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ABSTRACT For manufacturing companies, especially for machine and plant manufacturers, the assembly of
products in time has an essential impact on meeting delivery dates. Often missing individual components lead
to a delayed assembly start, hereinafter referred to as assembly start delayers. Identifying the assembly start
delayers early in the production process can help to set countermeasures to meet the required delivery dates.
In order to achieve this, we set up 24 prediction models on four different levels of detail utilizing different
machine learning-algorithms — six prediction models on every level of detail — and applying a case-based
research approach in order to identify the model with the highest model quality. The modeling approach
on the four levels of detail is different. The models on the coarsest level of detail predict assembly start
delayers utilizing a classification approach. The models on the three finer levels of detail predict assembly
start delayers via a regression of different lead times and subsequent postprocessing operations to identify the
assembly start delayers. After training of the 24 prediction models based on a real data set of a machine and
plant manufacturer and evaluating their model quality, the classification model utilizing a Gradient Boosting
classifier showed best results. Thus, performing a binary classification to identify assembly start delayers was
the best modelling approach. With the achieved results, our study is a first approach to predict assembly start
delayers and gives insights in the performance of different modeling approaches in the area of a production
planning and control.

INDEX TERMS Production control, assembly, prediction methods, lead time reduction, machine learning,

supervised learning, classification algorithms, regression analysis, data analysis.

I. INTRODUCTION

Production companies are facing an ongoing change. They
are challenged to assert themselves in international mar-
kets and to differentiate their products from other products
available on the market in in terms of functionality, quality
and price. Furthermore, the logistics performance, such as
high adherence to delivery dates or short delivery and lead
times, is becoming a key competitive factor [1]-[3]. A typical
example for this are machine and plant manufacturers, whose
products often consist of a large number of customized com-
ponents to enable a tailor-made solution for the respective
customer [4], [5]. To ensure high adherence to delivery dates
and short lead times, the punctual assembly of a product is
a central factor, as the product can only be delivered to the
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customer on time if it has been manufactured and assembled
on time. The task of the assembly is to assemble a product of
higher complexity with predefined functions with a certain
quantity of components in a partly multi-stage process in
a given time [6]. The manufacturing processes upstream of
the assembly therefore have a direct influence on the per-
formance of the assembly process, since a large number of
material flows from different supply chains converge in the
assembly process [7]. Often it is not possible to provide the
required components on time and simultaneously. Under the
assumption that all components required for assembly must
be available at the start of assembly, the assembly process is
subsequently delayed, if only one component is provided too
late [8].

In order to avoid delays of the assembly start and thus to
meet delivery dates, it would be helpful to predict poten-
tial missing components, we define those components as
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‘assembly start delayers’, in early phases of the manufactur-
ing process. By subsequently taking appropriate countermea-
sures, such as adding extra shifts in production or outsourcing
of individual components, the assembly start delayers could
be prevented. A central factor for the prediction of assembly
start delayers is the lead time of the manufacturing processes
upstream of the assembly. The aim of these manufacturing
processes is the production of individual components. This
is usually done in one or more sequentially executed orders,
which in turn consist of one or more operations [9]. The lead
time can therefore be considered at three different levels of
detail: The component lead time, the order lead time and the
operation lead time.

Due to the influence of the lead time on meeting the start of
assembly, it seems obvious to predict assembly start delayers
based on a lead time prediction. In addition, the lead time
prediction can vary in the three levels of detail — component,
order and operation lead time. It is also conceivable to predict
the assembly start delayers directly via a classification, with-
out a prior lead time prediction. This results in four different
options with different level of detail to predict assembly start
delayers. Thus, the aim of our paper is to set up a model for
the prediction of assembly start delayers and to analyze and
systematize the influence of the level of detail of the model
on the model quality. As a research method we applied a case
study at a machine and plant manufacturer. With the achieved
results our paper provides two main contributions:

o We implemented machine learning models based on
different algorithms to predict assembly start delayers.

o We identified the coarsest level of detail utilizing a
binary classification as the best modeling approach.

Our paper is structured as follows. Section II first intro-
duces the product structure and manufacturing processes
in an engineer-to-order environment as well as available
approaches for lead time prediction. Section III elaborates
the prediction model to identify assembly start delayers uti-
lizing different levels of detail. In section IV the results are
presented and discussed. Section V critically reviews the
limitations of the applied research method and the results
obtained. Furthermore, the implications for further research
are derived. Finally, a summary is given in the last section.

Il. STATE OF THE ART

The products of machine and plant manufacturers usually
consist of several components. These are procured from sup-
pliers or manufactured in the company’s own production
facilities [7]. Purchased components can be procured on an
order-anonymous basis, such as for standard components, and
on an order-specific basis, such as for special and drawing
components. The procurement of components from suppli-
ers as well as the manufacturing of components in the in-
house production belong to processes upstream of the assem-
bly [10]. Since the assembly is a convergence point where
several material flows converge, the risk of delays due to
missing components is increased.
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One established model to analyze converging mate-
rial flows is the assembly flow element developed by
Schmidt [11] with further developments and applications in
the assembly flow diagram and supply diagram [10], [11].
In all models, the so-called completer is the last inflow to
an assembly order and is therefore the component that was
supplied last by the processes upstream of the assembly.
A completer can be completed on time — before the planned
start date of the assembly, or late — after the planned start
of the assembly. A late finalization of a completer therefore
leads to a delay in the start of assembly. In this article
we define such components as ‘“‘assembly start delayer”
(see also chapter 1). Assuming that all components are
necessary to start the assembly, the schedule variance of
the assembly start delayer determines the earliest possible
start date of the assembly. Accordingly, a temporal accel-
eration of the manufacturing and/or procurement process of
an assembly start delayer has the biggest potential to push
a delayed assembly start back to the target date. However,
the supply diagram is primarily designed to analyze data
relating to the past and to identify general issues such
as an overall bad assembly supply situation in individual
assembly areas. To derive case-specific countermeasures to
accelerate individual production orders further analysis is
needed.

The lead time of the processes upstream of the assembly
has a central influence on meeting the target start date of
the assembly and thus on meeting customer requirements.
A single component is typically manufactured in one or more
sequentially executed orders [9]. Consequently, we distin-
guish between a component lead time and an order lead
time. Further, an order is typically subdivided into individual
operations [12], [13]. Thus, we can differentiate between
order lead times and operation lead times. The operation
lead time is further subdivided into the operation time and
interoperation time. As is well known, the interoperation time
tends to have a higher share in the lead time than the operation
time [12], [14].

In production, lead times are determined by setting up a
production schedule taking into account the available pro-
duction capacities, the technical requirements, the demand
dates and the system status [8], [15], [16]. The order sequence
is defined according to certain rules in order to calculate
start and end dates of the orders at the workstations [17]
and is one of the main applications for machine learning
(ML) [18]. In addition to the calculation of the lead time
based on scheduling, it is also possible to predict lead time
directly. By predicting the lead times, completion dates can
be determined early and deviations from the schedule can be
detected [19]. In the past, many approaches for the prediction
of lead times have been established. For example, Cheng and
Gupta [20] investigated methods from the field of operations
research (OR) such as Constant (CON), Random (RAN) or
Total-Work (TWK). With the increasing development of ML,
new methods for predicting lead times have emerged (see, for
example, [21]-[23]).
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A systematic literature review conducted by
Burggrif et al. [24] has analyzed existing approaches focus-
ing on the prediction of lead times in the research fields
of ML and OR and classified them according to the three
criteria data class, data origin and used method/algorithm.
Looking at the data class, the authors identified that the
majority of publications examined use order data and infor-
mation about the system status of the production system
(see, for example, [25], [26]). In contrast, material data is
rarely used, and employee data is never used to predict lead
times. Given the fact that the products of machine and plant
manufacturers are typically designed tailor-made to meet the
specific customer needs, and that the material data therefore
characterize a product, this information should be consid-
ered when predicting lead times. The authors in [27], [28]
have already used material data utilizing artificial neural
networks (ANN) and random forest (RF) for the prediction of
lead times, but without using the primarily used information
about the system status and machine data and furthermore not
in the case of machine and plant manufacturers. According to
Burggrif et al. [24], there is a lack of prediction models for
machine and plant manufacturers that use the primarily used
data classes and material data for the prediction of lead times.
ANN and RF have already proven successful in including
material data in the prediction model. When looking at the
data origin, the authors of [24] also identified that the use
of real data strongly decreases with an increasing number of
considered data classes. Thus, with increasing complexity of
the prediction model they identified a lack of models using
real data.

In addition to the selection of suitable data and a suit-
able approach, the level of detail of the model is crucial
for a successful model application. According to the authors
in [29], the level of detail refers to the system that the model
represents (e.g. in the case of a model of a production line,
the number of machines, components, etc. contained in the
model), and not to the exact way in which the model is
implemented (e.g. number of data fields used). Consequently,
with respect to a model focusing on assembly start delayers,
considering the lead time at the level of components, orders
or operations would be possible levels of detail. An increase
in the level of detail usually leads to a higher model accuracy,
but with a degressive characteristic [30]. A 100% accurate
model is only possible if the real system is fully mapped,
which is typically not achieved [31]. Furthermore, an increase
in the level of detail beyond a certain point can also lead to a
less accurate model [30]. Therefore, in this work the impact of
the degree of detail on the model quality will be investigated.

In summary, currently there is no model available for the
prediction of assembly start delayers in the field of machine
and plant manufacturers that considers the necessary com-
plexity of the respective industry sector. There are models
available for the prediction of lead time, but they are not
explicitly used for the prediction of assembly start delayers.
In addition, decisive data classes for machine and plant manu-
facturers such as material data are not used and there are also
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deficits in considering real data as the base for training the
models. Furthermore, the level of detail of the model is not
considered in any of the existing approaches.

In this work we will focus on investigating the influence of
the level of detail of the modelling on the model quality. For
this purpose, the following research question is posed, consid-
ering the previous explanations: ‘““How does the level of detail
of the modelling affect the model quality to predict assembly
start delayers?”” Considering the argumentation of the authors
in [30], we formulate the following working hypothesis: “The
model quality for the prediction of assembly start delayers
increases with a finer level of detail.”

Ill. MODELLING APPROACH

A case-based research approach is used to answer the
research question and to investigate the working hypothe-
sis. A case-based research approach is an objective, detailed
investigation of a current phenomenon where the researcher
has little control over real events [32]. One motivation for
a case-based research approach is to gain insights for real
needs, for example the needs of manufacturing compa-
nies, rather than to develop theories without practical rele-
vance [33]. Furthermore, a case-based research approach has
already been successfully applied in the area of lead time
prediction (see, for example, [28], [34]-[36]. Although the
research question focuses on the prediction of assembly start
delayers and not on a lead time prediction, the lead time is one
of the central factors for an assembly in time and thus a related
research area. Accordingly, a case-based research approach is
an appropriate method to answer the research question and to
investigate the working hypothesis.

As representative case for the case-based research
approach, a machine and plant manufacturer was chosen.
A product of this company usually consists of several hundred
components and is then used in steel production. An analysis
carried out in the company beforehand showed that approx.
95% of the assembly start delayers are components produced
in the company’s own production. Accordingly, components
procured from suppliers were not considered in the developed
prediction model. Thus, the scope of this article is limited to
the production of components in in-house manufacturing.

A. THE PREDICTION MODEL
To answer the research question, 24 ML-models were created
in total, which differ in their level of detail (see Fig. 1)
and the utilized ML-algorithm. The models at the different
levels of detail are independent of each other, but all pur-
sue the same goal: the prediction of assembly start delays.
To achieve this goal, each model comprises various opera-
tions. Further, we compared the performance of the different
ML-algorithms on each level of detail to identify the best
performing ML-algorithm by evaluating the achieved model
qualities.

The first and coarsest level of detail (1) is the predic-
tion of assembly start delayers using a binary classification.
On this level of detail, components are classified directly as
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FIGURE 1. Concept of the prediction models on four levels of details.

“assembly start delayer” or as ‘“‘no assembly start delayer™.
On the levels of detail (2)-(4) the assembly start delayers are
indirectly predicted based on a lead time prediction. With
increasing level of detail, a finer granular consideration of
the lead time, according to the definition of lead times by
the authors in [12] (see chapter 2), is used for the prediction.
Consequently, the component lead time is used on the second
level of detail (2), the order lead time at the third level of
detail (3) and the operation lead time at the fourth and thus
finest level of detail (4).

The detailed explanation of the operation principals includ-
ing the ML-algorithms used on the four levels of detail
(see Table 1) is first given for the coarsest level of
detail (1). Afterwards the operation principal of the levels
of detail (2)-(4) is explained. In the explanation the levels

VOLUME 9, 2021

TABLE 1. ML-algorithms utilized in the considered four levels of detail.

Level of detail 1~ Levels of detail (2)-(4)

ML-algorithm

Classification Regression

Support Vector Machine X
(SVM)
Linear Regression (LR) X
Decision Tree (DT) X X
Random Forest (RF) X X
Adaptive Boosting
(AdaBoost) X X
Gradient Boosting (GB) X X
Artificial Neural Network X X
(ANN)

Prediction via 1 Prediction via 2.4

classification regression

Input data Input data

Binary classification

model Regression model

Predicted lead
time

Post processing

Assembly
start delayer

No assembly
start delayer

Assembly
start delayer

No assembly
start delayer

FIGURE 2. Modelling architecture for the classification and the regression
approaches.

of detail (2)-(4) are considered together since their opera-
tion principal and the ML-algorithms used are analogous
and differs only in the considered lead time. The prediction
models on all levels of detail were implemented in Python
3.7 utilizing the scikit-learn library.

In the models on the coarsest level of detail (1) (see Fig. 2),
we compared the performance of a Support Vector classifier
(SVC), aDecision Tree (DT) classifier, a Random Forest (RF)
classifier, an Adaptive Boosting (AdaBoost) classifier uti-
lizing a DT-classifier as base estimator, a Gradient Boost-
ing (GB) classifier and an ANN, since they are established
approaches for binary classifications [37]-[39]. For the ANN,
specifically, a single hidden layer feedforward net with a sig-
moid function as activation function and a stochastic gradient
descent (SGD) optimizer was applied. The sigmoid func-
tion as activation function is particularly suitable for binary
classifications [40]. The number of nodes was 46 nodes on
the input layer to cover all input features after performing
One-Hot-Encoding, 16 nodes on the hidden layer and two
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nodes on the output layer to ensure the binary classification
‘assembly start delayer’ and ‘no assembly start delayer’. The
number of hidden layers, the number of nodes on the hidden
layers and the activation function on the hidden layers were
defined by a continuous optimization of the model qual-
ity. In detail, we compared different network architectures
ranging from one to ten hidden layers with 1 to 100 nodes
per hidden layer and different activation functions on the
hidden layers such as ReLu function, sigmoid function, tanh
function and He function. The best network structure was the
above mentioned single hidden layer net. An overview of the
optimized hyperparameters used in each of the classification
models is given in the appendix in Table 5.

For the classification a slightly modified version of the
definition of the assembly start delayers given in chapter 2 is
applied: Instead of considering only one single assembly start
delayer as a date determining factor for the assembly start
according to the definition of Beck [10] and Schmidt [11] and
thus assigning the highest potential for improvement to this
component, several assembly start delayers were considered
for each assembly order. We recommend this extension, since
considering only one assembly start delayer is not revealing
whether this single one is an outlier or whether a large portion
of the components are completed at a similar time. The
modified assembly start delayer classification was defined as
follows: If the schedule variance of a component is larger or
equal to 80% of the maximum schedule variance of all com-
ponents of an assembly order, which is the schedule variance
of the actual assembly start delayer, then this component is
considered as an assembly start delayer.

The models on the levels of detail (2)-(4) (see. Fig. 2)
are based on a lead time prediction using a regres-
sion approach. Here we compared the performance of
a linear regression (LR), a DT-regressor, a RF-regressor,
an AdaBoost-regressor utilizing an DT-regressor as base esti-
mator, a GB-regressor and an ANN, since they are established
approaches for regression which have already been success-
fully applied in lead times prediction [24]. For the ANN,
specifically, a single-hidden-layer feedforward net with a
rectified linear unit as activation function utilizing a Keras
regressor was applied. This activation function is particularly
suitable for the prediction of lead times, since its output is
limited to positive values only (negative lead times are not
plausible), and it is an established activation function for
regression models in ML [41]. The number of nodes was
46 nodes on the input layer on the level of detail (2) and
45 nodes on the levels of detail (3) and (4) to cover all input
features after performing One-Hot-Encoding, 12 nodes on the
hidden layer and one node on the output layer to enable the
lead time as output of the regression model. The network
architecture was also continuously optimized by comparing
different numbers of hidden layers, number of hidden nodes
on the hidden layers and activation functions on the hidden
layers. In detail, we followed the same procedure as for the
classification models and compared network architectures
ranging from one to ten hidden layers with 1 to 100 nodes
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per hidden layer and different activation functions on the
hidden layers such as ReLu function, sigmoid function, tanh
function and He function. The best network structure was
the above mentioned single hidden layer net. An overview of
the optimized hyperparameters used in each of the regression
models is also given in the appendix in Tables 6 - 8.

However, based on the predicted lead time only, it is not
yet possible to make a statement about a potential assembly
start delayer. In order to be able to identify the assembly
start delayers at the levels of detail (2)-(4), additional sub-
sequent operations were implemented (cf. “‘postprocessing”
in Fig. 2): A completion date was calculated individually for
each component, starting from a fictitious start date and using
their respective predicted lead times. The fictitious start date
was assumed to be either the target start date of the component
or, if the target start date was already in the past at the time
of creation of the corresponding production order and thus
could not be realized, the date of the order creation and
thus the completion of order planning. Typical examples of
components for which the target start date at the time of order
creation is in the past are supplement orders. At the levels of
detail (3) and (4), an intermediate step was performed before
calculating the completion date based on a fictitious start
date: All predicted lead times (order lead times or operation
lead times) of the respective component were summed up to
a component lead time. Subsequently, at all three finer levels
of detail (2)-(4), the assembly start delayers were determined
according to the modified assembly start delayer logic based
on the prior calculated completion dates of all components of
an assembly order. In detail we utilized the formula

ASD; SV,‘J >0, 8% SVj,max A SVi,j >0

Class; =
NASD; SV <0,8% 8V max VSV;j <0

(1)

to assign one of the two classes ““assembly start delayer”
(ASD) and “‘no assembly start delayer”” (NASD) to every
component i, where SV;; is the schedule variance of com-
ponent i of assembly order j, calculated by

SV,‘J = CDl',j — TSDj 2)

where CD; ; is the calculated completion date of component
i of assembly order j based on the predicted lead time of the
prediction model and 7SD; the target start date of assembly
order j, and SV jnqx the maximum schedule variance of all
components of assembly order j, calculated by

SVj,max = CDj,max - TSDj (3)

where CDj 4y is the latest completion date of all components
of assembly order j.

After performing the subsequent operations, the output of
the models on the three finer levels of detail (2)-(4) is also
“assembly start delayer” or ‘‘no assembly start delayer”.

The applied procedure in the regression models, first to
predict a lead time and, based on this, to calculate the com-
pletion dates of the components based on a fictitious start
date, seems to be a cumbersome process. One could also
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think of directly predicting the completion dates without
the workaround of predicting lead times. However, a direct
prediction of the completion dates of the components is not
possible with a supervised learning approach: Supervised
learning is based on historical training data. If completion
dates were directly predicted based on this historical train-
ing data, all completion dates would be in the past and not
in the future. Therefore, predicting lead time is used as a
workaround, as lead times depend on technical and organi-
zational factors such as the available capacity or the required
processing order, whereas they are usually independent of the
considered date.

B. THE DATA MODEL

The data model on all four levels of detail consists of the
four data classes order data, machine data, material data
and system status and thus follows the recommendation of
the authors in [24]. For the data acquisition, we followed
the procedure of Fayyad et al. [42] and Han et al. [43] con-
sisting of the four steps selection, pre-processing, reduction
and transformation. In the selection, the data for predicting
the assembly start delayers was selected from the Enterprise
Resource Planning System (ERP) and Advanced Planning
and Scheduling System (APS) of the machine and plant
manufacturer under consideration. According to the recom-
mendation of the authors in [44] we included experts from the
machine and plant manufacturer in this process. We consid-
ered all data fields that, based on the experience of the experts,
have an impact on production orders meeting the target start
date of the assembly and thus should be included in the pre-
diction model. In addition, further data fields were selected
which the experts classified as only potentially relevant. The
data export included assembly orders, the corresponding pro-
duction orders and operation as well as information on the
material and the systems status. The period under review
was set to one year. In the preprocessing which followed the
selection, the data set was corrected by formatting individual
data fields and cleaning up data gaps. Here, we also included
the company’s experts to avoid deleting data e.g. with data
gaps. In the preprocessing we also analyzed the data struc-
ture and combined the different raw data tables, which were
basically separate csv-files, to one data model. For this, we set
up an entity-relationship diagram (see Fig. 3) enabling us to
identify the primary keys, which are the prerequisite for the
connection.

After completing the data preprocessing, in the reduction,
from the large number of data fields selected by expert knowl-
edge, those that have an influence on the start of assembly
were selected. For this purpose, a correlation analysis was
performed according to the recommendation of the authors
in [45]. In the final step, the transformation, the data fields
were modified in order to define suitable features for the four
prediction models. Here we applied typical methods such as
discretization, decomposition, normalization, and aggrega-
tion (see, for details, [43], [46]). In the following, the trans-
formation of the data fields ‘workstation type’ from the data
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Order Operation
* Order-ID + Order-ID
* Material-ID * Operation-ID
» Subsequent Order-ID  Subsequent Operation-ID
* Project-ID * Machine-ID
* Order Name » Operation Name
* Order Type * Operation Type
« Target Start Date + Target Start Date

» Target End Date
* Actual Start Date
* Actual End Date
* Actual Order Creation Date

 Target End Date
* Actual Start Date
* Actual End Date
+ Target Processing Time

» Customer * Target Setup Time
Material Machine
* Material-ID » Machine-ID

» Material Name Machine Name

» Material Type * Machine Type

» Gross Weight * Machine Group

* Density * Location

 Length * Size

» Width + Performance

* Height » Energy Consumption

FIGURE 3. Entity-relationship diagram with an excerpt of available
features per data table.

class machine data and the data field ‘order creation-delay’
from the data class order data are explained as examples.
Initially, the data field ‘workstation type’ was a free text
field with many different characteristics. For the definition
of the feature, the workstations were grouped according to
their processing type. For example, all machines that perform
a turning operation were grouped into ‘turning machine’. The
data field ‘order creation-delay’ has been calculated based on
the deviation between the target start date of an order and the
actual date of the order creation and thus indicates a delay in
the order creation. In total, the application of the methodology
of Fayyad ef al. [42] and Han et al. [43] results in 17 features,
although not all features are applied at all levels of detail
(see Table 2).

After performing One-Hot-Encoding for each level of
detail we increased the number of features to a total
of 375 features on the levels of detail (1) and (2) and
374 features on the levels of detail (3) and (4) due to many
values in the categorical features. We further evaluated the
dependence between the features by creating a 375 x 375
correlation matrix in form of a lower triangular matrix for the
coarsest level of detail leading to 71.631 individual correla-
tion coefficients. To get an overview of the overall correlation
in our dataset we assigned all correlation coefficients to bins
of different correlation strengths following the established
rules for interpreting correlation coefficients [47], [48] lead-
ing to a total of five bins. Finally, we calculated the share
of the individual bins in the number of all correlation coeftfi-
cients (cf. Table 3). Based on the overview, we identified that
1.4 % of all correlation coefficient show at least a moderate
correlation. This indicates an existing dependency between
our features. Thus, a Principal Component Analysis (PCA)
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TABLE 2. Features used in the prediction model.

Level of detail
1 2 3 4

X X

Data class Feature

Target lead time

Total number of orders

Xoox X
KX X

Total number of operations
Target processing time
Order Target setup time

Data Order creation-delay

Priority

Operation type

KX X X X X

Dispatcher

Number of production areas a
component/order passes through

System

Number of orders in system
status

Material ~ Gross weight

data Component name

Production area

Machine Workstation type

data Workstation number

T R T o T B T B T
T T N o T B T T
T T R I B R B T e B T

T R B N

Workstation capacity

TABLE 3. Correlation between features before and after PCA following
the bin sizes of [47], [48].

Before After
PCA PCA

10009(-1.0t0-09) 03%  0.0%

Bin Correlation Coefficient

Very high correlation

High correlation 09t0.7(-09t0-0.7) 0.6% 0.0 %

Moderate correlation 0.7 t0 0.5 (-0.7 to -0.5) 1.5% 0.0 %

Low correlation 0.5t0 0.3 (-0.5 to -0.3) 6.5% 0.0 %

Negligible correlation 03t00.0(-03t0-0.0)0 91.1%  100.0%

was performed to reduce the dependencies between the fea-
tures and to ensure a good model quality. The improvement
of the model quality by using a PCA has already been demon-
strated in other studies (see, for example, [49]). By applying
a PCA, we identified 46 principal components (PC) on the
levels of detail (1) and (2) and 47 PC on the levels of detail (3)
and (4) as an appropriate number of PC. After performing the
PCA, we again performed a correlation analysis and assigned
all correlation coefficients to the equal five bins (cf. Table 3)
showing that the PCA eliminates the dependency between the
features.

Our final dataset consisted of 356 assembly orders com-
prising 1,506 components supplied by the in-house produc-
tion. Of course, the in-house-components were only a subset
of all components needed for assembly. Components pur-
chased from suppliers were excluded based on an analysis
previously performed by the machine and plant manufac-
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turer showing that the in-house-components are predomi-
nantly responsible for a delayed start of the assembly. These
1,506 in-house-components are manufactured by a total
of 3,187 production orders comprising 15,772 operations.
With our modified definition of an assembly start delayer
we had a total of 24 % “‘assembly start delayers’ and 76 %
“non-assembly start delayers” of all in-house-components.

C. TRAINING/TEST SPLIT AND PREDICTION TIME

After defining the data model and before training the predic-
tion models, the data set was divided into training and test
data with a ratio of 80% training to 20% test data. In selecting
the ratio, we followed established ratios. These are approx.
75%-80% training data to 25%-20% test data [50]. When
splitting the data, we ensured that the components of one
assembly order are not separated. Thus, the data-subsets
(training and testing) always contain the complete bill of
materials of an assembly order produced in in-house pro-
duction including all corresponding production orders and
operations. By this, we ensured that the prediction model is
subsequently able to predict the actual assembly start delay-
ers.

The time of application of the prediction models (predic-
tion time) and thus the time of gaining knowledge about
potential assembly start delayers should be as early as possi-
ble within the production process, so that companies have as
much time as possible to implement acceleration measures.
For the four models within this study, we set the date of
order creation and thus the completion of order planning as
prediction time. At this point, all necessary information, such
as bill of materials, operations and machine assignments are
available.

D. EVALUATION OF THE MODEL QUALITY

To evaluate the model quality of all models we applied a
confusion matrix, since the output on all four levels of detail is
the binary output ‘“assembly start delayer” or “‘no assembly
start delayer’’. The evaluation of the model quality with a con-
fusion matrix is an established method and has already been
demonstrated in other studies (see, for example, [51], [52]).
Following the authors in [53] we used the Matthew’s corre-
lation coefficient (MCC) [54] as an evaluation metric, since
it considers the balance ratios of all four confusion matrix
categories and thus is the most informative metric to evaluate
a confusion matrix. Considering the MCC also ensured that
our model was not just predicting the majority class in our
data set, which is “‘no assembly start delayer”. Furthermore,
we considered the F-score, precision and recall [52] as evalu-
ation metrics, since they focus on the prediction of positives
(assembly start delayer) only, which is the most important
category in our case of interest. In the F-score we weighted
the recall twice as high than the precision, deviating from
a regular harmonic mean. This weighting is based on the
assumption that it seems more important to identify as many
of the actual assembly start delayers as possible, in case
of doubt even more than exist, and to define acceleration
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measures for them, than not to identify individual assembly
start delayers at all. By evaluating each prediction of the four
different levels of detail using these metrics, the dependence
of the model quality on the level of detail of the modeling can
be determined.

Besides considering the metrics MCC and F-score only,
one could think to consider the model accuracy, which is
the portion of correctly predicted assembly start delayers
and non-assembly start delayers to all predictions, as well.
Nevertheless, the model accuracy is not a suitable metric
for our study, as there is an imbalance between assembly
start delayers and non-assembly start delayers (in our dataset
24 % to 76 %). This is due to the definition of assembly
start delayers, according to which the assembly start delayers
are only a small portion of all components of an assembly
order. A typical example would be an assembly order con-
sisting of 100 components, 5 of which are assembly start
delayers. If the model would predict ‘““non-assembly start
delayers™ for all components, the accuracy would be 95 %.
Nevertheless, none of the assembly start delayers, thus none
of the critical components, would have been identified and
consequently the goal of the prediction model would not have
been reached. With the original definition of the completer
given by the authors in [10], [11], according to which there
is only one assembly start delay per assembly order, this
imbalance would have been even stronger. Therefore, we only
considered the MCC and F-score as suitable metrics to eval-
uate the model quality for the prediction of assembly start
delayers.

In summary, we implemented and compared 24 prediction
models on four different levels of detail (six models per level).
The target was first, to identify the ML-algorithm reaching
the highest model quality per level of detail and based on
that, to identify the dependence of the model quality on the
level of detail of the modeling. The models on the coarsest
level of detail (1) utilizing a classification to directly predict
assembly start delayers differ strongly from the models on the
finer levels of detail (2)-(4) utilizing a lead time prediction
based on a regression to predict assembly start delayers. The
models on the three finer levels of detail (2)-(4) only differ
in the utilized ML-algorithms and the considered lead time,
which becomes increasingly finer with the level of detail:
from the component lead time to the order lead time to the
operation lead time. In all 24 models the output was the binary
classification “assembly start delayer” or ‘“‘no assembly start
delayer”. To enable the binary classification for the regres-
sion models on the levels of detail (2)-(4) the model output
was postprocessed. As metrics to evaluate the model quality
we used the MCC, F-Score, precision and recall based on a
confusion matrix.

IV. RESULTS

After the definition of the concept, the data model and the
model evaluation, we trained the prediction models on our
data set. Hyperparameter tuning was performed to optimize
the model quality in the best possible way (cf. Tables 5 - 7).
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TABLE 4. Reached model qualities of all prediction models.

Level of detail (1)
Model MCC F-Score Precision Recall
SVM 0.55 72 % 56 % 78 %
DT 0.56 68 % 60 % 71 %
RF 0.52 60 % 64 % 59 %
GB 0.65 75 % 67 % 75 %
AdaBoost 0.58 71 % 61 % 74 %
ANN 0.45 65 % 43 % 76 %
Level of detail (2)
Model MCC F-Score Precision Recall
LR 0.22 38% 33% 40 %
DT 0.30 43 % 40 % 44 %
RF 0.10 26 % 24 % 27 %
GB 0.22 35% 35% 35%
AdaBoost 0.13 35% 24 % 40 %
ANN 0.29 48 % 36 % 53 %
Level of detail (3)
Model MCC F-Score Precision Recall
LR 0.27 41 % 38% 42 %
DT 0.32 42 % 43 % 42 %
RF 0.22 35% 34 % 35%
GB 0.21 33% 34 % 33%
AdaBoost 0.13 44 % 26 % 44 %
ANN 0.32 51 % 40 % 51 %
Level of detail (4)
Model MCC F-Score Precision Recall
LR 0.35 53 % 39% 58 %
DT 0.41 58 % 42 % 65 %
RF 0.38 54 % 42 % 58 %
GB 0.34 49 % 40 % 52 %
AdaBoost 0.36 57 % 38% 65 %
ANN 0.34 50 % 41 % 53%

Subsequently, the confusion matrices were created for each
model on the different levels of detail to determine the model
quality. Based on the respective confusion matrix, the metrics
MCC, F-score, precision and recall were calculated for each
model (cf. Table 4). These metrics enabled us to determine
the best performing ML-algorithm on each level of detail and
the dependence of the model quality on the different level of
detail.

Evaluating the metrics on the various levels of detail, it is
particularly noticeable that the best result was achieved at the
coarsest level of detail (1): The direct prediction of assembly
start delayers utilizing a GB-classifier achieves the highest
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model quality with an MCC of 0.65 and an F-score of 75 %.
With MCCs of approx. 0.3 to 0.4 and F-scores of approx.
50 % to 60 %, the best models on the finest three levels
of detail (2)-(4) do not reach the result of the best model
on the coarsest level of detail (1). Considering the levels of
detail (2)-(4) the MCC, F-Score, precision and recall of the
best performing model on each level increases with a finer
level of detail. Thus, the model quality of the best regression
models increases with a finer level of detail but still lower than
the model quality of the best classification model, which was
on the coarsest level of detail (1).
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FIGURE 4. Boxplot of MCC and F-Score for all prediction models on each
of the four levels of details.

Furthermore, we created boxplots for the four levels of
detail to visualize the spread of all models in the MCC and
F-Score within the respective levels of details and the depen-
dence of the model quality on the level of detail (cf. Fig. 4).
It is particularly noticeable, that the models on the level of
detail (1) strongly differ from the models on the levels of
detail (2) - (4) emphasizing that the classification approach
outperforms the regression approaches. In addition, the mod-
els on the level of detail (2) differ only slightly from the
models on the level on detail (3), whereas the models on
the level of detail (4) differ more strongly from the levels of
detail (2) and (3). That emphasizes again an increasing model
quality for the regression model with a finer level of detail.
Furthermore, there are no outliers in any of the boxplots.
Consequently, none of the prediction models within the four
levels of detail differs significantly from the other models
on the respective level of detail. Nevertheless, the decreasing
spread from the level of details (2) to level of detail (4)
indicates that with a finer level of detail the model quality of
the regression models converges. One possible explanation
for the decreasing spread in the regression models is the
increasing amount of training data with a finer level of detail
—from components to orders to operations — leading to a more
solid data base for training the models.

Considering all achieved model qualities, the working
hypothesis cannot be confirmed, since — contrary to the work-
ing hypothesis — the best result is achieved at the coarsest level
of detail (1). Considering the three finer levels of detail only,
the model quality is increasing with a finer level of detail,
but still, the model quality is below the results on the coarsest
level of detail (1).

Consequently, we analyzed possible explanations for the
different behavior of the models in our approach regarding
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their achieved model quality. One possible explanation for the
lower model quality on the finer levels of detail (2)-(4) could
be, that errors occurring during the prediction of the lead
times are cumulated in the postprocessing operations: For
each assembly order, n completion dates are predicted accord-
ing to the number of components. Subsequently, the final out-
put “assembly start delayer” or “no assembly start delayer”
is calculated for each component. This calculation of the
assembly start delayers is based on the calculated comple-
tion dates of all n components and thus includes the errors
of all individual calculations of the completion dates. Fur-
thermore, each calculated completion date is composed of
a fictitious start date and a predicted lead time. Both the
fictitious start date and the predicted lead time can be sub-
ject to errors. In reality, an order can also start on a start
date other than the fictitious start date, which can result in
a deviation between the predicted completion date and the
actual completion date. In summary, the cumulation of errors
is one potential explanation for the lower model quality at the
finer levels of detail (2)-(4). This explanation is supported,
for example, by the authors of [55], who compare simpler
with more complex prediction models in their study. Contrary
to their initial assumption that under certain conditions more
complex prediction models are more accurate, they conclude
that simpler models achieve better results. Thus, we rec-
ommend for future models for the prediction of assembly
start delayers to follow the structure at the coarsest level of
detail.

V. CRITICAL REFLECTION OF RESULTS, LIMITATIONS,
AND IMPLICATIONS FOR FURTHER RESEARCH

Missing individual components leading to a delayed assem-
bly start is often an issue for engineer-to-order manufacturers.
Thus, the object of consideration in our study tends to be
of general nature. Consequently, the case-based research
approach as applied research methodology induces legiti-
mate questionability of its comprehensiveness and represen-
tativeness for engineer-to-order manufacturers in general.
Our results obtained rely on one single exemplary case
which might not be representative for all engineer-to-order
manufactures. Thus, it might not be generalizable to all
cases. Furthermore, due to the defined scope of this study,
the considered input features of the prediction models rely
on the interviewed experts of the observed company. When
transferring the approach to other cases, a new identification
of the considered input features might be necessary. Although
we tried to overcome these limitations by considering estab-
lished input features for prediction of lead times in previous
studies, further relevant input features might have remained
undetected or the considered input features might not be rele-
vant in other cases. Consequently, in future works, the results
should be verified with other cases or from a generic point of
view. Nevertheless, in the research areas of machine learning
and lead time prediction case-based-research is an established
research method as it provides necessary training data (see,
for example, [28], [34]-[36]).
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In our case study, the F-scores of all models with a maxi-
mum of 75 % and MCC with a maximum of 0.65 were still
low and not fully reliable for a practical application. Reasons
for not reaching fully reliable ML-models with F-scores close
to 100 % and MCC:s close to 1.00 are typically a combination
of the considered modeling approach, the ML-algorithm, and
the data base [30], [56]-[58]. To reach the current values
of our best F-score and MCC we applied four different
modeling approaches and several different ML-algorithms
including different structures of the ANN and tuning of the
hyperparameters. Thus, we infer, that neither a further opti-
mization of the modeling approach nor the ML-algorithm
used leads to a significant improvement of the model quality.
One possibility to further improve the model quality could
be to enhance the data basis used for training the models,
as the data base also has an essential influence on the model
quality [58], [59]. In manufacturing processes, especially at
machine and plant manufacturers, there are typically many
reasons for a delay such as missing raw material, problems
when setting up the machine, machine downtimes, issues
during the execution of an operation, rework, quality prob-
lems with a certain material, or also nonproduction related
reasons such as issues in a global supply chain or even the
weather (see, for example, [1], [60], [61]). Thus, to ensure
a fully reliable model, all the potential disruptions would
need to be considered in the machine learning model, and
consequently, the data base needs to cover all that information
about the respective disruptions as well. In our case study,
with a selection of all available order data, machine data,
material data and system information, we cover a subset of
all information about potential disruptions only. Accordingly,
we assume that considering further information about typical
disruptions occurring at the exemplary chosen machine and
plant manufacturer such as detailed information about the
production process at the raw material supplier or mainte-
nance data, could significantly improve the model quality.
Consequently, we encourage further studies to consider addi-
tional data fields about potential disruptions when setting up
a model predicting assembly start delayers to further opti-
mize the model. Without an improvement of further approx.
15-20 % in F-score, the model will not be suitably usable for
manufacturing companies. Nevertheless, our study is a good
starting point in the research area of predicting assembly start
delayers analyzing essential basics regarding the modeling
approach for future studies.

A further area for future work could be the provision
of background information on the identified assembly start
delayers. The current models are only able to identify the
assembly start delayers. However, there is no information
on the reasons for the occurrence of an identified assem-
bly start delayer given that would explain why the com-
ponent was supplied late. In order to be able to prevent a
potential assembly start delayer by defining suitable counter
measures, information about the causes of the delay is
of immense importance. Thus, the investigation of how
methods from the area of explainable AI can support the
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provision of background information in the prediction of
assembly start delayers could be a potential further research
field.

Besides the considered limitations and implications for
further research, we could satisfactorily answer our initially
stated research question ““how does the level of detail of the
modelling affect the model quality to predict assembly start
delayers”. In our case study, we could show, that the level of
detail of the modelling significantly affects the model quality.
The best modelling approach in our case study was to apply a
classification model to predict assembly start delayers. Thus,
the target of our study was achieved.

VI. CONCLUSION
Adherence to delivery dates is a decisive factor for manu-
facturing companies to assert themselves in globalized mar-
kets. A central aspect to meet delivery dates is an assembly
of a product on time. Delays in the processes upstream of
the assembly such as the in-house production of individual
components can have a negative effect on the adherence to
delivery dates. In order to prevent delays in the processes
upstream of the assembly, in this work a supervised learn-
ing model to predict missing components for the assembly
start, so-called assembly start delayers, in early phases of
the production process was developed. Here we analyzed the
level of detail of the prediction model since it can have a
significant impact on the model quality. An increase in the
level of detail usually leads to a higher model accuracy, but
with a degressive characteristic [30]. Thus, we formulated the
following working hypothesis: ‘“The model quality for the
prediction of assembly start delayers increases with a finer
level of detail.” In order to verify the working hypothesis,
in total 24 ML-models were created, which differ in their level
of detail and the utilized ML-algorithm, but with the predic-
tion of assembly start delayers as their common target. Here
a case-based research approach was applied. As an exem-
plary case for this research approach, a machine and plant
manufacturer was chosen and real-world data was applied.
The model architectures of the models on the four levels
of detail are different. The models on the coarsest level of
detail predict assembly start delayers utilizing a classification
approach. The models on the three finer levels of detail
predict assembly start delayers based on a prior lead time
prediction via a regression and subsequent postprocessing
operations. The regression models differ in the lead times
considered. A finer level of detail corresponds to a finer con-
sideration of the lead time. Specifically, the component, order
and operation lead times were considered. In the subsequent
postprocessing operations, the assembly start delayers were
identified based on the predicted lead times. Finally, the out-
put of all 24 prediction models on the four levels of detail
was the binary classification ‘““assembly start delayer” or “no
assembly start delayer” for every component. To evaluate
the model quality of all 24 models a confusion matrix was
created and the metrics MCC, F-score, precision and recall
were calculated.
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The comparison of the model qualities at the four levels
of detail showed that, contrary to the working hypothesis,
the model on coarsest level of detail — the classification
approach — had the best model quality. In contrast, an increase
in model quality with a finer level of detail was evident within
the regression models. In our study, in total, a finer level of
detail did not lead to the best result obtained. Consequently,
the working hypothesis could not be confirmed. As a possible
explanation for the lower model quality on the three finer
levels of detail we identified a cumulation of errors occurring
during the prediction of the lead times in the postprocessing
operations.

In total, we successfully implemented 24 ML-models to
predict assembly start delayers and gave insights in the per-
formance of different modeling approaches. Such prediction
models can be useful to identify assembly start delayers in
early phases of the manufacturing process and to enhance the
delivery performance machine and plant manufactures if a
sufficiently high model quality is achieved.

TABLE 5. Hyperparameters of the prediction models on level of detail (1).

Hyperparameters
Model yperp
c penalty loss max iter dual
SVM 1 12 hinge 1000 True
min min . .
T max max learning  n esti-
. features  depth rate mators
split leaf
DT 2 1 None None - -
RF 2 2 70 None - 500
GB 15 6 80 7 0.2 2000
Ada- 30 15 50 3 1 800
Boost
momen- weight dampen- learning
tum decay ing s rate
ANN 0.9 0 0 450 0.01

TABLE 6. Hyperparameters of the prediction models on level of detail (2).

Hyperparameters
Model
norma- il copyx  n_jobs
lize intercept Py -
LR False True True None
min min . .
ey gk max max learning  n esti-
. features  depth rate mators
split leaf
DT 12 9 10 10 - -
RF 12 8 auto 10 - 60
GB 2 3 10 7 0.8 10
Ada- 25 12 22 5 0.7 30
Boost
verbose bqtch epochs
size
ANN 1 64 450
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APPENDIX

The hyperparameter used in the prediction models were
optimized utilizing a grid search and cross validation algo-
rithms (GridSearchCV) from scikit learn. Tables 5 to 8 sum-
marize the utilized hyperparameters in the different models
on the four levels of detail.

TABLE 7. Hyperparameters of the prediction models on level of detail (3).

Hyperparameters
Model
norma- il copyx  n_jobs
lize intercept Py -
LR False True True None
min min . .
sl sl max max learning  n esti-
P features  depth rate mators
split leaf
DT 5 1 40 5 - -
RF 10 9 auto None - 140
GB 2 3 None 2 0.5 10
Ada-
Boost 5 2 30 7 10 90
verbose bétCh epochs
size
ANN 1 64 500

TABLE 8. Hyperparameters of the prediction models on level of detail (4).

Hyperparameters
Model
norma- i copyx  n_jobs
lize intercept Py -
LR False True True None
min min . .
vl el max max learning  n esti-
. features  depth rate mators
split leaf
DT 2 7 30 None - -
RF 10 3 auto None - 100
GB 8 7 None 7 2 10
Ada- 2 8 3 None 2 40
Boost
verbose batCh epochs
size
ANN 0 32 600
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