of edges contained in the final call graph and the size of the function interface
graphs belonging to the different functions. The time and space costs needed to merge two
function interface graphs have sufficiently been discussed in section 3.2.7, and so it is not
necessary to discuss them again here. The size of the function interface graphs belonging to
each function grows at most linearly to the size of the corresponding function. Hence the
size of a function interface graph resulting from a merging process of two function interface
graphs belonging to two different functions can be at most the sum of the sizes of the two
input graphs. In the absolute worst case, a merged function interface graph can reach a
size growing linearly to the size of the complete program. However this is not very likely
since this would mean that all the functions that have been involved in the merging process
neither exchange any data nor access the same data. Assuming that a constant limiting of
the number of different dereference operations applied to each variable exists this leads to
a size of the function interface graphs growing linearly to the number of involved variables.
Since real programs usually use the same variable a couple of times it seems more appropriate
to assume a size which grows less fast. In the following it is assumed that E¢g, is the set
of edges of the call graph belonging to a program p, that STMT, is the set of statements
contained in the program p and that VARgsy4, is the set of variables®® used by the program

P-

3.3.5.1 Time bounds

Given the assumptions made above, the time needed by the interprocedural analysis parts
isin O(|Ecq,|-|STMT,?) in the worst case. Assuming that the size of the merged function
interface graphs grows only linearly to the number of the involved variables and not to
the size of the program, the worst case becomes O(|E¢q, | - |VARss4,|?). If the additional

%6Gince the program has been transformed into SSA form it can be assumed that VARsg 4, contains more
variables than the original program had.
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void main()
{
int *p,*X, *y, 2, n;
p =nth ele(x,y,2,n);

}

int snth_ele(int #x, int xy, int *z, int n)
{
int *p,m;
if m>1) {
m=n-—1;
p = shift(x,y,z,m);
} else p=x;
return p;

}

int #shift(int #x, int xy, int *z, int n)
{

int *p;

p =nth ele(y, z,x,n);

return p;

}

Source code

void main()

{

}

Int *pj, *Xg, *¥Yo, ¥Z0, No;
p1 = nth_ele(Xo, Yo, Zo; No);

int #nth_ele(int #xo, int *yo, int *zo, int no)

{

}

int *P1, *P2, *P3, Mo, My, My;
if (no > 1) {

m; =nog — 1;

p1 = shift(xo, yo, Zo, M );
} else py = xo;

Ps = ¢(p1,P2);
my = ¢(mo,my);
return ps;

int #shift(int #xo, int *yo, Int *zo, int no)

{

}

int *pq;
p1 = nth_ele(yo, Zo, X0, No);
return p;;

Source code in SSA form

123

main

|

nth_ele

|

shift

Call graph

Figure 3.71: Sample program, corresponding program transformed into SSA form and call

graph
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Figure 3.72: Reduced function interface graphs belonging to the different functions and
resulting function interface graph
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assumption is made that the merging process of two function interface graphs takes time
growing linearly to the size of the function interface graphs to be merged, an overall time
bound of O(|Ecq,|-|VARssa,|) is reached.

Since the algorithm that has been implemented avoids the unnecessary copying of func-
tion interface graphs that have to be merged, the time needed to merge the graphs depends
only on the number of nodes that will really be merged. When the function interface graphs
belonging to a calling and a called function have to be merged, these nodes are those belong-
ing to the functions parameters as well as those belonging to the global variables. Assuming
that the number of value nodes that have to be merged per parameter / global variable is
constant, the merging process takes time proportional to the number of involved parameters
and global variables. If it is further assumed that the number of parameters is a small value
not depending on the program size, the time needed to merge the two graphs grows with
the number of global variables. Altogether, this results in an analysis time growing with the
number of global variables and the size of the call graph (O(|Ecq,| - |VARgoa|)). As can
be seen from the empirical results shown in section 4.5 this time bound seems to be much
more appropriate in the case of real programs.

3.3.5.2 Space bounds

Since two function interface graphs that are merged will never produce a function interface
graph bigger than the sum of the two function interface graphs to be merged, there is only
one situation where new space is needed during the interprocedural analysis. This happens
if a function interface graph has to be duplicated because there are different functions calling
the function belonging to the function interface graph. In the worst case this can lead to
O(|Eca,|) duplicates of the function interface graphs that have to be produced. In this
case the space needed for all the function interface graphs is in O(|Ec¢q,| - |STMT,|) if it
is assumed that the size of the function interface graph grows linearly to the size of the
program. In most cases significantly less space is needed since the merged function interface
graphs are almost always smaller than the two graphs that have been merged. Besides that
it is unlikely that many large function interface graphs have to be duplicated because of
multiple incoming call graph edges.

The space bound described above is based on the fact that function interface graphs may
be duplicated in some cases. If a purely call path insensitive analysis is performed instead,
none of the function interface graphs will have to be duplicated, and hence a far better worst
case space bound can be achieved. As mentioned above, merging function interface graphs
at most reduces the overall size of all function interface graphs taken together. Hence the
resulting function interface graph is not larger than the function interface graphs that have
been merged taken together. Assuming that the overall size of the function interface graphs
grows linearly to the program size this leads to a worst case space bound growing with the
program size as well (O(|STMT,|)). As can be seen in chapter 4.5 the space needed by the
example programs confirms the above made assumptions.

Now the computation of a single function interface graph which represents all the effects
a program can have, has been described. All the possible aliases that may occur during the
program execution can be found by means of this graph. The results are precise in the sense
that every possible alias can be found by inspecting either the final function interface graph
or the non-reduced function interface graph of the function. The analysis is applicable



126 CHAPTER 3. ALIAS COMPUTATION

to almost all C programs and not limited to C-subsets, which would make the analysis
inappropriate for many real programs.
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char #strcpy(char *d, char xs)

3(0,4) (2 1)
{ int u; Led T C i/0
d[u] = s[uj;

return d; &s I:‘ZQ(?T’:)I).D:Q%

}

Figure 3.73: Function representing the effects of strcpy and the corresponding function

interface graph

3.4 Handling C properties needing exceptional treat-
ment

Although almost all the commonly used properties of the C programming language have
been taken into account by the algorithm, a few things remain that have not been discussed
so far. Since the handling of these properties in the preceding sections would have resulted
in a lot of exceptional rules they have been ignored up to here to keep the algorithms
simple and easier to understand. Nevertheless it is possible to deal with the effects of these
properties as well, and so it will be shortly described in the following how this can be done.

3.4.1 Handling library functions

Library functions are typically used by other programs which do not have the corresponding
source code at hand. This results in the problem that no function interface graph can be
built for these functions, and hence the functions effects are not taken into consideration
properly. This problem can be solved by either trying to get the corresponding source codes
and integrating them into the analysis or by providing some functions which have the same
effect on the function interface graphs. Since the first possibility is not very efficient, and
sometimes even impossible, the second possibility is the one of interest here. Usually the
user of a library function knows the functions effects and can hence provide a simple function
which has the same effects on the function interface graph. This function interface graph
can then be integrated into the analysis instead of the original library function. This means
that a function that does not modify any data like remove or abort can be represented by
a function with an empty body®”, whereas a function like strcpy has to be replaced by a
non-empty function. Here the major difference is that the strcpy function modifies some of
the values reachable by the parameters passed to the function. Figure 3.73 shows a function
which produces a suitable function interface graph. Since the unknown index u produces an
unknown offset, the resulting function interface graph represents the fact that the data that
could previously be accessed by s[n] can be accessed by d[n] after the function was executed.
Of course the strcpy function could as well be represented by a function with an empty
body if it is assumed that the copied string will never be converted into a pointer, which is
in fact not very likely. However, there are other functions (e.g. memcpy) where it is much
more likely that the copied values contain pointers or are converted into pointers. In such
cases it 1s essential to have a function which represents the effects of the library function
(like the one shown above) to keep the analysis precise.

5T Alternatively, the definitions of these functions could simply be omitted. In this case the algorithm
would ignore calls of these functions since there is no corresponding function interface graph available then.
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void func(float r, int n, ...

{

va_list args;
int x;

va_start(args,n);
x = va_arg(args, int);

va_end(args);

}

Figure 3.74: Function having a variable argument list

#define va_start(args,fmt) args = tmp_var_args
#define va_arg(args,type) *((type *) &args)
#define va_end(args)

Figure 3.75: Macro definitions

3.4.2 Variable parameter lists

Variable parameter lists are used when a function has to deal with a different number of
parameters for different calls of the function. Some of the most commonly used functions
using variable parameter lists are the functions belonging to the printf group. Usually calls
to these functions do not influence the possible aliases that can be produced by a program,
and so one could think about representing them by a function which has an empty body (as
described in section 3.4.1). However, in some cases programs contain user defined functions
using variable parameter lists which have to be dealt with correctly. Besides which it is
possible to misuse the sprintf function to copy values and hence produce aliases.

A typical function with a variable parameter list is shown in figure 3.74. All values
that are not passed to the function as fixed parameters are accessed using the function
va_arg. Since it is not possible to distinguish between the different variable parameters,
all the variable parameters passed to the function have to be matched with those variables
to which the value of the va_arg macro was assigned. Since macros are expanded in one
of the earliest processing steps during the analysis they are not represented in the SUIF
code. Therefore it is not easy to find out which assignments have been influenced by the
macros and which have not. The problem can be solved by redefining the macros as shown
in figure 3.75. These macro definitions make sure that every value that is accessed using
the va_arg function is matched with the variable tmp_var_args. Of course, a corresponding
declaration of this variable has to be added to every function having a variable parameter list
then. The advantage of these macros is that now all variables that are assigned any of the
variable arguments are automatically matched with the variable tmp_var_args. The only
thing that remains to be done now is to match all variable parameters with this variable.
This then assures that every variable parameter has been matched with its corresponding
variable in the function.
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void £() .
{ void g(jmp_buf *env)
jmp_buf env; {
switch (setjmp(env)) { :
case 0: h(env);

/* normal function execution */

: /* jump to f in case of an error */
g(&env); if (...) longjmp(xenv,1);

break; 1
case 1:
/* error handling: escaped from g */

void h(jmp_buf *env)

break; {
case 2: :
/* error handling: escaped from h */ /* jump to f in case of an error */
: if (...) longjmp(xenv,2);
break; :

Figure 3.76: Example program using longjmp and setjmp

3.4.3 The longjmp and setjmp functions

Another aspect that has not been taken into account so far, are the effects of the longjmp
and setjmp functions. As described by the ANSI standard ([Ame89a]) the setjmp function
can be used to mark a certain location inside a function to return to this location with a
single jump using the longjmp function. The call of the longjmp function can be located
within any function called directly or indirectly by the function containing the corresponding
set jmp statement. When the setjmp function is executed, it stores the current environment
information to a structure and returns null. Later when a longjmp statement causes a jump
back to the location of the setjmp function, this function returns the value that was used
at the corresponding call of the longjmp function.

The longjmp function takes the environment information that has previously been stored
by the setjmp function and passes a non-null value back to the setjmp function. If there
are multiple longjmp functions contained in a program, each of them passing a different
value to the setjmp function, these values can be used to identify the longjmp function that
caused the jump back to the setjmp function.

The execution of a longjmp function does not affect the values of global or static vari-
ables. However, the local variables of a function containing a corresponding set jmp function
are undefined after a jump back to this function has been performed. Since the functions
containing the longjmp function could have modified global variables that could then be
used by the function containing the setjmp function this is another form of communication
between functions that cannot be handled by the alias analysis algorithm so far.

To make things clearer there is a simple example program shown in figure 3.76. This is
one of the typical situations where these functions could be used. Function £ calls g which
then calls h. If an error occurs within g or h, the execution of the function terminates,
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and the error handling can be done by the function £. This is particularly useful if many
errors may occur during the execution of g and h that require that the following code is not
executed in this case. E.g. if a file cannot be opened or there is no memory left to allocate,
the statements accessing the file or the memory should not be executed. Of course it is
possible to have the same effect using nested if statements or error variables. This however,
produces a huge amount of nested if statements in the one case, or a huge amount of if
statements repeatedly testing the error variable in the other case. Here it depends on the
programmer whether he prefers to keep the code as small as possible, which then results
in unstructured jumps, or whether he prefers to add some more error handling code to the
functions keeping them easier to understand. In any case, there may be programmers using
these functions, and so the effects of these functions should be handled somehow.

To handle the effects of such unstructured jumps correctly it is necessary to extend the
call graph and to add some special edges representing these jumps. These edges can then
represent the possible jumps from a function containing a longjmp statement to a function
containing a setjmp statement. The longjmp and setjmp function communicate through
the jump_def structures. If the structure used by a longjmp function may be aliased by
a structure used by a setjmp function, a new edge has to be added to the call graph.
This is quite similar to the function pointer concept. However, the handling of the edges
representing such jumps has to be different from the handling of usual functions. The value
passed from the longjmp function to the setjmp function can be handled in a similar way
to function parameters. However, it has to be taken into account that the parameter passed
to the longjmp function is returned by the setjmp function. Further differences are that
the matching of the global variables has to be modified as well. Usually, the global variables
used inside a function that are matched with the global variables of the calling function are
those valid at the beginning or at the end of a function. Since the setjmp function can
occur anywhere in the code, the actual SSA values of global variables can be different in
this case. Hence this has to be taken into account when such jumps are being processed.
This is done by matching the global variables with the SSA values valid at the position of
the setjmp function instead of those valid at the beginning or at the end of the function.

As was shown in this section even those properties of the C programming language
that are rarely used can be handled by our alias analysis algorithm. Even comparably
complicated problems like the jumps using the longjmp function can be solved without
causing too much problems since they can be fitted into the algorithm quite naturally.
Altogether this proves that our algorithm should be applicable to almost all real C programs
which was one of our primary aims.



Chapter 4

Tests, implementation and empirical
results

The alias analysis algorithm presented in chapter 3 has been implemented and tested on
an UNIX system. The tests were performed on a two processor Ultra 2 SPARC Creator
3D workstation with 512 MB of RAM. Within this chapter the test suite used to check the
algorithm will be presented. Furthermore, the time and space requirements of the algorithms
different passes will be discussed and compared with the theoretical time and space bounds
found earlier. All reported execution times are user CPU times that have been computed
by the C library function getrusage. Since the values returned by this function show
slight differences for different runs, the mean values of three runs have been computed. As
mentioned earlier the different passes have been implemented separately. Therefore every
pass has to load its data from a file before its execution, and has to save the modified data
to a file afterwards. Since the times needed to load and save these files outrun the times
needed by the algorithm itself in many cases, they have not been taken into account for
the time measurement. Anyway, this overhead could have been avoided easily by simply
combining the different passes to a single program.

4.1 The test suite

The test suite consists of 14 C programs. An overview of these programs and some of their
properties is given in the table shown in figure 4.1. The table contains the sizes of the
programs source code in bytes as well as the number of source code lines. However, these
two values are comparably vague parameters when it comes to judging the programs size.
Most of the time and space bounds of our algorithms depend on the number of statements
contained in a program or a function. If one only looks at the two values mentioned above,
it is not possible to derive the number of statements from them with a tolerable precision.
Therefore the number of tree nodes generated by the SUIF compiler is given in the table
as well. Unlike the source code size, they yield a much better measure for the number of
statements contained in the program.

As can be seen from the table the number of nodes comes close to the number of source
code lines in most cases. However, there are at least two programs where a significant
difference occurs: the programs ’banner’ and factor’. Both programs contain a huge array
used to store a sequence of integer values. In the first case these values define the bitmaps
of the characters to be printed, whereas they contain all primes up to a certain value in the
second case. Since the definitions of these arrays consumes comparably large parts of the
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program | nodes size lines | functions variables
global local
static | non-st.
n; s [bytes] [ f vy Ul vy

queens 48 526 39 3 6 0 8
quicksort 59 1051 65 6 3 0 16
factor 111 49 446 827 3 27 0 14
wil 113 2044 101 7 6 0 25
banner 230 74710 | 1166 1 51 0 22
cal 390 12688 479 12 85 1 102
cmp 564 56477 | 2165 30 63 2 174
compress 1013 48594 | 1926 19 89 0 191
gnugo 2215 88789 | 3410 31 163 4 405
patch 3846 | 143431 | 5579 118 391 3 729
be 6804 | 207142 | 7836 375 521 1 1282
flex 8312 | 420525 | 15848 165 | 2279 14 1115
bison 8740 | 256609 | 11418 158 556 4 1813
diff 10114 | 389052 | 13031 208 363 2 2369

Figure 4.1: Test suite programs

program code, there are only comparably few statements (and hence SUIF tree nodes) in
relation to the number of lines.

Besides the sizes of the different programs, the table contains the number of functions,
as well as the number of global and local (static and non-static) variables' occurring in the
program. Local static variables have only been seldom used, and will hence hardly influence
the behaviour of the algorithms.

One program which catches the eye is the lexical analyser generator 'flex’ that uses
more than two-thousand global variables. As will be seen in the following, this results in
significantly larger analysis times compared to other programs of similar sizes which have
less global variables. This program surely is a challenge to any kind of static analysis and
was included to show that even programs that do not try to encapsulate and modularise its
data can be analysed. Of course the analysis takes profit from structured programming and
honours the avoidance of global variables by producing better analysis times.

Before going into the details of the test results, a short explanation of the analysed
programs will be given in the following list.

queens: Solves the eight queens problem. Prints all possible solutions.

quicksort: Sorts a field of integers using the quicksort algorithm. Shows the value pairs
that are exchanged.

factor: Computes the prime factors of a given number using the sieve of Eratosthenes. To
make the computation more efficient the program contains an array holding all primes

up to 65.537.

Note that the number of variables includes temporary variables generated by the SUIF compiler in some
cases.
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wfl: Prints a sorted list of all words read from a file and counts how often they occurred
in the text.

banner: Prints a given text in huge letters made up from hash signs. This program contains
large arrays holding the pixel definitions for each character that can be printed.

cal: Prints the calendar page(s) for either a month or a year.

cmp: Compares two files. Shows the first line and column where the two files differ as well
as the differing values.

compress: Compress or decompress one or more files using Lempel-Ziv coding.
gnugo: Plays the Chinese game Go with the user.

patch: Applies changes that have previously been recorded by ’diff” to a file.
be: An arbitrary precision calculator language.

flex: Fast lexical analyser generator, produces programs for lexical tasks.
bison: GNU project parser generator (similar to yacc’).

diff: Displays line-by-line differences of text files.

4.2 Normalisation pass

The normal form computation is the first and most simple of the analysis passes. As
already mentioned in section 2.3 the code is slightly restructured and enlarged during this
pass. The number of tree nodes increases here since complex statements, that have formerly
been represented by a single tree node, are now split up into multiple statements that will
then be represented by multiple tree nodes. The enlargement rates are in all cases below
fifty percent. However, since the enlargement rates are only based on the number of tree
nodes (statements) of a program they will surely be smaller if one looks at the program at a
more fine grained level. The enlargement rates do not take into account that the statements
represented by a certain tree node become smaller if they are split up into two different
statements / tree nodes. Nevertheless, the average size of the statements represented by a
tree node surely does not vary significantly between different programs, and hence it does
not matter if it is equally reduced for all tested programs during the normalisation pass. In
any case the number of tree nodes is surely a better measure for the program size than the
number of lines or bytes usually used.

The table shown in figure 4.2 contains the number of tree nodes before and after nor-
malisation. Furthermore, the overall analysis time as well as the average analysis time per
tree node is given. As can be seen, there are no significant differences between the average
analysis times per tree node. Since the times measured for the smaller tests are very close
to the minimal time that can be measured, the results become comparably imprecise here.
However, the bigger tests show that the overall time grows proportional to the size of the
programs as expected.
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program final initial increase time time
nodes nodes rate per node
n me | AL o [8] | e ]
queens 56 48 16.7 | 0.003 54
quicksort 83 59 40.7 | 0.007 84
wil 155 113 37.21 0.013 84
factor 162 111 45.9 | 0.019 117
banner 281 230 22.2 | 0.027 96
cal 522 390 33.8 | 0.052 100
cmp 792 564 40.4 | 0.087 110
compress 1334 1013 31.7 | 0.174 130
gnugo 2674 2215 20.7 1 0.249 93
be 5144 6 804 < 0.1] 1.031 200
patch 5370 3 846 39.6 | 0.855 159
bison 9969 8740 14.1 | 0.646 65
flex 10104 8312 21.6 | 1.729 171
diff 11747 10114 16.1 | 1.707 145

Figure 4.2: Normal form computation

4.3 SSA form computation

The next pass following normalisation is the SSA form computation. As stated in sec-
tion 3.1.2.3 the theoretical worst case time bound of the SSA form computation indicates
a time growing quadratically to the program size. As can be seen from the table shown
in figure 4.3, the analysed programs do not reflect such a behaviour. The average analysis
time per node increases at most slightly, while the sizes of the analysed programs increase
rapidly. The highest values are reached by the programs flex” and ’bc¢’, which is surely
influenced by the fact that these programs contain extremely large functions generated by
lex’.

Besides the average analysis time per node the table contains the average analysis time
per variable and the average number of SSA variables generated to replace the variables of
the original program. Like the average analysis time per node, the average analysis time
per variable does not show a significant increase tendency. This shows that the SSA form
computation can be done in a time growing almost proportional to the size of the analysed
program. The average number of SSA variables generated can be taken as a measure of how
successful the SSA form computation has been. Its value is in all cases bigger than two,
clearly showing that there are enough values assigned directly (not via a pointer) to make it
worth transforming the program into SSA form. The bigger this value gets, the better are
the chances that the later passes of the analysis will represent different values by different
value nodes, which will increase the precision of the analysis results.

A further effect that can be seen in the table, is that the number of variables grows
almost proportionally to the size of the program. Hence this value could be used as an
alternative measure for the program size. For most of the analysed programs the number
of variables is a value close to the fourth of the number of nodes / statements.
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program nodes | variables | avg. SSA | time time time per
numbers per node | variable

n v e | tesa [l | e fus] | fee ]

queens 56 14 2.31 | 0.011 196 786
quicksort 83 19 2.19 | 0.019 229 1000
wil 155 31 2.68 | 0.033 213 1065
factor 162 41 2.31 | 0.039 241 951
banner 281 73 3.89 | 0.078 278 1068
cal 522 188 2.66 | 0.123 236 654
cmp 792 239 2.50 | 0.213 269 891
compress 1334 280 3.59 | 0.413 310 1475
gnugo 2674 572 3.31 | 0.633 237 1107
be 5144 1804 2.68 | 3.503 681 1942
patch 5370 1123 2.88 | 1.734 323 1544
bison 9969 2373 4.05 | 2.789 280 1175
flex 10104 3408 2.73 | 4.990 494 1464
diff 11747 2734 4.57 | 5.167 440 1890

Figure 4.3: SSA form computation

4.4 Intraprocedural analysis

After the SSA form computation has been executed, the algorithm proceeds with the in-
traprocedural analysis. The intraprocedural as well as the interprocedural analysis are surely
the most interesting steps of the algorithm, and hence they will be discussed in more detail
than the preceding passes.

The table shown in figure 4.4 shows the analysis times of the intraprocedural analysis
as well as the average analysis times per node. Since two versions of the intraprocedural
analysis algorithm have been discussed, both the analysis time and the average analysis time
per node appear twice. The first time (%;ut,,) is the time measured with the conservative
algorithm where every value has to be treated as if it were a pointer, whereas the second time
(t7i¢e ) is the time measured with the algorithm assuming that there are no aliases generated
by casts from pointers to ordinal types and back. The measured times of both algorithms
do not show significant differences, and both grow with the program size. However, the
time does not really depend on the overall program size but on the sizes of the analysed
functions. As can be seen, the average function size of the larger programs is larger as
well, and hence the growth of the average analysis time has to be blamed on the growing
function sizes. However, it is not very likely that the function sizes will increase with the
overall program size in general. The average function size is only small for the really small
programs and does not seem to grow any further after reaching a certain saturation level.
Assuming that the sizes of the functions do not grow with the overall size of the program
the overall time needed to analyse a program grows linearly to the program size. This
is confirmed by the results measured since the average analysis time per node shows no
significant increase tendency if one only looks at the larger programs.

Some of the properties of the generated function interface graphs are shown in the
table contained in figure 4.5. The table shows the number of variables represented by the
function interface graphs (fig,), the number of value nodes (fig,, / fig"*) as well as the

n
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program nodes | nodes per time time time time
function per node per node
" 2| g [8] | e [as] | e, 5] | SR ]
queens 56 19 0.057 1018 0.055 982
quicksort 83 14 0.081 976 0.078 940
wil 155 22 0.161 1039 0.160 1032
factor 162 54 0.209 1290 0.204 1259
banner 281 281 0.657 2338 0.647 2302
cal 522 44 0.756 1448 0.736 1410
cmp 792 26 1.427 1802 1.437 1814
compress 1334 70 3.971 2977 3.878 2907
gnugo 2674 86 5.735 2145 5.713 2136
bc 5144 61 | 52.274 10162 | 52.351 10177
patch 5370 46 | 20.496 3817 | 20.241 3769
bison 9969 63 | 28.060 2815 | 28.061 2815
flex 10104 61 | 45.308 4484 | 45.021 4 456
diff 11747 56 | 53.860 4585 | 51.903 4418

Figure 4.4: Intraprocedural analysis times

average number of value nodes that can be reached by a variable (ﬁgm/v / ﬁgﬁécfv). One
might wonder why the number of variables represented by the function interface graphs is
bigger than the overall number of variables shown in one of the preceeding tables. However,
this becomes quite clear if one takes into account that global variables used in different
functions have their own independent representation in each function they occur in. Hence
they are counted twice or even more often if they are used within multiple functions.

The number of value nodes as well as the average number of reachable value nodes are
both given for the two versions of the algorithm. The number of nodes is in both cases
more or less proportional to the program size, and indicates that the space needed for the
intraprocedural analysis grows linearly to the program size as it was assumed in section 3.2.7.

Moreover, the number of nodes does not significantly differ for the two versions of the
algorithm. This is caused by two contrary effects: on the one hand, the number of nodes
generated by the more precise algorithm increases since less value nodes are to be merged,
on the other hand, less value nodes are generated since it is not always necessary to generate
nodes to represent non-pointer values.

The number of reachable nodes per variable shows that the graphs remain comparably
flat. This is not very surprising since it is unlikely that extremely long chains of dereference
operations occur in real programs. However, this does not imply that there are no long chains
of values connected to each other in the memory (e.g. linked lists or trees), but usually such
chains are accessed by recursive data structures that do not access their successors by long
sequences of dereference operations, but by repeatedly using the same short sequence of
dereference operations.

Summing up, one can say that the estimated time and space bounds for the intrapro-
cedural analysis have been confirmed by the results produced by the tests. The estimated
linear growth of the space needed by the algorithm corresponds exactly to the measured
results. The estimated time bound of O(|F| - (|[STMT| + |PHI|)) per function depends on
the product of the function size and the number of edges of the control flow graph. In the
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program || nodes fig fig fig nodes fig fig nodes

variables | nodes | per var. | nodes | per var.

n fig, fig., Sty | fign | figuns

queens 56 26 72 4.31 76 3.35
quicksort 83 43 88 2.93 92 2.65
wifl 155 66 171 3.62 171 3.48
factor 162 80 168 2.81 172 2.83
banner 281 116 359 5.27 366 4.17
cal 522 283 730 3.58 740 3.22
cmp 792 477 1062 3.03 1091 2.94
compress 1334 633 1810 3.70 1861 3.77
gnugo 2674 1059 3116 4.08 3221 3.71
be 5144 2162 5068 3.30 5183 3.30
patch 5370 2787 7205 3.28 7360 3.21
bison 9969 4114 13171 4.56 | 13541 4.27
flex 10104 4351 11012 3.48 | 11293 3.33
diff 11747 4335 15914 4.53 | 16283 4.59

Figure 4.5: Properties of the function interface graphs generated by the intraprocedural
analysis

best case, the size of the control flow graph does not grow when the function grows, and
in the worst case it grows linearly to the size of the function. Altogether, this leads to a
growth that ranges between linear and quadratical with respect to the function size. This
corresponds quite well to the effects detected here, since the average analysis time per node
grows more or less proportionally to the average function size.

4.5 Interprocedural analysis

The interprocedural analysis pass is the final step of the analysis. It merges the function
interface graphs created to represent the different functions. In the following, two versions
of the algorithm will be discussed: the call path sensitive algorithm and the purely call path
insensitive algorithm.

The table shown in figure 4.6 shows the number of function calls appearing in the different
programs. The calls have been split up into three different groups: calls to functions where
the corresponding function definitions are available (¢47), calls to functions where only a
prototype declaration has been given (c4..;) and finally those calls that are based on function
pointers (cu¢). As can be seen, function pointers are not used very frequently. In fact only
two of the programs contain function calls using function pointers.

The program ’flex’; that already has been striking because of its huge number of global
variables, shows uncommonly large values again. Although it is not even the biggest pro-
gram, it contains by far the largest number of function calls. As will be seen, the huge
number of global variables together with the huge number of function calls produces ex-
traordinary long analysis times as well.

The call path sensitive analysis processes the function calls one by one as long as suitable
function calls exist. After all these calls have been processed, the call path insensitive
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program | nodes | functions function calls
defined | declared | pointer
n / Cdef Cdecl Cptr
queens 56 3 3 2 0
quicksort 83 6 9 4 0
wifl 155 7 15 9 0
factor 162 3 3 26 0
banner 281 1 0 34 0
cal 522 12 25 42 0
cmp 792 30 38 66 0
compress 1334 19 28 132 0
gnugo 2674 31 103 215 0
be 5144 85 477 296 8
patch 5370 118 348 432 0
bison 9969 158 484 646 0
flex 10104 165 1057 256 0
diff 11747 208 318 417 3

Figure 4.6: Number of functions and function calls occurring in the test programs

program sensitive | Insensitive | indirect overall

calls calls calls calls

Csens Cins Cindir € = Csens T Cins
queens 3 0 0 3
quicksort 9 0 0 9
wil 15 0 0 15
factor 3 0 0 3
banner 0 0 0 0
cal 25 0 0 25
cmp 38 0 0 38
compress 28 0 0 28
gnugo 103 0 0 103
be 396 97 16 493
patch 348 0 0 348
bison 215 269 0 484
flex 940 117 0 1057
diff 296 34 12 330

Figure 4.7: Number of function calls processed by the call path sensitive / insensitive analysis
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analysis processes the remaining function calls, if there are any left. The next table, which
is shown in figure 4.7, contains the overall number of function calls that have been processed
(¢) as well as the number of function calls processed by either phase (¢sens / Cins) and the
number of functions called indirectly (¢;nz-)*. In most of the cases the call path sensitive
analysis has been able to process all the occurring function calls, and hence it was not
necessary to process any of the calls with the call path insensitive algorithm. This shows
that complex call graphs that prevent a fully call path sensitive analysis do not appear very
often, and that comparably good results can be achieved even if such complex call graphs
have to be handled conservatively in some cases.

The overall number of processed function calls processed by the pure call path insensitive
analysis is exactly the same as in the case of the call path sensitive analysis, and hence it
has not been mentioned separately here®. For all but two of the programs, the number of
processed function calls (¢) equals the number of function calls where the called function
has been defined (cq)*. Only the programs ’diff” and ’bc¢’ contain function calls using
function pointers, and hence process some more function calls. All the processed function
calls of these programs correspond to function calls that will really be executed when the
program is running. Hence no superfluous possible function calls have been detected, and
the algorithm produced optimal results in this case.

The table shown in figure 4.8 shows the analysis times as well as the times per global
variable and function call. Both the overall time as well as the time per global variable and
function call appear twice. The first time was measured during the call path sensitive anal-
ysis (inter ), whereas the second time corresponds to a purely call path insensitive analysis
(ti"s ). In many cases the analysis times hardly differ from each other, but there are as well
cases where some rather large differences occur. Neither the call path sensitive nor the call
path insensitive analysis shows a significant advantage compared with the other algorithm
if one only looks at the analysis times. This seems to be a little bit surprising since the
call path insensitive analysis does not need to make copies of the function interface graphs
and should hence be faster. As can be seen, this effect is at least sometimes compensated
by the increasing time needed to merge the function interface graphs if no good order was
chosen to merge them. Unlike the call path insensitive algorithm, the call path sensitive one
prefers to process the call graph in a bottom-up direction, and hence it processes smaller
call graphs for a while.

In section 3.3.5, the time bound for the interprocedural analysis was assumed to be
in O(|Eca,| - |VARgoa|). Although the average analysis times per variable and function
show comparably large differences there is no remarkable increase tendency, and hence the
estimated time bound seems to match the results of the test.

The space needed by the interprocedural analysis depends on whether the call path
sensitive or insensitive algorithm is chosen. In the first case it was assumed that the space
needed by the algorithm grows at most with the size of the call graph and the size of the
program (O(|Ecq,| - |STMT,|)), although a significantly better result was expected. A
look at the table shown in figure 4.9 shows that these expectations have not been too high.
The table contains the number of value nodes as well as the number of value nodes per

ZNote that the function calls calling functions indirectly (through pointers) are already included in the
function calls processed during the call path insensitive phase.

3This has not to be the case in general since it could be that the call path insensitive analysis detects
some more functions that can possibly be called by function calls using function pointers.

4The current implementation ignores function calls calling functions where the corresponding function
definition is missing. This avoids the unnecessary merging of value nodes representing global variables when
library functions like printf are called.
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program global calls time time per time time per
variables variable variable
and call and call
o ¢ | toer [s] | e D] |t 8] | S (]
queens 6 3 0.008 444 0.007 389
quicksort 3 9 0.013 481 0.012 444
wifl 6 15 0.036 400 0.034 378
factor 27 3 0.018 222 0.012 148
banner 51 0 < 0.001 - < 0.001 -
cal 85 25 0.293 138 0.236 111
cmp 63 38 0.640 267 0.521 218
compress 89 28 0.663 266 0.708 284
gnugo 163 103 6.305 376 3.466 206
be 314 493 115.106 744 72.631 469
patch 391 348 61.849 455 73.517 540
bison 556 484 220.937 821 | 153.696 571
flex 2279 | 1057 3713.906 1542 | 981.889 408
diff 363 330 47.792 399 31.996 267
Figure 4.8: Interprocedural analysis times
program nodes calls fig fig nodes fig fig nodes
nodes | per node | nodes | per node
n ¢ | fig, B figye | f2i
queens 56 3 26 0.46 26 0.46
quicksort 83 9 52 0.63 45 0.54
wifl 155 15 100 0.65 67 0.43
factor 162 3 129 0.80 115 0.71
banner 281 0 213 0.76 213 0.76
cal 522 25 433 0.83 271 0.52
cmp 792 38 859 1.08 357 0.45
compress 1334 28 882 0.66 607 0.46
gnugo 2674 103 2976 1.11 909 0.34
be 5144 493 9119 1.77 | 1850 0.36
patch 5370 348 | 12715 2.37 | 2408 0.45
bison 9969 484 3173 0.32 | 2469 0.25
flex 10104 1057 | 17100 1.69 | 3365 0.33
diff 11747 330 | 11739 1.00 | 2267 0.19

Figure 4.9: Function interface graph sizes of the interprocedural analysis
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statement (SUIF tree node) for both the call path sensitive and the call path insensitive
algorithm. Although the number of value nodes per statement increases with the program
size, this value grows far more slowly than the number of function calls. Altogether, this
means that the space needed by the call path sensitive algorithm grows as expected in
section 3.3.5. In the case of the call path insensitive algorithm this number decreases with
growing program size, which shows that the linear growth with the program size that was
assumed in section 3.3.5 is a suitable space bound as well.

The alias analysis has been applied to a series of C programs successfully. The results
show that even the larger programs can be analysed with reasonable time and space costs.
However, the structure of the program plays an important role if it comes to analysis times.
The more effects of the program are kept local by encapsulating data into functions, the
better are the results. As expected, it can be seen that programs avoiding the use of global
variables whenever possible can be analysed much faster than other ones.
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Chapter 5

Related work

In the following of this chapter an overview of the differences between our approach and other
existing approaches dealing with alias analysis will be given. Furthermore other algorithms
related to the ones used by our approach, as well as some basic properties of such algorithms
will be discussed.

5.1 Other alias analysis algorithms

Most of the alias analysis algorithms make certain restricting assumptions about the anal-
ysed programs, e.g. that the program does not contain type casts, structures or other
constructs of the C programming language causing problems. There are only very few
approaches which try to deal with all or at least almost all of the problems caused by
analysing C programs.

The algorithm that comes closest to our approach was described in Wilson’s lately pub-
lished Ph.D. thesis ([Wil97]). An earlier version of the algorithm had already been described
in [WL95]. This algorithm is one of the few that are able to handle all those C language fea-
tures that are handled by our algorithm as well. However, the way in which these problems
have been solved differs in some aspects. Wilson uses so-called partial transfer functions
that are computed for every function of the program. Unlike function interface graphs,
partial transfer functions do not represent all the functions effects since they are designed
to represent function calls having a certain alias pattern. Since a function can be called
from within many different calling contexts, there are multiple transfer functions necessary
to represent a function in this case. To deal with the effects of structures, unions and type
casts the algorithm uses a memory representation quite similar to ours, however pointer
arithmetic is sometimes handled less precisely. Another difference between the algorithms
is how recursive function calls are handled: our approach does not need any special treat-
ment for recursive functions, whereas the other algorithm has to re-compute the partial
transfer functions for recursive function calls until stabilisation is reached which may lead
to several re-computation iterations in some cases.

The problems caused by dealing with pointers, labels, function pointers or variables have
as well been addressed in [Wei80]. Unlike in our approach, the possible aliases are computed
by building relations representing dependencies between the variables of a statement. The
algorithm is dominated by the computation of a transitive hull to find the dependencies
between all variables. Besides, there is a further significant difference between this and our
approach since it is assumed that there is absolutely no information about the control flow
available. This means that neither the call path nor the intraprocedural control flow is taken
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into consideration. Although the intraprocedural control flow has only partially been taken
into consideration by our analysis, the computation of the SSA form depends on the control
flow as well, and hence makes the analysis more control flow sensitive. Since our analysis
is call path sensitive and at least partially control flow sensitive it will hence produce more
precise results in most cases.

Two further flow insensitive algorithms that are able to deal with all the properties of
the C programming language are presented in [BCCH95] and [Ste96]. The first algorithm
propagates sets of aliased variables through the call graph, as well as through the control
flow graphs of the different functions. Like our algorithm, it updates the call graph whenever
new aliases of function pointers have been found. However, since this algorithm computes
the effects of a function depending on the aliases that are found to hold at the call site,
it is necessary to re-compute the previous results if new aliases are found later. Unlike
our approach, this algorithm may need an alternating sequence of re-computations on the
interprocedural and intraprocedural level until stabilisation is reached.

The second algorithm ([Ste96]) uses sets of rules that are comparable to those used
within type systems. These rules are needed to compute sets of abstract memory locations
that may be aliased. The results are roughly comparable to those of Weihl’s algorithm, and
are hence less precise than ours. However, unlike Weihl’s algorithm, this one is significantly
faster, since it can be performed within almost linear time.

Besides the approaches mentioned so far, there are several more trying to find the aliases
produced by C program code. E.g. the algorithms presented in [Cou86, Deu94, EGH94,
LR92, LRZ93, PRLI1, Ruf95, HHN94, ZR1L96] all present alias analysis algorithms based
on the C programming language, but all of them make considerable restrictions to the
analysed programs. Type casts and unions are one of the major sources of problems when
dealing with the alias analysis of C code. Therefore many algorithms cannot deal with these
commonly used properties of the C programming language (e.g. [Deu94, HHN94, LR92,
LRZ793, ZRL96]). Other algorithms can handle type casts and unions but assume that there
are no type casts between pointer and non-pointer types (e.g. [Ruf95]). Even if the problems
caused by type casts and unions have been solved, other problems remain unsolved in some
cases. E.g. the algorithm presented in [EGH94] cannot handle label and jump statements
without transforming the control flow into data flow as described in [EH93]. Although the
transformation does not change the program input / output semantic, it may still affect
(enlarge) the sets of possible aliases that will be detected. The algorithm presented in
[PRLI1] cannot handle recursive data structures and multi-level pointers and the algorithm
presented in [Cou86] is purely intraprocedural and hence has to make extremely conservative
assumptions about the existing aliases when a function is entered. The different restrictions
that have been made by the above algorithms were necessary to use techniques that will
result in more precise results in some cases. Since many of these restrictions (e.g. not
allowing type casts) will result in the fact that most real C programs cannot be analysed,
we accepted the additional imprecision caused by our algorithm to be able to analyse most
of the existing programs.

Many of the techniques described above focus on finding aliases between either stack
or heap locations. In [GH98] it is described how both techniques can be combined within
a single framework. A further algorithm computing aliases of C programs is presented in
[YRLS97]. This approach deals with the problem of computing alias information incre-
mentally. Such information can be particularly useful within programming environments to
aid the user while programming. The problems posed by polymorphism are discussed in
[TAFM97]. Especially the effects of virtual functions like those used in C++ programs have
been discussed here.
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Many of the problems solved by our algorithm are caused by those properties of the C
programming language that have simply been ignored by many other algorithms. Several
of these as well as similar problems are reported to occur when C code is to be parallelised
(e.g. [AJ8S]).

However, there are as well many problems that have been solved by other algorithms
which do not deal with C code as well. Most of the older alias analysis algorithms have
been designed to analyse programs written in less problematic languages like Fortran or
Pascal or subsets of these languages. Since these languages restrict the use of pointers,
some of the problems that have been discussed within this work will not even occur there.
An algorithm dealing with Pascal-like pointers is presented in [CR82]. However, most of the
algorithms based on such languages do not handle pointers at all, and hence the problem
of finding aliases can be reduced to find aliases due to call by reference parameters (e.g.
[Ban79, BC92, CBC93, Coo85, CK91, HS94]). A commonly used technique that can be
used in such cases is the computation of sets holding the values that are used and / or
modified by a certain statement (USE and MOD sets). These sets can then be iterated
based on the control flow or call graph. Almost all of the approaches given above are
based on this data flow analysis technique. Several of the approaches computing USE or
MOD or similar sets use so called interprocedural flow graphs which join the information
contained in the call graph with the information contained in the control flow graphs of the
different functions (e.g. [HS94, PRLI1]). This avoids propagating the alias information on
two different levels (control flow graph and call graph).

All the algorithms that have been mentioned up to here have been designed to work with
existing imperative languages. However, there are other algorithms which deal with other
languages as well. E.g. all the algorithms presented in [CWZ90, Deu90, HPR89, NPD87] are
based on a language that is a mixture of an usual imperative language and Lisp. Like other
imperative languages, these languages have features like loops and assignment statements,
but the memory allocation is based on Lisp-like structures. Finally, there are approaches
like the one presented in [LH88] dealing with purely functional languages like Lisp.

Besides the differences between the analysed languages there are several other differences
between the various alias analysis algorithms. Many of them are interprocedural algorithms
like ours, but there are as well purely intraprocedural ones like the one described in [Cou86].
On the one hand intraprocedural algorithms have to be very conservative in some cases, and
are hence less precise. This is caused by the fact that there is nothing known about the
possible aliases between the functions parameters and / or global variables. On the other
hand it is possible that intraprocedural algorithms are more precise since they can use
algorithms that are not suitable for interprocedural algorithms due to time or space costs.

The different approaches that have been made to compute the aliases of a program
use different representations of the aliases. Some of these approaches have already been
mentioned in section 3.2.2. Various algorithms exist which use graphs similar to our function
interface graphs to represent the alias relations. E.g. the algorithms presented in [CWZ90,
LHS88] both use such graphs. All of these graphs are a compact representation of the memory
locations and / or the values stored at these locations. The other alternative to represent
aliases is to compute sets of access paths that are aliased. In many cases this is done by
using the above-mentioned USE and MOD sets.

A further problem that occurs, no matter if access paths or graphs are used to represent
the aliases, arises from the use of recursive data structures. Recursive data structures are
not in the centre of interest for imperative languages, but they are essential for languages
using Lisp-like data structures. Hence some of the algorithms designed to work with imper-
ative languages do not deal with the problems caused by recursive data structures, whereas
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algorithms using Lisp-like data structures have to. Here the major problem is that the access
paths which access recursive data structures can become infinitely long. Nevertheless it is
necessary to find a finite representation for such access paths. A commonly used approach is
to limit the number of references by a certain number (k-limiting). In this case all elements
that are reachable by using more than the specified number of references (k) are treated
as the same element. Since k-limiting is quite imprecise in some cases, there have been
various similar approaches trying to increase the precision (e.g. [CWZ90, HPR89, .H88]).
As an example the algorithm presented in [LH88] does this by the use of regular expressions
representing the possibly infinite sequences of references.

Most of the algorithms try to analyse existing programs as they are (as our algorithm
does), whereas other algorithms are based on additional information that has to be provided
by the user or a preceding analysis pass. E.g. the algorithm presented in [HHN92, HHN94]
describes an approach that is based on axioms specifying certain properties of linked lists,
trees or other more or less regular data structures. Based on such information more precise
results can be computed in some cases. The major problem here is that some of the functions
which access recursive data structures like trees have to build or modify these data structures
and that this can temporarily violate some of the data structures properties like being a
tree or non-circular. Unfortunately it was not described how such rules could be generated
automatically, which leaves this work to the user.

5.2 Other interprocedural analysis algorithms

Many of the problems that have been described within this work are not specific for alias
analysis algorithms, but occur in other interprocedural analysis algorithms as well. Two
commonly used techniques here are the above-mentioned computation of USE and MOD
(or similar) sets (e.g. [Bar77, Bar78, CK84, CK88]) and the computation of definition-use
chains (e.g. [All74, HS94]). Based on such information, various other problems can be
solved like live variables, available expressions, etc.. Another way of solving such problems
is to propagate the necessary information directly using the call graph and the control flow
graph (e.g. [Mye81, Bur90]) or an interprocedural control flow graph (e.g. [SP81]). A similar
approach is described in [Cal88, Goo97] where so-called program summary graphs are used
to propagate the information.

A slightly different approach is discussed in [CCKT86, JM82, GT93] where some constant
propagation algorithms based on a semi-lattice are presented. These algorithms compute
functions representing a functions effect that are then used to propagate the constants
through the call graph. Another algorithm that can be used for constant propagation can
be found in [RL86]. However, this algorithm is based on definition-use chains and does not
propagate the constants along the control flow graph directly.

Some problems specific to interprocedural program optimisation and parallelisation are
discussed in [MSE95]. The algorithm presented there is based on the computation of so-
called Bernstein sets which are extended versions of the USE and MOD sets.

How interprocedural analysis techniques can be integrated into a software development
environment is discussed in [CKT85]. Here interprocedural data flow information is collected
by an intelligent editor that keeps track of the source code modifications and stores its
result in a data base. This data base can later be used for various purposes like constant
propagation, code optimisation or alias computation. One of the major problems is to
avoid the exhaustive computation of data flow information when only small changes were
made to a previously analysed program. A further algorithm dealing with related topics
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is presented in [DGS97], where a demand driven approach is compared with an exhaustive
analysis strategy. Instead of computing data flow information for the complete program,
the presented algorithm computes only information that has been requested by the user or
the program using the algorithm. Depending on the task to be performed this may help to
save time in many cases.

All the above-mentioned algorithms are either based on interprocedural flow graphs or
on call graphs. In cases where function variables are allowed, the computation of the call
graph becomes more complicated. The algorithm presented in [HK92] shows how the call
graph can be computed efficiently if functions are passed as parameters as done in languages
like Fortran.

Although all the above-mentioned algorithms differ in several aspects, there is one aspect
common to all these algorithms: since they are not intended to solve pointer alias problems
they can at the most handle aliases produced by reference parameters and hence have to
make conservative assumptions when pointers are involved.

5.3 SSA form

Although many aspects of SSA form have already been discussed in section 3.1, a more
complete overview will be given in the following. SSA form was first mentioned in [AWZ88].
Since then it has been used frequently, and its computation has been improved several times.
One essential part of the SSA form computation is to find the places where ¢- functions are
necessary. All the algorithms presented in [CFR*89, CFR*™91, CF95] deal with the problem
of making the SSA form computation faster and more efficient. As stated in section 3.1, the
computation of the ¢- functions can be, and usually is, based on a preceding computation
of the dominator tree and dominance frontiers. Algorithms to compute the dominator tree
have been presented in [L'T79] and [Har85]. An incremental algorithm computing dominator
trees has been described in [SGLIT7].

Once the SSA form has been computed, there are various applications that can benefit
from the additional information provided by a program in SSA form. At first, SSA form has
been used to implement a more efficient algorithm which eliminates redundant computations
([RWZ88]). A more recent approach deals with partial redundancies as well ([CCK*97])
which is done by assigning the values of sub-expressions to temporary variables. Various
other analysing and optimising algorithms take advantage of SSA form as well. E.g. the
algorithm described in [MJ92] uses SSA form to compute dependencies and to perform
various code optimisations.

Like many others, our algorithm is based on a preceding transformation of the code into
SSA form. Our algorithm does not really depend on the transformation of the code into
SSA form, but it is more precise if the transformation is done. However, there are other
algorithms like [CG93] or [HHI8] that integrate the SSA form computation into the alias
analysis itself. In this case the computation of the SSA values is an essential part of the
alias computation since indirect variable modifications are taken into consideration as well
and produce new SSA values. This means that if e.g. a variable a is modified because b
holds a’s address and a statement like xb = ¢ is executed, this results in a new SSA value
for a to be generated. Our SSA algorithm simply ignores such effects and leaves it to the
following analysis parts to detect the indirect modification of a.

Usually SSA form treats all elements of an array as a single element, which of course is
a source of imprecision. In [KS98] it is discussed how this imprecision can be avoided. The
algorithm presented there computes a so-called array SSA form that takes the index used
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to access the array elements into account as well. Furthermore, it has been shown how this
extension of SSA form can be used in automatic parallelisation.

5.4 Data structures used by data flow analysis algo-
rithms

Our algorithm is based on the SSA form computation, which again is based on the control
flow graph and the corresponding dominator tree. However, a wide variety of other data
structures exists which are used for similar purposes like data dependence graphs or control
dependence graphs. Both data and control dependencies are represented in the program
dependence graph which was first mentioned in [FOWS87]. An application for these graphs
can be found in [Agr94] and [HRB90], where program dependence graph based algorithms
are presented in the context of program slicing.

Further concepts are described in [JP93] and [JPP94]. The first describes how depen-
dence flow graphs can be computed and used for the computation of SSA values, whereas
the second introduces so-called program structure trees, representing a program based on its
minimal single-entry-single-exit regions. Besides the computation of the program structure
trees itself, an algorithm is described that shows how these trees can be used to calculate
¢- functions efficiently.

The algorithm described in [CCF91] constructs graphs that are smaller than the usual
control flow graphs and shows how these graphs can be used to solve several data flow prob-
lems. An extension of the dominator tree concept where a data structure called augmented
post dominator tree is used to represent control dependencies more efficiently, is presented
in [PB95].

Most of the existing data flow analysis frameworks are based on the names of variables
or on the lexical name of expressions. The algorithm presented in [BA98] shows how it is
possible to keep track of computed values (not only of those stored by a certain variable)
using so-called value name graphs. This algorithm is able to detect equal computations even
if they are lexically different.

5.5 Complexity of alias analysis

All the alias analysis algorithms mentioned so far have to make some restrictions to compute
the results within reasonable time. Depending on the different restrictions, the problem of
finding aliases becomes more or less expensive. An overview of these costs is given in [LRI1].
Here the costs depend on whether single or multi level pointers, structures or reference formal
parameters are allowed or not. The effects of the different restrictions are discussed for may
and must alias analysis, as well as for intraprocedural and interprocedural analysis.

Later it was shown in [Lan92] and [Ram94] that the may alias problem is not recursive
(undecidable) and that the must alias problem is not recursive enumerable (uncomputable)
even if all paths through the program are assumed to be executable. It was shown that
precise alias analysis becomes NP-hard if multi level pointers are taken into account (even
in the case of intraprocedural analysis without dynamic memory allocation). Further, it
was shown in [Hor97] that the same still holds for flow insensitive analysis. A more general
investigation was made in [BR87], where several incremental iterative data flow analysis
algorithms (including alias analysis) and their costs have been discussed.
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As reported in the sections dealing with the time and space bounds of our algorithm,
the worst case time and space bounds differ significantly from what can be inspected if
the algorithm is applied to real programs. Such effects can be inspected for many other
algorithms as well, and they are caused by a series of properties real programs have. An
empirical study of C programs where such properties are discussed can be found in [RP88].
Here programs are analysed to collect statistical information about the number of parame-
ters, the parameter types, the number of called functions or the frequency of pointer usage
for a given function. The frequency of dynamic pointer references has as well been discussed
by Miller in [Mil88]. He found out that most of the analysed programs contained less than
10 percent statements using pointer references, most of them contained in calls of library
functions.

Although many researchers have provided empirical results for their alias analysis al-
gorithms, it 1s in many cases quite complicated to compare two of these algorithms. The
problem is that everyone analyses his own individual set of programs, and that, due to dif-
fering program representations, the measured values can not be compared with each other.
This problem has been addressed in [HP98, SH97, SRLZ98], where at least some of the

differing approaches have been compared under equal conditions.

5.6 Possible applications for alias analysis

The probably most significant application for alias analysis is code optimisation. A wide
variety of algorithms exists which optimise code for different purposes. Many sequential
compilers optimise their code using techniques like constant propagation, dead code elim-
ination, redundancy elimination and variable lifetime analysis or by optimising the use of
registers. These and various other data flow problems have been discussed in great detail
over the years (e.g. [BC85, BC94, DGS93, Hec77, KRS94, Pin93, KH93, RMS8g]).

Although such optimisation techniques can be very useful and produce significant speed
ups for sequential programs, the improvements gained can be much bigger when sequential
programs are optimised to be executed on a parallel computer. In this case even some
of the more expensive optimisation techniques that are otherwise not used can become
worthwhile. A wide variety of algorithms exists which parallelise sequential code for the
different parallel target machine architectures (e.g. [ACKS87, AL93, BC86, FG94, GK94,
LP94, PP94, MSE93, SSOGI93, Tur86, ZC91]). However, even those programs that have
already been designed to work on a parallel computer can be further optimised based on alias
information (e.g. [GS93, MR93]). Most of the algorithms described in the above-mentioned
articles are based on Fortran since Fortran is much more restrictive than the C programming
language. Probably C was not chosen since it is comparably hard to determine if two arrays
or their elements are aliased or not within C programs. Once it has been determined that
no aliases exist, most of the techniques used for the Fortran programs can be adapted to C
programs easily.

Besides optimising algorithms, alias analysis can as well be particularly useful when
memory allocation / usage errors have to be found. There are approaches to detect such
errors at execution time (e.g. [ABS94]) as well as at compile time (e.g. [Bou93, Eva96,
JJKSb97, RSY94]). All these algorithms would benefit from including alias information
since conservative assumptions that had to be made could be avoided in some cases then.

A further application for alias analysis are programming environments which provide
alias information to aid the user when developing a program (e.g. [CKT85, Kai89, RTD83]).
Such information could be helpful to detect possible errors before they will occur or to avoid
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them right from the start.



Chapter 6

Conclusion and future work

The alias analysis algorithm presented here is able to deal with almost all the properties of
ANSI C programs. The analysis is call path sensitive, but not fully flow sensitive. Since
the algorithm was especially designed to deal with all the properties of the C programming
language it was not possible to rely on the available type information. Therefore conservative
assumptions had to be made in some cases. To avoid the loss of precision caused by these
assumptions the user can still switch to the more precise version of the algorithm if the
analysed program does not produce aliases based on casts from pointer to integer values
and back.

The algorithm was implemented using the SUIF compiler system, and it has been applied
to several existing C programs. Many of the other alias analysis algorithms are not able to
analyse the same programs since they make restrictions on the C programming language.
Furthermore, the largest program contained in our test suite is much larger than the largest
programs in the test suites used to test many of the other algorithms. Altogether this shows
that our algorithm is a suitable tool to analyse real life C programs efficiently.

However, there are several aspects / improvements which have not been treated here
and hence are topics for future improvements. Currently, the dereference operations used
to specify the references between the different nodes of the function interface graphs are
not very precise. If different dereference operations are applied to the same node it is
comparably fast assumed that any possible dereference operation could have been used,
which is reflected by the use of an unknown offset value. In some cases it would be possible
to avoid unknown offsets if a different data structure had been used to store the range of
values that can be accessed. However, the sets of values that can be accessed by a particular
dereference operation can become fairly complex. E.g. the values that can be accessed by
an expression like a.c1[i1].c2[12] depend on the offsets of the structure components of c1
and c2, as well as on the size of the elements of the array c2. In this case the accessible
locations are neither a connected region nor are they finite. The exact set of locations that
can be accessed can be represented by sets of linear equations. However, it is not clear if the
additional costs used to store the equations are justified by the hereby gained increase of the
precision. Especially uniting dereference operations or testing if two dereference operations
can access the same value becomes much more complicated if this has to be done exactly.
It remains to be found out whether a compromise can be found that produces more precise
results than the current algorithm and is nevertheless able to compute united dereference
operations or the intersections of the access ranges of two dereference operations efficiently
enough.

Besides increasing the precision of the analysis it might be interesting to adapt the
analysis to other programming languages. In many cases this does not cause any problems
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since the corresponding language is more restrictive than the C programming language (e.g.
Pascal or Fortran). However, there are as well languages which cause problems that have
not yet been handled by our algorithm. Although C++ or Java are both derived from the
C programming language, they cannot be analysed properly by our algorithm as it is so
far. The major problems caused by these languages are virtual function calls and exception
handling. Virtual functions could be integrated into our algorithm quite easily by handling
them similar to function calls using function pointers. In fact virtual functions are only
a syntactically nicer and more structured version of function pointers. Instead of using
function pointers explicitly the user defines a virtual function, and the compiler generates
a function call using a function pointer that has been looked up from the virtual function
table. Of course virtual functions have some other properties that allow the compiler to
perform some checks that would otherwise be impossible. The major problem caused by
virtual functions is that they are used frequently within C+4 programs, whereas function
pointers are not used very often. This means that the call graph is blown up if many virtual
functions are used, and that this is surely reflected by increasing time and space costs. The
second problem is even harder to handle. Exceptions as they are used by C++ or Java may
cause jumps out of functions back to a directly or indirectly calling function. This concept
is in some aspects similar to the use of setjmp and get jmp functions. Of course it is possible
to handle exceptions in a way similar to setjmp and getjmp functions, although this does
not seem to be a very satisfying solution in this case. On the one hand exceptions are surely
used more often by C++ programs than setjmp and getjmp functions are used within C
programs, and on the other hand exceptions are not commonly used only to jump to a single
central error handling function. Here there is surely a need to find more satisfying solutions
in the future.

A further interesting extension of the currently existing algorithm would be to develop
an incremental version of the algorithm. The problem arising here is that it is quite hard
to find out which nodes have been merged due to code that has been removed after an
incremental update, and to undo the merging steps caused by this code. If one does not
want to worsen the analysis precision by simply ignoring this problem one has to find a way
to keep track of the changes made. On the function level as well as on the program level
it is possible to store the function interface graphs belonging to the different nodes of the
control flow graph or the call graph. In this case only the merging process of the function
interface graphs has to be repeated if a function interface graph belonging to one of the
nodes was changed. While this might be an acceptable solution on the function level, where
the number of function interface graphs as well as their sizes are comparably small, the same
scheme will result in extremely long update times on the program level. Here it might be
useful to keep copies of the various intermediate function interface graphs. Of course this
would increase the space needed by the algorithm significantly. Another alternative might
be to extend the data structures so that nodes that have been merged can be separated
again later. Of course this will lead to increasing space costs as well, but the increase rate
will probably be smaller than in the previous case.
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