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Zusammenfassung

Einzelne technische Komponenten sind in der Regel bereits sehr weit ausgereift.
Der Entwurfsprozess ganzer technischer Systeme ist jedoch, insbesondere in sei-
nen frühen Phasen, immer noch stark von der praktischen Erfahrung von Anla-
genplanern geprägt. Gerade das Zusammenspiel der einzelnen Systemkomponenten
unter variierenden Bedingungen führt zu einer hohen Entwurfskomplexität. Die
Anwendung moderner algorithmischer Optimierungsverfahren bietet hierbei das
Potenzial, Kosten zu senken und gleichzeitig die Energieeffizienz zu steigern. Die
übergeordnete Vision ist daher der verstärkte Einsatz dieser Methoden zur Un-
terstützung des Entwurfsprozesses technischer Systeme. Als Beitrag hierzu wird die
algorithmische Systemsynthese von Fluid- und Thermofluidsystemen untersucht.
Ziel ist es, aus verfügbaren Optionen einzelne Komponenten auszuwählen und zu
kombinieren, um ein optimales Gesamtsystem zu erhalten, das in der Lage ist, ein
definiertes Kollektiv unterschiedlicher Lasten mit minimalen Kosten abzudecken.

Ausgangspunkt hierfür ist die Vorstellung eines Optimierungsmodells für die Syn-
these von Fluidsystemen. Darauf aufbauend werden Modellerweiterungen und al-
gorithmische Methoden entwickelt, die auf eine optimale Synthese von Systemen
im praxisrelevanten Maßstab abzielen. Für Fluidsysteme wird ein Verfahren vor-
geschlagen, das anwendungsspezifische Eigenschaften ausnutzt und in der Lage ist,
die Leistungsfähigkeit kommerzieller Standardsoftware zu übertreffen. Hierbei wird
der Simulated Annealing Algorithmus verwendet, um gute Anfangslösungen für
das Verfahren zu generieren, woraufhin ein anwendungsspezifisches Relaxationsver-
fahren vorgestellt wird, um starke Schranken für die Bewertung der gefundenen
Lösungen zu identifizieren. Im Anschluss können dann mit Hilfe der Branch-and-
Bound Methode global optimale Lösungen ermittelt werden. Um die entwickelte
Methodik zu testen, werden Druckerhöhungsanlagen als Anwendungsbeispiel heran-
gezogen. Weiterhin wird ein Ansatz gezeigt, wie die Resilienz der erzeugten Systeme
in Hinsicht auf den Ausfall einzelner Komponenten erhöht werden kann.

Außerdem wird eine mit dem Fluidsystemmodell kompatible Modellerweiterung
für die Betrachtung von Thermofluidsystemen vorgestellt. Während diese Betrach-
tung dynamisches Verhalten ausklammert, das sich aus der Kopplung benachbar-
ter Zeitpunkte durch Speicherkomponenten ergibt, werden daran anschließend zwei
geeignete Ansätze hierfür vorgestellt. Dabei handelt es sich zum einen um einen
traditionellen, zeitdiskreten Ansatz und zum anderen um einen neuartigen, zeit-
kontinuierlichen Ansatz, der auf der Betrachtung variabler Zeitintervalle basiert.

Die vorliegende Arbeit soll somit einen Ausgangspunkt für weitere Forschung auf
dem Gebiet der algorithmischen Synthese technischer Systeme und deren Transfer
in die Praxis bilden.
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Abstract

Individual technical components are usually well optimized. However, the design
process of entire technical systems, particularly in its early stages, is still dominated
by the practical experience of system designers. Especially the interaction of the
individual system components at varying conditions leads to a high level of design
complexity. In this context, the application of modern algorithmic optimization
methods offers the potential to reduce costs and at the same time increase energy
efficiency. The overarching vision is therefore the widespread use of these methods
to support the human-driven design process of technical systems. As a contribu-
tion to this, the algorithmic system synthesis of fluid and thermofluid systems using
mathematical programming techniques is examined in this thesis. For this task, the
objective is to select and combine individual components with defined character-
istics from a set of available options in order to obtain an optimal overall system
capable of covering a given collective of varying loads at minimum cost.

The starting point is the presentation of an optimization model for the synthesis
of fluid systems. Based on this, model extensions and algorithmic methods are
developed that aim at an optimal synthesis of systems on a practice-oriented scale.
For fluid systems, an approach is proposed that exploits domain-specific properties
and is able to outperform commercial standard solvers. Simulated Annealing is
used to generate good initial solutions for the approach, whereupon a domain-
specific relaxation procedure is used to identify strong bounds for evaluating the
obtained solutions. In a subsequent step, globally optimal solutions can be obtained
using the Branch-and-Bound method. This approach is then further analyzed for
the application example of booster stations. Furthermore, it is demonstrated how
the resilience of existing systems can be increased with respect to the failure of
individual components by using quantified programming.

Moreover, a model extension is presented to extend the consideration to ther-
mofluid systems. These systems are assumed to comprise fluid systems with su-
perimposed heat transfer, which ensures compatibility with the basic fluid system
model. However, while the previous considerations exclude dynamic behavior that
results, inter alia, from the coupling of adjacent points in time by storage com-
ponents, two time representations suitable for this application are presented and
discussed. One of these two representations is a more traditional discrete-time ap-
proach and the other is a novel continuous-time approach based on the consideration
of variable time intervals.

Overall, this thesis is intended to provide a foundation for further research in the
field of algorithmic synthesis of technical systems and its transfer to engineering
practice.
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Physical Quantities

In the following, the most relevant physical quantities for this thesis are introduced.
The associated symbols are listed in the first column and described in the second
column. In the third column, the corresponding dimension of each quantity is given
using the basic quantities mass (M), length (L), time (T ), and temperature (K).
It should be noted that the symbols introduced here apply only in the context of
general physical notations. In other contexts, especially in the case of optimization
models, the symbols may differ and the specific notation is given explicitly for the
particular domain under consideration.

Symbol Description Dimension
A Area L2

c Specific heat capacity LT−2K−1

E Energy ML2T−2

g Acceleration due to gravity LT−2

h, H Head L
i Specific enthalpy L2T−2

m Mass M
ṁ Mass flow rate MT−1

ν Specific volume L3M−1

p Pressure ML−1T−2

P Power ML2T−3

Q Heat ML2T−2

Q̇ Heat flow ML2T−3

ρ Density ML−3

t, τ Time T
T Temperature K
U Internal energy ML2T−2

ut Specific thermal energy L2T−2

Ut Thermal energy ML2T−2

U̇t Thermal energy flow rate ML2T−3

v Velocity LT−1

V Volume L3

V̇ Volume flow rate L3T−1

W Work ML2T−2

z Height L
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EER Energy Efficiency Ratio

EU European Union
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1 Introduction

What I cannot create, I do not

understand.

Richard P. Feynman

1.1 Motivation

At the COP21 climate conference in Paris, an agreement to mitigate climate change

and take action to achieve a sustainable low-carbon future was reached. The goal of

this agreement is to keep the global temperature increase to “well below” 2◦C and

to aim for a temperature increase of less than 1.5◦C (UNFCCC, 2016). Alongside

the expansion of renewable energies, focusing on enhanced energy efficiency is a key

aspect for achieving the greenhouse gas reduction goals defined by the participating

parties (IRENA, 2019). In this spirit, the German Federal Ministry for Economic

Affairs and Energy proclaimed in a recent article on energy efficiency that “the

cleanest and cheapest energy is energy that we don’t use in the first place. In order

to make our energy transition a success, we need to become even more efficient in

the way we use power and heat” (BMWi, 2019). Besides this political level, the

respective end users of energy, especially the industrial sector, should also have a

personal interest in increasing energy efficiency for economic reasons or as the Ger-

man Federal Ministry for Economic Affairs and Energy puts it “energy efficiency

equates to cost efficiency—a clear competitive advantage” (BMWi, 2010). The

ministry further states that in industry, investments in enhanced energy efficiency

oftentimes have payback periods of less than two years and yield a return of invest-

ment of 25% or more (BMWi, 2010). This underlines that the economic efficiency

of an investment should not only be evaluated on the basis of the initial expenditure

but also with regard to the entire life cycle costs, including energy costs as well as

maintenance, downtime, and disposal costs.

1



1 Introduction

In light of this discussion, two closely related sectors, both of which have a high

potential for significant savings, can be highlighted. On the one hand, there is

the pumping sector. The yearly energy consumption of all electric pumps in the

European Union (EU) is estimated at around 300 TWh, which corresponds to

approximately 10% of its net electricity generation in 2018 (Betz, 2017; Eurostat,

2020; VDMA, 2019). The relevance of pumps in terms of energy efficiency is also

demonstrated by the fact that, when looking for products and product groups

with both high energy consumption and significant savings potential, the European

Commission considered pumps as candidates for regulation already at an early stage

of the selection process and as a result commissioned a detailed study to uncover the

full potential (VDMA, 2019). On the other hand, there is the heating and cooling

sector. According to the European Commission (2016), this sector consumed 50%

(546 Mtoe1) of the EU’s final energy in 2012, making it the largest energy sector.

The Commission further states that a large portion of this energy is wasted, which

is especially alarming when considering that 75% of primary energy still comes

from fossil fuels. According to the Commission, all three consumer groups, i.e.

private households, industry, and services, yield potential for reducing demand and

increasing efficiency. As can be seen, both sectors individually already provide a

high savings potential. However, paying attention to the intersection of both areas

uncovers even further energy-saving potential since pumps are used for distribution

or circulation in heating and cooling systems and the groups of components involved

in these applications are closely linked.

Nevertheless, only focusing on the individual components is not enough. In prac-

tice, individual technical components are nowadays already typically well optimized

in terms of energy efficiency. However, Müller et al. (2020) note that although effi-

cient components are a prerequisite for an efficient overall system, their utilization

does not necessarily result in an efficient system. This consideration and the asso-

ciated decisions are highly relevant to the final system and its efficient operation.

Empirical studies suggest that the initial decisions, i.e. combining the intended

functionality, layout and used components as well as the expected loads for the

future use, make up 70–85% of a system’s total life cycle costs (VDI 2884). While

awareness is generally increasing in this regard, the practical implications remain

mostly unclear. This is especially critical since the savings potential resulting from

the consideration of individual components as a system with interdependencies and

varying load conditions is, however, also opposed by a higher number of possible

1Mega tonnes of oil equivalent, 1 Mtoe = 11.63 TWh
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influencing factors that have to be considered and thus a higher planning complex-

ity. With regard to pump systems, for example, there is an international standard

ISO/ASME 14414 that deals with the system-wide energy assessment, but accord-

ing to Müller et al. (2020), the recommendations proposed therein do not include

statements on the practical design process and validation of the envisaged energy

savings.

The detailed design process of arbitrary technical products and systems is hard

to formalize in a general way since it varies depending on the industry, applica-

tion under consideration and specific requirements. However, guidelines such as

VDI 2221 try to identify a universally applicable, basic approach. For this, a classi-

fication of the planning process into four distinct phases can be made: clarification

and specification of the task, conceptual design, embodiment design, and detail de-

sign (Pahl et al., 2007). VDI 2221 discusses these planning phases in general terms,

while additional guidelines go into more detail about specific phases. In this regard,

VDI 2222 comprises a detailed examination of the first two phases and VDI 2223

deals with the third phase but focuses on applications related to mechanical engi-

neering and precision mechanics in particular. However, it is explicitly stated that

other application areas such as plant engineering, process engineering or software

development are not excluded and that the statements made may also be applied

to these as well. Nevertheless, in the context of these guidelines, it becomes clear

that the design process is still dominated by tacit knowledge and the practical

experience of the individual designers. To name only a few examples, VDI 2223

states that due to the “solution explosion” of the number of system variants, it

is mostly impossible to generate and examine all possible variants even for simple

cases. Therefore, the importance of experience is highlighted in the guideline and it

refers to rules that ensure a “probably correct procedure”. Another example is that

so-called design critique, i.e. the consultation of experienced colleagues in order to

increase the reliability of the evaluation of possible designs, is pointed out as an

important tool.

While in other areas of engineering sciences, such as production planning and

logistics, algorithmic optimization techniques—often summarized under the term

“Operations Research”—are already widely used in practice and have been pro-

viding efficient support to decision makers for quite some time, the adaptation of

these methods for technical applications has only recently received increased at-

tention but is still rarely explored and barely used (Dörig et al., 2014). Although

today solid results in the context of the application of mathematical programming
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techniques have been produced for example regarding the optimization of water

(see e.g. Martin et al., 2012) and gas networks (see e.g. Domschke et al., 2011),

the transfer to operational practice has not yet taken place on a large scale. One

reason could be that most studies have in common that mathematicians and design-

ers have chosen a particular subtask with the aim of designing a specific technical

system that has been thoroughly examined with respect to special characteristics

in the problem structure and solved using advanced, specialized algorithms. Two

key elements can be identified from this. On the one hand, it seems promising to

make the underlying methodology accessible to a broader audience instead of selec-

tively focusing on a particular application within a specific project. On the other

hand, building a bridge between the two disciplines, promoting acceptance and get-

ting both disciplines on board is of utmost relevance for success. Establishing the

widespread application is only possible through the interaction of both disciplines.

The expertise in providing adaptable optimization models and proposing suitable

algorithmic methods is as important as the designers’ detailed knowledge regarding

the design process as well as the relevant technical background in connection with

the assumptions and simplifications to be made in the models, which enables a

sound interpretation of system proposals.

1.2 Own Contribution to Knowledge

This thesis addresses the optimization of fluid and thermofluid systems with a dis-

tinct focus on providing decision support to system designers through the use of

quantitative, modern algorithmic methods. In this regard, the scope of the contri-

butions presented in this work focuses on the consideration of incompressible fluids.

For the sake of simplicity, all models and methods are stated for the application

case of water-based systems. Nevertheless, the adaptation for other incompressible

fluids is straightforward, provided that the individual physical properties of the

respective medium are taken into account.

In the context of this work, an attempt is made to combine the strengths of dif-

ferent approaches that are applied for the optimization of technical systems. These

approaches are, on the one hand, the application of mathematical programming

techniques and, on the other hand, the use of simulations. One strength of math-

ematical programming techniques over simulation-based approaches is that rather

than simulating and iteratively optimizing the parameters of one particular, largely

predetermined system proposal, a suitable system proposal is generated by simulta-
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neously considering a large number of implicitly described systems. Furthermore,

and in contrast to purely heuristic approaches, which are often seen in the con-

text of simulation-based optimization, the mathematical programming techniques

discussed in this thesis guarantee global optimality within the model and thus pro-

vide an absolute benchmark for the evaluation of the generated system proposal.

However, the application of mathematical programming techniques often focuses on

solving one specific problem, whereas a strength of simulation-based approaches is

the fact that the simulation environments used are able to examine a wider variety

of different problems, typically using a more generic representation with reusable

and customizable templates. In this context, the goal is not to identify and solve

one specific engineering problem but to provide designers with the means to define

their individual problems formally in a way that is necessary for the application

of mathematical programming techniques and to support them during the solution

process. This also includes being guided to formulate tasks within their own es-

tablished technical language and not having to go into too much detail about the

respective methodology.

Accordingly, the major challenge is to be able to model the design of fluid and

thermofluid systems in a general and consistent way similar to the widespread simu-

lation environments such as Openmodelica2 or Matlab/SimuLink3 and at the same

time to be able to perform algorithmic optimization. The focus is that, due to a

modular principle, system designers should have the possibility to pick out relevant

elements for their application and extend or modify them if necessary. All elements

should be based on the same foundation, as it is common for the above mentioned

simulation environments. With this in mind, however, the development of suitable

models and methods for the design of general fluid-based systems to a practical

extent is a visionary challenge. Therefore, the decomposition into sub-challenges,

as shown in Figure 1.1, is necessary. Starting in the upper left corner with the

basic fluid system model, the investigation can unfold in two different dimensions.

The first dimension is the extension of the fluid system model in order to include

additional features. This comprises the consideration of uncertainty, in particu-

lar resilience, heat transfer as well as dealing with dynamic system behavior, e.g.

caused by storage components. The second dimension is the degree of implemen-

tation, from the formulation of suitable models and model extensions for which

instances can be solved on a laboratory scale with the help of standard solvers,

2https://www.openmodelica.org (accessed May 07, 2021)
3https://mathworks.com/products/simulink.html (accessed May 07, 2021)
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to the development of sophisticated heuristics and exact algorithms exploiting the

domain-specific but still general features for handling larger instances, to the vali-

dation of proposed solutions by means of detailed simulation.

Simulative
Validation

Development
of Algorithms

Development
of Models

Tile 1.3

Tile 1.2
(Chapter 5)

Tile 1.1
(Chapter 4)

Basic
Fluid

Systems

Tile 2.3

Tile 2.2

Tile 2.1
(Chapter 6)

Extension:
Uncertainty
(Resilience)

Tile 3.3

Tile 3.2

Tile 3.1
(Chapter 7)

Extension:
Heat

Transfer

Tile 4.3

Tile 4.2

Tile 4.1
(Chapter 8–9)

Extension:
Dynamic
Behavior

Model Features

Im
p

le
m

en
ta

ti
on

Figure 1.1: Overview of the research sub-challenges and the contributions in this
thesis

The sub-challenges examined in this work are highlighted in Figure 1.1 by tiles

indicating a chapter and form the foundation for further research in this area.

From these sub-challenges, five key research questions emerge:

– Tile 1.1. How can a suitable basic model for fluid systems be represented

that can serve as a starting point for further investigations?

– Tile 1.2. How can domain-specific engineering knowledge be meaningfully

integrated into the solution process to solve larger, practice-oriented instances

compared to using standard solvers?

– Tile 2.1. How can the approach be extended to include the consideration of

resilience as an additional technical requirement, if necessary?

– Tile 3.1. How can the basic model for fluid systems be extended in order to

allow the consideration of thermofluid systems and thus heating and cooling

applications?
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– Tile 4.1. How can the dynamic behavior that occurs, inter alia, due to energy

storage in heating and cooling applications be accounted for and appropriately

integrated into the existing modeling approach?

In order to address the research questions defined above and provide significant

progress towards the overall vision, the contributions of this thesis are:

– Tile 1.1. A modular basic model for fluid systems is presented. Due to the

modular structure, the model can easily be extended to include new features.

Accompanying this, the strict separation of system and component behavior

allows new components to be added easily or existing component descriptions

to be adapted as required for the particular application.

– Tile 1.2. Domain-specific solution methods for solving instances that exceed

the capability of standard solvers are presented and analyzed in an extensive

computational study with specially developed test instances using the appli-

cation example of so-called booster stations for the drinking water supply

of high-rise buildings. The successful application of the underlying domain-

specific engineering knowledge underlines the potential of an interdisciplinary

perspective. In this context, an adapted implementation of the Simulated

Annealing algorithm is used to obtain primal solutions. The implementation

uses a graph-based representation of fluid systems in combination with the

theory of so-called series-parallel networks. In order to evaluate the heuris-

tically obtained solutions, a domain-specific relaxation is developed. The

relaxation is based on the decomposition of the overall problem by exploiting

implicit knowledge to generate tight dual bounds for the considered problem.

Furthermore, it is shown how both methods can be combined in a Branch-

and-Bound framework to close the gap between primal and dual solutions and

obtain globally optimal solutions.

– Tile 2.1. A quantified programming-based approach to increase the resilience

of technical systems as a subsequent design decision is presented. The ap-

proach, which can be applied to a broad range of applications, is demonstrated

using the application example of resilient booster stations that are guaranteed

to maintain operation in the event of component failure, with the additional

requirement that each component must be operational at least once per day.

Furthermore, different potential purposes of use are highlighted.
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– Tile 3.1. For the consideration of thermofluid systems, a model extension is

proposed that allows the inclusion of heating and cooling applications. The

model for fluid systems remains valid, unaffected by this extension, since it

is designed in such a way that the thermal properties can be superimposed

without having to modify the basic model. In addition, the model extension

is aligned with the modular structure of the basic model so that the combined

model can also easily be extended and adapted.

– Tile 4.1. While the previous models and extensions consider only a sequence

of different system states without temporal coupling of time steps, the concept

of time-dependent behavior of a system, using the example of storage compo-

nents, is outlined. Two alternative approaches are presented and examined, a

discrete-time representation and a novel continuous-time representation with

variable time step lengths. Both approaches are compared and their strengths

and weaknesses are discussed. While discrete-time representations are widely

used, continuous-time representations are used rather rarely and require fur-

ther consideration. The extent to which their application and the associated

limitations and trade-offs are reasonable can only be decided depending on

the technical application and its requirements, which in turn emphasizes the

need for an interdisciplinary perspective.

The research presented in this thesis is based in part on the following publications,

with work done in close collaboration with the respective co-authors:

– J. B. Weber and U. Lorenz. Optimizing booster stations. In GECCO ’17:

Proceedings of the Genetic and Evolutionary Computation Conference, pages

1303–1310, New York, 2017. ACM

– M. Hartisch, A. Herbst, U. Lorenz, and J. B. Weber. Towards resilient process

networks—designing booster stations via quantified programming. In Uncer-

tainty in Mechanical Engineering III, pages 199–210, Switzerland, 2018. Trans

Tech Publications Ltd

– J. B. Weber and U. Lorenz. Algorithmic system design of thermofluid sys-

tems. In EngOpt 2018 Proceedings of the 6th International Conference on

Engineering Optimization, pages 132–143, Cham, 2019a. Springer

– J. B. Weber and U. Lorenz. Modeling thermofluid systems: An approach

customized for optimization. In Operations Research Proceedings 2018, pages

387–393, Cham, 2019b. Springer
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– J. B. Weber, M. Hartisch, A. Herbst, and U. Lorenz. Towards an algorithmic

synthesis of thermofluid systems. Optim Eng, 2020a. doi: https://doi.org/

10.1007/s11081-020-09564-1

– J. B. Weber, M. Hartisch, and U. Lorenz. Optimized design of thermofluid

systems using the example of mold cooling in injection molding. In Operations

Research Proceedings 2019, pages 473–480, Cham, 2020b. Springer

1.3 Structure of the Thesis

This introduction is followed by nine chapters, organized as follows:

– Chapter 2: Theoretical Background. In this chapter, an overview of

the underlying theoretical principles is given. First, the basic engineering

and physical equations of fluid mechanics and heat transfer most relevant

to this thesis are presented in detail. Then, the most important terms and

concepts related to linear programming are introduced. In addition, it is

shown how univariate and multivariate nonlinearities can be approximated

piecewise linearly in order to be able to apply linear programming techniques.

Furthermore, the basic structure as well as the properties of the considered

system synthesis problems are discussed.

– Chapter 3: Optimization-Supported System Design. To start the

chapter, a systematic design approach, which aims at complementing the con-

ventional system design procedure by algorithmic optimization, is presented

and discussed. Afterwards, the concepts, ideas and results of related work as

well as adjacent research areas are exemplified.

– Chapter 4: Modeling of Fluid Systems. The chapter opens with a gen-

eral description of fluid systems and the introduction of the problem state-

ment. Additionally, it is shown how the considered problem can be alterna-

tively represented as a mathematical graph. Subsequently, the technical com-

ponent types of fluid systems relevant for this thesis are introduced. Based on

this, the basic model for fluid systems is presented, which forms the starting

point for further investigations.

– Chapter 5: Algorithmics for the System Design of Fluid Systems.

At the beginning of the chapter, the design of test instances for the consid-

ered application example of booster stations for supplying high-rise buildings

9



1 Introduction

with drinking water is discussed. Afterwards, an adapted implementation

of the Simulated Annealing algorithm and a domain-specific relaxation are

presented, which are used to obtain good initial solutions and to be able to

evaluate them. These are then further used in a Branch-and-Bound frame-

work to obtain globally optimal solutions. Finally, an extensive computational

study is conducted to test the developed methods using the previously dis-

cussed test instances. For this, the obtained solutions are examined in terms

of solution quality, system topology, and runtime.

– Chapter 6: Resilient System Design. Starting with an outline of the

concept of quantified programming, an optimization model for increasing the

resilience of technical systems is presented using resilient booster stations as

an application example. The approach is then tested for two test instances

that illustrate the different possible uses of the approach and the results are

discussed.

– Chapter 7: Modeling of Thermofluid Systems. Thermofluid systems

and their characteristics are introduced. For these systems, a general clas-

sification of the corresponding component types is presented and examples

of specific components are described in detail. This is followed by the in-

troduction of the necessary extensions for the basic fluid system model in

order to include heat transfer considerations as well as heating and cooling

components. The chapter ends with a computational example based on the

synthesis of an industrial cooling system.

– Chapter 8: Discrete-Time Representation for Thermofluid Systems.

First, general approaches to model time are presented. In this context, ther-

mal energy storage is discussed as an important concept for thermofluid sys-

tems, which causes a time-dependent system behavior by coupling neighbor-

ing points in time, and a model extension to represent the technical behav-

ior of two-layer stratified storage tanks by a discrete-time representation is

presented. Using this extension, the application example from the previous

chapter is revisited at the end of the chapter.

– Chapter 9: Continuous-Time Representation for Thermofluid Sys-

tems. As an alternative to the discrete-time representation of the previ-

ous chapter, a novel continuous-time representation with variable time step

lengths is presented. For this purpose, the advantages and challenges as well
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as the underlying principles are discussed. After introducing the associated

alternative model extension, both approaches are compared using the previ-

ously established example of an industrial cooling system.

– Chapter 10: Conclusion and Outlook. To conclude this thesis, a sum-

mary of the individual findings and an outlook on future research directions

are given.
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2 Theoretical Background

For the optimization of real-world engineering problems, insights of both adja-

cent disciplines, engineering and algorithmic optimization, have to be considered.

Therefore, the most relevant engineering and algorithmic basics necessary for the

examination of the synthesis of technical fluid-based systems are briefly introduced

in the following sections. More specific theoretical details are provided in the re-

spective chapters if necessary.

2.1 Engineering Basics

Fluid mechanics and heat transfer form the theoretical basis for the description

of fluid and thermofluid systems. The principles most relevant for this work are

explained below. For a deeper insight, see e.g. Tritton (1988) and Incropera et al.

(2007).

2.1.1 Continuity Equation

The continuity equation is derived from the principle of mass conservation. This

subsection follows the explanations of Tritton (1988) and White (2011) with some

modifications to the notation.

Given an arbitrary Eulerian control volume V , as shown in Figure 2.1, that is

located completely within a fluid and with fluid freely passing its boundaries, let

dS be an element of the surface with its direction being the outward normal, its

magnitude being the element’s area and v being the velocity of fluid leaving that

element. With ρ being the density of the fluid, the rate of mass loss over the whole

surface of V is ∫
S
ρv · dS. (2.1)
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Since the above equation is defined for mass loss of V , an increase of the mass of V

would have a negative sign. Furthermore, the total mass in volume V is defined as∫
V
ρ dV. (2.2)

By equating Equation (2.1) and the time derivative of Equation (2.2), one obtains

d

dt

∫
V
ρ dV =

∫
V

∂ρ

∂t
dV = −

∫
S
ρv · dS. (2.3)

v

dSV

Figure 2.1: Illustration of an arbitrary control volume (based on Tritton, 1988)

For an infinitesimal volume, this results in the general representation of the con-

tinuity equations with ρ and v being depend on the respective position:

∂ρ

∂t
+∇ · (ρv) = 0 (2.4)

Assuming steady flow, i.e.
∂

∂t
= 0, Equation (2.4) simplifies to

∇ · (ρv) = 0. (2.5)

Given a control volume with one-dimensional inlets and outlets of cross-sectional

area A and assuming steady flow, the following can be stated:∑
i

(ρi · vi ·Ai)in =
∑
i

(ρi · vi ·Ai)out (2.6)

Accordingly, for a streamtube along streamlines this can be written as

ρ1 · v1 ·A1 = ρ2 · v2 ·A2. (2.7)
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If the fluid is incompressible, the equation can be further simplified to

v1 ·A1 = v2 ·A2. (2.8)

An illustration of the continuity equation for fluid flow in a streamtube according

to the assumptions applied to Equation (2.8) is shown in Figure 2.2.

A1 v1
A2 v2

v1 ∆t

v2 ∆t

Figure 2.2: Illustration of the continuity equation for fluid flow in a streamtube

2.1.2 Bernoulli’s Equation and Losses

The following explanations are based on Munson et al. (2009) and White (2011)

with some modifications to the notation. Furthermore, Bernoulli’s equation can

alternatively be derived by applying Newton’s second law instead of using the ap-

proach shown here (see e.g. Munson et al., 2009).

Given Euler’s equations in vector notation

ρg −∇p = ρ

[
∂v

∂t
+ (v · ∇)v

]
, (2.9)

with the gravitational acceleration vector g, the Bernoulli equation can be obtained

by integrating this equation along an arbitrary streamline. Demanding for steady

flow, Equation (2.9) becomes

ρg −∇p = ρ(v · ∇)v. (2.10)

The gravitational acceleration vector can also be expressed as

g = −g∇z, (2.11)

15



2 Theoretical Background

with g being the magnitude of g and z being the height above a reference plane.

Using the vector identity

(v · ∇)v =
1

2
∇(v · v)− v × (∇× v), (2.12)

Equation (2.10) can be rewritten and rearranged (with magnitude v = ||v||) to

∇p
ρ

+
1

2
∇(v2) + g∇z = v × (∇× v). (2.13)

With ds being a differential length along a streamline s, Equation (2.13) becomes

∇p
ρ
· ds +

1

2
∇(v2) · ds + g∇z · ds =

[
v × (∇× v)

]
· ds. (2.14)

Along a streamline s,
[
v × (∇ × v)

]
· ds = 0 because the direction of ds is

always along s and therefore ds and v are parallel. Furthermore, using ds =

dx î+dy ĵ+dz k̂, it follows that ∇p·ds = (∂p/∂x) dx+(∂p/∂y) dy+(∂p/∂z) dz = dp,

etc. Hence, with the change in p, v and z being along the streamline, Equation

(2.14) yields

dp

ρ
+

1

2
d(v2) + g dz = 0. (2.15)

By integrating, it follows that the sum is constant along a streamline:∫
dp

ρ
+
v2

2
+ gz = const. (2.16)

For incompressible, inviscid fluids and between two points 1 and 2 along a stream-

line, as illustrated in Figure 2.3, Equation (2.16) can be expressed as

p1

ρ
+
v2

1

2
+ gz1 =

p2

ρ
+
v2

2

2
+ gz2. (2.17)

Alternatively, the equation can also be written in its often used head form by

dividing each term by g:

p1

ρg
+
v2

1

2g
+ z1 =

p2

ρg
+
v2

2

2g
+ z2 (2.18)

As stated above, Equations (2.17) and (2.18) are in general only applicable to

incompressible, inviscid, steady flow along a streamline. However, for flow through
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pipes, the friction cannot be neglected if long pipe lengths are considered and

therefore the assumption of inviscid flow does not hold. Furthermore, the Bernoulli

equation cannot be applied if mechanical devices such as pumps and turbines are

present along the examined part of a streamline since those are sources and sinks

of energy.

A1

A2

v1 ∆t

z1

p1 v1

v2 ∆t

z2

v2

p2

Figure 2.3: Illustration of Bernoulli’s equation for fluid flow in a streamtube

In order to include the aforementioned effects resulting in gains and losses of head,

Bernoulli’s equation can be “modified”. This equation, which is actually rather a

form of the energy equation (see Section 2.1.3), is called the extended Bernoulli

equation
p1

ρg
+
v2

1

2g
+ z1 =

p2

ρg
+
v2

2

2g
+ z2 + hL − hs, (2.19)

with hL being the head loss due to friction between points 1 and 2 and hs being the

head change due to mechanical work on the fluid. For devices increasing the head

in flow direction (e.g. pumps and fans), hs is positive and for devices decreasing

the head (e.g. turbines), hs is negative. Furthermore, only those devices lying

between points 1 and 2 are considered. The friction loss hL is always positive

in flow direction. It consists of the so-called major losses hLmajor caused by the

friction in straight pipes and the so-called minor losses hLminor caused by other

components present in a pipe system (e.g. valves, elbows, tees, etc.):

hL = hLmajor + hLminor (2.20)
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The major losses can be expressed by the empirical Darcy-Weisbach equation for

incompressible fluids

hLmajor =
v2

2g
λ
l

d
, (2.21)

with pipe length l, (mean) flow velocity v and diameter d (assuming circular cross

sections). The friction factor λ is dimensionless and depends on the Reynolds

number Re and the relative roughness ε
d :

λ = φ

(
Re,

ε

d

)
(2.22)

For explanations regarding the Reynolds number and relative roughness, as well

as for the determination of the friction factor, see e.g. Munson et al. (2009). The

minor head losses can be approximated as

hLminor =
v2

2g
ζ, (2.23)

with loss coefficient ζ. In general, ζ depends on the geometry of the respective

component as well as on the Reynolds number, i.e. ζ = φ(geometry,Re). However,

in most cases of practical interest ζ = φ(geometry), which is typically determined

either experimentally or by manufacturer’s data (Munson et al., 2009). In the case

of one pipe with multiple minor losses, Equation (2.20) becomes

hL = hLmajor +
∑

hLminor =
v2

2g

(
l

d
λ+

∑
ζ

)
. (2.24)

2.1.3 Simplified Steady-Flow Thermal Energy Equation

According to Incropera et al. (2007), thermodynamics and heat transfer are related

topics. On the one hand, the first law of thermodynamics dealing with the conser-

vation of energy is also an important basic for heat transfer theory. On the other

hand, the consideration of the rate of transferred heat can be seen as an extension to

thermodynamics. The explanations given in this subsection follow the introduction

to heat transfer presented by Incropera et al. (2007).

In general, the first law of thermodynamics for a closed system, i.e. no transfer

of matter, states that

∆EtotSt = Q−W, (2.25)
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with ∆EtotSt being the change in total energy stored, Q being the heat into the

system and W being the work done by the system. Hence, energy transport across

system boundaries occurs as a consequence of heat transfer or work. If it is applied

to an open system, e.g. control volume, energy can also be transported by mass,

which is called advection.

The total energy can be divided into internal energy and mechanical energy.

Internal energy consists of four components, sensible, latent, chemical, and nuclear

energy. The sum of sensible and latent energy is called thermal energy. Mechanical

energy is the sum of kinetic energy and potential energy. Heat transfer theory

typically focuses on thermal and mechanical energy. Therefore, in the following,

the sum of thermal and mechanical energy is represented by E. However, only

considering thermal and mechanical energy, conservation is not ensured since there

may be a conversion between thermal energy and one of the other not considered

forms of energy. Hence, it is assumed that thermal energy can be “generated” by

the conversion of other energy forms. Thus, the thermal and mechanical energy

equation can be written as

∆ESt = Ein − Eout + Eg. (2.26)

∆Est is the change of the sum of thermal and mechanical energy. Ein and Eout

are the sums of thermal and mechanical energy entering and leaving the system,

respectively. Eg is the generation of thermal energy.

On a rate basis, i.e. for an instant t, and using the dot-notation to express rates

of physical quantities, Equation (2.26) becomes

Ėst =
dEst
dt

= Ėin − Ėout + Ėg. (2.27)

If advection occurs, i.e. in open systems, the work term is typically divided into

the flow work pV due to pressure forces moving the fluid through the boundaries

of the control volume and a work term representing the remainder of work Ẇ . For

steady-state conditions and without generation of thermal energy, the steady-flow

energy equation can be stated as

ṁ(ut + pν +
1

2
v2 + gz)in − ṁ(ut + pν +

1

2
v2 + gz)out + Q̇− Ẇ = 0, (2.28)

where ut is the thermal energy, pν is the flow work, 0.5v2 is the kinetic energy and

gz is the potential energy, which are all expressed per unit mass. Multiplying these
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terms by the rate of mass flow ṁ defines the rate at which each energy term enters

or leaves the system. However, for many heat transfer applications, the changes in

mechanical energy are negligible. Furthermore, the sum of thermal energy per unit

mass and flow work per unit mass can also be expressed as specific enthalpy i with

i = ut + pν. (2.29)

If there are no phase changes, the change of specific enthalpy for an ideal gas with

constant specific heat capacities can be written as

iin − iout = cp (Tin − Tout), (2.30)

with specific heat capacity at constant pressure cp and temperatures Tin and Tout.

However, in case of incompressible liquids, as considered in this thesis, the specific

heat capacities at constant pressure and at constant volume are the same, i.e.

cp = cv = c. Furthermore, the change in flow work can be neglected if there is no

large pressure change. Hence, for incompressible liquids one obtains

ut, in − ut, out = c (Tin − Tout). (2.31)

With steady-state conditions, without latent energy changes and thermal energy

generation, the simplified steady-flow thermal energy equation

Q̇ = ṁ c (Tout − Tin) (2.32)

for an incompressible liquid arises if certain conditions are met. The right-hand side

represents the net rate of thermal energy leaving the system and the relationship

holds if either kinetic and potential energy changes as well as work (including flow

work) can be neglected or if viscous dissipation (i.e. viscous forces causing a conver-

sion from mechanical to thermal energy) can be neglected. According to Incropera

et al. (2007), most relevant applications meet at least one of these conditions.

2.2 Algorithmic Basics

The optimization of real-world engineering problems typically involves discrete as

well as continuous decision variables. Hence, the resulting problems can oftentimes

be modeled by Mixed-Integer Programs. Accordingly, this section provides a short

overview of Mixed-Integer (Linear) Programming as well as special features regard-
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ing the synthesis of technical system. For a deeper insight into the underlying

theory of Linear and Integer Programming, see e.g. Schrijver (1986).

2.2.1 Mixed-Integer Linear Programming

A Mixed-Integer Linear Program (MILP) represents an optimization problem with

some variables restricted to integer values, while the remaining variables can be

real-valued. Besides these restrictions, there may be further constraints that are

expressed by linear equations and inequalities. The goal of the optimization is

to find a variable assignment that fulfills all constraints as well as minimizes (or

maximizes) a linear function, the objective function. The linearity of the objective

function and constraints distinguishes a MILP from a Mixed-Integer Nonlinear

Program (MINLP). In the case of a minimization problem, a MILP with inequality

constraints can be expressed as follows

z = min cTx

s.t. Ax ≤ b

x ∈ Zp × Rn−p, (2.33)

with decision variable vector x ∈ Zp × Rn−p, cost coefficient vector c ∈ Qn, coef-

ficient matrix A ∈ Qm×n and right-hand-side vector b ∈ Qm, where p, n, m ∈ N
and p ≤ n (Fügenschuh et al., 2010). MILPs with p = 0 are called Linear Pro-

grams (LP) and do only have real-valued variables, while those with p = n are

called Integer Programs (IP) and are restricted to integer variables exclusively. A

special case are MILPs with p = n where x ∈ {0, 1}. These are called Binary or

0/1-Programs with variable values restricted to either 0 or 1. Also, a maximization

problem can be transformed into a minimization problem by minimizing the nega-

tive objective function of the maximization problem and vice versa. Furthermore,

equality constraints can be expressed by using two inequality constraints.

In order to define the basic terminology and concepts, the remainder of this

subsection follows the definitions given by Nemhauser and Wolsey (1988) with some

modifications to the notation: The specification of the data set (c, A, b) yields an

“instance” of the optimization problem. The set S = {x ∈ Zp × Rn−p, Ax ≤ b} is

called the feasible region of an instance and any x ∈ S represents a feasible solution.

A feasible solution x∗ ∈ S that minimizes the value of the objective function, i.e.

cTx∗ ≤ cTx ∀x ∈ S, is called an “optimal solution” and the associated value of the

objective function z∗ is called the “optimal value”. If S = ∅, there is no feasible
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solution. Hence, the respective instance is “infeasible”. In contrast, an instance is

“unbounded” if for any ω ∈ R, there exists a x ∈ S for which cTx < ω.

2.2.2 Bounds, Relaxations and Optimality Gap

Given an instance of an optimization problem and some arbitrary feasible solution

x0 ∈ S with objective value cTx0 = z0, it is not known whether this is in fact

an optimal solution, i.e. z0 = z∗, or if it is not an optimal solution, how far its

objective value deviates from the optimal value. In order to estimate the quality

of a solution, lower and upper bounds z and z for the optimal value z∗ can be

established such that

z ≤ z∗ ≤ z. (2.34)

To explain the associated concept of primal and dual bounds, the following dis-

cussion is based on the remarks given by Nemhauser and Wolsey (1988) and Wolsey

(1998). On the one hand, the objective value of any feasible solution x0 ∈ S rep-

resents a primal bound for an optimization problem. In the case of a minimization

problem this corresponds to an upper bound with z = cTx0. One way to deter-

mine such primal bounds is to use heuristics. On the other hand, dual bounds,

which correspond to lower bounds in case of considering a minimization problem,

have to be determined. For these, so-called relaxations of the problem are typically

used. In general, this means that the original problem is replaced with a simpler

problem that is easier to handle but always yields a dual bound for the original

problem. A common approach is to obtain relaxations by dropping constraints of

the original problem. Furthermore, the term “simpler problem” often means that

this problem is within another complexity class than the original problem, e.g. class

P instead of NP . However, this does not necessarily have to be the case and the

term is used here in a broader, more intuitive sense. Hence, a problem RP with

zR = min{f(x) : x ∈ T} is said to be a relaxation of the original problem P with

zP = min{c(x) : x ∈ S} if the following two properties hold:

S ⊆ T (2.35)

f(x) ≤ c(x) ∀x ∈ S (2.36)

Accordingly, it follows that for the relationship between relaxed problem RP and

original problem P the following properties apply:

– If P is feasible, zR ≤ zP .
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– If RP is infeasible, P is also infeasible.

– If x∗ ∈ T is an optimal solution of RP and furthermore x∗ ∈ S is a feasible

solution of P , then x∗ is also an optimal solution of P .

With primal and dual bounds z and z for a minimization problem, the so-called

optimality gap (see e.g. Fügenschuh et al., 2010) can be stated as

gap :=
z − z
z

. (2.37)

The optimality gap provides information on how far a solution deviates from the

optimum. If gap = 0 and thus z = z, an optimal solution is found. As long as a

gap remains, it is not proven that a solution is optimal and no statement can be

made about where the optimum lies in the range between the two bounds. Hence,

the optimality gap is only an indicator for the worst-case deviation but not for the

actual deviation from the optimum.

2.2.3 Linearization Techniques

The intuitive modeling of optimization problems related to technical applications in

many cases involves nonlinear relationships and integer decision variables. However,

the resulting MINLPs are in general difficult to solve or even unsolvable (Geißler,

2011). Therefore, the corresponding nonlinear constraints are often piecewise lin-

early approximated to make them accessible for MILP algorithms. In this thesis,

univariate as well as multivariate functions are considered. For both of them, two

possible piecewise linear representations are introduced. A detailed description of

often used linearization techniques as well as their computational performance is

presented in Vielma et al. (2010). The overview given here follows Geißler (2011).

Univariate Functions

In the univariate case, a continuous piecewise linear function φ : R → R can

be approximated using n line-segments (1-simplices) as well as n + 1 grid points

xi (i ∈ {0, ..., n}) and their function values yi = φ(xi) for the domain [x0, xn].

The first technique presented is the Aggregated Convex Combination method

(ACC) for univariate functions, sometimes also referred to as λ-method (Vielma

et al., 2010). The underlying idea is that function values at a point x can be ex-

pressed by a convex combination of grid points, which in the univariate case are the

grid points of the line segment on which x lies. Therefore, n+1 auxiliary multipliers
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λ0, . . . , λn ∈ [0, 1] (one for each grid point) and n binary variables z1, . . . , zn (one

for each line segment) are introduced. If one additionally introduces the auxiliary

binary variables z0 and zn+1 and fixes them to zero (z0 = zn+1 = 0), the model can

be stated as follows:

x =

n∑
i=0

λi · xi (2.38a)

y =

n∑
i=0

λi · yi (2.38b)

n∑
i=0

λi = 1 (2.38c)

n∑
i=1

zi = 1 (2.38d)

λi ≤ zi + zi+1 ∀ i ∈ {0, ..., n} (2.38e)

λi ≥ 0 ∀ i ∈ {0, ..., n} (2.38f)

zi ∈ {0, 1} ∀ i ∈ {1, ..., n} (2.38g)

The second technique is the Incremental method (INC), also known as δ-method

(Vielma et al., 2010). Using this method, a point x in interval i is defined by

x = xi−1 + (xi − xi−1) · δi with auxiliary variable δi ∈ [0, 1], where δi > 0 only if

δi−1 = 1. For this, n − 1 binary variables z1, . . . , zn−1 are used. Accordingly, the

following formulation is obtained:

x = x0 +
n∑
i=1

(xi − xi−1) · δi (2.39a)

y = y0 +
n∑
i=1

(yi − yi−1) · δi (2.39b)

zi ≤ δi ∀ i ∈ {1, ..., n− 1} (2.39c)

δi+1 ≤ zi ∀ i ∈ {1, ..., n− 1} (2.39d)

zi ∈ {0, 1} ∀ i ∈ {1, ..., n− 1} (2.39e)

δ1 ≤ 1 (2.39f)

δn ≥ 0 (2.39g)

While ACC is a flexible and widely known technique, Geißler et al. (2012) show

that INC performs significantly better in terms of runtime for univariate nonlin-
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earities encountered in the optimization of water supply networks, which have sim-

ilarities to the systems studied in this thesis. However, due to its widespread use,

ACC is considered as an alternative.

Multivariate Functions

Similar to the univariate case, piecewise linear multivariate functions φ : D ⊂
Rd → R on the compact domain D partitioned into n simplices (d-simplices) can

be approximated using m grid points xj (j ∈ {1, ...,m}). Again, binary auxiliary

variables z are introduced to ensure y = φ(x) holds for x ∈ D. For the considered

bivariate case, a simplex corresponds to a triangle. To obtain valid triangulations,

one can use incrementally constructed Delaunay triangulations (Delaunay, 1934).

The Generalized Aggregated Convex Combination method (GACC) is an exten-

sion of ACC to the multivariate case. Similar to the univariate case, any point

x ∈ S ⊆ D can be expressed by a convex combination of the vertices xj ∈ V(S) of

simplex S. In addition, n binary variables z1, . . . , zn are introduced (one for each

simplex). With this, the model can be formulated as follows:

x =
m∑
j=1

λj · xj (2.40a)

y =

m∑
j=1

λj · yj (2.40b)

m∑
j=1

λj = 1 (2.40c)

n∑
i=1

zi ≤ 1 (2.40d)

λj ≤
∑

{i|xj∈V(Si)}

zi ∀ j ∈ {1, ...,m} (2.40e)

λj ≥ 0 ∀ j ∈ {1, ...,m} (2.40f)

zi ∈ {0, 1} ∀ i ∈ {1, ..., n} (2.40g)

While GACC is well established, the Logarithmic Disaggregated Convex Combina-

tion method (DLog) is a more recent method proposed by Vielma and Nemhauser

(2011) that uses only a logarithmic number of binary auxiliary variables z. In the

disaggregated case, a λ-variable is assigned to each of the d + 1 vertices of each
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simplex S out of the set S of d-simplices instead of one variable per grid point as

for the aggregated case. For the logarithmic formulation, the number of z-variables

can be reduced from n (one for each simplex) to dlog2(n)e. For this, an injective

function c : S → {0, 1}dlog2(n)e is introduced. In this context, gray code is used to

uniquely encode the respective simplices. There is also a logarithmic formulation

of GACC, but this formulation requires a specific triangulation, namely a J1 tri-

angulation, which is sometimes referred to as “Union-Jack” triangulation (Vielma

et al., 2010). However, due to the superior flexibility, DLog is considered instead:

x =
n∑
i=1

d∑
j=0

λSi
j · x

Si
j (2.41a)

y =
n∑
i=1

d∑
j=0

λSi
j · y

Si
j (2.41b)

n∑
i=1

d∑
j=0

λSi
j = 1 (2.41c)

n∑
i=1

d∑
j=0

c(Si)l · λSi
j ≤ zl ∀ l ∈ {1, ..., dlog2(n)e} (2.41d)

n∑
i=1

d∑
j=0

(1− c(Si)l) · λSi
j ≤ 1− zl ∀ l ∈ {1, ..., dlog2(n)e} (2.41e)

zl ∈ {0, 1} ∀ l ∈ {1, ..., dlog2(n)e} (2.41f)

λSi
j ≥ 0 ∀ i ∈ {1, ..., n}, j ∈ {0, ..., d} (2.41g)

While most constraints remain unchanged compared to the “conventional” Disag-

gregated Convex Combination method (see Vielma et al., 2010), Constraints (2.41d)

and (2.41e) ensure that only the vertices of the one simplex whose l-th bit of its

binary encoding matches zl for each l ∈ {1, . . . , dlog2(n)e} are used for the convex

combination.

Geißler et al. (2012) show that DLog performs well for applications similar to

those considered in this work, namely for multivariate nonlinearities encountered

in gas network optimization. However, they also point out that a smaller model does

not necessarily lead to shorter runtimes. Therefore and because of its simplicity,

GACC is provided as an alternative.
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2.2.4 System Synthesis Problems

The synthesis of technical systems, as considered in this thesis, can be viewed

as a hierarchical two-stage optimization problem, with binary decision variables

representing the purchase decisions to be made for technical components or their

operational status, and continuous decision variables representing the operation of

the system and the individual components.

Accordingly, a distinction can be made between structural and operational deci-

sions, respectively. While there is only one structural decision phase, there may be

multiple operational decision phases equivalent to a certain number of considered,

typically discrete, time steps. The structural decisions influence the operational de-

cisions and vice versa. For example, the operation of components associated with

the operational decision stage requires that this component is selected for purchase

in the hierarchically higher structural stage. Furthermore, it is also possible that

the decisions within the operational stage influence each other. Therefore, it seems

reasonable to make all decisions of both stages simultaneously in order to exploit

the potential that arises from the interaction between and within the two decision

stages (Bahl et al., 2018).

Model Structure

According to Bahl et al. (2018), synthesis problems have a special structure, which

becomes apparent by examining the respective non-zero coefficient matrices. The

situation is illustrated in Figure 2.4. The individual, mutual independent operat-

ing blocks O1, . . . , O|T | for each time step t ∈ T may be coupled by “complicating

variables” CV and “complicating constraints” CC . If there are no complicating

variables or complicating constraints, the so-called simple problem arises. This is

called the simple problem because it can be simply decomposed into its individ-

ual operating blocks, which can be solved independently of each other. However,

as in this thesis, it is very common that complicating variables or complicating

constraints are present. To enable decomposition in these cases, more advanced

approaches such as Benders Decomposition (see e.g. Rahmaniani et al., 2017) or

Lagrangean Decomposition (see e.g. Guignard and Kim, 1987) would have to be ap-

plied. On the one hand, an example for complicating variables are binary purchase

variables that apply to all operating blocks and ensure that all components used

for operation must be part of the overall system. On the other hand, examples for

complicating constraints are constraints applied to water tanks in order to model

27



2 Theoretical Background

the temporal sequence of storage levels, which in turn restricts all operating blocks

(Bahl et al., 2018).

CC

CV

O1

O2

...

O|T |−1

O|T |

Variables

C
o
n

st
ra

in
ts

Figure 2.4: Schematic representation of the non-zero coefficient matrix of a synthe-
sis problem with operation blocks O1...O|T |, complicating constraints

CC and complicating variables CV (based on Bahl, 2018)

Model Complexity

Bahl et al. (2018) further introduce the term “model complexity”, which loosely

correlates with the computational effort required. In this context, model complexity

should not be confused with the established concept of “computational complexity

theory” (see e.g. Schrijver, 1986) and does not imply a strict mathematical relation-

ship. The authors state that the resolution of time and couplings between different

time steps are an important factor affecting the model complexity. Accordingly,

they identify different influencing factors for increased model complexity:

– Existence of multiple time steps t ∈ T , e.g. caused by different requirements

for the volume flow V̇t at various points in time:

V̇ demand
t = V̇ supply

t ∀ t ∈ T (2.42)

– Existence of coupled time steps without the necessity of a chronological time

sequence, e.g. caused by the influence of higher-level purchase decisions b on

the individual operation decisions at for a component in each time step t ∈ T :

b ≥ at ∀ t ∈ T (2.43)
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– Existence of coupled time steps with additional necessity of a chronological

time sequence, e.g. caused by considering the storage level Vt of a water tank

for two adjacent time steps t and t+ 1 ∈ T :

Vt+1 = Vt + ∆Vt ∀ t ∈ T (2.44)

– Necessity for limited time step lengths ∆τt, e.g. caused by the charging or

discharging of a water tank with the requirement of constant flows V̇t in each

time step t ∈ T :

∆Vt =

∫ τt+∆τt

τt

V̇ (τ) dτ = V̇t ·∆τt ∀ t ∈ T (2.45)
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Design

The aim of this thesis is to contribute to the establishment of quantitative, modern

algorithmic methods for the design of technical systems. Apart from just intro-

ducing these methods, it is necessary to integrate them into the design process.

Therefore, a suitable systematic design approach is discussed in the following. Sub-

sequently, an overview of related work is given.

3.1 Systematic Design Approach

In an attempt to automatically find optimal pump system designs, Pelz et al. (2012)

proposed a systematic design process in order to combine planning and engineering

approaches with algorithmic optimization. Based on the established research field

of Operations Research (OR), the term Technical Operations Research (TOR) is

used for the methodology.

The traditional system design workflow can be roughly divided into two separate

stages: finding a system topology using either experience or some kind of heuristic

first and afterwards determining an initial control strategy for the given topology

that can be further improved using simulation tools (Altherr et al., 2016a). In

contrast to this, one major principle of TOR is not to subsequently optimize the

operation of one or several system proposals, i.e. with respect to a given system

topology that is unquestioned at this point in time, but to find an optimal system

proposal by simultaneously evaluating a large set of implicitly described systems

and their operation without being dependent on an a priori defined system topology.

By guiding the designer through specific steps, the approach prepares the gener-

ation and solution of an optimization program and structures the application of the

optimization results to reality. To enable this, the system design process is divided

into seven consecutive steps, which are classified into two phases: a deciding phase

and an acting phase. To visualize the approach, the so-called TOR pyramid, as
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shown in Figure 3.1, is often used. As illustrated, the degree of detail is continu-

ously refined from step to step. These steps are meant to supplement traditional

approaches in order to streamline the planning process, facilitate the communi-

cation between the interest groups involved and hence catalyze the generation of

optimal solutions. Therefore, the TOR methodology does not intend to replace

other established design processes, such as VDI 2221, but rather to complement

them (Dörig et al., 2014).
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7. Realize!

6. Validate!

5. Verify!

4. Find the optimal system!

3. What are the degrees of freedom?

2. What is the objective?

1. What is the system’s function?

Figure 3.1: System design with TOR visualized by the TOR pyramid (based on
Pelz et al., 2012)

In the following, the individual steps of the TOR approach are discussed in detail.

This thesis especially examines the first four steps of this approach. However, the

remaining steps of verification, validation, and realization are also of high impor-

tance and are therefore also explained in the following for the sake of completeness.

1. What is the system’s function? In this step, the basis for the following steps

is formed. The basic function of the system is defined and the requirements for the

system are precisely determined by providing expected load profiles. Typical basic

functions in this context are for example the distribution of fluid or heating and

cooling. The formulation of the requirements is crucial because only if a system

is able to maintain its function with regard to the occurring loads, it fulfills its

intended purpose.
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2. What is the objective? The assessment of a system is only possible with

regard to the intended objective. This step is of great importance since the ob-

jective massively influences the final solution of the problem. The objective can

vary depending on the interest groups involved. For example, the objective of an

investor can be a low net expense. The operator, in contrast, could consider a high

availability, while a state institution could focus on a low energy consumption or

low pollutant emissions as a priority. Since these objectives can be conflicting, a

completely different system may emerge depending on the decision made in this

step, but each of these systems would be optimal with regard to the respective

objective. For this reason, the definition of the objective can also be seen as a

subjective influence on the optimal system and therefore has to be formulated in

agreement with all relevant interest groups. However, this step is often neglected

in practice.

3. What are the degrees of freedom? The last step of the deciding phase is to

determine the degrees of freedom. This defines the limits within which a system

can be optimally designed but also offers room for possible variations. In other

words, the “playing field” for the optimization has to be staked out by the designer.

In the case of a technical system, the playing field consists of a preselected set

of components that may be used for the system, their characteristics, rules for

combining these components to a system, and the general prevailing technical and

physical relationships for the system as a whole. Afterwards, an algorithm takes

over the task of selecting components from the defined set of different components

and making optimal use of them for the overall system. Hence, the delimitation of

the playing field represents an important restriction for the possible solutions and

must be carefully defined in mutual consultation with all interest groups. It must be

clear that the approach will only find technical solutions that are part of the playing

field and therefore will not replace human imagination or find creative solutions

beyond the possible solutions. This underlines the intention of this approach, which

has to be seen as a decision tool and should not replace the decision maker. At the

end of the deciding phase, all decisions by the system designer that influence the

optimal system have been made. Thus, the description of the desired system and

the associated optimization task is completed.

4. Find the optimal system! After completing the decision phase, the next step

is the computation of a system proposal. This involves decisions regarding the
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topology of the system as well as the control parameters. Making these decisions

and determining a system proposal is done by setting up optimization models,

preferably as MILPs, and applying algorithms to solve them (Ederer et al., 2014).

The application of MILPs has two major advantages: If there is a solution for

the instance under consideration, it can be found in finite time, and moreover,

verifiable globally optimal solutions can be obtained (Dörig et al., 2014). However,

a global optimum with respect to the initial decisions made in the deciding phase

cannot always be found within reasonable time. Nevertheless, it is not necessarily

a question of finding the optimal system but of generating the best possible system

considering the time aspect and especially being able to estimate its quality. In

practice, systems that are proven to be among the best percentage of possible

solutions are often more than sufficient.

5. Verify! Following the algorithmic search for a system, the system proposal

needs to be verified by the system designer in order to ensure it is technically and

physically correct. This step stands in close interaction with the previous step.

The verification is carried out by setting up “physical-technical-economic models

with concentrated parameters”, so-called zero-dimensional models, e.g. using the

Modelica1 modeling language (Ederer et al., 2014).

6. Validate! In this step the system proposal is validated. It must be ensured

that the chosen model and its level of detail adequately reflect reality and that

the system proposal can be implemented in practice. For this purpose, different

approaches can be applied depending on the application. It is possible to use three-

dimensional computational methods, such as the Finite Element Method (FEM),

carry out experiments or conduct field studies (Ederer et al., 2014).

7. Realize! After verification and validation, the final step is the realization

of the system proposal. For this, the systematic execution of all previous steps

ensures that all basic prerequisites for the optimization have been covered and that

a structured application of the optimization results to reality is guaranteed.

1https://modelica.org (accessed May 07, 2021)
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3.2 Related Technical Work

The starting point for this section is research published in the context of the TOR

approach presented in the previous section. All these works have in common that

they refer or otherwise relate to this approach and address partial aspects of the

overall design process. Subsequently, further literature is discussed that is themat-

ically related to the topics covered in this thesis, with a focus on the application of

mathematical programming techniques in the respective domain. To this end, an

attempt is made to highlight the most important characteristics of the individual

research areas and to describe exemplary publications that can be used to identify

the basic principles and commonly applied concepts.

3.2.1 Technical Operations Research

The publications that have appeared in the context of the TOR approach can gener-

ally be classified with respect to two focal points: the technical applications consid-

ered and the focus on specific aspects of the general approach. This section follows

the former of these classification schemes, which focuses on the different applica-

tion areas. Accordingly, important aspects with respect to the TOR approach are

highlighted in the context of the respective application. Recurring aspects across

all application areas are the generation of suitable models of technical systems,

their validation, the development of tailored solution methods, the consideration

of additional characteristics such as uncertainty, and the superordinate attempt to

make the methodology more accessible to engineers and system designers.

Optimization of Water-Based Applications

As mentioned above, Pelz et al. (2012) demonstrated the TOR approach using

the application example of a domestic pump system for pressure boosting. In this

spirit, the most widely investigated field of application is the optimization of booster

stations. For this application, the focus is mainly on appropriate modeling of these

systems in combination with the application of standard solvers. Intuitively, the

associated optimization problem can be modeled as a MINLP due to the arising

nonlinearities and integer decision variables induced by the components involved.

However, in order to obtain a MILP and therefore be able to use powerful linear

programming algorithms, the nonlinearities can be replaced by linearizations (see

e.g. Betz, 2017; Pelz et al., 2012). Nevertheless, the MINLP formulation has also

been investigated as an alternative, accepting the computational downsides of the
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nonlinear formulation in favor of a more accurate representation (see e.g. Pöttgen

and Pelz, 2016). In this context, Rausch et al. (2016) studied the performance of

different solvers for MILPs and MINLPs with regard to different model formulations

for a system with spatially distributed pumps.

The application example of decentralized booster stations for high-rise buildings

using a MINLP formulation was further studied in Leise et al. (2018) and Leise

and Altherr (2019). In this regard, there is also a recently published comprehensive

study by Müller et al. (2020), who investigated three important aspects. Firstly,

with regard to the modeling of decentralized booster stations, the authors proposed

and compared three different variants: a nonlinear, a piecewise linear approximated,

and a piecewise linear relaxed formulation. Secondly, the authors developed a

problem-specific algorithm for obtaining globally optimal solutions based on the

interplay of the different model formulations. Thirdly, based on the preliminary

work in Müller et al. (2019c), the obtained solutions were validated on a test rig that

represents a scaled version of the considered system. The validation results showed

that the obtained solutions were sufficiently accurate with minor modifications to

the model and confirmed the expected savings potential. These findings are also in

accordance with previous results reported by Altherr et al. (2016a), who examined

an experimental setup using a booster station in combination with an accumulator.

Besides the optimal design, the optimal operation in isolation has also been

examined as a partial aspect (see e.g. Groß et al., 2017). This was used, inter alia,

to determine the maximal attainable “Energy Efficiency Index” (EEI) for booster

stations (Pöttgen and Pelz, 2016) and for the closed-loop control of a tank level

control system (Altherr et al., 2016b). Furthermore, Pöttgen et al. (2015) proposed

a MILP formulation for finding cost-efficient activation strategies for pumps in

existing booster stations that are also robust with regard to the operation under

uncertain loads.

In addition to examining uncertainty only in the context of the operation of

booster stations, this consideration has also been applied to the system design.

Altherr et al. (2015) designed optimal pump systems under consideration of down-

time costs due to spontaneous failures by including multiple availability scenarios.

Sun et al. (2018) considered optimal booster station design and operation under

uncertain load and introduced a penalty for water shortage as an additional cost

component. Furthermore, Altherr et al. (2018a) investigated decentralized booster

stations for high-rise buildings with the aim of finding cost-efficient K-resilient sys-

tems, i.e. the operation can be ensured if at most K components break down. In
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subsequent work, Altherr et al. (2019) further proposed a solution approach based

on the Branch and-Bound method to exploit the special tree-structure of the con-

sidered systems.

While the above works focus on models and methods to design optimal pump-

ing systems, Saul et al. (2016) developed a domain-specific, textual language that

can automatically generate optimization models, in order to make algorithmic op-

timization methods accessible for a broader audience. According to the TOR ap-

proach, this language includes the possibility to define a selection of components as

well as their specifications and properties, the topological degrees of freedom, and

different load profiles. Based on this description, a specially developed compiler

automatically generates the associated optimization model, which is then solved by

external standard solvers. Subsequently, a simulation model is created that can be

used for validating the obtained solutions using common simulation tools. Another

noteworthy feature is that the compiler can analyze the system model and pro-

vide human-readable feedback, e.g. regarding the feasibility of the defined specific

requirements for the system.

A field of application adjacent to booster stations is the application example of

urban water distribution systems. In this regard, Rausch (2018) used algorithmic

optimization for the supply planning of informal settlements within a city, so-called

slums, in order to design water supply networks with a combination of different

supply options. A special feature is that in addition to pipelines, distribution with

vehicles was also considered as an alternative supply option. Besides this, Lorenz

and Pelz (2020) proposed a MILP for increasing the resilience of a water distribution

system with regard to its topology by using a graph-theoretical resilience index

considering both redundancy and robustness.

Compared to applications where the distribution of water is considered in isola-

tion, less research has been done on applications involving water-based heating and

cooling systems. In Ederer et al. (2014) and Pöttgen et al. (2016), the operation

of the generation side of an existing heating circuit with heat storage tanks was

examined and based on this, the authors proposed an alternative system concept

that was compared to the existing system. However, the system proposal was not

the proven globally optimal system but was designed on the basis of engineering

experience. Furthermore, Meck et al. (2020) investigated and optimized an existing

industrial cooling system. However, the consideration was limited to the optimiza-

tion of fluid distribution, i.e. pump placement and operation. The authors did not

explicitly address thermal consideration in the optimization.
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Optimization of Other Fluid-Based Applications

Besides water-based pumping systems, other applications in the field of fluid sys-

tems have been explored. A model for the optimization of the topology of a hy-

drostatic transmission system was presented in Dörig et al. (2014). Based on this,

Altherr et al. (2017a) extended the examination of hydrostatic transmission sys-

tems to a multi-criterial setting in which the wear reduction of system components

was taken into account as an conflicting objective to a low initial investment. In

subsequent work, this was revisited by Altherr (2016), who developed a heuristic

solution approach based on a combination of Simulated Annealing and Dynamic

Programming (DP) to generate good, feasible solutions in reasonable time because

the instances under consideration were beyond the capabilities of standard solvers.

Furthermore, Altherr (2016) used dual bounds obtained by Lagrangian Decompo-

sition to assess the primal solutions.

Another application example in the domain of fluid systems is paper recycling.

In this context, Fügenschuh et al. (2014), who examined the optimal layout for

the application example of sticky separation in waste paper processing, built the

foundation for subsequent work. In their paper, a nonlinear formulation for the

simultaneous selection of the network topology as well as the optimal settings of

the considered technical components involved, i.e. the so-called separators, was

proposed for the steady state. The authors further derived different piecewise lin-

earizations in order to handle the arising nonlinear relationships. Based on this

work, Müller et al. (2019a) extended the model, inter alia, by the consideration of

the system’s energy consumption. Furthermore, in Müller et al. (2019b), a graphical

user interface (GUI) to provide an entry point for designers and operators without

more profound knowledge regarding the applied optimization techniques was pre-

sented. The GUI was especially designed to guide the user through all necessary

steps and present the resulting solutions in an intuitive way. To achieve this, the

authors proposed a suitable model for the intended application that is adaptable

with respect to certain individual constraints.

Moreover, the examination of the optimal design for the example of ventilation

systems for buildings was covered by Altherr et al. (2017b) and Schänzle et al.

(2015). Instead of preselecting a discrete set of components, the authors used

affinity and scaling laws to describe the technical components. Based on this work,

Leise et al. (2019a) extended the consideration by incorporating resilience, i.e. K-

resilience, as an additional feature.
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Optimization of Non-Fluid-Based Applications

Other fields of application that have been investigated besides fluid-based systems

are the optimal design of mechanical transmission systems and the optimization of

lattice structures. The optimal design of gearboxes, or more precisely dual-clutch

transmission systems, from scratch using MINLPs was examined by Altherr et al.

(2018b) and Dörig et al. (2016). Based on this, Leise et al. (2019b) combined a

MINLP formulation with an unsupervised machine learning algorithm to generate

optimal multi-gear transmission system designs for battery electric vehicles that

are robust against load uncertainties. Reintjes and Lorenz (2020) examined the

optimization of lattice structures in the context of additive manufacturing. They

proposed two different MILPs, one focusing on powder-based additive manufactur-

ing and one focusing on support-free lattice structures for additive manufacturing

processes that normally require support structures. In addition, a domain-specific

approach to algorithm-based design was presented to bridge the gap between the

scientific disciplines of mathematics and engineering in this research area. Further-

more, resilience as an additional feature for load-carrying structures was examined

in Altherr et al. (2018a).

3.2.2 Optimization of Water Distribution Systems

In this section, a short overview of the related research area of water distribution

network optimization is given. The consideration mainly focuses on the application

of mathematical programming techniques. For further insight, D’Ambrosio et al.

(2015) offer a comprehensive review in this regard, with a special focus on drink-

ing water supply networks. Besides discussing only applications in the context

of mathematical programming and in order to adequately address other aspects

covered in this thesis, i.e. metaheuristics and resilience considerations, also sepa-

rate brief overviews for both are given at the end of this section, even though the

considered works are (partly) outside the domain of mathematical programming.

According to D’Ambrosio et al. (2015), literature regarding the optimization of

water distribution systems can be divided with respect to two different tasks: opti-

mal operation and optimal design. The optimal operation problem aims at operat-

ing the system components, e.g. pumps and valves, of a given fixed system over a

certain time horizon such that the customer demands are met while the operational

costs, typically related to the components’ power consumption, are minimized. For

the optimal design problem, there is a distinction between the terms design and lay-
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out problem in related literature. As pointed out by De Corte and Sörensen (2013),

the layout problem deals with a more strategic decision level, involving decisions

with respect to the topology, e.g. the system’s connectivity and/or the placement

of components, while the design problem assumes a fixed topology of the network

and the consideration only involves decisions on a more tactical level. In general,

this includes decisions with respect to the selection of pipe diameters and/or pipe

material as well as the selection of types and/or sizes for active components, such

as pumps and valves (Altherr et al., 2019). However, the design problem often only

involves the consideration of pipes since many investigations focus on so-called

gravity-fed systems, where active components are not considered (De Corte and

Sörensen, 2013). Beyond that, the combined optimization of the operation and the

design and/or layout from scratch has not yet been extensively explored (Altherr

et al., 2019). Also, the distinction between the terms “design” and “layout” only

applies to this section and the term “design” in this thesis otherwise covers aspects

of both.

Optimization of Operation

In the context of optimal operation, there are different problems considered in

literature. These are the optimal pump operation, optimal system operation for

water quality purposes and valve control in combination with the former two (Mala-

Jetmarova et al., 2017). Here, the focus is on literature focusing on optimal pump

operation, also called optimal pump scheduling, as well as combinations of optimal

pump scheduling and valve control. For a more detailed overview with regard

to the optimal operation also including works that do not apply mathematical

programming techniques, see Mala-Jetmarova et al. (2017).

Optimal pump scheduling can be modeled as a (non-convex) MINLP due to the

nonlinear (non-convex) pressure-flow relationship and binary variables that repre-

sent the on/off state of components. Since these problems are in general hard to

solve and state-of-the art solvers do not scale up well, different simplifications are

common in literature: dropping the time dimension, using piecewise linear approx-

imations or ignoring discrete decisions (Bonvin et al., 2017).

The optimal stationary operation, i.e. dropping time-couplings and considering a

fixed point in time, was examined by Gleixner et al. (2012). The associated MINLP

involved nonlinear relationships, such as pressure losses in pipes due to friction and

pump characteristics as well as discrete activation decisions for components. As for

active components, constant-speed pumps and continuously adjustable valves for
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reducing pressure were considered. The water tanks of the network had fixed initial

filling levels due to the stationary operation. For validation, the authors studied

two real-world examples that could be solved using problem-specific presolving and

a standard nonlinear solver.

The optimization of the dynamic operation using a MILP formulation based on

piecewise linear approximations of nonlinear relationships was tackled by Morsi

et al. (2012) and Geißler et al. (2011) in joint work. The model involved discrete

decisions for operating the components and the arising nonlinearities were approx-

imated using the incremental method. In contrast to Gleixner et al. (2012), the

authors considered constant-speed as well as variable-speed pumps and different

valve types. Furthermore, additional features were incorporated. These included

terminal filling levels of water tanks and the necessity for the tanks to be filled

and emptied a certain number of times during the considered time horizon to avoid

stagnation, as well as minimum runtimes and downtimes for pumps. Besides the

incremental method used by Morsi et al. (2012) and Geißler et al. (2011), later work

also adapted different approximation methods. For example, Verleye and Aghezzaf

(2013) applied a logarithmic convex combination method presented in Vielma and

Nemhauser (2011).

The third simplification, i.e. avoiding discrete decisions, was used by

Burgschweiger et al. (2009). Derived from a MINLP formulation, the authors

obtained a NLP by using special techniques to incorporate the binary decisions.

This was achieved based on the aggregation of multiple pumps in a pump station

together with a combined efficiency model as well as the introduction of up- and

downtime constraints. For further details in this regard, see also Burgschweiger

et al. (2005). Given the solution of the NLP with aggregated pumps, the operation

scheduling for the individual pumps could then be determined in postprocessing

by using the MINLP formulation. With this, it was possible to compute solutions

for large real-world networks over a time horizon of 24 hours in reasonable time

using standard solvers. However, it was noted by the authors that the obtained

solutions were only locally optimal due to non-convexities still present in the NLP

formulation.

Besides the above approaches that attempt to tackle the general problem, Bonvin

et al. (2017) focused on a specific class of networks in order to obtain a tractable

MINLP formulation for pump scheduling. The considered class of networks included

the assumptions of a branched layout (no loops or bi-directional pipes) as well as an

aggregated pump station at the source and elevated tanks with flow-control valves
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at the sinks. By focusing only on this special class of networks, the authors were

able to solve a real-world industrial example with a time horizon of 24 hours using a

convex MINLP formulation and a standard solver by showing that non-convexities

can be relaxed for the considered network type. However, while the considered

network class is widespread, other networks were explicitly excluded.

Optimization of Design and Layout

As mentioned above, the optimal design mostly involves the sizing of pipe diam-

eters for a given layout, while other components such as pumps or valves are not

considered. In this context, Bragalli et al. (2012) used a MINLP approach to se-

lect pipe diameters from a set of commercially-available options. With this, the

authors were able to find good solutions for large instances originating from both

literature and real-world examples. However, these are not necessary globally op-

timal solutions since the solver framework used acts as an heuristic solver for the

considered non-convex MINLPs (D’Ambrosio et al., 2015). Other examples include

the application of linearizations resulting in a MILP (see e.g. Artina and Walker,

1983, as cited and implemented in Bragalli et al., 2012) or the application of a NLP

approach (see e.g. Eiger et al., 1994). A comprehensive review in this regard is

given by Mala-Jetmarova et al. (2018), who also discuss optimization approaches

other than mathematical programming.

In the context of optimal layout, Pecci et al. (2019) examined the simultaneous

optimization of the placement and the operational settings of control valves with

the aim of minimizing the average zone pressure. For this, the authors used a

MINLP formulation and obtained ε-sub-optimal solutions, i.e. solution values that

are within ε ≥ 0 of the optimal value. This was based on using a Branch-and-

Bound implementation in order to obtain reliable bounds. The applied approach

used linear relaxations for the hydraulic constraints, which were further tightened

by a special domain reduction procedure. The approach was tested on two bench-

mark instances and one real-world example, for which solutions with bounds in

the range of parameter uncertainties could be obtained. Instead of investigating

the placement of components for an existing network, Lejano (2006) examined the

optimal pipeline layout and design of a branched distribution system. The loca-

tions of potential customers and their demands as well as the location of a single,

aggregated pumping station were used as inputs. Based on the maximization of

the net benefit, i.e. the difference between the revenue of sold water and the costs

incurred, it was possible to decide whether a customer should be connected to the
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network or not. For this, the author used a MILP formulation obtained by using

linear approximations and further simplifications regarding the generally nonlinear

relationships of the considered investment and operational costs.

Metaheuristics

Besides global optimization methods, heuristics, especially metaheuristics, have

been applied in literature since the early 1990s (De Corte and Sörensen, 2013).

This development affects all considered areas: optimal operation (see e.g. Hashemi

et al., 2014; Lingireddy and Wood, 1998), optimal design (see e.g. Maier et al., 2003;

Savić and Walters, 1997), optimal layout with regard to optimal valve placement

(see e.g. Paola et al., 2017; Reis et al., 1997), and the joint design and operation

(see e.g. Dandy et al., 1994; Ostfeld and Tubaltzev, 2008). Also a wide range

of different metaheuristics have been applied, this comprises (but is not limited

to) Genetic Algorithms (see e.g. Marchi et al., 2014; Murphy and Simpson, 1992;

Savić and Walters, 1997) as the first and most frequently used metaheuristic in

this context but also other metaheuristics including Simulated Annealing (see e.g.

Costa et al., 2000; Cunha and Sousa, 1999), Tabu Search (see e.g. Cunha and

Ribeiro, 2004; Sung et al., 2017), and Ant Colony Optimization (see e.g. Maier

et al., 2003; Zecchin et al., 2007). For a comprehensive overview in the context

of design problems for gravity-fed water distribution networks, see De Corte and

Sörensen (2013).

However, many approaches relying on metaheuristics do not use an explicit math-

ematical programming formulation (D’Ambrosio et al., 2015). Instead external

solvers such as EPANET2 are often applied to check for hydraulic feasibility (De

Corte and Sörensen, 2013). For these, there is a drawback with regard to large

networks because of the rapidly increasing number of necessary objective function

evaluations by the hydraulic solver (Pecci et al., 2019).

An example for the combination of metaheuristics and mathematical program-

ming was examined in Cai et al. (2001). The authors used a Genetic Algorithm to

fix a set of complicating variables in their nonlinear optimization model for water

management, resulting in a linear formulation that could be solved using standard

techniques. With this, the authors were able to find favorable solutions for large

water management instances in reasonable time. However, even though heuristic

2https://www.epa.gov/water-research/epanet (accessed May 07, 2021)
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approaches may oftentimes yield good solutions, optimality cannot be guaranteed

in general, not even locally (Pecci et al., 2019).

Resilience

Recently, there have also been increased efforts to include resilience considerations

for the design of water distributions systems. According to Mala-Jetmarova et al.

(2018), resilience in this context can be defined as the ability to “adapt to or recover

from a significant disturbance”, where the disturbance can be caused by either

an internal, e.g. component failure, or an external reason, e.g. a natural disaster.

However, there is as yet no specific, universally agreed definition with regard to

water distribution system due to the novelty of the research topic (Mala-Jetmarova

et al., 2018).

Due to the lack of a universal definition, there are many different resilience mea-

sures as well as many different approaches for assessing resilience. However, mostly

simulative approaches are used in this regard (Altherr et al., 2019). Examples in-

clude Herrera et al. (2016), who examined resilience with respect to a topological

perspective based on an implementation of the K-shortest paths algorithm, and

Meng et al. (2018), who proposed an analysis framework for assessing the correla-

tions between resilience and topological features using the application example of

water distribution systems.

In the context of mathematical programming, Marinho et al. (2020) presented a

MILP for decision support with regard to the resilient design of water distribution

systems that are affected by possible disturbances. For this, the authors focused

on three resilience capabilities: absorption, adaptation and recovery. The goal was

to minimize the investment with respect to different options of actions in order

to improve the system’s resilience capabilities. These actions could be performed

either preemptively or retroactively after a disruption. However, the model provided

many simplifications. For example, the authors did not consider any hydraulic

constraints, i.e. the consideration of pressure was neglected.

Publications that, in contrast, also include hydraulic properties are the already

mentioned works of Altherr et al. (2018a), Altherr et al. (2019) and Lorenz and Pelz

(2020). Since these have already been discussed in the previous section, they are not

discussed again here but do also apply in this context. Another study explicitly fo-

cusing on mathematical programming while considering hydraulic relationships was

published by Ulusoy et al. (2020). The authors considered the problem of adding

new pipes from an a priori defined set of possible pipes to a given layout in order
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to enhance resilience with regard to failure events while trying to minimize the dis-

advantageous consequences arising in the context of so-called leakage management

during the failure-free operation. In this regard, a MINLP for the arising problem

of simultaneously optimizing the addition of favorable pipes for redundancy and

the control of existing pressure valves was presented, aimed at minimizing the av-

erage zone pressure that is used as a surrogate for a favorable leakage management.

The authors solved instances based on examples from literature and sections of

real-world networks using an adapted spatial Branch-and-Bound procedure. The

hydraulic resilience of the system was then evaluated in postprocessing by perform-

ing a critical link analysis focusing on reserve capacity as an appropriate resilience

measure.

3.2.3 Optimization of Gas Networks

Another research area adjacent to the optimization of water distribution systems is

the optimization of gas networks. A general overview on gas network optimization

is given by Ŕıos-Mercado and Borraz-Sánchez (2015). While there are manifold

related optimization problems, an interesting class of problems arose due to the

deregulation of the gas industry. As a consequence of this deregulation, network

operators and gas vendors, which before had been a joint company, have to be

different companies now. In this context, new types of problems dealing with the

identification and allocation of free network capacities emerged in literature (Ŕıos-

Mercado and Borraz-Sánchez, 2015). According to Fügenschuh et al. (2013), who

discuss the arising problems, these include the validation of so-called nominations,

the verification of so-called booked capacities, the determination of available freely

allocable capacities, and topology planning for extending networks.

However, since the simplification of incompressible fluids, which is used in this

thesis, does not apply to the considered gases, the approaches used in gas network

optimization are only to some extend applicable to this thesis and vice versa. Nev-

ertheless, there are noteworthy approaches in literature especially with regard to

the nomination validation problem. The nomination validation problem deals with

the optimization task of finding optimal settings for active components of a given

gas network with regard to a nomination, i.e. the amount of gas the consumers

announce to feed into or extract from the network, such that all physical, technical

and legal constraints are met, with the objective typically being to minimize the

costs of transportation (Pfetsch et al., 2015).
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Particularly relevant with respect to this thesis are works that consider the piece-

wise linearization of the arising nonlinear relationships in order to obtain MILP

formulations that can be tackled by linear programming techniques. In this con-

text, Martin et al. (2006) examined the stationary problem. Using piecewise linear

approximations based on a generalization of the concept of Special Ordered Set

(SOS) constraints, the authors were able to solve large MILPs. However, the au-

thors also pointed out that this was only a first step, since although large parts of

the network exhibit a stationary behavior other parts are dynamic. In subsequent

work, Mahlke et al. (2010) therefore investigated the transient case and focused

on the time-dependent aspects of the problem. Again, the concept of SOS con-

straints was used to approximate nonlinearities and the problem was solved using

Branch-and-Cut. For the Branch-and-Cut algorithm, a standard Simulated An-

nealing implementation was used as a primal heuristic. Interestingly, the authors

reported that feasible solutions for the considered test instances with runtimes lim-

ited to 15 minutes were only obtained when Simulated Annealing was used. This

highlights the benefits of providing good primal solutions.

Furthermore, the study by Geißler et al. (2011), which was already discussed

above in the context of water distribution systems since it provides examples for

both applications, can be mentioned. For gas networks, the same approach as for

water distribution systems, i.e. the approximation of nonlinear constraints by the

incremental method, was used. Besides this, the paper dealt with the details of

modeling the considered problem with regard to gas network optimization, which

is, however, beyond the scope of this thesis. In this context, the associated con-

tribution in Geißler et al. (2012) focused more in-depth on the presentation and

performance comparison of different linearization techniques for gas (and water sup-

ply) network optimization. In addition to this comparison, the authors proposed

methods to a priori estimate the linearization errors and refine the linearization

until a certain predefined error bound is reached. Furthermore, it was shown how

to obtain piecewise linear relaxations instead of approximations.

3.2.4 Optimization of Energy Systems

Another research field related to this thesis is the optimization-based synthesis of

energy systems, typically operating as cogeneration systems for the simultaneous

production of heat and power or trigeneration systems with coupled cooling (Andi-

appan, 2017). Similar to water network optimization, different levels are considered.

According to Frangopoulos et al. (2002), these are the synthesis level, the design
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level, and the operational level. At the synthesis level, component selection as well

as the layout of the system is determined. At the subsequent design level, the focus

is on decisions related to the sizing of components or operating limits. The third

and last level, the operational level, comprises operation related decisions. While

there are hierarchical approaches, considering a certain level in isolation, integrated

approaches, which are considered here, deal with the optimization of all three levels

simultaneously in order to obtain synergies between the individual levels (Andiap-

pan, 2017). For more insights into optimization approaches for energy systems, see

the review by Andiappan (2017). However, while contributions in this field also

focus on heating and cooling (combined with power generation), the approaches

intentionally consider a higher level of aggregation for the synthesis task than it is

the scope of this thesis.

In the context of energy systems, for example, Ashouri et al. (2013) proposed a

MILP-based design framework for the selection and sizing of a smart building en-

ergy system, while also considering the operation of the system. For the framework,

the authors considered a variety of different technologies such as thermal and elec-

trical storage, heating and cooling components as well as renewable energy sources.

The approach was successfully tested on the application example of a commercial

building using standard MILP solvers. However, it was assumed that the consid-

ered technologies were continuously sizable instead of using discrete component sets.

Hence, only one aggregated component of a given technology, representing the set

of individual components, was considered. Therefore, this approach can potentially

result in large inaccuracies regarding the actual investment as well as the operation

of individual components (cf. Schütz et al., 2016). Furthermore, the considerations

were based on the assumption that the different technologies only consume, provide

or store energy with regard to four different energy streams. Hence, the represen-

tation is limited to the consideration of energy balances. Beyond this, explicit

quality levels of the water-based flows, e.g. temperature or pressure levels, were not

considered.

Voll et al. (2013) proposed a framework for the automated superstructure-based

synthesis of distributed energy supply systems with a particular focus on the super-

structure generation. The term “superstructure” refers to a representation that con-

tains all possible solution alternatives, i.e. all considered components and possible

connections. Therefore, the superstructure-based synthesis problem comprises three

subsequent steps: definition of a superstructure, mathematical modeling based on

the superstructure, and solving the arising optimization problem (Voll, 2013). The
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optimization model was automatically generated from the superstructure represen-

tation using a generic, component-based model formulation and model-templates.

The model itself was based on a model formulation proposed by Yokoyama et al.

(2002) for the simultaneous optimization of topology, sizing and design while as-

suming a given piping layout for the distribution. In contrast to Ashouri et al.

(2013), variable part-load performance for the components was incorporated in the

model. To obtain a MILP, the nonlinear cost and component performance rela-

tionships were approximated by piecewise linear functions. While the formulation

in Voll et al. (2013) dealt with conventional component technologies, it was later

extended by Bahl (2018) to include the consideration of thermal storage and re-

newable energy sources. For the solution, Voll et al. (2013) chose an iterative

approach since it was not certain a priori how many different components of one

type should be part of the considered superstructure. Hence, the authors started

with a superstructure containing each suitable component type once. This was then

repeated iteratively by adding further components of the same type until no fur-

ther improvement of the objective value could be observed. For both the so-called

grassroots synthesis, i.e. the system design from scratch, and the retrofit synthe-

sis, i.e. the extension of an existing system, the authors successfully tested their

approach on a real example from the pharmaceutical industry. However, the focus

was rather on a conceptual level. Hence, only standardized components with con-

tinuously adjustable size were assumed. Furthermore, the part-load performance

of all components of one type was assumed to be the same, independent of the

specific component or its size. Besides that, again only energy balances were con-

sidered and temperature and pressure levels of the water-based flows were assumed

to be constant and therefore neglected. Because of this, also corresponding aspects

such as mixing temperatures and temperature-dependent component performance

were neglected. Hence, the consideration of the interconnection of components, i.e.

parallel and serial connections, could be neglected since it had no influence on the

system behavior for the assumptions made (see the discussion in Voll, 2013). Be-

sides the superstructure-based optimization approach, Voll et al. (2012) proposed

a superstructure-free approach for the same setting. For this, design alternatives

were generated using an evolutionary algorithm.

3.2.5 Model Predictive Control of HVAC Systems

Finally, there is the research area of Model Predictive Control (MPC). According

to Risbeck (2018), MPC is a form of control in which a system model is combined
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with forecasts of external parameters and the resulting optimization problem of

finding control decisions for a certain (moving) time horizon is solved online and in

real-time. The optimization is carried out at each considered time step, with the

initial state always being the current, measured state of the system. Hence, only

the first control decision, i.e. the one until the next considered time step, of the

obtained control sequence for the whole time horizon is applied to the system before

the procedure is repeated at the next time step. In the following, a combination

of two special cases for MPC problems is assumed. Firstly, MPC problems with

a cost function, so-called economic MPC, and secondly, MPC problems with both

continuous and discrete actuators are considered (see Risbeck, 2018).

While MPC can be used for different applications, the scope considered here is on

the application to Heating, Ventilation and Air Conditioning (HVAC) systems. A

general overview of MPC applied to HVAC systems is given in Afram and Janabi-

Sharifi (2014). Following the definition of Rawlings et al. (2018), large-scale HVAC

systems consist of two parts, the airside and the waterside subsystem. The airside

subsystem comprises the different building zones with air handling units used for the

temperature control of the building. The waterside subsystem typically comprises

a central plant used to generate the necessary heating and cooling. The overall

control objective is to find temperature setpoints for the different building zones

of the airside subsystem as well as operation schedules for the equipment of the

waterside subsystem. However, often both are considered separately in literature.

As it is more relevant for the context of this thesis, the focus is on the waterside

subsystem. Nevertheless, it is important to mention that works in the context of

MPC aim to provide an optimal control focusing on the online and real-time aspect,

whereas the emphasis in this thesis is on the design aspect and the integration of

estimated load data is rather used in order to evaluate favorable system designs for

the intended use.

In Deng et al. (2013) and Deng et al. (2015), a MPC approach was applied to

the on/off operation of a central electric chiller plant with Thermal Energy Storage

(TES) in order to meet the cooling demand of a university campus while minimizing

energy costs. The authors proposed a MINLP formulation that had to be solved at

each considered time step. However, because of the real-time aspect, linearizations

were used to obtain a MILP instead, which was solved using a standard solver. For

validation purposes, the actual system behavior was substituted by a simulation

based on historical data and the approach was compared to a baseline strategy

obtained by a simple greedy-search-based heuristic. While Deng et al. (2013) con-
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sidered a given fixed TES operation profile with respect to on- and off-peak elec-

tricity prices, Deng et al. (2015) extended the solution approach by determining

the TES operation profile via DP in a preceding step. Similarly, Ma et al. (2009)

applied a two-stage approach using Branch-and-Bound to obtain a real-time control

for a chiller system with thermal storage. In the first stage, they fixed the tank

operation profile, while in the second stage a reformulated NLP was solved using

standard solvers. A slightly different setting was used in Kashima and Boyd (2013),

who also examined a chiller system with TES to provide cooling for building air

conditioning. Instead of the typical system arrangement involving one large TES

connected in parallel to the chiller bank, multiple TESs were connected in series to

individual chillers, while there were also additional support chillers to cover peak

loads. Besides that, the authors did not assume fixed energy prices. Hence, both

future cooling demand as well as energy prices were part of the prediction. With

regard to the considered optimization model, the authors considered a simple rep-

resentation in which only energy balances were taken into account. For this reason,

the model could be natively stated as a much smaller MILP and could be solved

using a customized Branch-and-Bound framework based on LP relaxations.

While the above works assumed the cooling load as a parameter and therefore

decoupled the waterside and airside subsystems, Rawlings et al. (2018) considered

both subsystems simultaneously. For this, the authors used a hierarchical decom-

position approach. For the high-level problem, aggregated models for the air- and

waterside were used. The obtained results were then passed down to the more

detailed low-level models for the water- and airside subproblems. As mentioned

above, airside models are out of the considered scope. However, for a detailed

discussion, see Patel et al. (2016a) and Patel et al. (2016b). With regard to the

waterside low-level problem in general, heating as well as cooling components were

considered. However, due to different component technologies in combination with

different energy streams and energy sources, a simplification to the representation

was made. The representation was broken down to the scheduling of “generic gen-

erators”, representing components of the central plant, and the consideration of

energy balances for “abstract resources”. For an in-depth representation of the wa-

terside model and its characteristics, see also the preliminary works Risbeck et al.

(2015) and Risbeck et al. (2017). With regard to the operational behavior, piece-

wise linear approximations were used to obtain a MILP that could be solved using

standard software for a large-scale example.
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All fluid systems considered in this thesis have two things in common: First, each

system conveys a certain amount of fluid that moves through a network of con-

nected pipes and other components. Second, there is a difference in potential that

causes the fluid to move. This potential is the pressure, which is the driving force

in fluid systems. The relevant physical quantities to describe such systems are

therefore the volume flow rate V̇ and the pressure p. In general, the term fluid

comprises both liquids and gases. However, the content of this work is limited

to incompressible fluids and is explained in particular using water as an example.

Hence, incompressibility is assumed, which is a typical simplification. Furthermore,

it is common for water-based fluid systems to express pressure in terms of head H,

which is an equivalent representation if an incompressible fluid is assumed (Geißler

et al., 2011). Accordingly, the conversion results from using p = H · ρ · g, with

constant density ρ and acceleration due to gravity g.

The general system synthesis task considered here can be stated as follows: Given

a set of available technical components as well as a technical specification of load

collectives, compare all valid systems and choose the one for which the lifetime costs,

i.e. the sum of the investment and the expected energy costs, are minimal. In this

context, a system is called a valid system if it is capable of covering the anticipated

loads. It is assumed that the transition times and therefore also the transition

costs between the load changes are negligible compared to the total costs. Hence,

corresponding models can be stated as quasi stationary. Each load out of the load

collective is called a load scenario. A load scenario consists of two components: a

probability that represents the portion of the system’s operational lifetime in which

this scenario is assumed to occur and the required values for the respective physical

quantities at specific points in the system.

The decision making can be abstracted in two ways. On the one hand, it can be

stated using linear (and nonlinear) constraints as a two-stage MILP (or MINLP). In

this context, the decisions of the optimization problem can be described by first and

second stage variables. In the first stage, it has to be decided whether a component
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is needed and thus bought. In the second stage, a bought component can be

controlled to cover all load scenarios during the system’s operation. On the other

hand, the problem can be abstracted as a source-target-network (G,SG, TG), with

a graph G = (V,E), vertices V and edges E, where SG, TG ∈ V are distinguished

sets of vertices, namely the sources and the sinks of the network. Here, edges

represent the components from the set of available options and vertices represent

certain measurement points. The complete graph consisting of all components that

may be installed and all specified connections plus the sources and sinks contains

every possible system. Therefore, each system can be modeled by a subgraph of

the complete graph in order to present the decisions made for the system.

4.1 Components of Fluid Systems

In this work, three different component types for fluid systems are considered. The

general description as well as the most relevant physical and technical features are

discussed in the following subsections to provide the basis for the representation as

an optimization model.

4.1.1 Pumps

In general, pumps have an opposite relationship between their volume flow rate V̇

and their developed head (or equivalently pressure increase) ∆H. Theoretically,

the maximum head is reached at zero volume flow and the head decreases with

increasing volume flow. Additionally, the power consumption P of pumps increases

with rising volume flow. In contrast to constant-speed pumps, variable-speed pumps

can also be operated at different rotational speeds n. The relationship between a

pump’s volume flow rate, head, power consumption, and rotational speed is given

by the so-called affinity laws:

V̇ ∼ n, ∆H ∼ n2 and P ∼ n3 (4.1)

Accordingly, the specification of any two of these variables determines the remaining

variables (Altherr et al., 2019). The relationship is also manifested in a pump’s

respective characteristic map, see Figure 4.1. Furthermore, the operation of a

pump can be described by quadratic and cubic approximations with regression

coefficients αi and βi to determine the head and power consumption for a given
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flow-speed-tuple (see Ulanicki et al., 2008):

∆H = α1 · V̇ 2 + α2 · V̇ · n + α3 · n2 (4.2)

P = β1 · V̇ 3 + β2 · V̇ 2 · n + β3 · V̇ · n2 + β4 · n (4.3)
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Figure 4.1: Exemplary characteristic map of a variable-speed pump (based on Wilo
SE, 2020b)

Single pumps or whole subsystems of pumps can be connected pairwise either in

series or in parallel. If, on the one hand, pumps are connected in series, the obtained

head results from the sum of the individual heads, while each pump handles the

entire volume flow rate:

V̇series = V̇1 = V̇2 (4.4)

∆Hseries = ∆H1 + ∆H2 (4.5)
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If, on the other hand, pumps are connected in parallel, the total volume flow rate

is the sum of the individual volume flows and each pump generates the same head:

V̇parallel = V̇1 + V̇2 (4.6)

∆Hparallel = ∆H1 = ∆H2 (4.7)

4.1.2 Pipes and Gate Valves

Pipes serve to convey flow between spatially separated components. There is a

pressure loss due to friction along pipes, which depends quadratically on the volume

flow rate through the pipe according to the Darcy-Weisbach equation. If further

components, such as fittings or valves, are implicitly included, the respective losses

have to be taken into account, see Section 2.1.2.

In contrast to pipes, gate valves can be used to open or close paths in the sys-

tem. According to Pöttgen et al. (2016), it is a simple component with two states.

Either the valve is completely open, in which case the flow can pass freely, or it is

completely closed. A closed valve prevents flows between its inlet and outlet and

the adjacent pressures become decoupled.

4.2 Optimization Model for Fluid Systems

The optimization model for fluid systems presented here is inspired by models

available in literature (see e.g. Betz, 2017; Pelz et al., 2012; Pöttgen et al., 2016). It

serves as a starting point for the step-by-step extension according to Figure 1.1. The

model is divided into three parts: objective function, general system constraints,

and component-specific constraints. The general system constraints deal with the

structure and general operational restrictions of the systems as well as their physical

behavior. The consideration of the component behavior is dealt with separately.

Hence, different components can be treated as placeholders or black boxes and their

interactions in the system can be considered independent of their specific internal

behavior. This helps to ensure that new component types can be added without

having to question the general behavior of the system or its structure. For the sake

of a simple and compact representation, nonlinear relationships that have to be

linearized are represented by expressions of the form y = φ(x1, .., xn). Furthermore,

it is important to mention that the symbols used within the model should not be

confused with the symbols used in other contexts, as they may differ in some cases.

For the model, for instance, variables are always denoted by lowercase letters and
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parameters by uppercase letters. Therefore, all sets, variables and parameters used

in the model are presented and described in Table 4.1. If applicable, the dimension

of an entry is specified using the base quantities mass (M), length (L), currency

(C) and time (T ). The entries only applying to the component-specific parts are

separated by dashed lines.

Table 4.1: Variables, sets and parameters of the optimization model for fluid sys-
tems

Symbol Range Dimension Description

bi,j {0, 1} Purchase indicator of edge (i, j) ∈ E
asi,j {0, 1} Activation indicator of edge (i, j) ∈ E in scenario

s ∈ S
psi,j R+

0 ML2T−3 Power consumption caused by edge (i, j) ∈ E in

scenario s ∈ S
v̇si,j R+

0 L3T−1 Volume flow along edge (i, j) ∈ E in scenario s ∈ S
hs
k R+

0 ML−1T−2 Pressure at vertex k ∈ V in scenario s ∈ S
∆hs

i,j R ML−1T−2 Change in pressure caused by edge (i, j) ∈ E in

scenario s ∈ S

ns
i,j [0, 1] Relative rotational speed for pump edge (i, j) ∈

Pu(E) in scenario s ∈ S

S Set of scenarios

E Set of edges

V Set of vertices

SG(V ) ⊆ V Subset of source vertices

TG(V ) ⊆ V Subset of sink vertices

Pu(E) ⊆ E Subset of pump edges

Pi(E) ⊆ E Subset of pipe edges

GV (E) ⊆ E Subset of gate valve edges

Cbuy
i,j R+

0 C Purchase costs of edge (i, j) ∈ E
CkWh R+

0 M−1L−2CT 2 Energy costs per kilowatt hour of electricity

OLT R+
0 T Expected operational lifetime of the system

F s [0, 1] Portion of time for which scenario s ∈ S is expected

to occur

V̇ max R+
0 L3T−1 General upper bound on the volume flow

Hmax R+
0 ML−1T−2 General upper bound on the pressure

V̇
min/max s

in/out k R+
0 L3T−1 Lower and upper bound on the volume flow entering

and leaving vertex k in scenario s

H
min/max s
k R+

0 ML−1T−2 Lower and upper bound on the pressure at vertex

k ∈ V in scenario s ∈ S

Continued on next page
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Table 4.1: Continued from previous page

Symbol Range Dimension Description

V̇
min/max
i,j R+

0 L3T−1 Lower and upper bound on the volume flow for edge

(i, j) ∈ E
N

min/max
i,j [0, 1] Lower and upper bound on the relative rotational

speed for pump edge (i, j) ∈ Pu(E)

Pmax
i,j R+

0 ML2T−3 Upper bound on the power consumption by pump

edge (i, j) ∈ Pu(E)

∆Hi,j(∗) R ML−1T−2 Representation of the nonlinear relationship for the

change in pressure caused by edge (i, j) ∈ E
Pi,j(∗) R+

0 ML2T−3 Representation of the nonlinear relationship for the

power consumption caused by edge (i, j) ∈ Pu(E)

4.2.1 Objective Function

The objective of the optimization model is to minimize the system’s lifetime costs,

see Objective (4.8). Here, the lifetime costs are assumed to be the sum of the invest-

ment for all components present in the system (left-hand term) and the expected

energy costs over the system’s operational lifetime (right-hand term). The expected

energy costs arise from the weighted sum of the power consumption of each indi-

vidual component over all load scenarios multiplied by the system’s operational

lifetime and a cost parameter accounting for the costs per unit of the consumed

energy. The cost parameter may be dependent on the actual component due to

possibly different sources of energy used to power different components. However,

in the presented fluid system model, the only considered energy source is electricity

and the cost parameter is therefore the same for all components. Furthermore, the

objective function can easily be replaced by other objectives. Examples are the

exclusive consideration of the investment, the energy costs, or a detailed consider-

ation of the cost flows as shown in Meck et al. (2020), where an annuity-present

value factor is used for discounting the energy costs over the considered lifetime of

the system.

min
∑

(i,j)∈E

(
Cbuyi,j · bi,j

)
+ CkWh ·OLT ·

∑
s∈S

(
F s ·

( ∑
(i,j)∈E

psi,j

))
(4.8)
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4.2.2 General System Constraints

Constraints (4.9) model the general system structure as well as general system

restrictions. Intentionally no complete interconnection of all components is consid-

ered by default, but possible connections must first be explicitly stated by defining

the sets of edges E and vertices V . In addition, it is intended that the binary

purchase indicators bi,j are fixed for predefined parts of the system.

The structure of the overall system is defined such that only those component

edges that are present in the overall system (bi,j = 1) can be used in the indi-

vidual load scenarios, see Constraint (4.9a). The volume flow along a component

edge must be reasonable and it vanishes if the edge is not active (asi,j = 0) in

a particular load scenario, see Constraint (4.9b). This is ensured by using the

well-known “big-M” formulation, which can be used to express “if-then-else” con-

ditions (Vielma, 2015). Here, the binary activation indicator asi,j is used for case

differentiation and the upper bound on the system’s volume flow V̇ max represents

a sufficiently large constant. In the following, this method is applied repeatedly

using the different bounds of the associated variables as big-Ms. This ensures that

big-M is as large as necessary to avoid unintended restrictions for the model but

not excessively large, which could lead to numerical instability. Similarly to the

volume flow, the pressure must be reasonable at each vertex but does not necessar-

ily vanish with regard to the operational status of components since it is defined

for vertices instead of edges, see Constraint (4.9c). According to the explanations

given in Section 2.1.1, the volume flow has to be conserved at all vertices with the

exception of source and sink vertices, see Constraint (4.9d). Thus, it is required

that the sum of all volume flows entering a vertex equals the sum of volume flows

leaving that vertex in each load scenario. In general, it is possible that there are

exceptions other than sources and sinks, such as storage vertices that are able to

store a certain amount of fluid. For these cases, it might be necessary to introduce

a variable ∆v̇sk representing the difference in incoming and outgoing volume flows

and modify Constraint (4.9d) accordingly. However, for the setting considered here,

it is not necessary. Therefore, the clearer representation is preferred instead. If an

edge is active, the pressure propagates along this edge, see Constraints (4.9e) and

(4.9f). Hence, the pressures of two vertices connected by an active edge have to be

coupled such that the pressure at the end vertex equals the pressure at the start

vertex plus the change in pressure caused by the active edge, according to the ex-

planations given in Section 2.1.2. However, if the edge is not active, the pressures

at the start and end vertex are decoupled. This is ensured by using a variation of
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the big-M formulation. With this, the constraint can be turned “on” or “off” based

on the value of the binary activation indicator. If, on the one hand, the connecting

edge is active, both inequalities together yield equality. If, on the other hand, the

edge is not active, the inequalities are switched off and thus no longer have a re-

strictive effect. This is also frequently used in the following for similar contexts, but

it is not explicitly mentioned again. Constraints (4.9g) to (4.9i) enable the setting

of target ranges for the incoming and outgoing volume flow and the pressure at

certain points in the system or can be used to limit their values. By equating the

respective lower and upper bound it is also possible to define target values instead

of ranges. This is primarily used to specify the supplied or required volume flow and

pressure for source and sink vertices. However, the constraints are not limited to

this application and can be used to implement other system restrictions regarding

minimum and maximum values of the volume flow and pressure at certain points in

the system. If they are not explicitly specified for some of the vertices, the general

bounds according to Constraints (4.9b) and (4.9c) hold instead.

asi,j ≤ bi,j ∀ s ∈ S, (i, j) ∈ E (4.9a)

v̇si,j ≤ V̇ max · asi,j ∀ s ∈ S, (i, j) ∈ E (4.9b)

hsk ≤ Hmax ∀ s ∈ S, k ∈ V (4.9c)∑
(i,k)∈E

v̇si,k −
∑

(k,j)∈E

v̇sk,j = 0 ∀ s ∈ S, k ∈ V \(SG(V ) ∪ TG(V )) (4.9d)

hsj − hsi ≤ ∆hsi,j +Hmax · (1− asi,j) ∀ s ∈ S, (i, j) ∈ E (4.9e)

hsj − hsi ≥ ∆hsi,j −Hmax · (1− asi,j) ∀ s ∈ S, (i, j) ∈ E (4.9f)

V̇ min s
out k ≤

∑
(k,j)∈E

v̇sk,j ≤ V̇ max s
out k ∀ s ∈ S, k ∈ V (4.9g)

V̇ min s
in k ≤

∑
(i,k)∈E

v̇si,k ≤ V̇ max s
in k ∀ s ∈ S, k ∈ V (4.9h)

Hmin s
k ≤ hsk ≤ Hmax s

k ∀ s ∈ S, k ∈ V (4.9i)

4.2.3 Component-Specific Constraints

Three different component types are considered, which are described by Constraints

(4.10) to (4.12): pumps, pipes, and gate valves. The description is done separately

for each component to ensure the extensibility of the model. In order to obtain

a MILP, the nonlinear relationships necessary for describing the component char-

acteristics are modeled as piecewise linear approximations using the techniques
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presented in Section 2.2.3. This is indicated by using the component-specific ex-

pressions ∆Hi,j(∗) and Pi,j(∗). For this, associated variables have to be a convex

combination of the respective grid points if a component is active in a certain load

scenario. However, for reasons of a universal and compact presentation, this is not

explicitly shown here but the implementation is straightforward.

Pumps

Constraint (4.10a) ensures that possible restrictions on the minimum and maximum

volume flow for a specific pump are met. Similarly, the relative rotational speed

of a pump is limited by its minimum and maximum values or zero if the pump is

not active, see Constraint (4.10b). This formulation deals with the more general

case of variable-speed pumps. However, it is also valid for constant-speed pumps

by setting the upper and lower bounds of the relative rotational speed of this pump

to one. If a pump is active, the pressure increase caused by the pump depends

on the volume flow through the pump and its rotational speed in its respective

physical domain according to the nonlinear relationship discussed in Section 4.1.1,

see Constraint (4.10c) and (4.10d). If a pump is not active, an arbitrary value in

its physical domain is selected instead. However, the pressure increase is forced to

vanish by Constraint (4.10e). As with the pressure increase, the power consumption

of an active pump depends on the volume flow and the rotational speed, taking into

account the physical domain of the pump, see Constraints (4.10f) and (4.10g). If

a pump is not active in a certain load scenario, the power consumption by this

pump is forced to vanish, see Constraint (4.10h). In combination, the presented

constraints ensure that pumps are only operating within the boundaries of their

respective characteristic map.

V̇ min
i,j · asi,j ≤ v̇si,j ≤ V̇ max

i,j · asi,j ∀s ∈ S, (i, j) ∈ Pu(E) (4.10a)

Nmin
i,j · asi,j ≤ nsi,j ≤ Nmax

i,j · asi,j ∀s ∈ S, (i, j) ∈ Pu(E) (4.10b)

∆hsi,j ≤ ∆Hi,j
(
v̇si,j , n

s
i,j

)
+ ∆Hmax

i,j · (1− asi,j) ∀s ∈ S, (i, j) ∈ Pu(E) (4.10c)

∆hsi,j ≥ ∆Hi,j
(
v̇si,j , n

s
i,j

)
−∆Hmax

i,j · (1− asi,j) ∀s ∈ S, (i, j) ∈ Pu(E) (4.10d)

0 ≤ ∆hsi,j ≤ ∆Hmax
i,j · asi,j ∀s ∈ S, (i, j) ∈ Pu(E) (4.10e)

psi,j ≤ Pi,j
(
v̇si,j , n

s
i,j

)
+ Pmaxi,j · (1− asi,j) ∀s ∈ S, (i, j) ∈ Pu(E) (4.10f)

psi,j ≥ Pi,j
(
v̇si,j , n

s
i,j

)
− Pmaxi,j · (1− asi,j) ∀s ∈ S, (i, j) ∈ Pu(E) (4.10g)

psi,j ≤ Pmaxi,j · asi,j ∀s ∈ S, (i, j) ∈ Pu(E) (4.10h)
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Pipes

A pipe cannot be deactivated if it is present in the system, see Constraint (4.11a).

As with pumps, it is possible that there are restrictions on the minimum and

maximum volume flow for a specific pipe, see Constraint (4.11b). The pressure

decrease caused by the pipe is a function of the volume flow through that pipe with

a priori known characteristics, see Constraint (4.11c). For short pipe lengths, the

pressure change can be neglected if necessary. Furthermore, a pipe is not a powered

component and thus has no power consumption, see Constraint (4.11d).

bi,j = asi,j ∀s ∈ S, (i, j) ∈ Pi(E) (4.11a)

V̇ min
i,j · asi,j ≤ v̇si,j ≤ V̇ max

i,j · asi,j ∀s ∈ S, (i, j) ∈ Pi(E) (4.11b)

∆hsi,j = ∆Hi,j
(
v̇si,j
)

∀s ∈ S, (i, j) ∈ Pi(E) (4.11c)

psi,j = 0 ∀s ∈ S, (i, j) ∈ Pi(E) (4.11d)

Gate Valves

A gate valve being present in the system (bi,j = 1) can be closed (asi,j = 0) during

operation to prevent flows and to decouple the pressures at its inlet and outlet.

Possible restrictions on the minimum and maximum volume flow for a specific

component can be enforced by Constraint (4.12a). In contrast to pipes, the pressure

change along this component is neglected, see Constraint (4.12b). It is also not

considered to be a powered component and therefore has a power consumption of

zero, see Constraint (4.12c).

V̇ min
i,j · asi,j ≤ v̇si,j ≤ V̇ max

i,j · asi,j ∀s ∈ S, (i, j) ∈ GV (E) (4.12a)

∆hsi,j = 0 ∀s ∈ S, (i, j) ∈ GV (E) (4.12b)

psi,j = 0 ∀s ∈ S, (i, j) ∈ GV (E) (4.12c)
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5 Algorithmics for the System Design of

Fluid Systems

While the optimization model for fluid systems was presented in Chapter 4, simply

generating a corresponding MILP instance and trying to solve it using a standard

MILP solver limits the applicability in practice. Since instances of real-world appli-

cations oftentimes tend to grow quickly, they often cannot be solved in reasonable

time. An example are the instances considered later in this chapter. Standard

MILP solvers fail to solve these instances in reasonable time because of the inabil-

ity to provide strong dual bounds. Therefore, a contribution to the algorithmic

synthesis of fluid systems on a larger scale, i.e. an algorithmic approach for solv-

ing practice-oriented instances, is presented in this chapter. The goal is to generate

“good” systems in reasonable time. Here, “good” refers to solutions with a desirable

value of the objective function. The focus is on the time aspect as the runtime is

essential for the practical applicability. In this context, a domain-specific approach

is used that exploits the special characteristics of technical systems by primal and

dual heuristics. In order to ensure a certain practical relevance, the application

example of so-called booster stations is examined. According to the principles of

Algorithm Engineering, as explained in Sanders (2009), the orientation towards

practice-oriented problems is an important feature since applications play an im-

portant role for the development of algorithms and serve as realistic inputs for

meaningful experiments. This is especially the case if not all future applications for

the algorithms are known in advance and hence providing algorithms validated on

related applications with realistic inputs is an important factor (Sanders, 2009).

The basic idea for the presented approach is as follows: Use both the MILP and

the graph representation of a problem simultaneously and benefit from both. On the

primal side, a local search algorithm is used to obtain good primal solutions. In this

thesis, the focus is on Simulated Annealing, but other local search algorithms, e.g.

Genetic Algorithms or Tabu Search, are possible, too. In the context of Simulated

Annealing, the graph representation is used to define neighborhoods and the MILP
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representation is used to evaluate the quality of the generated systems. On the dual

side, a heuristic based on domain-specific and technical knowledge is used to relax

the original problem. This allows to identify strong dual bounds. Finally, both

heuristics are combined in a Branch-and-Bound framework to further strengthen

the bounds and close the optimality gap between the primal and dual solutions.

Thus, it is possible to obtain provably optimal solutions for the system design.

5.1 Application to Booster Stations

A booster station, also referred to as pressure booster system, is a network of

either one type or different types of one or more connected pumps. A main field

of application is the supply of whole buildings or higher floors, especially in high-

rise buildings, with drinking water if the supply pressure provided by the water

company is not high enough to meet the demand at all times. Therefore, booster

stations are typically designed for maximum flow taking into account maximum

pressure increase (European Commission, 2018). In general, a distinction between

three different concepts can be made. These concepts are booster stations with

cascade control, with continuously variable speed control of one pump, and with

continuously variable speed control of all pumps. According to a report prepared

for the European Commission (2018), the use of variable-speed drives is preferable

because loads can vary considerably over time and the efficiency of a booster station

massively depends on the ability to adapt to partial loads. In this thesis, the focus

is therefore on the third concept, booster stations with continuously variable speed

control of all pumps. Furthermore, it is assumed that the booster stations under

consideration are directly connected to the water supply. If necessary, so-called

normal zones are implemented, which can be served by the supply pressure itself

and are therefore not connected to a booster station. This can be used to avoid

overpressure for lower floors. For all other floors, overpressure can be avoided by

installing pressure reducing valves if necessary.

The overall system consists of different types of components, such as pumps,

pipes, and valves. In the following, the focus is on the pumps of the booster station

and the other components are considered implicitly. Hence, the representation is

simplified to a switchable interconnection of pumps that form a connected network

with one source and one sink. The relevant physical variables are: the volume flow

through the pumps, the pressure increase (or equivalently the head) generated by

the pumps, their power consumption, and their rotational speed.
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Since there was no suitable library of test instances for the considered area of

booster station optimization, new test instances had to be designed in order to be

able to validate the developed approach presented later in this chapter. To obtain

different test instances, certain characteristics were varied and combined: the height

of the considered building, the intended use of the building with the corresponding

load profile, the hot water generation, and the available pumps. The names of the

instances can be derived from the abbreviations for the respective characteristics.

Building height: There are two different fictional buildings. Both are high-rise

buildings but vary in the number of floors. The first building (B15) is 15 floors

high and the second building (B10) is 10 floors high. This means that different

pressure increases and maximum volume flows are required as the building’s height

effects the pressure losses and demanded volume flows.

Intended use: The buildings are either used as a hypothetical hospital (H), a

residential (R) or an office building (O). All usage types differ regarding their

furnishing and consumption behavior. Hence, different maximum volume flows,

pressure losses and load profiles occur. Depending on the usage, four or five load

scenarios are distinguished.

Hot water generation: The generation of hot water is either centralized (C) or

decentralized (D). This results in different pressure losses and required volume

flows.

Available pumps: For each test instance, one of two disjoint sets of pumps with

five variable-speed pumps each is available. All of them are based on the Wilo-

Economy MHIE1 model series, see Figure 5.1. The first set includes the pump

types 203 to 403 of the model series (1) and the second set the pump types 404 to

1602 (2) with different prices and operational characteristics.

Given that the maximum volume flows and piping of the surrounding system are

known a priori, the required pressure increase to be provided by the booster station

can be determined by preprocessing the pressure losses of the surrounding system

and assuming negligible pressure losses for the booster station itself. Table 5.1

1https://wilo.com/ie/en/Products-and-expertise/Series-Finder/Wilo-Economy-
MHIE 110.html (accessed May 07, 2021)
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Figure 5.1: Schematic representation of the characteristic maps of the available
pumps (based on Wilo SE, 2020a)

shows the peak loads for the different test instances in terms of the maximum

volume flow V̇ max and required head ∆H. The head can also be expressed in

terms of required pressure increase ∆p by using the conversion ∆p = ∆H · ρ · g,

with constant density ρ and acceleration due to gravity g. Furthermore, there are

always two test instances for each of the 12 entries since two different pump kits

are used, i.e. 24 test instances in total.

Table 5.1: Summary of the maximum volume flows V̇ max and required heads ∆H
to be provided by the booster station for the considered test instances

Test instance V̇ max [m3/h] ∆H [m]

B10 H C 1/2 9.68 23.8
B10 H D 1/2 14.53 31.8
B10 O C 1/2 4.86 19.5
B10 O D 1/2 6.48 27.5
B10 R C 1/2 6.90 24.1
B10 R D 1/2 9.85 32.1
B15 H C 1/2 8.87 40.4
B15 H D 1/2 10.49 48.4
B15 O C 1/2 5.37 33.4
B15 O D 1/2 6.45 41.4
B15 R C 1/2 6.70 37.0
B15 R D 1/2 7.92 45.0
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For the partial loads, which depend on the considered building usage, Table 5.2

shows the different load scenarios with the relative time share F of the operational

lifetime for which these scenarios are expected to occur and the associated relative

volume flows V̇ /V̇ max. Furthermore, the lifetime of the system is assumed to be

ten years with mean energy costs of e0.30 per kWh for all test instances.

Table 5.2: Summary of the time shares F and relative volume flows V̇ /V̇ max of the
different load scenarios depending on the building usage

Building Scenario F V̇ /V̇ max

Hospital

1 0.08 1.00
2 0.25 0.50
3 0.25 0.25
4 0.17 0.10
5 0.25 0.05

Office

1 0.03 1.00
2 0.12 0.40
3 0.30 0.30
4 0.55 0.00

Residential

1 0.17 1.00
2 0.17 0.70
3 0.25 0.40
4 0.21 0.35
5 0.20 0.15

5.2 Primal Heuristic: Simulated Annealing

The implemented Simulated Annealing algorithm follows Boussäıd et al. (2013)

with some modifications: Previous calculations are saved and a penalty term for

non-valid system topologies is implemented. The algorithm is used to find good

topologies for the first stage of the two-stage optimization problem described in

Chapter 4. After generating a topology, the binary first stage variables are fixed in

the MILP. Afterwards, the second stage is solved optimally for the chosen topology

with respect to the different load scenarios using a standard solver.

For the topology decision, only (two-terminal) series-parallel networks are con-

sidered. These networks were first studied by MacMahon (1890) in the context

of electrical networks, which show structural similarities with the fluid networks

studied here. Therefore, they are briefly introduced in the following before continu-

ing with the description of Simulated Annealing. Although series-parallel networks
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represent only a subset of all possible network structures, they are of great interest

due to their simplicity (Riordan and Shannon, 1942). This simplicity is exploited

to ensure that only technically sound systems are generated. For example, it is en-

sured that each technical component has at least one successor and one predecessor

in the network. Following the definition provided by Booth and Tarjan (1993), a

directed (multi-)graph G = (V,E) with vertices V and edges E, where each di-

rected edge e ∈ E has a source s(e) ∈ V and a sink t(e) ∈ V , is (two-terminal)

series-parallel with source s and sink t if it can be generated using the following

three construction rules:

1. Any base graph G = ({s, t}, {e}) is series-parallel.

2. The graph GP resulting from the parallel connection of two series-parallel

graphs G1 and G2 by identifying s1 with s2 as source and t1 with t2 as sink

is series-parallel.

3. The graph GS resulting from the serial connection of two series-parallel graphs

G1 and G2 by identifying t1 with s2 is series-parallel, with source s1 and

sink t2.

To illustrate the concept, all series-parallel networks for two to four elements are

shown in Table 5.3. For only one element, the resulting series-parallel network is

the base graph itself. The networks are divided into so-called essentially series and

essentially parallel networks. In this context, Riordan and Shannon (1942) define

a network as essentially series or essentially parallel if it is created by the serial or

parallel connection of two series-parallel networks. Using this classification, there is

always the same number of essentially series and essentially parallel networks and for

each network with a given number of elements of one class there is a corresponding

network of the other class with the same number of elements that can be created by

swapping the words series and parallel in the respective description. Two networks

are considered to be equivalent if these can be obtained by the series or parallel

connection of the same two networks (Riordan and Shannon, 1942).

Continuing the description of the implemented Simulated Annealing algorithm,

the problem-specific neighborhood function consists of four single neighborhood

operators, similar to those used in Altherr (2016). Exemplary illustrations of the

respective neighborhoods are shown in Figure 5.2. These are the replace (NReplace),

the swap (NSwap), the add (NAdd), and the delete neighborhood (NDelete):

N = NReplace ∪NSwap ∪NAdd ∪NDelete
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Table 5.3: Enumeration of the structures of all series-parallel networks with two to
four elements (based on Riordan and Shannon, 1942)

#Elements Essentially series Essentially parallel #Networks

2 2

3 4

4 10

Replace neighborhood: A component pi, in the case of booster stations a pump,

of the set of bought components—a subset of the set of available components—is

selected randomly and replaced by a component pj from the set of unbought com-

ponents. The previous predecessors and successors of pi are the new predecessors

and successors of pj . This neighborhood can only be created if the network consists

of at least one component and there is at least one unbought component.

Swap neighborhood: Two different components pi and pj of the set of bought

components are selected randomly. Components pi and pj swap positions in the

network. The previous predecessors and successors of pi are the new predecessors

and successors of pj and vice versa. This neighborhood can only be created if the

network of bought components consists of at least two components.

Add neighborhood: A component pi of the set of unbought components is selected

randomly and it is decided whether pi is connected in series or in parallel. If pi

is to be connected in series, a component out of the set of bought components, a

source or a sink is selected. If a source or a sink is selected, pi is connected in series

behind the source or before the sink. If a component pj is selected, pi is connected

before or behind pj . The source, the sink or pj becomes the new predecessor
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(f) NDelete, 2: Pump 3 is deleted with modified connections of predecessors and successors

Figure 5.2: Illustration of neighborhoods for the Simulated Annealing algorithm
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or the new successor of pi. Furthermore, pi adopts the previous successors or

predecessors. If pi is to be connected in parallel, a component pj of the set of

bought components is selected. All predecessors and successors of pj become the

predecessors and successors of pi as well. This neighborhood can only be created

if the set of unbought components consists of at least one component and in the

case of a parallel connection if the set of bought components consists of at least one

component.

Delete neighborhood: A component pi of the set of bought components is selected

randomly and is deleted from the network. If a predecessor pi,p or a successor pi,s

of pi only has pi as its successor or predecessor, a successor or predecessor of pi is

selected randomly. It then becomes the new successor or predecessor of pi,p or pi,s.

This is necessary to ensure flow conservation. Otherwise, the connection is deleted

without substitution. This neighborhood can only be created if there is at least one

component in the set of bought components.

To generate a starting solution, a simple heuristic based on NAdd is used to obtain

valid solutions. First, a minimal network is considered. If this network is already

a valid solution, it is accepted as the starting solution. Otherwise, components

are added until a valid topology is generated. If the set of unbought components

is empty and the solution is still not valid, the whole network is deleted and the

procedure starts again with a minimal network until a valid solution is found.

For the considered problem, non-valid solutions have no associated costs. If

the costs were set to +∞, the algorithm would never accept them as the current

solution. In this case, it would not be possible to reach every solution in the

solution space with the defined neighborhood function. To avoid this, a penalty

term is introduced assigning costs to non-valid solutions. If a solution is non-valid,

double the costs of the starting solution are used instead. This approach has two

advantages: First, the costs are low enough that non-valid solutions can be used as

the current solution in the algorithm and second, high enough that they should be

greater than the costs of all valid solutions.

The critical steps for the runtime of the algorithm are the calculations of the

optimal operation performed by the MILP solver. To enhance the runtime of the

algorithm, a list is created that holds the last calculated solutions. Each time a

calculation is needed, the list is checked first whether this topology has already
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been calculated. If not, the solution is added to the list. If the list reaches the

defined maximum size, the oldest entry is deleted to store new solutions.

Finally, a cooling schedule has to be determined. For this, an exponential cooling

function T (t) = T0 · αt is used, which is a common approach in related literature

(Boussäıd et al., 2013). Here, T0 is the starting temperature and t indicates the

number of temperature reductions performed. The parameter α is a value between

0 and 1. It influences the slope of the cooling function. A threshold value Tstop acts

as a termination criterion. As soon as the temperature falls below this threshold

value, the algorithm terminates. Furthermore, the number of iterations per tem-

perature level has to be chosen in such a way that the search space is explored

sufficiently. These parameters have to be determined experimentally depending on

the specific problem. In experiments, a value of α = 0.9 showed good results in

terms of ensuring a balance between runtime and exploration of the search space.

The start temperature T0 was set to 10 000. For the considered instances, espe-

cially with regard to the dimensions of the occurring costs, this proved particularly

suitable to ensure both sufficient diversification and intensification. With regard

to the dimension of expected costs, Tstop was set to 10. Hence, at the end of the

algorithm, cost improvements were almost exclusively accepted in order to ensure

intensification. To establish a balance at each temperature level, 100 iterations

were carried out per temperature level. This proved to be favorable to explore the

search space. At lower values the search space was reduced too much and at higher

values the algorithm started to cycle excessively.

5.3 Dual Heuristic: Domain-Specific Relaxation

A simple LP-relaxation, i.e. dropping the integrality constraints, is not suitable to

obtain strong lower bounds for the considered instances. For that reason, a special

approach was developed that uses domain-specific knowledge in order to provide

strong dual bounds, see Algorithm 1.

In the first step, the original problem is relaxed by disabling the coupling con-

straints that, in the original problem, connect the buy- (bi,j) and the activation-

variables (asi,j) of the components for all load scenarios and serve to ensure that

only bought components can be used:

asi,j ≤ bi,j ∀ s ∈ S, (i, j) ∈ E (5.1)
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Algorithm 1 Dual heuristic

1: Let P0 be the original problem
2: Let f be the objective function
3: Disable coupling constraints for P0

4: Split P0 into P1, ..., P|S| (one for each load scenario s)
5: Lower Bound LB ← 0
6: Energy-Costs EC ← 0
7: Investment I ← 0
8: for k ∈ {1...|S|} do
9: Replace buy- with activation-variables for Pk

10: Generate topology problem Tk for Pk

11: Generate operation problem Ck for Pk

12: EC ← EC + f(Tk)
13: if I < f(Ck) then
14: I ← f(Ck)
15: end if
16: end for
17: LB ← EC + I

In the case of booster stations, as considered here, the term “components” corre-

sponds to pumps. After disabling the coupling constraints, the problem is split into

|S|-many subproblems, one for each considered load scenario. The buy-variables

in all subproblems are substituted by the corresponding activation-variables. Sub-

sequently, each of the |S| subproblems is split again into two sub-subproblems.

The respective problems represent the optimization tasks of minimizing the energy

costs (operation problem) and minimizing the investment (topology problem) for

one single load scenario. The new objective functions for the sub-subproblems are:

min CkWh ·OLT · F s ·
∑

(i,j)∈E

psi,j ∀ s ∈ S (5.2)

min
∑

(i,j)∈E

(
Cbuyi,j · a

s
i,j

)
∀ s ∈ S (5.3)

For each of these 2 · |S| problems, the optimal solution is determined by a MILP

solver. Using the solutions of these problems, a lower bound for the original problem

can be obtained. This lower bound is composed of the sum of the energy costs and

the maximum of the individual investments for all load scenarios:

z = CkWh ·OLT ·
∑
s∈S

(
F s ·

∑
(i,j)∈E

psi,j

)
+ max

s∈S

( ∑
(i,j)∈E

(
Cbuyi,j · a

s
i,j

))
(5.4)
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This is obviously a valid way to obtain lower bounds: The energy costs for a load

scenario cannot be lower than the energy costs that arise for the decoupled case

because this is also the configuration with minimal costs for the original problem

in the given load scenario. Therefore, the sum of these energy costs cannot be

higher than the total energy costs for the original problem. Given the fact that

the optimal system for the original problem must be able to operate in each load

scenario, the investment cannot be lower than the maximum of the individually

computed investments for each decoupled load scenario because there is no cheaper

configuration to cover the “most challenging” load scenario.

5.4 Closing the Gap: Branch-and-Bound

Based on the basic Branch-and-Bound method, as described in Clausen (1999),

a framework using domain-specific knowledge to obtain optimal solutions for the

considered minimization problem is presented, see Algorithm 2. Branch-and-Bound

belongs to the class of exact solution methods. It is a widespread method for

solving large, combinatorial optimization problems. The complete enumeration

of such problems is impractical because the number of possible solutions grows

exponentially with the problem size. However, the advantage of the Branch-and-

Bound method is that parts of the solution space can be pruned. For this, a

dynamically generated search tree is used.

Initially, this search tree only consists of one node, the root node, which represents

the whole search space of the original problem. Typically, a feasible solution for the

root problem is calculated in advance and becomes the initial best known solution,

where the best known solution value is a synonym for the global upper bound. If

no feasible solution is calculated in advance, the best known solution value is set to

+∞ when considering a minimization problem. Here, the solution of the Simulated

Annealing implementation described in Section 5.2 is used for this purpose.

In each iteration of the Branch-and-Bound method, an unexplored (active) node,

representing a specific subproblem, is processed. In the presented implementation,

an active node implies that one or more so-called conflicting components exist in

the solution of the relaxation for this subproblem. These are components that

are used for operation in the relaxation, but whose purchase costs are not part

of the associated investment. An iteration contains three steps: selecting a node,

dividing the solution space of this node into two smaller subspaces (branching) and

calculating the bounds for the arising subproblems.
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Algorithm 2 Branch-and-Bound framework

1: Calculate global Upper Bound UB
2: Let n0 be the original problem
3: Calculate Lower Bound LB(n0) of n0
4: Let RELAX(n0) be the optimal solution for the relaxation of n0
5: Active Nodes AN ← AN ∪ {n0}
6: while AN 6= ∅ do
7: Take ni ∈ AN with LB(ni) ≤ LB(nj) ∀nj ∈ AN
8: Take a component pp from ni that is used but not bought
9: Split ni into two child nodes cn0, cn1

10: Fix buy-variable of pp to 0 for cn0 and to 1 for cn1

11: for cnk ∈ {cn0, cn1} do
12: AN ← AN ∪ {cnk}
13: Calculate LB(cnk)
14: if LB(cnk) ≥ UB then
15: AN ← AN\{cnk}
16: else if RELAX(cnk) is a valid solution for n0 then
17: AN ← AN\{cnk}
18: UB ← LB(cnk)
19: end if
20: end for
21: AN ← AN\{ni}
22: end while
23: Optimal Solution OS ← UB

The selection of a node follows a certain selection strategy. Here, the best-first-

search selection strategy is used, where always the node out of the set of active

nodes with the lowest bound is selected.

After the selection, branching is performed and two child nodes are generated

by introducing additional constraints in order to divide the solution space. The

branching rule for the active nodes is defined as follows: A component out of the

set of conflicting components of this node is selected randomly. For one of the sub-

problems, an additional constraint is added that sets the binary buy-variable of the

selected conflicting component to zero, i.e. the component is not part of the system.

For the other subproblem, an additional constraint that sets the buy-variable to

one, i.e. the component is part of the system, is added instead. Hence, the search

space is split into two smaller disjoint search spaces. If a buy-variable is set to zero,

the selected conflicting component is not bought and therefore cannot be used for

operation. As a result, any solution with an activation-variable associated with this

component not equal to zero would be inherently infeasible for the original problem,

see the relaxed Constraint (5.1). Therefore, the activation-variables associated with
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these components in the respective subproblems are fixed to zero. In the opposite

case, the activation-variables are not affected by such a restriction.

Afterwards, the bounds of the newly generated nodes are calculated immediately.

This is called the eager evaluation strategy, whereas for the so-called lazy strategy,

the bounds of the child nodes are not calculated until the respective node is selected

and the node selection would be based on the bound of the respective parent node.

In the implementation presented here, the bound of a node is determined according

to Equation (5.4) by solving the relaxation for the given subproblem. If the solution

of the relaxation of a node is a valid solution for the original problem, its value is

compared to the currently best known solution value and the better solution is

kept. In this context, a solution of the relaxation is valid for the original problem

if and only if all components used for operation are also bought, i.e. there are no

conflicting components. If the bound is worse than the best known solution value,

no further exploration of this subtree is needed because the subproblem contains

no better solutions for the original problem than the currently best known solution.

The same applies if there are no feasible solutions for the subproblem. Otherwise,

if none of these three cases occur, the node becomes part of the set of active nodes

since the corresponding subproblem might still contain better solutions than the

currently best known solution.

The search ends if there are no active nodes left. The currently best known

solution at this point is the provably optimal solution to the original problem since

there are no subproblems that could contain a better solution and the union of their

disjoint search spaces equals the search space of the original problem.

An exemplary illustration for branching in the case of the application to booster

stations is given in Figure 5.3. The procedure starts from the root node N0 with

initial best known solution zbest resulting from using the objective value of the

solution produced by Simulated Annealing zSA. Branching is performed on the buy-

variables of the conflicting pumps as described above, here represented by bPx. The

node indices indicate the sequence of the node creation. Furthermore, the example

includes all three termination criteria for a node: the solution of the relaxation is

also a valid solution for the original problem (N3 & N7), the subproblem is infeasible

(N4 & N8) or the bound obtained by the relaxation zx is worse than the currently

best known solution (N5).
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Figure 5.3: Illustration of the implemented Branch-and-Bound framework

5.5 Computational Study

In order to validate the developed approach, a computational study using the 24 test

instances introduced in Section 5.1 was conducted. All calculations were performed

on a MacBook Pro Early 2015 with a 2.7 GHz Intel Core i5 and 8 GB 1867 MHz

DDR3 memory, using CPLEX Optimization Studio 12.6 as MILP solver.

5.5.1 Examination of the Solution Quality

In this section, the quality of the solutions found by the implemented Simulated

Annealing algorithm and the domain-specific dual heuristic is discussed.

Simulated Annealing: An overview of the obtained results in terms of solution

quality for the presented implementation of Simulated Annealing in all test in-

stances is shown in Table 5.4. The best solutions found by Simulated Annealing

are represented by zSA. First, these solutions are compared to the corresponding

lower (dual) bounds z calculated using the proposed dual heuristic. The relative

gap between the solution of Simulated Annealing and the dual bound gapz, which is

typically used to evaluate heuristically obtained solutions in practice since optimal

solutions are usually not known, is defined as (zSA− z)/z. The mean value of gapz
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for all test instances was 9.27% with a standard deviation of 6.37%. However, since

the actual optimal solutions, denoted by z∗, are known for the test instances under

consideration, the solutions found by Simulated Annealing are then compared to the

optimal solutions obtained via Branch-and-Bound. The relative gap between the

best solution found by Simulated Annealing and the actual optimal solution gapz∗

is defined as (zSA–z∗)/z∗. In 14 out of 24 cases, the optimal solution was found

by the implemented Simulated Annealing algorithm. The mean value of gapz∗ was

0.69% with a standard deviation of 1.08%. However, if the optimal solution was not

found, the mean value of gapz∗ was still only 1.65% with a standard deviation of

1.1%. These results show that the implemented Simulated Annealing algorithm is

able to find favorable systems with low lifetime costs for the considered application.

A more detailed examination with regard to the topology of these systems is given

in Section 5.5.2.

Table 5.4: Overview of the results for the implemented Simulated Annealing algo-
rithm with regard to the dual bounds and optimal solutions

Test instance zSA [e] z [e] gapz [%] z∗ [e] gapz∗ [%]

B10 H C 1 13 315.10 12 659.00 5.18 13 070.80 1.87
B10 H C 2 13 946.80 11 168.80 24.87 13 946.80 0.00
B10 H D 1 25 068.10 23 912.40 4.83 24 607.60 1.87
B10 H D 2 23 704.70 22 127.50 7.13 23 287.70 1.79
B10 O C 1 4 370.36 4 024.15 8.60 4 370.36 0.00
B10 O C 2 4 712.02 4 224.70 11.54 4 712.02 0.00
B10 O D 1 6 007.54 5 962.32 0.76 6 007.54 0.00
B10 O D 2 6 492.46 6 026.12 7.74 6 492.46 0.00
B10 R C 1 12 711.90 12 334.20 3.06 12 711.90 0.00
B10 R C 2 13 968.60 12 157.00 14.90 13 968.60 0.00
B10 R D 1 24 601.00 24 004.30 2.49 24 518.10 0.34
B10 R D 2 23 516.20 22 215.40 5.86 23 516.20 0.00
B15 H C 1 21 380.80 18 942.90 12.87 20 974.60 1.94
B15 H C 2 21 649.00 17 637.20 22.75 21 041.10 2.89
B15 H D 1 27 936.80 26 651.30 4.82 27 210.70 2.67
B15 H D 2 28 186.40 25 001.00 12.74 27 377.30 2.96
B15 O C 1 6 571.15 6 162.81 6.63 6 571.15 0.00
B15 O C 2 7 002.53 6 288.44 11.36 7 002.53 0.00
B15 O D 1 10 069.90 10 015.90 0.54 10 069.90 0.00
B15 O D 2 9 115.01 8 116.26 12.31 9 115.01 0.00
B15 R C 1 20 505.40 19 750.90 3.82 20 486.40 0.09
B15 R C 2 19 909.10 17 315.50 14.98 19 909.10 0.00
B15 R D 1 29 360.00 27 570.20 6.49 29 319.40 0.14
B15 R D 2 28 407.00 24 457.10 16.15 28 407.00 0.00
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Lower Bounds: In order to validate the quality of the lower bounds, these are

compared to the optimal solution. Table 5.5 summarizes the results. Again, z

represents the lower bounds for the respective test instances and z∗ the optimal

solutions obtained using Branch-and-Bound. The relative gap between the lower

bounds and the optimal solutions, denoted by gap, is defined as (z∗ − z)/z. The

mean value of gap was 8.52% with a standard deviation of 6.28%. The maximum

value of gap was 24.87%, while the minimum was only 0.54%. Overall, these results

indicate that the developed domain-specific dual heuristic is capable of providing

strong lower bounds for the considered application.

Table 5.5: Overview of the results for the implemented dual heuristic with regard
to the optimal solutions

Test instance z [e] z∗ [e] gap [%]

B10 H C 1 12 659.00 13 070.80 3.25
B10 H C 2 11 168.80 13 946.80 24.87
B10 H D 1 23 912.40 24 607.60 2.91
B10 H D 2 22 127.50 23 287.70 5.24
B10 O C 1 4 024.15 4 370.36 8.60
B10 O C 2 4 224.70 4 712.02 11.54
B10 O D 1 5 962.32 6 007.54 0.76
B10 O D 2 6 026.12 6 492.46 7.74
B10 R C 1 12 334.20 12 711.90 3.06
B10 R C 2 12 157.00 13 968.60 14.90
B10 R D 1 24 004.30 24 518.10 2.14
B10 R D 2 22 215.40 23 516.20 5.86
B15 H C 1 18 942.90 20 974.60 10.73
B15 H C 2 17 637.20 21 041.10 19.30
B15 H D 1 26 651.30 27 210.70 2.10
B15 H D 2 25 001.00 27 377.30 9.50
B15 O C 1 6 162.81 6 571.15 6.63
B15 O C 2 6 288.44 7 002.53 11.36
B15 O D 1 10 015.90 10 069.90 0.54
B15 O D 2 8 116.26 9 115.01 12.31
B15 R C 1 19 750.90 20 486.40 3.72
B15 R C 2 17 315.50 19 909.10 14.98
B15 R D 1 27 570.20 29 319.40 6.34
B15 R D 2 24 457.10 28 407.00 16.15

5.5.2 Examination of the Topologies

As described above, Simulated Annealing could not find the optimal system in

all test instances. For this reason, test instance B15 H D 1 is discussed in this
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section with regard to the different topologies between the overall system found

by Simulated Annealing and the optimal system as well as the subsystems used in

the different load scenarios. Subsequently, the findings are transferred to the other

non-optimal systems obtained by using Simulated Annealing. A complete overview

of all optimal systems and those obtained with Simulated Annealing, as well as the

subsystems used in each load scenario, can be found in Appendix A.1.

To compare the topologies, the found variable assignments were retranslated into

the corresponding overall systems and subsystems for the individual load scenarios.

Figure 5.4a shows this for the optimal system topology of test instance B15 H D 1.

As can be seen, the optimal topology has a non-series-parallel structure since the

205-type pump is connected with the other two pumps both in parallel and in series.

Due to the restriction of the system topology to series-parallel structures, this sys-

tem cannot be found by the implemented Simulated Annealing. The series-parallel

system found by Simulated Annealing is shown in Figure 5.4e. It is noticeable that

this system is quite similar to the optimal system. The difference between both

systems is that the 205-type pump in the series-parallel system is only connected in

parallel to the other pumps and not additionally in series. Since the same pumps

are installed in both systems, the investment is identical.

Although the overall system topology in the optimal case is not series-parallel,

only series-parallel subsystems are used in the individual load scenarios. These are

shown in Figures 5.4b, 5.4c and 5.4d for all five load scenarios. Figure 5.4b for

the first load scenario and Figure 5.4d for the fourth and fifth load scenario show

why a non-series-parallel structure is present for the optimal topology although only

series-parallel subsystems are used in the individual load scenarios. In the first load

scenario, the 205-type pump is operated in parallel and in the fourth and fifth load

scenarios, it is operated in series with the other pumps. For comparison, Figures

5.4f, 5.4g and 5.4h show the subsystems of the series-parallel overall system found by

Simulated Annealing that are used in the individual load scenarios. In the first load

scenario, see Figure 5.4f, the same subsystem is used as for the optimal solution,

see Figure 5.4b. This is also the overall system found by Simulated Annealing. In

the second and third load scenario, see Figure 5.4g, the subsystems used in the

solution found by Simulated Annealing also correspond to the subsystems used

in the optimal system shown in Figure 5.4c. However, there are differences in

the fourth and fifth load scenario. In these load scenarios, the serial connection

of the 205-type pump with the other two pumps is missing in comparison to the

optimal system. Instead of a serial connection of all three pumps, as shown in
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Figure 5.4: Comparison of the overall system and the operation in the individual
load scenarios for the optimal solution and the solution found by Sim-
ulated Annealing for test instance B15 H D 1

Figure 5.4d, only the 205-type pump is used. Thus, both configurations only differ

in the operation in the fourth and fifth load scenario. Due to the low load in the

fourth and fifth load scenario compared to the other load scenarios, the energy costs

are only e726.10 higher over the estimated lifetime of ten years. Thus, in terms of

total costs, only 2.67% higher costs arise.

In addition, the topologies of the remaining nine test instances for which Sim-

ulated Annealing was not able to find the optimal system were examined. In all

cases, the optimal system has a non-series-parallel structure analogous to the dis-

cussed test instance. The non-series-parallel structures arise because pumps are
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interconnected both in series and in parallel. However, even in these cases only

series-parallel subsystems are used in the individual load scenarios.

It is noticeable that the systems found by Simulated Annealing always have the

same pumps as the optimal systems. Also, the interconnection of the pumps is,

except for test instance B15 H C 1, always a subsystem of the optimal system.

It differs only by the connections that cause the overall system to become non-

series-parallel. In addition, wherever the operation of the optimal subsystem for

the individual load scenarios is possible due to the overall topology, the optimal

subsystem for the respective load scenario is used, as expected. With the excep-

tion mentioned above, the system topologies of the systems found using Simulated

Annealing correspond to the subsystem of the optimal system used in the “most

challenging”, i.e. the first, load scenario. Therefore, the subsystems used in the first

load scenario are identical for both systems. This correlation also occurs for test

instance B15 H D 1 examined at the beginning of this section and can be seen in

Figures 5.4b, 5.4e and 5.4f.

The system topologies for the aforementioned exception, test instance B15 H C 1,

are shown in Figures 5.5a and 5.5e. As described, these have the same pumps, but

unlike the other test instances, the topologies differ more. This can have two

possible causes: On the one hand, there may be a better series-parallel system

that was not found by Simulated Annealing. On the other hand, the system found

may be favorable in comparison to the subsystem used in the first load scenario

for the optimal system, which is shown in Figure 5.5b. By comparing the costs

of the two systems, it turned out that the system found by Simulated Annealing

with total costs of e21 380.80 is 0.9% better than the series-parallel subsystem

used in the optimal system to fulfill the “most challenging”, first load scenario.

This subsystem has total costs of e21 577.81. Thus, the test instance is indeed an

exception compared to the other test instances.

In most cases, Simulated Annealing is able to find optimal systems if those sys-

tems have a low complexity and a comparatively small number of pumps and con-

nections. The fact that no optimal solutions were found for more complex systems

is not due to the implemented Simulated Annealing itself but due to the limitation

to series-parallel systems. With increasing complexity, non-series-parallel systems

generally gain in importance in terms of the number of possible systems compared

to the series-parallel case. In addition, these systems have the advantage that in-

stalled pumps can be operated in parallel or in series in different load scenarios as

required. This provides more flexibility to cover a certain load scenario as energy-
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Figure 5.5: Comparison of the overall system and the operation in the individual
load scenarios for the optimal solution and the solution found by Sim-
ulated Annealing for test instance B15 H C 1

efficient as possible without adding further pumps to the system. However, this

also results in a larger number of possible topologies with the same number of com-

ponents. Hence, it becomes more difficult to create valid systems. Furthermore,

the size of the search space increases. This in turn can have a negative effect on

the quality of the found solutions and the runtime. Nevertheless, even within the

search space restricted to series-parallel systems, good solutions could be found,

whose objective function values deviated by less than 3% from those of the optimal

solutions.
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5.5.3 Examination of the Runtimes

In this section, the results for all three procedures are presented and briefly discussed

in terms of runtime. An overview of the runtimes for Simulated Annealing (SA), the

dual heuristic to generate initial lower bounds (LB) and Branch-and-Bound (B&B)

in all test instances is given in Table 5.6. For the Branch-and-Bound framework, the

best solutions found by Simulated Annealing were used as the starting solutions,

i.e. initial upper bounds.

Table 5.6: Overview of the runtimes for the implemented Simulated Annealing al-
gorithm, the dual heuristic and the Branch-and-Bound framework

Test instance SA [s] LB [s] B&B [s]

B10 H C 1 275 653 13 557
B10 H C 2 109 574 9 956
B10 H D 1 439 801 5 948
B10 H D 2 417 742 13 615
B10 O C 1 102 372 7 313
B10 O C 2 85 208 4 148
B10 O D 1 140 398 4 260
B10 O D 2 143 260 4 996
B10 R C 1 329 828 8 382
B10 R C 2 333 687 21 473
B10 R D 1 551 1 095 10 518
B10 R D 2 652 1 582 12 522
B15 H C 1 1 162 957 18 796
B15 H C 2 424 583 12 039
B15 H D 1 2 412 709 6 273
B15 H D 2 660 707 13 243
B15 O C 1 353 612 6 484
B15 O C 2 188 269 5 249
B15 O D 1 437 811 7 542
B15 O D 2 224 310 4 848
B15 R C 1 399 767 10 177
B15 R C 2 231 426 12 361
B15 R D 1 1 054 1 010 11 827
B15 R D 2 290 501 13 721

Simulated Annealing: The implemented Simulated Annealing algorithm took on

average 475 seconds to terminate. However, comparably high deviations occurred.

The maximum runtime was 2 412 seconds, while the minimum runtime was only

85 seconds. This deviation results from the fact that the MILP solver needs much

more time to solve the operation subproblem if the created neighborhood is large
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in terms of many bought components. Nevertheless, the runtimes are fast enough

to be of practical relevance for the considered application.

Lower Bounds: Generating lower bounds took on average 661 seconds. The

longest runtime was 1 582 seconds, while the shortest runtime was only 208 sec-

onds. In most cases, this was comparable to the time the Simulated Annealing

algorithm took to terminate. Hence, this circumstance allows a timely examination

of a solution found by Simulated Annealing in practice.

Branch-and-Bound: The average runtime for obtaining optimal solutions was

9 969 seconds. The maximum runtime was 21 473 seconds and the minimum run-

time only 4 148 seconds. If the initial upper bound found by Simulated Annealing

was already the optimal solution, the average runtime was 8 804 seconds and there-

fore 31.75% less than in the opposite case, where the average runtime was 11 599

seconds. An overview of the solution progress for obtaining the optimal solutions

as a function of time for all test instances can be found in Appendix A.2. Over-

all, the results show that with the proposed domain-specific Branch-and-Bound

framework, it is possible to provide provably optimal solutions for instances on a

practice-oriented scale in reasonable time.
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Beyond the general system design under consideration, this chapter provides an

outlook on how the resilience of technical systems in the considered setting can

be enhanced by adding possible breakdown scenarios. The concept of resilience is

of great interest since it cannot only be applied to control uncertainty during the

design phase, but it is also applicable to the system’s operation. Instead of designing

systems that are robust with respect to specific single “what-if” assumptions made

beforehand during the design phase, resilient system design aims at creating systems

that perform “no matter what” (Altherr et al., 2018a). In this context, resilience

of a technical system is the ability to overcome minor failures and thus to avoid

a complete breakdown of its vital functions. A possible failure of the system’s

components is one critical case the system designer should keep in mind. For

this, optimization under uncertainty can be used in order to describe and increase

resilience of technical systems (Altherr et al., 2018a). The most prominent solution

paradigms for optimization under uncertainty are Stochastic Programming (see e.g.

Birge and Louveaux, 2011) and Robust Optimization (see e.g. Ben-Tal et al., 2009).

For the design of resilient technical systems, the following special case is con-

sidered: Starting from a valid network configuration (G,SG, TG) capable of cov-

ering the expected loads of any scenario i ∈ S, with graph G = (V,E), edges

E and vertices V , where SG and TG are the sources and sinks, it is allowed to

add some additional components to make the system more resilient against break-

downs. More concrete, I = E is defined as the set of initial components, A as

the set of additional components and it is tried to find a subset A′ ⊆ A such that

G′ = ((V, I ∪A′), SG, TG) fulfills resilience in the following sense: For each scenario

i ∈ S, it has to be ensured that if a single component e ∈ I fails, the remaining

network G′′ = ((V, (I ∪A′)\{e}), SG, TG) suffices to cover the expected load in sce-

nario i. The set of added additional components A′ must be selected such that

the lifetime costs of the resulting system, i.e. the sum of the investment and the

operational costs, are minimal.
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Since the system design process can be conducted in several consecutive steps,

this leads to a multistage optimization problem with five stages: Design or adapt

the system (1) such that for each anticipated load scenario (2) the optimal operation

point can be found (3) and it can be ensured for each breakdown case (4) that the

functionality of the system is maintained (5). A straightforward way to model

multistage optimization problems are so called Quantified Mixed-Integer Linear

Programs (QMIP). Hence, using QMIPs to find optimal system configurations with

increased resilience is a suitable approach in the context of the applications under

consideration. In this regard, this thesis focuses on the engineering perspective of

the approach. It is intended to show how the approach can be applied in a practical

setting and how it can be integrated into the design process of technical systems.

For a more in-depth discussion regarding the formal and algorithmic properties, see

Hartisch (2020).

Quantified Mixed-Integer Linear Programming is a direct and formal extension to

Mixed-Integer Linear Programming. In QMIPs the variables are ordered explicitly

and they are quantified either existentially or universally resulting in a multistage

optimization problem under uncertainty. The objective function is an alternating

minmax function according to the quantifier sequence: Existential variables are

set with the goal of minimizing the objective value while obeying the constraint

system, whereas universal variables are aiming at a maximized objective value.

An instance of a QMIP can be visualized as a two-person zero-sum game between

an existential player and a universal player, who alternately set the existentially

and universally quantified variables (Hartisch, 2020). In the considered case, the

existential player would be the system designer, while the universal player describes

events that are by nature uncertain. Hence, solutions of QMIPs are strategies for

assigning existentially quantified variables such that the linear constraint system is

fulfilled. One way to deal with quantified programs is to build the corresponding

Deterministic Equivalent Program (DEP) (see e.g. Wets, 1974; Wolf, 2015) and to

solve the resulting MILP using standard MILP solvers.

6.1 Application to Booster Stations

In order to build on the results of Chapter 5, the application example of generating

cost-optimal resilient booster stations out of non-resilient ones is examined here.

Although applied to booster stations in this thesis, the approach can be abstracted
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for a variety of technical systems using the general representation of so-called pro-

cess networks as shown in Hartisch et al. (2018).

The requirements for the considered resilient booster stations are manifested in

DIN 1988-500. It specifies that booster stations must have at least one stand-by

pump and that the system must be capable of covering the peak load and thus all

required loads at all times in the event of a failure of a single pump. The relevant

costs considered here for obtaining a resilient booster station are the investment for

the stand-by pumps as well as the energy costs of the overall system in relation to the

expected load scenarios and the operational lifetime of the system. The breakdown

cases are expected to only take place in a small amount of time compared to the

total lifetime due to short repair times. Therefore, the associated costs do not

significantly affect the energy costs of the system and are neglected.

In contrast to related contributions (cf. Altherr et al., 2019), a further requirement

mentioned in DIN 1988-500 is considered. This requirement states that in order

to avoid stagnation water, an automatic, cyclic interchange between all pumps

including the stand-by pumps is required. Hence, all pumps must be operated at

least once every 24 hours. In order to meet this requirement, it is defined that

the considered load scenarios represent a daily recurring load profile. Therefore,

the requirement is assumed to be met if each pump is active in at least one load

scenario. It is obvious that this additional requirement to use the stand-by pump

in at least one load scenario has a massive impact on the operation of the system

and thus also on its expected energy costs. Given this circumstance, it is not a

trivial task to determine by which stand-by pumps the system should be extended

in order to obtain a cost-optimal resilient system.

In general, single pumps or sets of pumps can be connected in parallel or in

series. According to today’s practice, parallel connections are state of the art due

to a reduced overall complexity (Betz, 2017; Meck et al., 2020). As discussed in Betz

(2017), there are further reasons to only consider parallel arrangements, although

serial arrangements are generally conceivable: Firstly, control strategies for serial

arrangements are more difficult to realize in practice. Secondly, in case of a failure

of a single pump, the remaining system components are not directly affected and

retain their full functionality, which is consistent with the considered definition

of resilience. Therefore, only parallel arrangements are used in the following to

demonstrate the approach, resulting in significantly smaller pump networks. An

illustration of such a network with four pumps connected exclusively in parallel is

shown schematically in Figure 6.1.
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Figure 6.1: Illustration of a booster station with exclusively parallel pumps

6.2 Optimization Model

As outlined above, the quantified optimization model considered here has five

stages. The first stage represents the investment decision to buy additional stand-

by pumps. This stage is classified as existential. In the second, universal stage a

load scenario is selected. In the subsequent existential stage, the optimal operation

for this load scenario is determined with regard to the available pumps—the ini-

tial pumps as well as the additional stand-by pumps. These three stages represent

the decisions during the “regular operation”, i.e. operation without the failure of a

pump, while the following two stages deal with the failure of a pump. In the fourth,

universal stage, one of the initial pumps is selected and it is assumed that this pump

is broken. At this point, only the initial pumps are considered for breakdown be-

cause if a stand-by pump fails, operation is already guaranteed by the problem

definition, given that the system is only extended and the system is assumed to

fulfill every load scenario with intact initial pumps. In the final fifth, existential

stage, it is checked whether the remaining system, i.e. the system without the bro-

ken pump selected in the previous stage, is able to fulfill the load scenario selected

in the second stage. While considering the breakdown of a single pump here, the

model can be modified to handle the simultaneous breakdown of multiple pumps,

similar to the concept of K-resilience examined in Altherr et al. (2019). However,

according to the requirement defined in DIN 1988-500, the operation of the system

must only be ensured if one single pump breaks down.

Table 6.1 displays the sets, parameters and variables with the associated stage

used for the QMIP. If applicable, the dimension of an entry is specified using the

base quantities mass (M), length (L), currency (C) and time (T ). The notation dif-

fers from the previous model because it is not a direct extension of the optimization

model but an approach to be used separately in a subsequent planning phase.
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Table 6.1: Variables, sets and parameters of the QMIP optimization model

Stage Symbol Range Dimension Description

1 bp {0, 1} Purchase indicator for pump p ∈ A
aip {0, 1} Activation indicator for pump p ∈ P in scenario

i ∈ S
ci R+

0 C Operational costs in scenario i ∈ S

2 s S Scenario selection

3 σi {0, 1} Indicator whether scenario i ∈ S is selected
xp {0, 1} Indicator whether pump p ∈ P is used
v̇p R+

0 L3T−1 Volume flow rate through pump p ∈ P
∆hp R+

0 ML−1T−2 Pressure increase caused by pump p ∈ P
ρp R+

0 ML2T−3 Power consumption of pump p ∈ P
np [0, 1] Relative rotational speed of pump p ∈ P

4 d I Selection of damaged pump

5 δp {0, 1} Indicator whether initial pump p ∈ I is damaged
xBp {0, 1} Indicator whether pump p ∈ P is used in case of

disturbance
v̇Bp R+

0 L3T−1 Volume flow rate through pump p ∈ P in case of
disturbance

∆hB
p R+

0 ML−1T−2 Pressure increase caused by pump p ∈ P in case
of disturbance

S Set of scenarios
I Set of initial pumps
A Set of additional pumps
P A ∪ I Set of all available pumps

Cbuy
p R+

0 C Purchase costs of pump p ∈ A
V̇ i R+

0 L3T−1 Required volume flow rate in scenario i ∈ S
∆Hi R+

0 ML−1T−2 Required pressure increase in scenario i ∈ S
OLT R+

0 T Projected operational lifetime of the system
F i [0, 1] Projected relative occurrence of scenario i ∈ S

during the operational lifetime OLT

CkWh R+
0 M−1L−2CT 2 Operation costs per kilowatt hour of electricity

∆Hmax R+
0 ML−1T−2 Upper bound on the pressure increase

V̇ max R+
0 L3T−1 Upper bound on the volume flow rate

M R+
0 Sufficiently large constant

As mentioned above, the aim is to minimize the sum of the weighted energy costs

during operation with regard to the expected load scenarios and the investment for

the additional stand-by pumps, see Objective (6.1). An additional pump can only

be used if it is purchased, see Constraints (6.2) and (6.3). This includes both the

“regular operation” of the third stage as well as the “breakdown operation” of the

fifth stage and is also used to link the first stage with the third and fifth stage.

In combination, Constraints (6.4) to (6.6) ensure that each pump that is part of
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the system has to be operational in at least one of the load scenarios if “regular

operation” is considered. All pumps from the set of initial pumps are automatically

part of the system, see Constraint (6.5), while the pumps from the set of additional

pumps are only part of the system if they are purchased, see Constraint (6.6).

The following Constraints (6.7) to (6.10) have no technical interpretation and only

serve to transform the universal integer variable of the selected scenario and the

selected broken pump to the corresponding existential binary variables. Since the

broken pump cannot be used during the “breakdown operation”, this is prohibited

by Constraint (6.11). The power consumption and pressure increase caused by a

pump within its respective physical domain defined by its associated characteristic

map depends on the volume flow through the pump as well as its rotational speed.

This nonlinear relationship, which can be modeled using the techniques presented

in Section 2.2.3, is outlined by Constraints (6.12) and (6.13). In case of the “break-

down operation”, this can be modeled more easily since, as described above, the

associated energy costs and therefore the power consumption are neglected due to

short repair times. Hence, it is sufficient to linearize the boundaries of a pump’s

characteristic map and to check whether the necessary pressure increase at a certain

volume flow lies within these limits, see Constraint (6.14). An explicit consideration

of the rotational speed is not necessary in this case. In addition, it has to be en-

sured that the pressure increase caused by each pump used in the selected scenario

as well as the sum of the volume flows of all pumps match the required pressure

increase and volume flow exactly for both the “regular operation” and “breakdown

operation”, see Constraints (6.15) to (6.18). For the parallel connection of multi-

ple pumps, the total volume flow rate is the sum of the individual volume flows

and each pump generates the same common pressure increase. Furthermore, the

nonlinearity in Constraints (6.15) and (6.16) can be resolved straightforwardly by

using a big-M formulation. In this context, Constraints (6.19) to (6.22) establish

general bounds on the volume flow and pressure increase for both operation modes

and are used in order to force the volume flow and pressure increase of a pump to

vanish if this pump is not used in the selected scenario. Finally, Constraint (6.23)

transforms the power consumption associated with the “regular operation” for the

selected scenario to energy costs.

min
∑
i∈S

F i · ci +
∑
p∈A

Cbuyp · bp (6.1)
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xp ≤ bp ∀p ∈ A (6.2)

xBp ≤ bp ∀p ∈ A (6.3)

aip − xp + σi ≤ 1 ∀p ∈ P, i ∈ S (6.4)∑
i∈S

aip ≥ 1 ∀p ∈ I (6.5)∑
i∈S

aip ≥ bp ∀p ∈ A (6.6)∑
i∈S

σi = 1 (6.7)∑
i∈S

i · σi = s (6.8)∑
p∈I

δp = 1 (6.9)

∑
p∈I

p · δp = d (6.10)

xBp + δp ≤ 1 ∀p ∈ I (6.11)

ρp = Pp(v̇p, np) ∀p ∈ P (6.12)

∆hp = ∆Hp(v̇p, np) ∀p ∈ P (6.13)

∆hBp = ∆HBp (v̇Bp ) ∀p ∈ P (6.14)

∆hp = xp ·
∑
i∈S

∆H i · σi ∀p ∈ P (6.15)

∆hBp = xBp ·
∑
i∈S

∆H i · σi ∀p ∈ P (6.16)∑
p∈P

v̇p =
∑
i∈S

V̇ i · σi (6.17)

∑
p∈P

v̇Bp =
∑
i∈S

V̇ i · σi (6.18)

v̇p ≤ V̇ max · xp ∀p ∈ P (6.19)

∆hp ≤ ∆Hmax · xp ∀p ∈ P (6.20)

v̇Bp ≤ V̇ max · xBp ∀p ∈ P (6.21)

∆hBp ≤ ∆Hmax · xBp ∀p ∈ P (6.22)

M · (1− σi) + ci ≥ CkWh ·OLT ·
∑
p∈P

ρp ∀i ∈ S (6.23)
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6.3 Application Examples

In order to demonstrate the approach, two artificial examples are investigated. The

corresponding load scenarios are shown in Table 6.2. Again, the pumps used for this

application are based on the Wilo-Economy MHIE model series already presented

in Chapter 5. However, the single pump in group 16xx is neglected hereinafter

due to its superiority compared to the other pumps in the considered examples. A

suitable number of data points was extracted from the pumps’ datasheets in order

to approximate the characteristic maps.

Both generated QMIP instances are solved using the framework provided by

the QMIP solver Yasol1. Because the solver itself can only deal with continuous

variables in the final stage, the option of creating and solving the corresponding

DEP is used. The runtimes of the examined examples were in the range of seconds.

Hence, this subject is not deepened any further.

Table 6.2: Summary of the load scenarios for the considered test instances

Example 1 Example 2

F V̇ [m3/h] ∆H [m] F V̇ [m3/h] ∆H [m]

Scenario 1 0.1 25 20 0.25 20 30

Scenario 2 0.3 20 30 0.25 12 50

Scenario 3 0.4 15 40 0.25 10 20

Scenario 4 0.2 10 60 0.25 5 15

6.3.1 Optimized Initial Design

As a first example, a system that is already optimized regarding the sum of invest-

ment and energy costs over a predefined set of load scenarios for the non-resilient

case is examined. The considered load scenarios are shown on the left-hand side of

Table 6.2. This system consists of one pump each of the types 206, 403, 406 and

803 connected in parallel and has initial operational costs of e75 288.88 assuming

a lifetime of ten years. In order to transform this given booster station, which

can only fulfill the considered load scenarios if all pumps are fully functional, into

a more resilient system, the presented optimization model is applied. The set of

additional pumps A that can be added contains each pump of the Wilo-Economy

1http://q-mip.org (accessed May 07, 2021)

92

http://q-mip.org


6.3 Application Examples

MHIE series exactly once. According to the solution of the QMIP, it is optimal to

add the additional pump 205 with purchase costs of e1 805 to the system. This

might seem somewhat surprising at first glance given that, even though the system

was optimized for the non-resilient case, none of the already installed pumps is dou-

bled and instead a new type is added to the network in order to compensate for the

breakdown of one of the initial pumps. However, a detailed examination confirmed

that this is indeed the optimal solution. This shows that even for an optimized

system, finding a more resilient configuration is a non-trivial task. Compared to

the original system, the selected additional pump is used in the first scenario, re-

sulting in an increase in lifetime operational costs of only e3.52 compared to the

non-resilient case. Hence, the minimal additional costs to enhance the resilience of

the initial booster station are e1 808.52.

6.3.2 Multiple Identical Pumps

As a second example, the case of an initial system with multiple identical pumps

connected in parallel, which follows the conventional design approach, is considered.

The obvious way to achieve the addressed sense of resilience for this system is to add

another pump of the same type to the network. However, cheaper configurations

may exist. For this example, a system with three pumps of the 406-type is studied.

The corresponding load scenarios can be found on the right-hand side of Table 6.2

and the system is projected to be operational for five years. As in the previous

example, it is intended to transform the not yet resilient system into a more resilient

one by adding pumps of the Wilo-Economy MHIE, whereby each pump may only

be installed once. The solution of the associated QMIP recommends the purchase

of the not yet existing pump type 403 as an additional pump to be included in

the network. Following this recommendation, the operational costs decrease in the

second, third and fourth load scenario compared to the initial system. This is due to

the fact that the initial system was not optimal itself for the given load scenarios—a

circumstance occurring frequently as systems are often designed to cover a broad

range of conditions for various applications. In terms of the financial impact of this

investment decision, e2 243.30 can be saved over the five years compared to the

common approach of adding a fourth pump of the 406-type in order to increase

resilience. These savings result from two different reasons: Firstly, selecting the

403-pump with a lower initial investment and secondly, being able to operate more

efficiently in the individual load scenarios as a better system operating point can

be reached with the addition of a 403-type pump.
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Thermofluid systems can be regarded as fluid systems with superimposed heat

transfer (Pöttgen et al., 2016). Hence, thermofluid systems fulfill two subtasks, the

distribution as well as heating and cooling of fluids. For modeling these systems

several possibilities with different focal points are presented in literature. How-

ever, in the following, the focus is on two essential aspects: maintaining a simple

representation and the compatibility with the fluid model from Chapter 4. The

optimization model for fluid systems is therefore extended by the introduction of

additional constraints dealing with heating and cooling. This involves introducing

the physical quantity temperature T and the associated energy that is carried by

the flow of fluid. As with pure fluid systems, the scope of this work is limited

to incompressible liquids. Given the assumptions discussed in Section 2.1.3 for an

incompressible liquid, it is convenient to use the thermal energy flow rate U̇ in the

model to account for the thermal energy that is carried by the mass flow of fluid.

It should be noted that the subscript t used in Section 2.1.3, which denotes the

thermal component of the internal energy, is omitted for better readability. Fur-

thermore, in the scope considered, the thermal energy can be treated as equivalent

to the internal energy since the other components of the internal energy are not

relevant for the consideration. Accordingly, the thermal energy flow rate can be

defined as U̇ = ṁ · u, with mass flow rate ṁ and specific thermal energy u. The

mass flow rate can also be expressed by ṁ = V̇ · ρ, with volume flow rate V̇ and

density ρ, which is assumed to be constant in the following. In order to overcome

the difficulty related to using absolute values, the thermal energy flow rate U̇ can

be expressed relative to a certain reference state, i.e. u0 = u(T0), since only differ-

ences and not absolute values are relevant (Doran, 2011). By assuming the liquid

to be a calorically perfect material, i.e. constant specific heat c, in the considered

temperature range, it is possible to state that

u = u0 + c ·
(
T − T0

)
(7.1)
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and hence

U̇ = ṁ ·
(
u0 + c ·

(
T − T0

))
. (7.2)

Since this only concerns the consideration of temperature differences, it is not rele-

vant whether the temperatures are specified in Kelvin or degree Celsius. For conve-

nience, the reference state for the model is chosen to be u0 = u(0◦C) = 0 J/kg. This

has two benefits: Firstly, (T − T0) directly corresponds to the actual temperature

measured in degree Celsius and secondly, U̇ ≥ 0 W for the considered temperature

range.

If a heating or cooling component is present, it is then assumed that there is

a change in the thermal energy flow rate ∆U̇ between the inlet and outlet of the

component according to the heat flow Q̇ transferred to the fluid by this component

or vice versa, i.e. ∆U̇ = Q̇. For other components, it is assumed that this change

in thermal energy flow rate is negligible.

In order to be able to establish this extension, two further aspects have to be

explicitly addressed. These occur when several flows are merged or split up at

junctions (Elmqvist et al., 2003). The former occurs for incoming and the latter

for outgoing flows. Even though in general merging and splitting up flows is also

common in pure fluid systems, the distinction and the reason for the increased

complexity is that the considered flows may have different temperatures and that

these temperatures are directly related to the other system variables.

In the case that several flows enter a junction, perfect mixing is assumed. Hence,

with N flows entering a junction k, the specific thermal energy at the junction uk

and the related temperature Tk are given by

uk =

∑
i∈N

ṁi · ui∑
i∈N

ṁi
=

∑
i∈N

U̇i∑
i∈N

ṁi
∼ Tk (7.3)

as indicated in Elmqvist et al. (2003). With ṁ = V̇ · ρ, the temperature resulting

from all incoming flows can therefore be expressed as a function of the sum of

volume flows and associated thermal energy flow rates entering a certain junction.

In the case of only one flow entering a junction, the mixing temperature is the

temperature of the incoming flow. Equivalently, the resulting mixing temperature

Tk at the junction can be determined by Richmann’s calorimetric mixing formula
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(see e.g. Tillmann and Bohn, 2015) as follows:

Tk =

∑
i∈N

ṁi · Ti · c∑
i∈N

ṁi · c
(7.4)

In the case of outgoing flows, the specific thermal energies for all flows leaving a

junction are the same as the specific thermal energy at the junction (Elmqvist et al.,

2003). Hence, for M flows leaving a junction k with specific thermal energy uk, the

specific thermal energies of each individual flow uj and the related temperatures Tj

become:

uk = uj =
U̇j
ṁj
∼ Tk = Tj ∀ j ∈M (7.5)

Accordingly, all flows leaving the same junction have the same temperature. With

ṁ = V̇ · ρ, the temperature at the junction therefore determines the (constant)

ratio between the volume flow rate and the associated thermal energy flow rate for

each individual flow leaving this junction.

7.1 Components of Thermofluid Systems

There is a wide variety of different components used in thermofluid systems de-

pending on the respective field of application. However, two ideal sources of ther-

mal energy can be distinguished: ideal heat sources and ideal temperature sources

(Pöttgen et al., 2016). An ideal heat source is able to maintain a constant, prede-

fined heat flow to the fluid. An ideal temperature source in contrast can maintain a

predefined temperature at its outlet. Here, all heating and cooling components are

associated with one of the two ideal sources of thermal energy. In the considered

scope, it is possible to define more detailed representations of different components,

even if they differ in their respective behavior or have special features, due to the

decoupling of the general system behavior and component characteristics. How-

ever, the base characteristics of a component are still determined by its respective

affiliation to one of the two ideal sources of thermal energy. In the following, two

examples are given: boilers used in heating systems as representatives of a com-

ponent type that can be modeled as a heat source and chillers as representatives

of a component type that can be modeled as a temperature source. Besides this

general classification, there are also other individual distinguishing features that

have to be accounted for in the modeling process such as the ability of components
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to operate only at a fixed operating point or whether the operating point can be

changed step-wise or continuously.

7.1.1 Boilers

In the considered scope, boilers are components that either burn some kind of fuel,

e.g. gas, oil or biomass, or use electricity to provide a heat flow to the fluid. For

the description of (tankless) boilers used here, the model for a biomass boiler with

discrete operating points used in Pöttgen et al. (2016) is adapted. Nevertheless, it

is straightforward to transfer this approach to other technologies.

The considered boiler has multiple discrete operating points. For example, the

boiler may be operated at full load or at half load. At full load, the boiler provides a

certain constant maximum heat flow to the passing fluid. At half load, this heat flow

is half the value of that maximum heat flow. This is assumed to be independent of

the volume flow through the boiler as well as the temperature of the incoming fluid.

Hence, for a boiler with |L| discrete, equally spaced operating points, its operating

level can be expressed by an integer variable l with l ∈ {0, . . . , |L|}. With this, the

heat flow provided by the boiler can be expressed as

Q̇ = Q̇max · l

|L|
, (7.6)

where Q̇max is the heat flow at full load. If l takes the value zero, there is no heat

transfer, which corresponds to a switched off state. The switching between these

states is assumed to happen instantaneously. Possible transition times are deliber-

ately not considered because it is assumed that they are negligible compared to the

duration of the boiler’s stationary operation. The corresponding energy consump-

tion per unit time is estimated on the basis of the heat flow provided to the fluid,

taking into account the respective energy source and assuming a component-specific,

constant efficiency. For a more detailed approach including part-load dependent ef-

ficiency, see e.g. Voll (2013) and Voll et al. (2013).

7.1.2 Chillers

In general, many different chiller types exist. However, there are two main classes

of chillers: vapor absorption and vapor compression chillers. Compression chillers

use mechanical compressors driven by electric motors, while absorption chillers

are driven by a heat source. In the following, the focus is on vapor compression
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chillers, for which different compressor types exist. The available compressor tech-

nologies include scroll and reciprocating compressors for small cooling capacities,

screw compressors for medium capacities, and centrifugal compressors for large cool-

ing capacities. A further distinction can be made with regard to the heat sink used

for rejecting heat. Compression chillers can be either water-cooled or air-cooled.

While water-cooled chillers reject heat using the cooling water of a cooling tower,

air-cooled chillers reject heat directly to the ambient air. As shown in Figure 7.1,

the cooling is realized by a circular process consisting of four subprocesses (Baglione,

2011): At the start of this cycle, the internal refrigerant is a saturated vapor (1).

In the compressor, the pressure of the refrigerant is increased resulting in a su-

perheated vapor (2). Afterwards, the superheated vapor enters the condenser and

rejects heat to the ambient air or water of a cooling tower and liquefies again, be-

coming a saturated liquid (3). Passing the expansion valve, the pressure of the

refrigerant is abruptly reduced, resulting in a liquid-vapor mixture (4). Finally, in

the evaporator, heat of the cooling medium returning from the heat source is ab-

sorbed, completing the cycle, which is then repeated.

Condenser

Compressor

Evaporator

Expansion
Valve Motor

3

4 1

2

From Cooling Tower/
Ambient Air

To Cooling Tower/
Ambient Air

To Process From Process

Qout

Qin

Chiller

Figure 7.1: Illustration of the working principle of compression chillers (based on
Baglione, 2011)

In order to describe chillers and their complex behavior, a suitable model has

to be determined. For representing the operation of chillers, a large number of

(semi-)empirical models with varying level of detail are discussed in literature. Ex-

amples include models based on linear regression, bi-quadratic regression, multi-

variate polynomial regression as well as different variations of the DOE-2 and the
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Gordon-Ng model (Lee et al., 2012). However, most studies focusing on the more

detailed chiller models, e.g. the DOE-2 (see e.g. Zhang et al., 2017) or the Gordon-

Ng model (see e.g. Powell et al., 2013), examine the operation of a predefined

system. Due to the comparatively high degree of abstraction of the design level

and the associated uncertainties regarding the actual operation conditions as well

as the additional difficulty resulting from the two-stage character of the problem

under consideration, a deliberately simpler approach based on the model discussed

in Deng et al. (2015) is chosen instead. While this approach neglects certain in-

fluences and interactions, it was shown to be suitable to sufficiently represent the

behavior of real-world applications (see Deng et al., 2015). Furthermore, unlike

other simpler models (see e.g. Voll et al., 2013), quality levels, i.e. the consideration

of temperature, can be addressed rather than relying solely on energy balances.

Nevertheless, since the component and the system behavior are deliberately sep-

arated in the presented MILP and the focus is on the interaction of components

rather than their detailed internal behavior, it is possible to use other models to

predict a chiller’s operation as long as the relevant system in- and outputs can be

incorporated.

In the general context of refrigerators and heat pumps, the so-called Coefficient

of Performance (COP) is an often used and important relationship for analyzing

their performance. The COP acts as a metric used to quantify the efficiency and

expresses the ratio between the available useful cooling or heating Q̇ and required

(e.g. electrical) power input P at a given operating point. It should be mentioned

that a distinction is often made where the COP is used for heating performance,

while the so-called Energy Efficiency Ratio (EER) is used for cooling performance.

However, due to the analogous determination of the EER and the widespread use

of the COP in common parlance, the term “COP” is used in the following. For

chillers, the COP can be stated as

COP =
Q̇

P
. (7.7)

As can be seen, a higher COP yields a higher efficiency. The variable Q̇ is called

“cooling capacity” and represents a chiller’s ability to provide cooling. It can be

expressed as

Q̇ = V̇ · ρ · c · (Tchwr − Tchws), (7.8)

100



7.1 Components of Thermofluid Systems

with volume flow rate V̇ , (constant) density ρ, (constant) specific heat capacity c,

chilled water return temperature Tchwr and chilled water supply temperature Tchws.

However, according to the chiller model presented in Deng et al. (2015), it is

assumed that chillers are only operated in so-called on/off modes. This means that

if a chiller is turned on, it supplies chilled water at a certain constant design flow

rate V̇ N and constant supply temperature TNchws or it is turned off otherwise. The

respective mode of a chiller can be represented by a binary indicator a with a = 1

if a chiller is turned on and a = 0 if a chiller is turned off. Hence, two cases can be

distinguished:

Q̇ =

V̇ N · ρ · c ·
(
Tchwr − TNchws

)
, if a = 1

0, otherwise.
(7.9)

The cooling provided varies with respect to the return temperature, which in turn

results from the operating point of the system, while the supply temperature is

kept constant.

Since the volume flow rate is constant and the cooling capacity therefore only

depends on the temperature difference, the power consumption P is assumed to be a

function of the difference in temperature only. Hence, the function for determining

the electrical power consumption takes the following form

P =

α ·
(
Tchwr − TNchws

)
+ β, if a = 1

0, otherwise
(7.10)

with linear regression coefficients α and β. This function can be obtained by lin-

ear regression of either measured or manufacturer data (Deng et al., 2015). It is

essential to pay attention to the data range for which the relationship is obtained.

Outside of this range and using a different supply temperature or volume flow, the

performance is extrapolated and may behave unexpectedly.

Figure 7.2 shows an exemplary plot of a chiller’s COP with varying tempera-

ture differences (Tchwr − Tchws) in the calibrated range [5, 15]◦C with Tchws being

held constant. In general, there are other influencing variables, e.g. condenser wa-

ter temperature or ambient temperature, which are neglected in order to reduce

complexity.
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Figure 7.2: Exemplary illustration of a chiller’s COP as a function of the difference
between the return and supply temperatures (Tchwr−Tchws) in the range
[5, 15]◦C and constant Tchws (based on Deng et al., 2015)

7.2 Extension of the Optimization Model for Thermofluid

Systems

As described above, the optimization model for fluid systems from Chapter 4 has

to be extended by additional constraints dealing with heating and cooling. This

involves introducing the physical quantities temperature and thermal energy flow

rate and their interactions in the model as well as taking care of the additional

component groups necessary for heating and cooling. Since this is an extension of

fluid systems, only the additional constraints are discussed here and the previously

presented constraints of Chapter 4 still apply. Hence, the full MILP results from

joining both parts. As for fluid systems, the representation is split into two parts,

the system behavior and the component characteristics. Again, the symbols used

within the model should not be confused with the symbols used in other contexts,

as they may differ in some cases. Therefore, all variables and parameters used are

shown in Table 7.1. If applicable, the dimension of an entry is specified using the

base quantities mass (M), length (L), currency (C), time (T ) and temperature (K).

The entries only applying to the component-specific parts are separated by dashed

lines.
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Table 7.1: Variables, sets and parameters of the optimization model for thermofluid
systems

Symbol Range Dimension Description

bi,j {0, 1} Purchase indicator of edge (i, j) ∈ E
asi,j {0, 1} Activation indicator of edge (i, j) ∈ E in scenario

s ∈ S
psi,j R+

0 ML2T−3 Power consumption caused by edge (i, j) ∈ E in

scenario s ∈ S
v̇si,j R+

0 L3T−1 Volume flow along edge (i, j) ∈ E in scenario s ∈ S
hs
k R+

0 ML−1T−2 Pressure at vertex k ∈ V in scenario s ∈ S
∆hs

i,j R ML−1T−2 Change in pressure caused by edge (i, j) ∈ E in

scenario s ∈ S
u̇in s
i,j R+

0 ML2T−3 Thermal energy flow rate directly after the start of

edge (i, j) ∈ E in scenario s ∈ S
u̇out s
i,j R+

0 ML2T−3 Thermal energy flow rate directly before the end of

edge (i, j) ∈ E in scenario s ∈ S
tsk R+

0 K Temperature at vertex k ∈ V in scenario s ∈ S
∆u̇s

i,j R ML2T−3 Change in thermal energy flow rate caused by edge

(i, j) ∈ E\TS(E) in scenario s ∈ S
tsi,j R+

0 K Outlet temperature caused by temperature source

edge (i, j) ∈ TS(E) in scenario s ∈ S

ns
i,j [0, 1] Relative rotational speed for pump edge (i, j) ∈

Pu(E) in scenario s ∈ S
lsi,j N0 Operating level of boiler edge (i, j) ∈ Bo(E) in sce-

nario s ∈ S

S Set of scenarios

E Set of edges

V Set of vertices

SG(V ) ⊆ V Subset of source vertices

TG(V ) ⊆ V Subset of sink vertices

TS(E) ⊆ E Subset of (ideal) temperature sources

Pu(E) ⊆ E Subset of pump edges

Pi(E) ⊆ E Subset of pipe edges

GV (E) ⊆ E Subset of gate valve edges

Bo(E) ⊆ E Subset of boiler edges

Ch(E) ⊆ TS(E) Subset of chiller edges

Cbuy
i,j R+

0 C Purchase costs of edge (i, j) ∈ E
CkWh

i,j R+
0 M−1L−2CT 2 Energy costs per kilowatt hour for edge (i, j) ∈ E

OLT R+
0 T Expected operational lifetime of the system

Continued on next page
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Table 7.1: Continued from previous page

Symbol Range Dimension Description

F s [0, 1] Portion of time for which scenario s ∈ S is expected

to occur

V̇ max R+
0 L3T−1 General upper bound on the volume flow

Hmax R+
0 ML−1T−2 General upper bound on the pressure

V̇
min/max s

in/out k R+
0 L3T−1 Lower and upper bound on the volume flow entering

and leaving vertex k in scenario s

H
min/max s
k R+

0 ML−1T−2 Lower and upper bound on the pressure at vertex

k ∈ V in scenario s ∈ S
U̇max R+

0 ML2T−3 General upper bound on the thermal energy flow

rate

Tmax R+
0 K General upper bound on the temperature

T
min/max s
k R+

0 K Lower and upper bound on the temperature at ver-

tex k ∈ V in scenario s ∈ S

V̇
min/max
i,j R+

0 L3T−1 Lower and upper bound on the volume flow for edge

(i, j) ∈ E
N

min/max
i,j [0, 1] Lower and upper bound on the rotational speed for

pump edge (i, j) ∈ Pu(E)

Pmax
i,j R+

0 ML2T−3 Upper bound on the power consumption by edge

(i, j) ∈ E
Lmax

i,j N Upper bound on the operating level of boiler edge

(i, j) ∈ Bo(E)

∆U̇full
i,j R+

0 ML2T−3 Change in thermal energy flow rate caused by boiler

edge (i, j) ∈ Bo(E) at full load

T out
i,j R+

0 K Outlet temperature of chiller edge (i, j) ∈ Ch(E)

T
inmin/max
i,j R+

0 K Lower and upper bound on the inlet temperature

of chiller edge (i, j) ∈ Ch(E)

αi,j , βi,j R Regression coefficients for determining the power

consumption by chiller edge (i, j) ∈ Ch(E)

T (∗) R+
0 K Representation of the nonlinear temperature rela-

tionship

∆Hi,j(∗) R ML−1T−2 Representation of the nonlinear relationship for the

change in pressure caused by edge (i, j) ∈ E
Pi,j(∗) R+

0 ML2T−3 Representation of the nonlinear relationship for the

power consumption caused by edge (i, j) ∈ Pu(E)
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7.2.1 Objective Function

The objective function for thermofluid systems remains almost unchanged compared

to fluid systems. The only difference is that the cost parameter for determining

energy costs is now also dependent on the respective component represented by the

indices (i, j) ∈ E, see Objective (7.11). This is necessary in order to be able to

include not only components powered by electrical energy but also other energy

sources such as gas or biomass, which are used frequently in thermofluid systems.

min
∑

(i,j)∈E

(
Cbuyi,j · bi,j

)
+OLT ·

∑
s∈S

(
F s ·

( ∑
(i,j)∈E

CkWh
i,j · psi,j

))
(7.11)

7.2.2 General System Constraints

In the following, Constraints (7.12a) to (7.12i), already present in the fluid system

model, are grayed out but displayed for the sake of completeness. See Chapter 4 for

the associated explanations. Furthermore, it should be mentioned that the thermal

energy flow rate can change along edges due to heating and cooling, i.e. heat trans-

fer, provided to the system by the components that are represented by these edges.

Hence, two variables rather than one are required to model it. The variable u̇in si,j

represents the thermal energy flow rate directly behind the start vertex of an edge,

corresponding to the thermal energy flow rate into the component. Accordingly,

u̇out si,j represents the thermal energy flow rate directly before the end vertex of an

edge, corresponding to the thermal energy flow rate out of the component.

If an edge is not active, the thermal energy flow rate along this edge has to vanish,

see Constraints (7.12j) and (7.12k). Constraint (7.12l) establishes a general upper

bound on the temperature for all vertices. Due to the law of energy conservation,

the net thermal energy flow rate has to be zero for all vertices, except for the source

and sink vertices, see Constraint (7.12m). Hence, it must be ensured that the total

thermal energy flow rate into a vertex is equal to the total thermal energy flow rate

out of that vertex. It is possible that there are exceptions other than source and sink

vertices, such as storage vertices, which are able to store a certain amount of thermal

energy. For these cases, it is necessary to introduce a variable ∆u̇sk representing the

difference between both rates and modify Constraint (7.12m) accordingly. However,

for the setting considered here, it is not necessary. The temperature at a vertex

can be determined by the total volume flow and associated total thermal energy

flow rate into that vertex, see Constraint (7.12n). In this context, it is assumed
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that the density ρ and specific heat capacity c are constant. Since there is no flow

into a source vertex, this vertex is excluded. The nonlinear relationship for the

temperature is modeled as a piecewise linear approximation using the linearization

techniques presented in Section 2.2.3. In contrast to the pure fluid system model,

this implies that nonlinearities are not only present for the component behavior

but also for the general system behavior itself. Furthermore, each flow leaving

the same vertex by an active edge must have the same temperature, which is the

temperature at that vertex, see Constraints (7.12o) and (7.12p). However, if there

is only one flow leaving a vertex, this condition is automatically fulfilled. If an

edge is active, the thermal energy flow rate along this edge changes according to

the change in thermal energy flow rate caused by the associated component, see

Constraints (7.12q) and (7.12r). Equality could be requested here instead since

there is no thermal energy flow rate along an inactive edge due to the Constraints

(7.12j) and (7.12k). However, for illustration purposes, this form is chosen in order

to clarify that these constraints deal with the change of the thermal energy flow rate

for active edges only. Furthermore, there is an exception as two sources of thermal

energy are differentiated: ideal heat sources and ideal temperature sources. As

mentioned above, an ideal heat source maintains a constant heat flow to the system

and an ideal temperature source maintains a constant temperature at its outlet.

In the case of ideal temperature sources denoted by TS(E), Constraints (7.12q)

and (7.12r) are substituted by Constraints (7.12s) and (7.12t). Hence, a constant

temperature is assigned to the end vertex of an edge if this edge is active, see

Constraints (7.12s) and (7.12t). Finally, Constraint (7.12u) enables the setting of

target ranges for the temperature at certain points in the system or can be used to

limit its values. By equating the respective lower and upper bound, target values

instead of ranges can be specified. This is primarily used to specify the temperature

for source and sink vertices.

asi,j ≤ bi,j ∀ s ∈ S, (i, j) ∈ E (7.12a)

v̇si,j ≤ V̇ max · asi,j ∀ s ∈ S, (i, j) ∈ E (7.12b)

hsk ≤ Hmax ∀ s ∈ S, k ∈ V (7.12c)∑
(i,k)∈E

v̇si,k −
∑

(k,j)∈E

v̇sk,j = 0 ∀ s ∈ S, k ∈ V \(SG(V )∪TG(V )) (7.12d)

hsj − hsi ≤ ∆hsi,j +Hmax · (1− asi,j) ∀ s ∈ S, (i, j) ∈ E (7.12e)

hsj − hsi ≥ ∆hsi,j −Hmax · (1− asi,j) ∀ s ∈ S, (i, j) ∈ E (7.12f)
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V̇ min s
out k ≤

∑
(k,j)∈E

v̇sk,j ≤ V̇ max s
out k ∀ s ∈ S, k ∈ V (7.12g)

V̇ min s
in k ≤

∑
(i,k)∈E

v̇si,k ≤ V̇ max s
in k ∀ s ∈ S, k ∈ V (7.12h)

Hmin s
k ≤ hsk ≤ Hmax s

k ∀ s ∈ S, k ∈ V (7.12i)

u̇in si,j ≤ U̇max · asi,j ∀ s ∈ S, (i, j) ∈ E (7.12j)

u̇out si,j ≤ U̇max · asi,j ∀ s ∈ S, (i, j) ∈ E (7.12k)

tsk ≤ Tmax ∀ s ∈ S, k ∈ V (7.12l)∑
(i,k)∈E

u̇out si,k −
∑

(k,j)∈E

u̇in sk,j = 0 ∀ s ∈ S, k ∈ V \(SG(V )∪TG(V )) (7.12m)

tsk = T
( ∑

(i,k)∈E

v̇si,k,
∑

(i,k)∈E

u̇out si,k

)
∀ s ∈ S, k ∈ V \SG(V ) (7.12n)

T (v̇si,j , u̇
in s
i,j ) ≤ tsi + Tmax ·(1−asi,j) ∀ s ∈ S, (i, j) ∈ E (7.12o)

T (v̇si,j , u̇
in s
i,j ) ≥ tsi − Tmax ·(1−asi,j) ∀ s ∈ S, (i, j) ∈ E (7.12p)

u̇out si,j ≤ u̇in si,j +∆u̇si,j+ U̇max ·(1−asi,j) ∀ s ∈ S, (i, j) ∈ E\TS(E) (7.12q)

u̇out si,j ≥ u̇in si,j +∆u̇si,j− U̇max ·(1−asi,j) ∀ s ∈ S, (i, j) ∈ E\TS(E) (7.12r)

tsj ≤ tsi,j + Tmax ·(1−asi,j) ∀ s ∈ S, (i, j) ∈ TS(E) (7.12s)

tsj ≥ tsi,j − Tmax ·(1−asi,j) ∀ s ∈ S, (i, j) ∈ TS(E) (7.12t)

Tmin sk ≤ tsk ≤ Tmax sk ∀ s ∈ S, k ∈ V (7.12u)

7.2.3 Component-Specific Constraints

In the following, the model extensions for fluid components as well as the models

for the exemplary discussed heating and cooling components from Section 7.1 are

presented.

Pumps, Pipes and Gate Valves

The behavior of the components already introduced in the context of pure fluid sys-

tems has to be extended in order to be applicable to the consideration of thermofluid

systems. These components are pumps, pipes and gate valves, see Constraints

(7.13), (7.14) and (7.15). As with the general system constraints, constraints al-

ready present in the fluid system model are grayed out but displayed for the sake

of completeness. See Chapter 4 for the associated explanations.

Pumps, pipes and gate valves are in general assumed to not change the ther-

mal energy flow rate directly. They interact with the thermal characteristics of
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the system only through possible (unintended) heat losses or gains to or from the

environment. In the case of pumps and gate valves, this change is neglected, see

Constraint (7.13i) and (7.15d). For pipes, it is a little bit more complex. However,

for the considered scope, changes caused by pipes are neglected by assuming them

to be well insulated, see Constraints (7.14e). If the application explicitly requires

the consideration of these effects, the change in the thermal energy flow rate caused

by these components ∆u̇si,j needs to be considered. This can be integrated by in-

troducing a suitable function for determining the expected heat losses or gains with

respect to the actual application.

V̇ min
i,j · asi,j ≤ v̇si,j ≤ V̇ max

i,j · asi,j ∀s ∈ S, (i, j) ∈ Pu(E) (7.13a)

Nmin
i,j · asi,j ≤ nsi,j ≤ Nmax

i,j · asi,j ∀s ∈ S, (i, j) ∈ Pu(E) (7.13b)

∆hsi,j ≤ ∆Hi,j
(
v̇si,j , n

s
i,j

)
+ ∆Hmax

i,j · (1− asi,j) ∀s ∈ S, (i, j) ∈ Pu(E) (7.13c)

∆hsi,j ≥ ∆Hi,j
(
v̇si,j , n

s
i,j

)
−∆Hmax

i,j · (1− asi,j) ∀s ∈ S, (i, j) ∈ Pu(E) (7.13d)

0 ≤ ∆hsi,j ≤ ∆Hmax
i,j · asi,j ∀s ∈ S, (i, j) ∈ Pu(E) (7.13e)

psi,j ≤ Pi,j
(
v̇si,j , n

s
i,j

)
+ Pmaxi,j · (1− asi,j) ∀s ∈ S, (i, j) ∈ Pu(E) (7.13f)

psi,j ≥ Pi,j
(
v̇si,j , n

s
i,j

)
− Pmaxi,j · (1− asi,j) ∀s ∈ S, (i, j) ∈ Pu(E) (7.13g)

psi,j ≤ Pmaxi,j · asi,j ∀s ∈ S, (i, j) ∈ Pu(E) (7.13h)

∆u̇si,j = 0 ∀s ∈ S, (i, j) ∈ Pu(E) (7.13i)

bi,j = asi,j ∀s ∈ S, (i, j) ∈ Pi(E) (7.14a)

V̇ min
i,j · asi,j ≤ v̇si,j ≤ V̇ max

i,j · asi,j ∀s ∈ S, (i, j) ∈ Pi(E) (7.14b)

∆hsi,j = ∆Hi,j
(
v̇si,j
)

∀s ∈ S, (i, j) ∈ Pi(E) (7.14c)

psi,j = 0 ∀s ∈ S, (i, j) ∈ Pi(E) (7.14d)

∆u̇si,j = 0 ∀s ∈ S, (i, j) ∈ Pi(E) (7.14e)

V̇ min
i,j · asi,j ≤ v̇si,j ≤ V̇ max

i,j · asi,j ∀s ∈ S, (i, j) ∈ GV (E) (7.15a)

∆hsi,j = 0 ∀s ∈ S, (i, j) ∈ GV (E) (7.15b)

psi,j = 0 ∀s ∈ S, (i, j) ∈ GV (E) (7.15c)

∆u̇si,j = 0 ∀s ∈ S, (i, j) ∈ GV (E) (7.15d)
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7.2 Extension of the Optimization Model for Thermofluid Systems

Boilers

The special type of boiler with discrete, equally spaced operating levels considered

here is used as an example for modeling a heat source edge. Constraint (7.16a)

couples the operating level with the associated activation indicator. Hence, it is

ensured that a non-zero operating level can only occur if the component is active.

Possible restrictions on the minimum and maximum volume flows for a specific

component are expressed by Constraint (7.16b). The pressure loss is neglected, see

Constraint (7.16c). The change in the thermal energy flow rate between its inlet

and outlet is determined by the operating level, where the expression in parenthe-

ses represents the uniform difference of the heat flow transferred to the fluid per

operating level step, see Constraint (7.16d). This is further used to estimate the

energy consumption for the respective energy source per time unit, see Constraint

(7.16e). For this, a constant, load-independent efficiency is assumed.

lsi,j ≤ Lmaxi,j · asi,j ∀s ∈ S, (i, j) ∈ Bo(E) (7.16a)

V̇ min
i,j · asi,j ≤ v̇si,j ≤ V̇ max

i,j · asi,j ∀s ∈ S, (i, j) ∈ Bo(E) (7.16b)

∆hsi,j = 0 ∀s ∈ S, (i, j) ∈ Bo(E) (7.16c)

∆u̇si,j =
(
∆U̇fulli,j /Lmaxi,j

)
· lsi,j ∀s ∈ S, (i, j) ∈ Bo(E) (7.16d)

psi,j = ∆u̇si,j ∀s ∈ S, (i, j) ∈ Bo(E) (7.16e)

Chillers

In the context of this thesis, chillers are an example for a component group modeled

as a temperature source edge. As discussed above, the applied chiller model assumes

a constant design flow rate through the chiller if it is active, see Constraint (7.17a).

The pressure loss can be determined by manufacturer data if necessary, see Con-

straint (7.17b). For the considered chiller model, the outlet temperature of a chiller

is set to the respective component-specific, constant design supply temperature, see

Constraint (7.17c). If a chiller is active, its power consumption is estimated by the

empirical function (7.10) presented in Section 7.1.2 and depends on the difference

between its supply and return temperatures, see Constraints (7.17d) and (7.17e).

Otherwise, the power consumption is forced to vanish by Constraint (7.17f) if the

chiller is not active. Constraints (7.17g) and (7.17h) guarantee that a chiller is only

active if its return temperature is in a certain range. This has two reasons. Firstly,

it can be ensured that a chiller only operates in a certain efficient operating range,

e.g. with high efficiency. Secondly, the empirical relationship for determining the

109



7 Modeling of Thermofluid Systems

power consumption only holds for the temperature range it is calibrated for and

may yield large errors outside of that range. In this context, particular care must be

taken to ensure that the minimum return temperature is strictly above the supply

temperature.

v̇si,j = V̇i,j · asi,j ∀s ∈ S, (i, j) ∈ Ch(E) (7.17a)

∆hsi,j = ∆Hi,j
(
v̇si,j
)

∀s ∈ S, (i, j) ∈ Ch(E) (7.17b)

tsi,j = T outi,j ∀s ∈ S, (i, j) ∈ Ch(E) (7.17c)

psi,j ≤ αi,j · (tsi − tsi,j) + βi,j + Pmaxi,j · (1− asi,j) ∀s ∈ S, (i, j) ∈ Ch(E) (7.17d)

psi,j ≥ αi,j · (tsi − tsi,j) + βi,j − Pmaxi,j · (1− asi,j) ∀s ∈ S, (i, j) ∈ Ch(E) (7.17e)

psi,j ≤ Pmaxi,j · asi,j ∀s ∈ S, (i, j) ∈ Ch(E) (7.17f)

tsi ≥ T inmini,j · asi,j ∀s ∈ S, (i, j) ∈ Ch(E) (7.17g)

tsi ≤ T inmaxi,j + Tmax · (1− asi,j) ∀s ∈ S, (i, j) ∈ Ch(E) (7.17h)

7.3 Application Example

In this section, a computational example for a fictional industrial cooling appli-

cation is presented in order to demonstrate the approach. Instead of examining

single components, the focus is on the interconnection and interaction of multiple

components under varying loads, similar to the design of booster stations in the

case of fluid systems. For this purpose, the system to be optimized is first described

in more detail and subsequently the computational example is discussed.

7.3.1 Application to Industrial Cooling Systems

An interconnection of multiple chillers is called a chiller bank. A common con-

figuration for such mutli-chiller systems with varying cooling demand is known as

the primary-secondary system, sometimes also referred to as decoupled system.

An exemplary schematic diagram is shown in Figure 7.3. The key benefits of this

widely used closed-loop configuration are its simple control compared to other sys-

tem configurations and its mostly fail-safe operation (Taylor, 2002). According to

its name, a primary-secondary system is split into a primary side (generation side)

and a secondary side (distribution side) using a bypass pipe, sometimes also called

“decoupler”. The volume flow rate on the primary side is constant with respect to

the active chillers. The chillers are connected in a parallel arrangement and typi-

cally each chiller is equipped with a dedicated constant-speed pump. In contrast,
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the volume flow rate on the secondary side is variable and can be adjusted using

valves at the loads. Therefore, the secondary side is equipped with a variable-speed

pump allowing to operate at varying volume flow rates. For the design of such

arrangements, the primary volume flow rate is expected to be always greater than

or equal to the secondary flow rate. The opposite scenario is excluded because it

would occur if the system could not meet the demand. If the primary flow equals

the secondary flow, the system is balanced. Otherwise, the bypass pipe is used to

balance both sides. In this scenario, the excess chilled water produced mixes with

the water leaving the loads before returning to the chillers.

Chiller 2

Chiller 1

Chiller 3

Primary

Secondary

Load 1

Load 2

Load 3

Bypass

Figure 7.3: Illustration of a primary-secondary cooling system (based on Chang,
2004)

For demonstrating purposes, the following considerations are restricted to the

thermal aspects of the system. Hence, the distribution aspect is only implicitly

examined, e.g. pumps are not explicitly considered for the sake of simplicity. This

is a common simplification and pumps as well as other auxiliary equipment can

be either accounted for by an empirical function based on the expected system

load or they can be ignored because of their inflexibility and comparably small
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influence on the overall costs (Risbeck et al., 2015). For the system considered

here, this is particular true since the constant-speed pumps of the primary side are

dedicated to individual chillers and therefore their on/off status and the operation

of the variable-speed pump of the secondary side directly relates to the expected

demand, which is assumed to be known a priori for the synthesis. Nevertheless, if

necessary, the inclusion is straightforward if the corresponding characteristics of the

system, e.g. pressure losses and pump characteristics, are known and the increased

computational effort is expected to be reasonable. Alternatively, it is possible to

integrate these decisions in detail as a subsequent step. This would, however,

to some extend undermine the desired integrated approach. As a consequence,

it should be reviewed in advance if the subsequent inclusion is suitable for the

considered application.

The loads, which feed heat into the industrial cooling system, can be modeled as

a lumped heat source. Hence, all thermal loads resulting from individual processes

or machines are aggregated and represented as one large overall load. This is

a reasonable representation since the chiller bank supplies a certain amount of

chilled water at a certain temperature to the loads and the same amount of chilled

water is returned to the chiller bank as a combined flow. Furthermore, as it is

common in practice with the selected system design, it is not only assumed that

the return temperature, due to the parallel arrangement, is the same for all chillers

but also that all active chillers provide the same supply temperature (Kapoor,

2013). Therefore, the temperature of the chilled water entering the load is assumed

to be known and the supply temperature becomes a constant parameter.

7.3.2 Computational Example

The considered optimization task involves a complete redesign of the chiller bank of

an existing system. This means that no chillers are installed. However, the overall

system design scheme, i.e. the primary-secondary arrangement, is not in question.

For the computational example, a maximum thermal load of 5000 kW is assumed.

Based on this, load scenarios with associated time shares are derived. A key char-

acteristic for industrial sites, as considered here, is that the thermal load originates

primarily from production processes and therefore permanent and year-round cool-

ing is required. Accordingly, five different load scenarios that occur throughout the

system’s operational lifetime are considered, as summarized in Table 7.2.

The individual chillers of the chiller bank are modeled using the chiller model

presented at the beginning of the chapter. According to this model, the volume
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Table 7.2: Summary of expected thermal loads Q̇, required volume flows V̇ and the
relative time shares F for the different load scenarios of the computa-
tional example

Scenario Q̇ [kW ] V̇ [m3/h] F

1 5000 342 0.125
2 4250 306 0.250
3 3500 270 0.250
4 2750 234 0.250
5 2000 198 0.125

flow and supply temperature of a chiller are parameters and the return temperature

changes with respect to the system loads. Hence, it is assumed that each chiller sup-

plies chilled water at a fixed temperature of 5◦C in all load scenarios. Furthermore,

it is specified that the return temperature has to be in the range between 12◦ and

18◦C to ensure efficient operation of the chillers, also taking into account operating

limits. Building on these basic assumptions, four different exemplary chiller types

are considered for the computational example. A summary of the parameters used

for the individual chiller types is shown in Table 7.3. In this context, it is assumed

that the power consumption of the chillers also comprises auxiliary equipment.

Figure 7.4 illustrates the COP, i.e. the ratio between the cooling provided and the

power required, as a function of the return temperature for the considered chiller

types. As can be seen, efficiency increases with increasing return temperature since

a reduced return temperature is equivalent to part-load operation. Furthermore,

depending on the return temperature, different chiller types are most efficient. This

representation based on the return temperature can be used as an alternative to

using the difference between the supply and return temperature here since the sup-

ply temperature is fixed and assumed to be the same for each chiller and thus the

efficiency of the chillers can be expressed by the return temperature alone.

Table 7.3: Nominal cooling capacities Q̇N , design volume flow rates V̇ N and regres-
sion parameters α, β of the available chiller types

Types Q̇N [kW ] V̇ N [m3/h] α [kW/◦C] β [kW ]

C1 750 49.68 4.27 59.85
C2 850 56.27 7.72 41.31
C3 1500 99.32 10.41 106.63
C4 1750 115.88 17.51 56.91
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Figure 7.4: Overview of the COP as a function of return temperature Tchwr at
constant supply temperature Tchws = 5◦C for the available chiller types

The initial investment for each chiller type is determined based on the nominal

cooling capacity using an empirical formula proposed by Bahl et al. (2016):

Cbuy
(
Q̇N
)

= 0.8102 · Q̇N ·
(

179.63 + 4991.3436 ·
(
Q̇N
)−0.6794

)
(7.18)

In the context of this formula, Q̇N [kW] is the nominal cooling capacity of a chiller

and Cbuy
(
Q̇N
)

[e] is the investment as a function of the nominal cooling capacity.

Furthermore, it is assumed that for simplicity the investment also includes pro rata

costs for auxiliary equipment.

For the considered system, it is specified that a maximum of two chillers can be

installed for each of the four chiller types. Hence, eight chillers are available (C1.1,

C1.2, C2.1, ..., C4.2). The electricity costs are estimated at e0.16 per kWh. It is

assumed that the system is designed for an operational lifetime of ten years with

an average of 250 operating days per year and two shifts of eight hours per day.

7.3.3 Computational Results

In the following, the obtained results are presented. The runtime was in the range

of seconds and is therefore not discussed further. The studied example is rather

intended to demonstrate the approach as an academic example and acts as a proof

of concept that provides a baseline for further investigations.
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According to the optimal solution, four of the available eight chillers are to be

purchased. These are each both available chillers of the chiller types two and four.

This results in expected total costs of e4 822 717. As anticipated for an energy-

intensive application such as cooling, the estimated energy costs of e3 907 064 far

exceed the investment of e915 653. However, the investment still represents about

19% of the total costs.

Table 7.4: Overview of the active chillers, return temperatures Tchwr and volume
flows through the decoupler V̇dec for the different load scenarios of the
computational example

Scenario Active chillers Tchwr [◦C] V̇dec [m3/h]

1 C2.1, C2.2, C4.1, C4.2 17.47 2.30
2 C2.1, C2.2, C4.1, C4.2 15.66 38.30
3 C2.2, C4.1, C4.2 15.46 18.04
4 C2.2, C4.1, C4.2 13.21 54.04
5 C4.1, C4.2 12.39 33.77

Total C2.1, C2.2, C4.1, C4.2

As shown in Table 7.4, the installed chillers are used in such a way that the

flow through the decoupler is minimized and thus the temperature in the return

is maximized because the efficiency of a chiller is assumed to increase with the

return temperature. In this way, as the demand decreases, the chillers are gradually

deactivated to better match the demand. In the first two load scenarios, all four

installed chillers are used. In the third and fourth scenario, one of the previously

active type two chillers is switched off due to decreasing demand. In the fifth

scenario, only both larger chillers are used. Hence, the larger chillers of type four

are used to cover the system’s base load, while the smaller chillers are activated

during peak load periods.

The obtained results underline that there is a need for reliable guidance since

not only the efficiency of the individual chillers themselves together with other con-

straints, e.g. operating limits and investment, have to be considered simultaneously

when deciding which chillers to install and activate but also the influence of these

decisions on the efficiency of other chillers in the system.
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In the previous considerations, it was assumed that similar loads at different points

in time can be aggregated to so-called load scenarios because the state of a system

at a certain point in time did not depend on the temporal sequence, i.e. the state

of the system was independent of the state at neighboring points in time. However,

this approach is not applicable when chronology for adjacent points in time is

required and the associated system states are therefore coupled. This is usually

the case when considering storage components, components with extensive start-

up and run-down phases, generally delayed system responses, or the like. The

approaches and explanations presented in the following focus on the utilization of

storage components, particularly thermal energy storage, although they may also

be adaptable for other purposes.

As discussed in Section 2.2.4, the requirement of chronology increases the “model

complexity” (see Bahl et al., 2018) compared to the previous considerations. There-

fore, the use of an appropriate time representation is a crucial point. According

to Floudas and Lin (2005), two main categories exist in literature—discrete-time

and continuous-time representations. Discrete-time representations, which are the

most widely used approach in literature, are based on time discretization. The

observation period is thus divided into an a priori fixed number of time steps with

a uniform length. All decisions to be made for the system, e.g. switching of compo-

nents, and also changes in external conditions, e.g. changing loads, are associated

with the start of a time step and can only be considered at these points in time.

The advantages of this representation are mainly the straightforward implementa-

tion and simple formulation, which typically leads to well-structured optimization

problems (Floudas and Lin, 2005).

Due to its simplicity and widespread use, a discrete-time representation is used

in this chapter to extend the considerations to systems with storage components.

Later, in Chapter 9, a continuous-time approach is provided as an alternative.
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8.1 Thermal Energy Storage

For heating and cooling applications, the term “storage” usually correlates to stor-

ing thermal energy. In this context, thermal energy storage (TES) is used to decou-

ple thermal demand and generation in order to compensate for fluctuations. The

task of TES is therefore to store surplus thermal energy with as little loss as possi-

ble and to make it available as needed at a later time. This can improve the overall

efficiency of a system as capacity requirements as well as operational costs of the

generation side can be reduced (Walmsley et al., 2009). However, this is opposed

by an increased complexity of the system and its control, investment for the TES

tank and auxiliary equipment as well as potential storage losses.

Different technologies exist in the field of TES. In this work, the considerations

are focused on storage tanks filled with liquids. A common example is the storage

of cold water in large tanks for later use in industrial cooling systems. This type

of TES falls into the class of so-called sensible heat storage, which is characterized

by the fact that the storage medium only changes its sensible temperature, i.e. no

phase transitions take place. Also, only TES without internal (built-in) heating or

cooling components is considered.

In this regard, two ideal tank models with opposite characteristics can be distin-

guished in general. These are ideally mixed and ideally stratified tanks. Both are

shown schematically in Figure 8.1. The ideally mixed tank has a homogeneous tem-

perature, whereas the ideally stratified tank has two temperature zones of constant

temperature (Baeten et al., 2014). Both variants are an idealized representation of

the actual behavior. Depending on the design and operating conditions, however,

the behavior can approach one or the other (Haller et al., 2009). In the following,

stratified storage is assumed since stratification is often utilized in practice.

As indicated above, stratified tanks store fluid, e.g. water, simultaneously at two

(or more) different temperatures. This is achieved by warmer water accumulating

at the top of the tank due to the lower density and colder water accumulating at the

bottom of the tank due to the higher density (Walmsley et al., 2009). The layers

are separated from each other by an intermediate region, the so-called thermocline.

This region is characterized by a sudden, steep change in temperature (Ma et al.,

2009). Schematically, this is shown for an ideally stratified tank as a function of

the position along the tank height in Figure 8.2. The actual position can move

significantly up or down due to changes in thermal loads, such as variations in pro-

duction rates or the operation of different production lines in industrial applications
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Figure 8.1: Illustration of different idealized storage models and associated temper-
ature distribution along the height of the storage z, where darker colors
represent colder fluid and lighter colors represent warmer fluid

(Walmsley et al., 2009). In the case of ideally stratified storage, the thermocline

is infinitely thin. In practice, the rise is less steep and a thermocline of a certain

thickness is formed, depending on how well the stratification can be achieved. In

the following, however, it is assumed that the considered storage components are

subject to a negligible interlayer mixing so that the idealized case is approximately

achieved and thus represents a suitable simplification.
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Figure 8.2: Schematic representation of the temperature profile and thermocline for
an ideally stratified TES

For a two-layer stratified TES model, as considered here, warmer fluid, i.e.

warmer than the thermocline, is assumed to be aggregated above the thermocline

and colder fluid is assumed to be aggregated below the thermocline, resulting in

a system that can be described by four states (Ma et al., 2009). The associated

state variables are the temperatures of the warmer and colder layer and their as-

sociated height in the tank, or since it is expected that the geometry of the tank
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is known, the volumes of the two layers. The time-dependent description of these

states technically involves differential equations. However, these are discretized in

time, assuming constant conditions for the time steps, so that mathematical pro-

gramming techniques can still be applied. Accordingly, a coupling of the respective

states results for neighboring points in time. Depending on whether the tank is

being charged or discharged, warmer fluid is stored in the top layer and colder fluid

is withdrawn from the bottom layer or vice versa. For this purpose, it is assumed

that the tank is completely filled with fluid at all times, with the sum of the volumes

of the individual layers corresponding to the total volume of the tank. Accordingly,

a change in volume of one of the layers, due to inflows or outflows during charging

and discharging, causes a change in volume of the other layer to the same extent

but with the opposite sign.

8.2 Extension of the Optimization Model for the

Discrete-Time Representation

In the discrete-time representation considered in this chapter, there are no aggre-

gated load scenarios as before since the temporal sequence of time steps is important

because neighboring time steps are coupled by the storage levels of storage compo-

nents. This is ensured by introducing the ordered set of time steps T . Thus, the set

of load scenarios S is replaced by the time series T . However, this does not change

the system behavior in general. Therefore, only the modified objective and the

model extension for considering the new component type, i.e. a two-layer stratified

thermal energy storage tank, are presented and described below. The remaining

constraints can be obtained straightforwardly by substituting the load scenarios

s ∈ S used in the model for thermofluid systems from Chapter 7 with time steps

t ∈ T . Furthermore, it is worth highlighting that it is not mandatory to use the

presented TES model to apply the general approach. Instead, the TES model can

be exchanged for other storage models if needed, e.g. to consider an ideally mixed

tank or a stratified storage with layers of constant volume (see e.g. Schütz et al.,

2015) since the general system behavior remains largely unchanged. All used sets,

variables and parameters of the extension are shown in Table 8.1. If applicable, the

dimension of an entry is specified using the base quantities mass (M), length (L),

currency (C), time (T ) and temperature (K).
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Table 8.1: Variables, sets and parameters of the optimization model for thermofluid
systems with TES using the discrete-time approach

Symbol Range Dimension Description

bi,j {0, 1} Purchase indicator of edge (i, j) ∈ E
ati,j {0, 1} Activation indicator of edge (i, j) ∈ E in time step t ∈ T
pti,j R+

0 ML2T−3 Power consumption of edge (i, j) ∈ E in time step t ∈ T
v̇ti,j R+

0 L3T−1 Volume flow along edge (i, j) ∈ E in time step t ∈ T
u̇in t
i,j R+

0 ML2T−3 Thermal energy flow rate directly after the start of edge

(i, j) ∈ E in time step t ∈ T
u̇out t
i,j R+

0 ML2T−3 Thermal energy flow rate directly before the end of edge

(i, j) ∈ E in time step t ∈ T
∆ht

i,j R ML−1T−2 Change in pressure caused by edge (i, j) ∈ E in time

step t ∈ T

vta, v
t
b R+

0 L3 Stored volume of storage layer a and b for TES with

edges (a, b), (b, a) ∈ TES(E) in time step t ∈ T
∆v̇ta, ∆v̇tb R L3T−1 Net volume flow rate into storage layer a and b for TES

with edges (a, b), (b, a) ∈ TES(E) in time step t ∈ T
ut
a, u

t
b R+

0 ML2T−2 Thermal energy of storage layer a and b for TES with

edges (a, b), (b, a) ∈ TES(E) in time step t ∈ T
∆u̇t

a, ∆u̇t
b R ML2T−3 Net thermal energy flow rate into storage layer a and b

for TES with edges (a, b), (b, a) ∈ TES(E) in time step

t ∈ T
tta, t

t
b R+

0 K Temperature of storage layer a and b for TES with edges

(a, b), (b, a) ∈ TES(E) in time step t ∈ T

T Ordered set of time steps

E Set of edges

V Set of vertices

TES(E) ⊆ E Subset of TES edges

Cbuy
i,j R+

0 C Purchase costs of edge (i, j) ∈ E
CkWh

i,j R+
0 M−1L−2CT 2 Energy costs per kilowatt hour for edge (i, j) ∈ E

OLT N0 Expected operational lifetime of the system, i.e. number

of repetitions of time series T

∆τ t R+
0 T Length of time step t ∈ T

V̇ max R+
0 L3T−1 General upper bound on the volume flow

V TES
a,b R+

0 L3 Total volume of TES with edges (a, b), (b, a) ∈ TES(E)

T (∗) R+
0 K Representation of the nonlinear temperature relation-

ship
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8.2.1 Objective Function

The Objective (8.1) remains largely unchanged. However, time steps are now con-

sidered instead of load scenarios. Accordingly, a parameter for the length ∆τ t of a

time step t ∈ T is used for the determination of the energy costs (right-hand term).

In addition, the operational lifetime parameter OLT no longer indicates the total

operational lifetime of a system, but how often the time series T , which occurs e.g.

daily, is repeated during the operational lifetime of the system.

min
∑

(i,j)∈E

(
Cbuyi,j · bi,j

)
+OLT ·

∑
t∈T

(
∆τ t ·

( ∑
(i,j)∈E

CkWh
i,j · pti,j

))
(8.1)

8.2.2 Thermal Energy Storage Constraints

The two-layer stratified TES, described by Constraints (8.2), is modeled as a special

type of component since it has the ability to store fluid. Instead of only one edge, it

is modeled using two edges, representing the operation in charging and discharging

mode. Moreover, there is no direct flow along the edges from one vertex to the other,

i.e. no flow from one layer to the other, because the contents of the two layers are

separated by the thermocline and are assumed not to mix directly. Instead, a flow

into one of the vertices results in an equal amount of flow leaving the other vertex,

causing the thermocline to move along the height of the tank, i.e. increasing the

volume of the inlet layer and decreasing the volume of the outlet layer, as illustrated

in Figure 8.3.

Layer “a”

Layer “b”

Figure 8.3: Illustration of thermocline movement for a two-layer stratified TES

If a TES tank is bought, both of its edges, representing the charge and discharge

mode, are bought, see Constraint (8.2a). However, a TES tank cannot be charged

and discharged at the same time, see Constraint (8.2b). Therefore, flow into or

out of a respective layer can only occur if the corresponding mode, i.e. charging or
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discharging, is active, see Constraints (8.2c) to (8.2f). In other words, it is ensured

that, for example, only colder fluid is taken from and warmer fluid is stored in the

designated layer of a TES tank in discharge mode and vice versa in charge mode.

As explained above, a TES tank is assumed to be always fully filled with fluid.

Hence, the volume flow entering one layer is equal to the flow leaving the other

layer. Accordingly, Constraint (8.2g) ensures that the sum of the volumes of both

layers is always equal to the total volume of a TES tank. The net volume flow into

a layer results from the difference of flows into and out of this layer, see Constraints

(8.2h) and (8.2i). For this, at most one of the two flow terms for each layer is

not equal to zero at the same time due to Constraints (8.2c) to (8.2f) described

above. Depending on whether flow enters or leaves a layer, the net volume flow

can be positive or negative. Both constraints are shown for the sake of a clearer

presentation. However, the connection via ∆v̇ta = −∆v̇tb could also be used. The

volume of each layer at time t depends on its volume at the previous time step t−1

and the net volume flow into the layer multiplied by the length of the time step,

see Constraints (8.2j) and (8.2k). Since there is no predecessor for the first time

step, initial charge levels need to be defined here. As before, one of the constraints

would suffice, due to Constraint (8.2g), but both are stated explicitly for a more

intuitive representation. The net thermal energy flow rate into a layer results

from incoming and outgoing thermal energy flow rates, see Constraints (8.2l) and

(8.2m). At most one of the two terms is non-zero and the net rate can be either

positive or negative. In the presented case, no loss terms are considered. This is a

reasonable simplification for small heat losses, e.g. for a very good isolation or short

time intervals. Nevertheless, if necessary, additional terms can be added to account

for losses to the environment or heat transfer between the two layers. However,

these terms would be nonlinear in the case under consideration. This would require

further linearizations, which in turn would lead to additional computational effort.

Constraints (8.2n) and (8.2o) state that the thermal energy of a layer at time step

t depends on the thermal energy of the previous time step t − 1 and the net rate

of thermal energy into that layer multiplied by the length of the time step. In

addition, again initial conditions have to be defined since the first time step has

no predecessor. As a special case, the temperature of a layer represented by the

respective vertex is determined by its volume and thermal energy at time step

t, taking into account the associated fluid properties, see Constraints (8.2p) and

(8.2q). The nonlinear temperature relationship is modeled as before in the form

of a piecewise linear approximation using the linearization techniques presented
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8 Discrete-Time Representation for Thermofluid Systems

in Section 2.2.3. Potential pressure losses are neglected as a simplification for

both the charge as well as the discharge mode, see Constraint (8.2r), but suitable

loss terms can be added if required. Finally, TES components are not a powered

component type themselves and therefore have no associated power consumption,

see Constraint (8.2s).

ba,b = bb,a ∀ (a, b) ∈ TES(E) (8.2a)

ata,b + atb,a ≤ 1 ∀ t ∈ T, (a, b) ∈ TES(E) (8.2b)∑
(i,b)∈E:i 6=a

v̇ti,b ≤ (1− ata,b) · V̇ max ∀ t ∈ T, (a, b) ∈ TES(E) (8.2c)

∑
(a,j)∈E:j 6=b

v̇ta,j ≤ (1− ata,b) · V̇ max ∀ t ∈ T, (a, b) ∈ TES(E) (8.2d)

∑
(i,a)∈E:i 6=b

v̇ti,a ≤ (1− atb,a) · V̇ max ∀ t ∈ T, (a, b) ∈ TES(E) (8.2e)

∑
(b,j)∈E:j 6=a

v̇tb,j ≤ (1− atb,a) · V̇ max ∀ t ∈ T, (a, b) ∈ TES(E) (8.2f)

vta + vtb = V TES
a,b ∀ t ∈ T, (a, b) ∈ TES(E) (8.2g)

∆v̇ta =
∑

(i,a)∈E:i 6=b

v̇ti,a −
∑

(a,j)∈E:j 6=b

v̇ta,j ∀ t ∈ T, (a, b) ∈ TES(E) (8.2h)

∆v̇tb =
∑

(i,b)∈E:i 6=a

v̇ti,b −
∑

(b,j)∈E:j 6=a

v̇tb,j ∀ t ∈ T, (a, b) ∈ TES(E) (8.2i)

vta = vt−1
a + ∆v̇ta ·∆τ t ∀ t ∈ T, a ∈ V : (a, b) ∈ TES(E) (8.2j)

vtb = vt−1
b + ∆v̇tb ·∆τ t ∀ t ∈ T, b ∈ V : (a, b) ∈ TES(E) (8.2k)

∆u̇ta =
∑

(i,a)∈E:i 6=b

u̇out ti,a −
∑

(a,j)∈E:j 6=b

u̇in ta,j ∀ t ∈ T, (a, b) ∈ TES(E) (8.2l)

∆u̇tb =
∑

(i,b)∈E:i 6=a

u̇out ti,b −
∑

(b,j)∈E:j 6=a

u̇in tb,j ∀ t ∈ T, (a, b) ∈ TES(E) (8.2m)

uta = ut−1
a + ∆u̇ta ·∆τ t ∀ t ∈ T, a ∈ V : (a, b) ∈ TES(E) (8.2n)

utb = ut−1
b + ∆u̇tb ·∆τ t ∀ t ∈ T, b ∈ V : (a, b) ∈ TES(E) (8.2o)

tta = T (vta, u
t
a) ∀ t ∈ T, a ∈ V : (a, b) ∈ TES(E) (8.2p)

ttb = T (vtb, u
t
b) ∀ t ∈ T, b ∈ V : (a, b) ∈ TES(E) (8.2q)

∆hta,b = ∆htb,a = 0 ∀ t ∈ T, (a, b) ∈ TES(E) (8.2r)

pta,b = ptb,a = 0 ∀ t ∈ T, (a, b) ∈ TES(E) (8.2s)
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8.3 Application Example

In this section, the computational example of a fictional industrial cooling applica-

tion introduced in Section 7.3 is again used to demonstrate the approach. However,

in contrast to the previous chapter, the integration of a TES tank, as described

above, is considered. For this purpose, the general system structure is described

first. Afterwards, the adapted computational example is examined and the differ-

ences to the system without storage are discussed.

8.3.1 Application to Industrial Cooling Systems

The basic system structure is similar to the previous case without storage and thus

most explanations and assumptions given there also apply here. However, in the

considered case, there is a TES tank that is integrated into the system so that

the cooling no longer has to be provided just-in-time, but chilled water can be

stored in the TES tank for later use. Accordingly, in case of excess production of

chilled water, a certain amount is stored in the cold layer of the TES tank, forcing

warmer water from the warm layer into the return of the system. Conversely, in

case of a shortfall in production, chilled water is withdrawn from the cold layer

of the TES tank and warmer water from the return is stored in the warm layer.

Therefore, compared to the previous situation with the bypass pipe, both possible

flow directions have to be considered. This is illustrated in Figure 8.4. As can

be seen, depending on the direction of flow, the TES tank is either in charging or

discharging mode.

8.3.2 Computational Example

In order to be able to compare the following computational example with the exam-

ple examined in Section 7.3, the redesign of the chiller bank of an existing system

is examined. Accordingly, no chillers are installed. However, a TES tank with

known characteristics already exists for the system. Furthermore, in contrast to

the previous example, chronological time steps have to be considered due to the

consideration of storage. Therefore, eight discrete time steps with a fixed length of

two hours each were set up such that the overall time series considered corresponds

to the load scenarios from the previous example in terms of expected loads and

frequency of occurrence. These are shown in Table 8.2. It is assumed that the

time series under consideration represents one day with two eight-hour shifts, i.e.

16 hours of operation per day. In accordance with the example from Section 7.3,
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Chiller 2

Chiller 1

Chiller 3

Load

Warm layer

Cold layer

TES

(a) Charging of TES

Chiller 2

Chiller 1

Chiller 3

Load

Warm layer

Cold layer

TES

(b) Discharging of TES

Figure 8.4: Illustration of a cooling system with stratified TES in charging and
discharging mode (based on Deng et al., 2015)

the system is designed for an operational lifetime of ten years with an average of

250 operating days per year and estimated electricity costs of e0.16 per kWh.

With regard to the available chillers, a maximum of two chillers from each of the

four chiller types introduced in Section 7.3 can be installed, i.e. eight chillers in

total (C1.1, C1.2, C2.1, ..., C4.2). The performance characteristics and purchase

costs of the chillers remain unchanged, see Table 7.3. Each chiller supplies chilled

water at a fixed temperature of 5◦C in all time steps. The return temperature is

required to be in the range of 12◦ to 18◦C to ensure efficient operation.

The already installed TES tank, which is intended to remain in operation, has

a total volume of 235 m3. For this, it is specified that the tank is completely dis-

charged at the beginning of each day, i.e. at the beginning of the time series, which

implies that the water in the tank has a uniform temperature of 18◦C. Accord-

ingly, it is assumed that the residual chilled water stored in the tank warms up
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Table 8.2: Summary of expected thermal loads Q̇ and required volume flows V̇ for
the different time steps of the computational example

Time step Q̇ [kW ] V̇ [m3/h]

1 2000 198
2 2750 234
3 3500 270
4 4250 306
5 5000 342
6 4250 306
7 3500 270
8 2750 234

overnight at the end of each day, i.e. at the end of the time series, so that the tank

is completely discharged the next morning.

8.3.3 Computational Results

For the presented example, an optimal solution was found with the runtime being

in the range of minutes. Therefore, the runtime is not discussed in detail for the

considered example. However, further tests have shown that the runtime increases

rapidly with a higher level of detail and larger instances.

According to the optimal solution found, three of the available eight chillers are

installed. The installed chillers are one chiller of type two and both chillers of

type four, as shown in Table 8.3. Thus, the topology in the considered case is

close to the solution of the computational example without storage components

from Section 7.3, see Table 7.4. In contrast, however, only one of the type two

chillers is purchased. With the solution found, the installed cooling capacity can be

significantly reduced compared to the case without storage. The maximum available

cooling capacity of the optimal system is only 4350 kW, which is significantly lower

than the maximum thermal load of 5000 kW. Thus, as expected, the decoupling of

generation and demand can reduce the capacity requirements for the system.

Overall, the total costs are e4 592 041, of which 83.52% are energy costs. Ac-

cordingly, the expected energy costs are e3 835 207 and the investment is e756 834.

Therefore, by using the TES tank, a total saving of e230 676 or 4.78% can be

achieved compared to the system obtained in Section 7.3. It is noteworthy that

68.84% of this saving is due to the reduced initial investment. One reason for

the comparatively low savings in energy costs can be attributed to the assumption

that the storage is always fully discharged at the beginning of the time series, as
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Table 8.3: Overview of the active chillers and TES modes for the different time
steps of the computational example

Time step Active chillers TES mode

1 C4.1, C4.2 charge
2 C2.1, C4.1, C4.2 charge
3 C2.1, C4.1, C4.2 charge
4 C2.1, C4.1, C4.2 discharge
5 C2.1, C4.1, C4.2 discharge
6 C2.1, C4.1, C4.2 discharge
7 C2.1, C4.1, C4.2 charge
8 C4.1, C4.2 discharge

Total C2.1, C4.1, C4.2

this somewhat limits the degrees of freedom of the storage and tends to underes-

timate its benefits. However, for the approach considered, it is necessary to define

the charging level at the beginning of the time series and the assumption made

provides a plausible starting point.

The active chillers in each time step are shown in Table 8.3. It can be seen that all

installed chillers are used during most time steps, except for the first and last time

step when the smaller chiller is not active. This implies that the cooling provided

by the chillers remains relatively constant due to the TES tank. Furthermore,

Table 8.3 also gives an overview on the operating mode of the TES tank in each

time step. For this, Figure 8.5 provides additional insight by plotting the charging

level of the TES tank as a function of time. As can be seen, the TES tank is

almost fully charged in the first three time steps due to the comparatively low

demand. The stored chilled water is then used in the following three time steps

with comparatively high demand for which the installed cooling capacity is not

sufficient to meet the demand just-in-time. Finally, at the end of the time series,

the TES tank is charged again in the penultimate time step and discharged in

the last time step. The behavior in the last two time steps can be explained by

the inflexibility of the chillers since it is not possible to match the chilled water

generation exactly with the demand despite sufficient installed cooling capacity.

In addition, Figure 8.5 reveals that at the end of the time series, there is still an

unused residual charge of about 25% for the TES tank, which dissipates overnight.

The reason for this is that the discrete-time approach requires an a priori fixed time

step length, which is problematic here because the system must operate in a specific

operating mode for at least two hours. As a result, the benefits of the TES tank
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Figure 8.5: Charging level of the TES tank as a function of time for the computa-
tional example

cannot be fully exploited. Accordingly, this means that the theoretically achievable

savings cannot be fully realized in the present example and, supplementing the

above assumption, the obtained savings should rather be regarded as a conservative

estimate.
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In general, discrete-time representations have two major disadvantages, as discussed

in detail by Floudas and Lin (2005). Because of the a priori defined time steps

with fixed, uniform length, a discrete-time representation is only an approximation

of time, whose resolution depends on the number of time steps and their length.

The length of the time steps is therefore often based on the smallest time period

considered or on the greatest common divisor of all time periods since otherwise

only sub-optimal solutions can be obtained. However, this leads to a large number

of time steps, particularly for a short time step length or large observation periods,

which in turn leads to large combinatorial problems. This is especially the case for

real-world applications. Therefore, a considerable trade-off between accuracy and

computational effort is typically required (Floudas and Lin, 2005).

Due to the drawbacks mentioned above, this chapter provides a continuous-time

representation as an alternative approach. Continuous-time representations are

generally based on the concept of variable time intervals represented by continuous

timing variables. Therefore, it is possible that decisions to be made for the system

as well as changes in external conditions can potentially take place at any time

during the observation period. Compared to a discrete-time representation, a large

fraction of redundant time steps can be eliminated, e.g. adjacent time steps for

which both the control of the system and the external conditions do not change,

but which are necessary because of the required uniform time resolution. This

usually leads to smaller problems but is typically opposed by more complicated

model structures (Floudas and Lin, 2005).

The challenges for the approach presented in the following are, on the one hand,

estimating the number of variable time intervals needed and, on the other hand,

dealing with the additional nonlinearities caused by the variable nature of the in-

tervals compared to the discrete-time representation.
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9.1 Estimating the Number of Intervals

The challenge in estimating and adjusting the number of time intervals is that while

the length of the time intervals is variable, their number has to be determined a

priori. If, on the one hand, the number of intervals is underestimated, inaccurate

solutions or even infeasibility may result. On the other hand, if the number of

intervals is overestimated, unnecessarily large instances arise. In the following, it is

therefore shown how this challenge can be addressed for the considered scope.

To demonstrate the approach better, the example of a simple storage tank is used

for illustration purposes. However, the application for other use cases, e.g. other

storage components, is straightforward. In general, the change of the filling level

for the considered storage tank during a certain time interval ∆τ is given by:

∆V =

∫ τ+∆τ

τ
V̇ (τ) dτ (9.1)

Assuming constant derivatives, i.e. constant flow, within this interval, the above

equation simplifies to:

∆V = V̇ ·∆τ (9.2)

In this context, there are two cases where the assumption of constant flows in

the system for a considered time interval is not reasonable. The first case occurs

when the external conditions, e.g. the loads, change. The second case occurs when

the operation of the installed storage components changes, e.g. the start or end

of a charging or discharging process, even if the external conditions are constant.

Therefore, it is important to ensure that both the external conditions and the

operation of the storage can be assumed to be constant during the time intervals

considered.

As before, it is assumed that the timings and thus also the number of changes

in external conditions are known in advance. In the following, the associated time

intervals are referred to as time steps, following the terminology used in the discrete-

time representation. What is not known in advance, however, are the timings and

number of possible changes within these time steps that are caused by storage

components. For this purpose, each time step with constant external conditions is

divided into a certain number of so-called sub-intervals with variable length. Hence,

the remaining challenge is to estimate the number of sub-intervals during a time

step reasonably.
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Key Assumption. If there are constant external conditions, a storage component

should strive to discharge as early as possible and to charge as late as possible

during this time step to avoid energy losses. Even if potential energy losses are not

explicitly considered, in many cases, it is reasonable to assume that the charging

or discharging takes place in a continuous process instead of multiple, interrupted

processes. As a suitable technical simplification, it is therefore assumed that for

each storage component, there is the possibility for charging and discharging this

component in each time step.

Accordingly, in a system with one storage component, three cases can occur: The

storage component can be charged, discharged or the system can cover the load

without using the storage component. In the case of multiple storage components,

two additional cases are considered for each additional storage component, repre-

senting the charging and discharging of that storage component. This provides a

reasonable starting point for the estimation of the number of required sub-intervals

per time step, which can usually be significantly reduced due to the assumptions

made. With this, the number of sub-intervals considered (nsub−intervals) is related to

the number of storage components (nstorage) and an upper bound for the estimation

of this number is given by:

nsub−intervals = 2 · nstorage + 1 (9.3)

The general approach is illustrated in Figure 9.1 using a system with one simple

storage tank that is assumed to be fully charged at the beginning of the observation

period. In Figure 9.1, the charging level of the tank is plotted as a function of time,

with the entire observation period divided into three consecutive time steps ∆τ with

constant external conditions during each time step. As discussed above, three sub-

intervals for each time step are considered. For the first time step (∆τ1), all three

sub-intervals are actually used: one for discharging the component (i1,1), one while

there is no change for the component (i1,2), and one for charging the component

(i1,3). In contrast, for the second time step (∆τ2), it can be seen that the number of

estimated sub-intervals for a time step is only an upper bound. While all three sub-

intervals are used in the first time step, one sub-interval (i2,1) would be sufficient

for the second time step because the storage component is neither charged nor

discharged during this time step. However, since this cannot be known in advance,

three sub-intervals are nevertheless assumed here and assigned to the time step,

with the remaining two sub-intervals not shown (i2,2, i2,3) consequently having a

133
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length of zero. A similar situation is shown for the third time step (∆τ3), where two

of the three available sub-intervals (i3,1, i3,2) are used, while the remaining third

sub-interval (i3,3) has a length of zero.

i1,1 i1,2 i1,3

∆τ 1 ∆τ 2

i2,1

∆τ 3

i3,1 i3,2

Time τ

C
h

a
rg

e

Figure 9.1: Illustration of the number of time steps and sub-intervals for exemplary
charging and discharging processes of a storage component

With the presented approach, the number of time intervals increases only linearly

with the number of storage components. Compared to the discrete representation

with a similar resolution, this results in a smaller problem size because the resolution

does not depend on the length of a predefined time step. Instead, time intervals

can be potentially associated with any point in time where a change occurs in the

system. Although it is not universally applicable, there are important applications

in the field of fluid and thermofluid systems: thermal energy storage, storage tanks,

and also delay effects resulting from long pipe lengths if these pipes are considered

as a kind of storage component.

However, there are exceptions where the approach has to be modified considerably

or cannot be used at all. One such exception is component cycling. This behavior,

which is undesirable in many cases, can occur, for example, if a component on

the generation side is significantly oversized and a storage component is therefore

used to smooth its output. In this case, the component is switched on and off

in short intervals multiple times and the storage is fully charged and discharged

again in short succession. In the following, it is therefore assumed that the storage

components do not aim at this kind of immediate smoothing of generation, but

the storage is intended to cover deviating loads over time. Another exception are

very long time steps with constant external conditions. In this case, additional

sub-intervals are necessary, as otherwise the storage components might need to be

significantly oversized in order to potentially meet the demand. In general, the

number of estimated time steps should therefore be verified in case of doubt and

adjusted if necessary. One possibility here is to adopt an iterative approach and
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successively increase the number of sub-intervals until no further improvement can

be observed.

9.2 Alternative Linearization Approach

In general, the linearization techniques presented in Section 2.2.3 can also be used

for the nonlinearities resulting from variable time intervals. However, a tradeoff

between the linearization error and computation time has to be made here. There-

fore, in the following, an exact linearization approach is presented, which can be

used alternatively if appropriate conditions prevail.

In this context, let the following nonlinear equation be given, where the value of

w is obtained from the product of two variables x and y:

w = x · y (9.4)

If x is a non-negative, real-valued variable, i.e. x ∈ R+
0 , and y is a non-negative,

integer variable, i.e. y ∈ N0, that can be bounded by a (reasonably large) number

Y with y ∈ {0, . . . , Y }, an exact linear reformulation exists. The underlying idea is

that y can be substituted by introducing Y + 1 binary variables (z0, . . . , zY ). Each

zi thus represents one of the possible values of y. Accordingly, only one zi may be

non-zero and y can be determined by the sum of the products of all zi with the

respective index i:

Y∑
i=0

zi = 1 (9.5a)

y =

Y∑
i=0

zi · i (9.5b)

w =
Y∑
i=0

x · zi · i (9.5c)

z ∈ {0, 1} (9.5d)

Nevertheless, there is still a nonlinear relationship that arises from the multipli-

cation of x and zi. Yet, since every summand is now a real-valued, non-negative

variable multiplied by a binary variable, this can be reformulated using a well-known

modeling technique. Hence, an auxiliary variable ui with ui ∈ R+
0 is introduced for
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each x · zi:
ui = x · zi ∀ i ∈ {0, . . . , Y } (9.6)

Using a big-M formulation, it is then ensured that ui = x if zi = 1 and ui = 0

otherwise:

ui ≤ x ∀ i ∈ {0, . . . , Y } (9.7a)

ui ≤ zi ·M ∀ i ∈ {0, . . . , Y } (9.7b)

ui ≥ x− (1− zi) ·M ∀ i ∈ {0, . . . , Y } (9.7c)

ui ≥ 0 ∀ i ∈ {0, . . . , Y } (9.7d)

As can be seen, this is only a reasonable approach if the number of possible

values for y is not too large since otherwise a large number of additional auxiliary

variables and additional constraints have to be introduced, which is computationally

expensive.

In the considered scope, this approach can be applied to bilinear terms where

one variable is the length of a sub-interval. In this case, the length of a sub-

interval can be represented by the product of y and an a priori defined step size

parameter. The downside is that the general continuity of the time representation

is lost since the length of a sub-interval can only be a multiple of the predefined step

size. However, in contrast to the time steps of the discrete-time representation, the

length of the sub-intervals is still variable. If the achievable resolution is sufficient

or at least acceptable, this approach is a viable alternative to the piecewise linear

approximation due to the exact linearization and the potentially smaller problem

size, provided that the number of possible values for y is not too large.

9.3 Extension of the Optimization Model for the

Continuous-Time Representation

As in Chapter 8, there are no aggregated load scenarios since the temporal sequence

of time steps is important because neighboring points in time are coupled by the

storage levels of storage components. However, in addition to the ordered set for

the time steps T , another ordered set I needs to be introduced to represent the

sub-intervals of variable length within the “main” time steps. This does not change

the system behavior in general with one exception, i.e. it has to be ensured that

the sum of the lengths of the sub-intervals for a time step corresponds to the length
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of this time step. Therefore, only this additional constraint as well as the modified

objective function and the model extension for considering a two-layer thermal

energy storage tank, as described in Chapter 8, are presented in the following. The

remaining constraints can be obtained straightforwardly by substituting the load

scenarios s ∈ S used in the model for thermofluid systems from Chapter 7 with

time steps t ∈ T and sub-intervals l ∈ I. All used sets, variables and parameters

of the extension are shown in Table 9.1. If applicable, the dimension of an entry

is specified using the base quantities mass (M), length (L), currency (C), time (T )

and temperature (K).

Table 9.1: Variables, sets and parameters of the optimization model for thermofluid
systems with TES using the continuous-time approach

Symbol Range Dimension Description

bi,j {0, 1} Purchase indicator of edge (i, j) ∈ E
at,li,j {0, 1} Activation indicator of edge (i, j) ∈ E in time step

t ∈ T and interval l ∈ I
∆τ t,l R+

0 T Length of interval l ∈ I for time step t ∈ T
pt,li,j R+

0 ML2T−3 Power consumption of edge (i, j) ∈ E in time step t ∈ T
and interval l ∈ I

v̇t,li,j R+
0 L3T−1 Volume flow along edge (i, j) ∈ E in time step t ∈ T

and interval l ∈ I
u̇in t,l
i,j R+

0 ML2T−3 Thermal energy flow rate directly after the start of edge

(i, j) ∈ E in time step t ∈ T and interval l ∈ I
u̇out t,l
i,j R+

0 ML2T−3 Thermal energy flow rate directly before the end of

edge (i, j) ∈ E in time step t ∈ T and interval l ∈ I
∆ht,l

i,j R ML−1T−2 Change in pressure caused by edge (i, j) ∈ E in time

step t ∈ T and interval l ∈ I

vt,la , vt,lb R+
0 L3 Stored volume of storage layer a and b for TES with

edges (a, b), (b, a) ∈ TES(E) in time step t ∈ T and

interval l ∈ I
∆v̇t,la , ∆v̇t,lb R L3T−1 Net volume flow rate into storage layer a and b for TES

with edges (a, b), (b, a) ∈ TES(E) in time step t ∈ T
and interval l ∈ I

ut,l
a , u

t,l
b R+

0 ML2T−2 Thermal energy of storage layer a and b for TES with

edges (a, b), (b, a) ∈ TES(E) in time step t ∈ T and

interval l ∈ I
∆u̇t,l

a , ∆u̇t,l
b R ML2T−3 Net thermal energy flow rate into storage layer a and

b for TES with edges (a, b), (b, a) ∈ TES(E) in time

step t ∈ T and interval l ∈ I

Continued on next page
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Table 9.1: Continued from previous page

Symbol Range Dimension Description

tt,la tt,lb R+
0 K Temperature of storage layer a and b for TES with

edges (a, b), (b, a) ∈ TES(E) in time step t ∈ T and

interval l ∈ I

T Ordered set of time steps

I Ordered set of intervals

E Set of edges

V Set of vertices

TES(E) ⊆ E Subset of TES edges

Cbuy
i,j R+

0 C Purchase costs of edge (i, j) ∈ E
CkWh

i,j R+
0 M−1L−2CT 2 Energy costs per kilowatt hour for edge (i, j) ∈ E

OLT N0 Expected operational lifetime of the system, i.e. num-

ber of repetitions of time series T

Dt R+
0 T Duration of time step t ∈ T

V̇ max R+
0 L3T−1 General upper bound on the volume flow

V TES
a,b R+

0 L3 Total volume of TES with edges (a, b), (b, a) ∈ TES(E)

T (∗) R+
0 K Representation of the nonlinear temperature relation-

ship

L(∗) R+
0 Representation of the nonlinear time relationship

9.3.1 Objective Function

The Objective (9.8) remains largely unchanged compared to the previous chapter.

As mentioned above, not only time steps but also sub-intervals during these time

steps are considered and thus the energy costs are summed up over all time steps

and the associated sub-intervals. Therefore, in addition to t ∈ T , the corresponding

variables also have another index l ∈ I, which indicates the respective sub-interval.

Furthermore, ∆τ t,l, which specifies the length of a sub-interval of a time step, is

no longer a parameter as in the discrete-time representation but a variable. Hence,

there is a nonlinear term that needs to be linearized, represented here in a simplified

way by an expression of the form L(∗). In the chosen representation, care was taken

to indicate that the linearization is not performed for each component individually,

but that a linearization needs to be performed only once for each sub-interval of each

time step, resulting in a significantly lower number of computationally expensive

linearizations. In contrast to the nonlinearities considered so far, it is also possible to
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use the alternative linearization approach presented above, provided that favorable

conditions prevail, i.e. a coarser temporal resolution is acceptable.

min
∑

(i,j)∈E

(
Cbuyi,j · bi,j

)
+OLT ·

∑
t∈T

∑
l∈I
L
(

∆τ t,l,
( ∑

(i,j)∈E

CkWh
i,j · pt,li,j

))
(9.8)

9.3.2 General System Constraints

As mentioned above, it has to be ensured that for each time step the sum of the

variable sub-interval lengths assigned to this time step matches its total length.

This is ensured by Constraint (9.9). Apart from the modification of the indices,

this is the only necessary change for the model that affects the system as a whole.

∑
l∈I

∆τ t,l = Dt ∀ t ∈ T (9.9)

9.3.3 Thermal Energy Storage Constraints

Most of the constraints introduced in Chapter 8 to describe a two-layer stratified

TES remain the same, except for the consideration of the modified indices. These

constraints are grayed out but displayed for the sake of completeness. However, the

more strongly modified constraints are discussed in the following.

The volume of each layer at sub-interval l of time step t depends on its volume

at the previous sub-interval l−1 and the net volume flow into that layer multiplied

by the length of the respective sub-interval, see Constraints (9.10j) and (9.10k).

However, in the continuous-time representation, ∆τ t,l is a variable. Therefore, the

corresponding term is linearized, indicated by L(∗). Furthermore, the transitions

between time steps have to be considered. Accordingly, the predecessor of the first

sub-interval, i.e. l = 1, of a time step t is the last sub-interval, i.e. l = |I|, of the

previous time step t − 1, where |I| is the cardinality of the set of sub-intervals I.

As in the discrete-time representation, it is also necessary to define initial charge

levels as predecessors for the first sub-interval of the first time step. Constraints

(9.10n) and (9.10o) are similar to Constraints (9.10j) and (9.10k) and state that the

thermal energy of each layer at sub-interval l for time step t depends on the thermal

energy of the previous sub-interval l − 1 and the net thermal energy flow rate into

that layer multiplied by the length of the respective sub-interval. Once more, due to

the variable interval length, additional nonlinearites occur, represented by L(∗). In

139



9 Continuous-Time Representation for Thermofluid Systems

addition, the same considerations regarding the transition between time steps and

initial conditions apply as above. As with the objective function, the alternative

exact linearization approach can be used here if favorable conditions prevail.

ba,b = bb,a ∀ (a, b) ∈ TES(E) (9.10a)

at,la,b + at,lb,a ≤ 1 ∀ t ∈ T, l ∈ I, (a, b) ∈ TES(E) (9.10b)∑
(i,b)∈E:i 6=a

v̇t,li,b ≤ (1− at,la,b) · V̇
max ∀ t ∈ T, l ∈ I, (a, b) ∈ TES(E) (9.10c)

∑
(a,j)∈E:j 6=b

v̇t,la,j ≤ (1− at,la,b) · V̇
max ∀ t ∈ T, l ∈ I, (a, b) ∈ TES(E) (9.10d)

∑
(i,a)∈E:i 6=b

v̇t,li,a ≤ (1− at,lb,a) · V̇
max ∀ t ∈ T, l ∈ I, (a, b) ∈ TES(E) (9.10e)

∑
(b,j)∈E:j 6=a

v̇t,lb,j ≤ (1− at,lb,a) · V̇
max ∀ t ∈ T, l ∈ I, (a, b) ∈ TES(E) (9.10f)

vt,la + vt,lb = V TES
a,b ∀ t ∈ T, l ∈ I, (a, b) ∈ TES(E) (9.10g)

∆v̇t,la =
∑

(i,a)∈E:i 6=b

v̇t,li,a −
∑

(a,j)∈E:j 6=b

v̇t,la,j ∀ t ∈ T, l ∈ I, (a, b) ∈ TES(E) (9.10h)

∆v̇t,lb =
∑

(i,b)∈E:i 6=a

v̇t,li,b −
∑

(b,j)∈E:j 6=a

v̇t,lb,j ∀ t ∈ T, l ∈ I, (a, b) ∈ TES(E) (9.10i)

vt,la = vt,l−1
a + L(∆v̇t,la ,∆τ

t,l) ∀ t ∈ T, l ∈ I, a ∈ V : (a, b) ∈ TES(E) (9.10j)

vt,lb = vt,l−1
b + L(∆v̇t,lb ,∆τ

t,l) ∀ t ∈ T, l ∈ I, b ∈ V : (a, b) ∈ TES(E) (9.10k)

∆u̇t,la =
∑

(i,a)∈E:i 6=b

u̇out t,li,a −
∑

(a,j)∈E:j 6=b

u̇in t,la,j ∀ t ∈ T, l ∈ I, (a, b) ∈ TES(E) (9.10l)

∆u̇t,lb =
∑

(i,b)∈E:i 6=a

u̇out t,li,b −
∑

(b,j)∈E:j 6=a

u̇in t,lb,j ∀ t ∈ T, l ∈ I, (a, b) ∈ TES(E) (9.10m)

ut,la = ut,l−1
a + L(∆u̇t,la ,∆τ

t,l) ∀ t ∈ T, l ∈ I, a ∈ V : (a, b) ∈ TES(E) (9.10n)

ut,lb = ut,l−1
b + L(∆u̇t,lb ,∆τ

t,l) ∀ t ∈ T, l ∈ I, b ∈ V : (a, b) ∈ TES(E) (9.10o)

tt,la = T (vt,la , u
t,l
a ) ∀ t ∈ T, l ∈ I, a ∈ V : (a, b)∈ TES(E) (9.10p)

tt,lb = T (vt,lb , u
t,l
b ) ∀ t ∈ T, l ∈ I, b ∈ V : (a, b) ∈ TES(E) (9.10q)

∆ht,la,b = ∆ht,lb,a = 0 ∀ t ∈ T, l ∈ I, (a, b) ∈ TES(E) (9.10r)

pt,la,b = pt,lb,a = 0 ∀ t ∈ T, l ∈ I, (a, b) ∈ TES(E) (9.10s)
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9.4 Application Example

In the following, the computational example of a fictional industrial cooling ap-

plication is considered again. This time, however, the continuous-time approach

described above is applied. To be able to show the approach, some simplifications

are made compared to the previous example from Section 8.3. Furthermore, in

order to put the results into perspective, the discrete-time approach is applied to

the same example, i.e. also taking into account the same assumptions, and the

differences are compared and discussed.

9.4.1 Computational Example

The general system structure and the considered optimization task do not change

compared to the computational example for the discrete-time representation from

Section 8.3, i.e. the redesign of the chiller bank of an existing system with a TES

tank is examined. However, due to the higher computational effort associated

with the introduction of variable sub-intervals, only four time steps, each with a

length of two hours, are considered. These are shown in Table 9.2. Each time step

is divided into three sub-intervals. In this context, the alternative linearization

approach described above is used in order to limit the linearization error. Using

this approach, a resolution of ten minutes is considered, which is assumed to be

sufficient for the example under consideration. The time series repeats twice per

day, which corresponds to the observation of two eight-hour shifts. The example is

based on an operational lifetime of ten years and an average of 250 operating days

per year as well as electricity costs of e0.16 per kWh.

Table 9.2: Summary of expected thermal loads Q̇ and required volume flows V̇ for
the different time steps of the computational example

Time step Q̇ [kW] V̇ [m3/h]

1 2375 216
2 3875 288
3 4625 324
4 3125 252

In this example, the installed TES tank has a total volume of 150 m3. As a

simplification, it is assumed that the water in the warm layer of the TES tank

always has a constant temperature of 18◦C. The residual charge is assumed to
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dissipate at the end of a time series, i.e. at the end of each shift. Hence, the water

in the tank has a uniform temperature of 18◦C at the beginning of each shift.

With regard to the available chillers, the possible options remain unchanged

compared to the two previous examples. Hence, the same eight chillers (C1.1,

C1.2, C2.1, ..., C4.2) with the same characteristics can be installed, see Table 7.3.

Each chiller supplies chilled water at a fixed temperature of 5◦C and the return

temperature has to be in the range of 12◦ to 18◦C to ensure efficient operation.

9.4.2 Computational Results

Within a computing time of six hours, no provably optimal solution could be found

for the example at hand. The calculations were performed on a Macbook Pro Early

2015 with a 3.1 GHz Intel Core i7 and 16 GB 1867 MHz DDR3 memory using

CPLEX Optimization Studio 12.10 as MILP solver. The remaining optimality gap

was 9.98%. Further test runs revealed that even with an increased computation

time of twelve hours, this gap could not be reduced. The following discussion

therefore focuses on the best solution found, which is then compared to the optimal

solution for the discrete-time approach with the same number of time steps.

In the continuous-time case, a solution with total costs of e4 507 926 was found.

For this, the investment is e740 979 and the expected energy costs for ten years

are e3 766 947. Accordingly, 16.44% of the total costs are attributable to the ini-

tial investment. Compared to the discrete-time approach, savings of e115 896 are

expected. In this context, it is noteworthy that the topologies of both systems dif-

fer. While in the discrete-time case a chiller of the second type and both available

chillers of the fourth type are purchased, a smaller type one chiller replaces the

slightly larger type two chiller in the continuous-time case.

Table 9.3 shows the active chillers and the operating mode of the TES tank in

the individual sub-intervals for the continuous-time approach. It can be seen that

two of the three available sub-intervals are used in the first and last time step and

only one sub-interval in each of the middle two time steps. Although the obtained

solution is not the provably optimal solution, the assumption of using at most

three sub-intervals seems to be suitable for the considered example. In the first

time step, the TES tank is charged, initially using only the two larger chillers and

later also activating the smaller peak-load chiller. Here, the first sub-interval of the

first time step basically corresponds to the just-in-time generation of the required

cooling since due to the inflexibility of the chillers an exact balancing of generation

and demand is only possible in rare cases. In the next two time steps, the TES
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tank is discharged with all chillers being active. The utilization of the TES tank

is necessary here because the installed chillers cannot provide the required cooling

during these time steps. In the last time step, the TES tank is first charged again,

with all chillers being active, and then finally discharged in the second sub-interval.

Table 9.3: Overview of the active chillers and TES modes for the different sub-
intervals during the time steps of the computational example using the
continuous-time approach

Time step Interval Duration [h] Active chillers TES mode

1 1 0.50 C4.1, C4.2 charge
2 1.50 C1.1, C4.1, C4.2 charge
3 - - -

2 1 2.00 C1.1, C4.1, C4.2 discharge
2 - - -
3 - - -

3 1 2.00 C1.1, C4.1, C4.2 discharge
2 - - -
3 - - -

4 1 0.67 C1.1, C4.1, C4.2 charge
2 1.33 C4.1, C4.2 discharge
3 - - -

Total C1.1, C4.1, C4.2

For the application of the discrete-time approach, in addition to the different

topology mentioned above, there is also a different operating behavior. This is

shown in Table 9.4. All chillers are active in all time steps except the last time

step. Accordingly, the TES tank is charged in the first two time steps, with the

charging level changing only marginally in the second time step, and discharged in

the following two time steps.

Table 9.4: Overview of the active chillers and TES modes for the different time
steps of the computational example using the discrete-time approach

Time step Active chillers TES mode

1 C2.1, C4.1, C4.2 charge
2 C2.1, C4.1, C4.2 charge
3 C2.1, C4.1, C4.2 discharge
4 C4.1, C4.2 discharge

Total C2.1, C4.1, C4.2

143



9 Continuous-Time Representation for Thermofluid Systems

0 2 4 6 8

0.2

0.4

0.6

0.8

1

Time τ [h]

R
e
la

ti
v
e

ch
a
rg

in
g

le
v
e
l

[−
]

Figure 9.2: Charging level of the TES tank as a function of time for the computa-
tional example using the continuous-time approach
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Figure 9.3: Charging level of the TES tank as a function of time for the computa-
tional example using the discrete-time approach

By comparing the different charging level profiles in Figures 9.2 and 9.3, two

further observations can be made. First, by using the continuous-time approach,

the TES tank is almost completely discharged at the end of the time series. Thus,

most of the cooling provided is actually used, while the discrete approach results in

a residual charge of about 20%, which is lost at the end of the time series. Second,
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for the continuous-time approach, a much smaller tank would suffice since the TES

tank is only used to about 70% of its capacity. For the discrete-time approach, in

contrast, the available storage capacity is almost completely utilized.

Overall, the example shows the considerable differences in the results of the two

approaches and the benefits of the continuous-time approach. The variable time

intervals lead, as expected, to lower energy costs, e.g. due to the more flexible control

of the chillers and a better utilization of the stored chilled water. In addition, a

different, less expensive topology for the overall system is found. Furthermore, for

the example at hand, it would also be possible to replace the storage tank with a

much smaller component. Taking these aspects into account, it becomes evident

that despite the additional modeling and computational effort, the consideration of

the continuous-time approach can be advantageous.
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10 Conclusion and Outlook

The essence of this thesis was to make a contribution to the vision of providing

decision support for engineers in order to supplement the human intuition during

the design of technical systems. The focus was set on bridging engineering and

algorithmic optimization and introducing the relevant methodology of algorithmic

optimization for engineers in a purpose-oriented manner. Within this context, the

optimization of fluid and thermofluid systems was studied. As a consequence of

the extensive scope of the subject, the overall challenge was divided into individ-

ual sub-challenges. Selected sub-challenges were addressed in this thesis to provide

substantial progress towards the overall vision and to establish a foundation for cur-

rent and future work on technical applications in the field of fluid and thermofluid

systems. In the following, the individual contributions of this thesis are concluded

and future research directions are discussed.

10.1 Conclusion

Based on the introduction of a suitable modular basic optimization model for fluid

systems, primal and dual heuristics were introduced and combined in a Branch-and-

Bound framework. Using these heuristics that rely on domain-specific knowledge,

it was possible to solve relatively large instances in reasonable time using the appli-

cation example of booster stations. For this purpose, the instances were designed

in such a way that they correspond to practice-relevant applications with varying

loads represented by different load scenarios. With this approach, state-of-the-art

MILP solvers, which could not solve the provided instances, were outperformed.

The runtimes of the individual heuristics and the Branch-and-Bound framework

were fast enough to be of practical relevance for the considered application.

Furthermore, a QMIP formulation was used in order to design cost-efficient re-

silient systems, exemplified by booster stations. Moreover, it could also be ensured

that the resulting booster stations meet the additional requirements specified in

DIN 1988-500. The presented approach can be directly integrated into the pro-
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posed workflow. In this context, it proved to have the potential to support system

designers in two different ways. Firstly, increasing resilience is made easy. The

system designer can focus on the main functionality, while the approach takes care

of resilience. Existing non-resilient systems can be transformed into more resilient

ones without questioning the initial system. Secondly, the approach helps to over-

come smaller design flaws. On top of increasing resilience, it can help to save energy.

This is also beneficial with regard to off-the-shelf systems as they can be made more

resilient as well as adapted to the actual load conditions simultaneously. Thus, the

presented approach combines resource-efficiency and reliability.

Finally, three model extensions for the synthesis of thermofluid systems were

presented. In the first extension, it was shown how it is possible to integrate ther-

mal considerations in order to be able to examine thermofluid systems but without

compromising compatibility with the basic fluid system optimization model. The

second and third extensions focused on the consideration of the time-dependent

behavior of technical fluid-based systems that incorporate storage. Based on the

introduction of thermal energy storage, a discrete-time representation as well as

a continuous-time representation with variable time intervals were introduced. All

three extensions were presented using the application example of an industrial cool-

ing system. Furthermore, the two time representations were compared with each

other. In this context, the continuous-time approach showed great potential for fur-

ther consideration since it is possible to overcome a major part of the shortcomings

of the traditional discrete-time approach.

10.2 Outlook

This thesis provides a foundation for the algorithmic synthesis of fluid and ther-

mofluid systems. However, the overall vision to model the synthesis of fluid-based

systems in a general and consistent way and at the same time to be able to perform

algorithmic optimization in practice has not yet fully been realized as this is still

far in the future due to its huge scope. Therefore, future research for the remaining

sub-challenges is necessary to fulfill this visionary task.

The first step in this context is to further advance algorithmic investigations and

to develop suitable solution procedures to solve large, practical instances efficiently.

The results for the approach developed in this thesis to use heuristics with domain-

specific knowledge in the field of fluid systems show that an adaptation of this

approach for thermofluid systems seems promising. For thermofluid systems with-
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out storage components, this adaptation is expected to be quite straightforward.

However, in the important case of the time-dependent formulation, it has to be

examined to what extent the additional couplings of time steps, which result from

the storage components, can be integrated in a reasonable way. In addition, further

application-related algorithmic methods for the efficient solution of larger instances

can be investigated, in particular with regard to the exploitation of the technical

properties of thermofluid systems. Besides this, another important aspect is the

development of efficient approaches for handling nonlinearities, especially with re-

gard to the necessary number of linearizations and the utilization of alternative

linearization techniques and approaches.

In a subsequent step, it is important to validate the developed models and meth-

ods by detailed simulations. With the help of this intermediate step, which precedes

the practical application, the necessary level of detail of the obtained solutions can

be evaluated. Thus, the models and methods can be further refined to ensure a

smooth transfer into practice and reliable guidance for real-world systems.

In addition, accessibility for practitioners is a consideration. Bundling the devel-

oped models and methods in a unified software framework could contribute to this.

With this in mind, care has already been taken in this thesis to provide models and

methods that are as comprehensive and broadly applicable as possible and that

these are suitable for integration into a software tool for system designers. In this

context, providing a suitable GUI could furthermore ensure that the application

of the methodology is not tied to profound background knowledge, which in turn

could increase acceptance.

Pursued further, there is a reasonable chance and perspective that algorithmic

optimization as applied in this work could one day have the same importance for

the design of technical systems as similar methods already have in the context of

the optimization of production and logistics-related processes.
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A.1 Overview of the Topological Results for Section 5.5
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A.2 Overview of the Optimality Gap Progression for
Section 5.5
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L. C. Altherr, N. Brötz, I. Dietrich, T. Gally, F. Geßner, H. Kloberdanz, P. Leise,
P. F. Pelz, P. D. Schlemmer, and A. Schmitt. Resilience in mechanical
engineering—a concept for controlling uncertainty during design, production and
usage phase of load-carrying structures. In Uncertainty in Mechanical Engineer-
ing III, pages 187–198, Switzerland, 2018a. Trans Tech Publications Ltd.

L. C. Altherr, B. Dörig, T. Ederer, P. F. Pelz, M. E. Pfetsch, and J. Wolf. A mixed-
integer nonlinear program for the design of gearboxes. In Operations Research
Proceedings 2016, pages 227–233, Cham, 2018b. Springer.

177



Bibliography

L. C. Altherr, P. Leise, M. E. Pfetsch, and A. Schmitt. Resilient layout, design and
operation of energy-efficient water distribution networks for high-rise buildings
using MINLP. Optim Eng, 20(2):605–645, 2019.

V. Andiappan. State-of-the-art review of mathematical optimisation approaches for
synthesis of energy systems. Process Integr Optim Sustain, 1(3):165–188, 2017.

S. Artina and J. Walker. Sull’uso della programmazione a valori misti nel dimen-
sionamento di costo minimo di reti in pressione [Using mixed-integer program-
ming for cost-minimal sizing of pressurized networks]. Atti dell’Accademia delle
Scienze dell’Istituto di Bologna, 271, 1983.

A. Ashouri, S. S. Fux, M. J. Benz, and L. Guzzella. Optimal design and operation
of building services using mixed-integer linear programming techniques. Energy,
59:365–376, 2013.

B. Baeten, F. Rogiers, and L. Helsen. Energy cost reduction by optimal control of
ideal sensible thermal energy storage in domestic space heating. In Proceedings
of the Eurotherm Seminar 99 conference—Advances in thermal energy storage,
pages 01–045, Stockholm, 2014.

M. Baglione. Building sustainability into control systems, 2011. https://

engfac.cooper.edu/melody/411 (accessed May 07, 2021).

B. Bahl. Optimization-Based Synthesis of Large-Scale Energy Systems by Time-
Series Aggregation. Dissertation, Rheinisch-Westfälische Technische Hochschule
Aachen, 2018.

B. Bahl, S. Goderbauer, F. Arnold, P. Voll, M. Lübbecke, A. Bardow, and A. M.
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M. Schmidt, R. Schultz, R. Schwarz, J. Schweiger, C. Stangl, and B. Willert.
Mathematical optimization for challenging network planning problems in unbun-
dled liberalized gas markets. Technical Report ZIB-Report 13-13, Zuse Institute
Berlin, 2013.
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P. Pöttgen, T. Ederer, L. C. Altherr, and P. F. Pelz. Developing a control strategy
for booster stations under uncertain load. In Uncertainty in Mechanical Engi-
neering II, pages 241–246, Switzerland, 2015. Trans Tech Publications Ltd.
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