
Synthesising large, low cost and diverse datasets
for robust semantic segmentation in self-driving

tasks

Pau Dietz Romero¹, Merlin David Mengel², Jakob Czekansky²

¹Universität Siegen ²Technische Hochschule Mittelhessen

May 18, 2022

Abstract: Robust scene understanding algo-
rithms are essential for the success of autonomous
navigation. Unfortunately the supervised learn-
ing of semantic segmentation requires large and
diverse datasets. For certain self-driving tasks like
navigating a robot inside an industrial facility no
datasets are freely available and the manual anno-
tation of large datasets is impracticable for smaller
development teams. Although approaches exist to
automatically generate synthetic data, they are ei-
ther too computational expensive, demand a huge
preparation effort or miss a large variety of fea-
tures. This paper presents a novel framework to
generate synthetic datasets with great variance
for low computing demand that are easily adapt-
able to different self-driving tasks (Available at
https://github.com/cITIcar/SAD-Generator). As
demonstration this approach was applied to a se-
mantic segmentation task on a miniature road with
random obstacles, lane markings and disturbing
artefacts. Training thus synthesized data in a U-
Net and and later fine-tuning it with a small amount
of manually annotated data, improved pixel accu-
racy (PA) by 2.5 percentage points and mean in-
tersection over union (mIoU) by 11.19 percentage
points.

1 Introduction

We put forward the hypothesis that the overall ac-
ceptance of autonomous navigation is closely tied
to the performance of scene understanding in ex-
treme and unforeseen circumstances. Understand-
ing the surroundings helps the system to avoid
obstacles, locate the drive path and react to other
entities. This task can be achieved with seman-
tic segmentation assigning every pixel of an im-
age to a semantic category. Semantic segmenta-

tion has already demonstrated impressive results
in the past [1, 2, 3, 4]. Pixel-wise predictions can
be achieved with a Neural Network architecture
called Fully Convolutional Network (FCN) firstly
mentioned by Long et al. [5].

A robust algorithm keeps a high accuracy even
in situations with bad lighting, disturbing arte-
facts or obstacles. The training of supervised Neu-
ral Networks requires huge datasets, representing
the variety of situations in inference. Annotating
such a large quantity of data is time consuming
and expensive, representing a bottleneck for small
development projects with tight time and finan-
cial resources. Too small datasets result in de-
teriorated performance due to overfitting of the
Neural Network [7].

To match the need for data to train semantic
segmentation algorithms many large automotive
datasets have been published like the Cityscapes
[8], the KITTI [11] or the Toronto dataset [12].
For navigation tasks that do not occur in urban
streets, but for instance in industrial environments,
these available datasets are not applicable.

Another approach is generating synthetic data
[9]. The idea is to create artificial images from the
real world. A program generates the images for a
given ground-truth, so annotation is simple, the
computational complexity is dominated by pro-
ducing a realistic image. Using synthetic data,
even rare and thus under-represented situations
may occur arbitrary often.

In the past many automotive synthetic datasets
based on game engines and graphic simulators have
been created like the Synthia [9], the Virtual KITTI
2 [13] and the GTA [10] dataset. Unfortunately
they are computational expensive to generate and
mostly demand artistic modelling of a detailed en-
vironment [7]. The high expense necessary to gen-

1



erate one photo-realistic annotated sample contra-
dicts the primary selling point of synthetic data,
that labelled data is available for nearly free.

To counter the high expense of synthetic data
Tobin et al. [14] introduced the method of domain
randomization (DR). This approach creates a non
photo-realistic environment with many randomly
generated features to force the network to learn
the relevant features of an image.

Tremblay et al. [7] extended DR to object de-
tection and generated low cost synthetic samples
with great variance. Figure 1 shows an example
of a generated image by DR. Their images have
been created in the following work flow:

� A random number of objects of interest are
placed in a random orientation inside a 3D
scene.

� A random number of distracting objects are
placed in a random orientation inside a 3D
scene.

� Random colors and textures are applied to
the objects.

� A random background is placed into the scene.

� Random light is projected on to the scene.

� A random perspective of the scene is chosen.

They compared the effectiveness of their dataset
with the photo-realistic, synthetic dataset virtual
KITTI [13]. The original KITTI dataset [11] was
used as test dataset. Deep Learning Networks
achieved better results when trained on their data-
set compared to being trained on virtual KITTI.
Furthermore, they demonstrated that training their
dataset plus fine-tuning the network with real world
data outperformed networks only training with
real world data.

Their approach is highly scalable and efficient
when the objects of interest do not lie in the back-
ground but in the foreground of the image. In
their work the ground plane is not annotated with
a relevant object class. The images inserted on
their ground plane have been collected manually.
But for the task of semantic segmentation in au-
tonomous navigation the ground plane plays a ma-
jor role. The relevant visual information are not
only the objects in the foreground (such as obsta-
cles) but also features on the ground plane (for
instance lane markings).

Figure 1: A generated image with Domain Ran-
domization [7]. In their work they
trained object detection for a real world
urban environment

Our work enhances the approach of DR to au-
tomate the creation of random ground planes that
are accurately labelled. We present a framework
that demands less design effort adapting it to dif-
ferent self-driving tasks on flat surfaces with vis-
ible lane markings. Our approach is highly scal-
able, runs cost effective on a standard CPU and
creates a great variance of random features. It is
an ideal solution for small teams developing au-
tonomous robots. The ground plane is automati-
cally generated by placing pre-annotated tiles in a
useful manner. After the scene is built the plane
gets post processed by adding disturbing artefacts
like reflections, dust and textures.

Our framework is not meant to challenge syn-
thetic datasets for urban streets like virtual KITTI
[11] or SYNTHIA [9] that take place in complex
and non flat environments. It is especially de-
signed for simpler navigation tasks on flat surfaces
(such as transport robots in a industrial facility).
Our work lowers the hurdle for small development
teams to tackle the need for large datasets.

2 Framework for Synthetic Data

The essential idea of this framework is, that many
navigation tasks happen in closed and and con-
trolled environments on a flat ground. In those
scenarios the crucial information for the self-driving
entity lies in lane markings and the location of
obstacles (such as other robots). The framework
generates annotated data with great variety for
low computational cost. Nevertheless manually la-
belling images is still necessary for the fine-tuning
of Neural Networks.

The framework simplifies the environment of
the vehicle to following five basic elements (also
called chunks): straight lines, 90° left turns, 90°

2



right turns, intersections and an empty chunk.
The user of the framework adds as many images
to a chunk as appropriate. A chunk can have mul-
tiple images but only has one annotation. Every
image has to be in bird’s-eye-view, showing con-
sistent ratio. Figure 2 shows an example of one
chunk image with its annotation. Adding differ-
ent images to one chunk increases the variety of
the data.

Figure 2: An image with its annotation represent-
ing a intersection chunk. The pixels of
the image are assigned to a semantic
class by their color (class ’left lane’: yel-
low, class ’right lane’: green, class ’ob-
stacle’: red, class ’intersection’: orange).

The program picks random chunks and assem-
bles them successively to create a continuous road
with a defined length. Every chunk is put in an
orientation and location that is compatible to its
precursor. All the space not covered by the road is
filled with empty chunks to gain a resulting image
in rectangular shape. This process is done simul-
taneously for the image and annotation. Figure
3 shows a possible placement of chunks. The re-
sult of this operation is an artificial image of the
ground plane and its exact annotation. Such a
ground plane is depicted in figure 4. The course
of the road is highly flexible. For every new chunk
the program can chose one of four different chunks.
The amount of possible combinations that can be
achieved in the best case by a road with a length
of n chunks is pn = 4n. The program prohibits
the chunks to overlap (the snake biting in its own
tail), so the actual number is slightly lower than
4n. Consider following examples: p5 = 1024, p7 =
16384

In the following step the artificial image gets
post-processed to randomly alter its appearance.
Following post-processing steps are made:

� Random particles are added to the image to
represent dust or dirt on the road.

Figure 3: The framework arranges the chunks to a
road like in a board game. The mn- co-
ordinate system defines the position and
orientation of a virtual car (red). The
hv- coordinate system represents the im-
age (black)

Figure 4: Example of an image and its annotation
showing the synthetic generated ground
plane in bird’s-eye-view.

� Random, small images are placed on the
ground plane to simulate larger disturbing
artefacts (such as reflections). The program
picks the artefacts from a source folder where
the user may add arbitrary images.

� Random contrast and brightness is applied
to the image.

� Random areas of the lane markings are cov-
ered by black patches to hide visual infor-
mation.

� Random objects of other classes are randomly
inserted on the image and annotation.

In the next step the program transforms the im-
ages from bird’s-eye-view into camera perspective.
Figure 5 shows an image in camera perspective
with its corresponding label. The data generator

3



moves a fictitious car along the road and takes
pictures from its pose (position and orientation)
in camera perspective.

The chunks representing the road are structured
in a FIFO list. As soon the car leaves its initial
chunk behind (not visible for the camera), it gets
removed from the ground plane. Simultaneously
a new chunk gets randomly added to the the end
of the road. On top of the camera images the
program inserts optical artefacts (such as Gaus-
sian blur). The application runs with around 25
FPS on our Notebook CPU (Intel Core i7-8750H
@ 2.2GHz).

Figure 5: A synthetic image with its annotation in
camera perspective

3 Evaluation

The performance of this framework was tested with
a racetrack similar to the one used in a competi-
tion for miniature self driving cars
(www.tu-braunschweig.de/carolo-cup).
The car has to segment the drive lane, obstacles
and intersections even when artefacts are disturb-
ing their visibility. A training, validation and test
dataset consisting of 350, 75 and 75 samples were
manually collected and annotated. A synthetic
training and validation dataset were generated con-
sisting of 30000 and 1000 samples. The network
chosen for evaluating the datasets is the U-Net
introduced by Ronneberger et al. [6]. During pre-
training a larger learning rate (lr = 0.001) was
chosen. For the fine-tuning the learning rate was
reduced (lr = 0.0001). The Neural Network was
trained on different subsets of the training and
validation datasets and later evaluated on the test
dataset with the metrics mean intersection over
union (mIoU) and pixel accuracy (PA). The fol-
lowing tables show the resulting performance of
those training configurations.

The best performance was achieved when pre-
training the network with a synthetic training data-
set and a mixed validation dataset. A mixed dataset
contains real and synthetic data. Figures 7 and 9
compare predictions for training only on real data
and training on mixed data.

Data Con-
figuration

Training
Data

Validation
Data

PA [%] mIoU [%]

Pre-
Training:

real real 0.9660 0.7113

Fine-
Tuning:

none none / /

Table 1: Results of training configuration real-
real-none-none

Data Con-
figuration

Training
Data

Validation
Data

PA [%] mIoU [%]

Pre-
Training:

synthetic synthetic 0.6425 0.3845

Fine-
Tuning:

real real 0.9526 0.6051

Table 2: Results of training configuration
synthetic-synthetic-real-real

Data Con-
figuration

Training
Data

Validation
Data

PA [%] mIoU [%]

Pre-
Training:

synthetic mixed 0.9389 0.5369

Fine-
Tuning:

synthetic real 0.9915 0.8232

Table 3: Results of training configuration
synthetic-mixed-synthetic-real

Data Con-
figuration

Training
Data

Validation
Data

PA [%] mIoU [%]

Pre-
Training:

mixed mixed 0.9644 0.7015

Fine-
Tuning:

mixed real 0.9670 0.7141

Table 4: Results of training configuration mixed-
mixed-mixed-real

Figure 6: Example of a real world image (left)
with its manually annotated label
(right) from the test dataset.

4



Figure 7: Two different predictions from the im-
age in figure 6: The image on the right is
a segmented output of a network trained
only on real world data. On the left is
the output of a network trained with
synthetic and real data. This exam-
ple demonstrated how synthetic data
improve the classification of the under-
represented class ’intersection’.

Figure 8: Example of a real world image (left)
with its manually annotated label
(right) from the test dataset.

Figure 9: Two different predictions from the im-
age in figure 8: The image on the right is
a segmented output of a network trained
only on real world data. On the left is
the output of a network trained with
synthetic and real data. This exam-
ple demonstrated how synthetic data
improve the classification of the under-
represented class ’obstacle’.

4 Conclusion

Our framework proves to be an effective tool for
small teams that develop self-driving robots in flat
environments with visible lane markings. It is
computational efficient and executes well on a reg-
ular notebook CPU. With minor effort, the frame-
work can be adapted to a new self-driving task.
When training a network on real world and syn-
thetic data from our framework it outperforms
networks being trained on real world data only. In
particular the network improved the classification
of under-represented classes when learning with

synthetic data. Thus, our framework is a pow-
erful tool especially in the early stages of small
development projects. A further direction that
should be examined is the training of recurrent
FCNs. The program already generates tempo-
ral consisted road images, that may be utilised
to learn temporal features in self-driving tasks.

References

[1] Li Wang and Xingxing Chen and Liangyuan
Hu, Hui Li: Overview of Image Semantic
Segmentation Technology (2019) 16th Inter-
national Conference on Electrical Engineer-
ing/Electronics, Computer, Telecommunica-
tions and Information Technology (ECTI-
CON)

[2] Rachmadio Noval Lazuardi and Daffa Su-
drajat and Nafitri Aulia and Trio Adiono:
A System of Semantic Segmentation on An
Autonomous Vehicle (2019), 16th Interna-
tional Conference on Electrical Engineer-
ing/Electronics, Computer, Telecommunica-
tions and Information Technology (ECTI-
CON)

[3] Alberto Garcia-Garcia and Sergio Orts-
Escolano and Sergiu Oprea and Victor
Villena-Martinez and Jose Garcia-Rodriguez:
A Review on Deep Learning Techniques
Applied to Semantic Segmentation (2017),
arXiv:1704.06857 [cs.CV]

[4] Mennatullah Siam and Sara Elkerdawy and
Martin Jagersand and Senthil Yogamani: Deep
Semantic Segmentation for Automated Driv-
ing: Taxonomy, Roadmap and Challenges
(2017), arXiv:1707.02432v2 [cs.CV]

[5] Jonathan Long and Evan Shelhamer and
Trevor Darrell: Fully Convolutional Networks
for Semantic Segmentation (2015) Proceed-
ings of the IEEE conference on computer vi-
sion and pattern recognition 2015: 3431-3400

[6] Olaf Ronneberger and Philipp Fischer and
Thomas Brox: U-Net: Convolutional Net-
works for Biomedical Image Segmentation
(2015), arXiv:1505.04597v1 [cs.CV]

[7] Jonathan Tremblay and Aayush Prakash and
David Acuna and Mark Brophy and Varun
Jampani and Cem Anil and Thang To and

5



Eric Cameracci and Shaad Boochoon and
Stan Birchfield: Training Deep Networks
with Synthetic Data: Bridging the Real-
ity Gap by Domain Randomization (2018),
arXiv:1804.06516v3 [cs.CV]

[8] Marius Cordts and Mohamed Omran and Se-
bastian Ramos and Timo Rehfeld and Markus
Enzweiler and Rodrigo Benenson and Uwe
Franke and Stefan Roth and Bernt Schiele:
The Cityscapes Dataset for Semantic Urban
Scene Understanding (2016), Konferenz IEEE
Computer Vision and Pattern Recognition
(CVPR)

[9] German Ros and Laura Sellart and Joanna
Materzynska and David Vazquez and Antonio
Lopez: The SYNTHIA Dataset: A Large Col-
lection of Synthetic Images for Semantic Seg-
mentation of Urban Scenes (2016), Konferenz
IEEE Computer Vision and Pattern Recogni-
tion (CVPR)

[10] Stephan R. Richter and Vibhav Vineet and
Stefan Roth and Vladlen Koltun: Playing for
Data: Ground Truth from Computer Games
(2016), arXiv:1608.02192v1

[11] Andreas Geiger and Philip Lenz and
Christoph Stiller and Raquel Urtasun: Vision
meets Robotics: The KITTI Dataset Interna-
tional Journal of Robotics Research (IJRR) 32
(2013), pp. 1229-1235

[12] S. Wang, M. Bai, G. Mattyus, H. Chu,
W. Luo, B. Yang, J. Liang, J. Cheverie, S.
Fidler, and R. Urtasun: orontocity: Seeing
the world with a million eyes arXiv preprint
arXiv:1612.00423, 2016

[13] Yohann Cabon, Naila Murray, Mar-
tin Humenberger: Virtual KITTI 2
arXiv:2001.10773, 2020

[14] J. Tobin, R. Fong, A. Ray, J. Schneider, W.
Zaremba, and P. Abbeel.: Domain randomiza-
tion for transferring deep neural networks from
simulation to the real world. In IEEE/RSJ In-
ternational Conference on Intelligent Robots
and Systems (IROS), 2017. 1, 2

6


	Titel page
	Abstract
	1 Introduction
	2 Framework for Synthetic Data
	3 Evaluation
	4 Conclusion
	References

