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Abstract

The focus of this thesis lies on Bell inequalities. We introduce the concept of general-
izations of a Bell inequality, which are Bell inequalities that by construction perform at
least as well at any given task as the Bell inequality they generalize. Further, we present
the cone-projection technique that we use to find such generalizations of certain Bell
inequalities. Specifically, we find all 3050 symmetric generalizations of the I3322 in-
equality to three parties and study their quantum mechanical properties. Some of
them detect nonlocality of quantum states, for which all two-setting Bell inequalities
fail to do so. Moreover, we find generalizations of the Svetlichny inequality, the I4422

inequality, the Guess-Your-Neighbors-Input inequality as well as Bell inequalities that
simultaneously generalize the I3322 inequality and the Clauser-Horne-Shimony-Holt
inequality. We study the quantum mechanical properties of all of those inequalities.

Furthermore, we investigate different hybrid models and present Bell inequalities to
test them. We numerically estimate the noise robustness for all of these Bell inequal-
ities. We also construct a family of Bell inequalities for a particular class of hybrid
models. To simplify research on Bell inequalities, we present Bellpy, which is a Python
library to construct and investigate facet-defining Bell inequalities.

Besides our work on Bell inequalities, we also investigate absolute maximally entan-
gled Werner states and show that such states only exist for systems of two qubits and
three qutrits. Finally, we analyze a variation of the Bose-Marletto-Vedral experiment,
where two quantum-mechanically described beads interact gravitationally.





Zusammenfassung

Diese Dissertation ist hauptsächlich Bell’schen Ungleichungen gewidmet. Wir führen
das Konzept der Verallgemeinerung einer Bell’schen Ungleichung ein. Eine Verallge-
meinerung einer Bell’schen Ungleichung ist selbst eine Bell’sche Ungleichung. Das
Konzept ist so definiert, dass jede Verallgemeinerung einer Bell’schen Ungleichung
automatisch für jede Aufgabe mindestens ebenso gut geeignet ist, wie die Bell’sche
Ungleichung, die sie verallgemeinert. Wir stellen außerdem eine Methode vor, mit der
sich solche Verallgemeinerungen von Bell’schen Ungleichungen finden lassen.

Mithilfe dieser Methode finden wir alle 3050 symmetrischen Verallgemeinerungen
der I3322 Ungleichung für drei Parteien und analysieren ihre quantenmechanischen
Eigenschaften. Einige dieser Ungleichungen detektieren Nichtlokalität in Quanten-
zuständen, deren Nichtlokalität von keiner Bell’schen Ungleichung erkannt wird, bei
der jede Partei nur die Wahl zwischen zwei verschiedenen Messeinstellungen hat.
Darüber hinaus finden wir Verallgemeinerungen der I4422 Ungleichung, der Guess-
Your-Neighbors-Input Ungleichung, als auch Bell’sche Ungleichungen für drei Parteien,
die gleichzeitig sowohl die Clauser-Horne-Shimony-Holt Ungleichung als auch die
I3322 Ungleichung verallgemeinern. Wir untersuchen die quantenmechanischen Eigen-
schaften all dieser Ungleichungen.

Wir betrachten außerdem verschiedene Hybridmodelle und stellen Bell’sche Ungle-
ichungen vor, mit deren Hilfe sich diese Hybridmodelle testen lassen. Darüber hinaus
konstruieren wir eine Familie von Bell’schen Ungleichungen für eine spezielle Klasse
von Hybridmodellen. Um die Forschung an Nichtlokalität zu erleichtern, stellen wir
Bellpy vor, ein Pythonmodul zur Konstruktion und Analyse von Bell’schen Ungle-
ichungen.

Zusätzlich zu unserer Forschung an Nichtlokalität untersuchen wir absolut-maximal
verschränkte Wernerzustände und zeigen, dass solche Zustände nur in Systemen mit
zwei Qubits oder drei Qutrits existieren können. Zum Schluss analysieren wir eine
Variante des Bose-Marletto-Vedral Experiments, bei dem zwei kleine, quantenmecha-
nisch beschriebene Kugeln durch Schwerkraft miteinander wechselwirken.
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Introduction

Bell nonlocality is a phenomenon that is exhibited in so-called Bell experiments. A Bell
experiment involves at least two spatially separated laboratories, called parties. Be-
sides the number of parties, Bell experiments are further distinguished by the number
of measurement settings per party and the number of possible outcomes for each mea-
surement. The basic description of a Bell experiment that arises from this information
is called a scenario. A Bell experiment is conducted over several rounds. In each round,
each party chooses a measurement setting and records this choice together with the
obtained outcome. One may be tempted to assume that the measurement outcomes of
each party are predetermined and one party’s choice of measurement does not affect
the outcome of another party’s measurement. This assumption is called local realism,
while a violation of local realism is called nonlocality [1]. Nonlocality is indicated by
the violation of a so-called Bell-inequality [2], which is predicted in quantum mechan-
ics. Quantum mechanics predicts nonlocality even if the parties are far apart such that
no signal can be transmitted from one party to another during each round of the ex-
periment according to the laws of special relativity. Experimentally, this prediction has
been confirmed [3, 4, 5, 6].

Besides ruling out local realism, Bell inequalities have also been used to study the
communication complexity for computational tasks that involve several parties [6, 7, 8].
Moreover, Bell inequalities can be used to demonstrate the difference between quan-
tum mechanics and no-signaling theories in multi-player games [9]. In the field of
encryption, Bell inequalities are useful for multiparty conference key agreement [10]
and in the device independent testing of quantum states and measurements [11].

The focus of this thesis lies on Bell inequalities and more specifically on so-called
facet-defining Bell inequalities. For any given scenario, nonlocality can be completely
characterized using facet-defining Bell inequalities. However, their number drastically
increases with the complexity of the scenario and finding all facet-defining Bell in-
equalities quickly becomes prohibitively challenging. Moreover, if the goal is not the
complete characterization of nonlocality for a certain scenario, it may be unnecessary
as well as impracticable to test all of the facet-defining Bell inequalities. This is for
example the case if an experiment is set up to prove that a system exhibits nonlo-
cality and a quantum description of this system is known at least approximately. In
this case one would be interested in the Bell inequality that is expected to show the
largest violation for the given system or the strongest robustness to noise that may



2 Introduction

affect the system. In short, the goal is to find Bell inequalities that perform well for
some predefined tasks.

We make two main contributions to achieving this goal. Firstly, we introduce the
concept of generalizations of a Bell inequality. These are Bell inequalities that are at
least as strong as the Bell inequality they generalize. Secondly, we devise a method to
find all facet-defining Bell inequalities that satisfy a list of affine constraints. We call
this method the cone-projection technique. In particular, the cone-projection technique
can be used to find generalizations of a facet-defining Bell inequality.

The thesis is organized in the following way. Before we begin presenting the results
of our research, we introduce the mathematical and physical notions that are most
important for our research. In Chapter 1, we discuss convex polyhedra. The latter are
important for the characterization of nonlocality. While investigating the properties of
the Bell inequalities we found, we employ techniques from the field of convex opti-
mization, which are discussed in Chapter 2. Nonlocality is predicted and explained in
quantum mechanics through the concept of entanglement. We therefore briefly present
the formalism of quantum mechanics in Chapter 3 with an emphasis on entanglement
theory. With this we are prepared to give a more detailed explanation of Bell nonlocal-
ity in Chapter 4.

Starting from Chapter 5, we present the results of our own research. In Chapter 5, we
introduce the most important concept of our work: generalizations of Bell inequalities.
Further, we introduce the cone-projection technique that allows us to find generaliza-
tions of Bell inequalities.

We then prove the power of our method in numerous applications in Chapters 6

and 7. In Chapter 6, we find all 3050 symmetric generalizations of the I3322 inequality
to three parties. For the simplest of these inequalities, we study their quantum me-
chanical properties and demonstrate that they detect nonlocality of quantum states,
for which all two-setting Bell inequalities fail to do so.

In Chapter 7, we find generalizations of the I4422 inequality, the GYNI inequality,
as well as Bell inequalities that simultaneously generalize the I3322 inequality and the
CHSH inequality. We study the quantum mechanical properties of all of those inequal-
ities including the generalizations of the I3322 inequality presented in Chapter 6.

In Chapter 8, we investigate different hybrid models and present Bell inequalities to
test them. We numerically estimate the noise robustness for all of the Bell inequalities
we found. Further, we construct a family of Bell inequalities for a particular class of
hybrid models. Lastly, we present two generalizations of Svetlichny’s Bell inequality.

In Chapter 9, we present Bellpy, which is a Python module to construct and investi-
gate facet-defining Bell inequalities.

In Chapters 10 and 11 we shift our attention away from Bell inequalities. In Chapter
10 we investigate absolutely maximally entangled Werner states and show that such
states only exist for systems of two qubits and three qutrits. In Chapter 11 we investi-
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gate a variation of the proposed BMV experiment, where two quantum-mechanically
described beads interact gravitationally. We analyse the entanglement dynamics of the
system and confirm that the beads entangle if the gravitational coupling of the beads
is strong enough. We further compute the point in time for which the entanglement
between the beads is maximal.





1 Convex polyhedra

This chapter is dedicated to convex polyhedra and particularly to two of their sub-
classes, namely polyhedral cones and convex polytopes. From now on, we refer to
these objects simply as polyhedra, cones and polytopes throughout this chapter. The
results and definitions presented in this chapter are also covered in the book by Ziegler
[12] or the lecture notes by Paffenholz [13] or by Fukuda [14] unless other references
are provided. All of the former are excellent recources for this topic. The theory of con-
vex polyhedra has vast applications. Polyhedra emerge for example as the domains of
linear optimization problems, which include famous problems such as the traveling
salesman problem [12, 15]. Crucially for our purposes, however, they are a central
concept in the field of Bell nonlocality, as we will see later [16, 17].

1.1 Generators of convex polyhedra

The perhaps two most fundamental concepts in the study on convex polyhedra are
conic combinations and convex combinations. Conic combinations are linear combina-
tions with non-negative coefficients. Convex combinations are linear combinations
with non-negative coefficients that sum up to one. Given a matrix V ∈ Rd×n, in-
terpreted as a finite set V = {v1, v2, . . . , vn} of column vectors, the set of all conic
(convex) combinations of the elements in V is called the convex (conic) hull of V. The
convex and conic hulls are denoted

conv(V) :=

{
n

∑
i=1

λivi | ∑
i

λi = 1, λi ≥ 0 ∀i ∈ {1, . . . , n}
}

(1.1)

cone(V) :=

{
n

∑
i=1

λivi | λi ≥ 0 ∀i ∈ {1, . . . , n}
}

. (1.2)

Also, the convex (conic) hull of V is said to be generated by V under convex (conic)
combinations and the elements of V are referred to as generators. If V is finite, its
convex (conic) hull is called finitely generated.

These notions give rise to cones and polytopes. The convex hull of a finite set of vectors
is called a polytope; the conic hull of a finite set of vectors, called rays, is called a cone.
Given a cone or a polytope, the set of its generators V is in general not unique, as one
can add convex combinations of the generators to the generating set without changing
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Figure 1.1: The vertices v1, v2 define a one-dimensional polytope (bold line). The
Minkowski sum of this polytope and the ray r (blue) is a polyhedron (or-
ange), which extends infinitely to the top. The polyhedron has three facets,
which are the lines that confine it to the bottom, the left, and the right. This
figure appeared in our paper [B].

the polytope or cone. Generators are called redundant, if they can be expressed as
convex (conic) combinations of other generators. Otherwise, they are called extremal.
The extremal generators together form the minimal generating set of the polytope or
cone. This set is unique, whereby vectors v1, v2 that appear as generators of a cone are
considered equivalent if v1 = lv2 for some l > 0. The extremal points of a polytope
are called vertices.

If a cone is generated by the column vectors of a matrix R ∈ Rd×k, then R is called the
generating matrix of that cone [18]. The expression conv(V) is called the V-representation
of the polytope defined by it. Also, the expression cone(R) is referred to as the V-
representation of the cone defined by it.

The notion of polytopes and cones can be unified using the concept of polyhedra.
First, given two sets A and B, one can define their so-called Minkowski sum as

A + B = {a + b | a ∈ A, b ∈ B}. (1.3)

The sum of a cone and a polytope is called a polyhedron. Fig. (1.1) illustrates the
Minkowski sum of a line segment and a ray.

Although polyhedra are more general than polytopes and cones, it suffices to con-
sider cones. The reason is that for every polyhedron P ⊂ Rd one can construct its
associated cone C ⊂ Rd+1. This works as follows. Consider a polyhedron

P = conv(V) + cone(R), (1.4)

which is defined in terms of its V-representation, where V ∈ Rd×n and R ∈ Rd×m.
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Then, its associated cone is defined as

C = cone

(
1 0
V R

)
, (1.5)

where 1 ∈ R1×n is a matrix the entries of which are all one and 0 ∈ R1×m is a matrix
for which all entries are zero [12]. The associated cone owes its name to the fact that
P can be retrieved from C by intersecting it with the hyperplane that has a fixed first
coordinate equal to one. In this way, properties of a polyhedron can be inferred from
properties of its associated cone.

1.2 Fourier-Motzkin elimination

Before we continue, we need an important tool. The Fourier-Motzkin elimination is an
algorithm to eliminate variables from a set of affine inequalities S in these variables,
very much like the Gaussian algorithm is a method to eliminate variables from a set
of affine equations. In fact, S may also contain affine equations. However, without loss
of generality, we assume this not to be the case, since every equation can be replaced
by two inequalities that together are equivalent to the equation.

The method works as follows. In every step of the algorithm one variable is elimi-
nated. The algorithm is terminated, when all variables that are selected for elimination
are eliminated. One elimination step works like this: Given a variable, say x, that shall
be eliminated. Then, x partitions the set of affine inequalities into three subsets: 1) In-
equalities that define an upper bound on x, 2) inequalities that define a lower bound on
x and 3) inequalities that are independent of x. From this partition, a new set of affine
inequalities S′ is constructed that does not contain x such that S′ admits a solution if
and only if the original set of inequalities S admits a solution.

The central observation for this construction is the following: Every lower bound on
x is also a valid lower bound on every upper bound on x if and only if there exists
a solution for x. For this reason, S′ contains all the inequalities that arise from com-
binations of lower and upper bounds on x additionally to those inequalities in S that
are independent of x. As a consequence, the number of inequalities to consider can in-
crease rapidly from one iteration to the next, which is the reason why Fourier-Motzkin
elimination is typically not used for practical purposes. Rather, it is noteworthy mostly
for its simplicity. Also it has a clear geometrical interpretation: The Fourier-Motzkin
elimination is a projection into the orthogonal complement of the subspace spanned
by the eliminated variables.

For computational purposes however, other, more refined algorithms are preferable,
such as the double description method or pivoting algorithms such as the reverse
search vertex enumeration method, which are covered Section 1.9.



8 1 Convex polyhedra

1.3 Halfspace representation of a polyhedron

In the previous section, we defined cones in terms of their rays. Using the Fourier-
Motzkin elimination, one can show that any cone C also admits a second representa-
tion

C = rep(A) := {x ∈ Rd | Ax ≤ 0}, (1.6)

where A ∈ Rm×d and the inequality is to be understood element-wise, so that each of
the m linear inequalities defines a halfspace. The expression rep(A) is called a halfspace
representation of C or H-representation for short. A is called a representation matrix of C
[18]. The result that every finitely generated cone admits an H-representation is known
as Weyl’s theorem and it can be proved as follows. Any finitely generated cone

C = cone(R) = {x ∈ Rd | ∃ λ ≥ 0 : x = Rλ} (1.7)

with R ∈ Rd×k and λ ∈ Rk, is the projection of the set

D = {(x, λ) | ∃ λ ≥ 0 : x = Rλ} (1.8)

onto the first d dimensions. Since D clearly is the set of solutions to a system of
affine inequalities and equations, this projection can be carried out using Fourier-
Motzkin elimination. The resulting system of affine inequalities will then be an H-
representation of the cone C. Note that for any matrix A, rep(A) defines a convex
cone, that is a set that is closed under conic combinations. However, it is a non-trivial
result that any such cone is a polyhedral cone (in this chapter simply called "cone"),
which means that it is finitely generated. This will be explained in a later section.

One can extend Weyl’s theorem to polyhedra. As discussed earlier, any polyhedron

P = conv(V) + cone(R) (1.9)

has an associated cone

C = cone

([
1 0
V R

])
. (1.10)

Due to Weyl’s theorem for cones, C has an H-representation that allows us to write

C = rep((−b, A)) = {(x0, x) ∈ R×Rd | Ax ≤ bx0}, (1.11)

where we split up the representation matrix of C, such that −b is its first column and
A ∈ Rm×d is the submatrix that contains the remaining columns. One now retains the
polyhedron P by intersecting C with the plane x0 = 1, which yields

P = {x ∈ Rd | Ax ≤ b}. (1.12)
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1.4 Farkas’ lemma

The Farkas Lemma exists in many variants [12], but we only need one of these variants
for the following discussion. Given a finitely generated cone cone(R), it states that any
point x either (1) is contained in the cone or (2) there is a linear half-space a that
contains the cone but not x. This follows from the fact that cone(R) has a half-space
representation and x is contained in the cone if and only if it is contained in all half-
spaces that contain the cone. In other words, x is in the cone if and only if there is no
half-space that contains the cone but not x.

Farkas Lemma can be generalized to arbitrary convex bodies. This result is known
as the separating hyperplane theorem and plays an important role in the field of convex
optimization.

1.5 The polar (dual) of a cone

Given a cone C ∈ Rd, the normal vectors of the halfspaces that contain C form a cone
themselves: the polar cone

C∗ = {a ∈ Rd | aTx ≤ 0, ∀ x ∈ C}. (1.13)

It owes its name to the natural association of dual vectors aT ∈ (Rd)∗ with inequalities
aTx ≤ 0. The dual cone usually defined as the reflection at the origin of C∗ as defined
above. For convenience, we do not make this distinction in this chapter and instead
use both terms synonymously.

Let C be a cone that is finitely generated by the matrix R ∈ Rd×k. Then we can write

C = cone(R) = {Rλ | λ ≥ 0}. (1.14)

If we express the dual cone of C in terms of R, that is

C∗ = {a | aT Rλ ≤ 0 ∀λ ≥ 0}

= {a | aT R ≤ 0}

= rep(RT), (1.15)

we find that it is represented by RT .
Vice versa, given a convex cone

C = rep(A) = {x | Ax ≤ 0} (1.16)

in its H-representation, its dual cone

C∗ = {a | aTx ≤ 0, ∀x ∈ C} (1.17)
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is the finitely generated cone

D = {ATλ | λ ≥ 0} = cone(AT). (1.18)

Showing that D ⊆ C∗ is trivial. To show C∗ ⊆ D, consider a /∈ D. Then with Farkas
Lemma there exists b ∈ Rd such that the halfspace h = {x | bTx ≤ 0} contains D but
not a. This means that Ab ≤ 0 and aTb > 0. Ab ≤ 0 implies b ∈ C, which in turn
implies a /∈ C∗. Therefore, we can write

C = rep(A)⇒ C∗ = cone(AT). (1.19)

With this, one can prove the Minkowski theorem, which states that every cone C =

rep(A) is finitely generated. For this, we write C together with its dual and double
dual cone

C = rep(A) (1.20)

C∗ = cone(AT) = rep(RT) (1.21)

C∗∗ = rep(A) = cone(R). (1.22)

In the second line we first use Eq. (1.19). Then the existence of RT is guaranteed by
Weyl’s theorem. In the third line, we then first use Eq. (1.15), which shows that C = C∗∗

and then we use Eq. (1.19) once again which proves Minkowski’s theorem.
Given a cone C = cone(R) = rep(A), the pair (A, R) is called a double description

pair. Since the dual of C is C∗ = cone(AT) = rep(RT), the pair (RT , AT) is a double
description pair, too. Hence, any algorithm that takes a generator matrix of a cone as
input and outputs a representation can also perform the opposite task of converting a
representation matrix to a generator matrix.

1.6 Faces of polyhedra

Let us finally introduce the concept of a face of a polyhedron. With every halfspace
we associate the inequality that defines it. If a halfspace contains the polyhedron, the
associated inequality is called valid. Consider a valid inequality and the hyperplane h,
which bounds its associated halfspace. If the intersection between the polyhedron and
h is non-empty, this intersection is called a face of the polyhedron. Faces are classified
by their affine dimension, which is the dimension of the smallest affine subspace that
contains the face. A face that has an affine dimension of da is called an da-face. Any
face is the Minkowski sum of the polytope that is generated by the vertices that are
contained in h and the cone that is generated by the rays that are parallel to h. This
has mainly three consequences: (1) Faces of polyhedra are themselves polyhedra, (2)
any face with dimension da < d − 1 is the intersection of higher dimensional faces,
and (3) the 0-faces of a polyhedron are exactly its vertices and the 1-faces of a cone are
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exactly its rays. The 1-faces of a polytope are called edges. Further, the (d− 1)-faces of
a polyhedron are called facets.

Facet-defining inequalities take a special role among the valid inequalities of a poly-
hedron: They are the only non-redundant inequalities in the H-representation of a
polyhedron P. For simplicity we prove this for a cone C = cone(R) with dim(C) = d.
Consider the dual cone of C

C∗ = {a | aTx ≤ 0, ∀x ∈ C}. (1.23)

Since every halfspace defined by an inequality aTx ≤ 0 contains the origin, which is
the zero-face of C, any such halfspace contains a face of C. Denoting the set of faces of
C as Faces(C), we can therefore write

C∗ =
⋃

f∈Faces(C)

{a ∈ C∗ | aTx = 0, ∀x ∈ f }. (1.24)

Any set

f ∗ = {a ∈ C∗ | aTx = 0, ∀x ∈ f } (1.25)

is a face of the dual cone C∗ and as such is a cone itself. Due to Minkowski’s theorem
it is therefore generated by its one-dimensional faces. However, if dim( f ∗) = 1 then
dim( f ) = d− 1. Consequently, C∗ is generated by the facet-normal vectors of C. From
duality it then follows that C is represented by its facet-defining inequalities.

Apart from their geometrical meaning, faces are important as they establish the
combinatorial structure of the polyhedron: Two da-faces are called adjacent in P if they
are contained in the same (da + 1)-face of P.

The concept of duality can not only be applied to cones but to polyhedra of any
kind. In the case of polytopes, every facet-normal vector of a polytope that contains
the origin corresponds to a vertex of its dual.

1.7 Simple and simplicial polytopes

Consider a set of points in Rd, such that there is no d− 1 dimensional hyperplane that
contains all of these points. Then, these points are called affinely independent. Consider
a set of d+ 1 affinely independent points. Then the polytope defined as the convex hull
of these points is called a d-simplex or simplex for short[12]. This is a generalization of
a tetrahedron in R3.

Similarly, cubes can be generalized to hypercubes, the standard version of which is
defined as [12]

Cd = conv({−1, 1}×d) (1.26)

= {x ∈ Rd | −1 ≤ xi ≤ 1, i = 1, . . . , d}. (1.27)
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(a) (b) (c)

Figure 1.2: The figure shows three polytopes in R3. These are the (a) tetrahedron, (b)
cube, and (c) octahedron.

The polar of a hypercube is a crosspolytope

C∗d = conv({e1,−e1, . . . , ed,−ed}) (1.28)

= {x ∈ Rd |∑
i
|xi| ≤ 1}, (1.29)

where ei denotes the i-th cartesian basis vector. The crosspolytope is a generalization
of the octahedron. The crosspolytope and the hypercube demonstrate by example that
the number of facets of a polytope can be exponential in the number of vertices and
vice versa.

A polytope of dimension d is called simple, if every vertex is contained in no more
than d facets. The hypercube is an example for a simple polytope. A d-dimensional
polytope is called simplicial, if every facet contains no more than d vertices. The crosspoly-
tope is an example for a simplicial polytope. Further, the polar of a simple polytope
is simplicial polytope and vice versa. If the dimension d ≥ 3, then the only polytopes
that are both simple and simplicial are simplices [12].

1.8 Important examples

In this section, we briefly discuss classes of polytopes that are relevant in the field of
Bell nonlocality, namely correlation polytopes, cut polytopes, and more generally, 0/1

polytopes.
Given a graph (V, E), the correlation polytope of this graph is a polytope in the real

vector space R|V|+|E| [19]. It is thus natural to label the dimensions with the vertices
and edges of the graph. The correlation polytope is defined in V-representation and
from each subset I ⊆ V, we obtain one vertex vI of the polytope, where the coefficients
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of vI are defined as

vI
u =

1, if u ∈ I,

0 else
(1.30)

for u ∈ V and

vI
wu =

1, if {w, u} ⊆ I,

0 else
(1.31)

for wu ∈ E. For the same graph, the cut polytope is defined as a polytope in the
vector space R|E|. For each subset I ⊆ V one obtains one vertex vI of the polytope, the
coefficients of which are defined as

vI
wu =

1, if exactly one of w, u is in I,

0 else
(1.32)

for {w, u} ∈ E.
Both correlation polytopes and cut polytopes have vertices with coefficients in {0, 1}.

Polytopes of this kind are called 0/1 polytopes [12] and there exist algorithms that are
especially dedicated to this class of polytopes [20].

1.9 Algorithms

In this section, we discuss algorithms that solve the following task: Given either a rep-
resentation matrix or a generating matrix of a polyhedron, find a double description
pair for that polyhedron. As a consequence of duality, any algorithm that can solve one
of the two problems can also solve the other. It is therefore sufficient to consider the
problem of finding a generating matrix for a cone in H-representation. For polytopes,
this task is called vertex enumeration. In general, this problem is hard, as one can easily
see from the example of a hypercube. For hypercubes, the number of vertices grows
exponentially with the number of facet-defining halfspaces that define it. Since the lat-
ter are the input of the vertex enumeration algorithm, even the task of merely printing
the output has exponential time complexity. For a meaningful complexity analysis, one
hence states the complexity in terms of input and output size [18, 21]. The runtime of
an algorithm as a function of both input and output size is then referred to as the total
time of the algorithm [21].

For simple polyhedra, the reverse search vertex enumeration method solves the vertex
enumeration problem in time O(mvd) for m halfspaces, dimension d, and v vertices.
However it is known that time complexity can scale super-polynomially in the num-
ber of vertices for non-simple polyhedra [22]. For simplicial polyhedra, the primal-
dual method – a method similar to the reverse search enumeration problem but for-
mulated for the facet enumeration problem – enumerates facets efficiently [23, 22].
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Further, there exists a polynomial total time algorithm for the vertex enumeration of
0/1-polytopes [20].

In the following, we describe two well known algorithms for polyhedral representa-
tion conversion: the double description method [24, 18] and the above mentioned re-
verse search vertex enumeration method [25]. All results regarding these methods can
be found in the above cited references, if no other reference is provided. The descrip-
tions of the methods that are offered in this section are intended to aid understanding
of the principles the methods rely on. For this reason, we try to avoid technical diffi-
culties as much as possible. The disadvantage of this approach is that the descriptions
are not detailed enough to write a competitive implementation of these algorithms
based on them. However, excellent detailed descriptions of these algorithms exist in
the works referenced throughout this section.

1.9.1 Double description method

The double description method is a method to solve the following task: Given an H-
representation C = rep(A) of a cone, find a minimal V-representation C = cone(R)
of the same cone. The method was originally invented by Motzkin, Raiffa, Thompson
and Thrall [24] and later refined and implemented by Fukuda and Prodon [18].

The algorithm works in the following way: First, one ensures that the cone is pointed.
A cone C is pointed iff for any vector v ∈ C it holds that −v /∈ C. If C is not pointed,
then Av ≥ 0 and A(−v) ≥ 0, so v lies in the kernel of A. It is therefore easy to check the
pointedness of the cone by checking the rank of the representation matrix. The kernel
of the representation matrix is called the lineality space of the cone. It is easy to see that
any cone is the Minkowski sum of its projection on the orthogonal complement of its
lineality space CP and its lineality space. In order to characterize a cone in terms of its
extremal rays, it is therefore sufficient to find a V-representation for its projection CP,
which is pointed.

Therefore one can always assume without loss of generality that the cone C is
pointed. Then, given that C has dimension d, one can choose d halfspaces associated
with d linearly independent rows of A to define a cone Cs. This cone is the associated
cone of a simplex, so one can readily find its minimal V-representation by inverting
its representation matrix. This serves as the starting point for the double description
method.

A minimal V-representation for C is obtained iteratively, by defining a finite se-
quence of cones C0, . . . , CN with C0 = Cs and CN = C for each of which a minimal
V-representation is found. The cones Ci are defined recursively: Ci+1 is the cone that
is the intersection of Ci with a halfspace present in the H-representation of C that is
not present in the H-representation of Ci. The extremal rays of Ci+1 are computed
from the extremal rays of Ci. In the following we explain how this is accomplished. If



1.9 Algorithms 15

Ci+1 = Ci ∩ h, where h = {x | aTx ≥ 0} is some halfspace, then one can distinguish
three types of extremal rays of Ci:

1. strictly feasible rays, that is rays that strictly lie in h,

2. strictly infeasible rays, that is rays that do not lie in h and

3. barely feasible rays, that is rays that lie on the hyperplane hp = {x | aTx = 0}
that separates h from its complement.

Extremal rays of type (1) and (3) remain extremal rays of Ci+1 while rays of type (2)
are by definition not rays of Ci+1. Besides the feasible rays of Ci with respect to Ci+1

(types (1) and (3)), Ci+1 may have new extremal rays. Concerning these rays, some
observations are helpful: (a) these rays are contained in the subspace hp, (b) the rays
are contained in two-faces of Ci, (c) these two-faces are generated by pairs of adjacent
extremal rays, one of which is strictly feasible and one of which is strictly infeasible.

Observation (a) follows from the fact that extremal rays are one-faces. They are there-
fore uniquely defined by the intersection of d− 1 linearly independent non-redundant
halfspaces of Ci+1. If an extremal ray is the intersection of d− 1 linearly independent
non-redundant halfspaces of Ci, then it is an extremal ray of Ci. Thus, the only rays
that are extremal in Ci+1 but not in Ci lie on hp.

To prove observation (b) consider a ray r ∈ hp of Ci, such that the lowest dimensional
face of Ci that contains r is a k-face. Then, the lowest dimensional face of Ci+1 that
contains r is either a k-face or a (k− 1)-face. Thus, if r is an extremal ray in Ci+1 then
it is either extremal in Ci or it must be contained in a two-face of Ci.

Observation (c) directly follows from (a) and (b): Two-faces are generated by two
extremal rays, which are thereby adjacent. Since the two-face must contain an extremal
ray in hp that is different from the rays that generate it, it must be generated by a strictly
feasible and a strictly infeasible extremal ray of Ci. With this, we established that any
extremal ray of Ci+1 that is not an extremal ray of Ci satisfies observations (a), (b),
and (c). In fact, the converse is also true. Choosing a two-face of Ci that is generated
by one strictly feasible extremal ray rfeas and one strictly infeasible extremal ray rinf

with respect to h ensures that the intersection of hp with the two-face is a one-face and
therefore an extremal ray of Ci+1. Given rfeas and rinf, this new extremal ray r′ of Ci+1

is readily computed as

r′ = (aTrfeas)rinf − (aTrinf)rfeas. (1.33)

In one iteration one therefore computes a minimal V-representation for Ci+1 from a
minimal V-representation of Ci.

The method can be and has been optimized with respect to the order in which
halfspaces are added when constructing the sequence Ci [18]. Experimentally, static
orderings, that is orderings that are fixed from the beginning, have been found to be
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superior to dynamic orderings [18]. For technical details, including data structures
how to keep track of adjacencies, the reader is also referred to [18]. Recently, a method
called pyramidal decomposition has been developed, with which the double descrip-
tion method can be parallelized [26]. The worst case time complexity of the algorithm
is exponential in both input and output, yet it has been found useful especially for low
dimensional problems d ≤ 12 or highly degenerate polyhedra [18]. Implementations
are available for example in the cddlib library [27], the Parma Polyhedra Library [28],
PORTA [29] and with parallel computing in normaliz [30].

1.9.2 Reverse search vertex enumeration

There is a second class of algorithms for representation conversion of convex polyhe-
dra that is of practical importance: Variations of the reverse search vertex enumeration
algorithm, which is implemented for example in the program lrs [25, 31].

As it is the case in the double description method, the objective of the reverse
search vertex enumeration method is to find the vertices of a polyhedron given in
H-representation. To simplify the following discussion, consider the special case of a
convex polytope P. The adjacency graph G = (V, E) of P is the graph consisting of the
vertices and edges of P. One way to find the vertices of P is thus to construct and
traverse the adjacency graph P. This can be done using a graph traversion algorithm
such as depth first search or breadth first search in conjunction with a method to find
the adjacent vertices of some starting vertex.

The latter is accomplished with pivoting. In its simplest form, the procedure can
be described like this: Any vertex v of the polytope is the unique solution of d lin-
early independent inequalities drawn from the H-representation of the polytope. If
one inequality is removed from the system, the solution is a line l through v. If the H-
representation of P is not minimal, that is it incorporates redundant halfspaces, then
this line may intersect P only in this one vertex v. Note that the line l does never inter-
sect the interior of P since it is defined by inequalities that are satisfied for all points
in P. However, if the H-representation is minimal, then every halfspace corresponds
to a facet of P and therefore the line contains an edge e of P. This edge is the con-
vex hull of two vertices, one of which, v is already known. The other vertex can be
found by intersecting the line with the bounding hyperplane of another halfspace of
the H-representation of P. To ensure that the intersection is a point, the corresponding
inequality is chosen linearly independent from the set of d− 1 inequalities that define
the line l. Further, one chooses the inequality such that it is not saturated by v, in order
to ensure that a point p different from v is found. Now two cases remain to be distin-
guished: If p is feasible, then it is the vertex adjacent to v along the edge e. Otherwise,
one chooses a different bounding hyperplane of P to intersect l with.

Note that any total order of the inequalities in the H-representation of P induce a
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total order of the neighbors of any vertex v, since any neighbor of v is characterized
by the edge e it shares with v and this edge can be identified with the inequality that
is saturated for v but not e. This observation will become important for the algorithm
later.

In principle one could find all vertices of a polytope using pivoting in conjunction
with a graph traversal algorithm such as depth first search. Depth-first search is a
recursive algorithm. Starting with a vertex, it successively discovers undiscovered ad-
jacent vertices. Once a new vertex is discovered, it is stored in memory and a new
instance of a depth first search is initialized at the new vertex. Discovered vertices
must be stored in memory to avoid discovering the same vertex multiple times along
different paths and especially to avoid loops in the graph. This, as it turns out, is an
inefficiency that can be avoided.

The key part of the reverse search vertex enumeration algorithm is the insight how
to arrange the – yet to be discovered – vertices of a polytope in a graph that has more
structure that helps to traverse the graph more easily without the need to keep the
discovered vertices in memory. This graph is constructed as follows: Its vertex set is
the set of vertices of P. The edges of the graph are defined with the help of a local
search function f . Two vertices (v1, v2) form a directed edge, iff v2 = f (v1). The vertex
v2 is then called the parent of v1. The local search function f further has the property
that for any vertex v there exists a finite number n, such that f n(v) = r, where r is the
root of the graph, which is the only vertex of G that does not have a parent.

One possible choice for the local search function is the function that corresponds to
one step in the simplex method. The simplex method is an algorithm to solve a linear
program. Consider a linear program with the polytope P as feasible region and a linear
objective that singles out one vertex of the polytope as optimal solution. Then, starting
from any vertex, the simplex method finds a new vertex that yields an equal or better
objective value than the previous vertex using pivoting. Since linear programs are con-
vex optimization problems and the linear program under consideration is bounded,
the simplex algorithm terminates once the optimal vertex is found. This vertex is the
root of the graph G. How the simplex algorithm works in detail is described for exam-
ple in Ref. [12].

The reverse search vertex enumeration algorithm enumerates the vertices of the
polytope by traversing the graph G while constructing it. Note that this is simpler
than traversing the adjacency graph of P. For one, the time complexity of depth first
search scales linearly in the number of vertices and edges of a graph [32] and G has
strictly fewer edges than the adjacency graph of P. Additionally, it has a simpler struc-
ture: It is a rooted, spanning, oriented tree of the adjacency graph of P: G spans the
adjacency graph of P, since their vertex sets coincide, the local search function defines
the orientation of every edge, and G is an oriented tree, since its underlying undi-
rected graph is a tree, which means that any two vertices are connected by exactly one
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path [33]. Moreover, G can be equipped with a total order: Parents precede their chil-
dren and siblings are ordered according to the pivoting rule as discussed above. This
has two benefits. First, since the vertices are in a predefined order, the possibility of
visiting a vertex twice is automatically excluded. Second, the vertex enumeration can
be interrupted and the only information necessary to pick up the process later on is
the last visited vertex. In particular, this makes the algorithm economical with respect
to consumed memory in comparison with other algorithms such as the double de-
scription method. Moreover, it was shown that the reverse search vertex enumeration
algorithm is efficient for simple polytopes in the sense that its runtime scales linearly
in the number of halfspaces in the H-representation and in the number of vertices [25].
Also, the algorithm can be parallelized as implemented in the library ZRAM [34] or
in the program mplrs as described in [31]. The code mplrs has been found to be more
scalable than other polyhedral representation conversion codes. A comparison can be
found in Ref. [31].
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In this chapter, we discuss optimization techniques that are relevant to this work. These
include convex optimization techniques such as linear programming and semidefinite
programming, which we describe in the first two sections. We then briefly discuss two
useful techniques for non-convex optimization problems: the seesaw technique and
the Navascués-Pironio-Acín hierarchy of semidefinite relaxations.

2.1 Convex optimization

Convex optimization problems are problems that involve the minimization of a con-
vex function over a convex domain. Equivalently, we also refer to the maximization
of a concave function over a convex domain as convex optimization problem. This
chapter gives an introduction to this class of problems with a focus on linear optimiza-
tion problems and semidefinite optimization problems. If no other source is given,
facts stated in the first two sections of this chapter can be found in the book Convex
Optimization by Boyd and Vandenberghe [15].

Convex optimization problems are an important class of problems for mainly two
reasons: First, these problems naturally occur in a wide variety of different fields.
Especially the subclass of semidefinite programms (SDPs) is important in the field of
quantum information for tasks such as deciding the separability of a multipartite quan-
tum state [35], discriminating between different quantum states using measurements
while minimizing the error rate [36], or bounding the violation of a Bell inequality
[37]. The second reason why convex optimization problems are important is that they
can be solved efficiently and the solution is usually guaranteed to be optimal. Since
for a convex optimization problem every local minimum is automatically also a global
minimum these problems can be solved using local optimization methods such as gra-
dient decent methods, Newton’s method, or interior point methods. Furthermore, any
convex optimization problem has a so-called dual problem. Under certain conditions,
which we will discuss later, one can certify the optimality of the solution of the original
problem by solving its dual.

In the simplest case, a convex optimization problem for a convex objective function
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f0 : Rn ⊃ dom( f0)→ R in a variable x ∈ Rn has the form

P : min
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . , m (2.1)

Ax = b

where A ∈ Rp×n, b ∈ Rp, and fi : Rn ⊃ dom( fi) → R are convex functions. The
intersection of the domains of the objective function f0 and all the constraint functions
fi is called the domain of the convex optimization problem P [15]. We denote it as dom(P).

A convex set is a set that contains all line segments between any two points in the
set, so if x, y ∈ S, then λx + (1 − λ)y ∈ S, ∀ λ ∈ [0, 1]. A function f is convex iff
its epigraph is a convex set, that is f (λx + (1 − λy)) ≤ λ f (x) + (1 − λ) f (y). If all
constraint functions fi in problem Eq. (2.1) are convex, then the set of points x that
satisfy the constraints is convex. The set of points x that satisfy the affine equality
constraint Ax = b is convex, too. The set of points that simultaneously satisfy all the
constraints is called the feasible set feas(P). The feasible set is convex as the intersec-
tion of convex sets. This shows that the above problem minx∈feas(P) f0(x) is indeed a
convex optimization problem. Any point y ∈ val(P) := { f0(x) | x ∈ feas(P)} is called
a value of the optimization problem P. In the following we assume that the infimum
over val(P) is attained. The value y∗ = min val(P) is called the optimal value of P. Any
point x∗ ∈ feas(P) such that f0(x∗) = y∗ is called a solution of P.

One can consider a more general case of a convex optimization problem where the
constraining functions fi with i > 0 do not map to the real numbers, but instead
fi : Rn ⊇ dom( fi)→ Vi, i = 1, . . . , m, where Vi is a euclidean, finite dimensional vector
space. In this case, an order � must be defined on Vi for each inequality constraint
of the problem Eq. (2.1). Such an order is however not arbitrary but should satisfy
some conditions, which we state in the following. For this, we rely on some definitions
regarding closed convex cones. A closed convex cone is a closed subset C ⊆ Rd which is
closed under positive scaling and addition. If C has a non-empty interior is called solid.
If 0 ∈ C and C does not contain a line, then it is called pointed [15]. A solid pointed
closed convex cone is called proper cone [15]. A proper cone C induces an order �C

through the relationship

b �C a ⇔ b− a ∈ C. (2.2)

Analogously one defines

a �C b ⇔ b− a ∈ C. (2.3)

One can show that this order is a partial order. A partial order � on a set S has three
properties: reflexivity, antisymmetry, and transitivity. Reflexivity means that x � x for
all x ∈ S. Antisymmetry means that x � y and y � x together imply x = y for x, y ∈ S.
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Finally, transitivity means that x � y and y � z imply x � z. Since a proper cone
contains the origin, its induced order is reflexive. Because a proper cone is pointed,
it does not contain a line and hence its induced order is antisymmetric. Finally, since
a proper cone is convex, its induced order is transitive. Moreover, �C also has other
properties that are not required by the definition of a partial order. First, it is preserved
under non-negative scaling. This means that x �C y and α ≥ 0 imply αx �C αy. This is
a consequence of C being closed under non-negative scaling. Second, �C is preserved
under addition. If x �C y and u �C v then also x + u �C y + v holds. This follows
from C being closed under addition. Finally, since C is a closed set, its induced order
is preserved under limits. Inequalities with respect to an order which is induced by a
proper cone are called generalized inequalities [15].

Using generalized inequalities, one can write a more general form of a convex opti-
mization problem.

min
x

f0(x)

s.t. fi(x) �Ci 0, i = 1, . . . , m (2.4)

Ax = b,

where A ∈ Rp×n, b ∈ Rp and Ci ⊂ Vi are proper cones.
In practice, we usually do not need to consider the most general case of convex

optimization problems. Also, most solvers cannot handle problems of the most general
type. It is therefore useful to consider the most important special cases. Cone programs
are convex optimization problems that are constrained by only one affine generalized
inequality and have a linear objective function. Semidefinite programs are cone programs
where the cone that defines the order is the cone of positive semidefinite matrices. A
semidefinite program thus has the form

min
x

cTx

s.t. ∑
i

xiFi + G � 0, i = 1, . . . , m (2.5)

Ax = b,

where G and the Fi are symmetric matrices and x, c ∈ Rn. Linear programs are cone
programs where the order inducing cone is the nonnegative orthant. Hence, linear
programs have the form

min
x

cTx (2.6)

s.t. Gx− h � 0,

Ax = b,

where G ∈ Rm×n, and h ∈ Rm.
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2.2 Duality

Duality is an important concept in convex optimization theory. For every convex opti-
mization problem, one can construct a related problem, the so called dual problem. The
original problem is then also called primal problem.

The dual problem is a maximization problem and its optimal value can never exceed
the minimal value of the primal problem. This property is called weak duality [15]. The
difference between the maximal value of the dual problem and the minimal value of
the primal problem is called the duality gap. For some convex optimization problems
the duality gap is zero. This is called strong duality [15]. Strong duality is useful to
certify that a solution of a convex optimization problem has been found. For this
reason it is desirable to know in advance, whether strong duality holds for a convex
optimization problem. To find out, one can check Slater’s condition. If it is met, strong
duality holds.

In this section we explain the aforementioned facts and state all necessary defini-
tions.

First, we need to define the dual cone. Given a cone K ⊂ V in a vector space V, the
dual cone

K∗ = {y ∈ V∗ | y(x) ≥ 0 for all x ∈ K} (2.7)

contains all vectors in the dual space V∗ that map all vectors in the cone to the non-
negative reals.

This notion allows us to define the Lagrangian of the optimization problem 2.4. The
Lagrangian is defined as

L(x, λ, ν) = f0(x) + ∑
i

λi( fi(x)) + νT(Ax− b). (2.8)

Here, ν ∈ Rp and λ is a tuple with elements λi ∈ V∗i such that λi �Ci 0. This ensures
that

L(x, λ, ν) ≤ f0(x) (2.9)

for all feasible x and all (λ, ν). The Lagrange dual function is defined as

g(λ, ν) = inf
x

L(x, λ, ν). (2.10)

The dual problem is then defined as

max
λ,ν

g(λ, ν) (2.11)

s. t. λi �Ci 0 i = 1, . . . , m.

We now discuss Slater’s constraint qualification which gives two conditions that guar-
antee strong duality if they are jointly fulfilled. To state the conditions, we first need
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the definition of a relative interior. The relative interior of a set is the interior with
respect to its affine hull – the lowest dimensional hyperplane that contains the set.
In the following, we denote the domain of the convex optimization problem under
consideration as D.

The first condition of Slater’s criterion is that there is a point x̃ in the relative interior
of D. The second condition is that the point x̃ is strictly feasible, so it satisfies 1

fi(x̃) < 0, i = 1, . . . , m (2.12)

Ax̃− b = 0. (2.13)

In the following we show a proof, that Slater’s constraint qualification implies strong
duality. This proof is an adapted version of the one found in the book Convex opti-
mization[15]. The proof relies on the separating hyperplane theorem. It states that for
any two disjoint nonempty convex sets A, B, there exists a hyperplane defined by
a ∈ Rn, α ∈ R with a 6= 0 that separates them, so

〈a, x〉 ≥ α, ∀x ∈ A (2.14)

〈a, x〉 ≤ α, ∀x ∈ B. (2.15)

Here, 〈 , 〉 denotes the dot-product. To prove that Slater’s constraint qualification im-
plies strong duality, the separating hyperplane theorem is applied to two specific sets
A and B, with

A = {(u, v, t) | ∃x ∈ D : ui �Ci fi(x), Ax− b = v, t ≥ f0(x)}, (2.16)

B = {(0, 0, s) | s < p∗}, (2.17)

where p∗ is the optimal value of the primal problem. We can assume that the optimal
value is finite, since otherwise weak duality already implies strong duality. Note that
A, B do not intersect. The separating hyperplane theorem states that there are λi ∈
V∗i , ν ∈ Rp, µ ∈ R, α ∈ R, such that

∑
i

λi(ui) + νTv + µt ≥α (2.18)

and

µs ≤α (2.19)

hold for all (u, v, t) ∈ A and (0, 0, s) ∈ B. This implies that λi �Ci∗ 0, µ ≥ 0 and that in
particular also

∑
i

λi( fi(x)) + νT(Ax− b) + µ f0(x) ≥α (2.20)

1There is a refined version of Slater’s condition where the first 1 ≤ ma ≤ m inequality constraints do
not have to be strictly satisfied if they are not only convex but affine. For simplicity, we do not show a proof
of this refined version here.
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and

µp∗ ≤α (2.21)

hold for all x that lie in the domain of the problem. Combining the two inequalities
yields

∑
i

λi( fi(x)) + νT(Ax− b) + µ( f0(x)− p∗) ≥ 0. (2.22)

If µ > 0, then we can divide the inequality by µ which implies strong duality. Indeed,
µ > 0 holds if Slater’s condition is fulfilled. For the Slater point x̃, we have

∑
i

λi( fi(x̃)) < 0 (2.23)

νT(Ax̃− b) = 0 (2.24)

and

µ( f0(x̃)− p∗) ≥ 0. (2.25)

We assume that there are no redundant or contradicting equality constraints. This
means that A has full row-rank, so νT A 6= 0 for ν 6= 0. Then, since x̃ is a strictly
feasible point in the relative interior of the problem’s domain D, there exists a point
x̃′ ∈ D, such that

∑
i

λi( fi(x̃′)) < 0 (2.26)

νT(Ax̃′ − b) < 0 (2.27)

and

µ( f0(x̃′)− p∗) ≥ 0. (2.28)

If λi 6= 0 or ν 6= 0 this necessitates µ > 0 for Eq. (2.22) to hold. Conversely, if all λi = 0
and ν = 0, then also µ > 0, since the hyperplane (λ, ν, µ) 6= (0, 0, 0) exists.

For cone programs, the relation between primal and dual problem is symmetric.
In this case, one can equivalently check Slater’s condition for the dual problem to
establish strong duality.

2.3 Beyond convex optimization problems

The manageability of convex optimization problems and the maturity of software
packages for solving linear and semidefinite programs makes the attempt desirable
to reduce solving optimization problem, possibly even a non-convex one, to solving
a series of linear or semidefinite programs instead. In quantum information theory,
most prominently two approaches are employed for this purpose: seesaw algorithms
[38, 39, 40] and the Navascués-Pironio-Acín hierarchy of semidefinite programms
[41, 35, 37].
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2.3.1 Seesaw algorithms

Seesaw algorithms work in the following way [38]: Let the domain of the optimization
problem be a subset of a vector space V. Then, the first step is to find subspaces V1, V2

of V, such that V = V1 ⊕V2. Instead of solving the optimization problem

min
x

f (x) (2.29)

s.t. x ∈ dom( f )

one then alternates between solving the problem

xi+1
1 = argmin

x1

f (x1 + xi
2) (2.30)

s.t. x1 ∈ V1

x1 + xi
2 ∈ dom( f )

and

xi+1
2 = argmin

x2

f (xi+1
1 + x2) (2.31)

s.t. x2 ∈ V2

xi+1
1 + x2 ∈ dom( f )

until the values of the sequence ( f (xi
1 + xi

2))i do not grow by more than some pre-
defined value ε from step to step. Analogously, the method can easily be adapted
to include any number of steps instead of two. For the above problem the goal is to
find V1, V2 such that the optimization problems Eq. (2.30) and Eq. (2.31) are either lin-
ear or semidefinite programs. Clearly this is not always possible. A typical use case
are optimization problems with an objective function that is bilinear in its arguments
x1 ∈ V1, x2 ∈ V2 that is optimized over both arguments simultaneously, which means
that dom( f ) ⊆ V1 ⊕V2.

The the value f (ximax
1 + ximax

2 ) obtained from a seesaw algorithm may depend strongly
on the initial values x0

1, x0
2 corresponding to different local minima of the objective

function. In practise one therefore runs a seesaw algorithm several times with differ-
ent initial values in order to achieve a good upper bound for the global minimum.

2.3.2 Navascués-Pironio-Acín hierarchy

For some non-convex optimization problems there exists a sequence – a so-called hi-
erarchy – of semidefinite programms, such that the optimal values of these semidefi-
nite optimization problems converge monotonically to the optimal value of the orig-
inal problem. One such hierarchy is the Navascués-Pironio-Acín hierarchy, or NPA-
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hierarchy for short [37, 42, 43]. It is applicable to problems of the form

p∗ = inf
X,φ
〈φ, p(X)φ〉 (2.32)

s.t. ||φ|| = 1

qi(X) � 0, i = 1, . . . , iq

ri(X)φ = 0, i = 1, . . . , ir

〈φ, si(X)φ〉 ≥ 0, i = 1, . . . , is,

where p, qi, rj, sk ∈ C[x, x∗] are polynomials, φ ∈ H is a vector in a Hilbert space H
and X = (X1, . . . , Xn) is an indexed family of operators on H [43]. Further, � denotes
positivity with respect to the cone of positive semidefinite operators and p as well as
all si and all qi are hermitian, that is p(X)† = p(X), which ensures that the objective
and the inequality constraints

〈φ, si(X)φ〉 ≥ 0, i = 1, . . . , is (2.33)

are real valued and qi(X) are hermitian operators. Lastly, one also assumes that the
polynomials qi satisfy the so-called archimedean assumption

C−
2n

∑
k=1

XkX†
k = ∑

i
fi(X) fi(X)† + ∑

i,j
g†

ij(X)qi(X)gij(X) (2.34)

for some positive constant C. This ensures that any feasible operators X are bounded.
What makes problem Eq. (2.32) hard is the polynomial dependence of the objective
and the constraints on the variables X. The NPA-hierarchy relies mainly on two ideas
to linearize and relax the problem. First, we find the maximal polynomial degree d
among the polynomials in the problem. The set Wd of monomials with degree at most
d then forms a basis of the vector space of polynomials of degree d, allowing us to
express the objective as

〈φ, p(X)φ〉 = ∑
w∈Wd

pw〈φ, w(X)φ〉. (2.35)

Similarly, we can write the constraints in terms of the monomial basis. Now, the objec-
tive depends linearly on the so-called moments m(w) = 〈φ, w(X)φ〉, which makes it
desirable to treat the latter as variables. However, they are not independent, as consid-
ering monomials u, v, w ∈Wd with u(X)v(X) = w(X) shows. This is where the second
idea of the method, the relaxation, comes into play, which centers on the properties of
the moment matrix. The moment matrix M ∈ C|Wk |×|Wk | of order k is indexed in the
monomials with elements defined as

Mvw := m(v∗w) = 〈φ, v∗(X)w(X)φ〉, (2.36)
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where we dropped the dependences of φ and X in the notation for convenience. Mo-
ment matrices are readily shown to be positive semidefinite. The relaxation of the
problem now consists of substituting complex variables γ(w) for the moments m(w).
The interdependence of the variables γ(w) is then captured by constructing a matrix
Γ analogously to the moment matrix with

Γvw = γ(v∗w) (2.37)

and demanding Γ � 0. Additionally, the constraints are reformulated and relaxed
in very much the same fashion. The constraints qi(X) � 0 imply that the localizing
matrices Lqi with elements

Lqi
vw = 〈φ, v(X)∗qi(X)w(X)φ〉 (2.38)

= ∑
u∈Wdi

qi,u〈φ, v(X)∗u(X)w(X)φ〉 (2.39)

= ∑
u∈Wdi

qi,um(v∗uw) (2.40)

are positive semidefinite, where di is the degree of qi and qi = ∑u qi,uu. Again, we
substitute the variables γ(w) for the moments and replace the constraint qi(X) � 0
with Λqi � 0, where

Λqi
vw = ∑

u∈Wdi

qi,uγ(v∗uw). (2.41)

Analogously, we replace the constraint

〈φ, si(X), φ〉 ≥ 0 (2.42)

with

σi = ∑
w

si,wγ(w) ≥ 0, (2.43)

where si = ∑w si,ww. The constraint ri(X)φ = 0, with ri = ∑w ri,ww implies

0 = 〈φv(X), ri(X)φ〉 (2.44)

= ∑
w

ri,wm(vw), (2.45)

which we formulate in terms of the variables γ(w) as

∑
w

ri,wγ(vw) = 0. (2.46)
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With this, the relaxed problem reads

pk = min
γw ,w∈W2k

∑
w

pwγw (2.47)

s.t. γ(1) = 1

Γ � 0

Λqi � 0, i = 1, . . . , iq

∑
w

ri,wγ(vw) = 0 ∀v ∈Wk

∑
w

si,wγ(w) ≥ 0, i = 1, . . . , is,

where the maximal monomial degree 2k has to be greater or equal to the maximal
polynomial degree d of the polynomials involved in the problem. The number k is
also referred to as the level of the hierarchy. If the infimum in the original problem
Eq. (2.32) is achieved, then any relaxation in the NPA-hierarchy must yield an optimal
value pk that is lower or equal to the optimal value p∗ of the original problem. Further,
(pk)k is a monotonically increasing sequence. Let k′ > k and let pk′ be attained for
(γw)w∈W2k′

. Then, for the same γ, (γw)w∈W2k is a feasible point for the k-th level of the
hierarchy and will yield pk′ as well. Furthermore, it has been proved that

lim
k→∞

pk = p∗. (2.48)

Conveniently, the NPA-hierarchy in practise oftentimes converges already for small k
[37] and a stopping criterion, the so-called rank-loop has been derived to detect that
the NPA-hierarchy has indeed converged.
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This chapter is not a comprehensive exposition of quantum mechanics. Instead, we fo-
cus on the basics and select topics that are relevant to this thesis. The contents covered
in this chapter can also be found in the book by Nielsen and Chuang [44] or in the
book by Heinosaari and Ziman [45], if no other reference is given.

Quantum mechanics offers a description of nature that has three components: The
first component, a state, is the description of a physical system, which is a part of the
physicist surroundings declared by the physicist to be of special interest. The second
component, a channel, describes the dynamics the system is subject to. The third com-
ponent is the description of a measurement, which links states and observations. In
the following we take a closer look at each part individually.

3.1 States

In quantum mechanics, systems are associated with Hilbert spaces. A Hilbert space H
is a complete inner product space. The inner product is positive definite, linear in the
second argument and conjugate symmetric under exchange of the arguments. Positive
definite means, that for any vector |ψ〉 ∈ H the inner product of this vector with itself
〈ψ|ψ〉 > 0 is strictly positive, unless |ψ〉 = 0, in which case the inner product vanishes.
This ensures that the inner product induces a norm, ‖ |ψ〉‖ =

√
〈ψ|ψ〉. While Hilbert

spaces can have any dimension – in fact they can be infinite dimensional – in this work
we are only concerned with finite dimensional Hilbert spaces, in particular Cd. In the
following, we write |i〉 with i ∈ {0, . . . , d− 1} to denote the basis vectors of a chosen
orthonormal basis of Cd.

Just as several subsystems can be composed to form a larger system, so can Hilbert
spaces. Given a system Σ that is composed of subsystems s ∈ S with Hilbert spaces
Hs, the Hilbert space HΣ is the tensor product of the Hilbert spaces associated with
the subsystems, that is

HΣ =
⊗
s∈S
Hs. (3.1)

We are now prepared to introduce quantum states. The term quantum state can refer to
two mathematically different objects. It can either refer to a so-called density matrix,
or to a state vector. A state vector is a unit vector in a Hilbert space. State vectors
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can be added and the normalized sum of state vectors yields a state vector called a
superposition of the state vectors is made up of. Given the set of subsystems S, each
described by a state vector |ψs〉, the state |ψ〉 of Σ is given by the state vector

|ψ〉 =
⊗
s∈S
|ψs〉. (3.2)

In systems that are composed of subsystems, superposition gives rise to entanglement.
A state vector |ψ〉 ∈ HΣ is said to be entangled, if it is not a product state, that is if there
does not exist a sequence of states |ψs〉 ∈ Hs, such that Eq. (3.2) holds. In this case,
the subsystems cannot be described by state vectors independently, which is why the
subsystems are called entangled. An important example for entangled states are the
Bell states

|φ+〉 = 1√
2
( |00〉+ |11〉),

|φ−〉 = 1√
2
( |00〉 − |11〉),

|ψ+〉 = 1√
2
( |01〉+ |10〉),

|ψ−〉 = 1√
2
( |01〉 − |10〉), (3.3)

which form a basis of C2 ⊗C2, where |01〉 = |0〉 ⊗ |1〉.
As mentioned earlier, the term quantum state can also refer to a density matrix. A

density matrix $ is a hermitian positive semidefinite operator on a Hilbert space H
with unit trace, that is

$† = $, $ ≥ 0, Tr ($) = 1. (3.4)

We denote the set of density matrices acting on H as S(H). Further, every state vector
|ψ〉 corresponds to a density matrix, which is defined as the rank-one projector on that
state vector, |ψ〉〈ψ|. The converse is not true however. The density matrix formalism is
more expressive. While one cannot assign a subsystem of an entangled system a state
vector, one can assign it a density matrix. Provided a state $ ∈ S(HΣ) and a subset
T ⊆ S of systems, the state $T of the system that consists of the subsystems in T is
computed using the partial trace

$T = TrS\T ($) . (3.5)

The partial trace is defined uniquely as the linear operator that maps

TrS\T : A⊗ B 7→ Tr (A) B, (3.6)

where A is an operator on HS\T and B is an operator on HT . Besides describing the
marginals of entangled states, density matrices can also be used to describe mixtures
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of pure states. In this way, one can account for the case, in which a system is known
to be in some state |a〉 with a probability p or else in a different state |b〉. In this
case, the system is described by the state $ = p|a〉〈a| + (1 − p)|b〉〈b|. In this case,
the rank of the state is greater than one and it is called mixed. In contrast, states that
are rank one are called pure. Whether a state is pure or mixed can be conveniently
decided by computing the purity Pur($) = Tr

(
$2) of that state. A state is pure, iff its

purity is equal to one. Mixed states are related to pure states in (at least) two ways.
Any mixed state can be diagonalized; it can be expressed as a convex combination of
pure states. Alternatively, any state $A = ∑i pi|i〉〈i| can be obtained as a partial trace
$A = TrB (|ψAB〉〈ψAB|) of its purification |ψAB〉 = ∑i

√
pi |ii〉.

The impurity of a state $ can alternatively also be captured by quantifying the lack
of information about a quantum system in that state. This is done using the Von Neu-
mann entropy, which is defined as

S($) = −Tr ($ log $) . (3.7)

The von Neumann entropy of a state is non-negative quantity that vanishes for pure
states and only for pure states. Further, the von Neumann entropy is concave.

3.1.1 Bloch vectors and operator bases

We introduced density matrices as positive semidefinite operators with trace one act-
ing on an underlying finite dimensional Hilbert space H. However, there is a second
perspective. Let B(H) be the real vector space of operators acting onH. Then the set of
density matrices arises as the intersection of the convex cone of positive semidefinite
operators with the hyperplane of trace-one operators in B(H). We denote the subspace
of B(H) that contains the hermitian matrices as BH(H). For practical purposes, it is
convenient to choose a basis for BH(H). In the case of qubits, one such basis consists
of the Pauli matrices

σ0 =

(
1 0
0 1

)
, (3.8)

σ1 =

(
0 1
1 0

)
, (3.9)

σ2 =

(
0 −i
i 0

)
, (3.10)

σ3 =

(
1 0
0 −1

)
. (3.11)

Every qubit state can be expressed in the Pauli basis as

$ =
1
2

(
σ0 + ∑

i=1,2,3
riσi

)
. (3.12)



32 3 Quantum Mechanics

Hence, every qubit state can be associated with a point in the euclidian vector space
R3. This point has the coordinates ri in the cartesian basis. The position vector of this
point is called the Bloch vector of the state $. For pure states it holds that ‖~r‖ = 1. Thus,
the set of Bloch vectors of all qubit states S(C2) describes a three-dimensional ball.
This ball is called the Bloch ball and it is full. Points on the boundary represent pure
states, while points inside the ball represent mixed states.

The concept of the Bloch vector can be generalized for states in higher dimensional
Hilbert spaces. However, the geometric structure of the state set S(H) becomes more
complicated in this case [46].

3.2 State evolution

The perhaps simplest time evolution a system can undergo is from a pure state |ψ〉 ∈
H to another pure state |ψ′〉 ∈ H. This time evolution is described by a unitary matrix
U acting on H. If the dynamics of the system are described by a constant Hamiltonian
H, the unitary U can be computed from the Hamiltonian H as

U = exp
(
−iHt

h̄

)
, (3.13)

where t is the parameter accounting for time and h̄ is the reduced Planck constant.
This is the solution to the Schrödinger equation

ih̄
d
dt
|ψ(t)〉 = H |ψ(t)〉. (3.14)

While this may be a sufficient description of an isolated system, it is not, if one aims to
describe the time evolution of a subsystem of a larger system Σ. Such a system is also
called an open quantum system. The complement of the open quantum system S with
respect to Σ is called the environment of S. Consider for example a two-qubit system
that is initially in a product state |00〉 and undergoes a transition into a Bell state. In
this case, the time evolution of a single qubit cannot be described with a unitary, as its
reduced state after the transition is mixed and any unitary maps pure states to pure
states.

The most general time evolution of a system is described by a quantum channel. A
quantum channel, or channel for short, is a map

C : S(H)→ S(H), (3.15)

which is completely positive, linear, and trace preserving. Such a map is called a CPTP
map. If a map is completely positive, this means that for any finite dimensional Hilbert
space H′ with identity operator id acting on B(H′), the map id ⊗ C maps a posi-
tive semidefinite operator in B(H′ ⊗H) to another positive semidefinite operator in
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B(H′ ⊗H) [45]. An important example for a map that is positive but not completely
positive is the partial transpose, which we will discuss in more detail in the section
dedicated to entanglement. Complete positivity as well as trace preservation are prop-
erties that directly follow from the fact that channels are supposed to map states to
states. Linearity is motivated by supposing that acting with a channel on a mixture of
states yields the same result as mixing the states that were obtained by acting with the
same channel on the components of the mixed state [44], that is

C

(
∑

i
pi|i〉〈i|

)
= ∑

i
piC(|i〉〈i|). (3.16)

Earlier, we discussed unitary time evolution, the corresponding channel of which is
called a unitary channel. Given that the time evolution of a closed system is described
by a unitary channel [44], this elicits the question whether for any open quantum
system S, one can construct a larger, closed quantum system that contains S, such
that the time evolution of S is compatible with a unitary time evolution of the closed
system it is embedded in. Stinespring’s dilation theorem establishes, that this is indeed
the case [45]: For any channel C : S(HS) → S(HS) acting on a system S in a state
$ ∈ S(HS) there exists a system E with Hilbert space HE, a pure state ξ ∈ S(HE) and
a unitary U : HS ⊗HE → HS ⊗HE, such that

C($) = TrE

(
U($⊗ ξ)U†

)
. (3.17)

Every channel further admits a second representation, the Kraus form [45]. This means
that every channel C : S(H) → S(H) can be expressed with the help of a sequence of
so-called Kraus operators Ki : H → H, such that

C($) = ∑
i

Ki$K†
i , (3.18)

where

∑
i

K†
i Ki = 1, (3.19)

and 1 denotes the identity operator acting onH. If dim(H) = d then one can show that
no more than d2 Kraus operators are necessary to express the action of any channel
[45].

We now discuss some examples for qubit channels: The bit flip channel, the phase
flip channel, the bit-phase flip channel and finally the depolarizing channel. In short,
the first three are examples for channels that describe an evolution in which the state is
subject to a unitary evolution defined by one of the Pauli matrices for some probability
and else remains unchanged. The depolarizing channel describes a process in which
the state is swapped out for a maximally mixed state with some probability. The names
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reflect the actions of the Pauli matrices on a state

|ψ〉 = √p |0〉+
√

1− p eiφ |1〉 (3.20)

expressed in the eigenbasis of the Pauli Z matrix. Acting on this state with X exchanges
the basis states |0〉 and |1〉 which corresponds to a bit flip. The Kraus operators are
then simply

E0 =
√

q1 (3.21)

E1 =
√

1− qX (3.22)

for some probability 0 ≤ q ≤ 1. In the same way that X leads to a bit flip, Z leads to
a phase flip, that is a sign flip in the complex phase exp (iφ). As Y = iXZ, the Pauli Y
unitary essentially leads to a combination of bit flip and a phase flip. The depolarizing
channel has the interpretation of mixing the state with white noise as the maximally
mixed state contains no information about the system it describes.

Other than bit flips, phase flips, and mixture with white noise, one can also consider
amplitude damping and phase damping. The amplitude damping channel is described
with the Kraus operators

E0 = |0〉〈0|+
√

1− γ |1〉〈1| (3.23)

E1 =
√

γ|0〉〈1| (3.24)

and 0 ≤ γ ≤ 1. This channel leaves the state |0〉 invariant while damping the am-
plitude of the |1〉 state. This process is physically relevant for example in order to
describe spontaneous emission, where the states |0〉 and |1〉 are fock states. In this
case γ can be interpreted as the probability for photon loss [44].

As a last example, we discuss a simple scattering model [47], where system and
environment are initially in a product state

$SE = $S ⊗ $E (3.25)

and the dynamics between system and environment is modeled using a simple cou-
pling Hamiltonian

HSE = Z⊗ R. (3.26)

With this one can calculate the time evolution of the system using the Schrödinger
equation. One finds that the density matrix of the system evolves such that the diag-
onal elements remain unchanged, while the off-diagonal elements – called coherences
– decay exponentially. Such a process is thus called decoherence.
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3.3 Measurements

In this section we discuss the description of measurements in the simplest form, where
only the measurement statistics matter.

Consider a measurement of a quantum system with Hilbert space H in the state
$ ∈ S(H). Further let the measurement yield outcomes o ∈ Ω. We are interested in
probabilities at which different events occur. This is formalized using a probability
space, where Ω is the sample space. The event space F is a σ-algebra on Ω. Together
with a probability measure µ$ : F → [0, 1], the sample space and event space form a
probability space.

One essential part of a measurement is how different states give rise to differ-
ent probability measures. This is described using a positive operator-valued measure, or
POVM, for short. A POVM is a map

P : F → E(H) (3.27)

where E(H) is the set of effects acting onH. An effect is a positive-semidefinite operator
with eigenvalues smaller or equal to one [45]. Further, a POVM satisfies the conditions

P(∅) = 0

P(Ω) = 1

P(∪iXi) = ∑
i

P(Xi) (3.28)

for a sequence (Xj)j of disjoint sets Xj ∈ F [45]. A POVM gives rise to the family of
probability measures µ$ through the Born rule, that is

µ$(X) := Tr (P(X)$) . (3.29)

In the case where Ω is finite, one can simply choose the power set of Ω as the σ-algebra
F and any POVM is sufficiently defined by the collection of effects (Eo)o∈Ω associated
with the measurement outcomes o.

A subclass of POVMs are projection-valued measures (PVMs). These are POVMs
that map to effects that are projectors. Measurements that are described by PVMs
are called projective measurements. If Ω is finite, projective measurements can also be
described using observables. Observables are hermitian operators and are particularly
useful, if only the expectation value of some quantity is of interest. An observable can
be obtained from a PVM that is specified by a sequence of projectors (Πi)i∈Ω as

O = ∑
i∈Ω

oiΠi (3.30)

after assigning a real value oi to every outcome. Vice versa, every observable defines
a PVM given by the projectors on the eigenspaces of that observable. These are well
defined since any hermitian matrix possesses a spectral decomposition.
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3.4 Entanglement

We now return to the quantum mechanical phenomenon of entanglement. The find-
ings discussed in the sections about entanglement are also discussed in the excellent
reviews [48, 49], if no other resource is cited. We already briefly discussed entangle-
ment for pure states. Given a system Σ with Hilbert space HΣ that consists of subsys-
tems s ∈ S with Hilbert spaces Hs, a pure state |ψΣ〉 is called fully separable if it can be
expressed as the product

|ψΣ〉 =
⊗
s∈S
|ψs〉 (3.31)

of states |ψs〉 ∈ Hs. A mixed state $Σ ∈ S(HΣ) is called fully separable, if it is a convex
combination

$Σ = ∑
k

λk|ψΣ,k〉〈ψΣ,k| (3.32)

of fully separable pure states |ψΣ,k〉 for convex coefficients 0 ≤ λk ≤ 1, ∑k λk = 1
[48, 49].

The notion of full separability can be generalized to allow for a more nuanced de-
scription of quantum states: Consider a partition P = {c1, c2, . . . , cn} of the set of sub-
systems S. This means that the cells ck ⊂ S are disjoint and nonempty and ∪n

k=1ck = S.
A pure state |ψΣ〉 ∈ HΣ on a system Σ with subsystems in S is called n-separable [49],
if there exists a partition P with n cells, such that for every cell c ∈ P there exists a
state |ψc〉 ∈

⊗
i∈cHi so that

|ψΣ〉 =
⊗
c∈P
|ψc〉. (3.33)

As before, this definition is extended to mixed states. A mixed state is called n-
separable if it is the convex combination of n-separable pure states. It is important
to note that the pure states in the convex decomposition do not need to be n-separable
with respect to the same partition. Obviously, n-separablity implies (n− 1)-separability.
Therefore, 2-separablity – usually called biseparability – is the weakest form of sep-
arability. If a multipartite state is not biseparable, it is called genuinely multipartite
entangled.

There are more ways to classify quantum states and quantify their entanglement. In
the following we discuss common equivalence classes for quantum states and motivate
the properties a function E : S(HΣ) → R+ must have to qualify as an entanglement
measure. First of all, it should hold that µ($) = 0 if $ is a fully-separable state.

Second, two quantum states $, γ ∈ S(HΣ) are considered equivalent with regard to
all of their entanglement properties, if there exist local unitary operators Us : Hs → Hs,
such that

$ =
⊗
s∈S

Usγ
⊗
s∈S

U†
s . (3.34)
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Such a local unitary operation only changes the local degrees of freedom of the state
and is locally reversible. These equivalence classes can be coarse grained by defin-
ing a bigger class of transformations of states that preserve equivalence. A notable
class of such transformation are local operations and classical communication (LOCC).
LOCC operations encompass all state transformations that arise from the application
of local channels Γs : S(Hs) → S(Hs) and the exchange of classical information be-
tween the parties, which allows the parties to coordinate their application of local
channels. Since no entanglement can be created in this way, entanglement measures
are defined to be non-increasing under LOCC operations [48]. Oftentimes, other or
even stronger properties are demanded for entanglement measures, such as additiv-
ity E($1 ⊗ $2) = E($1) + E($2), convexity, or to be non-increasing on average under
LOCC operations [48]. In general, these axioms do not lead to a unique way to quantify
entanglement. In fact, many different entanglement quantifiers, that do not necessar-
ily exhibit all of the desirable properties for entanglement measures above, have been
proposed. Two well-known entanglement measures are negativity and entanglement
of formation. Negativity quantifies the violation of a separablity criterion called PPT
criterion, which will be discussed later. Entanglement of formation is defined for bi-
partite pure states and exploits the fact that the marginal states of the subsystems are
mixed, if the state is entangled. The entanglement between the two parties is then
measured as the Von Neumann entropy of the marginals. Entanglement of formation
can also be extended to mixed states using a so-called convex roof construction. This
means that the entanglement of formation of a mixed state is E($) = inf |ψk〉,pk

E( |ψk〉)
such that $ = ∑k pk|ψk〉〈ψk|.

3.4.1 Notable families of quantum states

From the viewpoint of entanglement of formation, the question which bipartite states
$AB ∈ S(Cd ⊗ Cd) are maximally entangled can be answered: They are pure states
with maximally mixed marginals $A = TrB ($AB) = 1

d1 and $B = 1
d1. For two-qubit

systems, these states are equivalent up to local unitaries to the Bell states Eq. (3.3). For
bipartite systems with local dimension d, the states

|φ+
d 〉 =

1√
d

d−1

∑
i=0
|i〉 |i〉 (3.35)

satisfy this property and are generally referred to as the maximally entangled states of
their respective systems.

In n-qubit systems, the GHZ state

|GHZ〉 = 1√
2
( |0 . . . 0〉+ |1 . . . 1〉) (3.36)

is an example of a highly entangled state that leads to a maximal violation of many
Bell inequalities [48, 50]. For three qubits, almost all genuinely tripartite entangled
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states belong to the SLOCC class of the GHZ state [48]. SLOCC classes are a coarse
graining of LOCC classes, where two states |ψ〉, |φ〉 ∈ HΣ are regarded equivalent
if they are related by an SLOCC operation, that is, if there exist invertible operators
As : Hs → Hs, such that

|ψ〉 =
⊗
s∈S

As |φ〉. (3.37)

The name SLOCC stands for stochastic local operations and classical communication and
stems from the fact that SLOCC operations describe all operations that can be accom-
plished by means of LOCC operations with some probability. For three qubits, there is
only one other SLOCC class of genuinely entangled states apart from the GHZ-class,
which is represented by the W-state

|W〉 = 1√
3
( |001〉+ |010〉+ |100〉). (3.38)

The concept of maximally entangled states in bipartite systems is generalized by the
concept of absolutely maximally entangled (AME) states, which are multipartite states
that are maximally entangled with respect to every bipartition [51, 52]. Specifically, an
AME-state AME(n, d) ∈ HΣ =

⊗n
i=1 Cd is an n partite qudit state, such that for any

subset M ⊂ S, |M| ≤ b n
2 c of parties, the corresponding marginal state

$M = TrS\M (|AME(n, d)〉〈AME(n, d)|) = 1
d|M|

1 (3.39)

is maximally mixed. Apart from the Bell states, the three party GHZ state is another
example for an AME state. A table that indicates whether for given n, d an AME state
exists, does not exist or is unknown can be found on the AME website [53, 54].

The last family of states we want to discuss in this section are Werner states [55, 56].
They are quantum states $ ∈ S((Cd)⊗n), that remain invariant up to a complex phase
under the action of an arbitrary local unitary U : Cd → Cd acting on every subsystem,
so

$ = U⊗n$ (U†)⊗n. (3.40)

In Chapter 10 we will investigate the question, for which systems there exist states that
are Werner states and AME states at the same time.

3.4.2 Entangled pure states and the Schmidt decomposition

For pure states, deciding whether they are entangled or not is a simple task. If a pure
state is fully separable, this means that it is a product state and hence all of its marginal
states, that is the states of its subsystems, are pure, too. For bipartite states, one can
also check, how close some given state |ψ〉 ∈ HA ⊗HB is to a product state. To do
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this, one calculates the Schmidt decomposition of that state. Calculating the Schmidt
decomposition amounts to finding local orthonormal basis vectors |i〉A ∈ HA and
|i〉B ∈ HB, such that the state can be decomposed as

|ψ〉 = 1√
d

d−1

∑
k=0

λk |iAiB〉, (3.41)

with positive Schmidt coefficients λk and Schmidt rank d ≤ min(dim(HA), dim(HB)).
For pure states, the purity of the marginal states is a simple, necessary and sufficient

criterion for separability. However, it is in general difficult to decide whether a mixed
state is entangled or not. In the following, we discuss practical entanglement criteria
that give necessary conditions for separability.

3.4.3 PPT criterion

A common and useful method to detect entanglement is the positive partial transpose
(PPT) criterion [57, 58]: The partial transpose – that is the transposition map acting
on only some of the subsystems – of a separable state yields a positive semidefinite
operator which is, in fact, another separable state. This is easily understood, since the
transposition map is a positive trace preserving map which means that $T is a state if
$ is a state. Applied to a separable state $ ∈ S(HA ⊗HB) with

$ = ∑
k

pk$k
A ⊗ $k

B, (3.42)

one finds that

$TA = ∑
k

pk($
k
A)

T ⊗ $k
B (3.43)

is a separable state as claimed above. Hence, entanglement is detected as soon as
one of the partial transpositions of a state has a negative eigenvalue. For systems of
two qubits or one qubit and one qutrit, the PPT criterion is even sufficient to certify
separability [58]. In general however, it is not sufficient and there exist examples of
entangled PPT states.

3.4.4 Entanglement witnesses

An entanglement witness is an observable W, such that

Tr ($W) ≥ 0 (3.44)

for all separable states $ and

Tr ($W) < 0 (3.45)
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for at least one entangled state $.
For example, the observable

W = (|ψ〉〈ψ|)TA (3.46)

yields a positive expectation value for all separable states since

Tr ($W) = Tr
(
|ψ〉〈ψ|$TA

)
≥ 0 (3.47)

and every separable state is PPT. If there exists an entangled state that violates the
inequality, then W is an entanglement witness. This can be ensured by choosing the
eigenvector to a negative eigenvalue of an entangled state with negative partial trans-
pose for |ψ〉.

3.4.5 Computable Crossnorm / Realignment criterion

We have discussed earlier how one can decide the separability of a bipartite pure state
by calculating the Schmidt decomposition. For mixed states, there is a similar criterion
called computable crossnorm / realignment (CCNR) criterion. The computable cross norm
is defined as

CCN($) = ∑
k

λk, (3.48)

where λk are the Schmidt coefficients of the state $, if the latter is interpreted as a
vector in the space B(HA)⊗B(HB). This means that

$ = ∑
k

λkGA
k ⊗ GB

k (3.49)

where (GA
k )k and (GB

k )k are ordered, hermitian, orthonormal bases of B(HA) and
B(HB) respectively.

The CCNR criterion states that for any bipartite, separable state $ ∈ S(HA ⊗HB) it
holds that

CCN($) ≤ 1. (3.50)

The CCNR criterion is established by verfying that the computable crossnorm is a
norm, which implies convexity. Then the claim follows from the fact that CCN(|ψ〉〈ψ|) =
1 for pure states |ψ〉.

3.4.6 Symmetric extension criterion

The symmetric extension criterion due to Doherty et al [35] is interesting for us to
discuss for mainly two reasons. First of all, the term actually refers to a sequence of
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ever more strict entanglement criteria, such that for any entangled state, there exists
an index n, such that the criterion indexed by n detects this entanglement. Secondly,
the idea on which these criteria rely, symmetric extensions, is versatile and can for
example be helpful to decide whether a state can violate a Bell inequality. We will
come back to this in Chapter 4, where we discuss nonlocality.

The symmetric extension criterion for a biseparable state $ ∈ S(HA ⊗ HB) in-
dexed with an index n is the following: If $ is separable, then there exists a state
$n ∈ S(H⊗n

A ⊗ HB), called a symmetric extension of $, which satisfies three conditions.
The first two conditions are

TrA⊗(n−1) ($n) = $, (3.51)

P($n) = $, (3.52)

where P : S(H⊗n
A ⊗HB) → S(H⊗n

A ⊗HB) is an operator that performs an arbitrary
permutation of the subsystems with Hilbert space HA. The third condition is that any
partial transposition of $n is positive semidefinite.

For a separable state

$ = ∑
i

pi|ψi〉〈ψi| ⊗ |φi〉〈φi| (3.53)

the state

$n = ∑
i

pi|ψi〉〈ψi|⊗n ⊗ |φi〉〈φi| (3.54)

is a symmetric extension. Trivially, for n = 1 a symmetric extension exists if and only
if the state is PPT, so the symmetric extension criterion reduces to the PPT criterion in
this case.

The symmetric extension criterion can be checked on a computer and finding a
symmetric extension of a specific level amounts to solving a semidefinite program.
Yet, in practise, deciding whether a state is separable or not is not easy, as it may be
necessary to compute many levels. In fact, the separability problem is known to be
NP-hard [35].

3.4.7 Bell inequalities as device independent tests of entanglement

Another tool to detect entanglement are Bell inequalities. Bell inequalities are designed
to test nonlocality, which is a notion that is different from entanglement [59]. However,
in quantum mechanics, nonlocality implies entanglement, which makes Bell inequal-
ities a tool to detect entanglement in quantum systems. Bell inequalities will be dis-
cussed in greater detail in the Chapter 4, which is dedicated to Bell nonlocality. In this
section, we briefly discuss Bell inequalities as a a tool for entanglement detection. One
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example of a Bell inequality, which we state without proof or derivation, is the CHSH
inequality [60]

〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 ≤ 2. (3.55)

The CHSH inequality holds, if two parties, A and B perform measurements A1, A2 on
subsystem A and B1, B2 on subsystem B and every measurement yields outcomes ±1.
Moreover, the expectation values 〈AiBj〉 have to be compatible with a so-called local
hidden-variable model [2]. This means that they can be expressed in the form

〈AiBj〉 = ∑
λ

pλ〈Ai〉λ〈Bj〉λ. (3.56)

.
If a Bell inequality is analyzed in the framework of quantum mechanics, the mea-

surements should in general be described by POVM measurements. For example, if
A1 denotes a measurement that yields outcomes one out of finitely many outcomes
(oi)i∈Ω, then

〈A1〉 = ∑
i∈Ω

oiTr (Ei$)

=

〈
∑
i∈Ω

oiEi

〉
=: 〈Â1〉 (3.57)

for a POVM defined by the effects (Ei)i∈Ω. Sometimes, if a Bell inequality is formu-
lated in terms of expectation values of measurements like in Eq. (3.55), this notation
is referred to as ’observable notation’, although the measurement A1 is in general not
described by an observable. Nevertheless, one can associate the hermitian operator Â1

with the measurement A1, which is useful to calculate the expecatation value of A1 in
quantum mechanics. By associating a hermitian operator with every measurement of
the CHSH inequality, we can write a quantum mechanical version of the inequality as

〈Â1B̂1 + Â1B̂2 + Â2B̂1 − Â2B̂2〉 ≤ 2. (3.58)

The operator

Ŝ = 〈Â1B̂1 + Â1B̂2 + Â2B̂1 − Â2B̂2〉 (3.59)

is called the Bell operator the CHSH inequality and it depends on the particular choice
of measurements. If a Bell inequality is violated for a particular choice of measurement
settings, then the Bell operator of this inequality for this choice of measurement set-
tings is an entanglement witness up to an affine offset. To meet the definition, the Bell
operator must satisfy two conditions. First, the inequality must be violated. Second,
the inequality holds for all separable states. Let $ = ∑λ pλ$A

λ ⊗ $B
λ be a separable state.
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Then we can express all of the expectation values that appear in the CHSH inequality
as

〈Âi B̂j〉 = ∑
λ

pλTr
(

Âi$
A
λ

)
Tr
(

B̂j$
B
λ

)
. (3.60)

Thus, the expectation values are described by a local hidden-variable model. Therefore,
the CHSH inequality holds. This result extends to other Bell inequalities and the proof
works in the same way [48]. Crucially, for separable states the Bell inequality holds
for any measurements that yield appropriate outcomes. The implementation of the
measurements does not matter. This feature is called device independence [48].

3.5 EPR argument

The Einstein-Podolski-Rosen argument [61], called EPR argument for short, is an ar-
gument in favor of the hypothesis that quantum mechanics is incomplete. EPR define
that a theory is complete, if every element of reality has a counterpart in the theory.
A physical quantity qualifies to be associated with an element of reality, if it can be
predicted without disturbing the system. So, if a physical quantity can be predicted
without disturbance, a theory is complete if and only if it predicts this quantity with
certainty.

To reach their conclusion that quantum mechanics is incomplete, EPR investigate
the relationship between the following two hypotheses:

H1 Quantum mechanics is incomplete.

H2 Non-commuting observables cannot correspond to elements of reality.

EPR formulate two assertions regarding these two hypotheses. Assertion one is that
one of the hypotheses is true. The argument for this assertion is this: If H1 was true,
there is nothing to show. Thus, assume that H1 is false and therefore quantum mechan-
ics is complete. In quantum mechanics, the outcomes of two non-commuting observ-
ables are not predicted with certainty. Therefore, if quantum mechanics is complete,
they cannot be predicted with certainty and H2 follows.

The second assertion is that if H1 is false, then also H2 must be false. In their ar-
gument, EPR make use of the position and momentum operator, but an equivalent
argument can be formulated using the observables X = σ1 and Z = σ3 [62]. Consider
the Bell state

|φ+〉 = 1√
2
( |00〉+ |11〉)

=
1√
2
( |++〉+ | − −〉), (3.61)
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where |+〉, |−〉 are the eigenstates of X. If the first party, say Alice, measures observ-
able X, then the second subsystem is described by an eigenstate of X and hence the
measurement outcome of measuring X on the second system can be predicted with
certainty. However, if Alice measures the observable Z, then the second subsystem is
in an eigenstate of Z and therefore Z, too, corresponds to an element of reality. If one
assumes that a measurement on the first subsystem does not cause a change in the sec-
ond subsystem, then both X and Z simultaneously correspond to elements of reality.
This is a contradiction to H2.

Since according to assertion one at least one of the hypotheses must be true, hypoth-
esis H1 must be true and hence quantum mechanics is incomplete.



4 Bell Nonlocality

The concept of Bell nonlocality was introduced by John Bell as a reaction to the
Einstein-Podolsky-Rosen (EPR) argument [2, 61] (see Chapter 3, Section 3.5). Specifi-
cally, it was conceived to make the assumption experimentally testable, whether quan-
tum mechanics can be completed in the sense of EPR [2].

The situation that is considered is similar to the one considered in the EPR ar-
gument. We depict a simple experimental setup in Figure 4.1. At least two parties,
typically called Alice and Bob, perform measurements on disjoint systems. Ideally, the
parties are envisioned to be placed in distant laboratories. In this situation, Bell local-
ity arises as the conjunction of three assumptions. The first assumption is no-signaling.
No-signaling implies that the choice of measurement of one party does not affect the
outcome of a measurement of another party. One justification for this assumption may
be granted in the case in which the events of Alice choosing her measurement setting
and Bob obtaining the outcome for his measurement are space-like separated. In this
case, a signal sent out to disturb Bob’s system when Alice chooses her measurement
cannot reach Bob’s system according to the laws of special relativity.

The second assumption is called freedom of choice. Freedom of choice implies that
each party can choose her measurement settings independently of the state of the
measured system or the measurement apparatuses.

The third assumption is that measurement outcomes are fundamentally predeter-
mined. Einstein expressed his belief that this is indeed the case when he famously
stated that god does not does play dice with the universe [63].

If Bell locality is violated, this phenomenon is called Bell nonlocality. In this chap-
ter, we discuss the concept of Bell nonlocality in detail. Our focus lies on a rigorous
presentation of the subject. To achieve this, we introduce some terminology that helps
us to keep notation reasonably concise. It also lays the foundation for Bellpy, a Python
library for nonlocality, which we introduce in Chapter 9.

4.1 Black-box experiments

The goal of this section is to formalize the description of an experiment that involves
one or multiple systems, without imposing any physical assumptions. Such an exper-
iment is known as a black-box experiment. There are only three pieces of information
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Figure 4.1: Simplified experimental setup for a Bell experiment – A pair of entangled
photons is distributed to Alice and Bob, who measure the polarization,
horizontal or vertical, of their respective photons after manipulating them
using waveplates (gray). In this way, different settings are realized.

that are assumed to be known about any measurement in a black-box experiment.
The first piece of information is the label k of the system that is affected by the mea-
surement. Typically, these systems are envisioned to be distant laboratories, which are
called parties. Parties are usually labeled using the letters A, B, C. If there are more
than three parties, we choose k ∈ N. The second piece of information about a mea-
surement is a label i ∈ N, called input. The third piece of information is a finite set O
of outputs of the measurement. We hence define a measurement as a triple m = (k, i, O).
We also write k(m), i(m), O(m) to refer to the system, the input, or the outcomes of m,
respectively. An alternative term for measurement is setting.

The set S of settings that can be performed in an experiment is called the scenario
of this experiment [64, 65]. A commonly considered scenario is the so-called CHSH
scenario, which contains the settings

A1 = (A, 1, {−1, 1}), (4.1)

A2 = (A, 2, {−1, 1}), (4.2)

B1 = (B, 1, {−1, 1}), (4.3)

B2 = (B, 2, {−1, 1}). (4.4)

Let J ⊂ S be a subset of measurements, such that every measurement in J affects a
different party. Then these measurements can be performed jointly, which is why we
call J a joint measurement. We define the set of joint measurements for a scenario S as

J (S) = {J ⊂ S | k(m) 6= k(m′) for all m, m′ ∈ J}. (4.5)

In the case of the CHSH scenario SCHSH , the set of joint measurements is

J (SCHSH) = {{A1}, {A2}, {B1}, {B2}, {A1, B1}, {A1, B2}, {A2, B1}, {A2, B2}}. (4.6)

Given a joint measurement J ∈ J (S), we call any sequence r = (om)m∈J such that
om ∈ O(m) a result of J. We denote the set of possible results of a joint measurement J
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as R(J). An experiment is described by stating the probability p(r | J) for each result
r to occur after each joint measurement J ∈ J (S). We call every such pair c = (r | J)
of a joint measurement J ∈ J (S) and a result r of J a record, since this amounts to the
information recorded in every round of the experiment. To stress the fact that p(c) is
the probability of r occurring under the condition that J was performed, we denote c
as (r | J) instead of (r, J). We denote the set of possible records in an experiment as

C(S) = {(r | J) | r ∈ R(J), J ∈ J (S)}. (4.7)

As an example, consider the records for the joint measurement {A1, B2}, which are

(−1,−1 | A1, B2), (−1, 1 | A1, B2), (1,−1 | A1, B2), (1, 1 | A1, B2), (4.8)

where we have omitted parenthesis and curly brackets for better readability. In total,
the CHSH scenario has 24 different records.

We now show how to encode the information of the probabilities p(c) in a vector.
We define V as the free vector space over R generated by the set of records C(S).
Further, we equip V with an inner product · : V ×V → R, such that the records form
an orthonormal basis. We now define the behavior space N as the affine subspace of V
that contains all vectors b ∈ V which satisfy the normalization constraints

∑
r∈R(J)

b · (r | J) = 1 (4.9)

for all J ∈ J (S). We say that N is the behavior space for the scenario S. If more than
one scenario is defined, we also write N (S) for clarity.

Finally, we define the set of behaviors B ⊂ N as the set of vectors b ∈ N that satisfy
the constraints

b · c ≥ 0 (4.10)

for all records c ∈ C(S). B is the intersection of finitely many half-spaces in N and
therefore a convex polytope (see Chapter 1 for reference). We therefore also refer to B
as the polytope of behaviors. Any vector b ∈ B is called a behavior. The probability for a
record c ∈ C(S) can be obtained from a behavior as

p(c) = b · c. (4.11)

We already established that B is a convex polytope. More specifically, B is a product
of standard simplices, as defined in [12]. To see this, consider the subspace VJ ⊂ V for
a joint measurement J ∈ J (S) which is the span of the records (r | J), r ∈ R(J). The
projection of the polytope of behaviors into VJ is a standard simplex as defined in Ref.
[12]. Further note that every behavior b ∈ B is the direct sum of vectors bJ ∈ VJ . This
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proves the statement. The vertices of this polytope are known and correspond to the
deterministic behaviors, which are the behaviors that satisfy

p(c) ∈ {0, 1} (4.12)

for all c ∈ C(S).
In the following we discuss behaviors that satisfy further conditions. Given such

conditions, we refer to the set M ⊆ B of behaviors that satisfy the conditions as a
model. In this chapter we discuss four types of models: The model of no-signaling
behaviors, local hidden-variable models, the model of quantum behaviors, and hybrid
models. To each of these models we devote one section, starting with no-signaling
behaviors.

4.2 No-signaling behaviors

If an experiment is conducted on a system that is composed of several subsystems
and measurements are performed locally in a space-like separated manner, then the
behaviors are subject to the no-signaling constraints [66]: If the event e1 of choosing a
measurement on one subsystem A is space-like separated from the event e2 of obtain-
ing an outcome on another subsystem B, then the choice of measurement on subsystem
A does not affect the statistics of measurement outcomes obtained on B. Otherwise a
message encoded in the change of measurement statistics could be sent from one point
in space-time to another space-like separated one, which would imply superluminal
signaling, or signaling for short. This argument relies on the assumption that the mea-
surement on subsystem A is indeed chosen at e1 rather than being predetermined.
This assumption is known as the freedom of choice assumption.

For a bipartite system, where x (a) is the input (output) on subsystem A and y (b) is
the input (output) on system B, the absence of signaling from party B to party A can
be stated as

p(a | x) = ∑
b

p(a, b | x, y), (4.13)

for all a, x and y. The condition that excludes signaling from A to B can be stated
similarly. These are the no-signaling conditions for the bipartite case. For multipartite
systems, the no-signaling conditions are the conditions that exclude signaling from
any subset of parties to any other subset of parties. The only information necessary to
state them is the scenario.

Geometrically, the no-signaling constraints define a hyperplane NS in the affine
vector space N . The set of no-signaling behaviors MNS is the intersection of this hyper-
plane with the polytope of behaviors B. Hence, MNS is a convex polytope.
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4.2.1 Dimension of no-signaling behaviors

Following the arguments of Tsirelson [65], one can calculate the dimension of the bipar-
tite no-signaling polytope as the dimension of the affine subspace NS it is contained
in. We call this subspace the no-signaling subspace.

We begin with a bipartite scenario S = SA ∪ SB and denote the measurements on
party A (B) as SA (SB). Consider two measurements x ∈ SA, y ∈ SB and assume
1 ∈ O(x), 1 ∈ O(y). The crucial point in the calculation of the dimension of N S for
this case is the observation that if all the marginals p(a | x) and p(b | y) are known,
then all those probabilities p(a, b | x, y) that affect either the outcome a = 1 or b = 1
can be omitted because they are redundant. In fact, they are already defined by the
no-signaling conditions as

p(a, 1 | x, y) = p(a | x)− ∑
b∈O(y)\{1}

p(a, b | x, y) (4.14)

and

p(1, b | x, y) = p(b | y)− ∑
a∈O(x)\{1}

p(a, b | x, y). (4.15)

Also, the marginal probabilities p(1 | x) and p(1 | y) are redundant since the marginal
distributions are normalized and hence

p(1 | x) = 1− ∑
a∈O(x)\{1}

p(a | x), (4.16)

and accordingly for subsystem B. The probabilities p(a, b | x, y) and marginal prob-
abilities p(a | x), p(b | y), except for the ones containing a = 1 or b = 1, form an
independent set of parameters and together fully specify a behavior. One can there-
fore obtain the dimension of NS by counting these parameters as

dim(NS) = ∑
x∈SA

(|O(x)| − 1) + ∑
y∈SB

(O(y)− 1) + ∑
x∈SA

(|O(x)| − 1) ∑
y∈SB

(O(y)− 1)

= (oA −mA + 1)(oB −mB + 1)− 1, (4.17)

where oA = ∑x∈SA |O(x)| (oB = ∑y∈SB |O(y)|) is the sum of the number of outcomes
for all measurements on subsystem A (B). This can be generalized to an arbitrary
number of systems k ∈ {1, . . . , n} with measurements in Sk as [67]

dim(NS) =
n

∏
k=1

(
∑

m∈Sk

(|O(m)| − 1) + 1

)
− 1, (4.18)

where n denotes the number of parties.
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4.2.2 Expectation value behavior space

Consider a scenario S =
⋃n

k=1 Sk where Sk is the set of measurements of party k such
that O(m) = {−1,+1} for all measurements m ∈ S. In this case Eq. (4.18) simplifies to

dim(NS) =
n

∏
k=1

(|Sk|+ 1)− 1. (4.19)

As independent parameters we choose all components of NS in the dimensions given
by the records that only include outcomes +1.

Alternatively, any point v ∈ NS for this scenario can be characterized by stating for
each joint measurement J ∈ J (S) the quantity

〈J〉 := ∑
r∈R(J)

v · (r | J) ∏
om∈r

om (4.20)

where we write om ∈ r for elements om of the sequence r. If v is a behavior, v · (r | J)
has the interpretation of the probability p(r | J) and 〈J〉 can hence be interpreted as
the expectation value of the product of the outcomes of m ∈ J.

We continue with a proof of the statement that no-signaling behaviors for such sce-
narios can indeed be inferred from the expectation values of all joint measurements.
We define the expectation value behavior space as the free vector space V′ over R gener-
ated by J (S). Further, we equip V′ with a scalar product such that the joint measure-
ments J ∈ J (S) form an orthonormal basis.

We now show that there exists an affine mapping α : NS → V′, such that

α(v) · J = 〈J〉 (4.21)

for all v ∈ NS and that α is bijective and unique. As a sanity check, note that
dim(NS) = |J (S)| ≡ dim(V′). It is trivial that an affine mapping between these
two spaces exists. It remains to show that α is unique and bijective. We show this by
induction over |J|. We parametrize the points v ∈ NS in terms of their coefficients
v · (1 . . . 1 | J) for all joint measurements J ∈ J (S). We begin with the one-body
marginals, that is |J| = 1,

〈J〉 = v · (1 | J)− v · (−1 | J)

= 2v · (1 | J)− 1, (4.22)

for which the statement holds trivially. Assume that the t-body expectation values can
be stated as invertible affine functions of the s-body probabilities for s ≤ t. We now
show that if the assumption holds for s < t, then it also holds for s + 1. This follows
from the fact that 〈J〉 always depends non-trivially on the probability p(1, . . . , 1 | J)
and does not depend on any probability p(1, . . . , 1 | J′) with J′ 6= J. This ends the
proof.
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4.2.3 Extremal no-signaling behaviors

As a convex polytope, the no-signaling polytope can be characterized by its vertices.
The vertices can be found by solving the vertex enumeration problem, which is dis-
cussed in detail in Chapter 1. If the number of parties, measurement settings and
outcomes per measurement is not too large, it is practicable to solve the vertex enu-
meration problem on a computer. In the scenario consisting of two subsystems with
two dichotomic measurements each, any extremal no-signaling behavior is either de-
terministic or it represents a so-called Popescu-Rohrlich box, short PR box [68, 69]. A PR
box is a black-box experiment with two parties A, B for the scenario M = SA ∪ SB with

SA = {(A, 1, {0, 1}), (A, 2, {0, 1})},

SB = {(B, 1, {0, 1}), (B, 2, {0, 1})}. (4.23)

that yields the behavior with components [70]

p(a, b | x, y) =

 1
2 , a + b mod 2 = (i(x)− 1)(i(y)− 1)

0, otherwise
, (4.24)

for all measurements x ∈ SA and y ∈ SB. As defined in the beginning of the chap-
ter, i(x) denotes the input of x. In words, this means the following: If Alice or Bob
(or both) choose to measure in setting 1, then they always obtain the same outcome,
which locally is uniformly distributed. However, if both of the parties choose to mea-
sure in setting 2, then they will always obtain opposite outcomes that also locally are
uniformly distributed. Needless to say, the labeling of the measurement settings and
outcomes is entirely arbitrary and behaviors that arise from Eq. (4.24) by any relabeling
are also PR behaviors.

The extremal no-signaling behaviors have also been identified in the bipartite sce-
narios with an arbitrary number of local measurement settings, each of which leads to
one of two possible outcomes [70]. Moreover, the extremal no-signaling behaviors are
known for bipartite scenarios with two measurement settings per party that yield an
arbitrary number of different outcomes [71].

4.3 Local realism

Local realism is a principle that restricts the set of behaviors [72]. In the following, we
adopt the common practise of referring to local realism simply as locality, although
this notion implies more than only no-signaling. To understand locality, we must first
discuss possible interpretations of behaviors.

If a theory or model correctly predicts a deterministic behavior without disturb-
ing it, then the measured physical quantity corresponds to an element of reality in
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the sense of EPR [61]. The observations are then compatible with the idea that the
measurement revealed the value of the physical quantity and the value was predeter-
mined. In the case of most general behaviors as we considered in Section 4.1, all the
extremal behaviors are deterministic and therefore compatible with this interpretation.
The non-deterministic behaviors can then be explained with the incompleteness of the
theoretical description [61]. To see this, consider different elements of reality that have
the same counterpart in the theory. In this case, the measurements that correspond
to these different elements of reality are not distinguished in the theory. Instead, the
theory considers only one physical quantity. If this physical quantity is measured, one
may actually measure a different element of reality in each round of the experiment.
In the evaluation of the experiment, one would then mix the statistics of experimen-
tal runs that actually correspond to measurements of different physical quantities.
Mathematically, this corresponds to forming a convex combination of deterministic
behaviors, which itself is in general not deterministic. In this way, the incompleteness
of the theoretical description can lead to a behavior that is probabilistic, although the
underlying processes are deterministic.

A behavior is a local deterministic behavior, if it obeys the no-signaling constraints and
every setting corresponds to an element of reality [17]. If a behavior is in the convex
hull of the local deterministic behaviors, it is called a local behavior [1, 72]. The local
behaviors form a polytope MLHV called local polytope [16].

In the following we write the local polytope for an arbitrary scenario S in vertex
representation. For any measurement x ∈ S, any function χx : O(x) → {0, 1} is called
a local deterministic assignment [72]. Any sequence λ = (χx)x∈S of local deterministic
assignments gives rise to to a local deterministic behavior bλ ∈ MLHV through the
relations

bλ · ((ox)x∈J | J) = ∏
x∈J

χx(ox). (4.25)

The sequence λ that determines the outcomes of every measurement in S is called local
hidden variable [72]. Denoting the finite set of local hidden variables as Λ, one can state
the local polytope as

MLHV = conv({bλ | λ ∈ Λ}). (4.26)

This model is called a local hidden-variable model [72, 1]. For any bipartite scenario
S with exclusively dichotomic measurements, the local polytope coincides with the
correlation polytope (see Section 1.8) for the graph (S,J (S)) [73, 74].

Note that the assumption of locality is stronger than the assumption of no-signaling
[68]. As we discussed in the previous section, there exist no-signaling behaviors that
cannot be decomposed into a convex combination of no-signaling deterministic behav-
iors. The most prominent examples for such behaviors are the PR behaviors, which are
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non-deterministic. The local polytope is therefore a proper subset of the no-signaling
polytope. It is known that the local polytope has the same affine dimension as the
no-signaling polytope [67].

4.4 Bell inequalities

Since the set of local behaviors is a convex polytope, it can be characterized by a fi-
nite set of affine inequalities. Any inequality that is satisfied for all local behaviors is
called a Bell inequality [72]. Such inequalities were first developed by Bell [2] 1. If a Bell
inequality supports a facet of the local polytope, it is also called tight [74]. Together,
the facet-defining Bell inequalities of a local polytope characterize it. The problem of
finding the facet-defining inequalities of a polytope is known as the facet-enumeration
problem, and there are algorithms with which such problems can in principle be solved
[18, 25]. We discuss this topic in more detail in Chapter 1. From a practical point of
view, it is worth mentioning that local polytopes are special instances of 0/1-polytopes,
for which specially designed algorithms exist that may solve problems such as facet-
enumeration more efficiently than algorithms that are designed for more general prob-
lems [20]. However, if one considers scenarios with increasingly many parties, mea-
surement settings or measurement outcomes per setting, solving the facet enumeration
problem quickly becomes impracticable for the local polytope.

The most well-known tight Bell inequality is the Clauser-Horne-Shimony-Holt (CHSH)
inequality [60], which is formulated for the so-called CHSH scenario with two measure-
ment settings A1, A2 and B1, B2 on each party, that yield outcomes ±1. It reads

〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 ≤ 2. (4.27)

The CHSH inequality is violated by no-signaling behaviors and the left-hand side
of the CHSH inequality yields the maximal value of 4 for a PR-box behavior [68].
Obviously, other versions of the CHSH inequality Eq. (4.27), for which the parties,
settings, or outcomes have been relabeled, also support facets of the local polytope.

Apart from the CHSH inequality, there is another class of facet-defining inequalities
for the local polytope for the same scenario. Representatives of this class have the form

〈A1〉+ 〈B1〉 − 〈A1B1〉 ≤ 1. (4.28)

This inequality is an example for a trivial Bell inequality. A Bell inequality is called
trivial, if it is not violated by any no-signaling behavior [1]. All different versions of
the CHSH inequality and the trivial inequality Eq. (4.28) are known to completely
characterize the local polytope for the CHSH scenario [17, 16].

1Depending on the context, also valid inequalities for other models such as hybrid models are referred
to as Bell or Bell-type inequalities [72].



54 4 Bell Nonlocality

In the bipartite scenario with three dichotomic measurements per party there is one
more type of tight Bell inequality, called the I3322 inequality [16, 75, 76]

〈A1B3〉+ 〈A2B3〉+ 〈A3B1〉+ 〈A3B2〉+ 〈A1〉 − 〈A2〉+ 〈B1〉 − 〈B2〉

−〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 ≤ 4. (4.29)

It is worth noting that the I3322 inequality includes so-called marginal correlations,
such as 〈A1〉. This means that in every round of the experiment, every party not only
has the choice between one of the three measurements but can also choose not to
perform a measurement at all. Inequalities for scenarios where this option of not per-
forming a measurement is excluded are called correlation inequalities [77].

The I3322 Bell inequality is part of the Immnn family of Bell inequalities for 2 parties
with m settings that yield n outcomes each [76]. The inequalities in the subfamily Imm22

are known to be tight [78].
In general, there are trivial ways to generalize Bell inequalities to larger scenarios.

Any bipartite Bell inequality can be interpreted as a multipartite Bell inequality that is
only sensitive to the measurements of two parties. Similarly, any Bell inequality with
two settings per party is still valid in a multi-setting scenario. Finally, one can apply
an inequality that features n outcome measurements in a scenario with more than n
outcomes per measurement by only distinguishing between n different equivalence
classes of outcomes. This process of adapting a Bell inequality to a larger scenario is
called lifting [67, 74]. While lifted versions of Bell inequalities still define facets of the
local polytope of the larger scenario, they are not interesting for physical applications,
since they are defined in a way that prohibits them from exploiting the richer structure
of the more complex scenario they are lifted to [67]. We will make this notion more
precise in Section 5.3.

In more complex scenarios, it is not computationally feasible to enumerate the facets
of the local polytope. As a result, it is common to consider families of Bell inequalities
[76, 79, 80] or to devise methods that help to generate partial lists of facets [81, 74].
For instance, a partial list of facets has been generated for the bipartite case with 10
dichotomic measurements per party by generating facets of the local polytope from
the cut polytope using a method called triangular elimination [74].

In multipartite scenarios with two dichotomic measurements per party, all corre-
lation inequalities can be constructed analytically [77]. One of these inequalities is
Mermin’s inequality

〈A1B1C2〉+ 〈A1B2C1〉+ 〈A2B1C1〉 − 〈A2B2C2〉 ≤ 2. (4.30)

In quantum mechanics, the left-hand side can reach a value of 4 as can be seen from
the GHZ argument [1], see also Section 4.8.1.

The tripartite scenario with two dichotomic measurements has been characterized
completely [75]. For three parties with three dichotomic settings, correlation inequal-
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ities that are symmetric under party permutations have been found [81]. Symmetric
inequalities have also been found for up to 5 parties with two dichotomic settings per
party [81]. Further, a family of tight multipartite Bell inequalities with many dichtomic
settings has been derived in Ref. [79].

It is worth noting that also non-linear Bell inequalities have been considered. One
example for this are information-theoretic Bell inequalities [82]. They based on the fact
that two quantum systems can share information in a way that is prohibited classically.
Specifically, consider the CHSH scenario and assume that local-realism holds. Then,
one can assume that the outcomes of the measurements A1, A2, B1, B2 are well defined
at all times. Hence the following estimate holds for the entropy of the measurements

H(A1B1) ≤ H(A1B2 A2B1)

= H(A1 | B2 A2B1) + H(B2 | A2B1) + H(A2 | B1) + H(B1)

≤ H(A1 | B2) + H(B2 | A2) + H(A2 | B1) + H(B1), (4.31)

which can be simplified to

H(A1B1) ≤ H(A1 | B2) + H(B2 | A2) + H(A2 | B1). (4.32)

This inequality is violated in quantum mechanics [82].

4.5 Quantum behaviors

Consider a scenario S that contains measurements, each of which is performed on a
system k ∈ Σ = {1, . . . n}. Since each measurement m only affects one party, these mea-
surements are called local. Assume that we can associate a finite-dimensional Hilbert
space Hk with each system k. We write HΣ for the Hilbert space of the system that
consists of subsystems in Σ. Each of the local measurements m ∈ S is modeled with
a POVM with sample space O(m) and event space P(O(m)), where P denotes the
power set. We can then write this POVM as Pm : P(O(m))→ E(Hk(m)), where E(H) is
the set of effects on a Hilbert space H. Pm can be defined in terms of the effects Pm(o)
that it assigns to the events o ∈ O(m).

Now consider a joint measurement J ∈ J (S). This joint measurement is modeled by
a POVM, too, and we denote it as PJ : P(R(J)) → E(HΣ). Let r = (om)m∈J be a result
of J, then PJ is defined by the POVMs Pm with m ∈ J such that

PJ(r) =
⊗
m∈J

Pm(om). (4.33)

We define Ec = PJ(r) for any record c = (r | J) ∈ C(S). Any quantum behavior bq ∈ B
can then be expressed as

bq = ∑
c∈C(S)

Tr (Ec$) c (4.34)
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where $ ∈ S(HΣ) is a quantum state and the effects Ec are defined as in Eq. (4.33).
Vice versa, if it is possible for a behavior to find a state and POVMs such that

Eq. (4.34) holds, then this behavior is called a quantum behavior. We denote the set of
quantum behaviors as MQ. MQ forms a proper subset of the no-signaling polytope
[69, 68]. One can show this by proving that the marginal probability distributions are
well-defined. This follows directly from Eq. (4.33) and the fact that for any POVM the
measure of the sample space is the identity operator.

The set of quantum behaviors is strictly contained in the set of no-signaling behav-
iors, as one can see from considering the CHSH inequality. For no-signaling behaviors,
the tight bound for the CHSH expression is [68]

〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 ≤ 4 (4.35)

while for quantum behaviors it is [66]

〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 ≤ 2
√

2. (4.36)

Since inequality Eq. (4.36) bounds the set of quantum behaviors, it is also called a
quantum bell inequality or Tsirelson inequality after its inventor [66].

The set of local behaviors is strictly included in the set of quantum behaviors [19].
This is easily understood as the set of quantum behaviors is convex and local determin-
istic behaviors are reproducible with deterministic POVMs. The fact that the Tsirelson
bound is tight and larger than the classical bound shows that this inclusion is strict.
The prediction of nonlocal behaviors in quantum mechanics shows that quantum the-
ory is irreconcilable with local realism [2]. This result is known as Bell’s theorem [1].
As a formula this statement is summarized as

MLHV ⊂ MQ ⊂ MNS ⊂ B. (4.37)

This relation is illustrated in figure 4.2. Violations of Bell inequalities have also been
confirmed in experiments [5, 3, 4], ruling out local realism as a physical principle.

Given an affine Bell inequality for a scenario S, that is

f · b ≤ β, for all b ∈ MLHV, (4.38)

we can write this Bell inequality using the formalism of quantum mechanics. To this
end, we first express the Bell inequality in the basis of records c ∈ C(S). This yields

∑
c∈C(S)

fcbc ≤ β. (4.39)

As a second step, we assume that b ∈ MQ by using Eq. (4.34). In this way, we obtain

∑
c∈C(S)

fcTr (Ec$) ≤ β. (4.40)
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Figure 4.2: Schematic depiction of the set of behaviors as well as the subsets of no-
signaling behaviors, quantum behaviors, and local behaviors. (a) The set of
behaviors B ∈ N is projected into the no-signaling subspace. The image
is then mapped into the expectation value behavior space using the map
α. This set is a hypercube (dark blue). Its vertices are deterministic behav-
iors. Not all of these deterministic behaviors are no-signaling. Therefore,
the no-signaling behaviors form a strict subset. (b) The set of no-signaling
behaviors B ∩NS for a scenario is mapped into the expectation value be-
havior space of the same scenario via the map α. Every extremal behavior
of the local polytope (light blue) is also an extremal behavior of the no-
signaling polytope (red). Additionally, the no-signaling polytope contains
non-deterministic extremal behaviors. The set of quantum behaviors (or-
ange) is strictly included in the no-signaling polytope and in turn strictly
includes the local polytope.

One defines the Bell operator

Ξ = ∑
c∈C(S)

fcEc, (4.41)

with which one can rewrite the Bell inequality as

Tr ($Ξ) ≤ β, (4.42)

for a $ ∈ S(HΣ). For any choice of POVMs PJ with J ∈ J (S), one can therefore
compute an entanglement witness from a Bell inequality as

W = β1− Ξ. (4.43)

The set of quantum behaviors for arbitrary but finite local dimensions can be ap-
proximated using the NPA hierarchy [37]. In this case the set of quantum behaviors
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can equivalently stated in a different way: Instead of imposing a tensor product struc-
ture on the measurements as in Eq. (4.33), one can instead impose that effects com-
mute, if they are associated with measurements on different subsystems [42]. Stated
in this way, polynomial optimization problems over the set of quantum behaviors are
tractable with the NPA hierarchy. This includes the problem of finding upper bounds
for the quantum violation of a Bell inequality [42]. The reader is referred to Section
2.3.2 for details.

In general, characterizing the set of quantum behaviors is not easy. However, in the
case of fully separable quantum states the set of behaviors is simply the local polytope
[48]. This result is readily obtained, if in Eq. (4.34) one assumes that $ is fully sepa-
rable and the effects have the form of Eq. (4.33). This yields a local hidden-variable
model for the resulting quantum behaviors. Nonlocality therefore implies entangle-
ment. However, entanglement does not imply nonlocality. There are mixed entangled
states that exclusively give rise to behaviors that are compatible with a local hidden-
variable model [83].

4.6 Hybrid models

Bell experiments have established the existence of nonlocal behaviors [5, 3, 4]. How-
ever, these experiments do not answer the question how nonlocality can be distributed
among multipartite systems. For example, consider a three party system. One may
ask, whether tripartite nonlocality can be explained by a model that sets the following
rule: In any round of the experiment there may be communication between any two
parties. Thus, these two parties can effectively be regarded as one party. However, the
correlations between these two parties on the one hand and the third party on the
other have to be compatible with a LHV model. Such a model is called a hybrid model
and it is qualitatively different from a LHV model because from round to round of the
experiment, different subsets of subsystems are allowed to communicate [84, 85]. As a
formula, the joint probabilities for a three party hybrid model can be expressed as

p(a, b, c | x, y, z) =∑
λ1

p(a, b | x, y, λ1)p(c | z, λ1)

+∑
λ2

p(a, c | x, z, λ2)p(b | y, λ2)

+∑
λ3

p(bc | y, z, λ3)p(a | x, λ3), (4.44)

where a, b, c are the outputs on the parties A, B, C and x, y, z are the respective inputs
[84].

If a behavior violates this model, then it exhibits genuine tripartite nonlocality. This
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can be tested with the Svetlichny inequality

+ 〈A1B1C2〉+ 〈A1B2C1〉+ 〈A2B1C1〉 − 〈A2B2C2〉

+ 〈A2B2C1〉+ 〈A2B1C2〉+ 〈A1B2C2〉 − 〈A1B1C1〉 ≤ 4, (4.45)

and all measurements yield outcomes ±1. In quantum mechanics, the Svetlichny in-
equality is violated up to a value of roughly 5.66 [84].

In the case of four parties, three different hybrid models have been considered [85].
In the 2/1/1 model in each round two parties can cooperate, so the joint behavior of
these two parties is arbitrary. In the 2/2 model, two teams of two parties can cooperate
every round and finally, in the 3/1 model, three parties can cooperate [85]. A general-
ization of the Svetlichny inequality has been studied in Ref. [85] that detects genuine
multipartite nonlocality for all of the four-body hybrid models mentioned above. Fur-
ther, generalized Svetlichny inequalities have been defined for the n-partite case for
k/(n− k) models [85]. These generalized Svetlichny inequalities are defined using the
Mermin-Klyshko polynomials, which are defined recursively as [85]

Mn =
1
2

Mn−1(An
1 + An

2 ) +
1
2

M′n−1(An
1 − An

2 ), (4.46)

M1 = A1
1, (4.47)

where An
j is the j-th measurement setting on party n and M′k is obtained from Mk by

exchanging the settings 1 and 2 on each party. The generalized Svetlichny inequality
is the same for all hybrid models for the same number of parties n and reads

Sn ≤

2
n−2

2 , n even

2
n−3

2 , n odd
. (4.48)

The generalized Svetlichny polynomial Sn is defined as

Sn =

Mn, n even,
1
2 (Mn + M′n), n odd

. (4.49)

The quantum bound is always by a factor of
√

2 larger than the hybrid model bound
[85].

Svetlichny inequalities have been generalized to scenarios with an arbitrary number
of outputs [86] and measurement settings [87] for k/n− k hybrid models.

4.7 Guess-your-neighbors-input inequalities

This section contains text that has been published in our paper [B].
Guess-your-neighbors-input (GYNI) inequalities are Bell inequalities that are de-

rived from the game called ’Guess your neighbors input’ [9]. The game is played with
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n parties that are arranged in a ring and collaboratively play against the instructor.
The instructor will supply every participant i with an input bit xi and each participant
then has to guess the input of his left neighbor. The game is won if the output ai of
every player output matches the input xi+1 of their left neighbor. In order to achieve
this goal, the players may agree on a strategy before the game and they are also pro-
vided with the probability distribution q according to which the instructor chooses the
inputs. In the quantum version of the game, each party additionally possesses a part
of a shared quantum state. During the game, no communication is permitted. A GYNI
inequality is of the form

∑
~x

q(~x)P(a1 = x2, a2 = x3, . . . , an = x1|x) ≤ ωc, (4.50)

whereby the left-hand-side expresses the average winning probability, which is bounded
by the average winning probability of the best classical strategy ωc.

As is the case with any other Bell inequality, the violation of a GYNI inequality
would indicate a violation of local realism. However, GYNI inequalities are not only
satisfied for local behaviors but also for quantum behaviors. Therefore, GYNI inequali-
ties are Bell inequalities and simultaneously quantum Bell inequalities. Notably, GYNI
inequalities can be violated for no-signaling behaviors [9].

One particular GYNI inequality is the facet-defining inequality listed as inequality
number 10 in the paper by Śliwa [75]. This inequality reads

〈A1B1〉+ 〈A2B1〉+ 〈A1B2〉+ 〈A2B2〉+ 〈A1C1〉 − 〈A2C1〉

+ 〈B1C1〉+ 〈A1B1C1〉 − 〈B2C1〉 − 〈A2B2C1〉+ 〈A1C2〉

− 〈A2C2〉 − 〈B1C2〉+ 〈A2B1C2〉+ 〈B2C2〉 − 〈A1B2C2〉 ≤ 4. (4.51)

4.8 Inequality-free tests of nonlocality

The perhaps most natural way to test nonlocality is to test an affine Bell inequality
that supports a facet of the local polytope. However, there are other ways of testing
nonlocality, two of which we are going to discuss briefly in this section.

4.8.1 Greenberger-Horne-Zeilinger argument

There are also ways to detect nonlocality entirely without inequalities. One inequality-
free Bell test is the Greenberger-Horne-Zeilinger (GHZ) argument [1, 88]. Assume a
three party scenario, where every party has two measurement settings – A1, A2 on
party A, B1, B2 on party B, and C1, C2 on party C – and every measurement yields
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outcomes ±1. If the three parties observe the correlations

〈A2B1C1〉 = 1, (4.52a)

〈A1B2C1〉 = 1, (4.52b)

and

〈A1B1C2〉 = 1, (4.52c)

and local realism holds, then every measurement yields one particular outcome with
certainty. One can then associate every measurement with its outcome, which allows
us to write

〈A2B2C2〉 = (A2B1C1) · (A1B2C1) · (A1B1C2)

= 1. (4.53)

In quantum mechanics however, it is possible to violate the above equality Eq. (4.53)
under the assumption that the conditions Eq. (4.52) are met [1]. If the measurements
A2, B2, C2 are described by the observable σx and the measurements A1, B1, C1 are
described by the observable σy, then the state

|GHZ〉 = 1√
2
( |000〉 − |111〉) (4.54)

satisfies the relations Eq. (4.52). However, it holds that

〈A2B2C2〉 = −1. (4.55)

4.8.2 Hardy’s Paradox

A similar argument, which is known as Hardy’s paradox, can be made for the CHSH
setting [89]. If it holds that

p(1, 1 | A1B1) = 0, (4.56)

p(−1, 1 | A1B2) = 0, (4.57)

and

p(1,−1 | A2B1) = 0, (4.58)

then the assumption of local realism implies

p(1, 1|A2B2) = 0. (4.59)

One way to see this is to consider a graph as in figure 4.3. The vertices of this graph
are all pairs of measurements and outcomes, such as (A1,+1) for example. To vertices
are connected by an edge, if these pairs are mutually exclusive. For example, (A1,+1)
and (B1,+1) are mutually exclusive since p(1, 1 | A1B1) = 0. However, in quantum
mechanics the conditions can be satisfied while at the same time Eq. (4.59) can be
violated up to p(1, 1|A2B2) =

1
2 (5
√

5− 11) ≈ 9%.
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A1
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B1

B2
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Figure 4.3: Graph for Hardy’s argument – mutually exclusive outcomes according to
the equations Eqs. (4.56-4.58) are connected by an edge. The task is to assign
an outcome to every measurement. This is indicated by the blue circles.
Since the graph is symmetric under exchange of the parties A, B, one can
assume without loss of generality that A1 yields outcome +1. This implies
that B1 yields −1 and hence A2 yields −1. Therefore, we get p(+1,+1 |
A2B2) = 0.

4.9 Applications of Bell inequalities

Bell inequalities bound the image of functionals on the set of behaviors. Crucially, be-
haviors only reflect the observations that were made in an experiment; the formalism
of behaviors does not presume anything regarding the description of the internal pa-
rameters of the experiment other than a consistent use of labels. Hence, functionals
on behaviors yield information on the experiment that is device independent. Device
independence is useful in a variety of situations. One application is the certification of
quantum states and measurements, which is known as self-testing [11]. For instance,
if a behavior maximally violates the CHSH inequality, then it can be shown that the
quantum states and measurements that lead to this violation are unique up to an
isomorphism [11]. In this way, a violation of a Bell inequality can provide a device in-
dependent certification of entanglement. For example, if the CHSH inequality is tested
on a two-qubit system and a maximal violation is detected, this means that the quan-
tum state is equivalent to a Bell-state up to local unitary transformations [90]. Hence
in this case maximal nonlocality implies maximal entanglement [48]. For other Bell
inequalities this is in general not the case [59].

Another application of Bell inequalities is device independent quantum key distri-
bution (DIQKD) [91]. If a behavior violates a Bell inequality, this indicates that no LHV
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model exists that could explain the observed behavior. Hence the local measurement
outcomes cannot be predicted perfectly. Moreover, a Bell inequality violation neces-
sitates that the local measurement outcomes are correlated. In DIQKD these correla-
tions are exploited to share information – a raw key – between several parties, while
the non-existence of a LHV model guarantees that no eavesdropper can have perfect
knowledge of this shared information.

In the following, we briefly discuss the DIQKD protocol which was introduced in
Ref. [92] and is similar to the protocol suggested by Ekert [91]. It relies on the violation
of the CHSH inequality. Suppose that Alice and Bob share the Bell state

|φ+〉 = 1√
2
( |00〉+ |11〉) (4.60)

and perform the optimal measurements

A1 =
1√
2
(σx + σz), (4.61)

A2 =
1√
2
(σx − σz), (4.62)

B1 = σx, (4.63)

B2 = σz, (4.64)

to reach a maximal violation of the CHSH inequality. Additionally, Alice can perform
a measurement

A3 = B1, (4.65)

so that when Alice measures A3 while Bob measures B1, they obtain the same outcome.
This joint outcome then becomes part of the raw key. It has been shown that in this
case it is impossible for an eavesdropper to have any information about the shared key
[92]. If the state and the measurements are imperfect, this is no longer the case, but
the protocol can still be used and security can be ensured by using a method called
privacy amplification [92].





5 Cone-projection technique and
generalized Bell inequalities

The content of this chapter is based on our publications [A, B, C]. The first section de-
scribes the cone-projection technique and contains text and figures from publications
[A, B]. The second section is taken from our manuscript [C]. The third section is yet
unpublished material. In the second and third section we introduce the concept of a
generalization of a Bell inequality in full generality and state a precise definition of the
concept.

Bell inequalities are relevant for many problems in quantum information science, but
finding them for many particles is computationally hard. Furthermore, the number of
facet-defining Bell inequalities increases rapidly, making it difficult to identify the in-
equalities of interest. To give an example, there are only eight non-trivial Bell inequal-
ities all of which are versions of the famous Clauser-Horne-Shimony-Holt (CHSH)
inequality [60, 93] in the scenario with two parties and two different dichotomic mea-
surements per party each. For the same number of parties, but three dichotomic mea-
surements per party, there are already 648 non-trivial facet-defining inequalities, 72

of which are of the CHSH type and 576 are variations of the so-called I3322 inequal-
ity. The latter inequality was first identified by Froissart [16] and later independently
by Śliwa [75] and Collins and Gisin [76]. If one increases the number of parties, for
three parties with two dichotomic measurements each, there are 53856 facet-defining
inequalities and 46 inequivalent classes of Bell inequalities [75]. Going to even more
complex scenarios it is impossible so far to compute all the facets.

Luckily however, in practice we rarely need a complete characterization of the lo-
cal polytope. Instead, we seek Bell inequalities with properties that are suitable for a
specific purpose.

To address this problem we propose a general method for this problem, which is
computationally feasible. Henceforth we refer to this method as the cone-projection
technique (CPT). The CPT can be used to find all optimal Bell inequalities obeying
some affine constraints.

Specifically, one important task that can be addressed with the CPT is finding gen-
eralizations of a Bell inequality. A generalization of a Bell inequality is a Bell inequal-
ity that inherits some properties from the Bell inequality it generalizes. At the same
time, it may outperform the Bell inequality it generalizes in some tasks. This makes
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it desirable to find such generalizations of Bell inequalities. In this chapter, we give a
precise definition of our notion of a generalization of a Bell inequality and a detailled
explaination of the cone-projection technique.

5.1 Description of the cone-projection technique (CPT)

In this section, we provide a detailed description of the cone-projection method.
We wish to find a method that makes it possible to compute facets of a polytope

which is defined by its vertices, where the facet normal vectors obey some linear con-
straints. This can be interpreted geometrically as the condition that the facet normal
vectors must have a fixed inner product with some vector g that represents the condi-
tion, see also Fig. 5.1.

A naive method to tackle this problem is to compute first all facets and then to find
out which of them obey the constraint. For the problems we consider, however, this is
not feasible, as it is already impossible to compute all the facets.

Note that constraints of the considered type include two important special cases of
constraints that are important in this work: The condition that some given vertex of
the polytope should lie on the desired facet and the condition that the normal vector
should be symmetric under some linear transformation. In the first case, the position
vector of the vertex in question takes the role of g. To understand this, consider a
Bell inequality xTb ≤ −β with facet normal vector b that should hold for all classical
behaviors x. Demanding that some vertex g lies on the facet means that gTb = −β,
which is an affine constraint. In the second case all points that obey the symmetry lie
in a plane and the normal vectors of the desired facets have to lie in this plane as well.
This is illustrated in Fig. 5.2.

We consider the situation where a convex polytope P is given in its V-representation
and we aim to find all facets of P that satisfy some affine conditions. Note that the
CPT can be applied to any convex polyhedron, but in practice we are interested in the
local polytope, the vertices of which are the local deterministic behaviors.

We consider a D-dimensional polytope P and affine conditions on the facet normal
vectors. Each of these conditions can be written in the form

gT
k bP = γk, (5.1)

that is, the normal vector bP has a fixed scalar product with some vector gk, see
Fig. 5.3(a). The task is to find all the facet normal vectors that obey these constraints.

In the first step, we construct a cone C in (D + 1)-dimensional space that maintains
a one-to-one correspondence to the polytope. One way to achieve this is to prepend
one fixed coordinate to every vertex vi,

vi 7→ wi =

(
1
vi

)
. (5.2)
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f1

f 

f3

f4

Figure 5.1: A polytope in three-dimensional space is defined by its two-dimensional
surfaces, the so-called facets. Here, the normal vectors of the facets are
depicted as blue (gray) vectors. The vector g (black arrow) may be used to
define a condition on the facets, be requiring that the facet normal vectors fi

must enclose some absolute angle α. For instance, this angle may be chosen
such that the facets drawn in green (dark gray) meet the constraints while
the others drawn in orange (light gray) do not.

Figure 5.2: This example shows how symmetries can be formulated as affine con-
straints. We seek facets with normal vectors that are invariant under re-
flection on a plane (white, half-transparent). This is satisfied by the normal
vectors f1, f2 (blue [dark gray]) of two of the facets (green [gray]). The con-
dition is equivalent to demanding that the normal vectors be perpendicular
to the normal vectors (black arrows) of the mirror plane.
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g

(a)

0

(b)

(c) (d)

Figure 5.3: Visualization of the CPT to find facets of a polytope where the normal
vector obeys some constraints. (a) We aim to find the facets of the two-
dimensional polytope P where the normal vector bP has a fixed scalar
product with some vector g. The facet and the normal vector that fulfill
this constraint in the given example are shown in green (dark gray). (b)
We embed the polytope P in a plane in three-dimensional space, where the
plane does not contain the origin 0. The vertices of P define rays (orange
[light gray] arrows) that define the cone C. The polytope P is then the in-
tersection of the cone C with the plane, and each of its facets relates to a
facet of C (green [dark gray]) in a unique manner. (c) The initial constraint
on the facet of P can be translated to conditions on the facets of the cone. A
facet of P fulfills the constraint if and only if the corresponding facet of C
has a normal vector bC that obeys a linear constraint GbC = 0, where G is
some matrix. Geometrically, this means that bC has to lie in a certain plane
(light gray). Then, we project the rays of C (orange [light gray]) into that
plane (blue [dark gray] arrows) to define a cone C̃ in the low-dimensional
plane by taking projected rays as generators. By construction, facets of C
which obey the constraint are also facets of the projected cone C̃. (d) Fi-
nally, we find the facets of C̃ and check which ones correspond to facets
of C. From the facets of C that meet the conditions we can then compute
the corresponding facets of P. In our example, C̃ is a half plane (light blue
[light gray]) and has only one facet with the normal vector in green [gray].
It is also the normal vector of a facet of C (green [gray]). Note that in the
given example C̃ is already generated by three rays and the other three rays
are redundant.
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and to define the cone C as the conic hull of the rays wi. In this way, the polytope can
be seen as the intersection of the cone C with the hyperplane defined by x0 = 1. This
relationship is illustrated in Fig. 5.3(b). Notably, there is a one-to-one correspondence
between the facets of the cone and those of the polytope, and a normal vector bP of a
polytope facet translates to a normal vector bC of a cone facet. This is easy to formulate
in the H-representation of the polytope and the corresponding cone. Let

xTbP ≤ −β (5.3)

be a facet-defining inequality of the polytope. Then,

(1 xT)

(
β

bP

)
≤ 0 (5.4)

is the corresponding facet-defining inequality of the cone. Note that then ( β
bP
) is the

normal vector of the facet, and any normal vector of a facet can be written in this way.
The correspondence between the polytope and the cone enables us to work with

the cone instead of the polytope. This construction also makes it possible to write the
conditions in Eq. (5.1) in a linear form, namely

(g0,k gT
k )

(
β

bP

)
= 0, (5.5)

where we set g0,k = − γk
β .

Collecting all the facet conditions yields the linear matrix equation

GbC = 0, (5.6)

where the k-th row of G is the row vector (g0,k gT
k ) and the facet normal vector of the

cone is bC = ( β
bP
). Geometrically speaking, Eq. (5.6) defines a hyperplane through the

origin in which the facet normal vectors of the cone must lie in order to comply with
the conditions in Eq. (5.1), see also Fig. 5.3(c).

The key observation is that in this situation we can define a new cone C̃, such that
if bC is a facet normal vector of C that obeys the constraints, then bC is also a facet
normal vector of C̃. This is done by projecting the rays of C down to the subspace of
vectors obeying Gv = 0, see Fig. 5.3(c) and Fig. 5.4.

This subspace is the kernel of G and it is spanned by a set of K vectors ti, where K
is the dimension of the kernel. The advantage of C̃ is that its dimension K is typically
considerably smaller than the dimension of C. Additionally, C̃ has typically much
fewer rays than C. That makes it easier to find all the facets of C̃, compared with C,
see Fig. 5.3(d).

In practice, the first step in the construction of C̃ is to define the (D + 1)× K matrix
T, whose K columns of length D + 1 are given by the vectors tj, so we have Tij = [tj]i.
With this, we define the rays w̃i of C̃ as

w̃T
i = wT

i T, (5.7)
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Figure 5.4: Detailed view of the of the projection of the rays of the cone C onto the
plane where GbC = 0. The projected rays (in blue [dark gray]) generate
a new cone C̃. Depending on the conditions, this new cone may have a
significantly reduced dimension compared with C.

where wi are the rays of C. Note that this is a projection if the vectors tj form an
orthonormal basis of the kernel of G. However, this is in general not necessary and in
practice it can be preferable to pick vectors tj with integer coefficients, so that the rays
of C̃ have integer coefficients, if the rays of C have integer coefficients. In this way, one
does not need to worry about the precision of the numerical calculations.

Similarly to the rays of C, we can express its facet normal vectors bC (that satisfy the
constraints) in the basis tj of the kernel of G as

bC = TbC̃, (5.8)

where bC̃ is a vector of dimension K.
The following theorem is the central result and establishes the previously claimed

relation between C̃ and C. Namely, it states that any time bC is a facet normal vector
of C that satisfies the conditions, bC̃ is a facet normal vector of C̃. In this way, the facet
normal vectors of C̃ are the only relevant vectors that one needs to consider.

Theorem 5.1. Let C = conv({wi}) be a cone and bC a facet normal vector of C that
satisfies GbC = 0 for some matrix G. With T and bC̃ defined as above, we define the
cone C̃ = conv({w̃i}) of dimension K with w̃T

i = wT
i T. Then bC̃ defines a facet of C̃.

Proof. We prove the statement in three steps. (1) The inequality w̃T
i bC̃ ≤ 0 holds, since

Eq. (5.8) together with the definition of the w̃i implies

w̃T
i bC̃ = wT

i bC (5.9)

and wT
i bC ≤ 0 because bC is facet defining.

(2) The vector bC̃ defines a face of C̃, as one can directly see from Eq. (5.9). With
K = dim(ker G), the dimension of the face is at most K− 1, since it is contained in the
K− 1 dimensional subspace {x | xTbC̃ = 0}.
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(3) The vector bC̃ defines a facet of C̃. That is, the dimension of the face is exactly
K− 1.

Let B be the M × (D + 1) matrix that contains all M rays wi as rows that fulfill
wT

i bC = 0. Since bC is a facet normal vector, B has rank D. Accordingly, BT is the
M × K matrix that contains all rays w̃T

i as rows that fulfill w̃T
i bC̃ = 0. Showing that

b̃ defines a facet is equivalent to showing that rank(BT) = K − 1. We now prove the
latter by contradiction. Assume there exist two linearly independent vectors b̃, c̃ that
satisfy BTb̃ = BTc̃ = 0. Thus, Tb̃ and Tc̃ lie in the kernel of B. Since rank(B) = D,
the kernel is one-dimensional, so we can write Tc̃ = `Tb̃ for some real number `. This
implies T(c̃− `b̃) = 0. Because b̃ and c̃ are linearly independent, the kernel of T has
at least dimension one, which is impossible because T has full column rank.

The facets of interest of the polytope P can now be found by finding the facets of
C̃ first, calculating potential facets of C via Eq. (5.8), transforming these into potential
facets of P and finally checking which of the found inequalities define facets of P. Note
that it is computationally simple to check whether a given candidate is a facet, one just
needs to compute the dimension of the surface.

5.2 Generalizations of a Bell inequality

In this section we explain generalizations of Bell inequalities and present two general-
izations of Svetlichny’s inequality. Consider a Bell scenario S and a Bell inequality b1

that is applicable to the scenario S. Additionally, consider a second scenario S′, which
is larger than S in the sense that it involves more parties, more measurement settings
per party or more outcomes per measurement setting than S. Let b2 be a Bell inequal-
ity for S′. Consider the situation in which the parties perform a Bell test for the Bell
inequality b2. However, in the number of parties involved in the Bell test and the num-
ber and kind of measurements they are allowed to perform, they restrict themselves
to the rules given by scenario S. If in this case the Bell test effectively reduces to a Bell
test of Bell inequality b1, then we call b2 a generalization of b1.

The concept is best explained by example. Consider three parties, A, B, C that per-
form a test of Mermin’s inequality

+〈A1B1C2〉+ 〈A1B2C1〉+ 〈A2B1C1〉 − 〈A2B2C2〉 ≤ 2. (5.10)

However, they restrict themselves to the resources of the CHSH scenario. This means
that one of the parties is no longer allowed to contribute to the Bell test in a meaningful
way. Let this party be C. If C reports the measurement outcome +1 in every round,
then evaluating Mermins inequality effectively means evaluating the inequality

+〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 ≤ 2, (5.11)
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which is the well-known CHSH inequality. Therefore, we call Mermin’s inequality
a generalization of the CHSH inequality. To be precise, we call an inequality b2 a
generalization of an inequality b1 to more parties, if one can make a choice of trivial
measurements for the additional parties, such that b2 reduces to b1. By trivial measure-
ment, we mean a measurement that yields one measurement result deterministically.
This has as a consequence, that each (n + 1)-party correlation can be computed from
one n-party correlation, such as

〈A1B2C1〉 = 〈A1B2〉, (5.12)

if C1 is set to always yield outcome +1.
We now turn to an example that illustrates the generalization to a scenario with

more settings. Consider the (3, 3; 2, 2) scenario, that is the bipartite scenario, in which
every party has three measurement settings and every setting yields outcomes ±1.
Besides the CHSH inequality, there is only one non-trivial facet-defining inequality for
this scenario, the I3322 inequality [16, 76, 75]. This inequality reads

〈A1B3〉+ 〈A2B3〉+ 〈A3B1〉+ 〈A3B2〉+ 〈A1〉 − 〈A2〉+ 〈B1〉 − 〈B2〉

−〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 ≤ 4. (5.13)

As was noted by Collins et al. [76], this inequality is strictly stronger than the CHSH
inequality with regard to its ability to detect non-locality: If the measurements A3 and
B1 are chosen trivially, so they always yield the result +1, then the I3322 inequality
reduces to a variant of the CHSH inequality. Therefore the I3322 inequality is a gener-
alization of the CHSH inequality. This example also illustrates an important quality of
generalizing Bell inequalities: A generalization of a Bell inequality always performs at
least as well as the Bell inequality itself in detecting nonlocality for a given quantum
state.

In the example of the I3322 inequality, A and B choose one of their measurements
trivial to comply with the CHSH scenario. In general, this is however not the only
way to achieve this. Alternatively, the parties may have set two of their measurements
equal up to a permutation of outcome labels. When looking for generalizations of a
Bell inequality to a scenario with more settings, one must therefore take this possibility
into account.

Note that the generalization of a Bell inequality to more parties is a special case of
the generalization to more settings: One can first add a party and give it only a trivial
measurement. This scenario is essentially still the original scenario, as the new party
does not contribute to the experiment in a meaningful way. In a second step, one can
then equip the new party with more settings. The parties can then comply with the
original scenario, if the new party performs her measurement but always reports the
outcome of her trivial measurement.
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5.3 Formal definition of a generalization of a Bell

inequality

After introducing the idea of a generalization of a Bell inequality in the previous sec-
tion, we now formalize the notion. Recall from Chapter 4 that a measurement m is a
triple consisting of the party k(m) it acts on, a label i(m) called input, and a set O(m)

that contains all the possible outcomes of m. We will also make use of the definitions
of a scenario, a joint measurement and a record, all of which we introduced in Chapter
4.

Definition 5.1 (Inflation of a scenario). Let S, S′ be scenarios and I = (S, S′, E) a bi-
partite graph with edges e ∈ E such that every edge e = (m, m′) with m ∈ S, m′ ∈ S′,
is associated with an bijective map e : O(m) → O(m′)/ ∼ for some equivalence re-
lation ∼ on O(m′). If for every such edge it holds that k(m) = k(m′) and for every
m ∈ S, m′ ∈ S′ it holds that deg(m) ≥ 1, and deg(m′) = 1, then we call I an inflation
of S to S′.

The construction of an inflation is illustrated in Figure 5.5 and 5.6.

Definition 5.2 (Related record). Let S, S′ be scenarios and I = (S, S′, E) an inflation
of S to S′. Let c′ ∈ C(S′) be a record for scenario S′ with c′ = ((o′j)j∈J′ | J′). We
define the joint measurement J = {m ∈ S | (m, m′) ∈ E for some m′ ∈ J′} and the
sequence (om)m∈J with om = (m, m′)−1(o′m′), where o′m′ represents the equivalence
class it belongs to. Then we call the record c = ((om)m∈J | J) the related record of c′.
We denote the related record of any c′ ∈ C(S′) as $(c′).

Definition 5.3 (Extension map). Let S, S′ be scenarios and I = (S, S′, E) an inflation of
S to S′. Further, let N (S) and N (S′) be the behavior spaces of S and S′, respectively.
We call the map E : N (S)→ N (S′), b 7→ b′, such that b′ · c′ = b · $(c′) for all c′ ∈ C(S′)
the extension map induced by I.

Definition 5.4 (Extended behavior). Let S, S′ be scenarios and I = (S, S′, E) an inflation
of S to S′ and E the extension map induced by I. Further, let b ∈ B ⊂ N (S) a behavior
for scenario S. Then we call E(b) the extended behavior of b.

Definition 5.5 (Generalization of a Bell inequality). Let S, S′ be scenarios and

a′Tb′ ≥ a′0 (5.14)

an inequality for b′ ∈ B′ ⊂ N (S′), where B′ is the set of behaviors for S′. Further, let

aTb ≥ a0 (5.15)
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be an inequality for b ∈ B ⊂ N (S), where B is the set of behaviors for S. We call
Eq. (5.14) a generalization of Eq. (5.15) iff there exists an inflation I of S to S′, such that

a′TE(b) ≥ a′0 (5.16)

is equivalent to Eq. (5.15), where E is the extension map induced by I.

Note that the notion of a generalization of a Bell inequality is different from a lifting
of a Bell inequality. The latter was defined in Ref. [94] in the context of cut polytopes
and described in Ref. [67] specifically for Bell inequalities. We make the difference
between generalizations and liftings apparent by stating a precise definition of a lifting
using our terminology.

Definition 5.6 (Lifting of a Bell inequality). Let S, S′ be scenarios and Further, let

aTb ≥ a0 (5.17)

be an inequality for b ∈ B ⊂ N (S), where B is the set of behaviors for S. Further,
let I = (S, S′, E) be an inflation of S to S′ and E the extension map induced by I. Let
P : N (S′) → N (S) be the affine map such that P(B′) = B, where B′ is the set of
behaviors for scenario S′ and E ◦ P is a projection. Then the inequality

aTP(b′) ≥ a0, (5.18)

where b′ ∈ B′ is a lifting of Eq. (5.17) to the scenario S′.

While the notions of a generalization and a lifting may seem similar at the first
glance, the approaches are in fact contrary. The idea of a lifting is to utilize a known
Bell inequality for the simple scenario S for behaviors stemming from an experiment
with a more complex scenario S′. This is achieved by mapping the behaviors of the
more complex scenario to behaviors of the simpler scenario. This process in general
comes with a loss of information, since the original behavior b′ ∈ B′ can in general not
be recovered from b = P(b′).

The approach is the opposite when generalizing a Bell inequality. The generalization
Bell inequality is a Bell inequality for the more complex scenario S′ that can directly
test the locality of a behavior b′ ∈ B′.

However, if the behavior is projected into the subspace that does not utilize the
advantage that comes with the larger scenario S′, then the generalization is just a
lifting. Writing the generalized Bell inequality Eq. (5.15) for a projected behavior yields

a′TE ◦ P(b′) ≥ a′0. (5.19)

Using matrix notation, this can be rewritten as

(ETa′)TPb′ ≥ a′0. (5.20)



5.3 Formal definition of a generalization of a Bell inequality 75

This inequality is by definition a lifting of 5.15.
Note that the condition for a Bell inequality to be a generalization of another Bell

inequality can be stated as a list of affine constraints. Given a behavior b, such that
aTb = a0, it must hold for any generalized inequality a′Tb′ ≥ a′0 that a′TEb = a′0.
In this way, every saturating behavior of the inequality aTb ≥ a0 gives rise to one
affine equality condition that must be satisfied by the vector a′ of the generalized
Bell inequality. In the following chapter, we give a detailed description how the cone-
projection technique works if applied to the problem of finding generalizations of the
I3322 inequality to three parties.
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Figure 5.5: Inflation of the CHSH scenario S to the 3322 scenario S′. – On the left,
the CHSH scenario is depicted as a blue box that contains measurements
A0, A1, A2 for party A and B0, B1, B2 for B. The measurements A0, B0 always
yield outcome +1. The CHSH scenario is inflated to the (3, 3; 2, 2) scenario,
depicted as red box. An edge (m, m′) with m ∈ S, m′ ∈ S′ means that every
outcome of m′ is mapped to an outcome of m. This is illustrated in figure
5.6. The outcomes of A3 and B3 are mapped to the outcome of the trivial
measurement on their respective party.

1            2            3

1    2 3 4    5    6

Figure 5.6: The edge e = (m, m′) ∈ E of an an inflation I = (S, S′, E) maps outcomes
of m ∈ S to equivalence classes of outcomes of m′. The equivalence classes
are represented by the green, orange, and blue ellipses.



6 I3322 generalizations

This chapter closely follows our publication [A]. In fact, the vast majority of this chap-
ter is drawn from the aforementioned paper. The inequalities found in this chapter are
further studied in Chapter 7.

We find all symmetric facet-defining generalizations of the I3322 inequality to three
parties using the cone-projection technique. For this special case, the conditions for
a generalization of a I3322 inequality can be stated as follows. First, since all mea-
surements are dichotomic, we write all Bell inequalities in terms of expectation val-
ues of observables. Observables that refer to measurements of party A (B, C) are
denoted as Ai (Bj, Ck) and we define A0, B0, C0 to be trivial measurements on the
respective parties that always yield a measurement result +1. This conveniently al-
lows to treat marginal terms such as 〈A1〉 = 〈A1B0C0〉 and constant terms such as
1 = 〈A0B0C0〉 on the same footing. In this notation, any Bell inequality can be written
as S = ∑i,j,k bijk〈AiBjCk〉 ≥ 0.

A three-partite Bell inequality is a generalization of the I3322 inequality if there is
an assignment Ck → ξk ∈ {±1} for the observables on the third party, such that the
remaining inequality

∑
i,j,k

bijkξk〈AiBj〉 ≥ 0 (6.1)

is the I3322 inequality

〈A1〉 − 〈A2〉+ 〈B1〉 − 〈B2〉 − 〈(A1 − A2)(B1 − B2)〉

+ 〈(A1 + A2)B3〉+ 〈A3(B1 + B2)〉 ≤ 4. (6.2)

Because we are only considering inequalities that are symmetric under permutation
of parties, an analogous condition with the same ξk holds for any other reduction
to two parties. One may ask why we have to consider both possibilities ξk = 1 and
ξk = −1, as inequalities that arise from the condition Eq. (6.1) for ξk = −1 are just
different versions of the inequalities that can be found if one chooses ξk = 1, where
the outcomes of C have been relabeled. The reason for this is that this relabeling of the
outcomes may destroy the party symmetry that we demand.

The critical reader may also ask at this point why we are only considering the special
form of I3322 as in Eq. (6.2), and not equivalent forms arising from a relabeling of
the observables or a sign flip. First, since we defined generalizations of I3322 to be
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symmetric, we only have to take symmetric versions of I3322 into account. Further,
as one can easily check, all symmetric versions of I3322 can be transformed into each
other just by outcome relabelings on both parties. Consequently, it suffices to only
consider one symmetric version of I3322.

We also note that the condition that the inequality Eq. (6.1) is the I3322 inequal-
ity can be reformulated as follows: An inequality like ∑i,j,k bijkξk〈AiBj〉 ≥ 0 is the
I3322 inequality, if and only if equality holds for the set of vertices of the local poly-
tope for which also equality holds in I3322. These bipartite behaviors may be lifted to
three-partite behaviors by adding the variable ξk, then any generalization of the I3322

inequality has to be saturated by these lifted vertices.
We can now find all generalizations of I3322 in four steps: First, we find all vertices

of the local polytope of two parties which saturate I3322. Second, we choose determin-
istic outcomes ξk on C and determine the corresponding vertices in the local polytope
of three parties. In the third step, we compose the matrix G for the condition GbC = 0.
This matrix contains each symmetry condition and each vertex from step 2 as a row.
Finally, we employ the cone-projection technique to find all facet defining inequalities
that meet the criteria. We then repeat steps two to four until all possible choices for de-
terministic outcomes ξk are exhausted. In our case of three dichotomic measurements,
there are eight possibilities. In this way, we find all symmetric, facet-defining gener-
alizations of I3322, 3050 inequalities in total. We now describe the implementation in
detail. The complete list of inequalities is given in the supplemental material of our
publication [A].

6.1 Description of the numerical procedure

In order to find all generalizations of the I3322 inequality using our algorithm, we first
need to determine its inputs, namely, the rays wi of the cone C and the matrix G that
captures the linear conditions on normal vectors of the facets we aim to find. These
conditions are established through the equation GbC = 0. In the following, bijk denote
the coefficients of the vector bC. We now find the rays of C by first finding all 512 local
deterministic behaviours vi of the scenario with three parties, three measurements per
party and two outcomes per measurement. Then, we compute the rays of C as

wi =

(
1
vi

)
. (6.3)

By doing this, we include the trivial correlation 〈A0B0C0〉 = 1 as first coordinate. Now
that the rays of C are found, we construct G. The first constraint G is supposed to
capture is the symmetry of the Bell inequality under party permutations. Concretely,
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the coefficients of the Bell inequality S = ∑i,j,k bijk〈AiBjCk〉 have to fulfill

bijk − bjki = 0, (6.4)

bijk − bkij = 0, (6.5)

bijk − bikj = 0, (6.6)

bijk − bkji = 0, (6.7)

bijk − bjik = 0, (6.8)

and

biij − biji = 0, (6.9)

biij − bjii = 0, (6.10)

bjji − bjij = 0, (6.11)

bjji − bijj = 0, (6.12)

with i < j < k. In our scenario, where the indices take values from 0 to 3 we get
Eq. (6.4)-(6.8) for four different values of (i, j, k) and Eqs. (6.9)-(6.12) for six different
values of (i, j). This gives us 44 equations in total. Each of them will be stated as
gT

i bC = 0 and the vectors gi then form the rows of the matrix G. Since bC is a vector
in dimension 64, G has 64 columns.

Next, we want to ensure that the Bell inequalities we are about to find are not only
symmetric, but also generalizations of I3322. As explained in the main text, there must
exist deterministic outcomes ξk = ±1 for the measurements on C, such that the co-
efficients of the I3322 inequality are obtained via I3322

ij = ∑k bijkξk. So, if a bipartite
behaviour 〈AiBj〉 saturates I3322, the extended behaviour rijk = 〈AiBj〉ξk saturates its
generalization. Conversely, if a Bell inequality is saturated by the extended behaviour
rijk, then 〈AiBj〉 also saturates I3322. Since a facet is defined by all the vertices it con-
tains, a symmetric and facet defining Bell inequality is a generalization of I3322 if and
only if for all behaviours that saturate I3322 there is local deterministic assignment ξ,
such that the extended behaviours saturate this Bell inequality.

Since there are three measurements per party and we have the choice between two
outcomes, we have to take eight possible deterministic assignments into account. For
each of them, we find the generalized inequalities that can be reduced to I3322 by
performing the assignment. Hence, we have to run our algorithm once for each local
deterministic assignment of one party, totalling in eight runs in our case. In each run,
we have to complete the matrix G according to the chosen assignment, only the first
44 rows that implement the symmetry conditions stay the same. For each run of the
algorithm, we choose one local deterministic assignment ξ and obtain one extended
behaviour r for each behaviour that saturates the I3322 inequality. The extended be-
haviour then has to saturate a potential generalization of I3322. This gives us the con-
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dition

rTbC = 0. (6.13)

There are 20 local deterministic behaviours that saturate I3322, so we get 20 conditions
of type Eq. (6.13) and the extended behaviours r make up the next 20 rows of G. There-
fore, G is a 64× 64 matrix. However, it only has rank 53 because some of the extended
behaviours are already related through the symmetry we implemented earlier.

The kernel of G can now be found using for example the sympy package in python,
which returns basis vectors with integer coordinates (since G has integer entries). In
our case, the kernel has dimension 11. For each of the 512 rays of C, we now obtain a
ray of C̃ in the way described in Theorem 1. Note, that the map of a ray of C to a ray that
lies in ker(G) is not necessarily a projection as the basis vectors ti are not necessarily
normalized. In fact, we want to avoid normalization to preserve the property that all
the objects we deal with only have integer entries. The mapping of rays of C to rays
of C̃ is not injective. In fact, only 88 rays remain that span the cone C̃. The facets of C̃
can be found within seconds using standard polytope software such as cdd [27]. From
these facets, we keep those that correspond to facets of C.

Finally, we compose a list of all valid facets from the eight runs of the algorithm
and remove Bell inequalities that are equivalent to other Bell inequalities in the list
up to relabeling of the measurements or outcomes. In this way, all 3050 three-party
generalizations of I3322 are found.

6.2 Properties of the generalizations of I3322

Let us now examine the three simplest ones among the generalized I3322 inequalities
in some detail. For convenience, we introduce a short-hand notation for symmetric Bell
inequalities. We define symmetric correlations as (ijk) = ∑π∈Π Aπ(i)Bπ(j)Cπ(k), where
Π denotes the set of all permutations of the indices ijk that give different terms. Note
that in this notation (112) = A1B1C2 + A1B2C1 + A2B1C1, so permutations leading
to the same term are not counted multiple times. Further, as noted before, settings
labeled with index zero refer to trivial measurements that always yield the result 1.
Using this notation, the I3322 inequality can be written as

(01)− (02)− (11)− (22) + (12) + (13) + (23) ≤ 4. (6.14)
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The three generalizations of I3322 that involve the least number of symmetric correla-
tions are given by:

F1 = 8 + (110)− (210) + (211) + (220)

+ (222)− 2(331)− 2(332) ≥ 0, (6.15)

F2 = 9 + (110) + 2(220)− 2(221)− (300)

− (310) + (311)− 2(322) ≥ 0, (6.16)

F3 = 9− (210) + (211) + (220) + 3(222)

− (300)− (310) + (311)− 2(322) ≥ 0. (6.17)

Let us start our analysis with the possible violations in quantum mechanics. It has
recently been shown that all inequalities that exclusively utilize full correlations are
violated in quantum mechanics [95], however, our inequalities also contain marginal
terms.

A way to obtain bounds on possible quantum values of Bell inequalities is given by
the hierarchy of Navascués, Pironio and Acín (NPA) [37, 42, 96]. For the inequality F1,
this shows that in quantum mechanics F1 ≥ −8 holds. The minimal value F1 = −8 can
indeed be reached, namely by a three-qubit GHZ state |GHZ3〉 = ( |000〉+ |111〉)/

√
2

and measurements A1 = A2 = σx, A3 = σy, B1 = B2 = −σy, B3 = σx and Ci = Bi. In
fact, F1 reduces to the Mermin inequality if the first two measurement settings on each
party are chosen equal.

Concerning F2, a numerical optimization suggests that one optimal choice of settings
is given by A1 = −A3 = σz, A2 = −σx, B1 = −B3 = −σz, B2 = −σx, and Ci = Bi.
This leads to a quantum mechanical violation of F2 = 4(1−

√
7) ≈ −6.58301 for the

three-qubit state

|ψ2〉 = a |W3〉+ b |111〉, (6.18)

with |W3〉 = ( |001〉 + |010〉 + |100〉)/
√

3 being the three-qubit W state and a =√
19 + 2

√
7/
√

74 ≈ 0.57294 and b =
√

55− 2
√

7/
√

74 ≈ 0.81960. The violation at-
tained by this state coincides up to numerical precision with the lower bound on F2 for
quantum states from the NPA hierarchy. It is interesting that F2 is maximally violated
by a state that does not belong to the frequently studied three-qubit states (such as
the states considered in [97, 98, 99]). In this way, the Bell inequality F2 may open an
avenue for new methods of self-testing quantum states [11].

For the inequality F3 the third level of the NPA hierarchy bounds the quantum
mechanical values by F3 ≥ −4.63097. Within numerical precision, this can be attained
using the three-qubit state

|ψ3〉 = cos(ϕ)|W3〉+ sin(ϕ)|GHZ3〉 (6.19)

with ϕ = 4.0◦. The required measurement settings (for i = 1, 2, 3) are Ai = cos(αi)σz +

sin(αi)σx and Bi = Ci = cos(αi)σz − sin(αi)σx, where α1 = 141.6◦, α2 = 22.6◦, α3 =
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101.6◦. Again, we find a non-standard three-qubit state leading to the maximal viola-
tion of the Bell inequality. The state |ψ3〉 is close to a three-qubit W state but the differ-
ence is significant, as for the W state one can only reach a violation of F3 = −4.59569.

Now we clarify whether the new three-setting inequalities are indeed relevant, that
is, whether they detect the nonlocality of some quantum states, where all two-setting
inequalities fail to do so. This question can be answered positively for all three inequal-
ities; moreover, all the Fi detect also entanglement that is not detected by the I3322

inequality in the reduced states. To show this, we provide a three-qubit state $ABC

with separable two-body marginals that has a symmetric extension for each Fi, such
that the respective Bell inequality Fi is violated. A symmetric extension of $ABC is a
five-qubit state HABB′CC′ that is symmetric under exchange of the parties B, B′ (and
C, C′) such that $ABC = TrB′C′ (HABB′CC′). A state that has a such a symmetric exten-
sion cannot violate any Bell inequality with with an arbitrary number of settings for
Alice and two settings for Bob and Charlie [100], see also in appendix A.1. Note that
here the number of outcomes for each setting is unrestricted. Thus this is a stronger
statement than proving that the known inequalities for two settings and two outcomes
[77, 101, 75] are not violated.

We find the desired state $ABC using a seesaw algorithm that alternates between
optimizing the measurement settings (for the violation of the Fi) and the state (under
some constraints). If measurement settings for all parties are fixed, finding a state with
a symmetric extension that maximally violates a given Fi is a semidefinite program.
On the other hand, given a state and measurement settings for two parties, finding the
optimal settings for the third party is also a semidefinite program.

6.3 Conclusion

Using the cone-projection technique, we characterized all symmetric generalizations of
the I3322 inequality to three particles. It turned out that already the simplest ones of
these generalizations have interesting properties, making an experimental implemen-
tation of them desirable.



7 Analysing generalizations of Bell
inequalities

This chapter closely follows our publication [B]. We reuse both the text and the figures
of this publication for the present chapter.

We present a detailed analysis of the properties of three-particle generalizations of
the I3322 inequality previously found in our work [A]. Second, we study general-
izations of the so-called I4422 inequality [76] to three particles. Third, we find and
investigate three-particle Bell inequalities that are generalizations of the CHSH in-
equality and the I3322 inequality at the same time. Finally, we study generalizations of
three-particle Guess-Your-Neighbors-Input (GYNI) inequality [9] to four particles. All
of these inequalities are found using the cone-projection technique.

For every inequality we find, we conduct the same numerical analysis. We compute
the quantum mechanical violation for qubits, for qutrits and for the second and (if
possible) third level of the NPA-hierarchy [37]. For the latter, we used the ncpol2sdpa
package by Peter Wittek [96]. For the qubit and qutrit violations, we provide lower
bounds using a seesaw algorithm that alternates between optimizing the measurement
settings of one of the parties and optimizing the state. Every of these optimization steps
is a semidefinite program. Details can be found in Appendix A.

For meaningful comparisons between the inequalities, we compute four quantities
for every Bell inequality 〈B〉 ≡ ∑ijk 6=000−bijk〈AiBjCk〉 ≤ b000 that will guide the
following discussion.

The first quantity is the relative qutrit violation by which the maximal value of the Bell
expression B achievable with qutrits exceeds the maximal classical value. It is defined
as

mQ =
maxqutrit〈B〉

b000
− 1. (7.1)

We are interested in this quantity as a signature to identify inequalities whose quantum
violation is particularly strong. In this regard, it would be more informative to consider
the quantum violation with a higher-dimensional system. However, the computations
become more demanding which is why we restrict our quantum mechanical analysis
to qubit and qutrit systems.

The second quantity we consider is the algebraic-classical ratio that is defined anal-
ogously and quantifies by how much the algebraic maximum of the Bell expression
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exceeds the classical bound in relation to the classical bound. It is calculated as

mA =
∑i,j,k |bijk| − b000

b000
. (7.2)

As a third interesting quantity, we compute the NPA-qutrit ratio that quantifies the
relative margin between the maximal value of the Bell expression in the third level of
the NPA hierarchy and the maximal value achievable with qutrits. For some of the
Bell inequalities we found, it was unfeasible to compute the third level of the NPA
hierarchy. In this situation we resorted to the value obtained by the second level of the
NPA hierarchy. Every time this is the case it is stated explicitly. The NPA-qutrit ratio
is calculated as

mN =
maxNPA〈B〉
maxqutrit〈B〉

− 1. (7.3)

Lastly, we consider the qutrit-qubit ratio m32 by which the maximal value of the Bell
expression B achieved by qutrits exceeds the corresponding value for qubits. Mathe-
matically, it is defined as

m32 =
maxqutrit〈B〉
maxqubit〈B〉

− 1. (7.4)

It is natural to state these relative margins in percent, in which case m32 = 10% means
that the maximal value of the Bell expression is 10% larger for qutrit systems than for
qubit systems.

In the following, we report those inequalities that exhibit the biggest value for one
of the four relative quantities. A big qutrit-qubit ratio m32 makes the inequality poten-
tially interesting for experimental discrimination between qubit and qutrit states (i.e.
device-independent dimension witnessing), while a large NPA-qutrit ratio mN sug-
gests that the maximal quantum mechanical violation of the inequality may not be
achievable with qutrit states. A large relative qutrit violation mQ hints at a particu-
larly strong violation of the inequality in quantum mechanics, while a large algebraic-
classical ratio mA shows that observers that play by the rules of classical physics are
especially limited in obtaining a large expectation value for the Bell expression in com-
parison with hypothetical observers who do not suffer any physical limitations.

Finally, while we defined the quantities in this subsection for three parties, all the
definitions can easily be extended to four-party Bell inequalities.

7.1 Investigation of I3322 generalizations

For simplicity, we adopt a notation that takes into account that the inequalities are
symmetric under arbitrary permutations of parties. We write (ijk) := 〈AiBjCk〉 +
permutations that yield different terms. For example (011) = 〈A1B1〉+ 〈B1C1〉+ 〈A1C1〉.
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Figure 7.1: The classical bounds of the inequalities ∑ijk 6=000−bijk〈AiBjCk〉 ≤ b000 and
their violation by qubits, qutrits and the NPA hierarchy of third level. The
Bell inequalities are sorted by the number of terms they incorporate. The
light gray and red [dark gray] bars that represent the qutrit violations and
NPA bounds can barely be seen because they are mostly hidden behind the
bars representing the qubit violations.

Let us discuss these inequalities. To start with a rough overview, the classical bounds
b000 of the Bell inequalities range from 8 to 321. Fig. 7.1 depicts the classical bound for
every Bell inequality and how much this bound is exceeded by the quantum states we
found as well as the upper bound thereof provided by the NPA hierarchy. We find that
all of the inequalities can be violated for qubit states. The inequalities are ordered by
simplicity, measured as length of their expression in the above stated notation.

Now let us consider some specific Bell inequalities. The largest qutrit-classical ratio
mQ is achieved for Bell inequality number 1 as listed in the Supplementary Material
of our paper [B], which reads

(110) + (210)− (211)− (220)

− (222) + 2(331) + 2(332) ≤ 8. (7.5)

For this inequality, the maximal value attainable with qubits coincides with the up-
per bound of 16 given by the NPA-hierarchy. It is worth noting that this inequality
reduces to Mermin’s inequality if the first two settings of each party are chosen equal.
The inequality then is maximally violated for the Greenberger-Horne-Zeilinger state
|GHZ〉 = (|000〉+ |111〉)/

√
2 and the optimal measurement settings for Mermin’s in-

equality. In fact, this has been already discussed in our paper [A] and more details on
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states and settings can be found there.
We observe the biggest qutrit-qubit ratio m32 for Bell inequality number 400, which

reads

+ 5(100) + (110)− 5(111) + 3(200)− 3(210) + 3(211)

− 2(220) + 2(221)− 2(300) + (310) + (311)

+ 2(322)− (330)

− (333) ≤ 18 (7.6)

For qubits, QM can lead to a violation of 20.928, whereas for qutrits a maximal viola-
tion of 21.157 can be obtained, which is less than the value 21.238 obtained using the
third level of the NPA-hierarchy.

We find the biggest NPA-qutrit ratio mN for Bell inequality number 1507, which
reads

8(100)− 4(110) + 3(111) + 4(200)− 3(210)

+ 2(211)− (220) + 2(221)− 2(222)− (300)− (310)

+ 3(311) + 2(320)− (321) + (322)− (331)− (333) ≤ 21. (7.7)

The third level of the NPA hierarchy yields the value 24.079, which is a significant
improvement over the value 26.299 provided by the second level of the NPA hierarchy.
However, with qutrits we could only achieve a violation of 23.603. With qubits, the
violation was even lower at 23.249.

The largest algebraic-classical ratio mA between the classical bound 12 and the alge-
braic bound 86 is found for Bell inequality number 532. It reads

3(100)− (110)− (111)− 4(200) + 2(210)− (220)

+ (221) + (222)− 3(300) + 2(310)− (320) + (321)

− (322) + (331) + (332) ≤ 12 (7.8)

All four ratios are listed for the inequalities above in Tab. 7.2.
It is also worth mentioning that for some of the Bell inequalities, we have numerical

evidence that suggests the maximal qubit violation cannot be achieved using projective
measurements. For 93 inequalities the maximal qubit violation we could achieve using
projective measurements falls short by more than 0.001 compared to the value we
were able to obtain with POVMs. The largest percentual discrepancy occurs in Bell
inequality 898, which reads

(110)− 3(111)− 4(200)− (210) + (211)

− (220)− (221) + (222) + 3(300) + (311)

+ 2(320) + (321) + (322)− (330) + 2(331)

− (333) ≤ 15. (7.9)
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Eq. Number mQ m32 mN mA

(7.5) 1 100.0 0.0 -0.0 250.0
(7.6) 400 17.54 1.09 0.38 433.33

(7.7) 1507 12.4 0.61 2.01 514.29

(7.8) 532 18.69 0.0 0.35 616.67

Table 7.1: This table shows the relative qutrit violation mQ, the qutrit-qubit ratio m32,
the NPA-qutrit ratio mN , and the algebraic-classical ratio mA as well as those
generalizations of the I3322 inequality for which one of these margins is
the largest. The values of the margins is stated in percent. For example, for
inequality number 1, the maximal value of the Bell expression is 16 for qutrit
systems, exceeding the classical bound of 8 by 8, yielding mQ = 100%.

Eq. Number mQ m32 mN mA

(7.5) 1 100.0 0.0 -0.0 250.0
(7.6) 400 17.54 1.09 0.38 433.33

(7.7) 1507 12.4 0.61 2.01 514.29

(7.8) 532 18.69 0.0 0.35 616.67

Table 7.2: This table shows the relative qutrit violation mQ, the qutrit-qubit ratio m32,
the NPA-qutrit ratio mN , and the algebraic-classical ratio mA as well as those
generalizations of the I3322 inequality for which one of these margins is
the largest. The values of the margins is stated in percent. For example, for
inequality number 1, the maximal value of the Bell expression is 16 for qutrit
systems, exceeding the classical bound of 8 by 8, yielding mQ = 100%.

For this inequality, we obtain a POVM violation of 19.32. This is almost 11% larger
than the maximal PVM violation we were able to obtain at 17.43.

7.2 Three-party generalizations of the I4422 inequality

When Collins and Gisin discovered the I3322 inequality, they noticed that this Bell in-
equality is a member of a family of Bell inequalities which they called Imm22, where
m ≥ 2. This family contains the CHSH inequality, or I2222, as a special case. Inequali-
ties of this family with more measurement settings generalize inequalities with fewer
measurement settings in the following sense: If one substitutes A1 = 1 and B3 = 1
in the I3322 inequality, the inequality effectively reduces to a CHSH inequality. Es-
sentially the same procedure also works for the I4422 inequality [76]. In the notation
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introduced above, it reads

2 (10) + 2 (20) + (30)− (11)− (21)

−(31)− (41)− (22)− (32) + (42) + (33) ≤ 7. (7.10)

If we substitute A3 = B3 = 1, followed by A2 → −A2, B2 → −B2 and A4 → −A3,
B4 → −B3, we arrive at the I3322 inequality.

In contrast to the I3322 inequality we observe a difference between the maximal
qubit-violation and the maximal qutrit-violation. For qubits, the largest value we could
achieve for the Bell expression is 8, whereas for qutrits it is 8.15, which matches the
upper bound obtained using the third level of the NPA hierarchy up to numerical
precision. Obtaining a value of 8 is compatible with the above mentioned contraints
that will reduce the inequality to the I3322 inequality. This means that the additional
measurement setting of I4422 seems to lead to no advantage for achieving a large
violation of the inequality, as long as only qubits are concerned. Perhaps surprisingly,
the generalizations of I4422 we are going to present do not seem to inherit the feature
of being able to discriminate between qubit and qutrit systems by means of their
maximal violations.

Before presenting some generalizations of I4422, we should clarify that we did not
tackle this problem in full generality. When looking for generalizations of the I3322

inequality to more parties, the only symmetry we demanded was invariance under
permutations of parties. Finding generalizations of the I4422 inequality is, however,
computationally more involved, which is why we demand a second symmetry in or-
der to make the problem tractable. When choosing a symmetry, one needs to be care-
ful to not impose too strong constraints. For example, a three-party inequality that
is invariant under party permutations can never be the generalization of a two party
inequality that is not symmetric with respect to the parties. We therefore have to take
the symmetries of the inequality we seek to generalize, in our case I4422, into consid-
eration.

Besides being invariant under exchange of the parties A and B, I4422 has a second
symmetry, namely, if we swap Alice’s first and second setting while simultaneously
relabeling the outcomes of Bob’s fourth measurement, then this leaves the inequality
invariant. For convenience, we write the symmetries in the following symbolic way:

1. A↔ B

2. A1 ↔ A2, B4 → −B4.

For three-party generalizations of I4422, the following two symmetries seem natural.
The first one is

1. A↔ B
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Figure 7.2: The classical bounds of the I4422 generalizations and their violation by
qubits, qutrits and the NPA hierarchy (second level).

2. A↔ C

3. A1 ↔ A2 , B4 → −B4, C4 → −C4.

However, there exist no non-trivial facet inequalities that generalize I4422 and at the
same time meet the above conditions.

We therefore instead look for I4422 generalizations with the following symmetry:

1. A↔ B

2. A↔ C

3. A1 ↔ A2 , B1 ↔ B2, C4 → −C4.

The first two symmetries together establish that the generalizations we are going to
find are symmetric under arbitrary permutations of the three parties. The third sym-
metry resembles the second symmetry of I4422. In total, there are 13 classes of Bell
inequalities that generalize I4422 and also exhibit the above symmetries. They are pre-
sented in Appendix B.

Just like some of the I3322 generalizations, also three I4422 generalizations appear
to have a maximal qubit violation that can only be achieved using POVMs. These are
the inequalities Eqs. (A.5 - A.7) for which the qubit violation we found using POVMs
exceeded the bound we found using PVMs by 2.3%, 2.1%, and 9.1%, respectively.

Fig. 7.2 shows the classical bounds and the violations we found for the 13 inequali-
ties. The more complex scenario of tripartite generalizations of I4422 also comes with
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Eq. Number mQ m32 mN mA

(A.3) 1 28.87 0.0 6.81 360.0
(A.4) 2 59.05 0.0 0.24 413.33

(A.5) 3 18.39 0.0 9.49 315.79

(A.6) 4 42.11 0.0 2.18 357.89

(A.7) 5 69.57 0.0 0.0 434.78

(A.8) 6 49.83 0.0 6.82 400.0
(A.9) 7 49.56 0.0 2.75 378.95

(A.10) 8 30.39 0.0 10.85 341.18

(A.11) 9 71.33 0.0 0.33 403.92

(A.12) 10 30.87 0.0 7.56 327.27

(A.13) 11 63.34 0.0 1.39 385.45

(A.14) 12 56.21 0.0 1.76 373.68

(A.15) 13 57.12 0.0 4.26 405.26

Table 7.3: This table shows the relative qutrit violation mQ, the qutrit-qubit ratio m32,
the NPA-qutrit ratio mN , and the algebraic-classical ratio mA for every gen-
eralization of I4422 that satisfies the symmetry described in the text. The
values of the ratios are expressed in percent. Numbers refers to the number
under which the corresponding inequality is listed in the Appendix A.3.

the drawback that the third level of the NPA hierarchy is already hard to compute.
We therefore only compute the second level of the NPA hierarchy. Tab. 7.3 shows the
relative margins as defined in Eqs. (7.1 - 7.4). For all of the inequalities the maximal
qubit and qutrit violations we found were the same. However, we cannot be certain
that we managed to find the maximal qutrit violation, except from the case of inequal-
ity number 5, where the quantum violations attained the upper bound given by the
NPA hierarchy up to numerical precision.

7.3 Three-party hybrid CHSH-I3322 generalizations

To show that also hybrid scenarios can be studied, we find all 476 three-party facet
Bell inequalities with the following properties: Alice and Bob have three measurement
settings each and Charlie has only two. Also, there are deterministic assignments to
the outcomes of Alice’s measurements, such that the inequality effectively reduces to
the CHSH inequality

〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 ≤ 2. (7.11)
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Figure 7.3: The classical bounds of the inequalities ∑ijk 6=000−bijk〈AiBjCk〉 ≤ b000 and
their violation by qubits, qutrits and the NPA hierarchy of third level. See
text for further details.

Further, there are deterministic assignments to the outcomes of Charlie’s measure-
ments, such that the inequality reduces to the I3322 inequality. Lastly, we require the
inequality to be symmetric under exchange of Alice and Bob. These conditions lead to
476 inequalities, these are given in the Supplementary Material of our paper [B].

As one can see in Fig. 7.3 all of the Bell inequalities are violated in quantum me-
chanics. The strongest violation by qutrit states is achieved for inequality 47, where
with qutrits one can achieve a value of 10.154 while the classical bound is 6. It reads

〈C1〉+ 〈C2〉+ 〈B1〉

− 〈B1C2〉 − 〈B2〉+ 〈B2C1〉+ 〈A1〉

− 〈A1C2〉+ 2〈A1B1C2〉+ 〈A1B2〉 − 〈A1B2C1〉

− 〈A1B3C1〉 − 〈A1B3C2〉 − 〈A2〉+ 〈A2C1〉

+ 〈A2B1〉 − 〈A2B1C1〉 − 〈A2B2〉+ 2〈A2B2C1〉

− 〈A2B2C2〉+ 〈A2B3〉 − 〈A2B3C2〉 − 〈A3B1C1〉

− 〈A3B1C2〉+ 〈A3B2〉 − 〈A3B2C2〉 − 〈A3B3〉

− 〈A3B3C1〉 ≤ 6 (7.12)
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We find the largest NPA-qutrit ratio mN for Bell inequality number 314. It reads

5〈C1〉+ 〈C2〉+ 2〈B1〉 − 2〈B1C1〉

− 2〈B2〉+ 2〈B2C1〉+ 〈B3C1〉+ 〈B3C2〉

+ 2〈A1〉 − 2〈A1C1〉+ 2〈A1B1C1〉 − 2〈A1B1C2〉

+ 〈A1B2〉 − 2〈A1B2C1〉+ 〈A1B2C2〉

+ 〈A1B3〉 − 2〈A1B3C1〉+ 〈A1B3C2〉 − 2〈A2〉

+ 2〈A2C1〉+ 〈A2B1〉 − 2〈A2B1C1〉+ 〈A2B1C2〉

− 2〈A2B2〉+ 3〈A2B2C1〉+ 〈A2B2C2〉+ 〈A2B3〉

− 3〈A2B3C1〉+ 〈A3C1〉+ 〈A3C2〉+ 〈A3B1〉

− 2〈A3B1C1〉+ 〈A3B1C2〉+ 〈A3B2〉

− 3〈A3B2C1〉 − 2〈A3B3C1〉 − 2〈A3B3C2〉 ≤ 12. (7.13)

We achieve the same violation for qubit and qutrit systems at 16.339. The third level of
the NPA hierarchy yields 16.488, improving the upper bound of 17.870 from the sec-
ond level NPA hierarchy significantly. Because the qubit and qutrit violations are the
same, one may conjecture that the upper bound for the quantum mechanical violation
provided by the NPA hierarchy is not tight for the third level.

We observe the biggest gap between qubits and qutrits for Bell inequality number 1.
It reads

2〈B1〉 − 2〈B2〉+ 2〈A1〉 − 〈A1B1〉

+ 〈A1B1C1〉+ 〈A1B2〉 − 〈A1B2C1〉+ 2〈A1B3C2〉

− 2〈A2〉+ 〈A2B1〉 − 〈A2B1C1〉 − 〈A2B2〉

+ 〈A2B2C1〉+ 2〈A2B3C2〉+ 2〈A3B1C2〉+ 2〈A3B2C2〉

≤ 8 (7.14)

For this inequality we find a value of 10.000 for qubits, whereas the violation of 10.286
that we find for qutrits coincides with the value of the third level of the NPA hierarchy
up to numerical precision.

Lastly, the biggest gap between the classical and the algebraic bound occurs for
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inequality 198, which reads

3〈C1〉+ 〈C2〉+ 2〈B1〉

− 〈B1C1〉 − 〈B1C2〉 − 〈B2〉+ 2〈B2C1〉

+ 〈B2C2〉+ 〈B3〉 − 〈B3C2〉+ 2〈A1〉

− 〈A1C1〉 − 〈A1C2〉 − 〈A1B1〉+ 〈A1B1C1〉

+ 〈A1B2〉 − 〈A1B2C1〉 − 〈A1B3C1〉+ 〈A1B3C2〉

− 〈A2〉+ 2〈A2C1〉+ 〈A2C2〉+ 〈A2B1〉

− 〈A2B1C1〉 − 〈A2B2〉 − 〈A2B2C2〉+ 〈A2B3〉

− 〈A2B3C1〉+ 〈A3〉 − 〈A3C2〉 − 〈A3B1C1〉

+ 〈A3B1C2〉+ 〈A3B2〉 − 〈A3B2C1〉 ≤ 6. (7.15)

Compared to the classical bound of 6, the algebraic bound is almost seven times as
large at 40. The numerical results are summarized in Tab. 7.4.

Once again, we were able to obtain some qubit violations only when admitting
POVMs but not if the measurements were restricted to be projective. The largest dis-
crepancy between the maximal value achieved with projective measurements and the
maximal value achieved with POVMs occurs for Bell inequality number 249, where
the latter exceeds the former by roughly 8%. This Bell inequality reads

2〈C1〉+ 2〈C2〉+ 2〈B1〉 − 〈B1C1〉

− 〈B1C2〉 − 〈B2〉+ 〈B2C1〉+ 〈B3〉

− 〈B3C2〉+ 2〈A1〉 − 〈A1C1〉 − 〈A1C2〉

− 〈A1B1〉+ 〈A1B1C1〉+ 〈A1B2〉 − 〈A1B2C1〉

− 〈A1B3C1〉+ 〈A1B3C2〉 − 〈A2〉+ 〈A2C1〉

+ 〈A2B1〉 − 〈A2B1C1〉+ 〈A2B2C1〉 − 〈A2B2C2〉

− 〈A2B3C1〉+ 〈A2B3C2〉+ 〈A3〉 − 〈A3C2〉

− 〈A3B1C1〉+ 〈A3B1C2〉 − 〈A3B2C1〉+ 〈A3B2C2〉

− 〈A3B3〉+ 2〈A3B3C1〉+ 3〈A3B3C2〉 ≤ 8. (7.16)
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Eq. Number mQ m32 mN mA

(7.12) 47 69.23 0.0 0.0 400.0
(7.14) 1 28.57 2.86 0.0 200.0
(7.13) 314 36.16 0.0 0.91 433.33

(7.15) 198 39.71 0.0 0.0 566.67

Table 7.4: This table shows the relative qutrit violation mQ, the qutrit-qubit ratio m32,
the NPA-qutrit ratio mN , and the algebraic-classical ratio mA as well as those
hybrid generalizations of the I3322 and the CHSH inequality for which one
of these margins is the largest. The values of the ratios is stated in percent.

7.4 Four-party generalizations of a

Guess-Your-Neighbors-Input inequality

Here we present generalizations of the Guess-Your-Neighbors-Input (GYNI) inequality

〈A1B1〉+ 〈A2B1〉+ 〈A1B2〉+ 〈A2B2〉

+ 〈A1C1〉 − 〈A2C1〉+ 〈B1C1〉+ 〈A1B1C1〉

− 〈B2C1〉 − 〈A2B2C1〉+ 〈A1C2〉 − 〈A2C2〉 − 〈B1C2〉

+ 〈A2B1C2〉+ 〈B2C2〉 − 〈A1B2C2〉 ≤ 4. (7.17)

This inequality was found to be a GYNI inequality by Almeida et al. [9] and found
by Śliwa [75]. For the properties and interpretation of such an inequality, the reader is
referred to section 4.7. The inequality has the following symmetries:

1. A1 ↔ A2, B1 ↔ B2, C1 → −C1, C2 → −C2

2. A1 ↔ A2, C1 ↔ C2, Ai → −Ai ∀i, Bi → −Bi ∀i.

We demand exactly the same symmetries for the generalization of the above in-
equality. We find 23 four-partite inequalities, the detailed expressions are given in the
Supplementary Material of our paper [B]. The first one is not a real four-partite Bell
inequality, since it only includes a single measurement setting on the fourth party. In
fact, it is of the form B(1+ D1) ≤ 4(1 + D1), where B is the left-hand-side of Eq. (7.17)
after C1 and C2 have been swapped and all outcomes of Bob have been relabeled. All
the other inequalities are violated in quantum theory. Hence, none of the generaliza-
tions shares the characteristic feature of the GYNI inequality. Fig. 7.4 shows a plot with
all classical bounds and their violations for all 23 inequalities.
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Figure 7.4: The classical bounds of the inequalities ∑ijkl 6=0000−bijkl〈AiBjCkDl〉 ≤ b0000

and their violation by qubits, qutrits and the NPA hierarchy of third level.

7.5 Conclusion

Using the cone-projection technique, we were able to find 3050 classes of generaliza-
tions of the I3322 inequality, 476 classes of Bell inequalities that simultaneously gener-
alize the CHSH inequality as well as the I3322 inequality, 13 classes of Bell inequalities
that generalize the I4422 inequality and 23 classes of Bell inequalities that generalize
the Guess-Your-Neighbors-Input inequality first found in [75]. For all inequalities, we
applied an extensive numerical analysis, providing upper bounds to their quantum
violations both for qubit and qutrit systems as well as upper bounds using the NPA
hierarchy.

For future research, there are several open problems. First, it would be desirable to
study some of the Bell inequalities presented here in more detail. For instance, the
question arises whether they can be connected to some distributed information pro-
cessing task. In addition, one may study the viability of an experimental test of these
inequalities. Second, it is very interesting to study the cone-projection technique also
for other scenarios, such as Bell inequalities that detect genuine multi-partite nonlo-
cality or contextuality inequalities.





8 Bell-like inequalities to distinguish
hybrid models

This chapter contains results, text and figures from our manuscript [C].
Bell inequalities have been conceived as tools to test the compatibility of local hid-

den variable models with quantum mechanical predictions. Famously, they have later
been successfully used to show that the results of Bell test experiments can in fact not
be reproduced in a local hidden variable model. Given that nonlocal effects occur in
the realm of quantum mechanics, one may be interested in how extensive they are. To
answer this question, Svetlichny introduced so-called hybrid models. Hybrid models
are a class of hidden variable models that give up on all restrictions on the corre-
lations between a subset of parties while maintaining the restriction of local realism
with respect to the remaining ones. The most famous example of a hybrid model is
the one originally introduced by Svetlichny for three parties: In any round of the Bell
experiment, two of the parties may collaborate to establish arbitrary correlations be-
tween themselves. However, the correlations shared between these two parties and the
third party must respect a local-hidden-variable model. In this case, the correlations
between the three parties satisfy the Svetlichny inequality, which reads

4− [112]− [121]− [211] + [222]

− [221]− [212]− [122] + [111] ≥ 0, (8.1)

where [abc] := 〈AaBbCc〉 and all measurements Aa, Bb, Cc yield outcomes ±1. If one
allows arbitrary correlations between Alice and Bob, this amounts to treating both
together as one party. Rewriting the Svetlichny inequality in this way yields

4− [12]− [21]− [31] + [42]− [41]− [32]− [22] + [11] ≥ 0. (8.2)

This inequality can be written as the sum of two CHSH inequalities

2− [12]− [21]− [22] + [11] ≥0, (8.3)

2− [31] + [42]− [41]− [32] ≥0. (8.4)

If both of the CHSH inequalities are satisfied, then the Svetlichny inequality is satis-
fied, too. Hence, Svetlichny’s inequality is fulfilled if the correlations shared between
the new party AB and C are local. Since the Svetlichny inequality is symmetric under
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exchange of parties it is apparent that it is satisfied no matter which of the two par-
ties collaborate. Remarkably, this inequality is violated in quantum mechanics, which
means that nonlocality affects more than 2 parties at once. In the same scenario there
is only one other inequivalent Bell inequality that solely involves full-body correlation
terms, found by Bancal et al. [81].

In this chapter, we find Bell inequalities for hybrid models in the case of four and
five parties. There is however one complication: For more than 3 parties, there is more
than one hybrid model to consider. For four parties, one example of a hybrid model
would be one, where two teams of two parties share local correlations while the cor-
relations shared between parties within a team can be arbitrary. In the following we
refer to this hybrid model as a (2, 2) model. Another example would be a hybrid
model where there is one team of three parties and one party that is on its own. In
our terminology, this is a (3, 1) model. For four and five parties, we consider all hybrid
models and find all optimal, symmetric, 2-setting, 2-outcome, full-body correlation
Bell inequalities. Full-body correlation Bell inequalities are those that only involve cor-
relations where every party performs a non-trivial measurement. Requiring symmetry
of the Bell inequalities imposes linear contraints, which can be supplied to the cone-
projection technique (CPT) to help narrow down the search for Bell inequalities. This
simplifies the task and allows us to find all of the specified Bell inequalities.

We then shift our focus back to three-partite nonlocality, where we discuss genuine-
multipartite Bell inequalities with three settings that generalize Svetlichny’s inequality.
This means, that for a particular choices of measurements, these inequalities reduce to
Svetlichny’s inequality.

8.1 Hybrid models

We already briefly discussed hybrid models in Chapter 4. Here we specify the hybrid
models, which are studied in this chapter.

Since all measurements considered in this chapter yield outcomes ±1, we regard a
behavior as a vector in an expectation value behavior space as defined in Section 4.2.2.
If we do not impose any no-signaling constraints, the behaviors in this space form the
hypercube defined by the conditions

−1 ≤ 〈AaBbCc〉 ≤ 1. (8.5)

We refer to this hypercube as the unconstrained model M� (see also Figure 4.2). Hy-
brid models are models that arise as hybrids between a LHV model and an uncon-
strained model [84, 85]. For a hybrid model MH it thus holds that

MLHV ⊂ MH ⊂ M�. (8.6)
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Hybrid models can be constructed in the following way: Given an n-party system with
subsystems s ∈ S, the first step is to define a partition

P = {c1, . . . , ck} (8.7)

where the cells ci ⊂ S are disjoint non-empty subsets of S and

k⋃
i=1

ci = S. (8.8)

In a second step, one defines a local hidden-variable model MP
LHV for the coarse

grained scenario defined by P. This works in the following way: Every cell ci of the
partition is considered as one system. The measurement settings are all combinations
of measurement settings that apply to each subsystem within a cell. However, no re-
strictions apply to the correlations between subsystems within a cell, since the cell is
regarded as one system. In particular, this allows for signaling to take place between
the parties within one cell.

As a third step, two partitions are considered equivalent, if they are related by a
relabeling of the parties. Each equivalence class of partitions of a partition P is then
defined by what we call the cardinality tuple

hP = (|ci| | i ∈ {1, . . . , k}, ci ∈ P), (8.9)

which contains the ordered cardinalities of the cells of P. Two partitions P, P′ are equiv-
alent if and only if hP = hP′ . This equivalence relation is similar to the classification
of multipartite entanglement [85]. For any ordered tuple h, one now defines a hybrid
model

Mh = conv

 ⋃
P|hP=h

MP
LHV

 , (8.10)

where conv denotes the convex hull. Note that Mh is a convex polytope, the extremal
points of which are the union of the extremal points of models MP

LHV .
If h is an m-tuple, we call Mh an m-local model and if m is equal to the number of

parties, we call the resulting model fully local. A more detailled discussion on differ-
ent notions of multipartite nonlocality can be found for example in Refs. [102, 103].
Some authors have for example considered hybrid models that impose a no-signaling
constraint on the behaviors of each cell in a given partition [104].

8.2 Hybrid Bell inequalities

We consider the case of four and five parties that seek to perform a Bell-type exper-
iment in order to investigate the structure of the nonlocality they might share. Every
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party can choose between two measurement settings, each of which yields outcomes
±1. Moreover, we consider the case in which every party performs one of the two mea-
surements in every round, that is, every party performs a non-trivial measurement in
every round. As far as Bell inequalities are concerned, this means that we only con-
sider full-body correlation Bell inequalities. Further, we only consider Bell inequalities
that are symmetric under relabelings of the parties. This symmetry constraint is a lin-
ear constraint on the coefficients of the Bell inequality in question, so we can employ
the cone-projection technique presented in Chapter 5 to specifically find these Bell
inequalities.

In order to be able to investigate the nonlocal structure, we need to consider different
hybrid models. In the four-party case, these hybrid models are given by the cardinality
tuples

h ∈ {(1, 1, 1, 1), (2, 1, 1), (2, 2), (3, 1)}, (8.11)

where h = (1, 1, 1, 1) corresponds to the fully local model. In the case of five parties,
we consider six models given by the cardinality tuples

h ∈ {(1, 1, 1, 1, 1), (2, 1, 1, 1), (2, 2, 1), (8.12)

(3, 1, 1), (3, 2), (4, 1)}. (8.13)

For every model, we find all optimal, symmetric, full-body correlation Bell inequal-
ities.

To aid readability, we introduce some notation that simplifies writing down Bell
inequalities which are symmetric under permutation of the parties. For example, for
four parties A, B, C, D we write

(1122) = 〈A1B1C2D2〉+ party permutations, (8.14)

where ’party permutations’ only includes permutations that yield different terms.
Therefore, expression Eq. (8.14) consists of six terms. To give another example,

(1112) = 〈A1B1C1D2〉+ 〈A1B1C2D1〉

+ 〈A1B2C1D1〉+ 〈A2B1C1D1〉. (8.15)

For five parties, the notation works analogously.

8.3 Numerical analysis

For each Bell inequality, we perform the same numerical analysis. We find a lower
bound on the quantum violation using qubit and qutrit systems and an upper bound
using the third level of the NPA-hierarchy [37, 42]. We also find the no-signaling
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bound. We find that while not all inequalities are violated in quantum mechanics, all
can be violated using no-signaling behaviors. We calculate the quantum violation of
each Bell inequality using a seesaw algorithm that optimizes the settings of one party
in every step and cycles through the parties as described in Ref. [40]. This algorithm
is not guaranteed to yield the maximal quantum violation. However, comparing with
the upper bound provided by the NPA-hierarchy, we can confirm that the optimum
was achieved in all cases. All of bounds for the inequalities are listed together with the
inequalities in the Supplemental Material [105].

Additionally, we find lower bounds on the noise robustnesses of the inequalities
using the states

$4(p) = (1− p)|GHZ4〉〈GHZ4|+
p

16
1 (8.16)

and for five qubits

$5(p) = (1− p)|GHZ5〉〈GHZ5|+
p

32
1, (8.17)

where the respective GHZ states are given by

|GHZ4〉 =
1√
2
(|0000〉+ |1111〉), (8.18)

|GHZ5〉 =
1√
2
(|00000〉+ |11111〉). (8.19)

In this way, we identify regimes of the parameter p, for which some of the hybrid
models can be excluded.

To estimate the noise robustness, we calculate the maximal violation of each inequal-
ity for states $n(pi), where the values pi ∈ P are chosen equidistantly from the interval
[0, 1]. From this, we obtain a critical interval [pc

0, pc
1] that contains the noise robustness

pc. Specifically, pc
0 is defined as the largest possible value in P, such that the maximal

quantum violation of the Bell inequality exceeds some threshold t = 10−6. Similarly,
pc

1 is defined as the smallest value in P, such that the Bell inequality is no longer vio-
lated. In a second step, we choose new, equidistant parameter values from the critical
interval and repeat the procedure. This algorithm is not very efficient in the following
sense. One can easily define an algorithm for which the size of the critical interval
decreases more quickly as a function of the number of parameter values, for which
the quantum violation of the Bell inequality is computed. However, there is an advan-
tage. The value computed for the quantum violation is not guaranteed to be optimal.
Calculating the quantum violation for more parameters allows for a sanity check: The
maximal quantum violation as a function of the noise parameter p is convex. A proof
of this statement can be found in appendix A.6.
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Figure 8.1: Noise robustness for each inequality for hybrid models in the four party
case by the number under which it is listed in the online material. Given the
family of states $4(p) as defined in Eq. (8.16) the dark-blue (dark-gray) bar
indicates a value of p for which the violation is larger than some threshold
(here: 10−6), the light-blue (light-gray) bar indicates a value of p for which
the threshold is no longer exceeded. Note that inequality 4 in the 3-1 model
is not violated in quantum mechanics at all.

8.4 Four party nonlocality

In the four party case, we find a total of 26 Bell inequalities, five for the fully local
model, eight for the (2, 1, 1) model, seven for the (2, 2) model, and six for the (3, 1)
model. Of these inequalities, we find all but one to be violated in quantum mechanics.
All inequalities that are violated in quantum mechanics, are maximally violated by the
GHZ state.

For the fully local model, the inequality that exhibits the best white-noise robustness
with respect to the GHZ-state is the generalized Mermin inequality

+4− (1111)− (1112) + (1122) + (1222)− (2222) ≥ 0, (8.20)

which was found in Ref. [85]. With it, nonlocality can be detected with up to roughly
64.5% white noise.

One might expect that for the hybrid models considered, one would find that the
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model #ineq. noise-robustness ineq. number inequality

(1,1,1,1) 5 0.645 2 +4− (1111)− (1112) + (1122) + (1222)− (2222)
(2,1,1) 8 0.493 7 +4− (1112) + (1222)
(2,2) 7 0.291 3 +16− (1112)− 2(1122) + 3(1222) + 4(2222)
(3,1) 6 0.291 6 +8 + (1111)− (1112)− (1122) + (1222) + (2222)

Table 8.1: For each hybrid model, the table shows the number of optimal symmetric
full-body correlation inequalities. Further a lower bound for the white-noise
robustness for the |GHZ〉 state is provided for the best inequality, which is
indicated by its number in the list in the Supplementary Material [105].

Bell inequality with the best noise robustness is a generalized Svetlichny inequality.
However, this is not the case. For the (2, 1, 1) model, the most noise robust Bell in-
equality is

4− (1112) + (1222) ≥ 0 (8.21)

and it is violated up to roughly 49.3% of white noise.
If the amount of white noise is less than roughly p = 29.1%, then the state $4(p)

violates the inequality

+8 + (1111)− (1112)− (1122) + (1222) + (2222) ≥ 0 (8.22)

for the (3, 1) model and the inequality

+16− (1112)− 2(1122) + 3(1222) + 4(2222) ≥ 0 (8.23)

for the (2, 2) model. Interestingly, the amount of white-noise required to obtain a vi-
olation of the (2, 2) model and the (3, 1) model is the same for symmetric, full-body
correlation, two-setting inequalities, although the violations are established by differ-
ent inequalities. We will observe the same phenomenon in the case of five parties. The
findings discussed in this subsection are summarized in table 8.4. The noise robust-
nesses of all inequalities we found in the four party case are plotted in figure 8.1.

8.5 Five party nonlocality

In the five party scenario, we find 9 inequalities for the fully local model, 27 inequalities
for the (2, 1, 1, 1) model, 38 inequalities for the (2, 2, 1) model, 45 inequalities for the
(3, 1, 1) model, 59 inequalities for the (3, 2) model and 21 inequalities for the (4, 1)
model. Among the Bell inequalities in the (3, 2) model there are two Bell inequalities
that are not violated in quantum mechanics. For the (4, 1) model, there 9 such Bell
inequalities. All inequalities that are violated are maximally violated by the GHZ state.
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Figure 8.2: Noise robustness for each inequality for hybrid models in the five party
case by the number under which it is listed in the online material. The
dark-blue (dark-gray) bar indicates a value of p for which the violation
is larger than some threshhold (here: 10−6), the light-blue (light-gray) bar
indicates a value of p for which the threshhold is no longer exceeded. Note
that inequalities 30 and 31 of the 3-2 model as well as inequalities 3, 4, 10,
11, 13, 14, 16, 17 and 20 for the 4-1 local model are not violated in quantum
mechanics.

model #ineq. noise-robustness ineq. number inequality

(1,1,1,1,1) 9 0.743 5 +4− (11112) + (11222)− (22222)
(2,1,1,1) 27 0.645 26 +8 +(11111) + (11112)− (11122)− (11222) + (12222) + (22222)
(2,2,1) 38 0.493 36 +8 + (11111)− (11122) + (12222)
(3,1,1) 45 0.493 38 +8 + (11111)− (11122) + (12222)
(3,2) 59 0.291 35 +40 + (11112) + 2(11122)− 3(11222)− 4(12222) + 5(22222)
(4,1) 21 0.291 5 +16− (11111) + (11112) + (11122)− (11222)− (12222) + (22222)

Table 8.2: For each hybrid model, the table shows the number of optimal symmetric
full-body correlation inequalities. Further a lower bound for the white-noise
robustness for the |GHZ〉 state is provided for the best inequality, which is
indicated by its number in the list in the Supplemental Material [105].
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The Bell inequality for the fully local model with the best white-noise robustness
regarding the GHZ state is obtained for the generalized Mermin inequality

+4− (11112) + (11222)− (22222) ≥ 0. (8.24)

If the percentage of white noise in the state $5(p) is roughly smaller than 74.3%, then
the state exhibits nonlocality.

For the (2, 1, 1, 1) model, the most sensitive Bell inequality is a generalized Svetlichny
inequality

+8 + (11111) + (11112)− (11122)

− (22222) + (12222) + (11222) ≥ 0. (8.25)

It can detect a violation up to a white noise level up to roughly 64.5%. Note that this
is up to numerical precision the same threshold that we obtain for a violation of the
fully local model in the case of four parties.

We find numerically that the white-noise thresholds for two-local models, three-local
models and five-local models of the four party scenario and the five party scenario
coincide. For the three-local models given by h = (2, 2, 1) and h = (3, 1, 1), we find
that the best inequality to detect the nonlocality of a noisy GHZ state is the generalized
Mermin inequality Eq. (8.24), however with a different bound of eight instead of four
in the fully local model. It can detect a violation up to approximately 49.3% of white
noise.

The two-local models with h = (3, 2) and h = (4, 1) are violated up to approximately
29.1% of white noise. In the case of the (4, 1) model, the violation is detected by the
generalized Svetlichny inequality Eq. (8.25) with an adapted bound of 16. For the (3, 2)
model, we find that the most robust Bell inequality is

+40 + (11112) + 2(11122)− 3(11222)

− 4(12222) + 5(22222) ≥ 0. (8.26)

8.6 Family of genuine multipartite Bell inequalities

The inequalities Eq. (8.23) and Eq. (8.26) which are useful for the (2, 2) model and
the (3, 2) model can be extended to a family of Bell inequalities (Fn) for an arbitrary
number of n parties. We define this family as

Fn =
n

∑
`=1

(−1)1+d `2 e ` (1 . . . 1︸ ︷︷ ︸
n−`

, 2 . . . 2︸ ︷︷ ︸
`

) ≤ n2n−2. (8.27)

One can show that the bound can always be achieved in any (k, m) model with k, m >

1. Moreover, for m = 2, one can show analytically that the bound holds. Proofs for both
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statements can be found in appendix A.4. Moreover, we checked numerically for up
to 20 parties that the bound holds for (k, m) models with k > 1, m > 1. We conjecture
that the bound also tight for more parties. For (n− 1, 1) models the bound does not
hold. A violation of an inequality in the family Eq. (8.27) therefore certifies that the
nonlocality depth is at least (n− 1).

In the following, we discuss numerical findings concerning the Bell inequalities Fn

for n ≤ 8 parties. We find, that the quantum bound of the inequalities is

Fn =
√

2 n2n−2 (8.28)

up to numerical precision, which is achieved by choosing A1 = B1 = ... = σX and
A2 = B2 = ... = σZ, where σX , σZ are Pauli matrices. The quantum states for which
a maximal violation can be obtained using these settings are listed in appendix A.5.
We find numerically that they are equivalent to the GHZ state up to the action of local
unitaries.

Further, we consider the white-noise robustness. For this, we consider the states

$n(p) = (1− p)|GHZn〉〈+|p 2−n1n. (8.29)

We find that the inequalities are violated if p ≤ 1 − 1√
2
≈ 29.3% up to numerical

precision.

8.7 Generalizations of Svetlichny’s inequality to more

settings

Facet defining inequalities of a polytope that obey a set of affine constraints can be
found using the cone-projection technique which we introduced in our publications
[A, B]. Alternatively, if one is interested in finding the generalizing Bell inequality
that is best suited to detect the nonlocality in an behavior r, this problem is a linear
program

max
b2
〈r, b2〉

s.t 〈β2, b2〉 = 1 ∀ extended saturating behaviors β2

〈β, b2〉 ≤ 1 ∀ extremal behaviors of the model β. (8.30)

Running the linear program Eq. (8.30) with random directions r, we find two gener-
alizations of Svetlichny’s inequality that are symmetric under party permutations for
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the three party scenario with three settings per party, or (3, 3, 3; 2, 2, 2) for short,

f1 =(100)− (111) + (211) + (221)− (222)

+ 2(300)− (310) + (330) + (331) ≤ 13 (8.31)

f2 =− (122) + (123) + (133)− 3(222)

− 2(223) + (233) ≤ 12. (8.32)

The inequality f1 reduces to Svetlichny’s inequality, if one sets A3 = B3 = C3 = 1.
The second inequality, f2, reduces to Svetlichny’s inequality, if one sets A3 = A1, B3 =

B1, C3 = C1.
By construction, the inequalities f1, f2 are at least as sensitive to nonlocality as

Svetlichny’s inequality. Moreover, since they have one more setting, one might expect
that there might be an advantage of f1 and f2 compared to Svetlichny’s inequality.
Unfortunately, sampling 540 random pure three-qutrit states, we did not find a sin-
gle example that shows an advantage. Rather, it appears that choosing the additional
settings such that the inequalities reduce to Svetlichny’s inequality is always optimal.
Accordingly, f1, f2 share the maximally violating state, the GHZ state, and their noise-
robustness with Svetlichny’s inequality.

8.8 Conclusion

We presented Bell-like inequalities to detect violations of various hybrid models for
four- and five-body systems. Our analysis of GHZ-states that are mixed with white
noise suggests that the noise robustness of these states with regard to a k-local model
only depends on k. In contrast, the particular partition of parties that defines the k-
local model seems to be irrelevant. For example, we did not find a difference between
the (3, 2)-model and the (4, 1)-model in terms of noise-robustness.

Additionally to our analysis of four- and five-party scenarios, we present a family
of inequalities for an arbitrary number of parties n. The inequalities in this family are
suitable to detect a nonlocality-depth of n− 1.

Finally, we introduce the concept of a generalization of a Bell inequality to a scenario
that involves more settings. We demonstrate this concept by finding two inequalities
that generalize Svetlichny’s inequality. Unfortunately, these inequalities do not seem
to have an advantage over Svetlichny’s inequality.





9 Bellpy: A toolbox for nonlocality in
Python

We present the Python package Bellpy, which is designed to aid research in nonlocal-
ity. It does so in two ways: (i) It provides a framework consisting of classes that are
necessary to formulate any problem regarding Bell-type black-box experiments, and
(ii) it provides implementations for commonly needed functions. Bellpy is modular
and easily extendable.

Any concept that is set in typewriter font is either a function, a class or abstract base
class in our code.

This chapter contains text from our manuscript [D]. The software presented in this
chapter was used to obtain the results presented in the Chapters 6, 7, and 8.

9.1 Framework

Consider a black-box experiment. This experiment is characterized by the settings that
the parties that participate in the experiment can choose from. A Setting has three
defining properties: (1) the party it belongs to, (2) a label that distinguishes it from
other settings, (3) a set of labels for the outcomes that the party can observe after
choosing this setting.

All the settings of all parties together give rise to a Scenario, which defines what
can be done in the experiment. The CHSH scenario would for example be defined as

import bellpy as bell

A1 = bell.Setting (0,1,[-1,1])

A2 = bell.Setting (0,2,[-1,1])

B1 = bell.Setting (1,1,[-1,1])

B2 = bell.Setting (1,2,[-1,1])

chsh_scenario = bell.Scenario ([A1, A2, B1 , B2])

print(chsh_scenario.nsettings)

Given a scenario, one can construct the behavior space for that scenario. However,
in practise one may only be interested in a subspace of the behavior space as de-
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fined in Chapter 4. The specifics of this subspace may depend strongly on the research
conducted. For this purpose we provide the abstract base class Behavior_space. We
further provide an abstract base class Model. Using these abstract base classes has the
advantage that some functions, such as obtaining the Bell inequalities from a model
are already implemented in the base class. Moreover, if classes that are derived from
those base classes, then these classes automatically integrate with the rest of the Bellpy
library, so other functionality such as the cone-projection technique are directly avail-
able.

9.2 Concrete behavior spaces and models

In Bellpy, we provide two implementations of a behavior space: The

• Default_expectation_behavior_space, and the

• Custom_expectation_behavior_space.

Both are implementations of the abstract Expectation_behavior_space.
A Default_expectation_behavior_space is defined by listing the number of set-

tings per party. The settings for each party are labeled with natural numbers starting
from 1. Additionally, each party has a trivial setting. This setting always yields the out-
come +1 and represents the case in which no measurement is performed by that party.
The trivial setting is labeled 0. The labels and standard basis vectors of the default be-
havior space are the combinations of inputs of the parties. In the CHSH scenario, these
labels are A0B1, A1B0, A1B1, . . .. In the standard basis, the coefficient of a behavior is
the joint expectation value of the inputs stated in the respective label.

A Custom_expectation_behavior_space is more flexible. It is defined by a list of
tuples, called correlation list. Each of these tuples (i1, . . . , in) is to be interpreted as a
tuple of inputs ik on party k. The tuples also serve as the labels of the basis vectors of
the behavior space. The scenario of a custom expectation behavior space is the scenario
defined by the settings with labels that occur in the correlation list. The coefficients of
a behavior are the joint expectation values for the settings indicated by the label.

Apart from behavior spaces, we also provide implementations for frequently en-
countered models. Two examples for such models are the Local_deterministic_model
and the Unrestricted_model. In the unrestricted model, the outcome of one party can
depend on the inputs and outputs of all other parties in addition to being dependent
on a hidden variable. Both models work for any implementation of a
Behavior_space.
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9.3 Local hidden-variable models and Bell inequalities

Models can be defined by stating their behavior space. In the case of a local hidden-
variable model, this would work as follows:

import bellpy as bell

B = bell.Default_expectation_behavior_space (2,2)

lhv = bell.Local_deterministic_model(B)

bis = lhv.bell_inequalities ()

print(bis)

This code yields all facet Bell inequalities in the CHSH scenario. These are different
variants of the CHSH inequality and additionally some trivial Bell inequalities.

The Local_deterministic_model is flexible enough to handle different partitions of
the parties. If a partition is passed, signaling between parties that belong to the same
cell of the partition is granted. If one wants to create a model which does not restrict
the correlations between the first two parties and maintains locality with respect to the
bipartition AB|C, this model can be created as follows:

import bellpy as bell

B = bell.Default_expectation_behavior_space (2,2,2)

lhv = bell.Local_deterministic_model(B, [[0,1], [2]])

Svetlichny’s hybrid model is the convex hull of three such models, namely for the bi-
partitions AB|C, AC|B, A|BC. We can create this model using the Hybrid_model class.

import bellpy as bell

B = bell.Default_expectation_behavior_space (2,2,2)

lhv_c = bell.Local_deterministic_model(B, [[0,1], [2]])

lhv_b = bell.Local_deterministic_model(B, [[0,2], [1]])

lhv_a = bell.Local_deterministic_model(B, [[0], [1 ,2]])

svet = bell.Hybrid_model(lhv_c , lhv_b , lhv_a)

If we are only interested in full-body correlations, we can alternatively specify these
correlations and create a Custom_expectation_behavior_space.

import bellpy as bell

import itertools as it

correlations = [(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2),
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(2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)]

B = bell.Custom_expectation_behavior_space(correlations)

lhv_c = bell.Local_deterministic_model(B, [[0,1], [2]])

lhv_b = bell.Local_deterministic_model(B, [[0,2], [1]])

lhv_a = bell.Local_deterministic_model(B, [[0], [1 ,2]])

svet = bell.Hybrid_model(lhv_c , lhv_b , lhv_a)

bis = svet.bell_inequalities ()

print(bis)

This yields three types of inequalities: trivial ones, Svetlichny inequalities, and one
more non-trivial facet-defining Bell inequality different from Svetlichny’s inequality,
which was found by Bancal [81]. Note that the order in which the parties are listed in
the partition does not matter.

9.4 Finding Bell inequalities with affine constraints

Listing all Bell inequalities of a model quickly becomes unfeasible as the scenario gets
more complex. In this situation, one may consider to only consider a subset of correla-
tions, or to only consider Bell inequalities that are symmetric under party permutations
[81]. More generally, one may restrict the search to Bell inequalities

〈 f , b〉 ≤ β, (9.1)

such that f meets a set of affine constraints. Here b is a behavior and (β, f ) defines
the Bell inequality. Such constraints can be given as a matrix G, which implies the
condition

G(β⊕ f ) = 0. (9.2)

Apart from symmetry constraints, such affine constraints can for example be useful
in order to find generalizations of Bell inequalities, as introduced in Chapter 5. We
demonstrate how this works in Bellpy for an example. Assume that we aim to find
generalizations of the CHSH inequality to three settings per party. The code for this
task is:

""" Find I3322 inequalities """

from bellpy import *

bs22 = Default_expectation_behavior_space (2,2)

print(bs22.labels)

# [’A0B0 ’, ’A0B1 ’, ’A0B2 ’, ’A1B0 ’, ’A1B1 ’,
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# ’A1B2 ’, ’A2B0 ’, ’A2B1 ’, ’A2B2 ’]

bs33 = Default_expectation_behavior_space (3,3)

chsh_array = [2, 0, 0, 0, -1, -1, 0, -1, 1]

chsh = Bell_inequality(bs22 , chsh_array)

lhvm2222 = Local_deterministic_model(bs22)

lhvm3322 = Local_deterministic_model(bs33)

ext_map = Canonic_extension_map(bs22 , (0,0,1), (1,0,1))

eb = Extended_behaviors(lhvm2222 , chsh , ext_map)

cpt = Cone_projection_technique(lhvm3322 , true_facets=True)

cpt.add_extended_behaviors(eb)

bi = cpt.bell_inequalities ()

bi.remove_duplicates(party=True , setting=True , outcome=True)

print(bi)

First, the behavior spaces of the CHSH inequality and its generalizations are gen-
erated. We then define the CHSH inequality by stating its behavior space and its
coefficients in the standard basis. Afterwards, the local hidden-variable models for
both behavior spaces are created. With this, we can formulate the conditions for the
CHSH generalizations. These conditions are stated in terms of the extended behav-
iors. They are calculated from the saturating behaviors of the CHSH inequality via an
extension map. One type of extension map is implemented in Bellpy, which is called
Canonic_extension_map. It is defined by its domain and a list of tuples. Each of these
tuples indicate a measurement that should be added to the scenario and how this mea-
surement relates to the present ones. The tuple (p, s, σ) means that a setting should be
added to party p. The outcome of the new setting should be equal to the one of setting
s up to a sign σ. The label of the newly added setting will automatically be 1+max(ip),
where ip is the number of settings of party p. Apart from the CHSH inequality itself
and some trivial Bell inequalities, the code yields true generalizations of CHSH, which
are versions of the well-known I3322 inequality [16]. All of the Bell inequalities are
stored in a Bell_inequality_collection. Different versions of the same inquality are
removed using the remove_duplicates() function as shown above. The arguments
indicate which relabelings should be taken into account.

The Cone_projection_technique also allows one to impose that the inequalities to
be found be symmetric under party permutations. This is done by typing

cpt.add_party_symmetry ().
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Similarly, arbitrary affine constraints G can be added with the function
cpt.add_constraints(G).

Besides finding all Bell inequalities, a Cone_projection_technique object can also
write a file representing the projection of the model into the subspace defined by the
constraints in .ext format. This format is commonly used in polyhedral conversion
software such as CDD and LRS [25, 18, 27]. Exporting the problem to .ext format is
achieved by running

cpt.run ().

Apart from the .ext file, also the Cone_projection_technique object will be saved au-
tomatically. The .ext file can then be converted into .ine format by external software.
Afterwards, the Cone_projection_technique object can be loaded using
cpt.load_cpt(filename) and the .ine file is read by executing the cpt.run() func-
tion once again. For this to work, the .ine file must have the same name as the .ext

file up to the file extension.

9.5 Analyzing two-outcome Bell inequalities

To analyse Bell inequalities in behaviors that lie in an Expectation_behavior_space,
Bellpy provides the Inequality class. In contrast, the Bell_inequality class, which
works for any affine Bell inequality for any behavior space, does not offer any func-
tionality for analyzing Bell inequalities.

An Inequality can be instantiated with either a

• Bell_inequality, or

• with a string representation of the inequality.

We refer to the string representation of the Bell inequality as the name of the inequality.
The name of the inequality obeys the following conventions. We define

[ijk] = 〈AiBjCk〉. (9.3)

As discussed earlier, the setting of each party with label 0 is considered trivial and
always yields the outcome +1.

The CHSH inequality is created like this.

from bellpy import *

nameasy = ’2 [00] - [12] - [21] - [11] + [22]’

chsh = Inequality(name=nameasy)

print(chsh.name)

# output: +2.0 (00) - (11) - (12) + (22)
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The expression ’2 [00] - [12] - [21] - [11] + [22]’ is to be understood as the inequality

2[00]− [12]− [21]− [11] + [22] ≥ 0. (9.4)

Printing the name of the inequality shows a different string. This is a feature. Bellpy
has automatically detected that the CHSH inequality is invariant, if the parties A and
B are relabeled. Such symmetric inequalities can be more conveniently stated in a
notation, where every correlation is symmetrized. For example,

(12) = [12] + [21]. (9.5)

This notation is the same notation we used in Chapter 6.
We can find the qubit and qutrit violations of an inequality as well as bounds for

the maximal violations given by the NPA hierarchy [37].

chsh.update_qubit_violation(verbose=True)

chsh.update_qutrit_violation ()

chsh.update_npa2 ()

chsh.update_npa3 ()

The quantum violations are computed using the seesaw algorithm described in the pa-
per by Pal et al. [40]. To calculate the NPA bounds, we rely on the package ncpol2sdpa

by Peter Wittek [96]. We can also find the maximal violation possible with nonsignaling
behaviors.

settings = chsh.behavior_space.nsettings

ns = NoSignaling(settings)

chsh.update_no_signaling_bound(ns)

print(chsh.summary ())

The summary function yields information about the inequality. In this case, it shows:
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--------------------------------------

Number 0 ------------------------------

+2.0 (00) - (11) - (12) + (22) > 0

no signaling: -2.0

npa2: -0.828427128727788

npa3: -0.8284271258292932

qubit violation: ( -0.8284271247461898 -6.359151412848378e-17j)

qutrit violation: ( -0.8284271247461903 -1.3648426433378623e-16j)

algebraic bound: 4.0

Qubit violation

***************

violation: ( -0.8284271247461898 -6.359151412848378e-17j)

state: [ 0.70711 -0.j -0. -0.j

0. +0.j -0.37775+0.59775j]

A1: [ 1.38777878e-16 1.11932404e-01 9.87600738e-01 -1.10072339e-01]

A2: [ -2.22044605e-16 7.94258277e-01 -1.55482006e-01 -5.87349244e-01]

B1: [ 0. 0.15508262 0.85600873 -0.49315153]

B2: [2.77555756e-17 9.41026112e-01 2.39422904e-02 3.37485738e-01]

The settings A1, A2, B1, B2 are stated in the Pauli basis. Every inequality has a num-
ber associated to it, which is 0 by default and can be accessed through the property
line. This is mostly important when the inequality is saved.

chsh.save()

If no further arguments are supplied, line will be used as filename. Inequality objects
are saved as pickled dictionaries with the file extension .ineq.

To make working with many inequalities more convenient, Bellpy provides the
Inequalities class. Besides functions for saving and loading inequalities from a folder,
the class Inequalities also provides a function for removing different versions of the
same inequality under relabelings of parties, settings and outcomes.



10 Absolutely maximally entangled
Werner states

Throughout this chapter, we are concerned with absolutely maximally entangled (AME)
Werner states |ψ〉 ∈ (Cd)⊗n, where we consistently use the letter n to denote the num-
ber of parties and the letter d to denote the dimension of the local Hilbert spaces.
AME-Werner states are closely related to invariant perfect tensors, which have been
considered in Ref. [106], where the question was asked whether m-valent invariant
perfect tensors exist for m > 4. We show that AME-Werner states only exist in systems
of two qubits or three qutrits. The present chapter closely follows our manuscript [E].

An example for a two-qubit AME-Werner state is the singlet state [55]

|ψ−〉 = 1√
2
( |01〉 − |10〉). (10.1)

For three qutrits, one example is the state

|ψ〉 = 1√
6

3

∑
i,j,k=1

εijk |i− 1, j− 1, k− 1〉, (10.2)

where εijk is the Levi-Civita symbol.

10.1 Properties of pure Werner states

In this section we establish some properties of pure Werner states.

Definition 10.1 (Pure Werner state [48]). A pure Werner state |ψ〉 ∈ (Cd)⊗n is a state
such that for any unitary U : Cd → Cd it holds that

U ⊗ . . .⊗U |ψ〉 = ξ |ψ〉, (10.3)

where ξ ∈ C is a complex phase that depends on the unitary U and the state.

Definition 10.2 (Phase function). Let |ψ〉 be a pure Werner state. Then, the function
ξ : U(d)→ C that satisfies

U ⊗ . . .⊗U |ψ〉 = ξ(U) |ψ〉, (10.4)

is called the phase function of |ψ〉.
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Lemma 10.1. The phase function ξ is a group homomorphism, that is ξ(U1U2) =

ξ(U1)ξ(U2) and ξ(1) = 1.

Proof. This is a trivial result that directly follows from Eq. (10.3) and the fact that
the action of the unitary group on every subsystem maps Werner states to Werner
states.

Lemma 10.2. Let ($, Cd) be a representation of the symmetric group Sd and |ψ〉 ∈
(Cd)⊗n a pure Werner state. Then it holds that

$(π)⊗ . . .⊗ $(π) |ψ〉 = ξ ◦ $(π) |ψ〉, (10.5)

where ξ is the phase function of |ψ〉 and π ∈ Sd.

Proof. The group $(Sd) is a subgroup of the unitary group U(d).

Definition 10.3 (Canonical representation of Sd). Let ( |k〉)k∈{1,...,d} be the computa-
tional basis of Cd. We then call the representation ($, Cd) of the symmetric group Sd

which is defined as

$(π) |k〉 = |π(k)〉 (10.6)

the canonical representation of Sd.

Definition 10.4 (permutation-phase function). Let ($, Cd) be the canonical represen-
tation of Sd. Further, let ξ be the phase function of the Werner state |ψ〉. Then we
call

f = ξ ◦ $ (10.7)

the permutation-phase function of |ψ〉.

Lemma 10.3. There are only two functions that are compatible with the definition of
the permutation-phase function f , namely either f (π) = 1, ∀π ∈ Sd or f (π) = sgn(π),
the signum of the permutation.

Proof. The same argument that shows that ξ is a group homomorphism also shows
that f is a group homomorphism, too. Therefore, we only need to consider the images
of the generators of Sd under f in order to characterize f .

The symmetric group Sd is generated by the transpositions θk = (k, k + 1) with
k ∈ {1, ..., d − 1}, so f is determined by f (θk). Further, the transpositions fulfill the
following relations

θ2
k = id (10.8)

θkθm = θmθk, for |k−m| ≥ 2 (10.9)

θkθmθk = θmθkθm, for |k−m| = 1. (10.10)
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Since f is a homomorphism, Eq. (10.8) gives

f (θk) = ±1 (10.11)

and Eq. (10.10) gives

f (θk) = f (θm) for |k−m| = 1. (10.12)

Hence, we only have to distinguish two cases: (1) f (θk) = 1 ∀k and (2) f (θk) =

−1 ∀k, i.e. f = sgn.

Lemma 10.3 allows us to derive a simple relation between some of the coefficients
of a pure Werner state. We can state the result more elegantly by making use of the
notations that are defined below.

Definition 10.5 (Multi-index). We define a multi-index i as a sequence of indices iα ∈
{1, . . . , d} with α ∈ {1, . . . , n}.

Definition 10.6 (Action of the group Sd on a multi-index). For a multi-index i =

(i1, . . . , in) and π ∈ Sd, we define

π(i) = (π(i1), . . . , π(in)). (10.13)

Lemma 10.4. Let |ψ〉 = ∑i ti |i〉 ∈ (Cd)⊗n be a pure Werner state and π ∈ Sd a
permutation. Then it holds that

tπ(i) = f (π)ti (10.14)

where f is the permutation-phase function of |ψ〉.

Proof. According to Lemma 10.2, any pure Werner state obeys

$(π′)⊗ . . .⊗ $(π′) |ψ〉 = f (π′) |ψ〉, (10.15)

where ($, Cd) is the canonical representation of Sd and π′ ∈ Sd. Evaluating the left
hand side yields

$(π′)⊗ . . .⊗ $(π′) |ψ〉

=$(π′)⊗ . . .⊗ $(π′)∑
i

ti1,...,in |i1...in〉

=∑
i

ti1...in |π
′(i1)〉 . . . |π′(in)〉

=∑
i

tπ′−1(i1)...π′−1(in) |i〉. (10.16)

Inserting this expression back into Eq. (10.15) yields

tπ′−1(i) = f (π′)ti. (10.17)
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If we choose π′ = π−1, we obtain

tπ(i) = f (π−1)ti. (10.18)

However, f is a group homomorphism, so

1 = f (π−1π) = f (π−1) f (π), (10.19)

and according to Lemma 10.3 it holds that f (π) = ±1. Hence, we have f (π) = f (π−1)

which ends the proof.

We now characterize the phase-function further by considering the restriction of ξ

to the diagonal unitaries.

Lemma 10.5. Let |ψ〉 = ∑j tj |j〉 be a pure Werner state. Then, there exists a number
Nk ∈ N for every number k ∈ {1, . . . , d}, such that for any non-zero coefficient tl 6= 0,
the multi-index l contains the value k exactly Nk times.

Proof. Since |ψ〉 is a pure Werner state, according to definition 10.1 it obeys Eq. (10.3)
for any unitary matrix of suitable dimension. This in particular includes unitary ma-
trices.

Diagonal unitary matrices are generated by the matrices

Uk = 1+ (eiφk − 1)|k〉〈k| (10.20)

that have only diagonal entries, all of which except the k-th one are 1, while the k-th
diagonal entry is eiφk . Such a diagonal matrix acts on a computation basis vector |a〉
as

Uk |a〉 =

eiφk |a〉, if a = k,

|a〉, else.
(10.21)

We now determine ξ(Uk), where ξ is the phase function of |ψ〉, by evaluating the
left-hand side of Eq. (10.3). This yields

Uk ⊗ . . .⊗Uk |ψ〉

=∑
j

tjUk |j1〉 ⊗ . . .⊗Uk |jn〉

=∑
j

eiφkKj tj |j〉, (10.22)

where Kj is the number of times that k appears in the multi-index j. This equation
holds for arbitrary φk and ξ(Uk) is unique for all coefficients tj 6= 0. Hence, all indices
l, for which tl 6= 0 must contain k the same number of times.

From this Lemma, we can derive a corollary, where we make use of the following
definition.
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Definition 10.7 (Action of Sn on a multi-index). Let i be a multi-index and ω ∈ Sn. We
define

ω(i) = (iω(1), ..., iω(n)). (10.23)

Corollary 10.6. Let |ψ〉 = ∑i ti |i〉 be a Werner state. Further, let j, l be two multi-
indices such that tj 6= 0, tl 6= 0. Then, there exists a permutation ω ∈ Sn, such that
j = ω(l).

We can now make our characterization of non-zero coefficients of pure Werner states
more specific.

Lemma 10.7. Let |ψ〉 = ∑i ti |i〉 be a pure Werner state. Then, there exists a number
K ∈ N, such that for any non-zero coefficient tl 6= 0, the multi-index l contains each
value k ∈ {1, . . . , d} exactly K times.

Proof. Consider two values k, m ∈ {1, . . . , d} and let Nk, Nm be are defined as in Lemma
10.5, that is, Nk denotes how many times k is contained in the multi-index l of any
coefficient tl 6= 0. Now consider the permutation (k, m) ∈ Sd. According to Lemma
10.4, we have

tl = f ((k, m))t(k,m)(l). (10.24)

Therefore, tl 6= 0 implies t(k,m)(l) 6= 0 due to Lemma 10.3. However, (k, m)(l) contains
k exactly Nm times and m exactly Nk times. Thus, we have Nm = Nk, which ends the
proof.

Corollary 10.8. For any pure Werner state |ψ〉 ∈ (Cd)⊗n, n is always an integer multi-
ple of d, that is n = Kd, K ∈ N.

Proof. This result follows trivially from Lemma 10.7.

10.2 Main result

With these results, we have sufficiently characterized pure Werner states for our needs
and we can now consider the second property, absolute maximal entanglement. For
convenience, we introduce another notational convention.

Definition 10.8 (Truncated multi-index). Let i = (iα)α∈{1,...,n} be a multi-index and
A ⊂ {1, . . . , n} a set of subsystems. Then, we define the truncated multi-indeces

iA = (iα)α∈A (10.25)
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and

i¬A = (iα)α∈¬A (10.26)

with

¬A := {1, . . . , n} \ A. (10.27)

Using this notation and with a set of subsystems A, we express can write the
marginal state of the subsystems contained in A as

Tr¬A (|ψ〉〈ψ|)

=Tr¬A

(
∑
i,j

tit∗j |i〉〈j|
)

=Tr¬A

(
∑

iA ,i¬A ,jA ,j¬A

tiA ,i¬A t∗jA ,j¬A
|iA〉〈jA| ⊗ |i¬A〉〈j¬A|

)
= ∑

iA ,i¬A ,jA

tiA ,i¬A t∗jA ,i¬A
|iA〉〈jA|

= ∑
iA ,jA

τA (iA, jA) |iA〉〈jA|, (10.28)

where we denote the coefficients of the marginal density matrix as

τA (iA, jA) = ∑
i¬A

tiA ,i¬A t∗jA ,i¬A
. (10.29)

Using this notation, we can state the AME condition in a very explicit form, that is
useful for our means.

Definition 10.9 (AME-Werner state). A state |ψ〉 ∈ (Cd)⊗n is an AME-Werner state,
if it is a Werner state and for any set of parties A with |A| = b n

2 c, the corresponding
marginal is a maximally mixed state, that is

τA(iA, jA) =

 1
d|A|

, if iA = jA

0, else.
(10.30)

With this notation, we are ready to proceed to the proof.

Lemma 10.9. Let |ψ〉 ∈ (Cd)⊗n be an AME-Werner state. Then,⌊n
2

⌋
≤ n

d
(10.31)

holds.

Proof. Consider the marginal state of |ψ〉 = ∑i ti |i〉 of the subsystems in A = {1, . . . , b n
2 c}.

Then, the diagonal element

τA(1 . . . 1, 1 . . . 1) = ∑
i,iA=1...1

|ti|2 (10.32)
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does not vanish. Therefore, there is at least one non-zero term in the sum Eq. (10.32).
Hence, there exists a multi-index l with

lA = (1, . . . , 1) (10.33)

such that tl 6= 0. According to corollary 10.8, we have n = Kd for some K ∈ N. Further,
tl 6= 0 implies that the value 1 is contained in l exactly K times due to lemma 10.7.
From Eq. (10.33) follows that l contains the value 1 at least b n

2 c times. This is only
possible if K ≥ b n

2 c.

Corollary 10.10. Let |ψ〉 ∈ (Cd)⊗n be an AME-Werner state and n an even number.
Then, the local dimension is d = 2.

Corollary 10.11. Let |ψ〉 ∈ (Cd)⊗n be an AME-Werner state and n an odd number. If
n = 3, then the local dimension is d = 3. If n > 3, the local dimension is d = 2.

Proof. From lemma 10.9 we get that d ≤ 2 if n > 3 and d ≤ 3 if n = 3. Then, lemma
10.7 excludes the case that d = 2 and n = 3.

Theorem 10.12. Let |ψ〉 ∈ (Cd)⊗n be an AME-Werner state. Then either n = d = 2 or
n = d = 3.

Proof. From corollaries 10.10 and 10.11 we already know that if n = 3 then d = 3 and
if n 6= 3 then d = 2. Hence, the only thing that remains to be shown is that AME-
Werner states do not exist for n-qubit systems with n > 2. We prove this statement
by contradiction. First, we assume that such a state exists. Then we show that all
coefficients ti of this state vanish.

Assume there exists such a AME-Werner state |ψ〉 = ∑i ti |i〉. Then there exists a
non-zero coefficient tl . According to lemma 10.7, the number K of indices in l that take
the value 1 is equal to the number of indices in l that take value 2. We now consider
the marginal of the state |ψ〉, that describes the subsystems α for which lα = 1 holds,
where lα is an index in l. We call the set of chosen subsystems A. Now consider the
diagonal element of this marginal

τA(1...1, 1...1) = |tl |2. (10.34)

Since all diagonal elements of all marginals of n
2 = K systems are equal, so are the

absolute values of all coefficients tl , with l chosen as above.
We now consider a second marginal of subsystems that we choose as follows. Choose

K− 1 subsystems α with lα = 1 and one subsystem with lα = 2. We call the set of these
subsystems B. Now consider the diagonal element of the marginal state

τB(lB, lB) = ∑
i,iB=lB

|ti|2

= K|tl |2. (10.35)
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However, we know that

τA(1...1, 1...1) = τB(lB, lB) (10.36)

and therefore

|tl |2 = K |tl |2. (10.37)

Since by assumption we have d = 2 and n > 2, according to corollary 10.8 we have
K ≥ 2. This implies tl = 0 and hence |ψ〉 = 0, where we arrive at the contradiction.



11 Entanglement dynamics of two
mesoscopic objects with
gravitational interaction

The content of this chapter has appeared in our publication [F]. The author of this
thesis contributed to this work, in particular to the derivation of the system’s dynamics
and the investigation into the entanglement and nonlocal properties.

We analyse the entanglement dynamics of the two particles interacting through
gravity in the recently proposed experiments aiming at testing quantum signatures for
gravity [Phys. Rev. Lett 119, 240401 & 240402 (2017)]. We consider the open dynamics
of the system under decoherence due to the environmental interaction. We show that
as long as the coupling between the particles is strong, the system does indeed develop
entanglement, confirming the qualitative analysis in the original proposals. We show
that the entanglement is also robust against stochastic fluctuations in setting up the
system. The optimal interaction duration for the experiment is computed. A condition
under which one can prove the entanglement in a device-independent manner is also
derived.

11.1 Introduction

The unification of quantum mechanics and general relativity has been perceived as
one of the most important open problems of modern physics. Although a substantial
theoretical effort has been made, there is not yet an agreement on a single theory of
quantum gravity [107]. One of the main difficulties of the field is the lack of exper-
imental support [107]. Recent advances in experimentally probing quantum physics
at the mesoscopic scale have now raised the hope of finding quantum effects in grav-
ity, which might eventually be considered as a quantum signature of gravity [108].
Among these proposals, a simple one aiming at demonstrating the entanglement be-
tween mesoscopic particles interacting via gravity was proposed by Bose et al. [109],
and independently by Marletto and Vedral [110]. The proposed experiment has been
referred to as the ‘BMV experiment’ for short [111], which has since also inspired
similar proposals in different platforms [112, 113, 114, 115, 116, 117].
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We consider here a slightly different version of the BMV experiment, see Figure
11.1(a). Two mesoscopic particles of masses m1 and m2 are placed at distance d from
each other. Each particle is then split into a superposition of two positions that are
separated by a distance L orthogonally to their initial separation. Based on recent
advances in setting up mesoscopic systems in superposition [112, 118, 119, 120, 113,
121, 122], the authors of Ref. [109] suggested as physically relevant quantities m1 ≈
m2 ≈ 10−8kg, d ≈ 200¯m, and we can assume L� d.

In the original proposal [109], the particles are split into superpositions of posi-
tions in the same direction as their initial separation, see Figure 11.1(b). They thus
have strong gravitational interaction only when the first particle is on the right, while
the second particle is on the left. In this current setup the particles interact strongly
whenever they are on the same side (left or right). Experimentally, it might be more
challenging to setup the system in this symmetric configuration; in particular, one may
have to introduce a thin film between the particles to keep the distance constant. We
note that, if realisable, a thin film however may have an additional advantage. While
still allowing for gravitational interaction to permit, it helps prevent taming interac-
tions due to the van der Waals or the Casimir effects, which has been an obstacle for
the original setup [112]; as a result, the distance between the particles can also be re-
duced to enhance their interaction. Here we analyse this symmetric setup mainly for
convenience; the analysis can be easily adapted to the original proposal as well.

Formally, the system can be modelled as a pair of spins, where states | ↑〉 and | ↓〉
can be identified with the particles being on the left and right, respectively. Due to
the gravitational interaction between the particles, if both particles are on the same
sides ( | ↑↑〉 or | ↓↓〉), the energy of the system is −Gm1m2/d, with G being the
gravitational constant. On the other hand, if they are on the opposite sides ( | ↑↓〉
or | ↓↑〉), the energy is given by −Gm1m2/

√
L2 + d2. Therefore, upto an irrelevant

additive constant, the Hamiltonian can be modelled by

H = −∆
2

σz ⊗ σz, (11.1)

where σz is one of the usual Pauli matrices and

∆ = Gm1m2

(
1
d
− 1√

L2 + d2

)
. (11.2)

Under the evolution induced by this Hamiltonian, particles that are first given in the
superpositions of being left and right, |+〉 |+〉, where |+〉 = ( | ↑〉+ | ↓〉)/

√
2, should

evolve into an entangled state. Provided one can preserve the coherence of the system
long enough, such entanglement is expected to be observable [109]. In the actual phys-
ical setting, each particle carries an additional two-level degree of freedom, which is
then correlated with its positions (left or right) during the spliting [109]. The result is
that, after merging their superpositions, the entanglement in the particle positions is
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(a) (b)

Figure 11.1: The BMV experiment. (a) The symmetric setup: two particles are initially
at distance d from each other. Each of the particle is then split into a su-
perposition of two positions at distance L from each other in the direction
orthogonal to their initial separation. Due to their gravitational interac-
tion the particles are expected to be entangled over time. (b) The original
setup: the particles are split into superpositions in parallel to their initial
separation.

eventually transferred to the entanglement between these additional degrees of free-
dom and can be directly measured.

The entanglement between the particles has been argued to be an evidence that the
gravitational field is a quantum mechanical system [109, 110]. While this claim is still
a subject of debate [123, 124, 125, 111, 126], we do believe that the ability to entangle
particles via their gravitational interaction would greatly advance our understanding
of the interface between quantum mechanics and gravity.

Let T be the decoherence time, the authors of Ref. [109] argued that the necessary
condition to observe the entanglement is

(∆T)/h̄ ∼ O(1). (11.3)

While this qualitative estimate is plausible, it is still important to analyse the noisy
dynamics of the system in detail to pinpoint the precise condition under which en-
tanglement between the particles can be observed. Here we analyse the details of the
decoherence dynamics of the system. More importantly, we also consider fluctuations
of the experimental parameters. These stochastic fluctuations in setting the parameters
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in the proposed experiments imply that one has to average over the obtained entangled
states from run to run of the experiment, which results in a reduction of entanglement
in the averaged state. While so far this has not been considered, it is also crucial to
the experiment, since entanglement can only be verified statistically through multiple
runs of the experiment. Our analysis shows that the entanglement is rather robust.
More precisely, we show that the entanglement indeed develops as long as ∆T/h̄ > 1
if the fluctuations in setting the experimental parameters can be neglected. Moreover,
we show that moderate stochastic errors in the experiment can also be tolerated. We
discuss the optimal interaction duration for the particles while they are in the super-
position state and find a condition under which entanglement can be detected in a
device-independent manner.

11.2 The decoherence dynamics of the system

The superposition of the positions of the particles is suppressed in the long time limit
because of the environmental interaction. This is known as the decoherence process,
which gives rise to our classical notion of position [47]. While the details of the deco-
herence process depend on the details of the environment, the system under consid-
eration is sufficiently simple that it can be analysed with some minimal assumptions
of the decoherence theory. Indeed, due to decoherence the system decays into a mixed
state of positions (and not any other basis), so one can assume that the environment
couples only to the position operator of the particles, which is σz in this case [47].
The coupling Hamiltonian between one particle and the environment can be written
generally as

HD ∝ σz ⊗ R, (11.4)

where R is an operator acting on the environment. This environmental coupling Hamil-
tonian Eq. (11.4) is such that if the initial reduced state of the particle is given by a
(2× 2) density matrix a, it will evolve in a way that its diagonal elements are constant,
while its off-diagonal elements decay over time. Technically, this is a valid approxima-
tion when the particle is large enough such that recoiling effects due to scattering by
the environment is negligible [47]. Assuming an exponential decay of the off-diagonal
elements (known as coherence elements) for specificity, the state of the particle state at
time t is given by

$1(t) =

(
a11 a12e−τ

a21e−τ a22

)
, (11.5)

where we have used the dimensionless time τ, defined by the physical time divided
by the decoherence time T, τ = t/T. While this exponential decaying of coherence is
the case for the position decoherence due to the enviromental scattering by photons or
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air molecules [47], other types of decoherence dynamics can also be considered with
minimal adaptation.

For the system of two particles without mutual interaction, we assume that their
decoherence are independent from each other. If the system is first given in the state
a⊗ b, where a and b are (2× 2) density matrices of the first and the second particle,
respectively, the density matrix of the whole system at time τ is then(

a11 a12e−τ

a21e−τ a22

)
⊗
(

b11 b12e−τ

b21e−τ b22

)
. (11.6)

By linearity, the two-particle system first given in a (4 × 4) density matrix c then
evolves to 

c11 c12e−τ c13e−t c14e−2τ

c21e−τ c22 c23e−2t c24e−τ

c31e−τ c32e−2t c33 c34e−τ

c41e−2τ c42e−τ c43e−τ c44

 . (11.7)

Let us now consider the interaction between the particles via the Hamiltonian Eq. (11.1).
Importantly, the system Hamiltonian commutes with the environmental coupling Eq. (11.4),
rendering the total dynamics also exactly solvable regardless of the details of the envi-
roment operator R. Indeed, as we transform to the interaction picture by substituting
$ = U(τ)$I(τ)U†(τ), where U(τ) = e−iHτ , we find that the interacting density matrix
$I(τ) follows the dynamics of two independent particles interacting only with the en-
vironment given by equation Eq. (11.7). Assuming that at τ = 0 the system is in the
state |+〉〈+| ⊗ |+〉〈+|, we find the density matrix of the system at time τ to be

$ =
1
4


1 eiωτ−τ eiωτ−τ e−2τ

e−iωτ−τ 1 e−2τ e−iω−τ

e−iωτ−τ e−2τ 1 e−iωτ−τ

e−2τ eiωτ−τ eiωτ−τ 1

 . (11.8)

Recall that we are using the dimensionless time τ, and ω = ∆T/h̄ is referred to as the
(dimensionless) coupling of the system.

To analyse the entanglement dynamics in the density matrix Eq. (11.8), we use the
positive partial transposition (PPT) criterion [57, 58]. The smallest eigenvalue of the
partial transposition of $ is found to be

λ =
1
2

e−τ(sinh τ − |sin ωτ|). (11.9)

According to the PPT criterion, the two particles are entangled if and only if λ < 0.
Figure 11.2 (a) illustrates several different evolutions of λ for different couplings ω. For
ω < 1, λ is positive and no entanglement develops. For ω > 1, λ becomes negative for
certain times, indicating that entanglement develops between the particles. This sharp
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transition can be easily confirmed by analysing equation Eq. (11.9). For very large
coupling parameters ω, the particles can undergo entangled-disentangled oscillations.
Obviously, the particles share the highest amount of entanglement during the first
phase of entanglement, where the effect of decoherence is still weak. To estimate the
optimal duration τ0 of the experiment, we find the first minimum of λ. By considering
the derivative of equation Eq. (11.9), an equation for τ0 can be found, namely

e−τ0 + sin ωτ0 −ω cos ωτ0 = 0, (11.10)

which is to be solved for the first positive time τ0. This yields the optimal duration for
the experiment as a function of the coupling parameter ω. A plot of this function is
presented in Figure 11.2 (b). For 1 < ω < 1.8, decoherence is strong and the optimal
time quickly increases with respect to the coupling strength ω toward a maximum at
τ0 ≈ 0.4. For ω > 1.8, the internal evolution of the system dominates in the short time
dynamics and the optimal time is similar to the time where the system achieves a Bell
state when we ignore decoherence, τ0 ≈ π/(2ω), which decreases as ω increases.

(a)

0 1 2 3 4
τ

−0.2

0.0

0.2

λ
ω = 0.5

ω = 1.0

ω = 1.5

ω = 6.0

(b)

0 5 10 15
ω

0.0

0.2

0.4

t0

Figure 11.2: (a) The smallest eigenvalue λ of the partial transposition of $ as a function
of time. (b) The optimal time where the two particles are most entangled.
The dashed-line indicates the asymptotic optimal time in the limit of very
strong couplings ω and no decoherence, given by π/(2ω).

11.3 Stochastic fluctuations in preparing the experiment

Let us consider now the fluctuations of the parameters of the experiment. If the sep-
aration between the two positions of a particle L is large in comparison to the typical
wave length of the electromagnetic environment, we can assume that the decoherence
time T is not sensitive to this separation [47]. Moreover, if L is much larger than d,
fluctuations in L have only marginal effects on ∆. Thus, only fluctuations in two quan-
tities are important: (a) fluctuations in the minimal distance between the two particles



11.3 Stochastic fluctuations in preparing the experiment 131

d, which induce fluctuations in the coupling ω and (b) fluctuations in the interaction
duration τ.

To model the fluctuations, one can simply replace the deterministic values of ω and
τ by two gaussian random variables ω + ξωsω and τ + ξτsτ , where sω and sτ are their
standard deviations, and ξω and ξτ are two standard gaussian random variables. The
state of the system averaged over all runs of the experiment would then be

$̄ = 〈$(τ)〉ξτ ,ξω
. (11.11)

Assuming that the fluctuations are small, τ � sτ , ω � sω, one can expand their
contributions in the phase and the damping terms in $ to the first order in sω and sτ .
Averaging over the gaussian fluctuations in time τ and in coupling parameter ω then
yields the state

$̄ =
1
4


1 a a b
ā 1 b ā
ā b 1 ā
b a a 1

 , (11.12)

with a = eiωτ−τe−
1
2 s2

ωτ2+ 1
2 s2

τ(iω−1)2
and b = e−2τe2s2

τ .
To analyse the entanglement in the density operator, we again compute the smallest

eigenvalue λ̄ of the partial transposition of $̄, which is

1
2

e−(τ−s2
τ)[sinh(τ − s2

τ)− e−
s2
τ
2 (1+ω2)− s2

ω
2 τ2 | sin ω(τ − s2

τ)|]. (11.13)

By sending sω and sτ to zero, we can easily recover equation Eq. (11.9). Note that one
should not extrapolate this formula to τ < s2

τ , since in this regime the fluctuations in
time extrapolate the decoherence dynamics backward into negative time, which is not
physical. One then finds that the entanglement between the particles develops after
τ > s2

τ if and only if
s2

τ(1 + s2
τs2

ω + ω2) < 2 ln ω. (11.14)

To be consistent with the approximation, the higher order term s2
τs2

ω should in fact be
ignored. We thus obtain the condition

s2
τ <

2 ln ω

1 + ω2 . (11.15)

Remarkably, sω is absent in this condition. This means that if ω > 1, and if the duration
of interaction is well-controlled (sτ ≈ 0), the entanglement persists despite arbitrary
fluctuations in ω. On the other hand, equation Eq. (11.15) does pose a bound on the
maximal standard deviation sτ allowed, which is plotted in Figure 11.3. Interestingly,
this indicates that if the interaction strength is strong, one has to control the time more
accurately; on the other hand, in the intermediate regime, sτ can vary to a large extent.
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Figure 11.3: Maximum fluctuation allowed in the interaction duration s2
τ such that the

entanglement can still be observed as a function of the coupling strength
ω.

If the interaction time can be precisely controlled by an atomic clock, this accuracy can
be easily achieved. In reality, the accuracy of the interaction duraction in the actual
experiment could be much less than the scale of atomic clocks due to various difficul-
ties in setting up the superposition configuration for each particle. In particular, it is
known [127, 128, 129] that such a process should not be too fast, otherwise gravita-
tional radiations would interfere with the system causing further decoherence effects.
Yet, we expect that even in this case condition Eq. (11.15) can be easily achieved in
reality.

11.4 Violation of the CHSH inequality

While the entanglement in the density operator can be demonstrated by state tomog-
raphy or certain entanglement witnesses [48], it is generally desirable to demonstrate
the entanglement in a device-independent way [72]. This can be done by demonstrat-
ing a violation of the so-called Clauser-Horne-Shimony-Holt (CHSH) inequality [72].
Suppose two parties, Alice and Bob, each of whom owns one particle of the pair.
Consider a situation where Alice performs either one of two measurements A1, A2 on
her particle while Bob performs either measurements B1 or B2 on his particle. Each
measurement has only two outcomes ±1. If one constrains that the system satifies the
so-called assumption of local realism [61, 2], then it is easy to show that

|〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉| ≤ 2. (11.16)

It has been repeatedly demonstrated in experiments that the CHSH inequality is vio-
lated in quantum mechanics [72]. This shows that quantum mechanics is not compati-
ble with the assumption of local realism, on which the CHSH inequality Eq. (11.16) is
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based. What is relevant to us in the current context is that in order to violate the CHSH
inequality Eq. (11.16) the state must be entangled. Notice that in order to demonstrate
the violation of the CHSH inequality, we only need the statistics of the measurements
A1, A2 and B1, B2 in the experiment. The details how such measurements are setup or
how they are described mathematically are irrelevant [72]. In that sense, one can prove
entanglement between particles in a device-independent way.

For simplicity we ignore the fluctuations in the experimental parameters in this
section so that the density operator is of the simple form as in equation Eq. (11.8). To
see whether $ violates the CHSH inequality for certain measurement settings, we make
use of the criterion described in Ref. [130]. To this end, we consider the correlation
matrix Tij = Tr

(
$σi ⊗ σj

)
, where σi and σj for 1 ≤ i, j ≤ 3 are the Pauli matrices.

It turns out that the correlation matrix T for $ is degenerate with singular values
s1 = e−2τ and s2 = s3 = e−τ |sin ωτ|. Then according to [130], the state $ violates
the CHSH inequality if and only if either s2

1 + s2
2 > 1 or 2s2

2 > 1. Solving these two
inequalities numerically, we find that the system can violate the CHSH inequality if
and only if

ω > 4.19135. (11.17)

While this bound is significantly larger than the threshold of the coupling for the
systems to be entangled over time (ω > 1), it is still in the same order of magnitude.
Thus once one can prove the entanglement of the particles, one is also close to proving
it in a device-independent manner.

11.5 Conclusion

In this work we have analysed the entanglement dynamics of the two particles in
the BMV experiment in detail. We showed that the system entangles as long as the
coupling between the particles is strong, ∆T/h̄ > 1, and the parameters are setup
precisely. Fluctuations in the parameters that arise from setting up the experiment
from run to run were then considered. The entanglement turns out robust against
the decoherence for some time and also against stochastic fluctuations. Moreover, we
discuss the optimal duration of the gravitational interaction while the particles are
in a superposition state. Also, we identify a condition under which one can detect
entanglement in a device-independent manner using the CHSH inequality. We would
like to mention that recently a similar detailed analysis of the entanglement dynamics
has been made for another setup of the experiment [117]. We hope that together these
analyses provide useful inputs for a realisation of the experiment in the near future.
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We introduced generalizations of a Bell inequality as Bell inequalities that perform at
least as well in any task as the Bell inequality they generalize. We further provided a
method, called the cone-projection technique, that is helpful in finding such general-
izations of a Bell inequality.

Using the cone-projection technique, we were able to find 3050 classes of general-
izations of the I3322 inequality to three parties, 476 classes of Bell inequalities that
simultaneously generalize the CHSH inequality as well as the I3322 inequality, 13

classes of Bell inequalities that generalize the I4422 inequality and 23 classes of Bell
inequalities that generalize the Guess-Your-Neighbors-Input inequality first found in
[75]. For all inequalities, we applied an extensive numerical analysis, providing upper
bounds to their quantum violations both for qubit and qutrit systems as well as upper
bounds using the NPA hierarchy. Taking a closer look at the simplest generalizations
of the I3322 inequality, we found that these Bell inequalities are strong in the following
sense: There are three-qubit states with separable two-body marginals that can violate
the Bell inequalities for suitably chosen settings. Moreover, there are three-qubit states
that can violate our inequalities but no Bell inequality with only two measurement
settings per party. At the same time, these Bell inequalities are by construction as
powerful as the I3322 inequality in detecting two-body nonlocality.

Furthermore, we presented symmetric Bell-like inequalities for various hybrid mod-
els as well as generalizations of Svetlichny’s inequality to three settings per party.
Again, we used the cone-projection technique to achieve this. Moreover, we constructed
a family of inequalities for a special class of hybrid models.

Constructing and analyzing the properties of Bell inequalities was an important
aspect of our research. To this end, we created the Python library Bellpy, that aims at
making these tasks as easy and efficient as possible.

Beyond our research on Bell inequalities, we have explored the possibility of AME-
Werner states and found that these only exist for two-qubit and three-qutrit systems.
In joint work with Chau Nguyen, we have furthermore scrutinized recent suggestions
for experiments to detect quantum phenomena in gravitationally interacting systems
with regard to entanglement dynamics and the device independent detection thereof.

For future research there are several directions in which our work can be extended.
First, the cone-projection technique is general enough to not be restricted to applica-
tions in the field of nonlocality. In fact, it is useful in any situation where facets of
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polytopes are of interest, which obey affine equality constraints. In the following, we
describe some directions of research, all of which rely on the cone-projection tech-
nique. We defined generalizations of Bell inequalities to more parties, more settings
per party and more outcomes per setting. However, in our research we have almost
exclusively explored generalizations to more parties. Concerning generalizations to
more settings, we have only considered the Svetlichny inequality. Moreover, we have
so far only considered scenarios with dichotomic measurements and have not investi-
gated generalizations of Bell inequaities to more outcomes per setting at all. We believe
however, that this is a promising approach to finding strong Bell inequalities. Taking a
broader perspective, it would be interesting to apply our techniques to causal models
and find generalizations of contextuality inequalities [64, 131] or recently discussed in-
equalities for testing certain views of quantum mechanics [132]. Moreover, it could be
interesting to extend our approach beyond the scenario of linear optimization: While
the local polytope in Bell scenarios can be characterized by the optimization method of
linear programming, other forms of quantum correlations, such as quantum steering,
are naturally described in terms of convex optimization and semidefinite programs
[133, 134]. Thus, a generalization of our methods to this type of problems could give
more insight into various problems in information processing.
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A Appendix

A.1 Constructing LHV models from symmetric

quasi-extensions

We first recall the result that a state $ABC does not violate any Bell inequality with
two settings on B and C and an arbitrary number N of measurement settings on A, if
there exists a symmetric extension, that is a positive semidefinite operator HABB′CC′ =

HAB′BCC′ that fulfills TrB′C′ (HABB′CC′) = $ABC. The main idea stems from [100]. We
focus on the case that is relevant for our paper. For convenience, we denote the sym-
metric extension simply as H, whenever this is possible without causing confusion.

The argument that links symmetric extensions to local hidden variable models goes
as follows: Firts, if a symmetric extension exists, we can write, for any fixed measure-
ment setting i of Alice, a joint probability for both measurements on Bob and Charlie
via

p(ai, b1, b2, c1, c2) = Tr
(

HEai ⊗ Eb1 ⊗ Eb2 ⊗ Ec1 ⊗ Ec2

)
(A.1)

where Eai is the effect that corresponds to the outcome ai etc. Note that the non-
negativity of the operator H is not required, it is sufficient if the operator is an en-
tanglement witness, i.e. non-negative on product states. Such an operator is called
symmetric quasi-extension [100].

Then, we can define a for all measuremements a joint probability distribution via
[135]

p(a1, . . . , aN , b1, b2, c1, c2)

=
p(a1, b1, b2, c1, c2) · · · p(aN , b1, b2, c1, c2)

p(b1, b2, c1, c2)N−1 . (A.2)

Finally, it is well established that if such a joint probability distribution exists, then a
LHV model exists and no Bell inequality can be violated [17, 136].

In our work, we make use of this connection to find a three-qubit state $ABC that
violates one of the Bell inequalities Fi in Eqs. (6.15)-(6.17), but which is not violating
any three-partite Bell inequality with two settings per party and, in addition, it is
not violating any bipartite Bell inequality (such as I3322) with any of its two-body
marginals. We achieve this by demanding that the state $ABC possesses a symmetric
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extension and separable two-body marginals. Since the marginals are two-qubit states,
the separability condition can be implemented using the criterion of the positivity of
the partial transpose [58, 57].

In this way, all of the constraints are semidefinite constraints. Maximizing the vi-
olation of a Bell inequality under these constraints is a semidefinite program, if the
measurement settings are given. As initially no measurement settings are given, we
pick random measurement settings for the three parties before optimizing over the
state. Then, keeping the state fixed, each optimization over the measurement settings
of a single party is again a semidefinite programm. We then alternate between these
two steps – the optimization of the state on the one hand and the optimization of the
measurement settings on the other – in a seesaw algorithm. We solve the semidefinite
programs with Mosek [137] through Picos [138].

Typically, after 50 iterations a convergence is reached. In this way, we find a state
$
(1)
ABC with F1 ≈ −0.065, a state $

(2)
ABC with F2 ≈ −0.043 and a state $

(3)
ABC with F3 ≈

−0.063. The symmetric extensions and measurement settings that lead to these viola-
tions can be found as part of the supplemental material of our paper [A].

A.2 Details on finding lower bounds for qubit and qutrit

violations

We provide lower bounds for the violations of the Bell inequalities achievable with
qubits and qutrits, respectively. These lower bounds are violations achieved by specific
states and measurements.

Finding good lower bounds therefore involves two optimizations: One optimization
over the possible states and another optimization over the measurement settings. The
objective – that is the expectation value of the Bell operator for the given state – is
however not linear, if we optimize over all measurements at once. We therefore break
the optimization over the measurement settings down further to optimizing over them
party by party, thereby rendering the objective linear. We represent each measurement
by a positive operator-valued measure (POVM). Such a optimization problem that
features an objective that is linear in its arguments which are positive-semidefinite op-
erators is called a semidefinite program (SDP) and can be solved efficiently. Likewise,
the optimization over the state-space while keeping the measurement settings constant
is also an SDP. However, the optimal state for given settings can more easily be ob-
tained by calculating the eigenstate corresponding to the largest eigenvalue of the Bell
operator.

This prompts a seesaw-algorithm: After initializing the measurement settings to
(pseudo-)random values, we alternate between updating the quantum state and up-
dating the measurement settings one party at a time while keeping the quantum state
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constant. In this way, the value of the objective is guaranteed to increase monotonically
and will eventually converge, if the objective is bounded. However, it oftentimes only
converges to a local minimum. This is a problem we cannot avoid, but we can aim for
a rather good local optimum by running the seesaw-algorithm many times, starting
at a different initial state every time. To save computational resources, we do not wait
until the objective values reach high precision. Instead, we stop after a few iterations,
select the most promising instance of the optimization and only continue the seesaw-
algorithm for this selected instance until the improvements of the objective value fall
below some threshold.

A.3 I4422 generalizations

We find 13 classes of Bell inequalities that are symmetric under party permutations,
generalize I4422 and further exhibit the symmetry A1 ↔ A2, B1 ↔ B2, C4 → −C4. In
the notation for symmetric Bell inequalities that we introduced in the main text, they
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read

−(100)− 2(110)− (200)− 2(210)− 2(220) + (300)− (310)

−(320) + (330) + (331) + (332)− 3(333) + 2(441)− 2(442) ≤ 15 (A.3)

−(100)− 2(110)− (111)− (200)− 2(210) + (211)

−2(220)− (221) + (222) + (300)− (310)− (320)

+(330) + (331) + (332)− 3(333) + 2(441)− 2(442) ≤ 15 (A.4)

−2(100)− 2(110)− 2(200)− 2(210)− 2(220)− (300)− 2(310)

−2(320) + (330)− (333) + 2(441)− 2(442) ≤ 19 (A.5)

−2(100)− 2(110)− (111)− 2(200)− 2(210) + (211)

−2(220)− (221) + (222)− (300)− 2(310)− 2(320)

+(330)− (333) + 2(441)− 2(442) ≤ 19 (A.6)

+3(100)− 3(110) + 2(111) + 3(200)− 3(210)

−3(220) + 2(221) + (300)− (310) + (311)

−(320) + (321) + (322) + (330)− (331)

−(332) + (333)− 4(441) + 4(442) ≤ 23 (A.7)

+3(100) + (110)− 3(111) + 3(200) + (210) + (211)

+(220)

−3(221) + (222) + 4(300)

+3(310)− 3(311)

+3(320)− 3(321)

−3(322)− 6(330)− (331)− (332)

+12(333) + 4(441)− 4(442) ≤ 38 (A.8)

+3(100) + (110)− (111) + 3(200) + (210)− (211)

+(220)− (221)−

(222) + 4(300) + 3(310)− 3(311)

+3(320)− 3(321)− 3(322)

−6(330)− (331)− (332)

+12(333) + 4(441)− 4(442) ≤ 38 (A.9)
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+2(100)− 5(110) + 2(200)− 5(210)− 5(220) + (300)

−4(310) + 3(311)− 4(320) + 3(321) + 3(322) + (330)

−2(331)− 2(332)− 3(333)− 8(441) + 8(442) ≤ 51 (A.10)

+2(100)− 5(110)− 4(111) + 2(200)− 5(210) + 4(211)

−5(220)− 4(221) + 4(222) + (300)

−4(310) + 3(311)− 4(320) + 3(321) + 3(322) + (330)

−2(331)− 2(332)− 3(333) + 8(441)− 8(442) ≤ 51 (A.11)

+(100)− 5(110) + (200)− 5(210)− 5(220)− (300)

−5(310) + 3(311)− 5(320) + 3(321) + 3(322) + (330)

−3(331)− 3(332)− (333)− 8(441) + 8(442) ≤ 55 (A.12)

+(100)− 5(110)− 4(111) + (200)− 5(210) + 4(211)

−5(220)− 4(221) + 4(222)− (300)− 5(310) + 3(311)

−5(320) + 3(321) + 3(322) + (330)− 3(331)− 3(332)

−(333) + 8(441)− 8(442) ≤ 55 (A.13)

+7(100) + (110)− (111) + 7(200) + (210)− (211)

+(220)− (221)− (222) + 6(300) + 7(310)− 7(311)

+7(320)− 7(321)− 7(322)− 12(330)− (331)− (332)

+22(333)− 8(441) + 8(442) ≤ 76 (A.14)

+7(100) + (110)− 5(111) + 7(200) + (210) + 3(211)

+(220)− 5(221) + 3(222) + 6(300) + 7(310)− 7(311)

+7(320)− 7(321)− 7(322)− 12(330)− (331)− (332)

+22(333) + 8(441)− 8(442) ≤ 76. (A.15)

A.4 Classical bound for family of Bell inequalities

This appendix is concerned with the family of Bell inequalities Fn presented in chapter
8.

We show that with any (k, m) model, there exists a behavior such that

Fn =
n

∑
`=1

(−1)1+d `2 e ` (1 . . . 1︸ ︷︷ ︸
n−`

, 2 . . . 2︸ ︷︷ ︸
`

) = n2n−2. (A.16)
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Further, we show that for m = 2, this bound is a valid upper bound of Fn. First note
that the symmetric correlation

(1 . . . 1︸ ︷︷ ︸
n−`

, 2 . . . 2︸ ︷︷ ︸
`

) (A.17)

comprises (n
`) terms, each of which takes values ±1. Consequently,

−
(

n
`

)
≤ (1 . . . 1︸ ︷︷ ︸

n−`

, 2 . . . 2︸ ︷︷ ︸
`

) ≤
(

n
`

)
. (A.18)

Since the expression Fn is linear in the symmetric correlation terms and its maximum
will therefore be achieved for

(1 . . . 1︸ ︷︷ ︸
n−`

, 2 . . . 2︸ ︷︷ ︸
`

) = ±
(

n
`

)
. (A.19)

We can thus treat the symmetric correlation terms as binary variables. For convenience,
we define the variables

γk
i = (1 . . . 1︸ ︷︷ ︸

k−i

, 2 . . . 2︸ ︷︷ ︸
i

)

(
k
i

)−1
, (A.20)

which are normalized such that they take values ±1. With this, we can write Fn as

Fn =
n

∑
`=1

(−1)1+d `2 e ` γn
`

(
n
`

)
. (A.21)

However, the variables γn
` cannot be chosen independently, since they have to respect

the (k, m) model under consideration. This condition is met, if we consider behaviors
that stem from a local hidden variable model between the first k parties and the last m
parties. For this model, we have

γn
` = γk

i γm
j (A.22)

with

i + j = `. (A.23)

With this, we can rewrite

Fn =
n

∑
`=1

(−1)1+d i+j
2 e (i + j) γk

i γm
j

(
k
i

)(
m
j

)
. (A.24)

Setting

γk
i = (−1)b

i
2 c (A.25)

γm
j = (−1)b

j
2 c (A.26)
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yields

Fn =
k

∑
i=0

m

∑
j=0

(−1)(i+1)(j+1) (i + j)
(

k
i

)(
m
j

)
(A.27)

= n 2n−2. (A.28)

We now show that for m = 2, this value is a valid upper bound for Fn. For convenience,
we define the matrix M with elements

Mij = (−1)(i+1)(j+1) (i + j)
(

k
i

)(
2
j

)
. (A.29)

Note, that a different choice for γk
i (γ

m
j ) corresponds to flipping the signs of the entries

in the i-th row (j-th column) of M. Hence, showing that there does not exist a subset
of rows and columns, such that multiplying these columns and rows with −1 yields
a larger sum ∑ij Mij proves the claim. Since M only has three columns, we focus on
the columns. For any choice of rows and columns of M, either zero, one, two, or all
columns of M would be affected. However, multiplying all columns and rows with −1
leaves M invariant and therefore we only need to consider two cases: Either (1) non of
the columns is affected by the sign-flip operation or (2) exactly one column is affected
by the sign-flip operation. In case (1) one cannot reach a value higher than n2n−2 since
all rows have a non-negative value. For the second case, note that

Mi1 = |Mi0|+ |Mi2|. (A.30)

Hence, multiplying the column j = 1 with −1 cannot be compensated for any choice
of rows. Further, multiplying a column with j 6= 1 with −1 still leaves all rows non-
negative. Since the sum of the entries in the columns j = 0 and j = 2 vanishes, this
means, that the value Fn = n2n−2 cannot be exceeded in an (n− 2, 2) model.

A.5 Optimal states for Bell inequality family

This appendix is concerned with the family of Bell inequalities Fn presented in chapter
8.

Below, we list the quantum states that lead to a maximal violation of the respective
Bell inequality from the Fn family. For convenience, we define

(X...Z) = X⊗ ...⊗ Z + permutations, (A.31)

where ’permutations’ accounts for all party permutations of the first term and no term
is present twice in the sum, that is (XXX) = X ⊗ X ⊗ X. The symbols 1, X, Y, Z are
defined as

1 =
1
2
12, X =

1
2

σX , Y =
1
2

σY, Z =
1
2

σZ. (A.32)
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The optimal states are the pure states

$3 =(111) + (1YY)− 1√
2
(XXX) +

1√
2
(XXZ) +

1√
2
(XZZ)− 1√

2
(ZZZ) (A.33)

$4 =(1111) + (11YY)− 1√
2
(XXXX) +

1√
2
(XXXZ) +

1√
2
(XXZZ)

− 1√
2
(XZZZ) + (YYYY)− 1√

2
(ZZZZ) (A.34)

$5 =(11111) + (111YY) + (1YYYY)− 1√
2
(XXXXX) +

1√
2
(XXXXZ)

+
1√
2
(XXXZZ)− 1√

2
(XXZZZ)− 1√

2
(XZZZZ) +

1√
2
(ZZZZZ) (A.35)

$6 =(111111) + (1111YY) + (11YYYY)− 1√
2
(XXXXXX) +

1√
2
(XXXXXZ)

+
1√
2
(XXXXZZ)− 1√

2
(XXXZZZ)− 1√

2
(XXZZZZ) +

1√
2
(XZZZZZ)

+ (YYYYYY) +
1√
2
(ZZZZZZ) (A.36)

$7 =(1111111) + (11111YY) + (111YYYY) + (1YYYYYY)− 1√
2
(XXXXXXX)

+
1√
2
(XXXXXXZ) +

1√
2
(XXXXXZZ)− 1√

2
(XXXXZZZ)

− 1√
2
(XXXZZZZ) +

1√
2
(XXZZZZZ) +

1√
2
(XZZZZZZ)

− 1√
2
(ZZZZZZZ) (A.37)

$8 =(11111111) + (111111YY) + (1111YYYY) + (11YYYYYY)

− 1√
2
(XXXXXXXX) +

1√
2
(XXXXXXXZ) +

1√
2
(XXXXXXZZ)

− 1√
2
(XXXXXZZZ)− 1√

2
(XXXXZZZZ) +

1√
2
(XXXZZZZZ)

+
1√
2
(XXZZZZZZ)− 1√

2
(XZZZZZZZ) + (YYYYYYYY)

− 1√
2
(ZZZZZZZZ) (A.38)

This can be generalized to

$n =∑
i
(1n−2iY2i) +

1√
2

∑
l
(−1)l [(X2lZn−2l)− (X2l+1Zn−2l−1)], (A.39)

which is equivalent to

≡∑
i
(1n−2iZ2i) +

1√
2

∑
l
(−1)l [(Xn−2lY2l)− (Xn−2l−1Y2l+1)] (A.40)



A.6 Convexity of the maximal quantum value of a Bell inequality 149

under the local unitary transformation

U =
1√
2

(
1 −i
1 i

)
. (A.41)

For comparison, the standard GHZ state written in the z-basis reads

$ghz,n =∑
i
(1n−2iZ2i) + ∑

l
(−1)l(Xn−2lY2l). (A.42)

Numerically, we find that the optimal states are equivalent under local unitary trans-
formations to GHZ states.

A.6 Convexity of the maximal quantum value of a Bell

inequality

Consider a family of quantum states

$(p) = p$(0) + (1− p)$(1) (A.43)

with p ∈ [0, 1]. Further consider a Bell inequality with Bell operator B that depends on
the choice of measurement settings. We can then define a function that maps p to the
maximal quantum value of the Bell inequality for that p as

v : p 7→ max
M

Tr ($(p)B) . (A.44)

We will now show that v is a convex function. Let p0, pm, p1 ∈ [0, 1] and pm = λp0 +

(1 − λ)p1 be a convex combination of p0, p1 for some λ ∈ [0, 1]. Further let Bm be
the Bell operator if the settings are chosen to maximize the quantum value, that is
v(pm) = Tr ($(pm)Bm). In this point, the maximal quantum value is equal to the value
of the affine function vm : p 7→ Tr ($(p)Bm). In general, vm(p) is smaller or equal than
v(p). This holds in particular for p0 and p1. This implies

λv(p0) + (1− λ)v(p1) ≥ λvm(p0) + (1− λ)vm(p1)

= λTr ($(p0)Bm) + (1− λ)Tr ($(p1)Bm)

= Tr ($(pm)Bm)

= v(pm). (A.45)

Therefore, v is convex.
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