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Abstract

Ordinal pattern analysis provides a possibility to study dependence structures in multivariate
time series with few assumptions on the underlying stochastic model. Focussing on a univariate
time series, we discuss the concept of ordinal pattern probabilities that deals with the occurance
of one fixed ordinal pattern within this time series. Based on this method, the dependence within
the time series is investigated. Turning to the multivariate case, ordinal pattern dependence
allows us to compare data sets by studying the probability of coincident ordinal patterns at
the same points in time. Applying these two approaches we are able to detect linear as well as
non-linear dependence. We extend the theoretical framework for estimators in the context of
these two concepts to multivariate long-range dependent Gaussian time series, allowing for pure
long-range dependence as well as for mixed cases of short- and long-range dependent univariate
components. We provide limit theorems for functionals with Hermite rank 1 and 2, as it turns
out that the estimators in the context of ordinal pattern analysis are represented by these two
classes. For functionals with Hermite rank 2, the asymptotic distribution is non-Gaussian and
follows a Rosenblatt distribution. Further, we investigate the differences in the asymptotics
considering multivariate stationary Gaussian time series and multivariate Gaussian time series
with stationary increments, which is less restrictive. A generalization to more flexible models in
the context of ordinal pattern dependence is also provided. The first part of this thesis closes
with a simulation study that illustrates the theoretical results. The second part of this work puts
ordinal pattern dependence in the perspective of multivariate dependence measures. We compare
ordinal pattern dependence to classical dependence measures like Pearson’s ρ and Kendall’s τ .
By precisely distinguishing between measures that arise in a time series context and models that
study dependence between or within multivariate random vectors, we identify differences and
provide relations between ordinal pattern dependence and the classical approaches. Finally, a
simulation study and a real-world data analysis in the field of hydrology that emphasizes the
practical value of ordinal pattern dependence complete this work.



Zusammenfassung

Die ordinale Muster-Analyse bietet eine Möglichkeit Abhängigkeitsstrukturen in multivariaten
Zeitreihen mit wenigen Annahmen an das zugrundeliegende stochastische Modell zu unter-
suchen. Wir stellen das Konzept ordinaler Muster-Wahrscheinlichkeiten vor, welches sich mit
dem Auftreten eines festen ordinalen Musters innerhalb dieser Zeitreihe beschäftigt und, auf
dessen Basis, die Abhängigkeiten innerhalb der Zeitreihe beschreibt. Wenden wir uns dem
multivariaten Fall zu, erlaubt uns die ordinale Muster-Abhängigkeit Datensätze zu vergleichen,
indem wir die Wahrscheinlichkeit übereinstimmender ordinaler Muster zu den gleichen Zeit-
punkten untersuchen. Durch die Anwendung dieses Modells sind wir in der Lage, sowohl
lineare als auch nicht-lineare Abhängigkeiten zu erkennen. Wir erweitern den theoretischen
Hintergrund der Schätzer im Kontext dieser beiden Konzepte auf multivariate langzeitabhängige
Gaußsche Zeitreihen, wobei wir sowohl reine Langzeitabhängigkeit als auch gemischte Fälle
von kurz- und langzeitabhängigen univariaten Komponenten berücksichtigen. Zunächst werden
Grenzwertsätze für Funktionen mit Hermite-Rang 1 und 2 bewiesen, da sich herausstellt, dass
Schätzer im Kontext der ordinalen Muster-Analyse durch diese Klassen repräsentiert werden.
Die asymptotische Verteilung ist im Fall von Hermite-Rang 2 nicht Gaußsch, sondern folgt
einer Rosenblatt-Verteilung. Weiterhin untersuchen wir die Unterschiede in der Asymptotik
der Schätzer, einerseits für zugrundeliegende multivariate stationäre Gaußsche Zeitreihen und
andererseits für multivariate Gaußsche Zeitreihen mit stationären Zuwächsen, was ein weniger
restriktives Modell darstellt. Eine Verallgemeinerung der Resultate für flexiblere und abgewan-
delte Modelle im Kontext der ordinalen Muster-Abhängigkeit wird ebenfalls betrachtet. Der
erste Teil der Arbeit schließt mit einer Simulationsstudie, welche die theoretischen Resultate
veranschaulicht. Der zweite Teil der Dissertation befasst sich mit der Einordnung der ordinalen
Muster-Abhängigkeit in die Klasse der multivariaten Abhängigkeitsmaße. Wir vergleichen die
ordinale Muster-Abhängigkeit mit klassischen Abhängigkeitsmaßen wie Pearsons ρ und Kendalls
τ . Durch die genaue Unterscheidung zwischen Maßen, welche sich auf einen Zeitreihenkontext
beziehen, und Modellen, welche Abhängigkeiten zwischen oder innerhalb von multivariaten
Zufallsvektoren untersuchen, identifizieren wir Unterschiede und stellen Beziehungen zwischen
der ordinalen Muster-Abhängigkeit und den klassischen Ansätzen her. Schließlich runden eine
Simulationsstudie sowie eine Analyse realer Daten aus dem Bereich der Hydrologie diese Arbeit
ab, welche den praktischen Nutzwert der ordinalen Muster-Abhängigkeit unterstreicht.
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1 Introduction

1.1 Historical background and motivation

In times of big data, a model that analyzes dependence structures between data sets depending
on few technical assumptions is in great demand. Reducing high dimensional and complex data to
minimal information that is still substantial enough to yield a significant and convincing answer
to the questions of interest, is of strong need for applications with regard to the computational
effort. This work focuses on dependence structures in multidimensional data sets that naturally
contain a large amout of data points and that do not exhibit the well studied case of independence
between observations. The method that we want to investigate in order to detect and classify this
dependence is ordinal pattern analysis. It is known to be robust concerning disturbances in the
data and invariant under monotone transformations of the time series under consideration, which
are properties of high practical interest. Therefore, ordinal pattern analysis and in particular
ordinal pattern dependence are of vital importance, especially in contrast to classical dependence
measures, since the latter ones tend to overestimate dependence of data with measurement
disturbances and to underestimate data that do not exhibit linear dependence.

In the literature, ordinal analysis was introduced in [5] in 2002, followed by [4] and [6]. They in-
vestigated order patterns that are closely linked to ordinal patterns, which in turn were discussed
in [39]. In the following years, ordinal analysis became increasingly popular in applications. In
neurological science this method was used to investigate brain activity in [38], [53] and [70].
Cardiological research in the field of heart rate variability based on ordinal patterns was discussed
in [28].

t

x
t ⇒

t0 t1 t2 t3

t0

⇒ (1, 0, 3, 2)

Figure 1.1: Example of the extraction of an ordinal pattern in a given data set.

In general, the method works as follows: we consider a data set (xt)t=0,1,... and we need to fix
h ∈ N to describe the length of the ordinal pattern we are interested in. Note that the number
of data points taken into account is given by h+ 1. In Figure 1.1 we extract one pattern from
the data using h = 3. The permutation is obtained by sorting the absolute values of the data
points from largest to smallest and writing down the indices of the time points from left to right.
This yields a large reduction of complexity because the permutation only describes the relative
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positions of the data points, but does not give any information concerning the absolute values or
the L2-distance between the original data points. Therefore, this results in a strong decrease of
information necessary to do further analysis using this method.

Next, we turn to the stochastic framework and focus on the determination of the probabil-
ity of one fixed ordinal pattern arising in a univariate time series. In [58], a heuristic estimator
was proposed for a class of processes including those exhibiting short-range dependence, that is,
the autocorrelations of the stochastic process under consideration have a power-law decay. This
implicates absolutely summable autocorrelations. The estimator counts the occurence of the
fixed ordinal pattern in fixed windows of time that are stepwisely shifted along the timeline of the
data set. Then, the sum is divided by the maximal number of possibly occurenced pattern. In
[60], the distribution of ordinal patterns was investigated for Gaussian processes with stationary
increments, including the long-range dependent setting, that is, slowly hyperbolically decaying
autocorrelations. In both papers limit theorems for the investigated estimators were given.
However, in the latter article, the case of pure long-range dependence, which means that the
autocorrelations of the estimators under consideration are still slowly hyperbolically decaying,
was omitted.
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Figure 1.2: Illustration of estimation of ordinal pattern dependence.

The next approach that we want to present is ordinal pattern dependence. Originally, it was
introduced in [57], to detect and model dependencies between two time series based on the
co-movement of the data. In the mentioned article the method was applied to financial time
series. We are no longer considering a fixed pattern, but we focus on the occurence of coincident
ordinal patterns in the same moving window of two time series and, therefore, turn to the
multidimensional case. The estimation works analogously to the previous case by comparing
whether the pattern coincide in consecutive moving windows. An illustration of this idea is
given in Figure 1.2. This method has already proved to be useful in applications. It was used
to analyze hydrological data sets as discussed in [24] and [52], where the latter one dealt with
ordinal pattern dependence in the context of extreme value theory.
From today’s point of view, [58] is the only article that dealt with the investigation of the
theoretical framework of estimators of ordinal pattern dependence. They introduced a suitable
normalization to obtain a measure that is comparable to classical dependence measures and
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provided asymptotic results for estimators of ordinal pattern dependence and further parameters
in this context in a theoretical setting including short-range dependence. Hence, long-range
dependent processes were not tackled in the context of ordinal pattern dependence at all.

In order to do so, we need to take a closer look at limit theorems for long-range dependent
time series. In the univariate case this is a well investigated field, beginning almost fifty years
ago with [64] and [15], who considered limit theorems for non-linear functionals of univariate
Gaussian time series. This theory was extended in [3], where limit theorems for vectors of
different functionals were derived, however, the underlying process remains to be univariate
Gaussian. The multivariate approach was first considered in [31] and [2] and later in [19] who
focused on limit theorems with underlying vector-valued Gaussian processes including long-range
dependence. In the case of pure long-range dependence resulting in asymptotic distribution that
is no longer Gaussian, they restricted theirselves to the case of independent entries within each
Gaussian random vector. Recently, with [18] and [23] two articles were published that dealt with
multivariate linear long-range dependent time series and hence softened the Gaussian assumption.

Figure 1.3: Sample paths of two correlated fractional Gaussian noise processes and of the corre-
sponding fractional Brownian motions.

In general, the class of long-range dependent processes appears in many applications, e.g. hydro-
logic data sets are often known to exhibit this property. Recently long-range dependent processes
gained popularity since they arose in the context of artificial intelligence, see [8] and neural
networks, see [69]. Both topics are seminal for developing technology in the next decades.
Two explicit examples of commonly used long-range dependent processes are briefly highlighted:
The fractional extensions of the well-known ARMA time series, so called FARIMA processes, that
were used in various applications as network traffic prediction in [59] or in the field of biophysics
in [17], are included in this setting. Fractional Gaussian noise as increment process of fractional
Brownian motion, enjoyed increasing popularity in the last years in applications as neurological
science, for example to model EEG data, see [36] or in the context of Alzheimer’s disease in [46].
Therefore, the connection of ordinal analysis to long-range dependence does not only yield an
interesting theoretical challenge but also happens for practical reasons. In Figure 1.3 sample
paths of two correlated fractional Gaussian noise processes and of the corresponding fractional
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Brownian motions are presented for n = 500 data points and Hurst paramter H = 0.9. The
theoretical details of these processes are explained in Section 2.3.

The aim of this work is to investigate ordinal analysis in the context of pure long-range depen-
dent time series. We can restrict ourselves to Gaussian time series, since ordinal patterns are
not affected by monotone transformations and, therefore, the data sets can be transformed to
exhibiting a Gaussian distribution. Further preprocessing of real-world data happens in the
case of ties, as a small white noise disturbance does not destroy the ordinal structure either.
Moreover, we are interested in mixed-cases, in which short-range as well as long-range dependent
processes might occur. Summing up, the intended contribution of this thesis is to complement
the theoretical framework of ordinal analysis in the case of long- and short-range dependent
processes. In applications the motivation of this completion is given in the possibility to provide
a robust measure to e.g. hydrological and neurological data sets that often happen to contain
small noises or outliers, which biase the classical dependence measures.

A question that naturally arises is the one of comparing ordinal pattern dependence to classical
dependence measures. The first sticking point here is to make ordinal pattern dependence
comparable to univariate and multivariate dependence measures. In particular, the latter ones
are not defined in a time series context in general. Hence, the goal of this thesis is to light up the
theoretical background of those classical measures and of ordinal pattern dependence to work
out the differences. A further focus is on providing examples to emphasize and illustrate these
differences in a practical context, as well as on obtaining theoretical relations between ordinal
pattern dependence and classical dependence measures.

1.2 Outline of this thesis

In the first part of this work, our aim is to close the gap between multivariate time series exhibiting
different dependence structures as long-range dependence and ordinal analysis. In Chapter 2, we
guide the reader through the theoretical background. We mathematically introduce the topic
of long-range dependence and the linked processes described above and build the framework
needed to tackle our theoretical challenges by providing the mathematical tools. Fully prepared,
theoretical results in form of limit theorems for multivariate Gaussian time series are derived
in Chapter 3. In the first two sections, we focus on limit theorems with Hermite rank 1 and 2,
respectively, as they arise in the context of ordinal pattern analysis later on. The last section
deals with a special type of functionals, namely those who are uniquely determined by the
increments of the underlying process. In this case, a twist happens to the limit distribution
proven in the first two sections.
We turn to the main chapter given by Chapter 4 that seeks to combine ordinal pattern analysis
to the asymptotic theory for multivariate time series exhibiting the dependence structures
investigated in Chapter 3. An extensive and illustrative introduction to ordinal patterns in
general is provided in Section 4.1. Then, we turn to the estimation and simulation of ordinal
pattern probabilities in Section 4.2 which is represented by an underlying univariate Gaussian
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process. The multivariate extension that allows for componentwise different dependencies arises
in Section 4.3. Here, we introduce standard ordinal pattern dependence and investigate different
estimators. To increase practical applicability, we modify and generalize the model of ordinal
pattern dependence in the final section of this chapter.
The second part of this thesis deals with the comparison of ordinal pattern dependence to
different, possibly multivariate, dependence measures. First, a pilot study awakens the interest
on this topic by clearly indicating differences between ordinal pattern dependence and classical
measures of dependence. Then, we turn to the theoretical challenges and provide results to
make ordinal pattern dependence comparable to other dependence measures. This chapter is
completed by simulations to get a more illustrative understanding.
A real data study is given in Chapter 6. We emphasize the practical impact of this work
by analyzing a data set that fits into the theoretical background such that the theoretical
results derived in the combination of long-range dependence to ordinal pattern analysis hold.
In comparison to the other dependence measures discussed in the previous chapter, we confirm
ordinal pattern dependence as possibility to compare dependence structures between two data
sets and highlight the advantages of robustness and computational efficiency.
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2 Mathematical preliminaries

In this chapter we introduce the mathematical framework needed to step into the theory we want
to develop in this thesis. In general, we assume that in the background we have a probability
space (Ω,A,P) as basis for mathematical operations. Furthermore, the convergence results in
this work hold for n→∞ if not declared differently.
All simulation studies presented in this thesis are derived by computing on a MacBook Pro 2,3
GHz Dual-Core Intel Core i5.

We turn to the framework of stochastic processes. First, basic information concerning uni-
variate as well as multivariate Gaussian processes in the context of short- and long-range
dependence is given. We continue with turning to the role of Hermite polynomials and later on
introduce the class of Hermite-Rosenblatt processes after giving a brief excursus on Wiener-Itô
integration.

2.1 Univariate stochastic processes

We begin with the basic definition of a stochastic process.

Definition 2.1 (Stochastic process, [16], Definition 1.2.1. and Remark 1)
A stochastic process is a family of random variables (Xj)j∈J , defined on a probability space
(Ω,A,P).

Remark, that in time series analysis, the index set J is a set of time points. In most cases in this
work we use J = Z, unless it is declared differently. If the index set J is countably infinite, we
call the stochastic process discrete and we use the notation in the definition above. In order to
mark the case when T is uncountably infinite and the process is called continuous over time, we
use the notation (X(t))t∈R to distinguish this class of processes from the discrete ones.

We continue with stationarity as an important property of a stochastic process and, there-
fore, turn to the definition of the autocovariance-function first:

Definition 2.2 (Autocovariance-function, [16], Definition 1.3.1)
If (Xj)j∈Z is a stochastic process such that Var (Xj) <∞ for each j ∈ Z, then the autocovariance
function γX(·, ·) of (Xj)j∈Z is defined by

γX(r, s) := Cov (Xr, Xs) = E [(Xr − E (Xr)) (Xs − E (Xs))] , r, s ∈ Z.

We are now able to define stationarity.
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Definition 2.3 (Weak stationarity, [16], Definition 1.3.2.)
The time series (Xj)j∈Z is said to be (weak) stationary if

(i) E |Xj |2 <∞ for all j ∈ Z,

(ii) there exists m ∈ R : E (Xj) = m for all j ∈ Z,

(iii) γX(r, s) = γX(r + t, s+ t), for all r, s, t ∈ Z.

This yields a possibility to redefine the covariance function, since for a stationary (Xj)j∈Z it
holds that γX(r, s) = γX(r − s, 0).

Definition 2.4 (Covariance- and correlation-function for stationary processes, [16], Remark 2)
For a stationary process (Xj)t∈Z, we redefine

γX(l) := γX(l, 0) = Cov (Xj , Xj+l) ,

for all j, l ∈ Z.
The function γX(·) is referred to as the autocovariance function of (Xj)j∈Z and γX(l) as its value
at lag l. The autocorrelation function of (Xj) is defined analogously as the function whose value
at lag l is

rX(l) := γX(l)
γX(0) = Cor (Xj , Xj+l) .

For completeness, we also give the definition of strict stationarity.

Definition 2.5 (Strict stationarity, [16], Definition 1.3.3.)
The stochastic process (Xj)j∈Z is said to be strictly stationary if the joint distributions of
(Xj1 , . . . , Xjk)t and (Xj1+l, . . . , Xjk+l)t are the same for all k ∈ N and j1, . . . , jk, l ∈ Z.

We now turn to dependence properties of stationary stochastic processes, so called short- and
long-range dependence, that play a cruicial role in the course of this thesis, as the title already
indicates. Note that there are several non-equivalent definitions of long-range dependence in the
literature, for details see [54], Sec. 2.1. Therefore, we focus on one definition that is commonly
used.

Definition 2.6 (Long-range dependence, [54], Sec. 2.1 Condition II)
A weak stationary time series (Xj)j∈Z is called long-range dependent (LRD) if its autocorrelation
function satisfies

rX(k) = L2(k)k2d−1, k = 0, 1, . . . ,

with d ∈
(
0, 1

2

)
and L2 is a slowly varying function at infinity.

We contuinue with short-range dependence.

Definition 2.7 (Short-range dependence, [54], Definition 2.3.1)
A weak stationary time series (Xj)j∈Z is called short-range dependent (SRD) if its autocorrelations
are absolutely summable; that is, if

∞∑
k=−∞

|rX(k)| <∞.
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Note that the definition of long-range dependence above implies that the autocorrelations are
not absolutely summable, see Proposition 2.2.4 in [54].
We introduce a special kind of short-range dependence time series in the next definition.

Definition 2.8 (Antipersistance, [54], Definition 2.3.2)
A short-range dependent time series (Xj)j∈Z is called antipersistent if

∞∑
k=−∞

rX(k) = 0.

A property of a stochastic process that is closely linked to long-range dependence is introduced
in the next definition.

Definition 2.9 (Self-similarity, [54], Definition 2.5.1)
A stochastic process (X(t))t∈R is called self-similar or H-self-similar if there is H > 0 such that,
for all c > 0 and t ∈ R

X(ct) D= cHX(t).

To close this section of general information on univariate stochastic processes, we consider the
class of linear processes and give a result that incorporates stationary purely non-deterministic
processes into this particular class.

Definition 2.10 (Linear process, [9], Sec. 4.2.4)
We call the stochastic process (Xj)j∈Z a causal linear process if it has the representation

∞∑
j=0

ajεt−j , (2.1)

where
∑∞
j=0 a

2
j <∞ and (εt)t∈Z are i.i.d. zero mean random variables with Var (ε1) = σ2

ε <∞.

The Wold-decomposition as it is discussed in [40], Sec. 1.4. states that it is possible to decompose
a stationary purely non-deterministic stochastic process Xj into a linear representation as given
in (2.1).

2.2 Multivariate stochastic processes

It is possible to extend the theory of univariate stochastic processes to a multidimensional
model, that yields better possibilities to describing and imaging the complexity of real-world
phenomenons. Especially when not only the dependence structure within one process but the
interdependence between several processes is of interest, the multivariate generalization yields a
huge amendment.

Definition 2.11 (d-dimensional stochastic process, [16], Sec. 11.1)
A vector-valued stochastic process (Xj)j∈J =

(
X

(1)
j , . . . , X

(d)
j

)t
is called d-dimensional stochastic

process.
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Similar to the univariate case, in general, we use J = Z in the following. Analogously the concept
of stationarity can be extended to the multivariate case. The following passage is taken from
[16], Sec. 11.1.

Definition 2.12 (Stationarity of a multivariate time series, [16], Definition 11.1.1)
The d-dimensional stochastic process (Xj)j∈Z with mean vector

µj = E (Xj) =
(
µ

(1)
j , . . . , µ

(d)
j

)t
and covariance matrix

Γ (j + k, j) = E
[
(Xj+k − µj+k) (Xj − µj)t

]
is said to be stationary if µj and Γ (j + k, j), k = 0, 1, . . . are independent of j.

Therefore, we use the notation

µ : = E (X0) =
(
µ(1), . . . , µ(d)

)t
,

ΓX(k) : = E
[
(Xk − µ) (X0 − µ)t

]
for stationary time series. The entries of the covariance matrix are determined by the values of
the cross-covariance functions γ(p,q)(·), that are for a stationary time series defined by

γ(p,q)(k) := E
[(
X

(p)
0 − µ

) (
X

(q)
k − µ

)t]
,

for p, q = 1, . . . , d and k = 0, 1, . . ..
Note that for p = q, we obtain γ(p,p)(·) as auto-covariance function of the marginal univariate
process

(
X

(p)
j

)
j∈Z

whose stationarity is implied in the one of the vector-valued process (Xj)j∈Z.
Analogously to the univariate case it is possible to norm the cross-covariance function and get
the cross-correlation function

r(p,q)(k) := γ(p,q)(k)(
γ(p,p)(0)γ(p,q)(0)

) 1
2
, k ∈ Z.

These introduced functions exhibit the following properties:

(i) r(p,q)(k) = r(q,p)(−k),

(ii) r(p,p)(0) = 1,

(iii)
∣∣∣r(p,q)(k)

∣∣∣ ≤ 1, p, q = 1, . . . , d.

The correlation r(p,q)(0) is the correlation between X(p)
j and X(q)

j which is generally not equal to
1 if p 6= q. It is also possible that

∣∣∣r(p,q)(k)
∣∣∣ > ∣∣∣r(p,q)(0)

∣∣∣ if p 6= q.

We follow the definition in [37] and define multivariate long-range dependence analogously
to the univariate case.
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Definition 2.13 (Multivariate long-range dependence, [37], Definition 2.1)
A multivariate stationary time series (Xj)j∈Z is long-range dependent if its autovariance matrix
function ΓX(k) satisfies

ΓX(k) = kD−
1
2 IdL(k)kD−

1
2 Id =

(
Lp,q(k)kdp+dq−1

)
p,q=1,...,d

,

where kD−
1
2 Id := diag

(
kd1−1/2, . . . , kdd−1/2

)
for a diagonal matrix D = diag (d1, . . . , dd) with

dp ∈
(
0, 1

2

)
, p = 1, . . . , d. Furthermore, L(k) = (Lp,q(k))p,q=1,...,d is an Rd×d-valued function

satisfying

L(k) ∼ L = (Lp,q)p,q=1,...,d , (k →∞),

where Lp,q ∈ R and Lp,p 6= 0, p = 1, . . . , d.

As well, a multivariate extension for short-range dependence is given in their paper.

Definition 2.14 (Multivariate short-range dependence, [37], Remark 2.3)
A multivariate stationary time series is short-range dependent if its autovariance matrix function
satisfies

∞∑
n=−∞

‖ΓX(n)‖F <∞,

where ‖ · ‖F denotes the Frobenius norm.

We have introduced the mathematical description of particular dependence structures of multi-
variate stationary stochastic processes without any further assumptions on the finite dimensional
marginal distributions of the stochastic processes. In the next section, we specify the class
of stationary multivariate processes under consideration and turn to the well-known class of
Gaussian processes.

2.3 Gaussian processes

In this section Gaussian processes are introduced: the univariate case as well as its multivariate
extension. We shed light on essential properties and several useful relations, as well as on popular
examples of Gaussian processes. One focus here is the connection of the previous definitions of
long-range dependence and self-similarity to Gaussian processes. As this class of processes relies
on the multivariate Gaussian distribution that happens to be uniquely determined by the first
two moments, long-range dependence as a condition on the covariance function has a strong
impact here.

We start with the essential distribution needed to be able to classify the class of Gaussian
processes, namely the multivariate normal distribution.

Definition 2.15 (Multivariate normal distribution, [16], Definition 1.6.1, Rem. 4, Prop. 1.6.4)
The random vector Y =

(
Y (1), . . . , Y (d)

)t
is said to be multivariate normal, or to follow a

10



multivariate normal distribution, if and only if there exist a column vector µ ∈ Rd, a matrix
B ∈ Rd×d and a random vector U =

(
U (1), . . . , U (d)

)t
with independent standard normal

components, such that

Y = µ+BU.

We write Y ∼ N (µ,ΣY ), with ΣY = BBt. If µ = (0, . . . , 0)t, the random vector Y is called
centered.
If det (ΣY ) > 0 then Y has the density

fY (y) = (2π)−
d
2 (det Σ)−

1
2 exp

[
−1

2 (y − µ)t Σ−1
Y (y − µ)

]
.

Two density functions of a bivariate Gaussian distribution are shown in Figure 2.1.

Figure 2.1: Plots of the pdf and the corresponding contour lines of a bivariate Gaussian distri-
bution for Cor

(
Y (1), Y (2)

)
= 0.8 (left) and Cor

(
Y (1), Y (2)

)
= 0 (right), created by

using the R-packages “ks” and “viridis” and [26], Sec. 3.1.

If Y ∼ N (µ,ΣY ) it holds that

(i)
(
Y (1), . . . , Y (d)

)t D= (
−Y (1), . . . ,−Y (d)

)t
(2.2)

(ii)
(
Y (1), . . . , Y (d)

)t D= (
Y (d), . . . , Y (1)

)t
. (2.3)

We denote the symmetry property in (2.2) as space symmetry and in (2.3) as time symmetry.
We are now fully equipped to introduce a class of stochastic processes that play an outstanding
role in the course of this thesis.
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Definition 2.16 (Gaussian process, [16], Definition 1.3.4)
The process (Xj)j∈Z is called a Gaussian process if and only if the finite-dimensional distributions
of (Xj)j∈Z are all multivariate normal. If E (Xj) = 0 for all j ∈ Z the Gaussian process is called
centered.

The next remark highlights a property of Gaussian processes in the context of stationarity.

Remark 2.17 ([16], p.13)
If (Xj)j∈Z is a stationary Gaussian process then (Xj)j∈Z is strictly stationary, since for all k ∈ N
and all h, j1, j2, . . . ∈ Z, the random vectors (Xj1 , . . . , Xjk)t and (Xj1+h, . . . , Xjk+h)t have the
same mean and covariance matrix, and hence the same distribution.

A very well-known and common example of a Gaussian process is given by Brownian motion:

Definition 2.18 (Standard Brownian motion, [16], Definition 1.7.1)
Standard Brownian motion is a stochastic process (B(t))t∈R satisfying the conditions

(i) B(0) = 0
(ii) B (t2)−B (t1) , B (t3)−B (t2) , . . . , B (tn)−B (tn−1) are independent

for every n ∈ {4, 5, . . .} and every t = (t1, . . . , tn) such that 0 < t1 < t2 < . . . < tn,

(iii) B(t)−B(s) ∼ N (0, t− s) for t ≥ s,

with t, t1, . . . , tn, s ∈ R.

The corresponding increment process is the archetype of independent Gaussian time series. It is
called Gaussian white noise due to the Gaussian innovations.

In the context of short- as well as long-range dependence it is possible to give an extension to
fractional Brownian motion, that yields the possibility to represent these particular dependence
structures.

Definition 2.19 (Fractional Brownian motion, [9], Definition 3.23)
A Gaussian stochastic process BH(u), (u ∈ R) with mean zero is called a fractional Brownian
motion with Hurst parameter H ∈ (0, 1) if its covariance function is given by

γH(u, v) = Cov (BH(u), BH(v)) = σ2

2
[
|u|2H + v2H − |u− v|2H

]
, (u, v ∈ R).

Note that fractional Brownian motion is the only Gaussian process that is H-self-similar and has
stationary increments, see [54], Definition 2.6.2. We take a closer look on the increment process.

Definition 2.20 (Fractional Gaussian noise, [9], Example 2.2)
Let BH(u) (u ∈ R) be a fractional Brownian motion. The corresponding increment process
WH,t = BH(t)−BH(t−1), t ∈ Z is called fractional Gaussian noise with the explicit autocovariance
structure

γH(k) = σ2

2
(
|k + 1|2H + |k − 1|2H − 2|k|2H

)
.

12



Note that for the autocovariance function of fractional Gaussian noise it holds that

γH(k) ' σ2H(2H − 1)|k|2H−2 (k →∞),

see [9], p. 34, where an ' bn ⇔ limn→∞
an
bn

= 1.
We observe, that fractional Gaussian noise is long-range dependent if H ∈

(
1
2 , 1
)
. We have

introduced univariate Gaussian processes, given popular examples and established a connection
to long-range dependence.

As the title of this thesis already indicates, the main focus of this work is on multivariate
or vector-valued Gaussian processes. Therefore, we give an extension of the univariate results to
the vector-valued ones.

Definition 2.21 (Vector-valued Gaussian process, [43], p.424)
A vector-valued stochastic process (Xj)j∈Z with Xj =

(
X

(1)
j , . . . , X

(d)
j

)t
is called a (vector-valued)

Gaussian process if all finite-dimensional marginal distributions are multivariate Gaussian. If
E (Xj) = (0, . . . , 0)t for all j ∈ Z the (vector-valued) Gaussian process is called centered.

Note that this distribution does explicitly not imply that d one-dimensional Gaussian processes can
be plugged together to a d-dimensional Gaussian process, since the conditions on d-dimensional
vector-valued Gaussian processes are stronger.
Well-known examples of multivariate Gaussian processes can be found analogously to the examples
in the univariate case introduced above. While the d-dimensional extension of the univariate
Brownian motion is straightforward, see [43], Sec. C.8.2, the generalizations of fractional
Brownian motions and fractional Gaussian noises to the multivariate case claim an extension of
self-similarity to so-called operator self-similarity for the d-dimensional case first. We present the
definition, for details we refer to [54], Sec. 9.3.

Definition 2.22 (Vector operator fractional Brownian motion, [54], Definition 9.3.1)
A vector-valued (Rd-valued) process (BH(t))t∈R is called vector operator fractional Brownian
motion if it is Gaussian, has stationary increments and is operator self-similar.
Stationarity of increments means that, for any h ∈ R

(BH(t+ h)−B(h))t∈R
D= (BH(t)−BH(0))t∈R .

For the definition of operator self-similarity, we shall take: for any c > 0,

(BH(ct))t∈R
D=
(
cHBH(t)

)
t∈R

,

with H ∈ Rd×d and cH := e(log c)H := ∑∞
k=0

(log c)kHk

k! .

In the next result, we restrict ourselves to the case that self-similarity matrix H = diag (H1, . . . ,Hd)
is a diagonal-matrix, which yields cH = diag

(
cH1 , . . . , cHd

)
, such that the entries Hk of H satisfy

0 < < (Hk) < 1, k = 1, . . . , d, see [54], p.472 and p.476. Note that <(z) denotes the real part of
z ∈ C. Following [54], Sec. 9.4.3, we extend the univariate definition of fractional Gaussian noise
as given in Definition 2.20 to the vector-valued case.
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Definition 2.23 (Vector fractional Gaussian noise, [54], p.503)
We define a vector fractional Gaussian noise series as

WH,n = BH(n)−BH(n− 1), n ∈ Z.

The series (WH,n)n∈Z is Gaussian, zero mean and stationary. For the autocovariance matrix
function of (WH,n)n∈Z, one can show

γ
(p,q)
W (k) = σpσq

2 (ρpq − sign(k)ηpq)
[
(k + 1)|k + 1|Hp+Hq + (k − 1)|k − 1|Hp+Hq − 2|k|Hp+Hq

]
,

with σ2
p := E

(
B

(p)
H (1)2

)
, ρpq = Cor

(
B

(p)
H (1)B(q)

H (1)
)
and

σpσqηpq = 4C2

(
Hp +Hq

2

)
= (cpq) ,

where C2(H) = Γ(2−2H) sin(Hπ)
2H(1−2H) . Furthermore, =(z) denotes the imaginary part of z ∈ C.

Moreover, C = AA? and A denotes the matrix given in the spectral representation of BH(t) in
Section 2.7.2 and A∗ the corresponding Hermitian transpose, for details, see [54], Theorem 9.3.2.
It is possible, to obtain an asymptotic result for the behaviour of the covariance function
analogously to the univariate case:

γ
(p,q)
W (k) ' σpσq

2 (ρpq − sign(k)ηpq) (Hp +Hq) (Hp +Hq + 1) |k|Hp+Hq−2, (k →∞), (2.4)

if Hp +Hq 6= 1 and p, q = 1, . . . , d.

Note that the class of stationary Gaussian processes is included in the class of linear pro-
cesses, more specifically a stationary Gaussian process is a linear process that has standard
normally distributed innovations, see [9], p. 216. However, the class of linear processes is much
more general, see [9], Sec. 4.2.4. The corresponding vector-valued result is given in [43], p.424,
where the innovations correspond to a d-dimensional vector-valued white noise process with each
vector consisting of i.i.d standard normally distributed entries.
We follow [37] and introduce the commonly used multivariate long-range dependence condition
of linear processes. However, we restrict ourselves to the case of Gaussian innovations.
A multivariate linear process (Xn)n∈Z with finite variance has the representation

Xn =
∞∑
k=0

Ψkεn−k, (2.5)

where
(
Ψk = (ψpq,k)p,q=1,...,d

)
k∈N0

are d × d-matrices such that ‖Ψk‖F < ∞ and (εn)n∈Z is
a d-variate white noise, such that εn ∼ N (0, Id). The representation in (2.5) is called causal
(one-sided) representation. For details on multivariate linear processes, see [54], Sec. 3 and Sec. 4.

We specify two cases concerning the dependence structure of this class of processes.
The first one is given by the sequence Ψk of real-valued d× d matrices fulfills for all p, q = 1, . . . d
that

ψpq,k = Gpq(k)|k|dp−1, k ∈ N, (2.6)

14



where dp ∈
(
0, 1

2

)
, p = 1, . . . , d and G(k) = (Gpq(k))p,q=1,...,d is an Rd×d-valued function satisfying

G(k) ' A+, as k →∞,

for a d× d real-valued matrix A+ that is assumed to have full rank.
The second one is given by

dp < 0, p = 1, . . . , d, sup
k∈N
|Gpq(k)| ≤ β, (2.7)

for some constant β > 0. Additionally the matrix ∑k∈N0 (ψpq,k)p,q=1,...,d ∈ Rd×d is assumed to
have full rank.
The next two results incorporate these two assumptions into the multivariate setting of long-
and short-range dependence.

Proposition 2.24 ([54], Proposition 3.1)
Let (Xn)n∈Z be a d-dimensional Gaussian process given in (2.5) and let (2.6) hold. Then, (Xn)n∈Z
is multivariate long-range dependent in the sense of Definition 2.13.

Proposition 2.25 ([23], Proposition 2.2)
Let (Xn)n∈Z be a d-dimensional Gaussian process given in (2.5) and let (2.7) hold. Then, (Xn)n∈Z
is multivariate short-range dependent in the sense of Definition 2.14.

There is a direct connection of Lp,q, p, q = 1, . . . , d in Definition 2.13 to the matrix A+, see [54],
p.8 (37), (38), that fully specifies the asymptotics of the autocovariance matrix and, therefore,
the long-range dependence condition as given in Definition 2.13. The existence of these matrices
A+ and A− for fixed dj , j = 1, . . . , d is further described in [54], p. 9. An example is provided in
[54], Section 5, where they deal with multivariate FARIMA (0, d, 0) processes. However, it is
important to note, that the class of multivariate stationary Gaussian processes that fulfill (2.6) is
only a subset of multivariate long-range dependent Gaussian processes in the sense of Definition
2.13.

2.4 Framework of Hermite polynomials

Hermite polynomials play an essential part in determining the limit distribution of functionals of
Gaussian processes. This is due to the fact that suitably normalized Hermite polynomials form
an orthonormal basis of L2(R, ϕ), with ϕ being the density of the standard normal distribution.
We recall the definition of this Hilbert space:

L2(R, ϕ) :=
{
f : R→ R,

∫
R
f2(x)ϕ(x)dx <∞

}
.

Therefore, it is possible to expand functions of Gaussian random variables belonging to the
Hilbert space above as Fourier series using Hermite polynomials as orthonormal basis. For details
on basics of Fourier transformations and Fourier series, see [61]. In this section we take a closer
look at these relations and describe it precisely.
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Definition 2.26 (Hermite polynomial, [9], Definition 3.1)
The j-th Hermite polynomial Hj(x), j = 0, 1, . . ., is defined as

Hj(x) := (−1)j exp
(
x2

2

)
dj

dxj exp
(
−x

2

2

)
.

To get an impression, we give the first four Hermite polynomials:
H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − x.

The orthogonality of Hermite polynomials is given alongside of Sec. 3.1.2 in [9]:

〈Hj , Hk〉 =
∫ ∞
−∞

Hj(x)Hk(x)ϕ(x)dx = δjkj!.

Therefore, what remains to show for the result that the family of Hermite polynomials is an
orthogonal basis of L2(R, ϕ) is completeness, which is done in [9] in the proof of Lemma 3.3.
Therefore, we can state:

Lemma 2.27 (Orthogonal basis, [9], Lemma 3.3)
The family of Hermite polynomials {Hj , j = 0, 1, . . .} forms an orthogonal basis in L2(R, ϕ).

Equipped with this property, we can use that for a function f ∈ L2(R, ϕ) and a standard normal
random variable U , we obtain a (in the L2-sense) unique decomposition in terms of Hermite
polynomials:

Lemma 2.28 (Hermite decomposition, [9], Lemma 3.4)
Let U ∼ N (0, 1), and let f be such that E (f(U) = 0) and E

(
f2(U)

)
<∞. Then, f(U) has the

(L2-) unique representation

f(U) =
∞∑
k=1

gkHk(U) =
∞∑
k=1

ck
k!Hk(U),

with Hermite coefficients gk = ck
k! and ck = 〈f,Hk〉 = E (f(U)Hk(U)). In the course of this thesis,

we refer to ck as Hermite coefficients.

A crucial parameter in the context of limit theorems for long-range dependent time series is the
lowest value of k with a nonzero Hermite coefficient, which is called Hermite rank:

Definition 2.29 (Hermite rank, [9], Definition 3.2)
Let U be a standard normal random variable, and f be a function such that E (f(U)) = 0 and
E
(
f2(U)

)
<∞. Then, the Hermite rank m of f is the smallest integer k ≥ 1, such that

ck = E (f(U)Hk(U)) 6= 0.

The corresponding result that emphasizes the importance of the Hermite rank in the asymptotics
of functionals of stationary Gaussian time series, is given in the well-known Reduction Theorem,
originally proven in [64], Theorem 4.1.
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Theorem 2.30 (Reduction Theorem, [54], Theorem 5.3.3.)
Let (Xn)n∈Z be a Gaussian stationary time series which is long-range dependent in the sense of
Definition 2.6. Suppose that E (Xn) = 0 and E

(
X2
n

)
= 1. Let f be a function with Hermite rank

m ≥ 1 and let cm be the first nonzero coefficient in the Hermite expansion. Hm is the Hermite
polynomial of order m. Then, the asymptotic distribution of suitably normalized f(x) = cmHm(x)
is the same as for the general f with Hermite rank m.

In the course of this thesis, we are dealing with multivariate Gaussian processes and, therefore,
the univariate consideration of Hermite polynomials forming an orthonormal basis is not sufficient
for us. Fortunately, it is possible to extend the ideas presented above to the multivariate case,
i.e., considering Gaussian random vectors X =

(
X(1), . . . , X(d)

)t
∼ N (0,Σd), where Σd denotes

the corresponding covariance matrix. It turn out that for our aim we can restrict ourselves to the
less complicated case of Gaussian random vectors with independent entries, such that Σd = Id.
The results of the following paragraph rely on Sec. 3.2 in [9]. Note that on pages 119-121 they
introduce multivariate Hermite polynomials in terms of covariance matrices Σd of any order, but
close these considerations with the statement that general multivariate Hermite polynomials are
too complicated to be suitable in the context of limit theorems. Fortunately, to our aim we can
focus on the case Σd = Id, which is given in details in the following.
We are dealing with a random vector X ∼ N (0, Id), which has independent N (0, 1) entries.

Definition 2.31 (Multivariate Hermite polynomial, [9], p. 122)
Let d ∈ N. We define as d-dimensional Hermite polynomial

Hk(x) := Hk1,...,kd(x) := Hk1,...,kd (x1, . . . , xd) =
d∏
j=1

Hkj (xj) ,

with k = (k1, . . . , kd) ∈ Nd0 \ {(0, . . . , 0)}.

Remarkt that the case k = (0, . . . , 0) is excluded here due to the assumption E (f(X)) = 0.
Analogously to the univariate case, the family of multivariate Hermite polynomials
{Hk1,...,kd , k1, . . . , kd ∈ N} forms an orthogonal basis of L2

(
Rd, ϕId

)
, which is defined as

L2
(
Rd, ϕId

)
:=
{
f : Rd → R,

∫
Rd
f2 (x1, . . . , xd)ϕ (x1) . . . ϕ (xd) dxd . . . dx1 <∞

}
.

The parameter ϕId denotes the density of the d-dimensional standard normal distribution, which
is already divided into the product of the univariate densities ϕ in the formula above.
We denote the Hermite coefficients by

C(f,X, k) := C (f, Id, k) := 〈f,Hk〉 = E (f(X)Hk(X)) .

The Hermite rank m (f, Id) of f with respect to the distribution N (0, Id) is defined as the largest
integer m, such that

E

f(X)
d∏
j=1

Hkj

(
X(j)

) = 0 for all 0 < k1 + . . . kd < m.
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Having these preparatory results in mind, we derive a the multivariate Hermite expansion given
by

f(X)− Ef(X) =
∑

k1+...+kd≥m(f,Id)

C(f,X, k)
k1! . . . kd!

d∏
j=1

Hkj

(
X(j)

)
. (2.8)

A multivariate extension of the Reduction Theorem 2.30 is proved in [2], Theorem 6, for the case
that Σd = Id.

Finally following [9], Sec. 3.2 it is necessary to determine the Hermite rank of a function
f with respect to the original random vector X ∼ N (0,Σd) in order to get the right asymptotic
result. We denote this Hermite rank by m (f,Σd) here. We give a first result dealing with the
relation between m (f, Id) and m (f,Σd).

Lemma 2.32 ([9], Lemma 3.7)
Let X ∼ N (0,Σd) and Σd = AAt, such that X̃ = A−1X ∼ N (0, Id). Then, it holds that
m (f,Σd) = m (f ◦A, Id).

In [10], Chapter 5, two results are proved that deal with a simplification of the determination of
the Hermite rank above. We cite the latter one here, which prove itself to be very useful and is
used at various occasions in the course of this thesis.

Lemma 2.33 [10], Lemma 5.4)
Let f : Rd → R be square-integrable with respect to N (0, Id) and let Σd = AAt be a d× d positive
definite covariance matrix such that Σ−1

d − Id is positive semidefinite. Then

m (f ◦A, Id) ≤ m (f, Id) .

An important note here is that the additional assumption that Σ−1
d − Id is positive semidefinite

is a technical restriction to the covariance matrix. However, since we deal with ordinal patterns
in this work, we anticipate one very advantageous property of ordinal patterns in general here,
namely that they are not affected by monotone transformations. Therefore, we are always in the
comfortable situation to scale the covariance matrix of the considered random vectors, such that
the technical condition above is fulfilled. For further details, see [10], Remark 5.5.

One intriguing question that explains the crucial role of the Hermite rank in the context
of asymptotics of long-range dependent Gaussian time series is whether a long-range dependent
process is still long-range dependent after being transformed by f . The following proposition
yields the answer.

Proposition 2.34 ([54], Proposition 5.2.4)
Let (Xj)j∈Z be a stationary Gaussian time series with E (Xj) = 0 and E

(
X2
j

)
= 1, which is

long-range dependent in the sense of Definition 2.6. Let f ∈ L2 (R, ϕ) be a function with Hermite
rank m. Then, for k →∞,

Cov (f (Xk) , f (X0)) ∼ g2
mm! (L2(k))m k(2d1−1)m.
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Table 2.1 provides an overview which relates the long-range dependence parameter d1 to the
Hermite rank m (f,Σd) and as well provides the connection between d1 and the long-range
dependence parameter df of the transformed process. Finally, we introduce an essential lemma

m (f,Σd) d1 df Range of df
1

(
0, 1

2

)
d1

(
0, 1

2

)
2

(
1
4 ,

1
2

)
2d1 − 1

2

(
0, 1

2

)
3

(
1
3 ,

1
2

)
3d1 − 1

(
0, 1

2

)

Table 2.1: Range of d1 which ensures that (f (Xj)) is still long-range dependent and the corre-
sponding value of df , [54], Table 5.1.

for investigations of dependence structures of limiting processes and random variables in the
course of this work.

Lemma 2.35 ([9], Lemma 3.5)
For a pair of jointly standard normal random variables

(
U (1), U (2)

)t
with covariance

ρ = Cov
(
U (1), U (2)

)
, we have

Cov
(
Hm

(
U (1)

)
Hm

(
U (2)

))
= m!ρm, m ∈ N,

whereas for j 6= k

Cov
(
Hj

(
U (1)

)
Hk

(
U (2)

))
= 0.

2.5 Integrals with respect to random measures

In this section, we do an excursus in the field of integrals with respect to random measures. We
discuss the fundamentals as construction and essential properties. Furthermore, we connect this
approach to our framework of limit theorems as it appears that the limiting processes arising in
the context of Gaussian long-range dependence are expressed as multiple Wiener-Itô integrals.
For an overview of random measures, we refer to [35].

2.5.1 Single integrals with respect to random measures

In this paragraph, the results presented are derived from [54], Section B.1. We begin with a
general description of the setting: Let (E, E) be a measurable space, that is, E is a set and E is
a σ-field of subsets of E. Single integrals with respect to random measures are written as

I(f) :=
∫
E
f(x)M(dx).

Here, f is a deterministic, possibly complex-valued measurable function on E. Furthermore, M
is a suitable, possibly complex-valued random measure on (E, E) that is defined with respect
to a deterministic measure m on (E, E), called a control measure of M . The role of the control
measure will be specified in the following considerations. We denote E0 := {A ∈ E : m(A) <∞}.
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Single integrals with respect to random measures are defined in the following way, similarly to
the general construction of integrals with respect to measures in the well-known measure and
integration theory, see [7].
A function f is called simple, if it can be written as

f(x) =
n∑
k=1

ak1Ak(x),

where ak ∈ C and Ak ∈ E0, k = 1, . . . , n are pairwise disjoint. For simple functions f the integral
I(f) is defined as

I(f) =
n∑
k=1

akM (Ak) . (2.9)

We continue with the construction of single integrals with respect to random measures by
restricting ourselves to integrals with respect to random measures with orthogonal increments,
as they are the random measures of interest in the course of this work.

Definition 2.36 (Random measure with orthogonal increments, [54], Definition B.1.1)
A set function Z : E0 → L2(Ω) with control measure m is called a random measure with orthogonal
increments on (E, E), if Z is σ-additive and

EZ(A) = 0,

E
(
Z (A1)Z (A2)

)
= m (A1 ∩A2) .

Considering a simple function f , set I(f) as in (2.9). For f, g both being simple functions, by
using Definition 2.36, we obtain

E
(
I(f)I(g)

)
=
∫
E
f(x)g(x)m(dx) = 〈f, g〉L2(E,m).

We extend the definition of I(f) to functions f ∈ L2(E,m) now. For f ∈ L2(E,m), there is a
sequence of simple functions fn, n ≥ 1, such that ‖f − fn‖L2(E,m) → 0, as n → ∞. Then, fn,
n ≥ 1 is also a Cauchy sequence in L2(E,m) and it is possible to show that I (fn), n ≥ 1 is
a Cauchy sequence in L2 (Ω), which implies that is has a limit in L2(Ω) that is defined as the
integral I(f):

I(f) = lim
n→∞

(
L2(Ω)

)
I (fn) .

Note that this limit is independent of the approximating sequence fn. For details to the
construction of single integrals with respect to random measures with orthogonal increments, see
[54], Sec. B.1 and [45].
We introduce a particular case of random measures with orthogonal increments now.

Definition 2.37 (Gaussian random measure, [54], Definition B.1.2)
A random measure B on (E, E) with orthogonal increments is called Gaussian if any vector
(B (A1) , . . . , B (An)), Ak ∈ E, k = 1, . . . , n, is multivariate Gaussian.

20



Analogously to general random measures with orthogonal increments, the integral I(f) with
respect to Gaussian measure B is defined for all f ∈ L2(E,m). An additional property of these
integrals is that any vector (I (f1) , . . . , I (fn)), fk ∈ L2(E,m) k = 1, . . . , n is also multivariate
Gaussian.

Concerning complex-valued measures, we introduce Hermitian Gaussian random measures.
Note that m is a symmetric measure on (R,B(R)) in the sense that

m(A) = m(−A), for A ∈ B(R),

where

−A = {x ∈ R : (−x) ∈ A}.

Definition 2.38 (Hermitian Gaussian random measure, [54], Definition B.1.3)
An Hermitian Gaussian random measure B̃ on (R,B(R)) is a complex-valued Gaussian measure
on (R,B(R)) with a symmetric control measure m, such that

B̃(A) = B̃(−A), A ∈ B(R).

The symmetry of the control measure is often written as m(dx) = m(−dx) and the condition in
Definition 2.38 as B̃(dx) = B̃(−dx). For a detailed discussion on the properties of Hermitian
Gaussian random measure, we refer to [54], Sec. B.1.2.

There is an important connection between the real-valued Gaussian random measure B on
(R,B(R)) with Lebesgue control measure du and the Hermitian Gaussian random measure B̃
with Lebesgue control measure dx, see [54], p.591: Let f ∈ L2(R, du) and let

f̂(x) =
∫
R

eixuf(u)du

be the Fourier transform of f . For details on the construction of Fourier transforms for
f ∈ L2(R, du) we refer to [54], Sec. A.1.2. It holds that∫

R
f(u)B(du) D= 1√

2π

∫
R
f̂(x)B̃(dx). (2.10)

The integral on the left-hand side is said to be in the time domain, the one on the right-hand
side in the spectral domain.

2.5.2 Multiple Wiener-Itô integrals

In this paragraph, we introduce the definition of multiple integrals with respect to Gaussian
measures. They are also known as multiple Wiener-Itô integrals. The results used here are given
in [54], Sec. B.2.
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Definition 2.39 (Multiple Wiener-Itô integral, [54], (B.2.1))
Let B be a real-valued Gaussian measure on (R,B(R)) with Lebesgue control measure du, then
the multiple Wiener-Itô integral is written as

Ik(f) :=
∫ ′
Rk
f (u1, . . . , uk)B (du1) . . . B (duk) ,

where f ∈ L2
(
Rk, du1, . . . , duk

)
. The prime in

∫ ′
Rk denotes that the integration excludes the

diagonals.

The construction of the multiple Wiener-Itô integral comes alongside with the construction of
the single integral in the previous section, for details see [54], p. 597f. or [9], Sec. 3.7.1.2. Note
however, that the simple function here is defined in such a way that it vanishes on the diagonal
to assure that the integration excludes the diagonals. This is due to the fact, that otherwise,
if x1 = x2, then, informally, E (B (dx1)B (dx1)) = dx1 so that the diagonal would contribute∫
R g (x1, x1) dx1 yielding a non-zero mean in general, see [9], p.193.

It is possible to represent the multiple Wiener-Itô integral in the spectral domain, for de-
tails on the construction see [54], Sec. B.2. Let B̃ be a Hermitian Gaussian random measure
and g ∈ L2

(
Rk, dx1, . . . , dxk

)
. Then, the multiple Wiener-Itô integral in the spectral domain is

given by

Îk (g) =
∫ ′′
Rk
g (x1, . . . , xk) B̃ (dx1) . . . B̃ (dxk) .

The double prime in
∫ ′′
Rk excludes the diagonals |xi| = |xj |, i 6= j in the integration.

It is possible to derive an analogous result to (2.10) for multiple Wiener-Itô integrals, following
[54], p. 600, (B.2.16): we denote by

f̂ (x1, . . . , xk) =
∫
Rk

ei(x1u1+...+xkuk)f (u1, . . . , uk) du1 . . . duk

the Fourier transform of f . Then

Ik(f) D= 1
(2π)k/2

Îk
(
f̂
)
.

2.6 Spectral representations of stochastic processes

There exists a way to categorize stationary stochastic processes is the spectral integral represen-
tation. We begin with the spectral representation of univariate processes, then briefly turning to
the multivariate case so we can apply this representation to Hermite-Rosenblatt processes in the
next section. The results are given in [9], Section 4.1.3, following [16], Chapter 4.
Herglotz’s Theorem ([16], Theorem 4.3.1) yield the cruicial relation between the autocovariance
function γX(k) of a zero-mean stationary stochastic process (Xt)t∈Z and a so called spectral
distribution function F :

γX(k) =
∫ π

−π
eikλF (dλ), k ∈ Z.
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The stationary time series (Xt)t∈Z itself, has a spectral representation of the form

Xt(ω) =
∫ π

−π
eitλMX(dλ, ω), (2.11)

where MX(·, ω) is a spectral measure. For simplicity we write MX(dλ) instead of MX(dλ, ω) in
the following, but, as for all random measures, the dependence on ω ∈ Ω should be beared in
mind. The spectral measure is a complex-valued zero mean stochastic process on (−π, π] with
(a.s.) right-continuous sample paths and uncorrelated but not necessarily independent increments
with a variance that is directly related to F . More specifically

Cov (MX(dλ),MX(dv)) = 0, (λ 6= v),
Var(MX(dλ)) = F (dλ).

In particular, if the spectral density f exists, (for details, see [16], Sec. 4.3), we can write
Var(MX(dλ)) = fX(λ)dλ. In this case, in the L2(Ω)-sense, fX(λ) = 1

2π
∑∞
k=−∞ γX(λ)e−iλk and,

therefore, the spectral density fX and the covariance function γX are Fourier pairs as it is stated
in the Wiener-Khinchin-Theorem, for details see [68].
The difference between the spectral distribution F and the spectral measure MX in general, is
that the first one only describes the linear dependence within the process, while the latter one
provides full information in the sense of of the probability distribution of sample paths. It is
possible to express a white noise process (εt)t∈Z by using the spectral measure Mε, such that
Var ((Mε(dλ)) = σ2

2πdλ. White noise implies uncorrelated observations (εt)t, however, in general,
this does not imply the independence of (εt)t.
A zero-mean, purely non-deterministic stationary process always has a Wold-decomposition, see
[16], Theorem 5.7.1,

Xt =
∞∑
j=0

ajεt−j = A(B)εt, (t ∈ Z),

with white noise innovations εt and A(z) = ∑
ajz

j such that ∑∞j=0 a
2
j < ∞ and B denotes

the backshift-operator such that BkXt = Xt−k. Combining the Wold-decomposition with the
spectral representation in (2.11) we obtain

Xt =
∫ π

−π
eitλA

(
e−iλ

)
Mε(dλ), (t ∈ Z),

or analogously

MX(dλ) = A
(
e−iλ

)
Mε(dλ).

First, note that in general when considering linear processes, the innovations εt are uncorrelated
but not necessarily independent. We now want to apply the representations above to the
special case, that Mε and, therefore, MX are Gaussian spectral measures. Gaussian processes
are included in the class of linear processes, they exhibit independent innovations fulfilling
εt ∼ N

(
0, σ2

ε

)
. For simplicity we assume σ2

ε = 1. Then, it holds for a Gaussian process (Xt)t,

Xt =
∫ π

−π
eitλMX(dλ),
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where the Gaussian random measure MX(λ) is defined by

MX(dλ) = A
(
e−iλ

)
Mε(dλ) =:

√
2πa(λ)Mε(dλ),

such that the spectral density can be written as fX(λ) = |a(λ)|2.
These univariate results can be extended analogously to the multivarate case and follow [16], Sec.
11.8. In the next paragraph we consider (Xt)t∈Z as a d-dimensional stationary process.

Theorem 2.40 ([16], Theorem 11.8.1)
ΓX(·) is the covariance matrix function of a d-dimensional stationary process (Xt)t∈Z, if and
only if

ΓX(h) =
∫

(−π,π]
eihλF (dλ), h = 0,±1,±2, . . . ,

where F (·) is a d× d-matrix distribution function on (−π, π]. F is called the spectral distribution
matrix of (Xt)t∈Z.

To turn to the spectral representation of (Xt)t∈Z, we have to consider the multivariate extension
of the spectral measure to a vector-valued spectral measure MX with orthogonal increments. For
details, see [16], p.439. Equipped with these multivariate generalizations, we obtain the next
result.

Theorem 2.41 (Spectral Representation Theorem, [16], Theorem 11.8.2)
If (Xt)t∈Z is a stationary d-dimensional sequence with mean zero and spectral distribution
matrix F (·), then there exists a right-continuous orthogonal increment random measure MX(λ),
λ ∈ (−π, π], such that

(i) E [(MX(λ)−MX(−π))(MX(λ)−MX(−π))∗] = F (λ), −π ≤ λ ≤ π

(ii) Xt =
∫

(−π,π] eitλMX(dλ) with probability 1.

Multivariate Gaussian time series can be represented analogously to the univariate case, by
using the linear representation as given in (2.5). Finally let us remark that there is a difference
between the spectral representation of a stationary discrete stochastic process and integral
representations of a time continuous process, as it appears in the next section. In order to point
out the differences, we present Table 2.2, given in [54], Table 1.1. The time domain representation
of the time continuous process is related to the spectral representation in (2.10).

Components in representation Discrete process Time continuous process
Dependent stochastic process Xt X(t)
Underlying space (−π, π] E
Deterministic functions eitλ ft(u)
Uncorrelated (or independent) random measure MX(dλ) Z(du)

Table 2.2: Components in representations of discrete and time continuous stochastic processes.
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2.7 Integral representations of Hermite-Rosenblatt processes

We discussed the basic definitions and properties of integrals with respect to random measures
in Section 2.5. Furthermore, we introduced the spectral representation of stochastic processes.
Therefore, we are now able to introduce the class of processes that arises in the limits of functionals
of long-range dependent sequences considered in this work.
In the following, we provide the integral representation of Hermite-Rosenblatt processes in the
time domain as well as in the spectral domain.

2.7.1 Univariate Hermite-Rosenblatt processes

To get a first intuitive impression, we begin with the relation between the Wiener-Itô integral as
single integral with respect to a Gaussian random measure and standard Brownian motion, as it
is given in [54], Example 4.1.5.
Take E = R, m(du) = du and ft(u) = 1[0,t)(u)√

t
, then we obtain

I1 (ft) =
∫
R
ft(u)B(du) = 1√

t

∫ t

0
B(du) = B(t)√

t
,

where B(x) is a Brownian motion.

We define the Hermite-Rosenblatt process of order m in the time domain.

Definition 2.42 (Hermite-Rosenblatt process in the time domain, [9], Definition 3.24)
Let m ≥ 1 be an integer and H ∈

(
1
2 , 1
)
. Set H0 = 1− 1−H

m ∈
(
1− 1

2m , 1
)
, so that

H = 1−m (1−H0). The Hermite-Rosenblatt process (Zm,H0(t))t∈R of order m is defined as

Zm,H0(t) = K (m,H0)
m!

∫ ′
Rm

∫ t

0

m∏
j=1

(s− uj)
H0− 3

2
+ ds

B (du1) . . . B (dum) ,

with u+ = max{0, u}. Furthermore, K(m,H0)
m! is a normalizing constant.

Note that H is the self-similarity parameter and the process is called standard, if
E
(
Zm,H0(1)2) = 1, which is fulfilled, if

K2 (m,H0) = m! (2m (H0 − 1) + 1) (m (H0 − 1) + 1)(∫∞
0 (x+ x2)H0−3/2 dx

)m .

The Hermite process of order m = 1 is fractional Brownian motion as given in Definition 2.19,
the Hermite process of order m = 2 is called Rosenblatt-process.
The connection to long-range dependent processes is given by the observation, that the range of
H0 coincides with the range of the long-range dependence parameter d1 such that the transformed
process by a function f with Hermite rank m is still long-range dependent, see Table 2.1, with
H0 = d1 + 1

2 .
An interesting approach to verify the standard variance of the Hermite process above which is
based on Lemma 2.35 and on Mc Kean’s representation of a Hermite-Rosenblatt process in [47]
is given in [9], p. 196f.

25



It is possible to express the Hermite-Rosenblatt process via an integral representation in the
spectral domain.

Proposition 2.43 (Hermite-Rosenblatt process in the spectral domain, [54], Proposition 4.2.4)
The Hermite process (Zm,H0(t))t∈R of order m ≥ 1 can be represented as

Zm,H0(t) = bm,H0

∫ ′′
Rm

eit(x1+...+xm) − 1
i (x1 + . . .+ xm)

m∏
j=1
|xj |

1
2−H0 B̃ (dx1) . . . B̃ (dxm) ,

where B̃ (dx) is an Hermitian Gaussian random measure as defined in Definition 2.38 with
control measure dx. bm,H0 is a normalizing constant, for details see [54], p. 234. Note that the
double prime in the integral means that the integration disregards the hyperplanes |xi| = |xj | for
i 6= j. The process (Zm,H0(t))t∈Z is called standard, if

bm,H0 =

 (m (H0 − 1) + 1) (2m (H0 − 1) + 1)
m!
[
2Γ (2− 2H0) sin

((
H0 − 1

2

)
π
)]m

 1
2

.

Hermite-Rosenblatt processes arise as limit processes of functionals of univariate long-range
dependent Gaussian processes, the order m is depending on the Hermite rank of the function f
used. Another parameter that highly determines the limiting process is whether the long-range
dependence parameter d1 of the underlying process that corresponds to d1 = H0 − 1

2 is in
the suitable range, such that the transformed process is still long-range dependent, see Table
2.1. However, in the course of this thesis we are not only interested in the limits of univariate
long-range dependent Gaussian processes, but also in the limits of their multivariate extensions.

2.7.2 Matrix-valued Hermite-Rosenblatt processes

In this section, we turn to the integral representations of multivariate generalizations of Hermite-
Rosenblatt processes, however, we restrict ourselves to the cases m = 1 and m = 2 here. The
first extension we already met in this chapter is given in the operator fractional Brownian motion
defined in Definition 2.22, which corresponds to m = 1. In the context of multivariate linear
processes, operator fractional Brownian motions arise as multivariate extension of the univariate
fractional Brownian motion as limit of the sample mean process. For details, see [23], Theorem
3.3.
We assume in the following, that H ∈ Rd×d is a symmetric matrix and the eigenvalues Hk,
k = 1, . . . d, of H fulfill 0 < Hk < 1, for all k. Then, the operator fractional Brownian motion in
Definition 2.22 exhibits the spectral integral representation

BH(t) =
∫
R

eitx − 1
ix

(
x
−(H−(1/2)Id)
+ A+ x

−(H−(1/2)Id)
− A?

)
B̃(dx),

where A is a matrix with complex-valued entries, A? denotes its complex conjugate,
x+ = max{x, 0}, x− = max{−x, 0} and B̃(dx) is a suitable multivariate complex-valued Gaussian
measure, for details, see [21], Section 3.1.
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We follow [23], Section 2 and introduce the time domain representation of operator fractional
Brownian motion as defined in Definition 2.22 and the multivariate extension of the Rosenblatt
process, that corresponds to the matrix-valued Hermite-Rosenblatt process for m = 2.
We continue with the integral representation of operator fractional Brownian motion in the time
domain and we define a multivariate real-valued Gaussian random measure

B(dx) =
(
B(1)(dx), . . . , B(d)(dx)

)t
,

that satisfies

EB(dx) = 0,
EB(dx)(B(dx))t = Id dx

and

EB(k)(dx)B(l)(dy) = 0, x 6= y, k, l = 1, . . . , d. (2.12)

Theorem 2.44 (OFBM, time domain representation, [21], Theorem 3.2)
If for the eigenvalues of H it holds that Hk 6= 1

2 , k = 1, . . . , d, the operator fractional Brownian
motion in Definition 2.22 admits the integral representation

BH(t) =
∫
R

((
(t− u)H−(1/2)Id

+ − (−u)H−(1/2)Id
+

)
M+

+
(
(t− u)H−(1/2)Id

− − (−u)H−(1/2)Id
−

)
M−

)
B (du) .

For the formulas of the matrices M+ ∈ Rd×d and M− ∈ Rd×d, we refer to [21], Theorem 3.2.

The cross-covariance structure of this process is given in Theorem 2.2 in [41].

We continue with the matrix-valued representation of the Rosenblatt process, i.e., the Hermite-
Rosenblatt process in the case m = 2. We follow the approach in [23], p. 5399, where
this generalization is given in terms of double Wiener-Itô integrals. The Rd2-valued process
(Z2,H(t))t∈[0,1] has the following representation in the time domain if the eigenvalues of the
symmetric matrix H satisfy Hp +Hq ∈

(
0, 1

2

)
, p, q = 1, . . . , d:

Z2,H(t) =
∫ ′
R2
fH,t (x1, x2) vec

(
B (dx1)B (dx2)t

)
, (2.13)

where the vec operator transforms a matrix into a vector by stacking the columns of the matrix
underneath each other. fH,t is given by fH,t (x1, x2) := fH,t,M+,M− (x1, x2), with

fH,t,M+,M− (x1, x2) =
∑

s1,s2∈{+,−}

∫ t

0

(
(v − x2)H−Ids2

⊗ (v − x1)H−Ids1

)
(M s2 ⊗M s1) dv, (2.14)
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where ⊗ denotes the Kronecker product, M+,M− ∈ Rd×d.
Further details on this process, as operator self-similarity and stationary increments, are given in
Lemma 5.15 in [23]. On p. 5414 the covariance structure of this process is also provided.

We turn to the multivariate extension of a spectral random measure which is needed to construct
the vector-valued Rosenblatt process. One approach based on [2], Theorem 6 is found in [9], Sec.
4.4.1.1. They proposed the case of independent univariate Hermitian Gaussian random measures.
We define a multivariate Hermitian-Gaussian random measure B̃(dλ) with independent entries
by

B̃(dλ) =
(
B̃(1)(dλ), . . . , B̃(d)(dλ)

)t
, (2.15)

where B̃(p)(dλ) is a univariate Hermitian-Gaussian random measure as defined in Definition 2.38.
The multivariate Hermitian-Gaussian random measure B̃(dλ) satisfies

E
(
B̃(dλ)

)
= 0,

E
(
B̃(dλ)B̃(dλ)∗

)
= Id dλ

and

E
(
B̃(p)(dλ1)B̃(q)(dλ2)

)
= 0, |λ1| 6= |λ2| , p, q = 1, . . . , d,

where B̃(dλ)∗ =
(
B(1) (dλ), . . . , B(d)(dλ)

)
denotes the Hermitian transpose of B̃(dλ). Thus,

following [2], Theorem 6, we can state the spectral representation of the matrix-valued Rosenblatt
process Z2,H(t), t ∈ [0, 1] as

Z2,H(t) =
(
Z

(p,q)
2,H (t)

)
p,q=1,...,d

where each entry of the matrix is given by

Z
(p,q)
2,H (t) =

∫ ′′
R2

exp (it (λ1 + λ2))− 1
i (λ1 + λ2) B̃(p) (dλ1) B̃(q) (dλ2) .

2.7.3 Rosenblatt distribution

As we see in the course of this chapter, the Rosenblatt distribution plays a crucial role in the
asymptotics of functionals of stationary long-range dependent time series. Note that using Defini-
tion 2.42 for m = 2 and without loss of generality t = 1, we obtain a random variable that follows
the univariate Rosenblatt distribution. For a nice historical overview of the Rosenblatt process
as well as the Rosenblatt distribution, see [63]. In [66], properties of the univariate Rosenblatt
distribution were discussed. In Figure 2.2, we cite their results for the probability density function
and the cumulated density function for different long-range dependence parameters, in order
to compare their results to our convergence results later on. Note that D in their approach
corresponds to d1 = 1−D

2 .
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Figure 2.2: Plots of the pdf and cdf of a Rosenblatt distributed random variable, taken from [66],
Figure 1, p.23.

The characteristic function of a standard Rosenblatt distributed random variable Z, i.e., with
mean 0 and unit variance is given in the following power series which is only convergent near the
origin, see [66], p.983:

φ(ϑ) = exp
(

1
2

∞∑
k=2

(
2iϑ (2C2)−1/2

)k ck
k

)
,

where

ck =
∫ 1

0
. . .

∫ 1

0
|x1 − x2|2d1−1 |x2 − x3|2d1−1 . . . |xk − x1|2d1−1 dx1 . . . dxk (2.16)

and

C2 := 1
2d1 (4d1 − 1) .

As we have seen in Definition 2.6 for the long-range dependence parameter d1 it holds that
d1 ∈

(
0, 1

2

)
. It is very interesting to consider the extremes for d → 1

2
− (limit case of strong
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long-range dependence) and d→ 0+ (limit case of vanishing long-range dependence), where the
notation x→ y+ and x→ y− describes the limit from the right and from the left, respectively.
For d→ 1

2
− the Rosenblatt distribution is a chi-squared distribution with mean 0 and variance

1. In the other extreme, if d → 0+ we observe a standard-normal distribution. The technical
details to these two observations are given in [66], p. 983.

A special property of the Rosenblatt distribution is that it is uniquely determined by its
cumulants κk, k ∈ N, see in this context [62], Theorem 3c. The exact formula is given in [66],
(10): κ1 = 0 and for k ≥ 2:

κk = 2k−1(k − 1)! (2C2)−k/2 ck. (2.17)

We use the cumulants later on to compare limit distributions arising in the context of functionals
with Hermite rank 2 of multivariate long-range dependent Gaussian processes to the Rosenblatt
distribution.

In this section, the most relevant background information was given that is important and
helpful in the course of this thesis. After recalling univariate and multivariate Gaussian processes,
we took a closer look on short-range as well as long-range dependence. Subsequently, Hermite
polynomials, the Hermite expansion and the Hermite rank were defined, as important tool in
the context of long-range dependent Gaussian processes. The derivation of Wiener-Itô integrals
was given and the time domain as well as the spectral domain representation were presented.
The Hermite-Rosenblatt process, that turn out to be cruicial in the context of limit theorems
for functionals with a certain Hermite rank, was introduced, as well as the closely linked Rosen-
blatt distribution. Having this mathematical background in mind, we are now able to turn to
limit theorems for vector-valued Gaussian time series exhibiting long-range dependence and/or
short-range dependence.
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3 Limit theorems for functionals of
long-range dependent multivariate
Gaussian time series

In this chapter, we want to develop the theoretical framework we need to connect ordinal
pattern analysis to long-range dependent time series and to mixed cases of short- and long-range
dependence. Here, we keep the notation as general as possible and adapt it to ordinal analysis in
the following two chapters. Having the historical background of limit theorems in the context of
long-range dependent time series discussed in the introduction in mind, we recall the specific
mathematical framework we consider in this work and give the incorporation in the literature.
Note that in the course of the proofs of the limit theorems, which we derive in this chapter,
several purple segments appear. The calculations or ideas discussed within these segments are
not necessary for a stringent logical proof of the result, however, they are used to give further
helpful comments to illustrate the argumentation.

In general, for d ∈ N we consider a stationary d-dimensional Gaussian time series (Yj)j∈Z,
with

Yj :=
(
Y

(1)
j , . . . , Y

(d)
j

)t
(3.1)

such that E
(
Y

(p)
j

)
= 0 and E

((
Y

(p)
j

)2
)

= 1 for all j ∈ Z and p = 1, . . . , d. Furthermore, we

require the cross-correlation function to fulfill
∣∣∣r(p,q)(k)

∣∣∣ < 1 for p, q = 1, . . . , d and k ≥ 1, where
the componentwise cross-correlation functions r(p,q)(k) are given by r(p,q)(k) = E

(
Y

(p)
j Y

(q)
j+k

)
for

each p, q = 1, . . . , d and k ∈ Z. For each random vector Yj we denote the covariance matrix by
Σd, since it is independent of j due to stationarity. Therefore, we have Σd =

(
r(p,q)(0)

)
p,q=1,...,d

.
This general setting holds for (Yj)j∈Z in Chapter 3 and Chapter 4.

We specify the dependence structure of (Yj)j∈Z and turn to long-range dependence: we as-
sume that for the cross-correlation function r(p,q)(k) for each p, q = 1, . . . , d, it holds that

r(p,q)(k) = Lp,q(k)kdp+dq−1, (3.2)

with Lp,q(k)→ Lp,q (k →∞) for finite constants Lp,q ∈ [0,∞) with Lp,p 6= 0, where the matrix
L = (Lp,q)p,q=1,...,d has full rank, is symmetric and positive definite. Furthermore, the parameters
dp, dq ∈

(
0, 1

2

)
are called long-range dependence parameters. Therefore, (Yj)j∈Z fulfills the

multivariate long-range dependence assumption given in Definition 2.13.
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Hence, we observe a contrast to [9], p. 291, where it is assumed that for each p, q = 1, . . . , d one
has the property

r(p,q)(k) = bp,qk
2d−1L(k),

for a parameter d ∈
(
0, 1

2

)
, a slowly varying function L(k) and finite constants bp,q of which at

least one is not equal to zero. This approach is based on the consideration of the one-dimensional
definition of long-range dependence, see Definition 2.6, and hence bp,p = 1 for p = 1, . . . , d.

Note that the contrast to the property in (3.2) is that on the one hand, we no longer have the
existence of a slowly varying function L(k) such that limk→∞ L(k) =∞, which seems a legitimate
restrictions since the assumptions are still very appropriate for stastical inference, see [54],
Section 9.4.1. On the other hand, the long-range dependence parameters depend on p and q and
therefore, we are able to regard a much larger class of long-range dependent Gaussian processes.
Note that the autocorrelation functions are given by r(p,p)(k) = Lp,pk

2dp−1, p = 1, . . . , d and,
therefore, the parameters dp and dq of the autocorrelation functions of the corresponding marginal
one-dimensional Gaussian processes

(
Y

(p)
j

)
j∈Z

and
(
Y

(q)
j

)
j∈Z

respectively, uniquely determine
the long-range dependence parameter of the corresponding cross-correlation function r(p,q)(·).

The processes we want to consider have a particular structure, namely for h ∈ N, we obtain for
fixed j ∈ Z:

Yj,h :=
(
Y

(1)
j , . . . , Y

(1)
j+h−1, Y

(2)
j , . . . , Y

(2)
j+h−1, . . . , Y

(d)
j , . . . , Y

(d)
j+h−1

)t
∈ Rdh. (3.3)

The following relation holds between the extendend process (Yj,h)j∈Z and the primarily regarded
process (Yj)j∈Z. For all k = 1, . . . , dh, j ∈ Z we have

Y
(k)
j,h = Y

b k−1
h c+1

j+(k mod h)−1, (3.4)

where bxc = max{k ∈ Z : k ≤ x}.

Example 3.1 Let us consider h = 2 and d = 3. We obtain the vector

Yj,2 =
(
Y

(1)
j , Y

(1)
j+1, Y

(2)
j , Y

(2)
j+1, Y

(3)
j , Y

(3)
j+1

)t
.

If we want to determine Y (3)
j,2 now, we use the formula in (3.4) and since (3 mod 2) = 1 and⌊

2
2

⌋
= 1, hence, we obtain Y (3)

j,2 = Y
(2)
j .

Note that the process (Yj,h)j∈Z is still a centered Gaussian process since all finite-dimensional
marginals of (Yj)j∈Z follow a normal distribution. Stationarity is preserved, too, since for all
p, q = 1, . . . , dh, p ≤ q and k ∈ Z the cross-correlation function r(p,q,h)(k) of the process (Yj,h)j∈Z
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is given by

r(p,q,h)(k) = E
(
Y

(p)
j,h Y

(q)
j+k,h

)
= E

(
Y
b p−1

h c+1
j+(p mod h)−1Y

b q−1
h c+1

j+k+(q mod h)−1

)
= r(b p−1

h c+1,b q−1
h c+1)(k + ((q − p) mod h)). (3.5)

The covariance matrix Σd,h of Yj,h has the following structure:

(Σd,h) p,q=1,...,d,
p≤q

=
(
r(p,q,h)(0)

)
p,q=1,...,dh,

p≤q,
,

(Σd,h) p,q=1,...,d,
p>q

=
(
r(q,p,h)(0)

)
p,q=1,...,dh,

q<p

.

Hence, we arrive at

Σd,h =
(
Σ(p,q)
h

)
1≤p,q≤d

, (3.6)

where Σ(p,q)
h = E

((
Y

(p)
1 , . . . , Y

(p)
h

)t (
Y

(q)
1 , . . . , Y

(q)
h

))
=
(
r(p,q)(i− k)

)
1≤i,k≤h

, p, q = 1, . . . , d.

Note that Σ(p,q)
h ∈ Rh×h and r(p,q)(k) = r(q,p)(−k), k ∈ Z since we are studying cross-correlation

functions, see Definition 2.12.
So finally we have to show that based on the assumptions on (Yj)j∈Z we are still dealing with a
long-range dependent process.
Hence, we have to consider the cross-correlations again

r(p,q,h)(k) = r(b p−1
h c+1,b q−1

h c+1)(k + ((q − p) mod h))
= r(p∗,q∗)(k +m∗)
' r(p∗,q∗)(k) (k →∞), (3.7)

since p∗, q∗ ∈ {1, . . . , d} and m∗ ∈ {0, . . . , h − 1}, with p∗ :=
⌊
p−1
h

⌋
+ 1, q∗ :=

⌊
q−1
h

⌋
+ 1 and

m∗ = (q − p) mod h.
Therefore, we are still dealing with a multivariate long-range dependent Gaussian process as
defined in Definition 2.13. We see in the proofs of the following limit theorems that the crucial
parameters that determine the asymptotic distribution are the long-range dependence parameters
dp, p = 1, . . . , d of the original process (Yj)j∈Z and therefore, we omit the detailed description of
the parameters dp∗ here.
It is important to remark that the extended process (Yj,h)j∈Z is also long-range dependent in the
sense of [2], p. 2259, since

lim
k→∞

kDr(p,q,h)(k)
L(k) = lim

k→∞

kDr(p∗,q∗)(k)
L(k)

= lim
k→∞

kDLp∗,q∗k
dp∗+dq∗−1

L(k)
= bp∗,q∗ , (3.8)
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with

D := min
p∗∈{1,...,d}

{1− 2dp∗} ∈ (0, 1) (3.9)

and L(k) can be chosen as any constant Lp,q that is not equal to zero, so for simplicity we assume
without loss of generality L1,1 6= 0 and, therefore, L(k) = L1,1, since the condition in [2] only
requires convergence to a finite constant bp∗,q∗ . Therefore, we may apply the results in [2] in the
following.
We define the following set, which is needed in the proofs of the theorems of this chapter.

P ∗ := {p ∈ {1, . . . , d} : dp ≥ dq, for all q ∈ {1, . . . , d}} (3.10)

and denote the corresponding long-range dependence parameter to each p ∈ P ∗ by

d∗ := dp, p ∈ P ∗.

Before turning to limit theorems, we introduce a possibility to decompose the d-dimensional
Gaussian process (Yj)j∈Z using the Cholesky decomposition, see [27]. Based on the definition of
the multivariate normal distribution, see Definition 2.15, we find an upper triangular matrix Ã,
such that ÃÃt = Σd. Then it holds, that

Yj
D= ÃU∗j , (3.11)

where U∗j is a d-dimensional Gaussian process where each U∗j has independent and identically
N (0, 1) distributed entries. We want to assure that

(
U∗j

)
j∈Z

preserves the long-range dependent
structure of (Yj)j∈Z. Since we know from Definition 2.13, that

E (YjYj+k) = ΓY (k) ' kD−
1
2 IdLkD−

1
2 Id (k →∞),

the process
(
U∗j

)
has to fulfill

E
(
U∗j U

∗
j+k

)
= ΓU∗(k) ' kD−

1
2 IdLUk

D− 1
2 Id (k →∞), (3.12)

with L = ÃLU∗Ã
t.

Then it holds for all n ∈ N that

(Yj , j = 1, . . . , n) D=
(
ÃU∗j , j = 1, . . . , n

)
. (3.13)

Note that the assumption in (3.12) is only well-defined because we assumed
∣∣∣r(p,q)(k)

∣∣∣ < 1 for
k ≥ 1 and p, q = 1, . . . , d in (3.1). This becomes clear in the following considerations. In the
proofs of the theorems in this chapter, we do not only need a decomposition of Yj , but also
of Yj,h. As Yj,h is still a multivariate Gaussian process, the covariance matrix of Yj,h given by
Σd,h is positive definite. Hence, it is possible to find a upper triangular matrix A, such that
AAt = Σd,h. It holds that

Yj,h
D= AUj,h
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for

Uj,h =
(
U

(1)
(j−1)h+1, . . . , U

(1)
jh , . . . , U

(d)
(j−1)h+1, . . . , U

(d)
jh

)t
.

The random vector Uj,h consists of (d · h) independent and standard normally distributed
random variables. We notice the different structure of Uj,h compared to Yj,h. We assure that for
consecutive j the entries in Uj,h are all different while there are identical entries, for example in
Y1,h =

(
Y

(1)
1 , Y

(1)
2 , . . . , Y

(d)
h

)t
and Y2,h =

(
Y

(1)
2 , . . . , Y

(d)
h , Y

(d)
h+1

)t
. This complicates our aim that

(Yj,h, j = 1, . . . , n)t D= (AUj,h, j = 1, . . . , n)t (3.14)

holds.
The special structure of (Yj,h)j∈Z, namely, that it is consisting of h consecutive entries of each
marginal process

(
Y

(p)
j

)
, p = 1, . . . , d, alongside with the dependence between two random

vectors in the process (Yj,h), has to be reflected in the covariance matrix of (Uj,h, j = 1, . . . , n).
Hence, we need to check whether such a vector (Uj,h, j = 1, . . . , n) exists, i.e., if there is a positiv
semi-definite matrix that fulfills these conditions. We define A as a block diagonal matrix with
A as main-diagonal blocks and all off-diagonal blocks as dh× dh-zero matrix. We denote the
covariance matrix of (Yj,h, j = 1, . . . , n)t by ΣY,n and define the following matrix:

ΣU,n := inv (A) ΣY,ninv
(
At
)
. (3.15)

We know that ΣY,n is positive semi-definite for all n ∈ N because (Yj) is a Gaussian process.
Mathematically described that means

xtΣY,nx ≥ 0, (3.16)

for all x = (x1, . . . , xnhd)t ∈ Rnhd. We conclude

xtΣU,nx = xtinv (A) ΣY,ninv
(
At
)
x

=
(
inv

(
At
)
x
)t

ΣY,n

(
xtinv (A)

)
(3.16)
≥ 0.

Therefore, ΣU,n is a positive semi-definite matrix for all n ∈ N and the random vector

(Uj,h, j = 1, . . . , n)tN ∼ (0,ΣU,n)

exists and (3.14) holds. Note that we do not have any further information on the dependence
structure within the process (Uj), in general, this process does neither exhibit long-range
dependence nor independence nor stationarity.

Example 3.2 We consider the case h = 2 and d = 1, such that

Yj,2 =
(
Y

(1)
j , Y

(1)
j+1

)t
.
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We denote r1 := r(1,1)(1) and r2 := r(1,1)(2) for simplicity. Hence, for each j the covariance
matrix Σ1,2 of (Yj,h) is given by

Σ1,2 =
(

1 r1

r1 1

)
.

The upper triangular matrix A such that AAt = Σ1,2 is obtained by using the Cholesky decompo-
sition:

A =

 1 0
r1

√
1− r2

1

 .
We arrive at

Yj,h
D= AUj,h,

for a random vector Uj,h ∼ N (0, I1,2). We turn to the joint distribution of (Y1,h, Y2,h)t. Let 0 be
the 2× 2-dimensional zero matrix. Our goal is

(Y1,h, Y2,h)t = (Y1, Y2, Y2, Y3) D=
(
A 0
0 A

)
(U1, U2, U3, U4)t , (3.17)

with a multivariate normal vector (U1, U2, U3, U4)t.
A first idea is to choose U2 = U3. However, this is not reasonable, since we obtain

(X2, X2)t D=
(
r1U1 +

√
1− r2

1U2, U2

)t
.

That yields

E
(
X2

2

)
= 1− r2

1 6= 1 if r 6= 0,

since U1 and U2 are independent by assumption.
The next approach is to assume (U1, U2, U3, U4) as a random vector with independent entries.
This is not reasonable either, as (3.17) yields

r2 = E (Y1Y3) = E (U1U3) = 0,

and r2 does not equal zero in general.
A third idea might be to use U3 = r1U1 +

√
1− r2

1U2 and to choose U4 to be independent. Besides
the calculations for the dependence of U4 on U1 and U2, this approach does not work for h > 2.

Therefore, we observe that the existence of the vector (U1, U2, U3, U4) and the appropriate choice
of the covariance matrix are non-trivial problems. For the solution we derived in (3.15), we
provide an example for r1 = 0.5 and r2 = 0.2. Then

ΣU,4 =


1 0 0.5 −0.058
0 1 0.866 0.03

0.5 0.866 1 0
−0.058 0.03 0 1

 .

We observe that (U1, . . . , U4) is not stationary.
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According to these calculations, we may use the property in (3.14) in the proofs in this chapter,
however, we need to retransform to Yj,h and later on to the entries Yj =

(
Y

(1)
j , . . . , Y

(d)
j

)t
again,

as we cannot benefit from the property of Uj,h that for fixed j we have independent entries, as
we do no longer have any information on the dependence structure or even stationarity of the
process (Uj)j∈Z.

We face this challenge in the following and prove limit theorems for functionals of a multi-
variate stationary Gaussian process as described by (Yj,h)j∈Z. Due to the considerations in
Section 2.4 we assume that the studied functionals f fulfill E

(
f2 (Yj,h)

)
<∞ and have a certain

Hermite rank, which is crucial to determine the asymptotic distribution. For simplicity, we also
assume E (f (Yj,h)) = 0 in the proofs.

3.1 Limit theorems for functionals with Hermite rank 1

We begin with the first result for functions that exhibit Hermite rank 1. As we have seen in
Table 2.1, we do not need to distinguish between different ranges of d∗, because the transformed
process is still long-range dependent. In the following result, we prove a central limit theorem for
functionals f with Hermite rank 1 applied to the long-range dependent Gaussian process (Yj,h)j∈Z.
In doing so, we shed light on the impact of the special structure of (Yj,h)j∈Z as described in (3.3).

Theorem 3.3 Let (Yj)j∈Z be a d-dimensional stationary Gaussian process as defined in (3.1)
that exhibits long-range dependence in the sense of Definition 2.13. For h ∈ N we fix

Yj,h :=
(
Y

(1)
j , . . . , Y

(1)
j+h−1, . . . , Y

(d)
j , . . . , Y

(d)
j+h−1

)t
∈ Rdh

with Yj,h ∼ N (0,Σd,h) and Σd,h as described in (3.6). Let f : Rdh → R be a function with
Hermite rank 1 such that the set of discontinuity points Df is a Null set with respect to the
dh-dimensional Lebesgue measure. Furthermore we assume f fulfills E

(
f2 (Yj,h)

)
<∞. Then, it

holds that

n−(d∗+1/2)C
−1/2
1

n∑
j=1

(f (Yj,h)− E (f (Yj,h))) D−→ N

0,

 ∑
p,q∈P ∗

h∑
i,l=1

α
(p)
i α

(q)
l Lp,q


with C1 := 1

d∗(2d∗+1) and α
(p)
i = αi+(p−1)h for i = 1, . . . , h, p = 1, . . . , d. Further we have

α = (α1, . . . , αdh)t = Σ−1
d,hc, c = E (f (Y1,h)Y1,h) and P ∗, d∗ defined as in (3.10).

Proof. Without loss of generality, we assume E (f (Yj,h)) = 0. We incorporate the idea in the
proof of Theorem 5.6 in [10]. The property in (3.14) yields for a continuous function f applying
the continuous mapping theorem:

n∑
j=1

f (Yj,h) D=
n∑
j=1

f (AUj,h) (3.18)

We now want to study the asymptotic behavior of the partial sum
n∑
j=1

f∗ (Uj,h) where f∗ (Uj,h) :=

f (AUj,h) D= f (Yj,h). The equality in distribution has no impact on the asymptotic distribution
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of ∑n
j=1 f (Yj,h): we use (3.14) and apply the continuous mapping theorem. We follow the Port-

manteau Theorem. All bounded and continuous functions are included in the set of continuous
functions we observe that the appropriately normalized left-hand side in (3.18) converges to the
same distribution as the right-hand side.

The Hermite rank of f∗ (Uj,h) can be calculated analogously, since m (f,Σd,h) = m (f∗, Idh)
for f∗ (Uj,h) = f ◦A (Uj,h) = f (Yj,h), see Lemma 2.32. According to the multivariate generaliza-
tion of the Reduction Theorem in [2], p.2261, we know that the first order term in the Hermite
expansion of f determines the asymptotic behavior, due to f having Hermite rank 1. We can
state the following:

n∑
j=1

f (Yj,h) D=
n∑
j=1

f∗ (Uj,h) =
n∑
j=1

dh∑
i=1

E
(
f∗ (Uj,h)U (i)

j,h

)
U

(i)
j,h + oP

(
nd
∗+1/2

)
, (3.19)

where for the remainder Rn with Rn = oP
(
nd
∗+1/2

)
it holds that

lim
n→∞

Rn
nd∗+1/2

P−→ 0.

Define the vector of Hermite coefficients in the Hermite expansion with respect to Uj,h by
b := E (f∗ (Uj,h)Uj,h) ∈ Rdh which we can express by

b = E (f∗ (Uj,h)Uj,h) = E (f (Yj,h)Uj,h) = E
(
(f (Yj,h)A−1Yj,h

)
= A−1c,

with c ∈ Rdh being the vector of the original first order Hermite coefficients with respect to Yj,h
given by c := E (f (Yj,h)Yj,h). Note that b and c are in general not coinciding.
Hence, we can continue to study (3.19):

n∑
j=1

dh∑
i=1

E
(
f∗ (Uj,h)U (i)

j,h

)
U

(i)
j,h + oP

(
nd
∗+1/2

)
=

n∑
j=1

dh∑
i=1

biU
(i)
j,h + oP

(
nd
∗+1/2

)

=
n∑
j=1

btUj,h + oP
(
nd
∗+1/2

)
D=

n∑
j=1

ct
(
A−1

)t
A−1Yj,h + oP

(
nd
∗+1/2

)

=
n∑
j=1

(
Σ−1
d,hc

)t
Yj,h + oP

(
nd
∗+1/2

)

=
n∑
j=1

dh∑
i=1

αiY
(i)
j,h + oP

(
nd
∗+1/2

)
,

with bi, ci and αi, i = 1, . . . , dh being the entries of b, c and α respectively, where α := Σ−1
d,hc.

Now we can use the special structure of Yj,h namely that it is compound of the d-dimensional
Gaussian process (Yj)j∈Z by Yj,h =

(
Y

(1)
j , Y

(1)
j+1, . . . , Y

(1)
j+h−1, . . . , Y

(d)
j , . . . , Y

(d)
j+h−1

)t
. Then, we

obtain
n∑
j=1

dh∑
i=1

αiY
(i)
j,h + oP

(
nd
∗+1/2

)
=

n∑
j=1

d∑
p=1

h∑
i=1

α
(p)
i Y

(p)
j+i−1 + oP

(
nd
∗+1/2

)
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=
d∑
p=1

h∑
i=1

α
(p)
i

n∑
j=1

Y
(p)
j+i−1 + oP

(
nd
∗+1/2

)

=
d∑
p=1

h∑
i=1

α
(p)
i

n+i∑
j=i

Y
(p)
j + oP

(
nd
∗+1/2

)

=
d∑
p=1

((
h∑
i=1

α
(p)
i

) n∑
j=1

Y
(p)
j

− h∑
i=2

α
(p)
i

i−1∑
j=1

Y
(p)
j


+

h∑
i=2

α
(p)
i

n+i−1∑
j=n+1

Y
(p)
j

)+ oP
(
nd
∗+1/2

)

=
d∑
p=1

(
h∑
i=1

α
(p)
i

) n∑
j=1

Y
(p)
j

+ oP
(
nd
∗+1/2

)
(3.20)

where α(p) =
(
α

(p)
1 , . . . , α

(p)
h

)t
, p = 1, . . . , d with α

(p)
i = αi+(p−1)h for i = 1, . . . , h such that

α =
(
α(1), . . . , α(d)

)
.

For simplicity consider d = 2 and h = 2. Then, we have α = (α1, . . . , α4)t and now divide this
into α(1) := (α1, α2)t and α(2) := (α3, α4)t, such that α =

(
α(1), α(2)

)t
. We can also observe that

for example for i = 1 and p = 2 the formula above is verified, since α(2)
1 = α3.

An important notice here is that unfortunately it is not possible to (easily) further divide
α = Σ−1

d,hc into a combination of Σ(p,q)
h and a division of c depending on p, since we have

Σd,h =
(
Σ(p,q)
h

)
1≤p,q≤d

, which, however, does not yield Σ−1
d,h =

((
Σ(p,q)
h

)−1
)

1≤p,q≤d
in general,

but a more technical structure, so we need to continue with the notation of α.

We can now define

Ỹj :=
d∑
p=1

(
h∑
i=1

α
(p)
i

)
Y

(p)
j , (3.21)

so in terms of (3.20) we have

d∑
p=1

(
h∑
i=1

α
(p)
i

) n∑
j=1

Y
(p)
j

 =
n∑
j=1

Ỹj .
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Note that
(
Ỹ1, . . . , Ỹn

)t
is multivariate Gaussian for each n ∈ N since


Ỹ1

Ỹ2
...
Ỹn

 = M



Y
(1)

1
Y

(2)
1
...

Y
(d)

1
...

Y
(1)
n

Y
(2)
n

...
Y

(d)
n


with

M :=



h∑
i=1

α
(1)
i

h∑
i=1

α
(2)
i

. . .

h∑
i=1

α
(d)
i

0 0 . . . 0 . . . 0 0 . . . 0

0 0 . . . 0
h∑

i=1

α
(1)
i

h∑
i=1

α
(2)
i

. . .

h∑
i=1

α
(d)
i

. . . 0 0 . . . 0

0 0 . . . 0 0 0 . . . 0
. . . 0 0 . . . 0

0 0 . . . 0 0 0 . . . 0 . . .
h∑

i=1

α
(1)
i

h∑
i=1

α
(2)
i

. . .

h∑
i=1

α
(d)
i


and, therefore, this is just a linear transformation of a multivariate Gaussian random vector.
We now need to modify the one-dimensional Gaussian process

(
Ỹj
)
j∈Z

in order to get a limit
distribution based on Theorem 5.3.1 in [54]. First we have to ensure that for a fixed j, Ỹj is a
standard Gaussian random variable. Therefore, we compute the variance (E

(
Ỹj
)

= 0 follows
directly by definition):

E
(
Ỹ 2
j

)
= E

 d∑
p=1

d∑
q=1

(
h∑
i=1

α
(p)
i

)(
h∑
k=1

α
(q)
k

)
Y

(p)
j Y

(q)
j

 =
d∑

p,q=1

(
h∑
i=1

α
(p)
i

)(
h∑
k=1

α
(q)
k

)
r(p,q)(0),

and therefore, we obtain

Ỹj,normed := Ỹj√∑d
p,q=1

(∑h
i=1 α

(p)
i

) (∑h
k=1 α

(q)
k

)
r(p,q)(0)

,

where we explicitly exclude the case that E
(
Ỹ 2
j

)
= ∑d

p,q=1

(∑h
i=1 α

(p)
i

) (∑h
k=1 α

(q)
k

)
r(p,q)(0) = 0,

since in this case Ỹj = 0 P-a.s. for all j ∈ Z and the convergence problem gets trivial.
We have to determine the cross-correlation function of the process (Yj,normed)j∈Z in order to find
the right normalization constants in terms of the limit theorem.

E
(
Ỹj,normedỸj+k,normed

)
=

E
(
Ỹj Ỹj+k

)
∑d
p,q=1

(∑h
i=1 α

(p)
i

) (∑h
l=1 α

(q)
l

)
r(p,q)(0)

=
E
(∑d

p,q=1
∑h
i,l=1 α

(p)
i α

(q)
l Y

(p)
j Y

(q)
j+k

)
∑d
p,q=1

(∑h
i=1 α

(p)
i

) (∑h
l=1 α

(q)
l

)
r(p,q)(0)
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=
∑d
p,q=1

∑h
i,l=1 α

(p)
i α

(q)
l r(p,q)(k)∑d

p,q=1

(∑h
i=1 α

(p)
i

) (∑h
l=1 α

(q)
l

)
r(p,q)(0)

'
∑
p,q∈P ∗

∑h
i,l=1 α

(p)
i α

(q)
l Lp,qk

2d∗−1∑d
p,q=1

(∑h
i=1 α

(p)
i

) (∑h
l=1 α

(q)
l

)
r(p,q)(0)

, (3.22)

with P ∗ and d∗ defined as in (3.10). So note that the univariate Gaussian process (Yj,normed)j∈Z is
long-range dependent in the sense of Definition 2.6 with long-range dependence parameter d∗ and

slowly varying function L∗(k) such that lim
k→∞

L∗(k) = L∗ :=
∑

p,q∈P∗
∑h

i,l=1 α
(p)
i α

(q)
l
Lp,q∑d

p,q=1

(∑h

i=1 α
(p)
i

)(∑h

l=1 α
(q)
l

)
r(p,q)(0)

.

We can now conclude using Theorem 5.3.1 in [54], that

n−(d∗+1/2)C
−1/2
1

n∑
j=1

Ỹj,normed
D−→ N (0, L∗),

with C1 := 1
d∗(2d∗+1) . Using this result we can determine the limit variance of (3.20) with a

suitable normalization:

n−(d∗+1/2)C
−1/2
1

n∑
j=1

Ỹj,normed
D−→ N (0, L∗),

⇔ n−(d∗+1/2)C
−1/2
1

 d∑
p,q=1

(
h∑
i=1

α
(p)
i

)(
h∑
k=1

α
(q)
k

)
r(p,q)(0)

−1/2
n∑
j=1

Ỹj
D−→ N (0, L∗)

⇔ n−(d∗+1/2)C
−1/2
1

n∑
j=1

Ỹj
D−→ N

(
0, L∗

(
h∑
i=1

α
(p)
i

)(
h∑
k=1

α
(q)
k

)
r(p,q)(0)

)

and finally we obtain

n−(d∗+1/2)C
−1/2
1

n∑
j=1

Ỹj
D−→ N

0,

 ∑
p,q∈P ∗

h∑
i,l=1

α
(p)
i α

(q)
l Lp,q

 .
We do not need a further distinction of cases with the previously excluded case that Ỹj = 0
P-a.s. for all j ∈ Z, since the right-hand side of the above limit yields a degenerated limit
distribution in this case, because of E

(
Ỹj Ỹj+k

)
= 0 for all k and, therefore, in this case∑

p,q∈P ∗
∑h
i,l=1 α

(p)
i α

(q)
l Lp,q = 0, see [9], p. 300. �

It is possible to soften the assumption in Theorem 3.3 regarding the required long-range depen-
dence of the underlying multivariate Gaussian process.

Corollary 3.4 Instead of demanding in the assumptions of Theorem 3.3 that Definition 2.13
holds for all dp, p = 1, . . . , d, it is indeed sufficient to assume that we have at least one p ∈
{1, . . . , d}, such that dp ∈

(
0, 1

2

)
. For the other parameters we can also allow for dp ∈ (−∞, 0).

Then, the statement of Theorem 3.3 remains valid.

Proof. The crucial point in the proof of Theorem 3.3 that determines the asymptotic distri-
bution is given in (3.22). The asymptotic equality there is dominated by the largest paramter
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d∗ as defined in (3.10). Since we assumed that we have at least one parameter dp such that
the corresponding one-dimensional process Y (p)

j exhibits long-range dependence in the sense of
Definition 2.6, we ensured d∗ ∈

(
0, 1

2

)
and hence need no adjustments in the proof. �

Let us remark, that if one considers the extended case of a functional limit theorem for functions
with Hermite rank 1 as it is done in [54], Theorem 5.3.1 for the univariate case or [23], Theorem
3.3 for the multivariate extension, the limiting process is given by the univariate fractional
Brownian motion as defined in Definition 2.19 and analogously the operator fractional Brow-
nian motion as given in Theorem 2.44, since this is the Hermite-Rosenblatt process of order m = 1.

By now we have proved a limit theorem for a functional with Hermite rank 1 considering
the special structure of the dh-dimensional process needed with h consecutive entries for each of
the d univariate marginal process, as it appears in the context of ordinal analysis later on. As
it is desirable in applications, we may allow for a pure long-range dependent structure of the
underlying process, as well as for mixed cases of short- and long-range dependent components.
In the next section, we complement the theoretical framework by considering functionals with
Hermite rank 2, as they appear in the context of estimation of ordinal pattern probabilities as
well as ordinal pattern dependence.

3.2 Limit theorems for functionals with Hermite rank 2

In this section, we focus on a limit theorem for functionals with Hermite rank 2. In the univariate
results, as given in [54], Theorem 5.3.1, the limit is no longer Gaussian, but follows the Rosenblatt
distribution. Some of the properties that characterize the univariate Rosenblatt distribution are
given in Section 2.7.3. Therefore, it is an interesting research challenge to gain more information
on the distribution of the random vector that arises as limit in the multivariate case considered
here.
We begin with a preceding lemma that deals with the asymptotic distribution of the sample
cross-covariance matrix.

Lemma 3.5 Let (Yj)j∈Z be a d-dimensional Gaussian process as defined in (3.1) that fulfills
(3.2) with d1 = . . . = dd = d∗, such that

ΓY (k) = E
(
YjY

t
j+k

)
' Lk2d∗−1, (k →∞).

Let C2 be a normalization constant,

C2 = 1
2d∗ (4d∗ − 1)

and let BY be an upper triangular matrix, such that

BYB
t
Y = L.

Further, for l ∈ N we have

Γ̂Y,n(l) = 1
n− l

n−l∑
j=1

YjY
t
j+l.
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Then, for h ∈ N it holds that(
n1−2d∗ (C2)−1/2 (BY ⊗BY )−1 vec

(
Γ̂n(l)− Γ(l)

)
, l = 0, . . . , h− 1

)
D−→
(

vec
(
Z

(p,q)
2,d∗+1/2(1)

)
p,q=1,...,d

, l = 0, . . . , h− 1
)
,

where Z(p,q)
2,d∗+1/2(1) has the spectral domain representation

Z
(p,q)
2,d∗+1/2(1) = Kp,q(d∗)

∫ ′′
R2

exp (i (λ1 + λ2))− 1
i (λ1 + λ2) |λ1λ2|−d

∗
B̃(p) (dλ1) B̃(q) (dλ2)

where

K2
p,q(d∗) =


1

2C2(2Γ(1−2d∗) sin(πd∗))2 , p = q

1
C2(2Γ(1−2d∗) sin(πd∗))2 , p 6= q.

and B̃(dλ) =
(
B̃(1)(dλ), . . . , B̃(d)(dλ)

)
is a multivariate Hermitian-Gaussian random measure

as defined in (2.15).

Proof. First, we can use (3.11):

Yj
D= ÃU∗j ,

such that
(
U∗j

)
is a multivariate Gaussian process with U∗j ∼ N (0, Id) and

(
U∗j

)
is still long-

range dependent, see (3.12). It is possible to decompose the sample cross-covariance matrix
Γ̂Y,n(l)− ΓY (l) with respect to (Yj) at lag l given by

Γ̂Y,n(l)− ΓY (l) = 1
n− l

n−l∑
j=1

YjY
t
j+l − E

(
YjY

t
j+l

)
to

Γ̂Y,n(l)− ΓY (l) D= Ã
(
Γ̂U∗,n(l)− ΓU∗(l)

)
Ãt,

where we define the sample cross-covariance matrix Γ̂U∗,n(l)− ΓU∗(l) with respect to
(
U∗j

)
at

lag l by

Γ̂U∗,n(l)− ΓU∗(l) = 1
n− l

n−l∑
j=1

U∗j U
∗
j+l − E

(
U∗j U

∗
j+l

)
.

Each entry of

Γ̂U∗,n(l)− ΓU∗(l) =
(
r̂

(p,q)
n,U∗(l)− r

(p,q)
U∗ (l)

)
p,q=1,...,d

is given by

r̂
(p,q)
n,U∗(l)− r

(p,q)
U∗ (l) :=

n∑
j=1

U
∗ (p)
j U

∗ (q)
j+l − E

(
U
∗ (p)
j U

∗ (q)
j+l

)
.
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Following [22], proof of Lemma 7.4, the limit distribution of(
Γ̂U∗,n(l)− ΓU∗(l), l = 0, . . . , h− 1

)
is equal to the limit distribution of(

Γ̂U∗,n(0)− ΓU∗(0), l = 0, . . . , h− 1
)
.

We recall the assumption that d∗ = dp for all p = 1, . . . , d. We follow [2], Theorem 6 and use the
Cramer-Wold device: Let a1,1, a1,2, . . . , ad,d ∈ R. We are interested in the asymptotic behaviour
of

n1−2d∗
d∑

p,q=1
ap,q

(
r̂

(p,q)
n,U (0)− r(p,q)

U (0)
)

=n−2d∗
n∑
j=1

d∑
p,q=1

ap,q
(
U
∗ (p)
j U

∗ (q)
j − E

(
U
∗ (p)
j U

∗ (q)
j

))
.

We consider the function

f
(
U∗j

)
=

d∑
p,q=1

ap,q
(
U
∗ (p)
j U

∗ (q)
j − E

(
U
∗ (p)
j U

∗ (q)
j

))
(3.23)

and may apply Theorem 6 in [2]. Using the Hermite decomposition of f as given in (2.8), we
observe that f and, therefore, ap,q, p, q = 1, . . . , d, only affects the Hermite coefficients. Indeed,
using Lemma 2.35 the Hermite coefficients reduce to ap,q for each summand on the right-hand
side in (3.23). Hence, we can state

n−2d∗
n∑
j=1

d∑
p,q=1

ap,q
(
U
∗ (p)
j U

∗ (q)
j − E

(
U
∗ (p)
j U

∗ (q)
j

))
(3.24)

D−→
d∑

p,q=1
ap,qZ

(p,q)
2,d∗+1/2(1), (3.25)

where Z(p,q)
2,d∗+1/2(1) has the spectral domain representation

Z
(p,q)
2,d∗+1/2(1) = Kp,q(d∗)

∫ ′′
R2

exp (i (λ1 + λ2))− 1
i (λ1 + λ2) |λ1λ2|−d

∗
B̃(p) (dλ1) B̃(q) (dλ2) (3.26)

where

K2
p,q(d∗) =


1

2C2(2Γ(1−2d∗) sin(πd∗))2 , p = q

1
C2(2Γ(1−2d∗) sin(πd∗))2 , p 6= q.

and B̃(dλ) =
(
B̃(1)(dλ), . . . , B̃(d)(dλ)

)
is an appropriate multivariate Hermitian-Gaussian ran-

dom measure. Thus, we proved convergence in distribution of the sample-cross correlation
matrix:

n1−2d∗
(
Γ̂U∗,n(0)− ΓU∗(0)

)
D−→
(
Z

(p,q)
2,d∗+1/2(1)

)
p,q=1,...,d

.
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We take a closer look at the covariance matrix of vec
(
Γ̂U∗,n(0)− ΓU∗(0)

)
. Following [23], Lemma

5.7, we observe

n1−2d∗ (4d∗ (4d∗ − 1))1/2 Cov
(
vec

(
Γ̂U∗,n(0)− ΓU∗(0)

)
, vec

(
Γ̂U∗,n(0)− ΓU∗(0)

))
= (Id2 +Kd2) (LU∗ ⊗ LU∗) ,

with LU∗ as defined in (3.13) and ⊗ denotes the Kronecker product. Furthermore Kd denotes
the commutation matrix that that transforms vec(A) into vec

(
At
)
for A ∈ Rd×d. For details see

[44].
Hence, the covariance matrix of the vector of the sample cross-covariances is fully specified by
the knowledge of LU∗ as it arises in the context of long-range dependence in (3.13).
We obtain a relation between L and LU∗ , since

ΓY (·) = ÃΓU (·)Ãt.

Both

ΓY (k) ' Lk2d∗−1 (k →∞)

and

ΓU∗(k) ' LU∗k2d∗−1 (k →∞)

hold and we obtain

L = ÃLU∗Ã
t.

We study the covariance matrix of vec
(
Γ̂Y,n(0)− ΓY (0)

)
:

n1−2d∗ (4d∗ (4d∗ − 1))1/2 Cov
(

vec
(
Γ̂Y,n(0)− ΓY (0)

)
, vec

(
Γ̂Y,n(0)− ΓY (0)

)t)
→ (Id2 +Kd2) (L⊗ L) (3.27)

= (Id2 +Kd2)
(
ÃLU∗Ã

t
)
⊗
(
ÃLU∗Ã

t
)

= (Id2 +Kd2)
(
Ã⊗ Ã

)
· (LU∗ ⊗ LU∗) ·

(
Ãt ⊗ Ãt

)
.

Let BU∗ be an upper triangular matrix, such that

BU∗B
t
U∗ := LU∗ .

We know that such a matrix exists because LU∗ is positive definite. Analogously, we define BY :

BY := ÃBU∗ .

Then, it holds that

BYB
t
Y = L.
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We arrive at

n1−2d∗ (C2)−1/2 (BY ⊗BY )−1 vec
(
Γ̂Y,n(0)− ΓY (0)

)
D= n1−2d∗ (C2)−1/2 (BU∗ ⊗BU∗)−1 (A⊗A)−1 vec

(
Ã
(
Γ̂U∗,n(0)− ΓU∗(0)

)
Ãt
)

= n1−2d∗ (C2)−1/2 (BU∗ ⊗BU∗)−1 vec
(
Γ̂U∗,n(0)− ΓU∗(0)

)
D−→ vec

(
Z

(p,q)
2,d∗+1/2(1)

)
p,q=1,...,d

,

where Z(p,q)
2,d∗+1/2(1) has the spectral domain representation

Z
(p,q)
2,d∗+1/2(1) = Kp,q(d∗)

∫ ′′
R2

exp (i (λ1 + λ2))− 1
i (λ1 + λ2) |λ1λ2|−d

∗
B̃(p) (dλ1) B̃(q) (dλ2)

where

K2
p,q(d∗) =


1

2C2(2Γ(1−2d∗) sin(πd∗))2 , p = q

1
C2(2Γ(1−2d∗) sin(πd∗))2 , p 6= q.

and B̃(dλ) =
(
B̃(1)(dλ), . . . , B̃(d)(dλ)

)
is a multivariate Hermitian-Gaussian random measure as

defined in (2.15). Note that the standardization on the left-hand side is appropriate since the
covariance matrix of vec

(
Z2,d∗+1/2(1)

)
is given by

E
(
K2(d∗)

∫ ′′
R2

∫ ′′
R2
Eλ1,λ2Eλ3,λ4vec

(
B̃ (dλ1)

(
B̃ (dλ2)

)t)
(

vec
(
B̃ (dλ3)

(
B̃ (dλ4)

)t))t)
. (3.28)

by denoting

Eλ1,λ2 := exp (i (λ1 + λ2))− 1
i (λ1 + λ2) |λ1λ2|−d

∗
.

We observe

E
(

vec
(
B̃ (dλ1) B̃ (dλ2)t

)(
vec

(
B̃ (dλ3)

(
B̃ (dλ4)

)t))t)

=

 Id2dλ1dλ2, |λ1| = |λ3| 6= |λ2| = |λ4| ,

Kd2dλ1dλ2, |λ1| = |λ4| 6= |λ2| = |λ3| ,
(3.29)

following [23], (27). Neither the case |λ1| = |λ2| nor |λ3| = |λ4| has to be incorporated as the
diagonals are excluded in the integration in (3.28). �

Corollary 3.6 Under the assumptions of Lemma 3.5, there is a different representation of the
limit random vector. For h ∈ N we obtain(
n1−2d∗ (C2)−1/2 vec

(
Γ̂n(l)− Γ(l)

)
, l = 0, . . . , h− 1

)
D−→
(
vec

(
Z2,d∗+1/2(1)

)
l = 0, . . . , h− 1

)
,
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where vec
(
Z2,d∗+1/2(1)

)
has the spectral domain representation

vec
(
Z2,d∗+1/2(1)

)
= DK(d∗)

∫ ′′
R2

exp (i (λ1 + λ2))− 1
i (λ1 + λ2) |λ1λ2|−d

∗
vec

(
B̃L (dλ1) B̃L (dλ2)t

)
.

The matrix DK(d∗) is a diagonal matrix,

DK(d∗) = diag (vec (K (d∗))) ,

and K(d∗) = (Kp,q(d∗))p,q=1,...,d is such that

K2(d∗)p,q =


1

2C2(2Γ(1−2d∗) sin(πd∗))2 , p = q

1
C2(2Γ(1−2d∗) sin(πd∗))2 , p 6= q.

Furthermore, B̃L(dλ) is a multivariate Hermitian-Gaussian random measure that fulfills

E
(
B̃L(dλ)B̃L(dλ)∗

)
= L dλ.

Proof. The proof is an immediate consequence of Lemma 3.5 using B̃L(dλ) = BY B̃(dλ) with
BYB

t
Y = L and B̃(dλ) as defined in (2.15). �

Remark 3.7 The application of Theorem 6 of [2] in (3.25) coincides with the result in [45],
Theorem 1.2A, who discussed the results of [2] in details. For the function in (3.23) the result is
uncontroversial, as it holds that

f
(
U∗j

)
=

d∑
p=1

ap,pH2
(
U
∗, (p)
j

)
+

d∑
p,q=1,p>q

ap,qH1
(
U
∗ (p)
j

)
H1
(
U
∗ (q)
j

)
and hence f has the representation as required in [45], (1.4).

Remark 3.8 An analogous result of the convergence of the sample covariance matrix for different
lags l = 0, . . . , h− 1 has been proved in [23], Theorem 4.1 for a multivariate linear process that
may have both long-range and short-range dependent components that fulfill stronger long-range
dependence conditions, which are given in (2.6). In this context, the aforementioned matrix BY is
the limit of the coefficients in the linear representation in (2.1). The Gaussian assumption is not
used in this article. There is an intersection with our framework. Each multivariate Gaussian
process has a linear representation as described in (2.1) with Gaussian innovations. However,
the stronger assumption in (2.6) is not fulfilled for each multivariate Gaussian process that is
long-range dependent in the sense of Definition 2.13. Nevertheless, FARIMA(0, d, 0) processes
as popular class of Gaussian processes in applications fulfill the stronger long-range dependence
condition in (2.6), see [37], Sec. 5.

Remark 3.9 The joint convergence in distribution of the sample covariance matrix to a matrix-
valued Hermite-Rosenblatt process as defined in (2.13) for a bivariate Gaussian process was
proved in [25], Theorem 6.2. Their result is consistent with Lemma 3.5 and on the one hand it
confirms that the asymptotic distribution is not depending on the marginal covariance matrix
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Σ2. On the other hand, the strong impact of the matrix L in Definition 2.13 on the covariance
structure is echoed in their theorem. In [25], Lemma 6.4, they provide the cumulants of Z(1,2)(1)
given by the spectral domain representation

Z
(1,2)
2,d∗+1/2(1) = K(d)

∫ ′′
R2

exp (i (λ1 + λ2))− 1
i (λ1 + λ2) |λ1λ2|−d

∗
B̃(1) (dλ1) B̃(2) (dλ2)

for a bivariate Hermitian-Gaussian random measure that fulfills

E
(
B̃(dλ)B̃(dλ)∗

)
=
(

dλ ρ dλ
ρ dλ dλ

)

with ρ ∈ [−1, 1]: κ1,2(1) = 0 and for k ≥ 2:

κ1,2(k) = (2C2)−k/2 (k − 1)!
2

×
2∑

m1=1
. . .

2∑
mk=1

∫ 1

0
. . .

∫ 1

0
hm1,m2 (s1, s2)hm2,m3 (s2, s3) . . . hmk,m1 (sk, s1) ds1 . . . dsk.

with

h12 (s1, s2) = h21 (s1, s2) = |s1 − s2|2d
∗−1 and h11 (s1, s2) = h22 (s1, s2) = ρ |s1 − s2|2d

∗−1 .

The cumulants uniquely determine the distribution, since it has a representation in terms of a
multiple Wiener-Itô integral of order 2, see [25], p.106f. Only in the case ρ = 1, we observe the
standard Rosenblatt distribution as described in (2.17) and in the case ρ = 0, we obtain

κ1,2(m) = 0, m ∈ 2N− 1
κ1,2(m) = (2C2)−k/2 (k − 1)!ck, m ∈ 2N

with ck as defined in (2.16).

We are now fully equipped to turn to a limit theorem for a functional f with Hermite rank 2
applied to the long-range dependent Gaussian process (Yj,h)j∈Z.

Theorem 3.10 Let (Yj)j∈Z be a stationary Gaussian process as defined in (3.1) that fulfills
(3.2) for dp ∈

(
1
4 ,

1
2

)
, p = 1 . . . , d. For h ∈ N we fix

Yj,h :=
(
Y

(1)
j , . . . , Y

(1)
j+h−1, . . . , Y

(d)
j , . . . , Y

(d)
j+h−1

)t
∈ Rdh

with Yj,h ∼ N (0,Σd,h) and Σd,h as described in (3.6). Let f : Rdh → R be a function with
Hermite rank 2 such that the set of discontinuity points Df is a Null set with respect to the
dh-dimensional Lebesgue measure. Furthermore, we assume f fulfills E

(
f2 (Yj,h)

)
<∞. Then,

n−2d∗(C2)−
1
2

n∑
j=1

(
f
(
Y

(1)
j , . . . , Y

(d)
j+h−1

)
− E

(
f
(
Y

(1)
j , . . . , Y

(d)
j+h−1

)))
D−→

∑
p,q∈P ∗

α̃(p,q)Z
(p,q)
2,d∗+1/2(1), (3.30)
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where

Z
(p,q)
2,d∗+1/2(1) = Kp,q (d∗)

∫ ′′
R2

exp (i (λ1 + λ2))− 1
i (λ1 + λ2) |λ1λ2|−d

∗
B̃

(p)
L (dλ1) B̃(q)

L (dλ2) .

The matrix K (d∗) is given in Corollary 3.6. Moreover, B̃L(dλ) is a multivariate Hermitian-
Gaussian random measure with E

(
B̃L(dλ)B̃L(dλ)∗

)
= L dλ and L as defined in (3.2). Further-

more, C2 := 1
2d∗(4d∗−1) is a normalizing constant and

α̃(p,q) :=
h∑

i,k=1
α

(p,q)
i,k

where α(p,q)
i,k = αi+(p−1)h,k+(q−1)h for each p, q ∈ P ∗ and i, k = 1, . . . , h and

(αi,k)1≤i,k≤dh = Σ−1
d,hCΣ−1

d,h

where C denotes the matrix of second order Hermite coefficients, given by

C = (ci,k)1≤i,k≤dh = E
(
Y1,h (f (Y1,h)− E (f (Y1,h)))Y t

1,h

)
.

Proof. Without loss of generality, we assume E (f (Yj,h)) = 0. Following the argumentation
in [10], Theorem 5.9, we first remark that Yj,h

D= AUj,h with Uj,h and A as described in (3.14)
and (3.15). We now want to study the asymptotic behavior of the partial sum

n∑
j=1

f∗ (Uj)

where f∗ (Uj,h) := f (AUj,h) D= f (Yj,h). Since m (f∗, Idh) = m (f ◦A, Idh) = m (f,Σd,h) = 2, see
Lemma 2.32, hence, we know by [2], Theorem 6, that these partial sums are dominated by the
second order terms in the Hermite expansion of f∗:

n∑
j=1

f∗ (Uj,h)
n∑
j=1

∑
l1+...+ldh=2

E (f∗ (Uj,h)Hl1,...,ldh (Uj,h))Hl1,...,ldh (Uj,h) + oP
(
n2d∗

)
.

This follows from the multivariate extension of the Reduction Theorem as proved in [2]. We
obtain∑

l1+...+ldh=2
E (f∗ (Uj,h)Hl1,...,ldh (Uj,h))Hl1,...,ldh (Uj,h)

=
dh∑
i=1

E
(
f∗ (Uj,h)

((
U

(i)
j,h

)2
− 1

))((
U

(i)
j,h

)2
− 1

)
+

∑
1≤i,k≤dh,i 6=k

E
(
f∗ (Uj,h)U (i)

j,hU
(k)
j,h

)
U

(i)
j,hU

(k)
j,h

=
dh∑
i=1

E
(
f∗ (Uj,h)

(
U

(i)
j,h

)2
)((

U
(i)
j,h

)2
− 1

)
+

∑
1≤i,k≤dh,i 6=k

E
(
f∗ (Uj,h)U (i)

j,hU
(k)
j,h

)
U

(i)
j,hU

(k)
j,h ,

since E (f∗ (Uj,h)) = E (f (Yj,h)) = 0. This results in:

dh∑
i=1

E
(
f∗ (Uj,h)

(
U

(i)
j,h

)2
)((

U
(i)
j,h

)2
− 1

)
+

∑
1≤i,k≤dh,i 6=k

E
(
f∗ (Uj,h)U (i)

j,hU
(k)
j,h

)
U

(i)
j,hU

(k)
j,h

=
∑

1≤i,k≤dh
E
(
f∗ (Uj,h)U (i)

j,hU
(k)
j,h

)
U

(i)
j,hU

(k)
j,h −

dh∑
i=1

E
(
f∗ (Uj,h)

(
U

(i)
j,h

)2
)
. (3.31)
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Note that

∑
1≤i,k≤dh

E
(
f∗ (Uj,h)U (i)

j,hU
(k)
j,h

)
E
(
U

(i)
j,hU

(k)
j,h

)
=

dh∑
i=1

E
(
f∗ (Uj,h)

(
U

(i)
j,h

)2
)

(3.32)

since the entries of Uj,h are independent for fixed j and identically N (0, 1) distributed. So the
subtrahend in (3.31) equals the expected value of the minuend.
Define B := (bi,k)1≤i,k≤dh ∈ R(dh)×(dh) with bi,k := E

(
f∗ (Uj,h)U (i)

j,hU
(k)
j,h

)
= E

(
f∗ (U1)U (i)

1 U
(k)
1

)
since we are considering a stationary process. We obtain

B = E
(
Uj,hf

∗ (Uj,h)U tj,h
)

= E
(
A−1Yj,hf (Yj,h)Y t

j,h

(
A−1

)t)
.

Hence, we can state the following:∑
1≤i,k≤dh

E
(
f∗ (Uj,h)U (i)

j,hU
(k)
j,h

)
U

(i)
j,hU

(k)
j,h = U tj,hBUj,h

D= Y t
j,h

(
A−1

)t
BA−1Yj,h

= Y t
j,h

(
A−1

)t
A−1E

(
Yj,hf (Yj,h)Y t

j,h

) (
A−1

)t
A−1Yj,h

= Y t
j,hΣ−1

d,hE
(
Yj,hf (Yj,h)Y t

j,h

)
Σ−1
d,hYj,h

= Y t
j,hAYj,h

=
∑

1≤i,k≤dh
Y

(i)
j Y

(k)
j αik, (3.33)

where we define A := (αik)1≤ik≤dh := Σ−1
d,hCΣ−1

d,h, with C := E
(
Yj,hf (Yj,h)Y t

j,h

)
as the matrix of

second order Hermite coefficients, in contrast to B now with respect to the original considered
process (Yj,h)j∈Z.

Remembering the special structure of Yj,h =
(
Y

(1)
j , . . . , Y

(1)
j+h−1, . . . , Y

(d)
j , Y

(d)
j+h−1

)t
, namely that

Y
(k)
j,h = Y

(b k−1
h
c+1)

j+(k mod h)−1, k = 1, . . . , dh we can see that

n∑
j=1

∑
1≤ik≤dh

Y
(i)
j,hY

(k)
j,h αik =

n∑
j=1

∑
1≤ik≤dh

Y
(b i−1

h c+1)
j+(i mod h)−1Y

(b k−1
h c+1)

j+(k mod h)−1αik

=
n∑
j=1

d∑
p,q=1

h∑
i,k=1

Y
(p)
j+i−1Y

(q)
j+k−1α

(p,q)
ik , (3.34)

where we divide

A =


A(1,1) A(1,2) . . . A(1,d)

A(2,1) A(2,2) . . . A(2,d)

...
...

...
A(d,1) A(d,2) . . . A(d,d)

 ,

with A(p,q) =
(
α

(p,q)
i,k

)
1≤i,k≤h

∈ Rh×h such that α(p,q)
i,k = αi+(p−1)h,k+(q−1)h for each p, q = 1, . . . , d

and i, k = 1, . . . , h.
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We can now split the considered sum in (3.34) in a way such that we are able to express
it in terms of sample cross-covariances afterwards. In order to do so, we define the sample
cross-covariance at lag l by

r̂(p,q)
n (l) := 1

n

n−l∑
j=1

X
(p)
j X

(q)
j+l

for p, q = 1, . . . , d.
Note that in the case h = 1, it follows directly that

n∑
j=1

d∑
p,q=1

h∑
i,k=1

Y
(p)
j+i−1Y

(q)
j+k−1α

(p,q)
ik =

d∑
p,q=1

α
(p,q)
1,1

n∑
j=1

Y
(p)
j Y

(q)
j = n

d∑
p,q=1

r̂(p,q)
n (0).

The case h = 2 has to be regarded separately, too, and we obtain

n∑
j=1

d∑
p,q=1

2∑
i,k=1

Y
(p)
j+i−1Y

(q)
j+k−1α

(p,q)
ik

=
d∑

p,q=1

α(p,q)
1,1

n∑
j=1

Y
(p)
j Y

(q)
j + α

(p,q)
1,2

n∑
j=1

Y
(p)
j Y

(q)
j+1 + α

(p,q)
2,1

n∑
j=1

Y
(p)
j+1Y

(q)
j + α

(p,q)
2,2

n∑
j=1

Y
(p)
j+1Y

(q)
j+1



=
d∑

p,q=1

(
α

(p,q)
1,1 nr̂(p,q)

n (0) + α
(p,q)
1,2

nr̂(p,q)
n (1) + Y (p)

n Y
(q)
n+1︸ ︷︷ ︸

F

+ α
(p,q)
2,1

nr̂(q,p)
n (1) + Y

(p)
n+1Y

(q)
n︸ ︷︷ ︸

F



+ α
(p,q)
2,2

nr̂(p,q)
n (0) + Y

(p)
n+1Y

(q)
n+1︸ ︷︷ ︸

F

−Y (p)
1 Y

(q)
1︸ ︷︷ ︸

F


)
,

Note that for each of the terms labeled by F the following holds for d∗ ∈
(

1
4 ,

1
2

)
:

n−2d∗F P−→ 0, (n→∞).

We use this property later on when dealing with the asymptotics of the term in (3.34).
Finally we consider the term in (3.34) for h ≥ 3 and arrive at

n∑
j=1

d∑
p,q=1

h∑
i,k=1

Y
(p)
j+i−1Y

(q)
j+k−1α

(p,q)
ik

=
d∑

p,q=1

h∑
i,k=1

α
(p,q)
ik

n+i−1∑
j=i

Y
(p)
j Y

(q)
j+k−i

=
d∑

p,q=1

h−1∑
l=0

h−l∑
i=1

α
(p,q)
i,i+l

n+i−1∑
j=i

Y
(p)
j Y

(q)
j+l

+
d∑

p,q=1

−1∑
l=−(h−1)

h∑
i=1−l

α
(p,q)
i,i+l

n+i−1∑
j=i

Y
(p)
j Y

(q)
j+l

=
d∑

p,q=1

h−1∑
l=0

h−l∑
i=1

α
(p,q)
i,i+l

n+i−1∑
j=i

Y
(p)
j Y

(q)
j+l
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+
d∑

p,q=1

h−1∑
l=1

h−l∑
i=1

α
(p,q)
i+l,i

n+i−1∑
j=i

Y
(p)
j+lY

(q)
j (3.35)

=
d∑

p,q=1

h∑
i=1

α
(p,q)
i,i

n+i−1∑
j=i

Y
(p)
j Y

(q)
j

+
d∑

p,q=1

h−1∑
l=1

h−l∑
i=1

(
α

(p,q)
i,i+l

n+i−1∑
j=i

Y
(p)
j Y

(q)
j+l + α

(p,q)
i+l,i

n+i−1∑
j=i

Y
(p)
j+lY

(q)
j

)
(3.36)

=
d∑

p,q=1

(
α

(p,q)
1,1

n∑
j=1

Y
(p)
j Y

(q)
j +

h∑
i=2

α
(p,q)
i,i

n+i−1∑
j=i

Y
(p)
j Y

(q)
j

)

+
d∑

p,q=1

h−2∑
l=1

((
α

(p,q)
1,1+l

n∑
j=1

Y
(p)
j Y

(q)
j+l + α

(p,q)
1+l,1

n∑
j=1

Y
(p)
j+lY

(q)
j

)

+
h−l∑
i=2

(
α

(p,q)
i,i+l

n+i−1∑
j=i

Y
(p)
j Y

(q)
j+l + α

(p,q)
i+l,i

n+i−1∑
j=i

Y
(p)
j+lY

(q)
j

))

+
d∑

p,q=1

(
α

(p,q)
1,h

n∑
j=1

Y
(p)
j Y

(q)
j+h−1 + α

(p,q)
h,1 Y

(p)
j+h−1Y

(q)
j

)
(3.37)

=
d∑

p,q=1

(
α

(p,q)
1,1 nr̂(p,q)

n (0) +
h∑
i=2

α
(p,q)
i,i

(
n+i−1∑
j=n+1

Y
(p)
j Y

(q)
j︸ ︷︷ ︸

F

+nr̂(p,q)
n (0)−

i−1∑
j=1

Y
(p)
j Y

(q)
j︸ ︷︷ ︸

F

))

+
d∑

p,q=1

h−2∑
l=1

((
α

(p,q)
1,1+lnr̂

(p,q)
n (l) + α

(p,q)
1+l,1nr̂

(q,p)
n (l)

)

+
h−l∑
i=2

(
α

(p,q)
i,i+l

(
n+i−1∑
j=n−l+1

Y
(p)
j Y

(q)
j+l︸ ︷︷ ︸

F

+nr̂(p,q)
n (l)−

i−1∑
j=1

Y
(p)
j Y

(q)
j+l︸ ︷︷ ︸

F

)

+ α
(p,q)
i+l,i

(
n+i−1∑
j=n−l+1

Y
(p)
j+lY

(q)
j︸ ︷︷ ︸

F

+nr̂(q,p)
n (l)−

i−1∑
j=1

Y
(p)
j+lY

(q)
j︸ ︷︷ ︸

F

)))

+
d∑

p,q=1

(
α

(p,q)
1,h

(
n∑

j=n−h+2
Y

(p)
j Y

(q)
j+h−1︸ ︷︷ ︸

F

+nr̂(p,q)
n (h− 1)

)
(3.38)

+ α
(p,q)
h,1

(
n∑

j=n−h+2
Y

(p)
j+h−1Y

(q)
j︸ ︷︷ ︸

F

+nr̂(q,p)
n (h− 1)

))
. (3.39)
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In order to illustrate the calculations up to (3.35), we briefly consider the following example with
h = 3, n = 5 and fixed p, q ∈ {1, . . . , d}.
Starting with

3∑
i,k=1

α
(p,q)
ik

5+i−1∑
j=i

Y
(p)
j Y

(q)
j+k−i

=α(p,q)
1,1

5∑
j=1

Y
(p)
j Y

(q)
j + α

(p,q)
1,2

5∑
j=1

Y
(p)
j Y

(q)
j+1 + α

(p,q)
1,3

5∑
j=1

Y
(p)
j Y

(q)
j+2

+ α
(p,q)
2,1

6∑
j=2

Y
(p)
j Y

(q)
j−1 + α

(p,q)
2,2

6∑
j=2

Y
(p)
j Y

(q)
j + α

(p,q)
2,3

6∑
j=2

Y
(p)
j Y

(q)
j+1

+ α
(p,q)
3,1

7∑
j=3

Y
(p)
j Y

(q)
j−2 + α

(p,q)
3,2

7∑
j=3

Y
(p)
j Y

(q)
j−1 + α

(p,q)
3,3

7∑
j=3

Y
(p)
j Y

(q)
j

=α(p,q)
1,1

5∑
j=1

Y
(p)
j Y

(q)
j + α

(p,q)
2,2

6∑
j=2

Y
(p)
j Y

(q)
j + α

(p,q)
3,3

7∑
j=3

Y
(p)
j Y

(q)
j

+ α
(p,q)
1,2

5∑
j=1

Y
(p)
j Y

(q)
j+1 + α

(p,q)
2,3

6∑
j=2

Y
(p)
j Y

(q)
j+1

+ α
(p,q)
1,3

5∑
j=1

Y
(p)
j Y

(q)
j+2

+ α
(p,q)
2,1

6∑
j=2

Y
(p)
j Y

(q)
j−1 + α

(p,q)
3,2

7∑
j=3

Y
(p)
j Y

(q)
j−1

+ α
(p,q)
3,1

7∑
j=3

Y
(p)
j Y

(q)
j−2

=α(p,q)
1,1

5∑
j=1

Y
(p)
j Y

(q)
j + α

(p,q)
2,2

6∑
j=2

Y
(p)
j Y

(q)
j + α

(p,q)
3,3

7∑
j=3

Y
(p)
j Y

(q)
j

+ α
(p,q)
1,2

5∑
j=1

Y
(p)
j Y

(q)
j+1 + α

(p,q)
2,3

6∑
j=2

Y
(p)
j Y

(q)
j+1

+ α
(p,q)
1,3

5∑
j=1

Y
(p)
j Y

(q)
j+2

+ α
(p,q)
2,1

5∑
j=1

Y
(p)
j+1Y

(q)
j + α

(p,q)
3,2

6∑
j=2

Y
(p)
j+1Y

(q)
j

+ α
(p,q)
3,1

5∑
j=1

Y
(p)
j+2Y

(q)
j

=
2∑
l=0

3−l∑
i=1

α
(p,q)
i,i+l

5+i−1∑
j=i

Y
(p)
j Y

(q)
j+l +

2∑
l=1

3−l∑
i=1

α
(p,q)
i+l,i

5+i−1∑
j=i

Y
(p)
j+lY

(q)
j .

For the calculations in (3.36) it is necessary to separate the case l = 0 and for those in (3.37) to
separate the cases i = 1 and l = h− 1 from the rest of the corresponding sums in order to get
a precise differentation between the sample cross-correlations and the terms denoted by F in
(3.39).
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Again for each of the terms labeled by F it holds for d∗ ∈
(

1
4 ,

1
2

)
:

n−2d∗F P−→ 0, (n→∞),

since each F describes a sum with a finite number (independent of n) of summands. Therefore,
we continue to express the terms denoted by F by oP

(
n2d∗

)
.

With these calculations we are able to re-express the partial sum, whose asymptotics we are
interested in, in terms of the sample cross-correlations of the original long-range dependent
process (Yj)j∈Z.
Finally, the previous calculations lead to

n∑
j=1

f (Yj,h)

D=
n∑
j=1

f∗ (Uj,h)

(3.31)=
n∑
j=1

 ∑
1≤i,k≤dh

E
(
f∗ (Uj,h)U (i)

j,hU
(k)
j,h

)
U

(i)
j,hU

(k)
j,h −

dh∑
i=1

E
(
f∗ (Uj,h)

(
U

(i)
j,h

)2
)+ oP(n2d∗)

D=
(3.34)

n∑
j=1

d∑
p,q=1

h∑
i,k=1

α
(p,q)
ik

(
Y

(p)
j+i−1Y

(q)
j+k−1 − E

(
Y

(p)
j+i−1Y

(q)
j+k−1

))
+ oP(n2d∗), (3.40)

where (3.40) follows, since (3.32) yields

dh∑
i=1

E
(
f∗ (Uj,h)

(
U

(i)
j,h

)2
)

=
∑

1≤i,k≤dh
E
(
f∗ (Uj,h)U (i)

j,hU
(k)
j,h

)
E
(
U

(i)
j,hU

(k)
j,h

)
(3.34)=

d∑
p,q=1

h∑
i,k=1

α
(p,q)
ik E

(
Y

(p)
j+i−1Y

(q)
j+k−1

)
.

Taking the parts containing the sample cross-correlations into account, we derive

n∑
j=1

d∑
p,q=1

h∑
i,k=1

α
(p,q)
ik

(
Y

(p)
j+i−1Y

(q)
j+k−1 − E

(
Y

(p)
j+i−1Y

(q)
j+k−1

))
+ oP(n2d∗)

(3.39)=
d∑

p,q=1

(
α

(p,q)
1,1 n

(
r̂(p,q)
n (0)− r(p,q)(0)

)
+

h∑
i=2

α
(p,q)
i,i n

(
r̂(p,q)
n (0)− r(p,q)(0)

))

+
d∑

p,q=1

h−2∑
l=1

((
α

(p,q)
1,1+ln

(
r̂(p,q)
n (l)− r(p,q)(l)

)
+ α

(p,q)
1+l,1n

(
r̂(q,p)
n (l)− r(q,p)(l)

))

+
h−l∑
i=2

(
α

(p,q)
i,i+ln

(
r̂(p,q)
n (l)− r(p,q)(l)

)
+ α

(p,q)
i+l,in

(
r̂(q,p)
n (l)− r(q,p)(l)

)))

+
d∑

p,q=1

(
α

(p,q)
1,h n

(
r̂(p,q)
n (h− 1)− r(p,q)(h− 1)

)
+ α

(p,q)
h,1 n

(
r̂(q,p)
n (h− 1)− r(q,p)(h− 1)

))
(3.41)

+ oP(n2d∗)
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= n
d∑

p,q=1

(
h−1∑
l=0

h−l∑
i=1

α
(p,q)
i,i+l

(
r̂(p,q)
n (l)− r(p,q)(l)

)
+
h−1∑
l=1

h−l∑
i=1

α
(p,q)
i+l,i

(
r̂(q,p)
n (l)− r(q,p)(l)

)))

+ oP(n2d∗). (3.42)

We take a closer look at the impact of each long-range dependence parameter dp, p = 1, . . . , d to
the convergence of this sum. The setting we are considering does not allow for a normalization
depending on p and q for each cross-correlation

(
r̂

(p,q)
n (l)− r(p,q)(l)

)
, l = 0, . . . , h − 1 but we

need to find a normalization for all p, q = 1, . . . , d. Hence, we need to remember the set
P ∗ := {p ∈ {1, . . . , d} : dp ≥ dq∀q ∈ {1, . . . , d}} and the parameter d∗ = max

p=1,...,d
dp, such that for

each p ∈ P ∗ we have dp = d∗. For each p, q ∈ {1, . . . , d} with (p, q) /∈ P ∗×P ∗ and l = 0, . . . , h−1,
we conclude that

E
((
n1−2d∗

(
r̂(p,q)
n (l)− r(p,q)(l)

))2
)

= n2(dp+dq−2d∗)E
((
n1−dp−dq

(
r̂(p,q)
n (l)− r(p,q)(l)

))2
)

= n2dp+2dq−4d∗C2 (Lp,pLq,q + Lp,qLq,p)
(n→∞)−−−−−→ 0, (3.43)

since dp + dq − 2d∗ < 0.
This implies that

n1−2d∗
(
r̂(p,q)
n (0)− r(p,q)(0)

) P−→ 0

Hence, using Slutsky’s theorem, the crucial parameters that determine the normalization and,
therefore, the limit distribution of (3.44) are given in P ∗. We have an equal long-range dependence
parameter d∗ to regard for all p ∈ P ∗. Applying Lemma 3.5, we obtain the following, by using
the symmetry in l = 0 of the cross correlation function r(p,q)(0) = r(q,p)(0) for p, q ∈ P ∗:

d∑
p,q=1

(
h−1∑
l=0

h−l∑
i=1

α
(p,q)
i,i+l

(
r̂(p,q)
n (l)− r(p,q)(l)

)
+
h−1∑
l=1

h−l∑
i=1

α
(p,q)
i+l,i

(
r̂(q,p)
n (l)− r(q,p)(l)

)))

=
∑

p,q∈P ∗

(
h−1∑
l=0

h−l∑
i=1

α
(p,q)
i,i+l

(
r̂(p,q)
n (0)− r(p,q)(0)

)
+
h−1∑
l=1

h−l∑
i=1

α
(p,q)
i+l,i

(
r̂(q,p)
n (0)− r(q,p)(0)

)))
+ oP(n2d∗−1)

=
∑

p,q∈P ∗

(
r̂(p,q)
n (0)− r(p,q)(0)

)( h−1∑
l=0

h−l∑
i=1

α
(p,q)
i,i+l +

h−1∑
l=1

h−l∑
i=1

α
(p,q)
i+l,i

)
+ oP(n2d∗)

=
∑

p,q∈P ∗

(
r̂(p,q)
n (0)− r(p,q)(0)

) h∑
i,k=1

α
(p,q)
i,k

+ oP(n2d∗)

=
∑

p,q∈P ∗
α̃(p,q)

(
r̂(p,q)
n (0)− r(p,q)(0)

)
+ oP(n2d∗), (3.44)

by defining α̃(p,q) :=
h∑

i,k=1
α

(p,q)
i,k .

55



At first glance it might be interesting to transform the term in (3.44) using

d∑
p,q=1

(
r̂(p,q)
n (0)− r(p,q)(0)

)
= 1
n

n∑
j=1

 d∑
p=1

Y
(p)
j

2

− E

 d∑
p=1

Y
(p)
j

2

.

This would be a huge simplification, since we would be able to boil down the convergence problem
to the second Hermite polynomial of a (suitably normalized) one-dimensional Gaussian process,
as in the case of Hermite rank 1, see (3.21).
However, this approach is not reasonable, as we can see in Example 4.33, since for d = 2 and
h = 1, we obtain α̃(1,1)α̃(2,2) 6=

(
α̃(1,2)

)2
and therefore, we are not able to simplify the term in

(3.44) to the square of the sum weighted by α̃(p,q) as it is indicated in the idea above. Therefore,
we have to continue with the convergence results of cross-covariances in the d-dimensional case.

Applying the continuous mapping theorem given in [65], Theorem 2.3 to the result in Corollary
3.6 we arrive at

n−2d∗ (C2)−1/2
n∑
j=1

f (Yj,h) = n−2d∗
n d∑

p,q=1
α̃(p,q)

(
r̂(p,q)
n (0)− r(p,q)(0)

)
+ oP(n2d∗)


= n1−2d∗ (C2)−1/2

d∑
p,q=1

α̃(p,q)
(
r̂(p,q)
n (0)− r(p,q)(0)

)
+ oP(1)

D−→
∑

p,q∈P ∗
α̃(p,q)Z

(p,q)
2,d∗+1/2(1),

where

Z
(p,q)
2,d∗+1/2(1) = Kp,q (d∗)

∫ ′′
R2

exp (i (λ1 + λ2))− 1
i (λ1 + λ2) |λ1λ2|−d

∗
B̃

(p)
L (dλ1) B̃(q)

L (dλ2) .

The matrix K (d∗) is given in Corollary 3.6. Moreover, B̃L(dλ) is a multivariate Hermitian-
Gaussian random measure with E (BL(dλ)BL(dλ)∗) = L dλ and L as defined in (3.2). �

It is even possible to extend this result to multivariate Gaussian processes (Yj)j∈Z, that have
long-range dependent, as well as short-range dependent components. Note that the assumption
in Theorem 3.10, that for all p = 1 . . . , d we demand dp ∈

(
1
4 ,

1
2

)
is necessary to ensure

g(p,q)
(
Y

(1)
j , . . . , Y

(d)
j

)
:= 1

n

n∑
j=1

Y
(p)
j Y

(q)
j − r(p,q)(0)

to be still long-range dependent.
However, we may allow for long-range dependence parameters dp + dq ∈

(
0, 1

2

)
, such that the

transformed process g(p,q)
(
Y

(1)
j , . . . , Y

(d)
j

)
is short-range dependent, or even for parameters

dp+dq ∈ (−∞, 0) such that at least one of the one-dimensional processes
(
Y

(p)
j

)
j∈Z

or
(
Y

(q)
j

)
j∈Z

is short-range dependent from the very first. Therefore, we may soften the conditions of Theorem
3.10 in the following corollary:
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Corollary 3.11 Instead of demanding in the assumptions of Theorem 3.10 that (3.2) holds for
(Yj)j∈Z with the addition that for all p = 1, . . . , d we have dp ∈

(
1
4 ,

1
2

)
, we may use the following

condition:
We assume that

r(p,q)(k) = kdp+dq−1Lp,q(k) (k →∞)

with Lp,q(k) as given in (3.2), but we do no longer assume dp ∈
(

1
4 ,

1
2

)
for all p = 1, . . . , d

but soften the assumption to d∗ ∈
(

1
4 ,

1
2

)
and for dp 6= d∗, p = 1, . . . , d we allow for dp ∈

(−∞, 0) ∪
(
0, 1

4

]
. Then, the statement of Theorem 3.10 remains valid.

Proof. We assumed d∗ ∈
(

1
4 ,

1
2

)
, because otherwise we leave the long-range dependent setting,

since we are studying functionals with Hermite rank 2 and the transformed process would no
longer be long-range dependent and limit theorems for functionals of short-range dependent
processes would hold, see Theorem 4 in [2]. This choice of d∗ assures that the multivariate
generalization of the Reduction theorem as it is used in the proof of Theorem 3.10 still holds for
these softened assumptions, as explained in (3.8) and (3.9).
We turn to the asymptotics of g(p,q) (Yj). We obtain for all p, q ∈ {1, . . . , d} \ P ∗,i.e., excluding
dp = dq = d∗ and for all l = 0, . . . , h− 1 as in (3.43), that

E
((
n1−2d∗

(
r̂(p,q)
n (l)− r(p,q)(l)

))2
)

= n2(dp+dq−2d∗)E
((
n1−dp−dq

(
r̂(p,q)
n (l)− r(p,q)(l)

))2
)

= n2dp+2dq−4d∗C2 (Lp,pLq,q + Lp,qLq,p)
(n→∞)−−−−−→ 0, (3.45)

since dp + dq − 2d∗ < 0.
This implies that

n1−2d∗
(
r̂(p,q)
n (0)− r(p,q)(0)

) P−→ 0.

Applying Slutsky’s theorem, we observe that only p, q ∈ P ∗ have an impact on the convergence
behaviour as it is given in (3.44) and hence, the result in Theorem 3.10 holds. �

Remark 3.12 The joint asymptotic distribution of the sample-covariance matrix of a multivari-
ate linear process (Yj)j∈Z in the mixed case of short- and long-range dependent components in
the sense of (2.6) and (2.7) is in proved in Theorem 4.1 in [23]. There, the set {1, . . . , d}2 is
split into two sets

P1 =
{
p, q) ∈ {1, . . . , d} : dp + dq ∈

(1
2 , 1

)}
,

P2 =
{
p, q) ∈ {1, . . . , d} : dp + dq ∈

(
−∞, 1

2

)}
,

such that P1 expresses long-range dependence and results in convergence of the sample-covariance
matrix to the matrix-valued Rosenblatt process, whereas for parameters (p, q) ∈ P2 it holds that
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(
r(p,q)

)2
is absolutely summable and the limiting process is a Brownian motion.

Note that in (3.45) we explicitly include that there exists p ∈ {1, . . . , d}, such that dp = 1
4 , but

d∗ 6= 1
4 . For limit theorems on this case it deserves special attention, since the convergence rate

of the variance changes, for details, see [18], p.58 and [32], Theorem 4.

Applying the result of Theorem 3.10 we can see that in the case #P ∗ = 1, we only obtain one
standard Rosenblatt random variable. In the case #P ∗ = 2, which turns out to be most reason-
able one in our application, we derive the linear combination of Z(1,1)

2,d∗+1/2(1), Z(1,2)
2,d∗+1/2(1) and

Z
(2,2)
2,d∗+1/2(1) each weighted by the corresponding α̃(p,q), p, q = 1, 2. Z(1,1)

2,d∗+1/2(1) and Z(2,2)
2,d∗+1/2(1)

are Rosenblatt random variables again and we obtain a mixing term Z
(1,2)
2,d∗+1/2(1) that is further

investigated in the simulation study in Section 4.3.5.
However, with a mild technical assumption on the covariances of the one-dimensional marginal
Gaussian processes that is often fulfilled in applications, there is another way of normalizing the
partial sum on the right-hand side in Theorem 3.10, this time explicity for the case #P ∗ = 2
and h ∈ N, such that the limit can be expressed in terms of two standard Rosenblatt random
variables. This yields the possibility to further study the dependence structure between these two
random variables. In the following theorem we assume #P ∗ = d = 2 for the reader’s convenience.

Theorem 3.13 Under the same assumptions as in Theorem 3.10 with #P ∗ = d = 2 and
d∗ ∈

(
1
4 ,

1
2

)
and the additional condition that r(1,1)(l) = r(2,2)(l), for l = 0, . . . , h − 1, and

L1,1 + L2,2 6= L1,2 + L2,1, it holds that

n−2d∗(C2)−
1
2

n∑
j=1

(
f
(
Y

(1)
j , . . . , Y

(d)
j+h−1

)
− Ef

(
Y

(1)
j , . . . , Y

(d)
j+h−1

))
D−→
(
α̃(1,1) − α̃(1,2)

) L2,2 − L2,1 − L1,2 + L1,1
2 Z∗2,d∗+1/2(1)

+
(
α̃(1,1) + α̃(1,2)

) L2,2 + L2,1 + L1,2 + L1,1
2 Z∗∗2,d∗+1/2(1)

with C2 := 1
2d∗(4d∗−1) being the same normalizing factor as in Theorem 3.10, (αi,k)1≤i,k≤dh =

Σ−1
d,hCΣ−1

d,h and C = (ci,k)1≤i,k≤dh = E
(
Y1,h (f (Y1,h)− Ef (Y1,h))Y t

1,h

)
. Note that Z∗2,d∗+1/2(1)

and Z∗∗2,d∗+1/2(1) are both standard Rosenblatt random variables whose covariance is given by

Cov
(
Z∗2,d∗+1/2(1), Z∗∗2,d∗+1/2(1)

)
= (L2,2 − L1,1)2

(L1,1 + L2,2)2 − (L1,2 + L2,1)2 . (3.46)

Proof. We follow the proof of Theorem 3.10 until (3.44), in order to obtain a limit distribution
that can be expressed by the sum of two standard Rosenblatt random variables:

2∑
p,q=1

α̃(p,q)
(
r̂(p,q)
n (0)− r(p,q)(0)

)

= 1
n

n∑
j=1

2∑
p,q=1

α̃(p,q)
(
Y

(p)
j Y

(q)
j − r(p,q)(0)

)
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= 1
n

n∑
j=1

(
Y

(1)
j , Y

(2)
j

)(α̃(1,1) α̃(1,2)

α̃(2,1) α̃(2,2)

)(
Y

(1)
j , Y

(2)
j

)t
− E

((
Y

(1)
j , Y

(2)
j

)(α̃(1,1) α̃(1,2)

α̃(2,1) α̃(2,2)

)(
Y

(1)
j , Y

(2)
j

)t)
. (3.47)

We remember that α̃(p,q) = ∑h
i,k=1 α

(p,q)
i,k = ∑h

i,k=1 αi+(p−1)h,k+(q−1)h for p, q = 1, 2 and A =
(αi,k)1≤i,k≤2h = Σ−1

2,hCΣ−1
2,h. Since Σ−1

2,h is the inverse of the covariance matrix Σ2,h of Y1,h it is a
symmetric matrix. The matrix of second order Hermite coefficients C has the representation
C = E

(
Yj,hf (Yj,h)Y t

j,h

)
and, therefore, ci,k = E

(
Y

(i)
j,hY

(k)
j,h f (Yj,h)

)
= ck,i for each i, k = 1, . . . , 2h.

Then, A is a symmetric matrix, too, since At =
(
Σ−1

2,hCΣ−1
2,h

)t
=
(
Σ−1

2,h

)t
Ct
(
Σ−1

2,h

)t
= A. We can

now show that
(
α̃(1,1) α̃(1,2)

α̃(2,1) α̃(2,2)

)
is a symmetric matrix, i.e., α̃(1,2) = α̃(2,1). To this end, we

define Ip = (0, 0, . . . , 0, 1, . . . , 1, 0, . . . , 0)t ∈ R2h such that I(i)p = 1 only if i = (p− 1)h+ 1, . . . , ph,
p = 1, 2. Then, we obtain

α̃(1,2) =
h∑

i,k=1
α

(1,2)
i,k =

(
α̃(1,2)

)t
=
(
It1AI2

)t
= It2AI1 = α̃(2,1).

We now apply the new assumption that r(1,1)(l) = r(2,2)(l), for l = 0, . . . , h − 1 and show
α̃(1,1) = α̃(2,2) with the symmetry features of the multivariate normal distribution discussed in
(2.2) and in (2.3), since ci,j = c2h−i+1,2h−j+1, i, j = 1, . . . , 2h.
We have to study

α̃(2,2) =
(
It2AI2

)t
= It2Σ−1

2,hCΣ−1
2,hI2.

Since Σ−1
2,h = (gi,k)1≤i,k≤2h is a symmetric and persymmetric matrix, we have gi,k = gk,i and

gi,k = g2h−i+1,2h−k+1 for i, k = 1, . . . , 2h. Then, we obtain

It2Σ−1
2,h =

 2h∑
i=h+1

gi,1, . . . ,
2h∑

i=h+1
gi,2h


=
(

h∑
i=1

gi+h,1, . . . ,
h∑
i=1

gi+h,2h

)

=
(

h∑
i=1

gh−i+1,2h, . . . ,
h∑
i=1

gh−i+1,1

)

=
(

h∑
i=1

gi,2h, . . . ,
h∑
i=1

gi,1

)

=
(

h∑
i=1

g2h,i, . . . ,
h∑
i=1

g1,i

)
=: (g̃2h, . . . , g̃1) .

Note that

Σ−1
2,hI1 =

(
h∑
i=1

g1,i, . . . ,
h∑
i=1

g2h,i

)t
= (g̃1, . . . , g̃2h)t .
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Then, we arrive at

α̃(2,2) =
(
It2AI2

)t
= It2Σ−1

2,hCΣ−1
2,hI2

=
2h∑

i,k=1
g̃2h−i+1g̃2h−k+1ci,k

=
2h∑

i,k=1
g̃2h−i+1g̃2h−k+1c2h−i+1,2h−k+1

=
2h∑

i,k=1
g̃ig̃kci,k

= It1Σ−1
2,hCΣ−1

2,hI1

= α̃(1,1).

So we have to deal with a special type of 2× 2-matrix, since the original matrix in the formula

(3.44), namely
(
α̃(1,1) α̃(1,2)

α̃(2,1) α̃(2,2)

)
has now reduced to

(
α̃(1,1) α̃(1,2)

α̃(1,2) α̃(1,1)

)
.

Finally, we know that any real-valued symmetric matrix A can be decomposed via diagonalization
into an orthogonal matrix V and a diagonal matrix D, where the entries of the latter one are
determined via the eigenvalues of A, for details, see [12], p. 327.
We can explicity give formulas for the entries of these matrices here:

V =
(
−2−1/2 2−1/2

2−1/2 2−1/2

)
, D =

(
λ1 = α̃(1,1) − α̃(1,2) 0

0 λ2 = α̃(1,1) + α̃(1,2)

)
,

such that

V DV =
(
λ1+λ2

2
λ2−λ1

2
λ2−λ1

2
λ1+λ2

2

)
=
(
α̃(1,1) α̃(1,2)

α̃(1,2) α̃(1,1)

)
.

So continuing with (3.47), we now have the representation

1
n

n∑
j=1

(
Y

(1)
j , Y

(2)
j

)(α̃(1,1) α̃(1,2)

α̃(2,1) α̃(2,2)

)(
Y

(1)
j , Y

(2)
j

)t
− E

((
Y

(1)
j , Y

(2)
j

)(α̃(1,1) α̃(1,2)

α̃(2,1) α̃(2,2)

)(
Y

(1)
j , Y

(2)
j

)t)

= 1
n

n∑
j=1

(
Y

(1)
j , Y

(2)
j

)
V DV

(
Y

(1)
j , Y

(2)
j

)t
− E

((
Y

(1)
j , Y

(2)
j

)
V DV

(
Y

(1)
j , Y

(2)
j

)t)

= 1
n

n∑
j=1

α̃(1,1) − α̃(1,2)

2

((
Y

(2)
j − Y (1)

j

)2
− E

(
Y

(2)
j − Y (1)

j

)2
)

+ 1
n

n∑
j=1

α̃(1,1) + α̃(1,2)

2

((
Y

(1)
j + Y

(2)
j

)2
− E

(
Y

(1)
j + Y

(2)
j

)2
)

= 1
n

n∑
j=1

(
α̃(1,1) − α̃(1,2)

) (
1− r(1,2)(0)

)
 Y

(2)
j − Y (1)

j√
2− 2r(1,2)(0)

2

− 1


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+ 1
n

n∑
j=1

(
α̃(1,1) + α̃(1,2)

) (
1 + r(1,2)(0)

)
 Y

(1)
j + Y

(2)
j√

2 + 2r(1,2)(0)

2

− 1


= 1
n

(
α̃(1,1) − α̃(1,2)

) (
1− r(1,2)(0)

) n∑
j=1

H2
(
Y ∗j

)

+ 1
n

(
α̃(1,1) + α̃(1,2)

) (
1 + r(1,2)(0)

) n∑
j=1

H2
(
Y ∗∗j

)
, (3.48)

with Y ∗j := Y
(2)
j −Y

(1)
j√

2−2r(1,2)(0)
and Y ∗∗j := Y

(1)
j +Y (2)

j√
2+2r(1,2)(0)

.
Now note that

E
(
Y ∗j Y

∗∗
j

)
= E

 Y
(2)
j − Y (1)

j√
2− 2r(1,2)(0)

Y
(1)
j + Y

(2)
j√

2 + 2r(1,2)(0)

 = 0.

Therefore, we created a bivariate long-range dependent Gaussian process, since(
−1 1
1 1

)(
Y

(1)
j , Y

(2)
j

)t
=
(
Y ∗j , Y

∗∗
j

)t
∼ N (0, I2)

with cross-covariance function

r
(1,2)
∗ (k) := E

(
Y ∗j Y

∗∗
j+k

)
= E

 Y
(2)
j − Y (1)

j√
2− 2r(1,2)(0)

Y
(1)
j+k + Y

(2)
j+k√

2 + 2r(1,2)(0)


= r(2,1)(k) + r(2,2)(k)− r(1,1)(k)− r(1,2)(k)

2
√(

1− r(1,2)(0)
) (

1 + r(1,2)(0)
)

' L2,2 + L2,1 − L1,2 − L1,1

2
√(

1− r(1,2)(0)
) (

1 + r(1,2)(0)
)k2d∗−1. (3.49)

Note that the covariance functions have the following asymptotic behaviour:

r
(1,1)
∗ (k) := E

(
Y ∗j Y

∗
j+k

)
= E

 Y
(2)
j − Y (1)

j√
2− 2r(1,2)(0)

Y
(2)
j+k − Y

(1)
j+k√

2− 2r(1,2)(0)


= r(2,2)(k)− r(2,1)(k)− r(1,2)(k) + r(1,1)(k)

2− 2r(1,2)(0)

' L2,2 − L2,1 − L1,2 + L1,1
2− 2r(1,2)(0)︸ ︷︷ ︸

=:L∗1,1

k2d∗−1

and analogously

r
(2,2)
∗ (k) := E

(
Y ∗∗j Y ∗∗j+k

)
' L2,2 + L2,1 + L1,2 + L1,1

2 + 2r(1,2)(0)︸ ︷︷ ︸
=:L∗2,2

k2d∗−1.

We can now apply the result of [2], Theorem 6, since we created a bivariate Gaussian process
with independent entries for fixed j. Note that for the function we apply here, namely
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f̃
(
Y ∗j , Y

∗∗
j

)
= H2

(
Y ∗j

)
+ H2

(
Y ∗∗j

)
the weighting factors in [2], Theorem 6 reduce to e1,1 =

e2,2 = 1 and e1,2 = e2,1 = 0. These weighting factors fit into the result in [2], (3.6) and (3.7), that
even yields joint convergence of the vector of both univariate summands,

(
H2
(
Y ∗j

)
, H2

(
Y ∗∗j

))
,

suitably normalized, to a vector of two (dependent) Rosenblatt random variables. Since the
long-range dependence property in Definition 2.13 is more specific than in [2], p. 2259, (3.1) (see
considerations in (3.8)), we are able to scale the variances of each Rosenblatt random variable to
1 and give the covariance between them, by using the normalization given in [9], Theorem 4.3.
We obtain

n−2d∗ (2C2)−1/2
(
α̃(1,1) − α̃(1,2)

) (
1− r(1,2)(0)

) n∑
j=1

H2
(
Y ∗j

)

+ n−2d∗ (2C2)−1/2
(
α̃(1,1) + α̃(1,2)

) (
1 + r(1,2)(0)

) n∑
j=1

H2
(
Y ∗∗j

)
D−→
(
α̃(1,1) − α̃(1,2)

) (
1− r(1,2)(0)

)
L∗1,1Z

∗
2,d∗+1/2(1) +

(
α̃(1,1) + α̃(1,2)

) (
1 + r(1,2)(0)

)
L∗2,2Z

∗∗
2,d∗+1/2

=
(
α̃(1,1) − α̃(1,2)

) L2,2 − L2,1 − L1,2 + L1,1
2 Z∗2,d∗+1/2(1)

+
(
α̃(1,1) + α̃(1,2)

) L2,2 + L2,1 + L1,2 + L1,1
2 Z∗∗2,d∗+1/2(1)

with C2 := 1
2d∗(4d∗−1) being the same normalizing factor as in Theorem 3.10.

We observe that Z∗2,d∗+1/2(1) and Z∗∗2,d∗+1/2(1) are both standard Rosenblatt random variables.
Following Corollary 3.6, their covariance is given by

Cov
(
Z∗2,d∗+1/2(1), Z∗∗2,d∗+1/2(1)

)
=

(
L∗1,2 + L∗2,1

)2

L∗1,1L
∗
2,2

=
2
(
(L2,2 − L1,1)2

)
4
(
1− r(1,2)(0)

) (
1 + r(1,2)(0)

) (L∗1,1L∗2,2)−1

= (L2,2 − L1,1)2

(L1,1 + L2,2)2 − (L1,2 + L2,1)2 .

Note that (L1,1 + L2,2)2 − (L1,2 + L2,1)2 6= 0 is fulfilled since L1,1 + L2,2 6= L1,2 + L2,1. �

Corollary 3.14 Adding the condition that r(1,1)(k) = r(2,2)(k) and r(1,2)(k) = r(2,1)(k) for all
k ∈ Z to the assumptions of Theorem 3.13, we obtain that the two Rosenblatt random variables
Z∗2,d∗+1/2(1) and Z∗∗2,d∗+1/2(1) in the limit are independent.

Proof. Using (3.49) in the proof of the preceding theorem, we know that

r
(1,2)
∗ (k) := E

(
Y ∗j Y

∗∗
j+k

)
= E

 Y
(2)
j − Y (1)

j√
2− 2r(1,2)(0)

Y
(1)
j+k + Y

(2)
j+k√

2 + 2r(1,2)(0)


= r(2,1)(k) + r(2,2)(k)− r(1,1)(k)− r(1,2)(k)

2
√(

1− r(1,2)(0)
) (

1 + r(1,2)(0)
)

= 0,
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due to the added assumption. Therefore, the processes
(
Y ∗j

)
j∈Z

and
(
Y ∗∗j

)
j∈Z

are independent.
Hence, the two corresponding limit random variables are independent, too, applying Levy’s
continuity theorem. �

Remark 3.15 In the results concerning functionals f of multivariate Gaussian processes with
Hermite rank 2, we always assume that d∗ ∈

(
1
4 ,

1
2

)
, such that the transformed processes f (Yj,h) is

still long-range dependent, see Table 2.1. In the case that d∗ ∈ (−∞, 0)∪
(
0, 1

4

)
and, therefore, the

transformed process is no longer long-range dependent, although the original process is long-range
dependent if d∗ ∈

(
0, 1

4

)
, a central limit theorem holds by applying Theorem 4 in [2]:

n−
1
2

n∑
j=1

(f (Yj,h)− E (f (Yj,h))) D−→ N
(
0, σ2

)
,

with

σ2 =
∞∑

k=−∞
E [(f (Y1,h)− E (f (Y1,h))) (f (Y1+k,h)− E (f (Y1+k,h)))] ,

for further details on this formula, see [54], Theorem 5.4.1.
We may apply [2], Theorem 4, since for each p, q = 1, . . . , dh the squared cross-correlations(
r(p,q,h)(k)

)2
of the process (Yj,h)j∈Z as given in (3.7) with p∗, q∗ ∈ {1, . . . , d} and m∗ = 0, . . . , h−

1, are summable in this setting:

lim
n→∞

n∑
k=−n

(
r(p,q,h)(k)

)2
= lim

n→∞

n∑
k=−n

(
r(p∗,q∗)(k +m∗)

)2

= lim
n→∞

n∑
k=−n

(
r(p∗,q∗)(k)

)2
+

m∗∑
l=1

(
r(p∗,q∗)(n+ l)

)2

︸ ︷︷ ︸
(n→∞)−−−−−→0

−
m∗−1∑
l=0

(
r(p∗,q∗)(−n+ l)

)2

︸ ︷︷ ︸
(n→∞)−−−−−→0

= lim
n→∞

(
r(p∗,q∗)(0)

)2
+
(
L2
p∗,q∗ + L2

q∗,p∗

) n∑
k=1

k2(dp∗+dq∗−1)

≤ lim
n→∞

(
r(p∗,q∗)(0)

)2
+
(
L2
p∗,q∗ + L2

q∗,p∗

) n∑
k=1

k4d∗−2

<∞,

since 4d∗ − 2 ∈ (−∞,−1).

Hence, we proved a limit theorem for functionals with Hermite rank 1 and two limit theorems for
Hermite rank 2. In both cases a generalization to mixed cases of short- and long-range dependent
components within the multivariate Gaussian process is given. In the following section, we
investigate the special case that the considered functionals f fulfill the property that they can be
uniquely determined by the increments of the marginal processes. It turns out that this has a
surprising effect on the asymptotic distribution.
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3.3 Limit theorems for functionals of long-range dependent
multivariate Gaussian time series that can be expressed in
terms of the increment processes

In this section we show that for a small class of functionals, we obtain a degenerated asymptotic
distribution in the limit theorems derived in the two preceding sections. Therefore, we slightly
change the notation for the reader’s convenience, with the following chapters dealing with
applications to ordinal pattern analysis in mind. We now assume similar to the framework
introduced at the beginning of Chapter 3 that we have a d-dimensional Gaussian process (Xj)j∈Z
as defined in (3.1) that is long-range dependent in the sense of Definition 2.13. Again we define
(Xj,h+1)j∈Z with Xj,h+1 :=

(
X

(1)
j , . . . , X

(1)
j+h . . . , X

(d)
j , X

(d)
j+h

)
. So all consideration from (3.4) to

(3.10) remain valid for this process. We define the increment process (Yj,h)j∈Z of (Xj,h+1)j∈Z by

Yj+1,h : =
(
Y

(1)
j+1, . . . , Y

(1)
j+h . . . , Y

(d)
j+1 . . . , Y

(d)
j+h

)t
=
(
X

(1)
j+1 −X

(1)
j , . . . , X

(1)
j+h −X

(1)
j+h−1, . . . , X

(d)
j+1 −X

(d)
j , . . . , X

(d)
j+h −X

(d)
j+h−1

)t
.

Note that in the next two lemmas, the assumption of long-range dependence of (Xj,h+1)j∈Z is not
required, however, in the following corollaries it is necessary, since the asymptotic distributions
in the limit theorems we derived in Section 3.1 and Section 3.2, where long-range dependence is
the crucial condition, turn out to be trivial.

Lemma 3.16 Let (Xj,h+1)j∈Z be a stationary Gaussian process with Xj,h+1 ∼ N (0,Σd,h+1) and
f : Rd(h+1) → R be a square-integrable function such that Ef (Xj,h+1) = 0. Further assume that
f has Hermite rank 1. If f only depends on the increment vector of Xj,h+1 defined by

Yj+1,h =
(
Y

(1)
j+1, . . . , Y

(1)
j+h . . . , Y

(d)
j+1 . . . , Y

(d)
j+h

)t
=
(
X

(1)
j+1 −X

(1)
j , . . . , X

(1)
j+h −X

(1)
j+h−1, . . . , X

(d)
j+1 −X

(d)
j , . . . , X

(d)
j+h −X

(d)
j+h−1

)t

so there exists a function f̃ such that f (Xj,h+1) = f̃ (Yj+1,h), then it holds that

h+1∑
i=1

αi+(p−1)(h+1) = 0,

for each p = 1, . . . , d and α =
(
α1, . . . , αd(h+1)

)t
= Σ−1

d,h+1c with c = E (f (X0,h+1)X0,h+1).
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Proof. We follow the argumentation in [10], Lemma 5.7.
We define the (d(h+ 1)− 1)× (d(h+ 1))-matrix U by

U :=



Inc 0 0 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

0 Inc 0 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

0 0 Inc 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

...
...

... . . . ...
...

...
...

...
... . . . ...

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
0 0 0 0 . . . Inc


where

Inc :=



−1 1 0 0 . . . 0 0 0 0
0 −1 1 0 . . . 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . 0 −1 1 0
0 0 0 0 . . . 0 0 −1 1


∈ R(h+1)×h

and 0 ∈ R(h+1)×h being the ((h+ 1)× h)-zero matrix.
So note that (among other possibilities) Ui,k = 0 if i = p(h+ 1), p = 1, . . . , d − 1 since we are
never considering “increments” between two processes, meaning for example X(1)

j −X
(2)
j+1 what

one might first assume looking at the special structure of Xj,h+1.
We observe that UXj,h+1 = Yj+1,h for all j ∈ Z.
Note that there exists a positive definite symmetric matrix Σ

1
2
d,h+1 that fulfills Σd,h+1 =

Σ
1
2
d,h+1Σ

1
2
d,h+1. With Σ−

1
2

d,h+1 we denote the inverse of Σ
1
2
d,h+1. Then, the random vector Uj,h+1 =

Σ−
1
2

d,h+1Xj,h+1 has independent N (0, 1) entries. Then, we obtain

α = Σ−1
d,h+1E

(
f̃ (Yj+1,h)Xj,h+1

)
= Σ−1

d,h+1E
(
f̃ (UXj,h+1) Σ

1
2
d,h+1Uj,h+1

)
= E

(
f̃

(
UΣ

1
2
d,h+1Uj,h+1

)
Σ−

1
2

d,h+1Uj,h+1

)
.

We now define I(p) := (0, 0, . . . , 0, 1, 1, . . . , 1, 0, . . . , 0, 0)t ∈ Rd(h+1) for each p = 1, . . . , d, such
that I(p)i = 1 only if i = (h+ 1)(p− 1) + 1, . . . , (h+ 1)p. We then arrive at

h+1∑
i=1

αi+(p−1)(h+1) =
(
I(p)
)t
α = E

(
f̃

(
UΣ

1
2
d,h+1Uj,h+1

)(
I(p)
)t

Σ−
1
2

d,h+1Uj,h+1

)
. (3.50)
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We have (
UΣ

1
2
d,h+1

)((
I(p)
)t

Σ−
1
2

d,h+1

)t
= UΣ

1
2
d,h+1Σ−

1
2

d,h+1I
(p)

= UI(p)

= 0,

and using the proof of Lemma 5.7 in [10], we proved that UΣ
1
2
d,h+1Uj,h+1 and

(
I(p)
)t

Σ−
1
2

d,h+1Uj,h+1

are independent random variables and, therefore, using (3.50) we arrive at

E
(
f̃

(
UΣ

1
2
d,h+1Uj,h+1

)(
I(p)
)t

Σ−
1
2

d,h+1Uj,h+1

)
= E

(
f̃

(
UΣ

1
2
d,h+1Uj,h+1

))
E
((

I(p)
)t

Σ−
1
2

d,h+1Uj,h+1

)
= 0,

since E (Uj,h+1) = 0. �

Lemma 3.17 Let (Xj,h+1)j∈Z be a stationary Gaussian process with Xj,h+1 ∼ N (0,Σd,h+1) and
f : Rd(h+1) → R be a square-integrable function such that E (f (Xj,h+1)) = 0. Further assume
that f has Hermite rank 2. If f only depends on the increments of the underlying random vector,
so there exists a function f̃ such that f (Xj,h+1) = f̃ (Yj+1,h), it then holds that

α̃(p,q) =
h+1∑
i,k=1

α
(p,q)
i,k = 0

for each p = 1, . . . , d.

Proof. We extend the idea of the proof of Lemma 3.16 to functionals with Hermite rank 2. We
use the same matrix U as in the proof of Lemma 3.16 so we can use the relation UXj,h+1 = Yj+1,h

for all j ∈ Z in this setting, too.
We also use the existence of the positive definite symmetric matrix Σ

1
2
d,h+1 again as described in

the proof above. Then, we obtain

α = Σ−1
d,h+1E

(
Xj,h+1f̃ (Yj+1,h)Xt

j,h+1

)
Σ−1
d,h+1

= E
(
Σ−1
d,h+1Xj,h+1f̃ (Yj+1,h)Xt

j,h+1Σ−1
d,h+1

)
= E

(
Σ−1
d,h+1Xj,h+1f̃ (UXj,h+1)Xt

j,h+1Σ−1
d,h+1

)
= E

(
Σ−1
d,h+1Σ

1
2
d,h+1Uj,h+1f̃

(
UΣ

1
2
d,h+1Uj,h+1

)(
Σ

1
2
d,h+1Uj,h+1

)t
Σ−1
d,h+1

)

= E
(

Σ−
1
2

d,h+1Uj,h+1f̃

(
UΣ

1
2
d,h+1Uj,h+1

)
U tj,h+1Σ−

1
2

d,h+1

)
.

Using again

I(p) := (0, 0, . . . , 0, 1, 1, . . . , 1, 0, . . . , 0, 0)t ∈ Rd(h+1)
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We justify that if UΣ
1
2
d,h+1Uj,h+1 is independent of

(
I(p)
)t

Σ−
1
2

d,h+1Uj,h+1 for each p = 1, . . . , d, then

we can conclude that UΣ
1
2
d,h+1Uj,h+1 is independent of

((
I(p)
)t

Σ−
1
2

d,h+1Uj,h+1,
(
I(q)
)t

Σ−
1
2

d,h+1Uj,h+1

)
by a calculation using the characteristical function for multivariate random vectors. First note,
that

(
UΣ

1
2
d,h+1Uj,h+1,

(
I(p)
)t

Σ−
1
2

d,h+1Uj,h+1,
(
I(q)
)t

Σ−
1
2

d,h+1Uj,h+1

)
is multivariate Gaussian and

hence we simplify the notation here to the general setting of a multivariate Gaussian vector

(X1, X2, X3) ∼ N

0,Σ3 =


Σ1 0 0
0 Σ2 Σ2,3

0 Σ2,3 Σ3


, where each component Xi, i = 1, 2, 3 is a

d− dimensional Gaussian vector itself.
For all t1, t2, t3 ∈ Rd, the characteristical function is then given by

ϕ(X1,X2,X3) (t1, t2, t3) = exp
(
−1

2 (t1, t2, t3) Σ3 (t1, t2, t3)t
)

= exp
(
−1

2

(
t1Σ1 (t1)t + (t2, t3)

(
Σ2 Σ2,3

Σ2,3 Σ3

)
(t2, t3)t

))
= ϕ(X1) (t1)ϕ(X2,X3) (t2, t3) .

for each p = 1, . . . , d and the already proved independence of UΣ
1
2
d,h+1Uj,h+1 and

(
I(p)
)t

Σ−
1
2

d,h+1Uj,h+1

for each p = 1, . . . , d, we arrive at

α̃(p,q) =
h+1∑
i,k=1

α
(p,q)
i,k

=
(
I(p)
)t
αI(q)

= E
((

I(p)
)t

Σ−
1
2

d,h+1Uj,h+1f̃

(
UΣ

1
2
d,h+1Uj,h+1

)((
I(q)
)t

Σ−
1
2

d,h+1Uj,h+1

)t)

= E
(
f̃

(
UΣ

1
2
d,h+1Uj,h+1

))
E
((

I(p)
)t

Σ−
1
2

d,h+1Uj,h+1

((
I(q)
)t

Σ−
1
2

d,h+1Uj,h+1

)t)

= E (f(Xj,h+1))
(
I(p)
)t

Σ−1
d,h+1I

(q)

= 0,

for p, q = 1, . . . , d, since we assumed E (f(Xj,h+1)) = 0. �

We can now apply these two lemmas to the limit theorems we derived in Section 3.1 and Section
3.2. As we see later on, the special case that the function f is uniquely determined by the
increment process plays an important role in the context of ordinal pattern analysis.
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Corollary 3.18 Let (Xj,h+1)j∈Z be a stationary long-range dependent Gaussian process and
f : Rd(h+1) → R that both fulfill the assumptions in Theorem 3.3. If f only depends on the
increment process (Yj+1,h)j∈Z, so there exists a function f̃ such that f (Xj,h+1) = f̃ (Yj+1,h), for
all j ∈ Z, then

n−(d∗+1/2)C
−1/2
1

n−1∑
j=0

(f (Xj,h+1)− Ef (Xj,h+1)) D−→ δ0,

where δ0 denotes the Dirac measure in 0.

We derive an analogous result in the case of Hermite rank 2.

Corollary 3.19 Let (Xj,h+1)j∈Z be a stationary long-range dependent Gaussian process and
f : Rd(h+1) → R that both fulfill the assumptions in Theorem 3.10. If f only depends on the
increment process (Yj+1,h)j∈Z, so there exists a function f̃ such that f (Xj,h+1) = f̃ (Yj+1,h), for
all j ∈ Z, then

n−2d∗(C2)−
1
2

n−1∑
j=0

(f (Xj,h+1)− E (f (Xj,h+1)))

D−→ δ0.

Remark 3.20 Note that this result is consistent with the statement of Theorem 3.13 that is
derived with additional assumptions and which would also yield a degenerate limit distribution in
this special case.

We close this section on limit theorems for functionals of long-range dependent multivariate
Gaussian time series that can be expressed in terms of the increment processes with the justifica-
tion of the degenerated limit distributions above, that can be found in [10], Remark 5.8. The
crucial point here is that the long-range dependence of the process (Xj,h+1)j∈Z is not passed on
the increment process (Yj,h)j∈Z, since for all p, q = 1, . . . , d

E
(
Y

(p)
j Y

(q)
j+k

)
= E

((
X

(p)
j −X

(p)
j−1

) (
X

(q)
j+k −X

(q)
j+k−1

))
= 2r(p,q)(k)− r(p,q)(k − 1)− r(p,q)(k + 1)

and therefore
∞∑
k=1

E
(
Y

(p)
j Y

(q)
j+k

)
=
∞∑
k=1

2r(p,q)(k)− r(p,q)(k − 1)− r(p,q)(k + 1) = 0, (3.51)

since r(p,q)(k)→ 0 for k →∞. Hence, the increment process is antipersistent.
An illustrative example that the increment process is short-range dependent is given by the relation
to the correlation function of fractional Gaussian noise, see Definition 2.20. The asymptotic
property of the correlation function yields

E
(
Y

(p)
j Y

(q)
j+k

)
' −2Lp,q

(
dp + dq − 1

2

)
(dp + dq − 2) kdp+dq−3, (k →∞), (3.52)
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and, therefore, since dp + dq ∈
(
0, 1

2

)
, the cross-correlations of this process are absolutely

summable and the increment process short-range dependent.
Since we are considering a functional of a short-range dependent Gaussian process in this special
case, a Gaussian limit distribution is obtained by applying Theorem 5.4.1 in [54] using a the
classical normalization constant n−1/2. For more details, see [10], Remark 5.8.

We conclude this chapter with a summary of the results. We built up the main mathematical
theory in terms of limit theorems for functionals of multivariate long-range dependent Gaussian
processes with Hermite rank 1 in Section 3.1 and Hermite rank 2 in Section 3.2. A special case,
which considers functionals of long-range dependent multivariate Gaussian time series that only
depend on the underlying increment process was considered and degenerated limit distributions
were obtained. However, the reason of this problem was figured out and a solution is given by
using limit theorems for short-range dependent processes instead. In the next chapters, we con-
tinue to apply these theoretical results to estimators of ordinal pattern probabilities and ordinal
pattern dependence and, therefore, leave the theoretical framework and turn to more practical
and statistical matters in order to get more information on the parameters determining the limit
distributions depending on the Hermite rank of the respective estimator under consideration.
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4 Ordinal pattern analysis

We turn to the application of the limit theorems derived in the previous chapter to ordinal
pattern analysis. This chapter is structured as follows: First, we give an introduction to ordinal
patterns and provide necessary background information and relations. Subsequently, in Section
4.2, we apply the limit theorems to ordinal pattern probabilities, which correspond to the case
d = 1 in Chapter 3. In Section 4.3 we focus on the estimation of ordinal pattern dependence
and, hence, to the multivariate case with d = 2. We study asymptotic properties of different
estimators in the context of ordinal pattern dependence. Finally, in Section 4.4, we discuss
modifications and generalizations of standard ordinal pattern dependence and the corresponding
estimation methods.

4.1 Ordinal patterns

As already illustrated in the introduction of this thesis, the general idea of ordinal analysis is to
reduce the information given in a data set to the ordinal one, so that we only compare the relative
position of the data points and, therefore, may ignore the absolute values. For an overview of
ordinal analysis in general, see [4]. Note that this approach lowers the complexity of a data set
significantly. This yields a large simplification in the era of digitalization since we are dealing with
huge amounts of data points and need a large computational effort to analyze their dependence
structures with standard dependence measures. However, using the ordinal approach, we are
still extracting the relevant information that we need to gain results concerning for example the
dependence structure within a certain data set or even between several ones. A big advantage
of the ordinal point of view is that this method is invariant under monotone transformations
and, therefore, is independent of the scaling of the data sets. Since some disturbances in the
data as for example outliers due to extreme events do not affect this approach, the model is
sufficiently robust, which is a great benefit from the user’s perspective. As already discussed in
the beginning, the methods introduced in the following, have a strong practical impact and are
used in various fields such as hydrology, neurological science, medicine and artificial intelligence.

We start with the definition of an ordinal pattern and the basic mathematical framework
that we need to build up the ordinal model.
Let Sh denote the set of permutations in {0, . . . , h}, h ∈ N0 that we express as (h+1)-dimensional
tuples, assuring that each tuple contains each of the numbers above exactly once. In mathematical
terms, this yields

Sh =
{
π ∈ Nh+1

0 : 0 ≤ πi ≤ h, and πi 6= πk, whenever i 6= k, i, k = 0, . . . , h
}
,
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see [58], Sec. 2.1.
The number of permutations in Sh is given by #Sh = (h+ 1)!. In order to get a better intuitive
understanding of the concept of ordinal patterns, we have a closer look at the following example,
before turning to the formal definition.

Example 4.1 Figure 4.1 provides an illustrative understanding of the extraction of an ordinal
pattern from a data set. The data points of interest are colored in red and we consider a pattern
of length h = 3, which means we have to take n = 4 data points into consideration. We fix the
points in time t0, t1, t2 and t3 and extract the data points from the time series. Then, we search
for the point in time which exhibits the largest value in the resulting data and write down the
corresponding time index. In this example it is given by t = t1. We order the data points by
writing the time position of the largest value as first entry, the time position of the second largest
as second entry and so on. Hence, the absolute values are ordered from largest to smallest and
the ordinal pattern (1, 0, 3, 2) ∈ S3 is obtained for the considered data points.

t

x
t ⇒

t0 t1 t2 t3

t0

⇒ (1, 0, 3, 2)

Figure 4.1: Example of the extraction of an ordinal pattern of a given data set.

Formally, the aforementioned procedure can be defined as follows, see [58], Section 2.1.

Definition 4.2 As ordinal pattern of a vector x = (x0, . . . , xh) ∈ Rh+1, we define the unique
permutation π = (π0, . . . , πh) ∈ Sh,

Π(x) = Π (x0, . . . , xh) = (π0, . . . , πh) ,

such that

xπ0 ≥ . . . ≥ xπh ,

with πi−1 < πi if xπi−1 = xπi, i = 1, . . . , h.

The last condition assures the uniqueness of π if there are ties in the data sets. In particular,
this condition is necessary to remark if real-world data is considered.

(2, 1, 0) (0, 1, 2) (0, 2, 1) (2, 0, 1) (1, 0, 2) (1, 2, 0)

Figure 4.2: Ordinal patterns for h = 2.

In Figure 4.2, all ordinal patterns of length h = 2 are shown. As already mentioned in the
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introduction, from the practical point of view, a highly desirable property of ordinal patterns is
that they are not affected by monotone transformations, see [60], p. 1783.
Mathematically, this means: if f : R→ R is strictly montone, then

Π (x0, . . . , xh) = Π (f (x0) , . . . , f (xh)) . (4.1)

In particular, this includes linear transformations f(x) = ax+ b, with a ∈ R+ and b ∈ R.

Following [58], Sec. 1, the minimal requirement of the data sets we use for ordinal analy-
sis in the time series context, i.e., for ordinal pattern probabilities as well as for ordinal pattern
dependence later on, is ordinal pattern stationarity (of order h). This property implies that the
probability of observing a certain ordinal pattern of length h remains the same when shifting the
moving window of length h through the entire time series and is not depending on the specific
points in time. In the course of this work, the time series, in which the ordinal patterns occur,
always have either stationary increments or are even stationary themselves. Note that both
properties imply ordinal pattern stationarity. The reason why requiring stationary increments is
a sufficient condition is given in the following explanation.

One fundamental property of ordinal patterns is that they are uniquely determined by the
increments of the considered time series. As one can imagine in Example 4.1, the knowledge of
the increments between the data points is sufficient to obtain the corresponding ordinal pattern.
In mathematical terms, we can define another mapping Π̃, that assigns the corresponding ordinal
pattern to each vector of increments, see [60], p. 1783.

Definition 4.3 We define for y = (y1, . . . , yh) ∈ Rh the mapping Π̃ : Rh → Sh,

Π̃ (y1, . . . , yh) := Π (0, y1, y1 + y2, . . . , y1 + . . .+ yh) ,

such that for yi = xi − xi−1, i = 1, . . . , h, we obtain

Π̃ (y1, . . . , yh) = Π (0, y1, y1 + y2, . . . , y1 + . . .+ yh)
= Π (0, x1 − x0, x2 − x0, . . . , xh − x0)
= Π (x0, x1, x2, . . . , xh) .

A very useful tool that is self-explanatory thanks to the calculation of the asymptotic variances
of the estimators later on is the symmetry property of the multivariate Gaussian distribution.
We recall from (2.2) and (2.3) that for a normally distributed random vector (Y1, . . . , Yh)t with
componentwise equal variances, we have

(Y1, . . . , Yh)t D= (−Y1, . . . ,−Yh)t (4.2)

(Y1, . . . , Yh)t D= (Yh, . . . , Y1)t , (4.3)

where (4.2) is called space symmetry and (4.3) time symmetry.
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π = (1, 3, 2, 0) T (π) = (2, 0, 1, 3)

S(π) = (0, 2, 3, 1) T ◦ S(π) = (3, 1, 0, 2)

Figure 4.3: Space and time reversion of the pattern π = (1, 3, 2, 0).

Based on the symmetry properties above, we define the two mappings, following [60], p. 1784:

S : Sh → Sh, (π0, . . . , πh)→ (πh, . . . , π0) ,
T : Sh → Sh, (π0, . . . , πh)→ (h− π0, . . . , h− πh) .

An illustrative understanding of these mappings is given as follows. The mapping S(π), which is
the spatial reversion of the pattern π, is the reflection of π on a horizontal line, while T (π), the
time reversal of π, is its reflection on a vertical line, as one can observe in Figure 4.3.

We obtain a partition of Sh by dividing it into sets π̄, which are defined by

π̄ := {π,S(π), T (π), T ◦ S(π)}.

This set is closed with respect to S and T since S ◦S(π) = π and T ◦T (π) = π. If the considered
permutation π fulfills T (π) = S(π) the number of elements in π̄ is two, otherwise it is four. In
Example 4.4 this concept is shown for pattern of length h = 2.

Example 4.4 For h = 2 all possible patterns are visualized in Figure 4.2. We can divide them
into the two sets

(2, 1, 0) = {(2, 1, 0), (0, 1, 2)}, (2, 0, 1) = {(2, 0, 1), (1, 0, 2), (0, 2, 1), (1, 2, 0)},

such that we have S3 = (2, 1, 0) ∪ (2, 0, 1). Note that the first set only has two elements since
T (2, 1, 0) = S(2, 1, 0) = (0, 1, 2).

We remark that the pattern that is generating the reversion group is not unique and can be
replaced by any other pattern that belongs to the same reversion group.
We introduce sets that include a generating pattern for each reversion group defined above.
Hence, these sets are not uniquely determined either.

Definition 4.5 We denote by S[2],h a set of permutations in Sh, such that each permutation
π generates a different reversion class π̄ with #π̄ = 2. Correspondingly, S[4],h is the set of
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permutations, such that each π ∈ S[4],h generates a different reversion class π̄ with #π̄ = 4.
Hence, we obtain

Sh =
⋃

π∈S[2],h

{π,S(π)} ∪
⋃

π∈S[2],h

{π,S(π), T (π), T ◦ S(π))} .

Note that Sh 6= S[2],h ∪ S[4],h.

We present examples of generating sets S[2],h and S[4],h for h = 1, h = 2 and h = 3.

Example 4.6 Since S1 only consists of two permutations, we have S[4],1 = ∅. Thus, a possible
choice is S[2],1 = {(1, 0)}.

For h = 2, we choose S[2],2 = {(2, 1, 0)} and S[4],2 = {(2, 0, 1)}.

For h = 3, a possible choice is given by S[2],3 = {(3, 2, 1, 0), (3, 1, 2, 0), (2, 3, 0, 1), (2, 0, 3, 1)}
and S[4],3 = {(3, 2, 0, 1), (3, 1, 0, 2), (3, 0, 1, 2), (3, 0, 2, 1)}.

Based on the spatial reversion, we define another possibility to divide Sh into two disjoint sets
besides π̄.

Definition 4.7 We define S∗h as the set of permutations that is generated such that π ∈ Sh is
only allowed to be an element of S∗h if its spatial reversal is not already contained in S∗h.

Note that this definition does not yield uniqueness of S∗h.

Example 4.8 We consider the case h = 2 again and we want to divide S2 into a possible choice
of S∗2 and the corresponding spatial reversal. We choose S∗2 = {(2, 1, 0), (2, 0, 1), (1, 2, 0)} and,
therefore, S2 \ S∗2 = {(0, 1, 2), (1, 0, 2), (0, 2, 1)}. Remark that S∗2 = {(0, 1, 2), (2, 0, 1), (1, 2, 0)} is
also a possible choice. The only condition that has to be satisfied is that if one permutation is
chosen for S∗2 , then its spatial reverse must not be an element of this set.

Recall the set π̄. For h ∈ N, it is possible to determine the number of reversion groups π̄ that
have two elements. We denote this number by ah such that ah = #{π̄ : #π̄ = 2}, π ∈ Sh.
The condition that has to be fulfilled for the elements of such a reversion group is given by
T ◦ S(π) = π or in other words

(π0, . . . , πh) = (h− πh, . . . , h− π0) . (4.4)

Alternatively, π0 + πh = h, π1 + πh−1 = h, . . ., πh−1
2

= πh+1
2

if h is an odd number.
We may restrict ourselves to the case that h ∈ 2N− 1, as the following example shows:

Example 4.9 We are interested in the number of reversion groups for the cases h = 1 and
h = 2. For h = 1 we consider the group S1 = {(0, 1), (1, 0)}, #S1 = 2 and hence a1 = 1.
In the case h = 2, we obtain the same number of reversion groups, namely one, since

S2 = {(0, 1, 2), (2, 1, 0), (2, 0, 1), (1, 0, 2), (0, 2, 1), (1, 2, 0)} ,
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and, therefore, exhibits one reversion group with two elements and one with four elements.
The second entry of the permutation is not relevant in testing condition (4.4) because if π0+π2 = 2,
it automatically yields π1 = 1. This can be extended to the general case that h is an even number
since πh/2 = h/2 is always fulfilled, because it is not possible to order the entries of the permutation
in the way described in (4.4) with πh/2 6= h/2 due to πi 6= πj if i 6= j.
Therefore, this is no constraint to the combinatorial problem we are considering and we have
ah = ah+1, for h ∈ 2N− 1.

Hence, w.l.o.g., we concentrate on the case that h ∈ 2N− 1 is an odd number.

Example 4.10 For h = 3 we have the following patterns that each generate a reversion group
with two elements. For each group only one pattern is considered.

(0, 1, 2, 3),
(0, 2, 1, 3),
(1, 3, 0, 2),
(1, 0, 3, 2).

We recognize the following system: the value of π0 can be chosen from {0, 1} and uniquely
determines π3. Then, the number of possible orders for π1 and π2 is equal to the number of
reversion groups a1 multiplied by the number of elements in each reversion group which is by
assumption given by 2.

It is straightforward to extend this concept: the number of possibilities to choose π0 from{
0, . . . , h−1

2

}
is given by h+1

2 . Therefore, we find the recursive relation

ah = h+ 1
2 2ah−1.

This can be extended to

ah =


h−1

2∏
j=0

h− 2j + 1
2

 2
h−1

2 =
(
h+ 1

2

)
! 2

h−1
2 .

This yields that the number of reversion groups in Sh that have four elements is given by

bh := (h+ 1)!− 2ah
4 =

(h+ 1)!− 2
(
h+1

2

)
! 2h−1

2

4

since #Sh = (h+ 1)!.

In case that h is an even number, one needs to consider bh := (h+1)!−2ah−1
4 = (h+1)!−2(h2 )!2

h−2
2

4 .
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4.2 Ordinal pattern probabilities

In this section we focus on limit theorems for estimators of ordinal pattern probabilities in
the long-range dependent Gaussian case. For the short-range dependent setting, results are
provided in [58], Theorem 3. The transformed short-range dependent setting with a long-range
dependent underlying Gaussian process is discussed in [60], Theorem 7. Therefore, in [10] we
complemented these results and study the case that the long-range dependence is transmitted
via the transformation by the estimator. The following results in this section are achieved
in joint work with Annika Betken, Jannis Buchsteiner, Herold Dehling, Alexander Schnurr
and Jeannette H.C. Woerner and can be found in [10], Section 3 and Section 5. Note that
in this section we always consider a one-dimensional Gaussian process and, therefore, d = 1
in view of Chapter 3. Hence we do neither have any mixed cases concerning short- and long-
range dependence nor have to differentiate between different long-range dependence parameters.
For more details on the statistical properties of the considered estimators, we refer to [10] and [60].

In the course of this chapter the Gaussian process (Xj)j∈Z is always the process in which the ordi-
nal patterns occur. The corresponding increment process is denoted by (Yj)j∈Z, Yj := Xj −Xj−1,
j ∈ Z. Since the increment process provides all information needed to study the asymptotic
distribution of the estimator of ordinal pattern probabilities, we concentrate on the necessary
requirements: we assume (Yj)j∈Z is a univariate stationary Gaussian process as defined in (3.1),
that is, Yj ∼ N (0, 1) for all j ∈ Z and for the correlation function r(k) of (Yj)j∈Z it holds that
|r(k)| < 1 for k ≥ 1 to exclude ties. Further let (Yj)j∈Z be long-range dependent in the sense
of Definition 2.6. Only in Remark 4.22, we consider the case that (Xj)j∈Z itself fulfills these
properties. We recall the definition of the process (Yj,h)j∈Z given by

Yj,h = (Yj , . . . , Yj+h−1)t

such that Yj,h ∼ N (0,Σ1,h) with Σ1,h as defined in (3.6). We start with the definition of the
probability, which we focus on in this section:

Definition 4.11 For h ∈ N, π ∈ Sh and a time series (Xj)j∈Z we define

q(π) := P (Π (X0, . . . , Xh) = π)

as the probability of the ordinal pattern π ∈ Sh.

Note that, using Definition 4.3, we can represent this probability as

q(π) := qY (π) := P (Π (X0, . . . , Xh) = π) = P
(
Π̃ (Y1, . . . , Yh) = π

)
.

In order to estimate this probability, we introduce the heuristic estimator q̂Y,n(π) given by

q̂Y,n(π) := q̂n(π) : = 1
n− h

n−h−1∑
i=0

1{Π(Xi,Xi+1,...,Xi+h)=π}

= 1
n− h

n−h∑
i=1

1{Π(Yi,Yi+1,...,Yi+h−1)=π}.
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In the following, we omit the index Y , since we are only considering a one-dimensional Gaussian
process. This index is used in the next chapter, when dealing with multivariate Gaussian processes.

We turn to an improvement of the estimator q̂n(π). In [60], p.1784 ff., it is shown that,
using a Rao-Blackwellization, see [14], it is possible to modify the estimator by averaging the
estimates of ordinal pattern probabilities for pattern in the same reversion groups. Essentially
for the application of this method is the fact that the ordinal pattern probability of each pattern
belongig to the same reversion group is equal.
We define the improved estimator by

q̂n,Y,imp(π) := q̂n,imp(π) : = 1
n− h

n−h−1∑
i=0

1
#π̄1{Π(Xi,Xi+1,...,Xi+h)∈π̄}

= 1
n− h

n−h∑
i=1

1
#π̄1{Π̃(Yi,Yi+1,...,Yi+h−1)∈π̄}.

This estimator has better statistical properties than the heuristic one, for example a smaller
variance, as it is shown in [60], Theorem 2. For details as strong consistency and unbiasedness,
we refer to [60], Theorem 2.

4.2.1 Limit theorems for estimators of q(π)

In order to get an asymptotic result for the heuristic estimator q̂n, we have to calculate the
Hermite rank.

Lemma 4.12 Let (Yj)j∈Z be a stationary Gaussian process as defined in (3.1) for d = 1.
Furthermore, we fix h ∈ N. Then, for any π ∈ Sh, the Hermite rank of

1{Π(Yj ,Yj+1,...,Yj+h−1)=π} − P
(
Π̃ (Y1, . . . , Yh) = π

)
is equal to 1.

Proof. Recall that I1,h denotes the h-dimensional identity matrix. Since ordinal patterns are
not affected by scaling, we may assume that (Σ−1

1,h − I1,h) is positive semidefinite, for details
see [10], Remark 5.5. According to Lemma 2.33 it suffices to show E

(
Uk1{Π̃(U1,...,Uh)=π}

)
6= 0

for some independent standard normal random variables U1, . . . , Uh and some 1 ≤ k ≤ h. For
simplicity, we consider the pattern π = (h, ..., 0) that corresponds to the event

{Ui ≥ 0, i = 1, ..., h}.

Hence, we arrive at

E
(
U11{U1≥0,...,Uh≥0}

)
=
∞∫
0

∞∫
0

. . .

∞∫
0

u1ϕ(u1)ϕ(u2) · · ·ϕ(uh)du1du2 · · · duh

=
(1

2

)h−1
ϕ(0) 6= 0.
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It follows by the same reasoning that none of the expected values that correspond to the other
ordinal patterns equals zero. �

We observe, that for the set of discontinuity points Dπ of

1{Π(Yj ,Yj+1,...,Yj+h−1)=π} − P
(
Π̃ (Y1, . . . , Yh) = π

)
it holds that P (Yj,h ∈ Dπ) = 0. We exemplarily show this for π = (h, . . . , 0). Then, we have

Dπ = {{0} × Rh−1} ∪ . . . ∪ {Rh−1 × {0}}. (4.5)

We observe that each of the sets on the right-hand side in (4.5) is a Null set with respect to the
h-dimensional Lebesgue measure. The other ordinal patterns π ∈ Sh can be treated analogously,
since we explicitly excluded |r(k)| = 1 for k ≥ 1. With this knowledge, we can use Theorem 3.3
for d = 1 and h ∈ N and derive the corresponding limit theorem.

Theorem 4.13 Let (Yj)j∈Z be a stationary Gaussian process as defined in (3.1) for d = 1 that
is long-range dependent in the sense of Definition 2.6. Then, we obtain

n−d1+ 1
2C
− 1

2
1 L

− 1
2

1,1 (n) (q̂n(π)− q(π)) D−→ N

0,

 h∑
j=1

αj

2
 ,

with C1 = 1
d1(2d1+1) , α = (α1, . . . , αh)t = Σ−1

1,hc and c = E
(
1{Π(Y1,Y2,...,Yh)=π} (Y1, . . . , Yh)t

)
.

Remark 4.14 As already mentioned in the introduction of this section, the corresponding limit
theorem of this estimator in the case of short-range dependence is given in [58], Theorem 3.

We want to take a closer look at the limit variance of the asymptotic distribution and hence need
to compute α and c. In [60], p.1786 and Lemma 1 it is shown that, based on the space and time
symmetry in (4.2) and (4.3), it holds that

E
(
Yi1{Π(Y1,Y2,...,Yh)=π}

)
= −E

(
Yi1{Π(Y1,Y2,...,Yh)=S(π)}

)
, i = 1, . . . , h, (4.6)

E
(
Yi1{Π(Y1,Y2,...,Yh)=π}

)
= −E

(
Yh+1−i1{Π(Y1,Y2,...,Yh)=T (π)}

)
, i = 1, . . . , h. (4.7)

The justification for the second equation is given in the following calculation since ordinal patterns
are not affected by monotone transformations: for π ∈ Sh, we obtain{

Π̃ (Y1, ..., Yh) = T (π)
}

=
{
T
(
Π̃(Y1, . . . , Yh)

)
= π

}
= {T (Π(0, Y1, Y1 + Y2, . . . , Y1 + . . .+ Yh)) = π}

= {Π(Y1 + . . .+ Yh, . . . , Y1 + Y2, Y1, 0) = π}

= {Π(0,−Yh,−(Yh + Yh−1), . . . ,−(Y1 + ...+ Yh)) = π}

=
{

Π̃(−Yh,−Yh−1, . . . ,−Y2,−Y1) = π
}
. (4.8)

Given these symmetry properties it is sufficient to determine the Hermite coefficients for one
pattern π of each reversion group. For h = 1 we, therefore, consider π = (1, 0), since only one
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reversion group appears in this case, and following Example 4.4 for h = 2 we can restrict ourselves
to the pattern π = (2, 1, 0) and π = (2, 0, 1). Note that larger values of h exceed the computing
capacity of Mathematica.

Example 4.15 In the case h = 1 there are only two possible patterns: π = (0, 1) and the
corresponding spatial (or time) reverse π = (1, 0). We focus on π = (1, 0). This pattern
corresponds to the event {Π(X0, X1) = (1, 0)} = {X1 ≥ X0} = {Y1 ≥ 0}. Hence, we consider

c1 = E
(
Y11{Y1≥0}

)
=
∫ ∞

0
y1ϕ(y1)dy1 = ϕ(0).

Correspondingly, we obtain c1 = −ϕ(0) for π = (0, 1), since this is the spatial reversion of
(1, 0). Thus, for these two ordinal patterns we arrive at a limit distribution of qn(π) given by
N
(
0, ϕ2(0)

)
.

Example 4.16 First, we study the limit variance for π = (2, 1, 0). In this case, π̄ has two
elements. Note that {Π(X0, X1, X2) = (2, 1, 0)} = {X2 ≥ X1 ≥ X0} = {Y2 ≥ 0, Y1 ≥ 0}. Due to
the symmetry of the bivariate normal distribution, we obtain c1 = c2 so that we only need to
calculate

c1 = E
(
Y11{Y2≥0,Y1≥0}

)
=
∫ ∞

0

∫ ∞
0

y1ϕ(Y1,Y2)(y1, y2)dy1dy2 = ϕ(0)
2

(
1 + r(1,1)(1)

)
,

where ϕ(Y1,Y2) denotes the joint density of (Y1, Y2). Hence,

2∑
j=1

αj = 2c1 (g1,1 + g2,1) = 2c1
1− r(1,1)(1)

1−
(
r(1,1)(1)

)2 = ϕ(0),

where gi,j are the entries of Σ−1
1,2 given by

Σ−1
2 = 1

1− (r(1,1)(1))2

((
1 −r(1,1)(1)

−r(1,1)(1) 1

))
.

Again, we obtain the limit variance ϕ2(0), which for h = 2 is more surprising than in the case
h = 1, because the result is independent of r(1,1)(1). For the space reverse pattern π2 = (0, 1, 2)
we apply (4.6) and obtain c1 = −ϕ(0), leading to the same limit variance. Note that another
approach to derive this limit variance using the Cholesky decomposition is given in Section A.1.
It is an interesting question, whether it is just a coincidence that this variance is independent of
the covariance between the increments. The answer turns out to be yes, since the dependence is
reflected in the limit variance of the pattern π = (2, 0, 1).
Note that

{Π(X0, X1, X2) = (2, 0, 1)} = {X1 ≤ X0 ≤ X2}

= {Y1 ≤ 0, Y1 + Y2 ≥ 0}
= {Y1 ≤ 0, Y2 ≥ −Y1} .
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As a result, we have

c1 = E
(
Y11{Y1≤0,Y2≥−Y1}

)
=
∫ 0

−∞

∫ ∞
−y1

y1ϕ(Y1,Y2)(y1, y2)dy2dy1

= ϕ(0)
2


√

1 + r(1,1)(1)
√

2
− 1


and

c2 = E
(
Y21{Y1≤0,Y2≥−Y1}

)
=
∫ 0

−∞

∫ ∞
−y1

y2ϕ(Y1,Y2)(y1, y2)dy2dy1

= ϕ(0)
2


√

1 + r(1,1)(1)
√

2
− r(1,1)(1)

 ,
where ϕ(Y1,Y2) denotes the joint density of (Y1, Y2). Finally, we obtain

2∑
j=1

αj = (c1 + c2) (g1,1 + g2,1) = ϕ(0)
2


√

2(1 + r(1,1)(1))− (1 + r(1,1)(1))
1 + r(1,1)(1)


= ϕ(0)

2

 √
2√

1 + r(1,1)(1)
− 1

 .
The above expression depends on r(1,1)(1). Due to space and time symmetry discussed in (4.6) and
(4.7) all permutations that belong to the reversion group of π = (2, 0, 1), i.e., (1, 0, 2), (0, 2, 1) and

(1, 2, 0), lead to the same limit variance for q̂n(π), namely N
(

0,
(
ϕ(0)

2

( √
2√

1+r(1,1)(1)
− 1

))2
)
.

By now, we have investigated the heuristic estimator for q(π) based on the relative frequency of
the ordinal pattern and have derived an asymptotic distribution whose variance can be explicitly
stated for the cases h = 1 and h = 2 in terms of the correlation function of the underlying
long-range dependent Gaussian process.

As already mentioned at the beginning of this section, another estimator q̂n,imp(π) was proposed
in [60] by using the statistical method of Rao-Blackwellization. We turn to this estimator in the
following. Since we are interested in the asymptotic distribution, we need to do some preliminary
work in advance and calculate the Hermite rank of q̂n,imp(π) . Since it was already proved in
[60], p.1786, that the Hermite rank of this estimator is larger or equal to 2 with respect to Σ1,h,
we can restrict our considerations to verifying that the Hermite rank m (q̂n,imp(π), I1,h) ≤ 2 in
order to show m (q̂n,imp(π),Σ1,h) = 2.

Lemma 4.17 Let (Yj)j∈Z be a stationary Gaussian process as defined in (3.1) for d = 1. Then,
for any π ∈ Sh the Hermite rank of

1
#π̄1{Π̃(Yi,Yi+1,...,Yi+h−1)∈π̄} −

1
#π̄P

(
Π̃ (Y1, . . . , Yh) ∈ π̄

)
with respect to Σ1,h equals 2.
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Proof. In order to proof the result, we start with the investigation of the second order
Hermite coefficients of the original estimator q̂n(π), π ∈ Sh. For a multivariate random vector
(Y1, ..., Yh) ∼ N (0,Σ1,h) define

cπi,i := E
[(
Y 2
i − 1

)
1{Π̃(Y1,...,Yh)=π}

]
= E

[(
Y 2
i − 1

)
1{Π̃(Y1,...,Yh)=S(π)}

]
= E

[(
Y 2
h+1−i − 1

)
1{Π̃(Y1,...,Yh)=T (π)}

]
, i = 1, ..., h.

Analogously, we define

cπi,j : = E
[
(YiYj − E (YiYj)) 1{Π̃(Y1,...,Yh)=π}

]
= E

[
(YiYj − E (YiYj)) 1{Π̃(Y1,...,Yh)=S(π)}

]
= E

[
(Yh+1−iYh+1−j − E (Yh+1−iYh+1−j)) 1{Π̃(Y1,...,Yh)=T (π)}

]
,

with i, j = 1, ..., h, i 6= j, so that altogether we obtain

cπi,j = c
S(π)
i,j = c

T (π)
h+1−i,h+1−j = c

T ◦S(π)
h+1−i,h+1−j , i, j = 1, ..., h. (4.9)

With this result we can simplify the second order Hermite coefficients for the improved estimator
by

ci,j := E [(YiYj − E (YiYj)) f (Y1, ..., Yh)] = 1
#π̄

∑
π∈π̄

E
[
(YiYj − E (YiYj)) 1{Π̃(Y1,...,Yh)=π}

]
= 1

#π̄
∑
π∈π̄

cπi,j

= 1
2
(
cπi,j + cπh+1−i,h+1−j

)
.

In a similar way, we obtain

ci,i = 1
2
(
cπi,i + cπh+1−i,h+1−i

)
.

Hence, we can uniquely determine the second order Hermite coefficients of the improved estimator
by calculating the second order Hermite coefficients for only one pattern π that belongs to the
considered reversion group π̄. By following the symmetry properties discussed in (4.9), we derive
for the special case T ◦ S(π) = π that

ci,j = cπi,j , π ∈ π̄

for all i, j = 1, ..., h. Hence, the second order Hermite coefficients of the improved estimator
q̂n,imp(π) are equal to the second order Hermite coefficients of q̂n(π).
We use this result to determine the Hermite rank of q̂n,imp(π). Let U = (U1, . . . , Uh)t be a
standard Gaussian random vector, i.e., with covariance matrix I1,h. Following the arguments
above, we only need to consider the second order Hermite coefficients of q̂n(π) for a fixed pattern
π ∈ π̄:

bπjk = E
(
UkUj1{Π̃(U1,...,Uh)=π}

)
, 1 ≤ k < j ≤ h, and

bπjj = E
((
U2
j − 1

)
1{Π̃(U1,...,Uh)=π}

)
, j = 1, ..., h.

81



For simplicity we regard π = (h, h− 1, ..., 0). Note that for this pattern it suffices to show that
bπjk 6= 0, since in this case ci,j = cπi,j for i, j = 1, ..., h. For j 6= k, it holds

bπjk =
∫ ∞

0
...

∫ ∞
0

ujukϕ(u1)...ϕ(uh)du1...duh

= 1
2h−2

∫ ∞
0

ujϕ(uj)duj
∫ ∞

0
ukϕ(uk)duk

= ϕ2(0)
2h−2 .

�

In contrast to the heuristic estimator q̂n(π), we are dealing with an underlying long-range
dependent process (Yj)j∈Z and an estimator with Hermite rank equal to 2 in case of the improved
estimator q̂n,imp. Therefore, a limit theorem with a different normalization and a different
asymptotic distribution holds, as we can observe applying Theorem 3.10 for d = 1 and h ∈ N.
Note that we may apply Theorem 3.10 as for each π the set of discontinuity points of

1
#π̄1{Π̃(Yi,Yi+1,...,Yi+h−1)∈π̄} −

1
#π̄P

(
Π̃ (Y1, . . . , Yh) ∈ π̄

)
is a Null set with respect to the h-dimensional Lebesgue measure due to the considerations in
(4.5).

Theorem 4.18 Let (Yj)j∈Z be a stationary Gaussian process as defined in (3.1) for d = 1 that
is long-range dependent in the sense of Definition 2.6. Then, if d1 ∈

(
1
4 ,

1
2

)
, we obtain

n1−2d1(2C2)−
1
2L−1(n) (q̂n,imp(π)− q(π)) D−→ Z2,d1+ 1

2
(1)

h∑
j=1

h∑
k=1

αj,k, (4.10)

where Z2,d1+ 1
2
(1) is a standard Rosenblatt random variable and C2 := 1

2d∗(4d∗−1) ,

(αl,k)1≤l,k≤h = Σ−1
1,hCΣ−1

1,h

and

C = E
(

(Y1, ..., Yh) 1
#π̄

[
1{Π̃(Y1,...,Yh)∈π̄} − P

(
Π̃ (Y1, ..., Yh) ∈ π̄

)]
(Y1, ..., Yh)t

)
.

Proof. The proof is an immediate consequence of Theorem 3.10 for d = 1 and h ∈ N. �

Remark 4.19 As already mentioned in the introduction of this section, the corresponding result
for d1 ∈

(
0, 1

4

)
can be found in [60], Theorem 7. Note that the asymptotic distribution is Gaussian

in this case.
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Analogously to the asymptotic distribution of the heuristic estimator we want to get more
information on the asymptotic variance here and, therefore, need to calculate α and C again.
We also restrict ourselves to the cases h = 1 and h = 2 since they have the most practical impact
and yield closed formulas for the asymptotic variance.

Example 4.20 (The case h = 1) For π = (1, 0) we derive

{Π(X0, X1) = (1, 0)} = {X0 ≤ X1} = {Y1 ≥ 0}

and, therefore,

c1,1 = E
[(
Y 2

1 − 1
)

1{Y1≥0}
]

=
∫ ∞

0

(
y2

1 − 1
)
ϕ(y1)dy1 = 0.

So in the trivial case, that is only one increment variable, we derive a degenerate limit distribution
again.

For increments of length h = 2 we used Mathematica to calculate the integrals in the Hermite
coefficients.

Example 4.21 (The case h = 2) First, we consider the pattern π = (2, 1, 0) and the corre-
sponding event {Π(X0, X1, X2) = (2, 1, 0)} = {X2 ≥ X1 ≥ X0} = {Y1 ≥ 0, Y2 ≥ 0}. We know
that ci,j = cπi,j, i, j = 1, 2, by the calculations done in the proof of Lemma 4.17. Moreover by
(4.9), we derive that c1,1 = c2,2 since T ◦ S(2, 1, 0) = (2, 1, 0). We have

c1,1 = E
[(
Y 2

1 − 1
)

1{Y1≥0,Y2≥0}
]

=
∫ ∞

0

∫ ∞
0

(
y2

1 − 1
)
ϕ(Y1,Y2)(y1, y2)dy1dy2

= ϕ2(0)r(1,1)(1)
√

1−
(
r(1,1)(1)

)2
and

c1,2 = E
[
(Y1Y2 − E (Y1Y2)) 1{Y1≥0,Y2≥0}

]
=
∫ ∞

0

∫ ∞
0

y1y2ϕ(Y1,Y2)(y1, y2)dy1dy2 − r(1,1)(1)
∫ ∞

0

∫ ∞
0

ϕ(Y1,Y2)(y1, y2)dy1dy2

= ϕ2(0)
√

1−
(
r(1,1)(1)

)2
.
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This yields

2∑
i,j=1

αi,j = 2 (g1,2 + g2,2)2 (c1,1 + c1,2)

= 2 c1,1 + c1,2(
1 + r(1,1)(1)

)2
= 2ϕ2(0)

√
1− r(1,1)(1)
1 + r(1,1)(1)

.

For π = (2, 1, 0) the left-hand side in (4.10) converges in distribution to 2ϕ2(0)
√

1−r(1,1)(1)
1+r(1,1)(1)Z2,d1+ 1

2
(1).

Consider the pattern π = (2, 0, 1) and the corresponding event

{Π(X0, X1, X2) = (2, 0, 1)} = {X1 ≤ X0 ≤ X2}

= {Y1 ≤ 0, Y1 + Y2 ≥ 0} .

It holds that

cπ1,1 = E
[(
Y 2

1 − 1
)

1{Y1≤0,Y2≥−Y1}
]

=
∫ 0

−∞

∫ ∞
−y1

(
y2

1 − 1
)
ϕ(Y1,Y2)(y1, y2)dy2dy1

= −ϕ2(0)

√
1−

(
r(1,1)(1)

)2
2

and

cπ1,2 = E
[
(Y1Y2 − E (Y1Y2)) 1{Y1≤0,Y2≥−Y1}

]
=
∫ 0

−∞

∫ ∞
−y1

y1y2ϕ(Y1,Y2)(y1, y2)dy2dy1 − r(1,1)(1)
∫ 0

−∞

∫ ∞
−y1

ϕ(Y1,Y2)(y1, y2)dy2dy1

= −ϕ2(0)

√
1−

(
r(1,1)(1)

)2
2 .

Since the reversion group of this pattern has four elements we also need to calculate

cπ2,2 = E
[(
Y 2

2 − 1
)

1{Y1≤0,Y2≥−Y1}
]

=
∫ 0

−∞

∫ ∞
−y1

(
y2

2 − 1
)
ϕ(Y1,Y2)(y1, y2)dy2dy1

= −ϕ2(0)

√
1−

(
r(1,1)(1)

)2(2r(1,1)(1)− 1)
2 .
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Altogether we arrive at
2∑

i,j=1
αi,j = 1(

1 + r(1,1)(1)
)2 (c1,1 + 2c1,2 + c2,2)

= 1(
1 + r(1,1)(1)

)2 (cπ1,1 + 2cπ1,2 + cπ2,2

)

= −ϕ2(0)

√
1−

(
r(1,1)(1)

)2(
1 + r(1,1)(1)

)2 (
r(1,1)(1) + 1

)

= −ϕ2(0)
√

1− r(1,1)(1)
1 + r(1,1)(1)

.

For π = (2, 0, 1) the left-hand side in (4.10) converges in distribution to −ϕ2(0)
√

1−r(1,1)(1)
1+r(1,1)(1)Z2,H(1).

Remark 4.22 One might wonder which limit theorems can be derived in the special case that it
is not only the increment process (Yj)j∈Z but the time series (Xj)j∈Z itself which is stationary
and long-range dependent.
We have to determine the Hermite rank of the estimator q̂n(π) in this setting.
Let (Xk)k∈Z be a stationary, long-range dependent, standard normal Gaussian process and let
h ∈ N. By Lemma 2.33 it is enough to show that E(Uk1{Π(U0,...,Uh)=π}) 6= 0 for some independent
standard normal random variables U0, . . . , Uh and some 0 ≤ k ≤ h. Without loss of generality let
π = id and set k = 0. This yields

E(U01{U0≤...≤Uh}) =
∞∫
−∞

uh+1∫
−∞

uh∫
−∞

. . .

u2∫
−∞

u1ϕ(u1)ϕ(u2) · · ·ϕ(uh+1)du1du2 · · · duh+1

=−
∞∫
−∞

uh+1∫
−∞

. . .

u3∫
−∞

ϕ(u2)2ϕ(u3) · · ·ϕ(uh+1)du2 · · · duh+1

6=0

since we integrate a strictly positive function. Hence, for any π ∈ Sh the Hermite rank of the
function f : Rh+1 −→ R, defined by

f(x0, x1, . . . , xh) := 1{Π(x0,...,xh)=π} − P(Π(x0, . . . , xh) = π)

is equal to 1.

We get the following asymptotic result concerning the ordinal pattern probability estimator
q̂n(π) in this modified setting by applying Corollary 3.18 for d = 1:

n−d1+ 1
2L
−1/2
1,1 (n) (q̂n(π)− P (Π(X0, . . . , Xh) = π)) D−→ δ0,

where δ0 denotes the Dirac measure in 0. In this special case, the limit distribution for q̂n(π) is
trivial.
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However, taking the classical rate of convergence n1/2, we get a non-trivial Gaussian central
limit theorem, see [54], Theorem 5.4.1, since the increment process of (Xj)j∈Z is short-range
dependent, as it is explained at the end of Section 3.3.

We have proved two limit theorems for estimators of ordinal pattern probabilities in Theo-
rem 4.13 and in Theorem 4.18. In the latter result a non-Gaussian limit distribution occurs,
called the Rosenblatt distribution. We turn to a simulation study to verify the theoretical results
and compare the simulated limit distributions to the standard normal distribution as well as to
the Rosenblatt distribution as described in Section 2.7.3.

4.2.2 Simulation studies

We simulate N = 10 000 paths of fractional Gaussian noise by the command “simFGN0” from
the RPackage “longmemo”, see [34] with sample size n = 106 for different values of H = d1 + 1

2 ,
namely d1 = 0, 3 and d1 = 0.4, to compare the asymptotic distribution of the estimators q̂n(π)
and q̂n,imp(π) with the theoretical results derived above.

Figure 4.4: Histogram, kernel density estimation and Q-Q plot of the asymptotic distribution of
the estimators q̂n(π) (blue) and q̂n,imp(π) (red) for n = 106 and π = (2, 1, 0) in the
case H = 0.8.

We standardized the estimators following the normalization constants given in Theorem 4.13 and
Theorem 4.18. The results depending on the respective long-range dependence parameter d1 are
displayed in Figure 4.4 and in Figure 4.5. We observe the standard normal distribution of the
limit of q̂n(π) for H = 0.8 and H = 0.9 as shown in Theorem 4.13.
For the improved estimator q̂n,imp(π) a non-Gaussian limit distribution is verified in the Q-Q plots.
We observe the densities of the standard Rosenblatt distribution for the respective parameter H
as shown in Figure 2.2.
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Figure 4.5: Histogram, kernel density estimation and Q-Q plot of the asymptotic distribution of
the estimators q̂n(π) (blue) and q̂n,imp(π) (red) for n = 106 and π = (2, 1, 0) in the
case H = 0.9.

4.3 Ordinal pattern dependence

Ordinal pattern dependence is generally speaking a measure of dependence between time series(
X

(1)
j

)
j∈Z

and
(
X

(2)
j

)
j∈Z

that is only based on the ordinal information given in a moving window
of a fixed length. First introduced in [57], it was used to model dependence of financial data
sets. With [58], the first work was published that deals with ordinal pattern dependence in a
theoretical context, i.a., with limit theorems for the underlying bivariate time series being a
1-approximating functional of an absolutely regular process. For details on the aforementioned,
we refer to the article. The authors derived a Gaussian limit distribution for an estimator of
ordinal pattern dependence. Lately, ordinal pattern dependence was used in various applications,
see [24] for an analysis of hydrological data sets, [52] and [50] for applications to extreme value
theory and [49] and [11] for an integration of ordinal pattern dependence in the context of other
univariate and multivariate dependence measures. In the latter field of research, it is important
to mention that ordinal pattern dependence is defined in a time series context in the first place,
i.e., to detect dependence structures between time series. However, multivariate dependence
measures are often defined to describe dependencies between two random vectors or even within
one random vector. Having this in mind, we present the comparison to several other measures in
more detail in Chapter 5.

We stick to the formal definition of ordinal pattern dependence, as it is proposed in [58],
Sec. 2.1. The considered moving window consists of h+ 1 data points and, hence, h increments.
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We define

p := pX(1),X(2),h := P
(
Π
(
X

(1)
0 , . . . , X

(1)
h

)
= Π

(
X

(2)
0 , . . . , X

(2)
h

))
(4.11)

and

q := qX(1),X(2),h :=
∑
π∈Sh

P
(
Π
(
X

(1)
0 , . . . , X

(1)
h

)
= π

)
P
(
Π
(
X

(2)
0 , . . . , X

(2)
h

)
= π

)
. (4.12)

Then, we define ordinal pattern dependence OPD as

OPD := OPDX(1),X(2),h := p− q
1− q . (4.13)

The parameter q represents the hypothetical case of independence between the two time series.
In this case p and q would obtain equal values and, therefore, OPD would equal zero. Regarding
the other extreme, the case in which both processes coincide, we obtain the value 1. However, in
the following, we assume p ∈ (0, 1) and q ∈ (0, 1).
Note that the definition of ordinal pattern dependence in (4.13) only measures positive depen-
dence. This is no restriction in practice, because negative dependence can be investigated in an
analogous way, by considering OPDX(1),−X(2) . If one is interested in both types of dependence
simultaneously, in [58] the authors propose to use

(
OPDX(1),X(2)

)
+
−
(
OPDX(1),−X(2)

)
+
. To

keep the notation simple, we focus on OPD as it is defined in (4.13).

Remark 4.23 It is possible to extend the concept of ordinal pattern dependence for more than
two time series, by investigating the probability

pX(1),...,X(d) := P
(
Π
(
X

(1)
0 , . . . , X

(1)
h

)
= Π

(
X

(2)
0 , . . . , X

(2)
h

)
= . . . = Π

(
X

(d)
0 , . . . , X

(d)
h

))
.

However, this approach requires a very strong condition, namely the same co-movement in all d
time series. In this case, no information would be given on any pairwise dependencies for d ≥ 3.

For the sake of simplicity, we restrict ourselves to the case d = 2 in the following. However, note
that in several of the limit theorems in this chapter can be extended to the d-dimensional case in
a straightforward way. Note that the calculations concerning the asymptotic variances would
need to be adapted in this case.

We compare whether the ordinal patterns in
(
X

(1)
j

)
j∈Z

coincide with the ones in
(
X

(2)
j

)
j∈Z

. Recall
that it is an essential property of ordinal patterns that they are uniquely determined by the incre-
ment process. Therefore, we have to consider the increment processes (Yj)j∈Z =

((
Y

(1)
j , Y

(2)
j

))
j∈Z

as defined in (3.1) for d = 2, where Y (p)
j = X

(p)
j −X

(p)
j−1, p = 1, 2. Hence, we can also express

p and q (and consequently OPD) as a probability that only depends on the increments of the
considered vectors of the time series. Recall the definition of (Yj,h)j∈Z for d = 2, given by

Yj,h =
(
Y

(1)
j , . . . , Y

(1)
j+h−1, Y

(2)
j , . . . , Y

(2)
j+h−1

)t
,

such that Yj,h ∼ N (0,Σ2,h) with Σ2,h as given in (3.6).
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Figure 4.6: Illustration of estimation of ordinal pattern dependence.

In the course of this section, we use different approaches to estimate p and q and finally,
by combining these two estimators, to estimate OPD. For all estimators the assumption on
the corresponding function f in Theorem 3.3 and Theorem 3.10 holds, namely that it is square
integrable with respect to Yj,h and that the set of discontinuity points is a Null set with respect
to the 2h-dimensional Lebesgue measure. This is shown in (4.5). Hence, we omit to emphasize
this in the following.

We define the estimator of p, the probability of coincident patterns in both time series in
a moving window of fixed length, by

p̂n = 1
n− h

n−h−1∑
j=0

1{
Π
(
X

(1)
j ,...,X

(1)
j+h

)
=Π
(
X

(2)
j ,...,X

(2)
j+h

)}
= 1
n− h

n−h∑
j=1

1{
Π̃
(
Y

(1)
j ,...,Y

(1)
j+h−1

)
=Π̃
(
Y

(2)
j ,...,Y

(2)
j+h−1

)},
where

Π̃ (Y1, . . . , Yh) : = Π (0, Y1, Y1 + Y2, . . . , Y1 + . . .+ Yh)
= Π (0, X1 −X0, . . . , Xh −X0)
= Π (X0, X1, . . . , Xh) .

Figure 4.6 pictures the way ordinal pattern dependence is estimated by p̂n. The patterns of
interest that are compared in each moving window are colored in red.

Having emphasized the crucial importance of the increments, we define the following con-
ditions on the increment process (Yj)j∈Z. For the reader’s convenience, we provide an overview
of these conditions.
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Overview 4.24

(L1) We assume (Yj)j∈Z is a bivariate, stationary Gaussian process with Y (p)
j ∼ N (0, 1), p = 1, 2

that fulfills (3.2). Furthermore, it holds that
∣∣∣r(p,q)(k)

∣∣∣ < 1 for p, q = 1, 2 and k ≥ 1 to
exclude ties.

(L1s) We soften (L1) by allowing min {d1, d2} to be in the range (−∞, 0), such that the corre-
sponding univariate Gaussian process is short-range dependent.

(L2) We strengthen (L1) such that (3.2) is fulfilled with d1 and d2 in
(

1
4 ,

1
2

)
.

(L2s) We soften (L2) by allowing min {d1, d2} to be in the range (−∞, 0) ∪
(
0, 1

4

]
.

(S) We assume d1, d2 ∈ (−∞, 0) ∪
(
0, 1

4

)
such that for p, q = 1, 2

r(p,q)(k) = kdp+dq−1Lp,q(k) (k →∞)

with Lp,q(k)→ Lp,q and Lp,q ∈ R holds.

The last condition (S) implies absolute summability of
(
r(p,q)(k)

)2
for p, q = 1, 2 and represents

the case of short-range dependent components for estimators with Hermite rank 2.

Note that the multivariate analogue to the case in which we compare the coincident patterns
in the two marginal processes of the bivariate stationary process itself is presented in Section 4.4.3.

Before turning to the investigation of the estimator of coincident patterns, we first have to
consider the symmetry properties of the multivariate normal distribution, as they differ from the
univariate case given in Section 4.2.
As we have seen in Section 4.2, the symmetry properties of the multivariate normal distribution
essentially help to determine the Hermite coefficients needed in Theorem 3.3 and Theorem
3.10. Using these symmetries, the Hermite coefficients can be computed at low computational
cost. Since we are considering a bivariate time series here, the symmetry properties slightly
change compared to the univariate case. To be more precise, the general case only allows for
space symmetry and we need some mild assumptions on the entries of the correlation matrix to
get further symmetries and less computational cost having the calculations of the asymptotic
variances in mind. These assumptions are often fulfilled in practice.
First note that for a bivariate stationary Gaussian process

(
Y

(1)
j , Y

(2)
j

)
j∈Z

with Y (p)
j ∼ N (0, 1),

p = 1, 2 in general we have

(I)
(
Y

(1)
1 , . . . , Y

(1)
h , Y

(2)
1 , . . . , Y

(2)
h

)t D= (
−Y (1)

1 , . . . ,−Y (1)
h ,−Y (2)

1 , . . . ,−Y (2)
h

)t
. (4.14)

This property was already introduced as space symmetry.

In contrast to the univariate case, we do no longer obtain time symmetry in the general case.
Adding the assumption r(1,1)(k) = r(2,2)(k), k = 0, . . . , h− 1 we get

(II)
(
Y

(1)
1 , . . . , Y

(1)
h , Y

(2)
1 , . . . , Y

(2)
h

)t D= (
Y

(2)
h , . . . , Y

(2)
1 , Y

(1)
h , . . . , Y

(1)
1

)t
. (4.15)
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Note that in this case the correlation matrix of the vector is persymmetric.

Another condition, which is often fulfilled in practical contexts, is to assume that the cross-
correlation function r(1,2)(k) is symmetric, e.g., r(1,2)(k) = r(2,1)(k), for each k = 0, . . . , h− 1.
Then, we obtain

(III)
(
Y

(1)
1 , . . . , Y

(1)
h , Y

(2)
1 , . . . , Y

(2)
h

)t D= (
Y

(1)
h , . . . , Y

(1)
1 , Y

(2)
h , . . . , Y

(2)
1

)t
. (4.16)

In this case the correlation matrix has equal entries on the anti-diagonal for h = 2.

Finally, combining the two assumptions, we have

(IV )
(
Y

(1)
1 , . . . , Y

(1)
h , Y

(2)
1 , . . . , Y

(2)
h

)t D= (
Y

(2)
1 , . . . , Y

(2)
h , Y

(1)
1 , . . . , Y

(1)
h

)t
. (4.17)

Note that even case (IV), as the strongest one considered here, has not the same properties as
the univariate case, in which the correlation matrix is a Toeplitz matrix, without any further
assumptions but stationarity on the underlying process. This result could be obtained under
further and stronger assumptions, but would not yield a simplification concerning our problem
and is, therefore, omitted.
It is necessary to emphasize that property (I) always holds for multivariate Gaussian vectors,
whereas Conditions (II), (III) or (IV) are additional assumptions that have to be verified before
the advantages of these symmetries can be used in practical applications.

We begin with the investigation of the asymptotics of p̂n. First, we calculate the Hermite
rank of p̂n, since the Hermite rank determines for which ranges of d∗ the estimator p̂n is still
long-range dependent. Depending on this range, different limit theorems may hold.

Lemma 4.25 The Hermite rank of f(Yj,h) = 1{
Π̃
(
Y

(1)
j+1,...,Y

(1)
j+h

)
=Π̃
(
Y

(2)
j+1,...,Y

(2)
j+h

)} with respect to

Σ2,h is equal to 2.

Proof. Following Lemma 2.33 it is sufficient to show the following two properties:

(i) m(f,Σ2,h) ≥ 2,

(ii) m(f, I2,h) ≤ 2.

Lemma 2.33 can be applied due to the following reasoning. Ordinal patterns are not affected by
scaling, therefore, the technical condition that Σ−1

2,h − I2,h is positive semidefinite is fulfilled in
our case. We can scale the standard deviation of the random vector Yj,h by any positive real
number σ > 0 since for all j ∈ Z we have{

Π̃
(
Y

(1)
j , . . . , Y

(1)
j+h−1

)
= Π̃

(
Y

(2)
j , . . . , Y

(2)
j+h−1

)}
=
{

Π̃
(
σY

(1)
j , . . . , σY

(1)
j+h−1

)
= Π̃

(
σY

(2)
j , . . . , σY

(2)
j+h−1

)}
.

To show property (i), we need to consider a multivariate random vector

Y1,h :=
(
Y

(1)
1 , . . . , Y

(1)
h , Y

(2)
1 , . . . , Y

(2)
h

)t
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with covariance matrix Σ2,h. We fix i = 1, . . . , 2h. We divide the set Sh into disjoint sets, namely
into S∗h, as defined in Definition 4.7 and the complimentary set Sh \ S∗h. The symmetry property
(I) of the multivariate normal distribution implies

E

Y (i)
j,h1{

Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=π
} = −E

Y (i)
j,h1{

Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=S(π)

}
for π ∈ Sh. Hence, we arrive at:

E
(
Y

(i)
j,h f(Yj,h)

)
= E

Y (i)
j,h1{

Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)}
=
∑
π∈Sh

E

Y (i)
j,h1{

Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=π
}

=
∑
π∈S∗

h

E

Y (i)
j,h1{

Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=π
}

−
∑

π∈Sh\S∗h

E

Y (i)
j,h1{

Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=S(π)

}
= 0

for i = 1, . . . , 2h.
Consequently m (f,Σ2,h) ≥ 2.

In order to proof (ii), we consider

U1,h :=
(
U

(1)
1 , . . . , U

(1)
h , U

(2)
1 , . . . , U

(2)
h

)t
to be a random vector with independent N (0, 1) distributed entries. For i = 1, . . . , h and
k = h+ 1, . . . , 2h such that k − h = i, we obtain

E
(
U

(i)
1,hU

(k)
1,hf (U1,h)

)
= E

U (1)
i U

(2)
k−h1{

Π̃
(
U

(1)
1 ,...,U

(1)
h

)
=Π̃
(
U

(2)
1 ,...,U

(2)
h

)}
=
∑
π∈Sh

E

U (1)
i U

(2)
i 1{

Π̃
(
U

(1)
1 ,...,U

(1)
h

)
=Π̃
(
U

(2)
1 ,...,U

(2)
h

)
=π
}

=
∑
π∈Sh

E
U (1)

i 1{
Π̃
(
U

(1)
1 ,...,U

(1)
h

)
=π
}2

6= 0,

since E

U (1)
i 1{

Π̃
(
U

(1)
1 ,...,U

(1)
h

)
=π
} 6= 0 for all π ∈ Sh. This was shown in the proof of Lemma

4.12.
All in all, we derive m(f,Σ2,h) = 2 and, hence, have proven the lemma. �
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The case m(f,Σ2,h) = 2 exhibits the property that the standard range of the long-range
dependence parameter d∗ ∈

(
0, 1

2

)
has to be divided into two different sets. If d∗ ∈

(
1
4 ,

1
2

)
, the

transformed process f (Yj,h)j∈Z is still long-range dependent, see Table 2.1. If d∗ ∈
(
0, 1

4

)
, the

transformed process is short-range dependent, which means by definition that the autocorrelations
of the transformed process are summable, see Definition 2.14. Therefore, we have two different
asymptotic distributions that have to be considered for the estimator p̂n of coincident patterns.

4.3.1 Limit theorem for the estimator of p in case of long-range dependence

First, we restrict ourselves to the case that at least one of the two parameters d1 and d2 is
in
(

1
4 ,

1
2

)
. This assures d∗ ∈

(
1
4 ,

1
2

)
. We explicitly include mixing cases where the process

corresponding to min {d1, d2} is allowed to be long-range as well as short-range dependent.
Note that this setting includes the pure long-range dependence case, which means that for
p = 1, 2, we have dp ∈

(
1
4 ,

1
2

)
, or even d1 = d2 = d∗. However, in general the assumptions are

lower, such that we only require dp ∈
(

1
4 ,

1
2

)
for either p = 1 or p = 2 and the other parameter is

allowed to be in (−∞, 0) or
(
0, 1

4

)
, too.

We can, therefore, apply the results of Corollary 3.11 and obtain the following asymptotic
distribution for p̂n:

Theorem 4.26 Under the assumptions of Corollary 3.11 in the case d = 2, corresponding to
(L2s) in Overview 4.24, we obtain

n1−2d∗(C2)−
1
2 (p̂n − p) D−→

∑
p,q∈P ∗

α̃(p,q)Z
(p,q)
2,d∗+1/2(1) (4.18)

with Z(p,q)
2,d∗+1/2(1) as given in Theorem 3.10 for p, q ∈ P ∗ and C2 := 1

2d∗(4d∗−1) being a normalizing
constant. We have

α̃(p,q) :=
h∑

i,k=1
α

(p,q)
i,k , where α(p,q)

i,k = αi+(p−1)h,k+(q−1)h,

for each p, q ∈ P ∗ and i, k = 1, . . . , h and (αi,k)1≤i,k≤dh = Σ−1
2,hCΣ−1

2,h, where the variable

C = (ci,k)1≤i,k≤2h = E

Y1,h

1{
Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)} − p
Y t

1,h


denotes the matrix of second order Hermite coefficients.

Proof. The proof of this theorem is an immediate application of Corollary 3.11 following
Lemma 4.25. �

Following Theorem 3.13, we are also able to express the limit distribution above in terms of two
standard Rosenblatt random variables by modifying the weighting factors in the limit distribution.
Note that this requires slightly stronger assumptions as in Theorem 3.10.
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Theorem 4.27 Let (L2) hold with d1 = d2. Additionally we assume that r(1,1)(l) = r(2,2)(l),
for l = 0, . . . , h− 1, and L1,1 + L2,2 6= L1,2 + L2,1. Then we obtain

n1−2d∗(C2)−
1
2 (p̂n − p) D−→

(
α̃(1,1) − α̃(1,2)

) L2,2 − L2,1 − L1,2 + L1,1
2 Z∗2,d∗+1/2(1)

+
(
α̃(1,1) + α̃(1,2)

) L2,2 + L2,1 + L1,2 + L1,1
2 Z∗∗2,d∗+1/2(1),

with C2 and α̃(p,q) as given in Theorem 4.26. Note that Z∗2,d∗+1/2(1) and Z∗∗2,d∗+1/2(1) are both
standard Rosenblatt random variables whose covariance is given by

Cov
(
Z∗2,d∗+1/2(1), Z∗∗2,d∗+1/2(1)

)
= (L2,2 − L1,1)2

(L1,1 + L2,2)2 − (L1,2 + L2,1)2 . (4.19)

Remark 4.28 Following Corollary 3.14, if additionally r(1,1)(k) = r(2,2)(k) and r(1,2)(k) =
r(2,1)(k) is fulfilled for all k ∈ Z, then, the two limit random variables following a standard
Rosenblatt distribution in Theorem 4.27 are independent. Note that due to the considerations in
(2.17), we know that the distribution of the sum of two independent standard Rosenblatt random
variables is not standard Rosenblatt. However, this yields a computational benefit, as it is possible
to efficiently simulate the standard Rosenblatt distribution, for details, see [66].

Calculation of the asymptotic variance
The covariance structure of Z(p,q)

2,d∗+1/2(1), p, q ∈ P ∗, is given in Corollary 3.6. Hence, it is possible
to determine the variance of the limit distribution, or the variance of each summand, in Theorems
4.26 and 4.27 if we are able to calculate C and accordingly α.
To this end, we show that it is significantly helpful to incorporate the symmetry properties of
the multivariate normal distribution, as given in (I) to (IV) in (4.14) to (4.17). We have

ci,k = E

Y (i)
1,2

1{
Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)} − p
Y (k)

1,2


= E

(Y (i)
1,2Y

(k)
1,2 − E

(
Y

(i)
1,2Y

(k)
1,2

))
1{

Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)}
=
∑
π∈Sh

E

(Y (i)
1,2Y

(k)
1,2 − E

(
Y

(i)
1,2Y

(k)
1,2

))
1{

Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=π
}

and we define

cπ,2i,k := E

(Y (i)
1,2Y

(k)
1,2 − E

(
Y

(i)
1,2Y

(k)
1,2

))
1{

Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=π
}

as the second order Hermite coefficients of the function f (Y1,2) = 1{
Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=π
}.

Using the symmetry properties (I) to (IV), we obtain the following equalities for these sec-
ond order Hermite coefficients, in terms of the time and spatial reflection of the considered
ordinal pattern, where the symmetry property additionally assumed on the underlying process
(Yj,h)j∈Z is denoted behind each equality:
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Lemma 4.29 For π ∈ Sh and i, k ∈ {1, . . . , 2h}, it holds

cπ,2i,k = c
S(π),2
i,k ,

cπ,2i,k = c
T (π),2
2h+1−i,2h+1−k, (II)

cπ,2i,k = c
T (π),2
b i−1

h c2h+h+1−i,b k−1
h c2h+h+1−k, (III)

cπ,2i,k = cπ,2

i+(−1)b
i−1
h ch,k+(−1)b

k−1
h ch

. (IV ) (4.20)

Proof. We fix π ∈ Sh and i, k = 1, . . . , 2h. The first equality is derived by using (I):

cπ,2i,k = E

(Y (i)
1,2Y

(k)
1,2 − E

(
Y

(i)
1,2Y

(k)
1,2

))
1{

Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=π
}

= E

((−Y (i)
1,2

) (
−Y (k)

1,2

)
− E

((
−Y (i)

1,2

) (
−Y (k)

1,2

)))
1{

Π̃
(
−Y (1)

1 ,...,−Y (1)
h

)
=Π̃
(
−Y (2)

1 ,...,−Y (2)
h

)
=π
}

= E

(Y (i)
1,2Y

(k)
1,2 − E

(
Y

(i)
1,2Y

(k)
1,2

))
1{

Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=S(π)

}
= c
S(π),2
i,k .

The second equality is obtained with Condition (I) and (II):

cπ,2i,k = E

(Y (i)
1,2Y

(k)
1,2 − E

(
Y

(i)
1,2Y

(k)
1,2

))
1{

Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=π
}

= E
(((
−Y (2h+i−1)

1,2

) (
−Y (2h+k−1)

1,2

)
− E

((
−Y (2h+i−1)

1,2

) (
−Y (2h+k−1)

1,2

)))

× 1{
Π̃
(
−Y (2)

h
,...,−Y (2)

1

)
=Π̃
(
−Y (1)

h
,...,−Y (1)

1

)
=π
})

(4.8)= E
((

Y
(2h+i−1)

1,2 Y
(2h+k−1)

1,2 − E
(
Y

(2h+i−1)
1,2 Y

(2h+k−1)
1,2

))
1{

Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=T (π)

})

= c
T (π),2
2h+1−i,2h+1−k.
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The third relation is given by the following calculation. It holds

cπ,2i,k = E

(Y (i)
1,2Y

(k)
1,2 − E

(
Y

(i)
1,2Y

(k)
1,2

))
1{

Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=π
}

=



E
((

Y
(h+1−i)

1,2 Y
(h+1−k)

1,2 − E
(
Y

(h+1−i)
1,2 Y

(h+1−k)
1,2

))
×1{

Π̃
(
−Y (1)

h
,...,−Y (1)

1

)
=Π̃
(
−Y (2)

h
,...,−Y (2)

1

)
=π
}), if i, k = 1, . . . , h,

E
((

Y
(h+1−i)

1,2 Y
(3h+1−k)

1,2 − E
(
Y

(h+1−i)
1,2 Y

(3h+1−k)
1,2

))
×1{

Π̃
(
−Y (1)

h
,...,−Y (1)

1

)
=Π̃
(
−Y (2)

h
,...,−Y (2)

1

)
=π
}), if i = 1, . . . , h, k = h+ 1, . . . , 2h,

E
((

Y
(3h+1−i)

1,2 Y
(h+1−k)

1,2 − E
(
Y

(3h+1−i)
1,2 Y

(h+1−k)
1,2

))
×1{

Π̃
(
−Y (1)

h
,...,−Y (1)

1

)
=Π̃
(
−Y (2)

h
,...,−Y (2)

1

)
=π
}), if i = h+ 1, . . . , 2h, k = 1, . . . , h,

E
((

Y
(3h+1−i)

1,2 Y
(3h+1−k)

1,2 − E
(
Y

(3h+1−i)
1,2 Y

(3h+1−k)
1,2

))
×1{

Π̃
(
−Y (1)

h
,...,−Y (1)

1

)
=Π̃
(
−Y (2)

h
,...,−Y (2)

1

)
=π
}), if i, k = h+ 1, . . . , 2h

= E
((

Y
(b i−1

h c2h+h+1−i)
1,2 Y

(b k−1
h c2h+h+1−k)

1,2 − E
(
Y

(b i−1
h c2h+h+1−i)

1,2 Y
(b k−1

h c2h+h+1−k)
1,2

))

× 1{
Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=T (π)

})

= c
T (π),2
b i−1

h c2h+h+1−i,b k−1
h c2h+h+1−k,

using (I) and (III).

Finally, the last equation is proven in the following way: recall that in (IV) only the or-
der of the two h-dimensional vectors is changed, but no changes happen to the indices of the
random variables within each vector.
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It holds

cπ,2i,k = E

(Y (i)
1,2Y

(k)
1,2 − E

(
Y

(i)
1,2Y

(k)
1,2

))
1{

Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=π
}

=



E
((

Y
(i+h)

1,2 Y
(k+h)

1,2 − E
(
Y

(i+h)
1,2 Y

(k+h)
1,2

))
×1{

Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=π
}), if i, k = 1, . . . , h,

E
((

Y
(i+h)

1,2 Y
(k−h)

1,2 − E
(
Y

(i+h)
1,2 Y

(k−h)
1,2

))
×1{

Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=π
}), if i = 1, . . . , h and k = h+ 1, . . . , 2h,

E
((

Y
(i−h)

1,2 Y
(k+h)

1,2 − E
(
Y

(i−h)
1,2 Y

(k+h)
1,2

))
×1{

Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=π
}), if i = h+ 1, . . . , 2h and k = 1, . . . , h,

E
((

Y
(i−h)

1,2 Y
(k−h)

1,2 − E
(
Y

(i−h)
1,2 Y

(k−h)
1,2

))
×1{

Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=π
}), if i, k = h+ 1, . . . , 2h,

= E
((

Y
(i+(−1)b

i−1
h ch)

1,2 Y
(k+(−1)b

k−1
h ch)

1,2 − E
(
Y

(i+(−1)b
i−1
h ch)

1,2 Y
(k+(−1)b

k−1
h ch)

1,2

))

× 1{
Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=π
})

= cπ,2

i+(−1)b
i−1
h ch,k+(−1)b

k−1
h ch

.

�

We apply these results to ci,k in the following. In order to do so, we recall Definition 4.5: S[2],h

is the set of permutations, where each permutation is generating a different reversion group
with two elements. Analogously, S[4],h is the set of permutations where each element generates
reversion groups having the cardinality four. Then,

Sh =
⋃

π∈S[2],h

{π,S(π)} ∪
⋃

π∈S[4],h

{π,S(π), T (π), T ◦ S(π))} .

Recall that Sh 6= S[2],h ∪ S[4],h. In the general case we obtain

ci,k =
∑
π∈Sh

cπ,2i,k

=
∑

π∈S[2],h

cπ,2i,k + c
S(π),2
i,k +

∑
π∈S[4],h

cπ,2i,k + c
S(π),2
i,k + c

T (π),2
i,k + c

T ◦S(π),2
i,k

= 2
∑

π∈S[2],h

cπ,2i,k + 2
∑

π∈S[4],h

cπ,2i,k + c
T (π),2
i,k .
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Using Condition (II) in (4.15), it holds

ci,k = 2
∑

π∈S[2],h

cπ,2i,k + 2
∑

π∈S[4],h

cπ,2i,k + cπ,22h+1−i,2h+1−k.

With Condition (III) in (4.16), we get

ci,k = 2
∑

π∈S[2],h

cπ,2i,k + 2
∑

π∈S[4],h

cπ,2i,k + cπ,2b i−1
h c2h+h+1−i,b k−1

h c2h+h+1−k

for i, k = 1, . . . , 2h.
Combining conditions (II) and (III) does not yield a further simplification in terms of the
reversion groups and is, therefore, omitted. However, since we have seen that in the cases (II)
and/or (III) determining one matrix of second-order Hermite coefficients for one fixed pattern
of each reversion group is sufficient to obtain the limit variance, we turn to the calculation of
this explicit matrix. We figure out under which of the above used assumptions we do not need
to determine all (2h)2-entries of the matrix Cπ,2, but can reduce this number. This yields a
reduction of the computational effort, since each entry of the matrix is a (2h)-dimensional inte-
gral. Evaluating such an integral has a certain computational cost that increases with increasing h.

We turn to the calculcation of the second-order Hermite coefficient matrix Cπ,2:

Example 4.30 For the reader’s convenience, we consider the case h = 2. In the most general
setting, we have the following representation of the matrix Cπ,2:

Cπ,2 =


cπ,21,1 cπ,21,2 cπ,21,3 cπ,21,4
cπ,21,2 cπ,22,2 cπ,22,3 cπ,22,4
cπ,21,3 cπ,22,3 cπ,23,3 cπ,23,4
cπ,21,4 cπ,22,4 cπ,23,4 cπ,24,4

 ,

where the symmetry of the matrix follows from

cπ,2i,k = E

(Y (i)
1,2Y

(k)
1,2 − E

(
Y

(i)
1,2Y

(k)
1,2

))
1{

Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=π
}

= E

(Y (k)
1,2 Y

(i)
1,2 − E

(
Y

(i)
1,2Y

(k)
1,2

))
1{

Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=π
}

= cπ,2k,i .

The number of different entries of this matrix can be reduced in the case #π̄ = 4 if Conditions
(II) and (III) are fulfilled. Following (4.20) we obtain

Cπ,2 =


cπ,21,1 cπ,21,2 cπ,21,3 cπ,21,4
cπ,21,2 cπ,22,2 cπ,21,4 cπ,22,4
cπ,21,3 cπ,21,4 cπ,21,1 cπ,21,2
cπ,21,4 cπ,22,4 cπ,21,2 cπ,22,2

 .
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Hence, the number of different entries was reduced from 10 to 6.
A different simplification can be obtained in the case that #π̄ = 2, where T ◦ S(π) = π.
By Condition (II) we get

Cπ,2 =


cπ,21,1 cπ,21,2 cπ,21,3 cπ,21,4
cπ,21,2 cπ,22,2 cπ,22,3 cπ,21,3
cπ,21,3 cπ,22,3 cπ,22,2 cπ,21,2
cπ,21,4 cπ,21,3 cπ,21,2 cπ,21,1

 ,

while, if Condition (III) holds, we obtain

Cπ,2 =


cπ,21,1 cπ,21,2 cπ,21,3 cπ,21,4
cπ,21,2 cπ,21,1 cπ,21,4 cπ,21,3
cπ,21,3 cπ,21,4 cπ,23,3 cπ,23,4
cπ,21,4 cπ,21,3 cπ,23,4 cπ,23,3

 .

Hence, in both cases for #π̄ = 2, we reduce the number of different matrix entries from 10 to 6.
By combining conditions (II) and (III), we get the most convenient (and most restrictive) case,
where

Cπ,2 =


cπ,21,1 cπ,21,2 cπ,21,3 cπ,21,4
cπ,21,2 cπ,21,1 cπ,21,4 cπ,21,3
cπ,21,3 cπ,21,4 cπ,21,1 cπ,21,2
cπ,21,4 cπ,21,3 cπ,21,2 cπ,21,1

 .

This improves the reduction from 10 to 4 different matrix entries.

It is possible to generalize the reductions to h ∈ N. First, note that the number of entries in the
matrix Cπ,2 is given by (2h)2. Using the general symmetry of the matrix, we need to determine
2h(2h+1)

2 = h(2h + 1) entries. We imagine that we divide Cπ,h into four h × h block matrices,
namely

Cπ,h =
(
Cπ,h,1 Cπ,h,2

Cπ,h,3 Cπ,h,4

)
,

such that Cπ,h,p = (ci,j)i=b p3ch+1,...,b p3ch+h,j=((p+1) mod 2)h+1,...,((p+1) mod 2)h+h, p = 1, 2, 3, 4.
If (II) and (III) are fulfilled and we have #π̄ = 4, we see that each of these block matrices is
symmetric and that we only need to determine the entries of two of them. Therefore, we end up
with 2h(h+1)

2 = h(h+ 1) entries to calculate.

If #π̄ = 2 the same idea can be applied. If Condition (II) holds, the matrix C is additionally
persymmetric as it is described in (4.20). Therefore, it is again sufficient to determine two of
the block matrices above, namely Cπ,h,1 and Cπ,h,2. The block matrix Cπ,h,1 with entries ci,j ,
i, j = 1, . . . , h, is symmetric. However, Cπ,h,2 is still persymmetric. Therefore, we need to identify
2h(h+1)

2 = h(h+ 1) different entries.

Assuming Condition (III) holds, we need to distinguish between the block matrices. For Cπ,h,1
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with entries ci,j , i, j = 1, . . . , h, we have to calculate 1+ . . .+h entries if h is odd and 2+ . . .+h if
h is even by (4.20), since this matrix is both symmetric and persymmetric. This yields h

2

(
h
2 + 1

)
calculations if h is even and

(
h+1

2

)2
if h is odd. Note that this is the number of calculations to

obtain Cπ,h,1 as well as Cπ,h,4 with entries ci,j , i, j = h+ 1, . . . , 2h. Due to symmetry, the last
block matrix we need to study is Cπ,h,2 with entries ci,j , i = 1, . . . , h, j = h + 1, . . . , 2h. This
case is different from Cπ,h,1, since we have no symmetry property of ci,j within the block matrix.
However, the property derived in (4.20) still holds and we arrive at h

2h entries to be determined
if h is even and at h−1

2 (h+ 1) + 1 if h is odd. Taking all these formulas into consideration, in
case Condition (III) holds, we arrive at h

(
h
2 + 1

)
+ h

2h = h(h+ 1) entries to identify if h is even

and at 2
(
h+1

2

)2
+ h−1

2 (h+ 1) + 1 = h2 + h+ 1 if h is odd.

In the last and most restrictive case conditions (II) and (III) hold. Here, we only need to distin-
guish between the first two block matrices Cπ,h,1 and Cπ,h,2, since Cπ,h,4, given by (ci,j)i,j=h+1...,2h,
coincides with Cπ,h,1. Therefore, we arrive at 3h2+2h+3

4 matrix entries to be calculated if h is
odd and 3h2+2h

4 entries if h is even.

Table 4.1 gives an overview of the number of (2h)-dimensional integrals that we need to calculate
in each of the considered cases in order to determine the matrix C of second order Hermite
coefficients for the estimator of coincident patterns.

Recall that ah denotes the number of reversion groups π̄ in Sh with two elements and, corre-
spondingly, bh is the number of reversion groups with four elements, as introduced in Section 4.1.
If h is odd, we have

ah =
(
h+ 1

2

)
!2
h−1

2 ,

bh =
(h+ 1)!− 2

(
h+1

2

)
!2h−1

2

4 ,

and ah = ah−1, bh = (h+1)!−2ah−1
4 = (h+1)!−2(h2 )!2

h−2
2

4 if h is even. Without requiring any of
the symmetry properties, the number of integrals needed to calculate the matrix C is given
by (h+ 1)!(2h)2, since #Sh = (h+ 1)! and each matrix Cπ,2 has (2h)2 entries. The following
example shows the reduction possibilities by taking the symmetry properties into account.

Example 4.31 If h = 2 and conditions (II) and (III) hold, we need to calculate 10 four-
dimensional integrals. In the case without any symmetries considered, we would have needed 96.
If h = 3 and conditions (II) and (III) hold, we have to evaluate 84 six-dimensional integrals,
while the most general case requires 864.
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(I)
Formula for i, k = 1, . . . , 2h ci,k = 2∑π∈S[2],h

cπ,2i,k + 2∑π∈S[4],h
cπ,2i,k + c

T (π),2
i,k

Calculations needed for Cπ,2 if π ∈ S[2],h h(2h+ 1)
Calculations needed for Cπ,2 if π ∈ S[4],h h(2h+ 1)
Number of integrals needed to determine C (ah + 2bh)h(2h+ 1)

(II)
Formula for i, k = 1, . . . , 2h ci,k = 2∑π∈S[2],h

cπ,2i,k + 2∑π∈S[4],h
cπ,2i,k + cπ,22h+1−i,2h+1−k

Calculations needed for Cπ,2 if π ∈ S[2],h h(h+ 1)
Calculations needed for Cπ,2 if π ∈ S[4],h h(2h+ 1)
Number of integrals needed to determine C ahh(h+ 1) + bhh(2h+ 1)

(III)
Formula for i, k = 1, . . . , 2h ci,k = 2∑π∈S[2],h

cπ,2i,k + 2∑π∈S[4],h
cπ,2i,k + cπ,2b i−1

h c2h+h+1−i,b k−1
h c2h+h+1−k

Calculations needed for Cπ,2 if π ∈ S[2],h h2 + h+ (h mod 2)
Calculations needed for Cπ,2 if π ∈ S[4],h h(2h+ 1)
Number of integrals needed to determine C ah

(
h2 + h+ (h mod 2)

)
+ bhh(2h+ 1)

(IV)
Formula for i, k = 1, . . . , 2h same as in (III)
Calculations needed for Cπ,2 if π ∈ S[2],h

3h2+2h+3(h mod 2)
4

Calculations needed for Cπ,2 if π ∈ S[4],h h(h+ 1)
Number of integrals needed to determine C ah

3h2+2h+3(h mod 2)
4 + bhh(h+ 1)

Table 4.1: Number of (2h)-dimensional integrals needed to determine the matrix of second order Hermite coefficients of the estimator of ordinal
pattern probabilities.
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Comparing the number of integrals for general h ∈ N, we see that if we exploit the symmetry of
C and property (I) (which is no additional assumption) we already obtain

(ah + 2bh)h(2h+ 1)
(h+ 1)!(2h)2 = 1

4 + 1
8h.

Therefore, the computational effort is approximately reduced by 1
4 . In the optimized case, where

conditions (II) and (III) hold, we even reduce the number of integrals by a considerable factor as
shown in Figure 4.7. In this figure, the reduction factor is provided for increasing h ∈ N.

Figure 4.7: Factor of reduced computational time for the second order Hermite coefficients of p̂n.

We are now able to compute C, and hence turn to the computation of α. Note that the
symmetries described in (4.20) combined with the formulas given in Table 4.1 imply that these
symmetries can be transfered to ci,k, i, k = 1, . . . , 2h, such that we obtain the following results
for i, k = 1, . . . , 2h:

ci,k = c2h+1−i,2h+1−k, (II),
ci,k = cb i−1

h c2h+h+1−i,b k−1
h c2h+h+1−k, (III),

ci,k = c
i+(−1)b

i−1
h ch,k+(−1)b

k−1
h ch

, (II), (III). (4.21)

Recall the last three matrices in Example 4.30, which display the entries of Cπ,2 in the case
π = T ◦ S(π). Following the symmetries (4.21), we are in the same situation. The last three
matrices in Example 4.30 without π as index display the entries of the matrix C in case h = 2
under the given assumptions (II), (III) or (II) combined with (III), respectively. The symmetries
in (4.21) have no impact on the number of integrals needed to determine the matrix C, since
they were already included in the results above. However, while calculating the matrix α, they
appear to be helpful. Therefore, we have to take a closer look at the matrix α, and want to
deduce the values of α̃(p,q) for p, q = 1, 2. Note that the following holds:

α = Σ−1
2,hCΣ−1

2,h

= Σ−1
2,h

2
∑

π∈S[2],h

Cπ,2 + 2
∑

π∈S[4],h

(
Cπ,2 + CT (π),2

)Σ−1
2,h

= 2
∑

π∈S[2],h

Σ−1
2,hC

π,2Σ−1
2,h + 2

∑
π∈S[4],h

Σ−1
2,hC

π,2Σ−1
2,h + Σ−1

2,hC
T (π),2Σ−1

2,h

= 2
∑

π∈S[2],h

απ,2 + 2
∑

π∈S[4],h

απ,2 + αT (π),2, (4.22)
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where

απ,2 := Σ−1
2,hC

π,2Σ−1
2,h

is the matrix of second order Hermite coefficients for one fixed π multiplied with the inverse of
the covariance matrix Σ−1

2,h from both sides.
We concentrate on απ,2 and derive relations similar to those in Lemma 4.29.

Lemma 4.32 For the values of

α̃
(p,q)
π,2 =

h∑
i,k=1

απ,2(p−1)h+i,(q−1)h+k, p, q = 1, 2,

we can deduce the following equalities:

α̃
(p,q)
π,2 = α̃

(3−p,3−q)
T (π),2 , (II)

α̃
(p,q)
π,2 = α̃

(p,q)
T (π),2, (III)

α̃
(1,1)
π,2 = α̃

(2,2)
π,2 . (II) + (III)

Proof. Recall that Σ−1
2,h = (gi,j)i,j=1,...,2h. In general, the following holds for p, q = 1, 2:

α̃
(p,q)
π,2 =

h∑
i,k=1

απ,2(p−1)h+i,(q−1)h+k)

=
h∑

i,k=1

2h∑
j,l=1

g(p−1)h+i,lgj,(q−1)h+kc
π,2
j,l

=
2h∑
j,l=1

(
h∑
i=1

g(p−1)h+i,l

)(
h∑
k=1

gj,(q−1)h+k

)
cπ,2j,l . (4.23)

The first equality follows, since Condition (II) yields cπ,2i,k = c
T (π),2
2h+1−i,2h+1−k and Σ−1

2,h is persym-
metric such that gi,j = g2h+1−i,2h+1−j :

α̃
(p,q)
T (π),2 =

2h∑
j,l=1

(
h∑
i=1

g(p−1)h+i,l

)(
h∑
k=1

gj,(q−1)h+k

)
c
T (π),2
j,l

=
2h∑
j,l=1

(
h∑
i=1

g2h+1−i−(p−1)h,2h+1−l

)(
h∑
k=1

g2h+1−j,2h+1−k−(q−1)h

)
cπ,22h+1−j,2h+1−l

=
2h∑
j,l=1

(
h∑
i=1

g(3−p)h+1−i,l

)(
h∑
k=1

gj,(3−q)h+1−k

)
cπ,2j,l

=
2h∑
j,l=1

(
h∑
i=1

g(2−p)h+i,l

)(
h∑
k=1

gj,(2−q)h+k

)
cπ,2j,l

= α̃
(3−p,3−q)
π,2 .

By Condition (III) it holds that gi+(p−1)h,j = gh+1−i+(p−1)h,h+1−j if j = 1, . . . , h and gi+(p−1)h,j =
gh+1−i+(p−1)h,3h+1−j if j = h+ 1, . . . , 2h. We get

α̃
(p,q)
T (π),2 =

2h∑
j,l=1

(
h∑
i=1

g(p−1)h+i,l

)(
h∑
k=1

gj,(q−1)h+k

)
c
T (π),2
j,l
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=
h∑

j,l=1

(
h∑
i=1

g(p−1)h+i,l

)(
h∑
k=1

gj,(q−1)h+k

)
c
T (π),2
j,l

+
h∑
j=1

2h∑
l=h+1

(
h∑
i=1

g(p−1)h+i,l

)(
h∑
k=1

gj,(q−1)h+k

)
c
T (π),2
j,l

+
2h∑

j=h+1

h∑
l=1

(
h∑
i=1

g(p−1)h+i,l

)(
h∑
k=1

gj,(q−1)h+k

)
c
T (π),2
j,l

+
2h∑

j,l=h+1

(
h∑
i=1

g(p−1)h+i,l

)(
h∑
k=1

gj,(q−1)h+k

)
c
T (π),2
j,l

=
h∑

j,l=1

(
h∑
i=1

gh+1−i+(p−1)h,h+1−l

)(
h∑
k=1

gh+1−j,h+1−k+(q−1)h

)
cπ,2h+1−j,h+1−l

+
h∑
j=1

2h∑
l=h+1

(
h∑
i=1

gh+1−i+(p−1)h,3h+1−l

)(
h∑
k=1

gh+1−j,h+1−k+(q−1)h

)
cπ,2h+1−j,3h+1−l

+
2h∑

j=h+1

h∑
l=1

(
h∑
i=1

gh+1−i+(p−1)h,h+1−l

)(
h∑
k=1

g3h+1−j,h+1−k+(q−1)h

)
cπ,23h+1−j,h+1−l

+
2h∑

j,l=h+1

(
h∑
i=1

gh+1−i+(p−1)h,3h+1−l

)(
h∑
k=1

g3h+1−j,h+1−k+(q−1)h

)
cπ,23h+1−j,3h+1−l

=
h∑

j,l=1

(
h∑
i=1

gi+(p−1)h,h+1−l

)(
h∑
k=1

gh+1−j,k+(q−1)h

)
cπ,2h+1−j,h+1−l

+
h∑
j=1

2h∑
l=h+1

(
h∑
i=1

gi+(p−1)h,3h+1−l

)(
h∑
k=1

gh+1−j,k+(q−1)h

)
cπ,2h+1−j,3h+1−l

+
2h∑

j=h+1

h∑
l=1

(
h∑
i=1

gi+(p−1)h,h+1−l

)(
h∑
k=1

g3h+1−j,k+(q−1)h

)
cπ,23h+1−j,h+1−l

+
2h∑

j,l=h+1

(
h∑
i=1

gi+(p−1)h,3h+1−l

)(
h∑
k=1

g3h+1−j,k+(q−1)h

)
cπ,23h+1−j,3h+1−l

=
h∑

j,l=1

(
h∑
i=1

gi+(p−1)h,l

)(
h∑
k=1

gj,k+(q−1)h

)
cπ,2j,l

+
h∑
j=1

2h∑
l=h+1

(
h∑
i=1

gi+(p−1)h,l

)(
h∑
k=1

gj,k+(q−1)h

)
cπ,2j,l

+
2h∑

j=h+1

h∑
l=1

(
h∑
i=1

gi+(p−1)h,l

)(
h∑
k=1

gj,k+(q−1)h

)
cπ,2j,l

+
2h∑

j,l=h+1

(
h∑
i=1

gi+(p−1)h,l

)(
h∑
k=1

gj,k+(q−1)h

)
cπ,2j,l

= α̃
(p,q)
π,2 .

Combining both results, we obtain α̃(1,1)
π,2 = α̃

(2,2)
π,2 if (II) and (III) are fulfilled. �
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Finally, we apply the previous results to compute α̃(p,q) for p, q = 1, 2.
In general, we have

α̃(p,q) = 2
∑

π∈S[2],h

α̃
(p,q)
π,2 + 2

∑
π∈S[4],h

α̃
(p,q)
π,2 + α̃

(p,q)
T (π),2. (4.24)

If additionally (II) holds, we obtain

α̃(p,q) = 2
∑

π∈S[2],h

α̃
(p,q)
π,2 + 2

∑
π∈S[4],h

α̃
(p,q)
π,2 + α̃

(3−p,3−q)
π,2 . (4.25)

Therefore,

α̃(1,1) = α̃(2,2).

In case (III) holds, we have

α̃(p,q) = 2
∑

π∈S[2],h

α̃
(p,q)
π,2 + 4

∑
π∈S[4],h

α̃
(p,q)
π,2 . (4.26)

Finally, in case (IV) is fulfilled the last two properties are combined.
Note that symmetry properties analogous to those for the last three matrices in Example 4.30
hold for α. In case h = 2 and Condition (III) holds, it is even sufficient to calculate two entries
of each block matrix, respectively, to determine the limit variance. This reduction property is
already displayed in Table 4.1.

It is possible to obtain closed formulas for the asymptotic variance for h = 1 as the following
example shows:

Example 4.33 We focus on the case h = 1 and consider the underlying process (Yj,1)j∈Z =(
Y

(1)
j , Y

(2)
j

)
j∈Z

. It is possible to determine the asymptotic variance depending on the correlation

r(1,2)(0) between these two increment variables.
We start with the calculation of the second order Hermite coefficients in the case π = (1, 0). This
corresponds to the event

{
Y

(1)
j ≥ 0, Y (2)

j ≥ 0
}
, which yields

cπ,21,1 = E

((Y (1)
j

)2
− 1

)
1{

Y
(1)
j ≥0,Y (2)

j ≥0
}

and

cπ,21,2 = E

(Y (1)
j Y

(2)
j

)
1{

Y
(1)
j ≥0,Y (2)

j ≥0
} .

Due to r(1,2)(0) = r(2,1)(0), we have
(
Y

(1)
j , Y

(2)
j

) D= (
Y

(2)
j , Y

(1)
j

)
and, therefore, cπ,21,1 = cπ,22,2 . We

identify the second order Hermite coeficients as the ones already calculated in Example 4.21,
although we are considering two consecutive increments of a univariate Gaussian process there.
However, since the corresponding values are only determined by the correlation between the

105



Gaussian variables, we can simply replace the autocorrelation at lag 1 by the cross-correlation at
lag 0. Hence, we obtain

cπ,21,1 = ϕ2(0)r(1,2)(0)
√

1−
(
r(1,2)(0)

)2
,

cπ,21,2 = ϕ2(0)
√

1−
(
r(1,2)(0)

)2
.

Recall that the inverse Σ−1
2,1 = (gi,j)i,j=1,2 of the correlation matrix of

(
Y

(1)
j , Y

(2)
j

)
is given by

Σ−1
2,1 = 1

1−
(
r(1,2)(0)

)2
(

1 −r(1,2)(0)
−r(1,2)(0) 1

)
.

By using the formula for α̃(p,q) obtained in (4.23), we derive

α̃
(1,1)
π,2 = απ,21,1 =

(
g2

1,1 + g2
1,2

)
cπ,21,1 + 2g1,1g1,2c

π,2
1,2 ,

α̃
(1,2)
π,2 = απ,21,2 =

(
g2

1,1 + g2
1,2

)
cπ,21,2 + 2g1,1g1,2c

π,2
1,1 .

Plugging the second order Hermite cofficients and the entries of the inverse of the covariance
matrix depending on r(1,2)(0) into the formulas, we arrive at

α̃
(1,1)
π,2 = −ϕ2(0)r(1,2)(0)(

1−
(
r(1,2)(0)

)2)1/2

and

α̃
(1,2)
π,2 = ϕ2(0)(

1−
(
r(1,2)(0)

)2)1/2 .

Therefore, in the case h = 1, we obtain the following factors in the limit variance in Theorem
4.26:

α̃(1,1) = α̃(2,2) = −2ϕ2(0)r(1,2)(0)(
1−

(
r(1,2)(0)

)2)1/2

α̃(1,2) = α̃(2,1) = 2ϕ2(0)(
1−

(
r(1,2)(0)

)2)1/2 .

Remark 4.34 In the case h = 2, it is not possible to derive closed formulas since the second
order Hermite coefficients are integrals whose solutions need orthant probabilities of the four-
dimensional Gaussian distribution. Unfortunately, no closed formulas are available for this
dimension, see [1]. Nonetheless, we developed Matlab algorithms cHR2 and HR2LimVar, that
yield the limit variance in Theorem 4.26, following the efficiency criterions we derived in this
section to keep the computational cost low. The Matlab algorithms are described in Section A.3.
Exemplarily, assuming that (II) and (III) hold, we have a computational cost of 38 seconds, while
in the case where no symmetry properties at all are taken into consideration, we need 8 minutes
and 24 seconds.
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4.3.2 Limit theorem for the estimator of p in case of short-range dependence

In this section, we focus on the case that d∗ ∈ (−∞, 0) ∪
(
0, 1

4

)
. If d∗ ∈

(
0, 1

4

)
, we are still

dealing with a long-range dependent multivariate Gaussian process (Yj,h)j∈Z. However, the
transformed process p̂n− p is no longer long-range dependent, since we are considering a function
with Hermite rank 2, see also Table 2.1. Otherwise, if d∗ ∈ (−∞, 0), the process (Yj,h)j∈Z itself is
already short-range dependent, since the cross-correlations are summable. Therefore, we obtain
the following central limit theorem by applying Remark 3.15.

Theorem 4.35 Under the assumptions in (S) in Overview 4.24, we obtain

n
1
2 (p̂n − p) D−→ N

(
0, σ2

)
with

σ2 =
∞∑

k=−∞
E
[1{

Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)} − p


×

1{
Π̃
(
Y

(1)
1+k,...,Y

(1)
h+k

)
=Π̃
(
Y

(2)
1+k,...,Y

(2)
h+k

)} − p
].

We already proved limit theorems for the estimator p̂n of coincident patterns for multivariate
Gaussian processes in the long-range dependent, the short-range dependent, as well as in the
mixed setting. What remains to do is the estimation of the other parameters q and subsequently
OPD as given in the definition of ordinal pattern dependence in (4.13), to get asymptotic results
for estimators of OPD in the end.

4.3.3 Limit theorems for estimators of q

In this part of the thesis, we concentrate on q as defined in (4.12) that represents the hypothetical
case of independence between the time series

(
Y

(1)
j

)
j∈Z

and
(
Y

(2)
j

)
j∈Z

in the context of ordinal
pattern dependence. However, of in our setting, these time series are not independent. We take
a closer look at the definition of q:

q =
∑
π∈Sh

P
(
Π
(
X

(1)
0 , . . . , X

(1)
h

)
= π

)
P
(
Π
(
X

(2)
0 , . . . , X

(2)
h

)
= π

)
(4.27)

=
∑
π∈Sh

P
(
Π̃
(
Y

(1)
1 , . . . , Y

(1)
h

)
= π

)
P
(
Π̃
(
Y

(2)
1 , . . . , Y

(2)
h

)
= π

)
(4.28)

=
∑
π∈Sh

qY (1)(π)qY (2)(π), (4.29)

where qY (p)(π) = P
(
Π̃
(
Y

(p)
1 , . . . , Y

(p)
h

)
= π

)
, p = 1, 2.

We already derived asymptotic results for the estimators q̂n,Y (p)(π) of qY (p)(π), for p = 1, 2, in
Section 4.2.1. These estimators only rely on the univariate case. In order to determine the
asymptotic distribution of an estimator of q, we take advantage of the approach used in [58],
Section 2.4 and use the plug-in estimator of q, given by

q̂n =
∑
π∈Sh

q̂Y (1),n(π)q̂Y (2),n(π).
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In order to derive asymptotic results for this estimator, it is not sufficient to know the marginal
asymptotic distributions of q̂Y (1),n(π)− qY (1)(π) and q̂Y (2),n(π)− qY (2)(π) as given in Theorem
4.13. Instead we need to determine the limit behaviour of the joint vector((

q̂Y (1),n(π)− qY (1)(π)
)
π∈Sh

,
(
q̂Y (1),n(π)− qY (1)(π)

)
π∈Sh

)t
.

Before turning to the investigation of this joint convergence, we justify, why we may apply
the techniques in the proofs of Theorem 3.3 and Theorem 3.10 for vectors of several functions
f1, . . . , fk, k ∈ N all with equal Hermite rank. We define

g (Yj,h) :=

 n∑
j=1

f1 (Yj,h) , . . . ,
n∑
j=1

fk (Yj,h)

t

and by applying the continuous mapping theorem to (3.14), we derive n∑
j=1

f1 (Yj,h) , . . . ,
n∑
j=1

fk (Yj,h)

t D=
 n∑
j=1

f1 (AUj,h) , . . . ,
n∑
j=1

fk (AUj,h)

t . (4.30)

Hence, the equalities in distribution in the proofs hold componentwisely. We turn to the joint
convergence result.

Theorem 4.36 We assume (L1) in Overview 4.24 holds. Let An = (an,i,i)i=1,...,2(h+1)! be a
diagonal matrix with entries

an,i,i = n−d1+ 1
2 , for i = 1, . . . , (h+ 1)!,

and

an,i,i = n−d2+ 1
2 , for i = (h+ 1)! + 1, . . . , 2(h+ 1)!.

Then,

An

((
q̂Y (1),n(π)− qY (1)(π)

)
π∈Sh

,
(
q̂Y (2),n(π)− qY (2)(π)

)
π∈Sh

)t
D−→
((
α̃(1)
π Y (1)

)
π∈Sh

,
(
α̃(2)
π Y (2)

)
π∈Sh

)t
(4.31)

with ((
α̃(1)
π Y (1)

)
π∈Sh

,
(
α̃(2)
π Y (2)

)
π∈Sh

)t
∼ N (0,Σ) .

Furthermore,

Σ = A

(
Lp,q + Lq,p

(dp + dq)(1 + dp + dq)

)
p,q=1,2

At,

where A =



α̃
(1)
π1 0
...

...
α̃

(1)
π(h+1)! 0

0 α̃
(2)
π1

...
...

0 α̃
(2)
π(h+1)!


. The values of α̃(p)

π , π ∈ Sh and p = 1, 2, are given in Theorem

4.13.
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Proof. Note that for each entry of the vector on the left-hand side of (4.31), we use (3.20) in
the case d = 1 and derive(

n
(
q̂Y (1),n(π)− qY (1)(π)

)
π∈Sh

, n
(
q̂Y (1),n(π)− qY (1)(π)

)
π∈Sh

)t
D=

α̃(1)
π

n∑
j=1

Y
(1)
j + oP

(
nd1+1/2

)
π∈Sh

,

α̃(2)
π

n∑
j=1

Y
(2)
j + oP

(
nd2+1/2

)
π∈Sh

t

=A

 n∑
j=1

Y
(1)
j ,

n∑
j=1

Y
(2)
j

t +Rn,

where

A =



α̃
(1)
π1 0
...

...
α̃

(1)
π(h+1)! 0

0 α̃
(2)
π1

...
...

0 α̃
(2)
π(h+1)!


and Rn is the vector of remainders. Since for each entry Rn,i it holds that Ri = oP

(
nd1+1/2

)
if

i = 1, . . . , (h+ 1)! and Ri = oP
(
nd2+1/2

)
if i = 1 + (h+ 1)!, . . . , 2(h+ 1)!, we have

Ann
−1Rn

P−→ (0, . . . , 0)t .

Following [31], Theorem 2, we have

(
n−d1− 1

2 0
0 n−d2− 1

2

) n∑
j=1

Y
(1)
j ,

n∑
j=1

Y
(2)
j

t D−→ (
Y (1), Y (2)

)t
,

where
(
Y (1), Y (2)

)t
∼ N

(
0, Σ̃

)
and

Σ̃ =
(

Lp,q + Lq,p
(dp + dq)(1 + dp + dq)

)
p,q=1,2

Note that Σ̃ is positive definite, because L is positive definite. We can apply the multivariate
version of Slutzsky’s Theorem, see Lemma 6.3 in [13]. Hence, we obtain

A

(
n−d1− 1

2 0
0 n−d2− 1

2

) n∑
j=1

Y
(1)
j ,

n∑
j=1

Y
(2)
j

t +Rn
D−→ N (0,Σ) ,

with Σ = AΣ̃At.
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Combining all results, we arrive at

An

((
q̂Y (1),n(π)− qY (1)(π)

)
π∈Sh

,
(
q̂Y (2),n(π)− qY (2)(π)

)
π∈Sh

)t

= Ann
−1A

 n∑
j=1

Y
(1)
j ,

n∑
j=1

Y
(2)
j

t +Rn

= A

(
n−d1− 1

2 0
0 n−d2− 1

2

) n∑
j=1

Y
(1)
j ,

n∑
j=1

Y
(2)
j

t +Rn

D−→ N (0,Σ) ,

since Ann−1A = A

(
n−d1− 1

2 0
0 n−d2− 1

2

)
. �

To get a limit distribution for q̂n by using the multivariate delta method, we may not allow for
a normalization depending on p = 1, 2 as it is given in the matrix An in Theorem 4.36, since
we need to apply a scalar-valued function to the vector on the left-hand side in (4.31) before
normalization. Therefore, we need the same normalization value for each vector entry and recall
P ∗ and d∗ as given in (3.10).

Corollary 4.37 The following statements hold:

(i) Let (L1) in Overview 4.24 hold with d1 = d2. Then,

n−d1+ 1
2

((
q̂Y (1),n(π)− qY (1)(π)

)
π∈Sh

,
(
q̂Y (2),n(π)− qY (2)(π)

)
π∈Sh

)t
D−→
((
α̃(1)
π Y (1)

)
π∈Sh

,
(
α̃(2)
π Y (2)

)
π∈Sh

)t
,

with
((
α̃

(1)
π Y (1)

)
π∈Sh

,
(
α̃

(2)
π Y (2)

)
π∈Sh

)t
∼ N (0,Σ) and Σ as given in Theorem 4.36.

(ii) Under the assumptions in (L1s) with d∗ = d1, it holds that

n−d
∗+ 1

2

((
q̂Y (1),n(π)− qY (1)(π)

)
π∈Sh

,
(
q̂Y (2),n(π)− qY (2)(π)

)
π∈Sh

)t
D−→
((
α̃(1)
π Y

)
π∈Sh

, 0, . . . , 0
)
,

where Y ∼ N (0, σ2) with σ2 = L1,1
d1(1+2d1) and α̃(1)

π , π ∈ Sh, as given in Theorem 4.13.

Proof. Statement (i) is an immediate consequence of Theorem 4.36, since the matrix An is a
diagonal matrix with identical entries.
In Setting (ii), we can conclude from

(
n−d1− 1

2 0
0 n−d2− 1

2

) n∑
j=1

Y
(1)
j ,

n∑
j=1

Y
(2)
j

t D−→ N (0, Σ̃
)
,
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with Σ̃ =
(

Lp,q+Lq,p
(dp+dq)(1+dp+dq)

)
p,q=1,2

, that for d2 < d1 but d2 ∈
(
0, 1

2

)
, we have

n−d1− 1
2

 n∑
j=1

Y
(1)
j ,

n∑
j=1

Y
(2)
j

t D−→ (
N
(
0, σ2

)
, 0
)t
,

with σ2 = L1,1
d1(1+2d1) .

Note that in the case d2 < 0, the term n−d2−1/2 is not the correct normalization factor, but
taking the classical convergence rate n− 1

2 as normalization yields a non-trivial result. However,(
d1 + 1

2

)
> 1

2 and, therefore, the above result holds if
(
Y

(2)
j

)
j∈Z

is short-range dependent. Note
that the joint convergence of the sample means in mixed cases of long- and short-range dependence
(with individual normalization for each of the components) is proved in [23], Theorem 3.3.
Finally, the result follows by adapting the proof of Theorem 4.36.
If d∗ = d2 the order of the entries of the vector in the limit distribution has to be changed, α̃(1)

π

has to be replaced by α̃(2)
π for each π ∈ Sh, and the limit variance is given by σ2 = L2,2

d2(1+2d2) . �

The next step is to use the idea of [58], Theorem 4, and obtain the limit distribution for the
plug-in estimator q̂n of q by applying the multivariate delta method, see [42], Appendix A.

Theorem 4.38 Let (L1s) in Overview 4.24 be fulfilled. Then, it holds that

n−d
∗+ 1

2 (q̂n − q) D−→ N (0, σ2),

with

σ2 =



Lp,p
d∗(1+2d∗)

∑
π,π̃∈Sh qY (3−p)(π)α̃(p)

π α̃
(p)
π̃ qY (3−p)(π̃), if d∗ = dp, for exactly one p = 1, 2,

L1,1
d∗(1+2d∗)

∑
π,π̃∈Sh qY (2)(π)α̃(1)

π α̃
(1)
π̃ qY (2)(π̃)

+2 L1,2
d∗(1+2d∗)

∑
π,π̃∈Sh qY (2)(π)α̃(1)

π α̃
(2)
π̃ qY (1)(π̃), if d∗ = d1 = d2

+ L2,2
d∗(1+2d∗)

∑
π,π̃∈Sh qY (1)(π)α̃(2)

π α̃
(2)
π̃ qY (1)(π̃).

Proof. The proof works exactly in the same way as the proof of Theorem 4 in [58] by applying
the multivariate delta method. The function

f : R2(h+1)! → R, f(x, y) =
(h+1)!∑
i=1

xiyi

is everywhere differentiable with ∇f(x, y) = (y, x)t. Furthermore it holds that

q̂n = f
(
(q̂Y (1)(π))π∈Sh , (q̂Y (2)(π))π∈Sh

)
as well as

q = f
(
(qY (1)(π))π∈Sh , (qY (2)(π))π∈Sh

)
.

Consequently, the formulas of the limit variance are given by(
∇f

(
(qY (1)(π))π∈Sh , (qY (2)(π))π∈Sh

))t
Σ∇f

(
(qY (1)(π))π∈Sh , (qY (2)(π))π∈Sh

)
,
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where Σ is the variance of the limit vector given in Corollary 4.37. For details see [58], p. 719. �

Finally, we proved limit theorems for all components of the estimator of ordinal pattern depen-
dence. It remains to study the joint convergence behaviour of these components in order to
achieve a limit theorem for the estimator of ordinal pattern dependence. However, for reasons
that becomes clear in the next section, we continue with two alternative approaches to estimate
q before turning to the joint convergence behaviour. First we propose an alternative estimator
that is only slightly different from q̂n.
Define

q̂n,alt :=
∑
π∈Sh

(
q̂Y (1),n(π)− qY (1)(π)

) (
q̂Y (2),n(π)− qY (2)(π)

)
+ q.

We can propose another limit theorem for the asymptotics of this estimator, directly following
from Theorem 4.36.

Theorem 4.39 Under the assumptions of (L1) in Overview 4.24, it holds

n1−d1−d2 (q̂n,alt − q) D−→

∑
π∈Sh

α̃(1)
π α̃(2)

π

Y (1)Y (2),

where
(
Y (1), Y (2)

)t
∼ N

(
0, Σ̃

)
and

Σ̃ =
(

Lp,q + Lq,p
(dp + dq)(1 + dp + dq)

)
p,q=1,2

with α̃(p)
π , p = 1, 2 as given in Theorem 4.13.

Proof. Consider the function f : R2(h+1)! → R, f(x, y) = ∑(h+1)!
i=1 xiyi and note that

q̂n,alt − q = f

((
q̂Y (1),n(π)− qY (1)(π)

)
π∈Sh

,
(
q̂Y (2),n(π)− qY (2)(π)

)
π∈Sh

)
.

Therefore, we can apply the continuous mapping theorem on the result of Theorem 4.36. Then,
we obtain

f

((
α̃(1)
π Y (1)

)
π∈Sh

,
(
α̃(2)
π Y (2)

)
π∈Sh

)
=
∑
π∈Sh

α̃(1)
π Y (1)α̃(2)

π Y (2)

=

∑
π∈Sh

α̃(1)
π α̃(2)

π

Y (1)Y (2).

�
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Corollary 4.40 Under the conditions in (L1s) in Overview 4.24, the following statements are
true:

(i) if d1 = d2 and, consequently, d∗ = d1, it holds

n1−2d∗ (q̂n,alt − q) D−→

∑
π∈Sh

α̃(1)
π α̃(2)

π

Y (1)Y (2),

where α̃(p)
π , p = 1, 2 and Y (1), Y (2) as given in Theorem 4.39.

(ii) If d1 6= d2 and, hence, d1 = d∗ or d2 = d∗, it holds

n1−2d∗ (q̂n,alt − q) D−→ 0.

Proof. The first result is an immediate consequence of Theorem 4.39. The second result is
obtained by applying the continuous mapping theorem to the second case of Corollary 4.37 as
done in the proof of Theorem 4.39. �

A third approach to estimate q turns out to be very helpful in order to determine a reasonable
asymptotic distribution of an estimator of ordinal pattern dependence: The estimation of q in
terms of the improved estimator q̂n,imp as investigated in Section 4.2.1.
We define

q̂n,imp :=
∑
π∈Sh

q̂n,Y (1),imp(π)q̂n,Y (2),imp(π).

From the mathematical point of view, the interesting difference of q̂n,imp to the heuristic estimator
of ordinal pattern probabilities for each marginal time series q̂n,Y (p) , p = 1, 2, is that this improved
estimator has Hermite rank 2. Therefore, it needs a different normalization and possesses another
asymptotic structure. We also need to distinguish the case d∗ ∈

(
1
4 ,

1
2

)
, where the process

transformed by the estimator is still long-range dependent from the case d∗ ∈
(
0, 1

4

)
, where the

transformed process is short-range dependent.

Lemma 4.41 We assume (L2) in Overview 4.24. Let An = (an,i,i)i=1,...,2(h+1)! be a diagonal
matrix with entries

an,i,i = n1−2d1 (2!C2)−
1
2 L−1

1,1(n), for i = 1, . . . , (h+ 1)!

and

an,i,i = n1−2d2 (2!C2)−
1
2 L−1

2,2(n), for i = (h+ 1)! + 1, . . . , 2(h+ 1)!.
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Then, it holds

An

((
q̂n,Y (1),imp(π)− qY (1)(π)

)
π∈Sh

,
(
q̂n,Y (2),imp(π)− qY (2)(π)

)
π∈Sh

)t
D−→
((

α̃(1,1)
π Z

(1,1)
2,d1+ 1

2
(1)
)
π∈Sh

,

(
α̃(2,2)
π Z

(2,2)
2,d2+ 1

2
(1)
)
π∈Sh

)t
,

where Z(1,1)
2,d1+ 1

2
(1) and Z(2,2)

2,d2+ 1
2
(1) are standard Rosenblatt random variables. The scaling factor

C2, as well as α̃(p,p)
π , p = 1, 2, are given in Theorem 4.18.

Proof. We may use the proof of Theorem 3.10 for d = 1 as justified in (4.30) and we derive

An

((
q̂n,Y (1),imp(π)− qY (1)(π)

)
π∈Sh

,
(
q̂n,Y (2),imp(π)− qY (2)(π)

)
π∈Sh

)t
D= An

((
h−1∑
l=0

h−l∑
i=1

α
(1,1)
i,i+l,π

(
r̂(1,1)
n (l)− r(1,1)(l)

)

+
h−1∑
l=1

h−l∑
i=1

α
(1,1)
i+l,i,π

(
r̂(1,1)
n (l)− r(1,1)(l)

)
+ oP(n2d∗)

)
π∈Sh

,

(
h−1∑
l=0

h−l∑
i=1

α
(1,1)
i,i+l,π

(
r̂(2,2)
n (l)− r(2,2)(l)

)

+
h−1∑
l=1

h−l∑
i=1

α
(1,1)
i+l,i,π

(
r̂(2,2)
n (l)− r(2,2)(l)

)
+ oP(n2d∗)

)
π∈Sh

)t

D−→
((

α̃(1,1)
π Z

(1,1)
2,d1+ 1

2
(1)
)
π∈Sh

,

(
α̃(2,2)
π Z

(2,2)
2,d2+ 1

2
(1)
)
π∈Sh

)t
,

by applying the continuous mapping theorem to Theorem 4.1 of [23].
Similar to the proof of Theorem 4.36, the dependence on π is only apparent in the coefficients α̃(p,p)

π ,
p = 1, 2, while the asymptotic distribution is determined by the estimator of the autocorrelations,
which is independent of π. Therefore, it yields the same limit random variable (within each time
series). �

We have derived the asymptotic distributions for the estimator of p in Section 4.3.1 and in
Section 4.3.2 and for estimators of q in Section 4.3.3. The final step is to combine these results
in order to obtain the asymptotic distribution of the estimator of ordinal pattern dependence,
which is introduced in the next section.

4.3.4 Limit theorems for estimators of ordinal pattern dependence

We turn to the estimation of ordinal pattern dependence as it is defined in (4.13). The approach
used in [58] is to show joint convergence of the heuristic estimators of the respective parameters
p and q by using the multivariate delta method. We start with this idea, but we observe that
a problem occurs in the considered case, in which the underlying time series are exhibiting
long-range dependence. However, in the course of this section, we figure out a way to solve
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this problem and provide asymptotic distributions of ordinal pattern dependence for long-range
dependent time series.

Lemma 4.42 Under the assumptions (L2s) in Overview 4.24 with the addition that in the case
d1 = d2 the linear representation of (Yj)j∈Z fulfills (2.6) the convergence results in Theorem 4.26
and Corollary 4.37 hold jointly.

Proof. We restrict ourselves to the case that d1 = d2 = d∗. The other case, in which either
d∗ = d1 or d∗ = d2, can be proved analogously.
Following (3.42), we know that

(p̂n − p)

=
d∑

p,q=1

(
h−1∑
l=0

h−l∑
i=1

α
(p,q)
i,i+l

(
r̂(p,q)
n (l)− r(p,q)(l)

)
+
h−1∑
l=1

h−l∑
i=1

α
(p,q)
i+l,i

(
r̂(q,p)
n (l)− r(q,p)(l)

)))
+ oP(n2d∗−1)

and following the proof of Theorem 4.36,(
n
(
q̂Y (1),n(π)− qY (1)(π)

)
π∈Sh

, n
(
q̂Y (1),n(π)− qY (1)(π)

)
π∈Sh

)t

=A

 n∑
j=1

Y
(1)
j ,

n∑
j=1

Y
(2)
j

t +Rn.

Applying the results of [18], p. 76, where joint convergence of the sample means and the sample
autocorrelations independent of the lag was proved and recalling (4.30) we arrive at(

n1−2d∗
d∑

p,q=1

(
h−1∑
l=0

h−l∑
i=1

α
(p,q)
i,i+l

(
r̂(p,q)
n (l)− r(p,q)(l)

)

+
h−1∑
l=1

h−l∑
i=1

α
(p,q)
i+l,i

(
r̂(q,p)
n (l)− r(q,p)(l)

))
+ oP(n2d∗−1),

n−d
∗+ 1

2A

 n∑
j=1

Y
(1)
j ,

n∑
j=1

Y
(2)
j

t +Rn

)t

=

n1−2d∗
d∑

p,q=1
α̃(p,q)

(
r̂(p,q)
n (0)− r(p,q)(0)

)
, n−d

∗+ 1
2A

 n∑
j=1

Y
(1)
j ,

n∑
j=1

Y
(2)
j

tt + oP(1)

D−→

C2
∑

p,q∈P ∗
α̃(p,q)Z

(p,q)
2,d∗+1/2(1), A

(
Y (1), Y (2)

)tt ,
where Z(p,q)

2,d∗+1/2(1) and α̃(p,q) are as given in Theorem 4.26 and A, Y (1), Y (2) as given in Theorem
4.36.
In the case d1 6= d2, we assume w.l.o.g. that d1 > d2, the joint convergence of the sample mean
and the sample-correlations of (Yj)j∈Z reduce to the joint convergence of n∑

j=1
H1
(
Y

(1)
j

)
,
n∑
j=1

H2
(
Y

(1)
j

)t .
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The joint convergence to the expected asymptotic distributions as given in the univariate case,
respectively, is proved in [3], Theorem 3.3. Hence, the result follows. �

Remark 4.43 Let us shortly comment on the dependence structure of(
Z

(p,q)
2,d∗+1/2(1), p, q = 1, 2

)
and

(
Y (1), Y (2)

)t
.

Note that both random vectors are components of the multivariate Hermite processes for m = 2
and m = 1, respectively. Therefore, the underlying Gaussian measure B̃(dx), described in
Theorem 3.10, is the same for the time representation of both processes, as we have already seen
in Section 2.7. For details, see for example [23], p. 5398, where Y (1) and Y (2) are denoted by
B(1)
m,H(1) and B(2)

m,H(1), respectively, and Bm,H(t) is an operator fractional Brownian motion for
t ∈ [0, 1]. By the properties of B̃(dx), we know that the respective univariate components of these
processes, e.g. Z(1,1)

2,d∗+1/2(1) and Y (1), are uncorrelated but not independent; see [3], Proposition
3.5 for details on the dependence properties. It is possible to extend this result to the multivariate
case. The first and second order multivariate Hermite processes are uncorrelated, which is an
immediate consequence of the orthogonality of Hermite polynomials, as described in Lemma 2.35,
and of McKean’s representation of Hermite processes [47]. For details, see [9], p. 196 f. The
non-linear dependence structure of both processes in the multivariate case is a part of future
research.

Corollary 4.44 Under the assumptions in (L2s) in Overview 4.24 with the addition that in the
case d1 = d2 the linear representation of (Yj)j∈Z fulfills (2.6) the convergence results in Theorem
4.27 and Corollary 4.37 hold jointly.

Proof. We have joint convergence of the sample mean and the sample autocorrelations as
given in [18], p. 76. The limit random variables in Theorem 4.27 have the same distribution as a
linear combination of Z(p,q)

2,d∗+1/2(1), p, q = 1, 2, which results from an application of the continuous
mapping theorem to Corollary 3.6. Hence, the result follows. �

Due to the arguments in the proof of Corollary 4.44, it is clear that all joint convergence results
in this section that hold for Theorem 4.26 remain true for Theorem 4.27. We, therefore, omit to
emphasize this in the following. However, note that in the limit distributions of Theorem 4.45
and Theorem 4.47 the limit random variables corresponding to p̂n could be replaced by those in
Theorem 4.27.

Having Lemma 4.42 in mind, we proceed to derive asymptotic results for an estimator of
ordinal pattern dependence. The function

f :R2(h+1)!+1 → R, f
(
u, (vπ)π∈Sh , (wπ)π∈Sh

)
=
u−

∑
π∈Sh vπwπ

1−∑π∈Sh vπwπ

used in [58], proof of Theorem 6, combined with the multivariate delta method, is a possible
solution to the convergence problem of ÔPD −OPD := p̂n−q̂n

1−q̂n −
p−q
1−q as plug-in estimator.
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Following Lemma 4.42, we indeed have joint convergence of the input estimators needed in f , but,
unfortunately, we do not have the same normalizing factor, as it is required in the (multivariate)
delta method.
Proving joint convergence of p̂n and q̂n would not be constructive either. Using the continuous
mapping theorem yields the term (p̂n−p)−(q̂n−q)

1−(q̂n−q) , which does not coincide with the term whose
convergence we are interested in, namely ÔPD − OPD. The other reason why we have to
reject this approach is that each summand in (p̂n−p)−(q̂n−q)

1−(q̂n−q) would need an own normalization
constant, which reflects exactly the same problem due to which we had to refuse the delta
method. Using the same normalization constant would either yield a convergence to infinity
for one of the two estimators or one estimator would be forced to converge to zero. Either
way, this does not seem a reasonable approach to estimate the value of ordinal pattern dependence.

Fortunately, there are two possible ways to solve this problem. The first one is the inves-
tigation of the alternative estimator q̂n,alt of q, whose limit distribution is given in Theorem 4.39.
For this reason, we define ÔPDn,alt := p̂n−q̂n,alt

1−q̂n,alt
. Note that the case d1 = d2 is the one more

intriguing here, since otherwise, following the second part of Corollary 4.40, q̂n,alt converges to
zero and the convergence behaviour of q̂n,alt of q, whose limit distribution is given in Theorem
4.39. Then, the convergence behaviour of ÔPDn,alt is reduced to the one of p̂n − p.

Theorem 4.45 (i) Under the assumptions of (L2) in Overview 4.24, with d∗ = d1 = d2 with
the addition that in the case d1 = d2 the linear representation of (Yj)j∈Z fulfills (2.6) we
have

n1−2d∗
(
ÔPDn,alt −OPD

)
D−→ 1

1− qC
1
2
2

2∑
p,q=1

α̃(p,q)Z
(p,q)
2,d∗+1/2(1)

+ p− 1
(1− q)2

∑
π∈Sh

α̃(1)
π α̃(2)

π

C1 (L1,1L2,2)
1
2 Ỹ (1)Ỹ (2),

such that

(
Ỹ (1), Ỹ (2)

)
∼ N

0,

 1 1
2 (L1,2 + L2,1) (L1,1L2,2)−

1
2

1
2 (L1,2 + L2,1) (L1,1L2,2)−

1
2 1

 ,
where α̃(p,q), Z(p,q)

2,d∗+1/2(1), p, q = 1, 2 are as given in Theorem 4.26 and α̃(p)
π , p = 1, 2 are

as given in Theorem 4.13.

(ii) Under the assumptions of (L2s) in Overview 4.24, but with d1 6= d2, we obtain

n1−2d∗C
− 1

2
2 (2)−

1
2 L−1

pp

(
ÔPDn,alt −OPD

)
D−→ 1

1− q α̃
(p,p)Z

(p,p)
2,d∗+1/2(1),

with P ∗ = {p}, p = 1 or p = 2. The limit random variable Z(p,p)
2,d∗+1/2(1) follows a standard

Rosenblatt distribution and α̃(p,p) are as given in Theorem 4.26.
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Proof. We make use of Lemma 4.42. By applying the continuous mapping theorem as in the
proof of Theorem 4.39, but for f2

(
u, (vπ)π∈Sh , (wπ)π∈Sh

)
=
(
u,
∑
π∈Sh vπwπ

)
, we obtain joint

convergence in distribution of (p̂n − p) and (q̂n,alt − q). We can now apply the multivariate delta
method, since we have the same normalizing constants for both estimators. We consider the
function f3 (u, v) := u−v

1−v , v 6= 1. The partial derivates are given by ∂f3
∂u = 1

1−v , and
∂f3
∂v = u−1

(1−v)2 .
Note that ÔPDn,alt = f3 (p̂n, q̂n,alt) and OPD = f3(p, q). Since p 6= 1 and q 6= 1, the partial
derivates of f3 with respect to p and q, respectively, exist and do not equal zero. Therefore, we
obtain

n1−2d∗
(
ÔPDn,alt −OPD

)
D−→ ∇f(p, q)

C 1
2
2

2∑
p,q=1

α̃(p,q)Z
(p,q)
2,d∗+1/2(1),

∑
π∈Sh

α̃(1)
π α̃(2)

π

Y (1)Y (2)


= 1

1− qC
1
2
2

2∑
p,q=1

α̃(p,q)Z
(p,q)
2,d∗+1/2(1)

+ p− 1
(1− q)2

∑
π∈Sh

α̃(1)
π α̃(2)

π

C1 (L1,1L2,2)
1
2 Ỹ (1)Ỹ (2),

such that
(
Ỹ (1), Ỹ (2)

)
∼ N

0,

 1 1
2 (L1,2 + L2,1) (L1,1L2,2)−

1
2

1
2 (L1,2 + L2,1) (L1,1L2,2)−

1
2 1

,

α̃(p,q), Z(p,q)
2,d∗+1/2(1), p, q = 1, 2 as given in Theorem 4.26 and α̃(p)

π , p = 1, 2 as given in Theorem
4.13.
In case (ii) is an immediate consequence of Corollary 4.40 that the limit distribution is only
depending on the asymptotic behaviour of p̂n − p. �

Concerning the asymptotics of the alternative estimator of ordinal pattern dependence, we so
far considered the case that at least one of the two parameters d1 and d2 is in

(
1
4 ,

1
2

)
. By

this assumption, we assured that the process transformed by the estimator remains long-range
dependent. However, the natural question arises what happens if d∗ ∈ (−∞, 0) ∪

(
0, 1

4

)
, such

that the transformed process does no longer exhibit long-range dependence. For an estimator
with Hermite rank 2, a central limit theorem holds in this case with the standard normalization
n

1
2 , as we have already seen in Theorem 4.35 for p̂n. If d∗ ∈

(
1
4 ,

1
2

)
the joint convergence of

the estimator of p and the alternative estimator of q was justified by the ability to reduce the
convergence behaviour of these functionals to the joint convergence of the sample mean and the
sample cross-correlations of the underlying time series. Considering functionals with Hermite
rank 2, the main reason for this reduction possibility is given in the Reduction Theorem, as
introduced in Theorem 2.30 and proved in [2] in the multivariate case. However, the result of this
theorem only remains valid in case of Hermite rank 2 if d∗

(
1
4 ,

1
2

)
. Therefore, we cannot exploit

this reduction possibility anymore if d∗ ∈
(
0, 1

4

)
. Hence, we need a different argumentation for

the convergence behaviour of ÔPDn,alt in the short-range dependent setting. The setting we
consider in ÔPDn,alt is interesting, since we are having a functional with Hermite rank 2 given
by p̂n and a product of functions with Hermite rank 1 concerning q̂n,alt. Since we assumed that
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d∗ ∈
(
0, 1

4

)
, we know that p̂n is already short-range dependent and needs to be normed by n 1

2 to
get a non-trivial asymptotic result. However, q̂n,alt consists of the product of estimators that
are still exhibiting long-range dependence. Hence, we note that the statement of Corollary 4.40
remains valid in this case (by now only the statement itself and not any joint convergence with
Theorem 4.35).

Theorem 4.46 Let (S) in Overview 4.24 hold, with d∗ ∈
(
0, 1

4

)
. We obtain

n
1
2
(
ÔPDn,alt −OPD

) D−→ 1
1− qN

(
0, σ2

)
,

with σ2 as given in Theorem 4.35.

Proof. For d∗ ∈
(
0, 1

4

)
, we have 1− 2d∗ ∈

(
1
2 , 1
)
. Hence, n1−2d∗ > n

1
2 . Therefore, it holds that

E
(
n

1
2 (q̂n,alt − q)

)2
= E

(
n

1
2−1+2d∗n1−2d∗ (q̂n,alt − q)

)2

= n4d∗−1E
(
n1−2d∗ (q̂n,alt − q)

)2

−→ 0,

since 4d∗ − 1 < 0.
Hence, we proved that n 1

2 (q̂n,alt − q)
L2−→ 0 and, therefore, n 1

2 (q̂n,alt − q) P−→ 0. Consequently,
we obtain joint convergence in distribution of p̂n and q̂n,alt using Slutsky’s theorem and the
Cramer-Wold device. We apply the multivariate delta method and obtain, analogously to the
result in the long-range dependent case with d1 6= d2 given in Theorem 4.45 (ii) that the limit
distribution is only determined by the asymptotic behaviour of p̂n. Therefore, in this transformed
short-range dependent setting, even the case d1 = d2 = d∗ does not factor in the limit distribution
of q̂n,alt to the limit distribution of ÔPDn,alt. �

Some of the last results may seem unsatisfactory, as they do not involve the asymptotics of the
estimator qalt. The reason for this is given by the Hermite rank 1 of the estimators q̂n,Y (p)(π),
for π ∈ Sh and p = 1, 2 and the resulting different normalization, depending on the strongest
long-range dependence parameter, and albeit n 1

2 . However, this variation of normalization
constants can be avoided by using the estimator q̂n,imp, which consists of the sum of products of
estimators exhibiting Hermite rank 2. Hence, another approach is to study the limit distribution
of ÔPDn,imp := p̂n−q̂n,imp

1−q̂n,imp
. First we focus on the long-range dependent case, with d∗ ∈

(
1
4 ,

1
2

)
.

This turns out to be interesting, since the limit random variables of q̂n,imp can be found again
in the limit random variables of p̂n, due to the asymptotic equality to the respective sample
cross-correlations. Therefore, we only get different weighting factors in the linear combination of
the components of the 2× 2-dimensional Rosenblatt process.
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Theorem 4.47 We assume (L2s) is fulfilled. Then, the following statements are true:

(i) If d1 = d2 = d∗, it holds that

n1−2d∗ (C2)−1/2
(
ÔPDn,imp −OPD

)
D−→

 α̃(1,1)

1− q −
1− p

(1− q)2

∑
π∈Sh

qY (2)(π)α̃(1,1)
π

Z(1,1)
2,d∗+ 1

2
(1)

+

 α̃(2,2)

1− q −
1− p

(1− q)2

∑
π∈Sh

qY (1)(π)α̃(2,2)
π

Z(2,2)
2,d∗+ 1

2
(1)

+ 2 α̃
(1,2)

1− q Z
(1,2)
2,d∗+ 1

2
(1).

(ii) If d1 6= d2, such that dp = d∗ for exactly one p = 1, 2, we obtain

n1−2d∗ (C2)−1/2
(
ÔPDn,imp −OPD

)
D−→

 α̃(p,p)

1− q −
1− p

(1− q)2

∑
π∈Sh

qY (3−p)(π)α̃(p,p)
π

Z(p,p)
2,d∗+ 1

2
(1),

with α̃(p,p), Z(p,p)
2,d∗+1/2(1), p, q = 1, 2 as given in Theorem 4.26 and α̃(p,p)

π , p = 1, 2 as given
in Theorem 4.18.

Proof. The convergence results in Theorem 4.26 and Lemma 4.41 hold jointly: by (3.44), (4.30)
and the proof of Lemma 4.41, the crucial terms that determine the limit distribution are given
by the sample cross-correlations, independent of the considered function, whereas the weighting
factors given by α̃(p,q) are highly dependent on the underlying function. Hence, an application of
the continuous mapping theorem to Corollary 3.6 yields the joint convergence.
We distinguish between the cases d1 = d2 and d1 6= d2.
In the first case, we have d∗ = d1 = d2 and, therefore, by an application of the multivariate delta
method, using the function

f : R2(h+1)!+1 → R, f
(
u, (vπ)π∈Sh , (wπ)π∈Sh

)
=
u−

∑
π∈Sh vπwπ

1−∑π∈Sh vπwπ
,

we arrive at

n1−2d∗ (C2)−1/2
(
ÔPDn,imp −OPD

)
D−→ ∇f

(
p, (qY (1)(π))π∈Sh , (qY (2)(π))π∈Sh

)
×
( 2∑
p,q=1

α̃(p,q)Z
(p,q)
2,d∗+1/2(1),

(
α̃(1,1)
π Z

(1,1)
2,d1+ 1

2
(1)
)
π∈Sh

,

(
α̃(2,2)
π Z

(2,2)
2,d2+ 1

2
(1)
)
π∈Sh

)t
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=
∑2
p,q=1 α̃

(p,q)Z
(p,q)
2,d∗+1/2(1)

1− q

+
∑
π∈Sh

(p− 1)qY (2)(π)
(1− q)2 α̃(1,1)

π Z
(1,1)
2,d∗+ 1

2
(1)

+ (p− 1)qY (1)(π)
(1− q)2 α̃(2,2)

π Z
(2,2)
2,d∗+ 1

2
(1)

=

 α̃(1,1)

1− q −
∑
π∈Sh

(1− p)qY (2)(π)
(1− q)2 α̃(1,1)

π

Z(1,1)
2,d∗+ 1

2
(1)

+

 α̃(2,2)

1− q −
∑
π∈Sh

(1− p)qY (1)(π)
(1− q)2 α̃(2,2)

π

Z(2,2)
2,d∗+ 1

2
(1)

+ 2 α̃
(1,2)

1− q Z
(1,2)
2,d∗+ 1

2
(1)

with

∇f
(
u, (vπ)π∈Sh , (wπ)π∈Sh

)
=

 1
1−∑π∈Sh vπwπ

,

 (u− 1)wπ(
1−∑π∈Sh vπwπ

)2


π∈Sh

,

 (u− 1)vπ(
1−∑π∈Sh vπwπ

)2


π∈Sh

 .
Note that no entry of ∇f

(
p, (qY (1)(π))π∈Sh , (qY (2)(π))π∈Sh

)
is equal to zero, since we assumed

p 6= 1 and q 6= 1.
In case d1 6= d2 only the convergence behaviour of the marginal process with the larger long-range
dependence parameter would be taken into consideration as it was proved in Theorem 3.10,
(3.43). Therefore, the formula in the case d1 = d2 is reduced, respectively. �

Remark 4.48 We have a closer look at the weighting factors of the limit distribution of
ÔPDn,imp. First we briefly illustrate the hypothetical case of independence. In this case, the
covariance matrix Σ2,h would consist of four block matrices of size h× h, such that all entries of
the off-diagonal blocks would be equal to zero. More precisely,

Σ2,h =
(

Σ1,h 0
0 Σ̃1,h,

)

such that
(
Y

(1)
1 , . . . , Y

(1)
h

)t
∼ N (0,Σ1,h) and correspondingly

(
Y

(2)
1 , . . . , Y

(2)
h

)t
∼ N

(
0, Σ̃1,h

)
.

Since we are considering a block-diagonal matrix, the inverse of this matrix is given as a
block-diagonal matrix, too, where each block matrix gets inverted.
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Concerning the vector of second order Hermite coefficients of p̂n − p, we have

ci,k =
∑
π

E

(Y (i)
1,hY

(k)
1,h − E

(
Y

(i)
1,hY

(k)
1,h

))
1{

Π̃
(
Y

(1)
1 ,...,Yh1(1)

)
=Π̃
(
Y

(2)
1 ,...,Yh1(2)

)
=π
}

=


∑
π c

π,imp
i,k,Y (1)qY (2)(π), if i, k = 1, . . . , h,∑

π c
π,imp
i,k,Y (1)c

π,imp
i,k,Y (2) , if i = 1, . . . , h; k = h+ 1, . . . , 2h or vice versa,∑

π c
π,imp
i,k,Y (2)qY (1)(π), if i, k = h+ 1, . . . , 2h,

since we consider the hypothetical case of independence. We define

C̃1 : = (ci,k)1≤i,k≤h ,

C̃2 : = (ci,k)1≤i≤h,h+1≤k≤2h

and

C̃3 : = (ci,k)h+1≤i,k≤2h ,

such that C =
(
C̃1 C̃2

C̃2 C̃3.

)
.

Concerning α = Σ−1
2,hCΣ−1

2,h, we obtain

α = Σ−1
2,hCΣ−1

2,h =
(

Σ−1
1,h 0
0 Σ−1

2,h

)(
C̃1 C̃2

C̃2 C̃3

)(
Σ−1

1,h 0
0 Σ−1

2,h

)

=
(

Σ−1
1,hC̃1Σ−1

1,h Σ−1
1,hC̃2Σ−1

2,h
Σ−1

1,hC̃2Σ−1
2,h Σ−1

2,hC̃3Σ−1
2,h

)
,

since we are dealing with symmetric matrices. Recall that for p = 1, 2, we have

α̃(p,p) =
h∑

i,k=1
α(p−1)h+i,(p−1)h+k.

Hence, we obtain for p = 1 (p = 2 can be treated analogously)

Σ−1
1,hC̃1Σ−1

1,h =
∑
π

Σ−1
1,h

(
cπ,imp
i,k,Y (1)qY (2)(π)

)
1≤i,k≤h

Σ−1
1,h

=
∑
π

qY (2)(π)Σ−1
1,h

(
cπ,imp
i,k,Y (1)

)
1≤i,k≤h

Σ−1
1,h

=
∑
π

qY (2)(π)α(1,1)
π .

Therefore, the terms
∑
π qY (2)(π)α̃(1,1)

π and
∑
π qY (1)(π)α̃(2,2)

π in the limit distribution of Theorem
4.47 correspond to those of α̃(1,1) and α̃(2,2) in the hypothetical case of independence. Furthermore
p = q and, therefore, the factors in the parentheses in the limit distribution in Theorem 4.47
would be equal to zero.
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For d∗ ∈ (−∞, 0) ∪
(
0, 1

4

)
, representing the case of short-range dependence, the setting differs

considerably from those discussed before. We want to apply the multivariate delta method.
Therefore, we need joint convergence of p̂n and((

q̂n,Y (1),imp(π)− qY (1)(π)
)
π∈Sh

,
(
q̂n,Y (2),imp(π)− qY (2)(π)

)
π∈Sh

)t
to a multivariate normal distribution. However, the reduction theorem and the resulting reduction
to the convergence of the sample cross-correlations does not hold anymore. The framework
needed in this case is given in the proofs of Theorem 2 and Theorem 4 in [2], which require
techniques different to those we used in Chapter 3, consisting of the diagram formula and graph
theory. For a detailed version of these proofs, we refer to [48], Chapter 5.

Theorem 4.49 Let (S) in Overview 4.24 be fulfilled. We define

(
f1, . . . , f(2h+1)!+1

)t
:=



1{
Π̃
(
Y

(1)
j ,...,Y

(1)
j+h−1

)
=Π̃
(
Y

(2)
j ,...,Y

(2)
j+h−1

)} − p 1
#π̄
∑
π∈π̄ 1{

Π̃
(
Y

(1)
j ,...,Y

(1)
j+h−1

)
=π
} − qY (1)(π)


π∈Sh 1

#π̄
∑
π∈π̄ 1{

Π̃
(
Y

(2)
j ,...,Y

(2)
j+h−1

)
=π
} − qY (2)(π)


π∈Sh


.

The corresponding Hermite coefficients depending on (l1, . . . , lh) ∈ Nh0 \ {0, . . . , 0} are given by

cl1,...,l2h,r := E
(
fr (Yj,h)

2h∏
k=1

Hlk

(
Y

(k)
j,h

))
.

It holds that

n
1
2
(
ÔPDn,imp −OPD

)
D−→ N

(
0, σ2

opd

)
,

with

σ2
opd = ∇f

(
p, (qY (1)(π))π∈Sh , (qY (2)(π))π∈Sh

)
Σ
(
∇f

(
p, (qY (1)(π))π∈Sh , (qY (2)(π))π∈Sh

))t
,

where

∇f
(
p, (qY (1)(π))π∈Sh , (qY (2)(π))π∈Sh

)
=

 1
1− q ,

(
(p− 1)qY (2)(π)

(1− q)2

)
π∈Sh

,

(
(p− 1)qY (1)(π)

(1− q)2

)
π∈Sh


and Σ = (σr,s)r,s=1,...,2(h+1)!+1 is given by

σr,s =
∞∑

l1,...,l2h,m1,...,m2h=2
cl1,...,l2h,rcm1,...,m2h,s lim

n→∞
n−1

n∑
j1,j2=1

E

 2h∏
p=1

Hlp

(
Y

(p)
j1,h

)
Hmp

(
Y

(p)
j2,h

) .
Proof. We examine the joint convergence behaviour of(

p̂n − p,
(
q̂n,Y (1),imp(π)− qY (1)(π)

)
π∈Sh

,
(
q̂n,Y (2),imp(π)− qY (2)(π)

)
π∈Sh

)t
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in the case that d∗ ∈
(
0, 1

4

)
. Note that in this case it holds

∞∑
k=1

(
r(p,q)(k)

)2
≤
∞∑
k=1

Lp,q(k)2k4d∗−2 <∞,

since 4d∗ − 2 ∈ (−2,−1).
Hence, the assumptions of Theorem 4 in [2] are fulfilled. To emphasize the crucial argument
needed in the following, we use the proof of Theorem 2 in [2]. There the method of moments is
applied, see [30], Theorem 8.6 and also [30] Section 4.10, to prove convergence to the normal
distribution. It is shown in [2], p. 2250, that by using the multivariate Hermite expansion of the
square-integrable function f with Ef (Yj,h) = 0 we obtain

n−
1
2

n∑
j=1

t∑
l1,...,l2h=2

cl1,...,l2h (l1 · . . . · l2h)−1
2h∏
p=1

Hlp

(
Y

(p)
j,h

) D−→ N (0, σ2
t

)
,

where

σ2
t =

t∑
l1,...,l2h,m1,...,m2h=2

cl1,...,l2hcm1,...,m2h

× lim
n→∞

n−1
n∑

j1,j2=1
E

 2h∏
p=1

Hlp

(
Y

(p)
j1,h

)
Hmp

(
Y

(p)
j2,h

) . (4.32)

The variable

cl1,...,l2h := E
(
f (Yj,h)

2h∏
k=1

Hlk

(
Y

(k)
j,h

))

denotes the Hermite coefficients corresponding to l1, . . . , l2h.
Note that the expected value in this formula has a closed form for d = 1, by Lemma 2.35, see
also [54], Theorem 5.4.1 Therefore, it is possible to obtain a closed form of the variance in the
univariate case, depending on the covariance function of the corresponding underlying process.
Unfortunately, in dimensions d ≥ 2, we do not have a closed formula and, therefore, need to
apply the diagram formula. This formula states a relation between the expected value of interest
and the cross-correlation functions of the underlying multivariate Gaussian process. They are
linked via edges of so called diagrams. These edges are used as input parameters to determine
the cross-correlation function. For details on this framework see [48], Section 4.3, as well as
Section 5 for the proofs of limit theorems that make use of these mathematical tools.
We show that(

p̂n − p,
(
q̂n,Y (1),imp(π)− qY (1)(π)

)
π∈Sh

,
(
q̂n,Y (2),imp(π)− qY (2)(π)

)
π∈Sh

)t
jointly converge to a multivariate normal distribution with covariance matrix

Σ = (σr,s)r,s=1,...,2(h+1)!+1 .
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The entries of the covariance matrix Σ are given by

σr,s =
∞∑

l1,...,l2h,m1,...,m2h=2
cl1,...,l2h,rcm1,...,m2h,s

× lim
n→∞

n−1
n∑

j1,j2=1
E

 2h∏
p=1

Hlp

(
Y

(p)
j1,h

)
Hmp

(
Y

(p)
j2,h

) , (4.33)

and

cl1,...,l2h,r := E
(
fr (Yj,h)

2h∏
k=1

Hlk

(
Y

(k)
j,h

))
.

We employ the Cramer-Wold device to show that for a :=
(
a1, . . . , a2(h+1)!+1

)t
∈ R2(h+1)!+1

n1/2
(
a1, . . . , a2(h+1)!+1

)(
p̂n − p,

(
q̂n,Y (1),imp(π)− qY (1)(π)

)
π∈Sh

,
(
q̂n,Y (2),imp(π)− qY (2)(π)

)
π∈Sh

)t
D−→ N (0, σ2),

where σ2 = aΣat.
Each of the estimators above are consisting of functionals that are square integrable with
respect to Yj,h. We know that each of them can be expressed via the Hermite expansion. We
show this exemplarily for p̂n − p, where the corresponding function is given by f1 (Yj,h) =
1{

Π̃
(
Y

(1)
j ,...,Y

(1)
j+h−1

)
=Π̃
(
Y

(2)
j ,...,Y

(2)
j+h−1

)}. Then, we obtain as Hermite expansion of f1:

1{
Π̃
(
Y

(1)
j ,...,Y

(1)
j+h−1

)
=Π̃
(
Y

(2)
j ,...,Y

(2)
j+h−1

)} − p =
∞∑

l1,...,l2h=2

cl1,...,l2h,1
l1! . . . l2h!

2h∏
p=1

Hlp

(
Y

(p)
j,h

)
, (4.34)

where cl1,...,l2h,1 are the Hermite coefficients corresponding to f1. Note that only the Hermite
coefficients depend on the f1 and hence are indexed by 1 as well. The right-hand side in (4.34)
is equal for any function f that is square integrable with respect to Yj,h, albeit the Hermite
coefficients. The most technical part of the proof in Theorem 4, [2] is the calculation of the
expected value in (4.32). In this calculation the Hermite coefficients are only used as scaling
factors. The crucial point is the application of graph theory and using the diagram formula.
Using the Hermite expansion we obtain

a
(
f1, . . . , f2(h+1)!+1

)t

=
(
a1, . . . , a2(h+1)!+1

)


1{
Π̃
(
Y

(1)
j ,...,Y

(1)
j+h−1

)
=Π̃
(
Y

(2)
j ,...,Y

(2)
j+h−1

)} − p 1
#π̄
∑
π∈π̄ 1{

Π̃
(
Y

(1)
j ,...,Y

(1)
j+h−1

)
=π
} − qY (1)(π)


π∈Sh 1

#π̄
∑
π∈π̄ 1{

Π̃
(
Y

(2)
j ,...,Y

(2)
j+h−1

)
=π
} − qY (2)(π)


π∈Sh



125



=
2(h+1)!+1∑

r=1
ar

∞∑
l1,...,l2h=2

cl1,...,l2h,r
l1! . . . l2h!

2h∏
p=1

Hlp

(
Y

(p)
j,h

)

=
∞∑

l1,...,l2h=2

∑2(h+1)!+1
r=1 arcl1,...,l2h,r

l1! . . . l2h!

2h∏
p=1

Hlp

(
Y

(p)
j,h

)
.

We define c̃l1,...,l2h := ∑2(h+1)!+1
r=1 arcl1,...,l2h,r and follow the proof of Theorem 4. We obtain

σ2
t =

t∑
l1,...,l2h,m1,...,m2h=2

c̃l1,...,l2h c̃m1,...,m2h

× lim
n→∞

n−1
n∑

j1,j2=1
E

 2h∏
p=1

Hlp

(
Y

(p)
j1,h

)
Hmp

(
Y

(p)
j2,h

)
=

2(h+1)!+1∑
s,r=1

aras

t∑
l1,...,l2h,m1,...,m2h=2

cl1,...,l2h,rcm1,...,m2h,s

× lim
n→∞

n−1
n∑

j1,j2=1
E

 2h∏
p=1

Hlp

(
Y

(p)
j1,h

)
Hmp

(
Y

(p)
j2,h

) .
Note that the redefined Hermite coefficients do not affect the proof, since they are only used
as scaling factors. There is no problem regarding the finiteness of the Hermite expansion since
they are only a linear combination of the original Hermite coefficients of the square integrable
functions corresponding to the respective estimators. For more details, we refer to [54], proof of
Theorem 5.7.1.
Therefore,(

p̂n − p,
(
q̂n,Y (1),imp(π)− qY (1)(π)

)
π∈Sh

,
(
q̂n,Y (2),imp(π)− qY (2)(π)

)
π∈Sh

)t
D−→ N (0,Σ),

with Σ as given in (4.33).
We follow the proof of Theorem 4.47, and obtain

n
1
2
(
ÔPDn,imp −OPD

) D−→ N (0, σ2
opd

)
,

where σ2
opd = ∇f

(
p, (qY (1)(π))π∈Sh , (qY (2)(π))π∈Sh

)
Σ
(
∇f

(
p, (qY (1)(π))π∈Sh , (qY (2)(π))π∈Sh

))t
,

with ∇f
(
p, (qY (1)(π))π∈Sh , (qY (2)(π))π∈Sh

)
as given in the proof of Theorem 4.47. �

Summarizing, in this section, we derived limit theorems for the plug-in estimator of ordi-
nal pattern dependence. As we hoped, based on the results for the estimators of p and q, joint
convergence results were obtained. To get a more illustrative impression of the asymptotic
distributions, we conduct a simulation study in the following section.
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4.3.5 Simulation studies

We begin with the generation of a bivariate long-range dependent fractional Gaussian noise
series

(
Y

(1)
j , Y

(2)
j

)
j=1,...,n

. First, we simulate two independent fractional Gaussian noise processes(
U

(1)
j

)
j=1,...,n

and
(
U

(2)
j

)
j=1,...,n

derived by the R-package “longmemo”, see [34], for a fixed

parameter H ∈
(

1
2 , 1
)
in both time series. For the reader’s convenience, we denote the long-range

dependence parameter d by H = d+ 1
2 as it is common when dealing with fractional Gaussian

noise and fractional Brownian motion, see Section 2.3. We refer to H as Hurst parameter, tracing
back to the work of [33].
For H = 0.7 and H = 0.8 we generate n = 106 samples, for H = 0.9, we choose n = 2 · 106. We
denote the correlation function of univariate fractional Gaussian noise by r(1,1)

H (k), k ≥ 0. Then,
we obtain

(
Y

(1)
j , Y

(2)
j

)
j
for j = 1, . . . , n:

Y
(1)
j = U

(1)
j ,

Y
(2)
j = ψU

(1)
j + φU

(2)
j , (4.35)

for ψ, φ ∈ R.
Note that this yields the following properties for the cross-correlations of the two processes for
k ≥ 0:

r
(1,2)
H (k) = E

(
Y

(1)
j Y

(2)
j+k

)
= ψr

(1,1)
H (k)

r
(2,1)
H (k) = r(1,2)(−k) = ψr

(1,1)
H (k)

r
(2,2)
H (k) = E

(
Y

(2)
j Y

(2)
j+k

)
=
(
ψ2 + φ2

)
r

(1,1)
H (k).

We use ψ = 0.6 and φ = 0.8 to get unit variance in the second process. This yields a statistical
setting with favourable symmetry properties of the multivariate normal distribution, since (IV)
in (4.17) is fulfilled. Note that we choose the same Hurst parameter in both processes to get a
better simulation result.
We restrict ourselves to the pattern length h = 2. Then, we need to determine Σ2,2,H , depending
on the value of the Hurst parameter. Given r(1,1)

H (1) = 22H−1 − 1 for fractional Gaussian noise,
we obtain

Σ2,2,H =


1 22H−1 − 1 ψ ψ

(
22H−1 − 1

)
22H−1 − 1 1 ψ

(
22H−1 − 1

)
ψ

ψ ψ
(
22H−1 − 1

)
1 22H−1 − 1

ψ
(
22H−1 − 1

)
ψ 22H−1 − 1 1

 .

To calculate the limit variance by the Matlab function HR2LimV ar we developed we need
to determine the limits of the slowly varsing functions in the matrix LH . With r

(1,1)
H (k) '

H(2H − 1)k2H−2 we obtain that

LH =
(
H(2H − 1) ψH(2H − 1)
ψH(2H − 1) H(2H − 1)

)
.
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The simulations of the processes
(
Y

(1)
j

)
j∈Z

and
(
Y

(2)
j

)
j∈Z

are visualized in Figure 4.8. On the
left-hand side the different fractional Gaussian noises depending on the Hurst parameter H are
displayed. They represent the stationary long-range dependent Gaussian increment processes we
need in the view of the limit theorems we derived in Section 4.3. The processes in which we are
comparing the coincident ordinal patterns, namely

(
X

(1)
j

)
j∈Z

and
(
X

(2)
j

)
j∈Z

, are shown on the
right-hand side in Figure 4.8. The long-range dependent behaviour of the increment processes
is very illustrative in these processes: roughly speaking they get smoother the larger the Hurst
parameter gets.

Figure 4.8: Plots of 500 data points of one path of two dependent fractional Gaussian noise
processes (left) and the paths of the corresponding fractional Brownian motions
(right) for different Hurst parameters: H = 0.7 (top), H = 0.8 (middle), H = 0.9
(bottom).

We turn to the outputs of the simulations concerning our limit theorems. We simulate N = 10 000
paths of each increment process.
In order to get a better understanding of the distributions that play a key role in the determination
of the asymptotic distribution of functionals with Hermite rank 2, see (3.44), we need to take
a closer look on the convergence results of the left-hand side in Corollary 3.6. Therefore, we
consider H ∈

(
3
4 , 1
)
for the asymptotics of the sample cross-correlations. Since we restrict
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ourselves to the case d = 2 , we need to consider the sample (cross-)correlations:

r̂(1,1)
n (0)− r(1,1)

H (0) = 1
n

n∑
j=1

H2
(
Y

(1)
j

)
, (4.36)

r̂(1,2)
n (0)− r(1,2)

H (0) = 1
n

n∑
j=1

Y
(1)
j Y

(2)
j − E

(
Y

(1)
j Y

(2)
j

)
(4.37)

r̂(2,2)
n (0)− r(2,2)

H (0) = 1
n

n∑
j=1

H2
(
Y

(2)
j

)
. (4.38)

In (4.36) and (4.38), we expect convergence to the standard Rosenblatt distribution, as we have
already seen in Theorem 4.18 and in the corresponding simulations in Section 4.2.2. However,
the case in (4.37) is novel, since we did not consider a bivariate process so far.

Figure 4.9: Histogram, kernel density estimation and normal Q-Q plot of r̂(1,1)
n (0)− r(1,1)

H (0) for
different Hurst parameters: H = 0.8 (top), H = 0.9 (bottom).

Using the normalization as described in Corollary 3.6 in order to get unit variance, the histograms
and the sample densities of r̂(1,1)

n (0) − r(1,1)
H (0) are displayed in Figure 4.9 for the respective

Hurst parameters. A Q-Q plot with respect to the standard normal distribution is also provided
to emphasize the deviation between the Rosenblatt distribution and the Gaussian distribution.
These results coincide with the ones in Section 4.2.2. We use this simulation result as reference
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Figure 4.10: Histogram, kernel density estimation and Q-Q plot with respect to the Rosenblatt
distribution of r̂(1,2)

n (0)− r(1,2)
H (0) for different Hurst parameters: H = 0.8 (top) and

H = 0.9 (bottom).

data set for Q-Q plots with respect to the Rosenblatt distribution with corresponding parameter
H in the following.

The simulated limit distribution of appropriately normalized r̂
(1,2)
n (0) − r

(1,2)
H (0) is given in

Figure 4.10. The histograms and the sample densities are provided as well as the Q-Q plot
with respect to the Rosenblatt distribution. We know from Remark 3.9 that the limit distribu-
tion of appropriately normalized r̂(1,2)

n (0)− r(1,2)
H (0) does not follow a Rosenblatt distribution,

however, we observe a very small deviation. There are two parameters that are responsible
for this result: first, we know from Remark 3.9 that for a correlation close to 1 in the entries
beside the diagonals in the long-range dependence matrix L the asymptotic distribution of
r̂

(1,2)
n (0)− r(1,2)

H (0) approaches the Rosenblatt distribution with parameter H . The second reason
is that the marginal asymptotic distributions of r̂(1,2)

n (0)− r(1,2)
H (0) and r̂(1,1)

n (0)− r(1,1)
H (0) are

equal for H < 3
4 . Therefore, for H = 0.8 the deviation between these two distributions is very

small and difficult to detect. This behavior is reflected in Figure 4.10 for H = 0.9, however, for
larger H the asymptotic simulation results get very unstable due to the small rate of convergence.
To illustrate this reasoning, we change the parameters in (4.35) to ψ = 0 and φ = 1, such
that the processes

(
Y

(1)
j

)
j=1,...,n

and
(
Y

(2)
j

)
j=1,...,n

are independent. We simulate n = 106 data
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points and N = 10 000 repetitions again. We observe the impact of the independence in Figure
4.11. The asymptotic distribution of r̂(1,1)

n (0)− r(1,1)
H (0) still follows a Rosenblatt distribution as

shown in Figure 4.9 whereas the the asymptotic distribution of r̂(1,2)
n (0)− r(1,2)

H (0) shows a large
deviation from the Rosenblatt distribution now.

Figure 4.11: Histogram, kernel density estimation and Q-Q plot of r̂(1,1)
n (0)−r(1,1)

H (0) (top) and of
r̂

(1,2)
n (0)− r(1,2)

H (0) (bottom) for two independent fractional Gaussian noise processes(
Y

(1)
j

)
j=1,...,n

and
(
Y

(2)
j

)
j=1,...,n

for H = 0.8.

The limit case of this observation is to consider H → 1 in which the Rosenblatt distribution
approaches the χ2-distribution with mean 0 and variance 1, following [66], p. 983. The corre-
sponding simulation result is shown in Figure A.1 in the Appendix.

We return to to the asymptotics of (4.36), (4.37) and (4.38) for ψ = 0.6 and φ = 0.8 in
(4.35). The covariance structure described in Corollary 3.6 is confirmed in the simulations. The
theoretical values of the covariances are

Cor
(
r̂(1,1)
n (0)− r(1,1)

H (0), r̂(1,2)
n (0)− r(1,2)

H (0)
)

= Cor
(
r̂(2,2)
n (0)− r(1,1)

H (0), r̂(1,2)
n (0)− r(1,2)

H (0)
)

=
√

2LH,1,1LH,1,2(
L2
H,1,1 + L2

H,1,2

)1/2 = 0.7276,
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and

Cor
(
r̂(1,1)
n (0)− r(1,1)

H (0), r̂(2,2)
n (0)− r(2,2)

H (0)
)

=
2L2

H,1,2
2L2

H,1,1
=
(
LH,1,2
LH,1,1

)2

= 0.36.

Note that these values hold for H = 0.8 as well as H = 0.9, since L0.9 = 1.5L0.8. The simulated
correlation values are given in Table 4.2. In Figure 4.12 the bivariate densities of each two entries

Cor
(
r̂

(1,1)
n (0), r̂(1,2)

n (0)
)

Cor
(
r̂

(2,2)
n (0), r̂(1,2)

n (0)
)

Cor
(
r̂

(1,1)
n (0), r̂(2,2)

n (0)
)

H = 0.8 0.7331 0.7359 0.3729
H = 0.9 0.7341 0.7363 0.3767

Table 4.2: Simulated correlation between r̂(1,1)
n (0)− r(1,1)

H (0), r̂(1,2)
n (0)− r(1,2)

H (0) and r̂(2,2)
n (0)−

r
(2,2)
H (0) for different values of H.

of the sample covariance matrix are shown for H = 0.8.

Figure 4.12: Probability density function and corresponding contour lines of
(
Z

(1,1)
H (1), Z(2,2)

H (1)
)t
,(

Z
(1,1)
H (1), Z(1,2)

H (1)
)t

and
(
Z

(1,2)
H (1), Z(2,2)

H (1)
)t

for H = 0.8, created by using the
R-packages “ks” and “viridis” and the results of [26], Sec. 3.1.

We know that the asymptotics of a P-almost everywhere continuous, square-integrable function f
with Hermite rank 2 for H > 3

4 can be expressed by the three sample (cross-)correlations weighted
by the corresponding Hermite coefficients transformed via the inverse of the covariance matrix,
see (3.44). The corresponding limit theorem is given in Theorem 4.26. In the case H = 0.7 a
different limit theorem holds, see Theorem 4.35. Therefore, we turn to the simulation results of
the asymptotic distribution of the estimator of standard ordinal pattern dependence p̂n, as shown
in Figure 4.13 for pattern length h = 2. The asymptotic normality in case H = 0.7 can be clearly
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Figure 4.13: Histogram, kernel density estimation and Q-Q plot with respect to the normal
distribution (H = 0.7) or to the Rosenblatt distribution of p̂n − p with h = 2 for
different Hurst parameters: H = 0.7 (top), H = 0.8 (middle), H = 0.9 (bottom).

observed. We turn to the interpretation of the simulation results of the distribution of p̂n − p for
H = 0.8 and H = 0.9 as weighted sum of the sample (cross-)correlations: we observe in the Q-Q
plot for H = 0.8 that the samples in the upper and lower tail deviate from the reference line. For
H = 0.9 a similar behaviour in the Q-Q plot is observed. We are able to explicitly calculate the
weighting coefficients α̃(1,1) = α̃(2,2) and α̃(1,2) = α̃(2,1) here. The simulations confirm the results
in Theorem 4.26 that the convergence behaviour of the distribution of p̂n − p is equal to the
convergence behaviour of the distribution of a linear combination of each term in (4.36), (4.37)
and (4.38), weighted by the corresponding α(p,q), p = 1, 2. This can be observed in Figure 4.14.
Further, it is possible to determine the limit variance using the Matlab functions cHR2 and
HR2LimVar as described in Section A.3. The results are displayed in Table 4.3. The simulated
limit variances of p̂n−p normalized as described in Theorem 4.26 are 0.034 for H = 0.8 and 0.045
for H = 0.9. The deviation of these values to the theoretical values in Table 4.3 can be explained
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Figure 4.14: Kernel density estimation and Q-Q plot of
α̃(1,1)

(
r̂

(1,1)
n (0)− r(1,1)

H (0) + r̂
(2,2)
n (0)− r(2,2)

H (0)
)

+ 2α̃(1,2)
(
r̂

(1,2)
n (0)− r(1,2)

H (0)
)

and p̂n − p for H = 0.8 (top) and H = 0.9 (bottom).

α̃(1,1) α̃(1,2) Limit variance
H = 0.8 -0.2032 0.3413 0.0443
H = 0.9 -0.1876 0.2993 0.0724

Table 4.3: Theoretical values of α̃(1,1), α̃(1,2) and the limit variance of appropriately normalized
p̂n − p for H = 0.8 and H = 0.9.

by the slow convergence rate that we have in this setting. The marked terms in (3.39) only vanish
asymptotically and, therefore, bias the variance. The very small absolute value of the variances
above promote the instability of the convergence results. In the next section, we see that in the
case of a function with Hermite rank 1 the results concerning the asymptotic variance get more
stable due to a faster convergence rate. We want to verify the result in Theorem 4.27, that it is
possible by a different weighting, to express the limit distribution of p̂n − p as the distribution
of the sum of two independent standard Rosenblatt random variables in the case considered
here, see Corollary 3.14. Following (3.48), we have to consider the convergence behaviour of the
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second order Hermite polynomial applied to Y ∗j := Y
(2)
j −Y

(1)
j√

2−2r(1,2)
H (0)

and Y ∗∗j := Y
(1)
j +Y (2)

j√
2+2r(1,2)

H (0)
. We

show exemplarily that

1
n

n∑
j=1

H2
(
Y ∗j

)
= 1
n

n∑
j=1

H2
(
Y

(1)
j

)
+H2

(
Y

(1)
j

)
− 2

(
Y

(1)
j Y

(2)
j − r(1,2)

H (0)
)

2− 2r(1,2)
H (0)

=
r̂

(1,1)
n − r(1,1)

H (0) + r̂
(2,2)
n − r(2,2)

H (0)− 2
(
r̂

(1,2)
n − r(1,2)

H (0)
)

2− 2r(1,2)
H (0)

.

Using this formula the simulated convergence result for appropriately normalized 1
n

∑n
j=1H2

(
Y ∗j

)
is provided in Figure 4.15.

Figure 4.15: Histogram, kernel density estimation and Q-Q plot with respect to the Rosenblatt
distribution of 1

n

∑n
j=1H2

(
Y ∗j

)
for different Hurst parameters: H = 0.8 (top),

H = 0.9 (bottom).

We observe the standard Rosenblatt distribution. The results for 1
n

∑n
j=1H2

(
Y ∗∗j

)
yield similar

results.

Due to the reasons described above, it is in general difficult to obtain satisfying simulation results
in the case H = 0.9 (or H even closer to 1) since the simulations turn out to be very instable. We
used the sample size n = 2000000. However, the computational effort is very large, for N = 1000
simulations of these two paths of fractional Gaussian noise with H = 0.9 and their application to
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the functions under consideration using parallel computing on all kernels around 40 hours of
computational time is needed.

We also omitted the case to consider two different Hurst parameters for the two fractional
Gaussian noises. We know that the influence of the smaller parameter vanishes asymptotically.
However, as already seen above in the considerations to the second order Hermite coefficients,
the influence vanishes very slowly and, therefore, the simulated limit distribution would be biased.

We illustrated our theoretical results by providing the sample densities of univariate random
variables arising as limit random variables of functionals with Hermite rank 2. We observed
sample densities equal to those in the univariate case as considered in Section 4.2.2 representing
the standard Rosenblatt distribution. Taking p̂n − p as an example of an underlying function
with Hermite rank 2, we have seen in Figure 4.13 that the different ranges of H are justified in
the simulations: for H = 0.7, asymptotic normality as proved in Theorem 4.35 is validated. For
H = 0.8 and H = 0.9 we observe in Figure 4.14 that the asymptotic behaviour of the distribution
of appropriately normalized p̂n − p and the linear combination of the sample cross-correlation is
almost equal. This confirms our results in Theorem 4.26. In general, the theoretical investigation
of the distribution of a linear combination of the entries of the limit distribution of the sample
covariance matrix Γ̂Y,n(0)− ΓY (0) of (Yj) is an interesting open research challenge.

4.4 Adapted and generalized concepts of ordinal pattern
dependence

In this section, we enlarge the applicability of ordinal pattern dependence. We allow for certain
changes of the standard setting, which we have investigated in details in the previous section, to
be able to analyze a wider range of data sets in a more efficient way. As in the previous section, we
denote by (Xj)j∈Z with Xj =

(
X

(1)
j , X

(2)
j

)t
the bivariate Gaussian process in which we compare

the ordinal patterns and by (Yj)j∈Z with Yj =
(
Y

(1)
j , Y

(2)
j

)t
the corresponding increment process.

4.4.1 Estimator of ordinal pattern dependence for a single fixed pattern

First, we examine the case in which only one certain ordinal pattern π ∈ Sh in coincident moving
windows of the two time series under consideration is of interest. We focus on the probability

p(π) : = P
(
Π
(
X

(1)
0 , . . . , X

(1)
h

)
= Π

(
X

(2)
0 , . . . , X

(2)
h

)
= π

)
= P

(
Π̃
(
Y

(1)
1 , . . . , Y

(1)
h

)
= Π̃

(
Y

(2)
1 , . . . , Y

(2)
h

)
= π

)
, (4.39)

for π ∈ Sh.
Hence, the case of hypothetical independence is given by qn,Y (1)(π)qn,Y (2)(π) and is, therefore, a
special case of the considerations in Section 4.3.3. We omit the investigation of the quotient
analog to the definition of standard ordinal pattern dependence in(4.13), as the argumentation
works similar to the one in Section 4.3.4.
Note that the probability in (4.39) is one summand in the probability of coincident patterns in
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(4.11), but also reminds of the already considered univariate setting in Section 4.2. We define
the corresponding estimator based on the relative frequency as

p̂n(π) : = 1
n− h

n−h−1∑
j=0

1{
Π
(
X

(1)
j ,...,X

(1)
j+h

)
=Π
(
X

(2)
j ,...,X

(2)
j+h

)
=π
} (4.40)

= 1
n− h

n−h+1∑
j=1

1{
Π̃
(
Y

(1)
j ,...,Y

(1)
j+h−1

)
=Π̃
(
Y

(2)
j ,...,Y

(2)
j+h−1

)
=π
}.

Note that the main difference to the setting considered in Section 4.2 is given by the fact that
we are no longer considering consecutive random variables within one time series but within two
dependent time series respectively.

Remark 4.50 It is indeed possible to express the event described in (4.40) in terms of
Π
(
X

(1)
j , . . . , X

(1)
j+h, X

(2)
j , . . . , X

(2)
j+h

)
. Note that there exists a possibility to capture the event

1
n− h

n−h−1∑
j=0

1{
Π
(
X

(1)
j ,...,X

(1)
h

)
=Π
(
X

(2)
j ,...,X

(2)
h

)}
= 1
n− h

n−h−1∑
j=0

∑
π∈Sh

1{
Π
(
X

(1)
j ,...,X

(1)
j+h

)
=Π
(
X

(2)
j ,...,X

(2)
j+h

)
=π
}

= 1
n− h

n−h−1∑
j=0

∑
π∈Sh

∑
σ(π)∈S̃2h+1

1{
Π
(
X

(1)
j ,...,X

(1)
j+h,X

(2)
j ,...,X

(2)
j+h

)
=σ(π)

}. (4.41)

Hence, there exists a way to capture the event of a coincident patterns π ∈ Sh of the random
vectors

(
X

(1)
j , . . . , X

(1)
j+h

)
and

(
X

(2)
j , . . . , X

(2)
j+h

)
in one single pattern σ(π), by plugging the joint

random vector
(
X

(1)
j , . . . , X

(1)
j+h, X

(2)
j , . . . , X

(2)
j+h

)
into the map Π. Now, we need to figure out

which pattern σ(π) are included in S̃2h+1.
We consider the following example. We choose h = 2 and the pattern π = (0, 1, 2). Then, it is
easy to see that the event{

Π
(
X

(1)
0 , X

(1)
1 , X

(1)
2

)
= Π

(
X

(2)
0 , X

(2)
1 , X

(2)
2

)
= (0, 1, 2)

}
,

which coincides with {
X

(1)
2 ≤ X(1)

1 ≤ X(1)
0

}
∩
{
X

(2)
2 ≤ X(2)

1 ≤ X(2)
0

}
(4.42)

contains for example the event{
Π
(
X

(1)
0 , X

(1)
1 , X

(1)
2 , X

(2)
0 , X

(2)
1 , X

(2)
2

)
= (0, 1, 2, 3, 4, 5)

}
for a permutation σ(π) = (0, 1, 2, 3, 4, 5) ∈ S5. This event is equivalent to the inequality{

X
(1)
2 ≤ X(1)

1 ≤ X(1)
0 ≤ X(2)

2 ≤ X(2)
1 ≤ X(2)

0

}
.

Of course, there are more options to choose σ(π) for fixed π. We could also use for example
σ(π) = (0, 1, 3, 4, 5, 2) or σ(π) = (0, 3, 1, 4, 2, 5). These permutations yield the events{

X
(1)
2 ≤ X(2)

2 ≤ X(2)
1 ≤ X(2)

0 ≤ X(1)
1 ≤ X(1)

0

}
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and {
X

(1)
2 ≤ X(2)

2 ≤ X(1)
1 ≤ X(2)

1 ≤ X(1)
0 ≤ X(2)

0

}
,

respectively. The inequalities also fulfill the condition above, namely
{
X

(1)
2 ≤ X(1)

1 ≤ X(1)
0

}
and{

X
(2)
2 ≤ X(2)

1 ≤ X(2)
0

}
.

The first important insight is that the original event in (4.42) does not provide us any or-
dinal information between the random vectors

(
X

(1)
j , . . . , X

(1)
j+h

)
and

(
X

(2)
j , . . . , X

(2)
j+h

)
. By

using the joint random vector we are artificially generating an ordinal relation between them,
although actually there is none. The summation of all σ(π) ∈ S̃2h+1 can be seen as a way of
computing the total probability since we are eliminating the additional constraints on the ordinal
information between the two random vectors by adding all possibilities up.
We need to determine the set of permutations that generates S̃2h+1, namely all permutations σ(π)
that fulfill the two inequalities in (4.42). In our example, roughly speaking, we have to assure that
reading the permutation σ(π) from left to right, the only two constraints are that 0 is before 1 is
before 2 and that 3 is before 4 is before 5. So this is exactly displaying the nonexistent ordinal infor-
mation between the two random vectors since there are no restrictions between for example 1 and 5.

In general, for a permutation π ∈ Sh, we can formulate the following restrictions for a pattern
σ(π) belonging to S̃2h+1. For π = (π0, π1, . . . , πh) and σ(π) = (σ0, σ1, . . . , σ2h+1) denote the index
of the permutation σ(π) by k(i) such that σk(i)(π) = πi for i = 0, . . . , h and σk(i)(π) = πi + h+ 1
for i = h + 1, . . . , 2h + 1. Then, σ(π) is in the set of permutations S̃2h+1 if and only if
k(0) < k(1) < . . . < k(h) and k(h+ 1) < k(h+ 2) < . . . < k(2h+ 2).
In this case, the events{

Π
(
X

(1)
j , . . . , X

(1)
j+h

)
= Π

(
X

(2)
j , . . . , X

(2)
j+h

)
= π

}
and ⋃

σ(π)∈S̃2h+1

{
Π
(
X

(1)
j , . . . , X

(1)
j+h, X

(2)
j , . . . , X

(2)
j+h

)
= σ(π)

}
are equivalent.

It is possible to determine the number of permutations in S̃2h+1 by the following considera-
tions. If we have allocated the h + 1 entries of π ∈ Sh to the permutation σ(π) ∈ S2h+1, then
the remaining entries of the permutation at the positions π0 + h + 1, . . . , πh + h + 1 are fixed,
since we may not disturb the given order. Then, we need to determine the number of possibilities
to allocate h + 1 numbers of a fixed order to 2h + 2 places. This corresponds exactly to the
set K{0,1,...,2h+1}

h+1 , which denotes the set of h + 1-combinations of {0, 1, 2, . . . , 2h + 1} without
repetition. The cardinality of this set is given by #K{0,1,...,2h+1}

h+1 =
(2h+2
h+1

)
. It is well known that

the cardinality of Sh is given by #Sh = (h+ 1)! and hence the cardinality of the subset of S2h+1

that fulfills the conditions above and forms the set S̃2h+1 is given by #K{1,...,2h+1}
h+1
(2h+2)! = 1

(h+1)!(h+1)! .
However, in order to determine the limit distribution of p̂n(π)−p(π), π ∈ Sh these considerations
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show that the assumptions on the underlying time series in Theorem 3.3 or in Theorem 3.10 are
only fulfilled for d = 2 but not for d = 1. In (4.41) the underyling random vector do not fulfill
univariate stationarity as given in Definition 2.3. Therefore, we may not apply the results of
Section 4.2.

We have shown that it is not possible to represent the parameter of interest in terms of a modified
univariate stationary Gaussian random vector. In the following, we turn to the bivariate case.

Lemma 4.51 The Hermite rank m (fπ,Σ2,h), of

fπ (Yj,h) =1{
Π̃
(
Y

(1)
j ,...,Y

(1)
j+h−1

)
=Π̃
(
Y

(2)
j ,...,Y

(2)
j+h−1

)
=π
}

− P
(
Π̃
(
Y

(1)
1 , . . . , Y

(1)
h

)
= Π̃

(
Y

(2)
1 , . . . , Y

(2)
h

)
= π

)
with respect to Σ2,h is equal to 1.

Proof. Following Lemma 2.33 we need to show that m (fπ, I2,h) = 1. Define U1,h :=(
U

(1)
1 , . . . , U

(1)
h , U

(2)
1 , . . . , U

(2)
h

)t
with U1,h ∼ N (0, I2,h) Let without loss of generality be i =

1, ..., h. It holds that

E
(
U

(i)
1,hfπ (U1,h)

)
= E

U (i)
1,h1{

Π̃
(
U

(1)
1 ,...,U

(1)
h

)
=Π̃
(
U

(2)
1 ,...,U

(2)
h

)
=π
}

= E

U (1)
i 1{

Π̃
(
U

(1)
1 ,...,U

(1)
h

)
=π
}P

(
Π̃
(
U

(2)
1 , . . . , U

(2)
h

)
= π

)
6= 0,

by the same argument as used in the proof of Lemma 4.12. �

We now turn to the asymptotic properties of the estimator of ordinal pattern dependence for
one fixed pattern. We consider the dependence structure of the underlying bivariate Gaussian
time series for the following cases: We examine the pure long-range dependence case and the
mixed case, where at least one of the two considered increment processes is long-range dependent,
but the other one is allowed to be short-range dependent, as given in (L1s). Both can be
handled with an application based on Theorem 3.3, namely by using its extended version given
in Corollary 3.4.

Theorem 4.52 Under the assumptions of (L1s) in Overview 4.24, it holds

n−d
∗+1/2C

−1/2
1 (p̂n(π)− p(π)) D−→ N

0,

 ∑
p,q∈P ∗

α̃
(p)
π,2α̃

(q)
π,2Lp,q


with C1 := 1

d∗(2d∗+1) , α̃
(p)
π,2 = ∑h

j=1 α
π,2
j+(p−1)h for p = 1, 2. Further, we have

απ,2 =
(
απ,21 , . . . , απ,22h

)t
= Σ−1

2,hc
π,2
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and

cπ,2 := E

1{
Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=π
} (Y (1)

1 , . . . , Y
(1)
h , Y

(2)
1 , . . . , Y

(2)
h

)t
and P ∗, d∗ as defined in (3.10).

Proof. We already determined the Hermite rank of the function fπ (Yj,h) with respect to Σ2,h

in Lemma 4.51. Since E
(
fπ (Yj,h)2

)
= p(π)(1− p(π)) <∞, the proof follows by an application

of Corollary 3.4. �

Asymptotic variance

We need to determine c, the vector of first order Hermite coefficients of the function fπ. Then,
we are able to explicitly calculate the limit variance.
By the symmetry properties (I)-(IV) in (4.14) to (4.17), we obtain the following equalities in
terms of the Hermite coefficients. Recall that

cπ,2 = E

1{
Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=π
} (Y (1)

1 , . . . , Y
(1)
h , Y

(2)
1 , . . . , Y

(2)
h

)t ,
such that

cπ,2i = E

1{
Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=π
}Y (i)

1,h

 , i = 1, . . . , 2h.

Then, we obtain the following equalities for i = 1, . . . , 2h, k = 1, . . . , h and l = h+ 1, . . . , 2h:

cπ,2i = −cS(π),2
i (I)

cπ,2i = c
T ◦S(π),2
2h+1−i (I), (II)

cπ,2k = c
T ◦S(π),2
h+1−k , cπ,2l = c

T ◦S(π),2
3h+1−l (I), (III)

cπ,2k = cπ,2k+h (I), (II), (III). (4.43)

The condition that needs to hold for each equality is always denoted behind each equality. The
calculations to obtain these relations are similar to those provided in (4.20). For an illustrative
comparison how these relations can help to significantly reduce the number of integrals one has
to calculate in order to determine the vector of Hermite coefficients in the case d = 2, h = 2,
see Table A.1 and Table A.2 in Section A.2. Note that each entry of the vector of Hermite
coefficients is a four-dimensional integral. The tables mentioned above deal with determining the
Hermite coefficients for each pattern π in the reversion group π̄ = {π,S(π), T (π), T ◦ S(π)} and
the reduction possibilities, if one wants to classify the vector of Hermite coefficients for all of the
patterns in this group. If any of the assumptions (II) or/and (III) is fulfilled, it is possible to
reduce the number of four-dimensional integrals we have to calculate from 16 to 8 in general,
and even to 4 (if Condition (II) or (III) holds) or 2 integrals (if Conditions (II) and (III) hold).
In the special case that π = T ◦ S(π) and Conditions (II) and (III) hold, it is even possible to
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obtain all Hermite coefficients needed by considering only one integral. If we want to determine
the vector of Hermite coefficients for all patterns in S2 and if both Condition (II) and (III) are
fulfilled it is possible to reduce the number of integrals we have to calculate from 24 to 3 and,
therefore, obtain a huge reduction of the computational cost.

In the following, we study the vector
(
α̃

(1)
π,2, α̃

(2)
π,2

)t
for π ∈ S2, where the entries are given

by α̃(p)
π,2 = απ,2,?1+(p−1)h + απ,2,?2+(p−1)h, p = 1, 2 and απ,2,? = Σ−1

2,2c
π,2. This vector is crucial to de-

termine the limit variance in Theorem 4.52. By the symmetries of the vector cπ,2 within the
reversion group π̄ given in (4.43) it is possible to show that the number of calculations can be
reduced. Under assumptions (II) and (III) it is even possible to show that knowing only three
certain Hermite coefficients suffices to determine the limit variance in 4.52 for all patterns in S2.
We denote Σ−1

2,h = (gi,j)i,j=1,...,2h.
The limit variance in Theorem 4.52 is given by the formula

∑
p,q∈P ∗

α̃
(p)
π,2α̃

(q)
π,2Lp,q. (4.44)

To be able to handle the most general setting, we assume P ∗ = {1, 2}. Otherwise the coefficients
needed to determine the limit variance reduce corresponding to P ∗.
Note that in general for each π ∈ S2, we know due to (I) that for p = 1, 2:

α̃
(p)
π,2 =

h∑
i=1

απ,2i+(p−1)h

=
h∑
i=1

2h∑
j=1

gi+(p−1)h,jc
π,2
j

=
h∑
i=1

2h∑
j=1

gi+(p−1)h,j − c
S(π),2
j

= −α̃(p)
S(π),2.

Therefore, according to (4.44), p̂n(π) and p̂n(S(π)) always have the same limit variance.
In the most general setting, in which only (I) is fulfilled, one has to calculate cπ,2 if #π̄ = 2
and cπ,2 and cT (π),2 if #π̄ = 4 in order to determine the limit variance for each pattern in
the reversion group π̄. This corresponds to a number of 2h or 4h of 2h-dimensional integrals,
respectively.
This number of calculations can be reduced again by checking whether conditions (II) and/or
(III) are satisfied.
If Condition (II) holds, we know that Σ−1

2,h is persymmetric, such that gi,j = g2h+1−i,2h+1−j .
Then, we obtain for p = 1, 2, that

α̃
(p)
T ◦S(π),2 =

2h∑
j=1

h∑
i=1

gi+(p−1)h,jc
T ◦S(π),2
j

=
2h∑
j=1

h∑
i=1

g2h+1−i−(p−1)h,2h+1−jc
π,2
2h+1−j
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=
2h∑
j=1

h∑
i=1

g(3−p)h+1−i,jc
π,2
j

=
2h∑
j=1

h∑
i=1

g(2−p)h+i,jc
π,2
j

= α̃
(3−p)
π,2 .

The limit variance of p̂n(π) for each π ∈ π̄ given in (4.44) is uniquely determined by the vector
α̃

(1)
π,2, α̃

(2)
π,2, for one fixed π, although it does not necessarily have the same value for each pattern

in this reversion group. This only occurs if L1,1 = L2,2 (if α̃(1)
π,2 6= α̃

(2)
π,2).

In the special case T ◦ S(π) = π, we even have α̃(1)
π,2 = α̃

(2)
π,2.

If Condition (III) holds, due to the symmetry of the autocorrelation-, as well as the cross-
correlation functions, we obtain for all i = 1, . . . , h that gi+(p−1)h,j = gh+1−i+(p−1)h,h+1−j if
j = 1, . . . , h, and gi+(p−1)h,j = gh+1−i+(p−1)h,3h+1−j if j = h+ 1, . . . , 2h. We arrive at

α̃
(p)
T ◦S(π),2 =

2h∑
j=1

h∑
i=1

gi+(p−1)h,jc
T ◦S(π),2
j

=
h∑
j=1

h∑
i=1

gi+(p−1)h,jc
π,2
h+1−j +

2h∑
j=h+1

h∑
i=1

gi+(p−1)h,jc
π,2
3h+1−j

=
h∑
j=1

h∑
i=1

gh+1−i+(p−1)h,h+1−jc
π,2
h+1−j +

2h∑
j=h+1

h∑
i=1

gh+1−i+(p−1)h,3h+1−jc
π,2
3h+1−j

=
h∑
j=1

h∑
i=1

gi+(p−1)h,h+1−jc
π,2
h+1−j +

2h∑
j=h+1

h∑
i=1

gi+(p−1)h,3h+1−jc
π,2
3h+1−j

=
h∑
j=1

h∑
i=1

gi+(p−1)h,jc
π,2
j +

2h∑
j=h+1

h∑
i=1

gi+(p−1)h,jc
π,2
j

= α̃
(p)
π,2.

Therefore, the term in (4.44) attains the same value for each π ∈ π̄.
Combining the last two results, we see that in the most special case where Conditions (II) and
(III) hold, we obtain that the limit variance in (4.44) has the same value for each π ∈ π̄. In
addition, we also have α̃(1)

π,2 = α̃
(2)
π,2. Therefore, we can identify the limit variance to the term(

α̃
(1)
π,2

)2∑2
p,q=1 Lp,q.

Summing up these results, the advantages of the symmetries studied can be emphasized by
considering two different settings seperately.
The first setting is to calculate the limit variance for one explicit pattern π ∈ Sh only. Without
any symmetry properties we need to determine all 2h entries of the vector of Hermite coefficients
cπ,2, while if Conditions (II) and (III) are fulfilled, we can reduce the number of entries we need
to determine to h if the pattern we are considering belong to a reversion group with 4 elements,
or even to

⌊
h+1

2

⌋
if π = T ◦ S(π).

However, the most efficient improvement is not achieved for the asymptotic variance for the
estimator of one fixed pattern, but if we want to determine this variance for all estimators of the
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patterns in the corresponding reversion class, or even in the entire permutation group Sh. In
the most general setting, by only using symmetry property (I), it is already possible to reduce
the number of calculations by a factor of 2. If additionally any of the conditions (II) or (III)
is fulfilled, we get the asymptotic variance of the whole reversion group by only calculating it
for one fixed pattern of this group. If we consider a reversion group with only two elements,
the number of integrals further reduces due to the symmetry properties within the vector cπ,2

of Hermite coefficients, see (4.43). In the best (and most restrictive) case considered, namely
Conditions (II) and (III) hold, and we are interested in the asymptotic variances for all estimators
p̂n(π) for π ∈ S2, we only need to determine three entries of certain Hermite coefficients, namely
c

(2,1,0),2
1 , c(2,0,1),2

1 and c
(2,0,1),2
2 . Without exploiting these properties, each Hermite coefficient

would have to be determined separately. Therefore, since #S2 = 6, we have a reduction from 24
to 3 four-dimensional integrals that need to be determined. In general, with h ∈ N, we know that
the number of reversion groups with 2 elements is given by ah =

(
h+1

2

)
!2h−1

2 , for h ∈ 2N− 1, and
ah = ah+1. Without loss of generality, we assume that h is an odd number. Then, the number of
integrals using the symmetries, divided by the number of integrals needed without optimization,
is given by

h+1
2 ah + h (h+1)!−2ah

4
(h+ 1)!2h = x!2x−1

4(2x)!(2x− 1) + 1
8

 = 1
4 , h = 1,

≈ 1
8 , h = 3, 5, 7, . . .

,

with x := h+1
2 .

Hence, we can reduce the computational cost by 1
8 if h 6= 1. Since the dimension of the integrals

considered is given by 2h, a reasonable computational time is only obtained in the case where h
is small. We give an example for the case h = 1, which is the only one possible to derive closed
formulas for α̃(p)

π,2, p = 1, 2.

Example 4.53 We consider the case h = 2 and we observe that we are in a similar situation as
in Example 4.21. Therefore, we obtain for π = (1, 0):

cπ,21 = E

Y (1)
1 1{

Y
(1)

1 ≥0,Y (2)
1 ≥0

} = ϕ(0)
2

(
1 + r(1,2)(0)

)
.

Since Condition (II) in (4.15) holds due to the symmetry of the cross-correlation function in 0,
we know that cπ,21 = cπ,22 and hence derive

α̃
(1)
π,2 = ϕ(0)

2

and α̃(1)
π,2 = α̃

(2)
π,2. Therefore, the asymptotic variance in Theorem 4.52 in the case h = 1 is given

by ϕ2(0)
4
∑
p,q∈P ∗ Lp,q. Surprisingly it is independent of r(1,2)(0).

In the case h = 2 one can obtain the limit variance of p̂n(π)− p(π) by using the Matlab function
cHR1. Note that we provide another Matlab function HR1allpattern, if one is interested in
the limit variances for all permutations in S2, since it is possible to significantly reduce the
computational cost compared to using the cHR1 for all #S2 = 6 pattern. Both algorithms are
described in Section A.3.
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However, it is possible to improve the estimator of ordinal pattern dependence for one cer-
tain pattern based on a Rao-Blackwellization as described in [60], p.1784ff. We have to add
the constraint that r(1,1)(k) = r(2,2)(k), k = 0, 1, . . . , h− 1, such that (III) in (4.16) holds. This
condition assures that

p(π) = p(S(π)) = p(T (π)) = p(T ◦ S(π)).

We define

p̂n,imp(π) := 1
#π̄

∑
π∈π̄

p̂n(π)

as improved estimator for p(π). We now benefit from the considerations in (4.14) - (4.17) and
Section 4.3.1 concerning the Hermite rank and the symmetry properties for the asymptotic
variance of the estimator of p.
The Hermite rank of this estimator is an immediate consequence of the proof of Lemma 4.25.

Lemma 4.54 The Hermite rank of

f(Yj,h) = 1
#π̄

∑
π∈π̄

1{
Π̃
(
Y

(1)
j+1,...,Y

(1)
j+h

)
=Π̃
(
Y

(2)
j+1,...,Y

(2)
j+h

)
=π
} − p(π)

with respect to Σ2,h is equal to 2.

Hence, we can state the following result as an immediate applications of Corollary 3.11 and
Theorem 4 of [2].

Theorem 4.55 The following statements are true:

(i) Under the assumptions in (L2s) in Overview 4.24, it holds for each π ∈ Sh, that

n1−2d∗(C2)−
1
2 (p̂n,imp(π)− p(π))
D−→

∑
p,q∈P ∗

α̃(p,q)Z
(p,q)
2,d∗+1/2(1),

with Z
(p,q)
2,d∗+1/2(1) as given in Theorem 3.10 and C2 := 1

2d∗(4d∗−1) being a normalizing
constant.
We have α̃(p,q) :=

h∑
i,k=1

α
(p,q)
i,k , where α(p,q)

i,k = αi+(p−1)h,k+(q−1)h for each p, q ∈ P ∗ and

i, k = 1, . . . , h and (αi,k)1≤i,k≤dh = Σ−1
2,hCΣ−1

2,h where

C = (ci,k)1≤i,k≤2h = E

Y1,h

 1
#π̄

∑
π∈π̄

1{
Π̃
(
Y

(1)
j+1,...,Y

(1)
j+h

)
=Π̃
(
Y

(2)
j+1,...,Y

(2)
j+h

)
=π
} − p(π)

Y t
1,h


denotes the matrix of second order Hermite coefficients.
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(ii) Under the assumptions in (S) in Overview 4.24, it holds that

n
1
2 (p̂n,imp(π)− p(π)) D−→ N

(
0, σ2

)
,

with

σ2 =
∞∑

k=−∞
E
[ 1

#π̄
∑
π∈π̄

1{
Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)
=π
} − p(π)


×

 1
#π̄

∑
π∈π̄

1{
Π̃
(
Y

(1)
1+k,...,Y

(1)
h+k

)
=Π̃
(
Y

(2)
1+k,...,Y

(2)
h+k

)
=π
} − p(π)

].
Note that the asymptotic variance in (i) can easily be deduced from the considerations concerning
the asymptotic variance in Section 4.3.1 of p̂n, since

p̂n = 2
∑

π∈S[2,h]

p̂n,imp(π) + 4
∑

π∈S[4,h]

p̂n,imp(π).

Using this relation, the expression of the second order Hermite coefficients for the considered
estimator can be obtained and are given in Table 4.1. For an overview of the second order
Hermite coefficients for h = 2 see Example 4.30. Concerning the asymptotic variance determined
by α̃(p,q) as given in Theorem 4.55, using relation (4.22) shows that the considerations in Section
4.3.1 are sufficient to fully determine the asymptotic variance of the estimator p̂n,imp(π), as well.
We give a brief example in the case h = 1, which is directly deduced from Example 4.33.

Example 4.56 In the case h = 1, the factors α̃(p,q), p, q = 1, 2, of the asymptotic variance of
the estimator p̂n,imp in Theorem 4.55 (i) are given by

α̃
(1,1)
π,2 = α̃

(2,2)
π,2 = −ϕ2(0)r(1,2)(0)(

1−
(
r(1,2)(0)

)2)1/2

and

α̃
(1,2)
π,2 = α̃

(2,1)
π,2 = ϕ2(0)(

1−
(
r(1,2)(0)

)2)1/2 ,

for π ∈ S1.

In the case h = 2, the factors α̃(p,q), p, q = 1, 2, can be obtained by using the Matlab function
cHR2, which is described in Section A.3. In order to get α̃(p,q), p, q = 1, 2, one follows the
considerations in (4.24) to (4.26). Depending on the permutation π ∈ S2, one needs to focus
on the first sum on the right-hand side in (4.24) to (4.26), if #π̄ = 2, or on the second one if
#π̄ = 4. In both cases it is important to divide each sum by 2 or 4, respectively, to get the
appropriate factors for the estimator considered here. One can see that only if neither Condition
(II) given in (4.15) nor Condition (III) in (4.16) hold, one has to use (4.24) and, therefore, the
Matlab function cHR2 needs to be applied for e.g. π = (2, 0, 1) as well as for π = (0, 2, 1). In
all other cases one run of the Matlab function for π = (2, 0, 1) is sufficient to determine α̃(p,q),
p, q = 1, 2, from the result.
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Figure 4.16: Histogram, kernel density estimation and Q-Q plot of suitably normalized
p̂n((2, 1, 0)) − p((2, 1, 0)) for different Hurst parameters: H = 0.7 (top), H = 0.8
(middle), H = 0.9 (bottom).

Finally we complement the simulation study in Section 4.3.5, such that all assumptions of this
section hold as well. By choosing the estimator of ordinal pattern dependence for one fixed
pattern p̂n(π), we provide an example of a function with Hermite rank 1. Note that we omit the
improved estimator p̂n,imp(π) here, as simulation results for functionals with Hermite rank 2 were
already presented in Section 4.3.5. Based on the results in Theorem 4.52, we expect asymptotic
normality for all Hurst parameters H considered here. The simulation results of the asymptotic
distribution are given in Figure 4.16. We observe the density of the standard normal distribution
for each parameter H, so Theorem 4.52 is validated. Concerning the asymptotic variance of the
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limit distributions as given in Theorem 4.52, we can use the Matlab function cHR1, see Section
A.3, to obtain the quantities displayed in Table 4.4. Note that due to the symmetry property
(IV) in (4.17), we have α̃(1) = α̃(2). Concerning the deviation between the theoretical values

α̃(1) Limit variance Simulated limit variance
H = 0.7 0.1557 0.0217 0.0218
H = 0.8 0.1645 0.0416 0.0425
H = 0.9 0.1753 0.0708 0.0624

Table 4.4: Theoretical values of α̃(1) and the limit variance as well as the simulated limit variance
of suitably normalized p̂n((2, 1, 0))− p((2, 1, 0)) for H = 0.7, H = 0.8 and H = 0.9.

of the limit variance and the results in the simulations, it is clearly observable that the larger
the Hurst parameter gets, the larger the deviation becomes. The reason for this is, as already
mentioned concerning the limit variances of the estimator p̂n, that the convergence rate of the
cross-correlations in (3.2) gets slower the larger the Hurst parameter is. Therefore, the simulated
results get more biased the larger the Hurst parameter gets. However, in the case of Hermite
rank 1, we still obtain a faster convergence rate as in the case of Hermite rank 2, see Theorem 3.3
and Theorem 3.10. Therefore, we obtain more stable simulation results for the limit variances
here.

4.4.2 Estimating the Hurst parameters of vector fractional Gaussian noise
based on ordinal pattern analysis

As proposed in [60], Section 3, in the univariate case, it is possible to estimate the Hurst parameter
of fractional Gaussian noise based on the improved estimator of ordinal pattern probabilities
q̂n,Y (p),imp(π), p = 1, 2, as introduced in Section 4.2. This estimator is called zero-crossing
estimator of the Hurst parameter. Note that the Hurst parameter Hp of the respective long-range
dependent time series Y (p)

j , p = 1, 2, is related to the long-range dependence parameter dp in
Definition 2.13 by Hp = dp + 1

2 . In [60], Corollary 5, it is proved that this estimator of the Hurst
parameter is strongly consistent and asymptotically unbiased. Asymptotic normality is also
derived for H < 3

4 , the transformed short-range dependence case. This result was complemented
in [10], Theorem 4.1, for H > 3

4 , that is the long-range dependent case, with a Rosenblatt
distributed limit random variable.

We want to give an extension to the estimation of the Hurst parameter of each (cross-)correlation-
function for multivariate vector fractional Gaussian noise. This is the increment process of
vector fractional Brownian motion and was introduced in Definition 2.23. Note that we restrict
ourselves to the bivariate case, but the results can be extended straightforward. We start with
a brief description of the setting used in [60], Section 3, to which we adapt our multivariate
generalization.
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As their method needs closed formulas of orthant probabilities of the multivariate normal distri-
bution, they restricted themselves to the case h = 2 and considered the probability of changes of
the signs of the respective increments of the one dimensional underlying process. This probability
is equal to the probability of changes in the up-and-down behaviour of the process

(
X

(p)
j

)
j∈Z

.
In mathematical terms this probability can be described for p = 1, 2 as

θ(p,p) : = P
(
W (p,p) = 1

)
= 2P

(
Y

(p)
i+1 ≥ 0, Y (p)

i+2 ≤ 0
)

= 1
2 −

1
π

arcsin
(
r(p,p)(1)

)
,

with W (p,p) := 1{Y (p)
1 ≥0,Y (p)

2 ≤0} + 1{Y (p)
1 ≤0,Y (p)

2 ≥0}.
In the context of a bivariate process, in order to estimate the long-range dependence parameter
of the cross-correlation function, one needs to slightly modify this approach. We consider the
up-and-down behaviour between the processes

(
X

(p)
j

)
j∈Z

and
(
X

(q)
j

)
j∈Z

, described by

θ(p,q) : = P
(
W (p,q) = 1

)
= 2P

(
Y

(p)
i+1 ≥ 0, Y (q)

i+2 ≤ 0
)

= 1
2 −

1
π

arcsin
(
r(p,q)(1)

)
,

with W (p,q) := 1{Y (p)
1 ≥0,Y (q)

2 ≤0} + 1{Y (p)
1 ≤0,Y (q)

2 ≥0}.
As estimator of θ(p,q), p, q = 1, 2, in the case p = q it is natural to consider:

θ̂(p,p)
n := 4q̂n,Y (p),imp(π)

for π ∈ {(2, 0, 1), (1, 0, 2), (1, 2, 0), (0, 2, 1)}, because these ordinal patterns express a change of
the sign in two consecutive increments.
In the case p 6= q, we need to define a different estimator. We obtain

P
(
W (p,q) = 1

)
= P

(
1{Y (1)

1 ≥0,Y (2)
2 ≤0} + 1{Y (1)

1 ≤0,Y (2)
2 ≥0} = 1

)
= P

(
Y

(1)
1 ≥ 0, Y (2)

2 ≤ 0
)

+ P
(
Y

(1)
1 ≤ 0, Y (2)

2 ≥ 0
)

= P
(
Π̃
(
Y

(1)
1

)
= (1, 0), Π̃

(
Y

(2)
2

)
= (0, 1)

)
+ P

(
Π̃
(
Y

(1)
1

)
= (0, 1), Π̃

(
Y

(2)
2

)
= (1, 0)

)
=
∑
π∈π̄

P
(
Π̃
(
Y

(1)
1

)
= π, Π̃

(
Y

(2)
2

)
= S(π)

)
=
∑
π∈π̄

P
(
Π̃
(
Y

(1)
1

)
= π, Π̃

(
−Y (2)

2

)
= π

)
,

for π ∈ {(0, 1), (1, 0)} = S1. Therefore, it is sufficient to restrict ourselves to the case h = 1 in a
modified ordinal pattern dependence setting, since we are now facing the challenge that we are
not comparing coincident patterns, but space-reflected patterns. Hence, we have to consider a
maximal distance between the patterns. This corresponds to negative dependence between the
increment variables and we exploit the possibility to change the sign of the second increment
variable in order to measure ordinal pattern dependence, as it was proposed at the beginning
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of Section 4.3. Additionally, we are still able to plug in the well-known improved estimator of
ordinal pattern dependence for one certain pattern in order to estimate θ̂(p,q). Compared to the
univariate case, note that

P
(
Y

(1)
j ≥ 0, Y (2)

j+1 ≤ 0
)

+ P
(
Y

(1)
j ≤ 0, Y (2)

j+1 ≥ 0
)

= P
(
Π̃
(
Y

(1)
j , Y

(2)
j+1

)
∈ π̄

)
for π ∈ {(2, 0, 1), (1, 0, 2), (1, 2, 0), (0, 2, 1)}. However, this case is not helpful here, since we do
not have any closed formulas for the limit variance in the case h = 2.
Hence, we define the estimator of θ(p,q) for p 6= q by

θ̂(p,q)
n := p̂n = 2p̂n(π)

for π ∈ {(0, 1), (1, 0)}. Note that p̂n and p̂n(π) are applied to a bivariate Gaussian process for
h = 1 given by

((
Y

(1)
j ,−Y (2)

j+1

))
j∈Z

.

Since we are considering vector valued fractional Gaussian noise, we know by Definition 2.23
that the cross-correlation function of

(
Y

(1)
j , Y

(2)
j

)
j∈Z

is given by

r(p,q)(k) = 1
2
(
wp,q(k + 1)|k + 1|(Hp+Hq) + wp,q(k − 1)|k − 1|(Hp+Hq) − 2wp,q(k)|k|(Hp+Hq)

)
,

with wp,q(k) = ρp,q − ηp,qsign(k), where ρp,q = Cor
(
B

(p)
H (1), B(q)

H (1)
)
. The random variable

BH(1) denotes the corresponding vector fractional Brownian motion evaluated in 1. We have
ηp,q ∈ R and ηp,q = −ηq,p. For details on ηp,q, see [54], Proposition 9.3.19 and Section 9.4.3. For
technical reasons, we assume in the following, that ρp,q ± ηp,q 6= cos

(
π
Hp+Hq−1

2

)
.

Note that if p = q, ρp,p = 1 and ηp,p = 0. Recall from (2.4) that

r(p,q)(k) ' 1
2 (ρp,q − ηp,qsign(k)) (Hp +Hq) (Hp +Hq − 1) |k|Hp+Hq−2. (4.45)

Therefore, we obtain for all p, q = 1, 2, that

r(p,q)(1) =
(
2Hp+Hq−1 − 1

)
(ρp,q − ηp,q) .

Hence, we can write

θ(p,q)
(
Hp +Hq

2

)
= 1

2 −
1
π

arcsin
((

22Hp+Hq
2 −1 − 1

)
(ρp,q − ηp,q)

)
for p, q = 1, 2.
Now we determine a function gp,q, such that gp,q

(
θ(p,q)

(
Hp+Hq

2

))
= Hp+Hq

2 , to be able to apply
the delta method later on. For x ∈ [0, 1] we obtain

gp,q(x) := max

0, 1
2

log2

sin
(
π
(

1
2 − x

))
ρp,q − ηp,q

+ 1

+ 1


with

(gp,q)′ (x) = − π sin(πx)
log(4) ((ρp,q − ηp,q) + cos(πx)) .
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Note that for all p, q = 1, 2 we have θ(p,q)
(
Hp+Hq

2

)
∈ (0, 1), since Hp, Hq ∈

(
1
2 , 1
)
, with

Hp +Hq 6= 1. Therefore, (gp,q)′
(
Hp+Hq

2

)
exists, since we assumed ρp,q ± ηp,q 6= cos

(
π
Hp+Hq−1

2

)
and (gp,q)′

(
Hp+Hq

2

)
is not equal to zero, because sin

(
π
Hp+Hq−1

2

)
6= 0 for Hp, Hq ∈

(
1
2 , 1
)
. We

define

Ĥ(p,q)
n := Ĥp +Hq

2 = g
(
θ̂(p,q)
n

)
and arrive at the following result.

Theorem 4.57 Let (Yj)j∈Z be a bivariate vector fractional Gaussian noise that fulfills (L1)
in Overview 4.24. Therefore, Hp ∈

(
1
2 , 1
)
, for p = 1, 2. Further, let Z(p,q)

2,Hp+Hq
2

, p, q = 1, 2, be
the random variables as given in Theorem 4.55 but scaled to unit variance. They exhibit the
covariance matrix

E
(

vec
(
Z

(p,q)
2,Hp+Hq

2
, p, q = 1, 2

)
vec

(
Z

(p,q)
2,Hp+Hq

2
, p, q = 1, 2

)t)
= (Id2 +Kd2)D−1

L L⊗ L, (4.46)

with Kd2, L as given in Lemma 3.5 and DL is a diagonal matrix

DL = diag
(
2L2

1,1, L1,1L2,2 + L1,2L2,1, L1,1L2,2 + L1,2L2,1, 2L2
2,2

)
.

assuring that the diagonal entries of the covariance matrix in (4.46) are all equal to 1.
Then, the following statements are true for p, q = 1, 2:

(i) If p 6= q, Hp > Hq and Hp ∈
(

3
4 , 1
)
, then

n2−2Hp
√

4Hp − 3
8 (Hp)2 (2Hp − 1)

(
Ĥ(p,q)
n − Hp +Hq

2

)

D−→ −1
2

sin
(
πθ(p,q)

(
Hp+Hq

2

))
log(4)

(
(ρp,q − ηp,q) + cos

(
πθ(p,q)

(
Hp+Hq

2

)))
× 2Hp+Hq−1 − 1

((2− 2Hp+Hq−1) 2Hp+Hq−1)1/2Z
(p,p)
2,Hp (1).

(ii) If p 6= q, Hp = Hq and Hp ∈
(

3
4 , 1
)
, then

n2−2Hp
√

4Hp − 3
4 (Hp)2 (2Hp − 1)

(
Ĥ(p,q)
n − Hp +Hq

2

)

D−→
− sin

(
πθ(p,q)

(
Hp+Hq

2

))
2 log(4)

(
(ρp,q − ηp,q) + cos(πθ(p,q)

(
Hp+Hq

2

)
)
) 1

((2− 22Hp−1) 22Hp−1)1/2

×
(

21/2
(
22Hp−1 − 1

)
(ρ1,2 − η1,2)

(
Z

(1,1)
2,Hp (1) + Z

(2,2)
2,Hp (1)

)

− 2
(
1 + ρ2

1,2 − η2
1,2

)1/2
Z

(1,2)
2,Hp (1)

)
.
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(iii) If p 6= q and Hp, Hq ∈
(

1
2 ,

3
4

)
, then

n
1
2

(
Ĥ(p,q)
n − Hp +Hq

2

)
D−→ N

(
0, 4σ2

(
(gp,q)′

(
θ(p,q)

(
Hp +Hq

2

)))2
)
,

with

σ2 =
∞∑

k=−∞
E
[ 1

#π̄
∑
π∈π̄

1{
Π̃
(
Y

(1)
1

)
=Π̃
(
−Y (2)

2

)
=π
} − p(π)


×

 1
#π̄

∑
π∈π̄

1{
Π̃
(
Y

(1)
1+k

)
=Π̃
(
−Y (2)

2+k

)
=π
} − p(π)

], π ∈ S1.

(iv) If p = q, p = 1, 2 and Hp ∈
(

3
4 , 1
)
, then

n2Hp−2
√

4Hp − 3
4H2

p (2Hp − 1)
(
Ĥ(p,p)
n −Hp

)
D−→ Z

(p,p)
2,Hp (1)

(
1

log(2) tan
(
πθ(p,p)(Hp)

2

)√
22−2Hp − 1

)
.

Remark 4.58 Note that the case if p = q and Hp ∈
(

1
2 ,

3
4

)
is given in [60], Corollary 11: In

this case, we have

n
1
2
(
Ĥ(p,p)
n −Hp

) D−→ N
0,

(
π

2 log 2 tan
(
πθ(p,p)(Hp)

2

))2

σ2

 ,
with

σ2 =
∞∑

k=−∞
E
[ 1

#π̄
∑
π∈π̄

1{
Π̃
(
Y

(1)
1 ,Y

(1)
2

)
=π
} − p(π)

 1
#π̄

∑
π∈π̄

1{
Π̃
(
Y

(1)
1+k,Y

(1)
2+k

)
=π
} − p(π)

].
Proof. We can deduce from Theorem 4.55 that for π = (1, 0)

n1−2d∗ (C2)−
1
2 2 (p̂n,imp(π)− p(π)) (4.47)

D−→
∑

p∗,q∗∈P ∗
2α̃(p∗,q∗) (Lp∗p∗Lq∗q∗ + Lp∗q∗Lq∗p∗)

1
2 (−1)δ|p∗−q∗|,1Z(p∗,q∗)

2,Hp∗ (1), (4.48)

with Z(p∗,q∗)
2,Hp∗ (1) , such that Var

(
Z

(p∗,q∗)
2,d∗+1/2(1)

)
= 1 for all p∗, q∗ ∈ P ∗. The unit variance is derived

from Theorem 4.26 by factoring out (Lp∗p∗Lq∗q∗ + Lp∗q∗Lq∗p∗)
1
2 , which represents square root of

the diagonal entry for p∗, q∗ in the covariance matrix of the sample covariances in (3.27). Further,
C2 := 1

2d∗(4d∗−1) is a normalizing constant. Since we are considering
((
Y

(1)
j ,−Y (2)

j+1

)t)
j∈Z

as

underlying bivariate Gaussian process, the sign of the limit random variables depends on whether
p∗ = q∗ or p∗ 6= q∗. In the latter case, the sample cross-correlations in (3.42) for the process
considered here can be expressed as those of the process

((
Y

(1)
j , Y

(2)
j

)t)
j∈Z

, but with a negative

sign. The second order Hermite coefficients are given in Example 4.33. However, we have to be
careful, since E

(
−Y (1)

j Y
(2)
j+1

)
= −r(1,2)(1). Using the relation in (4.45), we can further determine
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L1,1, L1,2, L2,1 and L2,2. We would actually have to change the sign in L1,2 and L2,1 as well,
but since exactly these two values are multiplicated in the limit distribution, we can omit this
operation.
We obtain

α̃(1,1) = α̃(2,2) = ϕ2(0)r(1,2)(1)(
1−

(
r(1,2)(1)

)2)1/2

α̃(1,2) = α̃(2,1) = ϕ2(0)(
1−

(
r(1,2)(1)

)2)1/2

and for p, q = 1, 2 we have

Lp,q = 1
2 (ρp,q − ηp,q) (Hp +Hq) (Hp +Hq − 1) .

Concerning (i), we turn to max {H1, H2} = Hp for either p = 1 or p = 2. Plugging the values
into the formula in (4.48) we get

n2−2Hp
√

4Hp − 3
8 (Hp)2 (2Hp − 1)

(
θ̂(p,q)
n − θ(p,q)

(
Hp +Hq

2

))
D−→ ϕ2(0) 2Hp+Hq−1 − 1

((2− 2Hp+Hq−1) 2Hp+Hq−1)1/2Z
(p,p)
2,Hp (1).

Now we can apply the delta method since Ĥ(p,q)
n = g

(
θ

(p,q)
n

)
and Hp+Hq

2 = g
(
θ(p,q)

(
Hp+Hq

2

))
.

Analogously, we obtain the result in case Hp = Hq as described in (ii). We have

n2−2Hp
√

4Hp − 3
4 (Hp)2 (2Hp − 1)

(
θ̂(p,q)
n − θ(p,q) (Hp)

)
D−→

2∑
p,q=1

α̃(p,q)
(
1 + ρ2

p,q − η2
p,q

)1/2
Z

(p,q)
2,Hp(1)

= α̃(1,2)
(

21/2r(1,2)(1)
(
Z

(1,1)
2,Hp (1) + Z

(2,2)
2,Hp (1)

)
+ 2

(
1 + ρ2

1,2 − η2
1,2

)1/2
Z

(1,2)
2,Hp (1)

)

= ϕ2(0)
((2− 22Hp−1) 22Hp−1)1/2

(
21/2

(
22Hp−1 − 1

)
(ρ1,2 − η1,2)

(
Z

(1,1)
2,Hp (1) + Z

(2,2)
2,Hp (1)

)

− 2
(
1 + ρ2

1,2 − η2
1,2

)1/2
Z

(1,2)
2,Hp (1)

)
,

and by applying the delta method, we have finally shown the result.
Part (iii) of the theorem is an immediate consequence of Theorem 4.55 (ii), with modified entries
of the limit variance concerning the underlying bivariate process of the estimator p̂n,imp(π) and
the application of the delta method as described before.
In part (iv), we focus on the case p = q and, therefore, on the univariate version. Consequently,
it is sufficient to consider the respective marginal process

(
Y

(p)
j

)
j∈Z

, for p = 1, 2. Hence, the
estimation of the corresponding Hurst parameter Hp does not rely on an estimator in the context
of ordinal pattern dependence but can be derived in terms of the estimation of ordinal pattern

152



probabilities, as already mentioned above. This is considered in [10], Theorem 4.1 and is briefly
introduced in the following. We use

θ̂(p,p)
n := 4q̂n,Y (p),imp(π)

as estimator of θ(p,p), p = 1, 2, for π ∈ {(2, 0, 1), (1, 0, 2), (1, 2, 0), (0, 2, 1)}. Therefore, the limit
theorem can be derived by Theorem 4.18. We obtain

n2Hp−2
√

4Hp − 3
4H2

p (2Hp − 1)
(
θ̂(p,p)
n − θ(p,p) (Hp)

) D−→ Z
(p,p)
2,Hp (1)

(
−4ϕ2(0)

√
22−2Hp − 1

)
, (4.49)

since, following Example 4.21, we have ∑2
k,l=1 α

π
l,k = −ϕ2(0)

√
22−2Hp − 1. It is possible

to simplify g(p,p) and, hence,
(
g(p,p)

)′
for x ∈

(
0, 2

3

)
using trigonometrical relations, since

we have ρp,p = 1 and ηp,p = 0. For details see [10], proof of Theorem 4.1. We obtain
g(x) := max

{
0, log2

(
cos

(
πx
2
))

+ 1
}
and g′(x) = − π

2 log 2 tan
(
πx
2
)
and note that these functions

coincide with g(p,p)(x) and
(
g(p,p)

)′
(x) for x ∈

(
0, 1

2

)
, which is the interval in which θ(p,p) (Hp)

takes values for Hp ∈
(

1
2 , 1
)
. We get sharper bounds in the univariate case, since ρp,p = 1 and

ηp,p = 0. Therefore, we apply the delta method with these simplified functions and hence get the
result in a tighter formula as in the bivariate case. �

Figure 4.17: Histogram and density of the Hurst parameter estimator for H = 0.8 (green) and
H = 0.9 (violet).

We close this section with the simulation results derived in [10], Section 6, that confirm the
statement in Theorem 4.57 (iv). We simulate N = 10 000 paths of fractional Gaussian noise
created by the command “simFGN0” from the R-Package “longmemo”, see [34] with sample size
n = 106 for different values of H. In Figure 4.17, the histograms and kernel density estimations
of the estimator of the Hurst parameter are given, using the normalization we obtain from (4.49).
We observe that the simulated densities coincide with the densities in Figure 4.9 that characterize
the Rosenblatt distribution for H = 0.8 and H = 0.9, respectively.

Hence, the multivariate extension of the Hurst parameter estimation is an application of the
theoretical considerations for p̂n and p̂n(π), in contrast to the univariate case, in which the Hurst
parameter estimation only relies on estimators of ordinal pattern probabilities.
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4.4.3 Asymptotics of the estimators of ordinal pattern dependence in case of
a stationary time series

In Section 4.2 and Section 4.3, we have proved limit theorems for estimators in the context of
ordinal pattern dependence using that the increment process (Yj)j∈Z fulfills a certain assumption
in Overview 4.24. However, this assumption does not require the original bivariate Gaussian
process (Xj)j∈Z, in which we actually compare the patterns, to be stationary or even long-range
dependent. This is an additional assumption and hence a special case of the setting we already
considered. However, it is worth to take a closer look at this setting, since the property of ordinal
patterns to rely on the increments leads to an unexpected result.
We remember the estimator of ordinal pattern dependence given by

p̂n := p̂
((
X

(1)
t

)
,
(
X

(2)
t

))
:= 1

n− h

n−h−1∑
j=0

1{
Π
(
X

(1)
j ,...,X

(1)
j+h

)
=Π
(
X

(2)
j ,...,X

(2)
j+h

)}.
Now we assume the process (Xj)j∈Z :=

{(
X

(1)
j , X

(2)
j

)t}
j∈Z

to fulfill (L1s) in Overview 4.24.

First, we define Xj,h+1 :=
(
X

(1)
j , . . . , X

(1)
j+h, X

(2)
j , . . . , X

(2)
j+h

)t
. Note that Xj,h+1 ∈ R2(h+1). We

recognize the notation used in Section 3.3 in the case d = 2. In order to apply any of the limit
theorems proved in Chapter 3, we need to determine the Hermite rank of the estimator of ordinal
pattern dependence, now with respect to X0,h+1.

Lemma 4.59 The Hermite rank m (f,Σ2,h+1) of the function

f (Xj,h+1) = 1{
Π
(
X

(1)
j ,...,X

(1)
j+h

)
=Π
(
X

(2)
j ,...,X

(2)
j+h

)} − P
(
Π
(
X

(1)
0 , . . . , X

(1)
h

)
= Π

(
X

(2)
0 , . . . , X

(2)
h

))
is equal to 2.

Proof. The proof follows the idea of the proof of Lemma 4.25. Since {Xj}j∈Z is a bivariate
Gaussian process, Xj,h+1 is a (2h+ 2)-dimensional Gaussian vector. We show that the Hermite
rank of f with respect to Σ2,h+1 is equal to 2. Hence, it is sufficient again to verify the following
two properties:

(i) m (f,Σ2h+2) ≥ 2,
(ii) m (f, I2h+2) ≤ 2.

We start with the proof of property (i):
We have to proof that m (f,Σ2h+2) 6= 1, which is equivalent to E

(
X

(i)
j,h+1f (Xj,h+1)

)
= 0, for all

i = 1, ..., h+ 1. It holds

E
(
X

(i)
j,h+1f (Xj,h+1)

)
= E

X(i)
j,h+11{

Π
(
X

(1)
j ,...,X

(1)
j+h

)
=Π
(
X

(2)
j ,...,X

(2)
j+h

)}
− E

(
X

(i)
j,h+1P

(
Π
(
X

(1)
0 , . . . , X

(1)
h

)
= Π

(
X

(2)
0 , . . . , X

(2)
h

)))
= E

X(i)
j,h+11{

Π
(
X

(1)
0 ,...,X

(1)
h

)
=Π
(
X

(2)
0 ,...,X

(2)
h

)}
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=
∑
π∈Sh

E

X(i)
j,h+11{

Π
(
X

(1)
0 ,...,X

(1)
h

)
=Π
(
X

(2)
0 ,...,X

(2)
h

)
=π
} .

Again, we split the set Sh into disjoint sets, namely into S∗h and the complimentary set Sh \ S∗h.
With the property of the multivariate normal distribution that X0,h+1

D= −X0,h+1 we arrive at:

∑
π∈Sh

E

X(i)
j,h+11{

Π
(
X

(1)
0 ,...,X

(1)
h

)
=Π
(
X

(2)
0 ,...,X

(2)
h

)
=π
}

=
∑
π∈S∗

h

E

X(i)
j,h+11{

Π
(
X

(1)
0 ,...,X

(1)
h

)
=Π
(
X

(2)
0 ,...,X

(2)
h

)
=π
}

+
∑

π∈Sh\S∗h

E

X(i)
j,h+11{

Π
(
X

(1)
0 ,...,X

(1)
h

)
=Π
(
X

(2)
0 ,...,X

(2)
h

)
=π
}

=
∑
π∈S∗

h

E

X(i)
j,h+11{

Π
(
X

(1)
0 ,...,X

(1)
h

)
=Π
(
X

(2)
0 ,...,X

(2)
h

)
=π
}

+
∑

π∈Sh\S∗h

E

−X(i)
j,h+11{

Π
(
−X(1)

0 ,...,−X(1)
h

)
=Π
(
−X(2)

0 ,...,−X(2)
h

)
=π
}

=
∑
π∈S∗

h

E

X(i)
j,h+11{

Π
(
X

(1)
0 ,...,X

(1)
h

)
=Π
(
X

(2)
0 ,...,X

(2)
h

)
=π
}

−
∑

π∈Sh\S∗h

E

X(i)
j,h+11{

Π
(
X

(1)
0 ,...,X

(1)
h

)
=Π
(
X

(2)
0 ,...,X

(2)
h

)
=S(π)

}
=
∑
π∈S∗

h

E

X(i)
j,h+11{

Π
(
X

(1)
0 ,...,X

(1)
h

)
=Π
(
X

(2)
0 ,...,X

(2)
h

)
=π
}

=0.

So we have shown that m(f,Σ2h+2) ≥ 2 and hence (i).
We continue with the proof of (ii). We define U1,h+1 :=

(
U

(1)
1 , . . . , U

(1)
h+1, U

(2)
1 , . . . , U

(2)
h+1

)t
analogously. Hence, U1,h+1 is multivariate normal with covariance matrix I2,h+1. Then, we
obtain for i = 1, . . . , h+ 1, k = h+ 2 . . . , 2h+ 2, such that k = i+ h+ 1:

E
(
U

(i)
1,h+1U

(k)
1,h+1f (U1,h+1)

)
= E

U (i)
1,h+1U

(k)
1,h+1

1
n− h

n−h−1∑
j=0

1{
Π
(
U

(1)
1 ,...,U

(1)
h+1

)
=Π
(
U

(2)
1 ,...,U

(2)
h+1

)}
− E

(
U

(i)
1,h+1U

(k)
1,h+1P

(
Π
(
U

(1)
1 , . . . , U

(1)
h+1

)
= Π

(
U

(2)
1 , . . . , U

(2)
h+1

)))
= E

U (1)
i U

(2)
k 1{

Π
(
U

(1)
1 ,...,U

(1)
h+1

)
=Π
(
U

(2)
1 ,...,U

(2)
h+1

)}
=
∑
π∈Sh

E

U (1)
i U

(2)
k 1{

Π
(
U

(1)
1 ,...,U

(1)
h+1

)
=Π
(
U

(2)
1 ,...,U

(2)
h+1

)
=π
}
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=
∑
π∈Sh

E
U (1)

i 1{
Π
(
U

(1)
1 ,...,U

(1)
h+1

)
=π
}2

6= 0,

since E

U (1)
i 1{

Π
(
U

(1)
1 ,...,U

(1)
h+1

)
=π
} 6= 0, as it is shown in the proof of Lemma 4.12.

This completes the proof. �

Remark 4.60 Note that the estimator of the probability that the two time series both contain
one fixed pattern π ∈ Sh in the same moving window, namely

g (Xj,h+1) = 1
n− h

n−h−1∑
j=0

1{
Π
(
X

(1)
j ,...,X

(1)
j+h

)
=Π
(
X

(2)
j ,...,X

(2)
j+h

)
=π
}

− P
(
Π
(
X

(1)
0 , . . . , X

(1)
h

)
= Π

(
X

(2)
0 , . . . , X

(2)
h

)
= π

)
has Hermite rank 1. This can be easily seen, since we only need to show m (g, I2h+2) = 1. With
Uj,h as in the proof of Lemma 4.59 and i = 1, ..., h+ 1, we have

E
(
U

(i)
j,hg (Uj,h)

)
= E

U (i)
j,h1{

Π
(
U

(1)
j ,...,U

(1)
j+h

)
=Π
(
U

(2)
j ,...,U

(2)
j+h

)
=π
}

= E

U (1)
j+i−11{

Π
(
U

(1)
j ,...,U

(1)
j+h

)
=π
}P

(
Π
(
U

(2)
j , . . . , U

(2)
j+h

)
= π

)
6= 0,

by the same argument as in the proof of Lemma 4.12.

This concludes the preliminary considerations in order to apply the corresponding limit theorems
in Chapter 3. However, in dealing with estimators in the context of ordinal pattern dependence,
we are exactly in the special case that is studied in Section 3.3, namely that the functional we
are considering is only depending on the increments processes. Therefore, the following two
results are immediate consequences of Corollary 3.19 for the estimator of coincident patterns
and Corollary 3.18 for the estimator of one fixed coincident patterns over time.

Corollary 4.61 Under the assumptions of Corollary 3.19, it holds for d∗ ∈
(

1
4 ,

1
2

)
that

n1−2d∗ (p̂n − p) D−→ δ0,

where δ0 denotes the dirac measure in 0.

Similarly, we get the following result:

Corollary 4.62 Under the assumptions of Corollary 3.18, it holds for π ∈ Sh that

n1/2−d∗ (p̂n(π)− p(π)) D−→ δ0,

where δ0 denotes the dirac measure in 0.
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These results might be surprising, since we are considering the same estimators as in Section 4.3
and e.g. the result in Theorem 4.26 is expected to be independent of the use of (Xj,h)j∈Z or the
corresponding increment process (Yj,h)j∈Z. The good news is that, of course, the same limit dis-
tribution is derived no matter which of the two processes we use to estimate p. The reason is that
we are no longer in the setting of Theorem 4.26, as a closer look on the corresponding increment
process (Yj,h)j∈Z shows. As mentioned at the end of Section 3.3, in (3.52), the corresponding
increment process is short-range dependent and we need to adapt the normalization to obtain a
non-degenerated limit distribution. The normalization is taken as the classical convergence rate
n1/2 as it arises in central limit theorems for short-range dependent Gaussian time series, namely
Theorem 4.35 for p̂n and Theorem 4 in [2] for p̂n(π).

By now, we considered special cases of standard ordinal pattern dependence. In the following
three sections, we generalize the concept of standard ordinal pattern dependence to be able to
compare a larger class of data sets by using ordinal pattern dependence. In doing so, we soften
some assumptions on the parameter under consideration and get a more flexible, but still robust
model. A different estimation method, albeit the stepwise approach on which we concentrated
by now, is also provided.

4.4.4 Time shifted estimation of ordinal pattern dependence

Standard ordinal pattern dependence only detects coincident patterns in the same moving window,
namely at the same points in time. Therefore, this approach would not detect dependence between
two time series if the coincident patterns do not occur in the same moving window, but with a
certain time shift.

Example 4.63 Consider an example of one time series
(
X

(1)
j

)
j∈Z

, which we shift by a = 1 to

obtain the time series
(
X

(2)
j

)
j∈Z

, such that X(2)
j = X

(1)
j+1. These two time series are perfectly

dependent. However, as it is shown in Figure 4.18, if we compare the patterns of length h = 2
marked by red at the same fixed windows of time, we do not recognize any coincident patterns at
the considered points in time. There is a solution to this problem: if we shift the considered time
window of the second process by 1, we would detect that all patterns are coincident. Therefore,
we would get a correct representation of the dependence structure of

(
X

(1)
j

)
j∈Z

and
(
X

(2)
j

)
j∈Z

.

As proposed in [58], p.713, we define the estimator of time-shifted or time-warped ordinal pattern
dependence as

p̂a,bn := 1
n− a− hb+ 1

n−a−hb+1∑
j=1

1{
Π̃
(
Y

(1)
j ,...,Y

(1)
j+h−1

)
=Π̃
(
Y

(2)
a+jb,...,Y

(2)
a+(j+h−1)b

)},
with a, b ∈ N0. We restrict ourselves to the case of time-shifting with a ∈ {0, . . . , n− h− 1}. We
only consider b = 1, since stationarity is lost for b ≥ 2, as the following calculation shows:
We take a closer look at the cross-correlation function of the process

(
Y a,b
j,h

)
j∈Z

, defined as

(
Y a,b
j,h

)
j∈Z

:=
((
Y

(1)
j , . . . , Y

(1)
j+h−1, Y

(2)
a+bj , . . . , Y

(2)
a+(j+h−1)b

)t)
j∈Z

.
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Figure 4.18: Illustration of the estimation of ordinal pattern dependence for X(2)
j = X

(1)
j+1,

j = 0, . . . , n.

Note that this is a Gaussian process, which is an immediate consequence of (Yj)j∈Z being a
bivariate Gaussian process. The entries of the covariance matrix Σa,b

2,h of(
Y

(1)
j , . . . , Y

(1)
j+h−1, Y

(2)
a+bj , . . . , Y

(2)
a+(j+h)b−1

)t
depend on a, b and the cross-correlation functions of (Yj)j∈Z.
We assume for a moment that p = 1, . . . , h and q = h+ 1, . . . , 2h. It holds that

E
((
Y a,b
j

)(p) (
Y a,b
j+k

)(q)
)

= E
(
Y

(1)
j+p−1Y

(2)
a+(j+q−h−1)b

)
)

= r(1,2)(a+ (j + k + q − h− 1)b− j − p+ 1)
= r(1,2)(a+ j(b− 1) + b(k + q − h− 1)− p+ 1). (4.50)

Expression (4.50) is, therefore, depending on j if b ≥ 2.
Hence, we concentrate on p̂an := p̂a,1n and

(
Y a
j,h

)
j∈Z

:=
(
Y a,1
j,h

)
j∈Z

.
We want to estimate maxa pa, with

pa := P
(
Π̃
(
Y

(1)
j , . . . , Y

(1)
j+h−1

)
= Π̃

(
Y

(2)
j+a, . . . , Y

(2)
j+a+h−1

))
.

An interesting question is the asymptotic distribution of maxa p̂an, which provides the largest
value of coincident ordinal patterns for any possible time shift a. Therefore, we obtain a huge
amendment and generalization of the model considered. Note that a = 0 yields the standard
estimator of ordinal pattern dependence.
Similar arguments as in (3.5) concerning the cross-correlation function calculated in (4.50) imply
that

(
Y a
j,h

)
j∈Z

is long-range dependent because eqrefmultivariateLRDconditionII holds for all
a ∈ {0, . . . , n− h− 1}. Therefore, as an immediate consequence of Lemma 4.25, we obtain the
following result.

Lemma 4.64 The Hermite rank of

f
(
Y

(1)
j , . . . , Y

(1)
j+h−1, Y

(2)
a+j , . . . , Y

(2)
a+j+h−1

)
= 1{

Π̃
(
Y

(1)
j ,...,Y

(1)
j+h−1

)
=Π̃
(
Y

(2)
a+j ,...,Y

(2)
a+j+h−1

)}
for a ∈ {0, . . . , n− h− 1} is equal to 2.
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We know that the asymptotic distribution of square-integrable functionals of long-range dependent
Gaussian time series with Hermite rank 2 is only affected by the choice of the function f in the
second order Hermite coefficients that play the role of scaling parameters, following Theorem
3.10 in (3.42). However, in this case, we additionally need to pay attention to the fact that the
underlying process to which we apply the function f is given by

(
Y a,1
j,h

)
j∈Z

and no longer by
(Yj,h)j∈Z as assumed in Theorem 3.10. Therefore, the term in (3.42) needs to be adapted to
further study the asymptotic behaviour. We obtain

f
(
Y a
j,h

) D= n
2∑

p,q=1

(
h−1∑
l=0

h−l∑
i=1

α
(p,q),a
i,i+l

(
r̂(p,q)
n (l + δ|p−q|,1a)− r(p,q)(l + δ|p−q|,1a)

)

+
h−1∑
l=1

h−l∑
i=1

α
(p,q),a
i+l,i

(
r̂(q,p)
n (l + δ|p−q|,1a)− r(q,p)(l + δ|p−q|,1a)

)))
+ oP(n2d∗).

Since the convergence result in Lemma 3.5 holds jointly for all lags, we have for d∗ ∈
(

1
4 ,

1
2

)
that

p̂an − pa =
∑

p,q∈P ∗
α̃(p,q)
a

(
r̂(p,q)
n (0)− r(p,q)(0)

)
+ oP(n2d∗),

with α̃
(p,q)
a :=

h∑
i,k=1

α
(p,q),a
i,k , where α(p,q),a

i,k = αai+(p−1)h,k+(q−1)h for each p, q ∈ P ∗ and i, k =

1, . . . , h and
(
αai,k

)
1≤i,k≤dh

=
(
Σa

2,h

)−1
Ca
(
Σa

2,h

)−1
. Here

Ca =
(
cai,k

)
1≤i,k≤2h

= E

Y a,1
1,h

1{
Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
a+1,...,Y

(2)
a+h

)} − p
(Y a,1

1,h

)t
denotes the matrix of second order Hermite coefficients.
We show that p̂an− pa as well as α̃(p,q)

a are bounded by a constant independent of a. Obviously we
have that p̂an, pa ∈ [0, 1] and, therefore, |p̂an − pa| ≤ 1. We take a closer look at the second order
Hermite coefficients and for simplicity we regard ca1,1 representing the case cai,i, i = 1, . . . , 2h. It
holds that

∣∣∣ca1,1∣∣∣ =

∣∣∣∣∣∣E
((Y (1)

j

)2
− 1

)
1{

Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
a+1,...,Y

(2)
a+h

)}∣∣∣∣∣∣
≤ E

∣∣∣∣(Y (1)
j

)2
− 1

∣∣∣∣
∣∣∣∣∣∣1{Π̃

(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
a+1,...,Y

(2)
a+h

)}∣∣∣∣∣∣
≤ E

∣∣∣∣(Y (1)
j

)2
− 1

∣∣∣∣
≤ E

(
Y

(1)
j

)2
+ 1

= 2

using Jensen’s inequality and
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∣∣∣ca1,h+1

∣∣∣ =

∣∣∣∣∣∣E
(Y (1)

j Y
(2)
j+a − r

(1,2)(a)
)

1{
Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
a+1,...,Y

(2)
a+h

)}∣∣∣∣∣∣
≤ E

∣∣∣Y (1)
j Y

(2)
j+a − r

(1,2)(a)
∣∣∣
∣∣∣∣∣∣1{Π̃

(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
b+1,...,Y

(2)
a+h

)}∣∣∣∣∣∣
≤ E

∣∣∣Y (1)
j Y

(2)
j+a − r

(1,2)(a)
∣∣∣

= E
∣∣∣Y (1)
j Y

(2)
j+a

∣∣∣+ ∣∣∣r(1,2)(a)
∣∣∣

= E
∣∣∣∣U1

(
r(1,2)(a)U1 +

√
1−

(
r(1,2)(a)

)2
U2

)∣∣∣∣+ 1

≤
∣∣∣r(1,2)(a)

∣∣∣+√
1−

(
r(1,2)(a)

)2E |U1|E |U2|+ 1

≤ 2 + E |U1|E |U2|

= 2 + 2
π

using the Cholesky decomposition of Σa
2,h. The Cholesky decomposition is given by Σa

2,h =
Aa (Aa)t with

Aa =

 1 0
r(1,2)(a)

√
1−

(
r(1,2)(a)

)2


and it yields

(
Y

(1)
j , Y

(2)
j+a

)t D= (
U1, r

(1,2)(a)U1 +
√

1−
(
r(1,2)(a)

)2
U2

)t
for (U1, U2)t ∼ N (0, I2), where I2 denotes the two-dimensional identity matrix.
Hence, we know that all entries in Ca are bounded by 2 + 2

π . The absolut values of the entries
of the correlation matrix are also bounded by 1, independent of a. Therefore, there is a finite
constant K ∈ N, independent of a, such that the absolute values of the entries of the inverse of
the correlation matrix are bounded by K. We have proven that all relevant values are bounded
by a constant that is independent of a. Therefore, maxa α̃(p,q)

a exists for all p, q = 1, 2 and we
can conclude

max
a

(p̂an − pa) =
∑

p,q∈P ∗
max
a

α̃(p,q)
a

(
r̂(p,q)
n (0)− r(p,q)(0)

)
+ oP(n2d∗−1).

Finally we obtain the following result.

Corollary 4.65 Under the assumptions (L2s) in Overview 4.24, it holds that

n1−2d∗(C2)−
1
2 max

a
(p̂an − pa)

D−→
∑

p,q∈P ∗
max
a

α̃(p,q)
a Z

(p,q)
2,d∗+1/2(1),

with Z(p,q)
2,d∗+1/2(1) as given in Theorem 4.26 and C2 := 1

2d∗(4d∗−1) being a normalizing constant.
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4.4.5 Blockwise estimation of ordinal pattern dependence

We turn to an approach, where not the standard ordinal pattern dependence as underlying model
is modified, but the way of estimating it. In certain applications, it might be more useful to
change the original idea of using a moving window of a fixed length that is shifted by one for
each consecutive summand of the estimator, as done by

p̂n = 1
n− h

n−h−1∑
j=0

1{
Π̃
(
Y

(1)
j+1,...,Y

(1)
j+h

)
=Π̃
(
Y

(2)
j+1,...,Y

(2)
j+h

)}
and to modify it to the so-called blockwise estimation of ordinal pattern dependence. As illustrated
in Figure 4.19, this means that we are no longer considering overlapping moving windows for
the comparison of the ordinal patterns marked by red, in contrast to the stepwise estimation.
Instead we shift the moving windows such that only the the last point in time in a certain moving
window coincides with the first point in time of the following moving window. This guarantees
that for each moving window the set of increments under consideration has no intersections with
the set of increments corresponding to the following (or any other) moving window. Therefore,
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Figure 4.19: Illustration of blockwise estimation of ordinal pattern dependence for h = 2.

we are still interested in estimating the parameter p, but in the run of the time series we consider

1{
Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)} + 1{
Π̃
(
Y

(1)
h+1,...,Y

(1)
2h

)
=Π̃
(
Y

(2)
h+1,...,Y

(2)
2h

)} + . . .

and hence obtain the following estimator

p̂blockn := 1⌊
n
h

⌋ bnhc−1∑
j=0

1{
Π̃
(
Y

(1)
1+jh,...,Y

(1)
h+jh

)
=Π̃
(
Y

(2)
1+jh,...,Y

(2)
h+jh

)}.
Note that if (Yj,h)j∈Z fulfills (L1) in Overview 4.24, the same holds true for the considered
process

(
Y block
j,h

)
j∈Z

here, with

Y block
j,h :=

(
Y

(1)
1+jh, . . . , Y

(1)
h+jh, Y

(2)
1+jh, . . . , Y

(2)
h+jh

)t
.
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The justification is similar to the one in (3.5). For example, consider for p = 1, . . . , h and
q = h+ 1, . . . , 2h

E
((
Y block
j,h

)(p) (
Y block
j+k,h

)(q)
)

= E
(
Y

(1)
p+jhY

(2)
q−h+(j+k)h

)
= r(1,2)(q + (k − 1)h− p)
' r(1,2)(k), (k →∞).

Note that Y block
j,h

D= Yj,h.
However, there is a significant difference in this setting compared to the estimator of coincident
patterns p̂n. In the standard setting, we define (Yj,h) by plugging h consecutive entries of Y (1)

j and
of Y (2)

j into one vector. That was also possible concerning the estimator of time shifts, although
we did not use the same starting point j. However, the underyling process

(
Y

(1)
j , Y

(2)
j+a

)
j∈Z

was still a bivariate long-range dependent Gaussian process. Unfortunately, it is not possible
to create a bivariate Gaussian process such that

(
Y block
j,h

)
consists of h consecutive entries of

the marginal processes. The reason for this is the special structure of
(
Y block
j,h

)
. If we raise j

by 1, the corresponding univariate components get shifted by h and not only by 1. This is an
issue concerning the application of Theorem 3.10, because following the proof of this theorem
in this modified setting, we are no longer considering the convergence of the classical sample
cross-correlations in (3.42), but need asymptotic results for

2∑
p,q=1

h−1∑
l=0

n−l∑
j=1

Y
(p)

1+jhY
(q)

1+jh+l − r
(p,q)(l).

It is possible to show that for p, q = 1, 2 the asymptotics of Y (p)
1+jhY

(q)
1+jh+l−r(p,q)(l) are independent

of l = 0, . . . , h− 1. To this end, we follow [9], Section 4.4.1.3. Following the linear representation
in (2.5), we know that we can express the original process

Yt =
∞∑
j=1

Ψjεt−j

=
∞∑
j=1

(
ψ1,1
j ψ1,2

j

ψ2,1
j ψ2,2

j

)ε(1)
t−j
ε

(2)
t−j

 .
Note that (εj)tj inZ is a two-dimensional white noise sequence with E

(
ε1ε

t
1
)

= I2.
Following [9], p. 225 and Section 4.4.1.1, εj has the spectral representation

εt−j =
∫ π

−π
ei(t−j)λMε(dλ),

with Mε(dλ) =
(
M

(1)
ε (dλ),M (2)

ε (dλ)
)t
. Each M

(p)
ε (dλ), p = 1, 2 is an Hermitian-Gaussian

random spectral measure on (−π, π] as discussed in Section 2.6. Furthermore, M (1)
ε (λ) and

M
(2)
ε (λ) are independent. The spectral measure fulfills n1/2Mε

(
n−1·

) D= Mε(·), see [9], Sec. 3.7.1.
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We can describe the original process Yt by

Yt =
∫ π

−π
eitλMY (dλ)

=
∫ π

−π
eitλ

∞∑
j=−∞

(
ψ1,1
j ψ1,2

j

ψ2,1
j ψ2,2

j

)(
e−iλ

)j
Mε(dλ)

=
∫ π

−π
eitλ

 ∞∑
j=−∞

2∑
q=1

ψp,qj

(
e−iλ

)j
M (q)
ε (dλ)


p=1,2

.

Therefore, for p = 1, 2, we have

dM (p)
Y (λ) =

2∑
q=1

∞∑
j=−∞

ψp,qj

(
e−iλ

)j
︸ ︷︷ ︸

=:a(p,q)(λ)

dM (q)
ε (λ).

Following [9], Section 4.4.1.3, p. 305, we obtain
n
h
−1∑
j=0

Y
(p)

1+jhY
(q)

1+jh+l − r
(p,q)(l)

=
n
h
−1∑
j=0

∫ π

−π

∫ π

−π
ei(1+jh)λ1ei(1+jh+l)λ2 M

(p)
Y (dλ1) M (q)

Y (dλ2)

=
∫ π

−π

∫ π

−π

ein(λ1+λ2) − 1
ih(λ1+λ2) − 1

ei(λ1+λ2)eilλ2 M
(p)
Y (dλ1) M (q)

Y (dλ2)

=
∫ nπ

−nπ

∫ nπ

−nπ

ei(λ1+λ2) − 1
n
(
ei/nh(λ1+λ2) − 1

)1{∣∣λ1
n

∣∣,∣∣λ2
n

∣∣≤πn}ei
λ1+λ2
n eil

λ2
n n1/2M

(p)
Y

(
n−1dλ1

)
n1/2M

(q)
Y

(
n−1dλ2

)

=
∫ nπ

−nπ

∫ nπ

−nπ

eih(λ1+λ2) − 1
n
(
ei/nh(λ1+λ2) − 1

)1{∣∣λ1
n

∣∣,∣∣λ2
n

∣∣≤πn}ei
λ1+λ2
n eil

λ2
n

 2∑
q1=1

ap,q1

(
λ1
2

)
n1/2M (q1)

ε

(
n−1dλ1

)
×

 2∑
q2=1

aq,q2

(
λ2
2

)
n1/2M (q2)

ε

(
n−1dλ2

)
=
∫ nπ

−nπ

∫ nπ

−nπ

eih(λ1+λ2) − 1
ei/nh(λ1+λ2) − 1

1{∣∣λ1
n

∣∣,∣∣λ2
n

∣∣≤πn}︸ ︷︷ ︸
(n→∞)−−−−−→ ei(λ1+λ2)

ih(λ1+λ2)

ei
λ1+λ2
n eil

λ2
n︸ ︷︷ ︸

(n→∞)−−−−−→1

 2∑
q1=1

ap,q1

(
λ1
2

)
M (q1)
ε (dλ1)



×

 2∑
q2=1

aq,q2

(
λ2
2

)
M (q2)
ε (dλ2)


= 1
h

n−1∑
j=0

Y
(p)
j Y

(q)
j − r(p,q)(0) + oP(1). (4.51)

Hence, the limiting behaviour is independent of the considered lag l = 0, . . . , h+ 1 and it can be
expressed in terms of the original bivariate process (Yj)j∈Z in our setting.
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Finally, by following the proof of Theorem 3.10 until (3.44) we arrive at

n1−2d∗(C2)−
1
2
(
p̂blockn − p

)
= h(C2)−

1
2n−2d∗

n
h
−1∑
j=0

1{
Π̃
(
Y

(1)
1+jh,...,Y

(1)
h+jh

)
=Π̃
(
Y

(2)
1+jh,...,Y

(2)
h+jh

)} − p


D= h(C2)−
1
2n−2d∗

2∑
p,q=1

α̃
(p,q)
block

1
h

n−1∑
j=0

Y
(p)
j Y

(q)
j − r(p,q)(0) + oP(1)

= n−2d∗(C2)−
1
2
∑

p,q∈P ∗
α̃(p,q)Y

(p)
j Y

(q)
j − r(p,q)(0) + oP(1),

with α̃(p,q) as given in Theorem 4.26, since Y block
j,h

D= Yj,h. Therefore, the convergence behaviour
of p̂blockn is exactly the same as for the standard estimator p̂n. Hence, we obtain a limit theorem
for the considered problem that includes the mixed cases as well as the short-range dependent
setting.

Corollary 4.66 The following statements are true:

(i) Under the assumptions in (L2s) in Overview 4.24, it holds that

n1−2d∗(C2)−
1
2
(
p̂blockn − p

)
D−→

∑
p,q∈P ∗

α̃(p,q)Z
(p,q)
2,d∗+1/2(1),

with Z(p,q)
2,d∗+1/2(1) as given in Theorem 4.26 and C2 := 1

2d∗(4d∗−1) being a normalizing con-
stant.

(ii) Under the assumptions in (S) in Overview 4.24, it holds that

(
n

h

) 1
2

(p̂− p) D−→ N
(
0, σ2

)
,

with

σ2 =
∞∑

k=−∞
E
[1{

Π̃
(
Y

(1)
1 ,...,Y

(1)
h

)
=Π̃
(
Y

(2)
1 ,...,Y

(2)
h

)} − p


×

1{
Π̃
(
Y

(1)
1+kh,...,Y

(1)
h+kh

)
=Π̃
(
Y

(2)
1+kh,...,Y

(2)
h+kh

)} − p
].

Remark 4.67 The normalization in part (ii) of Corollary 4.66 depends on h, but it does not in
part (i). It is possible to express

n
h
−1∑
j=0

Y
(p)

1+jhY
(q)

1+jh − r
(p,q)(0) =

n
h
−1∑
j=0

Y̌
(p)
j Y̌

(q)
j − r(p,q)(0),

with Y̌ (p)
j := Y

(p)
1+jh for p = 1, 2. Note that the considerations in (4.51) are already applied here

and, therefore, this approach does not replace their necessity. With similar arguments as for
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(
Y block
j,h

)
j∈Z

, we know that
(
Y̌j
)
j∈Z

is a bivariate long-range dependent Gaussian process, if
(Yj)j∈Z is one. Hence, it is possible to apply Lemma 3.5 and obtain

(
n

h

)1−2d∗

(C2)−
1
2
(
p̂blockn − p

) D= (
h

n

)−2d∗

(C2)−
1
2
∑

p,q∈P ∗
α̃(p,q)

n
h
−1∑
j=0

Y̌
(p)
j Y̌

(q)
j − r(p,q)(0) + oP(1)

D−→
∑

p,q∈P ∗
α̃(p,q)Z

(p,q)
2,d∗+1/2(1).

jointly for p, q = 1, 2. The factor h−2d∗ is hidden in the slowly varying constants on the right-hand
side, because we have for p, q = 1, 2 that

ř(p,q)(k) := E
(
Y̌

(p)
j Y̌

(q)
j+k

)
= r(p,q)(kh) = Lp,q(kh)hdp+dq−1︸ ︷︷ ︸

=:Ľp,q(k)

kdp+dq−1,

such that Ľp,q(k)→ Lp,qh
dp+dq−1. Therefore, this approach is consistent with part (i) of Corollary

4.66. However, the steps we used to prove Corollary 4.66, part (i) are more illustrative, since we
showed that the convergence behaviour could be expressed in terms of the original process (Yj)j∈Z
again.

Finally, we provide a generalization of standard ordinal pattern dependence that extends the
underlying method of only taking exactly coincident patterns into consideration. Especially
for larger h, this is a very strong condition and the dependence structure between data sets
is underestimated. Therefore, in the next section, a model is proposed that allows for certain
deviations between the patterns occuring.

4.4.6 Average-weighted ordinal pattern dependence

As we have already seen in Section 4.4.2, in some situations it is useful not to compare coincident
patterns but, for example, a fixed pattern π in the moving window of the first time series and
the spatial reflected pattern S(π) in the corresponding window of the second time series. In the
context of the Hurst parameter estimation, we were able to solve that, since by changing the sign
of the increments in the second time series, we could boil this problem down to the well-known
case of comparing coincident pattern.

In the method introduced in this section, we focus on positive dependence. However, we
want to take a closer look at the general idea of softening the condition of coincident patterns in
both time series to allowing for patterns with a certain deviation. An illustrative approach is
given in [58], Section 3, where average weighted ordinal pattern dependence is introduced. Their
main idea is, that, since standard ordinal pattern dependence deals with estimating dependence
based on the co-movement of the two time series, especially for large h it might happen that
the movement of the two time series is very similar, but the pattern are not exactly coincident.
Then, standard ordinal pattern dependence does not detect this “almost co-movement”, as is
illustrated in Figure 4.20. Although the two time series displayed only have a small difference in
the value of X(1)

t6 and are equal otherwise, the estimator of standard ordinal pattern dependence
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Figure 4.20: Estimation of ordinal pattern dependence for h = 7 for two almost similar time
series.

for h = 7 does not detect one coincident patterns in the first moving windows, in which the
patterns under consideration are red colored. Therfore, standard ordinal pattern dependence
underestimates the dependence.

1st moving window 2nd moving window 3rd moving window
X

(1)
j (3, 1, 4, 6, 7, 2, 5, 0) (2, 0, 3, 5, 6, 7, 1, 4) (1, 2, 7, 4, 5, 6, 0, 3)

X
(2)
j (3, 1, 4, 7, 6, 2, 5, 0) (2, 0, 3, 6, 5, 7, 1, 4) (1, 2, 7, 5, 4, 6, 0, 3)

Table 4.5: Ordinal patterns arising in the moving windows in Figure 4.20.

Only counting coincident patterns is, therefore, too restrictive and [58] suggest to soften it to
the case, that a certain (small) deviation is allowed, concerning the respective pattern each time
series exhibits in the same moving window. However, this deviation has to be measured in a
reasonable sense. If we consider the patterns π = (3, 1, 2, 4, 0) and σ = (3, 4, 2, 1, 0), they seem
to be very similar: only two entries are changed. However, as visualized in Figure 4.21, one
recognizes a larger difference in their behaviour.

π = (3, 1, 2, 4, 0) σ = (3, 4, 2, 1, 0)

Figure 4.21: Two ordinal patterns of length h = 4.

This motivates to capture the expression small deviation mathematically to assure plausibility.

Recalling Figure 4.20, we take a closer look at the ordinal patterns displayed. They are listed in
Table 4.5. In each moving window, we only have one transposition of two consecutive numbers.
Therefore, this kind of difference should be allowed. This small deviation of the patterns is
emphasized in Figure 4.22, where the two patterns displayed are close enough to count in the

166



Figure 4.22: Modification of the pattern (1, 2, 7, 4, 5, 6, 0, 3) (red) to (1, 2, 7, 5, 4, 6, 0, 3) (black).

dependence structure. However, we have to differentiate between coincident patterns and two
patterns with a tolerated difference.

Therefore, we follow [58], Section 3 and describe the mathematical framework in the following.
We need a (pseudo-)metric d : Sh × Sh → R+ to measure the deviation between the patterns
and a weight-function ω : d (Sh, Sh)→ [0, 1] with ω(0) = 1 that assigns a certain value to each
deviation and should, therefore, be monotonically decreasing. This assures that a large deviation
only yields a small weight. Note that ω ◦ d is a similarity measure. For further mathematical
conditions on the possible choices of these two functions, the reader is refered to [58], Section 3.1.
Following their approach in (21), we define average weighted ordinal pattern dependence as

AWOPD : = E
[
ω
(
d
(
Π
(
X

(1)
j , . . . X

(1)
j+h

)
,Π
(
X

(2)
j , . . . X

(2)
j+h

)))]
−

∑
π,σ∈Sh

ω(d(π, σ))P
(

Π
(
X

(1)
j , . . . X

(1)
j+h

)
= π

)
P
(

Π
(
X

(2)
j , . . . X

(2)
j+h

)
= σ

)
.

Hence, the estimator of the first summand is given by

p̂awopd
n : = 1

n− h

n−h−1∑
j=0

ω
(
d
(
Π
(
X

(1)
j , . . . X

(1)
j+h

)
,Π
(
X

(2)
j , . . . X

(2)
j+h

)))

= 1
n− h

n−h∑
j=1

ω
(
d
(
Π̃
(
Y

(1)
j , . . . Y

(1)
j+h−1

)
, Π̃
(
Y

(2)
j , . . . Y

(2)
j+h−1

)))
.

Correspondingly we denote the true value by

pawopd := E
[
ω
(
d
(
Π
(
X

(1)
j , . . . X

(1)
j+h

)
,Π
(
X

(2)
j , . . . X

(2)
j+h

)))]
.

We modify the estimator for the hypothetical case of independence, as in Section 4.3.4, to

q̂awopd
n :=

∑
π,σ∈Sh

ω(d(π, σ))q̂Y (1),n,imp(π)q̂Y (2),n,imp(σ).

Hence, combining both estimators yields

̂AWOPD := p̂awopd
n − q̂awopd

n .
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Note that it is possible to norm ̂AWOPD the same way as ÔPD as described in (4.13). However,
as it is remarked in [58], p. 715, we omit the normalization here for the practitioner’s convenience.

The first difference to the setting considered in [58], Section 3.2, is that the limit behaviour of the
estimators in the context of long-range dependence depend on the Hermite rank of the estimators.
The Hermite rank highly depends on the choice of the weight-function and the (pseudo-)metric
considered.
We focus on the setting described in Example 4 in [58]. They introduced the intuitive l1-distance
dl1(σ, π) := ∑h

j=0 |πj − σj | to measure the deviation between the two patterns π, σ ∈ Sh. How-
ever, the value of dl1 gets bigger the larger the distance between the two patterns is and is,
therefore, exhibiting exactly the contrary behaviour to our aim, namely to reward a small
distance and to penalize a large one. This explains the need of the monotonically decreasing
weight function. In Example 4 in [58], the l1-distance gets equipped with the weight function
ω := 1{0} + 3

41{2} + 1
21{4} + 1

41{6}. Note, that for this choice of the metric, standard ordinal
pattern dependence is obtained, if ω := 1{0}.
Remark, that this choice of d and w exactly pictures the requirements we made at the beginning of
this chapter. In the example given in Figure 4.21, where the two patterns rather exhibit a far-out
similar behaviour, the l1-distance assigns them the value 6. With applying the weight-function
above, this only yields a contribution of 1

4 to the estimation of average-weighted ordinal pattern
dependence. However, for the example in Table 4.5, where only a small deviation between the
patterns within the same moving windows was recognized, the l1-distance yields the value 2 for
each moving window, which takes the similarity of the pattern, emphasized in Figure 4.22, into
account. This yields 3

4 as contribution to the estimation of average-weighted ordinal pattern
dependence for each moving window displayed in the time series in Figure 4.20.
Before investigating the asymptotics of the estimator of average-weighted ordinal pattern depen-
dence, we give an example why this choice of d and w is especially suitable for large h.

Example 4.68 We take a closer look at the case h = 2. In this case, the patterns with the
largest deviation to π are given by the time- and space reversion of π. Considering, for example,
π = (0, 1, 2) and S(π) = (2, 1, 0), we obtain d(π,S(π)) = 4. This still yields a contribution of 1

2
to the estimation of average-weighted ordinal pattern dependence, although we are investigating
positive dependence and these two patterns clearly exhibit anti-monotonic behaviour. However, this
problem vanishes with increasing h: if we have π = (π0, . . . , πh), it holds that S(π) = (πh, . . . , π0)
and T (π) = (h− π0, . . . , h− πh). Concerning the l1-distance, this yields

d(π,S(π)) =
h∑
i=0
|πi − πh−i|

= 2
bh−1

2 c∑
i=0
|πi − πh−i|︸ ︷︷ ︸

≥1

≥ 2
(⌊

h− 1
2

⌋
+ 1

)
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=

 h+ 1, h odd,

h, h even.

Analogously we obtain

d(π, T (π)) =
h∑
i=0
|h− 2πi|

= 2
bh−1

2 c∑
i=0
|h− 2πi|︸ ︷︷ ︸
≥1

≥

 h+ 1, h odd,

h, h even.

Hence, for h > 6, neither a time-reversed nor a space-reversed pattern in the other time series
have any impact on the estimation of (positive) average-weighted ordinal pattern dependence.

In practice, the user has to decide which value of h she or he employs, since larger values result
in a higher computational effort. Smaller values like h = 5 or h = 6 yield a good balance, since
anti-monotonic patterns get, if at all, at most a small value and the computational effort needed is
still feasible. We focus on the asymptotic properties of the estimator of average-weighted ordinal
pattern dependence and we begin with the estimator of pawopd. We determine the Hermite rank
of p̂awopd

n in order to get an asymptotic result for ̂AWOPD.

Lemma 4.69 The Hermite rank of

fawopd (Yj,h) := ω
(
d
(
Π̃
(
Y

(1)
j , . . . Y

(1)
j+h−1

)
, Π̃
(
Y

(2)
j , . . . Y

(2)
j+h−1

)))
,

with

d(σ, π) := dl1(σ, π) :=
h∑
j=0
|πj − σj |

and

ω := 1{0} + 3
41{2} + 1

21{4} + 1
41{6}

with respect to Σ2,h is equal to 2.

Proof. We have

fawopd (Yj,h) =
3∑

k=0

4− k
4 1{2k}

(
dl1
(
Π̃
(
Y

(1)
j , . . . Y

(1)
j+h−1

)
, Π̃
(
Y

(2)
j , . . . Y

(2)
j+h−1

)))

=
3∑

k=0

∑
π,σ∈Sh

4− k
4 1{2k}(dl1(σ, π))1{

Π̃
(
Y

(1)
j ,...,Y

(1)
j+h−1

)
=π
}1{

Π̃
(
Y

(2)
j ,...,Y

(2)
j+h−1

)
=σ
}

=
3∑

k=0

∑
π,σ∈Sh

4− k
4 1{∑h

j=0|σj−πj |=2k}1
{

Π̃
(
Y

(1)
j ,...,Y

(1)
j+h−1

)
=π
}1{

Π̃
(
Y

(2)
j ,...,Y

(2)
j+h−1

)
=σ
}.
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We introduce the following partition of Sh×Sh into four disjoint sets by following the idea in the
proof of Lemma 4.25 to divide Sh into one set that contains all patterns such that their spatial
reversions are not elements of this set. We adapt the idea and obtain

Sh × Sh = (S∗h × S∗h) ∪ ((Sh \ S∗h)× (Sh \ S∗h)) ∪ (S∗h × (Sh \ S∗h)) ∪ ((Sh \ S∗h)× S∗h) .

Then, we have

∑
(π,σ)∈Sh×Sh

3∑
k=0

4− k
4 1{∑h

j=0|σj−πj |=2k
}1{

Π̃
(
Y

(1)
j ,...,Y

(1)
j+h−1

)
=π
}1{

Π̃
(
Y

(2)
j ,...,Y

(2)
j+h−1

)
=σ
}

=
∑

(π,σ)∈S∗
h
×S∗

h

3∑
k=0

4− k
4 1{∑h

j=0|σj−πj |=2k
}1{

Π̃
(
Y

(1)
j ,...,Y

(1)
j+h−1

)
=π
}1{

Π̃
(
Y

(2)
j ,...,Y

(2)
j+h−1

)
=σ
}

+
∑

(π,σ)∈(Sh\S∗h)×(Sh\S∗h)

3∑
k=0

4− k
4 1{∑h

j=0|σj−πj |=2k
}1{

Π̃
(
Y

(1)
j ,...,Y

(1)
j+h−1

)
=π
}1{

Π̃
(
Y

(2)
j ,...,Y

(2)
j+h−1

)
=σ
}

+
∑

(π,σ)∈S∗
h
×(Sh\S∗h)

3∑
k=0

4− k
4 1{∑h

j=0|σj−πj |=2k
}1{

Π̃
(
Y

(1)
j ,...,Y

(1)
j+h−1

)
=π
}1{

Π̃
(
Y

(2)
j ,...,Y

(2)
j+h−1

)
=σ
}

+
∑

(π,σ)∈(Sh\S∗h)×S∗h

3∑
k=0

4− k
4 1{∑h

j=0|σj−πj |=2k
}1{

Π̃
(
Y

(1)
j ,...,Y

(1)
j+h−1

)
=π
}1{

Π̃
(
Y

(2)
j ....,Y

(2)
j+h−1

)
=σ
}

(4.52)

Note that if for (π, σ) ∈ Sh × Sh, it is fulfilled that ∑h
j=0 |σj − πj | = 2k for k = 0, . . . , 3, the

same l1-distance also holds for (S(π),S(σ)), because S(π) = (πh, . . . , π0). Concerning the first
order Hermite coefficients, we have for i = 1, . . . , 2h

E

Y (i)
j,h

∑
(π,σ)∈S∗

h
×S∗

h

3∑
k=0

4− k
4 1{∑h

j=0|σj−πj |=2k
}1{

Π̃
(
Y

(1)
j ,...,Y

(1)
j+h−1

)
=π
}1{

Π̃
(
Y

(2)
j ,...,Y

(2)
j+h−1

)
=σ
}

=E
(
− Y (i)

j,h

∑
(π,σ)∈S∗

h
×S∗

h

3∑
k=0

4− k
4 1{∑h

j=0|σj−πj |=2k
}1{

Π̃
(
−Y (1)

j ,...,−Y (1)
j+h−1

)
=π
}

× 1{
Π̃
(
−Y (2)

j ,...,−Y (2)
j+h−1

)
=σ
})

=− E
(
Y

(i)
j,h

∑
(π,σ)∈S∗

h
×S∗

h

3∑
k=0

4− k
4 1{∑h

j=0|σj−πj |=2k
}1{

Π̃
(
Y

(1)
j ,...,Y

(1)
j+h−1

)
=S(π)

}
× 1{

Π̃
(
Y

(2)
j ,...,Y

(2)
j+h−1

)
=S(σ)

}),
for the first two summands in (4.52). A similar result is derived for the last two summands,
and, hence, we proved that m

(
fawopd,Σ2,h

)
≥ 2. Following Lemma 2.33, we have to show that

m
(
fawopd, I2,h

)
≤ 2. The proof works analogously to the second part of the proof of Lemma

4.25. �
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We are now able to provide the asymptotic distribution of p̂awopd
n for long-range dependence

with d∗ ∈
(

1
4 ,

1
2

)
, as well as for transformed short-range dependence with d∗ ∈

(
0, 1

4

)
. We start

with the first case in the following corollary, which is, like Theorem 4.26, an immediate appli-
cation of Corollary 3.11. This case includes pure long-range dependence with both parameters
d1, d2 ∈

(
1
4 ,

1
2

)
as well as a mixed setting, where only one parameter falls in this range.

Corollary 4.70 Under the assumptions in (L2s) in Overview 4.24, it holds

n1−2d∗(C2)−
1
2
(
p̂awopd
n − pawopd

)
D−→

∑
p,q∈P ∗

α̃(p,q)Z
(p,q)
2,d∗+1/2(1), (4.53)

with Z(p,q)
2,d∗+1/2(1) as given in Theorem 3.10 and C2 := 1

2d∗(4d∗−1) being a normalizing constant.

We have α̃(p,q) :=
h∑

i,k=1
α

(p,q)
i,k , where α(p,q)

i,k = αi+(p−1)h,k+(q−1)h for each p, q ∈ P ∗ and i, k =

1, . . . , h and (αi,k)1≤i,k≤dh = Σ−1
2,hCΣ−1

2,h where

C = (ci,k)1≤i,k≤2h = E
(
Y1,h

(
fawopd (Y1,h)− pawopd

)
Y t

1,h

)
denotes the matrix of second order Hermite coefficients.

The second setting we turn to, deals i.a. with the case that at least one of the orginal processes is
long-range dependent, however, by transformation with the estimator, the long-range dependence
is lost and short-range dependence arises. In Section 4.3.2 this setting is discussed for standard
ordinal pattern dependence and the following result works analogously to Theorem 4.35.

Corollary 4.71 Under the assumptions in (S) in Overview 4.24, it holds

n
1
2
(
p̂awopd
n − pawopd

) D−→ N (0, σ2
)
,

with

σ2 =
∞∑

k=−∞
E
[ (
fawopd (Y1,h)− E

(
fawopd (Y1,h)

)) (
fawopd (Y1+k,h)− E

(
fawopd (Y1+k,h)

)) ]
.

We want to obtain a limit theorem for the estimator ̂AWOPD. In general, the argumentation
in Section 4.3.3 and Section 4.3.4 can be used to obtain asymptotic results for p̂awopd

n and
for the estimator of the adapted case of hypothetical independence. Note that q̂awopd

n was
already introduced as plug-in estimator in terms of the improved estimators of ordinal pattern
probabilities q̂Y (1),n,imp(π) and q̂Y (2),n,imp(π). This has a practical background. As it has
turned out in Section 4.3.4, this approach yields an asymptotic distribution that takes the
joint consideration of the pattern in the two time series (here given in p̂awopd

n ), as well as the
hypothetical case of independence (here given in q̂awopd

n ) into account and, therefore, is most
interesting for applications. Hence, we obtain the following two results for ̂AWOPD, adapting
Theorem 4.47 in the case of long-range dependence and Theorem 4.49 in the case of transformed
short-range dependence.
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Corollary 4.72 Under the assumptions of (L2s) in Overview 4.24, the following statements
are true.

(i) If d1 = d2 = d∗ ∈
(

1
4 ,

1
2

)
, it holds that

n1−2d∗ (C2)1/2
(

̂AWOPDn −AWOPD
)

D−→

α̃(1,1) −
∑

π,σ∈Sh

w(d(π, σ))qY (2)(σ)α̃(1,1)
π

Z(1,1)
2,d∗+ 1

2
(1)

+

α̃(2,2) −
∑

π,σ∈Sh

w(d(π, σ))qY (1)(σ)α̃(2,2)
π

Z(2,2)
2,d∗+ 1

2
(1)

+ 2α̃(1,2)Z
(1,2)
2,d∗+ 1

2
(1).

(ii) if d1 6= d2 and dp = d∗ for exactly one p = 1, 2, we obtain

n1−2d∗ (C2)1/2 L−1
pp

(
̂AWOPDn −AWOPD

)
D−→ (2C2)

1
2

α̃(p,p) −
∑

π,σ∈Sh

w(d(π, σ))qY 3−p(σ)α̃(p,p)
π

Z(p,p)
2,d∗+ 1

2
(1),

with α̃(p,q), Z(p,q)
2,d∗+1/2(1), p, q = 1, 2, as given in Theorem 4.26 and α̃(p,p)

π , p = 1, 2, as given
in Theorem 4.18.

Proof. We have joint convergence of appropriately normalized(
p̂awopd
n ,

(
q̂Y (1),n(π)

)
π∈Sh

,
(
q̂Y (2),n(π)

)
π∈Sh

)
.

For details, see proof of Theorem 4.47. We modify the considered function f here, as proposed
in [58], Theorem 6, by

f
(
u, (vπ)π∈Sh , (vπ)π∈Sh

)
= u−

∑
π,σ

w(d(π, σ))vπwσ.

The gradient ∇
(
pawopd, (qY (1)(π))π∈Sh , (qY (2)(π))π∈Sh

)
is given by

∇
(
pawopd, (qY (1)(π))π∈Sh , (qY (2)(π))π∈Sh

)
=

1,−

∑
σ∈Sh

w(d(π, σ))qY (2)(σ)


π∈Sh

,−

∑
σ∈Sh

w(d(π, σ))qY (1)(σ)


π∈Sh

 .
By applying the multivariate delta method and similar calculations as in the proof of Theorem
4.47 the results are obtained. �

What remains open is to derive a result for transformed short-range dependence. By using the
same argumentation as in the proof of Theorem 4.49, we close this gap.
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Corollary 4.73 We define

σ2
awopd :=∇

(
pawopd, (qY (1)(π))π∈Sh , (qY (2)(π))π∈Sh

)
× Σ

(
∇
(
pawopd, (qY (1)(π))π∈Sh , (qY (2)(π))π∈Sh

))t
,

where

∇
(
pawopd, (qY (1)(π))π∈Sh , (qY (2)(π))π∈Sh

)
=

1,−

∑
σ∈Sh

w(d(π, σ))qY (2)(σ)


π∈Sh

,−

∑
σ∈Sh

w(d(π, σ))qY (1)(σ)


π∈Sh

 .
The matrix Σ = (σr,s)r,s=1,...,2(h+1)!+1 is given by

σr,s =
∞∑

l1,...,l2h,m1,...,m2h=2
cl1,...,l2h,rcm1,...,m2h,s lim

n→∞
n−1

n∑
j1,j2=1

E

 2h∏
p=1

Hlp

(
Y

(p)
j1,h

)
Hmp

(
Y

(p)
j2,h

)
with

cl1,...,l2h,r := E
(
fr (Yj,h)

2h∏
k=1

Hlk

(
Y

(k)
j,h

))
,

where we define

(
f1, . . . , f2h+1)!+1

)t
:=
(
p̂awopd
n − pawopd,

(
q̂Y (1),imp,n − qY (1)

)
π∈Sh

,
(
q̂Y (2),imp,n − qY (2)

)
π∈Sh

)t
.

Then, under the assumptions in (S) in Overview 4.24, it holds that

n
1
2
(

̂AWOPD −AWOPD
) D−→ N (0, σ2

awopd

)
,

with

We close this chapter, which deals with ordinal analysis and, hence, represents a main part of
this thesis, with a summary of the results. After providing the necessary background and basic
information on ordinal patterns in Section 4.1, the two estimators q̂n(π) and q̂n,imp(π) of ordinal
pattern probabilities were investigated in Section 4.2. As ordinal pattern probabilities rely on
a univariate Gaussian process, we applied the results in Chapter 3 for d = 1 and derived limit
theorems in the case of long-range dependence. Therefore, we were able to complement the
results of [60], Theorem 3.

In Section 4.3, we turned to ordinal pattern dependence as an approach of measuring de-
pendence between two time series based on ordinal information. This method relies on a bivariate
Gaussian process and hence, we employed the results in Chapter 3 for d = 2. We considered
mixed cases of short- and long-range dependent components in the bivariate time series and
built an extensive and detailed theoretical framework for standard ordinal pattern dependence.
In Section 4.3.1 and 4.3.2, we investigated the limit distribution of the estimator p̂n of the
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cruicial parameter p of ordinal pattern dependence. In Section 4.3.1, we proved a limit theorem
that allows for pure long-range dependence as well as for mixed cases of short- and long range
dependence. The limit variance of the asymptotic distribution was studied in details and we
derived possibilities to calculate it analytically for h = 1 and presented numerical solutions
for h = 2. With the help of the symmetry properties of the underlying multivariate Gaussian
distribution, it is possible to save much computational cost and to provide an efficient way
to determine the quantities of interest. In Section 4.3.2, the case of short-range dependence
concerning the parameter p was tackled. A detailed elaboration on the asymptotic properties
of three different estimators of the parameter q was given in Section 4.3.3. Finally, in Section
4.3.4, we put the previous results together to obtain a general asymptotic result for estimators of
ordinal pattern dependence. Several challenges had to be faced in the course of this last section,
mainly occuring due to the necessary joint convergence of certain parameter estimators from the
preceeding sections. In the end, all problems were solved, such that it was possible to obtain
asymptotic results for estimators of ordinal pattern dependence. In the short range dependent
setting, the mathematical theory was supplemented by accessing graph theory and the diagram
formula, whereas the case of long-range dependence and the mixed cases of short- and long-range
dependence relied on the limit theorems derived in Chapter 3. Finally, a simulation study was
provided that illustrated the theoretical results.

In Section 4.4, we introduced possibilities to modify and generalize standard ordinal pattern
dependence and the method of estimating this dependence. First, we reduced standard ordinal
pattern dependence to the condition that only one fixed pattern occuring in both time series is
taken into consideration, as discussed in Section 4.4.1. We benefitted from the detailed calcula-
tions on the asymptotic variance in Section 4.3.1, as many considerations could be adopted here.
An application of one estimator of ordinal pattern dependence for one fixed pattern was given in
Section 4.4.2, to extend the Hurst parameter estimation given in [60], Section 3, to vector-valued
fractional Gaussian noise. Moreover, we mentioned the theoretical setting, that we are no longer
assuming the increment process of the time series in which we are comparing the coincident
patterns to be stationary and fulfill certain dependence conditions. Instead we compare the
coincident patterns in the stationary and possibly long- and/or short-range dependent processes
themselves. This yields a degenerated limit distribution if we apply the limit theorems arising in
the context of long-range dependence, since ordinal patterns are uniquely determined by their
increments. This class of functionals was already discussed in Section 3.3, and based on the
argumentation there, a detailed discussion on that topic was given. Furthermore, a solution to a
non-degenerated limit distribution with a different normalization was provided.
Finally, time-shifted ordinal pattern dependence was presented as a possibility to detect the
maximal ordinal pattern dependence between two time series shifted over time. Blockwise
estimation of ordinal pattern dependence modifies the estimation method of standard ordinal
pattern dependence. Instead of considering stepwise moving windows as it naturally appears
in relative frequency estimators, we investigate blockwise estimation, that is, taking disjoint
moving windows, such that the increments under consideration never have impact on more than
one ordinal pattern. For time-shifted ordinal pattern dependence, as well as for the blockwise
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estimation, we had to do a careful preprocessing. The limit theorems to derive asymptotic
results for estimators of standard ordinal pattern dependence could not be applied immediately.
Nevertheless, we obtained the limit distribution in both modified cases.
In the last section, average-weighted ordinal pattern dependence was introduced as a general-
ization of standard ordinal pattern dependence, allowing for a certain deviation between the
patterns of the two respective time series in the same moving window. After discussing the
properties of the weight function and the (pseudo-)metric and providing illustrative examples
on how to choose the latter one, we obtained the asymptotic distribution for this extension of
ordinal pattern dependence for the long-range dependent case as well as for mixed cases.
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5 Ordinal pattern dependence in contrast to
other measures of dependence

In the previous sections ordinal pattern dependence was investigated in various ways and
modifications, with focus on the asymptotic distribution for short- or long-range dependent
Gaussian processes. A natural question that arises is, whether it is possible to integrate the
approach of ordinal pattern dependence in the class of (multivariate) dependence measures. In
this context, a comparison to other classical statistical dependence measures is also of strong
interest. We structure this chapter as follows: We begin with a pilot study, where we compare
standard ordinal pattern dependence as well as average-weighted ordinal pattern dependence
to one dimensional dependence measures as the classical Pearson’s correlation, Spearman’s ρ,
and Kendall’s τ . In order to get a more intuitive understanding of the differences between these
measures, we modify the underlying bivariate processes by small disturbances, which are further
explained in the following. Note that this first section is based on [49] and is joint work with
Alexander Schnurr, where I was responsible for coding and analyzing the pilot study.
The second part of this chapter deals with the mathematical theory behind these ideas. We
investigate the connection of ordinal pattern dependence and multivariate dependence measures
as defined in [29] and [55] and provide a dissociation from the one-dimensional dependence
measures. We keep in mind, that multivariate dependence measures are usually used to detect
dependencies between two random vectors or, in some cases, even within one multivariate random
vector. On the contrary, ordinal pattern dependence is defined in a time series context to shed
light on the intensity of comonotonic behaviour of two time series. The results of this section can
be found in [11] and are joint work with Annika Betken, Herold Dehling and Alexander Schnurr.
My main contributions in this work can be found in there in Section 5, which deals with the
comparison of ordinal pattern dependence to other measures and are provided in the proofs.
Note that we leave the setting of short-/long-range dependence here and in general only assume
stationarity, if not declared differently, to guarantee a reasonable estimation of ordinal pattern
dependence.

5.1 Approaches of ordinal pattern dependence in comparison to
other classical dependence measures: a pilot study

We start with the empirical comparison. We consider 11 data sets, of which 10 are simulated
and one is a real world example. Each data set consists of two time series between which we are
estimating the respective dependence measures.
The first five data sets contain an underyling bivariate white noise process and we consider
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n = 1000 data points, so in the standard setting a1) there are two independent white noise
processes

(
X

(1)
j

)
j=1,...,1000

,
(
X

(2)
j

)
j=1,...,1000

. Roughly speaking, they represent the archetype of
independent time series. They are displayed in Figure 5.1.

Figure 5.1: Plot of a1): Two independent white noise processes with n = 1000 data points.

We modify these two processes by the following disturbances:

• a2): Superposition of setting a1) and 10 shocks with a height of ± 10, happening randomly
between 1 and 1000 with 5 shocks having a negative sign and 5 shocks having a positive
sign.

• a3): In both processes happens one large shock of height 1000 at point 500.

• a4): We caused a structural break in the expected value at point 500 of both processes and
raised the expected value by 100.

• a5): We generated a structural break in the variance at point 500 and raised the variance
by 100.

Figure 5.2: Plots of modifications a2), a3), a4) and a5).

All modifications described above are illustrated in Figure 5.2.
The other five simulated data sets are disturbed in the same way as characterized above, but
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with different underlying processes, namely two correlated AR(1)-processes
(
X
∗(1)
j

)
and

(
X
∗(2)
j

)
,

generated in the following way:

X
∗(1)
j = ψX

∗(1)
j−1 +Nj

X
∗(2)
j = φX

∗(2)
j−1 +Mj ,

where we choose ψ = 0.8, φ = 0.1. The correlation is generated by sampling a bivariate normal

distribution with covariance matrix
(

1 0.8
0.8 1

)
and storing the first column of the sample in

N and the second one in M. As in a1), we use a sample size of n = 1000. A simulation of setting
b1) is provided in Figure 5.3.

Figure 5.3: Plot of b1): Two correlated AR(1)-processes with n = 1000 data points.

As indicated above, the disturbances of b1) denoted by b2) to b5) are obtained in the same way
as a2) to a5) described in the listing above and are illustrated in Figure 5.4.

Figure 5.4: Plots of modifications b2), b3), b4) and b5).

We have introduced all 10 simulated data sets now. The last data set we consider is a classical
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example of mathematical finance, namely the well-known S&P 500 (SPX) and the corresponding
Chicago Board Options Exchange Volatility Index (VIX), see Figure 5.5. We analyze close prices
from the 20th of Febuary 2013 until 07th of Febuary 2017, which are 1000 data points in total.
The data was extracted from finance.yahoo.com.

Figure 5.5: Plots of SPX and VIX from 02/20/2013 to 02/07/2017 (n = 1000 data points).

As one can already see, regarding Figure 5.5, the two time series show anti-monotonic behaviour.
As it is discussed in [57], Section 3, in the standard literature they are known to have a negative
correlation. However, in [67], p.7, it is stated, that there is an asymmetric relation between rates
of change in the VIX and the SPX. Therefore, due to non-linearity this is not displayable by
correlation. Hence, this yields a nice example to test the potential of ordinal pattern dependence.
Note that we consider -VIX and, therefore, positive dependence in order to get comparable
results to the other 11 settings.
Now we turn to the dependence measures we want to compare, based on the 11 datasets described
before. Our new approaches are standard ordinal pattern dependence as introduced in (4.13)
and average-weighted ordinal pattern dependence as introduced in Section 4.4.6. We denote the
corresponding values of the two dependence measures as standardized ordinal pattern coefficient
(SOPC) and standardized average-weighted ordinal pattern coefficient (SOPC(AW)). The well-
known dependence measures we take into consideration are given by Pearson’s correlation
coefficient, Spearman’s ρ and Kendall’s τ . The results we obtain are given in Figure 5.6.
We recognize that in both settings a1) and b1) the dependence structure we generated is pictured.
It is also possible to observe that the correlation is the most sensitive dependence measure
concerning the created disturbances and, therefore, significantly increases in the settings a2) to
a4) and b2) to b4). The other two classical dependence measures are not biased by the two
“external shock” settings but do rise in the setting with the structural break in the expected value,
a4) and b4). A nice but also expectable result is that neither SOPC nor SOPC(AW) is affected
by the disturbances. The intuition why this is expectable is given in the definition of ordinal
pattern dependence. Since we are ignoring the absolute values of the data considered and only
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correlation Spearman's rho Kendall's tau SOPC SOPC(AW)
a1) 0.01 0.02 0.01 0.00 0.00
a2) 0.51 0.05 0.04 0.01 0.00
a3) 1.00 0.02 0.02 0.00 0.00
a4) 1.00 0.75 0.50 0.00 0.00
a5) -0.01 0.04 0.03 0.00 0.00

b1) 0.50 0.47 0.32 0.28 0.17
b2) 0.68 0.48 0.34 0.29 0.18
b3) 1.00 0.47 0.33 0.28 0.17
b4) 1.00 0.87 0.66 0.28 0.17
b5) 0.52 0.40 0.31 0.28 0.17

(SPX,-VIX) 0.11 0.20 0.16 0.50 0.44

Figure 5.6: Empirical dependence measures for 11 datasets.

take the ordinal structure into account, it does not matter, whether the largest point in a certain
time window has only a small Euclidean distance to the second largest point or a very large one.
As it is possible to observe in this explorative study, ordinal pattern dependence is extremely
robust concerning several types of outliers in the considered data sets. A comprehensive way to
visualize how the respective modifications of the data sets impact on the dependence measures
is given in Figure 5.7. Note that the differences between the values of SOPC and SOPC(AW)
can be explained, since we use h = 2 (SOPC) and h = 5 (SOPC(AW)). One might wonder why
we do not choose the same values here. The reason is, that for small values of h, almost every
combination of pattern would be taken into account using average-weighted ordinal pattern
dependence, see Example 4.68, but for larger h the standard ordinal pattern dependence would
yield very small values and underestimate the dependence. Therefore, in pratice, the user has
to decide which approach seems to be more reasonable to her or him. Regarding the SPX and

Figure 5.7: Empirical dependence in the settings a1) to a5) (left) and b1) to b5) (right).

VIX, we observe a small correlation, which seems to be negligible, but a strong (negative) ordinal
pattern dependence. This strengthens our hope that ordinal pattern dependence is a better
approach to measure dependence for data sets exhibiting asymmetric and, therefore, non-linear
dependence. However, note that the correlation between the increments of SPX and VIX is much
larger.
We close this explorative study with the summary that ordinal pattern dependence as well as
average-weighted ordinal pattern dependence exhibits robustness concerning outliers in data
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sets and are less sensitive than classical dependence measures like correlation, Spearman’s ρ,
and Kendall’s τ . This yields a great advantage if one is interested in omitting and not further
investigating these outliers. One field of application that might benefit is medicine, e.g. the
analysis of EEG data, since they can possibly be biased by eye movements.
There are several questions that arise from this study. To start with, there is certainly a need to
an explanation of the differences between the classical measures and ordinal pattern dependence.
The role of the increments, which seem to play an important role as the SPX-VIX-example
indicates, should be investigated, too. In the next chapter, we capture these empirically observed
phenomenons more theoretically and seek answers to these questions.

5.2 Comparison: a theoretical approach

In this section, we try to provide answers to the questions that are open regarding the pilot study.
First, we investigate, whether it is possible to integrate standard ordinal pattern dependence
in the class of multivariate dependence measures as defined in [29], Chapter 3. Subsequently,
we compare standard ordinal pattern dependence to other uni- and multivariate dependence
measures, show differences and give relations, if possible. The results of this section can be found
in [11], with focus on Chapter 5.

First, note that there is a significant difference in the approaches of classical dependence measures
and ordinal pattern dependence. Usually Pearson’s correlation, Spearman’s ρ or Kendall’s τ
have been developed to describe the behaviour of two one-dimensional random variables. The
application to stationary time series boils down to the estimation of the dependence between two
random variables at the same points in time and, therefore, does not imply any kind of dynamical
dependence, which is crucial in the following. Analogously, the multivariate generalization of
those dependence measures deal with the relation between two multivariate random vectors and
are not defined in a time series context in general. In contrast, ordinal pattern dependence
describes the co-movement of two (ordinal pattern-)stationary time series and does not have
an intuitive meaning concerning componentwise dependencies within the multivariate vectors
considered in p = P

(
Π
(
X

(1)
0 , . . . , X

(1)
h

)
= Π

(
X

(2)
0 , . . . , X

(2)
h

))
. Therefore, we need to take a

careful look at what we are comparing and adapt the definitions if necessary.

In the course of this chapter we refer to OPDh for the value of ordinal pattern dependence
defined in (4.13) to emphasize the h increments under consideration. Moreover, we define

X
(1,h+1)
j :=

(
X

(1)
j , X

(1)
j+1, . . . , X

(1)
j+h

)
and

X
(2,h+1)
j :=

(
X

(2)
j , X

(2)
j+1, . . . , X

(2)
j+h

)
.

To keep the notation simple, we also fixX(1,h+1) := X
(1,h+1)
0 , such thatX(1,h+1) =

(
X

(1)
0 , . . . , X

(1)
h

)t
andX(2,h+1) := X

(2,h+1)
0 withX(2,h+1) =

(
X

(2)
0 , . . . , X

(2)
h

)t
. The corresponding correlation matri-

ces are denoted by Σ1,h+1 and Σ̃1,h+1, and the cross-covariance matrix is given by ΣX(1,h+1),X(2,h+1) ,
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such that we have the following relation concerning the already introduced notation in this work:

X2,h+1 =
(
X(1,h+1), X(2,h+1)

)t
, Σ2,h+1 =

(
Σ1,h+1 ΣX(1,h+1),X(2,h+1)

ΣX(1,h+1),X(2,h+1) Σ̃1,h+1

)

Remark that we leave the setting of long- and short-range dependence here, as already mentioned
in the introduction of this chapter. When dealing with ordinal pattern dependence, for simplicity,
we assume stationarity of the underlying bivariate process. In this context, let us recall that
stationarity implies ordinal pattern stationarity.
We start with the result dealing with the integration of ordinal pattern dependence in the class of
multivariate dependence measures, as introduced in [29], Section 3, p.98. Therefore, we introduce
the definition of a multivariate dependence measure first.

Definition 5.1 (Multivariate dependence measure)
Let L0 denote the space of random vectors with values in Rd on the probability space (Ω,A,P).
We call a function µ : L0 × L0 → R an d-dimensional measure of dependence, if

(i) it takes values in [−1, 1],

(ii) it is invariant with respect to simultaneous permutations of the components within two
random vectors X and Y ,

(iii) it is invariant with respect to increasing transformations of the components within two
random vectors X and Y ,

(iv) it is zero for two independent random vectors X and Y ,

(v) it respects concordance ordering, i.e., for two pairs of random vectors X, Y and X∗, Y ∗, it
holds that (

X

Y

)
4C

(
X∗

Y ∗

)
⇒ µ(X,Y ) ≤ µ(X∗, Y ∗).

Here, 4C denotes concordance ordering, i.e.,(
X

Y

)
4C

(
X∗

Y ∗

)
if and only if F(XY ) ≤ F(X∗Y ∗) and F̄(XY ) ≤ F̄(X∗Y ∗),

where ≤ is meant pointwise and F̄ denotes the survival function.

Theorem 5.2 Ordinal pattern dependence as defined in (4.13) is an (h+1)-dimensional measure
of dependence.

The proof is given in in [11], proof of Theorem 2.3.

This is an important result for the general standing of ordinal pattern dependence and for
the comparability to other measures of dependence within the same class. We now turn to the
introduction of these other measures, which are studied in the following. We start with the
multivariate extension of Pearson’s ρ, introduced in [55], p. 2. We modify the definition of multi-
variate Pearson’s ρ and later on of multivariate Kendall’s τ in terms of two (h+ 1)-dimensional
random vectors to get comparable results in the time series approach.
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Definition 5.3 For two random vectors X(1,h+1), X(2,h+1) ∈ L2
(
Rh+1

)
with invertible cor-

relation matrices Σ1,h+1 and Σ̃1,h+1 and cross-covariance matrix ΣX(1,h+1),X(2,h+1), we define
Pearson’s correlation coefficient by

ρh
(
X(1,h+1), X(2,h+1)

)
:=

tr
(
ΣX(1,h+1),X(2,h+1)

)
tr
((

Σ1,h+1Σ̃1,h+1
)1/2

) ,
where A1/2 is the principal square root of the matrix A, such that A1/2A1/2 = A. Furthermore,
tr(A) denotes the trace of a matrix A.

The main issue of the univariate dependence measures considered before, is that they do not
take the cross-dependencies of the considered random vectors into account, here displayed
by Cor

(
X

(1)
0 , X

(2)
k

)
and Cor

(
X

(1)
k , X

(2)
0

)
, k = 0, . . . , h + 1. They represent the dynamical

dependence between the two random vectors arising from the two time series considered, and they
are included in ordinal pattern dependence if h ≥ 2. To classify this into the time series context,
univariate dependence measures concentrate on the dependence between

(
X

(1)
j , X

(2)
j

)
j∈Z

only at
the same points in time. For the multivariate generalization of Pearson’s rho we obtain

ρh
(
X(1,h+1), X(2,h+1)

)
: =

tr
(
ΣX(1,h+1),X(2,h+1)

)
tr
((

Σ1,h+1Σ̃1,h+1
)1/2

)

=
Cov

(
X

(1)
0 , X

(2)
0

)
+ . . .+ Cov

(
X

(1)
h+1, X

(2)
h+1

)
tr
((

Σ1,h+1Σ̃1,h+1
)1/2

) .

Note that in the case that
(
X

(1)
j , X

(2)
j

)
j∈Z

is stationary and Σ1,h+1 = Σ̃1,h+1, this even yields

ρh
(
X(1,h+1), X(2,h+1)

)
= Cov

(
X

(1)
0 , X

(2)
0

)
.

In both cases, we see that the cross-correlations r(1,2)(l), l ≥ 1 have no impact on the value
of the multivariate ρh. This gets explicitly clear in the case where the underlying time series
is stationary, since we can easily determine the numerator in terms of Cov

(
X

(1)
0 , X

(2)
0

)
then.

However, even if the time series is not stationary, the numerator only depends on the covariances
at equal points in time and therefore, this measure is not appropriate for our approach. Hence,
we focus on the multivariate generalization of Kendall’s τ , as it is provided in [29], p. 100.

Definition 5.4 For two random vectors X(1,h+1) and X(2,h+1), we define the multivariate ex-
tension of Kendall’s τ by

τh
(
X(1,h+1), X(2,h+1)

)
:= Cor

(
1{X(1,h+1)≤X̃(1,h+1)},1{X(2,h+1)≤X̃(2,h+1)}

)
,

where
(
X̃(1,h+1), X̃(2,h+1)

)t
is an independent copy of

(
X(1,h+1), X(2,h+1)

)t
.

We see a significant difference between this definition to the one of ordinal pattern dependence.
We notice that this definition needs an independent copy of the considered two random vectors.
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In contrast, ordinal pattern dependence is regarded in a bivariate time series setting in which
independence is usually not guaranteed. However, to close this gap and to get a comparable result
of ordinal pattern dependence for this classical definition of a multivariate dependence measure,
in Chapter 3 in [11], a limit theorem for the case of indepent copies as given in Definition 5.4 in
terms of ordinal pattern dependence is provided.
An estimator of multivariate Kendall’s τ is derived using the approach given in [29], p.100.
Given an independent copy

(
X̃(1,h+1), X̃(2,h+1)

)t
of the vector

(
X(1,h+1), X(2,h+1)

)t
, we have

τh
(
X(1,h+1), X(2,h+1)

)
=

p(X(1,h+1),X(2,h+1)) − pX(1,h+1)pX(2,h+1)√
pX(1,h+1) (1− pX(1,h+1)) pX(2,h+1) (1− pX(1,h+1))

=ψ
(
p(X(1,h+1),X(2,h+1)), pX(1,h+1) , pX(2,h+1)

)
,

where

p(X(1,h+1),X(2,h+1)) : = P
(
X(1,h+1) ≤ X̃(1,h+1), X(2,h+1) ≤ X̃(2,h+1)

)
,

pX(1,h+1) : = P
(
X(1,h+1) ≤ X̃(1, h+ 1)

)
pX(2,h+1) : = P

(
X(2,h+1) ≤ X̃(2, h+ 1)

)
,

and where ψ : R3 → R is defined by

ψ(x, y, z) := z − x y
x(1− x)y(1− y) .

The probabilities p(X(1,h+1),X(2,h+1)), pX(1,h+1) , and pX(2,h+1) can be estimated by their sample
analogues, defined by

p̂X(1,h+1),n : = 2
n(n− 1)

∑
1≤i<j≤n

1{
X

(1,h+1)
i ≤X(1,h+1)

j

},
p̂X(2,h+1),n : = 2

n(n− 1)
∑

1≤i<j≤n
1{

X
(2,h+1)
i ≤X(2,h+1)

j

},
p̂X(1,h+1),X(2,h+1),n : = 2

n(n− 1)
∑

1≤i<j≤n
1{

X
(1,h+1)
i ≤X(1,h+1)

j ,X
(2,h+1)
i ≤X(2,h+1)

j

},

where X(1,h+1)
j =

(
X

(1)
j , X

(1)
j+1, . . . , X

(1)
j+h

)
and X(2,h+1)

j =
(
X

(2)
j , X

(2)
j+1, . . . , X

(2)
j+h

)
.

Then, the plug-in estimator for Kendall’s τ is given by

τ̂ (h)
n (X(1,h+1), X(2,h+1)) := ψ(p̂X(1,h+1),n, p̂X(2,h+1),n, p̂(X(1,h+1),X(2,h+1)),n). (5.1)

Section 4.2 of [11] deals with the asymptotic properties of this estimator and a limit theorem is
provided in case of short-range dependence.

Remark 5.5 We briefly introduce the blockwise estimation of multivariate Kendall’s τ as an
analog approach as given in blockwise estimation of ordinal patterns. This is used in the data
analysis later on. Hence, we define

p̂X(1,h+1),n,bw : = 2
ñ(ñ− 1)

∑
1≤i<j≤n

1{
X

(1,h+1)
i(h−1)+1≤X

(1,h+1)
j(h−1)+1

},
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p̂X(2,h+1),n,bw : = 2
ñ(ñ− 1)

∑
1≤i<j≤n

1{
X

(2,h+1)
i(h−1)+1≤X

(2,h+1)
j(h−1)+1

},
p̂X(1,h+1),X(2,h+1),n,bw : = 2

ñ(ñ− 1)
∑

1≤i<j≤n
1{

X
(1,h+1)
i(h−1)+1≤X

(1,h+1)
j(h−1)+1,X

(2,h+1)
i(h−1)+1≤X

(2,h+1)
j(h−1)+1

},
with ñ :=

⌊
n−1
h−1

⌋
(h− 1) + 1.

Therefore, we use as blockwise estimator for multivariate Kendall’s τ :

τ̂
(h)
n,bw(X(1,h+1), X(2,h+1)) := ψ(p̂X(1,h+1),n,bw, p̂X(2,h+1),n,bw, p̂(X(1,h+1),X(2,h+1)),n,bw). (5.2)

In the following, we focus on the comparison of multivariate Kendall’s τ and ordinal pattern
dependence. Therefore, we need to create a relation between the definition of multivariate
Kendall’s τ in Definition 5.4 and the definition of ordinal pattern dependence in the time series
context in (4.13) first. In the next lemma we constitute a first expression for a stationary bivariate
Gaussian process.

Lemma 5.6 Let
(
X

(1)
j , X

(2)
j

)
j≥0

denote a centered stationary Gaussian process, and let

X(1,h+1) =
(
X

(1)
0 , . . . , X

(1)
h

)t
and X(2,h+1) =

(
X

(2)
0 , . . . , X

(2)
h

)t
. Then, we have

τh
(
X(1,h+1), X(2,h+1)

)
=

P
(
X

(1)
0 ≤ 0, . . . , X(1)

h ≤ 0, X(2)
0 ≤ 0, . . . , X(2)

h ≤ 0
)
− pX(1,h+1)pX(2,h+1)√

pX(1,h+1) (1− pX(1,h+1)) pX(2,h+1) (1− pX(2,h+1))
,

where pX(1,h+1) := P
(
X

(1)
0 ≤ 0, . . . , X(1)

h ≤ 0
)
and p(X(2,h+1) := P

(
X

(2)
0 ≤ 0, . . . , X(2)

h ≤ 0
)
.

Proof. We denote by
(
X̃(1,h+1), X̃(2,h+1)

)t
an independent copy of

(
X(1,h+1), X(2,h+1)

)t
as

introduced in Definition 5.4. We obtain

τh
(
X(1,h+1), X(2,h+1)

)
= Cor

(
1{X(1,h+1)≤X̃(1,h+1),},1{X(2,h+1)≤X̃(2,h+1),}

)
= Cor

(
1{X(1,h+1)−X̃(1,h+1)≤0},1{X(2,h+1)−X̃(2,h+1)≤0}

)
=

P
(
X

(1)
0 − X̃(1)

0 ≤ 0, . . . , X(1)
h − X̃

(1)
h ≤ 0, X(2)

0 − X̃(2)
0 ≤ 0, . . . , X(2)

h − X̃
(2)
h ≤ 0

)
√
pX(1,h+1) (1− pX(1,h+1)) pX(2,h+1) (1− pX(2,h+1))

− pX(1,h+1)pX(2,h+1)√
pX(1,h+1) (1− pX(1,h+1)) pX(2,h+1) (1− pX(2,h+1))

with

pX(1,h+1) = P
(
X

(1)
0 − X̃(1)

0 ≤ 0, . . . , X(1)
h − X̃

(1)
h ≤ 0

)
and

pX(2,h+1) = P
(
X

(2)
0 − X̃(2)

0 ≤ 0, . . . , X(2)
h − X̃

(2)
h ≤ 0

)
.

Note that since we are considering a centered Gaussian process, we have(
X(1,h+1) − X̃(1,h+1), X(2,h+1) − X̃(2,h+1)

)t D= √2
(
X(1,h+1), X(2,h+1)

)t
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which explicitly implies that the cross-correlations within the vector(
X(1,h+1) − X̃(1,h+1), X(2,h+1) − X̃(2,h+1)

)t
equal those within

(
X(1,h+1), X(2,h+1)

)t
. We conclude that

P
(
X

(1)
0 − X̃(1)

0 ≤ 0, . . . , X(1)
h − X̃

(1)
h ≤ 0, X(2)

0 − X̃(2)
0 ≤ 0, . . . , X(2)

h − X̃
(2)
h ≤ 0

)
√
pX(1,h+1) (1− pX(1,h+1)) pX(2,h+1) (1− pX(2,h+1))

− pX(1,h+1)pX(2,h+1)√
pX(1,h+1) (1− pX(1,h+1)) pX(2,h+1) (1− pX(2,h+1))

=
P
(
X

(1)
0 ≤ 0, . . . , X(1)

h ≤ 0, X(2)
0 ≤ 0, . . . , X(2)

h ≤ 0
)
− pX(1,h+1)pX(2,h+1)√

pX(1,h+1) (1− pX(1,h+1)) pX(2,h+1) (1− pX(2,h+1))
,

with pX(1,h+1) = P
(
X

(1)
0 ≤ 0, . . . , X(1)

h ≤ 0
)
and pX(2,h+1) = P

(
X

(2)
0 ≤ 0, . . . , X(2)

h ≤ 0
)
. �

Although we do not know an analytical expression, neither for pX(1,h+1) , pX(2,h+1) nor for the first
probability in the enumerator, for h ≥ 2, we know that orthant probabilities of a multivariate
Gaussian distribution are determined by the entries of the correlation matrix, which includes
here the cross-correlation matrix of X(1,h+1) and X(2,h+1). In the case studied here, that the
multivariate vectors consist of h+ 1 consecutive points of a bivariate stationary Gaussian process,
we know that the values having an impact are given by E

(
X

(1)
0 X

(2)
k

)
for k = −h, . . . , h, beside

the autocorrelations E
(
X

(1)
0 X

(1)
k

)
for k = 0, . . . , h and E

(
X

(2)
0 X

(2)
k

)
for k = 0, . . . , h.

Therefore, we have found a multivariate dependence measure that considers exactly the cross-
dependencies mentioned above and hence takes the desired dynamical dependence into account,
in contrast to multivariate Pearson’s Rho. A direct comparison to ordinal pattern dependence is
nevertheless not constructive here, since

OPDh

(
X(1,h+1), X(2,h+1)

)
=
P
(
Π
(
X(1,h+1)

)
= Π

(
X(2,h+1)

))
−
∑
π∈Sh P

(
Π
(
X(1,h+1)

)
= π

)
P
(
Π
(
X(2,h+1)

)
= π

)
1−∑π∈Sh P

(
Π
(
X(1,h+1)) = π

)
P
(
Π
(
X(2,h+1)) = π

) ,

and concentrating on the first summand this yields

P
(
Π
(
X(1,h+1)

)
= Π

(
X(2,h+1)

))
=P

(
X

(1)
0 ≤ X(1)

1 ≤ . . . ≤ X(1)
h , X

(2)
0 ≤ X(2)

1 ≤ . . . ≤ X(2)
h

)
+ P

(
X

(1)
0 ≥ X(1)

1 ≥ . . . ≥ X(1)
h , X

(2)
0 ≥ X(2)

1 ≥ . . . ≥ X(2)
h

)
+

∑
π∈Sh\{(h,h−1,...,0),(0,1,...,h)}

P
(
Π
(
X(1,h+1)

)
= Π

(
X(2,h+1)

)
= π

)
.

We observe that the direct ordinal comparison between the h+ 1 consecutive random variables
of each random vector, as it is used in the ordinal pattern dependence approach, is not echoed in
multivariate Kendall’s τ . However, we can prove a relation between ordinal pattern dependence
and multivariate Kendall’s τ of the increments of the Gaussian process considered, denoted
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by Y (1)
j = X

(1)
j −X

(1)
j−1 and Y (2)

j = X
(2)
j −X

(2)
j−1. We explicitly use the existence of a function

Π̃, such that Π
(
X

(p)
0 , . . . , X

(p)
h

)
= Π̃

(
Y

(p)
1 , . . . , Y

(p)
h

)
, p = 1, 2. This implicates that OPDh is

uniquely determined by the increments.

Theorem 5.7 Let
(
X

(1)
j , X

(2)
j

)
j∈Z

be a bivariate stationary centered Gaussian process. It holds
that

(i)

OPDh

(
X(1,h+1), X(2,h+1)

)
=

2τ
(
Y

(1)
1 , . . . , Y

(1)
h , Y

(2)
1 , . . . , Y

(2)
h

)√
p̃Y (1) (1− p̃Y (1)) p̃Y (2) (1− p̃Y (2))

1−∑π∈Sh P
(
Π
(
X(1,h+1)) = π

)
P
(
Π
(
X(2,h+1)) = π

)
+
∑
π∈Sh\{(h,h−1,...,0),(0,1,...,h)} P

(
Π
(
X(1,h+1)

)
= Π

(
X(2,h+1)

)
= π

)
1−∑π∈Sh P

(
Π
(
X(1,h+1)) = π

)
P
(
Π
(
X(2,h+1)) = π

)
−
∑
π∈Sh\{(h,h−1,...,0),(0,1,...,h)} P

(
Π
(
X(1,h+1)

)
= π

)
P
(
Π
(
X(2,h+1)

)
= π

)
1−∑π∈Sh P

(
Π
(
X(1,h+1)) = π

)
P
(
Π
(
X(2,h+1)) = π

) ,

with

p̃Y (1,h) = P
(
Π
(
X

(1)
0 , . . . , X

(1)
h

)
= (0, 1, . . . , h)

)
= P

(
Y

(1)
1 ≤ 0, . . . , Y (1)

h ≤ 0
)
,

p̃Y (2,h) = P
(
Π
(
X

(2)
0 , . . . , X

(2)
h

)
= (0, 1, . . . , h)

)
= P

(
Y

(2)
1 ≤ 0, . . . , Y (2)

h ≤ 0
)
,

(ii)

OPDh

(
X(1,h+1), X(2,h+1)

)

=

∑
π∈Sh τ

(
X

(1)
π2 −X

(1)
π1 , . . . , X

(2)
πh+1 −X

(2)
πh

)√
pX(1,h+1),π

(
1− pX(1,h+1),π

)
pX(2,h+1),π

(
pX(2,h+1),π

)
1−∑π∈Sh pX(1,h+1),π, pX(2,h+1),π

,

with π = (π0, . . . , πh), and

pX(1,h+1),π = P
(
Π
(
X

(1)
0 , . . . , X

(1)
h

)
= π

)
,

pX(2,h+1),π = P
(
Π
(
X

(2)
0 . . . , X

(2)
h

)
= π

)
.

Proof. First note that

OPDh

(
X(1,h+1), X(2,h+1)

)
=
∑
π∈{(h,h−1,...,0),(0,1,...,h)} P

(
Π
(
X(1,h+1)

)
= Π

(
X(2,h+1)

)
= π

)
1−∑π∈Sh P

(
Π
(
X(1,h+1)) = π

)
P
(
Π
(
X(2,h+1)) = π

)
−
∑
π∈{(h,h−1,...,0),(0,1,...,h)} P

(
Π
(
X(1,h+1)

)
= π

)
P
(
Π
(
X(2,h+1)

)
= π

)
1−∑π∈Sh P

(
Π
(
X(1,h+1)) = π

)
P
(
Π
(
X(2,h+1)) = π

)
+
∑
π∈Sh\{(h,h−1,...,0),(0,1,...,h)} P

(
Π
(
X(1,h+1)

)
= Π

(
X(2,h+1)

)
= π

)
1−∑π∈Sh P

(
Π
(
X(1,h+1)) = π

)
P
(
Π
(
X(2,h+1)) = π

)
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−
∑
π∈Sh\{(h,h−1,...,0),(0,1,...,h)} P

(
Π
(
X(1,h+1)

)
= π

)
P
(
Π
(
X(2,h+1)

)
= π

)
1−∑π∈Sh P

(
Π
(
X(1,h+1)) = π

)
P
(
Π
(
X(2,h+1)) = π

) ,

and by focusing on the pattern π = (0, 1, . . . , h) in the first summand, we obtain

P
(
Π
(
X(1,h+1)

)
= Π

(
X(2,h+1)

)
= (0, 1, . . . , h)

)
=P

(
X

(1)
0 ≥ X(1)

1 ≥ . . . ≥ X(1)
h , X

(2)
0 ≥ X(2)

1 ≥ . . . ≥ X(2)
h

)
=P

(
Y

(1)
1 ≤ 0, . . . , Y (1)

h ≤ 0, . . . , Y (2)
1 ≤ 0, . . . , Y (2)

h ≤ 0
)

=τ
(
Y

(1)
1 , . . . , Y

(1)
h , Y

(2)
1 , . . . , Y

(2)
h

)√
p̃Y (1) (1− p̃Y (1)) p̃Y (2) (1− p̃Y (2)) + p̃Y (1) p̃Y (2) ,

following Lemma 5.6.
Note that the different normalizing constants in the denumerators of the two dependence
measures originate from the fact that both dependence measures are normed to 1 in the case
X(1,h+1) = X(2,h+1). However, multivariate Kendall’s τ does only consider one pattern in the
ordinal view, but ordinal pattern dependence cannot be normed to 1 for each summand but must
be norned for the entire sum over all possible patterns.
Due to the symmetry property of the multivariate normal distribution, we use(

X(1,h+1), X(2,h+1)
)t D= (

−X(1,h+1),−X(2,h+1)
)t

and conclude that

P
(
Π
(
X(1,h+1)

)
= Π

(
X(2,h+1)

)
= (0, 1, . . . , h)

)
= P

(
Π
(
X(1,h+1)

)
= Π

(
X(2,h+1)

)
= (h, h− 1, . . . , 0)

)
.

Finally, we obtain

OPDh

(
X(1,h+1), X(2,h+1)

)
=

2τ
(
Y

(1)
1 , . . . , Y

(1)
h , Y

(2)
1 , . . . , Y

(2)
h

)√
p̃Y (1) (1− p̃Y (1)) p̃Y (2) (1− p̃Y (2))

1−∑π∈Sh P
(
Π
(
X(1,h+1)) = π

)
P
(
Π
(
X(2,h+1)) = π

)
+
∑
π∈Sh\{(h,h−1,...,0),(0,1,...,h)} P

(
Π
(
X(1,h+1)

)
= Π

(
X(2,h+1)

)
= π

)
1−∑π∈Sh P

(
Π
(
X(1,h+1)) = π

)
P
(
Π
(
X(2,h+1)) = π

)
−
∑
π∈Sh\{(h,h−1,...,0),(0,1,...,h)} P

(
Π
(
X(1,h+1)

)
= π

)
P
(
Π
(
X(2,h+1)

)
= π

)
1−∑π∈Sh P

(
Π
(
X(1,h+1)) = π

)
P
(
Π
(
X(2,h+1)) = π

) .

We proved (i) and found a possibility to express OPDh in terms of multivariate Kendall’s τ of
the increment vectors

(
Y

(1)
1 , . . . , Y

(1)
h , Y

(2)
1 , . . . , Y

(2)
h

)
of the considered processes. However, the

result might be unsatisfactory, since the last two summands are quite unhandy. Fortunately, it is
possible to extend this concept: let π = (π0, . . . , πh) be a permutation in Sh. If

Π
(
X

(1)
0 , . . . , X

(1)
h

)
= π

it holds that {
X(1)
π0 ≥ X

(1)
π1 ≥ . . . ≥ X

(1)
πh

}
.
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Then, we can express ordinal pattern dependence by the following formula:

OPDh

(
X(1,h+1), X(2,h+1)

)
=
∑
π∈Sh P

(
Π
(
X

(1)
0 , . . . , X

(1)
h

)
= Π

(
X

(2)
0 , . . . , X

(2)
h

)
= π

)
− pX(1,h+1),πpX(2,h+1),π

1−∑π∈Sh P
(
Π
(
X

(1)
0 , . . . , X

(1)
h

)
= π

)
P
(
Π
(
X

(2)
0 , . . . , X

(2)
h

)
= π

)
=
∑
π∈Sh P

(
X

(1)
π0 ≥ X

(1)
π1 ≥ . . . ≥ X

(1)
πh , X

(2)
π0 ≥ X

(2)
π1 ≥ . . . ≥ X

(2)
πh

)
− pX(1,h+1),πpX(2,h+1),π

1−∑π∈Sh pX(1,h+1),π, pX(2,h+1),π

=
∑
π∈Sh P

(
X

(1)
π1 −X

(1)
π0 ≤ 0, . . . , X(1)

πh −X
(1)
πh−1 ≤ 0, . . . , X(2)

πh −X
(2)
πh−1 ≤ 0

)
− pX(1,h+1),πpX(2,h+1),π

1−∑π∈Sh pX(1,h+1),π, pX(2,h+1),π

=

∑
π∈Sh τ

(
X

(1)
π1 −X

(1)
π0 , . . . , X

(2)
πh −X

(2)
πh−1

)√
pX(1,h+1),π

(
1− pX(1,h+1),π

)
pX(2,h+1),π

(
pX(2,h+1),π

)
1−∑π∈Sh pX(1,h+1),π, pX(2,h+1),π

with

pX(1,h+1),π = P
(
Π
(
X

(1)
0 , . . . , X

(1)
h

)
= π

)
= P

(
X(1)
π0 ≥ X

(1)
π1 ≥ . . . ≥ X

(1)
πh

)
= P

(
X(1)
π1 −X

(1)
π0 ≤ 0, . . . , X(1)

πh
−X(1)

πh−1 ≤ 0
)

and

pX(2,h+1),π = P
(
Π
(
X

(2)
0 , . . . , X

(2)
h

)
= π

)
= P

(
X(2)
π0 ≥ X

(2)
π1 ≥ . . . ≥ X

(2)
πh

)
= P

(
X(2)
π1 −X

(2)
π0 ≤ 0, . . . , X(2)

πh
−X(2)

πh−1 ≤ 0
)
.

�

We have found a way to describe OPDh of X(1,h+1) and X(2,h+1) partwise by multivariate
Kendall’s τ of the original increments in (i) and fully by the modified increments, where the
differences considered are determined by the regarded ordinal pattern π.

Note that it is a special property of the multivariate Gaussian distribution that the distri-
bution of (

X(1)
π1 −X

(1)
π0 , . . . , X

(1)
πh
−X(1)

πh−1 , X
(2)
π1 −X

(2)
π0 , . . . , X

(2)
πh
−X(2)

πh−1

)t
is uniquely determined by the cross-correlations E

(
X

(1)
0 X

(2)
k

)
for k = −h, . . . , h and the auto-

correlations E
(
X

(1)
0 X

(1)
k

)
for k = 0, . . . , h, and E

(
X

(2)
0 X

(2)
k

)
for k = 0, . . . , h. Therefore, it is

possible to express all of the dependencies in the vector above by the two-dimensional marginal
distributions. However, since we do not have a closed expression of orthant probabilities of a
multivariate Gaussian vector with more than three elements, it is not possible to constitute a
closed form for ordinal pattern dependence in terms of Kendall’s τ neither of the marginals nor
of the joint vector. Therefore, we can only show this relation illustratively in the case h = 1 as
the following example shows.
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Example 5.8 Recall that for Gaussian random vectors X(1,2) =
(
X

(1)
0 , X

(1)
1

)t
and

X(2,2) =
(
X

(2)
0 , X

(2)
1

)t
satisfying the assumptions in Theorem 5.7, it holds that

OPD1
(
X(1,2), X(2,2)

)
= τ1

(
X

(1)
1 −X(1)

0 , X
(2)
1 −X(2)

0

)
= 2
π

arcsin
(
Cor

(
X

(1)
1 −X(1)

0 , X
(2)
1 −X(2)

0

))
according to Theorem 5.7, (i).
Moreover, if X(1,2) and X(2,2) exhibit the same distribution and have standard normal marginals,
it holds that

Cor
(
X

(1)
1 −X(1)

0 , X
(2)
1 −X(2)

0

)
=

2E
(
X

(1)
0 X

(2)
0

)
− E

(
X

(1)
0 X

(2)
1

)
− E

(
X

(2)
0 X

(1)
1

)
2− 2E

(
X

(1)
0 X

(1)
1

) .

In general, we know that τ1(X(1)
0 , X

(2)
0 ) = 2

π arcsin
(
Cor

(
X

(1)
0 , X

(2)
0

))
for a Gaussian random

vector
(
X

(1)
0 , X

(2)
0

)t
, and hence Cor

(
X

(1)
0 , X

(2)
0

)
= sin

(
π
2 τ1

(
X

(1)
0 , X

(2)
0

))
.

As a result, we obtain

OPD1
(
X(1,2), X(2,2)

)
= 2
π

arcsin

2 sin
(
π
2 τ1

(
X

(1)
0 , X

(2)
0

))
− sin

(
π
2 τ1

(
X

(1)
0 , X

(2)
1

))
− sin

(
π
2 τ1

(
X

(1)
1 , X

(2)
0

))
2− 2 sin

(
π
2 τ1

(
X

(1)
0 , X

(1)
1

))
 .

Therefore, the ordinal pattern dependence of order 1 is determined by
τ1
(
X

(1)
0 , X

(2)
0

)
, τ1

(
X

(1)
0 , X

(2)
1

)
, τ1

(
X

(1)
1 , X

(2)
0

)
, and τ1

(
X

(1)
1 , X

(2)
1

)
.

We have derived theoretical results that relate ordinal pattern dependence to multivariate
Kendall’s τ . To illustrate these formulas, and to get a better intuitive understanding of the
differences between the dependence measures, including those considered in the pilot study in
Section 5.1, we restrict ourselves to the cases h = 1 and h = 2.
To this end, we use a classical bivariate Gaussian time series, namely a bivariate AR(1)-process
for h = 1 and a bivariate AR(2)-process for h = 2 and want to study under which assumptions it
is possible that OPD detects a dependence while classical measures like correlation or Kendall’s
τ do not.

5.2.1 Example of an AR(1)-process for h = 1

In the case h = 1, first remark the following corollary as a conclusion of Theorem 5.7, since
S2 \ {(1, 0), (0, 1)} = ∅ and p̃Y (1,2) = P

(
Y

(1)
1 ≤ 0

)
= 1

2 .

Corollary 5.9 Under the assumptions of Theorem 5.7 for h = 1 we have a direct connection
between ordinal pattern dependence and the univariate Kendall’s τ :

OPD1
(
X(1,2), X(2,2)

)
= τ1

(
X

(1)
1 −X(1)

0 , X
(2)
1 −X(2)

0

)
= τ1

(
Y

(1)
1 , Y

(2)
1

)
= 2
π

arcsin
(
Cor

(
Y

(1)
1 , Y

(2)
1

))
.
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This corollary leads to the conjecture that it is possible to construct a bivariate process, which is
uncorrelated, since correlation only compares two random variables at equal points in time, but
which has a positive ordinal pattern dependence. In the following, we give a way to create such
a process in terms of a bivariate AR(1)-time series.

Lemma 5.10 Let (Xj)j≥0, be a multivariate AR(1)-process defined by

Xj :=

X(1)
j

X
(2)
j

 , j ≥ 0,

with Xj = AXj−1 + ξj,

A :=
(
a b

b −a

)
and ξj :=

(
εj

ηj

)
.

We assume a2 + b2 < 1 to ensure stationarity and that ξj, j ≥ 0 are bivariate Gaussian random
vectors with covariance matrix Σξ = I2 (with I2 denoting the identity matrix). Then, it holds
that Cov(X(1)

0 , X
(2)
0 ) = 0 and for X(1,2) :=

(
X

(1)
0 , X

(1)
1

)
and X(2,2) := (X(2)

0 , X
(2)
1 ), we obtain

OPD1
(
X(1,2), X(2,2)

)
= 2
π

arcsin
(
− b√

1− a2

)
.

Proof. The eigenvalues of A are λ1,2 = ±
√
a2 + b2, and thus (Xj)j≥0 is stationary. Since

the AR(1)-equation defines a Markov chain with state space R2, the joint distribution of
Xj =

(
X

(1)
j , X

(2)
j

)t
is uniquely characterized by the distributional fixed point equation

X
D= AX + ξ,

where ξ = (ε, η) has a bivariate normal distribution with mean zero and covariance matrix I2,
and where ξ is independent of X. We will now show that X ∼ N

(
0, σ2I2

)
satisfies this equation

with
σ2 = 1

1− a2 − b2
.

In order to prove this, we need to calculate the distribution of AX + ξ. Since the distribution is
Gaussian, it suffices to calculate the variances and the covariance. We obtain

Cov(aX(1) + bX(2) + ε, bX − aY + η) = abσ2 − abσ2 = 0,

Var(aX(1) + bX(2) + ε) = a2σ2 + b2σ2 + 1 = a2 + b2

1− a2 − b2
+ 1 = 1

1− a2 − b2
= σ2,

Var(bX(1) − aX(2) + ε) = b2σ2 + a2σ2 + 1 = a2 + b2

1− a2 − b2
+ 1 = 1

1− a2 − b2
= σ2,

which shows that AX + ξ has indeed the same distribution as X.
In order to determine the OPD1 of the two processes, we need to calculcate the correlation of
the differences. The covariance of the increments is given by

Cov(X(1)
2 −X(1)

1 , X
(2)
2 −X(2)

1 ) = ((a− 1)X(1)
1 + bX

(2)
1 + ε2, bX

(1)
1 + (−a− 1)X(2)

1 + η2)
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= b(a− 1)σ2 − b(a+ 1)σ2

= −2bσ2 = −2b
1− a2 − b2

and the variances of the increments are given by

Var(X(1)
2 −X(1)

1 ) = (a− 1)2σ2 + b2σ2 + 1 = (a− 1)2 + b2

1− a2 − b2
+ 1 = 2(1− a)

1− a2 − b2
,

Var(X(2)
2 −X(2)

1 ) = b2σ2 + (a+ 1)2σ2 + 1 = b2 + (a+ 1)2

1− a2 − b2
+ 1 = 2(a+ 1)

1− a2 − b2
.

Thus, we obtain the following formula for the correlation of the increments:

Cor(X(1)
2 −X(1)

1 , X
(2)
2 −X(2)

1 ) = −2b√
4(1− a)(a+ 1)

= − b√
1− a2

Using the identity OPD1((X(1)
1 , X

(1)
2 ), (X(2)

1 , X
(2)
2 )) = 2

π arcsin Cor(X(1)
2 −X

(1)
1 , X

(2)
2 −X

(2)
1 ), we

proved the result. �

Remark 5.11 (i) The special choice of the matrix A in Lemma 5.10 assures that the two
processes

(
X

(1)
j

)
j≥0

and
(
X

(2)
j

)
j≥0

have identical marginals, and that X(1)
j and X(2)

j are
independent for each fixed i. In fact, one can show that the latter two properties only hold
if A is either of the form in Lemma 5.10 or of the form

A =
(
a b

−b a

)
. (5.3)

In this case, using similar calculations as above, one obtains OPD1
(
X(1,2), X(2,2)

)
= 0.

(ii) Lemma 5.10 provides an example of a Gaussian process for which Pearson’s correlation of
X

(1)
j and X(2)

j equals 0, i.e., the one-dimensional marginals are independent. However, the
processes

(
X

(1)
j

)
j≥0

and
(
X

(2)
j

)
j≥0

are not independent, as can be seen from the identity

for OPD1
(
X(1,2), X(2,2)

)
.

5.2.2 Simulations

We emphasize our results by simulating a bivariate AR(1)-process

Xj :=

X(1)
j

X
(2)
j

 , j = 1, . . . , 10 000,

with Xj = AXj−1 + ξi, where

A :=
(
a b

b −a

)
and ξi :=

(
εi

ηi

)
,

ξi being a multivariate Gaussian random vector with covariance matrix Σξ = I2 (with I2 denoting
the identity matrix). We choose a2 +b2 < 1 but close to 1 in order to obtain Cov

(
X

(1)
j , X

(2)
j

)
= 0,
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but OPD1 close to 1. For our simulation a = 0.7 and b = −0.7 yield illustrating results.

In Figure 5.8, left plot, we simulate one sample path of the processes
(
X

(1)
j

)
and

(
X

(2)
j

)
,

both for j = 1, . . . , 500 and in Figure 5.8, right plot, we do the same for the increment processes.
It is easy to see that the two processes displayed in the right plot in Figure 5.8 are positively
correlated. The corresponding values of the estimators of the different dependence measures are
displayed in Table 5.1.

Figure 5.8: One sample path of the original process (Xj) (left) and of the increment process (Yj)
(right), j = 1, . . . , 500.

Cor
(
X

(1)
0 , X

(2)
0

)
-0.049

τ
(
X

(1)
0 , X

(2)
0

)
-0.035

ρ
(
X

(1)
0 , X

(2)
0

)
-0.054

OPD1
(
X(1,2), X(2,2)

)
0.859

Cor
(
Y

(1)
1 , Y

(2)
1

)
0.98

τ
(
Y

(1)
1 , Y

(2)
1

)
0.866

ρ
(
Y

(1)
1 , Y

(2)
1

)
0.975

Table 5.1: Values of the different empirical dependence measures for the simulated AR(1) process.

Figure 5.9: Scatterplot of
(
X

(1)
j

)
and

(
X

(2)
j

)
(left) and of

(
Y

(1)
j

)
and

(
Y

(2)
j

)
(right),

j = 1, . . . , 5000.

The high dependence between the two increment processes is reflected in the right plot of Figure
5.9. In the left plot of Figure 5.9 the uncorrelated processes are shown. To get an impression of
the empirical convergence properties of OPD1 and Pearson’s correlation, see [11], Figure 1.
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5.2.3 Example of an AR(2)-process for h = 2

For the computation of the ordinal pattern dependence of order h = 1, the crucial quantity is
Cor

(
X

(1)
1 −X(1)

0 , X
(2)
1 −X(2)

0

)
since, according to Thorem 5.7, OPD1

(
X(1,2), X(2,2)

)
is just a

monotone transformation of this correlation. Therefore, it is natural to wonder whether it is
possible to construct a stationary, bivariate process

(
X

(1)
j , X

(2)
j

)
j≥0

with

OPD1
(
X(1,2), X(2,2)

)
= 0, but OPD2

(
X(1,2), X(2,2)

)
6= 0.

The AR(1)-process in Lemma 5.10 does not fulfill these conditions, since the restriction

Cor
(
X

(1)
1 −X(1)

0 , X
(2)
1 −X(2)

0

)
= − b√

1− a2
= 0

implies b = 0. As a result, we would consider a process (Xj)j≥0, given by

Xj =
(
X

(1)
j , X

(2)
j

)t
=
(
aX

(1)
j−1 + ξj ,−aX(2)

j−1 + ηj
)t
,

that does not incorporate any dynamical dependence between the processes
(
X

(1)
j

)
j≥0

and(
X

(2)
j

)
j≥0

. The only dependence in this model exists within each marginal process. Yet, this
does not have any impact on ordinal pattern dependence.
Following Remark 5.11, the choice of the matrix A in (5.3) yields Cor

(
X

(1)
j , X

(2)
j

)
= 0 for j = 1, 2

and OPD1
(
X(1,2), X(2,2)

)
= 0. This leads to the question whether this special construction of

an AR(1)-process fulfills OPD2
(
X(1,3), X(2,3)

)
6= 0.

Lemma 5.12 Consider the stationary bivariate Gaussian AR(1)-process Xj =
(
X

(1)
j , Y

(2)
j

)
j≥0

,
satisfying

Xj = AXj−1 + ξj ,

with (ξj) as given in Lemma 5.10 and with matrix A given by (5.3), such that a2 + b2 < 1. Then,
it holds that

Cov
(
X

(1)
1 , X

(2)
1

)
= 0, Var

(
X

(1)
1

)
= Var

(
X

(2)
1

)
= σ2 = 1

1− a2 − b2
,

OPD1
(
X(1,2), X(2,2)

)
= 0, Cor

(
X

(1)
2 −X(1)

1 , X
(2)
3 −X(2)

2

)
= −b,

Cor
(
X

(1)
3 −X(1)

2 , X
(2)
2 −X(2)

1

)
= b.

Proof. The first three identities can be shown as in Lemma 5.10. Thus, it remains to show the
latter two. It holds that

Var
(
X

(1)
2 −X(1)

1

)
= (a− 1)2σ2 + b2σ2 + 1 = (a− 1)2 + b2 + 1− a2 − b2

1− a2 − b2
= 2(1− a)σ2.

Analogously, we obtain

Var
(
X

(2)
3 −X(2)

2

)
= 2(1− a)σ2.
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Furthermore, it holds that

Cov(X(2)
3 −X(2)

2 , X
(1)
2 −X(1)

1 ) = E
(
X

(2)
3 X

(1)
2

)
− E

(
X

(2)
2 X

(1)
2

)
− E

(
X

(2)
3 X

(1)
1

)
+ E

(
X

(2)
2 X

(1)
1

)
= 2b(a− 1)σ2,

since

E(X(2)
3 X

(1)
2 ) = −bσ2, E(X(2)

3 X
(1)
1 ) = −2abσ2.

Altogether, we arrive at

Cor(X(2)
3 −X(2)

2 , X
(1)
2 −X(1)

1 ) = 2ab− 2b
2(1− a) = −b.

Cor(X(2)
2 −X(2)

1 , X
(1)
3 −X(1)

2 ) = b is derived by similar calculations. �

Lemma 5.12 provides an example of a bivariate process
(
X

(1)
j , X

(2)
j

)
j≥0

for which

Cor
(
X

(1)
j , X

(2)
j

)
= 0 and OPD1

(
X(1,2), X(2,2)

)
= 0, but where the processes

(
X

(1)
j

)
j≥0

and(
X

(2)
j

)
j≥0

are nevertheless dependent. The fact that the increments X(1)
2 −X

(1)
1 and X(2)

3 −X
(2)
2

are dependent, leads us to conjecture that OPD2
(
X(1,3), X(2,3)

)
6= 0, but we do not have a proof.

The analytic difficulties arising in order to calculate OPD2
(
X(1,3), X(2,3)

)
are presented in the

subsequent example of a bivariate AR(2)-process (X(1)
j , X

(2)
j )j≥0 for which Cor(X(1)

j , X
(2)
j ) = 0

and OPD1
(
X(1,2), X(2,2)

)
= 0, but where the processes (X(1)

j )j≥0 and (X(2)
j )j≥0 are dependent.

For this example, we provide simulation results that confirm OPD2
(
X(1,3), X(2,3)

)
6= 0.

Example 5.13 Let (Xj)j≥0, be a multivariate AR(2)-process defined by

Xj :=

X(1)
j

X
(2)
j

 , j ≥ 0,

where Xj = AXj−2 + ξj with

A :=
(
a b

b −a

)
and ξj :=

(
εj

ηj

)
, (5.4)

ξj, j ≥ 0, bivariate Gaussian random vectors with covariance matrix Σξ = I2 (with I2 denoting
the identity matrix) and X(1)

0 := ξ0, X(2)
0 := η0, X(1)

1 := ξ1, X(2)
1 = η1. Moreover, we assume

that σ2 := Var
(
X

(1)
0

)
= Var

(
X

(2)
0

)
.

By definition it holds that Cov
(
X

(1)
0 , X

(2)
0

)
= Cov

(
X

(1)
1 , X

(2)
1

)
= 0. Moreover, we have

OPD1
(
X(1,2), X(2,2)

)
= 0, since

Cov
(
X

(1)
2 −X(1)

1 , X
(2)
2 −X(2)

1

)
= E

[(
aX

(1)
0 + bX

(2)
0 + ξ2 −X(1)

1

) (
bX

(1)
0 − aX(2)

0 + η2 −X(2)
1

)]
= abσ2 − baσ2

= 0.
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In order to compute OPD2
(
X(1,3, X(2,3)

)
, we have to calculate

P
(
Π
(
X

(1)
0 , X

(1)
1 , X

(1)
2

)
= Π

(
X

(2)
0 , X

(2)
1 , X

(2)
2

)
= π

)
for every π ∈ S2.
With π = (0, 1, 2) it follows that

P
(
Π
(
X

(1)
0 , X

(1)
1 , X

(1)
2

)
= Π

(
X

(2)
0 , X

(2)
1 , X

(2)
2

)
= π

)
=P

(
X

(1)
0 ≤ X(1)

1 ≤ X(1)
2 , X

(2)
0 ≤ X(2)

1 ≤ X(2)
2

)
=P

(
X

(1)
1 −X(1)

0 ≥ 0, X(1)
2 −X(1)

1 ≥ 0, X(2)
1 −X(2)

0 ≥ 0, X(2)
2 −X(2)

1 ≥ 0
)
.

As a result, computing OPD2
(
X(1,3), X(2,3)

)
boils down to determine the orthant probabilities of

a four-dimensional Gaussian vector. To our knowledge a closed expression for these probabilities
is not at hand; see [1].
Nonetheless, we claim that it is no longer sufficient to consider Cor

(
X

(1)
1 −X(1)

0 , X
(2)
1 −X(2)

0

)
,

which vanishes here, but we have two more quantities determining this probability, namely
Cor

(
X

(1)
1 −X(1)

0 , X
(2)
2 −X(2)

1

)
and Cor

(
X

(1)
2 −X(1)

1 , X
(2)
1 −X(2)

0

)
. These correspond to the

cross-correlation function r(1,2)(k) = Cor
(
X

(1)
1 −X(1)

0 , X
(2)
k+1 −X

(2)
k

)
at lags k = 1 and k = −1.

Therefore, these two quantities do not necessarily coincide since the cross-correlation function is
in general not symmetric.
Straightforward calculations yield

Cov
(
X

(1)
1 −X(1)

0 , X
(2)
2 −X(2)

1

)
=Cov

(
X

(1)
2 −X(1)

1 , X
(2)
3 −X(2)

2

)
=E

((
aX

(1)
0 + bX

(2)
0 + ξ2 −X(1)

1

) (
bX

(1)
1 − aY (2)

1 + η3 − bX(1)
0 + aX

(2)
0 − η2

))
=− abσ2 + abσ2 − bσ2

=− bσ2

and

Cov
(
X

(1)
2 −X(1)

1 , X
(2)
1 −X(2)

0

)
=Cov

(
X

(1)
3 −X(1)

2 , X
(2)
2 −X(2)

1

)
=E

((
aX

(1)
1 + bX

(2)
1 + ξ3 − aX(1)

0 − bX(2)
0 − ξ2

) (
bX

(1)
0 − aX(2)

0 + η2 −X(2)
1

))
=− bσ2 − abσ2 + abσ2

=− bσ2.

With

Var (Xj −Xj−1) = Var (Xj) + Var (Xj−1) = 2σ2,

we arrive at

r(1,2)(1) = r(1,2)(−1) = −bσ
2

√
4σ2

= − b2 .
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Note that in this special construction the cross-covariance function at lag 1 is symmetric.

This construction of AR(2)-for h = 2 can be extended to AR(h) for h ∈ N, if one wants
to obtain OPDh

(
X(1,h+1), X(2,h+1)

)
6= 0 but OPDi

(
X(1,i+1), X(2,i+1)

)
= 0, i = 1, . . . , h−1 and

Cor
(
X

(1)
0 X

(2)
0

)
= 0 by using h independent AR(1)-processes and couple them via

Xj = A
(
X

(1)
j−h, X

(2)
j−h

)t
.

5.2.4 Simulations

We simulate a bivariate AR(2)-process

Xj :=

X(1)
j

X
(2)
j

 , j = 1, . . . 10 000,

with Xj = AXj−2 + ξj , where

A :=
(
a b

b −a

)
and ξj :=

(
εj

ηj

)
,

ξj being a multivariate Gaussian random vector with covariance matrix Σξ = I2 (with I2 denoting
the identity matrix). Since we need to maximize r(1,2)(1) = − b

2 we have chosen b = −0.98 and
a = 0.01 for the following simulations. The values of the dependence measures are displayed in
Table 5.2. One sample path of

(
X

(1)
j

)
and

(
X

(2)
j

)
for i = 1, . . . , 500 as well as one sample path

Cor
(
X

(1)
0 , X

(2)
0

)
0.009

τ
(
X

(1)
0 , X

(2)
0

)
-0.035

ρ
(
X

(1)
0 , X

(2)
0

)
-0.054

OPD1
(
X(1,2), X(2,2)

)
0.039

Cor
(
Y

(1)
1 , Y

(2)
1

)
0.026

τ
(
Y

(1)
1 , Y

(2)
1

)
0.029

ρ
(
Y

(1)
1 , Y

(2)
1

)
0.044

OPD2
(
X(1,3), X(2,3)

)
0.201

Cor
(
Y

(1)
1 , Y

(2)
2

)
0.478

τ2
(
Y

(1,h)
1 , Y

(2,h)
1

)
0.397

Table 5.2: Values of the different empirical dependence measures for the simulated AR(2)-process.

of the corresponding increment processes are shown in Figure 5.10. Compared to Figure 5.8 one
can see that we have no longer a positive correlation. We finally provide three scatterplots in
Figure 5.11, in which it is possible to see that there are no dependencies between the observations
at a fixed point of time and between the increments at a fixed point of time. However, the third
scatterplot illustrates the positive correlation of 0.478 between the two increment processes at
lag 1. In [11], p.18, Figure 3, the empirical convergence properties of OPD1 and OPD2 illustrate
the argumentation in Example 5.13. Further simulations that deal with the comparison of the
estimators of OPD2 and τ2 can be found in [11], Section 5.4.

We close this chapter with a summary of the results and a brief outlook. Concerning the
questions that arise from Section 5.1, we have seen that the univariate dependence measures only
take data from equal points in time into account and, therefore, ignore the dynamical dependence
that appears in a time series approach. Similar concerns hold for multivariate Pearson’s Rho as
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Figure 5.10: One sample path of
(
X

(1)
j

)
and

(
X

(2)
j

)
(left),

(
Y

(1)
j

)
and

(
Y

(2)
j

)
(right),

j = 1, . . . , 500.

Figure 5.11: Scatterplots of
(
X

(1)
j

)
and

(
X

(2)
j

)
(left),

(
Y

(1)
j

)
and

(
Y

(2)
j

)
(middle) and

(
Y

(1)
j

)
and

(
Y

(2)
j+1

)
(right) , j = 1, . . . , 5000.

proposed in [55], p. 2, as the dynamical dependence within two time series is not regarded either.
Finally, in multivariate Kendall’s τ as introduced in [29], p. 100, we have found a measure that
reflects the time series approach when defined in terms of two h+ 1-dimensional random vectors.
In the centered stationary Gaussian setting, we derived formulas to relate OPDh to τh. In this
context, it is to mention that the relation happens to only take the increments into account, as
seen in Theorem 5.7. This observation suits to the property of ordinal patterns to be uniquely
determined by their increments. Examples to emphasize the differences between the dependence
measures are given in Section 5.2.1 by an AR(1)-process for h = 1 and in Section 5.2.3 by an
AR(2)-process for h = 2 and are accompanied by simulations of the corresponding empirical
estimators. In the case h = 2 we see exemplarily that besides OPD2 and τ2 all other dependence
measures studied fail to detect the dependecies within the considered two AR(2)-processes.
Summarizing, conditioned especially by the robustness of ordinal pattern dependence as em-
pirically shown in the pilot study in Section 5.1, ordinal pattern dependence yields a wholistic
approach in measuring multivariate dependence in a time series context with many advantages
in applications.

The field of multivariate dependence measures is of strong interest for practice and appli-
cations and still has interesting questions to investigate. A possibility of further research is to use
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the limit theorems obtained in Chapter 3 in this work to derive a limit theorem for multivariate
Kendall’s τ under long-range dependence. Another idea is the integration and comparison of
multivariate Spearman’s ρ, as proposed in [29], Section 3.1, to the set of multivarite dependence
measures investigated in this work. Finally, the theoretical analysis of time series that obtain
non-linear dependence seems a very interesting field, since linear multivariate dependence mea-
sures as Kendall’s τ fail here, but ordinal pattern dependence detects the dependence. However,
for the construction of the theory of this class of time series, we have to leave the Gaussian
setting that only exhibits linear dependence. We motivate this idea with the following example:

Example 5.14 Let
(
X

(1)
j

)
j≥0

be a univariate standard i.i.d. Gaussian process. Define

X
(2)
j :=

(
X

(1)
j

)2
− 1. Note that these two processes are not independent, as the following

calculation shows:

Figure 5.12: One sample path of
(
X

(1)
j

)
and

(
X

(2)
j

)
, j = 1, . . . , 500 (left) and the corresponding

scatterplot (right).

P
(
X

(1)
j ≤ 5,

(
X

(1)
j

)2
− 1 ≤ 5

)
= P

(
X

(1)
j ≤ 5,

∣∣∣X(1)
j

∣∣∣ ≤ 2
)

= P
(∣∣∣X(1)

j

∣∣∣ ≤ 2
)

6= P
(
X

(1)
j ≤ 5

)
P
(∣∣∣X(1)

j

∣∣∣ ≤ 2
)
.

The dependence of the two processes is also displayed in Figure 5.12.
However, the processes as well as their increments are uncorrelated and have no cross-correlations
at any lag, since E

((
X

(1)
j

)k)
= 0, if k is an odd positive integer. Therefore, no linear dependence

is detectable. Hence, multivariate Kendall’s τ also fails to detect the dependence for h = 1 and
h = 2. Ordinal pattern dependence is nevertheless able to trace the quadratic dependence in this
example, in a simulation study with n = 10 000 data points for h = 2, we obtain OPD2 = 0.1331.

Having this example in mind, ordinal pattern dependence seems to be a user friendly approach
to capture those kinds of dependencies. An interesting field of application is given in the random
variables that arises in the context of Hermite processes, see [3], Proposition 3.5 and [23], Theorem
4.1, since they are known to be uncorrelated but not independent.
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6 Real-world data analysis

In this chapter we investigate data sets in the field of hydrology, which are provided by “The
Global Runoff Data Centre, 56068 Koblenz, Germany". Those data sets are known to be often
stationary and long-range dependent which would yield a great possibility to apply the theory we
developed in this work to real world data. We consider mean daily discharges of the rivers Elbe

Figure 6.1: Location of the measuring stations Neu-Darchau, Wittenberge, Hofkirchen and
Achleiten, created with d-maps.com, see https://d-maps.com/m/europa/germany/
allemagne_de/allemagne_de13.svg.

and Danube, two data sets for each river, each measured at different locations, which are shown
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in Figure 6.1. Hence, Neu-Darchau and Wittenberge are cities located at the Elbe and Hofkirchen
and Achleiten are located at the Danube. The distance between relevant locations for our data
analysis is given in Table 6.1 The data sets of the Elbe contain data from 11/1899-12/2013 which

Location Location Distance
Neu-Darchau Wittenberge approx. 80km
Hofkirchen Achleiten approx. 38km
Neu-Darchau Hofkirchen approx. 715km

Table 6.1: Distance between the locations of the measuring stations.

yields a sample size of n = 41699. The data sets of the mean daily discharges of the Danbue
consist of n = 41334 and are derived from measurements between 11/1900 and 12/2013. Since
we analyze both rivers in one setting in the following, note that the first year of measurements of
the corresponding data set concerning the Elbe is be cut off to make the time series comparable.
To avoid ties, we add a small white noise process to each data set, with standard deviation
σ = 0.01, so this white noise does not change the relevant data. The amount of ties in the four
considered data sets is from 4% to 8%.

Figure 6.2: Daily mean discharges of corresponding locations in 2013.
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First, we have to do a careful pre-processing of the data. We test stationarity using the Augmented
Dickey-Fuller Test as implemented in the R package “tseries”, for theoretical details see [20].
The Hurst parameter of each time series is estimated by using the R function hurstexp in the R
package “pracma”. As this question might arise, note that the estimation of the Hurst parameter
based on ordinal pattern analysis is not suitable here. This estimator highly relies on fractional
Gaussian noise as underlying process, since the special covariance structure is explicitly used
there.

Location Stationarity Estimated Hurst parameter
Neu-Darchau X (p-value=0.01) 0.722
Wittenberge X (p-value=0.01) 0.779
Hofkirchen X (p-value=0.01) 0.779
Achleiten X (p-value=0.01) 0.726

Table 6.2: Properties of the data sets.

In the following, we study three settings:

• Setting 1: Neu-Darchau vs. Wittenberge

• Setting 2: Hofkirchen vs. Achleiten

• Setting 3: Neu-Darchau vs. Hofkirchen

The mean daily discharges for each setting in the year 2013 is displayed in Figure 6.2.
Concerning the cross-correlation functions of these three settings, it is possible to recognize the
similar behaviour of either the auto-correlation functions of the univariate time series as well as
the cross-correlation function of the two time series within one setting, as one can observe in
Figure 6.3.

Figure 6.3: (Cross-)correlation functions for each setting.

Following these empirical results, we are hence dealing with long-range dependent stationary
time series. We want to apply the methods introduced in Section 4.3, especially the various
concepts in Chapter 4.4 and those in Chapter 5 to these data sets. To make them better fit into
our theoretical setting, it is possible to transform the data sets to become Gaussian and since this
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is a monotone transformation, the ordinal patterns within these data sets are not affected. Hence,
we know that the estimators we use in the following, have the statistical properties discussed
in Section 4.4.3 and we have a real world example of one class of processes we studied in this
work. The heatmap in Figure 6.4 show the result of the data analysis. Figure 6.5 provides a
comparison ordered by the different settings.

Figure 6.4: Heatmap of values of different dependence measures.

The first table in Figure 6.4 shows the values of the corresponding univariate dependence
measures, while the second table deals with the different approaches of measuring ordinal
pattern dependence. The third table provides the results of multivariate Kendall’s τ
measured for h = 1 and h = 2 estimated stepwise and blockwise, respectively.
We observe that all approaches of OPD measures significantly lower values as the other de-
pendence measures. Especially for the third setting no dependence is registered. As already
indicated in the pilot study in Section 5.1, for example larger jumps as they are known to happen
often in hydrological time series, f.e. in times with a huge amout of rain falling, let the standard
dependence measures increase very fast since they react very sensitive to those “shocks”. The
univariate measures almost obtaining 1 as highest value possible in Setting 1 as well as the high
value for Setting 3 that deals with two locations 715 km remote confirm this. Therefore, since
ordinal pattern dependence is known to be articulately more robust we propose ordinal pattern
dependence to be the less sensitive and more appropriate measure here.
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Figure 6.5: Dependence measures for different settings.

The other multivariate measure considered here is given by multivariate Kendall’s τh for h = 1
and h = 2, where we used both, the stepwise as well as the blockwise estimator. We do not
register an improvement compared to univariate Kendall’s τ (that corresponds to h = 0 in
terms of the multivariate approach). Therefore, this dependence measure provides no further
amendment in the data sets investigated and especially due to the large computational quadratic
effort has no practical impact here. Hence, we get more into the details of the different estimators
of ordinal pattern dependence.

Regarding Figure 6.5, we observe that the values obtained using the stepwise estimators for h = 1
and h = 2 as well as the estimator of average-weighted ordinal pattern dependence for h = 5
have the same structure, although h = 1 yields higher values due to the theoretical definition.
The similar values of OPD2 and AWOPD5 show that we obtain a balance for these choices of
pattern lengths between absolutely coincident patterns and certain deviations. The values of
blockwise estimation for OPD2 fall out of line and provide values with smaller deviation between
the settings. Having the background parameters as the distance between the locations in mind
we, therefore, propose the stepwise approaches here.

We also studied time-shifted ordinal pattern dependence here. Remark that for each shift
of length 1 the sample size decreases by 1 and therefore, we made the restriction that the sample
size for each setting regarded has to be larger than 20000 to get comparable results. In practice
this is a negligible condition, since we intuitively might expect a larger dependence if we shift
the data sets by a few days due to the distance, but not by more than 50 years.
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An interesting finding here is that we obtain a different result using time-shifted ordinal pattern

Setting 1:

Standard OPDh Time-shifted OPDh with a = 1
h = 1 0.4626 0.6388
h = 2 0.3542 0.5167

Table 6.3: Standard OPD vs. time-shifted OPD.

dependence in Setting 1, in the other two cases the differences are neglectable (due to the closeness
in setting 2 and the large distance and the different rivers in setting 3). We obtain a maximum
of ordinal pattern dependence for a time shift of a = 1, concerning the data of Wittenberge from
01/11/1899 to 30/12/2013 and the data of Neu Darchau from 02/11/1899-31/12/2013. Note
that this shift of one day coincides with the direction of the Elbe from east to west. The different
values are displayed in Table 6.3.

We turn to the computational cost of the respective dependence measures. In Table 6.4 we observe
that the algorithms we use to calculate the values of the estimators in the context of ordinal
pattern dependence of the data sets are outstandingly fast compared to the computational effort
of multivariate Kendall’s τ . The computational effort for estimators in the context of multivariate
Kendall’s τ is quadratic, see (5.1) and (5.2), whereas the computational cost for estimators in
the context of ordinal pattern dependence is linear. The last detail we want to take a closer

OPD1, OPD2 0.22 sec
OPD2,bw 0.07 sec
AWOPD5 34.46 sec
Time-shifted OPD2 2.38 min

τ2,bw 5.96 min
τ1,bw 13.67 min
τ2 51.69 min
τ1 59.77 min

Table 6.4: Computational cost of the different empirical dependence measures for Setting 1.

look at is the distribution of the single possible patterns compared to all patterns found. The
estimators for this approach are given in Section 4.2 and Remark 4.22 for the one-dimensional
time series and in Section 4.4.1, stationary case, for both time series. For each setting, we look
at the patterns found in each single time series, respectively and finally at the pattern found
in both time series at same points in time. A table with the absolute values of pattern found
is given in the Appendix in Table B.1 and Table B.2. The percentaged results are shown in
Figure 6.6. We observe that within each but also between the different settings, we have close
distributions of the single patterns in the cases where we consider the single data sets, where the
largest percentage of almost 50% is obtained by the pattern (0, 1, 2), followed by approx. 25% of
(2, 1, 0). Interestingly coming to the last column in Figure 6.6, the share of (0, 1, 2) significantly
increases in all three settings, while the one of (2, 1, 0) only changes slightly. The pattern dealing
with a changing sign of the increments almost have a negligible share in the last column.
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Relative frequency of stepwise counted ordinal patterns for h = 2:

(0,1,2)
(2,1,0)
(2,0,1)
(1,0,2)
(1,2,0)
(0,2,1)

(0,1,2)
(2,1,0)
(2,0,1)
(1,0,2)
(1,2,0)
(0,2,1)

(0,1,2)
(2,1,0)
(2,0,1)
(1,0,2)
(1,2,0)
(0,2,1)

Neu Darchau Wittenberge Neu Darchau and Wittenberge

Setting 1:

(0,1,2)
(2,1,0)
(2,0,1)
(1,0,2)
(1,2,0)
(0,2,1)

(0,1,2)
(2,1,0)
(2,0,1)
(1,0,2)
(1,2,0)
(0,2,1)

(0,1,2)
(2,1,0)
(2,0,1)
(1,0,2)
(1,2,0)
(0,2,1)

Hofkirchen Achleiten Hofkirchen and Achleiten

Setting 2:

(0,1,2)
(2,1,0)
(2,0,1)
(1,0,2)
(1,2,0)
(0,2,1)

(0,1,2)
(2,1,0)
(2,0,1)
(1,0,2)
(1,2,0)
(0,2,1)

(0,1,2)
(2,1,0)
(2,0,1)
(1,0,2)
(1,2,0)
(0,2,1)

Neu Darchau Hofkirchen Neu Darchau and Hofkirchen

Setting 3:

Figure 6.6: Relative frequency of stepwise counted ordinal patterns for h = 2.
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For h = 1 the phenomenon as described above can be observed in the Appendix in Figure
B.1 However, since only two patterns appear in this setting, it is not as distinctive as for h = 2.
A remarkable finding is that with blockwise estimation of ordinal pattern dependence, which does
not yield satisfying results concerning the concrete values of ordinal pattern dependence here,
nontheless a very similar distribution of the single patterns is derived, as we observe comparing
Figure 6.6 and Figure B.2 in the Appendix. Due to the smaller computational cost, if one is
interested in the properties of the distributions, we propose the blockwise estimation here.
Finally we see in the Appendix in Figure B.3 the ratio of coincident patterns to the theoretical
number of coincident patterns that could have been obtained. This yields an impression of the
dependence, however, note that this is not a dependence measure and must not be mixed up
with ordinal pattern dependence, since for example independence would yield a value of zero
here. However, the same properties for stepwise and blockwise estimation for the distribution of
the ordinal patterns are confirmed here, too.

We close this data analysis with the conclusion that ordinal pattern dependence proved it-
self true to be a dependence measure with a high impact on real world data due to its outstanding
property of robustness. It confirms to be a suitable measure for this kind of data that naturally
often contain external disturbances since ordinal pattern dependence does not overrate the value
of single data points as the considered univariate dependence measures happen to do. However,
even the multivariate extensions of these dependence measures do not yield an improvement here.
The possibility to apply ordinal pattern dependence to stationary and long-range dependent
data, with having the theoretical properties derived in the previous chapters of this work in mind,
yield a practical improvement for this class of data sets.
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7 Conclusion and outlook

In the last years an extensive framework for dependence analysis using ordinal patterns has been
developed. Ordinal pattern probabilities in short- as well as in long-range dependence time series
as a multi-dimensional problem that is reducable to a univariate time series were discussed in
[60], [10] and [58]. The latter one also dealt with ordinal pattern dependence in the short-range
dependence setting.

This thesis complemented these results by providing the extension of ordinal pattern dependence
to the long-range dependent case as well as to mixed cases that allow for both short-range
and for long-range dependent components within the multivariate Gaussian time series under
consideration. The necessary limit theorems were developed in Chapter 3. We no longer had
the reduction possibility to the asymptotics of the sample covariances of a univariate time series
but developed asymptotic results for the multivariate sample cross correlations. Therefore, we
successfully reached our aim to make ordinal pattern dependence applicable and interesting
for long-range dependent real-world data. We provided asymptotic information on the estima-
tors of ordinal pattern dependence. Furthermore, we illustrated the theoretical findings with
a simulation study that shed light on asymptotic distributions in the context of multivariate
Hermite polynomials. The practical utility value of the results derived for estimators of ordinal
pattern dependence can be increased by using them to develop tests for structural breaks in
the dependence structure between the two time series. Furthermore, asymptotic confidence
intervals in the context of hypothesis testing can be constructed. We classified ordinal pattern
dependence into the framework of multivariate dependence measures. From the user’s perspective
this a further benefit, since the theoretical results derived allow for a better interpretation of the
respective values of the different dependence measures.

One possible extension for future research is to soften the restriction in Definition 2.13 to
general slowly varying functions, as it is given in the univariate case in Definition 2.6. It might
be an idea to generalize the normalizing constants for the univariate case as given in [9], Sec.
4.2.2, to the multivariate setting. One has to keep the framework developed in [37] with regard
to the implications of different definitions of multivariate long-range dependence in mind. A
further extension is to take a closer look at the case d∗ = 1

4 for functionals with Hermite rank 2.
The univariate case is discussed in [32], Theorem 4, which yields a Gaussian limit distribution,
however, using a different normalization. For details, see [18], p. 58.

A very interesting generalization of the limit theorems in Chapter 3, as well as their appli-
cations to ordinal pattern analysis, is given by softening the Gaussian assumption and considering
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multivariate linear processes in general, that were extensively discussed in [37] and limit theorems
were provided in [23]. Several challenges arise in the proofs of in this work: the main problem
is, that there is no generalization of the reduction theorem at hand. This highly relies on the
Gaussian assumption and the corresponding property of the Gaussian distribution to be uniquely
determined by the first and second moment. Considering the application to ordinal pattern
analysis, we observe that the Rao-Blackwellization, that yields the improved estimators q̂imp,n,π
and p̂imp,n cannot be generalized anymore due to the strong need of the symmetry properties of
the multivariate Gaussian distribution.

Concerning the second part of this chapter dealing with ordinal pattern dependence in contrast to
other univariate as well as multivariate dependence measures, we have seen that one interesting
further research opportunity arises in the investigation of non-linear dependencies, as they
appeared for example in the limit processes in [3], Proposition 3.5 and [23], Theorem 4.1. Another
possibility to describe those kinds of dependence is given by copulas, see [51]. In this approach
information concerning the marginal distributions is ignored and the copula only provides the de-
pendence structure of a multivariate random vector. Notice that the same challenge as mentioned
in the beginning of Chapter 5 arises here, namely that one has to distinguish carefully between a
multivariate dependence measure which was invented for measuring dependence within one single
random vector, see in this context [56] and the moving-window time series approach, forming
the basis of ordinal pattern dependence. Therefore, a first step is to make both approaches
comparable before comparing their outcomes.
The last ongoing research we want to mention is ordinal pattern dependence applied to extreme
value theory. The investigation of the distribution of ordinal patterns that occur over a certain
threshold was empirically done in [50]. In [52], the distribution of clusters of extremes and ordinal
patterns as well as asymptotic results for empirical estimators were provided, completed with
the application to data of Rhine river discharge at Cologne.
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A Details of some limit distributions

In this chapter we provide further information on the limit distributions arising in Chapter 4.

A.1 Hermite coefficients of q̂n(π) for h = 2 for the pattern
π = (2, 1, 0) using the Cholesky decomposition

We recall Example 4.16. Since we look at h = 2, the covariance matrix of Y1,2 = (Y1, Y2)t is given
by

Σ2 =
(

1 r(1,1)(1)
r(1,1)(1) 1

)
.

The Cholesky decomposition Σ = AAt has the following form:

A =

 1 0
r(1,1)(1)

√
1− (r(1,1)(1))2


Note that Y1,2 = AU1,2, where U1,2 = (U1, U2)t has a bivariate standard normal distribution.
Following Theorem 4.13, we need to calculate α =

(
A−1)t b, where b = E

(
Y1,21{Π̃(Y1,Y2)=π}

)
.

Since

(
A−1

)t
=

 1 − r(1,1)(1)√
1−(r(1,1)(1))2

0 1√
1−(r(1,1)(1))2


we need to determine b to calculate the variance in the limit distribution. We consider π =
(2, 1, 0). From the Cholesky decomposition it follows that Y1 = U1 and Y2 = r(1,1)(1)U1 +√

1− (r(1,1)(1))2U2 and, therefore, c1 = E
(
Y11{Π̃(Y1,Y2)=π}

)
= b1 and

c2 = r(1,1)(1)b1 +
√

1− (r(1,1)(1))2b2.

For this choice of π we also know by (4.6) and (4.7) that c1 = c2 and hence we arrive at

b1 =

√
1− (r(1,1)(1))2

1− r(1,1)(1)
b2.

Therefore, it is sufficient to only determine b2. For this, we rewrite

{Π̃(Y1, Y2) = (2, 1, 0)} = {Y1 ≥ 0, Y2 ≥ 0} = {U1 ≥ 0, r(1,1)(1)U1 +
√

1− (r(1,1)(1))2U2 ≥ 0}

= {U1 ≥ 0, U2 ≥ −
r(1,1)(1)√

1− (r(1,1)(1))2
U1}.
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Hence, we need to determine

b2 = E
(
U21{Π̃(Y1,Y2)=π}

)
=
∫ ∞

0

∫ ∞
− r(1,1)(1)√

1−(r(1,1)(1))2
U1
u2ϕ(u2)ϕ(u1)du2du1

=
∫ ∞

0
ϕ

 r(1,1)(1)√
1− (r(1,1)(1))2

u1

ϕ(u1)du1

= 1
2π

∫ ∞
0

exp

−
(
1 + (r(1,1)(1))2

1−(r(1,1)(1))2

)
u2

1

2

 du1

= 1
2π

∫ ∞
0

exp

−
(

1
1−(r(1,1)(1))2

)
u2

1

2

 du1

= 1
2
√

2π

√
1− (r(1,1)(1))2.

Finally, we obtain

2∑
j=1

αj = b1 + 1− r(1,1)(1)√
1− (r(1,1)(1))2

b2

=

√
1− (r(1,1)(1))2

1− r(1,1)(1)
b2 + 1− r(1,1)(1)√

1− (r(1,1)(1))2
b2

=

√1 + r(1,1)(1)
1− r(1,1)(1)

+
√

1− r(1,1)(1)
1 + r(1,1)(1)

 b2
= 1

2
√

2π
2√

1− (r(1,1)(1))2

√
1− (r(1,1)(1))2

= 1√
2π
.

As a result, we confirm the result from Example 4.16 for the pattern π = (2, 1, 0). For π = (2, 0, 1),
the analytical calculations work analogously.

A.2 Table of Hermite coefficients for p̂n(π)

π S(π) T (π) (S(π)) T ◦ S(π) (π)
cπ,21 c

S(π),2
1 c

T (π),2
1 (cS(π),2

1 ) c
T ◦S(π),2
1 (cπ,21 )

cπ,22 c
S(π),2
2 c

T (π),2
2 (cS(π),2

2 ) c
T ◦S(π),2
2 (cπ,22 )

cπ,23 c
S(π),2
3 c

T (π),2
3 (cS(π),2

3 ) c
T ◦S(π),2
3 (cπ,23 )

cπ,24 c
S(π),2
4 c

T (π),2
4 (cS(π),2

4 ) c
T ◦S(π),2
4 (cπ,24 )

Table A.1: Hermite coefficients for Hermite rank 1 for each pattern of the group π̄.
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We refer to (4.43). In Table A.1 we consider the case h = 2 and emphasize the importance of the
symmetry properties. Note that each entry of the respective vector of Hermite coefficients is a
4-dimensional integral, keeping the computational cost in mind. Therefore, without considering
any of the properties listed above, we would have to compute 16 of these four-dimensional
integrals, only in the case d = 2 and h = 2. In Table A.2 it is shown under which assumptions it
is possible to significantly reduce the number of integrals

With (I) using cπ,2i = −cS(π),2
i , i = 1, . . . , 4

π S(π) T (π) (S(π)) T ◦ S(π) (π)
cπ,21 −cπ,21 c

T (π),2
1 (−cπ,21 ) −cT (π),2

1 (cπ,21 )
cπ,22 −cπ,22 c

T (π),2
2 (−cπ,22 ) −cT (π),2

2 (cπ,22

cπ,23 −cπ,23 c
T (π),2
3 (−cπ,23 ) −cT (π),2

3 (cπ,23 )
cπ,24 −cπ,24 c

T (π),2
4 (−cπ,24 ) −cT (π),2

4 (cπ,24 )

With (I), (II) using cπ,2i = c
T ◦S(π),2
5−i (cπ,2i = cπ,25−i), i = 1, . . . 4:

π S(π) T (π) (S(π)) T ◦ S(π) (π)
cπ,21 −cπ,21 −cπ,24 (−cπ,21 ) cπ,24 (cπ,21 )
cπ,22 −cπ,22 −cπ,23 (−cπ,22 ) cπ,23 (cπ,22 )
cπ,23 (cπ,22 ) −cπ,23 (−cπ,22 ) −cπ,22 cπ,22
cπ,24 (cπ,21 ) −cπ,24 (−cπ,21 ) −cπ,21 cπ,21

With (I),(III) using cπ,2k = c
T ◦S(π),2
3−k (cπ,2k = cπ,23−k), k = 1, 2:

π S(π) T (π) (S(π)) T ◦ S(π) (π)
cπ,21 −cπ,21 −cπ,22 (−cπ,21 ) cπ,22 (cπ,21 )
cπ,22 (cπ,21 ) −cπ,22 (−cπ,21 ) −cπ,21 cπ,21
cπ,23 −cπ,23 −cπ,24 (−cπ,23 ) cπ,24 (cπ,23 )
cπ,24 (cπ,23 ) −cπ,24 (−cπ,23 ) −cπ,23 cπ,23

With (I),(II),(III) using additionally cπ,2k = cπ,22+k, k = 1, 2:
π S(π) T (π) (S(π)) T ◦ S(π) (π)
cπ,21 −cπ,21 −cπ,22 (−cπ,21 ) cπ,22 (cπ,21 )
cπ,22 (cπ,21 ) −cπ,22 (−cπ,21 ) −cπ,21 cπ,21
cπ,21 −cπ,21 −cπ,22 (−cπ,21 ) cπ,22 (cπ,21 )
cπ,22 (cπ,21 ) −cπ,22 (−cπ,21 ) −cπ,21 cπ,21

Table A.2: Hermite coefficients for Hermite rank 1 for each pattern of the group π̄ using different
assumptions on the dependence structure on the underlying Gaussian vector.
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A.3 Description of the Matlab algorithms

To calculate the limit variance in Theorem 4.26 and Theorem 4.27 for h = 2 two Matlab functions
were implemented, following the efficiency criterions we derived in Section 4.3.1 to keep the
computational cost low.

• cHR2 :
This Matlab function provides the matrix α̃(p,q)

π,2 , p, q = 1, 2, given in Theorem 4.26 for a
pattern π ∈ S2. The respective pattern is passed as input parameter as well as the entries
of the correlation matrix Σ2,2. According to these entries, the conditions (II) and/or (III)
are verified so that the matrix is computed in an efficient way.

• HR2LimVar :
This function depends on the entries of Σ2,2, to get a satisfactory result concerning the
computational cost. Another input parameter is the matrix (Lp,q)p,q=1,2, as limit of the
slowly varying functions as given in (3.2). The Matlab function computes the matrix α̃(p,q)

as defined in (4.24) to (4.26). A further output is the limit variance in Theorems 4.26 and
4.27.

To get further information on the limit variance in Theorem 4.52 for h = 2 we present two more
Matlab algorithms based on the considerations in Section 4.4.1.

• cHR1 :
The input parameters of the Matlab function are given in the covariance matrix Σ2,2 to
use all possibilities to reduce the computational cost. Furthermore, the pattern π ∈ S2

of interest and the matrix of the limits of the slowly-varying functions (Lp,q)p,q=1,2 are
passed. The possible output parameters are the vector of Hermite coefficients, the vector(
α̃

(1)
π,2, α̃

(2)
π,2

)t
and the total limit variance of Theorem 4.52

• HR1allpattern:
This function can be used if one is interested in the limit variances for all permutations
in S2. It is possible to reduce the computational cost compared to using cHR1 for all
#S2 = 6 pattern significantly.
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A.4 Simulation study

We extend the simulation study in Section 4.3.5. Since the asymptotic distributions of r̂(1,1)
n (0)−

r
(1,1)
H (0) and r̂

(1,2)
n (0) − r(1,2)

H (0) do not coincide for H > 3
4 we turn to the extreme case that

H = 1 and we consider two independent standard normal random variables U (1)
1 and U (1)

2 and
use N = 50000 repetitions. Following [66], p. 983, the Rosenblatt distribution approaches
the χ2-distribution with mean 0 and variance 1. This is shown in Figure A.1. We observe
the χ2-distribution for H2

(
U

(1)
1

)
. For H1

(
U

(1)
1

)
H1
(
U

(2)
1

)
a distribution arises that differs

significantly from the χ2-distribution.

Figure A.1: Histogram, kernel density estimation and Q-Q plot with respect to the standardized
χ2-distribution of appropriately normalized H2

(
U

(1)
1

)
(top) andH1

(
U

(1)
1

)
H1
(
U

(2)
1

)
(bottom).
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B Further information on the real-world data analysis

B.1 Absolute number of pattern in the real-world data analysis for different measuring stations

Stepwise:

Pattern Neu-Darchau Wittenberge both Hofkirchen Achleiten both Neu-Darchau Hofkirchen both
(0, 1) 23747 24207 18500 24349 24542 18522 23539 24349 13937
(1, 0) 17950 17490 12243 16983 16790 10696 17793 16983 7381
(0, 1, 2) 18752 18833 13847 18244 17109 11887 18597 18244 8266
(2, 1, 0) 12956 12117 8420 10877 9356 5258 12852 10877 3545
(2, 0, 1) 2375 2466 200 3043 3781 560 2351 3043 174
(1, 0, 2) 2638 2891 210 3208 3489 542 2614 3208 196
(1, 2, 0) 2356 2482 154 2898 3945 494 2327 2898 180
(0, 2, 1) 2620 2908 256 3062 3652 534 2591 3062 177

Table B.1: Absolute number of ordinal patterns occured in each setting for stepwise ordinal pattern dependence.

215



Blockwise:

Pattern Neu-Darchau Wittenberge both Hofkirchen Achleiten both Neu-Darchau Hofkirchen both
(0, 1, 2) 9379 9412 6900 9138 8575 5966 9296 9138 4141
(2, 1, 0) 6480 6054 4195 5455 4699 2616 6423 5455 1778
(2, 0, 1) 1197 1220 96 1525 1895 276 1166 1525 91
(1, 0, 2) 1342 1456 108 1617 1663 259 1284 1617 96
(1, 2, 0) 1152 1262 81 1428 1995 261 1189 1428 91
(0, 2, 1) 1298 1444 112 1502 1838 259 1307 1502 92

Table B.2: Absolute number of ordinal patterns occured in each setting for blockwise ordinal pattern dependence.
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B.2 Frequency of ordinal patterns for h = 1

(0,1)
(1,0)

(0,1)
(1,0)

(0,1)
(1,0)

Neu Darchau Wittenberge Neu Darchau and Wittenberge

Setting 1:

(0,1)
(1,0)

(0,1)
(1,0)

(0,1)
(1,0)

Hofkirchen Achleiten Hofkirchen and Achleiten

Setting 2:

(0,1)
(1,0)

(0,1)
(1,0)

(0,1)
(1,0)

Neu Darchau Hofkirchen Neu Darchau and Hofkirchen

Setting 3:

Figure B.1: Frequency of ordinal patterns for h = 1.
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B.3 Relative frequency of blockwise counted ordinal patterns for
h = 2

(0,1,2)
(2,1,0)
(2,0,1)
(1,0,2)
(1,2,0)
(0,2,1)

(0,1,2)
(2,1,0)
(2,0,1)
(1,0,2)
(1,2,0)
(0,2,1)

(0,1,2)
(2,1,0)
(2,0,1)
(1,0,2)
(1,2,0)
(0,2,1)

Neu Darchau Wittenberge Neu Darchau and Wittenberge

Setting 1:

(0,1,2)
(2,1,0)
(2,0,1)
(1,0,2)
(1,2,0)
(0,2,1)

(0,1,2)
(2,1,0)
(2,0,1)
(1,0,2)
(1,2,0)
(0,2,1)

(0,1,2)
(2,1,0)
(2,0,1)
(1,0,2)
(1,2,0)
(0,2,1)

Hofkirchen Achleiten Hofkirchen and Achleiten

Setting 2:

(0,1,2)
(2,1,0)
(2,0,1)
(1,0,2)
(1,2,0)
(0,2,1)

(0,1,2)
(2,1,0)
(2,0,1)
(1,0,2)
(1,2,0)
(0,2,1)

(0,1,2)
(2,1,0)
(2,0,1)
(1,0,2)
(1,2,0)
(0,2,1)

Neu Darchau Hofkirchen Neu Darchau and Hofkirchen

Setting 3:

Figure B.2: Relative frequency of blockwise counted ordinal patterns for h = 2.
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B.4 Ratio of coincident patterns to sample size

coincident pattern

h = 1 h = 2, stepwise h = 2, blockwise

Setting 1:

coincident pattern

h = 1 h = 2, stepwise h = 2, blockwise

Setting 2:

coincident pattern

h = 1 h = 2, stepwise h = 2, blockwise

Setting 3:

Figure B.3: Ratio of coincident patterns to sample size..
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Notation

Basics

n! n factorial

N natural numbers N = {1, 2, 3, . . .}

N0 natural numbers with zero; N0 = N ∪ {0}

R+ positive half axis (0,∞)

‖A‖F Frobenius norm;

‖A‖F =
√

d∑
p,q=1

|apq|2 for A = (apq)p,q=1,...,d ∈ Rd×d.

x+, x− max{x, 0}, max{−x, 0}, respectively

vec(A) the vec operator transforms a matrix A into a vector by stacking
the columns of the matrix underneath each other

A⊗A Kronecker product of a matrix A

Id d-dimensional identity matrix

Kd commutation matrix that transforms vec(A) into vec
(
At
)
for a

matrix A ∈ Rd×d

A1/2 principal square root of a matrix A

tr(A) trace of a matrix A

<, = real and imaginary parts, respectively

z̄ complex conjugate of z ∈ C

A∗ Hermitian transpose of a matrix A

bxc floor integer part of x

f̂ Fourier transform of a function f



L2 (E,m(dx)) space of functions f : E → R such that
∫
E |f(x)|2m(dx) <∞

L2
(
Rd
)

space of functions f : Rd → R such that
∫
Rd |f(x)|2 dx <∞

‖f‖L2 L2-norm; ‖f‖L2 =
(∫

Rd |f(x)|2 dx
)1/2

∫ ′
Rk integration excludes the diagonals xi = xj , i 6= j, i, j = 1, . . . , k

∫ ′′
Rk integration excludes the diagonals |xi| = |xj |, i 6= j, i, j =

1, . . . , k

Framework of Hermite polynomials

Hk Hermite polynomial of order k

m (f,Σd) Hermite rank m with respect to the covariance matrix Σd

ck Hermite coefficients

Probability and stochastic processes

(Ω,A,P) probability space, with Ω sample space, A σ-algebra, P proba-
bility measure

B
(
Rd
)

Borel σ-algebra of Rd

N
(
µ, σ2) univariate Normal distribution with mean µ and variance σ2

N (µ,ΣX) multivariate Normal distribution with mean vector µ and co-
variance matrix ΣX

D= equality in distribution

D−→, P−→, L2−→ convergence in distribution, in probability, in the L2 sense,
respectively

(Xk)k∈T discrete d-variate stochastic process

(X(t))t∈T time-continuous d-variate stochastic process

ΓX(l) cross-covariance matrix of the d-variate stochastic process
(Xk)k∈Z at lag l

γ(p,q)(·) cross-covariance function, p, q = 1, . . . , d



r(p,q)(·) cross-correlation function, p, q = 1, . . . , d

Γ̂n,X(l) sample cross-covariance matrix of the d-variate stochastic process
(Xk)k∈Z at lag l

r̂
(p,q)
n (l) sample cross-covariances at lag l = 0, 1, 2 . . .

(B(t))t∈R standard (d-variate) Brownian motion

(BH(t))t∈R fractional Brownian motion, operator fractional Brownian mo-
tion

(Wk,H)k∈Z (vector-) fractional Gaussian noise

(Zm,H(t))t∈R Hermite-Rosenblatt process of order m

(Yj)j∈Z d-variate Gaussian process, stationary, componentwise long- or
short-range dependent

(Yj,h)j∈Z corresponding dh-dimensional process,

Yj,h =
(
Y

(1)
j , . . . , Y

(1)
j+h−1, Y

(d)
j , . . . , Y

(d)
j+h−1

)t
Σd,h covariance matrix of Yj,h; Σd := Σd,1

Id,h dh-dimensional identity matrix; Id := Id,1

d1, . . . , dd long-range dependence parameters

d∗ strongest long-range dependence parameter;

d∗ = max {d1, . . . , dd}

P ∗ set of indices corresponding to d∗;

P ∗ = {p ∈ {1, . . . , d : dp = d∗}}

C1, C2 normalizing constants for limit theorems for functionals with
Hermite rank 1 or 2, respectively

c vector of first-order Hermite coefficients; c = E (f (Y1,h)Y1,h)

α, α(p)
i factors determining the limit variance for functionals of Hermite

rank 1; α = Σ−1
d,hc, α

(p)
i = αi+(p−1)h, p = 1, . . . , d, i = 1, . . . , h



C matrix of second-order Hermite coefficients;

C = E
(
Y1,h (f (Y1,h)− E (f (Y1,h)))Y t

1,h

)
α, α̃(p,q) factors determining the limit variance for functionals of Hermite

rank 1; α = Σ−1
d,hCΣ−1

d,h,

α̃(p,q) = ∑h
i,k=1 αi+(p−q)h,k+(q−1)h, p, q = 1, . . . , d

Ordinal pattern analysis

Sh set of (h+ 1)-dimensional permutations, h ∈ N

π̄ reversion group of π ∈ Sh, π̄ = {π,S(π), T (π), T ◦ S(π)}

S∗h subset of Sh, whose elements π are choosen from Sh such that
their spatial reverse S(π) must not be contained in S∗h

S[2],h, S[4],h groups of generating pattern of reversion groups with two or
four elements, respectively

(Xj)j∈Z d-dimensional Gaussian process, in which we study the pattern,
d = 1 in Section 4.2 and d = 2 in Section 4.3, in general not
stationary in Chapter 4, only in Remark 4.22 and Section 4.4.3

(Xj,h+1)j∈Z corresponding d(h+ 1)-dimensional process

(Yj)j∈Z increment process of (Xj)j∈Z, always stationary, componentwise
long- or short-range dependent

(Yj,h)j∈Z increment process of (Xj,h+1)j∈Z

qY (p)(π) ordinal pattern probability of π ∈ Sh in
(
Y

(p)
j

)
j∈Z

, p = 1, 2;
q(π) := qY (1)(π) in Section 4.2

p probability of coincident ordinal patterns in the two time series(
X

(1)
j

)
j∈Z

and
(
X

(2)
j

)
j∈Z

q probability of coincident ordinal patterns in the hypothetical
case of independence



OPD value of ordinal pattern dependence

q̂n,Y (p)(π) estimator of qY (p)(π); q̂n(π) := q̂Y (1),n(π) in Section 4.2

q̂n,Y (p),imp(π) improved estimator of qY (p)(π) based on Rao-Blackwellization;
q̂n,imp(π) := q̂Y (1),n,imp(π) in Section 4.2

p̂n estimator for p

q̂n estimator for q based on q̂n,Y (p)(π), p = 1, 2

q̂n,alt alternative estimator for q, based on q̂n,Y (p)(π), p = 1, 2

q̂n,imp improved estimator for q, based on q̂n,Y (p),imp(π), p = 1, 2

ÔPDn estimator of OPD based on p̂n and q̂n

ÔPDn,alt alternative estimator of OPD based on p̂n and q̂n,alt

ÔPDn,imp improved estimator of OPD based on p̂n and q̂n,imp

p(π) probability of a certain coincident ordinal pattern π ∈ Sh in
both time series

(
X

(1)
j

)
j∈Z

and
(
X

(2)
j

)
j∈Z

p̂n(π) estimator for p(π)

p̂n,imp(π) improved estimator for p(π)

Ĥ
(p,q)
n Hurst parameter estimator for vector fractional Gaussian noise,

p, q = 1, 2

pa largest possible probability of coincident ordinal patterns by
additionally allowing for a time-shift a

p̂an estimator for pa

p̂blockn blockwise estimation of p

AWOPD value of average-weighted ordinal pattern dependence

p̂awopd
n estimator for “almost” coincident patterns in the sense of

AWOPD



q̂awopd
n estimator for “almost” coincident patterns in the hypothetical

case of independence

Cπ Cπ =
(
cπi,j

)
i,j=1,...,h

matrix of second order Hermite coefficients
q̂n(π)

Cπ,2 Cπ,2 =
(
cπ,2i,j

)
i,j=1,...,h

matrix of second order Hermite coeffi-
cients of p̂n(π)

απ,2, α̃
(p,q)
π,2 factors in the limit variance; απ,2 = Σ−1

2,hC
π,2Σ2,h,

α̃
(p,q)
π,2 = ∑h

i,k=1 α
π,2
(p−1)h+i,(q−1)h+k, p, q = 1, 2

cπ,2 vector of first order Hermite coefficients of p̂n(π)

α̃
(p)
π,2, απ,2,? factors in the limit variance; απ,2,? = Σ−1

2,hc
π,2;

α̃
(p)
π,2 = ∑h

i=1 α
π,2,?
(p−1)h+i, p = 1, 2

Ordinal pattern dependence in contrast to other measures of dependence

X(1,h+1), X(2,h+1) X(p,h+1) =
(
X

(p)
0 , . . . , X

(p)
h

)t
, p = 1, 2,(

X(1,h+1), X(2,h+1)
)t

= X0,h+1

Σ1,h+1, Σ̃1,h+1 corresponding covariance matrices, if X0,h+1 is Gaussian

ΣX(1,h+1),X(2,h+1) cross-covariance matrix of Gaussian X(1,h+1), X(2,h+1)

OPDh value of ordinal pattern dependence with emphasis on h incre-
ments under consideration

ρh multivariate Pearson’s correlation coefficient

τh multivariate Kendall’s τ

τ̂
(h)
n estimator of τh

τ̂
(h)
n,bw blockwise estimator of τh

Miscellaneous

At, xt transpose of matrix A ∈ Rd×d or vector x ∈ Rd



c ·A componentwise multiplication of a scalar c ∈ R and a matrix
A ∈ Rd×d

c · x componentwise multiplication of a scalar c ∈ R and a vector
x ∈ Rd

cD cD := diag
(
cd1 , . . . , cdd

)
for c ∈ R and a diagonal matrix D =

diag (d1, . . . , dd) ∈ Rd

#M cardinality of a set M

X ∼ N (0, 1) X is standard normally distributed

' asymptotic equality; an ' bn ⇔ limn→∞
an
bn

= 1

oP(n) small stochastic o; convergence to zero in probability is faster
than n−1; Rn = oP(n) has the meaning that limn→∞

Rn
n

P−→ 0

1A indicator function of set A

δ0 Dirac measure in 0

δx,y Kronecker delta
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