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Zusammenfassung

Bayessche Informationsextraktion aus SAR-Bildern

Synthetisches Apertur-Radar (SAR) stellt ein m�achtiges Werkzeug zur Erdbeobachtung

dar, da es von Wetterbedingungen und Tageszeiten weitgehend unbeein
u�t ist. Die auto-

matische Interpretation der Intensit�atsinformation der SAR-Daten ist allerdings auf Grund

des Speckleph�anomens, das einem starken multiplikativen Rauschen entspricht und bei allen

koh�arenten Bildgebungsverfahren auftritt, extrem aufwendig und schwierig.

In dieser Dissertation wird ein Bayesscher Ansatz zur Informationsextraktion aus SAR-

Daten vorgestellt. Der Schwerpunkt der Arbeit liegt auf der Bild�lterung und Sch�atzung der

Radarr�uckstreu
�ache zur Erleichterung einer nachfolgenden Bildinterpretation. Von beson-

derer Wichtigkeit f�ur das vorgestellte Verfahren sind dabei Methoden zur Segmentierung

und Merkmalsextraktion, d.h. zur Extraktion zus�atzlicher Information aus SAR-Bildern.

Die Filterung, insbesondere von hochaufgel�osten SAR-Bildern, erfordert die Erhaltung

von wichtigen Bildmerkmalen, wie Texturen, Kanten und Punktstreuern. In dem hier

vorgestellten Ansatz, der auf den Grundlagen der Bayesschen Bild- und Datenanalyse

basiert, wird Information bez�uglich dieser Merkmale extrahiert und zur Rekonstruktion der

Radarr�uckstreu
�ache verwendet. Im Gegensatz zu konventionellen Verfahren wird damit

nicht nur ein einziges, sondern es werden mehrere Modelle zur Beschreibung des Bildinhaltes

genutzt.

Zur Darstellung von Textureigenschaften dienen uns Gau�-Markov-Zufallsfelder. Deren

texturbeschreibende Parameter werden iterativ unter Ber�ucksichtigung der "Likelihood"-

Funktion des Specklerauschens gesch�atzt. Zur Kanten�ndung und zur Anpassung der

Nachbarschaft des Gau�-Markov-Modells, d.h. zur Ber�ucksichtigung von Instationarit�aten

bez�uglich der mittleren R�uckstreuintensit�at, wird ein spezielles Segmentierungsverfahren

verwendet. Als letztes Merkmal werden Punktstreuer durch eine Analyse des Verh�alt-

nisses von Original- und ge�ltertem Bild detektiert. Durch geeignete Kombination der

so extrahierten Information wird auf Grund der verbesserten Modellbildung im Vergleich

zu anderen Verfahren eine genauere Maximum-A-Posteriori-Sch�atzung der R�uckstreu
�ache

erzielt. Zus�atzlich zur gesch�atzten Radarr�ucktreu
�ache k�onnen die extrahierten Features,

d.h. die Texturparameter, die detektierten Kanten und die gefundenen Punktstreuer, zur

weiteren Bildinterpretation herangezogen werden.
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Abstract

Bayesian Information Extraction from SAR Images

Allowing the acquisition of high-resolution images of the Earth under all weather conditions

and both day and night, synthetic aperture radar (SAR) systems represent a very powerful

observation tool. However, an automatic interpretation of the information which is con-

tained in the re
ected intensity of the SAR data is extremely diÆcult. These diÆculties

are due to the speckle phenomenon that can be regarded as a strong multiplicative noise

a�ecting all coherent imaging systems.

In this thesis, a Bayesian approach for information extraction from SAR images is pre-

sented. The emphasis of this work lies on speckle removal and estimation of the radar

cross-section to obtain images easier to analyze with standard image interpretation tools.

Strongly related to this task are methods for feature extraction and segmentation, i.e. meth-

ods for the extraction of additional information from SAR images.

Filtering SAR images, especially images of high resolution, requires a good preservation

of important features, such as texture, edges and targets. In the discussed approach, which

is based on the principles of Bayesian data and image analysis, information about these

features is extracted and used for the restoration of the radar cross-section. Not only

relying on one single assumption as most techniques do, our algorithm uses multiple models

to describe the image content.

To model textural properties, Gauss-Markov random �elds are used. Their parameters,

which characterize the texture of the image, are iteratively estimated taking into account

the likelihood function, i.e. the speckle noise. A region-growing segmentation algorithm

is employed to detect edges and adapt the neighborhood of the Gauss-Markov model to

preserve non-stationarities in mean backscatter. As a last feature, targets are extracted by

analyzing the ratio of original and despeckled data. By suitably combining the extracted

information, an improved maximum a posteriori estimate of the cross-section is obtained,

which is due to the increased modeling in comparison with other approaches. The whole

set of extracted information, such as cross-section, texture parameters, detected edges and

point targets, is valuable for further image interpretation.
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1 Introduction

During the last decade, high-quality images of the Earth obtained by synthetic aperture

radar (SAR) systems, both on airborne and spaceborne platforms, have become more and

more available. ERS-1 was the �rst instrument in a series of orbital SARs planned to have

long lifetimes and semi-operational capabilities. Currently in orbit are also the ERS-2,

JERS-1, JERS-2 and RADARSAT satellite systems. ENVISAT is planned to be launched

in 2001. By providing a long series of accurate measurements of the backscatter coeÆcient,

these satellites allow dynamic processes to be observed over most of the Earth's surface.

This will have a signi�cant impact on many scienti�c domains, such as vegetation mapping

and monitoring, hydrology, sea-ice mapping and geology.

Spaceborne radar systems are usually simple in the sense that they use single frequen-

cies and polarizations with modest resolution, because of the constraints imposed by their

deployment in space. On the contrary, more complex airborne systems have demonstrated

the advantages of multiple frequencies and polarizations. An overview on SAR sensors is

given in appendix A. These advantages were and will further be proved from space by the

SIR-C/X-SAR [XSAR] and the SRTM [SRTM] missions of the Space Shuttle. As a con-

sequence, much longer wavelength systems are now in operation and promise to provide

e�ective methods for reconnaissance and remote sensing over heavily vegetated areas, due

to their capability to deeply penetrate the underlying soil.

An enormous amount of e�ort has been expended on the development of SAR hardware,

but comparatively little has been done to fully exploit the information content of the sensed

data. To achieve this goal, the actual properties of the data must be examined in light of

what is known about the physics of the imaging process and the envisaged applications. In

this way, we are able to identify and extract optimal estimates of the information we seek

in the data. This bridging between what we know about the data and how we get at the

information they contain is the subject of this thesis.

1.1 Background

Radar systems are capable of producing very high quality images of the Earth. For these

data to have value, they must be interpreted so as to yield information about the imaged

area. However, the task of information extraction and the detection of signi�cant features

is very time-consuming if performed manually by an image analyst, and especially when
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large amounts of remote sensing data must be examined. Moreover, consistency between

the results achieved from di�erent data and di�erent analysts cannot be guaranteed. These

limitations of manual data analysis motivate the development of automatic algorithms to

extract relevant information more quickly and in a reproducable way. The need for au-

tomatic or semi-automatic methods is even larger when polarimetric, multi-frequency and

multi-temporal images are used, whose analysis also requires the fusion of all available

information.

To be valuable, an automatic data interpretation has to be based on a solid understanding

of how the desired information is encapsulated in the data and is generally performed on

two di�erent scales [Oliver98]:

� A low-level analysis identi�es and quanti�es details of local image structure.

� A high-level analysis uses these details to construct a global structural description of

the scene required by the image analyst.

Low-level algorithms are usually not suÆcient because local details must be fused into

some global high-level form of understanding. Examples are the joining of edges across

gaps in edge-detection applications or the merging of regions in segmentation algorithms

[Cook94]. On the other hand, sophisticated high-level techniques are of limited use if the

low-level algorithms are incapable of extracting the information with suÆcient accuracy.

As a consequence, both levels must be combined in an optimal way in order to yield the

information of interest for the user.

1.2 Goal and Motivation

The goal of this thesis is to present a Bayesian approach for high- and low-level information

extraction from single channel intensity SAR data [Walessa99a, Walessa99b, Walessa00].

Due to its advantages compared to optical sensors and its steadily increasing resolution,

SAR imagery becomes more and more important as a source of remote sensing information.

Basic features of potential interest which can be observed in SAR data are homogeneous

regions of di�erent mean backscatter, i.e. of di�erent cross-section or backscatter coeÆcient,

textured regions such as forests, edges giving information for data classi�cation and strong

scatterers, that are mostly related to man-made targets. However, appropriate means for

automated interpretation and extraction of such features from SAR data are still needed.

This lack of interpretation tools is mostly due to the presence of speckle noise [Goodman],

which makes existing algorithms designed for non-coherent data useless for SAR images.

Many potential users do not know how to deal with this kind of imagery and consider it as

not suitable for their purposes. To solve this misery, two basic approaches are possible and

corresponding attempts have been made in the past:

� Since the desired information is contained in the radar cross-section, �lters have been

developed to reduce or �lter out speckle, enabling the user to apply existing image

analysis tools often designed for optical data.
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� Special SAR data interpretation tools have been designed to extract the desired infor-

mation directly from the speckled data without using speckle �lters as a pre-processing

step. Existing tools for optical data usually cannot be directly applied to SAR images.

In principle, the latter approach should be preferred, since it disposes of the full infor-

mation and does not su�er from �lter-induced artefacts. As far as the �rst approach is

concerned, available �lters rely on rather simple assumptions and are usually not capable

of modeling and accurately restoring all SAR image features. Typical approaches rely on

a local analysis of mean and variance in order to more or less strongly smooth the noisy

image [Frost82a, Hagg, Kuan87, Lee83]. Other techniques incorporate additional struc-

tural low-level information to better preserve edges [Crimmins, Lopes90b] or are based on

wavelet-shrinkage methods. None of these methods employs a sophisticated modeling of

image features, which explains their moderate performance. Unfortunately, the second ap-

proach is often not feasible, due to its mathematical complexity. The extraction of edges

[Desnos, Frost82b, Lopes93, Touzi88] between regions of homogeneous backscatter already

requires a good understanding of the statistical properties of SAR data. The same applies

for line-extraction techniques. Concerning simple parametric models used for information

extraction, e.g. for texture description, the estimation of their parameters usually cannot

be done analytically. As of this, the simple ratio of empirical mean to standard devia-

tion known as coeÆcient of variation is still a widely used texture measure in the SAR

community.

To overcome these de�ciencies, we propose a new approach combining di�erent kinds of

low-level information to obtain improved high-level results. As low-level information, basic

SAR image features, such as texture, edges, uniform areas and dominant scatterers, are

extracted. This information is not only combined to generate an estimate of the higher-

level radar cross-section but is also available for further image analysis. Hence, instead

of relying only on one single assumption, as most available despeckling �lters do, we use

multiple models and estimate their parameters by taking into account properties of the

speckle noise. This low-level information is employed to generate an improved restoration

of the cross-section, as illustrated in Fig. 1.1, yielding consistent outputs for the cross-section

and the extracted features. As a result, a vector of dominant image features and a high-

quality estimate of the cross-section characterized by the extracted low-level information are

obtained. The latter may be subject to further standard information extraction techniques

if the information desired by the user is not contained in the low-level feature vector.

1.3 Outline of the Thesis

The aim of this thesis is to propose a Bayesian approach for information extraction from

SAR data, representing an intuitive way to combine physical properties of SAR systems

with user-dependent data models. Although a general technique for SAR data analysis

is desirable, we concentrate on the interpretation of single channel intensity or amplitude

data. Properties of polarimetric, multi-temporal and interferometric data are not discussed.

In this work, the �ltering of images a�ected by speckle noise plays the dominant role.

We describe how information can be retrieved from under this noise and how speckle can
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Figure 1.1: Example of advanced SAR image processing. Left: Original high-resolution air-

borne SAR data (400� 400 pixels, copyright by N.A. Software Ltd.) exhibiting

speckle. Right: Restored SAR image of almost optical quality. Speckle has been

�ltered out with the Model-Based Despeckling algorithm (MBD), which is the

subject of this thesis.

be eÆciently removed without destroying information that may possibly be extracted by

subsequent image interpretation tools.

To be able to make e�ective use of SAR, it is important to understand its basic prop-

erties and the system's image formation process. In chapter two of this thesis, we describe

part of the signal processing [Bamler, Barber], geometrical and radiometrical properties

[Schreier] and statistical characteristics of SAR image data. The latter are of particu-

lar interest for image understanding and information extraction since data interpretation

relies on assumptions about the statistics of the data to be investigated. Since we envis-

age a statistical analysis of SAR data, the basic principles of Bayesian estimation theory

[Bayes, Bretthorst, Jaynes, Sivia] and image interpretation are outlined in chapter three.

The denoising and the information extraction will be performed completely within the

framework of Bayesian inference, which is a very powerful tool comprising other approaches

like regularized data inversion. A description of the necessary models for Bayesian im-

age interpretation, which we choose to be in the form of Markov Random Fields being of

particular interest for image processing [Li, Winkler], closes the �rst part of the thesis.

In the second part, we put emphasis on SAR image interpretation. Commonly used

algorithms for SAR image despeckling are reviewed and discussed with regard to the em-

ployed modeling in chapter four. We illustrate the problem of information extraction, i.e.

parameter estimation, for despeckling with Markov random �elds and, at the same time,

demonstrate the need for more sophisticated solutions. Thus, chapter four prepares the
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main part of this work, which is presented in chapters �ve and six. Here, the full Bayesian

algorithm for SAR image despeckling and information extraction using Gauss-Markov mod-

els is introduced [Walessa00]. In chapter �ve the di�erent steps of the algorithm, such as

the computation of the MAP (maximum a posteriori) estimate and an iterative texture

parameter estimation technique, as well as the used model and computationally necessary

approximations are discussed and evaluated. The extraction of additional non-linear fea-

tures, which cannot be described by the employed texture model, and the fusion of this

information into the �nal �ltering result are the subject of chapter six.

Before concluding this work, an extra chapter giving several examples in order to illus-

trate the performance of the developed algorithm and to compare it to other despeckling

techniques follows. Besides presenting �ltered images, we also show several examples of the

extracted features, such as texture, edges and targets. Additional information completing

the thesis can be found in the appendices.





Part I

Theoretical Background





2 Synthetic Aperture Radar

In the �rst part of this chapter, the basic theory of how a side-looking radar, 
own on an air-

borne or spaceborne platform, uses a synthetic aperture together with pulse compression to

generate high-resolution imagery [Bamler, Barber, Oliver98] is presented. For the imaging

geometry, a 
at Earth model and a straight 
ight path are assumed. However, for space-

borne SAR systems the imaging geometry must take into account the Earth's curvature and

rotation and the satellite's orbit. Because these factors a�ect the details of both azimuth

and range processing rather than the general theory, they are not further considered. The

e�ect of range curvature will be ignored for the same reason.

In the second section, we shortly deal with geometrically induced e�ects in SAR imagery

[Gelautz]. These e�ects are observed in presence of rough terrain and a�ect both the

radiometric information of the sensed images and their geometry [Schreier]. As of this,

SAR images usually require geometric and radiometric correction based on the topography

and radiometric calibration in range direction due to a varying incidence angle. Since these

issues do not play an important role for the main part of this thesis, we only present these

e�ects for the sake of understanding of the SAR image formation process.

The last section of this chapter is most important for all following results of this work.

All ensuing algorithms concerning the interpretation of SAR data are based on the con-

clusions presented here: The statistical properties of the sensed images [Goodman]. The

speckle phenomenon, which gives the motivation for this work, since it hinders standard

image interpretation techniques, is explained and statistically described. This knowledge is

necessary for Bayesian estimation theory, which represents the basis of the developed and

discussed algorithms for �ltering and information extraction from SAR images. We close

this and all following chapters with a short summary of what has been presented.

2.1 SAR Principle

The basic geometry of a SAR is shown in Fig. 2.1. A platform moving with velocity v at

altitude H carries a side-looking radar antenna that illuminates the Earth's surface with

pulses of electromagnetic radiation. The direction of travel of the platform is known as the

azimuth direction and is denoted by y. The distance from the radar track is measured in the

range direction x. For simplicity, we deal only with the case where the antenna is oriented

parallel to the 
ight path, i.e. not squinted. In the following, we point out only the most
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Figure 2.1: Geometry of a side-looking radar system used for surface imaging. The radar

with an antenna of width D is 
ying at altitude H with speed v. The incidence

angle for the considered resolution cell is �v. The resolutions in range and

azimuth are denoted by rx and ry, respectively.

important features that characterize a SAR system and make this kind of sensor special

compared to other, e.g. optical or non-coherent sensors. A more thorough understanding

of the whole SAR processing procedure [Bamler, Barber] is not necessary for the ensuing

chapters.

2.1.1 Basic Scattering Mechanisms

The principle of radar systems is to emit electromagnetic waves with wavelengths ranging

from a few centimeters up to one decimeter and to receive the backscattered re
ection from

the imaged surface. The measured time between emission and reception of the re
ected wave

is used to localize the scatterer or target. Here, the term target denotes both single objects

and distributed scatterers. Several basic backscattering mechanisms [Fj�rtoft99a] depending

on the micro- and macroscopic properties of the scatterer are illustrated in Fig. 2.2.

� Re
ection from smooth surfaces and double bouncing: Unless the incidence

angle �v between sensor and surface is zero and if no double bouncing occurs, a smooth

surface re
ects very few of the incoming energy back to the emitting antenna. For
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Figure 2.2: Di�erent backscattering mechanisms. From left to right: Scattering from a

smooth surface, double bouncing re
ection, di�use scattering from rough sur-

faces, volume scattering.

this reason, highways and calm lakes appear rather dark in SAR images. Buildings

usually appear bright due to the double bouncing e�ect.

� Re
ection from rough surfaces and volume scattering: Rough surfaces, i.e.

non-specular re
ectors, re
ect the wavefront in multiple directions. Only a part of the

emitted energy is received by the sensor. This e�ect is called di�use scattering. The

same e�ect occurs for volume scattering, e.g. in forests, where the wavefront partly

penetrates the scatterers. The characteristics of volume scattering and the depth of

penetration are a function of the employed wavelength of the system.

By measuring the re
ected energy and the time delay between emission and re
ection and

by doing an appropriate processing, SAR images can be computed that are characteristic

of the electromagnetic properties of the imaged surface. Thus, the obtained measurements

allow for subsequent data interpretation to recover useful information.

2.1.2 Basic Properties of Side-Looking Radars

To illustrate the special characteristics of side-looking SAR systems, we consider a radar

system mounted on a platform, either airborne or spaceborne, as depicted in Fig. 2.1. The

sensor is 
ying at altitude H above ground, its distance from the target to be imaged is

R0 and the incidence angle is denoted by �v. Hence, an emitted pulse is received after

�t = 2R0=c, where c � 3:0 � 108m/s is the speed of light. We assume that the emitted

waves can be described by rectangular pulses of duration � that are repeatedly sent with

the pulse repetition frequency fT = 1=T , with T � � . The minimum distance between

two distinguishable di�erent objects, i.e. the sensor resolution, can then be calculated to be

�R = c�=2. For the ground resolution this results in

rx =
c�

2 sin �v
; (2.1)

as shown in Fig. 2.3. We remark that rx is independent of H and that better resolutions are

achieved by larger values of �v. Hence, resolution is improved with growing range distance
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Figure 2.3: Resolution of SAR in range and azimuth. Left: Imaging geometry in range

direction. Right: Target illumination by the moving sensor used to generate the

synthetic aperture.

x. For RADARSAT, �v varies between 20Æ and 59Æ depending on the used mode. Since �v
is constrained to a certain range, e.g. due to the signal-to-noise ratio, the main parameter

to increase resolution remains the pulse length � . The emitted pulses must be as short as

possible, but at the same time, they must contain enough energy to guarantee a suÆcient

amount of re
ected intensity at the receiver. However, the theoretical optimal signal, a

Dirac pulse, is technically not realizable.

The resolution in azimuth denoted by ry depends on the distance R0 and on the antenna

aperture in azimuth �y. The width of the main antenna lobe at -3dB is given by

�y =
�

D
; (2.2)

where � is the wavelength of the emitted signal and D denotes the antenna length in

azimuth. The resolution in azimuth direction can then shown to be

ry = �yR0 =
�R0

D
=

�H

D cos �v
(2.3)

and depends mainly on the altitudeH, the wavelength � and the antenna size D. Variations

of H and � are rather limited for physical reasons, so that the antenna size D remains the

only means to increase resolution. Naturally, D is constrained for practical reasons.

Considering the ERS satellites for which � = 37:1�s, �v = 23Æ, � = 5:3cm, D = 10m

and H = 780km, this yields resolutions of rx = 14:2km and ry = 4:5km. For practical

applications this result is not acceptable and a special technique is used to considerably

increase resolution in range and azimuth.

2.1.3 Pulse Compression

The range resolution can be dramatically increased by a technique called pulse compression.

In this case, the radar does not emit a rectangular signal modulated by a carrier frequency
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fc, but a signal of duration � with a linearly modulated frequency called chirp [L�uke92].

The phase of the emitted signal which is limited in time by �t = � is given by

�x(t) = 2�

 
fct+

Kt2

2

!
; (2.4)

with the signal bandwidth B = K� . The received signal is passed through a matched �lter

[L�uke90] which is equivalent to a convolution with an ideal chirp. It can be demonstrated

[Bamler] that the range resolution is then determined by

rx =
c

2B sin �v
: (2.5)

Compared to the previous case, this is equivalent to emitting a rectangular pulse of duration

� 0 = 1=B. For the case of ERS which uses a bandwidth of B = 15:5MHz this results in a

range resolution of rx = 25m instead of rx = 14:2km.

2.1.4 Synthetic Aperture

A frequency modulation similar to the one of the pulse compression in range can be obtained

by using the Doppler e�ect in the azimuth direction, which again allows to improve the

resolution. Flying at speed v, the sensor travels the distance �y = v�t within time �t.

Furthermore, we assume that at time t = 0 the platform is at y = 0, where the radial

distance R0 to a given target is minimal. Since the traveled distance �y is small compared

to R0, we can approximate the distance R(t) to the target as a function of time t = y=v by

R(t) � R0 +
v2t2

2R0

; (2.6)

which results in a phase shift of

�y(t) = 2�fc
2R(t)

c
=

2�

�

 
2R0 +

v2t2

R0

!
(2.7)

between emitted and received signal.

This can be interpreted as another linear modulation of the frequency as a function of

time t and is processed in the same way as the pulse compression by employing a matched

�lter. The azimuthal resolution is now derived using this equivalence and the fact that a

given target stays within the antenna beam of width R0�y on ground for the time �t =

R0�y=v, as illustrated in Fig. 2.3. In this way, the platform movement simulates a larger

antenna aperture, also called synthetic aperture, with increased resolution of

ry =
D

2
: (2.8)

Consequently, the synthetic aperture neither depends on the wavelength, nor on the distance

to the target, which is of particular interest for spaceborne radar systems. In contrast to

ry = 4:5km, now a resolution of ry = 5m is achieved for the ERS satellites with D = 10m.
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Figure 2.4: Spectral and correlation properties of complex SAR data. Clockwise: Incoher-

ently averaged power spectrum in range direction, incoherently averaged power

spectrum in azimuth direction, corresponding auto-correlation functions in az-

imuth and range. The plots are derived from real data explaining the skewness

of the power spectra, in contrast to theoretically expected results.

We only shortly mention that several advanced signal processing techniques are needed

to reach this theoretical resolution. Methods to compensate e�ects like range migration

of the target and a good focusing are necessary. This especially applies for airborne SAR

systems, since altitude and speed of the platform are not perfectly constant.

2.1.5 Spectral Properties of SAR Images

In practice, the matched �lters used for SAR processing in range and azimuth are weighted

by windowing functions, like Hamming windows, in order to attenuate secondary side-lobes

in the spatial domain. The incoherently averaged power spectra in range and azimuth for a

single look complex SAR image are displayed in Fig. 2.4. In addition to the used weighting

function, the form of the azimuth spectrum also depends on the antenna gain. We note

that the spectra do not extend over the full bandwidth, which is equivalent to a slight
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oversampling of the signal. Thus, without losing information, the signal can be resampled

to its bandwidth, reducing the amount of data to be stored.

The non-whiteness of the displayed spectra implies a spatial correlation between neigh-

boring image pixels [Raney], which is introduced by the point-spread-function of the system,

i.e. by the SAR processing. The resulting auto-correlation functions in both directions are

also displayed in Fig. 2.4. It can be seen that the spatial correlation extends only to a few

pixels and quickly diminishes.

The phenomenon of non-white spectra is highly disturbing for SAR image interpretation

and �ltering techniques: It is either diÆcult to take into account or considerably slows down

computations. This becomes even more disturbing if the data are further oversampled. A

simple solution to this problem consists in subsampling the data to their bandwidth or even

more in order to reduce the e�ect of the system's point-spread-function.

2.2 Radiometrical and Geometrical E�ects

In this section, we shortly review the radiometrical and geometrical characteristics of SAR

images focusing on topographically induced distortions. The basic geometry that causes

SAR layover and shadows is explained and the resulting e�ects on the radiometrical infor-

mation are discussed. We also comment on terrain-induced geometrical distortions. Al-

though the full knowledge of these e�ects is not crucial for the main part of this thesis, we

want at least to hint at them, since they are of interest for the general understanding of

SAR images.

2.2.1 Foreshortening, Layover and Shadows in SAR Imagery

As opposed to optical imaging devices, SAR systems actually detect the distance between

the sensor emitting a microwave pulse and the target re
ecting the energy back to the

receiving antenna. This range measurement principle leads to speci�c geometric distortions

in the processed SAR image, which make SAR images more diÆcult to interpret than

optical images, especially for unexperienced users. The e�ects that will be described here

mainly occur in mountainous regions, i.e. regions of rough terrain. The imaging of 
at, e.g.

agricultural, areas is not a�ected by this kind of degradation.

The most relevant SAR speci�c topographically induced distortions are illustrated in

Fig. 2.5 and can be summarized as follows [Gelautz]:

� Foreshortening: For slopes facing the sensor, the area on the ground that is mapped

onto one SAR resolution cell is larger than in the case of 
at terrain. This so-called

foreshortening situation has two consequences: 1) Due to the change in ground res-

olution, foreshortening areas appear compressed in SAR images, i.e. their extension

in range direction is reduced. 2) Foreshortening areas are characterized by brighter

image gray values. The received energy within a resolution cell is higher due to the

larger imaged area.
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Figure 2.5: Slant range illustration of topographically induced radiometrical and geomet-

rical distortions. Both the received energy at the antenna and the slant range

resolution are a�ected by the imaged terrain. The di�erent resolutions in slant

and ground range are visible. For a proper interpretation of SAR data of rough

terrain these e�ects have to be compensated.

� Layover: Layover is an extreme case of foreshortening and occurs where, due to steep

terrain slopes, the top of a mountain is closer to the sensor than its bottom. Layover

areas appear as particularly bright regions in the image with an inverted geometrical

order. In Fig. 2.5, this is depicted by points three and four: Note the reversed position

of these points in the slant range image compared to their actual location in ground

coordinates.

� Elongation: In contrast to the foreshortening e�ect, slopes facing away from the

sensor lead to rather dark, elongated regions in SAR images. The explanation for this

behavior is analogous to the one of foreshortening.

� Shadows: Similarly to optical images, areas, which are not illuminated by the radar

beam, are called radar shadows. In the image, shadow areas appear as dark regions

corrupted only by thermal noise.

We note that the topography of the sensed area not only a�ects the radiometry of the data

(bright layover and foreshortening areas, dark shadow areas), but also their geometry by

changing the image resolution, called slant range resolution, in comparison with the ground

range resolution. In practical SAR systems the slant range resolution is constant yielding a

varying ground range resolution which depends on the topography, i.e. the terrain slopes.
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2.2.2 Radiometric Correction

For radiometric correction of SAR layover areas, the energy accumulated in one image pixel

has to be redistributed among those ground resolution cells, which are mapped onto that

particular pixel. This problem of energy redistribution is also encountered in foreshortening

areas, where each image pixel contains the energy from a larger area, comprising generally

more than one ground resolution cell. Concerned terrain facets on a digital elevation model

(DEM) are adjacent to each other and can be approximated to have identical local inci-

dence angles and re
ectivity. Basically, the radiometric correction [Pairman, Ulander] can

therefore be performed by a division by the size of the imaged area, which, as a �rst ap-

proximation, is a function of the local incidence angle. In general, the local incidence angle

is calculated by using DEMs of similar or, if available, higher resolution.

2.2.3 Geometric Correction

Geometrically induced e�ects have to be corrected as well: The slant range image must

be resampled to its nominal ground resolution. This procedure of minimizing geometrical

distortions and resampling the image to a homogeneous, prede�ned map grid, e.g. to the

Universal Transversal Mercator (UTM) grid, is called geocoding [Schreier, Small]. To per-

form this operation the exact elevation of each pixel must be known which is usually taken

from a DEM. It is clear that the success of accurate geocoding, as for radiometric correction,

depends on the DEM quality and its resolution. The purpose of geocoding is to generate

a map-like representation of the satellite image, where the SAR image is aligned with a

Cartesic map projection grid. Otherwise, uncorrected data can hardly be interpreted due

to e�ects in slant range images, such as e.g. mountains which appear to be leaning towards

the sensor.

2.3 SAR Image Statistics

SAR images are subject to a phenomenon called speckle that a�ects all coherent imaging

systems and, therefore, can be observed in laser [Goodman], acoustic and radar images.

Basically, this usually disturbing e�ect is caused by random interferences, either construc-

tive or destructive, between the electromagnetic waves which are re
ected from di�erent

scatterers present in the imaged area. Comparing SAR images to optical data, a clear dif-

ference becomes visible: In contrast to incoherently imaged scenes, SAR images appear to

be a�ected by a granular and rather strong noise named speckle. This e�ect is well-known

since many years and has been studied intensively in laser imaging. Speckle becomes visible

only in the detected amplitude or intensity signal. The complex signal by itself is distorted

by thermal noise and signal processing induced e�ects only. As a consequence of the speckle

phenomenon, the interpretation of detected SAR images is highly disturbed and cannot be

done with standard tools developed for non-coherent imagery.
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In the following, we shortly outline the causes for speckle noise and present its statis-

tical properties, i.e. the SAR image statistics, which are necessary for understanding SAR

imagery and are the basis for a further statistical SAR image analysis.

2.3.1 Coherent Imaging

Since the microscopic structures of the imaged re
ecting surface, which cause interferences

leading to speckle, are unknown, the image characteristics have to be described statistically.

Within a rough, i.e. not specular, imaged area we assume an ensemble of scatterers possess-

ing identical macroscopic but varying microscopic properties. In this case, the backscattered

�eld Ei of one of these microscopic objects resulting from an incoming fully polarized wave

is described by

Ei = Ei0 exp
�
j(!t� 2kRi + �i)

�
= Ei0 exp(j�i); (2.9)

where Ei0 is the magnitude of scatterer i, k is the wave number, ! denotes the corresponding

angular frequency, Ri is the distance between the antenna and scatterer i and �i is a phase

shift. The resulting received complex wave �eld E can now be interpreted as the sum of all

N individual scatterers i with di�erent magnitudes Ei0 and phases �i:

E =
NX
i=1

Ei0 exp(j�i) = jEj exp(j�) (2.10)

This process known as random walk is illustrated in Fig. 2.6. The recorded signal can be in-

terpreted as a superposition of the re
ections of a large number of individual scatterers with

di�erent uniformly distributed phases and di�erent statistically independent magnitudes.

2.3.2 Statistical Properties of the Complex Signal

By employing the random walk model, we are able to derive several properties of the received

signal. Before presenting the resulting probability density functions of the backscattered

wave E, we shortly enumerate the necessary assumptions under which they are found:

� Magnitude and phase of the scatterers are statistically independent, allowing to obtain

the received signal by a simple summation of the individual contributions. Interactions

between scatterers are neglected.

� The phase of the scatterers is uniformly distributed between 0 and 2�, i.e. speckle is

assumed to be fully developed [Tur]. This assumption does not apply for re
ections

from specular scatterers.

� The number of individual scatterers N is high, implying real and imaginary parts of

E to be Gaussian distributed with zero mean and to be statistically independent.

� The resulting amplitude jEj must be di�erent from any other single contributing

amplitude jEij.
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Figure 2.6: Random walk in the complex plane. The complex wave E is composed of a

superposition of N contributing backscattered waves with random phases. Sta-

tistically, real and imaginary parts of E have zero mean, are Gaussian distributed

and determine the magnitude of E by means of their variance.

Under these assumptions, we �nd for the �rst and second order moments of the real and

imaginary parts of E:

EfRe(E)g =
NX
i=1

EfEi0gEfcos �ig = 0; (2.11)

EfIm(E)g =
NX
i=1

EfEi0gEfsin�ig = 0; (2.12)

EfRe(E)2g =
NX
i=1

NX
j=1

EfEi0Ej0gEfcos �i cos�jg =
N

2
EfEi0

2g = s2 (2.13)

and

EfIm(E)2g =
NX
i=1

NX
j=1

EfEi0Ej0gEfsin�i sin�jg =
N

2
EfEi0

2g = s2: (2.14)
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Real and imaginary parts can be shown to be uncorrelated by computing

EfRe(E)Im(E)g =
NX
i=1

NX
j=1

EfEi0Ej0gEfcos �i sin�jg = EfRe(E)gEfIm(E)g = 0 (2.15)

and obey a Gaussian distribution with N (0; s2) according to the central limit theorem, since

the number of scatterers N is assumed to be large. We remark that 2s2 is equivalent to the

so-called radar re
ectivity of the considered pixel. Neglecting sensor noise, this quantity

is proportional to the radar backscatter coeÆcient or cross-section. The theoretical and

experimentally measured distributions for the real and imaginary parts of E, as well as for

the following distributions derived below, are displayed in Fig. 2.7.

Distributions of amplitude and phase

Using these assumptions, it is straightforward to derive the probability density functions

(pdfs) for amplitude and phase of E:

pjEj(E0) =
E0

s2
exp

 
�E

2
0

2s2

!
(2.16)

and

p�(�0) =
1

2�
; (2.17)

for E0 � 0 and �0 2 (��; �] with s the standard deviation of the real and imaginary parts.

The �rst two moments of this resulting Rayleigh distribution for the amplitude are given

by

EfjEjg =
r
�

2
s; EfjEj2g = 2s2 (2.18)

yielding for the variance

V ar(jEj) = �2
jEj

=

�
2� �

2

�
s2: (2.19)

Distribution of the intensity

In the radar community, it is customary to consider not the amplitude but the measured

intensity P of the received wave. After having derived pjEj in Eq. 2.16, we set P = jEj2 in
order to �nd the �

2
-distribution with two degrees of freedom, i.e. the exponential distribu-

tion

pP (P0) =
1

2s2
exp

�
� P0

2s2

�
; (2.20)

for P0 � 0 with its moments

EfPg = 2s2; EfP 2g = 2 � EfPg2 = 8s4 (2.21)
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Figure 2.7: Analytically and experimentally derived SAR image distributions. Clock-

wise: Theoretical distributions (solid) for intensity, amplitude, phase and

real/imaginary part of a single-look SAR image for �I = �S = 2s2 = 1. These

distributions are in good accordance with normalized histograms (dotted) of

small stationary parts of the images shown in Fig. 2.8.

and the variance

V ar(P ) = �P
2 = EfPg2 = 4s4: (2.22)

We note that for the exponential distribution, standard deviation and mean of the re
ected

intensity are equal. For a widely used measure in the SAR community, known as coeÆcient

of variation CVP , which is the ratio of these two values, this results in

CVP
2 =

V ar(P )

EfPg2 = 1 (2.23)

showing the high statistical uncertainty of the measured intensity. This uncertainty is

directly re
ected in the noisy appearance of detected SAR images and is interpreted as

speckle noise. The measure given here is also known as noise coeÆcient of variation when

the radar re
ectivity is assumed to be uniform, i.e. variations are caused by speckle alone.

It is clear that 
uctuations of the re
ectivity, not yet considered here, also in
uence the

coeÆcient of variation.
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Figure 2.8: Complex X-SAR scene (512 � 512 pixels). Clockwise: Amplitude, phase, imag-

inary and real part of the complex data. The e�ect of speckle is clearly visible

throughout the whole amplitude image. The uniformly distributed phase does

not contain any useful information, unless used for interferometric purposes.

To summarize, imaging a slightly rough area of uniform backscatter results in an unpre-

dictable, only statistically describable value of jEj varying around a certain mean due to

di�erent phase shifts of the contributing scatterers. Examples for the measured signal in

its di�erent representations and the corresponding pdfs are illustrated in Figs. 2.7 and 2.8.

The intensity image not shown here is similar to the amplitude image but possesses a much

higher dynamic range. We want to emphasize the fact that all these relations only hold in
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the case of fully developed speckle [Tur]. This implies that all scatterers contribute in an

equal way to the re
ected energy. In the case of one or more dominant scatterers within

the imaged area the presented results are at best of limited use.

2.3.3 Statistical Properties of Multi-Look Data

SAR images are often processed in a way that reduces the speckle variance, i.e. the un-

certainty of the measured data, and, as a consequence, their noisy appearance. This is

called multi-looking and can either be performed in the frequency domain by incoherently

averaging di�erent parts of the spectrum (looks) or, in the spatial domain, by averaging

neighboring pixels. The variance of speckle is reduced by L, the number of incoherently

summed looks or pixels, i.e. V ar(P ) / 1=L. This increase in radiometric resolution is gained

at the expense of spatial resolution, which is reduced by the same factor. So, a compromise

between spatial and radiometric resolution has to be found. Among standard spaceborne

SAR image products, L = 3 is an often used number.

Basically, three di�erent representations of multi-look images exist depending on the

application and the kind of processing applied to the data. Two additional transformations

sometimes prove to be useful, either to reduce the high dynamics of SAR images or to

change the statistical characteristics of the data. The most important pdfs of speckle are

displayed in Fig. 2.9.

Intensity images

Multi-look intensity images are calculated by averaging L uncorrelated pixels with power

Pi. As mentioned, this modi�es the statistical properties of the resulting signal by reducing

its variance. For L-look data it can be shown that the resulting observed intensity

I =
1

L

LX
i=1

Pi (2.24)

is Gamma distributed with order parameter L and I0 � 0 according to

pI(I0) =
LLI0

L�1

�(L)s2L
exp

�
�LI0
2s2

�
: (2.25)

Its mean is given by

EfIg = 2s2 (2.26)

and its variance can be shown to be

V ar(I) = �I
2 =

4s4

L
: (2.27)

In order to bring this distribution into a more suitable form for Bayesian data interpretation,

we perform a change of variables and set EfIg = 2s2 = �I . Hence, we obtain the conditional

probability density function, also known as likelihood function of I given its mean value �I

pI(I0j�I) =
LLI0

L�1

�IL�(L)
exp

�
�LI0
�I

�
(2.28)
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with conditional mean

EfIj�Ig = �I (2.29)

and variance

V ar(Ij�I) = �I
2 =

�I
2

L
: (2.30)

Calculating the coeÆcient of variation for intensity images yields

CVI
2 =

V ar(Ij�I)
�I2

=
1

L
: (2.31)

An interesting property of this pdf around a given mean value �I is its interpretation as

a multiplicative noise. It can be seen that the distribution of I with mean �I is identical

to the one obtained by multiplying a �xed cross-section �I with a noise process nI that is

distributed according to pI(I0j�I = 1):

I = �I � nI = �I � I�=1 (2.32)

Due to this property, speckle is considered to be a multiplicative noise with

pnI (I0) = pI(I0j�I = 1); (2.33)

which manifests itself only in the amplitude or intensity signal.

Square-root intensity images

Multi-look square-root intensity images are calculated by averaging L uncorrelated pix-

els with power Pi and taking the square-root, which is simply equivalent to taking the

square-root of a multi-look intensity image. Therefore, the e�ect of reducing the variance

is equivalent.

S =

vuut 1

L

LX
i=1

Pi (2.34)

The corresponding distribution of S is easily derived from the preceding equations by a

change of variables with

S =
p
I and �S =

p
�I (2.35)

and results in the conditional square-root Gamma distribution for S0 � 0

pS(S0j�S) = 2
S0

2L�1LL

�S2L�(L)
exp

 
�LS0

2

�S2

!
; (2.36)

which is the Rayleigh distribution for L = 1 and �S
2 = 2s2 = �I . The conditional mean

and variance are found to be

EfSj�Sg =
�(L+ 0:5)

�(L)
p
L
�S 6= �S (2.37)
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Figure 2.9: SAR image pdfs for di�erent values of L and di�erent mean values. Left: Pdfs

for intensity (top), square-root intensity (center) and log-intensity (bottom)

for L = 1 (solid), L = 2 (dotted), L = 4 (dashed) and L = 8 (dot-dashed)

with �I = �S = 1, �Z = log 1. Right: Pdfs for intensity (top), square-root

intensity (center) and log-intensity (bottom) for �I = �S = 1, �Z = log 1

(solid), �I = �S = 2, �Z = log 4 (dotted), �I = �S = 4, �Z = log 16 (dashed)

and �I = �S = 8, �Z = log 64 (dot-dashed) with L = 4.
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and

V ar(Sj�S) = �S
2 = �S

2 �EfSj�Sg2 = �S
2

 
1� �(L+ 0:5)2

�(L)2L

!
: (2.38)

This yields for the coeÆcient of variation

CVS
2 =

�S
2

EfSj�Sg
=

�(L)2L

�(L+ 0:5)2
� 1: (2.39)

By analogy to the intensity case considered before, this can be interpreted again as a

multiplicative noise nS a�ecting the mean value �S with

S =
p
I =

p
�I � nI = �S � nS = �S � S�S=1 (2.40)

and

pnS(S0) = pS(S0j�S = 1): (2.41)

Amplitude images

Another means to reduce speckle variance and to take advantage of a reduced dynamic range

is the calculation of multi-look amplitude images. In contrast to square-root images, the

resulting distribution cannot be derived in a closed form. Since the multi-looked amplitude

is computed by

A =
1

L

LX
i=1

p
Pi (2.42)

the pdf of A is determined by a convolution of L Rayleigh distributions.

As a consequence, images of this kind are seldom used, statistical conclusions are diÆ-

cult to be drawn, and accurate interpretation cannot be easily done. However, amplitude

images exhibit one nice property: In contrast to square-root images, they easily permit the

computation of L out of the measured coeÆcient of variation CVA, which is given by

CVA
2 =

�A
2

�A2
=

0:52272

L
: (2.43)

By �A we denote the standard deviation and by �A the mean of A. Since the coeÆcients of

variation for amplitude and square-root images are almost identical as shown in Fig. 2.10,

i.e. the ratio of standard deviation to mean is rather similar, this allows for square-root

intensity images to analytically calculate L from an analysis of mean and variance without

having to deal with the Gamma functions of Eq. 2.39. Of course, it is also possible to

directly estimate L from the intensity image.

Log-intensity images

As we already pointed out, speckle found in SAR intensity or amplitude images can be

regarded as a multiplicative process. However, many image processing techniques assume
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Figure 2.10: CoeÆcient of variation for di�erent number of looks L. CV 2 is shown for

intensity data (solid), for square-root intensity data (dotted) and amplitude

data (dashed). The di�erence between the two latter is negligible.

that an image is a�ected only by additive noise and perform poorly otherwise. This problem,

which hinders the analysis of SAR images containing multiplicative speckle, can be partly

overcome by taking the logarithm of the image prior to interpretation. The log-operation

transforms the speckle to being additive [Arsenault, Hoekman]:

Z = log I = log �I + log nI = �Z + nZ (2.44)

with its corresponding pdf resulting in

pZ(Z0j�Z) =
exp

�
L
�
Z0 � �Z + logL

�
� exp

�
Z0 � �Z + logL

��
�(L)

; (2.45)

which is the Fisher-Tippett distribution for L = 1, with the following properties for mean,

variance and coeÆcient of variation [Caves]:

EfZj�Zg = �Z � logL+  (L); (2.46)

V ar(Zj�Z) =  0(L) (2.47)

and

CVZ
2 =

 0(L)�
�Z � logL+  (L)

�2 ; (2.48)
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where  (L) is the Digamma function,  0(L) its �rst derivative and �Z = log�I . Because

the disturbing noise is now additive, the shape of the distribution is the same regardless

of its mean value. The mean �Z only causes a shift of the distribution, a characteristic

property of additive noise.

Sometimes it is customary to represent the SAR data in decibels (dB). The image pixel

values are then transformed by

ZdB = 10 log10 I: (2.49)

This does not give any advantages for a machine-based interpretation of the image but is

useful for a more physical analysis of the data.

Log-amplitude images

Obviously, speckle can also be transformed to being additive by taking the logarithm of the

square-root intensity. However, this does not give any new insight, since this results in a

simple dilatation of the distribution compared to the log-intensity case. With

ZS = logS =
1

2
log I =

1

2
Z; (2.50)

one obtains

pZS (Z0j�ZS ) = 2pZ(2Z0j�ZS): (2.51)

Interpretation of the derived speckle distributions

We have presented the SAR image statistics under the assumption of a uniform re
ectivity.

The resulting distributions, that are illustrated in Fig. 2.9, con�rm the rather noisy visual

appearance of detected images. The measured data are distributed around their mean value

in a non-Gaussian way, and are either Gamma, square-root Gamma or Fisher-Tippett-like

distributed, depending on their representation.

If the logarithm is not applied, the observed noise called speckle shows a multiplicative

behavior, signi�cantly reducing the performance of commonly used image analysis and

interpretation tools. To circumvent this problem, SAR data may be transformed to the

log-space making the noise additive. However, the dynamics of the data are signi�cantly

and non-linearly modi�ed as shown in the lower right plot of Fig. 2.9, where the almost

equally spaced distributions are given for mean values �I of 1; 4; 16 and 64.

Another drawback for SAR image interpretation is the fact that the data do not possess

Gaussian properties. This especially applies for low values of L, which are desirable to

preserve spatial resolution. If data are multi-looked a good number of times, e.g. L � 8,

the resulting distributions in the log-space can be well approximated by a Gaussian for

both intensity and amplitude, as illustrated. In this case, the log-signal is a�ected by an

approximately Gaussian distributed additive noise.

On the contrary, it is highly desirable to preserve spatial resolution and the high dy-

namics of the data. In that case, special techniques are necessary to deal with the strong

multiplicative non-Gaussian speckle noise.



2.3 SAR Image Statistics 29

2.3.4 Correlation Properties of Speckle

Based on the �rst order statistics with mean and variance, several statistical properties of

speckle assuming a homogeneous re
ectivity have been derived. Nonetheless, this does not

explain the granular visual appearance of spatial structures in SAR images which is due

to the correlation of speckle. For that reason, we now consider in more detail the second

order statistics of speckle taking into account the correlation properties between neighboring

pixels.

Assuming a stationary process and statistical independence between the mean intensity

�I and the speckle noise nI we �nd for the two-dimensional auto-correlation function of I

RI(�x;�y) = EfI(x; y) � I(x+�x; y +�y)g
= Ef�I(x; y)nI(x; y) � �I(x+�x; y +�y)nI(x+�x; y +�y)g
= �2I �RnI

(�x;�y); (2.52)

where RnI
(�x;�y) is the auto-correlation function for speckle, which is given by

RnI
(�x;�y) = 1 +

1

L
sinc2

 
�x

rx

!
sinc2

 
�y

ry

!
: (2.53)

Here rx and ry denote the system's resolution in the x and y direction, i.e. in range and

azimuth. Hence, this yields the auto-covariance function as qualitatively illustrated in

Fig. 2.11

CnI
(�x;�y) =

1

L
sinc2

 
�x

rx

!
sinc2

 
�y

ry

!
: (2.54)

This correlation, which results from the SAR processing, i.e. the system's point-spread-

function, is responsible for the granular appearance of speckle. We also see that CnI
con-

verges towards zero with L growing, i.e. multi-looking reduces the speckle correlation. In

fact, speckle correlation is an important problem for automated image interpretation. Since

it is usually not considered, which is often the only means to keep algorithms tractable,

some useful information is lost.

Besides multi-looking the data in the spatial or the frequency domain, several other

approaches for reducing the speckle correlation are known [Oliver98, Quegan]. One example

are interpolation techniques in the Fourier domain. Another often used method consists in

subsampling the data, which reduces the correlation much faster compared to multi-looking,

i.e. with less loss of resolution, but, on the contrary, does not increase the radiometric

resolution.

2.3.5 Statistical Properties of SARData with Non-Uniform Cross-Section

Until now, we have only considered the case of a uniform cross-section to determine the

statistics of SAR images and the statistical properties of the speckle phenomenon. The

statistics of real images, however, do not obey the above derived distributions, since either

speckle is not fully developed, as in urban areas [Tur], or the underlying cross-section is not
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Figure 2.11: Qualitative illustration of the speckle auto-covariance function with di�erent

resolutions in range and azimuth.

uniform but shows some textural activity. It is clear, that for the latter case the resulting

SAR image distribution depends both on the statistical properties of the backscatter itself

and on those of speckle. The following description of the cross-section properties already

belongs to scene-modeling, as we use prior assumptions for the noise-free scene, which will

be intensively discussed in the following chapters.

Many areas of natural clutter in SAR images have been shown to have a cross-section �

that can be described by a Gamma distribution [Oliver91]

p�(�0j��) =
���0

��1

����(�)
exp

�
���0
��

�
(2.55)

for �0 � 0, where �� is the expected mean and � is the order parameter with � =

��
2=V ar(�). It can be demonstrated [Caves] that, together with the speckle distribution,

which is also Gamma distributed according to Eq. 2.28, this results in the K-distribution

for the intensity I of the observed image with I0 � 0:

pI(I0j��) =
2

I0

�
L�I0

��

�(L+�)=2 1

�(L)�(�)
K��L

 
2

s
L�I0

��

!
(2.56)

Here, K��L denotes the modi�ed Bessel function of order (� � L). The appearance of

the Bessel function makes the derivation of exact analytical estimates for � and �� from
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the data diÆcult. Nevertheless, the estimated parameters of the K-distribution can be

used to discriminate between textures of di�erent roughness [Oliver93, Oliver94, Oliver98],

i.e. di�erent variances of the underlying cross-section, within the limits of the estimation

accuracy.

2.4 Summary

In this chapter, the following points have been discussed:

� SAR is a time-ranging system, which allows to generate images from backscattered

intensity of electromagnetic waves. To obtain an adequate resolution, techniques like

pulse compression and synthetic aperture are used.

� Radiometrical and geometrical information in SAR images are in
uenced by the to-

pography of the imaged scene. For that reason, SAR data usually require geometrical

correction and radiometrical calibration in combination with terrain correction to be

of use in cartography, for example.

� A phenomenon called speckle highly degrades the radiometric resolution of SAR im-

ages and hinders their interpretation. Speckle is considered as a multiplicative gran-

ular noise only visible in detected SAR data.

� In general, speckle noise shows some degree of correlation, which is due to the SAR

system's point-spread-function. However, this correlation is not considered in com-

monly used image processing techniques since it is diÆcult to be taken into account.

Consequently, the e�ect is often reduced by appropriate techniques, like subsampling.

� The statistics of speckle noise have been described because they are necessary to be

able to deal with this e�ect within a Bayesian framework. In the following, methods

will be discussed that rely on a probabilistic description of the speckle noise and of

the parameters to be estimated from the noisy data.
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In the last chapter, we have discussed the statistical properties of SAR images. Why have we

done this? To have a theoretically founded interpretation of data rather than a heuristical

and usually inaccurate approach, it is necessary to have some knowledge about the data to be

analyzed: What is the origin of the data, how are they processed, what are the characteristic

e�ects that have to be considered? These questions have been answered in the last chapter

by a statistical description of SAR images and, mainly, by illustrating the disturbing e�ect

of speckle. Since we have the statistical description of the SAR image degradation at hand,

a probabilistic data analysis allowing the extraction of di�erent kinds of information, which

may be encapsulated by stochastic or deterministic parametric models, can be performed.

Here, stochastic models better adapt to the data than deterministic ones and have a better

chance to extract information from unexpected data where deterministic models will fail.

The Bayesian approach allows a probabilistic description of the problem we are faced

with, i.e. estimation of the SAR cross-section and parameter estimation for parametric

models out of speckled data. In the �rst section of this chapter, we give a short review

of general Bayesian data analysis and parameter estimation and, in the second section, we

concentrate on its application for image processing in combination with Gibbs and Markov

random �elds, which serve as prior information, and discuss several of their properties.

3.1 Bayesian Estimation Theory

To introduce the problem of parameter estimation from any given data, we begin with the

opposite problem. Given a certain cause, its consequences can be described by means of

an existing model, either a deterministic or a stochastic one. This description is called the

forward model of the data. Consequently, a cause may have a number of possible outcomes,

that can be deduced if the model is known. We call this "deductive logic". In contrast

to this case, most scientists are faced with the reverse problem: Given certain outcomes of

an experiment, e.g a number of measurements or observations, the underlying cause must

be inferred. This is usually named "inductive logic" and is a much harder problem since

even for fully deterministic forward models, an inverse transformation may not exist. The

�ltering of a signal with an ideal low-pass is a good example: The �ltering (deductive logic)

yields a fully deterministic solution, but a unique solution for the inverse �ltering (inductive

logic) does not exist. A general illustration for induction and deduction is shown in Fig. 3.1.
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Figure 3.1: Deductive and inductive logic. Left: A cause X may have di�erent outcomes

Y depending on P (Y = yjX = x). Right: The observed e�ects Y are due to

several possible causes X each with probability P (X = xjY = y).

What can be done to determine a solution in such a case is to make the best inference,

i.e. to choose the most probable cause, based on the observed data and their forward model

in combination with any prior knowledge of the causes that we have or can obtain. To put

it with Herodotus' words (around 500 B.C.):

"A decision was wise, even though it led to disastrous consequences, if the evi-

dence at hand indicated it was the best one to make; and a decision was foolish,

even though it led to the happiest possible consequences, if it was unreasonable

to expect those consequences."

Consequently, two di�erent models play a major role for inference: A model of the un-

derlying cause or data and the forward model describing how the observation results from

these data. The latter is usually known with suÆcient but only limited accuracy, as a full

description of all physical processes leading to an observation is generally impossible. The

choice of the former highly in
uences the outcome of the inference. Therefore, it has to

be chosen with great care. The forward model for our particular case of SAR images, i.e.

the speckle characteristics, has been described in the preceding chapter. Possible choices of

data models and their impact on the estimation will be presented in the next section and

in later chapters, whereas the required theoretical tools for data analysis are described in

the following.

Mathematical notation used for probability measures

In contrast to a rigorous mathematical notation, we shortly introduce a simpli�ed math-

ematical description found in many publications about Markov and Gibbs random �elds,

which will be used throughout the rest of this thesis. We have chosen this notation for prac-

tical reasons since it allows an easier illustration of our results, although it is not always

fully exact from a mathematical point of view.

Basically, the following simpli�cations in comparison with a fully correct notation are

used in this thesis:

� We denote random variables by capital letters: X and Y are random variables.
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� Sample realizations of random variables are usually denoted by small letters, e.g. x

and y. However, instead of writing X(!) = x for an assignment of the value x to a

realization of X, we simplify by X = x.

� Instead of indexing pdfs with their corresponding random variable as in chapter two,

we characterize these functions by using the random variables as arguments: We

write p(X = x) instead of pX(x). As a consequence, p(X = x) and p(Y = y) are two

di�erent functions, denoting the pdfs of the random variables X and Y , respectively.

p(X = x) is sometimes abbreviated with p(x).

� For the sake of simplicity, we use p for both probability density and probability distri-

bution functions. Hence, p(X = x) denotes either the probability of X(!) = x or the

value of the probability density function of X at position x, according to the context.

3.1.1 Probability

Among scientists there are di�erent con
icting interpretations of the notion of probability

[Bayes, Bernoulli, Cox, Laplace]: The most popular one is surely the frequentist view,

which de�nes the probability P (Y = yjX = x) as the relative number of events Y that

occur for a given cause X. In contrast to this view is Bayesian probability, which de�nes

P (Y = yjX = x) as a measure of certainty or belief that Y follows the cause X. Some

people, especially frequentists, call Bayesians to be subjective, since the resulting Bayesian

induction requires the choice of a prior knowledge P (X = x) that encapsulates the degree

of certainty of the cause X assumed by the scientist.

An example for the frequentist and the Bayesian notion of probability can be given by the

probability of having a white Christmas, which can be regarded to be either frequentist, if

derived from meteorological observations over the years, or Bayesian, if derived from weather

conditions, say, one week earlier with the prior knowledge of the geographic location.

We do not want to continue a philosophical discussion, but state that Bayesian inference

allows us to select the most probable model, thus to reject highly biased, unprobable or

subjective prior assumptions that have no relevance or, as it is called, evidence to the data.

This property of model selection and the incorporation of prior knowledge make Bayesian

estimation theory a powerful tool for inductive logic and in particular for our case of SAR

image �ltering and information extraction.

Logical consistency

From a mathematical point of view, the ensuing three Kolmogorov axioms must be satis�ed

to guarantee consistency between di�erent conclusions drawn from probabilistic measures:

1. Positivity

P (X = xjI) � 0 (3.1)
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2. Certainty

P (X = xjX = x) = 1 (3.2)

3. Sum rule

P (X = x1 [X = x2jI) = P (X = x1jI) + P (X = x2jI) (3.3)

for x1 6= x2

Here, the variables x, x1 and x2 are outcomes of a random variable X and I denotes some

given background information about this process [Papoulis84]. In the following, random

variables are denoted by capital letters, e.g. X and Y and the corresponding sample real-

izations by small letters, e.g. x and y, respectively.

Bayes' theorem

The three axioms, as pointed out above, form the basic algebra of probability theory. All

following equations can be derived from them. The most important one is Bayes' [Bayes]

theorem

P (X = xjY = y; I) =
P (Y = yjX = x; I)P (X = xjI)

P (Y = yjI) ; (3.4)

which describes the probability of a hypothesis X given some data Y . Since X does not

depend on P (Y = yjI), the probability P (X = xjY = y; I) is proportional to the prob-

ability of the observation given the hypothesis P (Y = yjX = x; I) multiplied by a term

encapsulating prior information, P (X = xjI). The terms in Bayes' equation all have formal

names: P (Y = yjX = x; I) is known as the likelihood function, it describes the likelihood of

the data Y given a hypothesis X. The quantity on the right of the numerator, P (X = xjI),
is called prior probability and, in combination with the likelihood function and the evidence

P (Y = yjI), yields the posterior probability P (X = xjY = y; I).

For most cases of estimation of a parameter X from an observation Y the evidence term

is omitted because it acts as a normalization constant independent of X. However, as we

will see later, the evidence plays a crucial role for model selection.

Probability density function

For a continuous random variable Y the relationship between its probability density function

p(Y = yjI) and a probability P is given by

P (Y < y1jI) =
Z

y1

�1

p(Y = yjI)dy: (3.5)

Consequently, the probability that Y lies in the interval between y1 and y2 is given by

P (y1 � Y < y2jI) =
Z

y2

y1

p(Y = yjI)dy (3.6)
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and we �nd for in�nitesimal small intervals

P (Y 2 (y; y + dy]jI) = p(Y = yjI)dy: (3.7)

As a result, to preserve uniformity between the continuous and the discrete case and

since pdf may also stand for probability distribution function pertaining to a discrete set of

possibilities, we will denote anything related to probabilities by p in the following.

Marginalization and normalization

Another important technique often used in probability theory is marginalization. Marginal-

ization allows to deal with so-called nuisance parameters. These parameters, e.g. unwanted

instrumental parameters, which enter the process of inference, but are of no particular

interest for the estimation itself, can be integrated out:

p(X = xjI) =
Z +1

�1

p(X = x; Y = yjI)dy (3.8)

In the above equation, Y is interpreted as a nuisance parameter and is eliminated by

integrating over its whole space.

The last important property we want to mention is that of normalization. As in the

discrete case, the area under the pdf is always normalized to unity, i.e.Z +1

�1

p(Y = yjX = x; I)dy = 1: (3.9)

With this set of rules and theorems, we have enough tools at hand to address the problem

of probabilistic data analysis and parameter estimation within the Bayesian framework.

3.1.2 Parameter Estimation

Given a probability distribution or probability density function both denoted by p(X =

xjY = y) the task of parameter estimation is to infer a parameter value x̂ from an obser-

vation y. Within Bayesian inference this estimate x̂ is the most probable value with regard

to a given distribution. Formally, it does not play a role whether induction or deduction is

used here, since both X and Y can either be hypothesis or measurement. In any case, we

infer a variable X conditioned by a another variable Y .

To determine the most probable value of X, we have to �nd the value that maximizes

the probability p(X = xjY = y), i.e. we search for

x̂ = argmax
x

p(X = xjY = y): (3.10)

If p(X = xjY = y) is given analytically and well behaving, we can derive x̂ by using the

following conditions that must be ful�lled at the maximum of p(X = xjY = y):

dp(X = xjY = y)

dx

����
x=x̂

= 0 (3.11)
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and
d2p(X = xjY = y)

dx2

�����
x=x̂

< 0: (3.12)

To make analytical computations easier, the log-probability log p(X = xjY = y) is usually

used. This operation reduces the dynamics of p(X = xjY = y) while preserving its extrema,

since the logarithm is a monotonic function. Furthermore, the logarithm transforms the

product of two terms into a sum making it easier to deal with the posterior product p(Y =

yjX = x; I)p(X = xjI). Thus, the condition for the maximum of p(X = xjY = y) at X = x̂

can be rewritten as
d log p(X = yjY = y)

dx

����
x=x̂

= 0; (3.13)

where we neglect the condition for the second derivative.

Cram�er-Rao bound

We remark that x̂ is an estimate and therefore naturally a�ected by an error. For practical

applications, it is often necessary to evaluate the accuracy of the estimation to have a

measure of trust for x̂. Obviously, this measure should depend on the shape of p(X =

xjY = y). To describe the estimation uncertainty, the true value x of X can be considered

to lie in an interval around the estimate x̂, i.e.

x = x̂� �: (3.14)

For the Gaussian case, this �, which is nothing but the standard deviation of the estimator,

can be computed by

�2 =

 
�d

2 log p(X = xjY = y)

dx2

�����
x=x̂

!�1

: (3.15)

The positivity of �2 directly follows from Eq. 3.12. The probability of the true x to lie in

the interval from x̂� � to x̂+ � can then be found to be

P (x̂� � � x < x̂+ �jY; I) = 0:67: (3.16)

For this probability cannot be increased, the variance �2 of the estimation error is naturally

bounded and is determined by the so-called Cram�er-Rao bound [Kroschel], which is de�ned

as

�2 � E

(
�d

2 log p(X = xjY = y)

dx2

�����
x=x̂

)�1

(3.17)

and describes the lowest possible variance of the parameter to be estimated. Note that the

Cram�er-Rao bound is de�ned for p(X = xjY = y) being the likelihood function, but similar

bounds can be derived if additional prior knowledge is used [Kroschel].

To illustrate these �ndings, we give an instructive example introducing two basic estima-

tors: We wish to estimate the value of an unknown parameter X that is a�ected by white

additive Gaussian noise N (�; �2) with known mean � and variance �2. For simplicity we
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assume � = 0. The resulting likelihood function for the observed random process Y is given

by

p(Y = yjX = x) =
1p
2��2

exp

 
�(y � x)2

2�2

!
: (3.18)

Note, that in the case of Gaussian noise, as in this example, the general estimators that

will be presented below correspond to the least-mean-squares (LMS) and conditional least-

mean-squares (CLMS) estimators.

Maximum likelihood estimation (ML)

To infer the parameter X, we use Bayes' equation (Eq. 3.4) for inference and �nd for

Gaussian additive noise

p(X = xjY = y) / p(Y = yjX = x); (3.19)

if no further knowledge about X is given, i.e. if p(X = x) is taken to be a uniform distri-

bution. By maximizing p(X = xjY = y) as a function of x we obtain

x̂ML = argmax
x

p(Y = yjX = x) = y; (3.20)

which is called the maximum likelihood (ML) estimate of X. For ML estimation only

knowledge or assumptions about the noise, i.e. the likelihood function, is required [Kreyszig,

Kroschel]. Concerning the Cram�er-Rao bound of the obtained ML estimate, we �nd that

the interval containing the true value of X with probability P = 0:67 is determined by the

standard deviation � of the additive noise. From x̂ = y, we see that no further knowledge

about X has been gained since the best estimate of X is Y itself.

Maximum a posteriori estimation (MAP)

Let us now assume that we know, e.g. from a study of the physical causes of X, that X is

Gaussian distributed, this time withN (0; �X
2) and that �X is known as well. Consequently,

we can introduce this prior knowledge into our estimation problem by writing

p(X = x) =
1p

2��X2
exp

 
� x2

2�X2

!
: (3.21)

The maximization of the posterior probability p(X = xjY = y) then yields

x̂MAP = argmax
x

p(X = xjY = y) =
�X

2

�2 + �X2
y 6= x̂ML (3.22)

and is called maximum a posteriori (MAP) estimate. The MAP estimate is not equal to the

ML estimate and we notice that x̂MAP is drawn from the observed value y towards zero,

depending on a function of the variances of the corresponding variables. This should not

surprise us because the true mean value EfXg = 0 is encapsulated in the prior distribution

of X.



40 Bayesian Image Analysis

Calculating the standard deviation, or con�dence interval, of the MAP estimate x̂MAP

from the correct value x of the process X, we �nd after some algebra

x = x̂MAP �
�q

1 + �2

�X
2

= x̂MAP � �MAP ; (3.23)

which is lower than in the ML case. The variance of the MAP estimator decreases with

smaller values of �X as expected, because the uncertainty about X imposed by the prior

diminishes.

Comments on ML and MAP estimation

So, why should anyone use the ML estimator? In fact, the ML estimator is a MAP estimator,

where, due to no available knowledge about the parameter to be estimated, a uniform prior

distribution is used. We will outline later, that, in this case, a so-called non-informative

prior should be employed.

The problem of MAP estimation, which is also known as the �rst level of Bayesian

inference, and a point often subject to strong critics, is the choice of the correct prior

distribution. We can deduce from the presented example that a wrong prior, say with

EfXg 6= 0, will yield biased results if the true mean is indeed zero. The estimated values

will be drawn from the observed values towards the mean of the employed Gaussian prior.

Hence, any prior information and its related parameters must be chosen carefully in order

not to pull the �nal estimate away from the correct solution, but, on the contrary, to bring

it closer. To achieve this goal it is imperative to select the prior with regard to the data at

hand. A �xed prior that is not adapted to the actually measured data Y = y can always

be suspected to lead to unreliable or unrealistic estimates.

3.1.3 Model Selection

The model selection process, or second level of Bayesian inference, is one of the major

advantages of Bayesian estimation theory and, in our opinion, justi�es the employment of

prior knowledge, which is a highly disputed issue among experts. Using the same formalism

as before, the probability of a certain modelM given the observed process Y can be written

as

p(M jY = y) =
p(Y = yjM)p(M)

p(Y = y)
: (3.24)

Usually, a prior p(M) favoring di�erent models is not considered, although this is in principle

possible. Hence, we assume p(M) to be uniform. By analogy to Eq. 3.19, the posterior

probability is then equivalent to the likelihood function of the data Y given the model M :

p(M jY = y) / p(Y = yjM) (3.25)

The term p(Y = yjM) already appeared in Bayes' equation as the evidence, but was ne-

glected because it served only as a normalization constant. Now, p(Y = yjM) becomes
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crucial for the determination of the model quality. The evidence is obtained by marginal-

ization, i.e. by integration over X, and results in

p(Y = yjM) =

Z +1

�1

p(Y = yjX = x;M)p(X = xjM)dx: (3.26)

Considering a library of di�erent models M1; : : : ;MN , this equation enables us to calculate

the likelihood of each model and, thus, to select the most probable one in light of the

measured random variable Y . Note that the likelihood p(Y = yjX = x;M) can often be

replaced by p(Y = yjX = x) when the model is already completely encapsulated in X.

Approximation and Interpretation of the Evidence

For multi-dimensional data and already moderately complicated pdfs, an analytical inte-

gration over the posterior product p(Y = yjX = x)p(X = xjM) is no more feasible. In

many cases, especially with uni-modal pdfs, however, the posterior can be approximated

by a Gaussian distribution centered around the MAP estimate of X, i.e. around the max-

imum of the posterior [MacKay]. In the one dimensional case displayed in Fig. 3.2, this

approximation then yields for the evidence

p(Y = yjM) � p(Y = yjX = x̂MAP )p(X = x̂MAP jM)
p
2��MAP

2 (3.27)

� p(Y = yjX = x̂MAP ) � 
;

where �MAP denotes the standard deviation of the posterior distribution and 
 is known

as the Occam factor. For the case of good data with �MAP � �, i.e. the width of the

prior is much larger than the uncertainty � of the likelihood function, this factor punishes

over-complex models. As stated by William of Occam, an English Franciscan monk, in the

thirteenth century:

"Frustra �t per ultra quod potest �eri per pauciora" or "It is vain to do with

more what can be done with fewer".

Therefore, a good model must both be able to suÆciently explain the measured data and

have a limited complexity, i.e. the model should not be over-parameterized. However, the

Occam factor 
 by itself is not always relevant for the model selection process, e.g. when

the evidence is governed by the likelihood term p(Y = yjX = x̂MAP ), and its interpretation

may be misleading. For poor data, e.g. data a�ected by speckle noise, the above conclusion

may even be reversed, i.e. the Occam factor favors complex models to simpler ones [Blahut].

From Eq. 3.27 we see that the evidence is the product of 
 and the posterior �t at

x̂MAP to the data. Thus, if the Gaussian assumption is ful�lled, the Bayesian method for

model comparison by evaluation of the evidence is computationally no more demanding

than �nding the MAP estimate for each parameter and the corresponding width of the

posterior product.
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Figure 3.2: Approximation of the posterior (solid) by a Gaussian distribution (dashed). The

mean of the Gaussian is equal to the MAP estimate of X, since the posterior

reaches its maximum at this position.

Model selection example

To give an example, we go back to the estimation of a parameter X a�ected by additive

Gaussian noise as presented before. The same assumptions concerning mean and variance of

the noise apply, and X again is a realization of a Gaussian process with zero mean as in the

MAP estimation example. Furthermore, we assume �X = � for computational simplicity.

We know that Y is the sum of two statistically independent random Gaussian processes

of zero mean and variances �2 and �X
2, respectively. As of this, the variance of our

measurements is given by �Y
2 = �2 + �X

2. Assuming a uniform prior centered around

zero and of width 6
p
�2 + �X2 = 6

p
2� (a more conservative width would be 8

p
2�) to

approximately cover the full range (99%) of possible values of Y , we �nd with Eq. 3.26 for

the evidence of the ML estimation, i.e. the uniform prior

p(Y = yjMML) =
1

6
p
�2 + �X2

=
1

6
p
2�
: (3.28)

In a similar way, the evidence of the Gaussian prior employed for the MAP estimate with
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N (0; �X
2) yields

p(Y = yjMMAP ) =
1p

2�(�2 + �X2)
exp

 
� y2

2(�2 + �X2)

!
(3.29)

=
1p
4��2

exp

 
� y2

4�2

!
:

If �X is unknown, the above equation will also allow to determine its most probable value

with regard to the data. Considering a measurement with y = 0, we �nd for the ratio of

these two model evidences

p(Y = yjMMAP )

p(Y = yjMML)
=

6
p
2�p

4��2
� 2:394 (3.30)

saying that the Gaussian prior model is more than twice as probable as a uniform prior.

With increasing jyj this ratio will become smaller as the uniform model �ts better and the

Gaussian model assumption weakens. The ratio can be found to be unity for measurements

jyj = 2�

s
� log

p
�

3
p
2
� 1:868�: (3.31)

For smaller values of jyj, i.e. for about 81% of all observations, the Gaussian model used for

MAP estimation is more evident. This result could already be guessed from the narrower

con�dence interval of Eq. 3.23.

3.1.4 Non-Informative Priors and the Principle of Maximum Entropy

We stated before, that in the case of full ignorance of a parameter, a uniform prior is to

be employed. However, this assumption is not always fully correct and a special kind of

prior should be used, as we will brie
y demonstrate. Sometimes it may also happen that

prior knowledge is only available in form of several constraints, but that the actual shape

of the prior pdf is unknown. In order to determine this unknown prior pdf, the principle of

maximum entropy can be used. The two following paragraphs are given only to complete

our overview of estimation techniques and data analysis and are not relevant for the rest of

this thesis:

Non-informative priors

Let us assume that we want to estimate a location parameter X, i.e. a parameter that

describes the position of a distribution along the x-axis. Then, any translation of this pa-

rameter X ! X+x0 should not change the assigned prior for X. To put it mathematically,

the condition

p(X = x) =
d(x+ x0)

dx
p(X = x+ x0) (3.32)
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obtained from the relation p(X = x) = p(X = g(x))
dg(x)
dx

should be ful�lled. Since x0 is a

constant, this can be solved as

p(X = x) = constant: (3.33)

Consequently, the uniform distribution is a good choice for location parameters, such as the

mean of the Gaussian distribution, if no additional knowledge is available.

Similar re
ections apply for the determination of the prior of so-called scale parameters,

that are associated with a size or a magnitude. The standard deviation of the Gaussian

distribution is an example here. Since the resulting prior should be invariant towards a

scaling of the random variable X ! �X, using

p(X = x) = p(X = �x)
d(�x)

dx
(3.34)

resulting from the above mentioned relation, we obtain

p(X = x) / 1

x
: (3.35)

This prior was �rst suggested by Je�reys [Je�reys] in 1939 and is named after him as

Je�reys' prior. Hence, for the estimation of scale parameters the uniform assumption is not

the best choice but should be replaced by 1=x. The apparent drawback of a not-normalizable

prior can generally be coped with. Interestingly, the Je�reys' prior degenerates back into a

uniform distribution for the logarithm of the random scale variable X:

p(logX) = constant (3.36)

Maximum entropy

The principle of maximum entropy [Blahut, Jaynes82, Sivia] can be used to assign prior pdfs

to a random variableX, if only some constraints aboutX are known. It can be demonstrated

[Jaynes82] that, if there is a measure to be maximized by a consistent pdf obeying the given

constraints, this measure must be the entropy. The resulting pdf then possesses the highest

number of possibilities to generate a random variable considering the imposed constraints.

Thus, we are looking for a distribution that ful�lls the given constraints and maximizes the

entropy S [Shannon]. Initially, the entropy is given by

S = �
Z

1

�1

p(X = x) log p(X = x)dx; (3.37)

but can be extended to Kullback's information

KS = �
Z

1

�1

p(X = x) log
p(X = x)

m(X = x)
dx (3.38)

for the continuous, and to

KS = �
NX
i=1

p(X = xi) log
p(X = xi)

m(X = xi)
(3.39)



3.1 Bayesian Estimation Theory 45

for the discrete case. We put here these two more general forms of Kullback's information,

also known as cross-entropy, which additionally to the entropy S contain the pdf m(X = x)

ensuring the invariance of KS under a change of variables. To exemplify the principle of

maximum entropy, we assume that all that is known about our random variable X are its

mean � and its variance �2. Under these assumptions, we �nd the resulting distribution by

maximizing [Blahut]

C = �
NX
i=1

p(X = xi) log
p(X = xi)

m(X = xi)
(3.40)

��0
 
1�

NX
i=1

p(X = xi)

!

��1
 
�2 �

NX
i=1

p(X = xi)(xi � �)2
!
;

where �0 and �1 are Lagrange multipliers. For simplicity of mathematical analysis, we

consider the discrete case in the limit of N ! 1. The �rst term on the right-hand side is

the entropic term, the center term describes the normalization condition of the distribution

and the last term embodies our constraints about mean and variance.

After some algebra, we �nd, for the continuous case, the Gaussian distribution as the

result, which best explains the given random variable X characterized solely by its mean

and variance:

p(X = x) =
1p
2��2

exp

 
�(x� �)2

2�2

!
(3.41)

In principle, analogous derivations can be performed for any kind of constraint imposed on

X. We note that the positivity requirement of X in combination with a known mean value

results in the negative exponential distribution. If, in addition, the variance is known, the

Gamma distribution is obtained. As presented in chapter two, these distributions describe

the speckle statistics.

3.1.5 Analogy to Tikhonov Regularization

The methods of Bayesian data analysis have been shown to originate from a complete theory.

No ad-hoc methodologies have to be applied to obtain consistent results. This also applies

for the prior information, since a formalism exists, that allows to determine the goodness of

an employed model and to reject unjusti�ed prior assumptions. Besides Bayesian methods,

a variety of other theories and techniques dealing with data analysis exist. Here, we want

to comment on Tikhonov regularization and its relation to the Bayesian approach.

Tikhonov Regularization

Tikhonov regularization [Tikhonov] is widely used for data inversion. The forward model

directly corresponds to the Bayesian likelihood function and is not necessarily Gaussian-

shaped, although this is often assumed for computational reasons. To guarantee a stable
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solution in the case of under-determined systems Tikhonov constrains the solution to have a

desired property, i.e. the inversion is regularized. Hence, the result is obtained by minimizing

a function C consisting of a weighting of the forward �t (y�Ffxg)2 and the regularization

term Rfxg, which is governed by a Lagrange multiplier or hyper-parameter �. In the

Bayesian theory, this can directly be interpreted as likelihood function and prior. In contrast

to Bayesian methods the regularization term and � are often heuristically chosen. However,

several techniques exist to �nd optimal values for the Lagrange multiplier, like the L-curve

technique. The analogy of Tikhonov regularization to Bayesian MAP estimation becomes

visible in the following equations:

Minimizing

C(y; x) = (y � Ffxg)2 + � � Rfxg (3.42)

as a function of x is equivalent to maximizing

exp
�
� C(y; x)

�
= exp

�
�(y � Ffxg)2

�
� exp

�
� � �Rfxg

�
: (3.43)

This can be regarded as a maximization of the posterior

p(X = xjY = y) / p(Y = yjX = x) � p(X = x) (3.44)

and, thus, corresponds to the �rst level of Bayesian inference.

3.2 Markov Random Fields

Bayesian data analysis is well suited to image interpretation in combination with appropri-

ate prior models for the noise-free scene. We have seen that, using a likelihood function

and some assumptions about the original data, an improved estimate of this data can be

obtained. The quality of this estimate, however, depends largely on the employed model

and its ability to describe the image content. In this context, Markov and Gibbs random

�elds (MRFs and GRFs) play an important role, since they are able to statistically describe

correlations, or even more generally, any kind of statistical dependence between neighboring

pixels. Furthermore, they are easily applicable within the Bayesian framework.

Markov random �elds have become popular in image processing since about �fteen years.

Originating from statistical physics, where they have been used for the study of phase

transitions, they are now widely employed to model two-dimensional lattices, such as image

data. In the beginning, the use of Markov models in image processing was limited due to

the constraint of causality, but after a solution to this problem had been found, they quickly

became one of the standard image processing tools [Sigelle].

3.2.1 Neighborhood Systems and Cliques

The information of digital images is not only encapsulated in gray-values of individual

pixels. More than that, images are usually composed of di�erent regions and features

with similar statistical properties, such as textures, lines and contours. As of this, several
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independently considered pixels usually are not signi�cant to describe all information of a

certain image region, but become important by their relations and interactions with pixels

in a neighborhood.

The characteristics of these local interactions between pixels, de�ning di�erent regions

of an image, can be modeled by a Markovian formalism, which is suitable for the envisaged

framework of Bayesian data analysis. Within the related Gibbsian formalism, interactions

between neighboring pixels are described by local energies, which correspond to the equiva-

lent conditional probabilities of a Markov random �eld. The probability of the whole Gibbs

�eld is encapsulated in a global energy function which can be decomposed into its local

components.

Image description

As a condition for the application of Markov random �elds, the modeled image is considered

as a realization of a random �eldX that is composed of random variablesXi at di�erent sites

i representing individual pixels, i.e. X = fX1;X2; : : :g. We denote a concrete realization of

Xi by xi, which is a pixel gray-value lying in E . Equivalently, x describes a sample realization
of the whole �eld X, i.e. a sample image that takes one of the con�gurations out of jEjjXj

with the operator j:j = card(:). As an example, this yields 256512�512 possible con�gurations

for an 8bit image of 512� 512 pixels. The probability of a particular realization is given by

p(X = x).

Neighborhood systems

In order to model local spatial interactions between individual pixels a neighborhood system

N is de�ned in X. For a single pixelXi at site i its neighborhood is described by [Li, Sigelle,

Winkler]:

Ni = fjg with

(
i =2 Ni

j 2 Ni ) i 2 Nj

(3.45)

where fjg is a set of all pixel sites in the vicinity of site i, excluding i. Now, di�erent

neighborhood orders, i.e. neighborhoods of di�erent sizes, can be de�ned as depicted in

Fig. 3.3: In this �gure, the neighborhood order of a pixel xk;l around a center pixel x0;1 is

denoted by the index k. The index l is a simple running variable, i.e. l; k do not denote

x/y-coordinates as might be suspected at �rst sight, and therefore must not be mixed with

the index i of xi, which denotes the pixel site.

As an example, �rst and second order neighborhood con�gurations are shown in the

center of Fig. 3.3: A �rst order neighborhood contains the four nearest pixels, a second

order neighborhood the eight nearest pixels around its center pixel at site i, and so forth.
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Figure 3.3: Cliques and neighborhoods. Left: Illustration of di�erent neighborhood orders

ranging from 0 (dark-gray) to 7 (light-gray). The neighborhood order of a given

pixel xk;l is denoted by k. Center: First and second neighborhood orders for a

given center pixel (dark-gray). Right: Cliques associated to the �rst and second

neighborhood orders. In applications, the clique con�gurations are often limited

to the cliques in C2, i.e. two-pixel cliques.

Cliques

Following this reasoning, a system of cliques can be set up, which depends on the size of

the used neighborhood system N , i.e. the neighborhood order.

A clique is de�ned by either a single pixel, or by a set of pixels that are neighbors to each

other. Several possible clique-con�gurations for the �rst and second order neighborhoods

are displayed on the right of Fig. 3.3.

We denote the ensemble of cliques relative to N by C and a clique consisting of k pixels by
Ck. For example, as shown, C2 of a �rst order neighborhood system contains only horizontal

and vertical pixel pairs. For a second order neighborhood also diagonal pixel interactions

exist. In this work, only cliques C2, i.e. pixel pair interactions, are considered.

Energy and potential functions

Local interactions can now be described by potentials Vc for di�erent cliques c. These

potentials are a function of the gray-values of the pixels belonging to a clique. Hence, the

global energy of the whole image can be written as the sum over all potentials

U(x) =
X
c2C

Vc(x): (3.46)
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In the same way, we �nd for the local energy at pixel Xi

Ui(xi) =
X

c2C;i2c

Vc(xi); (3.47)

which is the sum of the potentials over all cliques that include pixel Xi. As a result, the

local statistical interactions of pixels within an image can be described by an appropriate

set of potential functions Vc and a corresponding clique system C. Note: Although writing

Ui(xi) and Vc(xi), both functions may in fact depend on xi and its complete neighborhood

Ni.

Example: Assuming a potential function Vc(xi; xj) = (xi�xj)2 with j 2 Ni for all cliques

C2 of a �rst order neighborhood system, i.e. with four neighbors, we obtain the local energy

Ui(xi) = (xi � xleft)2 + (xi � xright)
2 + (xi � xup)

2 + (xi � xdown)
2 (3.48)

for each center pixel Xi at site i, with xleft, xright, xup and xdown as the direct neighbors

of Xi.

3.2.2 Markov-Gibbs Equivalence

By denoting the set of all pixels excluding Xi by X i with its sample realizations xi, i.e.

Xi = fXjg with j 6= i, a Markov random �eld is de�ned by

p(Xi = xijX i = xi) = p(Xi = xijxj ; j 2 Ni); (3.49)

which means that a single pixel Xi can be fully statistically described by its relations

to pixels within a limited neighborhood. The assumption of markovianity is justi�ed for

a large number of images, consisting of several regions with di�erent properties, such as

textures. Note that for computational reasons, we are interested only in images where the

local interactions can be modeled with a relatively small neighborhood system, whereas the

actual neighborhood to model complex images might be rather large.

To go from a global view to a local description of the random �eld and vice-versa, we

introduce the Gibbs-Markov equivalence. We de�ne a Gibbs random �eld by

p(X = x) =
1

Z
exp

�
� U(x)

�
; (3.50)

where U(x) is an energy function as de�ned in Eq. 3.46. The partition function Z serves as

a normalization constant and is found to be

Z =
X

x2jEjjXj

exp
�
� U(x)

�
: (3.51)

It is obvious that Z cannot be computed due to the large number of possible con�gurations

jEjjXj of X. By rewriting Eq. 3.50 with Eq. 3.46

p(X = x) =
1

Z
exp

�
� U(x)

�
=

1

Z
exp

 
�
X
c2C

Vc(x)

!
; (3.52)

we see that the global energy U(x) of the Gibbs random �eld can be decomposed into a sum

of local energies. This enables a local processing based on local probabilities conditioned

by neighboring pixels by means of the clique system.
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Hammersley-Cli�ord theorem

The Hammersley-Cli�ord theorem [Hammersley] states the important �nding that, for a

limited neighborhood and discrete states of Xi, a Markov random �eld X characterized by

a neighborhood system N is equivalent to a Gibbs random �eld and a certain potential

associated to each clique within this neighborhood. Hence, each Markov random �eld can

be represented in the form of Eq. 3.52.

The global and the local probabilities, p(X = x) and p(Xi = xijXi = xi), can now be

related. Using the local energy at pixel Xi as given in Eq. 3.47

Ui(xijxj; j 2 Ni) =
X

c2C;i2c

Vc(xi; xj ; j 2 Ni) (3.53)

and by decomposing the global energy term into

U(x) =
X

c2C;i=2c

Vc(x) + Ui(xijxj ; j 2 Ni) (3.54)

the local representation of the Gibbs random �eld is found to be [Sigelle]

p(Xi = xijX i = xi) =
exp

�
� Ui(xi; xi)

�
P

xi2E
exp

�
� Ui(xi; xi)

� (3.55)

=
exp

�
� Ui(xijxj ; j 2 Ni)

�
P

xi2E
exp

�
� Ui(xijxj ; j 2 Ni))

�
= p(Xi = xijXj = xj; j 2 Ni):

This is an important result allowing to locally evaluate the conditional probability for each

pixel given its neighbors. In contrast, we have seen that the evaluation of p(X = x) is not

possible because of the partition function Z. The local probability by itself only depends

on the sum of the di�erent potentials for each clique within the neighborhood given by the

markovianity of the random �eld. Consequently, Eq. 3.55 represents the basis for all image

processing involving Markov random �elds, which are suitable to serve as regularization

terms or, in the Bayesian framework, as prior distributions.

3.2.3 Gibbs Models

We have seen that Markov random �elds can be described by potential functions working on

a local neighborhood due to the Gibbs-Markov equivalence resulting from the Hammersley-

Cli�ord theorem. In principle, there are no restrictions to the contents of these potential

functions. The potentials attached to di�erent cliques do not even have to be stationary

but can vary throughout the image. For the problem of image restoration or information

extraction, however, a certain number of "standard" potential functions exist.

Before presenting several often used Gibbs models, we comment on two relaxation meth-

ods which are used for the synthesis of sample realizations from Gibbs random �elds. The

images shown later in Fig. 3.4 have been generated with the Gibbs sampler. The employed

model parameters for the di�erent models are enumerated in Tab. 3.1.
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Gibbs sampler

The Gibbs sampler was proposed by Geman and Geman [Geman84] and iteratively generates

a realization of a Gibbs random �eld until convergence or, in practice, a �xed number of

iterations is reached. The statistics of the synthesized image correspond to the global

Gibbs distribution. Starting with a purely random initial con�guration, the algorithm

sequentially updates all image pixels at each iteration by sampling the new value from the

local probability distribution conditioned by the neighbors of the considered pixel:

p(Xi = xijXj = xj ; j 2 Ni) =
exp

�
� Ui(xijxj ; j 2 Ni)

�
P

xi2E
exp

�
� Ui(xijxj ; j 2 Ni))

� (3.56)

=
1

Zi
exp

�
� Ui(xijxj ; j 2 Ni)

�

The Gibbs sampler needs only a small number of iterations to converge but requires the

computation of the local partition function Zi, i.e. the whole distributionmust be built. This

may dramatically slow down the algorithm if jEj is large, say 256, and if the neighborhood

is of higher order. Hence, the Gibbs sampler is only suitable to synthesize images with

limited dynamic range.

Metropolis algorithm

The Metropolis algorithm [Metropolis], originating from statistical physics, is often used for

the synthesis of Gibbs random �elds since it does not require the calculation of Zi. Like the

Gibbs sampler, the Metropolis algorithm is also a stochastic relaxation algorithm, which

works in a similar way.

At iteration n a new value xi
(n) is randomly chosen out of E for each pixel. The local

change of energy is then computed by

�U = Ui(xi
(n)jxj(n�1); j 2 Ni)� Ui(xi

(n�1)jxj(n�1); j 2 Ni): (3.57)

The new state xi
(n) is accepted if the energy is decreased, i.e. �U < 0, or otherwise rejected,

i.e. xi
(n) = xi

(n�1), with probability P = 1� exp(��U).
In this way, the global energy tends to decrease after each update, avoiding local minima

by allowing a temporary increase of U with probability P . In contrast to the Gibbs sampler,

it is not necessary to build the whole distribution. But on the other hand, the acceptance

rate of new states, which is 100% for the Gibbs sampler, is considerably lower, requiring

a much higher number of iterations to reach convergence. Other schemes for the choice of

xi
(n), like xi

(n) = xi
(n�1) + Æx, can also be successfully applied.

In principle, for both the Gibbs sampler and the Metropolis algorithm, a sequential

updating, i.e. scanning, of all pixels is not required, but easy to implement. In general,

a random updating scheme is allowed, which does not change the quality of the obtained

results.
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Generalized Potts model

The generalized Potts model [Wu82] can be regarded as an extension of the Ising model.

The Ising model [Ising] is a binary model with two states and was developed to study

ferromagnetic e�ects in statistical physics. Here again, the roots of the whole framework of

Gibbs random �elds and their synthesis become visible.

By extending the Ising model to jEj gray-levels, the generalized Potts model is obtained.

As for all following models, only the clique system C2 with pixel pair interactions is con-

sidered. The neighborhood system can be of any size. For each clique c the potential is

de�ned by

Vc(xi; �c) =

(
��c if all pixels in the clique c are equal

�c otherwise
(3.58)

where �c is a scalar model parameter of Vc describing the potential for pairs of pixels with

Xi = Xj and Xi 6= Xj, j 2 Ni. The local energy is then given as the sum over all these

potentials:

Ui(xi;�) =
X

c2C;i2c

Vc(xi; �c) (3.59)

We remark that for the "normal" Potts model we have �c = � = const for all cliques c in

C. In the following, we use the vector notation � to denote all parameters �c of the local

energy function.

Identical potential functions with �c = � for all cliques c result in an isotropic distribution

without any directional preference imposed by a special clique con�guration. Consequently,

the normal Potts model is often used to model region labels in segmentation or classi�cation

applications [Kelly, Lakshmanan, Derin87, Derin90]. On the other hand, the generalized

model can be used to generate textures with sharp edges [Derin87]. However, smoothly

varying transitions between neighboring pixels cannot be synthesized due to the sharpness

of the potential function (either ��c or �c). These properties make the generalized Potts

model not suitable for the reconstruction of natural scenes. Representative examples with

one �xed set of parameters, illustrating the basic visual properties of di�erent models, are

displayed in Fig. 3.4.

Example: Assuming a �rst order neighborhood system with its four neighbors, cliques

C2 and �c = �, we obtain the local energy

Ui(xi) =
X

c2C;i2c

Vc(xi) (3.60)

= V1(xi; xleft; �1) + V2(xi; xright; �2) + V3(xi; xup; �3) + V4(xi; xdown; �4)

= ��1 + �2 + �3 + �4

= 2�

for a center pixel Xi with the gray-values of its neighbors xi = xleft, xi 6= xright, xi 6= xup
and xi 6= xdown. For a local con�guration with xi = xleft = xright = xup = xdown, we obtain

Ui(xi) = �4�. Thus, the model favors con�gurations we equal gray-values.
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Figure 3.4: Realizations (128 � 128 pixels, 64 gray-levels) of second order neighborhood

Gibbs random �elds using di�erent potential functions and parameters. The

images synthesized with the Gibbs sampler are shown after three (left column),

25 (center column) and 100 (right column) iterations. Top row: Generalized

Potts model. Center row: Realization of the discontinuity adaptive model of

Eq. 3.61. Bottom row: Textures generated with the Gauss-Markov model. The

corresponding parameters for each model are given in Tab. 3.1.

Discontinuity adaptive models

By choosing smoother potential functions the edge-preserving properties of the generalized

Potts model can be combined with small gray-level variations in almost homogeneous areas.
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Model �, � �1;1 �1;2 �2;1 �2;2

Potts model - -3 -1.5 -1.5 1.5

Discontinuity adaptive model 3 -5 -2.5 -2.5 2.5

Gauss-Markov model 2 0.225 0.2 0.2 -0.125

Table 3.1: Model parameters used for synthesis. The table enumerates the parameters of

di�erent models chosen for the generation of the textures in Fig. 3.4.

For illustration we have chosen two potential functions out of many that can be found in

the literature. They are given by [Geman88, Li]

Vc(xi; �c;�) =
�c

1 +
�
�xi
�

�2 (3.61)

and

Vc(xi; �c;�) = �c exp

 
�
�
�xi

�

�2!
; (3.62)

where �xi = xi � xj and j 2 Ni. In general, these models show similar properties as

the Potts model. The additional parameter � determines the smoothness of the potential

function and, thus, allows more freedom to model small local variations while preserving

strong edges. Hence, discontinuity adaptive models are often used for image regularization

since they impose local smoothness, allow soft transitions and preserve borders.

It can be shown [Li] that the discontinuity-preserving property is determined by the �rst

derivative of the potential function, which must converge back to zero for �xi ! �1 to

ensure edge-preservation. We illustrate this behavior below in Fig. 3.5.

Gauss-Markov model

Compared to the class of models presented before, Gauss-Markov random �elds (GMRFs)

constitute a rather simple image model. They are much easier to apply and often allow

(semi-)analytic algorithms, whereas general Gibbs models always result in slow, iterative

and computationally heavy procedures. The Gauss-Markov model we use is de�ned by the

local energy function

Ui(xi;�; �) =
(xi � �i)

2

2�2
; (3.63)

where

�i =
X
k;l

�k;l � (xk;l + x
0

k;l): (3.64)

and � = f�k;lg is the model parameter vector.
In contrast to the previously presented clique-based potentials, the Gauss-Markov model

is de�ned di�erently: The neighborhood con�guration is encapsulated in a weighted sum

over all neighboring pixels resulting in a prediction �i for the center pixel.
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Figure 3.5: Potential functions and their �rst derivatives. Left: Potential functions for

discontinuity adaptive models of Eq. 3.61 (solid) and Eq. 3.62 (dashed) with � =

32 and �c = � = �1. Additionally, a vertically shifted quadratic energy function
(cf. Eq. 3.63) corresponding to the Gauss-Markov model is given (dotted) for

� = 32. Right: The corresponding �rst derivatives of these potential functions.

As of this and in order to simplify the following studies, we slightly change the notation

of neighboring pixels and associated model parameters for the Gauss-Markov model: In

Eq. 3.64 k; l denote the indices as given for the pixels in the left part of Fig. 3.3, i.e. k

denotes the neighborhood order, l is a running number. A weighting factor �k;l is assigned

to a pixel pair xk;l and x
0

k;l
being symmetrical with regard to the center pixel xi = x0;1.

Note that k; l are always relative to this center pixel.

Example: Assuming again a �rst order neighborhood system with its four closest neigh-

bors, the prediction value �i of a center pixel Xi is computed by

�i = �1;1 � (x1;1 + x
0

1;1) + �1;2 � (x1;2 + x
0

1;2) (3.65)

= �1;1 � (xright + xleft) + �1;2 � (xup + xdown)

Hence, �1;1 corresponds to a horizontal interaction parameter, �1;2 to a vertical one. This

can easily be extended to larger neighborhoods with e.g. �2;1 and �2;2 denoting diagonal

interactions, as used in Tab. 3.1.

Consequently, the parameters �k;l describe the correlation of Xi with its neighboring

pixels. We further note the stability condition
P

k;l �k;l = 0:5, which must be ful�lled for

a stochastic synthesis to converge. The sum always extends over all k; l of the chosen

neighborhood order.

Assuming some distortion of the prediction �i by additive Gaussian noise Ni of zero

mean and variance �2 the corresponding conditional pdf of Gauss-Markov random �elds

can be written in a closed form as

p(Xi = xijXj = xj; j 2 Ni;�; �) =
1p
2��2

exp

 
�(xi � �i)

2

2�2

!
: (3.66)
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which corresponds to a linear auto-regressive process with xi = �i + ni, where ni is a

realization of Ni.

Further properties of Gauss-Markov random �elds, which are, however, less important

for our studies, are given by [Krishnamachari]. For example: The pdf of the joint �eld can

be found by

p(X = xjB; �) =
p
detB

(2��2)jXj=2
exp

 
�x

TBx

2�2

!
; (3.67)

which is a multi-variate Gaussian distribution with the covariance matrix of X given by

�2B�1 and B being a matrix as a function of the parameters �k;l.

In contrast to non-linear models, the Gauss-Markov model cannot model sharp tran-

sitions. As depicted in Fig. 3.5, for small values of �xi the quadratic function of the

Gauss-Markov model shows the same smoothing properties as the discontinuity adaptive

potentials. For the edge-preserving models, however, the potential function no more in-

creases beyond a certain threshold value of �xi, i.e. smoothing is no longer applied. Thus,

if only the performance of the model for restoration is considered, non-linear discontinuity

adaptive models are clearly to be preferred. However, the Gauss-Markov model promises

to be analytically tractable. We will see that parameter estimation and the computation of

a MAP estimate are much easier to be performed. This becomes even more important in

the case of model parameter estimation in noisy conditions, i.e. for the estimation of hidden

Markov random �elds. The drawback of the model's inability to preserve sharp edges can

partly be overcome by increasing the model order and some additional processing.

Other models

In addition to the presented models, there are many more potential functions adapted to

various applications. To enumerate only a few of them, potential functions can be de�ned

for linear structures [Tupin98, Tupin99], for processes that describe edges between regions of

a certain homogeneity [Geman84], or other more specialized models for texture description

like the auto-binomial or the exponential model [Cross, Schroeder98, Schroeder99b].

Image content representation by Markov random �elds

By employing Markov and Gibbs random �elds we are free to model all properties of the

image content that we think are important for a particular application. Knowledge can be

incorporated into a Gibbs model and then be used for information extraction [Schroeder99a]

or as a prior in Bayesian image restoration. In both cases, the information regarding the

model is encapsulated by the parameter vector � of the energy function. To give an example,

�1;1 and �1;2 of the Gauss-Markov model describe the correlation of two neighboring pixels

in the horizontal and vertical directions. Analogous relations apply for other parameters

and di�erent models, which may describe non-linear statistical dependences.

How the parameters of the potential functions are estimated for purposes of analysis and

synthesis, and how the actual image restoration using both levels of Bayesian inference is
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performed, will be discussed, with special emphasis on SAR imagery, in the next part.

3.3 Summary

In this chapter, the following points have been discussed:

� The Bayesian approach for data analysis was introduced and its di�erence in inter-

pretation compared to the frequentist point of view was explained.

� It was shown that the incorporation of prior knowledge may help to improve the

accuracy of parameter estimation. However, the correct choice of such a prior is

crucial and often rises critics about the Bayesian approach.

� We demonstrated the importance of model selection to justify the use of an appropriate

prior, gave an interpretation of the Occam factor and brie
y outlined a technique to

evaluate the evidence integral.

� The equivalence between Markov and Gibbs random �elds has been shown. This al-

lows a local modeling of spatial interactions between neighboring pixels by a stochastic

description.

� We illustrated several basic potential functions and commented on their properties

with regard to the application. Especially, the Gauss-Markov model rose our interest

because it has the nice property of analytical tractability. However, its linear character

does not allow the modeling of sharp edges.

� Markov random �elds are promising to be used as prior information within a general

Bayesian framework for image processing. The choice of the model or energy function

to be used is application-dependent with regard to the kind of information to be

extracted.





Part II

SAR Image Interpretation





4 Bayesian Image Despeckling

Synthetic Aperture Radar (SAR) systems use a coherent image formation technique to

generate high-resolution images of the Earth's surface. The speckle e�ect, which results

from coherent imaging, considerably disturbs the direct interpretation of the sensed intensity

images. Consequently, methods have been developed to model the properties of speckle and

to reduce its e�ects on the data.

In the �rst part of this thesis, we explained the speckle phenomenon and gave an intro-

duction to Bayesian techniques that we want to use in this second part in order to improve

the interpretability of SAR images. Before discussing Bayesian SAR image analysis using

Markov random �elds in the second section of this chapter, we �rst give an overview of

already existing despeckling techniques in order to point out qualitative di�erences. In the

second section, we illustrate the basic approach for SAR image restoration using Markov

random �elds by employing di�erent potential functions and show the need for model pa-

rameter estimation. Several techniques for parameter estimation are then presented in

section three and their e�ectiveness for the case of Gauss-Markov model parameter estima-

tion from speckled data is investigated in section four. In this way, we develop the idea of a

model-based despeckling and information extraction algorithm for SAR images, which will

be the main subject of chapters �ve and six.

4.1 Overview of Existing Approaches

In this section, we present several of the most prominent approaches for SAR image de-

speckling, limiting ourselves to algorithms that are directly applied to detected images. As

for the whole thesis, we do not consider any additional information that might be contained

in complex data. Thus, the reviewed techniques do not only work on single look data but

are also applicable to other SAR image products with reduced speckle variance. For all

following investigations, we assume uncorrelated speckle noise (cf. appendix C).

The purpose of this overview is to illustrate the di�erent degrees of modeling in existing

approaches and to show their consequences on the �ltering performance. Hence, we evaluate

these approaches from a Bayesian point of view assuming that the quality of a �ltered image

increases with modeling accuracy. Results of some of the addressed �lters for an arti�cially

speckled image are illustrated below in Fig. 4.1, �lter parameters are indicated and the

quality of the results is measured in terms of the mean square error (MSE) relative to the
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original optical image, as given in Tab. 4.1. The noisy image was synthesized by adding

speckle with L = 4, where L denotes the equivalent number of looks (ENL), as de�ned in

chapter two.

In the following, the noise model corresponding to Eq. 2.32 is assumed. For simplicity,

we change notation to y = x �n, where y is the observed intensity SAR image, x is the noise-

free radar cross-section and n denotes the speckle noise, which is distributed according to

Eq. 2.33. y, x and n are realizations of the corresponding random processes Y , X and N .

The empirically measured mean and variance of y are denoted by �y and �y, respectively.

Note that several of the presented �lters work on square-root intensity, others on intensity

images.

4.1.1 Simple Filters

The �rst class of �lters we consider does not exploit any speci�c knowledge about the

statistics of the noise. These �lters rely on the assumption that the noise-free data are

smooth and have the same mean as the noisy data. The resulting algorithms are extremely

fast in computation, simple in theory, and do not use any explicit model (of course, any

approach relies on implicit assumptions), neither for the noise, nor for the noise-free data.

Consequently, the results are usually of poor quality.

Mean �lter

The mean �lter simply substitutes the gray-value of a given pixel by the mean computed in

a certain neighborhood or in a scanning window around the pixel under consideration. This

corresponds to the multi-looking approach in the spatial domain. Although subsampling

is not applied, the spatial resolution of the averaged image is decreased in a similar way.

Fine detail in the image is blurred or even disappears with increasing estimation window

size. To have suÆcient noise-suppression the typical window size is at least 5� 5 pixels, i.e.

a reduction of the speckle variance by a factor of 25. To improve the preservation of �ner

detail, this linear algorithm can be enhanced by using adaptive window sizes driven by the

locally measured coeÆcient of variation.

Median �lter

The median �lter is also window- or neighborhood-based. A considered pixel is replaced by

the median of all gray-values within the estimation window. As a result, the median �lter

does not introduce any new gray-values in the image, as the mean �lter, and much better

preserves edges [Rees]. However, �ne detail, such as isolated point-scatterers, is �ltered

out. Compared to the mean �lter, the median �lter is clearly to be favored due to its

edge-preserving capabilities. The median �lter, which is a non-linear �lter, works under the

same assumptions as the linear mean �lter, i.e. it does not use any explicit data or noise

model.



4.1 Overview of Existing Approaches 63

Figure 4.1: Illustration of the despeckling performance for di�erent classes of �lters applied

to a synthetic image (256�256 pixels). Top row from left to right: Original opti-

cal test image without noise, speckled image (L = 4) to be �ltered, mean �ltered

image (5� 5 pixels). Center row: Crimmins �ltered image (5 iterations), Kuan

�ltered image (5 � 5 pixels), EPOS �ltered image (5 � 5 pixels). Bottom row:

Wavelet �ltered image, Wiener �ltered image (8 � 8 pixels) and MBD �ltered

image (Model-Based Despeckling using Gauss-Markov random �elds of seventh

order). The basic versions of all �lters without enhancements by additional

structural information have been used for despeckling.

Geometrical �lter

A completely di�erent approach is introduced by the class of morphological �lters. The

original value of a center pixel is replaced by a non-linear combination of pixels from a
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Speckled Mean Crimmins Kuan EPOS Wavelet Wiener MBD

838 730 395 331 451 524 406 199

Table 4.1: Mean square errors of �ltered images obtained from di�erent speckle �lters. The

mean square error is given for the speckled and for each �ltered image as presented

in Fig. 4.1.

neighborhood system. The Crimmins �lter [Crimmins] iteratively increments or decrements

noise valleys or noise hills by applying di�erent binary morphological masks. As for the

mean and the median �lters, no assumptions about the noise itself are made. However, the

Crimmins �lter has better chances to preserve edges and �ne detail. The smoothness of

the �ltered image and the loss of �ne structures is determined by the applied number of

iterations. The Crimmins �lter visually outperforms the mean and the median �lter, which

is easily explained by its improved ability to preserve structural information.

4.1.2 Statistical Filters

As for the mean and the median �lter, statistical �lters also use scanning windows ranging

from typically 5� 5 to 15� 15 pixels. These �lters are not limited to the calculation of an

average gray-value, but obtain an estimate of the noise-free pixel as a weighted sum over

all window pixels. The corresponding weights are driven by the locally measured values

for mean and variance, i.e. by local statistics [Fj�rtoft96]. This kind of �ltering can be

interpreted as a locally varying convolution kernel applied to the image.

Statistical �lters take into account mean and variance of the noise, i.e. its basic properties.

Furthermore, they consider, in a limited way, a certain roughness of the noise-free image.

Reduced smoothing or no smoothing at all is applied in areas where the locally estimated

coeÆcient of variation does not correspond to the known noise statistics. The additional

roughness is recognized to be caused by image structures instead of noise. Hence, the

assumption of stationary mean and variance is relaxed. We note that for most statistical

�lters improved versions exist that take into account additional structural information to

allow a better �ltering along edges.

Kuan �lter

The Kuan �lter [Kuan85, Kuan87] belongs to the class of minimum mean square error

(MMSE) �lters, i.e. Ef(x̂ � x)2g is to be minimized, where x̂ is the estimate of x. The

�lter has been deduced by decomposing the observed signal y into x and an additive signal-

dependent noise term, y = x+ (n� 1)x, and can be considered optimal if both x and y are

Gaussian distributed. With EfNg = 1 for intensity images, the �lter equation is given by

x̂ = ky + (1� k)�y (4.1)
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with

k =
�x

2

�x2 + (�y2 + �x2)=L
: (4.2)

The variance of the radar re
ectivity is derived by �x
2 = (L�y

2 � �y
2)=(L + 1). L denotes

the equivalent number of looks of the speckle noise.

The Kuan �lter is an adaptive �lter based on a test of the local coeÆcient of variation,

i.e. mean �y and variance �y
2 of the observation. Compared to the �lters presented before,

this represents an important improvement, which is directly visible in the �ltering results.

However, the �lter only computes a weighted sum of noisy and mean-�ltered pixels. It does

neither exploit the full knowledge of the noise distribution, nor does it include additional

assumptions about the noise-free data.

Lee �lter

The well-known Lee �lter [Lee81, Lee83, Lee86] is a special case of the Kuan �lter. It di�ers

from the latter only in the weighting factor k because of a linear approximation made for

the multiplicative noise model. For the Lee �lter k can be found to be

k =
�x

2

�x2 + �y2=L
: (4.3)

Due to its more accurate modeling of the multiplicative noise behavior, the Kuan �lter is to

be preferred. However, the visual appearance of images �ltered with Lee's �lter is identical.

EPOS �lter

The EPOS �lter (edge-preserving optimized speckle �lter) [Hagg] also relies on an analysis

of mean and variance. To guarantee improved edge-preserving capabilities, the estimation

window is divided into eight triangular areas. The mean of the most homogeneous area

is taken as the estimate x̂. In fact, borders are extremely well preserved and the �lter

smoothes right up to the edges, unlike the Kuan �lter. However, the EPOS �lter does not

allow smoothly varying cross-sections. The �ltering results are composed of areas of almost

constant cross-section separated by sharp edges, comparable to the Potts model image of

Fig. 3.4. Texture is absolutely not preserved by this kind of approach.

4.1.3 Multi-Scale Approaches for Despeckling

Multi-scale approaches rely on an analysis of the image at di�erent resolutions. The image

is represented by a pyramidal decomposition in order to pro�t from inter-scale dependences,

to exploit correlations over several pixels that are easier to capture at lower scales, or to

separately analyze lower and higher detail. This kind of approach mainly bene�ts from an

analysis of mean and variance at di�erent scales and from varying neighborhood sizes.
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Filters based on the wavelet transform

Wavelet-based �lters work on the wavelet transformed image. Since these approaches are

applied under the assumption of additive Gaussian noise, the image is subject to a homo-

morphic transform (in the case of SAR, the logarithmically transformed image is computed)

before the wavelet decomposition is applied. The wavelet coeÆcients are then shrunk ac-

cording to various methods [Donoho] in order to reduce the noise energy in di�erent sub-

bands. The inverse-transformed image still exhibits a lot of detail, while the noise has been

reduced. However, strong noise reduction is accompanied by the introduction of wavelet

artefacts, which can be as disturbing as the speckle noise itself. Better wavelet shrinkage

methods might solve this problem, but the main drawback remains the additive Gaussian

noise approximation, which is not valid for low values of L (cf. chapter two). In addition,

a model for the noise-free data is not included, and the high number of possible wavelets

to apply is another free parameter. Wavelets represent a promising technique, due to their

capability to capture spatial features within frequency sub-bands, but convincing results

for despeckling are still diÆcult to �nd [Gagnon, Hervet].

Filters based on a multi-resolution decomposition

Multi-resolution approaches are usually extensions of existing basic �ltering methods to the

application at multiple scales [Aiazzi, Belhadj]. The image to be �ltered is decomposed into

a pyramidal representation. The di�erent scales are �ltered separately and are recombined

to form the �nal �ltering result. The noise variance is reduced with decreasing resolution,

which simpli�es the �ltering at coarser scales. As a consequence, slightly improved re-

sults can be expected compared to the corresponding single-scale techniques. An additional

degree of modeling enabling the restoration of a particular class of features is not intro-

duced, unless multi-scale models [Bouman, Krishnamachari] which incorporate inter-scale

dependences are used.

4.1.4 Wiener Filters

The Wiener �lter is the optimal linear �lter in the sense of minimum mean square error

for stationary signals corrupted by additive noise. It requires the knowledge of the power

spectra of the noise and of the noise-free scene, or equivalently, of their auto-correlation

functions. Hence, the full Wiener �lter is able to directly deal with correlated additive

noise. In order to obtain optimal results with a Wiener �lter both the noise and the noise-

free signal must be Gaussian distributed, which is not the case for SAR data.

Frost �lter

The Frost �lter [Frost82a] is an adaptive Wiener �lter resulting in a locally changing con-

volution kernel for the noisy image. It was derived directly for multiplicative noise under

the assumption of locally stationary image data. After a good number of simpli�cations,
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the impulse response is given by

h(r) = K1 exp

 
�K�y

2

�y2
jrj
!
: (4.4)

Here, K is the �lter parameter, which determines the strength of the �ltering. K1 is a

normalization constant and jrj is the radial distance from the center pixel to be �ltered. The

convolution kernel h(r) is valid under the assumption of a scene re
ectivity X obeying an

auto-regressive process with an exponentially decreasing isotropic auto-correlation function.

However, the made approximations only result in a performance comparable to most

other statistical �lters. Unlike a full Wiener �lter, the Frost �lter does not rely on the

computation of covariances or power-spectra to pro�t from a better image description.

Locally adaptive homomorphic Wiener �lter

This approach is based on a homomorphic processing of the SAR image in combination

with full Wiener �ltering [Franceschetti, Kroschel, Papoulis77]. The homomorphic �ltering

is used to transform the multiplicative speckle into additive noise by taking the logarithm

of the signal, thus permitting the application of a Wiener �lter. The required power spectra

can be calculated analytically for the noise and by an iterative procedure for the noise-free

signal. However, convergence of the latter estimate to the correct power spectrum of the

cross-section is not assured. In contrast to the Frost �lter, the local estimation of the power

spectrum allows a much better restoration of especially linear structures. On the other

hand, artefacts may be introduced if the power spectrum is not correctly estimated or if

the estimation window lies over highly non-stationary areas. Since rather large windows are

required, typically between 8� 8 and 16� 16 pixels, this �lter is not well suited for images

with high variations in scene content.

Thanks to the information contained in the estimated power spectra, the results are of

more than satisfactory quality for stationary textured areas. Note that the �ltering and

the estimation in the Fourier domain make this approach several magnitudes slower than

statistical �lters.

4.1.5 Bayesian Filters

Among the approaches presented here, the Bayesian approach is the only one that correctly

models the speckle noise statistics in form of the likelihood function, i.e. knowledge about

the shape of the noise distribution is exploited. As was demonstrated in the preceding

chapter, the quality of the estimate is in
uenced by the employed prior assumptions about

the noise-free data. Thus, using a good prior together with a complete description of the

noise (complete in the sense of �rst order statistics), an improved quality of the �ltered

image can be expected.
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Gamma-Gamma MAP �lter

The Gamma-Gamma MAP (GGMAP) �lter [Lopes90a, Lopes90b, Lopes93] is one of the

most prominent despeckling algorithms and uses the Gamma distribution as likelihood

function:

p(Yi = yijXi = xi) =
LLyi

L�1

xiL�(L)
exp

�
�Lyi
xi

�
(4.5)

This choice is obvious because the Gamma distribution corresponds to the intensity speckle

pdf for homogeneous cross-sections known from Eq. 2.28. As mentioned in chapter two, the

K-distribution is observed in non-homogeneously cluttered intensity SAR images, i.e. SAR

images that contain some sort of texture, and can be shown to result from a speckled Gamma

distributed cross-section. Hence, it is a reasonable choice to use the Gamma distribution

for both prior and likelihood. The prior is described by

p(Xi = xij�x) =
��xi

��1

�x��(�)
exp

�
��xi
�x

�
; (4.6)

where �x is the mean value of the cross-section and � = �x
2=�x

2 is a form parameter re-


ecting its roughness. The variance of x is denoted by �x
2. These parameters are estimated

within windows centered around the pixel to be �ltered. By setting the �rst derivative of

the log-posterior to zero, it is straightforward to �nd the MAP estimate given by

x̂iMAP
=
�� L� 1

2�
�y +

s
(�� L� 1)2

4�2
�y2 + 2Lyi�y; (4.7)

with � = (L+1)=(L�y
2=�y

2�1) and �y as the mean of the intensity observation computed

in a window around yi.

Although the modeling is more elaborate than in the approaches presented before, both

visual and quantitative results are rather similar to the Kuan and Lee �lters. Since the

�lter equation of the Gamma-Gamma MAP �lter is also only based on mean and variance,

this could have been expected. It is clear that outstanding results cannot be achieved

by using a simple data model, which is described by only two parameters. Nevertheless,

the Gamma-Gamma MAP �lter is a solid and therefore widely used speckle �lter. The

results can be further improved by including a statistical edge detector to better cope with

non-stationarities in mean backscatter.

Filtering with Gibbs random �elds

Having seen that a Gamma prior seems not to be suÆcient, one could think of more complex

parametric models to describe spatial structures and, thus, encapsulate more information

than mean and variance. For this purpose, Markov random �elds are well adapted as was

shown in the second section of chapter three. Following this reasoning, we will discuss the

use of stochastic models in the next section and see if they really allow a better restoration

of the noise-free scene. Finally, this will lead to the Model-Based Despeckling (MBD)

algorithm [Walessa00] that we have developed. For comparison of the �ltering performance
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of its basic version without structural enhancements, as proposed in chapter �ve, its result

for the given test image is provided in Fig. 4.1. Other approaches relying on Gibbs random

�elds are described in [Belhadj, Cabada, Dias, Walessa97], but show only limited success.

Several comparisons of di�erent speckle reduction techniques and other interesting �lter-

ing approaches can be found in [Dewaele, McConnell96, Oliver91, Procello, Schwarz, Shengh,

Touzi99] and [McConnell95, Nezry, White, Wu92], respectively. Additional remarks con-

cerning the restoration of blurred data and of SAR images with correlated speckle are given

in appendix C.

4.2 SAR Image Restoration with Markov Random Fields

In the preceding chapter, we have discussed the theory of Markov random �elds and de-

scribed several methods of how to synthesize a realization whose properties are determined

by a parameter vector � describing pixel interactions between di�erent pairs of pixels, i.e.

cliques. Now, we will address the application of Markov random �elds as low level image

processing tools, i.e. for the �ltering or restoration of SAR images. In this context, we

put emphasis on the importance of the employed model parameters. We will demonstrate

that a �xed parameter set, i.e. a �xed prior, cannot be a suitable choice. The prior and its

parameters must be chosen with regard to the data.

4.2.1 Markov Random Fields in a Bayesian Framework

As explained in the �rst section of chapter three, the use of suitable prior knowledge in-

creases the estimation accuracy. Consequently, the incertitude imposed by the likelihood

function on the observed data becomes smaller. The use of Markov random �elds allows

to introduce assumptions about spatial interactions of the pixels in the noise-free image.

Depending on the used model, i.e. the chosen potential function and the likelihood, di�erent

kinds of information can be extracted from the data, such as a segmentation with the Potts

model, an image restoration with a discontinuity adaptive model or a texture analysis with

the Gauss-Markov model.

Considering a degraded image y, which is assumed to be a realization of a random �eld

Y , we are looking for the undegraded image x being a realization of another random �eldX.

The two processes X and Y are related via the likelihood function. In the case of speckle,

this is the Gamma or square-root Gamma distribution. Information about X is contained

in Y , but cannot be directly extracted, since it is hidden under noise. Hence, one speaks of

a hidden Markov random �eld.

Looking for the most probable realization x given the observation y, we write Bayes'

equation

p(X = xjY = y;�) =
p(Y = yjX = x;�)p(X = xj�)

p(Y = yj�) ; (4.8)

where the term p(X = xj�) is a Markov or Gibbs prior characterized by the parameter vector

�. Since the random process Y does not explicitly depend on � being already contained



70 Bayesian Image Despeckling

in X, we simply write p(Y = yjX = x) instead of p(Y = yjX = x;�) for the likelihood

function in the following.

Assuming uncorrelated noise, which strictly speaking is not true for SAR data, we can

decompose the likelihood function into a product of local terms in analogy to the maximum

pseudo-likelihood approach of [Besag86]

p(Y = yjX = x) =

jXjY
i=1

p(Yi = yijXi = xi) (4.9)

and �nd the posterior to be a Gibbs distribution of the form of Eq. 3.52

p(X = xjY = y;�) / exp

0
@ jXjX
i=1

log p(yijxi)�
X
c2C

Vc(x; �)

1
A ; (4.10)

which can be written as a function of local terms. Realizations of this Gibbs random �eld

can again be synthesized using the Gibbs sampler or the Metropolis algorithm. However,

in the case of image restoration this is not our goal: We are looking for the MAP estimate

x̂MAP , i.e. for the realization that maximizes the posterior distribution. This maximization

of the posterior as a function of jXj variables can be performed by a slightly modi�ed form

of the relaxation algorithms that we have used for texture synthesis and is called simulated

annealing. Several commonly used optimization methods, such as simulated annealing (SA)

[Aarts, Kirkpatrick, VanLaarhoven], iterated conditional modes (ICM) [Besag86, Winkler]

and the Newton-Raphson algorithm [Sivia] are outlined in more detail in appendix B.

In the following, we concentrate on the in
uence of the model parameters on the restora-

tion result and on their estimation from the data and assume that the optimization problem

for cross-section estimation is solved by a suitable algorithm like simulated annealing or

ICM.

4.2.2 SAR Image Despeckling with Parametric Gibbs Priors

In the following examples, we consider square-root intensity images, unless otherwise stated.

In contrast to most other �lters, which work in the intensity domain, square-root intensity

images must be used here, in order to limit the dynamic range. We have already pointed

out that, for computational reasons, the number of possible states should be small. The

calculation of the local partition function Zi for 216 gray-values is computationally not

feasible. Even for eight bit images the resulting optimizations are rather slow. Apart from

that, the proposed models usually behave better for images with a moderate dynamic range,

like optical data. It is clear that the use of a particular prior for square-root images implies

a di�erent model for intensity images, and vice-versa. By transforming an image from

one space to another, the corresponding model will change as well. The behavior of the

Gauss-Markov model in di�erent signal spaces will be studied in the next chapter.
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Beach sand �, � �1;1 �1;2 �2;1 �2;2 MSE

Discontinuity adaptive, �xed 12 -2 -2 -2 -2 260

Discontinuity adaptive, estimated 85 -19.7 -19.4 8.1 4.8 167

Gauss-Markov, �xed 6 0.125 0.125 0.125 0.125 283

Gauss-Markov, estimated 6.5 0.41 0.40 -0.17 -0.13 176

Straw �, � �1;1 �1;2 �2;1 �2;2 MSE

Discontinuity adaptive, �xed 12 -2 -2 -2 -2 390

Discontinuity adaptive, estimated 55 -0.8 -8 -8.7 -3.3 161

Gauss-Markov, �xed 6 0.125 0.125 0.125 0.125 549

Gauss-Markov, estimated 6.5 0.02 0.29 0.27 -0.08 165

Table 4.2: Model parameters used for despeckling and resulting mean square errors. The

model parameters, �xed or estimated, and the mean square errors of the restora-

tions are given for the images depicted in Figs. 4.2 and 4.3. The mean square

errors of the speckled data are MSE = 299 and MSE = 355 for the "sand" and

the "straw" texture, respectively.

To calculate the MAP estimate of the noise-free scene we use the likelihood function for

square-root SAR images of Eq. 2.36 given by

p(Yi = yijXi = xi) = 2

�
yi

xi

�2L�1 LL

xi�(L)
exp

 
�L

�
yi

xi

�2!
; (4.11)

where yi is the observed gray-value at pixel position i, xi is the radar cross-section and L

denotes the equivalent number of looks, i.e. the speckle noise level.

Despeckling with discontinuity adaptive models

We use a discontinuity adaptive Gibbs prior as a regularization term to impose a certain

smoothness on the data. In a �rst example, we do not encode di�erent directional pref-

erences in the parameter vector �. The model characteristics are determined by � and

�c = � = const for all cliques, i.e. by two free parameters whose values are �xed heuris-

tically. In a second example, the MAP estimate is computed by using the full parameter

vector which has been estimated from the original noise-free image, serving as training data.

Consequently, we consider a prior, which encapsulates real knowledge about the data to be

estimated.

In our synthetic examples we have chosen L = 4 for the noise level and a second order

neighborhood system, i.e. �ve model parameters, to keep the computational load limited.

The employed prior is Gibbsian according to Eq. 3.52 with the potential function

Vc(xi; �c;�) =
�c

1 +
�
�xi
�

�2 : (4.12)
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Figure 4.2: In
uence of the model and its parameters on the texture restoration. Top row:

Original noise-free "beach sand" image (256 � 256 pixels), restoration using

the discontinuity adaptive model with �xed parameters, restoration using the

discontinuity adaptive model with estimated parameters. Bottom row: Speckled

image with L = 4 (MSE=299), restoration using the Gauss-Markov model with

�xed parameters, restoration using the Gauss-Markov model with estimated

parameters. Parameters and mean square errors are given in Tab. 4.2.

Simulated annealing (cf. appendix B) was used to maximize the resulting global posterior,

which is of the form of Eq. 4.10, and to ensure convergence of the estimate to a good

local minimum of the global energy, since in practice the global minimum is diÆcult to be

found even by simulated annealing. The results for two images with di�erent contents are

presented in Figs. 4.2 and 4.3. The employed model parameters and the achieved mean

square errors are provided in Tab. 4.2. The used textures have been extracted from the

Brodatz album.

We can see from the examples with parameters estimated from the noise-free data that

both the "straw" and the "beach sand" images are more than satisfactorily restored. This is

due to the model's ability to describe di�erent image contents by means of its parameters. A

�xed parameter set for one image with heterogeneous contents, or even for di�erent images,

will never yield satisfactory results. This is re
ected both in the visual representation and

in the mean square error. For the "straw" texture, the heuristically chosen smoothing

parameters even increase the mean square error emphasizing the in
uence of the prior.
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Figure 4.3: In
uence of the model and its parameters on the texture restoration. Top row:

Original noise-free "straw" image (256 � 256 pixels), restoration using the dis-

continuity adaptive model with �xed parameters, restoration using the disconti-

nuity adaptive model with estimated parameters. Bottom row: Speckled image

with L = 4 (MSE=355), restoration using the Gauss-Markov model with �xed

parameters, restoration using the Gauss-Markov model with estimated param-

eters. Parameters and mean square errors are given in Tab. 4.2

We learn from these two examples that correct model parameters give much better

results than values that have been chosen heuristically. In practice however, the parameter

values are not known and must be estimated from the noisy data. Parameter estimation

for discontinuity adaptive models, or non-linear models in general, from noise-free images

is already diÆcult, as we will demonstrate in the next section. To estimate parameters of

hidden Markov �elds, especially in the case of multiplicative noise, is a lot more challenging.

Despeckling with the Gauss-Markov model

The same experiments have been performed with the linear Gauss-Markov model. In the

�rst example, the model parameters have been chosen heuristically. In the second example,

they have been estimated from the original noise-free data. Again, we use a second order

neighborhood system to make a fair comparison with the discontinuity adaptive model.

Higher model orders, up to a certain complexity, yield better results, but parameter esti-
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mation for the non-linear models becomes too slow, since an iterative approach is required.

As before, the square-root intensity case was considered with the likelihood function of

Eq. 4.11. The used local Gauss-Markov prior is given by

p(Xi = xijXj = xj; j 2 Ni;�; �) =
1p
2��2

exp

 
�(xi � �i)

2

2�2

!
(4.13)

as already de�ned in Eq. 3.66. This time, ICM (cf. appendix B) was used to calculate the

MAP estimate. As a matter of fact, the optimization space of the posterior distribution is

rather smooth and convex, since both the Gauss-Markov prior and the likelihood function

represent uni-modal pdfs. For reasonable values of � of the Gauss-Markov (GMRF) model,

the likelihood function is almost constant around the signi�cant width of the prior distribu-

tion allowing to approximate the posterior by a Gaussian. We will intensively discuss this

property in chapter �ve.

By comparing the results illustrated in Figs. 4.2 and 4.3, the previously drawn conclusions

are con�rmed: To obtain consistent and meaningful results the hidden model parameters

of the noise-free scene must be directly estimated from the noisy data, which represent the

only source of information to guarantee optimal results. This can be considered as the

only way to ensure a reliable MAP estimate, which is not misguided by a prior that has

no evidence in the data. The heuristically �xed smoothing prior heavily blurs the textures

similarly to a strong mean �lter and results in a higher mean square error than the noisy

image itself.

On the other hand, we notice the main de�ciency of the Gauss-Markov model: While

the results for the "straw" image are convincing, the restoration of the "beach sand" image

looks a little bit blurred along the edges. This e�ect increases for images that show more

sharp edges, which are diÆcult to be described by the Gauss-Markov model. At this point,

the non-linear model behaves much better for both examples. However, this advantage in

comparison with the Gauss-Markov model cannot be justi�ed by computation times for

parameter estimation, which are in the range of two orders of magnitude higher.

Conclusions

We have seen that both the employed prior model and its model parameters a�ect the

quality of the restored images. While the choice of the parametric model will rather lie

on practical considerations, like computing times and mathematical handling, the selection

of the model parameters plays a crucial role, due to their considerable impact on the �l-

tering result. We state again, that model parameter estimation for prior Markov models

is indispensable for proper image �ltering with space-variant non-linear Bayesian restora-

tion methods. Heuristically chosen parameters, e.g. in form of a �xed regularization term,

cannot yield optimal results, but may, on the contrary, even further degrade the observed

data.
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4.3 Model Parameter Estimation Techniques

In the preceding section we gave several examples for the restoration of speckled textures

and stated that it is imperative to estimate model parameters, instead of choosing them

heuristically. Of course, in the real case, this estimation can only be performed from the

noisy observation: We are interested in extracting knowledge about the noise-free data

that may help to determine a prior. Except for rare cases, a direct estimation of hidden

parameters is impossible.

In the following, we �rst address the problem of parameter estimation from noise-free

data. Although this seems to be of little use for our problem, we will see later that this

sort of estimation is needed in a particular algorithm for the extraction of hidden model

parameters. In principle, the description of the estimation algorithms is kept general enough

to be applicable for all classes of Gibbs models. We put special emphasis on the estimation

of hidden model parameters for Gauss-Markov random �elds in the next section of this

chapter.

4.3.1 Model Parameter Estimation from Complete Data

The extraction of model parameters from data assumed to be noise-free plays an important

role, e.g. in current research related to large databases that allow a query by image content

[Datcu99, Rehrauer, Schroeder99a, Schroeder99b], instead of a query by geographic coor-

dinates or acquisition time. As in our approach, estimated model parameters are used as

a description of actual image features and are easily extracted from optical data exhibiting

no or very low additive noise.

Under the assumption of a noiseless acquisition, we deal with so-called complete data

Y = X and describe the observed realization of a Gibbs random �eld by

p(X = xj�) = 1

Z
exp

�
� U(x;�)

�
; (4.14)

where the energy function U(x;�) is characterized by a parameter vector �. For simplicity

of notation, we denote all parameters including scale parameters like � or � by the vector

�. In order to estimate the set of parameters that best explains the observation x, our task

consists in maximizing the probability

p(�jX = x) / p(X = xj�) (4.15)

as a function of �. The above proportionality results from a maximum likelihood estimation

of the parameters, i.e. we usually do not employ any prior assumptions about �. Various

methods to perform this maximization exist. The most prominent ones will be pointed out

below.

Maximum pseudo-likelihood (MPL) estimation

We have noted in chapter three that the computation of the partition function Z is usually

impossible. Hence, the global probability p(X = xj�) cannot be evaluated. However, it can
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be shown [Besag86] that

p(X = xj�) �
jXjY
i=1

p(Xi = xij�) (4.16)

and consequently with Eq. 4.14,

log p(X = xj�) � �
jXjX
i=1

Ui(xij�)�
jXjX
i=1

logZi (4.17)

are valid approximations, if jXj is large enough. The expression in Eq. 4.16 is called pseudo-
likelihood and can be maximized as a function of � by gradient approaches, since the

local partition function Zi is computable. Convergence is guaranteed because the pseudo-

likelihood is a convex function if the relationship between local energies and model param-

eters is linear, which is the case for the directional elements of �, but not for the scale

parameters � or �. Nevertheless, the local partition function has to be evaluated, which is

still computationally heavy, if it cannot be determined analytically. Hence, in these cases,

the computation time is proportional to the number of image gray-levels and to the size

of the neighborhood. Parameter estimation for large neighborhoods and 256 gray-levels is

already no more feasible, even for small images.

Approximation of non-linear models by a combination of Gaussians

The principal reason for the slowness of the maximum pseudo-likelihood (MPL) parameter

estimation for non-linear models lies in the required numerical computation of the local

partition function Zi. If an analytical expression is not available, Zi has to be calculated

by numerically integrating over the whole un-normalized distribution.

A faster approach may consist in approximating the local distribution by a mixture of

Gaussians for which the normalization factor can easily be computed. As a matter of fact,

a local Gibbs distribution is often the product of N Gaussian-like functions, where N is

the number of considered cliques. As an example, we derived an approximation for the

potential function of Eq. 3.62 which, for a single clique c, is found to be

exp(�Vc) = exp

 
��c exp

 
�
�
�xi

�

�2!!
� 1 + exp

 
� �xi

2

2�DA2

!�
exp(��c)� 1

�
; (4.18)

with

�DA
2 =

8><
>:
��2=(2�c) for �c < �1
�2�c=2 for �c > 1

�2=2 otherwise;

(4.19)

having been derived analytically and experimentally from the curvature at the maximum

of the non-linear potential function. We also derived the normalization constant of such a

single clique contribution to be described by

Zc = G+
�
exp(��c)� 1

�p
2��DA2; (4.20)
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Figure 4.4: Approximation of a non-linear model by a combination of Gaussians. The pdfs

for the exact non-linear potential (solid), the approximations by a summation

of Gaussians (dotted) and by a multiplication of the terms of Eq. 4.18 (dashed)

are given for a second order neighborhood with � = (�1;1; �1;2; �2;1; �2;2) =

(�3; 2; 0:5;�2) and � = 24. Clockwise: Both approximations are valid for

non-overlapping contributions of the di�erent cliques. With increasing overlap,

the �rst approximation, which allows an easy computation of the partition func-

tion, becomes invalid. For a complete overlap, the multiplicative approximation

is no more able to correctly describe the non-linear behavior of the model either.

where G is the number of used gray levels.

The complete localized Gibbs distribution can now be roughly approximated by a sum of

these di�erent Gaussian-shaped distributions for each clique corrected by an additive con-

stant, which allows the direct computation of Zi. However, a more accurate approximation

is given by the product of the terms for each clique given in Eq. 4.18. Unfortunately, in the

latter case the computation of Zi is no more straightforward.

The resulting approximations for several local conditional pdfs are exempli�ed in Fig. 4.4.

It can be seen that the summation of di�erent Gaussians is only a good approximation if

the individual contributions of the cliques do not overlap. In fact, this case is not interesting
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for real textures, which have neighboring gray levels of similar value, hence �xi is rather

small for all cliques. The multiplicative approximation is much more accurate. But here, the

similarity also degrades for very overlapping contributions of the di�erent cliques. Even if Zi
was easily computable, this approximation would not be always satisfactory. Experiments

with such an approximated partition function Zi did not show convergence of the model

parameter estimates to their correct values.

We deduce from these examples that the presented simple approximation of non-linear

models does not give convincing results for the important case of overlapping contributions

from di�erent cliques. As a matter of fact, it is in this case, where the power of the non-linear

potential functions, which cannot be easily approximated by an additive or multiplicative

combination of Gaussians, lies. We conclude that more research in this �eld is needed to

�nd better approximations with necessarily increased complexity.

Maximum pseudo-likelihood estimation for Gauss-Markov random �elds

It is of particular interest for practical applications that, for the Gauss-Markov model, the

maximum pseudo-likelihood approach results in a rather fast, not to say instantaneously

computed, analytical solution [Chellappa, Manjunath] of the form

�̂ = A�1b and �2 = Ef(xi � �i)
2g; (4.21)

which is determined by correlations between neighboring pixels. The model parameter

vector to be estimated is de�ned as

�̂ = (�̂1;1; �̂1;2; � � �)T ; (4.22)

where T denotes the transposition of vectors. Concerning the computation of the standard

deviation �, xi denotes single pixel values and �i =
P

k;l �̂k;l(xk;l + x
0

k;l
) gives their value

predicted by the Gauss-Markov model with parameters �̂k;l. The matrix A contains the

correlation factors of all combinations of pixel pairs, i.e. left and right neighbors xk;l and

x
0

k;l
of a center pixel, within a given neighborhood since �k;l is the interaction parameter for

both neighbors

A =

0
BBBBBBB@

Ef(x1;1 + x
0

1;1) � (x1;1 + x
0

1;1)g Ef(x1;1 + x
0

1;1) � (x1;2 + x
0

1;2)g � � �
Ef(x1;2 + x

0

1;2) � (x1;1 + x
0

1;1)g Ef(x1;2 + x
0

1;2) � (x1;2 + x
0

1;2)g � � �
Ef(x2;1 + x

0

2;1) � (x1;1 + x
0

1;1)g Ef(x2;1 + x
0

2;1) � (x1;2 + x
0

1;2)g � � �
Ef(x2;2 + x

0

2;2) � (x1;1 + x
0

1;1)g Ef(x2;2 + x
0

2;2) � (x1;2 + x
0

1;2)g � � �
...

...
. . .

1
CCCCCCCA

(4.23)

and the vector b is composed of the correlation coeÆcients between a center pixel x0;1 and

its neighbors xk;l and x
0

k;l

b = (Efx0;1 � (x1;1 + x
0

1;1)g; Efx0;1 � (x1;2 + x
0

1;2)g; � � �)T : (4.24)

Obviously, the solution of this set of linear equations depends on the inversibility of the

matrix A. Parameters for uniform regions with zero variance cannot be derived in this way,
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Figure 4.5: Analysis and synthesis using Gauss-Markov random �elds of �fth neighborhood

order. Top row: Original Brodatz textures (water, herringbone weave, straw

and beach sand, 64 � 64 pixels). Bottom row: Synthesized textures generated

with the parameters extracted from the original data. The estimated parameters

are given later in Tab. 4.3 and in Fig. 4.7.

although equal values for all parameters �k;l represent a reasonable solution. Hence, stable

and robust estimates cannot be always guaranteed with this method.

Thanks to the analytical solution, parameter estimation for arbitrary neighborhood or-

ders is straightforward and fast. An example of image analysis and synthesis for Gauss-

Markov random �elds is given in Fig. 4.5. The model parameters of a �fth order neighbor-

hood have been extracted from the original texture images and have been used to regenerate

similar textures. The values of the six most signi�cant parameters are enumerated later in

Tab. 4.3 and the full parameter vectors are displayed further below in Fig. 4.7.

In the presented examples, parameters and realizations of the second and the fourth

texture are rather similar. This is because the "weave" texture is not stationary concerning

the directional information. In such cases, the model parameters tend to show isotropic

smoothing characteristics, which is partly visible in the synthesized image. This is an

important property, since textures that cannot be suÆciently explained by the model will

be simply smoothed in the image restoration process. Such textures will not be �ltered

with random parameters, which would result in strong artefacts.

Furthermore, the sampled textures only approximate the properties of the original ones.

However, a highly accurate description of the image contents for re-synthesis by a parametric

model is not necessary if the goal is image restoration. In our case, enough additional

information about the noise free image x is encapsulated in the noisy observation y by

means of the likelihood term.
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Coding method

The coding method was introduced in [Besag74] and is basically a maximum likelihood

estimation method providing parameters that maximize the conditional probability of a

subset of the random �eld, the so-called coding, which is statistically independent from

other codings. This method requires the solution of a set of non-linear equations, which

can be obtained by gradient methods. However, the coding method showed not to be very

reliable in experimental results. Moreover, an established method to combine the di�erent

parameter estimates from di�erent codings into one single parameter set does not exist.

Stochastic gradient algorithm for complete data

Another parameter estimation approach that we want to mention starts from the full global

probability of the Gibbs random �eld, which is written as

p(X = xj�) = 1

Z
exp

�
� �U(x)

�
(4.25)

and results in an iterative updating scheme for the hyper-parameter � to be estimated. An

extended approach should work for a full parameter vector � of the local energy function.

The function U(x) is the potential function without the free parameter �. The estimate of

� at iteration n+ 1 is then given by [Younes88]

�(n+1) = �(n) +
U(x(n))� U(x)

(n+ 1)V
: (4.26)

We do not want to go too deeply into this method, but intend to illustrate its di�erent

quality: The denominator in the above equation is an approximation of the variance of

U(x), but what is more interesting is the term U(x(n)), which is the potential of the sampled

�eld x(n) at iteration n with parameter �(n). Thus, starting with a random parameter �(0),

a con�guration x(0) is sampled, � is updated and the whole procedure is re-iterated. Note

that x(n) is used as a starting point to generate the next sample x(n+1).

Although we did not investigate this method, we �nd it worth to be brie
y pointed

out here. The idea of a stochastic gradient with sampling from the distribution under

investigation represents a di�erent class of approach. However, it can be supposed that

convergence is rather slow and that computation times are quite high, due to the required

sampling from the Gibbs distribution.

Model selection for complete data

Up to now, we considered the case of parameter estimation from noise-free data for a given

model M . Of course, it is possible not only to �t the model to the data by estimation of

its parameters, but also to select the model that bests explains the data by means of the

evidence. Writing the full Bayesian equation

p(�jX = x;M) =
p(X = xj�;M)p(�jM)

p(X = xjM)
; (4.27)
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we see that � is estimated for a particular model M and that the likelihood of that model

is described by the evidence term

p(X = xjM) =

Z
p(X = xj�;M)p(�jM)d�; (4.28)

where the integration is performed over the whole space of �. Approximations of this

possibly multi-dimensional integral can be made and, in principle, the evidences for the

Gauss-Markov and a discontinuity adaptive model can be evaluated.

We do not perform this model comparison here because, on one hand, the computation

of the evidence for non-linear models is rather diÆcult and, on the other hand, we only

intend to point out the model selection for noise-free data in order to compare it to the case

of noisy data as presented below.

4.3.2 Model Parameter Estimation from Incomplete Data

For SAR image restoration we do not have the favorable case of complete data, but must

estimate the required model parameters from noisy, i.e. incomplete, data. We want to

extract knowledge aboutX from the observation y. Consequently, we are unable to compute

the required parameters by maximizing p(X = xj�). To better illustrate the problem, we

write Bayes' equation used for restoration

p(X = xjY = y;�;M) =
p(Y = yjX = x;�;M)p(X = xj�;M)

p(Y = yj�;M)
(4.29)

and �nd for the evidence term

p(Y = yj�;M) =

Z
p(Y = yjX = x;�;M)p(X = xj�;M)dx; (4.30)

which results from the integration of the posterior product over the whole space of X. In

contrast to the noise-free case, we do not separate the model M and its parameters, but

treat them together by maximizing the evidence p(Y = yj�;M) as a function of � for a �xed

model M . This can be interpreted as a decomposition of M into several sub-models each

characterized by a di�erent parameter vector �. Of course, this scheme can be performed for

several modelsM , thus enabling the selection of the best model together with its parameters.

A model selection of the type p(Y = yjM), regardless of its parameters, requires another

probabilistic layer and is not suited for practical application. We illustrated before that

the equivalent computation of p(X = xjM) for the noise-free case is possible, because this

additional noise-layer is missing.

In the following, we neglect M and estimate parameters for a �xed model. Several

methods exist to solve the problem of estimating � out of the observation y.

Markov chain Monte Carlo (MCMC)

To solve the problem of parameter estimation from incomplete data, the maximization of

the evidence integral in Eq. 4.30 is necessary. The computation of this integral, however, is

not trivial and in the general case not feasible.



82 Bayesian Image Despeckling

To approximate the evidence for a given parameter set �, a stochastic scheme was pro-

posed [Linden, Skilling]. In fact, what is needed is the histogram p(Y = yjX = x;�)p(X =

xj�) in order to calculate the evidence, which is its normalization constant. This histogram

can be built by sampling from the posterior product for �xed values of � and, thus, allows

an approximation of the evidence term.

It is clear that this approach is computationally very heavy and converges only slowly.

Moreover, it has to be performed for a large number of values of � to �nd the optimum.

Besides the fact that full statistical certainty is never achieved, as only a �nite number of

samples is drawn, we consider this approach unsuitable for our goal of parameter estimation

for SAR image restoration and information extraction, for the practical reason of compu-

tation time. However, for many cases this Monte Carlo method may be the only solution

since it can always provide the seeked inference about the model parameters.

Expectation maximization (EM) algorithm

A method, which is frequently used for the estimation of hidden Markov parameters, es-

pecially in speech processing, is the expectation maximization (EM) algorithm [Dempster,

EM]. We de�ne a function

Q(�̂; �̂
(n)
) =

Z
log
�
p(�̂jX = x; Y = y)

�
p(X = xjY = y; �̂

(n)
)dx; (4.31)

which is described by the parameter vector �̂ to be estimated and its current guess �̂
(n)

obtained at iteration n. By iteratively maximizing this function, a value for �̂ which rep-

resents the global or a local maximum of the evidence can be found. The maximization is

done in two steps:

1. E-Step: Compute Q(�̂; �̂
(n)
) as a function of �̂ using the current guess �̂

(n)
. The

integration has to be performed over the whole space of X.

2. M-Step: Maximize theQ function with respect to �̂ in order to obtain a new parameter

vector update �̂
(n+1)

and re-iterate.

It was proven by [Dempster] that this full EM algorithm always converges. But it cannot

be assured that the global maximum is reached. Nonetheless, in our case, the integration

over the space of X is even more challenging than the computation of the evidence by itself.

Hence, the EM algorithm in this form is of no particular use for our problem. However,

the Q function can be simpli�ed if the posterior p(X = xjY = y; �̂
(n)
) is very peaked and

approximates a Dirac function in the limit. For this case, the EM algorithm reduces to:

1. E-Step: Compute the MAP estimate x̂MAP of the data using the observation y and

the current estimate �(n) of the parameter vector by maximizing the posterior p(X =

xjY = y; �̂
(n)
).
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Figure 4.6: Texture restoration using Gibbs random �elds. From left to right: Original

data (64� 64 pixels) sampled from a discontinuity adaptive Gibbs model, noisy

texture with single look speckle, Kuan �ltered image, restored texture using the

same Gibbs model as for synthesis of the original data. The model parameters

used for restoration have been iteratively estimated from the speckled data with

the EM-type algorithm.

2. M-Step: Use the estimated value x̂MAP as the actually measured data to determine

the ML estimate of � by maximizing p(X = x̂MAP j�) and re-iterate until convergence

is reached.

In the following, we refer to this technique as the EM-type algorithm [Moon, Wei], since it is

a reduced version of the original EM approach. In this method, to obtain � the computation

of the MAP estimate x̂MAP is needed for the E-step, and the parameter estimation for

complete data (e.g. MPL estimation) is needed for the M-step. For both steps we have

pointed out suitable algorithms.

As an illustration, we present a qualitative example for image restoration using non-

linear models in Fig. 4.6. A synthetic texture was generated, degraded by speckle, and has

been �ltered using Markov random �elds with the presented EM-type algorithm for model

parameter estimation. For comparison, the same image has also been �ltered with the Kuan

�lter. In contrast to the Kuan �ltered image, which shows only reduced similarity to the

original data, the restored image exhibits clear similar textural properties. As a drawback,

computing times for the used non-linear model are too high to be suitable for practical

application due to the computationally demanding MPL parameter estimation. We also

note that the original texture is a direct realization of the employed prior model, which

allows a better restoration. For real textures, we have only rarely observed convergence to

a reliable reconstruction, since the simpli�ed EM-type algorithm may not always converge

to a good estimate of �.

Stochastic gradient algorithm for incomplete data

To complete this overview, we �nally note that a similar stochastic gradient algorithm exists

for parameter estimation from incomplete data [Younes89, Younes91], as for the noise-free

case. Since the same restrictions apply as for complete data, no tests have been done to

evaluate its performance.
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4.4 Estimation of Hidden Gauss-Markov Model Parameters

In the following, we limit ourselves to the case of linear Gauss-Markov random �elds. The

principal capabilities of non-linear models for information extraction and image restoration

have been demonstrated, but the required computations are by far too time consuming

for practical applications. As of this, linear models, such as the Gauss-Markov model,

are preferred in spite of their limited modeling capabilities, since they are much easier to

deal with in the Bayesian framework. For the case of complete data, parameter estimation

for the Gauss-Markov model is straightforward and can be done analytically. Hence, a

similarly reduced computational complexity of parameter estimation for speckled data can

be suspected.

4.4.1 Gauss-Markov Model Parameter Estimation from Speckled Data

We address three possible approaches for parameter estimation from incomplete data and

evaluate their performance concerning the goal of SAR image restoration. Using synthetic

data, examples will be given for the estimated parameters extracted from assumed station-

ary textures and for image restoration of a non-stationary scene requiring small estimation

windows. Consequently, two criteria are important for the selection of an appropriate

method: Quality of parameter estimation and behavior in non-stationary conditions with

few data, i.e. stability and robustness of the estimator.

Parameter estimation from speckled data by expectation maximization

The EM-type approach is easily applicable in the Gauss-Markov case. Both the computation

of the MAP estimate and the maximum pseudo-likelihood parameter estimation are very fast

to perform, the former because of the analytically given partition function, the latter because

of the analytical solution for the parameter estimates by a simple matrix inversion. However,

results might not be optimal due to the possibility of getting trapped in local extrema or

because of the made simpli�cations in the derivation of the EM-type algorithm, which

neglects information from solutions in the vicinity of the actual MAP estimate (assumption

of a peaked posterior).

Analytical parameter estimation from speckled data

The derivation of the maximum pseudo-likelihood estimate for Gauss-Markov random �elds

showed that the model parameters are completely determined by the correlation coeÆcients

of all pixels within the considered neighborhood. Consequently, estimates of the matrix A

and of the vector b obtained from noisy data can be used to compute the parameter vector

�̂, which describes the statistical properties of the noise-free image x in exactly the same

way as for complete data using Eq. 4.21.

Under the assumption of multiplicative speckle noise n, i.e. y = x �n, and for square-root

intensity images, our estimation of the elements of A and b directly yields the following
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relations

Efx0;1 � (xa;b + x
0

a;b)g =
Efy0;1 � (ya;b + y

0

a;b
)g

Efng2 ; (4.32)
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0

a;b) � (xa;b + x
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and
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0
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0
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Ef(ya;b + y

0

a;b
) � (yc;d + y

0
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Efng2 ; (4.34)

where the mean of the noise process Efng, which was given in Eq. 2.37, depends on L, i.e.

on the equivalent number of looks (ENL). In this derivation, we used Efna;b �nc;dg = Efng2
for uncorrelated speckle and Efn2g = 1.

As for complete data, an analytical estimate can also be derived for the variance of the

model prediction �2 in the noisy case. We �nd

�2 = Ef(xi � �i)
2g (4.35)

= Efxi2g � 2Efxi�ig+Ef�i2g
= Efxi2g � 2E

n
xi �

X
k;l

�k;l � (xk;l + x
0

k;l)
o
+E

n
(
X
k;l

�k;l � (xk;l + x
0

k;l))
2
o
;

which can be expressed as a function of the expectation values of the noisy data using

Efxi2g =
Efyi2g
Efn2g = Efyi2g (4.36)

and the equations Eqs. 4.32 - 4.34 derived before.

Computationally, the estimation of Gauss-Markov parameters from speckled data with

this method is as fast as the parameter estimation from complete data, i.e. almost instan-

taneous in comparison with other methods. Moreover, the estimation accuracy can be

assumed to be very good depending, of course, on the quality of the estimates for A and b,

which is determined by the estimation window size. Concerning the solution of the resulting

set of linear equations, the same restrictions in terms of stability as for the noise-free case

apply.

Parameter estimation by iterative evidence maximization (IEM)

Another approach for Gauss-Markov parameter estimation from speckled data is the itera-

tive maximization of an approximation of the evidence p(Y = yj�;M) [Datcu98, Walessa99a].

We mentioned that the computation of the evidence integral is usually very diÆcult and

rather slow, if performed e.g. by MCMC. However, if the integrand is composed of two uni-

modal distributions, e.g. a square-root Gamma and a Gaussian distribution as in our case,

the resulting evidence can be approximated as shortly hinted at in chapter three. Being able

to numerically evaluate p(Y = yj�;M) within reasonable time, an iterative optimization

technique can be employed for its maximization. Before discussing this method in detail

in the following chapter, we will �rst compare its performance to the other two presented

approaches.
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Beach sand � �1;1 �1;2 �2;1 �2;2 �3;1 �3;2

Original 8.489 0.4048 0.3933 -0.08244 -0.04275 -0.0688 -0.07476

Noisy 23.27 0.1711 0.1758 0.07485 0.09635 0.01614 0.01557

EM-type 3.138 0.2519 0.1739 0.1713 0.1577 -0.04427 0.1403

Analytical 8.919 0.3317 0.3844 -0.008458 0.0009847 0.005694 -0.07582

IEM 9.302 0.2166 0.2139 0.09477 0.1139 0.0075 0.002045

Water � �1;1 �1;2 �2;1 �2;2 �3;1 �3;2

Original 14.28 0.1604 0.1572 0.07497 0.04989 0.004371 0.03087

Noisy 33.12 0.06279 0.07801 0.05794 0.04945 0.02556 0.04952

EM-type 4.453 0.1409 0.04386 0.08708 0.07772 -0.01477 -0.006031

Analytical 14.39 0.1482 0.1327 0.1176 0.05179 0.01128 0.02759

IEM 14.8 0.06455 0.07545 0.05455 0.06 0.02182 0.06273

Straw � �1;1 �1;2 �2;1 �2;2 �3;1 �3;2

Original 7.629 0.1719 0.3886 -0.07157 0.1926 -0.02289 -0.1167

Noisy 25.04 0.1038 0.1527 0.009229 0.1301 -0.0267 0.01916

EM-type 3.454 0.08539 0.1551 -0.03883 0.3754 -0.02549 0.02944

Analytical 8.271 0.132 0.3923 0.002109 0.1684 0.07316 -0.147

IEM 5.818 0.1511 0.233 -0.008864 0.193 -0.04432 -0.02523

Weave � �1;1 �1;2 �2;1 �2;2 �3;1 �3;2

Original 12.05 0.3673 0.4307 -0.1035 -0.05603 -0.03876 -0.05532

Noisy 34.76 0.1513 0.1782 0.07711 0.08753 0.02788 0.03775

EM-type 4.992 0.2176 0.2147 0.05355 0.04623 0.1036 0.07762

Analytical 8.271 0.132 0.3923 0.002109 0.1684 0.07316 -0.147

IEM 14.7 0.195 0.2086 0.09227 0.1086 0.02136 0.03227

Table 4.3: Gauss-Markov random �eld parameters estimated for the four Brodatz textures.

The six most signi�cant directional parameters of a �fth order neighborhood

system used for estimation are displayed. Parameters have been estimated under

the assumption of complete data from both original and noisy data using the

MPL approach. The EM-type algorithm, the analytical estimation technique and

the iterative evidence maximization (IEM) method have been used to estimate

parameters from incomplete data.

4.4.2 Evaluation of Estimation Techniques for Gauss-Markov Parameters

To evaluate the quality of the estimated parameters obtained from di�erent techniques, we

use the four Brodatz textures "beach sand", "water", "straw" and "herringbone weave"

(Fig. 4.8). Employing the analytical MPL method, we estimate reference model parameters

for each noiseless texture using an estimation window of the size of the texture (256 � 256

pixels), which guarantees reliable estimates. For that purpose, we assume the textures to

be stationary as far as their spatial properties are concerned. A �fth order neighborhood

system is assumed to capture the complexity of the di�erent image contents resulting in
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Figure 4.7: Plots of estimated directional parameters �k;l extracted with di�erent algo-

rithms. Results are given for the four Brodatz textures. Parameters are dis-

played for the original texture (solid) and for the estimates obtained by the

EM-type algorithm (dotted), by the analytical method (dashed) and by IEM

(dotted-dashed). To reduce complexity of the plots the MPL estimates from

noisy data are omitted.

twelve directional parameters �k;l and the standard deviation � for the Gauss-Markov model.

For parameter estimation from incomplete data, we added speckle noise with L = 3 and

applied the presented parameter estimation techniques.

Another experiment was made to verify the performance of the estimators on non-

stationary images. We generated a synthetic image and restored it with locally adaptive

versions of the algorithms under study (Fig. 4.9). Small sliding estimation windows (typi-

cally 16�16 pixels) are used to obtain local parameter estimates, which are required for the

computation of the MAP estimates. The results of all these tests are depicted in Figs. 4.7,

4.8, 4.9 and the corresponding Tabs. 4.3 and 4.4.
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Figure 4.8: Restoration of speckled textures (L = 3) using Gauss-Markov random �elds and

di�erent parameter estimation techniques. Columns from left to right: Original

textures without noise, restoration of speckled textures with MPL-estimated

parameters from noisy data, restoration obtained with EM-type parameter esti-

mation, with analytical parameter estimation and with iterative evidence max-

imization (IEM).

Parameter estimation from speckled data by MPL estimation for complete data

In addition to the presented methods for parameter estimation from incomplete data, we

veri�ed the performance of the MPL approach for complete data in the case of model pa-

rameter estimation from speckled images and found that normal MPL estimation of the

Gauss-Markov (GMRF) parameters without taking into account the noise properties yields

very poor results. The estimates, which are given in Tab. 4.3, provide some information

about the textural activity of the data, but surely cannot be satisfactorily used to discrim-

inate di�erent textures of the cross-section. For image restoration, these results are of no

use at all. Consequently, an example of locally adaptive image restoration has not been

computed.
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Figure 4.9: Despeckling results from a synthetically speckled image (L = 3, 256 � 256 pix-

els) using di�erent techniques for local parameter estimation of a �fth order

neighborhood. From left to right: Original synthetic image, restoration of the

speckled image with the EM-type algorithm (window size 16 � 16, MSE=425),

result of the analytical estimation method (window size 64 � 64, MSE=412)

and result obtained with parameter estimation by IEM (window size 16 � 16,

MSE=179).

Parameter estimation from speckled data by expectation maximization

For the EM-type approach, a �xed number of 25 iterations was used. The estimated Gauss-

Markov parameters capture the basic textural properties like di�erent directional prefer-

ences, but do not convince in terms of their error to the "true" parameters. A striking

characteristic is the value estimated for �, which is very low and results in a rather smooth

restoration of the image, as depicted in Fig. 4.8. Concerning the mean square error (MSE)

of the restoration and the evidence of the estimated parameters shown in Tab. 4.4, re-

sults are sometimes even worse than those obtained by �ltering with parameters extracted

without considering speckle. This is not acceptable for SAR image despeckling. The same

conclusion can be drawn from the result of the locally adaptive �ltering, as illustrated in

Fig. 4.9. Many artefacts, which result from the instability of the parameter estimates, are

visible in the �ltered image. Consequently, the EM-type approach cannot be considered to

be suitable for parameter estimation from speckled data.

Analytical parameter estimation from speckled data

The analytical parameter estimation from speckled data yields very fast and very good

estimates. The similarity of the estimated parameters with the reference parameters of

the noise-free textures, as illustrated in Fig. 4.7, is impressive. Apparently, this makes

this approach the �rst choice for information extraction from noisy data. The four restored

textures are of high quality, with mean square errors signi�cantly lower than for the EM-type

algorithm. However, concerning the locally adaptive image �ltering, inverse conclusions

have to be drawn. The estimated parameters show to be extremely unstable for small

window sizes. We increased the initial window size of 16 � 16 pixels to 64 � 64 pixels in

order to ensure stable parameters throughout most of the image, although some artefacts

remained visible in Fig. 4.9. However, large estimation windows are not acceptable for image
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MSE Sand Water Straw Weave

Noisy 189 418 188 409

EM-type 198 256 198 435

Analytical 133 220 137 263

IEM 135 217 136 251

Log-Evidence Sand Water Straw Weave

Noisy -4.569 -4.966 -4.692 -4.974

EM-type -4.623 -5.020 -4.537 -5.034

Analytical -4.476 -4.867 -4.473 -4.880

IEM -4.446 -4.863 -4.495 -4.828

Table 4.4: Quality of image restoration and texture parameters. Upper table: Mean square

error between original texture and restored image obtained by di�erent parameter

estimation techniques. "Noisy" denotes MPL estimation of the model parameters

for complete data, i.e. from the speckled data without considering noise. Lower

table: Normalized log-evidence p(Y = yj�;M) of the parameters estimated with

the presented algorithms. Both the analytical method and IEM yield similar

excellent results. For numerical computation of p(Y = yj�;M) approximations

made in the IEM algorithm have been used.

restoration due to the inherent non-stationary behavior of SAR images. As a consequence,

small features and textures are strongly smoothed, as shown in Fig. 4.9 and as re
ected in

the mean square error. The possible instability becomes especially apparent in areas of low

textural activity.

This disappointing result can be explained by considering the linear system of the matrix

A and the vector b. The estimation of k = 12 directional model parameters for a �fth order

neighborhood requires the computation of k(k+3)=2 = 90 empirical expectation values from

the speckled data. To guarantee stability, these estimates must possess a certain accuracy,

which increases with the estimation window size. By sequentially increasing the assumed

value of the noise mean Efng in the algorithm up to Efng = 1, which is equivalent to

the normal MPL estimate without considering noise, stability grows, but the parameter

estimates are no more accurate. Robustness is also limited due to the required matrix

inversion. In regions of low textural activity, i.e. with similar correlation in all directions, A

cannot be inverted any more or its inverse matrix becomes unstable, resulting in parameters

with values far out of the nominal range. A comparative example is illustrated in Tab. 4.5.

We see that the analytical estimation yields extremely unstable parameters with � not

de�ned (NaN). However, the sum
P

k;l �k;l of all twelve parameters yields 0.5, i.e. the correct

normalization, as expected.

We conclude that, although computationally simple and very accurate for stationary

textures with a certain activity, the analytical approach is not suited for locally adaptive

image restoration in combination with information extraction.
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Flat Cross-Section � �1;1 �1;2 �2;1 �2;2 �3;1 �3;2

Analytical NaN -0.686 -4.677 1.413 0.3028 -1.664 1.668

IEM 11.01 0.04545 0.04545 0.04091 0.04091 0.04091 0.04091

Table 4.5: Gauss-Markov random �eld parameters estimated for a uniform cross-section

(256 � 256 pixels with mean �x = 100) degraded by speckle with L = 3. The

six most signi�cant directional parameters of a �fth order neighborhood system

used for estimation and the standard deviation � are displayed. The potential

instability of the analytical solution is re
ected in � = NaN .

Parameter estimation by iterative evidence maximization

The results obtained by the iterative maximization of the approximated evidence are of

almost equal quality compared to those of the analytical estimator, as can be seen from

Fig. 4.7. The quality of the restored textures can be judged to be equal by visual evalua-

tion and in terms of the mean square error. However, the iterative evidence maximization

approach is about two orders of magnitudes slower. Its main advantages compared to the an-

alytical approach are its robustness and the stability imposed by the iterative optimization.

Comparing the examples of Fig. 4.9, by far the best results, both visually and with regard

to the mean square error, are obtained. The �ltered image is almost free of artefacts and

shows a good restoration of �ne structures. Artefacts occur mainly at transitions between

areas of di�erent textural properties, i.e. at strong non-stationarities. This may require a

special processing at borders, which could probably be partly avoided by the use of discon-

tinuity adaptive models. Concerning the estimation for uniform cross-sections (Tab. 4.5)

the twelve iteratively estimated parameters show to be very stable and closely take their ex-

pected values of 0:5=12 = 0:0416. The value of � re
ects the remaining uncertainty imposed

by the speckle noise.

Conclusions

We deduce from the above experiments that only the last of the three presented approaches

for Gauss-Markov model parameter estimation from incomplete data is suitable to meet

the conditions necessary for information extraction from SAR data and for speckle �ltering:

Accurate and robust parameter estimation from few data. In the next chapter, the iterative

evidence maximization (IEM) approach will be presented in detail and its application to

real SAR data will be demonstrated, an issue which was not yet addressed.

4.5 Summary

In this chapter, the following points have been discussed:

� Several commonly used despeckling �lters have been presented. We discussed their

qualitative di�erences in terms of modeling of the noise and of the noise-free cross-
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section. Generally, the quality of the despeckled data increases with model complexity.

Almost all approaches rely on the assumption of uncorrelated noise and require some

pre-processing of the data to meet this condition.

� Complex prior assumptions require iterative relaxation methods for the maximization

of the posterior. With regard to the optimization space, either slow optimal stochastic

algorithms like simulated annealing or faster sub-optimal optimization schemes like

the ICM algorithm are to be used.

� Regardless of the kind of parametric prior, optimal �ltering results can only be

achieved if the model parameters are estimated from the data. Fixed parametric

models cannot be considered to be satisfactory since they introduce a strong bias and

may even further degrade the noisy observation.

� Methods for information extraction from noise-free data have been presented. We

showed that the computational complexity of the estimation mainly depends on the

used model, either non-linear or linear. In principle, non-linear models possess higher

modeling capabilities than linear ones. However, non-linear models are diÆcult to

handle making parameter estimation too slow for practical applications.

� In the case of incomplete data, parameter estimation becomes more challenging. Sev-

eral methods have been presented. In the following, we limited ourselves to the linear

Gauss-Markov model for practical reasons and discussed several parameter estimation

techniques. A quantitative comparison under di�erent conditions clearly favored one

of the tested approaches.

� The di�erent steps leading to the choice of Gauss-Markov random �elds for informa-

tion extraction and image restoration have been illustrated. Based on these results,

we develop a Bayesian algorithm for SAR image �ltering and feature extraction in

the following chapter. However, due to the known shortcomings of the Gauss-Markov

model, an additional processing, which is discussed in chapter six, will be necessary.



5 Model-Based Despeckling with

Gauss-Markov Random Fields

Especially for high-resolution SAR imagery it is important to preserve textural information

while removing speckle noise, in order to simplify a subsequent image interpretation. To

achieve this goal, we use a Bayesian approach for image restoration relying on texture

models. In the preceding chapters, we have demonstrated that this is best done with

linear models, such as Gauss-Markov random �elds, due to their better tractability for

computations. Non-linear models may possess additional qualities but are very diÆcult to

handle.

We calculate the MAP estimate of the noise-free image using adaptive model parameters.

These parameters must be estimated by taking into account the characteristics of the noise

which a�ects the data, making this a diÆcult and sometimes not feasible task. A number of

estimation techniques for incomplete data have been presented in the last chapter, among

which we have chosen the IEM approach as the most suitable one. This estimation technique

has not been explained yet and will be the main subject of the following sections.

In this chapter, all relevant issues concerning �ltering and information extraction from

SAR data will be addressed. We start with a discussion on the computation of the MAP

estimate, which will lead to a justi�ed approximation of the evidence term allowing its

evaluation. After this, the basic algorithm for parameter estimation and �ltering will be

outlined.

A subsequent analysis will address a possible bias of the resulting estimator and contains

an error analysis of the �ltered image. In the last section, we discuss several additional

issues like the selection of the neighborhood order, the choice of the estimation window

size, an interpretation of the evidence and the properties of the Gauss-Markov model in

di�erent signal spaces, i.e. �ltering of logarithmic and intensity data. Proposed solutions

for identi�ed drawbacks of the introduced approach will be discussed in chapter six.

5.1 MAP SAR Image Estimation with a Gauss-Markov Prior

The observed noise-free radar cross-section x of the random process X that we want to

estimate from a given observation y of a process Y is a�ected by the realization n of the

speckle noise process N in a multiplicative way. We have already seen in chapter two that
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a multiplicative noise is characteristic for all coherent imaging systems and usually is of

very high variance compared to the mean image gray-values. As in the preceding chapter,

we consider the probability density function of the likelihood of the observed square-root

intensity image y = x � n, which is given at site i analogously to Eq. 2.36 by

p(Yi = yijXi = xi) = 2

�
yi

xi

�2L�1 LL

xi�(L)
exp

 
�L

�
yi

xi

�2!
: (5.1)

Discussions of the behavior of the Gauss-Markov model for intensity or log-intensity data

will follow in a later section.

In order to preserve texture and to extract textural information, we use Gauss-Markov

random �elds (GMRFs), which represent an auto-regressive process, as prior information.

This choice was motivated by the Gauss-Markov model's analytical tractability making

it interesting for practical application. Transforming the auto-regressive process into a

corresponding pdf yields the already known distribution (cf. Eq. 3.66) for the stochastic

Gauss-Markov random �eld model of X:

p(Xi = xijXj = xj; j 2 Ni;�; �) =
1p
2��2

exp

 
�(xi � �i)

2

2�2

!
(5.2)

We remind that �i is a linear combination of gray-values in a certain neighborhood around

xi, which are weighted by the elements of the model parameter vector �:

�i =
X
k;l

�k;l � (xk;l + x
0

k;l) (5.3)

5.1.1 Fast Computation of the MAP Estimate

Knowing the local representations of the likelihood function and the prior Gibbs random

�eld, as well as its parameters, a MAP estimate can be computed that maximizes the global

energy function of the posterior �eld, as seen in chapter three. Usually, stochastic relaxation

methods are required for this optimization task. In our case, however, it is advisory to use a

deterministic algorithm, like ICM (cf. appendix B), since convergence to the �nal solution

is much faster and we are faced with a convex optimization space, as we will demonstrate

in a later section.

ICM solution for a Gaussian-shaped prior

At each iteration, the ICM algorithm requires the computation of the pixel values that

maximize the local posterior distribution at each site, i.e. each pixel xi is updated with its

most probable value. Unlike for non-linear models, this computation can be performed ana-

lytically for the posterior product of the square-root Gamma and the Gaussian distribution.

We have to maximize

p(Xi = xijYi = yi;�) / p(Yi = yijXi = xi;�)p(Xi = xij�); (5.4)
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Figure 5.1: Convergence of the ICM (Iterative Conditional Modes) algorithm using the

Gauss-Markov prior. Left: Mean absolute change jx(n) � x(n�1)j of gray-

values between to subsequent iterations n and n � 1. Right: Relative change

jx(n) � x(n�1)j=x(n�1) between two iterations. For visualization we show only

the range starting from iteration two. The plots are given for the �ltering of the

"sand" (dot-dashed), the "water" (solid), the "straw" (dotted) and the "weave"

(dashed) texture. The "water" texture, which exhibits no dominant structures,

shows the fastest convergence.

as a function of xi. This can be achieved by setting the �rst derivative of the product to

zero. The logarithm may be used here for simpli�cation since it is a monotonic function

that does not change the location of any maxima. Consequently, we �nd what we call the

MAP equation:

@

@xi
log p(Xi = xijYi = yi;�) = �2L

xi
+
2Lyi

2

xi3
� xi � �i

�2
= 0 (5.5)

For the proposed model and the presented likelihood function we obtain as a �nal result a

fourth order polynomial which yields four solutions for xi depending on the model parameter

vector � including �, the observed data yi and the current neighborhood con�guration of

xi characterized by �i:

xi
4 � �ixi

3 + 2L�2xi
2 � 2L�2yi

2 = 0 (5.6)

A simple case study of the possibly complex-valued roots gives the desired solution for the

maximum of the local posterior. Convergence of the ICM algorithm is usually reached after

a few iterations. In practice, we limited ourselves to a maximum of ten iterations, which

provides very good results. This choice is con�rmed by a study of the changes from one

iteration to the next, as depicted in Fig. 5.1. After �ve iterations, visual changes are no

more perceivable. Full convergence is usually achieved after 25 iterations.

Unfortunately, the computations involved to solve the fourth order polynomial are rather

heavy, preventing us from reaching low calculation times which are especially important for

the following computation of the approximated evidence and the related model parameter
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estimation. The fourth order polynomial can be solved analytically, but requires to deal

with complex numbers.

ICM solution for a square-root Gamma-shaped prior

By presenting the Gamma-Gamma MAP �lter, we have pointed out that the Gamma dis-

tribution explains the observation of K-distributed intensity SAR data for slightly textured

scenes. A Gaussian-shaped prior is only approximately able to achieve this. To overcome

this apparent drawback, we change the shape of the employed prior from a Gaussian to a

square-root Gamma distribution, which is the equivalent of the Gamma distribution for the

square-root intensity case as stated in chapter two. Hence, we rewrite the prior as

p(Xi = xijXj = xj; j 2 Ni;�; �) = 2

�
xi

~�i

�2��1 ��

~�i�(�)
exp

 
��

�
xi

~�i

�2!
; (5.7)

where � is a form parameter equivalent to the scale parameter �, and ~�i encapsulates

information about the neighboring pixels of xi similar to �i in the Gauss-Markov case.

Following the same reasoning as before, we �nd the new value of xi that maximizes the

local posterior of the changed prior to be a root of

xi
4 +

2L� 2� + 1

2�
~�2i xi

2 � L

�
~�2i yi

2 = 0; (5.8)

which is very easy to solve and results in a single unique positive solution. As of this, the

ICM optimization for a square-root Gamma prior is much faster. In our implementation

computation times could be reduced by a factor of about ten. Unfortunately, the estimation

of the model parameters, which is computationally more challenging than the calculation of

the MAP estimate, as will be demonstrated, is slower by about the same factor, if performed

by the IEM algorithm.

The square-root Gamma model cannot be considered to be suitable for the description of

textures with non-stationary mean. As illustrated in Fig. 2.9, the width of the distribution

increases with its mean value. Hence, a �xed value of � estimated from data with non-

stationary mean will result in a reduced smoothing for brighter image regions compared to

darker ones. As a consequence, the application of the square-root Gamma model for texture

restoration from speckled data with a non-stationary mean makes no sense.

Approximation of a Gaussian by the square-root Gamma distribution

Nevertheless, we can exploit the identi�ed computational advantage concerning the MAP

estimate by approximating the Gaussian shape of the Gauss-Markov model by the square-

root Gamma distribution, i.e. knowing the model parameters for the Gauss-Markov prior,

the MAP estimation is computed much faster with an approximated prior distribution. To

perform this approximation, we make use of the fact that the coeÆcient of variation for both

amplitude and square-root intensity images is almost equal (cf. Fig. 2.10), which results in

� = 0:52272
~�2
i

�2
(5.9)
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for the form parameter �, where the relation of Eq. 2.43 has been used. In order not to

introduce a bias in the estimator, the maxima of the Gaussian and the square-root Gamma

distributions must lie at the same position �i. In this case, their respective mean values �i
and ~�i are not identical. Using the derived relation

�i = ~�i

r
2� � 1

2�
; (5.10)

we �nd the two parameters of the approximating square-root Gamma distribution to be

given by

� =
1

2
+

�
0:5227�i

�

�2
(5.11)

and

~�i =

s
�i2 +

�2

2 � 0:52272 : (5.12)

From Eq. 5.11, we see that � is not �xed, but adapts itself to the predicted mean �i of the

Gauss-Markov model for every single pixel.

5.1.2 Error Evaluation for the Square-Root Gamma Approximation

The evaluation of the accuracy of the square-root Gamma approximation is not a trivial task

since the approximating function depends on parameters like xi, ~�i and �. If the quality

of the maximizer xi of the local probability distribution is to be evaluated, the values of L

and yi must also be considered. Because of its higher relevance, we decided to study this

latter case.

In Fig. 5.2, the relative estimation error jxi � x̂ij=xi of x̂i obtained under the approx-

imation compared to the reference value xi resulting from the Gaussian-shaped prior is

illustrated. As shown in the three plots for di�erent values of � and for a �xed value of

the observation yi = 100, the relative error is rather small, lying below two percent. For

the most important practical case of � = 8 the error is even negligible. The two other

cases with � = 2 and � = 32 can be considered as limiting cases for real SAR data, as

shown by experimental results. However, the relative error sometimes dramatically grows

for small values of �i, since the square-root Gamma distribution is limited to positive values

not allowing to correctly approximate the negative lobes of the Gaussian. Increasing errors

will also occur for decreasing values of yi because the relative width of the likelihood with

regard to the prior also in
uences the approximation accuracy.

The Gaussian and its approximations are displayed in Fig. 5.3 for � = 32, i.e. for a rather

high approximation error. As shown in Fig. 2.9 the approximation accuracy will increase for

higher values of �, i.e. lower values of �, since the square-root Gamma distributions comes

closer to a Gaussian shape. Similar experiments for single look speckle showed equivalent

results as the considered case with L = 3. Hence, we consider this approximation, which

introduces only a negligible error in the estimation of the cross-section while allowing much

faster and easier computations, to be valid. We will use it without special notice throughout

the rest of this work for the computation of the MAP estimate.
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Figure 5.2: Relative estimation error resulting from the square-root Gamma approximation.

The relative error of x̂i compared to the estimate obtained with the Gauss-

Markov prior xi is plotted as a function of �i, i.e. of the prediction of the prior,

for L = 3, yi = 100 and � = 2 (dotted), � = 8 (solid) and � = 32 (dashed).

Figure 5.3: A Gaussian and its square-root Gamma approximation. Left: Approximation

for �i = 40. Right: Approximation for �i = 100. The Gaussian (solid) and its

approximation (dotted) are shown for a high (left) and a small (right) relative

estimation error with � = 32 and L = 3.

This conclusion is con�rmed in Tab. 5.1, which compares the �ltering results obtained

with and without the discussed square-root Gamma approximation that reduces computing
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MSE Original - Gaussian Original - SqrtGamma Gaussian - SqrtGamma

Sand 145 142 3.2

Water 240 230 7.2

Straw 172 166 20.0

Weave 274 274 10.3

Table 5.1: Mean square errors for the restoration of the four Brodatz textures. The mean

square errors are given for the original data compared to the results obtained

with the Gaussian and the approximating square-root Gamma prior, as well as

for the di�erence between the two �ltering results. We considered arti�cially

speckled data with L = 3.

times by an order of magnitude: As required, the mean square error between the �ltered

images is rather small. However, it is striking that the mean square error to the original data

decreases for the square-root Gamma approximation of the Gauss-Markov prior. This could

be due to the fact that the original data indeed are not Gaussian, but are better described

by a skewed pdf. Both the "water" and the "sand" texture possess nearly Gamma-shaped

histograms and rather slowly varying mean values.

5.2 Model Parameter Estimation by Iterative Evidence Max-

imization

Being able to calculate a MAP estimate of the noise-free signal x, a crucial problem still

remains: How to choose the model parameter vector � ? Here, we take advantage of the

second level of Bayesian inference to estimate the set of parameters that best explains the

observed noisy image y. Assuming a uniform prior p(�), Bayes' equation for the model

parameters is reduced to the following proportionality

p(�jY = y) / p(Y = yj�) =
Z
p(Y = yjX = x)p(X = xj�)dx; (5.13)

where the integral has to be performed over the whole space of X and, again, the likelihood

function for speckle does not explicitly depend on �. This integral is called evidence and

re
ects the probability of the data y given an assumed model characterized by �. The

task consists in maximizing this evidence as a function of �, i.e. in �nding the most likely

model parameter vector. Unfortunately, this maximization is generally a quite diÆcult

task, especially for non-Gaussian multi-dimensional functions, as they often occur in image

processing, e.g. in form of non-linear Gibbs models. We have already addressed several

approaches to the problem of model parameter estimation from incomplete data in chapter

four.

For the special case of estimation from a uni-modal posterior distribution, this task can

be solved. We introduce the chosen approach and verify if made assumptions do really

apply for SAR image restoration using Gauss-Markov random �elds as a texture model.
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5.2.1 Approximation of the Evidence Integral

To be able to perform the integration over the posterior product p(Y = yjX = x)p(X = xj�)
and to keep the problem tractable several approximations must be made:

� In a �rst step, we approximate the multi-dimensional posterior product by a multi-

variate Gaussian distribution, which is centered around the MAP estimate x̂MAP , i.e.

around the maximum of the posterior [MacKay]. This is shown later to be a good

approximation for the used likelihood function in combination with the Gauss-Markov

random �eld model.

� In a second step, we consider the integrand of Eq. 5.13 to consist of mutually inde-

pendent random variables, allowing us to break the conditional probability density

functions into the products of their components. Of course, this statistical indepen-

dence is not given but has been shown to be a good approximation for large jXj, i.e. a
large number of pixels, being equivalent to the maximum pseudo-likelihood approach

[Besag86].

General mathematical approximation

By applying the proposed simpli�cations, we �nd for the �rst step, the second step and for

the �nal result of the posterior product, i.e. the integrand,

p(Y = yjX = x)p(X = xj�) � p(yjx̂MAP )p(x̂MAP j�) exp
�
�1

2
�xTH�x

�
(5.14)

�
jXjY
i=1

p(yijxi)p(xij�)

�
jXjY
i=1

p(yijx̂iMAP
)p(x̂iMAP

j�) exp
�
�1

2
hii(xi � x̂iMAP

)2
�
;

where x̂iMAP
is the MAP estimate of xi obtained with a �xed parameter vector �. �x

denotes x � x̂MAP in vector form and hii are the main diagonal elements of the Hessian

matrix H, which is given by (r denotes the Nabla operator)

H = �rr log

0
@ jXjY
i=1

p(Yi = yijXi = xi)p(Xi = xij�)

1
A
������
xi=x̂iMAP

(5.15)

= �rr
jXjX
i=1

log (p(Yi = yijXi = xi)p(Xi = xij�))
���
xi=x̂iMAP

:

As a consequence, we are able to perform the integration over the resulting function. The

approximated evidence is simply described by the properties of the multi-variate Gaussian

and the posterior �t of the MAP solution to the data:

p(Y = yj�) =

Z
p(Y = yjX = x;�)p(X = xj�)dx (5.16)
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�
Z jXjY

i=1

p(yijx̂iMAP
)p(x̂iMAP

j�) exp
�
�1

2
�xTH�x

�
dx1 : : : dxjXj

� (2�)
jXj
2

p
detH

jXjY
i=1

p(yijx̂iMAP
)p(x̂iMAP

j�)

Please note that this can be rewritten using the Occam factor 
, which was mentioned in

chapter three. Thus, we obtain for easier interpretation

p(Y = yj�) � (2�)
jXj
2p

detH
p(yjx̂MAP )p(x̂MAP j�) (5.17)

� p(yjx̂MAP ) � 

� p(Y = yjX = x̂MAP ) � 
:

Finally, since we prefer to use the logarithmic form of p(Y = yj�) for numerical reasons,
the log-evidence can be expressed as [Walessa99a]

log p(Y = yj�) � 1

2
log

 
2�jXj

detH

!
+

jXjX
i=1

(log p(yijx̂iMAP
) + log p(x̂iMAP

j�)) (5.18)

�
jXjX
i=1

�
1

2
(log 2� � log hii) + log p(yijx̂iMAP

) + log p(x̂iMAP
j�)
�
;

where the assumption

detH �
jXjY
i=1

hii (5.19)

was employed. This approximation is valid since it implies that all covariances resulting

from the sparsely set matrix H are zero (o�-main-diagonal values are neglected), which is

in accordance with the already made assumption of statistical independence in Eq. 5.14.

Moreover, this simpli�cation is required for practical reasons, as it prevents us from the

computation of determinants of dimension jXj � jXj, which is not feasible for suÆciently

large estimation windows.

Approximation for a Gauss-Markov prior

Using the preceding simpli�cations, only the components on the main diagonal of the matrix

H are needed. These components, which are inversely proportional to the variances of the

approximating Gaussians, can be found to be

hii = � @2

@xi2

jXjX
j=1

0
@�2L log xj � L

 
yj

xj

!2

� (xj � �j)
2

2�2

1
A
������
xi=x̂iMAP

(5.20)

=
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for the square-root Gamma likelihood function in combination with the Gauss-Markov

random �eld model, and are mainly characterized by the variance �2 and the norm j�j
of the directional model parameter vector of the Gauss-Markov prior.

Approximation for a square-root Gamma prior

By analogy to the Gauss-Markov case, the expression for hii can also be derived for a

square-root Gamma-shaped prior, as given in Eq. 5.7, instead of the Gauss-Markov prior.

This yields

hii =
6Lyi

2

x̂4
iMAP

+
2� � 2L� 1

x̂2
iMAP

+
2�

�i2
+ 2�

X
k;l

�k;l
2

�k;l2

 
3
x̂2
k;lMAP

�k;l2
� 1

!
; (5.21)

which is much more complicated than Eq. 5.20 and depends on the predicted values �k;l of all

neighbors around xi. This result is indicated only for completeness since, as discussed before,

we consider this prior not to be suitable for texture restoration and use the square-root

Gamma distribution only as an approximation of the Gaussian to speed up the computation

of the MAP estimate.

Error evaluation for the Gaussian approximation of the posterior

In order to determine the error introduced by approximating the evidence by an integral

over a Gaussian, we proceed similarly to the case of the square-root Gamma approxima-

tion: Keeping �, L and yi �xed, we calculate the MAP estimate x̂iMAP
and the evidence

for a running value of �i. For comparison, we plot the relative error of the numerically

obtained reference evidence according to Eq. 5.13 and the value obtained by the proposed

approximation of Eq. 5.16. These results and a histogram of the calculated relative errors

computed for values of �i from 0 to 255 are displayed in Fig. 5.4. The parameter � was

�xed to 12, which is a reasonable value for practical applications. The interval was limited

to a maximum value of 255 for practical reasons. Actual gray-values of SAR data may be

much larger but can be rescaled to this gray-value range.

As shown, the relative error decreases with growing L and increasing yi. For very low

values of yi the approximation of the posterior may be rather poor for reasons equivalent

to those already mentioned for the square-root Gamma approximation: The approximating

Gaussian is not limited to values larger than zero and the likelihood function becomes

rather peaked with a width similar to the one of the prior. However, this large error quickly

decreases with growing values of yi, as illustrated in the plots, and attains values clearly

below one percent. The displayed histograms, which have been computed for the relative

errors resulting from all combinations of yi and �i with values from 0 to 255, con�rm this

observation.

We conclude that the computation of the approximated evidence is of suÆcient accuracy

and can be used for model parameter estimation. The numerical evaluation of the evidence

is still computationally demanding for it requires the computation of the MAP estimate.
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Figure 5.4: Relative errors of the approximated evidence for a single pixel. Clockwise: Rel-

ative errors for yi = 10, for yi = 100, for yi = 200 as a function of �i, and

histogram of relative errors for the interval of yi from 0 to 255. Curves are

displayed for L = 1 (solid), L = 3 (dotted) and L = 8 (dashed). In all cases

� = 12 was assumed.

However, the MAP estimate and the model parameters are obtained simultaneously, pro-

viding the restored image and a description of its textural contents.

5.2.2 Iterative Model Parameter Estimation

We have demonstrated in the last section that the evidence for a given model and a �xed

parameter set can be numerically computed. However, to determine the model parameters

that maximize this measure, an iterative procedure is necessary since an analytical solu-

tion is not available. This is both due to the complexity of the integral and the chosen

approximation, which requires the MAP estimate of x for the evidence computation.

For the purpose of maximization, we tested two di�erent approaches: A simple hill-

climbing algorithm with a �xed step width for the parameter update, and a two step ap-

proach, which, as an interesting property, can be regarded as an extension of the EM-type

algorithm.
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Evidence maximization by hill-climbing

In principle, the maximization of the approximated evidence as a function of � and � can be

performed with any optimization technique. For computational reasons only deterministic

approaches are suitable. Since an ICM approach is not possible because we cannot di-

rectly �nd each maximizing individual parameter, a simple hill-climbing algorithm remains

a reasonable choice.

The approach that we implemented works in the following way:

1. Start with an initial parameter con�guration serving as a �rst guess and compute the

MAP estimate and the evidence for this set of parameters.

2. At iteration n, update a single parameter using a �xed step-width, i.e. �k;l
(n+1) =

�k;l
(n) + Æk;l

(n), and compute the new MAP estimate and the resulting evidence.

3. Keep the new parameter value if the evidence is increased, or reject it and invert Æk;l,

i.e. Æk;l
(n+1) = �Æk;l(n), otherwise.

4. Re-iterate several times from step two for all parameters �k;l and � until convergence

is reached, i.e. until the evidence no more increases.

Typically, as a �rst guess we use a heuristically determined value of � = 10 and a model

parameter vector describing uniform areas with �k;l = � for all its elements. This parameter

vector is normalized to 0:5 after each update to guarantee stability. Consequently, all

parameter values are changed at each update. This approach proved to work �ne in practice

and yields consistent parameter estimates. Typical values for Æk;l are 0:001 and 0:125 for

Æ�, which was assigned a di�erent value for faster convergence. Note that the values for Æk;l
must be eventually lowered for neighborhoods larger than �fth order because of a higher

number of parameters.

The proposed approach gives convincing results concerning the parameter estimates but,

as its main drawback, showed to be computationally very demanding. After each update,

the MAP estimate has to be calculated and the full expression of the evidence has to

be computed. This becomes even more challenging when the number of parameters to

determine increases, i.e. when the neighborhood size grows. For practical applications, this

method showed to be by far too slow.

Evidence maximization by Occam factor optimization

In order to faster estimate the Gauss-Markov random �eld parameters, we adopt an ap-

proach which shows to be related to the expectation maximization algorithm of [Dempster,

Moon] discussed in the preceding chapter. Equivalently, the proposed method can be split

into two steps:

1. Compute the MAP estimate of the data using the observation y and the current

estimate of the model parameters � and �.
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2. Keep the MAP estimate �xed and determine the model parameters � and � that

maximize the expression for the approximated evidence p(Y = yj�) of Eq. 5.17. Re-
iterate from step one until convergence is reached.

For the optimization task of step two, the identical hill-climbing approach with starting

parameters as presented before is used. However, in contrast to the hill-climbing method

for evidence maximization, the main computational load now lies on the calculation of

the approximated evidence and not on the MAP estimate. A new MAP estimate is only

computed once the model parameters maximize p(Y = yj�) for the current con�guration of

x̂MAP . In this way, the maximization of the evidence can be performed much faster since

it reduces to the maximization of

(2�)
jXj
2

p
detH

p(x̂MAP j�) = 
; (5.22)

at each iteration. The likelihood term is independent of the Gauss-Markov parameters and

can be omitted for the optimization of the evidence in step two. Hence, the maximization

is done solely on the Occam factor 
, which we call the Occam factor maximization step.

Interpretation of the Occam factor maximization step

The above method becomes very interesting if we consider the expectation maximization

algorithm or, more exactly, the EM-type approach: The �rst step of the proposed optimiza-

tion algorithm and the E-step are identical. Concerning the M-step, the second part of the

presented technique is slightly di�erent. Instead of maximizing

p(x̂MAP j�) =
jXjY
i=1

1p
2��2

exp

 
�(x̂iMAP

� �i)
2

2�2

!
(5.23)

as in the maximization step of the EM-type algorithm, we consider an additional factor of

(2�)
jXj
2p

detH
=

Z
exp

�
�1

2
�xTH�x

�
dx1 : : : dxjXj: (5.24)

The product of these two terms was shown to result in the Occam factor as the measure to

maximize in step two.

In the last chapter, we demonstrated that the EM-type algorithm does not provide robust

and satisfactory results. Consequently, the di�erence between stable and unstable estimates

can only result from the factor given in Eq. 5.24. As a matter of fact, by neglecting this

factor for parameter estimation equivalent results to those of the EM-type algorithm are

obtained.

Considering only a single pixel and neglecting the �rst two additive terms of Eq. 5.20

which result from the likelihood and are functions of x̂MAP , we simplify Eq. 5.22 for the

purpose of easier interpretation tos
2��2

1 + j�j2 p(x̂iMAP
j�) = 
i: (5.25)
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From this simpli�ed term the qualitative di�erence between the proposed method of itera-

tively maximizing the approximated evidence and the EM-type approach becomes directly

clear:

� The under-estimation of �, which was observed for the EM-type algorithm, is com-

pensated by � present in the numerator of Eq. 5.25, thus favoring larger values.

� The unstable behavior of the estimates of the directional parameters is reduced by j�j2
in the denominator, suppressing outliers or high values of single parameters, which

would result in a higher norm. A parameter vector with a small norm, i.e. a small

variance of the parameter values, is more probable.

A direct equivalence of the proposed method to the full expectation-maximization algorithm

could not be detected by a comparison of analytically computed examples. Nevertheless,

these approaches seem to be related in a certain way. More theoretical research is required

to qualify the proposed technique with regard to other methods.

5.2.3 Evaluation of the Proposed Optimization Approaches

The performances of the two presented optimization techniques for evidence maximization

have been tested on the four speckled texture images (L = 3) from the Brodatz album. The

�ltering conditions, such as step widths or the number of iterations for the MAP estimator,

have been chosen to be equal, and the estimation window was taken to be of the size of

the whole texture, i.e. 256 � 256 pixels. We measured the performance in terms of the

mean square error of the �ltered image to the original one and in terms of the obtained

log-evidence normalized to one pixel. The corresponding results are provided in Tab. 5.2.

Visually, no di�erences can be detected between the �ltered images. However, the hill-

climbing method behaves slightly better concerning both the mean square error of the

restoration and the evidence of the estimated texture parameters. Signi�cant di�erences

occur only for the mean square error of the "water" texture. It is interesting to observe in

our examples that better evidences also yield better mean square errors, which con�rms the

employment of the evidence as a criterion for model parameter extraction. Note that the

indicated values for the MSE may di�er from previously given examples, due to changed

step widths or a di�erent number of iterations.

Although better results can be achieved with the hill-climbing method, we choose the

Occam factor maximization method for model parameter estimation, since it is about one

magnitude faster in computation. This advantage is mostly due to the fact that the compu-

tation of the MAP estimate is not required for every update of the parameter vector, as it

is the case for the hill-climbing method. Furthermore, the value of the Occam factor can be

computed much faster than the full evidence. The computational load of the hill-climbing

method is beyond of what can be accepted for the processing of larger scenes.
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Ehill Eoccam MSEhill MSEoccam

Sand -4.377 -4.397 133 137

Water -4.854 -4.881 200 244

Straw -4.296 -4.344 135 146

Weave -4.805 -4.817 250 257

Table 5.2: Log-evidences and mean square errors for the restoration of the four Brodatz tex-

tures with a Gauss-Markov model of �fth neighborhood order. Both measures are

given for the optimization by hill-climbing and by Occam factor maximization.

5.3 Properties of the Gauss-Markov Texture Estimator

Having derived the estimator for both the MAP estimate of the cross-section and the ML

estimate of the model parameters, a quantitative evaluation is required. For the users of

SAR data the preservation of the image mean value is of particular interest for interpre-

tation and classi�cation. Hence, we have to check for a possible bias introduced by the

Gauss-Markov �ltering. The accuracy of the estimated model parameters has already been

the subject of chapter four. For this reason, besides a short example of local parameter

extraction, we will only verify the robustness of the iterative estimation approach by ap-

plying it to noise-free data in the limit of L!1. At the end of this section will follow an

analysis of the minimum achievable MSE of the obtained MAP estimate, which is related

to the Cram�er-Rao bound for ML estimation.

5.3.1 Bias of the Gauss-Markov Texture Estimator

In order to check for a possible bias of the estimated mean cross-section, we generated six

test images (128� 128 pixels) with di�erent mean values �x being constant throughout the

whole image. We added speckle of L = 1, L = 3 and L = 8 and measured the mean of the

�ltering result �̂x for these eighteen di�erent cases. As before, we work in the square-root

intensity domain.

In Tab. 5.3 the obtained results �̂x for the �ltered images are enumerated and compared

to the original mean values �x. We observe that a bias in form of an under-estimation of the

original mean value is introduced. For a better analysis of this phenomenom, we plotted the

estimated mean against its correct value in Fig. 5.5. From the left plot, we deduce that the

bias is not of additive but of multiplicative form, which is con�rmed by the plot on the right

where the ratio of the mean values �x=�̂x is displayed. This ratio is almost constant for the

whole range of tested values. Consequently, we have to deal with a constant multiplicative

bias as a function of L which can be easily corrected.

A closer look reveals that the required correction factor is approximately equal to the

inverse mean of the square-root intensity speckle noise (cf. Eq. 2.37), which results to be

1:128, 1:042 and 1:016 for the given values of L. When these correction factors are used, a
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�x 25 50 100 150 200 250 �x=�̂x

�̂x, L=1 22.513 45.606 90.827 135.92 180.46 226.49 1.104

�̂x, L=3 23.917 48.147 96.962 145.23 193.31 241.39 1.036

�̂x, L=8 24.569 49.227 98.599 147.90 196.91 246.87 1.015

Table 5.3: Bias of the Gauss-Markov texture estimator. The original noise-free mean �x
and the mean gray-value of the �ltering results �̂x for di�erent speckle levels L

are displayed. We also give the empirical mean for the ratio of these values.

Figure 5.5: Multiplicative bias of the estimator. Left: Plot of the estimated mean �̂x over

the original value �x for L = 1 (solid), L = 3 (dotted) and L = 8 (dashed)

showing the multiplicative character of the introduced bias. Right: Ratio of the

original to the estimated mean �x=�̂x This ratio is approximately equal to the

inverse of the square-root intensity speckle mean.

relative error of more than one percent only occurs for single look data.

On square-root intensity data the estimator introduces the same bias as a simple mean

�lter, which is due to the averaging that is performed by the Gauss-Markov model in order

to obtain the prediction value �i. The unbiased ML solution, however, consists in averaging

the squares of the observed gray-values and taking the square-root afterwards. Nonetheless,

the proposed estimator very accurately preserves the mean of the observed data and allows

for a simple adjustment to the maximum likelihood value by means of an analytically given

correction factor, i.e. by dividing the obtained result by the mean of the square-root intensity

speckle noise.

5.3.2 Quality of Model Parameter Estimation by IEM

The accuracy of the model parameter estimation from speckled data has already been an-

alyzed in chapter four. It was shown that the estimation by IEM yields results similar to



5.3 Properties of the Gauss-Markov Texture Estimator 109

Figure 5.6: Local model parameter estimation from complete and incomplete data. Top row:

Original noise-free image (512� 512 pixels) and model parameters extracted by

MPL estimation. Center row: Speckled image (L = 4) and its MPL parameters.

Bottom row: Speckled image (L = 4) and model parameters extracted by IEM

considering the speckle noise. From left to right, the parameter images show the

estimated values of �, j�j and �2;1 for a �fth order neighborhood. For parameter
estimation windows of 15� 15 pixels have been used.

the ones obtained by the derived analytical estimator and are close enough to the reference

values estimated from noise-free data. A quantitative quality measure is diÆcult to provide

since the Cram�er-Rao bound cannot be derived analytically in a closed form. For informa-

tion extraction and SAR image restoration, the accuracy can be assumed to be suÆcient.

Local model parameter estimation from complete and incomplete data

In Fig. 5.6 we depict an example of model parameter estimation from complete and in-

complete data. In the �rst row, the parameters obtained by MPL estimation from the

noise-free data are displayed. The next two rows show parameters extracted from speckled
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data by MPL estimation without taking into account the noise and by IEM, where speckle

is considered.

By comparing the last two rows, conclusions already made in chapter four are con�rmed:

If the in
uence of speckle is neglected (MPL estimate from noisy data), the estimated

parameters are only of limited value. A clear distinction between di�erently textured areas

by directional information cannot be made. We note however, that the information in � is

much less a�ected, since it is strongly correlated to the average image brightness.

Concentrating on the information contained in the directional parameters, we observe a

much clearer separation between di�erent textures for the IEM estimate (third row) than

for the MPL estimate from complete data (�rst row). This especially applies for the IEM-

estimated norm j�j, which clearly re
ects the structures of the original data.

This apparent inconsistency of more descriptive parameter estimates from noisy than

from noise-free data is caused by the �t of the data to the Gauss-Markov model. Since the

complete data are no direct realization of the used model, the extracted parameters exhibit

a noisy appearance. In the case of estimation from incomplete data however, this limited

model �t can be attributed to the speckle in the image. The underlying data are "made"

to behave according to the imposed Gauss-Markov model allowing an apparently less noisy

estimation.

Model parameter estimation by IEM from complete data

In order to check the robustness of the estimator, we consider the limiting case of L !1
and estimate the texture parameters from the original noise-free Brodatz images by iterative

evidence maximization (IEM) for incomplete data. The results, which are given for a �fth

order neighborhood system, are shown in Tab. 5.4.

The correspondence of the original and the estimated parameters for all four textures

is extremely high, con�rming the validity of the made assumptions and the convergence

of the introduced model parameter estimation approach. While the directional parameters

are in almost perfect agreement, the scale parameter � is slightly under-estimated. This is

explained by the value of L, which we have chosen to be L = 256 in our experiment. For

larger values of L, convergence to the correct value of � can be observed. It is clear that

the assumption of higher noise than actually given in the image results in lower values for

� since part of the model mis�t, which is described by �, is automatically attributed to the

overestimated image noise.

5.3.3 Lower Bound of the Mean Square Error

For parameter estimation it is desirable to have a measure indicating the reliability of the

obtained estimates. We cannot derive this measure for the model parameters as already

mentioned above, but a lower bound can be determined for the mean square error of the

�ltered image. It can be shown, that this minimum mean square error is directly related to

the Hessian matrix H of the approximated posterior that we have already derived.
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Beach sand � �1;1 �1;2 �2;1 �2;2 �3;1 �3;2

Original 8.489 0.4048 0.3933 -0.08244 -0.04275 -0.0688 -0.07476

Estimated 7.689 0.4294 0.4212 -0.1161 -0.07242 -0.07515 -0.08606

Water � �1;1 �1;2 �2;1 �2;2 �3;1 �3;2

Original 14.28 0.1604 0.1572 0.07497 0.04989 0.004371 0.03087

Estimated 13.67 0.1660 0.1578 0.07326 0.04598 0.002348 0.02962

Straw � �1;1 �1;2 �2;1 �2;2 �3;1 �3;2

Original 7.629 0.1719 0.3886 -0.07157 0.1926 -0.02289 -0.1167

Estimated 6.492 0.1703 0.4239 -0.08333 0.1921 -0.001515 -0.1379

Weave � �1;1 �1;2 �2;1 �2;2 �3;1 �3;2

Original 12.05 0.3673 0.4307 -0.1035 -0.05603 -0.03876 -0.05532

Estimated 11.22 0.3912 0.4539 -0.1352 -0.07788 -0.04788 -0.06970

Table 5.4: Gauss-Markov random �eld parameters estimated for the four noise-free Bro-

datz textures with L!1. The six most signi�cant directional parameters of a

�fth order neighborhood system used for estimation are displayed. Parameters

have been estimated from noise-free data using the iterative evidence maximiza-

tion (IEM) method for incomplete data in the limiting case of L ! 1 and are

compared to the corresponding MPL estimates from the original data.

The minimum mean square error for the estimation of a parameter X using prior infor-

mation is given by [Kroschel]

E
n
(x� x̂)2

o
� E

(
� @2

@x2
log p(Y = y;X = x)

)�1

; (5.26)

where the expectation is over both X and Y . This measure is closely related to the Cram�er-

Rao bound, which describes the estimation error for maximum likelihood estimation without

prior information.

The minimum achievable variance for each gray-value at site i as in Eq. 5.26 is given

by the element ii of the inverse matrix of the expectation of H. We note, that this is not

equal to the inverse of the diagonal elements hii themselves, if the o�-diagonal elements of

H are non-zero: The inverse of the diagonal elements of a matrix are in general not equal

to the diagonal elements of its inverse. However, we make this approximation at the risk of

under-estimating the correct variance for each estimate. The actual minimum estimation

error may be much higher. For the four Brodatz textures we provide approximated results

in Tab. 5.5 by computing the empirical mean of 1=hii over all pixels.

In fact, the minimum errors are much lower than the actually measured mean square

errors. In principle, two causes may explain this observation: On one hand, the given

minimum errors are only valid if the used prior and its parameters really describe the noise-

free data, i.e. the data are a realization of a Gauss-Markov random �eld. Either this is

not fully true, or the accuracy of the model parameter estimates is not suÆcient. On the
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Figure 5.7: Images of the lower bound of the mean square error in each pixel for the four

Brodatz textures. From left to right: "Sand", "water", "straw", and "weave"

textures. The images illustrate the dependence of the lower bound on the aver-

age image brightness re
ecting the multiplicative property of speckle.

MSE Sand Water Straw Weave

Lower Bound 71 134 54 154

Measured Value 133 199 115 262

Table 5.5: Measured mean square error and its theoretical lower bound. The two values are

given for the four �ltered Brodatz textures with speckle of L = 3 and a seventh

order neighborhood system for restoration.

other hand, the given lower bound can only be reached if the estimator is eÆcient. For an

eÆcient estimate to exist, the posterior must be a Gaussian. This is only approximately

and not exactly the case as shown before.

The images of Fig. 5.7, which show the lower bounds of the mean square error for each

pixel of the four Brodatz textures, re
ect the speckle noise properties. As expected, the

maximum estimation accuracy for bright regions is lower than the one for darker regions

since the variance of the a�ecting speckle increases with image intensity.

5.4 Optimization of the Filtering Quality

In this section, we point out several issues that directly in
uence the �ltering quality of

the proposed algorithm: We address the problem of model order selection for the Gauss-

Markov model in order to obtain an optimal restoration. The in
uence of the size of the

windows, which are used for local parameter estimation and spatially adaptive �ltering, on

the robustness of the �lter will also be discussed and a �rst example of model-based SAR

image despeckling will be given for illustration. The section ends with an investigation of

the most suitable signal space for SAR image restoration in combination with Gauss-Markov

random �elds.
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5.4.1 Model Order Selection

Di�erent neighborhood sizes of the Gauss-Markov model can be used for both information

extraction from SAR data and SAR image �ltering. The selection of the most probable

model order is performed within the Bayesian framework. We maximize p(Y = yj�;Morder)

as a function of � for a given model order Morder, i.e. we perform a model parameter

estimation for di�erent neighborhood sizes and choose the one with highest evidence. Since

computing time increases with the number of models to test, we usually use a �xed model

order for practical application of the proposed �lter. We remind that a full model order

selection independent of the estimate �̂ requires an additional Bayesian layer making this

a too complicated task.

Evidence for di�erent model orders

To illustrate the model selection process in more detail we study the di�erent terms of the

approximated evidence given by

p(Y = yj�) � (2�)
jXj
2

p
detH

p(yjx̂MAP )p(x̂MAP j�) (5.27)

� p(yjx̂MAP ) � 
:

The terms that determine this evidence are the likelihood �t p(yjx̂MAP ) and the Occam

factor 
, in which the �t to the prior model p(x̂MAP j�) is of particular interest. With

increasing model order, i.e. a larger neighborhood size and more texture parameters to be

estimated, the following behavior can be observed for the measures plotted in Fig. 5.8:

Likelihood �t: Since we are dealing with data of poor quality, the distance in the image

space between the true noise-free image and the observed speckled one is rather large.

A decrease of the likelihood �t p(yjx̂MAP ) can be measured with increasing model

complexity as the �ltering result moves further away from the observation.

Prior model �t: The �t of the prior model p(x̂MAP j�) increases monotonically with the

model order, since a more complex model is able to better explain the actual image

content.

Gauss-Markov �: Equivalent arguments apply for � of the Gauss-Markov model, which

decreases with growing model order, since the residual �t between predicted and

estimated data improves.

Occam factor 
: For the Gauss-Markov model, the Occam factor behaves similar to the

prior model �t. Apparently, the second factor, which is the area under the Gaussian-

approximated posterior, shows to have only a small in
uence. �, which is a dominant

factor, decreases only moderately leaving the general evolution of the Occam factor

unchanged.
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Figure 5.8: Model order selection for the Gauss-Markov model. The evolution of di�erent

measures related to the model order selection, like Occam factor or evidence, is

qualitatively displayed for the "sand" (solid) and the "weave" texture (dotted).

Due to di�erent scaling, the various measures for "sand" and "weave" are not

directly comparable.

Evidence: After a steep increase, the evidence remains almost constant. Additional model

complexity does not result in considerable improvements, neither does it degrade
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the restoration: Equally probable, but less complex models are included in more

complex ones. Higher order models with an increased computational load do not

bring additional bene�ts beyond a certain threshold of complexity.

Mean square error: An equivalent behavior can be observed for the mean square error,

which seems to be directly related to the evidence. For the two given examples,

fourth or �fth order neighborhood systems seem to be the best choice both in terms

of evidence and mean square error.

To brie
y sum up the consequences of these observations, we note that with increasing

model order a saturation of the evidence is observed. All models with order beyond a certain

threshold are about equally probable. A ninth order model can easily take the parameter

values of an assumed optimal �fth order model with its additional model parameters set

to zero resulting in no penalty for the increased complexity. From these equally probable

models the one of lowest order should be selected since it requires the least computational

complexity without resulting in a loss of �ltering quality.

Conclusions

Model order selection is possible for SAR image restoration with Gauss-Markov random

�elds. However, in contrast to what is generally expected, a clear maximum of the evidence

as a function of the model order is not observed. Instead, we found a saturation of the

evidence for model orders beyond the most eÆcient one. As of this and since the whole

model order selection process is rather slow, we directly use a high order model (�fth to

seventh order) to obtain optimal estimates of the noise-free image. This choice results in

higher computing times than the employment of a possibly equivalent lower order model,

but has no disadvantageous e�ects on the �ltered image if the parameters, whose estimation

complexity increases with the neighborhood size, are correctly estimated.

Using higher order models (e.g. seventh order), a decrease of the mean square error

between 5-10% in comparison with a simpler model (e.g. third order) was experimentally

observed. This is a rather small improvement. However, more complex models result in

sharper, less blurred and visually more attractive restorations.

5.4.2 Local Parameter Estimation and Spatially Adaptive Filtering

Due to spatially changing image content, the model parameter estimation and the �ltering

of real SAR images have to be performed locally. Parameters must be estimated for a single

pixel or a group of pixels by using estimation windows of small size. We have shown in

chapter four that parameter estimation from few data may pose problems in terms of sta-

bility and accuracy of the extracted model parameters. We illustrated that the analytically

derived solution often fails under these conditions and, therefore, rely on the introduced

IEM approach.

In Tab. 5.6 we compare the results of local model parameter estimation and �ltering with

the images obtained by a global estimation approach with a single parameter vector for the
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whole image: As expected, with local parameter estimation the MSE decreases for non-

stationary textures, like the "straw" texture, but remains unchanged for almost stationary

textures, like the "water" texture. The constant mean square error of the "weave" texture is

somewhat surprising, but may be explained by the fact that this particular texture cannot

be properly described at all by the employed Gauss-Markov model, e.g. due to a wrong

resolution or scale at which the analysis is performed.

Parameter estimation window size

Working locally on the image, we have to �x the window size that is used to locally esti-

mate the model parameters. The larger this window, which we call parameter estimation

window, the more reliable the values of the extracted model parameters: According to the

Cram�er-Rao bound, the variance of an estimate decreases proportionally with the number

of considered pixels. The need for higher accuracy increases with growing model order, i.e.

the number of parameters to estimate, since the stability imposed by the normalization

on every parameter weakens. For models of higher order, e.g. seventh order with nineteen

parameters, larger windows are necessary than for a third order model with only seven

parameters.

An example of SAR image �ltering using di�erent parameter estimation window sizes

for a seventh order model is illustrated in Fig. 5.9. Parameter estimation with too small

windows (5� 5 pixels) results in strong artefacts. Considering the amount of parameters to

extract, we note that larger windows are required than generally used for statistical �lters.

For a window of 11�11 pixels the number of artefacts is reduced. A restoration with larger

windows is free of artefacts.

It is striking that the visual appearance of images �ltered with very large windows of

21� 21 pixels or larger is still convincing. Similarly to the behavior of statistical �lters, we

would expect a strong blurring of the �ltered image, which does not occur for the Gauss-

Markov model. This property can be partly explained by the fact that no assumptions

about stationarity of the mean backscatter are made. Of course, the scene has to be

stationary with regard to the model, i.e. concerning its textural properties. However, since

textural properties often vary only slowly throughout the image, the employment of larger

estimation windows can be justi�ed. We will address cases where this assumption is not

given and propose a solution to this problem in chapter six.

We conclude that parameter estimation window sizes must be rather large to obtain

results free of artefacts. Consequently, we use windows sizes of at least 21 � 21 pixels for

a seventh and 11 � 11 pixels for a third order neighborhood system, which yield positive

results.

Parameter validity window size

Since usually no abrupt changes in textures occur, it is unreasonable to estimate the model

parameter vector for each individual pixel, which is also computationally prohibitive. In-

stead, we locally determine the textural properties for a number of pixels which are located



5.4 Optimization of the Filtering Quality 117

MSE Sand Water Straw Weave

Global Estimation 141 197 133 263

Local Estimation 133 199 115 262

Table 5.6: Comparison of local and global model parameter estimation. The mean square

error of the restored Brodatz textures is given for global (estimation window size

256 � 256 pixels) and local (estimation window size 21 � 21 pixels, parameter

validity window size 11�11 pixels) model parameter estimation. The restoration
was performed with a seventh order neighborhood system and L = 3.

Figure 5.9: In
uence of the parameter estimation window size on image restoration. From

left to right: Restoration of a part (256 � 256 pixels) of the aerial SAR image

of Fig. 1.1 for di�erent estimation window sizes of 5 � 5, 11 � 11 and 21 � 21

pixels. For all restorations a seventh order neighborhood system with nineteen

model parameters has been used.

in the center of the estimation window. These pixels, for which only one single texture

vector is estimated, lie within what we call the parameter validity window. Hence, the

resolution of the extracted texture parameters is reduced compared to the original data. In

practice, we found windows of 5�5 up to 11�11 pixels to give satisfactory results reducing

the computational load for parameter estimation by a factor of 25 or 121, respectively. We

note that for most images the quality is hardly in
uenced by the size of this window, but

computing times reduce signi�cantly.

Example of SAR image restoration

In Fig. 5.10 we depict an example of SAR image despeckling using the Model-Based De-

speckling algorithm as described so far. An additional processing, which is used to preserve

isolated targets, will be addressed in chapter six. A �fth order neighborhood system (13

parameters) was used and we have chosen window sizes of 21 � 21 and 11 � 11 pixels for

the parameter estimation and for the parameter validity window, respectively. The compu-
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Figure 5.10: Model-based despeckling of an X-SAR image (768� 512 pixels, L = 3:5) using

the Gauss-Markov model. Top: Original X-SAR image over Switzerland with

mostly mountainous regions. Bottom: Despeckled image of high visual quality

for a �fth order neighborhood of the Gauss-Markov model.
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tation time for the displayed result is in the range of 20 minutes on a Sun Ultra 10 with

300 MHz clock frequency. This still rather high processing time illustrates the necessity of

the made simpli�cations, such as the approximation of the Gaussian prior by a square-root

Gamma distribution for MAP estimation, the optimization by Occam factor maximization

and the reduced resolution of the extracted model parameters, which only make a reasonable

application of the proposed technique possible.

The restored image exhibits all important features of the original data and shows a

visually attractive restoration of the mountainous areas. Speckle is completely �ltered out.

However, the image looks slightly blurred. This blurring is reduced with increasing model

order, but is characteristic of all Gauss-Markov �ltered data. Nonetheless, we consider this a

minor drawback, since the e�ect is rather small. A good image restoration with preservation

of textural information is obtained, while spatial resolution is not signi�cantly reduced. A

more elaborate comparison and evaluation of the �ltering performance on synthetic and

real SAR data will be given in chapter seven.

5.4.3 Gauss-Markov MAP Filtering in Di�erent Signal Spaces

We have limited ourselves to the Gauss-Markov model because of its easier applicability

compared to non-linear models. However, the space in which this model is best applied has

not yet been determined. The employment of a �xed model in one space results in a changed

and possibly non-linear model in other spaces. Hence, the behavior of the Gauss-Markov

model in di�erent spaces and its in
uence on the �ltering performance is worth a study.

We do not try to analytically derive the corresponding models in di�erent spaces but test

the quality of the �ltering results. For this purpose, we use the four Brodatz test images

again and apply the Gauss-Markov �ltering to the corresponding square-root intensity,

intensity and log-intensity images. The likelihood function is modi�ed according to the

changed properties of the noise.

Square-root intensity images

This is the case we have considered so far and for which all corresponding derivations have

been made. For the adaptation of the existing algorithm to the other two cases under study,

we change the likelihood function, which results in a change of the MAP equation and of

the approximation for the evidence integral. Here, especially the components of the Hessian

matrix hii are a�ected. The introduced algorithm has to be only slightly modi�ed to work

in other signal spaces.

Intensity images

For intensity images, we use the Gamma distribution as in Eq. 2.28 as likelihood function.

For the MAP equation we �nd a third order polynomial

xi
3 � �ixi

2 + L�2xi � L�2yi = 0; (5.28)
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which has to be solved to obtain the MAP estimate. In a similar way, the approximation

of the evidence is changed and we obtain for the components of H, which is the Hessian of

the posterior,

hii =
2Lyi

x̂3
iMAP

� L

x̂2
iMAP

+
1

�2

0
@1 +X

k;l

�k;l
2

1
A : (5.29)

As far as the iterative optimization is concerned, the step size Æ� for the Gauss-Markov

parameter � is also modi�ed due to the higher dynamic of the image. Its start value for

the estimation is increased accordingly in order to have a better �rst guess and to speed up

convergence.

Log-intensity images

For log-intensity images the likelihood function is given in Eq. 2.45, which is the Fisher-

Tippett distribution for L = 1. However, for this pdf subsequent derivations of the MAP

equation and the approximated evidence cannot be done analytically. As of this, we approx-

imate the likelihood function by a Gaussian, which is a valid assumption for larger values

of L, say L � 3. Mean and standard derivation of the additive almost Gaussian noise in

the log-intensity domain can be calculated according to Eq. 2.46 and Eq. 2.47 as a function

of the equivalent number of looks L.

In this way, we �nd a weighted mean for the value that maximizes the local posterior

distribution

x̂iMAP
=

(yi �  (L) + logL)�2 + �i 
0
(L)

 
0
(L) + �2

; (5.30)

and obtain for the components of the Hessian

hii =
1
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As for the intensity case, these are the only modi�cations of the original algorithm to be

made, apart from an adjustment of the step size and the �rst guess of �. The basic iterative

approach for model parameter estimation and MAP �ltering remains unchanged.

Basically, this case represents a Gauss-Markov model-based �ltering of images a�ected by

additive Gaussian noise and is the basis for a digital elevation model (DEM) �lter that has

been successfully applied during the SRTM mission [SRTM] (cf. appendix D for additional

information).

Evaluation of Gauss-Markov MAP �ltering in di�erent signal spaces

The modi�ed versions of the algorithm working in di�erent spaces have been used to �lter

the speckled (L = 3) Brodatz textures with a �fth order neighborhood system. The mean

square errors of the obtained results are enumerated in Tab. 5.7. We observe that �ltering

in the square-root intensity domain yields the best results. Especially images �ltered in the
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MSE MBD-S MBD-Z MBD-I

Sand 145 181 228

Water 240 242 286

Straw 172 217 215

Weave 274 394 647

Table 5.7: Mean square errors for the restoration of the four Brodatz textures in di�erent

signal spaces. The mean square errors are given for the original data compared to

the results obtained with the MBD approach working in the square-root intensity

(MBD-S), in the log-intensity (MBD-Z) and in the intensity domain (MBD-I).

We considered arti�cially speckled data with L = 3.

Figure 5.11: Restoration of the "sand" texture (128 � 128 pixels, L = 3) in di�erent signal

spaces. From left to right: Original texture, restoration of the speckled texture

in the square-root intensity, in the log-intensity and in the intensity domain.

All obtained results are displayed in the square-root intensity domain.

intensity domain exhibit a rather smooth visual appearance. Here, weak structures are no

more recognized and are not restored by the Gauss-Markov model. On the contrary, results

computed in the log-domain still show full detail, but also preserve a noisy appearance.

The quality of the images �ltered in the square-root intensity space lies between these two

extrema. Enough detail is preserved while the noise is suÆciently reduced.

This observation is interesting but not too surprising. The two opposite cases of intensity

and log-intensity images, i.e. expansion and reduction of the dynamic range with regard to

the square-root intensity image, yield qualitatively contrary results with stronger and weaker

smoothing. A representative result for the three discussed cases is displayed in Fig. 5.11.

Filtering in the intensity space does not only yield the worst results, since the dynamic

range is apparently too high for the Gauss-Markov model, but the parameter estimation also

converges slower. Concerning the MSE, �ltering in the log-intensity or in the square-root

intensity domain sometimes yields comparable results, however with qualitatively di�erent

visual properties. Since the approximation of additive Gaussian noise in the log-space is

no more valid for single look data, the �ltering performance decreases. For this reason and

due to the measured MSE we reject this restoration approach and conclude that the Gauss-
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Markov model best behaves in the square-root intensity space. All subsequent �ltering will

be done is this domain.

5.5 Summary

In this chapter, the following points have been discussed:

� We have derived the MAP equation for Gauss-Markov random �elds as a prior and

the speckle distribution as likelihood function. Since the optimization space is well-

behaved, a deterministic ICM algorithm is used for maximization of the global proba-

bility. For faster computation the Gaussian prior was approximated by a square-root

Gamma distribution, which was shown to introduce only negligible error.

� For model parameter estimation the computation of the evidence is required. We

approximated the posterior product by a multi-variate Gaussian enabling an eval-

uation of the evidence for a given model parameter vector. We demonstrated the

usefulness of this approach for model parameter estimation and proved its accuracy

by investigating its behavior in the limiting case of L!1.

� Iterative schemes for evidence maximization as a function of the model parameters

have been studied. The introduced method showed to be related to the EM-type

algorithm. However, we identi�ed the function to be maximized in the M-step equiva-

lence to be the Occam factor. This allowed an explanation of the qualitatively di�erent

results that are obtained with these two approaches.

� We have shown that an introduced bias of the MAP estimator can be easily corrected

by a factor, which is equivalent to the noise mean. The mean of the original square-

root intensity image is then preserved with suÆcient accuracy.

� The relations between evidence, Occam factor, � and mean square error have been

illustrated and we commented on the selection of the optimal model order for Gauss-

Markov random �elds.

� Since the model order selection process is rather slow, we decided to use a model of

�xed higher order, which yielded an improved �ltering performance in comparison

with lower orders at the cost of an increased computing time.

� SAR image despeckling requires local processing to preserve spatially varying struc-

tures. We commented on di�erent window sizes and provided an example for spatially

adaptive model-based SAR image restoration.

� We investigated the signal space in which the texture preserving despeckling using

Gauss-Markov random �elds is best performed. Optimal results in terms of mean

square error have been observed in the square-root intensity domain. Intensity data

exhibited too much smoothing, whereas rather sharp but noisier images have been

obtained by �ltering in the log-intensity domain.
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Features

In the last chapter we have derived the model parameter estimation from speckled data for

Gauss-Markov random �elds and the computation of the MAP estimate of the noise-free

SAR scene. However, as noted in chapters three and four, a linear model cannot explain

all relevant SAR image features. For many applications the preservation of sharp edges

between regions of di�erent uniform mean backscatter is crucial. Other applications require

information about isolated targets. For both cases, a linear auto-regressive model is not

well suited: The Gauss-Markov model too strongly smoothes edges and blurs isolated strong

scatterers. Due to these shortcomings of the proposed approach, an additional processing

of the image to capture these non-linear features is required.

We start with a discussion on edge-detection to preserve non-stationarities in mean

backscatter and present a specially adapted segmentation approach. The technique is em-

ployed to limit the neighborhood system of the Gauss-Markov model at sharp transitions

by breaking the bond between a center pixel and its neighbors [Geman84, Jeng, Smits],

thus avoiding the smoothing of edges. However, edges also exist in textured areas, where

the Gauss-Markov model is perfectly able to describe the image contents. Here, additional

structural information does not improve but, on the contrary, degrade the restoration.

Hence, a distinction between edges within texture and edges between regions of homoge-

neous backscatter must be made. This adaptation of the model to di�erent kinds of edges

is the subject of the second section.

In the third section we deal with the detection and the processing of strong scatterers.

Two cases play an important role: Very strong scatterers disturb a correct model parameter

estimation, thus a special pre-processing is required to limit this e�ect. On the other hand,

isolated targets are usually blurred after Gauss-Markov �ltering. These targets must be

detected and restored in order to preserve information. Both tasks rely on a statistical

image analysis and result in a detection scheme which is controlled by a maximum false

alarm rate. We close this chapter with a description of the resulting full Model-Based

Despeckling algorithm.

6.1 Edge-Detection for Model-Based Despeckling

In order to preserve non-stationarities in mean backscatter, we apply an edge-detection

step in our algorithm. The extracted edge information is used to drive the Gauss-Markov
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despeckling. Similar approaches also exist for many statistical �lters, like the Lee or the

GGMAP �lter, which use this kind of information in order to limit the size of their es-

timation window. Hence, a special processing is often employed to �x de�ciencies of the

underlying model assumptions, which are necessarily kept simple for computational rea-

sons. We commented on this point in preceding chapters referring to the high complexity

of non-linear discontinuity adaptive Gibbs random �elds.

6.1.1 Region-Growing Backscatter Segmentation

Since the preservation of edges between regions of homogeneous backscatter is of partic-

ular interest for applications and since a full texture segmentation is computationally too

challenging, we only search for non-stationarities, i.e. edges, in mean backscatter. A lot of

work has already been performed in this �eld and two di�erent approaches are possible:

Edge-detection and backscatter segmentation. Since edge-detection techniques usually do

not yield closed borders, we prefer the latter approach. We require closed edges in order

to avoid the spread of information from one stationary region to another through "holes"

in the detected boundary. However, in principle any reliable edge-detector or segmentation

algorithm from which edge information can be derived may be applied.

For our purpose, we have adopted the basic idea of a statistical segmentation algorithm

proposed in [Cook96] and adjusted this approach to ful�ll our requirements for Gauss-

Markov edge-preserving �ltering, such as a pixel-accurate and clean segmentation.

Maximum likelihood segmentation

Assuming that a SAR image is composed of r regions Ri with uniform backscatter values,

�x0 to �xr�1
, and under the assumption of statistical independence, the likelihood of the

observed data y can be written as

p(Y = yj�x0 ; : : : ; �xr�1
) =

r�1Y
i=0

Y
j2Ri

p(Yj = yjj�xi) (6.1)

=
r�1Y
i=0

Y
j2Ri

2

�
yj

�xi

�2L�1 LL

�xi�(L)
exp
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�
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�xi

�2!
;

where p(Yj = yjj�xi) is the likelihood function for square-root intensity data of Eq. 4.11.

Equivalent results follow with Eq. 4.5 for the use of intensity data.

By maximizing Eq. 6.1 with regard to r di�erent backscatter values and by assigning a

label in form of the most probable value out of �x0 to �xr�1
to each observed pixel yj, the

image y is segmented into r classes. This is a classical maximum likelihood segmentation

if the mean values �x0 to �xr�1
are known in advance. However, neither the number of

classes r, nor their mean gray-values �xi are known in practice. Additionally, a maximum

likelihood segmentation does not meet our requirement of high accuracy, since the assigned

labels do not form homogeneous and closed regions, but, on the contrary, give a rather noisy

appearance making the extraction of reliable edge information impossible.
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Introduction of prior knowledge by region-growing optimization

The results of the maximum likelihood segmentation can be improved by introducing prior

knowledge, e.g. in form of the often used Potts model, corresponding to a MAP segmen-

tation. However, the Potts model requires the employment of simulated annealing (cf.

appendix B) for optimization and an additional model parameter estimation step. Con-

sequently, we adopt a di�erent approach by introducing prior knowledge by means of a

region-growing optimization of Eq. 6.1, which favors the formation of homogeneous labels.

We perform the maximization by iteratively estimating the classes' mean gray-values

�xi and stochastically attaching region labels to all image pixels. The number of existing

classes r is assumed to be known. The prior to have uniformly labeled regions avoiding a

noisy maximum likelihood segmentation is encapsulated in the following updating scheme:

1. Starting with a completely random segmentation into r classes, the whole image is

scanned pixel by pixel. The number of classes r is �xed by the user. Initial mean

values �xi are computed for each class.

2. For each pixel which is located at a current border, the probability according to Eq. 6.1

of that pixel to belong to the class of a randomly chosen neighbor of a di�erent class

is calculated and compared to the probability of its current class.

3. The decision for the new class of each border pixel is sampled from these two proba-

bilities and the estimates for the class mean values �x0 to �xr�1
are recomputed from

the new segmentation.

4. The procedure is re-iterated until convergence in form of a low number of changes in

each iteration is reached.

In this way, a homogeneous segmentation is achieved. However, pixels inside closed labels

are no more considered, an updating is only performed at borders between di�erent labels.

This may result in a loss of detail, since the algorithm is unable to rediscover previously

lost small segments within larger ones. Furthermore, very small segments of several pixels,

such as scatterers, may not be detected if the initial random con�guration represents an

unfavorable starting position. Nonetheless, the approach works �ne for structures of small

sizes, if r is not chosen too high, and is independent of region-shape or edge-orientation.

Example of region-growing segmentation

An example of the presented approach is illustrated in Fig. 6.1. We have generated a

synthetic image of eight di�erent gray-levels, as depicted in the histogram of Fig. 6.3. The

original image, which is composed of squared regions of sizes 64� 64 down to 8� 8 pixels,

was rotated by �fteen degrees in order to demonstrate the technique's independence on

edge-orientation, which might a�ect approaches based on pre-de�ned window sizes and

edge-patterns. From the histogram of the speckled data (L = 3) the number of classes in

the image cannot be determined.
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Figure 6.1: Region-growing segmentation for edge-detection. From left to right: Speckled

synthetic image (256�256 pixels, L = 3), original edge-map, edge-map extracted

from the segmentation with r = 8 after 200 iterations.

Figure 6.2: Evolution of the edge-detection process. From left to right: The edges resulting

from the segmented image with r = 8 are given after 20, 50 and 100 iterations.

Edges extracted from the segmented image after 20, 50 and 100 iterations, i.e. full image

sweeps, with r = 8 are displayed in Fig. 6.2. We see that dark regions are segmented �rst

and bright regions last, which is due to the increasing speckle variance and the decreasing

ratio of the mean intensity between brighter regions making segmentation more diÆcult.

The detected edges derived from the segmentation after 200 iterations and the original

edge map are shown in Fig. 6.1. We see that the correspondence is rather high, although

some edges between regions of lower contrast have not been found. Considering the esti-

mated mean values �xi for the eight classes, as enumerated in Tab. 6.1, we note that one

class of high intensity (C6, �x = 160) has not been identi�ed and was mixed with class

seven (C7) of �x = 192. This merging occurred due to the small amplitude ratio of 1:2 of

these two classes and the fact that class seven highly dominates class six in terms of the

number of pixels. Class six is by far the smallest class in the test image. However, in spite

of this shortcoming, the segmentation is una�ected by the introduced image rotation and

also yields convincing results for the smallest segments of 8� 8 pixels.
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Figure 6.3: Histograms of the noise-free and the speckled test image. Left: Histogram of

the noise-free image exhibiting eight classes. Right: Histogram of the speckled

data not allowing the determination of the number of classes.

�xi C1 C2 C3 C4 C5 C6 C7 C8

Original 1 32 64 96 128 160 192 224

Estimated 1 32 64 97 136 194 196 225

Table 6.1: Original and estimated class mean values obtained by the region-growing seg-

mentation. The mean values of the eight classes C1-C8 of the synthetic image

and their estimates obtained from the segmentation algorithm are enumerated.

Number of assumed classes r 4 6 8

Percentage of inaccurate/false edges to estimated edges 31% 34% 36%

Percentage of correctly detected edges to existing edges 59% 61% 65%

Table 6.2: Edge-detection accuracy of the region-growing segmentation. The percentage of

inaccurate edges with regard to the number of estimated edges and the percentage

of correctly detected edges with regard to the number of existing edges are given.

For correctly detected edges, pixel accuracy is required.

Concerning the edge-detection accuracy, we performed the segmentation for r = 4, r = 6

and r = 8 classes and measured the percentage of correctly identi�ed edges compared to the

number of edge-pixels in the original edge-map and the percentage of non-corresponding or

wrong edges with reference to the number of edges obtained by the segmentation. Corre-

spondence of edges is only given for a pixel-accurate detection, a shift of one pixel results

in non-correspondence. The found values are given in Tab. 6.2: With r growing, the edge-

detection rate increases. For r = 8 about 65% of all existing edges have been identi�ed

with pixel accuracy. However, the number of false edges increases as well, as the number

of found edge pixels grows with r. The percentage of false edges (with shifts of possibly
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only one pixel) from the number of found border pixels is about 36% for r = 8. One-pixel

shifts especially occur at edges between regions of low or moderate contrast, where the

segmentation tends to follow the noise. Border pixels of higher intensity are attributed to

the class of higher mean, and vice-versa.

In view of the fact that we require pixel accuracy for edge-detection, the achieved results

are considered satisfactory. Even if the number of existing classes is under-estimated, the

percentage of correctly identi�ed borders is suÆcient, with the false alarm rate being lower

than for larger values of r (cf. �rst row of Tab. 6.2). Since the edge-detection for Gauss-

Markov �ltering will be performed locally and not globally, we use a value of r = 3 for

detection of signi�cant edges in windows of typically 21� 21 pixels.

6.1.2 Detection of False Alarms and Region-Merging

For a further veri�cation of the existence of edges found by the region-growing segmentation

approach, we rely on a statistical ratio edge-detection proposed by [Touzi88]. The condi-

tional pdf of the so-called bounded ratio detector � of two regions consisting of N1 and N2

pixels, respectively, is given for square-root intensity data by

p(�jC) =
2

�

�(L(N1 +N2))

�(N1L)�(N2L)

 
(N2=N1)

N2L(�2C)N1L

(�2C +N2=N1)L(N1+N2)
+ (6.2)

(N1=N2)
N1L(�2=C)N2L

(�2=C +N1=N2)L(N1+N2)

!
;

where C = �y2=�y1 is the empirically measured contrast of these regions and � lies between

zero and one. To determine a decision threshold �max, below which an edge is assumed to

exist for a measured contrast max(C; 1=C), the probability of false alarm Pfa is used. The

probability that a homogeneous area with C = 1 is assigned to an edge is given by

Pfa =

Z
�max

0
p(�j1)d�: (6.3)

Hence, the decision threshold can be determined by specifying a minimum value for Pfa. In

our algorithm, we have chosen Pfa = 0:0001 for the veri�cation of the previously extracted

edges. However, we do not compute the contrast of two complete segmented areas, but only

consider gray-values for the computation of C which are no more than two pixels away from

the edge between the two segments under investigation. In this way, we are able to reject

edges found on a monotonically and smoothly increasing cross-section being equivalent to

a ramp in the one-dimensional case. Borders between all found segments are veri�ed and

neighboring segments are eventually merged if the existence of an edge is not con�rmed.

6.2 Edge Information for Gauss-Markov Despeckling

Extracted edges from the region-growing segmentation can be used to limit the neigh-

borhood size of the Gauss-Markov model in order to preserve non-stationarities in mean
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backscatter. However, we do not consider edges between di�erently textured regions, since

in real SAR data, textural di�erences are rather small and transitions are usually not very

sharp. Moreover, a pixel accurate texture-segmentation is already a diÆcult problem when

rather simple texture models are employed [Oliver96].

For the edge information obtained from the segmentation we can distinguish three cases:

1. A false alarm is given, i.e. no edge is present. This may especially happen, if the

number of assumed classes r is higher than the actual number of classes in the image.

2. An edge is found that is part of a stationary texture which can be modeled by Gauss-

Markov random �elds. In this case, the neighborhood of the model should not be

changed, the edge information should not be considered.

3. An edge is detected, which describes a non-stationary image behavior that cannot

be modeled with Gauss-Markov random �elds. Here, the edge information should be

taken into account for �ltering by locally adjusting the Gauss-Markov neighborhood

system.

While several methods exist to determine the occurrence of case one, a discrimination

between case two and three is a diÆcult problem. Non-stationarity in mean backscatter,

which is detected by the employed segmentation approach, does not necessarily require the

adaptation of the neighborhood system. Even on the contrary, the Gauss-Markov model is

not based on the assumption of uniform backscatter, which represents its main advantage

compared to most statistical �lters.

6.2.1 Adaptation of the Gauss-Markov Neighborhood System

The smoothing of edges is caused by pixels that linearly contribute to the model prediction

�i =
P

k;l �k;l(xk;l + x
0

k;l
) and which belong to regions with di�erent statistical properties.

Hence, an information exchange between regions of di�erent statistical contents results in

a blurring or other artefacts. To avoid this problem, the computation of �i has to be

performed only on pixels within a stationary region, where stationary is meant in terms of

Gauss-Markov random �elds. We will see in the next section that the determination of this

stationarity is not trivial.

If a boundary between stationary regions has been identi�ed, all pixels in the original

neighborhood of xi which do not belong to the same stationary region as xi are excluded

from the computation of �i, i.e. their parameter �k;l is set to zero. This is illustrated for a

second order neighborhood in Fig. 6.4. To guarantee stability of the Gauss-Markov random

�eld the modi�ed parameter vector ~� has then to be re-normalized, i.e.
P

k;l
~�k;l = 0:5.

The approach for the computation of the corresponding MAP estimate remains unchanged.

Consequently, this processing only a�ects the calculation of �i for pixels whose neighborhood

extends into regions of di�erent statistical properties.
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instead of

Prediction:

θµ θ _i=   _1,1*(x_1,1+x́_1,1) +   _1,2*(x_1,2+x́_1,2)

µ _i=   _1,1*(x́_1,1) +    _1,2*(x_1,2+x́_1,2)θ∼ θ∼

x´_1,1

x_2,1

x_1,1x_0,1

x´_2,1

Edge

Figure 6.4: Adaptation of the Gauss-Markov neighborhood system. The computation of

the new predicted gray-value �i is illustrated for a second order neighborhood

system, where pixel x1;1 belongs to a di�erent region separated by a detected

edge. The model parameters are re-normalized to guarantee stability.

6.2.2 Introduction of Edge Information

After the veri�cation of detected edges, the task remains to decide on how to interpret

this extracted information. Here, we take advantage of the fact that the preservation of

borders is especially of interest for regions of di�erent homogeneous backscatter, such as

agricultural areas. As stated, the modeling of such edges cannot be satisfactorily performed

by the employed texture model. Consequently, we intend to use edge information only to

describe borders between areas of uniform backscatter. This implies the modi�cation of the

neighborhood at identi�ed borders and an adjustment of the texture parameter vector �,

in order to describe homogeneous areas instead of textural information.

Restoration under two di�erent assumptions

Following this reasoning, any image allows the restoration with two di�erent models ac-

cording to the following assumptions:

1. A MAP estimate x̂MAP1
is computed with Eq. 5.6 using the extracted texture param-

eters without any information about edges, i.e. we assume that the noise-free image

can be explained by the texture model alone even if edges are present.

2. The noise-free image is assumed to consist of several regions of di�erent uniform

backscatter. The image is �ltered using Eq. 5.6 with an adaptive neighborhood system

at the region borders resulting in an estimate x̂MAP2
. The model parameters are set

to values that cause a pure averaging of the amplitude image, i.e. �k;l = � = const

for all k; l within a region label, where � is determined by the model order and the

number of parameters. � is kept as estimated.
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Synthetic examples for the restoration under these assumptions are shown in Figs. 6.5 and

6.6. For the "chess-board" image the blurring becomes obvious when no edge information is

employed (x̂MAP1
). On the other hand, the use of edge information results in a much better

restoration x̂MAP2
since the made assumption of homogeneous regions is valid. However, for

the "straw" image, the restoration x̂MAP1
without edge information gives the best result:

Additional structural information and the assumption of homogeneous regions leads to sharp

edges but gives an unnatural appearance (x̂MAP2
). We remark that statistical �lters using

geometrical information about edges provide results similar to the images on the right of

Figs. 6.5 and 6.6. Textural information as in Fig. 6.6 (center) cannot be preserved.

We conclude that the correct choice of the �ltering assumption highly in
uences the

image quality. Either structural information in form of edges or textural information has

to be preserved. The problem consists in �nding out whether edges are due to texture as in

the "straw" image or if they are better explained by the assumption of uniform backscatter

regions as in the "chess-board" example.

6.2.3 Fusion of Texture and Edge Information

Since a correct model selection within the Bayesian framework cannot be easily applied, we

adopt a di�erent and computationally less demanding approach to determine the assumption

under which the �ltering should be performed.

After having checked the validity of the found edges we apply a restoration under both

assumptions, i.e. textured areas and homogeneous regions separated by edges, and fuse these

two results in order to obtain the �nal image. This fusion is controlled by the coeÆcient of

variation measured in each obtained segment. The whole selection process works as follows:

1. Perform a region-growing segmentation to separate areas of di�erent homogeneous

backscatter.

2. Verify the validity of the found edges by the ratio edge-detector and eventually merge

certain segments.

3. Perform a normal Gauss-Markov texture parameter estimation and compute the cor-

responding MAP estimation x̂MAP1
of the noise-free image.

4. Perform a MAP �ltering x̂MAP2
by adapting the neighborhood of the Gauss-Markov

model according to the detected edges and use model parameters that perform a

simple averaging. The value of the Gauss-Markov parameter � is taken from the

preceding parameter estimation.

5. Measure the coeÆcient of variation CV 2 = �y
2=�y

2 in each segment obtained by the

region-growing algorithm. Since closed boundaries are needed for this step, this is the

main reason to apply a segmentation instead of an edge-detection algorithm.

6. For each segment whose coeÆcient of variation is equal or lower than the expected

value of Eq. 2.39, replace the gray-values of x̂MAP1
by the values of x̂MAP2

to generate

the �nal result in x̂MAP1
.
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Figure 6.5: Restoration under two di�erent assumptions. From left to right: Speckled

"chess-board" image (80 � 80 pixels, L = 3), Gauss-Markov texture restora-

tion x̂MAP1
without using edge information (MSE=259), restoration x̂MAP2

using edge information under the assumption of homogeneous backscatter

(MSE=160). x̂MAP2
gives the best restoration.

Figure 6.6: Restoration under two di�erent assumptions. From left to right: Speckled

"straw" image (80�80 pixels, L = 3), Gauss-Markov texture restoration x̂MAP1

without using edge information (MSE=141), restoration x̂MAP2
using edge infor-

mation under the assumption of homogeneous backscatter (MSE=388). x̂MAP1

gives the best restoration.

We found this approach to work much better than other experimented approaches based

on the likelihood of the restoration or on the cross-entropy of the ratio image y=x̂MAP .

Even for diÆcult cases the presented approach selects the correct restoration as shown in

Fig. 6.5 (right) and Fig. 6.6 (center). This is very important in order to obtain a visually

attractive image restoration with a low mean square error.



6.3 Extraction and Preservation of Strong Scatterers 133

6.3 Extraction and Preservation of Strong Scatterers

Strong scatterers or targets, which represent an important feature in SAR images, require

an additional treatment for detection and preservation after �ltering, since they cannot

be detected by the approach described above. Isolated targets are strongly smoothed by

the �lter and also disturb its model parameter estimation. Thus, we envisage a two-step

approach to deal with this special SAR image feature: Removal of very strong targets as a

pre-processing and detection and re-insertion of blurred and previously removed targets as

a post-processing step after the Gauss-Markov �ltering.

6.3.1 Pre-Processing of Targets for Parameter Estimation

The problem we are faced with is depicted in Fig. 6.7. We have generated a synthetic

SAR image of a homogeneous cross-section with several targets, which is �ltered with the

introduced approach. The result on the right of the top row shows a blurring of these

targets, which ideally should be una�ected by the �ltering, and a rather weak smoothing

of their surrounding homogeneous areas.

This behavior is due to the Gauss-Markov model, which tries to capture the full im-

age contents. However, a complex and highly non-stationary scene cannot be suÆciently

modeled by an auto-regressive process: The smoothing around the targets is rather weak be-

cause of a high value of the Gauss-Markov �, which re
ects the model's inability to properly

describe the noise-free data. Hence, neither the targets nor the surrounding homogeneous

cross-section are restored in a satisfactory way.

Detection of strong scatterers

To solve this problem, we introduce a pre-processing step intended to remove strong targets

before �ltering with the Gauss-Markov model. This pre-processing, with a target detection

based on [Lopes93], is done as follows:

1. For a given center pixel calculate the mean �inner on a given neighborhood (e.g.

N1 = 2� 2 = 4 pixels) and the mean �outer on a larger surrounding rectangular area

(e.g N2 = 4� 4� 2� 2 = 12 pixels).

2. If the ratio �inner=�outer exceeds a threshold 1=�max, replace the gray-values of the

pixels in the inner window by their original values divided by this ratio.

3. Perform this processing for all pixels by scanning the whole image.

It is important to carefully select the threshold 1=�max in order to remove only real scatterers

and no speckle of high variance. We intend to only attenuate scatterers that really disturb

the parameter estimation. Isolated targets, that are not very bright, i.e. whose gray-values

lie within the speckle distribution of the surrounding uniform area, hardly a�ect the model

parameter values, since they are interpreted as noise. The employed threshold 1=�max varies
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Figure 6.7: Detection and restoration of strong targets. Top: Original target map (70� 70

pixels), targets on a speckled background (L = 3), restoration with the Gauss-

Markov model of seventh order. Bottom: Image after pre-processing for target

removal, Gauss-Markov �ltered image, �nal restoration after post-processing.

The gray-values of the targets increase from left (xi = 100) to right (xi = 600).

The background gray-value is xi = 50.

with the speckle strength L and is chosen by means of a constant false alarm rate according

to Eqs. 6.2 and 6.3 with C = 1 [Lopes93].

For the example given in Fig. 6.7 with N1 = 4, N2 = 12 and L = 3, we have chosen a

threshold of 1=�max = 3 resulting in a false alarm rate for the detection of homogeneous

regions below Pfa � 6 � 10�8. A threshold of 1=�max = 2 is still a reasonable choice with

Pfa � 0:0002. The evolution of the false alarm rates as a function of the chosen threshold

1=�max and the speckle level L is displayed in the left plot of Fig. 6.8. Naturally, Pfa
decreases with L growing.

Despeckling of pre-processed data

The e�ects of this pre-processing in combination with despeckling are illustrated in the

bottom row of Fig. 6.7. The Gauss-Markov �ltering is applied to almost scatterer-free

data (left) and we observe that the intermediate despeckled image is well smoothed (cen-
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Figure 6.8: False alarm rates as a function of the thresholds for pre- and post-processing.

Left: False alarm rates for the pre-processing threshold of the ratio �inner=�outer
with N1 = 4 and N2 = 12. Right: False alarm rates for the post-processing

threshold of the ratio yi=x̂iMAP
. Plots are given for L = 1 (solid), L = 3

(dotted) and L = 8 (dashed).

ter). As expected, all scatterers una�ected by the pre-processing have been smoothed and

disappeared.

In a last step, the original gray-values of the eliminated scatterers are simply put back

into the �nal result. Note that only original gray-values yi that have higher values than

their counterparts x̂iMAP
of the Gauss-Markov �ltered data are re-inserted in order to avoid

dark pixels around strong scatterers. This additional step is necessary to compensate for

the decreased resolution which is introduced by the employment of windows for the target

detection.

6.3.2 Post-Processing for the Detection of Blurred Targets

Targets which are not detected in the pre-processing will be completely blurred after Gauss-

Markov despeckling, as illustrated in the center image in the bottom row of Fig. 6.7. To

compensate for this e�ect, we introduce a special post-processing of the �ltered data, which

is based on the ratio image y=x̂MAP . In the optimal case, i.e. x̂MAP = x, which is the true

noise-free image, this ratio is identical to the speckle n a�ecting the observation y. Hence, a

�lter-induced structural degradation, such as a blurring of edges or targets, can be detected

in this ratio. For the given example, the resulting ratio image is visually similar to the

center image of the top row of Fig. 6.7.

Consequently, in order to detect blurred scatterers, we compare the ratio at each site i to

the pdf of the speckle process. Values which are beyond a �xed threshold are assumed not

to be caused by speckle but by structural degradation. The new post-processing threshold

1=�max is again chosen according to a constant false alarm rate, which can be computed
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Figure 6.9: Cross-sections of the target images. Left: Original image (solid), targets on a

speckled background (dotted). Right: Restoration of the pre-processed image

(dotted), �nal restoration after post-processing (solid). For visualization, the

dotted plots are vertically shifted by a value of 50.

from the speckle distribution with

Pfa = 1� 2LL

�(L)

Z 1=�max

0
n2L�1 exp

�
�Ln2

�
dn; (6.4)

and should be chosen to be quite small. The integration is performed over the square-root

intensity speckle distribution of Eq. 2.36 with �S = 1. In our implementation we have

chosen Pfa = 0:0005 corresponding to a threshold of 1=�max = 2:215 for L = 3. This

guarantees the detection of real targets and avoids the preservation of pixels with speckle of

higher variance. The false alarm rates for the post-processing step are depicted in the right

plot of Fig. 6.8. As before, the choice of the threshold for negligible error rates depends on

the equivalent number of looks L of the speckle noise.

The �nal restoration is given in the last image of Fig. 6.7. In the post-processing,

previously undetected targets that were blurred out are identi�ed in the ratio image and

are put back into the �nal result together with the targets removed in the pre-processing.

Note however, that the two weak targets on the far left of the original image with xi = 100

are lost, since they are not distinguished from the speckle noise.

For a more quantitative evaluation of the target restoration we display several cross-

sections of the same experiment in Fig. 6.9: The restored targets do not show any blurring,

their amplitude is exactly preserved and the surrounding pixels are highly smoothed without

artefacts around the scatterers.

6.4 Outline of the Model-Based Despeckling Algorithm

This section represents a short algorithmic summary of the basic parts of the Model-Based

Despeckling algorithm. To prepare the �lter evaluation discussed in the next chapter, we
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Figure 6.10: Flowchart of the full Model-Based Despeckling algorithm. The basic pre- and

post-processing steps in combination with model parameter extraction and

MAP estimation are illustrated.

describe the full approach and give its main parameters. Finally, we provide a SAR �ltering

example illustrating the incorporation of additional structural information.

6.4.1 Algorithmic Flowchart

A general 
owchart of the implemented algorithm is presented in Fig. 6.10. We shortly

comment on the di�erent blocks to summarize their function. The processing is window-

based and works by a pixel-wise (only for the highest spatial resolution of the parameter

vector) scanning of the whole image. The �lter performs a locally adaptive despeckling of

the image considering its non-stationary behavior and a varying scene content.

ENL Estimation If unknown, the equivalent number of looks L is determined. L is

computed in the most homogeneous detected area with a size of 35� 35 pixels. This

approach was found to give accurate results unless the image is heavily textured.

Scatterer Removal Prior to �ltering, strong targets are detected and removed from the

image to be despeckled as described above in this chapter.

Parameter Estimation The parameters of the Gauss-Markov random �eld are locally

estimated by means of the presented iterative evidence maximization approach. The

size of the parameter estimation window is typically 21�21 pixels for a seventh order

neighborhood. One single model parameter vector is usually estimated for every 7�7

pixels.

Edge Detection The local area under investigation is segmented into r = 3 classes provid-

ing border information. The segmentation is based solely on the mean backscatter and

does not consider textural properties. Eventually, several classes are merged together

to reduce the edge-detection false alarm rate.

Tex/Edge Decision The homogeneity of the detected segments is veri�ed by an analysis

of the measured coeÆcient of variation. The decision for textured or homogeneous
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areas with edges controls the following computation of the MAP estimate, i.e. the

fusion of the two di�erent estimates.

GMRF-MAP For textured areas the MAP estimate is computed with the previously

estimated model parameter vector � and the full neighborhood system. For assumed

homogeneous regions the neighborhood is limited at the borders and the directional

parameters are chosen to result in a simple averaging of the observed image.

Scatterer Detection As outlined in this chapter, previously removed scatterers are re-

inserted. Blurred additional targets are detected in the ratio image and are also

restored.

6.4.2 Model-Based Despeckling with Structural Information

In Fig. 6.11 we exemplify the employment of structural information for the proposed �l-

tering approach with Gauss-Markov random �elds. The upper original ERS SAR image is

overlayed with the extracted edge information. The lower image shows the �ltering result,

where this information has been exploited. Despite the used Gauss-Markov model, edges

between regions of homogeneous backscatter are well preserved due to the locally adaptive

neighborhood system. The quality of the restoration of textured regions, such as mountains,

is not a�ected by this additional processing. The preservation of isolated targets can be

veri�ed in the lower left part of the shown images.

6.5 Summary

In this chapter, the following points have been discussed:

� Filtering with linear Gauss-Markov random �elds requires an additional processing

for edge-preservation. Borders found with pixel accuracy and independent of edge-

orientation are used to adapt the neighborhood system avoiding the blurring of edges

between regions of di�erent �rst order statistics.

� A region-growing backscatter segmentation is employed which is an extended ML

segmentation favoring the formation of homogeneous, closed segments. Segmentation

is preferred to edge-detection since continuous edges are required. Borders between

segments are veri�ed and di�erent segments are eventually merged.

� The restoration can either be performed with the originally estimated model param-

eters or by taking into account the identi�ed edges between regions of di�erent mean

backscatter. The latter restoration is performed with a locally adaptive neighborhood

system.

� The decision for any of these two assumption is based on a local analysis of the

coeÆcient of variation in order to verify the hypothesis of edges between areas of

homogeneous backscatter or between textured regions.
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Figure 6.11: Model-Based Despeckling (MBD) with structural information. Top: Geocoded

ERS SAR image (768 � 512 pixels, L � 4) with overlayed edge information.

Bottom: MBD �ltered ERS SAR image taking into account edge and target

information.
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� Isolated targets are blurred by conventional Gauss-Markov texture despeckling and

hinder a correct parameter estimation. Hence, a special processing of strong scatterers

is required.

� As a pre-processing step, isolated targets are detected by a window-based statistical

analysis relying on the probability of false alarm. Found targets are removed to enable

a proper parameter estimation.

� After Gauss-Markov despeckling, previously removed targets are re-inserted into the

image. Targets that have not been detected in the pre-processing and that are con-

sequently blurred are restored by a statistical analysis of the ratio image between

observed and �ltered data.



7 Illustration and Study of Results

In the preceding chapters we have developed the idea of the Model-Based Despeckling

algorithm for �ltering and information extraction from SAR data. Unlike most commonly

used approaches, the introduced technique relies on the Bayesian formalism in combination

with a complex data model, whose parameters are estimated from the noisy observation.

Additional information is extracted to cope with several shortcomings of the chosen prior

model and to adapt it to SAR speci�c properties, like e.g. isolated targets. This high degree

of modeling causes a much higher computational load than required by other approaches,

but promises to yield results of superior quality.

In this chapter, we will qualitatively and quantitatively evaluate the proposed algorithm

as outlined in chapter six and compare it to other �lters. This evaluation is not easy to

perform, since no convincing objective quality measures for �ltered data exist. This applies

even more if the noise-free data or a ground truth is not available, as it is the case for

real SAR data. As of this, we use synthetic data to perform an objective analysis by

measuring di�erent image quality indicators for di�erent �lters in the �rst section of this

chapter. In the second section, we will test the developed approach on real SAR data and

compare it to one of the best existing speckle �lters. A quality analysis will mostly rely on

visual inspection of the obtained results since we renounce to provide subjective heuristical

measures. An example of the processing of a full scene is provided in section three, where

we will also illustrate the additionally extracted image information in terms of edges and

texture parameters. The chapter ends with a short summary of the presented results.

7.1 Quantitative Filter Evaluation based on Synthetic Data

To objectively evaluate the �ltering quality of di�erent despeckling approaches, we use

synthetic data since the original noise-free image is often required for the computation of

quality measures like the mean square error. Several prominent despeckling techniques are

tested on four synthetically speckled images with di�erent image contents. Since a single

quality measure cannot re
ect the whole truth we employ four di�erent measures to describe

the quality of the �ltered images. After a short presentation of these measures, we provide

the �ltering results, show images of magni�ed details and comment on identi�ed advantages

and drawbacks of the �lters under study.
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7.1.1 Quality Measures

A single number can never describe the full quality of an image. Moreover, quality measures

are often rather related to a particular application for which an image is to be used. How-

ever, we did not intend to generate �ltered images for a speci�c application, but tried to

obtain an optimal estimate of the noise-free scene. Thus, we use rather general, application

independent quality indicators to evaluate despeckled images. We note that apart from

numerical values the visual impression of an image still is one of the best, but necessarily

subjective, indicators of image quality.

Mean square error

The mean square error (MSE) between original noise-free data and the �ltering result is one

of the most popular quality measures because it is easy to compute. However, this measure,

which describes the energy of the remaining image noise, only partly re
ects the visual

quality of the �ltered image, since it does not consider structural or spatial information like

the preservation of edges. Nevertheless, the MSE is a standard measure and constitutes the

basis of our �lter evaluation.

Image mean

The preservation of the image mean is of particular interest for the subsequent interpretation

of �ltered SAR data. Not much related to visual image quality, an unbiased estimate of the

mean intensity is crucial for a physical interpretation of the sensed images. In our examples

we compare the mean of the original amplitude image to the one of the �ltering result.

Maximum image smoothness

The smoothness of a �ltered image gives information about the noise suppression capabilities

of the employed �lter. For window-based approaches, the maximum achievable smoothness

is usually a function of the estimation window size. We measure image smoothness in terms

of the equivalent number of looks of the despeckled image. This value is computed in the

most homogeneous image region with a size of 35� 35 pixels. Structural information in the

estimation area falsi�es and reduces the value of this measure. This especially occurs for

images of high variation which do not contain large enough homogeneous regions.

Speckle ratio image

If the noise-free image is unknown, the only source of information about the �ltering quality

lies in the properties of the noise which was �ltered out. For speckle, this noise image n

is obtained by the ratio of the observation y to the �ltered image x̂, i.e. n = y=x̂. The

extracted noise n should exactly possess the statistical properties of the speckle process

of the observed image. As a measure, we indicate the equivalent number of looks L of n
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Figure 7.1: Arti�cially speckled test images (256 � 256 pixels, L = 4) and MBD �ltered

results. Top row: "Wessling" image, "Brodatz" image, "synthetic" image and

"runway" image. Bottom row: Images �ltered with the full MBD approach

including structural enhancements.

determined over the whole image. However, this measure does not include any structural

image degradations, which are also visible in the ratio image n. For that purpose, the ratio

image by itself is often used to visually describe the quality of �ltered images. In the ideal

case, no spatial structures should be perceivable. The ratio images displayed below are

scaled between values of 0:5 and 1:5 for better visualization [Oliver98].

7.1.2 Filtering of Arti�cially Speckled Test Images

As test data, we have chosen four images from di�erent sources. To cover a wide range

of image contents with varying textures, sharp edges and small detailed structures, we use

two optical remote sensing images, a composition of four Brodatz textures and a synthetic

data set with regular geometrical image contents. This selection of test data was arti�cially

degraded with uncorrelated four-look speckle noise. The noisy and the corresponding MBD-

�ltered data are illustrated in Fig. 7.1.

For �lter comparison, we �ltered the speckled data (L = 4) with the developed Model-

Based Despeckling (MBD), the GGMAP �lter with structural enhancements, the Kuan �l-

ter, the EPOS �lter and with a homomorphic wavelet-shrinkage method similar to [Donoho].

The computed image quality measures for the despeckled data are enumerated in Tab. 7.1.

For all images identical �ltering parameters have been used: The Kuan, the GGMAP and

the EPOS �lter have been applied with estimation windows of 7 � 7 pixels. For the MBD
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Wessling MBD GGMAP KUAN EPOS WVT

MSE 245 403 293 408 360

Mean �x = 99 99 96 97 95 93

ENL 274 175 93 54 20

Speckle L = 4 5.3 3.5 6.4 4.5 6.0

Brodatz MBD GGMAP KUAN EPOS WVT

MSE 152 374 277 386 367

Mean �x = 81 80 79 78 79 73

ENL 47 62 27 33 19

Speckle L = 4 5.5 4.7 9.0 4.1 3.5

Synthetic MBD GGMAP KUAN EPOS WVT

MSE 184 283 329 310 607

Mean �x = 110 110 106 106 105 100

ENL 1327 292 220 74 111

Speckle L = 4 5.0 4.9 6.8 4.7 2.9

Runway MBD GGMAP KUAN EPOS WVT

MSE 183 369 376 483 493

Mean �x = 101 100 98 97 97 92

ENL 56 46 41 16 25

Speckle L = 4 5.5 5.2 7.3 7.0 3.7

Table 7.1: Quantitative �lter evaluation for the four synthetic test images. The mean square

error to the original image, the image mean, the ENL of the smoothest local image

region and of the speckle ratio image are given for all tested �lters.

�lter, we have chosen a �fth order neighborhood system, an estimation window of 21 � 21

pixels and a parameter validity window of 7� 7 pixels.

Small detailed cutouts of 96 � 96 pixels are shown in Figs. 7.2, 7.3, 7.4 and 7.5 for all

four test images including the noise-free, the speckled, the MBD �ltered and the GGMAP

�ltered data, as well as their corresponding ratio images. The GGMAP �ltered images have

been chosen to be displayed in combination with the MBD �ltered data, since this �lter

possesses the highest degree of modeling of all standard �lters and provides the visually

best results, although the mean square errors are slightly higher than those of the Kuan

�ltered images. A general visual impression of the despeckling performance of the other

tested �lters is given in Fig. 4.1 of chapter four.

"Wessling" image

The "Wessling" image exhibits many small structures in form of roads, but also agricultural

areas with sharp edges. As can be seen in Fig. 7.2, these edges are well preserved by the

MBD �lter, while the center of the village looks a little bit blurred. On the contrary, the

GGMAP �ltered image looks rather sharp. However, this is simply because the original
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noisy gray-values are not �ltered throughout the whole image, as can be observed in the

corresponding ratio image. The ratio image of the MBD �ltered data, which give the best

mean square error, shows no signi�cant structures.

"Brodatz" image

Since the MBD �lter was designed to restore textured images, we expect it to outperform

all other �lters on this test image. This expectation is con�rmed both by the measured

quality indicators and by the detailed images as they are displayed in Fig. 7.3. The MSE is

almost 50% lower than the second best result obtained by the Kuan �lter. The visual corre-

spondence between original and despeckled data is almost perfect, which is also con�rmed

by the ratio image. The shortcomings of the Gamma model with edge-detection, as used in

the GGMAP �lter, are clearly visible both in the �ltering result and the ratio image, where

textural structures can bee seen: The GGMAP �lter is unable to model complex textural

information.

"Synthetic" image

This test image was generated to examine the �lters' capabilities to cope with non-stationary

image contents and to verify their noise reduction performance in homogeneous areas. In

terms of the mean square error the MBD �lter dominates all other �lters by far. The same

applies for the image smoothness measure, as indicated in Tab. 7.1. However, at the border

between the homogeneous area and the strongly textured region with lines (cf. Fig. 7.4) the

�ltering performance decreases. Since the mean gray-value of these two areas is in a similar

range this non-stationarity is not detected by the region-growing edge-detection step of the

MBD �lter. While the GGMAP �lter leaves the gray-values of the lines unchanged and thus

preserves some noise, these structures are well �ltered by the MBD approach. However,

the MBD ratio image indicates a reduced �ltering for very dark image regions with a mean

gray-value close to one.

"Runway" image

The "runway" image impressively demonstrates the �ltering quality of the MBD �lter.

Visually, original and �ltered data are almost identical, as illustrated in Fig. 7.5. The mean

square error is by far lower than for all other �lters. No signi�cant structures can be detected

in the ratio image. Apparently, this image �ts rather well to the Gauss-Markov model,

explaining the outstanding performance. The GGMAP �lter performs less convincing. As

re
ected in the ratio image, the despeckled data still exhibit a lot of noise. The visual

similarity of the �ltered data to the noisy image is much higher than the similarity to the

original data.

7.1.3 Conclusions

In order to quantitatively determine the �ltering quality of the proposed MBD �lter and

other �lters, we have chosen arti�cially speckled images to test various important properties
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Figure 7.2: Detailed cutout of the "Wessling" test image. Top row: Original data (96 � 96

pixels), MBD �ltered data, MBD ratio image. Bottom row: Speckled data,

GGMAP �ltered data, GGMAP ratio image.

Figure 7.3: Detailed cutout of the "Brodatz" test image. Top row: Original data (96 � 96

pixels), MBD �ltered data, MBD ratio image. Bottom row: Speckled data,

GGMAP �ltered data, GGMAP ratio image.



7.1 Quantitative Filter Evaluation based on Synthetic Data 147

Figure 7.4: Detailed cutout of the "synthetic" test image. Top row: Original data (96� 96

pixels), MBD �ltered data, MBD ratio image. Bottom row: Speckled data,

GGMAP �ltered data, GGMAP ratio image.

Figure 7.5: Detailed cutout of the "runway" test image. Top row: Original data (96 � 96

pixels), MBD �ltered data, MBD ratio image. Bottom row: Speckled data,

GGMAP �ltered data, GGMAP ratio image.
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of despeckling algorithms. The proposed MBD approach showed convincing results both

for objective quality measures and subjective visual image inspection.

Especially as far as the attainable mean square error is concerned, the new �lter some-

times dramatically outperforms existing methods. Equivalently good results can be found

for the achievable image smoothing which does not depend on the size of the estimation

window. Due to an included correction factor for the introduced multiplicative bias (cf.

chapter �ve) the image mean is also satisfactorily preserved. We note however from the

ENL of the ratio image, that the variance of the extracted speckle is too low compared to

its true value (L = 4). Nonetheless, in comparison with the other investigated �lters, the

extracted value for the ratio image remains rather stable (slightly above �ve), as denoted

in Tab. 7.1. This indicates some kind of robustness towards the introduction of artefacts,

which does not apply for the other �lters whose strongly varying measurements may be

caused by artefacts as a function of the image contents.

Another important observation is that other �lters preserve a certain degree of residual

noise in the image or give too many false alarms concerning the detection of edges or other

small features. This e�ect, which much less often occurs for MBD �ltered data, may hinder

a subsequent interpretation of the despeckled images. Nonetheless, this issue is strongly

application dependent. On the other hand, the almost complete noise-reduction of the

MBD �lter is reached at the expense of a slight blurring of the �ltered data. Visually, the

other tested �lters apparently provide much sharper images simply by less strongly �ltering

and staying closer to the observation. It was proven by the mean square error and a visual

evaluation of the given image examples that an altogether much better estimate of the radar

cross-section is provided by the MBD �lter.

7.2 Qualitative Filter Evaluation based on SAR Data

We have provided a �rst �lter evaluation for synthetic data. In this section several results

obtained from real SAR data will be presented. Unlike in the last section, we do not give

any quantitative measures concerning the image quality but simply show the despeckled

data and their corresponding ratio images. For an evaluation of the �ltering performance

we further rely on a visual inspection of the �ltered and the ratio images. We renounce

to give the values of a developed quality measure based on the power spectra of the ratio

images and of other measures, since they may be judged subjective and do not give further

insight to what is already visually perceivable in the ratio images.

7.2.1 Filtering of Synthetic Aperture Radar Images

By analogy to the last section, we have selected two rather di�erent types of SAR data

in order to be able to better evaluate the quality of the MBD �lter. This time, we make

comparisons only to the GGMAP �lter. First, the full images are displayed, then we again

give small cutouts with higher detail. In addition, we now also show the cutout of the

corresponding mean �ltered data processed with a window size leading to the same noise
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reduction in homogeneous areas as the MBD �lter. For the given examples, this yielded an

averaging kernel of about 11� 11 pixels, i.e. a multi-looking of more than 100 times.

X-SAR image

In Fig. 7.6 the despeckling result of an X-SAR image is illustrated. This image contains

mainly agricultural areas with sharp borders between di�erent regions, but also thin linear

structures. Hence, both a successful edge-detection and a reliable texture parameter esti-

mation are required to guarantee good results. The MBD �ltered data are of high visual

quality. Homogeneous areas are highly smoothed while edges and small structures are well

preserved.

This impression is con�rmed in the detail images presented in Figs. 7.7 and 7.8. While a

slight blurring is visible in the MBD �ltered result shown in Fig. 7.7, a good restoration of

the line structures in the upper right part of the image of Fig. 7.8 is observed. The GGMAP

�lter shows the same behavior as before, i.e. preservation of noise at non-stationarities and

inability to restore textural information. Nonetheless, the qualitative di�erence of the ratio

images is not as pronounced as for the presented synthetic examples. The corresponding

mean �ltered data show the loss of resolution of multi-look images that is necessary to

obtain a noise reduction which is equivalent to the MBD �ltered image.

FGAN SAR image

The FGAN (Forschungsgesellschaft f�ur Angewandte Naturwissenschaften e.V.) image is a

high-resolution airborne SAR image, which was kindly provided by FGAN for experiments.

This image exhibits many isolated small structures like buildings, as well as textured forest

areas and agricultural regions. This makes this image especially interesting for an evaluation

of the texture preserving capabilities of the developed �lter. The original and the �ltered

image are provided in Fig. 7.9. In the despeckled image a clear textural separation between

forest and �eld areas is observed. The build-up area in the upper right part of the image is

also more than satisfactorily restored.

The detail images in Figs. 7.10 and 7.11 allow a better visual inspection: Di�erent

textures for forest and 
at areas can be easily identi�ed in the MBD �ltered data, whereas

the GGMAP �ltered data seem to be composed of small homogeneous patches. In our

opinion the MBD despeckled data give a much more natural and realistic visual impression.

However, a slight blurring e�ect is observed. The mean �ltered images with identical noise

suppression contain no remaining detail.

SRTM SAR image

A last short illustrative example of SAR image �ltering, which shows the power of the

employed Gauss-Markov texture model is given in Figs. 7.12-7.15. The images show an

area over White Sands, New Mexico, USA, the �rst dataset acquired during the SRTM
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Figure 7.6: X-SAR image over Ukraine. Top: Original X-SAR image (512 � 512 pixels,

L � 3). Bottom: MBD �ltered X-SAR image.
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Figure 7.7: First detailed cutout of the X-SAR image. Top row: Original X-SAR image

(128 � 128 pixels), GGMAP �ltered image, MBD �ltered image. Bottom row:

Mean �ltered image, GGMAP ratio image, MBD ratio image.

Figure 7.8: Second detailed cutout of the X-SAR image. Top row: Original X-SAR image

(128 � 128 pixels), GGMAP �ltered image, MBD �ltered image. Bottom row:

Mean �ltered image, GGMAP ratio image, MBD ratio image.
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Figure 7.9: FGAN airborne SAR image over Germany. Top: Original FGAN SAR image

(512 � 512 pixels, L � 8). Bottom: MBD �ltered FGAN SAR image.
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Figure 7.10: First detailed cutout of the FGAN SAR image. Top row: Original FGAN image

(128� 128 pixels), GGMAP �ltered image, MBD �ltered image. Bottom row:

Mean �ltered image, GGMAP ratio image, MBD ratio image.

Figure 7.11: Second detailed cutout of the FGAN SAR image. Top row: Original FGAN

image (128�128 pixels), GGMAP �ltered image, MBD �ltered image. Bottom

row: Mean �ltered image, GGMAP ratio image, MBD ratio image.
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Figure 7.12: Original SRTM (Shuttle Radar Topography Mission) image. The cutout

(1024 � 684 pixels, L � 3) of the geocoded scene over White Sands, New

Mexico, USA, shows interesting drainage patterns and mountainous regions.

Figure 7.13: Mean �ltered SRTM image. The image illustrates the noise smoothing and

detail preserving capabilities of the MBD �lter compared to multi-looking.
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Figure 7.14: MBD �ltered SRTM image. Textural information of the original SAR image

is preserved and visually enhanced.

Figure 7.15: GGMAP �ltered SRTM image. The over-detection of features and the noise-

preservation in areas of higher textural activity are clearly visible.
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mission. For comparison to the MBD �lter, we provide again the GGMAP �ltered and the

mean �ltered images.

The MBD despeckled image might be easily mistaken for optical data: The speckle noise

has been completely �ltered out and the drainage patterns in the mountainous areas are

impressively preserved and even enhanced compared to the original data, i.e. signi�cant

information is much easier visible in the �ltered image than in the original observation.

7.2.2 Conclusions

A quantitative and qualitative analysis of the �ltering performance of the introduced MBD

�lter in comparison with standard techniques yielded favorable results for the model-based

approach. While visual attractiveness is a rather subjective criterion, more objective quality

measures, such as the mean square error, though not capable to fully describe the image

quality, con�rm the more accurate restoration of MBD �ltered images.

The new approach accurately captures and restores textural information and is able to

preserve edges and isolated targets. As main drawbacks, a slight blurring of the �ltered

image is observed, several stationarity problems between abruptly changing textures in

synthetic images occurred and the required computational load is excessively high compared

to standard approaches.

We especially consider this last point as the main disadvantage of the proposed method.

Computation times higher by roughly two orders of magnitude may hinder a wide-spread

use of our approach. However, these computational requirements are easily explained by

the complexity of the �lter, which requires more than the calculation of mean and variance.

In the given examples, we did not consider single look data for the following reason:

Single look data show too high speckle correlation making the application of the proposed

�lter diÆcult. Of course, the correlation problem a�ects all other approaches as well, but

less strongly since they do not require the estimation of spatial interactions to the same

extent. Moreover, all despeckling �lters perform rather poorly on single look data, due to

the low signal to noise ratio. Hence, �ltered single look data are usually not suited for a

subsequent interpretation. Up to now, speckle �ltering provides pro�table results only for

at least slightly multi-looked SAR image products.

7.3 Full Scene Processing for Information Extraction

In this section, an example of SAR image processing with more emphasis on additionally

extracted information, i.e. texture parameters and edge-information, is presented. The

power of the developed approach does not only lie in a more accurate estimation of the

radar cross-section, but also in the extraction of information about the image contents.

Common approaches designed to extract textural information are either based on an-

alytically analyzable models [Oliver94, Oliver96] or use complex spatial texture models

[Schistad92, Schistad97, Walessa98]. However, the latter usually do not allow to take into

account the properties of speckle. We have demonstrated in chapter four that MPL Gauss-
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Markov model parameter estimation from speckled data yields only limited information

about the image.

7.3.1 Information Extraction from SAR Data

In Figs. 7.16-7.21 an example of the information extracted from SAR data by the MBD �lter

is given. The originally processed scene is depicted in Fig. 7.16 and was kindly provided by

Aerosensing GmbH.

Edge-information

Fig. 7.17 presents the extracted edge information. Two di�erent kinds of edges according

to the distinction made in chapter six can be discriminated. Edges between homogenous

regions are shown in black, edges in textured areas, which occur mainly in the forest areas,

in gray. The edge image gives a rough impression of the image contents allowing to identify

dominant changes in mean backscatter and areas of high textural activity. Note that the

edge-detection step was especially designed to improve the cross-section estimation and not

as a stand-alone edge-detection algorithm.

Backscatter information

The despeckled radar cross-section is depicted in Figs. 7.18 and 7.19 estimated by the MBD

and the GGMAP �lter, respectively. The MBD �ltered data do not only look visually

more attractive, but are much smoother and allow a better textural distinction between

homogeneous and forest areas. The GGMAP �ltered image exhibits a similar roughness for

both textured and untextured regions.

Textural information

The norm j�j of the extracted Gauss-Markov model parameters is shown in Fig. 7.20. In

this image, the clear distinction between forest and areas of uniform backscatter, which

cannot be discriminated by intensity information alone, becomes visible. Note that due to

the projection to one dimension the norm contains only reduced textural information with

regard to the full parameter vector.

The result of an unsupervised k-means clustering of the norm j�j and the backscatter

information from the �ltered image x̂MAP into six classes is given in Fig. 7.21. Although

this segmentation is derived from a single and highly noisy information channel, i.e. a single

SAR image, a good general distinction between main image regions, such as build-up areas,

forest and 
at regions, is possible.

A new database system developed at DLR in collaboration with the ETH Z�urich exploits

this kind of textural information contained in the parameters of the Gauss-Markov or similar

texture models in order to enable a query by image contents. The system is designed to
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Figure 7.16: SAR image of DLR/Oberpfa�enhofen. A subsampled part (1800� 900 pixels,

L � 3) of the whole scene is shown. The full scene was kindly provided by

Aerosensing GmbH.

Figure 7.17: Extracted edge information of the DLR/Oberpfa�enhofen SAR image. Edges

between homogeneous regions are shown in black. Edges in textured areas are

gray.
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Figure 7.18: MBD �ltered DLR/Oberpfa�enhofen SAR image. Textural information of the

original SAR image is preserved and visually enhanced.

Figure 7.19: GGMAP �ltered DLR/Oberpfa�enhofen SAR image. Targets and edges are

well preserved. A clear textural distinction between �elds and forest cannot be

made.
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Figure 7.20: Texture information extracted from the DLR/Oberpfa�enhofen SAR image.

The norm j�j of the directional texture parameters is displayed.

Figure 7.21: Unsupervised clustering of texture and backscatter information from the

DLR/Oberpfa�enhofen SAR image. The norm j�j and the backscatter in-

formation from the MBD �ltered image have been used for a clustering into

six classes.
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work for texture information extracted from complete, i.e. optical, and incomplete, i.e.

radar, image data and can be experimented over the web [RSIA1, RSIA2]. Allowing the

user to de�ne his own search criteria, the query is not limited to pre-de�ned or pre-extracted

labels.

7.3.2 Conclusions

In addition to an estimate of the radar cross-section, edge and texture information is ex-

tracted by the presented approach. Besides increasing the quality of SAR image despeckling,

this information has value on its own and can be used for further image interpretation, such

as image classi�cation, or serve as a feature in database systems. Short examples have been

provided.

However, the extraction of features alone is not suÆcient if they are not assigned a

meaning. A step towards this direction was made with the joint query by image content

project of DLR and ETH Z�urich [Datcu98, Rehrauer, Schroeder99b].

7.4 Summary

In this chapter, the following points have been discussed:

� A �lter comparison has been presented, which was based on synthetic image exam-

ples to be able to compute various quality measures. Since image quality cannot be

measured consistently by a few numbers, we also relied on a visual evaluation of the

image quality.

� As objective measures, we have chosen the mean square error, the image mean, the

maximum noise reduction and the �rst order statistical properties of the extracted

speckle noise. Furthermore, speckle ratio images have been provided to visually eval-

uate introduced spatial distortions.

� Both the visual and the numerical analysis provided convincing results for the pro-

posed Model-Based Despeckling approach. Its improved �ltering quality is mainly

due to the employment of more complex models in comparison with the other tested

approaches. However, the increased complexity also results in comparatively rather

high computation times.

� The MBD �ltered images look visually very attractive, but exhibit a slight blurring

e�ect, which is equivalent to a reduction of image resolution. While other �lters often

provide rather sharp images, this is mainly because their results stay much closer to

the noisy observation and either preserve a certain degree of speckle or give many

false alarms in terms of detected edges and small features.

� The extracted information in form of texture parameters, edges and point scatterers,

which enables the high quality of the �ltered images, can be used as a feature vector

in remote sensing image databases or for further image interpretation.





8 Conclusions

This thesis presents a new approach to SAR image �ltering and information extraction from

SAR data. SAR images are a�ected by the speckle phenomenom, which hinders a straight-

forward interpretation of this particular kind of remote sensing images. We have developed

the idea of a combined approach for feature extraction and employment of this information

to generate �ltered SAR data of high quality. Both the low-level feature extraction and the

higher level image restoration are performed within the Bayesian framework to be able to

incorporate a maximum of available information. The presented approach constitutes one of

the �rst attempts to extract hidden model parameters of Gibbs random �elds, i.e. complex

textural information, from incomplete speckled data. Additional SAR speci�c features that

cannot be described by the employed Gauss-Markov model are extracted by a non-Bayesian

statistical data analysis.

Unlike other methods, we fully take into account the speckle noise properties for the

estimation of relevant model parameters. Thus, the introduced algorithm requires no

heuristically set parameter values for SAR image despeckling but only uses information

already contained in the noisy observation. Due to a sophisticated modeling, more infor-

mation about the noise-free scene can be extracted allowing a much better restoration than

achievable with other currently available approaches. The employed model is not based on

stationarity assumptions concerning the mean SAR backscatter, as the Gamma model, but

encapsulates spatial interactions of pixels within small neighborhoods in form of model pa-

rameters of a Gibbs random �eld. The proposed algorithm requires a considerable amount

of computing power for the low-level information extraction but, at the same time, does not

only provide a despeckled SAR image but also a vector of additional features which charac-

terize the actual image content. In principle, this additional information, which is extracted

from under the speckle noise resulting in more reliable estimates, enables a further image

interpretation. However, it must be clear that a single highly degraded information channel,

i.e. a non-polarimetric SAR image, contains only a limited amount of usable information.

Hence, the value of the extracted features for real applications must be further investigated,

since many applications require multi-temporal or multi-sensor data in order to increase the

available information content and often even need features completely di�erent from those

provided by our approach.

For these cases, the despeckled image is of special interest, since the seeked information

is always contained in the radar cross-section. Consequently, valuable information for a high

variety of applications can be much more easily extracted from �ltered images of high quality
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than from the original noisy data. Although the direct interpretation of un�ltered SAR

data promises more accurate and more reliable results, this also requires the development

of highly specialized application-dependent algorithms. In most cases, this approach is too

expensive and �ltered data are preferred. In our opinion, the employment of �ltered images

can be justi�ed in many applications, if the despeckled data do not contain signi�cant

artefacts and preserve the dominant characteristics of the underlying cross-section, like the

mean backscatter value, basic textural properties and edge information. In this way, we

think that the proposed Model-Based Despeckling approach constitutes an important step

towards an easier interpretation of SAR data, since it provides a much better and more

reliable estimate of the radar cross-section than many other available techniques.

8.1 Summary of the Thesis

The employed Bayesian approach requires prior knowledge about both the parameters to

estimate and the noise process that causes the degradation of the observed data. Conse-

quently, we started with a general outline of the SAR sensor in order to better understand

its particular imaging properties. We have seen that SAR is a time-ranging system, which

allows to generate images from backscattered intensity. In order to obtain an adequate

resolution, signal processing techniques like pulse compression and synthetic aperture are

used. We have furthermore mentioned that radiometrical and geometrical information in

SAR images are in
uenced by the topography of the imaged scene requiring an appropriate

correction of these e�ects. However, additionally to these distortions a phenomenon called

speckle highly degrades the radiometric information of SAR images and hinders their in-

terpretation. Speckle can usually be interpreted as a multiplicative granular noise which

becomes visible only in detected SAR data. The spatial correlation of speckle is usually

not considered in SAR image processing techniques and can be reduced by approaches like

subsampling or multi-looking. We described the most important statistical properties of

the speckle process, e.g. its likelihood function, which are necessary to deal with this highly

disturbing e�ect within the Bayesian framework for SAR image �ltering.

We introduced the basics of Bayesian estimation theory and illustrated that the incorpo-

ration of prior knowledge may help to improve the accuracy of parameter estimation, but

also showed that the correct choice of a prior model is a crucial issue often rising critics

about the Bayesian approach. To be able to perform a model selection and to determine

the parameters of a given prior, we gave an interpretation of the Occam factor and brie
y

outlined a technique to evaluate the evidence integral. We illustrated the equivalence be-

tween Markov and Gibbs random �elds, which allow a local modeling of spatial interactions

between neighboring pixels by a stochastic description and are well suited to serve as prior

models. Several potential functions have been given and we commented on their basic prop-

erties. Especially, the Gauss-Markov model rose our interest because it is partly analytically

tractable. However, its linear character does not allow the modeling of sharp edges. We

concluded that Markov or Gibbs random �elds are promising to be used as prior informa-

tion within a Bayesian framework for SAR image processing, since they are able to describe

di�erent spatial image properties.
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As an overview of the state-of-the-art, several commonly used despeckling �lters have

been presented. We discussed their qualitative di�erences in terms of the modeling of the

noise and of the noise-free cross-section and concluded that the quality of the despeckled

data increases with model complexity. This motivated the employment of more powerful

prior models, such as Gibbs random �elds, which usually require iterative relaxation meth-

ods for the maximization of the resulting posterior. With regard to the optimization space,

either slow optimal stochastic algorithms like simulated annealing or faster sub-optimal op-

timization schemes like the ICM algorithm have to be used. We illustrated that regardless

of the kind of parametric prior optimal �ltering results can only be achieved if the model pa-

rameters are estimated from the observed data. It was shown that �xed parametric models

cannot be considered to be satisfactory since they may introduce a strong bias and some-

times even further degrade the noisy observation. For this purpose, we investigated methods

for information extraction and model parameter estimation from noisy data. We noted that

the computational complexity of the model parameter estimation mainly depends on the

kind of the employed model and demonstrated that non-linear models principally possess

higher modeling capabilities than linear ones. However, parameter estimation for non-linear

models proved to be diÆcult and too slow for practical applications. In the following, we

limited ourselves to the linear Gauss-Markov model for computational reasons and discussed

several parameter estimation techniques for incomplete data. A quantitative comparison

clearly favored a Bayesian iterative approach based on the maximization of the evidence.

Based on the above �ndings, we developed the idea of a Bayesian algorithm for SAR

image �ltering and feature extraction. We derived the MAP equation for Gauss-Markov

random �elds as a prior and the speckle distribution as likelihood function. Since the op-

timization space is well-behaved, we used a deterministic ICM algorithm for maximization

of the posterior probability and approximated the Gaussian prior by a square-root Gamma

distribution for faster computation. In order to calculate the evidence, which is required for

model parameter estimation from incomplete data, we approximated the posterior product

by a Gaussian enabling an evaluation of the evidence for a given model parameter vector.

The accuracy of this approach was veri�ed by investigating the resulting model parameter

estimation for the limiting case of complete data. We studied two iterative schemes for evi-

dence maximization. One of these methods showed to be related to the EM-type algorithm

and we identi�ed the function to be maximized in the M-step equivalence to be the Occam

factor, which explained the qualitative di�erence between these two estimation techniques.

We showed that an introduced bias of our MAP estimator can be easily compensated by

an analytically given correction factor and that the mean of the original square-root inten-

sity image is preserved with suÆcient accuracy. Afterwards, we investigated the relations

between evidence, Occam factor, � of the Gauss-Markov model and mean square error for

the selection of the optimal model order and decided to use a model of �xed high order,

which yields an improved �ltering performance in comparison with lower orders at the cost

of a moderately increased computing time. Since SAR image despeckling requires a local

processing to preserve spatially varying structures, we shortly studied the in
uence of the

estimation window size. Finally, we investigated the signal space in which the despeckling

with Gauss-Markov random �elds is best performed and found optimal results in terms of

the mean square error for a processing in the square-root intensity domain.
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We identi�ed the need to adapt the linear Gauss-Markov model to speci�c SAR image

features, which were not satisfactorily restored with the used auto-regressive model. An

additional processing for edge-preservation and scatterer detection was required. For this

purpose, we used a region-growing backscatter segmentation which favors the formation of

homogeneous, closed region labels. The restoration can now either be performed with the

originally estimated model parameters or by taking into account the identi�ed edges by

means of an adaptive neighborhood system. The decision for any of these two assumptions

was based on a local analysis of the coeÆcient of variation in order to verify the hypothesis of

edges between non-textured areas of homogeneous backscatter. Since isolated targets have

been found to be blurred after despeckling and to hinder a correct parameter estimation,

a special processing of strong scatterers was introduced. Isolated scatterers are detected

by a statistical analysis relying on a constant false alarm rate and are removed prior to

�ltering. In a post-processing step, removed targets and blurred scatterers that have not

been detected in the pre-processing are re-inserted in the image contingent on an analysis

of the ratio image between observed and �ltered data.

8.2 Evaluation of Obtained Results and Outlook

For an evaluation of the proposed despeckling method, a �lter comparison has been pre-

sented which was based on synthetic image examples and the computation of various quality

measures. We stated that image quality cannot be consistently measured by a few num-

bers, and therefore also relied on a visual quality evaluation. As objective measures, we have

chosen the mean square error, the preservation of the image mean, the maximum noise re-

duction and the �rst order statistical properties of the extracted speckle noise. Furthermore,

speckle ratio images have been provided to visually evaluate introduced spatial distortions.

However, we remind that image quality measures are application dependent. Users whose

applications require smooth data will favor a di�erent restoration than those who require

the sharp preservation of edges. Consequently, the value of a certain �lter always depends

on the application it is intended for. On the other hand, for the development of our ap-

proach we did not have a particular application in mind but aimed at an optimal estimate

of the radar cross-section. For this reason, and although this measure is not optimal, we

mainly relied on the mean square error to determine the goodness of �ltered synthetic data.

Both the visual and the numerical analysis provided convincing results for the proposed

Model-Based Despeckling approach. Its improved �ltering quality is mainly due to the

employment of a much more complex model which is able to capture spatial information.

Naturally, this increased complexity also results in comparatively rather high computa-

tion times, which however can be justi�ed for the processing of high-resolution SAR data

with high detail. For most SAR images of lower resolution which do not exhibit textural

information, simpler and much faster �lters may still be preferred.

We noted that the MBD �ltered images look visually very attractive, but exhibit a slight

blurring e�ect, which is equivalent to a reduction of image resolution and results from

the employed Gauss-Markov model. While other �lters often provide rather sharp images,

their results stay much closer to the noisy observation preserving a certain degree of noise.



8.2 Evaluation of Obtained Results and Outlook 167

The extracted information in form of texture parameters and edges, which enables the high

quality of the �ltered images, has been shown in several examples to be of suÆcient accuracy

as well. Otherwise a reliable cross-section estimation of high quality would not have been

possible.

The proposed approach allows a good restoration of SAR images and provides additional

features. We have demonstrated that this information can be further used to characterize

the image content. A �rst step in this direction was made with a query by image content

system developed in a joint collaboration between DLR and the ETH Z�urich where the

extracted SAR features have been included. To improve the performance of both the de-

speckling and the query by image content system, the employment of more powerful models

should be investigated. Non-linear models might make the introduced processing for edges

and targets obsolete and capture additional spatial information. However, the parameter

estimation from incomplete data for such models is still computationally prohibitive. A

fast estimation technique, e.g. based on an approximation of non-linear models as hinted

at in chapter four, might constitute a big leap forward for the application of such methods

on a larger scale. We have demonstrated that the employment of sophisticated and more

powerful models with parameter estimation taking into account the degrading noise indeed

allows an improved data analysis and a better image restoration.





A Overview of SAR Sensors

In the following tables Tabs. A.1 and A.2 we provide an overview of several important

airborne and spaceborne SAR sensors and SAR related space shuttle missions. This list

cannot be complete due to the fast emerging increase of available, especially airborne, SAR

sensors, which nowadays are often operated by private companies.

A.1 Spaceborne SAR Sensors

Sensor Nation Altitude Band Polarization Resolution

SEASAT USA 800km L 1.3GHz HH 23m

Satellite ERS-1,2 Europe 785km C 5.3GHz VV 25m

JERS-1,2 Japan 565km L 1.2GHz HH 30m

RADARSAT Canada 792km C 5.3GHz HH 28m

SIR-A USA 259km L 1.28GHz HH 4.7m

Space SIR-C USA, Italy, 215km L 1.28GHz HH,HV, 6.1m

Shuttle Germany C 5.3GHz VH,VV

X-SAR USA, Italy, 215km X 9.6GHz VV 6.1m

Germany

Table A.1: Selection of important spaceborne SAR sensors. The most important speci�ca-

tions like frequency band and resolution are given.

A.2 Airborne SAR Sensors

Nation Agency Frequency Polarization Resolution Swath

USA NASA/JPL 0.44, 1.25, 5.3GHZ HH,HV,VH,VV 8m 10-18km

Canada INTERA 9.38GHz HH 6m 60km

Denmark TUD 5.3GHz VV 2m 12-48km

France CNES 9.38GHz HH, VV 3m 11.6km

China CAS 5.3GHz HH,HV,VH,VV 10m 35 km

Germany DLR 0.45, 1.3, 5.3, 9.6GHz HH, VV 2.5m 4km

Table A.2: Selection of important airborne SAR sensors. The most important speci�cations

like frequency and resolution are given.





B Optimization Methods

To �nd the lowest energetic state of a Gibbs distribution, i.e. the most probable realization,

only small modi�cations to the Gibbs sampler or Metropolis algorithm for synthesis are nec-

essary. Basically, there are two possible approaches to solve an optimization problem: The

�rst approach consists in stochastic relaxation methods. These methods are usually rather

slow, but are theoretically able to �nd the global minimum. The second approach consists in

deterministic or semi-deterministic methods that converge rather fast, but cannot guarantee

the �nal solution to be the global minimum and often get stuck in local minima depending

on the space to be explored. These two basic approaches are illustrated in Fig. B.1. The

choice for the method to apply must therefore depend on practical considerations, like com-

putation times and the quality of the achieved solution, which is conditioned by the shape

of the function to maximize.

B.1 Simulated Annealing

The task of �nding the global minimum of a Gibbsian energy function U(x) can be solved

by introducing a new parameter T called temperature, which originates from statistical

physics, where it is used to describe the temperature of an annealing process. Thus, this

stochastic optimization procedure to �nd x̂MAP is known as simulated annealing (SA)

[Aarts, Kirkpatrick, VanLaarhoven]. For the posterior Gibbs distribution according to

Eq. 4.10 with the additional parameter T

pT (X = xjY = y) =
1

Z(T )
exp

�
�U(x; y)

T

�
; (B.1)

we �nd two limiting cases:

� T !1 yields a uniform distribution with pT (X = xjY = y) = const .

� T ! 0 yields pT (X = x 6= x̂MAP jY = y) = 0 and pT (X = x̂MAP jY = y) = 1 .

Both the Gibbs sampler and the Metropolis algorithm can use such a modi�ed Gibbs dis-

tribution with a temperature T , which is sequentially lowered throughout the optimization

process, in order to determine x̂MAP . Starting with a high value for T , all states of X are

almost equally probable. By lowering T according to a pre-de�ned annealing schedule, the
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distribution becomes more peaked and sampled con�gurations slowly tend to reach the most

probable solution, i.e. the MAP estimate, regardless of the shape of the multi-dimensional

energy landscape or the initial starting con�guration.

It is crucial that the temperature is decreased slowly enough in order to allow to recover

from local minima. It can be proven [Aarts] that the algorithm converges towards the global

minimum if T is lowered not faster than T (n) = c= log(n+1), where n denotes the iteration

and c is a constant, which usually can be set to one. Since this annealing schedule is by far

too slow for practical applications, many other schemes exist, like e.g. T (n) = kn, where k

usually ranges from 0:9 to 0:99. Nonetheless, a stochastic relaxation is a computationally

heavy method, which should only be employed if faster methods do not give satisfactory

results. Similar, heuristically motivated methods [Creutz, Dueck] have been evaluated and

applied in [Walessa95, Walessa96].

B.2 Iterated Conditional Modes

Another important optimization algorithm is the iterated conditional modes (ICM) ap-

proach [Besag86, Winkler]. This approach is fully deterministic and consequently cannot

guarantee convergence to the global minimum. Its main advantages are its speed and a

convergence after a small number of iterations. Starting with a good initial guess of the

optimal con�guration x̂MAP , which could be the observed data y, the algorithm works like

this:

1. Each pixel Xi is assigned the value that minimizes the local energy function or, equiv-

alently, maximizes the local conditional posterior probability p(Xi = xijYi = yi; Xj =

xj ; j 2 Ni). This procedure decreases the global energy, thus converges towards the

global or a local optimum.

2. Step one is repeated several times for the whole image until either a local minimum

is reached, i.e. x̂ does not change any more, or until the number of pixel changes or

their magnitude lies below a �xed threshold.

If, in step one, the value resulting in the steepest descent cannot be found analytically, as

it is the case for most energy functions, the whole distribution has to be build, as done

in the Gibbs sampler. Since this slows down convergence by a factor governed by the

number of gray-values, some modi�cations of the ICM exist to circumvent this problem: By

analogy to the Metropolis algorithm, a new candidate value is randomly chosen. If the local

energy decreases, the current pixel is updated with this value, otherwise, the new value is

always rejected. In contrast to the ICM technique, which is a steepest descent method, this

modi�ed approach is a slower converging and simpler optimization technique.

We emphasize again two important conditions to take maximum advantage of the ICM

algorithm: The locally optimal value should be given analytically, and the energy landscape

should be smooth and convex to favor convergence to the global optimum. If the latter

condition is not ful�lled, it might prove helpful to perform an optimization at multiple
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Figure B.1: Convergence of simulated annealing (SA), iterated conditional modes (ICM)

and Newton-Raphson. Left: Optimization space at di�erent temperatures (de-

creasing in the direction of the arrow) of the simulated annealing. If T is

decreased correctly and slowly enough the estimate converges to the global

minimum regardless of its initial state. Right: Optimization by ICM or Newton-

Raphson. The initial con�guration and the shape of the energy function deter-

mine the convergence to a local or to the global minimum.

scales [Terzopoulos, Walessa95] due to an often better behaving optimization function at

coarser resolutions and the exploitation of inter-scale information.

B.3 Newton-Raphson Algorithm

If the posterior probability is well-behaved, a classical Newton-Raphson algorithm [Sivia]

can also be applied for optimization. The Newton-Raphson algorithm is an iterative de-

terministic approach which is based on the computation of the gradient of the function to

maximize. This requires the posterior distribution to exist in analytical form. Starting with

a guess x(n) at iteration n = 0 the new update is computed by

x(n+1) = x(n) � (rr log p(X = xjY = y;�))�1r log p(X = xjY = y;�)
���
x=x(n)

; (B.2)

with r as the Nabla operator and rr log p(X = xjY = y;�) as the matrix of second

derivatives.

We note that these derivatives can be calculated for the proposed posterior product of

the square-root Gamma distribution and the Gauss-Markov model. For the given problem

of cross-section estimation however, the required computational load compared to an ICM

approach can be assumed to be much higher, since a very fast approximation has been

derived for the latter. Qualitative di�erences between Newton-Raphson and ICM are not

to be expected for the above mentioned posterior.
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The forward model used throughout this thesis only describes the noise process that de-

grades the data. However, this is a simpli�cation of the reality, where the data are usually

degraded by both a transformation and noise. This transformation can either be a point-

spread-function modeling the image acquisition system or a non-linear transformation de-

scribing the relations between di�erent physical parameters at the input and at the output.

This more accurate imaging model [Geman84, Geman88] can be described by

y = FfH(x)g � n; (C.1)

where the original data x are subject to a linear transformation H (usually a blurring

kernel), an additional non-linear transformation (e.g. the logarithm) denoted by F and

some additive or multiplicative (denoted by the operator �) noise process N , which is

assumed to be statistically independent of the random variable X. The respective sample

realizations of X and N are x and n.

C.1 Deblurring of Noisy Images

It was shown in [Geman84] that this kind of full inverse problem can be modeled as a Gibbs

distribution with a modi�ed likelihood function, where x is replaced by the deterministic

forward model FfH(x)g. In this case, the local likelihood term also comprises a neighbor-

hood system which is determined by the width of the blurring function H. Unfortunately,

this general model cannot be treated analytically any more and the computational load

grows with the size of H.

As prior information for X, the full range of Gibbs models can be used without restric-

tions. In the case of a "simple" deblurring of images which are slightly a�ected by noise, an

entropic prior is often used [Burch, Gull, Toma]. Conventional maximum entropy restora-

tion is a special case of MAP estimation, in which the prior distribution for X is given

by

p(X = x) =
1

Z
exp

0
@�� jXjX

i=1

xi log xi

1
A : (C.2)

The variable � serves as a hyper-parameter which weights the relation between likelihood

and prior and should be determined by estimation. The L-curve method is often used for

this purpose, but Bayesian approaches can also be applied.
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C.2 Filtering of SAR Images with Correlated Speckle

Although SAR data are also a�ected by a blurring function, the imaging process for detected

data behaves di�erently: The blurring must be interpreted as to a�ect the already speckled

data, i.e.

y = H(x � n): (C.3)

Note that this is only approximately true for the pure image formation process. In fact, it

is the complex SAR data that are a�ected by a point-spread-function and usually negligible

thermal noise. Hence, the physical causes leading to both speckle and to the blurring e�ect

in the observed image are di�erent from what is described by the above model.

Nonetheless, we have to deal with correlated speckle noise (cf. chapter two). However, the

restoration approach for blurred images, i.e. the model of Eq. C.1 with uncorrelated noise, is

not applicable unless complex data are considered. Furthermore, the implementation of the

more accurate model in Eq. C.3 is not straightforward and complicated. As a consequence,

in order to cope with correlated speckle, methods like multi-looking or subsampling are

often applied in a pre-processing step to decrease correlation [Quegan]. We already stated

that complex SAR data are often slightly oversampled and that detected data may also

exhibit signi�cant correlation.

In the proposed Bayesian approach, we do not take into account speckle correlation and

only consider possibly pre-processed SAR images of almost uncorrelated speckle for two

main reasons:

1. The modeling of correlated speckle within the Bayesian framework is a diÆcult prob-

lem. Even if this was possible, resulting algorithms would probably be very complex

and by far too slow for practical applications.

2. Since we aim at texture extraction from SAR data using small neighborhoods, cor-

related noise of a similar correlation length strongly hinders a reliable parameter

estimation.

Hence, we neither consider a blurring function to increase image resolution, nor do we

model the correlation properties of speckle. Until now, there are only a few approaches that

incorporate the information of speckle correlation for the case of homogeneous cross-sections

[Fj�rtoft99b]. With the exception of the homomorphic Wiener �lter, similar approaches do

not yet exist for the full problem of SAR image restoration.



D Generalized Model-Based

Noise Filtering

The new approach for noise �ltering presented in this work was originally developed to

reduce the e�ect of speckle in SAR images. Using the Bayesian formalism, we have demon-

strated in chapter �ve that the estimation of hidden model parameters and the restoration

of noisy images can be adapted to di�erent cases by a change of the employed likelihood

function. In this way, the proposed approach is easily modi�ed to work for other applications

of image restoration: Here, we present a generalized version of the �lter for non-stationary

additive Gaussian noise that was developed for the enhancement of interferometric digital

elevation models (DEMs).

D.1 Model-Based Filtering of Non-Stationary Noise

Assuming a noise-free image x of the random process X, which is a�ected by zero mean

additive white Gaussian noise with variance �n
2, we �nd for the local likelihood function of

the observed data y of process Y at site i

p(Yi = yijXi = xi) =
1p

2��n2
exp(�(yi � xi)

2

2�n2
): (D.1)

Equivalently to the log-intensity case presented in chapter �ve, this yields a weighted mean

for the value that maximizes the local posterior distribution if a Gauss-Markov random �eld

(cf. Eq. 3.66) is chosen as prior information:

x̂iMAP
=
yi�

2 + �i�n
2

�2 + �n2
; (D.2)

where � and �i are the parameters of the Gauss-Markov prior. To estimate the texture

parameters of the prior model, we need the diagonal components of the Hessian matrix of

the posterior, which are found to be

hii =
1

�n2
+

1

�2

0
@1 +X

k;l

�k;l
2

1
A : (D.3)
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Figure D.1: Generalized Gauss-Markov noise �ltering. Top row: Original Lena image (256�
256 pixels), mean �ltered image (7�7 pixels, MSE=227), Lee �ltered image (7�
7 pixels, MSE=351). Bottom row: Noisy image (additive Gaussian noise with

�n = 32, MSE=998), wavelet �ltered image (MSE=170), generalized Gauss-

Markov �ltered image (�fth order, MSE=105).

By means of these results, the presented Model-Based Despeckling algorithm can be adapted

to work for additive noise. The model parameter estimation by iterative evidence maximiza-

tion remains unchanged. An example of this generalized Gauss-Markov �ltering for additive

noise with known variance and a short comparison to other popular �lters is illustrated in

Fig. D.1.

The above approach can be extended to work for non-stationary noise by locally esti-

mating the noise variance �n
2. For this purpose, we do not measure the empirical variance

V ar(y) of the observation, but locally determine �n
2 � V ar(y � x̂), where x̂ is a rough

guess of the noise-free image obtained by e.g. a simple mean �lter. This approach is nec-

essary since the locally measured variance V ar(y) contains 
uctuations induced by image

structures resulting in an over-estimation of �n
2 and a too strong smoothing.

As x̂ is only a rough guess, the estimation of �n
2 is still a�ected by distortions: An

under-estimation may occur if the estimate x̂ exhibits remaining noise. Consequently, the

�ltering result strongly depends on the local guess for �n
2, whose quality is determined by

the estimation window size for V ar(y� x̂) and the window size of the mean �lter employed

to compute x̂.
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In principle, this generalized noise adaptive �lter can also be used for SAR image de-

speckling. However, it su�ers from the typical shortcomings of the Gauss-Markov model to

describe isolated targets and sharp edges. Moreover, since the noise is assumed to be locally

additive and the estimate of its variance is subject to error, the �ltering performance for

SAR data is inferior to the presented Model-Based Despeckling algorithm without structural

enhancements.

A similar approach of using Gauss-Markov random �elds for the restoration of images

a�ected by additive noise with additional structural information employed to limit the

local neighborhood of the model was presented in [Jeng]. However, in this approach model

parameters are not estimated from the observed noisy image but are derived from complete

training data. We commented on the correct selection of model parameters in chapter four.

D.2 Model-Based DEM Filtering during the SRTM Mission

The presented generalized model-based �lter for additive non-stationary noise was employed

during the SRTM mission to �lter digital elevation models (DEMs) derived from single-pass

interferometry. These DEMs, though of very high quality due to high coherence of the image

pairs, still exhibit a certain degree of noise, which requires �ltering as a post-processing.

This noise, whose properties are unknown, varies throughout the DEM as a function of

the local coherence and requires a locally adaptive noise estimation. Since digital elevation

models do not contain sharp borders or isolated peaks, but show rather smooth variation,

the employment of Gauss-Markov random �elds as a prior proved to be a good choice.

This became especially visible when a comparison with standard noise �lters was made:

Wavelet-based methods [Donoho] often introduce highly disturbing artefacts, while the Lee

�lter for additive noise [Lee81] does not smooth regions of high variance. Mean or median

�lters do not preserve image detail.

An example of DEM �ltering with the proposed approach is illustrated in Fig. D.2. For

visualization purposes we show wrapped DEMs, although the �ltering was performed on

unwrapped data. Unlike the original SRTM DEM, the �ltered image is rather smooth but

still contains all relevant structural information. Fig. D.3 shows the corresponding local

slope � =
p
�x2 +�y2 as a function of the gray-level gradients in range and azimuth �x

and �y. While all details are hidden under noise for the un�ltered DEM, valuable slope

information can be directly derived from the �ltered data.

A perspective view of a part of the �rst DEM of the SRTM mission (White Sands, New

Mexico, USA) derived by DLR is given in Fig. D.4. The noise, which a�ects the original

interferometric DEM, is easily visible in this illustration. The �ltered digital elevation

model is shown below, where the high noise area of low coherence in the lower part of the

original DEM was suppressed by incorporation of the image intensity, which can be used as

an additional source of information for DEM regularization [Nico]. A full panoramic view

of original and denoised height information with the overlayed un�ltered and despeckled

image amplitudes, respectively, is �nally presented in Fig. D.5.
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Figure D.2: Model-based DEM (Digital Elevation Model) �ltering. Left: Original DEM

(256 � 256 pixels) derived from single-pass interferometry during the SRTM

mission. Right: Filtered DEM with the proposed generalized model-based noise

�lter. Wrapped DEMs are displayed for better visualization. The �ltering was

performed on unwrapped data.

Figure D.3: Gradient images of the original and �ltered unwrapped DEM. Left: Measured

gradient in each pixel extracted from the original SRTM DEM as shown in

Fig. D.2. Right: Measured gradient in each pixel extracted from the corre-

sponding �ltered DEM.
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Figure D.4: Perspective view of original and �ltered DEM. Top: Original DEM (512 � 512

pixels, �rst SRTM DEM over White Sands, New Mexico, USA) derived from

single-pass interferometry during the SRTM mission. Bottom: Corresponding

view of the �ltered DEM.
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Figure D.5: Perspective view of original and �ltered landscape. Top: Original DEM

(512 � 512 pixels) with overlayed measured SAR image amplitude. Bottom:

Corresponding view of the �ltered DEM overlayed with the despeckled SAR

image amplitude.



E Symbols and Acronyms

E.1 List of Symbols

We list the most important functions and symbols that can be found in this thesis. Due

to the diversity of covered subjects, some symbols may have several meanings. The correct

interpretation, however, should become clear from the context.

The following symbols have been used in this work:

A amplitude

A matrix of correlation factors

B signal bandwidth

B�2 covariance matrix of N

b vector of correlation factors

C cost function, contrast between two regions

CnI
auto-covariance function of intensity speckle

CVA coeÆcient of variation for amplitude

CVI coeÆcient of variation for intensity

CVP coeÆcient of variation for power

CVS coeÆcient of variation for square-root intensity

CVZ coeÆcient of variation for log intensity

C clique system

Ck clique system of k elements

c speed of light, clique index, constant

D antenna width

E complex backscattered �eld, log-evidence

E0 backscattered �eld variable

Ei complex backscattered �eld of one scatterer

Ei0 magnitude of backscattered �eld

Efg expectation value

E space of gray-values

Ffg non-linear transformation

fc carrier frequency

fT pulse repetition frequency

G number of gray-levels

H sensor altitude
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H Hessian matrix

H() linear blurring kernel

hii main diagonal element of the Hessian

I intensity, additional information

I0 intensity variable

i index, pixel site

j complex number, pixel site

K proportionality constant, �lter parameter

KS Kullback's information

K��L Bessel function of order � � L

K1 normalization constant

k wave number, number of expectation values to calculate,

weighting constant, number of pixels within a clique

k; l indices of neighboring pixels

L equivalent number of looks, form parameter of the Gamma distribution

M data model

M1; � � � ;MN di�erent data models

MMAP maximum a posteriori model

MML maximum likelihood model

Morder model with a given order

m probability density or distribution function

N number of individual scatterers or elements, noise process

N1, N2 number of pixels of two adjacent segments

Ni noise process at site i

N neighborhood system

Ni neighborhood of xi
N (a; b) Gaussian noise process of mean a and variance b

n number of current iteration, realization of noise, ratio image

ni realization of noise at site i

nI intensity speckle

nS square-root intensity speckle

nZ log intensity speckle

ni realization of additive noise at site i

P received power or intensity, probability

P0 receiver power or intensity variable

Pfa probability of false alarm

p() probability density or distribution function

p�() probability density or distribution function of a random variable �

pT () Gibbs distribution with temperature T

Q Q function of the EM algorithm

R radial distance from the sensor

Rfg regularization term

R(t) radial distance from sensor as a function of time

R0 minimum radial distance from sensor

Ri radial distance to a scatterer, region of homogeneous backscatter



E.1 List of Symbols 185

RnI
auto-correlation function of intensity speckle

RI auto-correlation function of intensity

r radial distance, number of regions for segmentation

rx range resolution

ry azimuth resolution

S square-root intensity, entropy

S0 square-root intensity variable

s standard deviation

T pulse repetition time, temperature

t time

U global energy

Ui local energy

V weighting factor, global potential function

Vc local potential function

v sensor velocity

V ar() variance of a random variable

X random variable

Xi random variable at site i

x range coordinate, realization of X

xdown pixel below a given center pixel

xleft pixel left to a given center pixel

xright pixel right to a given center pixel

xup pixel above a given center pixel

x cross-section in vector notation

x̂ estimate of x

x̂MAP maximum a posteriori estimate of x

x̂MAP1
, x̂MAP2

MAP estimates obtained under di�erent model assumptions

x̂ML maximum likelihood estimate of x

xi realization of Xi

x̂i estimate of x at site i

x̂iMAP
maximum a posteriori estimate of x at site i

xi
(n) realization of Xi at iteration n

xk;l neighboring pixel to xi
x
0

k;l
symmetric neighbor to xi with regard to xk;l

x(n) realization of X at iteration n

x0 shift along the x-axis

Y random variable

Yi random variable at site i

y azimuth coordinate, realization of Y

yi realization of Yi
y1 lower bound

y2 upper bound

Z log intensity, global partition function

Z0 log intensity variable

ZS log square-root intensity
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Zc partition function for the approximated model

ZdB intensity in decibels

Zi local partition function

� scaling factor, �ltering constant

�y antenna azimuth aperture

�() Gamma function

� spread of the potential function, smoothing parameter, slope

�R general sensor resolution

�U energy di�erence

�t time interval

�x di�erence between center and neighboring pixels,

shift and slope in range direction

�x di�erence vector

�y azimuth distance, shift and slope in azimuth direction

Æk;l step width for directional texture parameters

Æk;l
(n) step width for directional texture parameters at iteration n

Æ� step width for �

Æx step width

Æy in�nitesimal o�set

�i phase shift of one scatterer

� model parameter

�c model parameter for clique c

�k;l model parameter corresponding to xk;l and x
0

k;l

~�k;l renormalized model parameter

�k;l
(n) model parameter at iteration n

�� incidence angle

� model parameter vector
~� renormalized model parameter vector

�̂ estimate of the model parameter vector

�̂
(n)

model parameter vector at iteration n

� wavelength of pulse, hyper-parameter

�(n) estimate of � at iteration n

�0 Lagrange multiplier

�1 Lagrange multiplier

�A mean of amplitude

�I mean of intensity

�S mean of square-root intensity

�Z mean of log intensity

�ZS mean of log square-root intensity

�i mean of the Gauss-Markov model

�inner, �outer empirical mean computed in an inner, outer window

~�i mean of the square-root Gamma approximation

�x mean of the radar re
ectivity, mean of the Gamma distribution

�̂x estimated mean of the radar re
ectivity
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�xi mean backscatter value of segment i

�y mean of the observation y

�� mean of the cross-section

� form parameter of the Gamma distribution

� bounded ratio detector

�max decision threshold for the bounded ratio detector

� standard deviation, cross-section,

standard deviation of the Gauss-Markov model

�A standard deviation of the amplitude

�DA width of the discontinuity adaptive potential

�jEj standard deviation of the Rayleigh distribution

�MAP standard deviation of the posterior distribution

�P standard deviation of the negative exponential distribution

�S standard deviation of the square-root intensity

�X standard deviation of the random variable X

�n standard deviation of additive Gaussian noise

�x standard deviation of the radar re
ectivity x

�y standard deviation of the observation y

� pulse length

�
0

equivalent pulse length

�x(t) phase shift of signal in range

�y(t) phase shift of signal in azimuth

� phase

�0 phase variable

�i phase of one scatterer

 () Digamma function

 
0
() �rst derivative of the Digamma function


 Occam factor

! angular frequency

r Nabla operator

E.2 List of Acronyms

The following acronyms have been used in this work:

CNES Centre National d'�Etudes Spatiales

CV coeÆcient of variation

DEM digital elevation model

DLR Deutsches Zentrum f�ur Luft- und Raumfahrt e.V.

dB decibels

ENL equivalent number of looks
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ENVISAT European Environmental Polar Orbit Earth Observation Mission

EM expectation-maximization

EPOS edge-preserving optimized speckle �lter

ERS European Remote-Sensing Satellite

FGAN Forschungsgesellschaft f�ur Angewandte Naturwissenschaften e.V.

GGMAP Gamma-Gamma maximum a posteriori

GMRF Gauss-Markov random �eld

GRF Gibbs random �eld

ICM iterated conditional modes

IEM iterative evidence maximization

JERS Japanese Earth Resources Satellite

JPL Jet Propulsion Laboratory

MAP maximum a posteriori

MBD Model-Based Despeckling

MBD-I Model-Based Despeckling for intensity images

MBD-S Model-Based Despeckling for square-root intensity images

MBD-Z Model-Based Despeckling for log intensity images

MCMC Markov chain Monte Carlo

ML maximum likelihood

MMSE minimum mean square error

MPL maximum pseudo-likelihood

MRF Markov random �eld

MSE mean square error

NASA National Aeronautics and Space Administration

pdf probability density or distribution function

RADARSAT Radar Satellite

SA simulated annealing

SAR synthetic aperture radar

SEASAT Sea Satellite

SIR Shuttle Imaging Radar

SRTM Shuttle Radar Topography Mission

X-SAR X-band synthetic aperture radar
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