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Abstract

Future, fully automated vehicles pose strict requirements on the performance
of inertial sensors. Achievable accuracies of micro-electromechanical (MEMS)
gyroscopes are however challenged by a number of non-idealities and long-term
drift effects like bias instability. This dissertation analyzes the effect of bias
instability on purely inertial navigation in comparison with other noise effects.
It is shown, that bias instability becomes the dominant error component during
navigation periods as short as ten seconds. At the core of the dissertation, origins
and mechanisms of bias instability in triaxial, mode-matched, force-feedback
MEMS gyroscopes are examined. Results gain credibility through a combination
of analytical investigation, model-based simulation and extensive experimental
analysis on real-world, next-generation sensor prototypes. It is found, that a
combination of flicker noise on the frequency tuning voltage ensuring mode-
matching together with certain types of rate offsets form a dominant source
of bias instability. Feedback control on the frequency tuning voltage using
pilot tones leads to an improvement of up to a factor of ten for the z-axis.
Bias instabilities of lower than 0.1 dph are reached, which is an unprecedented
value for automotive-type MEMS gyroscopes. The out-of-plane sensing z- and
y-axes are shown to experience an additional, yet-unknown contribution of bias
instability and could not be improved by frequency tuning control. For the
first time, scale-factor instability was described and analyzed in detail. This
effect produces an increase in signal drift with higher measured angular rates.
Lastly, a novel measure for mode-matching was devised, which, contrarily to the
pilot tone scheme, only uses the existing noise in the gyroscope’s force-feedback
structure to estimate the sense mode’s detuning and scale-factor.

Keywords

MEMS, gyroscope, triaxial, navigation, automated driving, mode-matched,
Allan variance, bias instability, frequency tuning, scale-factor instability



Zusammenfassung

Zukiinftige, vollautomatisierte Fahrzeuge stellen strenge Anforderungen an die
verwendete Inertialsensorik. Die Genauigkeit von MEMS Drehratensensoren
wird durch eine Vielzahl an Nichtidealitdten und langsamen Drifteffekten wie
Biasinstabilitdt begrenzt. Diese Dissertation befasst sich mit dem Einfluss von
Biasinstabilitdt auf die Genauigkeit von rein inertialer Navigation im Vergleich
zu anderen Rauschtypen. Es wird aufgezeigt, dass sich Biasinstabilitét bereits
bei Navigationsdauern iiber zehn Sekunden als groiter Fehleranteil erweist. Im
Hauptteil der Arbeit werden Urspriinge und Mechanismen von Biasinstabilitét
in dreiachsigen MEMS Drehratensensoren mit identischen Antriebs- und Detek-
tionsmodenfrequenzen und Kraftriickkopplung untersucht. Dies findet unter Ein-
beziehung von analytischen Berechnungen, ausfiihrlicher Systemmodellierung
und -simulation sowie experimentellen Untersuchungen an aktuellen Prototypen
statt. Es wird gezeigt, dass eine Kombination aus Flickerrauschen auf der Fre-
quenztuningspannung der Detektionsmode sowie gewissen Offsets die dominante
Quelle fiir Biasinstabilitdt in den z-Achsen darstellt. Wird die Frequenztun-
ingspannung geregelt und damit die Resonanzfrequenz der Detektionsmode in
Relation zur Antriebsmode konstant gehalten, kann die Biasinstabilitdt um bis
zu einem Faktor zehn auf unter 0.1 °/h verbessert werden. Hierbei findet die
Messung der Resonanzfrequenz der Detektionsmode unter Verwendung von soge-
nannten Pilotténen statt. Fiir die senkrecht zur Sensorebene messenden z- und
y-Achsen besteht eine weitere, unbekannte Ursache von Biasinstabilitidt. Eine
Reduktion mittels der genannten Methode ist hierbei nicht méglich. Dariiber
hinaus wird zum ersten Mal in der Literatur ein Effekt der Empfindlichkeitsinsta-
bilitdt detailliert beschrieben, welcher als ein Anwachsen von Drift bei gréfleren
gemessenen Drehraten auftritt. Zuletzt wird eine neuartige Methode entwickelt,
die eine Identifikation von Detektionsmodenfrequenz und Sensorempfindlichkeit
im Betrieb allein aufgrund des Rauschens in der Kraftriickkopplung erméglicht.
Im Gegensatz zum Pilottonverfahren bendtigt diese Methode keine Injektion
von zuséatzlichen Signalen in den Regelkreis.

Schliisselworte

MEMS, Drehratensensor, dreiachsig, Navigation, Automatisiertes Fahren, Allan
Varianz, Biasinstabilitdt, Frequenztuning, Empfindlichkeitsinstabilitét
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1. Introduction

This chapter provides a brief introduction and acts as motivation for the disser-
tation. Recent developments in automated driving are illustrated and the role
of micro-electromechanical systems (MEMS) inertial sensors in navigation, espe-
cially during emergency-stop maneuvers, is highlighted. Lastly, the importance
of long-term stability of the MEMS gyroscope output is demonstrated and the
dissertation objective is substantiated. Detailed state-of-the-art summaries for
highly precise MEMS gyroscopes are presented in Chapters 3 and 4.

1.1. Automated Driving

The promises of automated driving impel research institutions and industry
worldwide to wide-ranging technological efforts [3]. Individual mobility is likely
to change in a way unseen since the mass-adoption of the automobile [4]. Among
the technologies’ promises are fewer accidents, less traffic congestion, cost savings,
lower environmental impact, mobility for non-drivers and the elderly, reduced
stress, freed-up time and in general solutions to the transportation problem of
the future’s mega-cities [5] [6]. Particularly the reduction of accidents stands
out, as the vast majority of them are caused by human error - more than 90
percent in the United States [7]. Worldwide, yearly traffic fatalities amount to
an epidemic-like 1.35 million and traffic has in fact become the number one
cause of death for people between 5 to 29 years of age [8]. Automated driving
offers a solution by partly or entirely removing the human factor from driving.

The SAE International’s description of an automated driving system is “The
hardware and software that are collectively capable of performing the entire
dynamic driving task on a sustained basis [...]” [9, p. 3]. Among the many terms
that are used in public discourse like “robotic”, “self-driving”, “autonomous”,
“unmanned” or “driverless”, only “automated” is precise and technically correct
and is therefore suggested by SAE International as the sole descriptor [9].
This dissertation therefore follows that notion. The German Federal Highway
Research Institute (BASt) in 2012 and the US National Highway Traffic Safety
Administration (NHTSA) shortly after, developed descriptions of automated
driving based on levels [4] [10]. In 2016, the SAE International largely sided
with the German framework, added a further level and thereby created the
current de-facto standard. It comprises six levels from 0 to 5 [9]: Level 0 contains

no driving automation, level 1 has driver assistance with a sustained driving
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automation system for either longitudinal or lateral motion control. Level 2
is described as partial driving automation where both longitudinal and lateral
motion control are active. Here, the driver is expected to continuously supervise
the driving automation system as it is only partially capable of object and event
detection and response (OEDR) functions. Actual automated driving begins
at level 3, called conditional driving automation, where the complete OEDR is
managed by the automated driving system and the driver is merely responsible
for being “fallback-ready” in the event of vehicle or automated driving system
failure. Level 4 shifts the fallback responsibility to the automated driving system
and is named high driving automation. The difference to level 5 full driving
automation is that level 4 is domain specific, e.g. only certain areas, speeds,
daytimes or weather conditions, whereas level 5 is unlimited in its domain.
Figure 1.1 shows an overview of the SAFE International’s framework.

It is important to note that none of the levels are characterized by the absence
of e.g pedals or steering wheel and in fact a level 5 capable vehicle might still
be driven by a human driver if they chose to deactivate the automated driving
system. At the same time level 4 automated driving is already reality today by
this definition, e.g. by passenger shuttles on research campuses [9]. A level 4 or
5 vehicle may furthermore still suggest the driver taking over the driving task,
but will still arrive at a minimal risk condition if the driver does not react to the
prompt [9]. The feasibility of level 3 automated driving is challenged by a series
of studies and ample experiences from aviation [11] [12] [13]. The main issue is
that humans perform terribly when made the fallback option within prolonged
automated operation, particularly in the area of cognition [14]. Suddenly putting
the driver on the spot in an extreme situation that the automated driving system
was not able to manage, seems unwise [13]. Level 3 systems might therefore not
see large-scale adoption [15] and markets may move straight to level 4.

Within level 4 and 5, the reply to automated driving system and/or vehicle
failure or departure of the operating domain is the achievement of a minimal
risk condition [9]. While this generic term includes all kinds of possibilities, the
most practicable solution is to bring the vehicle to a halt for further measures
like restarting the software, take-over by a remote operator or pick-up for
repair [9] [16] [17]. An emergency stop maneuver may include driving onto the
road shoulder or simply stopping in lane with hazard flashers turned on. The
occasionally used description “safe-stop” is therefore somewhat deceiving, as
standing in lane might provoke accidents nonetheless. In any case, the minimal
risk condition is met, as continuing at speed would harbor much higher risks. For
this work, a maximum highway speed of 130 kmph is assumed [17], which would
put a realistic stop maneuver at a duration of 10 to 20 seconds. Depending on
the exact failure mode, the vehicle has to follow a pre-calculated emergency
stop trajectory with reduced or complete lack of OEDR capabilities [9] [16].
Level 3 systems may also perform some forms of emergency stop maneuvers in

order to give the driver more time for take-over.

20



1.2. Inertial Sensing

‘ Level 0 H Level 1 H Level 2 m Level 3 m Level 4 m Level 5

‘ Momentary | Sustained motion control

I I I
Lat. or long. | Lateral and longitudinal motion control ‘

Partial OEDR | Full OEDR

I
‘ Driver fallback | System fallback

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 1.1.: Automated driving divided into five levels according to the SAE
International definition. This graphic was derived from [9, p. 25, Fig. 11].

The reliability, performance, form-factor and affordability of sensor systems
are at the center of the technological advancement of automated driving [18]. It
remains to be seen which types and combinations of sensors are truly obliga-
tory [18]. At the same time, sensor-fusion and decision-making algorithms
and architectures constitute a vast field of research for years to come [3] [17].
With changing societal perception [19], jurisdictional requirements, customer
expectations and behavior [20] as well as entirely novel business models [21],
new engineering requirements may emerge, such as faster development cycles
or increased focus on performance versus price. The field of automated driving
systems is moreover marked by the presence of not only established vehicle
manufacturers, but also Tier-1 suppliers, IT-companies and start-ups [6]. Lastly,
the close interconnection of automated driving with vehicle connectivity and
electrification shall be mentioned. For further information on the state-of-the-
art and outlook of automated driving systems, the reader is referred to these
excellent review articles [3] [5] [18] [21] [22].

1.2. Inertial Sensing

A prime aspect of automated driving systems is navigation, both relative to the
vehicles surroundings and in absolute terms on a local or global map. In general,
cm-precision is required for successfully navigating within road lanes [17] [23].
Types of sensors employed in automated driving systems include among others,
mono and stereo cameras, radio detection and ranging (radar), light detection
and ranging (lidar), sound navigation and ranging (sonar), global navigation
satellite systems (GNSS), inertial measurement units (IMUs) and wheel speed
sensors (WSS) [3] [24], all of which may aid in the navigation task during times of
sufficient automated driving system availability. Sensors may be categorized into
proprioceptive, i.e. self-sensing, and exteroceptive, i.e. surround-sensing, physical
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1. Introduction

principles [3]. This dissertation bases on the assumption, that the automated
driving system will resort to proprioceptive sensors during an emergency stop
maneuver, as the actual need for reaching a minimal risk condition is typically
predicated on the unavailability of some or all exteroceptive sensors or their
subsequent processing. Practical examples include cameras being blinded by
low-standing sun, radar sensors being fooled by aluminum food packaging, lidar
sensing being hindered by snow or GNSS signals deteriorating due to urban
environments, tree lines and tunnels [3] [25]. Active sensors like radar, lidar and
sonar also suffer from signal interferences due to other traffic participants with
similar sensors, which necessitates encoding [26].

Inertial sensors based on MEMS technology are already present in virtually
all modern cars [27]. The main use cases are crash and roll-over detection for
airbag release as well as electronic stability control (ESC) [28]. Automotive-grade
MEMS inertial sensors have been well-proven in terms of reliability, availability,
longevity and safety for over a decade [29]. They have very small form-factor,
are inexpensive, require little computing power and can hardly be disturbed
by external effects such as electromagnetic influences or vibration [29]. These
unique properties make MEMS inertial sensors suited candidates for providing
the necessary motion data for an emergency stop maneuver [16], especially
when combined with wheel speed sensors [30] [31]. An inertial measurement unit
tracks linear acceleration, or more accurately, specific force, and angular rate. A
difference to crash detection and ESC inertial MEMS is the number of sensing
axes, which must be a minimum of three, one for each spacial dimension, for
accelerometers and gyroscopes in an IMU [32].

MEMS technology is characterized by engineering at the micro-meter scale
or below, typically done by lithography and bulk etching techniques on flat
wavers [33]. Silicon and silicon-oxide are oftentimes the materials of choice [33].
Depending on device size, tens of thousands of devices may be fabricated on
a single wafer, making MEMS technology cheaper per device than most other
manufacturing methods [34]. The deep reactive ion etching (DRIE) technique
[35] [36], also called the Bosch-process, has enabled or advanced a plethora
of different MEMS devices such as microphones, microfluidic actuators and
sensors, micromirrors, radio-frequency devices, pressure sensors, accelerometers
and gyroscopes [29] [33] [37]. The micro-scale active masses of inertial MEMS
stand in direct opposition to signal-to-noise and signal-to-disturbance ratios
while measuring inertial forces, compare with [38]. MEMS inertial sensors are
therefore seen as the least precise inertial sensor type [39]. Optical devices such
as ring laser gyroscopes (RLG) and fiber optic gyroscopes (FOG) employ the
Sagnac interference effect and offer higher performance than MEMS [39] [40].
Surprisingly, the most precise gyroscopes are again (large) mechanical devices
with rotating masses which are used primarily for strategic missiles [41] [42]. The
high cost of the non-MEMS devices allows for use in airplanes, spacecraft, weapon
systems, submarines or drilling equipment [43] but is very likely prohibitive for
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automated driving systems. Recent developments toward the improvement of
MEMS sensors specifically for defense applications resulted in MEMS devices
with performance close to FOG levels, compare e.g. [44].

Inertial sensors by themselves can only offer relative navigation from a known
starting point, known as dead-reckoning [43]. An IMU can provide position
and orientation data by employing a strap-down mechanism within an inertial
navigation system (INS) [25]. The exact algorithm is shown in the next chapter.
Specific force and angular rate along with any errors are integrated two and
three times, respectively, which explains why gyroscope performance is typically
more important compared to the accelerometers assuming both are based
on similar technology. Inertial sensor errors are discerned into stochastic and
systematic effects [45] [46]. Systematic effects can be calibrated and include
errors like offset, scale factor, scale factor nonlinearity, misalignment of axes,
misalignment of the entire device, cross-axis sensitivity as well as the changes
of each effect over temperature, stress or humidity [45] [47]. Kalman filter
estimation while moving and tumbling the device in an angular rate chamber is
an established technique [48]. Recent results suggest, that typical automotive
and even consumer drone movement profiles might not excite MEMS inertial
sensors enough to make all Kalman filter error states observable and to calibrate
it in the field [45] [49]. Among the stochastic effects in each sensor output white
noise, also called angle/velocity random walk (ARW/VRW), and bias instability
(BIS) [50] are most important. Particularly gyroscope bias instability is central
to long-term precision of an INS, which is why bias instability, along with
angle random walk and scale factor stability, is usually the prime performance
measure of gyroscopes [34] [40] [41] [43] [51] [52].

Apart from automotive use, MEMS inertial sensors have found widespread
adoption in the consumer segment, notably in smartphones, wearables and
drones [32] [53]. In the consumer market, the volumes sold exceed automotive
qualified MEMS devices by far. Robert Bosch GmbH alone has sold its ten
billionth MEMS sensor recently, of which most were consumer type [54]. The
consumer market offers equally promising developments compared to automated
driving like indoor navigation [55] [56] [57] and augmented/mixed reality [58].
These fields also request for higher inertial navigation precision [55] [58]. As the
fundamental measurement principle is the same for automotive and consumer

gyroscopes, the latter will benefit from the results in this dissertation, too.

1.3. Dissertation Qutline

Above, the relevance of highly precise MEMS gyroscopes for automated driving
systems was established. Out of the manifold sensor error sources affecting nav-
igation accuracy and precision, the dissertation will focus on the understanding
and improvement of MEMS gyroscope bias instability. Figure 1.2 shows the
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Figure 1.2.: Research design and dissertation outline. The adequacy of the
methods (blue) to address each topic is discussed in the corresponding chapters.

research design of the dissertation alongside the division into chapters.
Following the introduction and a broad literature review in this chapter,
Chapter 2 aims to examine the influence of bias instability and white noise on
purely-inertial emergency stop maneuvers on the basis of analytical calcula-
tions and iterative simulations. The relevance of gyroscope bias instability is
substantiated and a theoretical background on each of the different noise types
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is provided. Chapter 3 comprises the central contribution of the dissertation.
Its aims are (i) to analyze the experimental as-is performance of a triaxial,
automotive-grade MEMS research gyroscope by Robert Bosch GmbH, (ii) to
thoroughly understand sources of bias instability with the help of simulations, an-
alytical calculations and experiments, and lastly (iii) to improve bias instability
in experiment through suitable mechanisms, like test signals. A comprehensive
literature review of the state of the art on the matter will be offered beforehand.
Chapter 4 applies the findings to a simulation study of a novel estimation
algorithm that aims to improve bias instability without the need for test signals.
A further state-of-the-art summary relates the proposed algorithm to existing
methods. Chapter 5 summarizes and reflects the dissertation’s findings and
gives an outlook onto yet-unanswered research questions, some of which have
been newly formed by this work.
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2. Influence of Sensor Noise on
Inertial Navigation

Within this chapter, sensor noise influences on the accuracy of purely inertial
navigation are presented. While the underlying theory has been described in
literature before [30] [50] [59] [60] [61], it is summarized here in a more complete
form. As an exemplary use-case, an emergency stop maneuver of an automated
driving system is modeled within a 3D-environment. Iterative simulations assess
the impact of single and combined noise sources of accelerometers and gyroscopes
on the final position deviation. Other errors of inertial sensors, particularly
systematic ones, are not taken into consideration, because the focus here is solely
on noise influences. The results shown are therefore not representative of the
worst-case performance of MEMS inertial sensors, but rather of a lower bound,
which cannot be circumvented save for improving the noise characteristics of the
sensor. In later practice, inertial sensor data might very well be combined with
wheel speed read-out [30] or other information from still-functional exteroceptive
sensors during an emergency stop maneuver. In order to preserve generality,
these are not considered here and a complete automated driving system failure

except for the inertial sensors is assumed.

2.1. Theory

In the following, typical measures for noise in inertial sensors are presented,
as well as theory on an Euler-angle strap-down mechanism which generates
position data from specific force and angular rate input.

2.1.1. Noise Characteristics

Any physical sensing read-out is inevitably accompanied by noise. For accelerom-
eter and gyroscope data, the root Allan variance (RAV), or Allan deviation (AD),
has become the standard measure for separating and quantifying different noise
components [46] [50] [61] [62] [63] [64] [65]. The Allan deviation is a time-domain
method useful mostly for long-term stability analyses. Its frequency-domain
pendant is the power spectral density (PSD), which gives a poor representation
of effects with long time constants. It is however much better suited for disam-
biguation of short-term and oscillatory effects compared to the Allan deviation.
A holistic analysis of inertial sensor data therefore always includes the Allan
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Figure 2.1.: Prototypical Allan deviation plot with noise slopes [61].

deviation and the power spectral density, based on the same dataset [66]. Allan
deviation analysis aims to characterize the sensor-internal, stochastic signal
components, which constitute a lower bound for performance, as explained
above. It is therefore crucial, that data generation for Allan deviation analysis
occurs at ideal, undisturbed conditions. In practice, this includes measuring the
sensor at rest for at least 24 hours, ideally in a window-less laboratory with
continuously-operating air conditioning. Vibration, loud sounds, temperature
changes or power supply perturbations are to be avoided as best as possible.
Figure 2.1 shows the basic appearance of an Allan deviation plot. The IEEE
standard [61] contains a number of additional and supernumerary definitions,
which were reduced to the most important ones in this work. Allan deviation is
calculated as a single number in the same physical units as the original signal

Table 2.1.: Noise components in an angular rate Allan deviation plot [50].

AD component Abbrv. Slope Coeff. Spsp(f) “Color”
Quantization noise QNT -1 Q= f blue
Angle random walk ARW -0.5 Q 1 white
Bias instability BIS 0 B 1/f pink

Rate random walk RRW 0.5 K 1/f2 red/brown
Drift rate ramp DRR 1 R 1/f3 -
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2.1. Theory

for each cluster time 74p. The entire dataset is separated into as many clusters
as possible with length of 7op. The Allan deviation is defined as the (standard)
deviation of the differences of the means of each cluster [50]. The V-shape of the
Allan deviation appears, because most sensors will have noise characteristics, in
which longer measurements lead to a higher precision of the actual signal value
up to a certain, lowest point. Eventually, long-term drift effects will prevail,
measuring longer will not lead to more information about the true signal value
and Allan deviation in return rises again.

Noise types differ in the Allan deviation just as in the power spectral density
Spsp by their slope or rather by their dependence on frequency f and cluster
time 7ap, respectively. The components in Figure 2.1 are detailed in Table 2.1.
The noise types have been attributed colloquial color descriptions. There is
however no connection to actual color appearances or light spectra. The three
most important Allan deviation components, angle random walk, bias instability
and rate random walk will be outlined in the following in detail. Not of relevance
in this chapter - but partly visible in the experimental results later on - are the
sinusoidal and correlated (or Markov [67]) components. Concerning the drift
rate ramp, it was found that this is mostly the influence of temperature changes
and therefore not noise, but a systematic effect that is to be reduced as much
as possible when gathering the experimental data [50].

The exact Allan deviation calculation is defined in [50] [61] [64] [68]. In this
work, a slightly more intuitive notation is chosen. A data set 2 of N measurement
samples with uniform sample time T is separated into two subsequent clusters
of n samples with cluster time 7op = nT%, starting at sample k. The averages
of the two groups are

— 1
Q = — Q 2.1
W =5 ) ol (2.1)
and
k+2n 1
Qpgn(n) = Z Qli] (2.2)
i=k+n

Allan deviation oap as a function of cluster time 7ap is then defined as

Po(rn) = (0T = 35 Z(mm ) -mm) . 23

where N — 2n is the maximum number that two sets of n can be shifted by
one within N samples. Calculating the sum of the sums for every cluster size n
makes this method quite inefficient. Alternatively, one can integrate the data
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set beforehand. If the data is angular rate, then one receives the angle 6
0= / Qdt. (2.4)

The cluster averages can then much simpler be calculated with

— 0k +n| — 0k
0 n) = EF =0 (25)
and
— 0k +2n] — 0k +n
Qpyn(n) = [ 7]1T [ ] . (2.6)
Allan deviation becomes
1 N—2n 2
2 — _
TRo(ra0) = 55y 2 (6% +2n) — 200k + 0] + 01K]) . (27)

k=1

which is the form of the IEEE standard [61]. Similarly to overlapping when
calculating spectra, the stepping trough every k will result in a smoothed depic-
tion, but not in a more accurate estimate. Better estimates of oop can only be
reached by measuring longer data-sets. The increase in variance at large cluster
times can be seen in the Allan deviation plots below. The numerous Allan plots
in this work were for this reason, and to also save computational time, calculated
in a non-overlapping manner, i.e. k has step-size of n. Using equation (2.7)
without overlap, the Allan deviation even for week-long measurements with
tens of millions of data points can be calculated in mere seconds.

The relationship between the two-sided power spectral density Sapsp(f) and
Allan deviation is given by [50] [69]

sint(7 fTap)

(= Frap) df. (2.8)

)

oap(Tap) = 4/0 Sapsp (f)
The full derivation can be found in [69] [70]. Different noise types defined as a
function of f in the frequency domain can be plugged into the above formula.
Solving of the integral then prompts the corresponding Allan deviation as a
function of 7op in the time domain. It is important to note, that the order
of f (compare Table 2.1) has a non-unique relationship to the slope of Allan
deviation. The timing community has therefore introduced the modified Allan
deviation [64]. Since the non-unique noise types of order f! and f? usually
do not appear in inertial sensors, the modified Allan deviation has had little
relevance for the characterization of gyroscopes and accelerometers. Lastly, it
shall be noted that all spectral density plots within this dissertation use Welch’s
estimate with Blackman windowing [71] [72].
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Figure 2.2.: Allan deviation (left), one-sided spectral density (right) and
10 min exemplary time series (bottom) of 10h of simulated white noise sampled
at 100 Hz, see [73] [74]. A typical magnitude of @ = 5mdps/rtHz is shown here.

Angle Random Walk

Angle random walk or white noise forms the largest contribution in MEMS
gyroscopes and is what is generally understood as ‘the noise of a MEMS
gyroscope’. Its sources and composition depend on the type and design of the
gyroscope as well as its read-out electronics and control mechanisms [75] [76] [77].
As optimizing white noise of a MEMS gyroscope has been an objective since the
inception of the technology, the sources are fairly well understood. Among them
are electrical noise of the analog-to-digital converters (ADCs), digital-to-analog
converters (DACs), quantization noise and effects of Brownian motion of gas
molecules inside the device, which - contrary to their names - all produce white
noise. White noise two-sided power spectral density is defined as [50]

Sapsp(f) = Q* (2.9)

which results in an Allan deviation value of

OARW — (210)

TAD
The angle random walk coefficient ) can therefore be found by reading off
the Allan deviation value, or more precisely an appropriately fitted line, see
Figure 2.5, at Tap = 1s. There, and in Figure 2.2 above, @ equals 5 mdps/rtHz.
For accelerometers, this noise type is called velocity random walk (VRW) instead.
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Figure 2.3.: Allan deviation (left), one-sided spectral density (right) and
10 min exemplary time series (bottom) of 10h of simulated pink noise sampled
at 100 Hz, see [73] [74]. A typical magnitude of opis = 5dph is shown here.

Bias Instability

Bias instability or pink noise has a 1/ f spectral characteristic [50]

32

Sopsp(f) = 2 f

(2.11)

and is determined by a constant value in the Allan deviation plot

oB1s = By/2In(2)/7 ~ 0.664 B. (2.12)

Its time series plot has a more jagged look than white noise. Stationarity of the
stochastic process has been debated in literature [78] [79] [80] [81]. Contrary to
(rate) random walk, 1/f noise cannot be generated out of white noise by basic
mathematical operations. In fact, a filter with an infinite number of poles and
zeros would be necessary to shape white into perfect pink noise [78]. An easier
way of generating high-quality pink noise is to fast Fourier transform (FFT)
white noise into the frequency domain, shape the 1/ f characteristic there, and
bring the signal back to the time domain by inverse FFT, like in [82]. 1/ f noise
occurs in countless natural processes, oftentimes called flicker noise [83]. In the
context at hand it appears in analog voltage generation and is thus the prime
candidate for causing bias instability. Section A.2 in the appendix discusses
physical sources and the relation between measurement time and variance.
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Figure 2.4.: Allan deviation (left), one-sided spectral density (right) and 10 min
exemplary time series (bottom) of 10h of simulated red noise sampled at 100 Hz,
see [73] [74]. A larger-than-typical magnitude of K = 50 udps/rts is shown.

Rate Random Walk

The stochastic properties of rate random walk are much more intuitive than
bias instability, as it can simply be generated by integration of white noise [60].
Such an integrating behavior might for example appear for high frequencies in
an low-pass RC-network. However, our experiments, e.g. in Section 3.4, show
that when proper care is taken to keep temperature changes small, there is
only very little to no rate random walk present. Specifying rate random walk
as a stochastic parameter is thus not advocated. It may however be useful for
modeling systematic error effects that appeared in one specific measurement.
One has to keep in mind however, that slow drifts will appear as drift rate ramp
rather than rate random walk [50]. Typical reasons for offset drift are stress,
temperature and humidity. Rate random walk is defined in spectral density as

K2
SQPSD(f) = (27Tf)2 . (213>
Allan deviation then becomes
ORRW — K TAiD (214)

If a line fit of rate random walk is extended to the left, the coefficient K/+/3 can
be read of at Top = 1s. In Figure 2.4, rate random walk is K = 50 udps/rts.
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Figure 2.5.: All three major Allan deviation components with theoretical fit
lines and combined curve of oap. The noise levels @), ogrs and K are the same
as in the figures above, but the simulated data set was extended to 100 h for
higher accuracy of the Allan deviation estimate at long cluster times.

Combined Noise

Like any other non-correlated, stochastic process, Allan deviation noise terms
are added as the square root of the sum of squares

oap(Tap) = \/agRW(TAD) + 0315(TaD) + 0Rpw (TAD) + .. (2.15)

Figure 2.5 summarizes the basics of Allan deviation in a single plot where all
three noise types from above were simulated for 100 h. The theoretical dashed
curve of oap aligns well with the simulation results in blue. The minimum of
the Allan deviation curve is sometimes inaccurately called bias instability. For
MEMS gyroscopes, that is not as much of an issue, as bias instability is typically
a dominant component. The minimum and the true opig are then not far apart.
While we do not call the sole coefficient B “bias instability” in this work, its
level can be useful, when examining the influence of bias instability on the angle
error after integration of the angular rate. The intersection of the angle random
walk and the dashed “coefficient-B” line approximately marks the integration
time after which bias instability becomes the dominant error [30]. The following
pages will talk more about noise influence in integration.
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Figure 2.6.: An INS using a strap-down mechanism with Euler angle calculation
and gravity compensation transforms inertial data measured in the vehicles
body frame to position and attitude in the navigation frame [84] [85].

2.1.2. Strap-Down Mechanism

The main advantage of a strap-down configuration is, that the accelerometers
can be placed directly onto the vehicle. No gimbals and therefore no moving
parts outside of the actual sensors are necessary. However, the measured data
must then be transformed from the vehicles body frame coordinate system
to the outside world navigation frame coordinate system. The body frame b
is defined here as a Cartesian, right-hand sided coordinate system with its
origin in the center of mass. The x-axis points forward and the y-axis lies in
the lateral plane of symmetry, pointing to the right. The perpendicular z-axis
points “downwards” [86]. The roll, pitch and yaw rotations g 5, ,, and Q.
are defined around the z, y and z-axis.

For the (world) navigation frame coordinate system n, a Cartesian, right-hand
sided North-East-down convention is used. Earth rotation and the resulting
Coriolis acceleration is ignored here, since it is a systematic effect depending on
driving direction. Also, navigation time is short and velocities are moderate,
resulting in sub-cm position effects. Thus n is defined as an inertial reference
frame, i.e. it does not move in relation to the fixed stars [84]. It is furthermore
assumed, that the Earth’s gravity vector is exactly g = 9.81m/s? and remains
constant at all positions during the maneuver. Euler angle calculations

(Z.S'n, = (vab sin ¢n + Qz,b Cos ¢n) tan 971 + Qz,b (216)
0, = Qypcosby, — Q. psinb, (2.17)
Uy = (Qypsin b, + Qs pcosy,)/ cos b, (2.18)
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Figure 2.7.: The simulation structure includes slow and complex trajectory
generation (left) and fast, efficient sensor noise and strap-down modeling (right).

are used to transform the measured angular rates from the body frame into the
navigation frame [84]. Figure 2.6 shows the structure of a strap-down mechanism.
A singularity appears when 6,, approaches +90 deg which would be solved by
using quaternions. Since road vehicles are modeled here, pitch will never be
that high in a realistic use-case and the Euler angle calculation suffices. The
navigation frame angular rates gﬁn, 6,, and wn are integrated to attitude angles
®n, 0, and 1, which are then used to rotate the specific force measurements f;
to the navigation frame as well. Now, gravity g can be subtracted from f, , and
double integration firstly yields velocity v, and then positions ., y, and z,.

All nine individual integrators need to be primed with the correct initial-
condition angles, velocities and positions. The initial-condition angles need to
be particularly precise, because the subsequent double integration lets any error
grow rapidly. Providing the initial-condition values is the responsibility of the
automated driving system while it is still fully operational. Zero error in the
initial conditions is assumed here.

2.2. Simulation

A simulation environment was set up within Matlab/Simulink where a vehicle, a
six-axis inertial sensor and a strap-down mechanism were modeled. The structure
is split in two as shown in Figure 2.7. First, a rather complex and therefore time-
intensive, 14-degrees-of-freedom (DoF) vehicle simulation using Matlab’s Vehicle
Dynamics Blockset [87] generates driving trajectories for different scenarios. Two
of the scenarios will be detailed below. In a second step, one trajectory is loaded
into the navigation model, which is much more efficient and therefore allows
to run hundreds of iterations in reasonable time. Each iteration adds random
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2.2. Simulation

Figure 2.8.: 3D-visualization using Matlab/Simulink’s Vehicle Dynamics Block-
set. Left: Two overlayed vehicles at the start of the emergency stop maneuver.
Right: After 20s, the blue vehicle possessing a more accurate inertial sensor
comes to a halt on the road shoulder, while the silver vehicle stops halfway on
the road due to the worse performance parameters of its inertial sensor.

and independent noise of predefined intensity to the ground-truth trajectory.
After all iterations have been simulated, the results are visualized. Furthermore,
1 and 5 o-error trajectories that were caused by the sensor noise are calculated.
In a third step, these can be supplied back to the Vehicle Dynamics Blockset for
generation of overlay videos which compare the ideal path and the trajectory
disturbed by sensor noise in a 3D-environment, see Figure 2.8.

2.2.1. Vehicle Model

The Vehicle Dynamics Blockset offers very complex vehicle models, including the
vehicle body kinematics, powertrain, steering, wheels, tires and suspension [87].
For the trajectory generation, the default parametrization of the double lane
change [88] and increasing steering [89] examples was used and adjusted where
necessary. Since the details of the vehicle modeling are not entirely relevant
for the topic at hand, they are omitted here. Of more importance is, that the
generated trajectories represent reasonably realistic vehicle behavior.

2.2.2. Sensor Model

The iteration simulation includes a MEMS inertial sensor with three accelerom-
eters and gyroscopes. The ground-truth angular rates, forces and gravity in
the body frame are loaded from the Vehicle Dynamics Blockset simulation.
Since gravity and all of the other forces are provided separately, the iteration
simulation offers the possibility to turn off gravity in order to examine the
influence of all non-gravity related effects. The inertial sensor and strap-down
is sampled at 200 Hz, which therefore allows for a bandwidth maximum of
100 Hz. This is considered adequate for vehicle dynamics [29]. Angle random
walk Qarw and bias instability Qpig of predefined intensities @@ and 0.664B are
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Figure 2.9.: Vehicle position during conservative emergency stop maneuver
with 20s of moderate deceleration and shift to the road shoulder (left) and
aggressive emergency stop with 10s of hard braking and stop in-lane (right).

added to the ground-truth angular rate signal €y ¢ye for each individual axis
and analogously to the specific forces according to Table 2.2.

Qac,b = Qx,b,true + Qac,ARVV + Qgc,BIS (219)
fz,b = fm,b,truc + fat,VRW + fm,BIS (220)

For each iteration and axis, an independent noise vector of 9min length is
generated. Thereof, the actual 10 or 20s portion for the simulation is picked
and subjected to a subtraction of the mean of the previous 3 min. This approach
mimics the preceding phase of the purely inertial navigation, where availability
of the exteroceptive sensor is assumed to be optimal and where the inertial
sensor offsets can be ideally estimated. As discussed above, rate random walk is
not deemed to have a significant impact on these time scales and is therefore
omitted here. The simulation includes a signal-pane, where the Allan deviation
and spectral densities of the added noise can be checked for correctness. Further
effects may have considerable influence on the final position but are omitted
for this analysis. Nonetheless the simulation would allow simple modeling
of e.g. temperature drifts, offsets, sinusoidal tones, vibration disturbances,
misalignment, cross-axis sensitivity or gravity-dependence of the gyroscopes.

2.2.3. Trajectory Models

A total of ten scenarios were created, two of which are presented here. Both sce-
narios are modeled on a level and straight highway road. The vehicle is assumed
to point northwards at ¢ = Os, i.e. axes x,, y, and x, y, are approximately
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parallel. Each path is iterated in the simulation 3000 times with randomly
generated noise of identical intensity, producing reliable 1o error paths. A first,
conservative scenario assumes that e.g. some radar function for collision braking
is still active and that the minimal risk condition would be fulfilled by driving to
the road shoulder with moderate deceleration over the course of 20s. An initial
speed of 100 kmph is modeled. Since the integration time is longer, this scenario
will make higher demands on the noise level of the inertial sensors. The second
scenario assumes the outage of all safety systems and thus comprises a more
aggressive maneuver with rapid braking and stopping in the current lane within
just 10s. The initial speed is set to 130 kmph which results in a quite hefty,
average deceleration of about 3.6 m/s?. Figure 2.9 displays the two scenarios.
More detailed plots of angles, velocities and positions are shown in Section A.5
of the appendix, together with the results from the iteration simulation.

2.3. Results

2.3.1. Analytic Description

It was established above, that gyroscope non-idealities typically have dominant
influence on the final position due to the triple integration [30]. Therefore, the
analytical description of only the gyroscope influence will be given here. For an
analysis of accelerometer noise effects, the reader is referred to [59]. The angle
standard deviation after single integration of an angular rate signal with angle
random walk and bias instability, respectively, is [30] [90]

0¢/0/¢y,ARW = Q\/E and 0¢/0/¢,B1s ~ Bt. (2.21)

An extensive discussion about the validity and nature of the formula for in-
tegrated bias instability is given in Section A.2 of the appendix, because it
has not been provided elsewhere yet. Based on equation (2.21) the intersection
point of carw and the B-level determines approximately at which integration
time bias instability becomes dominant versus angle random walk as shown in
Figure 2.5. A simulation of 100 integration iterations shows the comparison of
the numerically determined 1o standard deviation with the analytical curve

Table 2.2.: Specified noise levels for the iteration simulations of both scenarios.

Sensor Noise Qzp Qb Dy fop  fyp fzp Units
Angle random walk 5 5 5 - - - mdps/rtHz
Bias instability 5 5 5 - - - dph
Velocity random walk - - - 200 200 200 pg/rtHz
Bias instability - - - 50 50 50  pug
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Figure 2.10.: One hundred iterations (gray) of integrated white noise (left)
and pink noise (right) with averaged 1o standard deviation (black, dashed),
true zero-error (black, solid) and analytical curve (blue). Note the v/t and ¢
dependencies. The noise intensities were @ = 5mdps/rtHz and 0.664B = 5 dph.

in Figure 2.10. Note, that angle-errors due to noise are nominally zero-mean.
Figure 2.11 exhibits angle error curves for exemplary bias instability and angle
random walk values. If it is assumed that bias instability noise behaves like
a constant offset, its influence on position error can be determined by simply
integrating equation 2.21 twice, under assumptions that error angles are small
(sin(a) = «). It is furthermore presumed that a significant error only occurs
in the x,, and y, axis because z; and z, are approximately parallel. Gravity
is thus almost only measured in f, ;. All other non-gravity accelerations are
investigated by simulation in the next section. Position error due to gyroscope
bias instability and gravity then becomes

3 770' [radm]

deg s?

The analoguous triple-integration relationship for angle random walk is derived
in section A.1 of the appendix. One receives

o Tott | 5Tgts it gt o« rad m
ooman® =@\ g+ 7+ T B g e
7 rad m
@\ 50 130 7 dee 21 2.23
“V30 180 {degs2] (2.23)

The angle or position errors are of course added as the square root of the sum
of squares. Figure 2.12 reveals the rapid increase of error with time as well as
curves of equal position error which can be used to determine trade-offs when
designing an inertial measurement unit.
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Figure 2.11.: Top: Analytical 1 o standard deviation of angle error after single
integration for different values of angle random walk and bias instability during
20 s of integration time. Bottom. Lines of equal 1 o angle error as a combination
of angle random walk and bias instability for 10 and 20s of integration time.
The error types are added as the square root of the sum of squares.
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same position error at 10 seconds of integration. Bottom: Lines of equal 1o
position error as a combination of angle random walk and bias instability for
10 and 20s of integration time.
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Figure 2.13.: Fifty simulation iterations of the aggressive in-lane emergency
stop maneuver during 10s (top) and the conservative scenario for 20s (bottom)
from the bird’s eye view. The black, solid lines mark the ground truth without
noise disturbance and the black, dashed lines the 1o lateral error.

A neat memory aid can also be seen in the Figure 2.12. If one uses typical
units of mdps/rtHz for angle random walk and dph for bias instability, then
the position error of identical figures of angle random walk and bias instability
is roughly the same after 10s of integration.

2.3.2. Simulation OQutcome

The two emergency stop scenarios are simulated with the parameter set listed
in Table 2.2, which represents realistic performance for MEMS inertial sensors.
Figure 2.13 shows 50 iterations of both scenarios next to each other. As expected,
the 20s maneuver accumulates much larger errors. Figures 2.14 and 2.15 show
the contributions of angle random walk and bias instability for each sensor
axis on the total position error of each axis in the navigation frame. Gyroscope
bias instability is the largest error contributor in the 20s simulation and is
approximately on par with angle random walk in the 10s run. Gyroscope noise
performance is limiting for both scenarios compared to the accelerometers in
the z,, and y,, axes. For z,, the accelerometers are dominant. Since the braking
deceleration has smaller magnitudes than gravity in both scenarios, the error
share from gyroscope-and-gravity effects is much larger than from any other
driving-related accelerations.

Equations (2.22) and (2.23) therefore give a good, rough estimate of the
final x, and y,, position, which is also evident when comparing the simulation
results with Figure 2.12. Minor deviations between simulation and analytical
prediction are attributed to the following effects: Even though 3000 iterations
where performed for each bar, some statistical uncertainty will remain. Also, the
noise generation may not perfectly produce the specified level. For angle random
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Figure 2.14.: Position error of each axis x,, (top), y, (middle) and z,, (bottom)
in the navigation frame due to angle random walk and bias instability of
the gyroscope as well as velocity random walk and bias instability of the
accelerometer. The 20s conservative emergency stop scenario was simulated
with 3000 iterations for each bar. Blue marks the share of gyroscope-and-gravity
related errors and gray indicates all other errors. The black, dashed lines indicate
the values predicted by equations (2.22) and (2.23).

walk, equation (2.23) describes the error if the offset would have been estimated
for an infinitely long time before the navigation start. Since here a 3 min offset
subtraction period was assumed, small additional errors appears. For bias
instability, Section A.3 in the appendix discusses in detail how equation (2.22)
gives merely a rough approximation. In actuality, the behavior of integrated
bias instability depends on how low in frequency the 1/f property continues.
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Figure 2.15.: Position error of each axis x,, (top), y, (middle) and z,, (bottom)
in the navigation frame due to angle random walk and bias instability of
the gyroscope as well as velocity random walk and bias instability of the
accelerometer. The 10s aggressive emergency stop scenario was simulated with
3000 iterations for each bar. Blue marks the share of gyroscope-and-gravity
related errors and gray indicates all other errors. The black, dashed lines indicate
the values predicted by equations (2.22) and (2.23).

Since the total generated noise length for each iteration and sensor axis was
9 min, the influence of bias instability slightly surpasses the prediction for the
10s scenario and falls below for the 20s maneuver.

More figures of the simulation results are revealed in Section A.5 of the
appendix. Since breaking happens in the longitudinal direction of the vehicle,
the €, gyroscope axis noise causes slightly more position error than the 2,
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signal. It is of course important to remember, that the error distribution among
the axes depends on the driving scenario and the final heading of the vehicle.
The influence of €2, noise is barely relevant. This may however change into
the opposite if e.g. wheel speed is included in the navigation algorithm and
dead-reckoning using velocities is performed [30]. The accuracy of the Q, axis
is also crucial in the correct estimation of the initial heading at the start of
the purely inertial navigation. Particularly in the case of short time spans of
exteroceptive sensor availably before the emergency stop maneuver, generating
sufficiently accurate heading information is challenging [91].

As in this simulation, one has to decide in the real world how to best generate
an offset error estimate before the purely inertial navigation starts. In the
simplest case, the angular rate offset is determined by identifying phases where
the sensor is at complete rest without external disturbances. Then, the Allan
deviation provides the information on how long one should ideally average the
signal to calculate the offset value and what uncertainty will fundamentally
remain in that value [90]. If the duration for determination of the offset is
shorter than what the Allan deviation minimum dictates, then the navigation
accuracy is deteriorated by an additional linearly rising offset according to the
ARW value of that duration, as described above.

This line of thought points to an important difference between the integral
of angle random walk and that of bias instability. For angle random walk,
equation (2.21) describes the standard deviation of the angle error exclusively
for the noise occurring within the integration period. The reason is, that with
an ideal reference and with long calibration time, the offset uncertainty of
averaged angle random walk becomes very small. By contrast, bias instability
noise fundamentally does not allow a better offset estimate at longer times.
No matter how short or long the available averaging time, the uncertainty -
by definition - is always the same. The angle error formula of bias instability
does therefore not just include the error occurring due to the noise within the
integration period, but also reflects the error prevailing in the calibration phase
beforehand.

2.4. Discussion

In this chapter an introduction of inertial sensor noise and its characterization
by Allan deviation was provided. It was demonstrated by analytical calculation
and iteration simulations of an Euler angle strap-down mechanism that angle
random walk and bias instability of the angular rates are the most influential
noise parameters for purely inertial navigation for durations on the order of tens
of seconds. It shall be reiterated here once again, that the results constitute
a lower bound for inertial sensor performance and that other, deterministic
influences like temperature, stress or external vibration may cause further
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and much greater deterioration. In an exemplary fashion, the influence of a
linear offset drift due to temperature is shown in Section A.4 of the appendix.
A typical specification parameter for MEMS gyroscopes is the temperature
coeflicient of the offset (TCO). Using common values for cheap, consumer-type
devices and realistic temperature changes of 1 to 5K over a duration of 20s,
temperature influence surpasses the stochastic influences of angle random walk
and bias instability by far. If however TCO values in line with high-performance
automotive sensors are used, the influence of temperature drift is lower than or
on par with that of the noise errors.

When assuming typical noise performance of MEMS inertial sensor in this
chapter, this lower bound alone is not low enough to make an emergency stop
maneuver feasible. Using a rather lax 3-0 specification, the lateral position error
would be 168 cm and 31 cm for the 20s and 10s trajectory, respectively. This
much tolerance is deemed infeasible without touching other vehicles or e.g. the
guard railing. MEMS gyroscope accuracy needs to be better than the typical
performance examined in this chapter. A three-axial, automotive-grade MEMS
research gyroscope with greatly reduced noise was therefore developed at Robert
Bosch GmbH. These devices are taken as a benchmark for further improvement
of bias instability levels, which will be the central theme of the next chapter.

In this chapter, the error propagation during the purely inertial navigation
period was investigated. Of similar importance is good sensor performance
at the time before the emergency stop maneuver [90] [91]. The better the
sensor, the quicker the error estimator, e.g. Kalman filter, can calculate the
deterministic errors. From a practical viewpoint, the driver will want to engage
a fully automated driving feature quickly after starting their vehicle and not be
forced to drive for long durations until all errors have been estimated sufficiently.

The feasibility of using redundant sensors to improve performance was evalu-
ated by the author as a side topic. Results are briefly discussed in Section A.6 of
the appendix. In summary, noise of one sensor, e.g. bias instability, is typically
not correlated to another sensor. This leads to a maximum noise improvement
of a factor of VN, where N is the number of identical sensors. The discussion
section of the next chapter compares the achieved improvements with what
could theoretically be attained with redundancy concepts.
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3. Origins and Mechanisms of Bias
Instability Noise

This chapter constitutes the central part of the dissertation. First, a literature
review summarizes the current research on highly-precise MEMS gyroscopes.
The most common zero-rate offset effects are subsequently recapitulated and an
overview of the employed feedback control structures is given. Measurements on
future-generation, three-axial, automotive-grade devices are combined with a
detailed simulation model in order to explore the sources of the so-far unknown
origins of bias instability. A further scale-factor instability effect is discovered
and analytic predictions for both types of instabilities are derived.

3.1. State of the Art

This section provides a comprehensive overview of current findings related
to offset stability of MEMS gyroscopes. Compared to the two introductory
chapters, the terminology is now much more specialized and not all terms are
introduced in this section for the sake of brevity. However, the theory section
below contains detailed explanations of most of the terms and phenomena.
Vibrating mass MEMS gyroscopes measure angular rate by transferring energy
proportionally to the applied angular rate from a constantly oscillating drive
mode to a sense mode in perpendicular orientation via Coriolis force [92]. These
two modes may either be separated in their natural frequency - oftentimes
several kHz - or the modes may be matched [93]. The majority of MEMS
gyroscopes, particularly of consumer-grade, are operated with split modes [93].
Since the transferred Coriolis force is proportional to the oscillating mass, see
equation (3.1), miniaturization runs counter to a large measurement signal.
This is exacerbated further by the fact, that micro-scale fabrication is less
precise than conventional, macro-scale manufacturing when comparing the
size of the smallest features to those of the accruing defects [38]. Increasing
symmetry of the design is therefore generally beneficial, along with increasing
the percentage of active mass per allowed device size. The authors of [94] reach
near-navigation grade performance with a single-axis, quadruple-mass gyroscope
with a huge 100 um device layer thickness and 74 mm? footprint. They report a
bias instability of 0.09 dph and an angle random walk of 0.25 mdps/rtHz in a
high-Q, mode-matched configuration. Due to the lack of force-rebalance [95],
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the bandwidth is most likely and rather impractically in the sub-Hz domain [96]
and the scale factor is highly dependent on temperature [97]. The devices in
this dissertation include three axes on a footprint smaller than 5mm?. Simple
mass or size increase is not compatible with customer demands and the price
goal. Since fabrication technology has by now reached a certain maturity [98],
improving offset stability is oftentimes attempted by algorithm- and control-
based approaches. Two distinct areas of active research were identified. The
first field includes approaches that employ mode reversal, the second makes use
of either already known sensor-internal signals or measuring or estimating them
or actively injecting additional test-signals to extract information about error
effects like quadrature, temperature or mechanical stress.

A major source of offset is the unwanted leakage of energy from the drive
to the sense mode by other means than Coriolis force [99], e.g. due to me-
chanical manufacturing imperfections. The basic idea behind mode reversal
is the rejection of common mode error effects [100] by either continuously
switching the drive and sense mode [101] or by driving both modes and reading
out the phase difference [102]. The advantage of the latter is, that incredibly
high angular rates - up to hundreds of thousands of dps - can be measured
with high bandwidth [96] and great temperature stability, which makes them
attractive for defense applications. However, these so-called rate-integrating,
whole-angle or frequency-modulation gyroscopes [95] [103] often cannot detect
small rates [104] [105]. “Virtual” rotation was shown to aid in overcoming
this disadvantage [105] and was furthermore employed to estimate scale factor
changes [106]. Rate-integrating gyroscope design is in most cases axis- or at least
mode-symmetric [107], which is difficult to realize for out-of-plane sensing, i.e.
x- and y-axis gyroscopes. The first three-axial frequency-modulated gyroscope
has been published only very recently [108]. For in-plane sensing gyroscopes
however, significant offset stability improvement has been achieved [109]. A
mode-reversal technique improved bias instability from 9 dph in the regular rate
mode to 1.7dph, however at the cost of more than thrice the angle random
walk [110]. Additional control loops for damping mismatch and quadrature
were implemented with moderate experimental success in [111]. In an early
control-based approach, a self-calibrating dual-stage control for rate-integrating
gyroscopes was demonstrated in simulation [112]. Later contributions of this
research group include a rate-integrating gyroscope realized on the above men-
tioned quadruple-mass device with bias instability of 0.5 dph and angle random
walk of 1.4 mdps/rtHz, which was shown to be worse in terms of noise perfor-
mance compared to the conventional, rate-measuring operation of one and the
same device [113]. The finding is contrasted by [114] [115], wherein a much
smaller 4mm?, 2.6 MHz bulk acoustic wave gyroscope had improved angle ran-
dom walk and bias instability performance - from 26 to 5dph - when using the
whole-angle mode together with automatic mode-matching. Summarizing it can
be said that rate-integrating gyroscopes may reach excellent performance and
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are well-suited for niche applications, where extremely high angular rates need
to be measured. Nonetheless, the conventional rate measuring configuration
is better suited for the majority of commercial applications [113], especially
automotive. Furthermore, modern three-axial MEMS gyroscopes only have a
single drive control loop that excites movement of all three drive modes. Intro-
ducing separate drives to enable rate-integrating operation would complicate
the system and raise costs due the additionally necessary connection pads. The
rate-integrating approach is therefore not pursued further in this dissertation.
As mentioned above, mode-matched MEMS gyroscopes are mostly operated
in a closed-loop configuration, also called force-rebalance, force-to-rebalance
or force-feedback, in order to allow high quality factors and practical band-
widths [28] [116] [117] [118]. Herein, movement of the sense mode is suppressed
by feedback control and the modulated angular rate signal is retrieved from the
control output [95] [119]. Around this high-dynamic force-feedback loop, a slower
quadrature compensation loop may be placed [28] [120] [121]. Quadrature is un-
wanted, direct movement stimulation from drive to sense which has 90 deg phase
difference to the Coriolis angular rate signal, hence the name. Our group pub-
lished a fully commercialized automotive MEMS gyroscope with force-feedback
and 1.4dph bias instability in 2007 [29]. Later designs presented single-bit AX
force-feedback and quadrature compensation which resulted in similar bias
instability levels [28]. Northrop Grumman LITEF showed a prototypical device
with both force-feedback and quadrature compensation reach 0.1 dph in 2008.
In the same year Georgia Tech published a sub-2mm?, mode-matched but
open-loop device with 0.15 dph bias instability [122]. Quadrature cancellation
improved a 7dph device to 0.9dph in [123] [124] along with tenfold angle
random walk betterment. The already mentioned quadruple-mass gyroscope
in force-feedback and quadrature compensation mode reached bias instabilities
of 0.2dph [125] [126]. Instead of actively compensating the quadrature in the
system, a passive method that injected charges into the readout in opposition to
the charges produced by quadrature was proposed and 1.3 dph of bias instability
was measured [127]. Utilizing correlations of the quadrature signal to the rate
output drift again on the quadruple-mass gyroscope improved temperature
ramp and rate random walk [128] [129] [130]. The same contribution as well as
others employed correlation to temperature, which was termed self-sensing as
temperature was not measured with a dedicated sensor but via change of the
drive resonance frequency [131] [132]. Since most modern MEMS inertial sensors
do have a dedicated temperature sensor and high-performance systems need to
be calibrated across their entire temperature range in any case, the temperature
self-sensing approach may be somewhat superfluous. On-chip stress sensors
removed rate random walk and temperature ramp portions in [133] [134].
Mode-reversal without whole-angle configuration was demonstrated in [135],
where merely the polarity of the drive movement was alternated, see also [136]
[137] [138]. Three-fold bias instability improvement to 5dph came along with
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a trade-off of three-fold decrease of angle random walk. The authors therefore
suggested to combine two gyroscopes, one regularly operated and one with the
proposed method, or to fuse permanent readout during alternation of the drive
polarity with readout at certain epochs [139]. An in-run scale-factor estimation
was demonstrated with a similar technique of injecting a switching signal into
the drive dynamics, resulting in 3 dph bias instability [140].

It has been revealed in recent years, that continuously controlling the mode-
matching between drive and sense in-run improves bias instability [93] [141],
which in turn indicates that slow, uncontrolled relative drift between the reso-
nance frequencies of drive and sense is related to bias instability. The effects
of detuning on white noise levels was covered in [75] [142], but bias instability
noise was not included. A quadrature dither signal outside the angular rate
bandwidth was used to measure detuning and improve bias instability from
6.5 to 0.2dph [143] by controlling the frequency tuning voltage and thus the
detuning. In contrast, no injected signal was necessary in [116] and frequency
detuning information was gathered solely from noise observations. A 0.9 dph bias
instability was achieved. A more comprehensive state-of-the-art on frequency
detuning measures is provided in Chapter 4.

In summary, excellent bias instability performance has been demonstrated
for numerous MEMS devices with a variety of different operating schemes.
Particularly continuous mode-matching is deemed promising and therefore
pursued further in this dissertation. All presented methods however fall short of
truly examining the origins of bias instability and to address its 1/f noise nature,
which is different from the slow temperature- and stress-related drifts that were
improved in many works. With very few exceptions like [144], almost the entire
literature examined in-plane sensing (z-axis) gyroscopes. This dissertation will
expand the bias instability analysis to all three axes. It can also be observed,
that large, prototypical devices tend to give better results than commercialized
gyroscopes, which are driven by low-power ASICs only as opposed to operation
by large, table-top lab equipment. The noise performance especially of the ASIC
digital-to-analog converters will therefore be tackled as well. Table 3.1 compares
the most prominent scientific contributions focusing on MEMS gyroscope bias
instability improvement. The table also shows, that most - but not all - of the
sub-1-dph gyroscopes were the large quadruple mass (74 mm? area) device from
Prof. Shkel’s group at UC Irvine.

Recently, Honeywell published a gyroscope with 0.06 mdps/rtHz angle random
walk and bias instability as low as 0.02dph [145] [146]. The offset stability
over the entire temperature range was 0.2dph. Their devices are operated
mode-split in open-loop configuration. Among the reasons for reaching such
phenomenal values, they list an increased size and thickness of the device
and the supporting laboratory electronics (i.e. no ASICs) which were placed
mostly outside the testing chamber and connected via long cables. Their target
application is gyroscopic North-finding, compare [147]. Another research group
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using a 30 mm? area, 80 um height, mode-split gyroscope reached bias instability
values of 0.5dph down to 0.08 dph, depending on the power intake of the read-
out electronics [117] [148]. Employing a mode-matched, closed-loop design,
Honeywell’s competitor Northrop Grumman LITEF also recently published
values as low as 0.01 dph, for in-plane axis gyroscopes [118]. Although not much
about the actual mechanisms of improvement was revealed in their publication,
optimizations in the read-out control loops were deemed instrumental. The
push for better bias instability values in these high-end, defense and aeronautic
applications further emphasizes the importance of bias instability as a valid
performance parameter for MEMS gyroscopes, see also [149].

Table 3.1.: Prominent scientific contributions on the topic of bias instability
improvement of mode-matched, in-plane sensing (z-axis) MEMS gyroscopes.
Abbreviations are: Force-feedback (FFB), quadrature compensation (QC), open-
loop (OL), rate-integrating gyroscope (RIG), bulk-acoustic wave (BAW), auto-
matic mode-matching (AMM).

Architecture Ref. Area  Height BW Range ARW BIS
Units [mm?]  [um] [Hz] [dps] [mdps/rtHz]  [dph]
FFB, QC [118] n/a  n/a 240 499 0.2 0.01
OL [94] 74 100 low high 0.25 0.09
OL [113] 74 100 low 300 1.0 0.1
OL, QC [128] 74 100 low  high 0.3 0.1
FFB, QC [34] n/a 50 500 1000 5.0 0.12
OL, RIG [122] 2 60 1-10 20 0.05 0.15
FFB, QC, AMM [143] 4 n/a high n/a 4.2 0.2
FFB [126] 74 100 100 100 0.8 0.2
FFB [107] 74 100 200 1350 0.3 0.2
OL, RIG [103] 74 100 high 18000 1.1 0.22
FFB, QC [123] 2.2 n/a n/a 100 0.23 0.4
OL, RIG [113] 74 100 high 18000 1.4 0.5
FFB [130] n/a n/a n/a n/a 0.6 0.8
FFB, QC, AMM [141] n/a n/a 100 n/a 0.11 0.84
FFB, QC, AMM [116] n/a n/a med. n/a 1.4 0.9
FFB, QC [124] n/a n/a high  high 0.6 0.91
FFB, QC (28] n/a 20 630 80 2.7 1.2
FFB, QC [29] n/a n/a 60 187 2.5 1.3
OL, QC [127] 1450 500 high  high 3.3 1.3
OL, RIG [110] 13 n/a n/a n/a 26.6 1.7
FFB [130] 2.6 n/a n/a 100 5.3 3
FFB, QC, AMM [93] n/a n/a high n/a 55 4
BAW, RIG (115] 4 n/a 36 3000 116 5.4
OL, mode-rev. (135] 7.8 n/a 125 300 14 6
OL, QC [92] n/a n/a n/a 30 6 7.1
FFB [110] 13 n/a n/a n/a 7.2 9.2
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3. Origins and Mechanisms of Bias Instability Noise

3.2. Theory

The linear dynamics of Coriolis vibratory gyroscope have been covered many
times before, for example in [32] [92] [95] [150] [151] [152]. Therefore, only a
brief overview will be given here before non-idealities are addressed. Coriolis
force F.o, appears on an object with mass m and velocity v as a fictitious force
during rotation 2, of a reference frame when viewed from that reference frame

Fooo = —2m, x 7. (3.1)

Figure 3.1 shows a mechanical model of a Coriolis vibratory gyroscope. In this
example, the drive movement actuated by Fy, occurs in the x direction. Ideally,
the only energy transfer to the vertical sense mode is that of Coriolis force and
the modes are otherwise independent. Coriolis force is counteracted by the sense
feedback control force Fy,. Although other physical principles like magnetic
or piezoelectric drives are possible, capacitive actuation and read-out is the
most widely used method for MEMS inertial sensors, e.g. [153] [154] [155]. A
single drive frame movement is excited and read out in the in-plane direction for
all three sense modes by interdigitated comb drives. Although the drive frame
is excited in-plane, its intricate design includes drive modes that vibrate in a
rotating or linear manner so that Coriolis force in all three spacial dimensions
can be measured. The sense mode usually has comb drives for the in-plane
sensing z-axis, but parallel plate structures in the out-of-plane sensing x- and
y-axes. The force by parallel plate and comb drive capacitive actuators is

eA
212

eNh

Frara = V2 and Feomp = V2, (3.2)

where € is permittivity, A the parallel plate area, x the plate distance, N the
number of interdigitated fingers, h the height of the fingers, g the gap between
two fingers and V' the actuation voltage [33] [156]. Note, that force is a function
of displacement in parallel plate capacitors but not in comb capacitors. Replacing
the two fractions by constants kq, and kg, one receives the linear equations of
motion for the two modes

Far = kar (VbR ac sin(wpnt) + VDR,dC)2 =mgd + cp@ + kyx (3.3)
Fo =k, Vidgsign(Vep) = myij + ¢y + kyy + 2makgyr Q. (3.4)

Here, Fy, and Fy, are the drive and sense forces, Vbr = VbR, ac sin(wpnt)+Vor.de
the drive and Vg the force-feedback voltage, m, and m, the masses, ¢, and
¢y the damping coefficients and lastly k, and k, the spring stiffnesses. The
frequency of the drive vibration is forced by wpn. The gyroscopic factor kgyr
determines what ratio of the entire drive frame mass m, actually induces

Coriolis force for an individual sense axis. Furthermore, in some designs mass
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Figure 3.1.: Schematic of the mechanical functional principle of a Coriolis
vibratory gyroscopes modeled as a lumped mass-spring-damper system [32]
[92] [95] [150] [151] actuated by interdigitated comb drives or parallel plate
capacitors. No non-idealities are shown in this figure and Coriolis force is thus
the only energy transfer from drive to sense mode.

m,, may be physically a substructure of m,. Alternatively, m, might be include
a so-called Coriolis frame which passes on Coriolis force to a separate sensing
structure m, that is mostly at rest and is not part of the drive frame, see
e.g. [29]. The actuation and read-out capacitances of drive and/or sense might
also be physically the same structure, if time-multiplexing is employed. In
order to avoid measuring linear vibration instead of angular rate, the sensor’s
entire mechanical structure is almost always mirrored, with opposing movement
and differential read-out [29]. For the sake of simplicity, the formulas and the
simulation implementation here do not include the opposing movement.

3.2.1. Offset Sources

Angular rate offsets appear in virtually all MEMS gyroscopes and have numerous
causes, many of them related to the specific control architecture. A limited
number of publications have dealt with identifying and differentiating of offset
sources explicitly [150] [157] [158] [159] [160]. Under ideal conditions, the offsets
would be constant and would therefore not produce bias instability. Angular
rate offsets are also easily calibrated to zero by simply keeping the device at rest
for a few seconds. Investigating bias instability is therefore not the search for
the dominant offset type, but for which offset type might carry enough 1/f noise
to partly of fully explain the amount of experimentally measured bias instability.
As mentioned above, flicker noise on the voltage converters is deemed as the
mostly likely source of 1/f noise [78]. However, since the angular rate signal
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3. Origins and Mechanisms of Bias Instability Noise

measurement happens modulated at the drive frequency, low-frequency flicker

noise should in theory have no significant influence on the final sensor output.

Bias instability mechanisms are therefore more complex. Different types of

offsets are analyzed below and then modeled together with flicker noise sources

to examine in simulation which combination of noise and non-ideality might

produce bias instability. A gyroscope output €2 may be produced by these root

causes, among others. For further details, see the above mentioned publications.
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- Angular rate: The externally applied rotation €, of the sensor leads to the

desired measurement as described above. Depending on orientation of the
sensing axis, a gyroscope always measures a portion of Earth’s rotation,
at most 4.2 mdps.

Quadrature: This is the most important error source in MEMS gyroscopes,
evidenced by the large amount of scientific contributions concerned with
it, see Table 3.1. Quadrature occurs, when the drive movement is not
perfectly perpendicular to the sense axis, i.e. the sense mode is excited
by the position of the drive mass via coeflicient k,,. Since angular rate
is transferred with wvelocity, quadrature and Coriolis force are separated
in phase by 90deg. By synchronous demodulation, both signals can be
extracted individually. Oftentimes, quadrature is much larger than typical
angular rates - up to tens of thousands of dps. In force-feedback systems,
a quadrature cancellation loop is usually necessary because the sense
front-end of the force-feedback loop would saturate otherwise.

Non-proportional damping: Similarly, to quadrature, this effect is the
excitation of the sense mode but by the drive velocity via coefficient cgy.
Since the mechanism is the same as for Coriolis force, this offset type can
by definition not be differentiated from applied angular rate.

Drive force coupling: The drive actuation may have asymmetries or produce
fringe fields which let the drive force Fy, act directly on the sense mode
via kq¢. The effect is in phase with rate, not with quadrature, because
the sense force-feedback dynamics have zero phase shift at the drive
frequency (see Figure 3.3) as compared to the drive dynamics which have
the typical minus 90 deg phase shift of a lumped mass-spring-damper
system at resonance. This offset effect can be identified experimentally
by applying an off-resonant frequency to the drive mode. The drive is
therefore only barely in motion and any measured rate offset is thus likely
to originate from drive force coupling.

Additional modes: A MEMS gyroscope is a complex structure with sub-
divided masses and numerous spring structures. Inevitably, it therefore
features many more mechanical modes than just the drive and sense
modes. All above mentioned effects may also excite one of these addi-
tional modes and its movement might then influence the sense dynamics



3.2. Theory

or the read-out, here modeled with k..,. Since these additional modes
are typically above the drive mode in resonance frequency, they are also
called higher modes. Additional modes and non-linearities were shown to
form complex dynamical behavior in [161]. Efficient simulation of some
of these non-linearities was demonstrated in [162]. The entire topic of
additional modes demands more research than what can be covered by
our examination of bias instability sources in this dissertation.

- FElectrical cross-coupling: Parasitic capacitances might directly couple
control voltages like drive voltage, ASIC clock or any other ASIC signal
to the sense front end, without any mechanics involved. Here, we model
drive voltage via coefficient k..q to be the offset source.

- Phase errors: Lastly, the phase of the synchronous demodulation to receive
the angular rate signal may not be perfectly precise. Small components
of the quadrature signal may therefore creep into the rate signal. Since
quadrature compensation control reduces the actual quadrature movement
to zero, this effect is not deemed to be substantial in our implementation.

In this model, an additional light duffing behavior k,4 may be included in the
drive mode, which in itself is not capable of producing offsets. The implemen-
tation also comprises quadrature compensation and common-mode voltages
Vac, Voo and their efficacy kq, as well as frequency tuning voltage Vet with
spring softening capability kg. The model is described in the time-domain with
dynamic equations of motion for drive mode,

Far = kar (VbR ac sin(wpnt) + Vbr.de)? = mad + cpdo + kpx + kpgz®,  (3.5)
the potential additional mode,
0 = myfii + cutt + kyu + kpyx, (3.6)
the sense mode,

Fa = kp, Viggsign(Veg) + kaeFar
+ kq(Vaom + Vao)? = (Vaom — Vae)?) sin (@mect)
=myy +cyy + (ky + kftVFZT)y + (Cacy + 2mmkgyrﬂr)i + kyyx (3.7)

and the output of the sense read-out capacitance-to-voltage (CV) converter

which measures displacement via capacitance,

Vov = kcvyy + kevutt + kevd VDR Sin(wpllt)~ (38)

Dots signify derivation in time ¢. Sense displacement is modeled as proportional
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to capacitance, which is transformed to voltage by kcyy. kuv is the excitability of
the assumed higher mode by the drive movement. Once steady-state is reached,
the drive voltage frequency wyy is virtually identical with the drive’s actual
movement frequency wpec. Figure 3.2 reveals the offset paths within the control
architecture and furthermore indicates the sensor’s common mode voltage Ve
which was not modeled for the simulation. The demodulation phase determines
if the offsets appear in the rate signal, quadrature signal or in both.

3.2.2. Sources of 1/f Noise

Flicker noise is assumed to appear wherever analog voltages are being gener-
ated. Primarily, that would be the digital-to-analog voltage converters (DACs).
However, the analog-to-digital (ADCs) and CV converters may also use analog
reference voltages and therefore experience flicker noise. All components that
are realized in the digital domain are flicker free, of course. Whether wiring
and electro-mechanical elements within the MEMS element can produce flicker
noise is uncertain and for now this possibility is disregarded. Figure 3.2 includes
a hatched bar under each component where a 1/f noise source was modeled.

As mentioned in Chapter 1, the 1/f behavior might also be produced by white
noise which is shaped, i.e. filtered, to appear as bias instability for a limited
range of 7aop [50]. This type of correlated noise is sometimes also referred to as
Gauss-Markov noise [163]. White noise is ubiquitous throughout the entire sensor
e.g. due to Brownian motion, thermal or quantization noise. The possibility
of shaped white noise producing bias instability is deemed unlikely but not
entirely impossible. It will be discussed later on in this chapter.

3.2.3. Closed-Loop Control Structure

Figure 3.2 shows a signal flow graph with five control loops, compare [28]
[29] [151]. The single drive frame movement is regulated by an amplitude
control, which ensures that a constant vibrational amplitude of about 6 ym
is maintained. The phase-locked loop (PLL) keeps the excitation frequency
at resonance, so that the least amount of energy is expended. The bottom
three control loops are realized individually for each individual axis. A high-
bandwidth force-feedback control counteracts and largely suppresses movement
of the sense mode within a certain frequency range, compare Figure 3.3, be
they Coriolis-induced, quadrature or any other type of offset. The control’s
feedback output, i.e. the plant input (German: Stellgrife), is used to recover the
angular rate and quadrature signal by synchronous demodulation and subsequent
low-pass (LP) filtering. Around this inner loop, a quadrature compensation
with bandwidth of less than 100 Hz applies voltages to dedicated quadrature
compensation electrodes which counteract the mechanical quadrature until
there is zero quadrature left. The modulation of the slowly varying quadrature
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Figure 3.2.: Mode-matched MEMS gyroscope signal diagram with amplitude
control and phase-locked loop (PLL) to regulate the drive movement as well as
force-feedback, quadrature and frequency tuning control for each sense axis [2].
The above described offset sources are indicated by their coefficients and the
blue arrows. The hatched bars show where a 1/f noise source was modeled in
simulation. Synchronous demodulation and subsequent low-pass (LP) filtering
grants drive amplitude, angular rate and quadrature. (©) 2019 IEEE.

compensation voltages to the drive frequency is done mechanically with wyec,
i.e. the quadrature electrodes project a force onto the sense mode depending
on the sense mode’s position [150]. The drive and sense modes are matched to
a few Hz by electrostatic frequency softening via dedicated frequency tuning
electrodes. Matching is typically done once at the factory and that voltage
value is maintained for the gyroscope’s entire lifetime. Alternatively, a frequency
tuning control loop may be closed, which measures the current detuning value

99



3. Origins and Mechanisms of Bias Instability Noise

and brings it to zero. A method based on pilot tones is described below and a
novel technique is developed in Chapter 4.

All DACs and ADCs within the gyroscope are implemented as AY modulators
for improved linearity and noise performance. Particularly the force-feedback
control producing a 1-bit output is carefully designed to shape quantization
noise away from the drive frequency towards higher frequencies where it does
not influence the noise level of the demodulated, low-pass filtered angular rate
output signal. The full details of our implementation can be found in [28].

3.2.4. Force-Feedback Transfer Functions

The transfer function from applied angular rate €2, modulated onto the drive
frequency, to the force-feedback control output (* in Figure 3.2) is sought to be
as constant as possible over a large frequency range around the drive frequency.
At the same time, white noise or any other disturbance acting on the CV
converter should be suppressed as much as possible around the critical drive
frequency. Force-feedback control delivers just that. Its transfer functions are

HsnsHCVHADC chtrl

Hoii = 3.9

P T 1~ HansHevHapce Hreon Hipac (3.9)
and e.g. for electrical cross-coupling in front of the CV.
HcevH Hicr

Hyovos = cvHApcH fetrl (3.10)

1 — HywsHovHapcHieonHipac

Here, H are sense transfer functions. Force control and force DAC are abbrevi-
ated by fctrl and fDAC, respectively. In the vicinity of the sense mode resonance
frequency wy, = \/ky/my, Hsns has high gain, the 1 in the denominators becomes
insignificant and most terms can be canceled. If it is furthermore assumed that
the force DAC has roughly linear characteristic, then

1 1
Ho oo ~ ~ 3.11
Qrii— |wy —Hippac kspac ( :
1 1
H ~ ~ . 3.12
kC'udV2—>*|wy —HipacHgns kipacHgsns ( )

Around the drive frequency, the angular rate transfer function is thus approxi-
mately linear, as desired. The CV transfer function is roughly the inverse of
the sense mode in this frequency range, which forms the characteristic “notch”
of force-feedback gyroscopes, suppressing noise and disturbance signals at the
CV converter. Figure 3.3 shows a Bode diagram of both transfer functions.
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Figure 3.3.: Exemplary bode diagram of closed-loop force-feedback transfer
functions of rate (gray) and CV (blue) to the force control output (%) [2]. The
magnitude scaling of the CV transfer functions is arbitrary, depending on how
much cross-coupling signal or CV noise is modeled. The quadrature control loop
is not included in the transfer functions. The drive frequency is marked by the
vertical dashed line. If drive and sense modes become mismatched, the transfer
functions move slightly left or right, as indicated by the arrow. Signals that
pass the rate transfer function like applied angular rate or non-proportional
damping are not affected much, but offsets undergoing the CV transfer function
are drastically influenced in amplitude and phase. (©) 2019 IEEE.

3.2.5. Pilot Tones

Identifying the ideal mode-matching of each sense mode can be done by sweeping
the frequency tuning voltage with the device at rest and recording at which
voltage the rate noise reaches a minimum. This is of course not a feasible method
if the gyroscope is moved and it is also time-consuming for factory calibration
where each second counts. A more advanced method was therefore developed
in [28] [151] [164], which injects so-called pilot tones at the CV converter
via switchable capacitor arrays by digitally modulating a low-frequency tone
wpt ~ 250 Hz onto the drive frequency wpi,

Spt(t) = kpy cos(wpit) cos(wpnt). (3.13)

The factor k¢ is adjusted so that the tones have a rate equivalent magnitude
significantly lower than the maximum angular rate that the force-feedback can
handle. The tones pass the CV closed-loop transfer function detailed above
and appear well-visible in the spectrum of the force control output, left and
right of the drive frequency. Figure 3.4 shows an experimentally measured noise
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Figure 3.4.: Power spectral density of the force control output signal from
experiment of one of the devices introduced below [2]. The two pilot tones appear
left and right of the drive frequency wpyy;. The rate offset of the device can be
seen in the center. The remainder of the spectrum consists of noise of all sorts
of sources. Among them are AY quantization noise, additional AY, dithers to
prevent toning, CV noise, noise of the quadrature control and Brownian motion.
More details on the noise composition is provided below and in Chapter 4. The
typical notch shape is created largely by the CV transfer function in figure 3.3,
but also from other contributors like the AY force-feedback and quadrature
transfer functions. © 2019 IEEE.

spectrum with pilot tones. If the force control output is demodulated with Sp¢
and the outcome then low-pass filtered, a measure of frequency tuning is received.
In other words, if the sense mode does not match the drive mode, one of the
two tones will be amplified more and the other one less. The difference of the
two tones’ amplitudes is the measure of frequency detuning. Section A.9 of the
appendix shows a simplified derivation in the time domain, the derivation in
the frequency domain can be found in [151]. The detuning measure can be used
to regulate the frequency tuning voltage via e.g. a simple integral control to

permit continuous mode-matching, even in-run while measuring angular rate.
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3.3. Simulation Analysis

The system dynamics including the non-idealities and offset sources introduced
above were implemented within a Matlab/Simulink simulation environment.
Compared to an existing simulation model available at the AE/EAC Bosch
research department, this new model features only the most important compo-
nents, which allows for a low simulation duration compared to simulation time.
That is necessary to capture the long-term drift effects within reasonable time
for a single simulation run. Proprietary, similar-to-experiment transfer functions
for the control elements like the force-feedback control or amplitude control were
used in the simulation. Nonetheless, the general trends of the simulation results
are valid for a broad range of implementations of mode-matched, force-feedback
gyroscopes. Figure A.11 in the appendix shows an overview of the Simulink
model with subcomponents of white noise generation, MEMS element, drive
controls, sense controls and output. To reduce simulation time and complexity,
only one sense axis is modeled and a parametrization for the z-axis of the
experimental devices from the next section is used from here on.

Noise in the AY: force-feedback structure was carefully modeled to resemble
the contributions within the actual, experimental devices. White noise sources
were implemented for the drive CV thermal noise, the Brownian motion acting
on the drive structure, thermal noise of the PLL output, thermal noise of the
sense CV, Brownian motion acting on the sense structure, output noise of the
quadrature DAC, output noise of the frequency tuning DAC and the dithers
necessary for tone-free AY sense ADC and AY force-feedback DAC operation.
Transfer functions for each noise type on the AY force control output spectrum
were implemented, but are not directly relevant for the topic at hand. A result
pane was created for the simulation, which plots time-series of relevant internal
signals like quadrature and drive amplitude. It also provides the power spectral
density of the force control output and the Allan deviation of the final rate
output. If necessary, white noise sources - except the dithers - may be turned off,
so that small influences of flicker noise producing bias instability can be observed
without having to simulate for many hours until bias instability appears above
angle random walk.

The flicker noise sources were modeled additively for the force-feedback, the
quadrature control, the quadrature common-mode, the frequency tuning and
the drive DACs as well as for the PLL. The drive and sense ADCs include
flicker noise multiplicatively, i.e. their scale-factor changes slightly with a 1/f
frequency characteristic. Figure A.11 in the appendix displays how the additive
and multiplicative sources were implemented. Table 3.2 shows the assumed
magnitude of flicker noise for each source. Where available, the values are aligned
to the specification of the experimental ASIC in the next section. Flicker noise
is typically specified by its level in a frequency spectrum at 1 Hz, and is given
in units of ©V/rtHz throughout this dissertation.
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3.3.1. Offset Change by Detuning

The influence of accurate mode-matching on bias instability was mentioned in
the state of the art section above. Here, the effects of detuning of the matched
modes will be examined in detail. In practice, the natural, non-tuned frequency
gap between drive and sense needs to be large enough so that even in the
presence of fabrication variations all devices on a wafer have positive frequency
splits Awsplit = wsn — wdr. Since the negative electrostatic spring softening
constant kg in our devices is accompanied by squared frequency tuning voltage,
any negative split would not be removable. The simulation is parametrized so
that the sense mode lies Awgpiix &~ 600 Hz higher in frequency than the drive.
With an electrostatic spring softening capability of —11Hz/V?, a frequency
tuning voltage of 7.5V is needed to match the sense mode to the drive mode.
The wide bandwidth of the closed-loop angular rate transfer function in
Figure 3.3 makes the rate measurements relatively robust to smaller changes
in frequency tuning. In fact, even if the frequency tuning voltage were to
be increased by 1V, resulting in a detuning of —170 Hz, the scale-factor of
a measured rate signal would only be off by less then 4 %. Considering the
minuscule voltage changes that originate from flicker noise as well as typical
offsets that are less than 3 dps (see experiments in the next section), this path can
hardly explain bias instabilities of e.g. 1 dph. In contrast, the closed-loop transfer
function for cross-coupling to the CV converter in Figure 3.3 drastically changes
signal amplitude and even more-so signal phase. Alternation of tuning voltage
will therefore shift any cross-coupling signal in or out of rate or quadrature.
The simulation is employed to characterize the change of each type of offset
when the sense mode is purposely detuned. The duffing behavior of the drive

Table 3.2.: Flicker noise magnitudes for each voltage in simulation. The values
are aligned to the specification of the experimental ASIC. Dependence of flicker
on the actual amount of output voltage was not modeled. High-voltage DACs
exhibit higher flicker noise in general compared to low-voltage DACs.

Flicker Source Symbol Value
Units [V /rtHz]
Force-feedback DAC VFB, gic 13
Quadrature control DAC VQc sic 350
Quadrature common-mode DAC  Vqowm fic 350
Frequency tuning DAC VET flic 400
Drive DAC VDR, fiic 400
Analog PLL voltage VpLL flic 400
Scale-factor drive ADC SADC,dr,flic 13
Scale-factor sense ADC SADC,sn,flic 13
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mode is disabled for these examinations. Assume an offset at perfect mode-
matching, created by non-proportional damping of Qy,¢im1 = 0.1dps. The
necessary magnitude is ¢, = 3.6 - 1071 Ns/m in our implementation. A small
detuning voltage of AVpr = +10mV is applied during a second simulation
run, shifting the sense mode frequency by —1.7Hz and altering the offset to
Qnp sim2 = 0.100035 dps. The susceptibility of this type of offset, linearized at
the ideal mode-matching, is thus

Qn sim _Qn sim
SVier Qup sim = — 2 ZVFT psiml (3.14)
0.100035dps — 0.1dps
pr— o].
0.01V (3.15)
= 0.0035dps/V (3.16)

in terms of rate offset change per amount of applied frequency detuning voltage.
The same amount of offset originating from electrical cross-coupling to the
CV converter, Qec sim1 = 0.1dps via keyqa = —11nm/V, prompts a much larger
susceptibility to detuning of

Qec,sim2 - Qec,siml

SVir Qee,sim = N (3.17)
0.132dps — 0.1dps

= 3.18

0.01V ( )

=3.2dps/V. (3.19)

This offset type is thus almost a factor of 1000 more potent and even small tuning
voltage changes result in significant offset drifts. The tiny voltage fluctuations
from flicker noise may therefore create large amounts of bias instability, if
some amount of electrical cross-coupling offset is present. Although offsets
from (remaining) quadrature likely do not exist in our devices, they were
modeled here as well. An artificial quadrature offset as depicted at the bottom
of Figure 3.2 was introduced. About 24 dps of rate-equivalent quadrature offset
was necessary to induce a rate offset of 0.1 dps due to non-perfect demodulation
phase. Demodulation phase errors stem from slight differences of PLL phase and
the phase of the actual mechanical movement or the closed-loop force-feedback
transfer function not having precisely zero phase shift at wyy. Furthermore,
an offset due to an additional mode was introduced with the mode having a
Q-factor of 5000 at a frequency separation to drive of 12.7 kHz. During all these
simulations, quadrature control as in Figure 3.2 was active. Detuning offset
susceptibilities change somewhat when quadrature control is disabled.

Table 3.3 shows the result for all offset types that were presented above. The
difference of impact between offsets experiencing the rate closed-loop transfer
function (Qnp, Q) versus the CV closed-loop transfer function (Qec, Qam) can
clearly be seen. Figure 3.5 shows the same offset changes but over a wider range
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Figure 3.5.: Susceptibility of different types of offset to frequency detuning.
All offsets were simulated with magnitude of 0.1 dps at perfect mode-matching,
marked by the black, dashed line. Every dot indicates a separate simulation.
Detuning voltage AVgr drastically alters offset magnitude for the offsets that
undergo the CV closed-loop transfer function (blue) but barely influences offsets
that pass the rate closed-loop transfer function (gray), according to Figure 3.3.

of AV = 41V of detuning voltage. The analogous experimental characterization
is presented in the next chapter. Note, that the sign of the susceptibility is
arbitrary, since negative offsets are also possible. Drive force coupling offset is
an exception and can only produce offsets of either positive or negative sign,
depending on the sign convention of the output and the mechanical design. It
is not easily possible to differentiate between offset types in experiment. Two

Table 3.3.: Susceptibility of different types of offset to frequency tuning changes.
All offsets were simulated with magnitude of 0.1dps in the perfectly mode-
matched case. In a second simulation the sense mode was detuned by 10 mV,
resulting in a —1.7 Hz frequency shift. The difference between offsets experiencing
the rate closed-loop transfer function and the CV closed-loop transfer function
from Figure 3.3 is striking.

Offset Type Symbol Susc. Svir,sim
Units [dps/V]
Applied angular rate Q, 0.0035
Non-proportional damping Qnp 0.0035
Drive force coupling Qs 0.0033
Uncompensated quadrature Quq -1.9
Electrical cross-coupling Qec 3.2
Additional mode Qam -1.1
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Figure 3.6.: In-phase and quadrature composition of different types of off-
sets with CV closed-loop transfer function (blue) and rate closed-loop transfer
function (gray) with rate magnitudes of 0.1dps (red). The offset from uncom-
pensated quadrature is near vertical and not entirely visible in this plot, because
the quadrature component amounts to a much larger 24 dps. When a detuning
voltage of AVepr = 10mV is applied, the pointers’ magnitudes (dashed) remain
about constant, as illustrated by the circles. However the phase angles of the
offsets that undergo the CV closed-loop transfer function change significantly.

opposite-sign offsets may cancel each other, but a detuning susceptibility will
still remain. Likewise, a device may exhibit a large offset of different origins,
but their detuning susceptibility may cancel each other and total susceptibility
becomes small.

A pointer diagram of in-phase, i.e. rate, and quadrature components of the six
presented offset types is shown in Figure 3.6. The simulated offsets of 0.1 dps are
accompanied by varying amounts of quadrature. Applied angular rate ), and
offsets Qp, (. that pass the rate closed-loop transfer function do not have a
significant quadrature component. Furthermore, when a slight detuning voltage
of AVpr = 10mV is applied, the rate component does not change significantly,
as detailed above. Since offsets ¢, (24, undergo the CV closed-loop transfer
function, even slight detuning alters their phases profoundly, as portrayed in
Figure 3.3. The composition of in-phase and quadrature magnitudes therefore
changes, however the total magnitude remains about the same. If larger detuning
voltages are applied, then magnitude will begin to increase, according to the
notch shape of the CV closed-loop transfer function.
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3. Origins and Mechanisms of Bias Instability Noise

3.3.2. Analytical Calculation of Bias Instability

The specified flicker noise parameter of the tuning voltage Vi gic from Table 3.2
and the offset susceptibilities towards tuning voltage variation Sy sim from
Table 3.3 allow the direct, analytical calculation of the expected bias instability.
Furthermore necessary is a factor of v/2In2 in units of rtHz, which comes
from the definition of bias instability in equation (2.12). The full derivation is
provided in Section A.10 of the appendix. Analytically predicted bias instability
values are calculated here for offsets of 0.1 dps from uncompensated quadrature,

OBIS,Vir,Quq = |SVFT,Quq,Sim| . VFT7ﬂiC -v2In2rtHz (3.20)
=1.9dps/V - 400 pV/rtHz - vV21In 2 rtHz (3.21)
= 3.2dph, (3.22)

for offsets from electrical cross-coupling,

OBIS, Veir Qe = [SVir Qee,sim| VT flic - V2In21tHz (3.23)
= 3.2dps/V - 400 uV /rtHz - vV21In 2 rtHz (3.24)
— 5.4dph (3.25)

and for offsets from the modeled additional mode,

OBIS,VFT,Qam — |SVFT,Qam,sim| : VFT,ﬁic -vV2In2rtHz (326)
= 1.1dps/V - 400 uV/rtHz - vV21In 2 rtHz (3.27)
— 1.9dph. (3.28)

In the same manner, the influence of any other control voltage that produces
a rate offset change may be examined for its impact on total bias instability.
Section 3.4 below will demonstrate this using experimentally found voltage
susceptibilities.

3.3.3. Simulation of Bias Instability

Next, offsets and flicker noise sources were simulated together, one by one. All
white noise sources except the indispensable dithers were turned off, so that
even very small bias instability values may be seen in the Allan deviation plot.
The offsets passing the CV closed-loop transfer function were assumed to be
0.1dps as above, but the rate closed-loop transfer function offsets were set to
1dps. It was assumed that the vast majority of experimentally measured offset
of a gyroscope is created by the latter type. Table 3.4 displays the simulation
results. While most combinations did not yield detectably bias instability at all,
flicker noise on the frequency tuning voltage in combination with CV closed-loop
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transfer function offsets did result in significant contributions. The results agree
well with the analytically determined bias instability values above. Smaller
influences were also found for the feedback DAC and the drive ADC. The former
will be examined in more detail in Section 3.5.

The results explain for the first time the origins and mechanisms of bias
instability as a combination of flicker noise on the frequency tuning DAC and
offsets that are highly susceptible to detuning e.g. those that experience the CV
closed-loop transfer function. It has become clear, why exactly in-run frequency
tuning control improves bias instability as experimentally demonstrated in [93]
[116] [143], because these control mechanisms counteract the small detuning
changes and keep mode-matching ideal at all times. We demonstrate bias
instability improvement using pilot tones firstly in simulation and then in
experiment in the next section. Figure 3.7 presents a 10 h simulation of 0.1 dps
of offset from an additional mode together with tuning voltage flicker. The
first run prompts the result of Table 3.4, i.e. bias instability of 2.0 dph. In the
second run, the pilot tone frequency tuning control is active and bias instability
improves to 0.1 dph. At the same time angle random walk deteriorates, because
white noise is swept into the rate output by the very same mechanism that bias
instability is improved by. The effect is fortunately a bit less pronounced in the
experimental implementation, because the typical voltage susceptibilities are
much lower there.

Table 3.4.: Simulation results of bias instability due to a combination of offsets
and flicker noise on the sensor’s DACs and ADCs. Results were rounded to
the first digit after the decimal point. Major contributions exist for the CV
closed-loop transfer function offsets and the frequency tuning flicker.

Offset Type Q Qnp Qte Quq Qec Qam
Magnitude 1dps 1dps 1dps 0.1dps 0.1dps 0.1dps
VFB fiic <0.1 <0.1 <0.1 0 0 0
VaQc fic 0 0 0 0 0 0
Vaewm fic 0 0 0 0 0 0
VET fic <0.1 <0.1 <0.1 3.0 5.3 2.0
VDR, flic 0 0 0 0 0 0
VpLL gic 0 0 0 0 0 0
Sar.ADC.flic <0.1 <0.1 <0.1 0 0 0
Ssn, ADC flic 0 0 0 0 0 0
Units [dph] [dph] [dph] [dph] [dph] [dph]

69



3. Origins and Mechanisms of Bias Instability Noise

LU L 1 1 117 1| A A AR

10% | g

= 10! = E

~ = .

o0 - ]

) I N

= | N

b L |

10° |- E

10 1 Lol vl vl il vl b S MYl
102 10! 100 10' 102 10% 10" 10°

Time [s]

Figure 3.7.: Simulated bias instability (gray) of 2.0 dph with 0.1 dps of offset
from an additional mode and frequency tuning voltage flicker. An improvement
by a factor of 20 to 0.1 dph (blue) is facilitated by continuous frequency tuning
control using pilot tones. The simulation time was 10h in both cases.

3.4. Experimental Analysis

Simultaneously to mathematical modeling and simulation, extensive exper-
imental investigations on fully-functional, triaxial research gyroscopes were
performed. Well over 5000 hours of measurement data for Allan deviation
analysis were recorded with many different devices, settings and laboratory
conditions. This section presents only the most relevant outcomes.

3.4.1. Setup

The experimental setup consists of a field programmable gate array (FPGA)
board, which runs the digital part of the sensor control system, see Figure 3.2.
In its center, the board houses a ceramic leaded chip carrier (CLCC) on which
an analog front-end research ASIC transfers the FPGA’s actuation and read-
out signals to and from the actual triaxial MEMS gyroscope via bond-wires.
Figure 3.8 shows such a device. The gyroscope dies were manufactured in-house
at Bosch in Reutlingen with an advanced bulk micro-machining process which
was previously presented in [98]. As opposed to operation exclusively via an
ASIC like in a production device, the FPGA permits reprogramming of the
controls as well as real-time examination and recording of most digital signals.

Ideal measurement conditions for Allan deviation have been described above.
Passive insulation chambers within an air-conditioned laboratory were used to
keep temperature as constant as possible. One such chamber is presented in
Figure 3.8. The measurements shown here were sampled with 200 Hz using an
internal, digital filter bandwidth of 80 Hz.
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Figure 3.8.: Left: Sensor build-up on ceramic chip carrier with triaxial MEMS
research gyroscope and an ASIC front-end connected by bond wires. Right: Setup
of the FPGA board within a test chamber [2]. The chambers act as insulation
from external disturbances, without any active climate control. (©) 2019 IEEE.

3.4.2. Allan Deviation Characterization

Five different sensor samples labeled A to F with similar mechanical designs
are examined throughout this chapter. Devices A, B and C were recorded for
a minimum of 48 h each and their Allan deviation characterized as presented
in Figure 3.9. For all three axes in each device, the horizontal bias instability
component is visible, but not always uniform in the out-of-plane axes. Angle
random walk and bias instability parameters are shown in Table 3.5, together
with the amount of offset, quadrature and tuning voltage needed for mode-
matching. Certainly, three samples do not allow to draw any definitive statistical
conclusions. Nonetheless, the amount of offset, quadrature or tuning voltage
does not seem to directly correlate with bias instability levels. For the amount
of offset in particular, no correlation was expected, as discussed above. With
bias instabilities ranging from 0.15 to 1.2dph in regular operation without
any additional correction mechanisms, the devices exhibit exceptionally good
long-term stability. Compared to other contributions in the state of the art, the
devices here include axes for all three spacial dimensions on a single die within
a very small area of less than 5 mm?2. White noise is very low as well, testament
to the consequent AY implementation and good mechanical designs.

It was previously reported by the author, that the quadrature signal did not
show significant correlation with the rate offset using another, related sensor
design [1]. Employing the chance to access almost all digital control signals with
the FPGA, extended correlation analyses were performed. It was found, that
none of the rate offsets of different axes correlate with each other, meaning each
axis has unique 1/f noise behavior. Furthermore, no other significant correlation
of an axis’ rate offset to one of the three quadratures, the drive amplitude, the
drive input signal, the PLL signal or the drive frequency was found.
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Figure 3.9.: Allan deviation of regular operation for at least 48 hours of devices
A, B and C [2]. Resulting parameters are listed in Table 3.5. (©) 2019 IEEE.
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Table 3.5.: Allan deviation parameters and general characteristics of devices A,
B and C [2]. No direct correlation between the amount of quadrature, rate offset
or tuning voltage to bias instability can be observed. Tuning voltage is given
as the ratio of applied voltage divided by the full-scale range of the frequency
tuning DAC, Vi1 max- © 2019 IEEE.

x-Azis Sensor A Sensor B Sensor C Units
Rate offset 1.08 1.32 0.17 [dps]
Quadrature 6630 2440 -2500 [dps]
Tuning voltage 0.12 0.14 0.21 [V/VET max]
Angle random walk 2.4 2.1 1.8 [mdps/rtHz|
Bias instability 1.2 0.8 0.9 [dph]
y-Axis

Rate offset -0.14 0.21 0.24 [dps]
Quadrature -2860 -1060 -350 [dps]
Tuning voltage 0.32 0.33 0.40 [V/VET,max]
Angle random walk 1.7 1.7 1.7 [mdps/rtHz]
Bias instability 1.1 0.7 0.8 [dph]
z-Auxis

Rate offset 0.24 0.31 0.34 [dps]
Quadrature -240 -130 -60 [dps]
Tuning voltage 0.48 0.46 0.50 [V/VFT max)
Angle random walk 1.1 1.3 1.4 [mdps/rtHz]
Bias instability 0.4 0.15 1.0 [dph]
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Figure 3.10.: Rate offset (stars) of sensor A at different detuning voltages
in the z-axis (left) and y-axis (right) [2]. The vertical black lines mark ideal
mode-matching with zero frequency split. A linear slope (dashed, blue) is fitted
to this operating point. By chance, the susceptibilities are —0.25dps/V in both
cases here. (© 2019 IEEE.

3.4.3. Variation of Voltages

In the simulation analysis above, different offset effects were examined. In
experiment, it is however exceedingly difficult to separate and identify individual
offset sources, if the total offset magnitudes are as small as they are here, see
Table 3.5. Nonetheless, the effect of detuning on the total offset change can be
examined. Exemplary, Figure 3.10 shows results from the z and y-axes of device
A. The z-axis is omitted for the sake of brevity, because it is assumed that the
two out-of-plane sensing axes will have similar bias instability mechanisms. A
linear fit can be approximated to the experimentally found offset change and

susceptibilities of
SVier 2. exp = —0.25dps/V (3.29)
and

SVir,Q,.exp = —0.25dps/V (3.30)

were determined. Both axes exhibit the same susceptibility only coincidentally
here. For the other devices or the z-axis, voltage susceptibilities are different.
One can now make assumptions about what type of offset could create this
particular amount of susceptibility. If non-proportional damping were the source,
then, based on the susceptibility for 0.1 dps in Table 3.3, the experimental offset
would have to be about 7dps. That would be 30 times the measured offset
amount for the z-axis and 50 times that of the y-axis. It is therefore reasoned,
that instead, the experimentally measured susceptibilities are created by one
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of the CV closed-loop transfer function offsets, like electrical cross-coupling.
Assuming electrical cross-coupling were the culprit, its magnitude would be

Qec = 0.0078 dps. (3.31)

Note that [2] shows different results, because the simulation parametrization
has been adjusted since the submission of the paper. The general conclusion
remains valid, of course. As in simulation, the resulting bias instability from
flicker noise on the tuning voltage can be analytically calculated here as well.

One receives for the z-axis

02,BIS,Ver = |SVFT7QZVQXP| . VFT,ﬂic -vV2In2rtHz (332)
= 0.25dps/V - 370 uV/rtHz - V21n 2 rtHz (3.33)
= 0.380 dph. (3.34)

In this manner, any control voltage of the gyroscope may be examined and
its contribution to the total bias instability level calculated. Beyond tuning
voltage, significant influences were furthermore found for the quadrature common
mode voltage. Unavoidably, quadrature voltage also causes some amount of
electrostatic spring softening. The mechanism is therefore likely the same as
the one of tuning voltage. Further voltages but with minor influences are the
feedback voltage Vrp and the common-mode voltage V. Table 3.6 contains the
results for the z-axis of device A, i.e. the measured susceptibilities, the specified,
worst-case flicker noise of the ASIC, the calculated bias instability components
and their total. The flicker sources were assumed to be non-correlated here.
Figure 3.11 shows the calculated levels for the z and y-axis of all three devices
A, B and C. For the z-axis, the experimentally measured bias instability level
from Table 3.5 can be explained very well by the presented mechanism of
tuning voltage flicker. The prediction for device C is somewhat too large. One

Table 3.6.: Measured offset susceptibilities by voltage change, specified flicker
noise of the employed research ASIC and calculated bias instability compo-
nents [2]. Here, results for the z-axis of device A are shown. (© 2019 IEEE.

Suscept. |Sv,q,,exp| Voltage flicker Vaic Bias instab. o, pis,v

Units [dps/V] [V /rtHz] [dph]
VET 0.25 370 0.380
VaqcMm 0.04 360 0.062
VeMm 0.18 14 0.011
VEB 0.29 13 0.016
Total - - 0.390
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Figure 3.11.: Calculated bias instability components from variation of voltages
(blue bars) and measured level (dashed lines) [2]. Left: z-axis levels are explained
entirely by the proposed mechanism. While devices A and B match well, bias
instability in device C is somewhat overestimated. Right: All y-axes show large
discrepancies of 0.9, 0.6 and 0.8 dph for devices A, B and C. (© 2019 IEEE.

reason might be, that the actual flicker noise level is lower than the worst-
case specification for this device. The sensor build with bond-wires open to
the air is also very delicate. Changes in the offset susceptibility could also
have occurred between the Allan deviation and voltage variation measurement,
which where actually more than four months apart for this device. As the noise
components are added as the root of the sum of squares, a large contribution
is yet unexplained in the y-axis. The z-axis behaves similarly. A discussion on
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—_

Offset and pilot [a.u.]

Figure 3.12.: Comparison of a pilot tone readout (blue) and angular rate
(gray) of device A. The Pearson correlation coefficient between the two signals
shown here is 0.87. Both signals were low-pass filtered and normalized for this
figure. The pilot tone readout can be used to either immediately correct the
frequency tuning of the sensor or to simply digitally correct the rate output.

bias instability in the out-of-plane axes is provided in Section 3.6.

3.4.4. Reduction of Bias Instability

Having confirmed, that bias instability on the z-axes is created by tuning voltage
flicker, the pilot tones were used to facilitate a reduction in experiment for all
three devices. Rate offset and pilot tone output signal were recorded for some
hours, without closing the frequency tuning control loop yet. Figure 3.12 shows
a comparison of both signals after low-pass filtering with a 150 s moving average
and subsequent normalization scaling. A Pearson correlation coefficient of 0.87
signifies, that the pilot tone readout can in fact measure the slow drift of the
rate offset. Two methods of improving bias instability are possible.

The first method would be to use the pilot tone output to digitally correct
the rate signal without actually improving the slightly faulty frequency split.
The advantages of this method are simple implementation and lower safety
criticality, since the frequency split is not actively influenced. Disadvantageous
is the presumed need for part-individual calibration of the scaling factor from
pilot tone output to the correction signal that can be subtracted from the
rate output. The extremely low-frequency low-pass filter will also inevitably
have swing-in transients on the order of minutes, which prevent bias instability
compensation right after start-up of the device.

The second possibility is to employ a frequency tuning control loop, that
continuously compensates the small changes of tuning voltage and keeps ideal
mode-matching at all times. A simple integral control is used to translate
the pilot tone output into a regulating tuning voltage. Figure 3.13 displays
the achieved bias instability improvement. All three devices show significant
improvement and Allan deviation minima are reduced to 0.1 dph. Due to the
distinct V-shape, the actual bias instability component is even lower, around
0.07 dph. Table 3.7 summarizes the results. For device C, which had the highest

7



3. Origins and Mechanisms of Bias Instability Noise

L AL SRR AL AL AL AL AL Ty T TTTy Ty TTy T TImy TTIomy T o
102 Device A5 F Device B
= [ 1 ¢ i
1L - =
5100
a | 1l 1
& 100 £ 3 E E
1071 ]\m\ poool vl el ™ sell \HH; Tmu\ gl ool vl el ool 1 i

102 100 102 10* 102 10° 10% 10%
Time [s] Time [s]

LA 1 1 A1 A 11 R R RN
102 - Device C |
. 1o'F E
<= = B
Q, . |
o, [ -
2 | ]
© g0 g i/ :
10t oBIS E
B ol crnnd vl el el AN

102 10! 100 10t 102 10® 10* 10°

Time [s]

Figure 3.13.: Bias instability reduction by continuous frequency tuning control
using pilot tones of the z-axes of sensor A, B and C (blue) for at least 24 h,
compared to their regular operation (gray) [2]. Minima as low as 0.1 dph are
achieved, an improvement by a factor of 10 for sensor C. © 2019 IEEE.

bias instability in regular performance, an improvement by more than a factor of
10 was achieved. The tuning voltage hypothesis was thus substantiated further.
At this level, bias instability is not a dominant contribution any more and
other effects like rate random walk and temperature ramp would need to be
improved to reduce the Allan deviation minimum further. Figure 3.13 also shows
the appearance of a small ripple at short Allan cluster times, because the pilot

Table 3.7.: Regular operation and improvement by frequency tuning control [2].
Z-axis bias instability of all three devices decreases below 0.1 dph. © 2019 IEEE.

Z-axis Device A  Device B Device C Units
Angle random walk 11 —1.1 13— 1.3 14— 1.5 [mdps/rtHz|
Bias instability 04— <01 015— <01 1.0— <0.1 [dph]
Bias instability -75 % -30% -90 % [rel. change]
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Figure 3.14.: 1/f signal instability levels at different angular rates lie on a
combined curve (gray) of bias instability (blue) and scale-factor instability
(red) [2]. Each blue star corresponds to a separate Allan deviation measurement
of the y-axis of device D with a duration of at least 24 h. Scale-factor instability
surpasses bias instability at angular rates larger than 13 dps. (© 2019 IEEE.

tone was not entirely filtered out of the rate output. Device C also had a slight
increase in angle random walk. Due to the higher voltage susceptibility in this
sensor, the noise on the pilot tone signal counter-productively influenced the
angle random walk by the very same mechanism that it improves bias instability.
General advantages and disadvantages of tone-based and tone-free methods for
measuring frequency detuning are discussed in the next chapter. As the results
in Figure 3.11 predicted, stabilizing frequency tuning did not result in any
improvement of the x and y axes. It is therefore reasoned, that the still-missing
amount of bias instability of out-of-plane axes is unrelated to mode-matching.

3.5. Scale-Factor Instability

The denotation “bias instability” implies, that the drift is carried by the bias,
i.e. the offset. This notion was challenged to further investigate the missing
bias instability contributions in the  and y-axes. A series of experiments was
conducted that examined if it is not rather the scale-factor that carries the
instability. The constant offset would then just amplify that drift behavior.
The FPGA board setup was mounted in an ultra-high precision rate chamber,
see Figure A.13 in the appendix. Due to absolute angle measurement on the
chamber, the machine is able to produce extremely constant angular rates.
These are inherently bias instability free, according to the manufacturer.
Allan deviation measurements were performed at various positive and negative
angular rates for at least 24 h for each experiment. Figure 3.14 reveals the “bias”
instabilities measured on device D. It was found, that applied angular rate
does in fact create significant additional signal instability with the typical 1/f
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Figure 3.15.: Left: Allan deviation of the y-axis of sensor A measured for 22 h
at a rotation of 50dps (blue). In gray, the comparison with the measurement
at rest is shown. The 1/f instability in the rate signal grows to 4dph. Right:
Contributions from voltage variation during the same rotation of 50 dps. The
dashed, blue line marks the measured instability level of the experiment on
the left. Force-feedback voltage Vpp forms the largest share by far and fully
explains the observed signal instability [2]. © 2019 IEEE.

characteristic. The findings were furthermore confirmed with a number of other
devices, that all exhibited the same behavior. The individual measurements are
adequately explained by a combination of a true bias instability of about 1dph
and scale-factor instability (SIS) of

os1s(Q) =2.6-107°-|Q), (3.35)

Note, that the effects are added as the square root of the sum of squares. The
results imply, that bias instability ceases to be the dominant error component at
angular rates as low as 13 dps. The implications of this result on the accuracy of
purely inertial navigation in different applications is addressed in the discussion
section below. The experiments also confirm, that a true bias instability does
exist in the out-of-plane axes, and that measurements at rest contain only
very little scale-factor instability. If the devices would have larger offsets of e.g.
20 dps - which is absolutely common for MEMS gyroscopes in general - then
bias instability at rest would actually be dominated by scale-factor instability
multiplied by the amount of offset according to equation 3.35.

Scale-factor instability effects are examined further in Fig. 3.15. A comparison
between an Allan deviation measurement at rest and at 50 dps of applied rotation
is shown for the y-axis of device A. During rotation, the Allan deviation shows
a signal instability of 4 dph compared to 1.1dph at zero-rate. In the same
manner, that the sources of bias instability were examined by varying the
control voltages, the sources of scale-factor instability can be calculated. For the
same rotation of 50 dps, frequency tuning voltage flicker has a slightly decreased
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3.5. Scale-Factor Instability

influence and is thus far from being the dominant component. In fact, continuous
frequency tuning did not improve scale-factor instability. The once irrelevant
share from the force-feedback voltage in bias instability has now become the
largest contributor. Its rate output susceptibility is experimentally determined,

Sy,VFB,5Odps,exp =775 dpS/Va (336)

which gives a scale-factor instability amount of

0y,S1S,Vrg,50dps = |S ,VrB,50 dps,exp‘ : VFB7ﬂic -v2In2rtHz (337)
=77.5dps/V -12.8 uV/rtHz - v21In2rtHz (3.38)
— 4.2dph. (3.39)

The measured signal instability can therefore be explained entirely by flicker
noise on the force-feedback voltage. The same conclusion can be reached entirely
by analytic calculation, without needing to measure the susceptibilities. As
presented in Figure 3.2, the control structure employs a single-bit, AY force-
feedback with constant positive or negative voltage Vrg. The scale-factor SF
depends on small changes of force-feedback voltage AVpp according to

2
VF B

SF N —
Ve (AVep + Vrp)?

(3.40)

The derivation is provided in Section A.11 of the appendix. The scale-factor
difference to the ideal value of 1 is reached by linearization around Apg = 0

V2 lin. AVFB
ASFy. ~1— FB ~ 2 ) 3.41
Ve (AVrg + Vrg)? VB (3.41)

Using the ASIC’s specified force-feedback voltage flicker noise of Vip gic scale-
factor instability is then calculated according to equation (A.80) as

V ic
TAD SIS Versoane ~ |9 - 2% -v/2In 2 rtHz (3.42)
12.8 11V /rtH
~ 50 dps - 2% V22 rtHz (3.43)
~ 4.4 dph, (3.44)

which is in good agreement with the value of 4.2 dph above. The minor differences
between measured value, outcome from voltage variation and analytic results are
attributed to deviations from the expected specification value of either the flicker
noise or the force-feedback voltage magnitude. The scale-factor instability effect
applies to all axes. It has been observed in all performed rotation experiments
for many different devices. Due to the nature of the mechanism, the effect is
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Figure 3.16.: Left: Allan deviation of regular operation of the out-of-plane
y-axis of device E measured for 24 h (gray). Bias instability is reduced to 0.9 dph
by continuous frequency tuning control using pilot tones (blue). Right: Calculated
bias instability components from variation of voltages in regular operation (bars),
measured bias instability level in regular operation (gray, dashed line) and after
improvement by continuous frequency tuning (blue, dashed line).

inherent to all force-feedback type gyroscopes. Figure A.10 in the appendix
examined scale-factor instability in open-loop MEMS gyroscopes and found no
such effect, as the bias instability level remained the same at 200 dps of constant
rotation. Naturally, more research is necessary for a definitive verdict on the
existence of scale-factor instability within open-loop gyroscopes.

3.6. Out-of-Plane Axes

The voltage variation experiments above were not able to explain the measured
bias instability level for the out-of-plane axes and large unknown shares remained
for all three devices. This section is concerned with additional experiments and
assessment. The goal is to provide an exemplary procedure on how to approach
the root-cause analysis of bias instability beyond voltage variation.

Before delving into that, bias instability improvement by continuous fre-
quency tuning control is demonstrated in an out-of-plane axis. One device was
found to exhibit an exceptionally large offset susceptibility by frequency tuning
of —2.2dps/V. The resulting bias instability was around 3.9 dph as shown in
Figure 3.16. Continuous frequency tuning control was able to reduce bias insta-
bility by a factor of four to 0.9 dph, but not lower, consistent with the analysis
in the section above. As the bias instability components acting on detuning
Vet and Vqowm are removed, there is no further, large-enough component from
variation of voltages that might explain the level of 0.9 dph.

The previous section has shown, that scale-factor instability does exist in the
devices, but that the effect measured at rest is in fact true bias instability. One
can therefore exclude any instability in the drive movement or the phase of the
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3.6. Out-of-Plane Axes

cosine demodulation signal that produces the rate signal, as both would act
on scale-factor and not on bias. Both are even more implausible, because the
z-axis would receive the same erroneous signal. Also, these effects would create
correlations between the axes.

Table 3.8 shows the Pearson correlation coefficient of the low-pass filtered
angular rate signal between the axes of devices A, B and C. No significant figures
were found, with the exception of the y/z-axes of device A. Upon closer look,
however, this slight correlation only appeared due to a similar temperature drift.
Non-correlation of the 1/f noise in the out-of-plane axes rate outputs allows the
exclusion of a whole slew of possible effects. Under assumption, that the two
out-of-plane axes have the same bias instability mechanism, it can be reasoned,
that no single source within the drive loop can be the origin. This includes
effects of the PLL, the amplitude control or coupling of the drive voltage. The
gyroscopically effective mass for the two out-of-plane axes is physically the same
structure. Therefore even more complex effects like drifting phase-differences in
the two counter-moving masses are dismissed.

A number of experiments have been conducted to learn more about the
unknown bias instability component. Figure 3.17 presents two of them. Firstly,
drive amplitude of device A was reduced without rescaling for correct scale-
factor. It was found, that the bias instability level was then reduced accordingly.
Bias instability stayed at roughly the same level if scale-factor was adjusted
to the correct level. It is therefore argued, that the unknown bias instability
share cannot originate solely from the sense read-out electronics or any other
drive-independent or otherwise constant source, as higher drive amplitudes
would then improve signal-to-noise ratios. In contrast, the small bias instability
component from frequency tuning flicker as portrayed in Figure 3.11 stayed at
about the same level without scale-factor correction. That means, that at least
for this effect, higher drive amplitudes are beneficial. We can also follow, that
the underlying offset is more likely to arise from electrical cross-coupling and
not from effects related to higher-modes stimulated by the drive movement.

Secondly, the force-feedback voltage was doubled. Without rescaling for the
correct scale-factor, bias instability was reduced by a factor of four. It thus

Table 3.8.: Pearson correlation coefficient of the axes of devices A, B and C,
taken from the measurements in Figure 3.9. A moving average filter of 150s was
used to suppress angle random walk in the correlation calculation. No significant
correlations were found.

Correl. Axes Device A Device B Device C Units

z/y -0.14 -0.11 -0.18 [1]
z)z 0.06 0.24 0.17 [1]
y/z 0.45 0.28 -0.12 1]
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Figure 3.17.: Allan deviation analysis of the y-axis of device A with different
settings (blue) compared to the regular operation (gray). Left: Drive amplitude
was reduced to 25 % of its regular value. The resulting scale-factor change was
not adjusted in this graph. The Allan deviation minimum is limited by the bias
instability due to frequency tuning flicker of 0.4 dph as calculated in Figure 3.11.
Right: Force-feedback voltage was doubled, resulting in a bias instability of
0.23 dph if scale-factor was not adjusted, i.e. about a fourth of regular operation.

behaves like measured angular rate according to equation (3.40). With corrected
scale-factor, bias instability is largely independent of the amount of the single-bit
force-feedback voltage. This result allows to dismiss effects where the force-
feedback voltage would in some way birth bias instability, which has also been
negated already by the voltage variation experiment in Figure 3.11.

For devices B and C in Figure 3.9, the out-of-plane bias instability level
was not perfectly horizontal but more of a bump with a further minimum
at even longer cluster times. This could be an indication, that the unknown
bias instability component is not created by actual 1/f noise from flicker, but
by correlated (Markov) noise [50], which creates a horizontal behavior in the
Allan deviation plot only for a limited span of cluster times, as discussed above.
The typical mathematical model for Markov noise is white noise being shaped
by a first-order low-pass filter. The noise in the frequency range around the
bandwidth of the filter becomes the 1/f component. The bandwidths would have
to be around 5 to 1 mHz. If that mechanism exists, the next question would be
if it applies to noise at or near DC. There, one would rather expect flicker noise
instead of white noise, so this explanation seems implausible.

It my be observed, that in Table 3.5 the higher quadrature values in the
out-of-plane axes of device A were associated with slightly higher bias instability.
It could be, that the two out-of-plane channel quadrature feedback controls
influence each other cross-wise and are therefore not fully capable of removing
the flicker noise of their own quadrature voltages. A solution may be the
implementation of a common multi-variate feedback control for both out-of-
plane channels. This approach may be worked on in the future, but will not
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Figure 3.18.: Allan deviation analysis of the x-axis (light blue) and y-axis
(blue) of device F using a new ASIC with reduced flicker noise on the quadrature
and tuning voltage DACs. Left: Regular operation of the initial build-up of
the device. Right: The same device but with a cross-swap of the wire-bonds
connecting MEMS and ASIC for channels 1 and 2. The bias instability levels
remain the same for the MEMS axes, not the ASIC channels.

be included in this dissertation. In opposition to this idea it was furthermore
found, that when completely deactivating one out-of-plane channel and all its
DACs, the other channel did not improve.

During the course of this dissertation, another analog front-end research ASIC
was developed at Robert Bosch GmbH in succession to the ASIC used above.
Heeding the advice of this dissertation, the flicker noise on the quadrature and
tuning voltage DACs was significantly reduced by traditional circuit design mea-
sures. Any bias instability from offset susceptibility by voltages is consequently
improved even without continuous frequency tuning control. Figure 3.18 shows
the z- and y-axes of device F, a more recent MEMS design than devices A to
E, using the new analog front-end ASIC. Interestingly, the bias instability of
the two out-of-plane axes are not similar any more, with the z-axis reaching
down to values of 0.6 dph and the y-axis staying at values similar to those of
the previous ASIC model.

Now that the z- and y-axis actually exhibit a significant difference a cross-
swap experiment was conducted. The wire-bonds connecting the MEMS pads
to the ASIC pads were disconnected and then rebuilt in a way that the two
channels were switched. That means, that all DACs of channel 1 that were
previously serving the x-axis were then connected to the y-axis and vice versa.
Figure 3.18 displays the Allan deviation afterwards. The bias instability level
stayed very much the same for the axes and not for the channels. With a large
likelihood, the root-causes of the bias instability difference are therefore to be
found in the MEMS element, and not the ASIC.

So far, it was always assumed that flicker noise will only appear in the ASIC.
The cross-swap experiment suggests, that the out-of-plane axes may perhaps
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3. Origins and Mechanisms of Bias Instability Noise

produce flicker noise within the MEMS element. This idea will be investigated
in the future, but not pursued here any further.

Table 3.9.: Methods for analyzing possible origins of bias instability.

Method Description

Voltage variation Vary all sensor control voltages, measure the re-
sulting offset susceptibility, calculate the expected
bias instability and compare to the measured level
as described in Section 3.4.3.

Scale-factor instability Measure the bias instability level at constant ro-
tation of the sensor and assess if the level at rest
is actually a true bias instability as demonstrated
in Section 3.5. If no highly accurate rate table is
available, one may allow some quadrature to be
present and measure the bias instability of the
quadrature signal.

Correlation between axes Calculate the correlation of the low-pass filtered
rate signals to each other and to any other available
signal within the sensor as in Table 3.8. If no
significant correlation is found, then a single source
for several channels is unlikely.

Drive amplitude reduction =~ Measure the bias instability level with reduced
drive amplitude as in Figure 3.17. If - after rescal-
ing scale-factor - the bias instability level remains
the same, one can likely exclude any effect that
would originate solely in the read-out electronics.

Feedback voltage variation = Measure the bias instability level with reduced or
increased feedback voltage as in Figure 3.17. If the
bias instability level behaves like applied angular
rate, then it is unlikely, that it originates from the
feedback voltage.

Temperature variation Flicker noise is typically lower at high tempera-
tures, contrary to white noise [165] [166]. One may
therefore analyze if flicker noise is actually the root-
cause of the measured bias instability by running
an Allan deviation experiment at e.g. —40°C.

Deactivating one axis Disturbances from one axis to the other may be
found by completely deactivating the DACs of one
or two channels and measuring the remaining one.

Drive DC voltage variation = Vary the composition of drive DC and resulting
AC voltage as in equation (3.5) and remeasure bias
instability. It can then be deducted, if one of the
two may be a root-cause.

Bandwidth variation Measure the bias instability with increased or de-
creased bandwidth of e.g. the PLL, the drive am-
plitude control or the quadrature control.
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Even though the sources of the unknown bias instability component in the out-
of-plane axes could not be resolved in this dissertation, the excluded possibilities
as well as the methodical approach will be of value for any reader trying to
understand bias instability mechanisms in their devices. Table 3.9 summarizes
the presented methods. The last four methods were not discussed in detail, but
may be of avail to the reader nonetheless.

3.7. Discussion

Instead of using complex compensation mechanisms like pilot tones, an easier
approach to improving bias instability would be to either reduce the susceptibility
to voltage changes or to reduce the flicker noise [167] occurring on the voltage
DACGs. The latter is associated with trade-offs of increased ASIC area, higher
power consumption or reduced full-scale voltage range. Naturally, an analog
circuit designer will already have aimed at reducing the flicker noise as much as
possible within the given boundary conditions. Nonetheless, low flicker noise
must be prioritized in the conception phase of MEMS gyroscopes when inertial
navigation is the use case. Another useful approach would be selective binning
of devices on a waver with low frequency split. Those devices could be matched
with an ASIC with lower full-scale voltage range, therefore lower flicker noise,
and marketed separately from the other devices with regular performance.

Susceptibility of the offset to tuning voltage changes can be reduced by
diminishing the offset paths that undergo the CV closed-loop transfer function.
Offsets from additional modes may be decreased by adjusting the mechanical
design. Moving their resonance frequency further away from the drive mode is
beneficial. Best-as-possible symmetrization of the mechanical design is prudent,
as it is for many other error effects. Wiring inside the MEMS element should be
done in a way that reduces electrical cross-coupling. Furthermore, it is expedient
to reduce the spring softening capability kg, so that if an offset susceptibility
exists, it is less pronounced per amount of tuning voltage change. A trade-off
exists however, since higher voltage output is associated with somewhat higher
flicker noise. Another, approach is investigated in Section A.8 of the appendix.
An artificial quadrature offset signal is used to compensate the susceptibility
of other types of offsets. Due to deterministic disturbances this method would
however deteriorate sensor performance even though it would improve bias
instability. It was therefore not pursued further.

In comparison to the state-of-the-art noise performance of MEMS gyroscopes
provided in Chapter 2, the devices here achieve much better merits in regular
operation already. In fact, the same combined angle error after integration that
is reached in Figure 2.10 within 10s is met in the presented devices after 60s of
integration. Figure 3.19 compares the angle error for the z-axis of device C in
regular operation with the continuous frequency tuning operation. A further
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Figure 3.19.: Left: 10 error angle of device C in regular operation with angle
random walk of 1.4 mdps/rtHz, bias instability of 1.0 dph and rate random walk
of 4 pdps/rts. Right: 1o error angle of device C after improvement with continu-
ous frequency tuning control using pilot tones, see Figure 3.13. Allan deviation
parameters were a slightly increased angle random walk of 1.5 mdps/rtHz, much
reduced bias instability and rate random walk of 0.07dph and 0.5 udps/rts,
respectively. The dashed line shows the combination of all three noise terms.
The time span to reach a similar angle error compared to the regular operation
increased fivefold from 60s to 300s [2]. © 2019 IEEE.

factor of five in integration time is accomplished until the same error angle is
reached. Due to the drastic bias instability reduction, angle random walk is
now the dominant error source. Affirming our findings, an experimental study
in [168] demonstrated, that GNSS-aided navigation accuracy was better for a
gyroscope with low bias instability but higher angle random walk compared to
a gyroscope with converse properties.

Although it was established in the introduction chapter that rate random
walk is not a true device-intrinsic noise source, continuous frequency tuning
also greatly reduced its level. Device C improved by a factor of eight from 4 to
0.5 pudps/rts. Keeping mode-matching ideal might therefore also improve the
small temperature or stress influences that occurred despite the setup being in
an insulation chamber.

Evidence and underlying theory for scale-factor instability has so far not
been presented in the scientific community to the knowledge of the author.
Highly-accurate rate tables may not always be available. A simple way to
get a rough estimate of scale-factor instability is to disable the quadrature
control and to measure the Allan deviation of the quadrature signal. Since the
feedback mechanism is the same for quadrature and angular rate, the scale-factor
instability level is also similar. In the z-axis of device A, an uncompensated
quadrature of —330 dps was accompanied by a signal instability of about 30 dph,
which agrees well with equation (3.35) above.

For the devices shown in this dissertation, scale-factor instability outgrew
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bias instability with rotation rates larger than about 10dps. In automated
driving applications, scale-factor influence may become relevant in certain
scenarios. Angular rates are smaller than 10 dps most of the time, particularly
so in highway driving or the presented emergency-stop maneuver. For vehicle
navigation applications with longer times scales, the amount of left and right
turns may also even out over time and thus naturally reduce the effect of
scale-factor instability. Corner-cases like making a U-turn or driving on the
spiral ramp of a parking garage may however be accompanied by large angular
rates and therefore high scale-factor instability noise. Scale-factor instability
may also be relevant in consumer devices and applications like indoor navigation
or augmented/virtual reality because hand-held or body-mounted gyroscopes
will experience much larger angular rates than what is typical in automotive
applications.

The considerations on sensor redundancy are revisited again briefly. This
chapter showed improvement in bias instability up to a factor of ten in one device.
If the same accomplishment was to be achieved by using redundant devices,
not correlated to each other, then the v/N law would apply and an excessive
100 sensors would have been necessary. This example illustrates the benefits of
proper system understanding and consequential correction mechanisms.
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4. A Novel Measure for Frequency
Tuning and Scale-Factor

The previous chapter revealed the role of flicker noise occurring on the tuning
voltage in the creation of bias instability. Likewise, flicker noise on the feedback
voltage was demonstrated to produce scale-factor instability. Within this chapter,
a novel, unified method for measuring, simultaneously, both detuning and scale-
factor changes is presented and its performance analyzed. The main objective
is to expand the prevailing solution space and to offer starting points, on which
future research may be built. The first section provides an in-depth review of
the state of the art on measuring detuning of the sense mode as well as existing
methods for quantifying scale-factor. Next, the new measure is developed. A
simulation study demonstrates the method’s effectiveness. Lastly, benefits and
limitations of the approach are discussed.

4.1. State of the Art

Matching of the drive and sense mode of commercial MEMS vibratory gyroscopes
is in most cases performed only once, at the factory, and then kept at that
value for the device’s lifetime - up to 15 years. It was shown above, how small
fluctuations off of ideal mode-matching can produce offset changes. Apart
from the investigated flicker noise on the tuning voltage, fluctuations in mode-
matching may appear in the field due to temperature, surface charges, bending
stress or other types of voltage variations. Real-time, continuous frequency
tuning control can drastically improve bias instability and rate random walk as
shown in this dissertation, as well as stress susceptibility [143]. Electrostatic
spring softening is an established and commonly employed technique to alter
mode mismatch. However methods for measuring the mismatch are quite diverse
and constitute an area of active research [116].

Methods for quantifying detuning may be differentiated in tone-based algo-
rithms, that inject a calibration signal into the sensor system, and non-invasive
approaches that measure by other means. Injecting tones into the quadrature
compensation control loop outside of the sensor’s bandwidth was demonstrated
in [28] [93] [143] [169]. The latter contribution reached an Allan deviation
minimum of 0.2 dph using this method. As it was demonstrated above, another
reliable method is to apply pilot tones to the force-feedback loop, e.g. at the
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CV converter [77] [151] [164] [170] [171]. Using a single tone within the signal
bandwidth directly at the demodulation frequency was shown as well [92] [172].
Yet, limitations in the presence of larger quadrature signals or actually ap-
plied angular rate are most likely unavoidable. Pseudo-random sequences were
used to identify stiffness and therefore natural frequency as well as damping
in [173] [174]. The method is unfortunately not compatible with simultaneous
angular rate measurement.

Tone-based methods share the disadvantage, that it is difficult to completely
remove the tones from the angular rate output. The reason is not only imperfect
filter suppression but also interference with other control circuits (e.g. quadrature
nulling), electrical and mechanical nonlinearities, unavoidable higher modes,
phase noise [28] and cross-coupling, which all may fold the tones or noise
produced by it to many, unforeseeable frequencies. Especially in navigation
applications, even very small cyclic signals in the rate output may not be
acceptable for the Kalman filters that follow in the signal processing chain.
Tone-based methods are furthermore susceptible to external vibration, if those
coincide with the tone’s frequency. On the other side, tone-based methods
allow for highly precise readout, practically only limited by the admissible tone
amplitude above the noise background.

Similarly to quantifying detuning, scale-factor has also been measured by
the use of injected tones. In [106] a constant, “virtual” input rate is applied to
the read-out electronics outside of the angular rate bandwidth. The measured
amplitude of this artificial signal is proportional to the actual angular rate scale-
factor and a scale-factor precision of 1 ppm was reached. The idea is extended
in patent [175] to non-uniform signals that may lie within the angular rate
bandwidth. Further methods exist, where interference with rate measurement is
circumvented by applying a tone in quadrature phase to the drive circuit [140].
A twenty-fold improvement down to 130 ppm was demonstrated. The method
stands out from the others, because it is also able to track scale-factor changes
that originate in the drive loop. Lastly, scale-factor may be determined by putting
the entire sensor on micro-stages for external calibration, see e.g. [176] [177].
These types of systems must however always justify why the sensor itself could
not have been built in the first place with the same precision that is required
for the micro-stage to provide an accurate reference to the sensor.

Non-invasive approaches have been examined less in literature. In-run mode-
matching was achieved by a dual architecture where both modes are driven and
sensed at the same time with significant reduction of unwanted temperature
influences [114]. In certain devices the rate offset will have its maximum at
perfect mode-matching [122]. Using this phenomenon does however not allow
concurrent rate read-out. An adaptive control scheme was able to estimate
stiffness and other sensor parameters in a simulation study [178] [179]. Instead
of tuning the mechanical sense mode, a scheme was presented in [180] where
two analog filters were periodically switched. A filter was either in usage within
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the force-feedback loop or outside of it where it was recalibrated. Recently,
a method was demonstrated in experiment where the noise power of the AY
modulator notch was evaluated left and right of the drive frequency [116] [181].
Some amount of robustness to external vibration influences as well as an Allan
deviation minimum of 0.7 dph was shown.

4.2. Method Design

In this dissertation, a non-invasive approach is developed as well. The main
challenge consists in whether a tone-free method can be devised, whose detuning
and scale-factor measure is precise enough, i.e. of low noise, to allow reduction of
the presented flicker noise effects. The basic principle is a system identification
of the sense mode’s natural frequency and low-frequency “DC”-gain that runs
simultaneously to the regular, rate-measuring operation of the gyroscope. In
order to do so, the existing noise in the A force-feedback control is exploited.
The method is called sense mode identification (SMID) in the following. Fig-
ure 4.1 shows again the mode-matched, closed-loop gyroscope structure that was
introduced in Section 3.2. The same Matlab/Simulink simulation environment
from the previous chapter is employed.

The different white noise components in the AXY structure result in a noise
composition that realistically resembles the experimental devices, in the rate
in-band as well as in frequencies below and above. The major contributors for
rate noise are in descending order: Voltage noise of the CV converter, voltage
noise of the quadrature electrodes and Brownian motion of gas molecules acting
on the sense mass. Noise influences from the drive as well as PLL phase noise
are modeled to be negligibly small. Furthermore, the quantization noises as
well as the dithers of the sense’s AY ADC and DAC contribute less than one
percent to the in-band noise around wyy;, but form - facilitated by AY noise
shaping - by far the largest noise share at frequencies left and right of the noise
notch outside of the in-band. In this simulation the gyroscope’s full-scale range
is around +300dps and the digital bandwidth of the rate output, i.e. half the
width of the in-band, is 100 Hz.

In an idealized case, the change of the force-feedback DAC bitstream to
the sense ADC bitstream would contain the full spectral information of the
sense mode. This view is untrue for a closed-loop system, however, because the
plant input will be correlated in some way to the plant output through the
feedback control, no matter the exact characteristic of the plant that is to be
identified. System identification techniques for elements of a closed-loop system
require particular care and are affiliated with significant limitations compared
to regular, open-loop identification [182]. Nonetheless, simply treating a plant
under closed-loop excitation as open-loop will oftentimes render acceptable
results and therefore constitutes a legitimate approach, see [182] [183] [184].
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Figure 4.1.: Top: Gyroscope sense control structure as presented in Section 3.2.
The drive control loops are omitted in this schematic. The resonance frequency
and DC gain of the sense mode is to be estimated with the proposed SMID
methods, using the known bitstreams (blue) of 1-bit force DAC and 1.5-bit
sense ADC as well as the dither d; for exciting the A¥X ADC and the dither ds
for the AY DAC within the force control block. Since the control is realized
entirely in the digital domain, the quantization noise of the AYX DAC is fully
known. The SMID methods may output a detuning measure (a) that can be
used to close a frequency-tuning control loop or a scale-factor measure (b) to
close a scale-factor control loop by adjusting the force-feedback voltage.

Therefore, our first approach will examine the system identification in the
open-loop point of view (SMID-OL), also called direct approach [182]. Since
the feedback control at hand is entirely digital and therefore perfectly known
to us, we will also construct a second, indirect [182] scheme (SMID-CL) that
models the sense mode as part of the closed-loop, force-feedback control.

Another limitation regarding system identification of plants under closed-loop
control is, that feedback systems typically aim at stabilizing the plant, i.e.
reducing the plant’s excitation, see [185]. Low excitation however stands in
direct opposition to the needs of precise identification estimates. In our case,
this notion is particularly true, because the excitation at the most relevant
frequencies, i.e. the bottom of the noise notch, is the noise of the sensor output
after demodulation. Sensor noise should of course always be as low as possible.
The proposed methods will therefore have to rely on the stronger noise excitation
further to the left and the right of the in-band, at the flanks of the noise notch.
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Figure 4.2.: Signal flow diagrams for SMID-OL. Top: Detailed view of unknown
noise and signal disturbances acting on the sense mode with the only three
known digital signals in blue. Bottom: Simplified view with gains and linear
transfer functions.

In practice, a number of additional non-idealities and unknown disturbances
exacerbate the extraction of the sense mode transfer function Hg,s in both
methods. Figure 4.2 includes a disturbance model of the signal path from
force-feedback AY DAC bitstream to sense AY ADC bitstream. Voltage noise
is inescapable when converting the digital LSB-value to a voltage inside the
force DAC, alongside with the quadratic relationship of the voltage to force
conversion, see equation (3.2). Furthermore, the quadrature control, offsets,
the actual Coriolis force, as well as forces from Brownian motion acting on
the sense mass influence the sense mode. The sense CV converter also inserts
voltage noise. Quantization noise is added by the sense AY¥ ADC and its transfer
function alters the signal. A pseudo-random dither enters the CV front-end via
switchable capacitor arrays to prevent toning in the A ADC.

The core challenge is to acquire a precise frequency mismatch measure despite
the presence of the listed influences. Merely the dither sequence, the gains of
the DAC and CV front-end, and the transfer function of Hapc are known. The
SMID-OL method treats the signal u; , in Figure 4.2 as the open-loop input to
Hgps and us, as the output. Using the known signals and elements, the sense
ADC bitstream can be rectified in z-transform notation with

Use(2) = ko' (Hoge(2)ke Uz(2) — Di(2)) (4.1)
where Us(z) is the sense ADC bitstream, D, (z) the ADC dither, k., the CV gain,
k.. the relationship of sense mode displacement to capacitance and Hapc(z)
the ADC transfer function. Under omission of unknown electrical CV noise and
quantization, Us (z) can be assumed as the output of the sense mode. The
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sense mode input X, (z) is related to the force DAC bitstream Uy (z) by
Ul’r(Z) = kczkvckfdacUl (Z) (42)

where kipac is the gain of the force-feedback DAC producing a constant pos-
itive or negative voltage according to the 1-bit bitstream, k,. the voltage to
capacitance and k., the capacitance to displacement relationship. The sense
mode can then be estimated by providing input Uy +(z) and output Uz ,(2) to a
suitable system identification algorithm.

Use(2) _ ki Hoge(2)ke Ua(2) — Di(2)

Hsns ] _ _ adc 4.
SMID-OL(2) Up.(2) kexkvektdacUt (2) -

Simulation results of the spectra of the rectified signals U; ,(z) and Us .(z) are
displayed in Figure 4.3. The AY DAC force-feedback creates the typical noise
notch at the drive frequency as the inverse of the sense mode, see equation (3.12).
The low excitation of Hy,s(2) at the resonance frequency becomes apparent.

The construction of the SMID-CL method is a bit more complex. First off,
input signals to the closed-loop system need to be found and a suitable output
selected. In our specific sensor implementation three input signals exist that
are digitally known to us. There are two dither signals d; and do which are
essential for the correct and non-toning operation of the AYX ADC and DAC
converters. In a way, d; can be seen as a set-point excitation of the closed-loop
control. Furthermore, the quantization noise that appears in the AY DAC is
perfectly known, because everything happens in the digital domain, as opposed
to the AYX ADC, where the quantization noise cannot be known in the real
device. The output of the AYX DAC, y, i.e. the not-yet demodulated sensor
output, has been selected as the output of the closed-loop transfer function.
Figure 4.4 shows the closed-loop structure with additional disturbances. Note,
that the AY DAC that generates the 1-bit bitstream is located inside the force
control block. Within the force DAC block, those digital values are then simply
translated directly to a stream of constant, positive and negative voltages Vgg.

The AY. DAC requires further treatment. The non-linear quantizer can be
modeled as a linear gain, whose value is determined by

[ (4.4)

see [186]. Here, s is the input to the quantizer and y the output. Note, that we
do not use the typical AY notation as in [186]. It is important to remember,
that the exact value may change by several percent depending on the signal and
noise load of the quantizer. In principle, k; may also be calculated and updated
continuously within the SMID-CL scheme. Figure 4.4 shows a first-order AY
for reasons of simplicity. The actual simulation uses a higher-order AY, but the
principle remains the same. Once the quantizer is linearized, the signal transfer
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Figure 4.3.: Top: Spectral densities of rectified signals u; , (left) and ug , (right)
from equation (4.3) of SMID-OL. Bottom: Frequency response function obtained
from Matlab’s modalfrf () from wuj, to us, (light blue) with the analytically
calculated sense mode (black, dashed). The mode peak is well distinguishable
from the quantization noise background. If the sense mode is detuned, the
mode peak moves relative to wpn as symbolized by arrow (a). If the scale-factor
changes, then the DC-gain moves, as indicated by arrow (b).

function (STF) from the AY input u to the output y, as well as noise transfer
functions (NTF) from the dither dy and quantization noise ¢ to the output y
can be derived. One receives

Y(Z) quAE—dac(Z) .01
Hop — = ~ S B
stf U(z) 1+ quleAE-dac(Z) const. b o
Y (z) k
o _ _ a 4.
ntf,1 Do (2) 1+ kqz ' Has dac(2) o
_Y() _ !
Hntf’Q h Q(Z) 1 + qu_lHAE—dac(z). (4.7>

The importance of an accurate assessment of k; becomes clear. The STF may
be approximated as a linear gain in the band of interest, while the design of
Has gac(z) makes sure that the NTFs have a notch-shape, thereby pushing the
noise away from the signal frequency [186]. In this band-pass AY. configuration,
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Figure 4.4.: Signal flow diagrams for SMID-CL. Top: Detailed view of unknown
noise and signal disturbances acting on the sense mode with the three known
input signals dy, ds, ¢ and the output y in blue. The quantization noise appearing
at the AYX DAC 1-bit quantizer can be calculated by taking the difference of
the signal before and after the quantizer under consideration of the linearized
quantizer gain. Bottom: Simplified view with gains and linear transfer functions.
The AY. DAC has been partitioned into a signal transfer function Hg(z) and
two noise transfer functions Hyer1(2) and Hpgo(2).

the noise is shaped to higher and lower frequencies as shown e.g. in [28]. The
closed-loop transfer function can now be compiled and the sense mode isolated
so that one receives

S

anb SMID- CL( ) (Z) = (48)

1(2
Y(Z) - Hntfl( ) (Z) ntf2( )D2( ) - Hstf(Z)chtrl( ) adc( )kchl( )
stf(Z)chtrl( ) adc( )kcvkxckvckcxkfdacy( ) '

Qj

Here, U1 (z) and Us(z) are the input and output signals presented to the system
identification algorithm. Each are produced by the denominator and numerator
of the transfer function, respectively.
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Figure 4.5.: Top: Spectral densities of signals u; (left) and us (right) from
equation (4.8) of SMID-CL. Bottom: Frequency response function obtained
from Matlab’s modalfrf () from wu; to ug (blue) with the analytically calculated
sense mode (black, dashed). The mode peak is well distinguishable from the
quantization noise background. If the sense mode is detuned, the mode peak
moves relative to wpn as symbolized by arrow (a). If the scale-factor changes,
then the DC-gain moves, as indicated by arrow (b).

4.3. System ldentification

The sense mode can be recovered by different means. One possibility is using
Matlab’s frequency response function for modal analysis, modalfrf () [187].
Figure 4.5 compares the resulting frequency response function of the SMID-CL
method with the analytical transfer function of the sense mode modeled as
a second-order mass-spring-damper system. Evidently, a reliable estimate is
only attainable within close proximity of the drive frequency. Noise further
off contains very little recoverable information about the sense mode, since it
originates mainly from ADC quantization noise. Identical noise seeds for both
simulations in Figures 4.3 and 4.5 have been used, so the quantization noise
away from the peak look basically identical in both methods. The center of the
frequency response peak is not accurately estimated, because of the unknown
noise sources described above. If these are turned off, then the frequency response
plot would have a peak as sharp as the analytical transfer function.
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The modal analysis is helpful for visualization and it would in itself be a
viable detuning measure. A time-domain approach is preferred however, because
it does not require the elaborate calculation of frequency-domain spectra. A
polynomial model estimation was therefore chosen. The past values of the
rectified signals u; , and ug, for SMID-OL, or the closed-loop signals u; and ug
for SMID-CL are saved within a buffer for 250 ms. The SMID measure’s update
rate is thus 4 Hz. These datasets are sufficient to compute a reliable estimate of
the sense mode. The output-error (oe) estimation structure [182] [188]

y'(t) = ];ng’(t —ng) +e(t) (4.9)
was found to be suited best over the course of numerous different implementa-
tions. Other AR(MA)X or Box-Jenkins models are also feasible, but did not give
quite the same performance and had longer computation times. Prediction-error
estimation (pem) with a gray-box model of the sense mode was found to be
similar to the output-error estimation in performance and may be used as well.
Within the output-error estimation, an iterative Gauss-Newton (gn) search
solves the nonlinear least-square minimization problem. A weighting filter allows
only information in the vicinity of wpy to be considered. Table 4.1 includes more
details on the parametrization of the output-error function.

4.4. Simulation Results

The effectiveness and precision of the detuning and scale-factor measures of the
proposed SMID-OL and SMID-CL methods are analyzed in simulation in this
section. The frequency tuning and scale-factor control loops seen in Figure 4.1
were not closed for this examination. As a comparison for the detuning measure,
the pilot tone (PT) method was also simulated. Figure 4.6 shows separate
simulation runs at different detuning voltages AVgr for detuning estimation
and at different feedback voltage changes AVpp for scale-factor estimation.
In both cases and for both open-loop and closed-loop methods, the measure
resembles the actual analytical values well. The constant offset of the pilot
tone output can also be observed, as predicted by Section A.9 in the appendix.

Table 4.1.: Properties of Matlab’s output-error estimation function oe() used
for the simulations shown in Figures 4.6, 4.7 and 4.8.

Specification Value Specification  Value
Regularization none Focus ’simulation’
Initial condition ’zero’ Search method ’gn’
Weighting filter — wpn £ 6 kHz Model order [221]
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Figure 4.6.: Top: Simulation of detuning measure with pilot tone (gray),
SMID-OL (light blue) and SMID-CL (blue) methods. The gray, dashed line
marks the actual, analytical detuning of the sense mode and the vertical black
line perfect mode-matching at AVer = 0V. Error bars show the 1-o standard
deviation during a 60 s simulation run for each data point. Bottom: Simulation of
scale-factor measure with SMID-OL (light blue) and SMID-CL methods (blue).
The gray, dashed line marks the actual, analytical scale-factor of the sensor and
the vertical black line the undisturbed scale-factor of 1. Error bars mark the
1-0 standard deviation during a 60 s simulation run for each data point.

Indicated by the lo-error bars, the SMID-OL and SMID-CL readout has a
much higher noise compared to the pilot tone measure. The SMID scale-factor
measures need some offset adjustments but are otherwise of about the same slope
as the actual scale-factor change. In contrast, both SMID detuning measures
show some additional non-linearity that was found to originate mostly from the
unknown CV converter voltage noise.
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Figure 4.7.: Left: Comparison by Allan deviation of pilot tone (gray), SMID-OL
(light blue) and SMID-CL (blue) methods for detuning estimation. The dashed,
horizontal line marks the effect of typical frequency tuning voltage flicker noise
(here: 380 4V /rtHz) on detuning frequency Awgpiie. Right: Comparison by Allan
deviation of SMID-OL (light blue) and SMID-CL (blue) methods for scale-factor
estimation in terms of difference ASF to the ideal scale factor of 1. The dashed,
horizontal line marks the effect of typical feedback voltage flicker noise (here:
13 4V /rtHz) in the form of scale-factor instability. The SMID-CL results using
an ARX model with just the AXY. force-feedback DAC and dither dy active, all
non-idealities and noise sources deactivated, is shown in red. Simulation time
for all methods was one hour.

The noise level of both SMID methods for detuning and scale-factor estimation
is examined by Allan deviation in Figure 4.7. The bumps at 0.25 s appear because
the measures’ update rate is 4 Hz. It is found that all measures contain white
noise for larger cluster times. Therefore, the longer the measurement period,
the more precisely the underlying, true detuning frequency or scale-factor can
be determined. Note, that the Allan deviation is in units of Hz for detuning
estimation and unitless for scale-factor estimation. For actual compensation of
flicker noise on the frequency tuning or feedback voltage, the estimate must
be more precise than the influence of flicker on detuning or scale-factor. The
averaging time from which on forward closed-loop frequency tuning or scale-
factor control actually improves the flicker noise effect is thus the intersection
of the white noise slope with the horizontal flicker level, which is modeled here
to be 380 1V /rtHz for the frequency tuning voltage and 13 uV/rtHz for the
feedback voltage. The pilot tone method intersects the horizontal flicker level at
about 15s, meaning a bias instability compensation as shown in the previous
chapter in Figure 3.7 is possible on time scales of 15s and longer. The white
noise levels of the SMID-OL and SMID-CL methods are similar and much
higher than that of the pilot tones. Their intersection with the horizontal flicker
level occurs at above 2000s. Both methods are therefore not noise-free enough
to allow practical usage of a closed-loop frequency tuning control. For the
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Figure 4.8.: Top: In-band, rate-phase signal removal by demodulation, low-
pass (LP) filtering, modulation and subtraction from the original signal. Bottom:
Invariance of the SMID-CL frequency detuning (left) and scale-factor (right)
measures at the ideal operating point, see Figure 4.6, to constant angular rate.

scale-factor estimation the intersection is at even longer time scales, around
10000 s. Compensating scale-factor instability using the presented methods is
thus out of the question. As a sanity check, all modeled non-idealities and
noise sources except the force-feedback AY DAC and its dither dy were turned
off in the simulation. The best performing method was found to be SMID-
CL employing an ARX model, as shown with the red entries in Figure 4.7.

Table 4.2.: Performance of the SMID methods for detuning and scale-factor
estimation in comparison to the pilot tones (PT), as well as their intersection
with the tuning voltage and feedback voltage flicker noise level from Table 3.6.

FT Meas. UAD,Awspm|TAD:15 UAD,Awspm|TAD=1OS Intersec. w/ flicker

Units [Hz] [Hz] [s]

PT 0.31 0.09 15
SMID-OL 3.8 1.2 ca. 2000
SMID-CL 3.2 1.0 ca. 2000

SF Meas. OAD,ASF|rap=1s OAD,ASF|rap=10s Intersec. w/ flicker
Units (%] (%] [s]
SMID-OL 0.39 0.14 ca. 10000
SMID-CL 0.33 0.11 ca. 10000
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Then, the measure was precise enough to - in principle - allow a closed-loop
compensation of bias instability and scale-factor instability. It was therefore
demonstrated, that the presence of non-idealities and unknown noise is what
prevents the methods from performing better. Even though the two SMID
methods in the presence of non-idealities and unknown noise sources might
not be precise enough to improve the flicker influence, the SMID-CL measure
can nonetheless estimate the detuning frequency to a remarkable precision of
OAD,Awepe = 3-2Hz and scale-factor to oap asr = 0.33 % within 1s. Table 4.2
summarizes the performance of the examined methods.

The presented disturbances in Figures 4.2 and 4.4 are assumed to be mostly
static, so if they should induce an offset in the SMID measure, it may be
calibrated out. That is not true for the actually applied angular rate, however.
Since the signal strength from applied angular rate exceeds the employed noise
in the method by far, it would render the SMID method defunct if not treated
properly. The same would be true for quadrature, however the quadrature control
already suppresses any signal in quadrature-phase in the in-band. Figure 4.8
shows one possible approach for the SMID-CL method to render the estimation
algorithms invariant to applied angular rate. The in-band, rate-phase signal
is removed from the sensor output y before equation (4.8) is applied. After
demodulating and receiving the angular rate signal with a certain bandwidth
though a low-pass, it is again modulated onto the same carrier wy; and then
subtracted from the original signal. Figure 4.8 shows that offset and noise of
the SMID-CL method change only slightly when large, constant angular rates
are applied. However, severe limitations of this approach emerge when angular
rates with even low frequencies are applied. The subtraction low-pass needs to
be limited to roughly the typical in-band width of the sensor, e.g. 200 Hz so
as to leave some noise for the SMID methods to work with. At the same time
it is not possible to design a low-pass filter with equally flat amplitude and
phase response up to the corner frequency. A discussion of further limitations,
a summary and an outlook are provided in the following.

4.5. Discussion

Concluding this chapter, it is found that estimating the natural frequency
and the DC-gain of the sense mode purely by the already-existing noise from
quantization and AY dithers in the force-feedback loop is possible. However,
several challenges arose in this investigation, which prevented the novel SMID-
OL and SMID-CL measures from reaching precisions comparable to the pilot
tone scheme. Firstly, the region of interest around the drive frequency is also the
one excited by the least amount of noise at the bottom of the AY notch, because
that is where angular rate is measured and low noise is imperative. Secondly,
the control complexity might not have been high enough at the frequencies
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of interest, see Table 4.2, even when the control design had more complexity
overall at other frequencies compared to the simple mass-spring-damper model
of the sense mode. Lastly and most importantly is the plurality of disturbing
noise sources and non-idealities, as well as their diverse entry points into the
closed-loop system, which are challenging to adequately represent by simple
polynomial models. In practice, some transfer functions and gains will also not
behave ideally, like the CV gain, which will change with temperature.

When all “unknown” noise sources and non-linearities were turned off in the
simulation, an ARX model within SMID-CL provided precisions for detuning
about 40 times better and for scale-factor estimation about 30 times better
than in the regular case. With this perfect system, compensating flicker noise
on tuning and feedback voltage would be possible in simulation, but of course
of little relevance for an experimental device.

A further way of reducing the noise of the SMID estimates is to inject tones
to excite the closed-loop system more. That would however undermine the goal
of designing a tone-free method and one might as well just use the much simpler
pilot tones then. Complexity is also a further issue that the SMID approaches
face. A lot of effort would be necessary to reduce the computation load of
the polynomial estimation algorithms down to a level where they could be
implemented on a sensor chip and provide results in real-time. More limitations
for truly continuous estimation exist in the presence of higher-frequency applied
angular rate, as described above.

External vibration on the sensor, appearing as a peak in the output spectrum
of y, is also handled poorly by the SMID methods. There, robustness has been
found to be much worse than what erroneous signal the pilot tones would
generate if the vibration coincided directly with one tone frequency. At least,
the SMID methods are able to output a covariance measure alongside with their
estimate, warning about strong disturbances in the event of external vibration
on the sensor.

On the plus side, the novel methods feature a large capture range, i.e. they
can identify even large frequency splits, and may be used for a variety of different
sensor implementations e.g. with regard to quality factors, loop gain or feedback
control designs. Even though flicker noise compensation was shown not to be
feasible, the SMID methods may be used for factory calibration of a fixed tuning
value, as absolute accuracy is not as much of a concern there. It may also find
use in a much slower frequency tuning or scale-factor control scheme that aims
at compensating temperature or stress influences as well as aging effects instead
of flicker noise.

In this chapter, a lack of scientific publications on tone-free methods for
measuring detuning or scale-factor was found. The developed SMID methods
represent one of many possible approaches to this topic. Only the existing
quantization noise and AX. dithers were used. Other sensor implementations may
not use dither signals and similar methods may therefore have to rely solely on
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the known output quantization noise. Closed-loop system identification proved to
be challenging with the indirect SMID-CL method performing moderately better
than the direct SMID-OL method. The third possibility of a joint input-output
approach as described in [182] was not investigated. Possibly, other methods
than polynomial model system identification may bring further improvement
to precision or lower computational effort. Methods similar to the ones in this
chapter might be used more successfully on sensors where there is one dominant
disturbance source as opposed to many, roughly equally contributing sources.
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In this chapter, the dissertation findings are summarized and reflected. The
author’s contribution in relation to the existing state-of-the-art is delineated.
Lastly, prospects for future work on related topics are illustrated.

5.1. Dissertation Summary

High and fully automated vehicles will transform individual mobility as we know
it. The first chapter outlined the current state of discourse and the classification
of vehicle automation in six levels. For public roads, level 2 - partial automation
in both the longitudinal and lateral motion - is at least in a legal sense to date
the highest level offered by major car manufacturers. The fallback responsibility
in level 3 automated driving is placed on the driver. However, humans performs
notoriously poorly when tasked with complex situation assessment after long
durations of mental absence. Manufacturers may therefore move straight to
level 4 and 5, where the vehicle is responsible for bringing itself into a minimal
risk condition, should the system’s automated driving capability deteriorate.
That condition is typically an emergency stop maneuver, which was chosen
in this dissertation as an exemplary use-case for inertial sensors in automated
vehicles. The previous achievements of MEMS inertial sensors in automotive
applications like electronic stability control were presented and performance-
limiting deterministic and stochastic error effects were discussed. Bias instability
noise was identified as a key performance parameter in literature.

The second chapter dealt in detail with the influences of sensor noise on
inertial navigation under omission of any possible deterministic error sources.
Allan deviation was elucidated as the primal method to differentiate between
noise types in MEMS gyroscopes or accelerometers. Out of the many noise
types, angle random walk, which is white noise, and bias instability were found
to be both typically present in the sensor signals and relevant for navigation
precision. In a strap-down mechanism, the gyroscopes’ signals are integrated
once for relative attitude and thrice for relative position. Analytical descriptions
of the accumulating sensor error for angle random walk and bias instability
were derived and visualized using realistic noise parameters. It was found
that although bias instability is typically portrayed as a long-term effect, its
error influence surpasses that of angle random walk as early as five seconds
of integration time for attitude and ten seconds for position. The results were
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corroborated by iterative simulations of two emergency stop maneuver scenarios.
It was established, that in order to reach a viable 3-sigma end-point precision
for these maneuvers, the amount of angle random walk and bias instability
needed to be reduced considerably, compared to what was assumed as typical
MEMS gyroscope performance.

Chapter 3 delved deep into the inner workings of triaxial MEMS gyroscopes
operated in mode-matched and force-feedback configuration. An in-depth state
of the art revealed, that although some methods of improving bias instability
have been demonstrated in the past, the underlying origins and mechanism of
bias instability were yet unknown. Using a model-based simulation approach,
different offset effects that were reported in literature were combined with
flicker noise on the sensor’s control voltages. Certain types of offset, that did
not pass the sense mode, but enter at the capacitance-voltage converter, were
demonstrated to produce bias instability. Necessary condition was the presence
of flicker noise on the frequency tuning voltage which electrostatically softens the
sense mode, ensuring mode-matching to the drive mode. Formulas were derived
from which the bias instability component of each of the sensor’s control voltage
could be calculated. Agreement between the simulation results and extensive
measurements on triaxial, future-generation, automotive MEMS gyroscopes was
demonstrated. In order to compensate bias instability, the frequency detuning
was measured with pilot tones and continuously compensated in a feedback
control loop. A factor ten improvement in both simulation and experiment was
demonstrated and bias instabilities of lower than 0.1 dph were reached. The
newly-discovered effect is superimposed by another, unknown source of bias
instability for the two out-of-plane sensing axes. The unknown effect could not
be resolved within the creation of the dissertation. Active frequency tuning
control did therefore not improve the out-of-plane sensing axes. While examining
the unknown contribution, a further drift effect was discovered and termed scale-
factor instability. Since the voltage stage of the force-feedback DAC determines
the scale-factor, any flicker noise on this voltage will create small variation in
sensitivity. It was demonstrated, that for use-cases where high angular rates are
common, this effect will surpass the drift induced by bias instability.

In the fourth chapter, a simulation study was conducted to develop a novel
method that can potentially replace the pilot tone scheme and estimate scale-
factor instability at the same time. The pilot tones offer high signal-to-noise
ratios when measuring frequency detuning. However, they inject additional tones
into the control structure that are challenging to remove from the rate output.
They are furthermore susceptible to external vibrations if those happen to
coincide with the pilot tones. The novel method aims at continuously estimating
the sense mode’s resonance frequency and DC gain by using solely the existing
noise in the force-feedback A3 control. The novel method was shown to be
feasible, but was accompanied by too much measurement noise. A compensation
of flicker noise on the tuning and feedback voltages was therefore not possible.
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5.2. Author Contributions

This section distinguishes the contributions of the author from the existing state
of the art. Although bias instability was formally described as a noise type by
Allan, it was commonly not regarded as one in many inertial MEMS publications.
Instead it is oftentimes seen only as the minimum-point between angle and rate
random walk. Moreover, the role of the latter was frequently overemphasized,
when it was in fact caused only by non-ideal measurement setups with larger
temperature gradients. The author demonstrated, that the Allan deviation curve
consists almost entirely of angle random walk and a horizontal bias instability
component, when good care is taken in the experiments.

Bias instability was sometimes modeled as Markov noise at certain frequency
bands, leading to vastly different results in the navigation precision prediction.
This dissertation demonstrated that a constant 1/f noise over all frequencies
exists, with flicker noise at its origin. The different behavior in integration of
bias instability, growing approximately linearly in time, versus the angle random
walk’s square-root of time growth, was not commonly known before. Particularly
the short time span until bias instability becomes dominant in integration above
angle random walk was not considered. While equation (2.21) was published
in [30] recently, the actual analytical description was provided in Section A.3
for the first time. To the knowledge of the author, bias instability influences
on emergency stop maneuvers have not been publicized before. The distinction
between deterministic errors like temperature gradients and stochastic errors
like bias instability noise was also seldom drawn.

The literature review revealed a number of successful efforts to reduce bias
instability in MEMS gyroscopes, but no detailed understanding. An improvement
by frequency tuning control had been shown in [143] on the same conference
than the author’s first contribution [1]. Scientific knowledge was advanced by
the in-depth explanation of origins and mechanisms of bias instability in all
of Chapter 3. Especially the control voltage variation, the calculation of the
resulting bias instability in equation (3.32) and the methodical experimental
approach as in Table 3.9 will be useful for other researchers, along with the
new understanding of the role of different types of rate offsets. The discovery
and explanation of scale-factor instability in force-feedback MEMS gyroscopes
is entirely novel, as far as the author is aware of. The findings are important for
applications where high angular rates are common, because there scale-factor
instability will create drifts much higher than bias instability.

Lastly, the SMID algorithm consequently promoted the state of the art by
not relying on injected signals like others have before, but by employing only
the existing noise within the control architecture.

The ultra-low angle random walk of the presented devices also bears novelty,
but is not credited to the author, as he was not involved with the actual MEMS
and ASIC design and fabrication. It shall also be noted, that the modeling of
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offset sources and flicker noise was the author’s, along with all of the analysis
work, but that the transfer functions for the control elements and filters were
taken from existing models at Robert Bosch GmbH.

5.3. Future Prospects

The dissertation’s results give rise to a number of questions that may be in-
vestigated in the future. This work assumed purely inertial navigation during
emergency stop maneuvers. The inclusion of wheel speed and steering angle
sensors (odometry) and their non-idealities and noise might bring about addi-
tional requirements for the inertial sensors. Another research area would be the
interaction of inertial sensors with GNSS signals in cases of alternating low and
high vehicle dynamics, which is not optimally solved by the classical Kalman
filter approach in the opinion of the author, compare also with [189]. With the
availability of highly precise MEMS inertial sensors, the efficiency or energy
consumption of tight coupling GNSS receivers may be optimized, because longer
navigation durations can be bridged without a GNSS position fix. Fixes may
also be found quicker.

Another topic that seems promising to the author is optimized navigation in
a two-dimensional plane, like a factory floor or shopping center. Many highly-
relevant use cases do not require full, three-dimensional navigation. Relative
navigation might be rendered long-term stable by optical sensors performing
visual-inertial odometry, which would sidestep the need for triple integration of
the gyroscope signal within a full strap-down mechanism.

Concerning bias instability, the origins of the unknown components in the
out-of-plane sensing axes are still open for further investigation. Since open-loop
gyroscopes typically have a mode-split of several hundred Hz, the question arises
if bias instability in these devices is also related to frequency tuning of the sense
mode. In any case, keeping the mode split constant will likely be beneficial for
temperature and stress induced drifts, so methods similar to the pilot tones may
be developed for open-loop devices. Scale-factor instability may be removed by
some form of continuous scale-factor estimation mechanism. The next steps for
the SMID algorithm could include optimization for operation on sensor-internal
integrated circuits or optimization of the precision of the estimate. In a similar
way, other non-idealities within the sensor could be estimated continuously.

Sensor redundancy, primarily by low-price, consumer-type MEMS inertial
sensors, was examined by some of the supervised students. Section A.6 of
the appendix gives an overview of their findings. Optimal fusion of MEMS
gyroscopes during external vibrations was examined within our group [190]. A
number of continuative research questions remains, like possible cancellation
of PCB stress effects, estimation of misalignments and scale-factor errors or a
framework for fusing signals with different group and phase delays.
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A. Appendix

A.1. Integration of White Noise

Assume a mean-free, discrete, random white noise process w[k] with amount
of samples N, constant sample time 79 and standard deviation o,. Three
subsequent integrations with integration time t = 79N are defined as

N

w1 [N] 270210[16], (A1)
k;l

walN) =103 wilH], (A.2)
k;l

wg[N] :TOZUJQ[k]. (A3)
k=1

Var(w; [N]) = Var(rg

I
5

/N
[]=

Var(wlk]) +2 Y Covtwhknli] ) (A6)

k=1 1<i<j<N
N
=13 Z Var(wlk]) (A7)
k=1
N
=13 Z o2 (A.8)
k=1
=712No? (A.9)

and using 0, = caArw(70) = Q/\/Tio

=Q*N (A.10)
= Q%t. (A.11)
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Next, variance of ws is determined (compare [59] [60]) as

N
Var(wy[N]) = TOQVar(Z wi [k]) (A.12)
N k=1
=75 Z Cov(wy [k1], w1 [k2]) (A.13)
k1,k2
=18 Z Cov( TQZU} , 70 Z il (A.14)
k1,k2
ki ke

=75 Z Z Z Cov(w 1) (A.15)

k1,k2 i=1 j=1
N  min(kq,k2)

=73 Z Z o2 (A.16)

kl ko =1
= 1502 Z Z min(ky, k2) (A.17)
k1=1ko=1
N® N2 N
4_2
= — + — + = A1l
TOO—w( 3 + 9 + 6>a ( 8)
using o, = oarw(70) = @//To, gives
N3 N2 N
(LM (a1
2 6
_Q2<E+L+ﬁ) (A.20)
B 302 6/ '
which is approximately
3
~ Q2§. (A.21)
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Lastly, variance of ws is (compare [59] [60])

Var(ws[N])

=

= T(?Var(z wa[k])
k=1
N
=72 Z Cov(wa k1], walke])

k1,k2

N k1 k2
=13 Z Cov(mp Z w1 [4], 7o Z wy |
i=1 j=1

k1,k2
N ki1 k2
=7t 3 DS Cov(unfil,wi)
ki,ks i=1 j=1
N ki k2 ¢ J

7l)

— 78 Z ZZZZCOV(MZ‘],U}UD

K1,k i=1 j=1 h=1 =1
N ki kp min(ij)
=620 > %
ky,ko i=1 j=1 g=1
N N k1 ko
=71000 Y Y>> min(i, j)
k1=1ko=11i=1 j=1
6 o <N5 N* 5N3 N2

=ToO0y

using o, = oarw(70) = Q/+/70, gives

N°®
_ .52
_TQ(—2O+—+ +—+

_ Qz(i + 'rgt4 + 57’3753 Tth
20 4 12 4

which is approximately

15
~0?—
~Q 50"

=ttt

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

145



A. Appendix

A.2. Origins and Behavior of 1/f Noise

Numerous, diverse natural processes show approximately 1/f-shaped spectral
behavior at low frequencies [78] [80] [83] [191]. One author even purports that
“[...] it seems that flicker noise is the rule rather than the exception.” [81, p. 2].
In many cases, 1/f noise is found to continue “indefinitely” to lower and lower
frequencies when the processes are measured for even longer durations [80] [81].
Being a curiosity in most other fields, 1/f noise is a critical challenge in electronics,
particularly in MOSFET transistors [81]. Yet, its sources and the uniform 1/f
nature are still not understood in its entirety [81] [192]. Bremsstrahlung and
carrier scattering have been named as 1/f noise sources in electronic devices
with a third effect of electron trapping being dominant in MOSFETSs [81].

It is shown in [78], that 1/f noise can be produced to an accuracy of 5 percent,
when filtering white noise through a series of zero-pole pairs, where only a single
pair is placed per frequency decade. More generally, [81] states that processes
with memories with time constants that are distributed evenly in logarithmic
time will create 1/f noise. This notion falls in line with the electron trapping
explanation, where single electrons are captured and released on time scales that
depend logarithmically on the physical distance of the trap to the active region
of a transistor [81]. When very few traps exist, the same effect may appear as
random telegraph noise switching between two or more discrete levels [81]. In
our experience, random telegraph noise oftentimes still has 1/f characteristic
when measured for long durations. Large scale excitation is said to help reset
those memories and reduce the generated 1/f noise level [81].

The variance of a 1/f signal grows logarithmically with recording time [81]. If
one wants to create 1/f noise of a certain magnitude in simulation, the simulation
and sample time needs thus to be taken into consideration. For a mean-free
signal, its variance may be interpreted as its power, analogously to e.g. a voltage
acting on a 1) resistor. At the same time, the integral over frequency of the
power spectral density also provides the power of the signal [193]. Therefore,

2 1o

= - SpSD(w) dw, (A.33)
2m

w1
where 02 is the variance of a band-limited, w; to ws, signal with single-sided
power spectral density Spgp. In terms of ordinary frequency, fi and fo, 1/f
noise is described by its noise level at 1 Hz, Nyg,. See also [79].

f2 1

0% = Nin,— df (A.34)
£ f
— Ny, In 22

— 1Hz 111 E (A35)

If it is assumed, that flicker noise keeps its 1/f behavior even for infinitely long
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processes, the variance becomes infinite, even though the frequency band is
limited from f; = 0Hz to e.g. half the sampling frequency fy = % [81].

For a finite signal, it is sometimes suggested that one may instead integrate
from f1 = ﬁ onwards, where Tgnq is the measurement duration [79] [191].
That approximation applies when the mean over the total measurement duration
is subtracted, which is of course not applicable in most real-world experiments
and applications. Deciding is lastly the actual, physical 1/f process and the
lowest extend of its 1/f behavior, f; = T% Here we assume a signal generated

in simulation with its mean removed.

Tend
2T 0

07 s~ Nig In (A.36)

With equation (A.78) from below, the variance of a signal of certain sample
time and measurement time can be related to its bias instability level,

2
Ten
2 IBIS ) fend (A.37)

T 9me Mo

To give an example, a 1/f angular rate signal was created in simulation using

70 = 0.01s (A.38)
Tond = 10h (A.39)
OBIS = 5dph (A40)

The necessary variance to produce such a signal can then be calculated as

oy = 0.0045 dps. (A.41)

The resulting Allan deviation plot from the simulated signal agrees well with the
formula and is shown in Figure 2.3 in Chapter 2. Since the natural logarithm
rises very slowly for large numbers, a measurement duration or sample time

even twice as long would only create slightly different bias instability.
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A.3. Integration of 1/f Noise

It was postulated in [30] and [90] that the 1 o standard deviation angle error of
an integrated angular rate signal consisting solely of bias instability noise can
be described by

0¢,BIS ~ Bt. (A42)

While the expression provides a good and easy-to-handle approximation, the
actual mathematical background is quite challenging and no exact derivation
has been published as far as the author is aware. In this section, an attempt at
a more rigorous description of the problem is made.

Assume a discrete random process v[k] which adheres to a 1/f noise spectrum
with a power spectral density level at 1 Hz of Ny, and a variance of of /¢ 88
defined above. The amount of samples is N and constant sample time shall be
To, so that time is t = N7p. The integration of v[k] is given by

vi1[N] =19 Z v[k]. (A.43)
k=1

Accordingly, the variance of v1[N] is

N
Var(v1[N]) = Var(r Z v[k]) (A.44)
k;l
= 75 Var() _ v[k]) (A.45)
Nk_1 N
=13 ( Z Var(v[k]) + Z Cov(vli], 'U[j])) (A.46)
k=1 i,j=1yi#]
N N
= (Do Varwlk) + 3 Ruuliv)) (A.47)
k=1 i,j=1;i#j
N
= (Nobe + 3 Ruulind) (A.48)
i,5=1;i]

where R,, denotes the autocovariance of v. In finding R, we follow the deriva-
tion in [191]. Autocorrelation R, of a real-valued signal and single-sided power
spectral density Spgp are connected by the Fourier transform [191]

Rmc (T) = /OOOSPSD COS(Q?TTf) df (A49)

As in the derivation of variance above, the integral is only defined, when the

lower bound is not zero.
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Figure A.l.: Sample autocorrelation (blue dots) of a simulated 1/f noise signal
with a total length of Topnq = 71 = 5h and 79 = 0.005s. For better clarity, only
every fiftieth sample was plotted. The autocorrelation function (gray line) from
the autocovariance in equation (A.53) predicts the pattern well.

We therefore assume the power spectral density of 1/f noise to be

NMupe for fi<f<f
Spsp,1/t & { / 1. ? (A.50)
0 otherwise.
One receives
f2 NlHZ
R, (1) = / 5 cos(2n7T f)df (A.51)
. NlHZ(Ci(27rTf2) —Ci(2777f1)) for 740 a52)

Nigy In % for 7=0.

Note that R,,(7 = 0) is the variance, identical to equation (A.36) above. The
cosine integral functions Ci can be approximated by Taylor expansion [191]. If
the 1/f behavior is assumed to reach from fy = % down to f; = T%, then

NlHZ(—’y—ln(|2ﬂ'7'T%|)) for 7#0

(A.53)
Nipg In 2%10 for =0,

Ryy(7) =~

where v ~ 0.577 is the Euler-Mascheroni constant. Figure A.1 shows the
autocorrelation function, i.e. R,, normalized by variance, in comparison to
the sample autocorrelation of a 10h simulated 1/f noise signal. Note, that
the autocorrelation function is independent of the spectral noise level Nig,
because of the normalization. Evidently, equation A.53 describes the results from
simulation well. The long correlation times of 1/f noise also become apparent.
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The variance of integrated 1/f noise is now approximated by

N
Var(vy) = 72 (Nof/f + Y Ruu(i, j)) (A.54)
i,j=1;i#]
~ Ni3 (Nln—1 + Z — —In( \—(z ~i)mol)) (A.55)
o i,j=L5i#£]
82
S ( — 4 Z —y —In(|=(i — j)7'0|)> (A.56)
i,j=15i#£]
B? , T al 277
~— Nln— —y =1 —1 —J A.57
—t( %Dtg;y (FO-mi=h) (A5
J=1517#]
32 2 T1 2 27‘(’7‘0
N—T()(Nlnﬁ + (N? = N)(—~v—1In( Zln|z—j|>

1,j=1;i#j

which can be closely approximated by dropping the linear N terms

zB;Tg(N?(— —In( 27”0 Zm \@—J\) (A.58)
i,j= 1%753
2
37(1\72 2(— QZln (li = 4D). (A.59)
i,j=15i#£]

Finally, one may reformulate for better numeric efficiency.

B2 T N-—-1
Var(vy) = — (N%g( — v+ In( 271_7_0 —2721n H ) (A.60)
i=1

Patently, 1/ Var(vi) = 0y pis is not a linear function of time ¢t = N7y.

NI () - B (L v -97)) (A

o9,B1s ~ B

Several other observations are noteworthy. When simulating for different param-
eter values, og prs was found to be largely invariant to changes of sampling time
7o- It is however influenced significantly by T3. Figure A.2 plots equation (A.61)
for values of T from 200 s to 3200s. The larger the values, the more linear the
plot becomes. In doing so, equation (A.61) keeps growing slowly to infinity with
increasing slope for larger and larger 7;. This behavior is Cntirely expected,
because as a “true” 1/f noise extending down all the way to f; = = = 0Hz has
infinite variance, the integrated signal must also have infinite variance.
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Figure A.2.: 1 o angle error of an integrated angular rate signal with bias
instability of 0.6648 = 5 dph described by the rough approximation oy gis ~ Bt
(blue) in comparison to the analytically derived equation (A.61) for different
values of Ty (gray, dashed).

In summary, o¢ pis ~ Bt roughly matches the analytically derived equation
for integration times of 20s and reasonable values of 7T;. Since no universal
statement of the actual value of T can be made in practice, og 15 ~ Bt
constitutes a valid approximation. It is therefore used throughout this thesis.
As described in the previous section, the fundamental contradiction of 1/f noise
remains, namely that observed 1/f noise typically extends further and further to
lower frequencies if measured for longer times, but that also its variance cannot
be infinite.
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A.4. Temperature Drift and Navigation

This section evaluates the influence of temperature drifts on the final navigation
error in comparison to the noise-induced errors from Section 2.3. Assume, that
the sensor’s temperature changes linearly during the navigation period starting
with zero offset at time ¢ = 0. All other errors that appeared before the purely
inertial navigation period are assumed to have been estimated perfectly by a
suitable Kalman filter mechanism. The temperature induced offset behavior is
described by
AT

where k7 is the temperature coefficient of the offset (TCO) in units of dps/K
and AT the temperature difference that occurs during the navigation duration
Tend- Integration promts the resulting angle error

AT
t2 (A.63)

eT(t):kT2T B 5

as well as the position error due to erroneous gravity compensation assuming a

small angle approximation, i.e. the vehicle driving on a level surface.

AT T rad m
t)=k th —9.81|-——|. A.64
rr(t) = kro - 150 [deg s2} (A-64)
The parameters are assumed to be
le =0.05 dpS/K (A65)
k‘Tg = 0.001 dpS/K (A66)
Tend =20 S, (A67)

where kp is representative for consumer-type MEMS and kpo for best-of-class
automotive devices. Figures A.3 and A.4 show the results in comparison to
the stochastic error contributions. A sensor with a TCO similar to kr; will
most likely be limited by deterministic temperature effects in most practical
applications, whereas a sensor with a TCO of k9 will be limited equally or even
dominantly by its stochastic properties. It is important to note, that temperature
changes of several Kelvin within just 20s are worst-case assumptions. For a
continuously operating sensor inside a housing that is sensibly placed within a
vehicle, very slow temperature drifts are expected at most times. Furthermore,
the stochastic errors constitute 1o value compared to the absolute measure of
the deterministic errors.
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Figure A.4.: Top: Analytical position error due to faulty gravity compensation
after triple integration for different values of linear temperature drift (blue) with
a TCO of ke = 0.05dps/K and 1o standard deviation of angle random walk
and bias instability errors (both gray). Bottom: The same assessment for a TCO
of k1o = 0.001 dps/K.

155



A. Appendix

A.5. Navigation Simulation Plots

The following Figures A.5 to A.8 show 50 iterations of the conservative emergency
stop scenario with panning over to the road shoulder using the noise parameters
from Table 2.2. Angular rates are small and braking deceleration is about one
third of gravitational acceleration. Note, that the vertical axes do not always
have equal scaling.
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Figure A.5.: Angular rate time series plots of 50 simulation iterations (blue) of
the conservative emergency stop scenario. The ground-truth is shown in black.
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Figure A.6.: Attitude time series plots of 50 simulation iterations (blue) of
the conservative emergency stop scenario. The ground-truth is shown in black.
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Figure A.7.: Acceleration time series plots of 50 simulation iterations (blue) of
the conservative emergency stop scenario. The ground-truth is shown in black.
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Figure A.8.: Velocity time series plots of 50 simulation iterations (blue) of the
conservative emergency stop scenario. The ground-truth is shown in black.
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A.6. Sensor Redundancy

Figure A.9.: MEMS inertial sensor redundancy demonstrator as it was devel-
oped within our research group. A powerful micro-controller (blue PCB) and an
array of 14 open-loop or 6 closed-loop triaxial, consumer-type MEMS gyroscopes
(green PCB) are housed within a milled aluminium casing. See also [190] for
more details on the setup.

Throughout the author’s PhD work, some research on MEMS inertial sensor
redundancy was conducted, mostly by supervision of several student theses and
internships on this topic. Here, a brief summary on current challenges in this
field and our findings is provided.

A natural approach for improving precision, robustness and for integrity
monitoring [194] is to use redundant gyroscopes and to fuse their signals [195]
[196] [197]. Sometimes, these configurations are called virtual gyroscopes [198].
In many scientific contributions, hopes are raised, that favorable, negative
noise correlations between individual devices may exist [198] [199] [200]. To
the knowledge of the author, none were ever experimentally demonstrated,
however. This comes as no surprise, as noise sources typically originate in the
individual sensor’s analog circuits or its MEMS element. Even when fabricated
on a single die, four gyroscopes were shown to have no significant negative
correlation between them [201]. If the signals of N number of sensors are not
correlated to each other, the noise (e.g. angle random walk or bias instability)
improvement is limited to a factor of v/N [202]. Another recent paper shows an
array of 72 gyroscopes that also exhibit only very minimal correlation [203]. In
their implementation, using a Kalman filter is no better than simple (weighted)
averaging. The authors of [204] reach the same conclusion, if all sensors have
the same error characteristic. The excellent contribution [60] furthermore finds,
that the correlations between the bias drifts of the signals cannot be estimated
in their Kalman filter implementation, as the noise from angle random walk
is too dominant. Successful implementation of a Kalman filter also requires
high-quality models of the vehicle dynamics with further inputs like steering
angle. If a Kalman filter is implemented purely for fusing redundant gyroscopes,
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most publications assume a simple model of zero angular rate, which of course
smooths any measurement at rest. The usefulness during actual, high-dynamic
movement is limited, however. The results in our group also did not show
significant negative noise correlations, even when the devices were placed 90 deg
rotated on opposing sides of a PCB [205]. Correlations for deterministic effects,
e.g. due to temperature were abundant, though. Figure A.9 shows our current
demonstrator setup. The authors of [206] also provide an extensive experimental
characterization of differently placed sensors. It was furthermore noted in the
review article [207], that some manufacturers may pick their best devices from
the middle of a bell-curve distribution. Their low-cost product line may therefore
have sensors with strong deterministic error effects acting in one or the other
direction. Redundancy may then be used to compensate these effects.

In summary, improving angle random walk by e.g. a factor of two by using
four sensors may be entirely practical, especially considering how much tradi-
tional engineering effort would be necessary to achieve the same feat on a single
device. The benefit of adding additional sensors quickly falls off, according to the
v/ N-law. Arrays with much more than ten devices seem thus less feasible. Redun-
dancy is furthermore particularly suited for use of less expensive, consumer-type
MEMS sensors. Use cases for these kinds of configurations may include mobility
applications, that do not require full automotive certification like pedestrian
dead-reckoning [208] [209], visual-inertial odometry [210] [211], electrified scoot-
ers or bicycles [212] [213], some construction site applications [214], agricultural
robotics [215] or use-cases in professional sports [195] [216]. The shortcomings
of consumer-type sensors for example in the area of vibration robustness may
be effectively mitigated by redundancy as demonstrated by our group in [190].
There, a scheme evaluated the relative difference of one sensor to all other
sensors of the same type and lowered or increased its influence on the final,
virtual output accordingly.

Additional Scale-Factor Instability Experiments

The redundancy demonstrator was furthermore used to examine scale-factor
instability effects in open-loop and closed-loop gyroscopes. Figure A.10 shows
the Allan deviation of the z-axis of five open-loop and five closed-loop devices
at rest and at a constant applied angular rate of 200 dps within an ultra-high
precision rate chamber, compare Figure A.13. It was found, that the closed-
loop devices had a large increase of “bias” instability with applied angular rate,
whereas the open-loop devices displayed the same bias instability level compared
to measurement at rest. The experiment also makes clear, that the measured
scale-factor instability here and in Section 3.5 is a sensor-internal effect and is
not produced by inaccuracies of the motion of the rate chamber. Particularly for
use-cases with enduring, one-directional rotation, e.g. sensor placement within
a wheel, an open-loop gyroscope would be preferable based on these results.

161



A. Appendix

[T T T YT T T Ty Ty T [T T T T T Ty Ty Ty T
10? £ E 10? £ RS ;;%ﬁ E
= - E = E E
€ | 2,ul |
= 10! E E =10t E E
(@) - | [a)] - -
< . ] < . ]
b [ | b L il
10° ¢ E 10° ¢ E
1071 FRTTT SRR RTIT SRR BB TIT NNV MERRTIT R ATI MR 1071 RTINS T BRI M WANIT| SORRTTT SO RUIIT M MAATT

1072 100 102 104 1072 10° 102 104

Time [s] Time [s]

Figure A.10.: Allan deviation of five open-loop gyroscope z-axes (gray) and
five closed-loop gyroscope z-axes (blue). Left: Measurement at rest, i.e. zero
rotation. Right: Measurement at 200dps of applied rate within a rotation
chamber.

A.7. Gyroscope Simulation Overview

The figures below provide an overview of the Matlab/Simulink structure.

NOISE MEMS DRIVE OUTPUT
v -—> streama,

amp_dry dv_amp
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= {empty amptyt L]
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Figure A.11.: Top: Overview of a single-axis MEMS gyroscope modeled
in Simulink. The dynamic equations from Section 3.2 are included in the
MEMS subsystem. Drive and sense control transfer-functions are similar to the
experimental device. Bottom: Flicker noise was modeled additively for e.g. the
quadrature compensation common-mode voltage (left) or multiplicatively for
the drive and sense ADCs (right) in the Simulink simulation.
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A.8. Negating Offset Susceptibility
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Figure A.12.: Simulated bias instability of 5.3 dph with 0.1 dps of electrical
cross-coupling offset and frequency tuning voltage flicker (gray). An improvement
to far below 0.1 dph (blue) is facilitated by allowing an artificial quadrature offset
of 39dps which counteracts the susceptibility of the electrical cross-coupling
offset, so that the total susceptibility becomes near zero. All noise sources except
the dithers were turned off for this simulation.

The detrimental offset susceptibility to frequency tuning changes created by e.g.
electrical cross-coupling or additional modes may be counteracted by purposely
introducing a quadrature offset as in Figure 3.2, creating the same amount
of offset susceptibility but with opposing sign. Figure A.12 demonstrates the
functionality in simulation, where all white noise sources except the dithers have
been turned off to make bias instability more visible and to reduce simulation
time. The advantage of this method lies in its simplicity. No additional tones are
necessary and angle random walk is not increased. The method does however
require part-individual calibration, which is not necessary for the pilot tone
scheme. The calibration might be automatically performed at each sensor start-
up, as long as the gyroscope is at rest for some seconds. It is important to note,
that this method does not improve non-ideal mode-matching, but merely the
rate output. Furthermore, even small phase changes of the drive frequency wpy
would change the amount of quadrature that appears in rate. As these phase
changes cannot be precluded, the viability of this method is deemed limited in

actual experiment.
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A.9. Derivation of Pilot Tone Measure

The pilot tones Sy are applied to the sense CV converter, left and right of the
drive frequency.

Spt(t) = kpy cos(wpit) cos(wpnt) (A.68)

k k
= 7‘“ cos ((wpn — wpt)t) + 7}” cos ((wpn + wpt)t) (A.69)

The CV transfer function amplifies both tones with k;t and changes their phase
opposingly by ¢p. Assume there exists a detuning of drive and sense modes so
that the left tone is reduced in amplitude by kqe; and the other one concurrently
increased. The detuning phase change ¢qe; is the same for both tones.

kL (1 — kqet)
ptft cos ((wpn — wpt )t + Ppt + Pdet)

n ké)t(l —+ kdct)
2

Spt,det(t) —
cos ((wpn + wpt )t — Ppt + Pdet)- (A.70)

To retrieve the detuning information Dy (t), the force control output signal
containing Sp¢ det (t) is synchronously demodulated with 255 (t)/kpe,

-Dpt (t) = Spt,det (t)QSpt (t)/kpt (A?].)
= k;)t [(1 - kdet) COS ((wpll - wpt)t + (/I)pt + ¢det>
+ (14 kdet) cos ((wpll + wpt )t — Ppt + Pdet) ]
- [ cos ((wpn — wpt)t) + cos ((wpn + wpt)t)] (A.72)
k/
= 7pt [(1 - kdet)(cos(¢pt + ¢det) + COS(Q(pr - wpt)t + ¢pt + ¢det)>
+ (1 — kdet) ( cos(—2wpit + Ppt + Pdet) + cos(2wpnt + Ppy + ¢dct))
+ (1 + kdet)(cos(prtt — ¢pt + Qsdet) + COS(prHt — ¢pt + ¢det))

+(1+ kdet)(cos(_¢pt + Pdet) + €08(2(wpn + wpt )t — Ppt + (bdet)”
After suitable low-pass filtering one receives only the “constant” components

k! k!

Dpt,lp = 7pt(1 - kdet) COS(¢pt + ¢det) + %(1 + kdet) COS(_¢pt + ¢det)
=k ((cos(¢pt) cOS(Pdet) + det SIn(Ppt) SIN(Paet ) ) (A.73)

Since cosine is an even function, the left term cannot differentiate the sign
of detuning, but the right term does. The pilot tone measure therefore has a
small offset which amounts to Dy 1p ideal = Fp cOS(¢pt) at ideal tuning, as in
Figure 4.6.
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A.10. Derivation of Bias Instability Factor

Equation (2.12) or [50] defines bias instability for frequencies below a certain
cutoff frequency as

2In2
012315 =

B2 A4
- (A74)
The coefficient B is furthermore related to the two-sided power spectral den-
sity Sapsp of 1/f noise according to [50] by

B%1
=—=. A.
Sapsp(f) = o 7 (A.75)
Substituting equation (A.74) into (A.75) and dividing by 2 for the one-sided
PSD grants

031 = 2102 Spsp f. (A.76)

Because the power spectrum of Flicker noise is not constant over frequency, it
is typically specified with its magnitude at f = 1 Hz. We therefore write

ok1g =202 Ny, - 1 Hz. (A.77)

The relationship between flicker noise with a one-sided root power spectral
density at 1Hz, v N1g,, and its Allan deviation is thus

oprs = VN1, V2In 2rtHz. (A.78)

Here, oprg is a dimensionless quantity and v/ Ny, is in units of 1 /rtHz. In order
to determine the effect of flicker voltage Vgic to the Allan deviation of a rate
offset, we need to factor in the experimentally found susceptibility of said offset
created by voltage change, Sy, in units of dps/V.

OBIS,V = ‘Sv| VaicV21In 2 rtHz. (A79)

The calculation for scale-factor instability works analogously. Deciding is the
difference between the actual angular rate and the angular rate after scale-
factor disturbance by small feedback voltage variation, which is approximately
| - 2% in units of dps, see equation (3.41). In terms of rate offset change
per voltage change one therefore receives |Q] - é and thus

Wi ic
oSS Ven = |9 - zFVBi’“ -v2In 2 rtHz. (A.80)
FB
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A.11. Derivation of Scale-Factor Change

Figure A.13.: An ultra-high precision rotation chamber was used to analyze
scale-factor instability effects by continuously rotating the sensors at a constant
angular rate for extended durations on the order of 24 h and longer.

Here, the derivation for scale-factor in the presence of feedback voltage changes,
equation (3.41), is provided. The term kipac from equation (3.11) relates the
digital signal in LSB to the output force generated by the force-feedback voltage

VIDAC, full-scale > 2
k =k : . A 81
fDAC fb (LSBfDAC,full-scale ( )

In our implementation, a single-bit DAC is used, hence

kipac = km Vg, where Vg = 1.23V. (A.82)

A non-ideal (i.e. not value 1) rate scale-factor due to variations AVpp in force-
feedback voltage is thus given by

Ho i App ’wy

SFy. — T ey A.83
e HQr—>*,idea1|wy ( )
~ EfDAC, ideal (A.84)
kmac,Aps
V2
FB (A.85)

~ (Arp + Vep)?’

The principle also applies to multi-bit DACs, only that variations of several
DAC voltage stages must be considered. Scale-factor instability is therefore
not limited to single-bit force-feedback implementations, but is inherent to all
force-feedback type implementations.
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