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Abstract
In recent years, advances in high-speed infrared camera technology have opened
up many new fields of application. One area which benefited greatly is the field
of thermal testing. Increased sensitivity and faster sampling rates have opened a
bridge to thermal testing techniques that could previously only be performed
via electrical contacts or thermocouples. An example is the method network
identification by deconvolution, which is investigated here. This work begins
with an extensive collection of the mathematical theory, established practices
as well as modern research results. Detailed descriptions of all procedures
implemented in this work are given. To evaluate the established algorithms
systematically, test series on theoretical thermal transients are conducted. Special
measures of accuracy are developed to rate the performance of each method.
Building on these results, a new method for network identification is presented,
which is called optimization-based network identification. The method achieves
a greatly enhanced accuracy and noise resistance. Tests on thermal transient
measurement data confirm these findings by improving established analysis
techniques such as the transient dual interface method. The combination of
network identification and infrared thermography resulted in the invention of a
new non-destructive testing technique, which was patented as a result. The work
concludes with three application examples using this thermographic network
identification.
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Zusammenfassung
In den letzten Jahren haben technologische Fortschritte bei Hochgeschwindigkeits-
Infrarotkameras zahlreiche neue Anwendungsbereiche eröffnet. Ein Bereich,
der stark davon profitiert hat, ist die experimentelle thermische Analyse. Höhere
Messgenauigkeiten und schnellere Abtastraten ermöglichen neuartige ther-
mische Prüftechniken, die vorher nur mit Hilfe von elektrischen Kontakten
oder Thermoelementen möglich waren. Ein Beispiel hierfür ist die Meth-
ode der Netzwerkidentifizierung durch Entfaltung. Diese Arbeit beginnt
mit einem umfassenden Überblick über den mathematischen Hintergrund,
etablierte Algorithmen sowie neuste Forschungsergebnisse. Alle in dieser
Arbeit implementierten Verfahren werden detailliert beschrieben. Um die
verwendeten Algorithmen systematisch zu bewerten, werden Testreihen auf
Grundlage theoretischer thermischer Transienten durchgeführt. Es werden
spezielle Genauigkeitsmaße entwickelt, um die Leistungsfähigkeit der einzel-
nen Verfahren objektiv zu bewerten. Basierend auf diesen Analysen wird
eine neue Methode zur Netzwerkidentifikation entwickelt, die als optimierungs-
basierte Netzwerkidentifikation bezeichnet wird. Die Methode erreicht eine stark
verbesserte Genauigkeit und Rauschresistenz. Tests an thermischen transienten
Messdaten bestätigen diese Erkenntnis, indem sie etablierte Analysetechniken
wie die transiente Dual-Interface-Methode verbessern. Die Kombination von
Netzwerkidentifikation und Infrarot-Thermografie führte zur Erfindung einer
neuen zerstörungsfreien Prüftechnik, die in der Folge patentiert wurde. Die
Arbeit schließt mit drei Anwendungsbeispielen, die die Möglichkeiten der
thermografischen Netzwerkidentifikation aufzeigen.
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Introduction

To be successful in the international market for electronic components, many
companies strive to have cheaper, faster or more reliable products than their
competitors. In addition, a growing awareness of global systemic crises
is pushing companies to respect the Sustainable Development Goals set by
the United Nations, for example by making their products sustainable and
recyclable [1, 2]. While these goals are not necessarily in conflict, they can push
and pull the development process in many directions at once. When new designs,
processes and suppliers are constantly being introduced, things occasionally
go wrong. One case that attracted a lot of attention in the media were the
burning batteries in Samsung Galaxy Note 7 smartphones in 2016 [3, 4]. Not
only do such accidents pose a major safety risk to consumers, but they are also
extremely damaging to a company’s reputation, both among consumers and
industry partners. Highly qualified personnel, well-organized procedures, and a
receptive mistake culture can help prevent these incidents.

A well-developed inspection scheme will identify problems ahead of time,
saving both time and money. As part of a production process, quality assurance
inspection can be conducted. This involves examining a fully or partially
manufactured product to determine whether it conforms to a list of predefined
specifications. In the case of a printed circuit board (PCB), for instance, this
means confirming that the electronic layout is correct or looking for external
signs of damage. In the easiest case, this is done via manual visual inspection.
Once a system is in operation, maintenance inspections are performed. They
aim to extend the uptime of a system, monitor its status, and prevent total
breakdowns. As an example, in large photovoltaic systems, a short circuit in a
single module is efficiently detected by infrared imaging [5]. In the development
phase, accelerated life tests are a valuable tool to detect long-term problems at an
early stage [6]. For these tests, devices are subjected to extreme conditions that
artificially accelerate degradation processes. A detailed failure mode analysis
helps to develop a precise knowledge of the physical processes involved and
enables better engineering decisions to be made. By combining all of these
concepts, a high level of reliability can be achieved.

The development of modern printed circuit boards is a complex process.
Typically, the assembly includes subcomponents from many manufacturers. It
is the responsibility of the thermal system designer to manage the temperature
and power specifications of each of these components. As part of this process,
one must choose a suitable layout, account for component interactions and
decide on a cooling strategy. Before thermal management became a prominent
issue, detailed information about the thermal properties of each component was
not widely available. In the simplest case, only a single thermal resistance is
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specified for an electronic component, for example an integrated circuit package.
With only limited data available, much of the design process relies on previous
experience gained through trial and error. Over time, it became clear that
more detailed information was needed to improve quality and reliability while
reducing overly cautious safety margins. In light of these challenges, joint
research projects were launched that led to the development of extensive industry
standards, as is discussed later in this work.

As a part of a modern thermal design processes, computer simulations are
indispensable for electronic components. In complex finite element models
(FEM), a component is simulated with the highest possible level of detail. The
goal of a multiphysics simulation is to combine all relevant physical aspects in a
single simulation, revealing their interdependencies. In this way, the design is
optimized without the need for physical prototypes. Thermal simulations often
involve coupled heat conduction and fluid flow simulations to obtain steady-state
or transient temperature distributions. In addition, thermally coupled phenomena
such as the mechanical behavior or the radiative properties are investigated.

To verify the result of a thermal simulation, measurements are required, which
are carried out on first prototypes. In other cases, it might be impossible or
infeasible to perform accurate simulations, for example if material parameters
are unknown. For isolated components, transient thermal tests are a suitable
approach. To perform such a test, the method of network identification by
deconvolution is discussed in this work. The method provides a direct solution
to one-dimensional heat conduction problems given the transient thermal
behavior. As a result, the thermal parameters along the entire heat path are
recovered. The values of the thermal resistances and capacities are captured by
the thermal structure function, which is the end result of network identification
by deconvolution.

In practice, thermal structure functions help the designer by providing thermal
models without the need to perform detailed simulations. Examples of tasks that
are hard to analyze solely via simulations include the testing of new material
compositions or the tuning of process parameters in a production process. In
combination with detailed simulations, features of thermal structure functions
can be attributed to specific elements of a device. In this way, they can help
with failure analysis and provide additional insight during the design process.
As these thermal models belong to specific devices, they can also serve as part
of a quality inspection scheme. Routinely performed transient thermal testing
in combination with detailed simulations allows to detect and to categorize
irregularities in the thermal behavior of each device. When providing thermal
structure functions as part of the data-sheet, detailed information about the
thermal behavior of a device can be communicated without disclosing its inner
structure.

The goal of this work is to analyze the potential of network identification by
deconvolution when conducted via infrared thermography. In addition, this work
aims to contribute to thermal analysis using thermal structure functions in general.
This includes the algorithms and methodology of network identification by
deconvolution as well as its experimental application. To this end, it is necessary
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to first gather a comprehensive overview of the mathematical theory, established
practices as well as modern research results of network identification and thermal
structure functions. No similar compendium is available currently. In particular,
the aim of this work is to investigate, which are the most suitable algorithms for
network identification by deconvolution. Such systematic analysis has not been
conducted yet. The limits of accuracy of established algorithms are explored
as well as the possibilities for new approaches to compute structure functions.
Tests are conducted using theoretical test cases as well as real-world examples.
Building on this, the work strives to expand the field of application for transient
thermal analysis using network identification. For this, infrared thermography
is a promising candidate as it offers contactless temperature measurements with
spatial resolution and high sensitivity. The potential of thermographic network
identification as a non-destructive testing technique is explored and discussed
in comparison to other non-destructive testing techniques. The ultimate goal
is to develop a contactless test procedure for the thermal performance of a
device under test employing the thermographic network identification. The
merit of such a system is that the analysis is based on the thermal resistances
and capacitances of the heat path, which are the fundamental quantities when
evaluating thermal performance.

For network identification by deconvolution, a wide range of recommended
algorithms exist in the literature. The actual deconvolution is often performed
using Fourier or Bayesian deconvolution. When using Fourier deconvolution,
several different window functions are recommended such as the Fermi-Dirac [7]
or the Gaussian window [8]. However, no specific motivation for these filters
is given and no systematic evaluation of their performance is conducted. For
Bayesian deconvolution, a common recommendation is to use 1000 steps [9],
which is generally followed [10]. Pareek et al. [11] analyzes Bayesian iteration
with a higher number of steps, but concludes that 1000 to 2000 is well suited
for experimental data. While these results indicate that Bayesian deconvolution
is better than Fourier deconvolution, the conclusion is not based on thorough
investigation and quantitative criteria.

The reason that these recommendations for algorithmic parameters have an
anecdotic character is that no procedure for systematic evaluation has been
recommended prior to this work. Closest to such a procedure is a well-known
work by Szalai and Székely [12]. There, the concept of a practical maximum
tolerance is introduced. It is defined as a maximum allowed relative deviation
from the ideal result. Algorithms are gauged based on whether they conform
to this test. While this approach allows a classification of different algorithms
and implementations, it is not sufficient to perform a systematic comparison
between candidates and to work on their continued refinement. Therefore, in
this work several measures of accuracy are developed. Together with a set of test
structures and test conditions they provide a standardized performance criterion.
Based on this methodology, the questions raised above about optimal parameters
and implementations are visited anew in this work.

Given a well-performing algorithm, the network identification can be applied to
thermographic measurement data for non-destructive testing. Other approaches
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in non-destructive testing such as the thermographic signal reconstruction set
a high bar in terms of sensitivity towards defect recognition. Nevertheless,
these techniques have several shortcomings, where the thermographic network
identification has the potential to find a niche and surpass them. A network
identification by deconvolution follows a well-documented procedure and is
based on an extensive theoretical background. With the right experimental setup,
well-defined thermal resistances and thermal capacitances are obtained, which
directly describe the structure of the sample. In addition, the time-resolved
behavior is available via the time constant spectrum. Other non-destructive
testing techniques are often only qualitative in nature or are based on artificial
parameters. An example of this is the popular method of thermographic signal
reconstruction, which uses images of fitting coefficients of polynomials for
defect recognition [13]. This leaves much room for interpretation as to how
exactly the fitting should be conducted. As a consequence, a range of different
recommendation exist, for example for the degree of the polynomial [14, 15,
16]. As a consequence, thermographic signal reconstruction involves at least a
certain amount of trial and error to find a suitable coefficient and polynomial
degree. Based on these observations, the potential of the thermographic network
identification is explored in this work.

The work is divided into three chapters. In Chapter 1, a complete description
of the mathematical-physical formalism necessary to understand the method
of network identification by deconvolution is compiled. Currently, a similarly
comprehensive theoretical treatise on this topic cannot be found in the literature.
After an introduction to heat conduction phenomena, the modeling of thermal
systems via the lumped system approximation is covered. For the case of the
electronics industry, it is shown how thermal equivalence circuits are constructed
using the electro-thermal analogy. To describe one-dimensional heat conduction
phenomena, the Foster- and Cauer-type RC ladders are introduced. A system
theoretic description of these circuits is developed using the transfer function.
Then, the formalism is applied to thermal response measurements, from where
the method of network identification by deconvolution is derived. A brief history
of network identification by deconvolution follows together with an overview of
current research topics in the field is given. Finally, all steps of the algorithm
are explained in detail and variations of their implementation are compiled as
described in the literature.

Chapter 2 analyses the performance of these algorithms based on specifically
developed test cases and introduces improvements based on this analysis. The
chapter starts with a detailed explanation of the implementations developed
as a part of this work. Then, a new network identification method called
“optimization-based network identification” is presented, which is superior
to conventional network identification by deconvolution methods in terms
of accuracy and noise susceptibility. Subsequently, a procedure specifically
developed to evaluate the accuracy of network identification results is presented.
The goal is to measure the accuracy of the different variants as objectively and
accurately as possible. Using these measures of accuracy, the methods are
optimized to achieve their best possible performance. All methods, including
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the implementations reported in the literature, the implementations developed
for this work, as well as the newly developed optimization-based network
identification are evaluated on various test cases. Then, an extensive analysis of
the accuracy of the results obtained is conducted.

In Chapter 3, network identification is applied to infrared thermographic
transient measurements. The chapter begins with an overview of non-destructive
testing techniques as reported in the literature. Then, a newly developed and
patented non-destructive testing technique named “thermographic network
identification” is introduced [17]. First, its accurate experimental realization
using infrared thermographic measurements is verified. Then, the performance
of network identification by deconvolution as well as the newly developed
optimization-based network identification is compared on the example of
transient thermographic measurements on LEDs. The chapter is concluded with
three examples of increasing complexity which demonstrate the capabilities
of thermographic network identification as a non-destructive testing technique.
The thesis ends with a conclusion and a brief outlook.
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Chapter 1

Theoretical background

1.1 Heat conduction

In this chapter, the physics of heat conduction are developed. Starting from
fundamental equations a discretized description is derived, which is suitable for
digital calculations.

1.1.1 Basics of heat conduction

Consider a closed homogeneous thermodynamic system, such as a metal block.
Its temperature is defined by the average kinetic energy of its microscopic degrees
of freedom. If it is in internal thermodynamic equilibrium, its temperature is
constant throughout the system. A dynamic is induced when two such systems
with different temperatures come in thermal contact with each other. They will
exchange energy until equilibrium is reached once again.

Fundamentally, there are three mechanisms by which the metal blocks could
exchange energy. These are radiation, convection, and conduction. Radiative
transfer involves the exchange of heat via electromagnetic radiation. Photons
are emitted and absorbed by most objects, as described by the Stefan-Boltzmann
law. This effect is strongly temperature-dependent due to its 𝑇4-scaling and
typically not dominant at room temperature. Nevertheless, if given enough time,
the two systems would reach thermal equilibrium by radiation exchange alone.

If the two metal blocks were surrounded by a third medium, for example
water, they could exchange energy via a convective process. In this case, the heat
is transported to and through the water. Conduction is also possible. Changes in
water temperature in the vicinity of the metal blocks lead to fluid flow, which
forms an additional contribution to the heat transport. This process is called
advection. Convective heat transfer thus consists of two parts, a diffusive and an
advective part.

When they are in direct contact, molecular vibrations, the phonons, can
propagate directly from block to block. Heat conduction is a purely diffusive
process and analyzed in detail below. The following calculations are based
on David W. Hahn and M. Necati Özişik, “Heat Conduction” [18]. Fourier’s
law of heat conduction states that a spatially inhomogeneous temperature field,
𝑇 (𝑥,𝑡), induces a heat flow, 𝑞(𝑥,𝑡), per unit time and per unit area such that the
temperature gradient is opposed. The magnitude of the heat flow is determined
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by the temperature gradient, ∇𝑇 (𝑥,𝑡), and the thermal conductivity, 𝑘 ,

𝑞(𝑥,𝑡) = −𝑘 ∇𝑇 (𝑥,𝑡) . (1.1)

Here, a dependence on 𝑥 stands short for all three spatial coordinates. In general,
the thermal conductivity, 𝑘 , can also have a spatial dependence, 𝑘 = 𝑘 (𝑥), which
is not explicitly noted here. When the amount of energy, 𝑈 (𝑥,𝑡), in a small
volume, d𝑉 , changes, it can either flow into the volume at a certain rate 𝛿 ¤𝑄, flow
out of it, or be generated in it at a rate 𝛿 ¤𝐸gen, for example in the form of Joule
heating. Additionally, it could perform work, 𝛿 ¤𝑊 , at a certain rate. Together
this leads to a conservation of energy in the form

𝛿 ¤𝑄 + 𝛿 ¤𝐸gen − 𝛿 ¤𝑊 =
d𝑈 (𝑥,𝑡)

d𝑡
. (1.2)

The heat flow, 𝛿 ¤𝑄, in and out of this volume is the sum of the heat flows in
the three coordinate directions, 𝛿 ¤𝑄 = 𝛿 ¤𝑄𝑥 + 𝛿 ¤𝑄𝑦 + 𝛿 ¤𝑄𝑧. In the following, only
the 𝑥-component is treated. The 𝑦- and 𝑧-components follow analogously. To
derive from this the general heat equation, the differential, 𝛿 ¤𝑄𝑥 , is expressed as
the local heat flow difference.

𝛿 ¤𝑄𝑥 = 𝑞𝑥 (𝑥,𝑡) − 𝑞𝑥 (𝑥 + d𝑥,𝑡) (1.3a)

The second term in (1.3a) is expanded in a Taylor series to first order. Then,
(1.1) is applied to the third term in (1.3b).

𝛿 ¤𝑄𝑥 = 𝑞𝑥 (𝑥,𝑡) − 𝑞𝑥 (𝑥,𝑡) − 𝜕𝑞𝑥 (𝑥,𝑡)
𝜕𝑥

d𝑥 (1.3b)

=
𝜕

𝜕𝑥

(
𝑘
𝜕𝑇 (𝑥,𝑡)

𝜕𝑥

)
d𝑉 (1.3c)

The local rate of energy generation, 𝛿 ¤𝐸gen, is expressed via its density, 𝑔(𝑥,𝑡),

𝛿 ¤𝐸gen = 𝑔(𝑥,𝑡) d𝑉 . (1.4)

In addition, it is assumed that no work is performed by the system, i. e. 𝛿 ¤𝑊 = 0.
If the total kinetic and potential energy content of the volume d𝑉 does not
change and mass flow across the boundary is negligible, the energy of the system,
𝑈 (𝑥,𝑡), has the form

𝑈 (𝑥,𝑡) = 𝑢(𝑥,𝑡) 𝜌 d𝑉 , (1.5)

where 𝜌 denotes the mass density and 𝑢(𝑥,𝑡) is an energy density (per mass).
Using the constant volume specific heat capacity, 𝑐, the energy density is
expressed via the temperature field 𝑢(𝑥,𝑡) = 𝑐 · 𝑇 (𝑥,𝑡),

𝜕𝑈 (𝑥,𝑡)
𝜕𝑡

= 𝜌 · 𝑐 𝜕𝑇 (𝑥,𝑡)
𝜕𝑡

d𝑉 . (1.6)
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Combining all the above transformations yields the general heat equation,

∇ · (𝑘 ∇𝑇 (𝑥,𝑡)) − 𝜌 · 𝑐 𝜕𝑇 (𝑥,𝑡)
𝜕𝑡

= −𝑔(𝑥,𝑡) . (1.7)
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1.1.2 Lumped system approximation

To solve a heat diffusion problem, one way is to analytically or numerically
solve the heat equation with appropriate initial and boundary conditions. For
complex problems, a formulation using partial differential equations is often
very difficult or impossible. Similarly, for very simple problems, stating and
solving a differential equation is too time-consuming.

One possible solution, using the above notation, is to keep the small volume,
d𝑉 , finite. Each of the volumes, also called “lumps”, is assigned a temperature
and a thermal capacity. The thermal capacity, 𝐶th, of the lump is the integrated
thermal capacity in the volume, while the temperature belonging to the lump is
defined as the average temperature, 𝑇 , within the volume.

The accuracy of the approximation depends on the nature of the thermal
system and the size of the lump. For practical purposes, it is reasonable to
make the lumps as large as possible while maintaining a minimum accuracy
of the approximation. However, this requires a measure of the quality of the
approximation. The Biot number answers this need [19].

Bi =
ℎ 𝛿

𝑘
=

𝛿/ 𝑘
1/ℎ (1.8)

Here, ℎ is the heat transfer coefficient, which is a measure for the ease of heat
transfer over system boundaries. The characteristic length of the volume, 𝛿,
is dependent on the shape of the element and 𝑘 is the thermal conductivity.
Intuitively, the Biot number is best understood as the ratio of internal resistance
against heat flow, 𝛿/𝑘 , to the resistance against heat flow over the system
boundaries, 1/ℎ. Thus, the Biot number is a dimensionless quantity and in
principle different for each element.

For small values of the Biot number, Bi ≪ 1, the lumped system approximation
is justified. In this case, temperature deviations, 𝜎, within the lump are small
and because of that the average temperature, 𝑇 , is a good representation of the
true distribution. As a guideline, the following rule is widely used [19]. For
Biot numbers Bi ≤ 0.1, the relative temperature deviation is 𝜎/𝑇 ≤ 5%. If
the Biot number for a system is too large, for example because temperature
variations within the element are too high, a possible solution is to choose a
smaller volume. This will reduce the Biot number, because it is proportional to
the characteristic system length, 𝛿.

On the other hand, it is more difficult to argue which thermal resistance, 𝑅th,
should be assigned between the elements such that it has a well-defined meaning
and a clear physical representation. The following definition seems intuitive.
When a steady state heat flow, ¤𝑄, passes over a boundary from one volume to
another it encounters a temperature drop, Δ𝑇 , that arises due to the different
average temperatures in the two volumes. Consequently, the thermal resistance
should be

𝑅th =
Δ𝑇
¤𝑄 . (1.9)
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However, there are some issues with this definition that make it difficult to apply
in practice. It must be ensured that no heat flows through other surfaces of the
element. Otherwise, the exact amounts of energy flowing through each surface
have to be known. Alternatively, Rosten and Lasance argue for the following
definition [20]:

The temperature difference between two isothermal surfaces divided
by the heat that flows between them is the thermal resistance of the
materials enclosed between the two isothermal surfaces and the
heat flux tube originating and ending on the boundaries of the two
isothermal surfaces.

In any case, using the above definitions it is possible to construct a lumped
thermal system. Each lump has a temperature, a thermal capacity, and a
thermal resistance to neighboring elements. The constructed networks are
similar to electrical networks in the sense shown in Table 1.1. Using thermal
equivalence networks opens up the possibility to apply theorems and techniques
from electrical engineering to thermal analysis.

Table 1.1: Equivalent quantities in the electro-thermal analogy

Thermal Quantity Electric Quantity
𝑇 temperature 𝑃 potential
Δ𝑇 temperature difference 𝑉 voltage
𝑅th thermal resistance 𝑅 electrical resistance
𝐶th thermal capacity 𝐶 electrical capacity
¤𝑄 heat transfer rate 𝐼 current

It has to be kept in mind that due to the underlying physics, the lumped
element approximation is a better model for electric circuits than for thermal
systems. An extensive discussion of the issue and its implications in practice
are given in [21]. In summary, the systematic difference lies in the fact that a
true one-dimensional heat flow in thermal systems is very difficult to achieve.
This is because electrical conductivities span a much wider range than thermal
conductivities. Practically, there are no true thermal isolators. Consequently,
lumped thermal models have to be constructed and analyzed with much care.

1.1.3 Modeling thermal systems
In the electronics industry, modeling of thermal systems has become common
in the last decades. Today, thermal management is an essential aspect in the
development of semiconductor components and gains further importance with
increasing power densities in modern devices. Historically, the groundwork for
present-day thermal modeling was laid with three major European projects. The
findings of the DELPHI, SEED and PROFIT projects, which started in 1993,
1996 and 2000 respectively [20, 22], are summarized in the following. They
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are complemented by more recent results, which extend the range of commonly
applied techniques and make them more sophisticated. The combined efforts are
standardized by the Joint Electron Device Engineering Council (JEDEC) [23,
24]. Today, thermal management has become an established field of research.

The following brief overview of the development of thermal modeling in the
electronic industry is based on [21]. For a long time, the cooling performance
of electronic components has only been characterized by a single parameter
such as the steady-state junction-to-ambient resistance. Over time, however,
it became apparent that more detailed information is required for conclusive
product documentation and more accurate temperature predictions. Therefore,
the simple one-resistor model has been extended to a resistor network, which is
able to represent more complex relationships. These type of models are called
compact thermal models and typically contain on the order of ten resistors.

While steady-state junction-to-ambient resistances can readily be obtained
by measuring the respective temperatures, compact thermal models are derived
from detailed finite element method (FEM) models. Such simulations allow
access to the temperature distribution and heat flows within the device. One
way to obtain a compact thermal model is to optimize its thermal resistances in
such a way that specific temperature match the FEM model as close as possible.
In this process, the nodes that make up the thermal network are defined first.
Then, the values of the resistances between them are numerically optimized
using an objective function that ensures an accurate prediction of the (junction)
temperature. In this way, the enormous amount of elements and temperatures
that make up an FEM model is reduced to a small number.

In practice, however, the application of this method encounters some dif-
ficulties. In a typical IC package, for example, the main heat paths are the
leadframe, the direct contact with the board, and convection cooling at the top
of the package. Depending on the environmental conditions, either natural or
forced convection, the relative contributions of the different heat paths change
and with it the junction temperature. When developing a compact thermal
model, great care must be taken to determine which boundary conditions should
be used in the detailed model. To combat this issue, the notion of a boundary
condition independence is introduced. The idea is to use a wide variety of
boundary conditions when optimizing the compact thermal model. The resulting
resistances should have only little to no dependence on the boundary conditions
imposed, making the compact model boundary condition independent.

All networks presented above are purely resistive and therefore describe only
steady-state temperatures. However, there are many reasons to include the
time-dependent behavior. One process that cannot be covered by a purely static
analysis and which has a massive impact on the lifetime of a device is thermo-
mechanical fatigue. It is caused by different thermal expansion coefficients at
contact points that are exposed to repeated temperature changes. For example,
solder joints are typically affected by this process. If a thermal designer has data
available describing the time-resolved behavior of a component, it is possible
to make an informed design decision in this context in an attempt to minimize
the effects of thermal cycling. Dynamic thermal properties also affect the
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interactions between components at the system level, which are particularly
important at higher component densities. The development of dynamic compact
thermal models was one of the goals of the PROFIT project. One way to generate
dynamic models is to retrofit an existing stationary model with capacities so
that it matches the transient behavior of a detailed model.

Modern techniques are no longer based on objective function-based optimiza-
tion. Instead, in state-of-the-art dynamic compact thermal model generation,
the large number of degrees of freedom that comprise the detailed model is
iteratively reduced in model order reduction techniques. They do not rely on a
predefined network to model the junction temperature, but instead coarsen the
entire finite element simulation while maintaining a predefined accuracy [25].
The resulting dynamic thermal models typically have on the order of a few
hundred nodes, depending on the complexity of the detailed model. Model
order reduction has become an established procedure and several tools have
been developed for commercial application [26, 27, 28]. The resulting thermal
equivalent networks are integrated into circuit solvers such as SPICE or coupled
into multiphysics simulations to achieve substantial time savings.

Sophisticated thermal modeling is not only of interest for applications in the
electronics industry. There are many scientific and engineering applications that
make use of thermal models, resulting in a multitude of different approaches
and applications. In geothermal engineering, Pasquier and Marcotte used a
lumped thermal model to describe the heat flow dynamics of a borehole heat
exchanger [29, 30]. The lumped thermal model they developed is shown in
Figure 1.1. The model is used to predict and analyze the temperature behavior of
the heat carrier fluid during exploration, setup, and operation. Most notably, the
properties of the soil surrounding the borehole and its interaction with the heat
exchanger are captured. The values of thermal resistances and heat capacities
in the heat exchanger model are manually determined based on experience and
using established analytical equations. Once a model of the heat exchanger is
developed, several methods are available to evaluate the measurement data [31,
32]. To solve the lumped thermal model for the heat exchanger shown in
Figure 1.1, linear time-invariant system theory is applied.

From a theoretical perspective, one-dimensional systems are well understood.
They describe a point heat source from which heat is conducted via a single
heat path to a heat sink. It is possible to solve these systems both forwards and
backwards. If the parameters of the heat path and a thermal load are given,
the temperatures along the heat path are available analytically. Alternatively,
if the temperature response and the associated thermal load are known, it is
possible to reconstruct the thermal conductivities and heat capacities along the
heat path. For this reason, this kind of system description is attractive. Possible
applications are, for instance, the thermal design of heat paths for LEDs or
other isolated electronic components. Regardless of application, great care must
be taken to ensure that the assumption of a one-dimensional heat flow is not
violated too much. The nature of heat conduction makes it difficult to achieve
well-defined one-dimensional heat paths.
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Figure 1.1: Example of a thermal resistance and capacitance model for a borehole
heat exchanger. Reprinted from "Joint use of quasi-3D response model and spectral
method to simulate borehole heat exchanger", Philippe Pasquier and Denis Marcotte,
Geothermics, Volume 51, pp. 281-299, Copyright (2014), with permission from Elsevier.



1.2 System descriptions 27

1.2 System descriptions

1.2.1 Linear time-invariant systems

Even without detailed information about the inner workings of a system, it can
be modeled as a black box and the effect of the system described solely by the
relationship between input and output. In this context, the term system is quite
general and can include anything that can be interacted with and has a specific
response depending on the input. In the context of this work, system theory is
used to solve the heat equation using a lumped element approach. Therefore, it
suffices to imagine the systems discussed here as thermal models with lumped
elements or equivalent electrical circuits. For the analysis of such systems, it is
sufficient to restrict oneself to linear time-invariant systems. A powerful set of
analytical descriptions is available for these systems. A comprehensive overview
of system theory is found in [33, 34].

The effect of a system, S, that takes 𝑥(𝑡) as an input function and produces
an output, 𝑦(𝑡), is formalized as

𝑦(𝑡) = S[𝑥(𝑡)] . (1.10)

Linearity means that if 𝑦1(𝑡) = S[𝑥1(𝑡)] and 𝑦2(𝑡) = S[𝑥2(𝑡)] are two reactions
of the system, then 𝑦(𝑡) = 𝑎𝑦1(𝑡)+𝑏𝑦2(𝑡) = S[𝑎𝑥1(𝑡)+𝑏𝑥2(𝑡)] is also a reaction
of the system. Time invariance, on the other hand, implies that the properties of
the system do not change over time and the same reaction is observed at a later
time, 𝑦(𝑡 + 𝑇) = S[𝑥(𝑡 + 𝑇)].

For linear time-invariant systems, the effect of S is described as a convolution
of the input with a function called the impulse response, ℎ(𝑡),

𝑦(𝑡) = (𝑥 ∗ ℎ) (𝑡) B
∫ ∞

−∞
𝑥(𝑡 − 𝑡′) · ℎ(𝑡′) d𝑡′ . (1.11)

The impulse response is defined as the system response to the idealized delta
input 𝑥(𝑡) = 𝛿(𝑡),

S[𝛿(𝑡)] = (𝛿 ∗ ℎ) (𝑡) =
∫ ∞

−∞
𝛿(𝑡 − 𝑡′) · ℎ(𝑡′) d𝑡′ = ℎ(𝑡) . (1.12)

In practice, it might be easier to provide a step function as input to the system
instead of a delta function. For this case, the step response, 𝑎(𝑡), is defined
as the reaction of the system to an input in the form of a Heavyside function,
𝑥(𝑡) = Θ(𝑡),

S[Θ(𝑡)] = (Θ ∗ ℎ) (𝑡) =
∫ ∞

−∞
Θ(𝑡 − 𝑡′) · ℎ(𝑡′) d𝑡′ = 𝑎(𝑡) . (1.13)

Analogous to the relationship between the Heavyside and delta functions,
the impulse response, ℎ(𝑡), and the step response, 𝑎(𝑡), are connected via a
derivative,
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ℎ(𝑡) = d
d𝑡
𝑎(𝑡) . (1.14)

Since it is possible to express convolutions as multiplication by means of the
Laplace transform, L, linear time-invariant systems are usually considered in
the Laplace domain. The impulse response corresponds to the transfer function,
𝐻 (𝑠), which is defined as

𝐻 (𝑠) = L[ℎ(𝑡)] (𝑠) =
∫ ∞

0
ℎ(𝑡) e−𝑠𝑡 d𝑡 . (1.15)

In the same way, the input function, 𝑋 (𝑠) = L[𝑥(𝑡)] (𝑠), and the output function,
𝑌 (𝑠) = L[𝑦(𝑡)] (𝑠), are converted to the Laplace domain. This allows to restate
the convolution as

𝑌 (𝑠) = 𝑋 (𝑠) · 𝐻 (𝑠) . (1.16)

In the Laplace domain, functions are defined on the 𝑠-plane of the complex
frequency, 𝑠. This is a generalization of the real-valued frequency, 𝜔, which
is commonly found in descriptions of periodic behavior. To describe arbitrary
functions, the complex frequency is defined as

𝑠 = 𝜎 + i𝜔 , (1.17)

where 𝜔 reappears as the imaginary part. The real part, 𝜎, is used to express
non-periodic behavior such as damping.

In general, any system whose dynamics obey a linear differential equation with
constant coefficients represents a linear time-invariant system. In addition, any
system of ordinary differential equations of first order is equivalent to an ordinary
differential equation of higher order and consequently also equivalent to a linear
time-invariant system. To see the relation between differential equations and the
transfer function, a system of the type (1.18) is considered. A comprehensive
treatment of such systems is found in [35].

𝑁∑︁
𝑖 = 0

𝑎𝑖
d𝑖𝑦
d𝑡𝑖

=
𝑀∑︁
𝑖 = 0

𝑏𝑖
d𝑖𝑥
d𝑡𝑖

(1.18)

For real physical systems, 𝑁 > 𝑀 must hold. Initial conditions for the derivatives
of the output function, 𝑦 (𝑘)0 , and the input function, 𝑥 (𝑙)0 , are accounted for in the
form

d𝑘 𝑦

d𝑡𝑘

����
𝑡=0

= 𝑦 (𝑘)0 and
d𝑙𝑥
d𝑡𝑙

����
𝑡=0

= 𝑥 (𝑙)0 for 𝑘 = 0, 1, . . . , 𝑁 − 1
𝑙 = 0, 1, . . . , 𝑀 − 1 . (1.19)

In this most general case, the solution has the form (1.20) [35]. By comparison
with (1.16), the term in the first brackets in (1.20) is identified as 𝐻 (𝑠). Conse-
quently, (1.16) is only accurate when all initial conditions are equal to zero. If
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the initial conditions are non-zero, the terms in the second bracket have to be
added to receive the correct response.

𝑌 (𝑠) =



𝑀∑︁
𝑖 = 0

𝑏𝑖𝑠
𝑖

𝑁∑︁
𝑖 = 0

𝑎𝑖𝑠
𝑖


𝑋 (𝑠) +



𝑁∑︁
𝑖 = 0

𝑖−1∑︁
𝑘 = 0

𝑎𝑖𝑠
𝑖−1−𝑘 𝑦 (𝑘)0

𝑁∑︁
𝑖 = 0

𝑎𝑖𝑠
𝑖

−

𝑀∑︁
𝑖 = 0

𝑖−1∑︁
𝑙 = 0

𝑏𝑖𝑠
𝑖−1−𝑙𝑥 (𝑙)0

𝑁∑︁
𝑖 = 0

𝑎𝑖𝑠
𝑖


(1.20)

Either way, the transfer function of such a linear differential equation with
constant coefficients, or an equivalent linear time-invariant system, is represented
by a rational function. The numerator polynomial, 𝑁 (𝑠), has the order 𝑀 and
the denominator polynomial, 𝐷 (𝑠), has the order 𝑁 .

𝐻 (𝑠) = 𝑁 (𝑠)
𝐷 (𝑠) =

𝑀∑︁
𝑖 = 0

𝑏𝑖𝑠
𝑖

𝑁∑︁
𝑖 = 0

𝑎𝑖𝑠
𝑖

=
𝑏0 + 𝑏1𝑠 + . . . + 𝑏𝑁−1𝑠

𝑁−1 + 𝑏𝑀 𝑠𝑀

𝑎0 + 𝑎1𝑠 + . . . + 𝑎𝑁−1𝑠𝑁−1 + 𝑎𝑁 𝑠𝑁
(1.21)

Alternatively, the polynomials 𝑁 (𝑠) and 𝐷 (𝑠) are factorized according to the
poles, 𝜎𝑝,𝑖, and zeros, 𝜎𝑧,𝑖 of the transfer function,

𝐻 (𝑠) = 𝑁 (𝑠)
𝐷 (𝑠) = 𝑘 ·

𝑀∏
𝑖=1

(𝑠 − 𝜎𝑧,𝑖)

𝑁∏
𝑖=1

(𝑠 − 𝜎𝑝,𝑖)
. (1.22)

Here, a common factor, 𝑘 , has been extracted from the fraction. In an electronic
context, it is interpreted as an amplifier gain. Among other things, the poles
and zeros of the transfer function provide information about the stability of the
system.

For translation back into the time domain, the inverse Laplace transform, L−1,
is calculated by solving the curve integral in (1.23). The integration path in
the complex plane runs parallel to the imaginary axis shifted by a constant 𝛾,
which must be chosen larger than the largest real part of all poles of the transfer
function.

ℎ(𝑡) = L−1 [𝐻 (𝑠)] (𝑡) = 1
2𝜋 i

∫ 𝛾+ i∞

𝛾− i∞
𝐻 (𝑠) e𝑠𝑡 d𝑠 (1.23)

In practice, inverse Laplace transformations are usually calculated using trans-
formation tables or using the residue theorem.
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1.2.2 Two-port networks
Two-port networks are circuit elements that have four terminals which meet the
port condition pairwise. The latter requires that the current, 𝐼𝑖, flowing into one
terminal and out of the other is the same. The voltages measured at the ports 1
and 2 are denoted 𝑉1 and 𝑉2 respectively, as shown in Figure 1.2.

𝑉1 𝑉2S

Figure 1.2: Representation of a system, S, as a two-port network with port voltages 𝑉1
and 𝑉2

While the inner workings of a two-port network can be arbitrarily complex,
it can also be of elementary simplicity and contain only a single electronic
component. For the description of a thermal equivalent circuit, as exemplarily
shown in Figure 1.1, it is sufficient to use resistors and capacitors. In principle,
the formalism allows the description of any component as long as the port
condition is not violated.

In a two-port network with a single component, such as a resistor, either a
series connection (Figure 1.3a) or a shunt connection (Figure 1.3b) is possible.

𝑍

(a) Series impedance

𝑌

(b) Shunt admittance

Figure 1.3: Two elementary two-port networks

The action of a two-port network is described by a complex 2 × 2 matrix that
links input and output voltages and currents. The components 𝐴, 𝐵, 𝐶 and 𝐷 of
the matrix are name-giving for this kind of description of a two-port network,
the ABCD-parameters, (

𝑉1
𝐼1

)
=

(
𝐴 𝐵
𝐶 𝐷

) (
𝑉2
−𝐼2

)
. (1.24)

The series impedance and shunt admittance above correspond to the matrices
shown in (1.25).

𝑎Series impedance =

(
1 𝑍
0 1

)
𝑎Shunt admittance =

(
1 0
𝑌 1

)
(1.25)

From these elementary matrices, more complex structures are built by appropriate
matrix multiplications. In addition, by combining several two-port networks
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𝐶

𝑅

(a) Series RC element

𝐶1

𝑅1

𝐶2

𝑅2

(b) Two cascaded series RC elements

Figure 1.4: Example of building more complicated networks from elementary two-port
networks

into a single circuit any desired network follows. There are several ways to
connect two two-port networks, such as in series, parallel, or cascaded. An
example of a cascaded circuit is shown in Figure 1.4. However, attention must
be paid to ensure that the port condition is not violated during combination.

Yet, ABCD-parameter notation is only one of several available descriptions,
each of which is best suited for a different application. Another perspective on
the effect of a two-port network is available through the 𝑧-parameter matrix, 𝑍𝑖 𝑗 ,
which takes the form (1.26).(

𝑉1
𝑉2

)
=

(
𝑍11 𝑍12
𝑍21 𝑍22

) (
𝐼1
𝐼2

)
(1.26)

Here, the matrix elements are defined as

𝑍𝑖 𝑗 =
𝑉𝑖
𝐼 𝑗

����
𝐼𝑘=0

where 𝑘 ≠ 𝑗 . (1.27)

Using 𝑧-parameters, it is straightforward to collapse a two-port network to a
one-port network by applying a load, 𝑍L, on one of the ports or short-circuiting
it. This is equivalent to imposing the condition

𝑉2 = −𝑍L 𝐼2 . (1.28)

The remaining input impedance, 𝑍in, of the leftover one-port network is

𝑍in = 𝑍11 − 𝑍12 𝑍21
𝑍22 + 𝑍L

. (1.29)

The series RC element in Figure 1.4a comprises a shunt capacitor and a series
resistor. In a lumped element thermal model, it corresponds to a single lump and
is therefore the most basic form of a thermal equivalent circuit. In the associated
circuit diagram, the lower connection is grounded to represent the environment.
This has the effect that all capacitors are connected to ground. To simplify the
diagram, the lower connection is often omitted, see Figure 1.1. The temperature
at each node corresponds to the voltage across the capacitors. Only voltages
measured across the capacitors to ground correspond to temperature differences.
The electrical resistance, 𝑅, corresponds to the thermal resistance as defined
in (1.9), with all the caveats discussed in that section. By cascading series RC
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elements, as shown in Figure 1.4b, a one-dimensional heat path is modeled.
For this, the far side is short-circuited. The voltage across the remaining port
typically corresponds to the junction temperature.

Owing to the importance of the case, the series RC circuit is analyzed in more
detail below. When the port on the right side in Figure 1.4a is short-circuited,
the differential equation for the voltage, 𝑉𝐶 , across the capacitor reads as

𝑅𝐶
d𝑉𝐶
d𝑡

+𝑉𝐶 = 𝑉in . (1.30)

Here the time constant, 𝜏, can be identified as 𝜏 = 𝑅𝐶. By comparing (1.30)
with (1.18), the transfer function, 𝑍 (𝑠), is seen to be

𝑍 (𝑠) = 1
1 + 𝑅𝐶𝑠

. (1.31)

The voltage response of a single series RC element has a pole on the negative
real axis at

𝑠 = −𝜎𝑝 = − 1
𝑅𝐶

= −1
𝜏
. (1.32)

The step response for the capacitor voltage is

𝑎(𝑡) = 1 − e−𝑡/𝜏 , (1.33)

whereas the response to a delta pulse at 𝑡 = 0 is

ℎ(𝑡) = 1
𝜏

e−𝑡/𝜏 . (1.34)

A circuit like the one shown in Figure 1.4b is created by cascading two
individual RC elements. Applying an appropriate matrix description and using
(1.29), it is possible to show that two cascaded series RC networks have a transfer
function, 𝑍 (𝑠), which takes the form of a continuous fraction of the type

𝑍 (𝑠) = 1

𝑠𝐶1 + 1

𝑅1 + 1

𝑠𝐶2 + 1
𝑅2

. (1.35)

Another type of RC circuit that will be useful for upcoming calculations is
the parallel RC circuit depicted in Figure 1.5a. Here, the input function is the
current, 𝐼, and the resulting voltage is the output. The differential equation
connecting these quantities has the following form

𝐶
d𝑉
d𝑡

+ 𝑉

𝑅
= 𝐼 . (1.36)

The impedance for such a circuit is derived similarly as for the series RC circuit
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𝑅 𝐶

(a) Parallel RC element

𝑅1

𝐶1

𝑅2

𝐶2

(b) Two parallel RC elements connected in series

Figure 1.5: RC elements as basic building blocks for thermal equivalent circuits

and amounts to

𝑍 (𝑠) = 𝑅

1 + 𝑅𝐶𝑠
. (1.37)

The series connection of two such circuits takes the form shown in Figure 1.5b.
The combined impedance of a series connection is the sum of the impedances
and thus the total impedance of the circuit is

𝑍 (𝑠) = 𝑅1
1 + 𝑅1𝐶1𝑠

+ 𝑅2
1 + 𝑅2𝐶2𝑠

. (1.38)

1.3 Distributed RC lines

1.3.1 Transmission lines
In the previous section, the circuit-theoretical basics for lumped thermal models
are treated. Sometimes, however, a description based on a distributed-element
circuit is also appropriate. In contrast to lumped elements, distributed elements
assume the impedance or admittance to be smeared over a finite section of space.
The transmission line is such a one-dimensional distributed circuit element. The
following remarks are based on [36].

A transmission line is a two-port network with a shunt admittance and a series
impedance that are distributed over its length. In Figure 1.6, an infinitesimal
section of such a circuit is shown. It has an admittance density, 𝑦(𝑥), and an
impedance density, 𝑧(𝑥), on a section of length d𝑥.

𝑧(𝑥) d𝑥
𝑦(𝑥) d𝑥

Figure 1.6: Infinitesimal element of a general transmission line

A typical application for the transmission line is the modeling of signal
behavior on copper wires. In this case, the impedance, 𝑧, consists of a resistance
density, 𝑟 , and an inductance density, 𝑙. The admittance comprises a conductance
density, 𝑔, and a capacitance density, 𝑐, each per unit length. This implies the
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following form for 𝑦 and 𝑧,

𝑧 = 𝑟 + 𝑠𝑙 and 𝑦 = 𝑔 + 𝑠𝑐 . (1.39)

The voltage, 𝑉 (𝑥,𝑠), between the two wires of the transmission line as a
function of the position along the line, 𝑥, is governed by the Telegrapher’s
equation in the Laplace domain,

d2𝑉

d𝑥2 − 𝑧 𝑦 · 𝑉 = 0 . (1.40)

The time derivatives are implicit via the factors of 𝑠 in (1.39). The densities are
assumed to be independent of 𝑥, i. e. constant along the transmission line.

The general solution to this differential equation involves one solution running
to the left and one running to the right with amplitudes 𝑉1 and 𝑉2

𝑉 (𝑥) = 𝑉1 e−𝛾𝑥 +𝑉2 e𝛾𝑥 . (1.41)

The nature of the propagation is implicit in the propagation constant, 𝛾. Due to
𝑠 being a complex variable, see (1.17), 𝛾 is also complex. Its real part, 𝛼, is the
attenuation constant and describes damping effects. The imaginary part, 𝛽, is
called the phase constant.

𝛾 =
√
𝑧𝑦 (1.42a)

= 𝛼 + i𝛽 . (1.42b)

When no resistive elements are present in the transmission line, it is said to be
lossless and 𝛼 = 0. In the example of a lossless copper wire, this corresponds to
𝑟 = 0 and 𝑔 = 0.

The characteristic impedance, 𝑍0, describes the ratio of voltage amplitude to
current amplitude in the transmission line and is given by

𝑍0 =
√︂

𝑧

𝑦
. (1.43)

When a load, 𝑍L, or another transmission line is attached to the original
transmission line with a differing 𝑍0, reflection will occur. It is possible to
show that the input impedance in presence of a load, 𝑍L, which is driven via a
transmission line of length Δ𝑥 is

𝑍in = 𝑍0
𝑍L cosh(𝛾Δ𝑥) + 𝑍0 sinh(𝛾Δ𝑥)
𝑍0 cosh(𝛾Δ𝑥) + 𝑍L sinh(𝛾Δ𝑥)

, (1.44)

where 𝑍0 is the complex conjugate of 𝑍0.
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𝑐 Δ𝑥

𝑟 Δ𝑥

Figure 1.7: Distributed RC line of length Δ𝑥

1.3.2 Uniform RC lines

The uniformly distributed RC line is a transmission line where the shunt
admittance corresponds to a capacitance while the series impedance is purely
resistive. The distributed resistance, 𝑟, and the distributed capacity, 𝑐 are
constant along the transmission line. A finite length Δ𝑥 is assumed, which
means that 𝑅 = 𝑟 · Δ𝑥 is the total resistance and the total capacity is 𝐶 = 𝑐 · Δ𝑥.
Figure 1.7 illustrates the situation.

When moving a distance d𝑥 along the RC line, the voltage, 𝑉 (𝑥,𝑡), between
the two wires decreases by an amount proportional to the resistance density, 𝑟,
and the current, 𝐼 (𝑥,𝑡), flowing along the line.

d𝑉 (𝑥,𝑡) = − 𝑟 𝐼 (𝑥,𝑡) d𝑥 (1.45)

At the same time, the shunt capacity causes a current change d𝐼 when moving
d𝑥 along the line according to

d𝐼 (𝑥,𝑡) = − 𝑐
d𝑉 (𝑥,𝑡)

d𝑡
d𝑥 . (1.46)

Combining (1.45) and (1.46) gives

d𝑉 (𝑥,𝑡)
d𝑡

=
1
𝑟𝑐

d2𝑉 (𝑥,𝑡)
d𝑥2 . (1.47)

This equation is structurally similar to the heat equation already derived in (1.7),
if the source term is omitted. In this comparison, the term 1/𝑟𝑐 corresponds to
the thermal diffusivity 𝛼 = 𝑘/𝑐𝜌.

Consequently, the solution of an infinitely long distributed RC line has the
same form as a solution of the related heat equation. For the RC line, if a
charge, 𝑄, is injected at the origin, the result is a voltage distribution according
to

𝑉 (𝑥,𝑡) =
𝑄/𝑐

2
√︁

𝜋𝑡/𝑟𝑐
exp

(
− 𝑥2

4𝑡/𝑟𝑐

)
. (1.48)

Solutions for arbitrary excitations or for the semi-infinite or finite RC line are
constructed from this point using superposition and mirroring techniques. For a
treatment of these cases, see [36].
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The complex impedance, 𝑍 (𝑠), of a load 𝑍L driven via an RC line is constructed
by using the general solution (1.44). The propagation constant for the RC line
shown in Figure 1.7 is

𝛾 =
√
𝑠𝑟𝑐 , (1.49)

whereas the characteristic impedance amounts to

𝑍0 =

√︂
𝑟

𝑠𝑐
. (1.50)

1.3.3 Non-uniform RC lines

In the previous section, the resistance density, 𝑟, and capacitance density, 𝑐,
are assumed to be constant along the transmission line. In this section, the
problem of the non-uniform RC line is explored, although a general solution
is not known. Here, the spatially dependent densities 𝑟 (𝑥) and 𝑐(𝑥) amount
to a total resistance, 𝑅, and total capacity, 𝐶, along an RC line of length Δ𝑥.
Additional background and more detailed treatments on non-uniform RC lines
are given in [36, 37, 38].

In a first step, the cumulative resistance, 𝑅Σ (𝑥), and the cumulative capacitance,
𝐶Σ (𝑥), are defined as the antiderivatives of the respective densities

𝑅Σ (𝑥) =
∫ 𝑥

0
𝑟 (𝜉) d𝜉 , (1.51a)

𝐶Σ (𝑥) =
∫ 𝑥

0
𝑐(𝜉) d𝜉 . (1.51b)

This implies that at the beginning of the transmission line 𝐶Σ (0) = 0 and
𝑅Σ (0) = 0 holds true and therefore at the end 𝐶Σ (Δ𝑥) = 𝐶 and 𝑅Σ (Δ𝑥) = 𝑅
must apply.

The differential structure function is defined as the ratio of the resistance and
the capacitance densities expressed as a function of cumulative resistance. It is
referred to here as 𝜎(𝑅Σ). As a function of 𝑥, it reads

𝜎
(
𝑅Σ (𝑥)

)
=
𝑐(𝑥)
𝑟 (𝑥) . (1.52)

The cumulative structure function, also called the Protonotarious-Wing function,
measures the cumulative capacitance as a function of the cumulative resistance.
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Figure 1.8: Example of a typical cumulative structure function and its approximation
via a piecewise uniform RC line. The red dots correspond to the end of each piecewise
uniform section.

It is calculated as

𝐶Σ (𝑅Σ) =
∫ 𝑅Σ

0
𝜎(𝑅′

Σ) d𝑅′
Σ (1.53a)

=
∫ 𝑥(𝑅Σ)

0

𝑐(𝑥)
𝑟 (𝑥)

d𝑅Σ

d𝑥
d𝑥 (1.53b)

=
∫ 𝑥(𝑅Σ)

0
𝑐(𝑥) d𝑥 . (1.53c)

In the following, the differential equation for the voltage in the case of spatially
dependent densities is derived. Locally, the behavior of voltage and current is
similar to the uniform case,

d𝑉 (𝑥,𝑡) = − 𝑟 (𝑥) 𝐼 (𝑥,𝑡) d𝑥 (1.54a)

d𝐼 (𝑥,𝑡) = − 𝑐(𝑥) d𝑉 (𝑥,𝑡)
d𝑡

d𝑥 . (1.54b)

Combining these two equations yields,

d𝑉 (𝑥,𝑡)
d𝑡

=
1

𝑐(𝑥)
d
d𝑥

1
𝑟 (𝑥)

d𝑉 (𝑥,𝑡)
d𝑥

. (1.55)

A simplification is achieved by reformulating the differential equation using the
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cumulative resistance, 𝑅Σ, as the spatial variable,

d𝑉 (𝑥,𝑡)
d𝑡

=
1

𝜎(𝑅Σ)
d2𝑉 (𝑥,𝑡)

d𝑅2
Σ

. (1.56)

As a general solution to (1.56) is not possible, a workable solution is to
approximate a general cumulative structure function with a piecewise uniform
RC line. A piecewise uniform RC line is a concatenation of uniform RC lines,
which each have different 𝑟 and 𝑐. In Figure 1.8, a typical cumulative structure
function together with a piecewise approximation comprising 15 segments is
shown. Note that due to the logarithmic scaling of the cumulative capacitance
the piecewise uniform segments do not appear linear. A solution is available in
the form of cascaded of uniform transmission lines according to (1.44).
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1.4 Lumped element RC lines

1.4.1 Representations of RC lines

While non-uniform RC transmission lines are analytically described by any two
positive integrable functions 𝑟 (𝑥) and 𝑐(𝑥), in digital calculations discretization
is obligatory. To generate a solution numerically, the behavior of a non-uniform
RC line is approximated by a suitable circuit, as for example by cascaded series
RC elements as shown in Figure 1.4. In this case, the values of the resistors
and capacitors have to approximate 𝑟 (𝑥) and 𝑐(𝑥) while maintaining the total
resistance, 𝑅, and total capacitance, 𝐶, of the line. For an infinite number of
elements, 𝑛 → ∞, the exact behavior of the original RC line is recovered. The
topic of infinite-length distributed RC one-ports is covered by Vladimír Székely
in [39].

For the treatment of a series RC circuit with 𝑛 elements, the relations estab-
lished in previous sections are used. The pole–zero representation introduced in
(1.22) adapted to the current case reads

𝑍 (𝑠) = 𝑅
(1 + 𝑠/𝜎𝑧,1) (1 + 𝑠/𝜎𝑧,2) . . . (1 + 𝑠/𝜎𝑧,𝑛−1)
(1 + 𝑠/𝜎𝑝,1) (1 + 𝑠/𝜎𝑝,2) . . . (1 + 𝑠/𝜎𝑝,𝑛) . (1.57)

Here, the poles lie at locations 𝑠 = −𝜎𝑝,𝑖 = −1/𝜏𝑖 with 𝜏𝑖 as defined in (1.32).
The pole–zero representation allows to characterize a circuit by the knowledge
of the locations of the poles and zeros as well as the total resistance, 𝑅.

The expression (1.57) is rearranged via partial fraction decomposition into a
sum

𝑍 (𝑠) =
𝑛∑︁

𝑖 = 1

𝑅𝑖

1 + 𝑠/𝜎𝑝,𝑖
. (1.58)

This is a generalization of (1.38) and can thus be interpreted as 𝑛 parallel RC
circuits in series. The corresponding step response, 𝑎(𝑡), is

𝑎(𝑡) =
𝑛∑︁

𝑖 = 1
𝑅𝑖

(
1 − exp(− 𝑡/𝜏𝑖)

)
. (1.59)

This result is calculated analogous to the series RC circuit, see (1.31), in which
case the step response is (1.33).

To facilitate a later generalization of the expressions to the infinite case,
𝑛 → ∞, (1.59) is rewritten as an integral in (1.60).

𝑎(𝑡) =
∫ ∞

−∞
𝜌(𝜏) (1 − exp(− 𝑡/𝜏)) d𝜏 (1.60)

Here, the time constant spectrum, 𝜌(𝜏), is introduced, which for finite 𝑛 is a
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Figure 1.9: Cauer network with 𝑛 elements

sum of delta peaks at locations 𝜏𝑖 with intensity 𝑅𝑖,

𝜌(𝜏) =
𝑛∑︁
𝑖=1

𝑅𝑖 𝛿(𝜏 − 𝜏𝑖) . (1.61)

In the limit 𝑛 → ∞, the time constant spectrum, 𝜌(𝜏), becomes a continuous
density. In practice, the time constant spectrum is often formulated in logarithmic
time, 𝜁 = ln(𝜏). The logarithmic time constant spectrum is denoted 𝑅(𝜁). The
logarithmic relations are covered in detail below.

Similar to the case of finite 𝑛, in the limit 𝑛 → ∞ the distribution of poles
and zeros on the negative real axis characterizes the RC line. The dipole
intensity function, 𝐼d, is the appropriate description in the continuous case. The
information is not carried by the number and location of the poles and zeros, but
by their relative distance in the limit. For convenience, the logarithmic negative
real axis is denoted Σ = ln(−𝜎) (compare (1.17)). In this notation, ΔΣ is the
distance between two adjacent poles and 𝛿Σ measures the distance between a
zero and the pole left from it. The dipole intensity function is defined as

𝐼d(Σ) = lim
ΔΣ→0

𝛿Σ
ΔΣ

(1.62)

and lies between zero and one.

1.4.2 Foster and Cauer synthesis
Network synthesis deals with the design of circuits based on a predefined
impedance. Its goal is to derive the numerical values of the components
that make up the circuit in such a way that the resulting impedance matches
the predefined impedance. For a given one-port impedance, many network
geometries are possible, which approximate or exactly realize the impedance.

In the present case, the objective is to relate a Foster-type network, which
has the form shown in Figure 1.10, to a Cauer-type network, see Figure 1.9.
Both networks are generalizations of simpler forms discussed previously in the
context of Figures 1.4 and 1.5.

To distinguish the components in the respective networks, resistances and
capacitances in Foster networks are denoted with 𝑅𝑛 and 𝐶𝑛, respectively, while
resistances belonging to Cauer networks are denoted as 𝑅′

𝑛 and capacitors as
𝐶′
𝑛, using a prime. Note that only the resistances and capacitances of the Cauer

network correspond to the thermal resistances and thermal capacitances.
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Figure 1.10: Foster network with 𝑛 elements

An algorithm for the Foster-to-Cauer transformation is described below in
subsection 1.6.3. The transformation from a Cauer network to a Foster network
is not discussed here, since a transformation in this direction is not necessary in
practice.

The impedance of the Cauer network in Figure 1.9 has the form of a continued
fraction, known as Stieltjes continued fraction [40]

𝑍 (𝑠) = 1

𝑠𝐶′
1 +

1

𝑅′
1 +

1

𝑠𝐶′
2 +

1

𝑅′
2 +

. . .

. . . + 1

𝑠𝐶′
𝑛 +

1
𝑅′
𝑛

. (1.63)

According to (1.58) the Foster impedance is

𝑍 (𝑠) =
𝑛∑︁

𝑖 = 1

𝑅𝑖

1 + 𝑠𝑅𝑖𝐶𝑖
. (1.64)

Given the impedance 𝑍 (𝑠) it is possible to construct a Cauer network using
polynomial long division, for example using the Euclid algorithm. In practice,
𝑍 (𝑠) is derived from the time constant spectrum, as is explained in detail below.
To perform the transformation, resistors, 𝑅′

𝑛, and capacitors, 𝐶′
𝑛, are iteratively

separated from 𝑍𝑛 (𝑠) according to

1
𝑍𝑛 (𝑠) = 𝑠𝐶′

𝑛 +
1

𝑅′
𝑛 + 𝑍𝑛−1(𝑠) , (1.65)

where the starting point is the Foster impedance, 𝑍𝑛 (𝑠) = 𝑍 (𝑠), which is
calculated via (1.64). A division of this type is always possible because the
order of the numerator polynomial is smaller than the order of the denominator
polynomial, see (1.57).
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1.5 Thermal analysis

1.5.1 Network identification by deconvolution

In a thermal response measurement, a system is subjected to a step in heating
or cooling power and the resulting temperature change, i.e. the reaction of
the system, is observed. Typically, from a system in equilibrium the impulse
response or the step response is measured with the goal to reconstruct the
relevant thermal properties of the system. In the one-dimensional case, this
corresponds to constructing an equivalent Cauer network with known resistances
and capacitances. The method laid out in this section is known as network
identification by deconvolution [7, 9].

The thermal impedance, 𝑍th(𝑡), is the step response of a system in equilibrium
due to a power step, 𝑃,

𝑍th(𝑡) = 𝑇0 − 𝑇 (𝑡)
𝑃

. (1.66)

From this, the impulse response, ℎ(𝑡) = 𝜕𝑡 𝑍th(𝑡), is calculated. In most cases in
practice, it is easier to realize a step in the heating power in good approximation
than a delta pulse of similar magnitude and duration. From (1.11) it follows that
once ℎ(𝑡) is known the temperature response of the system to an input heating
power is calculated via

𝑇 (𝑡) = 𝑇0 +
∫ 𝑡

0
𝑃(𝑡′)ℎ(𝑡 − 𝑡′) d𝑡′ . (1.67)

If the impulse response of the system, ℎ(𝑡), is converted to Laplace space the
resulting transfer function, 𝑍 (𝑠), is the impedance of the equivalence network.
Numerical knowledge of 𝑍 (𝑠), however, does not imply knowledge about the
resistances and capacities of an equivalent Cauer network.

In practice, it is convenient to perform calculations on a logarithmic timeline
and measure time constants logarithmically via

𝑧 = ln(𝑡/ 𝑡0) (1.68a)
𝜁 = ln(𝜏/𝜏0) . (1.68b)

Theoretically, the response to a Heavyside function input, as in (1.13), is defined
for all 𝑡 ∈ (0,∞). Consequently, this makes 𝑧 ∈ (−∞,∞) and leaves no defined
initial time. In practice, the finite time resolution produces a minimum measured
time 𝑡min > 0 that results in a 𝑧min > −∞. Thus, a constant shift, 𝑧0, is applied
to make the situation mathematically equivalent to expressions in linear time 𝑡.

In the following, it is implied that 𝑡0 and 𝜏0 are equal to one second, so that
𝑧 and 𝜁 measure time relative to seconds. For clarity, the constants 𝑡0 and 𝜏0
are omitted in the following. Similarly, 𝑧min is assumed to exist. In practice,
responses in logarithmic time will typically start at some small negative 𝑧-value
and the system is assumed to show no reaction before that time.
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The step response in logarithmic time, 𝑧, is denoted 𝑎(𝑧) and follows as

𝑎(𝑧) = 𝑍th(exp(𝑧)) . (1.69)

The time constant spectrum (1.61) expressed in terms of 𝜁 has the form (1.70)
and is called the logarithmic time constant spectrum, 𝑅(𝜁). In the case of finite
𝑛, it is a sum of delta peaks with magnitudes 𝑅𝑖,

𝑅(𝜁) =
𝑛∑︁
𝑖=1

𝑅𝑖 𝛿(𝜁 − ln(𝜏𝑖)) . (1.70)

The integral expression (1.71) is the step response in linear time (1.60) converted
to logarithmic time.

𝑎(𝑧) =
∫ ∞

−∞
𝑅(𝜁) (1 − exp(− exp(𝑧 − 𝜁))) d𝜁 (1.71)

From this, the impulse response is obtained via derivation,

d
d𝑧

𝑎(𝑧) = ℎ(𝑧) =
∫ ∞

−∞
𝑅(𝜁) exp(𝑧 − 𝜁 − exp(𝑧 − 𝜁)) d𝜁 . (1.72)

This integral has the form of a convolution of 𝑅(𝜁) with a function 𝑤𝑧 (𝑧)

ℎ(𝑧) = (𝑅 ⊗ 𝑤𝑧) (𝑧) , (1.73)

which is defined as

𝑤𝑧 (𝑧) = exp(𝑧 − exp(𝑧)) . (1.74)

To identify the Cauer network of the system, the convolution (1.73) is solved
for 𝑅(𝜁). Once the logarithmic time constant spectrum is obtained, a Foster
network with resistances 𝑅𝑖 and capacitances 𝐶𝑖 is readily constructed. The
corresponding impedance can be calculated with the help (1.58). The time
constant spectrum is discretized into sections of width Δ𝜁𝑖 which are located at
the positions 𝜁𝑖. The resistances and capacitances are obtained as

𝑅𝑖 = 𝑅(𝜁𝑖) · Δ𝜁𝑖 , (1.75a)

𝐶𝑖 =
exp(𝜁𝑖)

𝑅(𝜁𝑖) · Δ𝜁𝑖 . (1.75b)

The resistances, 𝑅′
𝑖 , and capacitances, 𝐶′

𝑖 , belonging to the equivalent Cauer
network can then be constructed iteratively using (1.65). With the knowledge of
the circuit, an approximation to the cumulative structure function, 𝐶Σ (𝑅Σ), can
be constructed.

Note that for the purpose of network identification by deconvolution the
driving-point behavior of the RC circuit is of interest and the time constant
spectrum has to be non-negative. In contrast, if the transfer behavior of the RC
circuit is analyzed, the time constant spectrum may also be negative [8].
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If only 𝑍 (𝑠) is known, the logarithmic time constant spectrum, 𝑅(𝜁), is
calculated as the imaginary part of 𝑍 (𝑠) along the negative real axis,

𝑅(𝜁) = 1
𝜋

Im[𝑍 (𝑠 = − exp(−𝜁))] . (1.76)

Due to the poles on the negative real axis, (1.76) cannot be evaluated directly.
As a workaround, a small angle, 𝛿, is introduced that tilts the integration path
into the complex plane, see (1.77). This has the effect of smoothing the delta
peaks, making them finite as laid out in [12].

𝑠 = −(cos(𝛿) + i sin(𝛿)) exp(−𝜁) (1.77)

With the time constant spectrum, 𝑅(𝜁), known, application of (1.73) yields the
impulse response, which gives the thermal impedance, 𝑍th, via (1.69).

1.5.2 Thermal structure functions

From a numerical point of view, every step response is connected to a thermal
structure function via the algorithm of network identification by deconvolution.
However, the structure function is per definition a strictly one-dimensional
model. The model becomes ill-defined if parasitic heat paths become significant
and the one-dimensional model is not justified. In this case, the resistances
and capacities of the thermal structure function from a network identification
by deconvolution cannot be unambiguously assigned to the components of the
device. In essence, the problem is similar to that of the proper definition of
thermal resistance as discussed in Subsection 1.1.2 at the beginning of this work.
Naturally, in heat conduction phenomena the one-dimensional assumption is
always violated to a certain degree. The quality of the approximation depends
on the specifics of each problem. In practice, the validity might depend on the
environment conditions, the interactions with neighboring heat sources or the
quality of a thermal isolation. In the case of a three-dimensional model, the
one-dimensional approximation is suitable if thermal properties and excitation
are sufficiently symmetrical. A resulting model might reflect a cylindrical,
cone-like or (half) spherical heat path. Alternatively, the one-dimensional
approximation might only be applicable for some parts of the device under test
or only a section of the heat path. The impact of heat spreading effects on
the structure functions is recognized [41, 42]. In an attempt to model the heat
spreading effect induced by increasing cross-sectional areas along the heat path,
an effective heat spreading angle is introduced in [43].

While this applies to the thermal structure function, the time constant spectrum
is defined on a more general basis, because the resistances and capacities in
the Foster network do not correspond to thermal resistances and capacities, see
Section 1.4.2. As a consequence, temperature predictions based on the time
constant spectrum, thermal impedance, and impulse response calculated via
(1.69) are always well-defined.
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It was proven by Codecasa that a three-dimensional heat conduction problem
modeled with an RC one-port network still has a well-defined thermal structure
function [44]. The one-dimensional approach of the network identification
by deconvolution simply cannot provide this structure function. For this,
the three-dimensional resistance and capacitance densities have to be known.
In a three-dimensional model, the cumulative thermal resistances and the
cumulative thermal capacitances of the structure function are defined in terms
of spatial averages of the material parameters in expanding spatial regions. A
description of the approach by Codecasa to calculate structure functions from
three-dimensional models is given in [45]. In short, the approach is to solve a
wave propagation problem related to original heat conduction problem. From
this, an equivalent LC transmission line is constructed. By analogy, the elements
of the structure function are defined in terms of spatial averages over the regions
of the wave-fronts.

1.5.3 Transient thermal testing

The purpose of this section is to give a brief overview of how the method of
network identification by deconvolution was developed and to explain how it is
applied in practice. Additionally, recent developments in the field of compact
thermal modeling are highlighted. A review encompassing the broader field of
compact thermal modeling is provided by [21] and [46].

Early work in the field of transient thermal model generation, John W. Sofia
in 1995 [47] and G. Oliveti et al. in 1997 [48], do not use network identification
by deconvolution. Instead, they are based on fitting techniques. The idea of
these publications is to optimize the resistances and capacitances of a low-order
RC network to approximate the measurement data. The above works use three
and six stage networks, respectively.

The method of network identification by deconvolution was first described by
Vladimir Székely and Tran Van Bien from the Technical University of Budapest
in 1988 [49]. A comprehensive summary of the theoretical background of
thermal structure function and some considerations on possible implementations
are given in [9].

In December 1995, a standard was released by the Electronic Industries
Association and the JEDEC Solid State Technology Association establishing
good practices for performing thermal measurement in electric devices [50].
Commonly, the temperature of an integrated circuit is measured via a temperature-
sensitive parameter, such as the forward voltage of a diode. To that end, a
K-factor calibration is performed that relates the forward voltage to the junction
temperature. In diodes, the cooling curves are measured with the help of a
small sensing current after the heating current is turned off. In this way, heating
during the measurement process is avoided. While switching from heating to
measurement current, electric transients occur masking the true temperature
development for a short time. The treatment of these electric transient, for
example via extrapolation, is discussed extensively in the literature [7, 51, 52].
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Thermal impedance measurements on IGBTs using the VCE-method (collector-
emitter voltage) are described in the JEDEC standard JESD24-12 [53].

On the basis of the transient thermal characterization procedure developed at
the Department of Electron Devices at the Budapest University of Technology
and Economics, a spin-off company was founded, which commercialized
the measurement procedure described above. The company, called MicReD
Microelectronics Research and Development, was acquired by Mentor Graphics
which today (2021) is part of Siemens. Its main product, the “T3ster”, comprises
both the measurement hardware and software for thermal transient testing and is
still being improved and updated. However, details regarding the implementation
of the network identification by deconvolution in the T3ster software are not
disclosed. Common practices concerning the implementation of the network
identification by deconvolution are gathered below as far as they are reported in
the literature.

A wide range of thermal testing practices are standardized by the JEDEC
committee “JC-15 Thermal Characterization Techniques for Semiconductor
Packages”, including network identification by deconvolution. A case study
on the use of structure functions at Infineon Technologies from 2008 is found
in [41]. The publication warns of pitfalls posed by numerical artifacts and thus
highlights the importance of robust algorithms and careful interpretation of the
results.

Since its first release, further research has been conducted to refine the
practices and to adapt network identification by deconvolution to a wide range
of applications. Special mention is given to the International Workshop
on Thermal Investigations of ICs and Systems, abbreviated THERMINIC, a
European conference, where research related to thermal structure functions
is discussed intensively. In the following, an overview over the field is given
without any claim to completeness.

One area that has become a major field of application for network identification
by deconvolution is the thermal characterization of LEDs. Therefore, there
are several JEDEC standards dealing specifically with transient measurements
on LEDs [54, 55]. Modern high-performance LEDs feature extreme power
densities at the p-n junction, which is close to the phosphor. Due to the Stokes
shift, this temperature sensitive component acts as an additional heat source.
This makes good thermal management a priority for LEDs [56].

A paper from M. Rencz works out the importance of correcting systematic
errors when the one-dimensional heat flow assumption is noticeably violated [57].
Parasitic heat flow paths such as convection, radiation losses, and conduction
through secondary components can induce errors in the calculated material
parameters, i. e. the thermal resistances and thermal capacitances, on the order
of 20 %. As the work shows, correcting for these errors can yield a significant
improvement in accuracy.

An imperfect measuring device causes inaccuracies. Examples include a finite
rise time or a delay of the power step, or the finite bandwidth of an amplifier. The
consequences of these effects and possible ways to correct them are discussed
by Székely and Szalai in [58].



1.6 Algorithms 47

Another aspect that gives rise to extensive discussions is the long time
that thermal transient measurements can take in practice. Depending on the
device under test, the combined heating and cooling time can take up to
an hour. A procedure by Schmid et al. to conduct repeated measurements
on the same device without having to wait for thermal equilibrium in each
repetition is discussed in [10, 59]. The idea of measuring truncated impedances,
i. e., cutting the measurement before thermal equilibrium is reached again, is
discussed in [52]. Other research treats thermal transient measurements in
non-equilibrium conditions [60] or the use of short-pulse excitation instead of a
step excitation [61], both with the goal of reducing the measurement time.

Instead of the conventional electronic temperature measurement, in another
work pump-probe transient thermoreflectance was combined with network
identification by deconvolution [62]. Using a delta pulse excitation the ther-
mal parameters of very thin structures are determined. In their work, the
authors highlight the importance of a sufficient temporal resolution and accurate
algorithms.

An alternative approach to generate compact thermal models from the thermal
response of a device is presented in [45, 63]. The method uses a multi-point
moment-matching algorithm to generate structure functions without the need for
deconvolution for the price of significantly increased computational time [64].

1.6 Algorithms

1.6.1 Derivation
In this section, different implementations for network identification by deconvo-
lution found in the literature are discussed. The discussion focuses on the three
most challenging tasks, namely the differentiation, the deconvolution and the
Foster-to-Cauer transformation.

When a step response, 𝑎(𝑡), is recorded, it is differentiated to obtain the
impulse response, ℎ(𝑡). However, accurate differentiation is a numerically
challenging task. Additionally, this issue is exacerbated by the fact that the
subsequent deconvolution is a very noise sensitive procedure. For a precise
differentiation, it is crucial to both limit the noise in the signal and not to
introduce a significant bias into the derivative.

In statistics, this dilemma is known as the bias-variance tradeoff [65, 66]. It
describes the conflict of interests between using large versus small windows.
Including many data points to calculate a derivative leads to a low variance. On
the other hand, larger windows are less sensitive to small and sudden changes
in the signal and consequently are prone to misrepresent the derivative of such
parts of the signal.

When working with real measurement data, additional challenges arise due to
the conversion to logarithmic time, 𝑧 = ln(𝑡). During measurements, a signal is
sampled at a constant rate in real time, 𝑡. Translating the signal to logarithmic
time leaves it sparse in the beginning and dense at the end. This leads to a
low accuracy, which is especially detrimental when calculating derivatives. In
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classical forward-voltage-based measurements, this issue is masked to a certain
extent by the electric transients. In that case, the sparse sections of the signal
have to be discarded anyway [7]. For these reasons, Ezzahri and Shakouri note
in their paper that ideally the sampling rate should be at least 10 to 15 times
higher than the smallest time constant in the signal [62].

In the literature, it is reported that “𝑍th curves must be extremely noise free”
[56, p. 129] and that the solution is “extremely sensitive to noise” [7, p. 16]. As
implementations for the derivative, the JEDEC suggests a straight line fit [7],
while Schmid et al. found a Savitzky-Golay filter of second order to yield
good results [59]. Further below, the implementation used in this work will be
explained.

1.6.2 Deconvolution

Fourier deconvolution

The idea of Fourier deconvolution is to transform the convolution equation for
the time constant spectrum (1.73), reproduced here,

ℎ(𝑧) = (𝑅 ⊗ 𝑤𝑧) (𝑧) =
∫ ∞

−∞
𝑅(𝜁) exp(𝑧 − 𝜁 − exp(𝑧 − 𝜁)) d𝜁 , (1.78)

to the Fourier domain, where it separates into a multiplication. In practice, the
fast Fourier transform algorithm is often used.

Let𝑊 (Φ) be the Fourier transform of𝑤𝑧 (𝑧) and𝑉 (Φ) be the Fourier transform
of 𝑅(𝜁). When working with measurement data, the impulse response, ℎ(𝑧), has
a noise component, 𝑛(𝑧), superimposed onto it. To represent this, the measured
signal is denoted 𝑚(𝑧),

𝑚(𝑧) = ℎ(𝑧) + 𝑛(𝑧) . (1.79)

Its Fourier transform is accordingly called 𝑀 (Φ). With the addition of noise,
the convolution (1.78) in Fourier space becomes

𝑀 (Φ) = 𝑉 ′(Φ) ·𝑊 (Φ) , (1.80)

where 𝑉 ′(Φ) is the actually obtained Fourier transform of the time constant
spectrum. The Fourier transform of (1.79) is inserted into (1.80), where 𝐻 (Φ)
and 𝑁 (Φ) are the Fourier transforms of ℎ(𝑧) and 𝑛(𝑧), respectively,

𝐻 (Φ) + 𝑁 (Φ) = 𝑉 ′(Φ) ·𝑊 (Φ) . (1.81)

Equation (1.81) solved for the transformed time constant spectrum, 𝑉 ′(Φ), reads

𝑀 (Φ)
𝑊 (Φ) = 𝑉 ′(Φ) = 𝑉 (Φ) + 𝑁 (Φ)

𝑊 (Φ) . (1.82)
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The noise component in the signal introduces an additional term to the exact
time constant spectrum, 𝑉 (Φ). As part of the deconvolution, noise components
are enhanced greatly in parts where 𝑊 (Φ) is close to zero.

Because of this, it is common to filter out high frequency components of
the spectrum. To this end, 𝑉 ′(Φ) is multiplied by a filter function or window
function. There are many filter functions available [67]. In the literature, Székely
reports the use of a Gauss filter [8], while the JEDEC claims that a Fermi-Dirac
function of the form

𝐹Fermi(Φ) = 1

exp
( |Φ|−𝜇

𝛽

)
+ 1

(1.83)

with appropriate 𝜇 and 𝛽 shows good results [7]. Furthermore, Wiener optimal
filtering can also be applied to the spectrum [68], but no results using it in the
context of network identification by deconvolution are reported in the literature.

Inverse filtering

Another approach to solve (1.78) is inverse filtering. Its application to thermal
transient measurements is discussed by Székely in [61].

The approach is to find an inverse filter function, 𝑖(𝑧), which is defined by its
action on the forward filter function 𝑤𝑧 (𝑧),

(𝑤𝑧 ⊗ 𝑖) (𝑧) = 𝛿(𝑧) , (1.84)

to yield a delta function when convolved with it. Following this definition
inverse filtering provides the time constant spectrum according to

𝑅(𝜁) = (ℎ ⊗ 𝑖) (𝜁) =
∫ ∞

−∞
ℎ(𝑧) 𝑖(𝜁 − 𝑧) d𝑧 . (1.85)

An algorithm to construct 𝑖(𝑧) is described in [61].

Bayesian deconvolution

A third method to solve the convolution equation (1.78) makes use of the
Bayesian theorem and was introduced by Kennett et al. in 1978, [69, 70, 71].
Bayesian deconvolution is an iterative procedure and the iteration rule for
network identification by deconvolution is derived below.

In computer-based calculations, the convolution (1.78) becomes a summation
and functions are represented by vectors. Note that for Bayesian deconvolution
the 𝑧-values at which the functions are evaluated have to be evenly spaced.

ℎ[𝑧] =
∑︁
𝜁

𝑤𝑧 [𝑧 − 𝜁]𝑅[𝜁] (1.86)

Here, square brackets are used to indicate a discrete integer dependence. Equiv-
alently, the convolution can also be written in matrix-vector notation, where
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𝑤𝑧 [𝑧 − 𝜁] becomes a Toeplitz matrix, denoted 𝑊 , which has shifted versions of
𝑤𝑧 (𝑧) as column entries. In these terms, the convolution reads

ℎ = 𝑊 · 𝑅 , (1.87a)

or alternatively in index notation,

ℎ𝑖 = 𝑊𝑖 𝑗 𝑅 𝑗 . (1.87b)

Starting point to derive the Bayesian deconvolution is Bayes’ theorem (1.88).
As the goal of the deconvolution step is to determine 𝑅(𝜁) from ℎ(𝑧), Bayes’
theorem is formulated for the likelihood of 𝑅 given ℎ, commonly denoted
𝑃(𝑅 | ℎ),

𝑃(𝑅 | ℎ) = 𝑃(ℎ | 𝑅) 𝑃(𝑅)
𝑃(ℎ) . (1.88)

𝑃(𝑅) and 𝑃(ℎ) are the a priori probabilities of 𝑅(𝜁) and ℎ(𝑧). Which values
should be assigned to these probabilities is discussed later.

Note that the conservation of probability (1.89) guarantees that when the
conditional probability 𝑃(𝑅𝑖 | ℎ𝑘 ) is summed over all conditions, 𝑃(𝑅𝑖) is
retained,

𝑃(𝑅𝑖) =
∑︁
𝑘

𝑃(𝑅𝑖 | ℎ𝑘 ) 𝑃(ℎ𝑘 ) . (1.89)

Because 𝑅 𝑗 is a vector, Bayes’ theorem has to formulated in vector notation
too and (1.88) generalizes to (1.90),

𝑃(𝑅𝑖 | ℎ𝑘 ) = 𝑃(ℎ𝑘 | 𝑅𝑖) 𝑃(𝑅𝑖)∑
𝑗 𝑃(ℎ𝑘 | 𝑅 𝑗 ) 𝑃(𝑅 𝑗 ) . (1.90)

Inserting (1.90) into (1.89) leads to

𝑃(𝑅𝑖) = 𝑃(𝑅𝑖)
∑︁
𝑘

𝑃(ℎ𝑘 ) 𝑃(ℎ𝑘 | 𝑅𝑖)∑
𝑗 𝑃(ℎ𝑘 | 𝑅 𝑗 ) 𝑃(𝑅 𝑗 ) . (1.91)

Simplifying this equation, the conditional probability, 𝑃(ℎ𝑘 | 𝑅 𝑗 ), is identified
as 𝑊𝑘 𝑗 from (1.87b). The a priori probability 𝑃(ℎ𝑘 ) is known and is simply ℎ𝑘 ,
while the value chosen for 𝑃(𝑅 𝑗 ) is not critical, because the end result should
not depend on it. For the resulting iteration (1.92), the starting point 𝑅(0)

𝑗 is
chosen as 𝑃(𝑅 𝑗 ) = 𝑅(0)

𝑗 = ℎ𝑘 ,

𝑅(𝑛+1)
𝑖 = 𝑅(𝑛)

𝑖

∑︁
𝑘

ℎ𝑘 𝑊𝑘𝑖∑
𝑗 𝑊𝑘 𝑗 𝑅

(𝑛)
𝑗

. (1.92)

The Bayesian deconvolution has two important properties that make it attractive
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for the application in network identification by deconvolution. First, it preserves
the area under the curve, since the area under 𝑤𝑧 (𝑧) is equal to one. This means
that the steady state thermal resistance is preserved during deconvolution to a
high degree of accuracy. Secondly, since Bayesian deconvolution deals with
probabilities at its core, the results are guaranteed to be non-negative.

Ezzahri and A. Shakouri report the use of Bayesian deconvolution [62].
Székely claimes that approximately 1000 iterations steps are sufficient for
network identification by deconvolution [9, 72]. The use of the same number of
iteration steps is reported by Schmid et al. [10].

1.6.3 Foster-to-Cauer transformation

Three methods for the Foster-to-Cauer transformation are reported in the
literature. A method presented by Codecasa employing a tridiagonalization
approach is presented in [73]. The method makes use of well-conditioned
algorithms for the tridiagonalization of matrices, such as the Lanczos algorithm,
to determine the elements of a Cauer network starting from a suitable system of
differential equations. There exist two alternative methods for performing the
Foster-to-Cauer transformation. They are described by by Khatwani in 1976
and Sobhy in 1973 [74, 75, 76]. Khatwani presents an algorithm for calculating
the elements of a continued fraction via the Markov parameters of 𝑍 (𝑠).

The most commonly used algorithm for the Foster-to-Cauer transformation is
based on a continued polynomial long division. A detailed algorithm for this
task is described in [77] and reproduced here. As a starting point, the Foster
network impedance, 𝑍 (𝑠), is calculated from the time constant spectrum. The
resistances and capacitances of the network are derived from it according to
(1.75a) in combination with (1.75b). Subsequently, the impedance is constructed
following (1.65). To perform a polynomial division, all the terms have to be
added up such that a rational function of the type (1.21) is received.

For convenience, the recurrence relation governing the Foster-to-Cauer trans-
formation (1.65) is reproduced in (1.93).

1
𝑍𝑛 (𝑠) = 𝑠𝐶′

𝑛 +
1

𝑅′
𝑛 + 𝑍𝑛−1(𝑠) (1.93)

First, 𝑍𝑛 (𝑠) is split into a numerator polynomial 𝑝𝑛 (𝑠) and a denominator
polynomial 𝑞𝑛 (𝑠). As the order of 𝑞𝑛 (𝑠) is always exactly one higher than that
of 𝑝𝑛 (𝑠), the inverse of the impedance is expanded via a polynomial division
into a linear part and a remainder 𝑟𝑛 (𝑠),

1
𝑍𝑛 (𝑠) =

𝑞𝑛 (𝑠)
𝑝𝑛 (𝑠) = 𝑠𝐶′

𝑛 +
1
𝑅′
𝑛
+ 𝑟𝑛 (𝑠)
𝑝𝑛 (𝑠) . (1.94)

From the coefficients of the result, the resistances, 𝑅𝑛, and capacitances, 𝐶𝑛, of
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the Cauer network follow. A new impedance 𝑍𝑛−1(𝑠) = 𝑝𝑛−1 (𝑠)
𝑞𝑛−1 (𝑠) is received via

𝑝𝑛−1 = −𝑅′
𝑛 · 𝑟𝑛 (𝑠) (1.95a)

𝑞𝑛−1 =
𝑝𝑛 (𝑠)
𝑅′
𝑛

+ 𝑟𝑛 (𝑠) . (1.95b)

In the last step, 𝑝0(𝑠) = 0 marks the end of the iteration. When the order of 𝑞𝑛 (𝑠)
and 𝑝𝑛 (𝑠) increases, the coefficients quickly exceed the accuracy boundaries
of double precision floating point arithmetic. Typically, this happens between
polynomial orders of 50 to 100. Because of this, it is common practice to
use arbitrary floating point precision [7, 56]. In this way, it is reported that
polynomials of order 150 to 200 are possible [56].

1.6.4 Inverse calculation
The goal of network identification by deconvolution is to derive a structure
function from a given step response. An inverse calculation means to derive
a step response from a structure function. Information about the structure of
a system can either be derived from its geometry and material properties or
deduced from a structure function, if it is known.

In the latter case, as for instance shown in Figure 1.8, the structure function is
approximated by piecewise uniform RC lines that each contribute a resistance,
𝑅, and capacitance, 𝐶, to the total.

If the material parameters are known, i. e. the thermal conductivity, 𝑘 , the
specific heat capacity, 𝑐𝑚, and the density, 𝜌, as well as the cross-sectional area,
𝐴, then the resistance density, 𝑟, and capacitance density, 𝑐, follow from

𝑟 =
1
𝑘 𝐴

, (1.96a)

𝑐 = 𝑐𝑚 · 𝜌 · 𝐴 . (1.96b)

Given the length of the section, Δ𝑥, 𝑅 and 𝐶 follow directly.
In either way, once 𝑅 and 𝐶 of each section have been determined (1.44)

in combination with (1.49) and (1.50) yields the thermal impedance. The
impedance of the transmission line must be calculated sequentially by using
the input impedance of the previous section as the load impedance of the next,
starting at the termination, i.e. at the short-circuited end with a vanishing load
impedance.

Given the impedance, 𝑍 (𝑠), (1.76) is employed in combination with (1.77) to
derive the time constant spectrum. It is then convolved according to (1.73) and
subsequently integrated to obtain the step response, 𝑎(𝑧).

In the literature, it is reported that the angle, 𝛿, in (1.77) should be not more
than 2◦ to 5◦ [12]. The time constant spectrum is sampled at approximately 30
points per decade [61, 78]. The standard JESD 51-14 recommends a sampling
rate of at least 50 points per decade [7].
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Chapter 2

Network identification

Some results in this chapter have been published in [79], [80] and [81].

2.1 Implementation of network identification
In this section, the implementation of network identification used in this work is
discussed. Different variants of established methods are systematically evaluated
and compared against each other as well as against novel techniques developed
in this work.

2.1.1 Software libraries
For all computations, python 3.7.9 is used. To perform standard computa-
tional tasks such as the fast Fourier transform or array sorting, the packages
numpy 1.19.2 [82] and scipy 1.5.2 [83] are relied on. For multidimensional
optimization, the implementation of the solvers provided by scipy are utilized.
For accurate polynomial long division, arbitrary floating point arithmetic via
gmpy2 version 2.0.8 [84] is used. The calculation times given below are gathered
for a computer with an Intel Core i7-8665U CPU at 1.90 GHz and 16 GB RAM
running under Windows 10.

2.1.2 Optimal regression filtering
The implementation of network identification by deconvolution used in this
work relies on a regression filter to derive the impulse response from the thermal
impedance. Using the logarithmic thermal impedance, 𝑎(𝑧) = 𝑍th(exp(𝑧)), a
locally weighted scatterplot smoothing, abbreviated LOWESS, is performed.
The method is based on least squares local polynomial regressions on a small
interval centered around each data point. From the regression, the true signal and
its derivative are estimated. In this way, it is possible to calculate the derivative
of the step response and reduce noise components in the signal in the same step.

As outlined in Subsection 1.6.1, it is important to choose an appropriate
window length that balances the bias-variance tradeoff. Because of that, the
LOWESS filter is supplemented by an adaptive window length algorithm which
re-evaluates the bias-variance tradeoff for each regression individually. To decide
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on the best window length, Stein’s unbiased risk estimate, abbreviated SURE, is
employed. The idea is based on a paper by Krishnan and Seelamantula [65]. An
adaptation of the algorithm suitable for network identification by deconvolution,
is presented here.

A noisy signal is described by assuming an underlying true signal, 𝑠𝑖, which
is superimposed by (white) noise, 𝑤𝑖. The observed values, 𝑥𝑖, can be described
as

𝑥𝑖 = 𝑠𝑖 + 𝑤𝑖 . (2.1)

Here, 𝑖 enumerates the data points in a time series measurement. Each set,
{𝑥𝑖, 𝑠𝑖, 𝑤𝑖}, has an associated logarithmic time 𝑧𝑖.

From the set of all measurement points, 𝑋𝑋𝑋 , a small subset, 𝑥𝑥𝑥, is taken to
calculate an approximation of the true value, 𝑠𝑖. Here, the size of the interval
measured in logarithmic time, 𝑧, is called window length, 𝐿, while the window
size, 𝑁 , denotes the number of data points in, 𝑥𝑥𝑥. To achieve a good fit, the
window length must be chosen carefully. To that end, a polynomial of low order
is fitted to 𝑥𝑥𝑥 via a least squares regression that generates a prediction, 𝑓𝑖 (𝑥𝑥𝑥), of 𝑠𝑖.
Typically, 𝑥𝑖 is located in the center of 𝑥𝑥𝑥, such that 𝑥𝑥𝑥 lies inside [𝑥𝑖− 𝐿/2, 𝑥𝑖 + 𝐿/2].
This is, however, not exactly guaranteed because of a possibly uneven spacing of
the data points in logarithmic time. Additionally, at the boundaries 𝑥𝑥𝑥 is evaluated
off-center. A polynomial of first order has performed best in practice. The
derivative of 𝑠𝑖 can then simply be approximated by the gradient of the linear
regression.

In the regression, the data points are weighted according to their distance, Δ𝑥
from 𝑥𝑖 via a tricubic weight function, 𝑤(𝑥𝑖). It is defined as

𝑤(Δ𝑥) =

(
1 − |Δ𝑥 |

𝐿

3)3

for Δ𝑥 < 𝐿

0 for Δ𝑥 ≥ 𝐿

. (2.2)

Additionally, each data point is assigned a weight inversely proportional to
the local density of points, such that sparse sections of the signal are not
underrepresented. This step is necessary because the data might not be evenly
spaced in 𝑧.

Statistically, the bias-variance tradeoff is quantified by the statistical risk, R.
In the present case, it measures the magnitude of the error made with the
prediction, 𝑓𝑖 (𝑥𝑥𝑥), of 𝑠𝑖. The goal is to choose a window length that minimizes
the risk. It is calculated as the expectation value, E, of the squared difference
between true signal, 𝑠𝑖, and its prediction, 𝑓𝑖 (𝑥𝑥𝑥),

R = E
{

1
𝑁

𝑁∑︁
𝑖=1

( 𝑓𝑖 (𝑥𝑥𝑥) − 𝑠𝑖)2

}
. (2.3)

As 𝑠𝑖 is unknown, the risk cannot be calculated directly. Instead, it is estimated.
Applying SURE to (2.3) simplifies it to (2.4) [65]. Here, R𝑖 is the risk associated
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to the approximation of each data point 𝑥𝑖 and 𝜎 is standard deviation of the
noise component 𝑤𝑖.

R𝑖 = E
{
𝑓𝑖 (𝑥𝑥𝑥)2 − 2 𝑓𝑖 (𝑥𝑥𝑥)𝑥𝑖 + 2𝜎2 𝜕 𝑓𝑖 (𝑥𝑥𝑥)

𝜕𝑥𝑖

}
+ 𝑠2

𝑖 (2.4)

While 𝑠𝑖 still appears in this formula, it only takes the form of an additive
constant. Because of this, for the goal of choosing a window length, 𝐿, which
minimizes R𝑖, it can be neglected.

The above described procedure quantifies the risk associated with an approx-
imation 𝑓𝑖 (𝑥𝑥𝑥) at 𝑧𝑖. In practice, however, the measurement points, 𝑧𝑖, are not
evenly spaced. For fast Fourier transformations and Bayesian deconvolution
evenly spaced data points are required. Because of this, the optimum polynomial
that minimizes the risk, R𝑖, is not evaluated at the logarithmic time value of
𝑥𝑖, i. e. 𝑧𝑖, but at a location nearby 𝑧′𝑖. The set of new logarithmic times has
a constant spacing Δ𝑧′ = 𝑧′𝑖+1 − 𝑧′𝑖. Which number of points for the new grid,
𝑁g, is optimal, is investigated below. A low number of points, 𝑁g, reduces the
computational cost, but possibly affects accuracy.

Based on (2.4), the optimum window length is chosen by searching for an 𝐿
that minimizes R𝑖. In practice, the search is limited to an interval, 𝐿 ∈ [𝐿−, 𝐿+],
within reasonable bounds. Freely choosing 𝐿 at each 𝑧′𝑖 often leads to an
oscillating behavior, i. e., additional high frequency noise in the output. Because
of this, the initial window length 𝐿0 at 𝑧′0 is freely chosen in the interval [𝐿−, 𝐿+]
and then incremented or decremented by Δ𝐿 in every subsequent step. This
means, that at each 𝑧′𝑖 the risks associated with the window lengths 𝐿 − Δ𝐿,
𝐿, and 𝐿 + Δ𝐿 are calculated and the window lengths adjusted accordingly.
This also greatly reduces the calculation time. Appropriately choosing the
values for the parameters introduced in this paragraph is critical for accurate
approximation.

In this way, interpolating the data to an evenly spaced grid, damping the noise,
and calculating the derivative are all performed in a single step.

2.1.3 Deconvolution
For Bayesian deconvolution, the prior probability distribution is chosen to be
equal to the impulse response, ℎ(𝑧). With an increasing number of iterations,
values in some regions of the spectrum will converge to zero and eventually
underflow numerical double precision. Although this is not directly an issue, it
reduces the number of non-zero points that make up the spectrum. Furthermore,
for wide spectra this can lead to division-by-zero errors in (1.92). To avoid this,
the algorithm accounts for zeros in the denominator,

∑
𝑗 𝑊𝑘 𝑗 𝑅

(𝑛)
𝑗 .

For the Fourier transformation, which is calculated with a fast Fourier
transformation, depending on the shape of the spectrum, padding the impulse
response with zeros before deconvolution is necessary [68]. In Fourier space,
the impulse response becomes a function of the logarithmic frequency, Φ.

As laid out in subsection 1.6.2, a frequency domain filer, 𝐹 [Φ𝑖], is applied
to each component, Φ𝑖, of the spectrum. Frequencies beyond a cut-off, Φc, are
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suppressed, see (2.5). Frequencies between −Φc and Φc are damped according
to the window function, 𝐹Window, in question.

𝐹 [Φ𝑖] =
{

0 for |Φ𝑖 | > Φc

𝐹Window for |Φ𝑖 | ≤ Φc
(2.5)

For the window function, many forms are possible, a selection of which is
evaluated in this work [85]. In particular, this includes the Gauss window and
the Fermi filter as their use is reported in the literature, see Subsection 1.6.2.
Additionally, the Hann window, rectangular window, and Nuttall window are
applied, following the definitions below.

The support of the filter, i. e. the non-zero components, forms an array with
𝑁W entries, which are here numbered from zero to 𝑁W, from negative to positive
frequencies, 𝑛 = 0, 1, . . . , 𝑁W. For every window function, the width of the
window is controlled via Φc and appears in the form of 𝑁W in the definitions
below. The Nuttall window is defined as a sum of cosines with specific numerical
prefactors [86],

𝐹Nuttall [𝑛] = 0.355 768 − 0.487 396 · cos
(
2𝜋 𝑛
𝑁W

)
+ 0.144 232 · cos

(
2𝜋 𝑛
𝑁W

)
− 0.012 604 · cos

(
2𝜋 𝑛
𝑁W

)
. (2.6)

Similarly, the Hann window takes the form of a squared sine function

𝐹Hann [𝑛] = sin2
(
𝜋 𝑛

𝑁W

)
. (2.7)

The rectangular window is simply

𝐹Rectangular [𝑛] = 1 . (2.8)

The Gauss window has an additional parameter, 𝜎, that is restricted to 𝜎 ≤ 0.5.
Within these bounds an appropriate value has to be chosen.

𝐹Gauss [𝑛] = exp

(
−1

2

(
𝑛 − 𝑁W/2
𝜎 𝑁W/2

)2)
(2.9)

The Fermi window is a special case as it does not use a finite cut-off frequency,
Φc. Instead, it uses two parameters, 𝜇 and 𝛽, that control its width and slope.
The support is the entire spectrum. The right-hand side is more stable for small
values of 𝛽.

𝐹Fermi [𝑛] = 1

exp
( |Φ|−𝜇

𝛽

)
+ 1

=
exp

(
− |Φ|−𝜇

𝛽

)
1 + exp

(
− |Φ|−𝜇

𝛽

) (2.10)
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2.1.4 Foster-to-Cauer transformation
For the Foster-to-Cauer transformation, the polynomial long division approach
is used. To guarantee sufficient accuracy for polynomials of high order, arbitrary
floating point arithmetic with 1000 byte precision is used. To construct the
Foster network from the time constant spectrum, the Foster resistances, 𝑅𝑖, and
capacitances, 𝐶𝑖, are generated directly from each pair of 𝜁𝑖 and 𝑅(𝜁𝑖) in the
spectrum via (1.75a) and (1.75b). When adding the terms according to (1.64),
no additional sorting is conducted.

It is possible that in the result of a Fourier deconvolution the time constant
spectrum, 𝑅(𝜁), comprises negative values in some sections. This effect is
more pronounced with wide filters, which let through a larger proportion of
high-frequency components. For Bayesian deconvolution, the spectrum often
contains values that are exactly zero or very close to it. To obtain an impedance,
𝑍 (𝑠), from the spectrum, it is necessary to treat these sections and guarantee
a physical time constant spectrum in all cases. Parts of the spectrum which
have no significant contribution are neglected. In this way, the input values
for the Foster-to-Cauer transformation are normalized and the degrees of the
polynomials involved are reduced, which increases numerical stability and
accuracy. All resistances in the spectrum, below a certain threshold 𝑅min are set
to zero and hence do not generate pairs of Foster resistances and capacitances,
(𝑅𝑖, 𝐶𝑖). Here, the cut-off is set to 𝑅min = 10−20.

2.1.5 Inverse calculation
An inverse calculation means to derive a step response from a structure function.
To construct an impedance, 𝑍 (𝑠), from a structure function, one has to rely on a
piecewise uniform approximation, as discussed in Subsection 1.3.3.

Some algebraic manipulations of (1.44) reveal that it is sufficient to provide
the total resistance, 𝑅, and capacitance, 𝐶, of each segment instead of resistance
and capacitance densities, 𝑟 and 𝑐, together with the length of the segment, Δ𝑥.
Additionally, reformulating (1.44) to use a tanh(𝑥) makes it numerically more
stable. Putting all this together, the resulting iteration formula reads

𝑍in(𝑠) =
√︂

𝑅

𝑠𝐶

𝑍L +
√︂

𝑅

𝑠𝐶
tanh

(√
𝑠𝑅𝐶

)
√︂

𝑅

𝑠𝐶
+ 𝑍L tanh

(√
𝑠𝑅𝐶

) . (2.11)

Here, the complex frequency, 𝑠, is slightly rotated into the complex plain
by an angle, 𝛿, according to (1.77). However, small angles of 𝛿 require a
dense sampling of the complex frequency, 𝑠, to capture narrow peaks in the
time constant spectrum correctly. The smaller 𝛿 is, the more the peaks in
the spectrum of time constants resemble Dirac delta functions. Moreover, for
accurate calculations, it is required to capture even small contributions of the
time constant spectrum accurately. This means, that for small angles of 𝛿 the
time constant spectrum has to sampled densely over wide range. Because of
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this, calculating theoretical thermal impedances with high accuracy becomes
quite time-consuming, requiring calculation time on the order of minutes.

2.2 Optimization-based network identification
In this section, an alternative method for solving the network identification
problem is presented, called optimization-based network identification, which
was developed as part of this work. The idea of this method is to find a structure
function that has a thermal impedance matching well with the measured thermal
impedance. In this way, a structure function belonging to the system is
known by construction. The corresponding time constant spectrum can be
readily calculated to arbitrary accuracy. Figure 2.1 shows a schematic of the
optimization-based network identification.

Good initial values are essential for the success of an optimization-based
network identification. One way to obtain initial values is to perform a network
identification by deconvolution. The resulting structure functions usually consist

simplified
thermal network

calculated
thermal impedance

measured
thermal impedance

time constant
spectrum

Eq. (2.13)

optimized
thermal network

thermal structure
function

measured
step response

Network Identification
by Deconvolution

Optimization-based
Network Identification

Po
w

el
lo

rC
O

BY
LA

intermediate
thermal network

Eq. (2.12)

Powell or COBYLA

Network Simplification

Figure 2.1: Schematic for the optimization-based network identification. Starting from
the measured step response, first, a network identification by deconvolution is performed.
Then, the network simplification and optimization-based network identification follow.
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Figure 2.2: Conventional cumulative structure function and piecewise uniform approxi-
mation with ten sections. The divergence at the end is truncated in the optimization.

of several hundred data points. When performing an optimization using these
thermal structure functions directly, several problems arise. For one, the search
space during optimization is too large leading to lengthy computation times and
suboptimal convergences. In addition, inverse calculations with several hundred
sections are computationally too laborious to be used during an optimization.

Because of this, the number of degrees of freedom is reduced in the step of
network simplification. Here, the thermal structure function is approximated
with a piecewise uniform RC line, as shown in Figure 2.2. The relevant
information is captured by a significantly reduced number of data points.
For this step, the number of sections, 𝑁S, in the piecewise uniform RC line
must be defined manually. Typically, the number of sections that achieves a
good fit and is computationally feasible lies between 2 and 20. Each section
is completely defined by the total thermal resistance, 𝑅𝑖, and the thermal
capacitance, 𝐶𝑖, it contributes to the structure function. Good initial values
for the optimization-based network identification consist of 𝑁S resistances and
capcitances, (𝑅1, . . . , 𝑅𝑁S , 𝐶1, . . . , 𝐶𝑁S), which match the measured thermal
impedance at least approximately. In addition, each point should contribute
significantly to the outcome.

Finally, a multidimensional optimization is performed on the resistances and
capacitances with the goal of minimizing the discrepancy between the measured
thermal impedance and the thermal impedance belonging to the optimized
structure function, which is here called the optimized thermal impedance. For a
valid solution, it is important to ensure that the optimized thermal impedance is
actually in good agreement with the measured data.

To guarantee a good fit of the piecewise uniform structure function, which
provides the initial values for the main optimization, it is itself optimized to
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Figure 2.3: Result of an optimization-based network identification (Powell) with ten
sections. The initial values are generated with the help of a conventional network
identification, see Figure 2.2. The measures of accuracy are 𝑚R = 1.98 K/W and
𝑚S = 2.06 K/W for structure 1, see Subsection 2.3.1.

match closely with the thermal structure function, see Figure 2.1. For this initial
value optimization, the objective function that performed best in practice is the
square root of the integral of the squared logarithmic deviations,

𝑜struc =

√︄∫ 𝑅

0

[
ln

(
𝐶Σ,conv(𝑅Σ)

) − ln
(
𝐶Σ,opt(𝑅Σ)

) ]2 d𝑅Σ . (2.12)

The initial values for the initial value optimization, (𝑅Σ,𝑖, 𝐶Σ,𝑖), are evenly
spaced along the arc length of the structure function. In addition, truncating
the divergence at high 𝑅Σ, which is a typical artifact of the Foster-to-Cauer
transformation, has been shown to increase the accuracy and the stability of the
convergence. To obtain a good fit, the overall thermal resistance represented by
the initial values should match the measured thermal impedance.

The objective function employed for the main optimization is shown in (2.13).
It has the form of an L2-norm, i. e., it is the square root of the integral of the
squared difference between optimized and measured step response,

𝑜imp =

√︄∫ 𝑧max

𝑧min

(
𝑎measured(𝑧) − 𝑎opt(𝑧)

)2 d𝑧 . (2.13)

To compare the fit of the optimized thermal impedance with that of a
conventional algorithm, a time constant spectrum which was computed via
Fourier deconvolution or Bayesian deconvolution is reconvolved according
to (1.73) and integrated to reproduce the thermal impedance it represents.
Here, this impedance is called “backwards thermal impedance”. To have a
valid solution, the discrepancy between the optimized thermal impedance and
the measured thermal impedance must be comparable to or smaller than the
discrepancy between the optimized thermal impedance and a good backwards
thermal impedance.

For the optimization shown exemplarily in Figures 2.2 and 2.3, the value of
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the objective function resulting directly from the initial values, see Figure 2.2,
is 𝑜imp, initial = 1.0582 K/W. After the main optimization, the value of the
objective function is reduced, in this example, to 𝑜imp, optimized = 0.0182 K/W.
For comparison, the value of the objective function for the backwards thermal
impedance is 𝑜imp, backwards = 0.0170 K/W. Note that for the goal of calculating
accurate structure functions, a low value of 𝑜imp is an important sanity check
and suitable to validate solutions. However, it is not a measure of the actual
accuracy of the solution. Comparing the accuracy of various methods is the
topic of Subsection 2.3.1.

For both optimizations, the actual degrees of freedom provided to the solver
are the cummulative resistances and cummulative capcitances of the piece-
wise uniform structure function, (𝑅Σ,1, . . . , 𝑅Σ,𝑁S , 𝐶Σ,1, . . . , 𝐶Σ,𝑁S). In each
function evaluation, an inverse calculation is performed as described in Subsec-
tion 2.1.5. As a physical constraint, it is demanded that the structure function
is a monotonically increasing function. This means that the list of resistances,
(𝑅Σ,1, . . . , 𝑅Σ,𝑁S), and capacitances, (𝐶Σ,1, . . . , 𝐶Σ,𝑁S), should be strictly mono-
tonically increasing, i. e., each 𝑅Σ,𝑖 and 𝐶Σ,𝑖 are greater than their left neighbor
and smaller than their right neighbor. However, during the optimization the
solvers cannot be relied on to uphold this condition. Because of that, there is
a mechanism to repair unphysical structure functions that appear during the
optimization. A problem arises, for example, if the solver modifies the resistance
of one data point, (𝑅Σ,𝑖, 𝐶Σ,𝑖), such that its resistance comes close to or exceeds
the resistance of a neighboring data point, (𝑅Σ,𝑖+1, 𝐶Σ,𝑖+1). Here, the conflict is
solved by sorting the 𝑅Σ,𝑖 and𝐶Σ,𝑖 independently before each function evaluation.
This corresponds to virtually moving the resistance of the other data point, once
the data points have the same resistance, 𝑅Σ,𝑖 = 𝑅Σ,𝑖+1. This is a difference
because of the associated thermal capacitances, which are not equal in general,
𝐶Σ,𝑖 ≠ 𝐶Σ,𝑖+1. Additionally, a minimum size for 𝑅Σ,𝑖 − 𝑅Σ,𝑖+1 and 𝐶Σ,𝑖 − 𝐶Σ,𝑖+1
is set to avoid numerical instability.

For the purpose of the actual optimization, two solvers yield good results.
The first is Powell’s conjugate direction method [87]. As a second method,
Constrained Optimization BY Linear Approximations, abbreviated COBYLA, is
also suitable [88]. A common feature of both solvers is that they do not calculate
derivatives of the objective function. This makes them particularly suitable
for problems with a complicated objective function and problems where the
derivative is not directly available.

Moreover, both solvers are able to respect boundary conditions which is used
to limit the search space to physically plausible values, such as the restriction to
cumulative resistances and capacitances. The total thermal resistance, 𝑅th,Σ, is
unlikely to significantly exceed 𝑍th(𝑡 → ∞). In addition, the COBYLA solver
is able to accept relative constraints, which is used to force the parameters to
remain in certain bounds. This is used to restrict the parameters to always remain
sorted in the sense explained above. Still, physicality should be checked at every
function evaluation because of possible constraint violations. Furthermore,
significant speed increases are achieved in calculations of (2.11) by using an
LRU (Least Recently Used) cache. In summary, the Powell solver has been
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shown in practice to be faster, but less reliable because it fails to converge on
rare occasions. The COBYLA solver is slower but more stable due to more
stringent constraints. The accuracy is similar for both methods, possibly slightly
better for the Powell solver as is analyzed in the following section.

2.3 Performance comparison

2.3.1 Methodology

The purpose of this section is to systematically compare the accuracy of
different methods to perform a network identification. The methods examined
here are network identification via Fourier deconvolution as well as Bayesian
deconvolution, and the optimization-based network identification as presented in
the previous section. Moreover, the influence of parameters appearing in these
algorithms is systematically analyzed, such as the window length increment,
Δ𝐿, or the number of points in the derivative, 𝑁g, which were introduced in the
subsection 2.1.2.

For this purpose, three test structures are defined via the thermal resistances
and capacitances of their piecewise uniform structure functions as summarized
in Table 2.1. The theoretical thermal impedances are constructed using (2.11).
The thermal resistances and capacitances are chosen to be roughly similar
to real electronic devices of varying complexity. While the time constant
spectrum of structure 3 consists essentially of a single peak and has only three
sections, structure 1 includes many smaller and larger peaks resulting from five
sections. An illustration of the corresponding structure functions as well as their
time constant spectra, impulse responses, and thermal impedances is given in
Figure 2.4.

The basic principle for comparing the accuracy of the different methods
of network identification is to derive the theoretical thermal impedances of
the structures with high accuracy and then use them as input for a network
identification. The difference between the original and the recovered time

Table 2.1: For the purpose of comparison, three test structures are defined as piecewise
uniform structure functions. The total thermal resistances (in K/W) and the total
capacitances (in J/K) of each section are given below.

Structure 1 Structure 2 Structure 3
Sections 𝑅th 𝐶th 𝑅th 𝐶th 𝑅th 𝐶th

Section 1 5 10−5 10 10−4 20 10−1

Section 2 15 10−3 10 10−1 20 10−4

Section 3 10 10−4 10 10−4 10 10−3

Section 4 10 10−2 10 10−3 - -
Section 5 10 10−1 10 100 - -
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Figure 2.4: Overview over the three test structure functions (top left), their respective
time constant spectra (top right), impulse response (bottom left), and thermal impedance
(bottom right) calculated at 𝛿 = 0.03◦. For the purpose of readability, the time constant
spectra plotted are calculated with 𝛿 = 1.5◦.

constant spectrum and the structure function gives a measure of the accuracy
of the respective method. To simulate realistic measurement data, the exact
theoretical thermal impedance is obscured by adding white noise and interpolated
to simulate a constant sampling rate in linear time, 𝑡. In this way, the performance
of the algorithms is studied under non-ideal conditions.

To avoid a systematic bias in the calculation, a high accuracy for the theoreti-
cally calculated functions must be ensured. For this reason, the first step is to
investigate how large the error associated with the calculation of the theoretical
thermal impedance is.

Because of the poles in 𝑍 (𝑠) on the negative real axis, a small angle 𝛿 must
be introduced as described in (1.77). However, this leads to a small systematic
error in the calculation that depends on the value of 𝛿. While for smaller
values of 𝛿 this kind of error decreases, simultaneously the peaks in the time
constant spectrum become narrower. This increases the discretization error. To
compensate for this, the sampling rate of 𝜁 must be increased. For all following
calculations, the logarithmic time constant, 𝜁 , is evenly spaced using

𝜁 ∈ [−20, 10] with 𝑁𝜁 = 106 , (2.14)
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Figure 2.5: Relative deviation between expected and observed thermal resistance for
structure 1 at various values of 𝛿 and fixed sampling rate (2.14).

where 𝑁𝜁 is the number of points in the interval. This sampling rate corresponds
to approximately 75 000 points per decade. This increases the computation time
of a theoretical thermal impedance to several minutes on an average desktop PC
for the implementation used in this work.

All three test structures defined above have a total thermal resistance of exactly
𝑅th,Σ = 50. Ideally, the theoretical thermal impedance should exactly match
this value by satisfying the relation 𝑅th,Σ = 𝑍th(𝑡 → ∞). However, due to the
discretization error and the finite angle 𝛿, in practice 𝑍th(𝑡 → ∞) is smaller than
𝑅th,Σ. The difference is denoted as Δ𝑅th,

Δ𝑅th = |𝑅th,Σ − 𝑍th(𝑡 → ∞)| . (2.15)

Figure 2.5 shows the relative deviation, Δ𝑅th/𝑅th,Σ, as a function of 𝛿 at a fixed
sampling rate. At large angles, the rotated integration path causes a significant
deviation in thermal resistance. For lower angles, the error is reduced before at
very low angles the error increases again. At this point, the peaks in the time
constant spectrum become so narrow that the sampling rate is insufficient to
capture them correctly. To further reduce the error, a wider interval and a more
dense sampling have to be used, which requires significantly more computation

Table 2.2: Relative difference between expected and observed thermal resistance
averaged over structure 1 to 3 at various values of 𝛿 and fixed sampling rate (2.14).

Angle 𝛿 5.00◦ 3.50◦ 2.00◦ 1.50◦ 0.50◦ 0.10◦ 0.03◦

Deviation Δ𝑅th/𝑅th,Σ 2.82 % 1.98 % 1.15 % 0.87 % 0.32 % 0.09 % 0.05 %
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time. Table 2.2 shows the values of Δ𝑅th/𝑅th,Σ averaged over the three test
structures for different values of 𝛿. A comparison with Figure 2.5 shows that the
error depends on the shape of the spectrum. To guarantee a sufficiently dense
sampling in all cases, an angle of 𝛿 = 0.03◦ and a sampling of (2.14) is used for
the most accurate calculations.

When assessing the absolute accuracy of a solution computed via a network
identification procedure, the measure of accuracy needs to be defined with great
care. The goal is to find two suitable functionals, one for measuring the accuracy
of the time constant spectrum and one for the structure function. These should
adequately measure the degree of similarity between the theoretical ideal and
a given solution. While there is not one objectively correct way to quantify
this, the following definitions have proven to be reliable and robust in extensive
testing and have provided results that generally agree well with intuition. In the
following, the reasoning that led to these definitions is explained.

First, the measure of accuracy for the time constant spectrum is presented.
One challenge in comparing two different time constant spectra is the narrowness
of the peaks. For example, it is not sufficient to directly integrate the difference
of two sharply peaked time constant spectra, say via an L2-norm. The sharpness
of the peaks makes the overlap between two adjacent peaks is small, and once
two peaks are completely separated, the relative distance would not be taken
into account. Moreover, for theoretically calculated time constant spectra, the
height of the peaks depends on the value of 𝛿, which would make the absolute
accuracy also depend on 𝛿.

To avoid these issues, the integrated time constant spectrum, ℜ(𝜁), is consid-
ered instead.

ℜ(𝜁) =
∫ 𝜁

−∞
𝑅(𝜁 ′) d𝜁 ′ (2.16)

In this form, the delta-function-like peaks of a theoretical time constant spectrum
become a stair function that is asymptotically independent of delta. Moreover, the
use of ℜ(𝜁) correctly accounts for the area under the curve. This is particularly
important for the time constant spectrum, since the area under the curve is
proportional to the total resistance of the structure.

The measure of accuracy for the time constant spectrum 𝑚R thus has the
form of an L2-norm of the difference between the integrated ideal time constant
spectrum, ℜideal(𝜁), and reconstructed time constant spectrum, ℜ(𝜁).

𝑚R =

√︄∫ ∞

−∞

(
ℜideal(𝜁) −ℜ(𝜁))2 d𝜁 . (2.17)

Because the time constant spectra are equal to zero in the limit 𝜁 → ±∞, the
integration limits are set to infinity. An L2-norm is chosen, as opposed to
an absolute norm, to devalue larger differences disproportionately more than
smaller ones. To calculate the difference, one of the time constant spectra is
interpolated to match the other.

In practice, the use of 𝑚R for time constant spectra computed via Fourier
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deconvolution tends to rank oscillations in the spectrum due to noise better than
one might intuitively expect. This is not the case for Bayesian deconvolution and
optimization-based network identification, where a strictly positive spectrum is
guaranteed by the algorithm.

For the structure function, 𝐶Σ (𝑅Σ), a more complex functional is necessary.
This is mainly because of the following three challenges that arise when
quantitatively comparing structure functions.

First, the cumulative thermal capacity, 𝐶Σ, typically spans several orders of
magnitude, see Figure 2.4. Thus, it is often plotted on a logarithmic scale.

Second, the structure function is constructed from the thermal resistances and
capacities provided by the Foster-to-Cauer transformation. Consequently, no
two structure functions will have the same set of 𝑅Σ,𝑖 it is defined on. Critically,
this means that the starting and end points of two structure functions will not
generally be the same. This means that either one structure function has to be
extrapolated or the other has to be truncated.

This is particularly important because, third, structure functions calculated via
Bayesian deconvolution or Fourier deconvolution typically feature a divergence
at the end. While this is a real disadvantage of these methods that should
be properly quantified, no meaningful difference is counted in keeping track
of, whether the structure function ends at, for example, 𝐶Σ,max = 1015 or
𝐶Σ,max = 1050.

Given these challenges, the following measure of accuracy for the structure
function, 𝑚S, is defined,

𝑚S =
∫ 𝑅Σ,max

𝑅Σ,min

�� ln(
𝐶Σ,ideal(𝑅Σ)

) − ln(𝐶Σ (𝑅Σ))
�� d𝑅Σ , (2.18)

where 𝐶Σ,ideal(𝑅Σ) is the ideal and 𝐶Σ (𝑅Σ) the reconstructed structure function.
The logarithm is used to not overly emphasize deviations at high values of 𝐶Σ.
Also, for the structure function an L1-norm is used as opposed to the L2-norm
used above. This is done to not disproportionately devalue a structure function
with divergences. For the same reasons, all structure function are truncated at
𝐶Σ = 106.

The integration limits 𝑅Σ,min and 𝑅Σ,max are defined as,

𝑅Σ,max = arg max(𝐶Σ) , (2.19a)
𝑅Σ,min = arg min(𝐶Σ,ideal) . (2.19b)

This means that on the left side the ideal structure function defines the limit and
the recovered structure function is truncated or, as is almost always the case,
extrapolated accordingly. On the right side the limit is defined by the recovered
structure function. This is necessary, because extrapolating the divergence
of the recovered structure function to match ideal structure function has too
great an impact. Conversely, extrapolating the ideal structure function is not an
issue. Also, truncating the recovered structure function when the ideal structure
function ends puts a bias into 𝑚S to favor later divergences in the recovered
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structure function. To avoid these issues, the limits are defined as in (2.19a) and
(2.19b).

Furthermore, note that this norm for structure functions differs from the
other norm (2.12) used previously. This is, because (2.12) is used as part of
an optimization, where has proved to be advantageous to disproportionately
devalue larger deviations. Hence, a quadratic norm is used there.

However, measuring the accuracy of structure functions via (2.18) does mean
that the absolute accuracy of the total thermal resistance is not reflected in 𝑚S.
This is because the upper integration limit is defined by the location of the
divergence via (2.19a). Consequently, only the shape of the divergence is taken
into account and not its relative location.

For these reasons, an additional, third, measure of accuracy is used to char-
acterize the total resistance belonging to the recovered structure function. The
difference in total resistance, Δ𝑅Σ, is calculated by comparing the theoreti-
cally expected resistance 𝑅Σ,ideal,max = arg max(𝐶Σ,ideal) to 𝑅Σ,max as defined
in (2.19a),

Δ𝑅Σ = |𝑅Σ,ideal,max − 𝑅Σ,max | . (2.20)

To gauge the robustness of the algorithms when confronted with real mea-
surement data, Gaussian noise is added to the theoretically calculated thermal
impedance in an additional step. The standard deviation, 𝜎, of the noise is
defined via the signal-to-noise ratio, 𝑅SN, and the asymptotic value of the
thermal impedance 𝑍th(𝑡 → ∞) via

𝑅SN =
𝑍th(𝑡 → ∞)

𝜎
. (2.21)

To have the results not depend on a single noise pattern, many realizations
of the noisy thermal impedance are generated and solved. For all following
calculations, 2000 randomly generated noisy thermal impedances are evaluated
as recommended in [89]. As a result, the median over 2000 solutions is calculated
and compared via the measures of accuracy (2.17), (2.18), and (2.20).

For the impulse response, the pointwise median can be calculated directly,
as all discrete 𝑧-values the solutions are defined on are identical. To guarantee
identical domains for the structure functions, each solution is interpolated or
extrapolated as far as necessary. These normalized structure functions are then
averaged by calculating the median point by point. Finally, the divergence of the
median structure function is truncated similarly to above.

The time constant spectrum, however, cannot be averaged directly, because the
result would be highly biased towards zero. Because of this, first the integrated
time constant spectrum is computed for each realization. The set of resulting
integrated time constant spectra is then averaged. For the sake of accuracy
comparisons, this is acceptable since only integrated time constant spectra are
compared anyway.

To gain a measure of the width of the distribution of the solutions, confidence
intervals are calculated. For these calculations, the set of solutions is prepared
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identically as for the computations of the medians. Then, a confidence interval is
calculated using the percentile method as described in [89]. This means that for
each 𝑥 value, the lowest 10 % and the highest 10 % of all 𝑦 values are discarded.
The remaining difference from the highest to the lowest value forms the 80 %
confidence interval.

The Gaussian distributed random numbers are generated via the default
random number generator available in numpy 1.19.2. To guarantee repeatability,
for each of the 2000 realizations an individual fixed seed is used. In this way,
repeated calculations with different parameters use the identical noise patterns,
for instance the same calculation with two different signal-to-noise ratios, albeit
with a different standard deviation. In any case, averaging over 2000 repetitions
makes the median almost completely independent of a particular noise pattern.

In the above described case, the independent realizations of the noisy thermal
impedance are directly available. When the theoretical solution is not known,
for example when using real measurement data, bootstrap resampling is a
way to generate additional realizations [89]. An approximation of the exact
thermal impedance is calculated via optimal regression filtering as described
in Subsection 2.1.2. Then, an equivalent realization, a bootstrap sample, is
generated by resampling the residuals around the approximation of the exact
thermal impedance. In this way, confidence intervals around structure functions
based on measurement data can be calculated.

2.3.2 Performance for perfect data
In this subsection, the accuracy of reconstructed time constant spectra and struc-
ture functions is investigated. The latter are obtained from network identification
with Bayesian deconvolution, Fourier deconvolution, or optimization-based
network identification. As artificial measurement data, the exact thermal
impedances belonging to structures 1 to 3, defined in Table 2.1, are used. These
impedances have a sampling rate of approximately 75 000 points per decade
and a relative error in 𝑅th of approximately 0.05 %. The recovered solutions are
compared to the theoretically ideal values using the accuracy measures 𝑚R, 𝑚S,
and Δ𝑅Σ as defined in (2.17), (2.18), and (2.20).

There are several parameters such as the window length increment, Δ𝐿, or
the number of points in the derivative, 𝑁g, which have to be specified to fully
define the algorithm. For some of these variables, accurate tuning is crucial
to guarantee good performance. An obvious example is the cut-off frequency,
Φc, which determines the width of the filter in Fourier deconvolution. Other
parameters, such as 𝑁g, prove to have little effect on the result beyond a certain
point. Nevertheless, for a fair comparison between the methods, it is important
to set these parameters to the same values wherever possible.

However, for some parameters, particularly for the cut-off frequency, Φc, it is
not possible to define a universally good value. In these cases, suitable values
must be chosen individually for each evaluation. In fact, the optimal choice
for Φc also depends on which accuracy measure one focuses. In general, the
minima of 𝑚R, 𝑚S or Δ𝑅Σ are found at different values of Φc, respectively. In
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Figure 2.6: Various trials for the cut-off frequency, Φc, in a network identification using
a Gauss filter (2.9) for a fixed value of 𝜎. Filter 1 is too narrow and Filter 11 is too
wide. Additionally, the ideal theoretical result for structure 2 is shown.

practice, it has been shown that 𝑚S and Δ𝑅Σ usually show similar behavior. For
this reason, only accuracies for 𝑚S and 𝑚R are shown below.

To illustrate the dependence of the result on the filter configuration, Figure 2.6
compares the theoretically ideal structure function for structure 2 with different
solution attempts. Here, several solutions computed with the help of a Gaussian
filter, see (2.9), using increasing values of Φc and fixed 𝜎 are plotted. Filter 1
is too narrow, leading to a significant loss of information in the result, while
filter 11 is chosen too wide, with the consequence that residual noise components
are greatly amplified and the total resistance is overestimated considerably. The
best result is obtained by one of the filters in the middle.

However, the best of the filters shown in Figure 2.6 may not represent the
actual optimum cut-off frequency with respect to𝑚S. It is likely that the optimum
value for Φc lies somewhere between two filters, such that a finer resolution of
the search space would yield an even better result. However, using a filter, which
is merely good, gives a more realistic impression of the accuracy of Fourier
deconvolution that is achievable in practice. This is because when confronted
with real measured data, it is impossible to find the best filter since the optimum
is unknown.

For the Fermi filter, (2.10), and the Gaussian filter, (2.9), it is much more
difficult to find a good filter configuration because these filters depend on two
parameters. This makes the search for the filer a two-dimensional optimization
problem. In practice, there is no observable gain in accuracy to counterbalance
this. Conversely, the Nuttall, Hann, and rectangular filters depend only on Φc.

To determine suitable filter configurations for all calculations in the following,
a linear search analogous to the one shown in Figure 2.6 is performed for all
tested filters, namely the Fermi, Gaussian, Nuttall, Hann, and rectangular filters.
This procedure is repeated for each of the three test structures and both accuracy
measures, 𝑚R and 𝑚S.
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Figure 2.7: Accuracy of the time constant spectrum, 𝑚R, and structure function, 𝑚S, as
a function of number of steps in the Bayesian deconvolution for the three test structures.
The number of points is set to 𝑁g = 250.

For all calculations presented in this subsection, this includes the ones using
the Bayesian deconvolution and Fourier deconvolution as well as optimization-
based network identification, the configuration (2.22) is used. In the following
the process how these parameters have been determined is laid out. In the
presence of noise, different parameters should be chosen.

𝐿− = 0.05 𝐿+ = 3.00
Δ𝐿 = 0.10 𝑁g = 250

𝑁Bay = 5 × 105
(2.22)

The window length, 𝐿, is measured in logarithmic time, 𝑧. This means a window
of size 𝐿 = 3.0 corresponds to an interval of size Δ𝑧 = 3.0 in the logarithmic
time. The starting window length is automatically chosen by the algorithm. For
Bayesian deconvolution, the number of steps is denoted as 𝑁Bay.

Although Bayesian deconvolution also has a tunable parameter, namely the
number of iterations, it is easier to handle than Fourier deconvolution. To
determine what number of steps is appropriate for Bayesian deconvolution, a
series of tests is performed. The results are shown in Figure 2.7. The number
of steps spans several orders of magnitude from 102 to 5 × 105. While the
accuracy increases in all cases, the rate of convergence depends significantly
on the structure function. For structure 3, convergence for 𝑚S is not achieved
even after 5 × 105 steps. Nevertheless, 𝑁Bay = 5 × 105 minimizes 𝑚S and 𝑚R
for all structures. However, using even more steps would give better results at
the price of increased computation time. The computation time and accuracy
for Bayesian deconvolution depends not only on the number of steps, but also
on the number of data points, 𝑁g, since this determines the size of the matrices
involved. For the calculations shown in Figure 2.7, the number of points was
set to 𝑁g = 250. In this case, deconvolution with O(105) steps takes several
seconds.

Besides the process of deconvolution, derivation is also an important factor
affecting the overall accuracy. There are a total of four important parameters
that must be specified when using the optimal regression filtering as described
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Figure 2.8: Accuracy of the time constant spectrum and structure function as a function
of the number of data points in the derivative for the Bayesian deconvolution. The
number of steps is set to 3 × 104.

in Subsection 2.1.2. Explicitly, these are the minimum window length 𝐿−, the
maximum window length 𝐿+, the window length increment Δ𝐿, and the number
of steps 𝑁g. To show the dependence of the solution on the number of points, 𝑁g,
for Bayesian deconvolution, another comparison is made. The results are plotted
in Figure 2.8. The accuracy benefit from an increasing number of points drops
off rapidly for 𝑁g ≳ 200, for both the structure function and the time constant
spectrum. Due to the steeply increasing computation time with increasing 𝑁g,
the number of points is set to 𝑁g = 250. The number of steps belonging to the
calculations in Figure 2.8 is set to 3 × 104.

For optimization-based network identification, more parameters have to
be set. To provide initial values, a network identification using Bayesian
deconvolution is also performed in the context of the optimization-based network
identification. For this, the identical configuration as above is used. As far as
the actual optimization is concerned, the tunable parameters include termination
and convergence criteria for the iteration such as the maximum number of
iterations, the acceptable relative error in (𝑅Σ,1, . . . , 𝑅Σ,𝑁S , 𝐶Σ,1, . . . , 𝐶Σ,𝑁S),
and the acceptable relative error in the objective function, 𝑜imp, see (2.13). For
the COBYLA solver, a tolerance for constraint violations must be set. A robust
configuration was found for these parameters, which will be used in the following.
Finally, the accuracy also depends on the number of piecewise uniform sections
set for the approximation. For this parameter, the optimum value was found
for each test structure. Due to the number of inverse calculations required to
perform an optimization-based network identification each thermal impedance
has to be calculated with reduced accuracy. In these inverse calculations, an
angle of 𝛿 = 0.5◦ with 104 points for 𝜁 ∈ [−20, 10] is used, which corresponds
to approximately 750 points per decade.

Table 2.3 summarizes the performance metrics for all tested structures and
methods. For the calculations, all parameters and tuneable values are kept
identical regardless of method and test case. An exception to this is the cut-off
frequency, Φc, which must be set separately for all cases. For this purpose, a
number of filter configurations are tested and the best one is selected in the
sense explained in Figure 2.6, which means that a different filter is used for each
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structure and both accuracy measures, 𝑚S and 𝑚R. The respective performances
are compiled in Table 2.3.

For the results presented in Table 2.3, the method with the best performance
for each accuracy measure and structure is highlighted in bold and the second
best result is underlined. In terms of 𝑚S and 𝑚R, optimization-based network
identification with a Powell solver performs best for all test structures, while
the second-best result is consistently obtained by optimization-based network
identification with a COBYLA solver. The best resistance accuracy, Δ𝑅Σ, is
achieved in all cases by network identification with a Bayesian deconvolution.

A comparison of filter choices used in Fourier deconvolution shows mixed
results. Although there is no clear winner that performs best on every metric,
the Hann filter stands out because it performs best or second best on 𝑚S and
𝑚R for all structures. In addition, the Hann filter has only a single adjustable
parameter. As expected, a rectangular filter is not recommended.

There is a clear trend in the computational difficulty among the three structures
tested. For almost all methods, the calculation of structure 1 gives the most
accurate results, although the shape of its thermal structure function, time
constant spectrum, and impulse response seems to be more complex than that of
structure 3, which gives the least accurate results even though it includes only
three sections, compare Figure 2.4 and Table 2.1.

For Bayesian deconvolution, convergence is achieved at much higher steps than
discussed in the literature, which suggests the use of about 1000 steps, compare
Subsection 1.6.2. However, according to the results depicted in Figure 2.7 it
seems appropriate to use up to 105 iteration steps or even more.

Table 2.3: Best accuracy for all methods in the absence of noise in units of K/W. The
best performing method in each column is highlighted in bold, the second best result is
underlined. The methods “Fermi”,“Gauss”,“Nuttall”,“Hann”, and “Rectangular”
denote the window functions, 𝐹Window as defined in (2.5). The methods “Powell” and

“COBYLA” refer to two choices for the solver in optimization-based network identification.
The measures of accuracy are defined in (2.17), (2.18), and (2.20).

Structure 1 Structure 2 Structure 3

Method 𝑚R 𝑚S Δ𝑅Σ 𝑚R 𝑚S Δ𝑅Σ 𝑚R 𝑚S Δ𝑅Σ

Fermi 4.7 7.7 0.06 5.8 9.6 0.91 8.1 16.3 2.91
Gauss 5.1 8.9 0.08 7.6 9.4 0.27 9.3 13.8 0.09
Nuttall 4.7 8.2 0.12 6.8 8.5 0.38 10.0 11.5 0.15
Hann 4.4 7.4 0.28 6.3 7.5 0.44 8.9 10.8 0.91
Rectangular 4.0 38.7 6.94 5.4 41.4 6.31 7.6 129 31.08
Bayesian 3.4 3.7 0.04 3.8 4.4 0.02 5.7 3.1 0.01
Powell 1.2 1.2 0.13 2.0 1.3 0.14 2.4 1.8 0.15
COBYLA 1.5 2.0 0.13 2.4 2.6 0.14 2.5 1.9 0.14
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Figure 2.9: Median solution and 80 % confidence intervals for structure 1 recovered by
Bayesian deconvolution. Thermal structure function (top left), time constant spectrum
(top right), impulse response (bottom left), and thermal impedance (bottom right) for a
signal-to-noise ratio of 𝑅SN = 50 calculated from 2000 noise realizations.

2.3.3 Performance in presence of noise
In this subsection, the performance of selected methods in the presence of
different levels of noise is analyzed. To that end, Gaussian noise is added to
the exact thermal impedance. From the noisy thermal impedance, the structure
function and integrated time constant spectrum are calculated. As the result,
the pointwise median corresponding to 2000 independent noise distributions is
calculated. For details concerning the averaging process, the reader is referred
to the end of Subsection 2.3.1.

In addition to introducing noise into the thermal impedance, the sampling
rate is reduced to approximately 90 points per decade. This is achieved by
interpolating the exact thermal impedance. The standard deviation of the added
noise is calculated from the signal-to-noise ratio, 𝑅SN, via (2.21). The tested
signal-to-noise ratios are 50, 100, 200, 500, 1000, 2000, and 5000. As an
example, for a transient measurement with a total temperature rise of 100 K
observed with an accuracy of 20 mK, the signal-to-noise ratio amounts to
𝑅SN = 5000.

As test case, a thermal impedance corresponding to structure 1 with a signal-
to-noise ratio of 𝑅SN = 50 is solved via a conventional network identification
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Figure 2.10: Accuracy of the median integrated time constant spectrum and median
structure function calculated via Bayesian deconvolution for the three test structures as
a function of the signal-to-noise ratio from 2000 noise realizations.

using Bayesian deconvolution. Figure 2.9 shows the median thermal structure
function, the median integrated time constant spectrum, the median impulse
response, and the median thermal impedance, as produced by the averaging
process, as well as their respective 80 % confidence intervals. For the impulse
response, the noise leads to an overestimation between 𝑡 = 10−8 and 𝑡 = 10−6 in
a part of the calculations. Accordingly, the integrated time constant spectrum
is overestimated on average and the structure function is underestimated. This
is a typical defect in an evaluation using Bayesian deconvolution of noisy data.
It arises because the impulse response and time constant spectrum have to be
strictly non-negative. Negative values have to be corrected by setting them to
zero. As a result, the derivative is biased to be overestimated.

For optimal performance, an important adjustment in the presence of noise is
the tuning of the derivative parameters. Even though individually adjusting the
parameters for every noise level would yield gains in accuracy, here, a single set
of derivative parameters is used for all calculations. This is done to make the
results independent of these choices and reduce the number of free parameters.
In all following calculations, the setup (2.23) is used.

𝐿− = 0.60 𝐿+ = 15.0
Δ𝐿 = 0.20 𝑁g = 250

𝑁Bay = 3 × 104
(2.23)

For Fourier deconvolution it is not possible to use the same filter width for all
signal-to-noise ratios. For every pair of window function and signal-to-noise
ratio, the cut-off frequency, Φc, is manually adjusted to achieve acceptable
results.

A comparison of the computational difficulties to recover structures 1 to 3
in the presence of varying levels of noise for Bayesian deconvolution is shown
in Figure 2.10. Continuing the trend of Table 2.3, computations of structure 1
show the most accurate results while structure 3 appears most difficult to recover.
Furthermore, it stands out that for all test structures the recovered structure
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Figure 2.11: Accuracy of the median integrated time constant spectrum and median
structure function for Fourier deconvolution, using a Fermi filter, Gaussian filter, Nuttall
filer, Hann filter, and Rectangular filter as a function of the signal-to-noise ratio
calculated from 2000 noise realizations for structure 1.

function benefits more from decreasing levels of noise than the time constant
spectrum. This means that there is a remaining degree of freedom in the shape
of the time constant spectrum besides the accuracy measure, 𝑚R, which has a
significant influence on the accuracy of the structure function, 𝑚S.

Next, the relative performance of the algorithms is analyzed. First, the filter
choices for the Fourier method are compared to each other, see Figure 2.11. In
contrast to the derivative parameters (2.23), which are used for all noise levels,
the filter parameters have to be manually adjusted for each filter and noise level.
The rectangular filter performs the worst by a large amount. The remaining
choices are relatively similar in performance. However, in most cases the Hann
and Fermi filter have a slight edge in performance when compared with the
Nuttall and Gaussian window. Note that the Gaussian and Fermi windows
require tuning of two filter parameters. Because of this, significantly more
tuning effort is required when using these filters. Given the results for structure 1,
the Hann filters is a good choice in practice.

For the comparison of Fourier deconvolution with the other methods, the
Hann filter is chosen and the Powell solver is used for optimization-based
network identification. The results are compiled in Figure 2.12. For each
data point, an average over 2000 independent realizations of Gaussian noise is
calculated employing the method in question. Confirming the results from the
computations without noise, Fourier deconvolution yields the most inaccurate
results for all levels of noise, while optimization-based network identification
achieves the best results. In particular in the presence of higher noise levels,
the optimization-based network identification is able to calculate the structure
function to significantly better accuracy. This is possible, because this approach
avoids the difficulties connected with derivation and deconvolution in the
presence of noise, apart from generating the initial values.
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Figure 2.12: Accuracy of the median integrated time constant spectrum and median
structure function for Fourier deconvolution, using a Hann filter, Bayesian deconvolution
and optimization-based network identification using the Powell solver as a function of
the signal-to-noise ratio calculated from 2000 noise realizations.

2.3.4 Linear-time sampling
In a last step, the quality of the data is reduced further. The exact thermal
impedance is resampled using a fixed sampling rate in linear time, 𝑡, of 107 Hz.
In addition, the starting point is added. To limit the number of data points, the
sampling rate is slowed down once a certain density of points in logarithmic
time, 𝑧, is reached. The resulting thermal impedance consists of 784 data points.
As an example, a noise pattern is shown in the bottom right of Figure 2.13.

Additionally, an optimization-based network identification with six sections
using a thermal impedance with a signal-to-noise ratio of 𝑅SN = 50 is shown
exemplarily. Both structure functions from the conventional algorithm and the
optimized result are shown. Additionally, the integrated time constant spectrum
of both methods is provided. The impulse response and the thermal impedance,
which are shown for the Bayesian solution, are generated by reconvolving the
time constant spectrum according to (1.73). This is done to show the impulse
response and the thermal impedance which are actually represented by the time
constant spectrum. As a comparison, the exact results belonging to structure 1
are shown.

In Table 2.4, the respective accuracy values achieved by the Bayesian solution
and the optimized solution are shown as well as the median accuracy values,
which are taken from Figure 2.14. The noise pattern presented in the bottom
right part of Figure 2.13 leads to a solution with a significantly below average
quality.

Table 2.4: Accuracy values for the solutions in Figure 2.13. Additionally, comparisons
to the respective median values for 𝑅SN = 50 from Figure 2.14 are provided.

in K/W Bayesian Powell Bayesian Median Powell Median
𝑚R 9.80 4.68 6.32 4.29
𝑚S 27.09 7.25 18.66 5.14
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Figure 2.13: Example solution for a network identification using Bayesian deconvolution
and Powell optimization for noisy sparse data with 𝑅SN = 50. The Bayesian solution is
used to generate initial values for the optimization.

Still, the optimization algorithm is able to increase the accuracy of the time
constant spectrum and the structure function significantly. In addition, the
thermal impedance of the optimization-based network identification matches
better with the exact thermal impedance of structure 1 than the original Bayesian
solution. In the optimized structure function, all sections of structure 1 are
recovered.

For a systematic analysis of the performance, 2000 instances of the resampled
noisy thermal impedances are generated and their respective solutions are
averaged by calculating the median. Each of the 2000 Bayesian solutions is
used to generate the initial values for the corresponding optimization. The
computations in this section are conducted as similarly as possible relative to
the evaluation in the previous subsection. This includes the use of the derivative
parameters (2.23). For Fourier deconvolution, a Hann filter is used with a
manually fine-tuned filter width for each noise level.

The results are shown in Figure 2.14. As expected, the Fourier deconvolution
still performs the worst on all metrics. For the time constant spectrum, however,
optimization-based network identification and the Bayesian deconvolution show
results of similar accuracy. This is possible, because the goal of the optimization
is the improvement of 𝑜imp, see (2.13), and not of 𝑚R and 𝑚S. Nevertheless,
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Figure 2.14: Accuracy of the median integrated time constant spectrum and median
structure function for Fourier deconvolution, using a Hann filter, Bayesian deconvolution
and optimization-based network identification using the Powell solver as a function of
the signal-to-noise ratio calculated from 2000 noise realizations.

the structure function is significantly improved by optimization-based network
identification for all noise levels.

It has to be kept in mind, however, that while the optimization procedure is able
to increase the accuracy of network identification by deconvolution significantly,
it is still based on the initial values. The optimization might converge to a local
minimum that does not represent a global optimum. Avoiding this is important
for achieving an even better accuracy. In particular for relatively inaccurate
initial values, finding the correct local minimum during optimization is not
guaranteed.

For the optimization-based solution in Figure 2.14, the accuracy measures do
not decrease monotonically with increasing signal-to-noise ratio. This means
that for an increasing portion of noise patterns the solver converged to a local
minimum with a suboptimum result. By fine-tuning the parameters involved
for both the conventional algorithm, which provides the initial values, and
optimization-based network identification the quality of convergence increases.
An example of this is using different derivative parameters in selected cases
besides the ones defined in (2.23) and the use of a different number of sections
other than six.

2.4 Conclusion
This chapter provides an extensive overview of different practices used for the
determination of thermal structure functions from thermal transient measure-
ments. Together with the theoretical background in the previous chapter, a
self-contained treatment on network identification could be created. Starting
from an elementary introduction to the physics of heat conduction, this work
makes it possible to develop a complete understanding of thermal structure func-
tions and network identification. Detailed descriptions of the implementations
for network identification by deconvolution used in the literature and in this
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work are given. Commonly used algorithms as well as modified and improved
versions of existing algorithms and newly developed approaches are investigated
and compared. Finally, a comprehensive overview on the state of the art in
network identification by deconvolution and current research areas is presented.
An overview of similar scope has not yet been created.

To enable a systematic performance analysis of network identification by
deconvolution, specific metrics are developed for the time constant spectrum and
thermal structure function for the first time. Using these metrics in combination
with a predefined set of test structures, it is possible to objectively compare the
performance of algorithms. This presents a clear advantage over the approach
by Szalai [12], which uses the concept of a practical maximum tolerance. The
approach by Szalai is widely known in the scientific community dealing with
thermal structure functions. Using these metrics, the performance of all methods
described in this chapter is compared against each other. The analysis is based
on various test cases of increasing difficulty, which are generated via resampling
and the addition of artificial noise. Existing algorithms could be optimized using
this method. In this work, it could be shown that it is possible to significantly
enhance the accuracy of network identification by deconvolution.

In particular, the performance of network identification by deconvolution
could be improved by showing that performing significantly more steps in the
Bayesian deconvolution results in notable accuracy gains for some structure
functions. The number of points forming the derivative is less significant
beyond a certain level. An adaptive step size algorithm is able to efficiently
differentiate thermal impedances of varying signal-to-noise ratios and sampling
rates enabling a very high total thermal resistance accuracy of structure functions
in combination with Bayesian deconvolution. A systematic test on a number of
window functions for Fourier deconvolution shows that the Hann filter is the
most suitable filter in practical applications.

A newly developed method, named optimization-based network identification,
is presented. It achieves a greatly enhanced accuracy for the price of a higher
computational workload. The method impresses in cases of high noise levels and
sparsely sampled data while providing divergence free structure functions as well
as the corresponding theoretically accurate time constant spectra. As the resulting
structure functions do not have a smeared-out divergence at the end, interpreting
these structure functions is easier. Because the method is based on inverse
calculations, it is not necessary to extrapolate thermal responses for short times,
for example via the commonly performed square-root extrapolation. Instead,
the physical model underlying the method naturally extends the prediction for
all times.

All test cases in this chapter consist of theoretically generated piecewise
uniform structure functions. This could give an advantage to optimization-
based network identification, as it is also based on piecewise uniform structure
functions. The case of real measurement data is explored in the next chapter.
There, thermal transient measurements based on the forward voltage of a p-n
junction are evaluated. Additionally, the use of infrared thermography for
network identification via thermal transient measurements is explored.
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Chapter 3

Thermographic application

Some results in this chapter have been published in [79], [90], [91], [92], [93]
and [94].

3.1 Non-destructive testing

3.1.1 Introduction
With the need to replace fossil fuels, electrification is taking place in many areas.
For applications in electrical supply networks, electric motors, or in automotive
applications, this increases the demand for power semiconductors such as IGBTs
(insulated-gate bipolar transistors), thyristor or power MOSFETs (metal-oxide-
semiconductor field-effect transistors). This is pushing manufacturers to strive
for ever higher efficiencies and smaller devices, with the result that the power
output and quality requirements for these devices are increasing. High power
densities are also found in IC packages (integrated circuit packages) and LED
lighting applications, where high temperatures severely impact lifetime and
reliability. At the same time, the ongoing system integration increases the
complexity of devices, which in turn raises the demands on test methods.

Non-destructive testing has established itself as a valuable tool for the analysis
of thermal behavior in these applications. The applied techniques are also
suitable to analyze the electrical functionality or to identify mechanical defects.
Non-destructive testing has also become a valuable tool in failure mode analysis.
The results assist in research and development, inline quality control, during
production or maintenance work. They allow an informed decision to be made
whether a component should be processed further, an element needs to be
replaced, or a design objective has been achieved.

An overview of non-destructive testing techniques commonly used in IC
package analysis can be found in [95]. Common defects in these devices are
voids or cracks in solder joints and layer delamination.

The aerospace industry is a typical field of application for infrared thermogra-
phy. An extensive overview of recent advances in this area is provided by [96].
Inspection via infrared thermography offers a non-destructive and non-contact
measurement method that helps to meet the high safety requirements in civil
aviation. Often, the objects under examination are composite materials that may
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be subject to impact damage, thermo-mechanical fatigue, layer delamination,
and many other modes of failure.

Besides thermographic investigation, radiographic methods such as X-ray
inspection or X-ray computed tomography are applied. Using X-ray microscopy,
lateral resolutions in the order of a few microns can be achieved [95]. The
main challenges lie in the long scanning and computation times as well as a
dependence on material composition.

Other non-destructive testing techniques employed include scanning acoustic
microscopy [97], magnetic current imaging [98, 99, 100], surface acoustic
waves [101], visual inspection [102], and more. Outlining all of these techniques
is beyond the scope of this work, as the focus here lies on infrared thermography.

3.1.2 Thermographic testing

Infrared thermography is a well-established technique for non-destructive test-
ing [103, 104]. Modern high-resolution infrared cameras provide detailed
insights into thermal dynamics down to a geometrical resolution of almost
one micrometer. Combined with high sampling rates of up to several hundred
hertz, the amount of data collected during these measurements quickly adds
up to several gigabytes. Modern techniques make it possible to compress
the data while losing as little essential information as possible. Sophisticated
post-processing algorithms are employed to enhance the sensitivity and to detect
even the slightest deviations in thermal behavior.

A typical goal of these evaluations is the characterization of defective samples,
for example, by determining defect dimensions and defect depths and by
quantifying their influence on heat conduction. In other cases, the physical
parameters of heat conduction or properties derived from them are determined.
An example is the characterization of layer thicknesses of coatings.

Infrared thermography can be used as a purely passive observation tool. In
this way, it allows to record equilibrium temperatures during different modes of
operation, revealing unforeseen thermal interactions between components. It is
also possible to visualize hotspots caused by narrow electrical connections or
defective components.

More detailed information is obtained with active infrared thermography. For
these methods, the sample is additionally excited by external heating sources.
The resulting thermal dynamics allow conclusions about the internal structure
or the thermal properties of the device. A typical setup for lock-in thermography
is shown in Figure 3.1.

For lock-in thermography, a periodical excitation is applied which induces
thermal waves into the sample [105, 106]. During their (highly dampened)
propagation through the device they interact with material boundaries and
inhomogenities inside the device. An example of such a defect in an IC package
would be a delamination or a void inside a solder connection. This method is
very sensitive by merit of the lock-in principle, but requires long measurement
times.
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Figure 3.1: A typical setup for lock-in thermography consists of a synchronized infrared
camera and an excitation source. The resulting image sequence is evaluated via digital
data processing.

In pulsed thermography, a high heating power is applied for a short time [107].
The resulting impulse response depends on the local environment of the heated
area. Defective sections of a device will show a different response compared to
a defect-free sample. Reference samples or areas are often used in this type of
investigation.

In transient or step heating thermography, the transition from an on-state
temperature distribution to an off-state distribution is observed, or vice versa.
This method is similar to pulsed thermography, except that here the step response
is measured instead of the impulse response, see Section 1.2. As a result, fewer
issues with the high momentary powers during instantaneous energy deposition
arise. In turn, step thermography features a longer measurement time.

As a means to apply heat into or onto a device under test, a wide range of
sources have been applied [96, 107]. The suitability of a heating method depends
on the nature of the sample and the type of thermography. Besides self-heating
of a device, for example via periodically applied electric power during a lock-in
measurement, heat is often applied electromagnetically. This includes optical
heating via flashlamps, halogen lamps, or lasers as well as other types of radiation
such as microwaves. Furthermore, in conductive samples heating can be applied
via induced eddy currents. In the field of vibrothermography, friction processes
during vibrations induced for example via ultrasonic waves are detected via
infrared thermography. Even convective heating, for example via hot air, is
possible in sufficiently slowly reacting processes.

3.1.3 Processing thermographic signals
For a comprehensive study of thermographic evaluation algorithms see [14,
107, 108, 109]. A brief overview treating the most common techniques is given
below. Many infrared thermographic methods rely on a contrast parameter such
as a temperature difference, Δ𝑇 , of a single pixel to a later time or to a reference.
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Alternatively, the relative deviation, 𝑇test/𝑇reference, can be analyzed as well as
other contrast parameters. The differential absolute contrast evaluation falls in
this category.

Another approach is the comparison of temperature curves with analytical
models or computer simulations of the tested device. The simplest case is a
one-dimensional semi-infinite homogeneous body, but more complex models
of higher dimension have also been applied, for example to assist automatic
defect classification [110]. Furthermore, various techniques from the field of
image post-processing can be applied such as smoothing filters. In principle,
this includes the entire area of video processing and refinement methods.

Integral transform techniques are also popular such as the use of Fourier
transformation for pulse phase thermography. In this method, a fast Fourier
transformation is used to extract amplitude and phase information of the temper-
ature curve for each pixel. In this sense, it is similar to lock-in thermography.
Both techniques have the advantage that the phase information is independent of
signal strength, which greatly limits the impact of inhomogeneous emissivities
and excitation. Besides the Fourier transform, the use of Laplace transform,
Wavelet transform, and Hough transform is documented. The transformations
differ with respect to the basis functions employed. Depending on the nature of
the spatial and temporal temperature dependence, these transformations show
varying success. The Hough transform, for instance, specializes in recognizing
geometrical shapes such as lines or circles.

The approach of matrix processing algorithms, such as the principal com-
ponent thermography, is also common. In this method, a singular value
decomposition is performed to extract a set of orthogonal functions based the
dataset itself, the empirical orthogonal functions. The most significant of these
functions capture the main dynamics of the process, often including the defective
regions. Typically, the noise is projected onto higher order functions making
the other images sharper.

Lastly, the thermographic signal reconstruction by Shephard et al., which
belongs to the class of model fitting techniques, is explained here in more
detail [13, 16]. A practical example from a medical application and a comparison
to other methods using a flat bottom hole sample are given in [15]. To perform a
thermographic signal reconstruction, first, the surface is instantaneously heated
by an idealized Dirac heating impulse of energy density𝑄 [14]. In a semi-infinite
homogeneous body, this induces surface temperature change, 𝑇 (𝑡), relative to
the initial temperature, 𝑇0, of

𝑇 (𝑡) = 𝑇0 + 𝑄

𝑒
√
π𝑡

, (3.1)

where 𝑒 is the thermal effusivity. Rewriting this equation to a logarithmic form
yields

ln(Δ𝑇) = ln
(
𝑄

𝑒

)
− 1

2
ln(π𝑡) . (3.2)
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Figure 3.2: Experimental setup for a thermographic network identification via self-
heating or external excitation of an integrated circuit as device under test.

In this way, it can be seen that when fitting a polynomial in logarithmic time,
𝑧 = ln(𝑡), to the logarithm of the temperature difference, a polynomial of first
degree is appropriate. In practice, the thermal behavior might be more complex,
for example due to defects in the material. Hence, a polynomial of higher degree
is approximated. The use of polynomials from order 4 to 11 is reported [14, 15,
16].

ln(Δ𝑇 (𝑧)) ≈ 𝑎0 +
𝑁∑︁
𝑖=1

𝑎𝑖𝑧
𝑖 = 𝑇TSR(𝑧) (3.3)

For the evaluation, images of the first and second derivative of 𝑇TSR(𝑧) are
examined.

3.2 Thermographic network identification
This section discusses a thermographic non-destructive testing technique de-
veloped and patented as part of this work called “thermographic network
identification” [17]. The method was developed by the author in collaboration
with Peter W. Nolte and Stefan Schweizer and is introduced and discussed in the
following.

For thermographic network identification, a pulsed or transient thermal excita-
tion is applied to a device under test. An infrared thermographic measurement of
the resulting impulse or step response is used as input to a network identification.
A typical measurement setup is shown in Figure 3.2. It consists of an infrared
camera in a top-down view of the device under test, which is subject to either
self-heating or external excitation, for example via a powerful spotlight. Data ac-
quisition and heating power are controlled through a centralized synchronization.
As a device under test, an integrated circuit is shown.
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Figure 3.3: Result of a thermographic network identification. The image shows the
spatially resolved time constant spectrum of a lamp similar to Figure 3.4c at 629 ms.
The measurement is not emissivity corrected and a homogeneous unit power step is
assumed.

To perform a thermographic network identification, the algorithms discussed
in the first part of this work are suitable. In this application, special emphasis is
put on the computational efficiency of the algorithm, as an independent network
identification is performed for each pixel in the infrared image sequence. In
this way, a unique time constant spectrum is obtained for each pixel. When
compiled together, they form the spatially resolved time constant spectrum.
To process a full-frame infrared image sequence, on the order of 105 network
identifications have to be performed. This results in a particular need for a
fast implementation of the algorithm or high parallelization. It is possible to
visualize both the time constant spectrum and the thermal structure functions
in this way. As an example, in Figure 3.3 a spatially resolved time constant
spectrum belonging to an E27 socket LED retrofit lamp (see Figure 3.4c) is
shown. The image compiles the amplitudes, i. e. the resistances in the equivalent
Foster networks, of all time constant spectra at 𝜏 = 629 ms. In Subsection 3.4.1,
spatially-resolved time constant spectra are explained and analyzed in detail.
When imaging spatially resolved structure functions, the model-based limitations
of network identification by deconvolution have to be kept in mind. Measured
two-dimensional thermal impedances are always valid and two-dimensional
time constant spectra derived from it yield accurate predictions as long as the
same excitation pattern and environment conditions are maintained.

In the following, the merits of thermographic network identification are
discussed as compared to other infrared thermographic non-destructive testing
techniques and in relation to forward voltage-based network identification by
deconvolution. Thermographic network identification is usable in several ways.
On the one hand, it is able to serve as a visualization tool for defect detection in
non-destructive testing. Additionally, is able to provide temperature predictions,



3.3 Verification 87

given a power function. Lastly, when the emissivity and power step are accounted
for and the heat path is suitably one-dimensional, accurate thermal resistances
and capacitance are recovered with the structure function.

True volumetric evaluation of thermal properties is done via thermal impedance
tomography [111]. This method strives to solve the full three-dimensional prob-
lem of recovering internal parameters from surface distributions. The procedure
is mathematically similar to electrical resistivity tomography, from the field of
geophysics, or electrical impedance tomography, a medical diagnostic technique.
However, fully recovering internal parameters from surface data only is a severely
ill-posed problem.

When calculating structure functions via thermographic network identification,
the applied power has to be controlled precisely. Only in this way, are valid
thermal resistances and capacitances obtained. For optical excitation, the
radiation has to either be sufficiently homogeneous or its spatial distribution
needs to be known. Halogen lamps, which are commonly used, show a significant
afterglow due to their thermal inertia, which affects the power step directly and
via infrared reflections.

When used as a thermal non-destructive testing technique, the requirements
of thermographic network identification towards heating power are more relaxed,
as the goal consists in noticing defects and an imaging thereof. In some infrared
thermographic testing techniques, the analysis relies on phase information,
which is independent of signal strength. This makes them less sensitive to
inhomogeneous emissivities and similar defects. Similarly, for the time constant
spectrum a constant scaling factor in the temperature does not affect the location
of the peaks.

Thermographic network identification provides a means to monitor elec-
tric devices at an early stage and investigate arbitrary components, not only
those that have a suitable electric connection. In addition, no device-specific
calibration is required. The method is contactless and derives time constant
spectra distributed over the entire test specimen. For each component, spatially
resolved information is obtained. Thermographic network identification yields
quantitative dynamic thermal parameters in a well-defined physical model. This
enables the quantification of the actual thermal impact of a defect.

3.3 Verification

In following sections, an analysis of the algorithms for network identification
by deconvolution on real measurement data is performed. The algorithms
discussed in Section 2.1 include different deconvolution methods as well as the
newly developed optimization-based network identification. The test on real
measurement data is different from the generated test cases in several aspects.
On the one hand the tested devices do not have ideal piecewise uniform solutions.
In addition, sampling rate and signal-to-noise ratio are different. In particular
for infrared measurements, the lower sampling rate might lead to discontinuities
in the derivative, depending on the thermal inertia of the sample.
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3.3.1 Experimental realization
Experimental setup

For the infrared thermographic measurements, the camera used is an InfraTec
ImageIR 8380S. It is a cooled camera that employs an indium antimonide focal
plane array snapshot detector, which is sensitive between 2.0 µm and 5.7 µm.
The camera is able to record infrared images with a geometric resolution of
640 × 512 px. In full frame mode, it records image sequences up to a frequency
of 200 Hz. At the price of a reduced geometric resolution in half frame mode, it
is possible to increase the frame rate to 500 Hz. This offers the possibility to
better capture fast thermal dynamics on small components where a large field of
view is not required.

Frame synchronization is achieved with the help of a National Instru-
ments USB-6003. For power control, a solid state relay or a source measurement
unit Keithley SMU 2461 is employed, depending on the sample and excitation
type. The entire setup is enclosed to limit convection and reflections from
external infrared sources.

What follows, is a brief discussion of experimental side effects that need
to be considered during thermographic network identification. Despite the
synchronization, it is sometimes difficult to determine the exact time of the
power step. Not only does the power step have a finite steepness in reality, but
the electrical properties of the device also delay its reaction by an unknown
amount. For example, the device under test might feature additional capacitors
or the switching speed of the relay might be significant. Because of this, in
some cases the zero point, 𝑡0, has to be adjusted by hand. For high geometric
resolution, special care is taken to limit vibrations in the infrared camera relative
to the sample. Thermographic network identification is especially sensitive to
this effect, as noise components for low 𝑧 have a high impact on the overall
accuracy.

The samples

As practical applications, thermal transient measurements on the four samples
shown in Figure 3.4 are performed. In the following, the samples are introduced
and the analysis performed on them is outlined. All four devices are self-heated
electrically, no external excitation is used.

First, the stand-alone high-power LED as shown in Figure 3.4a is investigated.
The yellow phosphor of the LED has a relatively good emissivity which is
assumed to be one here. For a precisely determined power step, light emission
needs to be accounted for. As the goal here is not to measure accurate thermal
resistances, it is neglected and the exact power during the transient measurement
step remains unknown. As a result, the measured thermal impedances are
only proportional to the true ones. On the LED, both infrared and forward
voltage measurements are conducted, as it is the only sample that allows forward
voltage measurements. At the end of this Section, a comparison between the
two measurement principles is conducted. Forward voltage measurements
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(a) stand-alone high-power LED (b) black-coated heating pad

(c) E27 socket LED lamp (d) 4 × 4 LED module

Figure 3.4: Compilation of all four sample types analyzed in the following. The E27
socket LED lamp is representative for a range of similar lamps which are all analyzed
below. All LED lamps have the light-diffusing plastic cap removed to allow a direct
view of the LEDs.

on this sample are evaluated in Sections 3.3.2 and 3.3.3. In addition, it is
used to compare the optimization-based network identification and network
identification via Bayesian deconvolution.

Next, the heating pad as depicted in Figure 3.4b is examined. It consists
of a spiraled ohmic resistance to provide a homogeneous surface heating
(compare Figure 3.15). To make the surface suitable for infrared imaging, it
is coated with black paint, which as an emissivity of approximately 𝜀 = 0.95.
In Section 3.3.4, the quality of the thermal equivalence network to predict
temperature developments given a power curve is checked. In this way, it is
possible to validate the thermal models.

An electronically more sophisticated device is analyzed in the form of an E27
socket LED retrofit lamp. The lamp shown exemplarily in Figure 3.4c stands
representative for a range of eight comparable LED lamps, which are analyzed
in Section 3.4. A statistical evaluation using the time constant spectra of the
LED chips reveals differences between and within each lamp.

Lastly, Figure 3.4d depicts a 4 × 4 LED module. In this device, the circuit
layout prevents measuring individual forward voltages of the LEDs. However,
infrared based measurements are unhindered by this. Advanced analysis using
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Figure 3.5: Comparison of temperature measurements conducted via infrared
thermography and forward voltage on the stand-alone high-power LED (Figure 3.4a).

thermographic network identification is conducted in Section 3.4.2. The goal is
to identify bottlenecks in the heat conduction path.

For all measurements on LEDs in the following, the light emission is not
included in the power step. Therefore the power step is assumed to be one.
As a consequence, the impulse response, the time constant spectrum, and the
structure function have to be multiplied by a constant factor. Time values and
time constants, however, are not affected by this. In the time constant spectrum,
a different value for the power step appears as a constant scaling factor of the
𝑦-axis. The relative height of the peaks as well as their location is not affected.

Infrared versus voltage measurements

To compare forward voltage-based and infrared measurements, a transient
thermal measurement is performed on the stand-alone high-power LED, see
Figure 3.5. The electrical measurement is extrapolated for low times to mask the
electric transient. For the extrapolation, a conventional square-root extrapolation
is performed. A temperature controlled heat sink is used to set the equilibrium
temperature to 30 ◦C, which is reached by both measurement methods in the
limit.

For short times, the equilibrium temperature of the voltage-based measurement
is lower than the infrared thermographic observation. This highlights the
difference in measurement location between the two principles. A possible
explanation for the higher temperature in the phosphor is the additional heat
generation caused by the stokes shift in the light conversion process. The high
thermal resistance of the phosphor prevents an efficient cooling and causes a
gap between junction and phosphor temperature. High phosphor temperatures



3.3 Verification 91

are a common problem in LED design. Another aspect to keep in mind is that
the junction temperature represents a spatial average of the temperature over
the region of the p-n junction. Therefore, locally junction temperatures higher
than reflected by the forward voltage measurement may exist. This comparison
shows that when analyzing thermal transients, the difference in measurement
location has to be kept in mind.

3.3.2 Algorithmic comparison on real data

The purpose of this section is to compare the performance of different variants of
network identification when faced with real measurement data. In the previous
chapter, a similar analysis using artificial measurement data is performed. In
that case, measures of accuracy, 𝑚R and 𝑚S, are available, which directly
compare the results to the reference structure. There, the analysis concluded that
optimization-based network identification performed best, followed by Bayesian
and then Fourier deconvolution.

Here the objective function, 𝑜imp, introduced in (2.13), has to serve as a
performance metric instead. It quantifies the difference between the measured
thermal impedance, 𝑎measured(𝑧), and the result of the evaluation, 𝑎calculated(𝑧).
For optimization-based network identification, 𝑎calculated(𝑧) corresponds to the
optimized thermal impedance. In network identification via Bayesian and
Fourier deconvolution, the reconvolved and integrated time constant spectra are
used. For details of the implementation used, see Section 2.1.

As a test case, a voltage-based thermal transient measurement on the stand-
alone high-power LED introduced in Figure 3.4a is evaluated. Using a K-factor
calibration, the forward voltage is translated into a temperature. The electric
transient is masked by extrapolation. The related thermal impedance is shown
in Figure 3.6, bottom right. Additionally, the results of network identifications
using Fourier and Bayesian deconvolution as well as results from an optimization-
based network identification are given. The thermal impedance in the bottom
tight part of Figure 3.6, as well as the impulse response, are calculated by
reconvolving and integrating the corresponding time constant spectra. The
respective accuracies of the solutions as measured by 𝑜imp are compared in
Table 3.1.

In the absence of an objective measure of accuracy for the structure function
and time constant spectrum, there are two intuitive ways to choose the cut-off
frequency of a filter for the Fourier deconvolution. The first way is by visual
judgment of the results and the other way is to determine the optimum filter by
minimizing 𝑜imp. Here, a Hann filter is used with a cut-off frequency, which
achieves a low value for 𝑜imp. For the Bayesian deconvolution, 3 × 104 iteration
steps are performed.

The optimization-based network identification uses a Bayesian deconvolution
to generate the initial structure function, which is approximated by a piecewise
uniform structure function with six sections. This is an assumption about the
form of the structure function of the device, which is analyzed below.
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Figure 3.6: Comparison of different variants of network identification for a thermal
transient measurement on the stand-alone high-power LED in Figure 3.4a. The thermal
impedance and its derivative are calculated by reconvolting the time constant spectrum.
The corresponding accuracies to the measure thermal impedance 𝑜imp are gathered in
Table 3.1.

For high and low cumulative resistances, 𝑅Σ, the optimized structure function
deviates the most from the conventional approaches (Figure 3.6, top left). For
low 𝑅Σ, the structure function not limited by the discretization resulting from
the Foster-to-Cauer transformation via polynomial long division, which is only
feasible up to a few hundred points. For high 𝑅Σ, the optimized result has no
divergence, which masks the final part of the structure function. Additionally, the
optimization result has fewer noise components. The impulse response and the
integrated time constant spectrum of the Fourier solution deviates significantly
from the Bayesian and optimization solutions.

A detailed view of the results including the measured thermal impedance
is provided in Figure 3.7. The optimized thermal impedance matches the

Table 3.1: Comparison of the difference between the measured thermal impedance and
the reconvolved time constant spectrum.

in K/W Fourier Bayesian Optimization
𝑜imp 0.308 0.282 0.022
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Figure 3.7: Enlarged view of the calculated thermal impedances shown in the bottom
right of Figure 3.6. The corresponding deviations from the measured thermal impedance
𝑜imp are gathered in Table 3.1.

measurement data closely. As visible from the results in Table 3.1, this
amounts to a significant gain in accuracy when integrated over the entire curve.
The algorithm based on Bayesian deconvolution performs better than Fourier
deconvolution while requiring no tuning of the filter parameters. These results
support the conclusion of the previous section that optimization-based network
identification is the more accurate method.

The optimization-based network identification performed above is repeated
with 3, 6, 9, and 12 sections. In Figure 3.8, the obtained structure functions and
their corresponding integrated time constant spectra are compared. The resulting
values for 𝑜imp are compiled in Table 3.2. In comparison with conventional
network identification, the optimization results for 6, 9, and 12 sections all
show significantly increased accuracy. However, using too few sections results
in a decrease in accuracy, as shown by the optimization using three sections.
The obtained structure functions and time constant spectra are similar for all
results and in parts identical. For high 𝑅Σ, the solutions for 3 and 6 sections
as well as the solutions for 9 and 12 sections have each converged to similar
local minima, respectively. To judge which piecewise uniform structure function
characterizes the device under test best, a more detailed analysis is required. As
the computational workload increases significantly with an increasing number
of sections, the solutions with fewer sections are more efficient while providing
similar accuracy according to 𝑜imp.
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Figure 3.8: Dependence of the result of optimization-based network identifications on
the number of sections in the piecewise uniform structure function. The corresponding
similarities 𝑜imp are gathered in Table 3.2.

3.3.3 Transient dual interface measurements
The transient dual interface test is an established method in transient thermal
testing. Its measurement and evaluation procedure is described in the standard
JESD51-14 by the JEDEC solid state technology association [7]. The method is
discussed and expanded up to this day [42]. For an extension, current discussion
points include the extension to multi-chip devices or incorporation of parasitic
heat paths. The method offers a means to quantify the entire heat path from
source to environment and to identify the total thermal resistance up to a
predefined point. This is done by introducing different interface layers at the
position in question and recording a thermal transient for each case. A typical
example is the determination of the total thermal resistance of an integrated
circuit up to the board. In this case, transient thermal measurements both with
and without thermal grease as interface material from the chip to the board
are conducted. This introduces a divergence between the two corresponding
thermal impedances. The point of separation is used to determine the thermal
resistance of the device. In this way, the transient dual interface test helps to
measure thermal resistances of complex devices and to interpret their structure
function.

In the following, an outline of the evaluation procedure is given. Then, results
of a transient dual interface test are analyzed, see Figure 3.9. The network
identifications necessary for the evaluation are performed via optimization-based
network identification. As a comparison, the analysis is repeated using the
conventional method as described in the standard JESD51-14.

For the transient dual interface test, the stand-alone high-power LED in

Table 3.2: Accuracies of optimization-based network identifications for a varying
number of sections in the piecewise uniform structure function.

in K/W 3 sections 6 sections 9 sections 12 sections
𝑜imp 0.0303 0.0216 0.0212 0.0205
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Figure 3.9: Optimization-based network identification results for a transient dual
interface test on the stand-alone high-power LED in Figure 3.4a using four different
interface media.

Figure 3.4a is connected to a temperature controlled heat sink. Between the
LED and the heat sink, four different interface media are inserted. These
are aluminum, paper, plastic, and direct contact without additional medium.
No thermal grease is applied between the media. These measurements are
not conducted to obtain an accurate thermal resistance but to investigate the
possibilities of optimization-based network identification for transient dual
interface tests.

For each interface medium, a thermal impedance is recorded and evaluated via
optimization-based network identification, see Figure 3.9. Due to the good match
between optimized thermal impedance and measurement thermal impedance,
see Figure 3.7, the measurement data is omitted. In general, the result of a
transient dual interface test consists of two thermal impedances, 𝑍th,1(𝑡) and
𝑍th,2(𝑡). Without loss of generality it is assumed that 𝑍th,2(𝑡) is the curve with
the lower thermal resistance.

For the evaluation, two variants are described in the JEDEC standard. The
first option is to evaluate the point of separation between the thermal impedances
and derive from it a thermal resistance. However, the difference in temperature
induced by the two interface media manifests itself only slowly. From a
theoretical point of view, the curves are separated from the start, even if only by
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Figure 3.10: Impulse responses for the direct contract and aluminum medium calculated
via derivation (left) and optimization-based network identification (right).

a small amount. Consequently, determining the point of separation is a matter
of convention.

As a solution, the JEDEC standard introduces a small parameter, 𝜀, that
describes a minimum difference of the curves necessary for them to be considered
separated. For details and limitations on how 𝜀 is defined, see [7, 42]. To
achieve greater accuracy, the comparison with 𝜀 is done using the derivative of
the thermal impedance, i. e. impulse response ℎ(𝑧). The difference curve, 𝛿, is
defined as the weighted difference between the impulse responses. Note that it
is a function of the second thermal impedance, 𝑍th,2, and not of time,

𝛿(𝑍th,2) = ℎ1 − ℎ2
Δ𝜃

. (3.4)

Here, Δ𝜃 is defined as Δ𝜃 = |𝑍th,1(𝑡 → ∞) − 𝑍th,2(𝑡 → ∞)|. The thermal
resistance is then defined as the point where 𝛿 > 𝜀 is achieved.

For the transient dual interface test performed here, the results for direct and
aluminum media are most suitable, as they show the earliest point of separation.
Figure 3.10 shows the impulse responses for the direct contact and aluminum
medium evaluated using conventional network identification, shown on the
left-hand side, and using optimization-based network identification, shown on
the right. The discrete step on the left-hand is an artifact of the derivation
process. Figure 3.11 compares the corresponding delta curves. To avoid the
separation point being obscured by noise, the standard recommends exponential
fitting. Due to the low noise level, this does not seem to be necessary for
optimization-based network identification. Both delta curves show oscillations
between 𝑍th ≈ 1 and 𝑍th ≈ 4. The simultaneous presence in both results points
to the measurement as a cause.

The second method described in the JEDEC standard uses the structure
functions to determine the thermal resistance. This variant analyses the point of
separation between the two structure functions belonging to the transient tests
with and without interface medium. The standard JESD51-14 notes that the
success of this method is impeded by the low accuracy of the structure function
when calculated via network identification by deconvolution. Figure 3.12 shows
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Figure 3.11: Comparison of the 𝛿-curves for the impulse responses shown in Figure 3.10.
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Figure 3.12: Thermal structure functions calculated with network identification by
deconvolution (left) and optimization-based network identification (right).

the structure function for conventional network identification and optimization-
based network identification with a linear 𝐶Σ-axis. To determine the point of
separation precisely, the difference in thermal structure functions, Δ𝐶Σ (𝑅Σ),
between them is considered,

Δ𝐶Σ (𝑅Σ) = 𝐶Σ,2(𝑅Σ) − 𝐶Σ,1(𝑅Σ) . (3.5)

Figure 3.13 shows the delta curve between the direct contract and aluminum
medium for network identification by deconvolution and optimization-based
network identification. The separation point agrees between both methods. The
deviation around 𝑅Σ ≈ 3, compare Figure 3.11, appears to be a feature of the
measurement.
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Figure 3.13: Structure function difference for the thermal transients with direct contract
and aluminum medium shown in Figure 3.12.
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Figure 3.14: Definition of the power functions for the temperature prediction test. A
staircase excitation (left) and rectangular excitation (right) are applied.

3.3.4 Temperature prediction test
A meaningful physical model must contain a predictive element, which can be
verified or falsified in experiments. For the thermal models generated in this
work, this means that given a power curve, 𝑃(𝑡), device temperatures have to
be predicted accurately. In particular, the spatially resolved thermal models
generated via infrared thermography require verification. Thus, a temperature
prediction test is performed, which works as follows. First, a thermal equivalence
circuit of a device under test is generated from a transient thermal measurement.
Then the device is excited with a predefined power function (Figure 3.14) and
the resulting temperature values are recorded. Independently, the temperature is
predicted based on the thermal model and the power function of the excitation.

As a test subject, the heating pad sample in Figure 3.4b is used. Since
it is a purely ohmic resistor, there is no forward voltage and therefore no
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Figure 3.15: Equilibrium temperature distribution of the black-coated heating pad,
see Figure 3.4b, during the reference measurement. The three positions highlighted
correspond to the curves in Figure 3.16.

junction temperatures can be measured as possible with LEDs. Instead, infrared
thermographic measurements are used to record the surface temperature of the
heating pad. The equilibrium temperature distribution before the power step is
shown in Figure 3.15. For LEDs, light emission makes it difficult to obtain the
true power step, which is necessary for accurate predictions. For the heating
pad, exactly determining the power step is simpler. Using the two-dimensional
information of the image sequence, it is possible to generate independent thermal
models for every part of the heating pad. The power step is assumed to have no
spatial dependence. It is treated as a scalar value, constant for each pixel in the
image.

For the power step in the reference measurement, the heating pad is switched
from on-state to off-state, which corresponds to a cooling curve. The staircase
function and rectangular excitation in Figure 3.14, on the other hand, correspond
to heating curves. This translation is allowed as long as the device properties are
sufficiently temperature independent. In both cases, the measurements have to
start from relative thermal equilibrium. The resulting step response is evaluated
at the three positions indicated in Figure 3.15. For each position, the average
temperature curve of an area spanning 3 × 3 pixel in the center of the circle
is taken. In this way, for each position and each power curve an individual
temperature curve is predicted. To relate the image sequences of the reference
and test measurements to each other, the infrared images have to align exactly,
i. e., two equivalent pixels in the infrared images have to correspond to the same
position on the heating pad.

To generate the thermal equivalence circuits, optimization-based network
identifications with six sections are performed. The results are shown Figure 3.16.
The thermal impedances shown in the lower right correspond to the optimized
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Figure 3.16: Results of optimization-based network identifications at the three positions
highlighted in Figure 3.15.

thermal impedance. They reflect the optimized thermal impedance resulting
from optimization-based network identifications. Here, the impulse response is
generated by convolving the time constant spectrum. This yields a significant
increase in accuracy when compared to conventional network identification
by deconvolution. This advantage is especially noticeable in the prediction of
fast dynamics. In addition, using the optimization-based network identification
guarantees that the total thermal resistance is captured as accurately as possible.

Next, the process of generating the temperature predictions from the reference
measurement is laid out in more detail. Following the theory of linear time-
invariant systems, the temperature is calculated from the impulse response, ℎ(𝑡),
of the system and the power function, 𝑃(𝑡′), of the excitation. The relevant
definition (1.67) is reproduced for convenience,

𝑇 (𝑡) = 𝑇0 +
∫ 𝑡

0
𝑃(𝑡′)ℎ(𝑡 − 𝑡′) d𝑡′ . (3.6)

Here, 𝑇0 is the starting temperature. The impulse response, ℎ(𝑡 − 𝑡′), is a
function of linear time and should not be confused with the impulse response
in logarithmic time, ℎ(𝑧). They are connected via 𝑧 = ln(𝑡) and hence are
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converted into each other according to,

ℎ(𝑡) = d
d𝑡

𝑍th(𝑡) = d𝑎(𝑧)
d𝑧

d𝑧
d𝑡

= ℎ(𝑧 = ln(𝑡)) 1
𝑡
. (3.7)

Here, 𝑍th(𝑡) is the thermal impedance and 𝑎(𝑧) is the step response in logarithmic
time, where 𝑍th(𝑡 = exp(𝑧)) = 𝑎(𝑧).

The logarithmic impulse responses used for the prediction are shown in
the bottom left of Figure 3.16. After conversion to linear time, the spectra
become significantly more sharply peaked close to the origin due to the factor
1/ 𝑡. Because of this, a dense sampling of 𝑡 is required to limit the discretization
error for short times. This increases the computation time significantly.

In practice, calculating ℎ(𝑡) is easy when using the optimization-based
network identification as all curves are available to high accuracy and without
noise. First, the optimized thermal impedance, 𝑎opt(𝑧), is converted to linear
time. Then, the linear time impulse response, ℎ(𝑡), is generated by differentiating
𝑍th,opt(𝑡) in linear time. As an alternative way, ℎ(𝑧 = ln(𝑡)) is multiplied by 1/ 𝑡.
For this approach, however, two small numbers have to be divided, potentially
leading to numerical inaccuracies. For this reason, the former method is applied.
The impulse responses obtained in this way are convolved with the staircase
and rectangular power functions from Figure 3.14. For the comparison between
prediction and measurement, the temperature difference, Δ𝑇 (𝑡), is considered,
which is defined as

Δ𝑇 (𝑡) = | 𝑇 (𝑡) − 𝑇0 | . (3.8)

The three position marked in Figure 3.15 were selected because they have
qualitatively different heat paths. The first position lies directly on the heating
wire near the center and is dominated by the bulk behavior of the heating pad. The
second position is located on top of the solder connection, compare Figure 3.4b.
This position is mainly heated indirectly and reacts much slower than the rest of
the sample. At the third position, the accuracy of the thermal model at the outer
edge of the heating pad is tested, where it is significantly warmer, and the heat
flow is geometrically restricted. For all three positions, the models generated
via the optimization-based network identification achieves a good fit between
optimized thermal impedance and thermal transient measurement data.

Figure 3.17 and Figure 3.18 show the measured and predicted temperature
development for both excitation types at position 1. For each substep in the
staircase excitation, the majority of the ensuing temperature increase happens
before the next substep. The remaining temperature increase is superimposed
onto the following steps. When viewed on a longer timescale or the sample
reacts sufficiently slowly, the rectangular excitation is equivalent to a constant
average heating power. Consequently, the resulting thermal dynamic describes
an oscillation around an equilibrium, where the amplitude is determined by the
time constant spectrum of the sample. For most times, both models provide
temperature predictions that are within the range of variation of the measured
temperature signal. In this sense, the model accurately describes the thermal
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Figure 3.17: Measured and predicted temperature rise for the staircase excitation
(Figure 3.14, left) at position 1.
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Figure 3.18: Measured and predicted temperature rise for the rectangular excitation
(Figure 3.14, right) at position 1.

dynamics of the sample.
Closer inspection, however, reveals a slight deviation at approximately 1500 s

for the rectangular excitation in Figure 3.17. Similarly, during the initial tem-
perature increase in the rectangular excitation the oscillation is underestimated,
see Figure 3.18. The reason for these deviations could lie in a variety of
factors which are not investigated systematically in this work. In any case, the
following aspects must be guaranteed for an accurate prediction. First, the
power function has to be known precisely and be guaranteed to accurately reflect
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Figure 3.19: Measured and predicted temperature rise for the staircase excitation (left)
and rectangular excitation (right) at position 2.

the energy deposition in the sample. Furthermore, inherent in the model is
the assumption of linearity, which includes that ℎ(𝑡) is independent of 𝑃 and
𝑇 . Given the temperature scales of the present case, the electrical resistance
and thermal properties are practically independent of the temperature. Here,
it is also assumed that 𝑃(𝑡) is constant over the entire sample. Furthermore,
important for accurate predictions is the accuracy of the model generated by
optimization-based network identification, i. e. the difference between optimized
and measured thermal impedance has to be small.

As a second test case, the temperature curves at position 2 are investigated.
This position is chosen to test the limits of the model. Temperature predictions
at this point are particularly critical because the position is not located on the
heating spiral, but on the solder connection of the cabling. At most, only
a small amount of heat is generated at this point. Possibly, only indirect
heating takes place. Strictly following the theory, non-heated areas cannot
be represented by thermal models generated via optimization-based network
identification or network identification by deconvolution. This is because part
of the model assumptions is that the temperature is measured at the position of
power deposition, which might be violated at position 2. As a consequence, it
is not guaranteed that the thermal behavior is describable by a Cauer-type RC
ladder, in which case the predictive accuracy decreases. As an alternative, it is
possible to directly use the derivative of the measured thermal impedance as
step response in (3.6). However, this step response does not necessarily belong
to a one-dimensional thermal model as such as a piece uniform RC line.

The predicted and measured temperature curves at position 2 for the staircase
and rectangular excitations are shown in Figure 3.19. Despite the theoretical
concerns, for the staircase excitation the temperature is accurately predicted.
The individual steps are not visible due to the high thermal inertia. For the
rectangular excitation, the model predicts an oscillation with a relatively small
amplitude. No oscillations are visible in the measurement, as the amplitude
of the oscillation is smaller than the measurement uncertainty of the infrared
camera. A deviation between prediction and measurement is visible between 0 s
and 100 s.
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Figure 3.20: Measured and predicted temperature rise for the staircase excitation (left)
and rectangular excitation (right) at position 3

Finally, the third position is evaluated, which is sited at the outer edge of the
heating pad on the heating wire. The results are shown in Figure 3.20. At this
position, the heating pad shows an immediate response. Despite the change in
geometry, the predictions have similar accuracy as in the previous two cases.
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Figure 3.21: Equilibrium temperature distribution (not emissivity corrected) for an
E27 LED retrofit lamp, similar to Figure 3.4c. This lamp is listed as A2 in Table 3.3.

3.4 Application examples

3.4.1 Visualizing spatially resolved spectra
In this section, thermographic network identification is applied and evaluated
using electronic devices as examples. The principle of thermographic network
identification is introduced and discussed in Subsection 3.2. Given a two-
dimensional thermographic image sequence, for each pixel an independent
network identification is performed. To limit computational time, it is advised to
perform a network identification by deconvolution using Bayesian deconvolution.
As a result, a non-negative spatially resolved time constant spectrum is obtained.
In cases where the one-dimensional approximation is justified, the evaluation
can be continued to obtain the thermal structure function.

Even if the one-dimensional model is insufficient to fully describe the
three-dimensional sample, the time constant spectrum encodes well-defined
information about the thermal response. This is because the impulse response
is well-defined even outside one-dimensional heat conduction phenomena and
the time constant spectrum is a deconvolution of the impulse response. The
resistances and capacities in the corresponding Foster network do not correspond
to thermal resistances and capacities. In the examples discussed in this section,
heat-spreading effects are not guaranteed to be negligible. Because of that, only
time constant spectra are calculated in the following.

The sample analyzed here is an LED retrofit lamp for E27 sockets. The lamp
is of similar design to the one shown in Figure 3.4c. On these lamps no transient
thermal measurement via the forward voltage are possible due to the integrated
electronics.

Figure 3.21 shows the equilibrium temperature of the investigated lamp before
the power step. For the sake of functionality, the lamp cannot be painted black
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for an increased emissivity. Various electronic components as well as PCB label
print are visible in the thermogram. As the light emission is not accounted for,
the exact power step for each LED is unknown. Therefore, the results are only
qualitative and the power, 𝑃, is set to one for all pixels.

For an initial impression of the thermal dynamics, the transient temperature
averaged over one of the LEDs is examined. The resulting temperature curve
is shown on the left side of Figure 3.22. In addition, the corresponding time
constant spectrum is given on the right. According to the algorithm, the thermal
transient is best characterized by five maxima. From the curves only, it is
difficult to interpret the cooling stages of the lamp by attributing features of the
thermal transient to specific components or phenomena. For later reference, the
first four maxima are marked by dashed lines on the right side of Figure 3.22.

Figure 3.23 shows the spatially resolved time constant spectrum. In these
images, for each pixel the amplitude of the time constant spectrum is translated
into a color. Each image displays a different time constant, which is noted on the
top left. To enhance the contrast, the color chart is normalized for each image.
The relative magnitude between the images can be estimated from Figure 3.22.
The spatially resolved time constant spectrum makes is easier to interpret the
thermal transient. The images are more informative than scalar curves due to
the spatial correlation.

The first maximum in Figure 3.22 lies at 𝜏 = 13 ms. The corresponding
spatially resolved time constant spectrum is shown in the top left image in
Figure 3.23. As the image shows, the first peak corresponds to a slight cooling
at the LED chips. For detailed attribution of the maxima to chip components,
more information about the structure of the lamp is necessary, which is not
provided for commercial products.

The second maximum at 𝜏 = 132 ms is related to a slower cooling also
concentrated on the LEDs. This cooling stage might be related to the phosphor.
Comparing the cooling behavior between the LEDs, it is apparent that the LEDs
on the right side are more diffuse and have a higher average amplitude. In the
other images, no difference is noticeable between the LEDs.
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Figure 3.22: Averaged LED temperature and corresponding time constant spectrum.
The dashed lines indicate the maxima in the spectrum and correspond to the images in
Figure 3.23. The lamp used is listed as A2 in Table 3.3.
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Figure 3.23: Spatially resolved time constant spectrum for lamp A2 at four selected
time constants. In Figure 3.22, the selected time constants are highlighted.

The third maximum at 𝜏 = 9 s is spatially more homogeneously distributed.
It is interpreted to be related to the cooling of the PCB. The dark ring on the
outside corresponds to the PCB gluing, which reacts even slower.

The fourth maximum at 𝜏 = 164 s is the most homogeneous and attributed
to the cooling of the lamp housing. This image would likely appear almost
completely homogeneous if the temperatures were emissivity corrected. The
fifth maximum has a spatial distribution which is similar to the fourth one.
Further examples are presented in the proceedings of the Therminic 2020
conference [90].

3.4.2 Analyzing time constant spectra

In the previous subsection, the spatially resolved time constant spectrum is
analyzed using pseudo-color images. Viewing the results of a network identi-
fication in this way allows a human observer to relatively easily comprehend
a large amount of information. Through spatial correlation, features in the
time constant spectrum can be attributed to components of the sample. In
this subsection, a quantitative analysis of the transient thermal behavior is
conducted via thermographic network identification. The influence of each
component on the thermal transient is captured via its contribution to the time
constant spectrum. The results discussed in this subsection are also part of the
proceedings of the Therminic 2019 conference [91]. The spatially resolved
time constant spectrum belonging to the LED module is not analyzed here.
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Figure 3.24: Equilibrium temperature distribution (not emissivity corrected) of the
LED module. For later reference, the rows are numbered from top to bottom.

For this, the reader is referred to the proceedings of the Quantitative Infrared
Thermography Conference (QIRT) 2020 [93].

The analysis focuses on the LED module introduced in Figure 3.4d. Its
equilibrium temperature distribution (not emissivity corrected) before the
thermal transient is shown in Figure 3.24. The LEDs in the module are
organized into four columns comprising four LEDs each. The rows of LEDs
are numbered from top to bottom for later reference. The hotspots near the
bottom correspond to a row of four resistors. Additionally, the conductive paths
between the LEDs are visible in the thermogram. The dark spot covering parts
of the second and third row is explained by the narcissus effect. The apparently
cooler temperatures are caused by a reflection of the cold detector inside the
camera. This effect is visible because the module cannot be coated in black. The
LEDs and conductors are not significantly affected by this, which indicates their
good emissivity. Detailed analysis reveals a small temperature gradient along
the sample from bottom to top. It is not visible in the thermogram, because its
magnitude is on the order of a few centikelvins from top to bottom. It is induced
by the asymmetrical heating power of the resistors on the bottom.

To quantify the contribution of each component in the heat path to the
thermal transient, first, the temperatures are averaged for each LED. In this way,
sixteen temperature curves are obtained that form the basis for the following
analysis. Electrically, the power step is identical for all LEDs, neglecting light
emission. Then a network identification is performed for each LED, where
the deconvolution is done via Fourier deconvolution. The undershoots are an
artifact of the Fourier deconvolution.

In Figure 3.25, the time constant spectrum belonging to the second LED in the
third row (Figure 3.24) is shown. The time constant spectrum mainly consists of
two peaks, a shorter and a longer time constant. The first peak is interpreted to
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Figure 3.25: Logarithmic time constant spectrum for the average temperature of the
second LED in the third row (Figure 3.24) calculated with Fourier deconvolution.

belong to the cooling of the LED chips, while the second peak is attributed to the
cooling of the PCB. To measure the associated areas, each peak is approximated
by a Gaussian function via least squares regression. The total area under the
time constant spectrum is equivalent to the total thermal resistance. In this case,
it is identical to the temperature difference since the power step is set to one. The
time constant spectra belonging to the other transients are structurally similar
to the one shown in Figure 3.25, i. e., they are also well approximated by two
Gaussian functions.

The peak areas for each time constant spectrum are compiled in Figure 3.26.
The areas are measured using logarithmic time, 𝜁 = ln(𝜏). The later time
constant has a relatively low variance. A clear trend of increasing contribution
from the later peak with increasing row number is visible. This means the cooling
of the PCB is responsible for a relatively larger part of the total temperature
drop. A possible explanation are the increased temperatures in the proximity of
the resistors on the bottom of the module.

The shorter time constant shows a greater variance and no increasing or
decreasing trend with respect to row number is apparent. The area of the first
peak is a measure of individual LED cooling performance. The outlier in the
first row with a peak area almost double that of the others corresponds the top left
LED in Figure 3.25. Using the time constant spectrum the heat spreading effect
of the resistors can be separated to measured individual LED performances.

3.4.3 Statistical evaluation
In this subsection, the analysis of the LED retrofit lamp from Subsection 3.4.1
is continued to demonstrate the possibilities of advanced analysis using the
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Figure 3.26: Comparison of the peak areas according to the Gaussian approximation
for all sixteen LEDs of the array split into earlier and later time constant.

thermographic network identification. As before, the analysis focuses on the
time constant spectrum of the averaged cooling curves for each LED. To enable
a statistical analysis, the measurement is extended to a series of comparable
LED lamps of different types. The goal is to compare the thermal paths of the
LEDs to find structural differences both between and within the lamps. The
lamps examined are all products from different manufacturers or variants from
the same manufacturers. Still, they are all similar in design to the lamp shown
as an example in Figure 3.4c. In total, eight different lamps are investigated.
An overview of the technical specifications is given in Table 3.3. For each
lamp, the electric power, the luminous flux, the correlated color temperature
(CCT), and the number of LEDs is noted. Furthermore, two different types of
lamp mountings for the E27 sockets are investigated. One mounting is made
of plastic and the other is made entirely of metal. By comparing the influence
of the mounting on the time constant spectra, its contribution to the heat paths
is investigated. The results discussed in this subsection were presented at the
LpS (LED Professional Symposium) Digital Conference and are published
in the LED professional review by Peter W. Nolte, Stefan Schweizer and the
author [92].

For the analysis, the thermal transients of all lamps and all LEDs are extracted
from the infrared image sequences. A network identification using Bayesian
deconvolution is performed on each transient. As an example, the time constant
spectrum associated to the thermal transient of one of the LEDs from lamp
A2 mounted on the metal socket is shown in Figure 3.27. The spectrum is
identical to the one shown on the right side of Figure 3.22. Here, the analysis
is continued by approximating a Gaussian function to each peak via a least
squares regression. The peak area is calculated by integrating the Gaussian
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Figure 3.27: Average time constant spectrum for one of the LEDs of lamp A2. Addition-
ally, each of the five peaks is approximated by a Gaussian function.

approximation analytically. In this way, each peak is attributed an area and
a time constant, 𝜏0, the Gaussian is centered on, indicated by dashed lines in
Figure 3.27. The peaks are numbered from one to five. In the previous analysis
using the spatially resolved time constant spectrum, it was concluded that the
first and second peak are associated to the cooling of LEDs. The third peak is
related to cooling of PCB, while the fourth and fifth peak are attributed to the
cooling of the entire lamp.

Figure 3.28 shows a density plot of the peak area versus center time constant, 𝜏0.
Most time constant spectra have five maxima. Only in rare cases, the spectrum
consists of four or six maxima. In total, all peaks in all spectra amount to

Table 3.3: Specifications of all lamps which are investigated in the following. The
correlated color temperature is abbreviated as CCT.

lamp luminous flux power CCT number
type in lumen in watt in kelvin of LEDs product
A1 806 7.5 4000 11 Philips CorePro

A2 806 8.0 2700 14 Philips CorePro

B1 806 8.5 4000 14 Osram AC17440

B2 806 8.8 2700 9 Osram AC17462

C 806 9.0 4000 19 Osram AB41763

D 1000 10.0 2700 14 IKEA LED1734G10

E 806 10.0 2700 27 ML HD95-LED

F 1055 11.0 2700 15 Philips CorePro
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Figure 3.28: Density plot of all peak areas versus center time constant, 𝜏0, for all
lamps listed in Table 3.3 on a metal and plastic mounting each. Each point is partially
transparent. More saturated areas imply a higher density of data points. The dashed
lines correspond to the maxima of lamp A2 in Figure 3.27. At the top, the clusters are
numbered from one to five.

approximately 1000 data points. The locations of the maxima from Figure 3.27
are reproduced in Figure 3.28. For later analysis, the contributions of selected
lamps are highlighted. Due to the similar structure of the lamps, the data points
clearly separate into several clusters. The clusters are numbered according to the
dashed lines. From the variance within the clusters, a difference in the cooling
performance between the lamps and among the components of each lamp can
be gathered. It is noticeable that the variance of the clusters is significantly
different with respect to the peak area and the center time constant, 𝜏0. The
clusters 1, 4, and 5 are mostly distributed in peak area. With respect to 𝜏0 the
distribution is relatively narrow. Clusters 2 and 3 show significant variance in
both dimensions.

In the following, a detailed analysis of the density plot is conducted. To
discuss the influence of the mounting on the heat path, the data points for the
lamp of type A2 on the metal and plastic mounting are highlighted in Figure 3.28.
For both mounting types, the clusters 1, 2, and 3 lie almost exactly on top of
each other. This is to be expected, because these clusters relate to the cooling of
the LED and the PCB as can be seen from the spatially resolved time constant
spectrum. In clusters 4 and 5, a slight difference is noticeable. However, on
average no significant effect of the mounting type on equilibrium temperatures
is observable. This also holds true for the other lamp types.

Next, the lamps of types D and E are compared, see Figure 3.28. The average
LED equilibrium temperature for lamp D is 104 ◦C, while it is only 82 ◦C for
lamp E. Both lamps have a nominal electrical power requirement of 10.0 W. A
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significant difference is that lamp D consists of 14 LEDs, while lamp E has
27 LEDs. In the density plot, the largest difference is visible in cluster 2 at
𝜏0 ≈ 0.3 s, where lamp E performs significantly better. From their respective
spatially resolved time constant spectra (not shown here), it is visible that these
maxima for lamps D and E are also related to the LEDs. In the other clusters,
the performance is relatively similar between both lamps. Lamp E has no
contribution belonging to cluster one.

Comparing lamps D and E with lamp A2, it is seen that they perform
significantly better in cluster 3, which partly explains lamp A2’s high average
LED equilibrium temperature of 104 ◦C. Despite this, lamp D has an equilibrium
temperature similar to lamp A2 in part due to its high LED contribution in cluster
2. In fact, lamp D has the highest cluster-2 contribution of all tested LEDs. Of
all lamps analyzed, lamp E has the lowest LED equilibrium temperature and
in this sense the best cooling performance. Judging from the density plot, the
main reason for this seems to be the low contribution of the LEDs and the PCB.

3.5 Conclusion
The goal of this chapter was to investigate the potential of network identification
by deconvolution on the basis of thermographic measurements. As a first step
towards that goal, a systematic analysis of the algorithms of network identification
by deconvolution was conducted in Chapter 2. There, it was concluded that
the presented methodology is suitable for a systematic improvement of the
accuracy of existing algorithms. In addition, the method of optimization-based
network identification was newly developed. The remaining task for this chapter
was to analyze the accuracy of these algorithms when confronted with real
measurement data as well as to explore their potential as a non-destructive
testing technique.

At the beginning of this chapter, a brief summary of non-destructive testing
techniques is given. Special emphasis is put on infrared thermography, which
includes methods such as the thermographic signal reconstruction. Then, the
method of thermographic network identification is presented, which was patented
as a part of the research for this work. This sets the thermographic network
identification in the context of other thermographic testing techniques.

Next, a systematic analysis of network identification by deconvolution using
thermographic data is given. This completes the analysis based on theoretical
test cases presented in Chapter 2. Optimization-based network identification
is applied to thermal transient measurements based on forward voltages. The
results are compared to network identification by deconvolution using Fourier
deconvolution and Bayesian deconvolution. The success of optimization-based
network identification on artificially generated measurement data presented in
the previous chapter could be repeated.

To verify the thermal models generated in this way, a temperature prediction
test is performed. Only if the calculated thermal models possess a predictive
quality can they claim to actually describe the device under test. Using a
black-coated heating pad, thermal models calculated via optimization-based
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network identification were able to accurately predict the surface temperature
development on multiple positions and for two different excitation patterns. As
an application, the more precise calculations of optimization-based network
identification are applied to transient dual interface tests with good success.

Finally, several examples for thermal analysis using thermographic network
identification are given. The resulting data can be used for defect analysis as it
is demonstrated on the example of an LED module. On an ensemble of LED
retrofit lamps, a cluster analysis of the cooling performance of each LED is
performed on the basis of the time constant spectrum. The resulting data enables
a study on cooling strategies for LED retrofit lamps. Analysis using the spatially
resolved time constant spectrum can assist in research and development, thermal
design as well as failure mode analysis.

The achievements of thermographic network identification are the combination
of network identification by deconvolution and thermographic measurements,
which is a great success in achieving the goals of this work. The method
enables a contactless measurement of time constant spectra without prior
calibration of electric sensing property or the existence of related electric
components. With the help of the spatially resolved time constant spectrum,
maxima in the time constant spectrum are attributed to specific components of
the device under test. In this way, the contribution of each component to the
heat path is captured simultaneously. The application of optimization-based
network identification to calculate spatially resolved time constant spectra from
thermographic measurements is limited by the increased computational time. In
this area, further algorithmic optimization is required.
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Chapter 1 gives a complete overview of the theory of network identification
by deconvolution. At the beginning of the chapter, the concept of lumped
thermal modeling is introduced. The relation to thermal analysis using finite
elements models and analytical models is established. The electrical analysis of
the thermal equivalence circuits used in this work is kept as brief as possible
without compromising understanding. A more detailed treatment of circuit
theory is beyond the scope of this work. Nevertheless, all central equations
of network identification by deconvolution are derived in detail. The sections
on algorithms for performing network identification by deconvolution covers
algorithms, whose use has been documented in the literature. In summary, the
theoretical basis established in this work is satisfactory and does not require
further expansion.

It is the task of Chapter 2 to analyze these algorithms in detail and improve
their accuracy as well as to find new approaches for calculating thermal structure
functions. The three main results of Chapter 2 are, first, the development of
a methodology to systematically analyze the performance of algorithms for
network identification by deconvolution, the optimization and comparison of
existing algorithms, and finally the development of the optimization-based
network identification.

For the network identification by deconvolution, some approaches remain to
be systematically analyzed, such as the idea of using inverse filtering and Wiener
optimal filtering for the deconvolution. For the Foster-to-Cauer transformation,
the algorithms by Khatwani [74] and Sobhy [76] have not been implemented as
a part of this work. Additionally, the tridiagonalization method described by
Codecasa [73] remains to be systematically compared. Once these alternative
algorithms have been implemented, a systematic evaluation to investigate which
combination of differentiation, deconvolution and Foster-to-Cauer transformation
technique yields the most accurate result for the network identification by
deconvolution is possible.

The presented optimization-based network identification offers many opportu-
nities to increase its accuracy advantage further. This includes different solvers,
other ways to generate initial values, and more sophisticated optimization strate-
gies to avoid early convergence to local minima. The goal of further work is to
achieve a reduction in computation time while increasing the accuracy of the
results. In the version presented, the optimization-based network identification
shows better performance than the conventional algorithm already.

Chapter 3 covers the experimental aspects of the application of thermographic
measurement data towards network identification by deconvolution. The main
result of Chapter 3 is the development and analysis of a newly developed method
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for non-destructive testing called thermographic network identification. The
method has been patented [17]. The success of Chapter 2 in developing accurate
algorithms for network identification provides a major benefit for the analysis
in Chapter 3. A well-performing algorithm is important for increasing the
detection sensitivity of the method and improving its signal-to-noise ratio. This
is in particular important for the case of network identification by deconvolution
as the process of deconvolution is numerically challenging.

In this work, thermographic network identification has been applied using
self-heating of a device under test for example via electrical heating as described
in [94]. A natural next step is to perform step heating thermography using
external (optical) excitation. With this, a systematic study on the merits of
thermographic network identification as a method for defect analysis is possible.
This could be done by analyzing the contrast of artificial defects, for example in
the form of flat-bottom hole samples, in comparison to other non-destructive
testing techniques. Appropriate for this task is a comparison to thermographic
signal reconstruction, which can be performed using both step and flash excitation.
This makes it a good method for a comparison with thermographic network
identification. As a part of such a research project it is necessary to consider
a generalization of the shape of the power function applied to a device under
test. In this work, only power steps from equilibrium in the form of a single
Heaviside function, i. e. thermal transients, are considered. In principle, flash
excitation, i. e. heating via a Dirac delta pulse or heating with a finite pulse
length, are also possible. With this type of excitation different thermal responses
are obtained requiring a re-evaluation of the applied algorithms.

It is a prerequisite for such a comparison to have a suitable excitation source
for step heating excitation. Some progress towards such an excitation sources
has been made already [112]. The approach presented in the paper uses high
power infrared LEDs to provide highly controllable optical excitation outside
of the detection range of the infrared camera. Another promising candidate is
laser-induced heating via a vertical-cavity surface-emitting laser (VCSEL) [113,
114]. This type of laser offers a precisely controllable high-power emission,
which provides homogeneously distributed heating over a relatively large area.
Similar to LEDs, VCSEL emission is limited to a narrow spectral range, which
does not overlap with typical infrared camera detection sensitivities. Its main
advantage over LEDs is the higher irradiance.

Building on the above described steps, an automated defect classification
system can be developed. The goal of such a system could be to perform a cluster
analysis, similar to the one shown in Figure 3.28, to assist in quality assurance
during production processes. Based on a set of reference measurements,
outliers can be automatically identified and categorizing using their individual
quantitative performance. Available for an automated evaluation is the entire
information included in the spatially resolved time constant spectrum. The
merit of such a system is that the analysis is based on the thermal resistances
and capacitances of the heat path, which are the fundamental quantities when
evaluating thermal performance. This work contributes a major step towards the
development of such a system.
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