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Abstract

Space Situational Awareness (SSA) by ground-based Digital-Array Radar (DAR) sys-
tems has been attracting global attention in recent years. One of its fundamental
tasks is to provide accurate collision forecast between space debris and active satel-
lites, leading to increased avoidance probability. In a DAR system, this is achieved
by a rigorous Signal Processing (SP) stage that successfully detects stray space debris
and accurately estimates its parameters: range, Direction-of-Arrival (DOA), radial ve-
locity, and more. However, classical SP methods, which are not tailored to the SSA
environment, ultimately lead to sub-optimal performance.

The objective of this thesis is to improve the DAR performance through the adap-
tation of the SP scheme to the SSA scenario. We present the shortcomings of several
key traditional SP aspects and propose new methods for improved target detection and
parameter estimation, supported by numerical demonstrations of a real SSA DAR.

One such aspect is the SP of large DAR with a high number of receiving antenna
elements, which contributes to a better target detection and DOA estimation. Com-
monly used data reduction transformations harness existing resources to serve only the
target detection aspect, which is not necessarily optimal for SSA. We present a novel
parameter-controlled design method to construct a lossless (or optimal) transformation,
with respect to the available resources and an acceptable trade-off between detection
and DOA estimation performance. Moreover, a new tool is provided to analyze the
potential performance of a given array without the need for simulations. The above-
mentioned concept is also demonstrated in a multi-static radar network configuration,
showing significant performance gain.

A common topic in most radar systems is the DOA Maximum Likelihood Estimator
(MLE). In SSA, we deal with targets in the Low Earth Orbit (LEO) region, moving at
great orbital velocities. Pulsed radar systems therefore experience the so-called ‘DOA
migration’ effect from pulse to pulse, where each pulse echo returns with changing DOA
and unequal amplitude. With a classical MLE, these effects result in a large target
localization estimation bias (in the order of kilometers). For that purpose, the orbital
mechanics of LEO targets are implemented in the DOA motion model, rendering the
estimation bias removed.

Another issue of great impact is the target masking phenomenon. Classical SP gives
rise to a miss-detection in two specific cases related to SSA. A far range target will
go unnoticed in the presence of a short range target. In addition, a small target will
remain undetected due to a nearby larger target. With this challenge in mind, two new
waveform design concepts are successfully demonstrated.
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The above-mentioned techniques ultimately lead to superior estimation accuracy,
higher resource efficiency, and robust detection capabilities, contributing to the SSA
goal. Based on this research, new estimation methods and operational modes could be
explored in the context of a single station and radar networks.
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Zusammenfassung

Die Erfassung der Weltraumlage durch erdgebundene digitale Phased-Array-Radarsy-
steme hat in den letzten Jahren global an Bedeutung gewonnen. Eine ihrer grundlegen-
den Aufgaben ist es hochgenaue Kollisionsvorhersagen zwischen Weltraumschrott und
aktiven Satelliten zu ermöglichen, sodass durch notwendige Ausweichmanöver die Kolli-
sionswahrscheinlichkeit minimiert werden kann. Digitale Phased-Array-Radarsysteme
erreichen dies durch eine komplexe Signalverarbeitung, welche erfolgreich Weltraum-
schrott detektiert und deren Parameter, unter anderem Entfernung, Einfallsrichtung
und Radialgeschwindigkeit, präzise schätzt. Klassische, nicht auf die Weltraumumge-
bung zugeschnittene, Signalverarbeitungsmethoden führen jedoch zu einer subopti-
malen Leistungsfähigkeit.

Ziel dieser Arbeit ist es, die Leistungsfähigkeit eines digitalen Phased-Array-Radarsys-
tems durch die Anpassung der Signalverarbeitung an das Weltraumszenario zu op-
timieren. Hierfür werden zunächst Schwachpunkte einiger Aspekte der klassischen
Signalverarbeitung aufgezeigt und anschließend neue Methoden zur verbesserten Ziel-
erfassung und Parameterschätzung eingeführt. Dies wird mit numerischen Beispielen
eines realen digitalen Phased-Array-Radars zur Weltraumüberwachung unterstützt.

Ein solcher Aspekt tritt besonders bei einer hohen Anzahl von Empfangselementen
des digitalen Phased-Array-Radars auf, welche zu einer besseren Zieldetektion und
Richtungsschätzung beiträgt. Aufgrund der mit der hohen Anzahl an Empfangsele-
menten einhergehenden großen Datenmenge werden in solchen Systemen im Vorfeld der
Signalverarbeitung häufig Transformationen zur Datenreduktion verwendet. Die gängi-
gen Transformationen konzentrieren die vorhandenen Ressourcen ausschließlich auf die
Leistung der Zieldetektion, was für das Weltraumszenario nicht notwendigerweise opti-
mal ist. Wir präsentieren eine neuartige parametergesteuerte Design-Methode zur Kon-
struktion einer optimalen Transformation in Bezug auf die verfügbaren Ressourcen und
einen akzeptablen Kompromiss zwischen den Leistungsfähigkeiten bezüglich Detektion
und Richtungsschätzung. Des Weiteren wird ein neues Tool vorgestellt, welches die
potenzielle Leistung eines gegebenen Phased-Array-Systems ohne erforderliche Sim-
ulation analysiert. Zusätzlich wird die vorgestellte Methode auf ein multistatisches
Radarnetzwerk angewandt, welche einen signifikanten Leistungsgewinn zeigt.

Ein in Radarsystemen gängiges Verfahren zur Schätzung der Einfallsrichtung ist der
Maximum Likelihood (ML)-Richtungsschätzer. In der Weltraumüberwachung werden
unter anderem Ziele im LEO betrachtet, welche sich mit sehr hohen Bahngeschwindig-
keiten bewegen. Daher tritt bei gepulsten Radarsystemen die sogenannte "direction-
of-arrival" Migration von Puls zu Puls auf. Hierbei zeigt das Empfangssignal jedes
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Pulses eine veränderte Einfallsrichtung und Amplitude. Mit einem klassischen ML-
Richtungsschätzer führen diese Effekte zu einem Bias bei der Ziellokalisierung in der
Größenordnung von Kilometern. Um diesen Bias zu beseitigen wird die Bahnmechanik
von LEO-Zielen betrachtet und erfolgreich in das Bewegungsmodell des ML-Richtung-
sschätzers implementiert.

Ein weiteres wichtiges Problem ist das Phänomen der Maskierung von Zielen. Mit
der klassischen Signalverarbeitung kommt es in zwei für die Weltraumüberwachung
spezifischen Fällen zu Fehldetektionen. Zum einen bleibt ein weit entferntes Ziel in
Anwesenheit eines Ziels mit geringer Entfernung undetektiert und zum anderen bleibt
ein kleines Ziel aufgrund eines nahegelegenen größeren Ziels unerkannt. Vor diesem
Hintergrund werden zwei neue Konzepte zum Wellenform-Design vorgestellt und deren
Leistung erfolgreich demonstriert.

All die genannten Techniken führen letztendlich zu verbesserten Schätzgenauigkeiten,
erhöhter Ressourceneffizienz sowie zu einer robusteren Detektionsfähigkeit und tragen
damit zum Ziel der Weltraumlageerfassung bei. Auf Basis dieser Arbeit können neue
Schätzverfahren und Betriebsmodi für einzelne Radar-Stationen, als auch für Radar-
netzwerke, erforscht werden.
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Chapter 1

Introduction
Radio Detection and Ranging (RADAR) systems are emerging as a crucial tool for
protecting vital infrastructure in near-Earth space from man-made artificial waste
(debris)—which is one of the goals of the broader Space Situational Awareness (SSA)
agenda. These systems may comprise a single antenna (e. g. dish-antenna) or multiple
antenna elements—known as Digital-Array Radar (DAR). Due to the advancement in
hardware and computational capabilities, DAR systems have received a great deal of
attention in recent years, and is considered a leading candidate in the application of
SSA [5, 6]. The adaptation of ground-based DAR to SSA and space debris is the core
theme of this research.

DAR systems are nowadays ubiquitous in a large number of other applications re-
quiring reliable and continuous sensing of the environment. Recent new applications
include fields such as human vital sign detection and tracking [1, 2], and autonomous
driving [3, 4]. All radar applications employ a stage of Signal Processing (SP) in order
to process the received data into the desired results.

The classical SP theory for radar and digital arrays is broadly used and well estab-
lished [7, 8, 9, 10, 11, 12]. SSA involves numerous kinds of debris in a huge variety of
sizes (from several millimeters to dozens of meters), radial distances (from 300 to 3000
km) and velocities (orbital speed can reach several thousands of km/h). This extreme
combination stretches the technological capabilities of the SSA radar SP scheme, which
heavily affects the overall performance.

In this thesis, we aim to show that SSA with its unique scenario characteristics,
holds great potential for new concepts and methods in the radar SP chain. This
is done by increasing detection and parameter estimation (e. g., range, Direction-of-
Arrival (DOA), radial velocity, etc.) performance of Low Earth Orbit (LEO) targets1.
Through a Kepler motion model and the fusion of several estimations across a defined
time frame, these parameters translate into the final output of an improved debris orbit
estimation, which ultimately leads to higher SSA capabilities.

We note that parts of this research were published in the corresponding open litera-
ture (listed at the end of the thesis). It is worthwhile to emphasize that all the concepts
presented here are not limited to SSA, but may also be used in other applications. In
the remainder of this section, an overview of SSA will be given with an emphasis on

1The terms targets and debris are used interchangeably throughout the thesis
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Chapter 1 Introduction

the role of radar. We then focus on DAR and portray its SP flow. Thereafter, the
major contributions and outline of the thesis are laid out.

1.1 Space Surveillance

1.1.1 Background
SSA attracts increasing attention and international cooperation (and funds) from mul-
tidisciplinary fields and research institutes across the world [13]. There are various
areas within SSA:

• Detection, orbit estimation and propagation of space debris and foreign satellites
or rockets

• Fragmentation event identification and forecast of possible collisions

• Registration of new space objects into a catalog of space objects

• Support of space missions

In this thesis, we mainly focus on the need to prevent collisions of active satellites with
space debris and other celestial bodies in LEO. While an extensive catalog of known
space debris exists and undergoes continuous updates [14], new and unidentified debris
remains one potential source for collisions. Fragmentation events also have a high
impact: when a large object breaks into multiple pieces (sometimes by a deliberate
destruction of an active satellite [15]), these debris particles move together with similar
velocities in close proximity, making it difficult to identify them individually.

SSA systems aims to detect and track such debris, estimate its orbit trajectory and
alert for potential collisions within the infrastructure. Based on the alert prediction,
active satellites and space stations can initiate evasive maneuvers and avoid (or mini-
mize) damage.

Collision events are increasing due to two main processes in the near-Earth space: in-
creasing quantity of space infrastructure, e. g. communication, remote sensing, weather
forecasting and Global Navigation Satellite Systems (GNSS), and rapid growth of artifi-
cial orbital debris, e. g. dead satellites, parts of rockets, etc. These pose a serious threat
to active satellites or manned space stations – small screws, moving at 30,000 km/h may
have a devastating impact on any object within its trajectory. The so-called space-junk
density [14] also contributes to the manifestation of the catastrophic ‘Kessler syndrome’
[16]. This apocalyptic forecast predicts that in the coming decades, artificial man made
space debris will exponentially increase in numbers to form an impenetrable ‘waste’
belt around Earth.

A real-life example: to protect the crew, the International Space Station (ISS) has
to perform four to five evasive maneuvers each year, based on the knowledge gathered
through SSA. On June 28, 2011, space debris passed within a short distance of the

2



1.1 Space Surveillance

ISS, forcing the crew to enter their escape capsules to be ready to depart in case of a
collision (a similar scenario was the focus of the Hollywood film ‘Gravity’). Fortunately,
the debris passed within 335 m of the ISS [17]. On May 12, 2021, a small hole was
detected in the ISS robotic arm. It was caused by a small and undetectable debris,
which luckily didn’t affect or endanger the seven astronauts abroad [18]. To this date,
a total of 26 avoidance maneuvers were made in total, the last one in 22 September
2020.

The rapidly expanding military and civilian use of the near Earth space infrastructure
has led to a considerable dependence on space based systems mentioned above. In
Modern society, the breakdown of such critical systems is intolerable. To retain the
security in space is a task of momentous importance in the international community.

1.1.2 The Role of Radar
There are different types of SSA sensors, e. g. optical and laser telescopes [19, 20, 21]
and radars that can be used to gain situational awareness of near Earth space. For
orbital target observation, radar is recently emerging as an outstanding player with
unique abilities:

• Independence of weather conditions: Penetration of microwaves or radio waves
through the atmosphere and dense clouds at day and night time allows 24/7
operation

• Detection of targets at low and very large ranges

• Measuring of the Electromagnetic (EM) signal frequency Doppler shift, allowing
radial velocity estimation

• The ability to add more radar stations (separated by hundreds of kilometers)
to form a synchronized network that shares data and resources for enhanced
performance [22]

These properties rely on the physical nature of the EM radar signals and their process-
ing method: the detection and range measurement by compression of coded waveform
pulses, angular measurement through mechanical steering or digital scan, radial veloc-
ity and micro-Doppler signatures by Doppler analysis, tracking and orbit determina-
tion from subsequent time-positions and velocity measurements, imaging using Inverse
Synthetic Aperture (ISAR) techniques and analysis of object properties through po-
larization and Radar Cross Section (RCS) estimations.

Several radar systems for SSA are spread globally. The most notable one is in the
U.S. American Air Force Space Command Space Surveillance Network (AFSP SSN)
[23]. It comprises a number of large DAR systems and telescopes, establishing the
largest catalog of space objects. Recently, a new U.S. American radar system called
“space fence” was declared operational [24]. Another system is called GRAVES, a
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Chapter 1 Introduction

bistatic radar in France, which is capable of independently maintaining a catalog of
LEO objects [5]. Numerous countries operate radar systems with mechanically scanned
large dish-antennas that are able to track space debris with a high degree of accuracy
and do imaging. One such system called Tracking and Imaging Radar (TIRA) is
operational in Germany since the 1960’s [25].

1.2 Digital Array Radar
The DAR comprises a large number of antenna elements. Usually, these are placed on
a 2D plane in a circular, square or rectangular configurations. The benefit of such a
design over a single antenna element (e. g. dish antenna) lies in the ability to scan a
large spatial sector. While for the single antenna, scanning various steering angles is
done via mechanical steering of the entire structure (its size may reach 40 meters in
diameter), the DAR can scan any given angle in a fraction of a second, as it is done
digitally within the processing stage of raw Rx data. This stage requires tremendous
computational power, which has become more accessible in recent years. In addition,
the ability to control the radar’s resource management enables:

• Sophisticated modes for simultaneous search and tracking of multiple objects,
e. g. a ‘fence’ of beams to detect all objects passing this fence

• Continuous update of space debris catalogs

• Cognitive methods to optimize the sequence of modes and steering directions
in order to maximize the probability of detection and the estimation accuracy
during limited time

Since the SSA scenario requires to detect and track debris over large spatial areas (or
several separated areas), a single antenna unit is incapable of such tasks. One of the
reasons concerns with the mechanical steering speed, which is usually in the order of
seconds or minutes. While single antenna system exists mainly to track a known target,
DAR systems - capable of fast digital steering (fractions of a second) - are increasingly
being used for SSA. DAR systems and mechanically steered systems complement one
another: once detected by the DAR, large dish antennas can track the target with
higher precision.

The DAR may operate in several modes, each one demanding a modified processing
scheme. While the continuous wave Continuous Wave (CW) is very common (also
due to its lower implementation price), pulsed radar systems are superior in terms of
Signal-to-Noise-Ratio (SNR). When dealing with signals of very low SNR (caused by
limited array gain and long target range), the pulsed radar is preferred and therefore
dominates the SSA arena.

The output of the radar SP is a target’s detection and parameter estimation. The
quality of an estimation can be measured in several ways. We mainly use estimation
metrics of bias and variance.
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Figure 1.1: Flowchart depicting the typical system block. System input parameters are
marked with purple.

1.2.1 System Blocks

The basic blocks of the DAR are described in Fig. 1.1. In the following flowcharts,
inputs and outputs are marked in a rose color, processes in beige, known/unknown
system/scenario parameters in purple, and decision points in green. The data flow is
represented with a solid line, while the various parameters inputs are connected with
a dashed line.

The process starts with the transmission of EM signals in a certain angle. These
signals are modulated in time and frequency according to the waveform design (e. g.
phase or frequency modulation). Depending on the scenery (number of targets, their
motion, location and RCS) the transmitted signals are reflected back into the direction
of the radar. These echos are intercepted by the receive array, where each antenna
element receives a phase-shifted copy of the signal, according to the array’s geometry
and element spacing. The raw data from each antenna then goes through a linear
transformation into Rx channels data via the hardware Rx beamformer. The beam-
former is designed to meet hardware limitations (e. g. number of channels, data rate)
and performance criteria (e. g. required spatial coverage area). Lastly, the Rx channels
data is fed into the SP block, along with the various design parameters.

The final SP output is the target’s parameter estimation vector Θ̂ =
[
â, θ̂, R̂, f̂d

]T
.

The amplitude estimate â is used to determine the presence of a target (detection), the
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Figure 1.2: Propagation of subsequent target parameter estimations into the desired
SSA output.

2D DOA θ̂ and range R̂ are used to estimate the target’s location. The Doppler shift
estimate f̂d may be used for radial velocity estimation.

The next stage requires the collection of several subsequent estimation vectors
Θ̂1, Θ̂2, . . . , Θ̂M , and translates them to the SSA output. This process is depicted
in Fig. 1.2. Commonly, the M (low, arbitrary number) estimation vectors are con-
verted into 3D localization vectors li = [xi, yi, zi]T in the coordinate system of the
radar system. Then, these are used to calculate the velocity and acceleration vectors,
and orbital parameters. The final collision probability is then provided. The effective-
ness of this crucial step is directly related to Θ̂ estimation bias and variance. We note
that the orbit estimation stage, which usually involves additional processing techniques
(e. g. Kalman filtering) is outside the scope of this thesis.

In this research, we focus on the signal processing to estimate Θ̂ for a single Coherent
Processing Interval (CPI) – the radar transmits multiple pulses in a fixed Pulse Rep-
etition Frequency (PRF), and coherently integrates them into a single output. As
seen in the flowchart of Fig. 1.1, this process heavily depends on the chosen waveform,
beamformer design, and the use of a-priori information. The array configuration must
be taken as an input as well. In turn, these will impact the performance of the target
parameter estimation.

1.3 Signal Processing Overview
When describing the data acquisition process of the pulsed radar, it is common to
refer to the 3D ‘data cube’ in Fig. 1.3. This cube illustrates the data in three separate
dimensions: fast time, slow time and Rx channels. There are numerous ways to process
the data cube [8]. In this section, we present one typical approach, taking into account
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Figure 1.3: (left) A single channel data slice of fast-slow time. (right) The radar data
cube. Taken from [8], pg. 291.

practical hardware limitations. A quasi-monostatic setup is considered, where the Tx
and Rx stations are separated only by a small distance.

Within the signal processing block, a typical detection and estimation procedure is
depicted by the flowchart in Fig. 1.4.

The desired output of the SP process is to estimate range, Doppler, amplitude and
DOA of the targets occupying the illuminated scene. Each of these parameters is
usually estimated using a Matched Filter (MF) process and a corresponding filter bank
with all possible values. Usually, performing all estimations at a single step requires an
impractical computation time and resources, forcing the separation of these processes
into a subsequent steps.

The starting point of the SP section begins with the Rx channels’ data. The Rx
channels are the outputs of the Rx beamformer, controlled by the beamformer param-
eters. The sumbeam channel data is used as the initial data for target detection - it
focuses the received energy into a single centered beam with an identical steering angle
as the Tx. When the precise DOA is unknown, this process may cause up to 6 dB loss
in overall SNR.

The data is then fed into the Range-Doppler (RD) compression stage, where the
waveform parameters are used in the MF over the integrated slow time pulses. This
process uses available a-priori information (e. g. target motion model) to compensate
for any range and Doppler migration [7]. In the end of this stage, each range-Doppler
cell contains the best possible SNR (excluding the sumbeam loss). When the power in
a specific RD cell exceeds a certain threshold, a target detection is declared. Usually,
this threshold is affected by the false alarm probability PFA, and calculated according
to the Neyman-Pearson (NP) theorem [26]. The optimization criteria of NP is to
maximize the probability of detection PD subject to the constraint of a fixed PFA.
The corresponding cell’s amplitude, range and Doppler values are taken as the output
estimation â, R̂, f̂d.
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Upon a successful detection, the estimated range and Doppler values are used to
compensate (both in delay and phase) the slow time pulses (including any range and
Doppler migration). This data is then fed into the DOA Maximum Likelihood Esti-
mator (MLE) stage, which also uses the available a-priori information to compensate
for any DOA migration. The array configuration and beamforming matrix are key
parameters in the DOA estimation process.

1.4 Objective of the Thesis
A broad and powerful SSA is clearly a high priority international task, protecting
billions of dollars worth space infrastructure, enabling seamless operation of GNSS,
internet, weather forecasting and much more. It also provides the monitoring of life-
threatening scenarios for the ISS staff. SSA poses many challenges for the radar systems
that participate in it, requiring the coverage of extremely far and small targets moving
at incredible velocities.

It is the combination of current hardware and software readiness, emergence of high
frequency and large digital arrays, and increased attention to space surveillance that
has brought forward the motivation for this thesis. We aim to enhance the detection
and parameter estimation performance of ground based DAR systems for LEO targets.
With this goal, the final orbit estimation of hazardous debris considerably improves
and aids in better collision avoidance.

In this thesis, the goal is achieved through the meticulous research in the radar
SP blocks (illustrated in Fig. 1.4). As will be thoroughly discussed, the SSA scenario
allows the use of non-standard assumptions and models. On the other hand, it requires
custom-made solutions due to exotic limitations. By revisiting several common SP
methods, we propose new concepts as described in the following section.

1.5 Major Contributions and Thesis Outline
The major contributions of this thesis are threefold, all oriented to adjust the DAR
SP for the SSA scenario: sensitive target detection, mitigation of target masking, and
enhancement of DOA estimation. We cover the different topics in separate chapters.
The motivation, theoretical background, signal model and a numerical examples (based
on SSA) are presented in each one with the relevant conclusions.

Throughout the thesis and its different chapters, we will give practical numerical
examples based on a real SSA DAR ground based system, developed at Fraunhofer
FHR, called German Experimental Space Surveillance and Tracking Radar (GESTRA).
Therefore, a short overview of the system is given next in Chapter 2.

Chapters 3–5 focus on DOA estimation and sensitive target detection. In Chapter 3
we invoke the eigendecomposition and explore the area of data dimensionality handling
of large digital arrays. An Rx eigenbeamformer was invented, to allow a parameter-
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Figure 1.4: Flowchart of the signal processing procedure.

controlled trade-off between target detection and DOA estimation performance. It
uses the available resources in the most efficient manner, enabling to cover large spatial
areas. Moreover, a new analysis framework, analogous to the Smith Chart in the Radio-
Frequency (RF) domain, is given to evaluate potential performance of the beamformer
for any array configuration, without the need for simulations.

Chapter 4 shows the adaptation of the proposed beamformer in a multi-static radar
network configuration. The resulting benefits and performance superiority of the net-
work are clearly highlighted.

In Chapter 5 we give an overview of the DOA MLE in the SSA environment. Since
the targets are assumed to be restricted to Kepler orbits, the Keplerian motion model
can be used in the estimation process and eliminate the unwanted DOA estimation
bias. Untreated for, this bias can cause a major target localization error.

The final contribution address the target masking phenomena. Chapters 6–7 intro-
duce two novel waveform design methods. The first waveform is designed to yield a low
Sidelobe Level (SLL) area in the RD domain, thus reducing far range target masking
caused by near range targets. The second waveform is designed to handle fragmentation
events–by exploiting diverse Frequency Modulation (FM) pulses, the power spectrum
of the waveform is shaped into a Gaussian form. It achieves low SLL near the main
peak of the MF response, without any SNR loss that other methods exhibit. General
remarks, observations and future prospects of the thesis are given in Chapter 8.
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Chapter 2

GESTRA
In the course of this thesis, numerical examples for Signal Processing (SP) in Space Sit-
uational Awareness (SSA) scenarios are presented. As the Digital-Array Radar (DAR)
system in these examples, we chose the German Experimental Space Surveillance and
Tracking Radar (GESTRA) system, developed in Fraunhofer FHR, Wachtberg, Ger-
many [6, 27, 28]. Since this system is newly operational and required by the German
Aerospace Center (DLR), it provides the examples with practical and meaningful foun-
dations. In this chapter a technical overview of the system is presented, which will be
referenced throughout the thesis.

2.1 Introduction
GESTRA is a quasi-monostatic ground based pulsed DAR operating in L-band (1280–
1380 MHz). The receiving and transmitting parts are allocated in two partly sta-
tionary distinct shelters with a distance of about 100 m. Each shelter has a size of
18 m × 4 m × 4 m and a radome with a height of 4.5 m. Fig. 2.1 shows an artist
impression of the GESTRA Rx system, and Fig. 2.2 shows both Tx and Rx parts at
an operational quasi-monostatic configuration.

The idea of a partly stationary system is the possible relocation in case of changing
operational conditions. Both Tx and Rx subsystems are designed to enable an au-
tonomous operation in order to allow different system configurations, with an identical
coherent signal generation unit being either configured as two master sources or in
master/slave configuration. The radar controller supervises the more than 2000 health
sensors and determines the tasks of radar operation. Considering the manifold of hy-
pothesis of debris orbit data, the received data are analyzed by the high performance
radar processor.

Both Tx and Rx antenna apertures contain 256 active cavity-backed stacked patch
antennas surrounded by 64 dummy elements within circular planar apertures with
diameters of 3 m and identical element distribution. The two antennas are mounted
on identical mechanical 3D positioners to choose the coarse field of view in space.
The positioners allow a mechanical rotation angle of 0◦ to 360◦ in azimuth and 0◦ to
100◦ in elevation additionally to the mechanical 90◦ polarization rotation of the third
axis for scientific investigations. The system is designed to surveil targets located in
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Figure 2.1: 3D drawing of Rx sub system.

Figure 2.2: Photo of the Tx and Rx sub systems at the site in Koblenz, Germany.
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Low Earth Orbit (LEO) between 300 km and 3000 km in orbit height. At the chosen
frequency band Faraday rotation caused by the ionosphere introduces uncertainties in
the polarization information. To cope with this problem, GESTRA is designed as a
dual polarization array in receive.

2.2 Technical Parameters
We simulate the GESTRA system [6, 28] with the parameters summarized in Table 2.1,
categorized by the respective sub-system. Since some of the values are mode-dependent
(marked with ∗), we present their typical values.

Table 2.1: GESTRA system typical parameters.
Sub-
system

Parameter Value

Tx/Rx Number of antenna elements 256
Rx System noise figure < 1.5 dB
Tx Transmit module output power > 1000 W
Tx Transmission length∗ up to 8.5 ms
Tx PRF∗ 30 Hz
Tx Number of pulses∗ 3-24
Tx/Rx Beamwidth∗ 6.5◦
Tx/Rx Max. scan area ±45◦ in E and H planes
Tx/Rx Directivity 30.9 dB
System Angular accuracy 0.6◦ @ 11 dB SNR
System Range accuracy 75 m @ 11 dB SNR
System Target range 300 km – 4400 km
System Carrier frequency∗ 1.33 GHz
System Bandwidth 2 MHz
System Steering method Electronical and mechanical

2.3 Operation Modes
This section gives an overview of the operational modes of the GESTRA system. They
are part of an initial configuration and can be changed according to the use case. There
are three main types of modes: surveillance, tracking, and experimental. The main goal
of the surveillance modes is to guarantee a continuous observation of the targeted Field
of View (FOV) volume. The aim of the tracking mode is to observe a known debris
particle as long as possible and acquire data to predict new orbit information. There
are also two experimental modes, the first one enables receiving with dual polarization,
the second mode is for achieving better range resolution.
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In surveillance mode, the goal is a continuous observation, by electrical steering of the
antennas. The idea is to steer the antenna in one direction, send a dedicated number
of pulses (i. e. several Coherent Processing Interval (CPI) bursts) and then shift to the
next position. One scan cycle is the procedure of switching to all necessary positions
that are configured in the currently used mode. To get a continuous observation, the
time used for a complete scan cycle is limited by the FOV crossing duration of the
observed particles. This depends on the orbital height of the debris particle and is
shortest for the minimal height of the orbit.

Throughout this thesis, we analyze a specific mode called the Spotlight Mode. This
special mode is used for every radar task that demands an optimal detectivity in a
special dedicated direction (beam-park). During beam-park experiments the incorpo-
rated antennas are steered in one fixed observing direction. Detected debris particles
penetrating the beam are identified and the orbital parameters are estimated. We refer
the reader to [28] for additional details of the other operational modes.

2.4 Signal Processing
The intended SP methods for GESTRA are described in [28]. They include a coher-
ent pulse integration, matched filtering by backprojection to allow a faster grid-based
operation. To enable a practical detection over the huge search volume, the space is
divided into range partitions, where in each one the acceleration of the targets can
be assumed to be a different constant. Then, possible range, Doppler or Direction-of-
Arrival (DOA) migration can be effectively compensated for. A functional description
of the SP scheme was presented in Fig. 1.1 and Fig. 1.4.

2.5 Network
GESTRA is a semi-transportable system with separated Tx and Rx units. Therefore,
it is convenient to think about a possible extension of GESTRA with additional Rx
and/or Tx units. Using this network approach is very attractive, since it enables
gradual performance enhancements by adding additional nodes over time. The option
to transport the Tx and Rx units allows additional flexibility in the network geometrical
design. The benefits of a network with respect to a single quasi-monostatic system may
include additional transmit power, an extended coverage and multiple aspect angles
for observation, which results in enhanced detectability and parameter estimation. In
fact, there is a huge variety of possible network configurations, where each type of
network delivers different benefits. Of course, the network aspect also comes with
some technical challenges like the synchronization of the nodes, suitable fusion and
processing algorithms. An overview of network configurations and GESTRA units is
available in [22] and Chapter 4.
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Chapter 3

Dimension-Reduced Rx
Beamforming Optimized for
Simultaneous Detection and
Estimation
To achieve a high Direction-of-Arrival (DOA) accuracy, Digital-Array Radar (DAR)
systems must incorporate a large array with high number of antenna elements. The
high dimension of the data collected from all the individual Rx elements inevitably
leads to a large computational burden for the Signal Processing (SP) and performance
impairment. In this chapter, we present a new data reduction transformation to im-
prove the target detection and DOA estimation for large DARs.

3.1 Introduction
The detection and localization of targets of interest are usually the key functionalities
of a radar system. In estimating the target position, DOA estimation plays a crucial
role. Emerging systems, such as German Experimental Space Surveillance and Tracking
Radar (GESTRA) (see Chapter 2), whose purpose is to detect and track space debris,
consist of a large number of antenna elements to provide sensitive target detection and
accurate DOA estimation.

However, when the number of elements is very large, data storage and real-time pro-
cessing using element-level data become very demanding due to the high data dimen-
sion. The problem is especially severe for modern massive Multiple Input Multiple Out-
put (MIMO) radar systems, which can consist of thousands of elements [29, 30]. This
difficulty can be circumvented by transforming the full dimension Element Space (ESP)
data into a Reduced Dimension Beamspace (RDBS) via a linear transformation. De-
signing this transformation is of great practical importance, as it directly affects the
detection sensitivity and DOA estimation accuracy of the system.

Several beamspace transformation design methods have been considered in the liter-
ature. The most straightforward way is to cover a spatial sector of interest with steered
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sum beams of the receive array [12]. This can be interpreted as using a submatrix of the
Discrete Fourier Transform (DFT) as the beamspace transformation. Maximizing the
average Signal-to-Noise-Ratio (SNR) inside a spatial sector of interest leads to a solu-
tion where the transformation matrix is constructed using the eigenvectors of the signal
correlation matrix [31, 32]. While this so-called Discrete Spheroidal Sequence (DSS)
method provides optimal detection performance, it does not guarantee optimal DOA
estimation accuracy. On the other hand, the design method presented in [33] aims to
provide exactly that; the transformation is designed by requiring that it preserves the
ESP Cramér-Rao-Bound (CRB) for 1D DOA estimation at the true target locations.

The transformation design problem has also been considered in the context of non-
linear high-resolution estimation methods such as MUSIC [34] and ESPRIT [35]. Ref-
erences [36, 37, 38] consider the beamspace implementation of these algorithms. More
recently, beamspace MUSIC implementations have been used in through-the-wall radar
imaging [39] and automotive radar applications [40]. The design criteria for the trans-
formation remains quite subjective in these references, since it is hard to formulate
optimality for biased estimators [41].

In many applications, achieving optimal estimation accuracy is not the only impor-
tant criterion; interference suppression also plays a key role. References [42, 43, 44, 45]
consider designing the transformation so that a compromise between in-sector estima-
tion accuracy and out-of-sector interference suppression can be achieved. As a draw-
back, many of these methods rely on sub-optimal numerical optimization solutions to
calculate the transformation matrix.

This chapter proposes two significant contributions related to the beamspace trans-
formation design. The first is an extension to [33], which focuses on an optimal
beamspace transformation. We propose a novel parameter-controlled RDBS to obtain
a compromise between detection and DOA estimation performance when the RDBS
dimension is insufficient to achieve lossless reduction. Our method differs from [33] in
two additional ways. We extend the optimal CRB approach to 2D DOA and amplitude
estimation. The inclusion of amplitude estimation is directly translated to detection
performance. We also use a spatial target probability distribution to focus the perfor-
mance on specific areas when a priori information about the targets is available.

The second contribution deals with the analysis of the RDBS performance. Usually,
this evaluation is made by simulating each combination of RDBS dimension and spatial
area size. A simple and clear view of potential performance is therefore not easy to
attain. We introduce a new method to easily evaluate the possible performance for a
given array, as a function of the resource ratio – the ratio between the RDBS dimension
and spatial area coverage.

These contributions provide the radar system designer with valuable tools for the
RDBS transformation matrix construction. They allow to achieve lossless performance
or an acceptable performance trade-off for a specific use-case. In practice, the available
hardware and computational resources (e. g. number of Rx channels, time consumption,
data storage) dictate the RDBS dimension.
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We do not consider interference suppression or multiple target scenarios. Neverthe-
less, our method can be used together with interference suppression (such as [42]) and
non-linear high-resolution estimation methods. However, we note that in these cases
optimal performance is not necessarily preserved.

We start by introducing the theoretical background of the beamspace target detec-
tion and DOA estimation problems in Section 3.2. We also formulate the required
properties of the lossless beamspace transformation as the basis of our method. Sec-
tion 3.3 presents our novel parameter-controlled method for dimension reduction. We
then describe our new generalized transformation design tool in Section 3.4. Section 3.5
presents numerical simulation examples and discusses practical design issues highlight-
ing the benefits of our design method. Finally, we conclude our findings in Section 3.6.

3.2 Theoretical background

In this section, we define the underlying signal model of the RDBS and the related
detection and estimation performances. Additionally, we discuss the beamspace target
detection and DOA estimation problems. In the following text, we use lower and upper
case boldface letters to denote vectors and matrices, respectively.

3.2.1 Signal Model

Let us consider a planar, spatially symmetric 2D DAR systems with N el antenna
elements. We limit our analysis to a time-snapshot (i. e. single pulse, after Range-
Doppler (RD) compression) case with a single point target without interference. The
jth antenna element response can be modeled as

zj = a(α, φ)eiklTj u + nj (3.2.1)

∀j = 1, . . . , N el. In addition to range, the two way antenna element gain and
the target reflectivity affect the deterministic complex amplitude a(α, φ) = αeiφ

with positive α ∈ R and φ ∈ [0, 2π). The directional cosine DOA vector
u = [u v]T ∈ {u′ ∈ R2| ‖u′‖ ≤ 1} (called u-space from here on), k is the carrier fre-
quency wavenumber and lj = [xj yj]T is the position vector of the jth element. The
noise sample nj originates from a complex zero mean White Gaussian Noise (WGN)
process with variance σ2

n. Rewriting the array response (3.2.1) in vector form yields
the N el × 1 vector

z = m(ϑ) + n, (3.2.2)

where m(ϑ) = a(α, φ)d(u) with the target parameter vector ϑ = [α φ u v]T . Since
the noise is assumed to be Independent and Identically Distributed (i. i. d) across the
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elements and n ∈ CNel×1, we form the covariance matrix as

Q = E
{
nnH

}
= diag

i=1,...,Nel

σ2
ni

= σ2
nINel , (3.2.3)

where E {·} stands for the statistical expectation. The Hermitian conjugate (·)H of
an arbitrary matrix A is defined by the conjugate transpose AH =

(
A
)T

. The array
steering vector d ∈ CNel×1 representing the phase delays between the elements is

d(u) =
[
eikl

T
1 u eikl

T
2 u . . . eik(lNel)T

u
]T
. (3.2.4)

In the remainder of the chapter, we will focus on optimal ways to lower the di-
mensionality of the data received by the array. This is achieved by transforming the
element level data into a RDBS with N ch channels using a linear transformation matrix
B. Mathematically, this is expressed by

z̃ = BHz = BHm(ϑ) +BHn = m̃(ϑ) + ñ, (3.2.5)

where B = [b1 . . . bNch ] ∈ CNel×Nch and N ch ≤ N el. The covariance of the trans-
formed RDBS noise is Q̃ = E

{
ññH

}
= E

{
BHn(BHn)H

}
= σ2

nB
HB. From here

on, the term beamformer refers to the beamspace transformation matrix B.
In the considered radar application, we aim to detect a target and estimate its pa-

rameters. The objective is to detect the presence of a target with as low SNR as possible
(i. e. high detection sensitivity), and estimate the parameters ϑ (containing both am-
plitude and DOA) as accurately as possible (in terms of estimation variance). As we
will show in the next section, the amplitude estimation accuracy essentially quantifies
the detection performance. We now turn to study the effect of the beamformer on
these aspects.

3.2.2 Target Detection and Parameter Estimation

In this chapter, we use the Maximum Likelihood Estimator (MLE). It is asymptotically
(as N el →∞) unbiased with minimum variance [26]. These profound properties allow
us to design a data dimension reduction method while preserving performance.

Other non-linear estimation methods, such as the Capon method [46, 47] or MUSIC
[34], can also be used for DOA estimation. These methods can provide increased
performance when multiple targets are present due to their improved resolution and
missing sidelobes. However, these advantages come at a cost. They require a good
estimate for the signal covariance matrix, and perform poorly for correlated targets.
Additionally, the fact that these estimators are biased further complicates the issue.
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The MLE of the beamformed data is obtained by maximizing the likelihood function

FL(ϑ; z̃) =
exp

[
−(z̃ − m̃(ϑ))HQ̃−1(z̃ − m̃(ϑ))

]
πNch |Q̃|

, (3.2.6)

where | · | denotes the determinant of a matrix. This is equivalent with the known
Matched Filter (MF) solution (see [48, 49]) using the weight vector

w̃(u) = Q̃−1d̃(u)√
d̃H(u)Q̃−1d̃(u)

, (3.2.7)

where d̃(ϑ) = BHd(ϑ). Thus, the Maximum Likelihood (ML) estimate for u is ob-
tained as

uML = arg max
u′

|w̃H(u′)z̃|2. (3.2.8)

The solution of (3.2.8) can be obtained e. g. by a numerical 2D grid search over the u-
space. The weight vector depends only on u, because the amplitude term a is obtained
in closed form as a least squares solution (see [49]).

To declare a detection, the well-known Neyman-Pearson likelihood ratio test [26] is
usually performed. It maximizes the probability of detection PD for a given false alarm
probability PFA and a corresponding detection threshold gth. The presence of a target
is declared if |w̃H(u)z̃|2 > gth.

3.2.3 Estimation Accuracy Analysis

A theoretical lower bound for the variance of any unbiased estimator is dictated by the
CRB. We therefore analyze the estimation accuracy of the proposed beamformer by
observing and comparing the corresponding CRB values. The CRB is the inverse of
the Fisher information matrix J , which is defined as the negative expectation of the
Hessian of the log-likelihood function ln(FL). We denote subscripts E and B as the
ESP and RDBS related data, respectively. For the RDBS data, we have

JB(ϑ) = −E
{

∂2

∂ϑ∂ϑT
ln (FL(ϑ; z̃))

}
. (3.2.9)

Using the signal model (3.2.5) and noting that the beamformer B is independent of ϑ,
the RDBS Fisher information is (see [12, 50])

JB(ϑ) = 2R
{
m̃H

ϑ (ϑ)Q̃−1m̃ϑ(ϑ)
}

= 2
σ2
n

R
{
mH

ϑ (ϑ)PBmϑ(ϑ)
}
, (3.2.10)
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where R {·} denotes the real part operator, and

mϑ(ϑ) =
[
mα(ϑ) mφ(ϑ) mu(ϑ) mv(ϑ)

]
,
[
∂m(ϑ)
∂α

∂m(ϑ)
∂φ

∂m(ϑ)
∂u

∂m(ϑ)
∂v

]
= eiφ

[
d(u) iαd(u) iαkx� d(u) iαky � d(u)

]
(3.2.11)

is the Jacobian of the target signal model m(ϑ). In (3.2.11), the variables x and
y denote vectors containing the x and y positions of the array elements (Cartesian
coordinates in the plane of the array) and � denotes the Hadamard product. The
matrix PB = B(BHB)−1BH has the form of a projection operator. When applied to
an arbitrary N el-dimensional vector, it projects the vector onto the range B of B (i. e.,
the subspace spanned by the columns of B). This is proved in Lemma 1.

Lemma 1. If B is an N el × N ch dimensional matrix with N ch ≤ N el and BHB is
invertible, then PB = B

(
BHB

)−1
BH is the projector to the subspace B.

Proof. Let ν be an element of this subspace. It can therefore be written as a linear
combination of the beamformer column vectors ν = ∑

i cibi = Bc, with c ∈ CNch×1.
Then,

PBν =
(
B(BHB)−1BH

)
(Bc) = B(BHB)−1(BHB)c = Bc, (3.2.12)

i. e. PBν = ν. Otherwise, if ν is orthogonal to all columns of B, then Bν = 0 and
PBν = 0.

Similarly to (3.2.10), the ESP Fisher matrix can easily be calculated using Q instead
of Q̃, which yields

JE(ϑ) = 2
σ2
n

R
{
mH

ϑ (ϑ)mϑ(ϑ)
}
. (3.2.13)

Thus, we can make an important observation from (3.2.10). If the column vectors
mγ = ∂m/∂γ (γ ∈ {α, φ, u, v}) are not contained in B, the diagonal elements of JB
are smaller than the corresponding elements in JE, which leads to a loss of information
and degraded estimation accuracy.

Another important observation concerns the element of JB related to estimating α.
We have

JB,αα(ϑ) = 2
σ2
n

R
{
mH

α (ϑ)PBmα(ϑ)
}

= 2
σ2
n

dH(u)PBd(u). (3.2.14)

Since PBPB = PB, and PH
B = PB we form

JB,αα(ϑ) = 2
σ2
n

dH(u)PBPH
B d(u) = 2

σ2
n

‖PBd(u)‖2. (3.2.15)
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This quantity is directly proportional to the RDBS SNR, given by

χB(ϑ) = m̃H(ϑ)Q̃−1m̃(ϑ) = 1
σ2
n

mH
(
B(BHB)−1BH

)
m = a2

σ2
n

‖PBd(u)‖2. (3.2.16)

The ESP SNR is
χE(ϑ) = a2

σ2
n

‖d(u)‖2. (3.2.17)

The SNR loss caused by the beamformer will be (for a given u)

χL(u) = χB(u)
χE(u) = ‖PBd(u)‖2

‖d(u)‖2 . (3.2.18)

Therefore, χB is a key factor in determining detection performance. We conclude that
JB contains the necessary information about both the detection and DOA estimation
performance losses caused by the beamformer.

3.2.4 Lossless Beamformer
The properties of the N el × N ch beamformer matrix B, that achieves ESP detection
and DOA estimation performance within a spatial sector of interest U in u-space are
described next.

Let CRBE(ϑ) and CRBB(ϑ) denote the ESP and RDBS CRB matrices, respec-
tively. We use the term design DOAs to define a discrete set of DOAs ui that cover
the area U (ui ∈ U ∀i = 1, . . . , Nd). The Nd design DOAs are points (possible target
locations) in which we require CRBE to be preserved after applying the beamformer.

Remark. The elements of CRBE(ϑ) represent a lower bound for the estimation vari-
ance of any unbiased estimator for the unknown parameters in ϑ. Thus, the term
‘lossless’ means equality of CRBB with CRBE.

We can now formulate the relationship between the RDBS and ESP. We then deduce
the needed properties of the transformation matrix.

Theorem 2. Let Ψ = {ϑ1, . . . ,ϑNd } be a subdomain of the entire parameter space,
restricted to the Nd design DOAs in U . Furthermore, we define B as the range of the
N el ×N ch matrix B. Then, if the property

mγ(ϑ) ∈ B ∀γ ∈ {α, φ, u, v} ∀ϑ ∈ Ψ (3.2.19)

is fulfilled, the beamformer B achieves lossless (ESP) performance.

Proof. From (3.2.19) and Lemma 1 we get PBmγ(ϑ) = mγ(ϑ). It directly follows that

2
σ2
n

R
{
mH

γ (ϑ)PBmγ′(ϑ)
}

= 2
σ2
n

R
{
mH

γ (ϑ)mγ′(ϑ)
}
. (3.2.20)
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Therefore, using the result (3.2.20) above with (3.2.10)–(3.2.13), we get ∀ϑ ∈ Ψ the
desired equalities

JB(ϑ) = JE(ϑ), (3.2.21)

CRBB(ϑ) = CRBE(ϑ), (3.2.22)

and
χB(ϑ) = χE(ϑ), (3.2.23)

where χE(ϑ) is the ESP SNR.

The simplest way to satisfy (3.2.19) is to construct B by using the vectors mγ(ϑ)
as its columns. Since we have Nd design DOAs and four vectors mγ corresponding to
each of them, N ch = 4Nd.

The value of Nd depends on two factors: The size of U , and the spacing between the
design DOAs. The Beamwidth (BW) of the array dictates a reasonable upper limit for
the spacing (since two vectors m spaced one BW apart are linearly independent). To
get a nearly uniform performance inside U , the spacing should be a fraction of the BW
(for further discussion, see Section 3.5.4).

Remark. Let
m̂ϑ(ϑi) =

[
m̂α(ϑi) m̂φ(ϑi) m̂u(ϑi) m̂v(ϑi)

]
(3.2.24)

denote the N el×4 matrix consisting of unit vectors m̂γ(ϑi) = mγ(ϑi)/‖mγ(ϑi)‖. Fol-
lowing (3.2.11) yields

m̂α(ϑi) = eiφ
d(ui)
‖d(ui)‖

m̂φ(ϑi) = ieiφ
d(ui)
‖d(ui)‖

m̂u(ϑi) = ieiφ
x� d(ui)
‖x� d(ui)‖

m̂v(ϑi) = ieiφ
y � d(ui)
‖y � d(ui)‖

.

(3.2.25)

We have m̂α(ϑi) = cm̂φ(ϑi), where c is a complex constant. Moreover, the unit
vectors do not depend on the magnitude (α) of the signal. Thus, we can replace
m̂ϑ(ϑi) = m̂ϑ([1 0 ui vi]) with m̂ϑ(ui).

Consequently, we have only three linearly independent vectors corresponding to each
design DOA ui. Since m̂φ = im̂α is omitted, we can construct B with N ch = 3Nd

columns. When 3Nd ≥ N el, we note that B = INel is the lossless beamformer.
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3.3 Parameter-Controlled Beamformer
In practice, having 3Nd channels is too high for most systems (such an example with
Nd ≈ 1000 and N ch ≤ 15 is brought in Section 3.5.5). We aim to reduce RDBS di-
mension as much as possible while maintaining desired performance. We denote the
collection of unit vectors that satisfies (3.2.19) and covers all the design DOAs, as the
N el × 3Nd matrix

Ω̂ = [m̂α(u1) m̂u(u1) m̂v(u1) . . . m̂α(uNd) m̂u(uNd) m̂v(uNd)] . (3.3.1)

A well-known mathematical method called the Singular Value Decomposition (SVD)
can be used to construct the optimal beamformer matrix out of Ω̂, for a lower dimension
than 3Nd.

Remark. Let N ch < 3Nd and S be a N ch-dimensional subspace of CNel, created by the
N ch left singular vectors of Ω̂ (with the largest singular values). Then, S is optimal
in the sense that it ensures a minimum quadratic error ε = ‖Ω̂− PSΩ̂‖2, where PS is
the projector to S.

The ability to reduce dimensions using this process depends on the rank of Ω̂. There-
fore, our objective is to minimize its rank – considering the practical limitations and
performance criteria – and then perform the SVD to construct the beamformer B.

By spanning the unit vectors m̂γ(u) ∀γ ∈ {α, φ, u, v} we will equally weight them
in the SVD. Since they are a function of u only, the beamformer construction will not
depend on the amplitude, i. e. the SNR (see remark after Theorem 2). We note that
the SVD of Ω̂ in (3.3.1) is analogous with the method in [33]. We have extended it
to accommodate the full 4D CRB matrix (including complex target amplitude and 2D
DOA) instead of the 1D DOA CRB.

Next, we will propose two novel techniques to lower the rank ΓΩ of Ω̂ prior to
performing the SVD.

3.3.1 Rank Reduction
A first possible step to decrease ΓΩ is by accommodating an a priori target distribution
p(u) over U . We define the N el × 3Nd matrix

Ω̂p =
[√

p(u1)m̂α(u1)
√
p(u1)m̂u(u1) . . .

√
p(uNd)m̂u(uNd)

√
p(uNd)m̂v(uNd)

]
.

(3.3.2)
The spatial target probability density function p in (3.3.2) weights the unit vectors so
that targets with high (low) probability will have high (low) impact on the SVD. If p
is close to zero in certain parts of U , the number of singular values that are close to
zero increases (because the number of linearly independent columns in Ω̂p decreases)
and ΓΩ will decrease to ΓpΩ = rank(Ω̂p).
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Since the left singular vectors of a matrix A are the eigenvectors of AAH , we form
the N el ×N el matrix

Ω̂p(Ω̂p)H =
Nd∑
i=1

[
m̂α(ui)m̂H

α (ui) + m̂u(ui)m̂H
u (ui) + m̂v(ui)m̂H

v (ui)
]
p(ui), (3.3.3)

and perform the Eigen Value Decomposition (EVD) instead of the SVD.
To further reduce the rank of (3.3.3), we introduce a control parameter β

Ω̂p
β(Ω̂p

β)H ,
Nd∑
i=1

[
(1− β)m̂α(ui)m̂H

α (ui)

+ β(m̂u(ui)m̂H
u (ui) + m̂v(ui)m̂H

v (ui))
]
p(ui)

(3.3.4)

with 0 ≤ β ≤ 1. We can see that β allows us to obtain a trade-off between DOA
estimation and detection performance. More specifically, increasing β increases the
impact of the vectors that relates to DOA estimation (m̂u, m̂v) on the account of
amplitude estimation (m̂α), and vice versa. We justify our claim about the performance
trade-off by observing two distinct cases, β = {0, 1}. As seen from (3.3.4), the first
(β = 0) will discard any knowledge of m̂u and m̂v from the following EVD. In
turn, it will increase the respective Fisher information element JB,αα = mH

α PBmα

from (3.2.10). The same logic applies for β = 1 with the opposite outcome. For
increasing values of β, the performance for detection (amplitude estimation) degrades
while the DOA estimation performance improves.

We point out that the analytical formulation presented above relies on the assump-
tion of uncorrelated noise (diagonal Q). It is not possible to obtain a similarly easy
analytical solution for a more general covariance matrix representing correlated noise
or interference.

3.3.2 Beamformer Construction
Finally, we execute the EVD as Ω̂p

β(Ω̂p
β)H = ŨβΛŨH

β with a decreasing order of eigen-
values and take the N ch first columns of Ũβ as B. We denote ΓβΩ = rank(Ω̂p

β). The
number of non-zero eigenvalues determines whether N ch yields lossless (N ch ≥ ΓβΩ) or
optimal (N ch < ΓβΩ) performance.

In Fig. 3.1, we illustrate the differences between the DOA estimation (β = 1) and
detection (β = 0) beamformers. The power of the beams bHi d(u) is shown for a square
area U of size 4×BW a, where BW a is the square approximation of the area confined
inside the 3 dB BW (in this illustration, 0.1 × 0.1 in (u, v)-coordinates) of the array
sum beam power pattern.

We can regard β as a way to reduce ΓβΩ according to predetermined performance
criteria. We also note that the numerical rank calculation is not always straight-
forward, as it involves setting heuristic thresholds (outside the scope of this chap-
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Figure 3.1: The power patterns of selected six beams bi for the optimal DOA estimation
(β = 1, bottom two rows) and detection (β = 0, top two rows) beamform-
ers. The similarity to monopulse difference beams is visible in detection
beams #2 and #3. Beam #1 resembles a conventional sum beam.
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ter). Hence, it is not possible to accuracy determine the needed number of chan-
nels N ch that ensures ESP performance. Moreover, since the set of unit vectors{
mα(ui),mu(ui),mv(ui) : i ∈

{
1, . . . , 3Nd

}}
might not be completely linearly inde-

pendent, it is not possible to analytically determine the exact impact of β on the
performance.

Therefore, in order to illustrate the impact of β and estimate the needed number
of channels to achieve the desired performance (optimal or lossless), the next section
presents a new design tool to aid in the beamformer construction.

3.4 Beamformer Performance Analysis
So far, we have presented the theory behind the proposed Rx beamformer. As (3.3.4)
suggests, a set of values J = {β,N ch,U} must be carefully determined to construct
the beamformer. For that purpose, we propose a simple design tool, which takes into
account the practical scenario of interest and a set of chosen performance metrics. It
enables the users to design their beamformer by exploiting quantitative measures of
potential performance.

In this chapter, we use target detection and DOA estimation metrics assuming a sin-
gle target inside the field of view without any clutter or interference (Space Situational
Awareness (SSA) is a good example of such a scenario). Other metrics, such as target
resolution or interference suppression are not considered. We also assume a flat SNR
level inside the U area.

3.4.1 Performance Metrics
First, we need to quantify the effect of the dimension reduction on target detection
and DOA estimation. To this end, we analyze the following metrics.

3.4.1.1 Detection

The first metric evaluates the expectation of detection performance over U using p(u).
The expectation is normalized by the equivalent ESP performance. This can be for-
mulated by

κm = E {χL} =
Nd∑
i=1

p(ui)χL(ui), (3.4.1)

where χL is taken from (3.2.18). The quantity κm can be interpreted in two equivalent
ways. First, it is the average ratio between the ESP and RDBS CRBs for the amplitude
(α) estimation. Second, it is the average SNR loss (relative to ESP sum beam) of the
RDBS MF output inside U . Thus, it quantifies the detection performance of the
beamformer since the probability of detection PD is inversely proportional to the SNR
loss.
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The distribution of (3.2.18) within U is also a crucial factor, often disregarded. It is
possible to have a high value for κm with areas where the SNR loss is very high and
no target can be detected (i. e. ‘blind zones’). Clearly, such a scenario is undesirable.
We therefore calculate the relative Standard Deviation (STD) of (3.2.18) (normalized
by κm) as

κstd =

√
E {χL2} − E {χL}2

E {χL}
(3.4.2)

to quantify the variation within U .

3.4.1.2 DOA Estimation

To evaluate the DOA estimation performance, we consider the theoretical accuracy
limit dictated by the CRB. Specifically, we analyze the accuracy by taking the square
root of the determinant of the lower right 2 × 2 sub-matrix of the 4 × 4 CRB ma-
trix, containing the terms related to estimating u. We denote the RDBS and ESP
determinants as

DB =
√
|CRBB(u)| and DE =

√
|CRBE(u)|. (3.4.3)

These can be interpreted as the 2D ellipsoid areas defined by the CRB matrices in
(u, v)-coordinates. The ratio

ηm = E {DB}
E {DE}

(3.4.4)

is used to compare the beamformer to the ideal ESP case. It represents the average
CRB metric loss in DOA estimation.

It would be desirable to achieve a constant estimation performance independent of
u. To quantify the variation inside U , we calculate the relative STD as

ηstd =

√
E
{
DB

2
}
− E {DB}2

E {DB}
. (3.4.5)

The chosen set of metrics is therefore G = {κm, κstd, ηm, ηstd}.

3.4.2 Design Considerations
Equipped with the set of metrics G, the user can specify acceptable thresholds for
the metric values (performance trade-off criteria) to meet their needs. Our design
tool enables the user to analytically calculate the metrics in G for any (symmetrical)
array, for a wide range of U area sizes, number of channels N ch and β values. For
any unbiased estimator, the consequently chosen set J = {β,N ch,U} leads to the best
possible performance to be expected in terms of G.
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We define the term resource ratio as

ζ = N ch

ρ
, (3.4.6)

where ρ is the area size covered by U in units of [BW a] – the area within a single sum
beam. Now, we claim that the chosen metrics will depend on N ch and ρ only through ζ.
This is due to the fact that ρ determines ΓβΩ, and thus the required number of channels
to achieve a desired performance. The claim would be exact if we replaced ρ with ΓβΩ
in (3.4.6). However, because the exact rank is difficult to determine numerically, we
choose to stay with ρ and treat our claim as a good approximation.

The value of ΓβΩ also depends on the chosen value for β. It increases faster (with
respect to ρ) for the DOA estimation beamformer than for the detection beamformer.
For β = 1, we have two linearly independent vectors for each design DOA, whereas
for β = 0 we only have one. To avoid any problems, we always choose the geometrical
boundary so that ΓβΩ monotonically increases with increasing ρ. The exact shape (e. g.
square or rectangle) has a minor effect, because ΓβΩ changes differently depending on
how the area is increased.

To determine the best choice of system configuration parameters J , we propose
evaluating the metrics in G as a function of ζ and β. In practice, the user has a limited
set of interesting values for ζ (mostly restricted by hardware capabilities) for which
the metrics can be calculated as a function of β. This enables the user to choose J to
meet the desired metric thresholds for G. We demonstrate this process in more detail
in the next section.

3.5 Numerical Results
In this section, we present numerical simulations to support the statements and theory
presented in the chapter. The simulative study also serves as a walk-through on con-
structing and using the proposed design tool. The last part demonstrates the use of
the design tool in a space surveillance scenario, inspired by the novel GESTRA system
and SSA scenario (see Chapters 1–2).

3.5.1 Simulation Setup
From Table. 2.1, we use a circular digital array was used with N el = 256 isotropic
antenna elements spaced half-wavelength apart. We chose the following parameters for
our simulations:

1. A set of rectangular U area sizes in units of [BW a] was chosen. The v dimension
was fixed to 2× BW , while the u dimension linearly increased from 2× BW to
5× BW with a step size of 0.5, resulting in 4 ≤ ρ ≤ 10 [BW a].
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2. Targets (design DOAs) of equal SNR were placed inside U with a spacing of
1/10× BW to calculate the values in (3.4.1)–(3.4.5) and G.

3. A set of channel numbers N ch was chosen as 5 ≤ N ch ≤ 15.

4. A set of discrete values for β was chosen between 0 ≤ β ≤ 1 with a step size of
0.1.

5. A uniform target probability density function p(u) was used.

We emphasize the generality of the following plots used in our design tool. They
are valid for every (symmetric) array, regardless of the number of elements, exact
geometry or SNR level. As previously stated, the geometrical shape of U (e. g. square
or rectangle) has a minor effect. Nevertheless, for a non-uniform target probability
distribution p, the following plots will have to be recalculated.

3.5.2 Validation and Analysis
In Fig. 3.2, we demonstrate the DOA estimation performance DB inside U for N ch = 10
and ρ = 10 (i. e. ζ = 1) and β = 0, 1. The plots illustrate the variation of DB (captured
by ηstd) inside U , which is different for each beamformer configuration. The black dots
in the figure represent the target locations used to calculate DB (i. e. the design DOAs).
The uppermost plot shows the result for β = 0 (detection), while the center plot is
for β = 1 (DOA estimation). For these cases, the target probability distribution p is
uniform.

In both considered cases, the CRB loss is monotonically increasing towards the edge
of U . For β = 1, the increase is smaller, resulting in a more uniform performance
and a smaller value for ηstd. The lowermost plots shows the result for β = 1 using
a Gaussian distribution p with a half-power beamwidth of 0.15 centered at (0.15, 0).
The target is assumed to be in the vicinity based on a-priori information. The value
of DB in the vicinity of the expected target position is about 2 dB lower than in the
case of a uniform distribution. The target probability p can also be used to account
for a non-uniform transmit power pattern. Alternatively, p can utilize the information
provided by a target detection from a previous pulse to obtain better performance for
the current pulse.

Next, we provide a numerical validation of the previous claim that the resource ratio
ζ is the key factor determining the performance. In Figs. 3.3–3.4, each of the metrics
in G is plotted as a function of N ch and ρ. The plots correspond to the two choices of
β = 0, 1 as indicated in the plot titles. We clearly see that equal performance is achieved
along straight lines with constant ζ to a high degree of accuracy (although we only
present limited choices of β, we verified the results for all values of β). Equivalently,
for an increasing ρ, the number of channels N ch required to maintain the same metric
value increases.
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Figure 3.2: Distribution of the theoretical estimation performance DB over the spatial
sector of interest U for the detection (β = 0, top) and DOA estimation
(β = 1, middle and bottom) beamformers. The bottom result is obtained
using a Gaussian target distribution p centered at (0.15, 0), while the other
results are obtained with a uniform target distribution.
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The significance of the weighting factor β is also illustrated in the results of Figs.
3.3–3.4. The choice of β = 1 achieves the best performance for the DOA metrics
{ηm, ηstd} for any combination of N ch and ρ. The same applies for β = 0 and the
SNR metrics {κm, κstd}. For β ∈ [0, 1] the metrics in G are affected differently, and
bounded by their values for the cases of β = {0, 1}. As a general observation, we see
that N ch � N el channels are sufficient to achieve ESP performance, even for large area
sizes of U (assuming the metrics concerning the STD are at acceptable levels).

3.5.3 Design Tool Construction

Next, we implement the proposed design tool described in Section 3.4.2. Possible
resource availability cases were categorized into ζ = {1, 2, 3, 4}, representing low to
high resource ratios, respectively. For each case, the metrics G were evaluated as a
function of β. To illustrate the significance relative to previous methods, we note that
β = 0 corresponds to a 2D version of the DSS method [32], and β = 1 to a 2D version
of [33].

A new set of figures was created by mapping the data from Figs. 3.3–3.4 in the
following manner. For each metric gi ∈ G and β, the data along a constant contour
line was mapped into a figure corresponding to the line’s slope, determined by ζ.
Therefore, we have four plots corresponding to the chosen values of ζ in Fig. 3.5.

We conclude that for a low resource ratio ζ = 1, the detection (β = 0) and DOA esti-
mation (β = 1) beamformers perform differently, exhibiting a substantial gap between
the metric values. Moreover, the effect of β becomes clearly visible. As β increases
from 0 to 1, the DOA metrics are monotonically improving: ηm drops from 4.5 dB
down to almost 2 dB, and ηstd from -1 dB to -4 dB. However, the detection metrics
are monotonically degrading: κm increases from 1 dB to 2.5 dB, and κstd from -6 dB
to -3 dB. This illustrates the previously mentioned trade-off, which can be controlled
by β.

Several more observations can be made. As the resource ratio increases, all metrics
improve. The case of ζ = 4 can be considered as a practical performance limit (for
any array), as it almost converges to ESP values. In addition, the impact of β reduces,
and the metrics {ηm, κm} approximately reach a constant response as a function of β.
When the channel number increases (while ρ remains fixed), the number of omitted
eigenvectors corresponding to non-zero eigenvalues decreases, making β redundant.

For validation purposes, additional configurations were simulated, comprising of dif-
ferent number of elements, array and U area geometries. The obtained results very
accurately matched the ones presented above, serving as an additional verification that
the key factor in the calculations is the resource ratio ζ.
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Figure 3.3: Mean theoretical detection (κm) and DOA estimation (ηm) performance
comparison between the beamformers. Each of the metrics is approximately
constant along lines of constant resource ratio ζ = N ch/ρ.

3.5.4 Beamformer Construction Procedure
We now summarize the required steps of the proposed design tool of Section 3.4.2 to
construct the beamformer. First, the set of values J is determined as follows.

1. Calculate the resource ratio ζ from (3.4.6), taking into account the available
number of channels and required U area.

32



3.5 Numerical Results

-2
3

-1
8

-1
8

-1
3

-1
3

-1
3

-1
0

-1
0

-1
0

-7

-7
-7

-3

-3

0

4 6 8 10
5

6

7

8

9

10

11

12

13

14

15

-30

-25

-20

-15

-10

-5

0

[d
B

]

-2
3

-1
8

-1
3

-1
3

-1
0

-10

-1
0

-7

-7

-7

-3

-3

-3

4 6 8 10
5

6

7

8

9

10

11

12

13

14

15

-30

-25

-20

-15

-10

-5

0

[d
B

]

-1
3

-1
0

-1
0

-7

-7

-7

-3

-3

-3

0

0

0

4 6 8 10
5

6

7

8

9

10

11

12

13

14

15

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

[d
B

]

-1
3

-1
3

-1
0

-1
0

-1
0

-7

-7

-7

-3

-3

4 6 8 10
5

6

7

8

9

10

11

12

13

14

15

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

[d
B

]

Figure 3.4: STD of theoretical detection and estimation performance comparison be-
tween the beamformers. Each of the metrics is approximately constant
along lines of constant resource ratio ζ.

2. Set the needed thresholds for the metrics in G (i. e. quantify an acceptable per-
formance trade-off).

3. Refer to the matching plot for ζ in Fig. 3.5. Choose the corresponding β value
where the defined metric thresholds are met. However, if such value for β does
not exist, the only possible solution is to consider a higher resource ratio.
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Figure 3.5: Theoretical detection and estimation performance as a function of β. These
generalized plots enable the user to choose a desired performance trade-off
for a given resource ratio ζ. The scale on the left side and the corresponding
blue lines represent the mean metrics, while the scale on the right side and
the corresponding red lines depict the STD metrics.

We denote the outcome of these steps as J0 = {β0, N
ch
0 ,U0}. Second, we outline how

to construct the beamformer as described in Section 3.3 (we note that p(u) = 1 in this
scenario).
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1. Define a set of design DOAs ui covering the spatial area of interest U0. The
spacing should be sufficiently small to ensure homogeneous coverage. The exact
spacing should be verified empirically based on the metrics in G. In our simula-
tions, a spacing of BW/10 produced satisfactory results: decreasing the spacing
further showed little to no change in the results.

2. Calculate (3.3.4) with the chosen set J0 and perform the eigendecomposition
with descending eigenvalues. Take the first N ch

0 eigenvectors as B.

3.5.5 Use-Case Demonstration
To demonstrate a practical application of the proposed design tool, we consider the
following scenario. The system is operated in a search mode, where the objective is
to detect the target and estimate its DOA within a rectangular shaped area U0 of
2 × 4 [BW ], meaning that ρ0 = 8. The available number of channels, dictated by the
available hardware resources, is set to N ch

0 = 8.
Using the same simulation setup with Nd = 1020, ΓΩ = {107, 119} for β = {0, 1},

respectively. Clearly, constructing a lossless beamformer satisfying Theorem 2 is im-
possible, since N ch � {3Nd,ΓΩ}. Thus, we turn to an optimal solution using the
procedure described in Section 3.3. First, we calculate ζ0 = N ch

0 /ρ0 = 8/8 = 1. Sec-
ond, we set the thresholds for the metrics in G with common-practice values (in dB):
ηm ≤ 3, κm ≤ 3, ηstd ≤ −3 and κstd ≤ −3. Finally, we use the upper-left plot
in Fig. 3.5 to find the matching β value: By intersecting a vertical line (representing a
fixed value of β) with the metric curves, we see that β = 0.5 meets these criteria.

Our design tool makes it very easy to understand the performance limitations. All
possible values for the metrics in G for a given ζ are clearly visible in Fig. 3.5. The
benefit of using our design method is highlighted: We are able to meet the desired
performance (with limited resources) by tuning β. Otherwise, this would only be pos-
sible by increasing the number of channels, which may not be feasible due to practical
limitations.

3.5.6 Monte Carlo Simulations
The preceding numerical results represent the theoretical values (e. g. CRB) obtained
using the various analytical formulations given throughout the chapter. In this section,
we validate that these ideal theoretical results are close to practically achievable per-
formance with a realistic system where a numerical estimator for ϑ is used in a Monte
Carlo (MC) approach.

To achieve this, we carried out empirical numerical simulations based on the ML
estimator with the underlying signal model as described in (3.2.5). To avoid any unde-
sirable numerical errors, we used a sequential brute force optimization on a grid with
decreasing spacing to locate the ML maximum according to (3.2.8). For each combina-
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tion of the setup parameters and design DOAs, the simulation was repeated Nmc = 100
times with a different WGN realization to allow sufficient statistical accuracy.

An example of the obtained empirical results is depicted in Fig. 3.6 for β = 0. We
first calculated the empirical covariance of the DOA estimations over the MC iterations,
denoted as COVB(u). Similarly to (3.4.3)–(3.4.4), we calculated DC =

√
|COVB(u)|

and the mismatch as bm = E {DC}/E {DB}. This result is shown on the left hand side
of Fig. 3.6.
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Figure 3.6: Comparison between theoretical and empirical results. On the left hand
side, the ratio between the empirical covariance and the CRB is shown.
The discrepancy for low resource ratios in the bottom right corner can
be explained by the estimation bias caused by the ambiguous estimation
results, which is depicted on the right hand side.

Since the ML estimator is asymptotically unbiased, the right hand side Fig. 3.6 aims
to validate the bias of the MC estimations (should ideally tend to zero). The mean bias
over U was calculated and normalized by DB

1/4 for proper scaling (denoted as b̄m).
For high resource ratios, we have a very low covariance mismatch (below 0.5 dB) and

bias level (below -18 dB), implying an excellent agreement with theoretical calculations.
However, for low resource ratios and inadequate target SNR, we observed a considerable
mismatch.

Often overlooked, this so-called ambiguity problem may have an undesirable effect:
When the number of channels is not high enough to uniformly cover the entire area
U (low resource ratio ζ < 1), multiple equally high peaks emerge in the ML function.
These peaks can be explained by the normalization factor in (3.2.7), which is (apart
from a constant factor) the square root of the SNR loss in (3.2.18). A low resource ratio
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causes the SNR loss to vary significantly inside U , which in turn causes amplification
of the sidelobes of the target response.

If this phenomenon is not taken into account during detection stage, the estimation
algorithm can choose the sidelobes peak as the maximum, leading to unreliable detec-
tion and estimation results. This behavior causes the empirical estimation to have an
increased covariance and a significant bias. This is depicted in the results shown in
Fig. 3.6. For low resource ratios (bottom right corners), the bias b̄m increases from
-20 dB to -10 dB relative to the mean (plot on the right), and the estimated covariance
mismatch bm reaches up to 3 dB relative to the theoretical one (plot on the left).

These values suggest that we are unable to obtain performance comparable to the
CRB for very low resource ratios with the chosen target SNR of -9 dB (at element
level) used in our MC simulations. We point out this potentially unwanted outcome,
but further investigation of this ambiguity problem is outside the scope of this chapter.

3.6 Conclusion
In this chapter, we have presented an elaborated formulation to the digital array Rx
data dimension reduction transformation process. First, we proposed a method to
construct a beamformer simultaneously achieving lossless target detection and 2D DOA
estimation performance. When the number of channels is too low, we introduced a
new parameter-controlled design method, to obtain optimal performance by exploiting
a trade-off between target detection and DOA estimation.

Thereafter, we generalized our findings into a novel design tool, which allows the
user to evaluate potential beamformer performance for a given practical use-case, and
then construct one to meet desired criteria. Finally, we performed numerical studies to
provide validation, a walk-through demonstration of the design process and an overview
of important practical considerations.

The analysis presented in this chapter can be further extended in several ways. One
example is to consider the optimal transformation design for non-linear high-resolution
estimation methods (e. g. MUSIC, Capon or ESPRIT). Another is to investigate new
performance metrics, such as target resolution and interference suppression in the de-
sign criteria. The benefit of the proposed beamformer in a radar network configuration
is a promising research area as well.

Analyzing the impact of additional factors on the design tool may also be considered.
These include more complicated noise and interference models, channel calibration er-
rors, non-symmetrical arrays, non-symmetrical coverage areas and non-uniform target
probability densities.
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Chapter 4

Rx Beamforming for Long Baseline
Multistatic Radar Networks
Joining several radar stations together to form a network holds great potential for
Space Situational Awareness (SSA) through extended spatial coverage and multiple
observation perspectives. By increasing the baseline between the radar stations, en-
hanced detection and parameter estimation of targets can be attained. However, a key
challenge of long baseline networks is the associated large spatial Rx coverage area.
In this chapter, we introduce the necessary theory and propose the adaption of the
eigenbeamspace transformation from Chapter 3 to overcome these challenges.

4.1 Introduction
Distributed multistatic radar networks provide a number of advantages compared to
conventional monostatic radars [51]. Networks with suitable configurations and data
fusion algorithms can significantly improve the target detection sensitivity [22] and
position estimation accuracy, due to multiple observation perspectives and extended
coverage area. Moreover, the performance of the network can be improved by adding
additional nodes over time.

In general, these systems can be configured in a variety of ways. Quasi-monostatic
networks with closely spaced radar nodes are referred to as local networks. At the other
end of the spectrum are large extent networks, which consist of nodes that must operate
monostatically due to the large interstation distances. For the configurations in between
– where the nodes are separated widely enough to require bistatic processing between
the nodes – we use the term medium extent networks. As shown in [22], medium extent
networks offer diversity gain from additional aspect angles, which results in enhanced
detection performance. Moreover, the fusion of multiple bistatic signal paths improves
the target parameter estimation.

Since the basic elements of a medium extent network are bistatic radars, the major
challenges in the signal processing are related to the bistatic signal paths with long
baselines. These include precise time, frequency and phase synchronization, as well as
the relatively small volume resulting from the intersection of transmit (Tx) and receive
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(Rx) beams. The latter problem is known as the beam scan-on-scan coverage loss [52,
Sect.13.1]. This challenge was considered for medium extent networks in [22], which
proposes a pulse chasing concept based on multiple Rx sum beams to counteract these
losses.

Increasing the network baseline is often desirable, because it improves the position
estimation accuracy due to a higher diversity of aspect angles. However, in the pulse
chasing method, large baselines often require a prohibitively high number of Rx sum
beams (channels) to cover the entire Tx beam. The maximum number of Rx channels
is often limited by available hardware, thus limiting the maximum baseline and per-
formance. To overcome this problem, the sum beams need to be replaced by a more
sophisticated beamspace transformation (beamformer) method.

Several methods for beamspace processing in multistatic radar networks have been
considered in the literature. Many of these methods are designed for quasi-monostatic
Multiple Input Multiple Output (MIMO) systems [29, 30, 53, 54], limiting their ap-
plicability for medium extent networks. References [55, 56, 57] describe beamspace
methods for bistatic MIMO systems. However, the beamformers used in these papers
are focused on DOA estimation, and do not guarantee that optimal detection and
estimation performance are achieved.

In this chapter, we propose using the eigenbeamspace transformation from Chap-
ter 3 for medium extent networks. It obtains either lossless performance or a desired
performance trade-off between detection and Direction-of-Arrival (DOA) estimation,
depending on the available number of channels and spatial area coverage. More im-
portantly, it allows us to obtain a larger and more uniform coverage over the Tx beam
with a smaller number of Rx channels than other methods. For a fixed number of chan-
nels, this enables us to increase the baseline and obtain improved position estimation
accuracy for the bistatic setup. This method can be used in any application dealing
with long baseline bistatic Digital-Array Radar (DAR).

We begin by presenting the relevant background of medium extent networks, DOA
estimation and Rx beamforming in Section 4.2. Then, we present numerical results
showing the increased estimation performance using the eigenbeamformer method in
Section 4.3, utilizing a space surveillance scenario with target detection and parameter
estimation at Low Earth Orbit (LEO)s. Finally, we discuss our findings and make
concluding remarks in Section 4.4.

4.2 Theoretical Background
This section presents the relevant background of long baseline bistatic radars. An
important note: The case of non-coherent processing of the different radar stations is
considered. The individual estimation results will be finally fused together to exploit
the radar network geometry. While coherent processing has a higher performance
potential, its synchronous phase across stations requirement yet presents a difficult
challenge (outside the scope of this chapter).
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We introduce the theory and the key challenge of covering a large baseline in Sec-
tion 4.2.1. Subsequently, we present the theory of the DOA estimation in medium
extent networks in Section 4.2.2 and introduce the eigenbeamformer in Section 4.2.3.

4.2.1 Bistatic Signal Path Geometry
Starting from the work on bistatic radar in [52, 58], we need to extend it to the medium
extent network case as stated in [22]. A two dimensional (bistatic plane) sketch of the
network setup is shown in Fig. 4.1, with the nomenclature used throughout this chapter.
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L
eff

γ
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in

Tx

O

RRx

·

RTx

Figure 4.1: Geometry of the bistatic signal path from a target located at point O. The
large coverage angle of the distant Rx station is denoted as ∆θRx.

The network under study consists of a quasi-monostatic Tx and Rx station at the
origin of the local coordinate system and an additional distant receiver, separated by
the baseline L. The Tx station is transmitting into a fixed direction θTx, covering the
set of ranges Rmin

Tx ≤ RTx ≤ Rmax
Tx . The distant Rx station must cover all possible Tx

ranges (marked in red line), which yields a wide angular area, denoted as ∆θRx.
To illustrate the bistatic path, a point target is placed at O, within the illuminated

Tx beam. The ranges from the target to the Tx/Rx and distant Rx stations are denoted
by RTx and RRx, while the sum of these ranges is the bistatic range Rbs = RTx + RRx.
The Rx station DOA is θRx. We note that θTx and θRx are taken from zenith.
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Comparing the considered case to those in the literature [52, Sect.13.2] and [58],
we allow longer baselines in relation to the observed ranges. The duration of a single
transmitted pulse is denoted as T p. Additionally, we consider relatively long pulse
length (c0T

p) in comparison to the baseline L (c0 is the speed of light). Therefore, the
assumptions that Rbs, c0T

p � L by Willis [52, Sect.13.2] and Jackson [58] are violated
and some of their approximations are not valid in the case of medium extent networks.

Defining t as the time elapsed since the beginning of transmission, we have

RTx = c0t (4.2.1)

RRx =
√
R2

Tx − 2RTxL sin (θTx) + L2 (4.2.2)

for the range from the target to the transmitter and the distant receiver. The Rx angle
θRx is given by [52, Eq.13.10a]

θRx = θTx − 2 arctan
(

L cos (θTx)
RTx +RRx − L sin (θTx)

)
, (4.2.3)

and the bistatic angle γ, which is the angle between the line of sights of the involved
network nodes, is computed as

γ = θTx − θRx. (4.2.4)

4.2.2 DOA Estimation in Radar Networks

One of the benefits of a medium extent radar network is the diversity in aspect angles
with respect to a target. This diversity leads to an increased detection sensitivity of
fluctuating targets and an increased DOA estimation accuracy, by using the triangu-
lation of estimated ranges instead of actual DOA estimations. In the following, we
introduce the equations to characterize the DOA estimation performance of medium
extent networks, which are used for the performance evaluation presented in Section 4.3.

Long range radar scenarios suffer from a relatively poor cross-range accuracy com-
pared to the range accuracy, since the angle accuracy in radians is multiplied by the
range to obtain the cross-range accuracy. For that reason, the different aspect angles
of a medium extent network are very beneficial. In the ideal case, the range dimension
of a network node lies aligned to the cross-range dimensions of a second node, such
that the cross-range accuracy along this dimension can be drastically improved.

Fig. 4.2 shows a zoom on the intersection of the line of sights of our considered case
in Fig. 4.1. It illustrates the intersection of the two position estimation error covariance
matrices for the network under study. The fused position accuracy is described w.r.t.
the bisector of the bistatic angle, where the fused range accuracy δRf is aligned and
the cross range accuracy δθf is orthogonal to it. The range accuracies of the different
nodes are denoted as δR1 and δR2, while their cross-range accuracies δθ1 and δθ2 are
not depicted in the sketch, since they are very large compared to the range accuracies.
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Figure 4.2: Sketch of the intersection of the range and DOA uncertainties (blue and
red).

Therefore, the range accuracies and the difference in aspect angles are the dominating
factors in the fused cross range accuracy δθf , which can be computed as the diagonal
of the parallelogram defined by x and y in Fig. 4.2. It is obtained by

δθf =
√
x2 + y2 + 2xy cos γ =

√
δR2

1 + δR2
2 + 2δR1δR2 cos γ
sin γ (4.2.5)

for γ ∈ (0, π) and bounded by min (δθ1, δθ2) for γ → 0. Here, δθf describes the cross-
range accuracy in meters. To obtain the fused angle accuracy δθf,rad in radians, we need
to divide δθf by the range to the target. Therefore, we introduce the effective baseline
Leff, similar to [51, Sect.1.2], as the projection of the baseline onto the dimension
perpendicular to the bisector of the bistatic angle γ (see Fig. 4.1). This way the
effective baseline is defined by

Leff = 2RRx sin
(
γ

2

)
(4.2.6)

and the the range to the target is defined by RRx. Dividing (4.2.5) by RRx and using
(4.2.6), we obtain the fused angle accuracy

δθf,rad =

√
δR2

1 + δR2
2 + 2δR1δR2 cos γ
RRx sin γ =

√
δR2

1 + δR2
2 + 2δR1δR2 cos γ
Leff cos γ

2
. (4.2.7)
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We use (4.2.7) for the evaluation of the medium extent network performance w. r. t. the
angle estimation accuracy in Section 4.3. Since (4.2.7) uses the individual estimation
accuracies of the Rx stations, phase-coherent processing is not required. This relaxes
the synchronization demands, such that a time synchronization via Global Navigation
Satellite Systems (GNSS) or direct signal is sufficient.

4.2.3 Rx Beamformer

Radar systems with a single channel (e. g. dish antennas) have no ability to control/-
modify the coverage of the received area. Therefore, for the bistatic configuration their
use has no benefit. This is the primary motivation for the use of a Rx beamformer. In
this chapter, we focus only on the distant receiver beamformer, as it will be the one
with the largest spatial area to cover.

The second reason is concerned with the computational burden aspect. As thor-
oughly explained in Chapter 3, for digital arrays with many elements, performing
real-time processing with the full Element Space (ESP) data is often not computa-
tionally feasible. Therefore, by applying a beamformer matrix B to the ESP data,
we get a Reduced Dimension Beamspace (RDBS) with lower dimensionality. The di-
mension reduction is possible, because the Tx beam is assumed to drastically limit the
illuminated spatial area of interest U . In general, the beamformer introduces a loss of
information, which may result in an Signal-to-Noise-Ratio (SNR) loss (denoted as χL)
and estimation accuracy degradation.

The maximum RDBS dimension is often dictated by hardware limitations and com-
putational requirements. For the distant Rx station in our scenario, the Tx beam
illuminates a large area. Achieving lossless performance – in terms of SNR and estima-
tion accuracy – for a large area U , requires a minimum number of Rx channels. This
makes the beamformer design for a large baseline network a challenging task.

There exist several different possibilities for choosing the beamformer [22, 29, 30, 53,
54, 55, 56, 57, 59, 60]. Our purpose is to analyze two choices for the network configu-
ration: the common sum beam method [22] and the newly proposed eigenbeamformer
in Chapter 3. We aim to compare the benefits and drawbacks of each method in terms
of SNR loss, angle estimation accuracy and baseline extension ability.

In the sum beam method, the spatial sector of interest U is covered with steered
sum beams, spaced half beamwidth apart (see Fig. 4.3). We refer to it as the paving
method, which is oriented only towards SNR gain. While it directly improves detection,
DOA estimation depends on the beam shape as well [61]. Moreover, paving inefficiently
uses the available channels, and is characterized by an in-homogeneous response.

On the other hand, the eigenbeamformer improves the Rx area coverage and DOA
estimation accuracy of the network – the beam shape is not limited to that of a sum
beam.
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Figure 4.3: Illustration of the paving method. The circles show the 3 dB contours of
the Rx sum beam power patterns. Both Rx and Tx beams are as seen from
the u− v coordinates of the distant receiver.

4.3 Numerical Results

In this section, we compare the eigenbeamformer with the paving method. A medium
extent network in the space surveillance scenario is considered. We begin by illustrating
the growth of the receiving area at a distant receiver. Then, we analyze the fused angle
accuracy gain due to an increased baseline and the effect of SNR loss at the distant
receiver onto it. Subsequently, we analyze the performance of the beamformers and
their effects on the above-mentioned metrics.

4.3.1 Simulation Setup

For our simulations, we assume a network configuration similar to Fig. 4.1 with radar
sensors providing 3 dB Beamwidth (BW)s of θ3dB

Tx = 8◦ in transmit and θ3dB
Rx = 6◦

in receive. We consider a space surveillance scenario, observing LEO objects with
an orbit height of 300 – 3000 km. This region is covered by using transmit ranges
of RTx ∈ [300, 4500] km assuming transmit directions of θTx ∈ [0◦, 60◦]. Since we are
analyzing medium extent networks, we use baselines of L ∈ [150, 600] km.

For the operating system, we based our parameters on the GESTRA system as de-
scribed in Chapter 2. The channel number under test N ch was chosen as 5 ≤ N ch ≤ 30.
This setup provides a practical example of a long baseline multistatic radar network.
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Chapter 4 Rx Beamforming for Long Baseline Multistatic Radar Networks

4.3.2 Receiving Area

We begin the numerical section with an important evaluation of the receiving area U
of the distant receiver, covering the entire illuminated volume by the Tx beam, as it
is projected onto its u − v coordinates. This area is directly connected to ∆θRx from
Fig. 4.1, and has a dimension orthogonal to the bistatic plane, as demonstrated with
1.5 sumbeams width in Fig. 4.3. The size of U normalized to its 3 dB Rx beam area
(BW a) is denoted as ρ = U/BW a, and presented in Fig. 4.4. The plot reveals a rapid
increase of U as the baseline grows, especially as the Tx angle tends towards the distant
receiver. For θTx = 60◦ the receiving area U presents a significant growth from 6 to
48 times BW a, underlining the challenge in long baseline bistatic geometries stated in
Section 4.2.1.
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Figure 4.4: Receiving area U normalized to BW a vs. baseline, for θ3dB
Tx = 8◦, θ3dB

Rx = 6◦,
L ∈ [150, 600] km, θTx ∈ [0◦, 60◦], and RTx ∈ [300, 4500] km.

Moreover, a saturation-like behavior of the receiving area can be noticed, which is
reached at baselines around 600 km. This delivers an upper bound for the receiving
area that needs to be covered by the distant receiver and can be used as a threshold
in designing and optimizing a beamformer for this purpose.
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4.3.3 Fused DOA Accuracy
Next, we show numerical results for the fused angle accuracy in the simulated config-
uration, based on the theory presented in Section 4.2.2. Fig. 4.5 shows the gain in the
fused angle accuracy as a function of the baseline. Here, (4.2.7) was evaluated for the
Tx ranges and baselines defined in Section 4.3.1, while the Tx direction was fixed to
θTx = 60◦. According to the Tx range and direction, the SNR and range accuracies
δR1 and δR2 were computed for the quasi-monostatic radar and the distant receiver,
respectively. The resultant fused angle accuracies were normalized to the worst angle
accuracy of the map, so that the colorbar indicates the fused angle accuracy gain in
dB. Other simulated Tx directions showed similar behavior.
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Figure 4.5: The fused angle accuracy δθf,rad gain in dB vs Tx range and baseline, using
(4.2.7).

We can see the main advantages of an extension of the baseline in Fig. 4.5. As L
is increasing, it is possible to achieve a better angle accuracy for a target at the same
range. Alternatively, it is possible to compensate increasing range with increasing
baseline, and maintain the same performance. As a general observation, we see that
best accuracy is achieved for large baselines and low Tx ranges, which results in a
bigger difference of aspect angles. Nevertheless, with growing baselines the SNR at the
distant receiver (which is proportional to 1/R2

RxR
2
Tx) may decrease. This effect can be
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Chapter 4 Rx Beamforming for Long Baseline Multistatic Radar Networks

observed in Fig. 4.5, since the contour lines of constant gain flatten out with growing
baseline.

The results in Fig. 4.5 exclude additional SNR losses at the distant receiver station,
e.g. losses caused by a beamformer. As stated in Section 4.2.3, a beamformer in
the distant receiver might introduce an SNR loss and therefore degrade the fused
angle accuracy. The effect of an SNR loss χL at the distant receiver on the fused
angle accuracy is shown in Fig. 4.6 for representative Tx ranges of RTx = 500 km and
RTx = 1000 km, considering θTx = 60◦.

Figure 4.6: The fused angle accuracy δθf,rad loss in dB due to χL (caused by the beam-
former) at the distant receiver for two different Tx ranges.

The 500 km case of Fig. 4.6 represents the loss map behavior of close ranges in the
the scenario of LEO space surveillance. The 1000 km case represents the LEO cases
for orbit heights greater than 1000 km, since the loss maps for these ranges show very
similar behavior. For the simulation of these maps an SNR loss from 0 to 20 dB is
added to the distant receiver’s SNR, degrading its range accuracy δR2.

Similar to the computations of Fig. 4.5, these values are used with (4.2.7) to obtain
the fused angle accuracy. The resultant fused angle accuracies are then normalized to
the best accuracy of its respective map, to present a relative accuracy loss in dB.

We can observe that for both ranges and any fixed baseline an SNR loss of 5 dB
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4.3 Numerical Results

leads (in average) to a fused angle accuracy loss of 2.5 dB. Moreover, we see that
for bigger RTx the SNR loss has a higher impact on smaller baselines. Maintaining
a constant SNR loss of χL = 5 dB and crossing along the baselines, the plots show
a higher variation in the fused angle accuracy loss for RTx = 1000 km compared to
RTx = 500 km. This behavior is a result of the bigger bistatic angle, due to a long
baseline and a relatively small Tx range. In the case of a bigger bistatic angle the fused
angle accuracy is dominated by the range accuracies of the single stations.

In general, Fig. 4.6 shows the angle accuracy loss that needs to be added to the
gains in Fig. 4.5, taking into account the SNR loss due to beamforming at the distant
receiver. These maps extend Fig. 4.5, such that the total fused angle accuracy gain
can be obtained for every RTx, L and χL.

4.3.4 Beamformer Comparison
Next, we compare the SNR performance of the eigenbeamformer with the paving
method, where the sum beams are separated by half a 3 dB beamwidth. We adjust the
eigenbeamformer (from Chapter 3) to our multistatic scenario with these actions: We
set its control-parameters to β = 0, since we focus entirely on the SNR loss (detection).
This is because the data fusion accuracy will be dominated by the range accuracy, which
is determined by the SNR. Thus, it is unnecessary to adjust the beamformer to opti-
mize DOA estimation performance, as only the SNR loss is important. In addition, a
uniform target probability density function p(u) was used.

The contour plots in Fig. 4.7 show the mean (κm) and Standard Deviation (STD)
(κstd) of the SNR loss for both beamformers, computed by (3.4.1)–(3.4.2), taking into
account the simulation setup parameters presented as in the beginning of the section.

To show a holistic comparison, the simulation results presented in Figs. 4.5, 4.6 and
4.7 need to be combined. The final gain from an extended baseline is shown in Fig. 4.5,
showing increased angle accuracy gain with longer baselines. For a chosen combination
of baseline and number of channels, the corresponding beamformer SNR loss for both
simulated beamformers can be read from Fig. 4.7. Inserting these values in Fig. 4.6
(for the desired range), the overall fused θ accuracy loss can be calculated.

We can interpret the figures in several equivalent ways:

1. For the same baseline, the eigenbeamformer requires less channels to achieve the
same average SNR loss, stating increased resource efficiency.

2. For a fixed baseline and number of channels, the eigenbeamformer increases the
SNR and therefore the angle accuracy.

3. For a fixed number of channels and tolerable SNR loss, the eigenbeamformer
allows bigger baselines and therefore higher angle accuracy.

4. The STD plots of χL reveal that the eigenbeamformer provides a much more
homogeneous response.
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Figure 4.7: The mean (κm) and the STD (κstd) of the SNR loss for the paving beam-
former (left) and the detection eigenbeamformer (right). The eigenbeam-
former exhibits an overall better SNR loss performance and a more homo-
geneous response.

To support these observations, we show examples with specific values. We use κm
and κstd from (3.4.1) and (3.4.2) which correspond to the mean and STD of the SNR
loss, across the spatial area. Target ranges are RTx ∈ [300, 4500] km and θTx = 60◦.

The first observation can be seen directly from the κm metric in Fig. 4.7, choosing a
baseline of L = 500 km and allowing χL = 5 dB. To achieve this, the eigenbeamformer
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4.4 Conclusion

requires only N ch = 13 channels, while the sum beam method requires N ch = 27
channels. This clearly proves the resource efficiency of the eigenbeamformer, requiring
approximately half the number of channels.

For the second observation, we choose N ch = 16 channels and L = 500 km. Using
these values with the paving beamformer leads to a mean SNR loss of κm,Pave = 13 dB
and the eigenbeamformer achieves κm,Eigen = 3.4 dB (see Fig. 4.7). Plugging these
values in Fig. 4.6, we see that the eigenbeamformer yields 5 dB better estimation
accuracy for both presented Tx ranges.

The third observation can be illustrated by choosing N ch = 16 channels and a mean
SNR loss of κm = 3 dB. Fig. 4.7 shows, that for this values the baseline can be increased
from 220 km, using the paving beamformer, to 600 km, using the eigenbeamformer.
This increase in baseline leads according to Fig. 4.6 to an angle accuracy gain of 3.4 dB
for RTx = 500 km, and 6 dB for RTx = 1000 km.

The last observation can be seen from the κstd metric in Fig. 4.7. The values are
normalized to the corresponding expected SNR loss. Even thought the paving seems to
have a lower relative STD, it relates to a much higher mean SNR loss. We point that
as discussed in Chapter 3, when the resources ratio ζ = N ch/ρ is high, the advantage
of the eigenbeamformer over other beamformers types decreases.

4.4 Conclusion
In this chapter, we analyzed Rx beamforming in long baseline multistatic radar net-
works. The difficult requirements posed by the network geometry motivated us to
compare the eigenbeamforming method with conventional sum beam paving. We pre-
sented numerical studies related to a space surveillance scenario, which demonstrated
the superiority of the eigenbeamformer in several aspects:

• Improving resource efficiency by using a lower number of channels maintaining
the same SNR loss for a fixed baseline

• Significantly increasing the SNR performance and angle accuracy for a fixed base-
line and number of channels

• Significantly increasing the angle accuracy through larger baselines with the same
number of channels

• Delivering a much more homogeneous estimation accuracy over the covered area
for the same number of channels and baseline.

Summarizing these benefits, this chapter shows that utilizing the eigenbeamformer in
long baseline multistatic radar networks offers a substantial performance gain without
any penalty.

Future work includes the expansion of the problem to higher dimensions by con-
sidering networks with more than three spatially distributed nodes. The analysis of
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Chapter 4 Rx Beamforming for Long Baseline Multistatic Radar Networks

other aspects, such as sidelobes suppression and adaptive eignebeamforming might
also be interest. The application in radar resource management can also be studied,
where an arbitrary (even disjoint) coverage volume can be effectively covered with the
eigenbeamformers fusion of each node. Lastly, the study of coherent processing with
synchronous phase between radar stations, combined with the eigenbeamformer is of
great potential.

52



Chapter 5

On Maximum Likelihood DOA
Estimation for Space Surveillance
Radar
After the beamforming stage, it is possible to find an accurate Direction-of-Arrival
(DOA) estimation of a target. In various Digital-Array Radar (DAR) applications,
DOAMaximum Likelihood Estimator (MLE) is the common estimation method. When
the Space Situational Awareness (SSA) scenario and Low Earth Orbit (LEO) targets
are considered, a substantial estimation bias caused by ‘DOA migration’ may appear,
causing a localization error in the order of kilometers. In this chapter, we implement the
Kepler orbit motion model with the MLE and analyze the resulting DOA estimation
bias, variance and Signal-to-Noise-Ratio (SNR) loss.

5.1 Introduction
Typically, the DAR Signal Processing (SP) relies on the Matched Filter (MF) to esti-
mate the DOA. Locating the DOA that maximizes the MF SNR output is equivalent to
Maximum Likelihood (ML) estimation [48, 49]. For any given array, increased SNR re-
sults in better estimation accuracy of the ML process. Higher SNR can be achieved by
coherently integrating a number of pulses during a Coherent Processing Interval (CPI).
When the radar attempts to detect a moving target, the MF signal model needs to
include all of the target motion parameters that affect the phase of the received sig-
nal. Otherwise the integration is impaired, with lower SNR and degraded estimation
accuracy.

As we focus on SSA and LEO targets kinematics, their motion parameters (range,
Doppler, and DOA) change significantly even for relatively short CPI lengths (of less
than a second). The range and Doppler motion models and MF formulation for LEO
targets have been considered in [28, 62, 63]. To obtain the best possible SNR gain from
the entire CPI, the DOA motion model also needs to be carefully analyzed. An inade-
quate model leads to degraded DOA estimation accuracy (increased bias and variance),
which results in a poorer debris’ orbit estimation accuracy. ML DOA estimation for
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moving targets has been previously considered e. g. in [64] in the context of a passive
phased array. In this chapter, we apply a similar approach for an active radar sensor
and LEO targets.

The contribution of this chapter is two-fold:

1) We validate a linear DOA motion model during the CPI for a LEO target using
a Kepler orbit assumption, and

2) We demonstrate the effect of the chosen model for the estimation results in terms
of DOA bias, variance and SNR loss.

After introducing the background of ML DOA estimation in Section 5.2, we analyze
the DOA kinematics of Kepler targets and formulate a linear DOA motion model in
Section 5.3. Section 5.4 presents a numerical validation of the model and demonstrates
the achieved estimation accuracy, while Section 5.5 concludes our findings.

5.2 Theoretical Background
In this section, we describe the signal model and the conventional DOA MLE. We
denote by θ the elevation angle of the target, and by φ the azimuth angle. The
2D directional cosine vector is defined as u = [u v]T = [sin θ cosφ sin θ sinφ]T , and
‖u‖2 < 1.

5.2.1 Signal Model

We consider a symmetric 2D DAR system consisting of N el elements. As discussed in
Chapter 3, for large values of N el the DAR typically employs a so-called beamspace
transformation to reduce the data dimension. We slightly modify the signal model
described in (3.2.5) for the beamspace data of the mth pulse (m = 0, . . . , Np − 1), i. e.

z̃m = BHam(um)d(um) +BHnm, (5.2.1)

where B ∈ CNel×Nch is the beamformer, d(u) ∈ CNel×1 is the array steering vector,
am(u) ∈ R is the amplitude, and nm ∈ CNel×1 is complex white Gaussian noise. The
noise contribution is assumed to originate only from the antenna array elements with
i. i. d noise samples. The N ch × N ch noise covariance matrix is Q̃m = Q̃ = BHQB,
where the N el × N el matrix Q = E

{
nnH

}
. Furthermore, N ch is the beamspace di-

mension (i. e. the number of receive channels). We consider a CPI comprising Np

pulses, during which the DOA um changes according to the motion of the target.
In addition, the amplitude am mainly changes due to the changing target range and
location inside the transmit beam of the array.
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5.2.2 Maximum Likelihood Estimation

The MLE maximizes the joint probability density function [26] with respect to am,um
and Q̃m and the received signal pulses z̃m. It is written as

p
(
z̃0, . . . , z̃Np−1|a0, . . . , aNp−1,u0, . . . ,uNp−1, Q̃

)
=

Np−1∏
m=0

p
(
z̃m|am,um, Q̃m

)
, (5.2.2)

where the likelihood function of the mth pulse is

p(z̃m|am,um, Q̃m) = 1
πNch

∣∣∣Q̃m

∣∣∣e−(z̃m−amd̃(um))HQ̃−1
m (z̃m−amd̃(um)) (5.2.3)

and d̃(um) = BHd(um). Taking the logarithm of (5.2.2) and plugging in (5.2.3) yields

ln
[
p
(
z̃0, . . . , z̃Np−1|a0, . . . , aNp−1,u0, . . . ,uNp−1, Q̃

)]
=

C −
Np−1∑
m=0

(z̃m − amd̃(um))HQ̃−1(z̃m − amd̃(um))
(5.2.4)

where C is a constant. The ML approach aims to maximize (5.2.4) in order to estimate
the parameters. Since the sum term has a negative sign we can equivalently find:

(â0, . . . , âNp−1, û0, . . . , ûNp−1) =

arg min
(a0,...,aNp−1,u0,...,uNp−1)

Np−1∑
m=0

(z̃m − amd̃(um))HQ̃−1(z̃m − amd̃(um)).
(5.2.5)

The estimation of the amplitude can be solved as a weighted least square form [48] as

am(um) = d̃H(um)Q̃−1z̃m

d̃H(um)Q̃−1d̃(um)
. (5.2.6)

Since the amplitude depends on um we can write the sum term in (5.2.5) as an objective
function

FP (um) =
(
z̃m − am(um)d̃(um)

)H
Q̃−1

(
z̃m − am(um)d̃(um)

)
= z̃HmQ̃

−1z̃m −
[
d̃H(um)Q̃−1z̃m

d̃H(um)Q̃−1d̃(u)m
d̃(um)

]H
Q̃−1z̃m

− z̃HmQ̃−1 d̃H(um)Q̃−1z̃m

d̃H(um)Q̃−1d̃(um)
d̃(um)

+
[
d̃H(um)Q̃−1z̃m

d̃H(um)Q̃−1d̃(um)
d̃(um)

]H
Q̃−1 d̃

H(um)Q̃−1z̃m

d̃H(u)Q̃−1d̃(u)
d̃(um).

(5.2.7)
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Since we are looking for a minimization of (5.2.7), we only need the terms that depend
on um and drop the constant term z̃HmQ̃−1z̃m. The terms z̃HmQ̃−1d̃(um), d̃H(um)Q̃−1z̃m
and d̃H(um)Q̃−1d̃(um) are scalars, therefore we can simplify (5.2.7) into

F̃P (um) = −2 z̃
H
mQ̃

−1d̃(um)d̃H(um)Q̃−1z̃m

d̃H(um)Q̃−1d̃(um)
+ z̃HmQ̃

−1d̃(um)d̃H(um)Q̃−1z̃m

d̃H(um)Q̃−1d̃(um)

= − z̃
H
mQ̃

−1d̃(um)d̃H(um)Q̃−1z̃m

d̃H(um)Q̃−1d̃(um)
= −

[
z̃HmQ̃

−1d̃(um)
] [
z̃HmQ̃

−1d̃(um)
]H

d̃H(um)Q̃−1d̃(um)

=

∣∣∣z̃HmQ̃−1d̃(um)
∣∣∣2

d̃H(um)Q̃−1d̃(um)
.

(5.2.8)

We re-write (5.2.5) and solve the maximization of F̃P (um) as

(û0, . . . , ûNp−1) = arg max
u0,...,uNp−1

Np−1∑
m=0

∣∣∣z̃HmQ̃−1d̃(um)
∣∣∣2

d̃H(um)Q̃−1d̃(um)
. (5.2.9)

By defining the filter

w̃(u) = Q̃−1d̃(u)√
d̃H(u)Q̃−1d̃(u)

, (5.2.10)

we observe that the final maximization problem converges into the known matched
filter solution

(û0, . . . , ûNp−1) = arg max
u0,...,uNp−1

Np−1∑
m=0

∣∣∣w̃H(um)z̃m
∣∣∣2 . (5.2.11)

The conventional approach assumes a constant DOA and amplitude for all the pulses
within the CPI. Thus, maximizing (5.2.2) simplifies into

û = arg max
u

Np−1∑
m=0

∣∣∣w̃H(u)z̃m
∣∣∣2 (5.2.12)

and the estimated integrated power as [49]

Â =
Np−1∑
m=0
|âm(û)|2 = Np |â(û)|2 . (5.2.13)

As previously stated in Chapter 3, for every û under test, one can declare the presence
of a target according to the well-known Neyman-Pearson test [26].

When the DOA changes linearly from pulse to pulse (i. e. ∆um = um − um−1 = c,
where c ∈ R2×1 is a constant vector) and the amplitude am is constant, the ML DOA
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estimation result from (5.2.12) is the average DOA during the CPI. The likelihood
function in (5.2.12) is a sum of single pulse contributions, which amplify each other
the most for the middle value ubNp/2e. However, when the received signal amplitude
changes with every pulse, the estimate is no longer the average. For example, if the
signal amplitude monotonically decreases from pulse to pulse, there is an estimation
bias towards the DOA at the beginning of the CPI.

From (5.2.6) we also see that a bias in û decreases the magnitude of the estimated
power – degrading the SNR. As a result, the probability of detection PD is also de-
creased. Furthermore, a degraded SNR leads to an increased estimation variances σ2

u

and σ2
a for both the target DOA and amplitude estimations, respectively. This process

is illustrated in Fig. 5.1. To avoid these undesirable effects, the constant DOA model
must be replaced by a suitable time-dependent model in the ML estimation.

Unequal pulse amplitudes Time-varying DOA (∆um 6= 0)

ML estimation assuming constant DOA and amplitude

û and â bias

SNR loss

Lower PD, larger σ2
u and σ2

a

Figure 5.1: A schematic illustration of using an inadequate DOA motion model in ML
estimation.

5.3 ML DOA estimation for LEO targets
In this section, we consider the motion model required for accurate DOA estimation
of a Keplerian target. First, we consider the exact DOA model during the CPI, where
any possible range or Doppler migration are assumed to be compensated for. Then, we
formulate the ML problem with a time-dependent DOA model um. We analyze orbits
with θ = 0◦, i. e. a case where the target’s orbit passes right above the radar station.
These represent cases with the highest target DOA acceleration, which will be of main
interest.
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5.3.1 Kepler Orbit Kinematics

In Fig. 5.2 the geometry of an elliptical orbit around Earth is presented. The radar

Perigee

t = T CP

R

rorb

ξ θλ t = 0

rr hp

RS

rxb

rpra

rxa

ha

Apogee

Earth

Orbit

Figure 5.2: Geometry of an elliptical orbit. The target moves along the path in the
direction of the arrow.

station (marked in red, denoted as RS) lies on Earth’s surface, aligned with the Perigee
point. The target (marked in blue) begins its orbit at time t = 0 at the perigee point,
where we end our analysis after a single CPI with t = TCP. In Table 5.1 we describe
the variables.

We base our formulations on [65] to model the DOA change as a function of time,
during a single CPI. Several basic relationships helps to find the true anomaly as a
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Table 5.1: Orbital variables.
Name Description
re Earth’s Radius (6378 · 103 m)
hp Perigee height above Earth’s surface
ha Apogee height above Earth’s surface
rp Perigee distance from Earth’s center
ra Apogee distance from Earth’s center
rxa semi-major axis
rxb semi-minor axis
rorb target distance from Earth’s center
R target’s range from the radar station
ξ true anomaly angle
θ radar’s elevation angle
t elapsed time from perigee

function of time:

rxa = rp + ra
2

rorb = rxa
1− e2

c

1 + ec cos ξ ,
(5.3.1)

where ec is the orbit’s eccentricity. The period of the orbit can be expressed as

T orb = 2π
√
r3
xa

µ
(5.3.2)

where µ = 398600 is the standard gravitational constant. The mean anomaly (auxiliary
variable) is given by

Me(t) = 2πt
T orb

, (5.3.3)

and the eccentric anomaly Ea is given by Kepler’s equation as

Me(t) = Ea(t)− sinEa(t). (5.3.4)

The true anomaly ξ can be calculated as a function of time as

ξ(t) = 2 tan−1
(√

1 + ec
1− ec

tan Ea(t)2

)
. (5.3.5)

Due to the (5.3.4), the angle ξ(t) during the CPI needs to be evaluated numerically.
This procedure is carried out as follows: Given the length of the CPI, denoted as TCP,
we can evaluate Me from (5.3.3) as a function of time for 0 ≤ t ≤ TCP. The next step
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is solving the transcendental equation (5.3.4) using an iterative procedure as described
in [65]. Finally, the values of Ea are used to compute ξ(t) according to (5.3.5).

The final step converts the true anomaly ξ into the radar’s elevation angle θ. We
use the cosine theorem to express R as

R =
√
r2
e + r2

orb − 2rerorb cos ξ, (5.3.6)

and the sine theorem to calculate λ as

sin λ = rorb

r
sin ξ. (5.3.7)

The radar elevation angle is θ = π − λ. Plugging R from (5.3.6) into (5.3.7) yields

θ(t) = π − arcsin
 rorb sin ξ(t)√

r2
e + r2

orb − 2rerorb cos ξ(t)

 . (5.3.8)

5.3.2 ML with Linear DOA Motion

In the case where the target DOA during the CPI can be approximated by a linear
model, the DOA of each pulse can be expressed as

um =
[
u0 + %um
v0 + %vm

]
(5.3.9)

with initial position u0 = [u0 v0]T and slope % = [%u %v]T . In contrast to the constant
model in (5.2.12), there are now two additional parameters to estimate. The ML
estimation problem, for a linear DOA model with velocity % is given by

(û0, %̂) = arg max
u0,%

Np−1∑
m=0

∣∣∣wH(u0 + %m)z̃m
∣∣∣2 . (5.3.10)

The estimated DOA of the mth pulse is now

ûm = û0 + %̂(m− 1), (5.3.11)

and the estimated average DOA is given by

û = E [ûm] , (5.3.12)

where E[·] denotes the mean. The estimated integrated power from (5.2.13) is modified
to yield

Â =
Np−1∑
m=0
|âm(ûm)|2 . (5.3.13)
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5.4 Numerical Results
In this section, we demonstrate the DOA estimation of LEO targets with the German
Experimental Space Surveillance and Tracking Radar (GESTRA) system. From Table
2.1 we simulate the following parameters: The 3 dB transmit Beamwidth (BW) of
the array BW = 6◦, the number of pulses during the CPI is Np = 24 with a Pulse
Repetition Frequency (PRF) of 30 Hz (resulting in TCP = 0.8 s), the number of antenna
elements N el = 256. The beamformer B used transformed the data into N ch = 16
steered sum beams with a rectangular pattern of beam positions, corresponding to the
paving beamformer in Chapter 3.

To intercept signals outside of θ3dB
Tx , we consider for this scenario a spatial Rx coverage

span of ∆θRx = 12◦, 300 ≤ R ≤ 3000 km and eccentricity 0 ≤ ec ≤ 0.25. Since we set
the azimuth to zero, we note that u = [sin θ 0]T and treat the DOA as u = sin θ in the
remainder of the text.

5.4.1 Linear Model Validation
To validate that a linear model is accurate for a LEO Keplerian target during a single
CPI, we consider the worst case scenario (maximum possible change in the DOA).
If the linear model holds for this scenario, it applies for every other possible target
scenario as well.

For this purpose, we chose an elliptical orbit, where the zenith of the radar and the
orbit’s perigee are pointing in the same direction. The target motion starts from zenith
(θ = 0◦ and u = 0) with increasing angle values. We choose the values of R = 300 km
as the orbit height at perigee, and target eccentricity of ec = 0.25 to produce the
highest DOA change during the CPI.

We plot the DOA and DOA change rate (first order derivative) in Fig. 5.3 (for various
target ranges). We see that the maximum DOA change (corresponding to the fastest
moving target) within a single CPI is u = 0.022, which corresponds to θ = 1.36◦.
More importantly, the DOA has a constant change rate for all the ranges, with zero
acceleration (below 2 · 10−5 1/s2). We also see that as the target range increases, the
DOA change rate is decreasing. Therefore, we conclude that a linear DOA motion
model can be applied for GESTRA in the space surveillance application.

For other radar systems (and LEO objects), the linear model validity depends on the
CPI length. A useful method for determining the maximum CPI length for any system
for LEO targets has been considered in [63]. This method, which is based on the target’s
Radar Cross Section (RCS) decorrelation properties, gives the maximum CPI length
of about 2 s for a relatively small satellite (of dimension 5.2 m× 2.11 m× 2.12 m). By
extending the calculations shown in Fig. 5.3, we observed that a very long CPI with
TCP ≈ 8 s using 10Np pulses still maintained a linear DOA behavior to a very high
degree of accuracy (less than 3 % of relative change in du/dt).

In practice, the maximum achievable CPI length is limited by the BW, since the
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Figure 5.3: The directional cosine u (top-left), its change rate du/dt (top-right) and
second order derivative |d2u/dt2| (bottom). A Keplerian target within a
single CPI is considered. The observed behavior is linear to a very high
degree of accuracy.

target must be detectable during the entire CPI. Another contributing factor is the
ratio ∆θCPI/θ3dB

Tx (which was 0.23 in our example), where ∆θCPI = θNp−1 − θ0. When
this ratio is high, the amplitude change during the CPI increases significantly. When
the ratio is small, the amplitude stays approximately constant, and the constant DOA
model will approximately yield unbiased results.
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5.4.2 Amplitude Calculation
To calculate the changing amplitude of the received signal within a single CPI, we use
the simulated DOA motion from the previous section. For each value θm the signal
amplitude am is calculated assuming a Gaussian Tx beamshape with a beamwidth of
θ3dB

Tx degrees centered around the Tx steering angle θTx. This corresponds to a target
motion within the CPI that is not centered around the array’s steering angle (since the
target starts from θ0 = 0◦ 6= θTx).

5.4.3 Estimation Accuracy Comparison
Next, we compare the estimation accuracy of the linear motion model with the constant
model. We calculate the estimation bias for targets with the range R ∈ [300, 3000] km.
For each target range r, we simulate a single target moving from u0 = 0 and R0 to
uNp−1 and RNp−1, with an amplitude changing from a0 to aNp−1. The amplitude change
is determined by the location inside the beam and the change in range. The received
signal from each pulse and target range is simulated using (5.2.1).

After simulating the received signal, we use two different ways of estimation: the
constant DOA model (using (5.2.12) and (5.2.6)), and the linear DOA model (using
(5.3.10) and (5.3.12)). Both estimators were implemented using a grid-based method,
with an iteratively decreasing grid spacing.

The performance metric we use is the localization bias denoted as bp. We calculate
the target’s true 2D location during a single CPI as

l = R̄eiθ̄, (5.4.1)

where R̄ and θ̄ denotes the mean of the ranges and DOAs over the received pulses.
The estimated 2D target location is

l̂ = R̂eiθ̂. (5.4.2)

The bias bp measures the distance between the two points as

bp =
∣∣∣l− l̂∣∣∣ . (5.4.3)

To exclude the effect of the range estimation error we assume that R̂ = R̄.
Fig. 5.4 shows the bias comparison of the two methods for different beam center

angles θTx normalized by θ3dB
Tx . The constant model exhibits an estimation bias up to

1.4 km for θTx = θ3dB
Tx . In general, the bias decreases exponentially as the target range

grows. For the linear model, the bias shrinks by three orders of magnitude for any
beam center angle, the values being less than six meters. From a practical point of
view, the bias vanishes completely, because the range resolution and accuracy of most
space surveillance radar systems is much lower.
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Figure 5.4: Comparison of estimation biases, for a set of θTx. In the top-left and top-
right plots we see the constant and linear model localization bias bp. The
SNR estimation bias of both models shows negligible values (bottom). The
circle and cross markers curves represent the linear and constant models
biases bcs and bls, respectively.

To calculate the SNR estimation bias (due to the DOA estimation bias), we derive
the integrated signal power during a single CPI from (5.2.13). We denote the true SNR
value, the constant and linear model estimation results as χ, χ̂c and χ̂l, respectively.
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Fig. 5.4 (bottom) shows the SNR estimation biases bs calculated as

bcs = χ/χ̂c and bls = χ/χ̂l, (5.4.4)

for the constant (bcs) and linear (bls) models.
Clearly, such low values (bcs < 0.05 dB and bls ≈ 0 dB) are insignificant. We there-

fore conclude that the SNR loss, degraded probability of detection PD, and increased
estimation variances σ2

u and σ2
a, do not play an important role in this scenario. Nev-

ertheless, this result needs to be validated for each considered system (due to different
parameters such as θ3dB

Tx and TCP).

5.5 Conclusions
In this chapter, we gave an overview of DOA MLE in a radar SSA scenario. By
analyzing the orbital motion of LEO targets, we demonstrated that the DOA during
the CPI can be accurately modeled as a linear function. For the conventional ML
approach with a constant DOA and amplitude, a large localization bias was observed.
By introducing the linear model, the bias has almost completely vanished – allowing a
more precise space debris localization using DAR.

65





Chapter 6

A Costas-Based Waveform for
Local Range-Doppler Sidelobe
Level Reduction
Another crucial aspect in Space Situational Awareness (SSA) is the miss-detection of
a target. In SSA, Low Earth Orbit (LEO) targets may have extreme range differences
of several thousands of kilometers. In turn, the targets’ Signal-to-Noise-Ratio (SNR)
levels shows high variation, which masks the weaker (furthest) target in the Signal
Processing (SP) Range-Doppler (RD) compression stage (after beamforming). In this
chapter, we propose a new waveform design to overcome this hazardous masking phe-
nomenon.

6.1 Introduction
The ability of a radar system to estimate the range and Doppler of multiple targets
heavily depends on the waveform of the transmitted signal. The RD response of the
waveform is quantified by the Ambiguity Function (AF), which represents the theoret-
ical Matched Filter (MF) output as a function of time delay (range) and Doppler fre-
quency (radial velocity). It encapsulates the detection performance, range and Doppler
estimation accuracies and target resolution capability of the waveform. Thus, one of
the radar engineer’s tasks is to design a waveform with an AF that satisfies the required
performance criteria for their specific use-case.

To provide fine range resolution and a high SNR, either Phase Modulation (PM),
Frequency Modulation (FM) or frequency-coded long pulses are commonly used [11].
To maximize the SNR, the received signal is commonly pulse compressed using the
MF. When multiple targets with different SNR levels are present, the MF sidelobes of
a strong target may mask the response of a weaker target – preventing its detection.
Depending on the operational scenario, target masking may be undesirable only for a
limited region in the RD domain. Thus, the AF Sidelobe Level (SLL) can be decreased
in a certain region at the expense of increasing it at other unimportant areas.

Most of the existing methods for SLL reduction aim to optimize the sidelobes of the
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zero-Doppler cut of the AF of PM waveforms (e. g. [66, 67, 68, 69, 70]). To extend these
approaches for a number of Doppler cuts, optimization-based PM waveforms have been
considered in [71, 72, 73, 74, 75]. However, these methods have some drawbacks: they
rely on numerical optimization and the sidelobe structure outside the minimization
region may be highly non-uniform.

Costas frequency coding is a well-known method to achieve a nearly constant SLL
over the RD domain, i. e. an almost ideal “thumbtack” AF [76]. The length of the
Costas sequence – the number of distinct frequency sub-pulses called chips – controls
the SLL. References [77, 78, 79] present methods for choosing a Costas sequence to
obtain a low SLL close to the AF mainlobe. Another frequency-coded waveform, the
so-called “pushing sequence”, has also been proposed for the same purpose [80]. These
methods are well-suited for reducing masking of closely spaced targets, thus enhancing
detection performance in dense target environments.

Target masking may also present itself in a sparse target scenario when the side-
lobes of a near target mask a far away target. This occurs when the pulse length is
comparable to the target time delays and the relative range differences between the
targets are large – implying large SNR differences. Thus, it is important to consider
SLL reduction far away from the AF mainlobe as well.

In this chapter, we propose a novel Costas-based frequency-coded waveform to
achieve a low SLL for a rectangular area in the RD domain. The area consists of
large time delays far away from the AF mainlobe and a limited set of Doppler fre-
quencies around zero. Importantly, our waveform approximately achieves the desirable
sidelobe properties of the Costas sequence. Using a numerical example, we demon-
strate a significant SLL reduction within the region of interest compared to a normal
Costas code with the same bandwidth and pulse length.

6.2 Theoretical background

6.2.1 Signal Model

We consider a monostatic radar system transmitting a signal x as a function of fast time
t. Throughout this chapter, we will describe frequency-coded waveforms. A baseband
waveform (of a single antenna element) can be expressed as

z(t) =
Nc−1∑
m=0

zm(t), (6.2.1)

where the mth chip is defined as

zm(t) = a(t−mT c) exp (−i2πfmt) . (6.2.2)
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In (6.2.2), a is the amplitude envelope of the chip, T c is the chip length and fm is the fre-
quency of the mth chip. Furthermore, fm = sm∆f , where ∆f is the frequency spacing
between the chips and sm is the mth element of a permutation sequence s ∈ ZNc×1 of
the integer set {b−(Nc−1)

2 c, . . . , 0, . . . , bNc−1
2 c}, where b·c denotes the flooring function.

To ensure that the chips have no overlap (the cross-correlation between different chips
is approximately zero), the frequency spacing ∆f = 1/T c [76]. Given the waveform’s
bandwidth BW s = N c∆f and its length T p = N cT c, the number of chips can be
obtained as N c = b

√
BW sT pe, where b·e denotes rounding to the nearest integer.

The formulation of the AF function is given by [11]

AF (τ, fd) =
∫ ∞
−∞

z(t)z∗(t− τ)e−i2πfdtdt, (6.2.3)

where τ is the time delay and fd is the Doppler frequency differences from their true
values. As the total energy of the AF is fixed, reducing the SLL in a certain region will
increase it elsewhere.

6.2.2 Target Masking
Target masking may occur when the SLL of a high SNR target is greater than the
mainlobe response of a target with smaller SNR. Since the MF output is used in the
target detection process, the weak target will be undetected and the dynamic range
of the target detection will be degraded. Hence, it becomes important to design a
waveform with such sidelobes that target masking is reduced.

The extent of time delays in the AF is limited by the length T p of the transmitted
pulse. By translating the time delays τ into radial distances R according to R = c0τ/2,
where c0 is the speed of light, we see that target masking occurs only if the range
separation ∆R ≤ c0T

p/2. Since the target SNR is inversely proportional to the fourth
power of the range, long pulses may introduce major SNR differences between near
and far range targets with similar Radar Cross Section (RCS), leading to unwanted
masking. For short pulses, masking may be caused due to differences in target RCS.

The masking phenomena may occur not only for the zero-Doppler cut (i. e. AF (τ, 0)),
but for any Doppler value, depending on the AF shape caused by the waveform modu-
lation. For many applications, it is sufficient to define a bounded area free of potential
masking in the RD domain (a practical scenario is given in Section 6.5).

6.3 Problem Formulation
Our objective is to design the waveform x such that we overcome the masking problem,
i. e. achieve the lowest possible SLL in a rectangular area

A = {(τ, fd) | T0 < τ ≤ T p ∧ |fd| < fth} . (6.3.1)
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This helps to prevent near range targets from masking far range targets, whose SNR
is likely to be much smaller. We assume that there is a threshold Doppler shift ±fth,
which is determined by the maximum possible difference between target radial velocities
in the given scenario. We choose the delay limit T0 as an integer fraction of T p. We
define two more areas

Ac = {(τ, fd) | 0 ≤ τ ≤ T0 ∧ |fd| < fth}
A0 = {(τ, fd) | 0 ≤ τ ≤ T p ∧ |fd| ≥ fth}

(6.3.2)

and summarize the practical requirements for the waveform design method as follows:

(a) Minimal (ideally zero) SLL in A

(b) As uniform SLL as possible in Ac

(c) Optimal range resolution

(d) No RD coupling

(e) No restriction of any kind in A0

In general, we note that it is possible to reduce the SLL by using mismatched fil-
ters [81]. However, because they degrade the SNR, we do not consider them in this
chapter. While the optimization criteria to satisfy requirements (a) and (e) can be
easily formulated [71, 72, 73, 74, 75], the problem is non-convex and highly non-linear,
leading to computationally intensive numerical global optimization. Thus, the results
are affected by the initialization stage and other heuristic parameters. Moreover, it is
difficult to fulfill condition (b), i. e. to control the SLL outside the minimization region.
Also, the available bandwidth must be fully exploited to meet requirement (c) which
poses another optimization challenge.

Due to these reasons, we consider FM and frequency-coded waveforms. The most
common coding scheme is the Linear Frequency Modulation (LFM) [11]. Despite the
decreasing SLL with increasing time delay, the AF of the LFM exhibits a diagonal
“ridge” – a coupling between range and Doppler. This coupling hinders unambiguous
range and Doppler detection and estimation. Therefore, LFM is ruled out by failing
to meet requirements (a), (b) and (d).

In the Costas waveform [76], each frequency index appears once in the code, in such a
way that only one chip may have overlap for any given time and frequency shift. There
is no RD coupling, but the SLL is not monotonically decreasing as a function of time
delay, as in the LFM case. The SLL is nearly constant – inversely proportional to the
code length N c – over the entire RD domain (excluding the vicinity of the mainlobe).
Since the range resolution is determined by the bandwidth, it remains the same for
both LFM and Costas waveforms. Next, we propose a waveform meeting all of the
above requirements.
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6.4 Waveform Design Method
Our waveform design is based on a particular concatenation of a pure Costas code.
The purpose is to deflect sidelobe energy from A to A0. The code structure, SLL and
design procedure are presented next.

6.4.1 Code Structure and Design
We describe how to construct the frequency sequence f = [f0 . . . fM−1]T to satisfy our
requirements (a)–(e). We start with a given waveform frequency bandwidth BW s and
transmission length T p. Then, two input parameters are needed to define the low SLL
region A in (6.3.1): the delay limit T0 = T p/c, where c = 2, 3, 4, . . . and the maximal
expected target Doppler shift fth � BW s/2. For simplicity and clarity of the concept,
we will focus on c = 2 from here on.

The first part of our code consists of a pure Costas code of bandwidth
BW s

0 = BW s/2− fth and duration of T0 = T p/2. Thus, the number of chips in the first
part is N c

0 = b
√
BW s

0T0e. We denote this Costas permutation sequence by s0 ∈ ZNc
0×1.

It can be chosen e. g. by the methods described in [79]. Thus, the frequency sequence
of the first part is f0 = ∆fs0.

In the next part of the code the frequencies fm are restricted to

BW s

2 ≥ |fm| ≥
BW s

0
2 + fth →

BW s

2 ≥ |fm| ≥
BW s

4 + fth
2 . (6.4.1)

This creates a gap in the time-frequency representation of the waveform, which controls
the Doppler extent of the desired low SLL area A in the AF. To maintain a nearly
uniform SLL in Ac, we exploit the Costas sequence s0 in the following manner. First,
we calculate the required shift in the frequency indices sm for m > N c

0 to satisfy (6.4.1)
as

N c
s =

⌊
N c

0

(
1
2 + fth

BW s
0

)⌉
. (6.4.2)

Then, we obtain the shifted frequency indices of the second part as

s1 = s0 + sgn(s0)×N c
s (6.4.3)

and the corresponding frequency sequence f1 = ∆fs1 satisfying (6.4.1). Finally, we
obtain the frequency sequence of the waveform by concatenating the first and second
parts as

f =
[
fT0 f

T
1

]T
. (6.4.4)

Thus, we have a waveform consisting of N c = 2N c
0 chips with a bandwidth BW s

containing two small gaps of width fth in its spectrum.
The above-described procedure can readily be extended for a different delay drop

point c > 2. However, it should be noted that as c increases, the length of the con-
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catenated parts decreases, raising the SLL (will also happen when N c is too low). In
Fig. 6.1, we illustrate the time-frequency coding concept of our waveform.
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Figure 6.1: The time-frequency coding concept of our waveform. After a pure Costas
code (first half of the chips), we have an additional concatenated part con-
taining the shifted positive (C1) and negative (C2) frequency parts. The
maximum expected target Doppler frequency dictates the width fth of the
empty gray areas. N c and fth were arbitrary chosen.

6.4.2 Correlation Properties
To demonstrate the correlation properties of our waveform, we have plotted the Digital
Ambiguity Function (DAF) [79] in Fig. 6.2. The DAF is the 2D cross-correlation of
the permutation matrix of ones and zeros representing the waveform’s time-frequency
coding scheme. It considers discrete steps in delay (T c) and Doppler (∆f), which yields
SLL values of integer numbers (number of chips overlap). For illustration purposes, we
consider a code of length N c = 2N c

0 = 12 and a frequency gap fth corresponding to two
chips. The rows correspond to shifts in Doppler, while the columns represent different
delays.

As seen from the DAF in Fig. 6.2, for delays longer than the length N c
0 and Doppler

shifts below fth, there are no overlapping chips (zero correlation). This results in
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Figure 6.2: The DAF of our waveform for code length N c = 12. The area Ac is en-
closed by the black rectangle, while A is enclosed by the red rectangles.
The mainlobe response (black circle) is accompanied by four ambiguous
peaks (red circles), which are located inside the non-feasible area A0 (blue
rectangles).

the desired rectangular area A in the AF, which is illustrated with red rectangles
(requirement (a)). For delays shorter than M0 and Doppler shifts below fth, there are
two possible overlapping chips (see Figs. 6.1 and 6.2): one from the overlap of the
first block (pure Costas code) with itself and the second one from the overlap of the
concatenated part (shifted C1 and C2) with itself. This results in the maximum SLL
of two in the DAF inside Ac, which is illustrated using a black rectangle.

Thus, we suffer a penalty of twice the SLL of a Costas code of length N c, but retain
a nearly uniform (either 0, 1 or 2) SLL inside Ac (requirement (b)). Because we use a
Costas code as a basis of our method, requirements (c)-(d) are also fulfilled (provided
that fth � BW s/2, the spectrum remains close to uniform). Moreover, our approach
is analytical without any numerical optimization.

We note that the SLL in A0 can be higher than two due to additional overlapping
chips. Moreover, the code structure produces four ambiguous peaks, whose magnitude
is one fourth of the AF mainlobe (the red circles in Fig. 6.2). This intentional effect
happens for a certain delay-Doppler combination, where a perfect overlap occurs be-
tween the first code block C1 and the second part of the code (a shifted C1). However,
these peaks are located in A0, which we consider to be a non-feasible area—implying
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that the observed targets are not expected to have these differences in τ and fd.
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Figure 6.3: The Short Time Fourier Transform (STFT) of the considered waveforms,
having the same bandwidth and duration.

As in any waveform, sidelobe behavior for small τ is influenced by the frequency
spectrum of the signal. The separation between the frequency blocks C1 and C2,
controlled by fth, impacts the uniformity of the spectrum. This will alter the sidelobe
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behavior near the AF mainlobe, and must be considered as a trade-off in the waveform
design.

6.5 Numerical Results
For a practical demonstration, we consider using our waveform in a the SSA scenario,
where the span of target ranges and pulse length are very large. Here, the objective is to
detect and track space debris with various sizes and ranges (corresponding to different
orbital heights). It is straightforward to determine the maximal radial velocity a debris
target can have based on a Kepler orbit model [62].

We simulate the German Experimental Space Surveillance and Tracking Radar
(GESTRA) system with the following parameters from Table 2.1: carrier frequency
fc = 1.33 GHz, BW s = 2 MHz, and T p = 8.5 ms. For simplicity, we simulate the
MF response of a single pulse. The maximum target range is 3000 km and the max-
imal target radial velocity is vr = 7 km/s. The associated Doppler shift is therefore
fth = 2vrfc/c0 = 62 kHz. Choosing c = 2, we can now derive the desired low SLL AF
area as A = [4.25, 8.5]× [0, 62] (ms × kHz) = [0.5, 1]× [−527, 527] (T p × 1/T p).

Figure 6.4: The power level of the AF for our waveform (left). The low SLL area A
is marked in white. The energy within A is 20 dB lower than for a pure
Costas code (right), while for Ac it is 0.9 dB higher.

Following the design procedure of Section 6.4, we construct the waveform using the
above parameters. The Short Time Fourier Transform (STFT) of our waveform is seen
in Fig. 6.3. The frequency gap in the concatenated Costs code produces a region with
a low SLL for long time delays and Doppler frequencies close to zero.
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We then proceed to calculate the AFs according to (6.2.3), which are shown in
Fig. 6.4. We calculate the mean SLL in A (enclosed by the white rectangle) to be
approximately 20 dB lower than for a pure Costas code of equal length. This has the
potential to drastically improve the unwanted masking. As a penalty, the mean SLL
in Ac is 0.9 dB higher for our waveform. By further increasing fth and minimizing the
spectral overlap between the chips, the SLL within A could decrease beyond 20 dB to
allow a higher dynamic range of target detection (on the account of increased range
sidelobes near the mainlobe).

In Fig. 6.5 we present the 3D AF which emphasizes the peaks created by the addi-
tional overlap (fdT p ≈ 4500) within the out-of-interest region.

Figure 6.5: 3D ambiguity function. The magnitude axis is clipped for clarity.

6.6 Conclusion
We presented an analytical method to design the AF of a frequency-coded waveform
based on Costas sequences to reduce target masking far away from the AF mainlobe.
Using two user-defined parameters, a rectangular area in the AF domain with reduced
SLL can be designed. To achieve this, we assumed a threshold value limiting possible
differences in target Doppler frequencies. The proposed waveform design method can be
adjusted for a wide variety of applications where the multiple target masking problem
presents itself.
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6.6 Conclusion

Future work includes a careful examination of code sequences: for a given number
of chips, several choices of the corresponding equal length Costas code are possible.
Through optimization, it is possible to choose a sequence to decrease the needed fre-
quency gap between the code blocks, producing a more uniform waveform spectrum.
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Chapter 7

Range Sidelobe Level Reduction
with a Train of Diverse LFM Pulses
In Space Situational Awareness (SSA), fragmentation events cause a second type of
target masking in the Range-Doppler (RD) compression stage. In such events, multiple
debris particles are moving closely together. The largest ones will prevent the proper
detection of smaller targets. In this chapter, we propose a different waveform approach
than in Chapter 6 to circumvent this unwanted target masking.

7.1 Introduction
In state-of-the-art radar systems, Frequency Modulation (FM) waveforms are com-
monly used to simultaneously achieve a high Signal-to-Noise-Ratio (SNR) and good
range resolution [11]. Linear Frequency Modulation (LFM) is the most common FM
waveform due to its ease of generation and Doppler tolerance. As previously mentioned,
pulse compression using the Matched Filter (MF) is the optimum SNR strategy for pro-
cessing the received signal. However, for a waveform with a uniform power spectrum,
the MF output has undesirable high range sidelobes close to the mainlobe response.
The sidelobes of a strong SNR target may mask a nearby weak SNR target, preventing
its detection. Moreover, the sidelobes of a strong target may be mistakenly declared
as separate targets themselves.

Several methods for reducing the Sidelobe Level (SLL) of the waveform’s pulse-
compressed response exist in the literature. Most of the proposed methods deal with
designing discrete Phase Modulation (PM) sequences with desirable correlation prop-
erties (e. g. [66, 67, 68, 69, 70]). For FM (i. e. continuously PM) pulses, a simple way
to reduce the SLL is to apply a linear amplitude weighting function to the time domain
signal [11]. The mismatched filters (e. g. inverse filter) [81, 82, 83] and the Non-Linear
Frequency Modulation (NLFM) waveform [11] can also be designed to reduce the SLL.
However, these approaches are non-ideal, because they may degrade the SNR, range
resolution or increase the processing and hardware complexity.

Due to the improvements in radar hardware and processing power, there has been
significant interest in pulse diverse waveforms [84]. The term pulse diversity refers to
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changing the modulation parameters and applying a different processing filter from
pulse to pulse.

In this chapter, we propose a novel method to reduce the SLL of an LFM waveform
using a train of diverse pulses. The diversity of the pulse train is achieved by allowing
the length or the bandwidth of each pulse to change. The proposed method is based
on optimizing the power spectrum of the diverse LFM pulse train. By shaping the
spectrum to resemble a Gaussian function, we achieve a significant SLL reduction for
the waveform’s Auto Correlation Function (ACF). Significantly, it avoids the SNR loss
caused by the receive filter, which is unavoidable when using mismatched filters. The
drawbacks are a slightly increased ACF mainlobe width (degraded range resolution)
and an increased complexity for signal generation and processing.

7.2 Waveform Design Method

7.2.1 Motivation
According to the well-known Wiener–Khinchin theorem [85], the Inverse Fourier Trans-
form (IFT) of the power spectrum of a signal is the ACF of the signal. Thus, it is
possible to obtain desirable properties for the waveform’s ACF by tuning its power
spectrum. For example, the IFT of a Gaussian power spectrum produces a Gaussian
ACF without sidelobes. To achieve a nearly Gaussian spectrum for the waveform, a
common method is to use linear amplitude weighting in the time domain. This can
be done for both the transmitted and received signals or only for the received signal.
However, both options have their drawbacks, the most important being a loss in SNR
[11].

Pulse diversity has received attention in SLL reduction for PM waveforms [86]. To
our knowledge, similar approaches have not been previously considered for FM wave-
forms. By allowing the length and bandwidth of each FM pulse to change, we can
manipulate the power spectrum of the waveform. For example, by appropriately choos-
ing the bandwidth of each pulse, a nearly Gaussian shape can be achieved. Thus, we
can reduce the SLL without amplitude weighting or resorting to mismatched filters.
Compared to a train of identical pulses with a uniform spectrum, the drawback is a
degraded range resolution.

7.2.2 Signal Model
We consider a monostatic radar system transmitting a train of diverse LFM pulses.
We assume that the maximum available bandwidth BW s and pulse duration T p are
given. The baseband LFM train of Np pulses can be expressed as

z(t) =
Np∑
m=1

zm(t), (7.2.1)
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where the mth pulse is defined as

zm(t) = rect
(
t−mTPR

T pm

)
exp

(
−iπεm

(
t−mTPR

)2
)
, (7.2.2)

and TPR is the Pulse Repetition Interval (PRI), T pm is the length, εm = BW s
m/T

p
m is

the chirp rate and BW s
m is the bandwidth of the mth pulse. We consider two possible

ways to use LFM pulse diversity:

1) Changing both the bandwidth BW s
m = amBW

s and the length T pm = amT
p of

the mth pulse by the same factor am

2) Changing only the bandwidth BW s
m = amBW

s and keeping the length T pm = T p

fixed.

The weights 0 < am ≤ 1 are chosen to achieve a nearly Gaussian power spec-
trum for the pulse train. In both options, we set aNp = 1 for the last pulse (i. e.
T pNp = T p and BW s

Np = BW s). The optimization procedure to achieve this is de-
scribed in the next subsection. For option 1), the chirp rate εm = BW s

m/T
p
m = BW s/T p

is constant for all pulses in the train. On the other hand, for the second option,
εm = BW s

m/T
p
m = amBW

s/T p changes from pulse to pulse.
We note that it is also possible to use a varying PRI from pulse to pulse. This would

allow the radar to be operated at the maximum duty cycle. Assuming that the received
signal is corrupted by white Gaussian noise, the MF response of the waveform can be
expressed using the ACF as

ACF (τ) =
∫ ∞
−∞

z(t)z∗(t+ τ)dt, (7.2.3)

where τ is the time delay variable.

7.2.3 Power Spectrum Optimization

We aim to shape the power spectrum of the LFM train to be a Gaussian by tuning the
waveform parameters appropriately. To avoid any processing losses, we only change
the length T pm and bandwidth BW s

m of each LFM pulse in the train. As an input, our
method requires the maximum length T p and maximum bandwidth BW s allowed for a
single pulse in the train. The last input is the half-power beamwidth σ2

g of the desired
Gaussian power spectrum

G(f) = exp
(
− ln(2)f

2

σ2
g

)
. (7.2.4)
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To obtain a Gaussian spectrum for the LFM train, we minimize the mean square error
loss function

Fg(a) =
∫ BW s

2

−BW s

2

|G(f)−X(f ;a)|2 df, (7.2.5)

where
X(f ;a) =

∫ ∞
−∞

ACF (τ ;a)e−i2πfτdτ (7.2.6)

is the power spectrum of the LFM pulse train. The weights am determining the chirp
rates εm and lengths T pm of the pulses zm are the variables we aim to optimize. Thus,
the waveform z, the ACF and the power spectrum X in (7.2.6) depend on the weight
vector a = [a1 . . . aNp ]T . We resort to numerical optimization to solve the minimization
problem arg min {Fg(a)}.

7.3 Numerical Results
In this section, we simulate the proposed diverse LFM train in a fragmentation event,
which is of special interest in acsssa and acsleo targets scenario. In such an event, a
large object (e. g. satellite) breaks down into multiple debris particles. These debris
particles, originating from the same object, usually maintain the same orbital velocity
with in a close proximity from one another and pose a serious threat to active satellites
[15, 87]. Thus, it is important to detect such events and accurately identify closely
spaced targets of largely varying sizes. Hence, the SLL has a major impact on this
ability (together with the range resolution).

7.3.1 Simulation Setup
As in previous chapters, we consider the GESTRA system parameters (Table 2.1 with
BW s = 2 MHz and T p = 8.5 ms. The number of coherently processed pulses Np

varies between 8 to 24, depending on the specific operation mode. For the following
numerical demonstration, we use Np = 11.

We simulated and compared three different LFM pulse trains. In all cases, the PRI,
available bandwidth BW s and maximum pulse length T p are identical. To make the
simulation more realistic, the LFM pulses were implemented in a discrete manner –
i. e. as a sum of constant frequency sub-pulses called chips with a continuous phase
between the chips. For the mth pulse,

N c
m = b

√
T pmBW s

mc, T cm = T pm/N
c
m and ∆fm = 1/T cm, (7.3.1)

where N c
m is the number of chips, T cm the chip length and ∆fm the frequency step [11].

The first train denoted as z0 is composed of identical LFM pulses, each of bandwidth
BW s and length T p (am = 1 for m = 1, . . . Np). This pulse train serves as a reference
for the SLL reduction performance. The second train, denoted by z1, corresponds to
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option 1) in section 7.2.2. Finally, the third pulse train z2 corresponds to option 2) in
section 7.2.2.

We used the simultaneous perturbation stochastic approximation method [88] to
obtain a solution to arg min {Fg(a)}. This method was chosen due to its computational
efficiency and ease of implementation. As an initial guess for the optimization, we used
linearly increasing values for am.

To achieve a nearly Gaussian spectrum for z1 and z2, we defined an ideal Gaussian
such that the power is attenuated 20 dB at the edge of the full available bandwidth
BW s. Fig. 7.1 illustrates the quality of the fit achieved by our spectrum optimization
method described in 7.2.3. The resulting weights vectors for z1 and z2 are

a1 = [0.2 0.25 0.3 0.34 0.38 0.43 0.48 0.54 0.61 0.72 1]T

a2 = [0.18 0.28 0.35 0.41 0.46 0.52 0.58 0.66 0.78 0.89 1]T .

For simplicity, a1 and a2 are chosen to be monotonically increasing. We note that
other arrangements of the same values will have identical results for the ACF – i. e.
the zero-Doppler cut of the ambiguity function. However, the performance may differ
in case there is a Doppler offset.
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Spectrum Comparison

Figure 7.1: Normalized power spectra of the various LFM trains with Np = 11 along-
side the ideal Gaussian function.
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Due to the finite number of pulses, the achieved power spectra in Fig. 7.1 have a step-
wise structure. While the fit in the center is very good (less than 0.5 dB difference),
toward the edges of the bandwidth we see differences up to 4 dB. Increasing the number
of pulses improves the fit at the cost of increased processing complexity. We note that
the maximal achievable attenuation of the bandwidth edges is bounded by 1/Np.
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Figure 7.2: The STFTs of the different LFM pulse trains. In the first option (top-left),
both the bandwidth and the pulse length vary, while for the second option
(top-right) only the bandwidth changes from pulse to pulse. The reference
train with identical pulses is also shown (bottom).
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To analyze the bandwidth and chirp rate of each pulse, in Fig. 7.2 the Short Time
Fourier Transform (STFT) of z1 (top-left) and z2 (top-right) are shown. The mono-
tonic increment of the bandwidth BW s

m is visible. Due to the discrete implementation
according to (7.3.1), we see that z1 maintains a constant chirp rate, chip length and
frequency step – only the pulse length varies. On the other hand, z2 exhibits changing
chip length and frequency step with a fixed pulse length. This may pose a challenge
in the ability to shape the spectrum for different scenarios than the one considered in
this chapter.

7.3.2 Performance Metrics
To evaluate the SLL reduction performance for the ACF, we use three figures of merit:

1) Range resolution ∆R = c0∆τ/2, where ∆τ is the 3 dB width of the ACF mainlobe
in time units and c is the speed of light

2) Peak to sidelobe ratio (PSLR), and

3) Integrated sidelobe ratio (ISLR)
The Integrated Sidelobe Ratio (ISLR) is defined as:

ISLR =
∑

Θ |ACF (τ)|2∑
∆ |ACF (τ)|2

Θ := {−T p ≤ τ < −∆τ}∪ {∆τ < τ ≤ T p} , ∆ := {−∆τ ≤ τ ≤ ∆τ}
(7.3.2)

where Θ represents the sidelobes delays and ∆ corresponds to the delays within the
mainlobe. The Peak to Sidelobe Ratio (PSLR) is defined as

PSLR =
∣∣∣∣∣ACF (0)

ρSL

∣∣∣∣∣
2

,where ρSL = max
τ∈Θ
|ACF (τ)| . (7.3.3)

The PSLR quantifies both the false detections due to high sidelobes as well as the
worst case scenario for masking of closely spaced targets. On the other hand, the ISLR
quantifies the average masking, as it takes into account the total sidelobe energy over
the time delay (range) domain.

Another important consideration is the waveform’s sensitivity to a Doppler mis-
match. Since the SLL suppression is achieved by coherently combining the pulses, an
uncompensated phase difference (due to the target’s movement) between the pulses
may hinder the SLL suppression. The worst case scenario for the Doppler mismatch is
determined by the spacing in the Doppler filter bank that is used to coherently process
the pulses. We assume this spacing to be determined by the theoretical Doppler reso-
lution ∆fd = 1/

[
(Np − 1)TPR + T pNp

]
, which is the inverse of the coherent processing

time. This mismatch results in a phase difference of ∆φ = π∆fdTPR between two
adjacent pulses.
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7.3.3 Performance Comparison

The ACFs of the trains are presented in Fig. 7.3. The lower SLLs of z1 and z2 are
clearly seen, with a penalty of a wider range mainlobes. The calculated performance
metrics are shown in Table 7.1. Compared to z0, we see that z1 and z2 achieve up
to 23 dB better PSLR, and 11 dB better ISLR. However, their range resolution is
degraded by a factor of two.
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|ACF|2

Figure 7.3: The |ACF|2 of the considered pulse trains. A notable SLL suppression is
achieved with a penalty in range resolution, but no penalty in SNR.

To investigate the effect of a Doppler mismatch, we simulated an uncompensated
phase difference ∆φ between the pulses in each of the trains. These cases are denoted
by z̃i in Table 7.1, the subscripts remaining the same as above. We see that z̃2 presents
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a higher Doppler mismatch sensitivity, with 5 dB PSLR and 3 dB ISLR degradation.
In general, the effect of a Doppler mismatch was observed to be relatively small.

Table 7.1: SLL Reduction Performance Summary
Train PSLR [dB] ISLR [dB] ∆R. [m]
z0 -13 -24 66
z1 -29 -35 131
z2 -36 -31 137
z̃0 -13 -24 66
z̃1 -24 -32 110
z̃2 -36 -33 118

Assuming that the transmit (Tx) power per time unit is constantly at maximum
level – which is a common practical constraint – z1 has a lower Tx power compared to
z0 (due to shorter pulses). This results in an SNR loss – not due to processing, but
to a limited maximum Tx power. This loss can be quantified by (NpT pNp)−1∑Np

m=1 T
p
m,

yielding 3.2 dB in our example. In the case where the spectrum of z1 in Fig. 7.1 is
achieved using the linear amplitude weighting method (i. e. by weighting each pulse
of z0 with a linear amplitude taper), there will be an SNR loss of 2.7 dB. In contrast,
there is no SNR loss to z2 due to the fixed pulse length.

Thus, it can be concluded that z2 is the most beneficial choice in our example –
taking into account the SLL reduction, range resolution and SNR loss together. It
should be noted that even though the results of z1 could in theory be closely achieved
by the amplitude weighting method, our method is easier to implement from a hardware
perspective (Tx power level is constant).

7.4 Conclusion
In this chapter, we presented methods to lower the range sidelobes by using a diverse
train of LFM pulses. Notably, our approach suffers no processing loss in SNR, the im-
provement comes only at the cost of degraded range resolution and increased processing
complexity. A significant reduction in both the PSLR and ISLR was demonstrated in
a simulated example related to a practical application of the waveform.

Future work entails investigating the effect of the number of pulses on the perfor-
mance, as well as the Gaussian optimization method with different parameters and
additional FM waveforms. The order of the diverse pulses within the train holds po-
tential for further research.
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Chapter 8

Discussion and Conclusions
In the course of this thesis, we introduced the Space Situational Awareness (SSA)
mission and emphasized its significance on a global scale. We focused on artificial
man-made space debris, and their sensing by a Radio Detection and Ranging (RADAR)
system. Accurate debris localization in Low Earth Orbit (LEO) reduces vital satellite
damage or destruction events (costing millions of dollars), and possibly save human
lives. Moreover, it will help prevent the hazardous manifestation of the known Kessler
effect, where LEO becomes an impenetrable waste-belt around Earth.

As technology and computation capabilities advance, ground-based Digital-Array
Radar (DAR) systems are proving to have numerous and unique advantages over other
types of SSA systems. As the radar performance is strongly correlated with its Signal
Processing (SP) scheme, the improvement of the SP directly leads to a broader SSA:
better detection of small debris and fragmentation events, increased alertness and ac-
curacy of collision forecast. The shortcomings of classical SP were clearly shown, illus-
trating their impact on the SSA goal. Recalling our objective, the thesis showed that
unparalleled performance gain potential lies in the adaptation of DAR SP methods to
the space surveillance scenario.

The thesis proposed several contributions to improve the SP chain, including:

• Rx beamformer design: a new adaptation of the eigenbeamformer was demon-
strated in both monostatic and bistatic scenarios. It enables larger spatial area
coverage, better resources handling, and baseline extension. These ultimately
translates into a higher Direction-of-Arrival (DOA) estimation accuracy and bet-
ter detection.

• DOA Maximum Likelihood Estimator (MLE) modification for LEO targets: by
validating a linear DOA motion model in the SSA scenario, and introducing it
into the MLE, the ‘DOA migration’ effect is mitigated—and a potentially large
DOA estimation bias (more than 1 km) is removed.

• Waveform design I: in the multiple targets case, strong targets may prevent de-
tection of weaker ones. To this end, a new Costas-based waveform was created,
which allows to reduce the Sidelobe Level (SLL) (by 20 dB) for a desired range-
Doppler area.
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• Waveform design II: debris fragmentation events creates a cluster of debris of
various sizes. To prevent the case of a large target masking a smaller one, a train
of LFM pulses of varying BW was presented. The SLL near the main lobe in the
Matched Filter (MF) response were significantly attenuated (up to 23 dB).

Overall, substantial detection and parameter estimation improvement was demon-
strated, without the need for additional hardware capabilities. Contrarily, the above-
mentioned methods offer better usage of limited resources (detailed summary, conclu-
sions and future research are available at the end of each chapter).

Additionally, numerous auxiliary, yet important tasks were completed. They are not
limited to SSA and could be applied in various applications. These tasks include a
general beamformer design tool (see Chapter 3), which is not restricted to a specific
array configuration. The design tool comprises a pre-calculated set of plots, providing
an overview of possible performance for a given scenario, without executing exhaustive
and complex SP simulations. In Chapters 6–7 the steps to construct two different
Frequency Modulation (FM) waveforms were presented. The first enables the design of
a low SLL rectangular region in the Range-Doppler (RD) domain, while maintaining
the features of a Costas-code. The second attenuates the SLL near the main peak
of the zero-Doppler cut, by shaping the waveform’s power spectrum to resemble a
Gaussian form (with a pre-defined Standard Deviation (STD)). It also avoids any
Signal-to-Noise-Ratio (SNR) loss or hardware complexity. Thus, this thesis may be a
helpful contribution to any radar designer in the field of target detection and parameter
estimation.

Future Outlook
In Chapter 2, a technical overview of the German Experimental Space Surveillance and
Tracking Radar (GESTRA) system was presented, which was the base for the numerical
demonstrations given in the thesis. The hardware and software capabilities, operation
modes, and the final performance of parameter estimation were analyzed. In the near
future, live experiments are planned to take place, which presents an opportunity to
validate the concepts in this thesis. A new project called European Space Surveillance
and Tracking (EUSST) is tasked to continue the research of GESTRA in a multi-static
network configuration [89]. This opens new possibilities for improved performance.

Moreover, available computational power exceeds previous boundaries and limita-
tions, allowing large DAR real-time processing. Network configurations of radar nodes
with precise synchronization and multiple receivers/transmitters will enable the next
generation of SSA radar systems with enhanced performance in all aspects. It is the
hope of the author, that this research will contribute to the SSA and safety of near-
Earth space.
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2021, doi: 10.1109/TAES.2021.3060758.

• N. Neuberger, R. Vehmas. A Costas-Based FM Waveform for Local Range-
Doppler Sidelobe Level Reduction, in IEEE Signal Processing Letters, vol. 28,
pp. 673-677, 2021, doi: 10.1109/LSP.2021.3067219.
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Conference Papers
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• N. Neuberger, R. Vehmas. On Maximum Likelihood DOA Estimation for Space
Surveillance Radar, 2021 Eusipco Conference, 2021, in press.
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