
Evolutionary Algorithm for
Scheduling Real-Time Applications

in System of Systems

DISSERTATION
zur Erlangung des Grades eines Doktors

der Ingenieurwissenschaften

vorgelegt von
M.Sc. Setareh Majidi

eingereicht bei der Naturwissenschaftlich-Technischen Fakultät
der Universität Siegen

Siegen 2022

Betreuer und erster Gutachter
Prof. Dr.-Ing. Roman Obermaisser

Universität Siegen

Zweiter Gutachter
Dr. Raimund Kirner

University of Hertfordshire

Vorsitzender der Promotionskommission
Prof. Dr. Günter Schröder

Universität Siegen

Tag der mündlichen Prüfung
20.Mai.2022

Gedruckt auf alterungsbeständigem holz- und säurefreiem Papier.

Abstract

In recent years, systems engineering and management have evolved from developing dis-
tributed systems to the integration of complex adaptive systems and the advent of Systems-
of-Systems (SoS). SoS emerge from the collaboration of multiple systems with operational
and managerial independency in order to accomplish a higher goal. SoS have been success-
fully deployed in different domains such as enterprise systems and smart cities. However,
there is a critical challenge that must be tackled in order to adopt SoS in safety-relevant
embedded applications: reliability and real-time capability are today not addressed in SoS.
An open research challenge is the development of a distributed embedded system archi-
tecture for constantly evolving and dynamic SoS with support for verifiable real-time and
reliability properties. The system architecture needs to support reliable closed loop control
with stringent real-time requirements for applications.

Most of the existing scheduling solutions are developed for monolithic systems or com-
plex systems with centralized authorities, which may violate the restrictions of SoS and
not be able to satisfy its requirements. In this thesis, we develop an efficient heuristic
approach for scheduling SoS applications with real-time and fault-tolerance requirements.
In order to respect the SoS architectural restrictions, we model the scheduling decisions
at two levels using a Genetic Algorithm (GA) optimizer as a solver, which iteratively in-
teract to reach a feasible and efficient schedule for the SoS. The computational results
show improvement in the average transmission makespan of SoS applications compared
to the state-of-the-art scheduling solutions up to 31 percent in different scale scenarios.
This work also investigates the capability of our scheduling approach in computing time-
triggered schedules for a sequence of incrementally added SoS applications in a real-time
SoS network. In this regard, a heuristic approach is developed at both scheduling levels
to improve the schedulability of our algorithm by efficiently sparing free time slots on re-
sources for the upcoming applications. Testing the schedulability and timeliness of the new
incremental scheduler on a set of applications shows improvements in schedulability of up
to 50 percent. Furthermore, we design a fault-tolerant scheduling approach for real-time
SoS applications to tolerate permanent faults. Accordingly, fault-tolerance techniques such
as re-execution and replication are integrated into our two-level GA scheduling algorithm
to enhance the reliability of the system in combination with satisfying deadline constraints.
The reliability is improved on average by 15 percent compared to the non fault-tolerant
scheduler in different scenarios.

i

Kurzfassung

In den letzten Jahren haben sich Systemtechnik und -management von der Entwicklung
verteilter Systeme hin zur Integration komplexer adaptiver Systeme und zum Aufkom-
men von Systems-of-Systems (SoS) entwickelt. SoS entstehen durch die Zusammenar-
beit mehrerer Systeme, die betrieblich und verwaltungstechnisch unabhängig sind, um ein
höheres Ziel zu erreichen. SoS sind in verschiedenen Bereichen wie Unternehmenssys-
temen und intelligenten Städten erfolgreich eingesetzt worden. Es gibt jedoch eine kri-
tische Herausforderung, die angegangen werden muss, um SoS in sicherheitsrelevanten
eingebetteten Anwendungen einzusetzen: Zuverlässigkeit und Echtzeitfähigkeit werden
bisher in SoS nicht berücksichtigt. Eine offene Forschungsherausforderung ist die Entwick-
lung einer verteilten eingebetteten Systemarchitektur für sich ständig weiterentwickelnde
und dynamische SoS mit Unterstützung für überprüfbare Echtzeit- und Zuverlässigkeit-
seigenschaften. Die Systemarchitektur muss eine zuverlässige Steuerung im geschlossenen
Regelkreis mit strengen Echtzeitanforderungen für Anwendungen unterstützen.

Die meisten der existierenden Scheduling-Lösungen wurden für monolithische Systeme
oder komplexe Systeme mit zentralisierten Instanzen entwickelt, die möglicherweise die
Einschränkungen des SoS verletzen und nicht in der Lage sind, dessen Anforderungen
zu erfüllen. In dieser Arbeit entwickeln wir einen effizienten heuristischen Ansatz für
die Planung von SoS-Anwendungen mit Echtzeit- und Fehlertoleranzanforderungen. Um
die architektonischen Einschränkungen von SoS zu berücksichtigen, modellieren wir die
Planungsentscheidungen auf zwei Ebenen und verwenden einen genetischen Algorithmus
(GA) als Optimierer, der iterativ interagiert, um einen machbaren und effizienten Plan für
den SoS zu erreichen. Die Berechnungsergebnisse zeigen eine Verbesserung der Übertra-
gungszeit von SoS-Anwendungen im Vergleich zu anderen Scheduling-Lösungen um bis zu
31 Prozent in verschiedenen Szenarien.

In dieser Arbeit wird auch die Fähigkeit unseres Scheduling-Ansatzes untersucht, zeit-
gesteuerte Schedules für eine Sequenz von inkrementell hinzugefügten SoS-Anwendungen
in einem Echtzeit-SoS-Netzwerk zu berechnen. In diesem Zusammenhang wird ein heuris-
tischer Ansatz auf beiden Planungsebenen entwickelt, um die Planbarkeit unseres Algo-
rithmus zu verbessern, indem freie Zeitfenster der Ressourcen für die kommenden Anwen-
dungen effizient genutzt werden. Die Prüfung der Planbarkeit und Aktualität des neuen
inkrementellen Schedulers an einer Reihe von Anwendungen zeigt eine Verbesserung der
Planbarkeit um bis zu 50 Prozent. Darüber hinaus entwerfen wir einen fehlertoleran-

ii

ten Scheduling-Ansatz für Echtzeitanwendungen, der permanente Fehler toleriert. De-
mentsprechend werden Fehlertoleranztechniken wie Re-Execution und Replikation in un-
seren zweistufigen GA-Scheduling-Algorithmus integriert, um die Zuverlässigkeit des Sys-
tems in Kombination mit der Einhaltung von Zeitvorgaben zu verbessern. Die Zuverläs-
sigkeit wird im Vergleich zu einem nicht fehlertoleranten Planer in verschiedenen Szenarien
um durchschnittlich 15 Prozent verbessert.

iii

Acknowledgments

This thesis is the result of four years of research at the university of Siegen. It would not
have been possible without the support of many people.

I would like to express my deepest gratitude to my supervisor Professor Obermaisser
for his encouragement, guidance and support during this time. I appreciate his continuous
interest in my work. I would also like to thank Professor Kirner for taking the time to act
as a reviewer for this thesis.

I would also like to thank my colleagues from the Embedded Systems group for all the
pleasant discussions. You made the work an enjoyable one.

Finally, I would like to thank my family for their endless love and support through my
life. Special thanks to my fiancé for always being there for me.

iv

Contents

Abstract i

Kurzfassung ii

Acknowledgments iv

List of Figures vii

List of Tables ix

List of Abbreviations x

1 Introduction 1
1.1 Context and Motivation . 3
1.2 Objectives and Contribution . 5
1.3 Thesis Structure . 8

2 Concepts and Terms 9
2.1 Time-Triggered Systems . 9
2.2 Systems of Systems (SoS) . 9

2.2.1 Model-based development standards 10
2.3 Real-Time Scheduling . 11
2.4 Scheduling Optimization Heuristic . 12

2.4.1 Genetic Algorithm (GA) . 12
2.5 Faults and Fault-Tolerance in Distributed Systems 15

2.5.1 Faults . 16
2.5.2 Dependability . 16
2.5.3 Fault Tolerance Techniques . 16
2.5.4 Reliability Measure . 17

3 Related Work 18
3.1 Requirements and Research Challenges . 18
3.2 Scheduling Algorithms for Distributed Systems 19
3.3 Development Methods and Models for SoSs 23

v

Contents

3.4 Research Gap and Contribution . 24

4 System Model of Time-Triggered SoS (TTSoS) 26
4.1 Physical and Logical models of the SoS . 26
4.2 Dynamic Establishment and Scheduling of SoS Applications 29
4.3 Time Synchronization in SoSs . 30

5 Two-level Interactive Scheduling Algorithm for TTSoSs 32
5.1 SoS-level programming . 33
5.2 CS-level programming . 37
5.3 Mutation and Crossover Operators . 39
5.4 Incremental Scheduling for TTSoSs . 40

5.4.1 Resource Allocation Strategy . 43
5.5 Greedy Local search based scheduling algorithm 45

6 Fault-Tolerant Scheduling Algorithm for TTSoS 47
6.1 Fault Model . 48
6.2 Fault-tolerant Scheduler . 48

6.2.1 SoS-level programming . 48
6.2.2 CS-level programming . 50

6.3 GA implementation . 54

7 Evaluation and Results 57
7.1 Parameter setting . 57

7.1.1 GA Parameter Setting . 58
7.1.2 Customized Parameter setting . 58

7.2 Scenario Generation . 60
7.3 The Base Scheduling Heuristic Results . 60
7.4 Results of Incremental Scheduling Algorithm 65
7.5 Results of Fault-Tolerant Scheduling Algorithm 67

8 Conclusion 70
8.1 Summary . 70
8.2 Future Work . 71

Bibliography 72

vi

List of Figures

1.1 SoS archetypes . 3

2.1 Flowchart of GA . 13
2.2 Single point crossover . 14
2.3 Single cell mutation . 15

4.1 Physical Structure of SoS . 27
4.2 Logical structure of SoS . 28

5.1 An overview of the two-level interactive GA for scheduling TTSoS applications 33
5.2 Representative genome for the SoS-level GA scheduler 34
5.3 An example of an SoS-level genome . 35
5.4 Graph-based SoS-level solution . 36
5.5 Representative genome for the CS-level GA scheduler 38
5.6 Exchanging genes among parents in a single point crossover 40
5.7 The incremental scheduling algorithm for TTSoS applications 42
5.8 Comparing the performance of the CS-level GA scheduler with two different

allocation strategies . 44

6.1 Service replication in a SoS model . 49
6.2 Physical model of an SoS with 3 constituent systems and 2 network domains 50
6.3 Example of DAG for one service of the SoS application 51
6.4 The topology of a constituent system . 51
6.5 The example of a system scheduler . 51
6.6 Example of a system scheduler considering path redundancy 53
6.7 Example of a service DAG with one replicated job 53
6.8 The example of a system scheduler . 54
6.9 SoS-level Genome . 55

7.1 GA progress toward the optimal solution 58
7.2 Convergence of GA for different network sizes 59
7.3 An example of an SoS network . 60
7.4 An example of an SoS application . 61

vii

LIST OF FIGURES

7.5 Comparing the average makespan from GA and GLS schedulers 64
7.6 Examining the effect of parameter ∆ on performance of the MBT-aware

scheduler . 66
7.7 Effect of W0 parameter . 67

viii

List of Tables

4.1 Time-Triggered Schedule in an SoS . 29

6.1 CS-level schedule for the example service 52
6.2 2-shortest paths between es0 and other end-systems 52
6.3 CS-level schedule for the service with job replication 54

7.1 GA parameters . 59
7.2 Experimental results comparing the performance of GA and GLS scheduling

approaches . 62
7.3 SoS Scenario configuration . 63
7.4 Comparing the average transmission makespan from GLS and GA schedulers 63
7.5 Comparing Execution time of GA and GLS scheduling algorithm for differ-

ent scenarios . 64
7.6 Comparing the makespan of the SoS applications from both incremental

schedulers . 65
7.7 The generated scenarios . 68
7.8 Assumptions of the fault-tolerant scheduling algorithm 68
7.9 Reliability of system scheduler for different scenarios with and without repli-

cating jobs . 69

ix

List of Abbreviations
CS Constituent Systems
CSM Constituent System Manager
DAG Directed Acyclic Graph
DM Deadline Monotonic
EDF Earliest Deadline First
GA Genetic Algorithm
GLS Greedy Local Search
GPS Global Positioning System
HLF Highest Level First
ILP Integer Linear Programming
LSTF Least Space-Time First
MBT Maximum Blocking Time
MILP Mixed Integer Linear Programming
ND Network Domains
QoS Quality of Service
SNAP Stanford Network Analysis Package
SoS Systems-of-Systems
SoSE Systems-of-Systems Engineering
TB Time Budget
TI Time Interval
TSN Time-Sensitive Networking
TTE Time-Triggered Ethernet
TTP Time-Triggrered Protocol
TTSoS Time-Triggered Systems-of-Systems
WCET Worst Case Execution Time

x

1 Introduction

In recent years, the functionality of distributed systems with strict timing requirements
has increased significantly. Distributed real-time systems consist of a set of interconnected
computers with a real-time network and belong to the most important applications of
computers, in terms of both commercial and social impact. In a real-time system, the
correctness of the system depends on achieving deadlines and completing a process at
the application-defined time as well as the logic of results [1]. In other words, real-time
system requirements include not only the functional requirements such as data collection,
digital or interaction control, but also the stringent temporal demands. The examples of
real-time system applications can range from simple controllers in embedded systems to
complex time-critical distributed systems such as avionics.

Generally, the System-of-Systems (SoS) term can refer to the collaboration of a set of
independent systems, which are temporarily networked to provide novel services beyond
the capabilities of each system alone. SoS can be established in different fields. The socio-
technical elements of an SoS are called constituent systems. The constituent systems of
an SoS can be technical, human or organizational elements. Distributed computing SoS
architectures consist of self-contained cyber-physical systems which are normally provided
by different organizations and with different implementation technologies and also human
that use the system for personal purposes. The common SoS objectives are achieved by
realizing emergent services by the interaction of constituent systems [2].

The SoS application domain is broad and still expanding. For example, it can be defined
in any business enterprises by integrating a set of back office systems or customer-facing
systems such as inventory management system, billing system and customer help center.
Another example is the healthcare SoS, which integrates different patient care systems,
such as laboratory system, pharmacy system, telemedicine system and patient management
systems. In the safety-relevant application domains, SoS structures tend to be relatively
static, which means their constituent systems change infrequently. Examples of SoS with
real-time and reliability requirements are medical device systems, electric energy systems
and defense systems.

There are five key characteristics for the distinction of SoSs from traditional complex
systems: (1) independence of constituent in the operational mode, (2) independent man-
agement systems of entities, (3) geographical distribution, (4) complex emergence, (5) and
evolutionary development process [3]. Among theses characteristics, the primary and sec-

1

1 Introduction

ondary are the most important ones for applying the SoS term. The SoS domain is facing
many unclear and ambiguous foundation concepts in the areas of dependencies, capabilities
etc. However, there are agreed assumptions in Systems of Systems Engineering (SoSE) to
be used in design and development of SoS [4]:

• Constituent systems are independent and operable entities, each can be also consid-
ered as a complex system.

• The collaboration among the constituent systems results in achieving higher levels of
performance and purposes, which are beyond the capabilities of each individual. This
emergence results in high degrees of complexity and uncertainty in SoS application
environments.

• The boundaries among the constituent systems hide the internals of their implemen-
tations from each other.

• Data and information exchange is possible through different interfaces of constituent
systems based on their amount of collaboration and integration into an SoS.

• The dynamic interaction of constituent systems with each other and their environ-
ment over time affects the integration of the constituent systems into an SoS.

Considering the degree of independence of constituent systems, four distinct categories
are identified for the SoSs [5]:

1. Directed SoS owns and centrally manages all its constituent systems, e.g., the control
systems in an automobile owned by a car company.

2. Acknowledged SoS refers to cooperative agreements between the owners of con-
stituent systems to an aligned purpose.

3. Collaborative SoS is composed of independent constituent systems, which voluntarily
interact to achieve a beneficial goal.

4. Virtual SoS is formed by constituent systems from different organizations without
central alignment.

This taxonomy is considered as a framework for better understanding of the SoS objec-
tives and the relationship between its constitutes. The level of collaboration and access to
information varies in different SoS archetypes. For example in a collaborative SoS, we face
a complex system with no central control and limited access to the operational information
of its constitutes. As Figure 1.1 shows, there is limited control and unity of command in
the collaborative and acknowledged forms comparing to the directed form of SoS. In real

2

1.1 Context and Motivation

Acknowledged

Common

SoS purpose

SoS management
Agreed

Individual

Directed

Collaborative

Virtual

Figure 1.1: SoS archetypes

cases, an SoS may change its type over time or reflect the combination of theses types or
become even unrecognized because of the new levels of interconnectivity.

In this study, we deal with the collaborative SoS architecture in the embedded appli-
cation domain. In our SoS, all the constitutes agree to interact in order to fulfill the
central purposes and collectively decide how to provide the SoS services. To ensure the
reliability and real-time requirements in our SoS, there must be the agreement on the same
communication standards and protocols. Moreover, an external reference time is required
to synchronize all the constituent systems’ local clocks, e.g., by means of satellite-based
navigation systems such as GPS.

1.1 Context and Motivation

Facing today’s interconnected world, SoS can be found in numerous application domains
[6]. First, it was identified in the defense sector but now most of today’s infrastructures,
such as transportation networks, power supply, health care and many embedded systems
depend on the functionality of SoS [7]. For safety-relevant applications, the SoS perfor-

3

1 Introduction

mance is determined by addressing dependability and real-time requirements.
There are many examples of SoS applications that rely on real-time communication.

Considering an emergency center for real-time patient monitoring [8], the successful de-
livery of a service (i.e., the treatment of a patient) relies on the cooperation and sharing
the common resources between a variety of self-contained systems with possible conflicting
requirements, including ambulance center and hospital management, as well as the direct
interaction of human such as the patient, his/her family and the team of doctors. Further
examples of SoS applications that rely on real-time communication are traffic control as
well as command and control systems.

In this study, it is assumed that a time-triggered protocol is an acceptable transport
service for all the constituent systems to provide time-sensitive SoS applications. We
develop an efficient and reliable method for mapping and scheduling the time-triggered
actions from the complex services inside and between the constituent systems of a time-
sensitive SoS with respect to the existing challenges of exchanging information and control
in such systems.

The complexity of communication control in SoSs, and strict requirements on safety,
fault-tolerance and reliability of time-sensitive SoS applications, can be effectively ad-
dressed with time-triggered control and corresponding scheduling frameworks [9]. A time-
triggered schedule includes predefined time instants derived from the progression of the
global time related to the execution of jobs and transmission of periodic messages. Time-
triggered communication protocols support higher dependability and determinism during
the regular operation, as well as lower jitter based on a global time base [10]. Furthermore,
there is a wide availability of time-triggered technologies for an SoS such as time-triggered
networks (e.g., Time-Sensitive Networking (TSN) [11], Time-Triggered Ethernet (TTE)
[12]) and operating systems (e.g., PikeOS [13]) inside each constituent system as well as
time-triggered networks for the network domains between the constituent systems (e.g.,
DetNet [14]).

Since the high predictability of time-triggered operations can make the timing behavior
analysis of an SoS more straight-forward, and due to the possibility of deploying time-
triggered technologies for SoSs, we introduce Time-Triggered SoS (TTSoS) to address
an SoS with time-triggered architectures and scheduled communication networks. In a
TTSoS, each constituent system is a networked embedded system consisting of end-systems
that are interconnected by time-triggered communication networks with different proto-
cols and topologies. The interconnection of constituent systems occurs using a backbone
communication infrastructure consisting of multiple network domains. TTSoSs guarantee
the strict temporal constraints by determining a time-triggered schedule. Additionally,
TTSoSs promise to satisfy the dependability requirements of time-critical applications,
such as medical systems, smart manufacturing and defense systems, by enabling fault-
tolerant techniques, e.g., the ability of performing redundant computations of multiple

4

1.2 Objectives and Contribution

services and voting on the outputs. Consequently, the resulting properties make the time-
triggered architectures well-suited for the SoSs.

TTSoS networks may encounter different applications which are introduced and/or re-
moved over time, while sharing the underlying resources of the constituent systems. Re-
garding the limited accessibility to information from the internal scheduling process within
the constituent systems, the timing analysis process in a TTSoS is restricted and challeng-
ing [15]. Despite the wide research on time-triggered scheduling frameworks, they were
mostly developed for monolithic systems and do not support the requirements and con-
straints of TTSoSs. The existing incremental scheduling methods in time-triggered SoS
networks are focused on optimizing each application individually, i.e., not considering the
requirements of future applications. The lack of an appropriate customized scheduling
strategy will cause the shortage of resources which could result in catastrophic outcomes
in safety-critical domains such as health care systems.

The main optimization challenges that we face in scheduling TTSoS services are the
temporal and spatial coordination of the autonomous constituent systems including the
service allocation and the shared resource access, while satisfying the temporal constraints
of real-time applications. Moreover, there are possible conflicting goals between the SoS
and its constituent systems besides the lack of central control and global knowledge w.r.t.
internals of constituent systems. In scheduling a TTSoS application, each constituent sys-
tem is only aware of its own resources and takes care of scheduling its operations hidden
from other partners, which means there is no need to share information with any central
authority about how to utilize resources. However, in case of releasing a sequence of ap-
plications, local schedulers should update their resource allocation approach accordingly.
Therefore, the resource allocation mechanism should contemplate not only the timing con-
straints of the current SoS application but also the schedulability of applications introduced
in the future.

1.2 Objectives and Contribution

The main objective of this thesis is to design a customized scheduling approach for SoS
architectures, which supports temporal guarantees of operations. Addressing the schedul-
ing problem in the SoS domain mentioned in the previous section, the main contributions
of this thesis are as follows,

• Proposing a two-level iterative scheduling model which provides time-triggered sched-
ules for TTSoS applications. This model ensures the timeliness of the operations as
well as satisfying the special boundary conditions of SoS architectures, i.e., lack of
centralized control and global knowledge.

5

1 Introduction

• Developing two scheduling methods based on different heuristic frameworks. (1)
two-level iterative Genetic Algorithm (GA) that determines near-optimal solutions
but in a long run time. (2) two-level iterative greedy local search algorithm that
deploys faster searching strategy but not ideal. We compare the schedulability and
functionality of these scheduling methods on different generated scenarios of TTSoS.

• The integration of a new resource allocation and search evaluation approach in the
scheduling model to cope with limited communication resources in case of expecting
new SoS applications which are incrementally added to the network and required to
be scheduled.

• The development of a fault-tolerant scheduling method with executing replicated
services and considering redundant paths for exchanging the time-triggered messages
within and between the constituent system to increase the reliability of our system.

This thesis investigates efficient scheduling methods for TTSoS. First, we consider a col-
laborative TTSoS with a high-level operational view to lead constituent systems to handle
their operations and there is no restriction to access information about their operations. In
our system, the information exchange happens at the high-level interaction between con-
stituent systems managers and network management services. Accordingly, we distinguish
two levels for our scheduling model, namely the CS level and the SoS level.

At the SoS level, a set of global schedules are generated and suggested to the CS level.
Each global schedule determines the resource allocation (At this level means selecting
suitable constituent systems as service providers and the shortest communication path
for transporting time-triggered messages between these systems) as well as the temporal
domain of services (start and finish instant of execution). Based on these global schedules,
each constituent system determines a time-triggered schedule for the corresponding service
and sends back a feedback to the SoS level. When these results are not acceptable for the
SoS level, it will update its global schedules and continue to iterate this process until
reaching feasible solutions.

The scheduling model includes two phases: (1) scheduling phase (2) execution phase.
In the first phase, the admission of a new SoS application is performed and time-triggered
schedule tables are generated. After the successful establishment, there is an execution
phase of the SoS application. In other words, a new schedule is computed at run time
whenever a new SoS application is established. Indeed, our scheduling approach is con-
sidered as a semi-static model. Moreover, it is assumed that a new SoS application joins
after completing the scheduling process of the previous one.

Regarding our scheduling model, we propose a two-level iterative heuristic algorithm
using a GA optimizer. The first level refers to the SoS level and starts with generating
global schedules, which include random time slots for selecting suitable constituent systems

6

1.2 Objectives and Contribution

to provide the services from an SoS application. The second level scheduler is run after
receiving information from its preceding level. According to the autonomy of constituent
systems, they can run the local schedulers simultaneously. This parallel execution saves
extra time required for solving the large-scale scheduling problems. After completion of
local schedulers, the best solutions are sent back to be assessed by the SoS level. In case of
facing an infeasible solution, the SoS level will update its initial schedules and send them
again to the local schedulers. This procedure iterates until finding a feasible schedule,
otherwise, it terminates after a specific number of iterations.

Moreover, we develop a two-level scheduling algorithm based on the Greedy Local Search
heuristic (GLS) as a reference scheduling algorithm which employs a different search strat-
egy to optimize the global and local schedules. We apply both GA and GLS schedulers
to different examples in different scales to examine their schedulability and scheduling
capabilities in terms of makespan.

Furthermore, we develop a new job allocation policy to efficiently utilize the limited
resources of our constituent systems for a large number of applications arriving over time.
Based on the current processor selection strategy of each local scheduler, the earliest fea-
sible time slots on resources will be assigned to the jobs. The current resource allocation
approach maps efficiently the available resources to the initial SoS applications but grad-
ually with incrementally emerging new applications over time, it is not possible to find
feasible schedules since the resources are fully occupied by earlier applications. To avoid
the shortage of resources, we require a new allocation approach which considers more
dispersed busy time slots on resources and prevents long blocking times.

Therefore, we propose a new evaluation measure called Maximum Blocking Time (MBT)
and integrate it into our scheduling method. Moreover, we propose a new fitness function
which resembles the trade-off between the MBT of resources and the makespan of each
application. As a result, the new approach may generate non ideal solutions for individual
applications from the makespan point of view, but there is a better chance of finding feasible
schedules for later applications. We examine the functionality of our new incremental
scheduler by computing the schedules of a set of generated real-time SoS applications
arriving over time.

To address the reliability requirements of safety-critical applications and due to the abil-
ity of a time-triggered protocol to support redundant communication, we integrate our base
two-level GA-based scheduling algorithm with fault-tolerance techniques. Accordingly, the
scheduling approach at the first level sends suggested time windows and reliability pref-
erences of providing services to candidate constituent systems. This level also selects a
set of multiple services to perform redundant computations as well as replicating each
time-triggered message to transmit within another path (i.e., the second shortest path
between its sender and receiver constituent systems) through network domains. In the
scheduling model for each service, we implement the redundant computations of jobs and

7

1 Introduction

transmit replicated message paths inside the network of constituent systems. The schedul-
ing problem at this level is expressed as a multi-objective optimization problem including
maximizing reliability and minimizing makespan with respect to the timing constraints.

1.3 Thesis Structure
The rest of thesis is presented as follows:

Chapter 2 covers the basic terms and concepts in our work. It gives an overview of
SoS and its characteristics. It provides a brief introduction of real-time scheduling and
investigates different solution approaches such as GA. A review of definitions regarding
faults and fault-tolerance techniques are also given in this chapter.

Chapter 3 analyzes the state of the art in scheduling algorithms for distributed systems.
It shortly discusses the main SoS modeling frameworks and scheduling algorithms, and
lastly illustrates the research gaps.

Chapter 4 describes the TTSoS architecture from the logical and physical points of
view, and models the problem of scheduling time-triggered applications in the system with
respect to its managerial and structural constraints.

Chapter 5 deals with our proposed methodology for computing time-triggered schedules
in a TTSoS as well as the development of the incremental scheduling approach to cope
with incrementally added TTSoS applications in the system.

Chapter 6 presents the proposed fault-tolerant scheduling algorithm for TTSoS to ensure
the system reliability.

Chapter 7 discusses the improved schedulability and timelines of our heuristic scheduling
algorithms by running different scenarios and comparing the results with the state-of-the-
art approaches.

Chapter 8 concludes the thesis along with giving some suggestions for the future works.

8

2 Concepts and Terms

In this chapter, we review the main definitions and concepts that are used in this thesis.
First, we start with the fundamental concept of time-triggered systems. Then, the defi-
nition of an SoS followed by highlighting its important characteristics is presented. The
main modeling standards and architecture frameworks specific to this type of systems are
briefly reviewed in this section. Next, scheduling in real-time systems is explained and
a quick review on GA as a scheduling optimization heuristic is given. Finally, a general
review about fault-hypotheses and fault-tolerance techniques are given.

2.1 Time-Triggered Systems
Time-triggered and event-triggered control are two paradigms for architecting a distributed
real-time system. The difference is in the source of control signals, which makes time-
triggered systems more predictable and dependable but inflexible [16]. In a time-triggered
system, there is an instant according to a static schedule to trigger an action (i.e., injection
of a message or the execution of a job) [17]. Generally, the communication structure for
time-triggered networks is generated in advance and not modified during operation [10].

Many time-critical applications (e.g., aircraft systems) receive repeatedly data from the
real world (via senors) and must provide a timely response (via an actuator) after pro-
cessing. In distributed safety-relevant applications it is important to have a deterministic
response. Predictability and highly deterministic behavior of time-triggered systems make
them the preferred choice for such applications. The use of time-triggered architectures
can have other benefits for the system such as better fault containment, reduced CPU and
memory usage [18].

2.2 Systems of Systems (SoS)
Systems-of-Systems (SoS) are a class of systems that have unique characteristics, dis-
tinguishing them from classic complex systems. An SoS refers to large-scale distributed
systems composed of various interconnected self-contained constitutes gathered to achieve
higher goals. These constituent systems are separately acquired and continue to be man-
aged as independent systems and can be provided by different organizations and with

9

2 Concepts and Terms

different implementation technologies. SoS objectives are achieved by emerging services
realized by the interaction of constituent systems. They can operate in a useful man-
ner by using protocols and standards to enable interoperability. In a real-time SoS, each
constituent system is a networked embedded system consisting of end-systems that are in-
terconnected by real-time communication networks with different topologies to deliver the
requested emerging real-time services. The interconnection of constituent systems occurs
using a backbone communication infrastructure consisting of multiple network domains.
The interaction between the constituent systems happens through their Constituent Sys-
tem Managers (CSM). The SoS has broad coverage of application domains, such as energy,
telecommunications, health care, transportation, and military [3]. As an example of the
healthcare SoS, we can point to the cooperation of different partners such as healthcare
centers, laboratory systems, hospitals and emergency centers.

[19] SoS can be distinguished from conventional systems based on a number of unique
characteristics, which are listed as follows,

• Autonomy: Each constituent system of an SoS can operate independently from the
operational and managerial points of view.

• Connectivity: The level of connectivity between constituent systems is based on their
needs and agreements.

• Emergence: In an SoS, the behaviors and capabilities of a system can be developed
from interacting with other systems.

• Geographical distribution: The constituent systems of an SoS can be located in any
locations.

• Evolutionary development process: Changing environment or introducing new tech-
nologies can lead to changes to existing operational strategies and capabilities of the
constituent systems.

2.2.1 Model-based development standards
The unique characteristics of SoSs have lead the system engineering community to inves-
tigate new languages, models and frameworks to have better definitions of these systems
[20]. Systems-of-Systems Engineering (SoSE) investigates new SoS capabilities by lever-
aging synergies of component systems and consists of best practices in design, develop-
ment, testing, analysis and maintenance. In contrast to traditional system engineering, in
which the system architecture remains relatively stable during the life cycle of the system,
SoSE typically considers a service oriented architecture to dynamically reconfigure as needs
change [21].

10

2.3 Real-Time Scheduling

There are standard representation-oriented architecture frameworks for SoSs, e.g., DoDAF
(Department of Defense Architecture Framework) [22], FEAF (Federal Enterprise AF),
MODAF (The British Ministry of Defense Architecture Framework), UPDM (The Unified
Profile for DoDAF/MODAF), as well as models for behavior, interfaces, requirements and
performance of constituent systems, e.g., SysML, Modelica, MARTE.

2.3 Real-Time Scheduling
A real-time system must complete the execution of a set of jobs at periodic intervals within
a specific time bound. The response time is a crucial criterion to evaluate the correctness
of real-time applications. Schedulers count as one of the essential components in real-time
systems and have a very important impact on the system performance [23]. Moreover, the
lack of sufficient resources can also lead to failure in order to meet the timing constraints,
which can bring catastrophic results in some cases, e.g., in safety-critical systems [24].

Scheduling is defined as the temporal and spatial allocation of shared resources to a set
of jobs. There are constraints to solve a scheduling problem for time-critical systems.

1. Timing constraints include deadlines, and worst case execution times,

2. Precedence constraints determine the permitted temporal order for the execution of
jobs,

3. Resource constraints determine how many jobs are allowed to be executed on a
specific type of resource,

4. Per-job constraints are associated with a job, e.g., it may need to be executed on a
specific resource.

The scheduling models for distributed systems can be categorized into two distinct
groups: static and dynamic scheduling. Static scheduling is suitable for the problems
with a fixed list of jobs within the expected completion time, where all information about
these jobs is known in advance. In contrast, dynamic scheduling supports a continuous
flow of incoming jobs and the changes of the workload. Making decisions about the next
job to run and handling overload are key challenges in dynamic scheduling. The scheduling
of jobs in safety-critical systems are typically constructed in a static manner to support
the deterministic timing requirements.

Another classification of scheduling models is preemptive and non-preemptive schedul-
ing. A preemptive scheduler can interrupt any running job in order to execute another
job on the same resource, which may result in a reduced response time. Contrarily, when
a job begins to execute in a non-preemptive scheduling process, it will not stop until it is
done.

11

2 Concepts and Terms

2.4 Scheduling Optimization Heuristic
A good scheduling algorithm should ensure that deadlines and requirements of the system
are met, besides having high efficiency and scalability [25]. The scheduling optimization
methods can be categorized into exact and heuristic. Exact algorithms such as MILP
guarantee to result in an optimum solution, on the other hand, heuristic algorithms such
as GA or neighborhood search find a near optimum solution in a shorter execution time.
The selection between the exact and heuristic methods depends on the type and the size
of the problem. Genetic Algorithm (GA) is one of the common heuristic approaches
for solving NP-hard optimization problems such as traveling salesman problem or the
scheduling problems. In the following section, we review the basic concepts of GA.

2.4.1 Genetic Algorithm (GA)

GA belongs to the group of population-based optimization algorithms inspired by biolog-
ical evolution. In a GA, a population of feasible solutions is evolved to approach better
solutions. Figure 2.1 shows a general scheme of this algorithm. It starts with initializ-
ing the population, then the selection of fitter solutions follows by fitness evaluation and
reproduction using the crossover and mutation operators. The iteration continues until
termination. This section explains different steps of a GA in detail.

There are generally nine steps in a GA:

1. Generate an initial population includingK individuals each with a predefined number
of chromosomes.

2. Calculate a specific fitness function for the evaluation of the chromosomes.

3. Use a roulette wheel method to determine whether to perform crossover or mutation.

4. If the crossover method is selected, select randomly two chromosomes as parents and
produce two offspring chromosomes.

5. In case of mutation, select randomly one chromosome and apply the operator.

6. Add new chromosomes at the end of the population list.

7. Return to step 3 until a fixed number of iterations is reached.

8. Order the population based on their fitness values. Select the first K individuals
(size of population) from the list and transfer them to the next generation.

9. Return to step 1 until the maximum number of iterations is reached.

12

2.4 Scheduling Optimization Heuristic

Is the maximum number of
 generations reached?

Initialize the population
(Chromosomes)

Start

End

Yes

Calculate the fitness value of each
individual in the population

No

Perform the GA
operators (Crossover

and Mutation)

Selection of best solutions

Parent selection

New population
(Offspring)

Figure 2.1: Flowchart of GA

13

2 Concepts and Terms

Initialization

The first step in GA is to generate an initial population, which is a collection of chromo-
somes. A chromosome refers to one possible solution and contains elements, which are
known as genes. Depending on the nature of the problem, these genes can hold different
values, e.g. binary, real, permutation or integer. The use of real-valued genes is more
efficient than the binary type, as it can shorten the process of evaluation. In each iteration
of GA, chromosomes will be evaluated by means of an appropriate fitness function.

Crossover

Crossover is one of the most efficient operators of a GA for searching the solution space. It
happens between two parents’ chromosomes to exchange the genes and results in generating
two offspring chromosomes. There are several strategies for this operator, such as one-
point, two-point, k-point, and uniform crossover. For example, in a single-point crossover,
an integer number i is randomly selected between 1 and n (the size of the chromosome),
and it is considered as a "crossover point". At this point, the chromosome is split up into
two parts and by exchanging the similar parts, two new chromosomes will be generated.
Figure 2.2 shows the general mechanism of a single point crossover.

Crossover point

Parent
Chromosomes

Offspring
Chromosomes

C0 C1 C2 C3 ... Cn

C0 C1 C2 C3 ... Cn

C0 C1 C2 C3 ... Cn

C0 C1 C2 C3 ... Cn

Figure 2.2: Single point crossover

14

2.5 Faults and Fault-Tolerance in Distributed Systems

Mutation

The mutation operator is another selection mechanism in a GA to have a comprehensive
search in the solution space. Figure 2.3 shows a simple example of a single cell mutation.
The mutation operator is applied on one chromosome as a parent from the population.
The single cell mutation operator randomly selects a cell to mutate and changes the value
of the corresponding cell.

Mutated cell

Parent Chromosome

Offspring Chromosomes

0 1 0 0 ... 1

0 1 0 1 ... 1

Figure 2.3: Single cell mutation

Fitness Function

The GA process determines the weight of each chromosome by its fitness function, i.e., it
shows how close each solution is to the optimum solution. These weights are sorted either
in an ascending or a descending order based on the optimization problem. Thereafter,
the chromosomes with better fitness values will be selected for the next generation to be
evolved.

2.5 Faults and Fault-Tolerance in Distributed Systems
Distributed real-time systems are increasingly applied in safety-relevant sectors, such as
health care, transportation and telecommunication, due to their capabilities. However,
if they do not continue to function correctly in the presence of faults, they may have
catastrophic consequences. Therefore, it is necessary to apply fault tolerant techniques
specially in the scheduling models [27]. In this regard, some essential definitions and basic
concepts related to this field are presented in the following sections.

15

2 Concepts and Terms

2.5.1 Faults

Failure to meet deadlines in real-time systems can be caused by software or hardware
faults. They are categorized in three types:

• Permanent faults: a permanent fault will remain over time and is repaired by replac-
ing the faulty unit e.g., damaged end-systems, routers or links.

• Intermittent faults: this type of faults refers to the irregular malfunction of a device
or system which occurs in intervals. For example, a connector problem with loose
contacts can cause intermittent faults.

• Transient faults: a transient fault will disappear over time, e.g., electromagnetic
interference.

2.5.2 Dependability

Dependability is one of the fundamental characteristics of a computing system besides
functionality, usability and cost. It is defined as the ability of the system to operate
accurately and trustworthy. There are four techniques to develop a dependable system
including fault prevention, tolerance, removal and forecasting [32].

Fault prevention techniques are mainly employed in the design and manufacturing of
a product, e.g. considering information hiding for software or radiation hardening for
hardware. Fault tolerance techniques intend to keep the system operating correctly in
spite of active faults. As an example of fault removal during the operational life of a
system, we can mention corrective or preventive maintenance. Lastly, fault forecasting
is based on qualitative or quantitative evaluation of the system behavior respecting the
occurrence of faults [32].

2.5.3 Fault Tolerance Techniques

There are two ways to design a fault-tolerance system. (1) Hardware redundancy tech-
niques rely on hardware replication to tolerate permanent faults. There are several hard-
ware architecture solutions, such as MARS [28], TTA [29] and XBW [30]. Due to the lim-
ited resources and large hardware costs, hardware redundancy techniques are only applied
for highly safety-critical systems such as a passenger aircraft. (2) Software redundancy
techniques rely on duplicating messages or re-execution of jobs and are more commonly
used to make a fault resistant system.

16

2.5 Faults and Fault-Tolerance in Distributed Systems

2.5.4 Reliability Measure
Reliability is related to the probability of providing correct services and meeting the dead-
lines of the system [33]. Probabilistic tools are prevalent to evaluate and measure system
reliability. The most important parameter in the determining the reliability is the failure
rate, i.e., the number of failures that happens to an individual unit per time [34].

The reliability of a system R(t) is calculated as the probability of providing timely and
correct services. R(t) in terms of a failure-rate function with constant failure rate λ is
assumed as follows,

R(t) = e−λt

There are three types of systems depending on the system architecture: series, parallel
and series/parallel systems. In a serial system, the reliability of the entire system Rs(t) is
computed by the following mathematical formula,

Rs(t) =
N∏
i=1

Ri(t)

Where Ri(t) is a reliability of unit i which can be either an end-system, a router or a
link. For a parallel system the reliability of system Rp(t) can be expressed by,

Rp(t) = 1−
N∏
i=1

(1−Ri(t))

However, there are some systems which may have a mixed structure of series and parallel
units. In these systems, reliability cannot be calculated by the above equations. Therefore,
the reliability of theses systems is calculated by expanding a module i as follows,

Rsystem = Ri · Prob{System works| i is fault− free}+

(1−Ri) · Prob{System works| i is faulty}

17

3 Related Work

SoSs can be established in a variety of safety-relevant domains, e.g., in medical centers,
smart manufacturing, transportation networks and defense sectors. However, SoSs should
be able to efficiently address the real-time and dependability requirements of time-critical
applications, otherwise they may result in irrecoverable damages. To improve the reliability
and timeliness, we introduce Time-Triggered SoS (TTSoS). TTSoS is constituted of a set
of independent distributed systems which voluntarily interact to fulfill agreed purposes and
are interconnected using a backbone communication infrastructure consisting of multiple
network domains with different protocols and topologies. Each constituent distributed
system consists of a set of end-systems that share a time-triggered communication network.

SoS research is still restricted by many unclear and ambiguous concepts. The literature
in this domain is diverse, ranging from attempts to clarify the conceptual foundation of SoS
to industrial views and solutions for managing the complexity of communication and data
exchange between systems. This chapter reviews the scientific works in different aspects
of the SoS domain particularly in in the area of scheduling algorithms and indicates the
research gap.

3.1 Requirements and Research Challenges
SoS is a relatively new area, so there are still open research challenges in design, manage-
ment and implementation. There are several notable studies which develop different mod-
eling frameworks and supporting tools in the SoS domain, but not enough work focusing on
scheduling problems for the SoS networks is available. Due to the specific characteristics
such as evolution and emerging behavior found in an SoS, we deal with different challenges
ranging from complex architectural design problems to technical decision making issues
such as task allocation and scheduling.

Dealing with SoS scheduling problems, there are critical challenges including satisfying
the temporal constraints of real-time applications and optimizing the system’s overall goals
considering the autonomy of CSs and their possible conflicting goals [35]. Furthermore, real
world SoS networks encounter different applications which are introduced and/or removed
over time, while sharing the underlying resources of the constituent systems. In scheduling
an SoS application, each constituent system is only aware of its own resources and takes
care of scheduling its operations independently, which means there is no need to share

18

3.2 Scheduling Algorithms for Distributed Systems

information with any central authority about how to utilize resources. However, in case
of releasing a sequence of applications, local schedulers should update their resource allo-
cation accordingly when new applications arrive. To deal with scheduling time-triggered
traffic in this situation, the resource allocation mechanism should contemplate not only the
timing constraints of the current SoS application but also the schedulability of applications
introduced in the future.

These are the main challenges that we face to optimize the incremental scheduling prob-
lem for real-time communication in our SoS network as well as improve the reliability of
the system in case of faults.

1. Ability to cope with lack of central control and global knowledge w.r.t. internals of
constituent systems,

2. Establishment of service contracts: the establishment of an SoS application at run-
time after its arrival is implemented by providing a contract of involved constituent
systems with relied upon services and temporal constraints,

3. Common resource reservations: allocation of the resources at the different constituent
systems as well as in the interaction domain between constitutes,

4. Support for dynamic and incremental arrival of SoS applications,

5. Guaranteed timeliness: ensuring ability of meeting deadlines of an application after
completing its establishment process within reasonable time (e.g. minutes)„

6. Fault-tolerance: tolerating failures that may happen in end-systems and communi-
cation links,

3.2 Scheduling Algorithms for Distributed Systems
Deriving an efficient schedule in real-time distributed systems is a well researched opti-
mization problem.The scheduling process deals with the temporal and spatial allocation
of computation and communication activities to the resources. An optimal solution for
the scheduling problem in time-critical distributed systems is challenging and can be com-
putationally infeasible for large problem sizes. The scheduling problem is NP-hard and
time required for computing optimal solutions increases exponentially with the system size.
The scheduling process and schedulability analysis are essential in distributed embedded
systems and have been intensively addressed in several works.

Zhao et al. proposed an efficient optimization algorithm to compute the priority of
tasks and their maximum unscheduled virtual deadlines minimizing the response time of

19

3 Related Work

real-time systems [36]. Pahlevan et al. developed a GA-based algorithm to schedule mul-
ticast time-triggered flows in TSN, which combines the routing and scheduling constraints
[37]. Bingqian et al. developed a hybrid genetic algorithm for the scheduling problem
in TTEthernet networks and improved the performance of scheduled time-triggered traf-
fic to be more compatible with further changes in the network [38]. Schweissguth et al.
presented an Integer Linear Programming (ILP) formulation to optimize the joint routing
and scheduling problem in TTE networks which supports application-specific cycle times.
They compared the results of their scheduling model with the solutions from models using
a fixed table of shortest paths [39]. Pop et al. dealt with a heuristic approach to process
the scheduling problem of safety-critical applications based on the time-triggered proto-
col in distributed embedded systems [40]. They examined the proposed algorithm on a
large number of generated experiments and a real-life example. Kuchcinski formulated the
process scheduling problem in embedded systems based on the timing constraints solving
techniques [41], while the solution proposed in [42] is based on MILP.

Liestman and Campbell proposed two different scheduling algorithms for their software
system to satisfy the real-time and reliability requirements. Although the primary algo-
rithm provides a good quality schedule, its timely completion is not guaranteed. When
the primary schedule fails to complete within the deadline, the backup algorithm produces
an acceptable and reliable solution [43]. Sass et al. proposed a novel model for periodic
task scheduling with specific parameters for the operating system in case of emergency
situations, inspired by two deadline mechanisms and skip-over models [44]. In [45], both
event-triggered and time-triggered traffic in distributed embedded systems were scheduled
considering mixed static and dynamic communication over bus protocols.

There are several studies regarding task scheduling parallelism for large-scaled complex
distributed systems. Qamhieh and Midonnent in [46] studied the scheduling problem of
hard real-time parallel tasks in multiprocessor systems and conducted different simulations
to analyze the performance of two global scheduling algorithms, i.e., Earliest Deadline
First (EDF) and Deadline Monotonic (DM). Qamhieh et al. in [47] proposed a stretching
algorithm to transform a set of parallel graphs of tasks into a set of threads and then
employed two global scheduling methods such as EDF to ensure the execution of these
threads. Stavrinides et al. in [48] analyzed various scheduling policies such as EDF,
Highest Level First (HLF) and Least Space-Time First (LSTF), for assigning priorities to
the real-time interdependent tasks in ultrascale systems. For the processor selection phase,
they examined 3 bin packaging policies including First Fit (FF), Best Fit (BF) and Worst
Fit (WF) in order to utilize the idle time slots. Their simulation results show the efficiency
of the EDF-BF scheduling strategy.

Tchernykh et al. in [49], dealt with parallel jobs scheduling problem and proposed
two-level hierarchy scheduling approach, where in the first level, computational jobs are
assigned to the parallel computers and then in the second level, each local scheduler gen-

20

3.2 Scheduling Algorithms for Distributed Systems

erates schedules of its own jobs. In [50] Ahmed et al. proposed two-level approach for the
base station uplink scheduling which supports the Quality of Service (QoS) for different
classes of traffic in digital cellular networks. The first level is to allocate the bandwidth in
order to ensure the QoS and priority for the all types of traffic and high bandwidth utiliza-
tion. The second level deals with the distributing the bandwidth among the flows for each
traffic class. In [51], a hybrid meat-heuristic approach was developed for scheduling tasks
in heterogeneous parallel computing systems, which aims to minimize the total execution
time. The proposed algorithm performance was compared in term of average makesapn to
the other exciting scheduling solutions. In [52], a comprehensive real-time task scheduling
approach was proposed for complex embedded systems. A dynamic measurement model
was also established to securely change the scheduling methods for different tasks based
on the deep learning networks.

The state-of-the-art scheduling solutions are developed for monolithic systems which
can not fulfill the requirements of SoSs. Complex heuristic methods for solving the par-
allel task computing also cannot fully cope with the SoS architecture. In these complex
systems, components are not fully independent and they still rely on a central control
authority for decision making, while the local schedulers in the SoSs are independent from
the operational and managerial point of view.

The other important characteristics of a real-time system is to have flexibility and re-
silience towards faults. Several researchers dealt with hardware-based solutions to tolerate
permanent faults, which may bring on high hardware costs. There is also a lot of work
done on combining fault-tolerance policies and scheduling methods in real-time embedded
systems. Bertossi and Mancini in [53] proposed efficient solutions to preemptively schedule
a set of independent periodic tasks. The state of each task will be checked and when it is
completely executed, the next same one can start. Burns et al. in [54] analyzed the schedu-
lability of time redundancy technique for safety-critical systems. The re-execution of tasks
can cause missing the deadlines and affect the required predictability for the safety-critical
applications. Han et al. in [55] considered different possible software faults and scheduled
two versions of real-time periodic tasks based on their functions, the precise of their results
and ease of verification. Zhang et al. in [56] integrated the check-pointing scheme into
dynamic scheduling approach for the real-time tasks in embedded systems. The simulation
results show the better performance of their approach in completing tasks in the presence
of faults as well as reducing the power consumption.

The aforementioned preemptive on-line scheduling solutions for supporting fault-tolerance
have less predictability but more flexibility toward unpredictable faults comparing to the
static off-line scheduling approaches. Several approaches have been proposed to inte-
grate the fault-tolerant techniques into the static schedulers. Izosimov et al. designed an
optimization scheduling approach using re-execution and replication of processes in time-
triggered communication [31]. Chetto and Chetto [57] developed a model in which the

21

3 Related Work

current task schedule is replaced with other off-line-precomputed schedules upon failures.
Their model guarantees to meet hard deadlines in the face of failures while maximizing
the chance of success for the primary schedules.

All the aforementioned scheduling solutions can be applied as a scheduling method for
real-time traffic inside each constituent system. However, in an SoS it is still required
to have a global scheduler to share the common resources and schedule the real-time
communication between these constitutes. The closest study to our work is [58], where the
restrictions and challenges of scheduling process in an SoS structure is addressed. Murshed
in [58] developed a scheduling model for real-time communication in an SoS based on Mixed
Integer Linear Programming (MILP). The author conducted some simulation experiments
to examine the scheduling results. Considering the NP-hard nature of scheduling time-
triggered traffic, ILP-based models are time-consuming and in large-scale systems are
incapable of finding good solutions in an acceptable runtime.

Moreover, we reviewed the research regarding real-time incremental scheduling in dis-
tributed embedded systems, which is also a well-researched problem in monolithic systems
but not in SoSs. The first study in the incremental design of distributed embedded sys-
tems was by Pop et al [59]. They proposed an incremental design process for a broadcast
communication channel designed for real-time applications. They applied an approach to
map and schedule new applications so that the previous schedules are not disturbed. In
[60] they have discussed the implications of an incremental design process in the context of
a fixed-priority preemptive scheduling policy. Schoeler et al. [61] proposed an incremental
scheduling model based on the Satisfiability Modulo Theories (SMT) approach to compute
static schedules in a multi-cluster system and compared the results with an optimal sched-
uler based on MILP. In [62] authors proposed various scheduling algorithms based on ILP
to incrementally add time-triggered flows in a time-sensitive software-defined network.

Several works have introduced different scheduling policies in real-time networks to deal
with overloaded systems in a dynamic environment. In [63] authors proposed a novel
framework to handle possible overloads while the tasks are dynamically scheduled in a sin-
gle processor environment. The framework executes a sequence of approximate scheduling
algorithms while adjusting the load and refining the quality of the solution. In [64], an
approach was developed for process scheduling in computer systems which are used in
control applications such as spacecraft. The best-effort service is introduced as a rejection
policy for overloaded systems by removing tasks with the minimum value density. The
scheduler is evaluated in a real-time system simulator for a heavily loaded system.

Obermaisser et al. in [65] addressed the incremental scheduling approach in time-
triggered SoS networks. They compute schedules for multiple applications arriving in-
crementally using IBM CPLEX. They examined the feasibility of solutions on different
generated examples, however, in this approach each application is optimized individually
and the requirements of future applications are not considered. Therefore, a heuristic

22

3.3 Development Methods and Models for SoSs

method is developed and integrated in our scheduling approach to increase the chance of
finding feasible solutions for the future applications.

3.3 Development Methods and Models for SoSs
The complexity and multidisciplinary of the SoS challenges require a new customized engi-
neering effort in design, implementation and monitoring to prevent wasting the resources
due to the poor system performance. This is a particularly concerning issue in scheduling
the process inside and among the constituent systems of an SoS. Therefore, a strong con-
ceptual foundation in this domain and awareness of their specific requirements and tactical
needs are required to cope with the complex SoS problems. In this section, we review the
fundamental studies in the SoS domain which can be used as a guideline.

The different standard architecture frameworks (e.g., DoDAF and MODAF) discussed
in the previous chapter are to model an SoS from different viewpoints and determine
the perspectives and the interdependencies of collaborating constituent systems. However,
these architectural frameworks are mainly prescriptive and not focused enough on concrete
modeling methods. There are major attempts in the SoS domain focused on analyzing these
standard frameworks to customize them for specific applications and develop executable
models for different SoS architectures.

Vierhauser et al. in [66] conducted a systematic review on the existing requirements-
based monitoring frameworks for the software systems and analyzed the suitability of theses
approaches for the SoSs. A comprehensive overview of the theories, methods, and solutions
in modeling and simulation for SoSE can be found in [67]. Nielsen et al. in [68] also
identified the state-of-the-art SoSE activities and the existing research challenges. Kilicay
et al. focused on developing appropriate tools and methodologies to customize the behavior
of the complex adaptive systems for an SoS using Complexity Theory [69]. Jamshidi in [3]
covered all the fundamental concepts and terms of SoS and principles for SoSE. Acheson et
al. in [70] developed an agent-based model to simulate the dynamic interactions between
the independent constitutes and studied the key factors that influence the performance of
an SoS. Guessi et al. in [75] addressed the architectural feasibility challenges from forming
new coalitions in an SoS and its governing rules. They presented an approach to validate
the coalition feasibility from the architectural perspective in the flood monitoring SoS.

Built on the previous conceptual work, there are notable studies which describe specific
SoS applications and integrate different system engineering activities within this type of
system. Kotov in [71] dealt with modeling and analyzing the communication and data
transmission in an SoS consisting of complex distributed components (e.g., enterprise in-
tranets). Since the standard architecture frameworks do not support real-time SoSs, San-
duka established a modeling framework to satisfy the real-time and reliability requirements
in an SoS [35]. Lane and Turner in [72] dealt with the information flow management sys-

23

3 Related Work

tem to enhance the visibility in interacting the subsystems of large operational systems.
Turner et al. in [73] integrated the lean process concepts, e.g., the kanban scheduling sys-
tem, within a large-scale hospital system. Oquendo in [74] introduced software-intensive
SoS and addressed the potential challenges.

3.4 Research Gap and Contribution
Based on the literature survey, most of the research found in the SoS domain is about
developing conceptual models of SoSs and rarely deals with mathematical modeling con-
cerning scheduling and operational planning. The time-triggered scheduling algorithms in
the state-of-the-art were mostly developed for monolithic systems, which do not support
the constraints of SoSs. Modeling and optimizing the resource allocation in an SoS is
more complex than in monolithic systems due to the autonomy of the constituent sys-
tems, the lack of central control and no global information about the resources in different
constituent systems.

There is a research gap in comprehensive scheduling models for SoS networks with
real-time support. The first contribution of this thesis is to introduce a two-level iterative
GA-based heuristic algorithm to optimize the allocation and scheduling of SoS applications
in TTSoS, which supports the real-time requirements as well as considering the specific
constraints of an SoS. To model the scheduling problem in our network, we distinguish
two levels, namely the SoS level and the CS level. These two levels interact iteratively to
achieve the agreed common goal. The SoS level generates multiple solutions to assign and
schedule the services and the shared resources to the constituent systems. These solutions
are suggested to the CS level which refers to the local schedulers inside the constituent
systems. Each of them provides feedback based on its scheduling strategy and sent them
back to the SoS level for the further update. These flows of information continue iteratively
to reach acceptable solutions for all the constitutes as well as accomplishing the SoS goal.
For every new SoS application, there are two phases of admission and execution. After
establishing the new arriving SoS application, which is performed off-line, its schedule is
computed at runtime.

As the second contribution, we focus on increasing the reliability of our scheduling
system. Therefore, we integrate two fault-tolerance techniques in our scheduling model, i.e.,
replicating the communication flows and redundant paths for transmitting both original
and replicated messages as well as re-executing the computational activities. These fault-
tolerance techniques are deployed in both SoS and CS schedulers to leverage the reliability
of system.

As the third contribution, we design an incremental scheduling approach for a sequence
of SoS applications arriving in the future. In this regard, we propose a new allocation
method which efficiently shares the resources among the constituent systems as well as

24

3.4 Research Gap and Contribution

defining a new fitness function for our GA schedulers to balance the trade off between
minimizing the completion time of the current established application and reserving the
common resources for the future applications.

25

4 System Model of Time-Triggered SoS
(TTSoS)

There are many examples of SoS applications that rely on real-time communication, e.g.,
traffic control or emergency response. Time-triggered architectures can manage the high
complexity of control in these large-scale time-critical SoS applications and support higher
dependability and determinism [10].

Due to the wide availability of time-triggered technologies for SoS’s constitutes, e.g.,
TSN [11] and TTE inside the constituent systems, we realize the strengths of time-triggered
control in the SoSs and introduce the time-triggered SoS (TTSoS). In a TTSoS, each con-
stituent system is a networked embedded system that consists of end systems which are
interconnected by time-triggered real-time communication networks with different proto-
cols and topologies. The interconnection of constituent systems occurs using a backbone
communication infrastructure consisting of multiple network

In this chapter, we propose a scheduling model for the time-triggered operations in the
TTSoS. Establishing time-triggered schedule for the TTSoS guarantees the timeliness of
the services. Besides the high determinism, time-triggered control brings the ability of
fault tolerance, e.g., by letting multiple services and performing redundant computations
and voting on the outputs. Additionally, due to the time-triggered tables, there is no need
for explicit synchronization.

4.1 Physical and Logical models of the SoS
Generally, SoSs can be explained from logical and physical perspectives. At the physical
level, the SoS contains a set of networked independent constituent systems and network
domains as depicted in Figure 4.1. Each constituent system can have a complex internal
structure with end-systems and switches, which are not visible to the other constitutes. The
network domains in an SoS serve for the message-based communication between constituent
systems and include switches with complex structures which are hidden outside of their
physical scopes.

From a logical point of view, the SoS comprises applications, each consisting of dis-
tinctive services with precedence constraints and possessing a deadline, which determines
the maximum makespan for the completion of its services. Each service possesses jobs

26

4.1 Physical and Logical models of the SoS

CS

Constituent
System

CS

ND

Network
Domain

SoS link

CS

CS

ND

ND

Sw

Sw

Sw

Routers in the network domain

Sw

Sw

ES

ES

ES

ES

ES

ES

Internal structure
including End Systems

and Switches

link

Figure 4.1: Physical Structure of SoS

and messages which are organized in a Directed Acyclic Graph (DAG) and are not visible
outside the service. Figure 4.2 depicts the logical model of an SoS.

Each service of an SoS application needs to be provided by a corresponding constituent
system, while satisfying the precedence constraints between the services and the deadline
of the SoS application. In order to provide a service, a constituent system will in general
perform a decomposition of the service into computational jobs (cf. left hand side in Fig-
ure 4.2). These computational jobs are not visible to the environment of the constituent
system. Their computational jobs are organized in a DAG and must be mapped to the
end-systems of the corresponding constituent system.

As a real-world example of an SoS application, we consider a medical monitoring system.
In this system, there are different organizations and parties involved such as a hospital,
a ambulance center, a medical data laboratory, a medical doctor, and a patient. The
medical monitoring system is an collaborative SoS with real-time requirements, which
should provide a reliable service, i.e., detecting a medical emergency when the patient
is alone at home, with temporal guarantees. The doctor as an independent constituent
system can be considered as an initiator in our terminology and establishes the medical
monitoring system at the patient home after leaving the hospital. When the admission
is completed and the SoS application was scheduled, the medical monitoring application

27

4 System Model of Time-Triggered SoS (TTSoS)

J

J

J

J

Service with jobs

SoS application with services

S

S
S

S

S

SoS_msg

S
S

msg

Figure 4.2: Logical structure of SoS

starts to work with reliability and real-time requirements.
In a TTSoS, each service is allocated a time slot with a specific start instant with

respect to a global time base. Likewise, each message between two constituent systems
is allocated a time slot, in which the message has to be transported along one or more
network domains and is received by the destined constituent systems. The deadline of
a service determines the earliest possible start instant for injecting its messages. The
scheduled reception time of a message at a constituent system marks the earliest possible
start instant for the execution of the service that relies on the message. Respectively, each
time-triggered constituent system allocates time slots to the execution of jobs on its end-
systems as well as to the communication of messages between the end-systems. Table 4.1
summarizes the time-triggered schedules of the SoS and of constituent systems.

The above-mentioned scheduling decisions are generally made by the management build-
ing blocks of constituent systems (e.g., CS manager). Each CS manager also determines

28

4.2 Dynamic Establishment and Scheduling of SoS Applications

the collaboration extent of its system with other constituent systems. The interaction
between the constituent systems will be managed by the network management services.

Table 4.1: Time-Triggered Schedule in an SoS
Entity Mapped to Scope TT Schedule

Service Constituent system SoS Start instant and deadline
SoS-message Path between constituent systems along network domains SoS Send instant and deadline
Job End system CS Start instant and deadline
Message Path between end systems along switches CS Send instant and deadline

4.2 Dynamic Establishment and Scheduling of SoS
Applications

One of the characteristics of an SoS is its dynamic composition where applications and
constituent systems can be dynamically established, modified and removed at run-time.
Therefore, we distinguish two scheduling phases: first the establishment and scheduling
phase of a new SoS application and the later execution of the SoS application. In the first
phase, the scheduling table with time-triggered activities is generated, i.e, assigning the
services to the constituent systems, start instant of jobs and messages (see Table 4.1), which
will be dispatched in the execution phase. There is no need for the temporal guarantees
of the scheduling phase, which might take minutes. However, in the execution phase there
are strict temporal limits.

We define the time-triggered scheduling model in two scopes of SoS and CS. In the
SoS level, we denote the constituent system that establishes a new SoS application as the
initiator. For each service, the initiator discovers a set of compatible constituent systems
that can provide the service by using DNS or by contacting a broker (e.g., [76]). The
SoS-level scheduler has following tasks,

1. SoS Allocation. Allocation of the services to their compatible constituent systems,

2. SoS Communication. The initiator determines the routing plan of SoS messages
between the respective constituent systems.

3. SoS Schedule. Scheduling the SoS-messages and services.

The initiator establishes a set of solutions for the new SoS application and sends an opti-
mization problem to each compatible constituent system of every solution. These solutions
determine execution time windows for the services and mapping them to the constituent

29

4 System Model of Time-Triggered SoS (TTSoS)

systems. For each solution, the local schedulers inside these candidate constituent systems
should provide local schedules and send them back to the SoS level as a feedback. Each
local scheduler starts with unrolling its assigned service and establishing a DAG with jobs
and time-triggered communication messages. The local schedule comprises the temporal
and spatial resource allocation such as assigning the jobs to the end-systems, the alloca-
tion of messages to paths between the end-systems, determining the execution time of jobs
and the injection time of messages. The CS-level scheduling problem has the following
characteristics:

• Service deadline: Each service should be executed in a time period which is deter-
mined by the SoS-level scheduler w.r.t. the SoS application deadline.

• Real-time jobs: Each job is characterized by its deadline, resource requirements,
and worst case execution time (WCET).

• Precedence constraint between the jobs: We define the order of executing jobs
regarding to this constraint.

• Time-triggered messages: Each message is sent by a job and must be delivered
within its deadline.

• Communication costs: It is assumed that there is a communication cost to trans-
mit messages from a job on one end-system to a succeeding job on a different end-
system. The communication cost between two tasks on the same end-system is
assumed to be zero.

The SoS-level evaluates the performance of local schedulers based on the lateness of their
services w.r.t. the suggested deadline provided by the initiator. After collecting the local
lateness values from the constituent systems, the initiator updates the initial solutions and
requests local schedulers for repeating the scheduling process until the feasible schedules
for all services are obtained, otherwise this iterative process is stopped once reaching a
number of iterations.

The proposed scheduling model will satisfy the special boundary conditions of SoS, e.g.,
there is no need for global knowledge or centralized control, and will also guarantee the
timeliness and the safety requirements with the help of the time-triggered plan.

4.3 Time Synchronization in SoSs
Similar to any cyber-physical distributed system, the role of the time is fundamental in
SoSs. The time-triggered message-based communication inside constituent systems and
network domains of an SoS must be synchronized. Each autonomous constituent system

30

4.3 Time Synchronization in SoSs

has its own local timer to make local measurements but it is uncoordinated with the timer
in any other constitutes. In order to synchronize messages in an SoS, we resort to the
clocks. With a synchronized clock, we can measure the duration of messages which start
from one constituent system and end in another constituent system.

Additionally to the synchronized clocks in each constituent systems, it is required to
establish a global SoS time across constituent systems nodes to solve the temporal coor-
dination problem in an SoS [19]. The clocks synchronization in an SoS can be internal by
using the Precision Time Protocol (PTP) or assigning a global timestamp to every message
transporting within the whole SoS. Since the global timestamps may not be shared or in-
terpreted correctly by different constituent systems, an external global time is considered
as a preferred means of clock synchronization in an SoS. The external global time can
be established by synchronization standards such as Global Positioning System (GPS) or
Global Navigation Satellite Systems (GNSS).

Accordingly, we assume that the SoS-level initiator allocates a time slot to each service
with a specific start instant concerning a global time base. Likewise, each SoS-message
between two constituent systems is assigned a time slot, in which it has to be transported
along with one or more network domains and is received by the destined constituent
system. The deadline of a service determines the earliest possible transmission instant
for a message produced by the service. The scheduled reception time of a message at a
constituent system marks the earliest possible start instant for the execution of the service
that relies on the message.

31

5 Two-level Interactive Scheduling
Algorithm for TTSoSs

The main optimization challenge in scheduling real-time applications in a TTSoS is to
temporally and spatially allocate shared resources and services with strict temporal con-
straints to the set of constituent systems which are candidates to provide these services.
This process should be done without any central control authority and limited access to
the internal operations of these constituent systems. Moreover, possible conflicts may
happen in accomplishing the SoS goal as a whole and achieving the individual goals of its
constituent systems. To overcome such issues, we propose a semi decentralized scheduling
approach which lets the constituent systems independently optimize their own schedules,
while promising to satisfy the overall temporal constraints of SoS applications and minimize
their completion time. The constituent system which announces a new SoS application will
be in charge of coordinating the other constituent systems and it initiates the scheduling
process as well.

In the previous chapter, we proposed a scheduling model in two levels (namely SoS and
CS) that enables the constituent systems to interactively process their schedules to accom-
plish the desired SoS goals without requiring to exchange information about the internals
of their operations. In our proposed model, the initiator constituent system manages the
SoS-level scheduling process by establishing a new SoS application with a set of services
and generating multiple high-level allocation and scheduling solutions to guide other con-
stituent systems in providing the services. These SoS-level solutions include selecting a set
of compatible constituent systems and determining approximate execution time intervals
for the services satisfying their respective dependencies and the overall deadline of the SoS
application. The SoS-level scheduler also conducts the scheduling and the path selection
for the time-triggered messages (called SoS-messages) which are transmitted between the
chosen constituent systems. The CS-level scheduling model is used by different schedulers
inside the constituent systems, where each manages all aspects of the constituent system’s
own schedule with respect to the determined time windows from the SoS level. These
high-level and local schedules are interactivity exchanged between these two levels and
updated until reaching acceptable results for all constituents.

Due to the NP-hardness of scheduling problems and better scalability of heuristic al-
gorithms such as GA in solving such problems compared to the performance of optimal

32

5.1 SoS-level programming

optimization methods (e.g., Mixed Integer Linear Programming), we develop a heuristic
approach based on GA which operates at two interactive levels to schedule real-time ap-
plications in TTSoS networks. Figure 5.1 gives the overview of our proposed algorithm.
The GA optimizer is employed in both levels with different genome structures and fitness
functions. In each generation of the SoS-level GA, multiple solutions are generated and
sent to the target constituent systems. Thereafter, each CS-level scheduler using GA tries
to find a schedule for each solution which can meet the deadlines or have a minimum
lateness. Each constituent system will send the output of the optimization process to
the initiator for the further updates at the SoS-level by using the genetic operators (i.e.,
crossover and mutation). In the following sections, we explain both SoS and CS levels
scheduling algorithms in detail.

Initiator Constituent System

SoS-Level Solution 1

SoS-Level Solution 2

Arrival of New SoS Application

1st SoS-Level
Generation Target CS1

Target CS2

Target CS3

CS-Level Solution 1

CS-Level Solution 2

1st CS-Level
Generation at CS1

Initiator CS creates
candidates of SoS-
Level Solutions

Pr
ov

id
e

C
S-

Le
ve

l S
ch

ed
ul

in
g

Pr
ob

le
m

s t
o

Ta
rg

et
 C

Se
s

CS-Level Solution 3

CS-Level Solution 1

CS-Level Solution 2

nth CS-Level
Generation at CS1

CS-Level Solution 3

CS-Level Optimization at one of the
Target CSes (CS1)

O
bj

ec
tiv

e:
 M

ee
t d

ea
dl

in
e

fo
r S

er
vi

ce
 o

f t
he

 C
S

SoS-Level Solution 1

SoS-Level Solution 2

2nd SoS-Level
Generation

Pr
ov

id
e

La
te

ne
ss

 a
s f

ee
db

ac
k

fro
m

 T
ar

ge
t C

S
to

 th
e

In
iti

at
or

 Initiator computes fittness of
solutions based on lateness from
target CSes and performs
mutation/crossover of SoS-Level
solutions

t

Convergence to
feasible solution
after multiple
generations
at SoS-level

Figure 5.1: An overview of the two-level interactive GA for scheduling TTSoS applications

5.1 SoS-level programming
The SoS-level scheduling approach is defined based on the GA and operated for each new
arriving SoS application by unrolling its services and messages. This level’s tasks include
generating global solutions for scheduling the services as well as optimizing the routing
and scheduling problems of SoS-messages. These global solutions comprise the following
information,

33

5 Two-level Interactive Scheduling Algorithm for TTSoSs

• Service Allocation: Each service is mapped to exactly one constituent system.

• Service Scheduling: A time interval is considered to execute each service satisfying
its precedence constraints based on the SoS application DAG and considering the
delays of the SoS communication.

• SoS communication: A deadline and path are considered for delivering each
TTSoS-message.

Accordingly, the SoS-level genome should contain information regarding the allocation of
each service to its compatible constituent system, a time interval for its execution besides
a path for each SoS-message. Therefore, the SoS-level genome is defined with 3 types of
genes, namely allocation, scheduling, and path selection, which are depicted in Figure 5.2.
Each gene is composed of multiple alleles, each can contain a single value or an array of
values. In our genome, the allocation gene has a definite number of alleles K, each is
defined as an array with the length of N (equal to the number of services). Each allele
presents the allocated constituent systems for all services. Likewise, the scheduling gene is
defined as an array of arrays, each is dedicated to store the time budgets for all the services
and the SoS-messages. These time budgets will be later processed to find the feasible time
windows for executing the services based on their dependencies.

 Allocation of each
service or subsystem
to a compatible CS

Allocation
Gene

Scheduling
Gene

Assignment of
time budgets

to each service

Path selection genes

The List of paths
for each SoS-message

0 1 n2 3 4 ...

N

0

1 2 ...

N0 1 2 ...

Allele 1

Allele 2

...

N0 1 2 ...Allele K
T

0

1 2 ...

T0 1 2 ...

Allele 1

Allele 2

...

T0 1 2 ...Allele L

M

1

2

...

Allele 1

Allele 1

Allele M

...

Figure 5.2: Representative genome for the SoS-level GA scheduler

The third part of the SoS-level genome is related to the routing information assigning
one gene to each SoS-message. These genes keep the index of routes between each two

34

5.1 SoS-level programming

constituent systems. The maximum number of these indexes depends on the topology of
the network and the applied routing algorithm to find the existing routes. When there
are two routes between two specific constituent systems, theses indexes will be 0 and 1
meaning the first and second shortest path found by the proposed routing algorithm based
on the Yen’s algorithm [77]. Overall, the total length of the SoS-level genome depends on
the number of SoS-messages of the application. The possible combinations of exchanging
alleles from different genes create new solutions for the SoS-level scheduler.

We consider that an SoS application with 5 services and 6 SoS-messages is being sched-
uled in an SoS with 4 constituent systems. In this example, the SoS-level genome will have
8 genes. As Figure 5.3 shows, the first gene is defined as an array of arrays, each with the
length of 5 to save the allocation of services to the constituent systems with respect to
their dependencies, e.g., one possible allele is defined as follows: Services 0-4 are mapped
on the constituent systems 0, 1, 3, 2 and 0, respectively.

0 1 3 2 0

0 1 1 0 ...1 1

CS2 is assigned
to the Service 3

E.g.

Chromosome

Gene

0.5 0.7 0.4 0.6 0.8 0.1 0.2 0.1 0.2 0.1

Time budget for
the Service 2

Time budget for the
SoS-message 4

Route index 0 is selected for
the SoS-message 1

0.1 0.2

Figure 5.3: An example of an SoS-level genome

The next gene is an array of length 11 and dedicated to the generated time budgets for
executing the services and delivering the SoS-messages. In the following allele, we consider
0.7 ms to complete the execution of service 1. The next genes show the indexes of routes
selected for the SoS-messages. In this example, the first shortest path between any two
constituent systems will be reserved for the message 1. Figure 5.4 shows one of the possible
genomes for the aforementioned example as a graph which is generated for scheduling an
SoS application with the overall deadline of 3 ms.

The SoS-level initiator starts with establishing an initial population P in the first gen-
eration from a set of genomes or global solutions (see Algorithm 1). Each solution can

35

5 Two-level Interactive Scheduling Algorithm for TTSoSs

S1

S0

S2

S3

S4

0.1ms
0.2ms

0.2ms

0.2ms

0.1ms

CS 1, b=0.5ms
[0ms,0.5ms]

CS 1, b=0.8ms
[2.2ms,3.0ms]

CS 3, b=0.7ms
[0.7ms,1.4ms]

CS 2, b=0.4ms
[0.6ms,1.0ms]

CS 0, b=0.6ms
[1.5ms,2.1ms]

Deadline 3ms

0.1ms

Figure 5.4: Graph-based SoS-level solution

be divided into two types of schedules (schedules, schedulem), which are generated for
the services and the SoS-messages. Schedules contains the identifiers of compatible con-
stituent systems mapped to the services, their earliest start time of execution and duration.
Schedulem includes the path id and the deadline for delivering the SoS-messages. The in-
jection time of theses messages are determined by their sender constituent systems after
finishing their schedules.

The initiator sends these global solutions to the target constituent systems and waits
for the feedback from the CS-level schedulers which are provided autonomously by the
constituent systems. These local schedulers operate independently outside the sphere
of control of the initiator. Each constituent system sends back the lateness of its local
schedules for different solutions to the initiator. Regarding the received results, the SoS-
level scheduler evaluates its initial solutions by a fitness function based on the maximum
lateness (i.e., the fitness function is to minimize the maximum lateness of services and
messages). Afterward, the initiator selects the best ones for the next generation, as well
as generating new solutions using mutation and cross-over operators. Thereafter, the
initiator requests new solutions from the constituent systems, which subsequently lead to
new fitness values and new global solutions. The same procedure iterates in each generation
until finding a solution with the fitness value of zero or it stops after reaching the maximum

36

5.2 CS-level programming

number of iterations.

Algorithm 1: Two-level interactive GA-based scheduling algorithm
input: new SoS Application and deadline < A, d >

DAG A = {< S,M >}: Services S(vertices), SoS-messages M(edges),
SoS network topology undirected graph G = {< V,L >}:
Constituent systems (CS) and Network domains (ND):
CS ∪ND ∈ V , Links L,
Identifiers of compatible CSj for the service si ∈ S : comp : Si → {CSj},
Table of Routes R,
GA Parameters (number of generations, population size, ...)

begin
Run SoS-level scheduler:
Initial population P = {So1, So2, . . . Sonpop}
Solution Soj =< schedules, schedulem >

schedules : si →< CSi, EarliestStartT ime, Deadline >,

CSi ∈ comp(si), EarliestStartT ime, Deadline ∈ N
schedulem : mi →< Path, Deadline >, Path ∈ R, Deadline ∈ N
repeat
∀ So ∈ P :
∀ schedules ∈ So :
Run local GA scheduler in the allocated constituent system:
FinishT ime(si) = Makespan(si) + EarliestStartT ime(si),
Lateness(si) = max(0,Makespan(si)−Deadline(si)),
∀ schedulem ∈ So :
InjectT ime(mi) = FinishT ime(sender(mi)),
ArrivalT ime(mi) = InjectT ime(mi) + length of path,

Lateness(mi) = max(0, ArrivalT ime(mi)−Deadline(mi)),
SoS-level fitness function: fitness(So) = max (Lateness(m), Lateness(s)),
mutation/crossover of solutions in P ,

until fitness(So) ≤ 0;

5.2 CS-level programming
For each constituent system, we also assume a GA-based scheduler, which runs locally and
independently. This local scheduler starts with receiving information about the list of jobs
and messages related to its assigned service, the suggested earliest start time of execution,
and the deadline. The following tasks are defined for this level,

1. Allocation of jobs to end-systems,

37

5 Two-level Interactive Scheduling Algorithm for TTSoSs

2. Routing the messages of each service,

3. Scheduling the jobs and messages of each service.

Similarly to the SoS level, CS-level GA starts with generating an initial population
consisting of different genomes. The CS-level genome is defined in three parts including
allocation, ordering, and path selection genes. In the following genome, one gene is allo-
cated to each job which holds its compatible end-systems. The ordering gene stands for
the different feasible sequences of traversing through the DAG of each service. Finally, the
path selection genes are generated for the messages with respect to the routing algorithm
(see Figure 5.5).

 list of endsystems which
are possible to allocate

to each job

Allocation Genes
Ordering

Gene

Order of
scheduling
messages

Path selection genes

The List of paths
for each message

...
1nC 2nC 3nC 4nC

...
mC0C 1C 2C nC

Figure 5.5: Representative genome for the CS-level GA scheduler

In each generation, a set of genomes is used by the GA solver and the corresponding
schedules are evaluated by the fitness function, i.e., minimizing the service lateness. Af-
terward, the best schedules are selected for the next generation besides generating new
genomes by applying mutation and crossover operators. The algorithm stops either when
a feasible solution (i.e., fitness value greater than or equal to zero) is found or it reaches a
specified number of iterations. Algorithm 2 describes the local scheduling process for each
genome. It starts with allocating each job to a compatible end-system and determining
the earliest start time of execution for all jobs based on the suggested value from the SoS
level. Each job can be executed when the messages from its predecessor jobs are delivered.
The execution of a job is started after finding the earliest feasible time slot based on its
worst case execution time (WCET). Each message likewise is started to transmit within a
feasible time slot according to its selected shortest route. Every message is sent by a job

38

5.3 Mutation and Crossover Operators

and must be delivered within its deadline. The fitness function is to minimize the lateness
based on the assigned deadline to each service.

Algorithm 2: CS-level GA scheduling algorithm

input : Service DAG, G = {< J,M >},
jobs J (vertices), messages M (edges),
The earliest start time of the service EST ,
deadline, Genome g,

fitness, makespan← 0;
for each j ∈ J do

j.RunsOn← ES ∈ J.AllocationGene ∈ g j.StartT ime← EST ;

for message m ∈M.OrderingGene ∈ g do
Js← m.sender ∈ J ;
Jr ← m.receiver ∈ J ;
Js.StartT ime← find earliest feasible time slot;
m.InjectionT ime← find earliest feasible time slot;
m.route← R ∈ m.PathSelectionGene ∈ g;
m.ArrivalT ime← m. InjectionT ime + hop time ∗R.size;
Jr.StartT ime← max(Jr.StartT ime, m.ArrivalT ime);
Jr.F inishT ime← Jr.StartT ime+ Jr.WCET ;
makespan← max(makespan, Jr.F inishT ime);

lateness← deadline−makespan;
if lateness < 0 then

Return 0

else
Return fitness = lateness

5.3 Mutation and Crossover Operators
Generating new genomes is done by applying mutation and crossover operators. The
crossover procedure creates new offspring from each two mating genomes, by choosing a
random crossover point and swapping the genes from the same parts with each other. The
crossover point can happen in single or multi points. Figure 5.6 shows the mechanism of
a single point crossover on our genomes.

To maintain diversity within the population, mutation procedure is performed on single
genome to change the allele of one or more cells.

39

5 Two-level Interactive Scheduling Algorithm for TTSoSs

Single point
croosover

Parent
Chromosomes

Offspring
Chromosomes

1 1 0 1 0 1

0 0 1 0 0 1

0 0 1 1 ... 1

1 1 0 0 ... 1

Allocation
genes

Scheduling
gene

Path selection
gene

Figure 5.6: Exchanging genes among parents in a single point crossover

5.4 Incremental Scheduling for TTSoSs
In the previous sections, we presented our two-level scheduling process using GA for
scheduling every new arriving SoS application individually. However in the real world,
SoSs may encounter different applications which are introduced and/or removed over time,
and they should share the underlying resources of their constituent systems. In case of
arriving a sequence of applications, the constituent systems should update their resource
allocation approach to contemplate not only the timing constraints of the current SoS ap-
plication but also the schedulability of applications introduced in the future. Since each
constituent system is only aware of the availability and allocations of its own resources, and
the limited sharing information between the constitute systems about how to utilize the
resources make implementing the incremental scheduling for the SoSs more challenging. In
this regard, we extend our two-level scheduling algorithm with a new resource allocation
strategy and a new solution fitness evaluation to efficiently schedule incrementally adding
SoS applications into the TTSoS. In our incremental scheduling process, it is assumed
that each application arrives after finishing the scheduling process of the prior one and the
simultaneously arriving different SoS applications will not happen (see Figure 5.7).

Regarding our scheduling algorithm, the scheduling initiator will be determined dynam-

40

5.4 Incremental Scheduling for TTSoSs

ically based on where an SoS application is requested. The chosen initiator provides global
schedules and interacts with the CS-level schedulers using the GA optimizer. The CS-level
schedulers determine the local schedules for the services and decide independently how to
assign their resources i.e., the end-systems and switches, to a sequence of computational
jobs and messages. In case of scheduling a single application by our heuristic algorithm,
the CS-level schedulers find and select the earliest possible time slot for executing jobs
and transmitting messages in order to finish their schedules in the shortest period of time.
Although this approach works efficiently in the sense of completion time, it may bring
about unbalanced working time allocation for the resources and increase the likelihood of
resource shortage with the appearance of more services to be scheduled. To avoid these
problems, we propose a new resource allocation strategy to be used inside each constituent
system, which focuses on balancing working time of resources and reserving more free time
slots on each resource for the future applications rather than the completion time of the
service of the current application. The effect of this new method is measured by a new
optimization metric that will be directly reflected in the evaluation process. Accordingly,
we define new fitness function for the CS-level schedulers to evaluate the schedules based
on the allocation optimization metric as well as the completion time of services.

41

5 Two-level Interactive Scheduling Algorithm for TTSoSs

Figure 5.7: The incremental scheduling algorithm for TTSoS applications

42

5.4 Incremental Scheduling for TTSoSs

5.4.1 Resource Allocation Strategy

As mentioned earlier, the current allocation approach aims to finish scheduling tasks in
the shortest possible time which results in working efficiently for scheduling an individual
application as long as there is no need to reserve the resources for future applications.
However, in real cases different applications emerge over time, while the resources are still
occupied by the previous applications and a shortage of resources for the future applications
is probable. Assuming a set of jobs without any allocation constraints are about to be
scheduled in one of the constituent systems, based on this allocation approach all the jobs
are probably run on the same resource, since the communication cost between jobs running
on the same end-system is zero. This unbalanced allocation causes a problem when the
next set of jobs from a different application needs to be scheduled on the occupied resource.
Therefore, we have to save free time slots on all the resources beforehand for upcoming
applications.

In our new allocation strategy, we focus on reducing the average working times of re-
sources by defining an evaluation function called Maximum Blocking Time (MBT) and
a threshold parameter called delta. For scheduling each service on a constituent system,
the MBT is computed for its resources as the longest occupied time interval based on the
delta parameter, i.e., when the idle time slot between two consecutive working time slots
is shorter than delta, this time slot will be treated like a busy time slot for the scheduler
as it is not enough to be assigned to any future jobs and messages. The GA optimizer
minimizes a fitness function based on the MBT among all resources and the makespan. On
the other hand, the scheduler reserves idle time slots on each resource during mapping the
jobs. Determining an efficient value for the parameter delta depends on the specifications
of a problem, e.g., the WCET of jobs and the hop time in each CS network.

Figure 5.8 shows the difference between theses two allocation strategies. The following
problem is to assign the resources of a constituent system with 2 end-systems (es0 and es1)
connected through a switch (sw0) to a service with 3 jobs from 3 different SoS applications
incrementally adding to the system. In this example, we assume that both the WCET
for all jobs and the hop time are equal to 20 ms. The first incremental scheduler runs
all the jobs of the first application on the same end-system (es0) to save time, because
there is no communication cost. When the second application appears, it has to run the
jobs on the other end-system (es1). The non MBT-aware incremental scheduler generates
schedules with the shortest makespan for these two applications, but it is not possible
to assign the current resources to the application 2. Contrarily, the second incremental
scheduler establishes the MBT-makespan trade-off and accepts the communication cost
which results from balanced use of all the resources. As a result, it is capable of scheduling
all three applications.

Algorithm 3 explains the GA incremental scheduler with MBT consideration in more

43

5 Two-level Interactive Scheduling Algorithm for TTSoSs

non MBT-aware incremental scheduler

es1

MBT-aware incremental scheduler with Delta = 20

es0

MBT 0 = 180
Makespan 0 = 60

t
j0

0 20 40 60 120100 160
j2 j0

140

j2

80

sw0

j1

180

MBT 1 = 180
Makespan 1 = 60

j2

j0

j1 j1

es1

es0
t

j0
0 20 40 60 120100 160

j2
140

j2

80

sw0

180

m0

j0 j1

m1

MBT 0 = 20
Makespan 0 = 100

MBT 1 = 60
Makespan 1 = 120m0

Application 0 Application 1 Application 2

j1

j0j0
MBT 2 = 80

Makespan 2 =140

m0

j1

m0m1

j1

j0

m1

j2j1j0 j1j0

j0 j2j1

Figure 5.8: Comparing the performance of the CS-level GA scheduler with two different
allocation strategies

detail. The scheduling process is run for each application separately upon its release
time after finishing the scheduling of previous applications. Similar to our base two-
level scheduling algorithm, an initiator creates a set of SoS-level schedules in the initial
population P and sends them to the list of corresponding constituent systems, where their
local schedulers must determine a schedule within the given time interval. Inside each
constituent system, the local scheduler starts with unrolling the services and establishing
their DAG with jobs and messages, then it optimizes the temporal and spatial allocation
of its resource, i.e., assigning jobs to the end-systems, selecting the start execution instant
of jobs and injection time of messages as well as allocating paths to the messages between
end-systems. Each local schedule is evaluated based on the MBT of resources and the
makespan.

The CS-level fitness function (F (CS)) is to minimize the maximum MBT among all
the resources and the lateness of the service with respect to its provided deadline by
the initiator. After optimizing the local schedules, each constituent system returns its
feedback to the SoS level regarding the provided time intervals. The SoS-level evaluation
is defined also based on CS-level fitness values. Furthermore, the initiator updates the

44

5.5 Greedy Local search based scheduling algorithm

initial population using GA operators (mutation and cross-over) to provide new solutions
for constituent systems. This iterative process is continued until finding feasible local
solutions (i.e., all services are scheduled within the provided time budgets).

Algorithm 3: MBT-aware incremental scheduler
input: new SoS Application logical and physical models
begin

Run SoS-level scheduler:
Create initial population P = {S1, S2, . . . SI}, Solution Sj = {< scheds >}
Scheds : Servicei →< CSi, time budget, deadline >,CSi ∈ comp(Si), time
budget, deadline ∈ N

repeat
for S ∈ P do

for Scheds ∈ S do
Run the GA scheduler for CSi in the time budget with MBT
consideration:
Calculate the MBT for all resources;
for Resource R ∈ CSi do

for blocking slot bs ∈ n do
if bs.startn − bs.finishn−1 < ∆ then

bs.startn = bs.startn−1;

MBTR = Max(bs) ;
F (CSi) = w0 ∗max(MBTR) + w1 ∗ (makespan− deadline, 0) ,
(w0, w1 ∈ N);
lateness(Servicei) = max(0,makesapn− deadline);

F (S) = Max(F (CSi));

Mutation/crossover of solutions and update P ;
until ∑

lateness(Servicei) <= 0;

5.5 Greedy Local search based scheduling algorithm
As a baseline for evaluation the genetic algorithm, we implemented also a two-level schedul-
ing heuristic based on the Greedy Local search (GLS). This algorithm serves as a reference
for evaluating the schedulability of the GA scheduler. The used search strategy in the GLS

45

5 Two-level Interactive Scheduling Algorithm for TTSoSs

heuristic is called the "immediate improvement" which means as soon as the algorithm de-
tects a better solution in a neighborhood, it will be selected as the new solution [78]. Based
on the structure of the arrived SoS application, the algorithm starts at the SoS level by
generating a random global schedule i.e., choosing random time slots for the services and
the SoS-messages of the application (with respect to the overall deadline) and random
assignments of the services to the constituent systems. This initial global schedule is sent
to the scheduler inside each constituent system, which also uses a greedy search method,
to find a feasible local schedule within the assigned time slot. The CS-level scheduling
algorithm stops either when a feasible schedule is found or when it reaches the maximum
number of iterations.

The results from the constituent systems are sent back to the SoS level. In case of
a deadline violation in one of the local schedules, the SoS level penalizes the solution
by assigning a high value to the cost function, otherwise it saves the makespan of local
schedules as a cost function and moves to another global schedule by changing time slots
or trying different assignments of the services to the constituent systems. The algorithm
stops after reaching the maximum number of iterations.

46

6 Fault-Tolerant Scheduling Algorithm
for TTSoS

Considering the breadth of fields where the TTSoS can be used and the deployment for
safety-critical applications, the potential effects of failures must be analyzed and mitigated.
One of the difficult challenges in distributed systems is to detect faults and attain high
reliability and availability. These concerns can be more challenging in large-scale complex
distributed systems like SoS. The two important classes of real-time systems based on
the safety implications of violating timing deadlines are hard and soft real-time, which
can also be considered for SoSs. In a hard real-time SoS, a temporal fault can result
in severe consequences and deadly results. Faults can happen in both the SoS-level op-
erations e.g., real-time communication between constituent systems and in the CS-level
operations including executing jobs and communication of time-triggered messages be-
tween end-systems. Besides the error-detection, these systems must continue to provide
acceptable services even in the occurrence of failures. Common faults in these systems are
transient and permanent failures in the physical components. The two general techniques
to tolerate computational and communication errors are spatial or temporal redundancy.
The first technique repeats the same operation on different components, while the second
one considers the same component for the replicated operation but using different time
intervals [79].

To ensure reliability in TTSoSs, we apply the temporal and spatial redundancy tech-
niques in the elements of SoS application models (i.e., services, jobs and messages) and
develop a fault-tolerant scheduling model, which considers the system reliability based on
the redundancy to deliver dependable services in the presence of faults. This scheduling
model is defined in two levels of SoS and CS and solved by a GA optimizer. In both
levels, the spatial redundancy technique are applied for the time-triggered messages, i.e.,
they are copied and transmitted through different links. Redundancy will also happen in
executing services and jobs. In the following sections, we explain the applied fault-tolerant
techniques in the scheduling model using a GA solver.

47

6 Fault-Tolerant Scheduling Algorithm for TTSoS

6.1 Fault Model
To develop a fault-tolerant scheduling model for the TTSoS, first we need to detect the
possible faults in this system. Regarding to the SoS physical architecture, faults can occur
in each constituent system as well as each network domain. The fault model considers
the high probable transient and permanent faults which affect physical nodes, e.g., end-
systems or switches, and the links between them. It is assumed that each end-system,
switch and link can fail independently with a constant failure rate and that they are all
fail silent. Therefore, we introduced them separately in different levels of SoS and CS.

• SoS-level fault model

From the high level point of view, faults can happen in the switches and links within
the network domains of an SoS and also the links connecting them to the constituent
systems. These faults affect the reliability of communication between services by SoS
messages.

• CS-level fault model

The probable faults in this level occur in the end-systems, switches and physical links
of each constituent system. These faults influence the reliability of providing services
including the reliability of executing jobs and communication between them by their
related messages.

6.2 Fault-tolerant Scheduler
The scheduling problem is to run SoS applications on TTSoS networks with an acceptable
reliability rate. The reliability of an SoS is expressed in terms of the probabilities of
success in execution of all services. Respectively, reliability of each service is computed
by the probabilities of success in executing its jobs and transmitting the related messages.
Therefore, we implement the fault-tolerant techniques in the schedulers from both SoS and
CS levels. To ensure the reliability of our network, we apply both the temporal and spatial
redundancy methods as fault-tolerant techniques in our schedulers.

6.2.1 SoS-level programming
In the SoS-level scheduling model, the reliability is achieved by means of two fault-tolerant
techniques: (1) service replication, (2) path redundancy between the constituent systems.
Based on the SoS application model, a set of services are selected to repeatedly computed
on different constituent systems. The cloned service inherits all the processing require-
ments such as data dependency with other services, and deadline from the original service.

48

6.2 Fault-tolerant Scheduler

Figure 6.1 shows an example of an SoS application with 4 services, where service S1 is
replicated, besides the two linked SoS-messages bm0 and bm1.

S0

S1

S3

S2

S0

S1

S’1

S2

S3

bm0

bm1

bm2

bm3

bm0

bm'0

bm2

bm1 bm3

a) SoS model

b) SoS model with service replication

Figure 6.1: Service replication in a SoS model

The second fault-tolerant method to reach a higher reliability in this level is based on
the path redundancy technique. Assuming there are multiple connecting paths among con-
stituent systems in the SoS topology, this technique transmits the copied of SoS-messages
through different links. Considering an example of an SoS with 3 constituent systems and
2 network domains in Figure 6.2, we assumed that each constituent system is connected
with both network domains. Therefore, between each two constituent systems, there is
at least two paths through each network domain. That enables fault-tolerant computing
of operations related to the high-level SoS. Moreover, the physical model of constituent
systems consist of end-systems and switches with bi-directional links. The Time-Triggered

49

6 Fault-Tolerant Scheduling Algorithm for TTSoS

Protocol (TTP) is assumed as the communication infrastructure within and among the
constituent systems.

Constituent
system

ES SW

ES SW

ES ES

SWSW

SW

SW

Network domain

SW

SW

Constituent
system

SW SW

ES SW

ES ES

Network domain

SW

SW

ES

ESES

SW

ES

Constituent
system

Figure 6.2: Physical model of an SoS with 3 constituent systems and 2 network domains

6.2.2 CS-level programming
Similarly in the CS level, we apply two fault-tolerant techniques: (1) job replication and
(2) path redundancy for the messages. We show the reliability calculation in this level with
an example. Considering a simple service DAG with 3 jobs and 2 messages from an SoS
application (see Figure 6.3) to be scheduled on a constituent system of an SoS using TTP.
Figure 6.4 shows the network topology of this constituent system with 5 end-Systems
denoted by es, 4 switches (sw) and 10 links (l). Table 6.1 shows one of the schedules
derived from the local GA scheduler. In this schedule, jobs j0, j1 and j2 are allocated to
es0, es3 and es2, respectively.

As mentioned in the chapter 2, the reliability of a system R(t) is calculated in terms of
a failure-rate function with constant failure rate λ as follows,

50

6.2 Fault-tolerant Scheduler

j1 m1j0 j2

Figure 6.3: Example of DAG for one service of the SoS application

es0

es1

es2

sw0

sw1

es4

sw2

es3

l2

l3

sw3
l10

l1
1

l8

Figure 6.4: The topology of a constituent system

R(t) = e−λt (6.1)

Based on the equation 6.1, the probability of success in providing the following schedule
for the system shown in Figure 6.5 depends on the reliability of all components, i.e., end-
systems and switches (assuming here that all the links are fault-free) and is calculated as
follows,

es0 sw0 sw2
l0

es3
l5 l4

sw3 sw1 es2
l10 l3

Figure 6.5: The example of a system scheduler

51

6 Fault-Tolerant Scheduling Algorithm for TTSoS

Job id start time Runs on
0 0 es0
1 80 es3
2 160 es2

Msg. id injection time Route
0 20 es0− l0− sw0− l8− sw2− l5− es3
1 100 es3− l4− sw3− l10− sw1− l3− es2

Table 6.1: CS-level schedule for the example service

Rsystem = Res0 ·Rsw0 ·Rsw2 ·Res3 ·Rsw3 ·Rsw1 ·Rsw1 ·Rsw2 (6.2)

Regarding the equation 6.2, the reliability of this system scheduler will be less that
the reliability of each component. Therefore, we implement the redundancy techniques to
improve the reliability of local schedulers inside each constituent system. Implementing
the path redundancy technique, the scheduler will replicate the messages and transmit
them through different routes. In accordance with requirements of the path redundancy
technique, we need at least two routes between each two end-systems in each constituent
system. The table of routes are stored in advance and be given to the schedulers. Conse-
quently, we apply the k-shortest path routing to find all possible routes in the CS network
as well as the SoS routes (i.e, routes between constituent systems and network domains).
Considering the network in Figure 6.4, we provide the results of routing algorithm in the
Table 6.2.

Start → End Number Route
es0 → es1 1 R0: l0 sw0 l2
es0 → es2 2 R0: l1 sw1 l3

R1: l0 sw0 l7 sw1 l3
es0 → es3 2 R0: l0 sw0 l4 sw2 l5

R1: l0 sw1 l10 sw3 l4
es0 → es4 2 R0: l0 sw0 l8 sw2 l6

R1: l1 sw1 l9 sw2 l6

Table 6.2: 2-shortest paths between es0 and other end-systems

As Figure 6.6 shows, m0 and its replicated are traversed from es0 to es3, as well as m1
which is sent from es3 to es2 in parallel with its replicated. To provide a reliable service, at
least one of two messages (original or copy) should be received correctly to the destination.
In this schedule, the resource sw1 is used by the original and the copy of m1 and m0. Due
to this shared unit, this system is considered as neither parallel nor series. In this case, the

52

6.2 Fault-tolerant Scheduler

reliability of system will be calculated by considering whether this shared unit working or
not (see equation 6.3). As a result, the reliability of this system will be as follows,

es0

sw0 sw2

es3

l8
sw2

sw1 sw3

sw1 es2

sw3

Route 1: es0-l0-sw0-l8-sw2-l5-es3

Route 2: es0-l1-sw1-l10-sw3-l4-es3
m0

l10

l3

Route 1: es3-l5-sw2-l9-sw1-l3-es2

Route 2: es3-l4-sw3-l10-sw1-l3-es2
m1

Figure 6.6: Example of a system scheduler considering path redundancy

Rsystem = Rshared unit · Prob{system works|shared unit is fault free}+
(1−Rshared unit) · Prob{system works|shared unit is faulty}

(6.3)

Rsystem = Rsw1 · Prob{system works|sw1 is fault free}+
(1−Rsw1) · Prob{system works|sw1 is faulty}

= Rsw1 ·Res0 · (1− (1−Rsw0 ·Rsw2) · (1−Rsw3)) ·Res3 ·Res2

(6.4)

Moreover, we replicate a set of jobs and allocate them to different end-systems. Along
with replicating jobs, their related messages must be replicated as well. Figure 6.7 shows
the updated DAG of the service after replicating job j1 and its messages m0 and m1.

j1 m1j0 j2

j'1

Figure 6.7: Example of a service DAG with one replicated job

Table 6.3 shows the schedule result for the service considering job replication. Although
the makespan is getting worse due to the traversing longer paths by the replicated messages,

53

6 Fault-Tolerant Scheduling Algorithm for TTSoS

the reliability of system will improve. The reliability of scheduler in Figure 6.8 is shown
in equation 6.5.

Job id start time Runs on
0 0 es0
1 80 es3
1′ 80 es4
2 180 es2

Msg. id injection time Route
0 20 es0− l0− sw0− l8− sw2− l5− es3
0′ 20 es0− l1− sw1− l9− sw2− l6− es4
1 100 es3− l4− sw3− l10− sw1− l3− es2
1′ 100 es4− l6− sw2− l8− sw0− l7− sw1− l3− es2

Table 6.3: CS-level schedule for the service with job replication

es0

sw0

sw2

es3
l4

sw3

sw1

sw1 es2

sw2

l3

es4
l6 l8

sw0

Figure 6.8: The example of a system scheduler

Rsystem = Rsw1 ·Rsw2 ·Res0 ·Rsw0 · (1− (1−Res3 ·Rsw3) · (1−Res4)) ·Res2 (6.5)

6.3 GA implementation
To optimize the fault-tolerant schedulers in both CS and SoS levels, we extend the two-
level interactive GA discussed in the previous chapter. From the SoS level, reliability
constraints as well as temporal constraints for each service will be sent to the candidate
constituent system to show the expectation of the whole system about the reliability of
each service.

Selecting which services or jobs need to be replicated is also a part of the GA decision-
making process. Therefore, theses information are defined in the SoS-level genome. As
Figure 6.9 shows, the first gene (G0) allocates services to their compatible constituent
systems. The next one (G1) assigns time budgets to services. Gene G2 decides which

54

6.3 GA implementation

service should be replicated and G3 is defined for each message to store the available
paths. The last gene stores different reliability goals for each service.

G0 G1 G2 G3 G4

1 1 0 1 0 0

Gene
binary
allele

SoS
allocation

SoS
schedule

Replication
decision

SoS routing
for each msg

Reliabilty
value

A0

A1

A2

A3

Real-
valued
alleles

Figure 6.9: SoS-level Genome

After sending the constraints to the compatible constituent systems by the SoS-level
scheduler, the CS-level scheduler is called for each service of the SoS application regarding
to each solution. The candidate CS must determine a local schedule to provide the service
of the respective CS given the time interval from the SoS schedule.

The CS-level scheduler optimizes the scheduling problem of each service with respect to
its DAG with jobs and messages. The schedule comprises the temporal and spatial resource
allocation such as the allocation of jobs to end systems, the allocation of messages to paths
between end-systems, the timing of job executions and the timing of messages. The fitness
value of the scheduler is a multi-objective function of maximizing the reliability and mini-
mizing the makespan with respect to the deadline of each service. The scheduler returns
the best solution to the SoS-level scheduler upon the termination of the optimization.

The SoS-level scheduler collects the best schedules and the fitness values of the services
and calculates the reliability of the whole system and determines a global fitness for each
solution from P which is also a multi-objective function of maximizing the reliability and
minimizing the makespan. The scheduler generates new solutions using mutation and
cross-over and sends them to the CS-level scheduler. This iterative process is stopped
until the convergence happens. The pseudo code in Algorithm 4 explains the process of
the two-level interactive fault-tolerant GA scheduler.

55

6 Fault-Tolerant Scheduling Algorithm for TTSoS

Algorithm 4: Two-level fault-tolerant GA Scheduler
input: new SoS Application and deadline < A, d >

DAG A = {< S,M >}: Services S(vertices), SoS-messages M(edges),
SoS network topology undirected graph G = {< V,L >}:
Constituent systems (CS) and Network domains (ND):
CS ∪ND ∈ V , Links L
Identifiers of compatible CSj for the service si ∈ S : comp : Si → {CSj},
Failure rates of nodes and links Ni, Li,
Number of initial solutions I ∈ N,
GA Parameters (number of generations, population size, ...)
Table of Routes R,

begin
Run SoS-level scheduler:
Initial population P = {So1, So2, . . . Sonpop}
Solution Soj =< schedules, schedulem >

schedules : si →< CSi, EarliestStartT ime, Deadline, Reliability >,

CSi ∈ comp(si), EarliestStartT ime, Deadline, Reliability ∈ N
repeat
∀ So ∈ P :
∀ schedules ∈ So :
Run local GA scheduler in the allocated constituent system:
Lateness(si) = max(0,Makespan(si)−Deadline(si)),
Calculate the reliability of system for each schedule,
Fitness(S) = w0 ∗Reliability + w1 ∗ Lateness(si) (w0 , w1∈ N)
Return the best CS-level schedule with Max fitness and lateness ≤ 0 ;

SoS-level fitness function:
Fitness(So) = w0 ∗Reliability(So) + w1 ∗ Lateness(So) (w0 , w1∈ N)

mutation/crossover of solutions in P ,
until Lateness(So) ≤ 0;

56

7 Evaluation and Results

In this chapter, we conduct a series of experiments to evaluate the heuristic scheduling
algorithms with randomly generated scenarios at different scales. The first set of our
results is dedicated to tuning of the parameters of the GA as well as studying the impact of
varying the problem-specific parameters, e.g., number of services and constituent systems,
on the convergence of our algorithm. Afterward, we evaluate the capability and efficiency
of our GA-based scheduler compared to GLS which is a baseline approach for scheduling
real-time traffic in communication networks in the state of the art [80]. Accordingly,
we conduct experiments to test the schedulability and transmission makespan of both
schedulers. For this purpose, we generate SoS models with different number of constituent
systems with meshed grid structures along with different scales of TTSoS applications.
The third set of our experiments is intended to evaluate the efficiency of our heuristic
approach, namely MBT-aware GA-based scheduling algorithm, to schedule incrementally
added applications in the SoS networks. In this regard, we compare the schedulability
and transmission makespan of our incremental scheduler for different time-triggered SoS
applications with the results from the non-MBT-aware GA-based scheduling algorithm.
The last set of our results is dedicated to our designed fault-tolerant scheduling approach
for the time-triggered SoS applications. Accordingly, we test the reliability of our scheduler
respecting the timeliness feasibility with different scales of examples.

7.1 Parameter setting

This section deals with the impact of varying the critical parameters of our model on the
convergence of our algorithm. We can distinguish two types of parameters: GA-related and
SoS-related parameters. Firstly, we set the optimized values for the common parameters
of the GA, i.e., the population size, the number of generations, probability of calling
mutation and crossover operators. In the next subsection, we examine the effects of other
parameters, e.g., number of constituent systems and application size on the convergence
of our scheduling algorithm.

57

7 Evaluation and Results

7.1.1 GA Parameter Setting

We examine the convergence behavior of the CS-level GA-based scheduler within an ac-
ceptable period of time. The GA is used with the following parameter values: uniform
selection of crossover with the rate of 0.3, uniform mutation with the rate of 0.5, and four
different population sizes (10, 25, 50 and 100). With each population size and other fixed
parameter values, the GA is run until observing the convergence. Figure 7.1 shows the
convergence of our GA around 500 generations. The fitness value in this figure means the
objective function value which is the minimizing the total makespan. At the end of 500
generations, the populations ranking from best to worst is 100, 50, 25 and 10. With the
population size of 10 and 25, the GA converges without reaching a near-optimal solution.

Figure 7.1: GA progress toward the optimal solution

Table 7.1 shows the tuned GA parameters’ values at both CS and SoS levels, which
result in good results.

7.1.2 Customized Parameter setting

According to the above-mentioned GA parameters, we examine the convergence of the SoS-
level GA for different SoS sizes. Figure 7.2 demonstrates that the scheduler will converge
faster in small-scaled SoS.

58

7.1 Parameter setting

Table 7.1: GA parameters
Parameter Value

CS-level GA scheduler
Number of population 100
Number of generation 500
Mutation selection rate 0.3
Crossover selection rate 0.5

SoS-level GA scheduler
Number of population 50
Number of generation 100
Mutation selection rate 0.3
Number of initial solutions 20

Figure 7.2: Convergence of GA for different network sizes

59

7 Evaluation and Results

7.2 Scenario Generation
The SoS scenarios are generated based on the Stanford Network Analysis Package (SNAP)
library [81]. Each scenario includes the information about the network topology of an SoS
and its related application models. One of the network topologies from these scenarios is
shown in Figure 7.3. This network includes 4 constituent systems denoted by CS which
are connected with each other through 3 network domains denoted by ND. The network
topology of these constituent systems is assumed to be a meshed grid, in which every
switch is connected to one or more end-systems in a star structure. In this work, we deal
with the collaborative SoS, which means there is no central management and the access
to information is possible with the permission from the constituent system managements.
Moreover, the internal structure of each subsystem is hidden from the other partners.

0ND

0
0Ro 0

1Ro

0
2Ro

1ND

1
0Ro 1

1Ro

1
2Ro

0
0ES

0
0R

0
1R

0
1ES

0
3ES

0
2ES

0CS

1
0ES

1
0R

1
1R

1
1ES

1
2ES

1
3ES

1
4ES

1
2R

2
0ES

2
0R

2
1R

2
1ES

2
2ES

2
3ES

2
4ES

2
2R

2
0Ro

2
3Ro

3
0ES

3
0R

3
1R

3
1ES

3
2ES

3
3ES

3CS

3
4ES

3
2R

1CS

2CS
2

ND

2
2Ro

2
1Ro

Figure 7.3: An example of an SoS network

7.3 The Base Scheduling Heuristic Results
In this section, we compare the possible schedules obtained from the our two-level GA-
based scheduler with the GLS-based ones. Figure 7.4 shows one of the SoS-level schedules
for the application model with 5 services and 6 messages. This schedule includes the infor-
mation about mapping each service to a compatible constituent system and the assigned
time budgets for executing the services and the SoS-messages. As the figure shows, the

60

7.3 The Base Scheduling Heuristic Results

Service0 and Service4 are assigned to the CS1 with different time budgets (TB). The
execution time interval (TI) shows the earliest possible start time and the last finish time
of execution for each service on their assigned constituent system. Table 7.2 presents
the details of the final schedule for this example. It reports the injection time of each
SoS-message and the shortest route between the constituent systems through the network
domains as well as the allocated constituent system to each service, the start time and the
average makespan for providing each service. For example, the services 0, 1, 2, 3, and 4 are
allocated on constituent systems 1, 3, 2, 0, and 1, respectively. In this experiment, there
is assumed a constant maximum transmission time for the messages dedicated to the links
within each constituent system and to the SoS links between constituent systems. The
comparison between the overall completion time of the application from theses schedulers
shows the superiority of GA.

Service 4

Service 1

Service 3

Service 0

Service 2

TB = 0.1 ms
TB = 0.2 ms

TB = 0.2 ms

TB = 0.1 ms

TB = 0.2 ms

TB = 0.1 ms

CS3, TB = 0.7 ms,
TI=[0.7ms, 1.4ms]

CS2, TB = 0.4 ms,
TI=[0.6ms, 1.0ms]

CS0, TB = 0.6 ms,
TI=[1.5ms, 2.1ms]

CS1, TB = 0.8 ms,
TI=[2.2ms, 3.0ms]

CS1, TB = 0.5 ms,
TI=[0ms, 0.5ms]

Figure 7.4: An example of an SoS application

61

7 Evaluation and Results

Table 7.2: Experimental results comparing the performance of GA and GLS scheduling
approaches

Two-level GA-based scheduler:
Msg. Injection time Route
0 200 ES1

4 , R
1
1, Ro

1
0, Ro

1
1, Ro

2
3, Ro

2
2, R

2
0, ES

2
0

1 220 ES1
3 , R

1
1, Ro

1
0, Ro

1
1, Ro

2
3, Ro

2
2, Ro

2
1, R

3
1, ES

3
4

2 840 ES2
2 , R

2
2, R

2
0, Ro

2
2, Ro

2
1, Ro

2
0, Ro

0
1, Ro

0
0, R

0
1, ES

0
2

3 680 ES3
0 , R

3
0, Ro

0
1, Ro

0
0, R

0
1, ES

0
3

4 660 ES3
4 , R

3
1, Ro

2
1, Ro

2
0, Ro

2
3, Ro

1
1, Ro

1
0, R

1
1, ES

1
3

5 1320 ES0
2 , R

0
1, Ro

0
0, Ro

0
1, Ro

2
0, Ro

2
3, Ro

1
1, Ro

1
0, R

1
1, ES

1
4

Service id Allocated CS Start Time Avg. local makespan (µs)
0 1 0 200
1 3 500 179.83
2 2 520 319,7
3 0 1160 159.91
4 1 1640 200

Total makespan by GA = 1840 (µs)
Two-level GLS-based scheduler:
Service id Allocated CS Start Time Avg. local makespan (µs)

0 0 0 180
1 2 510 198.4
2 1 500 340.8
3 3 1235 138
4 0 1732 200

Total makespan by GLS = 1932 (µs)

Moreover, we generated 10 different types of scenarios with the SNAP library to analyze
the schedulability of our schedulers. Table 7.3 shows the configuration of these scenarios.
The SoS includes different SoS applications with the number of services ranging from 4
to 7 running on different networks. The SoS size denotes the total number of constituent
systems and network domains and the CS size refers to the average number of nodes in
the constituent systems (i.e., including end-systems and switches). The fourth column in
this table refers to the size of the SoS applications including the number of services and
SoS-messages and the service size refers to the average number of jobs in each service.

Table 7.4 compares the required time for providing all the SoS services from these two
schedulers. The results show that GA improves the makespan on average by 19% in

62

7.3 The Base Scheduling Heuristic Results

comparison to GLS. The GA results in a better resource utilization and load balancing in
both global and local schedules. Table 7.5 lists the average execution time of GA and GLS
for each scenario. As the results show, the GLS solves the scheduling problem faster than
the GA scheduler, because of employing a faster search strategy. However, the chance of
getting stuck in a local minimum for this scheduler is more than the GA. Figure 7.5 shows
the average improvement in the makespan for different siye of problems.

Table 7.3: SoS Scenario configuration
Scenario id SoS size CS size App. size Service size

1 7 6 4 4
2 7 8 5 6
3 7 10 6 8
4 8 6 4 4
5 8 8 5 6
6 8 12 6 8
7 9 6 4 4
8 9 8 5 6
9 9 9 6 8
10 9 12 7 9

Table 7.4: Comparing the average transmission makespan from GLS and GA schedulers
SoS GA Avg. GLS Avg. Improvement

Scenario makespan (ms) makespan (ms) ratio
1 381 418 0.09
2 414 470 0.12
3 458 572 0.19
4 523 637 0.18
5 580 753 0.23
6 599 798 0.25
7 618 846 0.27
8 632 902 0.30
9 683 962 0.29
10 728 1070 0.32

63

7 Evaluation and Results

Table 7.5: Comparing Execution time of GA and GLS scheduling algorithm for different
scenarios

SoS GA Avg. GLS Avg.
Scenario Exec Time (min) Exec Time (min)

1 0.16 0.005
2 0.58 0.0902
3 0.95 0.156
4 1.54 0.234
5 2.3 0.256
6 3.7 0.343
7 4.5 0.210
8 5.9 0.214
9 8.3 1.04
10 10.9 1.3

Figure 7.5: Comparing the average makespan from GA and GLS schedulers

64

7.4 Results of Incremental Scheduling Algorithm

7.4 Results of Incremental Scheduling Algorithm

In this section, we examine the performance of the proposed MBT-aware incremental
scheduling approach in the chapter 5 by running a set of real-time applications on an
SoS network. These applications are released incrementally in a chronological order and
executed over time. The assumed SoS network includes 4 CSs and 3 NDs. To evaluate
the effectiveness of the proposed MBT method in our incremental scheduler, we compare
its schedule results from with the ones obtained from the non MBT-aware incremental
scheduler. Table 7.6 compares the average makespan of the 10 applications obtained from
both incremental schedulers as well as their shortest makespan when all the resources are
free. As can be seen in the results, our new incremental scheduling algorithm outperforms
the conventional one. Although the conventional scheduler found better schedules (shorter
makespan) for the first and second applications, its performance was getting worse by
releasing more applications and it was not able to meet the deadline of the applications
after finish executing the 5th application (The deadline of each application is assumed 2
ms). The new scheduler can cope better with the upcoming applications.

Table 7.6: Comparing the makespan of the SoS applications from both incremental sched-
ulers

App. Release time non MBT-aware scheduler MBT-aware scheduler
id (sec.) Avg. makespan Avg. makespan

(µs) (µs)

1 0 350 480
2 5 454 500
3 12 1116 675
4 19 1529 930
5 23 1730 1131
6 30 2086 1262
7 45 2569 1436
8 60 2953 1609
9 75 3236 1813
10 100 3420 1955

One of the demanding parameters in our new scheduler is ∆, which affects the per-
formance of the allocation approach and consequently the makespan of schedules. We
examined the new scheduler by assigning different values to this parameter to find an op-

65

7 Evaluation and Results

timized value. Figure 7.6 shows the results from the new scheduler for different values of
∆. As Figure 7.6 shows, by increasing the value of ∆ from 0 to 20, the schedule results
enhanced significantly, but increasing this value up to e.g. 25 or 30, has a reverse effect on
the performance of our scheduler.

Figure 7.6: Examining the effect of parameter ∆ on performance of the MBT-aware sched-
uler

Another important parameter in this algorithm is the weight of MBT in the fitness
function of the local schedulers (W0). The effect of this parameter is studied in the MBT-
aware incremental scheduler by testing different values ranging from 0.1 to 1. As Figure 7.7
shows, the best value for the parameter W0 is 0.6, which has the highest rank of success.
The success ratio is defined as the number of SoS applications found schedulable by the
new incremental scheduler divided by the total number of applications.

66

7.5 Results of Fault-Tolerant Scheduling Algorithm

68

73

78

83

88

93

98

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Su
ce

ss
 R

at
io

W0 parameter

Figure 7.7: Effect of W0 parameter

7.5 Results of Fault-Tolerant Scheduling Algorithm
Table 7.7 shows different SoS instances used to examine the performance of the fault-
tolerant scheduling model. There are some assumptions for the parameters of the fault-
tolerant GA scheduler which includes the failure rates for the nodes (end-systems and
switches) and links as well as the number of generations and populations (see Table 7.8).
Table 7.9 shows the best results of our fault-tolerant scheduler for different scenarios in
case of replicating the jobs and services and compares them with the results assuming no
replication. The results show the capability of fault-tolerant techniques in our scheduler.

67

7 Evaluation and Results

Table 7.7: The generated scenarios
Scenario Number of services Number of SoS msgs

N01 4 3
N02 4 4
N03 4 5
N04 5 4
N05 5 6
N06 5 7
N07 6 4
N08 6 5
N09 6 6
N10 7 4
N11 7 5
N12 7 6
N13 8 6
N14 8 7
N15 8 8
N16 9 4
N17 9 5
N18 9 6
N19 10 6
N20 10 7

Table 7.8: Assumptions of the fault-tolerant scheduling algorithm
Avg. failure rate of nodes Avg. failure rate of links Gen. Pop. size

1.00E-06 1.00E-07 50 20

68

7.5 Results of Fault-Tolerant Scheduling Algorithm

Table 7.9: Reliability of system scheduler for different scenarios with and without replicat-
ing jobs

Scenario makespan Reliability with replication Reliability without replication

N01 2967 0.9978 0.969

N02 2441 0.989 0.985

N03 2229 0.993 0.987

N04 3573 0.998 0.929

N05 2680 0.991 0.921

N06 3235 0.979 0.9887

N07 3089 0.994 0.897

N08 3021 0.993 0.9083

N09 4210 0.997 0.9089

N10 3405 0.9791 0.9438

N11 5601 0.9714 0.898

N12 6123 0.9329 0.8973

N13 6284 0.9869 0.8897

N14 6134 0.9974 0.9866

N15 7032 0.923 0.9370

N16 7134 0.911 0.8709

N17 6990 0.9364 0.832

N18 7012 0.9834 0.89

N19 7222 0.91302 0.870

N20 7234 0.9039 0.834

69

8 Conclusion

8.1 Summary
The increasing importance of SoSs in safety-critical domains requires customized tech-
niques for process optimization and resource allocation to suit the requirements of this
type of systems. The challenge is exacerbated in time-aware applications with real-time
requirements. This dissertation developed a heuristic approach based on GA to schedule
the time-triggered messages-based communication in collaborative SoSs. Since there is
no management hierarchy in our SoS, the scheduling algorithm is initiated by one of the
involved constituent systems to coordinate the operations of other constitutes. Therefore,
the scheduling activities are defined at two levels of SoS and CS, which iteratively interact
with each other. The SoS level optimizes the global schedules for the services and their
related messages and allocates the common resources among the involved constituent sys-
tems, while the CS level refers to independent schedulers inside the constituent systems
which provide the local schedules for the jobs and the messages of each service. These
local schedules are rated based on their lateness values to meet the global deadlines by
the SoS level. Consequently, the global schedules are updated for the better fitness to the
local resources.

To investigate the capability of our scheduling algorithm, we made a comparison with
the results from a GLS-based scheduling algorithm run on different sets of SoS applications.
The results on different examples showed the schedulability of our algorithm and the ability
for improving the average transmission makespan up to 32% in comparison to the other
scheduler.

Moreover, we extended our heuristic scheduling algorithm to schedule time-triggered
applications which are incrementally released and added to the SoS. In order to share
the limited resources efficiently between these applications, the resource allocation should
be done by focusing not only on the current application requirements but also sparing
resources for the upcoming applications. This goal was achieved through developing a
heuristic method which creates a balance in utilizing resources and reserve free time slots
for the future applications. Examining different sets of examples showed that employing
this method is able to improve the schedulability of our GA scheduler up to 50 percent.

Furthermore, we integrated the spatial redundancy technique in our proposed scheduling
process and design a fault-tolerant scheduling algorithm for SoS applications to guaran-

70

8.2 Future Work

tee timely delivery of their operations in the presence of physical (i.e., links and nodes)
faults. The implemented model maximizes the reliability of operations within and between
the constituent systems by replicating time-triggered messages and considering redundant
paths for all the real-time communication messages as well re-executing jobs and services.
Testing our fault-tolerant scheduler on 20 scenarios with different network and applica-
tion scales showed the functionality of our scheduling algorithm in terms of reliability and
schedulability.

8.2 Future Work
In this work, it is assumed that the scheduling process and resource allocation for each
SoS application will be finished before starting the process for the next application. As
a future work, scheduling algorithms can be proposed to process concurrently the newly
arriving applications. Additionally, we can use machine learning techniques to observe the
behavior patterns of an SoS and predict its future states. For example, we can apply it in
the incremental scheduling algorithm to attempt predicting the sequence of new arriving
applications and to improve the resource allocation.

71

Bibliography

[1] C. D. Locke. “Best-effort decision making for real-time scheduling”. PhD thesis.
Computer Science Department, CMU, 1986.

[2] Hermann Kopetz. Real-time systems: design principles for distributed embedded ap-
plications. Springer Science & Business Media, 2011.

[3] Mo Jamshidi. Systems of systems engineering: principles and applications. CRC
press, 2008.

[4] Charles B Keating and Polinpapilinho F Katina. “Systems of systems engineering:
prospects and challenges for the emerging field”. In: International Journal of System
of Systems Engineering 2.2-3 (2011), pp. 234–256.

[5] Judith S Dahmann and Kristen J Baldwin. “Understanding the current state of US
defense systems of systems and the implications for systems engineering”. In: 2008
2nd Annual IEEE Systems Conference. IEEE. 2008, pp. 1–7.

[6] Yaneer Bar-Yam et al. “The characteristics and emerging behaviors of system of sys-
tems”. In: NECSI: Complex Physical, Biological and Social Systems Project (2004),
pp. 1–16.

[7] James M Parker. “Applying a system of systems approach for improved transporta-
tion”. In: SAPI EN. S. Surveys and Perspectives Integrating Environment and Society
3.2 (2010).

[8] Roman Obermaisser, Mohammed Abuteir, Ala Khalifeh, and Dhiah el Diehn Abou-
Tair. “Systems-of-Systems Framework for Providing Real-Time Patient Monitoring
and Care: Challenges and Solutions”. In: ICTs for Improving Patients Rehabilitation
Research Techniques. Springer Berlin Heidelberg, 2015, pp. 129–142.

[9] Roman Obermaisser and Ayman Murshed. “Incremental, Distributed and Concur-
rent Scheduling in Systems-of-Systems with Real-Time Requirements”. In: Proc. of
the 13th IEEE International Conference on Dependable, Autonomic and Secure Com-
puting (DASC-2015). 2015.

[10] Amos Albert et al. “Comparison of event-triggered and time-triggered concepts with
regard to distributed control systems”. In: Embedded world 2004 (2004), pp. 235–252.

72

Bibliography

[11] Lucia Lo Bello and Wilfried Steiner. “A perspective on IEEE time-sensitive net-
working for industrial communication and automation systems”. In: Proceedings of
the IEEE 107.6 (2019), pp. 1094–1120.

[12] Wilfried Steiner, Günther Bauer, Brendan Hall, Michael Paulitsch, and Srivatsan
Varadarajan. “TTEthernet dataflow concept”. In: 8th IEEE International Sympo-
sium on Network Computing and Applications. IEEE. 2009, pp. 319–322.

[13] Robert Kaiser and Stephan Wagner. “Evolution of the PikeOS microkernel”. In: First
International Workshop on Microkernels for Embedded Systems. Vol. 50. 2007.

[14] Ethan Grossman et al. “Deterministic networking use cases”. In: IETF draft (2018).
[15] Grace Lewis, Ed Morris, Pat Place, Soumya Simanta, Dennis Smith, and Lutz Wrage.

“Engineering systems of systems”. In: 2008 2nd Annual IEEE Systems Conference.
IEEE. 2008, pp. 1–6.

[16] Sascha Einspieler, Benjamin Steinwender, and Wilfried Elmenreich. “Integrating
time-triggered and event-triggered traffic in a hard real-time system”. In: 2018 IEEE
Industrial Cyber-Physical Systems (ICPS). IEEE. 2018, pp. 122–128.

[17] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer. “The time-triggered Eth-
ernet (TTE) design”. In: Eighth IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC’05). 2005, pp. 22–33. doi: 10 . 1109 /
ISORC.2005.56.

[18] Michael J Pont. Patterns for time-triggered embedded systems. TTE System, Ltd,
2008.

[19] Andrea Bondavalli, Sara Bouchenak, and Hermann Kopetz. Cyber-physical systems
of systems: foundations–a conceptual model and some derivations: the AMADEOS
legacy. Vol. 10099. Springer, 2016.

[20] Amit J Lopes, R Lezama, and Ricardo Pineda. “Model based systems engineering
for smart grids as systems of systems”. In: Procedia Computer Science 6 (2011),
pp. 441–450.

[21] Mark W Maier. “Architecting principles for systems-of-systems”. In: Systems Engi-
neering: The Journal of the International Council on Systems Engineering 1.4 (1998),
pp. 267–284.

[22] Department of Defense (DoD) USA: DoD Architecture Framework Version 1.5: Vol-
ume I: Definitions and guidelines. Tech. rep. April 2007.

[23] E Douglas Jensen, C Douglas Locke, and Hideyuki Tokuda. “A time-driven schedul-
ing model for real-time operating systems.” In: Rtss. Vol. 85. 1985, pp. 112–122.

[24] Arezou Mohammadi and Selim G Akl. “Scheduling algorithms for real-time systems”.
In: School of Computing Queens University, Tech. Rep (2005).

73

https://doi.org/10.1109/ISORC.2005.56
https://doi.org/10.1109/ISORC.2005.56

Bibliography

[25] S Sarathambekai and K Umamaheswari. “Task scheduling in distributed systems
using heap intelligent discrete particle swarm optimization”. In: Computational In-
telligence 33.4 (2017), pp. 737–770.

[26] Emil Åström. Task Scheduling in Distributed Systems: Model and prototype. 2016.
[27] Chafik Arar, Hamoudi Kalla, Salim Kalla, and Hocine Riadh. “A Reliable Fault-

Tolerant Scheduling Algorithm for Real Time Embedded Systems”. In: SAFECOMP
2013-Workshop DECS (ERCIM/EWICS Workshop on Dependable Embedded and
Cyber-physical Systems) of the 32nd International Conference on Computer Safety,
Reliability and Security. 2013, NA.

[28] Hermann Kopetz et al. “Distributed fault-tolerant real-time systems: The Mars ap-
proach”. In: IEEE Micro 9.1 (1989), pp. 25–40.

[29] Hermann Kopetz and Günther Bauer. “The time-triggered architecture”. In: Pro-
ceedings of the IEEE 91.1 (2003), pp. 112–126.

[30] Vilgot Claesson, Stefan Poledna, and Jan Soderberg. “The XBW model for depend-
able real-time systems”. In: Proceedings 1998 International Conference on Parallel
and Distributed Systems (Cat. No. 98TB100250). IEEE. 1998, pp. 130–138.

[31] Viacheslav Izosimov, Paul Pop, Petru Eles, and Zebo Peng. “Design optimization of
time-and cost-constrained fault-tolerant distributed embedded systems”. In: Design,
Automation and Test in Europe. IEEE. 2005, pp. 864–869.

[32] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, et al. Fundamental concepts
of dependability. University of Newcastle upon Tyne, Computing Science, 2001.

[33] C Mani Krishna. “Fault-tolerant scheduling in homogeneous real-time systems”. In:
ACM Computing Surveys (CSUR) 46.4 (2014), pp. 1–34.

[34] Israel Koren and C Mani Krishna. Fault-tolerant systems. Morgan Kaufmann, 2020.
[35] Imad Sanduka. “A modelling framework for systems-of-systems with real-time and

reliability requirements”. In: (2015).
[36] Yecheng Zhao and Haibo Zeng. “The concept of Maximal Unschedulable Deadline

Assignment for optimization in fixed-priority scheduled real-time systems”. In: Real-
Time Systems 55.3 (2019), pp. 667–707.

[37] Maryam Pahlevan and Roman Obermaisser. “Genetic Algorithm for Scheduling Time-
Triggered Traffic in Time-Sensitive Networks”. In: 2018 IEEE 23rd International
Conference on Emerging Technologies and Factory Automation (ETFA). Vol. 1. 2018,
pp. 337–344. doi: 10.1109/ETFA.2018.8502515.

[38] Li Bingqian and Wang Yong. “Hybrid-GA based static schedule generation for time-
triggered ethernet”. In: 2016 8th IEEE International Conference on Communication
Software and Networks (ICCSN). IEEE. 2016, pp. 423–427.

74

https://doi.org/10.1109/ETFA.2018.8502515

Bibliography

[39] Eike Schweissguth, Peter Danielis, Dirk Timmermann, Helge Parzyjegla, and Gero
Mühl. “ILP-based joint routing and scheduling for time-triggered networks”. In: Pro-
ceedings of the 25th International Conference on Real-Time Networks and Systems.
2017, pp. 8–17.

[40] Paul Pop, Petru Eles, and Zebo Peng. “Scheduling with optimized communication
for time-triggered embedded systems”. In: Proceedings of the Seventh International
Workshop on Hardware/Software Codesign (CODES’99)(IEEE Cat. No. 99TH8450).
IEEE. 1999, pp. 178–182.

[41] Krzysztof Kuchcinski. “Embedded system synthesis by timing constraints solving”.
In: Proceedings. Tenth International Symposium on System Synthesis (Cat. No. 97TB100114).
IEEE. 1997, pp. 50–57.

[42] Shiv Prakash and Alice C Parker. “SOS: Synthesis of application-specific heteroge-
neous multiprocessor systems”. In: Journal of Parallel and Distributed computing
16.4 (1992), pp. 338–351.

[43] Arthur L Liestman and Roy H Campbell. “A fault-tolerant scheduling problem”. In:
IEEE transactions on software engineering 11 (1986), pp. 1089–1095.

[44] Mohamed Ould Sass, Maryline Chetto, and Audrey Queudet. “The BGW model for
QoS aware scheduling of real-time embedded systems”. In: Proceedings of the 11th
ACM international symposium on Mobility management and wireless access. 2013,
pp. 93–100.

[45] Traian Pop, Petru Eles, and Zebo Peng. “Holistic scheduling and analysis of mixed
time/event-triggered distributed embedded systems”. In: Proceedings of the tenth
international symposium on Hardware/software codesign. 2002, pp. 187–192.

[46] Manar Qamhieh and Serge Midonnet. “An experimental analysis of DAG schedul-
ing methods in hard real-time multiprocessor systems”. In: Proceedings of the 2014
Conference on Research in Adaptive and Convergent Systems. 2014, pp. 284–290.

[47] Manar Qamhieh, Laurent George, and Serge Midonnet. “Stretching algorithm for
global scheduling of real-time DAG tasks”. In: Real-Time Systems 55.1 (2019), pp. 32–
62.

[48] Georgios L Stavrinides and Helen D Karatza. “Scheduling real-time jobs in dis-
tributed systems-simulation and performance analysis”. In: (2014).

[49] Andrei Tchernykh, Juan Manuel Ramírez, Arutyun Avetisyan, Nikolai Kuzjurin,
Dmitri Grushin, and Sergey Zhuk. “Two level job-scheduling strategies for a com-
putational grid”. In: International Conference on Parallel Processing and Applied
Mathematics. Springer. 2005, pp. 774–781.

75

Bibliography

[50] Zeeshan Ahmed and Salima Hamma. “Two-level scheduling algorithm for different
classes of traffic in WiMAX networks”. In: 2012 International Symposium on Per-
formance Evaluation of Computer & Telecommunication Systems (SPECTS). IEEE.
2012, pp. 1–7.

[51] Mirsaeid Hosseini. “A new shuffled genetic-based task scheduling algorithm in het-
erogeneous distributed systems”. In: Journal of Advances in Computer Research 9.4
(2018), pp. 19–36.

[52] Junyan Zhou. “Real-time task scheduling and network device security for complex
embedded systems based on deep learning networks”. In: Microprocessors and Mi-
crosystems 79 (2020), p. 103282.

[53] Alan A Bertossi and Luigi V Mancini. “Scheduling algorithms for fault-tolerance in
hard-real-time systems”. In: Responsive Computing. Springer, 1994, pp. 3–19.

[54] Alan Burns, Robert Davis, and Sasikumar Punnekkat. “Feasibility analysis of fault-
tolerant real-time task sets”. In: Proceedings of the Eighth Euromicro Workshop on
Real-Time Systems. IEEE. 1996, pp. 29–33.

[55] Ching-Chih Han, Kang G Shin, and Jian Wu. “A fault-tolerant scheduling algorithm
for real-time periodic tasks with possible software faults”. In: IEEE Transactions on
computers 52.3 (2003), pp. 362–372.

[56] Ying Zhang and Krishnendu Chakrabarty. “Energy-aware adaptive checkpointing
in embedded real-time systems”. In: 2003 Design, Automation and Test in Europe
Conference and Exhibition. IEEE. 2003, pp. 918–923.

[57] Houssine Chetto and Maryline Chetto. “Some results of the earliest deadline schedul-
ing algorithm”. In: IEEE Transactions on software engineering 10 (1989), pp. 1261–
1269.

[58] Ayman Murshed. “Scheduling event-triggered and time-triggered applications with
optimal reliability and predictability on networked multi-core chips”. In: (2018).

[59] Paul Pop, Petru Eles, Traian Pop, and Zebo Peng. “An approach to incremental
design of distributed embedded systems”. In: Proceedings of the 38th annual Design
Automation Conference. 2001, pp. 450–455.

[60] Paul Pop, Petru Eles, and Zebo Peng. “Flexibility driven scheduling and mapping
for distributed real-time systems”. In: 8th International Conference on Real-Time
Computing Systems and Applications. 2002.

[61] Christian Schöler, René Krenz-Bååth, Ayman Murshed, and Roman Obermaisser.
“Computing optimal communication schedules for time-triggered networks using
an SMT solver”. In: 2016 11th IEEE Symposium on Industrial Embedded Systems
(SIES). IEEE. 2016, pp. 1–9.

76

Bibliography

[62] Naresh Ganesh Nayak, Frank Dürr, and Kurt Rothermel. “Incremental flow schedul-
ing and routing in time-sensitive software-defined networks”. In: IEEE Transactions
on Industrial Informatics 14.5 (2017), pp. 2066–2075.

[63] P. Mejia-Alvarez, R. Melhem, and D. Mosse. “An incremental approach to scheduling
during overloads in real-time systems”. In: Proceedings 21st IEEE Real-Time Systems
Symposium. 2000, pp. 283–293.

[64] Carey Douglass Locke. “Best-Effort Decision-Making for Real-Time Scheduling”.
PhD thesis. USA: Carnegie Mellon University, 1986.

[65] Roman Obermaisser and Ayman Murshed. “Incremental, distributed, and concurrent
scheduling in systems-of-systems with real-time requirements”. In: 2015 IEEE Inter-
national Conference on Computer and Information Technology; Ubiquitous Comput-
ing and Communications; Dependable, Autonomic and Secure Computing; Pervasive
Intelligence and Computing. IEEE. 2015, pp. 1918–1927.

[66] Michael Vierhauser, Rick Rabiser, and Paul Grünbacher. “Requirements monitor-
ing frameworks: A systematic review”. In: Information and Software Technology 80
(2016), pp. 89–109.

[67] Larry B Rainey, Andreas Tolk, et al. Modeling and simulation support for system of
systems engineering applications. Wiley Online Library, 2015.

[68] Claus Ballegaard Nielsen, Peter Gorm Larsen, John Fitzgerald, Jim Woodcock, and
Jan Peleska. “Systems of systems engineering: basic concepts, model-based tech-
niques, and research directions”. In: ACM Computing Surveys (CSUR) 48.2 (2015),
pp. 1–41.

[69] Nil Kilicay and Cihan H Dagli. “Methodologies for understanding behavior of system
of systems”. In: CD Proceedings of Conference on System Engineering Research. 2007,
pp. 14–16.

[70] Paulette Acheson, Cihan Dagli, and Nil Kilicay-Ergin. “Model based systems engi-
neering for system of systems using agent-based modeling”. In: Procedia Computer
Science 16 (2013), pp. 11–19.

[71] Vadim Kotov. Systems of systems as communicating structures. Vol. 119. Hewlett
Packard Laboratories, 1997.

[72] Jo Ann Lane and Richard Turner. “Improving development visibility and flow in
large operational organizations”. In: International Conference on Lean Enterprise
Software and Systems. Springer. 2013, pp. 65–80.

[73] Richard Turner and Jo Ann Lane. “Goal-Question-Kanban: applying lean concepts
to coordinate multi-level systems engineering in large enterprises”. In: Procedia Com-
puter Science 16 (2013), pp. 512–521.

77

Bibliography

[74] Flávio Oquendo. “Software architecture challenges and emerging research in software-
intensive systems-of-systems”. In: European Conference on Software Architecture.
Springer. 2016, pp. 3–21.

[75] Milena Guessi, Flavio Oquendo, and Elisa Yumi Nakagawa. “Checking the archi-
tectural feasibility of systems-of-systems using formal descriptions”. In: 2016 11th
System of Systems Engineering Conference (SoSE). IEEE. 2016, pp. 1–6.

[76] FIWARE. IoT Discovery. Tech. rep. 2018.

[77] Jin Y Yen. “An algorithm for finding shortest routes from all source nodes to a given
destination in general networks”. In: Quarterly of Applied Mathematics 27.4 (1970),
pp. 526–530.

[78] Pierre Hansen, Nenad Mladenović, Raca Todosijević, and Saïd Hanafi. “Variable
neighborhood search: basics and variants”. In: EURO Journal on Computational
Optimization 5.3 (2017), pp. 423–454.

[79] Günther Bauer and Hermann Kopetz. “Transparent redundancy in the time-triggered
architecture”. In: Proceeding International Conference on Dependable Systems and
Networks. DSN 2000. IEEE. 2000, pp. 5–13.

[80] Ariyan Abdulla and Erik Andersson. Heuristiska algoritmer för schemaläggning i
real-tidssystem med hänsyn till data beroenden. 2018.

[81] Snap library 4.0. user reference documentation. in https://snap.stanford.edu/
snap/doc/snapuser-ref/index.html. 2017.

78

https://snap.stanford.edu/snap/doc/snapuser-ref/index.html
https://snap.stanford.edu/snap/doc/snapuser-ref/index.html

	Title page
	Abstract
	Kurzfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Context and Motivation
	Objectives and Contribution
	Thesis Structure

	Concepts and Terms
	Time-Triggered Systems
	Systems of Systems (SoS)
	Model-based development standards

	Real-Time Scheduling
	Scheduling Optimization Heuristic
	Genetic Algorithm (GA)

	Faults and Fault-Tolerance in Distributed Systems
	Faults
	Dependability
	Fault Tolerance Techniques
	Reliability Measure

	Related Work
	Requirements and Research Challenges
	Scheduling Algorithms for Distributed Systems
	Development Methods and Models for SoSs
	Research Gap and Contribution

	System Model of Time-Triggered SoS (TTSoS)
	Physical and Logical models of the SoS
	Dynamic Establishment and Scheduling of SoS Applications
	Time Synchronization in SoSs

	Two-level Interactive Scheduling Algorithm for TTSoSs
	SoS-level programming
	CS-level programming
	Mutation and Crossover Operators
	Incremental Scheduling for TTSoSs
	Resource Allocation Strategy

	Greedy Local search based scheduling algorithm

	Fault-Tolerant Scheduling Algorithm for TTSoS
	Fault Model
	Fault-tolerant Scheduler
	SoS-level programming
	CS-level programming

	GA implementation

	Evaluation and Results
	Parameter setting
	GA Parameter Setting
	Customized Parameter setting

	Scenario Generation
	The Base Scheduling Heuristic Results
	Results of Incremental Scheduling Algorithm
	Results of Fault-Tolerant Scheduling Algorithm

	Conclusion
	Summary
	Future Work

	Bibliography

