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ABSTRACT 
The building sector and its embedded control systems, especially the Heating, Ventilation, 

and Air-Conditioning (HVAC) systems, consume a considerable part of the global energy and 
produce gaseous emissions such as CO2. On the other hand, the air exchange based on natural 
ventilation is a cost-efficient method to improve indoor air quality, dilute indoor CO2concentration 
and odors, or remove pollutants or airborne virus particles (e.g., Covid-19) from the building zones. 
This air exchange during the cold seasons accounts for a heating load for the heating system that 
causes an increase in energy consumption. Therefore, optimization of HVAC systems to decrease 
harmful emissions considering potential energy saving is vital. Moreover, if the CO2 generated by 
human metabolism is not correctly controlled to some limits, it can degrade indoor air quality, reduce 
the occupants’ efficiency, lead to severe mental problems, or considerably impair the thinking 
ability. Thus, implementing a robust ventilation control system for the buildings particularly 
crowded office buildings is momentous. Demand-Controlled Ventilation (DCV) systems are 
promising solutions that control and optimize the ventilation rates based on thermal comfort and 
indoor air quality demands with a high potential in energy saving. Many researchers in the literature 
study DCV systems or adaptive thermal control separately while a comprehensive model containing 
both DCV and thermal control strategies is missing. Therefore, this thesis contains the combination 
of the DCV and heating systems with embedded sensors and actuators with the fault injection 
capabilities in a simulation framework to study such a complex system due to its numerous functions, 
inputs, and outputs for an in-depth assessment of the involved components’ functionality and 
effective parameters, especially in case of component failures. Indoor air quality and comfort 
parameters in an office building can be monitored and controlled in real-time for various 
architectures based on a high-level specification of the building characteristics. The developed 
model is scalable based on the modular composability scheme. The user can generate different types 
of buildings with various architectures with many rooms and floors. The system model, fault 
injection capabilities, and diagnostic modules are automatically extended. 

The high complexity of the DCV and heating systems with their many components makes 
them error-prone, more susceptible to faults, and more fragile. Faults in system components such as 
sensors and actuators can result in different types of failures and severe implications on efficiency 
with discomfort and performance degradation of occupants, energy waste, shortened component 
lifetime, and increased maintenance costs. Failure detection and fault diagnosis is the combination 
of system failure detection, which is the implication of the fault in a component of a system, with 
fault diagnosis that is finding the type, severity, time of occurrence, and locality of faults. The state-
of-the-art of fault diagnosis methods for building energy systems, e.g., HVAC systems, contains 
data-driven and knowledge-driven diagnostic methods with corresponding strengths and 
shortcomings. The knowledge-driven methods are mainly based on expert knowledge and simulate 
the diagnostic thoughts of domain experts with the argumentation of uncertainties, diagnosis of 
different fault severities, and understandability. But they need a higher and more time-consuming 
effort to deeply understand the causal relationships among system inputs, faults, and symptoms. 
Moreover, the knowledge-based methods still lack automatic strategies to improve efficiency and 
they are less accurate than the data-driven methods. The data-driven methods, on the other hand, 
depend on similarities and patterns with high sensitivity to any change of patterns and more accuracy 
than the knowledge-driven methods. However, the data-driven methods require a huge amount of 
data for training the neural network for fault classification and they cannot provide the reason behind 
the results. In addition, the data-driven strategies indicate black boxes with low understandability.  

The research gap filled by this thesis is therefore the combination of knowledge-driven and 
data-driven fault diagnosis in DCV and heating systems to gain advantages from both categories. 
The diagnostic method presented in this thesis involves an automatic strategy with low expert effort 
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without necessitation of in-depth understanding of the causal relationships compared to existing 
knowledge-driven methods with high understandability and high accuracy compared to the existing 
data-driven methods. The fault diagnosis method in this thesis combines a data-driven classifier with 
knowledge-driven inference, e.g., fuzzy logic and a Bayesian Belief Network (BBN) to provide an 
automatic diagnostic classifier that can diagnose any stuck-at or constant-valued faults in sensors 
and actuators. The combination of BBN and fuzzy logic itself analyzes the dependencies of the 
system signals based on the mutual information theory. In offline mode, a Relation-Direction 
Probability (RDP) table for each fault class is computed and stored in an offline fault library. The 
online mode determines the similarities between the real case RDP in the runtime and the offline 
library’s RDPs. On the other hand, a data-driven strategy is specifically established using deep neural 
networks to compare and evaluate the performance of the presented composed diagnostic classifier. 
The data-driven classifier uses observed signals from faulty and healthy operations of the system to 
train and evaluate the performance of the designed neural network model. The diagnostic technique 
in this thesis is independent of the historical data, independent of expert knowledge, and computing-
resource efficient. For the evaluation, four types of stuck-at faults at different components such as 
temperature sensor, CO2 sensor, heater actuator, and damper actuator with various fault values at 
different instants of time were investigated. A fault injection framework artificially injects the faults 
to serve the diagnostic classifiers, e.g., training the models and evaluations. Results show the 
combined classifier introduced in this thesis has comparable performance to the data-driven method 
while advantaging the strengths of knowledge-driven methods. 
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KURZFASSUNG 
Der Gebäudesektor und seine eingebetteten Kontrollsysteme, insbesondere die Heizungs-, 

Lüftungs- und Klimaanlagen (HLK), verbrauchen einen beträchtlichen Teil der weltweiten Energie 
und produzieren gasförmige Emissionen wie CO2. Andererseits ist der Luftaustausch auf der 
Grundlage natürlicher Belüftung eine kosteneffiziente Methode zur Verbesserung der Luftqualität 
in Innenräumen, zur Verdünnung der CO2-Konzentration und der Gerüche in Innenräumen oder zur 
Beseitigung von Schadstoffen oder luftgetragenen Viruspartikeln, (z.B. Covid-19) aus den 
Gebäudebereichen. Dieser Luftaustausch während der kalten Jahreszeit stellt eine große Heizlast für 
das Heizsystem dar, was einen Anstieg des Energieverbrauchs verursacht. Daher ist die Optimierung 
von HLK-Systemen zur Verringerung der Schadstoffemissionen unter Berücksichtigung möglicher 
Energieeinsparungen unerlässlich. Darüber hinaus kann das durch den menschlichen Stoffwechsel 
erzeugte CO2, wenn es nicht bis zu einem gewissen Grad kontrolliert wird, die Luftqualität in 
Innenräumen verschlechtern, die Leistungsfähigkeit der Bewohner beeinträchtigen, schwere 
psychische Probleme hervorrufen oder zu einer erheblichen Herabsetzung des Denkvermögens 
führen. Daher ist die Implementierung eines robusten Lüftungssteuerungssystems für Gebäude, 
insbesondere für usgelastetestark a  Bürogebäude, von großer Bedeutung. Systeme der 
bedarfsgesteuerten Lüftung (BGL) sind eine vielversprechende Lösung, die die Lüftungsraten auf 
der Grundlage des thermischen Komforts und der Anforderungen an die Raumluftqualität steuern 
und optimieren und ein hohes Potenzial für Energieeinsparungen bieten. Viele Forscher in der 
Literatur untersuchen BGL-Systeme oder adaptive thermische Steuerung separat, während ein 
umfassendes Modell, das sowohl BGL- als auch thermische Steuerungsstrategien enthält, fehlt. 
Daher beinhaltet diese Arbeit die Kombination von BGL- und Heizsystemen mit eingebetteten 
Sensoren und Aktoren mit der Fähigkeit zur Fehlerinjektion in einem Simulationsrahmen, um ein 
solch komplexes System aufgrund seiner zahlreichen Funktionen, Eingänge und Ausgänge für eine 
eingehende Bewertung der Funktionalität der beteiligten Komponenten und der effektiven Parameter 
zu untersuchen, insbesondere im Falle von Komponentenausfällen. Daher wird in dieser Arbeit ein 
Modell eines BGL- und Heizungssystems mit eingebetteten Sensoren und Aktoren erstellt und in 
MATLAB/Simulink simuliert. Innenraumluftqualität und Behaglichkeitsparameter in einem 
Bürogebäude können in Echtzeit für verschiedene Architekturen auf der Grundlage einer 
Spezifikation der Gebäudeeigenschaften überwacht und gesteuert werden. Das entwickelte Modell 
ist aufgrund des Designs der modularen Zusammensetzbarkeit skalierbar. Der Benutzer kann 
verschiedene Gebäudetypen mit unterschiedlichen Architekturen mit vielen Räumen und 
Stockwerken erzeugen. Das Systemmodell, die Fehlerinjektionsmöglichkeiten und die 
Diagnosemodule werden automatisch erweitert. 

Die hohe Komplexität der BGL- und Heizungssysteme mit ihren Komponenten macht sie 
fehleranfällig und störanfälliger. Fehler in Systemkomponenten wie Sensoren und Aktoren können 
zu verschiedenen Arten von Ausfällen führen und schwerwiegende Auswirkungen auf die Effizienz 
haben, indem sie das Wohlbefinden und die Leistung der Bewohner beeinträchtigen, Energie 
verschwenden, die Lebensdauer der Komponenten verkürzen und die Wartungskosten erhöhen. 
Fehlererkennung und Fehlerdiagnose ist die Kombination von Fehlererkennung, d. h. die Erkennung 
von Fehlern in einem System, und Fehlerdiagnose, d. h. die Ermittlung der Art, des Schweregrads, 
des Zeitpunkts des Auftretens und des Ortes von Fehlern. Der Stand der Technik bei 
Fehlerdiagnosemethoden für Gebäudeenergiesysteme, z. B. HLK-Systeme, hat datengesteuerte und 
wissensgesteuerte Diagnosemethoden mit ihren Stärken und Schwächen untersucht. Die 
wissensbasierten Methoden beruhen hauptsächlich auf Expertenwissen und simulieren die 
diagnostischen Überlegungen von Fachleuten mit der Argumentation von Unsicherheiten, der 
Diagnose verschiedener Fehlerschweregrade und der Verständlichkeit. Sie erfordern jedoch einen 
höheren und zeitaufwändigen Aufwand, um die kausalen Beziehungen zwischen Systemeingaben, 
Fehlern und Symptomen zu verstehen. Außerdem fehlt es den wissensbasierten Methoden noch an 
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automatischen Strategien zur Verbesserung der Effizienz, und sie sind nicht weniger genau als die 
datengesteuerten Methoden. Die datengesteuerten Methoden hängen von Ähnlichkeiten und 
Mustern ab und reagieren sehr empfindlich auf Änderungen der Muster und sind genauer als die 
wissensgesteuerten Methoden. Die datengesteuerten Methoden benötigen jedoch große 
Datenmengen für das Training; sie können den Grund für die Ergebnisse nicht liefern, und ihre 
Strategien stellen Blackboxes mit geringer Verständlichkeit dar.  

Die Forschungslücke, die in dieser Arbeit geschlossen wird, ist daher die Kombination von 
wissensbasierter und datenbasierter Diagnose in BGL- und Heizungssystemen, um die Vorteile 
beider Kategorien zu nutzen. Die in dieser Arbeit vorgestellte Diagnosemethode umfasst einen 
geringen Expertenaufwand, ohne dass ein vollständiges Verständnis der kausalen Zusammenhänge 
erforderlich ist, im Vergleich zu bestehenden wissensgetriebenen Methoden mit hoher 
Verständlichkeit und hoher Genauigkeit. Die Fehlerdiagnose kombiniert einen datengetriebenen 
Klassifikator mit wissensgetriebener Inferenz, z. B. Fuzzy-Logik und einem Bayesian Belief 
Network (BBN). Die Kombination aus BBN und Fuzzy-Logik analysiert selbst die Abhängigkeiten 
der Systemsignale auf der Grundlage der Theorie der Mutual Information . Im Offline-Modus wird 
eine Relation-Direction Probability (RDP)-Tabelle für jede Fehlerklasse berechnet und in einer 
Offline-Fehlerbibliothek gespeichert. Im Online-Modus werden die Ähnlichkeiten zwischen der 
RDP des realen Falls zur Laufzeit und der RDP der Offline-Bibliothek ermittelt. Andererseits wird 
eine datengesteuerte Strategie unter Verwendung tiefer neuronaler Netze entwickelt, um die 
Leistung des vorgestellten zusammengesetzten Diagnoseklassifikators zu vergleichen und zu 
bewerten. Der datengesteuerte Klassifikator verwendet beobachtete Signale aus dem fehlerhaften 
und gesunden Betrieb des Systems, um die Leistung des entwickelten Netzwerkmodells zu trainieren 
und zu bewerten. Die Diagnosetechnik in dieser Dissertation ist unabhängig von den historischen 
Daten, unabhängig vom Expertenwissen und rechenressourceneffizient. Für die Bewertung wurden 
vier Arten von Festgefahrener oder Konstantwertiger Fehlern an verschiedenen Komponenten wie 
Temperatursensor, CO2-Sensor, Heizungsantrieb und Klappenantrieb mit unterschiedlichen 
Fehlerwerten zu verschiedenen Zeitpunkten untersucht. Ein Fehlerinjektionssystem injiziert die 
Fehler künstlich, um die Diagnoseklassifikatoren zu unterstützen, z. B. beim Training der Modelle 
und bei der Auswertung. Die Ergebnisse zeigen, dass der in dieser Arbeit vorgestellte kombinierte 
Klassifikator eine vergleichbare Leistung wie die datengesteuerte Methode aufweist und gleichzeitig 
die Stärken der wissensgesteuerten Methoden ausnutzt. 
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1. INTRODUCTION  
Equation Chapter (Next) Section 1 
The effects of climate change on our earth have become a significant concern for human 

beings in the last decades. In the U.S., the building sector is responsible for almost 40% of 
greenhouse gas emissions [1]. This issue motivates academia to seek strategies that aim at a decrease 
in global warming effects. All the efforts alongside the reduction of energy consumption account for 
this challenge, e.g., less fuel consumption of the central heating system of a building leads to less 
exhaust gas of the furnace which means less carbon dioxide (CO2) emission to the atmosphere. For 
example, the air exchange in the ventilation system during the cold seasons is considered a heating 
load for the heating system that causes a great increase in the heating system's energy consumption. 
The energy consumption of buildings is almost 18%-30% of global energy consumption [2, 3]. The 
building sector in the European Union (EU) is one of the biggest energy consumers, which consumes 
around 40% of the total energy in the union [4], [5], and [6]. The U.S. Department of Energy denotes 
that Heating, Ventilation, and Air-Conditioning (HVAC) systems consume 42%-48% of the energy 
consumed in residential buildings1, and from this amount, 31%-33% is the share for space heating 
and ventilation, which confirms the potential of energy saving [7]. 

On the other hand, the air exchange based on natural ventilation is a cost-efficient method to 
improve Indoor Air Quality (IAQ) and to dilute indoor CO2 concentration and odors, or to remove 
other gaseous pollutants or airborne virus particles, e.g., different variants of the Covid-19, from the 
building zones. As part of the operating and control systems in buildings, the HVAC systems keep 
thermal conditions in a comfort zone IAQ in an acceptable range. The CO2 generated by human 
metabolism, if it is not correctly being controlled to some limits, can decrease the indoor air quality, 
deteriorate the occupants’ efficiency, create severe mental problems, or cause considerable excess 
effort for the thinking ability, especially in cold seasons that openings are kept closed most of the 
time. Thus, implementing a robust ventilation control system for the buildings particularly crowded 
office buildings is momentous. These statements describe the importance of energy savings and IAQ 
in the building sector. Therefore, governments allocate funds, and scholars invest massive efforts in 
this area.  

Embedded systems are frequently used as networked components in the HVAC system. 
Numerous embedded devices with sensors, actuators, Real-Time Operating Systems (RTOS), and 
microcontrollers are required to implement HVAC systems. The energy consumption of buildings 
is highly related to the occupancy pattern, the operating and control systems, the outdoor 
environment, the structure specifications, and the materials. Recent research trends and technologies 
emerged based on advanced control strategies in building energy systems, which indicate potential 
energy-saving up to 30% of total energy consumed in a building [8]. Among the diverse HVAC 
technologies in literature, the adaptive Demand-Controlled Ventilation (DCV) system is a solution 
with a high potential in energy savings and the provision of a comfortable indoor climate, especially 
for retrofit purposes. Merema et al. in their results of case studies show that there are significant 
reductions in energy consumption are achieved by DCV for both the fans (50–55%) and ventilation 
heat losses (34–47%) as a high energy-saving potential of the DCV systems in office and school 
buildings [9]. Decreasing the energy demand through energy-efficient solutions in buildings 
contributes to major sustainability in our society. Therefore, exploiting innovative and adaptive 
solutions that optimize the system gives the best results. DCV and heating systems are solutions 
establishing the appropriate balance between reducing energy consumption and supplying improved 
and comfortable indoor conditions in buildings consider natural ventilation with its unique role in 
improving the IAQ by dilution of air pollutants such as CO2 or excess humidity. The DCV is an 
automatic adjustment of ventilation that modifies the amount of air exchange according to the 
                                                 
1 https://css.umich.edu/factsheets/residential-buildings-factsheet 
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demand for fresh air based on sensor measurements of air quality parameters (CO2 measurements, 
occupancy, or in some cases, humidity measurements) and need in every zone at any time by the 
automatic adjustment of damper actuators. A DCV system based on the natural ventilation principle 
profits the potential energy saving in heating systems by preventing excess outside low-temperature 
air from entering the building spaces according to demand based on occupancy rates and activities 
in balance with energy conservation requirements. The DCV and heating system is a promising 
solution that controls and optimizes the ventilation rates based on thermal comfort and indoor air 
quality demands with a high potential in energy saving. Natural ventilation is a cost-efficient method 
to improve IAQ and dilute indoor CO2 concentration and odors in offices. DCV technology is 
opposed to traditional codes and standards, which are based on constant values of required air change 
volume per person or per area for different places, thereby increasing the potential energy saving in 
heating systems by decreasing the heating load of the system. Studies demonstrate that 15% to 25% 
of the HVAC system’s energy can be saved by setting the ventilation rates based on the occupancy’s 
fresh air requirement [10]. The research shows that the constant values in codes and standards can 
lead to over ventilation and increased energy consumption [11]. For example, The American Society 
for Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) standard 62 recommended 
the outdoor air requirements in cfm per person for different applications, e.g., 20 cfm/person for 
office spaces or 0.35 cfm/ft2 floor area [12]. However, the DCV system aims to keep the indoor CO2 
concentration in a fault-free (healthy) range below 1000 ppm for office rooms [13]. There is a 
research problem in the study of the DCV and heating systems. Many types of research in literature 
study the DCV system or the adaptive thermal control separately, or they assumed some 
recommended values for the air exchange based on the standards, e.g., ASHRAE. However, there is 
no comprehensive framework to study this complex system dynamically due to its numerous 
functions, inputs, and outputs for an in-depth assessment of components’ functionality and effective 
parameters besides the adaptive thermal control. The interactions among heating systems, ventilation 
demand, and thermal demand are complex due to several important parameters, e.g., outside 
temperature pattern, occupants’ behaviors, physical and thermodynamic properties of building 
components, and the heating system specifications. Improper design of the DCV system accelerates 
discomfort conditions and air quality degradation by causing undesirable infiltration and energy loss. 
Simulation tools abstract from reality to track the behavior of the modeled systems over time with 
advantages against experimental setups, e.g., more efficiency in development time and cost. The 
models are more complex with new components added into the system or in reconfigurable system 
architectures. This thesis introduces the simulation framework with modular, composable models of 
DCV and heating systems for arbitrary architectures based on a high-level specification of the 
building characteristics.  

This DCV and heating system, with its numerous components such as sensors, actuators, and 
processing units connected in a network, is an example of Cyber-Physical Systems (CPSs). The 
integration of the continuous time-driven nature of the DCV and heating system with the discrete 
event-driven nature of Wireless Sensors and Actuators Networks (WSANs) shows the nature of the 
CPS. These systems include many parameters and input/output signals with a wide range of values. 
Also, the electronic systems for DCV and heating systems make a level of complexity due to their 
numerous components such as sensors and actuators. These complex structures cause the systems 
error-prone, more susceptible to faults and the following failures can affect the efficiency severely. 
Faults, if they are not detected and diagnosed early, can lead to problems including discomfort, 
performance degradation, uneasiness for the occupants, and shorten the equipment’s life, which 
might lead to permanent damages to its components and high maintenance costs. Also, faults in 
HVAC systems can cause a waste of energy and reduce the productivity of the occupants in the 
building. From the indoor air quality aspect, CO2 proliferation in office spaces due to human 
respiration causes adverse effects for occupants’ comfort, e.g., drowsiness, increased heart rate, 
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headache, feeling unwell, lack of concentration, and deterioration in efficiency. Significantly, the 
occupants’ capacity to concentrate declines, and the mental tasks require much effort when exposed 
to a high concentration of airborne CO2 for 2 to 3 hours [14]. Lazarova-Molnar et al. depict the 
annual impact of faults in energy consumption with impacts from HVAC and air distribution faults 
describing unoptimized HVAC systems with occupancy issues and improper work of dampers in 
Table 1.1 [15].  

Table 1.1 Impact of faults in terms of energy consumption [15]. 

 
As large buildings are deployed with complex electronic systems and divided into many 

sectors, zones, and zones with multiple sensors to manage their operations, faults are not easily 
detectable. Therefore, tracing the behavior of components and systems to reach caused faults is a 
challenging task. The services of these systems, such as decision-making, learning, optimization, 
and control, need dependability to be trustworthy. The probable results due to faults are wrong 
decisions or catastrophic failures, making the system unreliable and untrustworthy, especially in 
critical infrastructures such as airports or hospitals. Here, HVAC systems are safety-critical such as 
in case of fire or toxic gas leakage. Therefore, system monitoring, data collection, and fault tolerance 
are inseparable parts of HVAC systems. Explicit redundancy can guarantee vital services in case of 
faults, but it is not a cost-effective solution. Automatic failure detection and fault diagnosis 
techniques are cost-effective solutions to unwanted faults.  

Failure detection and fault diagnosis is the combination of failure detection which is the 
implication of the fault in a component or system with fault diagnosis that is finding the type, 
severity, time of occurrence, and locality of faults. The state-of-the-art of fault diagnosis methods 
for building energy systems, e.g., HVAC systems, reviewed data-driven and knowledge-driven 
diagnostic methods with their strengths and shortcomings [16].  

The knowledge-driven methods are mainly based on expert knowledge and simulate the 
diagnostic thoughts of domain experts with the argumentation of uncertainties, diagnostic of 
different fault severities, and understandability; although, with a higher and time-consuming effort 
that need a deep understanding of the causal relations among system inputs, faults, and symptoms. 
Moreover, the knowledge-based methods still lack automatic strategies to improve efficiency. The 
data-driven methods depend on similarities and patterns, with high sensitivity to any change of 
patterns and more accuracy than the knowledge-driven methods. Expert knowledge combines the 
knowledge from first principles with causal modeling based on the system description to create 
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qualitative models based on rules as the central core of the knowledge-based techniques [17]. Expert 
systems are categorized into a shallow-knowledge expert system with IF-THEN rules of rule-based 
methods, deep-knowledge expert systems based on functional reasoning, first-principles expert 
systems, and machine learning. Knowledge-based techniques provide a technique to solve a problem 
based on data.  

However, the data-driven methods mainly rely on similarities and patterns. They are very 
sensitive to changes in patterns and have more accuracy than the other knowledge-driven based 
methods. But, they require huge data for training; they cannot provide the reason behind the results, 
and their strategies indicate black boxes with low understandability. Zhao et al. classified the 135 
artificial intelligence-based research papers in the field of FDD in HVAC systems from 1998 to 2018 
and the result shows that most papers were about the data-driven-based methods (79%), however, a 
few papers were about the knowledge driven-based methods (21%) [16]. This shows the relative 
expertise of researchers in the data-driven-based methods when knowledge-driven-based methods 
need special attention and new AI-based methods are in demand that can combine the advantages of 
knowledge-driven and data-driven methods in the future [16].  

The research gap filled in this thesis is therefore the combination of knowledge-driven and 
data-driven diagnosis in DCV and heating systems to gain advantages from both categories. The 
diagnostic method presented in this thesis initiates low experts’ effort without necessitation of in-
depth understanding of the causal relations compared to existing knowledge-driven methods with 
high understandability and high accuracy. The fault diagnosis strategy provided in this thesis is an 
AI-based method that combines a data-driven classifier with knowledge-driven inference, e.g., fuzzy 
logic and a Bayesian Belief Network (BBN). The combination of BBN and fuzzy logic that is Fuzzy 
Bayesian Belief Network (FBBN) analyzes the dependencies of the system signals based on Mutual 
Information (MI) theory.  

In the offline mode, a library of trends and statuses based on training fault cases is 
established. The conditional probabilities are calculated based on fuzzy weights of signal values and 
statuses that are used to obtain mutual information. The positive MI values show the dependencies 
of the subdomains in a pair of measurement signals or statuses for each fault case (pairwise 
dependency) and negative MI values show that there is no dependency. Then, the conditional 
probabilities of the subdomains in a pair with positive MI values are calculated and the conditional 
probability with the higher value indicates the direction of the dependency in each pair of nodes. 
Then, these dependencies are stored in the offline library as the RDPs. In the online diagnosis mode, 
our strategy compares the trends and statuses of the real scenario, which can be a fault scenario, with 
the trends and statuses that are stored in the offline library to find the most similar trends and statuses 
of signals of the fault case to the trends and statuses of signals for example scenarios in the library. 
For this comparison, the RDP of the real or faulty scenario is compared to the RDPs in the offline 
library and the percentages of similarities are calculated. Then, the evaluation step determines and 
sorts the likely fault causes based on the comparison results from the highest degree of similarity to 
the lowest as the composed diagnostic classifier result. These percentages of similarities are beliefs 
sorted from the highest value to the lowest value where larger values imply a higher probability of 
the corresponding fault. The overall benefits are more understandability, less effort for experts, and 
higher diagnostic accuracy. Our strategy only needs expert knowledge to define fuzzy sets and the 
whole process can intelligently classify the faults compared to the other knowledge-based strategies. 
The evaluation results show that our strategy can accurately map a fault case to the predefined fault 
in the library. 

On the other hand, a data-driven strategy is specifically established using deep neural 
networks to compare and evaluate the performance of the presented composed diagnostic classifier. 
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The data-driven classifier uses observed signals from faulty and healthy operations of the system to 
train and evaluate the performance of the designed network model.  

Both strategies are tested on a demand-controlled ventilation and heating system. For the 
evaluation, four types of stuck-at faults at different components such as temperature sensor, CO2 
sensor, heater actuator, and damper actuator with various fault values at different instants of time 
were investigated. A fault injection framework artificially injects the faults to serve the diagnostic 
classifiers, e.g., training the models and evaluations. The results show the composed classifier 
introduced in this thesis has comparable performance to the data-driven method while advantaging 
the strengths of knowledge-driven methods. The evaluation results show that 97.22% of faults were 
truly diagnosed in the composed diagnostic classifier with better precision, F-score and accuracy 
compared to a deep neural network as a data-driven diagnostic method.  

All the contributions mentioned above in this thesis are designed based on a modular 
composability scheme. Therefore, the introduced model in this thesis can combine modules and 
understand the composition of diverse subsystems by having a whole perception of its components 
and combinations. Composability is applicable in many fields, such as cyber-physical systems that 
include Systems of Systems (SOS) and compositions of diverse subsystems. Modularity is a design 
technique for subsystems (modules) with well-defined interfaces to create scalable models that can 
be used in various contexts. The unique modules are used to create various complex building models. 
This thesis introduces the modular composability scheme using generic diagnostic components at 
the system level applicable in many areas. That means the model, thanks to the modular 
composability algorithm, is scalable. The user can generate different types of building with various 
architectures with many rooms and floors. The system model, fault injection blocks, and diagnostic 
modules will be automatically extended. 

 

1.1. THESIS OBJECTIVES AND CONTRIBUTION 
Nowadays, fault diagnosis in a large-scale system is a crucial challenge. This thesis aims to 

provide a novel fault diagnosis framework based on composed diagnostic classification for specific 
fault types based on the causal relations in an FBBN using RDPs beside another fault diagnosis 
framework based on the data-driven classification with a deep neural network to use for the diagnosis 
of a range of faults and to be used to evaluate the composed diagnostic classifier results for the DCV 
and heating system model. The main reasons behind the selection of the DCV and heating system in 
this thesis are the high potential in energy-saving, the decrease of CO2 patterns that are detrimental 
to the occupants, and the guarantee of the indoor air quality and thermal comfort of occupants. This 
system with its numerous components such as sensors, actuators, and processing units connected in 
a network integrates the continuous time-driven nature of the environment with the discrete event-
driven nature of the computational world. The implementation part of this thesis presents a 
framework that was analytically modeled at first and then simulated in MATLAB/Simulink using 
the Simscape toolbox to monitor and control IAQ and comfort parameters in an office building in 
real-time and study the fault diagnosis methods. Also, this framework supports the modular 
composability scheme. The proposed framework offers a modular adaptive thermal model of the 
heating system for a multi-zone office building equipped with the DCV system and diagnostic 
modules. The modular composability scheme uses generic diagnostic components developed in this 
thesis for each zone and fault injection blocks for testing and evaluation. 
The contributions of this thesis can be summarized as follows: 
1. Modeling and implementing the DCV and heating system:  

The thesis models and simulates a DCV and heating system applicable in many kinds of 
research. This adaptive thermal control system considers the airborne CO2 emissions due to the 
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occupants or any other sources in building spaces with minimum energy consumption while 
optimizing the utmost indoor air quality, occupants' thermal comfort, and energy demands and 
prevents overheating and overventilation that can be the reason for energy waste and occupants 
discomfort. Many types of research in literature study the DCV system or the adaptive thermal 
control separately, or they assumed some recommended pre-set values for the air exchange based 
on the standards, e.g., ASHRAE. From this perspective, there is no framework to study this 
complex system including DCV and heating control dynamically with its numerous functions, 
inputs, and outputs for an in-depth assessment of components’ functionality and effective 
parameters besides the adaptive thermal control. The interactions among heating systems, 
ventilation demand, and thermal demand are complex due to several important parameters, e.g., 
outside temperature pattern, occupants’ behaviors and CO2 generation, physical and 
thermodynamic properties of building components, and the heating system specifications. The 
model developed in this thesis is useful in sensitive applications especially during the pandemics, 
e.g., office buildings, schools, hospitals, pharmaceutical factories, manufacturers of electronic 
components, or poultry farms, with some modifications in the type of sensors and actuators. 
Also, this framework can be extended to other gaseous pollutants, e.g., Carbon Monoxide (CO), 
Nitrogen Dioxide (NO2), Ozone (O3), Methane (CH4), and Particle Pollution (PM). The model 
is analytically modeled at first and then simulated in MATLAB/Simulink. 

2. Developing an automatic composed diagnostic classifier based on the combination of data-
driven and knowledge-driven diagnosis methods: 

A new automatic fault diagnosis method is developed in this thesis as a composed 
diagnostic classifier to solve the fault diagnosis problem of the DCV and heating systems by 
involving a knowledge-driven based diagnostic system as a white-box approach when 
maintaining the advantages of the inference-based methods, e.g., Bayesian inference-based and 
fuzzy inference-based methods, in combination with the automatic data-driven-based fault 
diagnosis using multiclass classifiers for stuck-at or constant fault types. The composed 
diagnostic classifier relies on the causal relations in a fuzzy Bayesian belief network using 
relation direction probabilities to lower the fault diagnosis efforts and energy waste as well as to 
increase the operational efficiency. The method in this thesis is based on the integration of causal 
relations using the relation direction probabilities and fuzzy theory into the Bayesian belief 
networks. The RDPs were used to update the fault library. In offline mode, for each fault class, 
a Relation-Direction Probability (RDP) table is computed and stored in a fault library. In online 
mode, we determine the similarities between the actual RDP and the offline precomputed RDPs. 
The combination of BBN and fuzzy logic in our introduced method analyzes the dependencies 
of the signals using MI theory. The method creates a unique RDP table for each class of faults 
and data sets. This method can also be extended to additional faults by adding RDPs of new fault 
classes to the offline library. This method provides more understandability, less effort for 
experts, and higher diagnostic accuracy while it is independent of the historical data, independent 
of the expert knowledge, and computing-resource efficient. Our strategy is less dependent on 
expert knowledge and only requires the expert to define fuzzy sets and the whole process can 
intelligently and automatically classify the faults compared to the other knowledge-based 
strategies. The evaluation results show that our strategy can accurately map a fault case to the 
predefined fault in the library. 

This diagnostic method automatically reveals the hidden and intrinsic dependencies of 
trends (for sensors) or statuses (for actuators) in signals that change concurrently over time in 
case of faults. For example, if a damper sticks at open status, the room temperature decreases 
and makes the heater stick at ON status indirectly because the heater wants to compensate for 
the heating load due to the damper, which is a hidden dependency between damper and heater 
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status signal. Also, this diagnostic method finds fault-symptoms dependencies and diagnoses 
faults in complex systems with many signals.   

3. Developing a failure detection and fault diagnosis framework based on the data-driven 
classification using the deep neural networks:  

This thesis developed a pure data-driven based fault diagnosis method to solve the fault 
classification problem in a multi-class model to evaluate the performance of the introduced 
automatic composed diagnostic classifier (contribution No. 3) in this thesis. This system relies 
on a big amount of data based on a black-box approach. This system includes different steps of 
data acquisition, data preprocessing, network model design, model optimization, and network 
model evaluation. The evaluation results from this method will be compared with the other 
diagnosis method described in this thesis. 

4. Development of fault injection blocks for fault injection and GUIs for fault activation and 
system monitoring: 

The building blocks and GUIs are developed for the users in this thesis for evaluating the 
robustness, e.g., against various faults and failures, by artificially injecting different types of 
faults based on the time of fault injection, severity, type, and domain. The data produced in this 
framework is used to test various diagnostic classifiers. The simulated model can be connected 
to the data server using the structured query language for the data logging. 

5. Modular composability scheme:  
All the contributions mentioned above in this thesis are designed based on a modular 

composability scheme. Composability is applicable in many fields such as cyber-physical 
systems that include systems of systems and compositions of diverse subsystems. Modularity 
creates scalable subsystems (modules) with well-defined interfaces. The unique modules are 
used to create various complex building models. This thesis introduces the modular 
composability scheme using generic diagnostic components at the system level applicable in 
many areas. Therefore, the introduced model in this thesis can combine modules and understand 
the composition of diverse subsystems by having an entire perception of its components and 
combinations. The user can generate different types of building with various architectures with 
many rooms and floors. The system model, fault injection blocks, and diagnostic modules can 
be automatically extended. 
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1.2. STRUCTURE OF THE THESIS  
This report is organized into eight chapters. Chapter one provides the introduction focusing on 

the motivation, challenges, requirements, thesis objectives, and contribution. The contents of the 
remaining chapters are summarized below. 

Chapter two provides the related works and basic concepts discussing the state-of-the-art of 
the main parts of this thesis for DCV and heating systems simulation and failure detection and fault 
diagnosis in DCV and heating systems containing knowledge-driven and data-driven diagnostic 
methods. 

Chapter three formulates the theory of the system model, including three parts: physical 
model, DCV, and modular composability. 

Chapter four describes the implementation part that consists of modeling and simulation of 
the system model and the modular composability scheme. 

Chapter five explains faults and fault injection framework implementation, including 
modeling and simulation. 

Chapter six describes the failure detection and fault diagnosis techniques used in this thesis, 
including a novel automatic composed fault diagnosis classifier that combines the knowledge-driven 
inference and data-driven automatic classifier based on the causal relations in FBBNs using RDPs. 
Also, a pure data-driven fault diagnosis method is introduced based on the deep neural networks to 
evaluate the automatic composed diagnostic classifier introduced in this thesis. 

Chapter seven explains the evaluation of both pure data-driven and composed diagnostic 
classifiers using the fault injection framework by comparing the performance metrics. 

The thesis ends with chapter eight that is the conclusion and further research works. 
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2. BASIC CONCEPTS AND RELATED WORK  
Equation Chapter (Next) Section 1 
This chapter presents the basic concepts and introduces the related work relevant to this 

thesis. 
 

2.1. BASIC CONCEPTS OF COMPONENT-BASED SYSTEMS 
A system is an entity that interacts with other entities, i.e., other systems such as hardware, 

software, and humans [18]. The behavior of a system is what the system does to implement its 
function [18]. The system's function is what the system is intended to do [13], and the system's 
behavior perceived by the users describes its service [19]. The user is a physical or human system 
interacting with another system at the service interface [19].  

Two terms of compositionality and composability are the most used ones for component-
based systems. Compositionality shows the overall system properties from the properties of its 
components [20]. Compositionality refers to combining modules and understanding the composition 
of diverse subsystems by having a whole perception of its components and combinations. 
Composability is a system design principle with a focus on the inter-relationships of components. 
Composability describes that the component property will be valid under some local conditions after 
composition, which guarantees the preservation of previously established component properties[20]. 
Composability maintains the stability of component properties across merging in an environment 
(when its environment changes by adding or removing components)[20]. Composability is a 
technique that enables the selection and assembling of components in the flexible forms of several 
combinations while keeping the specific user requirements [21].  Composability aims to increase the 
reliability and cost-effectivity of a system [22]. 

There are terms to show the trustworthiness of the system that are verification and validation. 
Verification is the process of checking whether the system adheres to given properties or the 
verification conditions [19]. Validation means checking the specification of a system [19].  

 

2.2. BASIC CONCEPTS FOR DEPENDABILITY 
The failure detection and fault diagnosis concepts are related to the dependability measure 

and its attributes. Dependability is defined as the ability to deliver a service that can justifiably be 
trusted [14]. Dependability has attributes including availability that is defined as readiness for 
usage, reliability as continuity of correct service, safety as the absence of catastrophic consequences 
on the user(s) and the environment, integrity as an absence of improper system state alterations, and 
maintainability as the ability to undergo repairs and modifications. Robustness is maintaining the 
dependability of the system despite erroneous inputs.  

 Fault diagnosis is a prerequisite of a reliable system as it is essential for creating a fault-
tolerant system. Figure 2.1 shows the chain from cause to effect view in the physical system and 
from observation to diagnosis in an Automatic Fault Detection and Diagnosis (AFDD) system [23]. 
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Figure 2.1 Overview of an AFDD system – from observation to diagnosis [23]. 

Fault Detection is a term used to “determine the occurrence of faults in the functional units 
of the process”, which leads to the incorrect, unacceptable, or abnormal operation of a system in 
some respects by continuous monitoring of the behavior of the system [24], [25], [26]. In most failure 
detection techniques, discrepancies between measured variables and nominal values (features) 
indicate failures at the system level. Detecting such a failure can be made using different techniques 
ranging from simple static or dynamic thresholds to complicated decision-making algorithms.  

  
Figure 2.2 Failure detection and fault diagnosis architecture. 

Figure 2.2 provides a global view of architecture for failure detection and fault. The 
supervisory-level algorithm that includes system monitoring, failure detection, and fault diagnosis 
enables the system to overcome the faulty plant and handle the controller. 
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Failure Detection and Fault Diagnosis (FDFD) is the investigation of detecting the failure 
in a system and diagnosing relevant fault(s) that is the root cause of the aroused failure in the aspect 
of the type, size (intensity), locality, and time. The FDFD in this thesis has the same meaning as 
FDD in other research studies because this thesis considers the fault at a system level as a failure at 
a component level. Then, the diagnostic information can be used for taking corrective actions. The 
terms “fault identification,” “fault isolation,” and “fault analysis” are also referred to as fault 
diagnosis [23]. Diagnosis is a forerunner to fault-tolerant control. Fault diagnosis uses the symptoms 
generated from the failure detection stage to make the diagnostic process more manageable. These 
symptoms are categorized into analytical symptoms from FDFD algorithms or heuristic symptoms 
generated by human observation based on expert knowledge. In a successful FDFD process, 
component failures are detected early before a severe system failure, damage, or loss of the service, 
and their fault causes are diagnosed [10].  

Establishing a precise diagnostic model is a challenging task accompanied by try and error 
efforts considering many diagnostic methods [24]. An ideal FDFD system should have the following 
characteristics that are extended for this thesis [23]: 

• Low cost: An ideal FDFD system should be economical, which is now possible thanks to 
computation and sensing resources. However, the expert knowledge required in the setup 
stage of the FDFD system is still costly. Therefore, low dependence on the expert-
knowledge means decreasing the cost.  

• Reliable: An ideal FDFD system must retain its reliability. 

• High truly diagnosis rates: The performance characteristics of an FDFD system must be 
evaluated, such as accuracy, precision, recall, F-score, true positives, false positives, true 
negatives, and false negatives. The higher diagnosed fault rates are associated with lower 
costs and maintenance efforts, high trustworthiness, in addition to saving in operation 
resources.  

• Composable: An ideal FDFD system should overcome the composability limitations due to 
system characteristic changes to automatically adapt and eliminate updating efforts of 
diagnostic algorithms.  

• Automatic configuration: it is desirable to have an automatically configurable FDFD 
system that adaptively selects and fits many building architectures considering identical or 
similar systems. 
The complex nature of HVAC systems due to interconnected components makes the FDFD 

approach in this context highly challenging. The fault-error-failure propagation model is used to 
picture the relationship between the interconnected components' faults, errors, and failures. Figure 
2.3 illustrates how an activated error due to fault with internal or external resources propagates either 
at the component level into one or more components or at a higher level into one or more systems 
based on the process hierarchy [27].  

Figure 2.3 Fault-Error-Failure Propagation Model at Component Level and System Level [27]. 
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The internal fault causes are located inside the system, while the external causes come from 
the system's environment. The activated fault causes the error in the component, and the error can 
propagate either internally in the component to cause a component failure or externally to another 
component of the same system via the service interface or another system via the system interface. 
In the former case, the service delivered to the other component becomes incorrect, e.g., an incorrect 
service produced by component A is delivered to component B. Henceforth, the error in component 
A causes an error due to an external fault in component B. This error can again propagate into that 
component by creating a component failure or moving to another component of the same system 
and creating system failure in the same system or another system as its final destination. 

“A fault is an unpermitted deviation of at least one characteristic property of the system from 
its normal, acceptable, usual and expected behavior that leads to an error and symptoms” [28]. 
Himmelblau defines the term fault as “a departure from an acceptable range of an observed variable 
or a calculated parameter associated with a process” [29]. Faults may result in binary variables, e.g., 
OK/failed, or to some extent in values depending on the severity of the fault. A symptom is an 
observed event or value from the input/system/output signal that is needed in the fault detection 
process. An error is generally an incorrect or undefined system state that may later manifest its 
effect in the shape of failure [30]. “A failure is a permanent interruption of a system’s ability to 
perform a required function under specified operating conditions” that result from one or more faults 
[28]. The failure is either at the component or the system level. The fault is the reason for the failure. 
In case of a failure, the system functionality deviates from its specification [27]. The components 
may encounter abrupt failure or degradation failure. 

Fault Injection (FI) is the technique of inducing artificial fault into the system to trace the 
system behavior in case of occurring or absence of fault [27]. Fault injection techniques are 
commonly used to test the diagnostic techniques. The faults defined during the fault injection are 
intentionally injected, developed, and identified using a suitable fault injection framework with 
reproducing ability. The simulation result and behavior of different systems and components can be 
observed in faulty and non-faulty (healthy) conditions. 

The delivery of the correct service in the presence of faults is guaranteed by fault tolerance. 
It describes how to ensure service up to fulfilling the system's function in the presence of faults [31]. 
It is generally implemented using error detection, recovery, and fault handling, including fault 
diagnosis, fault isolation, system reconfiguration, and system reinitialization. Fault diagnosis 
identifies and records the cause(s) of error(s) in terms of both location and type [19]. Fault isolation 
performs physical or logical exclusion of the faulty components from further participation in service 
delivery, i.e., it makes the fault dormant [19]. Fault prevention describes how to prevent fault 
occurrence or introduction [31]. Fault removal describes how to reduce the presence (number, 
seriousness) of faults [31]. Fault forecasting describes how to estimate the present number, the 
future incidence, and the consequences of faults [31]. 

 

2.3. BASIC CONCEPTS FOR MUTUAL INFORMATION THEORY 
Mutual Information is a concept rooted in information and probability theory. MI of two 

random variables is a statistical measurement of the mutual dependency of two random variables. 
MI also measures the amount of information about one random variable by observing the other 
random variable [32]. There are many definitions of random variables. For example, G. Zeng  [33] 
has classified MI definitions into two categories: 1) definitions with random variables and 2) 
ensembles. The original definition is appointed to Shannon [34] that is described in the equation 
below. 

 
1

( ) log
n

i i
i

H x p p
=

= −  (2.1) 
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In this equation, x is a chance variable with a probability sequence of p1, p2,…pn and H(x) is the 
entropy of x. The joint entropy of x and y is defined as: 
 

,
( , ) ( , ) log ( , )

i j
H x y P i j P i j= −  (2.2) 

Entropy in information theory is a logarithmic measure for the rate of information transfer in a 
particular message. This information rate (R) in Shannon’s definition is defined as: 

 
,

( , )( , ) log
( ) ( )j j

P i jR P i j
P i p j

=  (2.3) 

In this equation, P(i,j) is the joint probability density function. As mentioned, the first category of 
mutual information depends on the joint distribution of two random variables. Kullback [35] defines 
MI, assuming that two random variables have different probability spaces. Ash [15] assumed that 
the x and y variables have the same probability space. Cover and Thomas [36] have a modern 
definition of MI in which they have presented MI without probability spaces as shown: 

 ( , )( , ) ( , ) log
( ) ( )x X y Y

p x yI X Y P x y
p x p y 

=  (2.4) 

Random variables are replaced with ensembles in the second category of MI definitions, and an 
average of MI will be calculated. The mutual information of two continuous random variables X and 
Y called differential mutual information and is defined as: 

 ( , )( , ) ( , ) log
( ) ( )
p x yI X Y P x y dxdy

P x P y
=   (2.5) 

Where P(x,y) is the joint probability function of X and Y . P(x) and P(y) are density functions for 
each x and y. Defining the density function of continuous variables is a critical issue. The fuzzy 
theory can be used an appropriate likelihood density function [37]. Therefore, the MI can be defined 
for two fuzzy subsets of A and B as follows: 

 2
( , )( , ) ( , ) log

( ) ( )
P A BMI A B P A B

P A P B
 

=  
 

 (2.6) 

The probability values of P(A), P(B), and the joint probability value of P(A,B) are calculated in this 
thesis in sections 6.1.1.4 and 6.1.1.5. 
 

2.4. STATE-OF-THE-ART IN HVAC SIMULATION 
The energy demand in the building sector reports that the share of the residential buildings 

in energy use is almost 21% of the total energy consumption on earth [38]. The buildings' energy 
consumption is about 40% of the total energy consumed in the European Union (EU) [4], [5]. The 
office buildings own almost 18% of this energy consumption among the whole building sector [2]. 
The heating and cooling systems consume approximately 68% of the energy used in buildings in 
Europe, which is almost 5% of the total energy consumption in the EU [39]. In the United Kingdom, 
space heating exclusively consumes 61.3% of the energy in the household sector [40]. In the last 
decade, the new advanced control strategies and their associated approaches for the building energy 
systems are proposed because they potentially save around 30% of the energy consumed in buildings 
[8]. Therefore, the study of HVAC and its control strategies is very significant. 

Building models highlight new control approaches as they can be modeled and simulated to 
predict their behavior in the buildings for development purposes. The other benefit of the modeling 
and simulation is the testing and optimizing of the systems in their design phase [41]. Also, 
simulation improves weaknesses and consequences before experimental implementations. 
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MathWorks Inc. [42] has created a simple example of a “House Heating System 0F0 F

1” in 
MATLAB/Simulink, which only includes a heater, a controller, and a house structure with four 
radiators and four rooms, and the heat is transferred within the environment through its exterior 
walls, roof, and windows. The control function only considers the overall average temperature of 
rooms, and if it falls below 18 degrees in centigrade, it turns the heater of the entire building on, and 
if the temperature exceeds 23 degrees, it is turned off. This example model has many shortcomings 
as it is assumed that heat is not transferred internally between rooms which makes the model far 
from reality as the adjacent zones have significant thermodynamical impacts on each other, which 
cannot be ignored. The other shortage of this model is that there is no control in each specific room, 
which means the waste of energy because some rooms may be empty of occupants, whereas the 
heater of that room produces useless heat. Moreover, the model does not investigate the ventilation 
effect, which significantly affects the heating load of the heating system in winter times.  

It is essential to learn about system behavior by analyzing the system model to optimize a 
complex building automation model because it specifies what a system does, including the grasp of 
energy generation and losses dynamics. Lapusan et al. illustrated a multi-room building 
thermodynamic model based on the lumped capacitance method with the 3R-2C network, including 
three resistors and two capacitors using the Simscape library in MATLAB/Simulink [43]. The 
developed model includes four rooms with an ON/OFF heating control system with a significant 
limitation when the building model must be extended. Because the connections between zones are 
the heat flows which makes the model very complex. However, the calculations of the heat transfers 
in this thesis are based on the calculated temperatures in each room. 

Karmacharya et al. developed a simplified building heating system using the lumped node 
method [44]. In the lumped node method, the construction elements such as walls, windows, and 
floors are divided into different numbers of elements having uniform temperatures about which an 
energy balance can be represented. Karmacharya et al. considered the heating system’s type of 
variable flow with a constant temperature. That means the heater flow rate is continuously changing. 
However, this study considers the heaters as the constant power source. Therefore, the output of the 
heater, once it is on, is a constant value. Also, in the validation part, Karmacharya et al. use 
comparative testing where the results from one program are compared to another program. They 
used the results gathered from the model in MATLAB and compared them with the results acquired 
from another program named the Design-Builder Software. Gouda et al. [45] describe an optimized 
second-order lumped parameter method that is used as a thermal building model. This model can 
represent the wall, floor, or roof of multiple layers. They used a nonlinearly constrained optimization 
method for the reduction of the model order of building elements. The result of their work shows 
that a reduced model based on a 2nd-order building element is accompanied by a minimal loss of 
accuracy but considerable improvements in computational effort. Crabb et al. [46] developed a 
model in which a room air capacitance and a single lumped construction capacitance were linked in 
a conduction path with three resistances. The inputs are ventilation rate and zone heat inputs. Sukla 
and Jenkins [47] have used the lumped node method to model a house, taking heat loss and thermal 
capacity into account without considering solar radiation, ventilation, and gains.  

Mendes et al. [48] focused only on the mathematical model of building thermal analysis and 
control system design. They have considered a building envelope with three envelope layers, room 
air, sensor, and heater, and the lumped approach to model the room air temperature and a multi-layer 
model for the building envelope. The lumped capacitance method enables the study of the transient 
analysis of room air temperature in case of environmental temperature variations. 
MATLAB/Simulink is used for evaluating system performance. For this, the energy conservation 
and energy balance equations and the heater and the temperature sensor models were described, and 
then, the building model in the format of a state-space problem was implemented in 
                                                 
1https://de.mathworks.com/help/physmod/simscape/examples/house-heating-system.html 

https://de.mathworks.com/help/physmod/simscape/examples/house-heating-system.html
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MATLAB/Simulink. Therefore, the state model consists of 21 state variables. They also studied the 
parameter of heater performance coefficient ( ) in two cases of no radiation of the heater. The first 
case (emissivity 0)  shows that all the heater energy will be consumed to warm up the room air, and 
the second case is for the emissivity of 0.8. The results show that the heater performance coefficient 
is 99.99% in the no radiation case and 99.97% with the emissivity of 0.8. Bertagnolio et al. used the 
1st order lumped node method to model building elements [49]. Embaye et al. [50] focused on the 
effect of changing the radiator inlet flow strategy from constant flow to pulsed flow on energy 
consumption of a radiator in a hydronic centrally heated building in MATLAB/Simulink. The 
mathematical models of the single heater (radiator) and the room’s envelope for this study include 
walls and windows. The Logarithmic Mean Temperature Difference (LMTD) method was used to 
calculate the output energy of a hydronic radiator. Then, the energy balance equation was described. 
However, the constant rates for air changes per hour and the volume flow rate of air infiltration were 
considered for the ventilation and infiltration parts. The other shortage of this model is modeling and 
simulation of just one room instead of considering a multi-room building with interconnections.  
Also, using the Proportional Integral Differential (PID) controller was studied, which causes a 
decrease in the fluctuation of the room temperature signal.  

Thavlov et al. [51] indicated a dynamic heat model that predicts the indoor air temperature 
and power consumption of electrical space heating in an office building using stochastic differential 
equations. This model was developed based on the lumped method in the simulation environment 
of SYSLAB. However, the heat transfer between different building zones is neglected in this model, 
and only the overall indoor temperature of the building can be calculated. Thavlov showed that due 
to the high amount of natural ventilation in FlexHouse, especially the nonlinear properties of wind, 
conditions should be integrated into the model due to their influence on the indoor temperature. 
Danza et al. [52] focused on developing a Resistance-Capacitance (RC) thermal model using the 
coupling of the 3R-2C modules for a test cell and the simulation of the model in a Modelica 
environment. The Differential/Algebraic Equations (DAE) developed by Danza et al. have been 
solved by the DASSL step-variable solver, which uses backward differential formulas to integrate 
DAE [53]. Bastida et al. [54] developed a dynamic thermal model of a building with multi-layer 
walls based on this thesis using state-space and transfer functions. However, they studied just a 
single-zone building. The type of controller is PI.  Mai et al. [55] studied a three-zone building and 
developed the thermal R-C network, the authors of that study took into account the input 
heating/cooling rate to each zone calculated by knowing the coefficient of performance (COP) of 
the HVAC equipment. The research describes that the lumped capacitance method is a good 
candidate for experimental implementations and studies. Dimitriou et al. [40] experimentally 
developed a suitable thermal model for domestic buildings which fits with intelligent home 
equipment such as wireless control products or sensors to monitor and predict the energy demand. 
The grey-box model was used based on the lumped parameters. 

However, none of the mentioned works studied the indoor air quality parameters and 
pollutants that negatively affect the occupants’ life and work quality, such as CO2 concentration in 
the building zones. Natural ventilation is considered an efficient technique to improve IAQ by 
diluting indoor air pollutants such as CO2 emissions. Therefore, some researchers used mathematical 
modeling to investigate the ventilation system, which can be simulated as a dilution technique. In 
this context, Li et al. [56]  focused on modeling indoor CO2 concentration based on real-time indoor 
occupant prediction and CO2 generation rates for an air-based HVAC system using ducts connected 
to a boiler (or chiller) as a central plant. However, their control approach was different as they 
assumed a constant volumetric airflow rate, a constant supply of CO2, and constant indoor CO2 
generation. Also, they used the experimental data first to predict the indoor CO2, and then the 
(forced) ventilation rate was continuously changed to keep the indoor CO2 concentration at a 
constant value, e.g., 600 ppm. 
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There are some standards as references for an acceptable indoor air quality, such as ASHRAE 
Standard 62-1999 that provides some fixed values for the ventilation rate based on the building’s 
occupants. However, the number of inhabitants differs continuously in reality [57]. In contrast, 
demand-controlled ventilation brings its energy-saving potential to the application by preventing 
excess fresh air exchange that accompanies more heating load. Brandenmuehl and Braun show 15% 
to 25% energy saving potential of the DCV system using ventilation rates setting based on the 
occupancy requirements in their study [11]. 

There are many kinds of research in the literature of Wireless Sensors Network (WSN) 
simulation frameworks without considering the actuation on the control plant [58], [59], and [60]. 
Guinard et al. describe a scalable single-hop WSN tool using Borland C++ for the sensor information 
collection in building energy management applications. However, their study did not include an 
actuation control system [61]. Song et al. studied the DC servo control plant and provided a real-
time simulation model for WSAN based on the IEEE 802.15.4 communication protocol using 
TrueTime [62]. Callaway et al. described the role of the ZigBee/IEEE 802.15.4 protocol in intelligent 
homes [63]. Wang et al. mentioned the usability and necessity of using ZigBee technology in 
intelligent home energy management [64]. Aziz et al. researched a wireless system to monitor and 
process the room temperature and humidity using ZigBee [65]. Hyncica et al. presented the 
performance of ZigBee in a small office building and described important features of ZigBee 
communication [66]. Therefore, this thesis focuses on developing a DCV and heating system 
framework based on Wireless Sensors and Actuators Network (WSAN) architecture. 

 

2.5. STATE-OF-THE-ART IN FAULT DETECTION AND DIAGNOSIS 
FOR HVAC SYSTEMS   

 
Fault Detection and Diagnosis (FDD) for building systems ensures dependability, efficiency, 

and economy. Dependability avoids service failures that would be more frequent and severe than the 
acceptable range [18]. For this reason, dependability attributes should be maintained, i.e., availability 
(readiness of correct services), reliability (continuity of correct services), safety, integrity, and 
maintainability. The rise of microcomputers and digital control is considered the earliest effort on 
automatic FDD for buildings in the 1980s [67], [68].  

Isermann [28] categorized the fault diagnosis approaches into inference methods based on 
causalities between faults and respective symptoms, e.g., fault trees based on decision trees and IF-
THEN statements using expert knowledge, and classification methods based on training when fault-
symptom causalities are not prominent. The inference techniques are helpful when the causal 
relations between faults and symptoms are known. Otherwise, classification techniques such as 
artificial intelligence black-box models can be applied based on experimental data collected from 
the system to extract features without expert knowledge and find causal relationships. Gao et al. 
proposed other FDD methods in three categories of model-based methods, data-driven methods, and 
rule-based methods [69]. Zhao et al. [16] review 135 artificial intelligence-based papers from 1998 
to 2018 and classified fault diagnosis methods into two subcategories of data-driven-based and 
knowledge-driven-based methods. Methods in the knowledge-driven-based category are based on 
the domain experts’ thinking power and depend on the domain knowledge’s and inference 
approaches’ nature in FDD methods. Against, methods in data-driven-based subcategory typically 
are based on the patterns’ similarities. Figure 2.4 shows this classification. This thesis focuses on 
both data-driven-based and knowledge-driven-based diagnostic methods. From the knowledge-
driven-based method, a combination of the Bayesian inference-based and fuzzy-inference-based 
diagnosis methods, and from the data-driven-based methods, the multiclass-classification-based 
method are used to develop our strategy. 
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Figure 2.4 Fault diagnosis methods classification for building energy systems [16].  
FDD in HVAC systems obtained the attention of many researchers as improper control 

strategies can come from poor maintenance or system malfunction and malfunctions cause an 
estimated energy loss between 15% and 30% [26], [70]. The National Institute of Standards and 
Technology (NIST) illustrates that there is an energy-saving from 10% to 40% with successful fault 
FDD techniques when a fault is detected at an early stage before causing an unbearable break down 
[71]. For example, if a damper is stuck at a constant position, significant energy can be wasted 
depending on the system's functionality or cause comfort issues. Lee et al. studied the Variable Air 
Volume (VAV) box stuck-at fault of a damper in cooling mode accompanied by 36% more cooling 
energy consumption [72]. 

Therefore, reliable FDFD techniques are necessary for an energy-efficient and reliable 
operation of DCV and heating systems. Implementing FDD promises a better system lifetime and 
increased indoor air quality [70]. Various FDD techniques are deployed in different applications to 
detect and diagnose associated faults in embedded components such as sensors and actuators or their 
network fabric.  

The simulation environments are valuable platforms to study and test or compare the 
effectiveness of different diagnostic methods for different system-level or component-level faults. 
Sterling et al. analyze failures by comparing qualitative and quantitative model-based diagnostics 
using Modelica [73]. Basarkar et al. identified and detected some common faults in HVAC systems 
by simulating the faults in the EnergyPlus tool. However, there is a limited capability of modeling 
faults in EnergyPlus [74].  

Recent advances in Information and Communications Technology (ICT), especially in 
embedded systems, enable the development of Cyber-physical Systems (CPS) that profoundly 
couple our physical world to the computation world. The term CPS refers to the integration of the 
computation world, performed by embedded computers, with physical processes aiming at 
monitoring and control [75]. Physical processes affect computations and vice versa via feedback 
loops. The CPSs include components ranging from various sensors to measure the environmental 
and system parameters as the input signals to the cyber domain to different types of actuators that 
insert the processed command to the physical process or environment. The common characteristic 
of the CPSs is the tight integration of hardware and software capabilities and constraints, including 
advanced sensing and actuation, as well as the combination of heterogeneous components in several 
subsystems [76]. The CPSs can include many variables, signals, look-up tables, components with 
continuous and discrete dynamics [77]. The complexity of a CPS increases when it becomes more 
extensive with more components and equipment that cooperate simultaneously. HVAC systems, e.g. 
DCV and heating systems, are examples of CPSs. This level of complexity in HVAC systems makes 
them error-prone, more susceptible to faults, that may lead to waste of energy, e.g., continuous 
heating in case of a stuck-at damper, poor thermal comfort, and unacceptable indoor air quality. 
Therefore, the occurrence of faults is unavoidable, and faults, e.g., stuck-at or constant faults, occur 
inevitably. 

Despite the inherent complexity of DCV and heating systems, their applications require them 
to be fault and failure-tolerant. A fault and failure-tolerant design of DCV and heating systems 
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require developments in failure detection and fault diagnosis techniques. Detection and diagnostic 
techniques’ testing and evaluation activities are thus of critical importance for the early detection of 
problems in the models in the design phase before they propagate to the actual DCV and heating 
systems. The failure detection and fault diagnosis in early stages of occurrence avoid threatening 
situations, degradation of system performance, energy loss, or discomfort conditions [69]. In HVAC 
systems, for instance, the faults can be the reason for energy waste up to 20% of total energy 
consumed, excess pollutant emissions, and decremented comfort for occupants [78], [79]. Basarkar 
et al. describe that faults based on the type and their severity can be the reason for up to 22% of the 
total energy consumption of HVAC systems [74]. In another study, Wu shows that faults in HVAC 
systems account for 20% of total energy consumption [78]. In HVAC systems, probable faults in 
building systems are various. For example, ASHRAE Project 1043-RP shows that a typical water-
cooled centrifugal chiller can face more than twenty types of common faults [80]. ASHRAE Project 
1312-RP indicated 68 types of common faults for a typical air handling unit [81]. Therefore, it is 
costly to capture sufficient training data for every fault, and most of the research projects consider 
only a part of these faults in most data-driven-based chiller FDD methods.  

Many fault diagnosis methods have been mentioned widely in many studies. Steinder et al. 
[82] have focused explicitly on fault localization techniques in complex communication systems to 
find the exact source of a failure from a set of failure indications. They have classified the fault 
localization techniques into three categories of (1) Artificial Intelligence (AI) techniques, including 
rule-based, model-based, and case-based systems, (2) model traversing techniques. And (3) fault 
propagation models, including code-based techniques, dependency graphs, Bayesian networks, 
causality graphs, and phrase structured grammars.  

Artificial Neural Network (ANN) is the basis of the data-driven diagnostic method in this 
thesis. ANNs are introduced in 1943 by Warren McCulloch and Walter Pits as computational models 
of reasoning based on a vast collection of interconnected processing elements called neural units 
(artificial neurons). These are imitators of the observed behavior of the biological brain’s cells 
because the ANNs can learn and implement in many applications. The ANN was modeled on the 
human brain and nervous systems with internal base units like neurons, axons, dendrites, and 
synapses. The network acquires knowledge through the learning process, and the internal connection 
strength between neurons is used to record information. One does not need to know their internal 
structure as they work as a black box. They learn meaningful relationships between the input and 
output by processing previously gathered data. The basic structure of a neural network consists of 
three layers: input, hidden, and output layers. The complexity of these networks increases with 
increasing hidden layers. Each neuron corresponds to an input parameter at the input layer and vice 
versa for the output layer and is connected to every neuron of the previous layer through variable 
synaptic weights.  
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Figure 2.5 The similarity between biological and artificial neural networks [83]. 
Observing Figure 2.5 gets the analogy between biological and artificial neural networks describes 
neuron, input, output, and weight similar to soma, dendrite, axon, and synapse, respectively. The 
mathematical model of neurons is: 
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Where: 

iW =weight, 

iX = inputs, 

ib =bias, 

f = activation function, e.g., a sigmoid function given by 1( ) (1 )xx e − −= + . 
Neural Networks (NNs) consist of basic parallel working components that are inspired by 

the biological nervous systems. The training process trains the ANN by adjusting the connection 
weights to produce the required outputs. By changing the values of the links (weights) between 
components, we can train a neural network to conduct a specific function [84]. Commonly, neural 
networks are adapted or trained to result in a specific target output resulting from one particular 
input. Based on a comparison of the output and target, the network is adapted until its output matches 
the target. Therefore, many such input and target pairs are typically used to train a network. There 
are two training methods for ANN’s. Supervised and Unsupervised Learning. The first method is 
applied when the network knows the input and outputs and is trained to minimize the error between 
the desired outputs. For the latter, the inputs are only known in a structure, and different learning 
techniques are used to find a hidden structure in an unlabeled dataset. 

Deep Neural Network (DNN) is a Machine Learning (ML) method that uses a multi-layer 
Neural Network (NN) including more than two hidden layers and it can learn a long chain of causal 
links [85]. DNN is also known as Deep Learning (DL). Lower layers can, for instance, recognize 
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edges in image processing, while higher layers can recognize human-sensitive objects such as 
digits/letters or faces [86]. The main difference between DL against ML is that the domain expert is 
not needed for the feature extraction from the raw data.  The other difference of deep neural networks 
is their better performance with an increase in data [87].  

The NNs and more specifically DNNs are successfully used in the building energy systems, 
e.g., HVAC systems, for various applications, e.g., optimization, fault diagnosis.  

In optimization application, several variables need to be considered including controllable 
and uncontrollable variables. In this way, the NNs can discover the connection between all variables, 
e.g., the effect of one parameter on the energy consumption of the system. The NNs can also forecast 
the air conditioning system's future trend to develop its effectiveness [88]. In another study [89], 
optimization techniques and NN modeling tools for HVAC systems are researched. The artificial 
NN is applied to the HVAC scheme to improve energy consumption and indoor air quality. It can 
also be used to forecast the future trend of the air conditioning scheme. 

In fault diagnosis application, Lee et al. used Deep Belief Network (DBN) in combination 
with Restricted Boltzmann Machine (RBM) for the detection and diagnostic of three abnormal states 
of the stuck fan, cooling coil valve leakage, and low efficiency of heat exchanger in the Air Handling 
Unit (AHU) that results shows the diagnosis accuracy above 95% [90]. Overall, the modern 
management systems of buildings are pretty helpful in capturing and analyzing the system's failures, 
while manual detection and diagnosis of these faults are pretty time-consuming and effortful tasks 
[91]. Dehestani et al. [92] proposed an ANN and an online Support Vector Machine (SVM) for FDD 
and the ANN was used to generate a reference model for the SVM, which they used to detect faults 
in the HVAC system in both online and offline states. However, in their method, they have a 
knowledge-driven label generator that combines all labels in a proper logic to generate one label for 
each fault as a fault needs just one label for training. In our approach, fuzzy theory helps us to 
automatically classify the system signals and variables.  

One focus of FDD lies in the sensors that is known as Sensor Fault Detection and Diagnosis 
(SFDD). In most diagnostic systems, if a noticeable sensor fault occurs, it raises the failure alarm or 
the occurrence of a failure. The NN detects failures in the system that are the implication of faults. 
When a fault is diagnosed, appropriate removal action can be taken to remove the fault from the 
system. 

Figure 2.6 shows an example of a heating and demand-controlled ventilation system that is 
simulated, and faults and anomalies are inserted into the system to see its performance by Wang et 
al. [93]. The first step in the system model is programed under normal conditions of the air 
conditioning system, and the results are obtained. In the second step, random noise is added to the 
values to imitate the normal measured data. Next, the neural network is trained on the imitated 
measured data. After training the neural network, a controller is designed which implements FDD 
strategies. So, if the fault detection unit detects a fault in the system, the neural network is used to 
regain the value of the faulty sensor. After that, the system is validated using test data on both normal 
and faulty conditions. The faults that have been discussed, e.g., stuck damper, failure of outdoor 
airflow sensor, failure of supply airflow sensor, failure of return airflow sensor, soft faults in sensors, 
and failure of CO2 sensor, in the reference article [93] are the most common types of faults in an 
HVAC system. The first technique to diagnose faults is to preprocess the data. For that, filters are 
applied to the data, which helps in reducing the random noise in the readings. These filters have been 
applied to the CO2, outdoor, supply, and return sensors. 
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Figure 2.6. State Flow of an FDD System [93] 
Each parameter as the neural network's output is a function (e.g., f, g, or h) of other factors, 

e.g., the outdoor airflow Ov , the damper position Du , supply air Sv , and the return air Rtnv . For 

example, if the damper position Du , supply air Sv , and return air Rtnv  are fed to the neural network, 
the neural network will calculate the outdoor airflow ,O NNv . The following three equations can 
visualize the interrelations and one of them is shown in the figure below. 
 , ( , , )O NN NN D S Rtnv f u v v=  (2.8) 

 , ( , , )S NN NN D O Rtnv g u v v=  (2.9)  

 , ( , , )Rtn NN NN D O Sv h u v v=  (2.10) 

 

Figure 2.7 An example neural network architecture to calculate the outdoor airflow [93]. 
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There are two types of data used in this neural network, i.e., sensor measured data and the 
control signals. It is shown that the relationship among sensors needs to be derived for the complete 
recovery of the system. For example, if the fault of the air supply sensor has been removed, then the 
outdoor air supply rate values are used in the feedback loop as a corrected reading [93]. The neural 
network is trained on the non-erroneous data, and its output is also expected to be non-erroneous. 
However, if a fault occurs in the system, e.g., a stuck damper, the neural network is not obliged to 
give the correct values for the outdoor airflow rate [93]. The data-driven systems are powerful in 
training the patterns but if the mean square error rate drops below a certain level during the training, 
the training procedure stops. Also, these systems need a massive amount of data to be well trained 
and they are based on the black-box approach. The other shortcoming of the AI method is that they 
lack the power of expert knowledge. Figure 2.8 indicates a four-layer ANN classifier for FDD [16]. 

 
Figure 2.8  An ANN-based fault diagnosis model [16]. 

Yang et al. [94] explain the phases of the fault diagnosis methods, including information 
gathering, information analyzing, diagnosing, and resolving. They also discuss the diagnosis 
methods, including knowledge-based, analytical-model-based, and signal-processing-based 
methods. Knowledge-based fault diagnosis methods include fault-tree, expert system, fuzzy theory, 
artificial neural network, grey theory, Bayesian networks, and Petri networks.  

The BBN is one of the fault diagnosis methods based on probabilistic theory. Qiu et al. 
explain that BBNs have effectively modeled probabilistic relationships in complex diagnostic 
situations by providing a framework to identify critical probabilistic mappings [95]. Probabilistic 
methods can link symptoms to failures by calculation of failure probabilities [95]. The probability 
values can be captured from operating data such as all prior probabilities and fault mappings over a 
sufficient time range or through experts' request of subjective probabilities. CPSs interact with the 
environment, and the sensory data and signals are measured continually. Therefore, defining an 
appropriate conditional likelihood density function in BBNs for continuous attributes is critical. 
BBNs are potent tools for modeling uncertain knowledge and reasoning based on conditions of 
uncertainty, probabilities, and graph theory [96]. BBNs were introduced by J. Pearl in the 1980s 
[97], and they were deployed successfully for data mining, financial investment, fault diagnosis, and 
industrial control. BBNs can be combined with other approaches such as machine learning 
techniques, signed directed graphs, probabilistic ensemble learning, fuzzy theory, fault-trees, and 
genetic algorithms. For ensemble learning, Yu et al. [98] have proposed an online fault diagnosis 
technique for industrial processes with a Bayesian network-based probabilistic ensemble learning 
strategy (PEL-BN). In this method, they have used an ensemble index to evaluate the diagnosis 
model in a probabilistic manner. This ensemble acts as a classifier, and the Bayesian network is 
constructed with three topologies. All these three topologies are integrated to detect the faults. The 
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experimental results in this work illustrate that the PEL-BN strategy has improved the diagnosis 
performance of different kinds of single-mode faults and is a feasible solution for the multi-mode 
faults by integrating decisions derived from different diagnosis BN topologies. Qiu et al. explain that 
BBNs have effectively modeled probabilistic relationships in diagnostic situations by providing a 
framework to identify critical probabilistic mappings [95]. Their Probabilistic method can link 
symptoms to failures by calculation of prior probabilities of faults. They defined the symptoms based 
on pure expert knowledge, e.g., repair data log and consulting with experts in printers [95]. However, 
they have not implemented any data-driven method and used a single BBN for the FDD process, but 
our approach creates a unique BBN for each RDP data set. Their method also needs historical data 
and a system log for constructing the BBN.  

Embedded control systems interact with the environment, and the sensory data and signals 
are measured continuously. Therefore, defining an appropriate conditional likelihood density 
function in BBNs for continuous attributes is critical. Tang et al. [96] have presented a Fuzzy 
Bayesian Network (FBN) for machinery fault diagnosis demanding intensive experience and expert 
knowledge described by the natural language, such as large, high, or fast. They used fuzzy logic to 
define the fuzzy events, mapped the system to those uncertain ones, and then produced the BBN. 
However, they have used a single BBN for the fault detection process, but our approach creates 
unique BBNs for each output RDP data set. Also, their approach is limited to expert knowledge. In 
machine learning techniques from the data-driven-based methods, Hu et al. [99] have proposed an 
intelligent fault diagnosis network for refrigerant charge faults of a variable-refrigerant-flow air-
conditioning system. This network is developed under the BBN theory. However, this method as a 
data-driven-based fault diagnosis is very costly to get sufficient training data for every fault [16]. In 
signed directed graphs, Peng et al. [100] have proposed a Multi-logic Probabilistic Signed Directed 
Graph (MPSDG) fault diagnosis approach in chemical processes based on the Bayesian inference. 
They show that the signed-directed graphs cannot be applied for complicated logic relations, but the 
authors have shown that the BNs can solve this complexity. They have two offline modeling and 
online diagnosis phases. In the offline mode, they have analyzed the historical data and deviation 
values and evaluated the priori probabilities of reason nodes and directed edges. However, 
constructing the SDG or MPSDG in systems with no historical data is not possible.  

On the other hand, the FBBN combines the Bayesian (belief) networks with the fuzzy theory. 
Chiu et al. have proposed a fuzzy Bayesian classifier with Case-based Reasoning (CBR) for 
improving car diagnosis problems [101]. In this study, they have used fuzzy theory to define 
conditional density functions in BBNs to cope with the problem caused by continuous attributes. 
The accuracy and efficiency of this approach for decision-making applications have been proved by 
many studies [102]. The FBBN is often used as an effective method of uncertain knowledge 
representation and reasoning. Fuzzy sets are mathematical sets whose elements have degrees of 
membership derived from the concept of fuzzy logic, which was introduced by Lotfi A. Zadeh and 
Dieter Klaua in 1965 [103], [104]. Several examples show the effectiveness of FBBNs in solving 
uncertain problems, applying Fuzzy sets, and calculating the probabilities of BBNs based on them 
[105]. Yao et al. [105] have modeled a Fuzzy Dynamic Bayesian Network FDBN for fault diagnosis 
and reliability prediction in complex systems using various test information. They have presented a 
model in a fault diagnosis model with uncertain and dynamic information. Their work introduces a 
dynamic process to the Bayesian network to model a dynamic system, and it includes modeling the 
BN, the fuzzy set theory applied to BN, and static BN (SBN) that can be converted to dynamic 
Bayesian network models by introducing time dependency. They have used fuzzy theory to evaluate 
the reliability of the system with different language variables “very high,” “high,” “intermediate 
high,” “medium,” “intermediate low,” “low,” and “very low.” However, they generated the BN 
based on the fault statistics and the fuzzy failure probabilities of root nodes, but in our approach, the 
starting point is the observations of the system attributes. Intan et al. [106] have applied a fuzzy 
Bayesian network for analyzing medial tracks. In this paper, they have extended the MI concept 
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using fuzzy theory to construct an FBBN based on learning Bayesian network structures using an 
information-theoretic approach introduced by Cheng et al. [107]. They used fuzzy labels to 
determine the relation between two fuzzy nodes. For example, they have found the relationship of 
the different disease labels with other factors in a record of data for different patients, e.g., age, 
degree, and other types of diseases. However, they have used this method for analyzing a medical 
data set for different patients and diseases; therefore, the application is different. Further, their 
approach only measured the causal relations in FBBN using the relation direction probabilities 
between different pairs of parents and children. However, in our approach, we used the causal 
relations in FBBNs based on relation direction probabilities for fault diagnosis, and our approach 
includes two modes, an offline training mode, and an online diagnosis phase, to classify the fault 
cases. 

A suitable FDFD system ensures the HVAC systems' proper operation as these systems are 
subject to various errors, which can lead to malfunctions. HVAC systems fail typically when the 
actuators "stick" and no longer change their set point, despite the commands. This actuator failure 
can arise in several parts. For instance, a valve may stick at fully-open, fully-closed, or any 
intermediate setpoints. If an actuator sticks in an open or closed position for a specific period, some 
concerns are expected, e.g., the energy waste or uncomfortable environment [108]. The pure 
knowledge-based diagnosis models are also developed, e.g., a real-time white-box tool for a VAV 
AHU was developed by Shiazoki and Miyasaka using a signed directed graph. The signed directed 
graph model is a minimized rules-based model to lower the effort that can detect the symptoms of 
the faults to find the root cause [109]. However, the performance of the method depended on the 
thresholds set. The wrong thresholds setting can cause incorrect diagnosis. Also, threshold settings 
are laborious and time-consuming. Shi et al. introduced a model using probabilistic representations 
for dependencies of faults and symptoms in a VAV AHU. The fault diagnostic model is developed 
based on a DBN to diagnose persistent and transient faults while maintaining the FDD system's good 
performance [110]. However, calculation of the conditional probability values between the faults 
and symptoms is yet manual and depends on expert knowledge. In addition, for large systems, the 
amount of data might be unbearable. Therefore, many complicated faults may not be evaluated 
unless advanced modeling or sensing methods are used.  

Zhao et al. [111] have proposed a three-layer Diagnostic BN for chiller faults diagnosis based 
on the BBNs using a graphical and qualitative illustration of the intrinsic causal relations among 
three layers of causal factors, faults, and fault symptoms, and this Diagnostic BN can be constructed 
based on the probability analysis and graph theory. The prior probabilities of root nodes and prior 
probabilities of faults are the normalized frequencies of faults, and conditional probabilities show 
the relations of the nodes in three layers. With observed pieces of evidence, posterior probabilities 
for fault diagnosis can be calculated. This framework uses all beneficial information of the chiller 
concerned and chiller experts’ knowledge, the quantitative and qualitative knowledge from diverse 
sources is merged and has a strong ability in dealing with incomplete or even conflicting information. 
However, there are major differences to our proposed method. They calculated the conditional 
probabilities using statistical or machine learning algorithms, while we have calculated them based 
on fuzzy weights. Further, our approach is constructed based on MI theory and the dependencies of 
the system attributes (i.e., signals) for each fault case using BBN theory which only needs expert 
knowledge to define fuzzy sets. Also, Zhao et al.'s mentioned approach is highly dependent on expert 
knowledge, especially in calculating prior probabilities. In addition, they have defined rules to 
conclude the posterior probabilities, but we used the sorting technique showing that the top ranks 
show reasonable results with high accuracy. 

Xiao et al. [112] describe a diagnostic Bayesian network for FDD of VAV terminals. In this 
method, the parameters of the diagnostic Bayesian network describe the probabilistic dependencies 
between faults and evidence. The inputs of the diagnostic Bayesian network are the evidence that 
can be obtained from the measurements in Building Management Systems (BMSs) and manual tests. 
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The outputs of the diagnostic Bayesian network are the probabilities of target faults. The structure 
of the diagnostic Bayesian network is a graphical illustration of experts' diagnostic thinking, which 
can illustrate the relationships among faults and symptoms qualitatively. They have defined a table 
including the fault nodes, states of the system, rules for defining the states, and prior probabilities 
for each state. A fault node may have several states that help in estimating the conditional 
probabilities of the fault evidence given the fault. The rules in the defined table can determine the 
corresponding states. There are also specific tables and rules to define evidence nodes. The whole 
structure of this diagnostic Bayesian network depends on expert knowledge and the rules to define 
the system states. In another paper from these authors, Zhao et al. [113] have also developed a second 
study on diagnostic Bayesian networks for diagnosing faults in AHU in buildings. This paper 
developed four diagnostic Bayesian networks to diagnose heating/cooling coils faults, sensors, and 
faults in a secondary chilled water/heating water supply. However, establishing the FDD strategy 
and diagnostic Bayesian network nodes is highly dependent on expert rules. The same issue of the 
dependency to the expert rules is described by Taal et al. [114] in FDD of DCV systems using the 
4S3F method based on effects of the diagnosis Bayesian networks probabilities. In this article, a 
generic set of symptoms and faults has been proposed and symptom rules and their thresholds were 
estimated by the HVAC design expert.  

Cai et al. [115] have used two BNs for multiple-simultaneous faults with a multi-source 
information fusion-based fault diagnosis methodology. These BNs are established based on sensor 
data and observed information. The basis of Bayesian network architecture is the cause-and-effect 
sequence of faults and symptoms. One BN is made based on sensor data, and the other is based on 
sensor data and observed information; however, the relationship between faults and symptoms is 
based on expert reasoning and purely knowledge-based. 

The data-driven-based methods, e.g., classification-based methods, are numerous but 
powerful in learning patterns from training data and further need massive training data, and have 
problems in reliability and robustness [16]. The knowledge-driven-based methods, e.g., Bayesian 
inference-based or Fuzzy inference-based methods, are powerful in simulating the diagnostic 
thinking of experts but, they are highly dependent on expert knowledge [16]. Therefore, this thesis 
uses the capability of the probabilistic methods and fuzzy theory to facilitate automatic calculating 
the probabilities of continuously measured signals to integrate them into the BBNs to combine both 
data driven-based and knowledge driven-based diagnostic methods to introduce a generic fault 
diagnosis classifier as a methodology based on the causal relations in fuzzy Bayesian belief networks 
using relation direction probabilities. This thesis benefits from the advantages of both knowledge-
driven and data-driven domains. The proposed fault diagnosis method in this thesis aims to 
automatically detect the dependencies of continuous attributes using an example scenario that is 
DCV and heating system model based on MI theory and applying the fuzzy theory for labeling the 
system attributes to calculate the conditional probabilities in continuous signal attributes and solve 
the fault classification problem. This diagnosis is introduced as a classifier and the method has been 
tested and evaluated to diagnose permanent faults with constant values or fault values in a specific 
range or a subdomain from an enormous signal domain. The proposed classifier diagnoses faults that 
occurred in different components and subsystems of the system, including various sensors and 
actuators, according to the dependencies of signal measurements and attributes of the system. 

Table 2.1 indicates an overview of the related works in fault diagnosis and includes the 
techniques and application domains of different studies and demonstrates whether a technique is 
categorized as a knowledge-driven or data-driven diagnosis method or covers both. Further, this 
table highlights the novelty of this thesis from different aspects, i.e., the target research is 
independent of the historical data, independent of expert knowledge, or computing-resource 
efficient. This overview indicates some of the studies cover both diagnostic techniques such as this 
thesis, but they are neither independent of the historical data, independent of the expert knowledge, 
nor computing-resource efficient. 
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Table 2.1. Overview of the related works in fault diagnosis. 
Author(s) Technique and 

Application Domain 
Knowledge-
driven 
diagnosis 

Data-
driven 
diagnosis 

Independent 
of historical 
data 

Independent 
of expert 
knowledge 

Computing 
Resource 
efficient 

Taal et al.  2020 
[114] 

BBN based FDD in 
DCV 

✓  ✓  NO NO NO 

Dehestani et al.  
2011 [92] 

FDD in HVAC ✓  ✓  YES NO NO 

Shi et al. 2018 
[110] 

BBN based FDD in 
VAV AHU 

✓  ✓  NO NO NO 

Tianyun Gao 
(Dissertation) 
2020 [116] 

BBN based Building 
FDD using data 
modeling 

✓  ------ NO NO YES 

Md. Tanjin Amin 
(Dissertation) 
2018 [117] 

Dynamic BN based 
FDD in HVAC 

✓  ------ NO NO YES 

Wang et al. 2002 
[93] 

FDD in DCV ------ ✓  NO YES NO 

Luo et al. 2019 
[118] 

FDD in chilled water 
system 

------ ✓  NO YES NO 

Qiu et al. 2001 
[95] 

FBBN based FDD in 
printers 

✓  ------ NO NO YES 

Tang et al. 2007 
[96] 

FBBN based FDD in 
machinery 

✓  ------ NO NO YES 

Hu et al. 2018 
[99] 

BBN based FDD in VRF ✓  ✓  NO NO NO 

Peng et al. 2014 
[100] 

FDD in production 
process 

✓  ------ NO NO YES 

Chiu et al. 2007 
[101] 

FBBN based FDD in 
cars 

✓  ✓  NO NO NO 

Yao et al. 2015 
[105] 

FBBN based FDD in 
aircrafts 

✓  ------ NO NO YES 

Zhao et al. 2013 
[111] 

BBN based FDD in 
chillers 

✓  ------ NO NO YES 

Xiao et al. 2013 
[112] 

BBN based FDD in 
VAV  

✓  ------ NO NO YES 

Cai et al. 2014 
[115] 

BBN based FDD in heat 
pumps 

✓  ------ NO NO YES 

Zhao et al. 2017 
[113] 

BBN based FDD in 
AHU 

✓  ------ NO NO YES 

Intan et al. 2010 
[106] 

FBBN based analysis of 
medical data records 

✓  ------ NO NO YES 

This 
Dissertation 
(Behravan) 
2021 

Generic FBBN based 
FDD (example scenario 
DCV) 

✓  ✓  YES YES YES 

 
In specific, the novelties of the introduced fault diagnosis method in this thesis are based on 

the following points: 
✓ Integration of data-driven classifier, fuzzy logic, and Bayesian belief network for the 

combination of data-driven and knowledge-driven diagnosis: The composed diagnostic 
classifier in this thesis includes the knowledge-driven diagnosis theories, i.e., fuzzy and 
Bayesian theories, and data-driven diagnosis strategy based on the intelligent diagnostic 
classification algorithm that can automatically diagnose the faults. In offline mode, for each 
fault class, an RDP table is computed and stored in a fault library. In online mode, we 
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determine the similarities between the actual RDP and the offline precomputed RDPs. The 
combination of BBN and fuzzy logic in our introduced method analyzes the dependencies 
of the signals using MI theory. The method creates a unique RDP table for each class of 
faults and data sets. This method can also be extended to additional faults by adding RDPs 
of new fault classes to the offline library. This method provides more understandability, 
less effort for experts, and higher diagnostic accuracy. Our strategy is less dependent on 
expert knowledge and only requires the expert to define fuzzy sets and the whole process 
can intelligently and automatically classify the faults compared to the other knowledge-
based strategies. The evaluation results show that our strategy can accurately map a fault 
case to the predefined fault in the library. 

✓ Reveal of hidden and intrinsic dependencies of trends or statuses in signals over time 
in case of faults: In our diagnostic method, a novel strategy is introduced based on the 
dependency of trends (for sensors) or statuses (for actuators) in different subdomains over 
time. Therefore, our automatic diagnostic method can find the intrinsic and hidden 
dependencies of measurement signals and statuses that change concurrently over time in 
the case of a specific fault based on MI and fuzzy theory. For example, if a damper sticks at 
open status, the room temperature decreases and makes the heater stick at ON status 
indirectly because the heater wants to compensate for the heating load due to the damper, 
which is a hidden dependency between damper and heater status signal. 

✓ Extendibility of the strategy in this thesis to complex systems: Finding fault-symptoms 
dependencies and fault diagnosis in other knowledge-based strategies in the literature are 
purely based on the expert knowledge, which can be very hard or impossible if the target 
system is complex with many measurement signals and statuses to the limit that even the 
experts cannot find the exact and hidden dependencies. However, our approach can 
automatically find these dependencies and faults in complex systems. 

✓ Mapping and evaluation of the novel diagnostic method for DCV and heating 
systems: The presented diagnostic fault model covers sensor and actuator faults to map and 
evaluate the integrated diagnostic method to DCV and heating systems, as an example use 
case. 

✓ Experimental evaluation of the introduced diagnostic method based on FBBNs 
compared to deep neural network method using simulation framework: Manufacturers 
typically are reluctant to provide the full-set fault data. Therefore, the diagnostic method in 
this thesis is implemented in a simulation framework that can inject any desired faults into 
the system [27]. The evaluation results show a convincing performance of the introduced 
composed method (knowledge-driven and data-driven) in fault diagnosis in this thesis 
compared to a deep neural network (data-driven method) [85]. The review paper in state-
of-the-art [16] shows the lack of accuracy of the knowledge-driven methods.  

✓ Accurate fault diagnosis independent of prior knowledge and historical data: The 
other strategies use the BBN theory, but they use historical data, repair logs, or 
experimental data to calculate the prior conditional probabilities. In the strategy introduced 
in this thesis, the signals only need to be defined as continuous or discrete variables and use 
the fuzzy theory to categorize the signal values to create the Bayesian network. 
According to the state-of-the-art mentioned above, the limited accuracy and performance of 

the expensive qualitative diagnosis models with their manual setting of the thresholds is still a 
problem. Also, another problem still exists, which is the construction of the conditional probabilities 
between the faults and symptoms that are still manual and rely on expert knowledge, e.g., the 
construction of the conditional probabilities between the faults and symptoms in the fault diagnosis 
methods based on Bayesian networks. Furthermore, the complexity problem, energy waste, 
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discomfort conditions, and the challenging nature of fault diagnosis tasks in HVAC systems are 
examples of the CPSs area. These problems will be more prominent if the system gets more complex. 
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3. SYSTEM MODEL  
Equation Chapter (Next) Section 1 
A complete understanding of the system's overall behavior is required to optimize a system 

or technique through system model analysis. Analysis of the system model leads to knowledge about 
the system's functionality. The function of a system is what the system is intended to do [18]. The 
model specifies what a system does [75]. This chapter describes the modeling techniques and the 
theoretical principles of the system models for HVAC systems. 

Model: A model is a physical, mathematical, or logical description of a system entity, 
phenomenon, or process [119]. The model should be a simple but sufficiently detailed representation 
of a system to study and show valid results in analogy to the existing system. 

Analytical model:  An analytical model is a mathematical description of a solution for a 
problem used for simulating, explaining, and making predictions of the mechanisms inside complex 
physical processes and the controlling computer systems [120]. A system's analytical solution can 
help construct the simulation platform when it describes the system in a simple but sufficiently 
detailed form. 

Simulation: The simulation executes a model over time. A simulation brings a model to 
action and shows how a particular object or phenomenon will behave. The simulation is the art of 
imitating a real-world system over time to estimate and visualize the measures of performance of 
the system with the simulation-generated data. The simulation can tell us what may happen with any 
change in designs or scenarios before implementation, giving insight into the model capabilities 
without implementation cost and comparatively in a short time.  

The goal of the simulation is to provide an analysis tool that can run the model and investigate 
the effects of changing a design parameter on the existing system to predict the performance and 
infer the new system's behavior. The design parameters are properties of the models that can be 
changed before and during the simulation. Valuable insight can be obtained by changing simulation 
inputs and observing how variables interact during the simulation, what are their changes and effects 
on the system performance, and the resulting outputs, without disrupting ongoing operations. In this 
way, the answer to “what-if” questions can be straightforward. The simulation tools give the freedom 
and possibility to the user to design the system and set the parameters based on the desire to make 
the simulation comparable to the real scenarios or even create scenarios facing limitations, risky 
situations, or would involve expensive practical experiments. 

The models can be classified into three types: white-box models such as quantitative 
analytical models based on first principles and physical process [29], black-box models such as 
statistical modeling, and grey-box models, which are a hybrid of the two foremost. The grey-box 
models use deterministic differential equations [121] and continuous-time modeling, calibrating the 
model parameters over time [122]. The differential equations can be solved by implementing the 
dynamic models in modeling languages such as MATLAB/Simulink or Dymola.  

 The lumped capacitance model is considered a highly efficient grey-box model, which 
means it is low-cost and straightforward from the computational expense aspect [52]. This method 
is used frequently to assemble simple thermal models [123]. 

Foucquier et al. illustrate a complete comparison between white, black, and grey-box 
techniques proposed in Table 3.1 [124]. 
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Table 3.1 Comparison between white, black, and grey box techniques [124]. 

Methods Building Geometry Training Data Physical Interpretation 

White Box (Physical) A detailed description of the 
building geometry is required 

No training data are 
required 

Results can be interpreted 
in physical terms 

Black Box (Statistical) 
A detailed description of the 
building geometry is not 
required 

A large amount of training 
data collected over an 
exhaustive period is 
required 

There are several 
difficulties to interpret 
results 

Grey Box (Hybrid) A rough description of the 
building geometry is enough 

A small amount of training 
data collected over a short 
period is required  

Results can be interpreted 
in physical terms 

 
The models in the white box are prepared based on well-known physical relations and 

thermal properties. Therefore the implementation needs complete prior knowledge regarding all the 
processes and the parameters without observing the study’s objective. This kind of detailed 
description of the building geometry can be assumed a drawback as all the details may not always 
be available, or sometimes the data collection processes using various sensors are expensive and 
time-consuming. White-box models are based on static or dynamic models, linear or nonlinear 
models, and continuous or non-continuous differentiable models. In contrast to the physical model 
(white-box model), the black-box model mostly uses data-driven techniques such as statistical 
methods or machine learning to show the system behavior. This model is only based on input and 
outputs with observed measurements. The black-box approach is applied when the phenomena of 
the objects are too complex to be described by fundamental principles. The black-box model 
estimates the relationships between input and output variables, independent of the system 
phenomena or its variables. The output from the black-box method is not always easy for 
interpretation of the system behavior; thus, the hybrid of these methods is here surviving method. 
“Grey-box models are analytical models loosely based on first principles, and the model parameters 
can still be traced to the process’s physical response” [23], [125]. Grey-box models are faster in 
processing and easier to formulate and establish than the white-box models and more robust than the 
black box models [23]. A number of grey-box models are found in the literature [126], [127], [128]. 
 

3.1. PHYSICAL MODEL  
As described, the physical model framework is established in this thesis. In the Simulink 

environment, there is a helpful library for thermal modeling called Simscape. The Simscape 
schematic components of Simulink demonstrate physical phenomena or elements. The signal lines 
between these components are considered physical connections of the existing system, which 
transmit power. Each Simscape domain uses a distinct color and line style for the connection lines 
and block icons. The established models by Simulink blocks show a physical network approach to 
enable the system designer to analyze the behavior of the system by its physical structure and 
mathematical equations will help to get a better understanding [129]. Figure 3.1 describes the steps 
of a simulation flow. The physical model that is the analytical form of the physical system based on 
differential equations is a part of the simulation step flow. This simulation flow (in blue-colored 
blocks) starts with input data such as weather data, building elements specifications, dimensions, 
and materials and collects set parameters, internal and external gains using GUI (in green-colored 
blocks). Then, the data from the first stage will be applied to the physical model, which can be 
simulated in a simulation tool to result in simulation output and time-series scopes. 
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Figure 3.1 Simulation flow. 

3.1.1 PRINCIPLES OF THERMAL MODELS AND SPACE HEATING IN 
MULTI-ZONE BUILDINGS 
As part of the HVAC system, the central space heating system supplies the heat (H for 

Heating) to the entire building, including its internal spaces, in a space-to-space manner. The term 
central describes the heat generated at a point of the building, and the thermal energy is delivered to 
all the zones to compensate the heat loss and to maintain internal air conditions at the thermal 
comfort level using a medium which is usually water or steam at a specific temperature and pressure 
considering its design condition. The other solution to warm up the building zones is using electrical 
heaters powered by electricity to produce heat from the electrical resistors.  

The models are identified by two thermal behaviors of static and dynamic. In static models, 
the output of the system does not depend on time. The static behavior simplifies the thermal model 
and dominates the restrictions of computing resources. In dynamic models, the output is time-
varying due to evolution over time. These dynamic models are typically represented by ordinary, 
partial, linear, or non-linear differential equations. The dynamic behavior helps the comprehension 
of the thermal exchange fundamentals in simulation. The static behavior is helpful in comprehension 
of steady-state conditions of buildings when the internal and external inputs and outputs are available 
to be controlled [130]. The thermal phenomena, including heat transmission, heat storage, fluid flow, 
heat flux, and thermal properties of building elements, are highly time-sensitive [131].  

The design conditions of thermal models and space heating are based on several factors, 
including physical and thermodynamic specification of the building, e.g., U-values and thermal 
capacity values of the building materials, e.g., walls, ceilings, floors, and the air inside enclosed 
spaces, internal heat transfer including conduction, convection, and radiation, ventilation rate, 
environment weather condition, e.g., temperature, radiation measure, wind speed, pressure 
difference, specification of the heating system, e.g., system type (hot water, steam, or electricity) 
and efficiency, control technique, user requirements, e.g., desired temperature, indoor air quality, 
and internal condition, e.g., heat gain due to home appliances and occupant’s behavior. 

“Heat transfer (or heat) is thermal energy in transit due to a spatial temperature difference” 
[132]. The heat transfer will happen once a temperature difference exists in a medium or between 
media. The heat can be stored in the thermal heat capacities and transmitted through these elements 
via heat transfer methods. Mainly, three types of heat transfer account for almost any type of heat 
transfer, conduction, convection, and radiation. 
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3.1.1.1 CONDUCTION 
The heat transfer because of a temperature gradient in a static medium (e.g., a solid) is called 

conduction. The higher temperature is interpreted as higher molecular energy. The molecules with 
a high level of energy transfer their energy to the less energetic molecules via collision. Therefore, 
the energy is transferred in the direction of decreasing temperature. In other words, conduction is 
the diffusion of energy due to random molecular motion.  

xq

1T

2T

T

1 2T T

x

( )T x

L  
Figure 3.2 One-dimensional heat transfer by conduction through the wall. 

Figure 3.2 shows the conduction heat transfer through a wall, its direction from the high-
temperature side to the low-temperature side, and its temperature profiles. The heat transfer is the 
calculation of the rate equation. The rate equation calculates the amount of energy transferred per 
unit of time, known as Fourier’s law. For the one-dimensional heat transfer  

dTk
dx

q = −  (3.1) 

Where, 

q= The heat flux per unit area perpendicular to the direction of transfer in [ 2W m ], 
dT
dx

= The temperature gradient in the direction of transfer in [ K m ], 

k = The thermal conductivity constant in [W m K ]. 
Thermal conductivity is a transport property, and its value depends on each material's atomic 

and molecular structure. The minus sign in equation 3.1 shows that the heat transfer occurs in the 
direction of decreasing temperature. The heat flux can be rewritten as below, assuming a linear 
temperature distribution inside a medium. 

x L
Tq k = (3.2) 
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Where, 
T = The temperature difference in [ K ], 

L = The path length of thermal conduction in [ m ]. 
The heat rate through an area can be calculated: 

q q A
L
Tk A=  =


 (3.3) 

Where, 
q = The heat rate in [W ], 
A = The area perpendicular to the heat transfer direction in [ 2m ]. 

3.1.1.2 CONVECTION 
The temperature gradient between moving fluid and a bounding surface causes a particular 

form of heat transfer called convection [132]. The energy transfer in convection is mainly due to 
random molecular motion (diffusion) and macroscopic (bulk) motion mechanisms. The bulk motion 
represents the fluid motion associated with large numbers of molecules moving altogether due to the 
temperature gradient. Figure 3.3 illustrates the boundary layer development in one-dimensional heat 
transfer by convection beside the wall edges and temperature profiles. 

 
Figure 3.3 Boundary layer development in one-dimensional heat transfer. 
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Interaction of the fluid flow with the surface develops a region called hydrodynamic or 
velocity boundary layer in the fluid. The flow velocity in this layer changes from the value of zero 
at the surface to a finite value u . Likewise, if there is a temperature difference between the surface 
and the flow, the interaction of the flow with the surface develops a region called the thermal 
boundary layer in the flow. The temperature in this layer varies from sT  at 0x =  to T of the flow, 
which in this thesis is the inside air temperature of a zone. 

Newton’s law of cooling calculates the convective heat flux q  , which is proportional to the 
temperature difference between fluid and surface: 

( )sq h T T
 = − (3.4) 

Where, 

h = The convection heat transfer coefficient in [ 2W m K ], 

sT = The temperature of the body at the surface ( 0y = ), 

T = The temperature of the environment flow.  

 The convection heat transfer depends on conditions in the boundary layer, surface geometry, 
the nature of the fluid motion, and an assortment of fluid thermodynamic and transport properties. 
The total heat transfer through an area is: 

( )sq q A hA T T
=   = − (3.5) 

3.1.1.3 RADIATION 
All surfaces of finite temperature emit energy in the form of electromagnetic waves. Hence, 

there is also net heat transfer by radiation between two surfaces at different temperatures in the 
absence of an intervening medium. The energy emitted in this way is named thermal radiation. The 
blackbody emissive power E is the rate of energy released per unit area as described by the Stefan-
Boltzmann law: 

4
b sE T= (3.6) 

Where, 

 = The Stefan-Boltzmann constant 8 2( 5.67 10 )W m K −=   , 

sT = The absolute temperature in [ K ] 

The heat flux emitted in the real surfaces is less than the relative blackbody’s surface: 
4

b sE T= (3.7) 

Where,  
 = The emissivity, 0 1  . 
The emissivity value describes the efficiency of a real surface in emitting energy relative to 

the blackbody and is highly dependent on the surface material and finishing.   
The irradiation, G (W/m2), defines “the rate at which radiation is incident upon the surface 

per unit surface area, over all wavelengths and from all directions” [132]. 

absG G= (3.8) 

Where,  

absG =The absorbed irradiation, 
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 =The absorptivity, 0 1  . 
The absorptivity is the rate of radiation energy absorbed per unit area of the surface 

depending on the nature of the irradiation and the surface. If the surface is opaque, some portions of 
the irradiation will be reflected, and if it is semitransparent, some portions can be transmitted through 
the surface and figure below shows a visualization of the radiation heat transfer.  

 
Figure 3.4 Radiation heat transfer from the surrounding to the surface with lower temperature. 

For the particular case of the small convex object in a large cavity, it is assumed that such a 
small surface is surrounded by an isothermal surface, e.g., the sun. The net radiation heat transfer 
rates the difference between thermal energy released due to radiation emission and thermal energy 
gained from radiation absorption described by the equation below [132]. 

4 4( )rad s sur
qq T T
A

 = = − (3.9) 

In this study, the radiative heat gain is relative to the outside temperature ( )outT t  for 
simplification, which is a sinusoidal function [1]: 

( ( ) )rad outq T t  = − (3.10) 

Where, 
 =100 and 
 =7, are the constant values. 
 

3.1.2 CONSERVATION OF ENERGY: RELATIONSHIP TO THE 1ST LAW OF 
THERMODYNAMICS 
The 1st law of thermodynamics describes that “the change of stored energy in a bounded 

control volume must equal the amount of energy that enters the control volume minus the amount 
of energy that leaves the control volume” [132]. In other words, the total energy of a system is 
conserved until energy crosses its boundaries. This energy can be in the form of heat transfer over 
the boundaries or work applied on the system or by the system: 

tot
stE Q W = −                                                              (3.11) 

Where, 
tot
stE = The total energy change of the system (subscript st denotes the stored energy), 

Q = The net heat transfer to the system, 

W = The net work done by the system. 
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The stored energy over time, which can be mechanical and thermal, is an equilibrium among 
the thermal and mechanical energy transport across the control surface: 

st in out gE E E E= − +                                                        (3.12) 

Where, 

stE = The stored energy inside the control volume, 

inE = The inflow term of energy transport, 

outE = The outflow term of energy transport, 

gE = The energy generation inside the control volume. 

The heat stored in an enclosed volume causes a temperature change of the medium. The 
equation below explains that the heat required for a temperature change is related to the mass (m) of 
the medium enclosed in the control volume and the specific heat capacity pc , which is a physical 
quantity of that medium. 

p
dTq mc
dt

=  (3.13) 

Where, 
        q = The heat load in watts [W ], 

        pc = The specific heat capacity in [ kJ kg K ], 

         = The density of outdoor air in [ 3kg m ], 

        dT
dt

=The rate of temperature change corresponds to the heat flow in [ sK ]. 

 

3.1.3 THE THERMAL RESISTANCE CONCEPT 
Circuit expressions provide a suitable tool for simple visualization of the heat transfer 

concept. There is an analogy between heat diffusion and electrical charge diffusion if there is no heat 
generation inside the wall. There can be a thermal resistance against heat conduction as there is an 
equivalent electrical resistance against electricity conduction. Similar to Ohm’s law which describes 
an electrical resistance as the ratio of a driving potential to the corresponding transfer rate, there is 
an equation that gives the thermal resistance for conduction in a plane wall: 

,1 ,2s s
e

E E LR
I A

−
= =                                                             (3.14) 

,1 ,2
,

s s
t cond

x

T T LR
q kA
−

= =                                                             (3.15) 

Where, 

eR =The electrical resistance in [ ] 

,1 ,2,s sE E =The electrical voltages at the 1st and 2nd surface in [V ] 

I =The electrical current in [ A ] 

σ = Stefan-Boltzmann Constant in [
2 4W m K ] 
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,t condR = The thermal resistance in [ 2K W m ] 

,1 ,2,s sT T =The thermal temperatures at the 1st and 2nd surface in [ K ].  

Same as the thermal-electrical analogy in conduction, there can be thermal resistance against 
heat convection. Newton’s law of cooling is an empirical relationship discovered by Sir Isaac 
Newton (1642-127), describing that “the rate of heat loss of a body is proportional to the temperature 
difference between the body and its surroundings.” Therefore, keeping the air inside the home warm 
on a cold day involves a higher cost because more temperature difference with the outside needs 
much heat. Newton’s cooling law can be mathematically exposed as the following equation:  

( )( )sq hA T T hA T t= − =                                                       (3.16) 

Where, 

h =The convective heat transfer coefficient in [
2W m K ] 

Then, the convective thermal resistance is calculated by 

,
1s

t conv
T TR

q hA
−

= =                                                             (3.17) 

Therefore, an equivalent thermal circuit can be proposed for every heat transfer problem. 
Assuming that steady-state conditions characterize the system if the temperature at each point 

is independent of time, based on the thermal resistance concept, the heat transfer rate might be shown 
in the following form 

t

q q A
R
T




=   = (3.18) 

Where,  

tR = Thermal Resistance in [ 2K W m ].  

The thermal resistance is variously parametrized for each of the three different types of heat 
transfer (conduction, convection, and radiation).  

When a wall separates two fluids of different temperatures, there is a convective heat transfer 
from the hot fluid at ,1T to the first surface of the wall at ,1sT . There is a conduction heat transfer 
inside the wall from the first surface (with higher temperature) to the second surface of the wall at 

,2sT , and there is a convective heat transfer from the second surface of the wall at ,2sT to the cold 

fluid at ,2T . The temperature distribution is measured by solving the heat transfer equation 
assuming the proper boundary conditions.  
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Figure 3.5 Equivalent thermal circuit. 

Also, in analogy to the electrical current, the heat transfer rate is the same for the series 
elements that are tandem. As an example, for Figure 3.5 the heat transfer rate is as below: 

,1 ,1 ,1 ,2 ,2 ,2

1 21 1
s s s s

x

T T T T T T
q

h A L kA h A
 − − −

= = =                                                 (3.19) 

this equation is valid also for the overall temperature difference of ,1 ,2T T −  

,1 ,2
x

tot

T T
q

R
 −

=                                                           (3.20) 

The total thermal resistance is calculated as  

1 2

1 1
tot

LR
h A kA h A

= + +                                                           (3.21) 

For a series composite wall with more layers, the calculations are the same as with a series electrical 
circuit, and it is easier to work with an overall heat transfer coefficient U:  
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xq UA T=                                                                (3.22) 

where T  is the overall temperature difference. If there is heat transfer through a composite 
material, the equivalent resistance is the summation of the resistances of each part of the composite. 
Likewise, if different heat transfer modes exist, then the total resistance is the summation of all the 
resistances respective to different modes, as follows: 

11

0 1 1

1 1

1 1...tot n

n n

U
R A LL

h k k h
−

−

= =
       + + + +              

                           (3.23) 

or 
1

tot n
TR R
q UA


=  = =                                                           (3.24) 

3.1.4 THE LUMPED CAPACITANCE METHOD 
 
Hudson and Underwood (1999) described the mathematical model for building the system’s 

operation simulation using an RC electric circuit model. 
The lumped capacitance method is a well-known method based on the analogy between 

thermal systems and electric circuits [133], [134]. It is easier, in this case, to describe these 
phenomena by the grey-box modeling approach [135]. This approach is based on the semi-physical 
laws analog-circuit model such as the equivalent electric RC circuit. The RC model can be presented 
as mathematical expressions (algebraic, differential equations), distinguishing between deterministic 
and stochastic parameters. These parameters cannot be directly observed (indirect measurement). 
They need to be estimated [136], [137] depending on the prior and posterior information of the 
building system. 

The lumped capacitance model or lumped parameter method, or the lumped system analysis, 
is the simplest method of building thermal response models. This method simplifies the description 
of a physical system with a given topology, including the building elements' abstraction to a discrete 
number of spatially uniform-temperature elements (“lumps”) used in network analysis. 
Nevertheless, spatially uniform-temperature value changes over time. Then, the energy balance 
equation of transient conduction can be proposed based on these construction elements. 

The RC approach is derived from the lumped capacitance solution of the transient heat 
transfer equations, well known as the thermal-electric analogy described in Table 3.2. This approach 
consists of spatially uniform temperature elements that construct an energy balance equation. 
Therefore, this method cannot show the temperature distribution inside elements, but it perfectly 
describes the overall thermal behavior of building zones. The model consists of several lumped 
thermal resistances ( 1 2, ,..., nR R R ) and some thermal capacitances ( 1 2, ,..., nC C C ), idealized into 
electrical components such as resistors and capacitors in an electrical network with conducting wires. 
The thermal resistance is analogous to the electrical resistor and the heat transferred is analogous to 
the electrical current. In this model, the capacitance reservoir absorbs heat until its thermal steady 
state. The thermal resistances also play different roles in the different modes of heat transfer, e.g., 
conduction, convection, and radiation. The order of this model depends on the number of thermal 
capacitance layers (thermal mass). A 1st order lumped parameter in analogy to the construction 
elements can be seen in figure 3.6 (a typical wall view of this thesis). 
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Figure 3.6 The 1st order lumped elements in the RC approach. 

The 2nd order or more lumped parameter construction element can be used if the walls between 
the zones include more layers, as shown in Figure 3.7. 

 
Figure 3.7 The 2nd order lumped elements in the RC approach. 

Table 3.2 Thermal-Electric Analogy. 
Quantity Across Variable Through Variable Dissipation Element Storage Element 

Electrical Circuit 
Parameter [Unit] Voltage – V [V] Current – I [A] 

Electrical Resistance – 
R [ ] 

Electrical Capacitance 
– C [F] 

Thermal Equivalent 
Parameter [Unit] Temperature – T [K] 

Heat Flow Rate - q  
[W] 

Thermal Resistance – 
R [K/W] 

Thermal Capacitance – 
C [J/K] 

 
The usability of the lumped capacitance method is high whenever the heat conduction inside 

the system boundary is much larger and faster than the heat transfer across the system boundary into 
or out of it. With this condition, the object temperature at a specific time is meaningful as the entire 
element has the same temperature. The Biot number ( Bi ) is a dimensionless parameter as the ratio 
of the conductive heat resistance within the element body to the convective heat transfer resistance 
across the system boundary to check this condition. If the Biot number is less than 0.1 for solids, the 
entire element has the same temperature. If the Biot number is greater than 0.1, the system’s length 
can be divided into several sections or lumps with a Biot number of less than 0.1 for that section to 
satisfy the condition. 

As discussed in this section earlier, the lumped-capacitance method has been used in this 
study to model the thermal dynamics of the use-case office building (thermal network model) where 
the heat transfer is illustrated by thermal resistance and heat storage (thermal capacitance) 
implemented in chapter four. A thermal node represents each zone and each wall. The nodes are 
connected via thermal capacitors to the ground reference and thermal resistors to the adjacent nodes. 
In the designed model of this study, for every zone, there is a central node that is later connected to 
central nodes of other zones via thermal paths across the walls and windows. A schematic of this 
node and its connections can be seen in figures 3.8 and 3.9. 
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Figure 3.8 Schematic of the equivalent lumped capacitance model for a typical room. 
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Figure 3.9 Equivalent lumped-capacitance model for example scenario office building. 
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3.2. DEMAND-CONTROLLED VENTILATION SYSTEM 
A DCV system is a control strategy based on the ventilation concept. This system modifies 

the amount of fresh air to improve the indoor air quality while increasing the potential energy saving 
by automatic adjustment of the volume of air exchange using damper actuators based on sensor 
values received from air quality sensors, e.g., CO2 concentration sensors, temperature sensors, 
occupancy sensors, heater status, and control theory. Figure 3.10 shows the role of the DCV and 
heating system in optimizing the system considering different parameters. 

 

 
Figure 3.10 Role of DCV and Heating system in optimizing the system. 

The air exchange includes the inward flow of the fresh air into the zone and the outward flow 
of polluted air from the zone. Natural ventilation is the oldest and prevalent method used for air 
exchange throughout history, which is also popular in European countries. The idea came up in the 
ancient era when people started using construction to capture the wind for the aeration to their living 
spaces. Windcatcher, “Baadgir” (bâdgir: bâd "wind" + gir "catcher") in Persian, is a famous 
example in history as a traditional Iranian architectural element which was constructed in many hot-
arid-climate regions of Iran, especially in the city Yazd, to produce natural ventilation [138]. 
Dolatabaad garden is a prominent place because of its famous windcatcher (Figure 3.11), which is 
open on eight sides. These wind catchers were constructed open at one, two, four, or eight sides at 
the top of the tower (Roaf, 1989) that the wind forces the air into the building on the windward side 
and removes the high-temperature air from indoor based on the Buoyancy force (stack effect) to the 
outside (the leeward side). Therefore, the breeze could be captured from any direction [139]. 

https://en.wikipedia.org/wiki/Iranian_architecture


44 
 
 

 
 

 
Figure 3.11 A traditional windcatcher in Dolatabaad garden, Iran 1F

3. 
The indoor air quality depends on various parameters, such as the concentration of hovering 

air pollutants in the gas form and the dynamic performance of the HVAC system. Human 
metabolism needs fresh air, including oxygen, for the oxidation process of carbohydrates, fats, and 
proteins that produces mainly carbon dioxide and vapor. Natural ventilation can meet this metabolic 
requirement besides the dilution of the indoor air containment, odor, and pollutants for an acceptable 
IAQ and to supply the oxygen needed for the combustion process of the laboratories and exchange 
of the exhaust gas with the outside environment plus its capability of energy saving [140], [141]. 
The injection of fresh outdoor air with lower pollutants into the building zones is always a promising 
way to dilute the gaseous indoor air contaminants. Therefore, indoor air quality measures are a 
function of the mentioned parameters with the indoor and outdoor sources. Natural ventilation is the 
air movement through building openings due to wind, stack effect, or static pressure created by 
differences in temperature between the interior and exterior of the building, known as the stack effect 
[142]. Building openings used for natural ventilation are typically windows, doors, stacks, vertical 
flues, roof ventilators, wind catchers, and other-purpose-designed openings. Natural ventilation due 
to its simple design, installation, operation, and maintenance is ubiquitous. The ventilation rate 
indicates the dependency of the outdoor air quality to the indoor air quality and is the amount of 
outdoor air delivered into the building space. A precise control approach on the ventilation rate is 
vital as insufficient air exchange causes poor IAQ or children's health issues such as allergic diseases.  

On the other hand, the heating and cooling loads increase during natural ventilation on cold 
and hot days, respectively. Significantly, too much fresh air exchange accounts for more waste of 
                                                 
3 Photo credit to Bernard Gagnon, Pavilion in the Dolat Abad Garden, Yazd, Iran, 23 October 2016,                       
Link: https://commons.wikimedia.org/wiki/File:Dolat_Abad_Garden_-_Pavilion_02.jpg 



45 
 
 

 
 

energy. Therefore, reliable HVAC control is essential to maintain the utmost indoor air quality for 
occupants while balancing the energy consumption of the HVAC system. 

Ventilation design determines how much ventilated air is required and why. In North 
America, the ASHRAE Standard 62-2007 standard is generally accepted to reach the best IAQ in 
buildings [143, 144]. For reaching an acceptable IAQ, a ventilation rate of 15 cfm per person is 
required and must be kept into consideration in winter and summer. This section describes the basic 
principles of natural ventilation. Three ventilation fundamentals are prevalently applied in the 
calculation of the natural driving forces in buildings that are illustrated in Figure 3.12: 
1. Single-sided ventilation 
2. Cross ventilation 
3. Stack ventilation 

 
Figure 3.12 Natural ventilation types: a) Single-sided, b) Cross, c) Stack. 

The ventilation fundamental shows in what way the exterior and interior airflows are linked. 
Furthermore, the ventilation principle indicates how the air is introduced into the building, and how 
it is exhausted out of it. 

 

3.2.1. SINGLE-SIDED NATURAL VENTILATION  
Single-sided ventilation is defined based on airflow through building openings on only one 

side of a room. The airflow enters and leaves from the opening(s) on the same wall. However, the 
ventilation capacity of single-sided ventilation is lower than cross ventilation, but it is more common 
and straightforward to implement based on architectural design limitations, especially in cellular 
office buildings with openings only on one side. Moreover, the privacy and security concerns, fire 
safety requirements, and control of air velocity issues result in a higher tendency towards using 
single-sided ventilation despite the higher efficiency of cross ventilation [145]. Some references 
refer to the building height/width (H/W) ratio as a crucial parameter. BRE digest suggests that to 
have effective single-sided ventilation, a window area must be at least 1/20 floor area and maximum 
room depth must be up to 2.5 times of the ceiling height (H) [146]. The same reference recommends 
cross ventilation for the depth of more than 2.5 H and up to 5 H because wind pressure can provide 
more effective flow rates [140]. 

The main driving forces of natural ventilation are the Buoyancy force (stack effect) and the 
wind (wind effect).  

The Buoyancy effect: The air pressure and temperature difference across the opening causes 
a variation in density, and therefore the mass of the air flows inside the room; therefore, the low-
density air goes upward, and the high-density air goes downward in a zone known as Buoyancy 
force. Awbi described stack ventilation as mostly suitable for cold and windy conditions with a form 
of single-sided ventilation, such as windows, for providing enough airflow rates [140, 147]. 
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The wind effect: The wind forces generate an air exchange mainly due to the wind velocity 
depending on the incidence angle of the wind to the opening. When the wind effect is combined with 
the Buoyancy effect, a complicated relationship between the affecting parameters and the ventilation 
rate where either wind or buoyancy can be dominant.  

The single-sided natural ventilation has advantages, e.g., most of the time is available, its 
usage is free without extra costs of ductwork and air handling units, it is accompanied by the energy-
saving and silent operation as there is no fan. There are also disadvantages along with the single-
sided natural ventilation, e.g., it highly depends on external climate conditions compared to the 
indoor spaces, lack of control over its magnitude, no defined exit route for air, poor ventilation is 
probable if the driving forces are not calculated correctly; and not suitable for deep plan spaces. The 
depth of penetration is limited to a maximum of approximately 2.5 times ceiling height, according to 
Awbi  [140]. Practical issues and architectural design matters often limit the opening size. Single-
sided natural ventilation also has limitations. Though natural ventilation is a reliable and cost-
effective solution for air exchange, some cases necessitate the usage of mechanical ventilation, e.g., 
factories or industrial premises with a relatively high amount of dust or toxic containments, or 
hospitals where it is essential to control the airflow precisely besides its crossing through filters to 
remove airborne bacteria. Pavelchak et al. studied 140 specified airborne infection isolation rooms 
in 38 buildings from 1992 to 1998 [148]. The result shows unwanted directional airflow out of the 
patient room in around 38% of the buildings. Other examples are enclosed parking lots and the tunnel 
roads where it is essential to remove exhaust gases and their containments such as carbon monoxide 
(CO) or fuel vapors from the air. Commercial kitchens and lecture halls with lots of occupants. 

  
3.2.1.1. VENTILATION PRINCIPLES 

Fundamentals for the prediction of the airflow through a small and sharp-edged opening are 
described in this section. Each human breathes around 12000 liters of air per day, on average. Thus, 
indoor air quality has a significant effect on the occupant’s health and efficiency. The recent building 
constructions are tighter to prevent energy loss through building envelopes. Therefore, pollutants 
emitted from occupants or building equipment are more likely to be trapped inside the occupied 
zones, which can cause severe health impacts on the individuals or dissatisfaction at least. Carbon 
dioxide (CO2) is one of the most known odorless and colorless air pollutants. Carbon dioxide results 
from the oxidation of carbohydrates, proteins, and fats consumed by humans besides the energy 
release. Also, it can be produced from the fuel gas burning in the kitchen. There are two main 
techniques to remove pollutants from indoor spaces. One solution is crossing the air through filters. 
The other solution is to swap air with the outside environment. The first solution needs a considerable 
maintenance effort to change the filters or to clean them, but the latter seems more promising and is 
inexpensive and often available. However, the lack of control over natural ventilation is a significant 
issue that causes uncontrollable airflow rates due to high dependency on outdoor conditions. During 
the manual opening or closing of windows, there is no control over the outside weather and inside-
zone conditions. 

Recent progress in sensor technologies, besides their mass production, makes the sensor-
based control systems noteworthy solutions for increasing the IAQ and decreasing energy usage and 
costs. A CO2 sensor detects and shows the amount of carbon dioxide inside the air. The airflow and 
its direction through the building openings are time-dependent, accompanied by time-dependent 
temperature and pressure differences that cause the airflow rate to be unpredictable in magnitude 
and direction. Therefore, DCV tries to create a more predictable control approach for natural 
ventilation. A typical CO2 sensor ranges from 0 to 9999 ppm for its measurements with an accuracy 
of 50 ppm 5%  [149]. Also, because of the rough relationship between the amounts of generated 
CO2 by the occupants with CO2 available in the air of a specific closed zone, a CO2 sensor is helpful 
to determine the number of occupants in a closed zone. However, due to the air exchange in the 
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ventilated zone, the CO2 sensor measurement is not a trustful value for estimating the number of 
occupants. The model of the CO2 concentration sensor output signal is based on the calculation of 
CO2 concentration shown by the following equation and frequently can be found in different 
references [11]: 

 
( )

( ) ( ) ( )0( )
dC t

Vol G t Q C t C t
dt

= + −                                   (3.25) 

 
Where,  
     C = The indoor CO2 concentration in [ppm], 
      t = The time in [ s ], 
      Vol = The building or space volume in [ 3m ], 

      G = The indoor CO2 generation rate in [ 3m s ]. 

      Q = The building or space ventilation rate in [ 3m s ], 

      0C = The outdoor CO2 concentration in [ppm], 

       
       
       However, equation 3.25 needs correction in its unit aspect. All the terms are described in 

3m ppm s  except the first term at the right side of the equation, which is not described in 
3m ppm s and is only in 3m s . Therefore, to show this term in 3m ppm s , this must be multiplied 

by 610  that gives: 

 
( )

( ) ( ) ( )6
0 )1( 0 ) (

dC t
Vol G t Q C t C t

dt
=  + −                            (3.26) 

  In some references, the building or space ventilation rate (Q) is based on a rough calculation 
via some constant value N taken from fresh air requirement in the table of the standards, e.g., 
ASHRAE [12, 143, 150] by the equation below:  

 
Q N Vol=                                      (3.27) 

Where,  
N = air change rate in [1 h ]. 
In this study, a precise calculation is a goal to make the CO2 concentration model more 

realistic. Therefore, the building or space ventilation rate is calculated that is the summation of the 
ventilation due to the wind and stack-flow (Buoyancy). Li et al. [56] showed a good match between 
the predicted results gathered from this equation and the experimental data on the modeling of indoor 
CO2 concentration based on real-time indoor occupant prediction and CO2 generation rates for an 
air-based HVAC system using ducts connected to a boiler (or chiller) as a central plant. The time 
constant for the system (V Q ) in a steady-state can also be calculated. The indoor CO2 concentration 
rate is the summation of CO2 generated by the occupants and the room CO2 concentration. Referring 
to references such as Lu et al. [151], ASTM standard [152], and ANSI/ASHRAE standard 62.1-2016 
[150], the CO2 generation rate was considered 0.0052 L/s or 0.31 L/min for an adult sedentary 
employee at the activity level of 1.2 met units. Alternatively, the CO2 generation rate can be 
calculated using the equation [56] below: 
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0.00276
(0.23 0.77)

D
Q

Q

A MG R
R

= 
+

                                             (3.28) 

Where, 

QR =The respiratory quotient (RQ = CO2 eliminated / O2 consumed), 

M =The metabolic rate in [ met ], 

DA =The DuBois surface area in [ 2m ] 

 
The respiratory quotient equals the volumetric rates of exhaled CO2 divided by the consumed 

O2 and is related to the diet type and physical activity. In this study, the respiratory quotient is 
considered 0.83 for a regular diet and sitting activities [153]. M is a parameter that shows the level 
of physical activity or indicates the metabolic rate per unit of surface area (MET), which is 
considered 1 for the seated office activity. 

   

 21 58.2met W m=  (3.29) 

However, Persily et al. [154] recommend that 1 met  equals 49.8 2W m . He also suggests a 
new formula for the CO2 generation rate (G), considering the effects of air pressure and temperature.: 

 
 ( )0.000211QG R BMR M T P=  (3.30) 

Where,  
BMR=The basal metabolic rate in [MJ/day], 
P =The pressure in [ Pa ], 
T =The temperature in [ K ]. 

The DuBois surface area with the unit 2m and can be calculated by  
0.725 0.4250.203DA H W=                                                    (3.31) 

Where, 
H =The height of the person in [ m ], 
W =The body mass in [ kg ]. 

Based on the equation above, this study assumes DA  as 1.83 m2. 

In natural ventilation systems, the fresh air is supplied through window openings. The basic 
principle of natural ventilation is based on thermal buoyancy and wind pressure on the building 
envelope. All the environmental factors such as temperature and pressure difference and 
architectural properties such as window sizes and types substantially affect ventilation rates. 
Different parameters affect the natural ventilation flow rates, e.g., building shape, height, location 
and the surrounding terrain, opening size and its position, airtightness and the leakage distribution, 
outside weather conditions, and wind characteristics such as air velocity and its direction.  

Single-sided ventilation is prevalent in office buildings. In this method, all the window 
openings are placed on one side of the room. The window type in this thesis is the bottom-hung 
inward opening. Ventilation induced by buoyancy due to indoor/outdoor temperature difference 
(stack ventilation) is effective in cold conditions but not in warm conditions because outdoor is 
warmer than indoors. 
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A typical orifice model is used to model a typical sharp-edged window. Figure 3.13 describes 
a typical orifice with section areas A1 and A2: 
  

 
Figure 3.13 Schematic of an orifice plate. 

When the conservation of energy is applied to the Bernoulli equation, then we have the 
following equations. 

 
2 2

1 1 2 2
1 2 1 22 2

P V P VZ Z loss
g g g g 

−+ + = + + +  (3.32) 

Where,  
Z = The height of measure point in [m] 
V = The flow speed in [m/s] 
P = The pressure in [Pa] 
g = The gravitational acceleration in [ 2/m s ] 

             = fluid (air) density in [𝑘𝑔/𝑚3] 
 

Where 1 2loss − is the summation of the head losses over upstream, downstream, and across 

the orifice plate. Assuming that 1Z is the same as 2Z and 1 2 0loss − = , we have 

 
2 2

1 1 2 2

2 2
P V P V
 
+ = +  (3.33) 

The pressure drops across the orifice plate ( P ) can be calculated by rearranging the 
equation above 

 
2

2 1 22 1
1 2 2 1

2

( ) 1 ( )
2 2

V VP P V V
V

  
− = − = − 

 
 (3.34) 

The law for the conservation of mass, which is also known as the equation of continuity, 
describes that the volume flow rate ( Q ) across the orifice remains the same, in mathematical form.  

 1 2Q Q=  (3.35) 

Or 
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 1 1 2 2V A V A=  (3.36) 

Substitution of equation 3.36 in equation 3.34 gives: 

 1 2
2

22

1

2( )

1 ( )

P PV
A
A



−
=

 
− 

 

 (3.37) 

Where in the natural ventilation concept, the outside environment area can be estimated to 
an infinity value ( 1A   ), and this gives 

 1 2
2

2( )P PV


−
=  (3.38) 

Knowing that the average air velocity through the opening is 2avgV V= , 2A A= , 2theoreticalQ Q=

, and 1 2P P P = −  gives: 

 2
avg

pV



=                                                     (3.39) 

and 

theoretical avgQ A V=                                                         (3.40) 

 
Substituting equation 3.39 in equation 3.40 gives: 

 2
theoretical

pQ A



=  (3.41) 

The actual volume flow rate crossing a sharp-edged window is always less than the theoretical 
volume flow rate due to the sharp-edge resisting effect. The discharge coefficient (Cd) is an essential 
parameter in the sharp-edged orifice plate design, which is defined as the ratio of the actual flow rate 
(Qactual) to the maximum theoretical volume flow rate (Qtheoretical) [155]. The discharge coefficient 
value of 0.61 for the sharp-edged rectangular opening is used [156]. 

 

 actual
d

theoretical

QC
Q

=                                                      (3.42) 

  

Furthermore, actualQ can be calculated using equation 3.42 by: 

 2
actual d

pQ C A



=  (3.43) 

The inward airflow due to wind and the temperature difference between the indoor and the 
outdoor environments through a window opening is calculated using equation 3.43, also 
demonstrated by H. Awbi [140].  This method is known as The British Standard Method [142]. The 
wind pressure and the temperature difference (stack effect) between indoor and outdoor create 
pressure differences across the building envelope. This model did not include mechanical 
ventilation. Therefore, the effective cross-section area of the flow through the opening ( cA ) which 
is shown in Figure 3.14 can be calculated as: 
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 c dA C A=  (3.44) 

 
where  

cA = effective damper area in 𝑚2        

 𝐶𝑑= discharge coefficient 
 𝐴= damper (opening) area in 𝑚2 
 

 
Figure 3.14 The effective area of an opening. 

The effective area of multiple openings in a series of openings in one facade can be calculated 
by 

 1 1 2 2c d d dA C A C A C A= = + +                                (3.45) 

and in a parallel layout of the openings on opposite sides, it can be calculated by 

2 2 2 2
1 1 2 2

1 1 1 1
( ) ( ) ( )c d d dA C A C A C A

= = + +                                (3.46) 

The building ventilation rate in this thesis is calculated by accumulating flows through an 
opening, including Buoyancy-driven flow and wind-driven flow. For Buoyancy-driven flow (stack 
flow) through an opening, as the height effect on the pressure difference is insignificant, the overall 
pressure difference can be calculated based on only the density difference between indoor and 
outdoor. Thus, by substitution for the term pressure difference from the Bernoulli equation 3.32 on 
a window on a wall, therefore, 2 1V V=  and 1 2 0loss − = , the equation 3.43 can be written as: 

2( ) ( )o i NPL
Buoyancy driven d

o

g h HQ C A  


−

− −
=                                     (3.47) 

The Boussinesq model [157] is used for the approximation to eliminate density terms (  ): 

( ) ( )o i o o ig T T g   −  − −                                                (3.48) 

Where,  
 =The coefficient of thermal expansion. 
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For ideal gases, there is the expression below: 
1

iT
 =          (3.49) 

Therefore: 

2( ) ( )i o NPL
Buoyancy driven d

i

T T g h HQ C A


−

− −
=                                      (3.50) 

Where,  

NPLH = The neutral pressure layer height 

h = The certain vertical height along with the opening      
g = The gravitational acceleration in [ 2/m s ] 

iT = The inside temperature in [ K ] 

oT =The outside temperature in [ K ] 

For single-sided natural ventilation of a large opening with a maximum height of H, if NPLH
is half of the opening height ( 2NPLH H= ) then figure 3.15 shows a better view of the airflow 
through the opening: 

 

 
Figure 3.15 Schematic of the single-sided ventilation. 

 
By substituting equations 3.48 and 3.49 in equation 3.50, the Buoyancy-driven flow is 

calculated by equation 3.51: 

( )i o
Buoyancy driven d

i

gH T T
Q C A

T−

−
=                                                   (3.51) 

For wind-driven flow through an opening, the pressure difference is calculated based on the 
pressure coefficient (Cp), which is discussed in many references [158], [159], and [147]. The 
pressure coefficient is calculated by dividing the difference between the pressure on a surface and 
the static pressure of the collided wind to the design wind pressure. The static and design wind 
pressures can be calculated at the height of the target point considering the geographical and 
environmental properties: 
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2

w o
p

r

P PC
V

−
=  (3.52) 

      Where, 

pC = The pressure coefficient at the opening [-], 

wP = The static pressure at the opening surface on the building in [ Pa ], 

oP = Static pressure of the free stream (ambient or atmospheric pressure) in [ Pa ], 

 = The air density of free stream in [ 3kg m ], 

rV = The reference wind velocity in the free stream in [ m s ]. 

By substitution of equation 3.52 in equation 3.43, equation 3.53 gives the wind-driven flow: 
 wind driven d r pQ C A V C− =    (3.53) 

For the combined flow through an opening, including wind and Buoyancy (stack) effects, it is 
possible to calculate the flow rate respective to each mode and combine them in various 
superposition methods. There are many methods known. However, the simplest one illustrates that 
the total ventilation flow is the linear addition of each flow and the respective formula is 
demonstrated by 

total wind driven Buoyamcy drivenQ Q Q− −= +                                               (3.54) 

Awbi et al. (2010) [160] and Shaw (1985) [161] introduced another superposition method which is 
known as the simple pressure method, as the following: 

 ( )
1 1 n

n n
total wind driven Buoyancy drivenQ Q Q− −= +   (3.55) 

Where 0.5 1.0n  depends on the opening dimensions and type of flow, e.g., 0.5 for fully turbulent 
flow or 1 for fully laminar flow, a value of 0.67 has been suggested for a small opening, and for the 
large opening, its value is 0.5 [160]. Therefore, the established model of this study can calculate the 
results based on different superposition methods.  
From the heat transfer, the heat rate is defined by equation 3.13: 

p
dTq mc
dt

=               (3.13) 

Moreover, from the density definition, it is known that: 
m V=          (3.56) 

Substituting gives the heat load due to the natural ventilation inside the building:  

vent total pq Q c T=                        (3.57) 

Where, 
        ventq = The heat load due to the natural ventilation in watts [W ], 

        pc = The specific heat capacity in [ kJ kg K ], 

         = The density of outdoor air in [ 3kg m ], 
        T =The temperature difference between inside and outside of the room in [ K ]. 
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Hall et al. recommend a value of 1.2 3kg m for the outdoor air density and 1 kJ kg K for the specific 

heat capacity of the air [162]. This thesis considers a value of 1.237 3kg m for the outdoor air density 
and 1.006 kJ kg K for the specific heat capacity of the air. 
 

3.3.  MODULAR COMPOSABILITY OF HVAC MODELS  
This thesis introduces the modular composability scheme using generic diagnostic 

components at the system level applicable in many areas, especially in cyber-physical systems. This 
scheme is described in this section and implemented in chapter four using a DCV and heating system 
for the office buildings. The methodology of composability was used in the field of computer 
security that describes constructing an extensive complex system from a standard set of smaller 
systems that are independently verified  [22]. Non-interference property prevents influencing high-
level and low-level behaviors on each other when either composable or a method of composition 
exists, which is a security property [22]. Implementing the composability technique is not easy as 
individual components have different specifications compared to their combined form [163]. 
Composability intensifies the quality of modeling and simulation in system design [164], [165]. 
Composability is applicable in many fields, such as cyber-physical systems that include systems of 
systems (SOS) and compositions of diverse subsystems. Modularity is a design technique for 
subsystems (modules) with well-defined interfaces to create scalable models that can be used in 
various contexts. The unique modules are used to create various complex building models. The main 
aspects of composability modeling in the system design phase are integrating models in different 
disciplines and fields, the abstraction of the model description, restrictions and constraints of the 
development tools, and the level of composability of the model components [166]. Abstraction is a 
simplified representation of the model that eliminates some characteristics to keep only a set of 
essential characteristics, and programmers hide some unwanted details to reduce the complexity and 
increase efficiency. 

In the composability, the properties are preserved by the composition of architectures [167]. 
From this point of view, a composability method prevents the risk of maintaining their characteristic 
properties while combining them. Considering the composition operator  , architectures 1A  and 

2A , each with a set of components B  that make composite components 1( )A B  and 2 ( )A B , each 

architecture satisfies a characteristic property 1 and 2 , the composition of 1A  and 2A that is 

written as 1 2A A  preserves characteristic properties of both or meets 1 2  . Safety and fault 
tolerance are examples of the characteristics of the property. As the composition operator   is 
associative and commutative, we will have: 
  1 11,

m
ì i i mì mA A A A= 

 = =   (3.58) 

“Considering the interaction model  which is a set of interactions, each interaction a  is a set of 
actions ( a  ) by the synchronously executed composed components” [167]. If C  is a set of 
coordinating components, we have: 
 ( ) ( , )A B C B=  (3.59) 
In this thesis, each type of building architecture A  is a solution to a specific coordination problem 
with a specific characteristic property. Definitions of components and interaction model are as 
follows: 
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−
→ 

A component is a Labelled Transition System ( )0,  , ,B Q q P= → , where Q is a set of states, 0q ∈ Q 

is the initial state, P is a set of ports and  (2 \PQ Q→    is a transition relation. Each transition 
is labeled by an interaction a P   . P is the interface of  B [167].  

An interaction model over P is a set 2P  where the set ports 1

n
ii

P P
=

= and iP  are pairways 

disjoints, i.e., , i ji j P P   =  and  1 2, ,..., nB B B B= is a finite set of components with 
0( , , , )i i i iB Q q P= →  [167]. 

An architecture that includes any set of components and dangling ports is defined by ( , , )AA C P =  

such that C C C AP P  and 2 AP  is an interaction model over AP .  

The composition of architectures is the conjunction of their respective constraints and is formalized 
based on the following definition. Let ( , , )i i A iA C P = for 1,2i = . Therefore, the composition of 

architectures 1A and 2A is also an architecture 
1 21 2 1 2( , , )A AA A C C P P  =   , where 

1 2   = 

. Considering 1 and 2 as the corresponding interactions of 1A and 2A , these precisely satisfy the 
coordination constraints enforced by both composing architectures. The execution traces allowed by 

1 2A A on a set of components B are also allowed by both 1A and 2A , which guarantees the 
preservation of properties by the composition of architectures.  
This thesis applies the composability technique to handle the mentioned design challenge by 
automatizing various components' selection, combining, and configuration processes in different 
levels, considering requirements while reducing development costs. In this context, the inter-
relationship among components and scalability are considered, which means the components can be 
combined in different levels and directions while keeping a certain and acceptable level of 
performance and efficiency [168], [169]. Therefore, the composable model version of the DCV and 
Heating system is developed. For this reason, individual components, i.e., sensors, actuators, 
standard rooms, enclosures, and windows, are modeled as subsystems and placed in the library.  
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4. SIMULATION FRAMEWORK OF THE DCV AND 
HEATING SYSTEM  

Equation Chapter (Next) Section 1 

This chapter describes the simulation framework of the DCV and heating system in 
MATLAB/Simulink. The component-based integration technique of the DCV and heating system is 
discussed based on the composability. The overall system model is structured into simulation 
building blocks. The C code can be synthesized for the control algorithms using MATLAB coder, 
and it can be integrated into real-time embedded systems. The simulation framework is established 
as a prototype to test and evaluate diagnostic techniques described in the following chapters. The 
simulation model is based on the analytic models described in chapter three and is extended for the 
wireless communication infrastructure.  

 

4.1. MODELING AND SIMULATION OF THE SYSTEM MODEL 
This part describes the implementation of the models and the simulation of the system model. 

The analytical model developed in chapter three is experimentally implemented in 
MATLAB/Simulink. Analytical models are prevalently used because their development includes 
mapping the physical and thermodynamic laws governing the system's dynamics to mathematical 
relations using variables and constants that are easy to manipulate and evaluate [170]. 

The modeling structure includes building blocks of input variables, output variables, and the 
primary system. The input variable block includes controllable variables, e.g., internal heat gains, 
set points of the actuators, and uncontrollable variables, e.g., solar gains, outdoor air specifications 
such as temperature, and wind speed. The output variable block includes building outputs such as 
room temperature, CO2 concentrations, and energy consumption. The modeling of the demand-
controlled ventilation and heating system, which considers the thermal and air-quality demand is 
complex due to several nonlinearities and different factors. Some factors are: 

• Physical characteristics and system specifications: Thermal capacity, heat transfer 
coefficients, U-values and building elements’ material, 

• Local weather condition: temperature, solar radiation angle, wind speed, and pressure, 
• Heating system specifications: efficiency and control method,  
• Occupants requirements and behaviors, 
• Internal air quality such as desired fresh air and desired temperature, 
• Air pollutant’s parameters such as CO2, 
• Internal heat gain: depending on the number of occupants and appliances as the heat 

sources. 
 Therefore, a suitable building performance model and simulation tools are needed to 

evaluate the entire system based on the mentioned parameters. This work is an optimization 
challenge to achieve an optimal balance among heating load (thermal comfort), zone temperature, 
and indoor air quality. Further, the simulation tool helps develop reliable failure detection and fault 
diagnosis techniques in case of fault occurrences. 

This work presents models developed in various stages dynamically simulated by 
MATLAB/Simulink using the Simscape toolbox. The automatic code generation feature of 
MATLAB/Simulink allows deploying the simulated model on real-time processors and actual 
hardware platforms. The Simscape blocks illustrate the physical system associated with their 
schematic and not only by their abstract mathematical equations [10]. The model considers the 
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heating and ventilation (not the cooling) because the model studies the winter season when the range 
of outdoor temperature is below the acceptable indoor temperature range. Figure 4.1 shows the office 
building sketch of the Chair for Embedded Systems at the University of Siegen, Siegen, Germany. 
The model was established with thermal dependencies among different rooms or spaces and the 
outside environment during a typical winter day in February. The model dynamics consist of various 
equations and coefficients that show the heat transfer effects of different nodes of various building 
zones on each other. The differential balance equations for each node have been solved with an 
explicit numerical method using MATLAB/Simulink ode45 solver. 

  
 

Figure 4.1 Office building sketch [24]. 
 

Figure 4.2, Figure 4.3, and Figure 4.4 indicate the vertical and horizontal view of the office 
building in the first stage of the development with only six rooms and one corridor.
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Figure 4.2 Southwest view of the building plan. 
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Figure 4.3 Southeast view of the building plan. 
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Figure 4.4 Horizontal view of the building. 

 
Figure 4.5 represents the highest Simulink view of the office building model. The blue-colored block, which is named the main block, includes 
different zones of the building and their interconnections as subsystems. The input signals to the main block are the set parameters and input 
variables/functions, e.g., the daily temperature signal, the upper flow temperature signal, stair temperature signal as an adjacent zone, and the 
thresholds. The Simulink multiplexer mux block combines the output signals from every zone, and the composite signal is directed to the scope block 
for monitoring the signals over time.  
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Figure 4.5 The top-level Simulink view of the office building model. 
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Figure 4.6 shows the Simulink model of the building, including six rooms and one corridor. 
 

Figure 4.6 Simulink model of the building, including six rooms and one corridor. 
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Each room has its block (subsystem) and can be connected to adjacent zones from its four 
sides horizontally and two sides vertically. Therefore, the temperature signals of the adjacent rooms 
are connected to the corresponding blocks.  

The outside temperature (daily temperature) is modeled as an analog signal, namely a sine 
wave (sinusoid) with an amplitude of 5, a bias of 7 , and a frequency of 2 (24 3600)  in secrad
. Therefore, the Tatm signal is produced for one day (24*3600 seconds), and the phase of 0 can be 
seen in Figure 4.7. 

 

 
Figure 4.7 Daily temperature. 
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Figure 4.8 demonstrates the Simulink model for one room. The room block consists of three 
subsystems: heater subsystem, room thermal subsystem, and damper subsystem. The nominal values 
after insertion by GUI will appear, e.g., a nominal value for temperature that is the desired room 
temperature set by the user and the nominal value for the desired CO2 concentration  upper/lower 
thresholds. There are two controllers: heater controller (thermostat) and CO2 controller (or damper 
controller). The thermostat controls the heater's status (ON/OFF), and the damper controls the status 
of the damper (OPENED/CLOSED). The heater subsystem produces the heat flow signal and sends 
it directly to the room thermal subsystem as its input to compose the heat flows within this block. 
The temperature signals of the adjacent zones and the ventilation load calculated by the damper 
subsystem are also inputs to the room thermal subsystem. The room thermal subsystem processes 
all the heat flows based on the heat transfer principles discussed in chapter three using a solver and 
produces the room temperature signal.    
 

Figure 4.8 Schematic of a typical room implemented in MATLAB/Simulink (room-level). 
 
The Simulink model of the room thermal subsystem includes the heat transfer elements of 

the model, and it can be observed in Figure 4.9. This model is based on the MathWorks Inc. House 
Heating System 1F2F

4 example developed according to section 3.1.4, The Lumped Capacitance Method. 
After passing through the Ideal Heat Flow Source block using the Thermal Reference, the 
temperature signals are converted to the heat flow that can further interact with other heat flows. The 
heat flow is the temperature difference between adjacent zones and the heating load due to the natural 
ventilation and heater gain. The mass of each wall section is assumed to be condensed in the middle 
layer showing by Wall thermal mass blocks, and the mass of air in each zone is assumed to be 
condensed in a point showing by the Air thermal mass block. The convective and conduction blocks 
are placed on both sides of each wall. 

                                                 
4  https://de.mathworks.com/help/physmod/simscape/examples/house-heating-system.html 
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Figure 4.9 Simulink model of the room thermal subsystem. 
 

 The model contains a constant power electrical heater which water-based heaters can replace 
with the assumption of no radiation of the heater to the room’s equipment (emissivity 0). Therefore, 
all the heater energy will be consumed to warm up the room air, and the heater actuator (thermostat) 
can control the heater's status by simply turning it ON/OFF. The ON/OFF switches are economical 
for HVAC systems as the zone temperatures change slowly, and precise temperature control is not 
required. The heater controller is designed based on the hysteresis to reduce ON/OFF cycles.  Figure 
4.10 shows the heater subsystem designed for each room with capabilities to monitor and track the 
ON/OFF switch and the heater duty cycle proportional to the heating energy consumption. The duty 
cycle is defined as the fraction of one period in which a signal or system is active [171]. The equation 
below may be used to calculate the duty cycle (as a percentage): 

 100%PWD
T

=   (4.1) 

Where, 
PW=The pulse active time in one period, 
T=The total period of the signal. 
For example, a duty cycle of 89.83% means that in a simulation period of one day, for 89.83% of 
the day, the heater signal is ON (heater warms up the room). 
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Figure 4.10 Simulink model of the heater subsystem. 
 
The heating cost for each heater can be calculated by inserting a gain block with the energy 
consumption cost per watt after the Heater_gain block [172]. 

Two sensors are modeled and simulated in each zone to get the room’s temperature and the 
CO2 concentration output signals. One inward opening is also available connected to an actuator in 
each office room to play the air exchange role. This controllable opening is considered the air 
damper, and the actuator can control the status of the damper (OPENED/CLOSED) that belongs to 
the DCV system. The amount of ventilation is affected by outdoor wind and Buoyancy phenomena, 
and indoor and outdoor temperature is discussed in section 4.1.1.  

Assumptions during this thesis for the simplification of derived equations with neglectable 
effects on the accuracy of the models are: 

• The air inside each enclosed space is assumed homogeneous across space (thoroughly 
mixed), and the temperature distribution is assumed uniform in the hypothetical horizontal 
plane. 

• All the spaces are assumed to have the same pressure, and all the doors are assumed to be in 
the closed position; hence, the air mass inside spaces remains constant. 

• The infiltration effect for the windows and doors in closed positions is zero. 
• The temperature sensors are in sheaths. 
• The radiation energy absorbed by the building facades is highly dependent on the sun 

position, which is constantly changing; therefore, a sinusoidal input for the sun irradiation is 
assumed. 

• The heat gains from the people, light bulbs, and other appliances are neglected. 
• The radiative heating inside the building spaces is neglected as the effect is minimal.  
• The specific heat of the air (Cp) is assumed a constant value of 1.007. In real-world 

assumptions, Cp has the value of 1.006 at the temperature of 250 K and 1.007 at the 
temperature of 300 K, so our assumption is accurate within 0.1% error. 

• There is no heat exchange between the ground and the ground floor of the building spaces. 
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✓ The model of outdoor air temperature is assumed as a sinusoidal wave during a day, which 
is 86400 seconds (simulation stop time) where the initial temperature is 7°C (considered at 
6:00 a.m.) with fluctuations between 2°C and 12°C.  

✓ The value of temperature for the second floor and the adjacent stair space were considered 
20°C and 13.5°C, respectively. 

✓ In general, outdoor environment CO2 concentrations range between 300 ppm and 500 ppm, 
and indoor CO2 concentrations in office buildings often range between 400 ppm and 900 
ppm [13]. This thesis considers the outdoor CO2 concentration a constant value of 400 ppm 
and the desired indoor CO2 concentration value of 600 ppm with upper and lower 
fluctuation thresholds with the value of 50 . 

✓ The constant value of 13 𝑘𝑚/ℎ (3.6 𝑚/𝑠) was considered for the reference wind velocity. 
✓ The occupancy in each room was simulated as a continuous-time signal for occupancy 

pattern with a discrete-valued amplitude as a quantized boxcar signal which determines the 
number of persons. This occupancy pattern can be taken from visiting counting sensors that 
are modeled and simulated [173]. This pattern was modeled in a matrix by MATLAB code 
(occupants.mat) and shown in Figure 4.11. 

Figure 4.11 Occupancy pattern. 
 

4.1.1. DEMAND-CONTROLLED VENTILATION MODELING 
 
The American Society of Heating, Refrigerating, and Air-conditioning Engineers 

(ANSI/ASHRAE) standards [144] describes that indoor CO2 concentrations must be no greater than 
600-700 Parts Per Million (ppm) above outdoor CO2 concentrations. The outdoor CO2 
concentrations in urban environments typically are 400 ppm on average. Therefore, a target level of 
1,000 ppm was used to indicate acceptable IAQ. In this condition, a majority of occupants (around 
80%) feel satisfaction and around 20% of occupants feel dissatisfaction [13], [174]. The indoor CO2 
concentrations above the hygienic limit (over 1000 ppm) can have adverse effects, e.g., fatigue, 
increased heart rate, increased noise level in hearing power, striking social behavior, lowered 
attention, and decreased learning/work performance of occupants. The European standard DIN EN 
13779 classifies the indoor air quality in four classes, from IDA1, which represents the high air 
quality buildings where the indoor CO2 concentration is less than 400 ppm above the outside CO2 
concentration, to IDA4 with low air quality where the indoor CO2 concentration is more than 1000 
ppm above outside CO2 concentration [175]. According to the German ad-hoc team, office zones 
with CO2 concentration values below 1000 ppm are harmless, whereas CO2 concentrations above 
this value are hygienically unacceptable [176]. Therefore, the indoor CO2 concentration level around 
600 50 ppm accounts for a high air quality selected for the acceptable CO2 concentration thresholds 
[13]. 
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This section shows the Simulink models of damper and airflow rate subsystem, whereas they 
have the most critical roles in a DCV system. Figure 4.12 demonstrates the Simulink model of the 
damper subsystem. 
 

 
Figure 4.12 Simulink model of the damper subsystem. 
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Figure 4.13 demonstrates the Simulink model of the airflow rate subsystem. 
 
 
 
 

 
Figure 4.13 Simulink model of airflow rate subsystem. 
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The values of model parameters such as wind speed and wind angle for other cases can be 
updated in the model workspace. The value of dimensionless pressure coefficient Cp can be 
experimentally calculated based on the changes in wind-induced pressure caused by the influence of 
surrounding obstructions on the prevailing local wind characteristic considering the wind direction, 
the building orientation, and geographical properties [140]. Experimental results suggest the 
constant value of 0.7 for a wholly exposed wall at the angle of 0𝑜 between wind and facade [177]. 
The wind speed at height H generally depends on the reference wind speed at height 10 meters in an 
open country and the terrain factors, which depend on sheltering. The constant value of 13 𝑘𝑚/ℎ 
(3.6 𝑚/𝑠) was considered for the reference wind velocity in this investigated model with 
consideration of the geographical specification of the modeled office building. The variables written 
in the Simulink model are described in Table 4.1. 

Table 4.1 Variables used in Simulink model design. 
Parameter Description Value Unit 
Air_density The density of atmospheric air 1.237 3kg m  

Alt Altitude 272 m  
area_roof_corridor Corridor area 57.99 2m  

area_roof_room Room area 37.56 2m  
area_wall_room Room wall area 17.675 2m  

area_window_room Window area 11.25 2m  
c_air Specific heat constant of air 1006 .J kg K  

c_roof Specific heat constant of roof 835 .J kg K  

c_wall Specific heat constant of wall 835 .J kg K  

c_window Specific heat constant of window 840 .J kg K  

CO2_Conc_Threshold CO2 Threshold value considered for damper 50 ppm  

CO2_Ri_Actuator_FI Damper fault injection activator (linked with slider 
switch) for room i 

0 for OFF, 1 
for ON 

 

CO2_Ri_Actuator_FIV Damper fault injection value for room i 1 for OPEN  
CO2_Ri_Sensor_FI CO2 sensor fault injection activator (linked with 

slider switch) for room i 
0 for OFF, 1 

for ON 
 

CO2_Ri_Sensor_FIV CO2 sensor fault injection value for room i 700 ppm  

Delay_constant Constant value used for delay block actuation 1  
Delay_time Delay time set for fault activation 18000 sec  
h_air_roof Heat transfer coefficient of air adjacent to roof 12 2.W m K  

h_air_wall Heat transfer coefficient of air adjacent to wall 24 2.W m K  

h_air_window Heat transfer coefficient of air adjacent to window 25 2.W m K  

h_roof_atm Heat transfer coefficient of outside air adjacent to 
roof 

38 2.W m K  

h_wall_atm Heat transfer coefficient of outside air adjacent to 
wall 

34 2.W m K  

h_window_atm Heat transfer coefficient of outside air adjacent to 
window 

32 2.W m K  

height_damper Damper height 0.45 m  
height_room Height of room 3 m  
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HumanCo2Gen Human CO2 generation rate 0.0052 secL  

k_wall Thermal conductivity of wall 0.038 .W m K  

k_roof Thermal conductivity of roof 0.038 .W m K  

pressure Atmospheric pressure 980008.94 Pascal  
wall_density Wall density 1920 3kg m  

window_density Window density 2700 3kg m  

wind_speed Wind speed 13 KPH 
Lroof Roof thickness 0.2 m  
Lwall Wall thickness 0.2 m  

Lwindow Window thickness (glass area) 0.01 m  
Mean_Value_CO2 Desired CO2 mean value 600 ppm  

Mean_Value_Temp Desired temperature mean value 288 K  
secondFloorTemp Second floor temperature 293 K  

stair_temp Stair temperature 286.5 K  
Temp_Ri_Actuator_FI Thermostat fault injection activator (linked with 

slider switch) for room i 
0 for OFF, 1 

for ON 
 

Temp_Ri_Actuator_FIV Thermostat fault injection value for room i 1 for ON  
Temp_Ri_Sensor_FI Temperature sensor fault injection activator (linked 

with slider switch) for room i 
0 for OFF, 1 

for ON 
 

Temp_Ri_Sensor_FIV Temperature sensor fault injection value for room i 278 K  
roofDensity Roof density 32 3kg m  

Tnominal Nominal temperature 293 K  
WallHeight Wall height 3 m  

Width_damper Damper width 0.45 m  

 

4.1.2. DCV AND HEATING SYSTEM MODEL VALIDATION 
The simulated model needs to be evaluated to demonstrate the reliability and the correctness of 

the system response. The simulation serves for verification and validation. Verification is the process 
of determining that a model implementation accurately represents the developer’s conceptual 
description and specifications. The verification agent is the model/simulation developer. Validation 
specifies that a model is an accurate display of the real-world system. The validation agent is the 
functional modeling or simulation expert. ASHRAE [143] and other organizations produced 
methodologies, tests, and standards for this purpose. This section includes the validation of the 
heating system model designed in this thesis and the validation of the demand-controlled system 
behavior and damper response signal that were investigated.  
Figure 4.14 shows that the steady-state air temperature of the office rooms was matched to the 
outside environment temperature when the adjacent stairs and second-floor temperature are the same 
as the outside temperature, the heating system and the demand-controlled ventilation system are 
turned off, and the damper openings for all of the rooms are in the closed position. 
The model was compared with another reference based on ANSI/ASHRAE standard 62-1989 to 
validate the modeled demand-controlled ventilation part. Figure 4.15 illustrates the CO2 
concentration variation pattern based on the occupant changes was matched compared to the 
reference [18]. 
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Figure 4.14 Heating system validation. 

 
Figure 4.15 Demand-controlled system validation. 

 

4.1.3. DCV AND HEATING MODEL RESULTS 
The investigated model of this study shows that it can describe the system response 

considering input parameters that can be inserted in the model workspace. This model is a scalable 
model, which means that the user can configure the number of spaces on the same basis, or there is 
the capability to change input variables, e.g., occupants or outside temperature pattern, heating 
system output power and settings, dimensions of spaces, or their elements, e.g., windows or damper 
size, desired amount and limits for indoor CO2 concentration, air, and building material 
specifications, and wind speed. An occupant scenario is defined in this model, which in reality can 
be output from the occupancy sensor measurements. An occupancy sensor detects if occupants are 
in a zone using the ultrasonic or infrared and can identify the number of people by putting it in a 
suitable location such as the door to work as a counter. This model can produce the output signals: 
indoor temperature and CO2 concentration variation, the duty cycle of the heater, and the frequency 
of ON/OFF switching for heater and damper for each room. Also, the cost of the heating system for 
each zone can be calculated by putting a gain block after the heater gain block in the heater 
subsystem. The author considered example values, but this model is not limited to these values and 
can be changed for the other studies.  The outdoor air temperature was modeled as a sinusoidal wave 
during a day or 86400 seconds (simulation stop time) where the initial temperature is 7°C 
(considered 6:00 a.m.), and it fluctuates between 2°C and 12°C. The value of temperature for the 
second floor and the adjacent stair space were considered 20°C and 13.5°C, respectively. The office 
room area and height were considered as 37.5 square meters and 3 meters, respectively. Generally, 
outdoor environment CO2 concentrations range between 300 ppm and 500 ppm, and indoor CO2 
concentrations in office buildings often range between 400 ppm and 900 ppm [19]. In this study, 
outdoor CO2 concentration was considered the constant value of 400 ppm for small towns according 
to the European standard DIN EN 13779 [175]. The desired indoor CO2 concentration was 
considered as the value of 600 ppm with upper and lower fluctuation thresholds of 50 ppm that were 
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controlled by the embedded CO2 concentration controller [13]. The model can monitor different 
system parameters by inserting a scope block, and example simulation results will come in the 
following text. Figure 4.16 and Figure 4.17 show that the studied model can keep the indoor 
temperature and the CO2 concentrations of the office rooms around the setpoint (within the scalable 
thresholds) considering a minimum heating system output power and a maximum damper opening 
size. Figure 4.16 includes three subplots that demonstrate indoor CO2 concentration based on the 
occupancy in an office room and damper status. For a better view, the figure was cropped for the 
first 52000 seconds of simulation. It can be observed that more occupants will produce more CO2 
emissions as steeper slopes can perceive it for indoor CO2 changes.  

 

Figure 4.16 Indoor CO2 concentration based on the occupancy and damper status. 
Also, Figure 4.16 shows that the open position time of the damper is more frequent in more 

populated times. As a result, the damper status could be remained closed in the rest, and it prevents 
the coming of low-temperature excess air from outside the building (potential energy saving). The 
frequency of damper switching also depends on the size of the damper openings, meaning a bigger 
damper size brings more air into the room so that it would be closed more often. The user can change 
these parameters in the Simulink model to find the optimized one depending on other model 
parameters, e.g., wind speed or outside temperature pattern. The double y-axes Figure 4.17 shows 
the variation of room temperature signal of room number 1 based on outside temperature variation, 
heating system, and damper status. The temperature signals are continuous-time signals with a 
continuous amplitude referred to as analog signals. Heater and damper are considered to have two 
possible statuses, ON: 1 or OFF: 0, and open: 1 or close: 0. The room temperature variation was 
affected by the heat transfer among different rooms and the outside environment. When the inside 
temperature drops to the lower temperature thresholds, the thermostat switches on the heating 
system, increasing the inside temperature. Also, it can be observed that the environment temperature 
increases in the middle of the day (around 18000 to 32000 seconds) can help the heating system to 
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keep the room temperature within the desired thresholds. As a result, the heating system sometimes 
could be turned off in the middle of the day. The other aspect is that the fresh air due to the DCV 
system can be considered the heating load for the heating system, making the temperature drop in 
the room. 

 
Figure 4.17 The room temperature variation. 

 

4.1.4. EXTENDED MODEL BASED ON WIRELESS COMMUNICATION 
The wireless sensor and actuator networks (WSANs) include a composition of embedded 

devices such as sensors, actuators, and control units distributed in a wireless network without 
physical connections in a plug-and-play fashion for system monitoring and tracking, collecting 
information, and control applications [27]. The traditional wireless sensor networks (WSNs) are 
typically open-loop control systems for measuring the physical world, while WSANs interact with 
the physical world in a closed-loop system [178]. The sensors measure and transmit the value of 
parameters required for the control process, and the control (corrective) commands are then 
forwarded to the actuators to affect the dynamics of the physical plant [179], [180]. The requirements 
of new technologies based on the WSANs and their advantages, e.g., sensor location flexibility and 
fewer constraints, easy, and low-cost, and low-disruptive establishment, besides the limitations of 
the old techniques, e.g., expensive and failure-prone cabled networks and the troubles in 
components’ accessibility and maintenance, especially in retrofits, promote the application of 
WSANs in HVAC industry [181].  

However, integration of the continuous time-driven nature of the DCV and Heating system 
with the discrete event-driven nature of WSAN creates a challenging development problem in the 
CPS area [27]. Recent advances in ICT, especially in embedded systems, enable the development of 
cyber-physical systems that profoundly couple our physical world to the computation world. The 
term CPS came out in 2006 by Helen Gill from the National Science Foundation in the U.S. refers 
to the integration of the computation world, performing by embedded computers, with physical 
processes via network fabric aims at monitoring and control [75]. Physical processes affect 
computations and vice versa via feedback loops. Therefore, it is not enough to separately consider 
cyber and physical parts of the system, but also the CPS designer has to be able to understand the 
intersection of these fields. This joint integration causes specific issues to appear that are not 
prevalent in general-purpose computing, e.g., the time of task operation. In CPS, it is not desired to 
perform tasks as quickly as possible. Instead, it is crucial to do the tasks at their proper schedule, 
considering the pace of the physical environment. Another issue is that in contrast to the sequential 
and discrete behavior of the cyber world, the physical processes comply with continuous dynamics. 
An overview of a Cyber-physical System is shown in Figure 4.18. 
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Figure 4.18 An overview of a Cyber-physical System. 

The model implemented in this thesis is based on the CPS concepts with embedded 
processing units orchestrating the nodes of wireless sensors and actuators networks with the physical 
environment to adaptively control the air quality and temperature of the designed office building. 
The integration of the continuous time-driven nature of the DCV and Heating system with the 
discrete event-driven nature of WSAN highlights the mentioned issue of developing the CPS. 

The model is associated with ambient sensors, e.g., temperature sensor, occupancy sensor, 
or air quality sensors, e.g., CO2 concentration sensors placed inside and outside the building to 
collect measurement values. Each sensor sends its information to the main controller in the corridor 
via a communication protocol. The controller exerts the corrective or control commands on the 
actuators, e.g., damper actuators or heater actuators (thermostats), to interact with the physical plant 
(the DCV and Heating system). This wireless framework is established in MATLAB/Simulink 
2018a using the TrueTime 2.9 Block Library. 
 
4.1.4.1. TRUETIME 2.0 

TrueTime was introduced by Cervin et al. in 2010 [182]. TrueTime simulates the real-time 
behavior of multi-tasking kernels containing controller tasks, network transmissions, and continuous 
plant dynamics. Tasks are used to simulate both periodic (time-driven) activities and aperiodic 
(event-driven) activities. Event-driven tasks are executed when network blocks such as the actuators, 
routers, and coordinator nodes receive a signal; otherwise, they do not execute. Only for the sensor 
nodes, the authors use the Kernel block to measure the physical attributes periodically.  

The scheduling policy is arbitrary and can be given by the user. The support of batteries 
enables TrueTime to support physical systems operated on a separate power source [183]. TrueTime 
supports wired network protocols such as Ethernet, CAN, Round Robin, FDMA, TDMA, Switched 
Ethernet, FlexRay, PROFINET, and NCM, and wireless network protocols such as ZigBee (IEEE 
802.15.4), WLAN (802.11b), and NCM_WIRELESS. As the network blocks are event-driven, they 
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execute when messages enter or leave the network. The transmitted message is put in a buffer at the 
receiver node. The Acknowledgment (ACK) signal is issued when a receipt of data is recognized 
back to the sending station (source). Data block must conform to the protocol in use to be 
recognizable. When the source receives the ACK signal from the destination, it transmits the next 
block of data. Configuring the network blocks involves specifying the number of general parameters, 
such as transmission rate, network model, and probability for packet loss. More information and 
instructions related to TrueTime 2.0 Block Library are available in the guide [182]. 

This thesis uses TrueTime blocks, e.g., TrueTime Kernel block, TrueTime Receive block, 
TrueTime Wireless Network block, TrueTime Network block, and TrueTime Battery block.  

The Kernel block is an event-driven Simulink S-function that simulates a real embedded 
system processing unit with embedded codes, instead of mathematical equations, which executes 
user-defined tasks and interrupt handlers with writing functions of each task in a MATLAB code M-
file or C code by the developer and then calling the function in the block to execute the task at given 
times. An arbitrary number of tasks can be created as the function codes to run in the TrueTime 
kernel. These tasks may be created for the initialization function or for dynamically executing 
functions as the simulation progresses, such as the sensor node transmission function from the source 
to the destination. Tasks are used to simulate both periodic (time-driven) activities and aperiodic 
(event-driven) activities. Event-driven tasks are executed when network blocks such as the actuators, 
routers, and coordinator nodes receive a signal; otherwise, they do not execute.  

In this model, the kernel block was used in the following different aspects. It has been used 
as a sensor node to periodically measure the physical attributes and simulate the transmitter of 
measured values from the plant to the control node wirelessly through the router and coordinator. 
The input of the block is a sent value and the node's power, whereas the output is the value that 
should be sent. It has also been used as an actuator node to simulate the command receiver from the 
control node. The input value is received wirelessly, and the output goes to the plant (heater/damper 
subsystem). It has been used as a transceiver node (of the controller) to simulate the receive of 
measured values by the sensor and the transmission of commands to the actuator node. The input is 
a command value from the controller, which is sent wirelessly to the actuator node through the 
coordinator, whereas the output is the measured value that is received wirelessly and is provided to 
the controller as a feedback signal. It has been used as a coordinator of wireless sensors/actuators 
networks to simulate the getaway between the router of a cluster head in each room and the 
controller. It has been used as a router of wireless sensors/actuators in each room as a cluster head. 
The main steps of transmission are as follow. The measured values of the temperature/CO2 sensor 
node are sent to the cluster head of a room (i.e., the router) that are then are forwarded by the router 
wirelessly to the coordinator to complete the feedback loop. Then, the destination controller receives 
the feedback values and determines the corresponding command, which will be sent to the actuator 
node through the coordinator. Finally, the actuator node will receive the command value and provide 
it to the plant (heater/damper subsystem). 
     The primary purpose of using the TrueTime Battery is to model the node's power consumption 
in Simulink by connecting it with the feedback of the TrueTime kernel block. The kernel node stops 
working in the simulation when the output of its TrueTime battery is zero. The input of the block is 
the consumed power of the node, whereas there is information about this power that can be obtained 
from the output of the wireless network. The TrueTime Wireless Network is used to define several 
factors such as the network protocol, the number of nodes in each cluster, frame size, and transmit 
power. 

The Kernel Block has the following parameters that the user can set. “Name of the Init 
function” describes the name of the desired M-file or a MEX file with the initialization code, “Init 
function argument” shows the optional arguments that are to be passed for a successful initialization, 
“Number of analog inputs and outputs,” “Node numbers” defines the node number in the network. 
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Likewise, the Wireless Network Block has the following parameters. “Network Type” 
describes the type of network and specifies the desired MAC protocol for that network, “Network 
Number” defines the unique id number of the network. “Number of nodes” describes the number of 
nodes in that network. “Data Rate and Minimum Frame size” describes the bandwidth and the 
minimum size of each packet. The acknowledgment timeout specifies the maximum time for the 
acknowledgment. “Show Power consumption output port” shows the power consumed by the 
network, and it can be monitored. 

 
4.1.4.2. COMMUNICATION PROTOCOL 

In building HVAC technologies, heterogeneous devices exist in a wireless network typically. 
The communication protocol helps the engineers to connect these devices from various brands for 
data exchange and communications. The most prevalent communication protocols were studied and 
compared in Table 4.2 against various aspects of compatibility with TrueTime, functionality, 
advantages, and disadvantages. The comparison declares the ZigBee protocol’s superiority in 
WSANs’ HVAC application because of its high-reliability, low-cost, and energy-saving 
characteristics. 
 

Table 4.2 Wireless Communication Protocols [27]. 
 ZigBee Bluetooth Wi-Fi WirelessHART MiWi Z-Wave 

Standard/Protocol IEEE 802.15.4, 
ZigBee 

IEEE 
802.15.1 

IEEE 802.11 
(a-b-n-g) 

IEEE 
802.15.4 

IEEE 802.15.4 Z-Wave 

Network Topology Star, Peer-to-
Peer, and Mesh 

Star, Peer-to-
Peer 

Star, Peer-to-
Peer 

Star, Peer-to-Peer, 
and Mesh 

Star, Peer-to-
Peer 

Mesh 
 

Power 
Consumption 

Very Low Medium High low Low Low power 

Battery life (Days) 100 to +1000 1 to 10 0.5 to 5 
Depends on 
Battery 
Specifications 

Depends on 
Battery 
Specifications 

Depends on 
Battery 
Specifications 

Range (meters) 10–300 10 10–100 100 20–50 30 -100 

Market Adoption High High Extremely 
high High Medium Medium 

Network size 
(nodes) 64000 8 2007 100 1024 232 

Application Areas 

Demand 
Response, 
remote control 
and automation 
in residential and 
commercial 
buildings 

Wireless 
connectivity 
between 
personal 
devices such as 
headphones, 
medical, sport 
& fitness, 
mobile phones 
or laptops 

Wireless LAN 
connectivity, 
broadband 
Internet access 

Industrial Control, 
building control 
the sensory data 
conveying 
temperature, 
pressure or speed 

Industrial 
monitoring 
and control, 
home and 
building 
automation, 
remote control 
lighting 
control and 
automated 
meter reading 

Remote control 
lighting and 
automation, 
control, 
security 
systems, 
thermostats, 
windows, 
locks, 
swimming 
pools 

Advantages 

Endurance, Low 
Cost, Low Power 
consumption, 
several 
application 
profiles (home 
automation, 
smart energy), 
and topology 
flexibility 

Easiness, 
Speed, and 
flexibility 

Speed and 
flexibility 

Communication 
Security, reliability 
and Environment 
with wired HART 
infrastructure 

Flexibility, 
cost-effective 
platform 

Controllers and 
slaves network, 
flexible 
network 
configuration 
 

 
 ZigBee Alliance extracted the IEEE 802.15.4-based ZigBee standard, a high-level communication 
protocol for better reliability and cost-efficiency of nodes in wireless networks. In 2008, the BACnet 
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protocol in HVAC and building automation was integrated with the ZigBee because of its 
specifications such as high reliability, high security, low power consumption, low cost, low 
complexity, and easy implementation [184]. The embedded nodes in the network can operate on a 
battery [185]. The ZigBee devices (nodes) are categorized based on their functionalities into three 
types [186].  
1. Network coordinator: It is a unique Full-Function Device (FFD) that chooses critical network 

configuration and initialization parameters. It is also responsible for storing network information 
and connecting other networks such as a bridge. In this study, the network coordinator is located 
in the corridor. 

2. Router: It is an FFD node responsible for the data routing functionality by acting as an 
intermediate device to link different devices such as sensors and actuators of the network and 
forward messages between remote devices across multi-hop paths. A router communicates with 
other routers located in different zones and the end node devices. In this research, every room 
has been assumed as a cluster. Therefore, the routers play the role of the cluster head. 

3. End devices: A Reduced-Function Device (RFD) with limited functionality to communicate with 
its parent node, possibly the network coordinator or a router. The end nodes are generally in the 
sleep mode as long as they are not sending or receiving information or executing tasks because 
of their limited functionalities to profit from a prolonged power source (e.g., battery) life. The 
end devices in this study are three sensors of CO2 concentration, temperature, and occupancy 
and two actuators of the damper and thermostat area [27]. 
 

4.1.4.3. NETWORK TOPOLOGY 
The network topologies enable robust communication over wireless networks. A ZigBee 

protocol's Personal Area Network (PAN) supports star, peer-to-peer (mesh), and cluster-tree 
topologies. Among the mentioned topologies, peer-to-peer (mesh) provides higher reliability using 
different routes enabled by routing algorithms. One convincing argument for using clustering 
technology is to reduce the data packets during data aggregation that decreases the cost of 
communications and energy consumption, therefore, a prolonged lifetime of WSAN. Hybrid 
topologies are better solutions that benefit from the superiority of a composition of two or more 
topologies. Therefore, this thesis selects the cluster-tree-mesh topology based on the building 
architecture that supports wireless and battery-powered nodes (devices) with minimum routing effort 
shown in Figure 4.19 [187].  
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Figure 4.19 Network Topology based on Building Architecture [27]. 
 

In this topology, the sensors nodes located in each zone send the measured values, e.g., 
temperature, occupancy, or CO2 concentration, to the cluster head of the zone that is a router. The 
router receives the values and forwards them to the controller via the coordinator. After calculations, 
the controller processes the received values, determines the commands, and exerts them on the 
actuators, e.g., heater and damper actuator, which is finally applied to the plant. The Simulink model 
presents all the components by two parameters of Network Number and Node Number as the 
elements in a two-column and one-row matrix that the first element shows the network number and 
the second element represents the node number, e.g., in [1 2] or 1:2, the network number is 1 and 
the node number is 2. Figure 4.20 shows the corridor Simulink model and wireless communication 
blocks. 
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Figure 4.20 Corridor Simulink Model. 

 

4.1.4.4. EXTENDED MODEL VALIDATION 
The wireless architecture proposed in this thesis is validated by mapping properties such as the 

temperature signals in the extended model based on the wireless network compared to the system 
output of the wired network [172]. The simulated results at the same operating conditions and 
assumptions in wireless and wired architectures describe an excellent match when mapping the 
validation properties such as the temperature signal that can be seen in Figure 4.21[172]. 

 
Figure 4.21 System Model based on Wireless Network Validation [27]. 

 

4.2. MODELING AND SIMULATION OF THE MODULAR 
COMPOSABILITY  

State of the art in composable modeling today stems from the advancement of the Modeling 
and simulation sciences and the rapid growth in simulations tools such as MATLAB/Simulink or 
LabVIEW. Currently, users only identify their model requirements. Then the developer constructs 
the model usually with an iterative process with functionally being added at each iteration, and later 
the model is delivered with an instruction manual on how to use and maintain [188]. As the 
complexity of systems is on the rise, the main difficulties and problems in system analysis that affect 
model composability stem from these aspects [166]. 
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• Integration of models in different disciplines and fields 

• The abstraction of the model descriptions 

• Restrictions and constraints of the development tools 

• Level of composability of the model components 
This thesis investigates a DCV and heating system model for an automatic, scalable, and 

composable generation. The aim is to introduce a method in MATLAB/Simulink to generate 
multiple models from a single one. The novelty of this work resides in the ability to generate a new 
model using pre-defined Simulink libraries made from the original model blocks that represent the 
main components of the original model. Furthermore, this project introduces a GUI that 
automatically generates real-time artificial faults for fault injections and communicates with a 
remote database for storage and diagnostics. The implementation part of composability modeling 
requires some pre-requisites. For example, an indexing structure is vital for developing the building 
architecture as the composable DCV and Heating system model foundation. Therefore, to generate 
the composable model, which consists of N number of rooms in K number of floors, an indexing 
structure for the building with the depicted layout below, in Table 4.3, is defined [163]. 

 

Table 4.3 Rooms indexing structure [163]. 
A novel part of this thesis is based on the idea and algorithm developed to create a modular, 

composable architecture in MATLAB/Simulink, partly published in [163]. The algorithm is written 
in the MATLAB environment and .m format. The algorithm shows the logic beyond the connection 
patterns of different Simulink blocks to create the composable version of the base model and 
highlights the connection between MATLAB and Simulink. This algorithm is also helpful in 
developing diagnostic modules. Different types of faults can be injected to test the diagnostic 
technique developed in this thesis. The user needs to insert and set the input values into the designed 
GUI and run the simulation. Then, the system with the desired composable architecture is 
spontaneously created, and the required fault blocks and diagnostic modules are built automatically. 
In the end, the fault injection blocks and diagnostic modules will be activated.  

The inter-relationship identification is the first pace of composable model generation. 
Therefore, the DCV and Heating system developed in this thesis was studied in detail to extract the 
logic of components and inter-connections of adjacent zones. This logic is highly dependent on the 
thermodynamic interaction among adjacent zones. The hierarchical model proposed in Figure 4.22 
describes the hierarchical order of this configuration based on the subsystems available in the high-
level model and low-level model of abstraction, which is beneficial to grasp a complete 
understanding of the model. The model subsystems, including Heater, Thermal, Damper, Actuators, 

Floor 1 Floor 2 … Floor K 

1 (N ÷ 2) +1 (N + 1) (N+( N ÷2)) +1 … (N * (K-1)) +1 
(N * (K -1)) + 
(N ÷2) +1 

2 (N ÷ 2) +2 (N + 2) (N+(N÷2)) +2 … (N * (K -1)) +2 (N * (K -1)) + (N ÷2) +2 

3 (N ÷ 2) +3 (N + 3) (N+(N÷2)) +3 … (N *(K -1)) +3 
(N * (K -1)) + 
(N ÷2) +3 

... ... ... … … ... ... 

N÷2 N N + (N ÷ 2) (N * 2) … 
(N * (K -1)) + 
(N ÷2) 

(N * K) 

N: The total number of rooms per floor, K: The total number of floors in the model 
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and Sensors Subsystems, are developed and connected first in Simulink using Simscape library 
blocks. Later, the MATLAB code of the composable version of the Simulink model is generated.  

 
Figure 4.22 Hierarchical View of Composable Model [163]. 

 

4.2.1.THE COMPOSABLE MODEL CONSTRAINTS 
 
The composable architecture provided in this thesis assumed some constraints to maintain 

integrity. The physical and mathematical analyses of the system define these limitations. The rooms 
in the provided model can be placed beside each other, generally considering their types concluded 
from the analysis stage. Figure 4.23 explicates the main room types of A, B, and C based on their 
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vicinity and the adjacent environments/zones, e.g., outside environment, stairway, corridor, other 
room, ground, and roof. 
 

Figure 4.23 Interactions among Rooms [163]. 
The Simulink model in its basic version is composed of three types of rooms (with variations 

in terms of the thermodynamic interactions considering the design symmetry): A (Room 1), B (Room 
2), and C (Room 3), as seen in Figure 4.24. Also, each floor has a corridor block and a stairway on 
each floor, represented in the model by a scalable block. 

 
Figure 4.24 The main Simulink blocks representing the main types of rooms. 

The proposed algorithm in this study can arrange the rooms to create a composable model, 
and the rooms, depending on the position that must be placed in the composable model, are 
duplicated and placed automatically [163]. Figure 4.25 clarifies an example with three room types 
in three colors of blue, red, and green with unique physical and mathematical specifications, e.g., 
heat and mass transfer, are placed in two horizontal and vertical directions.  
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Figure 4.25 Model Scalability [163]. 

The building architecture can be expanded or contracted to N number of rooms and K number 
of floors using the designed GUI as an input for the composable model algorithm. The mentioned 
Room Indexing Structure describes the reference of the rooms’ placement. The principal codes that 
are frequently used in this thesis are shown here: 

Table 4.4 Most frequent used MATLAB/Simulink commands 
Number Command Description 

1 new_system(obj) Create blank Simulink 
model 

2 open_system(obj) Open the Simulink 
model 

3 h = add_block(source,dest) 

Adds a copy of the 
block source from a 
library or model to the 
specified destination 
model 

4 function [y1,,yN] = myfun(x1,...,xM) Declare function name, 
inputs, and outputs 

5 for index = values statement end 
For loop to repeat a 
specified number of 
times 

6 h = add_line(sys, 
out,in,'autorouting',autoOption) 

Add line 
to Simulink model 
between model 
components 

7 chr = int2str(N) Convert integers to 
characters 

8 s = strcat(s1,,sN) Concatenate strings 
horizontally 
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9 if, else, elseif, end Execute statements if 
the condition is true 

10 Set_param(Object,ParameterName,Value,
...ParameterNameN,ValueN) 

Set system and block 
parameter values 

11 assignin(ws,var,val) Assign value to variable 
in specified workspace 

12 ParamValue = get_param(Object, 
Parameter) 

Get parameter names 
and values 

13 global var1 ... varN Declare variables as 
global 

14 T = array2table(A) Convert homogeneous 
array to a table 

15 [output1,,outputN] = eval(expression) Execute MATLAB expr
ession in text 

16 sqlwrite(conn,tablename,data,Name,Value
) 

Insert MATLAB data 
into database table and 
creates database tables 

17 fastinsert(conn,tablename,colnames,data) Add MATLAB data to 
database tables 

18 disp(X) Display value of 
variable 

19 pause(n) 
Stop MATLAB executi
on temporarily in 
seconds 

20 
get_param('sys', 'SimulationStatus') 
 

check the status of a 
simulation 

21 
set_param('vdp','SimulationCommand','sta
rt') 
 

Start a simulation 

22 set_param('vdp','SimulationCommand','pa
use') Pause a simulation 

23 
set_param('vdp','SimulationCommand','co
ntinue') 
 

Continue a simulation 

24 
set_param('vdp','SimulationCommand','sto
p') 
 

stop simulation 

25 
set_param('vdp','SimulationCommand','up
date') 
 

update the changed 
workspace variables 
dynamically while a 
simulation is running 
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4.2.2. UNIFIED MODELING LANGUAGE  
Unified Modeling Language (UML) is a graphical modeling language to achieve the insight 

and describe the attributes, operations, relationships, and associations. The UML includes many 
diagram types, e.g., class diagram. [189]. The class diagram denotes the interaction among the 
system components. 

This thesis uses the class diagram, a type of UML diagram, to extract information, e.g., 
attributes, operations, relationships, and associations of the DCV and Heating System, as a 
requirement of composable modeling. Figure 4.26 explicates the UML diagram of the designed 
model in this thesis that the main parts of the class diagram include [163]: 

a) Building 
The most upper element of the UML is that the building includes the main attributes of the 
composable architecture such as the type, e.g., type A, B, or C, and the number of rooms and 
floors, and the building HVAC systems. 

b) DCV and Heating System 
This class includes the attributes of the used HVAC system and is connected to the Process 
Interface and Ventilation and Heating Control classes. The relationship between temperature 
sensor class and thermal class is of the association. However, Figure 4.26 separately shows 
a specific UML diagram of the DCV and Heating system. 

c) Process Interface 
The processing units of the model, e.g., sensors and actuators, are described in this section. 

• Sensors: 
The sensor class inherits to CO2 sensor and temperature sensor. 

• Actuators: 
The actuator class inherits to heater actuator (thermostat) and damper actuator. 

d) Ventilation and Heating Control System 
The main compositional classes are heater, thermal, and damper.  

• Heater 
This class is associated with the heat generated in a zone. 

• Thermal 
The thermal class collects the temperature values from the outside environment and 
adjacent zones through its input ports and solves all the Ordinary Differential 
Equations (ODEs) using Simulink blocks to calculate the temperature value of each 
particular zone. 

• Damper 
Damper class calculates the airflow through damper to each zone that is affected by 
the CO2 measurements. 
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Figure 4.26 The UML Class Diagram of the DCV and Heating System. 
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Figure 4.27 The UML Class Diagram of Designed Composable Model [163]. 
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4.2.3. MODULAR COMPOSABLE MODEL IN MATLAB/SIMULINK 
 
This section is a step-by-step delineation of modular composability modeling implementation in 
MATLAB/Simulink [163]. Figure 4.28 draws the ability of the developed algorithm to create 
customized building architecture by extending the basic model in horizontal and vertical directions. 
 

Figure 4.28 Composable model expansion in vertical and horizontal directions 
The code that was written to generate a new configuration of the office ventilation model 

consists of 10 main sections, these sections are written in MATLAB language, and they serve as the 
building block of the new model. Check Figure 4.29 for the main program sections. Each section is 
mentioned and described briefly below. 
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Figure 4.29 Waterfall view of the programming technique. 

 
Graphical User Interface (GUI) provides a point-and-click software application. It eliminates the 
need to use programming languages to execute an application [22]. MATLAB offers the ability to 
design and run a GUI for various ranges of applications. The GUI tool can be accessed by typing 
>GUIDE in the MATLAB command window. This tool will allow users to drag and drop elements 
to the user’s own GUI window, or the user can add each component programmatically using the 
corresponding command for each desired element in the GUI, i.e., for a pushbutton, the user has to 
use the following command in his code and the button will be created each time the user compiles 
his script [23]. 
The design steps to create the composable model are listed below: 
✓ System & Variables Initialization: The model and the variables (i.e. index variables) are 

initialized in this section. 
✓ User Parameters: The user can enter the desired input values, e.g., the number of floors 

and the number of rooms on each floor. 
✓ System Inputs: In this section, the system inputs are imported from a predefined library. 

These inputs are the outside temperature block (sine wave Simulink block), the upper floor 
temperature constant that acts as the roof temperature in the model, and finally, a stairway 
temperature constant connected to the zones through an input port labeled as Stairs. The 
code will import these blocks and place them on the created Simulink page using the add 
block () command. 

✓ Rooms Alignments Logic: The established composable model in this study is scalable, 
and the expansion in horizontal and vertical directions includes the thermodynamics 
principles of building zones and environment (surrounding).  
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✓ Main Components & Inter-Connections: After creating the desired building structure, 
the main model components are added to the model in this section, and the inter-
connections among them are established. Also, an output index is assigned to each 
component's output port to capture data for monitoring and diagnostics. 

✓ Corridor Block Generator: This section of the code is responsible for a customized 
corridor block for the composable model which suits the new model. The new customized 
corridor block is based on this block's rescaled or expanded mathematical and 
thermophysical interactions among different zones. The design of this part was crucial as 
the scalability of the corridor block should be maintained. After examining the original 
model corridor block, the Simscape model of the thermodynamic interaction was 
thoroughly explored, and later it was determined which part of the model should be altered 
when scaling the model. After successfully generating the new corridor block, it was 
validated against the original model corridor block, and it was found that it produces the 
same behavior.     

✓ Assembling the Sub-Functions: This code section deals with arranging the blocks in the 
simulation environment and layouts. 

✓ Adding Monitoring Scopes and Labels: This study was another challenge in preparing 
suitable and flexible scope blocks that automatically adapt to the new system design. The 
designed model must show the system's behavior in output signals from sensors and 
actuators for every design. Therefore, this thesis solved this challenge based on the desired 
system architecture and the suitable output figures available to the user for the aims of 
monitoring and diagnostics. For this reason, each output port and signal gets a label which 
later is categorized. A scope represents the data from a single component in the model. For 
example, each room in the office will have five significant signals that are automatically 
forwarded to a scope. These signals are room temperature, heater (thermostat) status, 
temperature sensor reading, and the CO2 sensor data. Each significant component will have 
its monitoring scope, which is automatically generated by this section code. Figure 4.30 
indicates the connected signals to scope for a standard room. 

 
Figure 4.30 Connected signals to scope for a standard room. 

✓ SQL communication support: The model can produce the simulated model's database as 
the core of easier post-processes for an efficient, reliable, and robust failure detection and 
fault diagnosis approach. The model is simulated with a fixed step size of one second. All 
the parameters required for running the simulation are connected to the “To Workspace” 
Simulink block, which gets the signals and writes their values to a workspace .m file. Data 
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during the simulation are written to an internal buffer. When the simulation is paused or 
completed, the data is written to the workspace. Therefore, data is not available until the 
simulation is paused or finished. The data format of the variables can be in time series, 
arrays, or structures with time, such as Microsoft Excel spreadsheet file using “xlswrite” 
MATLAB function or in an external database using a connection algorithm that connects 
the model to the Microsoft SQL Server. The Relational Database Management System 
(RDMS) manages a huge amount of data in linked tables to make them straightforward in 
understanding. RDMS provides a relationally comprehensive language for the data 
definition, retrieval, and update. The effective use of SQL can minimize the amount of data 
sent across the network as it performs tasks by the database rather than requiring 
application code to perform them.  SQL is a structured query language used to create and 
manage data held in a database management system. Gupta and Mittal describe that SQL is 
based on relational algebra and tuple relational calculus [190]. SQL offers multiple 
statements used to manage the stored databases [191]. The SQL offers data manipulation as 
(insert, delete, and update), query, definition, access control [192]. SQL's primary purpose 
is to query data that exists in a database. SQL is a declarative programming language, not 
an imperative programing language like C/C++ and MATLAB. Declarative languages 
differ from imperative languages, that declarative languages operate with statements to 
execute orders while imperative languages use algorithms to achieve the programmer 
tasks5. 

After the model is generated from the previous code sections, the 9th step is to 
establish a connection to a database server and send data while the model simulation is 
running. This approach has the advantage of running model diagnostics on a remote and 
separate platform rather than on the system machine itself. The idea seemed applicable and 
not applied before. Nevertheless, unfortunately, it ran into a few problems to achieve it. 

First of all, to understand the challenges faced during this task, one must understand 
how Simulink behaves while simulating a model. MATLAB stores its variables in “Base 
Workspace” and is separated from the Simulink workspace, which is created only on a 
simulation runtime and remains in the memory while the simulation is running. When the 
simulation is finished, Simulink variables are transferred into the MATLAB workspace. 
Therefore, a problem is imposed as data is frequently updated into the SQL database, but the 
workspace is not accessed frequently in simulation. During the simulation, multiple methods 
were tested to achieve frequent data communication between the Simulink and the SQL 
server.  

Such methods like sending data between simulation pauses are controlled by 
Simulink model callbacks 3F4F

6 or controlling simulation behavior using “assertion blocks” 4F5F

7 to 
achieve a data transmission every (nth) time step. These methods failed to achieve the desired 
behavior because it was found that Simulink has strange behavior when it is paused 
programmatically, for example: if the simulation were to be paused using the set_param() 
command mentioned in (table 3.1, line: 21), the  MATLAB would ignore to update the 
workspace. On the other hand, if Simulink was paused manually, the data will be updated in 
the workspace. Furthermore, in the model callbacks and the assertion blocks approaches, the 
Simulink accepts the pause command but refuses the continue command, which role is to ask 
for the simulation to continue automatically (table 3.1, line: 22).  

As a last resort, the Simulink Level-2 MATLAB S-Function block was tested to fulfill 
this task, and this function block allows the user to use either MATLAB or C language to 

                                                 
5 https://de.mathworks.com/help/simulink/ug/model-callbacks.html 
6 https://de.mathworks.com/help/simulink/ug/model-callbacks.html 
7 https://de.mathworks.com/help/simulink/ug/controlling-execution-of-a-simulation.html 
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create a custom Simulink block to do a particular function during the simulation 5F6F

8. This 
method proved to update the SQL server with data either each time step or every (nth) time 
step. Nevertheless, it was found that this block causes a significant delay in the simulation 
time due to its real-time variable processing. The illustration and functionality of the S-
function block are shown in Figure 4.31.    

 
Figure 4.31 Simulink Level-2 MATLAB S-Function functionality 

 
✓ GUI eliminates the need to use programming languages to execute a command in an 

application. The GUIs help the user to navigate and control the generated model easily by 
setting the parameters in a graphical and straightforward view. The Callbacks function 
helps the user to edit the GUI later. MATLAB offers the ability to design and run a GUI for 
various ranges of applications.  

In this thesis, a GUI is generated programmatically to help the user navigate and control the 
generated model. The shown function is an example of how a simple element is added to the 
GUI, after that the user can control the GUI elements behavior using function callbacks. The 
designed GUI in the composable model is shown in Figure 4.32 and includes these parts: 

• In the component and fault parameters selector section, the user can specify the Room 
or Corridor and the type of component desired for monitoring or fault injection. This 
model can be used to study the system behavior (such as temperature signal, 
actuators’ status, and sensor values) in case of different types of faults. Also, the user 
can specify the component index, fault intensity, and the delay, which is 
representative of the time of fault injection. 

• In the Fault Type section, the user can choose the fault type and fault category, i.e., 
Heater_Actuator_FI, from the first fault category of Hardware Fault.  

                                                 
8 https://de.mathworks.com/help/simulink/sfg/writing-level-2-matlab-s-functions.html 

function simple_gui                                       % call the GUI function 
 
f = figure('Visible','off','Position',[360,500,450,285]); % add the empty window 
 
hcontour = uicontrol'Style','pushbutton',... 
'String','Contour','Position',[315,135,70,25]); % creates pushbutton 
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• In the Monitoring and Scopes section, the user can view the system behavior signals 
in the desired room by simply entering the room index. 

• In the Fault Signal Controller, the user can choose the mean and variance values of 
the Temperature and CO2 Sensor value. 

• In the Simulation Controls section, the user can specify the intended duration of the 
simulation (simulation time). Also, there is an ability to start/stop/pause the 
simulation. 

 
Figure 4.32 The Designed GUI [163]. 

 

4.2.4.COMPOSABLE MODEL VALIDATION 
The composable model provided in this thesis is also validated by mapping the temperature signal's 
validation property, comparing the model signals collected from the basic model provided in section 
4.1. and the composable model at the same architecture with the six rooms and one corridor. Figure 
4.33 describes the validation results with an accurate matching result of mapped temperature signals 
in two models. In this figure, the sample temperature signals are shown from room number one. 

 
Figure 4.33 Model Validation Result [163]. 

 

4.2.5. DEMO 
After demonstrating the theory and the main parts of the code that generate the new model, 

the results and outcomes are discussed. After the script is compiled, MATLAB will call the blocks 
from the predefined library to create the model, and after it finishes, it will show the model in a 
Simulink window with all the essential features. In Figure 4.34, the user has selected that a 6-room 
office is to be simulated, and after running the MATLAB script, this figure will be produced. The 
most important parts of the model are highlighted in this figure. The model will consist of three 
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crucial zones. The first one is the composable model block which contains the model's core with all 
the main components. In the second zone, the user is offered the scope of each system's main 
component (i.e., Room1, Corridor1). Each scope will have the main signals that run in each 
component, so the user can monitor the desired components when triggering fault values to study 
and analyze the system behavior. 

In Figure 4.35, another example is given with a more expanded model. In this model, an 
office with 48 rooms and two floors is simulated. As shown in figure 4.35, the model becomes more 
complex, and the simulation time to produce such a system increases too. Also, note that the more 
sophisticated and enlarged, the more time it might need to transfer data to the SQL server. It is 
advised to run such a system on multithreaded machines. After the model is generated, the user can 
access the real-time simulation data for each component in the monitoring section or use the GUI as 
demonstrated in section 4.2.3. Figure 4.36 is an example of the scope of the data generated from a 
room. Each room will have five signals in its respective scope (Room Temperature, Heater-Actuator 
Fault Injection, Temperature Sensor Fault Injection, Damper Actuator Fault Injection, CO2 Sensor 
Fault Injection). All these signals are updated during each time step in the simulation. The signals 
that carry the FI in their names represent the data in the scopes of  Figure 4.35.
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Figure 4.34 Overview of the composable architecture of a model with six rooms on one floor 
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Figure 4.35 Overview of the composable model with 48 rooms on two floors. 
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Figure 4.36 Example of a generated Room scope with healthy data. 
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Finally, the data can be optionally sent and stored in a SQL server, in Figure 4.37 is an example of 
simulation data stored in an SQL server. 

Figure 4.37 A sample of SQL Data from the simulated model. 
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5. FAULT INJECTION FRAMEWORK  
Equation Chapter (Next) Section 1 
The mechatronic systems in cyber-physical systems such as DCV and heating systems 

include many sensors and actuators besides computational nodes and communication networks. 
Faults are inevitable events that affect the components, the system's functionality, and performance. 
Diagnostic techniques can serve for triggering appropriate recovery actions to achieve an acceptable 
level of service despite occurring faults. Considering the vast range of diagnostic methods, 
establishing an accurate diagnostic model that maps system failures to suitable faults is a time-
consuming task that may involve extensive try and error efforts [160]. A fault injection framework 
is a helpful tool for studying the behavior in the presence of faults and evaluating diagnostic 
techniques. In this thesis, fault injection is used as a technique to determine the coverage of the fault 
diagnosis by producing faults in the system to trace the behavior of the system in existence or 
absence of different kinds of faults and evaluate their effect by monitoring several parameters, e.g., 
energy consumption and occupancy comfort. Fault injection framework this thesis evaluates the 
system and validates diagnostic services in the presence of faults. 
 

5.1.  FAULT 
Faults may lead to a system-level or component-level failure or malfunction if they are not 

detected and mitigated. Failures can involve performance degradation, safety risks, and excess cost, 
and energy waste. From the time perspective, faults may occur during the whole operation of the 
system or may be limited to a specific period and an exact time. Faults with time dependency can be 
categorized into abrupt faults (stepwise/short), incipient faults, constant faults, noisy faults, and 
intermittent faults [28]. In the abrupt faults, a sharp value change occurs compared to the usual 
pattern of values. Constant faults arise when a sensor reports a constant value over time instead of 
the real and normal sensor values or when an actuator is stuck at a constant position. In the noise 
faults, faults affect several samples in contrast to a single sample in the abrupt faults [193]. An 
increased range of noise in the measured values may cause noisy faults, e.g., noisy sensor values 
[194].  Many types of faults are known in HVAC systems, such as design faults, installation faults, 
abrupt faults, and degradation faults categorized by many references such as the survey of the 
international energy agency [195]. In the DCV and heating systems, faults can occur either in 
components, computational nodes, or communication platforms. This section shows some examples 
of these faults. 

 

5.1.1. FAULTS IN COMPONENTS 
Faults in actuators may lead to loss of controllability. In sensors, they can affect reliable 
measurement information, and in the computational nodes, faults will change the behavior of the 
entire plant. Some examples of component faults used in this thesis are listed below: 

• CO2 Sensor Fault 
The CO2 sensor fault represents a wrong sensor reading that can be a constant or noisy value, 
such as a constant value of 700 ppm or noisy values within the range of 550 ppm to 750 ppm. 
Figure 5.1 and Figure 5.2 show the simulation blocks for injecting this type of fault and the 
switch model that assigns the value of the fault. 
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Figure 5.1 Simulink model for fault injection inside the CO2 sensor fault injection subsystem. 

Figure 5.2 Switch for noisy or constant value fault injection. 

• Temperature Sensor Fault 
This type represents a wrong sensor reading with a constant value (e.g., 15°C). 

• Damper Actuator Fault 
This type of fault represents a stuck-at fault where a damper sticks at a specific position. For 
example, if the damper is stuck at its open position, it gets the binary value 1, which means 
that excess low-temperature fresh air comes inside. Therefore, the inside temperature will 
decrease, and the heater must constantly work to compensate for the heat loss. If the damper 
is stuck at its closed position, it gets the value 0, which means that the inside air temperature 
will increase, and the indoor CO2 concentration will pass the maximum permitted limit. 

• Heater Actuator (Thermostat) Fault 
This type of fault represents a stuck-at fault where the heater sticks at a specific position. For 
example, if the heater is stuck at its ON position, it gets the value 1, which means inside air 
temperature tends to increase. If the heater is stuck at its OFF position, it gets the binary 
value 0, which means the inside air temperature tends to decrease. 

  

5.1.2.FAULTS IN NETWORK  
Typically, WSAN must satisfy requirements such as robustness, fault tolerance, self-

configuration, and increased life span despite their fault-proneness. The incipient faults in WSANs 
that are not identified and detected can degrade the control performance, safety, and Quality of 
Service (QoS), higher maintenance cost, and efforts. Various faults are possible in WSANs that their 
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nature can categorize as hardware, software, and communication faults. Faults in hardware modules, 
e.g., sensors and actuators, may cause hardware failures. Programming problems may cause software 
failures. The issues arising in the data transmission, such as interference faults, may cause 
communication failures in a network. Sensor nodes are resource-constrained and may report 
incorrect sensor readings or fail [196]. Links in the network may fail, or the data packets may be 
stuck in a loop due to a link disconnection [197]. Early detection of wireless network faults prevents 
subsequent failures and enhances the lifetime of the network. Raposo et al. illustrate a 
comprehensive WSN fault taxonomy based on the phase of creation or occurrence, system 
boundaries, phenomenological causes, dimensions, objectives, intent, capability, persistence, state, 
reproducibility, and source system [198]. This thesis selects relevant fault cases from this reference 
to the model and implements them. 

• Fault Classification based on Phase of Creation or Occurrence: 
Three types of faults concerning the phase of creation or occurrence in wireless sensor 

networks are requirement faults, deployment faults, and operational faults [198]. Requirement faults 
in WSN design occur when setting the system requirements where functional and non-functional 
requirements are incorrectly specified. Some of the requirements may be ambiguous, and 
specification errors may occur. Development faults occur in the development phase or case of 
software/firmware update and hardware production. Operational faults occur after WSN deployment 
when the network is operating.  

• System Boundary Fault  
Each system has a boundary, which defines the border between the external environment and 

the system components. The faults occurring inside the WSN components are internal faults. For 
example, firmware or hardware component faults are internal faults due to their source inside the 
WSN system [198]. The faults could also originate outside the system in the environment. An 
external system can, in turn, lead to fault propagation into the system by the interaction between 
external systems and the WSN. For instance, channel noise, radiation, electromagnetic interference, 
operator mistakes, and environmental extremes belong to this category. 

• Persistence  
There are three types of faults based on the time span. The first category is transient faults. 

Transient faults are defined as temporary faults caused by interaction with an external system in 
particular conditions and in a short period of time. The second type is intermittent faults, which are 
defined as temporary faults that occur randomly and repeatedly. This fault can arise in logic 
components, e.g., software, or physical components, e.g., hardware. For example, a low battery 
voltage may lead to intermittent hardware faults [198]. The last type is permanent faults which are 
defined as faults that always produce errors. Specific inputs could trigger faults in the main firmware 
loop of the sensor node that always generate an error [198]. 

• Source System Fault 
WSN systems contain several components or subsystems, like the energy supply sub-system, 

the data acquisition subsystem, the processing, storage sub-system, and the communication 
subsystem. All these parts can be sources of faults and should be taken into account for fault 
characterization.  

• Data Acquisition Faults 
These types of faults occur due to biased or faulty sensor readings. Sometimes hardware 

faults occur in the data acquisition sub-system of sensors which may lead to the wrong sample 
readings. Data acquisition faults are called soft faults because the data acquisition faults take into 
consideration the characteristics of the sensed data in determining the faults. They can be categorized 
into various categories such as offset fault, gain fault, stuck-at fault, out of bounds, spike faults, and 
data loss fault.  
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Offset fault: It refers to a change in sensed data by an additive constant from the expected data and 
might occur due to improper calibration of the sensor [199]. 
Gain fault: In this fault, the rate of change of sensed data does not match expectations over an 
extended time. In a gain fault, the non-faulty sensor data gets multiplied by a constant value, and it 
also might be caused by an improper calibration of the sensors. 
Stuck-at fault: In the stuck-at fault, the difference or the variance of data from the data series is 
zero, which implies that the sensed data is constant. 
Data loss fault: A data loss fault occurs when measured data is lost from the time series for a given 
node [199].  

• Energy Supply Faults 
WSNs can be deployed in all indoor or outdoor conditions, where they are subject to all kinds 

of conditions that can affect the performance of the power source, such as batteries or super-
capacitors. This type of fault refers to faults that are related to the sensor node power source.      
Battery failures are the primary cause of inaccurate data and battery depletion, leading to the 
transmission of erroneous data by the sensors. The battery voltage may drop to the point where the 
sensor can not report correct data. Common behaviors could be zero variance or an unexpected 
gradient followed by a lack of data. The effect of battery supply on the system performance can be 
by either adding noise or giving incorrect data depending on the type of sensor [200], [201]. 

• Communication Faults  
Communication is considered one of the primary sources of faults in WSNs, because of its 

inherently distributed and dynamic nature. The wireless links may fail permanently or temporarily 
when an external object, environmental changes block the link. Communication faults can be 
transient and intermittent [200]. Wireless communication is affected by many types of interference, 
like ambient noise, channel noise, multipath fading, and RF interference. Moreover, sensor nodes 
may also be subject to several types of faults. Furthermore, routing faults can be caused by errors in 
routing algorithms and protocols ,leading to traffic being caught in network loops and never arriving 
at the destination. Additionally, the routing algorithm is not the only cause of a fault in 
communication networks. Sensor nodes also could suffer from faults related to message processing. 
For example, if nodes are slow and cannot process messages in time, then local congestion can occur 
in the buffers between the various protocol layers. As a result, some messages may have to be 
dropped [198]. 

• Processing and Storage Faults  
The processing and storage fault can occur in the WSN hardware and the software/firmware, 

affecting either the quality or consistency of the stored data or the operations performed on them 
[202]. Bit flips in memory, or special registers are one example of a processing fault. Another 
example is increasing the value of the processor temperature, which may cause the drifting of the 
clock and loss of synchronization of the sensor node from the network [198]. Table 5.1 summarizes 
the types of faults which were mentioned above. 
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Table 5.1 Fault Types in WSNs [198] 

Viewpoints Fault types Examples 

Phase of Creation 
or Occurrence 

 

 Requirement faults, Development faults, 
Operational faults 

 

Wrong routing protocol and wrong 
topology, poor design, architectural 

faults, software coding mistakes, 
route misconfiguration during 
deployment, battery depletion, 

wrong configuration or 
reconfiguration parameters 

System Boundary  
 

Internal faults, External faults 

Bit-flip faults in memory or special 
registers, logical bridging, physical 
bridging, battery damages, channel 

noise, environmental extremes, 
operator mistakes, radiation and 

electromagnetic interference 

 
Persistence 

 

 
Transient faults, Intermittent faults, Permanent faults 

Timing fault, fail-stop fault; 
hardware noise fault; incorrect 
computation fault, crash fault, 

physical damage faults (corrosion, 
strokes, fires) 

Source System  
 

Energy supply faults, Data acquisition faults, 
Processing and storage faults, Communication faults 

 

Battery degradation fault, low 
battery voltage faults, gain data 
fault, offset data fault, corrupted 

routing, maintenance packets fault, 
routing loops fault, degraded route 

path fault 

 

5.2. FAULT INJECTION IMPLEMENTATION 
In this thesis, we select data-centric faults and system-centric faults for the implementation. 

The fault injection framework of this thesis can inject faults at any time using a delay block. 
However, the default setting for the start of fault injection is 18,000 seconds from starting the 
simulation and can be changed in MATLAB Workspace. 

 

5.2.1.DATA-CENTRIC FAULTS 
The data-centric faults are related to the generated data from the components. In this thesis, 

the faults in this category are modeled based on the measured values from the sensors such as 
temperature sensors, CO2 concentration sensors, and command or status values in actuators, e.g., 
heater actuators (thermostats) and damper actuators.  
The equation that describes the generated data from a sensor and actuator node can be modeled as a 
function concerning time f (t) [199], as can be seen  

 ( )f t x=  (5.1) 
Where f(t) represents the value sensed by the node at the time 𝑡, 𝑥 is the non-faulty sensor value at 
the time t, knowing that in the real world, there is no ideal signal. Therefore the noise 𝑛 will be added 
to Eq 5.1. As a result, this equation can be written as the following: 

( )f t x n= +  (5.2) 
Some factors are added to normalize Eq.5.2. For instance, 𝐴, 𝐵, 𝑛 are factors that can determine the 
fault type, where A is the multiplicative constant and called gain, whereas B is the additive constant 



105 
 
 

 
 

and called offset, and n is the external noise. According to the above, the general form of the equation 
5.2 can be seen here  

 'x Ax B n= + +  (5.3) 
Four different types of faults are modeled as examples, gain fault, offset fault, noise fault, and stuck-
at fault. A gain fault can be modeled with the following equation where x′∈ f(t). Figure 5.3.A 
demonstrates a gain fault with the values of 𝐴 = 4, 𝐵 = 0, 𝑛 = 0. 

'x Ax=                                                               (5.4) 
The same procedures are repeated with the offset fault, as seen in Eq.5.5, where B is the constant 
value added to the expected value. Offset fault refers to a deviation in sensed data by an additive 
constant from the expected data, as can be seen in Figure 5.3.B 

'x x B= +                                                          (5.5) 
The noise fault is defined as a random value added to the expected value, which leads to erroneous 
data. The noise fault is described in Eq.5.6 and can be seen in Figure 5.3.C 

'x x n= +                                                           (5.6) 
Knowing that x represents the data and should not be zero in the case of offset and noise fault, 
otherwise, the fault will be considered a stuck fault as seen in Eq.5.7. Stuck-at fault can be defined 
as faulty data that has a constant value. Figure 5.3.D shows the stuck-at fault, where the variance of 
the measured values is zero and the sensed data at the steady-state with the constant value 𝐴 = 0, 𝐵 =
40, 𝑛 = 0 

'x B=                                                                        (5.7) 
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Figure 5.3 Data-Centric Fault 
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5.2.2.SYSTEM CENTRIC FAULTS 
Communication in a network is considered one of the significant sources of faults in sensor 

networks since wireless communication is usually subject to considerable interference, e.g., ambient 
noise, channel noise, multipath fading, and RF interference affects the communication between 
sensor nodes and may lead to faulty data. Moreover, sensor nodes may also be subject to several 
types of faults [199]. In this thesis, two types of communication faults are modeled including low 
battery faults and routing faults. Figure 5.4 demonstrates the low battery fault, showing the effect of 
decreasing the battery voltage level on the measured readings. The data of the sensor begins to be 
faulty at the time when the voltage decreases under a particular value. For example, when the battery 
voltage falls under 82% of the required voltage, the temperature sensor readings remain at a constant 
value of 22 for the rest of the operation.  

Figure 5.4 Low Battery Fault 
On the other hand, a routing fault is considered a type of communication fault that can occur 

due to several reasons. For instance, routing algorithms and protocols errors can lead to packets 
being caught in network loops and never arriving at their destination. Sensor nodes can also cause a 
fault related to message processing, which means that nodes cannot process messages at the rate they 
receive them or due to local congestion in the buffers between the various protocol layers [199]. As 
a result of the routing fault, the data, which should be transmitted to the coordinator will be lost. 
Figure 5.5 shows the sensed data by the sensor and the loss of data after a specific time when the 
routing fault activation takes place.  
 

Figure 5.5 Routing Algorithm Faults 
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Figure 5.6 demonstrates a routing loop on a ZigBee protocol between two nodes where node A 
(source node) transmits the data to node C (destination node) via node B (neighboring node). At the 
same time, node B has information that the data can be transmitted from node A to C. If the link 
between nodes A and C breaks down and A has not updated node B regarding this issue, therefore, 
node B transmits the data to node A assuming that the link A-B-C is yet working. Node A knows 
the broken link and sends the data to node B. Node B consults its routing table and finds node A as 
the best route as it is not informed, thus sends its data back to node A that creates an infinite loop.  

 
Figure 5.6 Routing Loop 

 

5.2.3.GRAPHICAL USER INTERFACE 
The fault injection dashboard is designed to activate/inject various faults, including data-

centric and system-centric faults, using a GUI. The dashboard includes a range of various faults 
related to the components, e.g., CO2 sensor fault, damper actuator fault, temperature sensor fault, 
and heater actuator (thermostat) fault, or with a focus on the communication (network fabric). Figure 
5.7 exemplifies the developed GUI in this thesis.  
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Figure 5.7 The Fault Injection GUI. 

For the data-centric faults, if 𝑥 is the measured value of a sensor or the status of an actuator, the 
equation below gets the faulty value of x for different faults: 
 x Ax B n= + +  (5.8) 
Where A  is the gain value, B  is named the offset value, n  describes the noise value. The 
mentioned values are set in the designed GUI. For the gain faults, A  and n  are required. The offset 
faults are expressed with A, B, and n, while noise faults only depend on the n  value. To model the 
stuck-at faults, 0A = , 0n = , and B gets a constant value where 1B =  for the actuators means the 
heater is stuck-at ON and the damper actuator is stuck-at the fully opened position while 0B =  is 
related to the heater in OFF and the damper actuator is in a fully closed position or a value in this 
range ( 0 1B  ) such as 0.5B =  shows that the damper is 50% open [27].  
 

5.2.4. FAULT INJECTION BLOCKS 
In the fault injection framework, the user simply selects a component to inject and simulate the fault. 
The designed fault injection blocks can be placed into the Simulink model with wired 
communication networks and wireless ones. Figure 5.8 demonstrates the Simulink model for one 
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room equipped with four fault injection blocks (subsystems) highlighted in red color. The fault 
injection blocks are designed so that for the regular operation, they will allow the values to pass 
through them from the previous block to the next block, and during the fault activation, they will 
hold the correct values to replace them with the fault values. 

 
Figure 5.8 Simulink model with FI blocks. 

Figure 5.9 describes the working principle of the fault injection block for an example of the 
fault injection block for the CO2 sensor. In this example, the above block reflects the desired fault 
case, e.g., it injects a continuous wrong sensor reading with a constant value of 700 PPM for indoor 
CO2 concentration or noisy fault values within the range of 550 PPM to 750 PPM using switch block. 
The Switch block allows values to passes through the first input (faulty values) or the third input 
(healthy values) based on the value of the second input. The first and third inputs are called data 
inputs. The second input is called the control input, and this control input is linked to the GUI through 
a delay block. The value passes through the control input changes based on the switching between 
the first and the third input values based on the fault activation mode. The Delay block produces the 
input to control the switch block. The delay time is the time to activate the fault injection block set 
in the GUI. 



111 
 
 

 
 

 

Figure 5.9 Basic components of Fault injection block for the CO2 sensor. 
Also, the fault injection blocks are placed into the model with the wireless communication network. 
For example, in the communication part, the battery fault due to battery depletion or a 
communication fault (routing fault) are foreseen. In the fault-free (healthy) mode, the message will 
be sent to the coordinator over the shortest available path. If the communication link between the 
node and router breaks, the message will be sent to the nearest router in the adjunct cluster. There, 
the message will be sent to the coordinator. In the routing loop fault, the next router sends the 
message back to the source node, and this process will be repeated like a loop. Henceforth, the data 
will never get to the coordinator, and the message will be stuck in the loop. Algorithm 1 describes 
the developed routing algorithm in this thesis for the routers of each cluster (each zone). 

Algorithm 1 Routing Algorithm. 
Algorithm 1: Routing Algorithm (Router’s Function) 

1 Initialization of the TureTime kernel block 
2 Call the function of the router A 
3 Receive the message from the sensor node or a router 
4     IF the routing fault is not activated  
5              IF the message is not empty, THEN 
6                   Forward the message to the coordinator  
7              ENDIF                            
8     ELSEIF (when the route to the coordinator is disconnected)  
9              IF the message is not empty, THEN 
10                  Forward the message from router A to router B 
11                  Call the function router B 
12            END IF 
13            IF (when the communication fault is activated) 
14                   IF the message is not empty, THEN 
15                           Send back the message to the source 
16                   END IF 
17            END IF 
18    END IF    
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Figure 5.10 shows the Simulink model of an office room based on wireless sensors and actuators 
networks with the designed fault injection blocks in red color established in Simulink using 
TrueTime [27]. 

  
Figure 5.10 Simulink model based on WSAN with FI blocks. 

5.2.5. DATA COLLECTION AND EXTRACTION FROM THE SIMULATION 
The failure detection and fault diagnosis parts are based on the data collected to the data sets from 
the created demand-controlled ventilation and heat system model with fault injection. The sampling 
interval for the collected data is one second. Parameters of interest for each office room are 
measured: the outside and inside temperature, inside CO2 concentration, occupancy, heater status, 
and economizer damper status. 
The system's behavior in the healthy mode of operation and the presence of faults can be studied by 
activating faults (fault injection), and the effects can be monitored. Data in healthy and faulty modes 
are captured in a database from the simulation. Table 5.2.1 shows a sample of captured data in five 
seconds of simulation for four types of faults in room one. Table 5.2.2 shows the variable changes 
if a CO2 sensor fault is injected into the system, and Table 5.2.3 indicates the effect of fault injection 
of a room on the other rooms. 
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Table 5.2 Example of captured data of an example room 
5.2.1. Example of captured data of room one, in the presence of different fault modes 

 
5.2.2. Example of captured data of healthy variables in other rooms 

 
5.2.3. Example of captured data of the effect of CO2 sensor fault in room one on the variables of other rooms 

 
 

Time 
(Seconds)

Outside 
Temp (°C) Occupants Room 

Temp (°C)
Heater 
Status

CO2 Value 
(PPM)

Damper 
Status

Room 
Temp (°C)

Heater 
Status

CO2 Value 
(PPM)

Damper 
Status

Room 
Temp (°C)

Heater 
Status

CO2 Value 
(PPM)

Damper 
Status

Room 
Temp (°C)

Heater 
Status

CO2 Value 
(PPM)

Damper 
Status

Room 
Temp (°C)

Heater 
Status

CO2 Value 
(PPM)

Damper 
Status

17998 11.8293 6 19.6256 1 583.73 1 19.6256 1 583.73 1 19.6256 1 583.73 1 19.6256 1 583.73 1 19.6256 1 583.73 1
17999 11.8294 6 19.6238 1 583.62 1 19.6238 1 583.62 1 19.6238 1 583.62 1 19.6238 1 583.62 1 19.6238 1 583.62 1
18000 11.8295 6 19.622 1 583.52 1 19.622 1 583.52 1 19.622 1 583.52 1 19.622 1 583.52 1 19.622 1 583.52 1
18001 11.8296 6 19.6202 1 583.41 1 19.6202 1 700 1 19.6202 1 583.41 1 15 1 583.41 1 19.6202 1 583.41 1
18002 11.8297 2 19.6184 1 583.12 1 19.6184 1 700 1 19.6184 1 583.12 1 15 1 583.15 1 19.6184 1 583.12 1
18003 11.8298 2 19.6167 1 582.84 1 19.6167 1 700 1 19.6167 1 582.84 1 15 1 582.88 1 19.6167 1 582.84 1

Heater Actuator Fault Values
Room #1

Simulation Variables
Healthy Values CO2 Sensor Fault Values Damper Actuator Fault Values Temperature Sensor Fault Values

Time 
(Seconds)

Outside 
Temp (°C) Occupants Room Temp 

(°C)
Heater 
Status

CO2 Value 
(PPM)

Damper 
Status

Room 
Temp (°C)

Heater 
Status

CO2 Value 
(PPM)

Damper 
Status

Room Temp 
(°C)

Heater 
Status

CO2 Value 
(PPM)

Damper 
Status

Room Temp 
(°C)

Heater 
Status

CO2 Value 
(PPM)

Damper 
Status

Room Temp 
(°C)

Heater 
Status

CO2 Value 
(PPM)

Damper 
Status

18136 11.8421 2 19.1591807 1 564.7195257 1 19.44525371 1 550.7150426 0 19.5027828 1 550.1011416 0 19.15918069 1 564.7195257 1 19.44525537 1 550.7150426 0
18137 11.84219 2 19.16318835 1 564.4718098 1 19.45771577 1 550.8073393 0 19.51586798 1 550.1934384 0 19.16318834 1 564.4718098 1 19.45771576 1 550.8073393 0
18138 11.84228 2 19.16719061 1 564.2245897 1 19.4701353 1 550.8996361 0 19.52890784 1 550.2857351 0 19.1671906 1 564.2245897 1 19.47013529 1 550.8996361 0
18139 11.84237 2 19.17118746 1 563.9778645 1 19.48251247 1 550.9919329 0 19.54190255 1 550.3780319 0 19.17118742 1 563.9778645 1 19.48251243 1 550.9919329 0
18140 11.84246 2 19.17517885 1 563.7316333 1 19.49484744 1 551.0842297 0 19.55485229 1 550.4703287 0 19.17517879 1 563.7316333 1 19.49484738 1 551.0842297 0

Room #6
Healthy Mode of the Total System

Simulation Variables
Room #2 Room #3 Room #4 Room #5

Time 
(Seconds)

Outside 
Temp (°C) Occupants Room Temp 

(°C)
Heater 
Status

CO2 Value 
(PPM)

Damper 
Status

Room Temp 
(°C)

Heater 
Status

CO2 Value 
(PPM)

Damper 
Status

Room Temp 
(°C)

Heater 
Status

CO2 Value 
(PPM)

Damper 
Status

Room Temp 
(°C)

Heater 
Status

CO2 Value 
(PPM)

Dampe
r Status

Room Temp 
(°C)

Heater 
Status

CO2 Value 
(PPM)

Damper 
Status

18136 11.8421 2 19.1591686 1 564.719526 1 19.4452537 1 550.7150426 0 19.5027828 1 550.1011416 0 19.15918069 1 564.7195257 1 19.44525537 1 550.7150426 0
18137 11.84219 2 19.16316124 1 564.47181 1 19.45771575 1 550.8073393 0 19.51586798 1 550.1934384 0 19.16318834 1 564.4718098 1 19.45771576 1 550.8073393 0
18138 11.84228 2 19.16714257 1 564.22459 1 19.47013526 1 550.8996361 0 19.52890784 1 550.2857351 0 19.1671906 1 564.2245897 1 19.47013529 1 550.8996361 0
18139 11.84237 2 19.17111263 1 563.977865 1 19.48251238 1 550.9919329 0 19.54190255 1 550.3780319 0 19.17118742 1 563.9778645 1 19.48251243 1 550.9919329 0
18140 11.84246 2 19.17507146 1 563.731634 1 19.49484728 1 551.0842297 0 19.55485229 1 550.4703287 0 19.17517879 1 563.7316333 1 19.49484738 1 551.0842297 0

Room #6
Effect of the CO2 Sensor Fault Mode in Room#1 on the other Rooms

Simulation Variables
Room #2 Room #3 Room #4 Room #5
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5.2.6.RESULTS 
This section describes the results acquired from implementing the fault injections in the basic 

model and the extended version with wireless communications. Figure 5.11 shows the indoor CO2 
concentration based on the occupancy and damper status in fault-free (healthy) and faulty mode of 
a CO2 sensor fault. In a fault-free (healthy) system mode (green color signal), the open position of 
the damper is more frequent in more populated times. As a result, the damper status could remain 
closed in the rest, and it prevents the coming of low-temperature excess air from the outside into the 
building (potential energy saving). The frequency of damper switching also depends on the size. It 
can be seen that in the faulty mode (red color signal), the heater will remain in the on position, and 
the system will consume more energy . 
 

 
Figure 5.11 CO2 concentration, occupancy, and damper status. 

The system can detect the fault from the system's regular operation and diagnose this fault by 
specifying the particular cause (faulty component) using the mentioned diagnostic approach. 
Therefore, the system will trigger an alarm, and the correction work can be done, which comes with 
better energy efficiency. Figure 5.12, which is a double y-axis figure, shows the room number one 
temperature variation based on the outside temperature variation, heating system, and damper status 
in fault-free (healthy) mode (green color) and faulty mode (black color) of the system for different 
fault cases. Heater and damper are considered to have just two possible statuses, 1 for on and 0 for 
off in heater, or 1 for open and 0 for close in the damper. The upmost scope in the figure is the 
system's response when the user manually activates a CO2 sensor fault. The second upmost scope 
in the figure indicates the damper actuator fault mode, the third upmost scope in the figure shows 
the temperature sensor fault mode, and the fourth figure describes the heater actuator fault mode. 
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Figure 5.12 Temperature variation in healthy (green) and faulty modes (black). 

 
The results of fault injection in WSAN are described here. The system output, including 

control parameters and fault injection results, is discussed in this section. The temperature sensor is 
selected, and the offset fault B gets 5 and 10,  for the stuck-at fault of damper actuator B gets 1 which 
means the damper is continuously open, and n is assumed a random number which describes the 
effect of noise due to interference or humans in network channel. The sensor battery fault and 
communication fault (routing loops fault) are described in the previous section. The double-Y axes 
Figure 5.14 indicates some results for zone one (cluster one) as examples. The simulation describes 
the system behavior in one day, which is 86,400 seconds (simulation time), but for a better view, the 
system behavior in the first 50,000 seconds is reported. Figure 5.14(a) describes the behavior of the 
system in the fault-free (healthy) operation mode in dark blue color, and the rest (Figure 5.14(b) to 
Figure 5.14(e)) are the faulty behaviors in different fault cases. The room temperature signal as the 
real room temperature in violet color and faulty sensor readings (in case of fault activation) in light 
green are also shown. Besides, the heater and damper status in fault-free (healthy) and faulty mode 
are available for comparison. The results indicate that the user can observe the severity of faults by 
inserting different values into the fault model (via designed GUI), which was described in equation 
1 in this study. Also, this figure indicates that in some cases of fault injection, the system's behavior 
will be changed; however, the signal value will still be in the desired operating range. For example, 
in Figure 5.14(d), if the user puts the value of 5 for the B parameter of equation 1, the temperature 
signal will differ from fault-free (healthy) mode. However, the room temperature mostly remains in 
the desired thresholds, and in Figure 5.14(e), if the user puts the value of 10, the signal goes beyond 
the desired range. These differences will be used in future studies as a symptom for predicting the 
failure, which shows a component, e.g., a sensor can fail shortly if the maintenance operator does 
not replace or repair it at the right time. Also, Figure 5.13 indicates the designed heater subsystem 
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and the duty cycle display of the heater that is proportional to the heating energy consumption. The 
calculation of the duty cycle is for one day (simulation time). The result of this study shows that the 
heater duty cycle in room one is 43.87 % in fault-free (healthy) (non-faulty) mode. This value will 
change if any fault is activated, and based on the fault-error-failure propagation model, the rise of 
fault in one system can affect the other system. Two examples will be discussed for a better 
understanding. If a fault is activated in the battery of the temperature sensor (see Figure 5.14(b) and 
compare it with Figure 5.14(a)), the results describe that the heater status will be stuck-at ON, which 
is proportional to more duty cycle of 48.73% which describes more energy consumption (4.86% 
more). However, some faults cause also discomfort of occupants, such as activation of offset fault 
in temperature sensor (see Figure 5.14(d) and Figure 5.14(e) and compare it to Figure 5.14(a)), which 
shows due to incorrect reporting of temperature which is very high, the heater will stuck-at OFF 
position as the control system assumes the room temperature is too high, however, in reality, the 
temperature is not that high. As a result, the duty cycle block displays 19.57%, which is significantly 
less in comparison to fault-free (healthy) mode (24.3% less), but the occupants experience a 
discomfort situation because the real room temperature signal in this figure is dropped lower than 
the comfort zone (desired range). Further, some faults can affect the IAQ parameters such as CO2 
concentration, e.g., when a damper stuck at a close position due to a temperature or CO2 sensor fault 
causes the continuous increase in CO2 concentration. Therefore, scholars or companies can use this 
framework to find the optimum point of cost and the quality trade-off for their products by 
monitoring and evaluating the fault effects on the system. 

 

 
Figure 5.13 Heater Subsystem. 
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Figure 5.14 Fault Injection Results in WSAN. 
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6. FAILURE DETECTION AND FAULT DIAGNOSIS 
METHODOLOGY 

Equation Chapter (Next) Section 1  
The consequences of faults, e.g., in sensors/actuators, may cause significant damage, especially in 
automated decision and control scenarios. Faults in system components such as sensors and actuators 
can result in different types of failures and severe implications on the efficiency of DCV and heating 
systems [24]. The faults that are not detected and diagnosed at the right time can propagate into a 
component to produce an error. The fault must be isolated to prevent the component or system 
failure. Otherwise, the error may propagate in the form of a component failure to another component 
or system and cause a system failure. For this reason, it is necessary to apply fault management 
techniques to assess and increase the reliability of sensor information and actuator action to 
guarantee the dependability of the DCV and heating systems, i.e., by decreasing the number of 
failures. However, tracing the component and system behavior back to the faults is challenging [24]. 
This thesis conducts the research to study the health monitoring and fault diagnosis techniques on 
the developed system model for finding the nature, severity, time of occurrence, and locality of faults 
using a mapping from failures to faults. Therefore, this thesis introduced a failure detection and fault 
diagnosis framework based on a composed diagnostic classifier by combining data-driven and 
knowledge-driven diagnosis methods and a failure detection and fault diagnosis framework based 
on the data-driven multiclass classification using the deep neural networks. 

 

6.1. COMPOSED DIAGNOSTIC CLASSIFIER BASED ON 
KNOWLEDGE-DRIVEN-BASED AND DATA-DRIVEN-BASED 
METHODS 

 
This section cuts through the generic description of the combined diagnostic classifier that is 

generated based on the combination of a data-driven classifier with knowledge-driven inference, 
e.g., fuzzy logic and BBNs as shown in Figure 6.1. The combination of BBN and fuzzy logic 
themselves analyze the dependencies of the system signals based on MI theory. Further, the 
implementation is described based on the example scenario of the DCV and heating system. 

 
Figure 6.1 Composed diagnostic classifier coverage. 
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Edge (arc) Node A (index A) Node B (index B) 

6.1.1. COMPOSED DIAGNOSTIC CLASSIFICATION 
 

The methodology of the generic fault diagnosis method for the diagnosis of any stuck-at or 
constant faults is based on the causal relations in a fuzzy Bayesian belief network using the relation 
direction probabilities as described in this section. The result of FBBNs that are causal relations is 
then visualized using the graphs. The first nine sections (6.1.1.1. to 6.1.1.9) show the generic steps 
to generate the RDPs that construct the offline fault library. Sections 6.1.1.10. and 6.1.1.11. explains 
the offline and online modes of fault diagnosis. The graphs are constructed from nodes (indices) and 
edges (arcs). Figure 6.2 shows the direction of the arcs with the direction of the dependency between 
each pair of nodes based on the conditional probability values. 

  
 
 
 

Figure 6.2 Visualized causal relations using the graphs. 
Figure 6.3 shows the overview on the steps of generating RDP tables based on FBBN causal 

relations totally as a part of generic composed fault diagnosis classifier introduced in this thesis. 
These steps include preparation of the Relational Data Table (RDT), division of the attributes to 
subdomains by generating Subdomain Label Tables (SLTs), generating Weighted Fuzzy Relational 
Data Table (WFRDT) for each sample time based on the fuzzy theory, calculation of the 
joint/intersection probabilities with results in Intersection Triangular Top Matrix (ITTM) and 
calculation of probability values of subdomains in Subdomain Probability Vector (SPV) table, 
calculation of the Mutual Information (MI) with results in Subdomains Relation Table (SRT), 
calculation of the conditional probability of subdomains based on the Bayesian inference with results 
in Conditional Probability Table (CPT), and ordering elements of the CPT based on the conditional 
probability values with results in Relation Direction Probability (RDP) table. The next sections 
describe these steps in detail. 

 
Figure 6.3 Overview of generating RDP tables based on FBBN causal relations.  

Parent Child 
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6.1.1.1. RELATIONAL DATA TABLE (RDT) 
In the first step, a Relational Data Table (RDT) of all random variables of the system is 

created as a basis of the recorded data that must be used for the fault diagnosis. The data samples 
include information of all variables or attributes as tuples [106]. Table 6.1 shows the overall dataset 
including samples with their attributes’ values over time.  

Table 6.1 Relational Data Table (RDT) 
Samples Attribute1 Attribute2 Attribute3 Attributei 

S1 Value11 Value12 Value13 Value1i 
S2 Value 21 Value 22 Value23 Value2i 
Sn Valuen1 Valuen2 Valuen3 Valueni 

 
In this table, RDT = {S1, S2, S3, …, Sn}, where Si is the data sample as a tuple of values for the i-th 
time instance. Si = {Valuei1, Valuei2, …, Valueim}, where the values are captured the information for 
each sample time. Attribute or domain is variable with its measured values over time. 
 

6.1.1.2. SUBDOMAIN LABEL TABLE (SLT) 
A domain is a set of ranged values for a variable that this vast range can be divided into small 

ranges as a set of subdomains. Figure 6.4 shows a sample domain with its subdomains with the 
values along the Y-axis over time along the X-axis.  
Attribute-ith = {Subdomain1, Subdomain2, …, Subdomainp}, where subdomains can be a subset of 
continuous or discrete values.  

 
Figure 6.4 An example domain and its subdomains. 

In this step, the attributes will be classified into several subdomains. The classification of 
continuous values can be done using the fuzzy theory [101]. The values with continuous changes 
will be classified using the fuzzy functions, while those with discrete changes will be classified based 
on their discrete values. Once all the attributes were classified into subdomains, the Subdomain 
Label Table (SLT) is generated that includes all attributes and their subdomains. Table 6.2 indicates 
the SLT. All the subdomains of each attribute will then be saved in the Subdomain Label Vector 
(SLV). SLV is a vector of all the subdomains extracted from the SLT table.  
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Table 6.2 Subdomain Label Table (SLT) 
No. Attributes Subdomains 

1 Attribute1 Subdomain11 Subdomain12 Subdomain1m 

2 Attribute2 Subdomain21 Subdomain22 Subdomain2e 

i Attributei Subdomaini1 Subdomaini2 Subdomainif 

 

6.1.1.3. WEIGHTED FUZZY RELATIONAL DATA TABLE (WFRDT) 
 

Once the subdomains are defined, the probability of each single sample in a subdomain as 
weight (W) is calculated based on the Degree of Membership (DM) using the Membership Function 
(MF). The membership function gets the value and produces the degree of membership values with 
a range of [0,1]. There are various types of fuzzy membership functions: triangular, trapezoidal, 
Gaussian, and bell-shaped membership functions. The Trapezoidal has been used in this thesis as 
follows: 
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 (6.1) 

Table 6.3, Weighted Fuzzy Relational Data Table (WFRDT), shows the DM values or W values 
extracted from the equation above for different subdomains based on Table 6.1. All weights of all 
samples for each subdomain are summed up to calculate the total weight for each subdomain. The 
total weight is placed in the last row of the WFRDT table. 
 

Table 6.3 Weighted Fuzzy Relational Data Table (WFRDT) 
 Attribute1 Attribute2 Attributei 
No.of 
Samples  

Subdomain11 Subdomain12 Subdomain1m Subdomain21 Subdomain22 Subdomain2e Subdomaini1 Subdomaini2 Subdomainif 

1 w111 w 112 w 11m w 121 w 122 w 12e w 1i1 w 1i2 w 1if 
2 w 211 w 212 w 21m w 221 w 222 w 22e w 2i1 w 2i2 w 2if 
n w n11 w n12 w n1m w n21 w n22 w n2e w ni1 w ni2 w nif 
Total 
Weight  
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6.1.1.4. MUTUAL INFORMATION AND SUBDOMAIN PROBABILITY 
VECTOR (SPV)  

 
MI is a statistical measure rooted in information and probability theory. MI of two random 

variables is a statistical measurement of the mutual dependence of two random variables [106]. MI 
measures information regarding one random variable by observing the other one [32]. There are 
many definitions of random variables. For example, G. Zeng  [33] has classified MI definitions into 
two categories: 1) definitions with random variables and 2) ensembles. The fuzzy theory can be used 
an appropriate likelihood density function [37]. Intan et al. [106] defined the MI between two fuzzy 
sets of A and B as follows: 

 2
( , )( , ) ( , ) ( , ) log

( ) ( )
P A BMI A B MI B A P A B

P A P B
 

= =  
 

 (6.2) 

Where ( ) 0P A   and ( ) 0P B  . P(A) and P(B) are the probability values of fuzzy sets A and B, and 
P(A,B) is the joint probability value of fuzzy sets A and B or the intersection between A and B. The 
equation above determines a correlation measure and if the value of one variable is known, an 
amount of information (-or- mutual information) from the other variable will be also known, i.e., 
MI(A,B)>0 refers to a positive correlation that describes the fuzzy sets A and B have a mutual 
dependency, then knowing A gives information about B; and MI(A,B)≤0 describes that A and B are 
independent, then knowing A does not give any information about B. 

 1 1( ) ( )
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n n
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k kP P

A d B d
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 
 (6.3) 

Where R is the number of records and ( ), ( ) [0,1]kj kiA d B d  are membership degrees of dkj and dki 
for fuzzy sets A and B, respectively [106]. The probability of the subdomains, i.e., P(A), P(B), 
therefore can be calculated by the total weights and using the equation below. Where n is the number 
of samples (No. of Records) and Wif is the total weight for the subdomainif. Table 6.4 shows the 
Subdomain Probability Vector (SPV).  
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Table 6.4 Subdomain Probability Vector Table (SPV) 
 Attribute1 Attribute2 Attributei 
Subdomains  Subdomain11 Subdomain12 Subdomain1m Subdomain21 Subdomain22 Subdomain2e Subdomaini1 Subdomaini2 Subdomainif 

Probability 
of 
Subdomain  
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WP
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6.1.1.5. INTERSECTION TRIANGULAR TOP MATRIX (ITTM)   
 

The joint probability between two subdomains is calculated in this section. A joint probability 
is a statistical measure for two events occurring at the same time instance. If event A changes the 
probability of event B, then they are dependent; otherwise, they are independent. The probability 
value for the independent events is equal to zero. Therefore, the dependent events are determined. 
In this thesis, to calculate the dependent subdomains, the algorithm compares the fuzzy weights of 
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each time sample in pairs for the first pair of subdomains and calculates the mean of minimum weight 
values of the pair over the whole sample times. This process will be repeated over all subdomains 
and over all time samples. Finally, the algorithm calculates the intersection (joint) probability of that 
pair (of subdomains), respectively. The algorithm generates a triangular top matrix of intersection 
(joint) probabilities of subdomains called Intersection Triangular Top Matrix (ITTM). Therefore, if 
P(A,B) is the probability of two subsets A and B, the Intersection probability is calculated using the 

following equation [106]:  
( ) ( )

1 1
min ( ), ( ) min ,

( , ) ( )
kj ki

n n

kj ki Subdomain Subdomain
k k

A d B d W W
P A B P A B

n n
= ==  = =
 

 (6.5) 

Here WSubdomainkj and WSubdomainki are the fuzzy weights of subdomains A and B, respectively. Note 
that P(A,B) is equal to P(B,A). Therefore, this is not essential to measure both the top and down 
triangular. In this chapter, we only consider the values of the top triangular matrix. Table 6.5 
indicates the Intersection Triangular Top Matrix (ITTM). 
 

Table 6.5 Intersection Triangular Top Matrix (ITTM) 

 
6.1.1.6. SUBDOMAINS RELATION TABLE (SRT)  
 

After calculation of P(A), P(B), and P(A,B) for every subdomain pair, equation (6.2) will get 
the value for the MI. The positive MI value shows a pairwise dependency between two subdomains 
of a pair which shows two subdomains contain mutual information, and the negative MI value 
indicates a pairwise independency. The fault diagnosis classifier in this thesis assumes the binary 
value of 1 for the positive MI values and the binary value of 0 for the negative MI values. The binary 
results will then be placed in a top triangular matrix named Subdomains Relation Table (SRT), as 
shown in Table 6.6.  
 
 
 
 
 
 
 

Subdomains 
 
 

Subdomains 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … i-1 i 

1                   
2         P(2,9)          
3                   
4                   
5                   
6                   
7            P(7,12)       
8                   
9                   

10                   
11                   
12                   
13               P(13,15)    
14                   
15                   
…                   
i-1                   
i                   
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Table 6.6 Subdomains Relation Table (SRT) 

 
 
 

6.1.1.7. CONDITIONAL PROBABILITY TABLE (CPT)   
 

In this step, the conditional probabilities for only pairs that had positive mutual information 
are measured. The conditional probability of fuzzy event A given B based on the Bayesian inference 
is denoted by P(A|B) [106]. In other works in the literature, the conditional probability indicates the 
posterior probability of a fault given observed fault symptoms which requires expert knowledge; 
however, in this thesis, it indicates the direction of dependency of different subdomains (independent 
from expert knowledge). The left side of the equation below is the posterior probability and the right 
side includes prior conditional probability and prior probability values. 
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This P(A|B) corresponds to P(subdomaini | subdomainj) in the method described in this thesis. 
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Also, the conditional probabilities of fuzzy event B given A are denoted by P(B|A) [106]. 
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This conditional probability corresponds to P(subdomainj | subdomaini) in the method described in 
this thesis. 

Subdomains 
 
 

Subdomains 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 … i 

1                   
2                   
3        1    1     1  
4          1         
5                   
6              1     
7                   
8           1        
9               1  1  

10                   
11                   
12                   
13                1   
14                   
15                   
16                   
…                   
i                   
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The results from the above equations are later will be stored in a matrix called Conditional 
Probabilities Table (CPT) with the following rules: 

- P(A|B)>P(B|A) indicates the direction of dependency between A and B is from B to A. 
Then, P(B|A) will be eliminated, and P(A|B) will be stored in Table 6.7. 

- P(B|A)>P(A|B) indicates the direction of dependency between A and B is from A to B. 
Then, P(A|B) will be eliminated, and P(B|A) will be stored in Table 6.7. 

In Table 6.7, the highlighted elements of the matrix with the yellow color show the conditional 
probability of each pair of subdomains, e.g., P(Subdomain9|Subdomain2) and 
P(Subdomain2|Subdomain9). Then, the conditional probability with the greater value will be kept 
and saved in the CPT table as the green elements of the matrix, and the conditional probability with 
the lower value will be deleted from the CPT table. 
 

Table 6.7 Conditional Probabilities Table (CPT) 

 
6.1.1.8. RELATION DIRECTION PROBABILITY (RDP) 
 
In this section, the Relation Direction Probability (RDP) table as shown in Table 6.8 which is the 
ordered result from the CPT indicates all the relations and their features, i.e., the direction between 
dependent subdomains and the conditional probability of the transmission. The RDP table includes 
the parents' and childs’ columns generated based on the subdomains and the conditional probabilities 
of these pairs listed in the CPT table. 

Table 6.8 Relation Direction Probability (RDP) 

Number of relations Parents Childs Conditional Probabilies 
1 iSubdomain jSubdomain )i| Subdomainj P(Subdomain 
2 kSubdomain wSubdomain )k| Subdomainw P(Subdomain 
n nSubdomain mSubdomain )n| Subdomainm P(Subdomain 

 

 1 

Subdomains 

 

 

Subdomains 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1                   

2         P(Subdomain2|Subdomain9)          

3                   

4                   

5                   

6                   

7                   

8                   

9  P(Subdomain9|Subdomain2)                 

10                   

11                   

12                   

13                   

14                   

15                   

16                   

17                   

18                   
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All existed elements in the CPT table are ordered in this table in which the conditional probability 
of P (Subdomainj | Subdomaini) presents that there is a relation between Subdomainj and Subdomaini, 
and the direction is from  Subdomaini (Parent Node) to Subdomainj (Child Node) with the probability 
of P(Subdomainj | Subdomaini). 
 

6.1.1.9. CAUSAL RELATION IN FBBN USING THE RELATION 
DIRECTION PROBABILITIES  

 
As mentioned, the FBBN shows the causal relations between each pair of subdomains that are 
extracted from the RDP table. The conditional probabilities indicate the direction of the dependency 
in each pair of nodes. Figure 6.5 is an example that shows Subdomainj (Child Node) is related to 
Subdomaini (Parent Node). 

 
 

 
Figure 6.5 FBBN Causal relations based on the Relation Direction Probabilities 

6.1.1.10. FAULT DIAGNOSIS CLASSIFICATION BASED ON CAUSAL 
RELATIONS IN FBBNS  

This thesis shows that the FBBN causal relations based on the RDPs can determine all the 
cause-effect relationships among every subdomain in case of faults. This capacity is used to diagnose 
stuck-at fault types for several components with various stuck-at values at different time instances. 
This research considers the constant faults because the constant values will be in a subdomain from 
a whole range of values for a parameter. Therefore, the diagnosis method can relate the faulty value 
with the fault. In this section, an overview of the overall methodology is described.  

This diagnosis method has two modes: the online mode and the offline mode. The offline 
mode includes the generation phase of the reference libraries, including various faulty conditions 
(fault objects) for diagnosing different real fault cases with random/real faulty values. Figure 6.6 
describes the schematic of the FDFD strategy of this thesis based on the causal relations in a fuzzy 
Bayesian belief network using the relation direction probabilities.  

This strategy includes two main modules of failure detection and fault diagnosis within two 
parallel parts of offline training and online failure detection and fault diagnosis. First, the model 
inputs are inserted into the real plant at runtime and into the plant simulation equipped with the fault 
injection blocks to be preprocessed and create faulty and fault-free databases. Data from the fault-
free database (offline training mode) and the output of the real plant (online failure detection and 
fault diagnosis) of this strategy are fed through the fault detection module to check whether the 
residuals are within the thresholds. The alarm reports failures based on the residuals. Residuals are 
the deviations of the model parameters at a specific range of operating conditions as an indication 
of failure. Once the failure is detected and announced by the alarm, the fault diagnosis module will 
be activated, and it starts with the creation of the real case object (RealCase) and its specification, 
including the RDP table. 

iSubdomain jSubdomain 
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Figure 6.6 Schematic of the FDFD strategy of this thesis based on the causal relations in a fuzzy Bayesian belief network using the relation direction probabilities. 
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6.1.1.11. OFFLINE TRAINING MODE  
 

The offline training mode includes a library of different fault modes. In this library, a fault 
object for each type of fault is created that is named: Fault_Objecti, i= {1, n}. The n value depends 
on the total number of fault types (p) and the time instances vector (t). Table 6.9 shows an overview 
of the offline library of the fault cases. The fault object is defined as a class in MATLAB as Function 
1 that contains four properties: type of fault (Type), time of fault injection (Time), the system 
parameters’ values for each fault case (Data), and the RDP table. This library is generated for every 
fault type that includes all subdomains of a domain and for different fault injection times. To include 
all the subdomains, a representative for each subdomain and for each time interval is defined. The 
time interval is a vector of time values for the total time domain. 
 

Function 1. Fault Class Definition  
classdef Fault 

   properties  

    Type; 

    Time; 

    Data; 

    RDP; 

   end 

end 
 
 

Table 6.9 Offline Library of Fault Cases 

No. of Faults 1 2 3 n-1 n 

Objects for Different Fault 
cases 1Fault_Object 2Fault_Object 3Fault_Object 1-nFault_Object nFault_Object 

 

6.1.1.12. ONLINE DIAGNOSTIC MODE  
 

The online mode represents the real case scenario simulated in this research using the fault 
injection framework. Time, type, and value in this fault injection are the properties of the real 
scenario with random values within a range. The RDP table in the online mode contains all the 
relations of subdomains of the real case (RealCase). For the diagnosis of the real case, the RealCase 
diagnosis class is defined in Function 2 with three properties, including Type, Time, and Value of 
random case. This class also includes two more properties: Precentage_List and Evaluation_List. 

Function 2. RealCase Diagnosis Class Definition 
classdef RealCase Diagnosis 
  properties  
    Type; 
    Time; 
    Value; 

or the number of fault cases in the offline library nPrecentage_List; // the size of this list is equal to      
xEvaluation_List; // The size of this list is equal to      

    end 
end 
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In the diagnosis, the RDP table of the RealCase is compared to the RDP tables available in the fault 
library (Offline Mode’s Library). In this comparison, the relations’ specifications in the RDP table 
of RealCase object, i.e., parent nodes, child nodes, and the pairs’ directions, are compared to the 
respective values in the RDP table of each fault object in the offline library. Therefore, the fault 
diagnosis classifier can calculate the number of common pairs and the percentages of similarity.  The 
percentages of similarity for each RealCase can be formulated as below: 

 100, 1i
i

Number of similar Pairs in both RDP TablesPercentage of Similarity i n
Total Number of Pairs in Fault Case

=     (6.10) 

The result from the equation above for fault casei will be stored in the elementi of a list called 
Precentage_List. This list includes n number of percentages of similarity for a RealCase compared 
to the n fault objects in the offline library. Table 6.10 shows the Precentage_List for a RealCase 
object. After that, the x number of top-ranked similar fault cases based on the highest percentages in 
the Precentage_List will be distinguished by the fault diagnosis classifier as the most relevant results, 
stored in the Evaluation_List.  
 

Table 6.10 Precentage_List for a RealCase object 
No. of Fault Object in the Offline Library  1 2 … i 

Calculated Percentage of Similarity between the 
RealCase fault object and each Fault Object in the 

Offline Fault Library 

Percentage of 
Similarity1 

Percentage of 
Similarity2 

… Percentage of 
Similarityi 

 
The Evaluation list in Table 6.11 consists of x elements, and every element j (1<j<x) has three 
properties: fault type and value, fault time, and percentage. The type and the time are allocated from 
the fault casei in the offline library. The percentage is the percentage of similarity that is actually the 
belief and the higher the fault belief means the higher the possibility of the corresponding fault. The 
diagnosis algorithm sorts the evaluation list by the rank order of values in the percentage column. 
"ranking" in statistics is the data transformation that the number or order of values are justified by 
their rank when they are sorted. Therefore, the elements with the higher percentages of similarity 
will be placed at the top ranks, and the lower percentages of similarity will be placed at the lower 
ranks.  
 

Table 6.11 Evaluation_List for a RealCase object 
No. Type Time Percentage 
1 1Offline_FaultType 1Offline_FaultTime 1Highest_Precentage 
2 2Offline_FaultType 2Offline_FaultTime 2Highest _Precentage 
3 3Offline_FaultType 3Offline_FaultTime 3Highest _Precentage 
j jOffline_FaultType jOffline_FaultTime jHighest _Precentage 

 
The type and time of element j of this list are the type and time of the fault casei object in the offline 
library. Finally, the comparison results of the type and the time values of the Evaluation_List with 
the type and the time of the RealCase object which can determine the belief of the fault diagnosis 
method in this thesis based on the causal relation in fuzzy Bayesian belief network using the relation 
direction probabilities.  
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6.1.2. IMPLEMENTATION OF COMPOSED DIAGNOSTIC CLASSIFICATION 

BASED ON EXAMPLE SYSTEM MODEL  
 
As mentioned in section 6.1.1.10.3, the RDP tables are the essential data required for the 

online diagnosis phase. This section describes an example scenario for the introduced diagnostic 
method in section 6.1.1. for a use-case of a DCV and heating system in MATLAB/Simulink. Here, 
an example fault type is selected in the DCV and heating system model's fault injection framework 
to show the diagnosis methodology's detailed description. The selected fault type is the CO2 sensor 
fault with a stuck-at value of 700 ppm with the fault injection time of 18.000 seconds. The simulation 
is run for 86400 seconds or one typical winter day. 

6.1.2.1. RELATIONAL DATA TABLE (RDT) IN SYSTEM MODEL  
 

The Data Preparation step includes extracting the data from signal values of Simulink-Model 
and initializing the RDT. An output from the system model in MATLAB/Simulink prepares the 
relational data table required for the introduced diagnosis methodology in this chapter. An example 
RDT based on the DCV and heating system model is shown in Table 6.12. The attributes can be 
domains with continuous or discrete values. In this table, the samples for 86400 seconds or one-day 
simulation time can be recorded. Therefore, RDT = {S1, S2, S3, …, S86400}. 

dsSensor Fault in 18000 secon 2Case Relational Data Table (RDT) for CO-Use 12.6Table  
Seconds 

(samples) 
Daily 

Temperature 
Occupancy 

number 
Room 

temperature 
 2Room CO

Concentration 
Heater 
Status 

Damper 
Status 

1 7.00 0 19.99 400 0 0 
2 7.00 0 19.98 400 0 0 
3 7.00 0 19.97 400 0 0 
4 7.00 0 19.96 400 0 0 
5 7.00 0 19.95 400 0 0 

… … … … … … … 
17999 11.82 6 19.55 579.06 1 1 
18000 11.82 6 19.55 700 1 1 
18001 11.82 6 19.55 700 1 1 
18002 11.82 6 19.55 700 1 1 
18003 11.82 2 19.55 700 1 1 

… … … … … … … 
86399 6.99 0 16.85 700 1 1 
86400 7.00 0 16.85 700 1 1 

 

6.1.2.2. SUBDOMAINS LABEL TABLE (SLT) IN SYSTEM MODEL  
 

Attributes and subdomains preparation step includes defining the labels of attributes and 
subdomains of the system for analysis and defining fuzzy sets over these attributes. For defining 
attributes, they are firstly divided into two types of continuous and discrete. The continuous 
attributes have continuous changes in their values, such as room temperature, daily temperature, 
room CO2 concentration, and occupancy parameters. The discrete attributes are heater status and 
damper status. There is also a simulation clock as a discrete attribute required for the evaluation step. 
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Once the continuous and discrete attributes and subdomains were defined in the previous section, 
the SLT is created that is shown in Table 6.13. The subdomains are also named nodes. For example, 
subdomains for the continuous daily temperature attribute are three subdomains of low daily 
temperature, middle daily temperature, and high daily temperature. These subdomains are used to 
create the fuzzy sets for the fuzzy function. Eighteen subdomains based on seven attributes can 
facilitate the conditional probability measurement of the BBN. The subdomain index is considered 
as a reference to the subdomain title. Figure 6.7 shows three example subdomains for the attribute 
of room temperature.  

Table 6.13 Use-Case Subdomain Label Table (SLT) 
No. Attributes Subdomains Subdomains Subdomains 
1 Daily 

Temperature 
Low_Daily_Temperature (No. 1) Middle_Daily_Temperature 

(No.2) 
High_Daily_Temperature (No.3) 

2 Occupants 
Number 

Low_Occupancy (No.4) Normal_Occupancy (No.5) High_Occupancy (No.6) 

3 Room 
Temperature 

Lower_than_Threshold_RoomTe
mperature (No.7) 

Within_Threshold_RoomTem
perature (No.8) 

Upper_than_Threshold_RoomTe
mperature (No.9) 

4 Heater Status Heater_Status_On (No.10) Heater_Status_Off (No.11) --------- 

 5 Damper Status Damper_Status_Open (No.12) Damper_Status_Close 
(No.13) 

--------- 

6 Simulation 
Clock 

Healthy_Mode (No.14) Faulty_Mode (No.15) --------- 

7  Room CO2 
Concentration 

Lower_than_Threshold_CO2Valu
e (No.16) 

Within_Threshold_CO2Value 
(No.17) 

Upper_than_Threshold_CO2Valu
e (No.18) 

 

 
Figure 6.7 Illustration of Subdomains and fuzzy sets Definitions for Room Temperature. 

Fuzzy Rules in System Model  

In this section, fuzzy rules or membership functions are defined to generate the probability 
weights based on the degree of membership values from the fuzzy function. Therefore, the 
conditional probability of each subdomain will be measured by the membership degree of each 
sample of the subdomain. The fuzzy membership functions are explained here that get the degree of 
membership value for each x input value. 

• Room Temperature Fuzzy Membership Function 
The total range of the room temperature has been considered between [0-40]. This range can be 
divided into three subdomains of low room temperature with [0-17.5] range, middle room 
temperature with [17.5-22.5] range, and high room temperature with [22.5-40] range. Twenty 
degrees of centigrade is the nominal temperature value of the system. Equations (17-19) show the 
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fuzzy membership functions respective to each subdomain. Figure 6.8 shows the overall room 
temperature fuzzy membership function with the related fuzzy function of each subdomain in three 
various colors of blue for lew temperature values, green for middle-temperature values, and red for 
high-temperature values.  
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Figure 6.8 Room Temperature Fuzzy Membership Functions  

• Daily Temperature Fuzzy Membership Function 
The total range of the daily temperature has been considered between [0-14]. This range is divided 
into three subdomains the low daily temperature with [0-5] range, middle daily temperature with [5-
9] range, and high daily temperature with [9-14] range. Below the fuzzy membership functions are 
shown, and their illustration is in Figure 6.9. 
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Figure 6.9 Daily Temperature Fuzzy Membership Functions 

• CO2 Concentration Fuzzy Membership Function 
The CO2 concentration values are considered in a range of [0-1200]. The CO2 concentration variable 
is divided into three subdomains of the low CO2 concentration with [0-400] range, middle CO2 
concentration with [400-800] range, and CO2 concentration with [800-1200] range. Figure 6.10 
illustrates the fuzzy membership function of the CO2 concentration.  
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Concentration Fuzzy Membership Functions 2CO 10.6Figure  

 

• Occupancy Fuzzy Membership Function 
The number of occupants in this system model differs in a range of [0-6] people based on an example 
scenario. The occupancy with less than three people is considered low occupancy, equal to and 
between three and four people as the middle occupancy, and equal to and between five and six people 
represents high occupancy in a day. These variations are illustrated in the fuzzy membership degree 
functions in equations below and Figure 6.11. 
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Figure 6.11 Occupancy Fuzzy Membership Functions 

6.1.2.3. WEIGHTED FUZZY RELATIONAL DATA TABLE (WFRDT) IN 
SYSTEM MODEL 

 
In this step, a WFRDT based on RDT is generated that is shown in Table 6.14. For this, a matrix of 
86401 rows and 18 columns is created. An example fault type is the CO2 sensor fault with a stuck-
at value of 700 ppm with an example fault injection time of 18.000 seconds is considered. Every 
table column is a subdomain and contains fuzzy weights for continuous attributes and normal 
weights of occurrence for discrete attributes. For each subdomain, the fuzzy weights based on the 
output from each sample's degree of membership functions are measured. Each sample is measured 
data in every second of simulation time. In the last row of this table, the total weights over one 
column are calculated.  
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Sensor Fault 2Case Weighted Fuzzy Relational Data Table (WFRDT) for CO-Use 14.6Table  
 

 
 
 

Attributes Daily Temperature Occupancy Room Temperature Heater 
Status 

Damper 
Status 

Simulation 
Clock Room CO2 Concentration 

Subdomains 
 

No. 
Samples 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 
2 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 
3 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 
4 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 
5 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 

… … … … … … … … … … … … … … … … … … … 
17999 0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0.03 0.96 0 
18000 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0.54 0.45 
18001 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 0 0.54 0.45 
18002 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 0 0.54 0.45 
18003 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 0 0.54 0.45 

… … … … … … … … … … … … … … … … … … … 
86399 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0.54 0.45 
86400 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0.54 0.45 

Total Weight 37133.79 12132.41 37133.79 61199 18001 7200 53381.54 24902.60 8115.84 85676 724 73790 12610 18000 68400 6038.38 48643.65 31717.95 
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6.1.2.4. MUTUAL INFORMATION AND SUBDOMAIN PROBABILITY 
VECTOR (SPV) IN SYSTEM MODEL 

 
As mentioned in section 6.1.1.4, the probability of the subdomains can be measured by the 

total weights for each subdomain divided by several samples using the equation (6.4). Therefore, the 
Subdomain Probability Vector (SPV) is calculated, and the result is shown in the table below. 
 

Table 6.15 Use-Case Subdomain Probability Vector (SPV) in Percent for CO2 Sensor Fault 
Attribute Daily Temperature Occupancy Room 

Temperature 
Heater 
Status 

Damper 
Status 

Simulation 
Clock 

Room CO2 
Concentration 

Subdomain 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Probability 42.98 14.04 42.98 70.83 20.83 8.33 61.78 28.82 9.39  99.16 0.84 85.41 14.59 20.83 79.17 6.99 56.30 36.71 

 

6.1.2.5. INTERSECTION TRIANGULAR TOP MATRIX (ITTM) IN 
SYSTEM MODEL 

 
In this step, a triangular top matrix is generated to store the intersection probabilities of subdomain 
pairs. The intersection probability of P(A,B)=P(B,A). Therefore, it makes sense to calculate the 
probabilities upper than the main diagonal of the matrix. Therefore, the following matrix with 18 
rows and 18 columns using equation (6.9). 
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(in Percent) Sensor Fault 2Case Intersection Triangular Top Matrix (ITTM) for CO-Use 16.6Table  
 

 
 Subdomains 

 
 

Subdomains 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 0 0.99 0 42.98 0 0 42.98 0 0 42.98 0 42.98 0 0 42.98 0 24.72 21.23 
2 0 0 2.99 10.53 3.51 0 10.76 2.04 2.49 13.6 0.35 10.53 3.51 3.51 10.53 3.51 8.18 7.07 
3 0 0 0 17.32 17.32 8.33 8.28 28.03 7.92 42.49 0.49 31.90 11.08 17.32 25.66 3.74 28.12 12.87 
4 0 0 0 0 0 0 50.69 14.20 5.94 70.48 0.35 62.50 8.33 8.33 62.50 6.46 35.65 28.72 
5 0 0 0 0 0 0 9.17 8.84 2.82 20.35 0.49 15.83 5.01 8.33 12.50 0.30 14.55 5.99 
6 0 0 0 0 0 0 1.93 5.78 0.63 8.33 0 7.08 1.25 4.17 4.17 0.23 6.10 2.01 
7 0 0 0 0 0 0 0 4.76 0 61.53 0.26 61.49 0.29 1.07 60.71 0.50 35.66 29.98 
8 0 0 0 0 0 0 0 0 3.05 28.35 0.48 23.41 5.41 10.37 18.45 2.67 20.58 10.77 
9 0 0 0 0 0 0 0 0 0 9.29 0.10 0.50 8.89 9.39 0 4.67 5.26 0.31 
10 0 0 0 0 0 0 0 0 0 0 0 85.12 14.04 20.00 79.17 6.64 55.87 36.66 
11 0 0 0 0 0 0 0 0 0 0 0 0.28 0.56 0.84 0 0.35 0.43 0.05 
12 0 0 0 0 0 0 0 0 0 0 0 0 0 6.24 79.17 0.33 48.57 36.50 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 14.59 0 6.66 7.73 0.21 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.99 13.51 0.34 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42.79 36.37 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.66 0 
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36.71 
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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6.1.2.6. SUBDOMAINS RELATION TABLE (SRT) IN SYSTEM MODEL 
 

In this section, a top triangular matrix is generated based on the MI calculations named SRT to find 
the correlation between the subdomains of a pair in Table 6.17. For the pairs that have a positive 
amount of correlation measurement, the matrix element gets the value 1, and for the negative result 
of the MI equation, it gets the binary value of 0. As mentioned in section 4.6, the positive values 
indicate the relation or dependency between the subdomains of a pair (pairwise correlation) [32].  
 

Table 6.17 Use-Case Subdomains Relation Table (SRT) for CO2 Sensor Fault    
 

Subdomains 
 
 

Subdomains 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 1 
2 0 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1 1 1 
3 0 0 0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 
4 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 
5 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 0 
6 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0 
7 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 
8 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 
9 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 
11 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

6.1.2.7. CONDITIONAL PROBABILITY TABLE (CPT) IN SYSTEM 
MODEL  

 
The correlation among subdomains of each pair yields the direction of the transition arcs by 
calculation the conditional probability value between the pairs. In This step, every conditional 
probability of each pair of A and B as P(A|B) and P(B|A) are calculated. For this, a Top-Down 
triangular matrix including all the conditional probabilities of all corresponding subdomains for each 
pair is generated that is named CPT shown in Table 6.18. Then, the conditional probabilities for each 
pair of subdomains from both sides from A to B and from B to A are compared, and the direction 
with the corresponding probability with a higher probability value is kept. The direction with the 
corresponding probability with a lower probability value is eliminated. For example, the conditional 
probability value of 0.8315 that is the conditional probability of subdomain3 given subdomain5 
(P(subdomain3|subdomain5)=0.8315), was more significant than the conditional probability of 
subdomain5 given subdomain3 that is already eliminated and its value is replaced with 0. 
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Table 6.18 Use-Case Conditional Probabilities Table (CPT) for CO2 Sensor Fault (In Percent)  

Subdomains 
 
 

Subdomains 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 57.83 

2 0 0 0 0 0 0 0 0 26.53 0 41.71 0 0 0 0 50.24 0 0 

3 0 0 0 0 83.15 100 0 97.24 84.30 0 58.29 0 75.94 83.15 0 53.49 0 0 

4 100 75 0 0 0 0 82.04 0 0 0 0 0 0 0 0 92.47 0 78.22 

5 0 25 0 0 0 0 0 0 30.06 0 58.29 0 34.31 40.01 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 100 76.59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 63.33 81.65 

8 0 0 0 0 42.44 69.31 0 0 32.45 0 56.87 0 37.05 49.78 0 38.23 0 0 

9 0 0 0 0 0 0 0 0 0 0 12.49 0 0 0 0 66.80 0 0 

10 100 0 0 99.51 0 100 99.58 0 0 0 0 99.67 0 0 100 0 99.23 99.85 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 100 0 0 88.24 0 0 99.52 0 0 0 0 0 0 0 100 0 86.27 99.43 

13 0 25 0 0 0 15.04 0 0 94.67 0 66.44 0 0 0 0 95.26 0 0 

14 0 25 0 0 0 49.99 0 0 100 0 100 0 100 0 0 100 0 0 

15 100 0 0 88.24 0 0 98.27 0 0 0 0 0 0 0 0 0 0 99.08 

16 0 0 0 0 0 0 0 0 0 0 41.71 0 0 0 0 0 0 0 

17 57.51 58.22 65.42 0 69.82 73.19 0 71.40 0 0 0 0 0 64.84 0 0 0 100 

18 0 50.32 0 0 0 0 0 37.35 0 0 0 0 0 0 0 0 0 0 
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6.1.2.8. RELATION DIRECTION PROBABILITY (RDP) IN SYSTEM 
MODEL 

 
In this step, the Relation Direction Probability table is based on the filtered results in the CPT 

matrix. The RDP table shows the direction of the dependency between subdomains of each pair from 
the parent node to the child node and respective conditional probability values as a result for the 
example CO2 Sensor Fault is shown in Table 6.19. 

Sensor Fault 2Case Relation Direction Probability (RDP) for CO-Use 19.6Table  
No. of 
Relations  Parents Childs Conditional 

Probabilies 
1 Upper_than_Threshold_CO2Value Low_Daily_Temperature 57.82 
2 Upper_than_Threshold_RoomTemperature Middle_Daily_Temperature 26.53 
3 Heater_Status_Off Middle_Daily_Temperature 41.71 
4 Lower_than_Threshold_CO2Value Middle_Daily_Temperature 50.23 
5 Normal_Occupancy High_Daily_Temperature 83.15 
6 High_Occupancy High_Daily_Temperature 100 
7 Within_Threshold_RoomTemperature High_Daily_Temperature 97.24 
8 Upper_than_Threshold_RoomTemperature High_Daily_Temperature 84.29 
9 Heater_Status_Off High_Daily_Temperature 58.28 
10 Damper_Status_Close High_Daily_Temperature 75.94 
…  … … … 
70 Upper_than_Threshold_CO2Value Within_Threshold_CO2Value 100 
71 Middle_Daily_Temperature Upper_than_Threshold_CO2Value 50.31 
72 Within_Threshold_RoomTemperature Upper_than_Threshold_CO2Value 37.35 

 

6.1.2.9. CAUSAL RELATION IN FBBN USING THE RELATION 
DIRECTION PROBABILITIES IN SYSTEM MODEL   

 
As mentioned in section 4.9, the FBBN shows the causal relations between each pair of subdomains 
extracted from the RDP table. Figure 6.12 is an example that shows Subdomain of 
High_Daily_Temperature (Child Node) is related to Subdomain of Normal_Occupancy (Parent 
Node) with the conditional probability value of 0.8295. 

 
 

 
Figure 6.12 An Example FBBN Causal relations based on the Relation Direction Probabilities. 

 

6.1.2.10. OFFLINE MODE OF THE FAULT DIAGNOSIS IN SYSTEM 
MODEL 

 
This section shows the implementation result of the diagnosis method introduced in this thesis 

for fault diagnosis and evaluation of the proposed method for the DCV and heating system model. 
The fault diagnosis phase is constructed from two offline and online modules. The evaluation 
approach is the same with Figure 6.6; however, a sample RealCase fault object with a known RDP 
table, fault type, and fault type is considered in the evaluation phase. In the real and normal operation, 

Normal_Occupancy High_Daily_Temperature 
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only the RDP table is available and is generated, and the fault type and the fault time are the diagnosis 
result. In the offline mode of fault diagnosis, a library of fault cases is created. The offline library 
includes ten types of faults stored in a vector called Fault_Injection_Type_Vector, and 17 time 
instances for the fault injection stored in a vector called Fault_Injection_Time_Vector. Therefore, 
the offline library has 170 injected fault objects for all mentioned fault types and injection times 
combinations. 

Function 3. Offline Mode Fault Injection Type and Time Vectors  
Fault_Injection_Type_Vector=["CO2SensorLow","CO2SensorMiddle","CO2SensorHigh","DamperActuatorOff","Da
mperActuatorOn","TemperatureSensorLow","TemperatureSensorMiddle","TemperatureSensorHigh", 
"HeaterActuatorOff","HeaterActuatorOn"];// This vector has 10 elements 

 
Fault_Injection_Time_Vector = 5000:5000:86400; // This vector has 17 elements 

 

 
For each injected fault_casei, the Type, Time, Data, and RDP values will then be stored in the i-th 
element of the Offline Library, where 1 > i  >  170.  The implemented offline library of the example 
system model is depicted as below: 
 

Table 6.20 Implemented offline library of 170 fault cases in the DCV and heating system 
 

No. of 
Fault 

Object  
1Fault_object 2Fault_object Fault_object

3 

… 
169Fault_object 170Fault_object 

Details 

Type 
"CO2S
ensorL

ow" 
Type 

"CO2Se
nsorMid

dle" 
Type 

"CO2
Sensor
High" 

… 
Type "HeaterActuator

Off" Type 
"Heater
Actuator

On" 

Time 5000 Time 5000 Time 5000 
… 

Time 85000 Time 85000 

Data 
86400

x10 
double 

Data 86400x1
0 double Data 

86400
x10 

double 

… 
Data 86400x10 double Data 86400x1

0 double 

RDP 144x3 
string RDP 144x3 

string RDP 144x3 
string 

… 
RDP 144x3 string RDP 144x3 

string 

 
 

6.1.2.11. ONLINE MODE OF THE FAULT DIAGNOSIS IN SYSTEM MODEL 
 

In the online mode of the diagnosis method, a random RealCase fault object with its specifications, 
i.e., Type, Time, Value, is injected into the system, the Precentage_List, and Evaluation_List are 
stored as an example scenario of the reality to test and monitor the response of the diagnosis method 
introduced in this chapter. For this, a fault type from the Fault_Injection_Type_Vector with a random 
time of fault occurrence and its value is selected. 
 

Function 4. Online Mode Fault Injection Type Vector 
Fault_Injection_Type_Vector=["CO2Sensor","DamperActuator","TemperatureSensor","HeaterActuator"]; 
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 Function 5. Random Fault Injection using Randi Function  
RealTime_Fault = randi(86400); 

 
switch Fault_Mode 

case "CO2Sensor" 

CO2_FaultInjectionValue = randi([300,850],1); 

case "DamperActuator" 

Damper_ FaultInjectionValue = randi([1,2],1)-1; 
    

case "TemperatureSensor" 

TempSensor_ FaultInjectionValue = randi([10,30],1);       

case "HeaterActuator" 

Heater_ FaultInjectionValue = randi([1,2],1)-1; 

otherwise   

end  

 
 

A RealCase example has shown in Table 21. In this RealCase object example, a stuck_at_off fault 
mode in the heater actuator at 70393 seconds is simulated as a fault injection time. 

 
Table 6.21 RealCase object Example for the DCV and heating system 

 

1RealCase_Object 
Type "Heater_Actuator" 
Time 70393 
Value 0 
Precentage_List 170x1 double 
Evaluation_List 20x3 string 

 
As mentioned in section 6.1.1.12, the Percentage_List shows the percentage of similarity. The 
generation of the Evaluation_List is the final step of fault diagnosis. The diagnosis method 
introduced in this thesis can diagnose the fault with its type, value, and time of fault occurrence. For 
this, the Evaluation_List is created based on comparing the percentages of similarity in the 
Precentage_List of the RealCase Example with every fault case available in the offline library. The 
Percentage_List table is eliminated in this thesis as it includes all the percentage of similarity values 
with every 170 fault objects available in the fault library. The fault diagnosis classifier sorts the 
evaluation list by the values in the percentage column. Therefore, the elements with the higher 
percentages of similarity will be placed at the top ranks, and the lower percentages of similarity will 
be placed at the lower ranks. Finally, the comparison results of the type and the time values of the 
Evaluation_List with the type and the time of the RealCase object which was initiated from the fault 
injection can determine the accuracy of the fault diagnosis method in this thesis based on the causal 
relations in fuzzy Bayesian belief network using the relation direction probabilities. In the example 
test scenario, the top 20 highest ranks of diagnosed fault cases have been considered for the fault 
diagnosis, and the first row of the table below is the diagnosis result with the highest rank having 
the same type and time of the injected fault the RealCase Example. It is also clear that the diagnosed 
time of fault occurrence is very close to the actual value with an excellent estimation. A more exact 
result is possible with an enormous offline library with more example fault scenarios for more fault 
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injections time samples. The Evaluation_List table for the RealCase example is shown in  Table 
6.22. 

 
Table 6.22 Evaluation_List Table for the RealCase Example 

 
No. Type in offline Library Time in offline Library Percentage in Precentage_List  

1 HeaterActuatorOff 70000 51.38 
→ The Diagnosed 

Case in the First 
Rank 

2 HeaterActuatorOff 65000 50 → Second Rank 
3 HeaterActuatorOff 60000 49.30 

→ Third Rank 
4 HeaterActuatorOff 75000 49.30 

5 HeaterActuatorOff 55000 47.91 → Fourth Rank 
6 HeaterActuatorOff 50000 45.83 → Fifth Rank 
7 HeaterActuatorOff 45000 45.13  
8 TemperatureSensorLow 70000 45.13  
9 HeaterActuatorOff 80000 45.13  

10 TemperatureSensorLow 65000 43.75  
11 TemperatureSensorHigh 70000 43.75  
12 TemperatureSensorLow 75000 43.75  
13 TemperatureSensorLow 60000 43.05  
14 TemperatureSensorHigh 65000 42.36  
15 TemperatureSensorHigh 75000 42.36  
16 HeaterActuatorOff 40000 41.66  
17 TemperatureSensorLow 55000 41.66  
18 TemperatureSensorHigh 60000 41.66  
19 TemperatureSensorHigh 55000 40.97  
20 TemperatureSensorLow 80000 40.97  

 
 

 
 
 

 
 
 
 
  



145 
 
 

 
 

6.2. DATA-DRIVEN-BASED FAULT DIAGNOSIS BASED ON 
MULTICLASS CLASSIFICATION  

This thesis provides also a pure data-driven fault diagnosis method that is a data-driven fault 
classifier to evaluate the performance of the composed diagnostic classifier, which is the 
combination of the data-driven and knowledge-driven diagnostic methods, introduced in section 6.1. 

 

6.2.1. SYSTEM ARCHITECTURE  
The Deep Learning toolbox allows the users to create and train networks to classify, regress, 

and forecast assignments in time series. This section describes the overall architecture of the 
designed deep neural network. The study of fault detection and diagnosis for common faults in the 
demand-controlled ventilation and heating system is based on established Long-short-term Memory 
(LSTM) networks to perform the classification and regression for time series [85]. MATLAB 
provides a platform for implementing neural networks with a wide range of toolboxes, which assist 
in creating and tuning functions concerning the implementation requirements [203]. The neural 
network tool in MATLAB can do tasks such as input-output and curve fitting, pattern recognition 
and classification, data clustering, and time series analysis. The main steps of a neural network 
design are data collection, creating the network, configuring the network, initializing the weights 
and biases, training the network, validating the network (post-training analysis), and using the 
network. 

The available samples must be divided into training and testing samples. The training 
samples are presented to the network during the training phase, and the network will be adjusted 
based on the error. The training samples are used to measure network generalization, which halts 
training when generalization stops improving.  

The deep learning toolbox in MATLAB supplies a framework for designing and 
implementing deep neural networks with algorithms, pre-trained models, and applications besides 
visualization tools, editing network architectures, monitoring the training progress. A deep network 
can be produced using the `deepNetworkDesigner` function in MATLAB. This section describes 
the main steps of developing a deep neural network for FDD, including data acquisition, data 
preprocessing, network model design, network model evaluation, and optimization of the best-
chosen deep neural network. Figure 6.13 shows a pictorial overview of the FDD based on the deep 
neural networks. 
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Figure 6.13 A pictorial overview of FDD based on deep neural networks [85]. 
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6.2.1.1. DATA ACQUISITION 
In the first step, the model or experimental data are collected. The data includes variables 

gathered from the status of sensors and actuators such as rooms temperature, outside environment 
temperature, occupancy of the rooms, CO2 concentration, damper status, and heater actuator status.In 
this thesis, we assumed that the actuator variables can get a binary value of zero or one. State zero 
for the heater actuator describes an off position, and state one shows the on position. State zero for 
the damper actuator illustrates the closed position, and state one shows the open position of the 
damper. This step creates a complete collection of data in simulation time respective to each system 
state, i.e., fault-free (healthy) operation and different modes of faulty operations. The fault injection 
framework was used to obtain training data for different faults, as discussed in chapter 5. Table 6.23 
denotes the abbreviations (labels) of each operating mode as a fault-free mode or occurrence of a 
specific type of fault.  

Table 6.23 Fault modes abbreviations. 
Fault Modes Description 

HM Healthy Mode 
BF (CO2) Battery Fault in CO2 sensor 

RF Routing Fault 
DF (OFF) Damper Fault in closed status with value 0 
GF (CO2) Gain Fault in CO2 sensor 

OF (T) Offset Fault in temperature sensor 
HF (OFF) Heater Fault in off mode with value 0 
OF (CO2) Offset Fault in CO2 sensor 
DF (ON) Damper Fault in open status with value 1 
GF (T) Gain Fault in temperature sensor 
BF (T) Battery Fault in temperature sensor 

 
 The total simulation time in this study is 86400 seconds and illustrates the system behavior 

during one winter day where the sampling time is one second. Table 6.24 shows the collected values 
for an example gain fault in the temperature sensor scenario. 
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Table 6.24 Data Acquisition 
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6.2.1.2. DATA PREPROCESSING 
Data preprocessing is an inevitable step that converts the raw data to the straightforward, 

practical, and meaningful representation of data as the deep neural network algorithms can learn 
from the processed high-quality data to solve a problem. The preprocessing includes the format 
conversion to the correct format, scaling the data, and feature extraction based on the created labels. 
The labels of the data are: ’Gain Fault in Temperature Sensor Room1 ’,’ Offset Fault in Temperature 
Sensor Room1’, ’Damper Fault in Room1(OFF)’, ’Damper Fault in Room1(ON)’, ’Heater Fault in 
Room1(OFF)’, ’Battery Fault in Temperature Sensor Room1’, ’Offset Fault in CO2 Sensor Room1’, 
’Gain Fault in CO2 Sensor Room1’, ’Healthy Mode in Room1’, ’Communication (Routing) Fault 
in Room1’, ’Battery Fault in CO2 Sensor Room1’. Finally, the collected data is divided into training 
and testing data for the network training and network evaluation. 
 

6.2.1.3. DEEP NEURAL NETWORK DESIGN 
This section discusses the main parts of designing a deep neural network which is an 

optimization problem. Figure 6.14 shows these parts. 

 
Figure 6.14 A Pictorial Overview of Deep Neural Network Design Network [85]. 

The training data is fed into a white box, including the following parts.  
a) Network Layers 

A deep neural network refers to a neural network with more than two hidden layers. 
The layers selected in this study are the sequence layer that transmits time-series data 
to the network. 

• The first layer is the input sequence layer.  
• The second layer which is an LSTM layer specifies the subtype of the 

sequence layers and learns long-term dependencies between time steps in 
time series and sequential data [85].  

• The third layer is fully connected to multiply the inputs by a weight matrix 
added to the bias vector.  

 

 

 DNN Design  

Training 
Data  
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• The fourth layer is the SoftMax layer to calculate the probabilities respective 
to each prediction.  

• The fifth layer is a classification output layer with classified labels as the 
results.  

“An LSTM network is a type of Recurrent Neural Network (RNN) that can learn 
long-term dependencies between time steps of sequence data” [203]. A set of LSTM 
cells can be used to train networks known as Long-Short-Term Memory Networks to 
perform classification and regression. Figure 6.15 shows an example of LSTM. In 
this figure, a flow of a time series X with C features with a length of S is shown. 
ht (output in time step t) and ct  (information learned in time step t) describe the 
hidden state and the cell state, respectively. However, more details are described in 
[203]. Each cell also contains several components, i.e., input gate, forget gate, cell 
candidate, and output gate. The values of these components are calculated using an 
activation function, e.g., sigmoid in this thesis, and the concatenations of the input 
weights, the recurrent weights, and the bias of each component. 

 
Figure 6.15 LSTM example [203]. 

An LSTM layer learns a long-term dependency between time steps of a sequence of 
information. Figure 6.16 shows the architecture of a straightforward LSTM network 
for classification. The network starts with an input layer of a sequence followed by a 
layer of LSTM. The network finishes with a fully connected layer, a softmax layer, 
and a classification output layer to predict class labels. 
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Figure 6.16 LSTM classification network architecture [203]. 

It is possible to generate a layered array comprising a sequence input layer, an LSTM 
layer, a fully linked layer, a softmax layer, and an output classification layer to 
generate a sequence-to-label LSTM network. The sequence input layer size is set to 
the amount of input information characteristics and the number of classes is set to the 
size of the fully linked layer. Then, the number of hidden units and the last output 
mode for the LSTM layer are specified. These are some steps to follow to construct 
a suitable LSTM network. Especially when working with lengthy sequences, noisy 
data, multi-step forecasts, and various input and output variables, time series 
forecasting is challenging. For time series forecasting, deep neural network 
techniques give many promises, such as automatic learning of temporal reliance and 
automatic processing of temporal constructions. 

b) Network Parameters 
Setting up network parameters or training options is the next step after defining the 
network layers. The trainingOptions function is a function to define these parameters 
and train the deep neural network. The “MiniBatchSize,” “MaxEpochs,” and 
“InitialLearnRate” are some examples of these parameters. The solver uses 
“MiniBatchSize” to update the parameters in each iteration. The term iteration refers 
to each network parameter update by the solver, and the term epoch refers to a full 
pass through the entire data set. The “MaxEpochs” specifies the maximum number 
of epochs. The “InitialLearnRate” shows the learning rate. The hardware resources 
are defined in the execution environment.  

c) Network Training 
Network training is the last step in the design of a neural network based on training 
data. The monitoring of network training is essential during the training process as it 
shows the improvement of the accuracy of the designed network.  
 

6.2.1.4. DEEP NEURAL NETWORK OPTIMIZATION 
The goal of this step is to optimize the deep neural network by tuning the optimal network 

parameters. Parameters include learning rate, number of hidden layers, number of hidden nodes, 
and number of epochs. The accuracy of the network changes by changing each of these parameters. 
Therefore, the optimum point is determined by monitoring the accuracy when a parameter change is 
applied while having nothing to do with the rest of the parameters. The training results of the 
diagnostic model for different parameters are discussed as the following [85]. 

a) Effect of Learning Rate 
Learning rate is a tuning parameter in the optimization of the DNN that controls how 
quickly the model is adapted to the problem by defining the step size of each iteration 
while moving toward a minimum of a loss function. Too low learning rate requires 
more training epochs and smaller weight change in each update to reach the minimum 
point of the loss function and too high learning rate causes drastic changes which may 
lead to divergent results. The value of the learning rate in each training greatly 
influences the performance of the network. In this study, instead of using a fixed 
learning rate throughout the training process, a higher learning rate can be set in the 
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first training and be gradually reduced to find the optimized point. Therefore, the 
network is trained based on a wide range of learning rates such as 0.1, 0.05, 0.025, 
0.01, 0.005, 0.0005, and 0. On the other hand, the initial settings of the other network 
parameters had been set to the fixed values as follows. The number of the hidden 
units is set to 180, the number of output classes is set to 11, the mini-batch size is set 
to 150, and the maximum epoch is set to 150. Figure 6.17 shows the model accuracy 
with different learning rates. According to these results, a high value of the learning 
rate causes a low network accuracy, and when the learning rate value decreases, the 
accuracy increases gradually. The best accuracy for the DNN model is 93% at a 
learning rate of 0.005. With more reduction in the learning rate, the accuracy tends to 
decrease because the maximum number of epochs is not enough for the lower 
learning rate to reach the solution. Also, the training time increases with low learning 
rates because more time is then needed to meet the convergence. 

 
Figure 6.17 Model accuracy with different learning rates. 

b) Effect of Number of Hidden Layers 
The number of hidden layers is also an essential factor affecting training performance 
that describes the main difference between the traditional NN and DNN. The DNN 
model is trained with the following parameters. During the tuning, the number of 
hidden layers increases gradually with the values of 3, 4, 5, 6, 7 while the other 
parameters remain the same in the training, e.g., the number of output classes is 11, 
the maximum number of epochs is 200, the minimum batch size is 150, and the 
learning rate is 0.001. Figure 6.18 demonstrates the model accuracy with a different 
number of hidden layers. According to the results in this figure, it can be observed 
that the accuracy decreases gradually when increasing the depth of the network. The 
accuracy decreases from 94%, with three hidden layers to 30% with seven hidden 
layers. Also, the required training time increases by increasing the number of hidden 
layers. Therefore, three hidden layers are selected as a suitable depth of the designed 
network model. 
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Figure 6.18 Model accuracy with different numbers of hidden layers. 

c) Effect of Number of Hidden Layer Units 
Hidden layer nodes (or units) should be considered in the network training stage 
because of their significant influence on the training progress. In general, the number 
of nodes of the input layer is set based on the number of training data features, 
whereas the nodes of the output layer are equal to the output classes. Figure 6.19 
illustrates the accuracy of the model with a different number of hidden units. This 
thesis considers tuning the number of hidden layer units ranging as follows: 25, 50, 
100, 150, 200, 250, 300, 350, 400. The other experimental parameters in these setups 
are the number of classes of 11, the maximum epochs of 250, the minimum batch 
size of 150, and the learning rate of 0.001. The results in Figure 6.19 show that the 
training accuracy is poor with small hidden nodes. Increasing the number of nodes 
improves the accuracy to exceed 80% with 50 nodes, which seems insufficient. By 
increasing the number of nodes, it is observed that the accuracy improves and reaches 
the best value with 250 nodes (accuracy around 98%). However, more increase of 
nodes is not helpful anymore. The number of nodes is related to training data samples. 
However, the training time increases by increasing the number of hidden nodes. 
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Figure 6.19 Model accuracy with different numbers of hidden units. 
d) Effect of Number of Epochs 

The last parameter recognized as an essential factor in the DNN model accuracy is 
the number of epochs. The best parameters of the previous experiments are selected 
in tuning the number of training epochs. The other setup parameters are the number 
of the hidden units of 250, the learning rate of 0.005, the number of hidden layers 3, 
the output classes of 11, and the mini-batch size of 150. Figure 6.20 describes the 
accuracy of the DNN model over different numbers of epochs. In the beginning, the 
number of epochs is 25 and then increases gradually in the next training. The results 
show the effect of increasing the number of epochs on the performance, where the 
accuracy is improved by increasing the epoch number to be around 85% with 150 
epochs. When the number of epochs exceeds 250, the accuracy of the DNN model 
improved to reach around 95%. The best-observed value of the accuracy is 98% with 
490 epochs, and a further number of epochs cause an increase in the training time. 
 

 
Figure 6.20 Model accuracy with different numbers of the epoch. 
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6.2.1.5. DEEP NEURAL NETWORK RESULT  
After training the proposed deep neural network, the model gives the predicted output as a 

result. Figure 6.21 shows a sample of model prediction results for a battery fault as an example. 
 

 
Figure 6.21 Test data and predicted labels of the designed model. 
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7. EVALUATION AND RESULTS 
Equation Chapter (Next) Section 1 
This section discusses the evaluation and results of fault diagnosis for both diagnostic 

methods as classifiers discussed in this thesis. The first method is a composed diagnostic 
classification method introduced in this thesis based on the causal relations in fuzzy Bayesian 
networks using relation direction probabilities, and the second method is a data-driven classification 
method based on a deep neural network. Performance indicators are used to evaluate and compare 
different classification models [204]. Therefore, this section introduces the performance metrics and 
the results from these two methods will be compared and discussed to evaluate the effectiveness of 
each method. Statistical classification is visualized in Figure 7.1 to distinguish different classes of a 
set of data in a classification problem, e.g., True Positive (TP), False Positive (FP), True Negative 
(TN), and False Negative (FN). In these terms, the word “positive” is the output of the diagnosis 
algorithm that is predicted and diagnosed. TP shows the number of positive elements classified 
accurately. TP indicates that the injected faults are also correctly predicted. FP is a false alarm and 
describes the number of actual negative elements that are classified as positive. FP shows the 
incorrect diagnosis of the system as a healthy mode when it is faulty. TN indicates the number of 
negative examples classified accurately (correct rejection). TN describes the truly healthy mode that 
is not also diagnosed. FN is defined as the missed class of faults or the number of positive elements 
classified as negatives. FN shows the faults in the system known from the fault injection, but the 
diagnostic classifier did not successfully diagnose them. 

 
Figure 7.1 Statistical Classification and Performance Measures, e.g., Precision and Recall. 

There are several evaluation metrics for classifiers. The diagnostic methods that rely on classifiers 
to solve classification problems use some parameters to measure the performance known as 
performance measures, e.g., precision, recall, F1, and accuracy, are used based on main classes of 
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TP, FP, FN, and TN. A confusion matrix is used to get insight and to visualize the performance of 
an algorithm. Confusion matrices distinguish between predicted and actual values and are applied to 
binary (or double-class-) and multiclass classifications problems [205]. The rows of the matrix 
indicate the samples in a predicted class and columns show the samples in an actual class (or vice 
versa). Figure 7.2 indicates an example of a confusion matrix for binary classification. 
 

 
Figure 7.2 Confusion matrix for binary classification problem [206]. 

Precision or Positive Predictive Value (PPV) shows how many of the total diagnostic results are 
correct or how relevant the detected items are. The precision [207] is the fraction of the truly 
predicted elements to the total detected elements. The precision can be determined by the equation 
below. 

 TPPrecision
TP FP

=
+

 (7.1)  

Recall or sensitivity or hit rate or True Positive Rate (TPR) shows how many relevant items are 
correctly diagnosed. The recall is the fraction of correctly detected items among all the items that 
should be detected [207]. It means the ability to find all relevant elements. Recall can be determined 
by the equation below. 

 TPRecall
TP FN

=
+

                                              (7.2) 

F-Measure or F-score combines precision and recall rates and is the harmonic mean of precision 
and recall instead of the arithmetic mean. F1 is an F-Measure with evenly weighted recall and 
precision. The f-measure gives an estimation of the accuracy of the system under test [207]. The 
equation below determines the F1. 

21 1 1F

Precision Recall

=

+

                                                   (7.3) 

Accuracy (ACC) is the proportion of correct predictions [208], as below: 

 TP TNACC
TP TN FP FN

+
=

+ + +
 (7.4) 
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7.1. EVALUATION AND RESULTS FOR COMPOSED DIAGNOSTIC 
CLASSIFIER BASED ON KNOWLEDGE-DRIVEN AND DATA-
DRIVEN METHODS 

During the evaluation phase, the total number of 110 fault cases have been considered 
calculated based on 22 fault injection values and five injection times. These fault cases have been 
injected in five different instances of time {17000,34000,51000,68000,85000}, And four fault types 
of }"CO2Sensor","DamperActuator","TemperatureSensor","HeaterActuator"{ with 22 fault values 
for these four fault types shown in the Function 7.1. The range of values for each signal is divided 
into three subdomains. Therefore, the value vectors are defined to ensure that sufficient fault samples 
from each subdomain are considered. 

Function 7.1 Value Vectors of Fault Injection 
Fault_Injection_Co2Value_Vector = [350,400,450,550,600,650,750,800,850]; 

Fault_Injection_DamperValue_Vector = [0,1]; 
Fault_Injection_TempValue_Vector = [16,17,18,19,20,21,22,23,24]; 
Fault_Injection_HeaterValue_Vector = [0,1]; 

 

 
The numbers of truly diagnosed faults considering the type and the time of faults in different 
cumulative ranks are depicted in Table 7.1. This table shows the number of correct diagnoses (TPs) 
categorized in different cumulative ranks for different fault types. 
 

Table 7.1 Number of diagnoses in different cumulative ranks for different fault types 

Fault Type Total 
number of 

injected 
fault cases 

Number of 
Diagnoses 
(TPs) in 
Rank1 

Number 
of 

Diagnoses 
(TPs) in 
Rank 1,2 

Number 
of 

Diagnoses 
(TPs) in 

Rank1,2,3 

Number of 
Diagnoses 
(TPs) in 

Rank 
1,2,3,4 

Number of 
Diagnoses 
(TPs) in 

Rank 
1,2,3,4,5 

CO2 Sensor 45 38 41 43 43 43 
Damper 
Actuator 

10 10 10 10 10 10 

Temperature 
Sensor 

45 35 40 41 41 42 

Heater Actuator 10 10 10 10 10 10 
Total Number 110 93 101 104 104 105 
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Figure 7.3 Number of correct diagnoses (TPs) categorized in different cumulative ranks for different fault types. 

 
The percentages of diagnoses (TPs in %) are shown in Table 7.2. 

Table 7.2 Percentages of diagnosis (TP)  

Fault Type 
Percentage of 

Diagnoses 
(TPs) in Rank1 

Percentage of 
Diagnoses (TPs) 

in Rank 1,2 

Percentage of 
Diagnoses (TPs) 

in Rank 1,2,3 

Percentage of 
Diagnoses (TPs) 
in Rank 1,2,3,4 

Percentage of 
Diagnoses (TPs) 
in Rank 1,2,3,4,5 

CO2 Sensor 84.44 91.11 95.55 95.55 95.55 
Damper Actuator 100 100 100 100 100 

Temperature 
Sensor 77.77 88.88 91.11 91.11 93.33 

Heater Actuator 100 100 100 100 100 
Average 

Percentage of 
Diagnosis 

90.55 95 96.66 96.66 97.22 

 

Figure 7.4 contains the diagram with the percentages of correct diagnoses (TPs in %) in different 
cumulative ranks for different fault types. This figure shows the composed diagnostic method can 
overall diagnose 97.22% of faults truly (TPs over the whole five cumulative ranks). From this value, 
90.55% of faults were diagnosed at the first rank, 4.44% were diagnosed at the second rank, 1.66% 
were diagnosed at the third or fourth rank, and 0.56% were diagnosed at the fifth rank.  
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Figure 7.4 Percentage of correct diagnoses (TPs) in different Ranks for different fault types. 
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The accuracy of the diagnosis method is measured as the number of truly diagnosed faults 
considering the type and time of fault to the total population based on equation (7.4) that is depicted 
in Table 7.3. This table shows the cumulative accuracy increases when only considering the 
diagnosis results from the first rank to the top five ranks. 
 

Table 7.3 Accuracy (ACC) of fault diagnosis  
Fault Type Accuracy for 

Rank 1 
Accuracy for 

Rank 1, 2 
Accuracy for 
Rank 1, 2, 3 

Accuracy for 
Rank 1, 2, 3, 4 

Accuracy for 
Rank 1, 2, 3, 4, 5 

CO2 Sensor 84.78 91.30 95.65 95.65 95.65 
Damper Actuator 100 100 100 100 100 

Temperature Sensor 78.26 89.13 91.30 91.30 93.47 
Heater Actuator 100 100 100 100 100 

Average Accuracy 90.76 95.10 96.73 96.73 97.28 
 

Figure 7.5 shows the diagram of the fault diagnosis accuracy of detections in different cumulative 
ranks for different fault types. As shown, including more diagnosis ranks increases the overall 
accuracy and the accuracy of each fault type. The diagnosis method's average accuracy shows the 
accuracy increases from 90.76% to 97.28% when considering the top five ranks instead of only the 
first rank. 

 
Figure 7.5 Fault Diagnosis Accuracy in different Ranks for different Fault Types. 
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Recall is calculated for the diagnosis method introduced in this thesis based on equation 7.2, and the 
results are shown in Table 7.4.  

Table 7.4 Recall (TPR)  
 

Fault Type Recall for 
Rank 1 

Recall for 
Rank 1, 2 

Recall for 
Rank 1, 2, 3 

Recall for 
Rank 1, 2, 3, 4 

Recall for Rank 
1, 2, 3, 4, 5 

CO2 Sensor 84.44 91.11 95.55 95.55 95.55 
Damper Actuator 100 100 100 100 100 

Temperature Sensor 77.77 88.88 91.11 91.11 93.33 
Heater Actuator 100 100 100 100 100 
Average Recall 90.55 95 96.66 96.66 97.22 

 
Figure 7.6 shows the diagram of the recall performance metric of fault diagnosis in different 
cumulative ranks for different fault types. As shown, including more diagnosis ranks in a cumulative 
manner increases the overall and specific recall value for each fault type. The average recall of the 
diagnosis method shows the recall increases from 90.55% to 97.22% when considering the top five 
ranks instead of only the first rank. 

 
Figure 7.6 Recall (TPR) in different cumulative ranks for different Fault types. 
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Precision is calculated for the diagnosis method introduced in this thesis based on equation 7.1, and 
the results are shown in Table 7.5. 

Table 7.5 Precision (PPV)  

Fault Type Precision in 
Rank 1 

Precision in 
Rank 1,2 

Precision in 
Rank 1,2,3 

Precision in 
Rank 1,2,3,4 

Precision in 
Rank 1,2,3,4,5 

CO2 Sensor 100 100 100 100 100 
Damper Actuator 100 100 100 100 100 

Temperature Sensor 100 100 100 100 100 
Heater Actuator 100 100 100 100 100 

Average Precision 100 100 100 100 100 
 
Figure 7.7 shows the diagram of the precision. As shown, the average precision of the diagnosis 
method shows a distinguished result of 100% for every fault type for every component. 

 
Figure 7.7 Precision (PPV) in different cumulative ranks for different Fault types. 
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F1 is calculated for the diagnosis method introduced in this thesis based on equation 7.3, and the 
results are shown in Table 7.6.  

Table 7.6 F1 in different cumulative ranks for different Fault types 
 

Fault Type F1 for 
Rank 1 

F1 for 
Rank 1, 2 

F1 for Rank 
1, 2, 3 

F1 for Rank 
1, 2, 3, 4 

F1 for Rank 
1, 2, 3, 4, 5 

CO2 Sensor 91.56 95.34 97.72 97.72 97.72 
Damper Actuator 100 100 100 100 100 

Temperature Sensor 87.50 94.11 95.34 95.34 96.55 
Heater Actuator 100 100 100 100 100 

Average F1 94.76 97.36 98.26 98.26 98.56 
 

Figure 7.8 shows the diagram of the F1 in different cumulative ranks for different fault types. As 
shown, including more diagnosis ranks increases the overall F1 value and the F1 of each fault type. 
The average F1 or F-score of the diagnosis method shows the F1 increases from 94.76% to 98.56% 
when considering the top five ranks instead of only the first rank. 
 

 
Figure 7.8 F1 in different cumulative ranks for different Fault types. 

The overview of the performance metrics of the fault diagnosis method introduced in this thesis 
indicates the average values increases when considering the top five ranks instead of only the first 
rank. For example, the diagnosis result with considering the top five ranks is always better than 
considering only the top two ranks, which is summarized in the table below. 
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Table 7.7 Overview of performance metrics of fault diagnosis method in this thesis 
Fault Labels Relevant 

Elements 
/ 
Diagnosis 

TP FP TN FN TotPop Precision Recall F-Score 
or F1 

Accuracy 

CO2 Sensor 
Rank 1 

45 38 0 1 7 46 100 84.44 91.56 84.78 

CO2 Sensor 
Rank 1,2 

45 41 0 1 4 46 100 91.11 95.34 91.30 

CO2 Sensor 
Rank 1,2,3 

45 43 0 1 2 46 100 95.55 97.72 95.65 

CO2 Sensor 
Rank 1,2,3,4 

45 43 0 1 2 46 100 95.55 97.72 95.65 

CO2 Sensor 
Rank 1,2,3,4,5 

45 43 0 1 2 46 100 95.55 97.72 95.65 

Damper 
Actuator Rank 1 

10 10 0 1 0 11 100 100 100 100 

Damper 
Actuator Rank 
1,2 

10 10 0 1 0 11 100 100 100 100 

Damper 
Actuator Rank 
1,2,3 

10 10 0 1 0 11 100 100 100 100 

Damper 
Actuator Rank  
1,2,3,4 

10 10 0 1 0 11 100 100 100 100 

Damper 
Actuator Rank  
1,2,3,4,5 

10 10 0 1 0 11 100 100 100 100 

Temperature 
Sensor Rank 1 

45 35 0 1 10 46 100 77.77 87.50 78.26 

Temperature 
Sensor Rank 1,2 

45 40 0 1 5 46 100 88.88 94.11 89.13 

Temperature 
Sensor Rank 
1,2,3 

45 41 0 1 4 46 100 91.11 95.34 91.30 

Temperature 
Sensor Rank 
1,2,3,4 

45 41 0 1 4 46 100 91.11 95.34 91.30 

Temperature 
Sensor Rank 
1,2,3,4,5 

45 42 0 1 3 46 100 93.33 96.55 93.47 

Heater Actuator 
Rank 1 

10 10 0 1 0 11 100 100 100 100 

Heater Actuator 
Rank 1,2 

10 10 0 1 0 11 100 100 100 100 

Heater Actuator 
Rank 1,2,3 

10 10 0 1 0 11 100 100 100 100 

Heater Actuator 
Rank 1,2,3,4 

10 10 0 1 0 11 100 100 100 100 

Heater Actuator 
Rank 1,2,3,4,5 

10 10 0 1 0 11 100 100 100 100 
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7.2. EVALUATION AND RESULTS FOR DATA-DRIVEN-BASED 
FAULT DIAGNOSIS BASED ON MULTICLASS 
CLASSIFICATION 

This section presents and discusses the evaluation results for the fault diagnosis based on 
deep neural networks. The evaluation strategy evaluates the proposed deep neural network based on 
different faults types described in Table 6.23. Once the training step is finished, the final network 
model with the optimized parameters is ready for evaluation. The setup parameters are the number 
of the hidden units of 250, the learning rate of 0.005, the number of hidden layers 3, the output 
classes of 11, and the mini-batch size of 150. The evaluation results of the deep neural network are 
calculated based on testing data. Testing data consists of 10 types of faults injected at different times 
and the healthy data.  

In a deep neural network, multi-class confusion matrices are used. A multi-class confusion 
matrix, unlike a binary confusion matrix, has no positive or negative classes. Figure 7.9 shows a 
multi-class confusion matrix [207], considering that the confusion matrix in this method includes 
more than two categories. The grey diagonal shows the correct predictions and the white diagonal 
represents the incorrect predictions. Confusionmat computes confusion matrix for classification 
problem in MATLAB [209].  

 
Figure 7.9 Confusion matrix for the multi-class classification problem, with A, B, C, and D classes [210]. 

The equivalent confusion matrix of a multi-class confusion matrix to the confusion matrix in Figure 
7.2 is shown below. In Figure 7.10, let assume that class B is the target class; then, to obtain the 
equivalent TN, all the elements shown with the TN label must be summed up. Similarly, for 
obtaining the equivalent FP and FN, all the elements shown with FP and FN labels must be summed 
up. The TP value is the single element crossed from the B column and B row. 

  True Class 

 Classes A B C D 

Pr
ed

ic
te

d 
Cl

as
s A TN FN TN TN 

B FP TP FP FP 

C TN FN TN TN 

D TN FN TN TN 

Figure 7.10 Confusion matrix for the multi-class classification problem equivalent to a double-class confusion matrix. 
According to the confusion matrix in Figure 7.11, it can be observed that the network model 

can diagnose ten different types of faults and the healthy data with accuracy values ranging from 
93% to 100%. The matrix shows the precision and the recall percentage of each class. The model's 
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overall accuracy is based on all classes (97.4%). This value is considered a promising result of FDD 
in the DCV and heating systems using the deep neural network, particularly the LSTM model. 

 
 

 

 

 
Figure 7.11 Confusion matrix of designed diagnostic neural network. 

 
Figure 7.12 shows precision values calculated for each class of faults [207] in fault diagnosis based 
on DL. This precision indicates correctly predicted samples or correct diagnosed faults among all of 
the predicted data. The lowest precision value belongs to the battery fault in the temperature sensor 
(0.894), and the highest precision value is 1 for the routing fault and gain fault in the CO2 sensor. 
The average precision for all fault types is 0.967, while the average precision for the stuck-at faults, 
including damper fault in closed status, heater fault in off status, and damper fault in open status, is 
0.986. 
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Figure 7.12 Precision for different fault classes in DL. 

Figure 7.13 shows recall values calculated for each class of faults [207] in fault diagnosis based on 
DL. The lowest recall value belongs to the routing fault (0.935), and the highest precision value is 1 
for the damper fault stuck at off status, offset fault in the CO2 sensor, and gain fault in the temperature 
sensor. The average recall for all fault types is 0.982, while the average recall for the stuck-at faults, 
including damper fault in closed status, heater fault in off status, and damper fault in open status, is 
0.984. 

 
Figure 7.13 Recall for different fault classes in DL. 
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Figure 7.14 presents the F-score [207] values of each fault class. The lowest F-score value belongs 
to the battery fault in the temperature sensor (0.9345), and the highest F-score value is 1 for the gain 
fault in the CO2 sensor. The average F-score for all fault types is 0.9746, while the average F-score 
for the stuck-at faults, including damper fault in closed status, heater fault in off status, and damper 
fault in open status, is 0.9855. 

 
Figure 7.14 F-score for different fault classes in DL.  
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7.3. DISCUSSION ON RESULTS 
This section compares the results of the composed diagnostic classifier based on the causal 

relations in an FBBN using RDPs to data-driven classification based on a deep neural network. Table 
7.8 shows the comparison results, which shows that the performance of the composed diagnostic 
classifier is as good as data-driven classification based on deep neural network, while benefiting 
from the advantages of the knowledge-driven methods such as transparency of the process, 
understandability besides advantages of the data-driven methods such as automatic and low effort 
classification. In this table, the performance of the data-driven diagnostic classifier is recalculated 
for stuck-at faults that are comparable with the composed diagnostic classifier's performance.  

The accuracy of the composed diagnostic classifier is measured at 97.28% compared to the 
overall accuracy of the data-driven diagnostic classifier (97.40%), which shows a reasonable 
accuracy.  

The precision and F-score values show the superiority of the presented composed diagnostic 
classifier over the data-driven diagnostic classifier. The precision of the composed diagnostic 
classifier is 100% while it is 96.70% for the overall precision of the data-driven diagnostic classifier 
and 98.60% for the precision of the data-driven diagnostic classifier for stuck-at or constant faults 
that means the composed diagnostic classifier diagnosed items are more relevant than the data-driven 
diagnostic classifier. The F-score of the composed diagnostic classifier indicated the values of 
98.56%. In comparison, 97.46% for the overall F-score of the data-driven diagnostic classifier and 
98.55% for the F-score of the data-driven diagnostic classifier for stuck-at or constant faults that 
means the harmonic mean of precision and recall (instead of the arithmetic mean) for the composed 
diagnostic classifier is better than the data-driven diagnostic classifier. 

 Evaluation results show that the recall value for the data-driven diagnostic classifier 
(98.20%), specifically for only stuck-at or constant faults (98.40%), is comparable to the recall value 
of the composed diagnostic classifier (97.22%); however, the recall value of the data-driven 
diagnostic classifier is better that means the data-driven diagnostic classifier diagnosed more items 
from the relevant items than the composed diagnostic classifier. 

Table 7.8 Comparison of performance metrics in this thesis. 

Type of Classifier Accuracy Precision Recall F1 or F-score 
Composed diagnostic 
classifier – Overall 97.28% 100% 97.22% 98.56% 

Data-driven diagnostic 
classifier – Overall 97.40% 96.70% 98.20% 97.46% 

Composed diagnostic 
classifier – For only actuator 
stuck-at faults 

100% 100% 100% 100% 

Data-driven diagnostic 
classifier – For only actuator 
stuck-at faults 

NA 98.60% 98.40% 98.55% 

 
The composed diagnostic classifiers are designed and implemented step-by-step and they are one of 
the white-box approaches, however, the data-driven approaches are mostly categorized as black-box 
approaches. On the other hand, the data-driven diagnostic classifiers need lower efforts but more 
computation capacities. 
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8. CONCLUSION AND FURTHER RESEARCH 
This chapter gives an insight into the overall results presented in this dissertation. The related 

works and the state-of-the-art illustrated the research gaps. The research gaps are from different 
perspectives: a model which combines both DCV and heating systems for health monitoring and 
fault diagnosis, a composed fault diagnosis method based on the combination of the knowledge-
driven and data-driven fault diagnosis methods.  

For the first research gap, a DCV and a heating system are combined and they are analytically 
modeled and dynamically simulated. This simulation framework is a platform for health monitoring 
and testing and training failure detection and fault diagnosis methods based on the observed system 
behavior and output data. Therefore, this thesis introduced the theory and models a DCV and heating 
system, including three parts of the physical model, DCV and heating system, and modular 
composability model. This DCV and heating system involves numerous functions, inputs, and 
outputs and the simulation framework helps in-depth assessment of components functionality and 
finding effective parameters besides the adaptive thermal control. The results indicate that the 
developed DCV and heating system can simulate IAQ and comfort parameters in an example 
scenario of an office building in real-time. The control strategies in this study aim to keep the indoor 
temperature and the CO2 concentrations of the office rooms around the setpoint (within the scalable 
thresholds), despite the variation of the different parameters, e.g., occupants, outside temperature 
pattern, heating system output power, status or size of air damper, and wind speed. The 
implementation part of the DCV and heating system is established scalable based on the modular 
composability scheme. The results showed that the behavior of the system through the simulation 
maps the analytical model of the system. The investigated system empowers the user to monitor and 
control the real-time system performance, the duty cycle for the heating system, the frequency of 
heater ON/OFF switch, and damper open/closed status to identify maintenance problems, failure 
detection, and fault diagnosis, especially in the design phase. The user can change various parameters 
and thresholds to monitor the system operation with desired values in the MATLAB/Simulink model 
workspace and find the optimum set points. The system model is established based on wired and 
wireless networks. A fault injection framework with a GUI allows to trace the behavior of the system 
in the presence of different kinds of faults and to understand the effect of different types of faults in 
components or communication networks on energy consumption and occupancy comfort based on 
the fault-error-failure propagation model in component and system level.  

This thesis further solved the research problem of failure detection and fault diagnosis of the 
DCV and heating systems as a composed fault diagnosis method that is independent of the historical 
data, independent of the expert knowledge, and computing-resource efficient. The building blocks 
and GUIs are developed for evaluating the robustness against various faults and failures by 
artificially injecting different types of faults. The data produced in this framework is used to test 
various diagnostic classifiers, e.g., data-driven and composed diagnostic classifiers. The simulated 
model can be connected to the data server using SQL for the data logging. The developed fault 
diagnosis method in this thesis based on a composed diagnostic classifier formulates the fault 
diagnosis problem in a knowledge-driven diagnostic system based on fuzzy theory and Bayesian 
inference that is combined with data-driven classifiers when maintaining the advantages of the 
knowledge-driven based and data-driven methods. The composed diagnostic classifier uses  
conditional probability to show the direction of dependency of different subdomains against the 
literature that used it to calculate the posterior probability of a fault given observed fault symptoms 
(based on the expert knowledge) and relies on the causal relations in a fuzzy Bayesian belief network 
using relation direction probabilities to lower the fault diagnosis efforts and energy waste as well as 
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to increase the operational efficiency. This method also reveals the hidden dependencies in signals 
over time in case of faults and reveals the hidden dependencies of multiple fault implications, e.g., 
a damper stuck-at open fault causes over ventilation that causes room temperature decrease that 
means the increase of heating load that causes the heater stuck at ON which itself is another fault 
implication. This novel composed diagnostic classification method is developed for specific 
component fault types, e.g., stuck-at or constant faults and integrates causal relations using the 
relation direction probabilities and fuzzy theory into the Bayesian belief networks. The RDPs were 
used to update the fault library. This research considers four types of stuck-at or constant faults from 
different components: temperature sensor, CO2 sensor, heater actuator, and damper actuator with 
various fault values in different time instances. The evaluation result for the FBBN shows that this 
method can overall diagnose 97.22% of faults truly (TPs over the whole five cumulative ranks). 
From 97.22%, 90.55% of faults were diagnosed at the first rank, 4.44% were diagnosed at the second 
rank, 1.66% were diagnosed at the third and fourth rank. The performance metrics are used to 
evaluate the effectiveness of the ranking of diagnostic results using probability values. The average 
accuracy of the diagnosis method shows the cumulative accuracy from only considering the 
diagnosis results from the first rank (90.76%) increased to 97.28% when the fault diagnosis classifier 
considers the top five ranks. The average recall of the diagnosis method shows the cumulative recall 
from only considering the diagnosis results from the first rank (90.55%) increased to 97.22% when 
the fault diagnosis classifier considers the top five ranks. The average precision of the diagnosis 
method shows the cumulative precision is always 100%. The average F-score or F1 of the diagnosis 
method shows the cumulative F-score from only considering the diagnosis results from the first rank 
(94.76%) increased to 98.57% when the fault diagnosis classifier considers the top five ranks. The 
overall overview of the performance metrics of the fault diagnosis method introduced in this thesis 
indicates the average values of the performance metrics with a cumulative basis from only 
considering the diagnosis results from the first rank increases to when the fault diagnosis classifier 
considers more top ranks, for example, the diagnosis result with considering the top five ranks is 
always better than considering only the top two ranks.  

Also, data-driven classification is established using deep neural networks to compare and 
evaluate the performance of the presented composed diagnostic classifier. This framework based on 
artificial intelligence includes different steps of data acquisition, data preprocessing, network model 
design, model optimization, and network model evaluation. The evaluation results show that the 
performance of the introduced composed diagnostic classification based on the causal relations in 
an FBBN using RDPs is as good as data-driven classification based on deep neural networks. The 
accuracy of the novel composed diagnostic classifier is measured at 97.28% compared to the overall 
accuracy of the data-driven diagnostic classifier (97.40%), which shows a reasonable accuracy. The 
precision of the composed diagnostic classifier indicated the values of 100% while 96.70% for the 
overall precision of the data-driven diagnostic classifier and 98.60% for the precision of the data-
driven diagnostic classifier for only stuck-at or constant faults that means the composed diagnostic 
classifier diagnosed items are more relevant than the data-driven diagnostic classifier. The F-score 
of the composed diagnostic classifier indicated the values of 98.56%. In comparison, 97.46% for the 
overall F-score of the data-driven diagnostic classifier and 98.55% for the F-score of the data-driven 
diagnostic classifier for only stuck-at or constant faults that means the harmonic mean of precision 
and recall (instead of the arithmetic mean) for the composed diagnostic classifier is better than data-
driven diagnostic classifier. Evaluation results show the recall value for the data-driven diagnostic 
classifier (98.20%), specifically for only stuck-at or constant faults (98.40%), is comparable to the 
recall value of the composed diagnostic classifier (97.22%); however, the recall value of the data-
driven diagnostic classifier is better that means the data-driven diagnostic classifier diagnosed more 
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items from the relevant items than the composed diagnostic classifier. The composed diagnostic 
classifiers are designed and implemented step-by-step and they are one of the white-box approaches, 
however, the data-driven approaches are mostly categorized as black-box approaches. On the other 
hand, the data-driven diagnostic classifiers need lower efforts but more computation capacities. 

All the contributions mentioned above in this thesis are designed based on a modular 
composability scheme. The unique modules are used to create various complex building models. 
This thesis introduces the modular composability scheme using generic diagnostic components at 
the system level applicable in many areas, especially in cyber-physical systems. Therefore, the 
introduced model in this thesis can combine modules and understand the composition of diverse 
subsystems by having an entire perception of its components and combinations. That means the 
model, thanks to the modular composability algorithm, is scalable. The user can generate different 
types of buildings with various architectures with many rooms and floors. The system model, fault 
injection blocks, and diagnostic modules will be automatically extended. This thesis describes a step-
by-step composability modeling. This study aimed to develop a generic composable model for the 
buildings with different architectures for system behavior monitoring and to test the FDFD models.  

The future work will be an extension of the introduced fault diagnosis method based on the 
composed diagnostic classification with consideration of complex systems with many signals and 
more types of faults extra than the stuck-at faults, fault diagnosis of multiple faults in components, 
e.g., communication faults. 
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