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Abstract

In this work we deepen our studies on the numerical FE-treatment of systems of partial
differential equations, where the solution is subjected to inequality constraints. Espe-
cially we focus on Lagrange-settings, which can be employed to handle the given con-
straints. In this way additional auxiliary variables are introduced which are determined
simultaneously to the original primal solution within a so-called mixed system.
On this basis efficient solution processes for the mixed systems are constructed by elim-
inating inequality constraints yielding nonlinear equation systems. These can easily be
solved by (non-smooth) Newton-type schemes. Furthermore concepts for a posteriori
error control are reviewed and refined.
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Zusammenfassung

In dieser Arbeit werden Systeme partieller Differentialgleichungen mit Ungleichungs-
nebenbedingungen behandelt.

Genauer geht es um die numerische Analyse mit Finite-Element-Methoden (FEM). Be-
sonderes Augenmerk liegt hierbei auf dem Einsatz von Lagrange-Techniken. Die dadurch
eingeführten Hilfsvariablen werden simultan zur primalen Lösung im Rahmen eines so-
genannten gemischten Systems bestimmt.

Auf der Basis von Projektionstechniken können die Ungleichungsnebenbedingungen eli-
miniert werden. Die dann entstehenden nicht-linearen Probleme werden dann mit nicht-
glatten Verfahren vom Newton-Typ effizient gelöst.

Darüber hinaus werden Techniken zur a posteriori Fehlerkontrolle verfeinert und auf die
vorliegende neue Situation erweitert.
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1. Introduction

In many fields, like continum mechanics and fluid dynamics, problems occur, that are a
result of the functional minimization on a restricted subset. This can be e. g. some kind
of an energy functional J , that is derived from the, appropriate for the field, principle
of conservation of energy. The system strives towards the lowest possible energy level.
So if the energy functional J depends on the value of some parameter u ∈ KKK, we are
interested in the solution of the minimization problem

J (u) ≤ J (v) ∀v ∈ KKK,

where KKK is the permitted subset of a, for the physical variable u appropriate, space VVV.
Usually VVV is a Sobolev space and the subset KKK is defined by an inequality, which in turn
results in, as one of the possible interpretation of the problem, a search for u that solves
a variational inequality.

The main aim of this work is to introduce an efficient solution strategy for this kind
of problems. To be more precise, let us assume, that VVV is a Sobolev space defined
on the domain Ω ⊂ Rd with d ∈ N. Now, the subset KKK can be defined by using an
operator G : VVV→ LLL2(Ω). Examples of such spaces can be {u ∈ VVV | div(u) ≥ 0 a.e. on Ω}
or {u ∈ VVV |u ≥ ψ a.e. on Ω}, ψ ∈ LLL2(Ω) denoting an obstacle. In the framework of this
dissertation, we will discuss these examples in greater detail as well as a more general
case.

In order to find a more efficient solution strategy, we have to identify the main difficulty
in this type of problems. Since we cannot directly solve variational differential inequal-
ities, the usual approach is an iteration process, where in each step we calculate a new
approximation of the the physical variable u, examine it and, if the new approximation
violates the restriction, make a correction. The more efficient way, to calculate this ap-
proximation combines two ideas. First we can find an equivalent variational formulation
of the minimization problem, that does not contain any inequalities, but instead can be
expressed as a non-linear variational equation. The second part is to find an appropriate
Newton-type method for a fast iteration process. The Newton method for solving non-
linear equations requests a derivative, a Gateaux derivative in this case, but as we will
see, for this type of problems, the Gateaux derivative has to be approximated. Here we
have to balance between complexity of the estimated derivative, that results in a longer
computation time, and the stability of the solution strategy. For the numerical tests we
use the finite element method to provide discrete space,s, but the general approach is
not restricted to these spaces.

So to summarize the above in two concrete tasks for this work:



2 1. Introduction

• We want to present two equivalent formulations of the problems introduced above
in the form of a variational equation or a system of variational equations, instead
of the usual inequality approach,

• and we want to apply the Newton-type methods and examine the efficiency of
resulting algorithms compared to the classical projection methods.

Before dealing with the actual problems, that we would like to solve, we establish a
notation scheme for the further course of this work. The second chapter is dedicated to
this task.

Following up, in the third chapter we start with a simple one dimensional obstacle prob-
lem. This allows us to start the discussion with a comparatively simple representative of
the targeted type of problems. After a brief introduction we describe possible equivalent
formulations, where one of those can be used in a projected gradient type iteration ap-
proach. Thereafter we introduce the alternative formulation of the problem, that rests
upon projection operator. This should be considered as a motivation for the solution
strategy and not a formal proof, since it requires unnecessary assumptions.

The fourth chapter contains extensive numerical tests. Here, first of all, we consider
another example for the set of problems described above. The problem at hand comes
from the field of fluid dynamic and describes the flow of a viscous liquid, that can
turn into a gas under appropriate conditions. It is a Stokes problem, but instead of
usual incompressibility condition, we use the inequality div(u) > 0 a.e. on Ω. In the
similar fashion to the third chapter, we introduce the problem as well as the equivalent
formulations and the usual solving approach, underlining this way the similarities of both
cases as well as the incised complexity.

After we sufficiently discussed the different formulations for the flow problem, the next
step is to compare different solution strategies and the first case is a simple fixed-point
iteration. This represents one of the slowest ways to obtain an approximation for the
solution of the new variational formulation, that was introduced earlier, but, as shown
in the first numerical tests, this may be already enough to improve upon the calculation
time. As a comparable classical approach for solving this type of problems we use
conjugate gradient projection method.

Next we consider ways to improve upon the iteration process and apply the Newton-
type method mentioned earlier. The main problem in calculating the Gateaux derivative
poses a projection operator, that the new variational formulation contains. We test
three Newton-type methods: in the first we ignore the part with the projection operator
completely, in the second we partially include it in the calculations and in the third we
regularize it. For the tests we simulate the flow through a T-pipe section. As we will see,
even so the setup remains the same, changes in the viscosity constant of the fluid impact
the solution massively. Combined, we consider three cases, which result in different
calculation times for the compared methods. The other main factor for determining the
shortest calculation time is the starting value. Here we compaire a zero starting value,
which are far from good as starting approximation, and an interpolation of the solution
calculated for the discrete space with less degrees of freedom. Further more we have to
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consider how different meshes and, as a result, different discrete spaces might impact on
stability of the iteration process. Therefore we use an error estimator to identify parts of
the mesh to refine, which on one hand allows us to assign more degrees of freedom to the
parts of the domain Ω, where they are needed, but the handling of the so called hanging
nodes can produce a mesh vulnerable to the oscillations. During the numerical tests we
calculate and compare the calculation time for the different cases, where a combination
of those factors is considered. Another part of the numerical analysis is the question of
behavior of the solution with rising number of degrees of freedom. Usually we calculate
the dependence on the cell size and, since the continuous solution is not available, first
we consider the different parts of the error estimator and then we compare the differences
between two solution approximations on two consecutive finite element spaces.

As for the rest of the fourth chapter, here we proof the existence and the uniqueness
of the solution for the regularized problem and show how it relates to the solution of
the original problem. This is also the part, where the conditions, that discrete spaces
have to fulfill, are introduced and used in the proof. Also we derive the error estimator,
that was mentioned before. We consider two possible cases: a conform (VVVh ⊂ VVV) and a
non-conform (VVVh 6⊂ VVV) discretization, where VVVh is the finite element space used for the
approximation.

In the fifth chapter we revisit the obstacle problem, but we consider a two dimensional
case. After modifying the formulation and applying some stabilization techniques, we
calculate a membrane test example and compare the results, in particular the numbers
of iterations, with different methods, applied to the same example. Also we derive a
similar error estimator as we did for the Stokes problem.

The sixth chapter is devoted to the general case. First of all we have to specify the
condition that the functional J and the subset defining operator G must fulfill. On one
hand those are necessary to ensure the existence and uniqueness of the solution of the
minimization problem. On the other hand we need this conditions to proof convergence
of the proposed solution strategy. This describes the next parts of the chapter: after
a short excursus into the minimization theory for functional and the derivation of the
varitional formulation with a projection operator, we look into the iteration process itself.
Here we proof the existence of a new estimation in each step as well as convergence of
the method.

Finally in the last chapter is devoted to the summary and outlook.



2. Notation

Before we speak about the differential inequality and their solution strategies, let us
clarify notations, that are used in this work.

In the Euclidean space Rn with n ∈ N the inner product or the dot product of two vectors

xxx,yyy ∈ Rn is defined as xxx · yyy =
n∑
k=1

xkyk. Analogously, we define the double-dot product

for space of Rn×m type as X : Y =
n∑
j=1

m∑
k=1

xjkyjk with X,Y ∈ Rn×m and n,m ∈ N.

When studying the differential inequalities we consider different functions. Typical real-
valued function f can be written as f : Ω −→ R, x 7→ f(x), where the domain Ω is
an open subset of Rd with d ∈ N a number of the problems dimensions. The symbol ∂
used with a domain designates the boundary of this domain, so ∂Ω is the boundary of
Ω. The notation Ω̄ stands for the closure of the domain Ω, i.e. Ω̄ = Ω∪∂Ω. Since we are
not only interested in the scalar function, we can also define, using the notation above,
vector-valued function fff as fff : Ω −→ Rn, x 7→ fff(x) and matrix-valued function F as
F : Ω −→ Rn×m, x 7→ F (x) with n,m ∈ N.

Using vectors and matrices we compactly write inequality system, like vvv > 0, which
means that all entries of the vector vvv are positive.

The set of the eigenvalues of a matrix M can be written as Eig (M) and smallest of them
is Eigmin (M) = min {λ | λ ∈ Eig (M)}.

Together with the functions, we use a number of different operators:

• the operator ∂αq = ∂|α|q
∂α1x1...∂αnxn

describe a partial derivative of function q for a
multi-index α ∈ Nn0 with α = (α1, . . . , αn),

• ∂q
∂nnn is a directional derivative along a vector nnn (usually, vector nnn is a vector-valued
function, which represents the normal vector of the domain boundary),

• ∇q =


∂q
∂x1
...
∂q
∂xn

 stands for the gradient of the real-valued function q and

• ∇ϕϕϕ =


∂ϕ1

∂x1
· · · ∂ϕ1

∂xn
...

. . .
...

∂ϕn
∂x1

· · · ∂ϕn
∂xn

 is the gradient of the vector-valued function ϕϕϕ,
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• ∇·ϕϕϕ =
n∑
j=1

∂ϕj
∂xj

and ∇·A =


n∑
j=1

∂A1,j

∂xj

...
n∑
j=1

∂An,j
∂xj

 are two variants of divergence operator,

depending on the art of function it is applied to (in this case ϕϕϕ : Rn −→ Rn and
A : Rn −→ Rn×n with n ∈ N),

• ∆q = ∇· (∇q) =
n∑
j=1

∂2q
∂x2
j

and ∆ϕϕϕ = ∇· (∇ϕϕϕ) =


n∑
j=1

∂2ϕ1

∂x2
j

...
n∑
j=1

∂2ϕn
∂x2
j

 describe the Laplace

operator, which also depends on the art of function it is applied to,

• since an operator is mapping from one vector space to another, we can use the
notation e.g. Ğ : VVV −→WWW to introduce a general not further specified operator Ğ,

• ΠΛ is a projection operator on the subset ΛΛΛ. If the subset ΛΛΛ is part of the space
QQQ, then for all the elements x ∈ QQQ following applies ‖x− ΠΛx‖QQQ = inf

y∈ΛΛΛ
‖x− y‖QQQ.

• Ih is a Clément’s interpolation operator (see f.e. Braess [4, p. 80]).

• 1Ω̃ is an indicator function, defined by 1Ω̃(x) =

{
1 if x ∈ Ω̃
0 else

.

If we want to describe some properties of a function, we usually write it as an element
of the corresponding space, for example real-valued function f which defined on Ω is an
element of CCC0 (Ω). In this work we use following function spaces:

• CCCm (Ω), with m ∈ N, is the space of functions which, together with their derivatives
of order less or equal to m, are continuous on Ω.

• LLL2 (Ω) is the space of measurable functions v : Ω −→ R such that

‖v‖0,Ω =

√∫
Ω

(v(x))2 dx <∞.

The norm, that is introduced above, is induced by the scalar product

(v, ϕ)0,Ω =

∫
Ω
v(x)ϕ(x)dx ∀v, ϕ ∈ LLL2 (Ω) .

• HHHm (Ω), with m ∈ N, is the Sobolev space of functions v ∈ LLL2 (Ω) such that for each
multi-index α with |α| ≤ m, the αth weak derivative ∂αv exist and ∂αv ∈ LLL2 (Ω).
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The scalar product and the norm of this space can be written as

(v, ϕ)m,Ω =

∫
Ω

∑
|α|≤m

(∂αv(x)∂αϕ(x)) dx =
∑
|α|≤m

(∂αv, ∂αϕ)0,Ω ∀v, ϕ ∈ HHHm (Ω)

and ‖v‖m,Ω =
√

(v, v)m,Ω ∀v ∈ HHHm (Ω) .

• CCC∞0 (Ω) = {v ∈ CCC∞ (Ω) | supp(v) is a proper subset of Ω}, with a support of the
function v defined as supp(v) = {xxx ∈ Ω| v(xxx) 6= 0}.

• HHHm
0 (Ω) is the closure of CCC∞0 (Ω) in HHHm (Ω). As suggested in Dobrowoski [7, p. 120]

we have an equivalent scalar product for such spaces:

(v, ϕ)m∗,Ω =
∑
|α|=m

(∂αv, ∂αϕ)0,Ω ∀v, ϕ ∈ HHHm
0 (Ω) .

• HHH−m (Ω) is the dual space of HHHm (Ω) with

〈v, ϕ〉HHHm(Ω) = (v, ϕ)0,Ω ∀v ∈ HHHm (Ω) , ϕ ∈ HHH−m (Ω)

and ‖ϕ‖−m,Ω = sup
v∈HHHm(Ω)

∣∣∣(v, ϕ)0,Ω

∣∣∣
‖v‖m,Ω

∀ϕ ∈ HHH−m (Ω) .

• In some cases we need space, which are combinations of the spaces above. This
spaces will be defined during examination of the associated problem. The scalar
products and the norms of such spaces can be often written using the some differen-

tial operators, i.e. VVV =
(
HHH1

0 (Ω)
)n

and QQQ =
(
LLL2 (Ω)

)n
, where

(
(vvv,ppp)T , (ϕϕϕ,qqq)T

)
VVV

=

(∇vvv,∇ϕϕϕ)0,Ω + (vvv,ϕϕϕ)0,Ω + (ppp,qqq)0,Ω.

We use functionals to formulate the alternative forms of the problems we consider. The
suitable functional can be defined as L : VVV −→ R, where VVV is a function space. If the
limit 〈

L′(v), ϕ
〉

VVV
:= lim

ε→0

1

ε
(L(v + εϕ)− L(v))

exists, then we call the functional L differentiable at v ∈ VVV in direction ϕ ∈ VVV. 〈L′(v), ϕ〉VVV
is the so called Gateaux derivative of L at v in direction ϕ and L′ : VVV −→ VVV∗, v 7→ L′(v)
is a mapping into the dual space. (Note: The so called dual pair 〈. , .〉VVV is a bilinear
form, which allows us to evaluate, in case of 〈L′(v), ϕ〉VVV, the functional L′(v) ∈ VVV∗ for a
argument ϕ ∈ VVV.)

We split the domain Ω into decomposition Th = {Tj |1 ≤ j ≤ Nh}, consisting of Nh

element or cells Tj . The decomposition Th is usually called mesh or triangulation.
The width of each element Tj can be described with with hj =diam(Tj). We call
h = min {hj |1 ≤ j ≤ Nh} the width of the mesh. Based on the mesh, we define standard
finite element spaces, i.e. VhVhVh = span {ϕ1, . . . , ϕN} ⊆ VVV, where {ϕ1, . . . , ϕN} is the basis
of the finite element space VhVhVh with N ∈ N, which depends on Nh and art of chosen finite
element space.



3. Basic idea applied to 1-D obstacle
problem

In order to introduce the basic concept of the solution strategy, that we propose, let us
consider a simple example from a set of problems, to which this solution strategy can be
applied. The figure 3.1 depicts an elastic rope or cable, that is held in place on the right
and the left sides. The cable is affected by the gravitational force f and the Hooke’s
law applies resulting in the deformation of the cable. Depending on the elasticity of the
cable, it can still hang above the ground or in parts touch the ground.

In mathematical terms we define an external force in each point of the cable and the
deviation from straight line as f : Ω → R and u : Ω → R respectively, where Ω is the
interval between the two points, where the rope is fixed. The obstacle describes the
function ψ : Ω→ R. The equilibrium of the forces can then be formulated as a formula:

−u′′ = f.

Assuming zero displacement at the boundary, then u ∈ CCC2
0(Ω) ∩CCC0(Ω̄). In case u > ψ

every where on the interval Ω, this is the one dimensional Poisson’s problem and it can
be solved easily. If on the other side this condition is not automatically satisfied, then we
need to examine this problem more closely. If the cable can actually reach the obstacle,
then two distinct effects will accrue on the subsets of the interval Ω. The first one is the
equilibrium of forces, that is described above. The second possibility is u = ψ, in case
the Hook’s force is not sufficient and the reaction force from the ground prevents the

x

fu(x)

y

Obstacle ψ

x

fu(x)

y

Obstacle ψ

Figure 3.1.: Obstacle problem in one dimension.
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further decent below the obstacle. This results in the classical formulation:

−u′′ − f ≥ 0 ,

u− ψ ≥ 0 ,

(u− ψ)(−u′′ − f) = 0 .

3.1. Possible variational formulations

Since we typically interested in the variational formulations for the numerical approx-
imations, let us consider the initial minimization problem. From the point of view of
physics, instead of searching for the force equilibrium, we look for the lowest energy level
of the system. In the case of our 1-D obstacle problem, this would be equivalent to:

Find u ∈ KKK , that satisfy

J (u) ≤ J (ϕ) ∀ϕ ∈ KKK ,

where J (ϕ) = 1
2 (ϕ′, ϕ′)0,Ω − (f, ϕ)0,Ω for all ϕ ∈ KKK and the subset KKK is defined as

KKK =
{
ϕ ∈ HHH1

0(Ω)
∣∣ ϕ ≥ ψ o.e. on Ω

}
.

The first variational formulation of this problem can be derived by calculating the
Gateaux derivative, resulting in the variational inequality〈

J ′(u), ϕ− u
〉
≥ 0 ∀ϕ ∈ KKK.

According to the definition of the functional, this can be written with two scalar products:(
u′, ϕ′ − u′

)
0,Ω
− (f, ϕ− u)0,Ω ≥ 0 ∀ϕ ∈ KKK.

The constraint u−ψ ≥ 0 is, in this case, a part of the subset KKK and the typical solution
strategy (f.e. the gradient projection method) involves an iteration, where we calculate
the update for the solution u without the constraint, and in a post-process correct it
locally, if the new solution would violate the constraint.

In order to make the constraint a part of the calculation, we use the Lagrangian mechan-
ics, which leads to the equivalent saddle point problem:

Find u ∈ HHH1
0(Ω) and p ∈ LLL2(Ω), that satisfy

L(u, p) = inf
ϕ∈VVV

sup
q∈QQQ
L(ϕ, q)

where VVV = HHH1
0(Ω) and QQQ = LLL2(Ω), as well as

L(ϕ, q) =
1

2

(
ϕ′, ϕ′

)
0,Ω
− (f, ϕ)0,Ω − (q, ϕ− ψ)0,Ω .

Next step is to formulate this saddle point problem in the similar fashion to the Karush-
Kuhn-Tucker-conditions, that are used for finite dimensional minimization problems (see



3.2. Transformation into the system of equations 9

f.e. Geiger and Kanzow [8]). Because of the similarities, we will call this new formulation
hereafter the Karush-Kuhn-Tucker-conditions:(

u′, ϕ′
)

0,Ω
− (f, ϕ)0,Ω − (p, ϕ)0,Ω = 0 ∀ϕ ∈ VVV

(u− ψ, q − p)0,Ω ≥ 0 ∀q ∈ Π +QQQ

(u− ψ, p)0,Ω = 0

p ∈ Π +QQQ

where Π +QQQ =
{
ω ∈ LLL2(Ω)| ω ≥ 0 o.e. on Ω

}
. In this formulation the constraints on the

function u are no longer a part of the allowed subset and we can use the entire space VVV
for the test functions. But now a restriction applies on the test space for the Lagrange
multiplier p (q ∈ Π +QQQ) and we still have to deal with a variational inequality.

3.2. Transformation into the system of equations

For the further transformation of the problem, we define the bilinear form A : VVV×VVV→ R
with A(u, ϕ) = (u′, ϕ′)0,Ω . According to the Lax-Milgram-Theorem, there is exactly one

invertible operator Ă : VVV→ VVV, such that

A(v, ϕ) =
(
v, Ăϕ

)
0,Ω

∀v, ϕ ∈ VVV.

Since the operator Ă is invertible, there is a inverse operator Ă−1, which allows us to
write the following equation:

(u, ϕ)0,Ω = A(u,A−1ϕ) ∀v, ϕ ∈ VVV.

Let assume for a moment, that QQQ = HHH1(Ω). Then with the first variation equation of the
previous Karush-Kuhn-Tucker-conditions and ϕ = A−1(q − p), we get

(u, (q − p))0,Ω =
(
f,A−1(q − p)

)
0,Ω

+
(
p,A−1(q − p)

)
0,Ω

∀q ∈ Π +QQQ. (3.1)

Now, with the second of the previous Karush-Kuhn-Tucker-conditions and the equation
above we get(

p,A−1(q − p)
)

0,Ω
+
(
f,A−1(q − p)

)
0,Ω
− (ψ, (q − p))0,Ω ≥ 0 ∀q ∈ Π +QQQ

or
〈
J̃ ′(p), q − p

〉
≥ 0 ∀q ∈ Π +QQQ,

with J̃ (q) =
1

2

(
q,A−1q

)
0,Ω

+
(
f,A−1q

)
0,Ω
− (ψ, q)0,Ω .

This is an another minimization problem with q as a variable, p as a solution and the
restriction p, q ∈ Π +QQQ:

J̃ (p) ≤J̃ (q) ∀q ∈ Π +QQQ .
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Analogous to the previous minimization problem we can introduce another Lagrange
multiplier λ alongside a saddle point problem:

L̃(p, λ) = inf
q∈QQQ

sup
ω∈Π +QQQ

L̃(q, ω) with L̃(q, ω) = J̃ (q)− (ω, q)0,Ω .

In the similar fashion we derive yet an another set of Karush-Kuhn-Tucker-conditions:(
p,A−1q

)
0,Ω

+
(
f,A−1q

)
0,Ω
− (ψ, q)0,Ω − (λ, q)0,Ω = 0 ∀q ∈ QQQ ,

(p, ω − λ)0,Ω ≥ 0 ∀ω ∈ Π +QQQ ,

(λ, p)0,Ω = 0,

λ ∈ Π +QQQ.

Here, we can use the equation (3.1) once again to not only simplify the first of the
conditions, but also to eliminate the operator Ă−1 from the conditions entirely, which
makes the assumption QQQ = HHH1(Ω) unnecessary. The first of the conditions now reads as

(u− ψ, q)0,Ω − (λ, q)0,Ω = 0 ∀q ∈ QQQ .

Next we replace the test function with q = ω−λ, multiply the second inequality condition
with a positive constant ϑ and subtract it from the the equation above, resulting in

((u− ψ − ϑp)− λ, ω − λ)0,Ω ≤ 0 ∀ω ∈ Π +QQQ.

This is a so called projection inequality (see f.e. Alt [1, p. 96]), which means that
the Lagrange multiplier λ can also be interpreted as a projection on the subset Π +QQQ.
Combining all of the above, we can derive a new variational formulation, that is equivalent
to the original minimization problem:

Find u ∈ HHH1
0(Ω) and p ∈ LLL2(Ω), that satisfy for ϑ > 0(

u′, ϕ′
)

0,Ω
− (p, ϕ)0,Ω = (f, ϕ)0,Ω ∀ϕ ∈ VVV

(u− ψ, q)0,Ω = (λ, q)0,Ω ∀q ∈ QQQ ,

where λ = Π + (u− ψ − ϑp) .

Neither has this formulation variational inequalities in it, nor are the test spaces in any
form restricted to subsets, which means no post-processing is necessary. The projection
operator Π + make the problem non-linear, but it can be handled relatively easy, since
it means

λ =

{
u− ψ − ϑp a.e. on Ω̃ ⊂ Ω if u− ψ ≥ ϑp a.e. on Ω̃ ⊂ Ω

0 a.e. on Ω̃ ⊂ Ω else
.

This concludes the introduction of the basic idea. The possible numerical algorithms will
be disused in the next chapter and applied to an another problem. After that we revisit
the obstacle problem, but with Ω ⊂ R2 and compare the results of numerical test with
other algorithms.



4. Stokes problem with cavitation effects

The Stokes problem or the Stokes flow problem is a system of the differential equation,
where the solution describe the flow of a viscous fluid. In the classical variant of the
Stokes problem without cavitation we search a velocity function uuu ∈

(
CCC2

0(Ω) ∩CCC0(Ω̄)
)n

and a pressure function p ∈
(
CCC1(Ω) ∩CCC0(Ω̄)

)
, that satisfy the differential equations

−µ∆uuu+∇p = fff

and ∇ · uuu = 0

for a constant viscosity factor µ > 0. The second equation is a so called incompressibility
condition, based on the assumption, that a fluid cannot be compressed. On the other
side the same condition does not allow us to take into account the possible cavitation
effect.

The cavitation can take place, if the fluid is kept in a liquid state only by the external
pressure. So when the pressure drops below a certain level, the fluid switches into the
gas state and expands. This is a violation of the incompressibility condition. If we want
to allow the cavitation to take place in the simulation we must replace it with inequality
condition

∇ · uuu ≥ 0 .

Modelling phenomena arising in the context of cavitation (see e.g. Nilsson and Hansbo
[ [13], [14]]) the additional condition p ≥ 0 on Ω has to be incorporated. Also the pressure
and the velocity must now satisfy the complementary slackness

p (∇ · uuu) = 0 .

As we will see this condition derives from the initial minimization problem.

4.1. Minimization problem and equivalent variational
formulation

In this section we go back to the initial minimization problem, which is the result of the
modulation of the flow problem according to the laws of the continuous mechanic, from
which the other formulations can be derived. In the context of the physics this can be
considered as minimization of the energy functional J :

(
HHH1

0(Ω)
)n → R, with

J (ϕϕϕ) =
µ

2
(∇ϕϕϕ,∇ϕϕϕ)0,Ω − (f,ϕϕϕ)0,Ω ∀ϕϕϕ ∈

(
HHH1

0(Ω)
)n

,
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on the subset KKK, where

KKK =
{
ϕϕϕ ∈

(
HHH1

0(Ω)
)n∣∣ ∇ ·ϕϕϕ ≥ 0 a.e. in Ω

}
.

Summarising the above the Stokes problem can be written as:

Find uuu ∈ KKK that satisfied the inequality

J (uuu) ≤ J (ϕϕϕ) ∀ϕϕϕ ∈ KKK.

Since functional J is convex the inequality above can be replaced with a dual pair
inequality (see section 6.2.2)〈

J ′(uuu),ϕϕϕ− uuu
〉

KKK
≥ 0 ∀ϕϕϕ ∈ KKK

or an equivalent variational inequality

µ (∇uuu,∇(ϕϕϕ− uuu))0,Ω − (fff,ϕϕϕ− uuu)0,Ω ≥ 0 ∀ϕϕϕ ∈ KKK .

In this formulation of the problem the inequality condition, which allows the cavitation
to take place, is a part of the definition of the subset KKK and there is no pressure function
in it. Only when we apply the method of Lagrange multipliers, we will need an another
function in our setting, which corresponds to the physical pressure in the system. So the
minimization problem also has an equivalent Lagrange formulation:

Find a pair (uuu, p)T ∈ VVV ×ΛΛΛ with

L(uuu, p) = inf
ϕϕϕ∈VVV

sup
q∈ΛΛΛ
L(ϕϕϕ, q) ,

where ΛΛΛ =
{
q ∈ LLL2(Ω)

∣∣q ≥ 0 a.e. in Ω
}

and VVV =
(
HHH1

0(Ω)
)n

as well as

L(ϕϕϕ, q) =
µ

2
(∇ϕϕϕ,∇ϕϕϕ)0,Ω − (fff,ϕϕϕ)0,Ω − (q,∇ ·ϕϕϕ)0,Ω .

Using the stationarity condition for a saddle point we can derive mixed variational formu-
lation (similar to Karush-Kuhn-Tucker-conditions): Find a pair (uuu, p)T ∈ VVV×ΛΛΛ fulfilling
the mixed formulation

µ (∇uuu,∇ϕϕϕ)0,Ω − (p,∇ ·ϕϕϕ)0,Ω = (fff,ϕϕϕ)0,Ω ∀ϕϕϕ ∈ VVV , (4.1)

(∇ · uuu, q)0,Ω ≥ 0 ∀q ∈ ΛΛΛ. (4.2)

p(∇ · uuu) = 0 a.e. in Ω . (4.3)

Next we define a bilinear form A : VVV × VVV → R with A(vvv,ϕϕϕ) = µ (∇vvv,∇ϕϕϕ)0,Ω. It is
obvious, that this form is V-elliptic and continuous. This means, that, according to the
Lax–Milgram theorem, there is a invertible linear operator Ă, that allows us to write

A(vvv,ϕϕϕ) =
(
vvv, Ăϕϕϕ

)
0,Ω

.
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Also, if Ğ∗ the adjoint operator of divergence exists, meaning

(∇ ·ϕϕϕ, q)0,Ω = −
(
ϕϕϕ, Ğ∗q

)
0,Ω

,

then we can write the equation (4.1) and the inequality (4.2) as(
uuu, Ăϕϕϕ

)
0,Ω

+
(
ϕϕϕ, Ğ∗p

)
0,Ω

= (fff,ϕϕϕ)0,Ω ∀ϕϕϕ ∈ VVV (4.4)

and −
(
uuu, Ğ∗q

)
0,Ω
≥ 0 ∀q ∈ ΛΛΛ.

We gain as well an implication of the complementarity condition (4.3)(
uuu, Ğ∗p

)
0,Ω

= 0 .

By using the test function ϕϕϕ = Ă−1Ğ∗(q − p) we obtain the inequality(
Ă−1Ğ∗(q − p), Ğ∗p

)
0,Ω
−
(
fff, Ă−1Ğ∗(q − p)

)
0,Ω
≥ 0 ∀q ∈ ΛΛΛ,

which is equivalent to〈
J ′(Ă−1Ğ∗p), Ă−1Ğ∗(q − p)

〉
≥ 0 ∀q ∈ ΛΛΛ.

This leads to an another minimization problem with a convex functional: Find p ∈ ΛΛΛ,
such that

J (Ă−1Ğ∗p) ≤ J (Ă−1Ğ∗q) ∀q ∈ ΛΛΛ. (4.5)

That is the classical way of solving this problem: we consider the obstacle problem in
variable p (because p ∈ ΛΛΛ means essential that p ≥ 0 a.e. on Ω). This can be done
(in a discrete space) by conjugate gradient algorithm, see for example Blum, Braess and
Suttmeier [3], or by conjugate gradient projection method, see Dembo and Tulowitzky [6].
After that the velocity uuu can be calculated using the equation (4.1). More on this can
be found in the section 4.3, where we compare the calculation times of the the second
method mentioned above with our first proposal for solution strategy from the next
section.

4.2. First proposal for solution strategy

In last section we derived an other minimization problem, that can be solved as an
obstacle problem in the variable p. In this section we go further and derive an equivalent
variational problem with two Lagrange multipliers. The second multiplier λ is, in a way,
artificial and can be calculated, if we know uuu and p.
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In order to do that, we use the Lagrange multiplier methods the same way as above and
obtain an another set of KKT-conditions for a pair (p, λ)T ∈ QQQ×ΛΛΛ with QQQ = LLL2(Ω) :

A
(
Ă−1Ğ∗q, Ă−1Ğ∗p

)
−
(
fff, Ă−1Ğ∗q

)
0,Ω
− (λ, q)0,Ω = 0 ∀q ∈ QQQ ,

(ω, p)0,Ω ≥ 0 ∀ω ∈ ΛΛΛ ,

pλ = 0 a.e. in Ω .

The equation (4.4) makes it possible to simplify the first of the new KKT-conditions:

0 =
(
Ă−1Ğ∗q, Ğ∗p

)
0,Ω
−
(
uuu, Ğ∗q

)
0,Ω
−
(
Ă−1Ğ∗q, Ğ∗p

)
0,Ω
− (λ, q)0,Ω

or (∇ · uuu, q)0,Ω − (λ, q)0,Ω = 0 ∀q ∈ QQQ.

In summary we can combine the two set of the KKT-conditions to a new equivalent
problem: Find a triple (uuu, p, λ)T ∈ VVV ×QQQ×ΛΛΛ, that satisfy

µ (∇uuu,∇ϕϕϕ)0,Ω − (p,∇ ·ϕϕϕ)0,Ω = (fff,ϕϕϕ)0,Ω ∀ϕϕϕ ∈ VVV , (4.6)

(∇ · uuu, q)0,Ω − (λ, q)0,Ω = 0 ∀q ∈ QQQ (4.7)

(ω, p)0,Ω ≥ 0 ∀ω ∈ ΛΛΛ , (4.8)

pλ = 0 a.e. in Ω . (4.9)

Unfortunately the operator Ğ∗ is not well defined for all elements of QQQ. This is why this
introduction of the the second Lagrange-multiplier should be considered a motivation for
the introduction of the variational problem above. The more formal proof of equivalence
of this and minimization problems can be found in the theorem 6.1.9.

Next, we consider modified versions of (4.7) and (4.8):

(∇ · uuu− λ, ω − λ)0,Ω = 0 ∀ω ∈ ΛΛΛ (4.10)

(ω − λ, p)0,Ω ≥ 0 ∀ω ∈ ΛΛΛ . (4.11)

By dividing the inequality (4.11) by a constant δ > 0 and subtract it from the equality
(4.10), we obtain(

∇ · uuu− 1

δ
p− λ, ω − λ

)
0,Ω

≤ 0 ∀ω ∈ ΛΛΛ.

The lemma of projection operator A.0.3 allows us to interpret the inequality above as a
projection

λ = ΠΛΛΛ

(
∇ · uuu− 1

δ
p

)
.

By applying the definition of the space ΛΛΛ we obtain following variational problem: Find
(uuu, p)T ∈ VVV ×QQQ fulfilling the mixed formulation

µ (∇uuu,∇ϕϕϕ)0,Ω − (p,∇ · uuu)0,Ω = (fff,ϕϕϕ)0,Ω ∀ϕϕϕ ∈ VVV ,

(∇ · uuu, q)0,Ω = (λ, q)0,Ω ∀q ∈ QQQ

with λ = max

{
0,∇ · uuu− 1

δ
p

}
.
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We won’t be using neither complementary condition pλ = 0 a.e. in Ω nor the fact that
p ∈ ΛΛΛ in our solution strategy explicitly, but this are important properties of the solution,
which we evaluate in the chapter on error estimate.

4.3. First numerical results

In this section we compare results of two different approaches discussed in the previous
section. The problem we consider is the cross section of a T-pipe with a viscous fluid, that
can change in the gas state without the external pressure. Our research of the stokes
problem with cavitation was initiated in cooperation with industry (see f.e. Gimbel
et al [9]). In order to develop basic concepts for simulation we choose the T-pipe as
prototype example. We set a non-zero flow profile, as the boundary condition the bottom
end. The x-component of the flow profile is set to zero and the y-component can be
calculated with the mapping fflow : [−1, 1] → R with x 7→ 10(1 − x2). On the left and
right side of the pipe we prescribe Neumann boundary condition as free flow out of the
system. The external force is equals ten and oriented towards bottom, which represents
the gravitation. The viscosity coefficient is set to one.

Figure 4.1.: The velocity vectors for Stokes problem with cavitation in the cross section
of a T-pipe for the viscosity factor µ = 0.01.

First we introduce the discrete finite-element-spaces. We divide Ω in triangular mesh
Th and, based on that mesh, we use the Croizeix-Raviart-elements or the non-conform
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P1-elements (see Braess [4, p. 103]) for VVVh and the constant elements for QQQh. This leads
to the discrete problem

µ (∇uuuh,∇ϕϕϕh)0,Ω − (ph,∇ ·ϕϕϕh)0,Ω = (fff,ϕϕϕh)0,Ω ∀ϕϕϕh ∈ VVVh , (4.12)

(∇ · uuuh, qh)0,Ω ≥ 0 ∀qh ∈ Π +QQQh, (4.13)

(ph,∇ · uuuh)0,T = 0 ∀T ∈ Th . (4.14)

Since all elements of the corresponding discrete space can be written as linear combina-
tions, we define three appropriate vectors û̂ûu, û̂ûu0 and p̂̂p̂p, such that uuuh =

∑
j

(ûj+û0,j)ϕϕϕh,j and

ph =
∑
j
p̂jqh,j , where ϕϕϕh,j and qh,j are the basis functions of discrete spaces VVVh and QQQh

respectively. During the calculation process, we determine a vector û̂ûu0 in such a way, that

the function
∑
j
û0,jϕϕϕh,j satisfy the non-zero boundary conditions and

∑
j
ûjϕϕϕh,j

∣∣∣∣∣
∂Ω

= 0.

The operators Ă and Ğ∗ receive corresponding matrices A and G, defined as follows:

Ai,j =µ (∇ϕϕϕh,j ,∇ϕϕϕh,i)0,Ω

and Gi,j =− (∇ ·ϕϕϕh,i, qh,j)0,Ω .

At the same time we introduce two right hand side vectors f̂̂f̂f and ĝ̂ĝg defined as

f̂j = (fff,ϕϕϕh,i)0,Ω − (Aû̂ûu0)j

and ĝj = (Gû̂ûu0)j

respectively. This is a common way of transforming a problem into one with zero-
boundary condition.

Next we consider the minimization problem (4.5) and get a discrete version of it: Find
p̂̂p̂p ≥ 0 such that

µ

2
p̂̂p̂pTGTA−1Gp̂̂p̂p− f̂̂f̂fTA−1Gp̂̂p̂p ≤ µ

2
q̂̂q̂qTGTA−1Gq̂̂q̂q − f̂̂f̂fTA−1Gq̂̂q̂q ∀q̂̂q̂q ≥ 0 .

As mentioned before, we use conjugate gradient projection method, see Dembo and
Tulowitzky [6], to solve this obstacle problem with the Schur complement µGTA−1G
instead of the usual matrix and the vector GTA−1f̂̂f̂f as the right hand side. After the
appropriate tolerance is achieved, we finally calculate û̂ûu using an equation derived from
(4.12):

û̂ûu = A−1
(
f̂̂f̂f −Gp̂

)
.

For our first solution strategy, in order to find the vectors û̂ûu and p̂̂p̂p, we need to iterate
the system

µAû̂ûu+Gp̂̂p̂p = f̂̂f̂f ,

GTû̂ûu = ĝ̂ĝg + λ̂̂λ̂λ,
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Calculation time in seconds
cells DoFs iterations tolerance setup inverting A solving

512 2,128 43 4.51 · 10−7 0.00526 0.00193 0.0365
2,048 8,352 54 3.73 · 10−7 0.01321 0.00718 0.3283
8,192 33,088 66 5.51 · 10−7 0.04162 0.08631 2.7729
32,768 131,712 74 5.78 · 10−7 0.16461 1.21509 21.862
131,072 525,568 108 7.34 · 10−7 0.74542 17.3248 214.9

Table 4.1.: Stokes problem with cavitation for the T-pipe example (solved with cg

projection method), until relative tolerance
‖pnew−pold‖
‖pnew+pold‖ < 10−6, and with

global refinement of cells

Calculation time in seconds
cells DoFs iterations tolerance setup inverting A solving

512 2,128 10 9.64 · 10−7 0.00434 0.00077 0.0141
2,048 8,352 13 9.15 · 10−7 0.01144 0.00708 0.1046
8,192 33,088 22 9.66 · 10−7 0.03849 0.08584 1.0369
32,768 131,712 24 9.78 · 10−7 0.1629 1.21797 7.348
131,072 525,568 17 9.97 · 10−7 0.74385 17.3235 36.3318

Table 4.2.: Stokes problem with cavitation for the T-pipe example (solved with Uzawa-
Algorithm using projection operator as right hand side), until relative

tolerance
‖pnew−pold‖
‖pnew+pold‖ < 10−6, and with global refinement of cells

with λ̂j =

{ (
GT(û̂ûu+ û̂ûu0)

)
j
− 1

δ p̂j if
(
GT(û̂ûu+ û̂ûu0)

)
j
> 1

δ p̂j

0 else
.

For this first numerical test we just use δ = 1. In each iteration loop we ”freeze” the
vector λ̂̂λ̂λ and search an approximation of the solution vectors û̂ûu and p̂̂p̂p, using conjugate

gradient Uzawa method (see Braess [4, p. 217]), until the quotient
‖p̂̂p̂p(k+1)−p̂̂p̂p(k)‖

2

‖p̂̂p̂p(k)‖
2

is below

10−3. As the tests showed, the threshold of 10−3 is sufficient to proceed. Next we use
this approximation to calculate the new vector λ̂̂λ̂λ and repeat the process until the wanted
precision is achieved.

In order to compare the algorithms above under fair condition we let them run until

the relative tolerance
‖p(k+1)−p(k)‖
‖p(k+1)+p(k)‖ is less then 10−6. The tables 4.1 and 4.2 hold the

results of the numerical tests conducted using the solving strategies, described above.
The columns contain number of cells, number of degrees of freedom, that result from
defining finite element space on each of this grids, number of iteration needed as well as
actually achieved tolerance. We distinguish between inner and outer iteration cycles:

• the outer cycles are the number of actual fix-point-iterations,
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• and the inner cycles are the number of steps for Uzawa-algorithms to calculate next
û̂ûu and p̂̂p̂p.

In case of our solution strategy we only count outer iteration cycles, since after a couple
cycles, with between 3 to 13 Uzawa steps, we only need one Uzawa step pro cycle for
the rest of the iteration. There are several calculation times, that are also included in
those tables. They are split into three columns, two of which are more or less identical
for the two strategies, since we use the same process to set up the problem and invert
the resulting matrix A. The times in the last columns are quite different. According to
this data, we can estimate that our first proposed solution strategy is about three to five
times faster then the standard cg projection method for the given number of degrees of
freedom.
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Figure 4.2.: A comparison of calculation times for the setup, the inverting matrix A and
the actual iterations of cg projection method.

In the figures 4.2 and 4.3 we wanted to illustrate an increase of the calculation time
relative to the growing number of degrees of freedom. Both the time needed for setup
of the problem and the time for the inverting the matrix A increases dramatically with
the number of degrees of freedom, but are only a fraction of the iteration time for the cg
projection method. Furthermore on the graphic 4.3 we see that, not only the proposed
strategy requires only a fraction of calculation time, the tests suggest, that the calculation
time growth slop is decreasing with rising number of degrees of freedom.

4.4. Further analysis of the possible solution strategies

In this section we consider the possible Newton-type methods in order to increase con-
vergence rate or, from the potential user point of view, in order to reduce computation
time. Another aspect, that is worth addressing, is the number of degrees of freedom.
Inevitably, the higher number of degree of freedom increases the calculation time. As a
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Figure 4.3.: A comparison of calculation times for the cg projection method and for the
proposed algorithm with projection operator on the right hand side.

result there is a well know technique to refine only those parts of the mesh, that require
more attention, see f. e. Braess [4, p. 173]. In order to be able to identify those parts
we introduce our a posteriori error estimator. But a locally refined mesh, can also im-
pose difficulties on the iteration process, that we will address in the section on further
numerical results.

4.4.1. Newton-type methods

For any numerical algorithm we have to consider the start value and the iteration step.We
start by looking on the possible iteration steps. For this purpose, we introduce a func-
tional Fϕϕϕq : VVV ×QQQ −→ R with

Fϕϕϕq (ũ̃ũu, p̃) =A(ũ̃ũu,ϕϕϕ)− (p̃,∇ ·ϕϕϕ)0,Ω − (fff,ϕϕϕ)0,Ω + (∇ · ũ̃ũu, q)0,Ω − (λ(ũ̃ũu, p̃), q)0,Ω , (4.15)

so that the functions uuu and p, which are the continuous solution of the variational formula-
tion of the stokes problem with cavitation, are together a single zero spot of the functional
Fϕϕϕq for all (ϕϕϕ, q)T ∈ VVV ×QQQ. Since the functional Fϕϕϕq is not Gateaux-differentiable, we
cannot use the classical Newton method to find this zero spot. This is why, we introduce
an element of the combined dual space P∗ (ũ̃ũu, p̃) ∈ VVV∗ ×QQQ∗ as an approximation of the
Gateaux-differential and the modified Newton step (dddu, dp)T, which can results from the
equation 〈

P∗ (ũ̃ũu, p̃) , (dddu, dp)T
〉

VVV∗×QQQ∗
= Fϕϕϕq (ũ̃ũu, p̃) .

Then the numerical solution can be obtained through the iteration process(
uuu(j+1)

p(j+1)

)
=

(
uuu(j)

p(j)

)
−
(
dddu

dp

)
∀j ∈ N,
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in which we use a vector uuu(0), p(0) as start value. Of course, even though we define this
P∗ (ũ̃ũu, p̃) as an element of the dual space to the combined continuous spaces VVV and QQQ, we
have an application on the Finite-Element-Spaces in mind. The purpose of this excise
is to motivate the choices for the update calculation method and not to complicate the
matter with choices of the appropriate Finite-Element-Spaces.

The first approximation of the Gateaux-differential, that come to mind, is the simplest
one, such that ignores the dependency of λ on ũ̃ũu and p̃, so that〈

P∗1 (ũ̃ũu, p̃) , (dddu, dp)T
〉

VVV×QQQ
=A(dddu,ϕϕϕ)− (dp,∇ ·ϕϕϕ)0,Ω + (∇ · dddu, q)0,Ω .

Next possibility to consider is the fact, that λ can be obtained using

max

{
0,∇ · uuu− 1

δ
p

}
=

1

2

(
∇ · uuu− 1

δ
p

)
+

1

2

∣∣∣∣∇ · uuu− 1

δ
p

∣∣∣∣ .
So for the next step we ignore absolute value function, which results in an another
approximation of the Gateaux-differential〈

P∗2 (ũ̃ũu, p̃) , (dddu, dp)T
〉

VVV×QQQ
=A(dddu,ϕϕϕ)− (dp,∇ ·ϕϕϕ)0,Ω + (∇ · dddu, q)0,Ω +

1

δ
(p, q)0,Ω .

The next step in order to obtain another approximation of the Gateaux-differential is
to regularise the absolute value function, but before we move on, we modify the first
equation of this new mixed formulation. First, we consider the mixed formulation with
the inequality instead the projection operator

µ (∇uuu,∇ϕϕϕ)0,Ω − (∇ ·ϕϕϕ, p)0,Ω = (fff,ϕϕϕ)0,Ω ,

(∇ · uuu, q)0,Ω − (λ, q)0,Ω = 0 ,

−δ (∇ · uuu, ω − λ)0,Ω + (p, ω − λ)0,Ω +δ (λ, ω − λ)0,Ω ≥ 0 .

Written this way, it is obvious, that the problem has in a way almost a symmetric
structure. We can obtain the missing part in the ”right upper corner” by adding the
second equation multiplied with factor −δ to the first one. Also we use ∇ ·ϕϕϕ instead of
q as a test function to fit the variational formulation. This leads to

µ (∇uuu,∇ϕϕϕ)0,Ω − δ (∇ · uuu,∇ ·ϕϕϕ)0,Ω − (p,∇ ·ϕϕϕ)0,Ω + δ (λ,∇ ·ϕϕϕ)0,Ω = (fff,ϕϕϕ)0,Ω ∀ϕϕϕ ∈ VVV,

(∇ · uuu, q)0,Ω − (λ, q)0,Ω = 0 ∀q ∈ QQQ,

with λ = max

{
0,∇ · uuu− 1

δ
p

}
a.e. on Ω.

This stabilizes the problem and makes the analysis much easier. The benefits of this
alteration will be noticeable in the sections 4.6. Introduction of a bilinear form

Aδ(uuu,ϕϕϕ) = µ (∇uuu,∇ϕϕϕ)0,Ω − δ (∇ · uuu,∇ ·ϕϕϕ)0,Ω

enables more compact notation. Also the value of the Lagrange multiplier λ can be
obtain throw square root function. In summary, we have the equivalent formulation of
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the problem

Aδ(uuu,ϕϕϕ)− (p,∇ ·ϕϕϕ)0,Ω + δ (λ,∇ ·ϕϕϕ)0,Ω = (fff,ϕϕϕ)0,Ω ∀ϕϕϕ ∈ VVV, (4.16)

(∇ · uuu, q)0,Ω − (λ, q)0,Ω = 0 ∀q ∈ QQQ, (4.17)

with λ =
1

2

(
∇ · uuu− 1

δ
p

)
+

1

2

√(
∇ · uuu− 1

δ
p

)2

a.e. on Ω. (4.18)

Furthermore now regularized version of λ can be obtained using

λξ =
1

2

(
∇ · uuu− 1

δ
p

)
+

1

2

√(
∇ · uuu− 1

δ
p

)2

+ ξ a.e. on Ω,

where ξ is a positive constant. With this in mind, we define a functional F̃ϕϕϕq : VVV×QQQ −→ R
so that

F̃ϕϕϕq (ũ̃ũu, p̃) =Aδ(ũ̃ũu,ϕϕϕ)− (p̃,∇ ·ϕϕϕ)0,Ω + δ
(
λ̃ξ,∇ ·ϕϕϕ

)
0,Ω
− (fff,ϕϕϕ)0,Ω

+ (∇ · ũ̃ũu, q)0,Ω −
(
λ̃ξ, q

)
0,Ω

(4.19)

as well as λ̃ξ =
1

2

(
∇ · ũ̃ũu− 1

δ
p̃

)
+

1

2

√(
∇ · ũ̃ũu− 1

δ
p̃

)2

+ ξ a.e. on Ω.

In the section 4.6 we discuss the conditions for the existence and the uniqueness of the
zero spot of this functional, as well as its relation to the function, that we actually want
to calculate. Since this stabilised regularise functional is Gateaux-differentiable, we can
use its derivative to calculate modified Newton step, meaning〈

P∗3 (ũ̃ũu, p̃) , (dddu, dp)T
〉

VVV×QQQ
=
〈
F̃ ′ϕϕϕq (ũ̃ũu, p̃) , (dddu, dp)T

〉
VVV∗×QQQ∗

= Aδ(dddu,ϕϕϕ)− (dp,∇ ·ϕϕϕ)0,Ω + (∇ · dddu, q)0,Ω

+

(
vξ
(
∇ · dddu − 1

δ
dp
)
, δ (∇ ·ϕϕϕ)− q

)
0,Ω

,

with vξ ∈ QQQ and vξ =
1

2

1 +
∇ · ũ̃ũu− 1

δ p̃√(
∇ · ũ̃ũu− 1

δ p̃
)2

+ ξ

 a.e. on Ω.

4.4.2. Possible start values

In the section 4.3 we already have seen that, since we impose boundary values on the
velocity uuuh, we split the coefficient vector in û̂ûu0 and û̂ûu. The vector û̂ûu0 satisfy the non-zero
boundary conditions and one obvious start value for the vector û̂ûu would be 000.

On the other hand, it is possible for the algorithms to profit from a start value, that is
already near the goal value. Since calculation for the grid with fewer degrees of freedom
are much faster, it is interesting to assess the cascade approach. In this case, similar to
the local refinement strategy, we conduct several calculation in a row, using ever further
refined mesh in each step and the solution from the last mesh to calculate a start value
for the new iteration.
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4.4.3. A posteriori error estimator

The are several error estimators for the stokes problem without cavitation (see for ex-
ample Verfürth [16] or Nobile [15]). Let (uuu, p)T ∈ VVV ×QQQ be the continuous solution of
the mixed variation formulation for the stokes problem with cavitation, given by (4.1)
to (4.3), and (uuuh, ph)T ∈ VhVhVh ×QhQhQh is the discrete solution, where VhVhVh ⊆ VVV and QhQhQh ⊆ QQQ,
then the norm of the error

∥∥(uuu− uuuh, p− ph)T
∥∥

VVV×QQQ
can be estimated with the inequality∥∥(uuu− uuuh, p− ph)T

∥∥2

VVV×QQQ
≤ cη(uuuh, ph, fff) ,

where

η(uuuh, ph, fff) =
∑
T∈Th

(
|T | ‖fff + µ∆uuuh +∇ph‖20,T + |∂T |

∥∥∥∥∂uuuh∂n − phnnn
∥∥∥∥2

0,∂T\∂Ω

)
+ ‖∇ · uuuh − λh‖20,Ω + (ΠΛΛΛph, λh)0,Ω + ‖ΠΛΛΛph − ph‖20,Ω

and

λh = ΠΛΛΛh

(
∇ · uuuh −

1

δ
ph

)
.

Since the norm ‖fff + µ∆uuuh + ph‖0,T is part of the error estimator, it can be classified
as an residual type. The flow between the cell must satisfy the Neumann boundary
condition on all edges of the cells, which a not part of ∂Ω. This is measured by the

norm

∥∥∥∥∂uuuh∂n − phnnn
∥∥∥∥

0,∂T\∂Ω

. In addition to the residual on each cell, which is related with

the equation (4.16), the estimator take account of the fulfilment of secondery condition
(4.17), in the form of the norm ‖∇ · uuuh − λh‖0,Ω . Since the function p was introduced
as Lagrange multiplier, according to the KKT conditions the functions p and as result
all the functions ph must be greater or equal to zero almost everywhere on Ω. The norm
‖ΠΛΛΛph − ph‖0,Ω measures the deviation of numerical solution from this condition. Finally,
the scalar product (ΠΛΛΛph, λh)0,Ω reviews compliance of the complementary condition,
which is also one of the KKT conditions. Especially the last to components of the
error estimator are not really important, if you want to evaluate convergence rate of
the solution on the entire subset Ω, but their local qualities, allow us to construct an
efficient mesh. We will concentrate on the complete formal proof of the proposed a error
estimator in the section 4.7. The rigorous proof is postponed to the section 4.7.

Further more, the discrete space VVVh, that we introduced in the section 4.3 is not con-
form, meaning VVVh 6⊂ VVV. In order to adapt this error estimator for the introduced
Finite-Element-Space, we have to add another component into the mix. The norm
‖∇ (vvvh − uuunch )‖0,Ω measures the difference between the velocity approximation uuunch in
the non-conform space and an element of one discrete subspace. More about the pro-
cess to determinate appropriate vvvh can be found in the section 4.5. Also the previous
approach for deriving the error estimator would not work in the non-conform case. This
is why, in the second part of the section 4.7 the alternative approach is introduced.
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Figure 4.4.: The solution of the Stokes problem with cavitation for µ = 1. Left above:
x-component of the velocity. Right above: y-component of the velocity. Left
below: absolute value of the velocity. Right below: pressure.

4.5. Numerical results

4.5.1. A comparison of proposed Newton-type iteration methods

For the further test we have to consider the effects of the viscosity constant µ on the
simulation. As in the section 4.3, we calculate the flow in the T-pipe section, but different
viscosity factors lead to completely different behavior (compare figures 4.4, 4.5 and 4.6).

The main reason for that is, that the differences in the viscosity lead to the different
pressure distributions and, as a result of that, the different cavitation zones. If the
pressure in a segment is too low, the cavitation effect takes place. As shown in the figure
4.7, in the example with µ = 1 there are two small separate cavitation zones near the
openings on the left and the right sides. In case of µ = 0.1 the zones are still separate,
but are much bigger. The simulation with the viscosity constant µ = 0.01 shows one
continuous cavitation zone in the upper part of the T-pipe segment. In the section
4.3 we only considered a fix point iteration approach for µ = 1, and achieved superior
result, compared with the cg projection method. In case of µ = 0.1 this approach is
still faster method for the larger number of degrees of freedom, but does not outperform
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the cg projection method that drastically. That is why, we focus in this chapter on the
numerical test for the case µ = 0.1.

Figure 4.5.: The solution of the Stokes problem with cavitation for µ = 0.1. Left above:
x-component of the velocity. Right above: y-component of the velocity. Left
below: absolute value of the velocity. Right below: pressure.

The other important point to discuss is the matrix A. In the section 4.3 we used Ai,j =
µ (∇ϕϕϕh,j ,∇ϕϕϕh,i)0,Ω. Our velocity solution vectors û̂ûu0 and û̂ûu consist of to blocks each (for

example first half for x-components and the second half for the y-components). This
result in a block structure of the matrix, such that for all wwwh, vvvh ∈ VVVh

A(wwwh, vvvh) = ŵ̂ŵwT

(
Axx 0

0 Axx

)
v̂̂v̂v with Axx = µ


...

· · · (∇ϕh,j ,∇ϕh,i)0,Ω · · ·
...

 .

So instead of calculate the inverse of the whole matrix, we can take advantage of the
structure, only invert one block after the assembling step and use it in combination with
specially written matrix-vector-product routine in each iteration step. This works for
the Newton-type methods P1 and P2 as well, but in the Newton-type methods P3 we
added the stabilization, which resulted in the bilinear form

Aδ(uuu,ϕϕϕ) = µ (∇uuu,∇ϕϕϕ)0,Ω − δ (∇ · uuu,∇ ·ϕϕϕ)0,Ω .
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Figure 4.6.: The solution of the Stokes problem with cavitation for µ = 0.01. Left above:
x-component of the velocity. Right above: y-component of the velocity. Left
below: absolute value of the velocity. Right below: pressure.

Figure 4.7.: The cavitation zone in the T-pipe segment for different viscosity factors: left
to right µ = 1, µ = 0.1 and µ = 0.01.

The resulting matrix is still very sparse and we can benefit from the block structure,
but it is not possible to invert the whole matrix at the same ”low cost” as previously.
Further more, since the focus of this work was not on efficient algebraic computation,
we decided to make quick numerical calculation of A−1 in each step and subtract the
time from the overall calculation time. This way we didn’t have to program an inverting
routine for the block matrix and concentrate on the algorithm itself. That is why, the
solving time for the P3 method must be adjusted. In the subsequent comparison of the
results we will be using this adjusted time, when referring to the P3 method.
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Figure 4.8.: A comparison of solving strategies of Stokes problem with cavitation for
the T-pipe example with µ = 0.1 (zero start value and with global
refinement of cells).

For the first numerical test we compare the calculation times of the different solution
strategies for zero start value and with global refinement of cells. As illustrated in the
figure 4.8, the P2 update calculation had, as suspected, some oscillation problems, which
resulted in the worst calculation time. That is why, in the comparison table 4.3 we left it
out. The Fix-Point-Approach was, as stated before, better as the projected cg method.
What is more important, it has shown a lower exponential growth of the calculation time
in dependence on the growing number of degrees of freedom. The P1 solution update
strategy has shown similar results. Even though the calculation times were low than in
the Fix-Point-Approach, they grow a little bit faster with the rising number of degrees
of freedom. The solution update strategy P3 required about the third of the calculation
time of P1 and less then a fifth part of the calculation time of the projected cg method.

Next we try the cascade approach and keep the pressure from the previous mesh to
calculate the start value for the new one. The reason to use the pressure is, that we
can easily interpolate it. In order to generate a new mesh we split the triangles of the
old mesh into a number of new triangles. Since in our Finite-Element-Space pressure is
constant on each triangular mesh element, we can just assign the pressure value from the
”parent” cell to the all ”child” cell, that are the result of refinement of the old ”parent”
cell in question. As already stated, we calculate the inverse of the matrix A, so the start
value for velocity can be easily obtain using the equation (4.12).

As shown in the figure 4.9, Fix-Point-Iteration and P2 approach profit the least from
this new starting value. The projected cg method in the cascade calculation shows
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DoFs PCG Fix-Point P1 P3

n Time O(n) Time O(n) Time O(n) Time O(n)

552 0.005 0.07 0.024 0.012
2,128 0.058 1.81 0.208 0.81 0.099 1.06 0.022 0.45
8,352 0.448 1.49 1.04 1.18 0.538 1.24 0.137 1.32
33,088 5.24 1.79 6.485 1.33 3.832 1.43 0.859 1.33
131,712 45.624 1.57 38.891 1.3 25.266 1.37 6.659 1.48
525,568 371.271 1.51 223.979 1.27 179.465 1.42

Table 4.3.: The calculation times and their dependence on the number of degrees of
freedom for Stokes problem with cavitation in the T-pipe with µ = 0.1 (zero
start value and with global refinement of cells).
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Figure 4.9.: A comparison of solving strategies of Stokes problem with cavitation for the
T-pipe example with µ = 0.1 (interpolation of previous solution as
start value and with global refinement of cells).



28 4. Stokes problem with cavitation effects

DoFs PCG Fix-Point P1 P3

n Time O(n) Time O(n) Time O(n) Time O(n)

552 0.004 0.049 0.022 0.012
2,128 0.024 1.3 0.208 1.07 0.069 0.83 0.018 0.32
8,352 0.19 1.5 1.035 1.17 0.368 1.23 0.114 1.33
33,088 1.777 1.62 6.522 1.34 2.239 1.31 0.704 1.32
131,712 10.969 1.32 39.239 1.3 14.288 1.34 5.605 1.5
525,568 80.308 1.44 249.394 1.34 86.138 1.3

Table 4.4.: The calculation times and their dependence on the number of degrees of free-
dom for Stokes problem with cavitation in the T-pipe with µ = 0.1 (interpo-
lation of previous solution as start value and with global refinement
of cells).

better result then all proposed strategies except for the P3 Newton-type method. The
calculation times in the table 4.4 show, that all methods can profit from a better choice
of the start value, but we have to take the calculation time for this start value into
account two. So under this condition the cascade calculation is valuable strategy for the
projected cg method and P1 Newton-type method, but not for P3 approach, which still
has shown the best results.

The in the third test we introduce the local cell refinement. In the base problem with
the T-pipe segment we are in particular interested in value in two point. Those are the
points, where the pipes meet. The 90 degree angle leads to the artificial singularity in
the flow profile. Our error estimator recognizes the problem and the cell in the proximity
are refined in each step. The other interesting zone is the border to the area, where the
cavitation take place. Refining those cells makes more efficient use of degrees of freedom,
but we also have to take care of the hanging nodes. This results in less optimal triangles
in the mesh. Also since we use the non-conform Finite-Element-Space VVVh, we need to
calculate a conform approximation of the velocity. In the conform Finite-Element-Space
with linear triangle elements (see f.e. Braess [4, p. 62 ff]) we need to know the function
value in the nodes and in the Croizeix-Raviart-elements the value is attributed to the
sides of the cell. So one of the simplest ways to obtain conform approximation from the
non-conform solution with the Croizeix-Raviart-elements is to calculate in every node
the average between the corresponding values of the cell sides, that have the node in
common.

As the stability becomes more of an issue as before all solution strategies show an increase
in the calculation time due to the oscillations. The Fix-Point-Iteration calculations were
terminated early, because it was obvious, that they are not comparable with the rest.
The methods P1 and P2 started slower as projected cg method, but P1 showed better
results for the higher number of degrees of freedom. And again was the solution strategy
P3 exceptionally fast due to the still much lower number of iteration circles, even so those
iteration were more complex.
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Figure 4.10.: A comparison of solving strategies of Stokes problem with cavitation for
the T-pipe example with µ = 0.1 (zero start value and with local
refinement of cells).

DoFs PCG P1 P2 P3

n Time O(n) Time O(n) Time O(n) Time O(n)

552 0.004 0.022 0.041 0.005
1,242 0.036 2.71 0.074 1.49 0.161 1.68 0.014 1.26
2,603 0.064 0.78 0.15 0.96 0.318 0.92 0.036 1.24
5,717 0.593 2.83 0.88 2.25 1.883 2.26 0.151 1.83
12,050 2.549 1.95 2.923 1.61 6.613 1.68 0.387 1.26
25,094 9.948 1.86 10.265 1.71 21.638 1.62 1.42 1.77
53,532 126.294 3.35 56.69 2.26 120.23 2.26 5.18 1.71
111,057 494.824 1.87 223.872 1.88 466.614 1.86 21.904 1.98

Table 4.5.: The calculation times and their dependence on the number of degrees of
freedom for Stokes problem with cavitation in the T-pipe with µ = 0.1 (zero
start value and with local refinement of cells).
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Figure 4.11.: A comparison of solving strategies of Stokes problem with cavitation for
the T-pipe example with µ = 0.1 (interpolation of previous solution
as start value and with local refinement of cells).

The last test with µ = 0.1, were we use interpolation of previous solution as start value
and an error estimator for the local refinement of cells, reviles the similar picture as
the test with the global refinement of cells. All solution strategies profit from the better
choice of the start value. The least improvement of the calculation time shows the method
P3, but it is still far more efficient then the rest of the competition.

The numbers for the case with viscosity factor µ = 0.01 are similar. We limit our self to
report the result of only one test as an example of the overall trend. The projection cg
method can outperform all other solution strategies, except for the P3 algorithm, but the
results also suggest, that calculation time will increase faster with the growing number of
degrees of freedom. Even so the solution strategy P3 is superior in both calculation time
and its growth due to the rising number of degrees of freedom. Since the data indicates
the overall success of this method, we will analyze it deeper in the following section.

4.5.2. An examination of the convergence rates depending on the mesh
size

In this part we compare, how does the refinement of the mesh affects the accuracy of
the calculated solution. For this purpose, we consider the results of the tests, in which
interpolation of previous solution was used as start value and with local refinement of
cells. Since we already have an error estimator, it is interesting to look at this data first.
The tables 4.8 and 4.9 contain the raw values for different parts of the error estimator,
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DoFs PCG P1 P2 P3

n Time O(n) Time O(n) Time O(n) Time O(n)

552 0.004 0.022 0.04 0.005
1,242 0.027 2.3 0.066 1.38 0.123 1.39 0.012 1.12
2,603 0.042 0.61 0.109 0.68 0.237 0.89 0.03 1.27
5,717 0.314 2.55 0.473 1.86 1.277 2.14 0.112 1.66
12,050 1.298 1.9 1.845 1.82 4.058 1.55 0.279 1.22
25,094 4.587 1.72 4.215 1.13 11.967 1.47 1.058 1.82
53,532 33.719 2.63 23.51 2.27 71.145 2.35 3.891 1.72
111,057 159.344 2.13 121.012 2.25 315.004 2.04 14.678 1.82

Table 4.6.: The calculation times and their dependence on the number of degrees of free-
dom for Stokes problem with cavitation in the T-pipe with µ = 0.1 (interpo-
lation of previous solution as start value and with local refinement
of cells).
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Figure 4.12.: A comparison of solving strategies of Stokes problem with cavitation for
the T-pipe example with µ = 0.01 (zero start value and with global
refinement of cells).
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DoFs PCG P1 P3

n Time O(n) Time O(n) Time O(n)

552 0.02 0.024 0.012
2,128 0.024 0.13 0.157 1.39 0.025 0.51
8,352 0.382 2.03 1.147 1.45 0.135 1.25
33,088 3.654 1.64 10.412 1.6 0.987 1.44
131,712 31.588 1.56 78.254 1.46 6.574 1.37

Table 4.7.: The calculation times and their dependence on the number of degrees of
freedom for Stokes problem with cavitation in the T-pipe with µ = 0.01
(zero start value and with global refinement of cells).

Different errors
cells e2

res e2
jump e2

cond e2
compl e2

p+ e2
nc

128 12.5 194.5 1.62 · 10−9 0 0 344.02
512 3.13 15.9 4.94 · 10−9 0 0 117.22

2,048 0.78 1.19 3.65 · 10−9 0 0 38.68
8,192 0.2 8.92 · 10−2 3.95 · 10−9 0 0 13.64
32,768 4.88 · 10−2 7.1 · 10−3 5.15 · 10−9 0 0 5.3

1.31 · 105 1.22 · 10−2 6.03 · 10−4 4.46 · 10−8 0 0 2.24

Table 4.8.: The error estimation data for the projected cg method with global re-
finement, applied on Stokes problem with cavitation in the T-pipe with
µ = 0.1.

that were introduced in the section 4.4:

e2
res =

∑
T∈Th

(
|T | ‖fff + µ∆uuuh +∇ph‖20,T

)
, e2

compl = (ΠΛΛΛph, λh)0,Ω ,

e2
jump =

∑
T∈Th

(
|∂T |

∥∥∥∥∂uuuh∂n − phnnn
∥∥∥∥2

0,∂T\∂Ω

)
, e2

p+ = ‖ΠΛΛΛph − ph‖20,Ω ,

e2
cond = ‖∇ · uuuh − λh‖20,Ω , e2

nc = ‖∇ (vvvh − uuunch )‖20,Ω .

As already mentioned, the parts econd, ecompl and ep+ contribute relatively little to the
global error estimation and are more interesting in the selecting process for the local cell
refinement. In the case of the projected cg method ecompl and ep+ are zero, since this
is essential part of the post-processing. The error enc, that is the result of the use of
the non-conform elements, is dominant overall, but it is not the best candidate for eval-
uating convergence rates, since we use relatively unsophisticated method for calculating
uuunch . Different methods might be more valuable in this regard, but we have other data
available. The residual part eres is usually very important would serve the tusk quite
well, but since we used the Croizeix-Raviart-elements for VVVh and the constant elements

for QQQh, it is reduced to e2
res =

∑
T∈Th

(
|T | ‖fff‖20,T

)
. This leaves us with another impor-
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Different errors
cells e2

res e2
jump e2

cond e2
compl e2

p+ e2
nc

128 12.5 194.5 1.52 · 10−15 0 5.31 · 10−20 344.02
512 3.13 15.9 1.51 · 10−16 1.88 · 10−21 5.42 · 10−24 117.22

2,048 0.78 1.19 4.49 · 10−17 5.2 · 10−17 1.48 · 10−25 38.68
8,192 0.2 8.92 · 10−2 6.43 · 10−15 8.44 · 10−15 2.1 · 10−20 13.64
32,768 4.88 · 10−2 7.13 · 10−3 1.69 · 10−15 1.08 · 10−12 1.94 · 10−29 5.34

Table 4.9.: The error estimation data for the Newton-type methods P3, applied on
Stokes problem with cavitation in the T-pipe with µ = 0.1.

PCG P3

cells κ(ejump) κ(enc) κ(
√
ηRes) κ(ejump) κ(enc) κ(

√
ηRes)

512 1.81 0.78 1.72 1.81 0.78 1.72
2,048 1.87 0.8 1.64 1.87 0.8 1.64
8,192 1.87 0.75 1.4 1.87 0.75 1.4
32,768 1.83 0.68 1.17 1.83 0.68 1.17

Table 4.10.: The convergence rate κ for the different parts of the error estimator (calcu-
lated with the data from the tables 4.8 and 4.9).

tant part of the estimator ejump, which provides information about interdependence of
the discrete solution and the cell size.

In the tables 4.8 and 4.9 the number of cells quadruples from row to row, and since the
mesh consists of triangular cells, the cell size h is halved in every step. This allows us
to calculate the convergence rate κ as follows: if eh is a value of an error in the current
mesh and e2h was the value in the previous mesh, then

κ(eh) = − 1

ln(2)
ln

(
eh
e2h

)
.

In the table 4.10 we compare the convergence rates for projected cg method and Newton-
type method P3. For this purpose κ(ejump), κ(enc) and κ(ηRes) were calculated, where
ηRes is a combined residual estimator with

ηRes(uuuh, ph, fff) =
∑
T∈Th

(
c2
|T ||T | ‖fff + µ∆uuuh −∇ph‖20,T + c2

|∂T ||∂T |
∥∥∥∥∂uuuh∂nnn − phnnn

∥∥∥∥2

0,∂T\∂Ω

)
,

that is used in the further course of this section.

We do not have a continuous solution for this problem to directly calculate the difference
between it an our discrete solutions. Instead we can compare the discrete solution for
the different meshes with each other. The table 4.11 provide such a comparison. It is
convenient to calculate the norm ‖ph − p2h‖0,Ω, since ph is constant on each cell and the
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PCG P3

cells ‖ph − p2h‖20,Ω κ(‖ph − p2h‖0,Ω) ‖ph − p2h‖20,Ω κ(‖ph − p2h‖0,Ω)

128 18.4344 18.4331
512 5.60869 0.86 5.6071 0.86

2,048 1.10101 1.17 1.10143 1.17
8,192 0.2267 1.13 0.22667 1.14
32,768 0.05785 0.99 0.05627 1

Table 4.11.: A comparison of the discrete solutions of the Stokes problem with cavita-
tion for the T-pipe example for the different meshes (solved until relative

tolerance
‖pnew−pold‖
‖pnew+pold‖ < 10−8 and with global refinement of cells).

value from the previous mesh is stored for test, in which it is need for calculating better
start value. The norm ‖∇(uh − u2h)‖0,Ω can be estimated using the similar trick as in
lemma 4.7.8, which leads to an inequality

‖∇(uh − u2h)‖20,Ω ≤ cηηRes(uuu2h, p2h, fff) + cph ‖ph − p2h‖20,Ω

with positive constants cη and cph, for which we proved proof at the end of this sec-
tion. To conclude, it can therefore be said that the accuracy of the discrete solution is
approximately linearly dependent upon cell size h.

Lemma 4.5.1. Let V2hV2hV2h, VhVhVh, Q2hQ2hQ2h and QhQhQh be discrete spaces, such that VVV2h ⊂ VVVh and
QQQ2h ⊂ QQQh. Furthermore let (uuuh, ph)T ∈ VhVhVh × QhQhQh and (uuu2h, p2h)T ∈ V2hV2hV2h × Q2hQ2hQ2h be the
discrete solutions of for the stokes problem with cavitation, given by (4.1) to (4.3), on
the respective discrete spaces. Then the following inequality applies

‖∇(uh − u2h)‖20,Ω ≤ cηηRes(uuu2h, p2h, fff) + cph ‖ph − p2h‖20,Ω

with positive constants cη and cph.

Proof. First we define the difference eee2h = uuuh −uuu2h and its interpolation on the discrete
space with less degrees of freedom Iheee2h ∈ VhVhVh. Using the equation (4.12) we obtain
µ (∇eee2h, Iheee2h)0,Ω = (ph − p2h,∇ · (Iheee2h))0,Ω and this leads to

µ ‖∇ (uuuh − uuu2h)‖20,Ω =µ (∇ (uuuh − uuu2h) ,∇ (eee2h − Iheee2h))0,Ω

− (ph − p2h,∇ · (eee2h − Iheee2h))0,Ω + (ph − p2h,∇ · eee2h)0,Ω

= (fff,eee2h − Iheee2h)0,Ω − µ (∇uuu2h,∇ (eee2h − Iheee2h))0,Ω

+ (p2h,∇ · (eee2h − Iheee2h))0,Ω + (ph − p2h,∇ · eee2h)0,Ω .

By applying the lemma 4.7.2 and Cauchy-Schwarz inequality we can estimate

µ ‖∇ (uuuh − uuu2h)‖20,Ω ≤‖∇eee2h‖0,Ω
√
ηRes(uuu2h, p2h, fff) + ‖∇ · eee2h‖0,Ω ‖ph − p2h‖20,Ω .

Since ‖∇ · eee2h‖0,Ω ≤ ‖∇eee2h‖0,Ω , the only step that is left to do, in order to obtain target
estimation, is to apply Young’s inequality and calculate the constants cη and cph. �
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4.6. Existence and uniqueness of the continuous and the
FEM solutions

In this section we want to proof the existence an uniqueness of the solution of the
continuous stabilized and regularised problem, as well as the existence an uniqueness
of the solution of the discrete stabilized problem. Then we show, that the stabilized
solution converges to the original solution for ξ → 0. It can be argued that, if we
would use Newton algorithms for the regularised problem with an appropriate ξ > 0,
the solution would approximate the solution of the not regularised problem. The process
should highlight the few criteria that are meet in continuous spaces and are required from
the discrete spaces, for the solution strategy to work. The other aspect of this discussion
is the preparation for the more abstract problem, in which the same properties will be
required. Finally, from the discussion of the existence an the uniqueness of the solution
we can derive the condition 0 < δ < µ. First we describe the ideas, that we use, and the
formal proof as well as the lemmas, that are used in the process, will come at the end of
this section.

Theorem 4.6.1. There is an unique solution (uuuξ, pξ)T ∈ VVV ×QQQ of the continuous sta-
bilized problem

F̃ϕϕϕq(uuuξ, pξ) = 0 ∀(ϕϕϕ, q)T ∈ VVV ×QQQ ,

with F̃ defined by equation (4.19).

To proof this theorem, we consider a mapping in to a dual space Ĕ : VVV ×QQQ→ VVV∗ ×QQQ∗

with 〈
Ĕ(ũ̃ũu, p̃)T, (ϕϕϕ, q)T

〉
VVV×QQQ

= F̃ϕϕϕq(ũ̃ũu, p̃) ∀(ũ̃ũu, p̃)T, (ϕϕϕ, q)T ∈ VVV ×QQQ

and proof, that the operator Ĕ strong monotone and Lipschitz continuous is. According
to the lemma A.0.7, this qualities secure he existence an uniqueness of the solution.

The proof is relative technical (see last part of this section). The basis of it are following
qualities:

i) There are positive constant c and δ, such that

Aδ(ϕϕϕ,ϕϕϕ) = µ ‖∇ϕϕϕ‖20,Ω − δ ‖∇ ·ϕϕϕ‖
2
0,Ω > c ‖∇ϕϕϕ‖20,Ω ∀ϕϕϕ ∈ VVV ,

where Aδ(uuu,ϕϕϕ) = µ (∇uuu,∇ϕϕϕ)0,Ω − δ (∇ · uuu,∇ ·ϕϕϕ)0,Ω.

ii) The bilinear form B(. , .) fulfil the inf-sup-condition

inf
q∈QQQ

sup
ϕϕϕ∈VVV

B(ϕϕϕ, q)

‖ϕϕϕ‖VVV ‖q‖QQQ
= inf

q∈QQQ
sup
ϕϕϕ∈VVV

− (∇ ·ϕϕϕ, q)0,Ω

‖ϕϕϕ‖VVV ‖q‖QQQ
≥ c̃ ,

where c̃ is a positive constant and B(ϕϕϕ, q) = − (∇ ·ϕϕϕ, q)0,Ω.
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This leads to the similar theorem for the discrete case.

Theorem 4.6.2. There is an unique solution (uuuξh, p
ξ
h)T ∈ VhVhVh ×QhQhQh of the discrete stabi-

lized and regularised problem

F̃ϕϕϕhqh(uuuξh, p
ξ
h) = 0 ∀(ϕϕϕh, qh)T ∈ VhVhVh ×QhQhQh ,

with F̃ defined by equation (4.19), the following criteria:

i) There are positive constant c and δ, such that

Aδ(ϕϕϕh,ϕϕϕh) = µ ‖∇ϕϕϕh‖20,Ω − δ ‖∇ ·ϕϕϕh‖
2
0,Ω > c ‖∇ϕϕϕh‖20,Ω ∀ϕϕϕh ∈ VVVh .

ii) The bilinear form B(. , .) fulfil the inf-sup-condition

inf
qh∈QhQhQh

sup
ϕϕϕh∈VhVhVh

B(ϕϕϕh, qh)

‖ϕϕϕh‖VVV ‖qh‖QQQ
= inf

qh∈QhQhQh

sup
ϕϕϕh∈VhVhVh

− (∇ ·ϕϕϕh, qh)0,Ω

‖ϕϕϕh‖VVV ‖qh‖QQQ
≥ c̃ ,

where c̃ is a positive constant.

Proof. Analogue to the proof of the theorem 4.6.1. �

Its important to know how does the stabilisation of the square root affect the solution.
In the next theorem we consider limit of difference between the actual solution and the
solution of the stabilized problem.

Theorem 4.6.3. Let (uuu, p)T be the solution of the continuous problem

Fϕϕϕq(uuu, p) = 0 ∀(ϕϕϕ, q)T ∈ VVV ×QQQ ,

with F defined by equation (4.15). Let (uuuξ, pξ)T be the solution of the continuous stabilized
problem

F̃ϕϕϕq(uuuξ, pξ) = 0 ∀(ϕϕϕ, q)T ∈ VVV ×QQQ ,

with F̃ defined by equation (4.19). Then

lim
ξ→0

∥∥∥(uuu, p)T − (uuuξ, pξ)T
∥∥∥

VVV×QQQ
= 0 .

Besides the convergence for ξ → 0, the proof show how the convergence rate is affected
by value of |Ω|. This lead to the conclusion, to see ξ not as a constant, but more as
a piecewise constant function ξ : Ω → R. The rest of the chapter are the proof of the
theorems 4.6.1 and 4.6.3 as well as some lemma, that are used in this proofs.

Proof. (Theorem 4.6.1) As shown in the proof of the lemma 4.6.4, there is a positive
constant c, such that

Aδ(ϕϕϕ,ϕϕϕ) >c ‖∇ϕϕϕ‖20,Ω ∀ϕϕϕ ∈ VVV .
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i) (Strong monotony) We consider the dualpair〈
Ĕ(ϕϕϕ, q)T − Ĕ(ϕ̃̃ϕ̃ϕ, q̃)T, (ϕϕϕ, q)T − (ϕ̃̃ϕ̃ϕ, q̃)T

〉
VVV×QQQ

= Aδ(ϕϕϕ− ϕ̃̃ϕ̃ϕ,ϕϕϕ− ϕ̃ϕϕ)

+
(
λλλξ − λ̃̃λ̃λξ, δ∇ · (ϕϕϕ− ϕ̃̃ϕ̃ϕ)− (q − q̃)

)
0,Ω

∀(ϕϕϕ, q)T, (ϕ̃̃ϕ̃ϕ, q̃)T ∈ VVV ×QQQ .

According to inequality (4.22)(
λλλξ − λ̃̃λ̃λξ, δ∇ · (ϕϕϕ− ϕ̃̃ϕ̃ϕ)− (q − q̃)

)
0,Ω

>
δc

2

∥∥∥∥(∇ · (ϕϕϕ− ϕ̃̃ϕ̃ϕ)− 1

δ
(q − q̃)

)∥∥∥∥2

0,Ω

≥ δc

2
‖∇ · (ϕϕϕ− ϕ̃̃ϕ̃ϕ)‖20,Ω +

c

2δ
‖q − q̃‖20,Ω − c (∇ · (ϕϕϕ− ϕ̃̃ϕ̃ϕ), q − q̃)0,Ω .

By using (δ + 1) as a constant in the Young inequality we obtain

−c (∇ · (ϕϕϕ− ϕ̃̃ϕ̃ϕ), q − q̃)0,Ω ≥ −
c(δ + 1)

2
‖∇ · (ϕϕϕ− ϕ̃̃ϕ̃ϕ)‖20,Ω −

c

2(δ + 1)
‖q − q̃‖20,Ω .

Putting all those estimations together result in the following inequality:〈
Ĕ(ϕϕϕ, q)T − Ĕ(ϕ̃̃ϕ̃ϕ, q̃)T, (ϕϕϕ, q)T − (ϕ̃̃ϕ̃ϕ, q̃)T

〉
VVV×QQQ

> c ‖∇(ϕϕϕ− ϕ̃̃ϕ̃ϕ)‖20,Ω

− c
2
‖∇ · (ϕϕϕ− ϕ̃̃ϕ̃ϕ)‖20,Ω +

c

2δ(δ + 1)
‖q − q̃‖20,Ω

> α̃
∥∥(ϕϕϕ, q)T − (ϕ̃̃ϕ̃ϕ, q̃)T

∥∥2

VVV×QQQ
∀(ϕϕϕ, q)T, (ϕ̃̃ϕ̃ϕ, q̃)T ∈ VVV ×QQQ ,

with a constant α̃ =
c

2 max {2, δ(δ + 1)}
, which means that the operator Ĕ is strong

monotone.

(ii) (Lipschitz continuity) Using the inequalities (4.23) and (4.20), we can demonstrate,
that the mapping Ĕ is Lipschitz continuous:

∥∥∥Ĕ(ϕϕϕ, q)T − Ĕ(ϕ̃̃ϕ̃ϕ, q̃)T
∥∥∥

VVV∗×QQQ∗
= sup

(ũ̃ũu,p̃)T∈VVV×QQQ

〈
Ĕ(ϕϕϕ, q)T − Ĕ(ϕ̃̃ϕ̃ϕ, q̃)T, (ũ̃ũu, p̃)T

〉
VVV×QQQ

‖(ũ̃ũu, p̃)T‖VVV×QQQ

≤ sup
(ũ̃ũu,p̃)T∈VVV×QQQ

Aδ(ϕϕϕ− ϕ̃̃ϕ̃ϕ, ũ̃ũu)− (q − q̃,∇ · ũ̃ũu)0,Ω + (∇ · (ϕϕϕ− ϕ̃̃ϕ̃ϕ), p̃)0,Ω

‖(ũ̃ũu, p̃)T‖VVV×QQQ

+ sup
(ũ̃ũu,p̃)T∈VVV×QQQ

(
λλλξ − λ̃̃λ̃λξ, δ∇ · ũ̃ũu− p̃

)
0,Ω

‖(ũ̃ũu, p̃)T‖VVV×QQQ

≤
(
α+

δ2 + 1

δ

)∥∥(ϕϕϕ− ϕ̃̃ϕ̃ϕ, q − q̃)T
∥∥

VVV×QQQ
∀(ϕϕϕ, q)T, (ϕ̃̃ϕ̃ϕ, q̃)T ∈ VVV ×QQQ .

iii) (Conclusion) According to the theorem A.0.7 the equation

Ĕ(uuuξ, pξ)T = 000∗
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has exactly one solution (uuuξ, pξ)T ∈ VVV×QQQ, where 000∗ ∈ VVV∗ is additive neutral element of
the dual space. This means, that the equation

F̃ϕϕϕq(uuuξ, pξ) = 0 ∀(ϕϕϕ, q)T ∈ VVV ×QQQ .

has a unique solution (uuuξ, pξ)T ∈ VVV ×QQQ. �

Proof. (Theorem 4.6.3) Since the operator Ĕ is strong monotone we obtain the fol-
lowing equality :∥∥∥(uuu, p)T − (uuuξ, pξ)T

∥∥∥2

VVV×QQQ
<

1

α̃

〈
Ĕ(uuu, p)T − Ĕ(uuuξ, pξ)T, (uuu, p)T − (uuuξ, pξ)T

〉
VVV×QQQ

.

According to the definitions of (uuu, p)T and (uuuξ, pξ)T〈
Ĕ(uuuξ, pξ)T, (uuu, p)T − (uuuξ, pξ)T

〉
VVV×QQQ

= 0

and
〈
Ĕ(uuu, p)T, (uuu, p)T − (uuuξ, pξ)T

〉
VVV×QQQ

=
1

2α̃

√(∇ · uuu− 1

δ
p

)2

+ ξ −

√(
∇ · uuu− 1

δ
p

)2

, δ∇ ·
(
uuu− uuuξ

)
−
(
p− pξ

)
0,Ω

.

Finally, using the Cauchy-Schwarz, the Young’s and Poincare’s inequalities, we receive∥∥∥(uuu, p)T − (uuuξ, pξ)T
∥∥∥2

VVV×QQQ
<

1

α̃

〈
Ĕ(uuu, p)T − Ĕ(uuuξ, pξ)T, (uuu, p)T − (uuuξ, pξ)T

〉
VVV×QQQ

=
1

2α̃

√(∇ · uuu− 1

δ
p

)2

+ ξ −

√(
∇ · uuu− 1

δ
p

)2

, δ∇ ·
(
uuu− uuuξ

)
−
(
p− pξ

)
0,Ω

≤ 1

2α̃

∥∥∥∥∥∥ ξ√(
∇ · uuu− 1

δp
)2

+ ξ +

√(
∇ · uuu− 1

δp
)2
∥∥∥∥∥∥

0,Ω︸ ︷︷ ︸
≤‖√ξ‖

0,Ω

∥∥∥δ∇ · (uuu− uuuξ)− (p− pξ)∥∥∥
0,Ω

≤ |Ω|
√
ξ

√
δ2 + 1

2α̃

∥∥∥(uuu, p)T − (uuuξ, pξ)T
∥∥∥

VVV×QQQ
.

This means, that
∥∥(uuu, p)T − (uuuξ, pξ)T

∥∥
VVV×QQQ

≤ |Ω|
√
ξ
√
δ2+1
2α̃ and as a result,

lim
ξ→0

∥∥∥(uuu, p)T − (uuuξ, pξ)T
∥∥∥

VVV×QQQ
= 0 . �

Lemma 4.6.4 (Linear problem). Let L̆ : VVV ×QQQ → VVV∗ ×QQQ∗, (uuu, p)T 7→ (fff∗, ggg∗)T be a
linear mapping into the dual space, defined by the saddle point problem

Aδ(uuu,ϕϕϕ) + B(ϕϕϕ, p) = 〈fff∗,ϕϕϕ〉VVV ∀ϕϕϕ ∈ VVV ,

B(uuu, q) = 〈g∗, q〉QQQ ∀q ∈ QQQ ,
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where Aδ(uuu,ϕϕϕ) = µ (∇uuu,∇ϕϕϕ)0,Ω − δ (∇ · uuu,∇ ·ϕϕϕ)0,Ω and B(ϕϕϕ, q) = − (∇ ·ϕϕϕ, q)0,Ω. Then

for 0 < δ < µ the operator L̆ is isomorph and the following inequalities apply∣∣∣∣〈L̆(ũ̃ũu, p̃)T, (ϕϕϕ, q)T
〉

VVV×QQQ

∣∣∣∣ =
∣∣∣Aδ(ũ̃ũu,ϕϕϕ)− (∇ ·ϕϕϕ, p̃)0,Ω − (q,∇ · ũ̃ũu)0,Ω

∣∣∣
≤ α

∥∥(ũ̃ũu, p̃)T
∥∥

VVV×QQQ

∥∥(ϕϕϕ, q)T
∥∥

VVV×QQQ
∀(ϕϕϕ, q)T, (ũ̃ũu, p̃)T ∈ VVV ×QQQ (4.20)

and

1

β

∥∥(ũ̃ũu, p̃)T
∥∥

VVV×QQQ
≤ sup

(ϕϕϕ,q)T∈VVV×QQQ

〈
L̆(ũ̃ũu, p̃)T, (ϕϕϕ, q)T

〉
VVV×QQQ

‖(ϕϕϕ, q)T‖VVV×QQQ

= sup
(ϕϕϕ,q)T∈VVV×QQQ

Aδ(ũ̃ũu,ϕϕϕ)− (p̃,∇ ·ϕϕϕ)0,Ω − (q,∇ · ũ̃ũu)0,Ω

‖(ϕϕϕ, q)T‖VVV×QQQ

∀(ũ̃ũu, p̃)T ∈ VVV ×QQQ . (4.21)

Proof. Since ‖∇ϕϕϕ‖0,Ω > ‖∇ ·ϕϕϕ‖0,Ω, for 0 < δ < µ there is a positive constant c, such
that

Aδ(ϕϕϕ,ϕϕϕ) =µ (∇ϕϕϕ,∇ϕϕϕ)0,Ω − δ (∇ ·ϕϕϕ,∇ ·ϕϕϕ)0,Ω

=µ ‖∇ϕϕϕ‖20,Ω − δ ‖∇ ·ϕϕϕ‖
2
0,Ω

>c ‖∇ϕϕϕ‖20,Ω
≥ c

2
‖ϕϕϕ‖21,Ω ∀ϕϕϕ ∈ VVV ,

This means the bilinear form Aδ(. , .) is V-elliptic. The bilinear form B(. , .) fulfil the
inf-sup-condition

inf
q∈QQQ

sup
ϕϕϕ∈VVV

B(ϕϕϕ,qqq)

‖ϕϕϕ‖VVV ‖qqq‖QQQ
= inf

q∈QQQ
sup
ϕϕϕ∈VVV

− (∇ ·ϕϕϕ, q)0,Ω

‖ϕϕϕ‖VVV ‖q‖QQQ
≥ c̃ ,

where c̃ is a positive constant (see f.e. Girault & Raviart [10]). According to the Brezzi’s
splitting theorem A.0.5, the linear mapping L̆ is an isomorphism and, as per the abstract
existence theorem A.0.4, we obtain following inequalities, with constants α, β ∈ R+:∣∣∣∣〈L̆(ũ̃ũu, p̃)T, (ϕϕϕ, q)T

〉
VVV×QQQ

∣∣∣∣ =
∣∣∣Aδ(ũ̃ũu,ϕϕϕ)− (∇ ·ϕϕϕ, p̃)0,Ω − (q,∇ · ũ̃ũu)0,Ω

∣∣∣
≤ α

∥∥(ũ̃ũu, p̃)T
∥∥

VVV×QQQ

∥∥(ϕϕϕ, q)T
∥∥

VVV×QQQ
∀(ϕϕϕ, q)T, (ũ̃ũu, p̃)T ∈ VVV ×QQQ

and

1

β

∥∥(ũ̃ũu, p̃)T
∥∥

VVV×QQQ
≤ sup

(ϕϕϕ,q)T∈VVV×QQQ

〈
L̆(ũ̃ũu, p̃)T, (ϕϕϕ, q)T

〉
VVV×QQQ

‖(ϕϕϕ, q)T‖VVV×QQQ

= sup
(ϕϕϕ,q)T∈VVV×QQQ

Aδ(ũ̃ũu,ϕϕϕ)− (p̃,∇ ·ϕϕϕ)0,Ω − (q,∇ · ũ̃ũu)0,Ω

‖(ϕϕϕ, q)T‖VVV×QQQ

∀(ũ̃ũu, p̃)T ∈ VVV ×QQQ . �
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Lemma 4.6.5. We define λλλξ, λ̃̃λ̃λξ ∈ QQQ as

λλλξ =
1

2

(
∇ ·ϕϕϕ− 1

δ
q

)
+

1

2

√(
∇ ·ϕϕϕ− 1

δ
q

)2

+ ξ

and λ̃̃λ̃λξ =
1

2

(
∇ · ϕ̃ϕϕ− 1

δ
q̃

)
+

1

2

√(
∇ · ϕ̃̃ϕ̃ϕ− 1

δ
q̃

)2

+ ξ .

Then for the constants 0 < c < 1 and 0 < δ the following inequalities apply:

(
λλλξ − λ̃̃λ̃λξ, δ∇ · (ϕϕϕ− ϕ̃̃ϕ̃ϕ)− (q − q̃)

)
0,Ω

>
δc

2

∥∥∥∥(∇ · (ϕϕϕ− ϕ̃̃ϕ̃ϕ)− 1

δ
(q − q̃)

)∥∥∥∥2

0,Ω

(4.22)

∀(ϕϕϕ, q)T, (ϕ̃̃ϕ̃ϕ, q̃)T ∈ VVV ×QQQ

and
(
λλλξ − λ̃̃λ̃λξ, δũ̃ũu− p̃

)
0,Ω
≤ δ2 + 1

δ

∥∥(ϕϕϕ− ϕ̃̃ϕ̃ϕ, q − q̃)T
∥∥

VVV×QQQ

∥∥(ũ̃ũu, p̃)T
∥∥

VVV×QQQ
(4.23)

∀(ϕϕϕ, q)T, (ϕ̃̃ϕ̃ϕ, q̃)T, (ũ̃ũu, p̃)T ∈ VVV ×QQQ .

Proof. We consider the scalar product

(
λξ − λ̃ξ, δ∇ · (ϕϕϕ− ϕ̃̃ϕ̃ϕ)− (q − q̃)

)
0,Ω

=
1

2

(
∇ · (ϕϕϕ− ϕ̃̃ϕ̃ϕ)− 1

δ
(q − q̃), δ∇ · (ϕϕϕ− ϕ̃̃ϕ̃ϕ)− (q − q̃)

)
0,Ω

+
1

2

√(∇ ·ϕϕϕ− 1

δ
q

)2

+ ξ −

√(
∇ · ϕ̃̃ϕ̃ϕ− 1

δ
q̃

)2

+ ξ, δ∇ · (ϕϕϕ− ϕ̃̃ϕ̃ϕ)− (q − q̃)


0,Ω

=
1

2

(
∇ · (ϕϕϕ− ϕ̃̃ϕ̃ϕ)− 1

δ
(q − q̃), δ∇ · (ϕϕϕ− ϕ̃̃ϕ̃ϕ)− (q − q̃)

)
0,Ω

+
1

2

 (
∇ ·ϕϕϕ− 1

δ q
)2 − (∇ · ϕ̃̃ϕ̃ϕ− 1

δ q̃
)2√(

∇ ·ϕϕϕ− 1
δ q
)2

+ ξ +

√(
∇ · ϕ̃̃ϕ̃ϕ− 1

δ q̃
)2

+ ξ
, δ∇ · (ϕϕϕ− ϕ̃̃ϕ̃ϕ)− (q − q̃)


0,Ω

=
δ

2

1 +

(
∇ ·ϕϕϕ− 1

δ q
)

+
(
∇ · ϕ̃̃ϕ̃ϕ− 1

δ q̃
)√(

∇ ·ϕϕϕ− 1
δ q
)2

+ ξ +

√(
∇ · ϕ̃̃ϕ̃ϕ− 1

δ q̃
)2

+ ξ
,

(
∇ · (ϕϕϕ− ϕ̃̃ϕ̃ϕ)− 1

δ
(q − q̃)

)2


0,Ω
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Using the Hölder’s inequality we can find a constant 0 < c < 1, such that

δ

2

1 +

(
∇ ·ϕϕϕ− 1

δ q
)

+
(
∇ · ϕ̃̃ϕ̃ϕ− 1

δ q̃
)√(

∇ ·ϕϕϕ− 1
δ q
)2

+ ξ +

√(
∇ · ϕ̃̃ϕ̃ϕ− 1

δ q̃
)2

+ ξ
,

(
∇ · (ϕϕϕ− ϕ̃̃ϕ̃ϕ)− 1

δ
(q − q̃)

)2


0,Ω

>
δ

2

1−

∥∥∥∥∥∥
(
∇ ·ϕϕϕ− 1

δ q
)

+
(
∇ · ϕ̃̃ϕ̃ϕ− 1

δ q̃
)√(

∇ ·ϕϕϕ− 1
δ q
)2

+ ξ +

√(
∇ · ϕ̃̃ϕ̃ϕ− 1

δ q̃
)2

+ ξ

∥∥∥∥∥∥
LLL∞(Ω)


×
∥∥∥∥(∇ · (ϕϕϕ− ϕ̃̃ϕ̃ϕ)− 1

δ
(q − q̃)

)∥∥∥∥2

0,Ω

>
δc

2

∥∥∥∥(∇ · (ϕϕϕ− ϕ̃̃ϕ̃ϕ)− 1

δ
(q − q̃)

)∥∥∥∥2

0,Ω

.

On the other hand, using the Cauchy-Schwarz, the Young’s and Poincare’s inequalities,
we receive

(
λλλ− λ̃̃λ̃λ, δũ̃ũu− p̃

)
0,Ω

=
1

2

∫
Ω

1 +

(
∇ ·ϕϕϕ− 1

δ q
)

+
(
∇ · ϕ̃̃ϕ̃ϕ− 1

δ q̃
)√(

∇ ·ϕϕϕ− 1
δ q
)2

+ ξ +

√(
∇ · ϕ̃̃ϕ̃ϕ− 1

δ q̃
)2

+ ξ


︸ ︷︷ ︸

<2

×

(
∇ · (ϕϕϕ− ϕ̃̃ϕ̃ϕ)− 1

δ
(q − q̃)

)
(δũ̃ũu− p̃) dxxx ,

which leads to(
λλλ− λ̃̃λ̃λ, δũ̃ũu− p̃

)
0,Ω

<

(∣∣∣∣∇ · (ϕϕϕ− ϕ̃̃ϕ̃ϕ)− 1

δ
(q − q̃)

∣∣∣∣ , |δũ̃ũu− p̃|)
0,Ω

≤
(
‖ϕϕϕ− ϕ̃̃ϕ̃ϕ‖0,Ω +

1

δ
‖q − q̃‖0,Ω

)(
δ ‖ũ̃ũu‖0,Ω + ‖p̃‖0,Ω

)
=

√(
‖ϕϕϕ− ϕ̃̃ϕ̃ϕ‖0,Ω +

1

δ
‖q − q̃‖0,Ω

)2
√(

δ ‖ũ̃ũu‖0,Ω + ‖p̃‖0,Ω
)2

≤

√(
1 +

1

δ2

)(
‖ϕϕϕ− ϕ̃̃ϕ̃ϕ‖20,Ω + ‖q − q̃‖20,Ω

)√
(δ2 + 1)

(
‖ũ̃ũu‖20,Ω + ‖p̃‖20,Ω

)
≤ δ2 + 1

δ

∥∥(ϕϕϕ− ϕ̃̃ϕ̃ϕ, q − q̃)T
∥∥

VVV×QQQ

∥∥(ũ̃ũu, p̃)T
∥∥

VVV×QQQ
. �

4.7. Error estimate

In the next sections we derive an ”a posteriori” error estimator for the stokes problem
with cavitation, that was introduced in the section 4.4.3, using the projection operator for
the second Lagrange multiplier. As a base we use the method of error analysis introduced
by Verfürth [16].
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Summarised we will proof that, if (uuu, p)T ∈ VVV×QQQ is the continuous solution of the mixed
variation formulation for the stokes problem with cavitation, given by (4.1) to (4.3), and
(uuuh, ph)T ∈ VhVhVh ×QhQhQh is the discrete solution, where VhVhVh ⊆ VVV and QhQhQh ⊆ QQQ, then the norm
of the error

∥∥(uuu− uuuh, p− ph)T
∥∥

VVV×QQQ
can be estimated with the inequality∥∥(uuu− uuuh, p− ph)T

∥∥2

VVV×QQQ
≤ cη(uuuh, ph, fff) ,

where

η(uuuh, ph, fff) =
∑
T∈Th

(
|T | ‖fff + µ∆uuuh +∇ph‖20,T + |∂T |

∥∥∥∥∂uuuh∂n − phnnn
∥∥∥∥2

0,∂T\∂Ω

)
+ ‖∇ · uuuh − λh‖20,Ω + (ΠΛΛΛph, λh)0,Ω + ‖ΠΛΛΛph − ph‖20,Ω

and

λh = ΠΛΛΛh

(
∇ · uuuh −

1

δ
ph

)
.

We proof this hypothesis in several steps:

• First of all we collect and prove, if necessary, some inequalities, that are used in
the further course of the chapter.

• The next step is to estimate the difference between the second Lagrange parameter
λ and its approximation λh.

• Using the results of this sections we finally derive the a posteriori error estimator.

4.7.1. Helpful estimates

The first two useful inequalities, that should be introduced are

‖vvv − Ihvvv‖0,T ≤ c|T ||T |
1
2 ‖∇vvv‖0,T (4.24)

and ‖vvv − Ihvvv‖0,∂T ≤ c|∂T ||∂T |
1
2 ‖∇vvv‖0,T , (4.25)

where vvv ∈
(
HHH1(Ω)

)n
with n ∈ N and Ihvvv is its interpolation (see Verfürth [16, p. 313]).

The next two lemmas are leading to inequality, which contains the typical norms of local
residual of the classical formulation and the norms of the directional derivative of uuuh in
the direction of the outward pointing normal nnn on each cell.

Lemma 4.7.1. For all θ : Th −→ R+
0 and ϕϕϕ ∈

(
L2L2L2(Ω)

)n
with n ∈ N the following

inequality applies

∑
T∈Th

θ(T ) ‖ϕϕϕ‖0,T ≤ ‖ϕϕϕ‖0,Ω

∑
T∈Th

θ2(T )

 1
2

. (4.26)
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Proof. The sum
∑
T∈Th

θ(T )‖ ‖ϕϕϕ‖0,T =
Nh∑
j=1

θ(Tj) ‖ϕϕϕ‖0,Tj can be interpreted as a scalar

product in the vector space RNh . By applying Cauchy-Schwarz inequality we get

Nh∑
j=1

θ(Tj) ‖ϕϕϕ‖0,Tj ≤

 Nh∑
j=1

θ2(Tj)

 1
2
 Nh∑
j=1

‖ϕϕϕ‖20,Tj

 1
2

=

 Nh∑
j=1

θ2(Tj)

 1
2

‖ϕϕϕ‖0,Ω . �

Lemma 4.7.2. For all uuuh ∈ VhVhVh, ph ∈ QhQhQh and fff,ϕϕϕ ∈ VVV the following inequality applies

(fff,ϕϕϕ− Ihϕϕϕ)0,Ω−µ (∇uuuh,∇ (ϕϕϕ− Ihϕϕϕ))0,Ω + (ph,∇ · (ϕϕϕ− Ihϕϕϕ))0,Ω

≤ 2 ‖∇ϕϕϕ‖0,Ω
√
ηRes(uuuh, ph, fff), (4.27)

where

ηRes(uuuh, ph, fff) =
∑
T∈Th

(
c2
|T ||T | ‖fff + µ∆uuuh −∇ph‖20,T + c2

|∂T ||∂T |
∥∥∥∥∂uuuh∂nnn − phnnn

∥∥∥∥2

0,∂T\∂Ω

)
.

Proof. First of all we split the scalar products and consider them cell wise. Using Green’s
first identity and Cauchy-Schwarz inequality we receive fist estimate:

(fff,ϕϕϕ− Ihϕϕϕ)0,Ω − µ (∇uuuh,∇ (ϕϕϕ− Ihϕϕϕ))0,Ω + (ph,∇ · (ϕϕϕ− Ihϕϕϕ))0,Ω

≤
∑
T∈Th

(
(fff,ϕϕϕ− Ihϕϕϕ)0,T − µ (∇uuuh,∇ (ϕϕϕ− Ihϕϕϕ))0,T + (ph,∇ · (ϕϕϕ− Ihϕϕϕ))0,T

)

≤
∑
T∈Th

(
(fff + µ∆uuuh −∇ph,ϕϕϕ− Ihϕϕϕ)0,T +

(
∂uuuh
∂nnn
− phnnn,ϕϕϕ− Ihϕϕϕ

)
0,∂T\∂Ω

)

≤
∑
T∈Th

(
‖fff + µ∆uuuh −∇ph‖0,T ‖ϕϕϕ− Ihϕϕϕ‖0,T

+

∥∥∥∥∂uuuh∂nnn − phnnn
∥∥∥∥

0,∂T\∂Ω

‖ϕϕϕ− Ihϕϕϕ‖0,∂T\∂Ω

)
.

Application of the inequalities (4.24) and (4.25) transforms the estimate into

(fff,ϕϕϕ− Ihϕϕϕ)0,Ω − µ (∇uuuh,∇ (ϕϕϕ− Ihϕϕϕ))0,Ω + (ph,∇ · (ϕϕϕ− Ihϕϕϕ))0,Ω

≤
∑
T∈Th

‖∇ϕϕϕ‖0,T

(
c|T ||T |

1
2 ‖fff + µ∆uuuh −∇ph‖0,T + c|∂T ||∂T |

1
2

∥∥∥∥∂uuuh∂nnn − phnnn
∥∥∥∥

0,∂T\∂Ω

)
.
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At this point we just need to apply the inequality (4.26) and the Young’s inequality to
receive the assertion from above:

(fff,ϕϕϕ− Ihϕϕϕ)0,Ω−µ (∇uuuh,∇ (ϕϕϕ− Ihϕϕϕ))0,Ω + (ph,∇ · (ϕϕϕ− Ihϕϕϕ))0,Ω

≤‖∇ϕϕϕ‖0,Ω

∑
T∈Th

(
c|T ||T |

1
2 ‖fff + µ∆uuuh −∇ph‖0,T

+ c|∂T ||∂T |
1
2

∥∥∥∥∂uuuh∂nnn − phnnn
∥∥∥∥

0,∂T\∂Ω

)2
 1

2

≤2 ‖∇ϕϕϕ‖0,Ω

∑
T∈Th

(
c2
|T ||T | ‖fff + µ∆uuuh −∇ph‖20,T

+ c2
|∂T ||∂T |

∥∥∥∥∂uuuh∂nnn − phnnn
∥∥∥∥2

0,∂T\∂Ω

)) 1
2

. �

4.7.2. Errror estimator for second Lagrange multiplier

An important part of the development of the error estimator is finding proper estimate
for the difference between the second Lagrange multiplier and its approximation. In this
section we introduce such inequality.

Theorem 4.7.3. Let (uuu, p)T ∈ VVV × QQQ be the continuous solution of the mixed vari-
ation formulation for the stokes problem with cavitation, given by (4.1) to (4.3), and
(uuuh, ph)T ∈ VhVhVh × QhQhQh is the discrete solution. Then the norm of ‖λ− λh‖0,Ω can be
estimated with the inequality

ε ‖λ− λh‖20,Ω ≤
1

2

∥∥(uuu− uuuh, p− ph)T
∥∥2

VVV×QQQ

+ cλ
∑
T∈Th

(
c2
|T ||T | ‖fff + µ∆uuuh −∇ph‖20,T + c2

|∂T ||∂T |
∥∥∥∥∂uuuh∂nnn − phnnn

∥∥∥∥2

0,∂T\∂Ω

)
(4.28)

+ cλ ‖∇ · uuuh − λh‖20,Ω + cλ (ΠΛΛΛph, λh)0,Ω + cλ ‖ph − ΠΛΛΛph‖20,Ω ,

where ε > 0 and cλ > 0 are constants.

Proof. Since Aδ(vvv,vvv) ≥ 0 is V-elliptic we consider our start inequality

δ ‖λ− λh‖20,Ω ≤ A
δ(uuu− uuuh,uuu− uuuh) + δ (λ− λh, λ− λh)0,Ω .
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On the right side of the inequality we add and subtract a number of scalar products:

Aδ(uuu− uuuh,uuu− uuuh) + δ (λ− λh, λ− λh)0,Ω

=Aδ(uuu− uuuh,uuu− uuuh)− (p− ph,∇ · (uuu− uuuh))0,Ω + δ (λ− λh,∇ · (uuu− uuuh))0,Ω

+ (p− ph, λ− λh)0,Ω − δ (∇ · (uuu− uuuh), λ− λh)0,Ω + δ (λ− λh, λ− λh)0,Ω

− (λ− λh, p− ph)0,Ω + (∇ · (uuu− uuuh), p− ph)0,Ω .

Applying (4.16) and (4.17), we obtain the equality

Aδ(uuu− uuuh,uuu− uuuh) + δ (λ− λh, λ− λh)0,Ω

=Aδ(uuu,uuu− uuuh)− (p,∇ · (uuu− uuuh))0,Ω + δ (λ,∇ · (uuu− uuuh))0,Ω︸ ︷︷ ︸
=(fff,uuu−uuuh)0,Ω

−Aδ(uuuh,uuu− uuuh) + (ph,∇ · (uuu− uuuh))0,Ω − δ (λh,∇ · (uuu− uuuh))0,Ω

+ (p− ph, λ− λh)0,Ω + δ (∇ · uuuh − λh, λ− λh)0,Ω + (λh −∇ · uuuh, p− ph)0,Ω

− δ (∇ · uuu− λ, λ− λh)0,Ω︸ ︷︷ ︸
=0

+ (∇ · uuu− λ, p− ph)0,Ω︸ ︷︷ ︸
=0

.

Using the notation

eeeu = uuu− uuuh eeeu ∈ VVV

and Iheeeu = Ih(uuu− uuuh) Iheeeu ∈ VhVhVh ,

we can write the equation above as

Aδ(uuu− uuuh,uuu− uuuh) + δ (λ− λh, λ− λh)0,Ω

= (fff,eeeu)0,Ω −A
δ(uuuh, eeeu) + (ph,∇ · eeeu)0,Ω − δ (λh,∇ · eeeu)0,Ω

+ (p− ph, λ− λh)0,Ω + δ (∇ · uuuh − λh, λ− λh)0,Ω + (λh −∇ · uuuh, p− ph)0,Ω .

Next, we apply the discrete version of the equation (4.16), where we use Iheeeu as a test
function, and insert a projection ΠΛΛΛph into one of the scalar product. Eventually we
obtain

Aδ(uuu− uuuh,uuu− uuuh) + δ (λ− λh, λ− λh)0,Ω

= (fff,eeeu − Iheeeu)0,Ω − µ (∇uuuh,∇ (eeeu − Iheeeu))0,Ω + (ph,∇ · (eeeu − Iheeeu))0,Ω

+ δ (∇ · uuuh − λh,∇ · (eeeu − Iheeeu))0,Ω + δ (∇ · uuuh − λh, λ− λh)0,Ω

+ (λh −∇ · uuuh, p− ph)0,Ω + (p− ΠΛΛΛph + ΠΛΛΛph − ph, λ− λh)0,Ω .

The first three summands on the right side are estimatable by (4.27). We apply the
inequality (4.24) on the fourth and Cachy-Schwarz inequality on fifth an sixth scalar
products respectively. The last summand can be estimated by using (4.9), p ≥ 0 a. e. in
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Ω and Cachy-Schwarz inequality as follows

(p− ΠΛΛΛph + ΠΛΛΛph − ph, λ− λh)0,Ω = (p, λ)0,Ω︸ ︷︷ ︸
=0

− (ΠΛΛΛph, λ)0,Ω︸ ︷︷ ︸
≥0

− (p, λh)0,Ω︸ ︷︷ ︸
≥0

+ (ΠΛΛΛph, λh)0,Ω + (ΠΛΛΛph − ph, λ− λh)0,Ω

≤ (ΠΛΛΛph, λh)0,Ω + (ΠΛΛΛph − ph, λ− λh)0,Ω

≤ (ΠΛΛΛph, λh)0,Ω + ‖ΠΛΛΛph − ph‖0,Ω ‖λ− λh‖0,Ω .

Summarising the above one obtains

Aδ(uuu− uuuh,uuu− uuuh) + δ (λ− λh, λ− λh)0,Ω ≤ 2 ‖∇(uuu− uuuh)‖0,T

×

∑
T∈Th

(
c2
|T ||T | ‖fff + µ∆uuuh −∇ph‖20,T + c2

|∂T ||∂T |
∥∥∥∥∂uuuh∂nnn − phnnn

∥∥∥∥2

0,∂T\∂Ω

) 1
2

+ δ ‖∇ · uuuh − λh‖0,Ω ‖∇(uuu− uuuh)‖0,Ω + δ ‖∇ · uuuh − λh‖0,Ω ‖λ− λh‖0,Ω
+ ‖λh −∇ · uuuh‖0,Ω ‖p− ph‖0,Ω + (ΠΛΛΛph, λh)0,Ω

+ ‖ΠΛΛΛph − ph‖0,Ω ‖λ− λh‖0,Ω .

Next we apply the Young’s inequality with positive constants cy,1, cy,2, cy,3, cy,4, cy,5 ∈ R+

and receive

δ ‖λ− λh‖20,Ω ≤
(
cy,1 +

δ

2
cy,2

)
‖∇(uuu− uuuh)‖20,T +

cy,4
2
‖p− ph‖20,Ω

+
1

cy,1

∑
T∈Th

(
c2
|T ||T | ‖fff + µ∆uuuh −∇ph‖20,T + c2

|∂T ||∂T |
∥∥∥∥∂uuuh∂nnn − phnnn

∥∥∥∥2

0,∂T\∂Ω

)

+

(
δ

2cy,2
+

δ

2cy,3
+

1

2cy,4

)
‖∇ · uuuh − λh‖20,Ω

+ (ΠΛΛΛph, λh)0,Ω +
1

2cy,5
‖ph − ΠΛΛΛph‖20,Ω +

δcy,3 + cy,5
2

‖λ− λh‖20,Ω .

We set cy,3 = 1
2 and cy,5 = δ

2 , in order to absorb the norm ‖λ− λh‖20,Ω on the right side

by the left side, multiply subsequently both sides with 2ε
δ , where ε ∈ R+ is a positive

constant, and obtain

ε ‖λ− λh‖20,Ω ≤
ε(cy,1 + δcy,2)

δ
‖∇(uuu− uuuh)‖20,T +

εcy,4
δ
‖p− ph‖20,Ω

+
2ε

δcy,1

∑
T∈Th

(
c2
|T ||T | ‖fff + µ∆uuuh −∇ph‖20,T + c2

|∂T ||∂T |
∥∥∥∥∂uuuh∂nnn − phnnn

∥∥∥∥2

0,∂T\∂Ω

)

+
ε (δcy,4(1 + 2cy,2) + cy,2)

δcy,2cy,4
‖∇ · uuuh − λh‖20,Ω

+
2ε

δ
(ΠΛΛΛph, λh)0,Ω +

2ε

δ2
‖ph − ΠΛΛΛph‖20,Ω .
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Setting cy,1 = δ
4ε , cy,2 = 1

4ε and cy,4 = δ
2ε allow us to simplify the right side:

ε ‖λ− λh‖20,Ω ≤
1

2
‖∇(uuu− uuuh)‖20,T +

1

2
‖p− ph‖20,Ω

+
8ε2

δ2

∑
T∈Th

(
c2
|T ||T | ‖fff + µ∆uuuh −∇ph‖20,T + c2

|∂T ||∂T |
∥∥∥∥∂uuuh∂nnn − phnnn

∥∥∥∥2

0,∂T\∂Ω

)

+
ε
(
δ2(4ε+ 2) + 4ε

)
δ2

‖∇ · uuuh − λh‖20,Ω

+
2ε

δ
(ΠΛΛΛph, λh)0,Ω +

2ε

δ2
‖ph − ΠΛΛΛph‖20,Ω .

Finally, we define the constant

cλ = max

{
8ε2

δ2
,
ε
(
δ2(4ε+ 2) + 4ε

)
δ2

,
2ε

δ
,

2ε

δ2

}
and obtain the hypothesis as a estimation result

ε ‖λ− λh‖20,Ω ≤
1

2

∥∥(uuu− uuuh, p− ph)T
∥∥2

VVV×QQQ

+ cλ
∑
T∈Th

(
c2
|T ||T | ‖fff + µ∆uuuh −∇ph‖20,T + c2

|∂T ||∂T |
∥∥∥∥∂uuuh∂nnn − phnnn

∥∥∥∥2

0,∂T\∂Ω

)
+ cλ ‖∇ · uuuh − λh‖20,Ω + cλ (ΠΛΛΛph, λh)0,Ω + cλ ‖ΠΛΛΛph − ph‖20,Ω . �

Remark 4.7.4. By using another values for the constants cy,1, cy,2, cy,3, cy,4 and cy,5 we
can also obtain the estimation

ε ‖λ− λh‖20,Ω ≤
1

2
‖uuu− uuuh‖2VVV + ‖p− ph‖2QQQ

+ cλ,u
∑
T∈Th

(
c2
|T ||T | ‖fff + µ∆uuuh −∇ph‖20,T + c2

|∂T ||∂T |
∥∥∥∥∂uuuh∂nnn − phnnn

∥∥∥∥2

0,∂T\∂Ω

)
(4.29)

+ cλ,u ‖∇ · uuuh − λh‖20,Ω + cλ,u (ΠΛΛΛph, λh)0,Ω + cλ,u ‖ΠΛΛΛph − ph‖20,Ω ,

as well as the estimation

ε ‖λ− λh‖20,Ω ≤ ‖uuu− uuuh‖
2
VVV +

1

2
‖p− ph‖2QQQ

+ cλ,p
∑
T∈Th

(
c2
|T ||T | ‖fff + µ∆uuuh −∇ph‖20,T + c2

|∂T ||∂T |
∥∥∥∥∂uuuh∂nnn − phnnn

∥∥∥∥2

0,∂T\∂Ω

)
+ cλ,p ‖∇ · uuuh − λh‖20,Ω + cλ,p (ΠΛΛΛph, λh)0,Ω + cλ,p ‖ΠΛΛΛph − ph‖20,Ω . (4.30)

4.7.3. Complete errror estimator

Theorem 4.7.5. Let (uuu, p)T ∈ VVV ×QQQ be the continuous solution of the mixed variation
formulation for the stokes problem with cavitation, given by (4.1) to (4.3). Let (uuuh, ph)T ∈
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VhVhVh×QhQhQh be the discrete solution. Then the norm
∥∥(uuu− uuuh, p− ph)T

∥∥
VVV×QQQ

can be estimated
with the inequality ∥∥(uuu− uuuh, p− ph)T

∥∥2

VVV×QQQ
≤ cη(uuuh, ph, fff) ,

where

η(uuuh, ph, fff) =
∑
T∈Th

(
|T | ‖fff + µ∆uuuh +∇ph‖20,T + |∂T |

∥∥∥∥∂uuuh∂n − phnnn
∥∥∥∥2

0,∂T\∂Ω

)
+ ‖∇ · uuuh − λh‖20,Ω + (ΠΛΛΛph, λh)0,Ω + ‖ΠΛΛΛph − ph‖20,Ω

and

λh = ΠΛΛΛh

(
∇ · uuuh −

1

δ
ph

)
.

Proof. We start with an inequality (4.21), where ũ̃ũu = uuu− uuuh and p̃ = p− ph,∥∥(uuu− uuuh, p− ph)T
∥∥

VVV×QQQ

≤ β sup
(ϕϕϕ,q)T∈VVV×QQQ

Aδ(uuu− uuuh,ϕϕϕ)− (p− ph,∇ ·ϕϕϕ)0,Ω − (∇ · (uuu− uuuh), q)0,Ω

‖(ϕϕϕ, q)T‖VVV×QQQ

(4.31)

with a constant β > 0. First of all we estimate the numerator. We use (4.16) to obtain
a start equality

Aδ(uuu− uuuh,ϕϕϕ)− (p− ph,∇ ·ϕϕϕ)0,Ω = (fff,ϕϕϕ)0,Ω − δ (λ,∇ ·ϕϕϕ)0,Ω

−Aδ(uuuh,ϕϕϕ) + (ph,∇ ·ϕϕϕ)0,Ω ∀ϕϕϕ ∈ VVV

Subtracting the scalar product (∇ · (uuu− uuuh), q)0,Ω from both sides gives us the numerator
of (4.31) on the left side. On the right side we apply the discrete version of (4.16) and
obtain

Aδ(uuu− uuuh,ϕϕϕ)− (p− ph,∇ ·ϕϕϕ)0,Ω − (∇ · (uuu− uuuh), q)0,Ω

= (fff,ϕϕϕ)0,Ω − δ (λ,∇ ·ϕϕϕ)0,Ω −A
δ(uuuh,ϕϕϕ) + (ph,∇ ·ϕϕϕ)0,Ω − (∇ · (uuu− uuuh), q)0,Ω

= (fff,ϕϕϕ− Ihϕϕϕ)0,Ω −A
δ(uuuh,ϕϕϕ− Ihϕϕϕ) + (ph,∇ · (ϕϕϕ− Ihϕϕϕ))0,Ω

−
(
Aδ(uuuh, Ihϕϕϕ)− (ph,∇ · (Ihϕϕϕ))0,Ω + δ (λh,∇ · (Ihϕϕϕ))0,Ω − (fff, Ihϕϕϕ)0,Ω

)
︸ ︷︷ ︸

=0

− δ (λ,∇ · (ϕϕϕ− Ihϕϕϕ))0,Ω − (∇ · (uuu− uuuh), q)0,Ω + δ (λh − λ,∇ · (Ihϕϕϕ))0,Ω

= (fff,ϕϕϕ− Ihϕϕϕ)0,Ω − µ (∇uuuh,∇ (ϕϕϕ− Ihϕϕϕ))0,Ω + (ph,∇ · (ϕϕϕ− Ihϕϕϕ))0,Ω

+ δ (∇ · uuuh,∇ · (ϕϕϕ− Ihϕϕϕ))0,Ω − δ (λ,∇ · (ϕϕϕ− Ihϕϕϕ))0,Ω

− (∇ · (uuu− uuuh), q)0,Ω + δ (λh − λ,∇ · (Ihϕϕϕ))0,Ω .
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The first part of the right side of the equation can be estimated with (4.27). We consider
the second part separately, using the equality (4.17) as well as the Cauchy-Schwarz and
the Young’s inequalities:

δ (∇ · uuuh − λ,∇ · (ϕϕϕ− Ihϕϕϕ))0,Ω − (∇ · (uuu− uuuh), q)0,Ω + δ (λh − λ,∇ · (Ihϕϕϕ))0,Ω

= δ (∇ · uuuh − λ,∇ · (ϕϕϕ− Ihϕϕϕ))0,Ω − (λ−∇ · uuuh, q)0,Ω + δ (λh − λ,∇ · (Ihϕϕϕ))0,Ω

= δ

∇ · uuuh − λh + λh︸ ︷︷ ︸
=0

−λ,∇ · (ϕϕϕ− Ihϕϕϕ)


0,Ω

−

λ− λh + λh︸ ︷︷ ︸
=0

−∇ · uuuh, q


0,Ω

+ δ (λh − λ,∇ · (Ihϕϕϕ))0,Ω

= (λh − λ, δ∇ ·ϕϕϕ+ q)0,Ω + (∇ · uuuh − λh, δ∇ · (ϕϕϕ− Ihϕϕϕ) + q)0,Ω

≤ ‖λh − λ‖0,Ω
(
δ ‖∇ ·ϕϕϕ‖0,Ω + ‖q‖0,Ω

)
+ ‖∇ · uuuh − λh‖0,Ω

(
δ ‖∇ · (ϕϕϕ− Ihϕϕϕ)‖0,Ω + ‖q‖0,Ω

)
≤
(
‖λh − λ‖0,Ω + ‖∇ · uuuh − λh‖0,Ω

)(
2δ2 ‖∇ϕϕϕ‖20,Ω + 2 ‖q‖20,Ω

) 1
2

≤ cδ
∥∥(ϕϕϕ, q)T

∥∥
VVV×QQQ

(
‖λh − λ‖0,Ω + ‖∇ · uuuh − λh‖0,Ω

)
with cδ =

√
2 max {1, δ}. Combining the results from above and the inequalities (4.27)

and (4.31) we receive:∥∥(uuu− uuuh, p− ph)T
∥∥

VVV×QQQ

≤ β sup
(ϕϕϕ,q)T∈VVV×QQQ

Aδ(∇ · (uuu− uuuh),ϕϕϕ)− (p− ph,∇ ·ϕϕϕ)0,Ω − (∇ · (uuu− uuuh), q)0,Ω

‖(ϕϕϕ, q)T‖VVV×QQQ

≤ β sup
(ϕϕϕ,q)T∈VVV×QQQ

cδ
∥∥(ϕϕϕ, q)T

∥∥
VVV×QQQ

(
‖λh − λ‖0,Ω + ‖uuuh − λh‖0,Ω

)
‖(ϕϕϕ, q)T‖VVV×QQQ

+
2 ‖∇ϕϕϕ‖0,T
‖(ϕϕϕ, q)T‖VVV×QQQ

×

∑
T∈Th

(
c2
|T ||T | ‖fff + µ∆uuuh +∇ph‖20,T + c2

|∂T ||∂T |
∥∥∥∥∂uuuh∂n − phnnn

∥∥∥∥2

0,∂T\∂Ω

) 1
2


≤ βcδ

(
‖λh − λ‖0,Ω + ‖∇ · uuuh − λh‖0,Ω

)
+ 2β

∑
T∈Th

(
c2
|T ||T | ‖fff + µ∆uuuh +∇ph‖20,T + c2

|∂T ||∂T |
∥∥∥∥∂uuuh∂n − phnnn

∥∥∥∥2

0,∂T\∂Ω

) 1
2

.

Now, by squaring and employing the Young’s inequality ones again, the estimation∥∥(uuu− uuuh, p− ph)T
∥∥2

VVV×QQQ
≤ 3β2c2

δ ‖λh − λ‖
2
0,Ω + 3β2c2

δ ‖∇ · uuuh − λh‖
2
0,Ω

+ 6β2
∑
T∈Th

(
c2
|T ||T | ‖fff + µ∆uuuh +∇ph‖20,T + c2

|∂T ||∂T |
∥∥∥∥∂uuuh∂n − phnnn

∥∥∥∥2

0,∂T\∂Ω

)
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can be obtained. Next, we apply (4.28), setting ε = 3β2c2
δ ,

1

2

∥∥(uuu− uuuh, p− ph)T
∥∥2

VVV×QQQ
≤
(
cλ + 3β2c2

δ

)
‖∇ · uuuh − λh‖20,Ω

+
(
cλ + 6β2

) ∑
T∈Th

(
c2
|T ||T | ‖fff + µ∆uuuh +∇ph‖20,T + c2

|∂T ||∂T |
∥∥∥∥∂uuuh∂n − phnnn

∥∥∥∥2

0,∂T\∂Ω

)
+ cλ (ΠΛΛΛph, λh)0,Ω + cλ ‖ΠΛΛΛph − ph‖20,Ω .

From defining a constant c as

c = 2 max
{
cλ, cλ + 3β2c2

δ ,
(
cλ + 6β2

)
c2
|T |,
(
cλ + 6β2

)
c2
|∂T |

}
follows the hypothesis of the theorem, which is∥∥(uuu− uuuh, p− ph)T

∥∥2

VVV×QQQ
≤ cη(uuuh, ph, fff) ,

where

η(uuuh, ph, fff) =
∑
T∈Th

(
|T | ‖fff + µ∆uuuh +∇ph‖20,T + |∂T |

∥∥∥∥∂uuuh∂n − phnnn
∥∥∥∥2

0,∂T\∂Ω

)
+ ‖∇ · uuuh − λh‖20,Ω + (ΠΛΛΛph, λh)0,Ω + ‖ΠΛΛΛph − ph‖20,Ω

and

λh = ΠΛΛΛh

(
∇ · uuuh −

1

δ
ph

)
. �

Remark 4.7.6. By using the inequality (4.29) instead of (4.28) we can also obtain the
estimation

‖uuu− uuuh‖21,Ω ≤ cuη(uuuh, ph, fff) ,

as well as the estimation

‖p− ph‖20,Ω ≤ cpη(uuuh, ph, fff) ,

if we use the inequality (4.30) instead of (4.28), where cu, cp ∈ R are constants.

4.7.4. Errror estimator for non-conform case

The error estimator above is designed for the conform discretisation of spaces VVV and QQQ,
meaning VVVh ⊂ VVV and QQQh ⊂ QQQ. In the chapters 4.3 and 4.5 we used the Croizeix-Raviart-
elements or the non-conform P1-elements (see Braess [4, p. 103]) for the space VVVh,which
leads to a minor problem. The error estimator for the non-conform case is almost iden-
tical, but, as already mentioned, the proof varies quoit a bit. Also, an introduction of a
function from a conform discrete space is necessary.
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Theorem 4.7.7. Let (uuu, p)T ∈ VVV × QQQ be the continuous solution of the mixed vari-
ation formulation for the stokes problem with cavitation, given by (4.1) to (4.3). Let
(uuuh, ph)T ∈ VVVnc

h × QQQh be the discrete solution with a non-conform discrete space VVVnc
h .

Furthermore let the space VVVh ⊂ VVV be a conform discrete space. Then the norm of the
error

∥∥(uuu− uuuh, p− ph)T
∥∥

VVV×QQQ
can be estimated with the inequality∥∥(uuu− uuunch , p− ph)T

∥∥2

VVV×QQQ
≤ cη(uuunch , ph, fff) + cnc ‖∇(vvvh − uuunch )‖0,Ω ∀vvvh ∈ VVVh ,

where c and cnc are positive constants and the functional η is the same error estimator,
as in conform case

The proof of this theorem can be found after the following lemma

Lemma 4.7.8. Let the assumptions of the theorem 4.7.7 hold, then

β ‖p− ph‖0,Ω ≤ ‖∇uuu−∇uuu
nc
h ‖0,Ω + 2

√
ηRes(uuunch , ph, fff) . (4.32)

Proof. Since Ihϕϕϕ ∈ VVVh and VVVh ⊂ VVVnc
h as well as VVVh ⊂ VVV, we take difference between

(4.1) and (4.12):

(∇uuu−∇uuunch ,∇Ihϕϕϕ)0,Ω = (p− ph,∇ · (Ihϕϕϕ))0,Ω . (4.33)

In the lemma 4.7.2 we did not explicitly defined VVVh as an non-conform space, this lemma
applies for VVVnc

h too. Using this result and the inequality (4.27) we receive following
estimation:

(∇ ·ϕϕϕ, ph − p)0,Ω = (∇ · (ϕϕϕ− Ihϕϕϕ) , ph − p)0,Ω + (ph − p,∇ · (Ihϕϕϕ))0,Ω

= (∇ · (ϕϕϕ− Ihϕϕϕ) , ph − p)0,Ω + (∇uuunch −∇uuu,∇Ihϕϕϕ)0,Ω

= (∇ · (ϕϕϕ− Ihϕϕϕ) , ph − p)0,Ω − (∇uuunch −∇uuu,∇ (ϕϕϕ− Ihϕϕϕ))0,Ω

+ (∇uuunch −∇uuu,∇ϕϕϕ)0,Ω

= (fff,ϕϕϕ− Ihϕϕϕ)0,Ω − (∇uuunch ,∇ (ϕϕϕ− Ihϕϕϕ))0,Ω + (ph,∇ · (ϕϕϕ− Ihϕϕϕ))0,Ω

+ (∇uuunch −∇uuu,∇ϕϕϕ)0,Ω

≤ ‖∇ϕϕϕ‖0,Ω
(
‖∇uuu−∇uuunch ‖0,Ω + 2

√
ηRes(uuunch , ph, fff)

)
According to the inf-sup-condition, we can finally obtain following estimation:

β ‖p− ph‖0,Ω ≤ sup
ϕϕϕ∈VVV

(∇ ·ϕϕϕ, p− ph)0,Ω

‖ϕϕϕ‖1,Ω

≤‖∇uuu−∇uuunch ‖0,Ω + 2
√
ηRes(uuunch , ph, fff) �

Proof. (Theorem 4.7.7) We start by introducing vvvh ∈ VVVh. According to the Schwarz-
inequality

‖∇uuu−∇uuunch ‖
2
0,Ω = (∇uuu−∇uuunch ,∇(uuu− vvvh) +∇(vvvh − uuunch ))0,Ω

≤ (∇uuu−∇uuunch ,∇(uuu− vvvh))0,Ω + ‖∇uuu−∇uuunch ‖0,Ω ‖∇(vvvh − uuunch )‖0,Ω
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Next we define eee ∈ VVV as eee = uuu− vvvh use it as test function in the equation (4.33):

(∇uuu−∇uuunch ,∇Iheee)0,Ω = (p− ph,∇ · (Iheee))0,Ω .

This leads, according to the lemma 4.7.8, to

(∇uuu−∇uuunch ,∇(uuu− vvvh))0,Ω = (∇uuu−∇uuunch ,∇(eee− Iheee))0,Ω

− (p− ph,∇ · (eee− Iheee))0,Ω + (p− ph,∇ · eee)0,Ω

= (fff,eee− Iheee)0,Ω − (∇uuunch ,∇ (eee− Iheee))0,Ω

+ (ph,∇ · (eee− Iheee))0,Ω + (p− ph,∇ · (uuu− vvvh))0,Ω

=2 ‖∇(uuu− vvvh)‖0,Ω
√
ηRes(uuunch , ph, fff)

+ (p− ph,∇ · (uuu− vvvh))0,Ω

=2 ‖∇(uuu− vvvh)‖0,Ω
√
ηRes(uuunch , ph, fff)

+ ‖p− ph‖0,Ω ‖∇ · (uuu
nc
h − vvvh)‖0,Ω

+ (p− ph,∇ · (uuu− uuunch ))0,Ω .

Next, we consider the term (p− ph,∇ · (uuu− uuunch ))0,Ω using the positive projection Π +p

(p− ph,∇ · (uuu− uuunch ))0,Ω =
(
Π +ph − ph,∇ · (uuu− uuunch )

)
0,Ω

+
(
p− Π +ph,∇ · uuu− λh

)
0,Ω

+
(
p− Π +ph, λh −∇ · uuunch

)
0,Ω

=
(
Π +ph − ph,∇ · (uuu− uuunch )

)
0,Ω

+ (p,∇ · uuu)0,Ω︸ ︷︷ ︸
=0

−
(
Π +ph,∇ · uuu

)
0,Ω︸ ︷︷ ︸

≥0

− (p, λh)0,Ω︸ ︷︷ ︸
≥0

+
(
Π +ph, λh

)
0,Ω

+ (p− ph, λh −∇ · uuunch )0,Ω

≤
∥∥Π +ph − ph

∥∥
0,Ω
‖∇ · (uuu− uuunch )‖0,Ω +

(
Π +ph, λh

)
0,Ω

+ ‖p− ph‖0,Ω ‖∇ · uuu
nc
h − λh‖0,Ω

Combining the results above and applying the Young’s inequality with positive constants
cy1, cy2, cy3 and cy4 leads to the estimation

‖∇uuu−∇uuunch ‖
2
0,Ω ≤‖∇uuu−∇uuu

nc
h ‖0,Ω ‖∇(vvvh − uuunch )‖0,Ω + ‖p− ph‖0,Ω ‖∇ (uuunch − vvvh)‖0,Ω

+ 2
(
‖∇(uuu− uuunch )‖0,Ω + ‖∇(uuunch − vvvh)‖0,Ω

)√
ηRes(uuunch , ph, fff)

+ ‖p− ph‖0,Ω ‖∇ · uuu
nc
h − λh‖0,Ω

+
∥∥Π +ph − ph

∥∥
0,Ω
‖∇ (uuu− uuunch )‖0,Ω +

(
Π +ph, λh

)
0,Ω

Together with the results of the lemma 4.7.8, the appropriate set of the constants for
this inequality leads to the error estimator:∥∥(uuu− uuunch , p− ph)T

∥∥2

VVV×QQQ
≤ cη(uuunch , ph, fff) + cnc ‖∇(vvvh − uuunch )‖0,Ω . �
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In this section we return to the obstacle problem (see f.e. Biermann et al [2]), but now
on a domain Ω ⊂ R2, which in classical notation reads

−∆u− f ≥ 0 ,

u− ψ ≥ 0 , (5.1)

(u− ψ)(−∆u− f) = 0 ,

with u : Ω → R sufficiently smooth and the Dirichlet boundary condition u = 0 on
∂Ω. Here, f : Ω → R is a so called right-hand-side function, which describes the effect
of external forces. The function ψ : Ω → R represents the obstacle. The purpose of
this section is to extend the problem by considering the 2-D case, introduce stabilization
technique and compare numerical results.

5.1. Introduction of the mixed formulation

Analogous to the chapter 3.1, the system (5.1) can be rewritten as a variational inequality.
A new obstacle type variational problem can be described as a search for u ∈ KKK that
satisfied the inequality

(∇u,∇(ϕ− u))0,Ω ≥ (f, ϕ− u)0,Ω ∀ϕ ∈ KKK ,

where we set VVV := HHH1
0(Ω) and KKK := {v ∈ VVV | v ≥ ψ a.e. in Ω} and assume ψ ∈ HHH1(Ω) as

well as f ∈ LLL2(Ω).

This variational problem has also an equivalent minimization problem: Find u ∈ KKK with

J (u) = inf
ϕ∈KKK
J (ϕ) ,

where J (ϕ) = 1
2 (∇ϕ,∇ϕ)0,Ω − (f, ϕ)0,Ω. In the chapter 3.2 we already offered the

motivation for the introduction of the Lagrange-multipliers, that are used in the corre-
sponding solution strategy. At this point we would like to refer to the section 6.2.2, where
the generalized case is discussed, and just check the condition of the theorem 6.1.9.

Fist of all the subset KKK is described using continuous linear operator Ĭd : LLL2(Ω)→ LLL2(Ω)
with ϕ 7→ ϕ. Also according to the definition

sup
ϕ∈HHH1(Ω)

(
q, Ĭd(ϕ)

)
0,Ω

‖ϕ‖1,Ω
= sup

ϕ∈HHH1(Ω)

(q, ϕ)0,Ω

‖ϕ‖1,Ω
= ‖q‖0,Ω ∀q ∈ LLL2(Ω) .

As show in the theorem 6.1.8 the subset KKK is convex. Next we check the following points



54 5. Revisiting Obstacle problem in 2-D

• VVV is a reflexive Banach space,

• J has a gradient J ′(u) ∈ VVV∗ everywhere in KKK, such that〈
J ′(u), ϕ

〉
VVV

= (∇ϕ,∇u)0,Ω − (f, ϕ)0,Ω

• J is twice Gateaux-differentiable in all directions and satisfies the condition〈
J ′′(u)ϕ,ϕ

〉
VVV

= (∇ϕ,∇ϕ)0,Ω ≥
1

2
‖ϕ‖21,Ω .

Combined, we can conclude that all the conditions of the theorem 6.1.9, which means,
that there is an equivalent problem: Find a point (u, p, λ)T ∈ VVV ×QQQ×ΛΛΛ such that

(∇ϕ,∇u)0,Ω − (p, ϕ)0,Ω = (f, ϕ)0,Ω ∀ϕ ∈ VVV (5.2)

(q, u)0,Ω − (q, λ)0,Ω = (q, ψ)0,Ω ∀q ∈ QQQ (5.3)

(p, ω)0,Ω ≥ 0 ∀ω ∈ ΛΛΛ (5.4)

pλ = 0 a.e. on Ω , (5.5)

with QQQ = LLL2(Ω) and ΛΛΛ = Π +QQQ = {ω ∈ QQQ| ω ≥ 0 a.e. on Ω}. Also according to the
theorems 6.1.5 and 6.1.9 both the initial variational obstacle problem and the equivalent
problem above have a unique solution. Furthermore the function u ∈ VVV, which is the
first part of the solution of the equivalent problem above, is the solution of the initial
variational obstacle problem.

5.2. Numerical treatment of the mixed obstacle problem

We apply, like in Birmann et al [2], the finite element method to compute an approximate
solution on the triangulation Th of Ω. Based on the mesh, we introduce standard finite
element spaces VhVhVh = Q1(Th) and QhQhQh = Q0(Th), which means, that we intend to deal
with quadrangular mesh elements and bilinear base functions in case of the space VhVhVh,
as well as piecewise constant base functions in case of the space QhQhQh. This is a conform
discretisation since VhVhVh ⊂ VVV and QhQhQh ⊂ LLL2(Ω) The new goal is computing a approximate,
or discrete, solution (uh, ph, λh) ∈ VhVhVh ×QhQhQh × ΛhΛhΛh corresponding discrete version of the
equations (5.2), (5.3) and (5.5) as well as the inequality (5.4) reads

(∇ϕh,∇uh)0,Ω − (ϕh, ph)0,Ω = (f, ϕh)0,Ω ∀ϕh ∈ VhVhVh (5.6)

(uh, qh)0,Ω − (λh, qh)0,Ω = (ψ, qh)0,Ω ∀qh ∈ QhQhQh (5.7)

(ωh, ph)0,Ω ≥ 0 ∀ωh ∈ ΛhΛhΛh (5.8)

phλh = 0 a.e. on Ω , (5.9)

respectively, where ΛhΛhΛh = Π +QhQhQh = {ωh ∈ QhQhQh| ωh ≥ 0 a.e. on Ω}. Like in continuous case,
according to the theorem 6.1.9 there is a unique solution (uh, ph, λh) ∈ VhVhVh ×QhQhQh × ΛhΛhΛh,
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such that is equivalent to the discrete minimization problem, if the inf sup condition is
satisfied: There is a constant β ∈ R+, such that

sup
ϕ∈VhVhVh

(ϕh, qh)0,Ω

‖ϕh‖1,Ω
≥ β ‖qh‖0,Ω ∀qh ∈ QhQhQh . (5.10)

By applying the theorem 6.1.10 we obtain following variational problem: Find (uh, ph) ∈
VhVhVh ×QhQhQh fulfilling the mixed formulation

(∇uh,∇ϕh)0,Ω − (ph, ϕh)0,Ω = (f, ϕh)0,Ω ∀ϕh ∈ VhVhVh

(uh, qh)0,Ω = (ψ + λh, qh)0,Ω ∀qh ∈ QhQhQh

with λh = max

{
0, uh − ψ −

1

δ
ph

}
.

As in case of the stokes problem we want to apply the Newton-type method to solve this
problem, which means we approximate the zero spot (uh, ph) ∈ VhVhVh×QhQhQh of the functional
Fϕhqh : VhVhVh ×QhQhQh −→ R with

Fϕhqh (ũh, p̃h) = (∇ũh,∇ϕh)0,Ω − (p̃h, ϕh)0,Ω − (f, ϕh)0,Ω

+ (ũh, qh)0,Ω −
(
ψ + λ̃h, qh

)
0,Ω

(5.11)

and λ̃h =
1

2

(
ũh − ψ −

1

δ
p̃h

)
+

1

2

∣∣∣∣ũh − ψ − 1

δ
p̃h

∣∣∣∣ .
The Newton-type method itself is similar to P3 update calculation algorithm from chapter
4.4, but with two differences. First we multiply the update with a relaxation factor
γr ∈ R. Then the iteration process can be written as(

u
(k+1)
h , p

(k+1)
h

)T
=
(
u

(k)
h , p

(k)
h

)T
− γr

(
duh, d

p
h

)T ∀k ∈ N0 ,

where
(
u

(0)
h , p

(0)
h

)T
∈ VhVhVh×QhQhQh is a chosen start point and the update

(
duh, d

p
h

)T ∈ VhVhVh×QhQhQh

solves the equation〈
F̃ ′ϕhqh(u

(k)
h , p

(k)
h ),

(
duh, d

p
h

)T〉
VhVhVh×QhQhQh

= Fϕhqh(u
(k)
h , p

(k)
h ) ∀ (ϕh, qh)T ∈ VhVhVh ×QhQhQh .

In chapter 4.4 we used consistent stabilization for the first equation by using the second
equation with appropriate test function. Here the condition number of the resulting ma-
trix can be improved by non-consistent stabilization. More specific, in order to stabilize
the the equation (5.7), we modify this discrete formulation by adding mesh-dependent
terms to the original problem. Eventually we consider substitutional equation

(uh, qh)0,Ω + cQ

∑
T∈Th

|T | (ph, qh)0,T = (ψ + λh, qh)0,Ω ∀qh ∈ QhQhQh, (5.12)

where cQ > 0 is a constant. This is stabilization method based on the ideas discussed in
Biermann et al. [2].
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Figure 5.1.: The test example for the obstacle problem with ψ = −0.25.

The main difference between the functional F and it’s regularized version F̃ is the use
of λ̃ξh instead of λ̃h, where

λ̃ξh =
1

2

(
ũh − ψ −

1

δ
p̃h

)
+

1

2

√(
ũh − ψ −

1

δ
p̃h

)2

+ ξ , (5.13)

So with regard to the changed equation (5.12), we can define the functional F̃ as

F̃ϕhqh(ũh, p̃h) = (∇ũh,∇ϕh)0,Ω − (p̃h, ϕh)0,Ω − (f, ϕh)0,Ω

+ (ũh, qh)0,Ω −
(
ψ + λξh, qh

)
0,Ω

+ cQ

∑
T∈Th

|T | (p̃h, qh)0,T . (5.14)

5.3. Numerical results

The figure 5.1 depicts the results of the numerical test for the obstacle problem. Here
we have a membrane displacement on Ω = [0, 1] × [0, 1] with zero boundary conditions
u|∂Ω = 0. The right-hand-side function and the obstacle are constant on Ω, so that
f |Ω = 10 and ψ|Ω = −0.25.

The constant, we use in the the calculations, are cQ = 1 and δ = 0.5. The relaxation factor
γr is different in each of the iteration steps. For r ∈ {0, 1, 2, 3, 4, 5} we try the relaxation

factors γr =
(

1
2

)r
in that order and calculate therefor Fϕhqh

(
u

(k+1)
h , p

(k+1)
h

)
, where
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cells Newton-type SQOPT cGPSSOR precond.
method Uzawa

64 3 4 11 8
256 6 18 20 14

1024 10 86 46 30
4096 13 304 140 58

16384 21 1188 444 263
65536 28 4632 1534 428

Table 5.1.: A comparison of needed iterations for proposed Newton-type algorithm and
the other methods, found in Biermann et al. [2].

(
u

(k+1)
h , p

(k+1)
h

)T
is the new approximation of the zero spot. If the current relaxation

factor improves the approximation, we test the next one, if not the previous relaxation
factor is used.

The reason for choosing this specific problem is, that in Biermann et al. [2] the exact
same test example was used. So instead of implementing all of the algorithms we can
compare the iteration numbers. Even so the calculation time for each of the methods
can vary significantly, the table 5.1 shows, that the rate, which the number of iteration
rises with growing the number of cells, is much low that by other algorithms.

5.4. Error estimate

In the next sections we derive a posteriori error estimator, based on the solution strategy,
introduced above. If (u, p)T ∈ VVV ×QQQ is the continuous solution of the mixed variation
formulation for the obstacle problemand (uh, ph)T ∈ VhVhVh ×QhQhQh is the discrete solution,
then the norm of the error ‖u− uh‖0,Ω can be estimated with the inequality

‖u− uh‖20,Ω ≤ c η(uh, ph, f, ψ) , (5.15)

where c is a positive constant and

η(uh, ph, f, ψ) =
∑
T∈Th

(
|T | ‖f + ∆uh + ph‖20,T + |∂T |

∥∥∥∥∂uh∂n
∥∥∥∥2

0,∂T\∂Ω

)
+
(
Π +ph, λh

)
0,Ω

+ ‖uh − ψ − λh‖20,Ω +
∥∥Π +ph − ph

∥∥2

0,Ω
.

It has similar structure as the error estimator in for the stokes problem (see chapter 4.7).
Four of the summands can be identified with the KKT-condition (5.2) to (5.5) and the

norm

∥∥∥∥∂uh∂n
∥∥∥∥

0,∂T\∂Ω

measures the differentiability of the numerical solution uh on the

edges of the cells.

We proof this hypothesis, using a technique similar to strategy e.g. found in the proof
of lemma 3.1 in Duran e. a. [5]. The proof consists of three steps:
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• First we define residual error estimator ηRes(uh, ph, f). (Lemma 5.4.1)

• Then we use it to get an estimate of the error ‖p− ph‖0,Ω. (Lemma 5.4.2)

• Finally, the steps above result in the proof of the inequality (5.15). (Theorem 5.4.3)

Lemma 5.4.1. For all uh ∈ VhVhVh, ph ∈ QhQhQh and f, ϕ ∈ VVV the following inequality applies

(f, ϕ− Ihϕ)0,Ω − (∇uh,∇ (ϕ− Ihϕ))0,Ω + (ph, ϕ− Ihϕ)0,Ω

≤ 2 ‖∇ϕ‖0,Ω
√
ηRes(uh, ph, f) (5.16)

where ηRes(uh, ph, f) =
∑
T∈Th

(
c2
|T ||T | ‖f + ∆uh + ph‖20,T + c2

|∂T ||∂T |
∥∥∥∥∂uh∂n

∥∥∥∥2

0,∂T\∂Ω

)
.

Proof. Same as in 4.7.2. �

Lemma 5.4.2. Let (u, p)T ∈ VVV ×QQQ be the continuous solution of the mixed variation
formulation for the obstacle problem, given by (5.2) to (5.5). Let (uh, ph)T ∈ VhVhVh ×QhQhQh

be the discrete solution, obtained with method describe in section 5.2. Then the norm of
the error ‖p− ph‖0,Ω can be estimated with the inequality

β ‖p− ph‖0,Ω ≤ ‖∇u−∇uh‖0,Ω + 2
√
ηRes(uh, ph, f) ,

where ηRes(uh, ph, f) defined in the lemma 5.4.1.

Proof. First we take difference between (5.2) and (5.6):

(∇u−∇uh,∇Ihϕ)0,Ω = (p− ph, Ihϕ)0,Ω .

Using this result and the inequality (5.16) we receive following estimation:

(ϕ, ph − p)0,Ω = (ϕ− Ihϕ, ph − p)0,Ω + (ph − p, Ihϕ)0,Ω

= (ϕ− Ihϕ, ph − p)0,Ω + (∇uh −∇u,∇Ihϕ)0,Ω

= (ϕ− Ihϕ, ph − p)0,Ω − (∇uh −∇u,∇(ϕ− Ihϕ))0,Ω

+ (∇uh −∇u,∇ϕ)0,Ω

= (f, ϕ− Ihϕ)0,Ω − (∇uh,∇ (ϕ− Ihϕ))0,Ω + (ph, ϕ− Ihϕ)0,Ω

+ (∇uh −∇u,∇ϕ)0,Ω

≤ ‖∇ϕ‖0,Ω
(
‖∇u−∇uh‖0,Ω + 2

√
ηRes(uh, ph, f)

)
According to the inf-sup-condition, we can finally obtain following estimation:

β ‖p− ph‖0,Ω ≤ sup
ϕ∈VVV

(ϕ, p− ph)0,Ω

‖ϕ‖1,Ω
≤‖∇u−∇uh‖0,Ω + 2

√
ηRes(uh, ph, f) �
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Theorem 5.4.3. Let (u, p)T ∈ VVV ×QQQ be the continuous solution of the mixed variation
formulation for the obstacle problem, given by (5.2) to (5.5). Let (uh, ph)T ∈ VhVhVh ×QhQhQh

be the discrete solution, obtained with method describe in section 5.2. Then the norm of
the error ‖u− uh‖0,Ω can be estimated with the inequality

‖u− uh‖20,Ω ≤ c η(uh, ph, f, ψ) ,

where c is a positive constant and

η(uh, ph, f, ψ) =
∑
T∈Th

(
|T | ‖f + ∆uh + ph‖20,T + |∂T |

∥∥∥∥∂uh∂n
∥∥∥∥2

0,∂T\∂Ω

)
+
(
Π +ph, λh

)
0,Ω

+ ‖uh − ψ − λh‖20,Ω +
∥∥Π +ph − ph

∥∥2

0,Ω
.

Proof. Let e ∈ VVV be defined as e = u− uh, then ,as stated in proof of the lemma 5.4.2,

(∇u−∇uh,∇Ihe)0,Ω = (p− ph, Ihe)0,Ω ,

which leads, according to the lemma 4.7.2, to

‖∇u−∇uh‖20,Ω = (∇u−∇uh,∇e− Ihe)0,Ω − (p− ph, e− Ihe)0,Ω + (p− ph, e)0,Ω

= (f, e− Ihe)0,Ω − (∇uh,∇ (e− Ihe))0,Ω + (ph, e− Ihe)0,Ω

+ (p− ph, u− uh)0,Ω

=2 ‖∇(u− uh)‖0,Ω
√
ηRes(uh, ph, f) + (p− ph, u− uh)0,Ω .

Next, we consider the term (p− ph, u− uh)0,Ω using the positive projection Π +p

(p− ph, u− uh)0,Ω =
(
Π +ph − ph, u− uh

)
0,Ω

+
(
p− Π +ph, u− ψ − λh

)
0,Ω

+
(
p− Π +ph, λh + ψ − uh

)
0,Ω

=
(
Π +ph − ph, u− uh

)
0,Ω

+ (p, u− ψ)0,Ω︸ ︷︷ ︸
=0

−
(
Π +ph, u− ψ

)
0,Ω︸ ︷︷ ︸

≥0

− (p, λh)0,Ω︸ ︷︷ ︸
≥0

+
(
Π +ph, λh

)
0,Ω

+ (p− ph, λh + ψ − uh)0,Ω

≤
∥∥Π +ph − ph

∥∥
0,Ω
‖u− uh‖0,Ω +

(
Π +ph, λh

)
0,Ω

+ ‖p− ph‖0,Ω ‖uh − ψ − λh‖0,Ω
≤
∥∥Π +ph − ph

∥∥
0,Ω
‖u− uh‖0,Ω +

(
Π +ph, λh

)
0,Ω

+
1

β
‖uh − ψ − λh‖0,Ω

(
‖∇u−∇uh‖0,Ω + 2

√
ηRes(uh, ph, f)

)
Combining the results above and applying the Young’s inequality with positive constants
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cy1, cy2, cy3 and cy4 leads to the estimation

‖∇u−∇uh‖20,Ω ≤2 ‖∇(u− uh)‖0,Ω
√
ηRes(uh, ph, f)

+
∥∥Π +ph − ph

∥∥
0,Ω
‖∇(u− uh)‖0,Ω +

(
Π +ph, λh

)
0,Ω

+
1

β
‖uh − ψ − λh‖0,Ω

(
‖∇u−∇uh‖0,Ω + 2

√
ηRes(uh, ph, f)

)
≤
(
cy1 +

cy2

2
+
cy3

2

)
‖∇(u− uh)‖20,Ω +

(
1

cy1
+ cy4

)
ηRes(uh, ph, f)

+
1

β2

(
1

2cy3
+

1

cy4

)
‖uh − ψ − λh‖20,Ω

+
1

2cy2

∥∥Π +ph − ph
∥∥2

0,Ω
+
(
Π +ph, λh

)
0,Ω

Finally, we set cy1 = cy2 = cy3 = 1
4 and cy4 = 1, so that

‖∇u−∇uh‖20,Ω ≤
1

2
‖∇(u− uh)‖20,Ω + 5 ηRes(uh, ph, f) +

(
Π +ph, λh

)
0,Ω

+
3

β2
‖uh − ψ − λh‖20,Ω + 2

∥∥Π +ph − ph
∥∥2

0,Ω
,

which leads for c = max
{

12
β2 , 20c2

|T |, 20c2
|∂T |, 8

}
to the error estimation

1

c
‖u− uh‖21,Ω ≤

∑
T∈Th

(
|T | ‖f + ∆uh + ph‖20,T + |∂T |

∥∥∥∥∂uh∂n
∥∥∥∥2

0,∂T\∂Ω

)
+
(
Π +ph, λh

)
0,Ω

+ ‖uh − ψ − λh‖20,Ω +
∥∥Π +ph − ph

∥∥2

0,Ω
. �



6. Framework for first kind problems
with linear inequality conditions

In the following, in order to provide general framework for broader class of problems, we
apply the ideas sketched examples above (Stokes and obstacle problems) to an abstract
setting. We start with a minimization problem on a subset, that can be derived, for
example, from applied laws of continuous mechanics. This abstract problem can be
written as: Find uuu ∈ KKK such that

J (uuu) = inf
ϕϕϕ∈KKK
J (ϕϕϕ) ,

where KKK is subset of a Sobolev-space VVV = (HHHs(Ω))n with s ∈ N. We consider the subset
KKK, that is described by a number of linear condition, which can be combined into an
continuous linear operator Ğ : VVV −→ QQQ = (LLL(Ω))m, where m ∈ N depends on the
number of condition. Using ψψψ ∈ QQQ we define the subset KKK as

KKK =
{
ϕϕϕ ∈ VVV

∣∣∣ Ğ(ϕϕϕ) ≤ ψψψ a.e. on Ω
}
.

In order to have an unique solution for this problem, we assume that the functional J
has a gradient J ′(uuu) ∈ VVV′ everywhere in KKK, as well as J is twice Gateaux-differentiable
in all directions and satisfies the condition〈

J ′′(uuu)ϕϕϕ,ϕϕϕ
〉

VVV
≥ α ‖ϕϕϕ‖2VVV ∀ϕϕϕ ∈ VVV

for a positive constant α. Furthermore, we assume that, there is a constant β ∈ R+,
such that

sup
ϕϕϕ∈VVV

(
qqq, Ğ(ϕϕϕ)

)
0,Ω

‖ϕϕϕ‖VVV
≥ β ‖qqq‖QQQ ∀qqq ∈ QQQ := LLL2(Ω) .

According to the lemma 6.1.9 this conditions not only secure the existence and uniqueness
of the solution, but also allow us to formulate an equivalent variational problem: To find
a point (uuu,ppp,λλλ)T ∈ VVV ×QQQ×ΛΛΛ such that

A(ϕϕϕ,uuu) + G(ϕϕϕ,ppp) = L(ϕϕϕ) ∀ϕϕϕ ∈ VVV (6.1)

G(uuu,qqq) = (qqq,ψψψ − λλλ)0,Ω ∀qqq ∈ QQQ (6.2)

(ppp,ωωω)0,Ω ≥ 0 ∀ωωω ∈ ΛΛΛ (6.3)

ppp · λλλ = 0 a.e. on Ω , (6.4)
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with ΛΛΛ = Π +QQQ = {q̃̃q̃q ∈ QQQ| q̃̃q̃q ≥ 0 a.e. on Ω}, the functional A : VVV×VVV→ R and the linear
form L : VVV→ R, such that〈

J ′(vvv),ϕϕϕ
〉

VVV
= A(ϕϕϕ,vvv)− L(ϕϕϕ) ∀ϕϕϕ,vvv ∈ VVV ,

as well as the functional G : VVV ×QQQ→ R, such that(
qqq, Ğ(ϕϕϕ)

)
0,Ω

= G(ϕϕϕ,qqq) ∀ϕϕϕ ∈ VVV and ∀qqq ∈ QQQ .

In the section 6.2.2 we further restrict the proof of the convergence to the cases, in which,
similar to the obstacle and Stokes problems, the functional A is a bilinearform. Before we
examine the Newton-type algorithm, let us first make a small excursion into the different
but equivalent formulations of the minimization problems.

6.1. Optimization theory for functionals

As it was shown on the examples in the previous chapters, weak formulations of the
differential inequalities and minimization problems are closely related. That is why
in this part we would like to discuss some aspects of the optimization theory for the
functionals. As a basis we use the work of Cea and Murthy [12]. First of all we need
some criteria for the general existence of minima of certain funktionals.

Theorem 6.1.1. Suppose VVV, KKK and J : KKK→ R satisfy the following hypothesis:

(H1) VVV is a reflexive Banach space,

(H2) KKK is weakly closed.

(H3) KKK is bounded and

(H4) J : KKK ⊂ VVV→ R is weakly lower semi-continuous.

Then J has a global minimum in KKK.

Proof. See Cea and Murthy [12, p. 22] �

If KKK is not weakly closed, then we still can apply another theorem to secure the existence
of a minimum.

Theorem 6.1.2. If VVV, KKK and J satisfy the Hypothesis (H1), (H2), (H4) and J satisfies

(H3)’ lim
‖v‖VVV→∞

J (v) =∞

then J admits a global minimum in KKK.

Proof. See Cea and Murthy [12, p. 22] �
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In case of the Gateaux-differentiable functional we have the following necessary condition
for the existence of a local minimum.

Theorem 6.1.3. Suppose a functional J : KKK ⊂ VVV→ R has a local minimum at a point
u ∈ KKK and is Gateaux-differentiable at u in all directions then 〈J ′(u), v − u〉VVV′ ≥ 0 for
every v ∈ VVV such that v − u is a strongly admissible direction. Furthermore, if KKK is an
open set then 〈J ′(u), ϕ〉VVV′ = 0 for all ϕ ∈ VVV.

Proof. See Cea and Murthy [12, p. 24] �

The convexity is in in context of optimization an extreme powerful tool. It allows us to
make statements about the existence and uniqueness of the minimum.

Theorem 6.1.4. If KKK is a convex subset of a normed vector space and J : KKK ⊂ VVV→ R
is strictly convex then there exists a unique minimum u ∈ KKK for J .

Proof. See Cea and Murthy [12, p. 26] �

The convexity correspond to the differentiability of the functional. In case of the twice
Gateaux-differentiable functional there is a special existence and uniqueness theorem.

Theorem 6.1.5. Let J : KKK → R be a functional on VVV, KKK a subset of VVV satisfying the
following hypothesis:

(H1) VVV is a reflexive Banach space,

(H2) J has a gradient J ′(u) ∈ VVV′ everywhere in KKK;

(H3) J is twice Gateaux-differentiable in all directions ϕ,ψ ∈ VVV and satisfies the condi-
tion 〈

J ′′(u)ϕ,ϕ
〉

VVV′
≥ ‖ϕ‖KKK χ (‖ϕ‖KKK)

where t 7→ χ(t) is a function on {t ∈ R|t ≥ 0} such that χ(t) ≥ 0 and lim
t→∞

χ(t) =∞;

(H4) KKK is a closed convex set.

Then there exists at least one minimum u ∈ KKK of J . Furthermore, if in (H3)

(H5) χ(t) > 0 for t > 0

is satisfied by χ then there exists a unique minimum of J in KKK.

Proof. See Cea and Murthy [12, p. 27] �

Again using the convexity we can formulate a minimisation problem as an equivalent
differential inequality.
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Theorem 6.1.6. Suppose KKK is a convex subset of a Banach space VVV and J : KKK ⊂ VVV→ R
is a Gateaux-differentiable (in all directions) convex functional. Then u ∈ KKK is a mini-
mum for J (i.e. J (u) ≤ J (v) for all v ∈ VVV if and only if u ∈ KKK and 〈J ′(u), v − u〉VVV′ ≥ 0
for all v ∈ KKK).

Proof. See Cea and Murthy [12, p. 28] �

Next, we consider the case, where the subset KKK can be described using a mapping Φ.
In context of minimization this is a constraint on the solution u and allows us to use
the Lagrange-multiplier method. The next theorem contains the conditions, should be
imposed on the mapping Φ, in order to obtain the equivalent mixed problem.

Theorem 6.1.7. Let VVV be a normed space and KKK be a subset of VVV such that we can find
a cone ΛΛΛ with vertex at 0 (in a suitable vector space) and a function Φ : VVV × ΛΛΛ → R
satisfying the conditions:

i) The mapping ΛΛΛ 3 q 7→ Φ(ϕ, q) ∈ R is homogeneous of degree one i.e.

Φ(ϕ, ρq) = ρΦ(ϕ, q) ∀ρ ≥ 0 .

ii) A point ϕ ∈ VVV belongs to KKK if and only if

Φ(ϕ, q) ≤ 0 ∀q ∈ ΛΛΛ .

Then the following two problems are equivalent: Let J : KKK→ R be a given functional

Primal problem: To find u ∈ KKK such that J (u) = inf
ϕ∈KKK
J (ϕ).

Minimax problem: To find a point (u, p)T ∈ VVV ×ΛΛΛ such that

J (u) + Φ(u, p) = inf
ϕ∈VVV

sup
q∈ΛΛΛ

(J (ϕ) + Φ(ϕ, q)) .

Proof. See Cea and Murthy [12, p. 28] �

In order to obtain an appropriate mapping Φ we need to take a close look at the space VVV
and the subset KKK. Let VVV be the Sobolev space HHHn

0 (Ω) with n ∈ N0 and Ğ : VVV → HHHs(Ω),
with s ∈ N0 and s ≤ n, be an operator that defines the subset KKK as

KKK =
{
ϕ ∈ VVV

∣∣∣ Ğ(ϕ) ≤ ψ a.e. on Ω
}
,

where ψ ∈ LLL2(Ω). Next we define a space QQQ = Π +LLL2(Ω) and a cone ΛΛΛ = Π +QQQ ={
ω ∈ LLL2(Ω)

∣∣ ω ≥ 0 a.e. on Ω
}

. Obviously for all ϕ ∈ KKK and all q ∈ ΛΛΛ the inequality(
Ğ(ϕ)− ψ, q

)
0,Ω
≤ 0 applies. On the other hand, if ϕ ∈ VVV, but ϕ /∈ KKK, then there is

Ω̃ ⊂ Ω, with |Ω̃| 6= 0, such that Ğ(ϕ) > ψ a.e. on Ω̃. Then there is also an indicator
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function 1Ω̃ ∈ ΛΛΛ with
(
Ğ(ϕ)− ψ, 1Ω̃

)
0,Ω

> 0. This means we can describe the subset KKK

as

KKK =

{
ϕ ∈ VVV

∣∣∣∣ (q, Ğ(ϕ)− ψ
)

0,Ω
≤ 0 ∀q ∈ ΛΛΛ

}
.

This way we obtain an appropriate functional Φ(ϕ, q) =
(
q, Ğ(ϕ)− ψ

)
0,Ω

, that satisfy

the conditions of the theorem 6.1.7. Next we want to find some criteria for the operator
Ğ, that describes the subset KKK, which secure the convexity of KKK. This way we will be
able to use existence and uniqueness theorems above.

Theorem 6.1.8. Let KKK be a subset of VVV, with spaces and the subset defined as above.
Let Ğ : VVV→ HHHs(Ω) be a sublinear operator, that satisfies the condition:

i) There is a constant α ∈ R+, such that∥∥∥Ğ(ϕ)
∥∥∥

0,Ω
≤ α ‖ϕ‖VVV ∀ϕ ∈ VVV .

ii) There is a constant β ∈ R+, such that

sup
ϕ∈VVV

(
q, Ğ(ϕ)

)
0,Ω

‖ϕ‖VVV
≥ β ‖q‖QQQ ∀q ∈ QQQ .

In this case, the subset KKK is closed convex.

Proof. The proof can be found at the end of the section. �

In the previous chapters we motivated the further transformation of the minimax problem
from the theorem 6.1.7. So, the next step is to prove those transformations in two steps:

• the set of variational conditions equivalent to the minimax problem (theorem 6.1.9),

• the replacement of the variational inequalities in the those conditions with a pro-
jection operator equation (theorem 6.1.10).

Theorem 6.1.9. Let KKK be a subset of VVV, with KKK =
{
ϕ ∈ VVV

∣∣∣ Ğ(ϕ) ≤ ψ a.e. on Ω
}

, with

spaces as defined above. Let Ğ : VVV → HHHs be a continuous linear operator, that satisfies
the condition: There is a constant β ∈ R+, such that

sup
ϕ∈VVV

(
q, Ğ(ϕ)

)
0,Ω

‖ϕ‖VVV
≥ β ‖q‖QQQ ∀q ∈ QQQ .

If J : KKK → R is a functional on VVV that satisfies the hypothesis (H1), (H2) and (H3) of
the theorem 6.1.5, then there exists at least one minimum u ∈ KKK of J . Furthermore,
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if the condition (H5) of the theorem 6.1.5 is satisfied by χ then there exists a unique
minimum of J in KKK. Also there is an equivalent variational problem: To find a
point (u, p, λ)T ∈ VVV ×QQQ×ΛΛΛ such that〈

J ′(u), ϕ
〉

VVV′
+
(
p, Ğ(ϕ)

)
0,Ω

= 0 ∀ϕ ∈ VVV(
q, Ğ(u)− ψ

)
0,Ω

+ (q, λ)0,Ω = 0 ∀q ∈ QQQ

(p, ω)0,Ω ≥ 0 ∀ω ∈ ΛΛΛ

(q − p, λ)0,Ω ≥ 0 ∀q ∈ Π +QQQ .

Proof. Since KKK is a closed convex set (see theorem 6.1.8), the condition (H4) of the
theorem 6.1.5 is fulfilled. This means, that according to the theorem 6.1.5, there exists
at leas one or even a unique minimum of J in KKK, depending on the (H5).

As mentioned earlier, using the cone Π +QQQ with vertex at 0, we can define a functional

Φ : VVV × Π +QQQ → R with Φ(ϕ, q) =
(
q, Ğ(ϕ)− ψ

)
0,Ω

and formulate, according to the

theorem 6.1.7, the equivalent dual minimax problem

J (u) + Φ(u, q) ≤ J (u) + Φ(u, p) ≤ J (ϕ) + Φ(ϕ, p) ∀ϕ ∈ VVV and ∀q ∈ Π +QQQ .

The right inequality is a minimization problem on the open set with a convex Gateaux-
differentiable functional, according to the (H2) and (H3), and leads to the equation〈

J ′(u), ϕ
〉

VVV′
+
(
p, Ğ(ϕ)

)
0,Ω

= 0 ∀ϕ ∈ VVV .

Since u ∈ KKK, there is λ ∈ ΛΛΛ such that(
q, Ğ(u)− ψ

)
0,Ω

+ (q, λ)0,Ω = 0

The left inequality of the minimax problem leads to

−
(
q − p, Ğ(u)− ψ

)
0,Ω
≥ 0 or 〈q − p, λ〉QQQ ≥ 0 ∀q ∈ Π +QQQ .

Since p ∈ Π +QQQ, according to the definition of the cone ΛΛΛ, we obtain

(p, ω)0,Ω ≥ 0 ∀ω ∈ ΛΛΛ

On the other hand, if we start with the equivalent variational problem the convexity of
the functional J leads to

0 =
〈
J ′(u), ϕ− u

〉
VVV′︸ ︷︷ ︸

=−Φ(ϕ,p)+Φ(u,p)

+Φ(ϕ, p)− Φ(u, p)

≤ (J (ϕ) + Φ(ϕ, p))− (J (u) + Φ(u, p)) ∀ϕ ∈ VVV .
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Also

0 ≤ (q − p, λ)0,Ω

=
(
p, Ğ(u)− ψ

)
0,Ω
−
(
q, Ğ(u)− ψ

)
0,Ω

=Φ(u, p)− Φ(u, q) ∀q ∈ Π +QQQ ,

which is equivalent to

J (u) + Φ(u, q) ≤ J (u) + Φ(u, p) ∀q ∈ Π +QQQ .

That means, that u and p of the equivalent variational problem also solve the minimax
problem. �

The variational inequalities in the equivalent problem above makes the solution pro-
cess relatively complex. We can substitute it with an equation by using the lemma of
projection operator A.0.3.

Theorem 6.1.10. Let VVV, QQQ, ΛΛΛ and Ğ be defined as above for the subset KKK. Furthermore,
let u ∈ KKK ⊂ VVV and λ ∈ ΛΛΛ satisfy the equation(

q, Ğ(u)− ψ
)

0,Ω
+ (q, λ)0,Ω = 0 ∀q ∈ QQQ .

Then the following problems are equivalent:

• To find a point p ∈ QQQ, such that

(p, ω)0,Ω ≥ 0 ∀ω ∈ ΛΛΛ

and (q − p, λ)0,Ω ≥ 0 ∀q ∈ Π +QQQ .

• To find a point p ∈ QQQ, such that

λ = ΠΛΛΛ

(
ψ − Ğ(u)− εp

)
∀ε > 0 .

Proof. We start with first statement:

(p, ω)0,Ω ≥ 0 ∀ω ∈ ΛΛΛ

and (q − p, λ)0,Ω ≥ 0 ∀q ∈ Π +QQQ .

Since a constant zero function is valid choice for q ∈ QQQ, we can use it an add two
inequalities, obtaining the inequality

(p, ω − λ)0,Ω ≥ 0 ∀ω ∈ ΛΛΛ

The other valid choice is q = ω − λ a.e. on Ω for all ω ∈ ΛΛΛ, which leads to the equation(
ω − λ, ψ − Ğ(u)− λ

)
0,Ω

= 0 ∀ω ∈ ΛΛΛ .
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By combing this equation with the inequality above, that we multiply with the positive
constant ε, it leads to another inequality(

ψ − Ğ(u)− εp− λ, ω − λ
)

0,Ω
≤ 0 ∀ω ∈ ΛΛΛ .

The lemma A.0.3 allows us to interpret this inequality as a condition for a LLL2(Ω)-
projection on the subset ΛΛΛ:

λ = ΠΛΛΛ

(
ψ − Ğ(u)− εp

)
.

On the other hand if λ = ΠΛΛΛ

(
ψ − Ğ(u)− εp

)
, then we obtain the inequality(

ψ − Ğ(u)− λ, ω − λ
)

0,Ω︸ ︷︷ ︸
=0

− (εp, ω − λ)0,Ω ≤ 0 ∀ω ∈ ΛΛΛ ,

which leads to (p, ω − λ)0,Ω ≥ 0 ⇔ (p, ω)0,Ω ≥ (p, λ)0,Ω ∀ω ∈ ΛΛΛ .

Since we allowed to use all ω ∈ ΛΛΛ, we suggest ω = 2p a.e. on Ω. This leads to the
inequality (p, λ)0,Ω ≥ 0, which in turn leads to the inequality

(p, ω)0,Ω ≥ 0 ∀ω ∈ ΛΛΛ .

This also means, that p ∈ Π +QQQ. Now if use zero function as ω, we obtain

0 ≥ (p, λ)0,Ω ≥ 0 ⇔ (p, λ)0,Ω = 0 .

Since we already established, that (q, λ)0,Ω ≥ 0 for all q ∈ Π +QQQ, this results in the
inequality

〈q − p, λ〉QQQ ≥ 0 ∀q ∈ Π +QQQ .

�

Proof. (Theorem 6.1.8)

First of all the subset KKK is convex, because for all v1, . . . , vk ∈ KKK and α1, . . . , αk ∈ R+,

with k ∈ N and
k∑
j=1

αj = 1,

q, ψ − Ğ
 k∑
j=1

αjvj


0,Ω

≥

q, ψ − k∑
j=1

αjĞ (vj)


0,Ω

≥ inf
1≤i≤k

q, ψ − Ğ(vi)

k∑
j=1

αj


0,Ω

= inf
1≤i≤k

(
q, ψ − Ğ(vi)

)
0,Ω
≥ 0 ∀q ∈ Π +QQQ .
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According to the first condition

sup
ϕ∈VVV

(
q, Ğ(ϕ)

)
0,Ω

‖ϕ‖VVV
≤ ‖q‖QQQ sup

ϕ∈VVV

∥∥∥Ğ(ϕ)
∥∥∥

0,Ω

‖ϕ‖VVV
≤ α ‖q‖QQQ ∀q ∈ QQQ .

Next consider a convergent sequence (vk)k∈N ⊂ KKK with lim
k→∞

vk = v ∈ VVV. For all j ∈ N

and q ∈ QQQ, with ‖q‖QQQ 6= 0, there is k̃ ∈ N, such that for all k ∈ N with k ≥ k̃

‖vk − v‖VVV <
β

2j−2 ‖q‖QQQ (α+ β)2

≤ 1

2j−2 ‖q‖2QQQ (α+ β)2

(α+ β) ‖q‖QQQ − sup
ϕ∈VVV

(
q, Ğ(ϕ)

)
0,Ω

‖ϕ‖VVV

 .

If for q ∈ Π +QQQ, with ‖q‖QQQ 6= 0, there is an index k ∈ N, with k ≥ k̃, such that(
q, Ğ(vk)− ψ

)
0,Ω
≤ −ε < 0, then there is j ∈ N, such that

(
q, Ğ(vk)− ψ

)
0,Ω
≤ − 1

2j
.

Together with the estimation above, this leads to(
q, Ğ(v)− ψ

)
0,Ω
≤
(
q, Ğ(vk)− ψ

)
0,Ω

+
(
q, Ğ(v − vk)

)
0,Ω

≤ − 1

2j
+ ‖v − vk‖VVV sup

ϕ∈VVV

(
q, Ğ(ϕ)

)
0,Ω

‖ϕ‖VVV

≤ − 1

2j
+

1

2j−2 ‖q‖2QQQ (α+ β)2

(α+ β) ‖q‖QQQ − sup
ϕ∈VVV

(
q, Ğ(ϕ)

)
0,Ω

‖ϕ‖VVV

 sup
ϕ∈VVV

(
q, Ğ(ϕ)

)
QQQ

‖ϕ‖0,Ω︸ ︷︷ ︸
≤

(α+β)2‖q‖2
QQQ

4

≤ 0 .

On the other hand, if for all q ∈ Π +QQQ, with ‖q‖QQQ 6= 0, and all k ∈ N, with k ≥ k̃,(
q, Ğ(vk)− ψ

)
0,Ω

= 0, then we have a constant zero sequence

((
q, Ğ(vk)− ψ

)
0,Ω

)
k∈N

.

This sequence converges to
(
q, Ğ(v)− ψ

)
0,Ω

, because∣∣∣∣(q, Ğ(vk)− ψ
)

0,Ω
−
(
q, Ğ(v)− ψ

)
0,Ω

∣∣∣∣ ≤ ∣∣∣∣(q, Ğ(v − vk)
)

0,Ω

∣∣∣∣+ 2

∣∣∣∣(q, Ğ(vk)− ψ
)

0,Ω

∣∣∣∣︸ ︷︷ ︸
=0

≤‖q‖QQQ
∥∥∥Ğ(v − vk)

∥∥∥
0,Ω

≤α ‖q‖QQQ ‖v − vk‖VVV
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Since we have a constant zero sequence for k > k̃ this leads to the conclusion(
q, Ğ(v)− ψ

)
0,Ω

= lim
k→∞

(
q, Ğ(vk)− ψ

)
0,Ω

= 0 .

Combining both cases we can conclude that
(
q, Ğ(v)− ψ

)
QQQ
≤ 0 for all q ∈ Π +QQQ, which

means that v ∈ KKK and that the subset KKK is closed. �

6.2. Newton-type method for the generalized problem

In order to numerically solve the variational problem, introduced above, we replace the
continuous space with appropriated conform finite dimensional spaces VhVhVh and QhQhQh, that
satisfy the conditions〈

J ′′(uuuh)ϕϕϕh,ϕϕϕh
〉

VhVhVh
= A(ϕϕϕh,ϕϕϕh) ≥ α ‖ϕϕϕh‖2VhVhVh

∀ϕϕϕ ∈ VhVhVh (6.5)

and sup
ϕϕϕh∈VhVhVh

(
qqqh, Ğ(ϕϕϕh)

)
0,Ω

‖ϕϕϕh‖VVV
≥ β ‖qqqh‖QhQhQh

∀qqqh ∈ QhQhQh (6.6)

for positive constants α and β. This spaces VhVhVh and QhQhQh ⊆ LLL2(Ω) are usually referred to
as discreet space. Furthermore it is important, that we don’t use any properties of the
FE-spaces. The only requirement we impose on the spaces VhVhVh and QhQhQh is, that linear a
problem, like the one we use to calculate the update vector, are solvable, if the unique
solution exist. As in the case of the Stokes and the obstacle problems before, we consider
the discreet problem: To find a point (uuuh, ppph)T ∈ VhVhVh ×QhQhQh such that

A(ϕϕϕh,uuuh) +
(
Ğ(ϕϕϕh), ppph

)
0,Ω

= L(ϕϕϕh) ∀ϕhϕhϕh ∈ VhVhVh, (6.7)(
Ğ(uuuh), qqqh

)
0,Ω

= (qqqh,ψψψ − λλλh)0,Ω ∀qqqh ∈ QhQhQh (6.8)

and λλλh = Π +

(
ψψψ − Ğ(uuuh)− 1

δ
ppph

)
a.e. on Ω. (6.9)

Since the problem above is non-linear, we want an iteration instruction(
uuu

(k+1)
h

ppp
(k+1)
h

)
=

(
uuu

(k)
h

ppp
(k)
h

)
− γr

(
ddduh
dddph

)
where

〈
F̃ ′ϕϕϕhqqqh(uuu

(k)
h , ppp

(k)
h ),

(
ddduh, ddd

p
h

)T〉
VhVhVh×QhQhQh

= Fϕϕϕhqqqh(uuu
(k)
h , ppp

(k)
h ) ∀ (ϕϕϕh, qqqh)T ∈ VhVhVh ×QhQhQh ,

with a positive constant γr. In order to calculate the update vector
(
ddduh, ddd

p
h

)T
we need to

define the functional Fϕϕϕhqqqh : VhVhVh×QhQhQh → R be a functional with the parameters ϕϕϕh ∈ VhVhVh

and qqqh ∈ QhQhQh, where

Fϕϕϕhqqqh(ũ̃ũuh, p̃̃p̃ph) =Aδ(ϕϕϕh, ũ̃ũuh) +
(
Ğ(ϕϕϕh), ppph

)
0,Ω
− L(ϕϕϕh) + δ

(
Ğ(ϕϕϕh),ψψψ − λλλh

)
0,Ω

−
(
Ğ(ũ̃ũuh), qqqh

)
0,Ω

+ (qqqh,ψψψ − λλλh)0,Ω ,
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with Aδ(ϕϕϕh, ũ̃ũuh) = A(ϕϕϕh, ũ̃ũuh)− δ
(
Ğ(ϕϕϕh), Ğ(ũ̃ũuh)

)
QQQ

and λλλh =
1

2

(
ψψψ − Ğ(ũ̃ũuh)− 1

δ
Ψ̆s(p̃̃p̃ph)

)
+

1

2


∣∣∣(ψψψ − Ğ(ũ̃ũuh)− 1

δ Ψ̆s(p̃̃p̃ph)
)

1

∣∣∣
...∣∣∣(ψψψ − Ğ(ũ̃ũuh)− 1
δ Ψ̆s(p̃̃p̃ph)

)
m

∣∣∣

 .

As well, we define a more stabilized and regularised Gateaux-differentiable functional
F̃ϕϕϕqqq : VVV ×QQQ→ R with the parameters ϕϕϕ ∈ VVV and qqq ∈ QQQ, where

F̃ϕϕϕhqqqh(ũ̃ũuh, p̃̃p̃ph) =Aδ(ϕϕϕh, ũ̃ũuh) +
(
Ğ(ϕϕϕh), ppph

)
0,Ω
− L(ϕϕϕh) + δ

(
Ğ(ϕϕϕh),ψψψ − λλλh

)
0,Ω

−
(
Ğ(ũ̃ũuh), qqqh

)
0,Ω

+ (qqqh,ψψψ − λλλh)0,Ω + cQ

∑
T∈Th

|T | (p̃̃p̃ph, qqqh)0,T ,

with λλλξ =
1

2

(
ψψψ − Ğ(ũ̃ũuh)− 1

δ
Ψ̆s(p̃̃p̃ph)

)
+

1

2



√((
ψψψ − Ğ(ũ̃ũuh)− 1

δ Ψ̆s(p̃̃p̃ph)
)

1

)2
+ ξ

...√((
ψψψ − Ğ(ũ̃ũuh)− 1

δ Ψ̆s(p̃̃p̃ph)
)
m

)2
+ ξ

 .

The hypothesis is, that on the discrete spaces VVVh and QQQh the iteration sequence converges
towards the best possible approximation (uuuh, ppph)T. To proof it, we define two operators
Ŭ : VhVhVh ×QhQhQh → VhVhVh ×QhQhQh and T̆ : VhVhVh ×QhQhQh → VhVhVh ×QhQhQh, where

T̆ (ũ̃ũuh, p̃̃p̃ph)T = (ũhũhũh, p̃̃p̃ph)T − γrŬ(ũ̃ũuh, p̃̃p̃ph)T

and Ŭ(ũ̃ũuh, p̃̃p̃ph)T = (Ŭuũ̃ũuh, Ŭ
pp̃̃p̃ph)T =

(
ddduh, ddd

p
h

)T
,

with
〈
F̃ ′ϕϕϕhqqqh(ũ̃ũuh, p̃̃p̃ph),

(
ddduh, ddd

p
h

)T〉
VhVhVh×QhQhQh

= Fϕϕϕhqqqh(ũ̃ũuh, p̃̃p̃ph) ∀ (ϕϕϕh, qqqh)T ∈ VhVhVh ×QhQhQh .

We have to make sure, that the update vector
(
ddduh, ddd

p
h

)T
can be calculated, as well as that

the operator T̆ defines a fixed point iteration. Last but not least we have to verify, that
the limit of this sequence is (uuuh, ppph)T ∈ VVVh ×QQQh, the solution of the problem defined by
equations 6.7 to 6.9. We use the theorem A.0.7 from Großmann and Roos [11, p. 109 ff]
and the scheme of the poof looks as follows:

In the subsection 6.2.1, we consider Z∗ũ̃ũuhp̃̃p̃ph (ϕϕϕh, qqqh) ∈ (VVV ×QQQ)∗ with Z∗ũ̃ũuhp̃̃p̃ph (ϕϕϕh, qqqh) =

F̃ ′ϕϕϕhqqqh(ũ̃ũuh, p̃̃p̃ph) and show, that for all f̃̃f̃f∗ ∈ VhVhVh
∗ × QQQ∗ there exist exactly one solution

(ϕϕϕf , qqqf )T ∈ VhVhVh ×QhQhQh, such that

Z∗ũ̃ũup̃̃p̃p (ϕϕϕf , qqqf ) = f̃̃f̃f∗ ∀(ũ̃ũuh, p̃̃p̃ph)T ∈ VVV ×QQQ .

To do so, we proof, that Z∗ũ̃ũuhp̃̃p̃ph has following properties:
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a) Z∗ũ̃ũuhp̃̃p̃ph is strong monotone, meaning that meaning that there is a constant αZ ∈ R+,

such that for all (ϕϕϕh, qqqh)T , (ϕ̃̃ϕ̃ϕh, q̃̃q̃qh)T ∈ VhVhVh ×QhQhQh〈
Z∗ũ̃ũuhp̃̃p̃ph (ϕϕϕh, qqqh)−Z∗ũ̃ũuhp̃̃p̃ph (ϕ̃̃ϕ̃ϕh, q̃̃q̃qh) , (ϕϕϕh, qqqh)T − (ϕ̃̃ϕ̃ϕh, q̃̃q̃qh)T

〉
VhVhVh×QhQhQh

≥ αZ
∥∥∥(ϕϕϕh, qqqh)T − (ϕ̃̃ϕ̃ϕh, q̃̃q̃qh)T

∥∥∥2

VhVhVh×QhQhQh

.

b) Z∗ũ̃ũuhp̃̃p̃ph is Lipschitz continuous, meaning that there is a constant βZ ∈ R+, such that

for all (ϕϕϕh, qqqh)T , (ϕ̃̃ϕ̃ϕh, q̃̃q̃qh)T ∈ VhVhVh ×QhQhQh∥∥Z∗ũ̃ũuhp̃̃p̃ph (ϕϕϕh, qqqh)−Z∗ũ̃ũuhp̃̃p̃ph (ϕ̃̃ϕ̃ϕh, q̃̃q̃qh)
∥∥

(VhVhVh×QhQhQh)∗
≤ βZ

∥∥∥(ϕϕϕh, qqqh)T − (ϕ̃̃ϕ̃ϕh, q̃̃q̃qh)T
∥∥∥

VhVhVh×QhQhQh

.

The properties above allow us to show in the subsection 6.2.2 that, in each step the

unique update vector
(
ddduh, ddd

p
h

)T
exist. For further steps we will need the properties:

a) There is an lower estimation, with a positive constant αŬ , for the scalar product
of the update operator in each iteration step:((

uuu
(k)
h , ppp

(k)
h

)T
− (uuuh, ppph)T , Ŭ

(
uuu

(k)
h , ppp

(k)
h

)T
)

VhVhVh×QhQhQh

≥ αŬ

∥∥∥∥(uuu(k)
h , ppp

(k)
h

)T
− (uuuh, ppph)T

∥∥∥∥2

VhVhVh×QhQhQh

∀k ∈ N.

b) There is an upper estimation, with a positive constant βŬ , for the norm of the
update operator in each iteration step:∥∥∥∥Ŭ (uuu(k)

h , ppp
(k)
h

)T
∥∥∥∥

VhVhVh×QhQhQh

≤ βŬ

∥∥∥∥(uuu(k)
h − uuuh, ppp

(k)
h − ppph

)T
∥∥∥∥

VhVhVh×QhQhQh

∀k ∈ N.

Finally we can estimate how much near does the iteration process brigs us to the solution
(uuuh, ppph)T in each step. For this we derive the inequality∥∥∥(uuu

(k+1)
h − uuuh, ppp

(k+1)
h − ppph)T

∥∥∥2

VhVhVh×QhQhQh

=
∥∥∥(uuuh, ppph)T − (uuu

(k)
h , ppp

(k)
h )T + γrŬ(uuu

(k)
h , ppp

(k)
h )T

∥∥∥2

VhVhVh×QhQhQh

=
∥∥∥(uuuh, ppph)T − (uuu

(k)
h , ppp

(k)
h )T

∥∥∥2

VhVhVh×QhQhQh

− γr
(

(uuu
(k)
h , ppp

(k)
h )T − (uuuh, ppph)T, Ŭ(uuu

(k)
h , ppp

(k)
h )T

)
VhVhVh×QhQhQh

+ γ2
r

∥∥∥Ŭ(uuu
(k)
h , ppp

(k)
h )T

∥∥∥2

VhVhVh×QhQhQh

.
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If the update operator Ŭ has the properties described above, this means that∥∥∥(uuu
(k+1)
h − uuuh, ppp

(k+1)
h − ppph)T

∥∥∥2

VhVhVh×QhQhQh

≤
(

1− 2γrαŬ + γ2
rβ

2
Ŭ

)∥∥∥(uuu
(k)
h − uuuh, ppp

(k)
h − ppph)T

∥∥∥2

VhVhVh×QhQhQh

.

As a result we can conclude, that for 0 < γr <
2αŬ
β2
Ŭ

the iteration algorithm has a

contraction property. Furthermore the inequality above proves, that for the appropriate
positive constants γr, δ and cQ we receive a convergent sequence, that has the solution
of the problem, defined by equations 6.7 to 6.9, as it’s limit.

6.2.1. Properties of the Gateaux-derivative F ′ϕϕϕhqqqh(ũ̃ũuh, p̃̃p̃ph)

Theorem 6.2.1. Let the derivative F̃ ′ϕϕϕhqqqh and the functional Z∗ũ̃ũuhp̃̃p̃ph be defined as above,
then Z∗ũ̃ũuhp̃̃p̃ph is strong monotone.

Proof. Using the definition above we get the equation〈
Z∗ũ̃ũuhp̃̃p̃ph (ϕϕϕh, qqqh)−Z∗ũ̃ũuhp̃̃p̃ph (ϕ̃hϕ̃hϕ̃h, q̃h̃qh̃qh) , (ϕϕϕh, qqqh)T − (ϕ̃̃ϕ̃ϕh, q̃̃q̃qh)T

〉
VVVh×QQQh

=
〈
F̃ ′ϕϕϕhqqqh(ũ̃ũuh, p̃̃p̃ph), (ϕϕϕh − ϕ̃̃ϕ̃ϕh, qqqh − q̃̃q̃qh)T

〉
VhVhVh×QhQhQh

−
〈
F̃ ′ϕ̃̃ϕ̃ϕhq̃̃q̃qh(ũ̃ũuh, p̃̃p̃ph), (ϕϕϕh − ϕ̃̃ϕ̃ϕh, qqqh − q̃̃q̃qh)T

〉
VhVhVh×QhQhQh

= Aδ(ϕϕϕh − ϕ̃̃ϕ̃ϕh,ϕϕϕh − ϕ̃̃ϕ̃ϕh) +
(
Ğ(ϕϕϕh)− Ğ(ϕ̃̃ϕ̃ϕh), qqqh − q̃̃q̃q

)
0,Ω

−
(
Ğ(ϕϕϕh)− Ğ(ϕ̃̃ϕ̃ϕh), qqqh − q̃̃q̃q

)
0,Ω

+ cQ

∑
T∈Th

|T | ‖qqqh − q̃̃q̃qh‖0,T

+
1

2

m∑
j=1

(
δĞ(ϕϕϕh − ϕ̃̃ϕ̃ϕh)j + (qj − q̃j),

(
1 + V̆j(ũ̃ũuh, p̃̃p̃ph)

)(
Ğ(ϕϕϕh − ϕ̃̃ϕ̃ϕh)j +

1

δ
(qj − q̃j)

))
0,Ω

,

where V̆j : VhVhVh ×QhQhQh → LLL∞(Ω) with

V̆j(ũ̃ũuh, p̃̃p̃ph) =

(
ψψψ − Ğ(ũ̃ũuh)− 1

δ p̃̃p̃ph

)
j√((

ψψψ − Ğ(ũ̃ũuh)− 1
δ p̃̃p̃ph

)
j

)2

+ ξ

and therefor 0 < V̆j(ũ̃ũuh, p̃̃p̃ph) < 1 a.e. on Ω. This helps us to estimate using Hölder-
inequality, that

m∑
j=1

(
δĞ(ϕϕϕh − ϕ̃̃ϕ̃ϕh)j + (qj − q̃j),

(
1 + V̆j(ũ̃ũuh, p̃̃p̃ph)

)(
Ğ(ϕϕϕh − ϕ̃̃ϕ̃ϕh)j +

1

δ
(qj − q̃j)

))
0,Ω

≥ 1

δ

∥∥∥δĞ(ϕϕϕh − ϕ̃̃ϕ̃ϕh) + (qqqh − q̃̃q̃qh)
∥∥∥2

0,Ω
max

1≤j≤m

∥∥∥1−
∣∣∣V̆j(ũ̃ũuh, p̃̃p̃ph)

∣∣∣∥∥∥
LLL∞(Ω)
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In the case of mapping Z∗ũ̃ũuhp̃̃p̃ph : VhVhVh × QhQhQh → (VhVhVh ×QhQhQh)∗ we treat ũ̃ũuh and p̃̃p̃ph just as

parameter and there for can define a constant cH = max
1≤j≤m

∥∥∥1−
∣∣∣V̆j(ũ̃ũuh, p̃̃p̃ph)

∣∣∣∥∥∥
LLL∞(Ω)

with

0 < cH < 1. According to the ellipticity condition 6.5, we can estimate, that〈
Z∗ũ̃ũuhp̃̃p̃ph (ϕϕϕh, qqqh)−Z∗ũ̃ũuhp̃̃p̃ph (ϕ̃̃ϕ̃ϕh, q̃̃q̃qh) , (ϕϕϕh, qqqh)T − (ϕ̃̃ϕ̃ϕh, q̃̃q̃qh)T

〉
VVVh×QQQh

≥α ‖ϕϕϕh − ϕ̃̃ϕ̃ϕh‖2VVVh − δ
∥∥∥Ğ(ϕϕϕh − ϕ̃̃ϕ̃ϕh)

∥∥∥2

0,Ω
+
cH
2δ

∥∥∥δĞ(ϕϕϕh − ϕ̃̃ϕ̃ϕh)− (qqqh − q̃̃q̃qh)
∥∥∥2

0,Ω

+ cQ|Tmin| ‖qqqh − q̃̃q̃qh‖20,Ω

≥α ‖ϕϕϕh − ϕ̃̃ϕ̃ϕh‖2VVVh + δ
(cH

2
− 1
)∥∥∥Ğ(ϕϕϕh − ϕ̃̃ϕ̃ϕh)

∥∥∥2

0,Ω
+
cH
2δ
‖qqqh − q̃̃q̃qh‖20,Ω

− cH
∥∥∥Ğ(ϕϕϕh − ϕ̃̃ϕ̃ϕh)

∥∥∥
0,Ω
‖qqqh − q̃̃q̃qh‖0,Ω + cQ|Tmin| ‖qqqh − q̃̃q̃qh‖20,Ω .

Using the continuity of the operator Ğ, the inequality∥∥∥Ğ(ϕϕϕh − ϕ̃̃ϕ̃ϕh)
∥∥∥

0,Ω
≤ ccon ‖ϕϕϕh − ϕ̃̃ϕ̃ϕh‖VVV , (6.10)

with a constant ccon > 0, can be introduced. Lastly, we can apply the Young’s inequality
with a constant cY > 0:〈

Z∗ũ̃ũuhp̃̃p̃ph (ϕϕϕh, qqqh)−Z∗ũ̃ũuhp̃̃p̃ph (ϕ̃̃ϕ̃ϕh, q̃̃q̃qh) , (ϕϕϕh, qqqh)T − (ϕ̃̃ϕ̃ϕh, q̃̃q̃qh)T
〉

VhVhVh×QhQhQh

≥
(
α+ δc2

con

(cH
2

(1− cY )− 1
))
‖ϕϕϕh − ϕ̃̃ϕ̃ϕh‖2VhVhVh

+

(
cH
2δ

(
1− 1

2cY

)
+ cQ|Tmin|

)
‖qqqh − q̃̃q̃qh‖20,Ω .

In order for the constants
(
α+ δc2

con

(
cH
2 (1− cY )− 1

))
and cH

2δ

(
1− 1

2cY

)
to be positive,

the constant cY must satisfy the condition

1

2
< cY < 2

α− δc2
con

δc2
concH

+ 1 .

This is possible, if δ < α
c2con
≤ 4α

c2con(4−cH)
. Since we now that an appropriate contant cY

exist, by defining

αZ = min

{(
α+ δc2

con

(cH
2

(1− cY )− 1
))

,
cH
2δ

(
1− 1

2cY

)
+ cQ|Tmin|

}
we obtain the estimation〈
Z∗ũ̃ũuhp̃̃p̃ph (ϕϕϕh, qqqh)−Z∗ũ̃ũuhp̃̃p̃ph (ϕ̃̃ϕ̃ϕh, q̃̃q̃qh) , (ϕϕϕh, qqqh)T − (ϕ̃̃ϕ̃ϕh, q̃̃q̃qh)T

〉
VhVhVh×QhQhQh

≥ αZ
∥∥∥(ϕϕϕh, qqqh)T − (ϕ̃̃ϕ̃ϕh, q̃̃q̃qh)T

∥∥∥2

VhVhVh×QhQhQh

∀ (ϕϕϕh, qqqh)T , (ϕ̃̃ϕ̃ϕh, q̃̃q̃qh)T ∈ VhVhVh ×QhQhQh .�

Theorem 6.2.2. Let the derivative F̃ ′ϕϕϕhqqqh and the functional Z∗ũ̃ũuhp̃̃p̃ph be defined as above,
then Z∗ũ̃ũuhp̃̃p̃ph is Lipschitz continuous.
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Proof. Using the definition of Z∗ũ̃ũuhp̃̃p̃ph (ϕϕϕh, qqqh) and other notation, used previously, we get

for all (ϕϕϕh, qqqh)T, (ϕ̃̃ϕ̃ϕh, q̃̃q̃qh)T and
(
ddduh, ddd

p
h

)T
the equation〈

Z∗ũ̃ũuhp̃̃p̃ph (ϕϕϕh, qqqh)−Z∗ũ̃ũuhp̃̃p̃ph (ϕ̃̃ϕ̃ϕh, q̃̃q̃qh) ,
(
ddduh, ddd

p
h

)T〉
VVVh×QQQh

=Aδ(ϕϕϕh − ϕ̃̃ϕ̃ϕh, ddduh) +
(
Ğ(ϕϕϕh − ϕ̃̃ϕ̃ϕh), dddph

)
0,Ω

−
(
Ğ(ddduh), qqqh − q̃̃q̃qh

)
0,Ω

+ cQ

∑
T∈Th

|T |
(
dddph, qqqh − q̃̃q̃qh

)
0,T

+
1

2

m∑
j=1

(
δĞ(ϕj − ϕ̃j) + (qj − q̃j),

(
1 + V̆j(ũ̃ũuh, p̃̃p̃ph)

)(
Ğ(ddduh)j +

1

δ
(dph,j)

))
0,Ω

.

By applying the Cauchy-Schwarz inequality we receive the first estimation:〈
Z∗ũ̃ũuhp̃̃p̃ph (ϕϕϕh, qqqh)−Z∗ũ̃ũuhp̃̃p̃ph (ϕ̃̃ϕ̃ϕh, q̃̃q̃qh) ,

(
ddduh, ddd

p
h

)T〉
VVVh×QQQh

≤ Aδ(ϕϕϕh − ϕ̃̃ϕ̃ϕh, ddduh) +
∥∥∥Ğ(ϕϕϕh − ϕ̃̃ϕ̃ϕh)

∥∥∥
0,Ω

∥∥dddph∥∥0,Ω

+
∥∥∥Ğ(ddduh)

∥∥∥
0,Ω
‖qqqh − q̃̃q̃qh‖0,Ω + cQ|Tmax|

∥∥dddph∥∥0,Ω
‖qqqh − q̃̃q̃qh‖0,Ω

+
1

2δ

(
1 + sup

1≤j≤m

∥∥∥V̆j(ũ̃ũuh, p̃̃p̃ph)
∥∥∥

LLL∞(Ω)

)∥∥∥δĞ(ϕϕϕh − ϕ̃̃ϕ̃ϕh) + (qqqh − q̃̃q̃qh)
∥∥∥

0,Ω

×
∥∥∥(δĞ(ddduh) + dddph

)∥∥∥
0,Ω

.

Since the bilinear form Aδ is continuous, last step is to apply the Young’s inequality and
choose the appropriate constants, which results in〈

Z∗ũ̃ũuhp̃̃p̃ph (ϕϕϕh, qqqh)−Z∗ũ̃ũuhp̃̃p̃ph (ϕ̃̃ϕ̃ϕh, q̃̃q̃qh) ,
(
ddduh, ddd

p
h

)T〉
VVVh×QQQh

≤ βZ
∥∥∥(ϕϕϕh, qqqh)T − (ϕ̃̃ϕ̃ϕh, q̃̃q̃qh)T

∥∥∥
VhVhVh×QhQhQh

∥∥∥(ddduh, dddph)T∥∥∥
VhVhVh×QhQhQh

,

with a positive constant βZ , and therefor∥∥Z∗ũ̃ũuhp̃̃p̃ph (ϕϕϕh, qqqh)−Z∗ũ̃ũuhp̃̃p̃ph (ϕ̃̃ϕ̃ϕh, q̃̃q̃qh)
∥∥

(VhVhVh×QhQhQh)∗
≤ βZ

∥∥∥(ϕϕϕh, qqqh)T − (ϕ̃̃ϕ̃ϕh, q̃̃q̃qh)T
∥∥∥

VhVhVh×QhQhQh

.�

6.2.2. Properties of the update operator Ŭ

The properties, derived in the previous subsection allow us two conclusions. First ac-

cording to the abstract existence theorem A.0.4 there is a unique update vector
(
ddduh, ddd

p
h

)T
for each

(
uuu

(k)
h , ppp

(k)
h

)T
, and therefor the update operator Ŭ is well defined. On the other

hand, for all f̃̃f̃f∗ ∈ (VhVhVh ×QhQhQh)∗ there is (ϕϕϕf , qqqf )T ∈ VhVhVh ×QhQhQh that satisfies the equation

Z∗
uuu

(k)
h ,ppp

(k)
h

(ϕϕϕf , qqqf ) = f̃̃f̃f∗.
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Theorem 6.2.3. Let the update operator Ŭ be defined as above, then there is an lower
estimation, with a positive constant αŬ , for the scalar product of the update operator in
each iteration step:((

uuu
(k)
h , ppp

(k)
h

)T
− (uuuh, ppph)T , Ŭ

(
uuu

(k)
h , ppp

(k)
h

)T
)

VhVhVh×QhQhQh

≥ αŬ

∥∥∥∥(uuu(k)
h , ppp

(k)
h

)T
− (uuuh, ppph)T

∥∥∥∥2

VhVhVh×QhQhQh

∀k ∈ N.

Proof. Let f̃̃f̃f∗ ∈ (VhVhVh ×QhQhQh)∗ be defined as〈
f̃̃f̃f∗, .

〉
VhVhVh×QhQhQh

=

((
uuu

(k)
h , ppp

(k)
h

)T
− (uuuh, ppph)T , .

)
VhVhVh×QhQhQh

,

where
(
uuu

(k)
h , ppp

(k)
h

)T
∈ VhVhVh ×QhQhQh is the k-th step of the iteration and (uuuh, ppph)T ∈ (VhVhVh ×QhQhQh)

is the solution of the problem defined by equations 6.7 to 6.9. Furthermore let (ϕϕϕf , qqqf )T ∈
VhVhVh ×QhQhQh be the solution of the equation

Z∗
uuu

(k)
h ,ppp

(k)
h

(ϕϕϕf , qqqf ) = f̃̃f̃f∗

and therefor
〈
F̃ ′ϕϕϕfqqqf (uuu

(k)
h , ppp

(k)
h ), .

〉
VhVhVh×QhQhQh

=

((
uuu

(k)
h , ppp

(k)
h

)T
− (uuuh, ppph)T , .

)
VhVhVh×QhQhQh

.

According to the definitions of the functional Fϕ1ϕ1ϕ1,q1q1q1 , the dual pair
〈
F̃ ′ϕ1ϕ1ϕ1,q1q1q1 , .

〉
VVV×QQQ

and

the operator Ŭ , the equation above is equivalent to((
uuu

(k)
h , ppp

(k)
h

)T
− (uuuh, ppph)T , Ŭ

(
uuu

(k)
h , ppp

(k)
h

)T
)

VhVhVh×QhQhQh

=

〈
F̃ ′ϕϕϕfqqqf (uuu

(k)
h , ppp

(k)
h ), Ŭ

(
uuu

(k)
h , ppp

(k)
h

)T
〉

VhVhVh×QhQhQh

= Fϕϕϕf ,qqqf
(
uuu

(k)
h , ppp

(k)
h

)
.

Since (uuuh, ppph)T ∈ (VhVhVh ×QhQhQh) is the solution of the problem defined by equations 6.7 to
6.9, it means that Fϕϕϕh,qqqh (uuuh, ppph) = 0 for all (ϕϕϕh, qqqh)T ∈ (VhVhVh ×QhQhQh). By applying the
Taylor’s theorem we get

F̃ϕϕϕf ,qqqf
(
uuu

(k)
h , ppp

(k)
h

)
︸ ︷︷ ︸

=Fϕϕϕf ,qqqf
(
uuu

(k)
h ,ppp

(k)
h

)
+cQ

∑
T∈Th

|T |
(
ppp

(k)
h ,qqqf

)
0,T

= F̃ϕϕϕf ,qqqf (uuuh, ppph)︸ ︷︷ ︸
=Fϕϕϕf ,qqqf (uuuh, ppph)︸ ︷︷ ︸

=0

+cQ
∑

T∈Th
|T |(ppph,qqqf)0,T

+

〈
F̃ ′ϕϕϕfqqqf (ũ̃ũuθ, q̃̃q̃qθ),

(
uuu

(k)
h − uuuh, ppp

(k)
h − ppph

)T
〉

VhVhVh×QhQhQh

,

where (ũ̃ũuθ, q̃̃q̃qθ)
T ∈ (VhVhVh ×QhQhQh) is a vector, such that for all components of the vector there

is a real number 0 < θj < 1 with ũθ,j = θjuh,j +(1−θj)u(k)
h,j or p̃θ,j = θjph,j +(1−θj)p(k)

h,j .
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Again, according to the definitions of the dual pair
〈
F̃ ′ϕϕϕf ,qqqf , .

〉
VVV×QQQ

, the operator V̆ and

the previous equations

((
uuu

(k)
h , ppp

(k)
h

)T
− (uuuh, ppph)T , Ŭ

(
uuu

(k)
h , ppp

(k)
h

)T
)

VhVhVh×QhQhQh

=

〈
F̃ ′ϕϕϕfqqqf (ũ̃ũuθ, q̃̃q̃qθ),

(
uuu

(k)
h − uuuh, ppp

(k)
h − ppph

)T
〉

VhVhVh×QhQhQh

− cQ

∑
T∈Th

|T |
(
ppp

(k)
h − ppph, qqqf

)
0,T

=

〈
F̃ ′ϕϕϕfqqqf (uuu

(k)
h , ppp

(k)
h ),

(
uuu

(k)
h − uuuh, ppp

(k)
h − ppph

)T
〉

VhVhVh×QhQhQh

− cQ

∑
T∈Th

|T |
(
ppp

(k)
h − ppph, qqqf

)
0,T

+
1

2

m∑
j=1

(
δĞ(ϕϕϕf )j + qf,j ,

(
V̆j(ũ̃ũuθ, p̃̃p̃pθ)− V̆j(uuu

(k)
h , ppp

(k)
h )
)

×
(
Ğ(uuu

(k)
h − uuuh)j +

1

δ
(p

(k)
h,j − ph,j)

))
0,Ω

=

((
uuu

(k)
h , ppp

(k)
h

)T
− (uuuh, ppph)T ,

(
uuu

(k)
h , ppp

(k)
h

)T
− (uuuh, ppph)T

)
VhVhVh×QhQhQh

− cQ

∑
T∈Th

|T |
(
ppp

(k)
h − ppph, qqqf

)
0,T

+
1

2

m∑
j=1

(
δĞ(ϕϕϕf )j + qf,j ,

(
V̆j(ũ̃ũuθ, p̃̃p̃pθ)− V̆j(uuu

(k)
h , ppp

(k)
h )
)

×
(
Ğ(uuu

(k)
h − uuuh)j +

1

δ
(p

(k)
h,j − ph,j)

))
0,Ω

.

Next we apply Hölder’s and Cauchy-Schwarz’s theorems, as well as the property of the
operator V̆ , which for all (ϕϕϕf , qqqf )T ∈ (VVV ×QQQ) holds 0 ≤ V̆j (ϕϕϕf , qqqf ) ≤ 1 a.e. on Ω. Using

the continuity of the operator Ğ (see the inequality (6.10)) and Young’s inequality with
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appropriate constants we can further refine our estimation to the form((
uuu

(k)
h , ppp

(k)
h

)T
− (uuuh, ppph)T , Ŭ

(
uuu

(k)
h , ppp

(k)
h

)T
)

VhVhVh×QhQhQh

≥
∥∥∥∥(uuu(k)

h , ppp
(k)
h

)T
− (uuuh, ppph)T

∥∥∥∥2

VhVhVh×QhQhQh

− cQ|Tmax|
∥∥∥ppp(k)

h − ppph
∥∥∥

0,Ω
‖qqqf‖0,Ω

− 1

2

∥∥∥∥ max
1≤j≤m

∣∣∣V̆j(ũ̃ũuθ, p̃̃p̃pθ)− V̆j(uuu(k)
h , ppp

(k)
h )
∣∣∣∥∥∥∥

LLL∞(Ω)︸ ︷︷ ︸
≤1

×
∥∥∥∥∣∣∣δĞ(ϕϕϕf ) + qqqf

∣∣∣ ∣∣∣∣Ğ(uuu
(k)
h − uuuh) +

1

δ
(ppp

(k)
h − ppph)

∣∣∣∣∥∥∥∥
LLL1(Ω)

≥
∥∥∥∥(uuu(k)

h , ppp
(k)
h

)T
− (uuuh, ppph)T

∥∥∥∥2

VhVhVh×QhQhQh

− cQ|Tmax|
∥∥∥∥(uuu(k)

h , ppp
(k)
h

)T
− (uuuh, ppph)T

∥∥∥∥
VhVhVh×QhQhQh

∥∥∥(ϕϕϕf , qqqf )T
∥∥∥

VhVhVh×QhQhQh

− 1

2

∥∥∥δĞ(ϕϕϕf ) + qqqf

∥∥∥
0,Ω

∥∥∥∥Ğ(uuu
(k)
h − uuuh) +

1

δ
(ppp

(k)
h − ppph)

∥∥∥∥
0,Ω

≥
∥∥∥∥(uuu(k)

h , ppp
(k)
h

)T
− (uuuh, ppph)T

∥∥∥∥2

VhVhVh×QhQhQh

−
(
cQ|Tmax|+

1 + δ2c2
con

2δ

)∥∥∥∥(uuu(k)
h , ppp

(k)
h

)T
− (uuuh, ppph)T

∥∥∥∥
VhVhVh×QhQhQh

∥∥∥(ϕϕϕf , qqqf )T
∥∥∥

VhVhVh×QhQhQh

,

where |Tmax| = max
T∈Th

|T |. In the previous subsection we demonstrated, that Z∗ũ̃ũuhp̃̃p̃ph is

strong monotone, which particularly means that

αZ

∥∥∥(ϕϕϕf , qqqf )T
∥∥∥2

VhVhVh×QhQhQh

≤
〈
Z∗
uuu

(k)
h ppp

(k)
h

(ϕϕϕf , qqqf ) , (ϕϕϕf , qqqf )T

〉
VhVhVh×QhQhQh

=

((
uuu

(k)
h , ppp

(k)
h

)T
− (uuuh, ppph)T , (ϕϕϕf , qqqf )T

)
VhVhVh×QhQhQh

≤
∥∥∥∥(uuu(k)

h , ppp
(k)
h

)T
− (uuuh, ppph)T

∥∥∥∥
VhVhVh×QhQhQh

∥∥∥(ϕϕϕf , qqqf )T
∥∥∥

VhVhVh×QhQhQh

.

In combination with the previous results we finally get((
uuu

(k)
h , ppp

(k)
h

)T
− (uuuh, ppph)T , Ŭ

(
uuu

(k)
h , ppp

(k)
h

)T
)

VhVhVh×QhQhQh

≥
(

1− 1

αZ

(
cQ|Tmax|+

1 + δ2c2
con

2δ

))∥∥∥∥(uuu(k)
h , ppp

(k)
h

)T
− (uuuh, ppph)T

∥∥∥∥2

VhVhVh×QhQhQh

∀
(
uuu

(k)
h , ppp

(k)
h

)T
∈ VhVhVh ×QhQhQh .

By choosing f.e. cQ|Tmax| < αZ − 1+δ2c2con
2δ and

αZ−
√
α2
Z−c2con

c2con
< δ <

αZ+
√
α2
Z−c2con

c2con
we can

define a constant αŬ :=
(

1− 1
αZ

(
cQ|Tmax|+ 1+δ2c2con

2δ

))
> 0 which means, that, for an



6.2. Newton-type method for the generalized problem 79

appropriate choice of the stabilization constants δ and cQ, the scalar product with the
operator Ŭ have a lower estimate with a positive constant. �

Theorem 6.2.4. Let the update operator Ŭ be defined as above, then there is an upper
estimation, with a positive constant βŬ , for the norm of the update operator in each
iteration step:∥∥∥∥Ŭ (uuu(k)

h , ppp
(k)
h

)T
∥∥∥∥

VhVhVh×QhQhQh

≤ βŬ

∥∥∥∥(uuu(k)
h − uuuh, ppp

(k)
h − ppph

)T
∥∥∥∥

VhVhVh×QhQhQh

∀k ∈ N.

Proof. Let q̃̃q̃q∗ ∈ (VhVhVh ×QhQhQh)∗ be defined as

〈g̃̃g̃g∗, . 〉VhVhVh×QhQhQh
=

(
Ŭ
(
uuu

(k)
h , ppp

(k)
h

)T
, .

)
VhVhVh×QhQhQh

,

where
(
uuu

(k)
h , ppp

(k)
h

)T
∈ VhVhVh ×QhQhQh is the k-th step of the iteration. Furthermore let the

vector (ϕϕϕg, qqqg)
T ∈ VhVhVh ×QhQhQh be the solution of the equation

Z∗
uuu

(k)
h ,ppp

(k)
h

(ϕϕϕg, qqqg) = g̃̃g̃g∗

and therefor
〈
F̃ ′ϕϕϕgqqqg(uuu

(k)
h , ppp

(k)
h ), .

〉
VhVhVh×QhQhQh

=

(
Ŭ
(
uuu

(k)
h , ppp

(k)
h

)T
, .

)
VhVhVh×QhQhQh

.

This results in the equation∥∥∥∥Ŭ (uuu(k)
h , ppp

(k)
h

)T
∥∥∥∥2

VhVhVh×QhQhQh

=

〈
F̃ ′ϕϕϕgqqqg(uuu

(k)
h , ppp

(k)
h ), Ŭ

(
uuu

(k)
h , ppp

(k)
h

)T
〉

VhVhVh×QhQhQh

= Fϕϕϕgqqqg(uuu
(k)
h , ppp

(k)
h ).

Let (uuuh, ppph)T ∈ (VhVhVh ×QhQhQh) is the solution of the problem defined by equations 6.7 to 6.9,
then using the definition of the functional Fϕϕϕgqqqg and the Cauchy-Schwarz inequality we
can estimate that∥∥∥∥Ŭ (uuu(k)

h , ppp
(k)
h

)T
∥∥∥∥2

VhVhVh×QhQhQh

= Fϕϕϕgqqqg(uuu
(k)
h , ppp

(k)
h )−Fϕϕϕgqqqg(uuuh, ppph)︸ ︷︷ ︸

=0

≤ A(ϕϕϕg,uuu
(k)
h − uuuh) +

(
Ğ(ϕϕϕg), ppp

(k)
h − ppph

)
0,Ω
− 1

2

(
δĞ(ϕϕϕg) + qqqg, Ğ(uuu

(k)
h )− Ğ(uuuh)

)
0,Ω

+
1

2

(
δĞ(ϕϕϕg) + qqqg,

1

δ

(
ppp

(k)
h − ppph

))
0,Ω

− 1

2

m∑
j=1

(
δĞ(ϕϕϕg)j + qqqg,j ,

∣∣∣∣ψj − Ğ(uuu
(k)
h )j −

1

δ
p

(k)
j

∣∣∣∣− ∣∣∣∣ψj − Ğ(uuuh)j −
1

δ
pj

∣∣∣∣)
0,Ω

≤ A(ϕϕϕg,uuu
(k)
h − uuuh) +

∥∥∥Ğ(ϕϕϕg)
∥∥∥

0,Ω

∥∥∥ppp(k)
h − ppph

∥∥∥
0,Ω

+
∥∥∥δĞ(ϕϕϕg) + qqqg

∥∥∥
0,Ω

∥∥∥Ğ(uuu
(k)
h )− Ğ(uuuh)

∥∥∥
0,Ω

+
∥∥∥δĞ(ϕϕϕg) + qqqg

∥∥∥
0,Ω

∥∥∥∥1

δ

(
ppp

(k)
h − ppph

)∥∥∥∥
0,Ω

.
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Since both the biliear form A and the operator Ğ we can obtain the following estimation
by applying once again the Young’s inequality with appropriate constants:∥∥∥∥Ŭ (uuu(k)

h , ppp
(k)
h

)T
∥∥∥∥2

VhVhVh×QhQhQh

≤ β̃Ŭ

∥∥∥∥(uuu(k)
h − uuuh, ppp

(k)
h − ppph

)T
∥∥∥∥

VhVhVh×QhQhQh

∥∥∥(ϕϕϕg, pppg)
T
∥∥∥

VhVhVh×QhQhQh

,

where tildeβŬ is a positive constant.In the previous subsection we demonstrated, that
Z∗ũ̃ũuhp̃̃p̃ph is strong monotone, which particularly means that

αZ

∥∥∥(ϕϕϕg, qqqg)
T
∥∥∥2

VhVhVh×QhQhQh

≤
〈
Z∗
uuu

(k)
h ppp

(k)
h

(ϕϕϕg, qqqg) , (ϕϕϕg, qqqg)
T

〉
VhVhVh×QhQhQh

=

(
Ŭ
(
uuu

(k)
h , ppp

(k)
h

)T
, (ϕϕϕg, qqqg)

T

)
VhVhVh×QhQhQh

≤
∥∥∥∥Ŭ (uuu(k)

h , ppp
(k)
h

)T
∥∥∥∥

VhVhVh×QhQhQh

∥∥∥(ϕϕϕg, qqqg)
T
∥∥∥

VhVhVh×QhQhQh

.

In combination with the previous results we finally get for a constant βŬ =

√
β̃Ŭ
αZ

the

upper estimation for the update operator:∥∥∥∥Ŭ (uuu(k)
h , ppp

(k)
h

)T
∥∥∥∥

VhVhVh×QhQhQh

≤ βŬ

∥∥∥∥(uuu(k)
h − uuuh, ppp

(k)
h − ppph

)T
∥∥∥∥

VhVhVh×QhQhQh

. �



7. Summary and outlook

In summary, it can be said that, the scope of this work consists of three parts. First of all
we used Lagrange-settings to handle the given constraints and derived a new formulation
of the a given problem, a so-called mixed system. The second aspect were the Newton-
type schemes, which lead to the tested iteration algorithms. The third part were the
refined version of the a posteriori error estimator, that is corresponding to the appropriate
mixed system.

By deriving the equivalent mixed formulations, we discussed the obstacle problem, the
Stokes problem and the problem in abstract setting in the order of the rising complexity.
First we introduced the one dimensional obstacle problem, where the solution function is
directly the subject to the restriction. In other words, here we have the simplest example
of the constrain operator Ğ, namely the identity operator. This way it was relatively easy
to introduce the usual solution approach and the basics of the proposed mixed system.
The Stokes problem provides an example with the more complicated constrain operator
Ğ. This is why, this example of the typical problem was investigated more closely (for
example the prove of the existence and the uniqueness of the the solution for stabilized
and regularized problem in the sectin 4.6). The imposed the condition on the involved
functionals were the basis for the further development in the abstract setting. In both
cases, namely the obstacle and the Stockes problems, we merely motivated the proposed
mixed formulation. The proper proof of the equivalence of the several formulations were
derived in the curse of the section 6.1. Here we combined the a small excursion in the
theory of functional minimization with the so far accumulated experience in the mixed
variational formulations.

Regarding the second aspect of the work, the Newton-type schemes, the most important
question is how to regularize the functional. It a balance act, because on the one hand
the more simple approach might have a worse update in each iteration step, an therefor
will need more iteration steps to achieve the same precision, when compare to a more
complex regularization. On the other hand, the higher calculation ”costs” should not
be neglected, since even if the specific Newton-type scheme can decrease the number
of iteration steps, the overall calculation time might still be worse. Therefor we used
an exaple for a Stokes problem with allowed cavitation effects test several Newton-type
schemes. The results suggest that in all scenarios, that we considered in the section 4.5,
the best approach was the method with the most precise approximation of the Gateau-
derivative. The more complex calculation of the update not only paid of, with rising
number of degrees of freedom the calculation time was the fraction of the time needed,
when solving the problem with the usual method. In the section 4.5 we also examined,
how the rising number of degrees of freedom, or the size of the mesh, affects the solution.
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We were able to estimate, that the norm of the difference between estimated and the
exact solution goes linear down with the mesh size value h. Last but not least, in the
section 6.2.2 we transferred the solution strategy to abstract setting and could proof the
convergence of the iteration algorithm.

The third part, the a posteriori error estimator is strongly related to the proposed mixed
formulation. In the section 4.4 we described, how all the part of the estimator relate
to the corresponding conditions of the mixed formulation. The difficulty here was, that
we had to derive it twice. The first approach work only for the conform discretization
of the continuous spaces. Since we used the Croizeix-Raviart-elements in the numerical
test the non-conform discretization needed to be taken into account. This resulted in an
additional term in the error estimator and a different concept to derive the estimator.

The possibilities for extensions and future tasks can be found for all the thematic scopes
summarized above. For example, we restricted the constrains in the abstract setting
to the linear operator Ğ, but in the theorem 6.1.8 we considered the larger family of
the sublinear operators. The next step can be to examine this constrains using f.e. the
torsion problem and in similar fashion derive equivalent mixed formulations with the
target to solve the problem with Newton-type schemes.

On the subject of the Newton-type schemes, we examined the case, where the the second
derivative of the energy functional J is a bilinearform, that is independent of the solution
u. Making it u-dependent would not only result in a wide verity of Newton-type schemes,
but also may require additional properties to ensure the convergence.

As for the error estimator, we saw that the worse part of it, in terms of the convergence
rates, was the norm of the difference between the non-conform approximation calculate
by the solution strategy and the conform approximation estimated using the letter. There
we mentioned, that basically ”taking the average” is easy to calculate, but not a good
estimation. There for it would be interesting to see what better ways can be used and
how this would affect the convergence rate and the calculation time.
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A. Useful theorems and lemmas

Lemma A.0.1 (Friedrichs’ inequality). Let Ω ⊂ Rn be a bounded domain. Then there
is a constant c ∈ R+ so that

‖v‖0,Ω ≤ c ‖∇v‖0,Ω ∀v ∈ HHH1
0(Ω) .

More specific for a two dimensional convex domain Ω

‖v‖0,Ω ≤
d2

Ω

π2
‖∇v‖0,Ω ∀v ∈ HHH1

0(Ω) ,

where dΩ is the diameter of the domain Ω and π is the ratio of a circle’s circumference
to its diameter.

Proof. See, for example [11, p. 84] �

Lemma A.0.2 (Poincare’s inequality). Let Ω ⊂ Rn be a bounded domain. Then the
inequality

‖v‖0,Ω ≤ ‖v‖1,Ω ∀v ∈ HHH1
0(Ω)

results directly from lemma above.

Proof.

‖v‖20,Ω =
1

1 + c2
‖v‖20,Ω +

c2

1 + c2
‖v‖20,Ω

≤ c2

1 + c2
‖∇v‖20,Ω +

c2

1 + c2
‖v‖20,Ω

=
c2

1 + c2
‖v‖21,Ω

≤‖v‖21,Ω . �

Lemma A.0.3 (Lemma of projection operator). Let QQQ be a Hilbert space and let ΛΛΛ ⊂ QQQ
be non-empty, closed and convex. Then there is exactly one mapping ΠΛΛΛ : QQQ −→ ΛΛΛ with

‖p− ΠΛΛΛp‖QQQ = inf
q∈QQQ
‖p− q‖ ∀p ∈ QQQ .

For all p ∈ QQQ there is an equivalent characterisation of ΠΛΛΛp as

Re (p− ΠΛΛΛp, q − ΠΛΛΛp)QQQ ≤ 0 q ∈ ΛΛΛ .

The mapping ΠΛΛΛ : QQQ −→ ΛΛΛ is called (orthogonal) projection of QQQ on ΛΛΛ, and ΠΛΛΛ is
referred to as projection operator.
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Proof. See, for example [1, p. 100] �

Theorem A.0.4 (Abstract existence theorem). Let UUU and VVV be Hilbert spaces. A linear
mapping L̆ : UUU→ VVV∗ is an isomorphism exactly when the bilinear form A : UUU×VVV→ R,

with A(uuu,vvv) =
〈
L̆uuu,vvv

〉
VVV

for vvv ∈ VVV, fulfil following conditions:

(i) (Continuity) There is α ∈ R+ such that

|A(uuu,vvv)| ≤ α ‖uuu‖UUU ‖vvv‖VVV ∀uuu ∈ UUU, ∀vvv ∈ VVV . (A.1)

(ii) (inf-sup-condition) There is β ∈ R+ such that

sup
vvv∈VVV

A(uuu,vvv)

‖vvv‖VVV
≥ β ‖uuu‖UUU ∀uuu ∈ UUU . (A.2)

(iii) For all vvv ∈ VVV, v 6= 0, there is uuu ∈ UUU such that

A(uuu,vvv) 6= 0 . (A.3)

Proof. See, for example [4, p. 119] �

Theorem A.0.5 (Brezzi’s splitting theorem). We consider a mapping into the dual
space L̆ : VVV ×QQQ→ VVV∗ ×QQQ∗, (uuu,ppp)T 7→ (fff∗, ggg∗)T, defined by the saddle point problem

A(uuu,ϕϕϕ) + B(ϕϕϕ,ppp) = 〈fff∗,ϕϕϕ〉VVV for ϕϕϕ ∈ VVV ,

B(uuu,qqq) = 〈ggg∗, qqq〉QQQ for qqq ∈ QQQ ,

where A(., .) and B(., .) are continuous bilinear forms. The mapping L̆ is an isomorphism
exactly when following condition are met:

(i) The bilinear form A(. , .) is V-elliptic, which means there is α ∈ R+ such that

A(vvv,vvv) ≥ α ‖vvv‖2VVV ∀vvv ∈ {ϕϕϕ ∈ VVV| B(ϕϕϕ,qqq) = 0 ∀qqq ∈ QQQ} . (A.4)

(ii) The bilinear form B(. , .) fulfils the inf-sup-condition:

There is β ∈ R+ such that inf
qqq∈QQQ

sup
ϕϕϕ∈VVV

B(ϕϕϕ,qqq)

‖ϕϕϕ‖VVV ‖qqq‖QQQ
≥ β . (A.5)

Proof. See, for example [4, p. 126] �



86 A. Useful theorems and lemmas

Lemma A.0.6 (Equivalent inf-sup-conditions). Let B : VVV × QQQ → R be a continuous
bilinear form. We define

VVVB = {vvv ∈ VVV| B(vvv,qqq) = 0 ∀qqq ∈ QQQ}

VVV◦B is its polar set and VVV⊥B is its orthogonal compliment. There are two operators corre-
sponding to the bilinear form B :

B̆ : VVV→ QQQ∗ B̆∗ : QQQ→ VVV∗〈
B̆ϕϕϕ,qqq

〉
QQQ

= B(vvv,qqq)
〈
ϕϕϕ, B̆∗qqq

〉
VVV

= B(vvv,qqq) .

Then the following statements are equivalent:

(i) There is a constant β ∈ R+ such that

inf
qqq∈QQQ

sup
ϕϕϕ∈VVV

B(ϕϕϕ,qqq)

‖ϕϕϕ‖VVV ‖qqq‖QQQ
≥ β .

(ii) The mapping B̆ : VVV⊥B → QQQ∗ is an isomorphism and∥∥∥B̆vvv∥∥∥
QQQ∗
≥ β ‖vvv‖VVV ∀vvv ∈ VVV⊥B .

(iii) The mapping B̆∗ : QQQ→ VVV◦B ⊂ VVV∗ is an isomorphism and∥∥∥B̆∗qqq∥∥∥
VVV∗
≥ β ‖qqq‖QQQ ∀qqq ∈ QQQ .

Proof. See, for example [4, p. 125] �

Theorem A.0.7 (Abstract existence theorem for non-linear case). We consider a map-
ping in to a dual space Ĕ : VVV→ VVV∗. Let Ĕ fulfil following conditions:

(i) (Strong monotony) There is γ ∈ R+ such that〈
Ĕϕϕϕ− Ĕϕ̃̃ϕ̃ϕ,ϕϕϕ− ϕ̃̃ϕ̃ϕ

〉
VVV
≥ γ ‖ϕϕϕ− ϕ̃̃ϕ̃ϕ‖2VVV ∀ϕϕϕ, ϕ̃̃ϕ̃ϕ ∈ VVV . (A.6)

(ii) (Lipschitz continuity) There is c ∈ R+ such that

∥∥∥Ĕϕϕϕ− Ĕϕ̃̃ϕ̃ϕ∥∥∥
VVV∗

= sup
vvv∈VVV

〈
Ĕϕϕϕ− Ĕϕ̃̃ϕ̃ϕ,vvv

〉
VVV

‖vvv‖VVV
≤ c ‖ϕϕϕ− ϕ̃̃ϕ̃ϕ‖VVV ∀ϕϕϕ, ϕ̃̃ϕ̃ϕ ∈ VVV . (A.7)

Then the equation

Ĕuuu = fff∗

has exactly one solution uuu ∈ VVV for any fff∗ ∈ VVV∗.
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Proof. See, for example [11, p. 109 ff.] �

Theorem A.0.8 (Abstract existence theorem of a numerical solution for non-linear
case). Let Ĕ : VVV→ VVV∗ be strong monotone and Lipschitz continues mapping and fff ∈ VVV∗.
Then there is exactly one uuuh ∈ VVVh for each linear subset VVVh ⊂ VVV with dimVVVh <∞ that
solves the equation〈

Ĕuuuh,ϕϕϕh

〉
VVV

= 〈fff∗,ϕϕϕh〉VVV ∀ϕϕϕh ∈ VVVh .

Proof. See, for example [11, p. 112 ff.] �
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