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Chapter 1

Introduction and Preliminaries

Scheduling problems are of high importance in both theory and practice since they occur in
numerous application areas, especially in production and logistic environments. As stated by
Blazewicz et al. (2019), scheduling problems can be understood as the problem of assigning
resources over time to tasks that need to be completed. There exists a variety of different classes
of scheduling problems in various domains, which have been widely addressed by researches over
the last decades (see, e.g., Blazewicz et al., 2019, for an overview).

A well known class of scheduling problems that has attracted a lot of attention in the
literature is the job shop scheduling problem (JSP) (see, e.g., Blazewicz et al., 2019). It occurs
in traditional manufacturing systems and the classical JSP can be stated as follows. A set of
machines and a set of jobs are given. Each job is composed of a set of operations that have to be
processed in a predefined sequence in order to complete the job. It is assumed that there are no
precedence constraints among the operations of different jobs. Each operation is assigned to a
specific machine that must be used for its processing as well as associated with a corresponding
processing time needed on that machine. Moreover, each machine can process only one operation
at a time and preemption of operations is permitted. Given these restrictions, the problem is to
find a schedule, in which the operations are sequenced on the corresponding assigned machines
such that some performance measure is optimized. A typical performance measure in scheduling
problems is the minimization of the so-called makespan, i.e., the maximum completion time
among all jobs. With respect to the complexity, it is well known, that the JSP minimizing the
makespan is strongly NP-hard (Lenstra and Rinnooy Kan, 1979).

Nowadays, in the face of global and dynamic markets, manufacturing companies are con-
fronted with continuously growing challenges, e.g., short product life cycles, huge product vari-
eties up to tailor-made products, and demand fluctuations. In order to react rapidly to market
changes, manufacturing companies oftentimes improve the level of flexibility of their manufac-
turing processes by introducing multi-purpose machines that are able to process different types
of manufacturing operations (see, e.g., Beach et al., 2000; Jain et al., 2013). These kinds of man-
ufacturing systems are often referred to as flexible manufacturing systems (FMS) (see Browne
et al., 1984).
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This is taken account of in the flexible job shop scheduling problem (FJSP), which was
originally stated by Brucker and Schlie (1990). It generalizes the JSP by assuming that each
operation is associated with a set of eligible machines, which are capable of processing the
respective manufacturing operation type. That is, in comparison to the JSP, a feasible schedule
must additionally take account of the allocation of operations to machines. The FJSP occurs
in many real-world manufacturing systems and has been addressed by many researches in the
literature (see, e.g., the survey by Chaudhry and Khan, 2016).

Due to the manufacturing flexibility induced by the use of multi-purpose machines, which
are capable of processing different types of operations, the machines usually need to be prepared
before they are able to process a specific operation. The time needed to prepare a machine is
referred to as a setup time. This typically includes, for example, cleanup tasks, the change of
tools or technical machine configurations. The integration of setup times in scheduling problems
is of great practical relevance to leverage the productivity of the manufacturing processes (see,
e.g., Allahverdi, 2015; Allahverdi et al., 1999, 2008; Allahverdi and Soroush, 2008). In general,
setup times can be classified into two types (see, e.g., Allahverdi, 2015). Sequence-independency
indicates that the setup time for an operation only depends on the operation itself. In contrast,
sequence-dependent refers to when the setup time depends on both the operation itself and on
the operation, which has been immediately prior processed by the machine.

Moreover, the incorporation of workforce constraints in real-world manufacturing systems
oftentimes plays an important role, especially in the face of a set of employees with heterogenous
skills. On a shop floor level, a machine usually needs to be operated by a machine operator.
In the case of considering setup times, the needed setup is executed by a setup operator. In
many cases, setup operators are also involved in resolving machine defects. However, machine
operators or setup operators are often not capable for executing all machines, or they posses
differing qualifications in executing a machine, which results in varying processing times as
well as setup times. Therefore, optimization techniques in workforce scheduling can lead to
productivity enhancements (see, e.g., De Bruecker et al., 2015; Ernst et al., 2004; Van den Bergh
et al., 2013).

In light of the increasing automatization and digitalization of manufacturing processes, the
need to provide applicable solution approaches and methods that promise a good trade-off be-
tween computational time and solution quality is becoming increasingly important.

Against this background, the overall objective of this thesis is to investigate important FJSP
settings that incorporate workforce constraints and are motivated by real-world manufacturing
systems. On the one hand, new problem variants that are of practical relevance are analyzed,
and on the other hand, novel solution approaches are proposed for solving these corresponding
problem variants.
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1.1 Research Questions

In recent years, FJSP settings incorporating workforce constraints have been attracting more
attention from researches. A brief overview of the related literature is provided in Table 1.1
(FJSP settings incorporating setup operators) and Table 1.2 (FJSP settings considering machine
operator restrictions). Note, that these settings are sometimes also referred to as dual-resource
constrained (DRC) systems (see, e.g., Treleven, 1989; Xu et al., 2011).

Table 1.1: Overview of literature concerned with FJSP settings incorporating setup operators

Publication Objective Solution approach

Chen et al. (2003)a,b On-time delivery of products,
reduction of inventory and the number
of setups

Decomposition based heuristic

Morinaga et al. (2014) Total weighted tardiness and workload
of setup operators

Genetic algorithm

Morinaga et al. (2016) Total weighted tardiness, workload of
setup operators, and work-in-process
inventory costs

Hybrid genetic algorithm

Li et al. (2020)c Makespan Hybrid genetic algorithm
a : Incorporation of group-dependent setup times
b : Incorporation of machine operators
c : Consideration of sequence-dependent setup times

The majority of the literature is concerned with workforce constraints focusing on machine
operators. Despite the practical importance of the integration of setup times as well as setup
operators, only very few researches consider FJSPs with setup operators. With regard to opti-
mality criteria, most of the papers consider either makespan minimization or multiple objectives.
Objectives considering the on-time delivery of customer orders, e.g., the minimization of the total
tardiness of jobs, is only addressed by a few researchers. Therefore, there still exists a wide range
of different problem variants in this research stream that should be further studied in order to
close the gap between research methodologies and practice. Hence, this thesis is motivated by
the following research question:

Which FJSP settings incorporating workforce constraints are relevant from
a practical point of view and have attracted less attention in the literature?

Based on the above literature overview, mainly metaheuristic solution approaches, in partic-
ular, population-based methods, have been considered for solving FJSP settings incorporating
workforce constraints. With respect to exact solution approaches, only very few researches intro-
duced mixed-integer programming (MIP) models that are actually evaluated in computational
tests. However, the implementation of exact approaches would be fruitful for computing opti-
mal solutions and measuring the solution quality of heuristic approaches. Also important is the
development of promising heuristic approaches that are applicable in practice. Therefore, the
second research question is, as follows:

What are novel exact as well as heuristic solution approaches for scheduling flexible
job shops with workforce restrictions?
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Table 1.2: Overview of literature concerned with FJSP settings incorporating machine operators

Publication Objective Solution approach

Lang and Li (2011) Delivery satisfaction, process cost,
energy consumption, and noise
pollution

Genetic algorithm

Liu et al. (2011) Makespan and production cost Hybrid genetic algorithm
Xianzhou and Zhenhe (2011) Makespan Genetic algorithm
Zhang et al. (2013) Makespan and production cost Hybrid discrete particle swarm

optimisation
Lei and Guo (2014) Makespan Variable neighbourhood search
Yazdani et al. (2015) Makespan Simulated annealing and vibration

damping optimisation, MIP
Zhang et al. (2015) Makespan Particle swarm optimisation
Lei and Tan (2016) Makespan and total tardiness Local search
Paksi and Ma’ruf (2016) Total tardiness Genetic algorithm
Zheng and Wang (2016) Makespan Knowledge-guided fruit fly

optimisation
Gong et al. (2018a) Makespan, total worker cost and

green-production factors
Hybrid genetic algorithm

Gong et al. (2018b) Makespan, maximum workload of
machines, and total workload of all
machines

Memetic algorithm

Peng et al. (2018) Makespan Genetic algorithm
Vallikavungal Devassia et al.
(2018)a

Makespan Variable neighbourhood search,
MIP

Wu et al. (2018)b Makespan Hybrid genetic algorithm
Cunha et al. (2019)c Makespan MIP
Meng et al. (2019) Energy consumption Variable neighbourhood search,

MIPs
Yang et al. (2019)d Lateness, makespan and deviation of

the workload among the machines
Local search

Yazdani et al. (2019) Makespan, critical machine workload,
and total workload of machines

Genetic algorithms

Andrade-Pineda et al. (2020) Makespan and mean tardiness Iterated greedy algorithm, MIP
Wu et al. (2020)e Makespan and total setup time Genetic algorithm
Zhu et al. (2020)b Makespan, total carbon emission, and

total cost of workers
Memetic algorithm

a : Consideration of resource recovery constraints
b : Consideration of learning effects of workers
c : Incorporation of additional time constraints
d : Consideration of multilevel product structures
e : Consideration of loading and unloading time constraints of fixture resources

It is often observed in computational studies comparing different solution approaches on
some optimization problem that there exists no single best solution approach that outperforms
all others on all problem instances. Therefore, it would be useful to know in advance, which of a
given set of solution approaches performs best on a given instance. This problem is also referred
as the algorithm selection problem, which was originally introduced by Rice (1976). In recent
years, algorithm selection approaches have been successfully applied on different combinatorial
problems, for example, the propositional satisfiability problem, the traveling salesman problem,
and the multi-mode resource-constrained project scheduling problem, by making use of machine
learning techniques (see, e.g., Kerschke et al., 2018; Messelis and De Causmaecker, 2014; Xu
et al., 2008).
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Motivated by the success of algorithm selection approaches in different problem domains, the
following additional question is raised:

How can an algorithm selection approach be designed that leverage the performance
complementary of a given set of algorithms for solving the FJSP?

1.2 Basics on the Flexible Job Shop Scheduling Problem

This section provides a detailed problem definition concerning the classical FJSP, which serves
as a basis for the different problem variants investigated in this thesis.

The FJSP is defined as follows. A set of I of jobs |I| = n, and set of M of machines are
given. Each job i ∈ I consists of a set of qi operations Oi = {i1, . . . , iqi}. The sets Oi are
assumed to be ordered for all i ∈ I, which relates to the fact that for any pair of operations
ij , ik ∈ Oi with j < k, ik can only start to be processed after the processing of ij is completed.
Each operation ij ∈ Oi, i ∈ I, must be processed on exactly one machine out of a set of eligible
machines Mij ⊆M and each machine can only process one operation at a time. The processing
time of an operation ij ∈ Oi of a job i ∈ I sequenced on an eligible machine m ∈Mij is denoted
by pmij ∈ N+. The completion time of an operation ij ∈ Oi of job i ∈ I is denoted by Cij which
describes a point in time in which the processing of an operation ij is completed. Analogous,
the completion time of job i ∈ I is denoted by Ci. Moreover, a job is completed if all of its
operations are completed, i.e. Ci = Ciqi for all i ∈ I. It is assumed, that all jobs and machines
are available at time zero. Furthermore, the preemption of some operation processed on some
eligible machine is not permitted.

The problem is to find a schedule, i.e. an assignment of operations to the eligible machines,
and to sequence each operation on its corresponding machine, that is feasible to the restrictions
stated above, such that some performance measure is optimized.

Due to the large variety of scheduling problems, Graham et al. (1979) introduce a widely
used classification scheme that enables a great notation of scheduling problems in the literature.
The notation consists of three fields α|β|γ, where α states the machine environment, β describes
job characteristics, and γ relates to a performance measure (optimality criterion). Over the
years, the proposed three-field notation has been adapted, for example, by Allahverdi (2015) and
Błażewicz et al. (1983) to include setup information and additional resource constraints.

1.3 Contribution and Outline of the Thesis

This cumulative thesis consist of four papers that were published or submitted to different jour-
nals and one conference publication (see Table 1.3). Papers P1 to P4 investigate FJSPs incorpo-
rating workforce restrictions arising in manufacturing systems and propose different exact and
heuristic solution approaches for scheduling the respective problems. Additionally, Paper P5
presents algorithm selection approaches for the FJSP. Each paper is associated with a respective
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chapter along with this thesis and has only been reformatted for the purpose of consistency. An
overview of the different chapters presenting the research contributions of the according papers
is provided as follows:

Table 1.3: Overview of papers

Chapter Paper

P1 2 Kress, D., Müller, D., and Nossack, J. (2019). A worker constrained flexible job shop schedul-
ing problem with sequence-dependent setup times. OR Spectrum, 41(1): 179–217.

P2 3 Kress, D. and Müller, D. (2019). Mathematical models for a flexible job shop scheduling
problem with machine operator constraints. IFAC-PapersOnLine, 52(13): 94—99.

P3 4 Müller, D. and Kress, D. (2019). Filter-and-fan approaches for scheduling flexible job shops
under workforce constraints. Working Paper. University of Siegen (Submitted).

P4 5 Kress, D. and Müller, D. (2020). Semiconductor final-test scheduling under setup operator
constraints. Working Paper. University of Siegen (Submitted).

P5 6 Müller, D., Müller, M. G., Kress, D., and Pesch, E. (2021). An algorithm selection ap-
proach for the flexible job shop scheduling problem: choosing constraint programming solvers
through machine learning. Working Paper. University of Siegen (Submitted).

In Chapter 2, we study a FJSP with sequence-dependent setup-times that takes account
of heterogenous machine operator qualifications. The problem is motivated by a real-world
scheduling problem as part of a research project conducted with a manufacturing company. In
this study, we analyze two objective functions, minimizing the makespan and minimizing the total
tardiness. We propose exact and heuristic solution approaches that are based on a decomposition
of the problem into a vehicle routing problem with precedence constraints and a machine operator
assignment problem. These problems are connected via logic inequalities. In computational tests,
we evaluate our solution approaches on randomly generated test instances as well as real-world
test instances that are based on data that has been provided by the manufacturing company (see
Kress et al., 2019b).

In Chapter 3 and 4, we solely consider a FJSP that incorporates machine operator con-
straints and aims to minimize the makespan. In the former chapter, we provide a comprehensive
literature review on FJSPs in the presence of machine operators and conclude that mainly meta-
heuristic solution approaches have been considered for solving these problem settings. Against
this background, we propose two mathematical models, a MIP model and a constraint program-
ming (CP) model, that are evaluated by using the standard solvers provided by IBM ILOG
CPLEX. In a computational study, we show that the CP solver clearly outperforms the MIP
solver given the developed modelling approaches. Moreover, it also tends to outperform a state-
of-the-art metaheuristic solution approach (see Kress and Müller, 2019). Motivated by these
research results, Chapter 4 introduces filter-and-fan based heuristic solution approaches that
prove to be competitive when compared with a standard CP solver. These methods incorporate
a local search procedure with a tree search procedure that are applied alternately. In general,
the local search procedure is used to obtain local optima, while a tree search procedure aims
to improve these locally optimal solutions by generating compound transitions in order explore
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larger neighborhoods. Our solution approaches make use of the main ideas of the decomposition
based approach proposed by Kress et al. (2019b) that makes use of neighborhood structures that
have proven to perform well for the FJSP (see Mastrolilli and Gambardella, 2000). In an ex-
tensive computational study, we show that our filter-and-fan based heuristic solution approaches
are competitive when compared with the use of the standard CP solver provided by IBM ILOG
CPLEX. Moreover, they tend to outperform a tabu search benchmark heuristic as well as existing
metaheuristic approaches from the literature (see Müller and Kress, 2019).

Given the fact that the explicitly incorporation of setup operators in flexible job shop settings
is rarely addressed in the literature, we consider a FJSP with sequence-dependent setup times
under setup operator constraints in Chapter 5. Specifically, we study a semiconductor final-test
scheduling problem that has been brought to our attention during a project with a developer and
manufacturer of semiconductor-based system solutions. Given the main goal of the considered
manufacturing company, which is the on-time delivery of customer orders, we therefore analyze
the objective of minimizing the total weighted tardiness. We present a MIP model and a tabu
search heuristic framework which applies the main ideas of the decomposition based approaches
introduced by Kress et al. (2019b) and Müller and Kress (2019). Our computational tests show
that our proposed tabu search heuristic approaches clearly outperform a MIP model using a
standard solver and tend to outperform the current scheduling practice on real-world problem
instances that mimic settings at the considered manufacturing company. Moreover, we present
managerial insights on the application of our heuristic framework in dynamic environments con-
cerning frequently changing customer requests and common test machine failures (see Kress and
Müller, 2020).

An overview of the above mentioned studies contributing to different FJSP settings incor-
porating workforce constraints is presented in Table 1.4.

Table 1.4: Overview of studies contributing to FJSP settings incorporating workforce constraints

Incorporation of:

Paper Machine
operators

Setup
operators

Setup
times

Objective Solution approach

P1 X - X Makespan,
Total
tardiness

Decomposition-based exact and heuristic
solution approaches

P2 X - - Makespan MIP and CP model

P3 X - - Makespan Filter-and-fan based heuristic solution ap-
proaches

P4 - X X Total
weighted
tardiness

MIP model and tabu search heuristic solu-
tion approaches

As observed in our conducted studies, oftentimes, there exists no single best solution ap-
proach which outperforms all other approaches on all problem instances. Therefore, Chapter 6
deals with algorithm selection approaches that leverage the complementary performance of CP
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solvers for solving the classical FJSP minimizing the makespan. Therefore, we introduce a set
of algorithm selection models by making use of different machine learning techniques. In a com-
putational study, we show that our proposed approaches tend to provide a better performance
than using a single solver (see Müller et al., 2021).

Finally, the thesis closes with a summary and an outlook of future research in Chapter 7.



Chapter 2

A Worker Constrained Flexible Job
Shop Scheduling Problem with
Sequence-Dependent Setup Times
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Abstract
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tardiness, and present exact and heuristic decomposition based solution approaches. These approaches
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2.1 Introduction

The well known job shop scheduling problem (JSP) is composed of a set of jobs and a set of
machines (see, e.g., Błażewicz et al., 2007). Each job consists of a set of operations that must be
processed in a given sequence in order to complete the job. That is, the processing of an operation
of a job cannot be started before the preceding operation of that job is completed. There are no
precedence relations among the operations of different jobs. Each operation must be processed
on a specific machine and is associated with a corresponding processing time. Operations may
not be preempted and each machine can process only one operation at a time. Given these
restrictions, the problem is to determine sequences of the operations that are associated with
the machines with the objective of optimizing some performance measure. It is well known that
the JSP is strongly NP-hard for minimizing the makespan or the total tardiness (Graham et al.,
1979; Lenstra and Rinnooy Kan, 1979).

Real-world manufacturing systems are usually more complex than the systems that can
be represented by the classical JSP (see, e.g., Günther and Lee, 2007). Factory work floors, for
example, oftentimes feature multiple machines of the same type as well as multi-purpose machines
that allow for processing different types of operations. This is taken account of in the flexible
job shop scheduling problem (FJSP), which generalizes the JSP by assuming that each operation
must be processed by exactly one machine out of a given set of eligible machines (Brucker and
Schlie, 1990; Hurink et al., 1994). Additionally, machines must oftentimes be prepared in order
to be able to process a specific operation. The time needed for this preparation is referred to as
a setup time. The importance of explicitly incorporating setup times into real-world scheduling
problems has been discussed in the literature since the mid-1960s (see Allahverdi, 2015; Allahverdi
et al., 1999, 2008; Allahverdi and Soroush, 2008). One distinguishes two classes of setup times
(see, e.g., Allahverdi et al., 1999). If the setup time needed for some operation solely depends
on the operation itself, it is referred to as sequence-independent. If it additionally depends
on the immediately preceding operation that has been processed by the machine, it is referred
to as sequence-dependent. Furthermore, real-world manufacturing systems oftentimes feature a
heterogenous workforce which, for example, induces the need to take account of differently skilled
machine operators or workers (De Bruecker et al., 2015).

2.1.1 Problem Setting and Motivation

In this paper, we address a FJSP with sequence-dependent setup times that takes account of dif-
fering worker skills. We will refer to this problem as the worker constrained FJSP with sequence-
dependent setup times, and denote it by WSFJSP.

Our research is motivated by a real-world scheduling problem that has been brought to our
attention during a project with a manufacturing company located in North Rhine-Westphalia,
Germany. The company is specialized in the production of construction components – primarily
cardan shaft mounts – made of aluminium, stainless steel, and steel. Its customers are mainly
automotive suppliers. The products are fabricated in predefined lots that we will refer to as
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jobs. That is, each job is composed of multiple items of a specific product. The raw materials
(usually aluminum profiles) are delivered by suppliers and subsequently run through various
manufacturing operations, e.g. sawing, lathing, milling and punching, in predefined sequences in
order to complete the final products. The items of each lot are jointly stored and moved in steel
box pallets. Therefore, a specific operation of a job must be completed for the entire lot before
the processing of the next operation of the job can be started. The production process of an
exemplary job is illustrated in Figure 2.1.A worker constrained flexible job shop scheduling prob. with sequence-dependent setup times 3

Sawing · · · Lathing

Raw material Final products

Fig. 1 Exemplary production process

There are several kinds of multi-purpose machines that are capable of performing
different manufacturing operations, so that each operation of a job is associated with
a set of eligible machines as described above. Cleaning operations, the change of
tools, and process configurations result in sequence-dependent setup times between
two consecutive operations processed on the same machine. Setup operators are not
considered to be scarce. Machine operators, on the other hand, are considered to be
a scarce resource and possess differing skills that our industry partner implements by
making use of worker-dependent processing times. The processing time of a specific
operation therefore depends on both, the machine chosen from the set of eligible ma-
chines and the worker assigned to the machine. A worker is assigned to an operation
for its entire processing time and can only process one operation at a time.

Currently, the scheduling of the production processes at our industry partner is
a daily manual task with a planning horizon of about one week. We were asked to
implement scheduling algorithms that are capable of taking account of larger plan-
ning horizons. Additionally, we were asked to analyze two different objectives. First,
based on the assumption that each job is associated with a due date at which the
production of the job is intended to be completed, the aim is to minimize the total
tardiness. Second, we were asked to provide results for minimizing the makespan.
Clearly, due to the computational complexity of the JSP for both of these objectives,
both variants of WSFJSP are strongly NP-hard.

According to the classical three-field notation by Graham et al. (1979) that was
adapted by Allahverdi (2015) and Błażewicz et al. (1983) to include setup informa-
tion and additional resource constraints, the two variants of WSFJSP considered in
this article fall into the categories FJ|res1 · 1,STsd |Cmax and FJ|res1 · 1,STsd |∑Ti,
respectively.

1.2 Related Literature

The WSFJSP combines two variants of the FJSP that have been addressed in the
literature, i.e. the FJSP with sequence-dependent setup times and the FJSP with ex-
plicit incorporation of machine operators. We will denote these variants by SFJSP and
WFJSP, respectively, and summarize the relevant literature regarding these settings
in this section. Note that machine scheduling problems with two types of resources,
e.g. machines and machine operators, are sometimes also referred to as dual-resource
constrained (DRC) systems (see, e.g. Treleven, 1989; Xu et al., 2011).

Surveys on scheduling problems with setup considerations for various machine
environments are provided by Allahverdi et al. (1999, 2008) and Allahverdi (2015).

Figure 2.1: Exemplary production process

There are several kinds of multi-purpose machines that are capable of performing different
manufacturing operations, so that each operation of a job is associated with a set of eligible
machines as described above. Cleaning operations, the change of tools, and process configurations
result in sequence-dependent setup times between two consecutive operations processed on the
same machine. Setup operators are not considered to be scarce. Machine operators, on the
other hand, are considered to be a scarce resource and possess differing skills that our industry
partner implements by making use of worker-dependent processing times. The processing time
of a specific operation therefore depends on both, the machine chosen from the set of eligible
machines and the worker assigned to the machine. A worker is assigned to an operation for its
entire processing time and can only process one operation at a time.

Currently, the scheduling of the production processes at our industry partner is a daily
manual task with a planning horizon of about one week. We were asked to implement scheduling
algorithms that are capable of taking account of larger planning horizons. Additionally, we
were asked to analyze two different objectives. First, based on the assumption that each job is
associated with a due date at which the production of the job is intended to be completed, the aim
is to minimize the total tardiness. Second, we were asked to provide results for minimizing the
makespan. Clearly, due to the computational complexity of the JSP for both of these objectives,
both variants of WSFJSP are strongly NP-hard.

According to the classical three-field notation by Graham et al. (1979) that was adapted
by Allahverdi (2015) and Błażewicz et al. (1983) to include setup information and additional
resource constraints, the two variants of WSFJSP considered in this article fall into the categories
FJ |res1 · 1, STsd|Cmax and FJ |res1 · 1, STsd|

∑
Ti, respectively.

2.1.2 Related Literature

The WSFJSP combines two variants of the FJSP that have been addressed in the literature,
i.e. the FJSP with sequence-dependent setup times and the FJSP with explicit incorporation
of machine operators. We will denote these variants by SFJSP and WFJSP, respectively, and
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summarize the relevant literature regarding these settings in this section. Note that machine
scheduling problems with two types of resources, e.g. machines and machine operators, are some-
times also referred to as dual-resource constrained (DRC) systems (see, e.g. Treleven, 1989; Xu
et al., 2011).

Surveys on scheduling problems with setup considerations for various machine environments
are provided by Allahverdi et al. (1999, 2008) and Allahverdi (2015). With respect to flexible
job shops, Shen et al. (2017) consider the SFJSP with the objective of minimizing the makespan.
They present a mixed-integer programming (MIP) formulation and a tabu search algorithm.
Corresponding ant colony optimization approaches are presented by Zhang and Liu (2012) and
Rossi (2014). Alternative MIP models are given by Nourali et al. (2012) and Saidi-Mehrabad and
Fattahi (2007). The latter authors furthermore suggest another tabu search algorithm. Defersha
and Chen (2010) additionally consider time lag requirements and machine release dates. They
present a MIP model and a genetic algorithm. Some articles deal with objective functions that
differ from minimizing the makespan. Mousakhani (2013), for example, aims at minimizing the
total tardiness. The author presents a MIP model and proposes a metaheuristic algorithm based
on iterated local search. Özgüven et al. (2012) present MIP formulations for the SFJSP with the
objective of minimizing a weighted sum of the makespan and a specific measure for the degree
of unbalancedness of the machine workloads. Similarly, Bagheri and Zandieh (2011) consider
minimizing a weighted sum of the makespan and the mean tardiness. They present a variable
neighborhood search algorithm.

The existing articles on the WFJSP with the objective of minimizing the makespan focus on
the development of metaheuristic approaches. Examples include Lei and Guo (2014) (variable
neighbourhood search), Yazdani et al. (2015) (simulated annealing, vibration damping optimiza-
tion), Zhang et al. (2015) (particle swarm optimization), and Zheng and Wang (2016) (fruit fly
optimization). Paksi and Ma’ruf (2016) analyze the objective of minimizing the total tardiness
and propose a genetic algorithm. Multiple objectives are considered by Lang and Li (2011) and
Lei and Tan (2016), the former of which also take account of uncertain processing times.

There exist only a few papers in the scheduling literature that explicitly take account of
setup considerations as well as machine operator related constraints. Venditti et al. (2010) and
Behnamian (2014) consider open shop and flow shop settings, respectively. Chen et al. (2003)
address a FJSP which is very closely related to our setting. The authors consider machine oper-
ator related constraints and group-dependent setup times, where setup operations are necessary
whenever switching between predefined groups of operations. Furthermore, they allow the gen-
eration of so called transfer lots. That is, each lot (as defined above for the WSFJSP) may be
divided into multiple transfer lots, each of which can move to the next operation as soon as
all parts within that transfer lot are completed. The objective function relates to maximizing
the on-time delivery of products and the reduction of inventory and the number of setups. The
problem is solved via a heuristic framework that makes use of a decomposition of the overall
problem into smaller subproblems.
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2.1.3 Contribution and Overview

Based on the above literature review, it can be concluded that FJSPs with sequence-dependent
setup times and explicit incorporation of machine operators have received little attention. We will
therefore contribute to the literature by analyzing a corresponding setting, namely the WSFJSP,
which – as outlined above – is based on a real-world scheduling problem. We will propose an
exact solution approach that decomposes the WSFJSP into a vehicle routing problem (VRP) with
precedence constraints and a worker assignment problem. These models are combined by using
logic inequalities. This exact approach will turn out to outperform an integrated MIP model
and is able to solve small instances to optimality. Moreover, in order to be able to determine
feasible solutions for medium and large instances within reasonable time, we will present heuristic
algorithms based on the above decomposition. Our approaches are evaluated based on randomly
generated test instances as well as real-world test instances that are based on data that has been
provided by our industry partner.

The remainder of this article is structured as follows. In Section 2.2, we provide a formal
definition of the WSFJSP and introduce the notation. The exact decomposition approach is
presented in Section 2.3, while the heuristics are subject of Section 2.4. The computational tests
are presented in Section 2.5. Finally, Section 2.6 concludes the paper.

2.2 Notation and Detailed Problem Description

We are given a set I = {1, . . . , n} of jobs. Each job i ∈ I is associated with a set of qi operations
Oi = (i1, . . . , iqi) that have to be sequenced on a set M of machines and that may not be
preempted. The sets Oi are assumed to be ordered for all jobs i ∈ I, which relates to the fact
that, for any pair of operations ij , ik ∈ Oi with j < k, ij must be completed before the processing
of ik may start. Each operation ij ∈ Oi, i ∈ I, must be processed by exactly one machine out
of a set of eligible machines Mij ⊆ M in order to be completed. To simplify the notation, we
define Mij ,kl := Mij ∩Mkl for all i, k ∈ I, ij ∈ Oi, kl ∈ Ok. An operation can only be processed
by a machine if exactly one worker out of a given set W of workers is assigned to the machine
during the entire processing time of the operation. Each machine and each worker can process
at most one operation at a time. A job is completed if all of its operations are completed. The
completion time of an operation ij ∈ Oi of job i ∈ I is denoted by Cij . The completion time of
job i ∈ I is denoted by Ci. Obviously, Ci = Ciqi for all i ∈ I. The processing time of an operation
ij ∈ Oi of a job i ∈ I, which we denote by pm,wij

∈ Q+
0 ∪ {∞}, is assumed to vary over different

machines m ∈ Mij and workers w ∈ W , which enables us to take account of differently skilled
workers. We assume that all workers are available during the entire planning horizon. In case
of a shift-based system and a planning horizon larger than one shift, we must therefore assume
that all shifts are staffed with equally skilled workers, so that they can replace each other at
shift changeovers. pm,wij

=∞ represents the case that worker w ∈W is not allowed to process an
operation ij ∈ Oi of a job i ∈ I on machine m ∈Mij . We assume that for each operation ij ∈ Oi
of a job i ∈ I and each corresponding machine m ∈Mij , there exists at least one worker w ∈W
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that can process the operation within finite time. Moreover, we assume that sequence-dependent
setup times smij ,kl ∈ Q+

0 occur when an operation kl ∈ Ok, k ∈ I, is processed immediately after
an operation ij ∈ Oi, i ∈ I, on machine m ∈ Mij ,kl . Note that these setup times may differ
among the machines m ∈ Mij ,kl . Setup operations do not require the assignment of a worker.
Note that we consider an offline setting where all jobs, machines, and workers are available at
the beginning of the planning horizon. Furthermore, there are no precedence relations between
jobs.

The WSFJSP is to find a schedule, i.e. an allocation of operations to machines, a sequence
of the operations that have been allocated to each machine, and a corresponding assignment of
workers to operations, that is feasible with respect to the restrictions stated above, such that
an objective function is addressed. We will consider two objectives. First, we will consider the
minimization of the makespan Cmax := maxi∈I Ci. Second, given a due date di ∈ Q+

0 for each
job i ∈ I, we will consider the minimization of the total tardiness

∑
i∈I Ti, where the tardiness

Ti of job i ∈ I is defined as Ti := max{Ci − di, 0}.
Our notation is summarized in Table 2.1.

Table 2.1: Notation used throughout the paper

I set of jobs I = {1, . . . , n}, |I| = n
M set of machines
W set of workers
Oi set of operations of job i ∈ I Oi = (i1, . . . , iqi), |Oi| = qi
Mij set of eligible machines for operation ij ∈ Oi of job i ∈ I Mij ⊆M
Mij ,kl intersection of Mij and Mkl , where i, k ∈ I, ij ∈ Oi, and

kl ∈ Ok
Mij ,kl := Mij ∩Mkl

di due date of job i ∈ I di ∈ Q+
0

pm,wij
processing time of operation ij ∈ Oi of job i ∈ I when
processed by worker w ∈W on machine m ∈Mij

pm,wij
∈ Q+

0 ∪ {∞}

smij ,kl setup time when processing operation kl ∈ Ok of job
k ∈ I immediately after operation ij ∈ Oi of job i ∈ I on
machine m ∈Mij ,kl

smij ,kl ∈ Q+
0

Cij completion time of operation ij ∈ Oi of job i ∈ I
Ci completion time of job i ∈ I Ci = Ciqi
Cmax makespan of the schedule Cmax := max

i∈I
Ci

Ti tardiness of job i ∈ I Ti := max{Ci − di, 0}

2.3 Decomposition Approach

There exist similarities between VRPs and machine scheduling problems, which has resulted in
several articles that have addressed machine scheduling settings from a vehicle routing perspec-
tive. Bigras et al. (2008), for example, analyze relationships between single machine schedul-
ing problems with sequence-dependent setup times and the time-dependent traveling salesman
problem (TSP). Similarly, Balas et al. (2008) model single machine problems that arise in their
adapted shifting bottleneck procedure for a JSP with sequence-dependent setup times as TSPs
with time windows. A similar method is applied by Tran and Beck (2012), who propose a
logic-based Benders decomposition approach for scheduling unrelated parallel machines with
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sequence-dependent setup times.

In line with the aforementioned research, we propose to solve the WSFJSP in a branch-and-
cut framework by decomposing it into a VRP with precedence constraints (master problem, MP)
and a worker assignment problem (subproblem). The MP explicitly addresses the allocation of
operations to machines and the sequencing of operations on each machine. The effect of the
assignment of workers to operations on the objective function value is embedded into the MP by
making use of logic inequalities, a class of constraints that is inspired by the logic-based Benders
decomposition approach by Hooker and Ottosson (2003). Within our branch-and-cut framework,
these inequalities are consecutively obtained by the subproblem, which explicitly determines an
assignment of workers to operations such that the makespan or the total tardiness is minimized
based on a given allocation and sequencing decision of (a relaxed version of) the MP.

To ease the notation in the remainder of this paper, we define a dummy job 0 with due date
d0 =∞ and exactly one operation 01 with M01 = M . We set M01,ij = Mij ,01 = Mij for all jobs
i ∈ I and operations ij ∈ Oi. Furthermore, we set pm,w01

= 0 for all machines m ∈M and workers
w ∈ W . The setup times sm01,ij

can take arbitrary nonnegative rational values for all machines
m ∈M , jobs i ∈ I, and operations ij ∈ Oi, which allows for modelling the first setup operation
on each machine. Furthermore, smij ,01

= 0 for all m ∈M , i ∈ I, and ij ∈ Oi.

2.3.1 Master Problem

As mentioned above, the master problem does not explicitly take account of the assignment of
workers to operations. Hence, we make use of lower bounds for the processing times, and define
pm,minij

:= minw∈W pm,wij
for all jobs i ∈ I ∪ {0}, operations ij ∈ Oi, and machines m ∈ Mij .

Furthermore, we set pminij
:= minm∈Mij

pm,minij
for all jobs i ∈ I ∪ {0} and operations ij ∈ Oi.

When considering each machine as a vehicle and each operation as a distinct customer that
must be visited (processed) exactly once, the MP corresponds to a variant of the VRP, where
precedence relations capture the fact that the operations of each job have to follow a predefined
order. The dummy operation 01 represents the depot of the VRP and allows modelling the start
and end configurations of the machines. Following well established VRP formulations, we define
the MP on a weighted, directed (multi-) graph G = (V,E) with vertex set V :=

⋃
i∈I Oi ∪ {01}

and the edge set being composed of 2 · |Mij ,kl | edges between any pair of vertices ij , kl ∈ V , i 6= k,
and |Mij ,iv | edges between any pair of vertices ij , iv ∈ V , v > j, as illustrated in Figure 2.2. Here,

i j kliv

smi j ,kl + pm,mini j

smkl ,i j + pm,minkl

smi j ,iv + pm,mini j

∀m ∈Mi j ,kl∀m ∈Mi j ,iv

Figure 2.2: Illustration of the graph representation, iv, ij , kl ∈ V , i 6= k, v > j

solid lines represent exemplary edges of the multigraph for some specific eligible machine, while
dotted lines indicate that there potentially exist a number of additional edges that correspond
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to the remaining eligible machines.

Define V̄ := V \ {01} and let B be a large positive number. Furthermore, for the sake of
notational convenience, define Vij := V \ {ik|k ≤ j} (set of potential direct successors of ij),
Ṽij := V \ {ik|k ≥ j} (set of potential direct predecessors of ij), and V̄ij := Vij \ {01} for all
ij ∈ V .

For the sake of clarity, the additional notation for the MP is summarized in Table 2.2.

Table 2.2: Additional notation for the master problem, defined on G = (V,E)

pm,minij
minimum processing time of operation ij ∈ Oi of job i ∈ I
processed on machine m ∈Mij

pm,minij
:= min

w∈W
pm,wij

pminij minimum processing time of operation ij ∈ Oi of job i ∈ I pminij := min
m∈Mij

pm,minij

V set of vertices V :=
⋃
i∈I Oi ∪ {01}

V̄ set of vertices without depot vertex V̄ := V \ {01}
Vij set of potential direct successors of ij ∈ V Vij := V \ {ik|k ≤ j}
Ṽij set of potential direct predecessors of ij ∈ V Ṽij := V \ {ik|k ≥ j}
V̄ij set of potential direct successors of ij ∈ V without depot vertex V̄ij := Vij \ {01}
B large positive number

Now, define a continuous variable tij ∈ R+
0 for all operations ij ∈ V . It represents the time

when ij is started to be processed on one of the machines. Moreover, define a continuous variable
Cmax ∈ R+

0 that represents the makespan, and a binary variable

ymij ,kl :=


1, if operation kl is processed

directly after operation ij

on machine m
0, else

∀ ij ∈ V, kl ∈ Vij ,m ∈Mij ,kl . (2.1)

Then, when considering makespan minimization, a MIP formulation for the MP is as follows:

min Cmax . (2.2)

s.t.

tiqi +
∑

kl∈Viqi

∑
m∈Miqi ,kl

ymiqi ,kl
· pm,miniqi

≤ Cmax . ∀ i ∈ I, (2.3)

∑
ij∈Ṽkl

∑
m∈Mij ,kl

ymij ,kl = 1 . ∀ kl ∈ V̄ , (2.4)

∑
ij∈V̄

ym01,ij ≤ 1 . ∀m ∈M, (2.5)

∑
kl∈{ab∈Ṽij |m∈Mab

}
ymkl,ij −

∑
kl∈{ab∈Vij |m∈Mab

}
ymij ,kl = 0. ∀ ij ∈ V,m ∈Mij , (2.6)

tij + smij ,kl + pm,minij
− tkl ≤

(
1− ymij ,kl

)
B . ∀ ij ∈ V, kl ∈ V̄ij ,m ∈Mij ,kl , (2.7)

tij +
∑
kl∈Vij

∑
m∈Mij ,kl

ymij ,kl · p
m,min
ij

≤ tij+1 . ∀ ij ∈ V̄ with j ≤ qi − 1, (2.8)
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tij + pminij ≤ tij+1 . ∀ ij ∈ V̄ with j ≤ qi − 1, (2.9)

C̃hmax ·

1−
∑

(ij ,kl,m)∈Ph
(1− ymij ,kl)

 ≤ Cmax . ∀ logic inequalities h, (2.10)

ymij ,kl ∈ {0, 1} . ∀ ij ∈ V, kl ∈ Vij ,m ∈Mij ,kl , (2.11)

tij ∈ R+
0 . ∀ ij ∈ V, (2.12)

Cmax ∈ R+
0 . . (2.13)

The objective function (2.2) minimizes the makespan of the schedule. Constraints (2.3) set
a lower bound on the makespan. Constraints (2.4) guarantee that each operation is scheduled
exactly once. Inequalities (2.5) ensure that there is at most one operation that is processed first
on each machine. Flow conservation is enforced by constraints (2.6). Constraints (2.7) enforce
a time increase of at least smij ,kl + pm,minij

(setup and processing) compared to tij , if ymij ,kl = 1.
Constraints (2.8) guarantee that an operation ij+1 ∈ Oi of job i ∈ I cannot start before its
preceding operation ij ∈ Oi has been processed completely. Constraints (2.9) are redundant to
constraints (2.8), but have shown to improve the computational performance in our tests. The
logic inequalities (2.10) correct a potential underestimation of the objective function value that
is caused by minimizing over all workers when determining the processing times that (partly)
define the edge weights of the underlying graph representation. They are explained in more detail
in Section 2.3.4, where we also introduce the related notation. Finally, constraints (2.11)–(2.13)
define the domains of the variables.

Model (2.2)–(2.13) can easily be adapted for minimizing the total tardiness instead of the
makespan. To do so, define a continuous variable Ti ∈ R+

0 , representing the tardiness of job i,
for all i ∈ I. We get:

min T =
∑
i∈I

Ti . (2.14)

s.t. (2.4)− (2.9), (2.11), (2.12),

tiqi +
∑

kl∈Viqi

∑
m∈Miqi ,kl

ymiqi ,kl
· pm,miniqi

− di ≤ Ti. ∀ i ∈ I, (2.15)

T̃ h ·

1−
∑

(ij ,kl,m)∈Ph
(1− ymij ,kl)

 ≤∑
i∈I

Ti . ∀ logic inequalities h, (2.16)

Ti ∈ R+
0 . ∀ i ∈ I. (2.17)

The objective function (2.14) minimizes the total tardiness, which we will hereafter denote
by T , of the jobs. Constraints (2.15) set a lower bound on the tardiness of each job. Constraints
(2.16) are logic inequalities that are defined in analogy to constraints (2.10). Constraints (2.17)
define the domains of the newly introduced variables.
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We denote a relaxed version of the MP, which results from considering only a (potentially
empty) subset of constraints (2.10) or (2.16), by RMP. Based on a given solution of the MP or
a RMP, we can construct a directed graph with vertex set V that includes only those edges of
G that are associated to a positive variable (2.1). We will refer to this graph as the supporting
graph of the solution. The supporting graph of any feasible solution of the MP or a RMP is
composed of at most |M | edge-disjoint cycles, each of which includes the depot vertex 01, such
that every vertex of the set V̄ is included in exactly one of the cycles. Figure 2.3 illustrates the
supporting graph of a feasible solution of the MP (Figure 2.3a) and the corresponding Gantt
chart that represents the processing of the operations on the machines (Figure 2.3b) for an
example instance with two jobs and two machines. The solid and dashed lines of Figure 2.3a

01

12 11

21

22t01 = 0

t11 = 1

t21 = 2.8

t22 = 5

t12 = 2

y201 ,12 = 1

y212 ,01 = 1

y101 ,11 = 1

y111 ,21 = 1

y121 ,22 = 1

y122 ,01 = 1

(a) Supporting graph

s101 ,11 p1,min11
s111 ,21 s121 ,22 p1,min22

s201 ,12 p2,min12

time

m

C1 C2
0 1 2 3 4 5 6

1

2

p1,min21

(b) Gantt chart

Figure 2.3: Representation of a feasible solution of the MP

represent positive variables (2.1) that are associated to the first or second machine, respectively.
The values of the variables (2.12) are given next to the corresponding vertices of the set V .
Hence, in the depicted solution, machine 1 processes operations 11, 21, and 22, while machine 2
solely processes operation 12. As illustrated in the Gantt chart in Figure 2.3b, the precedence
constraints among the operations of job 1 result in idle time that precedes the setup operation
which is necessary to process 12 on machine 2.

2.3.2 Subproblem

Based on a feasible allocation and sequencing decision of the MP or a RMP and the true pro-
cessing times, the subproblem determines an assignment of workers to operations such that the
makespan or the total tardiness is minimized. It is important to note that there always ex-
ists such a feasible assignment, because the assignment of workers to operations can only cause
temporal shifts of the operations on the machines.

Let ȳ := (ȳmij ,kl |ij ∈ V, kl ∈ Vij ,m ∈Mij ,kl) denote the vector of variables (2.1) of a solution
of the MP or a RMP and refer to the corresponding value of the objective function (2.2) or
(2.14) by C̄max and T̄ , respectively. Based on ȳ, we can construct parameters that specify the
machines that process the operations:

z̄mij :=

1, if
∑

kl∈{ab∈Ṽij |m∈Mab
} ȳ

m
kl,ij

= 1

0, else
∀ ij ∈ V̄ ,m ∈Mij . (2.18)
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In analogy to the variables of the MP, we additionally define continuous variables t̃ij ∈ R+
0 for

all operations ij ∈ V , as well as continuous variables C̃max ∈ R+
0 and T̃i ∈ R+

0 for all jobs i ∈ I.
Moreover, we define the following binary variables:

xwij :=


1, if operation ij is processed by worker

w

0, else
∀ ij ∈ V̄ , w ∈W, (2.19)

xwij ,kl :=


1, if operations ij and kl are processed

by worker w
0, else

∀ ij , kl ∈ V̄ , ij 6= kl, w ∈W, (2.20)

vij ,kl :=


1, if the processing of operation kl starts be-

fore the processing of operation ij finishes
0, else

∀ ij , kl ∈ V̄ , ij 6= kl. (2.21)

We furthermore define xw01
:= 1 for all workers w ∈W .

The subproblem for makespan minimization is then defined as follows:

min C̃max . (2.22)

s.t.

t̃iqi +
∑

m∈Miqi

∑
w∈W

z̄miqi
· xwiqi · p

m,w
iqi
≤ C̃max . ∀ i ∈ I, (2.23)

∑
w∈W

xwij = 1 . ∀ ij ∈ V̄ , (2.24)

t̃ij + smij ,kl + pm,wij
− t̃kl ≤

(
1− ȳmij ,kl · x

w
ij

)
B . ∀ ij ∈ V, kl ∈ V̄ij ,

. m ∈Mij ,kl , w ∈W, (2.25)

t̃ij +
∑

m∈Mij

∑
w∈W

z̄mij · xwij · p
m,w
ij
≤ t̃ij+1 . ∀ ij ∈ V̄ with j ≤ qi − 1, (2.26)

xwij ,kl ≥ x
w
ij + xwkl − 1 . ∀ ij , kl ∈ V̄ , ij 6= kl, w ∈W, (2.27)

t̃ij +
∑

m∈Mij

∑
w∈W

z̄mij · xwij · p
m,w
ij
− t̃kl ≤ B · vij ,kl . ∀ ij , kl ∈ V̄ , ij 6= kl, (2.28)

xwij ,kl ≤ 2− vij ,kl − vkl,ij . ∀ ij , kl ∈ V̄ , ij 6= kl, w ∈W, (2.29)

xwij ∈ {0, 1} . ∀ ij ∈ V,w ∈W, (2.30)

xw01
= 1 . ∀w ∈W, (2.31)

xwij ,kl ∈ {0, 1} . ∀ ij , kl ∈ V̄ , ij 6= kl, w ∈W, (2.32)

vij ,kl ∈ {0, 1} . ∀ ij , kl ∈ V̄ , ij 6= kl, (2.33)

t̃ij ∈ R+
0 . ∀ ij ∈ V, (2.34)

C̃max ∈ R+
0 . . (2.35)



2.3. Decomposition Approach 21

Given the vector ȳ of a solution of the MP or a RMP, the objective function (2.22) minimizes
the makespan of the schedule. Constraints (2.23) bound the makespan from below. Restrictions
(2.24) ensure that each operation is assigned to exactly one worker. Constraints (2.25) and (2.26)
are defined in analogy to restrictions (2.7) and (2.8) of the MP. Inequalities (2.27) and (2.28)
ensure that the variables (2.20) and (2.21) are set to one when needed. Based on these variables,
constraints (2.29) guarantee that each worker is assigned to at most one operation at a time.
Finally, constraints (2.30)–(2.35) define the domains of the variables.

For the case of minimizing the total tardiness, the subproblem is similarly defined as follows:

min T̃ =
∑
i∈I

T̃i . (2.36)

s.t. (2.24)− (2.34),

t̃iqi +
∑

m∈Miqi

∑
w∈W

z̄miqi
· xwiqi · p

m,w
iqi
− di ≤ T̃i. ∀ i ∈ I, (2.37)

T̃i ∈ R+
0 . ∀ i ∈ I. (2.38)

Here, the objective function (2.36) minimizes the total tardiness of the jobs based on the
vector ȳ of a solution of the MP or a RMP. Constraints (2.37) bound the tardiness of each job
from below, and constraints (2.38) define the domains of the tardiness variables.

2.3.3 Subtour Elimination Cuts

As described in Section 2.3.1, the supporting graph of any feasible solution of the MP or a RMP
is composed of a set of at most |M | edge-disjoint cycles, each of which includes the depot vertex
01, such that every vertex of the set V̄ is included in exactly one of the cycles. For fractional
solutions, that may arise during the solution process of a standard MIP solver that relaxes
the integrality constraints of the MP or a RMP, we define the supporting graph to include all
vertices of the set V as well as all edges of G that are associated with positive relaxed variables
(2.1). Here, the above property needs not be true, which is illustrated in Figure 2.4 based on a
fractional solution of a RMP of an example instance with two machines and two jobs, both of
which consist of two operations (refer to the previous example in Figure 2.3a for an explanation of
the illustration). Each machine of the example instance is eligible for processing all operations.
As can be seen, the supporting graph of the depicted fractional solution is composed of four
edge-disjoint cycles, two of which do not contain the depot vertex 01.

We make use of the above fact to separate subtour elimination constraints that we add to
our branch-and-cut framework in addition to the logic inequalities. More specifically, when a
fractional solution arises at a node of the branch-and-bound tree, we construct the corresponding
supporting graph as described above and determine the set A of connected components of the
undirected pendent of this graph. To do so, we make use of a depth-first search approach provided
by the Boost Graph Library (Boost, 2018). Each element of the set A is a set of vertices, each
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Figure 2.4: Supporting graph of a fractional solution of a RMP of an example instance

of which is included in the respective connected component. If |A| > 1, the subtour elimination
constraints ∑

ij∈S

∑
kl∈V \S

∑
m∈Mij ,kl

ymij ,kl ≥ 1 ∀S ∈ A (2.39)

are generated and included in the branch-and-cut procedure.

2.3.4 Branch-and-Cut Framework

We propose to solve the WSFJSP in a branch-and-cut framework offered by a standard MIP
solver. Modern solvers allow their users to guide a branch-and-cut solution process via so called
callbacks. We make use of these callbacks to consecutively generate and add logic inequalities
(2.10) or (2.16) and subtour elimination constraints (2.39) after having started the solver on the
RMP with an empty set of logic inequalities. This is illustrated in Algorithm 2.1.

The logic inequalities are indexed by h and are derived by solving subproblems in step 3
of Algorithm 2.1. The basic idea is as follows. The RMP makes use of lower bounds of the
processing times, so that the objective function value of a potential incumbent solution may be
incorrect with respect to the real processing times. The corresponding logic inequality assures
that, for this specific solution, the objective function value of the RMP implicitly takes account
of the worker assignment restrictions and the real processing times which are explicitly modelled
in the subproblem.

The overall process of handling a potential incumbent solution with objective value C̄max
(T̄ ) in step 3 of Algorithm 2.1 is as follows. First, the corresponding subproblem is generated
and solved by a standard solver. The resulting objective function value is referred to as C̃max
(T̃ ). If the subproblem is feasible and C̄max = C̃max (T̄ = T̃ ), no logic inequality is violated and
the branch-and-cut process continues without any modification. If, however, the subproblem is
feasible and C̄max (T̄ ) is smaller than C̃max (T̃ ), we generate a logic inequality, add it to the
RMP, and proceed with the branch-and-cut solution process.

The process of separating subtour elimination cuts in step 4 of Algorithm 2.1 proceeds as
outlined in Section 2.3.3. Note, however, that we do not construct these cuts for all potential
fractional solutions in order to balance the computational effort needed for their separation and
their use within the branch-and-cut procedure. Instead, we generate subtour elimination cuts
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Input: Instance Inst of WSFJSP, parameter ρs
Output: Optimal solution of Inst

1. Initialize h := 0 (counter for logic inequalities).

2. Call standard branch-and-cut solver for the RMP of Inst with an empty set of logic
inequalities. Whenever a potential incumbent solution with vector ȳ and objective function
value C̄max (T̄ ) is found, go to 3 (solve subproblem and potentially generate and add a logic
inequality). Whenever a fractional solution arises at a node of the branch-and-bound tree and
the node cannot be pruned, go to 4 (potentially generate and add subtour elimination
constraints) with a given probability ρs.

3. Determine parameters (2.18) and solve the subproblem based on ȳ by making use of a standard
solver. The resulting objective function value is referred to as C̃max (T̃ ).

(a) If the subproblem is feasible and C̄max < C̃max (T̄ < T̃ ), set h := h+ 1, C̃hmax := C̃max
(T̃h := T̃ ), and construct the logic inequality

C̃hmax · (1−
∑

(ij ,kl,m)∈Ph

(1− ymij ,kl)) ≤ Cmax

(in case of makespan minimization), or

T̃h · (1−
∑

(ij ,kl,m)∈Ph

(1− ymij ,kl)) ≤
∑
i∈I

Ti

(in case of minimization of the total tardiness). Here

Ph :=
{

(ij , kl,m)|ȳmij ,kl = 1, ij ∈ V, kl ∈ Vij ,m ∈Mij ,kl

}
.

Add this constraint to the branch-and-cut process and continue in 2.

(b) If the subproblem is feasible and C̄max = C̃max (T̄ = T̃ ), the potential incumbent solution
becomes the new incumbent solution and the branch-and-cut process in 2 continues.

4. Construct the supporting graph of the fractional solution and determine the connected
components A of this graph. If |A| > 1, generate subtour elimination constraints (2.39). Add
these constraints to the branch-and-cut process and continue in 2.

Algorithm 2.1 Branch-and-cut framework for WSFJSP
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with a given probability ρs for each fractional solution.

2.4 Decomposition Based Heuristics

Due to the computational complexity of WSFJSP, it cannot be expected that our branch-and-
cut framework is able to solve medium- to large-sized instances to optimality within reasonable
time. In this section, we will therefore introduce two heuristic approaches that are based on the
above decomposition. First, in Section 2.4.1, we will present a simple approach for generating a
feasible initial solution of WSFJSP. Then, in Section 2.4.2, we will develop a more sophisticated
improvement procedure which is inspired by an idea presented by Della Croce et al. (2014) for a
flow shop scheduling problem with two machines.

2.4.1 Generating an Initial Solution

In line with the decomposition introduced in Section 2.3, we generate an initial solution of a
given instance of the WSFJSP by a hierarchical approach composed of two steps. First, based
on the lower bounds of the processing times introduced in Section 2.3.1, our approach allocates
operations to machines and decides on the sequences of the operations on the machines. This
step corresponds to finding a solution to the RMP with an empty set of logic inequalities. Second,
given this solution, the approach assigns workers to operations based on the correct processing
times, which corresponds to determining a solution to the subproblem and, thus, to the given
instance of the WSFJSP.

2.4.1.1 Allocation and Sequencing

The allocation and sequencing decisions are made by a priority-rule based heuristic that follows
an algorithmic idea of Giffler and Thompson (1960) for the classical JSP. Our approach is outlined
in detail in Algorithm 2.2.

Basically, the algorithm iteratively (loop 7–21) allocates operations that can start being
processed (when applying lower bounds of the processing times as introduced in Section 2.3.1)
at the respective point of time (represented by “release times”, see lines 3–4 and 12–19), when
taking account of the corresponding precedence constraints. Among all operations that compete
for the same machine (chosen in lines 8–9) in some iteration, exactly one operation is chosen
based on a priority rule (line 10). As there exists a vast amount of potential priority rules
(see, for example, Haupt, 1989), we rely on a comparative study by Sels et al. (2012), who
analyze the performance of multiple priority rules for JSPs and FJSPs under different objective
functions, including settings with setup times. Based on the results of this analysis, we decided
to make use of two priority rules. In case of the objective of minimizing the makespan, we
apply a combination of the flow due date (FDD), the most work remaining (MWKR), and the
shortest setup time (SS) priority rules. Formally, after having decided on a machine m∗ ∈ M ,
we determine the last operation ab(m

∗) ∈ V that is processed by m∗ in its current processing
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Input: RMP of an instance Inst of WSFJSP with an empty set of logic inequalities
Output: Feasible solution of RMP

1 Initialize U := V̄ ; . Set of operations that have not been sequenced
2 Initialize Lm := 0 ∀m ∈M ; . Load of machine m
3 Initialize rmi1 := sm01,i1

∀i ∈ I,m ∈Mi1 ; . Earliest starting time of operation i1 of job
i on machine m

4 Initialize rmij :=∞ ∀ij ∈ V̄ \ {i1|i ∈ I},m ∈Mij ; . Earliest starting time of operation
ij of job i on machine m

5 Initialize ab(m) := 01 ∀m ∈M ; . Last operation sequenced on machine m
6 Initialize ci := 0 ∀i ∈ I; . Completion time of the operation of job i that has been

completed last
7 repeat
8 Determine C∗ := minij∈U,m∈Mij

rmij + pm,minij
; . Smallest possible completion time of

operations that have not been sequenced on their eligible machines
9 Let m∗ denote a machine on which C∗ is a possible completion time;

10 Among all operations that have not been sequenced, ij ∈ U , with rm
∗

ij
< C∗, choose an

operation i∗j based on a priority rule and sequence it on machine m∗, starting its
processing at time rm

∗
i∗j

;

11 Update Lm∗ := rm
∗

i∗j
+ pm

∗,min
i∗j

, ab(m∗) := i∗j , and ci∗ := Lm∗ ;
. Update earliest starting times of operations that have not been sequenced

12 forall i ∈ I do
13 if i = i∗ and i∗j has a succeeding operation then
14 update rmi∗j+1

:= max{Lm∗ , Lm + smab(m),i∗j+1
} ∀m ∈Mi∗j+1

;

15 end
16 else if i 6= i∗ then
17 rm

∗
ik

:= max{ci, Lm∗ + sm
∗

i∗j ,ik
} ∀ik ∈ U with rm

∗
ik

<∞;
18 end
19 end
20 Update U := U \ {i∗j};
21 until U = ∅;

Algorithm 2.2 Obtaining an initial allocation and sequencing decision
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sequence, where ab(m∗) = 01 in case of the empty sequence. Among all relevant candidate
operations, our priority rule then selects an operation ij with smallest value∑

1≤k≤j
pminik∑

j≤k≤qi
pminik

+ sm
∗

ab(m∗),ij
.

Similarly, in case of the objective of minimizing the total tardiness, we consider a combination of
the SS and the earliest due date (EDD) priority rules, where an operation ij with smallest value

di + sm
∗

ab(m∗),ij

among the relevant candidate operations is selected.

2.4.1.2 Worker Assignment

After having determined an initial allocation and sequencing decision, i.e. a feasible solution of a
RMP as, for instance, constructed by Algorithm 2.2, we proceed by computing a corresponding
feasible worker assignment and the resulting solution of the given instance of the WSFJSP with
a beam search approach.

In general, beam search uses a graph representation of a solution process and applies breadth-
first search with a filtering process to only expand the β (beam width) most promising nodes of
the graph in each iteration. It was first used by Lowerre (1976). Our implementation of a
beam search approach for the subproblem first sorts the operations of all jobs in non-decreasing
order of the points in time when their processing is started in a feasible solution of a RMP. It
then proceeds by assigning workers to the operations (and potentially shifting the corresponding
starting times of the operations based on the correct values of the processing times) in this order
by constructing a search tree in a breadth-first search manner as illustrated in Figure 2.5. That
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· · · · · ·

x3kl=1 x|W |
kl
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Figure 2.5: Illustration of the beam search algorithm for the worker assignment problem

is, the algorithm decides on the worker assignment for a single operation on each level of the
tree and hereafter selects the β most promising nodes for further consideration, while all other
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nodes are pruned. The root node represents a situation where no worker has been assigned. A
node is evaluated based on the earliest possible completion time of the corresponding operation
that results from the worker assignment decisions given in the node. On the last level of the
search tree, the algorithm determines the objective function value, i.e. the makespan or the total
tardiness, of the β most promising nodes and selects a solution with minimum value.

2.4.2 Decomposition Based Improvement Procedure

Our improvement procedure is based on dividing the relevant time horizon into time windows of
equal length (see Section 2.4.2.1). Its main idea is to iterate over pairs of time windows and – for
each pair – make use of a given reference solution of a RMP (which is altered in the course of the
procedure, starting with the solution determined by Algorithm 2.2) to decide on fixing a subset
of variables (2.1), i.e. fixing subsequences of operations on machines. The resulting problems are
referred to as fixed relaxed master problems (FRMPs, see Section 2.4.2.2). They have a reduced
number of free variables, which allows to quickly determine (potentially improved) feasible so-
lutions with a standard MIP solver by solely reoptimizing the subsequences of operations that
are (started to be) processed within the time windows in the reference solution. The worker
assignment decisions are handled by solving the resulting subproblems either heuristically by the
beam search approach introduced in Section 2.4.1.2 or as in our exact approach.

2.4.2.1 Time Windows

The length twLen of the time windows is a crucial parameter of our improvement procedure. On
one hand, large time windows result in a large amount of free variables and, consequently, induce
a relatively large computational effort needed to solve the resulting FRMPs with a MIP solver.
On the other hand, the solution space is less restricted when considering large time windows,
which allows for potentially computing high quality solutions. In order to balance this trade-off,
it is reasonable to take account of the average processing time of all operations when computing
twLen, so that we define a multiset P := {pm,wij

|ij ∈ V̄ ,m ∈ Mij , w ∈ W, 0 < pm,wij
< ∞}, and

set

twLen =


∑
p∈P

p

|P |

 .
We then define time windows twi := [(i− 1) · twLen, i · twLen], i = 1, 2, . . . . The number of
relevant time windows is not fixed, but is implicitly specified by the current reference solution
within our improvement procedure (see Section 2.4.2.3).

2.4.2.2 Fixed Relaxed Master Problem

Algorithm 2.3 presents our method of determining the variables (2.1) that are considered as
fixed in the FRMP that is based on a reference solution SolRMP

ref of a RMP for a given pair
of time windows twa and twb, a 6= b. Here, tref := (trefij |ij ∈ V ) refers to the time variables
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of SolRMP
ref , while yref := (yref,mij ,kl

|ij ∈ V, kl ∈ Vij ,m ∈ Mij ,kl) denotes the vector of variables
(2.1) of SolRMP

ref . The algorithm iterates over all machines and all pairs of operations that are

Input: Solution SolRMP
ref (yref , tref ) of a RMP of an instance Inst of WSFJSP, time windows

twa and twb, a 6= b
Output: Sets F0 and F1

1 Initialize F1 := ∅; . Set of indices of variables that will be fixed to one
2 Initialize F0 := ∅; . Set of indices of variables that will be fixed to zero
3 Initialize t̂ij := trefij ∀ij ∈ V ; . Auxiliary variables

4 forall ij ∈ V , kl ∈ Vij , m ∈Mij ,kl with y
ref,m
ij ,kl

= 1 do
. Update auxiliary variables if operation 01 is involved

5 if kl = 01 then t̂kl := t̂ij + pm,minij
;

6 else if ij = 01 then t̂ij := 0;
. Check time windows twa and twb and update F0 and F1

7 if t̂ij /∈ twa and t̂ij /∈ twb and t̂kl /∈ twa and t̂kl /∈ twb then
8 F1 := F1 ∪ {(ij , kl,m)};
9 forall qv ∈ Vij \ {kl} do

10 if ij 6= 01 then F0 := F0 ∪ {(ij , qv,m′)|m′ ∈Mij ,qv};
11 else if m ∈Mqv then F0 := F0 ∪ {(01, qv,m)};
12 end
13 forall qv ∈ Ṽkl \ {ij} do
14 if kl 6= 01 then F0 := F0 ∪ {(qv, kl,m′)|m′ ∈Mqv,kl};
15 else if m ∈Mqv then F0 := F0 ∪ {(qv, 01,m)};
16 end
17 end
18 end

Algorithm 2.3 Determining the set of variables to be fixed

consecutively sequenced on these machines in the given solution (loop 4–18). If, for a given pair
of operations, none of the starting times of these operations lie within one of the time windows
(line 7), the corresponding variable (2.1) will later be fixed to one (line 8). Based on this decision,
a number of additional, directly related variables (2.1) will necessarily later be fixed to zero (lines
9–16). Within the algorithm, the variables that will later be fixed are stored in the sets F0 (fix
to zero) and F1 (fix to one) via their indices.

Consider an exemplary reference solution of a RMP as given in Figure 2.6 (refer to Figure 2.3
for or an explanation of the illustrations) and assume that the time windows tw1 = [0, 3] and
tw2 = [3, 6] are considered. When, for example, analyzing yref,122,42

, the algorithm inserts (22, 42, 1)

into the set F1, i.e. the decision to process operation 42 directly after operation 22 on machine
1 will later be fixed, because both starting times tref22

and tref42
lie outside of the considered time

windows in the reference solution. The set F0 is updated accordingly. When, on the other hand,
analyzing yref,121,22

, no subsequence is fixed, because tref21
lies inside of time window tw2.

In order to obtain the mathematical model of the FRMP based on a given reference solution
SolRMP

ref and the result of Algorithm 2.3, the following constraints are added to the RMP:

ymij ,kl = 1 ∀ (ij , kl,m) ∈ F1,

ymij ,kl = 0 ∀ (ij , kl,m) ∈ F0.
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Figure 2.6: Exemplary reference solution of a RMP

A MIP solver will therefore reoptimize the subsequences of operations that are started to be
processed within the given time windows in SolRMP

ref when being called on this FRMP.

2.4.2.3 Heuristic Framework

We are now ready to present the details of our decomposition based improvement procedure in
Algorithm 2.4. The algorithm stores solutions of RMPs, FRMPs, and the WSFJSP instance
in the data structures defined in Table 2.3. To ease the notation, we refer to the value of

Table 2.3: Solutions stored by the heuristic framework

SolRMP
best Best solution found for RMP

SolRMP
ref Current reference solution of RMP

SolFRMP Current solution of FRMP
Sol Current solution of WSFJSP
Solbest Best solution found for WSFJSP

the objective function of a solution Sol by using an additional label, i.e. S̈ol, throughout the
algorithm.

In the initialization phase (step 1) of the algorithm, the length of the time windows is calcu-
lated as described in Section 2.4.2.1, the RMP is initialized with an empty set of logic inequalities,
and an initial solution of the WSFJSP instance is determined as described in Section 2.4.1. Dur-
ing the process of generating this solution, the reference solution SolRMP

ref is set to the solution
determined by Algorithm 2.2. It is potentially altered multiple times in the course of the algo-
rithm (steps 2e i and 2f). In the iteration phase (step 2), the algorithm first computes the current
pair of time windows (step 2a) based on the reference solution. If all pairs have been traversed,
the algorithm exits (step 2a iii). Otherwise, the current pair of time windows is discarded with
probability 1 − ρtw. Then, in steps 2b and 2c, the FRMP is constructed based on the current
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Input: Instance Inst of WSFJSP, parameters ρtw and λ
Output: Solution Solbest of Inst

1. Initialization:

(a) Compute and initialize twLen.

(b) Initialize the RMP of Inst with an empty set of logic inequalities.

(c) Determine SolRMP
ref by calling Algorithm 2.2 on the RMP. Set SolRMP

best := SolRMP
ref .

(d) Compute a feasible solution for the subproblem based on SolRMP
ref with the beam search

approach of Section 2.4.1.2. Retrieve the corresponding feasible solution Sol of the
WSFJSP instance. Set Solbest := Sol.

(e) Initialize counter := 1, a := 1, and b := 1.

2. Iteration:

(a) Define current pair of time windows as follows:

i. Set b := b+ 1.
ii. If (b− 1) · twLen is not smaller than the completion time of the last operation which

is completed in SolRMP
ref , set a := a+ 1 and b := a+ 1.

iii. If (b− 1) · twLen is not smaller than the completion time of the last operation which
is completed in SolRMP

ref , exit algorithm.
iv. Define twa := [(a− 1) · twLen, a · twLen] and twb := [(b− 1) · twLen, b · twLen].
v. Go to step 2a i with probability 1− ρtw.

(b) Determine F0 and F1 by calling Algorithm 2.3 on SolRMP
ref .

(c) Construct FRMP based on RMP (including the current set of logic inequalities), F0, and
F1. Compute a feasible solution SolFRMP .

(d) If S̈ol
FRMP ≤ S̈olRMP

best , update SolRMP
best := SolFRMP .

(e) If S̈ol
FRMP

< S̈olbest, do the following:

i. Update SolRMP
ref := SolFRMP .

ii. Compute a feasible solution for the subproblem based on SolRMP
ref and retrieve the

corresponding WSFJSP solution Sol.
iii. If S̈ol < S̈olbest, update Solbest := Sol. Else, set counter := counter + 1.

iv. If S̈ol
RMP

ref < S̈ol, generate the corresponding logic inequality (2.10) or (2.16) and
add it to RMP.

v. If counter ≤ λ, go to step 2b.

(f) Update SolRMP
ref := SolRMP

best and set counter := 1.

(g) Go to step 2a.

Algorithm 2.4 Heuristic framework for WSFJSP
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set of logic inequalities (see Section 2.4.2.2) and a solution SolFRMP of the resulting FRMP
is computed by some algorithm. If promising, i.e. if S̈ol

FRMP
< S̈olbest, a feasible solution of

the subproblem is computed by some algorithm (step 2e ii) and the best known solution of the
WSFJSP instance is potentially updated (step 2e iii). A logic inequality is generated and added
to the RMP (step 2e iv) if this is necessary. This process of generating the FRMP and solving
the corresponding subproblem is repeated at most λ times for a given pair of time windows (steps
2e iii and 2e v).

2.5 Computational Study

In order to evaluate the performance of our solution approaches, we conducted extensive compu-
tational tests. The tests were performed on a PC with an Intel R© CoreTM i7-4770 CPU, running
at 3.4 GHz, with 16 GB of RAM under a 64-bit version of Windows 8. All algorithms were
implemented in C++ (Microsoft Visual Studio 2015). We used IBM ILOG CPLEX in version
12.7 as a MIP solver.

We implemented six approaches:

1. E-DM refers to the exact branch-and-cut approach (Algorithm 2.1), using CPLEX as a
standard solver.

2. E-IM refers to calling CPLEX in its standard settings on an integrated MIP model for
WSFJSP. This approach is intended to be a benchmark for evaluating the performance of
E-DM. The integrated model is presented in Section 2.5.1.

3. H-DM refers to the heuristic framework (Algorithm 2.4), using CPLEX in step 2c (deter-
mining feasible solutions of FRMPs, 10 seconds time limit) and in step 2e ii (determining
feasible solutions of subproblems, the time limit is set to the remaining time with respect
to the limit set for the overall heuristic framework).

4. H-DMB refers to the heuristic framework (Algorithm 2.4), using CPLEX in step 2c (10
seconds time limit) and applying the beam search approach of Section 2.4.1.2 in step 2e ii.

5. H-HIER refers to an adapted version of the heuristic framework (Algorithm 2.4, CPLEX
time limit of 10 seconds in step 2c), where the subproblem is solved only once at the very
end of the procedure. That is, steps 1d and 2e are replaced by a single call of the beam
search approach on the best reference solution after having iterated over all relevant pairs
of time windows.

6. LS refers to a local search procedure inspired by Mastrolilli and Gambardella (2000), which
we use as a benchmark heuristic when evaluating the heuristic framework. It is presented
in detail in Section 2.5.3.3.

Whenever calling CPLEX on a FRMP within H-DM, H-DMB, or H-HIER, we provide the
vector yref of the corresponding solution SolRMP

ref as a warm start. Similarly, in H-DM, when
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solving a subproblem with CPLEX, we provide a lower bound on the optimal objective function
value, i.e. the objective function value of the corresponding FRMP. Furthermore, we provide
CPLEX with the vector tref of the corresponding solution SolRMP

ref , which allows to quickly
check if this partial solution remains feasible for the subproblem.

We set the large integer B to
∑

ij∈V̄ (pmaxij
+ smaxij

) in constraint (2.7) of the MP and to∑
ij∈V̄ (p̃maxij

+ smaxij
) in constraints (2.25) and (2.28) of the subproblem as well as in the relevant

constraints of the integrated MIP model. Here, smaxij
:= {smkl,ij |kl ∈ Ṽij ,m ∈ Mij ,kl}, pmaxij

:=

max{pm,minij
|m ∈Mij}, and p̃maxij

:= max{pm,wij
|pm,wij

6=∞,m ∈Mij , w ∈W}, for all ij ∈ V̄ .

2.5.1 Integrated MIP model

E-IM is based on an integrated MIP model for WSFJSP. This model is in line with the for-
mulations of the MP and the subproblem in Section 2.3, but replaces the variables (2.19) with
variables

xm,wij
:=


1, if operation ij is processed

by worker w on machine m
0, else

∀ ij ∈ V̄ ,m ∈Mij , w ∈W.

The model for minimizing the makespan is as follows.

min Cmax . (2.40)

s.t. (2.4)–(2.6), (2.9), (2.11)–(2.13), (2.29), (2.32)–(2.33),

tiqi +
∑

m∈Miqi

∑
w∈W

xm,wiqi
· pm,wiqi

≤ Cmax . ∀ i ∈ I, (2.41)

∑
ij∈{ab∈Ṽkl |m∈Mab

}
ymij ,kl =

∑
w∈W

xm,wkl
. ∀ kl ∈ V̄ ,m ∈Mkl , (2.42)

tij + smij ,kl +
∑
w∈W

xm,wij
· pm,wij

− tkl ≤
(

1− ymij ,kl
)
B. ∀ ij ∈ V, kl ∈ V̄ij ,m ∈Mij ,kl , (2.43)

tij +
∑

m∈Mij

∑
w∈W

xm,wij
· pm,wij

≤ tij+1 . ∀ ij ∈ V̄ with j ≤ qi − 1, (2.44)

xwij ,kl ≥
∑

m∈Mij

xm,wij
+

∑
m∈Mkl

xm,wkl
− 1 . ∀ ij , kl ∈ V̄ , ij 6= kl, w ∈W, (2.45)

tij +
∑

m∈Mij

∑
w∈W

xm,wij
· pm,wij

− tkl ≤ B · vij ,kl . ∀ ij , kl ∈ V̄ , ij 6= kl, (2.46)

xm,w01
= 0 . ∀m ∈Mij , w ∈W, (2.47)

xm,wij
∈ {0, 1} . ∀ ij ∈ V̄ ,m ∈Mij , w ∈W. (2.48)

The objective function and most constraints are either identical to the ones in the MP and the
subproblem or have been adapted in a straightforward manner. Constraint (2.42) connects the
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sequencing variables with the worker assignment variables. The MIP model for minimizing the
total tardiness modifies the objective function and constraint (2.41) in analogy to Section 2.3.
We do not present it in detail for the sake of brevity.

2.5.2 Instance Generation and Parameter Settings

Our computational tests were performed on randomly generated test instances as well as real-
world test instances based on data of our industry partner.

2.5.2.1 Random Testbed

Our random testbed is composed of three classes of instance sets. These classes differ in the
size of the included instances (small, medium, and large), which is expressed by an identifier
size ∈ {s,m, l}. Each class is composed of eight sets of test instances with differing numbers of
jobs |I|, machines |M |, and workers |W |. Each set is composed of ten instances and is denoted by
size|I|,|M |,|W |, where size ∈ {s,m, l}. For each instance, the number of operations qi of jobs i ∈ I
, the number of eligible machines |Mij | for operations ij ∈ Oi of jobs i ∈ I, and the integer setup
times smij ,kl (including s

m
01,kl

) when processing operation kl ∈ Ok of job k ∈ I immediately after
operation ij ∈ Oi of job i ∈ I on machine m ∈Mij ,kl are drawn from uniform distributions over
the intervals given in Table 2.4. Our process of generating the processing times of the operations is

Table 2.4: Random testbed

small instances medium instances large instances

set qi |Mij | pij smij ,kl
set qi |Mij | pij smij ,kl

set qi |Mij | pij smij ,kl

s3,2,2 [2, 3] [2, 2] [3, 6] [1, 4] m10,5,4 [2, 3] [2, 3] [4, 8] [1, 5] l20,15,12 [5, 10] [4, 6] [5, 15] [1, 10]
s4,2,2 [2, 3] [2, 2] [3, 6] [1, 4] m10,5,5 [2, 3] [2, 3] [4, 8] [1, 5] l20,15,15 [5, 10] [4, 6] [5, 15] [1, 10]
s5,3,3 [2, 3] [2, 2] [3, 6] [1, 4] m10,8,6 [4, 6] [3, 4] [4, 8] [1, 5] l25,20,16 [5, 10] [5, 7] [5, 15] [1, 10]
s6,3,3 [2, 3] [2, 2] [3, 6] [1, 4] m10,8,8 [4, 6] [3, 4] [4, 8] [1, 5] l25,20,20 [5, 10] [5, 7] [5, 15] [1, 10]
s7,4,3 [2, 3] [2, 2] [3, 6] [1, 4] m15,10,8 [4, 6] [3, 5] [5, 10] [1, 7] l30,20,16 [5, 7] [5, 7] [5, 15] [1, 10]
s7,4,4 [2, 3] [2, 2] [3, 6] [1, 4] m15,10,10 [4, 6] [3, 5] [5, 10] [1, 7] l30,20,20 [5, 7] [5, 7] [5, 15] [1, 10]
s8,4,3 [2, 3] [2, 2] [3, 6] [1, 4] m20,10,8 [4, 6] [3, 5] [5, 10] [1, 7] l40,20,16 [4, 6] [5, 7] [5, 15] [1, 10]
s8,4,4 [2, 3] [2, 2] [3, 6] [1, 4] m20,10,10 [4, 6] [3, 5] [5, 10] [1, 7] l40,20,20 [4, 6] [5, 7] [5, 15] [1, 10]

as follows. We first draw auxiliary integer parameters pij for all jobs i ∈ I and operations ij ∈ Oi
from uniform distributions over the intervals given in Table 2.4. Based on these parameters, we
construct varying processing times over the corresponding eligible machines m ∈Mij by drawing
integer values pmij from uniform distributions over [b0.9 ·pij +0.5c, d1.1 ·pij −0.5e] and, in the last
step, we incorporate dependencies on the workers w ∈ W by drawing integer values pm,wij

from
uniform distributions over [b0.9 · pmij + 0.5c, d1.1 · pmij − 0.5e]. Finally, the integer due dates di are
drawn from uniform distributions over the interval [bµi ·

(
1− Φ

2

)
+ 0.5c, dµi ·

(
1 + Φ

2

)
− 0.5e] for

all jobs i ∈ I (cf. Vilcot and Billaut, 2008). Here,

µi :=

(
1 +

Ω · |I|
|M |

)
·

∑
p∈Pi

p

|Pi|
∀i ∈ I,
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where Pi is a multiset {pm,wij
|ij ∈ Oi,m ∈Mij , w ∈ W, 0 < pm,wij

<∞} for all jobs i ∈ I. We set
Φ = 0.5 and Ω = 0.3 for all small instances, Φ = 0.5 and Ω = 0.4 for all medium instances, and
Φ = 0.3 and Ω = 0.5 for all large instances.

2.5.2.2 Real-World Instances

As mentioned in Section 2.1.1, our research is motivated by a real-world problem setting. Our
industry partner provided us with data on its production processes, including the processing
times of the manufacturing operations on their eligible machines and the sequence-dependent
setup times, as well as the customer demands (including due dates) over a time period of several
months. Additionally, we received the relevant information on worker qualifications needed to
derive all relevant processing times. Based on this data, we constructed ten realistic scheduling
scenarios for testing our algorithms. Each scenario consists of a set of jobs relating to the
company’s product portfolio, including the respective lot sizes and their due dates. Currently,
the product portfolio consists of more than one hundred products and the company uses 16
different multi-purpose machines for processing the manufacturing operations. The number of
eligible machines for the operations varies between one and two. The machine operators work
on a shift-based system. Each shift is staffed with nine workers of similar qualifications. We will
therefore assume that nine representative machine workers are available at all time in all of our
scenarios.

In line with the random testbed, we denote each scheduling scenario – or problem instance
– by r|I|,|M |,|W |. Table 2.5 lists all instances, including their total number of operations. Note

Table 2.5: Real-world instances

instance r14,13,9 r15,11,9 r16,14,9 r25,16,9 r35,16,9 r45,16,9 r55,16,9 r60,16,9 r70,16,9 r80,16,9∑
i∈I |Oi| 34 34 38 63 84 106 136 146 162 188

that the number of machines is smaller than 16 in the three smallest instances. This is because
not all machines are needed for producing the respective products of the scenario. These three
scenarios are representative instances that feature planning horizons of at most one week, which
is what our industry partner is currently capable of scheduling manually. All remaining instances
have been constructed to analyze the capability and performance of our algorithms for larger
planning horizons in a real-world context. As mentioned in Section 2.1.1, our industry partner
wishes to compute schedules on a daily basis. Hence, when wanting to take account of these
planning horizons, our approaches will have to be embedded into a rolling horizon planning
approach. While we will not explicitly analyze this type of approach in our computational study,
we note at this point that all of our algorithms are flexible enough to support a rolling horizon
procedure that allows rescheduling decisions if the WSFJSP parameters are set to appropriate
values. Most important, by appropriately setting the setup times associated to the dummy
operation, one can take account of machines that are currently processing operations at the
beginning of the planning horizon. Our model also allows for interrupting the processing of these
operations (as sometimes decided by experts of the manufacturing companies) by appropriately
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(re-)defining the set of operations and the associated setup times.

The detailed data of all instances is available in supplementary files that accompany this
paper. The processing times of the operations for the representative workers on the machines
vary between 15 and 5280 minutes (1090 minutes on average). The setup times range from zero
to 300 minutes. Finally, the due dates of the jobs vary between one and six weeks.

2.5.2.3 Parameter Settings

With respect to the parameters of Algorithms 2.1 and 2.4, we set ρs = 0.005 and λ = 3. The
remaining parameters were set based on the size of the instances (see Table 2.6). Finally, we set

Table 2.6: Setup of the algorithms

small instances medium and real-world instances large instances

ρtw 1 0.4 0.2
β 25 16 8

a time limit of 3,600 seconds for each call of an algorithm. Note, however, that we check the
current runtime of the algorithmic framework solely at the beginning of step 2b of Algorithm 2.4,
so that the overall runtime of the framework upon termination may slightly exceed the time limit.

2.5.3 Results and Analysis

This section presents and analyzes the results of our computational study. Section 2.5.3.1 ana-
lyzes the performance of the exact approaches on the random testbed. Hereafter, Section 2.5.3.2
presents the corresponding results of the heuristic approaches H-DM, H-DMB, and H-HIER. In
Section 2.5.3.3, we describe LS and evaluate the aforementioned heuristics against this procedure
on the random testbed. Section 2.5.3.4 focuses on the results for the real-world instances.

2.5.3.1 Exact Approaches

Table 2.7 presents the computational results for the exact approaches E-IM and E-DM for the
small test instances of our random testbed. It includes information about the percentage of
instances within each set that were solved to optimality within the given time limit (columns
“opt.”) as well as the average computational time needed to compute the optimal solutions
(columns “tavg”) for both objectives, minimizing the makespan Cmax or the total tardiness T .
The decomposition based approach E-DM clearly outperforms the integrated approach E-IM
both with respect to the number of instances solved to optimality and the runtimes. While
this is true for both objectives, the benefit of using the decomposition based approach is more
pronounced in case of minimizing the makespan. The maximum number of logic inequalities
generated over all calls of E-DM for the small test instances was 1,503 (235) for the objective
of minimizing the makespan (total tardiness). On average, a logic inequality was generated and
added to the branch-and-cut process in 29% (38%) of the calls of step 3 of Algorithm 2.1.
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Table 2.7: Performance of exact approaches for small instances

Cmax T

E-IM E-DM E-IM E-DM

set opt. [%] tavg [s] opt. [%] tavg [s] opt. [%] tavg [s] opt. [%] tavg [s]

s3,2,2 100 0.9 100 0.3 100 1 100 0.5
s4,2,2 100 47.5 100 13.3 100 58.2 100 19.7
s5,3,3 100 36.8 100 5 100 51.1 100 12.4
s6,3,3 60 756.7 100 425.7 70 882.8 80 482.6
s7,4,3 10 2142.5 70 913.1 20 1952.9 40 944.3
s7,4,4 80 1161.6 100 112.2 50 1074.2 90 839.3
s8,4,3 - - 20 2773.1 - - - -
s8,4,4 - - 40 622.7 - - 10 3132.4

Unfortunately, neither of the exact approaches was able to solve instances of medium or large
size to optimality within the time limit. Table 2.8 therefore focuses on illustrating the percentage
of instances for which E-DM found a feasible solution. It can be seen that E-DM returns feasible

Table 2.8: Capability of finding feasible solutions with E-DM within the time limit of 3,600 seconds

small instances medium instances

set Cmax [%] T [%] set Cmax [%] T [%]

s3,2,2 100 100 m10,5,4 100 100
s4,2,2 100 100 m10,5,5 100 100
s5,3,3 100 100 m10,8,6 90 100
s6,3,3 100 100 m10,8,8 90 100
s7,4,3 100 100 m15,10,8 - -
s7,4,4 100 100 m15,10,10 - 10
s8,4,3 100 100 m20,10,8 - -
s8,4,4 100 100 m20,10,10 - -

solutions for instances up to the size of the ones in the set m10,8,8 and for one instance in the set
m15,10,10.

We conclude that, while E-DM is certainly not a reasonable choice when facing large instances
of WSFJSP in practice, it clearly outperforms E-IM and is able to compute benchmark solutions
that allow to assess the performance of heuristic approaches for instances of medium size.

2.5.3.2 Heuristic Approaches

The performance of the heuristic approaches H-DM, H-DMB, and H-HIER in comparison to
E-DM is illustrated in Table 2.9 for the small test instances. For each objective function, each
instance set, and each solution approach, the table presents information on the average objective
function values of the best solutions returned by the respective algorithms (columns “Cavgmax”
and “T avg”) as well as the average runtimes for computing these solutions (columns “tavg”).
Entries “tl” denote average computational times that correspond to or exceed the time limit of
3,600 seconds. Bold entries highlight the best heuristic approaches with respect to the average
solution quality.
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Table 2.9: Performance of heuristic approaches for small instances

Cmax T

E-DM H-DM H-DMB H-HIER E-DM H-DM H-DMB H-HIER

set Cavgmax tavg Cavgmax tavg Cavgmax tavg Cavgmax tavg Tavg tavg Tavg tavg Tavg tavg Tavg tavg
[s] [s] [s] [s] [s] [s] [s] [s]

s3,2,2 23.9 0.3 24.2 0.2 24.3 0.2 24.5 0.1 8.6 0.5 8.6 0.2 8.6 0.2 8.7 0.2
s4,2,2 30 13.3 30.4 0.4 30.5 0.4 30.7 0.3 16.2 19.7 17.3 0.5 17.4 0.4 17.4 0.3
s5,3,3 27.1 5 27.7 0.5 27.7 0.4 28 0.3 14.3 12.4 15.4 1 15.5 0.9 16 0.4
s6,3,3 29.9 425.7 31 1.5 31.1 1.2 31.8 0.9 23.8 1106.1 26.3 2.3 25.8 1.8 26.6 1.3
s7,4,3 31 1719.2 32.1 22 32.9 3.8 33.5 1.1 29.3 2537.7 30.9 42.5 31.4 9.7 35.3 3.2
s7,4,4 27.5 112.2 28.2 1.4 28.2 1.3 28.4 0.8 24.4 1115.4 26.2 6.4 26.5 6.8 26.9 2.7
s8,4,3 34.5 3436.6 35.4 63.2 36 11.0 37.6 3.4 44.7 tl 45.7 187.6 46.6 27.1 53.7 6.5
s8,4,4 29.7 2409.1 31.1 4 31 3.4 31.1 2.3 34.7 3553.3 36.6 10.2 37 10.1 36.8 7.5

Figure 2.7 complements Table 2.9 by presenting boxplots of the objective function values
returned by the algorithms (left ordinate) as well as data points (gray squares) on the overall
average of the corresponding runtimes (right ordinate) for the heuristic approaches. Each boxplot
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Figure 2.7: Computational results for small instances

depicts the first quartile (bottom of the box), the third quartile (top of the box), the median
(dotted line within the box), the minimum (bottom whisker), and the maximum (top whisker)
of the objective function values.

Based on Table 2.9 and Figure 2.7, we observe that the solution quality of all heuristic
approaches is competitive when compared with the (mostly optimal, see Section 2.5.3.1) solutions
computed by E-DM for both objectives. That is, all heuristics provide high quality solutions.
H-DM tends to provide the best solutions at the cost of substantially larger running times than
the ones of the other heuristic approaches. This is a result of determining optimal solutions
to the subproblems within the heuristic framework. Applying beam search (H-DMB) results in
slightly worse solutions when compared with the solutions determined by H-DM but clearly pays
off with respect to the running times. A similar but less pronounced effect can be observed when
comparing H-DMB and H-HIER.

Table 2.10 presents the computational results for the instances of medium size. In contrast to
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Table 2.10: Performance of heuristic approaches for medium instances

Cmax T

E-DM H-DM H-DMB H-HIER E-DM H-DM H-DMB H-HIER

set Cavgmax tavg Cavgmax tavg Cavgmax tavg Cavgmax tavg Tavg tavg Tavg tavg Tavg tavg Tavg tavg
[s] [s] [s] [s] [s] [s] [s] [s]

m10,5,4 41.9 tl 42.2 158.8 43.6 14.3 44.4 5.8 43 tl 40.4 543.5 42.4 31.8 45.5 7
m10,5,5 38.2 tl 39.3 12.5 39.6 11.5 39.7 6.4 22.9 tl 24.3 32.9 24.7 26.2 27.3 7
m10,8,6 165 tl 57.7 tl 56.4 49.6 57.8 13.5 746.3 tl 25.5 3157.4 17.8 75.1 19 17.2
m10,8,8 198.1 tl 52.9 317.1 52.6 32.9 53.4 15.7 656.2 tl 5.8 901.4 4.6 53.8 9.3 14.4
m15,10,8 - - 84.2 tl 78.9 186.3 80 45.3 - - 154.5 tl 66.4 417.2 84.2 106.5
m15,10,10 - - 80.8 3105.2 75.7 118.1 77.7 47.9 2367 tl 64.1 2361.1 34.5 255.2 42.8 85.4
m20,10,8 - - 107.3 tl 102 525.8 103.3 140.7 - - 286.2 tl 164.5 895.3 178 216.5
m20,10,10 - - 98.6 tl 93.8 409.9 93.8 156.5 - - 224 3287.5 143 618.7 156.5 233.6

the results for the small instances, H-DMB now clearly outperforms H-DM, both with respect to
solution quality and computational time. Again, this mainly results from solving the subproblems
to optimality within H-DM, which causes high computational effort for increasing instance sizes,
so that less pairs of time windows are traversed within the given time limit. Moreover, note that
all heuristics outperform E-DM for most instance sets. When comparing H-DMB and H-HIER,
we observe larger differences in the average solution qualities as in case of the small test instances,
particularly for the case of minimizing total tardiness. Nevertheless, the runtimes are in ranges
that allow the use of both H-DMB and H-HIER in real-world scenarios. The same results hold
for the large test instances, as can be seen in Table 2.11, where we restrict ourselves to comparing
H-DMB and H-HIER due to the above results for the medium instances.

Table 2.11: Performance of H-DMB and H-HIER for large instances

Cmax T

H-DMB H-HIER H-DMB H-HIER

set Cavgmax tavg [s] Cavgmax tavg [s] T avg tavg [s] T avg tavg [s]

l20,15,12 146.6 217.3 149.7 54.1 37.7 466.7 55.8 113.3
l20,15,15 150.2 206.1 152 62.5 32.7 393.8 53.5 124.9
l25,20,16 141.3 461.6 144.5 95.3 17.4 934.4 32.4 213.2
l25,20,20 137.5 295.1 139.7 101.1 29 480.8 39.8 193.2
l30,20,16 125.2 357.6 127.7 95.3 146.8 889.3 181 208.1
l30,20,20 119 246 120.1 98.8 90.4 721.5 145.6 208.4
l40,20,16 131.8 588.8 134.8 135.6 247.6 1320.4 285.4 306.7
l40,20,20 126.2 359.8 127.9 117.2 247.3 998.1 302.1 287.8

Summing up the above results, the frequency of computing solutions of subproblems within
the heuristic framework as well as the algorithms applied to determine these solutions are compo-
nents of major importance when wanting to balance the trade-off between runtime and solution
quality. When facing medium or large instances, it does not pay off to try to solve the subprob-
lems to optimality, but one must make use of a heuristic approach. Calling this approach more
often has a positive effect on solution quality at the cost of larger runtimes. Moreover, as to
be expected, we observe that the staffing level, i.e. the ratio of the number of workers and the
number of machines, influences the performance of the algorithms. Large staffing levels allow to
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compute better solutions with less computational effort.

In order to analyze the sensitivity of our heuristic framework to a change of the initial
reference solution of RMP (determined in step 1c of Algorithm 2.4), we have implemented an
additional simple priority rule that can be used in Algorithm 2.2 (line 10). In contrast to
the priority rules described in Section 2.4.1.1, that make use of most of the relevant problem
parameters, this priority rule simply selects the operation with smallest job index (SI) among
the operations that have not been sequenced and that can start to be processed at the respective
point of time. Table 2.12 compares the performance of the heuristic framework for the case of
applying SI and the standard setting introduced in Section 2.4.1.1. For the sake of brevity, we

Table 2.12: Sensitivity of H-DMB and H-HIER to a change of the initial reference solution

Cmax T

standard setting SI standard setting SI

H-DMB H-HIER H-DMB H-HIER H-DMB H-HIER H-DMB H-HIER

class Cavgmax tavg Cavgmax tavg Cavgmax tavg Cavgmax tavg Tavg tavg Tavg tavg Tavg tavg Tavg tavg
[s] [s] [s] [s] [s] [s] [s] [s]

small 30.2 2.7 30.7 1.2 30.7 2.9 31.5 1.3 26.1 7.1 27.7 2.8 29.8 8.1 31.7 3
medium 67.8 168.5 68.8 54 72.5 120.2 75.8 30.2 62.2 296.7 70.3 85.9 114.9 302.3 133.9 87.4
large 134.7 341.5 137.1 95 166.8 446.3 175.6 122.8 106.1 775.6 137 206.9 355.5 910.3 408.7 228.8

restrict ourselves to presenting the average objective function values and computational times
over all instances of the three instance classes (small, medium, and large) for H-DMB and H-
HIER. We observe large differences of the average objective function values, particulary for the
case of minimizing total tardiness, so that we conclude that it pays off to make use of a well
designed procedure to determine high quality initial allocation and sequencing decisions in our
heuristic framework.

In light of the fact that H-DMB has shown to be a promising approach but uses a heuristic
to determine solutions for the subproblems in step 2e ii of Algorithm 2.4, one may wonder if the
use of logic inequalities within this setup of the heuristic framework actually pays off. Table 2.13
therefore illustrates the effect of adding logic inequalities by comparing the standard setting of
H-DMB (see Section 2.4.2.3) with the setting where the generation of logic inequalities, i.e. step
2e iv of Algorithm 2.4, is disabled. Again, we restrict ourselves to presenting average values for

Table 2.13: Effect of using logic inequalities in H-DMB

Cmax T

standard setting no logic inequalities standard setting no logic inequalities

class Cavgmax tavg [s] LI [%] Cavgmax tavg [s] Tavg tavg [s] LI [%] Tavg tavg [s]

small 30.2 2.7 39 30.4 3.5 26.1 7.1 47 26.8 8.8
medium 67.8 168.5 91 68.5 157.9 62.2 296.7 92 63.2 280
large 134.7 341.5 95 135 357 106.1 775.6 88 113.7 849.9

the three classes of instances. For the standard setting, the columns “LI” present the percentage
of executions of step 2e of Algorithm 2.4 that result in the generation of a logic inequality. The
results indicate that the use of logic inequalities within H-DMB has a positive effect on the
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objective function values and tends to reduce (or only slightly increase) runtimes for the small
and large (medium) instances.

2.5.3.3 Evaluation of the Heuristic Framework against a Local Search Heuristic

As indicated above, we implemented a local search approach (LS) inspired by Mastrolilli and
Gambardella (2000) in order to gain additional insights into the performance of our heuristic
framework. In line with Algorithm 2.4, LS is called on a feasible allocation and sequencing
decision, referred to as SolRMP , initially determined by Algorithm 2.2. In the course of the
algorithm, SolRMP is altered in a first-fit manner and initially evaluated by dropping the worker
assignment restrictions and making use of the lower bounds of the processing times introduced in
Section 2.3.1. Given some current solution SolRMP , LS restricts the search process by computing
a critical path of the so called solution graph of this solution as described by Mastrolilli and Gam-
bardella (2000) (see also Błażewicz et al., 2007), where sequence-dependent setup times are taken
account of in a straightforward manner. Basically, a critical path identifies a sequence of opera-
tions, any of which fulfills the property that a delayed start of its processing would immediately
cause an increase of the makespan (without considering worker assignment restrictions) under
the given allocation and sequencing decision. Note that we make use of the makespan criterion
independently of the considered objective function when computing critical paths. A neighbor of
the current solution SolRMP is then determined by moving an operation of the critical path to
another feasible position on the same machine or to a feasible position in the sequence of opera-
tions on any other eligible machine. As outlined above, the objective function value (makespan
or total tardiness) of a neighbor (as well as the initial solution determined by Algorithm 2.2) is
first evaluated based on the lower bounds of the processing times. If this objective function value
is smaller than the one of the currently best known solution of the WSFJSP instance (including
worker restrictions), a feasible worker assignment and the corresponding objective function value
is determined with the beam search approach of Section 2.4.1.2. If the resulting objective func-
tion value remains smaller than the one of the currently best WSFJSP solution, SolRMP and
the overall best WSFJSP solution are updated and LS proceeds by computing a critical path for
SolRMP . LS terminates if none of the neighbors results in an improved objective function value.

Table 2.14 illustrates the average runtimes and objective function values determined by
LS in comparison with H-DMB and H-HIER, i.e. the most promising approaches identified in
Section 2.5.3.2, for the three instance classes. As can be seen, H-DMB and H-HIER outperform

Table 2.14: Performance of LS on random testbed

Cmax T

H-DMB H-HIER LS H-DMB H-HIER LS

class Cavgmax tavg [s] Cavgmax tavg [s] Cavgmax tavg [s] Tavg tavg [s] Tavg tavg [s] Tavg tavg [s]

small 30.2 2.7 30.7 1.2 32 0.1 26.1 7.1 27.7 2.8 34.4 0.1
medium 67.8 168.5 68.8 54 71.4 10.7 62.2 296.7 70.3 85.9 119.8 7.4
large 134.7 341.5 137.1 95 138.7 66.2 106.1 775.6 137 206.9 234.4 87.6

LS with respect to the average objective function values. This effect is especially pronounced
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for the objective of minimizing total tardiness, which is probably caused by restricting LS to
compute neighbors based on critical paths as outlined above. The average computational times
of LS are smaller than the ones of H-DMB and H-HIER. However, as our practical application
allows runtimes in the ranges of the ones of the latter approaches, this effect is less of an issue.
Hence, the remainder of this computational study focusses on the decomposition based solution
approaches.

2.5.3.4 Results for Real-World Instances

Table 2.15 presents the results on the performance of E-DM as well as the heuristic approaches
for the real-world problem instances. For each instance and objective, the table provides results

Table 2.15: Computational results for real-world instances

Cmax T

E-DM H-DM H-DMB H-HIER E-DM H-DM H-DMB H-HIER

inst. Cmax t [s] Cmax t [s] Cmax t [s] Cmax t [s] T t [s] T t [s] T t [s] T t [s]

r14,13,9 6256 tl 6256 14.3 6274 15.9 6676 10.2 0∗ 18.5 0∗ 3.6 170 4.2 1293 2.2
r15,11,9 5375 tl 5272 13.5 5392 17.5 5475 3.3 0∗ 6.8 0∗ 0.4 0∗ 0.4 0∗ 0.2
r16,14,9 7584 tl 7584 18.7 7584 3 7584 0.2 864 tl 864 25.2 864 5.2 864 0.2
r25,16,9 8392 tl 8180 2190.4 8551 157.2 11596 66.2 2150 tl 0∗ 33.3 227 36.8 1716 12.1
r35,16,9 11993 tl 9045 tl 9333 358.7 9572 76.6 19337 tl 0∗ 50.9 0∗ 18.8 322 3
r45,16,9 25019 tl 12722 tl 12820 378.6 12884 95.5 105019 tl 233 822.9 0∗ 40.9 761 11.7
r55,16,9 29126 tl 15288 tl 14608 916.1 16391 225.4 - - 0∗ 1906.4 0∗ 310 289 20.5
r60,16,9 33993 tl 18953 tl 17180 1444.4 18953 253.1 327669 tl 947 tl 190 1300.8 1900 14.9
r70,16,9 34716 tl 21202 tl 19590 1691.2 21202 280.6 353140 tl 4675 tl 669 823.7 878 67.8
r80,16,9 - - 23492 tl 21869 2694.4 23998 490.7 - - 10230 tl 4670 1152.5 5880 105.8
∗: optimal objective function value

on the objective function values of the solutions determined by the algorithms. Bold elements
highlight the best approaches in each row of the table. Note that, in contrast to the results for the
random testbed, the objective function values represent minutes of real time (see Section 2.5.2.2).

Recall that the three smallest instances are representative instances that our industry partner
is currently capable of scheduling manually. For all of these instances, H-DM or H-DMB are able
to compute solutions in at most 26 seconds while performing similar to the exact approach E-DM
and, in case of H-DM, even determining optimal solutions for two instances when minimizing
total tardiness. Even in case of medium time horizons, H-DM is able to determine optimal
solutions for minimizing total tardiness within reasonable time, i.e. instances r25,16,9, r35,16,9 and
r55,16,9. When wanting to make quick decisions for medium and large time horizons, however, it
seems appropriate to make use of H-DMB or H-HIER, both of which are capable of computing
high quality solutions. For these instances, H-DMB clearly outperforms the other approaches
with respect to solution quality, which is in line with our results for the random testbed.

Summing up, we can conclude that our algorithms are well suited for daily use when schedules
for time horizons of about one week must be computed at our industry partner. Furthermore,
when using H-DMB and H-HIER, our industry partner will be able to make scheduling decisions
for demand forecasts covering several weeks or months.
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2.6 Summary

In this paper, we have introduced a worker constrained flexible job shop scheduling problem with
sequence-dependent setup times that takes account of heterogeneous machine operator qualifi-
cations. We have analyzed two objective functions, minimizing the makespan and the total
tardiness, and proposed to solve the problem in a branch-and-cut framework by decomposing
it into a vehicle routing problem with precedence constraints (master problem) and a worker
assignment problem (subproblem) that are connected via logic inequalities. In addition to this
exact approach, we have presented decomposition based heuristic approaches. In an extensive
computational study, we have shown that our exact decomposition approach outperforms an
integrated approach and that it allows to compute benchmark solutions for assessing the perfor-
mance of heuristic approaches for instances of medium size. Our heuristic approaches have shown
to provide high-quality solutions within reasonable time and have proven well suited for daily
use at our industry partner, who provided us with real-world data. When setting up the decom-
position based heuristics, the decisions on the frequency of computing solutions of subproblems
as well as on the algorithms applied to determine these solutions are of major importance for
finding a suitable trade-off between runtime and solution quality.
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Abstract

We consider a flexible job shop scheduling problem that incorporates machine operators and aims at
makespan minimization. In a detailed overview of the related literature, we reveal the fact that the
research in this field is mainly concerned with (meta-)heuristic approaches. Only few papers consider exact
approaches. In order to promote the use of exact approaches and in order to facilitate the evaluation of the
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3.1 Introduction

The job shop scheduling problem (JSP) is a well-known scheduling setting that arises in many
traditional manufacturing systems (see, e.g., Błażewicz et al., 2007). It assumes that each job
consists of a set of operations, each of which must be processed on a specific machine. Modern
flexible manufacturing systems, however, oftentimes feature multi-purpose machines that allow
for processing different types of manufacturing operations, so that operations are typically asso-
ciated to a set of eligible machines. This is taken account of in the flexible job shop scheduling
problem (FJSP) (Brucker and Schlie, 1990). A recent survey of solution approaches for the FJSP
is presented by Chaudhry and Khan (2016). Usually, a machine needs to be operated by some
machine operator, hereafter referred to as a worker. We will denote FJSP settings that explicitly
incorporate workers by WFJSPs. Note, however, that machine scheduling problems that are
concerned with two types of resources, e.g., machines and workers, are sometimes also referred
to as dual-resource constrained (DRC) systems (see, e.g., Treleven, 1989; Xu et al., 2011).

3.1.1 Literature Overview

Most of the research on WFJSPs is concerned with the objective of minimizing the makespan.
In this stream of publications, Xianzhou and Zhenhe (2011) combine a genetic algorithm with
an immune algorithm. Lei and Guo (2014) introduce a variable neighborhood search. A mixed-
integer programming (MIP) model and two metaheuristic approaches (simulated annealing and
vibration damping optimization) are proposed by Yazdani et al. (2015). Zhang et al. (2015)
introduce a hybrid discrete particle swarm optimization algorithm by incorporating a simulated
annealing approach with a variable neighborhood structure. Zheng and Wang (2016) develop
a knowledge-guided fruit fly optimization algorithm. Peng et al. (2018) propose a genetic algo-
rithm. Vallikavungal Devassia et al. (2018) consider a WFJSP that incorporates recovery times
for the resources. For this problem, a general variable neighborhood search is introduced. A
further special case of the WFJSP is addressed by Wu et al. (2018). The authors assume that
workers have the ability to learn, and thus incorporate learning effects into the WFJSP. They
propose a hybrid genetic algorithm which combines a genetic algorithm with a variable neigh-
borhood search. Paksi and Ma’ruf (2016) analyze the objective of minimizing the total tardiness
and introduce a genetic algorithm. Kress et al. (2019) address a WFJSP that takes account of
sequence-dependent setup times. They analyze two objectives, minimizing the makespan and
minimizing the total tardiness, present an integrated MIP model, and propose exact and heuris-
tic decomposition based solution approaches. A few researchers address multiple objectives for
WFJSPs. Lang and Li (2011) address a multi-objective WFJSP, where delivery satisfaction,
process cost, energy consumption and noise pollution are to be minimized. The authors also
consider uncertain processing times and introduce a heuristic which combines simulation and a
genetic algorithm. Liu et al. (2011) and Zhang et al. (2013) study a bi-criteria WFJSP, where
both the makespan and the production cost are to be minimized. The former authors propose a
hybrid genetic algorithm based on a Pareto approach, while a hybrid discrete particle swarm op-
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timization algorithm is introduced by the latter authors. Lei and Tan (2016) address a WFJSP
to simultaneously minimize the makespan and total tardiness. For this problem, the authors
propose a local search approach with controlled deterioration. Gong et al. (2018a) consider
green production indicators in a WFJSP and propose a hybrid genetic algorithm to minimize
the makespan, the total worker cost and green production factors. Gong et al. (2018b) address a
multi-objective WFJSP, where the makespan, the maximum workload of machines and the total
workload of all machines are to be minimized. The authors propose a memetic algorithm.

Table 3.1 summarizes the above literature overview.

3.1.2 Contribution and Overview

Based on the above literature overview, we conclude that mainly metaheuristic approaches have
been considered for solving WFJSPs. With respect to mathematical models, some researches
introduce MIP or NLP formulations. However, only very few (Kress et al., 2019; Vallikavun-
gal Devassia et al., 2018; Yazdani et al., 2015) actually make use of their models to design exact
approaches or to evaluate their heuristic approaches in computational tests.

Recently, commercial constraint programming (CP) optimizers have shown to perform re-
markably well for solving scheduling problems. Puget (2013), for instance, presents results of
the IBM ILOG CPLEX CP Optimizer for solving the FJSP for 7 well-known instance sets from
the literature. Interestingly, to the best of the authors’ knowledge, there has been no attempt
to provide a CP model as a benchmark for a WFJSP. In this paper, we therefore introduce two
models, a MIP model and a CP model, for a WFJSP that aims to minimize the makespan.
We evaluate the performance of both models by using CPLEX. Furthermore, we compare the
performance of CPLEX on the CP model with a recently proposed heuristic approach. For an
introduction to CP, we refer to Rossi et al. (2006).

The remainder of this paper is organized as follows. In Section 3.2, we provide a formal
definition of the WFJSP considered in this paper. The MIP model and the CP model are
presented in Sections 3.3 and 3.4, respectively. The computational tests are subject of Section 3.5.
A conclusion and future research directions are provided in Section 3.6.

3.2 Problem Description

The WFJSP under consideration (hereafter referred to as the WFJSP for the sake of simplicity)
is composed of a set I of jobs, a set M of machines and a set W of workers. We assume that
all jobs, machines and workers are available at time zero. For each job i ∈ I, we are given
an ordered set of qi operations Oi = (i1, . . . , iqi). The ordering is such that, for any pair of
operations ij , ik ∈ Oi with j < k, ik can only start to be processed after the processing of ij
has finished. Each operation ij ∈ Oi, i ∈ I, must be processed without preemption on exactly
one machine out of a set of eligible machines Mij ⊆ M . We define Mij ,kl := Mij ∩Mkl for all
i, k ∈ I, ij ∈ Oi, kl ∈ Ok. An operation ij ∈ Oi of a job i ∈ I can only be processed on a
machine, if exactly one worker of the set W is assigned to the operation for the entire processing
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time. We assume a heterogenous shop floor as well as workforce, so that the processing times of
an operation may vary for different machines and workers. Therefore, we denote the processing
time of an operation ij ∈ Oi of a job i ∈ I that is processed on an eligible machine m ∈ Mij

by a worker w ∈ W by pm,wij
∈ N+. If some worker must not process an operation of a job

on an eligible machine, the corresponding processing time is set to infinity. Each machine and
each worker can process at most one operation at a time. We denote the completion time of an
operation ij ∈ Oi of job i ∈ I by Cij and the completion time of job i ∈ I by Ci. A job i ∈ I is
completed if all of its operations are completed, i.e., Ci = Ciqi .

The problem is to allocate the operations to eligible machines and workers and to determine
corresponding feasible sequences of the operations, such that the makespan Cmax := maxi∈I Ci
is minimized. Based on the results of Lenstra and Rinnooy Kan (1979), it can easily be seen
that this problem is strongly NP-hard.

3.3 Mixed-Integer Programming Model

Kress et al. (2019) propose a MIP model for a WFJSP with sequence-dependent setup times
based on modelling approaches for the vehicle routing problem. We adjust this model to the
simplified setting considered in this paper. To do so, we define a dummy job 0 with exactly one
operation 01 and M01 = M . We set M01,ij = Mij ,01 = Mij for all i ∈ I and ij ∈ Oi. Moreover,
as in Kress et al. (2019), we define the following sets:

• V :=
⋃
i∈I Oi ∪ {01}

• V̄ := V \ {01}

• Vij := V \ {ik|k ≤ j} for all ij ∈ V

• Ṽij := V \ {ik|k ≥ j} for all ij ∈ V

• V̄ij := Vij \ {01} for all ij ∈ V

We furthermore define pm,minij
:= minw∈W pm,wij

for all i ∈ I, ij ∈ Oi and m ∈ Mij , and set
pminij

:= minm∈Mij
pm,minij

for all i ∈ I, ij ∈ Oi.
Now, for all operations ij ∈ V̄ , we define a continuous variable tij ∈ N+

0 that represents the
point in time at which operation ij is started to be processed, a continuous variable Cmax ∈ N+

0

that represents the makespan, as well as the following binary variables:

ymij ,kl :=

1, if kl is processed on m directly after ij

0, else
∀ ij ∈ V, kl ∈ Vij ,m ∈Mij ,kl , (3.1)

xm,wij
:=

1, if ij is processed by w on m

0, else
∀ ij ∈ V̄ ,m ∈Mij , w ∈W, (3.2)
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xwij ,kl :=

1, if ij and kl are processed by w

0, else
∀ ij , kl ∈ V̄ , ij 6= kl, w ∈W, (3.3)

vij ,kl :=


1, if the processing of kl starts before the

processing of ij finishes
0, else

∀ ij , kl ∈ V̄ , ij 6= kl. (3.4)

Let B be a large positive number. Then, a MIP model for WFJSP is as follows.

min Cmax . (3.5)

s.t.

tiqi +
∑

m∈Miqi

∑
w∈W

xm,wiqi
· pm,wiqi

≤ Cmax . ∀ i ∈ I, (3.6)

∑
ij∈Ṽkl

∑
m∈Mij ,kl

ymij ,kl = 1 . ∀ kl ∈ V̄ , (3.7)

∑
ij∈V̄

ym01,ij ≤ 1 . ∀m ∈M, (3.8)

∑
kl∈Ṽij with m∈Mkl

ymkl,ij −
∑

kl∈Vij with m∈Mkl

ymij ,kl = 0. ∀ ij ∈ V,m ∈Mij , (3.9)

tij +
∑
w∈W

xm,wij
· pm,wij

− tkl ≤
(

1− ymij ,kl
)
B . ∀ ij ∈ V̄ , kl ∈ V̄ij ,m ∈Mij ,kl , (3.10)

tij +
∑

m∈Mij

∑
w∈W

xm,wij
· pm,wij

≤ tij+1 . ∀ ij ∈ V̄ with j ≤ qi − 1, (3.11)

tij + pminij ≤ tij+1 . ∀ ij ∈ V̄ with j ≤ qi − 1, (3.12)∑
m∈Mij

xm,wij
+

∑
m∈Mkl

xm,wkl
− 1 ≤ xwij ,kl . ∀ ij , kl ∈ V̄ , ij 6= kl, w ∈W, (3.13)

tij +
∑

m∈Mij

∑
w∈W

xm,wij
· pm,wij

− tkl ≤ B · vij ,kl . ∀ ij , kl ∈ V̄ , ij 6= kl, (3.14)

xwij ,kl ≤ 2− vij ,kl − vkl,ij . ∀ ij , kl ∈ V̄ , ij 6= kl, w ∈W, (3.15)∑
ij∈Ṽkl with m∈Mij

ymij ,kl =
∑
w∈W

xm,wkl
. ∀ kl ∈ V̄ ,m ∈Mkl , (3.16)

ymij ,kl ∈ {0, 1} . ∀ ij ∈ V, kl ∈ Vij ,m ∈Mij ,kl , (3.17)

xm,wij
∈ {0, 1} . ∀ ij ∈ V̄ ,m ∈Mij , w ∈W, (3.18)

xwij ,kl ∈ {0, 1} . ∀ ij , kl ∈ V̄ , ij 6= kl, w ∈W, (3.19)

vij ,kl ∈ {0, 1} . ∀ ij , kl ∈ V̄ , ij 6= kl, (3.20)

tij ∈ N+
0 . ∀ ij ∈ V̄ , (3.21)

Cmax ∈ N+
0 . . (3.22)
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The objective (3.5) minimizes the makespan, which is bounded from below by constraints
(3.6). Constraints (3.7) ensure that each operation is assigned to exactly one of its eligible
machines, while inequalities (3.8) guarantee that there is at most one operation that is processed
first on each machine. Constraints (3.9) ensure that the variables (3.1) are set to their correct
values with respect to the specific machine that processes an operation ij ∈ V as well as its
preceding and succeeding operations (including the operation of the dummy job) on this very
machine. Constraints (3.10) prevent an overlapping of two consecutive operations ij ∈ Oi of job
i ∈ I and kl ∈ Ok of job k ∈ I processed on the same machine m ∈ Mij ,kl . The precedence
relations between consecutive operations ij , ij+1 ∈ Oi, i ∈ I, are taken account of in constraints
(3.11). Constraints (3.12) are redundant to constraints (3.11), but have shown to improve the
computational performance in our tests. Constraints (3.13) and (3.14) ensure that the variables
(3.3) and (3.4) are set to one when needed. Based on these variables, constraints (3.15) prevent
overlapping of operations that are assigned to the same worker. Constraints (3.16) connect
the sequencing variables (3.1) with the worker variables (3.2). Finally, constraints (3.17)–(3.22)
define the domains of the variables.

3.4 Constraint Programming Model

The IBM ILOG CPLEX CP Optimizer provides a CP engine which enables the modelling and
solving of scheduling problems. In order to cover temporal dimensions, the optimizer provides
interval variables and sequence variables. The former variables are used to model the start and
the end of the processing of the operations, while the latter variables are used to represent the
sequencing decisions, i.e., orderings of interval variables. Moreover, the optimizer provides several
special constraint types, which we assume the reader to be familiar with for the sake of brevity.
Details are given in Laborie et al. (2018), as well as in the online documentation (IBM, 2016a,b)
that includes detailed examples that make use of IBM’s Optimization Programming Language
(OPL).

For WFJSP, we define interval and sequencing variables as illustrated in Table 3.2.

Table 3.2: Variables for the CP model

Variables Definition

IOP{ij} Interval variable for each operation, i.e., for all i ∈ I, ij ∈ Oi
IMO{ij ,m,w,p} Interval variable for each processing mode, i.e., each eligible combination of an oper-

ation ij ∈ Oi of job i ∈ I, a machine, a worker and a (finite) processing time
Sm̄ Sequence variable for each machine m̄ ∈ M ; related to all interval variables

IMO{ij ,m,w,p} with m = m̄

Sw̄ Sequence variable for each worker w̄ ∈ W ; related to all interval variables
IMO{ij ,m,w,p} with w = w̄

Using the structures and notation provided by IBM’s CP Optimizer, a compact formulation
of the objective and the special constraint types for WFJSP is as follows.

min max
i∈I

(endOf(IOP{iqi})) . (3.23)
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s.t.

endBeforeStart(IOP{ij}, IOP{ij+1}) . ∀ i ∈ I, j ≤ qi − 1, (3.24)

alternative(IOP{ij}, all IMO{ij ,m,w,p}). ∀ i ∈ I, ij ∈ Oi, (3.25)

noOverlap(Sm) . ∀m ∈M, (3.26)

noOverlap(Sw) . ∀w ∈W. (3.27)

The objective function (3.23) represents the minimization of the makespan. Constraints (3.24)
capture the precedence constraints among the operations of the jobs. Constraints (3.25) guaran-
tee that an eligible processing mode is chosen for each operation. Constraints (3.26) and (3.27)
ensure that each machine and each worker processes at most one operation at a time.

3.5 Computational Study

In order to compare the performance of CPLEX on the MIP model and the CP model, we
performed computational tests on a PC with an Intel R© CoreTM i7-4770 CPU, running at 3.4
GHz, with 16 GB of RAM under a 64-bit version of Windows 8. The models were implemented
in Java using Eclipse (Eclipse IDE for Java Developers (Oxygen 4.7)), where OPL was applied
as a modelling language for the CP model. We used the MIP and CP solvers of IBM ILOG
CPLEX in version 12.7 and the Java Runtime Environment (JRE) in version 1.8.0_191. If not
stated otherwise, the time limit for each call of the CPLEX solvers was set to 3,600 seconds.

Our random testbed is composed of 16 instances sets, denoted by R1–R16 and summarized
in Table 3.3. Each set features 10 instances with the number of jobs |I|, machines |M |, workers

Table 3.3: Random testbed

Set |I| |M | |W | qi |Mij | |Wm| Set |I| |M | |W | qi |Mij | |Wm|

R1 3 2 2 [2, 4] [1, 2] 2 R9 7 3 3 [2, 4] [1, 2] 2
R2 3 2 2 [4, 8] [1, 2] 2 R10 7 3 3 [4, 8] [1, 2] 3
R3 5 2 2 [2, 4] [1, 2] 2 R11 10 5 5 [4, 8] [1, 3] 3
R4 5 2 2 [4, 8] [1, 2] 2 R12 10 5 5 [2, 10] [1, 3] 3
R5 5 3 3 [2, 4] [1, 2] 2 R13 10 5 5 [5, 10] [2, 3] 3
R6 5 3 3 [4, 8] [1, 2] 3 R14 20 10 10 [5, 10] [1, 3] 5
R7 7 2 2 [2, 4] [1, 2] 2 R15 20 10 10 [5, 15] [2, 3] 5
R8 7 2 2 [4, 8] [1, 2] 2 R16 20 10 10 [10, 15] [2, 3] 5

|W |, as well as the number of workers that can operate each machine (denoted by |Wm|, where
Wm refers to the actual set of workers that is determined randomly) being fixed. The testbed was
generated randomly. For each instance, the number of operations qi, i ∈ I, and the number of
eligible machines |Mij | for operations ij ∈ Oi, i ∈ I, were drawn from uniform distributions over
the intervals given in Table 3.3. The process of generating the processing times of the operations
was as follows (cf. Kress et al., 2019). First, auxiliary integer parameters pij were drawn from
a uniform distribution over [10, 100] for all i ∈ I and ij ∈ Oi. Based on these parameters, we
generated varying processing times over the corresponding eligible machines m ∈Mij by drawing
auxiliary integer parameters pmij from uniform distributions over the interval [b0.9·pijc, b1.1·pijc].
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Finally, we incorporated dependencies on workers w ∈ W by drawing integer parameters pm,wij
,

m ∈Mw ∩Mij , from uniform distributions over [b0.9 · pmij c, b1.1 · pmij c]. Here, Mw defines the set
of machines that can be operated by worker w ∈ W . It can easily be constructed based on the
sets Wm, m ∈M .

In order to evaluate our results, we use a lower bound on the makespan introduced by Lei
and Guo (2014), which we simplify to take account of the facts that all jobs are available at
time zero and that |M | ≤ |I| and |W | ≤ |I| for all considered instances. For a given instance of
WFJSP, the bound is defined as follows:

LB := max

max
i∈I

∑
ij∈Oi

pminij

 ,

⌈
P

|M |

⌉
,

⌈
P

|W |

⌉ .

Here, P :=
∑

i∈I
∑

ij∈Oi p
min
ij

. Note that, for the sake of brevity, we do not explicitly state the
concrete instance in the definition of the bound.

Let Inst be a given instance of WFJSP and denote by Cmodelmax (Inst) the (not necessarily
optimal) makespan returned by CPLEX for the CP or the MIP model (model ∈ {CP,MIP})
within the time limit. Then, we define the quality ratio

Qmodel(Inst) := 100 · C
model
max (Inst)− LB

LB

as a measure for the quality of the corresponding solution.

Table 3.4 presents the computational results for the instances of our random testbed. For
each instance set, the table presents information about the average lower bound (column LBavg),
the number of test instances for which a feasible and optimal solution was obtained within the
given time limit (columns “feas.” and “opt.”), the average quality ratios (columns “Qmodelavg ”,
model ∈ {CP,MIP}) and the average runtimes (columns “tavg”). Entries “tl” denote cases in
which the time limit was reached for all instances of the set.

It can be seen that the CP model clearly outperforms the MIP model in its ability to
determine feasible solutions. In fact, it returned a feasible solution for all considered instances.
Moreover, CP is the clear winner with respect to determining optimal solutions, average quality
ratios and runtimes for the small instances in the sets R1–R10. For the sets of large instances
(R11–R16), only one instance could be solved to optimality by using the CP model.

In order to be able to analyze the influence of a varying staffing level (SL), defined as the
ratio of the number of workers and the number of machines, on the performance of the CP solver
for large instances, we ran additional tests. Here, we used modified instance sets R11–R16, where
|W | was decreased before generating the instances to achieve staffing levels of 60% and 80%. The
corresponding results are illustrated in Figure 3.1.

We observe that the average quality ratios decrease for smaller staffing levels.

The above results indicate that heuristic approaches will need to be evaluated and compared
against CP approaches. As an example, we will now analyze one of the most recent metaheuristic
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Table 3.4: Performance of MIP and CP models on random testbed

MIP CP

Set LBavg feas. opt. QMIP
avg tavg [s] feas. opt. QCPavg tavg [s]

R1 204.2 10 10 9.48 0.21 10 10 9.48 0.07
R2 453.2 10 9 7.57 484.23 10 10 7.57 2.77
R3 344.7 10 7 3.84 1415.75 10 10 3.74 5.05
R4 712.2 10 0 6.26 tl 10 3 2.72 2837.9
R5 233.5 10 10 21.26 21.32 10 10 21.26 0.68
R6 473.4 10 1 11.42 3308.13 10 8 7.53 1348.27
R7 485.1 10 0 3.65 tl 10 7 1.93 1328.93
R8 1029.1 3 0 11.32 tl 10 0 2 tl
R9 323.4 10 1 14.19 3264.19 10 9 13.05 366.9
R10 668.2 8 0 23.72 tl 10 0 6.48 tl
R11 563.6 4 0 55.42 tl 10 0 11.01 tl
R12 570.6 1 0 40.63 tl 10 1 12.72 3260.93
R13 664.1 0 0 - - 10 0 11.06 tl
R14 669.5 0 0 - - 10 0 18.55 tl
R15 861.8 0 0 - - 10 0 20.5 tl
R16 1075 0 0 - - 10 0 21.28 tl

approaches, i.e., the knowledge-guided fruit fly optimization algorithm (denoted by KF) by Zheng
and Wang (2016), that the authors find to be “more effective than the existing algorithms.” The
study of Zheng and Wang (2016) is based on two sets of FJSP benchmark instances from the
literature, MK1–M10 (Brandimarte, 1993) and DP1–DP12 (Dauzère-Pérès and Paulli, 1997),
that have been adapted to include worker information by Lei and Guo (2014) by providing the
sets W andMw. Unfortunately, the generation of the processing times is not clearly described in
Lei and Guo (2014), so that (based on the information given by Lei and Guo, 2014) we propose
to draw the processing times pm,wij

, m ∈Mw ∩Mij , from a uniform distribution over the interval
[p̄mij , p̄

m
ij

+ δij ] for all w ∈ W , i ∈ I and ij ∈ Oi. Here, p̄mij is the processing time stated for the
literature instances, and δij is drawn from a uniform distribution over the interval [2, 8].
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Figure 3.1: Staffing level impact (CP model)

For the sake of comparability, we set the time limit for the CP solver to the average (as the
authors initiate multiple runs of their algorithm) runtime of the KF approach as stated in Zheng
and Wang (2016) for each instance. Moreover, we deactivated the parallel processing mode in
the CPLEX CP Optimizer. The computational results are presented in Table 3.5. For each
instance, the table presents information about the lower bound (column LB), the quality ratio
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Table 3.5: Performance of CP model for literature instances

Inst. LB QCP QKFavg tKFavg [s] Inst. LB QCP QKFavg tKFavg [s]

MK1 66 19.7 8.2 3.14 DP1 2881 6.77 11.18 35.23
MK2 65 20 7.69 3.23 DP2 2881 1.8 9.94 35.33
MK3 182 39.01 41 13.44 DP3 2881 1.7 10.65 35.64
MK4 80 35 26.28 5.28 DP4 2862 5.45 13.11 35.78
MK5 295 6.78 9.21 15.11 DP5 2832 2.72 11.43 35.12
MK6 78 62.82 36.9 11.23 DP6 2799 3.93 10.19 34.44
MK7 213 12.68 13.38 10.47 DP7 2843 4.82 27.01 52.31
MK8 488 28.48 19.03 59.22 DP8 2835 1.83 25.22 52.12
MK9 443 20.54 28.16 52.86 DP9 2824 2.51 27.32 52.35
MK10 289 20.42 37.1 49.43 DP10 2840 5.53 26.87 52.56

DP11 2786 4.45 31.21 52.98
DP12 2723 5.77 30.09 53.15

resulting from the CP solver (column “QCP ”) and the average quality ratio (column “QKFavg ”) as
well as the average runtime (column “tKFavg ”) of the KF approach as stated by Zheng and Wang
(2016) for the corresponding similar instance. The results indicate that the CP solver tends to
outperform KF for most instances. This effect is particularly pronounced for the DP instances.

3.6 Conclusion and Future Research

In this paper, we have addressed a flexible job shop scheduling problem that aims to minimize
the makespan and takes account of machine operators with differing skills. We have provided an
overview of the related research and have presented a MIP model and a CP model that we have
then compared by using the standard solvers provided by CPLEX. We found that the CP solver
clearly outperforms the MIP solver for the considered modelling approaches. The CP solver
tends to provide high quality solutions within reasonable time. It was especially interesting
to see that it also tends to outperform a state-of-the-art metaheuristic approach. For future
research, one will therefore have to provide (meta-)heuristics and exact approaches that prove
to be competitive when compared with the use of standard CP solvers. Moreover, detailed
benchmark sets will need to be published so that fair comparisons become possible.
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Abstract

This paper addresses a flexible job shop scheduling problem that takes account of heterogeneous machine
operators and aims to minimize the makespan. We propose to decompose the problem in order to
be able to adapt a neighborhood structure that has formerly shown to perform well when machine
operator restrictions are not considered. Based on this adaption, we develop different variants of filter-
and-fan based heuristic solution approaches. These methods combine a local search procedure with a
tree search procedure. The former procedure is used to obtain local optima, while the latter procedure
generates compound transitions in order to explore larger neighborhoods to overcome these locally optimal
solutions. In a computational study, we show that our solution approaches tend to outperform existing
metaheuristics and that they are competitive when compared with the use of a standard constraint
programming solver.
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4.1 Introduction

The job shop scheduling problem (JSP) is a well-known scheduling setting that has attracted a
lot of attention in the literature (see, e.g., Błażewicz et al., 2007, for an overview). It arises in
traditional manufacturing systems and is composed of a set of jobs and a set of machines. Each
job consists of a set of operations that have to be processed in a predefined order to complete the
job. Moreover, each operation is associated to a machine that must be used for its processing as
well as a corresponding processing time. A machine can process only one operation at a time and
preemption of operations is not permitted. Given these restrictions, the problem is to sequence
the operations on the machines so that all jobs are completed and some performance measure is
optimized. When considering the minimization of the makespan, the JSP is known to be strongly
NP-hard (Lenstra and Rinnooy Kan, 1979).

In the face of large product varieties, short product life cycles, and demand fluctuations,
many manufacturing companies implement manufacturing systems that allow for a quick response
to market changes. These companies oftentimes make use of multi-purpose machines that are
able to process different types of operations (see, e.g., Beach et al., 2000; Jain et al., 2013). This
is taken account of in a generalization of the JSP, which is commonly referred to as the flexible job
shop scheduling problem (FJSP). It was originally introduced by Brucker and Schlie (1990) and
assumes that each operation is associated to a set of eligible machines, so that a feasible schedule
must specify the machines that are used for processing the operations. A recent survey on solution
techniques for the FJSP is provided by Chaudhry and Khan (2016). Usually, a machine needs
to be operated by some machine operator (worker). As a result of the manufacturing flexibility
(and complexity) induced by the use of multi-purpose machines, workers are oftentimes not
qualified for operating all machines or processing all manufacturing operations, so that one has
to take account of a heterogeneous workforce (De Bruecker et al., 2015). We will refer to FJSP
settings that explicitly incorporate workers by WFJSPs. Note, however, that these settings are
sometimes also referred to as dual-resource constrained systems (see, e.g., Treleven, 1989; Xu
et al., 2011). Usually, differing qualifications of workers are embedded into FJSPs by making use
of worker dependent processing times.

4.1.1 Literature Overview

As pointed out by Kress and Müller (2019), most of the literature on WFJSPs is concerned
with metaheuristic solution approaches. When considering makespan minimization, this includes
Xianzhou and Zhenhe (2011) and Peng et al. (2018) (genetic algorithms), Lei and Guo (2014)
and Vallikavungal Devassia et al. (2018) (variable neighborhood search), Yazdani et al. (2015)
(simulated annealing and vibration damping optimization), Zhang et al. (2015) (particle swarm
optimization), Zheng and Wang (2016) (knowledge-guided fruit fly optimization), and Wu et al.
(2018) (hybrid genetic algorithm). Within this stream of research, Vallikavungal Devassia et al.
(2018) and Wu et al. (2018) consider generalized settings with resource recovery constraints
and learning effects of workers, respectively. Paksi and Ma’ruf (2016) analyse the objective
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Table 4.1: Literature overview: basic WFJSPs aiming at makespan minimization

Publication Objective Approach

Kress and Müller (2019) Makespan MIP, CP
Lei and Guo (2014) Makespan Variable neighborhood search
Peng et al. (2018) Makespan Genetic algorithm
Xianzhou and Zhenhe (2011) Makespan Genetic algorithm
Yazdani et al. (2015) Makespan Simulated annealing and vibration damping

optimization, MIP
Zhang et al. (2015) Makespan Particle swarm optimization
Zheng and Wang (2016) Makespan Knowledge-guided fruit fly optimization

Table 4.2: Literature overview: WFJSPs with objectives differing from pure makespan minimization
or under additional constraints

Publication Objective Approach

Gong et al. (2018a) Makespan, total worker cost and
green-production factors

Hybrid genetic algorithm

Gong et al. (2018b) Makespan, maximum workload of
machines and total workload of all
machines

Memetic algorithm

Kress et al. (2019b)a Makespan; Total tardiness Branch-and-cut algorithm, MIP,
Decomposition based heuristic
approaches

Lang and Li (2011) Delivery satisfaction, process cost,
energy consumption, and noise
pollution

Genetic algorithm

Lei and Tan (2016) Makespan and total tardiness Local searchn
Liu et al. (2011) Makespan and production cost Hybrid genetic algorithm
Paksi and Ma’ruf (2016) Total tardiness Genetic algorithm
Vallikavungal Devassia et al.
(2018)b

Makespan Variable neighborhood search,
MIP

Wu et al. (2018)c Makespan Hybrid genetic algorithm
Zhang et al. (2013) Makespan and production cost Hybrid discrete particle swarm

optimization
a : Incorporation of sequence-dependent setup times.
b : Consideration of resource recovery constraints.
c : Consideration of learning effects of workers.

of minimising the total tardiness and apply a genetic algorithm. Kress et al. (2019b) address
a WFJSP that takes account of sequence-dependent setup times. The authors analyse two
objectives, minimising the makespan and minimising the total tardiness. They propose exact
and heuristic decomposition based solution approaches. A few researchers address multiple
objectives for WFJSPs. Examples include Lang and Li (2011), Liu et al. (2011), Lei and Tan
(2016), Zhang et al. (2013), Gong et al. (2018a), and Gong et al. (2018b). Exact approaches
or mixed-integer programming (MIP) or constraint programming (CP) models that are actually
evaluated in computational tests are proposed by only a few authors (Kress and Müller, 2019;
Kress et al., 2019b; Vallikavungal Devassia et al., 2018; Yazdani et al., 2015).

Overviews of the relevant literature are presented in Table 4.1 (basic WFJSPs aiming at
makespan minimization; directly related to the paper at hand) and Table 4.2 (WFJSPs with
objectives other than makespan minimization or under additional constraints).
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4.1.2 Contribution and Overview

In this paper, we address a WFJSP (hereafter referred to as the WFJSP for the sake of simplicity)
with the objective of minimising the makespan. This problem is strongly NP-hard as it extends
the JSP. According to the classical three-field notation by Graham et al. (1979) that was adapted
by Błażewicz et al. (1983) to include additional resource constraints, WFJSP falls into the
category FJ |res1 · 1|Cmax.

Some foundations of this paper are provided in Kress and Müller (2019), where we present a
MIP model as well as a CP based formulation of WFJSP and compare these models by using the
standard solvers provided by IBM ILOG CPLEX. We find “that the CP solver clearly outperforms
the MIP solver for the considered modelling approaches [and that] it also tends to outperform
a state-of-the-art metaheuristic approach” by Zheng and Wang (2016), who claim that their
metaheuristic approach is “more effective than the existing algorithms.” In the paper at hand,
we therefore aim to provide a (meta-)heuristic approach that proves to be competitive when
compared with the use of the standard CP solver provided by CPLEX.

The success of metaheuristic approaches depends on an effective exploration of the solution
space. The use of compound neighborhood structures, as, for example, generated by filter-and-
fan (F&F) methods, has shown to be advantageous for many optimization problems (see Glover,
1998; Rego and Glover, 2002, 2010). Rego and Glover (2010) find that F&F methods “have
been notable for providing robust methods that produce solutions that match or come very close
to matching those produced by the best available methods for the problem classes to which
they have been applied, while requiring solution times that are significantly [. . . ] reduced by
comparison to competing methods.” This has motivated us to develop F&F solution approaches
for WFJSP, which we present in this paper. For the case of the JSP, Rego and Duarte (2009)
provide a F&F approach that performs remarkably well and is solely outperformed by a specific
tabu search (TS) method. We therefore additionally provide a TS benchmark heuristic. Our
solution approaches make use of neighborhood structures that have proven to be successful for the
FJSP (see Mastrolilli and Gambardella, 2000) and a decomposition of WFJSP into a machine
allocation and sequencing component and a worker assignment component (see Kress et al.,
2019b).

The remainder of this paper is structured as follows. In Section 4.2, we provide a formal
definition of WFJSP and we introduce the concept of the solution graph, which we use to
represent solutions of WFJSP. In order to keep this paper self-contained, we then summarize the
CP formulation of Kress and Müller (2019) in Section 4.3. Next, in Section 4.4, we describe our
F&F approaches in detail. An extensive computational study that includes the TS approach is
subject of Section 4.5. The paper closes with a summary in Section 4.6.

4.2 Problem Definition and Representation of Feasible Solutions

Our solution approaches make use of neighborhood functions that are an adaption of the one
presented by Mastrolilli and Gambardella (2000) for the FJSP. The latter function is based on
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the representation of solutions by so called solution graphs. The concept of these solution graphs
is introduced in Section 4.2.2, after having formally defined the WFJSP and the notation used
throughout this article in Section 4.2.1.

4.2.1 Notation and Problem Definition

The WFJSP is defined as follows. A set of I of jobs, |I| = n, a set M of machines, and a set W
of workers are given. Each job i ∈ I is associated with a set of qi operations Oi = {i1, . . . , iqi}.
The sets Oi are assumed to be ordered for all i ∈ I, which relates to the fact that for any pair
of operations ij , ik ∈ Oi with j < k, ij must be completed before the processing of ik may start.
Each operation ij ∈ Oi, i ∈ I, must be processed on exactly one machine out of a non-empty
set of eligible machines Mij ⊆ M . Moreover, an operation ij ∈ Oi of a job i ∈ I can only be
processed on a machine, if exactly one worker out of a non-empty set of eligible workers Wij ⊆W
is assigned to the operation for the entire processing time. Processing times are assumed to
depend on worker and machine assignments. The processing time of an operation ij ∈ Oi of a
job i ∈ I assigned to worker w ∈ Wij on machine m ∈ Mij is denoted by pm,wij

∈ N+ ∪ {∞}.
For each job i ∈ I, each operation ij ∈ Oi, and each eligible machine m ∈ Mij , we assume that
there exists at least one eligible worker w ∈ Wij with a finite processing time pm,wij

. Similarly,
for each eligible worker, we assume that there exists at least one eligible machine with a finite
processing time. The completion time of an operation ij ∈ Oi of job i ∈ I is denoted by Cij .
The completion time of job i ∈ I is denoted by Ci. A job is completed if all of its operations are
completed. Hence, Ci = Ciqi for all i ∈ I.

We assume that all jobs, machines, and workers are available at time zero. The processing of
operations may not be preempted. Furthermore, each machine and each worker can process at
most one operation at a time. The problem is to find a schedule, i.e. an allocation of operations
to machines and workers as well as corresponding sequences and starting times of the operations
on the allocated machines and workers, such that the makespan Cmax := maxi∈I Ci is minimized
subject to the above constraints. We restrict our attention to left-justified schedules (see, e.g.,
Sprecher et al., 1995). That is, whenever considering feasible solutions in the remainder of this
paper, we assume that each operation is started to be processed as early as possible when taking
the allocation and sequencing decisions as given.

4.2.2 Solution Graph

The disjunctive graph model is a well-known and commonly used representation of scheduling
problems and their solutions (see, e.g., Błażewicz et al., 2007). Mastrolilli and Gambardella
(2000) make use of the underlying idea of this model to represent solutions of the FJSP by means
of the so called solution graph, which – in the presence of workers as an additional resource –
can be augmented in a straightforward manner:

• For all jobs i ∈ I, each operation ij ∈ Oi defines a vertex. We denote the resulting vertex
set by V , i.e. V :=

⋃
i∈I Oi.
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• Additional dummy vertices, denoted by 01 and (n+ 1)1, represent the beginning and end
of a schedule. We define D := {01} ∪ {(n+ 1)1}.

• Precedence relations among the operations of the jobs are represented by directed edges of
the set A1. For each job i ∈ I and all pais ij , ij+1 with j ∈ {1, . . . , qi− 1}, A1 includes the
directed edge (ij , ij+1). Additionally, A1 includes dummy edges (01, i1) and (iqi , (n+ 1)1)

for all i ∈ I. The elements of A1 are referred to as precedence edges.

• Based on the given solution of the considered instance of WFJSP, the set A2 of directed
edges includes an edge (ij , kl), if and only if ij is processed immediately before kl on some
machine m ∈M . For each m ∈M , A2 additionally includes dummy edges from vertex 01

to the vertex that corresponds to the first operation that is processed on m and from the
vertex that corresponds to the last operation that is processed on m to vertex (n + 1)1.
For each machine m ∈ M that processes no operation, A2 includes a dummy edge from
vertex 01 to vertex (n+ 1)1. The elements of the set A2 are referred to as machine edges.

• Similarly, the set A3 includes a directed edge (ij , kl), if and only if ij is processed immedi-
ately before kl by some worker w ∈ W . Additional dummy edges are defined in line with
their definition for machine edges. The elements of the set A3 are referred to as worker
edges.

Given some solution of an instance of WFJSP, we denote the corresponding solution graph by
G = (V ∪D,A1∪A2∪A3, µ), where µ : V ∪D → N defines a weight for each vertex of the graph.
Note that, to ease the notation, we do not explicitly refer to the concrete instance and solution
when denoting this graph. Furthermore, note that the solution is infeasible if the corresponding
solution graph contains a cycle. The weight of each dummy vertex of the set D is 0, while the
weights of the other vertices are defined by the processing times of the corresponding operations
according to the machine and worker allocation of the solution. Given an integer δ ∈ {1, 2, 3},
a solution graph G, and an operation ij ∈ V , we denote the unique operation kl ∈ V ∪D with
(kl, ij) ∈ Aδ ((ij , kl) ∈ Aδ) by Pδ(ij) (Sδ(ij)).

It is easy to see that the makespan of a solution of an instance of WFJSP corresponds
to the length of some longest path, also referred as a critical path, from 01 to (n + 1)1 in the
corresponding solution graph. Here, the length of a path is defined as the sum of the vertex
weights of the vertices on the path. Operations that belong to a critical path are referred to as
critical operations. For each operation ij ∈ V ∪D, we define a starting time sij and a tail time qij
in analogy to Mastrolilli and Gambardella (2000). sij corresponds to the time instant at which ij
is started to be processed in the solution and equals the length of a longest path from vertex 01

to ij when excluding the vertex weight of operation ij . qij corresponds to the length of a longest
path from ij to (n + 1)1 without the vertex weight of operation ij . The makespan, as well as
the starting times and tail times of all vertices of the solution graph can easily be computed in
O(|V ∪D|) time by a straightforward variation of Bellman’s labeling algorithm as proposed by
Taillard (1994) for the JSP. An operation ij ∈ V is critical if and only if sij +µ(ij) + qij = Cmax.
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4.3 Constraint Programming Formulation

As outlined above, Kress and Müller (2019) present a CP formulation for WFJSP. It is based
on variables and constraint types provided by the IBM ILOG CPLEX CP Optimizer (see IBM,
2016; Laborie et al., 2018, for an introduction). The CP formulation uses interval variables to
model the start and the end of the processing of the operations. Sequence variables represent the
sequencing decisions, i.e. orderings of interval variables. An overview is given in Table 4.3. Based

Table 4.3: Variables for the CP model as introduced by Kress and Müller (2019)

Variables Definition

IOP{ij} Interval variable for each operation, i.e. for all i ∈ I, ij ∈ Oi
IMO{ij ,m,w,p} Interval variable for each processing mode, i.e. each eligible combination of an operation

ij ∈ Oi of job i ∈ I, a machine, a worker and a (finite) processing time
Sm̄ Sequence variable for each machine m̄ ∈M ; related to all interval variables

IMO{ij ,m,w,p} with m = m̄

Sw̄ Sequence variable for each worker w̄ ∈W ; related to all interval variables IMO{ij ,m,w,p}
with w = w̄

on these variables and the structures and notation provided by IBM’s CP Optimizer, which we
assume the reader to be familiar with, the compact formulation of WFJSP as presented in Kress
and Müller (2019) is as follows.

min max
i∈I

(endOf(IOP{iqi})) . (4.1)

s.t.

endBeforeStart(IOP{ij}, IOP{ij+1}) . ∀ i ∈ I, j ≤ qi − 1, (4.2)

alternative(IOP{ij}, all IMO{ij ,m,w,p}). ∀ i ∈ I, ij ∈ Oi, (4.3)

noOverlap(Sm) . ∀m ∈M, (4.4)

noOverlap(Sw) . ∀w ∈W. (4.5)

The objective function (4.1) represents the minimization of the makespan. Constraints (4.2)
capture the precedence constraints among the operations of the jobs. Constraints (4.3) guarantee
that an eligible processing mode is chosen for each operation. Constraints (4.4) and (4.5) ensure
that each machine and each worker processes at most one operation at a time.

4.4 Filter-and-Fan Approaches

The historical development and basic functionality of F&F approaches is excellently summarized
by Rego and Glover (2010). They characterize F&F methods as multi-stream neighborhood
search strategies that date back to Glover (1998) and were extended by Rego and Glover (2002) as
a method of creating efficient and robust combined neighborhood search strategies. In this sense,
they can be seen as a complement to ejection chain procedures (see also Dorndorf et al., 2008;
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Glover, 1996; Kress et al., 2017, 2019a; Pesch and Glover, 1997, for an introduction to ejection
chain approaches and their applications). On their most general level, F&F approaches combine
two fundamental search strategies that are applied in an alternating manner (see Figure 4.1).
A local search procedure is used to obtain local optima, while a tree search procedure generates

Local Search Procedure

S SLS

Generate transition list Ω during local search

Stop?yes: return best
solution found

no: S := STS

SLS , Ω

S

Tree Search Procedure

SLS

S1
1

S1
2
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Level 2
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η1 = 4, η2 = 2, L = 3
Root

Best (STS)

Generate trial solutions by
applying all transitions ω ∈ Ω to Si

l .
Select the best η2 trial solutions.

Generation of successors of Si
l :

Promising solutionPruned solution

Figure 4.1: Alternating structure of F&F approaches

compound transitions in order to explore larger neighborhoods to overcome these locally optimal
solutions. The tree search procedure essentially corresponds to a beam search approach that
generates multiple paths using a breadth-first search strategy. A F&F method initiates with the
local search procedure that is called on an input solution S and returns a local optimum SLS as
well as a list Ω of transitions (moves or meta-information on moves) associated with the “best”
η0 solutions evaluated within the local search. Upon termination of the local search, the F&F
method switches to the tree search procedure. The nodes of the corresponding search tree in
Figure 4.1 represent feasible solutions that are established by performing compound transitions
to SLS (the root node) based on the transition list Ω. In order to construct the first level of
the tree, the best η1 transitions returned by the local search procedure are applied to SLS . This
results in η1 solutions S1

1 , . . . , S
η1
1 . All other levels l′ = 2, . . . , L of the tree are constructed by

first selecting (marking) the best η1 solutions on the preceding level l = l′ − 1 (filter candidate
list strategy). For each corresponding solution Sil , the procedure then generates a set of trial
solutions by applying all transitions included in Ω and then selecting the best η2 trial solutions to
become elements of level l′ (fan candidate list strategy). This results in a total of η1η2 solutions
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S1
l , . . . , S

η1η2

l on each level l > 1. The tree search terminates as soon as one of the solutions on
some level of the tree (referred to as STS) is better than SLS or when the maximum number L
of levels has been traversed without having found such a solution. In the latter case, the overall
procedure terminates. Otherwise, the local search procedure is called on STS .

4.4.1 Neighborhood Structure

Mastrolilli and Gambardella (2000) construct a neighbor of a given solution of FJSP by moving
an operation, i.e. deleting it from its current machine sequence and inserting it in some other
feasible position on a corresponding (not necessarily different) eligible machine. By making use
of the concept of solution graphs (see Section 4.2.2), they show that the resulting set of potential
neighbors of a solution can be reduced to a specific subset that is guaranteed to include a neighbor
with the lowest makespan. Unfortunately, this result does not immediately carry over to the case
of the WFJSP because the processing times (and therefore the vertex weights of the solution
graph) in the latter problem depend on both the machine and worker allocation. Nevertheless,
we make use of this method as it guarantees the construction of feasible solutions, i.e. solutions
with acyclic solution graphs, when adapted appropriately.

In order to handle the interdependencies between machine and worker allocations, we follow
the main ideas of the hierarchical (decomposition based) approach introduced by Kress et al.
(2019b) for a WFJSP with sequence-dependent setup times. In a first step, their approach solely
takes account of the allocation of operations to eligible machines and the sequencing of these
operations on the machines. The second step then determines a corresponding assignment of
operations to eligible workers as well as the sequences of these operations for each worker. Given
the solution graph G of some feasible solution of WFJSP and an operation ab that we want
to move, we adapt the underlying hierarchical idea as shown in Algorithm 4.1, where we first
delete either all machine edges or all worker edges of the graph (construction of G′ in line 2).
We are left with a graph that solely considers one of the two resources, so that we can directly
apply the ideas of Mastrolilli and Gambardella (2000) in order to construct feasible (with respect
to the resource that has not been deleted as well as the precedence constraints) neighbors and
select a promising candidate (line 4). Finally, we recompute a feasible allocation and sequencing
decision for the remaining resource and update the solution graph accordingly (line 5). This
routine is executed for all eligible machines or workers of operation ab (line 3). It is important
to note that line 4 of Algorithm 4.1 is based on the vertex weights of the input graph, even
though one resource is neglected. Nevertheless, the feasibility of the solutions that correspond
to the graphs constructed in line 5 is implied by the feasibility results presented by Mastrolilli
and Gambardella (2000) because the assignment of workers to operations given an allocation
and sequencing decision for the machines (and similarly an assignment of machines to operations
given the worker decisions) will only cause temporal shifts of the operations on the machines (or
in the worker sequences). Details of Algorithm 4.1 are given in the following sections.
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Input: Solution graph G = (V ∪D,A1 ∪A2 ∪A3, µ) with starting and tail times, operation
ab ∈ V

Output: Set N of neighboring solution graphs, including starting and tail times
1 Initialize N := ∅;
2 Determine γ ∈ {2, 3} (Algorithm 4.2). Set G′ := (V ∪D,A1 ∪Aγ , µ). The starting times and

tail times of the vertices of G′ are set to the ones of the vertices of G;
3 forall m ∈Mab (in case of γ = 2) or w ∈Wab (in case of γ = 3) do
4 Apply an adapted version of the procedure presented by Mastrolilli and Gambardella

(2000) on G′ to determine a set of neighboring solution graphs resulting from moving ab to
machine m (worker w) and select a most promising candidate Ĝ = (V ∪D,A1 ∪ Âγ , µ)
(Algorithm 4.3);

5 Recompute (feasible) set of machine edges (in case of γ = 3) or worker edges (in case of
γ = 2) and add it to Ĝ (Algorithm 4.4). While doing so, redefine vertex weights µ and
compute starting times and tail times of the vertices of Ĝ based on the corresponding
worker and machine assignment;

6 Set N := N ∪ {Ĝ};
7 end

Algorithm 4.1 Generate a set of neighboring solution graphs

4.4.1.1 Determine Set of Edges to be Deleted

In order to determine the set of edges that is deleted from G in line 2 of Algorithm 4.1, we analyse
the completion times of the predecessor operations of the input operation ab with respect to the
edge sets A2 and A3, i.e. operations P2(ab) and P3(ab), as stated in Algorithm 4.2. The basic

Input: Solution graph G = (V ∪D,A1 ∪A2 ∪A3, µ) with starting and tail times, operation
ab ∈ V

Output: Integer γ
1 if sP2(ab) + µ(P2(ab)) > sP3(ab) + µ(P3(ab)) then γ = 2;
2 else if sP2(ab) + µ(P2(ab)) < sP3(ab) + µ(P3(ab)) then γ = 3;
3 else randomly select γ ∈ {2, 3};

Algorithm 4.2 Determine γ

idea is to determine the resource that has the strongest effect on the “delayed” start of ab due to
the sequencing decisions and later delete the edge set that corresponds to the other resource.

Consider an exemplary feasible solution of WFJSP as illustrated in Figure 4.2 as a Gantt
chart. In case of ab = 22 (processed on machine 1 by worker 3) we have P2(ab) = 31 and
P3(ab) = 41, so that Algorithm 4.2 will return γ = 2. Similarly, for ab = 42, the algorithm will
return γ = 3. In case of ab = 32, the algorithm will randomly determine γ ∈ {2, 3}.

4.4.1.2 Determine Neighboring Solution Graph

After having deleted either all machine (if γ = 3) or all worker (if γ = 2) edges from G in line 2
of Algorithm 4.1, we are left with a graph G′ = (V ∪D,A1∪Aγ , µ). Given operation ab and some
machine m ∈Mab (if γ = 2) or worker w ∈Wab (if γ = 3) as selected in line 3 of Algorithm 4.1,
our adaption of the procedure presented by Mastrolilli and Gambardella (2000) is presented in
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Figure 4.2: Exemplary solution of an instance of WFJSP

Algorithm 4.3. For the sake of notational convenience, we denote the resource under evaluation
in the algorithm by θ, i.e. we set θ = m if γ = 2 and θ = w if γ = 3. The algorithm starts by
deleting ab from its current machine (worker) sequence in lines 1–2. The starting time and tail
time of ab is updated accordingly (line 3). Next, in lines 4–12, the algorithm checks potential trial
moves of operation ab to the operation sequence of resource θ. Denote the set of operations that
is processed by resource θ by Qθ (note that this will not include ab, as this operation has been
removed from its sequence) and assume that the elements of this set are ordered in non-decreasing
order of their starting times. The algorithm computes the sets Lθ := {ij ∈ Qθ | µ(ij)+qij > qab}
and Rθ := {ij ∈ Qθ | sij +µ(ij) > sab} (line 4). As shown by Mastrolilli and Gambardella (2000)
for the FJSP, all insertions of ab after the operations of the set Lθ\Rθ and before the operations of
the set Rθ\Lθ result in feasible solutions. As indicated above, this result immediately carries over
to the case of the WFJSP, so that Algorithm 4.3 restricts the construction of potential neighbors
to these insertions. Let ξθ := Qθ \ (Lθ \Rθ) \ (Rθ \Lθ) and assume that the elements of this set
are ordered in non-decreasing order of their starting times (see Figure 4.3). Furthermore, denote

Lθ \Rθ

ξθ[1] ξθ[2] . . . ξθ[|ξθ|]

ξθ Rθ \ Lθ

0 1 2 |ξθ| − 1 |ξθ|
x =

Figure 4.3: Illustration of Qθ

the i-th element of this set by ξθ[i] and define ξθ[|ξθ|+1] to be an operation with smallest starting
time in the set Rθ \ Lθ or, if this set is empty, the dummy operation (n + 1)1. The algorithm
approximates the length of the longest paths from 01 to (n+ 1)1 that include operation ab and
that result from inserting ab at positions x = 0 (immediately before the first operation of ξθ) to
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Input: Solution graph G′ := (V ∪D,A1 ∪Aγ , µ) with starting and tail times (as determined in
line 2 of Algorithm 4.1), operation ab ∈ V , eligible machine m ∈Mab or worker
w ∈Wab (denoted by θ)

Output: Solution graph Ĝ = (V ∪D,A1 ∪ Âγ , µ)

1 Initialize Âγ := Aγ and Ĝ := (V ∪D,A1 ∪ Âγ , µ) with starting and tail times identical to the
ones of G′ (all following deletion, adding, and updating operations are performed on Ĝ);

2 Delete (Pγ(ab), ab) and (ab, Sγ(ab)) from Âγ ;
3 Set sab := sP1

(ab) + µ(P1(ab)) and qab := µ(S1(ab)) + qS1
(ab);

4 Compute Lθ and Rθ;
5 Initialize LP ∗ :=∞ and x∗ := 0;
6 forall potential positions x ∈ {0, . . . , |ξθ|} after Lθ \Rθ and before Rθ \ Lθ do
7 Compute LP (ab, θ, x);
8 if LP (ab, θ, x) < LP ∗ then
9 LP ∗ = LP (ab, θ, x);

10 x∗ = x;
11 end
12 end
13 if x∗ = 0 then
14 Delete an edge (Pγ(ξθ[1]), ξθ[1]) from Âγ ;
15 Add (Pγ(ξθ[1]), ab) and (ab, ξθ[1]) to Âγ ;
16 end
17 else if x∗ = |ξθ| then
18 Delete (ξθ[x

∗], Sγ(ξθ[x
∗])) from Âγ ;

19 Add (ξθ[x
∗], ab) and (ab, Sγ(ξθ[x

∗])) to Âγ ;
20 end
21 else
22 Delete (ξθ[x

∗], ξθ[x∗ + 1]) from Âγ ;
23 Add (ξθ[x

∗], ab) and (ab, ξθ[x
∗ + 1]) to Âγ ;

24 end

Algorithm 4.3 Determine neighboring solution graph
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x = |ξθ| (immediately after the last operation of ξθ) as follows:

LP (ab, θ, x) := pθ,min
ab

+



[1.5]sab + max(pθ,min
ξθ[1] + qξθ[1], qab), if x = 0

max(sξθ[x] + pθ,min
ξθ[x] , sab)+

max(pθ,min
ξθ[x+1] + qξθ[x+1], qab), if 1 ≤ x < |ξθ|

max(sξθ[x] + pθ,min
ξθ[x] , sab) + qab , if x = |ξθ| and |ξθ| > 0.

Here, pm,min
ij

:= minw∈Wij
pm,wij

for all ij ∈ V and m ∈ Mij . Similarly pw,min
ij

:= minm∈Mij
pm,wij

for all ij ∈ V and w ∈ Wij . Algorithm 4.3 selects a position x∗ that results in the shortest
approximate length (lines 5–12) and terminates after having updated the corresponding solution
graph Ĝ (lines 13–24).

4.4.1.3 Recompute Missing Edge Set

Once a neighboring solution graph Ĝ has been selected in line 4 of Algorithm 4.1, we are left
with having to recompute the edge set that has previously been deleted. To do so, we follow a
simple greedy approach that is illustrated in Algorithm 4.4. Given the machine (in case of γ = 2)

Input: Solution graph Ĝ = (V ∪D,A1 ∪ Âγ , µ)

Output: Modified solution graph Ĝ with starting times and tail times, values Cmax and C̄max
1 Initialize Âγ̄ := ∅, where γ̄ ∈ {2, 3} \ γ;
2 Add edge set Âγ̄ to Ĝ (all following adding and updating operations are performed on Ĝ);
3 Set µ(ij) := p

θ(ij),min
ij

, where θ(ij) refers to the resource (specific machine, if γ = 2, or worker, if
γ = 3) that operation ij is currently allocated to, for all ij ∈ V in solution graph Ĝ;

4 Recompute starting times sij of vertices ij ∈ V ∪D in Ĝ (see Section 4.2.2) and set
C̄max := s(n+1)1 ;

5 Assign an eligible worker w ∈Wij (if γ = 2) or machine m ∈Mij (if γ = 3) to each operation
ij ∈ V in non-decreasing order of the starting times determined in line 4 in a greedy manner.
While doing so, update the corresponding vertex weight µ(ij) and starting time sij .
Additionally, define a corresponding worker or machine edge and add it to Âγ̄ ;

6 Recompute tail times qij of vertices ij ∈ V ∪D in Ĝ (see Section 4.2.2) and set Cmax := s(n+1)1 ;

Algorithm 4.4 Recompute missing edge set

or worker allocation (in case of γ = 3) of the input solution graph Ĝ, it first updates the weights
of the vertices ij ∈ V to the values pθ(ij),min

ij
(line 3), where θ(ij) refers to the specific resource (a

machine, if γ = 2, or a worker, if γ = 3) that operation ij is currently allocated to. The starting
times of the vertices are recomputed accordingly (line 4). The vertices ij ∈ V are then traversed
in non-decreasing order of these starting times and are allocated to an eligible resource (a worker,
if γ = 2, or a machine, if γ = 3) in a greedy manner (line 5). That is, the resource is chosen such
that the resulting completion time of the corresponding operation is as small as possible, given
all previous resource allocation decisions. Based on the resource allocation, the vertex weight
and starting time of the corresponding operation may change, so that these values are updated
to their correct values. The worker or machine edge that corresponds to the allocation decision
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is added to the edge set of the solution graph. Finally, we are left with having to compute the
tail times of the vertices of the solution graph (line 6).

4.4.1.4 Neighborhood Definitions

Based on the above deliberations, we define three different neighborhoods of some solution graph
G. The first neighborhood, denoted by N1(G), corresponds to the union of the sets returned by
Algorithm 4.1 when being called for all critical operations of G. Similarly, N2(G) is constructed by
calling the algorithm for all non-critical operations. Finally, we define a neighborhood N3(G) that
is somewhat similar to a neighborhood generated by traditional swap moves. It is constructed by
calling a modification of Algorithm 4.1 on all critical operations ab ∈ V of G. This modification
executes the loop of lines 3–7 for all eligible machines or workers that are not identical to the
one, say resource θ, that processes the input operation ab in the input solution graph. After
having executed line 5 and thus (potentially) having moved ab to some other resource, say θ′,
the modified algorithm once more deletes all machine or worker edges as in line 2, i.e. without
recomputing γ, and then constructs all neighboring solution graphs that result from moving some
operation kl 6= ab on θ′ to resource θ (if eligible) in analogy to lines 4 and 5. All these graphs
are then added to the set N as in line 6 of Algorithm 4.1.

4.4.2 Details of the Filter-and-Fan Algorithms

In this section, we present the details of all elements of our F&F approaches. As indicated above,
these approaches make use of multiple neighborhood definitions. Within the approaches, as also
suggested by He et al. (2016) and Rego and Duarte (2009), these neighborhoods will successively
be locked and unlocked (neighborhood switching).

To ease the notation in the remainder of this section, we will denote the makespan of a
solution S by using an additional label, i.e. S̈. Furthermore, we will sometimes refer to a solution
graph by its corresponding solution and vice versa.

4.4.2.1 Constructive Procedure

In line with our deliberations in Section 4.4.1, we make use of the hierarchical approach of
Kress et al. (2019b) in order to construct a first feasible solution S (and its solution graph)
of a given instance of WFJSP. Hence, we first allocate all operations to eligible machines and
make the corresponding sequencing decisions without considering the workers. Here, we apply
a priority-rule based heuristic proposed by Kress et al. (2019b) (see therein for details; setup
times can easily be neglected) that follows an algorithmic idea of Giffler and Thompson (1960)
for the classical JSP. Basically, this heuristic iteratively allocates operations that can start being
processed at the respective point of time with respect to all corresponding precedence constraints.
Among all operations that compete for the same machine in some iteration, exactly one operation
is chosen based on the most work remaining (MWKR) priority rule. Given the corresponding
solution graph that solely includes precedence and machine edges, our constructive procedure
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then proceeds in a greedy manner as in Algorithm 4.4 in order to generate the missing worker
edges.

4.4.2.2 Transition List

The transition list Ω generated within the local search procedure is a crucial component of
any F&F approach. As defined above, it contains information regarding the “best” η0 solutions
evaluated within the local search (or all solutions, if less than η0 solutions have been evaluated).
Usually, the list contains concrete moves that have been used to generate these solutions, so
that it is referred to as the move list (see, e.g., Rego and Duarte, 2009). In our case, however,
we store meta-information rather than concrete moves, because the interdependency of machine
and worker allocations in the WFJSP causes classical moves to be not applicable or result in
infeasible solutions within the tree search procedure more often than the use of meta-information
based transitions.

We define a transition ω to include information on the operation ab ∈ V that serves as an
input of Algorithm 4.1 when generating a neighboring solution, the corresponding value of γ
determined in line 2 and the resource θ that the operation ab is moved to in line 4, a boolean
value swap that indicates whether or not the transition refers to a solution generated when
using neighborhood definition N3 (one for yes, zero for no), as well as the objective function
values Cmax and C̄max returned by the final call of Algorithm 4.4 in the course of generating the
solution. Thus, we denote a transition ω by a tuple (ab, γ, θ, swap,Cmax, C̄max). The value Cmax
defines the quality of the transition. C̄max is used as a tie-breaker when comparing transitions
with identical Cmax.

In order to apply a transition ω to a solution within the tree search procedure, we call a
modified version of Algorithm 4.1 with input operation ab, where γ is fixed to the given value
and where the loop 3–7 is executed solely for resource θ. In case of swap = 1, we additionally
incorporate the modifications highlighted in Section 4.4.1.4, where kl is additionally fixed to the
operation with the smallest starting time that is processed on resource θ′ and is eligible to be
processed on resource θ. If no such operation exists, the transition is considered non-applicable.
As in case of transitions, the corresponding values Cmax and C̄max are used as a quality measure
of the solution.

4.4.2.3 Local Search

Our local search approach uses a best-fit strategy with a predefined neighborhood operator
φ ∈ {1, 2, 3} (corresponding to neighborhood Nφ) on an input solution S. The transition list Ω

of length η0 (or less, if less neighbors have been evaluated) is generated during runtime of the
procedure as illustrated in Algorithm 4.5.

4.4.2.4 Tree Search Procedure

Our tree search procedure is outlined in Algorithm 4.6. It follows the main principles of tree
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Input: Solution S, parameters η0 and φ
Output: Solution SLS , transition list Ω

1 Initialize Ω := ∅, Ωtemp := ∅, and SLS := S;
2 forall critical (if φ ∈ {1, 3}) or non-critical (if φ = 2) operations ab ∈ V of the solution graph

of S do
3 Call (modified, if φ = 3) Algorithm 4.1 to determine the set N of neighboring solution

graphs;
4 Insert the transitions corresponding to the elements of N into Ωtemp;
5 if one of the elements of N has a smaller makespan than SLS then update SLS to the best

solution corresponding to these elements;
6 end
7 if S̈LS < S̈ then set S := SLS and go to line 2;
8 Insert the best max{η0, |Ωtemp|} transitions of Ωtemp into Ω;

Algorithm 4.5 Local search procedure

Input: Solution SLS , transition list Ω, parameters η0, η1, η2, L, and φ
Output: Solution STS

. Create first level of the tree (l = 1)
1 Initialize l := 1 and an empty tabu list;
2 Construct solutions of the first level of the tree by applying (if applicable) the η1 best (or all, if

there exists less than η1) transitions included in Ω to SLS . Mark all of these solutions;
3 If no solution was generated in line 1, call Algorithm 4.7 to generate at most η1 alternative

solutions (and update Ω accordingly). Mark all of these solutions. If no solution is generated,
terminate the procedure and return STS := SLS ;

4 Initialize STS with the best solution generated in lines 2 and 3;
5 if S̈TS < S̈LS then terminate the procedure;
. Create further levels of the tree (1 < l ≤ L)

6 forall marked solutions on the current level l do
7 Apply all transitions in Ω (if applicable) to obtain potential trial solutions for the next level

l + 1. Among these solutions, discard all but the best η2 candidates, the transitions of
which are non-tabu or the makespan of which is smaller than S̈LS (aspiration criterion). If
there are less than η2 corresponding candidates, call Algorithm 4.7 to generate additional
solutions (and update Ω accordingly), until a total of at most η2 solutions has been
constructed;

8 end
9 Initialize S∗l+1 with the best solution generated in loop 6–8. If no solution has been generated,

terminate the procedure;
10 if S̈∗l+1 < S̈TS then set STS := S∗l+1;
11 if S̈TS < S̈LS then terminate the procedure;
12 Mark the best η1 (or all, if there exists less than η1) trial solutions on level l + 1;
13 Update the tabu list;
14 Delete the worst max{0, |Ω| − η0} transitions from Ω;
15 if l < L then set l := l + 1 and go to line 6;
16 else exit the procedure;

Algorithm 4.6 Tree search procedure
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search procedures within F&F approaches described above and uses a neighborhood operator
φ ∈ {1, 2, 3} as an input parameter. The procedure is such that it generates all solutions of
a given level, before it potentially terminates (lines 5, 11, and 15). Additionally, note that it
uses a global tabu list (starting with the generation of the second level) that solely contains
operations ij ∈ V . If the tuple that defines some transition ω includes an operation of the tabu
list and if the aspiration criterion (new best solution) is not met, the corresponding solution is
discarded in line 7. The tabu list is updated in line 13. Here, the operations that correspond to
the transitions that were used when generating the η1 trial solutions marked in line 12 are added
to the list. Moreover, if the length of the tabu list exceeds some threshold (tabu length), the
algorithm removes entries of the list in a first-in-first-out manner, until the tabu length is met.
The tabu length is dynamically updated within the tree search. When generating level l > 1, it
is set to the average number of critical (in case of φ ∈ {1, 3}) or non-critical (in case of φ = 2)
operations of all marked solutions of the previous level l − 1.

Algorithm 4.6 includes details on how to handle situations where less than η1 or η2 transitions
or solutions are available in the corresponding steps of a F&F approach. The algorithm, for
instance, calls Algorithm 4.7 in lines 3 and 7 to potentially generate additional solutions as
well as the corresponding transitions based on alternative neighborhood operators. Note that

Input: Solution S, transition list Ω, parameters λ (number of solutions to be determined) and
φ

Output: Set N̄ of solutions including the corresponding transitions, transition list Ω

1 Initialize N̄ := ∅ and Ñ := ∅;
2 Initialize alternative neighborhood operators Φ := {1, 2, 3} \ {φ};
3 Randomly select operator φ̄ ∈ Φ. Set Φ := Φ \ φ̄;
4 forall critical (if φ̄ ∈ {1, 3}) or non-critical (if φ̄ = 2) operations ab ∈ V of the solution graph

of S do
5 Call (modified, if φ̄ = 3) Algorithm 4.1 to determine the set N of neighboring solution

graphs. Add all of the corresponding solutions to the set Ñ ;
6 end
7 Select the best min{λ, |Ñ |} solutions from Ñ , add these solutions to N̄ , add the corresponding

transitions to Ω;
8 if |N̄ | < λ then
9 set λ := λ− |N̄ |, Ñ := ∅;

10 if |Φ| > 0 then go to line 3;
11 else exit the procedure;
12 end
13 else exit the procedure;

Algorithm 4.7 Generate alternative neighbors

Algorithm 4.7 potentially alters the transition list Ω, so that Algorithm 4.6 updates this list
in line 14 in order to balance the computational effort and to only keep the most promising
transitions.
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4.4.2.5 Filter-and-Fan Framework

Our overall F&F framework including neighborhood switching is presented in Algorithm 4.8.
It consists of two phases, the initialization phase and the filter-and-fan procedure. The former

Input: Instance Inst of WFJSP, parameters η0, η1, η2, and L
Output: Solution S∗

. Initialization phase
1 Determine a feasible solution S of Inst with the constructive procedure described in

Section 4.4.2.1 and initialize S∗ := S;
2 Unlock all neighborhood operators in the specific order {1, 3, 2};
. Filter-and-fan procedure

3 Get the first unlocked neighborhood operator φ;
4 Determine SLS and Ω by calling Algorithm 4.5 on solution S with operator φ. ; . Local

search
5 if S̈LS < S̈∗ then set S∗ := SLS and unlock all neighborhood operators in the specific order
{1, 3, 2};

6 if |Ω| < η0 then modify Ω by calling Algorithm 4.7 on SLS with λ := η0 − |Ω|;
7 Determine STS by calling Algorithm 4.6 on SLS with transition list Ω and operator φ. ; . Tree

search
8 if S̈TS < S̈∗ then set S∗ := STS and unlock all neighborhood operators in the specific order
{1, 3, 2};

9 else if S̈TS ≥ S̈LS then lock current neighborhood operator φ;
10 if there is at least one unlocked neighborhood operator then set S := STS and go to line 3;
11 else exit the procedure;

Algorithm 4.8 Filter-and-fan framework

phase makes use of the constructive procedure described in Section 4.4.2.1 (line 1) to determine
a feasible solution. It furthermore unlocks all neighborhood operators (line 2) in a specific order.
It is important to note that the corresponding get-procedure (line 3) will always consider this
ordering. An operator is locked, if a call of the tree search procedure does not improve its input
solution (line 9). Similarly, all operators are unlocked, whenever the overall best solution S∗ is
improved (lines 5 and 8). The filter-and-fan procedure calls the local search procedure (line 4)
and the tree search procedure (line 7) in an alternating manner. This process is repeated until all
neighborhood operators are locked (line 10). If the transition list Ω includes less than η0 elements
before executing a tree search, the framework calls Algorithm 4.7 to potentially determine more
transitions.

4.4.2.6 A Modified Filter-and-Fan Procedure

As described above, F&F procedures rely on transition lists that are generated during calls of
a local search procedure and that are later globally applied in a tree search procedure. We will
additionally consider a variant of our F&F framework that makes local decisions within the tree
search procedure. Our corresponding modifications are as follows. Algorithm 4.5 (local search)
does not compute a transition list. It solely returns a local optimum. Therefore, in Algorithm 4.6
(tree search), whenever generating the successors of some solution S with solution graph G in
the tree, we randomly select η1 (adaption of line 2) or η2 (adaption of line 7) solutions from
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the neighborhood N1(G) (the other neighborhood operators are not used in the tree search)
instead of using a transition list. Hence, we make use of the concrete characteristics, i.e. the
critical operations, of S, rather than relying on information generated during local search. We
additionally do not make use of Algorithm 4.7 in our modified F&F framework.

4.5 Computational Study

In order to assess the performance of our F&F approaches, we conducted extensive computational
tests. They were performed on a PC with an Intel R© CoreTM i7-4770 CPU, running at 3.4 GHz,
with 16 GB of RAM under a 64-bit version of Windows 8. All algorithms were implemented in
Java (JRE 1.8.0_191), using Eclipse (Eclipse IDE for Java Developers, Oxygen 4.7). We used
IBM’s Optimization Programming Language (OPL) to implement the CP model and applied the
ILOG CPLEX CP Optimizer in version 12.7 as a CP solver.

In total, we implemented four approaches as illustrated in Table 4.4. Our TS benchmark

Table 4.4: Algorithms

Abbreviation Algorithm Reference

FaF F&F framework Section 4.4.2.5
FaFM Modified F&F framework Section 4.4.2.6
TS Tabu search procedure Section 4.5
CPA IBM’s CP solver on the CP model of WFJSP Section 4.3

heuristic is presented in Algorithm 4.9. All elements of Algorithm 4.9 are in line with the setup
of our F&F framework. It uses neighborhood switching and the structure of the tabu list (line
11) is identical to the one used in Algorithm 4.6. The tabu length is dynamically updated. It
is set to the average number of critical (in case of φ ∈ {1, 3}) or non-critical (in case of φ = 2)
operations of the current solution S. The input parameter τ specifies the termination criterion
of the subroutine of lines 4–13.

The setup of the algorithms’ parameters was derived in preliminary computational tests on
two sets (small and large) of randomly generated test instances with a maximum number of 10
(small) or 30 (large) jobs, and a maximum number of 5 (small) or 25 (large) operations per job.
In order to balance the trade-off between the solution quality and runtime over all instances, we
set η0 = 40, η1 = 20, η2 = 10 and L = 15 for FaF, η1 = 15, η2 = 25 and L = 300 for FaFM, and
τ = 50 for TS.

Thr remainder of section is split into two parts. In the first part, we analyse the performance
of our F&F approaches (FaF and FaFM) on randomly generated test instances when compared
with TS (as a benchmark heuristic using the same neighborhood structure) and CPA (as a
standard solver benchmark). In the second part, we make use of benchmark instances from the
literature in oder to compare the performance of our heuristics with existing metaheuristics from
the literature. All test instances are available in supplementary files that accompany this paper
(https://doi.org/10.6084/m9.figshare.8082059).

https://doi.org/10.6084/m9.figshare.8082059
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Input: Instance Inst of WFJSP, parameter τ
Output: Solution S∗

. Initialization phase
1 Determine a feasible solution S of Inst with the constructive procedure described in

Section 4.4.2.1 and initialize S∗ := S and STBS := S;
2 Unlock all neighborhood operators in the specific order {1, 3, 2} and initialize an empty tabu

list;
. Tabu search phase

3 Get the first unlocked neighborhood operator φ, clear tabu list, and set NoImprCounter := 0;
4 forall critical (if φ ∈ {1, 3}) or non-critical (if φ = 2) operations ab ∈ V of the solution graph

of S do
5 Call (modified, if φ = 3) Algorithm 4.1 to determine the set N of neighboring solution

graphs;
6 Discard all elements of N , where the corresponding transition from S is tabu if their

makespan is not smaller than S̈∗ (aspiration criterion);
7 Select the best solution SNBS among the remaining solutions in N . If no solution remains,

i.e. if N = ∅, lock current neighborhood operator φ and go to line 16;
8 end
9 if S̈NBS < S̈TBS then set STBS := SNBS and NoImprCounter := 0;

10 else set NoImprCounter := NoImprCounter + 1;
11 Update the tabu list;
12 Set S := SNBS ;
13 if NoImprCounter < τ then go to line 4;
14 else if S̈TBS < S̈∗ then set S∗ := STBS and unlock all neighborhood operators in the specific

order {1, 3, 2};
15 else lock current neighborhood operator φ;
16 if there is at least one unlocked neighborhood operator then set S := STBS and go to line 3;
17 else exit the procedure;

Algorithm 4.9 Tabu search heuristic
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4.5.1 Random Testbed

Our random testbed is composed of 15 instances sets, denoted by wfjsp1–wfjsp15. Each set
represents a different scenario and features 10 randomly generated instances with the parameter
ranges illustrated in Table 4.5. The numbers of jobs, machines, and workers are fixed for the

Table 4.5: Parameters of random testbed

Inst. set |I| |M | |W | qi |Mij | |Wm|

wfjsp1 5 3 3 [2, 4] [1, 2] 2
wfjsp2 7 3 3 [2, 4] [1, 2] 2
wfjsp3 10 5 5 [2, 4] [1, 3] 3
wfjsp4 10 5 5 [2, 10] [1, 3] 3
wfjsp5 15 5 5 [5, 10] [2, 3] 3
wfjsp6 15 5 5 [8, 10] [2, 3] 3
wfjsp7 20 10 10 [5, 10] [1, 3] 5
wfjsp8 20 10 10 [5, 15] [2, 3] 5
wfjsp9 30 15 15 [5, 10] [2, 5] 8
wfjsp10 30 15 15 [10, 15] [3, 5] 8
wfjsp11 15 5 4 [8, 10] [2, 3] 3
wfjsp12 20 10 8 [5, 10] [1, 3] 5
wfjsp13 20 10 8 [5, 15] [2, 3] 5
wfjsp14 30 15 12 [5, 10] [2, 5] 8
wfjsp15 30 15 12 [10, 15] [3, 5] 8

instances of each set. The number of operations qi was drawn from uniform distributions over the
intervals given in the table for all jobs i ∈ I. Similarly, the eligible machines Mij for operations
ij ∈ Oi of jobs i ∈ I were randomly determined based on a random generation of their number
|Mij |. The sets of eligible workers for each operation were generated indirectly by iterating over
all machines m ∈M and randomly generating a subset of workers (denoted by Wm in Table 4.5)
of a given size that is assumed to be able to process the respective machines. The processing
times were then generated as follows (cf. Kress et al., 2019b). First, auxiliary integer parameters
pij for all jobs i ∈ I and operations ij ∈ Oi were drawn from uniform distributions over the
interval [10, 100]. Based on these parameters, we constructed varying processing times over the
corresponding eligible machinesm ∈Mij by drawing integer values pmij from uniform distributions
over [b0.9 · pijc, d1.1 · pije]. In the last step, we incorporated dependencies on the workers w ∈W
by drawing integer values pm,wij

from uniform distributions over [b0.9 · pmij c, d1.1 · pmij e] for all
m ∈ Mw ∩Mij , where Mw denotes the set of machines that worker w ∈ W may process. It
follows directly from the sets Wm for all m ∈ M . All remaining processing times were set to
infinity. Note that the basic parameters of instance sets wfjsp6–wfjsp10 and wfjsp11–wfjsp15
differ solely in the staffing levels, i.e. in the ratio of the number of workers and the number of
machines. The staffing level is 1 for sets wfjsp6–wfjsp10 and 0.8 for sets wfjsp11–wfjsp15.

Due to the non-deterministic elements of FaF, FaFM and TS, we ran these algorithms five
times on each instance. CPA was run once on each instance with a time limit 3,600 seconds. All
calls of each algorithm returned a feasible solution. For some given instance and some run of
algorithm FaF, FaFM, or TS, we measure the quality of the solution returned by the algorithm
with the quality ratio 100 · (Cmax − CCPA

max )/CCPA
max , where Cmax and CCPA

max denote the makespan
of the solution determined by the heuristic and CPA, respectively.
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The computational results are presented in Table 4.6. For each instance set, the table

Table 4.6: Performance of the heuristic approaches on random testbed

CPA FaF FaFM TS

Inst. set opt. [%] tavg [s] Qbest Qavg tavg [s] Qbest Qavg tavg [s] Qbest Qavg tavg [s]

wfjsp1 100 0.91 0.22 0.7 0.16 0.11 0.64 0.25 0.35 1.32 0.02
wfjsp2 90 374.27 0.78 1.38 0.29 0.35 0.84 0.35 0.59 1.42 0.03
wfjsp3 90 1034.58 2.21 3.93 0.57 1.52 2.38 0.69 2.57 4.13 0.06
wfjsp4 10 3272.8 3.88 5.61 2.85 2.33 3.37 3.6 3.74 5.49 0.66
wfjsp5 - tl 1.51 2.91 24.81 2.51 3.27 17.68 2.54 3.44 7.42
wfjsp6 - tl 1.46 2.38 41.41 1.97 2.57 22.93 1.85 2.76 10.5
wfjsp7 - tl 6.6 8.77 19.18 1.5 3.02 18.3 4.9 7.45 7.36
wfjsp8 - tl 6.67 8.21 45.39 2.98 4.2 34.28 6.18 7.74 21.79
wfjsp9 - tl 3.61 4.67 70.8 1.45 2.22 33.82 3.53 4.48 32.19
wfjsp10 - tl 3.51 4.03 266.23 1.63 2.33 99.22 3.19 3.77 136.94
wfjsp11 - tl 0.61 1.55 56.57 0.83 1.34 31.01 1.12 2.38 17.86
wfjsp12 - tl 2.48 3.97 22.52 1.24 1.92 22.34 3.49 4.27 10.34
wfjsp13 - tl 2.95 3.81 49.82 1.46 2.11 46.87 3.2 3.81 31.84
wfjsp14 - tl 2.27 2.88 84.04 1.81 2.32 45.48 2.95 3.43 47.91
wfjsp15 - tl 2.05 2.64 349.33 1.38 2.05 116.04 2.4 2.81 295.86

presents information about the percentage of test instances that were solved to optimality with
CPA within the time limit (column “opt.”), the average quality ratios of the heuristic approaches
over all runs and all instances of the set (columns “Qavg”), the average values of the best quality
ratios among the five runs of the heuristics for each instance of the set (columns “Qbest”), as well
as the average runtimes (columns “tavg”) of the algorithms. Entries “tl” indicate that the time
limit was reached by CPA for all instances of the set. Bold entries highlight the best heuristic
approaches with respect to the quality ratios.

We find that CPA is able to determine optimal solutions only for the small instances of
the sets wfjsp1–wfjsp4 within the time limit. For instance sets wfjsp1–wfjsp3, CPA solves the
majority of instances to optimality. Here, all heuristics provide high quality solutions. In general,
however, both F&F approaches tend to outperform TS. Moreover, it can be concluded that FaFM
provides the overall best performance among the heuristics with respect to the solution quality.
This effect is particularly pronounced for instances of larger size. The average computational
times of the F&F approaches are quite similar, except for the largest instance sets (wfjsp9–
wfjsp10 and wfjsp14–wfjsp15), where FaFM terminates faster than FaF. Based on these results,
it can be concluded that it certainly pays off to locally decide on the transitions applied within
the tree search procedure. Finally, when comparing the results for instances wfjsp11–wfjsp15 and
wfjsp6–wfjsp10, we observe that smaller staffing levels tend to result in smaller quality ratios.

It is interesting to additionally compare the performance of CPA when the time limit for
some instance is set to the average time needed by the five corresponding calls of FaFM and
when the parallel processing mode in the CPLEX CP Optimizer is deactivated for the sake of
comparability. This is subject of Table 4.7, where quality ratios are determined in relation to the
previous CPA calls. We observe that in this setting, i.e. when time becomes a limiting factor as
it is, for example, often the case in rolling horizon based planning approaches, the standard CP
solver provides feasible solutions for all considered instances. However, FaFM clearly outperforms
the standard solver. This provides first evidence for the fact that FaFM may also outperform
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Table 4.7: Comparison of FaFM and CPA with FaFM-based time limit

CPA FaFM

Inst. set Qavg Qbest Qavg tavg [s]

wfjsp1 0.03 0.11 0.64 0.25
wfjsp2 0.89 0.35 0.84 0.35
wfjsp3 4.94 1.52 2.38 0.69
wfjsp4 5.95 2.33 3.37 3.6
wfjsp5 4.32 2.51 3.27 17.68
wfjsp6 3.48 1.97 2.57 22.93
wfjsp7 7.46 1.5 3.02 18.3
wfjsp8 3.63 2.98 4.2 34.28
wfjsp9 3.79 1.45 2.22 33.82
wfjsp10 0.93 1.63 2.33 99.22
wfjsp11 3.58 0.83 1.34 31.01
wfjsp12 4.28 1.24 1.92 22.34
wfjsp13 3.41 1.46 2.11 46.87
wfjsp14 5.17 1.81 2.32 45.48
wfjsp15 2.14 1.38 2.05 116.04

state-of-the-art metaheuristics from the literature.

4.5.2 Literature Instances

In order to compare the performance of our approaches with previously published algorithms,
we make use of benchmark instances provided by Lei and Guo (2014), who extend two FJSP
benchmark sets with worker related information. This includes ten instances (MK1–MK10) of
the set by Brandimarte (1993) with 10 to 20 jobs, 4 to 15 machines, 3 to 15 operations per
job, 2 to 6 eligible machines for each operation, and processing times that range from 1 to
20 time units. Moreover, this includes twelve instances (DP1–DP12) of the set by Dauzère-
Pérès and Paulli (1997) with 10 to 15 jobs, 5 to 8 machines, and 15 to 25 operations per job.
The set of eligible machines of the operations of the instances within this latter set has been
randomly constructed, by assuming that each machine is eligible with a 0.1 to 0.5 probability.
The processing times range from 10 to 100 time units. The worker related information of these
instances provided by Lei and Guo (2014) is summarized in Table 4.8. In order to keep the

Table 4.8: Worker related information of the literature instances (Lei and Guo, 2014)

Literature instance |W | Mw

MK1–MK2 4 M1 = {1, 3, 5}, M2 = {2, 4, 5}, M3 = {1, 4, 6}, M4 = {2, 3, 6}
MK3–MK4; DP7–DP12 6 M1 = {1, 5}, M2 = {2, 4}, M3 = {1, 4, 6}, M4 = {2, 3, 6, 7}, M5 = {6, 7, 8}, M6 = {5, 8}
MK5 3 M1 = {1, 3, 4}, M2 = {2, 4}, M3 = {1, 2, 3}
MK6,MK10 8 M1 = {1, 8, 10}, M2 = {2, 7, 11}, M3 = {3, 4, 6, 11}, M4 = {2, 9, 12, 13},

M5 = {6, 7, 8, 15}, M6 = {5, 8, 10}, M7 = {4, 9, 14, 15}, M8 = {1, 3, 10, 14}
MK7; DP1–DP6 4 M1 = {1, 3, 5}, M2 = {2, 4}, M3 = {3, 4}, M4 = {1, 2, 5}
MK8–MK9 6 M1 = {1, 3, 5}, M2 = {2, 4, 9}, M3 = {3, 4, 8, 10}, M4 = {1, 7, 9},

M5 = {5, 6, 7}, M6 = {2, 4, 8, 10}

notation simple, we will not change the labels of the augmented instance sets, and refer to them
by MK1–MK10 and DP1–DP12. Table 4.8 includes information on the number of workers and
the sets of machines that can be operated by the workers. Unfortunately, the generation of the
processing times is only very briefly summarized by Lei and Guo (2014). Moreover, the instances
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are not available publicly. Hence, based on the related information given by Lei and Guo (2014),
we made use of the following procedure. For all workers w ∈ W , all operations ij ∈ Oi of jobs
i ∈ I, and all m ∈Mw ∩Mij , we drew the processing times from a uniform distributions over the
intervals [p̄mij , p̄

m
ij

+ δij ], where p̄mij are the original processing time stated by Brandimarte (1993)
or Dauzère-Pérès and Paulli (1997), and the values δij were drawn from a uniform distributions
over the interval [2, 8]. All remaining processing times were set to infinity.

With respect to the relevant metaheuristic algorithms that have been presented in the liter-
ature (see Section 4.1.1, Table 4.1), Peng et al. (2018) and Xianzhou and Zhenhe (2011) provide
only basic case studies or examples in order to evaluate their approaches. Zhang et al. (2015)
and Yazdani et al. (2015) do not provide detailed information on their test instances. Thus, we
can only compare our approaches with the variable neighborhood search approach (denoted by
VNS) by Lei and Guo (2014) and the knowledge-guided fruit fly optimization algorithm (denoted
by KF) by Zheng and Wang (2016). As Zheng and Wang (2016) claim that KF outperforms
“existing algorithms” (including VNS), this is a comparison with the state-of-the-art. Both, Lei
and Guo (2014) and Zheng and Wang (2016), make use of the above benchmark instances (with
potentially slightly different processing times) and present detailed computational results derived
on a computer comparable to ours.

In order to evaluate our results, we use a lower bound on the makespan introduced by Lei
and Guo (2014), which we simplify to take account of the facts that all jobs are available at
time zero and that |M | ≤ |I| and |W | ≤ |I| for all considered instances. For a given instance of
WFJSP, the bound is defined as follows:

LB := max

max
i∈I

∑
ij∈Oi

pmin
ij

 ,

⌈
P

|M |

⌉
,

⌈
P

|W |

⌉ .

Here, pmin
ij

:= minm∈Mij
pm,min
ij

(see Section 4.4.1.2) for all i ∈ I, ij ∈ Oi, and P :=∑
i∈I
∑

ij∈Oi p
min
ij

. Note that, for the sake of brevity, we do not explicitly state the concrete
instance in the definition of the bound.

As in the previous section, we initiated five runs of the heuristics FaF, FaFM, and TS on
each instance. Moreover, we ran CPA with the FaFM-based time limit as introduced in the
context of Table 4.7. All calls of the algorithms returned feasible solutions. As before, we
measure the quality of a solution with makespan Cmax with the corresponding quality ratio
100 · (Cmax−LB)/LB. The computational results are presented in Table 4.9. The table includes
information on the best (columns “Qbest”) and the average (columns “Qavg”) quality ratios over all
calls of some algorithm on the respective instance, as well as the average runtime of the heuristic
approaches (columns “tavg”). As mentioned above, the values for KF and VNS are based on the
values (i.e. lower bounds, makespan, runtime) reported by the respective authors. Nevertheless,
as our process of generating processing times mimics their procedure as close as possible, the
lower bounds stated by these authors only slightly differ from the ones in the table, so that our
results can be utilised for detecting tendencies and first insights on the relative performance of
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Table 4.9: Performance of heuristic approaches on literature instances

CPA FaF FaFM TS KF VNS

Inst. LB Qbest Qbest Qavg tavg [s] Qbest Qavg tavg [s] Qbest Qavg tavg [s] Qavg tavg [s] Qavg tavg [s]

MK1 66 18.2 10.6 12.7 2.9 10.6 11.8 4.2 12.1 15.5 0.5 8.2 3.1 17.3 4.3
MK2 65 10.8 7.7 11.1 6.4 10.8 12.6 5.4 10.8 12.6 3 7.7 3.2 22.6 4.4
MK3 182 37.9 34.6 37.6 25 34.1 34.7 22 34.6 36.6 11.1 41 13.4 48.8 31
MK4 80 32.5 26.3 31 11.3 22.5 25.8 11.5 30 32.5 1.1 26.3 5.3 32.5 5.4
MK5 295 5.8 3.4 5.7 31.8 3.4 4.2 37.5 4.4 5.6 13.1 9.2 15.1 12.7 34.8
MK6 78 41 64.1 71.8 31.1 44.9 51.3 29.1 55.1 65.4 13 36.9 11.2 49.7 22.2
MK7 213 11.7 8.9 12.4 26.2 9.9 12.3 18.5 11.3 13.1 8.3 13.4 10.5 24.7 21.9
MK8 488 28.9 29.1 31 72.6 28.1 28.5 51.1 29.1 30.6 11.8 19 59.2 22.9 114
MK9 443 20.3 12.9 14.1 292 11.1 12.8 74.8 12.6 14.1 133 28.2 52.9 35.1 117
MK10 289 19.7 18 23.6 339.3 13.8 16.1 73.4 20.1 25.9 72.7 37.1 49.4 42.2 89.5
DP1 2881 5.1 8.1 9.7 31.4 4.6 5.2 64.1 7.7 9 8.6 11.2 35.2 13.5 61.4
DP2 2881 1.8 2.3 3.4 60.9 1.9 2.4 32.5 2.3 3 19.9 9.9 35.3 12.9 62.1
DP3 2881 1.5 1.7 3.1 74.1 2.1 2.4 42 1.8 3.4 41.4 10.7 35.6 10.6 61.6
DP4 2862 3.7 7.7 9.9 38.6 3.7 4.7 64.9 7.4 8.4 8.5 13.1 35.8 15.3 60.8
DP5 2832 2.7 3 3.6 65.3 3 3.6 41.1 3.1 4.4 17.6 11.4 35.1 13.2 60.2
DP6 2799 3.6 3.3 4.9 106.8 3.8 4.1 53.7 3.2 4.1 73.6 10.2 34.4 13.8 60.8
DP7 2843 3.8 7.7 11.1 78.4 4.4 5.4 88.3 6.5 9.7 17.7 27 52.3 29.3 169
DP8 2835 1.8 2 3.3 316.6 2.6 3.1 62 2.2 4 64.1 25.2 52.1 29.5 164
DP9 2824 2.5 1.8 3.8 484.2 2.4 3.7 78.3 2.2 5 104.8 27.3 52.4 29.2 165
DP10 2840 5.2 9.4 11.1 89.1 6.5 7.7 67.6 7.5 10.2 16 26.9 52.6 31.1 164
DP11 2786 4.1 3.4 4 379.1 4.1 4.3 76.5 3.7 5.2 64.5 31.2 53 34.3 166
DP12 2723 5.8 3.8 5.8 771.2 5.2 5.5 82.4 4.6 6.7 171 30.1 53.2 32.6 168

the approaches. Figure 4.4 additionally plots the values given in Table 4.9 for the approaches
introduced in this paper.
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Figure 4.4: Performance of heuristic approaches on literature instances

As in case of the random testbed, FaFM tends to outperform FaF and TS. We furthermore
observe that, while especially KF uses sightly less computational time than FaFM on average,
FaFM tends to outperform KF and VNS for most instances with respect to solution quality,
especially in case of the DP instances. Moreover, the runtimes of FaFM are in ranges that allow
its usage in real-world scenarios, where time usually is a limiting factor. FaF, FaFM, and TS
also prove to be competitive with the standard solver (with FaFM-based time limit) for the MK
instances, which is in line with our results for the random testbed. In case of the DP instances,
CPA sometimes also performs slightly better than our F&F approaches. We believe that this is
a result of the small average numbers of eligible machines for the operations, that allow the CP
solver to quickly determine promising allocation decisions of machines to operations. However,
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the difference in the performance of the standard solver and our F&F heuristics is not nearly
as large as in case of KF ans VNS. We can therefore conclude that, overall, FaFM tends to
outperform KF and tends to be competitive when compared with the use of the standard CP
solver provided by CPLEX when runtime becomes a limiting factor.

4.6 Conclusion

In this paper, we have addressed a flexible job shop scheduling problem that aims at makespan
minimization and takes account of a heterogeneous workforce by making use of processing times
that do not only depend on the machine, but also on the specific worker that operates the machine
while it processes some operation. We have developed two filter-and-fan based heuristic solution
approaches. These methods combine a local search procedure with a tree search procedure that
generates compound transitions in order to explore larger neighborhoods to overcome locally
optimal solutions. They make use of a decomposition of the problem that allows to make use
of a neighborhood structure that has formerly shown to perform well when machine operator
restrictions are not considered. In a computational study, we have shown that our heuristic
approaches tend to outperform existing metaheuristic approaches from the literature. They
have also proven competitive when compared with a standard constraint programming solver.
With respect to the setup of the filter-and-fan framework, we found that it pays off to make
local decisions when generating solutions within the tree search procedure instead of relying on
transitions lists that are generated during local search.
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Abstract

We consider a semiconductor final-test scheduling problem that aims at minimizing total weighted tar-
diness. In contrast to previous studies on this problem, we explicitly take account of the need to assign
human operators to setup operations. We present a mixed integer programming model and a decom-
position based heuristic solution approach. In an extensive computational study based on real-world
problem instances that mimic settings at our industry partner, we show that the latter approach clearly
outperforms a standard solver when computational time is limited. Based on this result, we provide
decision support for managers by analyzing the capability and effect of rescheduling jobs in the presence
of a highly dynamic environment with frequently changing customer requests and common test machine
failures.
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5.1 Introduction and Overview

Today, semiconductor components are omnipresent in a wide range of products. They are es-
sential elements of, for example, smartphones, tablets, flat-screen monitors, sophisticated cars
and aircrafts, and many medical devices (PwC, 2012). Semiconductor companies focusing on the
automotive industry are facing especially strong competition and high customer expectations
(PwC, 2013). It is therefore not surprising that operational aspects of semiconductor manufac-
turing are becoming increasingly important to these companies (Deng et al., 2010; Uzsoy et al.,
1992a).

During an industry project with a developer and manufacturer of semiconductor-based sys-
tem solutions in North Rhine-Westphalia (Germany), an optimization problem in the above
context was brought to our attention. The company’s customers are mostly automotive man-
ufacturers with extremely high requirements regarding the quality and flawless functionality as
well as on-time delivery of the semiconductor devices. It is therefore of major importance to
carefully test every single device based on a schedule that allows on-time delivery of customer
orders in the presence of scarce test machine and labor resources in a dynamic environment with
frequently changing customer requests and common test machine failures. Hence, the focus of
our industry project, as well as the scope of this paper, was on a scheduling problem in one of
the company’s final-test divisions, where packaged semiconductors are subjected to functional
tests.

5.1.1 The Semiconductor Manufacturing Process

The process of manufacturing semiconductor devices can be divided into front-end and back-end
operations; see Figure 5.1, where optional operations are depicted by dash-dotted boxes. The
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Figure 5.1: Semiconductor manufacturing process

process is presented in detail by Uzsoy et al. (1992a) and Lee et al. (1992) and may, of course,
slightly deviate among different companies. We refer the interested reader to these articles and
restrict ourselves to briefly summarizing the process with a focus on the specific setting at our
industry partner.

Front-end operations include two major steps. Fist, wafer fabrication develops the actual
integrated circuits on silicon wafers. Each wafer may contain hundreds or even thousands of
circuits. Second, in wafer probe, the wafers are subjected to tests in order to detect defective
circuits. The wafers are then cut into individual circuits. Non-defect circuits are packaged into
branded plastic or ceramic cases with attached leads. These latter operations are referred to as
assembly and branding and form the first steps in the back-end. The packaged semiconductors
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are then forwarded to the final-test stage in lots of varying sizes. We will henceforth refer to
these lots of semiconductor packages as jobs. In the final-test, each device is subjected to multiple
functional tests at different temperatures on specific test machines in order to guarantee defect
free products. If required by a job’s customer, an optional subsequent burn-in operation followed
by additional functional tests is performed. During the burn-in operation, the circuits are loaded
into ovens and are subjected to thermal stress for multiple hours or even days in order to be able
to detect latent defects. Some devices then go through optional steps, e.g., in order to remove
moisture (baking). Finally, the devices are inspected and rotated in a predefined position in an
optical control stage, and are then packed onto reels with a carrier tape for transportation to the
customers (tape and reel).

5.1.2 Final-Test Scheduling

In this article, we focus on the final-test stage of semiconductor processing. While, as mentioned
above, final-test operations of a job may include a burn-in operation and additional subsequent
tests, the broad majority of jobs at our industry partner solely undergoes (multiple) functional
testing operations. We were therefore asked to restrict ourselves to the scheduling of jobs that
are exclusively composed of these latter operations. With respect to the practical applicability of
our model, this seems to be a reasonable assumption because burn-in takes place at large (non-
bottleneck) ovens with relatively long processing times when compared to the processing times
of functional tests, such that they can be considered in a higher-level scheduling problem (as,
for instance, presented by Kim et al., 2011; Lee et al., 1992) that determines partial jobs, being
solely composed of functional testing operations, that can then be included into our (lower-level)
optimization problem.

In order for a test machine (also referred to as a test cell) to be eligible for performing a
specific functional test for a given device, it must be a feasible combination of three hardware
components (see also Hao et al., 2014; Uzsoy et al., 1992b). The tester provides the logic needed
to test a device (test software) and is able to stimulate the device in order to decide whether
or not it is defect. The handler mechanically handles the device at the required temperature
for a specific test. Further accessories, especially the adapter, define the interface between tester
and device. Some handler-adapter combinations are able to handle multiple devices in parallel
(multisite testing). At our industry partner, some combinations allow multisite testing of up to
eight devices.

As mentioned above, a device is usually subjected to multiple functional tests at different
temperatures on different test cells. The time needed to prepare a test cell for the execution
of a functional test is referred to as a setup time. It can, for example, result from the need
to change the adapter or handler, load a new software, or wait for bringing the handler to the
required temperature. Setup times are sequence-dependent. That is, they do not only depend on
the functional test to be performed on a specific test cell configuration but also on the preceding
functional test and configuration. Setups are executed by human setup operators and may take
a significant amount of time in the range of multiple hours. At our industry partner, setup
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operators are considered to be a scarce resource, so that a detailed planning of setup operations
is required.

The testing of semiconductor devices takes place in a dynamic environment, in which changes
regarding the parameters of the final-test scheduling problem occur regularly. Most important,
customers fairly frequently request a change of the due dates of their orders (so called “emer-
gency orders”, cf. also Bard et al., 2012). Furthermore, as also observed by Freed et al. (2007),
“machine failures are common and unpredictable.” Typical issues at our industry partner are
defect handlers or adapters. Defect devices must be replaced on their current test cells, so that
the testing process can continue while the defect device is repaired by a technician. This may
take multiple hours or even days. As the purchase of additional devices is a main cost driver
while meeting the customer due dates is highly important with respect to service quality, it is
necessary to carefully determine the required number of devices at a testing facility.

The main goal of our industry partner is on-time delivery of customer orders. We therefore
consider the objective of minimizing the total weighted tardiness. We refer to the problem under
consideration as the semiconductor final test scheduling problem with setup operator constraints
and denote it by SFTPS.

5.1.3 Related Literature

SFTPS is a generalization of the well-known job shop scheduling problem, which we assume the
reader to be familiar with (see, e.g., Blazewicz et al., 2019). For comprehensive surveys on
scheduling problems with setup considerations, including job shop settings and their generaliza-
tions, we refer the reader to Allahverdi (2015), Allahverdi et al. (1999), Allahverdi et al. (2008),
and Zhu and Wilhelm (2006).

There exists a multitude of articles that focus on scheduling problems in the field of semi-
conductor manufacturing. Most of this literature focusses on front-end operations (Bard et al.,
2012). Detailed reviews and overviews are given by Freed et al. (2002), Gupta and Sivakumar
(2006), Mathirajan and Sivakumar (2006), Mönch et al. (2011), and Uzsoy et al. (1992a, 1994),
so that we restrict ourselves to giving a brief overview of research on semiconductor final-test
scheduling in the remainder of this section.

On a fairly general level, Freed et al. (2007) discuss trade-offs between in-house development
of a scheduling system and buying a software solution for scheduling semiconductor testing
operations.

With respect to concrete variants of semiconductor final-test scheduling problems, the broad
majority of existing approaches assumes labor to “not [being] a constraining factor” (Deng et al.,
2010) and therefore deviates from our industry case, where setup operators are considered to
be a scarce resource. In this stream of research, Ovacik and Uzsoy (1992, 1994, 1995, 1996)
develop decomposition based methods and rolling horizon procedures. Uzsoy et al. (1992b) and
Uzsoy et al. (1991) describe and refine an approximation methodology based on the shifting
bottleneck approach of Adams et al. (1988). Zhang et al. (2011) present a machine learning
approach. Zhang et al. (2006) develop and make use of a mixed integer program (MIP) to



100 5.1. Introduction and Overview

analyze capacity planning issues at Intel Shanghai. Chen et al. (1995) and Chen and Hsia (1997)
describe Lagrangean relaxation approaches. A Petri net based approach is presented by Xiong
and Zhou (1998). Pearn et al. (2004) adapt network algorithms designed for the vehicle routing
problem. A simulation study is performed by Lin et al. (2004). Finally, metaheuristic approaches
are, amongst others, presented by Deng et al. (2010), Herrmann et al. (1995), Hao et al. (2014),
Sang et al. (2018), Wang and Wang (2015), Wang et al. (2015), Wu and Chien (2008), Wu et al.
(2012), and Zheng et al. (2014).

In contrast to the aforementioned articles, Bard et al. (2012) state that “in practice, one of the
biggest obstacles [. . . ] is crew availability,” and thus consider a setting which is in line with our
industry case. In a real-time control model, the authors develop two procedures for prioritizing
choices whenever a setup operation is possible. However, the considered model addresses a fairly
specific industry case at Texas Instruments. We are not aware of further articles that explicitly
address the incorporation of setup operators into semiconductor final-test scheduling problems.

5.1.4 Contribution and Article Overview

As illustrated in Section 5.1.3, the vast majority of existing approaches for semiconductor final-
test scheduling does not explicitly address the incorporation of setup operators, which is the
main research gap that our study aims to address. As for the incorporation of the dynamic
environment, it is of utmost importance for our industry partner to be able to make use of the
expert knowledge of the planners when making rescheduling decisions. Hence, we decided against
internalizing these decisions into our model or to make use of stochastic processing times or due
dates. We rather assume that lots of devices are non-separable (as usually done in the literature;
see, e.g., Lee et al., 1992; Uzsoy et al., 1991) and that due dates and processing times are
deterministic. However, our solution approaches are designed to be applied in a rolling horizon
planning approach (see also Ovacik and Uzsoy, 1994, 1995), which allows to manually initiate a
rescheduling of jobs, e.g., with manually split lots that allow parallel testing on multiple machines
in order to take account of changing due dates, or with adapted processing times or a restricted
set of resources in case of hardware failures. In this context, note that it is well known that the
job shop scheduling problem is strongly NP-hard for minimizing the total tardiness (Graham
et al., 1979; Lenstra and Rinnooy Kan, 1979). Hence, SFTPS is strongly NP-hard as well. Given
the fact that we will have to be able to quickly compute solutions for large problem instances to
ensure real-world applicability in a rolling horizon approach, exact solution approaches do not
seem to be a promising research direction. Therefore, we propose a tabu search approach.

The remainder of this article is structured as follows. In Section 5.2, we define SFTPS in
detail and present a corresponding MIP. Next, in Section 5.3, we introduce our tabu search
approach. It is evaluated in an extensive computational study in Section 5.4, where we derive
managerial implications on the application of our heuristic in dynamic environments. The paper
closes with a conclusion in Section 5.5.
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5.2 Detailed Problem Statement

In the following Section 5.2.1, we define the notation and provide a formal definition of SFTPS.
A corresponding MIP is presented in Section 5.2.2.

5.2.1 Notation and Definition of the Problem

We assume that the planning horizon of length T is divided into a finite number of intervals
(time slots) [t− 1, t], t = 1, . . . , T , of equal length and refer to the length of a time interval as a
time unit. All time parameters that are introduced below, i.e., due dates, processing times, and
setup times, are assumed to be integral multiples of a time unit and can therefore be specified
by natural numbers.

We are given a set J = {1, . . . , n} of jobs. Each job j ∈ J corresponds to a non-separable
lot of devices and is associated with a weight wj ∈ N and a due date dj ∈ N. Furthermore, each
job j ∈ J is associated with a set of qj operations Oj = {j1, . . . , jqj} that have to be assigned to
and sequenced on eligible test cells. The processing of operations may not be preempted. The
sets Oj are assumed to be ordered for all j ∈ J , which relates to the fact that, for any pair of
operations ji, jl ∈ Oj with i < l, ji must be completed before the processing of jl may start. We
define O =

⋃
j∈J Oj .

Each operation ji ∈ O must be processed by exactly one test cell. As described above, each
test cell is a combination of three resource types (tester, handler, adapter). We denote the set
of these types by K = {1, 2, 3}. There exist different classes of each resource type. Each class
represents a specification of a resource type, e.g., a specific type of handler. The set of classes of
resource type k ∈ K is denoted by Rk = {1, . . . , rk}, |Rk| = rk. The number of identical copies
of resource class i ∈ Rk of type k ∈ K is denoted by qki . Hence, a feasible schedule uses at most
qki entities of this resource class at a given point in time. Each test cell combines resources of all
types and is therefore also referred to as a machine configuration. At our industry partner, each
tester is associated to a unique location in the testing facility, which we implement by assuming
q1
i = 1 for all i ∈ R1. Thus, in a feasible schedule, each machine configuration can process at
most one operation at a time. The set of all potential machine configurations is denoted by
M = R1×R2×R3. The set of machine configurations that require resource class i ∈ Rk of type
k ∈ K is denoted by Mk

i ⊆ M . Furthermore, for some k ∈ K, we denote the element of the set
Rk that is used in machine configuration m ∈M by m[k].

Each operation ji ∈ O is associated to a set Mji ⊆ M of eligible machine configurations,
on which it can be processed in order to be completed. Its processing time pmji ∈ N does not
only depend on the operation itself, but also on the configuration m ∈ Mji , which allows the
incorporation of multisite testing into our model (see, e.g., Freed and Leachman, 1999).

In order to take account of machine configurations at t = 0 and operations that are being
processed at the beginning of the planning horizon, we define dummy operations 01, . . . , 0r1

and set Ô = O ∪ {01, . . . , 0r1}. The set M0i of eligible machines of some dummy operation
0i, i ∈ {1, . . . , r1}, solely includes the machine configuration which is “active” at t = 0 and
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that includes resource i ∈ R1. Furthermore, pm0i = 0 for all m ∈ M0i . Incomplete machine
configurations (arising, for example, because of setup operations that are not finished at t = 0

or testers that are currently unused) are then easily modelled by defining dummy resource types
that are included in the sets Rk, k ∈ {2, 3}.

The notation that has been introduced so far is summarized in Table 5.1.

Table 5.1: Notation used throughout the paper

J Set of jobs J = {1, . . . , n}, |J | = n
Oj Set of operations of job j ∈ J Oj = {j1, . . . , jqj}, |Oj | = qj
O Set of all operations of jobs j ∈ J O =

⋃
j∈J Oj

Ô Set of all operations including the dummy operations {01, . . . , 0r1} Ô = O ∪ {01, . . . , 0r1}
K Set of resource types (tester, handler, adapter) K = {1, 2, 3}
Rk Set of classes of resource type k ∈ K Rk = {1, . . . , rk}, |Rk| = rk

M Set of machine configurations M = R1 ×R2 ×R3

Mji Set of machine configurations eligible for operation ji ∈ Ô Mji ⊆M
Mk
i Set of machine configurations that require resource class i ∈ Rk of

type k ∈ K
Mk
i ⊆M

m[k] Element of the set Rk of type k ∈ K that is used in machine con-
figuration m ∈M

wj Weight of job j ∈ J wj ∈ N
dj Due date of job j ∈ J dj ∈ N
pmji Processing time of operation ji ∈ Ô on machine m ∈Mji pmji ∈ N
qki Number of identical copies of resource class i ∈ Rk of type k ∈ K qki ∈ N, q1

i = 1 ∀ i ∈ R1

T Length of the planning horizon T ∈ N

We assume that sequence-dependent setup times occur when an operation ji ∈ Ô is processed
on machine configuration m ∈ Mji and is the direct predecessor of some operation gh ∈ O that
is processed on m′ ∈ Mgh ∩M1

m[1]. There are three types of setups (see Table 5.2). First, the

Table 5.2: Sequence-dependent setup times (ji ∈ Ô on m ∈Mji to gh ∈ O on m′ ∈Mgh ∩M1
m[1])

Setup type Disassembly Assembly

Type 1: maintain machine configuration - sji,gh
Type 2: change adapter s̄mout s̄m

′
in + s̄ji,gh

Type 3: change handler (and adapter) s̄mout + ŝmout ŝm
′

in + s̄m
′

in + ŝji,gh

machine configuration may remain unchanged. In this case, we assume the setup time to solely
depend on the sequence of operations and denote this component by sji,gh ∈ N0. Second, m′ may
result from m by solely changing the adapter. In this case, one will have to disassemble m by
removing adapter m[3], which we assume to take s̄mout ∈ N0 time units, and install adapter m′[3]

for a period of s̄m′in ∈ N0 time units. The operation-specific component for this case is referred
to by s̄ji,gh ∈ N0 and may deviate from sji,gh . Third, one may want to change the handler. We
assume that a handler can only be disassembled after the adapter of the corresponding machine
configuration has been removed. We denote the time needed to remove handler m[2] from m

by ŝmout ∈ N0 and the time needed to install handler m′[2] for machine configuration m′ by
ŝm
′

in ∈ N0. The operation-specific component for this case is referred to by ŝji,gh ∈ N0. The times
needed to insert and remove adapters and handlers as well as the operation-specific components
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add to sequence-dependent setup time as illustrated in Table 5.2. We allow idle times between
disassembling handlers and adapters of machine configurations. However, in order to take account
of the dynamic environment and the scarce machine resources, idle times are not allowed when
assembling a machine configuration, i.e., a required configuration is completely assembled directly
before the processing of the corresponding operation starts. All parts (handler, adapter) needed
for an assembly must be available during the entire setup time. The choice of setup times that
involve operations 0i, i ∈ {1, . . . , r1} and configurations m ∈ M0i allow a flexible modelling of
the start of the planning horizon. All components of the setup operations require the assignment
of a setup operator during the entire setup time. We assume that there are h equally skilled
setup operators. Of course, each setup operator can execute at most one setup operation at a
time.

A job is completed when all of its operations are completed. The completion time of an
operation ji ∈ Ô is denoted by Cji . The completion time of job j ∈ J is denoted by Cj .
Obviously, Cj = Cjqj for all j ∈ J . The objective is to minimize the total weighted tardiness,∑

j∈J wjTj , of jobs, where the tardiness Tj of job j ∈ J is defined as Tj := max{Cj − dj , 0}.
This is summarized in Table 5.3.

Table 5.3: Remaining notation used throughout the paper

h Number of setup operators h ∈ N
Cji Completion time of operation ji ∈ Ô
Cj Completion time of job j ∈ J Cj = Cjqj
Tj Tardiness of job j ∈ J Tj := max{Cj − dj , 0}

5.2.2 A Mixed Integer Program

In order to facilitate the understanding of the problem setting and in order to be able to compute
benchmark solutions for small problem instances in our computational tests, we present a MIP
for SFTPS in this section. It uses elements of the models presented by Wu and Chien (2008)
and Wu et al. (2012) but, to the best of our knowledge, is the first model that explicitly takes
account of the specific setting regarding disassembly and assembly operations introduced in this
paper. The model makes use of a large positive integer B that has to be chosen appropriately.

5.2.2.1 Graph Representation, Time Variables, Allocation and Sequencing Vari-
ables

We represent the potential allocation, sequencing and setup decisions by a directed (multi-)
graph, which we refer to as the allocation, sequencing and setup graph (ASAS graph). Its struc-
ture is illustrated in Figure 5.2. It is inspired by graph representations of vehicle routing problems
that are known to have multiple similarities with machine scheduling problems (see, e.g., Bigras
et al., 2008; Kress et al., 2019). Each operation ji ∈ Ô defines three vertices, ji, j̄i, and ĵi, of the
graph. The latter two vertices represent states, in which the adapter or handler of the machine
configuration that is assigned to ji have been removed after completing ji. Each vertex ji is
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Figure 5.2: Illustration of the ASAS graph, ji, gh ∈ Ô, ji 6= gh

associated to a completion time variable Cji ∈ R+
0 as defined in Section 5.2.1. Additionally, we

define variables Cj̄i , Cĵi ∈ R+
0 for all ji ∈ Ô, and set C0i = 0 for all i ∈ {1, . . . , r1}. An additional

vertex e serves as a sink of the graph and represents the final states of the machine configurations
associated to the testers at the end of the planning horizon. All allocation, sequencing and setup
decisions are represented by directed edges that are weighted with the setup times defined in
Section 5.2.1 and that are associated with the following variables:

ymji,gh :=


1 if gh directly follows ji on m without change of

handler or adapter,
0 else,

∀ ji ∈ Ô, gh ∈ O, ji 6= gh,m ∈
Mji ∩Mgh ,

(5.1)

ym,m
′

j̄i,gh
:=


1 if gh is processed on m′ and directly follows ji

on m after having disassembled adapter m[3]

and assembled adapter m′[3],
0 else,

∀ ji ∈ Ô, gh ∈ O, ji 6= gh,m ∈
Mji ,m

′ ∈Mgh ∩M1
m[1]∩M2

m[2],
(5.2)

ym,m
′

ĵi,gh
:=


1 if gh is processed on m′ and directly follows ji

on m after having disassembled handler m[2]

and assembled handler m′[2],
0 else,

∀ ji ∈ Ô, gh ∈ O, ji 6= gh,m ∈
Mji ,m

′ ∈Mgh ∩M1
m[1],

(5.3)

zmj̄i :=


1 if adapter m[3] is disassembled after processing

ji on m,
0 else,

∀ ji ∈ Ô,m ∈Mji , (5.4)

zm
ĵi

:=


1 if handler m[2] is disassembled after processing

ji on m,
0 else,

∀ ji ∈ Ô,m ∈Mji . (5.5)

In line with the definition of these variables, parallel edges in the graph represent the fact that
multiple machine configurations may be used when processing (succeeding) operations (dottes
edges in Figure 5.2). Additional binary variables ymji,e, y

m
j̄i,e

, and ym
ĵi,e

for all operations ji ∈ Ô are
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used for modelling the end of the planning horizon. They are defined and represented in analogy
to the variables (5.1)–(5.3).

The concrete allocation, sequencing and setup decisions of a solution to an instance of SFTPS
are represented by r1 edge-disjoint paths in the corresponding ASAS graph. Each path starts at a
distinct vertex 0i associated to a dummy operation i ∈ {1, . . . , r1} (start of the planning horizon)
and ends at vertex e (end of the planning horizon). It represents the machine configurations that
include the corresponding tester, the allocation of operations to the corresponding configurations,
as well as the sequencing and setup decisions. In a feasible solution, each vertex ji ∈ Ô is included
exactly once in exactly one path.

As defined in Section 5.2.1, the tardiness of each job j ∈ J is represented by the variable
Tj ∈ R+

0 .

5.2.2.2 Objective, Processing Time Related Constraints, and Precedence Con-
straints

The objective
min

∑
j∈J

wjTj (5.6)

minimizes the total weighted tardiness, where the correct tardiness values are enforced by the
following constraints:

Tj ≥ Cjqj − dj ∀ j ∈ J. (5.7)

The following five sets of conditions establish the correct differences of the completion times
of succeeding operations when taking account of setup and processing times:

Cji + sji,gh + pmgh − Cgh ≤ (1− ymji,gh)B ∀ ji ∈ Ô, gh ∈ O, ji 6= gh,m ∈Mji ∩Mgh , (5.8)

Cj̄i + s̄m
′

in + s̄ji,gh + pm
′

gh
− Cgh ≤ (1− ym,m

′

j̄i,gh
)B ∀ ji ∈ Ô, gh ∈ O, ji 6= gh,

m ∈Mji ,m
′ ∈Mgh ∩M1

m[1] ∩M2
m[2],

(5.9)

Cĵi + s̄m
′

in + ŝm
′

in + ŝji,gh + pm
′

gh
− Cgh ≤ (1− ym,m

′

ĵi,gh
)B ∀ ji ∈ Ô, gh ∈ O, ji 6= gh,

m ∈Mji ,m
′ ∈Mgh ∩M1

m[1],
(5.10)

Cji + s̄moutz
m
j̄i
≤ Cj̄i ∀ ji ∈ Ô,m ∈Mji , (5.11)

Cj̄i + ŝmoutz
m
ĵi
≤ Cĵi ∀ ji ∈ Ô,m ∈Mji . (5.12)

The restrictions

Cji ≤ Cji+1 −
∑

gh∈Ô\{ji+1}

∑
m∈Mgh

∑
m′∈Mji+1

∩M1
m[1]

ym,m
′

ĝh,ji+1
pm
′

ji+1

−
∑

gh∈Ô\{ji+1}

∑
m∈Mgh

∑
m′∈Mji+1

∩M1
m[1]
∩M2

m[2]

ym,m
′

ḡh,ji+1
pm
′

ji+1

−
∑

gh∈Ô\{ji+1}

∑
m∈Mgh

∩Mji+1

ymgh,ji+1
pmji+1

∀ ji ∈ O with i ≤ qj − 1

(5.13)

enforce the precedence relations among the operations of each job.
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5.2.2.3 Allocation and Sequencing Constraints

Constraints (5.14) take account of the fact that each operation gh ∈ O must be processed by
exactly one eligible machine configuration, i.e. that exactly one incoming edge is chosen for the
corresponding vertex in the ASAS graph:∑

ji∈Ô\{gh}

∑
m∈Mji

∩Mgh

ymji,gh +
∑

ji∈Ô\{gh}

∑
m∈Mji

∑
m′∈Mgh

∩M1
m[1]
∩M2

m[2]

ym,m
′

j̄i,gh

+
∑

ji∈Ô\{gh}

∑
m∈Mji

∑
m′∈Mgh

∩M1
m[1]

ym,m
′

ĵi,gh
= 1 ∀ gh ∈ O.

(5.14)

Similarly, after completing the processing of an operation or at the beginning of the planning
horizon, the adapter or the handler may have to be disassembled from the associated machine
configuration, i.e. at most one incoming edge may be chosen for all vertices j̄i and ĵi, ji ∈ Ô:∑

m∈Mji

zmj̄i ≤ 1 ∀ ji ∈ Ô, (5.15)

∑
m∈Mji

zm
ĵi
≤ 1 ∀ ji ∈ Ô. (5.16)

With respect to the sequencing of operations, each operation must have exactly one successor,
which is modelled by appropriately selecting outgoing edges of the vertices of the ASAS graph:∑

gh∈O\{ji}

∑
m∈Mji

∩Mgh

ymji,gh +
∑

m∈Mji

zmj̄i +
∑

m∈Mji

ymji,e = 1 ∀ ji ∈ Ô, (5.17)

For all vertices j̄i and ĵi, ji ∈ Ô, we may only select an outgoing edge if the adapter or handler
is actually disassembled, so that∑

gh∈O\{ji}

∑
m∈Mji

∑
m′∈Mgh

∩M1
m[1]
∩M2

m[2]

ym,m
′

j̄i,gh
+

∑
m∈Mji

zm
ĵi

+
∑

m∈Mji

ymj̄i,e ≤ 1 ∀ ji ∈ Ô, (5.18)

∑
gh∈O\{ji}

∑
m∈Mji

∑
m′∈Mgh

∩M1
m[1]

ym,m
′

ĵi,gh
+

∑
m∈Mji

ym
ĵi,e
≤ 1 ∀ ji ∈ Ô. (5.19)

Additionally, the machine configurations chosen for processing the operations must be consistent
(flow conservation constraints):∑

gh∈Ô\{ji}

∑
m′∈{m}∩Mgh

ym
′

gh,ji
+

∑
gh∈Ô\{ji}

∑
m′∈Mgh

∩M1
m[1]
∩M2

m[2]

ym
′,m

ḡh,ji

+
∑

gh∈Ô\{ji}

∑
m′∈Mgh

∩M1
m[1]

ym
′,m

ĝh,ji

=
∑

gh∈O\{ji}

∑
m′∈{m}∩Mgh

ym
′

ji,gh
+ zmj̄i + ymji,e ∀ ji ∈ O,m ∈Mji ,

(5.20)

zmj̄i =
∑

gh∈O\{ji}

∑
m′∈Mgh

∩M1
m[1]
∩M2

m[2]

ym,m
′

j̄i,gh
+ zm

ĵi
+ ymj̄i,e ∀ ji ∈ Ô,m ∈Mji , (5.21)

zm
ĵi

=
∑

gh∈O\{ji}

∑
m′∈Mgh

∩M1
m[1]

ym,m
′

ĵi,gh
+ ym

ĵi,e
∀ ji ∈ Ô,m ∈Mji . (5.22)
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5.2.2.4 Resource Variables and Constraints: Handler and Adapter

In order to be able to model the resource constraints (availability of handlers and adapters), we
define the following binary variables:

umji,t :=


1 if the setup for processing ji on m starts at time

instant t− 1,
0 else,

∀ ji ∈ Ô,m ∈ Mji , t ∈
{1, . . . , T},

(5.23)

v̄m,kji,t
:=


1 if the use of resource class m[k] of type k in machine

configuration m for operation ji finishes at time in-
stant t,

0 else,

∀ ji ∈ Ô,m ∈ Mji , t ∈
{0, . . . , T}, k ∈ {2, 3},

(5.24)

xm,kji,t
:=


1 if resource class m[k] of type k is being used in ma-

chine configuration m for operation ji in time slot
[t− 1, t],

0 else,

∀ ji ∈ Ô,m ∈ Mji , t ∈
{1, . . . , T}, k ∈ {2, 3}.

(5.25)

Furthermore, we define xm,kji,0
= xm,kji,T+1 = 0 for all ji ∈ Ô, m ∈ Mji , and k ∈ {1, 2}, as well as

umji,T+1 = 0 for all ji ∈ Ô and m ∈Mji .

The variables (5.23), i.e. the start of the setups that precede the processing of operations,
are handled by the following constraints:∑

m∈Mji

∑
t∈{1,...,T}

umji,t = 1 ∀ ji ∈ Ô, (5.26)

∑
m∈M0i

um0i,1 = 1 ∀ i ∈ {1, . . . , r1}, (5.27)

∑
m∈Mji

∑
t∈{1,...,T}

(t− 1)umji,t = Cji −
∑

gh∈Ô\{ji}

∑
m∈Mji

∩Mgh

ymgh,ji(sgh,ji + pmji )

−
∑

gh∈Ô\{ji}

∑
m′∈Mgh

∑
m∈Mji

∩M1
m′[1]∩M

2
m′[2]

ym
′,m

ḡh,ji
(s̄min + s̄gh,ji + pmji )

−
∑

gh∈Ô\{ji}

∑
m′∈Mgh

∑
m∈Mji

∩M1
m′[1]

ym
′,m

ĝh,ji
(s̄min + ŝmin + ŝgh,ji + pmji ) ∀ ji ∈ O,

(5.28)

∑
t∈{1,...,T}

umji,t ≤
∑

gh∈Ô\{ji}

∑
m′∈{m}∩Mgh

ym
′

gh,ji
+

∑
gh∈Ô\{ji}

∑
m′∈Mgh

∩M1
m[1]
∩M2

m[2]

ym
′,m

ḡh,ji

+
∑

gh∈Ô\{ji}

∑
m′∈Mgh

∩M1
m[1]

ym
′,m

ĝh,ji
∀ ji ∈ O,m ∈Mji .

(5.29)

Here, conditions (5.26) and (5.27) guarantee that each operation needs a setup. The dummy
operations take a special role as their setups have been started before or at the beginning of
the planning horizon. The actual setup times as presented in Table 5.2 are taken account of in
restrictions (5.28). Conditions (5.29) ensure that the machine configurations are consistent.
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In line with the system of restrictions (5.26)–(5.29), the following seven sets of conditions
handle the end of the usage of resources used for processing the operations:∑

t∈{0,...,T}
v̄m,kji,t

=
∑

t∈{1,...,T}
umji,t ∀ ji ∈ Ô,m ∈Mji , k ∈ {2, 3}, (5.30)

∑
t∈{0,...,T}

tv̄m,kji,t
− Cgh + pmgh + sji,gh ≥ (ymji,gh − 1)B ∀ ji ∈ Ô, gh ∈ O, ji 6= gh,

m ∈Mji ∩Mgh , k ∈ {2, 3},
(5.31)

v̄m,kji,T
≥ ymji,e ∀ ji ∈ Ô,m ∈Mji , k ∈ {2, 3}, (5.32)

v̄m,2ji,T
≥ ymj̄i,e ∀ ji ∈ Ô,m ∈Mji , (5.33)∑

t∈{0,...,T}
tv̄m,2ji,t

− Cgh + pm
′

gh
+ s̄m

′
in + s̄ji,gh ≥ (ym,m

′

j̄i,gh
− 1)B ∀ ji ∈ Ô, gh ∈ O, ji 6= gh,m ∈

Mji ,m
′ ∈Mgh ∩M1

m[1] ∩M2
m[2],

(5.34)

∑
m∈Mji

∑
t∈{0,...,T}

tv̄m,3ji,t
≥ Cj̄i ∀ ji ∈ Ô, (5.35)

∑
m∈Mji

∑
t∈{0,...,T}

tv̄m,2ji,t
≥ Cĵi ∀ ji ∈ Ô. (5.36)

Conditions (5.30) ensure that the use of some resource class must end if it has previously been
setup. Depending on the allocation and sequencing decisions (Section 5.2.2.1), constraints (5.31)–
(5.36) then set the variables (5.24) to their correct values.

Now, based on the choice of the variables (5.23) and (5.24), conditions (5.37) fix the variables
(5.25) that model the actual resource usage over all time slots of the planning horizon:

xm,kji,t
− xm,kji,t−1 = umji,t − v̄

m,k
ji,t−1 ∀ ji ∈ Ô,m ∈Mji , t ∈ {1, . . . , T + 1}, k ∈ {2, 3}. (5.37)

Finally, constraints (5.38) restrict the usage of the handler and adapter classes based on
their availability: ∑

ji∈Ô

∑
m∈Mji

∩Mk
r

xm,kji,t
≤ qkr ∀ t ∈ {1, . . . , T}, k ∈ {2, 3}, r ∈ Rk. (5.38)

5.2.2.5 Setup Operator Variables and Constraints

The setup operators are handled in analogy to the hardware resources, so that we define the
following variables:

ūmji,t :=


1 if the setup for processing ji on m finishes at time

instant t,
0 else,

∀ ji ∈ Ô,m ∈ Mji , t ∈
{0, . . . , T},

(5.39)

vm,kji,t
:=


1 if the procedure of disassembling resource class m[k]

of type k from machine configuration m after pro-
cessing operation ji starts at time instant t− 1,

0 else,

∀ ji ∈ Ô,m ∈ Mji , t ∈
{1, . . . , T}, k ∈ {2, 3},

(5.40)

wmji,t :=


1 if a setup operator is required for the setup of ma-

chine configuration m for operation ji in time slot
[t− 1, t],

0 else,

∀ ji ∈ Ô,m ∈ Mji , t ∈
{1, . . . , T},

(5.41)
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w̃m,kji,t
:=


1 if a setup operator is required for disassembling re-

source class m[k] of type k from machine configura-
tion m for operation ji in time slot [t− 1, t],

0 else,

∀ ji ∈ Ô,m ∈ Mji , t ∈
{1, . . . , T}, k ∈ {2, 3}.

(5.42)

While the variables (5.39) model the end of the setup operations, variables (5.40) are used to
identify time instants at which handlers and adapters are started to be disassembled. The vari-
ables (5.41) and (5.42) are used to indicate the need for setup operators for setup or disassembly
operations. As in Section 5.2.2.4, we define wmji,0 = wmji,T+1 = 0 for all ji ∈ Ô and m ∈ Mji , as
well as w̃m,kji,0

= w̃m,kji,T+1 = vm,kji,T+1 = 0 for all ji ∈ Ô, m ∈Mji , and k ∈ {2, 3}.
The handling of the above variables is in line with our deliberations in Section 5.2.2.4. Con-

ditions (5.43)–(5.45) relate to variables (5.39), while constraints (5.46)–(5.48) relate to variables
(5.40): ∑

t∈{0,...,T}
ūmji,t =

∑
t∈{1,...,T}

umji,t ∀ ji ∈ Ô,m ∈Mji , (5.43)

∑
m∈M0i

ūm0i,0 = 1 ∀ i ∈ {1, . . . , r1}, (5.44)

∑
m∈Mji

∑
t∈{0,...,T}

tūmji,t = Cji −
∑

gh∈Ô\{ji}

∑
m∈Mji

∩Mgh

ymgh,jip
m
ji

−
∑

gh∈Ô\{ji}

∑
m′∈Mgh

∑
m∈Mji

∩M1
m′[1]∩M

2
m′[2]

ym
′,m

ḡh,ji
pmji

−
∑

gh∈Ô\{ji}

∑
m′∈Mgh

∑
m∈Mji

∩M1
m′[1]

ym
′,m

ĝh,ji
pmji ∀ ji ∈ O,

(5.45)

∑
t∈{1,...,T}

vm,kji,t
=

∑
t∈{1,...,T}

umji,t ∀ ji ∈ Ô,m ∈Mji , k ∈ {2, 3}, (5.46)

∑
m∈Mji

∑
t∈{1,...,T}

(t− 1)vm,3ji,t
= Cj̄i −

∑
m∈Mji

zmj̄i s̄
m
out ∀ ji ∈ Ô, (5.47)

∑
m∈Mji

∑
t∈{1,...,T}

(t− 1)vm,2ji,t
= Cĵi −

∑
m∈Mji

zm
ĵi
ŝmout ∀ ji ∈ Ô. (5.48)

The need for setup operators over all time slots of the planning horizon as well as the
availability of the setup operators is then taken account of in the following conditions (as in
Section 5.2.2.4):

wmji,t − wmji,t−1 = umji,t − ūmji,t−1 ∀ ji ∈ Ô,m ∈Mji , t ∈ {1, . . . , T + 1}, (5.49)

w̃m,kji,t
− w̃m,kji,t−1 = vm,kji,t

− v̄m,kji,t−1 ∀ ji ∈ Ô,m ∈Mji , t ∈ {1, . . . , T + 1}, k ∈ {2, 3} (5.50)∑
ji∈Ô

∑
m∈Mji

(wmji,t + w̃m,2ji,t
+ w̃m,3ji,t

≤ h ∀ t ∈ {1, . . . , T}. (5.51)

5.3 Tabu Search Approach

In this section, we present a tabu search approach for solving SFTPS. In order to handle the
interdependencies between all relevant hardware resources and the allocation of setup operators,
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we follow the main ideas of the decomposition based approaches introduced by Kress et al. (2019)
and Müller and Kress (2019), i.e., we decompose SFTPS into a flexible job shop scheduling
problem with sequence-dependent setup times that considers the assignment of operations to
eligible testers and the sequencing of these operations (master problem), and an assignment
problem that considers handlers, adapters, and setup operators (subproblem).

5.3.1 Master Problem, Solution Graph, Neighborhood Structure

Within the master problem, we make use of lower bounds for the processing and setup times.
The former values are defined as minm∈Mji

∩M1
r
pmji for operations ji ∈ Ô and testers r ∈ R1.

With respect to the setup times between two operations on some specific eligible tester, we use
the minimum assembly time for all potential machine configurations over the three corresponding
setup types presented in Table 5.2.

In order to represent feasible solutions of the master problem and in order to define a
neighborhood structure, we make use of the concept of the solution graph as introduced by
Mastrolilli and Gambardella (2000) and later adapted by Müller and Kress (2019). This concept
can be generalized to take account of setup times in a straightforward manner, so that we will
restrict ourselves to solely presenting its essential ideas in this paper. For details, we refer to
the latter two articles. Basically, the solution graph contains a vertex for each operation as
well as dummy vertices that represent the start and the end of the schedule. The vertices are
weighted with the corresponding lower bounds on the processing times according to the tester
allocation of the solution. The graph furthermore includes two sets of directed edges. The first
set E1 includes an edge for each direct precedence relation among the operations of the jobs
as well as corresponding dummy edges for the start and end of the schedule. The second set
E2 directly represents the tester allocation and sequencing decisions of the given solution in the
same manner. The edges of this set are weighted with the respective lower bounds on the setup
times. Based on this weighted graph and when assuming that the bounds represent the correct
processing and setup times, one can easily compute the time instants at which the operations
are started to be processed (starting times) on their respective testers in polynomial time. Given
these values, the corresponding objective function value follows readily. It defines a lower bound
on the total weighted tardiness of the allocation and sequencing decision of the solution when
taking account of the remaining hardware resources and the setup restriction.

Based on the solution graph of some feasible solution of the master problem, we construct
a neighboring solution graph by moving an operation ab to some eligible tester r. To do so,
we remove ab from its current tester sequence by deleting the corresponding edges from E2. We
then recompute the starting time of operation ab and determine a specific set of feasible insertion
positions in the sequence of tester r as described in Mastrolilli and Gambardella (2000) and Müller
and Kress (2019). For each of these positions, we construct the corresponding solution graph
(update the edges in E2) and recompute the objective function value. Out of these candidates,
we then select the most promising solution.
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5.3.2 Subproblem

Given a solution to the master problem, we construct a solution to the subproblem and, therefore,
to the corresponding instance of SFTPS with a greedy approach. Based on the solution graph,
it iteratively assigns handler and adapter entities as well as setup operators to the operations.
It considers the operations in non-decreasing order of their starting times in the solution of
the master problem and corrects (i.e., shifts) these starting times based on the selected resource
assignment. Details are presented in Algorithm 5.1. During runtime, the algorithm keeps track of

Input: Solution graph G of master problem solution
Output: Solution S of SFTPS with objective function value WT

. Initialization phase
1 Initialize load of testers Li := 0 ∀i ∈ R1;
2 Initialize resource information of adapter (k = 3) and handler (k = 2) entities q ∈ {1, . . . , qki }

for all i ∈ Rk;
3 Initialize release times of setup operators i ∈ {1, . . . , h};
4 forall dummy operations 0i, i ∈ {1, . . . , r1}, do
5 Get m ∈M0i

, select an adapter entity m[3] and a handler entity m[2] and update their
corresponding resource information;

6 end
7 Set the initial state of solution S;
. Machine configuration evaluation phase

8 forall operations ji ∈ O in non-decreasing order of their starting times in G do
9 Initialize C∗ji :=∞ and m∗ := ∅;

10 Get the tester i′ assigned to ji from G;
11 Get the last assigned machine configuration m̂ that includes tester i′;
12 Set S∗ := S;
13 forall eligible machine configurations m ∈Mji ∩M1

i′ do
14 Set Ŝ := S;
15 Evaluate machine configuration m (details below);
16 Compute the completion time Ĉji according to the above evaluation;
17 if Ĉji < C∗ji then
18 C∗ji := Ĉji ;
19 m∗ := m,S∗ := Ŝ;
20 end
21 end
22 Assign the most promising machine configuration m∗ to operation ji;
23 Update resource information and release times of setup operators;
24 Set S := S∗;
25 end
26 Compute objective function value WT ;

Algorithm 5.1 Determine a feasible allocation of handlers, adapters and setup operators

the load of the testers, i.e., the time instants at which the last operations that have been assigned
to the testers are completed, and information on the current use of all adapter and handler entities
as well as the setup operators. These values are initialized based on the machine configurations
at time t = 0 in lines 1–7 of the algorithm. In the second phase of the algorithm (lines 8–26), the
iterative assignment of resources to the operations takes place. For each operation, the algorithm
considers every eligible machine configuration based on the fixed tester decision of the given
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solution graph (loop 13–21). When evaluating the machine configuration (line 15), it considers
setup operator constraints and disassembly as well as assembly operations to later select the most
promising configuration based on the completion time of the considered operation in a greedy
manner (lines 17–20). More specifically, the evaluation proceeds as follows. Based on the setup
type (see Table 5.2) and the current resource information, it first considers necessary disassembly
operations on the selected tester. Here, the algorithm selects setup operators that can complete
the operations as quick as possible. The resource information as well as the operator release
times are updated accordingly. In the next step, the machine configuration is assembled. Here,
the algorithm prioritizes handler and adapter entities that are currently unused. If all entities
are currently in use, it schedules disassembly operations as described above, so that the needed
entities are available as early as possible. Hereafter, the assembly operations are scheduled in a
similar greedy manner, the resource information as well as the operator release times are updated,
and the completion time of the operation is computed. Finally, after assigning each operation
to a promising machine configuration, the objective function value of the constructed solution of
SFTPS is obtained (line 26).

5.3.3 Generating an Initial Solution

We generate an initial solution by making use of a constructive procedure composed of two steps.
First, the approach considers the master problem, i.e., it allocates operations to eligible testers
and decides on the sequences of the operations on the testers based on the lower bounds of the
processing times and the sequence-dependent setup times. For these allocation and sequencing
decisions, we adapt a priority-rule based heuristic introduced by Kress et al. (2019). It follows an
algorithmic idea of Giffler and Thompson (1960) for the classical job shop scheduling problem.
In general, the algorithm iteratively allocates operations that can start being processed at the
respective point of time when considering the corresponding precedence constraints. Among all
eligible testers that can be used for these operations, it then selects a tester, the use of which
results in the smallest possible completion time for one of the considered operations. Among
all operations that compete for this selected tester, exactly one operation is chosen based on
a priority rule. In our case, we take account of the due dates as well as the weights of the
corresponding jobs and select an operation ji with smallest value dj/wj . In the second step,
given the corresponding solution graph of the master problem, we apply the greedy procedure
as presented in Section 5.3.2.

5.3.4 Heuristic Framework

Our resulting overall best-fit tabu search framework is presented in Algorithm 5.2. To ease the
notation, we will refer to the objective function value of a solution S by using an additional label,
i.e., S̈. The framework consists of two phases, the initialization phase and the tabu search phase.
In the former phase, a first feasible solution is determined by making use of the constructive
procedure described in Section 5.3.3 (line 1) and the tabu search parameters are initialized (line
2). In the tabu search phase, we first compute a set of critical operations (lines 3–6). An operation
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Input: Instance Inst of SFTPS, parameter τ
Output: Solution S∗

. Initialization phase
1 Determine a feasible solution S of Inst with the constructive procedure described in

Section 5.3.3 and initialize S∗ := S;
2 Initialize an empty tabu list and set λ := 0;
. Tabu search phase

3 Initialize the set of critical operations Oc := ∅;
4 Insert all operations of all jobs that complete after their due date in S into Oc;
5 Initialize the master problem solution graph G of S;
6 if Oc = ∅ then exit the procedure;
7 Initialize the set of feasible neighboring solutions N := ∅;
8 forall critical operations ab ∈ Oc do
9 Determine the set R̄1 of eligible testers of operation ab;

10 forall r ∈ R̄1 do
11 Determine a neighbor GN of G as illustrated in Section 5.3.1;
12 Apply Algorithm 5.1 on GN to determine a neighboring solution SN ;
13 Set N := N ∪ SN ;
14 end
15 end
16 Discard all elements SN of N where the corresponding move from S is tabu if S̈N ≥ S̈∗

(aspiration criterion);
17 Select the best solution SNBS among the remaining solutions in N . If no solution remains, i.e.

if N = ∅, exit the procedure;
18 if S̈NBS < S̈∗ then set S∗ := SNBS and λ := 0;
19 else set λ := λ+ 1;
20 Update the tabu list;
21 Set S := SNBS ;
22 if λ < τ then go to line 3;
23 else exit the procedure;

Algorithm 5.2 Tabu search framework
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is critical, if its corresponding job completes after its due date. For each of these operations, we
make use of the solution graph of the corresponding master problem to compute a neighboring
solution graph as described in Section 5.3.1. For each of these graphs, we compute a solution of
the input instance by calling Algorithm 5.1. This results in a set N of neighboring solutions (lines
8–15). In the next step (line 16), neighboring solutions are discarded if their corresponding move
(operation to tester) is tabu and if they do not represent a new overall best solution (aspiration
criterion). The tabu list is updated in line 20. It is fed with the pair (ab, r̄) for the move of
operation ab from tester r̄ to tester r in order to generate the current solution SNBS . The length
of the tabu list is dynamically updated. It is set to the current number of critical operations.
If the length of the tabu list exceeds the tabu length threshold, the procedure removes entries
of the list in a first-in-first-out manner, until the tabu length is met. Whenever the overall best
solution S∗ is improved, the counter λ is set to 0, otherwise the value is incremented by 1. The
tabu search phase executes when no improvement is found for τ iterations.

5.4 Computational Study and Managerial Implications

In this section, we analyze the applicability and performance of our heuristic framework in
real-world industry settings in order to provide decision support for managers. We analyze the
effectiveness of rescheduling jobs in case of changing customer requests and we explore the impact
of handler or adapter failures. Before presenting these managerial insights in Section 5.4.5, we
present an overview of the considered solution approaches (Section 5.4.1) and the generation
of the instance sets that our study is based upon (Section 5.4.2). The general question of
whether or not our heuristic framework is suited for drawing managerial conclusions is answered
in Sections 5.4.3 and 5.4.4.

Our computational study was performed on a PC with an Intel R© CoreTM i7-4770 CPU,
running at 3.4 GHz, with 16 GB of RAM under a 64-bit version of Windows 8. All algorithms
were implemented in Java (JRE 1.8.0_221), using Eclipse (Eclipse IDE for Java Developers,
Oxygen 4.7). We used IBM ILOG CPLEX in version 12.9 as a MIP solver.

5.4.1 Overview of Solution Approaches

We implemented five solution approaches for our computational study. First, in order to provide
benchmarks for evaluating our heuristics, we make use of CPLEX in its standard settings with a
time limit of 3,600 seconds on the MIP presented in Section 5.2.2. Additionally, we implemented
the constructive procedure outlined in Section 5.3.3. It is referred to as PR (“priority rule”)
and mimics the status quo scheduling approach at our industry partner. With respect to our
heuristic framework (Section 5.3.4), we implemented Algorithm 5.2 as presented above (referred
to as TS-FI, “fully-integrated”) as well as two variations of Algorithm 5.2, the main ideas of which
are briefly summarized as follows:

1. TS-PI (“partially-integrated”): The procedure of evaluating machine configurations in line
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15 of Algorithm 5.1 does not take account of the availability of setup operators. Instead,
setup operators are taken account of only once in an additional call of Algorithm 5.1 at
the very end of Algorithm 5.2. The algorithm then compares the resulting solution with
the solution determined in the initialization phase and selects the best solution.

2. TS-HIER (“hierarchical”): Line 12 of Algorithm 5.2 is not executed at all, so that the tabu
search phase is executed solely on the master problem. As in TS-PI, Algorithm 5.1 is called
only once at the very end of Algorithm 5.2.

Within Algorithm 5.2 and its adaptions, we set τ :=
∑

j∈J qj .

5.4.2 Instance Generation

Our test instances are based on resource scenarios that imitate the resource pool at the testing
facility of our industry partner. While the small problem instances, that we make use of to eval-
uate the basic performance of our heuristic framework, feature only two testers (Table 5.4), the

Table 5.4: Resource scenario of small problem instances

r1 q1
i r2 q2

i r2
R1 r3 q3

i r3
R1 h

2 1 2 1 [1, 2] 2 1 [1, 2] 2

large problem instances are based on eight different scenarios (Table 5.5). The tables indicate

Table 5.5: Resource scenarios of large problem instances

Scenario r1 q1
i r2 q2

i r2
R1 r3 q3

i r3
R1 h

A 10 1 10 [1, 2] [3, 5] 15 [1, 2] [3, 5] 4
B 10 1 10 [2, 3] [3, 5] 15 [2, 3] [3, 5] 4
C 20 1 15 [1, 2] [3, 5] 20 [1, 2] [3, 5] 8
D 20 1 15 [2, 3] [3, 5] 20 [2, 3] [3, 5] 8
E 30 1 20 [1, 2] [3, 5] 25 [1, 2] [3, 5] 12
F 30 1 20 [2, 3] [3, 5] 25 [2, 3] [3, 5] 12
G 40 1 25 [1, 2] [3, 5] 35 [1, 2] [3, 5] 16
H 40 1 25 [2, 3] [3, 5] 35 [2, 3] [3, 5] 16

whether the integer parameters were fixed or drawn from uniform distributions over the given
intervals. We restricted the interoperability of testers, handlers and adapters, by generating eli-
gible machine configurations: For each tester, we randomly generated a subset of eligible handler
and adapter types of given size r2

R1 and r3
R1 , that can be combined arbitrarily. With respect

to the beginning of the planning horizon, we randomly selected eligible machine configurations
and potentially generated incomplete configurations by “removing” adapters and handlers (and
formally introducing dummy resource types). The number h of setup operators is fixed in each
scenario. For the large problem instances, this results in a staffing level, defined as the ratio of
the number of setup operators and the number of testers, of 40%.

The small instances are grouped into five instances sets, small1–small5. For each set, we
randomly generated 10 instances based on the values and intervals given in Table 5.6. As
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Table 5.6: Parameters of small problem instances

Inst. set |J | qj |Mji |

small1 2 [1, 2] [1, 2]
small2 2 [2, 2] [1, 2]
small3 3 [2, 2] [1, 2]
small4 5 [1, 2] [1, 2]
small5 5 [2, 2] [2, 2]

indicated in the table, the number of jobs is fixed for each instance within a group, while the
number of operations qj was drawn randomly for each job j. Similarly, we randomly determined
the number of eligible machine configurations and, in a next step, the configurations themselves.
For the large instances, the corresponding parameter values are given in Table 5.7. For each

Table 5.7: Parameters of real-world problem instances

|J | 20, 30, 40, 50
qj [2, 3], [3, 5], [4, 6]
|Mji | [1, 2], [2, 3], [3, 5]

combination and each resource scenario (A-H), we randomly generated 20 test instances.

In order to generate the processing times, we first drew auxiliary integer parameters pji for
all operations ji ∈ O from uniform distributions over [1, 100]. Then, in order to construct varying
processing times over the eligible machine configurations m ∈ Mji , we drew integer values pmji
from uniform distributions over [max{b0.9 · pjic, 1}, b1.1 · pjic].

All relevant operation-specific setup components (sji,gh , s̄ji,gh , ŝji,gh) were drawn indepen-
dently from uniform distributions over [1, 5]. Similarly, the setup times needed to remove or
install adapters (s̄mout, s̄m

′
in ) and handlers (ŝmout, ŝm

′
in ) were drawn separately from uniform distri-

butions over [3, 10].

Define pmaxji
:= max{pmji |m ∈ Mji}, and s̃maxji

:= max{smaxji
, s̄maxji

, ŝmaxji
}, for all ji ∈ O.

Furthermore, set smaxji
:= max{sgh,ji |gh ∈ Ô}, s̄maxji

:= max{s̄mout+s̄min|m ∈Mji}+max{s̄gh,ji |gh ∈
Ô}, and ŝmaxji

:= max{s̄mout + ŝmout + s̄min + ŝmin|m ∈ Mji} + max{ŝgh,ji |gh ∈ Ô}, for all ji ∈ O.
Based on these values, we drew the due dates dj of jobs j ∈ J from uniform distributions over
[0, b1.5 · Tmax/r1c]. Here, Tmax :=

∑
ji∈O(pmaxji

+ s̃maxji
). Similarly, the weights wj of jobs j ∈ J

were randomly generated based on the interval [1, 5].

5.4.3 Small Instances: Basic Evaluation of the Heuristic Framework

The computational results of the heuristic approaches PR, TS-FI, and TS-HIER are presented
in Table 5.8. Furthermore, the table includes information on the performance of CPLEX. With
respect to CPLEX, the table presents information on the number of instances for which a fea-
sible or optimal solution was obtained within the time limit (columns “feas.” and “opt.”), the
corresponding average objective function value (column “WTavg”), as well as the average runtime
over all runs that resulted in a feasible solution. For the heuristic approaches, the table presents
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Table 5.8: Performance of the heuristic approaches on small problem instances

CPLEX PR TS-FI TS-PI TS-HIER

Inst. set feas. opt. WT avg tavg [s] WT avg WT avg WT avg WT avg

small1 10 10 281.7 271.42 411.1 328.8 328.8 343.2
small2 10 10 442.3 361.45 627.9 509 509 560
small3 6 2 496.67 3559.53 857 580.3 580.3 724.4
small4 4 0 1156 3600 1241.5 715.2 715.2 1078.3
small5 0 0 - - 918.9 421.6 421.6 719.6

the average objective function values. Note that all calls of the heuristics resulted in a feasible
solution.

As to be expected, CPLEX returns feasible or optimal solutions solely for the smallest
instances and it is therefore not a reasonable choice when facing instances of larger size in
practice. However, the few resulting benchmarks certainly allow to draw first conclusions on
the performance of the heuristic approaches. Specifically, we observe that the solution quality
of our heuristic approaches TS-FI, TS-PI and TS-HIER is competitive when compared with the
optimal solutions for the sets small1 and small2. TS-FI and TS-PI tend to provide the best
solutions and there is a clear improvement with respect to PR, being the current status quo
scheduling approach at our industry partner. The average improvement of the solution quality
when applying the tabu-search heuristics is up to 37.02%. Moreover, when comparing TS-FI and
TS-PI with TS-HIER, we find that it clearly pays off to integrate the solution of subproblems
into the tabu search phase. The average runtimes of the heuristic approaches over all considered
instances range between 0.1 and 9.5 milliseconds.

5.4.4 Large Instances: Applicability of the Heuristic Framework

As can be concluded from the previous subsection, it is not reasonable use CPLEX to determine
benchmark solutions for the large problem instances. Instead, we compare the objective func-
tion value returned by the tabu search framework with the real-world solution approach at our
industry partner (PR). Thus, for some given instance and some run of algorithm TS-FI, TS-PI
and TS-HIER, we measure the quality of the solution returned by the algorithm with the quality
ratio 100 · (WTPR−WT )/WTPR, where WT and WTPR denote the total weighted tardiness of
the solution determined by the tabu search heuristic and PR, respectively.

Table 5.9 summarizes the computational results for the large problem instances grouped by
the eight scenarios and the number of jobs. The table includes information about the average
quality ratio over all instances of the corresponding sets (columns “Qavg”), as well as the average
runtimes (columns “tavg”) of the algorithms. Figure 5.3 complements Table 5.9 by illustrating the
average quality ratios (Qavg) as well as the average runtimes (tavg) over all resource scenarios.
It can be seen that the use of the tabu search framework significantly improves the solutions
that are currently implemented in practice (and used as initial solutions within our framework).
TS-FI tends to provide the best solutions at the cost of the largest average runtimes. Certainly,
with respect to the runtimes, all approaches are applicable in practice. As to be expected based
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Table 5.9: Performance of the heuristic approaches on large problem instances

TS-FI TS-PI TS-HIER TS-FI TS-PI TS-HIER

Sce. |J | Qavg tavg [s] Qavg tavg [s] Qavg tavg [s] Sce. |J | Qavg tavg [s] Qavg tavg [s] Qavg tavg [s]

A

20 66.19 5.36 54.89 4.61 5.61 0.18

B

20 48.33 4.22 33.21 3.33 9.43 0.18
30 68.63 17.84 56.69 15.72 3.84 0.68 30 52.87 13.79 32.31 10.35 6.05 0.72
40 67.86 42.31 53.64 35.06 2.94 1.84 40 55.16 30.75 36.61 25.1 6.14 1.8
50 69.12 85.6 53.83 66.9 3.33 4.07 50 58.25 59.91 36.63 48.07 4.95 4.05

C

20 59.21 8.98 53.03 8.54 4.92 0.24

D

20 40.41 8.3 31.63 6.95 9.74 0.24
30 65.39 31.09 56.83 28.58 3.75 0.75 30 48.32 25.71 37.35 20.77 6.67 0.76
40 67.6 75.3 56.83 69.36 3.46 1.83 40 54.05 55.67 40.17 43.13 5.33 1.86
50 67.87 153.48 56.51 126.26 2.69 4.22 50 56.02 108.29 41.98 86.41 3.62 4.26

E

20 57.02 11.62 53.62 11.59 6.06 0.25

F

20 35.33 11.63 30.88 10.52 10.2 0.26
30 62.7 41.95 57.68 39.15 4.42 0.87 30 44.52 34.31 37.29 31.47 7.15 0.85
40 65.25 103.15 57.45 92.55 2.52 2.14 40 50.16 78.59 41.3 70.88 4.82 2.08
50 65.63 206.21 57.13 183.37 3.11 4.23 50 53.36 149.74 44.07 131.09 4.31 4.48

G

20 50.3 13.9 48.42 13.17 7.85 0.26

H

20 29.03 14.69 26.53 13.39 12.17 0.28
30 60.23 51.1 55.95 46.74 6.05 0.96 30 39.49 47.35 34.11 41.16 8.52 0.92
40 63.7 119.92 57.79 118.26 4.38 2.21 40 44.76 106.46 37.92 90.02 6.66 2.22
50 65.89 253.62 58.77 234.47 2.98 4.8 50 49.7 217.09 41.09 162 5.89 4.32
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Figure 5.3: Quality ratios for large problem instances over all resource scenarios
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on the number of testers and handlers, we observe that the average quality ratios of TS-FI are
smaller in scenarios B, D, F, and H when compared with scenarios A, C, E, and G. Furthermore,
as also indicated above, the incorporation of computing solutions for the subproblems within the
tabu search phase (TS-FI, TS-PI) clearly pays off with respect to the solution quality, so that a
hierarchical planning approach has significant drawbacks. Moreover, when comparing TS-FI and
TS-PI, we observe that the consideration of setup operators when computing solutions of the
corresponding subproblems on average improves the solution quality at the cost of only slightly
increased runtimes.

5.4.5 Managerial Implications

Based on the above results we conclude that, in general, our heuristic framework is an adequate
method for deriving managerial insights. It furthermore seems reasonable to focus on the use
of the most promising setup TS-FI. Additionally, with regard to the test instances, we restrict
our attention to representative scenarios that feature instances with an expected makespan of
about one working-day, namely the resource scenarios C and D with parameter values |J | = 30,
qj ∈ [3, 5], and |Mji | ∈ [3, 5] (see Table 5.7). We will, however, adjust selected parameters of
these instances in the following.

We first analyze the impact of the number of copies of handler (adapter) classes q2
i (q3

i )
on the objective function value. Therefore, for each test instance, we modify the values of q2

i

and q3
i , such that they take all integer values from 1 to 6 for all i in all possible combinations.

Figure 5.4 illustrates the corresponding computational results over increasing values of q2
i and

q3
i . Naturally, we find that increasing the number of copies of handler and adapter classes has a
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Figure 5.4: Impact of increasing the number of copies of handler and adapter classes

positive impact on the objective function value. This positive effect, however, quickly diminishes
when the values become relatively large. Moreover, the number of handlers has a larger impact
on the objective function value than the number of adapters. Essentially, this is induced by the
structure of the setup times for assembly and disassembly operations as described in Section 5.2.
Thus, when investing in the test infrastructure, one should focus on a sufficiently large number
of handler copies before increasing the number of adapter copies.

Next, in order to evaluate the impact of the staffing level on the objective function value,
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we adjust the value of h for each test instance in order to achieve staffing levels between 20%
and 100%. Figure 5.5 plots the resulting increase of the total weighted tardiness in comparison
to a staffing level of 100% over the different staffing levels for both resource scenarios. As can be
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Figure 5.5: Analysis of staffing level (Setup operators)

seen, the total weighted tardiness remains relatively stable for staffing levels between 100% and
70%. Only below this threshold of 70%, we find a significant deterioration of the total weighted
tardiness.

As mentioned above, customers at our industry partner fairly frequently request a change of
the due dates of their orders. Hence, we now turn our attention to analyzing the effectiveness of
rescheduling jobs with our solution approach. To do so, we consider an idealized situation where,
at a given point in time (breakpoint), a rescheduling based on the initial schedule is manually
initiated. At this point in time, the test cells are associated to some machine configuration
and some of the jobs are labelled as emergency orders/jobs (see Section 5.1.2). For the sake of
simplicity, we set the corresponding jobs’ due dates and weights to the time instant associated
with the breakpoint and five, respectively. All operations that are currently processed at the
breakpoint define new operations with adapted processing times, so that their processing can
potentially be preempted. Other than that, the instance remains unchanged. The initial schedule
SInit is determined by the heuristic approach TS-FI. We compute the makespan Cmax of this
solution and randomly determine the breakpoint in the interval [b0.2 ·Cmaxc, b0.5 ·Cmaxc]. Given
the set of emergency jobs, we then modify the problem instance in accordance with the remaining
planning scenario as described above and then call TS-FI on this modified instance to compute a
solution SRes that also takes account of the jobs that have been scheduled before the breakpoint.
With respect to selecting the emergency jobs, we make use of different techniques that are based
on specifying some fixed percentage of emergency jobs. Our first technique models real-world
scenarios by randomly selecting the corresponding orders. The other techniques aim at analyzing
the influence of the jobs’ parameters. Here, we sort the relevant jobs in the order of non-decreasing
(non-increasing) values dj/wj and select the emergency jobs based on this ordering.

In order to assess the effectiveness of rescheduling by making use of TS-FI, we determine the
total weighted tardiness over all emergency jobs for the solutions SInit and SRes based on the
modified parameters and denote these values by WTSInit and WTSRes , respectively. We measure
the quality of the rescheduling solution with the quality ratio WTSRes/WTSInit . For each test
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instance, each technique for selecting emergency jobs, and varying percentages δ of emergency
jobs, we generated ten random breakpoints. The resulting average quality ratios (columns “Qavg”)
are presented in Table 5.10. We observe that rescheduling jobs with our solution approach has a

Table 5.10: Rescheduling effectiveness

Selection of emergency jobs

Randomly Smallest dj/wj Largest dj/wj

Scenario δ [%] Qavg Qavg Qavg

C

4 0.87 1.04 0.59
6 0.83 1.02 0.61
8 0.8 1.02 0.62
10 0.79 1.03 0.63
12 0.8 1.03 0.64
14 0.81 1.03 0.64
16 0.82 1.03 0.65
18 0.81 1.02 0.65
20 0.81 1.02 0.67
25 0.81 1.02 0.71

D

4 0.79 1.02 0.58
6 0.78 1.02 0.57
8 0.77 1.01 0.58
10 0.77 1.01 0.6
12 0.78 1.01 0.61
14 0.77 1.01 0.63
16 0.77 1.01 0.65
18 0.76 1.01 0.66
20 0.76 1 0.68
25 0.77 0.98 0.7

significant positive effect, at least when the emergency orders correspond to jobs j that originally
have a relatively large ratio dj/wj . This positive effect is relevant even if the percentage of
emergency orders is relatively small.

Finally, we analyze the impact of defect hardware resources. We construct idealized scenarios
where either only adapters or only handlers are defect. The corresponding failure rate is referred
to as ε. As above, we first compute an initial solution SInit by means of TS-FI, determine a
breakpoint at which the handler or adapter failures occur, and then apply TS-FI as a rescheduling
heuristic to determine SRes. The set of defect handlers or adapters is randomly selected, whilst
ensuring at least one remaining eligible machine configuration for each operation. We define a
quality ratio 100 · (WTSRes −WTSInit)/WTSInit based on the total weighted tardiness WTSInit
and WTSRes over all jobs in the corresponding solutions. As above, we compute ten random
breakpoints for each instance and various failure rates for the case of handler or adapter defects.
The results are presented in Figure 5.6. It depicts the average quality ratios (“Qavg”) as well as
the average percentage of unavailable machine configurations (“UMCavg”, in comparison to the
original instances) over different failure rates for scenarios C and D and the cases of handler or
adapter defects. As already indicated by the above results on varying numbers of handler and
adapter copies, the defect of handlers has a stronger negative effect on the objective function
value than the defect to adapters. This is interesting in light of the fact that the corresponding



122 5.5. Conclusion

5 10 15 20 25 30

0

5

10

15

20

25

30

35

ǫ [%]

Q
a
v
g

5 10 15 20 25 30

0

4

8

12

16

20

ǫ [%]

U
M

C
a
v
g
[%

]

Defect adapters (C) Defect adapters (D)

Defect handlers (C) Defect handlers (D)

Figure 5.6: Impact of defect hardware resources

difference of the percentage of unavailable machine configurations is relatively small. This effect is
particularly pronounced for large failure rates in scenario C. It is a result of the fact that a defect
handler requires the disassembly of both adapter and handler. Furthermore, when increasing
failure rates, the total weighted tardiness tends to increase slower in scenario D than in scenario
C which reflects the fact that managers should carefully determine the number of available copies
of the relevant adapter and handler classes in accordance to the investment costs and the time
needed to repair or replace defect entities. While these tests have not explicitly targeted the case
of multisite testing, it is obvious that the results will carry over in a straightforward manner.

5.5 Conclusion

In this article, we have addressed a semiconductor final test scheduling problem that takes
account of setup operator restrictions and aims to minimize the total weighted tardiness. We
have introduced a MIP and proposed heuristic tabu search approaches. In a computational
study, we have shown that our heuristics are competitive when compared with the performance
of a standard solver on the MIP on small problem instances. They have furthermore shown to
clearly outperform an as-is solution procedure at our industry partner on large instances that
mimic real-world settings within reasonable time and have thus proven to be well suited for daily
usage at our industry partner. When setting up the tabu search framework, we found that it
pays off to fully integrate the allocation of the setup operators. From a managerial perspective,
our results can be summarized by the following simple take-home messages:

• Integrating setup operators into heuristic final-test scheduling approaches pays off at the
cost of only slightly increased computational runtimes. When labor is considered to be
a constraining factor, corresponding approaches should thus be taken into account by
managers.

• There exists a threshold value, above which an increase of the staffing level results in rela-
tively small improvements with respect to on-time delivery of customer orders. Managers
should therefore carefully determine a reasonable staffing level for their specific setting.
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• With respect to the number of hardware resources at a testing facility, managers should
invest in a sufficiently large number of handler copies before increasing the number of
adapter copies. The decisions must reflect the investment cost as well as the time needed
to repair or replace defect entities.

• Rescheduling should be manually initiated whenever due dates change significantly. This
remains true even if only few jobs are affected and when rescheduling decisions induce a
significant setup effort.
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Abstract

Standard constraint programming solvers are known to perform remarkably well for most scheduling
problems. However, when comparing the performance of different available solvers, there is usually no
clear winner over all relevant problem instances. This gives rise to the question of how to select a
promising solver when knowing the concrete instance to be solved. In this article, we aim to provide
first insights into this question for the flexible job shop scheduling problem. We investigate relative
performance differences among state-of-the-art commercial and non-commercial constraint programming
solvers on problem instances taken from the literature as well as randomly generated problem instances.
We then leverage the resulting performance complementarity to propose algorithm selection approaches
that predict the best solver for a given problem instance based on instance features or parameters.
The approaches are based on two machine learning techniques, decision trees and deep neural networks,
in various variants. In a computational study, we analyze the performance of the resulting algorithm
selection models and show that our approaches outperform the use of single solvers and should thus be
considered as a relevant tool by decision makers in practice.
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6.1 Introduction

Most real-world manufacturing environments are highly complex systems that feature a variety
of constraints and characteristics that correspond to fairly specific settings found at the related
companies. Nevertheless, they usually have similarities that can be modelled by means of generic
problem formulations that reduce the complex settings to their very core. In some cases, solutions
based on these problem formulations can be implemented directly. Alternatively, they may serve
as building blocks or elementary subproblems in more specific optimization approaches. They
are thus of major importance not only from a theoretical perspective.

Certainly, in the scheduling context, one of the most practically relevant but rather compact
problem settings is the flexible job shop scheduling problem (FJSP). It generalizes the well-known
job shop scheduling problem (JSP; see, e.g., the survey by Błażewicz et al. 1996) and is composed
of a set of jobs and a set of machines. Each job consists of a set of operations that have to
be processed non-preemptively in a predefined sequence without overlapping in time in order to
complete the job. Each operation is associated to a specific machine for its processing. The FJSP
(see Blazewicz et al., 2019; Brucker and Schlie, 1990; Chaudhry and Khan, 2016) generalizes the
latter assumption in order to take account of the fact that manufacturing systems oftentimes
feature multiple machines of the same type as well as multi-purpose machines that are able to
process different types of operations. More specifically, it assumes that each operation must be
processed by exactly one machine out of a set of eligible machines. In both variants, the problem
is to allocate the operations to the (eligible) machines and to sequence the operations on the
machines so that some performance measure is optimized, whilst ensuring that, at any time,
each machine processes at most one operation and each operation is processed on at most one
machine.

In practice, manufacturing companies typically compute feasible schedules in rolling horizon
based planning approaches that, for example, allow to dynamically take account of varying
customer orders or maintenance issues arising on the shop floor. In order to guarantee smooth
production processes, these approaches rely on the ability to (re-)compute feasible schedules with
an acceptable solution quality in a short amount of time. In this regard, constraint programming
(CP) approaches have been successfully applied to many scheduling problems and, in particular,
to shop scheduling problems where disjunctive constraints are prevalent as it is the case for JSP
and FJSP (Dorndorf et al., 2000, 2002). Especially, the standard CP solver provided by IBM
ILOG CPLEX has shown to provide an excellent performance (see, e.g., Lunardi et al. 2020,
Wari and Zhu 2019, Laborie et al. 2018, Ham and Cakici 2016, and, for the specific case of the
FJSP, Kress and Müller 2019, Puget 2013). Of course, there exist alternative, non-commercial,
CP solvers. One of them is included in OR-Tools, an open source software suite developed
by Google. It won most of the gold medals in the 2020 MiniZinc Challenge (see MiniZinc,
2020), an annual competition that compares different CP solvers on a variety of combinatorial
optimization problems (Stuckey et al., 2014). A performance evaluation between Google’s OR-
Tools and the IBM ILOG CPLEX CP Optimizer was recently conducted by Da Col and Teppan
(2019a,b) for the JSP. The paper at hand complements this study by focussing on the FJSP.
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We present a thorough computational study that analyzes the relative performance of non-
commercial CP solvers when compared with the CPLEX CP Optimizer for solving well-known
benchmark instances taken from the literature as well as randomly generated test instances. We
focus on practically relevant industry settings, where, as outlined above, the solvers must be
able to quickly compute feasible solutions. To the best of our knowledge, there exist only one
corresponding study as part of the 2013 MiniZinc Challenge (MiniZinc, 2013) for the FJSP. In the
face of the rapid development of CP solvers, however, this study is rather outdated. Additionally,
it solely considers 5 instances.

In their aforementioned study, Da Col and Teppan (2019a,b) find that, on average, CPLEX
performs only slightly better than OR-Tools on small-sized problem instances of JSP. On large-
scale problem instances, CPLEX outperforms OR-Tools more significantly. However, when look-
ing at the results individually, there exist quite a few instances, where OR-Tools is able to
determine better solutions or proves optimality faster than CPLEX. Similar results can be ob-
served for many optimization problems when comparing the performance of different algorithms.
Typically, there exists no single best algorithm that outperforms all other approaches on all
problem instances. While some algorithm may perform best on some set of instances, another
algorithm may perform better on some other instance set. The problem of selecting the most
promising algorithm out of a given set of algorithms for a previously unseen instance of some
specific problem is also referred to as the algorithm selection problem. It was formally introduced
by Rice (1976). In order to predict the best algorithm, algorithm selection approaches generally
make use of features describing the given instance. Algorithm selection approaches can be cat-
egorized into classification methods and regression methods. While the former methods directly
predict an algorithm for a given instance, the latter methods predict continuous algorithm per-
formance measures, e.g., regarding the computational time, which are then used for the selection
of an algorithm.

Recently, algorithm selection approaches have been successfully applied for different problem
domains. For the sake of brevity, we refer to the surveys by Kerschke et al. (2019) and Smith-Miles
(2009) that cover the methodology and challenges of building an algorithm selector in general
and summarize practical algorithm selection approaches for various optimization problems. One
of the most prominent examples in the field of combinatorial optimization is concerned with the
propositional satisfiability problem (SAT). SATZILLA (Xu et al., 2012, 2008), a corresponding
algorithm selection approach, has won several medals in multiple SAT competitions. Another
relevant study is presented by Kerschke et al. (2018), who analyze the complementary perfor-
mance of five state-of-the-art inexact solvers for solving the traveling salesman problem (TSP)
on various benchmark instances and utilize this knowledge to build a very successful algorithm
selector. In the domain of scheduling problems, a successful implementation of an algorithm
selection approach is presented by Messelis and De Causmaecker (2014) for the multi-mode
resource-constrained project scheduling problem (MRCPSP).

The success of algorithm selection approaches for the above problem domains has motivated
us to develop algorithm selection approaches for the FJSP in order to leverage the performance
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complementarity of the CP solvers analyzed in our computational study. Our algorithm selection
approaches fall into the category of classification methods. In order to predict the best solver
for a given instance, we make use of two machine learning techniques. First, we make use of
decision trees, which are commonly used in the aforementioned studies. Second, we make use of
deep neural networks that have - to the best of the authors’ knowledge - barely been used for
implementing algorithm selection approaches, while they have recently proven very successful
in other applications like speech or image recognition. A similar observation is due to Kraus
et al. (2020), who find that the Operations Research (OR) community “is still in its infancy with
regard to adopting” the deep learning technology. In an extensive literature review of papers
published between October 2018 and September 2019 across the major OR journals, the authors
find only three papers that explicitly make use of deep learning techniques. A directly related
survey on the possibilities of leveraging machine learning to solve combinatorial optimization
problems (rather than selecting from existing algorithms) is presented by (Bengio et al., 2021).

It is important to note that the set of features that is used for characterizing an instance
is highly relevant for the performance of an algorithm selection approach. Therefore, we com-
pute a diverse set of features based on instance characteristics. However, the necessary a priori
knowledge that is needed for selecting appropriate features is not always available in practice.
Therefore, we additionally analyze the case of providing unprocessed instance data, i.e., the pro-
cessing times of operations on their eligible machines, that do not result from pre-computing
specific features. In an extensive computational study, we analyze the performance of our algo-
rithm selection approaches and show that they perform better than a single solver.

Our research is also related to the research fields of algorithm configuration and hyper-
heuristics. Algorithm configuration refers to the problem of obtaining parameter settings of a
given algorithm to optimize the performance on given problem instances (see, e.g., Hutter et al.,
2014). Hyper-heuristics are approaches that select or generate heuristics for solving a given
problem based on a given set of heuristics or components (see Burke et al., 2013). In the context
of production scheduling, several approaches have been proposed by, e.g., Dorndorf and Pesch
(1995); Hart et al. (1998); Vázquez-Rodríguez and Petrovic (2010).

Summing up, the contribution of this paper is twofold. First, we provide a computational
study on the performance of commercial and non-commercial state-of-the-art CP solvers on
a wide variety of benchmark instances of FJSP. Second, we develop multiple variants of an
algorithm selection approach that aims to leverage the performance complementarity of the CP
solvers. The overall setup is such that these approaches are applicable for practitioners in the
sense that the computational times are in ranges that allow their usage in rolling horizon based
scheduling approaches that require comparatively quick computations of feasible schedules.

The remainder of this paper is structured as follows. First, in Section 6.2, we provide a
formal definition of the FJSP. The computational study on the performance of the considered
CP solvers is provided in Section 6.3. Next, in Section 6.4, we develop our algorithm selection
approaches in detail, and then evaluate their performance in Section 6.5. We close the paper
with a summary in Section 6.6.
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6.2 Definition of the Flexible Job Shop Scheduling Problem

The FJSP is defined as follows. Given is a set J = {J1, . . . , Jn} of n jobs. Each job Ji ∈ J consists
of a set Oi = {i1, . . . , iqi} of qi operations that have to be processed on a set M = {M1, . . . ,Mm}
of m machines. The processing of operations must not be preempted. The sets Oi are assumed
to be linearly ordered for all i ∈ {1, . . . , n}. This relates to the fact that, for any pair of
operations ij , ij′ ∈ Oi with j < j′, ij′ may only start to be processed after the processing of
ij has completed. Each operation ij ∈ Oi, i ∈ {1, . . . , n}, must be processed on exactly one
machine out of a non-empty set of eligible machines Mij ⊆ M . Each machine can process only
one operation at a time and each operation can be processed by at most one machine at a time.
The processing time of an operation ij ∈ Oi of a job Ji ∈ J on an eligible machine Mk ∈Mij is
denoted by pkij ∈ N+. We assume that all jobs and machines are available at the beginning of the
planning horizon. The problem is to find a schedule, i.e., an assignment of operations to eligible
machines and a sequencing of the operations on the machines, that is feasible with respect to the
constraints stated above and that optimizes some performance measure. The completion time
of an operation ij ∈ Oi of job Ji ∈ J in a schedule is denoted by Cij and the completion time
of job Ji ∈ J is denoted by Ci. A job is completed if all of its operations are completed, i.e.,
Ci = Ciqi for all i ∈ {1, . . . , n}. We restrict our attention to the objective of minimizing the
makespan Cmax = maxi∈{1,...,n}Ci. The resulting problem is strongly NP-hard as it generalizes
the JSP, which is well known to be NP-hard in the strong sense when aiming to minimize the
makespan (Lenstra and Rinnooy Kan, 1979).

6.3 Performance Evaluation of Constraint Programming Solvers

In order to assess the performance of relevant CP solvers (see Section 6.3.1), we conducted
extensive computational tests on a variety of test instances (see Section 6.3.2). The tests were
performed on a PC with an Intel R© CoreTM i7-4770 CPU, running at 3.4 GHz, with 16 GB of
RAM under a 64-bit version of Windows 8. The results are presented in Section 6.3.3.

6.3.1 Constraint Programming Solvers

The CP solvers analyzed in our computational study are listed in Table 6.1. Note that CPLEX

Table 6.1: Overview of CP solvers

Solver Version Modelling language Reference

Choco 4.0.4 MiniZinc Prud’homme et al. (2016)
Chuffed 0.10.4 MiniZinc Chu et al. (2019)
IBM ILOG CPLEX 12.9.0 OPL IBM (2019a)
Gecode 6.2.0 MiniZinc Schulte et al. (2019)
Google OR-Tools 7.2 MiniZinc and directly via API Google (2019a)

and OR-Tools are optimization suites that provide not only CP solvers. In our tests, however,
we solely focussed on the respective CP solvers.
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As the performance of a solver depends on the modelling of a problem, we used a solver-
independent modelling language called MiniZinc. The MiniZinc problem specification separates
the definition of the general model and the data that defines some particular instance. To ensure
readability by a solver, the MiniZinc specifications are translated to a low-level solver input
language, called FlatZinc, by considering solver dependent constraint specifications. For further
details, we refer to Nethercote et al. (2007). For our tests, we made use of a MiniZinc model
for the FJSP that was part of the MiniZinc Challenge 2013 (Stuckey et al., 2014). This model
includes search annotations that define search strategies for finding feasible solutions. Below, we
will also consider the pure model without these annotations. The FlatZinc format is supported
by all solvers listed in Table 6.1 but CPLEX. For the latter CP solver, we therefore used a FJSP
model provided in the corresponding online documentation (IBM, 2019b) which makes use of
IBM’s Optimization Programming Language (OPL) and a set of modelling features that allow
covering temporal dimensions that are especially relevant in scheduling problems (details are
given in IBM, 2019a; Laborie et al., 2018). Google’s OR-Tools provide similar features (variable
and constraint types) for modelling scheduling problems (Google, 2019b), which we made use of
in an additional implementation of the FJSP in Java using the OR-Tools library via its API.

In line with the requirements in real-world manufacturing systems outlined in Section 6.1,
we set the time limit for each solver to rather small values. We considered two settings, 300
seconds and 30 seconds. Moreover, we activated the parallel processing mode in each solver.

6.3.2 Test Instances

We considered benchmark instances from the literature as well as randomly generated test in-
stances. All literature instances are available online via the FJSP instance collection (Mastrolilli,
2020). We restrict ourselves to summarizing the main features of the instances sets in this sec-
tion. More details are summarized by Behnke and Geiger (2012) and Mastrolilli and Gambardella
(2000).

• Instance set BR (Brandimarte, 1993): This set is composed of 10 (available) instances with
10 to 20 jobs, 4 to 15 machines, and 3 to 15 operations per job. The maximum number of
eligible machines of each operation ranges from 2 to 6. The processing times range from 1
to 20 time units.

• Instance set CH (Chambers and Barnes, 1996): The set consists of 21 instances that
were generated from three challenging JSP problem instances, introduced by Fisher and
Thompson (1963) and Lawrence (1984), by “replicating” machines. The processing times
of operations are identical on all of their eligible machines and correspond to the one of
the original problem instance. The set features instances with 10 to 15 jobs and 11 to 17
machines. For all instances, the number of operations per job equals the corresponding
number of machines.

• Instance set DA (Dauzère-Pérès and Paulli, 1997): The set consists of 18 instances with 10
to 20 jobs, 5 to 10 machines, and 15 to 25 operations per job. The set of eligible machines
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of each operation was constructed randomly by assuming that each machine is eligible with
a 10 to 50 percent probability. The processing times range from 10 to 100 time units.

• Instance set HU (Hurink et al., 1994; Mastrolilli, 2020): These benchmark instances are
based on three JSP problem instances by Fisher and Thompson (1963) and, according
to Mastrolilli and Gambardella (2000) and Behnke and Geiger (2012), 40 JSP problem
instances by Lawrence (1984). The set of eligible machines of each operation consists of
the associated machine of the original problem instance and, in addition, any of the other
machines with a given probability. By considering different values for these probabilities,
Hurink et al. (1994) generated three different instance sets, denoted by edata, rdata, and
vdata. The average number of eligible machines per operation is 1.15 in edata, 2 in rdata
and m/2 in vdata, so that the degree of flexibility is lowest in the instances of the first
set. The processing times of operations are identical on all of their eligible machines and
correspond to the ones of the original problem instance. According to Behnke and Geiger
(2012), the remaining instances associated to Hurink et al. (1994) in the database available
via Mastrolilli (2020) are based on benchmark instances by Adams et al. (1988), Carlier and
Pinson (1989) and Applegate and Cook (1991) and were generated in the same manner.
This results in a total of 198 HU instances.

Our random testbed, denoted by RA, is composed of three classes of instance sets with 10
jobs (small instances), 20 jobs (medium instances) or 30 to 40 jobs (large instances), respectively.
Each class consists of five sets (sfjsp1–sfjsp5, mfjsp1–mfjsp5, lfjsp1–lfjsp5) with different settings
regarding the remaining parameters. Each set features ten randomly generated test instances
with the parameter ranges illustrated in Table 6.2. Hence, there are 150 instances in our random

Table 6.2: Parameters of random testbed

small instances medium instances large instances

set n m qi |Mij | set n m qi |Mij | set n m qi |Mij |

sfjsp1 10 2 [1, 3] [1, 2] mfjsp1 20 2 [1, 3] [1, 2] lfjsp1 30 3 [2, 3] [1, 2]
sfjsp2 10 2 [2, 3] [1, 2] mfjsp2 20 3 [2, 3] [1, 2] lfjsp2 30 5 [2, 5] [1, 3]
sfjsp3 10 3 [1, 4] [1, 2] mfjsp3 20 3 [2, 5] [1, 2] lfjsp3 40 5 [2, 5] [2, 3]
sfjsp4 10 3 [2, 4] [1, 3] mfjsp4 20 4 [5, 8] [2, 3] lfjsp4 40 8 [5, 12] [4, 5]
sfjsp5 10 3 [3, 5] [1, 3] mfjsp5 20 6 [8, 10] [1, 3] lfjsp5 40 10 [8, 12] [4, 5]

testbed. While n and m are fixed for the instances of each set. The number of operations per
job and the number of eligible machines for each operation were drawn from uniform distribu-
tions over the intervals given in the table. Based on this data, the set of eligible machines was
randomly determined for all operations. Here, each machine was selected with the same proba-
bility. The processing times were then generated as follows. First, auxiliary integer parameters
pij for all jobs Ji ∈ J and operations ij ∈ Oi were drawn from uniform distributions over the
interval [10, 100]. Based on these parameters, we constructed varying processing times over the
corresponding eligible machines by drawing integer values pkij from uniform distributions over
the interval [b(1 − p) · pijc, b(1 + p) · pijc], where p = 0.1. All test instances of the RA set are
available in supplementary files that accompany this paper (Müller et al., 2021).
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6.3.3 Computational Results

Define pmin
ij

= minMk∈Mij
pkij for all Ji ∈ J and ij ∈ Oi, and set P =

∑n
i=1

∑
ij∈Oi p

min
ij

. Then, a
simple lower bound on the makespan of a given instance of FJSP is as follows:

LB = max

 max
i∈{1,...,n}

∑
ij∈Oi

pmin
ij ,

⌈
P

m

⌉ .

Note that, for the sake of brevity, we do not explicitly state the concrete instance in the definition
of the bound. We make use of this bound to measure the quality of a (not necessarily optimal)
solution with makespan Cmax returned by one of the considered CP solvers within the time limit
with the quality ratio 100 · (Cmax−LB)/LB. In addition, we introduce a scoring system inspired
by the one used in MiniZinc (2013). For a given instance, we assign one point to a solver, if it
proves optimality faster or finds a better solution than all of the other solvers. If the solvers are
indistinguishable, e.g., if the makespan of the two best solutions is equal without having proven
optimality, no point is assigned.

The computational results over the entire set of test instances are presented in Table 6.3.
For each solver and each time limit, it presents information about the percentage of instances for

Table 6.3: Performance of CP solvers

Time limit: 300 seconds Time limit: 30 seconds

CP Solver feas. [%] opt. [%] Qavg tavg [s] score feas. [%] opt. [%] Qavg tavg [s] score

Choco∗ 99.24 23.68 39.39 240.5 0 99.24 13.85 88.2 27.7 0
Choco 99.24 23.43 47.16 242.27 0 99.24 13.6 108.43 27.67 0
Chuffed∗ 100 2.02 96.22 296.15 0 100 1.01 97.18 29.81 0
Chuffed 42.82 4.53 267.9 278.39 0 27.96 1.51 280.31 28.66 0
CPLEX 100 46.85 8.17 164.94 132 100 42.32 8.44 18.83 150
Geocode∗ 99.24 0.25 103.33 299.37 0 99.24 0.25 103.73 30.02 0
Geocode 99.24 0.5 113.51 298.56 0 99.24 0.25 113.88 29.97 0
OR-Tools (API) 100 44.58 13.5 178.53 26 100 33.5 31.99 21.49 17
OR-Tools∗ 99.75 51.64 8.67 151.59 135 99.75 46.6 13.47 17.42 138
OR-Tools 89.67 49.87 10.5 140.77 42 83.38 44.33 12.14 15.8 32

which a feasible or optimal solution was obtained within the given time limit (columns “feas.”
and “opt.”), the average quality ratios (columns “Qavg”), the average runtimes (columns “tavg”),
and the sum of scoring points (columns “score”). The asterisk symbol (∗) in the solver column
indicates that the underlying MiniZinc model includes the aforementioned search annotations.

It can be seen that, with the exception of Chuffed on the MiniZinc model without search
annotations, the solvers are competitive with respect to their ability to determine feasible so-
lutions. Note, however, that some solvers had conversion errors for three instances of the BR
set and one instance of the HU set. The search annotations specified in the MiniZinc model
for the FJSP have a positive impact on the performance of the solvers (Chuffed, Gecode and
OR-Tools). Moreover, it can be concluded that CPLEX provides the overall best performance
with respect to the solution quality. A more detailed analysis shows that this effect is partic-
ularly pronounced for instances of larger size and when the time limit is set to a lower value.
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However, when analyzing the percentage of instances for which an optimal solution was obtained,
CPLEX is narrowly beaten by OR-Tools on MiniZinc with search annotations. This result is also
reflected in the distribution of the scoring points. CPLEX and OR-Tools are the only solvers
that received scoring points. For 62 (60) instances no clear winner regarding our scoring system
(solvers indistinguishable) was found for a time limit of 300 (30) seconds. These results are in line
with the computational study conducted by Da Col and Teppan (2019a,b), which demonstrates
the strengths of CPLEX especially on large-scale problem instances of JSP, but also shows that
OR-Tools is competitive on classical benchmark instances.

With respect to the different OR-Tools modes, most points were obtained when using MiniZ-
inc with search annotations. The two other modes (API mode and MiniZinc without search
annotations) obtained the majority of their points only because of determining optimal solu-
tions faster than MiniZinc with search annotations. However, the corresponding time differences
are in the range of a few milliseconds, so that the aforementioned benefit of using OR-Tools
when compared with CPLEX is even larger than indicated in Table 6.3. This is highlighted in
Table 6.4, where we present the distribution of scoring points when restricting the analysis to
CPLEX and OR-Tools on MiniZinc with search annotations. Apparently, OR-Tools on MiniZinc

Table 6.4: Distribution of scoring points when restricting the analysis to CPLEX and OR-Tools∗

Time limit: 300 seconds Time limit: 30 seconds

CPLEX 149 165
OR-Tools∗ 210 210

with search annotations and CPLEX tend to be competitive in terms of performance, i.e., one
solver outperforms the other on some instances, while it is beaten by the other solver on some
other instances. This can be quantified when using the competitiveness ratio introduced by Mes-
selis and De Causmaecker (2014). Let T be the set of all 397 test instances. Furthermore, denote
by A the set of instances for which some specific algorithm X outperforms another algorithm Y

with respect to some criterion. Set B is defined analogously as the set of instances on which X
is beaten by Y . Then, the competitiveness ratio c is defined by c = 2 ·min{ |A||T | ,

|B|
|T |}. Obviously,

a ratio close to one indicates that X and Y perform similarly well. In our case, based on the
scoring points presented in Table 6.4, the competitiveness ratio of CPLEX and OR-Tools on
MiniZinc with search annotations is 0.751 for the 300 seconds time limit and 0.831 for the 30
seconds time limit. Note that, if we assigned a point to both solvers in case of a tie, these values
were even larger. Hence, we will restrict our attention to these two settings in the remainder of
this paper. For the sake of brevity, we will not explicitly specify the fact that we are making use
of the MiniZinc search annotations and we will omit the asterisk when referring to OR-Tools.

In order to gain further insights into the competitiveness of both solvers, a more detailed
analysis that takes account of the different sets of test instances is presented in Figures 6.1 and
6.2.

Figure 6.1 illustrates the runtimes of CPLEX and OR-Tools when restricting the attention to
the instances for which at least one of the two solvers was able to determine an optimal solution,



6.3. Performance Evaluation of Constraint Programming Solvers 137

0 50 100 150 200 250 300
CPLEX runtime [s]

0

50

100

150

200

250

300

O
R

-T
oo

ls
 r

un
tim

e 
[s
]

CH instances
BR instances
DA instances
HU instances
RA instances

(a) Time limit: 300 seconds

0 5 10 15 20 25 30
CPLEX runtime [s]

0

5

10

15

20

25

30

O
R

-T
oo

ls
 r

un
tim

e 
[s
]

CH instances
BR instances
DA instances
HU instances
RA instances

(b) Time limit: 30 seconds

Figure 6.1: Performance of CPLEX and OR-Tools - ability to determine provable optimal solutions
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Figure 6.2: Performance of CPLEX and OR-Tools - quality ratios
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including the proof of optimality. The data is represented by means of scatter plots, with each
data point representing a specific test instance. The maximum values of the runtimes depicted
in the plots represent the time limits of 300 and 30 seconds, respectively. Hence, data points
at the very top or right of the plots represent instances on which one of the solvers was not
able to determine an optimal solution within the time limit. If both solvers have determined an
optimal solution for a specific instance within the same time, the respective data point lies on
the diagonal lines in the plots. As can be seen, there exist quite a few instances that were solved
to optimality by both solvers within milliseconds or a few seconds. However, for some instances,
the performance of the solvers is significantly different, which is in line with the findings of Pesch
and Tetzlaff (1996). As an example, we observe that (at least for the smaller time limit), CPLEX
seems to perform better than OR-Tools on the HU instances. For the RA and CH instances, on
the other hand, OR-Tools seems to perform better.

Figure 6.2 focusses on the quality ratios of the computed solutions. For reasons of clarity,
we omit data points for which the quality ratio of both solvers is identical. As already observed
in Table 6.3, CPLEX outperforms OR-Tools on most instances, especially when the time limit
is set to only 30 seconds. However, on a few instances, OR-Tools was able to compute better
solutions.

In summary, we conclude that there clearly is a potential payoff when using an algorithm
selection approach based on the CP solvers CPLEX and OR-Tools for the FJSP. Hence, the
remainder of this paper aims at developing such an approach.

6.4 Algorithm Selection Approaches

Rice (1976) introduces an abstract model for the algorithm selection problem. It consists of the
following elements:

• A problem space X, that consists of a set of instances of a problem. In our case, the FJSP
represents the (optimization) problem under consideration.

• An algorithm space A, that includes a set of algorithms for (potentially heuristically) solving
the problem instances. Here, based on the computational results presented in Section 6.3,
A is composed of the CP solvers CPLEX and OR-Tools with specified time limits.

• A performance measure y, which is used to quantify the performance of an algorithm on a
given problem instance. We make use of the scoring system introduced in Section 6.3.3.

The algorithm selection problem is to find a mapping S : X → A that maps each problem instance
to an algorithm that maximizes the performance measure y. Usually, in order to (heuristically)
obtain a mapping, one defines a feature set F to characterize the problem instances and then,
for example, applies machine learning techniques to select an appropriate algorithm based on
the concrete features of an instance.

This section proceeds as follows. In Section 6.4.1, we define an appropriate feature set for
FJSP. Hereafter, in Section 6.4.2, we randomly construct a problem space that aims at providing
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a sufficiently large amount of instances to later construct and evaluate our algorithm selection
approaches based on machine learning techniques. Our procedure of generating the problem
space is such that some of the instances mimic the ones of the sets introduced in Section 6.3.2.
After a preliminary analysis on the competitiveness of the CP solvers on the problem space in
Section 6.4.3, our algorithm selection approaches are introduced in detail in Section 6.4.4.

6.4.1 Feature Set

The definition of the feature set is a crucial part of any algorithm selection approach as it is
used to characterize the instances and then link these characteristics to the performance of the
algorithms. According to Kerschke et al. (2019), the features should be informative, interpretable,
cheaply computable, generally applicable, and complementary. Following these principles, we
define a total of 151 features, which are grouped into four categories that are presented in the
following subsections.

Given k real values x1, . . . , xk, we will make use of the corrected standard deviation, which
is defined as √√√√ 1

k − 1

k∑
i=1

(xi − µ)2,

where µ is the arithmetic mean of the values xi, i = 1, . . . , k.

6.4.1.1 Instance Size Related Features

With respect to the size of an instance, we consider a total of 28 features. This includes the
following standard features:

• Number of jobs n

• Number of machines m

• Total number of operations
∑n

i=1 qi

Additionally, we consider a few statistical measures:

• With respect to the number of operations of the jobs, we consider the minimum value,
the maximum value, the arithmetic mean, the corrected standard deviation, and the nine
deciles (as nine separate features).

• Similarly, with respect to the number of operations of the jobs divided by the correspond-
ing arithmetic mean, we consider the minimum value, the maximum value, the corrected
standard deviation, and the nine deciles.

6.4.1.2 Flexibility Related Features

The degree of flexibility within an instance is captured by 50 features. First, we consider the
minimum value, the maximum value, the arithmetic mean, the corrected standard deviation, and
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the nine deciles of the following attributes:

• Number of eligible machines for each operation

• Number of eligible operations of each machine, being defined as the number of operations
that include the respective machine in their sets of eligible machines

Additionally, as in case of the instance size related features, we consider the minimum value, the
maximum value, the corrected standard deviation, and the nine deciles of these attributes after
having divided them by their corresponding arithmetic means.

6.4.1.3 Processing Time Related Features

The third category of features relates to the processing times of operations. This gives rise to 37
features. Specifically, we consider the minimum value, the maximum value, the arithmetic mean,
the corrected standard deviation, and the nine deciles of the average processing time of operations
over their eligible machines. As before, we additionally use this latter attribute divided by its
corresponding arithmetic mean to define features that correspond to the associated minimum,
maximum, corrected standard deviation, and the nine deciles. Finally, we compute the corrected
standard deviation of the average processing times of the operations over their eligible machines.
The corresponding minimum, maximum, corrected standard deviation, and nine deciles define
the final 12 features in this category.

6.4.1.4 Priority Rule Related Features

The forth category of features is structurally different from the three prior categories, as it
relies on heuristically computing feasible schedules in order to determine the feature values (see
Mirshekarian and Šormaz, 2016, for a similar approach). To do so, we apply a priority rule
based approach proposed by Kress et al. (2019) that follows an algorithmic idea of Giffler and
Thompson (1960). In each iteration, this heuristic selects time instant and a machine, and
appends an eligible operation that can start being processed at the respective point of time with
respect to the precedence constraints at the end of the machine’s operation sequence. Among all
potential operations (referred to as candidate operations), exactly one operation is chosen based
on a priority rule. We implemented four different priority rules, namely shortest processing time,
longest processing time, least work remaining, and most work remaining (for details, see, e.g.,
Dorndorf and Pesch, 1995; Haupt, 1989).

For each of the four resulting schedules, we compute the following features:

• Arithmetic mean of job completion times

• Minimum, maximum, and corrected standard deviation of the job completion times divided
by the corresponding arithmetic mean

• Arithmetic mean of machine loads, where the load of a machine is defined as the completion
time of the operation that is scheduled last on the machine
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• Minimum, maximum, and corrected standard deviation of the machine loads divided by
the corresponding arithmetic mean

Moreover, during runtime of the heuristic, we count the total number of candidate operations
and define the final count divided by the total number of operations as another feature. This
results in a total of 36 features.

6.4.2 Problem Space Generation

The development and evaluation of algorithm selection approaches depends on a sufficiently large
problem space, which we generated randomly. The underlying procedure is identical to the one
for the RA set in Section 6.3.2. It is used to generate instances with 10 to 40 jobs and 2 to
8 machines. In order to take account of our results in Section 6.3.3, the remaining parameter
ranges are such that the generation procedure is likely to result in a set that includes instances in
accordance with the literature sets introduced in Section 6.3.2. They are illustrated in Table 6.5.
For each reasonable combination of parameter values, we generated 25 test instances. Recall, that

Table 6.5: Parameters used for generating the problem space

n 10, 20, 30, 40
m 2, 3, 4, 5, 6, 8
qi [1, 3], [1, 4], [2, 4], [2, 6], [2, 8], [4, 10], [6, 12], [10, 15]
|Mij | [1, 2], [2, 3], [4, 5]
pij [10, 100]
p 0, 0.1

the parameter p is used for generating the processing times based on values pij , i ∈ {1, . . . , n},
ij ∈ Oi. For p = 0, the processing times of operations are identical on all of their eligible
machines, which mimics the instances of the CH set and the HU set. In total, the problem space
is composed of 22400 instances.

6.4.3 Preliminary Processing and Analysis

In line with the computational results presented in Section 6.3.3, we first analyze the compet-
itiveness of the considered solvers on the problem space. As we focus on practically relevant
industry settings, we fix the time limit to 30 seconds.

Both solvers were able to determine a feasible solution for all instances. For 3799 instances,
they perform identically with respect to the above scoring system, so that a clear winner cannot
be identified. We deleted these instances from the problem space. Hence, the remainder of this
paper focusses on the remaining 18601 instances. In a next step, we randomly partitioned this
set of instances into a training set (80 %, 14881 instances) used for the training of our algorithm
selection approaches and a validation set (20 %, 3720 instances) used for the pre-evaluation of
our approaches (see Section 6.4.4). Afterwards, for the final validation of our approaches, our
algorithm selection approaches were tested on a separate test set composed of previously unseen
instances (see Section 6.5). With respect to the distribution of scoring points achieved by the
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solvers on the training set, we find that both solvers show a complementary performance with
CPLEX receiving 7674 scoring points and OR-Tools receiving 7207 scoring points, resulting in a
competitiveness ratio c = 0.969. In line with our results in Section 6.3.3, this allows to conclude
that there exists a potential payoff when using algorithm selection approaches.

Figure 6.3 allows to take a closer look on the competitiveness of the solvers on the instances
of the training set. For exemplary features of the feature set, the scatter plots illustrate the
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Figure 6.3: Scatter plots illustrating the performance competitiveness between CPLEX and OR-Tools on
the training set

strengths and weaknesses of the solvers. Each data point represents an instance of the training
set. The grayscale of the point highlights the algorithm that performs better on the respective
instance. For the sake of clarity, the plots focus on a representative subset of training instances.
As can be seen, OR-Tools tends to perform better than CPLEX when the arithmetic mean of
the number of operations of jobs is rather small. This effect decreases for an increasing number
of jobs or machines. Similarly, an increase of the arithmetic mean of the number of eligible
machines for each operation is in favor of CPLEX, which seems to be independent of the number
of jobs or machines.

Based on the plots in Figure 6.3, it is almost impossible for the human eye to identify
instance clusters that are expressive enough to allow a substantiated choice of a solver when
being confronted with a previously unseen instance. We therefore make use of machine learning
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techniques to tackle this task. This allows to implicitly gain knowledge about a high quality
mapping S.

6.4.4 Algorithm Selection Models

Since the desired output of our algorithm selection approaches, i.e., a prediction of the best solver,
is categorial, our approaches fall into the category of classification methods. The instances
of the problem space are labelled with binary labels according to our preliminary analysis of
Section 6.4.3, i.e., each instance is associated with a value that indicates the solver that received
the respective scoring point. We make use of two technologies: decision trees (Section 6.4.4.1),
which are frequently used in the field of algorithm selection (see, e.g., Kerschke et al., 2018;
Messelis and De Causmaecker, 2014), and deep neural networks (Section 6.4.4.2), which are less
common in the OR literature (Kraus et al., 2020). In order to prevent overfitting and in order
to specify the details, e.g., the network architecture, of our models, we pre-evaluate our models
on the validation set. A model’s performance is measured in terms of its accuracy, i.e., the
percentage of correct classifications on the validation set.

6.4.4.1 Decision Trees

Decisions trees can be graphically illustrated by flowchart-like tree structures, in which each node
(except the leaf nodes) represents a test on a feature, each edge represents a result of the test,
and each leaf node represents a final prediction. There exists a broad variety of decision tree
techniques and algorithms. For the sake of brevity, instead of summarizing well-known results,
we refer the reader to Han et al. (2011).

For building our decision tree models, we used the Waikato Environment for Knowledge
Analysis, WEKA, in version 3.8.3 (Frank et al., 2016; Hall et al., 2009). WEKA provides a
broad collection of machine learning techniques. Amongst others, it offers a variety of different
decision tree techniques and algorithms that can be utilized to construct an algorithm selector:

• Decision stump (DS): method for constructing a one-level decision tree using a single feature
(Iba and Langley, 1992)

• Hoeffding tree (HT): incremental decision tree algorithm (Hulten et al., 2001)

• J48: generates a C4.5 decision tree (Quinlan, 1993)

• Logistic model tree (LMT): algorithm for building decision trees with logistic regression
functions at the leaves (Landwehr et al., 2005; Sumner et al., 2005)

• Random tree (RT): constructs a tree that considers a set of randomly chosen features at
each node (Frank et al., 2016)

• Random forest (RF): method to construct a variety of random trees (Breiman, 2001)
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• REP tree (REPT): builds a tree using information gain and reduced-error pruning (Frank
et al., 2016)

We made use of these algorithms with the software’s default parameters on our training set.
The results of the pre-evaluation of the resulting decision tree models on the validation set are
presented in Table 6.6. For each of the models, the table presents the accuracy. Based on these

Table 6.6: Pre-evaluation of decision tree models on the validation set

Decision tree algorithm/model DS HT J48 LMT RF RT REPT
Accuracy [%] 76.24 82.07 83.41 85.19 86.34 81.21 84.22

results, we decided to select the best three variants, RF, LMT, and REPT, for evaluation on the
test set in Section 6.5.

6.4.4.2 Deep Neural Networks

With recent advances in machine learning, deep learning has become an increasingly popular
technique (Bengio et al., 2007; Hinton et al., 2006; Kraus et al., 2020; Schmidhuber, 2015). It
refers to the use of deep neural networks that are inspired by neuroscience and date back to
McCulloch and Pitts (1943). These networks can be represented by graphs. A respective graph
is structured into multiple layers (see, e.g., Goodfellow et al., 2016; Han et al., 2011): an input
layer, one or more hidden layers, and an output layer. Each layer consists of a collection of units,
also referred to as neurons or nodes. These units receive input from other units, or - in case of
the input layer - are fed with given data (in our case, instance feature values), compute some
value as a function (typically a weighted sum) of the inputs and, based on this value, compute
an output via a potentially nonlinear activation function, which is then passed on to connected
units or serves as an output of the network. The number of units of the input layer therefore
represents the number of elements of an input data tuple, while the units in the output layer
are associated with the output values, e.g., the class labels. Usually, the layers are sequentially
connected and, thus, build up a feed-forward structure. If, additionally, each unit of a layer is
connected with each unit in the succeeding layer, the network is referred to as a fully connected
neural network. After having defined a network topology, the weights of the network (as well
as bias values) are computed and adjusted during a learning process on the training set, e.g.,
by making use of backpropagation, in order to minimize a loss function that measures the error
between the predicted values and true observations.

In our case, as we solely consider the choice among two solvers, we restrict ourselves to
network topologies with a single output unit that computes a real value in the range (0, 1). This
value represents the probability that a specific solver, say OR-Tools, is the best choice for the
considered instance. A value close to zero then predicts CPLEX to perform better, while a value
close to one predicts OR-Tools to be the best choice. We make use of the binary cross-entropy
loss function. Denote by K some set of instances of the problem space and, for some k ∈ K, let
ỹk ∈ (0, 1) be the output of the network and yk ∈ {0, 1} be the binary label, representing the
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best solver for this instance. Then, this loss function is defined as

L = − 1

|K|
K∑
k=1

yk log(ỹk) + (1− yk) log(1− ỹk). (6.1)

For implementing our deep neural networks, we used the open source machine learning
framework PyTorch in version 1.6.0 (PyTorch, 2020) using Python. In order to determine a
final network architecture that does not tend to overfit and that has an acceptable accuracy, we
implemented and trained several network architectures with varying parameter settings and pre-
evaluated these networks on the validation set. Throughout this empirical evaluation, we found
the following fully connected neural network, denoted by FCNN, to perform best (accuracy:
86.53%):

• Input layer: 151 units according to the number of features introduced in Section 6.4.1

• Three hidden layers with 256, 128, and 64 units with relu activation functions (see, e.g.,
Goodfellow et al., 2016; Han et al., 2011),

• Output layer: one unit using a sigmoid activation function (see, e.g., Goodfellow et al.,
2016; Han et al., 2011)

The learning process was performed with Adam (Kingma and Ba, 2014), a popular adaptive
learning rate optimization algorithm, with default parameters as suggested by the authors. The
number of epochs, specifying the number of learning phases over the entire training set, was set
to 10. The batch size, i.e., the number of instances used in a learning iteration, was set to 100.
Moreover, for better generalization and robustness of the learning process, we normalized the
input data to values between 0 and 1.

There exist advanced network architectures that target at specific data structures (see, e.g.,
Goodfellow et al., 2016; Kraus et al., 2020). Convolutional neural networks, for example, aim to
exploit spatial dependencies in grid-like data, e.g., among neighboring pixels in images. These
networks provide special filtering and pooling techniques to reduce the dimension and to identify
certain patterns within the data. In our case, grid-like structures arise, when providing unpro-
cessed instance data in form of the processing times of operations on their eligible machines to a
neural network. Hence, for this case, we additionally trained a convolutional neural network, de-
noted by CNN. It is illustrated in Figure 6.4. The (normalized) processing times are represented
by a 600 × 8 matrix (a maximum of 40 jobs with a maximum of 15 operations on a maximum
of 8 machines) with 4800 elements. A zero within this matrix indicates that the corresponding
operation cannot be processed on the respective machine (hence, it does not exist if all elements
within a row are zero), while a one is associated to the largest possible processing time value (in
our case 110). As before, the learning process was performed with Adam (learning rate 0.005, all
other parameters with default values, 5 epochs, batch size 100). Based on an empirical evaluation
on the validation set, we decided to make use of the following structure. In a convolutional layer,
the information included in this matrix is aggregated using a kernel size of 15 × 8 (a maximum
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Figure 6.4: Illustration of the convolutional neural network

of 15 operations per job on a maximum of 8 machines) and a stride of 15, in order to aggregate
the information for each job separately. We use a total of 512 filters. The resulting output is
passed through fully connected layers consisting of a 64 units layer with relu activation functions
and an output layer composed of one unit with a sigmoid activation function. On the validation
set, CNN has an accuracy of 83.97%.

Finally, in order to be able to evaluate the effect of the convolutional layer, we trained an
additional fully connected neural network (Adam setup as in case of CNN), denoted by FCNN’,
that uses the above processing time matrix as input data but does not feature a convolutional
layer. As in case of FCNN, it has three hidden layers with 256, 128, and 64 units with relu
activation functions. The input layer is adjusted according to the modified input data, while
the output layer is identical to the one in FCNN. FCNN’ has an accuracy of 82.58% on the
validation set. At first glance, this indicates that the use of a convolutional layer pays off when
using unprocessed instance data. A detailed analysis follows in Section 6.5.

6.4.4.3 Overview of Resulting Models

Before finally validating our algorithm selection models on a randomly constructed test set,
we summarize all of our models in Table 6.7. It includes the computational times needed for
building/training the models. The computation of the feature set of an instance takes only a few
milliseconds, so that it is of minor interest.

6.5 Computational Results and Evaluation

For the final validation of our algorithm selection models, we generated a separate test set. The
generation procedure and size of the instances is in line with Section 6.4.2. In order to generate
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Table 6.7: Overview of algorithm selection models

Abbreviation Method Model Input data Build/
Training time [s]

LMT Decision Tree Logistic model tree Features 100.22
RF Decision Tree RandomForest Features 14.78
REPT Decision Tree REPTree Features 4.17
FCNN Neural network Fully connected neural network Features 134.13
FCNN’ Neural network Fully connected neural network Proc. time parameters 189.38
CNN Neural network Convolutional neural network Proc. time parameters 228.47

previously unseen instances, we used new random seeds. For each reasonable combination of
parameter values (see Table 6.5), we generated 5 test instances. For the resulting 4480 instances,
we proceeded as described in Section 6.4.3, i.e., we called both solvers, CPLEX and OR-Tools,
with a time limit of 30 (300) seconds and discarded 768 (1157) instances as there was no clear
winner. Both solvers returned a feasible solution for all instances and time limits. We denote
the remaining 3712 (3323) instances as test set A (test set B). Note that, even though our
algorithm selection models were trained with a time limit of 30 seconds, test set B allows to
analyze the performance of our approaches when increasing the time limit for the selected solver
to 300 seconds.

As an additional performance indicator, we used k-fold cross-validation on the training set
(see, e.g., Han et al., 2011) with a time limit of 30 seconds. To do so, we randomly partitioned
the training set into k = 10 data folds F1, . . . , F10 with |Fi| − |Fj | ≤ 1 for all i, j ∈ {1, 2, . . . , 10}.
In ten iterations, i = 1, . . . , 10, the models were trained with the union of all data folds but Fi.
Each of the resulting iterations resulted in specific model variants, that were then validated with
data fold Fi. As a performance indicator, we computed the average accuracy over all iterations.

Our overall approach is illustrated in Figure 6.5.

training set

model training

validation set

pre-evaluation

test set A

test set B

final validation

F1 . . . . . . . . . . . . . . . . . . . . . . . . Fk

k-fold cross-validation (k = 10)

Figure 6.5: Illustration of training, validation, and test sets as well as k-fold cross-validation

6.5.1 Evaluation of the Algorithm Selection Models

The results of the final evaluation on test sets A and B are presented in Tables 6.8 and 6.9,
respectively. The tables illustrate the performance of our algorithm selection models, the use of
the individual solvers CPLEX and OR-Tools, as well as the use of the virtual best solver (VBS),
i.e., the use of an oracle that reveals the best solver for each instance. They present information
on the percentage of instances for which a provably optimal solution was found with the selected
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Table 6.8: Final validation on test set A

CPLEX OR-Tools LMT RF REPT FCNN FCNN’ CNN VBS

Accuracy [%] - - 85.91 86.77 84.29 86.02 80.87 83.19 100
opt. [%] 22.58 27.13 27.05 27.1 27.02 27.07 26.94 26.97 27.16
Qavg 2.94 12.53 2.84 2.82 2.84 2.83 2.84 2.87 2.76
tavg [s] 23.83 22.42 22.41 22.4 22.41 22.41 22.44 22.42 22.38
score 1926 1786 3189 3221 3129 3193 3002 3088 3712

Table 6.9: Final validation on test set B

CPLEX OR-Tools LMT RF REPT FCNN FCNN’ CNN VBS

Accuracy [%] - - 74.99 75.23 74.9 75.77 69.49 72.62 100
opt. [%] 27.87 33.85 33.85 33.85 33.79 33.82 33.58 33.79 33.92
Qavg 2.94 4.61 2.86 2.86 2.85 2.85 2.88 2.87 2.74
tavg [s] 219.51 203.29 203.32 203.3 203.43 203.25 203.85 203.39 202.98
score 1349 1974 2492 2500 2489 2518 2309 2413 3323

solver within the given time limit (row “opt.”), the average quality ratios (row “Qavg”), the average
runtimes (row “tavg”), and the sum of scoring points (row “score”) over all instances. Moreover,
they include information on the accuracy of the selectors (row “Accuracy”). Again, the time
needed to compute the feature values of an instance is negligible.

We observe that all of our algorithm selection models perform similar or better than the
individual solvers with respect to all performance indicators for both test sets. As to be expected,
the positive effect of using our selectors is more significant for test set A. The accuracy values
are in similar ranges for all models but FCNN’, that suffers from the absence of the convolutional
layer when compared with CNN. RF and FCNN tend to provide the best overall performance on
the test sets A and B, respectively. Moreover, the selectors that make use of the pre-calculated
features outperform the other selectors. However, this effect is rather small when a convolutional
layer is used (CNN). Hence, in practice, planners can abstain from the selection and computation
of these features at little cost.

As already observed in Sections 6.3 and 6.4, CPLEX and OR-Tools show a performance
complementary. For the test set, CPLEX receives 1926 (1349) and OR-Tools receives 1786
(1974) scoring points for test set A (B). Again, CPLEX tends to provide better quality ratios
while OR-Tools wins when considering the ability to quickly determine optimal solutions. As
exemplarily illustrated for RF in Figures 6.6 and 6.7, these effects are leveraged by our algorithm
selection approaches. The scatter plots presented in these figures are constructed as the ones in
Section 6.3.3. Figure 6.6 illustrates the runtimes on the instances for which CPLEX or the solver
selected by RF was able to determine an optimal solution. Figure 6.7 presents the quality ratios
of the solutions returned by OR-Tools and the solver selected by RF. For the sake of clarity, the
plots focus on a representative subset of instances.

We observe that RF outperforms CPLEX with respect to the runtimes needed to compute
optimal solutions. Additionally, the use of RF results in better quality ratios than the individual
use of OR-Tools for the majority of test instances. Hence, RF incorporates the performance
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Figure 6.6: Comparison of CPLEX and RF for instances for which at least one approach resulted in an
optimal solution
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Figure 6.7: Comparison of quality ratios when using OR-Tools and RF
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benefits of both solvers. This effect can be observed for both test sets, while it is larger on test
set A.

The average accuracy values resulting from the 10-fold cross-validation on the training set
are presented in Table 6.10. We find that the average accuracy values are in similar ranges for

Table 6.10: Results for 10-fold cross-validation on the training set

LMT RF REPT FCNN FCNN’ CNN

Avg. accuracy [%] 86.32 87.71 85.13 86.41 83.43 83.58

all models, with RF being the overall best choice.

6.5.2 Feature Subset Selection

In Section 6.4.1, we introduced 151 features that were used to train the models. In order to
detect a subset of the most relevant features and allow shorter training times, we applied a
correlation-based feature subset selection procedure (see Hall, 1998) using a best first search
strategy with a bi-directional search provided by WEKA. The procedure was performed on the
training set. It selected four instance size related features, five flexibility related features, one
processing time related feature, and five priority rule related features. These 15 features were
then used for training the three selected decision tree variants and the fully connected neural
network as illustrated in Sections 6.4.4.1 and 6.4.4.2. The resulting models are referred to with
an additional index ◦: LMT◦, RF◦, REPT◦ and FCNN◦. The performance of these algorithm
selection models on the test sets is presented in Table 6.11. We observe that the use of the reduced

Table 6.11: Performance of the selectors when trained with the reduced feature set

Test set A Test set B

LMT◦ RF◦ REPT◦ FCNN◦ LMT◦ RF◦ REPT◦ FCNN◦

Accuracy [%] 85.48 85.7 84.78 84.7 75.08 75.35 75.32 76.02
opt. [%] 27.07 27.07 27.05 27.07 33.82 33.89 33.82 33.82
Qavg 2.83 2.83 2.84 2.83 2.86 2.86 2.86 2.85
tavg [s] 22.4 22.4 22.41 22.41 203.29 203.22 203.36 203.36
score 3173 3181 3147 3144 2495 2504 2503 2526

feature set does not significantly impair the performance of the algorithm selection models. In
case of test set B, there are even slight improvements.

6.5.3 Reducing the Size of the Training Set

In this section, we analyze the impact of a reduced training set size on the performance of our
selectors. This is of major importance for decision makers in practice, as it specifies the number
of samples needed in order to obtain adequate results.

We randomly selected subsets of instances of the training set with 10, 50, 100, 500, 1000,
5000, and 10000 instances, respectively. These reduced training sets were then used to train our
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models. This was done 10 times for each combination of training set size and model. The average
performance of the resulting selectors on test sets A and B is presented in Figure 6.8. The plots
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Figure 6.8: Performance of algorithm selection approaches when using sparse training data

show the average accuracy of the different selectors over the size of the training set that was used
to train the models. For the sake of readability, the sample size values are arranged equidistantly
on the abscissa.

As can be seen, while an increasing sample size has a positive effect on the average per-
formance of the selectors, most selectors perform quite well even for very small sample sizes.
The positive effect of increasing the sample size tends to diminish when exceeding an amount of
1000 instances. Overall, RF tends to perform best across the varying samples sizes. Hence, in
practice, varying characteristics of representative instances, e.g., due to the availability of new
machines or the production of new products, can be successfully incorporated into the selectors
based on only a few data samples.

6.5.4 Reducing the Training Set to Relevant Instances

The previous section has demonstrated that it is possible to train the selectors with relatively
few instances. However, in some cases, larger training sets are available or it may simply be
beneficial to take account of larger training sets. In this section, we therefore analyze the ques-
tion of whether these datasets can be reduced more effectively than by applying pure random
subsampling (see Figure 6.9). We restrict or attention to FCNN and CNN. When subsampling
randomly, chances are high that isolated samples are deleted even though they may be relevant
for the training process as they have a major impact on the final model and its prediction accu-
racy. Reducing the training set in a strategic way, on the other hand, may allow to effectively
train and evaluate more models.

In order to reduce the size of the training set in a more strategic manner, we developed a
simple procedure that is based on dividing the training set into two subsets based on the binary
instance labels (indicating the best solvers for the instances, see Figure 6.9a) and then detecting
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clusters of similar instances within these subsets. To do so, each instance is associated to a point

CPLEX
OR-Tools

instance with CPLEX label

decision boundary

instance with OR-Tools label

(a) Instance subsets based on la-
bels

CPLEX
OR-Tools

(b) Random subsampling

CPLEX
OR-Toolsδ

cluster radius

(c) Instance clusters

Figure 6.9: Exemplary illustration the construction of a reduced training set

in R5 that corresponds to the normalized values of the following five features (see Section 6.4.1):
number of jobs, number of machines, arithmetic mean of the number of operations of the jobs,
arithmetic mean of the number of eligible machines for each operation, corrected standard de-
viation of the corrected standard deviation of the average processing times of the operations.
These features reflect the attributes used for generating the instances (see Section 6.4.2). In
order to measure the degree of similarity of two instances, we compute the Euclidian distance
between the corresponding points. Two instances are defined to be similar, if this distance is not
larger than a given threshold δ. Based on random orderings of the instances of the two subsets
of the training set (see Figure 6.9a), we then construct clusters of similar instances as follows.
For each ordering, we initialize a first cluster with the first instance of the ordering and add
all similar instances of the ordering, i.e., all instances of the corresponding instance subset that
lie within a hypersphere of radius δ around this instance (see Figure 6.9c). All instances that
have been clustered are then deleted from the respective ordering and the process repeats until
all instances are associated to a cluster. We then randomly select exactly one instance of each
cluster to become an element of the reduced training set. It is associated to a weight that is set to
the number of instances that are included in the cluster divided by the total number of instances
in the original training set. As a result, larger values of δ result in less samples in the reduced
training set. This process can be interpreted as randomly merging similar instances to a single
sample (see Figure 6.9c). The weights compensate for this reduction. Hence, isolated samples
are not deleted from the training set as it is potentially done in case of random subsampling
(see Figure 6.9b). Instead, isolated samples are taken account of with a small weight. The loss
function (6.1) is adapted accordingly:

L′ = − 1

|K|

|K|∑
k=1

(1 + αλk)[yk log(ỹk) + (1− yk) log(1− ỹk)] (6.2)

Here, λk represents the weight of instance k in the reduced training set and α is an additional
parameter to regularize the impact of this balancing factor.

We analyzed various parameter settings, δ ∈ 0.5, 0.4, 0.2, for constructing the instance clus-
ters. This resulted in a total of 62 (δ = 0.5), 125 (δ = 0.4) and 735 (δ = 0.2) samples. As
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the selection of the specific instances is random, we generated ten different reduced training
sets for each threshold value. Then, we trained the models FCNN and CNN on the resulting
training sets and determined the accuracy with respect to test set A. The results are presented
in Table 6.12. It presents information about the average accuracy and the corrected standard

Table 6.12: Performance using a weighting sampling strategy

FCNN CNN

Avg. accuracy [%] Std. deviation Avg. accuracy [%] Std. deviation

62 samples (weighted, δ = 0.5)
α = 0 55.77 5.81 54.91 5.35
α = 100 75.22 4.16 75.71 5.24
α = 200 74.18 5.62 72.8 7.37
α = 300 76.38 4.55 75.44 4.23
62 samples (random) 72.12 8.36 72.72 7.4

125 samples (weighted, δ = 0.4)
α = 0 72.59 6.46 67.18 9.42
α = 100 78.67 1.78 71.15 7.87
α = 200 79.15 1.38 78.11 3.54
α = 300 79.74 1.17 79.45 1.76
125 samples (random) 78.73 1.93 79.54 2.51

735 samples (weighted, δ = 0.2)
α = 0 81.41 1.13 79.92 0.81
α = 100 82.08 0.72 80.38 0.52
α = 200 82.14 1.3 79.75 0.86
α = 300 82.36 0.48 80.19 1.51
735 samples (random) 82.14 1.4 81.35 0.7

deviation of the accuracy over the ten runs. For comparison, we include results based on random
instance subsets of the same size (again, for 10 runs). With respect to the parameter α, we used
values α ∈ 0, 100, 200, 300. For α = 0, the balancing factors of the corresponding samples are
not considered (see equation (6.2)).

We observe that our sampling strategy tends to outperform random subsampling. This effect
is more pronounced when the number of samples is small, because random subsampling is less
likely to delete relevant isolated samples for larger sizes of the reduced training sets. When
ignoring the weighting parameters (case α = 0), our sampling strategy fails for larger values of
δ, as it does not take account of the actual distribution of the instances. Furthermore, in the
considered range, our sampling strategy benefits from increasing values of α.

6.6 Summary

In this paper, we evaluated the performance of different CP solvers on the FJSP for test instances
taken from the literature as well as randomly generated test instances. In a computational study,
we introduced a scoring system that captures different performance measures (solution qual-
ity/optimality, runtime). When solely considering solution quality, the CP solver provided by
CPLEX is the clear winner and outperforms the other solvers. However, when additionally con-
sidering the ability to quickly compute optimal solutions (as specified in our scoring system), the
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overall picture changes, and the CP solver provided by OR-Tools, an open source software suite
developed by Google, becomes competitive. We leveraged this performance complementarity by
developing algorithm selection approaches that aim to select the best of the two solvers for a
given instance. These selectors make use of two machine learning techniques, decision trees and
deep neural networks. We trained and validated the resulting models on a large set of random
test instances. In an extensive study, we demonstrated that our models outperform the use of
a single solver when restricting the runtimes of the solvers to relatively small values that allow
their usage in rolling horizon based planning approaches in practice. This allows to conclude that
our approaches should be considered as a relevant tool by decision makers in practice. While all
of our selectors perform similarly well, an advantage of the use of deep neural networks is the
good performance on unprocessed instance data that does not result from precomputing specific
features. We additionally showed that varying instance characteristics that, for example, result
from the availability of new machines or the production of new products, can be successfully
incorporated into the selectors based on only a few data samples. Finally, we have developed
a method to reduce the size of the training set to a subset of the most relevant instances. In
practice, this method allows to effectively train and evaluate more models.
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Chapter 7

Summary and Outlook

This thesis has investigated various flexible job shop scheduling problems incorporating workforce
restrictions that arise in manufacturing systems. We have proposed different exact and heuris-
tic solution approaches for scheduling the respective problems and analyzed the corresponding
computational results. Moreover, we have introduced an algorithm selection approach for the
classical flexible job shop scheduling problem. In the following, we summarize the main findings
again with focusing on the research questions and discuss several interesting directions for future
research.

The first research question was:

Which FJSP settings incorporating workforce constraints are relevant from
a practical point of view and have attracted less attention in the literature?

To this end, we have presented two flexible job shop problem variants, which have been
motivated by real-world scheduling problems. In Chapter 2, we have analyzed a flexible job
shop scheduling problem with sequence-dependent setup times that incorporates machine oper-
ator qualifications. The different machine operator qualifications have been taken into account
by making use of machine- and operator-dependent processing times. Based on the conducted
literature review, this problem variant has attracted little attention. We have analyzed two ob-
jective functions, minimizing the makespan and minimizing the total tardiness. Since the explicit
incorporation of setup operators in flexible job shop settings is rarely addressed in the litera-
ture, Chapter 5 has been concerned with a flexible job shop setting with sequence-dependent
setup times under setup operator constraints. This research has been motivated by a real-
world scheduling problem encountered at a developer and manufacturer of semiconductor-based
system solutions. We have analyzed the objective of minimizing the total weighted tardiness.
Future research may focus on further problem variants regarding the flexible shop job prob-
lem. For instance, the simultaneous consideration of machine operators and setup operators, or
the incorporation of timetabling restrictions would be interesting to analyze. Furthermore, the
consideration of other objectives that are relevant in practice would be valuable.
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Along with the first research question, the next research question was:

What are novel exact as well as heuristic solution approaches for scheduling flexible
job shops with workforce restrictions?

With regard to the second research question, this thesis has proposed several novel exact
as well as heuristic solution approaches for scheduling flexible job shops incorporating workforce
restrictions. In order to evaluate the performance of our proposed solution approaches, we
have conducted extensive computational tests using randomly generated instances as well as
real-world problem instances that mimic settings at the considered manufacturing companies.
In Chapter 2, we have presented exact and heuristic decomposition based solution approaches
for a flexible job shop problem with sequence-dependent setup-times that incorporates machine
operator qualifications. These approaches divide the problem into a vehicle routing problem with
precedence constraints and a machine operator assignment problem. Our exact decomposition
based solution approach has outperformed an integrated approach. Moreover, our heuristic
solution approaches have shown to provide high-quality solutions within reasonable time and to
be suitable for daily usage at the corresponding manufacturing company.

In the case of a flexible job shop scheduling problem that solely considers machine operator
restrictions and aims to minimize the makespan, we have also proposed exact and heuristic
solution approaches. With regard to the exact approaches, we have presented two mathematical
models, a mixed-integer programming model and a constraint programming model, that have
been evaluated by using the standard solvers provided by IBM ILOG CPLEX. We have shown,
that the constraint programming solver is able to find quickly high-quality solutions. Moreover,
it clearly outperforms the mixed-integer programming solver and interestingly also tends to
outperform a state-of-the-art metaheuristic approach (see Chapter 3). Against this background,
we have presented filter-and-fan based heuristic solution approaches in Chapter 4, which make use
of the main ideas of our decomposition based approach by dividing the problem into a machine
allocation and sequencing component as well as machine operator assignment component. We
have shown that our heuristic approaches tend to outperform existing metaheuristic approaches
from the literature and that they are competitive when compared with a standard constraint
programming solver.

With respect to the semiconductor final-test scheduling problem incorporating setup operator
restrictions, we have presented in Chapter 5 a mixed-integer programming model and a tabu
search heuristic framework which applies the main ideas of our proposed decomposition based
approach. We have shown that our proposed tabu search heuristic approaches clearly outperform
a mixed-integer programming model using IBM ILOG CPLEX as solver and are able to quickly
compute high-quality solutions to ensure real-world applicability.

Overall, we have shown that our different decomposition based heuristic solution approaches
are promising candidates that have proven to be suitable in practice. As far as the trade-off
between runtime and solution quality is concerned, an interesting direction for future research is
to develop adaptive methods that adjust the hyperparameters of our heuristic solution approaches
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depending on a given instance. Algorithm configuration approaches that make use of machine
learning techniques offer promising research perspectives.

The third research question was:

How can an algorithm selection approach be designed that leverage the performance
complementary of a given set of algorithms for solving the FJSP?

Chapter 6 is concerned with an algorithm selection approach for the flexible job shop schedul-
ing problem minimizing the makespan. Since standard constraint programming solvers have been
applied to various scheduling problems and have shown to perform remarkably well, we have, as
a first step, analyzed the performance differences among state-of-the-art commercial and non-
commercial constraint programming solvers on problem instances available in the literature and
randomly generated problem instances. Based on these results, we have leveraged the perfor-
mance complementarity to propose an algorithm selection approach which predicts the best
solver for a given problem instance based on features describing this given instance. In order to
implement this approach, we have proposed several algorithm selection models by making use of
different machine learning techniques. We have shown that our implemented algorithm selection
models provide a better performance than the usage of a single solver. There remain interesting
questions to be answered by future research. The level of generalization of machine learning
methods depends on the available training set. Therefore, in practice, detecting new relevant
data samples is crucial in order to adapt the algorithm selectors. Future research may focus on
online learning techniques that react dynamically to changes in the problem characteristics. This
can lead to a better performance and robustness. Furthermore, the set of features describing an
instance is a crucial part for the performance of an algorithm selection approach. One of the
advantages of deep neural networks is the capability to learn features based on the unprocessed
instance input data. Based on their ability, it would be interesting to apply this technique to
other problems even beyond the scheduling domain.
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